EP1735486A1 - Bi-component electrically conductive drawn polyester fiber and method for making same - Google Patents
Bi-component electrically conductive drawn polyester fiber and method for making sameInfo
- Publication number
- EP1735486A1 EP1735486A1 EP05729224A EP05729224A EP1735486A1 EP 1735486 A1 EP1735486 A1 EP 1735486A1 EP 05729224 A EP05729224 A EP 05729224A EP 05729224 A EP05729224 A EP 05729224A EP 1735486 A1 EP1735486 A1 EP 1735486A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- polyester
- fiber
- component
- electrically conductive
- drawn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/14—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/09—Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2918—Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
- Y10T428/292—In coating or impregnation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2929—Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
Definitions
- the present invention is directed to conductive fibers and, more particularly, to bi-component electrically conductive drawn polyester fibers.
- Friction generates static electricity in synthetic fibers, such as polyamide fibers, polyester fibers, acrylic fibers, etc., and also in some natural fibers such as wool.
- synthetic fibers such as polyamide fibers, polyester fibers, acrylic fibers, etc.
- static electricity the characteristic shock
- the discharge of static electricity can damage computers and other electronic equipment.
- the discharge of static electricity can result in a fire or explosion.
- Static buildup and discharge can also affect the efficiency and productivity of fiber conversion methods such as knitting and weaving.
- U.S. Patents 5,698,148 and 5,776,608 to Asher et al. describe conductive fibers having a sheath/core configuration for incorporation into fibrous articles such as carpet or textiles. Electrically conductive carbon black is mixed in a synthetic thermoplastic fiber forming polyester to form a conductive sheath. A non-conductive core is made of the same synthetic thermoplastic fiber forming polyester used in the conductive sheath. The extruded fibers are drawn and then relaxed at a temperature above the polyester' s glass transition temperature but below its melting or softening temperature.
- U.S. Patents 5,916,506 and 6,242,094 to Breznak et al. describe bi-component electrically conductive fibers in which a non-conductive first component is made of a first polymer, and a conductive second component is made of a second polymer containing a conductive material.
- the components are extruded into a sheath/core fiber, which is drawn to about four times its initial length to increase tensile strength. Such drawing causes a loss of conductivity, which can be restored by heat treatment.
- a melting point difference between the two polymers of at least 20°C is preferred so that the heat treatment does not melt the core polymer.
- a multi-component electrically conductive fiber has a first component comprising a first polyester having dispersed therein an electrically conductive material, and a second component comprising a second polyester which is not the same as the first polyester.
- the difference between the melting temperatures of the first and second polyesters is not more than about 10°C, and preferably the two melting temperatures are within about 2°C of each other.
- the first polyester typically is more amorphous than the second polyester before drying and/or crystallization steps performed prior to fiber spinning.
- a method of preparing a drawn multi-component electrically conductive fiber comprises co-extruding a first component comprising a first polyester having dispersed therein an electrically conductive material and a second component comprising a second polyester which is not the same as the first polyester.
- the fiber is thereafter drawn, while applying heat, to form a drawn fiber.
- the drawn fiber even without further treatment, has an electrical conductivity which is not substantially less than the electrical conductivity of undrawn fiber.
- the electrical conductivity of the drawn fiber surprisingly, is greater than that of the undrawn fiber.
- FIG. 1 is a cross-sectional view of a bi-component conductive fiber having a PBT center and a PET-based conductive component in accordance with a preferred embodiment of the invention.
- FIG. 2 is a schematic illustration of a typical spinning process for preparing a bi-component fiber in accordance with the present invention.
- the multi-component fiber of the present invention is prepared from a first polyester and a second polyester which is not the same as the first polyester.
- the second polyester is prepared from a ditterent combination of monomers than those used to prepare the first polyester.
- Commercially available polyesters can be used for each of the first and second polyesters, or suitable polyesters can be readily prepared by persons of ordinary skill.
- the term "multi-component" is used herein to refer synthetic fibers having more than one polymeric component and is particularly inclusive of bi-component fibers.
- the multi-component fibers of the present invention are useful in a wide variety of applications such as textiles, industrial fabrics, and carpets. It is also contemplated that the multi-component fibers may be useful in other applications such as non-woven fabrics and, if further cut or processed, possibly in adhesives, interlayers, and the like.
- the fibers also are useful as staple fibers, e.g., where the fiber is spun, drawn, crimped, and cut into small discrete lengths, which can be blended with other staple fibers or carded and spun as a yarn by itself.
- the first polyester generally functions as a carrier for the electrically conductive material in the first component of the multi-component fiber.
- the first polyester preferably is more amorphous than the second polyester, which improves compounding of the carbon and may also help to improve tenacity of the resulting fiber.
- the first polyester preferably is a polyethylene terephthalate (PET) based copolymer.
- PET polyethylene terephthalate
- the polyester may be modified, if necessary, so that its melting temperature is relatively close to (or possibly the same as) that of the second polyester.
- the difference in melting temperature between the first polyester and the second polyester is less than about 10°C, preferably is less than about 5°C, and even more preferably is about 2°C or less.
- polyalkylene terephthalate or naphthalate polyesters can be prepared by the polycondensation reaction of terephthalic acid, or a lower alkyl ester thereof, and aliphatic or cycloaliphatic C2-C10 diols.
- polyethylene terephthalate can be prepared by polycondensation of dimethyl terephthalate (DMT) and ethylene glycol followed by an ester interchange reaction.
- DMT dimethyl terephthalate
- polyesters are prepared with a third monomer which is either a diol or a diacid (or is diacidic in reactivity).
- PET modified with glycol which is commercially available as PETG.
- PCT Polycycloterephthalate
- PCTA acid-modified version of PCT is commercially available as PCTA.
- the acid-modifier is often a difunctional terephthalate such as dimethyl terephthalate or dimethyl isophthalate.
- difunctional acids such as adipic acid, maleic acid, the different isomers of phthalic acid, and similar materials can be used.
- the diethyl ester versions of various diacids may be preferred to the diacid itself.
- diol or glycol modifiers include ethylene-, diethylene-, and propylene glycols, butanediol, cyclohexanedimethanol, and other difunctional alcohols.
- the level of the co-monomer(s) in the polyester may vary over a wide range but typically is about 30 mol% or less, usually from about 1 to about 20 mol%, and often from about 5 to about 10 mol%.
- PET based polyester is available pre-blended with conductive carbon black from Americhem, catalog no. 19420, which has a melting point of about 225°C.
- polyesters include a copolymer of terephthalic acid (TA) or dimethyl terephthalate (DMT), ethylene glycol (EOH), and cyclohexanedimethanol (CHDM), such as one of the Eastman PETG products.
- TA terephthalic acid
- DMT dimethyl terephthalate
- EOH ethylene glycol
- CHDM cyclohexanedimethanol
- Other non-limiting examples of polyesters include polytrimethylene terephthalate (PTT) based polymers and polybutylene terephthalate (PBT) based polymers.
- PTT polytrimethylene terephthalate
- PBT polybutylene terephthalate
- Many other polyester-based carbon compounded materials are commercially available, such those available from Americhem under catalog nos. 16131 and
- RTP Company also has a line of carbon black filled polyester products which are marketed specifically for static control applications, under the name PermaStat ® . Such materials may be useful in making antistatic fibers with appropriate carbon loadings.
- PermaStat ® Such materials may be useful in making antistatic fibers with appropriate carbon loadings.
- the amount of carbon black in the polymer is such that it cannot be used to form a fiber by itself.
- the bi-component fibers described herein allow for heavily carbon-loaded polymers to be used in fibers by using a second polymer as the supporting substrate in the filament.
- the second polyester generally is non-conductive and may be used to form the core, for example, in a sheath/core type fiber.
- One preferred polyester for the second component is polybutylene terephthalate (PBT), which is derived from two main monomers, terephthalic acid (TA) (or dimethyl terephthalate (DMT)) and butanediol (BDO). See “Handbook of Thermoplastic Polymers," Fakirov ed., 2002, Wiley- VCH. PBT has a melting point of about 223°C.
- polyesters alternatively can be used in the second component, such as polytrimethylene terephthalate (PTT), copolymers based on PTT or PET, copolymers such as PETG or PCT, or other polyesters useful in forming single-component fibers known to those skilled in the art.
- PTT polytrimethylene terephthalate
- PETG copolymers
- PCT PCT
- other polyesters useful in forming single-component fibers known to those skilled in the art.
- the electrically conductive material may be conductive carbon black or other conductive material, such as conductive metals.
- carbon black is dispersed in the first polyester.
- the loading of conductive material in the first component can vary over a wide range but most often ranges from about 10% to about 50% by weight, more usually from about 20% to about 30% by weight.
- the multi-component fiber of the present invention preferably does not exhibit a substantial decrease in conductivity after drawing.
- Preferred fibers may exhibit a reduction in linear resistance after drawing by as much as 100 to 1,000 times.
- PBT as the non-conductive polyester
- Americhem 19420 as the carbon-filled polyester (25% carbon loading)
- the bi-component fibers consistently exhibited a decrease in linear resistance from 10 -10 ohms/cm to 10 -10 ohms/cm after drawing. This means that the conductivity, of efficacy in reducing static charge, improved by a factor of approximately 100 times.
- the fibers typically are spun using about 11-13% of the conductive first component laid on the non-conductive second component as longitudinal stripes, as shown in FIG. 1.
- the first and second components of the multi-component fiber can be arranged as a sheath/core or any other suitable configuration presently known or hereafter developed for multi- component fibers.
- the particular arrangement of the first and second components forms no part of the present invention.
- the bi-component fiber typically is spun at from about 1,000 to 2,000 meters per minute (mpm) and most often at about 1400 mpm.
- FIG. 2 is a schematic illustration of a typical fiber spinning process which can be used to prepare the bi-component fibers of the present invention.
- the spun fiber can be drawn using any suitable equipment, such as a four roll Erdmann drawstand.
- the roll temperatures preferably are set above the glass transition temperatures of the polyesters. Typical drawing temperatures range from about 100 to about 190°C.
- the first and fourth rolls are set at 90°C and the remaining two "draw rolls" are set at 150°C.
- the fourth roll is normally called the relaxation roll, and is typically set at a temperature at or higher than the glass transition temperature (T g ) of one or both of the polymers. Retention and/or improvement in conductivity was observed over a wide range of relaxation temperatures, both above and below T g .
- One potential benefit from the relatively low differential in melt temperature between the first polyester and the second polyester is that the fiber can be manufactured using a common temperature at the spin pack. In other words, because of the similar melt temperatures, neither polyester is required to undergo an increase or decrease in temperature at the spinneret. This should translate into lower occurrences of process breaks and smoother processing due to less released monomer or oligomer at the spinneret.
- a bi-component fiber was spun with 11-13% of the carbon-carrying polyester laid on the PBT polymer as longitudinal stripes. The fiber was spun at 1400 mpm to give an approximately 45 denier fiber with tenacity of approximately 1.3 — 1.5 g/denier.
- the following table summarizes spinning conditions:
- the linear resistance of the undrawn fiber was measured and was found to be about 10 8 -10 9 ohms/cm. Linear resistance was measured in this and other examples herein using either a Keithley 614 electrometer or Keithley 6517 electrometer/high resistance meter. Fiber samples were 7.5 cm in length. Either 5 or 10 measurements were made and an average and standard deviation calculated. Fiber denier was measured using a reel of known circumference and the denier calculated as grams/9000 meters. Fiber tenacity was measured using an Instron 8100 tensile testing meter using Instron's Merlin software and was calculated as the breaking strength divided by denier.
- This example illustrates preparing a bi-component fiber in which PBT was used for both the carbon-carrying component and the non-conductive second component.
- the carbon-carrying component was loaded with 25% of conductive carbon black.
- the fiber was spun and thereafter drawn essentially as described in Example 1.
- Tensile results and conductivity results are typical of several hundred items prepared using this combination of polymers, with varying amounts of carbon component, spinning speeds, and drawing temperatures.
- This example illustrates preparing a bi-component fiber in which a PET-based polyester, Americhem 19420 (with 25% carbon loading), was used for the carbon-carrying component and the non-conductive second component was PTT. All other details are essentially as described above in Example 1.
- This example illustrates preparing a bi-component fiber in which PBT filled with 25% carbon black was used for the carbon-carrying component and the non-conductive second component was PTT. All other details are essentially as described above in Example 1.
- Table 1 summarizes the linear resistance and tenacity of the fibers of Example 1 , Comparative Example 1, Example 2, and Example 3.
- the fiber of Example 1 exhibited about 35% more drawn tenacity than the fiber of Comparative Example 1 prepared under the same processing conditions, speeds, etc., with the same polymer processing temperatures.
- the fiber of Example 1 thus provides improved tenacity over the fiber of Comparative Example 1 while still permitting the two polymers of the bi- component fiber to be processed at the same temperature because of their similar melting temperatures.
- the fiber of Example 1 had better conductivity after drawing than did either the fiber of Comparative Example 1 or fibers, as in Examples 2-3, which were made with different combinations of polyesters with other conditions being identical (in the cases where the melt temperatures are the same) or changed to reflect the particular melt properties of polymers with different melt temperatures.
- Example 4
- Table 2 summarizes a number of other test items generated using different grades of PBT as the non-conductive material, compared with various conductive materials and two nylon-based conductive fibers.
- “19420” refers to Americhem 19420 (with 25% carbon loading). These results show the superior retention of properties with the appropriate choice of polymer pairs versus other combinations of polymers.
- the examples in this table were made using a fiber cross-section where the conductive material appears as stripes along the longitudinal direction of the threadline.
- “% Stripe” is the weight percent of the conductive polymer in the filament (where, in each case, approximately 25% of the conductive polymer weight is carbon black).
- the two columns showing "Avg Ohms/Cm” show the linear resistance in ohms/cm of (1) Spun (or Sp) and (2) Drawn (or Dr) fibers.
- the drawing method for the final product may include multiple draw zones as shown in the previous examples.
- the properties claimed herein can be obtained using a single-step drawing machine (e.g., a draw-wind process wherein the speed differential between two rolls provides the drawing from the starting spun denier to the final product denier).
- a single-step drawing machine e.g., a draw-wind process wherein the speed differential between two rolls provides the drawing from the starting spun denier to the final product denier.
- the so- called "relaxation zone" provided by multiple-roll draw-wind machines is not present.
- Table 5 summarizes property results of items generated in a factorial run.
- the spun fiber was made using the PBT/co-PET polymer system as discussed earlier. Take-up speed for both spun items was 1420 mpm.
- Test items made using spun item 117 had 9.5% by weight of the conductive carbon polymer in each threadline; items made using spun item 122 had 14.5%.
- the first draw roll temperature was set at 100°C for all runs shown below. "Draw ratio" shown is the speed ratio between the two rolls where the 2 nd roll was set at 1020 mpm for all items. Machine settings are shown in Table 6.
- Fibers made using this method may also be useful in staple fiber applications, e.g., where the bi-component fiber as described here is spun, drawn, crimped, and cut into small discrete lengths to be blended with other staple fibers, or to be carded and spun as a yarn by itself.
- a fiber using a single- stripe of conductive carbon filled co-PET and a non-conductive "core" polymer of PBT was spun at the conditions shown below. This fiber was then made into a tow by combining multiple ends of the spun yarn into a single large bundle, and said tow was drawn, crimped, and cut into staple. The staple was found to have a resistance adequate for antistatic fabric uses.
- the final staple product can be formed such that its measured surface resistance is lower than that of the spun fiber (i.e., draw resistance / spun resistance ⁇ 0).
- Table 7 summarizes resistance results for several staple items made using the same spun yarn feedstock.
- Linear resistance was measured as described earlier (in units of ohms/cm).
- Surface resistance is more appropriate for measuring swatches or collections of small fibers, fibrils, or flat surfaces (results above are shown in ohms). It is measured by taking a sample of fiber or fabric and conditioning it for the appropriate amount of time in a controlled temperature and humidity environment. An appropriate amount of sample is prepared for presentation to the electrode. An external voltage source is set to 100N and the resistivity of the sample at the applied voltage is measured once the reading is allowed to stabilize for several seconds.
- the test probe used here is the EOS/EDS standard 11.11 surface resistivity probe Model 803B from Electro-Tech Systems (Glenside, PA), which consists of two concentric soft rubber electrodes. The dimensions of the electrodes are such that the surface resistance in ohms/square is 10 times the measured resistance (in ohms). Readings were made using the Model 872A Wide Range Resistance Meter from Electro-Tech, or the Keithley 6517 Resistance Meter.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Multicomponent Fibers (AREA)
- Artificial Filaments (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US55530604P | 2004-03-23 | 2004-03-23 | |
PCT/US2005/008794 WO2005100651A1 (en) | 2004-03-23 | 2005-03-16 | Bi-component electrically conductive drawn polyester fiber and method for making same |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1735486A1 true EP1735486A1 (en) | 2006-12-27 |
EP1735486A4 EP1735486A4 (en) | 2007-12-19 |
Family
ID=35150031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05729224A Withdrawn EP1735486A4 (en) | 2004-03-23 | 2005-03-16 | Bi-component electrically conductive drawn polyester fiber and method for making same |
Country Status (8)
Country | Link |
---|---|
US (1) | US20080226908A1 (en) |
EP (1) | EP1735486A4 (en) |
JP (1) | JP2007530803A (en) |
CN (1) | CN1957121B (en) |
AU (1) | AU2005233518A1 (en) |
BR (1) | BRPI0508770A (en) |
TW (1) | TW200613597A (en) |
WO (1) | WO2005100651A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101310688B1 (en) * | 2005-09-28 | 2013-09-25 | 도레이 카부시키가이샤 | Polyester fiber and textile product comprising the same |
JP2008101314A (en) * | 2006-09-21 | 2008-05-01 | Toray Ind Inc | Conductive polyester fiber and brush product made of the same |
JP5071001B2 (en) * | 2006-09-29 | 2012-11-14 | 東レ株式会社 | Conductive yarn |
JP4598784B2 (en) * | 2007-02-09 | 2010-12-15 | 日本エステル株式会社 | Conductive composite fiber |
WO2017176604A1 (en) * | 2016-04-06 | 2017-10-12 | Ascend Performance Materials Operations Llc | Light color /low resistance anti-static fiber and textiles incorporating the fiber |
EP3835480A1 (en) * | 2019-12-10 | 2021-06-16 | Aladdin Manufacturing Corporation | Combination yarn |
DE102020120303A1 (en) | 2020-07-31 | 2022-02-03 | Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen | Electrically conductive monofilament |
CN115012068B (en) * | 2022-07-20 | 2024-03-15 | 贺氏(苏州)特殊材料有限公司 | Bicomponent polyester fiber with high and low temperature melting temperature, preparation method and application |
CN114990732B (en) * | 2022-07-20 | 2024-04-12 | 贺氏(苏州)特殊材料有限公司 | Antistatic special-shaped polyester fiber with high and low temperature melting temperature and filtering material |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1219734A1 (en) * | 1999-09-17 | 2002-07-03 | Kanebo Limited | Core-sheath composite conductive fiber |
US20040087231A1 (en) * | 2001-03-15 | 2004-05-06 | Keiji Nakanishi | Fiber complex and its use |
Family Cites Families (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4185137A (en) * | 1976-01-12 | 1980-01-22 | Fiber Industries, Inc. | Conductive sheath/core heterofilament |
US4129677A (en) * | 1977-05-31 | 1978-12-12 | Monsanto Company | Melt spun side-by-side biconstituent conductive fiber |
US6828021B2 (en) * | 1988-07-05 | 2004-12-07 | Alliedsignal Inc. | Dimensionally stable polyester yarn for high tenacity treated cords |
US5272246A (en) * | 1990-08-28 | 1993-12-21 | Hoechst Celanese Corporation | Polyester copolymer fiber having enhanced strength and dyeability properties |
US5015522A (en) * | 1990-09-05 | 1991-05-14 | The Dow Chemical Company | Multicomponent fibers, films and foams |
US5482773A (en) * | 1991-07-01 | 1996-01-09 | E. I. Du Pont De Nemours And Company | Activated carbon-containing fibrids |
US5481786A (en) * | 1993-11-03 | 1996-01-09 | Spartan Mills | Method of manufacturing a recyclable carpet |
US6174602B1 (en) * | 1996-05-14 | 2001-01-16 | Shimadzu Corporation | Spontaneously degradable fibers and goods made thereof |
US5698148A (en) * | 1996-07-26 | 1997-12-16 | Basf Corporation | Process for making electrically conductive fibers |
US5916506A (en) * | 1996-09-30 | 1999-06-29 | Hoechst Celanese Corp | Electrically conductive heterofil |
AU5609098A (en) * | 1996-12-31 | 1998-07-31 | Lear Corporation | Composite elastomeric yarns |
US5993712A (en) * | 1997-02-25 | 1999-11-30 | Lurgi Zimmer Aktiengesellschaft | Process for the processing of polymer mixtures into filaments |
US6228492B1 (en) * | 1997-09-23 | 2001-05-08 | Zipperling Kessler & Co. (Gmbh & Co.) | Preparation of fibers containing intrinsically conductive polymers |
US6342298B1 (en) * | 1997-11-19 | 2002-01-29 | Basf Aktiengesellschaft | Multicomponent superabsorbent fibers |
EP1045677A4 (en) * | 1998-01-06 | 2005-01-12 | Aderans Res Inst Inc | Bioabsorbable fibers and reinforced composites produced therefrom |
US6723428B1 (en) * | 1999-05-27 | 2004-04-20 | Foss Manufacturing Co., Inc. | Anti-microbial fiber and fibrous products |
CN1377380A (en) * | 1999-08-06 | 2002-10-30 | 伊斯曼化学公司 | Polyesters having a controlled melting point and fibers formed therefrom |
US6692687B2 (en) * | 2000-01-20 | 2004-02-17 | E. I. Du Pont De Nemours And Company | Method for high-speed spinning of bicomponent fibers |
CN100453714C (en) * | 2000-01-20 | 2009-01-21 | 因维斯塔技术有限公司 | Method for high-speed spinning of bicomponent fibers |
IT1317831B1 (en) * | 2000-02-15 | 2003-07-15 | Rosaldo Fare | CONTINUOUS AND / OR DISCONTINUOUS THREE-COMPONENT POLYMERIC FIBERS FOR THE PRODUCTION OF NON-WOVEN FABRIC AND PROCEDURE FOR THEM |
US6284864B1 (en) * | 2000-05-31 | 2001-09-04 | Arteva North America S.A.R.L. | Permanent deep-dye polyester |
US6497951B1 (en) * | 2000-09-21 | 2002-12-24 | Milliken & Company | Temperature dependent electrically resistive yarn |
US6855422B2 (en) * | 2000-09-21 | 2005-02-15 | Monte C. Magill | Multi-component fibers having enhanced reversible thermal properties and methods of manufacturing thereof |
US20020127939A1 (en) * | 2000-11-06 | 2002-09-12 | Hwo Charles Chiu-Hsiung | Poly (trimethylene terephthalate) based meltblown nonwovens |
JP4212779B2 (en) * | 2001-01-12 | 2009-01-21 | 帝人ファイバー株式会社 | Polyester bulky composite yarn and method for producing the same |
CN1243861C (en) * | 2001-02-02 | 2006-03-01 | 旭化成株式会社 | Compoles fiber excellent in post-processablility and method of producing same |
US20030077444A1 (en) * | 2001-05-10 | 2003-04-24 | The Procter & Gamble Company | Multicomponent fibers comprising starch and polymers |
CN100347355C (en) * | 2001-06-15 | 2007-11-07 | 可乐丽股份有限公司 | Composite fiber |
GB0115360D0 (en) * | 2001-06-22 | 2001-08-15 | Cachet Medical Ltd | Biocomponent fibers and textiles made therefrom |
TWI237710B (en) * | 2001-07-03 | 2005-08-11 | Honeywell Int Inc | High-strength thin sheath fibers |
US6656586B2 (en) * | 2001-08-30 | 2003-12-02 | E. I. Du Pont De Nemours And Company | Bicomponent fibers with high wicking rate |
ES2315410T3 (en) * | 2001-11-06 | 2009-04-01 | Asahi Kasei Fibers Corporation | COMPOSITE POLYESTER FIBER COILS. |
US20030203695A1 (en) * | 2002-04-30 | 2003-10-30 | Polanco Braulio Arturo | Splittable multicomponent fiber and fabrics therefrom |
JP2005527715A (en) * | 2002-05-27 | 2005-09-15 | ヒュービス コーポレーション | Polytrimethylene terephthalate composite fiber and method for producing the same |
US6846560B2 (en) * | 2002-05-27 | 2005-01-25 | Asahi Kasei Kabushiki Kaisha | Conjugate fiber and method of producing same |
US6677038B1 (en) * | 2002-08-30 | 2004-01-13 | Kimberly-Clark Worldwide, Inc. | 3-dimensional fiber and a web made therefrom |
US6641916B1 (en) * | 2002-11-05 | 2003-11-04 | E. I. Du Pont De Nemours And Company | Poly(trimethylene terephthalate) bicomponent fibers |
US7615173B2 (en) * | 2002-11-21 | 2009-11-10 | James Edmond Van Trump | Process for preparing bicomponent fibers having latent crimp |
US6967057B2 (en) * | 2002-12-19 | 2005-11-22 | E.I. Du Pont De Nemours And Company | Poly(trimethylene dicarboxylate) fibers, their manufacture and use |
CN1662683B (en) * | 2002-12-23 | 2012-11-07 | 纳幕尔杜邦公司 | Poly(trimethylene terephthalate) bicomponent fiber process |
EP1577426B1 (en) * | 2002-12-24 | 2016-06-01 | Kao Corporation | Heat fusible conjugate fiber |
US6989194B2 (en) * | 2002-12-30 | 2006-01-24 | E. I. Du Pont De Nemours And Company | Flame retardant fabric |
DE10307174B4 (en) * | 2003-02-20 | 2017-05-24 | Reifenhäuser GmbH & Co. KG Maschinenfabrik | Multilayer monofilament |
US20070035057A1 (en) * | 2003-06-26 | 2007-02-15 | Chang Jing C | Poly(trimethylene terephthalate) bicomponent fiber process |
US7045211B2 (en) * | 2003-07-31 | 2006-05-16 | Kimberly-Clark Worldwide, Inc. | Crimped thermoplastic multicomponent fiber and fiber webs and method of making |
US6877197B1 (en) * | 2003-12-08 | 2005-04-12 | Invista North America S.A.R.L. | Process for treating a polyester bicomponent fiber |
US20050130539A1 (en) * | 2003-12-15 | 2005-06-16 | Nordson Corporation | Nonwoven webs manufactured from additive-loaded multicomponent filaments |
-
2005
- 2005-03-16 US US10/593,824 patent/US20080226908A1/en not_active Abandoned
- 2005-03-16 AU AU2005233518A patent/AU2005233518A1/en not_active Abandoned
- 2005-03-16 WO PCT/US2005/008794 patent/WO2005100651A1/en active Application Filing
- 2005-03-16 JP JP2007505014A patent/JP2007530803A/en not_active Withdrawn
- 2005-03-16 CN CN2005800163296A patent/CN1957121B/en not_active Expired - Fee Related
- 2005-03-16 BR BRPI0508770-8A patent/BRPI0508770A/en not_active IP Right Cessation
- 2005-03-16 EP EP05729224A patent/EP1735486A4/en not_active Withdrawn
- 2005-03-22 TW TW094108702A patent/TW200613597A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1219734A1 (en) * | 1999-09-17 | 2002-07-03 | Kanebo Limited | Core-sheath composite conductive fiber |
US20040087231A1 (en) * | 2001-03-15 | 2004-05-06 | Keiji Nakanishi | Fiber complex and its use |
Non-Patent Citations (1)
Title |
---|
See also references of WO2005100651A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN1957121B (en) | 2010-06-16 |
CN1957121A (en) | 2007-05-02 |
EP1735486A4 (en) | 2007-12-19 |
JP2007530803A (en) | 2007-11-01 |
BRPI0508770A (en) | 2007-08-28 |
TW200613597A (en) | 2006-05-01 |
WO2005100651A1 (en) | 2005-10-27 |
AU2005233518A1 (en) | 2005-10-27 |
US20080226908A1 (en) | 2008-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2005100651A1 (en) | Bi-component electrically conductive drawn polyester fiber and method for making same | |
US5776608A (en) | Process for making electrically conductive fibers | |
JP4820894B2 (en) | Poly (trimethylene terephthalate) fibers, their manufacture and use | |
EP1552044B1 (en) | Process for making poly(trimethylene terephthalate) fibers | |
US8066923B2 (en) | Poly(trimethylene terephthalate)/poly(alpha-hydroxy acid) biconstituent filaments | |
JP2004143659A (en) | Sheath-core fiber having high chemical-resistance, electroconductivity and stain repellency, method for manufacturing the same, and usage of the same | |
EP4073301A1 (en) | Carpet made from self-bulking ptt-containing bicomponent fibers | |
JP5262514B2 (en) | Polyester composite fiber | |
US6967057B2 (en) | Poly(trimethylene dicarboxylate) fibers, their manufacture and use | |
US20230257909A1 (en) | A method to make bicomponent fibers and articles comprising the same | |
JP5254532B2 (en) | Conductive polyester fiber | |
KR101043149B1 (en) | Polytrimethylene terephthalate fibers, their manufacture and use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20061020 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20071116 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: D01F 8/00 20060101AFI20051101BHEP |
|
17Q | First examination report despatched |
Effective date: 20090728 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ASCEND PERFORMANCE MATERIALS LLC |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAC | Information related to communication of intention to grant a patent modified |
Free format text: ORIGINAL CODE: EPIDOSCIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20101027 |