EP1728571B1 - Insulated feeder head and method of making same - Google Patents

Insulated feeder head and method of making same Download PDF

Info

Publication number
EP1728571B1
EP1728571B1 EP06114893A EP06114893A EP1728571B1 EP 1728571 B1 EP1728571 B1 EP 1728571B1 EP 06114893 A EP06114893 A EP 06114893A EP 06114893 A EP06114893 A EP 06114893A EP 1728571 B1 EP1728571 B1 EP 1728571B1
Authority
EP
European Patent Office
Prior art keywords
feeder
hollow spheres
insulating
glass
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06114893A
Other languages
German (de)
French (fr)
Other versions
EP1728571A1 (en
Inventor
Rolf STÖCKLEIN
Eckhard Mekus
Ulrich Lanver
Carsten Kuhlgatz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemex GmbH
Original Assignee
Chemex GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemex GmbH filed Critical Chemex GmbH
Priority to PL06114893T priority Critical patent/PL1728571T3/en
Publication of EP1728571A1 publication Critical patent/EP1728571A1/en
Application granted granted Critical
Publication of EP1728571B1 publication Critical patent/EP1728571B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/08Features with respect to supply of molten metal, e.g. ingates, circular gates, skim gates
    • B22C9/082Sprues, pouring cups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/06Ingot moulds or their manufacture
    • B22D7/10Hot tops therefor
    • B22D7/102Hot tops therefor from refractorial material only

Definitions

  • the present invention relates to insulating feeders and to processes for their preparation.
  • feeder includes both feeder shells, feeder inserts and feeder caps, and heating pads.
  • liquid metal is poured into a casting mold and solidifies there.
  • the solidification process is associated with a reduction in the volume of metal and it is therefore regularly feeder, ie open or closed spaces used in or on the mold to equalize the volume deficit in the solidification of the casting and so prevent voids formation in the casting.
  • Feeders are connected to the casting or vulnerable casting area and are usually located above and / or on the side of the mold cavity.
  • Insulating feeders are made from moldable insulating compositions and are distinguished from exothermic feeders made from exothermic masses that self-heat by an aluminothermic reaction. Insulating feeders first absorb heat from the molten metal as the mold is poured, until temperature equalization occurs; From this point on, they will protect the liquid casting metal against further heat loss for a certain period of time. Insulating feeders thus delay the Cleararruhgsbeginn and promote the density feed. Isolating feeders are for example from the DE 100 65 270 A1 known.
  • insulating feeders are feeders comprising less than 1% by weight of oxidisable metals.
  • insulating feeders according to the invention do not comprise any oxidizable metal.
  • insulating feeders within the meaning of the above definition z. B. undergo an exothermic reaction due to the presence of organic materials in the foundry.
  • the insulating feeder according to the invention also has a particularly good insulating effect, which is probably due to the particularly low bulk density of the glass hollow spheres to be used according to the invention and in significantly increased solidification times (for filled cast metal) in comparison with feeders containing only ceramic hollow spheres.
  • a bulk density of less than 0.3 g / cm 3 is lower than the bulk density of the ceramic hollow spheres usually used so far in insulating feeders.
  • the glass hollow spheres used in the insulating feeders according to the invention preferably have a bulk density of less than 0.2 g / cm 3 , preferably even a bulk density of less than 0.15 g / cm 3 . Glass hollow spheres with such bulk densities are commercially available, e.g. B. Glass hollow spheres with the trade name Q-CEL ® (supplier: Omega Minerals).
  • the ceramic hollow spheres used in the insulating feeders according to the invention have an insulating effect, and they stabilize - due to their high temperature stability - the structure of an insulating feeder according to the invention during the casting.
  • the ceramic hollow spheres optionally together with additional further filling materials, alleviate a disadvantage which may be associated with the use of glass hollow spheres in the feeders according to the invention: Glass hollow spheres allow, due to their transparency, heat transport due to heat radiation; However, ceramic hollow spheres are comparatively non-transparent and therefore reduce this effect.
  • isolating feeders according to the invention which were embedded in the foundry for casting in foundry sand, could be separated from the foundry sand particularly easily and at least substantially without residue after casting.
  • This observation is probably directly related to the increased strength of the feeder, which - as stated above - is probably due to the proportion of glass hollow spheres used.
  • the molding sand may be bound in the usual way, e.g. with resin or bentonite as binder.
  • fibrous material in insulating feeders according to the invention is often advantageous for effecting additional reinforcement of the feeder.
  • preferred fiber materials to be used see below.
  • a feeder according to the invention therefore holds the aforementioned ratio.
  • the range of 2: 1 to 6: 1 is particularly preferred.
  • the glass hollow spheres to be used in insulating feeders according to the invention preferably have a grain size, ie minimum and maximum diameters, in the range from 30 to 170 ⁇ m, and the ceramic hollow spheres to be used preferably have a grain size in the range from 2 to 500 ⁇ m, wherein a grain size in the range of 20-150 microns is particularly preferred.
  • the granulation of glass hollow spheres and ceramic hollow spheres in insulating feeders according to the invention is thus advantageously quite similar.
  • the ratio of the average hollow sphere diameter of glass hollow spheres and ceramic hollow spheres is preferably in the range from 1: 5 to 5: 1.
  • the total amount of glass hollow spheres and ceramic hollow spheres is in the range from 40 to 80% by weight, preferably in the range from 40 to 60% by weight, based on the total mass of the feeder.
  • an insulating feeder according to the invention is in some cases undesirably reduced.
  • the insulating effect of the feeder according to the invention is in some cases undesirably reduced.
  • the amount of cured binder is preferably in the range of 15-35 wt%, again based on the total mass of the feeder.
  • the relative binder content of the feeder according to the invention is thus quite high; However, this does not involve an unacceptably high absolute amount of binder, because an inventive insulating feeder is very light due to the high proportion of glass hollow spheres and ceramic hollow spheres.
  • the preferred inventive insulating feeders with the stated (total) amounts of glass hollow spheres, ceramic hollow spheres and cured binder not only have a particularly high strength, but also a particularly high hot strength.
  • An insulating feeder according to the invention preferably comprises organic fiber material and / or no inorganic fiber materials.
  • organic fiber materials is preferred, the use of inorganic fiber materials should be avoided.
  • Such a waiver of inorganic fiber materials leads to safer methods for the production of inventive insulating feeders, since no respirable particles of inorganic fiber materials can break off.
  • the fiber length of the cellulose fibers used is preferably in the range of 30-800 ⁇ m.
  • An insulating feeder according to the invention comprises cured binder.
  • this cured binder is the curing product of a binder which is selected from the group consisting of: Duroplast brieflyner, silicate and starch, preferably from the group consisting of: Resitchanner, nanocomposite binder (preparation of partially hydrolyzed silicic acid esters and silanes) water glass, starch.
  • Starch is preferably used as a binder if the green state or slurry process (filter slurry process) is to be used to produce the insulating feeder according to the invention.
  • filter slurry process the use of starch promotes the floating behavior, thus counteracts segregation, in the green state process, the use of starch leads to the required green state stability.
  • digested native and modified starches can be used.
  • Phenol resins can also be used as binder component.
  • Preferred phenolic resins are milled with hexamethylenetetramine phenol novolaks like those of the type Resital ® (product of Wilsontenes-Albertus) and Supraplast novolaks (product of South-West-Chemie).
  • binder component is melamine.
  • melamine and formaldehyde together with other aldehyde-reactive compounds such as phenols. It then form melamine-phenol-formaldehyde resins (MPF resins).
  • MPF resins melamine-phenol-formaldehyde resins
  • z melamine-phenol-formaldehyde resins
  • Example the use of a mixture of a ground with hexamethylenetetramine phenolic novolac and melamine.
  • Nanocomposite binders are particularly preferred for the preparation of an insulating feeder according to the invention. Preparations of partially hydrolyzed silicic acid esters and silanes can be used in particular as nanocomposite binders. It is also possible to use the nanocomposite binders as described in US Pat DE 196 47 369 A1 such as WO 98/22241 are described. Under the name DYNASIL ® (Degussa) are available as nanocomposite binders suitable Kieselklareester commercially, see. Examples 4 and 5 below.
  • An insulating feeder according to the invention comprises, in addition to hollow glass spheres, ceramic hollow spheres and, if appropriate, fibrous material, in some cases further materials which may be referred to as filler material.
  • filler material It is advantageous z. B. when using a nanocomposite binder, the presence of biogenic silica, the z. Can, in the form of rice husk ash are present (eg. As sold under the name Silimat ® G the company Refratechnik).
  • Silimat ® G the company Refratechnik
  • As well as kaolin, sand, chamotte and / or coke, and finely dispersed, inert metal oxides such as those of titanium, aluminum or silicon are used.
  • this biogenic silica is a preferred substrate for nanocomposite binders is characterized by a very low weight and inert to the other components during the feeder production and pouring.
  • the ceramic hollow spheres have a bulk density of less than 0.5 g / cm 3 .
  • the density of insulating feeders according to the invention is preferably less than 0.6 g / cm 3 .
  • the step of molding is preferably carried out by the slurry process or the green state process.
  • Example 1 (fiber-free green mass):
  • the moldable insulating was formed by the green state method to a feeder cap and the binder (phenolic resin) cured.
  • the insulating feeder cap was used when pouring a cast iron piece. It was obtained a high quality casting.
  • the density of the insulating feeder cap was 0.55 g / cm 3 .
  • the mouldable insulating compound was formed into a feeder cap by the slurry process and the binder (phenolic resin) was cured.
  • the insulating feeder cap was used when pouring a cast iron piece. It was obtained a high quality casting.
  • the density of the insulating feeder cap was 0.4 g / cm 3 .
  • the mouldable insulating compound was formed into a feeder cap by the slurry process and the binder (phenolic resin) was cured.
  • the insulating feeder cap was used when pouring a cast iron piece. It was obtained a high quality casting.
  • the density of the insulating feeder cap was 0.3 g / cm 3 .
  • the moldable insulating was formed by the green state method to a feeder cap and the binder (phenolic resin) cured.
  • the insulating feeder cap was used when pouring a cast iron piece. It was obtained a high quality casting.
  • the density of the insulating feeder cap was 0.3 g / cm 3 .
  • the mouldable insulating compound was formed into a feeder cap by the slurry process and the binder (phenolic resin) was cured.
  • the insulating feeder cap was used when pouring a cast iron piece. It was obtained a high quality casting.
  • the density of the insulating feeder cap was 0.3 g / cm 3 .
  • a total of four insulating compounds mixtures were prepared (mixtures 1, 2, 3 and 4) and used for the production of feeder caps.
  • the mixtures 1 and 2 were produced by the slurry process, and the mixtures 3 and 4 by the green state process.
  • the mixtures 1 and 3 are provided for producing feeders according to the invention, in particular they contain glass hollow spheres with a layer density of less than 0.3 g / cm 3 .
  • the mixtures 2 and 4 are intended for the production of comparative feeders; they do not contain glass bubbles.
  • the feeder caps based on the mixtures 1 and 2 were prepared by the slurry process.
  • the water was placed in a vessel and stirred homogeneously with the kaolin, the phenolic resin and melamine. Subsequently, the other components of the insulating materials were added in portions with continued stirring until a uniform slip mass was present. This slip mass was sucked off in a tool.
  • the feeder caps thus prepared were then dried at 180 ° C.
  • the formulations of the insulating compositions for the production of feeder caps according to the green state method can be found in the following Table 2.
  • feeder caps were produced by the green state method. For this purpose, a largely homogeneous powder mixture was prepared from all components except water. The water was then added in a laboratory mixer. After a mixing time of about 2 minutes, a ready-to-use mixture was present, from which feeders were mashed and then dried at 180.degree.
  • FIGS. 1 and 2 show the solidification curves included in the attached FIGS. 1 and 2 are reproduced.
  • Fig. 1 shows the solidification curves for the feeder caps based on the mixtures 1 and 2
  • Fig. 2 shows the solidification curves for the feeder caps based on mixtures 3 and 4.
  • the feeder caps based on the mixtures 1 and 3 according to the invention have a longer solidification time in comparison with the non-inventive feeder caps based on the mixtures 2 and 4.
  • feeder caps according to the invention are superior to feeder caps, which do not comprise glass hollow spheres.
  • minor adjustments had to be made in the formulas with respect to phenolic resin, melamine and water components in order to produce stable feeder caps. These minor deviations are not responsible for the different solidification times of non-inventive and inventive feeder caps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Inorganic Insulating Materials (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Insulating Bodies (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

An insulating feed unit for use in casting, comprises hollow ceramic spheres with a density of less than 0.3 g/cm3, a hardened binding agent, and fibre material. The unit is produced by mixing the spheres, the binding agent and the fibre material, then forming the mixture and hardening it.

Description

Die vorliegende Erfindung betrifft isolierende Speiser sowie Verfahren zu deren Herstellung.The present invention relates to insulating feeders and to processes for their preparation.

Der Begriff "Speiser" umfasst dabei im Rahmen der vorliegenden Unterlagen sowohl Speiserumhüllungen, Speisereinsätze und Speiserkappen als auch Heizkissen.As used herein, the term "feeder" includes both feeder shells, feeder inserts and feeder caps, and heating pads.

Bei der Herstellung von metallischen Formteilen in der Gießerei wird flüssiges Metall in eine Gießform eingefüllt und erstarrt dort. Der Erstarrungsvorgang ist mit einer Verringerung des Metallvolumens verbunden und es werden deshalb regelmäßig Speiser, d. h. offene oder geschlossene Räume in oder an der Gießform eingesetzt, um das Volumendefizit bei der Erstarrung des Gussstücks anzugleichen und so eine Lunkerbildung im Gussstück zu verhindern. Speiser sind mit dem Gussstück bzw. mit dem gefährdeten Gussstückbereich verbunden und befinden sich für gewöhnlich oberhalb und/oder an der Seite des Formhohlraums.In the production of metallic moldings in the foundry, liquid metal is poured into a casting mold and solidifies there. The solidification process is associated with a reduction in the volume of metal and it is therefore regularly feeder, ie open or closed spaces used in or on the mold to equalize the volume deficit in the solidification of the casting and so prevent voids formation in the casting. Feeders are connected to the casting or vulnerable casting area and are usually located above and / or on the side of the mold cavity.

Isolierende Speiser werden aus formbaren isolierenden Zusammensetzungen (Isoliermassen) hergestellt und sind zu unterscheiden von exothermen Speisern, welche aus exothermen Massen hergestellt sind, die sich durch eine aluminothermische Reaktion selbst erwärmen. Isolierende Speiser nehmen beim Abgießen der Form zuerst Wärme aus dem flüssigen Metall auf, bis sich ein Temperaturausgleich einstellt; von diesem Zeitpunkt an schützen sie das flüssige Gießmetall eine gewisse Zeit gegen weitere Wärmeverluste. Isolierende Speiser verzögern somit den Erstarruhgsbeginn und fördern die Dichtspeisung. Isolierende Speiser sind beispielsweise aus der DE 100 65 270 A1 bekannt.Insulating feeders are made from moldable insulating compositions and are distinguished from exothermic feeders made from exothermic masses that self-heat by an aluminothermic reaction. Insulating feeders first absorb heat from the molten metal as the mold is poured, until temperature equalization occurs; From this point on, they will protect the liquid casting metal against further heat loss for a certain period of time. Insulating feeders thus delay the Erstarruhgsbeginn and promote the density feed. Isolating feeders are for example from the DE 100 65 270 A1 known.

Im Rahmen der vorliegenden Unterlagen sind isolierende Speiser solche Speiser, die weniger als 1 Gew.-% oxidierbare Metalle umfassen. Vorzugsweise umfassen erfindungsgemäße isolierende Speiser (wie unten im Detail definiert) gar kein oxidierbares Metall. Es ist jedoch nicht ausgeschlossen, dass isolierende Speiser im Sinne der vorstehenden Definition z. B. aufgrund der Anwesenheit organischer Materialien im Gießereibetrieb eine exotherme Reaktion durchlaufen.As used herein, insulating feeders are feeders comprising less than 1% by weight of oxidisable metals. Preferably, insulating feeders according to the invention (as defined in detail below) do not comprise any oxidizable metal. However, it is not excluded that insulating feeders within the meaning of the above definition z. B. undergo an exothermic reaction due to the presence of organic materials in the foundry.

Es war die primäre Aufgabe der vorliegenden Erfindung, einen isolierenden Speiser anzugeben, der eine hohe Festigkeit besitzt, bei geringem Gewicht eine gute isolierende Wirkung besitzt und sich zudem vorzugsweise nach dem Abgießen leicht und zumindest im Wesentlichen rückstandsfrei wieder von dem Formsand trennen lässt, in den er während des Gießereibetriebs eingebettet wird.It was the primary object of the present invention to provide an insulating feeder, which has a high strength, has a good insulating effect at low weight and also preferably after casting easily and at least substantially residue-free can be separated again from the molding sand, in the it is embedded during the foundry operation.

Erfindungsgemäß wird diese Aufgabe gelöst durch einen isolierenden Speiser zur Verwendung in der Gießereiindustrie mit den Merkmalen des Anspruchs 1. Ein solcher Speiser umfasst:

  • keramische Hohlkugeln,
  • Glas-Hohlkugeln mit einer Schüttdichte von weniger als 0,3 g/cm3,
  • ausgehärtetes Bindemittel,
  • gegebenenfalls Fasermaterial.
According to the invention, this object is achieved by an insulating feeder for use in the foundry industry having the features of claim 1. Such a feeder comprises:
  • ceramic hollow spheres,
  • Glass hollow spheres with a bulk density of less than 0.3 g / cm 3 ,
  • hardened binder,
  • optionally fiber material.

Überraschenderweise hat sich gezeigt, dass durch die gleichzeitige Anwesenheit von (a) keramischen Hohlkugeln und (b) Glas-Hohlkugeln mit einer Schüttdichte von weniger als -0,3g/cm3 in dem erfindungsgemäßen isolierenden Speiser im Gießbetrieb (d. h. beim Abgießen, wobei Temperaturen von bis zu 1400°C auf den isolierenden Speiser einwirken) eine erhöhte Festigkeit des Speisers erreichbar ist, die auch nach dem Abgießen noch zu beobachten ist. Diese erhöhte Festigkeit ist vermutlich auf die Anwesenheit der Glas-Hohlkugeln zurückzuführen.Surprisingly, it has been found that by the simultaneous presence of (a) ceramic hollow spheres and (b) glass hollow spheres with a bulk density of less than -0.3 g / cm 3 in the insulating feeder according to the invention in the casting operation (ie casting, with temperatures of up to 1400 ° C act on the insulating feeder) increased strength of the feeder is reached, which is still observed after pouring. This increased strength is presumably due to the presence of the glass hollow spheres.

Der erfindungsgemäße isolierende Speiser besitzt zudem eine besonders gute isolierende Wirkung, die vermutlich auf die besonders geringe Schüttdichte der erfindungsgemäß einzusetzenden Glas-Hohlkugeln zurückzuführen ist und sich in deutlich erhöhten Erstarrungszeiten (für eingefülltes Gießmetall) im Vergleich mit Speisern zeigt, die lediglich keramische Hohlkugeln enthalten. Eine Schüttdichte von weniger als 0,3 g/cm3, wie sie für die erfindungsgemäß einzusetzenden Glas-Hohlkugeln vorgesehen ist, ist geringer als die Schüttdichte der üblicherweise in isolierenden Speisern bislang eingesetzten keramischen Hohlkugeln. Vorzugsweise besitzen die in erfindungsgemäßen isolierenden Speisern eingesetzten Glas-Hohlkugeln eine Schüttdichte von weniger als 0,2g/cm3, bevorzugt sogar eine Schüttdichte von weniger als 0,15 g/cm3. Glas-Hohlkugeln mit solchen Schüttdichten sind im Handel erhältlich, z. B. Glas-Hohlkugeln mit dem Handelsnamen Q-CEL® (Lieferant: Omega Minerals).The insulating feeder according to the invention also has a particularly good insulating effect, which is probably due to the particularly low bulk density of the glass hollow spheres to be used according to the invention and in significantly increased solidification times (for filled cast metal) in comparison with feeders containing only ceramic hollow spheres. A bulk density of less than 0.3 g / cm 3 , as provided for the glass hollow spheres to be used according to the invention, is lower than the bulk density of the ceramic hollow spheres usually used so far in insulating feeders. The glass hollow spheres used in the insulating feeders according to the invention preferably have a bulk density of less than 0.2 g / cm 3 , preferably even a bulk density of less than 0.15 g / cm 3 . Glass hollow spheres with such bulk densities are commercially available, e.g. B. Glass hollow spheres with the trade name Q-CEL ® (supplier: Omega Minerals).

Die in den erfindungsgemäßen isolierenden Speisern eingesetzten keramischen Hohlkugeln wirken isolierend, und sie stabilisieren - aufgrund ihrer hohen Temperaturstabilität - die Struktur eines erfindungsgemäßen isolierenden Speisers während des Abgießens. Zudem lindern die keramischen Hohlkugeln, gegebenenfalls gemeinsam mit zusätzlichen weiteren Füllmaterialien, einen Nachteil, der mit dem Einsatz von Glas-Hohlkugeln in den erfindungsgemäßen Speisern verbunden sein dürfte: Glas-Hohlkugeln ermöglichen nämlich aufgrund ihrer Transparenz einen Wärmetransport aufgrund von Wärmestrahlung; keramische Hohlkugeln sind aber vergleichsweise intransparent und reduzieren deshalb diesen Effekt.The ceramic hollow spheres used in the insulating feeders according to the invention have an insulating effect, and they stabilize - due to their high temperature stability - the structure of an insulating feeder according to the invention during the casting. In addition, the ceramic hollow spheres, optionally together with additional further filling materials, alleviate a disadvantage which may be associated with the use of glass hollow spheres in the feeders according to the invention: Glass hollow spheres allow, due to their transparency, heat transport due to heat radiation; However, ceramic hollow spheres are comparatively non-transparent and therefore reduce this effect.

Überraschenderweise hat sich zudem gezeigt, dass sich erfindungsgemäße isolierende Speiser, die zum Gussbetrieb in Formsand eingebettet wurden, nach dem Abguss besonders leicht und zumindest im Wesentlichen rückstandsfrei wieder von dem Formsand trennen ließen. Diese Beobachtung steht vermutlich in direktem Zusammenhang mit der erhöhten Festigkeit des Speisers, welche - wie oben ausgeführt - wohl auf den Anteil eingesetzter Glas-Hohlkugeln zurückzuführen ist. Der Formsand kann dabei auf übliche Weise gebunden sein, z.B. mit Harz oder Bentonit als Bindemittel.Surprisingly, it has also been shown that isolating feeders according to the invention, which were embedded in the foundry for casting in foundry sand, could be separated from the foundry sand particularly easily and at least substantially without residue after casting. This observation is probably directly related to the increased strength of the feeder, which - as stated above - is probably due to the proportion of glass hollow spheres used. The molding sand may be bound in the usual way, e.g. with resin or bentonite as binder.

Die Anwesenheit von Fasermaterial in erfindungsgemäßen isolierenden Speisern ist oft vorteilhaft, um eine zusätzliche Armierung des Speiser zu bewirken. Hinsichtlich bevorzugter einzusetzender Fasermaterialien siehe weiter unten.The presence of fibrous material in insulating feeders according to the invention is often advantageous for effecting additional reinforcement of the feeder. For preferred fiber materials to be used, see below.

Zum Erreichen besonders hoher Festigkeiten und Isolierwirkungen ist es vorteilhaft, das Gewichtsverhältnis von keramischen Hohlkugeln zu Glas-Hohlkugeln mit einer Schüttdichte von weniger als 0,3 g/cm3 im Bereich von 1:1 - 10:1 zu wählen. Ein erfindungsgemäßer Speiser hält deshalb das vorgenannte Verhältnis ein. Der Bereich von 2:1 bis 6:1 ist besonders bevorzugt.To achieve particularly high strengths and insulating effects, it is advantageous to choose the weight ratio of ceramic hollow spheres to glass hollow spheres with a bulk density of less than 0.3 g / cm 3 in the range of 1: 1-10: 1. A feeder according to the invention therefore holds the aforementioned ratio. The range of 2: 1 to 6: 1 is particularly preferred.

Bei höheren Anteilen an Glas-Hohlkugeln in einem erfindungsgemäßen Speiser wächst die Gefahr, dass der jeweilige Speiser im Einzelfall eine für den Gießereibetrieb zu geringe Stabilität besitzt.With higher proportions of glass hollow spheres in a feeder according to the invention, there is a growing danger that the respective feeder in individual cases has a stability which is too low for foundry operation.

Bei niedrigeren Anteilen an Glas-Hohlkugeln in einem erfindungsgemäßen Speiser werden in manchen Fällen keine sehr hohen Festigkeiten mehr erreicht, die Ablösbarkeit vom Formsand nach dem Abgießen ist in manchen Fällen nicht mehr optimal, und die isolierende Wirkung des Speisers ist in manchen Fällen nicht mehr so hoch wie erwünscht.With lower proportions of glass hollow spheres in a feeder according to the invention, very high strengths are no longer achieved in some cases, the removability from the molding sand after casting off is in some cases no longer optimal, and the insulating effect of the feeder is in some cases no longer so high as desired.

Die in erfindungsgemäßen isolierenden Speisern einzusetzenden Glas-Hohlkugeln besitzen vorzugsweise eine Körnung, d. h. minimale und maximale Durchmesser, im Bereich von 30 - 170 µm, und die einzusetzenden keramischen Hohlkugeln besitzen vorzugsweise eine Körnung im Bereich von 2 - 500 µm, wobei eine Körnung im Bereich von 20 - 150 µm besonders bevorzugt ist. Die Körnung von Glas-Hohlkugeln und keramischen Hohlkugeln in erfindungsgemäßen isolierenden Speisern ist somit vorteilhafterweise recht ähnlich. Das Verhältnis der mittleren Hohlkugeldurchmesser von Glas-Hohlkugeln und keramischen Hohlkugeln liegt vorzugsweise im Bereich von 1:5 bis 5:1.The glass hollow spheres to be used in insulating feeders according to the invention preferably have a grain size, ie minimum and maximum diameters, in the range from 30 to 170 μm, and the ceramic hollow spheres to be used preferably have a grain size in the range from 2 to 500 μm, wherein a grain size in the range of 20-150 microns is particularly preferred. The granulation of glass hollow spheres and ceramic hollow spheres in insulating feeders according to the invention is thus advantageously quite similar. The ratio of the average hollow sphere diameter of glass hollow spheres and ceramic hollow spheres is preferably in the range from 1: 5 to 5: 1.

In erfindungsgemäßen isolierenden Speisern liegt die Gesamtmenge von Glas-Hohlkugeln und keramischen Hohlkugeln im Bereich von 40 - 80 Gew.-%, bevorzugt im Bereich von 40 - 60 Gew.-%, bezogen auf die Gesamtmasse des Speisers.In insulating feeders according to the invention, the total amount of glass hollow spheres and ceramic hollow spheres is in the range from 40 to 80% by weight, preferably in the range from 40 to 60% by weight, based on the total mass of the feeder.

Bei höheren Gesamtmengen von Glas-Hohlkugeln und keramischen Hohlkugeln ist die Stabilität eines erfindungsgemäßen isolierenden Speisers in manchen Fällen in unerwünschter Weise reduziert.At higher total amounts of glass hollow spheres and ceramic hollow spheres, the stability of an insulating feeder according to the invention is in some cases undesirably reduced.

Bei niedrigeren Gesamtmengen von Glas-Hohlkugeln und keramischen Hohlkugeln ist die Isolierwirkung des erfindungsgemäßen Speisers in manchen Fällen in unerwünschter Weise reduziert.At lower total quantities of glass hollow spheres and ceramic hollow spheres, the insulating effect of the feeder according to the invention is in some cases undesirably reduced.

Liegt die Gesamtmenge von Glas-Hohlkugeln und keramischen Hohlkugeln an einem erfindungsgemäßen isolierenden Speiser in dem bevorzugten Bereich von 40 - 60 Gew.-%, so liegt die Menge an ausgehärtetem Bindemittel vorzugsweise im Bereich von 15 - 35 Gew.-%, wiederum bezogen auf die Gesamtmasse des Speisers. Der relative Bindemittelanteil an dem erfindungsgemäßen Speiser ist somit recht hoch; damit ist jedoch keine inakzeptabel hohe Absolutmenge an Bindemittel verbunden, denn ein erfindungsgemäßer isolierenden Speiser ist aufgrund des hohen Anteils an Glas-Hohlkugeln und keramischen Hohlkugeln sehr leicht. Die bevorzugten erfindungsgemäßen isolierenden Speiser mit den genannten (Gesamt)Mengen an Glas-Hohlkugeln, keramischen Hohlkugeln und ausgehärtetem Bindemittel besitzen nicht nur eine besonders hohe Festigkeit, sondern auch eine besonders hohe Heißfestigkeit.If the total amount of glass hollow spheres and ceramic hollow spheres on an insulating feeder according to the invention is in the preferred range of 40-60 wt%, the amount of cured binder is preferably in the range of 15-35 wt%, again based on the total mass of the feeder. The relative binder content of the feeder according to the invention is thus quite high; However, this does not involve an unacceptably high absolute amount of binder, because an inventive insulating feeder is very light due to the high proportion of glass hollow spheres and ceramic hollow spheres. The preferred inventive insulating feeders with the stated (total) amounts of glass hollow spheres, ceramic hollow spheres and cured binder not only have a particularly high strength, but also a particularly high hot strength.

Ein erfindungsgemäßer isolierender Speiser umfasst vorzugsweise organisches Fasermaterial und/oder keine anorganischen Fasermaterialien. Während also die Anwesenheit organischer Fasermaterialien bevorzugt ist, sollte auf den Einsatz anorganischer Fasermaterialien verzichtet werden. Ein solcher Verzicht auf anorganische Fasermaterialien führt zu gesundheitlich unbedenklicheren Verfahren zur Herstellung erfindungsgemäßer isolierender Speiser, da keine lungengängigen Partikel aus anorganischen Fasermaterialien abbrechen können.An insulating feeder according to the invention preferably comprises organic fiber material and / or no inorganic fiber materials. Thus, while the presence of organic fiber materials is preferred, the use of inorganic fiber materials should be avoided. Such a waiver of inorganic fiber materials leads to safer methods for the production of inventive insulating feeders, since no respirable particles of inorganic fiber materials can break off.

Der Einsatz organischer Fasermaterialien bewirkt, wie oben bereits erwähnt, eine zusätzliche Armierung des erfindungsgemäßen isolierenden Speisers, die in vielen Fällen gewünscht ist. Vorzugsweise werden in erfindungsgemäßen isolierenden Speisern Cellulosefasern eingesetzt; diese zeichnen sich durch ihr geringes Gewicht aus.The use of organic fiber materials causes, as already mentioned above, an additional reinforcement of the insulating feeder according to the invention, which is desired in many cases. Cellulose fibers are preferably used in insulating feeders according to the invention; These are characterized by their low weight.

Vorzugsweise liegt die Faserlänge der eingesetzten Cellulosefasern dabei im Bereich von 30 - 800 µm.The fiber length of the cellulose fibers used is preferably in the range of 30-800 μm.

Ein erfindungsgemäßer isolierender Speiser umfasst ausgehärtetes Bindemittel. Vorzugsweise ist dieses ausgehärtete Bindemittel das Aushärtungsprodukt eines Bindemittels, welches ausgewählt ist aus der Gruppe bestehend aus: Duroplastbildner, Silikatbildner und Stärke, vorzugsweise aus der Gruppe bestehend aus: Resitbildner, Nanokomposit-Binder (Zubereitung aus teilweise hydrolysierten Kieselsäureestern und Silanen) Wasserglas, Stärke.An insulating feeder according to the invention comprises cured binder. Preferably, this cured binder is the curing product of a binder which is selected from the group consisting of: Duroplastbildner, silicate and starch, preferably from the group consisting of: Resitbildner, nanocomposite binder (preparation of partially hydrolyzed silicic acid esters and silanes) water glass, starch.

Stärke wird als Bindemittel vorzugsweise dann eingesetzt, wenn zur Herstellung des erfindungsgemäßen isolierenden Speisers das Grünstand- oder das Slurry-verfahren (Filterschlickerverfahren) eingesetzt werden soll. Im Slurry-Verfahren fördert der Einsatz von Stärke das Schwebeverhalten, wirkt also einer Entmischung entgegen, im Grünstandverfahren führt der Einsatz von Stärke zu der erforderlichen Grünstandfestigkeit. Es können insbesondere aufgeschlossene native sowie modifizierte Stärken eingesetzt werden.Starch is preferably used as a binder if the green state or slurry process (filter slurry process) is to be used to produce the insulating feeder according to the invention. In the slurry process, the use of starch promotes the floating behavior, thus counteracts segregation, in the green state process, the use of starch leads to the required green state stability. In particular, digested native and modified starches can be used.

Als Bindemittel-Komponente können bevorzugt auch Phenolharze eingesetzt werden. Bevorzugte Phenolharze sind mit Hexamethylentetramin vermahlene Phenolnovolake wie die des Typs Resital® (Produkt von Hüttenes-Albertus) und Supraplast-Novolake (Produkt von Süd-West-Chemie).Phenol resins can also be used as binder component. Preferred phenolic resins are milled with hexamethylenetetramine phenol novolaks like those of the type Resital ® (product of Hüttenes-Albertus) and Supraplast novolaks (product of South-West-Chemie).

Als Bindemittel-Komponente ebenfalls bevorzugt ist Melamin. Insbesondere ist es bevorzugt, Melamin und Formaldehyd gemeinsam mit anderen gegenüber Aldehyden reaktiven Verbindungen wie Phenolen einzusetzen. Es bilden sich dann Melamin-Phenol-Formaldehyd-Harze (MPF-Harze). Bevorzugt ist z. B. der Einsatz einer Mischung aus einem mit Hexamethylentetramin vermahlenen Phenolnovolak und Melamin.Also preferred as the binder component is melamine. In particular, it is preferred to use melamine and formaldehyde together with other aldehyde-reactive compounds such as phenols. It then form melamine-phenol-formaldehyde resins (MPF resins). Preferably z. Example, the use of a mixture of a ground with hexamethylenetetramine phenolic novolac and melamine.

Nanokomposit-Binder sind zur Herstellung eines erfindungsgemäßen isolierenden Speisers besonders bevorzugt. Als Nanokomposit-Bindemittel können insbesondere Zubereitungen aus teilweise hydrolysierten Kieselsäureestern und Silanen eingesetzt werden. Ebenfalls eingesetzt werden können die NanokompositBindemittel, wie sie in der DE 196 47 369 A1 sowie WO 98/22241 beschrieben sind. Unter der Bezeichnung DYNASIL® (Degussa) sind als Nanokomposit-Binder geeignete Kieselsäureester im Handel erhältlich, vgl. die Beispiele 4 und 5, unten.Nanocomposite binders are particularly preferred for the preparation of an insulating feeder according to the invention. Preparations of partially hydrolyzed silicic acid esters and silanes can be used in particular as nanocomposite binders. It is also possible to use the nanocomposite binders as described in US Pat DE 196 47 369 A1 such as WO 98/22241 are described. Under the name DYNASIL ® (Degussa) are available as nanocomposite binders suitable Kieselsäureester commercially, see. Examples 4 and 5 below.

Ein erfindungsgemäßer isolierender Speiser umfasst neben Glashohlkugeln, keramischen Hohlkugeln und gegebenenfalls Fasermaterial in manchen Fällen noch weitere Materialien, die sich als Füllmaterial bezeichnen lassen. Vorteilhaft ist z. B. bei Einsatz eines Nanokomposit-Binders die Anwesenheit biogener Kieselsäure, die z. B. in Form von Reisschalenasche vorliegen kann (z. B. erhältlich unter der Bezeichnung Silimat®G der Firma Refratechnik). Als sonstige Füllmaterialien können aber z. B. auch Kaolin, Sand, Schamotte und/oder Koksgrieß sowie feindisperse, inerte Metalloxide wie die des Titan, Aluminium oder Silizium eingesetzt werden.An insulating feeder according to the invention comprises, in addition to hollow glass spheres, ceramic hollow spheres and, if appropriate, fibrous material, in some cases further materials which may be referred to as filler material. It is advantageous z. B. when using a nanocomposite binder, the presence of biogenic silica, the z. Can, in the form of rice husk ash are present (eg. As sold under the name Silimat ® G the company Refratechnik). As other fillers but z. As well as kaolin, sand, chamotte and / or coke, and finely dispersed, inert metal oxides such as those of titanium, aluminum or silicon are used.

Hinsichtlich der bevorzugten Verwendung von Reisschalenasche sei darauf hingewiesen, dass diese biogene Kieselsäure ein bevorzugtes Substrat für Nanokomposit-Binder ist, sich durch ein sehr niedriges Gewicht auszeichnet und sich gegenüber den weiteren Komponenten während der Speiser-Herstellung und des Abgießens inert verhält.With regard to the preferred use of rice husk ash, it should be noted that this biogenic silica is a preferred substrate for nanocomposite binders is characterized by a very low weight and inert to the other components during the feeder production and pouring.

In bevorzugten erfindungsgemäßen isolierenden Speisern besitzen die keramischen Hohlkugeln eine Schüttdichte von weniger als 0,5 g/cm3. Die Dichte erfindungsgemäßer isolierender Speiser ist vorzugsweise kleiner als 0,6 g/cm3.In preferred insulating feeders according to the invention, the ceramic hollow spheres have a bulk density of less than 0.5 g / cm 3 . The density of insulating feeders according to the invention is preferably less than 0.6 g / cm 3 .

Gemäß einem weiteren Aspekt betrifft die vorliegende Erfindung ein Verfahren zur Herstellung eines erfindungsgemäßen Speisers (vorzugsweise in einer seiner bevorzugten Ausgestaltungen). Ein erfindungsgemäßes Herstellverfahren umfasst die folgenden Schritte:

  • Mischen von keramischen Hohlkugeln, Glas-Hohlkugeln mit einer Schüttdichte kleiner 0,3 g/cm3, Bindemittel, Wasser sowie gegebenenfalls Fasermaterial und/oder sonstiges Füllmaterial,
  • Formen der Mischung zu einem Speiser,
  • Aushärten des geformten Speisers.
According to a further aspect, the present invention relates to a method for producing a feeder according to the invention (preferably in one of its preferred embodiments). A manufacturing method according to the invention comprises the following steps:
  • Mixing of ceramic hollow spheres, glass hollow spheres with a bulk density of less than 0.3 g / cm 3 , binder, water and optionally fibrous material and / or other filling material,
  • Forming the mixture into a feeder,
  • Curing the molded feeder.

Der Schritt des Formens erfolgt dabei vorzugsweise nach dem Slurry-Verfahren oder dem Grünstandverfahren.The step of molding is preferably carried out by the slurry process or the green state process.

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert:The invention will be explained in more detail below on the basis of exemplary embodiments:

Dabei gilt in den Beispielen: "Keramische Hohlkugeln": Schüttdichte: ca. 400 g/l
Körnung: 20 - 250 µm
"Glashohlkugeln": Schüttdichte: ca. 120 g/l
Körnung: 20 - 170 µm
"Dynasil XAR": laut Herstellerangaben eine Zubereitung aus: Kieselsäure, Tetraethylester, hydrolysiert, 2-Propanol; Tetraethylsilikat "Phenolharz": Resital® CR 41, Produkt von Hüttenes-Albertus
The following applies in the examples: "Ceramic Hollow Balls": Bulk density: approx. 400 g / l
Grain size: 20 - 250 μm
"Glass bubbles": Bulk density: approx. 120 g / l
Grain size: 20 - 170 μm
"Dynasil XAR": according to the manufacturer's instructions, a preparation of: Silica, tetraethyl ester, hydrolyzed, 2-propanol; tetraethyl "Phenolic resin" Resital® CR 41, product of Hüttenes-Albertus

Beispiel 1 (faserfreie Grünstandsmasse):Example 1 (fiber-free green mass):

Es wurde eine formbare Isoliermasse hergestellt aus Kaolin 6 GT Stärkebinder 6 GT Keramische Hohlkugeln 54 GT Glashohlkugeln 19 GT Phenolharz 15 GT Wasser 35 GT (GT bedeutet dabei hier und nachfolgend Gewichtsteile.) It was made from a malleable insulating kaolin 6 GT starch binders 6 GT Ceramic hollow spheres 54 GT Hollow glass spheres 19 GT phenolic resin 15 GT water 35 GT (GT means here and below parts by weight.)

Die formbare Isoliermasse wurde nach dem Grünstandverfahren zu einer Speiserkappe geformt und das Bindemittel (Phenolharz) ausgehärtet. Die isolierende Speiserkappe wurde beim Abgießen eines Gusstücks aus Eisen eingesetzt. Es wurde ein qualitativ hochwertiges Gussstück erhalten.The moldable insulating was formed by the green state method to a feeder cap and the binder (phenolic resin) cured. The insulating feeder cap was used when pouring a cast iron piece. It was obtained a high quality casting.

Die Dichte der isolierenden Speiserkappe betrug 0,55 g/cm3.The density of the insulating feeder cap was 0.55 g / cm 3 .

Beispiel 2 (Slurry-Masse):Example 2 (slurry mass):

Kaolinkaolin 16 GT16 GT Cellulosefasercellulose fiber 6 GT6 GT Keramische HohlkugelnCeramic hollow spheres 37 GT37 GT GlashohlkugelnHollow glass spheres 6 GT6 GT ReisschalenascheRice husk ash 15 GT15 GT Phenolharzphenolic resin 15 GT15 GT Melaminmelamine 5 GT5 GT Wasserwater 180 GT180 GT

Die formbare Isoliermasse wurde nach dem Slurry-Verfahren zu einer Speiserkappe geformt und das Bindemittel (Phenolharz) ausgehärtet. Die isolierende Speiserkappe wurde beim Abgießen eines Gusstücks aus Eisen eingesetzt. Es wurde ein qualitativ hochwertiges Gussstück erhalten.The mouldable insulating compound was formed into a feeder cap by the slurry process and the binder (phenolic resin) was cured. The insulating feeder cap was used when pouring a cast iron piece. It was obtained a high quality casting.

Die Dichte der isolierenden Speiserkappe betrug 0,4 g/cm3.The density of the insulating feeder cap was 0.4 g / cm 3 .

Beispiel 3 (Slurry-Masse):Example 3 (slurry mass):

Kaolinkaolin 5 GT5 GT Cellulosefasercellulose fiber 5 GT5 GT Keramische HohlkugelnCeramic hollow spheres 35 GT35 GT GlashohlkugelnHollow glass spheres 20 GT20 GT ReisschalenascheRice husk ash 5 GT5 GT Phenolharzphenolic resin 25 GT25 GT Melaminmelamine 5 GT5 GT Wasserwater 200 GT200 GT

Die formbare Isoliermasse wurde nach dem Slurry-Verfahren zu einer Speiserkappe geformt und das Bindemittel (Phenolharz) ausgehärtet. Die isolierende Speiserkappe wurde beim Abgießen eines Gusstücks aus Eisen eingesetzt. Es wurde ein qualitativ hochwertiges Gussstück erhalten.The mouldable insulating compound was formed into a feeder cap by the slurry process and the binder (phenolic resin) was cured. The insulating feeder cap was used when pouring a cast iron piece. It was obtained a high quality casting.

Die Dichte der isolierenden Speiserkappe betrug 0,3 g/cm3.The density of the insulating feeder cap was 0.3 g / cm 3 .

Beispiel 4 (Grünstandsmasse):Example 4 (green mass):

Kaolinkaolin 5 GT5 GT Cellulosefasercellulose fiber 5 GT5 GT Keramische HohlkugelnCeramic hollow spheres 35 GT35 GT GlashohlkugelnHollow glass spheres 20 GT20 GT ReisschalenascheRice husk ash 5 GT5 GT Nanokomposit-Binder (Dynasil XAR, Degussa)Nanocomposite binders (Dynasil XAR, Degussa) 85 GT85 GT Wasserwater 0 GT0 GT

Die formbare Isoliermasse wurde nach dem Grünstandverfahren zu einer Speiserkappe geformt und das Bindemittel (Phenolharz) ausgehärtet. Die isolierende Speiserkappe wurde beim Abgießen eines Gusstücks aus Eisen eingesetzt. Es wurde ein qualitativ hochwertiges Gussstück erhalten.The moldable insulating was formed by the green state method to a feeder cap and the binder (phenolic resin) cured. The insulating feeder cap was used when pouring a cast iron piece. It was obtained a high quality casting.

Die Dichte der isolierenden Speiserkappe betrug 0,3 g/cm3.The density of the insulating feeder cap was 0.3 g / cm 3 .

Beispiel 5 (Filterschlickermasse):Example 5 (filter slurry mass):

Kaolinkaolin 5 GT5 GT Cellulosefasercellulose fiber 5 GT5 GT Keramische HohlkugelnCeramic hollow spheres 35 GT35 GT GlashohlkugelnHollow glass spheres 20 GT20 GT ReisschalenascheRice husk ash 5 GT5 GT Nanokomposit-Binder (Dynasil XAR, Degussa)Nanocomposite binders (Dynasil XAR, Degussa) 85 GT85 GT Wasserwater 100 GT100 GT

Die formbare Isoliermasse wurde nach dem Slurry-Verfahren zu einer Speiserkappe geformt und das Bindemittel (Phenolharz) ausgehärtet. Die isolierende Speiserkappe wurde beim Abgießen eines Gusstücks aus Eisen eingesetzt. Es wurde ein qualitativ hochwertiges Gussstück erhalten.The mouldable insulating compound was formed into a feeder cap by the slurry process and the binder (phenolic resin) was cured. The insulating feeder cap was used when pouring a cast iron piece. It was obtained a high quality casting.

Die Dichte der isolierenden Speiserkappe betrug 0,3 g/cm3.The density of the insulating feeder cap was 0.3 g / cm 3 .

Beispiel 6: Untersuchungen zum Erstarrungsverhalten:Example 6: Studies on the solidification behavior:

Es wurden insgesamt vier Isoliermassen-Mischungen hergestellt (Mischungen 1, 2, 3 und 4) und zur Herstellung von Speiserkappen eingesetzt. Die Mischungen 1 und 2 wurden dabei nach dem Slurry-Verfahren hergestellt, die Mischungen 3 und 4 nach dem Grünstand-Verfahren. Die Mischungen 1 und 3 sind dabei zur Herstellung erfindungsgemäßer Speiser vorgesehen, insbesondere enthalten sie Glashohlkugeln mit einer Schichtdichte von weniger als 0,3 g/cm3. Die Mischungen 2 und 4 sind zur Herstellung von Vergleichsspeisern vorgesehen; sie enthalten keine Glashohlkugeln.A total of four insulating compounds mixtures were prepared (mixtures 1, 2, 3 and 4) and used for the production of feeder caps. The mixtures 1 and 2 were produced by the slurry process, and the mixtures 3 and 4 by the green state process. The mixtures 1 and 3 are provided for producing feeders according to the invention, in particular they contain glass hollow spheres with a layer density of less than 0.3 g / cm 3 . The mixtures 2 and 4 are intended for the production of comparative feeders; they do not contain glass bubbles.

Die Rezepturen der Isoliermassen zur Herstellung von Speiserkappen nach dem Slurry-Verfahren lassen sich der nachfolgenden Tabelle 1 entnehmen. Mischung 1 (erf.-gem.) Mischung 2 (Vergleich) Kaolin 5 GT 5 GT Cellulosefasern 5 GT 5 GT Keramische Hohlkugeln 42 GT 67 GT Glashohlkugeln 25 GT ----- Reisschalenasche 5 GT 5 GT Phenolharz 15 GT 11 GT Melamin 3 GT 2 GT Wasser 185 GT 150 GT The formulations of the insulating compositions for the production of feeder caps by the slurry process can be found in Table 1 below. Mixture 1 (erf.-gem.) Mix 2 (comparison) kaolin 5 GT 5 GT cellulose fibers 5 GT 5 GT Ceramic hollow spheres 42 GT 67 GT Hollow glass spheres 25 GT ----- Rice husk ash 5 GT 5 GT phenolic resin 15 GT 11 GT melamine 3 GT 2 GT water 185 GT 150 GT

Die Speiserkappen auf Basis der Mischungen 1 und 2 wurden nach dem Slurry-Verfahren hergestellt. Hierzu wurde das Wasser in einem Gefäß vorgelegt und mit dem Kaolin, dem Phenolharz und Melamin homogen verrührt. Anschließend wurden die weiteren Komponenten der Isoliermassen unter fortgesetztem Rühren portionsweise zugegeben, bis eine gleichmäßige Schlickermasse vorlag. Diese Schlickermasse wurde in einem Werkzeug abgesaugt. Die so hergestellten Speiserkappen wurden anschließend bei 180° C getrocknet.The feeder caps based on the mixtures 1 and 2 were prepared by the slurry process. For this purpose, the water was placed in a vessel and stirred homogeneously with the kaolin, the phenolic resin and melamine. Subsequently, the other components of the insulating materials were added in portions with continued stirring until a uniform slip mass was present. This slip mass was sucked off in a tool. The feeder caps thus prepared were then dried at 180 ° C.

Die Rezepturen der Isoliermassen zur Herstellung von Speiserkappen nach dem Grünstand-Verfahren lassen sich der nachfolgenden Tabelle 2 entnehmen. Mischung 3 (erf.-gem.) Mischung 4 (Vergleich) Kaolin 5 GT 5 GT Stärkebinder 5 GT 5 GT Keramische Hohlkugeln 42 GT 67 GT Glashohlkugeln 25 GT ----- Reisschalenasche 5 GT 5 GT Phenolharz 15 GT 11 GT Melamin 3 GT 2 GT Wasser 35 GT 25 GT The formulations of the insulating compositions for the production of feeder caps according to the green state method can be found in the following Table 2. Mixture 3 (erf.-gem.) Mix 4 (comparison) kaolin 5 GT 5 GT starch binders 5 GT 5 GT Ceramic hollow spheres 42 GT 67 GT Hollow glass spheres 25 GT ----- Rice husk ash 5 GT 5 GT phenolic resin 15 GT 11 GT melamine 3 GT 2 GT water 35 GT 25 GT

Aus den Mischungen 3 und 4 wurden nach dem Grünstand-Verfahren Speiserkappen hergestellt. Hierzu wurde aus allen Komponenten außer Wasser eine weitgehend homogene Pulvermischung hergestellt. In einem Labormischer wurde anschließend das Wasser zugegeben. Nach etwa 2 Minuten Mischzeit lag eine gebrauchsfertige Mischung vor, aus der Speiserkappen gestampft und anschließend bei 180°C getrocknet wurden.From the mixtures 3 and 4, feeder caps were produced by the green state method. For this purpose, a largely homogeneous powder mixture was prepared from all components except water. The water was then added in a laboratory mixer. After a mixing time of about 2 minutes, a ready-to-use mixture was present, from which feeders were mashed and then dried at 180.degree.

Die auf Basis der Mischungen 1, 2, 3 und 4 hergestellten Speiserkappen wurden anschließend mit einer Standardlegierung des Typs AI Si10Mg bei einer Abgießtemperatur von ca. 850°C abgegossen. Es wurden Erstarrungskurven aufgenommen, die in den beigefügten Figuren 1 und 2 wiedergegeben sind. Fig. 1 zeigt die Erstarrungskurven für die Speiserkappen auf Basis der Mischungen 1 und 2, Fig. 2 zeigt die Erstarrungskurven für die Speiserkappen auf Basis der Mischungen 3 und 4. In beiden Fig. 1 und 2 ist zu erkennen, dass die Speiserkappen auf Basis der erfindungsgemäßen Mischungen 1 bzw. 3 eine längere Erstarrungszeit im Vergleich mit den nicht-erfindungsgemäßen Speiserkappen auf Basis der Mischungen 2 und 4 besitzen.The feeder caps produced on the basis of mixtures 1, 2, 3 and 4 were then poured off with a standard alloy of the type AI Si10Mg at a casting temperature of about 850 ° C. There were solidification curves included in the attached FIGS. 1 and 2 are reproduced. Fig. 1 shows the solidification curves for the feeder caps based on the mixtures 1 and 2, Fig. 2 shows the solidification curves for the feeder caps based on mixtures 3 and 4. In both Fig. 1 and 2 It can be seen that the feeder caps based on the mixtures 1 and 3 according to the invention have a longer solidification time in comparison with the non-inventive feeder caps based on the mixtures 2 and 4.

Die durchgeführten Untersuchungen zeigen somit, dass die erfindungsgemäßen Speiserkappen gegenüber Speiserkappen, welche keine Glashohlkugeln umfassen, überlegen sind. In diesem Zusammenhang ist darauf hinzuweisen, dass auf Grund der Abwesenheit von Glashohlkugeln in den Mischungen 2 und 4 geringfügige Anpassungen in den Rezepturen hinsichtlich der Komponenten Phenolharz, Melamin und Wasser vorgenommen werden mussten, um stabile Speiserkappen herstellen zu können. Diese geringfügigen Abweichungen sind nicht verantwortlich für die unterschiedlichen Erstarrungszeiten nichterfindungsgemäßer und erfindungsgemäßer Speiserkappen.The investigations carried out thus show that the feeder caps according to the invention are superior to feeder caps, which do not comprise glass hollow spheres. In this context, it should be noted that due to the absence of glass bubbles in mixtures 2 and 4, minor adjustments had to be made in the formulas with respect to phenolic resin, melamine and water components in order to produce stable feeder caps. These minor deviations are not responsible for the different solidification times of non-inventive and inventive feeder caps.

Claims (8)

  1. Insulating feeder for use in the foundry industry, comprising
    - ceramic hollow spheres,
    - glass hollow spheres having a bulk density of less than 0.3 g/cm3 for insulating,
    - cured binder,
    - optionally fibre material,
    wherein the ratio by weight of ceramic hollow spheres to glass hollow spheres having a bulk density of less than 0.3 g/cm3 is in the range of from 1:1 to 10:1, preferably in the range of from 2:1 to 6:1 and
    wherein the total amount of glass hollow spheres and ceramic hollow spheres is in the range of from 40 to 80 % by weight, preferably in the range of from 40 to 60 % by weight, based on the total mass of the feeder.
  2. Feeder according to the preceding claim, wherein the total amount of glass hollow spheres and ceramic hollow spheres on the feeder is in the range of from 40 to 60 % by weight and the amount of cured binder is preferably in the range of from 15 to 35 % by weight, based on the total mass of the feeder.
  3. Feeder according to either of the preceding claims, wherein the feeder cap comprises organic fibre material and/or no inorganic fibre materials.
  4. Feeder according to any one of the preceding claims, wherein the cured binder is the curing product of a binder selected from the group consisting of: thermoset formers, silicate formers, starch, preferably from the group consisting of: resite formers, nanocomposite binders (prepared from partially hydrolysed silicic acid esters and silanes), water glass, starch.
  5. Feeder according to any one of the preceding claims, additionally comprising one or more other filling materials, preferably selected from the group consisting of: biogenic silica (for example rice husk ash), kaolin, sand, chamotte and coke breeze.
  6. Feeder according to any one of the preceding claims, wherein the ceramic hollow spheres have a bulk density of less than 0.5 g/cm3.
  7. Process for producing a feeder according to any one of Claims 1 to 6, including the following steps:
    - mixing of ceramic hollow spheres, glass hollow spheres having a bulk density of less than 0.3 g/cm3, binder, water and optionally fibre material and/or other filling material,
    - shaping of the mixture to form a feeder,
    - curing of the shaped feeder.
  8. Process according to Claim 7, wherein the shaping step is carried out using the slurry process or the green bonding process.
EP06114893A 2005-06-04 2006-06-02 Insulated feeder head and method of making same Not-in-force EP1728571B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL06114893T PL1728571T3 (en) 2005-06-04 2006-06-02 Insulated feeder head and method of making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005025771A DE102005025771B3 (en) 2005-06-04 2005-06-04 Insulating feeder and process for its preparation

Publications (2)

Publication Number Publication Date
EP1728571A1 EP1728571A1 (en) 2006-12-06
EP1728571B1 true EP1728571B1 (en) 2008-09-17

Family

ID=36677191

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06114893A Not-in-force EP1728571B1 (en) 2005-06-04 2006-06-02 Insulated feeder head and method of making same

Country Status (6)

Country Link
EP (1) EP1728571B1 (en)
AT (1) ATE408467T1 (en)
DE (2) DE102005025771B3 (en)
ES (1) ES2313559T3 (en)
PL (1) PL1728571T3 (en)
PT (1) PT1728571E (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2727488C1 (en) * 2016-06-30 2020-07-21 Рефратехник Холдинг Гмбх Use of heat-insulating molded element for insulation of metal melts from atmosphere or for insulation of metallurgical vessel
DE102020131492A1 (en) 2020-11-27 2022-06-02 Chemex Foundry Solutions Gmbh Manufacturing process, casting moulds, cores or feeders as well as kit and process for producing a metal casting.

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007012489A1 (en) * 2007-03-15 2008-09-25 AS Lüngen GmbH Composition for the production of feeders
DE102007012660B4 (en) 2007-03-16 2009-09-24 Chemex Gmbh Core-shell particles for use as filler for feeder masses
DE102011079692A1 (en) 2011-07-22 2013-01-24 Chemex Gmbh Feeders and moldable compositions for their preparation
DE102012200967A1 (en) 2012-01-24 2013-07-25 Chemex Gmbh Polyurethane cold box bonded feeder and polyurethane cold box bonded feeder component used in foundry industry, contain calcined kieselguhr, hardened polyurethane cold box resin and optionally fiber material and oxidizable metal
CN103480826B (en) * 2012-12-20 2016-03-02 江苏凯特汽车部件有限公司 A kind of pressure cast aluminum-alloy wheel thermal-insulation ceramic cup capable
DE102016202795A1 (en) 2016-02-23 2017-08-24 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Use of a composition as a binder component for the preparation of feeder elements by the cold-box process, corresponding processes and feeder elements
DE102016205960A1 (en) 2016-04-08 2017-10-12 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Use of closed-pore microballs of expanded perlite as a filler for the production of moldings for the foundry industry
DE102016211948A1 (en) 2016-06-30 2018-01-04 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Core-shell particles for use as filler for feeder masses
CN114918376B (en) * 2022-06-10 2024-04-16 禹州市恒利来新材料股份有限公司 Production process of exothermic heat-insulating riser sleeve by using sinking bead heat-insulating material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2053765A1 (en) * 1969-11-04 1971-05-13 G Hutmacher & Co Dr Insulating material for lining chill tops
DE2121353A1 (en) * 1971-04-30 1972-11-09 Baur, Eduard, Dipl.-Ing., 5256 Waldbruch Casting mould riser insert - made from globular insulating material giving improved casting
GB9308363D0 (en) * 1993-04-22 1993-06-09 Foseco Int Refractory compositions for use in the casting of metals
DE19617938A1 (en) * 1996-04-27 1997-11-06 Chemex Gmbh Feeder inserts and their manufacture
DE19647368A1 (en) * 1996-11-15 1998-05-20 Inst Neue Mat Gemein Gmbh Composites
DE19647369A1 (en) * 1996-11-15 1998-05-20 Inst Neue Mat Gemein Gmbh Composites
DE10065270B4 (en) * 2000-12-29 2006-04-20 Chemex Gmbh Feeders and compositions for their preparation
DE10104289B4 (en) * 2001-01-30 2004-11-11 Chemex Gmbh Formable exothermic compositions and feeders made therefrom

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2727488C1 (en) * 2016-06-30 2020-07-21 Рефратехник Холдинг Гмбх Use of heat-insulating molded element for insulation of metal melts from atmosphere or for insulation of metallurgical vessel
DE102020131492A1 (en) 2020-11-27 2022-06-02 Chemex Foundry Solutions Gmbh Manufacturing process, casting moulds, cores or feeders as well as kit and process for producing a metal casting.
WO2022112515A1 (en) 2020-11-27 2022-06-02 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Production method, casting moulds, cores or feeders and kit and method for production of a metallic casting
US12059724B2 (en) 2020-11-27 2024-08-13 Hüttenes-Albertus Chemische Werke Beschränkter Haftung Production method, casting moulds, cores or feeders and kit and method for production of a metallic casting

Also Published As

Publication number Publication date
PL1728571T3 (en) 2009-03-31
DE102005025771B3 (en) 2006-12-28
EP1728571A1 (en) 2006-12-06
DE502006001576D1 (en) 2008-10-30
ES2313559T3 (en) 2009-03-01
PT1728571E (en) 2008-12-02
ATE408467T1 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
EP1728571B1 (en) Insulated feeder head and method of making same
EP2734321B1 (en) Feeder and shapeable composition for production thereof
EP1934001B1 (en) Borosilicate glass-containing molding material mixtures
EP2139626B1 (en) Core-sheath particle for use as a filler for feeder masses
EP2916976B1 (en) Method for producing lost cores or molded parts for the production of cast parts
DE69917172T2 (en) Exothermic body for foundry purposes
DE102007012489A1 (en) Composition for the production of feeders
EP3478427A1 (en) Core-shell particles for use as a filler for feeder compositions
EP1868753B1 (en) Exothermic and insulating feeder insert have high gas permeability
DE102012200967A1 (en) Polyurethane cold box bonded feeder and polyurethane cold box bonded feeder component used in foundry industry, contain calcined kieselguhr, hardened polyurethane cold box resin and optionally fiber material and oxidizable metal
DE10262015B3 (en) Process for the production of an opaque quartz glass composite
EP3600717B1 (en) Mould material mixture containing additives for reducing casting defects or as release agent
DE10243954B3 (en) Manufacture of opaque quartz glass composite material, used as starting material of permanent shaping-die manufacture of solar silicon melting, involves forming composite slip by mixing quartz glass granules and homogenous base slip
EP2308614B1 (en) Green aerosand
DE102006021151A1 (en) Core material of clay-containing sand containing aerogelsand
DE60220841T2 (en) SLEEVE, MANUFACTURING PROCESS THEREOF AND MIXTURE FOR THE MANUFACTURE THEREOF
EP1228128B1 (en) Resol based binding agent containing aluminium and boron
DE10104289B4 (en) Formable exothermic compositions and feeders made therefrom
EP0313737B1 (en) Process for the production of carbon bound refractory mouldings and mouldings produced according to this process
DE2941606C2 (en) Thermal insulation body and a method for its production
EP1850986A2 (en) Use of poorly soluble salts in combination with liquid glass for producing moulds and cores used in casting methods
DE19920570B4 (en) Moldable exothermic compositions and feed therefrom
EP2853320A1 (en) Casting mould or a casting mould core made from coated mould sand for metal casting
DE102008062155A1 (en) Ceramic mass for producing a sintered body that is solidifiable in a pressureless thermal treatment, comprises hexagonal boron nitride, and nano-scale powder of silicon and aluminum based on oxides, hydroxides, oxyhydrates or compounds
EP2982462B1 (en) Nitride bonded silicon nitride as a material for aluminium foundry components

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070122

17Q First examination report despatched

Effective date: 20070222

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. AG PATENT- UND MARKENANWAELTE VSP

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006001576

Country of ref document: DE

Date of ref document: 20081030

Kind code of ref document: P

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20081119

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2313559

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090117

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

26N No opposition filed

Effective date: 20090618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BG

Payment date: 20120620

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20120528

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120628

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20120529

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120620

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20130620

Year of fee payment: 8

Ref country code: CH

Payment date: 20130621

Year of fee payment: 8

Ref country code: GB

Payment date: 20130620

Year of fee payment: 8

Ref country code: SK

Payment date: 20130522

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130624

Year of fee payment: 8

Ref country code: FI

Payment date: 20130619

Year of fee payment: 8

Ref country code: PL

Payment date: 20130509

Year of fee payment: 8

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20131202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20140522

Year of fee payment: 9

Ref country code: NL

Payment date: 20140618

Year of fee payment: 9

Ref country code: TR

Payment date: 20140529

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140618

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140617

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140603

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140602

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 408467

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140602

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140602

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 4767

Country of ref document: SK

Effective date: 20140602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140602

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140602

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140602

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140602

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150803

REG Reference to a national code

Ref country code: PL

Ref legal event code: LAPE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140603

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150702

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150602

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006001576

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150602