EP1738109A1 - Catalytic reactor and method for burning fuel-air mixtures by means of a catalytic reactor - Google Patents

Catalytic reactor and method for burning fuel-air mixtures by means of a catalytic reactor

Info

Publication number
EP1738109A1
EP1738109A1 EP05729538A EP05729538A EP1738109A1 EP 1738109 A1 EP1738109 A1 EP 1738109A1 EP 05729538 A EP05729538 A EP 05729538A EP 05729538 A EP05729538 A EP 05729538A EP 1738109 A1 EP1738109 A1 EP 1738109A1
Authority
EP
European Patent Office
Prior art keywords
fuel
catalytic reactor
air
sector
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05729538A
Other languages
German (de)
French (fr)
Inventor
Richard Carroni
Timothy Griffin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1738109A1 publication Critical patent/EP1738109A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/40Continuous combustion chambers using liquid or gaseous fuel characterised by the use of catalytic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • Catalytic reactor and method for the combustion of fuel-air mixtures by means of a catalytic reactor
  • the invention relates to a catalytic reactor according to the preamble of the first claim.
  • the invention continues from a method for the combustion of fuel-air mixtures by means of a catalytic reactor according to the independent method claim.
  • catalytic reactors In power plants, in particular gas turbines, catalytic reactors, or catalysts for short, are used to burn part of the gaseous fuel and air mixture flowing through the catalyst. This results in a temperature increase in the gas-air mixture and, depending on the catalytic reactor, a synthesis gas can essentially be generated from a mixture of hydrogen gas (H 2 ) and carbon monoxide (CO).
  • the hot exhaust gas is used for thermal and / or chemical stabilization of the homogeneous flame in the combustion chamber. Aerodynamic flame stabilization is often necessary, such as a sudden cross-sectional expansion between the catalytic converter and the homogeneous flame front in the combustion chamber.
  • the catalytic combustion of fuel-air mixtures can significantly reduce the pollutant emissions of nitrogen oxides (NOx) and carbon monoxides (CO).
  • the reason for this reduction are the carbon dioxide (C0 2 ) and water (H 2 0) present in the exhaust gas of the catalyst, which delay the formation rate of thermally formed nitrogen oxides (NOx) in the homogeneous flame front. This means that less nitrogen oxide is formed, even at high temperatures above 1450 ° C.
  • the catalysts also require a well-mixed fuel-air mixture to avoid local overheating. As a result, the homogeneous flame mixture is more uniform and local hot spots are avoided, which would contribute to the formation of NOx.
  • the lower hydrocarbon concentrations (CH concentration) after the catalytic reaction also reduce the direct formation of NOx.
  • the chemical stabilization also extends the extinguishing limits for lean flames.
  • hydrogen gas and to some extent carbon monoxide have been used for this purpose.
  • the extinguishing limits could be expanded considerably by replacing small portions of the gaseous fuel with hydrogen gas. It is even more advantageous to inject the hydrogen gas locally, as a result of which less H 2 is required than in the case of premixing with fuel and without increasing the NOx emissions, as is the case in the case of poor premixing.
  • the object of the invention is to avoid the disadvantages of the prior art in a catalytic reactor and the associated process of the type mentioned at the outset and to enable pollutant emissions and high flame stability. According to the invention, this is achieved by the features of the first claim.
  • the essence of the invention is therefore that the catalytic reactor is charged with lean fuel-air mixtures and rich fuel-air mixtures, that the catalytic reactor consists of at least two sectors, that a first flowed through sector is free of catalytic coatings and that a catalytic coating is arranged in a downstream second sector in the channels through which a rich fuel-air mixture flows.
  • the advantages of the invention can be seen, inter alia, in the fact that the catalyst according to the invention maximizes the catalytic fuel conversion. This reduces pollutant emissions in all operating conditions, nitrogen oxides being reduced by the presence of water and carbon dioxide and carbon monoxides being reduced by the improved chemical flame stabilization. In addition, the flame stability is increased under all operating conditions.
  • the light-off behavior of the catalytic converter is also improved since, in particular, the rich fuel-air mixtures are preheated to a greater extent.
  • the required length of the catalyst is shortened and the cooling of the catalytic coatings (in particular the catalytic coating for lean combustion) and the control of the temperatures in the catalyst are improved.
  • FIG. 1 shows a schematic partial longitudinal section through a burner arrangement according to the invention
  • 2 shows a schematic top view of a catalytic converter
  • Fig. 3 is a schematic partial longitudinal section through an inventive catalyst.
  • Way of carrying out the invention 1 shows a burner arrangement 1, for example for a power plant, comprising a first feed line 2 and a second feed line 3, a catalytic reactor 4, hereinafter referred to as a catalyst, and a downstream combustion chamber 5.
  • the air ratio ⁇ is preferably in a range from 1.5 to 3.0.
  • the air ratio ⁇ is preferably in a range from 0.15 to 0.6.
  • Fuel is mixed with the combustion air upstream of the air supply lines 2 and 3.
  • Mixing devices 8 and 9 can be arranged in the air supply line 2 and 3 for further mixing of the fuel-air mixture. However, the mixing of air and fuel can also take place upstream using known mixing systems.
  • the two fuel-air mixtures 6, 7 now meet a distribution device 10, which the
  • the distribution device 10 and the catalyst 4 are shown in more detail.
  • Such distribution devices 10 and catalysts 4 are known in particular from WO 03/033985 A1, the content of which is hereby included.
  • the distribution device 10 consists of parallel walls and cross struts, which thus run in parallel.
  • fende channels 13 and 15 form. These channels are now alternately closed against the only schematically illustrated supply lines 2 and 3 via orifices 14, so that the lean fuel-air mixture 6 and the rich fuel-air mixture 7 can alternately enter channels 13 and 15, respectively.
  • the catalytic converter is also divided into parallel channels, so that the lean fuel-air mixture 6 can enter the channels 13 and the rich fuel-air mixture 7 can enter the channels 15.
  • the parallel channels 13 and 15 are alternately arranged and guided through the catalyst.
  • a wall of a duct 15, which carries a rich fuel-air mixture 7 always also forms a wall of a duct 13, which carries a lean fuel-air mixture.
  • thermal energies of the different fuel-air mixtures can be exchanged.
  • Other embodiments analogous to WO 03/033985 A1 are of course also conceivable for the distribution device 10 and the catalyst 4.
  • the channels 13, 15 of the catalytic converter are shown in detail, the arrows indicate the heat flow 19.
  • the rich fuel-air mixture 7 is preheated and heated. Due to the high fuel concentration in this stream, the temperature of the rich mixture is significantly lower than the temperature in the lean fuel-air mixture 6. This is due to the temperature of the fuel supplied, which is usually between 20 and 100 ° C. The lean mixture has a higher temperature and thus heats up the rich mixture.
  • catalytic coatings 20 are applied mainly in the channels 15 through which the rich fuel-air mixture 7 flows.
  • These coatings 20 preferably consist of rhodium catalyst materials, for example Rh / Zr0 2 .
  • the preheated rich fuel-air mixture 7 ignites and partially burns in a fuel-rich environment (POX).
  • POX fuel-rich environment
  • the first step in such a reaction is always very exothermic.
  • the heat released is transferred via the channel walls into the adjacent channels 13 carrying a lean fuel-air mixture 6, and the temperature of the lean fuel-air mixture 6 is greatly increased.
  • catalytic coatings 21 are applied mainly in the channels 13 through which the lean fuel-air mixture 6 flows.
  • These coatings 21 preferably consist of palladium catalyst materials, for example Pd / Al 2 O 3 , or also platinum catalyst materials.
  • the preheated lean fuel-air mixture 6 reacts heterogeneously with heat generation (FOX) and there is a heat flow in the direction of the channels 15 through which the rich fuel-air mixture 7 flows.
  • FOX heat generation
  • the heat exchange between the rich and lean mixture in the sectors II and III ensures that the catalytic coatings 20, 21 are kept at operating temperature and do not overheat or are below the at least necessary temperature, the so-called light-off temperature.
  • Typical channel diameters are in the range of 0.5 to 2 mm. This ensures that the homogeneous ignition of the mixtures emerging from the catalyst does not occur in the vicinity of the channel outlets.
  • the channels 13 for the lean fuel-air mixture 6 and the channels 15 for the rich fuel-air mixture 7 do not have to have the same diameter and the coated sectors II, III also do not have to have the same length. Sectors II and III can also overlap depending on the desired output.
  • the residence time of the rich air-fuel mixture 7 in sector II can be set according to the desired products. If the contact time is short enough, then the reaction is predominantly exothermic and the combustion products mainly consist of H 2 0 and C0 2 , since the main reaction is CH 4 + 20 2 -> C0 2 + 2H 2 0, and little or no synthesis gas is produced. In this case, sectors II and III should not overlap, since otherwise both coatings 20, 21 overheat. A longer contact time favors the endothermic, fuel-converting reaction, which takes place immediately after the exothermic step, with which synthesis gas is generated.
  • sectors II and III should overlap, since the exothermic reaction of the lean air-fuel mixture in sector III provides the energy for the endothermic, fuel-converting reaction in the last part of sector II. This guarantees that the catalytic coatings are cooled sufficiently.
  • the overlap must therefore be chosen such that the area of sector II where the endothermic, fuel-converting reaction takes place is overlapped by sector III with catalytic coatings 21.
  • the catalyst can only be used in the same way as a pilot burner with high fuel contents.
  • sector III can be omitted.
  • the channels for the lean air-fuel mixture are present, but are not catalytically coated.
  • a coating is preferably carried out which prevents the lean air-fuel mixture from igniting, for example with Al 2 O 3 or other metal oxides.
  • the distribution of the air flow between the two supply lines 2 and 3 can be constant or changeable.
  • the distribution of the fuel can be varied.
  • the air to fuel ratio of the two streams 6 and 7 can be changed.
  • the respective air ratio ⁇ of the two flows can thus be adapted to the conditions of the system and the operating conditions. For example, at low inlet temperatures, more fuel can be added to the rich air-fuel mixture so that the catalytic converter starts (POX light-off).
  • the distribution of the proportions of the total air flow between the two flows 6 and 7 can be changed. In this case, the flow rate of the rich air-fuel mixture 7 could be significantly reduced at low inlet temperatures so that the catalytic converter starts up, and the fuel and air flow could then be increased at higher inlet temperatures.
  • the end of Sector III is the end of the catalyst.
  • the closely spaced channels 13, 15 for the lean and rich mixture result in very good mixing between all the streams. This creates a uniform mixture of the high-temperature lean FOX and fat POX mixtures before homogeneous combustion. This prevents the formation of nitrogen oxides and promotes a high, uniform, homogeneous combustion.
  • a flow divider can also be arranged at the end of sector III, which prevents mixing of the FOX and POX mixtures.
  • the rich POX mixture 7 can be supplied locally, in particular at locations where chemical stabilization of the homogeneous flame can thereby be achieved.
  • the catalyst according to the invention thus maximizes the catalytic fuel conversion, emissions are reduced in all operating states and the flame stability is increased under all conditions.
  • the light-off behavior of the catalytic converter is improved, the length of the catalytic converter required is shortened and the cooling of the catalytic coatings and the control of the temperatures are improved.
  • the control of the flow rates of air and fuel through the different channels, and thus the precise control over the air-fuel mixtures, allows a high degree of flexibility during operation. Furthermore, stable combustion is always guaranteed.
  • the invention is not limited to the exemplary embodiment shown and described.

Abstract

A catalytic reactor (4) used to burn at least part of the fuel-air mixtures flowing therethrough comprises a plurality of channels (13, 15). Said catalytic reactor (4) is supplied with weak fuel-air mixtures (6) and rich fuel-air mixtures (7). The inventive catalytic reactor (4) consists of at least two sections (I, II, III): a first section (I) through which the mixtures flow is not provided with any catalytic coatings; and a catalytic coating (20) is applied to the channels (15) through which rich fuel-air mixtures (7) flow, in a second section (II) located downstream from the first.

Description

Katalytischer Reaktor und Verfahren zur Verbrennung von Brennstoff-Luft-Gemischen mittels eines katalytischen Reaktors Catalytic reactor and method for the combustion of fuel-air mixtures by means of a catalytic reactor
Technisches GebietTechnical field
Die Erfindung geht aus von einem katalytischen Reaktor nach dem Oberbegriff des ersten Anspruches.The invention relates to a catalytic reactor according to the preamble of the first claim.
Die Erfindung geht weiter aus von einem Verfahren zur Verbrennung von Brennstoff-Luft-Gemischen mittels eines katalytischen Reaktors nach dem unabhängigen Verfahrensanspruch.The invention continues from a method for the combustion of fuel-air mixtures by means of a catalytic reactor according to the independent method claim.
Stand der TechnikState of the art
Bei Kraftwerksanlagen, insbesondere Gasturbinen, werden katalytische Reaktoren, oder kurz Katalysatoren, dazu verwendet, einen Teil des den Katalysator durchströmenden gasförmigen Brennstoffes und Luftgemisches zu verbrennen. Dadurch entsteht im Gas-Luft-Gemisch eine Temperaturerhöhung und abhängig vom katalytischen Reaktor kann auch ein Synthesegas im wesentlichen beste- hend aus einem Gemisch von WasserstofFgas (H2) und Kohlenmonoxid (CO) erzeugt werden. Das heisse Abgas dient zur thermischen und / oder chemischen Stabilisation der homogenen Flamme im Brennraum. Eine aerodynamische Flammenstabilisierung ist vielfach notwendig, wie z.B. durch eine plötzliche Querschnittserweiterung zwischen dem Katalysator und der homogenen Flammenfront im Brennraum. Durch die katalytische Verbrennung von Brennstoff-Luft-Gemischen kann die Schadstoff-Emission von Stickoxiden (NOx) und Kohlenmonoxiden (CO) deutlich verringert werden. Grund für diese Verringerung sind das im Abgas des Katalysators vorhandene Kohlendioxid (C02) und Wasser (H20), welche die Bildungsrate von thermisch gebildeten Stickoxiden (NOx) in der homogenen Flammenfront verzögern. Somit wird weniger Stickoxid gebildet, sogar bei hohen Temperaturen über 1450°C. Weiter benötigen die Katalysatoren ein gut durchmischtes Brennstoff-Luft-Gemisch, um eine lokale Überhitzung zu vermeiden. Daraus resultiert, dass das homogene Flammengemisch gleichförmiger ist und lokale Überhit- zungspunkte (hot spots) vermieden werden, welche zur Bildung von NOx beitragen würden.In power plants, in particular gas turbines, catalytic reactors, or catalysts for short, are used to burn part of the gaseous fuel and air mixture flowing through the catalyst. This results in a temperature increase in the gas-air mixture and, depending on the catalytic reactor, a synthesis gas can essentially be generated from a mixture of hydrogen gas (H 2 ) and carbon monoxide (CO). The hot exhaust gas is used for thermal and / or chemical stabilization of the homogeneous flame in the combustion chamber. Aerodynamic flame stabilization is often necessary, such as a sudden cross-sectional expansion between the catalytic converter and the homogeneous flame front in the combustion chamber. The catalytic combustion of fuel-air mixtures can significantly reduce the pollutant emissions of nitrogen oxides (NOx) and carbon monoxides (CO). The reason for this reduction are the carbon dioxide (C0 2 ) and water (H 2 0) present in the exhaust gas of the catalyst, which delay the formation rate of thermally formed nitrogen oxides (NOx) in the homogeneous flame front. This means that less nitrogen oxide is formed, even at high temperatures above 1450 ° C. The catalysts also require a well-mixed fuel-air mixture to avoid local overheating. As a result, the homogeneous flame mixture is more uniform and local hot spots are avoided, which would contribute to the formation of NOx.
Durch die geringeren Kohlenwasserstoff-Konzentrationen (CH-Konzentration) nach der katalytischen Reaktion, wird auch die direkte Bildung von NOx verringert.The lower hydrocarbon concentrations (CH concentration) after the catalytic reaction also reduce the direct formation of NOx.
Durch die chemische Stabilisierung werden auch die Löschgrenzen für magere Flammen erweitert. Im speziellen wurden Wasserstoffgas und zu einem gewissen Grad auch Kohlenmonoxid zu diesem Zweck verwendet. Bei atmosphärischen Brennern in Gasturbinen konnte gezeigt werden, dass bei einem Ersatz von kleinen Anteilen des gasförmigen Brennstoffes durch Wasserstoffgas die Löschgrenzen beträchtlich erweitert werden konnten. Noch vorteilhafter ist es, das Wasserstoffgas lokal einzudüsen, wodurch weniger H2 nötig ist, als bei der Vormischung mit Brennstoff und ohne dass die NOx Emissionen erhöht werden, wie dies beim Fall von schlechter Vormischung der Fall ist.The chemical stabilization also extends the extinguishing limits for lean flames. In particular, hydrogen gas and to some extent carbon monoxide have been used for this purpose. In the case of atmospheric burners in gas turbines, it could be shown that the extinguishing limits could be expanded considerably by replacing small portions of the gaseous fuel with hydrogen gas. It is even more advantageous to inject the hydrogen gas locally, as a result of which less H 2 is required than in the case of premixing with fuel and without increasing the NOx emissions, as is the case in the case of poor premixing.
Zur Flammenstabilisierung mit Katalysatoren sind Verfahren der mageren Vor- mischverbrennung bekannt, bei denen ein mageres Brennstoff-Luft-Gemisch im Katalysator vollständig oxidiert wird (Füll Oxidation = FOX). Bei solchen Systemen wird die Verbrennungsluft und fast der gesamte Brennstoff durch den Katalysator geleitet. Solche Systeme sind anfällig auf Brennstoff-Luft Schwankungen und Inhomogenitäten und auch auf eine Deaktivierung der Katalysatoren. Bei grösseren Verbrennungsanlagen muss ein Teil des Brennstoffes am Katalysator vorbeigeführt werden. Die Eindüsung dieses Brennstoffes nach dem Katalysator und die Zumischung ist problematisch und kann zu unerwünschten Schadstoffemissionen führen.For flame stabilization with catalysts, methods of lean premix combustion are known in which a lean fuel / air mixture in the catalyst is completely oxidized (fill oxidation = FOX). In such systems, the combustion air and almost all of the fuel is carried by the catalytic converter directed. Such systems are susceptible to fuel-air fluctuations and inhomogeneities and also to a deactivation of the catalysts. With larger combustion plants, part of the fuel has to be led past the catalytic converter. The injection of this fuel after the catalyst and the admixture is problematic and can lead to undesirable pollutant emissions.
Zur Flammenstabilisierung mit Katalysatoren sind auch Verfahren der fetten Ver- brennung, bei denen ein fettes Brennstoff-Luft-Gemisch verwendet wird, bekannt. Das fettes Brennstoff-Luft-Gemisch wird im Katalysator nur teilweise verbrannt (Partial Oxidation = POX). Bei diesen wird üblicherweise aller Brennstoff durch den Katalysator geführt. Eine Flammenlöschung erfolgt bei deutlich niedrigeren Temperaturen als bei mageren Gemischen und die Stabilität und Robustheit des Katalysators sind deutlich erhöht. Bei diesen Systemen muss jedoch ein grosser Anteil der Verbrennungsluft am Katalysator vorbeigeführt werden und nach dem Katalysator dem Abgas zugeführt werden. Bei dieser Zumischung können unerwünschte Schadstoffemissionen und Temperaturungleichförmigkeiten entstehen, besonders bei hohen Temperaturen wie sie in grossen Verbrennungsanlagen an- zutreffen sind.Methods of rich combustion, in which a rich fuel-air mixture is used, are also known for flame stabilization with catalysts. The rich fuel-air mixture is only partially burned in the catalytic converter (partial oxidation = POX). In these, all fuel is usually passed through the catalyst. Flame is extinguished at significantly lower temperatures than with lean mixtures and the stability and robustness of the catalyst are significantly increased. In these systems, however, a large proportion of the combustion air must be led past the catalytic converter and be passed to the exhaust gas after the catalytic converter. This admixture can result in undesirable pollutant emissions and temperature irregularities, especially at high temperatures such as those found in large combustion plants.
Darstellung der ErfindungPresentation of the invention
Der Erfindung liegt die Aufgabe zugrunde, bei einem katalytischen Reaktor und dem zugehörigen Verfahren der eingangs genannten Art die Nachteile des Stan- des der Technik zu vermeiden und Schadstoffemissionen sowie eine hohe Flammenstabilität zu ermöglichen. Erfindungsgemäss wird dies durch die Merkmale des ersten Anspruches erreicht.The object of the invention is to avoid the disadvantages of the prior art in a catalytic reactor and the associated process of the type mentioned at the outset and to enable pollutant emissions and high flame stability. According to the invention, this is achieved by the features of the first claim.
Kern der Erfindung ist es also, dass der katalytische Reaktor mit mageren Brennstoff-Luft-Gemischen und fetten Brennstoff-Luft-Gemischen beaufschlagt ist, dass der katalytische Reaktor aus mindestens zwei Sektoren besteht, dass ein erster durchströmten Sektor frei von katalytischen Beschichtungen ist und dass in einem stromabwärts liegenden zweiten Sektor in dem von fetten Brennstoff-Luft- Gemisch durchströmten Kanälen eine katalytische Beschichtung angeordnet ist.The essence of the invention is therefore that the catalytic reactor is charged with lean fuel-air mixtures and rich fuel-air mixtures, that the catalytic reactor consists of at least two sectors, that a first flowed through sector is free of catalytic coatings and that a catalytic coating is arranged in a downstream second sector in the channels through which a rich fuel-air mixture flows.
Die Vorteile der Erfindung sind unter anderem darin zu sehen, dass durch den er- findungsgemässen Katalysator die katalytische Brennstoffumwandlung maximiert wird. Schadstoffemissionen werden dadurch bei allen Betriebszuständen verringert, wobei Stickoxide durch die Gegenwart von Wasser und Kohlendioxid verrin- gert werden und Kohlenmonoxide durch die verbesserte chemische Flammensta- bilisation verringert werden. Zudem wird die Flammenstabilität unter allen Betriebsbedingungen erhöht. Auch wird das Anspringverhalten des Katalysators verbessert, da insbesondere die fetten Brennstoff-Luftgemische stärker vorgeheizt werden. Die benötigte Länge des Katalysators wird verkürzt und die Kühlung der katalytischen Beschichtungen (insbesondere der katalytischen Beschichtung für die magere Verbrennung) und die Kontrolle der Temperaturen im Katalysator verbessert. Die Kontrolle der Durchflussraten von Luft und Brennstoff durch die verschiedenen Kanäle und damit der genauen Kontrolle der Luft-Brennstoffgemische erlaubt eine hohe Flexibilität beim Betrieb. Weiter ist immer eine stabile Verbren- nung garantiert. Weiter ist eine Zumischung von Brennstoff nach dem Katalysator, wie bei mageren Brennstoff-Luftsystemen (FOX), und die Zumischung von Brennluft nach dem Katalysator, wie bei fetten Brennstoff-Luftsystemen (POX) verwendet, nicht mehr nötig, wodurch die Nachteile des Standes der Technik vermieden werden. Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.The advantages of the invention can be seen, inter alia, in the fact that the catalyst according to the invention maximizes the catalytic fuel conversion. This reduces pollutant emissions in all operating conditions, nitrogen oxides being reduced by the presence of water and carbon dioxide and carbon monoxides being reduced by the improved chemical flame stabilization. In addition, the flame stability is increased under all operating conditions. The light-off behavior of the catalytic converter is also improved since, in particular, the rich fuel-air mixtures are preheated to a greater extent. The required length of the catalyst is shortened and the cooling of the catalytic coatings (in particular the catalytic coating for lean combustion) and the control of the temperatures in the catalyst are improved. The control of the flow rates of air and fuel through the different channels and thus the precise control of the air-fuel mixtures allows a high degree of flexibility in operation. Furthermore, stable combustion is always guaranteed. Furthermore, the addition of fuel after the catalytic converter, as in lean fuel-air systems (FOX), and the admixture of combustion air after the catalytic converter, as used in rich fuel-air systems (POX), are no longer necessary, which has the disadvantages of the prior art Technology can be avoided. Further advantageous embodiments of the invention result from the subclaims.
Kurze Beschreibung der ZeichnungBrief description of the drawing
Im folgenden werden anhand der Zeichnungen Ausführungsbeispiele der Erfin- düng näher erläutert. Gleiche Elemente sind in den verschiedenen Figuren mit den gleichen Bezugszeichen versehen. Die Strömungsrichtung der Medien ist mit Pfeilen angegeben.Exemplary embodiments of the invention are explained in more detail below with reference to the drawings. Identical elements are provided with the same reference symbols in the various figures. The direction of flow of the media is indicated by arrows.
Es zeigen:Show it:
Fig. 1 einen schematischen Teillängsschnitt durch eine erfindungsgemässe Brenneranordnung; Fig. 2 eine schematische Draufsicht auf einen Katalysator; Fig. 3 einen schematische Teillängsschnitt durch einen erfindungsgemässen Katalysator.1 shows a schematic partial longitudinal section through a burner arrangement according to the invention; 2 shows a schematic top view of a catalytic converter; Fig. 3 is a schematic partial longitudinal section through an inventive catalyst.
Es sind nur die für das unmittelbare Verständnis der Erfindung wesentlichen Elemente gezeigt. Nicht dargestellt sind von der Anlage beispielsweise die Brenn- Stoffzuführungen sowie der Verdichter und die Turbine.Only the elements essential for the immediate understanding of the invention are shown. The system does not show, for example, the fuel feeds, the compressor and the turbine.
Weg zur Ausführung der Erfindung In Fig. 1 ist eine Brenneranordnung 1 , beispielsweise für eine Kraftwerksanlage, umfassend eine erste Zuführungsleitung 2 und eine zweite Zuführungsleitung 3, einen katalytischen Reaktor 4, im weiteren Katalysator genannt, und eine stromabwärts liegende Brennkammer 5. Über die Zuführungsleitung 2 wird ein mageres Luft-Brennstoffgemisch 6 mit einer Luftzahl λ > 1.0 dem Katalysator 4 zugeführt und dort üblicherweise vollständig oxidiert (Füll Oxidation = FOX). Vorzugsweise liegt die Luftzahl λ in einem Bereich von 1.5 bis 3.0.Way of carrying out the invention 1 shows a burner arrangement 1, for example for a power plant, comprising a first feed line 2 and a second feed line 3, a catalytic reactor 4, hereinafter referred to as a catalyst, and a downstream combustion chamber 5. A lean air is supplied via the feed line 2 -Fuel mixture 6 with an air ratio λ> 1.0 fed to the catalyst 4 and usually completely oxidized there (fill oxidation = FOX). The air ratio λ is preferably in a range from 1.5 to 3.0.
Über die Zuführungsleitung 3 wird ein fettes Brennstoff- Luftgemisch 7 mit einer Luftzahl λ < 1 dem Katalysator 4 zugeführt und dort üblicherweise nur teilweise oxidiert (Partial Oxidation = POX). Vorzugsweise liegt hier die Luftzahl λ in einem Bereich von 0.15 bis 0.6.A rich fuel-air mixture 7 with an air ratio λ <1 is fed to the catalyst 4 via the feed line 3 and is usually only partially oxidized there (partial oxidation = POX). The air ratio λ is preferably in a range from 0.15 to 0.6.
Stromaufwärts der Luftzuführungsleitungen 2 und 3 werden der Verbrennungsluft Brennstoff zugemischt. In der Luftzuführungsleitung 2 und 3 können zur weiteren Vermischung des Brennstoff-Luftgemisches Mischvorrichtungen 8 und 9 angeordnet sein. Die Vermischung von Luft und Brennstoff kann jedoch auch schon stromaufwärts durch bekannte Mischsysteme erfolgen. Die beiden Brennstoff- Luftgemische 6, 7 treffen nun auf eine Verteilungsvorrichtung 10, welche dieFuel is mixed with the combustion air upstream of the air supply lines 2 and 3. Mixing devices 8 and 9 can be arranged in the air supply line 2 and 3 for further mixing of the fuel-air mixture. However, the mixing of air and fuel can also take place upstream using known mixing systems. The two fuel-air mixtures 6, 7 now meet a distribution device 10, which the
Brennstoff-Luftgemische auf den Katalysator 4 verteilt. Im Katalysator erfolgt eine katalytische Verbrennung der Brennstoff-Luftgemische, welche dann stromabwärts über eine abrupte Querschnittserweiterung 11 in die Brennkammer 5 eintreten. Durch die Querschnittserweiterung wird eine stabile Rezirkulationszone ge- bildet, welche eine homogene Flammenfront 12 zusätzlich stabilisiert.Distributed fuel-air mixtures on the catalyst 4. A catalytic combustion of the fuel-air mixtures takes place in the catalytic converter, which then enter the combustion chamber 5 downstream via an abrupt cross-sectional widening 11. The cross-sectional expansion creates a stable recirculation zone, which additionally stabilizes a homogeneous flame front 12.
In der Fig. 2 sind die Verteilungsvorrichtung 10 und der Katalysator 4 detailierter dargestellt. Solche Verteilungsvorrichtungen 10 und Katalysatoren 4 sind insbesondere aus der WO 03/033985 A1 bekannt, deren Inhalt hiermit miteingeschlos- sen ist. In der in Fig. 2 dargestellten Ausführung besteht die Verteilvorrichtung 10 aus parallel verlaufenden Wänden und Querstreben, welche so parallel verlau- fende Kanäle 13 und 15 bilden. Diese Kanäle sind nun abwechselnd gegen die nur schematisch dargestellten Zuführungsleitungen 2 und 3 über Blenden 14 geschlossen, so dass das magere Brennstoff-Luftgemisch 6 und das fette Brennstoff-Luftgemisch 7 jeweils abwechselnd in die Kanäle 13 respektive 15 eintreten können. Der Katalysator ist analog der Verteilungsvorrichtung ebenfalls in parallele Kanäle unterteilt, so dass das magere Brennstoff-Luftgemisch 6 in die Kanäle 13 und das fette Brennstoff-Luftgemisch 7 in die Kanäle 15 eintreten kann. Die parallelen Kanäle 13 und 15 sind jeweils abwechselnd angeordnet und durch den Katalysator geführt. Somit bildet eine Wand eines Kanals 15, welcher ein fettes Brennstoff-Luftgemisch 7 führt immer auch eine Wand eines Kanals 13, welcher ein mageres Brennstoff-Luftgemisch führt. Dadurch können Wärmeenergien der verschieden Brennstoff-Luftgemische ausgetauscht werden. Für die Verteilungsvorrichtung 10 und den Katalysator 4 sind natürlich auch andere Ausführungsformen analog der WO 03/033985 A1 denkbar.2, the distribution device 10 and the catalyst 4 are shown in more detail. Such distribution devices 10 and catalysts 4 are known in particular from WO 03/033985 A1, the content of which is hereby included. In the embodiment shown in FIG. 2, the distribution device 10 consists of parallel walls and cross struts, which thus run in parallel. fende channels 13 and 15 form. These channels are now alternately closed against the only schematically illustrated supply lines 2 and 3 via orifices 14, so that the lean fuel-air mixture 6 and the rich fuel-air mixture 7 can alternately enter channels 13 and 15, respectively. Like the distribution device, the catalytic converter is also divided into parallel channels, so that the lean fuel-air mixture 6 can enter the channels 13 and the rich fuel-air mixture 7 can enter the channels 15. The parallel channels 13 and 15 are alternately arranged and guided through the catalyst. Thus, a wall of a duct 15, which carries a rich fuel-air mixture 7, always also forms a wall of a duct 13, which carries a lean fuel-air mixture. As a result, thermal energies of the different fuel-air mixtures can be exchanged. Other embodiments analogous to WO 03/033985 A1 are of course also conceivable for the distribution device 10 and the catalyst 4.
In der Fig. 3 sind nun die Kanäle 13, 15 des Katalysators im Detail dargestellt, die Pfeile geben den Wärmefluss 19 an. In einem ersten Sektor I wird das fette Brennstoff-Luftgemisch 7 vor- und aufgeheizt. Durch die hohe Brennstoffkonzent- ration in diesem Strom ist die Temperatur des fetten Gemisches deutlich tiefer als die Temperatur im mageren Brennstoff-Luftgemisch 6. Dies aufgrund der Temperatur des zugeführten Brennstoffes, welche üblicherweise zwischen 20 und 100°C liegt. Das magere Gemisch weist eine höhere Temperatur auf und heizt somit das fette Gemisch auf.3, the channels 13, 15 of the catalytic converter are shown in detail, the arrows indicate the heat flow 19. In a first sector I, the rich fuel-air mixture 7 is preheated and heated. Due to the high fuel concentration in this stream, the temperature of the rich mixture is significantly lower than the temperature in the lean fuel-air mixture 6. This is due to the temperature of the fuel supplied, which is usually between 20 and 100 ° C. The lean mixture has a higher temperature and thus heats up the rich mixture.
In einem zweiten nachfolgenden Sektor II sind hauptsächlich in den Kanälen 15, welche vom fetten Brennstoff-Luftgemisch 7 durchströmt werden, katalytische Beschichtungen 20 angebracht. Diese Beschichtungen 20 bestehen vorzugsweise aus Rhodium Katalysatormaterialien, beispielsweise Rh/Zr02. Die vorgeheizte fet- te Brennstoff-Luft-Mischung 7 entzündet sich und verbrennt teilweise in einer brennstoffreichen Umgebung (POX). Der erste Schritt bei einer solchen Reaktion ist dabei immer stark exotherm. Die freiwerdende Wärme wird über die Kanalwände in die anliegenden, ein mageres Brennstoff-Luftgemisch 6 führenden Kanäle 13 übertragen und die Temperatur des mageren Brennstoff-Luftgemisches 6 wird stark erhöht.In a second subsequent sector II, catalytic coatings 20 are applied mainly in the channels 15 through which the rich fuel-air mixture 7 flows. These coatings 20 preferably consist of rhodium catalyst materials, for example Rh / Zr0 2 . The preheated rich fuel-air mixture 7 ignites and partially burns in a fuel-rich environment (POX). The first step in such a reaction is always very exothermic. The heat released is transferred via the channel walls into the adjacent channels 13 carrying a lean fuel-air mixture 6, and the temperature of the lean fuel-air mixture 6 is greatly increased.
In einem dritten nachfolgenden Sektor III sind hauptsächlich in den Kanälen 13, welche vom mageren Brennstoff-Luftgemisch 6 durchströmt werden, katalytische Beschichtungen 21 angebracht. Diese Beschichtungen 21 bestehen vorzugsweise aus Palladium Katalysatormaterialien, beispielsweise Pd/Al203, oder auch Pla- tin Katalysatormaterialien. Das vorgeheizte magere Brennstoff-Luftgemisch 6 reagiert heterogen mit Wärmeerzeugung (FOX) und es kommt zu einem Wärmefluss in Richtung der mit fettem Brennstoff-Luftgemisch 7 durchströmten Kanäle 15.In a third subsequent sector III, catalytic coatings 21 are applied mainly in the channels 13 through which the lean fuel-air mixture 6 flows. These coatings 21 preferably consist of palladium catalyst materials, for example Pd / Al 2 O 3 , or also platinum catalyst materials. The preheated lean fuel-air mixture 6 reacts heterogeneously with heat generation (FOX) and there is a heat flow in the direction of the channels 15 through which the rich fuel-air mixture 7 flows.
Durch den Wärmeaustausch zwischen fettem und magerem Gemisch in den Sek- toren II und III wird gewährleistet, dass die katalytischen Beschichtungen 20, 21 auf Betriebstemperatur gehalten werden und nicht überhitzen oder unterhalb der mindestens nötigen Temperatur, der sogenannten Anspringtemperatur, liegen. Typische Kanaldurchmesser liegen in einem Bereich von 0.5 bis 2 mm. Dadurch wird gewährleistet, dass die homogene Entzündung der aus dem Katalysator aus- tretenden Gemische nicht in der Nähe der Kanalaustritte erfolgt. Die Kanäle 13 für das magere Brennstoff-Luftgemisch 6 und die Kanäle 15 für das fette Brennstoff- Luftgemisch 7 müssen dabei nicht den gleichen Durchmesser aufweisen und die beschichteten Sektoren II, III müssen ebenfalls nicht die gleiche Länge aufweisen. Weiter können die Sektoren II und III überlappen, abhängig vom gewünschten Ausstoss.The heat exchange between the rich and lean mixture in the sectors II and III ensures that the catalytic coatings 20, 21 are kept at operating temperature and do not overheat or are below the at least necessary temperature, the so-called light-off temperature. Typical channel diameters are in the range of 0.5 to 2 mm. This ensures that the homogeneous ignition of the mixtures emerging from the catalyst does not occur in the vicinity of the channel outlets. The channels 13 for the lean fuel-air mixture 6 and the channels 15 for the rich fuel-air mixture 7 do not have to have the same diameter and the coated sectors II, III also do not have to have the same length. Sectors II and III can also overlap depending on the desired output.
Die Aufenthaltszeit des fetten Luft-Brennstoffgemisches 7 im Sektor II kann entsprechend den gewünschten Produkten eingestellt werden. Wenn die Kontaktzeit genügend kurz ist, dann ist die Reaktion überwiegend exotherm und die Verbrennungsprodukte bestehen vorwiegend aus H20 und C02, da die Hauptreaktion CH4 + 202 -> C02 + 2H20 ist, und wenig oder gar kein Synthesegas entsteht. In diesem Fall sollten die Sektoren II und III nicht überlappen, da sonst beide Beschichtungen 20, 21 überhitzen. Eine längere Kontaktzeit begünstigt die endotherme, brennstoffumwandelnde Reaktion, welche direkt nach dem exothermen Schritt er- folgt, womit Synthesegas erzeugt wird. In diesem Fall sollten die Sektoren II und III überlappen, da die exotherme Reaktion des mageren Luft-Brennstoffgemisches im Sektor III die Energie für die endotherme, brennstoffumwandelnde Reaktion im letzten Teil des Sektors II zur Verfügung stellt. Dadurch wird garantiert, dass die katalytischen Beschichtungen genügend gekühlt werden. Die Überlappung muss somit so gewählt werden, dass der Bereich des Sektors II wo die endotherme, brennstoffumwandelnde Reaktion erfolgt durch den Sektor III mit katalytische Beschichtungen 21 überlappt wird.The residence time of the rich air-fuel mixture 7 in sector II can be set according to the desired products. If the contact time is short enough, then the reaction is predominantly exothermic and the combustion products mainly consist of H 2 0 and C0 2 , since the main reaction is CH 4 + 20 2 -> C0 2 + 2H 2 0, and little or no synthesis gas is produced. In this case, sectors II and III should not overlap, since otherwise both coatings 20, 21 overheat. A longer contact time favors the endothermic, fuel-converting reaction, which takes place immediately after the exothermic step, with which synthesis gas is generated. In this case, sectors II and III should overlap, since the exothermic reaction of the lean air-fuel mixture in sector III provides the energy for the endothermic, fuel-converting reaction in the last part of sector II. This guarantees that the catalytic coatings are cooled sufficiently. The overlap must therefore be chosen such that the area of sector II where the endothermic, fuel-converting reaction takes place is overlapped by sector III with catalytic coatings 21.
Natürlich kann der Katalysator auch nur analog eines Pilotbrenners mit hohen Brennstoffgehalten verwendet werden. In diesem Fall kann der Sektor III wegge- lassen werden. Die Kanäle für das magere Luft-Brennstoffgemisch sind zwar vorhanden, jedoch nicht katalytisch beschichtet. Vorzugsweise erfolgt eine Beschichtung, welche eine Entzündung des mageren Luft-Brennstoffgemisches verhindert, z.B. mit Al203 oder andern Metalloxiden.Of course, the catalyst can only be used in the same way as a pilot burner with high fuel contents. In this case, sector III can be omitted. The channels for the lean air-fuel mixture are present, but are not catalytically coated. A coating is preferably carried out which prevents the lean air-fuel mixture from igniting, for example with Al 2 O 3 or other metal oxides.
Die Aufteilung des Luftstromes auf die beiden Zuführungsleitungen 2 und 3 kann konstant oder veränderbar sein.The distribution of the air flow between the two supply lines 2 and 3 can be constant or changeable.
Falls die Aufteilung konstant ist, d.h. aber nicht dass die Anteile der Luft in den Zuführungsleitungen 2 und 3 gleich ist, kann die Aufteilung des Brennstoffes vari- iert werden. Dadurch kann das Verhältnis Luft zu Brennstoff der beiden Ströme 6 und 7 verändert werden. Somit lässt sich die jeweilige Luftzahl λ der beiden Ströme den Bedingungen der Anlage und den Betriebsbedingungen anpassen. Beispielsweise kann bei tiefen Eintrittstemperaturen dem fetten Luft- Brennstoffgemisch mehr Brennstoff zugeführt werden, damit der Katalysator an- springt (POX light-off). Als weitere Möglichkeit kann die Aufteilung der Anteile des Gesamtluftstroms auf die beiden Ströme 6 und 7 verändert werden. In diesem Fall könnte bei tiefen Eintrittstemperaturen die Durchflussrate des fetten Luft-Brennstoffgemisch 7 signifikant reduziert werden, damit der Katalysator anspringt, bei höheren Eintrittstem- peraturen könnte der Brennstoff und Luftstrom dann erhöht werden.If the distribution is constant, but not that the proportion of air in the supply lines 2 and 3 is the same, the distribution of the fuel can be varied. As a result, the air to fuel ratio of the two streams 6 and 7 can be changed. The respective air ratio λ of the two flows can thus be adapted to the conditions of the system and the operating conditions. For example, at low inlet temperatures, more fuel can be added to the rich air-fuel mixture so that the catalytic converter starts (POX light-off). As a further possibility, the distribution of the proportions of the total air flow between the two flows 6 and 7 can be changed. In this case, the flow rate of the rich air-fuel mixture 7 could be significantly reduced at low inlet temperatures so that the catalytic converter starts up, and the fuel and air flow could then be increased at higher inlet temperatures.
Am Austritt des Sektors III können verschiedenen Geometrien angewandt werden. Im einfachsten Fall ist das Ende des Sektors III das Ende des Katalysators. Durch die eng beisammen liegenden Kanäle 13, 15 für das magere und fette Gemisch entsteht eine sehr gute Durchmischung zwischen allen Strömen. Dadurch entsteht eine gleichförmige Mischung der hochtemperaturigen mageren FOX- und fetten POX-Gemische vor der homogenen Verbrennung. Dies verhindert eine Bildung von Stickoxiden und fördert eine hohe gleichförmige homogene Verbrennung. Es kann aber am Ende des Sektors III auch ein Strömungsteiler angeordnet werden, welcher eine Vermischung der FOX- und POX-Gemische verhindert. Dadurch kann das fette POX-Gemisch 7 lokal zugeführt werden, insbesondere an Orten, wo dadurch eine chemische Stabilisation der homogenen Flamme erzielt werden kann.Different geometries can be used at the exit of Sector III. In the simplest case, the end of Sector III is the end of the catalyst. The closely spaced channels 13, 15 for the lean and rich mixture result in very good mixing between all the streams. This creates a uniform mixture of the high-temperature lean FOX and fat POX mixtures before homogeneous combustion. This prevents the formation of nitrogen oxides and promotes a high, uniform, homogeneous combustion. However, a flow divider can also be arranged at the end of sector III, which prevents mixing of the FOX and POX mixtures. As a result, the rich POX mixture 7 can be supplied locally, in particular at locations where chemical stabilization of the homogeneous flame can thereby be achieved.
Durch den erfindungsgemässen Katalysator wird somit die katalytische Brennstoffumwandlung maximiert, Emissionen werden bei allen Betriebszuständen verringert und die Flammenstabilität wird unter allen Bedingungen erhöht. Zudem wird das Anspringverhalten des Katalysators verbessert, die benötigte Länge des Katalysators verkürzt und die Kühlung der katalytischen Beschichtungen und die Kontrolle der Temperaturen verbessert. Die Kontrolle der Durchflussraten von Luft und Brennstoff durch die verschiedenen Kanäle, und damit der genauen Kontrolle über die Luft-Brennstoffgemische, erlaubt eine hohe Flexibilität beim Betrieb. Weiter ist immer eine stabile Verbrennung garantiert. Selbstverständlich ist die Erfindung nicht auf das gezeigte und beschriebene Ausführungsbeispiel beschränkt.The catalyst according to the invention thus maximizes the catalytic fuel conversion, emissions are reduced in all operating states and the flame stability is increased under all conditions. In addition, the light-off behavior of the catalytic converter is improved, the length of the catalytic converter required is shortened and the cooling of the catalytic coatings and the control of the temperatures are improved. The control of the flow rates of air and fuel through the different channels, and thus the precise control over the air-fuel mixtures, allows a high degree of flexibility during operation. Furthermore, stable combustion is always guaranteed. Of course, the invention is not limited to the exemplary embodiment shown and described.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
1 Brenneranordnung 2 Zuführungsleitung1 burner arrangement 2 feed line
3 Zuführungsleitung3 supply line
4 Katalysator4 catalyst
5 Brennkammer5 combustion chamber
6 mageres Luft-Brennstoffgemisch6 lean air-fuel mixture
7 fettes Luft-Brennstoffgemisch7 rich air-fuel mixture
8 Mischvorrichtung8 mixing device
9 Mischvorrichtung9 mixing device
10 Verteilungsvorrichtung10 distribution device
11 Querschnittserweiterung11 Cross-sectional expansion
12 homogene Flammenfront12 homogeneous flame front
13 Kanal mageres Gemisch13 channel lean mixture
14 Blende14 aperture
15 Kanal fettes Gemisch15 channel rich mixture
19 Wärmefluss19 heat flow
20 katalytische Beschichtung20 catalytic coating
21 katalytische Beschichtung λ Luftzahl21 catalytic coating λ air ratio
I erster SektorI first sector
II zweiter SektorII second sector
III dritter Sektor III third sector

Claims

Patentansprüche claims
1. Katalytischer Reaktor (4) zum Verbrennen zumindest eines Teiles von den katalytischen Reaktor durchströmenden Brennstoff-Luft-Gemischen, wobei der katalytische Reaktor (4) mehrere Kanäle (13, 15) aufweist, dadurch gekennzeichnet, dass der katalytische Reaktor (4) mit mageren Brennstoff-Luft-Gemischen (6) und fetten Brennstoff-Luft-Gemischen (7) beaufschlagt ist, dass der katalytische Reaktor (4) aus mindestens zwei Sektoren (I, II, III) besteht, dass ein erster durchströmten Sektor (I) frei von katalytischen Beschichtungen ist und dass in einem stromabwärts liegenden zweiten Sektor (II) in dem von fetten Brennstoff-Luft-Gemisch (7) durchströmten Kanälen (15) eine katalytische Beschichtung (20) angeordnet ist.1. Catalytic reactor (4) for burning at least a portion of the fuel-air mixtures flowing through the catalytic reactor, wherein the catalytic reactor (4) has a plurality of channels (13, 15), characterized in that the catalytic reactor (4) with lean fuel-air mixtures (6) and rich fuel-air mixtures (7) it is applied that the catalytic reactor (4) consists of at least two sectors (I, II, III), that a first flow-through sector (I) is free of catalytic coatings and that a catalytic coating (20) is arranged in a downstream second sector (II) in the channels (15) through which a rich fuel-air mixture (7) flows.
2. Katalytischer Reaktor nach Anspruch 1 , dadurch gekennzeichnet, dass stromabwärts des zweiten Sektors ein dritter Sektor (III) angeordnet ist, und dass in dem dritten Sektor (III) in dem von magerem Brennstoff- Luft-Gemisch (6) durchströmten Kanälen (13) eine katalytische Beschich- tung (21 ) angeordnet ist.2. Catalytic reactor according to claim 1, characterized in that a third sector (III) is arranged downstream of the second sector, and that in the third sector (III) in the channels (13) through which a lean fuel-air mixture (6) flows ) a catalytic coating (21) is arranged.
3. Katalytischer Reaktor nach Anspruch 2, dadurch gekennzeichnet, dass der zweite Sektor (II) und der dritte Sektor (III) überlappen.3. Catalytic reactor according to claim 2, characterized in that the second sector (II) and the third sector (III) overlap.
4. Katalytischer Reaktor nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass die vom mageren Gemisch (6) durchströmten Kanäle (13) und die vom fetten Gemisch (7) durchströmten Kanäle (15) benachbart angeordnet sind.4. Catalytic reactor according to claim 1, 2 or 3, characterized in that the channels (13) through which the lean mixture (6) flows and the channels (15) through which the rich mixture (7) flows are arranged adjacent.
5. Katalytischer Reaktor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die katalytische Beschichtung (20, 21) in einem Kanal (13, 15) an der an den benachbarten Kanal (15, 13) angrenzenden Wand angeordnet ist, wobei der benachbarte Kanal ein anderes Brennstoff-Luft-Gemisch (6 oder 7) führt.5. Catalytic reactor according to one of the preceding claims, characterized in that the catalytic coating (20, 21) is arranged in a channel (13, 15) on the wall adjacent to the adjacent channel (15, 13), the adjacent channel another fuel-air mixture (6 or 7) leads.
6. Katalytischer Reaktor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass vor dem katalytischen Reaktor (4) eine Verteilungsvorrichtung (10) zur Verteilung der mageren (6) und fetten Gemischströme (7) auf die Kanäle (13, 15) angeordnet ist.6. Catalytic reactor according to one of the preceding claims, characterized in that a distribution device (10) for distributing the lean (6) and rich mixture flows (7) on the channels (13, 15) is arranged in front of the catalytic reactor (4).
7. Katalytischer Reaktor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass stromabwärts des katalytischen Reaktors (4) eine Brennkammer (5) angeordnet ist.7. Catalytic reactor according to one of the preceding claims, characterized in that a combustion chamber (5) is arranged downstream of the catalytic reactor (4).
8. Verfahren zur Verbrennung von Brennstoff-Luft-Gemischen (6, 7) mittels eines katalytischen Reaktors (4) nach Anspruch 1 bis 7, dadurch gekennzeichnet, dass das Brennstoff-Luft-Gemisch in mindestens einen mageren Brennstoff-Luft-Gemischstrom (6) und einen fetten Brennstoff-Luft-Gemischstrom (7) aufgeteilt wird, dass in einem ersten Sektor (I) des katalytischen Reak- tors (4) Wärmeenergie (19) vom mageren Gemischstrom (6) zum fetten Gemischstrom (7) geführt wird, dass in einem zweiten Sektor (II) Wärme- energie vom fetten Gemischstrom (7) zum mageren Gemischstrom (6) geführt wird.8. The method for the combustion of fuel-air mixtures (6, 7) by means of a catalytic reactor (4) according to claim 1 to 7, characterized in that the fuel-air mixture in at least one lean fuel-air mixture stream (6 ) and a rich fuel-air mixture stream (7) is divided so that in a first sector (I) of the catalytic reactor (4) thermal energy (19) is led from the lean mixture stream (6) to the rich mixture stream (7), that in a second sector (II) heat energy is led from the rich mixture stream (7) to the lean mixture stream (6).
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass in einem dritten Sektor (III) des katalytischen Reaktors (4) Wä rmeenergie (19) vom mageren Gemischstrom (6) zum fetten Gemischstrom (7) geführt wird.9. The method according to claim 8, characterized in that in a third sector (III) of the catalytic reactor (4) thermal energy (19) from the lean mixture stream (6) to the rich mixture stream (7).
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass bei einer endothermen Reaktion des fetten Gemischstromes (7) im zweiten Teil des zweiten Sektors (II) der magere Gemischstrom (6) Wärmeenergie an den fetten Gemischstrom (7) abgibt, wobei der zweite Sektor (II) und der dritte Sektor (III) in diesem Bereich überlappen.10. The method according to claim 9, characterized in that in an endothermic reaction of the rich mixture stream (7) in the second part of the second sector (II) the lean mixture stream (6) emits thermal energy to the rich mixture stream (7), the second sector (II) and the third sector (III) overlap in this area.
11. Verfahren nach Anspruch 8, 9 oder 10, dadurch gekennzeichnet, dass die Luftzahl (λ) des mageren Gemischstromes (6) und des fetten Ge- mischstromes (7) eingestellt wird.11. The method according to claim 8, 9 or 10, characterized in that the air ratio (λ) of the lean mixture flow (6) and the rich mixture flow (7) is set.
12. Kraftwerksanlage, insbesondere Gasturbinenanlage, mit einem katalytischen Reaktor nach einem der Ansprüche 1 bis 7. 12. Power plant, in particular gas turbine plant, with a catalytic reactor according to one of claims 1 to 7.
EP05729538A 2004-03-31 2005-03-23 Catalytic reactor and method for burning fuel-air mixtures by means of a catalytic reactor Withdrawn EP1738109A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH5542004 2004-03-31
PCT/EP2005/051361 WO2005095856A1 (en) 2004-03-31 2005-03-23 Catalytic reactor and method for burning fuel-air mixtures by means of a catalytic reactor

Publications (1)

Publication Number Publication Date
EP1738109A1 true EP1738109A1 (en) 2007-01-03

Family

ID=34962982

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05729538A Withdrawn EP1738109A1 (en) 2004-03-31 2005-03-23 Catalytic reactor and method for burning fuel-air mixtures by means of a catalytic reactor

Country Status (3)

Country Link
US (1) US7594394B2 (en)
EP (1) EP1738109A1 (en)
WO (1) WO2005095856A1 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006015130A1 (en) * 2006-03-31 2007-10-04 Siemens Ag Combustion method of gaseous fuel with air, involves homogeneous gas phase combustion of transformed catalytic air fuel mixture takes place as lean combustion at emission of both gas streams from catalytic burner
DE102006015099A1 (en) * 2006-03-31 2007-10-04 Siemens Ag Method for combustion of gaseous fuel with air, involves mixing fuel containing mixture with withdrawn exhaust gas of poor catalytic combustion and converting completely in homogeneous, poor gaseous phase combustion
US8393160B2 (en) 2007-10-23 2013-03-12 Flex Power Generation, Inc. Managing leaks in a gas turbine system
US8671658B2 (en) 2007-10-23 2014-03-18 Ener-Core Power, Inc. Oxidizing fuel
US8701413B2 (en) 2008-12-08 2014-04-22 Ener-Core Power, Inc. Oxidizing fuel in multiple operating modes
US8621869B2 (en) 2009-05-01 2014-01-07 Ener-Core Power, Inc. Heating a reaction chamber
US20100275611A1 (en) * 2009-05-01 2010-11-04 Edan Prabhu Distributing Fuel Flow in a Reaction Chamber
EP2547888A4 (en) 2010-03-15 2016-03-16 Ener Core Power Inc Processing fuel and water
US9057028B2 (en) 2011-05-25 2015-06-16 Ener-Core Power, Inc. Gasifier power plant and management of wastes
US9273606B2 (en) 2011-11-04 2016-03-01 Ener-Core Power, Inc. Controls for multi-combustor turbine
US9279364B2 (en) 2011-11-04 2016-03-08 Ener-Core Power, Inc. Multi-combustor turbine
US9273608B2 (en) 2012-03-09 2016-03-01 Ener-Core Power, Inc. Gradual oxidation and autoignition temperature controls
US9359947B2 (en) 2012-03-09 2016-06-07 Ener-Core Power, Inc. Gradual oxidation with heat control
US9534780B2 (en) 2012-03-09 2017-01-03 Ener-Core Power, Inc. Hybrid gradual oxidation
US8807989B2 (en) 2012-03-09 2014-08-19 Ener-Core Power, Inc. Staged gradual oxidation
US9567903B2 (en) 2012-03-09 2017-02-14 Ener-Core Power, Inc. Gradual oxidation with heat transfer
US9017618B2 (en) 2012-03-09 2015-04-28 Ener-Core Power, Inc. Gradual oxidation with heat exchange media
US9353946B2 (en) 2012-03-09 2016-05-31 Ener-Core Power, Inc. Gradual oxidation with heat transfer
US9328916B2 (en) 2012-03-09 2016-05-03 Ener-Core Power, Inc. Gradual oxidation with heat control
US9234660B2 (en) 2012-03-09 2016-01-12 Ener-Core Power, Inc. Gradual oxidation with heat transfer
US9726374B2 (en) 2012-03-09 2017-08-08 Ener-Core Power, Inc. Gradual oxidation with flue gas
US8671917B2 (en) 2012-03-09 2014-03-18 Ener-Core Power, Inc. Gradual oxidation with reciprocating engine
US9359948B2 (en) 2012-03-09 2016-06-07 Ener-Core Power, Inc. Gradual oxidation with heat control
US8844473B2 (en) 2012-03-09 2014-09-30 Ener-Core Power, Inc. Gradual oxidation with reciprocating engine
US8980193B2 (en) 2012-03-09 2015-03-17 Ener-Core Power, Inc. Gradual oxidation and multiple flow paths
US9381484B2 (en) 2012-03-09 2016-07-05 Ener-Core Power, Inc. Gradual oxidation with adiabatic temperature above flameout temperature
US9206980B2 (en) 2012-03-09 2015-12-08 Ener-Core Power, Inc. Gradual oxidation and autoignition temperature controls
US8980192B2 (en) 2012-03-09 2015-03-17 Ener-Core Power, Inc. Gradual oxidation below flameout temperature
US9267432B2 (en) 2012-03-09 2016-02-23 Ener-Core Power, Inc. Staged gradual oxidation
US8926917B2 (en) 2012-03-09 2015-01-06 Ener-Core Power, Inc. Gradual oxidation with adiabatic temperature above flameout temperature
US9371993B2 (en) 2012-03-09 2016-06-21 Ener-Core Power, Inc. Gradual oxidation below flameout temperature
US9328660B2 (en) 2012-03-09 2016-05-03 Ener-Core Power, Inc. Gradual oxidation and multiple flow paths
US9347664B2 (en) 2012-03-09 2016-05-24 Ener-Core Power, Inc. Gradual oxidation with heat control
US11254439B2 (en) 2018-12-11 2022-02-22 Hamilton Sundstrand Corporation Catalytic fuel tank inerting apparatus for aircraft
US10697630B1 (en) 2019-08-02 2020-06-30 Edan Prabhu Apparatus and method for reacting fluids using a porous heat exchanger
US20230014723A1 (en) * 2021-07-16 2023-01-19 Proof Energy Inc. Two-stage catalytic heating systems and methods of operating thereof
US11433352B1 (en) 2021-10-18 2022-09-06 Edan Prabhu Apparatus and method for oxidizing fluid mixtures using porous and non-porous heat exchangers
US11939901B1 (en) 2023-06-12 2024-03-26 Edan Prabhu Oxidizing reactor apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5758493A (en) * 1996-12-13 1998-06-02 Ford Global Technologies, Inc. Method and apparatus for desulfating a NOx trap
US20020015931A1 (en) * 1999-03-18 2002-02-07 Lance Smith Conduit positioner
US6358040B1 (en) * 2000-03-17 2002-03-19 Precision Combustion, Inc. Method and apparatus for a fuel-rich catalytic reactor
NO321805B1 (en) * 2001-10-19 2006-07-03 Norsk Hydro As Method and apparatus for passing two gases in and out of the channels of a multi-channel monolithic unit.
AU2003249830A1 (en) * 2002-08-30 2004-03-19 Alstom Technology Ltd Method and device for combusting a fuel-oxidising agent mixture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005095856A1 *

Also Published As

Publication number Publication date
WO2005095856A1 (en) 2005-10-13
US7594394B2 (en) 2009-09-29
US20070054226A1 (en) 2007-03-08

Similar Documents

Publication Publication Date Title
WO2005095856A1 (en) Catalytic reactor and method for burning fuel-air mixtures by means of a catalytic reactor
EP1730441B1 (en) Device and method for stabilizing the flame in a burner
EP1532400B1 (en) Method and device for combusting a fuel-oxidising agent mixture
EP0415008B1 (en) Method of combustion in gasburner
EP0377088B1 (en) Method for mixing gases by means of jets
DE3835415A1 (en) FUEL INJECTOR FOR A COMBUSTION CHAMBER OF A GAS TURBINE ENGINE
EP1616131A1 (en) Method and device for operating a burner of a heat engine, especially a gas turbine plant
CH627536A5 (en) METHOD FOR CARRYING OUT A CONTINUOUS COMBUSTION OF A CARBON FUEL.
WO2006100176A1 (en) Method and device for combusting hydrogen in a premix burner
EP0767345A2 (en) Process for operating a power plant
WO2005080878A1 (en) Premix burner and method for burning a low-calorie combustion gas
DE102009003453A1 (en) Combustion tube premixer and method for gas / air mixture formation in a gas turbine
DE10119035A1 (en) Catalytic burner
EP0849451A2 (en) Method to stabilize combustion in a gas turbine power station
DE102012100468A1 (en) Combustion chamber for the low-emission combustion of several premixed reformed fuels and related process
EP1754937B1 (en) Burner head and method of combusting fuel
EP1446610A1 (en) Method of combustion, in particular methods for the production of electrical current and/or heat
EP0832399B1 (en) Catalytic ignition burner for a gas turbine
EP1555484B1 (en) Process to operate a gas turbine combustor
EP1491824B1 (en) Catalytic reactor and associated operating method
DE19542644B4 (en) premixed
EP0543155B1 (en) Method for a low-pollutant combustion in a power plant boiler
DE102006015130A1 (en) Combustion method of gaseous fuel with air, involves homogeneous gas phase combustion of transformed catalytic air fuel mixture takes place as lean combustion at emission of both gas streams from catalytic burner
DE102017005917A1 (en) Combustion process and multi-stage burner
WO2022200174A1 (en) Burner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060905

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20121002