EP1735663A1 - Lithographic method products obtained and use of said method - Google Patents

Lithographic method products obtained and use of said method

Info

Publication number
EP1735663A1
EP1735663A1 EP04742463A EP04742463A EP1735663A1 EP 1735663 A1 EP1735663 A1 EP 1735663A1 EP 04742463 A EP04742463 A EP 04742463A EP 04742463 A EP04742463 A EP 04742463A EP 1735663 A1 EP1735663 A1 EP 1735663A1
Authority
EP
European Patent Office
Prior art keywords
substrate
metallo
metal
organic solution
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04742463A
Other languages
German (de)
French (fr)
Inventor
Jean-Luc Rehspringer
Laurent Bedel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite Louis Pasteur Strasbourg I
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite Louis Pasteur Strasbourg I
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite Louis Pasteur Strasbourg I filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1735663A1 publication Critical patent/EP1735663A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0042Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0042Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
    • G03F7/0043Chalcogenides; Silicon, germanium, arsenic or derivatives thereof; Metals, oxides or alloys thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/105Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by conversion of non-conductive material on or in the support into conductive material, e.g. by using an energy beam
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/12Using specific substances
    • H05K2203/121Metallo-organic compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding

Definitions

  • the present invention relates to the field of physical chemistry and more particularly that of surface treatment methods. It relates to an improved lithography process as well as the products obtained by the implementation of said process and is particularly useful in the manufacture of micro- or nanometric products or objects.
  • the present invention allows in particular a simplified manufacture of multilayer electronic structures, in particular of multilayer meso and nanostructures for optical and electronic applications and in particular of printed circuits or field effect transistors commonly designated by the Anglo-Saxon name. "MOS-FET transistor".
  • MOS-FET transistor Currently, the manufacture of industrial components of the aforementioned type requires tracing of the active and passive components using masks produced in the form of a layer of polymer (typically made of polymethyl methacrylate: PMMA).
  • These masks are produced on the substrate by local depolymerization of said uniform layer of PMMA by a light source through a metal mask, namely blades pierced at the places to be subjected to irradiation.
  • the critical irradiation step is generally carried out by an ultraviolet light flux which depolymerizes, at the places not covered by said masks, an underlying polymer.
  • the degraded polymer is then removed by washing the substrate to reveal the desired pattern or structure. This process is then repeated until the desired multilayer pattern or final product is obtained.
  • the wavelength of the irradiation sources currently used generally does not allow the production of objects, for example electronic components, of size less than 200 nm.
  • the method according to the invention makes it possible to manufacture in a simplified manner nanometric objects of magnetic oxide or not, metallic nanometric objects or made of certain semiconductors. It dispenses tedious and delicate masking steps, of manufacturing polymer imprints and also allows the formation of nanometric conductive tracks preferably made of copper and / or gold and the formation of certain semiconductors.
  • the subject of the present invention is a lithography process, characterized in that it essentially comprises the steps consisting in: a) depositing, on a substrate, a film of a metalloorganic solution containing at least one metallic ion in as a precursor (s) intended to mark said substrate, b) locally exposing, according to the desired pattern, the film obtained in step a) to at least one focused energy beam having an energy density sufficient to at least dry locally said film of precursor (s), c) dissolve the areas not exposed in step b) using a solvent for the metallo-organic solution deposited in step a), the at least dried areas remaining on said substrate, d) if necessary, subjecting the product obtained in the previous step to a heat treatment with a view to obtaining, at the exposed areas, the magnetic oxide, the metal, the semiconductor or the neutral oxide or their melan ges from said metallo-organic solution, and e) if necessary, repeat steps a) - d), possibly changing the metallo-organic solution,
  • the method according to the invention avoids the heavy steps usually resorting to the physical methods of metallic deposits by sublimation under ultra high vacuum (as known under designations of "MBE” and “sputtering") with the successive and tedious masking steps for the formation of nanometric objects such as in particular the transistors of the "MOS FET” (metal oxide semiconductor field effect transitor) type mentioned above.
  • MBE ultra high vacuum
  • MOS FET metal oxide semiconductor field effect transitor
  • the manufacture of nanometric objects made using a scanning electron microscope connected to a computer making it possible to control the position of the energy beam (for example an electron beam) with a high precision.
  • a thin layer of precursor solution is deposited on the surface of a sample of substrate to be treated and the electron beam dries and / or transforms said precursor into substance to be deposited.
  • a combination of solvents subsequently dissolves unexposed regions.
  • the wavelength of electrons is much smaller than that of ultraviolet. This provides a significantly higher resolution.
  • the use of a scanning electron microscope controlled by a computer means that it is not necessary to have complex photo-lithographic masks made to measure, therefore expensive, as is the case, for example, for ultraviolet lithography.
  • this is done by direct writing on the samples or substrates of interest and the technique thus offers a lot of flexibility for the rapid modification of the written patterns.
  • FIG. 1 represents the photo of a first example of an object made of Fe 2 0 3 on silicon 100 thanks to the implementation of the method according to the invention
  • FIG. 2 represents an enlargement of a portion of the photo of FIG. 1
  • FIG. 3 represents the photo of a second example of an object produced in CoFe 2 0 on silicon 100 thanks to the implementation of the method according to the invention
  • FIG. 4 represents an enlargement of a portion of the photo of FIG. 3
  • FIG. 5 represents the photo of a third example of an object made of metal (gold) thanks to the implementation of the method according to the invention.
  • the lithography method is characterized in that it essentially comprises the steps consisting in: a) depositing, on a substrate, a film of a metalloorganic solution containing at least one metal ion as a precursor ( s) intended to mark said substrate, b) locally exposing, according to the desired pattern, the film obtained in step a) to at least one focused energy beam having an energy density sufficient to at least locally dry said film of precursor (s), c) dissolve the areas not exposed in step b) using a solvent for the metallo-organic solution deposited in step a), the at least dried areas remaining on said substrate, d) if necessary, subject the product obtained in the preceding step to a heat treatment with a view to obtaining, in the exposed areas, the magnetic oxide, the metal, the semiconductor or the neutral oxide or their mixtures i ssus of said metallo-organic solution, and e) if necessary, repeat steps a) - d), possibly changing the metallo-organic solution
  • a metallo-organic solution is deposited, preferably by “spin-coating” (rotary deposition) on a flat substrate, in particular of silicon or of vitreous material.
  • spin-coating rotary deposition
  • the metallo-organic coating or layer is then exposed to said beam.
  • the said coating is degraded and becomes insoluble in common solvents (alcohol, acetone, water, etc.).
  • solvents alcohol, acetone, water, etc.
  • the non-irradiated parts are then dissolved, revealing the engraved submicron or nanometric objects.
  • Said substrate can then undergo a new overall coating to deposit another layer of another organic metalloor or simply be heat treated to form in the undissolved zones a magnetic oxide (for example Fe 2 O 3 , CoFe 2 O 4 .. .), a metal (Cu, Co %) a semiconductor (CdS, CdSe, ZnS, ZnSe ...), a neutral oxide (Ti0 2 , A1 2 0 3 , ZnO ...) depending on the device that you want to train or complete.
  • the apparatus used for the manufacture of micro or nanostructures as well as for their observation is a scanning electron microscope as known, for example, under the reference JEOL-JMS 6300 from the manufacturer JEOL.
  • a scanning electron microscope SEM
  • SEM scanning electron microscope
  • the maximum energy of the electrons produced by this SEM is around 30 keV.
  • SEM is connected to a conventional personal computer which controls the position of the electron beam according to a process known per se and which does not need to be explained in more detail here.
  • the computer also controls a beam interceptor located above the sample.
  • the substrate is silicon or cleaved mica.
  • the surface of the substrate is that of a single crystal.
  • the substrate is a ceramic, in particular a glass.
  • the substrate is a metal or a metal alloy.
  • the metallo-organic solution contains at least one organic salt of at least one metal chosen from the group formed by: Cd, Ti, Al, Si, Fe, Co, Ni, Mn, Cr, Zn, Cu, Ca, Ba, Sr, Y, Zr, Sn, Ag, La, Hf, Ta, Pb, Bi, In, Ce, Pr, Nd, Sm, Eu, Gd, Yb, Er, Tb and U.
  • the metallo-organic salts are chosen from the group formed by: carboxylates, propionates, butyrates, pentanoates, metal methylbutyrates or a mixture of these.
  • the metallo-organic solution also comprises at least one mineral salt of at least one noble metal chosen from the group formed by Au, Ag and Pt, preferably AuCl 3 , AgNO 3 , or PtCl 5 or a mixture thereof.
  • the energy beam is an electron beam or an ion beam.
  • the energy density of the energy beam is between 100 and 100,000 Asm "2.
  • the energy density of the energy beam is sufficient to modify, in the exposed areas, the chemical nature of the metal or metals contained in the solution
  • the metalloorganic solution containing at least Cd or Zn also contains a compound capable of releasing sulphide ions at the time of the exposure in step b) and / or during the heat treatment of step d).
  • the desired pattern (insulating, magnetic deposit, line for future conductive tracks or current leads 7) is prepared on a specific CAD software also known per se and is then interpreted in terms of electron beam displacement orders point by point The electron or ion beam dries and / or transforms the precursor used as indicated above.
  • said precursors will have been spread over the samples using a device making it possible to deposit them uniformly on the substrate, for example using a device commonly known as a "spinner" in technical jargon. in question.
  • a drop of metallo-organic solution is thus deposited on the sample (or substrate) which is subsequently rotated at a speed of the order of 5000 revolutions per minute for 60 seconds.
  • a solvent or a combination of solvents is used as developer, that is to say as a substance making it possible to eliminate only the molecules which have not been exposed.
  • the process implemented therefore reveals, after washing, for a longitudinal irradiation a line in relief or for irradiation on a circular surface a disc in relief.
  • a metal layer must be evaporated over the entire surface of the developed sample.
  • the metal can be evaporated in two ways: thermally or by an electron gun. In the first case, a small amount of metal is put in a tungsten crucible and is heated above the boiling point, under vacuum, in the presence of the sample or substrate. In the second case, the metal is heated by an electron gun.
  • the most commonly used metals for nano-fabrication are NiCr (eutectic alloy of nickel and chromium), as well as AuPd (eutectic alloy of gold and palladium) and are thermally evaporated.
  • the electron gun evaporator is generally used for evaporations of multiple layers of different metals, as necessary for ohmic contacts or Schottky contacts.
  • This process is done by soaking the sample in a mixture of acetone and MEK (methyl ethyl ketone), strong solvents, which dissolve all the resin , regardless of its molecular weight. After a while, the solvents are stirred so that the metal on the resin is removed.
  • Two mixtures are widely used here as developers, namely, on the one hand, a mixture of isopropyl alcohol and water (IPA: H 2 0) and, on the other hand, a mixture of isopropyl alcohol and methyl isobutyl ketone (IPA: MIBK).
  • IPA isopropyl alcohol and water
  • MIBK methyl isobutyl ketone
  • the most widely used solvents for resins are methyl isobutyl ketone (MIBK), orthoxylene and chlorobenzene. Chlorobenzene is the strongest of these solvents and is used for the highest PMMA concentrations (for example of the order of 15%). For lower concentrations, typically between 2.5% to 6% by weight of PPMA, orthoxylene is perfectly suitable. Thanks to the process according to the invention, no organic polymer is therefore required, nor, consequently, any costly, harmful and polluting solvent for the traditional “lift-off” step mentioned above, unnecessary in the process according to the present invention. .
  • MIBK methyl isobutyl ketone
  • chlorobenzene chlorobenzene
  • the method according to the invention is similar to a direct lithography technique in that, in addition to requiring only a single etching step (saving time during etching and during quality control thereof) , it does not use any masking. Just as much as the substantial drop in the final cost price of a component manufactured by the process according to the invention, the very great diversity of materials that can be produced (magnetic oxides, semiconductors, conductive or insulating tracks, etc.) is another. significant advantage. Thus, by way of example, metallic objects can now be obtained without resorting to the heavy step of vaporizing metal.
  • the method according to the invention is all the more flexible as the chemical nature of the substrate practically does not condition the success of the lithography.
  • the method according to the present invention can be used in the field of microelectronics, in the catalysis of oriented nanotubes for plasma screens, for bio-chips, for very high density magnetic recording, for the manufacture of logic gates, GMR memories, UV-Visible detectors, for the security marking of components, for the manufacture of micromachines ...
  • the process according to the invention will now be explained in more detail with the aid of the following examples given without implied limitation.
  • An iron propionate solution is prepared by dissolving iron propionate in a suitable solvent such as ethanol, propanol, butanol or acetone. To obtain an oxide layer typically of the order of 0.2 ⁇ m, a solution of 1 mole per liter of iron propionate will be prepared.
  • the substrate typically monocrystalline silicon 100 lambda polished out of 10 and previously cleaned by means well known to those skilled in the art, is deposited on the spinner, a device conventionally used in microelectronics and making it possible to deposit layers by centrifugation.
  • a few drops of the aforementioned iron propionate solution are deposited on the substrate so that the latter is typically covered with solution without overflowing, then the substrate is rotated at a speed of between approximately 1000 and 5000 rpm for, example, 30 seconds.
  • the deposited liquid spreads out to form a thin film of a few tenths of a micrometer (0.3 to 0.6 ⁇ m).
  • the substrate thus prepared is carefully removed from the device and placed in a box protected from dust (especially if this operation does not take place in a clean room) and transferred to an electrolithography device.
  • the diagrams of the nano-objects that one wishes to manufacture will have been designed and programmed in the usual way on CAD software (of the type known under the name “Autocad” or compatible) and transcribed into corresponding displacements of the beam of electrons in the device.
  • the prepared substrate therefore undergoes point irradiations as provided with an ion beam typically of the order of 1000 Asm " .
  • the irradiation allowing the formation of a network of one hundred parallel wires of some 200 nm thick and d '' a wide micrometer separated from a micrometer lasts about a few minutes (from 0, 1 to 3 minutes depending on the dose and the thickness of the sample).
  • the manufacturing procedure is similar to the previous procedure, only the composition of the solution being modified.
  • the iron and cobalt propionates will be dissolved in the proportions of two iron atoms for one cobalt atom.
  • the final heat treatment will be carried out at a temperature of 700 ° C-800 ° C and for a sufficient time to obtain the desired chemical compound.
  • This manufacturing type is applicable to obtaining both binary oxides of spinel, perovskite, garnet or hexaferrite type which may be of interest in microelectronics or in quantum electronics.
  • Figures 3 and 4 represent photos of an example of objects produced in CoFe 2 0 4 on Si 100 thanks to the implementation of the method according to the invention.
  • Example 3 Manufacture of nanometric metal studs or tracks in cobalt, iron or copper
  • FIG. 5 represents a photo of an example of a structure produced in metallic gold thanks to the implementation of the method according to the invention.
  • Example 2 The manufacturing procedure is similar to that of Example 1, only the composition of the solution being modified. We will dissolve cadmium carboxylate and add to this solution an excess of a compound capable of releasing sulphide ions during its decomposition, typically thiourea. During the irradiation stage, the thiourea decomposes, releasing the sulphide ions which immediately combine with cadmium to form the desired semiconductor CdS.
  • thiourea a compound capable of releasing sulphide ions during its decomposition
  • Example 5 Preparation of nanometric objects of insulator such as TiO ?, Al 2 O ⁇ or SiO?
  • the manufacturing procedure is similar to that of case 1, only the composition of the solution being modified.
  • the titanium, aluminum or silicon carboxylate will be dissolved.
  • the oxidative heat treatment in air will be carried out at approximately 600 ° C.
  • the method according to the invention makes it possible to fabricate structures of the order of ten nanometers. As an indication, it becomes possible, for example, to reproducibly make a metal line about 45 nm wide, a point with a width of less than 50 nm, as well as a spacing between two metallic structures of about 15 nm.
  • the method according to the invention is therefore an advanced technique for the manufacture of electronic components in the sense that it makes it possible to significantly reduce the value of 190 nm usually encountered for the door width of a transistor to a door width included between 2 and 100 nm.
  • the present invention also relates to a multilayer manufactured device, characterized in that it comprises at least one structure or pattern obtained by implementing the method according to the invention.
  • the present invention also relates to the use of the method according to the invention in the manufacture of electronic components, in particular transistors and more preferably field effect transistors as well as in the manufacture of printed circuits.
  • the method according to the invention in particular by providing the usual steps for doping silicon (implantation by phosphorus ions for the creation of doped zones) by the conventional methods known per se and easily transposable by those skilled in the art to the present process.
  • the invention is not limited to the embodiment described and shown in the accompanying drawings. Modifications remain possible, in particular from the point of view of the constitution of the various elements or by substitution of technical equivalents, without thereby departing from the scope of protection of the invention.

Abstract

The invention relates to a lithographic method, products obtained by use of said method and use of said method, in particular, in the production of micro- or nano-metric products or objects. The method is characterised in essentially comprising the steps of deposition of a film of an organometallic solution of a substrate, containing at least one metal ion as precursor(s) for marking said substrate, local exposure, according to the required pattern, of the obtained film, by means of at least one focussed energetic beam, with an energy density sufficient to at least locally dry said film, dissolution of the non-exposed zone, the at least dried zones remaining on said substrate, optionally subjecting the obtained product to a thermal treatment and, where necessary, repetition of certain steps, with optional change to the organometallic solution, until the required final product is obtained.

Description

Procédé de lithographie, produits obtenus et utilisations dudit procédé Lithography process, products obtained and uses of said process
La présente invention concerne le domaine de la chimie physique et plus particulièrement celui des procédés de traitement de surfaces. Elle a pour objet un procédé de lithographie amélioré ainsi que les produits obtenus par la mise en œuvre dudit procédé et est particulièrement utile dans la fabrication de produits ou d'objets micro- ou nanométriques. La présente invention permet notamment une fabrication simplifiée de structures électroniques multicouche, en particulier de méso- et nano- structures multicouche pour des applications optiques et électroniques et notamment de circuits imprimés ou de transistors à effet de champ communément désignés sous l'appellation anglo-saxonne « transistor MOS- FET ». Actuellement, la fabrication des composants industriels du type susmentionné nécessite un traçage des composants actifs et passifs faisant appel à des masques réalisés sous la forme d'une couche de polymère (typiquement en polyméthacrylate de méthyle : PMMA). Ces masques sont réalisés sur le substrat par dépolymérisation locale de ladite couche uniforme de PMMA par une source lumineuse à travers un masque métallique, à savoir des lames percées aux endroits à soumettre à l'irradiation. Or, l'étape critique d'irradiation se fait généralement par un flux lumineux ultraviolet qui dépolymérise, aux endroits non recouverts par lesdits masques, un polymère sous-jacent. Le polymère dégradé est ensuite éliminé par lavage du substrat pour faire apparaître le motif ou la structure désirée. On répète ensuite ce processus jusqu'à l'obtention du motif ou produit final multicouche souhaité. Toutefois, la longueur d'onde des sources d'irradiation actuellement utilisées ne permet en général pas de produire des objets, par exemple des composants électroniques, de taille inférieure à 200 nm. De plus, le grand nombre d'étapes nécessaire dans les procédés actuellement mis en œuvre dans l'industrie ainsi que l'utilisation de produits chimiques nocifs et coûteux rendent ces derniers longs, compliqués et chers, tout en multipliant les risques d'obtenir des produits de qualité insuffisante si au moins l'une des étapes est effectuée de manière non conforme. Le procédé selon l'invention permet de fabriquer de façon simplifiée des objets nanométriques d'oxyde magnétique ou non, des objets nanométriques métalliques ou réalisés en certains semi-conducteurs. Il dispense des étapes fastidieuses et délicates de masquage, de fabrication d'empreintes en polymères et permet également la formation de pistes conductrices nanométriques de préférence en cuivre et/ou en or et la formation de certains semi-conducteurs. A cet effet, la présente invention a pour objet un procédé de lithographie, caractérisé en ce qu'il comprend essentiellement les étapes consistant à : a) déposer, sur un substrat, un film d'une solution métalloorganique contenant au moins un ion métallique en tant que précurseur(s) destiné(s) à marquer ledit substrat, b) exposer localement, selon le motif souhaité, le film obtenu à l'étape a) à au moins un faisceau énergétique focalisé présentant une densité énergétique suffisante pour au moins sécher localement ledit film de précurseur(s), c) dissoudre les zones non exposées à l'étape b) à l'aide d'un solvant de la solution métallo-organique déposée à l'étape a), les zones au moins séchées demeurant sur ledit substrat, d) le cas échéant, faire subir au produit obtenu à l'étape précédente un traitement thermique en vue d'obtenir, au niveau des zones exposées, l'oxyde magnétique, le métal, le semi-conducteur ou l'oxyde neutre ou leurs mélanges issus de ladite solution métallo-organique, et e) si nécessaire, répéter les étapes a) - d), éventuellement en changeant de solution métallo-organique, jusqu'à l'obtention du motif final ou de la structure multicouche finale souhaité(e). Elle a également pour objet un dispositif manufacturé multicouche, caractérisé en ce qu'il comprend au moins une structure ou un motif obtenus par la mise en œuvre du procédé selon l'invention. Enfin, elle a encore pour objet l'utilisation du procédé selon l'invention dans la fabrication de composants électroniques, notamment de transistors et plus préférentiellement de transistors à effet de champs ainsi que dans la fabrication de circuits imprimés. Comme expliqué ci-après, le procédé selon l'invention évite les étapes lourdes recourant habituellement aux méthodes physiques de dépôts métalliques par sublimation sous ultravide (telles que connues sous les désignations de « MBE » et de « sputtering ») avec les étapes successives et fastidieuses de masquage pour la formation d'objets nanométriques tels que notamment les transistors de type « MOS FET » (métal oxide semiconductor field effect transitor) précités. Selon le procédé conforme à la présente invention, la fabrication d'objets nanométriques fait à l'aide d'un microscope électronique à balayage relié à un ordinateur permettant de contrôler la position du faisceau énergétique (par exemple un faisceau d'électrons) avec une précision élevée. Une couche mince de solution de précurseur est déposée à la surface d'un échantillon de substrat à traiter et le faisceau d'électrons sèche et/ou transforme ledit précurseur en substance devant être déposée. Une combinaison de solvants permet par la suite de dissoudre les régions non exposées. Une fois les motifs voulus lithographies, il n'est plus nécessaire de déposer, par évaporation, un métal sur la surface dudit échantillon, celui- ci étant obtenu par réaction avec le faisceau électronique et éventuellement stabilisé par un traitement thermique réducteur. L'utilisation du faisceau d'électrons comporte plusieurs avantages par rapport aux techniques classiques de lithographie utilisant des moyens optiques. Premièrement, la longueur d'onde des électrons est beaucoup plus petite que celle des ultraviolets. Ceci permet d'obtenir une résolution significativement supérieure. Deuxièmement, l'utilisation d'un microscope électronique à balayage contrôlé par un ordinateur signifie qu'il n'est pas nécessaire de faire fabriquer des masques photo-lithographiques complexes sur mesures, donc coûteux, comme c'est le cas, par exemple, pour la lithographie aux ultraviolets. Dans le cadre du procédé selon l'invention, on procède en réalité par écriture directe sur les échantillons ou substrats d'intérêt et la technique offre ainsi beaucoup de souplesse pour la modification rapide des motifs écrits. L'invention sera mieux comprise, grâce à la description ci- après, qui se rapporte à un mode de réalisation préféré, donné à titre d'exemple non limitatif, et expliqué avec référence aux dessins schématiques annexés, dans lesquels : la figure 1 représente la photo d'un premier exemple d'objet réalisé en Fe203 sur du silicium 100 grâce à la mise en œuvre du procédé selon l'invention, la figure 2 représente un agrandissement d'une portion de la photo de la figure 1, la figure 3 représente la photo d'un second exemple d'objet réalisé en CoFe20 sur du silicium 100 grâce à la mise en œuvre du procédé selon l'invention, la figure 4 représente un agrandissement d'une portion de la photo de la figure 3, et la figure 5 représente la photo d'un troisième exemple d'objet réalisé en métal (or) grâce à la mise en œuvre du procédé selon l'invention. Conformément à la présente invention, le procédé de lithographie est caractérisé en ce qu'il comprend essentiellement les étapes consistant à : a) déposer, sur un substrat, un film d'une solution métalloorganique contenant au moins un ion métallique en tant que précurseur(s) destiné(s) à marquer ledit substrat, b) exposer localement, selon le motif souhaité, le film obtenu à l'étape a) à au moins un faisceau énergétique focalisé présentant une densité énergétique suffisante pour au moins sécher localement ledit film de précurseur(s), c) dissoudre les zones non exposées à l'étape b) à l'aide d'un solvant de la solution métallo-organique déposée à l'étape a), les zones au moins séchées demeurant sur ledit substrat, d) le cas échéant, faire subir au produit obtenu à l'étape précédente un traitement thermique en vue d'obtenir, au niveau des zones exposées, l'oxyde magnétique, le métal, le semi-conducteur ou l'oxyde neutre ou leurs mélanges issus de ladite solution métallo-organique, et e) si nécessaire, répéter les étapes a) - d), éventuellement en changeant de solution métallo-organique, jusqu'à l'obtention du motif final ou de la structure multicouche finale souhaité(e). Ainsi, une solution métallo-organique est déposée, de préférence par « spin-coating » (dépôt rotatif) sur un substrat plat notamment de silicium ou de matériau vitreux. Introduit dans un appareil capable de fournir un faisceau d'électrons ou d'ions (collimatés ou pas), le revêtement ou couche métallo-organique est alors exposé audit faisceau. Dans les zones exposées ledit revêtement est dégradé et devient insoluble dans les solvants communs (alcool, acétone, eau, etc.). On peut ainsi tracer des objets submicroniques (pistes, plots, fils, réseaux, etc ..) voire nanométriques suivant la taille et l'intensité du faisceau. Le substrat marqué sorti de l'appareillage d'irradiation est ensuite trempé de façon habituelle dans un solvant adapté. Les parties non irradiées sont alors dissoutes, révélant ainsi les objets submicroniques ou nanométriques gravés. Ledit substrat peut ensuite subir un nouveau revêtement global pour déposer une autre couche d'un autre métalloorganique ou tout simplement être traité thermiquement pour former dans les zones non dissoutes un oxyde magnétique (par exemple du Fe2O3, CoFe2O4...), un métal (Cu, Co...) un semi-conducteur (CdS, CdSe, ZnS, ZnSe...), un oxyde neutre (Ti02, A1203, ZnO...) suivant le dispositif électronique que l'on souhaite former ou compléter. L'appareil utilisé pour la fabrication des micro ou nano- structures ainsi que pour leur observation est un microscope électronique à balayage tel que connu, par exemple, sous la référence JEOL-JMS 6300 du constructeur JEOL. Un tel microscope électronique à balayage (MEB) possède un grossissement maximal de 300 000 fois et une résolution maximale de l'ordre de 5 îim. L'énergie maximale des électrons produits par ce MEB est de l'ordre 30 keV. Pour la fabrication des objets nanométriques souhaités, ledit MEB est relié à un ordinateur personnel conventionnel qui contrôle la position du faisceau d'électrons selon un processus connu en soi et qui n'a pas besoin d'être explicité plus en détail ici. L'ordinateur contrôle aussi un intercepteur de faisceau situé au-dessus de l'échantillon. Ce dernier permet d'effectuer une exposition point par point de l'échantillon sans exposer la résine en des endroits non désirés. Selon une caractéristique du procédé selon l'invention, le substrat est du silicium ou du mica clivé. Préférentiellement, la surface du substrat est celle d'un monocristal. Selon une autre caractéristique, le substrat est une céramique, notamment un verre. Selon encore une autre caractéristique, le substrat est un métal ou un alliage métallique. Avantageusement, la solution métallo-organique contient au moins un sel organique d'au moins un métal choisi dans le groupe formé par : Cd, Ti, Al, Si, Fe, Co, Ni, Mn, Cr, Zn, Cu, Ca, Ba, Sr, Y, Zr, Sn, Ag, La, Hf, Ta, Pb, Bi, In, Ce, Pr, Nd, Sm, Eu, Gd, Yb, Er, Tb et U. De préférence, le ou les sels métallo-organiques sont choisis parmi le groupe formé par : les carboxylates, les propionates, les butyrates, les pentanoates, les méthylbutyrates métalliques ou un mélange de ces derniers. Selon un autre mode de réalisation avantageux, la solution métallo-organique comprend, en outre, au moins un sel minéral d'au moins un métal noble choisi dans le groupe formé par Au, Ag et Pt, de préférence AuCl3, AgNO3, ou PtCl5 ou un mélange de ceux-ci. Conformément à la présente invention, le faisceau énergétique est un faisceau d'électrons ou un faisceau d'ions. Avantageusement, la densité énergétique du faisceau énergétique est comprise entre 100 et 100 000 A.s.m"2. Selon une variante, la densité énergétique du faisceau énergétique est suffisante pour modifier, dans les zones exposées, la nature chimique du ou des métaux contenus dans la solution métallo-organique. De façon avantageuse, il est prévu que la solution métalloorganique contenant au moins du Cd ou du Zn, contient en outre un composé susceptible de libérer des ions sulfures au moment de l'exposition de l'étape b) et/ou lors du traitement thermique de l'étape d). Le motif souhaité (dépôt isolant, magnétique, ligne pour de futures pistes conductrices ou amenées de courant...) est préparé sur un logiciel de DAO spécifique également connu en soi puis est interprété en termes d'ordres de déplacement du faisceau électronique point par point. Le faisceau d'électrons ou d'ions sèche et/ou transforme le précurseur utilisé comme indiqué ci-dessus. Préalablement à ladite exposition, lesdits précurseurs auront été étendus sur les échantillons à l'aide d'un dispositif permettant de déposer uniformément ces derniers sur le substrat, par exemple à l'aide d'un appareil communément appelé « tournette » dans le jargon technique en question. Habituellement, une goutte de solution métallo-organique est ainsi déposée sur l'échantillon (ou substrat) qui est, par la suite, mis en rotation à raison d'une vitesse de l'ordre 5000 tours par minute pendant 60 secondes. Une fois l'exposition effectuée, on utilise un solvant ou une combinaison de solvants comme développeur, c'est-à-dire comme substance permettant d'éliminer uniquement les molécules qui n'ont pas été exposées. Concrètement, le procédé mis en œuvre révèle donc, après lavage, pour une irradiation longitudinale une ligne en relief ou pour une irradiation sur une surface circulaire un disque en relief. Dans un procédé de fabrication traditionnel, une couche métallique doit être évaporée sur toute la surface de l'échantillon développé. Le métal peut être évaporé de deux façons: thermiquement ou par un canon à électrons. Dans le premier cas, une faible quantité de métal est mise dans un creuset de tungstène et est chauffée au dessus du point d'ébullition, sous vide, en présence de l'échantillon ou substrat. Dans le deuxième cas, le métal est chauffé par un canon à électrons. Les métaux les plus couramment utilisés pour la nano-fabrication sont le NiCr (alliage eutectique de nickel et de chrome), ainsi que l'AuPd (alliage eutectique d'or et de palladium) et sont évaporés thermiquement. L'évaporateur à canon à électrons est généralement utilisé pour des évaporations de couches multiples de métaux différents, tels que nécessaires pour les contacts ohmiques ou les contacts Schottky. Ces étapes, qui sont souvent délicates à mettre en œuvre et qui représentent un coût important ainsi qu'une source potentielle supplémentaire de défauts, sont évitées dans le procédé selon l'invention. Dans un procédé de fabrication classique, la dernière étape consiste à faire décoller de la surface de l'échantillon le métal qui est déposé sur la résine. Ainsi, seules les régions où la résine a été préalablement enlevée demeurent recouvertes de métal. Ce processus, communément appelé « lift-off » (soulèvement) se fait en laissant tremper l'échantillon dans un mélange d'acétone et de MEK (cétone méthyl-éthylique), des solvants forts, qui font en sorte de dissoudre toute la résine, peu importe sa masse moléculaire. Après un certain temps, les solvants sont agités de telle sorte que le métal qui est sur la résine s'enlève. Deux mélanges sont largement utilisés ici comme développeurs à savoir, d'une part, un mélange d'alcool isopropylique et d'eau (IPA:H20) et, d'autre part, un mélange d'alcool isopropylique et de méthylisobutylcétone (IPA:MIBK). Bien entendu, les polymères sont dissous dans différents types de solvants et dans différentes proportions selon les besoins. Les solvants les plus utilisés pour les résines sont la méthylisobutylcétone (MIBK), l'orthoxylène et le chlorobenzène. Le chlorobenzène est le plus fort de ces solvants et est utilisé pour les concentrations les plus élevées en PMMA (par exemple de l'ordre de 15 %). Pour les concentrations plus faibles, typiquement comprises entre 2,5 % à 6 % en poids de PPMA, l'orthoxylène convient parfaitement. Grâce au procédé selon l'invention, aucun polymère organique n'est donc requis, ni, par conséquent, aucun solvant coûteux, nocif et polluant pour la traditionnelle étape de « lift-off » susvisée, inutile dans le procédé conforme à la présente invention. Le procédé selon l'invention s'apparente à une technique de lithographie directe en ce qu'outre le fait de ne nécessiter qu'une seule étape de gravure (gain de temps lors de la gravure et lors du contrôle qualité de celle-ci), il n'emploie aucun masquage. Tout autant que la baisse substantielle du prix de revient final d'un composant fabriqué par le procédé selon l'invention, la très grande diversité des matériaux réalisables (oxydes magnétiques, semi-conducteurs, pistes conductrices ou isolantes...) est un autre avantage important. Ainsi, à titre d'exemple, des objets métalliques peuvent maintenant être obtenus sans avoir recours à la lourde étape de vaporisation de métal. Le procédé selon l'invention est d'autant plus flexible que la nature chimique du substrat ne conditionne pratiquement pas la réussite de la lithographie. Il est possible de lithographier des objets sur quasiment tout support, lisse ou pas, en particulier sur du verre. A titre purement indicatif, le procédé selon la présente invention peut être utilisé dans le domaine de la microélectronique, dans la catalyse de nano-tubes orientés pour écran à plasma, pour les bio-chips, pour l'enregistrement magnétique à très haute densité, pour la fabrication de portes logiques, de mémoires GMR, de détecteurs UV- Visible, pour le marquage de sécurité de composants, pour la fabrication de micromachines... Le procédé selon l'invention va maintenant être expliqué plus en détails à l'aide des exemples suivants donnés à titre non limitatif.The present invention relates to the field of physical chemistry and more particularly that of surface treatment methods. It relates to an improved lithography process as well as the products obtained by the implementation of said process and is particularly useful in the manufacture of micro- or nanometric products or objects. The present invention allows in particular a simplified manufacture of multilayer electronic structures, in particular of multilayer meso and nanostructures for optical and electronic applications and in particular of printed circuits or field effect transistors commonly designated by the Anglo-Saxon name. "MOS-FET transistor". Currently, the manufacture of industrial components of the aforementioned type requires tracing of the active and passive components using masks produced in the form of a layer of polymer (typically made of polymethyl methacrylate: PMMA). These masks are produced on the substrate by local depolymerization of said uniform layer of PMMA by a light source through a metal mask, namely blades pierced at the places to be subjected to irradiation. However, the critical irradiation step is generally carried out by an ultraviolet light flux which depolymerizes, at the places not covered by said masks, an underlying polymer. The degraded polymer is then removed by washing the substrate to reveal the desired pattern or structure. This process is then repeated until the desired multilayer pattern or final product is obtained. However, the wavelength of the irradiation sources currently used generally does not allow the production of objects, for example electronic components, of size less than 200 nm. In addition, the large number of steps required in the processes currently used in the industry as well as the use of harmful and expensive chemicals make them long, complicated and expensive, while multiplying the risks of obtaining products of insufficient quality if at least one of the steps is carried out in a non-compliant manner. The method according to the invention makes it possible to manufacture in a simplified manner nanometric objects of magnetic oxide or not, metallic nanometric objects or made of certain semiconductors. It dispenses tedious and delicate masking steps, of manufacturing polymer imprints and also allows the formation of nanometric conductive tracks preferably made of copper and / or gold and the formation of certain semiconductors. To this end, the subject of the present invention is a lithography process, characterized in that it essentially comprises the steps consisting in: a) depositing, on a substrate, a film of a metalloorganic solution containing at least one metallic ion in as a precursor (s) intended to mark said substrate, b) locally exposing, according to the desired pattern, the film obtained in step a) to at least one focused energy beam having an energy density sufficient to at least dry locally said film of precursor (s), c) dissolve the areas not exposed in step b) using a solvent for the metallo-organic solution deposited in step a), the at least dried areas remaining on said substrate, d) if necessary, subjecting the product obtained in the previous step to a heat treatment with a view to obtaining, at the exposed areas, the magnetic oxide, the metal, the semiconductor or the neutral oxide or their melan ges from said metallo-organic solution, and e) if necessary, repeat steps a) - d), possibly changing the metallo-organic solution, until the final pattern or the desired final multilayer structure is obtained ( e). It also relates to a multilayer manufactured device, characterized in that it comprises at least one structure or pattern obtained by the implementation of the method according to the invention. Finally, it also relates to the use of the method according to the invention in the manufacture of electronic components, in particular transistors and more preferably field effect transistors as well as in the manufacture of printed circuits. As explained below, the method according to the invention avoids the heavy steps usually resorting to the physical methods of metallic deposits by sublimation under ultra high vacuum (as known under designations of "MBE" and "sputtering") with the successive and tedious masking steps for the formation of nanometric objects such as in particular the transistors of the "MOS FET" (metal oxide semiconductor field effect transitor) type mentioned above. According to the method according to the present invention, the manufacture of nanometric objects made using a scanning electron microscope connected to a computer making it possible to control the position of the energy beam (for example an electron beam) with a high precision. A thin layer of precursor solution is deposited on the surface of a sample of substrate to be treated and the electron beam dries and / or transforms said precursor into substance to be deposited. A combination of solvents subsequently dissolves unexposed regions. Once the lithography patterns are desired, it is no longer necessary to deposit, by evaporation, a metal on the surface of said sample, the latter being obtained by reaction with the electron beam and optionally stabilized by a reducing heat treatment. The use of the electron beam has several advantages compared to conventional lithography techniques using optical means. First, the wavelength of electrons is much smaller than that of ultraviolet. This provides a significantly higher resolution. Secondly, the use of a scanning electron microscope controlled by a computer means that it is not necessary to have complex photo-lithographic masks made to measure, therefore expensive, as is the case, for example, for ultraviolet lithography. In the context of the method according to the invention, in reality this is done by direct writing on the samples or substrates of interest and the technique thus offers a lot of flexibility for the rapid modification of the written patterns. The invention will be better understood from the following description, which relates to a preferred embodiment, given by way of nonlimiting example, and explained with reference to the appended schematic drawings, in which: FIG. 1 represents the photo of a first example of an object made of Fe 2 0 3 on silicon 100 thanks to the implementation of the method according to the invention, FIG. 2 represents an enlargement of a portion of the photo of FIG. 1, FIG. 3 represents the photo of a second example of an object produced in CoFe 2 0 on silicon 100 thanks to the implementation of the method according to the invention, FIG. 4 represents an enlargement of a portion of the photo of FIG. 3, and FIG. 5 represents the photo of a third example of an object made of metal (gold) thanks to the implementation of the method according to the invention. According to the present invention, the lithography method is characterized in that it essentially comprises the steps consisting in: a) depositing, on a substrate, a film of a metalloorganic solution containing at least one metal ion as a precursor ( s) intended to mark said substrate, b) locally exposing, according to the desired pattern, the film obtained in step a) to at least one focused energy beam having an energy density sufficient to at least locally dry said film of precursor (s), c) dissolve the areas not exposed in step b) using a solvent for the metallo-organic solution deposited in step a), the at least dried areas remaining on said substrate, d) if necessary, subject the product obtained in the preceding step to a heat treatment with a view to obtaining, in the exposed areas, the magnetic oxide, the metal, the semiconductor or the neutral oxide or their mixtures i ssus of said metallo-organic solution, and e) if necessary, repeat steps a) - d), possibly changing the metallo-organic solution, until the final pattern or the desired final multilayer structure is obtained (e ). Thus, a metallo-organic solution is deposited, preferably by “spin-coating” (rotary deposition) on a flat substrate, in particular of silicon or of vitreous material. Introduced into a device capable of providing a beam of electrons or ions (collimated or not), the metallo-organic coating or layer is then exposed to said beam. In the exposed areas the said coating is degraded and becomes insoluble in common solvents (alcohol, acetone, water, etc.). We can thus trace submicron objects (tracks, plots, wires, networks, etc.) or even nanometric depending on the size and intensity of the beam. The labeled substrate taken out of the irradiation apparatus is then normally soaked in a suitable solvent. The non-irradiated parts are then dissolved, revealing the engraved submicron or nanometric objects. Said substrate can then undergo a new overall coating to deposit another layer of another organic metalloor or simply be heat treated to form in the undissolved zones a magnetic oxide (for example Fe 2 O 3 , CoFe 2 O 4 .. .), a metal (Cu, Co ...) a semiconductor (CdS, CdSe, ZnS, ZnSe ...), a neutral oxide (Ti0 2 , A1 2 0 3 , ZnO ...) depending on the device that you want to train or complete. The apparatus used for the manufacture of micro or nanostructures as well as for their observation is a scanning electron microscope as known, for example, under the reference JEOL-JMS 6300 from the manufacturer JEOL. Such a scanning electron microscope (SEM) has a maximum magnification of 300,000 times and a maximum resolution of the order of 5 μm. The maximum energy of the electrons produced by this SEM is around 30 keV. For the manufacture of the desired nanometric objects, said SEM is connected to a conventional personal computer which controls the position of the electron beam according to a process known per se and which does not need to be explained in more detail here. The computer also controls a beam interceptor located above the sample. The latter makes it possible to carry out a point-by-point exposure of the sample without exposing the resin in undesired places. According to a characteristic of the method according to the invention, the substrate is silicon or cleaved mica. Preferably, the surface of the substrate is that of a single crystal. According to another characteristic, the substrate is a ceramic, in particular a glass. According to yet another characteristic, the substrate is a metal or a metal alloy. Advantageously, the metallo-organic solution contains at least one organic salt of at least one metal chosen from the group formed by: Cd, Ti, Al, Si, Fe, Co, Ni, Mn, Cr, Zn, Cu, Ca, Ba, Sr, Y, Zr, Sn, Ag, La, Hf, Ta, Pb, Bi, In, Ce, Pr, Nd, Sm, Eu, Gd, Yb, Er, Tb and U. Preferably, the metallo-organic salts are chosen from the group formed by: carboxylates, propionates, butyrates, pentanoates, metal methylbutyrates or a mixture of these. According to another advantageous embodiment, the metallo-organic solution also comprises at least one mineral salt of at least one noble metal chosen from the group formed by Au, Ag and Pt, preferably AuCl 3 , AgNO 3 , or PtCl 5 or a mixture thereof. According to the present invention, the energy beam is an electron beam or an ion beam. Advantageously, the energy density of the energy beam is between 100 and 100,000 Asm "2. According to a variant, the energy density of the energy beam is sufficient to modify, in the exposed areas, the chemical nature of the metal or metals contained in the solution Advantageously, it is expected that the metalloorganic solution containing at least Cd or Zn, also contains a compound capable of releasing sulphide ions at the time of the exposure in step b) and / or during the heat treatment of step d). The desired pattern (insulating, magnetic deposit, line for future conductive tracks or current leads ...) is prepared on a specific CAD software also known per se and is then interpreted in terms of electron beam displacement orders point by point The electron or ion beam dries and / or transforms the precursor used as indicated above. ably at said exposure, said precursors will have been spread over the samples using a device making it possible to deposit them uniformly on the substrate, for example using a device commonly known as a "spinner" in technical jargon. in question. Usually, a drop of metallo-organic solution is thus deposited on the sample (or substrate) which is subsequently rotated at a speed of the order of 5000 revolutions per minute for 60 seconds. Once the exposure has been carried out, a solvent or a combination of solvents is used as developer, that is to say as a substance making it possible to eliminate only the molecules which have not been exposed. Concretely, the process implemented therefore reveals, after washing, for a longitudinal irradiation a line in relief or for irradiation on a circular surface a disc in relief. In a traditional manufacturing process, a metal layer must be evaporated over the entire surface of the developed sample. The metal can be evaporated in two ways: thermally or by an electron gun. In the first case, a small amount of metal is put in a tungsten crucible and is heated above the boiling point, under vacuum, in the presence of the sample or substrate. In the second case, the metal is heated by an electron gun. The most commonly used metals for nano-fabrication are NiCr (eutectic alloy of nickel and chromium), as well as AuPd (eutectic alloy of gold and palladium) and are thermally evaporated. The electron gun evaporator is generally used for evaporations of multiple layers of different metals, as necessary for ohmic contacts or Schottky contacts. These steps, which are often difficult to implement and which represent a significant cost as well as a potential additional source of defects, are avoided in the method according to the invention. In a conventional manufacturing process, the last step consists in removing the metal which is deposited on the resin from the surface of the sample. Thus, only the regions where the resin has been previously removed remain covered with metal. This process, commonly called "lift-off", is done by soaking the sample in a mixture of acetone and MEK (methyl ethyl ketone), strong solvents, which dissolve all the resin , regardless of its molecular weight. After a while, the solvents are stirred so that the metal on the resin is removed. Two mixtures are widely used here as developers, namely, on the one hand, a mixture of isopropyl alcohol and water (IPA: H 2 0) and, on the other hand, a mixture of isopropyl alcohol and methyl isobutyl ketone ( IPA: MIBK). Of course, the polymers are dissolved in different types of solvents and in different proportions as required. The most widely used solvents for resins are methyl isobutyl ketone (MIBK), orthoxylene and chlorobenzene. Chlorobenzene is the strongest of these solvents and is used for the highest PMMA concentrations (for example of the order of 15%). For lower concentrations, typically between 2.5% to 6% by weight of PPMA, orthoxylene is perfectly suitable. Thanks to the process according to the invention, no organic polymer is therefore required, nor, consequently, any costly, harmful and polluting solvent for the traditional “lift-off” step mentioned above, unnecessary in the process according to the present invention. . The method according to the invention is similar to a direct lithography technique in that, in addition to requiring only a single etching step (saving time during etching and during quality control thereof) , it does not use any masking. Just as much as the substantial drop in the final cost price of a component manufactured by the process according to the invention, the very great diversity of materials that can be produced (magnetic oxides, semiconductors, conductive or insulating tracks, etc.) is another. significant advantage. Thus, by way of example, metallic objects can now be obtained without resorting to the heavy step of vaporizing metal. The method according to the invention is all the more flexible as the chemical nature of the substrate practically does not condition the success of the lithography. It is possible to lithograph objects on almost any support, smooth or not, in particular on glass. For purely indicative purposes, the method according to the present invention can be used in the field of microelectronics, in the catalysis of oriented nanotubes for plasma screens, for bio-chips, for very high density magnetic recording, for the manufacture of logic gates, GMR memories, UV-Visible detectors, for the security marking of components, for the manufacture of micromachines ... The process according to the invention will now be explained in more detail with the aid of the following examples given without implied limitation.
Exemple 1 : fabrication de plots d'oxyde de ferEXAMPLE 1 Manufacture of Iron Oxide Plots
Une solution de propionate de fer est préparée par dissolution de propionate de fer dans un solvant adapté tel que l'éthanol, le propanol, le butanol ou l'acétone. Pour obtenir une couche d'oxyde typiquement de l'ordre de 0,2 μm, on préparera une solution à 1 mole par litre en propionate de fer. Le substrat, typiquement du silicium monocristallin 100 poli à lambda sur 10 et préalablement nettoyé par les moyens bien connus de l'homme de l'art, est déposé sur la tournette, appareil classiquement employé en microélectronique et permettant de déposer des couches par centrifugation. Quelques gouttes de la solution de propionate de fer précitée sont déposées sur le substrat pour ce que ce dernier soit typiquement recouvert de solution sans débordement, puis le substrat est mis en rotation à une vitesse comprise entre environ 1000 et 5000 tours/min durant, par exemple, 30 secondes. Le liquide déposé s'étale pour former un film mince de quelques dixièmes de micromètre (0,3 à 0,6 μm). Le substrat ainsi préparé est retiré avec précaution de l'appareil et déposé dans une boîte à l'abri de la poussière (surtout si cette opération n'a pas lieu en salle blanche) et transféré dans un appareil d' électrolithographie. Au préalable, les schémas des nano-objets que l'on souhaite fabriquer auront été conçus et programmés de façon habituelle sur le logiciel de DAO (du type connu sous la dénomination « Autocad » ou compatible) et transcrit en déplacements correspondants du faisceau d'électrons dans l'appareil. Le substrat préparé subit donc les irradiations ponctuelles telles que prévues avec un faisceau d'ions typiquement de l'ordre de 1000 A.s.m" . L'irradiation permettant la formation d'un réseau de cent fils parallèles de quelques 200 nm d'épaisseur et d'un micromètre de large séparés de un micromètre dure environ quelques minutes (de 0, 1 à 3 minutes en fonction de la dose et de l'épaisseur de l'échantillon). Le substrat est retiré du microscope et est trempé dans un solvant, typiquement de l'éthanol, durant 30 secondes. Puis il est retiré et séché. Une observation en microscopie électronique à balayage montre que la zone irradiée s'est maintenue. Pour obtenir l'oxyde correspondant on fera subir un traitement thermique entre 300°C et 500°C pendant un temps suffisant à l'échantillon précité. Ceci conduira alors à du gamma oxyde de fer de structure spinelle. Le substrat ainsi obtenu est dès lors réutilisable pour l'application d'un autre dépôt, si nécessaire. Les figures 1 et 2 représentent des photos d'un exemple de structure réalisée en Fe2O3 sur Si 100 grâce à la mise en œuvre du procédé selon l'invention.An iron propionate solution is prepared by dissolving iron propionate in a suitable solvent such as ethanol, propanol, butanol or acetone. To obtain an oxide layer typically of the order of 0.2 μm, a solution of 1 mole per liter of iron propionate will be prepared. The substrate, typically monocrystalline silicon 100 lambda polished out of 10 and previously cleaned by means well known to those skilled in the art, is deposited on the spinner, a device conventionally used in microelectronics and making it possible to deposit layers by centrifugation. A few drops of the aforementioned iron propionate solution are deposited on the substrate so that the latter is typically covered with solution without overflowing, then the substrate is rotated at a speed of between approximately 1000 and 5000 rpm for, example, 30 seconds. The deposited liquid spreads out to form a thin film of a few tenths of a micrometer (0.3 to 0.6 μm). The substrate thus prepared is carefully removed from the device and placed in a box protected from dust (especially if this operation does not take place in a clean room) and transferred to an electrolithography device. Beforehand, the diagrams of the nano-objects that one wishes to manufacture will have been designed and programmed in the usual way on CAD software (of the type known under the name “Autocad” or compatible) and transcribed into corresponding displacements of the beam of electrons in the device. The prepared substrate therefore undergoes point irradiations as provided with an ion beam typically of the order of 1000 Asm " . The irradiation allowing the formation of a network of one hundred parallel wires of some 200 nm thick and d '' a wide micrometer separated from a micrometer lasts about a few minutes (from 0, 1 to 3 minutes depending on the dose and the thickness of the sample). The substrate is removed from the microscope and is soaked in a solvent, typically ethanol, for 30 seconds, then it is removed and dried. Observation by scanning electron microscopy shows that the irradiated area has been maintained. To obtain the corresponding oxide, the above-mentioned sample will be subjected to a heat treatment between 300 ° C and 500 ° C for a sufficient time. This will then lead to gamma iron oxide with a spinel structure. The substrate thus obtained is therefore reusable for the application of another deposit, if necessary. Figures 1 and 2 show photos of an example of a structure made of Fe 2 O 3 on Si 100 thanks to the implementation of the method according to the invention.
Exemple 2 : fabrication de plots de spinelle de fer et de cobaltExample 2: Production of Spinels of Iron and Cobalt
La procédure de fabrication est similaire à la procédure précédente, seule la composition de la solution étant modifiée. On procédera à la dissolution de propionates de fer et de cobalt dans les proportions de deux atomes de fer pour un atome cobalt. Le traitement thermique final sera conduit à une température de 700°C-800°C et selon une durée suffisante pour l'obtention du composé chimique souhaité. Ce type fabrication est applicable à l'obtention aussi bien d'oxydes binaires de type spinelle, perovskite, grenat ou hexaferrite pouvant présenter un intérêt en microélectronique ou en électronique quantique. Pourront être préparés, par exemple, du ZnFe2O4, du CuFe2O4, du BaFe12O19, du Y3Fe5O12 grenat, du LaFeO3... Les figures 3 et 4 représentent des photos d'un exemple d'objets réalisés en CoFe204 sur Si 100 en grâce à la mise en œuvre du procédé selon l'invention.The manufacturing procedure is similar to the previous procedure, only the composition of the solution being modified. The iron and cobalt propionates will be dissolved in the proportions of two iron atoms for one cobalt atom. The final heat treatment will be carried out at a temperature of 700 ° C-800 ° C and for a sufficient time to obtain the desired chemical compound. This manufacturing type is applicable to obtaining both binary oxides of spinel, perovskite, garnet or hexaferrite type which may be of interest in microelectronics or in quantum electronics. Can be prepared, for example, ZnFe 2 O 4 , CuFe 2 O 4 , BaFe 12 O 19 , Y 3 Fe 5 O 12 garnet, LaFeO 3 ... Figures 3 and 4 represent photos of an example of objects produced in CoFe 2 0 4 on Si 100 thanks to the implementation of the method according to the invention.
Exemple 3 : Fabrication de plots ou pistes métalliques nanométriques en cobalt, fer ou cuiyreExample 3: Manufacture of nanometric metal studs or tracks in cobalt, iron or copper
La procédure de fabrication est similaire à celle de l'exemple 1, seule la composition de la solution étant modifiée. On procédera à la dissolution de propionate de cobalt, de fer ou de cuivre. A l'issu le traitement thermique oxydant sous air sera conduit à 400°C pour le cobalt puis une réduction sous hydrogène dans laquelle le mélange réducteur sera amené typiquement à une température de 400- 500°C pour l'obtention du métal. Pour le fer ou le cuivre, les températures de recuit et/ou de réduction seront adaptées au cas spécifique de chaque métal. La figure 5 représente une photo d'un exemple de structure réalisée en or métallique grâce à la mise en œuvre du procédé selon l'invention.The manufacturing procedure is similar to that of Example 1, only the composition of the solution being modified. Cobalt propionate, iron or copper will be dissolved. At the end, the oxidative heat treatment in air will be carried out at 400 ° C for the cobalt then a reduction under hydrogen in which the reducing mixture will typically be brought to a temperature of 400-500 ° C for obtaining the metal. For iron or copper, the annealing and / or reduction temperatures will be adapted to the specific case of each metal. FIG. 5 represents a photo of an example of a structure produced in metallic gold thanks to the implementation of the method according to the invention.
Exemple 4 : Préparation d'objets nanométriques de sulfure de cadmium semi-conducteurExample 4 Preparation of Nanometric Objects of Semiconductor Cadmium Sulfide
La procédure de fabrication est similaire à celle de l'exemple 1, seule la composition de la solution étant modifiée. On procédera à la dissolution de carboxylate de cadmium et on ajoutera à cette solution un excès d'un composé susceptible de libérer des ions sulfures lors de sa décomposition, typiquement de la thiourée. Lors de l'étape d'irradiation, la thiourée se décompose libérant les ions sulfures qui se combinent aussitôt au cadmium pour former le CdS semi-conducteur souhaité.The manufacturing procedure is similar to that of Example 1, only the composition of the solution being modified. We will dissolve cadmium carboxylate and add to this solution an excess of a compound capable of releasing sulphide ions during its decomposition, typically thiourea. During the irradiation stage, the thiourea decomposes, releasing the sulphide ions which immediately combine with cadmium to form the desired semiconductor CdS.
Exemple 5 : Préparation d'objets nanométriques d'isolant tel que TiO?, Al2O^ ou SiO? La procédure de fabrication est similaire à celle du cas 1, seule la composition de la solution étant modifiée. On procédera à la dissolution de carboxylate de titane, aluminium ou silicium. A l'issu de la formation desdites structures le traitement thermique oxydant sous air sera conduit à environ 600°C. Le procédé selon l'invention permet de fabriquer des structures de l'ordre d'une dizaine de nanomètres. A titre indicatif, il devient par exemple possible de fabriquer de manière reproductible une ligne métallique d'environ 45 nm de large, un point d'une largeur de moins de 50 nm, ainsi qu'un espacement entre deux structures métalliques d'environ 15 nm. Le procédé selon l'invention est donc une technique de pointe pour la fabrication de composants électroniques en ce sens qu'il permet de diminuer signifîcativement la valeur de 190 nm habituellement rencontrée pour la largeur de porte d'un transistor à une largeur de porte comprise entre 2 et 100 nm. Ceci devient réalisable grâce à la possibilité, dans des transistors obtenus par le procédé selon l'invention, de pouvoir parallèlement augmenter la constante ε du diélectrique employé qui peut passer d'une valeur d'environ 10 unités S. I. pour les procédés actuels à une valeur de l'ordre de 100 à 3000 unités S. I. pour le procédé selon l'invention selon le nouvel isolant qui peut à présent être mis en œuvre. La présente invention a également pour objet un dispositif manufacturé multicouche, caractérisé en ce qu'il comprend au moins une structure ou un motif obtenus par la mise en œuvre du procédé selon l'invention. Par ailleurs, la présente invention a également pour objet l'utilisation du procédé selon l'invention dans la fabrication de composants électroniques, notamment de transistors et plus préférentiellement de transistors à effet de champ ainsi que dans la fabrication de circuits imprimés. Dans le cas de la fabrication d'un transistor, par exemple, il conviendra d'adapter le procédé selon l'invention notamment en prévoyant les étapes habituelles de dopage du silicium (implantation par des ions phosphore pour la création de zones dopées) par les méthodes classiques connues en soi et facilement transposables par l'homme du métier au présent procédé. Bien entendu, l'invention n'est pas limitée au mode de réalisation décrit et représenté aux dessins annexés. Des modifications restent possibles, notamment du point de vue de la constitution des divers éléments ou par substitution d'équivalents techniques, sans sortir pour autant du domaine de protection de l'invention. Example 5: Preparation of nanometric objects of insulator such as TiO ?, Al 2 O ^ or SiO? The manufacturing procedure is similar to that of case 1, only the composition of the solution being modified. The titanium, aluminum or silicon carboxylate will be dissolved. At the end of the formation of said structures the oxidative heat treatment in air will be carried out at approximately 600 ° C. The method according to the invention makes it possible to fabricate structures of the order of ten nanometers. As an indication, it becomes possible, for example, to reproducibly make a metal line about 45 nm wide, a point with a width of less than 50 nm, as well as a spacing between two metallic structures of about 15 nm. The method according to the invention is therefore an advanced technique for the manufacture of electronic components in the sense that it makes it possible to significantly reduce the value of 190 nm usually encountered for the door width of a transistor to a door width included between 2 and 100 nm. This becomes achievable thanks to the possibility, in transistors obtained by the method according to the invention, of being able in parallel to increase the constant ε of the dielectric employed which can pass from a value of approximately 10 SI units for current methods to a value of the order of 100 to 3000 SI units for the method according to the invention according to the new insulator which can now be implemented. The present invention also relates to a multilayer manufactured device, characterized in that it comprises at least one structure or pattern obtained by implementing the method according to the invention. Furthermore, the present invention also relates to the use of the method according to the invention in the manufacture of electronic components, in particular transistors and more preferably field effect transistors as well as in the manufacture of printed circuits. In the case of the manufacture of a transistor, for example, it will be necessary to adapt the method according to the invention in particular by providing the usual steps for doping silicon (implantation by phosphorus ions for the creation of doped zones) by the conventional methods known per se and easily transposable by those skilled in the art to the present process. Of course, the invention is not limited to the embodiment described and shown in the accompanying drawings. Modifications remain possible, in particular from the point of view of the constitution of the various elements or by substitution of technical equivalents, without thereby departing from the scope of protection of the invention.

Claims

R E V E N D I C A T I O N S
1. Procédé de lithographie, caractérisé en ce qu'il comprend essentiellement les étapes consistant à : a) déposer, sur un substrat, un film d'une solution métalloorganique contenant au moins un ion métallique en tant que précurseur(s) destiné(s) à marquer ledit substrat, b) exposer localement, selon le motif souhaité, le film obtenu à l'étape a) à au moins un faisceau énergétique focalisé présentant une densité énergétique suffisante pour au moins sécher localement ledit film de précurseur(s), c) dissoudre les zones non exposées à l'étape b) à l'aide d'un solvant de la solution métallo-organique déposée à l'étape a), les zones au moins séchées demeurant sur ledit substrat, d) le cas échéant, faire subir au produit obtenu à l'étape précédente un traitement thermique en vue d'obtenir, au niveau des zones exposées, l'oxyde magnétique, le métal, le semi-conducteur ou l'oxyde neutre ou leurs mélanges issus de ladite solution métallo-organique, et e) si nécessaire, répéter les étapes a) - d), éventuellement en changeant de solution métallo-organique, jusqu'à l'obtention du motif final ou de la structure multicouche finale souhaité(e). 1. Lithography process, characterized in that it essentially comprises the steps consisting in: a) depositing, on a substrate, a film of a metalloorganic solution containing at least one metal ion as a precursor (s) intended (s) ) marking said substrate, b) locally exposing, according to the desired pattern, the film obtained in step a) to at least one focused energy beam having an energy density sufficient to at least locally dry said film of precursor (s), c) dissolve the areas not exposed in step b) using a solvent for the metallo-organic solution deposited in step a), the at least dried areas remaining on said substrate, d) if necessary , subject the product obtained in the previous step to a heat treatment with a view to obtaining, in the exposed areas, magnetic oxide, metal, semiconductor or neutral oxide or their mixtures derived from said solution metallo-organic and e) if necessary, repeat steps a) - d), possibly changing the metallo-organic solution, until the final pattern or the desired final multilayer structure is obtained.
2. Procédé selon la revendication 1, caractérisé en ce que le substrat est du silicium. 2. Method according to claim 1, characterized in that the substrate is silicon.
3. Procédé selon la revendication 1, caractérisé en ce que le substrat est du mica clivé. 3. Method according to claim 1, characterized in that the substrate is cleaved mica.
4. Procédé selon la revendication 2 ou 3, caractérisé en ce que la surface du substrat est celle d'un monocristal. 4. Method according to claim 2 or 3, characterized in that the surface of the substrate is that of a single crystal.
5. Procédé selon la revendication 1, caractérisé en ce que le substrat est une céramique. 5. Method according to claim 1, characterized in that the substrate is a ceramic.
6. Procédé selon la revendication 5, caractérisé en ce que le substrat est un verre. 6. Method according to claim 5, characterized in that the substrate is a glass.
7. Procédé selon la revendication 1, caractérisé en ce que le substrat est un métal ou un alliage métallique. 7. Method according to claim 1, characterized in that the substrate is a metal or a metal alloy.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la solution métallo-organique contient au moins un sel organique d'au moins un métal choisi dans le groupe formé par : Cd, Ti, Al, Si, Fe, Co, Ni, Mn, Cr, Zn, Cu, Ca, Ba, Sr, Y, Zr, Sn, Ag, La, Hf, Ta, Pb, Bi, In, Ce, Pr, Nd, Sm, Eu, Gd, Yb, Er, Tb et U. 8. Method according to any one of claims 1 to 7, characterized in that the metallo-organic solution contains at least one organic salt of at least one metal chosen from the group formed by: Cd, Ti, Al, Si, Fe, Co, Ni, Mn, Cr, Zn, Cu, Ca, Ba, Sr, Y, Zr, Sn, Ag, La, Hf, Ta, Pb, Bi, In, Ce, Pr, Nd, Sm, Eu, Gd, Yb, Er, Tb and U.
9. Procédé selon la revendication 8, caractérisé en ce que le ou les sels métallo-organiques sont choisis parmi le groupe formé par : les carboxylates, les propionates, les butyrates, les pentanoates, les méthylbutyrates métalliques ou un mélange de ces derniers. 9. Method according to claim 8, characterized in that the metallo-organic salt or salts are chosen from the group formed by: carboxylates, propionates, butyrates, pentanoates, metal methylbutyrates or a mixture of the latter.
10. Procédé la revendication 9, caractérisé en ce que la solution métallo-organique comprend, en outre, au moins un sel minéral d'au moins un métal noble choisi dans le groupe formé par Au, Ag et Pt, de préférence AuCl3, AgNO3, ou PtCl5 ou un mélange de ceux-ci. 10. The method of claim 9, characterized in that the metallo-organic solution further comprises at least one mineral salt of at least one noble metal chosen from the group formed by Au, Ag and Pt, preferably AuCl 3 , AgNO 3 , or PtCl 5 or a mixture thereof.
11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que le faisceau énergétique est un faisceau d'électrons. 11. Method according to any one of claims 1 to 10, characterized in that the energy beam is an electron beam.
12. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que le faisceau énergétique est un faisceau d'ions. 12. Method according to any one of claims 1 to 10, characterized in that the energy beam is an ion beam.
13. Procédé selon l'une quelconque des revendications 1 à 12, caractérisé en ce que la densité énergétique du faisceau énergétique est comprise entre 100 et 100 000 A.s.m"2. 13. Method according to any one of claims 1 to 12, characterized in that the energy density of the energy beam is between 100 and 100,000 Asm "2 .
14. Procédé selon la revendication 13, caractérisé en ce que la densité énergétique du faisceau énergétique est suffisante pour modifier, dans les zones exposées, la nature chimique du ou des métaux contenus dans la solution métallo-organique. 14. Method according to claim 13, characterized in that the energy density of the energy beam is sufficient to modify, in the exposed areas, the chemical nature of the metal or metals contained in the metallo-organic solution.
15. Procédé selon la revendication 14, caractérisé en ce que la solution métallo-organique contenant au moins du Cd ou du Zn, contient en outre un composé susceptible de libérer des ions sulfures au moment de l'exposition de l'étape b) et/ou lors du traitement thermique de l'étape d). 15. The method of claim 14, characterized in that the metallo-organic solution containing at least Cd or Zn, further contains a compound capable of releasing sulphide ions at the time of exposure of step b) and / or during the heat treatment in step d).
16. Dispositif manufacturé multicouche, caractérisé en ce qu'il comprend au moins une structure ou un motif obtenus par la mise en œuvre du procédé selon l'une quelconque des revendications précédentes. 16. Multilayer manufactured device, characterized in that it comprises at least one structure or pattern obtained by implementing the method according to any one of the preceding claims.
17. Utilisation du procédé selon l'une quelconque des revendications 1 à 15 dans la fabrication de composants électroniques, notamment de transistors et plus préférentiellement de transistors à effet de champ. 17. Use of the method according to any one of claims 1 to 15 in the manufacture of electronic components, in particular transistors and more preferably field effect transistors.
18. Utilisation du procédé selon l'une quelconque des revendications 1 à 15 dans la fabrication de circuits imprimés. 18. Use of the method according to any one of claims 1 to 15 in the manufacture of printed circuits.
EP04742463A 2004-04-08 2004-04-08 Lithographic method products obtained and use of said method Withdrawn EP1735663A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2004/000876 WO2005109097A1 (en) 2004-04-08 2004-04-08 Lithographic method products obtained and use of said method

Publications (1)

Publication Number Publication Date
EP1735663A1 true EP1735663A1 (en) 2006-12-27

Family

ID=34957954

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04742463A Withdrawn EP1735663A1 (en) 2004-04-08 2004-04-08 Lithographic method products obtained and use of said method

Country Status (3)

Country Link
US (1) US20070210393A1 (en)
EP (1) EP1735663A1 (en)
WO (1) WO2005109097A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7745101B2 (en) 2006-06-02 2010-06-29 Eastman Kodak Company Nanoparticle patterning process
TWI407264B (en) * 2009-03-10 2013-09-01 Nat Applied Res Laboratoires Microcomputer and its application
JP5708521B2 (en) * 2011-02-15 2015-04-30 信越化学工業株式会社 Resist material and pattern forming method using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812333A (en) * 1988-05-02 1989-03-14 General Motors Corporation Sulfide thin film formed from stabilized metallo-organic solution
US5637440A (en) * 1993-12-27 1997-06-10 Mitsubishi Materials Corporation Composition for forming metal oxide thin film pattern and method for forming metal oxide thin film pattern
US5942376A (en) * 1997-08-14 1999-08-24 Symetrix Corporation Shelf-stable liquid metal arylketone alcoholate solutions and use thereof in photoinitiated patterning of thin films
GB0219829D0 (en) * 2002-08-24 2002-10-02 Univ Cranfield Process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005109097A1 *

Also Published As

Publication number Publication date
WO2005109097A1 (en) 2005-11-17
US20070210393A1 (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP5474290B2 (en) Metal patterning method using precursor-containing nanoparticles
US6893966B2 (en) Method of patterning the surface of an article using positive microcontact printing
US8101337B2 (en) Method of synthesizing ITO electron-beam resist and method of forming ITO pattern using the same
FR2577714A1 (en) PROCESS FOR FORMING HIGH RESOLUTION SUBMICRON STRUCTURES ON A SUBSTRATE SURFACE
TWI738650B (en) Process for obtaining semiconductor nanodevices with patterned metal-oxide thin films deposited onto a substrate, and semiconductor nanodevices thereof
Saifullah et al. Patterning at the resolution limit of commercial electron beam lithography
CN109307983A (en) For the pellicle composition and pellicle of photomask, the method for forming the pellicle, mask, exposure sources and the method for manufacturing device
Biyikli et al. Self-aligned nanoscale processing solutions via selective atomic layer deposition of oxide, nitride, and metallic films
US8247038B2 (en) Process for the application of spin transition molecular materials in thin layers
CN109612975B (en) Surface-enhanced Raman substrate and preparation method thereof
Anderson et al. Advances in nanolithography using molecular rulers
EP1735663A1 (en) Lithographic method products obtained and use of said method
KR20070110208A (en) Nano imprint blankmask, nano imprint stamp and its manufacturing method
JP2792508B2 (en) Ultrafine pattern forming method and ultrafine etching method
Alarslan et al. Thin patterned lithium niobate films by parallel additive capillary stamping of aqueous precursor solutions
WO2007068614A1 (en) Reflection lithography mask and method for making same
KR100875930B1 (en) Gold pattern formation method using gold electron beam resist
JP3844678B2 (en) Fine pattern formation method
TW201033746A (en) Micro-lithography machine and application thereof
US10807109B2 (en) Deposition of particles at desired locations using plasmonic enhancement
US20230280644A1 (en) Method of making euv mask with an absorber layer
JP4921861B2 (en) Metal deposition method
Kim et al. Microscale metal patterning using photosensitive silver organometallic compounds
CN116954020A (en) Micro-nano processing method and photoetching medium thereof
Checco et al. Formation of superhydrophobic surfaces

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100518

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101130