EP1730422A1 - Kinematic transformation device - Google Patents

Kinematic transformation device

Info

Publication number
EP1730422A1
EP1730422A1 EP05739428A EP05739428A EP1730422A1 EP 1730422 A1 EP1730422 A1 EP 1730422A1 EP 05739428 A EP05739428 A EP 05739428A EP 05739428 A EP05739428 A EP 05739428A EP 1730422 A1 EP1730422 A1 EP 1730422A1
Authority
EP
European Patent Office
Prior art keywords
kinematic
mobile
movements
transformer
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05739428A
Other languages
German (de)
French (fr)
Inventor
Jean-Loup Florens
Claude Cadoz
Guillaume Brocard
Annie Luciani
Cécile MANDELBAUM
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
L'acroe
Original Assignee
Institut Polytechnique de Grenoble
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Polytechnique de Grenoble filed Critical Institut Polytechnique de Grenoble
Publication of EP1730422A1 publication Critical patent/EP1730422A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H21/00Gearings comprising primarily only links or levers, with or without slides
    • F16H21/02Gearings comprising primarily only links or levers, with or without slides the movements of two or more independently-moving members being combined into a single movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/50Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism
    • B23Q1/54Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism two rotating pairs only
    • B23Q1/545Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism two rotating pairs only comprising spherical surfaces
    • B23Q1/5462Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism two rotating pairs only comprising spherical surfaces with one supplementary sliding pair
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H21/00Gearings comprising primarily only links or levers, with or without slides
    • F16H21/46Gearings comprising primarily only links or levers, with or without slides with movements in three dimensions

Definitions

  • the present invention relates to the field of kinematic transformers. More particularly, it relates to a kinematic transformer transforming the movements of one or more moving parts into movements of a mobile tool, and vice versa.
  • a kinematic transformer makes it possible to convert the movements according to several degrees of freedom of a mobile tool into “elementary” movements of a lower number of degrees of freedom of moving parts. In general, it is sought to obtain elementary movements with a single degree of freedom of the moving parts. Elementary movements can easily be produced by actuators, or easily be measured by sensors.
  • Kinematic transformers are basically divided into two families: series transformers and parallel transformers. In the case of a series kinematic transformer, the mobile tool is connected to a single kinematic chain which includes the moving parts.
  • An example of a series kinematic transformer corresponds to the robotic arms used in computer-assisted machining.
  • a tool intended to machine a workpiece is carried at the end of a support arm which consists of several branches mounted in series and articulated with respect to each other.
  • the pivoting of a branch relative to the neighboring branch is obtained by means of electric motors.
  • By controlling the various electric motors with suitable signals it is possible to move the tool in space, possibly with six degrees of freedom.
  • Such a kinematic transformer is often bulky and of complex structure.
  • the electric motors being distributed at different locations on the support arm, the kinematic transformer has large moving masses which are detrimental to the performance of the transformer.
  • a parallel kinematic transformer comprises several kinematic chains, each kinematic chain connecting the moving tool to a moving part or several moving parts.
  • An example of a parallel kinematic transformer relates to a movement simulator for a motor vehicle chassis in which a motor vehicle chassis is mounted on a fixed base by four hydraulic cylinders, each cylinder having a first end connected to the base and a second end connected to the frame . The four cylinders are controlled independently to obtain the displacement of the chassis.
  • Such a device is generally bulky, in particular in the case where it is desired to control a mobile tool having a high number of degrees of freedom.
  • the present invention aims to obtain a parallel kinematic transformer occupying a small volume.
  • the present invention aims to obtain a kinematic transformer for which the degree of freedom of each moving part is a degree of translation along a fixed axis.
  • the present invention provides a device for reversible kinematic transformation of movements of at least three moving parts into movements of a mobile tool, each moving part being connected to the mobile tool. by an at least partly specific kinematic chain, in which the moving parts move in translation in parallel rectilinear directions, each kinematic chain comprising connecting elements equivalent in total to four pivoting links.
  • the device is isostatic.
  • the moving parts are aligned.
  • the moving parts are regularly spaced.
  • each kinematic chain comprises a ball joint and a pivoting link.
  • each kinematic chain comprises two universal joints.
  • FIG. 5 represents another exemplary embodiment of the kinematic diagram of FIG. 2.
  • the principle of the present invention consists in transforming movements according to different degrees of freedom of the out ⁇ l mobile in as many parallel rectilinear movements of moving parts.
  • the moving parts correspond to the moving parts of linear actuators.
  • the present invention makes it possible to transform parallel rectilinear movements of mobile parts into movements according to different degrees of freedom of the mobile tool.
  • FIG. 1 represents an example of a linear actuator 10 comprising a fixed base 11 and six moving parts or sections 12A to 12F. Each mobile section 12A to 12F is capable of moving autonomously, relative to the fixed base 11, along an axis parallel to an axis OZ, over a range, for example of 2 cm.
  • the movable sections 12A to 12F are arranged so that their axes of movement are coplanar and regularly spaced, for example about ten centimeters.
  • Each movable section 12A to 12F has a bore 13A to 13F which can receive means for fixing an external element on the movable section 12A to 12F.
  • the different bores 13A to 13F are coaxial along an axis OX, perpendicular to the axis OZ.
  • the plane (XOZ) forms a median plane of the mobile sections 12A to 12F.
  • the OZ and OX axes form with an OY axis perpendicular to the plane (XOZ) an orthonormal reference.
  • FIG. 1 Six mobile sections 12A to 12F have been shown in FIG. 1. It is clear that the linear actuator 10 can comprise a variable number of mobile sections according to the desired use as will appear hereinafter. In addition, a limited number of mobile sections 12A to 12F can be used from the six available mobile sections of the linear actuator 10 in FIG. 1. An example of a linear actuator of this type is described in European patent EP 0365441 of the plaintiff. A condition for obtaining a kinematic transformer which has a minimum of structural play and friction energy loss is that the kinematic transformer is isostatic. FIG.
  • FIG. 2 shows a possibility of a kinematic diagram of a parallel isostatic kinematic transformer transforming the movements of a mobile object 20 having three degrees of freedom into translation movements of three mobile sections 12A, 12B, 12C and vice versa.
  • the mobile tool 20 is connected to the three mobile sections 12A, 12B, 12C by corresponding kinematic chains 22A, 22B, 22C.
  • Each kinematic chain 22A, 22B, 22C comprises several rigid branches 23, each branch 23 being connected to another branch by a pivoting connection 24, that is to say a connection with a degree of freedom of rotation.
  • a pivoting connection can correspond to two coaxial shafts mounted to rotate freely with respect to each other, two successive pivoting connections can correspond to a cardan joint, and three successive pivoting connections to a ball joint.
  • a condition for a kinematic diagram of this type to correspond to a feasible kinematic transformer is that each pair of kinematic chains 22A, 22B, 22C comprises in total at least seven pivoting connections 24.
  • FIG. 2 represents a kinematic transformer, the three chains of which kinematics 22A, 22B, 22C each comprise four pivoting connections 24.
  • FIG. 3 represents an exemplary embodiment of a kinematic transformer according to the kinematic diagram represented in FIG. 2. The invention uses the actuator 10 represented in FIG.
  • the mobile tool 20 consists of a tripod, the three feet 26A, 26B, 26C of which are equidistant from each other.
  • a rod 27 is fixedly attached at one end to the tripod 20.
  • the opposite end of the rod 27 is fixedly attached to a handle spherical 28 intended to be manipulated by a user.
  • the rod 27 and the spherical lever 28 can be replaced by any type of end piece, for example a spherical end piece, cruciform, etc., depending on the intended use of the kinematic transformer.
  • Each leg 26A, 26B, 26C is connected to a movable edge 12A, 12B, 12C of the actuator 10 by a kinematic chain 22A, 22B, 22C.
  • the suffixes A, B, C denote belonging to one of the kinematic chains 22A, 22B, 22C.
  • Each kinematic chain 22A, 22B, 22C has a return system 30A, 30B, 30C, in the shape of an "L”, fixedly attached at one end to the movable edge 12A, 12B, 12C, at the bore 13A, 13B , 13C, and connected at the opposite end to a first universal joint 31A, 31B, 31C.
  • the first gimbal 31A, 31B, 31C is connected to one end of an arm 32A, 32B, 32C which can, for example, have a length of 50 mm.
  • the opposite end of the arm is connected to a second gimbal 33A, 33B, 33C also connected to a foot 26A, 26B, 26C of the tripod 20.
  • the return systems 30A, 30B, 30C, and the arms 32A, 32B, 32C have identical shapes and dimensions for the three kinematic chains 22A, 22B, 22C.
  • FIG. 4 represents an exemplary embodiment of the first and second cardan joints 31A to 31C and 33A to 33C. By way of explanation, FIG. 4 represents the first universal joint 31A.
  • the gimbal 31A comprises a first shaft 35A, of axis 36A, one end of which is fixedly attached to the return system 30A, and a second shaft 37A, of axis 38A, of which one end is fixedly attached to the arm 32A.
  • the opposite end of the first shaft 35A is extended by a first fork 39A in which is mounted free in rotation a first cylindrical branch 40A, of axis 41A, of a cross 42A.
  • the opposite end of the second shaft 37A is extended by a second fork 43A in which a second cylindrical branch 44A, of axis 45A, of the spider 42A is mounted for free rotation.
  • the axes 41A and 45A are intersect at point 46A called the center of the first gimbal 31A.
  • the axes 41A and 45A, 36A and 41A, and 38A and 45A are perpendicular two by two.
  • the second universal joints 33A to 33C have a structure similar to that of the first universal joints 31A to 31C.
  • the first shafts 35A to 35C of the second cardan shafts 33A to 33C are integrally connected respectively to the arms 32A to 32C, and the second shafts 36A to 36C are respectively integrally connected to the feet 26A to 26C of the tripod 20.
  • return systems 30A and 30C make it possible to place the centers 46A and 46C of the first universal joints 31A and 31C respectively at a distance of approximately 2 centimeters from the plane (XOZ) on the side of the negative Ys.
  • the return system 30B makes it possible to place the center 46B of the first gimbal 46B respectively at a distance of 2 centimeters from the plane (XOZ) on the side of the positive Ys.
  • the axes 36A, 36B, 36C of the first universal joints 31A, 31B and 31C are oriented along the axis OZ.
  • the axes 41A, 41B, 41C of the first universal joints 31A, 31B, 31C are therefore parallel to the plane (XOY).
  • the first universal joint 41A of the kinematic chain 22A is arranged so that the axis 41A makes an angle of +135 degrees in the trigonometric direction with the axis OX.
  • the first gimbal 31C is arranged so that the axis 41C makes an angle of +45 degrees relative to the axis OX.
  • the first gimbal 31B is arranged so that the axis 41B is oriented along the axis OY.
  • the second universal joints 33A, 33B, 33C are oriented so that the three centers 46A, 46B, 46C of the second universal joints 33A, 33B, 33C are arranged in an equilateral triangle, inscribed for example on a circle 40 mm in diameter.
  • the axes 45A, 45B, 45C of the second universal joints 33A, 33B, 33C are tangent to this circle. For the embodiment of FIG.
  • FIG. 3 shows another embodiment of a kinematic transformer according to the kinematic diagram of Figure 2. Two transformers are shown side by side so as to cooperate with the six sections (not shown) of the actuator 10.
  • each kinematic chain 22A, 22B, 22C of a transformer comprises a return system 30A, 30B, 30C fixed integrally at one end to a movable edge 12A, 12B, 12C (not shown) of the actuator 10 and connected at the opposite end to a ball 63A, 63B, 63C.
  • An arm 64A, 64C is connected to the ball 63A, 63B, 63C of each kinematic chain 22A, 22B, 22C and is free according to the three degrees of freedom of rotation at the center of the ball 63A, 63B, 63C.
  • Each arm 64A, 64B, 64C is extended by a fork 65A, 65B, 65C, the two branches of which are crossed by a shaft 66A, 66B, 66C with respect to which the foot 26A, 26B, 26C of a tripod pivots.
  • the mobile tool 20 is constituted by the tripod, the three feet 26A, 26B, 26C of which are equidistant from each other.
  • An orifice 67 is provided in the tripod, possibly for fixing a rod as in the embodiment shown in FIG. 1.
  • the return systems 30A and 30C allow the centers of the ball joints 63A and 63C to be placed respectively at a distance about 2 centimeters from the plane (XOZ) on the negative Y side.
  • the return system 30B makes it possible to place the center of the ball 63A at a distance of 2 centimeters from the plane (XOZ) on the side of the positive Ys.
  • the centers of the three ball joints 63A, 63B, 63C are distributed so that in the rest position the arms 64A, 64C are substantially oriented in the direction Z and the tripod 20 extends substantially along a plane parallel to the plane (XOY).
  • Two kinematic transformers can be placed on the same actuator 10, a kinematic transformer being the symmetrical of the other relative to the plane (XOZ).
  • the structure of the transformer according to the embodiments described above makes it possible to obtain a regular movement of the mobile object 20.
  • the present invention has numerous advantages. It transforms the movements of a tool
  • the invention can be used to control the movements of the mobile tool by appropriately controlling the actuator.
  • the invention can also be used to produce electrical signals by measuring the displacements of the moving parts caused by movements imposed on the mobile tool to drive an external element from these signals.
  • a feedback force can also be transmitted to the mobile tool by the actuator as a function of the movements of the mobile tool.
  • the present invention allows great modularity. Indeed, many parts can be common to the different embodiments. For example, the return systems of the embodiment of the figure are identical. In addition, the embodiment shown in FIG.
  • the tool can easily be modified according to the use of the kinematic transformer.
  • the tool can be in the form of a control lever and can be used to make an electric gearbox with return effort.
  • the tool can have the shape of a cross. With the shape shown in Figure 3, the mobile tool can be used to simulate the movements of an archer.
  • the embodiment of Figure 5 is particularly 'suitable for use in system with two degrees of freedom, for example wherein the tool is controlled to move in a plane.
  • the tool has the shape of a rod, and the end of the rod is slaved to move in a plane.
  • the present invention is susceptible to various variants and modifications which will appear to those skilled in the art.

Abstract

The invention relates to a device for the reversible kinematic transformation of the movements of three mobile parts into the movements of a mobile tool, whereby each mobile part is connected to the mobile tool by means of a specific kinematic linkage (22A to 22C). The invention is characterised in that the mobile parts move in translation along parallel rectilinear axes, each kinematic linkage comprising connecting elements (63A to 63C, 66A to 66C) which are equivalent in total to four pivot connectors.

Description

DISPOSITIF DE TRANSFORMATION CINEMATIQUE KINEMATIC TRANSFORMATION DEVICE
La présente invention concerne le domaine des transformateurs cinématiques . Plus particulièrement, elle concerne un transformateur cinématique transformant les mouvements d'une ou de plusieurs pièces mobiles en mouvements d'un outil mobile, et réciproquement. Un transformateur cinématique permet de convertir les mouvements selon plusieurs degrés de liberté d'un outil mobile en mouvements « élémentaires » d'un nombre inférieur de degrés de liberté de pièces mobiles. De façon générale, on cherche à obtenir des mouvements élémentaires à un unique degré de liberté des pièces mobiles. Les mouvements élémentaires peuvent facilement être produits par des actionneurs, ou facilement être mesurés par des capteurs. Les transformateurs cinématiques se divisent essentiellement en deux familles : les transformateurs série et les transformateurs parallèle. Dans le cas d'un transformateur cinématique série, l'outil mobile est relié à une unique chaîne cinématique qui comprend les pièces mobiles . Un exemple de transformateur cinématique série correspond aux bras robotisés utilisés dans l'usinage assisté par ordinateur. Un outil devant usiner une pièce à fabriquer est porté à l'extrémité d'un bras porteur qui se compose de plusieurs branches montées en série et articulées les unes par rapport aux autres. Le pivotement d'une branche par rapport à la branche voisine est obtenu au moyen de moteurs électriques . En commandant les différents moteurs électriques par des signaux adaptés, il est possible de déplacer l'outil dans l'espace éventuellement selon six degrés de liberté. Un tel transformateur cinématique est souvent volumineux et de structure complexe. En outre, les moteurs électriques étant répartis à différents emplacements sur le bras porteur, le transformateur cinématique présente d'importantes masses en mouvement qui sont préjudiciables aux performances du transformateur. Un transformateur cinématique parallèle comprend plusieurs chaînes cinématiques, chaque chaîne cinématique reliant l'outil mobile à une pièce mobile ou plusieurs pièces mobiles . Un exemple de transformateur cinématique parallèle concerne un simulateur de mouvements pour châssis de véhicule automobile dans lequel un châssis de véhicule automobile est monté sur une base fixe par quatre vérins hydrauliques, chaque vérin ayant une première extrémité reliée à la base et une seconde extrémité reliée au châssis . Les quatre vérins sont commandés indépendamment pour obtenir le déplacement du châssis. Un tel dispositif est généralement volumineux, en particulier dans le cas où l'on souhaite commander un outil mobile ayant un nombre élevé de degrés de liberté. La présente invention vise à obtenir un transformateur cinématique parallèle occupant un faible volume. En particulier, la présente invention vise à obtenir un transformateur cinématique pour lequel le degré de liberté de chaque pièce mobile est un degré de translation selon un axe fixe. Pour atteindre ces objets, la présente invention prévoit un dispositif de transformation cinématique réversible de mouvements d'au moins trois pièces mobiles en mouvements d'un outil mobile, chaque pièce mobile étant reliée à l'outil mobile par une chaîne cinématique au moins en partie spécifique, dans lequel les pièces mobiles se déplacent en translation selon des directions rectilignes parallèles, chaque chaîne cinématique comprenant des éléments de liaison équivalents au total à quatre liaisons pivotantes. Selon un mode de réalisation de la présente invention, le dispositif est isostatique. Selon un mode de réalisation de la présente invention, les pièces mobiles sont alignées. Selon un mode de réalisation de la présente invention, les pièces mobiles sont régulièrement espacées . Selon un mode de réalisation de la présente invention, chaque chaîne cinématique comprend une rotule et une liaison pivotante . Selon un mode de réalisation de la présente invention, chaque chaîne cinématique comprend deux cardans . Ces objets, caractéristiques et avantages, ainsi que d' autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles : la figure 1 représente un exemple d'actionneur linéaire pouvant être associé à un transformateur cinématique selon 1 ' invention ; la figure 2 représente un schéma cinématique d'un transformateur cinématique pour un outil mobile à trois degrés de liberté ; la figure 3 représente un exemple de réalisation du schéma cinématique de la figure 2 ; la figure 4 représente un exemple de liaison par cardan ; et la figure 5 représente un autre exemple de réalisation du schéma cinématique de la figure 2. Le principe de la présente invention consiste à transformer des mouvements selon différents degrés de liberté de l'out±l mobile en autant de mouvements rectilignes parallèles de pièces mobiles. Dans les modes de réalisation décrits par la suite, les pièces mobiles correspondent aux parties mobiles d' actionneurs linéaires. Inversement, la présente invention permet de transformer des mouvements rectilignes parallèles de pièces mobiles en mouvements selon différents degrés de liberté de 1 ' outil mobile . La figure 1 représente un exemple d' actionneur linéaire 10 comportant une base fixe 11 et six parties ou tranches mobiles 12A à 12F. Chaque tranche mobile 12A à 12F est susceptible de se déplacer de façon autonome, par rapport à la base fixe 11, selon un axe parallèle à un axe OZ, sur une plage, par exemple de 2 cm. Les tranches mobiles 12A à 12F sont disposées de sorte que leurs axes de déplacements soient coplanaires et régulièrement espacés, par exemple d'une dizaine de centimètres. Chaque tranche mobile 12A à 12F comporte un alésage 13A à 13F pouvant recevoir des moyens de fixation d'un élément extérieur sur la tranche mobile 12A à 12F. Lorsque les tranches mobiles 12A à 12F ne sont pas sollicitées, les différents alésages 13A à 13F sont coaxiaux selon un axe OX, perpendiculaire à l'axe OZ. Le plan (XOZ) forme un plan médian des tranches mobiles 12A à 12F. Les axes OZ et OX forment avec un axe OY perpendiculaire au plan (XOZ) un repère orthonormé. Six tranches mobiles 12A à 12F ont été représentées sur la figure 1. Il est clair que l' actionneur linéaire 10 peut comprendre un nombre variable de tranches mobiles selon l'utilisation souhaitée comme il apparaîtra par la suite. En outre, un nombre limité de tranches mobiles 12A à 12F peut être utilisé parmi les six tranches mobiles disponibles de l' actionneur linéaire 10 de la figure 1. Un exemple d' actionneur linéaire de ce type est décrit dans le brevet européen EP 0365441 de la demanderesse. Une condition pour obtenir un transformateur cinématique qui présente un minimum de jeux structurels et de pertes d'énergie par frottement est que le transformateur cinématique est isostatique. Sur la figure 2, on a représenté une possibilité de schéma cinématique d'un transformateur cinématique isostatique parallèle transformant les mouvements d'un objet mobile 20 ayant trois degrés de liberté en mouvements de translations de trois tranches mobiles 12A, 12B, 12C et réciproquement. Sur la figure 2, l'outil mobile 20 est relié aux trois tranches mobiles 12A, 12B, 12C par des chaînes cinématiques correspondantes 22A, 22B, 22C. Chaque chaîne cinématique 22A, 22B, 22C comprend plusieurs branches rigides 23, chaque branche 23 étant reliée à une autre branche par une liaison pivotante 24, c'est-à-dire une liaison à un degré de liberté de rotation. A titre d'exemple, une liaison pivotante peut correspondre à deux arbres coaxiaux montés libres en rotation l'un par rapport à l'autre, deux liaisons pivotantes successives peuvent correspondre à un cardan, et trois liaisons pivotantes successives à une rotule. Une condition pour qu'un schéma cinématique de ce type corresponde à un transformateur cinématique réalisable est que chaque paire de chaînes cinématiques 22A, 22B, 22C comprenne au total au moins sept liaisons pivotantes 24. La figure 2 représente un transformateur cinématique dont les trois chaînes cinématiques 22A, 22B, 22C comprennent chacune quatre liaisons pivotantes 24. La figure 3 représente un exemple de réalisation d'un transformateur cinématique selon le schéma cinématique représenté sur la figure 2. L'invention utilise l' actionneur 10 représenté sur la figure 1 dont seules trois tranches mobiles 12A, 12B, 12C participant à l'invention sont représentées. L'outil mobile 20 est constitué par un tripode dont les trois pieds 26A, 26B, 26C sont équidistants les uns des autres. Une tige 27 est fixée solidairement à une extrémité sur le tripode 20. L'extrémité opposée de la tige 27 est fixée solidairement à une manette sphérique 28 destinée à être manipulée par un utilisateur. La tige 27 et la manette sphérique 28 peuvent être remplacées par tout type d'embout, par exemple un embout sphérique, cruciforme, etc., selon l'utilisation prévue du transformateur cinématique. Chaque pied 26A, 26B, 26C est relié à une tranche mobile 12A, 12B, 12C de l' actionneur 10 par une chaîne cinématique 22A, 22B, 22C. Par la suite, les suffixes A, B, C désignent l'appartenance à l'une des chaînes cinématiques 22A, 22B, 22C. Chaque chaîne cinématique 22A, 22B, 22C comporte un système de renvoi 30A, 30B, 30C, en forme de "L", fixé solidairement à une extrémité à la tranche mobile 12A, 12B, 12C, au niveau de l'alésage 13A, 13B, 13C, et relié à l'extrémité opposée à un premier cardan 31A, 31B, 31C. Le premier cardan 31A, 31B, 31C est relié à une extrémité d'un bras 32A, 32B, 32C pouvant, par exemple, avoir une longueur de 50 mm. L'extrémité opposée du bras est reliée à un second cardan 33A, 33B, 33C également relié à un pied 26A, 26B, 26C du tripode 20. Dans le présent exemple de réalisation, les systèmes de renvoi 30A, 30B, 30C, et les bras 32A, 32B, 32C ont des formes et dimensions identiques pour les trois chaînes cinématiques 22A, 22B, 22C. La figure 4 représente un exemple de réalisation des premier et second cardans 31A à 31C et 33A à 33C. A titre explicatif, la figure 4 représente le premier cardan 31A. Le cardan 31A comprend un premier arbre 35A, d'axe 36A, dont une extrémité est fixée solidairement au système de renvoi 30A, et un second arbre 37A, d'axe 38A, dont une extrémité est fixée solidairement au bras 32A. L'extrémité opposée du premier arbre 35A se prolonge par une première fourche 39A dans laquelle est montée libre en rotation une première branche cylindrique 40A, d'axe 41A, d'un croisillon 42A. L'extrémité opposée du second arbre 37A se prolonge par une seconde fourche 43A dans laquelle est montée libre en rotation une seconde branche cylindrique 44A, d'axe 45A, du croisillon 42A. Les axes 41A et 45A se coupent au point 46A appelé centre du premier cardan 31A. Les axes 41A et 45A, 36A et 41A, et 38A et 45A sont perpendiculaires deux à deux. Les deuxièmes cardans 33A à 33C ont une structure similaire à celle des premiers cardans 31A à 31C. Les premiers arbres 35A à 35C des deuxièmes cardans 33A à 33C sont reliés solidairement respectivement aux bras 32A à 32C, et les seconds arbres 36A à 36C sont reliés respectivement solidairement aux pieds 26A à 26C du tripode 20. Selon le présent exemple de réalisation, les systèmes de renvoi 30A et 30C permettent de placer respectivement les centres 46A et 46C des premiers cardans 31A et 31C à une distance d'environ 2 centimètres par rapport au plan (XOZ) du côté des Y négatifs. Le système de renvoi 30B permet de placer respectivement le centre 46B du premier cardan 46B à une distance de 2 centimètres par rapport au plan (XOZ) du côté des Y positifs. Les axes 36A, 36B, 36C des premiers cardans 31A, 31B et 31C sont orientés selon l'axe OZ. Les axes 41A, 41B, 41C des premiers cardans 31A, 31B, 31C sont donc parallèles au plan (XOY) . Le premier cardan 41A de la chaîne cinématique 22A est agencé de sorte que l'axe 41A fasse un angle de +135 degrés selon le sens trigonométrique avec l'axe OX. Le premier cardan 31C est agencé de sorte que l'axe 41C fasse un angle de +45 degrés par rapport à l'axe OX. Le premier cardan 31B est agencé de sorte que l'axe 41B soit orienté selon l'axe OY. Les deuxièmes cardans 33A, 33B, 33C sont orientés de sorte que les trois centres 46A, 46B, 46C des deuxièmes cardans 33A, 33B, 33C soient disposés selon un triangle équilatéral, inscrit par exemple sur un cercle de 40 mm de diamètre. Les axes 45A, 45B, 45C des deuxièmes cardans 33A, 33B, 33C sont tangents à ce cercle. Pour l'exemple de réalisation de la figure 3, il est possible de placer deux transformateurs côte à côte et d'utiliser les six tranches 12A à 12F de l' actionneur 10. La figure 5 représente un autre exemple de réalisation d'un transformateur cinématique selon le schéma cinématique de la figure 2. Deux transformateurs sont représentés côte à côte de façon à coopérer avec les six tranches (non représentées) de l' actionneur 10. Comme pour l'exemple de réalisation représenté en figure 3, chaque chaîne cinématique 22A, 22B, 22C d'un transformateur comprend un système de renvoi 30A, 30B, 30C fixé solidairement à une extrémité à une tranche mobile 12A, 12B, 12C (non représentée) de l' actionneur 10 et relié à l'extrémité opposée à une rotule 63A, 63B, 63C. Un bras 64A, 64C est relié à la rotule 63A, 63B, 63C de chaque chaîne cinématique 22A, 22B, 22C et est libre selon les trois degrés de liberté de rotation au centre de la rotule 63A, 63B, 63C. Chaque bras 64A, 64B, 64C se prolonge par une fourche 65A, 65B, 65C dont les deux branches sont traversées par un arbre 66A, 66B, 66C par rapport auquel pivote le pied 26A, 26B, 26C d'un tripode. Dans cet exemple de réalisation, l'outil mobile 20 est constitué par le tripode dont les trois pieds 26A, 26B, 26C sont équidistants les uns des autres. Un orifice 67 est prévu dans le tripode, éventuellement pour la fixation d'une tige comme dans l'exemple de réalisation représenté en figure 1. Les systèmes de renvoi 30A et 30C permettent de placer respectivement les centres des rotules 63A et 63C à une distance d'environ 2 centimètres par rapport au plan (XOZ) du côté des Y négatifs. Le système de renvoi 30B permet de placer le centre de la rotule 63A à une distance de 2 centimètres par rapport au plan (XOZ) du côté des Y positifs. Les centres des trois rotules 63A, 63B, 63C sont répartis de façon qu'en position de repos les bras 64A, 64C sont sensiblement orientés selon la direction Z et le tripode 20 s ' étend sensiblement selon un plan parallèle au plan (XOY) . Deux transformateurs cinématiques peuvent être placés sur un même actionneur 10, un transformateur cinématique étant le symétrique de l'autre par rapport au plan (XOZ). La structure du transformateur selon les exemples de réalisation précédemment décrits permet d'obtenir un mouvement régulier de l'objet mobile 20. La présente invention présente de nombreux avantages. Elle permet de transformer les mouvements d'un outilThe present invention relates to the field of kinematic transformers. More particularly, it relates to a kinematic transformer transforming the movements of one or more moving parts into movements of a mobile tool, and vice versa. A kinematic transformer makes it possible to convert the movements according to several degrees of freedom of a mobile tool into “elementary” movements of a lower number of degrees of freedom of moving parts. In general, it is sought to obtain elementary movements with a single degree of freedom of the moving parts. Elementary movements can easily be produced by actuators, or easily be measured by sensors. Kinematic transformers are basically divided into two families: series transformers and parallel transformers. In the case of a series kinematic transformer, the mobile tool is connected to a single kinematic chain which includes the moving parts. An example of a series kinematic transformer corresponds to the robotic arms used in computer-assisted machining. A tool intended to machine a workpiece is carried at the end of a support arm which consists of several branches mounted in series and articulated with respect to each other. The pivoting of a branch relative to the neighboring branch is obtained by means of electric motors. By controlling the various electric motors with suitable signals, it is possible to move the tool in space, possibly with six degrees of freedom. Such a kinematic transformer is often bulky and of complex structure. In addition, the electric motors being distributed at different locations on the support arm, the kinematic transformer has large moving masses which are detrimental to the performance of the transformer. A parallel kinematic transformer comprises several kinematic chains, each kinematic chain connecting the moving tool to a moving part or several moving parts. An example of a parallel kinematic transformer relates to a movement simulator for a motor vehicle chassis in which a motor vehicle chassis is mounted on a fixed base by four hydraulic cylinders, each cylinder having a first end connected to the base and a second end connected to the frame . The four cylinders are controlled independently to obtain the displacement of the chassis. Such a device is generally bulky, in particular in the case where it is desired to control a mobile tool having a high number of degrees of freedom. The present invention aims to obtain a parallel kinematic transformer occupying a small volume. In particular, the present invention aims to obtain a kinematic transformer for which the degree of freedom of each moving part is a degree of translation along a fixed axis. To achieve these objects, the present invention provides a device for reversible kinematic transformation of movements of at least three moving parts into movements of a mobile tool, each moving part being connected to the mobile tool. by an at least partly specific kinematic chain, in which the moving parts move in translation in parallel rectilinear directions, each kinematic chain comprising connecting elements equivalent in total to four pivoting links. According to an embodiment of the present invention, the device is isostatic. According to an embodiment of the present invention, the moving parts are aligned. According to an embodiment of the present invention, the moving parts are regularly spaced. According to an embodiment of the present invention, each kinematic chain comprises a ball joint and a pivoting link. According to an embodiment of the present invention, each kinematic chain comprises two universal joints. These objects, characteristics and advantages, as well as others of the present invention will be explained in detail in the following description of particular embodiments given without limitation in relation to the attached figures, among which: FIG. 1 represents an example linear actuator which can be associated with a kinematic transformer according to the invention; FIG. 2 represents a kinematic diagram of a kinematic transformer for a mobile tool with three degrees of freedom; FIG. 3 represents an exemplary embodiment of the kinematic diagram of FIG. 2; FIG. 4 represents an example of a universal joint; and FIG. 5 represents another exemplary embodiment of the kinematic diagram of FIG. 2. The principle of the present invention consists in transforming movements according to different degrees of freedom of the out ± l mobile in as many parallel rectilinear movements of moving parts. In the embodiments described below, the moving parts correspond to the moving parts of linear actuators. Conversely, the present invention makes it possible to transform parallel rectilinear movements of mobile parts into movements according to different degrees of freedom of the mobile tool. FIG. 1 represents an example of a linear actuator 10 comprising a fixed base 11 and six moving parts or sections 12A to 12F. Each mobile section 12A to 12F is capable of moving autonomously, relative to the fixed base 11, along an axis parallel to an axis OZ, over a range, for example of 2 cm. The movable sections 12A to 12F are arranged so that their axes of movement are coplanar and regularly spaced, for example about ten centimeters. Each movable section 12A to 12F has a bore 13A to 13F which can receive means for fixing an external element on the movable section 12A to 12F. When the mobile sections 12A to 12F are not stressed, the different bores 13A to 13F are coaxial along an axis OX, perpendicular to the axis OZ. The plane (XOZ) forms a median plane of the mobile sections 12A to 12F. The OZ and OX axes form with an OY axis perpendicular to the plane (XOZ) an orthonormal reference. Six mobile sections 12A to 12F have been shown in FIG. 1. It is clear that the linear actuator 10 can comprise a variable number of mobile sections according to the desired use as will appear hereinafter. In addition, a limited number of mobile sections 12A to 12F can be used from the six available mobile sections of the linear actuator 10 in FIG. 1. An example of a linear actuator of this type is described in European patent EP 0365441 of the plaintiff. A condition for obtaining a kinematic transformer which has a minimum of structural play and friction energy loss is that the kinematic transformer is isostatic. FIG. 2 shows a possibility of a kinematic diagram of a parallel isostatic kinematic transformer transforming the movements of a mobile object 20 having three degrees of freedom into translation movements of three mobile sections 12A, 12B, 12C and vice versa. In FIG. 2, the mobile tool 20 is connected to the three mobile sections 12A, 12B, 12C by corresponding kinematic chains 22A, 22B, 22C. Each kinematic chain 22A, 22B, 22C comprises several rigid branches 23, each branch 23 being connected to another branch by a pivoting connection 24, that is to say a connection with a degree of freedom of rotation. By way of example, a pivoting connection can correspond to two coaxial shafts mounted to rotate freely with respect to each other, two successive pivoting connections can correspond to a cardan joint, and three successive pivoting connections to a ball joint. A condition for a kinematic diagram of this type to correspond to a feasible kinematic transformer is that each pair of kinematic chains 22A, 22B, 22C comprises in total at least seven pivoting connections 24. FIG. 2 represents a kinematic transformer, the three chains of which kinematics 22A, 22B, 22C each comprise four pivoting connections 24. FIG. 3 represents an exemplary embodiment of a kinematic transformer according to the kinematic diagram represented in FIG. 2. The invention uses the actuator 10 represented in FIG. only three mobile sections 12A, 12B, 12C participating in the invention are shown. The mobile tool 20 consists of a tripod, the three feet 26A, 26B, 26C of which are equidistant from each other. A rod 27 is fixedly attached at one end to the tripod 20. The opposite end of the rod 27 is fixedly attached to a handle spherical 28 intended to be manipulated by a user. The rod 27 and the spherical lever 28 can be replaced by any type of end piece, for example a spherical end piece, cruciform, etc., depending on the intended use of the kinematic transformer. Each leg 26A, 26B, 26C is connected to a movable edge 12A, 12B, 12C of the actuator 10 by a kinematic chain 22A, 22B, 22C. Subsequently, the suffixes A, B, C denote belonging to one of the kinematic chains 22A, 22B, 22C. Each kinematic chain 22A, 22B, 22C has a return system 30A, 30B, 30C, in the shape of an "L", fixedly attached at one end to the movable edge 12A, 12B, 12C, at the bore 13A, 13B , 13C, and connected at the opposite end to a first universal joint 31A, 31B, 31C. The first gimbal 31A, 31B, 31C is connected to one end of an arm 32A, 32B, 32C which can, for example, have a length of 50 mm. The opposite end of the arm is connected to a second gimbal 33A, 33B, 33C also connected to a foot 26A, 26B, 26C of the tripod 20. In the present embodiment, the return systems 30A, 30B, 30C, and the arms 32A, 32B, 32C have identical shapes and dimensions for the three kinematic chains 22A, 22B, 22C. FIG. 4 represents an exemplary embodiment of the first and second cardan joints 31A to 31C and 33A to 33C. By way of explanation, FIG. 4 represents the first universal joint 31A. The gimbal 31A comprises a first shaft 35A, of axis 36A, one end of which is fixedly attached to the return system 30A, and a second shaft 37A, of axis 38A, of which one end is fixedly attached to the arm 32A. The opposite end of the first shaft 35A is extended by a first fork 39A in which is mounted free in rotation a first cylindrical branch 40A, of axis 41A, of a cross 42A. The opposite end of the second shaft 37A is extended by a second fork 43A in which a second cylindrical branch 44A, of axis 45A, of the spider 42A is mounted for free rotation. The axes 41A and 45A are intersect at point 46A called the center of the first gimbal 31A. The axes 41A and 45A, 36A and 41A, and 38A and 45A are perpendicular two by two. The second universal joints 33A to 33C have a structure similar to that of the first universal joints 31A to 31C. The first shafts 35A to 35C of the second cardan shafts 33A to 33C are integrally connected respectively to the arms 32A to 32C, and the second shafts 36A to 36C are respectively integrally connected to the feet 26A to 26C of the tripod 20. According to the present embodiment, return systems 30A and 30C make it possible to place the centers 46A and 46C of the first universal joints 31A and 31C respectively at a distance of approximately 2 centimeters from the plane (XOZ) on the side of the negative Ys. The return system 30B makes it possible to place the center 46B of the first gimbal 46B respectively at a distance of 2 centimeters from the plane (XOZ) on the side of the positive Ys. The axes 36A, 36B, 36C of the first universal joints 31A, 31B and 31C are oriented along the axis OZ. The axes 41A, 41B, 41C of the first universal joints 31A, 31B, 31C are therefore parallel to the plane (XOY). The first universal joint 41A of the kinematic chain 22A is arranged so that the axis 41A makes an angle of +135 degrees in the trigonometric direction with the axis OX. The first gimbal 31C is arranged so that the axis 41C makes an angle of +45 degrees relative to the axis OX. The first gimbal 31B is arranged so that the axis 41B is oriented along the axis OY. The second universal joints 33A, 33B, 33C are oriented so that the three centers 46A, 46B, 46C of the second universal joints 33A, 33B, 33C are arranged in an equilateral triangle, inscribed for example on a circle 40 mm in diameter. The axes 45A, 45B, 45C of the second universal joints 33A, 33B, 33C are tangent to this circle. For the embodiment of FIG. 3, it is possible to place two transformers side by side and to use the six sections 12A to 12F of the actuator 10. Figure 5 shows another embodiment of a kinematic transformer according to the kinematic diagram of Figure 2. Two transformers are shown side by side so as to cooperate with the six sections (not shown) of the actuator 10. As for the embodiment shown in FIG. 3, each kinematic chain 22A, 22B, 22C of a transformer comprises a return system 30A, 30B, 30C fixed integrally at one end to a movable edge 12A, 12B, 12C (not shown) of the actuator 10 and connected at the opposite end to a ball 63A, 63B, 63C. An arm 64A, 64C is connected to the ball 63A, 63B, 63C of each kinematic chain 22A, 22B, 22C and is free according to the three degrees of freedom of rotation at the center of the ball 63A, 63B, 63C. Each arm 64A, 64B, 64C is extended by a fork 65A, 65B, 65C, the two branches of which are crossed by a shaft 66A, 66B, 66C with respect to which the foot 26A, 26B, 26C of a tripod pivots. In this embodiment, the mobile tool 20 is constituted by the tripod, the three feet 26A, 26B, 26C of which are equidistant from each other. An orifice 67 is provided in the tripod, possibly for fixing a rod as in the embodiment shown in FIG. 1. The return systems 30A and 30C allow the centers of the ball joints 63A and 63C to be placed respectively at a distance about 2 centimeters from the plane (XOZ) on the negative Y side. The return system 30B makes it possible to place the center of the ball 63A at a distance of 2 centimeters from the plane (XOZ) on the side of the positive Ys. The centers of the three ball joints 63A, 63B, 63C are distributed so that in the rest position the arms 64A, 64C are substantially oriented in the direction Z and the tripod 20 extends substantially along a plane parallel to the plane (XOY). Two kinematic transformers can be placed on the same actuator 10, a kinematic transformer being the symmetrical of the other relative to the plane (XOZ). The structure of the transformer according to the embodiments described above makes it possible to obtain a regular movement of the mobile object 20. The present invention has numerous advantages. It transforms the movements of a tool
•'• • mobile à trois degrés en autant de mouvements élémentaires de translation de pièces mobiles selon des axes parallèles, coplanaires et régulièrement espacés, et inversement. Cette disposition est particulièrement adaptée pour l'utilisation d'un actionneur du type représenté sur la figure 1 qui est particulièrement compact. L'invention peut être utilisée pour piloter les mouvements de l'outil mobile en commandant de façon adaptée 1 ' actionneur . L'invention peut être également utilisée pour produire des signaux électriques par la mesure des déplacements des pièces mobiles causés par des mouvements imposés à l'outil mobile pour piloter un élément extérieur à partir de ces signaux. Un effort de rétroaction peut également être transmis à 1 ' outil mobile par 1 ' actionneur en fonction des déplacements de l'outil mobile. La présente invention permet une grande modularité. En effet, de nombreuses pièces peuvent être communes aux différents exemples de réalisation. Par exemple, les systèmes de renvoi de l'exemple de réalisation de la figure sont identiques. En outre, l'exemple de réalisation représenté en figure 5 permet de prévoir de nombreuses pièces identiques pour les trois chaînes cinématiques 22A, 22B, 22C, notamment les rotules 63A, 63B, 63C, les bras 64A, 64B, 64C, les fourches 65A, 65B, 65C et les arbres 66A, 66B, 66C. En outre, les systèmes de renvoi des chaînes cinématiques 22A et 22C sont identiques et le système de renvoi 30B de la chaîne de renvoi 22B est le symétrique des systèmes de renvoi 30A, 30C des chaînes cinématiques 22A, 22B. De même, l'outil peut facilement être modifié selon l'utilisation du transformateur cinématique. Par exemple, l'outil peut avoir la forme d'un levier de commande et être utilisé pour réaliser une boîte de vitesses électrique à retour d'efforts. Pour simuler les mouvements d'une marionnette, l'outil peut avoir la forme d'une croix. Avec la forme représentée sur la figure 3, l'outil mobile peut être utilisé pour simuler les mouvements d'un archer. L'exemple de réalisation de la figure 5 est particulièrement 'adapté pour une utilisation en système à deux degrés de liberté, par exemple dans lequel l'outil est asservi à se déplacer dans un plan. A titre d'exemple, l'outil a la forme d'une tige, et l'extrémité de la tige est asservie à se déplacer dans un plan. L'exemple de réalisation de la figure 5, qui met en oeuvre une rotule pour chaque chaîne cinématique, permet d'obtenir un transformateur cinématique dont la compacité et la tenue dans le temps sont améliorées . Bien entendu, la présente invention est susceptible de diverses variantes et modifications qui apparaîtront à l'homme de l'art. • ' • • mobile in three degrees in as many basic movements of translation of moving parts along parallel axes, coplanar and regularly spaced, and vice versa. This arrangement is particularly suitable for the use of an actuator of the type shown in FIG. 1 which is particularly compact. The invention can be used to control the movements of the mobile tool by appropriately controlling the actuator. The invention can also be used to produce electrical signals by measuring the displacements of the moving parts caused by movements imposed on the mobile tool to drive an external element from these signals. A feedback force can also be transmitted to the mobile tool by the actuator as a function of the movements of the mobile tool. The present invention allows great modularity. Indeed, many parts can be common to the different embodiments. For example, the return systems of the embodiment of the figure are identical. In addition, the embodiment shown in FIG. 5 makes it possible to provide numerous identical parts for the three kinematic chains 22A, 22B, 22C, in particular the ball joints 63A, 63B, 63C, the arms 64A, 64B, 64C, the forks 65A , 65B, 65C and the trees 66A, 66B, 66C. In addition, the return systems of the kinematic chains 22A and 22C are identical and the return system 30B of the return chain 22B is the symmetrical of the return systems 30A, 30C of the kinematic chains 22A, 22B. Likewise, the tool can easily be modified according to the use of the kinematic transformer. For example, the tool can be in the form of a control lever and can be used to make an electric gearbox with return effort. To simulate the movements of a puppet, the tool can have the shape of a cross. With the shape shown in Figure 3, the mobile tool can be used to simulate the movements of an archer. The embodiment of Figure 5 is particularly 'suitable for use in system with two degrees of freedom, for example wherein the tool is controlled to move in a plane. For example, the tool has the shape of a rod, and the end of the rod is slaved to move in a plane. The embodiment of FIG. 5, which uses a ball joint for each kinematic chain, makes it possible to obtain a kinematic transformer whose compactness and resistance over time are improved. Of course, the present invention is susceptible to various variants and modifications which will appear to those skilled in the art.

Claims

REVENDICATIONS
1. Dispositif de transformation cinématique réversible de mouvements de trois pièces mobiles (12A à 12C) en mouvements d'un outil mobile (20), chaque pièce mobile étant reliée à l'outil mobile par une chaîne cinématique spécifique (22A à 22C) , caractérisé en ce que les pièces mobiles se déplacent en translation selon des directions rectilignes parallèles, chaque chaîne cinématique comprenant des éléments de liaison (31A à 31C, 33A à 33C, 63A à 63C, 66A à 66C) équivalents au total à quatre liaisons pivotantes (24) . 1. A device for reversible kinematic transformation of movements of three mobile parts (12A to 12C) into movements of a mobile tool (20), each mobile part being connected to the mobile tool by a specific kinematic chain (22A to 22C), characterized in that the moving parts move in translation in parallel rectilinear directions, each kinematic chain comprising connecting elements (31A to 31C, 33A to 33C, 63A to 63C, 66A to 66C) equivalent in total to four pivoting connections ( 24).
2. Dispositif selon la revendication 1, dans lequel le dispositif est isostatique. " 3. Dispositif selon la revendication 1, dans lequel les pièces mobiles (12A à 12C) sont alignées. 4. Dispositif selon la revendication 3, dans lequel les pièces mobiles (12A à 12C) sont régulièrement espacées. 5. Dispositif selon la revendication 1, dans lequel chaque chaîne cinématique (22A à 22C) comprend une rotule (63A à 63C) et une liaison pivotante (66A à 66C) . 6. Dispositif selon la revendication 1, dans lequel chaque chaîne cinématique (22A à 22C) comprend deux cardans (31A à 31C, 33A à 33C) . 2. Device according to claim 1, in which the device is isostatic. "3. Device according to claim 1, in which the moving parts (12A to 12C) are aligned. 4. Device according to claim 3, in which the moving parts (12A to 12C) are regularly spaced. 5. Device according to claim 1, in which each kinematic chain (22A to 22C) comprises a ball joint (63A to 63C) and a pivoting connection (66A to 66C) 6. Device according to claim 1, in which each kinematic chain (22A to 22C) comprises two gimbals (31A to 31C, 33A to 33C).
EP05739428A 2004-03-10 2005-03-10 Kinematic transformation device Withdrawn EP1730422A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0450482A FR2867539B1 (en) 2004-03-10 2004-03-10 CINEMATIC TRANSFORMATION DEVICE
PCT/FR2005/050155 WO2005088167A1 (en) 2004-03-10 2005-03-10 Kinematic transformation device

Publications (1)

Publication Number Publication Date
EP1730422A1 true EP1730422A1 (en) 2006-12-13

Family

ID=34896760

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05739428A Withdrawn EP1730422A1 (en) 2004-03-10 2005-03-10 Kinematic transformation device

Country Status (4)

Country Link
EP (1) EP1730422A1 (en)
CA (1) CA2578620A1 (en)
FR (1) FR2867539B1 (en)
WO (1) WO2005088167A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102380771B (en) * 2011-11-11 2013-04-10 浙江理工大学 High-rigidity redundantly-actuated three-degree-of-freedom parallel mechanism

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1237414A1 (en) * 1984-05-24 1986-06-15 Московский Институт Электронного Машиностроения Z-coordinate manipulator
FR2628670B1 (en) * 1988-03-21 1990-08-17 Inst Nat Rech Inf Automat ARTICULATED DEVICE, IN PARTICULAR FOR USE IN THE FIELD OF ROBOTICS
FR2638010B1 (en) 1988-10-13 1991-01-18 Acroe MODULAR RETROACTIVE KEYBOARD AND FLAT MODULAR ACTUATOR
SU1668784A1 (en) * 1989-04-25 1991-08-07 Институт Машиноведения Им.А.А.Благонравова Three-dimensional mechanisn with six degrees of freedom
US5378282A (en) * 1993-06-28 1995-01-03 Pollard; Willard L. Robotic tool manipulating apparatus
DE29618149U1 (en) * 1996-10-19 1996-12-05 Physik Instr Pi Gmbh & Co Six-axis adjustment device
AU9036098A (en) * 1997-08-28 1999-03-16 Microdexterity Systems Parallel mechanism
WO2003004223A2 (en) * 2001-07-05 2003-01-16 Microdexterity Systems, Inc. Parallel manipulator
DE10211055B4 (en) * 2002-03-13 2005-07-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Movement and / or positioning device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005088167A1 *

Also Published As

Publication number Publication date
CA2578620A1 (en) 2005-09-22
FR2867539A1 (en) 2005-09-16
FR2867539B1 (en) 2007-05-25
WO2005088167A1 (en) 2005-09-22

Similar Documents

Publication Publication Date Title
EP0250470B1 (en) Device for displacing and positioning an element in space
EP0362342B1 (en) Articulated device, for use in particular in the field of robotics
EP1292431B1 (en) Control arm with two parallel branches
EP1597017B1 (en) Device for the movement and orientation of an object in space and use thereof in rapid machining
EP2643127A1 (en) Parallel robot with two degrees of freedom having two kinematic chains with maximized flexure stiffness
FR2964337A1 (en) Six degree freedom parallel robot for moving and orienting object in e.g. medical field, has actuators comprising fixed parts connected to base by connectors with three degrees of connection and two rotational degrees of freedom
EP3523099B1 (en) Parallel robotic wrist with four degrees of freedom
CA2736660A1 (en) Parallel manipulator with 3 legs and 6 degrees of freedom
EP1468346B1 (en) Control unit with three parallel branches
FR2965207A1 (en) Parallel robot for use in e.g. industry, has passive joint equipped with three rotational degrees of freedom and three translational degrees, and two actuators whose fixed part is integrated with base
FR2491380A1 (en) MANIPULATOR ROBOT, IN PARTICULAR FOR THE AUTOMATIC POSITIONING OF MACHINING PARTS
FR2880575A1 (en) Delta type parallel manipulator robot for moving light load, has load balancing unit balancing load exerted on movable unit and permitting mobility of connection with respect to base unit according to three degrees of liberty and pantograph
WO2005088167A1 (en) Kinematic transformation device
FR2957001A1 (en) Parallel robot for use as e.g. haptic device, has passive joint whose position in space is determined by combination of position of movable part of actuators independent of action exerted by second sub-assembly on platform
FR2957006A1 (en) Parallel robot for use as e.g. haptic device, has passive joint whose position in space is determined by combination of position of movable part of actuators independent of action exerted by sub-assembly on platform
FR3055383B1 (en) MECHANICAL TRANSMISSION DEVICE AND SYSTEM COMPRISING SUCH A DEVICE
FR2957005A1 (en) Parallel robot for use as e.g. haptic device, has displacing unit comprising actuators with fixed part that is connected to base by passive connector of first connection element, where fixed part is integrated with base
FR2957011A1 (en) Parallel robot for use as e.g. haptic device, has passive articulation whose position is determined by combination of position of moving part of actuators and independent from action exerted by subassembly of motion setting unit on platform
EP0172291A1 (en) Retractable multi-articulated mechanism
FR2957003A1 (en) Parallel robot for use as e.g. haptic device, has passive pivot connector connecting mobile structure of sub-assembly with movable part of actuators of sub-assembly to displace movable structure of sub-assembly
FR2957012A1 (en) Parallel robot for use as e.g. wrist type serial robot, has passive articulation space connecting end of mast of sub assembly to platform and determined by combination of position of moving part of three actuators of sub assembly
FR2957008A1 (en) Parallel robot for use as e.g. wrist type serial robot, has connector whose longitudinal axis is arranged such that axis does not coincide with longitudinal axis of connector of other element, and provides passive prismatic connection
FR2957004A1 (en) Parallel robot for use as e.g. haptic device, has passive pivot connectors connecting mobile structure of sub-assembly with movable part of three actuators of sub-assembly to displace structure of sub-assembly
FR2957013A1 (en) Parallel robot for use as e.g. wrist type serial robot, has passive articulation space connecting end of mast of sub assembly to platform and determined by combination of position of moving part of three actuators of sub assembly
FR2688437A1 (en) Parallel space manipulator with six degrees of freedom

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061010

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070301

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'ACROE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080812