EP1713586A1 - Method of producing a layer of material on a support - Google Patents

Method of producing a layer of material on a support

Info

Publication number
EP1713586A1
EP1713586A1 EP05726348A EP05726348A EP1713586A1 EP 1713586 A1 EP1713586 A1 EP 1713586A1 EP 05726348 A EP05726348 A EP 05726348A EP 05726348 A EP05726348 A EP 05726348A EP 1713586 A1 EP1713586 A1 EP 1713586A1
Authority
EP
European Patent Office
Prior art keywords
layer
support
producing
catalyst
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05726348A
Other languages
German (de)
French (fr)
Inventor
Jean Dijon
Françoise Geffraye
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1713586A1 publication Critical patent/EP1713586A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5826Treatment with charged particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Definitions

  • the invention relates to the production of a thin fragmented layer of material on a support. It applies in particular to obtaining a catalyst for the production of carbon nanotubes or nanofibers.
  • the catalyst is one of the important elements allowing the growth of carbon nanotubes as well for the growth methods in
  • CVD chemical vapor deposition
  • the qualities sought for the catalyst there is of course its effectiveness: the problems of technological integration make that one seeks to obtain catalysts which allow growth reactions at the lowest possible temperatures.
  • a catalyst that can be integrated into microelectronic devices. For this purpose, thin layers of nickel, cobalt or iron are used.
  • the plasma is either a relatively high temperature nitrogen plasma, from 600 ° C to 900 ° C (see the publication of Gao JS, Materials Science and Engineering 2003, A352, p. 308-313) or an ammonia plama at 390 ° C, (see for example the publication of Choi JH, Thin Solid Films 2003, 435, p. 318-323).
  • the objective in the latter case, is to etch the catalyst to control the density of particles.
  • the particles obtained are relatively large (between 60 and 100 nm in diameter) except for deposited layer thicknesses of the order of nm. It can therefore be seen that the 4 parameters mentioned above are not satisfied and that the only parameter making it possible to vary the diameter of the particles obtained is the thickness of the deposited layer.
  • the object of the invention is a process for producing a divided material making it possible to obtain a large state of division.
  • This state of division is controllable by means of another parameter than the thickness of the deposited layer of this material.
  • the invention relates firstly to a method comprising a step of depositing in a discontinuous form a thin layer of a first material on one face of a support and then a step of placing in drops, by a heat treatment or by treatment with low temperature hydrogen plasma.
  • deposition in discontinuous form means a succession of deposits of the same material interspersed with waiting phases in vacuum or in a controlled atmosphere, that is to say that the deposition is discontinuous over time.
  • the thin layer is usually in the form of a film, and can have a thickness of between one and a few nanometers, for example between 1 nm and 10 nm. It is preferable, moreover, that the surface tension of the material situated on the surface of the support is lower than that of the material to be divided.
  • the drops formed are rounded regularly, and / or distributed homogeneously. It is also preferable that these materials do not interact little or not together (few diffusion phenomena, no or few chemical reactions).
  • a diffusion barrier layer may be produced beforehand, for example a TiN layer if the first material is nickel. This barrier layer will also determine the dividing properties and the stability of the divided material.
  • the first material will be a catalytic metal such as nickel, iron or cobalt.
  • a catalytic metal such as nickel, iron or cobalt.
  • an active catalyst is obtained from 300 ° C. which can be used for growth processes.
  • the step of depositing a layer of catalytic metal can be carried out in the presence of a partial pressure of oxygen, which makes it possible to better control the diameter of the grains of the catalyst.
  • the invention also relates to a process for growing nanotubes or carbon nanofibers, comprising: - The production of a catalyst layer as described above, - The growth of nanotubes or nanofibers on the catalyst layer thus obtained.
  • the growth of nanotubes or nanofibers can be obtained by chemical vapor deposition.
  • the invention also relates to a method for producing a surface of a support with controlled roughness, comprising the production of a thin layer, for example a continuous film, of material on this support, according to one of the methods described below. -above. It also relates to a process for producing a metal / oxide mixture on the surface of a support, comprising: - the production of a thin fragmented layer of a metallic material on this support, as above, - the formation an oxide layer on the layer of material thus formed, - a polishing step.
  • FIG. 1 shows a device used to carry out a method according to the invention.
  • Figure 2 shows a compound according to the invention.
  • FIGS. 3A and 3B represent a scanning electron microscopy (SEM) image of a 3 nm nickel film, obtained by a method according to the prior art, and by a method according to the invention.
  • FIG. 4 represents nanotubes obtained by growth on a catalyst according to a process in accordance with. the invention.
  • FIG. 1 illustrates a device which allows very precise control of the thickness of the layer deposited and especially the discontinuous deposition in time of this layer, moreover continuous on a surface: of a group of evaporation by electron gun having a planetary system.
  • a charge 1 for example of nickel, is evaporated at room temperature through a cover 2 towards a sample holder 3 itself fixed on a planetary rotating system 5.
  • a detector 4 makes it possible to control the thickness of nickel deposited on the holder -sample 3.
  • the measurement, carried out using the measuring means 4 takes place over a thickness greater than the thickness deposited on the substrate 3, according to the ratio between the size of the opening 7 made in the cover 2 and the perimeter of this same cache.
  • the sample holder 3 only undergoes deposition when it is in the axis of the opening 7 made in the cover, while the detector 4 undergoes a continuous deposition, during all the rotations of the planetary system.
  • This device makes it possible to carry out controlled discontinuous evaporation with, for example, a deposition time of 1/10 and a deposition time of 9/10 if the size of the opening corresponds to one tenth of the perimeter of the cover.
  • the structure obtained is illustrated in FIG. 2 and comprises a substrate 10, a layer, or film, 14 of deposited material, typically of thickness
  • a heat treatment or a plasma treatment at hydrogen, at low temperature makes it possible to drop the deposited material, that is to say to structure the film so as to form a discontinuous set of drops of material, more or less homogeneous and / or regular in terms of their shape, size and distribution.
  • this treatment can also make it possible to activate said catalyst for layer 14.
  • room temperature about 20 ° C.
  • 500 ° C. for example 200 ° C to 500 ° C, and preferably around 300 ° C. Examples will now be given of the production of catalysts according to the invention.
  • Example 1 the material is treated by annealing.
  • Layer 12 is a TiN layer 60 nm thick deposited by reactive sputtering at room temperature.
  • the spray gas is a mixture of argon and nitrogen (80% / 20%).
  • the Ni layer 14 is produced by electron gun at room temperature with the device described above, discontinuously. Setting drop is obtained by a standard heat treatment at 600 ° C under partial pressure of hydrogen. More generally, this heat treatment can be carried out between 500 ° C. and 600 ° C., a range conventionally used. Under these conditions, a distribution of Ni particles is obtained, the mean and standard deviation of the diameter of which are given in Table I below as a function of the thickness of Ni deposited. The results obtained on standard Ni layers (that is to say deposited continuously) are collated in Table II below.
  • Table I Parameters of the particle distributions obtained according to the invention.
  • FIGS. 3A and 3B each represent a SEM image of a 3 nm nickel film deposited on an identical sublayer of TiN put in drop at 600 ° C.
  • FIG. 3A (x 40000) relates to the case of a standard method
  • FIG. 3B (x 100000) that of a method according to the invention. Again, it appears that a gain of the order of 3 is obtained with a method according to the invention.
  • Example 2 (with plasma) In this example, the material is treated with plasma.
  • the deposits are the same as in Example 1 with treatment of the deposit at 300 ° C with a radio frequency plasma (RF) of hydrogen.
  • the RF power is 300 W
  • the treatment time 10 minutes the hydrogen pressure 150 mTorr.
  • Table III illustrates the result of the treatment with a hydrogen plasma at 300 ° C. on a film deposited according to the process of the invention (that is to say discontinuously) and according to a standard process (that is to say - say continuously).
  • Example 3 (partial pressure of 0 2 + plasma)
  • the material is treated under partial pressure of 0 2 and with plasma.
  • the TiN layer 12 is a 60 nm thick layer deposited by reactive sputtering.
  • the spray gas is an argon / nitrogen mixture (80% / 20%).
  • the Ni layer 14 is produced by electron gun at room temperature with the device described above. When depositing Ni, a partial oxygen pressure of 3.10 ⁇ 5 mbar is added.
  • the layer is fractionated using the H 2 plasma process, as described in the previous example, at 300 ° C. Table IV collates the results relating to the size of the catalyst particles with the introduction of a partial pressure of oxygen during the deposition.
  • Table IV shows the role of oxygen during the deposition of Ni.
  • the diameter of the catalyst grains can be controlled by adjusting the partial pressure of oxygen, typically between 10 - ⁇ and 10 ⁇ 4 mbar.
  • the catalysts produced according to the invention therefore exhibit very good thermal stability, at least up to 650 ° C. After two hours at 630 ° C., for a 3 nm layer of Ni treated with plasma, the mean distribution value increased from 18 nm to 23 nm. Nanotubes can then be grown quite satisfactorily with a CVD (chemical vapor deposition) process at 540 ° C and with C 2 H 2 as reactive gas.
  • CVD chemical vapor deposition
  • FIG. 4 illustrates the growth of nanotubes obtained on a catalyst according to the invention, at 540 ° C., with a CVD process at 540 ° C. (tubes of approximately 20 nm). This is a SEM image with magnification ⁇ 100,000.
  • the catalyst produced according to the invention meets the following criteria: - high reactivity, at temperatures between 500 ° C and 600 ° C; - very strong division of the catalyst, the average diameter of the particles obtained can be between 10 nm and 90 nm, depending on the thickness of the catalyst; - stability under the temperature conditions used, that is to say at least up to 650 ° C; - ease of integration into the technology of a device because deposits are made at the room temperature and are therefore compatible with conventional resin "lift off” steps. We can thus easily, by these steps, locate the deposition of the catalyst.
  • the invention relates more generally to a method making it possible to obtain, on one face of a support, particles of controlled density and size of a given material.
  • This material can be metallic (iron, or nickel, or cobalt, or semiconductor compounds, for example silicon). It is therefore deposited discontinuously in thin film (typically a few nanometers) on the support, then drop by heat treatment or plasma treatment.
  • the face of the support is chosen to interact little with the material to be divided (little diffusion, no or little chemical reaction). This is the case for nickel on TiN, but also more generally for metals on an oxide or silicon on an oxide. If necessary, a diffusion barrier can be interposed (for example in TiN, or in an oxide, etc.).
  • This process can have applications other than catalysis for the growth of nanotubes.
  • the particles thus distributed can be used to control the surface roughness of said support, its structuring on the scale of the size of the drops, ie approximately 20 nm. This structured surface can then be covered with an oxide (for example silica), then polished to obtain a calibrated mixture of particles, for example metallic, in an oxide (with CERMET type applications).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Composite Materials (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The invention relates to a method of producing a fragmented layer of a material on a support. The inventive method is characterised in that it comprises the following steps consisting in: intermittently depositing a continuous thin layer (14) of the material on the support; and, subsequently, transforming said thin layer into drops.

Description

PROCEDE DE REALISATION D'UNE COUCHE DE MATERIAU SUR UN SUPPORT DESCRIPTION PROCESS FOR PRODUCING A LAYER OF MATERIAL ON A SUPPORT DESCRIPTION
DOMAINE TECHNIQUE ET ART ANTERIEUR L'invention concerne la réalisation d'une couche mince fragmentée de matériau sur un support . Elle s'applique en particulier à l'obtention d'un catalyseur en vue de la réalisation de nanotubes ou nanofibres de carbone. Le catalyseur est un des éléments importants permettant la croissance des nanotubes de carbone aussi bien pour les méthodes de croissance enTECHNICAL FIELD AND PRIOR ART The invention relates to the production of a thin fragmented layer of material on a support. It applies in particular to obtaining a catalyst for the production of carbon nanotubes or nanofibers. The catalyst is one of the important elements allowing the growth of carbon nanotubes as well for the growth methods in
CVD (dépôt chimique en phase vapeur) thermique pur que pour les techniques de dépôt assisté par plasma. Parmi les qualités recherchées pour le catalyseur, on trouve bien sûr son efficacité : les problèmes d'intégration technologique font que l'on cherche à obtenir des catalyseurs qui permettent des réactions de croissance aux températures les plus basses possibles. On cherche également un certain état de division du catalyseur : en pratique, on cherche à réaliser des particules catalytiques de diamètre moyen faible. Le diamètre des nanotubes obtenus est une image directe du diamètre des particules catalytiques. La stabilité vis-à-vis de la température est également un paramètre important : il s'agit de la capacité du catalyseur à conserver son état de division sans coalescence des nanoparticules entre elles lors du procédé de croissance. On cherche également un catalyseur qui puisse être intégré dans des dispositifs de microélectronique. A cette fin, on utilise des couches minces de nickel, de cobalt ou de fer. Ce type de catalyseur est décrit par exemple dans la publication de Yudasaka M, Applied Physic Letter 1995, 61, p.2411. Il est connu que la taille des particules obtenues dépend de l'épaisseur de la couche déposée. Par contre, le problème de la stabilité n'est pas résolu comme décrit par exemple dans la publication de Siegal MP et coll . , Applied Physics etters 2002, 80 (12) , p.2111 où une forte coalescence des gouttes de Ni est observée. Par ailleurs, la mise en goutte ou le fractionnement du catalyseur ne se fait efficacement qu'à des températures de l'ordre de 600°C, ce qui condamne les procédés utilisant ce catalyseur à travailler à des températures proches de 600°C. L'utilisation de plasma a été proposée en particulier sur des coucb.es de Ni ou de Fe pour graver le catalyseur. Le plasma est soit un plasma d'azote à relativement haute température, de 600°C à 900°C (voir la publication de Gao JS, Materials Science and Engineering 2003, A352 , p. 308-313) ou un plama d'ammoniac à 390 °C, (voir par exemple la publication de Choi JH, Thin Solid Films 2003, 435, p. 318-323) . L'objectif, dans ce dernier cas, est de graver le catalyseur pour contrôler la densité de particules. Les particules obtenues sont relativement grosses (entre 60 et 100 nm de diamètre) sauf pour des épaisseurs de couche déposées de l'ordre du nm. On voit donc que les 4 paramètres cités plus haut ne sont pas satisfaits et que le seul paramètre permettant de faire varier le diamètre des particules obtenues est l'épaisseur de la couche déposée. L'obtention, par les procédés décrits, d'un catalyseur, et plus généralement d'un matériau finement divisé, pose problème : elle nécessite en particulier des épaisseurs de couches très fines, difficiles à contrôler.CVD (chemical vapor deposition) pure thermal than for plasma assisted deposition techniques. Among the qualities sought for the catalyst, there is of course its effectiveness: the problems of technological integration make that one seeks to obtain catalysts which allow growth reactions at the lowest possible temperatures. We are also looking for a certain state of division of the catalyst: in practice, we seek to produce catalytic particles of small average diameter. The diameter of the nanotubes obtained is a direct image of the diameter of the catalytic particles. Stability with respect to temperature is also an important parameter: it is the ability of the catalyst to maintain its state of division without coalescence of the nanoparticles with each other during the growth process. We are also looking for a catalyst that can be integrated into microelectronic devices. For this purpose, thin layers of nickel, cobalt or iron are used. This type of catalyst is described for example in the publication by Yudasaka M, Applied Physic Letter 1995, 61, p.2411. It is known that the size of the particles obtained depends on the thickness of the deposited layer. On the other hand, the problem of stability is not resolved as described for example in the publication of Siegal MP et al. , Applied Physics etters 2002, 80 (12), p.2111 where a strong coalescence of the drops of Ni is observed. In addition, the drop or fractionation of the catalyst is effectively done only at temperatures of the order of 600 ° C., which condemns the processes using this catalyst to work at temperatures close to 600 ° C. The use of plasma has been proposed in particular on Ni or Fe layers to etch the catalyst. The plasma is either a relatively high temperature nitrogen plasma, from 600 ° C to 900 ° C (see the publication of Gao JS, Materials Science and Engineering 2003, A352, p. 308-313) or an ammonia plama at 390 ° C, (see for example the publication of Choi JH, Thin Solid Films 2003, 435, p. 318-323). The objective, in the latter case, is to etch the catalyst to control the density of particles. The particles obtained are relatively large (between 60 and 100 nm in diameter) except for deposited layer thicknesses of the order of nm. It can therefore be seen that the 4 parameters mentioned above are not satisfied and that the only parameter making it possible to vary the diameter of the particles obtained is the thickness of the deposited layer. Obtaining, by the methods described, a catalyst, and more generally a finely divided material, poses a problem: it requires in particular very thin layer thicknesses, difficult to control.
EXPOSE DE 1/ INVENTION L'objet de l'invention est un procédé de réalisation d'un matériau divisé permettant d'obtenir un grand état de division. Cet état de division est contrôlable au moyen d'un autre paramètre que l'épaisseur de la couche déposée de ce matériau. L'invention concerne d'abord un procédé comportant une étape de dépôt sous forme discontinue d'une couche mince d'un premier matériau sur une face d'un support puis une étape de mise en goutte, par un traitement thermique ou par traitement par plasma d'hydrogène à basse température. Par dépôt sous forme discontinue, on entend une succession de dépôts du même matériau entrecoupés par des phases d'attente sous vide ou sous atmosphère contrôlée, c'est-à-dire que le dépôt est discontinu dans le temps. La couche mince est sous forme de film habituellement, et peut avoir une épaisseur comprise entre un et quelques nanometres, par exemple entre 1 nm et 10 nm. Il est préférable, de plus, que la tension superficielle du matériau situé en surface du support soit plus faible que celle du matériau à diviser. Avantageusement les gouttes formées sont arrondies de façon régulière, et/ou réparties de façon homogène. Il est préférable également que ces matériaux n' interagissent pas ou peu ensemble (peu de phénomènes de diffusion, pas ou peu de réactions chimiques) . Si le support interagit de façon trop importante avec le matériau à diviser, lors des étapes de dépôt puis de traitement plasma, on pourra réaliser au préalable une couche de barrière de diffusion, par exemple une couche de TiN si le premier matériau est du nickel. Cette couche barrière déterminera aussi les propriétés de division et la stabilité du matériau divisé. Avantageusement, le premier matériau sera un métal catalytique comme du nickel, du fer ou du cobalt. Dans ce cas, si la mise en goutte est obtenue par traitement plasma d'hydrogène à "basse température (typiquement à 300°C), on obtient alors un catalyseur actif à partir de 300°C qui peut être utilisé pour des procédés de croissance basse température. L'étape de dépôt d'une couche de métal catalytique peut être réalisée en présence d'une pression partielle d'oxygène, ce qui permet de contrôler mieux encore le diamètre des grains du catalyseur. L'invention concerne également un procédé de croissance de nanotubes ou de nanofibres de carbone, comportant : - la réalisation d'une couche de catalyseur tel que décrit ci-dessus, - la croissance de nanotubes ou de nanofibres sur la couche de catalyseur ainsi obtenue. La croissance de nanotubes ou de nanofibres peut être obtenue par dépôt chimique en phase vapeur. L'invention concerne également un procédé de réalisation d'une surface d'un support à rugosité contrôlée, comportant la réalisation d'une couche mince, par exemple un film continu, de matériau sur ce support, selon l'une des méthodes décrites ci-dessus. Elle concerne aussi un procédé de réalisation d'un mélange métal/oxyde en surface d'un support, comportant : - la réalisation d'une couche mince fragmentée d'un matériau métallique sur ce support, tel que ci- dessus, - la formation d'une couche d'oxyde sur la couche de matériau ainsi formée, - une étape de polissage.PRESENTATION OF 1 / INVENTION The object of the invention is a process for producing a divided material making it possible to obtain a large state of division. This state of division is controllable by means of another parameter than the thickness of the deposited layer of this material. The invention relates firstly to a method comprising a step of depositing in a discontinuous form a thin layer of a first material on one face of a support and then a step of placing in drops, by a heat treatment or by treatment with low temperature hydrogen plasma. By deposition in discontinuous form means a succession of deposits of the same material interspersed with waiting phases in vacuum or in a controlled atmosphere, that is to say that the deposition is discontinuous over time. The thin layer is usually in the form of a film, and can have a thickness of between one and a few nanometers, for example between 1 nm and 10 nm. It is preferable, moreover, that the surface tension of the material situated on the surface of the support is lower than that of the material to be divided. Advantageously, the drops formed are rounded regularly, and / or distributed homogeneously. It is also preferable that these materials do not interact little or not together (few diffusion phenomena, no or few chemical reactions). If the support interacts excessively with the material to be divided, during the deposition and then plasma treatment steps, a diffusion barrier layer may be produced beforehand, for example a TiN layer if the first material is nickel. This barrier layer will also determine the dividing properties and the stability of the divided material. Advantageously, the first material will be a catalytic metal such as nickel, iron or cobalt. In this case, if the drop setting is obtained by hydrogen plasma treatment at " low temperature (typically at 300 ° C.), an active catalyst is obtained from 300 ° C. which can be used for growth processes. The step of depositing a layer of catalytic metal can be carried out in the presence of a partial pressure of oxygen, which makes it possible to better control the diameter of the grains of the catalyst. The invention also relates to a process for growing nanotubes or carbon nanofibers, comprising: - The production of a catalyst layer as described above, - The growth of nanotubes or nanofibers on the catalyst layer thus obtained. The growth of nanotubes or nanofibers can be obtained by chemical vapor deposition. The invention also relates to a method for producing a surface of a support with controlled roughness, comprising the production of a thin layer, for example a continuous film, of material on this support, according to one of the methods described below. -above. It also relates to a process for producing a metal / oxide mixture on the surface of a support, comprising: - the production of a thin fragmented layer of a metallic material on this support, as above, - the formation an oxide layer on the layer of material thus formed, - a polishing step.
BRÈVE DESCRIPTION DES DESSINS La figure 1 représente un dispositif utilisé pour réaliser un procédé selon l'invention. La figure 2 représente un composé selon l'invention. Les figures 3A et 3B représentent une image en microscopie électronique à balayage (MEB) d'un film de nickel de 3 nm, obtenu par un procédé selon l'art antérieur, et par un procédé selon l'invention. La figure 4 représente des nanotubes obtenus par croissance sur un catalyseur selon un procédé conforme à. l'invention.BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows a device used to carry out a method according to the invention. Figure 2 shows a compound according to the invention. FIGS. 3A and 3B represent a scanning electron microscopy (SEM) image of a 3 nm nickel film, obtained by a method according to the prior art, and by a method according to the invention. FIG. 4 represents nanotubes obtained by growth on a catalyst according to a process in accordance with. the invention.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS La figure 1 illustre un dispositif qui permet un contrôle très précis de l'épaisseur de la couche déposée et surtout le dépôt discontinu dans le temps de cette couche, par ailleurs continue sur une surface : il s'agit d'un groupe d' évaporation parr canon à électrons disposant d'un système planétaire. Une charge 1, par exemple de nickel, est évaporée à température ambiante à travers un cache 2 vers un porte-échantillon 3 lui même fixé sur un système planétaire tournant 5. Un détecteur 4 permet de contrôler l'épaisseur de nickel déposé sur le porte-échantillon 3. La mesure, réalisée à l'aide des moyens 4 de mesure, se fait sur une épaisseur plus grande que l'épaisseur déposée sur le substrat 3, selon le rapport entre la taille de l'ouverture 7 réalisée dans le cache 2 et le périmètre de ce même cache. Le porte-échantillon 3 ne subit le dépôt que lorsqu'il est dans l'axe de l'ouverture 7 réalisée dans le cache, alors que le détecteur 4 subit un dépôt continu, pendant toutes les rotations du système planétaire . Ce dispositif permet de réaliser une évaporation discontinue contrôlée avec, par exemple, un temps de dépôt de 1/10 et un temps sans dépôt de 9/10 si la taille de l'ouverture correspond à un dixième du périmètre du cache . La structure obtenue est illustrée sur la figure 2 et comporte un substrat 10, une couche, ou film, 14 de matériau déposé, d'épaisseur typiquement deDETAILED PRESENTATION OF PARTICULAR EMBODIMENTS FIG. 1 illustrates a device which allows very precise control of the thickness of the layer deposited and especially the discontinuous deposition in time of this layer, moreover continuous on a surface: of a group of evaporation by electron gun having a planetary system. A charge 1, for example of nickel, is evaporated at room temperature through a cover 2 towards a sample holder 3 itself fixed on a planetary rotating system 5. A detector 4 makes it possible to control the thickness of nickel deposited on the holder -sample 3. The measurement, carried out using the measuring means 4, takes place over a thickness greater than the thickness deposited on the substrate 3, according to the ratio between the size of the opening 7 made in the cover 2 and the perimeter of this same cache. The sample holder 3 only undergoes deposition when it is in the axis of the opening 7 made in the cover, while the detector 4 undergoes a continuous deposition, during all the rotations of the planetary system. This device makes it possible to carry out controlled discontinuous evaporation with, for example, a deposition time of 1/10 and a deposition time of 9/10 if the size of the opening corresponds to one tenth of the perimeter of the cover. The structure obtained is illustrated in FIG. 2 and comprises a substrate 10, a layer, or film, 14 of deposited material, typically of thickness
1 à 10 mm, obtenue par dépôt discontinu, et éventuellement une couche 12 de barrière de diffusion. Un traitement thermique ou un traitement par plasma à hydrogène, à basse température permet de mettre en goutte le matériau déposé, c'est-à-dire de structurer le film de façon à former un ensemble discontinu de gouttes de matériau, plus ou moins homogènes et/ou régulières au niveau de leur forme, taille et répartition. Dans le cas d'un matériau catalytique, ce traitement peut également permettre d'activer ledit catalyseur de la couche 14. Par basse température, on entend typiquement de la température ambiante (environ 20°C) à 500°C, par exemple de 200°C à 500°C, et préférablement autour de 300°C. Des exemples vont maintenant être donnés de réalisation de catalyseurs selon l'invention.1 to 10 mm, obtained by discontinuous deposition, and optionally a layer 12 of diffusion barrier. A heat treatment or a plasma treatment at hydrogen, at low temperature makes it possible to drop the deposited material, that is to say to structure the film so as to form a discontinuous set of drops of material, more or less homogeneous and / or regular in terms of their shape, size and distribution. In the case of a catalytic material, this treatment can also make it possible to activate said catalyst for layer 14. By low temperature, it is typically understood from room temperature (about 20 ° C.) to 500 ° C., for example 200 ° C to 500 ° C, and preferably around 300 ° C. Examples will now be given of the production of catalysts according to the invention.
Exemple 1 Dans cet exemple, le matériau est traité par recuit. La couche 12 est une couche de TiN de 60 nm d'épaisseur déposée par pulvérisation cathodique réactive, à température ambiante. Le gaz de pulvérisation est un mélange d'argon et d'azote (80 %/20 %) . La couche 14 de Ni est réalisée par canon à électrons à température ambiante avec le dispositif décrit ci-dessus, de manière discontinue. La mise en goutte est obtenue par un traitement thermique standard à 600 °C sous pression partielle d'hydrogène. Plus généralement, on peut effectuer ce traitement thermique entre 500°C et 600°C, gamme classiquement utilisée. Dans ces conditions, on obtient une distribution de particules de Ni dont la moyenne et 1' écart type du diamètre sont donnés dans le Tableau I ci-dessous en fonction de l'épaisseur de Ni déposé. Les résultats obtenus sur des couches standards de Ni (c'est-à-dire déposées de façon continue) sont rassemblés dans le tableau II ci- dessous .Example 1 In this example, the material is treated by annealing. Layer 12 is a TiN layer 60 nm thick deposited by reactive sputtering at room temperature. The spray gas is a mixture of argon and nitrogen (80% / 20%). The Ni layer 14 is produced by electron gun at room temperature with the device described above, discontinuously. Setting drop is obtained by a standard heat treatment at 600 ° C under partial pressure of hydrogen. More generally, this heat treatment can be carried out between 500 ° C. and 600 ° C., a range conventionally used. Under these conditions, a distribution of Ni particles is obtained, the mean and standard deviation of the diameter of which are given in Table I below as a function of the thickness of Ni deposited. The results obtained on standard Ni layers (that is to say deposited continuously) are collated in Table II below.
Tableau I : Paramètres des distributions de particules obtenues d'après l'invention. Table I: Parameters of the particle distributions obtained according to the invention.
Tableau II : Paramètres des distributions de particules obtenues avec des couches standards de Ni. On voit en comparant les tableaux I et II que l'invention permet de gagner un facteur compris entre 1,5 et 3 sur le diamètre des particules obtenues. Les figures 3A et 3B représentent chacune une image MEB d' un film de nickel de 3 nm déposé sur une sous-couche identique de TiN mis en goutte à 600°C. La figure 3A (x 40000) concerne le cas d'un procédé standard, la figure 3B (x 100000) celui d'un procédé suivant l'invention. Là encore, il apparaît qu'un gain de l'ordre de 3 est obtenu avec un procédé selon l'invention. Exemple 2 (avec plasma) Dans cet exemple, le matériau est traité par plasma. Les dépôts sont les mêmes que dans l'exemple 1 avec traitement du dépôt à 300 °C par un plasma radiofréquence (RF) d'hydrogène. La puissance RF est de 300 W, le temps de traitement de 10 minutes, la pression d'hydrogène de 150 mTorr. Le tableau III illustre le résultat du traitement par un plasma hydrogène à 300 °C sur un film déposé suivant le procédé de l'invention (c'est-à-dire de façon discontinue) et suivant un procédé standard (c'est-à-dire de façon continue). Table II: Parameters of the particle distributions obtained with standard Ni layers. It can be seen by comparing Tables I and II that the invention makes it possible to gain a factor of between 1.5 and 3 on the diameter of the particles obtained. FIGS. 3A and 3B each represent a SEM image of a 3 nm nickel film deposited on an identical sublayer of TiN put in drop at 600 ° C. FIG. 3A (x 40000) relates to the case of a standard method, FIG. 3B (x 100000) that of a method according to the invention. Again, it appears that a gain of the order of 3 is obtained with a method according to the invention. Example 2 (with plasma) In this example, the material is treated with plasma. The deposits are the same as in Example 1 with treatment of the deposit at 300 ° C with a radio frequency plasma (RF) of hydrogen. The RF power is 300 W, the treatment time 10 minutes, the hydrogen pressure 150 mTorr. Table III illustrates the result of the treatment with a hydrogen plasma at 300 ° C. on a film deposited according to the process of the invention (that is to say discontinuously) and according to a standard process (that is to say - say continuously).
Tableau III On voit que les couches standard ne sont pas mises en goutte par le procédé plasma à basse température contrairement aux couches réalisées suivant l' invention. Table III It can be seen that the standard layers are not dropped by the plasma process at low temperature, unlike the layers produced according to the invention.
Exemple 3 (pression partielle d' 02 + plasma) Dans cet exemple, le matériau est traité sous pression partielle d' 02 et par plasma. La couche 12 de TiN est une couche de 60 nm d'épaisseur déposée par pulvérisation cathodique réactive . Le gaz de pulvérisation est un mélange argon/azote (80 %/20 %) . La couche 14 de Ni est réalisée par canon à électrons à température ambiante avec le dispositif décrit ci-dessus. Lors du dépôt de Ni on rajoute une pression partielle d'oxygène de 3.10~5 mbar. On réalise le fractionnement de la couche au moyen du procédé plasma H2, comme décrit dans l'exemple précédent, à 300°C. Le tableau IV rassemble les résultats relatifs à la taille des particules de catalyseur avec introduction d'une pression partielle d'oxygène pendant le dépôt .Example 3 (partial pressure of 0 2 + plasma) In this example, the material is treated under partial pressure of 0 2 and with plasma. The TiN layer 12 is a 60 nm thick layer deposited by reactive sputtering. The spray gas is an argon / nitrogen mixture (80% / 20%). The Ni layer 14 is produced by electron gun at room temperature with the device described above. When depositing Ni, a partial oxygen pressure of 3.10 ~ 5 mbar is added. The layer is fractionated using the H 2 plasma process, as described in the previous example, at 300 ° C. Table IV collates the results relating to the size of the catalyst particles with the introduction of a partial pressure of oxygen during the deposition.
Tableau IV Le tableau IV fait apparaître le rôle de l'oxygène pendant le dépôt du Ni. On peut contrôler le diamètre des grains de catalyseur en ajustant la pression partielle d'oxygène, typiquement entre 10 et 10~4 mbar. Les catalyseurs réalisés suivant 1' invention présentent donc une très bonne stabilité thermique, au moins jusque 650°C. Après deux heures à 630 °C, pour une couche de 3 nm de Ni traitée par plasma, la valeur moyenne de la distribution est passée de 18 nm à 23 nm. La croissance des nanotubes peut ensuite être réalisée de manière tout à fait satisfaisante avec un procédé CVD (dépôt chimique en phase vapeur) thermique à 540 °C et avec C2H2 comme gaz réactif. La figure 4 illustre la croissance de nanotubes obtenus sur un catalyseur selon l'invention, à 540 °C, avec un procédé CVD à 540 °C (tubes de 20 nm environ) . Il s'agit d'une image MEB avec grossissement x 100000. On voit donc que le catalyseur réalisé suivant l'invention satisfait aux critères suivants : - forte réactivité, à des températures comprises entre 500°C et 600°C ; - très forte division du catalyseur, le diamètre moyen des particules obtenues pouvant être compris entre 10 nm et 90 nm, selon l'épaisseur du catalyseur ; - stabilité dans les conditions de température utilisées, c'est-à-dire au moins jusqu'à 650 °C ; - facilité à intégrer dans la technologie d'un dispositif car les dépôts sont réalisés à la température ambiante et sont donc compatibles avec des étapes de « lift off » résine classique. On peut donc ainsi facilement, par ces étapes, localiser le dépôt du catalyseur. L'invention concerne plus généralement un procédé permettant d'obtenir, sur une face d'un support, des particules de densité et de taille contrôlées d'un matériau donné. Ce matériau peut être métallique (fer, ou nickel, ou cobalt, ou composés semi-conducteurs, par exemple le silicium) . Il est pour cela déposé de façon discontinue en film mince (typiquement de quelques nanometres) sur le support, puis mis en goutte par un traitement thermique ou un traitement plasma. La face du support est choisie pour peu interagir avec le matériau à diviser (peu de diffusion, pas ou peu de réaction chimique). C'est le cas du nickel sur TiN, mais aussi plus généralement des métaux sur un oxyde ou du silicium sur un oxyde. Au besoin, une barrière de diffusion peut être interposée (par exemple en TiN, ou en un oxyde,...) . Ce procédé peut avoir des applications autres que la catalyse pour la croissance de nanotubes. Les particules ainsi réparties peuvent servir à contrôler la rugosité de surface dudit support, sa structuration à l'échelle de la taille des gouttes, soit environ 20 nm. Cette surface structurée peut être par la suite recouverte d' un oxyde (par exemple de la silice) , puis polie pour obtenir un mélange calibré de particules, par exemple métalliques, dans un oxyde (avec des applications de type CERMET) . Table IV Table IV shows the role of oxygen during the deposition of Ni. The diameter of the catalyst grains can be controlled by adjusting the partial pressure of oxygen, typically between 10 and 10 ~ 4 mbar. The catalysts produced according to the invention therefore exhibit very good thermal stability, at least up to 650 ° C. After two hours at 630 ° C., for a 3 nm layer of Ni treated with plasma, the mean distribution value increased from 18 nm to 23 nm. Nanotubes can then be grown quite satisfactorily with a CVD (chemical vapor deposition) process at 540 ° C and with C 2 H 2 as reactive gas. FIG. 4 illustrates the growth of nanotubes obtained on a catalyst according to the invention, at 540 ° C., with a CVD process at 540 ° C. (tubes of approximately 20 nm). This is a SEM image with magnification × 100,000. It can therefore be seen that the catalyst produced according to the invention meets the following criteria: - high reactivity, at temperatures between 500 ° C and 600 ° C; - very strong division of the catalyst, the average diameter of the particles obtained can be between 10 nm and 90 nm, depending on the thickness of the catalyst; - stability under the temperature conditions used, that is to say at least up to 650 ° C; - ease of integration into the technology of a device because deposits are made at the room temperature and are therefore compatible with conventional resin "lift off" steps. We can thus easily, by these steps, locate the deposition of the catalyst. The invention relates more generally to a method making it possible to obtain, on one face of a support, particles of controlled density and size of a given material. This material can be metallic (iron, or nickel, or cobalt, or semiconductor compounds, for example silicon). It is therefore deposited discontinuously in thin film (typically a few nanometers) on the support, then drop by heat treatment or plasma treatment. The face of the support is chosen to interact little with the material to be divided (little diffusion, no or little chemical reaction). This is the case for nickel on TiN, but also more generally for metals on an oxide or silicon on an oxide. If necessary, a diffusion barrier can be interposed (for example in TiN, or in an oxide, etc.). This process can have applications other than catalysis for the growth of nanotubes. The particles thus distributed can be used to control the surface roughness of said support, its structuring on the scale of the size of the drops, ie approximately 20 nm. This structured surface can then be covered with an oxide (for example silica), then polished to obtain a calibrated mixture of particles, for example metallic, in an oxide (with CERMET type applications).

Claims

REVENDICATIONS
1. Procédé de réalisation d'une couche (14) fragmentée d'un matériau sur un support, caractérisé en ce qu'il comporte : - une étape de dépôt, de façon discontinue, d'une couche mince (14) de ce matériau sur ledit support, - puis une étape de mise en goutte e cette couche mince.1. Method for producing a fragmented layer (14) of a material on a support, characterized in that it comprises: - a step of depositing, discontinuously, a thin layer (14) of this material on said support, - then a step of placing this thin layer in a drop.
2. Procédé selon la revendication 1, dans laquelle la mise en goutte est obtenue p_>ar traitement thermique . 2. Method according to claim 1, in which the drop setting is obtained by heat treatment.
3. Procédé selon la revendication 1, dans laquelle la mise en goutte est obtenue p_>ar traitement plasma d'hydrogène à basse température.3. The method of claim 1, wherein the droplet is obtained p_> ar plasma treatment of hydrogen at low temperature.
4. Procédé selon l'une des .revendications 1 à 4, comportant une étape préalable oie dépôt d'une couche (12) de barrière thermique ou de diffusion.4. Method according to one of the claims 1 to 4, comprising a prior step of depositing a layer (12) of thermal barrier or of diffusion.
5. Procédé selon la revendications 4, la couche (12) de barrière thermique ou de diffusion étant en TiN, le matériau étant du nickel.5. Method according to claim 4, the layer (12) of thermal barrier or diffusion being TiN, the material being nickel.
6. Procédé selon l'une des revendications 1 à 5, dans lequel le matériau est un métal. 6. Method according to one of claims 1 to 5, wherein the material is a metal.
7. Procédé selon l'une des revendications7. Method according to one of claims
1 à 6, l'étape de dépôt de couche de matériau étant réalisée en présence d'une pression partielle d' oxygène.1 to 6, the material layer deposition step being performed in the presence of partial oxygen pressure.
8. Procédé de croissance de nanotubes ou de nanofibres de carbone, comportant : - la réalisation d'une couche de métal catalytique selon l'une des revendications 1 à 7, - la croissance de nanotubes ou de nanofibres sur la couche de catalyseur ainsi obtenue.8. A method of growing carbon nanotubes or nanofibers, comprising: - producing a layer of catalytic metal according to one of claims 1 to 7, - growing nanotubes or nanofibers on the catalyst layer thus obtained .
9. Procédé selon la revendication 8, la croissance de nanotubes ou de nanofibres étant obtenue par dépôt chimique en phase vapeur. 9. The method of claim 8, the growth of nanotubes or nanofibers being obtained by chemical vapor deposition.
10. Procédé de réalisation d'une surface d'un support à rugosité contrôlée, comportant : - la réalisation d'une couche mince fragmentée de matériau sur ce support, selon l'une des revendications 1 à 7.10. Method for producing a surface of a support with controlled roughness, comprising: - producing a thin fragmented layer of material on this support, according to one of claims 1 to 7.
11. Procédé selon la revendication 10, comportant en outre : - la formation d'une couche d'oxyde sur la couche de matériau ainsi formée, - une étape de polissage.11. The method of claim 10, further comprising: - the formation of an oxide layer on the layer of material thus formed, - a polishing step.
12. Procédé de réalisation d'un mélange métal/oxyde en surface d'un support comportant : - la réalisation d'une couche mince fragmentée d'un matériau métallique sur ce support selon l'une des revendications 1 à 7. - la formation d'une couche d'oxyde sur la coucheatériau ainsi formée, une étape de polissage. 12. Method for producing a metal / oxide mixture on the surface of a support comprising: - producing a thin fragmented layer of metallic material on this support according to one of claims 1 to 7. - The formation of an oxide layer on the material layer thus formed, a polishing step.
EP05726348A 2004-02-09 2005-02-07 Method of producing a layer of material on a support Withdrawn EP1713586A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0450227A FR2865946B1 (en) 2004-02-09 2004-02-09 METHOD FOR PRODUCING A LAYER OF MATERIAL ON A SUPPORT
PCT/FR2005/050073 WO2005075077A1 (en) 2004-02-09 2005-02-07 Method of producing a layer of material on a support

Publications (1)

Publication Number Publication Date
EP1713586A1 true EP1713586A1 (en) 2006-10-25

Family

ID=34778715

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05726348A Withdrawn EP1713586A1 (en) 2004-02-09 2005-02-07 Method of producing a layer of material on a support

Country Status (5)

Country Link
US (1) US8137763B2 (en)
EP (1) EP1713586A1 (en)
JP (1) JP5154801B2 (en)
FR (1) FR2865946B1 (en)
WO (1) WO2005075077A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI429585B (en) * 2006-05-29 2014-03-11 Ulvac Inc Carbon nanotubes growth substrate, carbon nanotubes growth method, carbon nanotubes growth catalyst with particle size control method, and nano-carbon tube diameter control method
JP4799623B2 (en) * 2009-01-19 2011-10-26 株式会社東芝 Carbon nanotube growth method
JP5775705B2 (en) * 2011-02-25 2015-09-09 東京エレクトロン株式会社 Carbon nanotube formation method and pretreatment method
JP5779439B2 (en) * 2011-07-29 2015-09-16 東京エレクトロン株式会社 Pretreatment method and carbon nanotube formation method

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699806B2 (en) * 1989-01-19 1994-12-07 科学技術庁金属材料技術研究所長 Thin film manufacturing equipment
US5084144A (en) * 1990-07-31 1992-01-28 Physical Sciences Inc. High utilization supported catalytic metal-containing gas-diffusion electrode, process for making it, and cells utilizing it
JPH05283411A (en) * 1992-03-31 1993-10-29 Toshiba Corp Forming method of thin film
CA2186102A1 (en) * 1995-01-23 1996-08-01 Regan W. Stinnett Pulsed ion beam assisted deposition
US6232706B1 (en) * 1998-11-12 2001-05-15 The Board Of Trustees Of The Leland Stanford Junior University Self-oriented bundles of carbon nanotubes and method of making same
EP1061041A1 (en) * 1999-06-18 2000-12-20 Iljin Nanotech Co., Ltd. Low-temperature thermal chemical vapor deposition apparatus and method of synthesizing carbon nanotube using the same
US6538367B1 (en) * 1999-07-15 2003-03-25 Agere Systems Inc. Field emitting device comprising field-concentrating nanoconductor assembly and method for making the same
JP2001059162A (en) * 1999-08-24 2001-03-06 Sharp Corp FORMATION OF Si THIN FILM BY LASER VAPOR DEPOSITION METHOD AND PHOTOELECTRIC TRANSDUCER CONTAINING THE THIN FILM AS COMPONENT
CN1251962C (en) * 2000-07-18 2006-04-19 Lg电子株式会社 Method of horizontal growth of carbon nanotube and field effect transistor using carbon nanotube
US6692324B2 (en) * 2000-08-29 2004-02-17 Ut-Battelle, Llc Single self-aligned carbon containing tips
US6755956B2 (en) * 2000-10-24 2004-06-29 Ut-Battelle, Llc Catalyst-induced growth of carbon nanotubes on tips of cantilevers and nanowires
US6649431B2 (en) * 2001-02-27 2003-11-18 Ut. Battelle, Llc Carbon tips with expanded bases grown with simultaneous application of carbon source and etchant gases
US7491634B2 (en) * 2006-04-28 2009-02-17 Asm International N.V. Methods for forming roughened surfaces and applications thereof
US6525453B2 (en) * 2001-05-02 2003-02-25 Huang Chung Cheng Field emitting display
JP2002343280A (en) * 2001-05-16 2002-11-29 Hitachi Ltd Display unit and method of manufacturing the same
JP4483152B2 (en) * 2001-11-27 2010-06-16 富士ゼロックス株式会社 Hollow graphene sheet structure, electrode structure, manufacturing method thereof, and device
FR2832995B1 (en) * 2001-12-04 2004-02-27 Thales Sa CATALYTIC GROWTH PROCESS OF NANOTUBES OR NANOFIBERS COMPRISING A DIFFUSION BARRIER OF THE NISI ALLOY TYPE
US6846345B1 (en) * 2001-12-10 2005-01-25 The United States Of America As Represented By The Secretary Of The Navy Synthesis of metal nanoparticle compositions from metallic and ethynyl compounds
US7323422B2 (en) * 2002-03-05 2008-01-29 Asm International N.V. Dielectric layers and methods of forming the same
US7253434B2 (en) * 2002-10-29 2007-08-07 President And Fellows Of Harvard College Suspended carbon nanotube field effect transistor
CA2522358A1 (en) * 2003-04-04 2004-10-14 Startskottet 22286 Ab Precisely positioned nanowhiskers and nanowhisker arrays and method for preparing them
US7285329B2 (en) * 2004-02-18 2007-10-23 Hitachi Metals, Ltd. Fine composite metal particles and their production method, micro-bodies, and magnetic beads
WO2007081381A2 (en) * 2005-05-10 2007-07-19 The Regents Of The University Of California Spinodally patterned nanostructures
EP1890810A2 (en) * 2005-06-17 2008-02-27 Inter-Universitair Microelektronica Centrum Formation of metal-containing nanoparticles for use as catalysts in carbon nanotube synthysis
US7718224B2 (en) * 2005-08-04 2010-05-18 The Regents Of The University Of California Synthesis of single-walled carbon nanotubes
US7645482B2 (en) * 2005-08-04 2010-01-12 The Regents Of The University Of California Method to make and use long single-walled carbon nanotubes as electrical conductors
CN101331590B (en) * 2005-12-29 2011-04-20 纳米系统公司 Methods for oriented growth of nanowires on patterned substrates
US7635503B2 (en) * 2006-02-21 2009-12-22 Intel Corporation Composite metal films and carbon nanotube fabrication
WO2008097275A2 (en) * 2006-08-30 2008-08-14 Molecular Nanosystems, Inc. Methods for forming freestanding nanotube objects and objects so formed
KR101171499B1 (en) * 2007-09-21 2012-08-06 다이요 닛산 가부시키가이샤 Method for forming catalyst layer for carbon nanostructure growth, liquid for catalyst layer formation, and process for producing carbon nanostructure
US8545936B2 (en) * 2008-03-28 2013-10-01 Asm International N.V. Methods for forming carbon nanotubes
US8133793B2 (en) * 2008-05-16 2012-03-13 Sandisk 3D Llc Carbon nano-film reversible resistance-switchable elements and methods of forming the same
TW201104890A (en) * 2009-06-10 2011-02-01 Applied Materials Inc Carbon nanotube-based solar cells
CN102687313A (en) * 2009-11-11 2012-09-19 安普雷斯股份有限公司 Intermediate layers for electrode fabrication
TWI383886B (en) * 2010-01-08 2013-02-01 Ger Pin Lin Discontinuous islanded ferromagnetic thin film with a perpendicular magnetic anisotropy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005075077A1 *

Also Published As

Publication number Publication date
FR2865946A1 (en) 2005-08-12
JP5154801B2 (en) 2013-02-27
WO2005075077A1 (en) 2005-08-18
JP2007521949A (en) 2007-08-09
US8137763B2 (en) 2012-03-20
FR2865946B1 (en) 2007-12-21
US20070237704A1 (en) 2007-10-11

Similar Documents

Publication Publication Date Title
EP2197780B1 (en) Structure comprising a getter layer and an adjustment sublayer, and fabrication process
EP1436823B1 (en) Method for localized growth of nanotubes and method for making a self-aligned cathode using the nanotube growth method
JP5632359B2 (en) Method for producing nanostructure on metal oxide substrate, method for depositing thin film on metal oxide substrate, and thin film device
US20120142524A1 (en) Nanocrater catalyst in metal nanoparticles and method for preparing the same
US8513641B2 (en) Core-shell nanowire comprising silicon rich oxide core and silica shell
WO2006107422A2 (en) Method of making a substrate structure with enhanced surface area
EP2246298B1 (en) Method for manufacturing silicon and/or germanium nanowires
EP1713586A1 (en) Method of producing a layer of material on a support
EP2396447A1 (en) Method for the ion beam treatment of a metal layer deposited on a substrate
JP2969503B2 (en) How to make carbonaceous fiber
FR2851737A1 (en) CATALYST STRUCTURE, IN PARTICULAR FOR THE PRODUCTION OF FIELD EMISSION DISPLAY SCREENS
Ball et al. Low pressure plasma assisted silicon nanowire growth from self organised tin catalyst particles
Kim et al. Simply heating to remove the sacrificial core TeO2 nanowires and to generate tubular nanostructures of metal oxides
US6761803B2 (en) Large area silicon cone arrays fabrication and cone based nanostructure modification
FR3061167B1 (en) PROCESS FOR PRODUCING GRAPHENE FILM
FR3086673A1 (en) MULTILAYER STACK FOR CVD GROWTH OF CARBON NANOTUBES
EP1146138B1 (en) Tungsten super fine particle and method for producing the same
Thomann et al. Plasma synthesis of catalytic thin films
FR2931169A1 (en) Forming nanostructure constituted of element on the surface of solid support, comprises performing chemical vapor deposition such as vapor-liquid-solid growth mechanism, and activating the support by depositing metal catalyst for growth
FR2965821A1 (en) METHOD FOR COATING A SUBSTRATE
Mohammad VQS (vapor-quasiliquid-solid, vapor-quasisolid-solid) mechanism for realizing narrow distributions of chirality and diameters of single-walled carbon nanotubes (SWCNTs)
JP6950939B2 (en) Catalyst support for synthesizing carbon nanotube aggregates and members for synthesizing carbon nanotube aggregates
Zaghouani Investigation of Indium Oxide Effect on Indium Particles Properties Used as Silicon Nanowires Catalyst
EP1214462B1 (en) Method for making a metal part coated with diamond and metal part obtained by said method
WO2005009900A2 (en) Method for producing graphitic carbon nanocomposites in particular nanopearls in bulk or in an individual manner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060802

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

17Q First examination report despatched

Effective date: 20120315

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160901