EP1732757A1 - Method for the protection of thermoplastic plates - Google Patents

Method for the protection of thermoplastic plates

Info

Publication number
EP1732757A1
EP1732757A1 EP05751619A EP05751619A EP1732757A1 EP 1732757 A1 EP1732757 A1 EP 1732757A1 EP 05751619 A EP05751619 A EP 05751619A EP 05751619 A EP05751619 A EP 05751619A EP 1732757 A1 EP1732757 A1 EP 1732757A1
Authority
EP
European Patent Office
Prior art keywords
film
plate
layer
ethylene
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05751619A
Other languages
German (de)
French (fr)
Inventor
Pierre Gerard
Alberto Luca Stasi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP1732757A1 publication Critical patent/EP1732757A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/0017Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor characterised by the choice of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/0056Provisional sheathings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/04Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/10Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2333/00Polymers of unsaturated acids or derivatives thereof
    • B32B2333/04Polymers of esters
    • B32B2333/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2369/00Polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • B32B37/153Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is extruded and immediately laminated while in semi-molten state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer

Definitions

  • the present invention relates to the field of protection, by masking films, of sheets of thermoplastic materials, more especially of acrylic resin sheets and of polycarbonate sheets. It relates to a method of protecting plates of thermoplastic materials using a multilayer film comprising polypropylene as well as the plate thus coated.
  • Certain thermoplastic polymers such as acrylic derivatives (in particular polymethyl methacrylate well known under the acronym of PMMA) and polycarbonate are commonly manufactured in the form of rectangular plates of large dimensions and of variable thickness (for example plates of 2 m wide by 3 m long and between 2 mm and 15 mm thick). These plates are obtained by various polymerization and / or shaping processes, in particular by casting or by extrusion of hot granules.
  • the transformer especially when the plate is intended to be thermoformed, wishes to do this operation on the plate still coated with the masking film, the latter being in contact with the mold wall.
  • This makes it possible to extend the protection of the plate during the thermoforming operation, and up to transport, storage and handling. of the thermoformed object.
  • the case of the manufacture of acrylic resin baths can be cited.
  • There is a known protection process commonly practiced by producers of PMMA plates which comprises, by means of an appropriate device, the application to the plate of a film based on polyethylene, of thickness between 40 and 100 ⁇ m. , generally around 60 ⁇ m. In such a process, the film and the plate are brought to a temperature between 20 and 100 ° C.
  • the film is stretched and brought into contact with the plate, and the assembly is pressed between 2 cylindrical rollers rotating in opposite directions which subject it to a pressure of between 1 and 6 bar and impart to it a translational movement in a horizontal plane. corresponding to a speed between 0.5 and 15 m / min.
  • the film thus applied adheres to the plate and protects it during the handling and handling operations which accompany its storage and transport by the manufacturer. It also adheres to the thermoformed plate and to the object thus shaped (for example a bathtub), during the storage and transport operations of the transformer.
  • the film is removed or peeled off at the appropriate time, usually manually.
  • the film to be applied to the plate is wound on a supply reel placed parallel to one of the sides of the plate to be protected.
  • This reel takes place under the effect of the movement of the film adhering to the plate after its application by the 2 pressure rollers, according to the translational movement previously described.
  • the film is therefore subjected to a certain tension, hereinafter referred to as the “removal tension”.
  • This tension is likely, in turn, to cause a deformation or elongation of the film, so that the latter can be applied to the plate and therefore adhere to it with a certain deformation or elongation compared to its state at rest. .
  • the adhesion of the masking film to the plate must, finally, be of good quality and stable over time. Such a property is represented by an adhesion test carried out 24 hours after the application of the film to the plate, and which is described later in the present text. Furthermore, it is also necessary that the film has a suitable tear strength. Such resistance is required on the one hand when the film is applied to the plate, on the other hand when the end user (generally the transformer or the user of the thermoformed object coated with the masking film ) removes the said protective film.
  • An object of the present invention is thus to propose a method of protecting thermoplastic plates by masking film which facilitates the quality control of the plates, due to an improved Haze, while preserving the effectiveness of the protection offered by polyethylene films.
  • Another object of the present invention is to provide a method of protecting thermoplastic sheets which requires a lesser thickness of masking film than polyethylene films, while having suitable mechanical properties (in particular a reduced film tension at deposition). and low strain strain), quality adhesion that is stable over time, and suitable tear resistance.
  • the advantage of a lesser thickness of masking film lies, in addition to an appreciable reduction in the cost of the protection operation, in a reduction in the amount of protective material. This is particularly advantageous when, after removing the masking film, to evacuate it.
  • the subject of the present invention is therefore firstly a method of protecting a plate of a thermoplastic material comprising the application to said plate of a coextruded film, bioriented simultaneously, comprising the following layers: a) a central layer d 'homopolymer of propylene or of copolymer of propylene and ethylene and / or alpha-olefins of 4 to 8 carbon atoms, with an MFI (Melt Flow Index) ISO 1133, 230 ° C / 10 min) of at least 1.5 to 10 g / 10 min, preferably 2 at 4 g / 10 min, b) an adhesive outer layer which comprises copolymers of ethylene and alpha-olefins C 3 to C 2 , preferably C 4 to C 3 , of a specific mass (ASTM 792 ) from 0.887 g / cm 3 to 0.916 g / cm 3 , or copolymers of ethylene and vinyl acetate (EVA) in which the vinyl
  • the total thickness of the multilayer film is between 15 ⁇ m and 50 ⁇ m, preferably between 15 ⁇ m and 35 ⁇ m and even more preferably between 20 ⁇ m and 30 ⁇ m.
  • the thickness of the adhesive external layer b) varies between 5 and 30%, preferably between 5 and 20% and more preferably between 5% and 10% of the total thickness of the film.
  • the amount of comonomers in the propylene copolymers used in the central layer a) is between 0.1% and 40% by weight and preferably between 0.1% and 15% by weight.
  • the alpha-olefins of 4 to 8 carbon atoms are for example butene-1, hexene-1, 4-methyl-pentene-1 and octene-1.
  • the polymers used in layer a) are available on the market. By way of example, mention may be made of that known under the brand Moplen®HP522H (Basel).
  • a propylene homopolymer is used as the central layer a).
  • the ethylene copolymers of the adhesive layer b) are preferably copolymers of ethylene with alpha-olefins C?
  • Catalyst 1 is generally used with a co-catalyst 2, preferably chosen from aluminoxanes 2a) which are the products of the reaction of aluminum trialkyl with water.
  • co-catalyst 2 instead of aluminoxanes, one can use compound 2b) of formula: (L ⁇ -H) + (A) -
  • - Li is a neutral Lewis base
  • - (LH) + is a Bronsted acid
  • - B is an element from groups llla to Via of the periodic table of the elements, with metalloid characteristics, preferably boron, phosphorus or arsenic in the valence state 3 or 5, silicon, and more preferably boron in the valence state 3, - the Qs, which are identical or different from each other, are selected from the following groups: hydrides, halides, alkyls, optionally substituted aryls, for example with halogens, preferably F, alkosides, arylosides, dialkylamido or R 0 COO " where R 0 has from 1 to 20 carbon atoms, with the condition that Q can only be a halide once,
  • - q is an integer equal to the valence of B, plus 1.
  • the molar ratio between Al of the aluminoxane component 2a) relative to the amount of the metal of catalyst 1 (metallocene) is between 10,000: 1 and 100: 1 and preferably between 5,000: 1 and 500: 1.
  • the preferred metallocene / (2b) ratio is between (0.1-
  • the polymerization processes for obtaining the copolymers of ethylene and alpha-olefins from the adhesive outer layer b) are well known in the art, and reference will be made, by way of example, to those indicated in patent WO 91 / 11 488.
  • the comonomers which can be used to prepare the ethylene copolymers of layer b) are, for example, butene-1, hexene-1, 4-methyl-pentene-1 and octene -1. Examples of said copolymers known on the market are those which carry the marks AFFINITY® PL 1880 and
  • AFFINITY® PL 1850 (DOW). It is preferred to use for layer b) a copolymer of ethylene and vinyl acetate, such as for example GREENFLEX® (POLIMERI
  • the polarization of the adhesive layer b) can be obtained for example by corona treatment or plasma treatment, preferably by corona treatment.
  • the coextruded film implemented in accordance with the present invention can optionally be supplemented by an external non-adhesive layer c) disposed on the free surface of the central layer a), to improve the uniformity of the thickness of the film.
  • the thickness of the non-adhesive layer c) is between 5% and 30%, preferably between 5% and 20% and more preferably between 5% and
  • the total thickness of the film according to this invention which also includes layer c), is situated within the limits defined above.
  • the non-adhesive layer c) consists of a propylene homopolymer or a copolymer with ethylene and / or an alpha-olefin which has 4 to 8 carbon atoms, with an MFI (ISO 1133, 230 ° C / 10 min) from 2 to 10 g / 10 min.
  • the copolymers of propylene and ethylene and / or alpha-olefins of 4 to 8 carbon atoms used in c) have a comonomer content of 0.1% to 40% by weight and preferably 0.1% by weight to 15% by weight.
  • the polymers used in layer c) are available on the market. By way of example, mention may be made of that known under the name Stamylan®P 15E10FB (DSM).
  • the central layer a) may consist of a single layer or of several layers using the polymers and copolymers indicated in a). It is possible to add to the multilayer film used in accordance with the present invention conventional additives used in plastics, for example slip agents ("slip agents”), anti-blocking agents ("anti-blocking agents”), antistatic agents, dyes, UV protection agents.
  • the coextruded and bioriented films simultaneously applied in accordance with the present invention can be obtained with a process which can be carried out on a line which comprises: - an extruder for the central layer a), for example of the type with two screws or two extruders successive to a screw, said extruder being connected to a vacuum pump to extract the air and to a supply pump to stabilize the force at the outlet, - one-screw or two-screw coextruders for the layers b) and optionally c), - a multilayer extrusion head (die) to obtain a composite sheet formed by layers a), b) and optionally c), - a quenching roll of the sheet, what the for example, by immersing the roller in a water bath, - a sheet preheating system, preferably by infrared rays, - a simultaneous sheet stretching oven, with the following sections, in the direction of advancement of the plate: preheating section, section of simultaneous stretching, stabilization section and cooling section,
  • the process for obtaining coextruded and bioriented films simultaneously comprises the following steps: - preparation of a composite sheet, preferably with a thickness of between approximately 1.5 mm and 3.3 mm, by coextrusion of the layers a), b) and optionally c), preferably on a flat head and preferably using temperatures between 160 ° C and 270 ° C; and then quenching ("quenching") of the plate, preferably carried out on a roller immersed in water, preferably at a temperature of 10 ° C to 60 ° C, - preheating of the sheet at a temperature preferably between about 100 ° and about 120 ° C, preferably by infrared rays, - simultaneous stretching, both in the direction of the MD machine and in the transverse direction TD of the sheet, using the apparatus described in the basic patent US 4,853,602 which is incorporated here in full for reference and in the following patents which describe this technology, and which comprises the following steps: - simultaneous stretching of the sheet and obtaining of the
  • the longitudinal stretching ratio can be considered to be equal to the ratio between the speed of exit of the film from the stretching device (which is related to the frequency of the current which feeds the linear motors of the last section of the device stretching) and the speed of entry of the film into the stretching device (which is related to the frequency of the current which feeds the linear motors of the first section of the stretching device); as a first approximation, it can be considered that the transverse stretching ratio is equal to the ratio between the width of the film at the outlet of the stretching device and the width of the film at the inlet of the stretching device.
  • the "corona" treatment of the adhesive layer b) is preferably carried out by high frequency electrical discharges, preferably with an intensity of 40 to 60 W / cm.
  • the multilayer film which has just been described is used for the protection of plates of thermoplastic materials. It is therefore applied, after it has been tensioned, by bringing the adhesive layer b) into contact with the plate, then passing the assembly between 2 rollers. cylindrical turning in opposite directions.
  • the processing temperature of the film is between 20 ° C and 100 ° C.
  • the film is placed in a reel having the same width as the surface of the plate to be covered, so that the direction of unwinding of the reel coincides with the direction of advancement of the plate.
  • the film adheres to the surface of the plate thanks to its passage between the 2 rollers which exert a pressure generally between 1 and 6 bars, the speed of the line being generally between 0.2 and 15 m / min.
  • the thermoplastic materials to which the protective protection of the plates apply are chosen in particular from acrylic resins, polycarbonate, poly (ethylene terephthalate), poly (ethylene glycol terephthalate). Among these thermoplastic materials, however, acrylic resins, and very particularly polymethyl methacrylate (PMMA), are preferred.
  • the present invention also relates to the thermoplastic plate coated with the coextruded film as defined above, the adhesive external layer b) of said film being in contact with the plate. Finally, it relates to the object capable of being obtained by thermoforming of said plate.
  • the masking film is characterized in the following manner.
  • the deformation of the film is measured for an applied stress (or tension) of 10 MPa by means of a tensile test carried out according to standard ASTM D882, and is called hereinafter “deformation coefficient”.
  • the Haze of the film is measured according to the ASTM D 1003 standard and is all the better as it corresponds to a lower value.
  • Example 1 comparativative: Application of a polyethylene film on a PMMA plate: A coextruded non-oriented polyethylene film 60 ⁇ m thick is used.
  • This film is representative of a film used industrially as a masking film for PMMA plates. It has the following composition: - central layer: formed of LDPE (low density polyethylene) which can be mixed with LLDPE (linear low density polyethylene) or MDPE (medium density polyethylene), - the surface adhesive layer consists m-VLDPE (very low density polyethylene obtained with metallocene). The deformation coefficient of this film is 5%. Its Haze is 9.88.
  • a laboratory device is used as an application device comprising: - a reel for supplying masking film, - rollers on which the film passes, before its application to the plate and one of which is provided with '' a sensor measuring the tension it supports, - a set of rollers bringing the film on the one hand and the plate on the other hand in the vicinity of each other, just upstream of 2 cylindrical pressure rollers of diameter 9 cm and whose axes are located in the same vertical plane separated by a distance of about 40 cm.
  • One of these rollers is integral with a motor, - a roller device for evacuating the plate covered with film on an output table.
  • the coils and rollers mentioned above are cylindrical in shape and have a generator length of 30 cm.
  • the polyethylene film is pre-wound on the supply reel (placed in the appropriate place on the device) at a thickness of approximately 3 cm.
  • This reel is unwound manually so as to bring the film between the 2 pressure rollers.
  • a rectangular plate of PMMA, dimensions 47 cm by 23 cm and thickness 3 mm, is cut. This plate is introduced into the device, and the motor is activated in order to apply the film by means of the 2 pressure rollers.
  • the film tension measured by means of the roller fitted with the appropriate sensor is approximately 2 kg.
  • the quality of the adhesion of the film applied to the plate is evaluated by a peeling test carried out 24 hours after application of the film to the plate and storage of the assembly at 25 ° C. and 50% humidity. relative.
  • the purpose of this test is to measure - under specific conditions - the force required to peel off the film.
  • a rectangular test tube 5 cm wide and 15 cm long is cut from the plate covered with the film.
  • This test piece is fixed vertically in the fixed jaw of a dynamometer (or traction machine).
  • the film is peeled off at one end over a length of about 10 cm, and this end is fixed to the movable jaw of the machine.
  • the movable jaw moves vertically upwards at a constant speed (fixed at 30 mm / min) by peeling off the free end of the film strip at an angle of 180 ° relative to the test piece.
  • a force sensor integrated into said mobile jaw measures the force corresponding to this displacement, which is expressed in grams and is called "adhesion value".
  • Example 2 Application of a coextruded film, simultaneously bioriented, comprising polypropylene, on a PMMA plate: 1-
  • Preparation of the coextruded film A coextruded film is prepared which has the composition indicated below, it is bioriented simultaneously using the simultaneous biaxial stretching process described above, working under the following conditions: - layer a): temperature the extruder from 250 ° C to 270 ° C; rotation speed of the extruder 160 rpm; - layer c): temperature of the extruder from 250 ° C to 270 ° C; rotational speed of the extruder 19 rpm; - layer b): temperature of the extruder from 210 ° C to 250 ° C; speed of rotation of the extruder 38 rpm; - head temperature: 250 ° C; - temperature of the roller and quenching bath: 30 ° C; - temperature of the IR preheating unit from 100 ° C to 320 ° C; - temperature of the drawing oven from 160
  • the surface of layer b) of the film is treated by high frequency electrical discharges ("corona" treatment) at an intensity of 50 W / cm.
  • the total thickness of the film is 30 ⁇ m. Its strain coefficient is 1%, and its Haze is 2.06.
  • Example 1 is repeated, replacing the polyethylene film with the film prepared in accordance with paragraph 1.
  • a film tension of 0 is measured, apart from the measurement uncertainties.
  • the adhesion value of the film is 27 g. It thus appears that the film of Example 2 has in the machine which applies it to the plate a tension lower than that of the film of Example 1, and is therefore less likely to deform, all the more so as it has a much lower coefficient of deformation. These properties make it particularly suitable as a masking film, in particular due to the low risk of shrinking. In addition, its adhesion value is comparable to that of the polyethylene film. Finally, due to its Haze value almost 5 times lower than that of the film of Example 2, the film of Example 2 is particularly suitable for the visual inspection of defects likely to affect the surface of the thermoplastic plates. , without removing the masking film.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

A method for the protection of a thermoplastic plate comprising the application of a coextruded simultaneously bi-oriented film consisting of the following layers:a) a central layer made of a propylene homopolymer or copolymer made of propylene and ethylene and/or alpha olefins having 4-8 carbon atoms, with a melt flow index (MFI) (ISO 1133, 230 DEG C/10 min) of at least 1.5 - 10 g/10 min, b) an adhesive outer layer comprising copolymers consisting of ethylene and alpha olefins in C3 - C12, having a specific mass (ASTM 792) of 0.887 g/cm<3> to 0.916 g/cm<3>, or copolymers consisting of ethylene and vinyl acetate (EVA) wherein the vinyl acetate monomer represents 2 % -14 % in terms of mols, said ethylene copolymers having an MFI (ASTM D 1238, 190 DEG C/2.16 kg) of 1 - 10 g/10 min, wherein layer b) is polarized on the surface thereof; the application of the multilayer to the plate is carried out after tensioning of the film by bringing the adhesive layer b) into contact with the plate, and by passing both items through two cylindrical rollers rotating in an opposite direction.

Description

PROCEDE DE PROTECTION DE PLAQUES THERMOPLASTIQUES La présente invention concerne le domaine de la protection, par des films de masquage, des plaques de matériaux thermoplastiques, plus spécialement des plaques de résines acryliques et des plaques de polycarbonate. Elle a pour objet un procédé de protection des plaques de matériaux thermoplastiques mettant en œuvre un film multicouche comprenant du polypropylène ainsi que la plaque ainsi revêtue. Certains polymères thermoplastiques, tels que les dérivés acryliques (notamment le polyméthacrylate de méthyle bien connu sous le sigle de PMMA) et le polycarbonate sont couramment fabriqués sous la forme de plaques rectangulaires de grandes dimensions et d'épaisseur variable (par exemple des plaques de 2 m de largeur sur 3 m de longueur et d'épaisseur comprise entre 2 mm et 15 mm). Ces plaques sont obtenues par divers procédés de polymérisation et/ou de mise en forme, notamment par coulée ou par extrusion de granulés à chaud. Elles sont généralement destinées à des transformateurs qui les mettent en oeuvre, par exemple par des opérations de découpe ou de thermoformage, en vue de la confection d'objets les plus divers, tels que des baignoires, des coupoles pour le secteur du bâtiment ou des meubles. S'agissant notamment du PMMA, bien connu pour ses propriétés optiques avantageuses et son aspect esthétique, il est de pratique courante pour les industriels producteurs de plaques de les recouvrir par des films de protection, encore appelés films de masquage ou masking films en langue anglaise. Ceci a pour but de les protéger d'éventuelles rayures, éraflures ou poussières durant le stockage, le transport, et plus généralement durant toutes les opérations de manipulation et de manutention de la plaque qui interviennent entre le moment où elle est fabriquée par le producteur et le moment où elle est mise en oeuvre par le transformateur. Il arrive souvent que le transformateur, notamment lorsque la plaque est destinée à être thermoformée, souhaite faire cette opération sur la plaque encore revêtue du film de masquage, ce dernier étant en contact avec la paroi du moule. Cela permet de prolonger la protection de la plaque durant l'opération de thermoformage, et jusqu'au transport, stockage et manutention de l'objet thermoformé. On peut citer comme exemple d'une telle pratique le cas de la fabrication des baignoires en résine acrylique. On connaît un procédé de protection couramment pratiqué par les producteurs de plaques de PMMA qui comprend, au moyen d'un dispositif approprié, l'application sur la plaque d'un film à base de polyéthylène, d'épaisseur comprise entre 40 et 100 μm, généralement voisine de 60 μm. Dans un tel procédé le film et la plaque sont portés à une température comprise entre 20 et 100 °C. Puis le film est tendu et mis en contact avec la plaque, et l'ensemble est pressé entre 2 rouleaux cylindriques tournant en sens contraire qui le soumettent à une pression comprise entre 1 et 6 bar et lui communiquent un mouvement de translation dans un plan horizontal correspondant à une vitesse comprise entre 0,5 et 15 m/mn. A la suite de ce procédé, le film ainsi appliqué adhère à la plaque et la protège durant les opérations de manipulation et de manutention qui accompagnent son stockage et son transport par le fabriquant. Il adhère également à la plaque thermoformée et à l'objet ainsi mis en forme (par exemple une baignoire), durant les opérations de stockage et de transport du transformateur. Le film est retiré ou décollé au moment opportun, en général de façon manuelle. Dans le dispositif précédemment mentionné, le film devant être appliqué sur la plaque est enroulé sur une bobine d'alimentation placée parallèlement à l'un des côtés de la plaque à protéger. Cette bobine se déroule sous l'effet du déplacement du film adhérant à la plaque après son application par les 2 rouleaux presseurs, selon le mouvement de translation précédemment décrit. Le film est donc soumis à une certaine tension, désignée ci-après par les termes de « tension à la dépose ». Cette tension est susceptible, à son tour, d'entraîner une déformation ou allongement du film, de sorte que ce dernier peut être appliqué sur la plaque et donc adhérer à celle-ci avec une certaine déformation ou allongement par rapport à son état au repos. Une telle déformation, même faible, peut entraîner sur des plaques rectangulaires de grandes dimensions (par exemple 2 m sur 3 m) des allongements importants en valeur absolue. Ainsi, du fait de ses propriétés mécaniques, le film peut reprendre ultérieurement, bien après son application sur la plaque (par exemple au cours du stockage de la plaque), sa taille initiale par rétractation, ce qui peut entraîner un décollement localisé ou complet du film, nuisible à la qualité de la protection de la plaque. De tels phénomènes sont à éviter. Pour cela, il est nécessaire que les propriétés mécaniques du film soient telles qu'il présente la plus faible tension à la dépose possible (lorsqu'il se déroule de la bobine d'alimentation précédemment mentionnée, pour être appliqué sur la plaque). II est également nécessaire que les propriétés mécaniques du film soient telles qu'il présente pour une contrainte (ou tension) fixée la déformation la plus faible possible. L'adhésion du film de masquage à la plaque doit, enfin, être de bonne qualité et stable dans le temps. Une telle propriété est représentée par un test d'adhésion réalisé 24 heures après l'application du film sur la plaque, et qui est décrit plus loin dans le présent texte. Par ailleurs, il est également nécessaire que le film présente une résistance convenable à la déchirure. Une telle résistance est requise d'une part au moment de l'application du film sur la plaque, d'autre part où moment où l'utilisateur final (généralement le transformateur ou l'utilisateur de l'objet thermoformé revêtu du film de masquage) retire le dit film de protection. Dans ce dernier cas, l'utilisateur final exerce une certaine force qui imprime une contrainte au film : pour des raisons de commodité, il est préférable que le film ne se déchire pas en de multiples fragments, mais au contraire qu'il soit séparé de la plaque en conservant son intégrité, donc en une seule fois. Enfin, les transformateurs désirent souvent procéder à un contrôle qualité portant sur la présence éventuelle d'imperfections et/ou de défauts de surface de la plaque thermoplastique avant sa mise en forme. Toutefois, les films de masquage à base de polyéthylène affaiblissent généralement le contraste et donc la visibilité des objets ou détails qu'ils recouvrent. Un tel effet, découlant des propriétés optiques de ces films, est désigné sous la dénomination anglaise de « Haze ». Ainsi, il est parfois nécessaire de séparer le film de la plaque afin de procéder à un contrôle qualité approfondi de la plaque thermoplastique, puis de le remettre en vue de l'opération de thermoformage, ce qui est une opération malaisée. Lorsque le film n'est pas séparé de la plaque, et que le contrôle qualité est effectué par inspection visuelle à travers le film de masquage, le risque existe de ne pas déceler des défauts mineurs, qui apparaîtront alors sur l'objet thermoformé, après en avoir ôté le film de masquage. Il est souhaitable de limiter un tel risque, en proposant un film de masquage présentant un Haze amélioré. Un but de la présente invention est ainsi de proposer un procédé de protection des plaques thermoplastiques par film de masquage qui facilite le contrôle de la qualité des plaques, en raison d'un Haze amélioré, tout en préservant l'efficacité de la protection offerte par les films à base de polyéthylène. Un autre but de la présente invention est de proposer un procédé de protection des plaques thermoplastiques qui nécessite une moindre épaisseur de film de masquage que les films de polyéthylène, tout en présentant des propriétés mécaniques convenables, (notamment une tension du film à la dépose réduite et une faible déformation à la contrainte), une adhésion de qualité et stable dans le temps, et une résistance convenable à la déchirure. L'avantage d'une moindre épaisseur de film de masquage réside, outre dans une diminution appréciable du coût de l'opération de protection, dans une réduction de la quantité de matériau de protection. Cela est particulièrement intéressant lorsqu'il s'agit, après avoir enlevé le film de masquage, de l'évacuer. II a à présent été trouvé que ces buts sont atteints en totalité ou en partie par le procédé qui est décrit ci-après. La présente invention a ainsi pour objet en premier lieu un procédé de protection d'une plaque d'un matériau thermoplastique comprenant l'application sur ladite plaque d'un film coextrudé, biorienté simultanément, comprenant les couches suivantes: a) une couche centrale d'homopolymère de propylène ou de copolymère de propylène et d'éthylène et/ou d'alpha-oléfines de 4 à 8 atomes de carbone, avec un MFI ("Melt Flow Index" (indice d'écoulement à l'état fondu) ISO 1133, 230°C/10 min) d'au moins 1 ,5 jusqu'à 10 g/10 min, de préférence de 2 à 4 g/10 min, b) une couche externe adhésive qui comprend des copolymères d'éthylène et d'alpha-oléfines en C3 à Cι2, de préférence en C4 à C3, d'une masse spécifique (ASTM 792) de 0,887 g/cm3 à 0,916 g/cm3, ou des copolymères d'éthylène et d'acétate de vinyle (EVA) dans lesquels le monomère d'acétate de vinyle représente de 2 % à 14 % en moles, lesdits copolymères d'éthylène ayant un MFI (ASTM D 1238, 190°C/2,16 kg) de 1 à 10 g/10 min et de préférence de 2 à 6, ladite couche b) étant polarisée en surface ; L'application du film multicouche sur la plaque se faisant, après tension du film, par la mise en contact de la couche adhésive b) avec ladite plaque, puis passage de l'ensemble entre 2 rouleaux cylindriques tournant en sens contraire. Il a en effet été trouvé que le film multicouche précédemment décrit offre, en raison d'un Haze amélioré par rapport au film de polyéthylène, une inspection plus facile des défauts susceptibles d'apparaître sur les plaques de thermoplastique et, notamment en raison d'une tension à la dépose et d'une déformation plus faibles, une meilleure adhésion à la plaque qu'il protège. L'épaisseur totale du film multicouche est comprise entre 15 μm et 50 μm, de préférence entre 15 μm et 35 μm et de manière encore plus préférentielle entre 20 μm et 30 μm. L'épaisseur de la couche externe adhésive b) varie entre 5 et 30 %, de préférence entre 5 et 20 % et de manière plus préférentielle entre 5 % et 10 % de l'épaisseur totale du film. La quantité de comonomères dans les copolymères de propylène utilisée dans la couche centrale a) est comprise entre 0,1 % et 40 % en poids et de préférence entre 0,1 % et 15 % en poids. Les alpha-oléfines de 4 à 8 atomes de carbone sont par exemple le butène-1 , l'hexène-1 , le 4-méthyl-pentène-1 et l'octène-1. Les polymères utilisés dans la couche a) sont disponibles sur le marché. On peut à titre d'exemple citer celui connu sous la marque Moplen®HP522H (Basel). De préférence, comme couche centrale a), on utilise un homopolymère de propylène. Les copolymères d'éthylène de la couche adhésive b) sont de préférence des copolymères d'éthylène avec des alpha-oléfines en C à C8l et ils sont de préférence obtenus en utilisant lors de la polymérisation un catalyseur 1 à base de métallocène. On se référera pour ce dernier par exemple au brevet WO 91/11 488 qui décrit des catalyseurs à base de composés organométalliques de coordination, lesquels sont dérivés du cyclopentadienyle d'un métal du groupe 4b du tableau périodique et comprennent le mono, le di et le tri- cyclopentadiényle et leurs dérivés avec le métal de transition. Le catalyseur 1 est en général utilisé avec un co-catalyseur 2, choisi de préférence parmi les aluminoxanes 2a) qui sont les produits de la réaction de l'aluminium trialkyle avec de l'eau. Comme co-catalyseur 2 au lieu des aluminoxanes, on peut utiliser le composé 2b) de formule : (Lι-H)+ (A)-The present invention relates to the field of protection, by masking films, of sheets of thermoplastic materials, more especially of acrylic resin sheets and of polycarbonate sheets. It relates to a method of protecting plates of thermoplastic materials using a multilayer film comprising polypropylene as well as the plate thus coated. Certain thermoplastic polymers, such as acrylic derivatives (in particular polymethyl methacrylate well known under the acronym of PMMA) and polycarbonate are commonly manufactured in the form of rectangular plates of large dimensions and of variable thickness (for example plates of 2 m wide by 3 m long and between 2 mm and 15 mm thick). These plates are obtained by various polymerization and / or shaping processes, in particular by casting or by extrusion of hot granules. They are generally intended for transformers who use them, for example by cutting or thermoforming operations, with a view to making a wide variety of objects, such as baths, domes for the building sector or furniture. With regard in particular to PMMA, well known for its advantageous optical properties and its aesthetic appearance, it is common practice for industrial producers of plates to cover them with protective films, also called masking films or masking films in English. . This is to protect them from possible scratches, scuffs or dust during storage, transport, and more generally during all operations of handling and handling of the plate which occur between the time it is manufactured by the producer and when it is implemented by the transformer. It often happens that the transformer, especially when the plate is intended to be thermoformed, wishes to do this operation on the plate still coated with the masking film, the latter being in contact with the mold wall. This makes it possible to extend the protection of the plate during the thermoforming operation, and up to transport, storage and handling. of the thermoformed object. As an example of such a practice, the case of the manufacture of acrylic resin baths can be cited. There is a known protection process commonly practiced by producers of PMMA plates which comprises, by means of an appropriate device, the application to the plate of a film based on polyethylene, of thickness between 40 and 100 μm. , generally around 60 μm. In such a process, the film and the plate are brought to a temperature between 20 and 100 ° C. Then the film is stretched and brought into contact with the plate, and the assembly is pressed between 2 cylindrical rollers rotating in opposite directions which subject it to a pressure of between 1 and 6 bar and impart to it a translational movement in a horizontal plane. corresponding to a speed between 0.5 and 15 m / min. Following this process, the film thus applied adheres to the plate and protects it during the handling and handling operations which accompany its storage and transport by the manufacturer. It also adheres to the thermoformed plate and to the object thus shaped (for example a bathtub), during the storage and transport operations of the transformer. The film is removed or peeled off at the appropriate time, usually manually. In the above-mentioned device, the film to be applied to the plate is wound on a supply reel placed parallel to one of the sides of the plate to be protected. This reel takes place under the effect of the movement of the film adhering to the plate after its application by the 2 pressure rollers, according to the translational movement previously described. The film is therefore subjected to a certain tension, hereinafter referred to as the “removal tension”. This tension is likely, in turn, to cause a deformation or elongation of the film, so that the latter can be applied to the plate and therefore adhere to it with a certain deformation or elongation compared to its state at rest. . Such a deformation, even a small one, can lead to large rectangular plates (for example 2 m by 3 m) significant elongations in absolute value. So, because of its properties mechanical, the film can resume later, well after its application on the plate (for example during storage of the plate), its initial size by retraction, which can cause a localized or complete detachment of the film, detrimental to the quality of plate protection. Such phenomena are to be avoided. For this, it is necessary that the mechanical properties of the film are such that it has the lowest possible voltage at removal (when it is unwound from the aforementioned supply coil, to be applied to the plate). It is also necessary that the mechanical properties of the film be such that it exhibits the lowest possible deformation for a fixed stress (or tension). The adhesion of the masking film to the plate must, finally, be of good quality and stable over time. Such a property is represented by an adhesion test carried out 24 hours after the application of the film to the plate, and which is described later in the present text. Furthermore, it is also necessary that the film has a suitable tear strength. Such resistance is required on the one hand when the film is applied to the plate, on the other hand when the end user (generally the transformer or the user of the thermoformed object coated with the masking film ) removes the said protective film. In the latter case, the end user exerts a certain force which imposes a constraint on the film: for reasons of convenience, it is preferable that the film does not tear into multiple fragments, but on the contrary that it is separated from the plate while retaining its integrity, therefore in one go. Finally, processors often wish to carry out a quality control relating to the possible presence of imperfections and / or surface defects of the thermoplastic plate before it is shaped. However, polyethylene-based masking films generally weaken the contrast and therefore the visibility of the objects or details they cover. Such an effect, arising from the optical properties of these films, is designated by the English name of "Haze". So it is sometimes necessary to separate the film from the plate in order to carry out a thorough quality control of the thermoplastic plate, then to put it back for the thermoforming operation, which is an awkward operation. When the film is not separated from the plate, and the quality control is carried out by visual inspection through the masking film, the risk exists of not detecting minor defects, which will then appear on the thermoformed object, after have removed the masking film. It is desirable to limit such a risk, by providing a masking film having an improved Haze. An object of the present invention is thus to propose a method of protecting thermoplastic plates by masking film which facilitates the quality control of the plates, due to an improved Haze, while preserving the effectiveness of the protection offered by polyethylene films. Another object of the present invention is to provide a method of protecting thermoplastic sheets which requires a lesser thickness of masking film than polyethylene films, while having suitable mechanical properties (in particular a reduced film tension at deposition). and low strain strain), quality adhesion that is stable over time, and suitable tear resistance. The advantage of a lesser thickness of masking film lies, in addition to an appreciable reduction in the cost of the protection operation, in a reduction in the amount of protective material. This is particularly advantageous when, after removing the masking film, to evacuate it. It has now been found that these objects are achieved in whole or in part by the method which is described below. The subject of the present invention is therefore firstly a method of protecting a plate of a thermoplastic material comprising the application to said plate of a coextruded film, bioriented simultaneously, comprising the following layers: a) a central layer d 'homopolymer of propylene or of copolymer of propylene and ethylene and / or alpha-olefins of 4 to 8 carbon atoms, with an MFI (Melt Flow Index) ISO 1133, 230 ° C / 10 min) of at least 1.5 to 10 g / 10 min, preferably 2 at 4 g / 10 min, b) an adhesive outer layer which comprises copolymers of ethylene and alpha-olefins C 3 to C 2 , preferably C 4 to C 3 , of a specific mass (ASTM 792 ) from 0.887 g / cm 3 to 0.916 g / cm 3 , or copolymers of ethylene and vinyl acetate (EVA) in which the vinyl acetate monomer represents from 2% to 14% by mole, said copolymers ethylene having an MFI (ASTM D 1238, 190 ° C / 2.16 kg) of 1 to 10 g / 10 min and preferably from 2 to 6, said layer b) being surface polarized; The application of the multilayer film to the plate takes place, after tensioning the film, by bringing the adhesive layer b) into contact with said plate, then passing the assembly between 2 cylindrical rollers rotating in opposite directions. It has in fact been found that the previously described multilayer film offers, due to an improved Haze compared to the polyethylene film, easier inspection of the defects likely to appear on the thermoplastic sheets and, in particular due to lower deposit tension and deformation, better adhesion to the plate it protects. The total thickness of the multilayer film is between 15 μm and 50 μm, preferably between 15 μm and 35 μm and even more preferably between 20 μm and 30 μm. The thickness of the adhesive external layer b) varies between 5 and 30%, preferably between 5 and 20% and more preferably between 5% and 10% of the total thickness of the film. The amount of comonomers in the propylene copolymers used in the central layer a) is between 0.1% and 40% by weight and preferably between 0.1% and 15% by weight. The alpha-olefins of 4 to 8 carbon atoms are for example butene-1, hexene-1, 4-methyl-pentene-1 and octene-1. The polymers used in layer a) are available on the market. By way of example, mention may be made of that known under the brand Moplen®HP522H (Basel). Preferably, as the central layer a), a propylene homopolymer is used. The ethylene copolymers of the adhesive layer b) are preferably copolymers of ethylene with alpha-olefins C? 8l and they are preferably obtained by using in the polymerization catalyst 1 to metallocene. For the latter, reference is made for example to patent WO 91/11488 which describes catalysts based on organometallic coordination compounds, which are derived from the cyclopentadienyl of a metal from group 4b of the periodic table and include mono, di and tricyclopentadienyl and their derivatives with the transition metal. Catalyst 1 is generally used with a co-catalyst 2, preferably chosen from aluminoxanes 2a) which are the products of the reaction of aluminum trialkyl with water. As co-catalyst 2 instead of aluminoxanes, one can use compound 2b) of formula: (Lι-H) + (A) -
dans laquelle :in which :
- (A)" est un anion non coordinant compatible, de préférence de formule (B Qq)" - (A) " is a compatible non-coordinating anion, preferably of formula (BQ q ) "
- Li est une base de Lewis neutre, - (L H)+ est un acide de Bronsted,- Li is a neutral Lewis base, - (LH) + is a Bronsted acid,
- B est un élément des groupes llla à Via du tableau périodique des éléments, avec des caractéristiques métalloïdes, de préférence le bore, le phosphore ou l'arsenic à l'état de valence 3 ou 5, le silicium, et de manière plus préférable le bore à l'état de valence 3, - les Q, qui sont identiques ou différents l'un de l'autre, sont sélectionnés parmi les groupes suivants : les hydrures, les halogénures, les alkyles, les aryles éventuellement substitués, par exemple avec des halogènes, de préférence F, des alcosides, des arylosides, des dialkylamido ou R0COO" où R0 compte de 1 à 20 atomes de carbone, avec la condition que Q ne peut être un halogénure qu'une seule fois,- B is an element from groups llla to Via of the periodic table of the elements, with metalloid characteristics, preferably boron, phosphorus or arsenic in the valence state 3 or 5, silicon, and more preferably boron in the valence state 3, - the Qs, which are identical or different from each other, are selected from the following groups: hydrides, halides, alkyls, optionally substituted aryls, for example with halogens, preferably F, alkosides, arylosides, dialkylamido or R 0 COO " where R 0 has from 1 to 20 carbon atoms, with the condition that Q can only be a halide once,
- q est un nombre entier égal à la valence de B, plus 1. Le rapport molaire entre Al du composant aluminoxane 2a) par rapport à la quantité du métal du catalyseur 1 (métallocène) est compris entre 10 000:1 et 100:1 et de préférence entre 5 000:1 et 500:1. Dans le cas du composé du bore de formule 2b), le rapport préféré métallocène/ (2b) est compris entre (0,1-- q is an integer equal to the valence of B, plus 1. The molar ratio between Al of the aluminoxane component 2a) relative to the amount of the metal of catalyst 1 (metallocene) is between 10,000: 1 and 100: 1 and preferably between 5,000: 1 and 500: 1. In the case of the boron compound of formula 2b), the preferred metallocene / (2b) ratio is between (0.1-
4):1 et de manière plus préférentielle entre (0,5-2,0):1. Les procédés de polymérisation pour obtenir les copolymères d'éthylène et d'alpha-oléfines de la couche externe adhésive b) sont bien connus dans la technique, et on se référera à titre d'exemple à ceux qui sont indiqués dans le brevet WO 91/11 488. Les comonomères que l'on peut utiliser pour préparer les copolymères d'éthylène de la couche b) sont par exemple le butène-1 , l'hexène-1 , le 4- méthyl-pentène-1 et l'octène-1. Des exemples desdits copolymères connus sur le marché sont ceux qui portent les marques AFFINITY® PL 1880 et4): 1 and more preferably between (0.5-2.0): 1. The polymerization processes for obtaining the copolymers of ethylene and alpha-olefins from the adhesive outer layer b) are well known in the art, and reference will be made, by way of example, to those indicated in patent WO 91 / 11 488. The comonomers which can be used to prepare the ethylene copolymers of layer b) are, for example, butene-1, hexene-1, 4-methyl-pentene-1 and octene -1. Examples of said copolymers known on the market are those which carry the marks AFFINITY® PL 1880 and
AFFINITY® PL 1850 (DOW). On préfère utiliser pour la couche b) un copolymère d'éthylène et d'acétate de vinyle, tel que par exemple le GREENFLEX® (POLIMERIAFFINITY® PL 1850 (DOW). It is preferred to use for layer b) a copolymer of ethylene and vinyl acetate, such as for example GREENFLEX® (POLIMERI
EUROPA). La polarisation de la couche adhésive b) peut être obtenue par exemple par traitement corona ou traitement au plasma, de préférence par traitement corona. Le film coextrudé mis en œuvre conformément à la présente invention peut éventuellement être complété par une couche externe non adhésive c) disposée sur la surface libre de la couche centrale a), pour améliorer l'uniformité de l'épaisseur du film. L'épaisseur de la couche non adhésive c) est comprise entre 5 % et 30 %, de préférence entre 5 % et 20 % et de façon plus préférable entre 5 % etEUROPA). The polarization of the adhesive layer b) can be obtained for example by corona treatment or plasma treatment, preferably by corona treatment. The coextruded film implemented in accordance with the present invention can optionally be supplemented by an external non-adhesive layer c) disposed on the free surface of the central layer a), to improve the uniformity of the thickness of the film. The thickness of the non-adhesive layer c) is between 5% and 30%, preferably between 5% and 20% and more preferably between 5% and
10 % de l'épaisseur totale du film. L'épaisseur totale du film selon la présente invention, qui comprend également la couche c), est située dans les limites définies plus haut. La couche non adhésive c) est constituée d'un homopolymère de propylène ou d'un copolymère avec l'éthylène et/ou une alpha-oléfine qui compte de 4 à 8 atomes de carbone, avec un MFI (ISO 1133, 230°C/10 min) de 2 à 10 g/10 min. Les copolymères de propylène et d'éthylène et/ou d'alpha- oléfines de 4 à 8 atomes de carbone utilisés dans c) ont une teneur en comonomère de 0,1 % à 40 % en poids et de préférence de 0,1 % en poids à 15 % en poids. Les polymères utilisés dans la couche c) sont disponibles sur le marché. A titre d'exemple, on peut citer celui connu sous le nom Stamylan®P 15E10FB (DSM). La couche centrale a) peut être constituée d'une seule couche ou de plusieurs couches en recourant aux polymères et copolymères indiqués en a). On peut ajouter au film multicouche mis en œuvre conformément à la présente invention des additifs classiques utilisés dans les matières plastiques, par exemple des agents de glissement ("slip agents"), des agents anti-blocage ("anti-blocking agents"), des agents antistatiques, des colorants, des agents de protection contre les rayons UV. Les films coextrudés et biorientés simultanément appliqués conformément à la présente invention peuvent être obtenus avec un procédé qui peut être mis en oeuvre sur une ligne qui comprend : - une extrudeuse pour la couche centrale a), par exemple du type à deux vis ou deux extrudeuses successives à une vis, ladite extrudeuse étant reliée à une pompe à vide pour extraire l'air et à une pompe d'alimentation pour stabiliser la force à la sortie, - des coextrudeuses à une vis ou à deux vis pour les couches b) et facultativement c), - une tête (filière) d'extrusion multicouches pour obtenir une feuille composite formée des couches a), b) et éventuellement c), - un rouleau de trempe ("quenching") de la feuille, ce que l'on obtient par exemple en immergeant le rouleau dans un bain d'eau, - un système de préchauffage de la feuille, de préférence par rayons infrarouges, - un four d'étirage simultané de la feuille, avec les sections suivantes, dans la direction d'avancement de la plaque : section de pré-réchauffage, section d'étirage simultané, section de stabilisation et section de refroidissement, - un appareil de polarisation de la couche b) du film multicouche obtenu, par exemple un appareil de traitement corona ou de traitement par plasma. Le procédé d'obtention des films coextrudés et biorientés simultanément selon la présente invention comprend les étapes suivantes : - préparation d'une feuille composite, de préférence d'une épaisseur comprise entre environ 1 ,5 mm et 3,3 mm, par coextrusion des couches a), b) et facultativement c), de préférence sur une tête plane et en utilisant de préférence des températures comprises entre 160°C et 270°C; et ensuite trempe ("quenching") de la plaque, de préférence effectuée sur un rouleau immergé dans l'eau, de préférence à une température de 10°C à 60°C, - préchauffage de la feuille à une température comprise de préférence entre environ 100° et environ 120°C, de préférence par rayons infrarouges, - étirage simultané, à la fois dans la direction de la machine MD et dans la direction transversale TD de la feuille, en utilisant l'appareil décrit dans le brevet de base US 4 853 602 qui est incorporé ici intégralement à titre de référence et dans les brevets suivants qui décrivent cette technologie, et qui comprend les étapes suivantes: - étirage simultané de la feuille et obtention du film par serrage des bords de la feuille par une série de pinces ou de mâchoires qui glissent sur deux rails et qui sont guidés indépendamment par des moteurs linéaires synchrones à induction, chaque pince ou mâchoire glissant sur un rail et étant entraînée par un aimant permanent ou par une paire d'aimants permanents, poussés par l'onde magnétique créée par les prolongements polaires du moteur linéaire; chaque section du dispositif d'étirage ayant une série de moteurs linéaires synchrones à induction fonctionnant en mode continu, alimentés en courant alternatif à modulation de phase et de fréquence, pour faire varier de manière continue la vitesse des mâchoires et la vitesse relative entre elles et donc les rapports d'étirage longitudinal du film; les rapports d'étirage transversal étant régulés en intervenant sur la divergence des rails sur lesquels glissent les pinces ou mâchoires, le dispositif d'étirage comprenant une ou plusieurs sections situées à l'intérieur d'un four dont la température est comprise entre environ 150° et 190°C, et une ou plusieurs sections situées dans un four dont la température est comprise entre environ 130° et 140°C, en général, les rapports d'étirage longitudinal étant compris entre environ 4:1 et environ 9:1 et de préférence entre 5,5:1 et 8,5:1 , et les rapports d'étirage transversal étant compris entre environ 3:1 et environ 8,5:1 et de préférence entre 5,5:1 et 8,5:1 , et - polarisation de la couche b) du film ainsi obtenu. Les températures dans les parties de l'appareil décrit plus haut sont sélectionnées de manière à optimiser l'orientation biaxiale des films polymères constitués des polymères utilisés ; en première approximation, le rapport d'étirage longitudinal peut être considéré comme égal au rapport entre la vitesse de sortie du film hors du dispositif d'étirage (qui est reliée à la fréquence du courant qui alimente les moteurs linéaires de la dernière section du dispositif d'étirage) et la vitesse d'entrée du film dans le dispositif d'étirage (qui est reliée à la fréquence du courant qui alimente les moteurs linéaires de la première section du dispositif d'étirage) ; en première approximation, on peut considérer que le rapport d'étirage transversal est égal au rapport entre la largeur du film à la sortie du dispositif d'étirage et la largeur du film à l'entrée du dispositif d'étirage. Le traitement "corona" de la couche adhésive b) est de préférence effectué par des décharges électriques à haute fréquence, de préférence d'une intensité de 40 à 60 W/cm. Comme indiqué plus haut le film multicouche qui vient d'être décrit est utilisé pour la protection des plaques de matériaux thermoplastiques. Il est pour cela appliqué, après sa mise en tension, par la mise en contact de la couche adhésive b) avec la plaque, puis passage de l'ensemble entre 2 rouleaux cylindriques tournant en sens contraire. La température de mise en œuvre du film est comprise entre 20°C et 100°C. Le film est disposé dans une bobine ayant la même largeur que la surface de la plaque à recouvrir, de telle sorte que le sens de déroulement de la bobine coïncide avec la direction d'avancement de la plaque. Le film adhère à la surface de la plaque grâce à son passage entre les 2 rouleaux qui exercent une pression comprise en général entre 1 et 6 bars, la vitesse de la ligne étant en général comprise entre 0,2 et 15 m/min. Les matériaux thermoplastiques auxquels s'appliquent le protection de protection des plaques, selon l'invention, sont choisis notamment parmi les résines acryliques, le polycarbonate, le poly(téréphtalate d'éthylène), le poly(téréphtalate d'éthylène glycol). On préfère toutefois parmi ces matériaux thermoplastiques, les résines acryliques, et tout particulièrement le polyméthacrylate de méthyle (PMMA). La présente invention a également pour objet la plaque thermoplastique revêtue du film coextrudé tel que défini précédemment, la couche externe adhésive b) dudit film étant au contact de la plaque. Elle concerne enfin l'objet susceptible d'être obtenu par thermoformage de la dite plaque.10% of the total thickness of the film. The total thickness of the film according to this invention, which also includes layer c), is situated within the limits defined above. The non-adhesive layer c) consists of a propylene homopolymer or a copolymer with ethylene and / or an alpha-olefin which has 4 to 8 carbon atoms, with an MFI (ISO 1133, 230 ° C / 10 min) from 2 to 10 g / 10 min. The copolymers of propylene and ethylene and / or alpha-olefins of 4 to 8 carbon atoms used in c) have a comonomer content of 0.1% to 40% by weight and preferably 0.1% by weight to 15% by weight. The polymers used in layer c) are available on the market. By way of example, mention may be made of that known under the name Stamylan®P 15E10FB (DSM). The central layer a) may consist of a single layer or of several layers using the polymers and copolymers indicated in a). It is possible to add to the multilayer film used in accordance with the present invention conventional additives used in plastics, for example slip agents ("slip agents"), anti-blocking agents ("anti-blocking agents"), antistatic agents, dyes, UV protection agents. The coextruded and bioriented films simultaneously applied in accordance with the present invention can be obtained with a process which can be carried out on a line which comprises: - an extruder for the central layer a), for example of the type with two screws or two extruders successive to a screw, said extruder being connected to a vacuum pump to extract the air and to a supply pump to stabilize the force at the outlet, - one-screw or two-screw coextruders for the layers b) and optionally c), - a multilayer extrusion head (die) to obtain a composite sheet formed by layers a), b) and optionally c), - a quenching roll of the sheet, what the for example, by immersing the roller in a water bath, - a sheet preheating system, preferably by infrared rays, - a simultaneous sheet stretching oven, with the following sections, in the direction of advancement of the plate: preheating section, section of simultaneous stretching, stabilization section and cooling section, a device for polarizing layer b) of the multilayer film obtained, for example a device for corona treatment or for plasma treatment. The process for obtaining coextruded and bioriented films simultaneously according to the present invention comprises the following steps: - preparation of a composite sheet, preferably with a thickness of between approximately 1.5 mm and 3.3 mm, by coextrusion of the layers a), b) and optionally c), preferably on a flat head and preferably using temperatures between 160 ° C and 270 ° C; and then quenching ("quenching") of the plate, preferably carried out on a roller immersed in water, preferably at a temperature of 10 ° C to 60 ° C, - preheating of the sheet at a temperature preferably between about 100 ° and about 120 ° C, preferably by infrared rays, - simultaneous stretching, both in the direction of the MD machine and in the transverse direction TD of the sheet, using the apparatus described in the basic patent US 4,853,602 which is incorporated here in full for reference and in the following patents which describe this technology, and which comprises the following steps: - simultaneous stretching of the sheet and obtaining of the film by clamping the edges of the sheet by a series clamps or jaws which slide on two rails and which are independently guided by synchronous linear induction motors, each clamp or jaw sliding on a rail and being driven by an ai permanent mant or by a pair of permanent magnets, pushed by the magnetic wave created by the polar extensions of the linear motor; each section of the drawing device having a series of linear synchronous induction motors operating in continuous mode, supplied with alternating current with phase and frequency modulation, for varying in a manner continues the speed of the jaws and the relative speed between them and therefore the longitudinal stretching ratios of the film; the transverse stretching ratios being regulated by acting on the divergence of the rails on which the clamps or jaws slide, the stretching device comprising one or more sections located inside an oven whose temperature is between approximately 150 ° and 190 ° C, and one or more sections located in an oven whose temperature is between about 130 ° and 140 ° C, in general, the longitudinal stretch ratios being between about 4: 1 and about 9: 1 and preferably between 5.5: 1 and 8.5: 1, and the transverse stretching ratios being between approximately 3: 1 and approximately 8.5: 1 and preferably between 5.5: 1 and 8.5 : 1, and - polarization of the layer b) of the film thus obtained. The temperatures in the parts of the apparatus described above are selected so as to optimize the biaxial orientation of the polymer films made up of the polymers used; as a first approximation, the longitudinal stretching ratio can be considered to be equal to the ratio between the speed of exit of the film from the stretching device (which is related to the frequency of the current which feeds the linear motors of the last section of the device stretching) and the speed of entry of the film into the stretching device (which is related to the frequency of the current which feeds the linear motors of the first section of the stretching device); as a first approximation, it can be considered that the transverse stretching ratio is equal to the ratio between the width of the film at the outlet of the stretching device and the width of the film at the inlet of the stretching device. The "corona" treatment of the adhesive layer b) is preferably carried out by high frequency electrical discharges, preferably with an intensity of 40 to 60 W / cm. As indicated above, the multilayer film which has just been described is used for the protection of plates of thermoplastic materials. It is therefore applied, after it has been tensioned, by bringing the adhesive layer b) into contact with the plate, then passing the assembly between 2 rollers. cylindrical turning in opposite directions. The processing temperature of the film is between 20 ° C and 100 ° C. The film is placed in a reel having the same width as the surface of the plate to be covered, so that the direction of unwinding of the reel coincides with the direction of advancement of the plate. The film adheres to the surface of the plate thanks to its passage between the 2 rollers which exert a pressure generally between 1 and 6 bars, the speed of the line being generally between 0.2 and 15 m / min. The thermoplastic materials to which the protective protection of the plates apply, according to the invention, are chosen in particular from acrylic resins, polycarbonate, poly (ethylene terephthalate), poly (ethylene glycol terephthalate). Among these thermoplastic materials, however, acrylic resins, and very particularly polymethyl methacrylate (PMMA), are preferred. The present invention also relates to the thermoplastic plate coated with the coextruded film as defined above, the adhesive external layer b) of said film being in contact with the plate. Finally, it relates to the object capable of being obtained by thermoforming of said plate.
Les exemples qui suivent sont donnés à titre purement illustratif du procédé selon l'invention, et ne sauraient être utilisés en aucune façon pour en limiter la portée. Dans ces exemples on procède à la caractérisation du film de masquage de la façon suivante. La déformation du film est mesurée pour une contrainte (ou tension) appliquée de 10 MPa au moyen d'un essai de traction réalisé selon la norme ASTM D882, et est appelée ci-après « coefficient de déformation ». Le Haze du film est mesuré selon la norme ASTM D 1003 et est d'autant meilleur qu'il correspond à une valeur plus faible. Exemple 1 (comparatif) : Application d'un film de polyéthylène sur une plaque de PMMA : On utilise un film coextrudé non orienté de polyéthylène d'épaisseur 60 μm. Ce film est représentatif d'un film utilisé industriellement comme film de masquage pour les plaques de PMMA. Il présente la composition suivante : - couche centrale : formée de LDPE (polyéthylène à basse densité) qui peut être mélangé à du LLDPE (polyéthylène linéaire à basse densité) ou du MDPE (polyéthylène de densité moyenne), - la couche adhésive superficielle est constituée de m-VLDPE (polyéthylène à très basse densité obtenu avec métallocène). Le coefficient de déformation de ce film est de 5%. Son Haze est de 9,88. On met en œuvre comme dispositif d'application un appareil de laboratoire comprenant : - une bobine d'alimentation de film de masquage, - des rouleaux sur lesquels passe le film, préalablement à son application sur la plaque et dont l'un est muni d'un capteur mesurant la tension qu'il supporte, - un ensemble de rouleaux amenant le film d'une part et la plaque d'autre part au voisinage l'un de l'autre, juste en amont de 2 rouleaux cylindriques presseurs de diamètre 9 cm et dont les axes sont situés dans le même plan vertical séparés d'une distance d'environ 40 cm. L'un de ces rouleaux est solidaire d'un moteur, - un dispositif à rouleaux d'évacuation de la plaque recouverte de film sur une table de sortie. Les bobines et rouleaux mentionnés précédemment sont de forme cylindrique et ont pour longueur de génératrice 30 cm. Le film de polyéthylène est prélablement enroulé sur la bobine d'alimentation (placée à l'endroit approprié de l'appareil) à raison d'environ 3 cm d'épaisseur. Cette bobine est déroulée manuellement de manière à amener le film entre les 2 rouleaux presseurs. On découpe une plaque rectangulaire de PMMA de dimensions 47 cm sur 23 cm et d'épaisseur 3 mm. On introduit cette plaque dans l'appareil, et l'on actionne le moteur afin de procéder à l'application du film au moyen des 2 rouleaux presseurs. La tension du film mesurée au moyen du rouleau muni du capteur approprié est d'environ 2 kg. La qualité de l'adhésion du film appliqué sur la plaque est évaluée par un test de décollement (ou peeling test) réalisé 24 heures après application du film sur la plaque et stockage de l'ensemble à 25°C et 50% d'humidité relative. Ce test a pour but la mesure - dans des conditions spécifiques- de la force requise pour décoller le film. Selon ce test, on découpe dans la plaque recouverte du film une éprouvette de forme rectangulaire de 5 cm de large et 15 cm de long. Cette éprouvette est fixée verticalement dans le mors fixe d'un dynamomètre (ou machine de traction). Le film est décollé à une extrémité sur une longueur d'environ 10 cm, et cette extrémité est fixée au mors mobile de la machine. Le mors mobile se déplace verticalement vers le haut à une vitesse constante (fixée à 30 mm/mn) en décollant l'extrémité libre de la bande de film selon un angle de 180° par rapport à l'éprouvette. Un capteur de force intégré au dit mors mobile mesure la force correspondant à ce déplacement, qui est exprimée en gramme et est dénommé « valeur d'adhésion ». Ce test est adapté de la méthode de test 4001 "Peel Adhésion of Adhésive Tape on Stainless Steel" de l'AFERA (European Association for the Self Adhésive Tape Industry). La valeur d'adhésion du film sur la plaque mesurée par ce test est de 42 g.The examples which follow are given purely by way of illustration of the process according to the invention, and should not be used in any way to limit its scope. In these examples, the masking film is characterized in the following manner. The deformation of the film is measured for an applied stress (or tension) of 10 MPa by means of a tensile test carried out according to standard ASTM D882, and is called hereinafter “deformation coefficient”. The Haze of the film is measured according to the ASTM D 1003 standard and is all the better as it corresponds to a lower value. Example 1 (comparative): Application of a polyethylene film on a PMMA plate: A coextruded non-oriented polyethylene film 60 μm thick is used. This film is representative of a film used industrially as a masking film for PMMA plates. It has the following composition: - central layer: formed of LDPE (low density polyethylene) which can be mixed with LLDPE (linear low density polyethylene) or MDPE (medium density polyethylene), - the surface adhesive layer consists m-VLDPE (very low density polyethylene obtained with metallocene). The deformation coefficient of this film is 5%. Its Haze is 9.88. A laboratory device is used as an application device comprising: - a reel for supplying masking film, - rollers on which the film passes, before its application to the plate and one of which is provided with '' a sensor measuring the tension it supports, - a set of rollers bringing the film on the one hand and the plate on the other hand in the vicinity of each other, just upstream of 2 cylindrical pressure rollers of diameter 9 cm and whose axes are located in the same vertical plane separated by a distance of about 40 cm. One of these rollers is integral with a motor, - a roller device for evacuating the plate covered with film on an output table. The coils and rollers mentioned above are cylindrical in shape and have a generator length of 30 cm. The polyethylene film is pre-wound on the supply reel (placed in the appropriate place on the device) at a thickness of approximately 3 cm. This reel is unwound manually so as to bring the film between the 2 pressure rollers. A rectangular plate of PMMA, dimensions 47 cm by 23 cm and thickness 3 mm, is cut. This plate is introduced into the device, and the motor is activated in order to apply the film by means of the 2 pressure rollers. The film tension measured by means of the roller fitted with the appropriate sensor is approximately 2 kg. The quality of the adhesion of the film applied to the plate is evaluated by a peeling test carried out 24 hours after application of the film to the plate and storage of the assembly at 25 ° C. and 50% humidity. relative. The purpose of this test is to measure - under specific conditions - the force required to peel off the film. According to this test, a rectangular test tube 5 cm wide and 15 cm long is cut from the plate covered with the film. This test piece is fixed vertically in the fixed jaw of a dynamometer (or traction machine). The film is peeled off at one end over a length of about 10 cm, and this end is fixed to the movable jaw of the machine. The movable jaw moves vertically upwards at a constant speed (fixed at 30 mm / min) by peeling off the free end of the film strip at an angle of 180 ° relative to the test piece. A force sensor integrated into said mobile jaw measures the force corresponding to this displacement, which is expressed in grams and is called "adhesion value". This test is adapted from the 4001 "Peel Adhesion of Adhesive Tape on Stainless Steel" test method of ARMFA (European Association for the Self Adhesive Tape Industry). The adhesion value of the film on the plate measured by this test is 42 g.
Exemple 2 : Application d'un film coextrudé, simultanément biorienté, comprenant du polypropylène, sur une plaque de PMMA : 1- Préparation du film coextrudé : On prépare un film coextrudé qui présente la composition indiquée plus loin, on le bioriente simultanément en utilisant le procédé d'étirage biaxial simultané décrit plus haut, en travaillant dans les conditions suivantes : - couche a): température de l'extrudeuse de 250°C à 270°C; vitesse de rotation de l'extrudeuse 160 tours/min ; - couche c): température de l'extrudeuse de 250°C à 270°C; vitesse de rotation de l'extrudeuse 19 tours/min ; - couche b): température de l'extrudeuse de 210°C à 250°C; vitesse de rotation de l'extrudeuse 38 tours/min ; - température de la tête: 250°C ; - température du rouleau et du bain de trempe ("quenching"): 30°C; - température de l'unité de préchauffage par rayons IR de 100°C à 320°C; - température du four d'étirage de 160°C à 170°C ; - puissance de l'appareil de traitement corona: 50 W/cm. Sur la ligne, on utilise les paramètres d'étirage suivants: rapport d'étirage longitudinal de 4,5 à 6; rapport d'étirage transversal de 6,0 à 9. Le film coextrudé a la composition suivante: couche externe c): homopolymère de polypropylène avec un MFI = 3, connu sur le marché sous la marque Stamylan®P 15E10FB (DSM), épaisseur 0,8 μm ; couche centrale a): homopolymère de polypropylène avec un MFI = 2, connu sur le marché sous la marque Moplen®HP522H ; couche adhésive b): EVA, pourcentage d'acétate de vinyle de 2,5 % en moles, MFI = 2,2, épaisseur 0,8 μm. La surface de la couche b) du film est traitée par décharges électriques à haute fréquence (traitement "corona") à une intensité de 50 W/cm. L'épaisseur totale du film est de 30 μm. Son coefficient de déformation est de 1 %, et son Haze de 2,06. 2- Application du film ainsi préparé sur la plaque de PMMA :Example 2: Application of a coextruded film, simultaneously bioriented, comprising polypropylene, on a PMMA plate: 1- Preparation of the coextruded film: A coextruded film is prepared which has the composition indicated below, it is bioriented simultaneously using the simultaneous biaxial stretching process described above, working under the following conditions: - layer a): temperature the extruder from 250 ° C to 270 ° C; rotation speed of the extruder 160 rpm; - layer c): temperature of the extruder from 250 ° C to 270 ° C; rotational speed of the extruder 19 rpm; - layer b): temperature of the extruder from 210 ° C to 250 ° C; speed of rotation of the extruder 38 rpm; - head temperature: 250 ° C; - temperature of the roller and quenching bath: 30 ° C; - temperature of the IR preheating unit from 100 ° C to 320 ° C; - temperature of the drawing oven from 160 ° C to 170 ° C; - power of the corona treatment device: 50 W / cm. On the line, the following stretching parameters are used: longitudinal stretch ratio of 4.5 to 6; transverse stretch ratio of 6.0 to 9. The coextruded film has the following composition: outer layer c): polypropylene homopolymer with an MFI = 3, known on the market under the brand Stamylan®P 15E10FB (DSM), thickness 0.8 μm; central layer a): polypropylene homopolymer with an MFI = 2, known on the market under the brand Moplen®HP522H; adhesive layer b): EVA, percentage of vinyl acetate of 2.5 mol%, MFI = 2.2, thickness 0.8 μm. The surface of layer b) of the film is treated by high frequency electrical discharges ("corona" treatment) at an intensity of 50 W / cm. The total thickness of the film is 30 μm. Its strain coefficient is 1%, and its Haze is 2.06. 2- Application of the film thus prepared on the PMMA plate:
On répète l'exemple 1 en remplaçant le film de polyéthylène par le film préparé conformément au paragraphe 1. On mesure une tension du film de 0, aux incertitudes de mesure près. La valeur d'adhésion du film est de 27 g. Il apparaît ainsi que le film de l'exemple 2 présente dans la machine qui l'applique sur la plaque une tension inférieure à celle du film de l'exemple 1 , et est donc moins susceptible de se déformer, d'autant plus qu'il possède un coefficient de déformation bien inférieur. Ces propriétés le rendent particulièrement adapté comme film de masquage notamment du fait d'un risque faible de rétractation. De plus sa valeur d'adhésion est comparable à celle du film de polyéthylène. Enfin, du fait de sa valeur de Haze près de 5 fois inférieure à celle du film de l'exemple 2, le film de l'exemple 2 convient particulièrement bien à l'inspection visuelle des défauts susceptibles d'affecter la surface des plaques thermoplastiques, sans ôter le film de masquage. Example 1 is repeated, replacing the polyethylene film with the film prepared in accordance with paragraph 1. A film tension of 0 is measured, apart from the measurement uncertainties. The adhesion value of the film is 27 g. It thus appears that the film of Example 2 has in the machine which applies it to the plate a tension lower than that of the film of Example 1, and is therefore less likely to deform, all the more so as it has a much lower coefficient of deformation. These properties make it particularly suitable as a masking film, in particular due to the low risk of shrinking. In addition, its adhesion value is comparable to that of the polyethylene film. Finally, due to its Haze value almost 5 times lower than that of the film of Example 2, the film of Example 2 is particularly suitable for the visual inspection of defects likely to affect the surface of the thermoplastic plates. , without removing the masking film.

Claims

REVENDICATIONS
1. Procédé de protection d'une plaque d'un matériau thermoplastique comprenant l'application sur ladite plaque d'un film coextrudé, bioriente simultanément, comprenant les couches suivantes: a) une couche centrale d'homopolymère de propylène ou de copolymère de propylène et d'éthylène et/ou d'alpha-oléfines de 4 à 8 atomes de carbone, avec un MFI ("Melt Flow Index" (indice d'écoulement à l'état fondu) ISO 1133, 230°C/10 min) d'au moins 1 ,5 jusqu'à 10 g/10 min, de préférence de 2 à 4 g/10 min, b) une couche externe adhésive qui comprend des copolymères d'éthylène et d'alpha-oléfines en C3 à C12, de préférence en C à C8, d'une masse spécifique (ASTM 792) de 0,887 g/cm3 à 0,916 g/cm3, ou des copolymères d'éthylène et d'acétate de vinyle (EVA) dans lesquels le monomère d'acétate de vinyle représente de 2 % à 14 % en moles, lesdits copolymères d'éthylène ayant un MFI (ASTM D 1238, 190°C/2,16 kg) de 1 à 10 g/10 min et de préférence de 2 à 6, ladite couche b) étant polarisée en surface ; l'application du film multicouche sur la plaque se faisant, après tension du film, par la mise en contact de la couche adhésive b) avec ladite plaque, puis passage de l'ensemble entre 2 rouleaux cylindriques tournant en sens contraire.1. A method of protecting a plate of a thermoplastic material comprising the application to said plate of a coextruded film, biorient simultaneously, comprising the following layers: a) a central layer of propylene homopolymer or propylene copolymer and ethylene and / or alpha-olefins of 4 to 8 carbon atoms, with an MFI ("Melt Flow Index") ISO 1133, 230 ° C / 10 min) from at least 1.5 to 10 g / 10 min, preferably from 2 to 4 g / 10 min, b) an adhesive external layer which comprises copolymers of ethylene and of C 3 alpha-olefins C 12 , preferably C 8 to C 8 , with a specific gravity (ASTM 792) of 0.887 g / cm 3 to 0.916 g / cm 3 , or copolymers of ethylene and vinyl acetate (EVA) in which the vinyl acetate monomer represents from 2% to 14 mol%, said ethylene copolymers having an MFI (ASTM D 1238, 190 ° C / 2.16 kg) from 1 to 10 g / 10 min and preferably of 2 6, said layer b) being surface polarized; the application of the multilayer film to the plate is made, after tensioning the film, by bringing the adhesive layer b) into contact with said plate, then passage of the assembly between 2 cylindrical rollers rotating in opposite directions.
2. Procédé selon la revendication 1 , caractérisé en ce que l'épaisseur totale du film multicouche est comprise entre 15 μm et 50 μm, de préférence entre 15 μm et 35 μm.2. Method according to claim 1, characterized in that the total thickness of the multilayer film is between 15 μm and 50 μm, preferably between 15 μm and 35 μm.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que l'épaisseur totale du film multicouche est comprise entre 20 μm et 30 μm. 3. Method according to one of claims 1 or 2, characterized in that the total thickness of the multilayer film is between 20 microns and 30 microns.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que l'épaisseur de la couche externe adhésive b) varie entre 5 et 30 %, de préférence entre 5 et 20 % de l'épaisseur totale du film. 4. Method according to one of claims 1 to 3, characterized in that the thickness of the adhesive external layer b) varies between 5 and 30%, preferably between 5 and 20% of the total thickness of the film.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'on utilise pour la couche centrale a), un homopolymère de propylène.5. Method according to one of claims 1 to 4, characterized in that one uses for the central layer a), a propylene homopolymer.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce qu'on utilise pour la couche b) un copolymère d'éthylène et d'acétate de vinyle.6. Method according to one of claims 1 to 5, characterized in that one uses for layer b) a copolymer of ethylene and vinyl acetate.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que le film coextrudé est complété par une couche externe non adhésive c) disposée sur la surface libre de la couche centrale a). 7. Method according to one of claims 1 to 6, characterized in that the coextruded film is completed by an external non-adhesive layer c) disposed on the free surface of the central layer a).
8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que la polarisation de la couche adhésive b) est obtenue par traitement corona.8. Method according to one of claims 1 to 7, characterized in that the polarization of the adhesive layer b) is obtained by corona treatment.
9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que le matériau thermoplastique de la plaque est choisi parmi les résines acryliques, le polycarbonate, le poly(téréphtalate d'éthylène), le poly(téréphtalate d'éthylène glycol).9. Method according to one of claims 1 to 8, characterized in that the thermoplastic material of the plate is chosen from acrylic resins, polycarbonate, poly (ethylene terephthalate), poly (ethylene glycol terephthalate ).
10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que le matériau thermoplastique de la plaque est le PMMA.10. Method according to one of claims 1 to 9, characterized in that the thermoplastic material of the plate is PMMA.
11. Plaque thermoplastique revêtue du film coextrudé tel que défini dans la revendication 1 , la couche externe adhésive b) dudit film étant au contact de la plaque. 11. Thermoplastic plate coated with the coextruded film as defined in claim 1, the adhesive external layer b) of said film being in contact with the plate.
12. Objet susceptible d'être obtenu par thermoformage de la plaque telle que définie dans la revendication 11. 12. Object capable of being obtained by thermoforming of the plate as defined in claim 11.
EP05751619A 2004-04-08 2005-04-05 Method for the protection of thermoplastic plates Withdrawn EP1732757A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0403697A FR2868728B1 (en) 2004-04-08 2004-04-08 METHOD OF PROTECTING THERMOPLASTIC PLATES
PCT/FR2005/000824 WO2005102692A1 (en) 2004-04-08 2005-04-05 Method for the protection of thermoplastic plates

Publications (1)

Publication Number Publication Date
EP1732757A1 true EP1732757A1 (en) 2006-12-20

Family

ID=34945402

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05751619A Withdrawn EP1732757A1 (en) 2004-04-08 2005-04-05 Method for the protection of thermoplastic plates

Country Status (4)

Country Link
US (1) US20070110996A1 (en)
EP (1) EP1732757A1 (en)
FR (1) FR2868728B1 (en)
WO (1) WO2005102692A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017044521A1 (en) * 2015-09-10 2017-03-16 Sabic Global Technologies B.V. Composite materials and machines and methods to produce same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60157859A (en) * 1984-01-27 1985-08-19 旭化成株式会社 Surface protective film
FR2600981B3 (en) * 1986-07-03 1988-08-05 Elce Papeteries FLEXIBLE SELF-ADHESIVE TEMPORARY PROTECTION FILM AND MANUFACTURING METHOD
US5154981A (en) * 1987-11-19 1992-10-13 Exxon Chemical Patents Inc. Tackified ethylene-acrylate cling layers in stretch/cling films
JPH0263830A (en) * 1988-08-31 1990-03-05 Sun A Chem Ind Co Ltd Surface protective film
FR2700551B1 (en) * 1993-01-18 1995-04-07 Novacel Sa Pressure-sensitive adhesive film for protecting materials, process for obtaining it and adhesive composition.
DE4311322A1 (en) * 1993-04-06 1994-10-13 Roehm Gmbh Multi-layer, self-adhesive surface protection film
US6387484B1 (en) * 1997-06-17 2002-05-14 Tredegar Film Products Corporation Flexible polyolefins masking film
AU4100999A (en) * 1998-05-27 1999-12-13 Tredegar Corporation Flexible polyolefins masking film
AU1310299A (en) * 1998-11-05 2000-05-29 Tredegar Film Products Corporation Improved masking film and method for producing same
WO2003039860A1 (en) * 2001-10-22 2003-05-15 Exxonmobil Chemical Patents Inc. Protective films
CA2429209A1 (en) * 2002-09-06 2004-03-06 Julien Lefebvre Protective masking film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005102692A1 *

Also Published As

Publication number Publication date
FR2868728B1 (en) 2006-06-23
US20070110996A1 (en) 2007-05-17
FR2868728A1 (en) 2005-10-14
WO2005102692A1 (en) 2005-11-03

Similar Documents

Publication Publication Date Title
TWI556957B (en) Multilayer polypropylene films and methods of making and using same
US5851610A (en) Shrink films and articles including the same
RU2490135C2 (en) Laminate film
US20130161860A1 (en) Oriented Film Produced In-Process For Use in the Stretch Film Market
CN1256661A (en) Improved composition for uniaxially heat-shrinkable biaxially oriented
CN1263496A (en) Metallized uniaxially shrinkable biaxially oriented polypropylene film
JPH06340042A (en) Matte, heat-sealable, shrinkable, biaxially oriented multilayer polypropylene film, its production, and its use
EP1675720B1 (en) Adhesion of foil to thermoplastic polymers
FR2534262A1 (en) CORONA DISCHARGE TREATMENT PROCESS FOR IMPROVING THE SURFACE ADHERENCE OF A POLYOLEFIN MOLDED PRODUCT
CA3025230C (en) Multilayer film
JP2009166305A (en) Surface protection polyolefin film and its manufacturing method
EP1732757A1 (en) Method for the protection of thermoplastic plates
CN116323181A (en) Polypropylene film, laminate, packaging material, and packaging body
JP2022035487A (en) Polypropylene film, laminate, packaging material, and package
JP2005512843A (en) Laminate made from ethylene-methyl acrylate copolymer and polyester
JP7188651B1 (en) Polypropylene films, laminates, packaging materials, and packages
EP1584466B1 (en) Composite films
CN115697705A (en) Biaxially oriented polypropylene film
CN107073911B (en) Ultrahigh-barrier metallized film
CN108724866B (en) Heat-shrinkable laminated film and bag
WO2012066217A1 (en) Use of a temporary protective film to protect a metal surface during laser cutting; temporary protective film
WO2022210688A1 (en) Polypropylene film
JP2023109131A (en) Polyolefin film and release film
RU2743678C2 (en) Dust-free heat shrinkable package
WO2022096809A1 (en) Single-layer monolithic waterproof breathable film

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061005

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARKEMA FRANCE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101103