EP1720505A2 - Compression apparatus - Google Patents

Compression apparatus

Info

Publication number
EP1720505A2
EP1720505A2 EP05723526A EP05723526A EP1720505A2 EP 1720505 A2 EP1720505 A2 EP 1720505A2 EP 05723526 A EP05723526 A EP 05723526A EP 05723526 A EP05723526 A EP 05723526A EP 1720505 A2 EP1720505 A2 EP 1720505A2
Authority
EP
European Patent Office
Prior art keywords
foot
layer
compression apparatus
strap
recited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05723526A
Other languages
German (de)
French (fr)
Other versions
EP1720505B1 (en
Inventor
Heather Gillis
Kristin Watson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien LP
Original Assignee
Tyco Healthcare Group LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/784,604 external-priority patent/US7282038B2/en
Priority claimed from US10/784,607 external-priority patent/US7871387B2/en
Priority claimed from US10/784,639 external-priority patent/US7490620B2/en
Priority claimed from US10/784,323 external-priority patent/US7354410B2/en
Application filed by Tyco Healthcare Group LP filed Critical Tyco Healthcare Group LP
Priority to PL05723526T priority Critical patent/PL1720505T3/en
Publication of EP1720505A2 publication Critical patent/EP1720505A2/en
Application granted granted Critical
Publication of EP1720505B1 publication Critical patent/EP1720505B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H23/00Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms
    • A61H23/04Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms with hydraulic or pneumatic drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H9/00Pneumatic or hydraulic massage
    • A61H9/005Pneumatic massage
    • A61H9/0078Pneumatic massage with intermittent or alternately inflated bladders or cuffs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/1645Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support contoured to fit the user
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1683Surface of interface
    • A61H2201/169Physical characteristics of the surface, e.g. material, relief, texture or indicia
    • A61H2201/1697Breathability of the material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5002Means for controlling a set of similar massage devices acting in sequence at different locations on a patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5007Control means thereof computer controlled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5071Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2205/00Devices for specific parts of the body
    • A61H2205/06Arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2205/00Devices for specific parts of the body
    • A61H2205/10Leg
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2205/00Devices for specific parts of the body
    • A61H2205/12Feet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2209/00Devices for avoiding blood stagnation, e.g. Deep Vein Thrombosis [DVT] devices

Definitions

  • the present disclosure generally relates to the field of vascular therapy for application to a limb of a body, and more particularly, to a compression apparatus configured to artificially stimulate blood vessels of the limb.
  • a major concern for immobile patients and persons alike are medical conditions that form clots in the blood, such as, deep vein thrombosis (DVT) and peripheral edema.
  • DVT deep vein thrombosis
  • Such patients and persons include those undergoing surgery, anesthesia and extended periods of bed rest.
  • These blood clotting conditions generally occur in the deep veins of the lower extremities and/or pelvis.
  • These veins such as the iliac, femoral, popiteal and tibial return deoxygenated to the heart.
  • a static pool of blood is ideal for clot formations.
  • a major risk associated with this condition is interference with cardiovascular circulation. Most seriously, a fragment of the blood clot can break loose and migrate.
  • a pulmonary emboli can form blocking a main pulmonary artery, which may be life threatening.
  • the conditions and resulting risks associated with patient immobility may be controlled or alleviated by applying intermittent pressure to a patient's limb, such as, for example, portions of a leg and foot to assist in blood circulation.
  • a patient's limb such as, for example, portions of a leg and foot to assist in blood circulation.
  • Known devices have been employed to assist in blood circulation, such as, one piece pads and compression boots. See, for example, U.S. Patent Nos. 4,696,289 and 5,989,204.
  • Compression devices that consist of an air pump connected to a disposable wraparound pad by one or more air tubes have been used.
  • the wraparound pad is placed around the patient's foot or other extremity. Air is then forced into the wraparound pad creating pressure around the parts of the foot or other extremity.
  • These known devices may suffer from various drawbacks due to their bulk, cumbersome nature of use, potential for contamination and irritation to the extremity during application and use. These drawbacks reduce comfort, compliance, cause skin breakdown and may disadvantageously prevent mobility of the patient as recovery progresses after surgery.
  • a compression apparatus including the foot sleeve reduces bulk and is not cumbersome during use to improve comfort and compliance to a patient. It is further contemplated that the compression apparatus is easily and efficiently manufactured.
  • a compression apparatus that prevents contamination, mitigates the incidence of skin breakdown and facilitates disposal with an extremity for overcoming the disadvantages and drawbacks of the prior art.
  • a compression apparatus including the foot sleeve reduces bulk and is not cumbersome during use to improve comfort and compliance to a patient.
  • the compression apparatus is easily and efficiently fabricated.
  • the embodiments of the compression apparatus are configured to provide vascular therapy, including for example the prevention of deep vein thrombosis ("DVT") by artificially stimulating blood vessels throughout the foot of a patient, including the toes and the heel, to increase blood circulation for patients.
  • the compression apparatus according to the present disclosure is an intermittent pneumatic compression device for applying slow compression to a foot. Such pressure simulates blood flow that would normally result from, for example, walking, by employing a foot sleeve that is supported about a foot of a patient.
  • the compression apparatus may have an inflatable bladder designed to cover and engage the entire area of the bottom of the foot, beyond the heel and ball to a substantial portion of the toes.
  • the inflatable bladder wraps about the side portions of the foot via a hook and loop type connector flap that transverses the instep of the foot.
  • the inflatable bladder may include an outside layer and an inside layer. The bladder can be formed by welding the outside layer and the inside layer together. The bladder provides a uniform application of pressure to the entire foot and is then deflated.
  • the compression apparatus may include bladder sections that are capable of enabling venous refill detection.
  • the compression apparatus according to the present disclosure includes various embodiments and combinations as will be appreciated herein. The various embodiments and combinations may each be manufactured in various sizes to accommodate subjects of varying sizes as well as right and left foot models.
  • the compression apparatus includes a strap that improves comfort by using a single piece laminate structure whose inside layer is a cushioning layer.
  • the strap is integrated with a foot sleeve by sandwiching the strap between separate layers of the foot sleeve body.
  • the comfort to the patient may be improved by segmenting the strap to contour about the heel of the foot.
  • the strap can also include one or more layers configured to provide a barrier to the cushioning layer from the environment.
  • the foot sleeve can improve ease of use by having a universal design with a one flap metatarsal closure.
  • the strap may include a laminate consisting of various layers.
  • the layers may include a center layer that is configured for comfort. Outside layers disposed about the center layer provide a barrier between the environment and an outer surface of the foot. One of the outside layers can be a skin contact layer that is soft to the touch.
  • the strap may be a separate part integrated into the body of the foot sleeve by being sandwiched between separate layers of the foot sleeve body and then permanently secured.
  • the body of the foot sleeve may be designed for adaptability to various foot sizes and shapes by employing a single metatarsal flap that facilitates ease of use.
  • the body may be configured to provide inspection of the tops of the phalanges of the foot.
  • the cushioning layer has a soft skin contact layer.
  • the foot sleeve may also include a liner that is configured to provide a physical barrier to the cushioning layer that assists in the prevention of contamination.
  • the interior cushioning layer provides comfort and mitigates skin breakdown.
  • the foot sleeve improves patient compliance and provides sanitation by isolating the cushioning layer from the environment.
  • the foot sleeve is also easily manufactured, for instance, the material stack up contained in the layers allows the strap and/or foot sleeve to be cut as one piece and ensures an even stack up of materials.
  • the compression apparatus includes an expandable body configured for disposal about a foot.
  • a strap extends from the body.
  • the strap is configured for disposal about the foot adjacent an ankle.
  • the strap has a first layer configured to engage an outer surface of the foot adjacent the ankle, a second layer and a third cushion layer disposed therebetween.
  • the strap may be integrally connected to the expandable body.
  • the strap may be monolithically formed with the expandable body.
  • the expandable body can include a first, top layer and/or a second, bottom layer.
  • a portion of the strap member may be disposed between a top and bottom layer of the foot sleeve body.
  • the strap may have a segmented configuration for contour with the foot.
  • the third cushion layer can be disposed within the first layer and the second layer such that the first layer and the second layer are configured to provide a barrier to the third cushion layer.
  • the body can include a metatarsal strap.
  • the first layer includes a soft polyester material.
  • the first layer may include a soft polyester material and polyvinylchloride.
  • the third cushion layer may include a foam material.
  • the second layer can have an outer surface including a loop material disposed therewith.
  • the second layer may include a polyvinylchloride material and an outer surface having a loop material disposed therewith.
  • the second layer has an outer surface including a loop material such that the metatarsal strap includes hook elements that are engageable with the loop material to mount the compression apparatus with the foot.
  • the body may include hook elements that are engageable with the loop material to mount the compression apparatus with the foot.
  • the compression apparatus has a foot sleeve including an inflatable body configured for disposal about a foot.
  • the foot sleeve includes a metatarsal portion.
  • a strap is integrally connected to the foot sleeve and extends therefrom. The strap is configured for disposal about the foot adjacent an ankle.
  • the strap has a first layer configured to engage an outer surface of the foot adjacent the ankle, a second layer and a third cushion layer is disposed therebetween.
  • the first layer and the second layer are configured to provide a barrier to the third cushion layer.
  • the first layer may be configured to prevent engagement of the third cushion layer with the outer surface of the foot.
  • FIG. 1 is a plan view of one particular embodiment of a compression apparatus and showing an inflatable bladder and a foot in phantom, in accordance with the principles of the present disclosure
  • FIG. 1A is a partial cross-sectional view of the compression apparatus shown in FIG. 1;
  • FIG. 2 is a cutaway cross section view of a strap of the compression apparatus shown in FIG. 1;
  • FIG. 3 is a cutaway cross section view of an alternate embodiment of the strap of the compression apparatus shown in FIG. 1;
  • FIG. 4 is a plan view of an alternate embodiment of the compression apparatus shown in FIG. 1, illustrating an inflatable bladder in phantom
  • FIG. 5 is a plan view of another alternate embodiment of the compression apparatus shown in FIG. 1, illustrating an inflatable bladder in phantom;
  • FIG. 6 is a plan view of another alternate embodiment of the compression apparatus shown in FIG. 1, illustrating an inflatable bladder in phantom;
  • FIG. 7 is a plan view of another alternate embodiment of the compression apparatus shown in FIG. 1, illustrating an inflatable bladder in phantom.
  • the exemplary embodiments of the compression apparatus including the foot sleeve and methods of operation disclosed are discussed in terms of vascular therapy including a compression apparatus for application to a foot or other limb of a body and more particularly in terms of a compression apparatus configured to artificially stimulate the blood vessels of the limb including the foot, heel and toes of a patient. It is contemplated that the compression apparatus may be employed for preventing and overcoming the risks associated with patient immobility. It is further contemplated that the compression apparatus alleviates the conditions arising from patient immobility to prevent for example, DVT, and peripheral edema.
  • the compression apparatus may be employed with various types of venous compression systems, including, but not limited to rapid inflation, slow compression, non-sequential and sequential compression apparatus. It is envisioned that the present disclosure, however, finds application with a wide variety of immobile conditions of persons and patients alike, such as, for example, those undergoing surgery, anesthesia, extended periods of bed rest, obesity, advanced age, malignancy, and prior thromboembolism.
  • the term "subject” refers to a patient undergoing vascular therapy using the compression apparatus.
  • the following discussion includes a description of the compression apparatus, followed by a description of an exemplary method of operating the compression apparatus in accordance with the principals of the present disclosure.
  • Compression apparatus 10 includes an expandable body, such as, for example, a foot sleeve 12 configured for disposal about a foot F of a subject (not shown). Foot sleeve 12 may be disposed with the right or left foot of the subject.
  • Foot sleeve 12 fluidly communicates with a pressurized fluid source 14 via tubing 16 and a valve connector 18 (see, for example, the valve connector described in U.S. Patent Application Serial No. 10/784,639, filed on February 23, 2004 and entitled Fluid Conduit Connector Apparatus, the entire contents of which is hereby incorporated by reference herein) for applying compression to the left foot and/or the right foot to provide vascular therapy to the subject and augment venous return.
  • Compression apparatus 10 employs a controller 20 to regulate fluid pressure for vascular therapy. See, for example, the controller described in U.S. Patent Application Serial No. 10/784,323, filed on February 23, 2004 and entitled Compression Treatment System, the entire contents of which is hereby incorporated by reference herein.
  • Pressurized fluid source 14 may include a pump and may be stationary or portable. It is contemplated that pressurized fluid source 14 may include the necessary electronics and computer software to carry out vascular therapy, in accordance with the principles of the present disclosure.
  • Foot sleeve 12 is configured to apply vascular therapy to the entire area of the bottom of foot F, beyond a heel H and a ball B to a substantial portion of toes T. It is contemplated that foot sleeve 12 and other parts of compression apparatus 10 may be disposed, wrapped and mounted with various limbs and extremities of a subject's body, such as, for example, legs and arms. It is further contemplated that foot sleeve 12 or portions thereof may be disposable. It is envisioned that foot sleeve 12 may include flexible sections, such as, elastic or spandex materials to facilitate mobility of a limb during use. The components of strap 22 may be fabricated from materials suitable for compression vascular therapy such as, for example, films and fabrics, such as PVC (polyvinyl chloride) and PE (polyethylene).
  • PVC polyvinyl chloride
  • PE polyethylene
  • Strap 22 is configured for disposal about foot F adjacent to the ankle. Strap 22 is integrally connected to foot sleeve 12 and fixedly mounted between a foot contact layer 26 and an outer layer 28 of foot sleeve 12, as will be discussed. Strap 22 may be monolithically formed with foot sleeve 12, wherein at least a portion of the strap 22 is formed from the same contiguous material as a portion of the foot sleeve 12.
  • foot contact layer 26 may be formed from the same contiguous material as foot contact layer 32 of foot sleeve 12.
  • Strap 22 has segmented portions 24 that are configured to contour about heel H of foot F: It is contemplated that segmented portions 24 may be variously configured and dimensioned, such as, rounded or alternatively, strap 22 may have a uniform outer surface, such as, smooth.
  • Strap 22 has a first layer, such as, for example, foot contact layer 26 that is configured to engage to an outer surface of foot F adjacent the ankle.
  • Foot contact layer 26 includes a soft polyester material 26a that is soft for engaging the skin of the subject. This soft skin contact layer 26 advantageously provides comfort to the subject, prevents contamination and mitigates skin breakdown.
  • Foot contact layer 26 may also include a PVC portion 26b disposed adjacent soft polyester material 26a.
  • a second layer such as, for example, outer layer 28 cooperates with foot contact layer 26 such that a third layer 30 is disposed therebetween.
  • Third layer 30 includes a foam material to provide a cushioning effect to the subject. It is contemplated that layer 30 may include alternative materials that provide a cushioned configuration.
  • Outer layer 28 includes a loop type material 28a disposed therewith, for engagement with a corresponding hook element of foot sleeve 12, and a PVC portion 28b disposed adjacent loop material 28a. Outer layer 28 advantageously prevents contamination of third cushion layer 30 from the environment, such as, for example, air, moisture and dirt.
  • Foot contact layer 26 and outer layer 28 are configured to form a physical barrier to third cushion layer 30. This configuration advantageously provides comfort to the subject, as well as compliance, and prevents contamination of third cushioning layer 30.
  • strap 22 includes a laminate structure having a cushion layer 130 and a PVC portion 132 disposed adjacent thereto. An outer layer 134 is disposed adjacent PVC portion 132. Layer 134 may include a soft polyester material for engaging the outer surface of foot F, or alternatively, may include a loop material to prevent contamination of cushion layer 130 from the environment.
  • Foot contact layer 26 and outer layer 28 are overlaid to form strap 22. Foot contact layer 26 and outer layer 28 are fixedly joined at seams adjacent corresponding perimeters thereof, to support the components of strap 22.
  • strap 22 may be bonded via welding, e.g., RF welding, adhesive, industrial strength double sided tape and the like. It is envisioned that only a portion of the foot contact layer 26 and outer layer 28 are joined. It is further envisioned that strap 22 includes a plurality of seams, disposed variously thereabout, that join foot contact layer 26 and outer layer 28.
  • FIG. 1 A an exaggerated partial cross-sectional view of a strap member 22 and its union to foot sleeve 12 is shown. The strap member 22 is disposed between the foot contact layer 32 and outer layer 42 of foot sleeve 12 such that the union of strap 22 and foot sleeve 12 is generally uniform.
  • foot contact layer 26 and outer layer 28 of strap 22 are joined to interior portions of foot contact layer 32 and outer layer 42 of foot sleeve 12.
  • cushioning layer 30 may or may not be disposed between foot contact layer 32 and outer layer 42 of foot sleeve 12.
  • Strap 22 has a longitudinally projecting configuration extending from foot sleeve 12 and is configured for disposal about portions of foot F adjacent the ankle. Strap 22 forms part of a hook and loop type connector.
  • a hook element 33 is mounted to strap 22 at foot contact layer 26.
  • hook element 33 engages the loop material of outer layer 42 of foot sleeve 12 to facilitate mounting of foot sleeve 12 with foot F.
  • Alternative to hook and loop type elements, clips, adhesive and pins may be employed.
  • Foot sleeve 12 includes a foot contact layer 32 configured to engage foot F for applying pressure thereto.
  • Foot contact layer 32 has sections 35 and is flexible for conforming to the shape of foot F. It is envisioned that foot contact layer 32 may be fabricated from a polyester fabric. It is contemplated that foot contact layer 32 may be configured for wicking fluids such as, moisture and perspiration from an outer surface of foot F. Foot contact layer 32 may be treated chemically to enhance such wicking effect. Alternatively, foot contact layer 32 may be monolithically formed with foot contact layer 26 of strap 22.
  • An inflatable bladder 34 of foot sleeve 12 includes an upper bladder layer 36 and a lower bladder layer 38 that are overlaid to form inflatable bladder 34.
  • Upper bladder layer 36 engages foot contact layer 32 to facilitate application of pressure for vascular therapy to foot F.
  • Upper bladder layer 36 and lower bladder layer 38 are fixedly joined via welding at seams along their perimeters to define inflatable bladder 34.
  • inflatable bladder 34 may include a plurality of seams, disposed variously thereabout, that join upper bladder layer 36 and lower bladder layer 38. It is further contemplated that the seams may be formed by adhesive, heat sealed and the like.
  • Upper bladder layer 36 and lower bladder layer 38 may be fabricated from a laminated material, for example, a PVC material. It is contemplated that each bladder layer may have a thickness of approximately 6 - 15 mils. It is further contemplated that the PVC material may be laminated to a non-woven or woven material and is RF heat sealable. Upper bladder layer 36 and lower bladder layer 38 may be fabricated from two different thicknesses to provide directional inflation. It is envisioned that the overall dimensions and materials described throughout this disclosure are not limiting and that other dimensions and materials may be used. It is further envisioned that inflatable bladder 34 may define one or a plurality of expandable chambers.
  • Inflatable bladder 34 extends along foot F to apply vascular therapy to the entire area of the bottom of foot F, beyond heel H and ball B to a substantial portion of toes T. It is contemplated that inflatable bladder 34 may have various geometric configurations, such as, circular, elliptical and rectangular. Inflatable bladder 34 includes an inlet port 40 that connects to tubing 16 to facilitate fluid communication with pressurized fluid source 14.
  • An outer layer 42 of foot sleeve 12 is disposed adjacent to lower bladder layer 38.
  • Outer layer 42 may be fabricated from a laminated material including fabric and a loop material, for example, a loop/non-woven laminate. Outer layer 42 provides an attachment surface for hook elements. Alternatively, outer layer 42 may be monolithically formed with outer layer 28 of strap 22.
  • Outer layer 42 may include die cut holes to provide for a fluid inlet to pass through, such as inlet port 40. It is envisioned that outer layer 42 and other portions of foot sleeve 12 may include vent openings disposed variously thereabout to provide cooling to the subject and increase mobility during use.
  • Foot contact layer 32 and outer layer 42 are overlaid to form foot sleeve 12.
  • Foot contact layer 32 and outer layer 42 are fixedly joined at seams adjacent corresponding perimeters thereof, to support the components of foot sleeve 12.
  • the components of foot sleeve 12 may be bonded via welding, e.g., RF welding, adhesive, industrial strength double sided tape and the like. It is envisioned that only a portion of the perimeters of foot contact layer 32 and outer layer 42 are joined. It is envisioned that foot sleeve 12 includes a plurality of seams, disposed variously thereabout, that join foot contact layer 32 and outer layer 42.
  • foot sleeve 12 may be fabricated from materials suitable for compression vascular therapy such as, for example, films and fabrics, such as PVC (polyvinyl chloride) and PE (polyethylene), depending on the particular vascular therapy application and/or preference. Semi-flexible and flexible fabrics, such as urethanes and silicones may also be used. Moreover, foot sleeve 12 may be fabricated from synthetic, natural, and non- woven materials of varying degrees of softness and pliability. One skilled in the art, however, will realize that other materials and fabrication methods suitable for assembly and manufacture, in accordance with the present disclosure, also would be appropriate.
  • Foot sleeve 12 is configured to support inflatable bladder 34. Foot sleeve 12 extends laterally and is configured for disposal about foot F and mounting thereto. Foot sleeve 12 is disposed with foot F such that the top portion of toes T are visible for observation and inspection.
  • a metatarsal flap 44 of foot sleeve 12 wraps about the side portions of foot F and transverses the instep of foot F during vascular therapy. Metatarsal flap 44 forms part of a hook and loop type connector.
  • a hook element 46 is mounted to foot sleeve 12 at foot contact layer 32. As metatarsal flap 44 is wrapped about foot F, hook element 46 engages the loop material of outer layer 42 to facilitate mounting of foot sleeve 12 with foot F.
  • foot sleeve 12 advantageously engages foot F to augment circulation of vessels of the limb. It is contemplated that foot sleeve 12 may have various geometric configurations, such as, circular, elliptical, and rectangular. Alternative to hook and loop type elements, clips, adhesive, and pins may be employed.
  • Compression apparatus 10 similar to that described above, is assembled and packaged for use.
  • foot sleeve 12 of compression apparatus 10 is disposed about foot F and in fluid communication with pressurized fluid source 14, as discussed.
  • Controller 20 regulates vascular therapy of compression apparatus 10 to a subject.
  • Foot sleeve 12 applies compression to foot F to provide vascular therapy to the subject and augment venous return.
  • compression apparatus 10 may include inflatable sleeves for disposal about various portions of a subject's limb, such as for example, thigh, calf, ankle and that a second limb may be treated in alternate compression cycles with other sleeve(s).
  • inflatable bladder 34 is slowly inflated for 5 seconds with air to a pressure, such as 130 mm Hg.
  • a pressure such as 130 mm Hg.
  • This configuration provides vascular therapy to foot F and augments venous return.
  • foot sleeve 12 is vented and inflatable bladder 34 is deflated.
  • VRT Venous refill time
  • compression apparatus 10 performs venous refill time measurement.
  • Venous refill time (VRT) measurement is an air plethysmographic technique that determines when the veins of a limb have completely refilled with blood following a compression cycle. See, for example, the venous refill time measurement described in U.S. Patent No. 6,231,352 to Watson et al., the entire contents of which is hereby incorporated by reference herein.
  • the VRT minimizes the amount of time that the blood remains stagnant inside the veins.
  • the VRT is substituted for the default rest time between compression cycles. It is contemplated that the VRT technique and algorithm can be used for both leg sleeve and foot sleeve compression.
  • the VRT measurement uses an air plethysmographic technique where a low pressure is applied to inflatable bladder 34. As the veins fill with blood, the pressure in inflatable bladder 34 increases until a plateau is reached. The time that it takes for the pressure to plateau is the VRT. If two sleeves are connected to controller 20, then the VRT is determined separately for each limb being compressed and the greater of the two measurements is used as the new vent time of the compression cycle. The VRT measurement for each sleeve is made as each particular sleeve reaches set pressure independently. However, the vent time is not updated until VRT measurements have been calculated for both sleeves.
  • compression apparatus 10 may employ the VRT measurement after the system initiates vascular therapy. Subsequently, after 30 minutes have elapsed, a VRT measurement will be taken on the next full inflation cycle. After foot sleeve 12 inflates, inflatable bladder 34 is vented down to zero. It is contemplated that a selected bladder pressure is monitored and the vent to the bladder is closed when the pressure falls to 5-7 mm Hg. If the pressure in the bladder is 5-7 mm Hg on a current cycle then a VRT measurement is taken. If the pressure in the bladder does not vent down to 5-7 mm Hg then the vent time will remain at its current value and another measurement will be made in 30 minutes.
  • the VRT measurement algorithm determines when the pressure in inflatable bladder 34 plateaus after compression.
  • the VRT measurement algorithm initiates with a time counter started from the end of the inflation cycle, which occurs after inflatable bladder 34 reaches 5-7 mm Hg (enough pressure to cause the bladder to remain in contact with the surface of the foot) and the venting is stopped.
  • the VRT measurement initiates with the time counter started from the end of the inflation cycle.
  • the pressure in inflatable bladder 34 is then monitored with a 10-second, moving sample window.
  • the window moves in 1 -second intervals.
  • the difference between the first and last values in the window is less than approximately 0.05 - 0.5 mm Hg, the curve has reached its plateau.
  • the VRT measurement is considered done, and the time interval is determined.
  • the end of the window is considered to be the point at which the venous system in the foot has refilled.
  • the VRT measurement is considered erroneous if at any time during the measurement, the pressure in inflatable bladder 34 is below 2 mmHg, the calculation is discarded, and the old value of VRT is used. This may occur if there is a leak in the system.
  • Compression apparatus 10 includes a foot sleeve 212, similar to foot sleeve 12 described above with regard to FIGS. 1, 1A and 2, configured for disposal about foot F.
  • a pair of straps 222 similar to strap 22 described above with regard to FIGS. 1, 1A and 2, extend from foot sleeve 212. Straps 222 are configured for disposal about foot F adjacent to the ankle. One or a plurality of straps 222 may be employed.
  • Straps 222 have a longitudinally projecting configuration extending from foot sleeve 212 and are configured for disposal about portions of foot F adjacent the ankle. As discussed herein, it is contemplated that straps 222 may be separately or monolithically formed with foot sleeve 212. Straps 222 form part of hook and loop type connectors. Hook element 232 and loop element 232a are mounted to straps 222. As each of straps 222 are wrapped about the portions of foot F adjacent the ankle, hook element 232 engages loop material 232a to facilitate mounting of foot sleeve 212 with foot F. It is contemplated that hook elements 232, 232a may engage loop material disposed with an outer surface of foot sleeve 212 to facilitate mounting of foot sleeve 212 with foot F.
  • FIGS. 1 and 2 extends longitudinally along foot F to apply vascular therapy to the entire area of the bottom of foot F, beyond heel H and ball B to a substantial portion of toes T.
  • Inflatable bladder 234 includes an inlet port 240 that connects to tubing 16 to facilitate fluid communication with pressurize,d fluid source 14.
  • Foot sleeve 212 is configured to support inflatable bladder 234. Foot sleeve 212 extends laterally and is configured for disposal about foot F and mounting thereto. Foot sleeve 212 is disposed with foot F such that the top portion of toes T are visible for observation and inspection.
  • a pair of metatarsal flaps 244 extend laterally from foot sleeve 212 for wrapping about the side portions of foot F and transversing the instep of foot F during vascular therapy. Metatarsal flaps 244 form the hook and loop type connectors. Hook element 246 and loop element 246a are mounted to foot sleeve 212.
  • foot sleeve 212 As metatarsal flaps 244 are wrapped about foot F, hook element 246 engages to loop element 246a to engage the foot sleeve 212 to facilitate mounting of foot sleeve 212 with foot F. In turn, this causes inflatable bladder 234 to be disposed about foot F for vascular therapy.
  • This configuration of foot sleeve 212 advantageously engages foot F to augment circulation of vessels of the limb.
  • Foot sleeve 212 includes vent openings 250 disposed to provide cooling to the subject and increase mobility during use.
  • Compression apparatus 10 includes a foot sleeve 312, similar to those described above, configured for disposal about foot F.
  • a strap 322 similar to those described above, extends from foot sleeve 312.
  • An inflatable bladder 334 similar to those described above, extends longitudinally along foot F to apply vascular therapy to the entire area of the bottom of foot F, beyond heel H and ball B to a substantial portion of toes T.
  • Inflatable bladder 334 includes side portions 336 that extend laterally therefrom to engage side portions of foot F during application of foot sleeve 312 with foot F.
  • Foot sleeve 312 is configured to support inflatable bladder 334. Foot sleeve 312 extends laterally and is configured for disposal about foot F and mounting thereto. Foot sleeve 312 is disposed with foot F such that the top portion of toes T are visible for observation and inspection.
  • a pair of metatarsal flaps 344 extend laterally from one side of foot sleeve 312 for wrapping about the side portions of foot F and transversing the instep of foot F during vascular therapy. Metatarsal flaps 344 form part of hook and loop type connectors. Hook elements 346, 346a are mounted to foot sleeve 312.
  • Compression apparatus 10 includes a foot sleeve 412, similar to those described above, configured for disposal about foot F.
  • a strap 422 similar to those described above, extends from foot sleeve 412.
  • An inflatable bladder 434 similar to those described above, extends longitudinally along foot F to apply vascular therapy to the bottom of foot F, beyond heel H and ball B to a substantial portion of toes T.
  • Foot sleeve 412 has wings 444 (similar to metatarsal flaps described above) and is configured to support inflatable bladder 434. Foot sleeve 412 extends laterally, via wings 444, and is configured for disposal about foot F and mounting thereto. Foot sleeve 412 is disposed with foot F such that the top portion of toes T are visible for observation and inspection. Wings 444 wrap about the side portions of foot F and transverse the instep of foot F during vascular therapy. Wings 444 form part of hook and loop type connectors. Hook element 446 and loop element 446a are mounted to wings 444. As wings 444 are wrapped about foot F, hook element 446 engages with loop element 446a to facilitate mounting of foot sleeve 412 with foot F.
  • wings 444 similar to metatarsal flaps described above
  • Compression apparatus 10 includes a foot sleeve 512, similar to those described above, configured for disposal about foot F.
  • a strap 522 similar to those described above, extends from foot sleeve 512.
  • An inflatable bladder 534 similar to those described above, extends longitudinally along foot F to apply vascular therapy to the bottom of foot F, beyond heel H and ball B to a substantial portion of toes T.
  • Inflatable bladder 534 includes longitudinal portions 536 that extend longitudinally therefrom to engage desired portions of the bottom of foot F during application of foot sleeve 512 with foot F.
  • Foot sleeve 512 is configured to support inflatable bladder 534. This configuration of foot sleeve 512 advantageously engages foot F to augment circulation of vessels of the limb.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Massaging Devices (AREA)
  • Surgical Instruments (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Electron Tubes For Measurement (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)
  • Finger-Pressure Massage (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Loading And Unloading Of Fuel Tanks Or Ships (AREA)
  • Tea And Coffee (AREA)
  • Quick-Acting Or Multi-Walled Pipe Joints (AREA)
  • Polarising Elements (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Prostheses (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Accessory Devices And Overall Control Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

A compression treatment system (10) is provided that includes a first bladder (46a, 46b, 46c, 48a, 48b, 48c) supported about a limb. A second bladder is supported about the limb. The bladders are in fluid communication with a fluid source (50) and the bladders are inflated such that the first bladder is inflated for a first time period and the second bladder is inflated for a second time period. The second time period is initiated within the first time period. A single pressure sensor communicates with the first bladder and the second bladder.

Description

COMPRESSION APPARATUS
BACKGROUND 1. Technical Field
The present disclosure generally relates to the field of vascular therapy for application to a limb of a body, and more particularly, to a compression apparatus configured to artificially stimulate blood vessels of the limb.
2. Description of the Related Art A major concern for immobile patients and persons alike are medical conditions that form clots in the blood, such as, deep vein thrombosis (DVT) and peripheral edema. Such patients and persons include those undergoing surgery, anesthesia and extended periods of bed rest. These blood clotting conditions generally occur in the deep veins of the lower extremities and/or pelvis. These veins, such as the iliac, femoral, popiteal and tibial return deoxygenated to the heart. For example, when blood circulation in these veins is retarded due to illness, injury or inactivity, there is a tendency for blood to accumulate or pool. A static pool of blood is ideal for clot formations. A major risk associated with this condition is interference with cardiovascular circulation. Most seriously, a fragment of the blood clot can break loose and migrate. A pulmonary emboli can form blocking a main pulmonary artery, which may be life threatening.
The conditions and resulting risks associated with patient immobility may be controlled or alleviated by applying intermittent pressure to a patient's limb, such as, for example, portions of a leg and foot to assist in blood circulation. Known devices have been employed to assist in blood circulation, such as, one piece pads and compression boots. See, for example, U.S. Patent Nos. 4,696,289 and 5,989,204.
Compression devices that consist of an air pump connected to a disposable wraparound pad by one or more air tubes have been used. The wraparound pad is placed around the patient's foot or other extremity. Air is then forced into the wraparound pad creating pressure around the parts of the foot or other extremity. These known devices may suffer from various drawbacks due to their bulk, cumbersome nature of use, potential for contamination and irritation to the extremity during application and use. These drawbacks reduce comfort, compliance, cause skin breakdown and may disadvantageously prevent mobility of the patient as recovery progresses after surgery.
Therefore, it would be desirable to overcome the disadvantages and drawbacks of the prior art with a foot sleeve that prevents contamination, mitigates the incidence of skin breakdown and facilitates disposal with an extremity. It is contemplated that a compression apparatus including the foot sleeve reduces bulk and is not cumbersome during use to improve comfort and compliance to a patient. It is further contemplated that the compression apparatus is easily and efficiently manufactured.
SUMMARY
Accordingly, a compression apparatus is provided that prevents contamination, mitigates the incidence of skin breakdown and facilitates disposal with an extremity for overcoming the disadvantages and drawbacks of the prior art. Desirably, a compression apparatus including the foot sleeve reduces bulk and is not cumbersome during use to improve comfort and compliance to a patient. The compression apparatus is easily and efficiently fabricated.
The embodiments of the compression apparatus, according to the present disclosure, are configured to provide vascular therapy, including for example the prevention of deep vein thrombosis ("DVT") by artificially stimulating blood vessels throughout the foot of a patient, including the toes and the heel, to increase blood circulation for patients. The compression apparatus according to the present disclosure is an intermittent pneumatic compression device for applying slow compression to a foot. Such pressure simulates blood flow that would normally result from, for example, walking, by employing a foot sleeve that is supported about a foot of a patient.
The compression apparatus may have an inflatable bladder designed to cover and engage the entire area of the bottom of the foot, beyond the heel and ball to a substantial portion of the toes. The inflatable bladder wraps about the side portions of the foot via a hook and loop type connector flap that transverses the instep of the foot. The inflatable bladder may include an outside layer and an inside layer. The bladder can be formed by welding the outside layer and the inside layer together. The bladder provides a uniform application of pressure to the entire foot and is then deflated. Moreover, the compression apparatus may include bladder sections that are capable of enabling venous refill detection. The compression apparatus according to the present disclosure includes various embodiments and combinations as will be appreciated herein. The various embodiments and combinations may each be manufactured in various sizes to accommodate subjects of varying sizes as well as right and left foot models.
The compression apparatus includes a strap that improves comfort by using a single piece laminate structure whose inside layer is a cushioning layer. The strap is integrated with a foot sleeve by sandwiching the strap between separate layers of the foot sleeve body. The comfort to the patient may be improved by segmenting the strap to contour about the heel of the foot. The strap can also include one or more layers configured to provide a barrier to the cushioning layer from the environment. The foot sleeve can improve ease of use by having a universal design with a one flap metatarsal closure.
The strap may include a laminate consisting of various layers. The layers may include a center layer that is configured for comfort. Outside layers disposed about the center layer provide a barrier between the environment and an outer surface of the foot. One of the outside layers can be a skin contact layer that is soft to the touch. The strap may be a separate part integrated into the body of the foot sleeve by being sandwiched between separate layers of the foot sleeve body and then permanently secured. The body of the foot sleeve may be designed for adaptability to various foot sizes and shapes by employing a single metatarsal flap that facilitates ease of use. The body may be configured to provide inspection of the tops of the phalanges of the foot. One of the advantages of the present disclosure is a cushioning layer that is not in direct engagement with the outer surface of the foot. The cushioning layer has a soft skin contact layer. The foot sleeve may also include a liner that is configured to provide a physical barrier to the cushioning layer that assists in the prevention of contamination. The interior cushioning layer provides comfort and mitigates skin breakdown. Thus, the foot sleeve improves patient compliance and provides sanitation by isolating the cushioning layer from the environment. The foot sleeve is also easily manufactured, for instance, the material stack up contained in the layers allows the strap and/or foot sleeve to be cut as one piece and ensures an even stack up of materials.
In one embodiment, in accordance with the principles of the present disclosure, the compression apparatus includes an expandable body configured for disposal about a foot. A strap extends from the body. The strap is configured for disposal about the foot adjacent an ankle. The strap has a first layer configured to engage an outer surface of the foot adjacent the ankle, a second layer and a third cushion layer disposed therebetween.
The strap may be integrally connected to the expandable body. Alternatively, the strap may be monolithically formed with the expandable body. The expandable body can include a first, top layer and/or a second, bottom layer. Moreover, a portion of the strap member may be disposed between a top and bottom layer of the foot sleeve body. The strap may have a segmented configuration for contour with the foot. The third cushion layer can be disposed within the first layer and the second layer such that the first layer and the second layer are configured to provide a barrier to the third cushion layer. The body can include a metatarsal strap.
Alternatively, the first layer includes a soft polyester material. The first layer may include a soft polyester material and polyvinylchloride. The third cushion layer may include a foam material. The second layer can have an outer surface including a loop material disposed therewith. The second layer may include a polyvinylchloride material and an outer surface having a loop material disposed therewith. Alternatively, the second layer has an outer surface including a loop material such that the metatarsal strap includes hook elements that are engageable with the loop material to mount the compression apparatus with the foot. The body may include hook elements that are engageable with the loop material to mount the compression apparatus with the foot.
In an alternate embodiment, the compression apparatus has a foot sleeve including an inflatable body configured for disposal about a foot. The foot sleeve includes a metatarsal portion. A strap is integrally connected to the foot sleeve and extends therefrom. The strap is configured for disposal about the foot adjacent an ankle. The strap has a first layer configured to engage an outer surface of the foot adjacent the ankle, a second layer and a third cushion layer is disposed therebetween. The first layer and the second layer are configured to provide a barrier to the third cushion layer. The first layer may be configured to prevent engagement of the third cushion layer with the outer surface of the foot.
BRIEF DESCRIPTION OF THE DRAWINGS
The objects and features of the present disclosure, which are believed to be novel, are set forth with particularity in the appended claims. The present disclosure, both as to its organization and manner of operation, together with further objectives and advantages, may be best understood by reference to the following description, taken in connection with the accompanying drawings, which are described below.
FIG. 1 is a plan view of one particular embodiment of a compression apparatus and showing an inflatable bladder and a foot in phantom, in accordance with the principles of the present disclosure;
FIG. 1A is a partial cross-sectional view of the compression apparatus shown in FIG. 1;
FIG. 2 is a cutaway cross section view of a strap of the compression apparatus shown in FIG. 1;
FIG. 3 is a cutaway cross section view of an alternate embodiment of the strap of the compression apparatus shown in FIG. 1;
FIG. 4 is a plan view of an alternate embodiment of the compression apparatus shown in FIG. 1, illustrating an inflatable bladder in phantom; FIG. 5 is a plan view of another alternate embodiment of the compression apparatus shown in FIG. 1, illustrating an inflatable bladder in phantom;
FIG. 6 is a plan view of another alternate embodiment of the compression apparatus shown in FIG. 1, illustrating an inflatable bladder in phantom; and
FIG. 7 is a plan view of another alternate embodiment of the compression apparatus shown in FIG. 1, illustrating an inflatable bladder in phantom. DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
The exemplary embodiments of the compression apparatus including the foot sleeve and methods of operation disclosed are discussed in terms of vascular therapy including a compression apparatus for application to a foot or other limb of a body and more particularly in terms of a compression apparatus configured to artificially stimulate the blood vessels of the limb including the foot, heel and toes of a patient. It is contemplated that the compression apparatus may be employed for preventing and overcoming the risks associated with patient immobility. It is further contemplated that the compression apparatus alleviates the conditions arising from patient immobility to prevent for example, DVT, and peripheral edema. It is contemplated that the compression apparatus according to the present disclosure may be employed with various types of venous compression systems, including, but not limited to rapid inflation, slow compression, non-sequential and sequential compression apparatus. It is envisioned that the present disclosure, however, finds application with a wide variety of immobile conditions of persons and patients alike, such as, for example, those undergoing surgery, anesthesia, extended periods of bed rest, obesity, advanced age, malignancy, and prior thromboembolism.
In the discussion that follows, the term "subject" refers to a patient undergoing vascular therapy using the compression apparatus. The following discussion includes a description of the compression apparatus, followed by a description of an exemplary method of operating the compression apparatus in accordance with the principals of the present disclosure. Reference will now be made in detail to the exemplary embodiments and disclosure, which are illustrated with the accompanying figures.
Turning now to the figures, wherein like components are designated by like reference numerals throughout the several views. Referring initially to FIGS. 1, 1A and 2, there is illustrated a compression apparatus 10, constructed in accordance with the principals of the present disclosure (see, for example, the compression sleeve described in U.S. Patent Application Serial No. 10/784,607, filed on February 23, 2004 and entitled Compression Apparatus, the entire contents of which is hereby incorporated by reference herein). Compression apparatus 10 includes an expandable body, such as, for example, a foot sleeve 12 configured for disposal about a foot F of a subject (not shown). Foot sleeve 12 may be disposed with the right or left foot of the subject. Foot sleeve 12 fluidly communicates with a pressurized fluid source 14 via tubing 16 and a valve connector 18 (see, for example, the valve connector described in U.S. Patent Application Serial No. 10/784,639, filed on February 23, 2004 and entitled Fluid Conduit Connector Apparatus, the entire contents of which is hereby incorporated by reference herein) for applying compression to the left foot and/or the right foot to provide vascular therapy to the subject and augment venous return. Compression apparatus 10 employs a controller 20 to regulate fluid pressure for vascular therapy. See, for example, the controller described in U.S. Patent Application Serial No. 10/784,323, filed on February 23, 2004 and entitled Compression Treatment System, the entire contents of which is hereby incorporated by reference herein. Pressurized fluid source 14 may include a pump and may be stationary or portable. It is contemplated that pressurized fluid source 14 may include the necessary electronics and computer software to carry out vascular therapy, in accordance with the principles of the present disclosure.
Foot sleeve 12 is configured to apply vascular therapy to the entire area of the bottom of foot F, beyond a heel H and a ball B to a substantial portion of toes T. It is contemplated that foot sleeve 12 and other parts of compression apparatus 10 may be disposed, wrapped and mounted with various limbs and extremities of a subject's body, such as, for example, legs and arms. It is further contemplated that foot sleeve 12 or portions thereof may be disposable. It is envisioned that foot sleeve 12 may include flexible sections, such as, elastic or spandex materials to facilitate mobility of a limb during use. The components of strap 22 may be fabricated from materials suitable for compression vascular therapy such as, for example, films and fabrics, such as PVC (polyvinyl chloride) and PE (polyethylene).
Strap 22 is configured for disposal about foot F adjacent to the ankle. Strap 22 is integrally connected to foot sleeve 12 and fixedly mounted between a foot contact layer 26 and an outer layer 28 of foot sleeve 12, as will be discussed. Strap 22 may be monolithically formed with foot sleeve 12, wherein at least a portion of the strap 22 is formed from the same contiguous material as a portion of the foot sleeve 12. By way of non-limiting example, foot contact layer 26 may be formed from the same contiguous material as foot contact layer 32 of foot sleeve 12. Strap 22 has segmented portions 24 that are configured to contour about heel H of foot F: It is contemplated that segmented portions 24 may be variously configured and dimensioned, such as, rounded or alternatively, strap 22 may have a uniform outer surface, such as, smooth.
Strap 22 has a first layer, such as, for example, foot contact layer 26 that is configured to engage to an outer surface of foot F adjacent the ankle. Foot contact layer 26 includes a soft polyester material 26a that is soft for engaging the skin of the subject. This soft skin contact layer 26 advantageously provides comfort to the subject, prevents contamination and mitigates skin breakdown. Foot contact layer 26 may also include a PVC portion 26b disposed adjacent soft polyester material 26a.
A second layer, such as, for example, outer layer 28 cooperates with foot contact layer 26 such that a third layer 30 is disposed therebetween. Third layer 30 includes a foam material to provide a cushioning effect to the subject. It is contemplated that layer 30 may include alternative materials that provide a cushioned configuration. Outer layer 28 includes a loop type material 28a disposed therewith, for engagement with a corresponding hook element of foot sleeve 12, and a PVC portion 28b disposed adjacent loop material 28a. Outer layer 28 advantageously prevents contamination of third cushion layer 30 from the environment, such as, for example, air, moisture and dirt.
Foot contact layer 26 and outer layer 28 are configured to form a physical barrier to third cushion layer 30. This configuration advantageously provides comfort to the subject, as well as compliance, and prevents contamination of third cushioning layer 30. In an alternate embodiment, as shown in FIG. 3, strap 22 includes a laminate structure having a cushion layer 130 and a PVC portion 132 disposed adjacent thereto. An outer layer 134 is disposed adjacent PVC portion 132. Layer 134 may include a soft polyester material for engaging the outer surface of foot F, or alternatively, may include a loop material to prevent contamination of cushion layer 130 from the environment. Foot contact layer 26 and outer layer 28 are overlaid to form strap 22. Foot contact layer 26 and outer layer 28 are fixedly joined at seams adjacent corresponding perimeters thereof, to support the components of strap 22. The components of strap 22 may be bonded via welding, e.g., RF welding, adhesive, industrial strength double sided tape and the like. It is envisioned that only a portion of the foot contact layer 26 and outer layer 28 are joined. It is further envisioned that strap 22 includes a plurality of seams, disposed variously thereabout, that join foot contact layer 26 and outer layer 28. In an alternative embodiment and with reference to FIG. 1 A, an exaggerated partial cross-sectional view of a strap member 22 and its union to foot sleeve 12 is shown. The strap member 22 is disposed between the foot contact layer 32 and outer layer 42 of foot sleeve 12 such that the union of strap 22 and foot sleeve 12 is generally uniform. Such uniformity provides additional comfort to the user of the foot sleeve 12. More particularly, foot contact layer 26 and outer layer 28 of strap 22 are joined to interior portions of foot contact layer 32 and outer layer 42 of foot sleeve 12. Alternatively, it is also contemplated that cushioning layer 30 may or may not be disposed between foot contact layer 32 and outer layer 42 of foot sleeve 12. Strap 22 has a longitudinally projecting configuration extending from foot sleeve 12 and is configured for disposal about portions of foot F adjacent the ankle. Strap 22 forms part of a hook and loop type connector. A hook element 33 is mounted to strap 22 at foot contact layer 26. As strap 22 is wrapped about the portions of foot F adjacent the ankle, hook element 33 engages the loop material of outer layer 42 of foot sleeve 12 to facilitate mounting of foot sleeve 12 with foot F. Alternative to hook and loop type elements, clips, adhesive and pins may be employed.
Foot sleeve 12 includes a foot contact layer 32 configured to engage foot F for applying pressure thereto. Foot contact layer 32 has sections 35 and is flexible for conforming to the shape of foot F. It is envisioned that foot contact layer 32 may be fabricated from a polyester fabric. It is contemplated that foot contact layer 32 may be configured for wicking fluids such as, moisture and perspiration from an outer surface of foot F. Foot contact layer 32 may be treated chemically to enhance such wicking effect. Alternatively, foot contact layer 32 may be monolithically formed with foot contact layer 26 of strap 22. An inflatable bladder 34 of foot sleeve 12 includes an upper bladder layer 36 and a lower bladder layer 38 that are overlaid to form inflatable bladder 34. Upper bladder layer 36 engages foot contact layer 32 to facilitate application of pressure for vascular therapy to foot F. Upper bladder layer 36 and lower bladder layer 38 are fixedly joined via welding at seams along their perimeters to define inflatable bladder 34. It is contemplated that inflatable bladder 34 may include a plurality of seams, disposed variously thereabout, that join upper bladder layer 36 and lower bladder layer 38. It is further contemplated that the seams may be formed by adhesive, heat sealed and the like.
Upper bladder layer 36 and lower bladder layer 38 may be fabricated from a laminated material, for example, a PVC material. It is contemplated that each bladder layer may have a thickness of approximately 6 - 15 mils. It is further contemplated that the PVC material may be laminated to a non-woven or woven material and is RF heat sealable. Upper bladder layer 36 and lower bladder layer 38 may be fabricated from two different thicknesses to provide directional inflation. It is envisioned that the overall dimensions and materials described throughout this disclosure are not limiting and that other dimensions and materials may be used. It is further envisioned that inflatable bladder 34 may define one or a plurality of expandable chambers.
Inflatable bladder 34 extends along foot F to apply vascular therapy to the entire area of the bottom of foot F, beyond heel H and ball B to a substantial portion of toes T. It is contemplated that inflatable bladder 34 may have various geometric configurations, such as, circular, elliptical and rectangular. Inflatable bladder 34 includes an inlet port 40 that connects to tubing 16 to facilitate fluid communication with pressurized fluid source 14.
An outer layer 42 of foot sleeve 12 is disposed adjacent to lower bladder layer 38.
Outer layer 42 may be fabricated from a laminated material including fabric and a loop material, for example, a loop/non-woven laminate. Outer layer 42 provides an attachment surface for hook elements. Alternatively, outer layer 42 may be monolithically formed with outer layer 28 of strap 22.
Outer layer 42 may include die cut holes to provide for a fluid inlet to pass through, such as inlet port 40. It is envisioned that outer layer 42 and other portions of foot sleeve 12 may include vent openings disposed variously thereabout to provide cooling to the subject and increase mobility during use.
Foot contact layer 32 and outer layer 42 are overlaid to form foot sleeve 12. Foot contact layer 32 and outer layer 42 are fixedly joined at seams adjacent corresponding perimeters thereof, to support the components of foot sleeve 12. The components of foot sleeve 12 may be bonded via welding, e.g., RF welding, adhesive, industrial strength double sided tape and the like. It is envisioned that only a portion of the perimeters of foot contact layer 32 and outer layer 42 are joined. It is envisioned that foot sleeve 12 includes a plurality of seams, disposed variously thereabout, that join foot contact layer 32 and outer layer 42.
The components of foot sleeve 12 may be fabricated from materials suitable for compression vascular therapy such as, for example, films and fabrics, such as PVC (polyvinyl chloride) and PE (polyethylene), depending on the particular vascular therapy application and/or preference. Semi-flexible and flexible fabrics, such as urethanes and silicones may also be used. Moreover, foot sleeve 12 may be fabricated from synthetic, natural, and non- woven materials of varying degrees of softness and pliability. One skilled in the art, however, will realize that other materials and fabrication methods suitable for assembly and manufacture, in accordance with the present disclosure, also would be appropriate.
Foot sleeve 12 is configured to support inflatable bladder 34. Foot sleeve 12 extends laterally and is configured for disposal about foot F and mounting thereto. Foot sleeve 12 is disposed with foot F such that the top portion of toes T are visible for observation and inspection. A metatarsal flap 44 of foot sleeve 12 wraps about the side portions of foot F and transverses the instep of foot F during vascular therapy. Metatarsal flap 44 forms part of a hook and loop type connector. A hook element 46 is mounted to foot sleeve 12 at foot contact layer 32. As metatarsal flap 44 is wrapped about foot F, hook element 46 engages the loop material of outer layer 42 to facilitate mounting of foot sleeve 12 with foot F. In turn, this causes inflatable bladder 34 to be disposed about foot F for vascular therapy. This configuration of foot sleeve 12 advantageously engages foot F to augment circulation of vessels of the limb. It is contemplated that foot sleeve 12 may have various geometric configurations, such as, circular, elliptical, and rectangular. Alternative to hook and loop type elements, clips, adhesive, and pins may be employed.
Compression apparatus 10, similar to that described above, is assembled and packaged for use. In operation, foot sleeve 12 of compression apparatus 10 is disposed about foot F and in fluid communication with pressurized fluid source 14, as discussed. Controller 20 regulates vascular therapy of compression apparatus 10 to a subject. Foot sleeve 12 applies compression to foot F to provide vascular therapy to the subject and augment venous return. It is envisioned that compression apparatus 10 may include inflatable sleeves for disposal about various portions of a subject's limb, such as for example, thigh, calf, ankle and that a second limb may be treated in alternate compression cycles with other sleeve(s).
For example, during a selected compression cycle for controller 20, inflatable bladder 34 is slowly inflated for 5 seconds with air to a pressure, such as 130 mm Hg. This configuration provides vascular therapy to foot F and augments venous return. At the end of the inflation and hold, foot sleeve 12 is vented and inflatable bladder 34 is deflated.
Other compression cycles and pressures are also contemplated.
In an alternate embodiment, compression apparatus 10 performs venous refill time measurement. Venous refill time (VRT) measurement is an air plethysmographic technique that determines when the veins of a limb have completely refilled with blood following a compression cycle. See, for example, the venous refill time measurement described in U.S. Patent No. 6,231,352 to Watson et al., the entire contents of which is hereby incorporated by reference herein. The VRT minimizes the amount of time that the blood remains stagnant inside the veins. The VRT is substituted for the default rest time between compression cycles. It is contemplated that the VRT technique and algorithm can be used for both leg sleeve and foot sleeve compression.
The VRT measurement uses an air plethysmographic technique where a low pressure is applied to inflatable bladder 34. As the veins fill with blood, the pressure in inflatable bladder 34 increases until a plateau is reached. The time that it takes for the pressure to plateau is the VRT. If two sleeves are connected to controller 20, then the VRT is determined separately for each limb being compressed and the greater of the two measurements is used as the new vent time of the compression cycle. The VRT measurement for each sleeve is made as each particular sleeve reaches set pressure independently. However, the vent time is not updated until VRT measurements have been calculated for both sleeves.
For example, compression apparatus 10 may employ the VRT measurement after the system initiates vascular therapy. Subsequently, after 30 minutes have elapsed, a VRT measurement will be taken on the next full inflation cycle. After foot sleeve 12 inflates, inflatable bladder 34 is vented down to zero. It is contemplated that a selected bladder pressure is monitored and the vent to the bladder is closed when the pressure falls to 5-7 mm Hg. If the pressure in the bladder is 5-7 mm Hg on a current cycle then a VRT measurement is taken. If the pressure in the bladder does not vent down to 5-7 mm Hg then the vent time will remain at its current value and another measurement will be made in 30 minutes.
The VRT measurement algorithm determines when the pressure in inflatable bladder 34 plateaus after compression. The VRT measurement algorithm initiates with a time counter started from the end of the inflation cycle, which occurs after inflatable bladder 34 reaches 5-7 mm Hg (enough pressure to cause the bladder to remain in contact with the surface of the foot) and the venting is stopped. The VRT measurement initiates with the time counter started from the end of the inflation cycle.
The pressure in inflatable bladder 34 is then monitored with a 10-second, moving sample window. The window moves in 1 -second intervals. When the difference between the first and last values in the window is less than approximately 0.05 - 0.5 mm Hg, the curve has reached its plateau. The VRT measurement is considered done, and the time interval is determined. The end of the window is considered to be the point at which the venous system in the foot has refilled.
The VRT measurement is considered erroneous if at any time during the measurement, the pressure in inflatable bladder 34 is below 2 mmHg, the calculation is discarded, and the old value of VRT is used. This may occur if there is a leak in the system.
It is contemplated that if the pressure is greater than 20 mmHg at any time during the VRT measurement, the old value of the VRT is used.
Referring to FIG. 4, an alternate embodiment of compression apparatus 10 is shown. Compression apparatus 10 includes a foot sleeve 212, similar to foot sleeve 12 described above with regard to FIGS. 1, 1A and 2, configured for disposal about foot F. A pair of straps 222, similar to strap 22 described above with regard to FIGS. 1, 1A and 2, extend from foot sleeve 212. Straps 222 are configured for disposal about foot F adjacent to the ankle. One or a plurality of straps 222 may be employed.
Straps 222 have a longitudinally projecting configuration extending from foot sleeve 212 and are configured for disposal about portions of foot F adjacent the ankle. As discussed herein, it is contemplated that straps 222 may be separately or monolithically formed with foot sleeve 212. Straps 222 form part of hook and loop type connectors. Hook element 232 and loop element 232a are mounted to straps 222. As each of straps 222 are wrapped about the portions of foot F adjacent the ankle, hook element 232 engages loop material 232a to facilitate mounting of foot sleeve 212 with foot F. It is contemplated that hook elements 232, 232a may engage loop material disposed with an outer surface of foot sleeve 212 to facilitate mounting of foot sleeve 212 with foot F.
An inflatable bladder 234, similar to bladder 34 described above with regard to
FIGS. 1 and 2, extends longitudinally along foot F to apply vascular therapy to the entire area of the bottom of foot F, beyond heel H and ball B to a substantial portion of toes T.
Inflatable bladder 234 includes an inlet port 240 that connects to tubing 16 to facilitate fluid communication with pressurize,d fluid source 14.
Foot sleeve 212 is configured to support inflatable bladder 234. Foot sleeve 212 extends laterally and is configured for disposal about foot F and mounting thereto. Foot sleeve 212 is disposed with foot F such that the top portion of toes T are visible for observation and inspection. A pair of metatarsal flaps 244 extend laterally from foot sleeve 212 for wrapping about the side portions of foot F and transversing the instep of foot F during vascular therapy. Metatarsal flaps 244 form the hook and loop type connectors. Hook element 246 and loop element 246a are mounted to foot sleeve 212. As metatarsal flaps 244 are wrapped about foot F, hook element 246 engages to loop element 246a to engage the foot sleeve 212 to facilitate mounting of foot sleeve 212 with foot F. In turn, this causes inflatable bladder 234 to be disposed about foot F for vascular therapy. This configuration of foot sleeve 212 advantageously engages foot F to augment circulation of vessels of the limb. Foot sleeve 212 includes vent openings 250 disposed to provide cooling to the subject and increase mobility during use.
Referring to FIG. 5, another alternate embodiment of compression apparatus 10 is shown. Compression apparatus 10 includes a foot sleeve 312, similar to those described above, configured for disposal about foot F. A strap 322, similar to those described above, extends from foot sleeve 312. An inflatable bladder 334, similar to those described above, extends longitudinally along foot F to apply vascular therapy to the entire area of the bottom of foot F, beyond heel H and ball B to a substantial portion of toes T. Inflatable bladder 334 includes side portions 336 that extend laterally therefrom to engage side portions of foot F during application of foot sleeve 312 with foot F.
Foot sleeve 312 is configured to support inflatable bladder 334. Foot sleeve 312 extends laterally and is configured for disposal about foot F and mounting thereto. Foot sleeve 312 is disposed with foot F such that the top portion of toes T are visible for observation and inspection. A pair of metatarsal flaps 344 extend laterally from one side of foot sleeve 312 for wrapping about the side portions of foot F and transversing the instep of foot F during vascular therapy. Metatarsal flaps 344 form part of hook and loop type connectors. Hook elements 346, 346a are mounted to foot sleeve 312. As metatarsal flaps 344 are wrapped about foot F, hook elements 346, 346a engage the loop material of foot sleeve 312 to facilitate mounting of foot sleeve 312 with foot F. In turn, this causes inflatable bladder 334 to be disposed about foot F, including side portions 336 engaging the side portions of foot F, for vascular therapy. This configuration of foot sleeve 312 advantageously engages foot F to augment circulation of vessels of the limb. Referring to FIG. 6, another alternate embodiment of compression apparatus 10 is shown. Compression apparatus 10 includes a foot sleeve 412, similar to those described above, configured for disposal about foot F. A strap 422, similar to those described above, extends from foot sleeve 412. An inflatable bladder 434, similar to those described above, extends longitudinally along foot F to apply vascular therapy to the bottom of foot F, beyond heel H and ball B to a substantial portion of toes T.
Foot sleeve 412 has wings 444 (similar to metatarsal flaps described above) and is configured to support inflatable bladder 434. Foot sleeve 412 extends laterally, via wings 444, and is configured for disposal about foot F and mounting thereto. Foot sleeve 412 is disposed with foot F such that the top portion of toes T are visible for observation and inspection. Wings 444 wrap about the side portions of foot F and transverse the instep of foot F during vascular therapy. Wings 444 form part of hook and loop type connectors. Hook element 446 and loop element 446a are mounted to wings 444. As wings 444 are wrapped about foot F, hook element 446 engages with loop element 446a to facilitate mounting of foot sleeve 412 with foot F. In turn, this causes inflatable bladder 434 to be disposed about foot F for vascular therapy. This configuration of foot sleeve 412 advantageously engages foot F to augment circulation of vessels of the limb. Referring to FIG. 7, another alternate embodiment of compression apparatus 10 is shown. Compression apparatus 10 includes a foot sleeve 512, similar to those described above, configured for disposal about foot F. A strap 522, similar to those described above, extends from foot sleeve 512. An inflatable bladder 534, similar to those described above, extends longitudinally along foot F to apply vascular therapy to the bottom of foot F, beyond heel H and ball B to a substantial portion of toes T. Inflatable bladder 534 includes longitudinal portions 536 that extend longitudinally therefrom to engage desired portions of the bottom of foot F during application of foot sleeve 512 with foot F. Foot sleeve 512 is configured to support inflatable bladder 534. This configuration of foot sleeve 512 advantageously engages foot F to augment circulation of vessels of the limb.
It will be understood that various modifications may be made to the embodiments disclosed herein. Therefore, the above description should not be construed as limiting, but merely as exemplification of the various embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims

WHAT IS CLAIMED IS;
1. A compression apparatus comprising: an expandable body configured for disposal about a foot; a strap extending from the body, the strap being configured for disposal about the foot adjacent an ankle, wherein the strap has a first layer configured to engage an outer surface of the foot adjacent the ankle, a second layer and a third cushion layer disposed therebetween.
2. A compression apparatus as recited in claim 1, wherein the strap is integrally connected to the body.
3. A compression apparatus as recited in claim 1, wherein the strap is monolithically formed with the body.
4. A compression apparatus as recited in claim 1, wherein the body includes the first layer.
5. A compression apparatus as recited in claim 4, wherein the body includes the second layer.
6. A compression apparatus as recited in claim 1, wherein the strap has a segmented configuration for contour with the foot.
7. A compression apparatus as recited in claim 1, wherein the third cushion layer is disposed within the first layer and the second layer such that the first layer and the second layer are configured to provide a barrier to the third cushion layer.
8. A compression apparatus as recited in claim 1, wherein the body includes a metatarsal strap.
9. A compression apparatus as recited in claim 1, wherein the first layer includes a soft material.
10. A compression apparatus as recited in claim 1, wherein the first layer includes a soft material and a flexible film.
11. A compression apparatus as recited in claim 1, wherein the third cushion layer includes a foam material.
12. A compression apparatus as recited in claim 1, wherein the second layer has an outer surface including a loop material disposed therewith.
13. A compression apparatus as recited in claim 1, wherein the second layer includes a flexible film and an outer surface having a loop material disposed therewith.
14. A compression apparatus as recited in claim 8, wherein the second layer has an outer surface including a loop material such that the metatarsal strap includes hook elements that are engageable with the loop material to mount the expandable body with the foot.
15. A compression apparatus as recited in claim 12, wherein the body includes hook elements that are engageable with the loop material to mount the expandable body with the foot.
16. A compression apparatus comprising: a foot sleeve including an inflatable body configured for disposal about a foot, the foot sleeve including a metatarsal portion; a strap integrally connected to the foot sleeve and extending therefrom, the strap being configured for disposal about the foot adjacent an ankle, wherein the strap has a first layer configured to engage an outer surface of the foot adjacent the ankle, a second layer and a third cushion layer disposed therebetween such that the first layer and the second layer are configured to provide a barrier to the third cushion layer.
17. A compression apparatus as recited in claim 16, wherein the first layer is configured to prevent engagement of the third cushion layer with the outer surface of the foot.
18. A compression apparatus as recited in claim 16, wherein the third cushion layer includes a foam material.
19. A compression apparatus as recited in claim 16, wherein the strap has a segmented configuration for contour with the foot.
20. A compression apparatus comprising: a foot sleeve including an inflatable bladder configured for disposal about a foot, the foot sleeve including a metatarsal portion that overlies the foot; a strap integrally connected to the foot sleeve and extending therefrom, the strap being configured for disposal about the foot adjacent an ankle, wherein the strap has a foot contact layer including a soft material that is configured to engage an outer surface of the foot adjacent the ankle, an outer layer and a cushion layer including foam material disposed therebetween such that the foot contact layer and the outer layer are configured to provide a barrier to the cushion layer, the outer layer having an outer surface including a loop material such that the metatarsal portion includes hook elements that are engageable with the loop material to mount the foot sleeve with the foot.
21. A compression apparatus as recited in claim 1, wherein the compression apparatus includes a plurality of straps extending from the body.
22. A compression apparatus comprising: an expandable body configured for disposal about a foot, the expandable body including a top layer and a bottom layer; and a strap member extending from the expandable body, wherein a portion of the strap member is disposed between the top and bottom layers of the expandable body.
23. A compression apparatus as recited in claim 22, wherein the strap member includes a plurality of layers, whereby the plurality of layers comprises an interiorly disposed cushion layer.
EP05723526A 2004-02-23 2005-02-23 Compression apparatus Not-in-force EP1720505B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL05723526T PL1720505T3 (en) 2004-02-23 2005-02-23 Compression apparatus

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US10/784,604 US7282038B2 (en) 2004-02-23 2004-02-23 Compression apparatus
US10/784,607 US7871387B2 (en) 2004-02-23 2004-02-23 Compression sleeve convertible in length
US10/784,639 US7490620B2 (en) 2004-02-23 2004-02-23 Fluid conduit connector apparatus
US10/784,323 US7354410B2 (en) 2004-02-23 2004-02-23 Compression treatment system
PCT/US2005/005679 WO2005082316A2 (en) 2004-02-23 2005-02-23 Compression apparatus

Publications (2)

Publication Number Publication Date
EP1720505A2 true EP1720505A2 (en) 2006-11-15
EP1720505B1 EP1720505B1 (en) 2011-12-14

Family

ID=34916527

Family Applications (6)

Application Number Title Priority Date Filing Date
EP05713933.9A Active EP1722738B1 (en) 2004-02-23 2005-02-23 Compression treatment system
EP05723526A Not-in-force EP1720505B1 (en) 2004-02-23 2005-02-23 Compression apparatus
EP10185260.6A Active EP2314268B1 (en) 2004-02-23 2005-02-23 Compression treatment system
EP05713934A Not-in-force EP1718894B1 (en) 2004-02-23 2005-02-23 Fluid conduit connector apparatus
EP05713935A Active EP1720504B1 (en) 2004-02-23 2005-02-23 Compression apparatus
EP10185262.2A Withdrawn EP2319476A3 (en) 2004-02-23 2005-02-23 Compression treatment system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP05713933.9A Active EP1722738B1 (en) 2004-02-23 2005-02-23 Compression treatment system

Family Applications After (4)

Application Number Title Priority Date Filing Date
EP10185260.6A Active EP2314268B1 (en) 2004-02-23 2005-02-23 Compression treatment system
EP05713934A Not-in-force EP1718894B1 (en) 2004-02-23 2005-02-23 Fluid conduit connector apparatus
EP05713935A Active EP1720504B1 (en) 2004-02-23 2005-02-23 Compression apparatus
EP10185262.2A Withdrawn EP2319476A3 (en) 2004-02-23 2005-02-23 Compression treatment system

Country Status (15)

Country Link
EP (6) EP1722738B1 (en)
JP (4) JP2007522892A (en)
KR (5) KR100914569B1 (en)
CN (1) CN102614074B (en)
AT (3) ATE536851T1 (en)
AU (4) AU2005216934B2 (en)
CA (4) CA2552354C (en)
DE (2) DE602005021460D1 (en)
DK (1) DK1720504T3 (en)
ES (4) ES2806930T3 (en)
HK (1) HK1091390A1 (en)
IL (4) IL176409A (en)
NO (4) NO20064256L (en)
PL (2) PL1720504T3 (en)
WO (4) WO2005082316A2 (en)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0515294D0 (en) 2005-07-26 2005-08-31 Novamedix Distrib Ltd Limited durability closure means for an inflatable medical garment
GB0523249D0 (en) * 2005-11-15 2005-12-21 Huntleigh Technology Plc Identification means
US8029451B2 (en) 2005-12-12 2011-10-04 Tyco Healthcare Group Lp Compression sleeve having air conduits
GB0601453D0 (en) * 2006-01-24 2006-03-08 Bristol Myers Squibb Co Pressurised medical device
JP4710758B2 (en) * 2006-08-28 2011-06-29 パナソニック電工株式会社 Massage machine
GB0622415D0 (en) 2006-11-10 2006-12-20 Huntleigh Technology Plc Compression system
US8070699B2 (en) 2007-04-09 2011-12-06 Tyco Healthcare Group Lp Method of making compression sleeve with structural support features
US8128584B2 (en) * 2007-04-09 2012-03-06 Tyco Healthcare Group Lp Compression device with S-shaped bladder
US8016778B2 (en) 2007-04-09 2011-09-13 Tyco Healthcare Group Lp Compression device with improved moisture evaporation
US8506508B2 (en) 2007-04-09 2013-08-13 Covidien Lp Compression device having weld seam moisture transfer
US8109892B2 (en) 2007-04-09 2012-02-07 Tyco Healthcare Group Lp Methods of making compression device with improved evaporation
US8034007B2 (en) 2007-04-09 2011-10-11 Tyco Healthcare Group Lp Compression device with structural support features
US8021388B2 (en) 2007-04-09 2011-09-20 Tyco Healthcare Group Lp Compression device with improved moisture evaporation
US8029450B2 (en) 2007-04-09 2011-10-04 Tyco Healthcare Group Lp Breathable compression device
US8016779B2 (en) * 2007-04-09 2011-09-13 Tyco Healthcare Group Lp Compression device having cooling capability
US8162861B2 (en) 2007-04-09 2012-04-24 Tyco Healthcare Group Lp Compression device with strategic weld construction
US8182437B2 (en) 2007-05-08 2012-05-22 Wright Therapy Products, Inc. Pneumatic compression therapy system and methods of using same
US8388557B2 (en) 2007-06-20 2013-03-05 Remo Moomiaie-Qajar Portable compression device
GB0712764D0 (en) 2007-07-02 2007-08-08 Smith & Nephew Carrying Bag
US8246028B2 (en) 2007-11-08 2012-08-21 Tyco Healthcare Group Lp Telescopingly adjustable clamp
US8114117B2 (en) 2008-09-30 2012-02-14 Tyco Healthcare Group Lp Compression device with wear area
US8235923B2 (en) 2008-09-30 2012-08-07 Tyco Healthcare Group Lp Compression device with removable portion
US8133039B2 (en) 2009-01-26 2012-03-13 Tyco Healthcare Group Lp Mount for a compression control unit
US8419666B2 (en) * 2009-09-23 2013-04-16 Caremed Supply, Inc. Compression sleeve
US8506507B2 (en) * 2010-03-09 2013-08-13 Covidien Lp Venous augmentation system
US8652079B2 (en) 2010-04-02 2014-02-18 Covidien Lp Compression garment having an extension
USD675741S1 (en) 2010-08-16 2013-02-05 Covidien Lp Pneumatic compression controller
USD659839S1 (en) 2010-08-16 2012-05-15 Tyco Healthcare Group Lp Support for a pneumatic compression controller
US10751221B2 (en) 2010-09-14 2020-08-25 Kpr U.S., Llc Compression sleeve with improved position retention
US8398572B2 (en) * 2010-09-21 2013-03-19 Covidien Lp Bladder tube connection
US8753300B2 (en) 2010-09-29 2014-06-17 Covidien Lp Compression garment apparatus having baseline pressure
US8758282B2 (en) 2010-09-29 2014-06-24 Covidien Lp Compression garment apparatus having support bladder
CA2778395A1 (en) * 2011-06-10 2012-12-10 Tyco Healthcare Group Lp Compression device having a pause feature
US10828402B2 (en) * 2011-10-14 2020-11-10 Alcon Inc. Collar connector
AU2013232352B2 (en) 2012-03-12 2017-10-12 Tactile Systems Technology, Inc. Compression therapy device with multiple simultaneously active chambers
US9889063B2 (en) 2012-06-11 2018-02-13 Wright Therapy Products, Inc. Methods and systems for determining use compliance of a compression therapy device
US9205021B2 (en) 2012-06-18 2015-12-08 Covidien Lp Compression system with vent cooling feature
WO2014021267A1 (en) * 2012-07-30 2014-02-06 国立大学法人高知大学 In vivo acetylcholine production-promoting device
CA2882299C (en) 2012-08-18 2023-09-19 Wright Therapy Products, Inc. Methods for determining the size of body parts as part of compression therapy procedures
US9872812B2 (en) 2012-09-28 2018-01-23 Kpr U.S., Llc Residual pressure control in a compression device
USD764654S1 (en) 2014-03-13 2016-08-23 Smith & Nephew, Inc. Canister for collecting wound exudate
US9295605B2 (en) 2013-12-02 2016-03-29 Wright Therapy Products, Inc. Methods and systems for auto-calibration of a pneumatic compression device
US10470967B2 (en) 2014-01-20 2019-11-12 Tactile Systems Technology, Inc. Bespoke compression therapy device
US10292894B2 (en) 2014-02-11 2019-05-21 Tactile Systems Technology, Inc. Compression therapy device and compression therapy protocols
USD764653S1 (en) 2014-05-28 2016-08-23 Smith & Nephew, Inc. Canister for collecting wound exudate
USD764048S1 (en) 2014-05-28 2016-08-16 Smith & Nephew, Inc. Device for applying negative pressure to a wound
USD764047S1 (en) 2014-05-28 2016-08-16 Smith & Nephew, Inc. Therapy unit assembly
USD770173S1 (en) 2014-06-02 2016-11-01 Smith & Nephew, Inc. Bag
USD765830S1 (en) 2014-06-02 2016-09-06 Smith & Nephew, Inc. Therapy unit assembly
US10071011B2 (en) 2014-06-30 2018-09-11 Kpr U.S., Llc Compression garment inflation
US10219971B2 (en) 2014-08-27 2019-03-05 Kpr U.S., Llc Compression garment inflation
CN117064627A (en) 2015-01-27 2023-11-17 梅迪万斯股份有限公司 Improved medical pad and system for thermal therapy
DE102015105371A1 (en) * 2015-04-09 2016-10-13 Kongsberg Automotive Ab Massage device for a vehicle seat
WO2017189926A1 (en) 2016-04-27 2017-11-02 Radial Medical, Inc. Adaptive compression therapy systems and methods
CA3025494A1 (en) * 2016-05-26 2017-11-30 Huntleigh Technology Limited Compression therapy system and method
WO2018230930A1 (en) * 2017-06-16 2018-12-20 주식회사 뷰엘리스 Leg cuff for pneumatic massage
US11504927B2 (en) 2018-03-23 2022-11-22 TurnCare, Inc. Systems and methods for controlling and monitoring inflatable perfusion enhancement apparatus for mitigating contact pressure
US11980565B2 (en) 2018-03-23 2024-05-14 TurnCare, Inc. Inflatable perfusion enhancement apparatuses and associated devices, systems and methods
JP6813531B2 (en) * 2018-05-16 2021-01-13 日東工器株式会社 Pneumatic massage device and its air supply tube
US10893998B2 (en) 2018-10-10 2021-01-19 Inova Labs Inc. Compression apparatus and systems for circulatory disorders
KR20220019182A (en) 2020-08-07 2022-02-16 유인종 An air pressure control apparatus for treatment apparatus of varicose vein and the treatment apparatus comprising the same
KR20220019180A (en) 2020-08-07 2022-02-16 유인종 A compression stocking for treatment apparatus of varicose vein and the fabrication method thereof, and the treatment apparatus comprising the same
JP7283816B1 (en) * 2022-02-17 2023-05-30 株式会社テクノ高槻 Air supply and exhaust system

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1883240A (en) * 1925-11-27 1932-10-18 Honeywell Regulator Co Magnetically operated valve
US1608239A (en) * 1925-12-09 1926-11-23 Rosett Joshua Therapeutic device
US2628850A (en) * 1949-03-19 1953-02-17 Donald V Summerville Releasable conduit connection with automatic valving
US4013069A (en) * 1975-10-28 1977-03-22 The Kendall Company Sequential intermittent compression device
US4091804A (en) * 1976-12-10 1978-05-30 The Kendall Company Compression sleeve
US4355632A (en) * 1980-08-06 1982-10-26 Jobst Institute, Inc. Anti-shock pressure garment
US4374518A (en) * 1980-10-09 1983-02-22 Raul Villanueva Electronic device for pneumomassage to reduce lymphedema
JPS5942030Y2 (en) * 1980-12-23 1984-12-06 株式会社日器 Pressure bag for pneumatic pine surge device
IL63574A (en) * 1981-08-14 1985-07-31 Mego Afek Massaging sleeve for body limbs
JPS5892926U (en) * 1981-12-17 1983-06-23 日東工器株式会社 Compressed air supply device for pneumatic pine surger
US4624248A (en) * 1983-02-07 1986-11-25 David Clark Company Incorporated Transparent pressure garment
US4696289C1 (en) * 1983-06-22 2002-09-03 Novamedix Distrib Ltd Method of stimulating the venous-pump mechanism of the foot and for enhancement of arterial flow to the foot
US5989204A (en) * 1991-09-27 1999-11-23 Kinetic Concepts, Inc. Foot-mounted venous compression device
US5186163A (en) * 1991-11-25 1993-02-16 The Kendall Company Compression device
WO1993012708A2 (en) * 1991-12-17 1993-07-08 Kinetic Concepts, Inc. Pneumatic compression device for medical use
GB2295235B (en) * 1992-09-15 1996-08-14 Huntleigh Technology Plc DVT prevention apparatus and method
JPH06245949A (en) * 1993-02-22 1994-09-06 Hokoku Kogyo Co Ltd Warming/cooling massage medical treatment device
US5354260A (en) * 1993-05-13 1994-10-11 Novamedix, Ltd. Slipper with an inflatable foot pump
US5443440A (en) * 1993-06-11 1995-08-22 Ndm Acquisition Corp. Medical pumping apparatus
US5478119A (en) * 1993-09-16 1995-12-26 The Kendall Company Polarized manifold connection device
US5795312A (en) * 1993-09-27 1998-08-18 The Kendall Company Compression sleeve
US5575762A (en) * 1994-04-05 1996-11-19 Beiersdorf-Jobst, Inc. Gradient sequential compression system and method for reducing the occurrence of deep vein thrombosis
US5591200A (en) * 1994-06-17 1997-01-07 World, Inc. Method and apparatus for applying pressure to a body limb for treating edema
CA2153375C (en) * 1994-07-26 2000-09-12 Arnold Tobler Attachment of hook and loop fastener to a compression sleeve
US5876359A (en) 1994-11-14 1999-03-02 Bock; Malcolm G. Sequential compression device controller
GB9507328D0 (en) * 1995-04-08 1995-05-31 Novamedix Ltd A medical device
JPH09313557A (en) * 1996-05-31 1997-12-09 Megoafeck Ind Measuring Instr Pneumatic massaging device
IL120935A0 (en) * 1996-06-07 1997-09-30 Bibi Roni Medical apparatus for facilitating blood circulation in the lower limbs
US5681339A (en) * 1996-08-12 1997-10-28 Mcewen; James A. Apparatus and method for monitoring the patency of tubing in a pneumatic medical device
JP4124503B2 (en) * 1997-06-06 2008-07-23 株式会社アドバンス Blood circulation promotion device
JP4059956B2 (en) * 1997-06-30 2008-03-12 日東工器株式会社 Pneumatic massager
AU749610B2 (en) * 1997-08-31 2002-06-27 Medical Compression Systems (D.B.N.) Ltd. Device for pressurizing limbs
US6494852B1 (en) 1998-03-11 2002-12-17 Medical Compression Systems (Dbn) Ltd. Portable ambulant pneumatic compression system
US6007559A (en) * 1998-06-12 1999-12-28 Aci Medical Vascular assist methods and apparatus
JP2002521137A (en) * 1998-07-30 2002-07-16 メディカル ダイナミックス ユーエスエイ, エルエルシー Medical device for applying periodic therapeutic actions to a human foot
US6062244A (en) * 1998-08-13 2000-05-16 Aci Medical Fluidic connector
DE19846922C2 (en) * 1998-10-12 2003-12-11 Manuel Fernandez treatment device
JP3909789B2 (en) * 1998-12-28 2007-04-25 日東工器株式会社 Air massager
EP1062934B1 (en) * 1999-01-11 2005-03-23 Family Kabushiki Kaisha Massaging machine
FR2789811B1 (en) 1999-02-11 2001-05-18 Radiall Sa COAXIAL CONNECTION FOR CONNECTING TWO PRINTED CIRCUIT BOARDS
US6290662B1 (en) 1999-05-28 2001-09-18 John K. Morris Portable, self-contained apparatus for deep vein thrombosis (DVT) prophylaxis
US6592534B1 (en) * 1999-12-27 2003-07-15 Aircast, Inc. Inflatable medical appliance for prevention of DVT
JP2001286521A (en) * 2000-04-10 2001-10-16 Nippon Colin Co Ltd Vein thrombus embolism preventing device
US6558338B1 (en) * 2000-11-20 2003-05-06 Mego Afek Industrial Measuring Instruments System for and method of applying pressure to human body
JP3951637B2 (en) * 2001-06-14 2007-08-01 松下電工株式会社 Air massage machine
JP2003319988A (en) * 2002-05-07 2003-11-11 Marutaka Co Ltd Air massage machine for arm
JP2005533981A (en) * 2002-07-27 2005-11-10 ジェイダブリュエル・マスキン−オージー・プラストファブリック・エイ/エス High speed coupling device and method for assembling a coupling socket

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005082316A2 *

Also Published As

Publication number Publication date
IL176409A0 (en) 2006-10-05
CA2552354A1 (en) 2005-09-09
NO20064255L (en) 2006-09-20
AU2005217424B2 (en) 2008-11-06
AU2005216934B2 (en) 2007-12-13
JP4602996B2 (en) 2010-12-22
EP2319476A3 (en) 2014-10-01
IL176433A0 (en) 2006-10-05
EP1718894B1 (en) 2010-07-07
AU2005216924A1 (en) 2005-09-09
JP2007522890A (en) 2007-08-16
EP1718894A1 (en) 2006-11-08
IL176410A (en) 2010-06-16
AU2005216934A1 (en) 2005-09-09
ATE473390T1 (en) 2010-07-15
PL1720505T3 (en) 2012-05-31
IL176433A (en) 2011-07-31
ES2414880T3 (en) 2013-07-23
JP2007522892A (en) 2007-08-16
JP2007522891A (en) 2007-08-16
AU2005216924B2 (en) 2009-03-12
ATE536851T1 (en) 2011-12-15
EP1720504A1 (en) 2006-11-15
NO20064256L (en) 2006-09-20
CA2552331C (en) 2009-04-28
ES2806930T3 (en) 2021-02-19
CA2552353C (en) 2009-04-28
EP2314268A2 (en) 2011-04-27
ATE468834T1 (en) 2010-06-15
IL176410A0 (en) 2006-10-05
EP2314268A3 (en) 2014-06-18
CN102614074B (en) 2015-09-23
EP1720505B1 (en) 2011-12-14
NO20064281L (en) 2006-09-21
AU2005216923B2 (en) 2009-05-28
DK1720504T3 (en) 2010-08-23
EP2314268B1 (en) 2020-04-22
KR20070001964A (en) 2007-01-04
WO2005082314A1 (en) 2005-09-09
DE602005021460D1 (en) 2010-07-08
JP4686485B2 (en) 2011-05-25
PL1720504T3 (en) 2010-11-30
CA2552355A1 (en) 2005-09-09
KR100868148B1 (en) 2008-11-12
EP1722738A1 (en) 2006-11-22
CA2552355C (en) 2008-12-23
EP2319476A2 (en) 2011-05-11
KR100873540B1 (en) 2008-12-11
WO2005082315A1 (en) 2005-09-09
NO20064310L (en) 2006-09-22
EP1722738B1 (en) 2013-04-10
IL176432A0 (en) 2006-10-05
KR20070007085A (en) 2007-01-12
KR100914569B1 (en) 2009-08-31
HK1091390A1 (en) 2007-01-19
WO2005082316A3 (en) 2005-12-01
KR100918718B1 (en) 2009-09-24
CA2552331A1 (en) 2005-09-09
CN102614074A (en) 2012-08-01
CA2552353A1 (en) 2005-09-09
AU2005217424A1 (en) 2005-09-09
WO2005083313A1 (en) 2005-09-09
JP2007522889A (en) 2007-08-16
ES2378886T3 (en) 2012-04-18
CA2552354C (en) 2010-07-06
WO2005082316A2 (en) 2005-09-09
ES2346546T3 (en) 2010-10-18
IL176409A (en) 2012-01-31
AU2005216923A1 (en) 2005-09-09
KR20060133587A (en) 2006-12-26
KR20070027506A (en) 2007-03-09
JP4571156B2 (en) 2010-10-27
DE602005022165D1 (en) 2010-08-19
KR20080091404A (en) 2008-10-10
EP1720504B1 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
EP1720505B1 (en) Compression apparatus
US7282038B2 (en) Compression apparatus
AU2017325804B2 (en) Therapeutic compression apparatus and methods of use
US7931606B2 (en) Compression apparatus
CA2584929C (en) Compression device for the limb
US5711760A (en) Self-inflating venous boot
US20050154336A1 (en) Segmented pneumatic pad for regulating pressure upon parts of the body during usage
EP0897707A2 (en) Compression system
US20020042585A1 (en) Compression garment for selective application for treatment of lymphedema and related illnesses manifested at various locations of the body
WO2009064822A1 (en) Method and assembly for treating venous ulcers and wounds
US20120316480A1 (en) Therapeutic compression apparatus
US20090204037A1 (en) Compression Apparatus for Applying Intermittent Pressure to the Leg
WO2012142155A2 (en) Therapeutic compression apparatus
US20120078288A1 (en) Compression garment having grip
WO1997018788A1 (en) Self-inflating venous boot
WO1999037266A1 (en) Venous boot
WO2020022973A2 (en) Wearable anti-embolism stockings

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060623

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1091389

Country of ref document: HK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080808

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005031646

Country of ref document: DE

Effective date: 20120308

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20111214

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2378886

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111214

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120315

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111214

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111214

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111214

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111214

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120414

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111214

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111214

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111214

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111214

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120416

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 536851

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120223

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: HK

Ref legal event code: WD

Ref document number: 1091389

Country of ref document: HK

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111214

26N No opposition filed

Effective date: 20120917

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005031646

Country of ref document: DE

Effective date: 20120917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111214

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130227

Year of fee payment: 9

Ref country code: FR

Payment date: 20130311

Year of fee payment: 9

Ref country code: GB

Payment date: 20130227

Year of fee payment: 9

Ref country code: ES

Payment date: 20130226

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20130201

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050223

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005031646

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140223

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005031646

Country of ref document: DE

Effective date: 20140902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140223

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140902

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140223

REG Reference to a national code

Ref country code: PL

Ref legal event code: LAPE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140223