EP1710512A2 - Verfahren zum Betreiben einer Heizanlage mit Mischer - Google Patents

Verfahren zum Betreiben einer Heizanlage mit Mischer Download PDF

Info

Publication number
EP1710512A2
EP1710512A2 EP06101245A EP06101245A EP1710512A2 EP 1710512 A2 EP1710512 A2 EP 1710512A2 EP 06101245 A EP06101245 A EP 06101245A EP 06101245 A EP06101245 A EP 06101245A EP 1710512 A2 EP1710512 A2 EP 1710512A2
Authority
EP
European Patent Office
Prior art keywords
mixer
pump
heat
flow
transfer medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06101245A
Other languages
English (en)
French (fr)
Other versions
EP1710512B1 (de
EP1710512A3 (de
Inventor
Gerhard Pertiller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG Oesterreich
Original Assignee
Siemens AG Oesterreich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG Oesterreich filed Critical Siemens AG Oesterreich
Publication of EP1710512A2 publication Critical patent/EP1710512A2/de
Publication of EP1710512A3 publication Critical patent/EP1710512A3/de
Application granted granted Critical
Publication of EP1710512B1 publication Critical patent/EP1710512B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1015Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves
    • F24D19/1024Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves a multiple way valve
    • F24D19/1033Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves a multiple way valve motor operated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1015Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves
    • F24D19/1021Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves a by pass valve

Definitions

  • the invention relates to a method for operating a heating system in which a heat transfer medium is pumped with at least one pump from a heat source via a flow to at least one heat consumer and a return back to the heat source and at least one mixer with the flow temperature by admixture of heat transfer medium is regulated from the return. Furthermore, the invention relates to an arrangement for carrying out the method.
  • Heating systems with central heat generators and heat distribution by means of heat transfer medium to heat consumers are well known. As a rule, buildings are heated with such heating systems.
  • the heat generators are ovens, heat pumps, solar systems or other facilities in which heat is provided.
  • a heated by the heat source heat transfer medium can either circulate directly in the heating circuit or collected in a memory. It is also a renewed heat transfer via a heat exchanger or a four-way mixing valve possible, so that there is a separate heating circuit and a separate heat generator circuit.
  • the heat transfer medium is usually water, optionally mixed with additives to prevent deposits and corrosion in the pipe network.
  • the heated heat transfer medium is transported via a flow to the heat consumers.
  • heat consumers such as radiators, heat exchangers for hot water or heating hoses in foot or wall heaters
  • heat is dissipated to the rooms to be heated or the surfaces to be heated.
  • the cooled Heat transfer medium flows back via a return to the heat source.
  • Supply and return consisting of a line system with facilities for state detection and - change the heat transfer medium (pumps, control and measurement units, etc.).
  • a natural circulation can be used as a result of the differences in weight between heated and cooled heat transfer medium.
  • the natural circulation is only conditionally controllable, which is why a pump is used according to the prior art for the circulation of the heat transfer medium.
  • the temperature of the heat transfer medium in the flow through the position of a mixer e.g. a three-way mixing valve or a four-way mixing valve, determined.
  • a mixer e.g. a three-way mixing valve or a four-way mixing valve
  • the pump and the mixer are designed for the maximum heat output of a heating system.
  • the pump is usually differential pressure controlled and the mixer flow temperature controlled. With decreasing heat output with less open heat consumers thereby reduce the flow rates of the heat transfer medium through the pump and mixer. For larger heating systems, eg in centrally heated residential buildings, this means that the pump and mixer must be usable over a large operating range. For example, only heat exchanger for hot water treatment as a heat consumer can be present in summer operation, pump and mixer then work only with a fraction of the maximum flow rate of the heat transfer medium.
  • a control for heating systems by means of a pump with variable delivery rate for the circulation of a carrier liquid is also in the DE 26 13 297 described.
  • a smaller auxiliary mixer and a smaller auxiliary pump are arranged parallel to a main mixer and a main pump for heating systems which have a high maximum heating capacity with a large operating range.
  • Additional mixer and additional pump are designed for the low flow rates of the heat transfer medium, in which the main pump and main mixer no longer satisfactory mixing process. But even with this solution, it can come in operating areas with further reduction of the flow rates to a swing of the flow temperature.
  • the invention is therefore based on the object to provide a comparison with the prior art improved heating system with mixer.
  • this object is achieved by a method according to claim 1 and an arrangement for carrying out the method according to claim 5.
  • the advantage lies in avoiding the oscillation of the flow temperature in all operating conditions and is due to the arrangement of a reflux bypass, at least a mixer and the at least one pump bridges and over which each supply line of the at least one mixer, a portion of the heat transfer medium is supplied.
  • the flow rates of the heat transfer medium through the open heat consumers and the return flow bypass.
  • An advantageous embodiment of the invention provides that for the at least one mixer a design-dependent minimum flow rate is set, wherein when approaching this with a valve in the return flow bypass the flow is increased so far that the minimum flow rate in the at least one mixer does not fall below becomes.
  • the heating system can then be operated up to the flow rate through the heat consumer, in which no oscillation of the flow occurs, with closed valve in the return flow bypass. Only when the flow rate approaches the lower limit of the optimized mixer operating range, the valve is opened so that there is always a set minimum flow rate. This optimizes the power consumption of the pump for the entire operating range.
  • the valve is advantageously arranged in the region of the reflux bypass, which is not formed as branches to the mixer ports, so that the entire reflux amount of the heat transfer medium flows through the valve.
  • the non-return valve may be, for example, check valves or check valves, which allow only one direction of flow and thereby have a low flow resistance in the flow direction.
  • the flow rate over the speed of the at least one pump In order to detect the approach to the minimum flow rate in the at least one mixer, it is recommended that the flow rate over the speed of the at least one pump to measure, if it is a centrifugal pump with flow proportional speed.
  • the heat transfer medium is then performed when approaching a minimum speed of the main pump only by means of additional pump on the smaller additional mixer or open the valve in the return flow bypass.
  • additional elements for flow rate measurement can be omitted.
  • the heated heat transfer medium is moved to heat consumers 8 starting from a heat source 1 via a feed 2 through a mixer 4 and a pump 5.
  • the heat source 1 may be a heat generator (e.g., furnace, heat pump, solar element, thermal source, etc.), a reservoir, or a heat transfer device (heat exchanger, four-way mixing valve).
  • the mixer 4 which is shown here as a three-way mixing valve with servomotor M, the heated heat transfer medium, a portion of the cooled heat transfer medium from the return 3 is added.
  • a pump 5 is usually a centrifugal circulation pump used, the flow rate is proportional to the speed.
  • the mixing ratio between the heated and cooled heat transfer medium is determined, resulting in the flow temperature T results, with the heat transfer medium reaches the heat consumers 8 and with a thermometer. 6 is detected.
  • the mixer 4 is regulated so that the flow temperature T follows the setpoint temperature specification.
  • the difference between the pressure in the flow 2 and in the return 4 is detected by a pressure gauge 7.
  • the pump 5 operates with a differential pressure control with constant differential pressure specification. This results in the dependence of the flow rate through the pump 5 on the number of flowed through heat consumer 8, which are usually divided into parallel zones. The fewer zone valves are opened, the lower the flow rate through the pump must be set so that the pressure drop in the heat consumers 8 remains constant. From a design-related minimum flow rate of the mixer 4, it may then come to unwanted oscillation of the flow temperature T.
  • the reflux bypass 10 branches off after the thermometer 6 and leads to a valve 11, with which the flow rate through the reflux bypass 10 is controlled. Behind the valve 11 is a branching and continuation to the two connection points with the inflow lines of the mixer 4.
  • the valve 11 is for example a solenoid valve or a tap, which is controlled by a servomotor M.
  • non-return valve 12 In all lines that open into the inlet lines of the mixer 4, non-return valve 12 are arranged to prevent erroneous circulation.
  • FIG 3 the scheme of a heating system according to the invention with two mixers 4 and 14 and two pumps 5 and 13 is shown for large residential buildings.
  • the line branch with the main pump 5 and the main mixer 4 a line branch with a smaller auxiliary pump 5 and an additional mixer 4 is connected in parallel.
  • a backflow bypass 10 with a valve 11 is again arranged.
  • the flow temperature T is detected, which serves as an actual variable for the temperature control of the mixer 4 and 14.
  • the pressure drop in the heat consumers 8 corresponding differential pressure Ap between the pressure in the flow 2 and the pressure in the return 3 is detected again via a pressure gauge 7.
  • the differential pressure ⁇ p is the actual variable for the differential pressure control of the pumps 5 and 13.
  • both pumps 5 and 13 are in operation.
  • the speed in the main pump 5 is lowered. This happens until the minimum flow rate for the main mixer 4 is reached.
  • the heat transfer medium is only passed through the smaller additional mixer 14 by the main pump 5 is no longer and the auxiliary pump 13 is operated.
  • the speed of the auxiliary pump 13 is further reduced until the minimum flow rate of the auxiliary mixer 14 is reached.
  • the valve 11 is opened in the return flow bypass and generates an additional circulation through the auxiliary mixer 14 and the auxiliary pump 13.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben einer Heizanlage, bei der ein Wärmeträgermedium mit wenigstens einer Pumpe (5) von einer Wärmequelle (1) über einen Vorlauf (2) zu wenigstens einem Wärmeverbraucher (8) und über einen Rücklauf (3) zurück zur Wärmequelle (1) gepumpt wird und bei der mit wenigstens einem Mischer (4) die Vorlauftemperatur (T) durch Beimischung von Wärmeträgermedium aus dem Rücklauf (3) geregelt wird, wobei jeder Zuleitung des zumindest einen Mischers ein Teil des Wärmeträgermediums über einen den zumindest einen Mischer (4) und die zumindest eine Pumpe (5) überbrückenden Rückfluss-Bypass (10) zugeführt wird. Damit wird erreicht, dass die Durchflussmenge durch den Mischer (4) nicht zu gering wird und kein Pendeln der Vorlauftemperatur (T) entsteht.

Description

  • Die Erfindung betrifft ein Verfahren zum Betreiben einer Heizanlage, bei der ein Wärmeträgermedium mit wenigstens einer Pumpe von einer Wärmequelle über einen Vorlauf zu wenigstens einem Wärmeverbraucher und über einen Rücklauf zurück zur Wärmequelle gepumpt wird und bei der mit wenigstens einem Mischer die Vorlauftemperatur durch Beimischung von Wärmeträgermedium aus dem Rücklauf geregelt wird. Des Weiteren betrifft die Erfindung eine Anordnung zur Durchführung des Verfahrens.
  • Heizanlagen mit zentralen Wärmeerzeugern und Wärmeverteilung mittels Wärmeträgermedium zu Wärmeverbrauchern sind allgemein bekannt. In der Regel werden mit derartigen Heizanlagen Gebäude beheizt. Die Wärmeerzeuger sind dabei Öfen, Wärmepumpen, Solaranlagen oder sonstige Einrichtungen, in denen Wärme zur Verfügung gestellt wird. Ein vom Wärmeerzeuger erwärmtes Wärmeträgermedium kann entweder direkt im Heizkreislauf zirkulieren oder in einem Speicher gesammelt werden. Es ist auch ein neuerlicher Wärmeübergang über einen Wärmetauscher oder ein Vierwegmischventil möglich, so dass ein eigener Heizkreislauf und ein eigener Wärmeerzeugerkreislauf vorliegen. Das Wärmeträgermedium ist in der Regel Wasser, gegebenenfalls mit Additiven zur Vermeidung von Ablagerungen und Korrosion im Leitungsnetz versetzt.
  • Ausgehend von einer Wärmequelle (Wärmeerzeuger, Pufferspeicher, Wärmetauscher, Vierwegemischventil) wird das erwärmte Wärmeträgermedium über einen Vorlauf zu den Wärmeverbrauchern transportiert. In den Wärmeverbrauchern, beispielsweise Heizkörper, Wärmetauscher zur Warmwasseraufbereitung oder Heizschläuche bei Fuß- oder Wandheizungen, erfolgt eine Wärmeabgabe an die zu beheizenden Räume bzw. die zu beheizenden Flächen. Das abgekühlte Wärmeträgermedium fließt über einem Rücklauf zur Wärmequelle zurück. Vorlauf und Rücklauf bestehend dabei aus einem Leitungssystem mit Einrichtungen zur Zustandserfassung und - änderung des Wärmeträgermediums (Pumpen, Steuer- und Messeinheiten etc.). Wenn die Wärmequelle auf einem niedrigeren Höhenniveau wie die Wärmeverbraucher angeordnet ist, kann eine natürliche Zirkulation als Resultat der Gewichtsunterschiede zwischen erwärmten und abgekühlten Wärmeträgermedium genutzt werden. Allerdings ist die natürliche Zirkulation nur bedingt steuerbar, weshalb nach dem Stand der Technik zur Zirkulation des Wärmeträgermediums eine Pumpe eingesetzt wird.
  • Bei bekannten, einfach ausgestalteten Heizanlagen, wird die Temperatur des Wärmeträgermediums im Vorlauf durch die Stellung eines Mischers, z.B. eines Dreiweg-Mischventils oder eines Vierweg-Mischventils, bestimmt. Dabei wird das von der Wärmequelle kommende Wärmeträgermedium durch Mischung mit Wärmeträgermedium aus dem Rücklauf auf eine gewünschte Temperatur gebracht.
  • In der DE 27 47 969 ist beispielsweise ein derartige Heizungsanlage beschrieben, wobei im Vorlauf ein Temperaturfühler angebracht ist, über den die Zumischmenge des Wärmeträgermediums aus der Rücklauf geregelt wird.
  • Auch zur Erzeugung von Warmwasser sind Anlagen bekannt, bei denen die Wassertemperatur des Brauchwassers durch Zumischung von Frischwasser geregelt wird. Wie beispielsweise in der DE 37 27 442 beschrieben, wird dabei Wasser mit schwankender Temperatur aus einem Wärmespeicher mit Frischwasser vermischt und so auf eine konstante Temperatur gebracht, mit der das Wasser an den Verbrauchsstellen entnommen werden kann.
  • Die Pumpe und der Mischer sind für die maximale Heizleistung einer Heizanlage ausgelegt. Dabei wird die Pumpe in der Regel differenzdruckgeregelt und der Mischer vorlauftemperaturgeregelt. Mit sinkender Heizleistungsabgabe bei weniger geöffneten Wärmeverbrauchern sinken dabei die Durchflussmengen des Wärmeträgermediums durch Pumpe und Mischer. Das hat bei größeren Heizanlagen, z.B. bei zentral beheizten Wohnhausanlagen, zur Folge, dass Pumpe und Mischer über einen großen Betriebsbereich hinweg einsetzbar sein müssen. Beispielsweise können im Sommerbetrieb nur Wärmetauscher zur Warmwasseraufbereitung als Wärmeverbraucher vorhanden sein, Pumpe und Mischer arbeiten dann nur mit einem Bruchteil der maximalen Durchflussmenge des Wärmeträgermediums.
  • Bei Heizungsanlegen mit Mischer bewirkt auch eine steigende Außentemperatur, dass die Zumischmenge aus dem Rückfluss abnimmt. Für diesen Fall ist in der DE 23 58 754 A1 ein Verfahren und eine Steuerung einer Heizungsanlage beschrieben, bei der die Leistung der Umwälzpumpe in Abhängigkeit von der Temperaturdifferenz zwischen Vorlauf und Rücklauf gesteuert wird.
  • Eine Steuerung für Heizungsanlagen mittels einer Pumpe mit variierbarer Fördermenge für die Zirkulation einer Trägerflüssigkeit ist auch in der DE 26 13 297 beschrieben.
  • Dabei kommt es oft zu einem unerwünschten Pendeln der Vorlauftemperatur, da mit geringen Durchflussmengen des Wärmeträgermediums keine optimalen Mischvorgänge mehr möglich sind.
  • Nach dem Stand der Technik werden für Heizanlagen, die eine hohe maximale Heizleistung bei gleichzeitig großem Betriebsbereich aufweisen, parallel zu einem Hauptmischer und einer Hauptpumpe ein kleinerer Zusatzmischer und eine kleinere Zusatzpumpe angeordnet. Zusatzmischer und Zusatzpumpe sind dabei für die niedrigen Durchsatzmengen des Wärmeträgermediums ausgelegt, bei denen Hauptpumpe und Hauptmischer keinen zufrieden stellenden Mischvorgang mehr liefern. Aber auch bei dieser Lösung kann es in Betriebsbereichen mit weiterer Verringerung der Durchsatzmengen zu einem Pendeln der Vorlauftemperatur kommen.
  • Der Erfindung liegt daher die Aufgabe zugrunde, eine gegenüber dem Stand der Technik verbesserte Heizanlage mit Mischer anzugeben.
  • Erfindungsgemäß wird diese Aufgabe gelöst durch ein Verfahren nach Patentanspruch 1 und eine Anordnung zur Durchführung des Verfahrens nach Patentanspruch 5. Der Vorteil liegt dabei in der Vermeidung des Pendelns der Vorlauftemperatur in allen Betriebszuständen und begründet sich in der Anordnung eines Rückfluss-Bypasses, der den zumindest einen Mischer und die zumindest eine Pumpe überbrückt und über den jeder Zuleitung des zumindest einen Mischers ein Teil des Wärmeträgermediums zugeführt wird. In jenem Abschnitt des Vorlaufs, der zwischen den Anschlüssen des Rückfluss-Bypasses liegt, addieren sich dann die Durchflussmengen des Wärmeträgermediums durch die geöffneten Wärmeverbraucher und den Rückfluss-Bypass. Für die in diesem Abschnitt des Vorlaufs liegenden Pumpen und Mischer kann somit eine Mindestdurchflussmenge eingestellt werden, bei der noch kein Pendeln der Vorlauftemperatur auftritt.
  • Daraus ergibt sich die Möglichkeit, bei Heizanlagen mit hoher maximaler Heizleistung und vielen nur zeitweise offenen Wärmeverbrauchen kostengünstige Mischeinrichtungen einzusetzen, die einen schmalen optimierten Betriebsbereich aufweisen.
  • Eine vorteilhafte Ausprägung der Erfindung sieht vor, dass für den zumindest einen Mischer eine bauartabhängige Mindestdurchflussmenge festgelegt wird, wobei bei einer Annäherung an diese mit einem Ventil im Rückfluss-Bypass der Durchfluss so weit erhöht wird, dass die Mindestdurchflussmenge in dem zumindest einen Mischer nicht unterschritten wird. Die Heizanlage kann dann bis zu der Durchflussmenge durch die Wärmeverbraucher, bei dem noch kein Pendeln des Vorlaufs auftritt, mit geschlossenem Ventil im Rückfluss-Bypass betrieben werden. Erst wenn sich die Durchflussmenge der unteren Grenze des optimierten Mischerbetriebsbereichs nähert, wird das Ventil geöffnet, so dass immer eine eingestellte minimale Durchflussmenge vorhanden ist. Damit wird die Leistungsaufnahme der Pumpe für den gesamten Betriebsbereich optimiert.
    Das Ventil ist dabei vorteilhaft in dem Bereich des Rückfluss-Bypass angeordnet, der nicht als Abzweigungen zu den Mischeranschlüssen ausgebildet ist, so dass die gesamte Rückflussmenge des Wärmeträgermediums durch das Ventil strömt.
  • Von Vorteil ergibt sich weiters, wenn vor allen Leitungszusammenführungspunkten im Leitungsnetz Rückflussverhinderer angeordnet werden um Fehlzirkulationen zu verhindern. Dadurch wird der Wirkungsgrad der Anlage verbessert, weil so ein Maximum der im Wärmeträgermedium gespeicherten Wärme an die Wärmeverbraucher gelangt. Die Rückflussverhinderer können beispielsweise Rückschlagventile oder Rückschlagklappen sein, die nur eine Flussrichtung zulassen und dabei in Flussrichtung einen geringen Strömungswiderstand aufweisen.
  • Um die Annäherung an die Mindestdurchflussmenge in dem zumindest einen Mischer zu erfassen, empfiehlt es sich, die Durchflussmenge über die Drehzahl der zumindest einen Pumpe zu messen, wenn es sich dabei um eine Kreiselpumpe mit durchflussproportionaler Drehzahl handelt. Das Wärmeträgermedium wird dann bei Annäherung an eine Mindestdrehzahl der Hauptpumpe nur mehr mittels Zusatzpumpe über den kleineren Zusatzmischer geführt oder das Ventil im Rückfluss-Bypass geöffnet. Damit können zusätzliche Elemente zur Durchflussmengenmessung entfallen.
  • Die Erfindung wird anhand von Figuren näher erläutert. Es zeigen beispielhaft:
  • Fig. 1:
    eine schematische Darstellung einer Heizanlage mit Mischer nach dem Stand der Technik
    Fig. 2:
    eine schematische Darstellung einer erfindungsgemäßen Heizanlage mit einer Pumpe und einem Mischer
    Fig. 3:
    eine schematische Darstellung einer erfindungsgemäßen Heizanlage mit zwei Pumpen und zwei Mischern
  • In dem in Figur 1 dargestellten Heizungsschema wird ausgehend von einer Wärmequelle 1 über einem Vorlauf 2 durch einen Mischer 4 und eine Pumpe 5 das erwärmte Wärmeträgermedium zu Wärmeverbrauchern 8 bewegt. Die Wärmequelle 1 kann dabei ein Wärmeerzeuger (z.B. Ofen, Wärmepumpe, Solarelement, Thermalquelle etc.), ein Speicher oder eine Wärmeübergabeeinrichtung (Wärmetauscher, Vierwegemischventil) sein. Im Mischer 4, der hier als Dreiwegmischventil mit Stellmotor M dargestellt ist, wird dem erwärmten Wärmeträgermedium ein Teil des abgekühlten Wärmeträgermediums aus dem Rücklauf 3 zugemischt. Als Pumpe 5 kommt in der Regel eine Kreiselumwälzpumpe zum Einsatz, deren Fördermenge proportional zur Drehzahl ist.
  • Durch die Stellung des Stellmotors M des Mischers 4 wird das Mischverhältnis zwischen erwärmtem und abgekühltem Wärmeträgermedium bestimmt, woraus sich die Vorlauftemperatur T ergibt, mit der das Wärmeträgermedium zu den Wärmeverbrauchern 8 gelangt und die mit einem Thermometer 6 erfasst wird. Der Mischer 4 wird dabei so geregelt, dass die Vorlauftemperatur T der Solltemperaturvorgabe nachfolgt.
  • Die Differenz zwischen dem Druck im Vorlauf 2 und im Rücklauf 4 wird über ein Manometer 7 erfasst. Die Pumpe 5 arbeitet dabei mit einer Differenzdruckregelung mit konstanter Differenzdruckvorgabe. Daraus ergibt sich die Abhängigkeit der Durchflussmenge durch die Pumpe 5 von der Anzahl durchströmter Wärmeverbraucher 8, wobei diese meist in parallel geschaltete Zonen aufgeteilt sind. Je weniger Zonenventile geöffnet sind, desto geringer muss dann die Durchflussmenge durch die Pumpe eingestellt werden, damit der Druckabfall in den Wärmeverbrauchern 8 konstant bleibt. Ab einer bauartbedingten Mindestdurchflussmenge des Mischers 4 kann es dann zum unerwünschten Pendeln der Vorlauftemperatur T kommen.
  • In Figur 2 ist das in Figur 1 dargestellte Schema um die erfindungsgemäße Anordnung eines Rückfluss-Bypasses 10 erweitert, mit dem verhindert wird, dass die Durchflussmenge des Wärmeträgermediums durch den Mischer 4 und die Pumpe 5 unter einen Mindestwert abfällt, bei dem es zum Pendeln der Vorlauftemperatur T kommt. Dabei ist es günstig, wenn die Durchflussmenge über die Drehzahl der als Kreiselumwälzpumpe ausgebildeten Pumpe 5 erfasst wird.
  • Der Rückfluss-Bypass 10 zweigt nach dem Thermometer 6 ab und führt zu einem Ventil 11, mit dem die Durchflussmenge durch den Rückfluss-Bypass 10 gesteuert wird. Hinter dem Ventil 11 erfolgt eine Aufzweigung und Weiterführung zu den beiden Verbindungspunkten mit den Zuflussleitungen des Mischers 4. Das Ventil 11 ist beispielsweise ein Magnetventil oder ein Hahn, der über einen Stellmotor M gesteuert wird.
  • In allen Leitungen, die in die Zuflussleitungen des Mischers 4 münden, sind Rückflussverhinderer 12 angeordnet, um Fehlzirkulationen zu verhindern.
  • In Figur 3 ist das Schema einer erfindungsgemäßen Heizanlage mit zwei Mischern 4 und 14 und zwei Pumpen 5 und 13 für große Wohnhausanlagen dargestellt. Dabei ist dem Leitungszweig mit der Hauptpumpe 5 und dem Hauptmischer 4 ein Leitungszweig mit einer kleineren Zusatzpumpe 5 und einem Zusatzmischer 4 parallel geschaltet. Die beiden Leitungszweige überbrückend ist wieder ein Rückfluss-Bypass 10 mit einem Ventil 11 angeordnet. Über ein den Pumpen 5 und 13 nachgeschaltetes Thermometer 6 wird die Vorlauftemperatur T erfasst, die als Istgröße für die Temperaturregelung der Mischer 4 und 14 dient.
  • Der dem Druckabfall in den Wärmeverbrauchern 8 entsprechende Differenzdruck Δp zwischen dem Druck im Vorlauf 2 und dem Druck im Rücklauf 3 wird wieder über ein Manometer 7 erfasst. Der Differenzdruck Δp ist dabei die Istgröße für die Differenzdruckregelung der Pumpen 5 und 13. Beim Vollbetrieb mit maximaler Heizleistung sind dann beide Pumpen 5 und 13 in Betrieb. Mit abnehmender Heizleistung und damit sinkender Durchflussmenge wird die Drehzahl in der Hauptpumpe 5 gesenkt. Das geschieht so lange, bis für den Hauptmischer 4 die Minimaldurchflussmenge erreicht wird. Dann wird das Wärmeträgermedium nur mehr über den kleineren Zusatzmischer 14 geleitet, indem die Hauptpumpe 5 nicht mehr und die Zusatzpumpe 13 weiter betrieben wird. Bei weiterer Absenkung der Heizleistung und damit der Durchflussmenge durch die Wärmeverbraucher 8 wird die Drehzahl der Zusatzpumpe 13 weiter reduziert, bis die Mindestdurchflussmenge des Zusatzmischers 14 erreicht wird. Dann wird das Ventil 11 im Rückfluss-Bypass geöffnet und eine zusätzliche Zirkulation durch den Zusatzmischer 14 und die Zusatzpumpe 13 erzeugt.
  • Unmittelbar hinter den Pumpen 5 und 13 sind wieder Rückflussverhinderer 12 angeordnet, um eine Fehlzirkulation zu verhindern.

Claims (6)

  1. Verfahren zum Betreiben einer Heizanlage, bei der ein Wärmeträgermedium mit wenigstens einer Pumpe (4) von einer Wärmequelle (1) über einen Vorlauf (2) zu wenigstens einem Wärmeverbraucher (8) und über einen Rücklauf (3) zurück zur Wärmequelle (1) gepumpt wird und bei der mit wenigstens einem Mischer (4) die Vorlauftemperatur (T) durch Beimischung von Wärmeträgermedium aus dem Rücklauf (3) geregelt wird, dadurch gekennzeichnet, dass jeder Zuleitung des zumindest einen Mischers ein Teil des Wärmeträgermediums über einen den zumindest einen Mischer (4) und die zumindest eine Pumpe (5) überbrückenden Rückfluss-Bypass (10) zugeführt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass für den zumindest einen Mischer (4) eine bauartabhängige Mindestdurchflussmenge festgelegt wird und dass bei einer Annäherung an diese mit einem Ventil (11) im Rückfluss-Bypass (10) der Durchfluss so weit erhöht wird, dass die Mindestdurchflussmenge in dem zumindest einen Mischer (4) nicht unterschritten wird.
  3. Verfahren nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, dass durch die Anordnung von Rückflussverhinderern (12) vor allen Leitungszusammenführungspunkten Fehlzirkulationen verhindert werden.
  4. Verfahren nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, dass die Annäherung an die Mindestdurchflussmenge in dem zumindest einen Mischer (4) über die Drehzahl der zumindest einen Pumpe (5) erfasst wird.
  5. Anordnung zur Durchführung der Verfahren nach einen der Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass in einer Heizanlage zumindest eine Pumpe (5) und zumindest ein Mischer (4) angeordnet sind und dass ein die zumindest eine Pumpe (5) und den zumindest einen Mischer (4) überbrückender Rückfluss-Bypass (10) vorgesehen ist und dass dieser Rückfluss-Bypass mit jeder Zuleitung des zumindest einen Mischers verbunden ist.
  6. Anordnung nach Anspruch 5, dadurch gekennzeichnet, dass im Rückfluss-Bypass (10) ein Ventil (11) zur Festlegung des Durchflusses angeordnet ist.
EP06101245A 2005-03-23 2006-02-03 Verfahren zum Betreiben einer Heizanlage mit Mischer Not-in-force EP1710512B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT0049505A AT501299B8 (de) 2005-03-23 2005-03-23 Verfahren zum betreiben einer heizanlage mit mischer

Publications (3)

Publication Number Publication Date
EP1710512A2 true EP1710512A2 (de) 2006-10-11
EP1710512A3 EP1710512A3 (de) 2008-07-23
EP1710512B1 EP1710512B1 (de) 2010-03-31

Family

ID=36587240

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06101245A Not-in-force EP1710512B1 (de) 2005-03-23 2006-02-03 Verfahren zum Betreiben einer Heizanlage mit Mischer

Country Status (3)

Country Link
EP (1) EP1710512B1 (de)
AT (2) AT501299B8 (de)
DE (1) DE502006006545D1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006054893A1 (de) * 2006-11-20 2008-05-21 Wilo Ag Kompaktheizungsanlage
US20190024995A1 (en) * 2017-07-18 2019-01-24 Eisenmann Se Supply circuit for a heat exchange medium for a consumer, industrial plant and method for operating them
EP2629020B1 (de) * 2012-02-16 2021-05-26 Daikin Europe N.V. Heizsystem und Verfahren zu dessen Betrieb
EP4431823A1 (de) * 2023-03-17 2024-09-18 Vaillant GmbH Verfahren zur inbetriebnahme einer pumpenbaugruppe, computerprogramm, regel- und steuergerät und heizgerät

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013001532B4 (de) 2013-01-29 2018-08-16 Ritter Energie- Und Umwelttechnik Gmbh & Co. Kg Solarrücklaufbeimischung zur Solartemperaturbegrenzung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0001615A1 (de) 1977-10-26 1979-05-02 Braukmann Armaturen AG Regelvorrichtung für eine Heizungsanlage
DE10122475A1 (de) 2001-05-09 2002-11-14 Froeling Gmbh & Co Kessel Appb Verfahren zur besseren Zirkulation in Trinkwassererwärmungsanlagen
DE20217305U1 (de) 2002-11-09 2003-03-27 DMS Wasser-Wärmetechnik GmbH, 22113 Oststeinbek Desinfektion des gesamten Zirkulations-Volumenstromes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2358754A1 (de) * 1973-11-26 1975-05-28 Schumacher Josef Verfahren und vorrichtung zur steuerung einer heizungsanlage
IT1036636B (it) * 1975-07-25 1979-10-30 Ve Ma Elettropompe Spa Perfezionamento nei mezzi per la regolazione della temperatura di ambienti particolarmente per impianti di riscaldamento a circo lazione forzata di fluido
DE3727442A1 (de) * 1987-08-17 1989-03-02 Gerhard Urban Verfahren zur erzeugung von warmwasser und vorrichtung zur durchfuehrung dieses verfahrens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0001615A1 (de) 1977-10-26 1979-05-02 Braukmann Armaturen AG Regelvorrichtung für eine Heizungsanlage
DE10122475A1 (de) 2001-05-09 2002-11-14 Froeling Gmbh & Co Kessel Appb Verfahren zur besseren Zirkulation in Trinkwassererwärmungsanlagen
DE20217305U1 (de) 2002-11-09 2003-03-27 DMS Wasser-Wärmetechnik GmbH, 22113 Oststeinbek Desinfektion des gesamten Zirkulations-Volumenstromes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006054893A1 (de) * 2006-11-20 2008-05-21 Wilo Ag Kompaktheizungsanlage
EP2629020B1 (de) * 2012-02-16 2021-05-26 Daikin Europe N.V. Heizsystem und Verfahren zu dessen Betrieb
US20190024995A1 (en) * 2017-07-18 2019-01-24 Eisenmann Se Supply circuit for a heat exchange medium for a consumer, industrial plant and method for operating them
EP4431823A1 (de) * 2023-03-17 2024-09-18 Vaillant GmbH Verfahren zur inbetriebnahme einer pumpenbaugruppe, computerprogramm, regel- und steuergerät und heizgerät

Also Published As

Publication number Publication date
EP1710512B1 (de) 2010-03-31
ATE462936T1 (de) 2010-04-15
AT501299B1 (de) 2006-08-15
EP1710512A3 (de) 2008-07-23
AT501299A4 (de) 2006-08-15
AT501299B8 (de) 2007-02-15
DE502006006545D1 (de) 2010-05-12

Similar Documents

Publication Publication Date Title
DE102008038617B4 (de) Verfahren und Vorrichtung zur Wärmenutzung
EP2375175B1 (de) Vorrichtung und Verfahren zur Wärmeversorgung von Gebäuden
EP2354677B1 (de) Nutzung von Wärme aus den Fernwärmerücklauf
EP1710512B1 (de) Verfahren zum Betreiben einer Heizanlage mit Mischer
EP2321589A1 (de) Hochtemperaturwärmepumpe und verfahren zu deren regelung
DE212018000133U1 (de) Kombiniertes System aus einer Brauchwassererwärmung und einem Heizmedium zur Wohnungsheizung
EP1170554B1 (de) Anordnung und Verfahren zur Bereitstellung von warmen Brauchwasser
EP2000742B1 (de) Mischeinrichtung zur Einstellung der Warmwassertemperatur
DE102005035821B3 (de) Thermische Solaranlage
DE102010014431B4 (de) Verfahren und Vorrichtung zur Nutzung der Wärmeenergieresourcen eines Gebäudes
DE102010017148A1 (de) Verfahren zum Betreiben einer Wärmegewinnungsanlage
AT406081B (de) Heizanlage
EP3367005B1 (de) Heizsystem
EP2204619A2 (de) Vorrichtung und Verfahren für einen optimierten Betrieb eines Klimatisierungssystem und Klimatisierungssystem
DE10254889B4 (de) Regeltechnische Lösung für eine Wassererwärmungsanlage
AT17574U1 (de) Kombiniertes System zum Erhitzen von Haushaltswasser und von Medium zur Gebäudeheizung und/oder zum Kühlen von Heizmedium zur Gebäudekühlung
DE102019106056A1 (de) Verfahren zum Betreiben einer Wohnungsstation und Wohnungsstation dazu
AT527058B1 (de) Heizvorrichtung und Heizverfahren
EP3800403B1 (de) Verfahren zum betreiben einer heizvorrichtung, heizvorrichtung
DE102010014767A1 (de) Mischeinrichtung zur Einstellung der Warmwassertemperatur
DE112009002536T5 (de) Flexibles solarthermisches System zur Produktion von Warmwasser bis zu hohen Temperaturen
EP2679927A2 (de) Heizungsanlage mit einem thermischen Pufferspeicher
EP3483511A1 (de) Wärmeübergabestation
DE102016100991B4 (de) Vorrichtung zur Energierückgewinnung aus Abwässern
DE102022134951A1 (de) Solaranlage für ein Wärmenetz

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20090121

17Q First examination report despatched

Effective date: 20090227

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REF Corresponds to:

Ref document number: 502006006545

Country of ref document: DE

Date of ref document: 20100512

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100712

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100802

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110224

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110210

Year of fee payment: 6

BERE Be: lapsed

Owner name: SIEMENS A.G. OSTERREICH

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120203

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100630

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160114

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160502

Year of fee payment: 11

Ref country code: DE

Payment date: 20160420

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006006545

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 462936

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170203

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170901