EP1705950B1 - Verfahren zur individuellen Anpassung eines Hörgeräts - Google Patents

Verfahren zur individuellen Anpassung eines Hörgeräts Download PDF

Info

Publication number
EP1705950B1
EP1705950B1 EP20060006023 EP06006023A EP1705950B1 EP 1705950 B1 EP1705950 B1 EP 1705950B1 EP 20060006023 EP20060006023 EP 20060006023 EP 06006023 A EP06006023 A EP 06006023A EP 1705950 B1 EP1705950 B1 EP 1705950B1
Authority
EP
European Patent Office
Prior art keywords
loudness
level
audio signal
measured
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20060006023
Other languages
English (en)
French (fr)
Other versions
EP1705950A2 (de
EP1705950A3 (de
Inventor
Michael Dr. Boretzki
Volker KÜHNEL
Andreas Von Buol
Paul Dr. Zbindne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sonova Holding AG
Original Assignee
Phonak AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phonak AG filed Critical Phonak AG
Priority to EP20060006023 priority Critical patent/EP1705950B1/de
Priority to EP10177370A priority patent/EP2278827A1/de
Publication of EP1705950A2 publication Critical patent/EP1705950A2/de
Publication of EP1705950A3 publication Critical patent/EP1705950A3/de
Priority to AU2007229057A priority patent/AU2007229057B2/en
Priority to PCT/EP2007/002303 priority patent/WO2007107292A2/en
Application granted granted Critical
Publication of EP1705950B1 publication Critical patent/EP1705950B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/70Adaptation of deaf aid to hearing loss, e.g. initial electronic fitting

Definitions

  • the present invention relates to a method for individually fitting a hearing instrument.
  • a hearing instrument usually comprises a microphone for generating an input audio signal from ambient sound, an audio signal processing unit (which nowadays often is digital) for processing the input audio signal into a processed output audio signal and an output transducer for stimulation of the user's hearing according to the processed output audio signals.
  • Audio signal processing in the audio signal processing unit involves applying a gain function to the input audio signal, which depends on level and frequency of the input audio signal.
  • Hearing instruments usually are used by persons suffering from a hearing loss compared to normal-hearing persons, which depends on level and frequency of the ambient sound. Usually the hearing instrument undergoes a fitting procedure in order to individually set the gain provided by the hearing instrument such that the hearing loss of the user is compensated as far as possible.
  • US 4,577,641 relates to a fitting process for a cochlear implant wherein equal loudness contour (ELC) measurements are conducted after the device has been implanted in order to determine the individual optimized gain function of the hearing instrument.
  • ELC equal loudness contour
  • DE 32 05 685 A1 relates to a hearing instrument with an electroacoustic output transducer, wherein a sound generator is integrated within the hearing instrument for performing hearing threshold measurements as a function of frequency.
  • DE 199 14 992 A1 relates to the integration of a sound generator for audiometric measurement within a partially or fully implantable hearing instrument for e.g. direct mechanical stimulation of the inner ear.
  • loudness curves as a function of the sound input level are measured for various frequencies. From these loudness curves contours of equal loudness as a function of frequency are plotted for various loudness values. However, the loudness curves are obtained without the hearing aid being used.
  • DE 100 41 726 C1 relates to an implanted hearing instrument with an electromechanical transducer, wherein the quality of the coupling between the transducer and the user's ear is evaluated by measuring the mechanical impedance after implantation of the transducer.
  • EP 0 661 905 B1 relates to a fitting model for hearing aids in order to take into account various psycho-acoustic effects, i.e. in order to take into account the fact that loudness curves are measured with sinus tones or low-band noise while practical ambient sound, in particular speech, is perceived by the user in a much more complex manner than sinus tones or narrow-band noise.
  • WO 2004/054318 relate to a method for fitting the gain of a hearing aid to the individual hearing loss of the person, wherein the measurements are carried-out with the person using a hearing aid similar to that the person will use in practice after the fitting process, wherein the measurements are carried-out at three different volume/loudness levels, namely at the most comfortable level (MCL), at a loud level and at a soft level, and wherein at each volume level the measurement is repeated at four different frequency bands.
  • MCL most comfortable level
  • MCL most comfortable level
  • each volume level is repeated at four different frequency bands.
  • frequency/frequency resolution each of the volume levels is treated the same, i.e. the measurements are carried-out at the same number of frequency bands and with the same frequency resolution.
  • the solution according to claim 1 is beneficial in that, by measuring the perceived loudness at the intermediate loudness level for a larger number of frequencies or frequency bands and with a finer frequency resolution than at said low and high loudness levels and calculating the individual gain function to be implemented in the audio signal processing unit in order to achieve the pre-defined target loudness function using the transducer input audio signal levels taken during such measurements, the number of measurement points to be investigated can be substantially reduced.
  • the present invention takes advantage of the finding that the fine frequency dependency of the overall transfer function, i.e. that part of the frequency dependency which varies strongly/steeply within short frequency intervals (in other words, the short scale variations), is relatively similar for even significantly different perceived loudness levels of the signal. It has been found that thus, instead of individually determining the transfer functions for every single loudness category by taking measurements at a high frequency resolution for each loudness category of interest, it is usually sufficient to determine the transfer function only for a single intermediate loudness level at a higher frequency resolution, whereas for the low and high loudness levels measurement with low frequency resolution at only a few frequencies/frequency bands, i.e.
  • the intermediate loudness level is the most comfortable level, which may be from 60 to 70 phon and which is the input sound pressure level at which intelligibility of the stimulus by the user is best and to which the user could comfortably listen over an extended period of time.
  • the low loudness level preferably is the hearing threshold, which is the input sound pressure level at which the stimulus becomes detectable by the user, and the high loudness level preferably is the uncomfortable level (UCL), which is the input sound pressure level at which loudness becomes uncomfortable to the user and the sensation could not be tolerated for an extended period of time.
  • UTL uncomfortable level
  • the transducer input audio signal level should preferably be measured at at least 5 different frequencies or frequency bands, respectively, for the low and/or high loudness level measurements at 3 to 5 frequencies or frequency bands can be sufficient in the practice of the invention.
  • each contour of equal loudness preferably is measured at at least 5 different frequencies or frequency bands, respectively.
  • the transducer input audio signal level for the intermediate loudness level is measured for at least 8 frequencies or frequency bands.
  • An even finer frequency resolution can be obtained by increasing the number of frequencies at which the loudness perception is measured, such as by measuring the transducer input audio signal level for the intermediate loudness level for at least 15 frequencies or frequency bands.
  • the transducer input audio signal level is measured for each loudness level for frequencies or frequency bands in a range of from 100 to 10,000 Hz.
  • the frequencies or frequency bands are spaced in equal distances in the range of from 100 to 10,000 Hz.
  • the frequency dependence of the values of the transducer input audio signal level as measured for the intermediate loudness level is used to interpolate between the values of the transducer input audio signal level to be applied to the transducer input as measured for the low and the high loudness level.
  • the present method enables to obtain functions representing the frequency dependency of the loudness perception at a high frequency resolution also for loudness categories in which readings are taken at a substantially lower frequency resolution, i.e. by taking measurements only for a few frequencies.
  • the measurements for the intermediate loudness level are conducted as an equal loudness contour measurement, that is as a measurement wherein subsequently for each frequency or frequency band a transducer input audio signal level is selected which causes a constant level of loudness perception for the user.
  • the measurements for the low and high loudness levels preferably are conducted with pure sinus tones.
  • instead of measuring ⁇ according to the solution defined in claim 1 - the transducer input audio signal level which has to be applied to the transducer input in order to achieve a certain intermediate perceived loudness level, according to the solution defined in claim 21 a predetermined level of the processed output audio signal at a number of frequencies or frequency bands is present to the user and then the loudness level perceived by the user at the respective frequency or frequency band is measured.
  • the overall transfer function can be determined.
  • transducer input audio signal levels are measured for the low and high loudness levels as an equal loudness contour measurement, wherein subsequently for each frequency or frequency band the transducer input audio signal level is selected such that the same loudness level is perceived by the user. Then a preliminary individual gain function is calculated by taking into account the measured transducer input audio signal levels for the low and high loudness levels, so as to achieve a pre-defined target loudness function which at least in a range of medium input sound pressure levels corresponds to the standard loudness function of a normal hearing person.
  • the contour of equal loudness is estimated for the intermediate loudness level from the preliminary individual gain function, and the individual gain function is calculated by correcting the preliminary individual gain function by taking into account the difference between the contour of equal loudness measured for the intermediate loudness and the estimated contour of equal loudness.
  • the reason for performing in this embodiment initial coarse audiogram measurements is to determine preliminary fitting parameters in order to enable accurate measurements of the contour of equal loudness in the second step, with the hearing instrument already being operated in a manner taking into account those preliminary fitting parameters (e.g. hearing threshold, MCL, UCL). Thereby it becomes possible to perform the contour of equal loudness measurements with the hearing instrument already being operated in a manner more or less close to the finally fitted hearing instrument.
  • preliminary fitting parameters e.g. hearing threshold, MCL, UCL
  • the measurement of the contour of equal loudness should have a finer frequency resolution than the initial audiogram measurements, thereby serving as a correction of the initial, relatively coarse audiogram measurement.
  • the number of frequencies or frequency bands at which the contour of equal loudness is measured preferably is larger than the number of frequencies or frequency bands at which the initial audiogram measurement is performed.
  • this can be done by linear interpolation between the measured frequencies or frequency bands, respectively.
  • the initial audiogram measurements are performed with pure sinus tones, while the measurement of the contour of equal loudness is performed with narrow-band noise.
  • the target loudness function at least in the range of medium input sound pressure levels preferably corresponds to the standard loudness function of a normal hearing person.
  • an individual gain function thus can be determined by adding the difference between the standard loudness function of a normal hearing person and the initially determined individual loudness function being derived from the audiogram data to the preset standard gain function.
  • the gain in the target loudness function may be progressively reduced compared to the gain for medium input sound pressure levels, i.e. for low and high sound input pressure levels the gain may be smaller than the sum of the difference between the standard loudness function of a normal hearing person and the determined individual loudness function and the preset standard gain function.
  • the gain in the target loudness function may be progressively reduced towards low input sound pressure levels, while for high input sound pressure levels the gain in the target loudness function may be progressively reduced towards high input sound pressure levels.
  • Above a given high input sound pressure level the gain may be reduced below zero in order to provide for a maximum power output limitation, so that the hearing instrument saturates at very high input sound pressure levels.
  • the transducer input audio signal used in the measurements can be generated by providing corresponding sound to the microphone, preferably the stimulus is generated by the audio signal processing unit itself.
  • the audio signal processing unit can be provided with a sound generator.
  • an electromechanical output transducer is used which is directly connected, via an artificial incus, with the stapes or the footplate of the stapes or with the round window or an artificial window of the cochlear wall.
  • Such hearing instruments also are known as DACS (Direct Acoustic Cochlear Stimulator).
  • fitting method according to the invention also can be used for hearing instruments with electroacoustic output transducer or for cochlea implants.
  • a sound level L 0 is applied to a microphone M which is arranged in an environment U.
  • Microphone M converts the sound signal into an electric signal level L 1 , which by means of an audio signal processing unit E is converted into an electric signal level L 2 to be applied as input signal to an output transducer TD.
  • Output transducer TD which can be an electroacoustic transducer (i.e.
  • the coupling for example, may be acoustically via the tympanic membrane, or mechanically via the stapes or the oval window, so as to generate within the hearing apparatus EAR a stimulus which is perceived by the patient as loudness sensation L 3 .
  • Conversion of the original sound level L 0 into the loudness sensation L 3 perceived by the patient involves a number of transfer functions which also are indicated in Fig. 9 .
  • conversion of the original sound level L 0 into the electric signal level L 1 is governed by a transfer function T 01 which basically is dependent on the frequency of the signal presented to the microphone and thus can be assumed to be known.
  • the transfer function T 12 which describes conversion of electric signal level L 1 to processed electric signal level L 2 to be applied as input signal to output transducer TD can be adjusted by means of audio signal processing unit E.
  • a signal processor SG which feeds a known sound level L 2 to output transducer TD.
  • the transfer function T 23 which associates a certain loudness perception to a certain input signal level L 2 of the transducer TD generally is not known and depends on the individual circumstances of the patient.
  • transfer function T 23 combines a coupling portion T C which accounts for the transducer resonance and the coupling of the transducer to the anatomic structures of the patient as well as a hearing loss portion T HL which represents the individual hearing loss experienced by the patient.
  • T 03 In order to be able to determine the overall transfer function T 03 by which conversion of a sound event into a hearing impression can be described and which is composed of the above partial transfer function T 01 , T 12 and T 23 , transfer function T 23 has to be determined in the course of the fitting procedure.
  • the fitting procedure aims at adjusting the audio signal processing unit E (and hence transfer function T 12 ) such that the overall transfer function T 03 (and hence association of a certain loudness perception L 3 to a certain input signal level L 2 ) assumes a certain shape, which often, at least for intermediate loudness levels, approximates the overall transfer function T 03 that is realized in normal healthy hearing.
  • an overall transfer function T 03 is preferred which differs from that achieved in normal hearing.
  • Soft Squelch is implemented by which the gain function is progressively reduced towards low input sound levels
  • many patients prefer a limitation of the loudness level i.e. a compression of the gain function.
  • the initially unknown transfer function T 23 is determined with the aid of audiologic measurements.
  • a desired overall transfer function T 03 can be calculated and implemented in the audio signal processing unit E.
  • Fig. 1 is a schematic view of an example of a hearing instrument according to the invention comprising an external part 10 and an implantable part 12 which are connected via a percutaneous plug 14.
  • the external part 10 comprises a housing 16 to be worn somewhere at the user's body, for example, behind the ear.
  • the housing 16 forms a control unit 18 which comprises at least one microphone 20 for converting ambient sound into an input audio signal, a battery 22, a data memory 24 and a digital audio signal processing unit 26.
  • the digital audio signal processing unit 26 is for processing the audio input signal provided by the microphone 20 into a processed output audio signal by applying a gain function, which depends on frequency and audio signal input level, to the input audio signal provided by the microphone 20.
  • the gain function, together with other operating parameters and the operating program for the digital audio signal processing unit 26, may be stored in the memory 24.
  • the digital audio signal processing unit also may comprise a sound generator 28. In an alternative embodiment the sound generator 28 may be provided separate from the digital audio signal processing unit 26.
  • the control unit 18 is connected to the percutaneous plug 14 via a tube 30 which houses wires for providing the output audio signal from the digital audio signal processing unit 26 to an electromechanical output transducer 32 and for supplying the electromechanical output transducer 32 with power from the battery 22.
  • the output transducer 32 is electrically connected to the percutaneous plug 14 via a tube 34.
  • the implantable part 12 consists of the output transducer 32, the tube 34 and the implantable part of the plug 14.
  • the implantable part 12 is implanted into the skull of the user, with the output transducer 32 comprising a bone plate 36 which is fixed at the user's skull.
  • the output transducer comprises a housing 38 comprising a drive 40 for driving a rod 42 for reciprocating movement.
  • the free end of the rod 42 is provided with an artificial incus 44 which is to be mechanically connected to the cochlea of the user.
  • the fixation of the artificial incus 44 at the user's cochlea can be achieved by surgical techniques which are known as stapedotomy or stapedectomy. Conventionally, these techniques are used for connecting the artificial incus of a middle ear prosthesis to the patient's stapes (stapedotomy) or footplate of the stapes (stapedectomy) when treating otosclerosis.
  • the drive 40 may be an electromagnetic drive (an example of which is described in US 6,315,710 B1 ) or a piezoelectric drive (an example of which is described in US 6,554,762 B2 ).
  • the hearing instrument of Fig. 1 is particularly suited for patients who cannot be effectively treated with electroacoustic hearing aids alone and therefore would require surgery anyhow.
  • the hearing instrument used in the present invention completely bypasses the middle ear and thus does not require a functional middle ear.
  • the transducer resonance may spread significantly from device to device (this is shown by two examples in Fig. 2 ).
  • the coupling of the output transducer to the cochlea is not known and may spread significantly from case to case.
  • the output of the output transducer is not available in acoustic form.
  • audiogram measurements are made wherein loudness perception of a stimulus by the user is tested when using the hearing instrument.
  • measurements are taken of the transducer input audio signal level which has to be applied to the transducer input in order to achieve a certain intermediate perceived loudness level, which preferably is the most comfortable level (MCL).
  • MCL most comfortable level
  • the measurements of the perceived loudness level preferably are conducted as an equal loudness contour measurement, wherein a transducer input audio signal level L 2 is selected such that the same loudness level L 3 is perceived by the user.
  • Fig. 11A illustrates an exemplary chart of results obtained by the measurements taken at the most comfortable level (MCL) and indicates for each frequency tested the respective transducer input audio signal level L 2 that is required to obtain that the constant loudness level L 3 .
  • the transfer function T 23 which describes the relationship between the transducer input audio signal level L 2 and the perceived loudness level L 3 is not a linear function but usually shows large variations over the tested frequency range.
  • the measurements for low and high loudness levels such as the hearing threshold (THR) and the uncomfortable level (UCL), respectively are restricted to only a few measurement points, for example to only three frequencies, as it is indicated in Fig. 10 .
  • curves for the low and high loudness levels are obtained by interpolation between the measurement values taken for the low and high loudness levels at the lower frequency resolution.
  • the present fitting procedure further may be designed as a two-stage fitting procedure, wherein at the first stage the hearing instrument is used in order to perform audiogram measurements at a few frequencies, whereby some points of the individual loudness curve versus sound input level are obtained between which the individual loudness curve is interpolated. From the individual loudness curve a preliminary individual gain function is calculated which may be used for operating the hearing instrument at the second stage (in particular if the stimulus is provided by an earphone to the microphone 20) wherein at least one contour of equal loudness is measured with a finer frequency resolution than that of the loudness curve of the first stage.
  • the measured contour of equal loudness then is used for correcting the individual preliminary gain function, in particular in between the frequencies already measured in the first stage, in order to consider, for example, the relatively sharp resonance of the output transducer.
  • a corrected individual gain function is determined in the second stage, which then is finally used for operating the hearing instrument.
  • the audiogram measurements may be performed such that for each frequency at least two points of the loudness curve are determined, usually the hearing threshold (denoted by A in Fig. 3 ) and at least one of MCL (denoted by B) and UCL (denoted by C).
  • Such loudness curve as shown in Fig. 3 should be determined at least for four different frequencies spread over the most relevant part of the audible frequencies.
  • the loudness measurements of the first stage are performed with pure sinus tones. While in principle it would be possible to provide the stimulus by an earphone to the microphone 20 (in that case a standard gain function would be used for operating the hearing instrument in the first stage, which preferably is linear with respect to sound input level), it is preferred to generate the stimulus by the sound generator 28 within the control unit 18.
  • the difference between the measured individual loudness curve and the standard loudness curve of the normal hearing person i.e. the difference in input level necessary for obtaining the same loudness perception, is considered. This is indicated by arrows D1 and D2 in Fig. 3 .
  • the individual loudness curve is interpolated linearly between the measured test input levels.
  • Each input level difference D1 and D2 corresponds to the necessary additional gain at the respective input level of the standard loudness curve (which is labeled S in Fig. 3 ).
  • the result is shown in Fig. 4 wherein the additional gain relative to the standard gain function necessary for approaching the loudness curve of a normal-hearing person is shown for a given frequency as a function of the input level.
  • the gain may be progressively reduced towards low input levels regarding the values obtained from Fig. 3 in order to implement a function which is known as "soft squelch” and which serves to reduce or eliminate microphone noise otherwise occurring at very low input levels.
  • the gain may be progressively reduced towards high input levels relative to the gain determined from Fig. 3 in order to implement a "maximum power output” (MPO) function which serves to avoid uncomfortably high loudness values so that the UCL should not be exceeded.
  • MPO maximum power output
  • the obtained data could be represented in an alternative manner as shown in Fig. 5 , wherein the transducer output level is plotted as function of frequency for various input levels. Between the test frequencies f 0 to f 3 the values have been interpolated linearly.
  • the transducer output level shown in Fig. 5 corresponds to the preliminary individual gain of the hearing instrument plus the input level.
  • the hearing instrument is operated with the preliminary individual gain function determined at the first stage in order to measure at least one contour of equal loudness (however, use of preliminary individual gain function for operating the hearing instrument is not necessary if the stimulus is generated by the sound generator 28).
  • the contour of equal loudness is measured at the MCL, for example, at 65 phon.
  • narrow-band noise other than pure sinus tones is used as the stimulus.
  • the stimulus preferably is provided by the internal sound generator 28 of the control unit 18. In order to determine the contour of equal loudness, for a number of test frequencies the input level of the stimulus is varied until the desired loudness is perceived by the user.
  • the test frequencies for the ELC measurements are selected such that the frequency resolution is improved regarding the audiogram measurements of the first stage.
  • at least one test frequency of ELC measurement should be located between two of the test frequencies of the first stage.
  • two additional test frequencies of the second stage are located between each pair of adjacent test frequencies of the first stage.
  • the number of test frequencies of the ELC measurements is higher than the number of test frequencies of the first stage loudness measurements.
  • twenty test frequencies are used between 0.125 and 8 kHz.
  • the solid line in Fig. 6 shows an example of an ELC of a normal hearing person.
  • FIG. 6 represent the difference between the measured ELC and the ELC for the same loudness as estimated from the loudness measurements of the first stage by linear interpolation between the test frequencies of the first stage loudness measurements.
  • the arrows of Fig. 6 essentially show the deviation of the actually measured ELC from the linear interpolation.
  • the test frequencies of the first and second stage measurements coincide, there may be some deviation, since the first stage loudness measurements were performed with pure sinus tones, while the second stage ELC measurements were performed with narrow-band noise, which different stimuli may cause different loudness perception even for the same input level.
  • the ELC measurements include at least five test frequencies between 0.75 and 3 kHz in order to be able to compensate the resonance of the output transducer 32 accurately.
  • Fig. 7 is similar to Fig. 5 , with the arrows of Fig. 6 having been added to the 75 dB input level curve (the transducer output level is input level times gain provided by the hearing instrument).
  • Fig. 8 is a representation similar to Fig. 7 , wherein the transducer output level curves have been corrected according to the ELC measurement arrows, with the regions between the test frequencies having been interpolated. Since the output transducer resonance is expected to be linear regarding input level, the corrections obtained from this single ELC measurement can be extrapolated linearly to ELC at other loudness values, so that measurement of ELC for one single loudness is sufficient. This is how the corrected curves at input levels other than 75 dB of Fig. 8 are obtained.
  • the corrected individual gain function can be determined, since the gain function is the ratio of the transducer output level to the input level.
  • the hearing instrument is operated with the corrected individual gain function obtained by the above-described fitting procedure.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)

Claims (40)

  1. Verfahren zum individuellen Anpassen einer Hörvorrichtung (10, 12) an einen Nutzer, mit mindestens einem Mikrofon (20) zum Erzeugen eines Eingangsaudiosignals aus Umgebungsschall, einer Audiosignalverarbeitungseinheit (26) zum Verarbeiten des Eingangsaudiosignals in ein verarbeitetes Ausgangsaudiosignal, und einem Wandler zum Stimulieren des menschlichen Gehörs gemäß dem verarbeiteten Ausgangsaudiosignal als Eingangssignal für den Wandler, wobei im Zuge des Verfahrens:
    (a) der Nutzer mit der Hörvorrichtung versorgt wird und der Betrieb der Hörvorrichtung gestartet wird;
    (b) eine gewünschte Ziellautheitsfunktion vordefiniert wird, wobei die Lautheitswahrnehmung eines Stimulus durch den Nutzer bei Benutzung der Hörvorrichtung als Funktion der Frequenz und des Eingangsschalldruckpegels an dem Mikrofon festgelegt wird;
    (c) für einen vorgegebenen Messparametersatz von wahrgenommenen Lautheitspegeln und Frequenzen oder Frequenzbändern der entsprechende Wandlereingangsaudiosignalpegel gemessen wird, mit welchem der Wandlereingang beaufschlagt werden muss, um den entsprechenden wahrgenommenen Lautheitspegel bei der entsprechenden Frequenz oder dem entsprechenden Frequenzband zu erzielen, wobei der Messparametersatz mindestens einen niedrigen Lautheitspegel, einen mittleren Lautheitspegel und einen hohen Lautheitspegel aufweist, und wobei der mittlere Lautheitspegel für eine größere Anzahl von Frequenzen oder Frequenzbändern und mit einer höheren Auflösung als der niedrige Lautheitspegel und der hohe Lautheitspegel gemessen wird;
    (d) eine individuelle Verstärkungsfunktion berechnet wird, die in der Audiosignalverarbeitungseinheit zu implementieren ist, um die vordefinierte Ziellautheitsfunktion von Schritt (b) unter Berücksichtigung der gemessenen Wandlereingangsaudiosignalpegel von Schritt (c) zu erzielen;
    (e) die Hörvorrichtung mit der individuellen Verstärkungsfunktion von Schritt (d) betrieben wird.
  2. Verfahren gemäß Anspruch 1, wobei im Schritt (c) es sich bei dem mittleren Lautheitspegel um den angenehmsten Pegel handelt, welcher der Eingangsschalldruckpegel ist, bei welchem die Verständlichkeit des Stimulus durch den Nutzer am höchsten ist und bei welchem der Nutzer in angenehmer Weise über einen längeren Zeitraum zuhören kann.
  3. Verfahren gemäß Anspruch 1 oder 2, wobei im Schritt (c) es sich bei dem niedrigen Lautheitspegel um die Hörschwelle handelt, die der Eingangsschalldruckpegel ist, bei welchem der Stimulus durch den Nutzer wahrnehmbar wird.
  4. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei im Schritt (c) es sich bei dem hohen Lautheitspegel um den unangenehmen Pegel handelt, welcher der Eingangsschalldruckpegel ist, bei welchem die Lautheit für den Nutzer unangenehm wird und die Hörempfindung nicht über einen längeren Zeitraum ertragen werden kann.
  5. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei der Wandlereingangsaudiosignalpegel im Schritt (c) für den mittleren Lautheitspegel für mindestens acht Frequenzen oder Frequenzbänder gemessen wird.
  6. Verfahren gemäß Anspruch 5, wobei der Wandlereingangsaudiosignalpegel im Schritt (c) für den mittleren Lautheitspegel für mindestens 15 Frequenzen oder Frequenzbänder gemessen wird.
  7. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei der Wandlereingangsaudiosignalpegel im Schritt (c) für den mittleren Lautheitspegel bei mindestens 5 verschiedenen Frequenzen bzw. Frequenzbändern im Bereich von 0,75 bis 3 kHz gemessen wird.
  8. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei der Wandlereingangsaudiosignalpegel im Schritt (c) für den niedrigen und/oder hohen Lautheitspegel für 3 bis 5 Frequenzen oder Frequenzbänder gemessen wird.
  9. Verfahren gemäß Anspruch 8, wobei der Wandlereingangsaudiosignalpegel im Schritt (c) für jeden Lautheitspegel mit Ausnahme des mittleren Lautheitspegels für 3 bis 5 Frequenzen oder Frequenzbänder gemessen wird.
  10. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei der Wandlereingangsaudiosignalpegel im Schritt (c) für jeden Lautheitspegel für Frequenzen oder Frequenzbänder im Bereich von 100 bis 10.000 Hz gemessen wird.
  11. Verfahren gemäß Anspruch 10, wobei der Wandlereingangsaudiosignalpegel im Schritt (c) für jeden Lautheitspegel für Frequenzen oder Frequenzbänder gemessen wird, die im gleichen Abstand im Bereich von 100 bis 10.000 Hz angeordnet sind.
  12. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die Frequenzabhängigkeit der Werte des Wandlereingangsaudiosignalpegels, die im Schritt (c) für den mittleren Lautheitspegel gemessen wurden, verwendet werden, um zwischen den im Schritt (c) für den niedrigen Lautheitspegel und den hohen Lautheitspegel gemessenen Werten des dem Wandlereingang zuzuführenden Wandlereingangsaudiosignalpegels zu interpolieren.
  13. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die Messungen von Schritt (c) für den mittleren Lautheitspegel als eine Messung von Linien gleicher Lautheit durchgeführt werden, wobei für jede Frequenz oder jedes Frequenzband der Wandlereingangsaudiosignalpegel nacheinander so ausgewählt wird, dass der gleiche Lautheitspegel vom Nutzer wahrgenommen wird.
  14. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die Messungen von Schritt (c) für den niedrigen Lautheitspegel und den hohen Lautheitspegel als eine Reihe von Messungen mit konstanter Frequenz durchgeführt werden, wobei für jede Frequenz oder jedes Frequenzband der Wandlereingangsaudiosignalpegel so ausgewählt wird, dass zuerst der niedrige und dann der hohe Lautheitspegel oder zuerst der hohe und dann der niedrige Lautheitspegel vom Nutzer wahrgenommen wird.
  15. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die Messungen von Schritt (c) für den mittleren Lautheitspegel mit schmalbandigem Rauschen durchgeführt werden.
  16. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die Messungen von Schritt (c) für den niedrigen Lautheitspegel und den hohen Lautheitspegel mit reinen Sinustönen durchgeführt werden
  17. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die im Schritt (c) für jede Frequenz oder jedes Frequenzband für den mittleren Lautheitspegel gemessenen Werte des Wandlereingangsaudiosignalpegels linear interpoliert werden.
  18. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei im Schritt (c) der Messparametersatz nur den niedrigen, den mittleren und den hohen Lautheitspegel umfasst.
  19. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die Frequenzauflösung der Messungen im Schritt (c) für den mittleren Lautheitspegel der Frequenzauflösung der Hörvorrichtung entspricht.
  20. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei in Schritt (c) Wandlereingangsaudiosignalpegel für den niedrigen Lautheitspegel und den hohen Lautheitspegel als Messungen mit Linien gleicher Lautheit gemessen werden, wobei der Wandlereingangsaudiosignalpegel für jede Frequenz oder jedes Frequenzband so ausgewählt wird, das der gleiche Lautheitspegel vom Nutzer wahrgenommen wird;
    eine vorläufige individuelle Verstärkungsfunktion berechnet wird, indem die gemessenen Wandlereingangsaudiosignalpegel für den niedrigen Lautheitspegel und den hohen Lautheitspegel berücksichtigt werden, um eine vordefinierte Ziellautheitsfunktion zu erzielen, welche mindestens in einem Bereich mittlerer Eingangsschalldruckpegel der Standardlautheitsfunktion einer normal hörenden Person entspricht;
    die Linie gleicher Lautheit für den mittleren Lautheitspegel aus der vorläufigen individuellen Verstärkungsfunktion abgeschätzt wird; und
    die individuelle Verstärkungsfunktion berechnet wird, indem die vorläufige individuelle Verstärkungsfunktion korrigiert wird, indem der Unterschied zwischen der Linie gleicher Lautheit gemäß der Messung in Schritt (c) für die mittlere Lautheit und die abgeschätzte Linie gleicher Lautheit herangezogen werden.
  21. Verfahren zum individuellen Anpassen einer Hörvorrichtung (10, 12) an einem Nutzer, mit mindestens einem Mikrofon (20) zum Erzeugen eines Eingangsaudiosignals aus Umgebungsschall, einer Audiosignalverarbeitungseinheit (26) zum Verarbeiten des Eingangsaudiosignals zu einem verarbeiteten Ausgangsaudiosignal, und einem Wandler zum Stimulieren des menschlichen Gehörs gemäß dem verarbeiteten Ausgangsaudiosignal als Eingangssignal des Wandlers, wobei im Zuge des Verfahrens:
    (a) der Nutzer mit der Hörvorrichtung versorgt wird und der Betrieb der Hörvorrichtung gestartet wird;
    (b) eine gewünschte Ziellautheitsfunktion vordefiniert wird, wobei die Lautheitswahrnehmung eines Stimulus durch den Nutzer bei Verwendung der Hörvorrichtung als Funktion der Frequenz und des Eingangsschalldruckpegels an dem Mikrofon definiert ist;
    (c) für einen vorgegebenen Messparametersatz von Pegeln des verarbeiteten Ausgangsaudiosignals und Frequenzen oder Frequenzbändern der von dem Nutzer bei der entsprechenden Frequenz oder dem entsprechenden Frequenzband wahrgenommene Lautheitspegel gemessen wird, wobei der Messparametersatz mindestens einen niedrigen Audiosignalpegel, einen mittleren Audiosignalpegel und einen hohen Audiosignalpegel aufweist, und wobei der mittlere Audiosignalpegel für eine größere Zahl von Frequenzen oder Frequenzbändern und mit einer höheren Frequenzauflösung als der niedrige Audiosignalpegel und der hohe Audiosignalpegel gemessen wird;
    (d) eine individuelle Verstärkungsfunktion berechnet wird, die in der Audiosignalverarbeitungseinheit zu implementieren ist, um die vordefinierte Ziellautheitsfunktion von Schritt (b) unter Berücksichtigung der wahrgenommenen Lautheitspegel, die in Schritt (c) gemessen wurden, zu erreichen;
    (e) die Hörvorrichtung mit der individuellen Verstärkungsfunktion von Schritt (d) betrieben wird.
  22. Verfahren gemäß Anspruch 21, wobei der wahrgenommene Lautheitspegel in Schritt (c) für den mittleren Audiosignalpegel für mindestens 8 Frequenzen oder Frequenzbänder gemessen wird.
  23. Verfahren gemäß Anspruch 22, wobei der wahrgenommene Lautheitspegel im Schritt (c) für den mittleren Audiosignalpegel für mindestens 15 Frequenzen oder Frequenzbänder gemessen wird.
  24. Verfahren gemäß einem der Ansprüche 21 bis 23, wobei der wahrgenommene Lautheitspegel im Schritt (c) für den mittleren Audiosignalpegel bei mindestens 5 unterschiedlichen Frequenzen bzw. Frequenzbändern im Bereich von 0,75 bis 3 kHz gemessen wird.
  25. Verfahren gemäß einem der Ansprüche 21 bis 24, wobei der wahrgenommene Lautheitspegel im Schritt (c) für den niedrigen und/oder hohen Audiosignalpegel für 3 bis 5 Frequenzen oder Frequenzbänder gemessen wird.
  26. Verfahren gemäß Anspruch 24, wobei der wahrgenommene Lautheitspegel in Schritt (c) für jeden Lautheitspegel mit Ausnahme des mittleren Audiosignalpegels für 3 bis 5 Frequenzen oder Frequenzbänder gemessen wird.
  27. Verfahren gemäß einem der Ansprüche 21 bis 26, wobei der wahrgenommene Lautheitspegel im Schritt (c) für jeden Audiosignalpegel für Frequenzen oder Frequenzbänder im Bereich von 100 bis 10.000 Hz gemessen wird.
  28. Verfahren gemäß Anspruch 27, wobei der wahrgenommene Lautheitspegel im Schritt (c) für jeden Audiosignalpegel für Frequenzen oder Frequenzbänder gemessen wird, die in gleichem Abstand im Bereich von 100 bis 10.000 Hz angeordnet sind.
  29. Verfahren gemäß einem der Ansprüche 21 bis 28, wobei die Frequenzabhängigkeit der Werte der wahrgenommenen Audiosignalpegel gemäß Messung im Schritt (c) für den mittleren Audiosignalpegel verwendet wird, um zwischen den im Schritt (c) für den niedrigen Audiosignalpegel und den hohen Audiosignalpegel gemessenen Werten des wahrgenommenen Lautheitspegels zu interpolieren.
  30. Verfahren gemäß einem der Ansprüche 21 bis 29, wobei die Messungen von Schritt (c) für den mittleren Audiosignalpegel mit reinen Sinustönen durchgeführt werden.
  31. Verfahren gemäß einem der Ansprüche 21 bis 30, wobei die Messungen von Schritt (c) für den niedrigen Audiosignalpegel und den hohen Audiosignalpegel mit schmalbandigem Rauschen durchgeführt werden.
  32. Verfahren gemäß einem der Ansprüche 21 bis 31, wobei die im Schritt (c) für jede Frequenz oder jedes Frequenzband für den mittleren Audiosignalpegel gemessenen Werte des wahrgenommenen Lautheitspegels linear interpoliert werden.
  33. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die Ziellautheitsfunktion mindestens in einem Bereich von mittleren Eingangsschalldruckpegeln der Standardlautheitsfunktion einer normal hörenden Funktion entspricht.
  34. Verfahren gemäß Anspruch 33, wobei für niedrige Eingangsschalldruckpegel die Ziellautheitsfunktion bezüglich der Standardlautheitsfunktion einer normal hörenden Person zu niedrigen Eingangsschalldruckpegeln hin progressivverringertwird,
  35. Verfahren gemäß einem der Ansprüche 33 bis 34, wobei die Ziellautheitsfunktion für hohe Eingangsschalldruckpegel hinsichtlich der Standardlautheitsfunktion einer normal hörenden Person zu hohen Eingangsschalldruckpegeln hin progressiv verringert wird.
  36. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei das Wandlereingangsaudiosignal, welches in den Messungen von Schritt (c) verwendet wird, mittels der Audiosignalverarbeitungseinheit (26) erzeugt wird.
  37. Verfahren gemäß einem der Ansprüche 1 bis 35, wobei das in den Messungen von Schritt (c) verwendete Wandlereingangsaudiosignal erzeugt wird, indem dem Mikrofon (20) entsprechender Schall zugeführt wird.
  38. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei es sich bei dem Ausgangswandler um einen elektromechanischen Ausgangswandler (32) zum direkten mechanischen Stimulieren des Mittelohrs oder Innenohrs handelt.
  39. Verfahren gemäß Anspruch 38, wobei der elektromechanische Ausgangswandler (32) im Schritt (a) direkt mit dem Steigbügel, der Steigbügelplatte oder der Cochleawand verbunden wird.
  40. Verfahren gemäß einem der Ansprüche 1 bis 36, wobei es sich bei dem Ausgangswandler um einen elektroakustischen Ausgangswandler handelt.
EP20060006023 2006-03-23 2006-03-23 Verfahren zur individuellen Anpassung eines Hörgeräts Active EP1705950B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20060006023 EP1705950B1 (de) 2006-03-23 2006-03-23 Verfahren zur individuellen Anpassung eines Hörgeräts
EP10177370A EP2278827A1 (de) 2006-03-23 2006-03-23 Verfahren zur individuellen Anpassung eines Hörgeräts
AU2007229057A AU2007229057B2 (en) 2006-03-23 2007-03-15 Method for individually fitting a hearing instrument
PCT/EP2007/002303 WO2007107292A2 (en) 2006-03-23 2007-03-15 Method for individually fitting a hearing instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20060006023 EP1705950B1 (de) 2006-03-23 2006-03-23 Verfahren zur individuellen Anpassung eines Hörgeräts

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP10177370A Division-Into EP2278827A1 (de) 2006-03-23 2006-03-23 Verfahren zur individuellen Anpassung eines Hörgeräts

Publications (3)

Publication Number Publication Date
EP1705950A2 EP1705950A2 (de) 2006-09-27
EP1705950A3 EP1705950A3 (de) 2007-01-24
EP1705950B1 true EP1705950B1 (de) 2014-08-06

Family

ID=36746484

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10177370A Withdrawn EP2278827A1 (de) 2006-03-23 2006-03-23 Verfahren zur individuellen Anpassung eines Hörgeräts
EP20060006023 Active EP1705950B1 (de) 2006-03-23 2006-03-23 Verfahren zur individuellen Anpassung eines Hörgeräts

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10177370A Withdrawn EP2278827A1 (de) 2006-03-23 2006-03-23 Verfahren zur individuellen Anpassung eines Hörgeräts

Country Status (3)

Country Link
EP (2) EP2278827A1 (de)
AU (1) AU2007229057B2 (de)
WO (1) WO2007107292A2 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8452021B2 (en) 2007-04-17 2013-05-28 Starkey Laboratories, Inc. Real ear measurement system using thin tube
AU2009201228B2 (en) 2008-03-31 2011-09-22 Starkey Laboratories, Inc. Real ear measurement adaptor with internal sound conduit
AU2009201227B2 (en) 2008-03-31 2011-07-07 Starkey Laboratories, Inc. Methods and apparatus for real-ear measurements for receiver-in-canal devices
DK2323553T3 (da) 2008-08-08 2013-01-14 Starkey Lab Inc System til måling af lydtryksniveau
US8144909B2 (en) 2008-08-12 2012-03-27 Cochlear Limited Customization of bone conduction hearing devices
EP2207366B1 (de) 2009-01-12 2014-09-03 Starkey Laboratories, Inc. System zur Bestimmung des Schalldruckpegels am Trommelfell unter Verwendung von Messungen fernab des Trommelfells
US9107015B2 (en) * 2009-03-27 2015-08-11 Starkey Laboratories, Inc. System for automatic fitting using real ear measurement
CN103503484B (zh) 2011-03-23 2017-07-21 耳蜗有限公司 听力设备的调配
CN103177727B (zh) * 2011-12-23 2015-05-06 重庆重邮信科通信技术有限公司 一种音频频带处理方法及系统
US9253586B2 (en) * 2013-04-26 2016-02-02 Sony Corporation Devices, methods and computer program products for controlling loudness
US9807519B2 (en) * 2013-08-09 2017-10-31 The United States Of America As Represented By The Secretary Of Defense Method and apparatus for analyzing and visualizing the performance of frequency lowering hearing aids
US10842418B2 (en) * 2014-09-29 2020-11-24 Starkey Laboratories, Inc. Method and apparatus for tinnitus evaluation with test sound automatically adjusted for loudness

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4099035A (en) * 1976-07-20 1978-07-04 Paul Yanick Hearing aid with recruitment compensation
DE3205685A1 (de) 1982-02-17 1983-08-25 Robert Bosch Gmbh, 7000 Stuttgart Hoergeraet
US4577641A (en) 1983-06-29 1986-03-25 Hochmair Ingeborg Method of fitting hearing prosthesis to a patient having impaired hearing
ATE150609T1 (de) 1991-10-03 1997-04-15 Ascom Audiosys Ag Verfahren zur verstärkung von akustischen signalen für hörbehinderte, sowie vorrichtung zur durchführung des verfahrens
DK0661905T3 (da) 1995-03-13 2003-04-07 Phonak Ag Fremgangsmåde til tilpasnning af et høreapparat, anordning hertil og høreapparat
US6315710B1 (en) 1997-07-21 2001-11-13 St. Croix Medical, Inc. Hearing system with middle ear transducer mount
US6201875B1 (en) 1998-03-17 2001-03-13 Sonic Innovations, Inc. Hearing aid fitting system
DE19914992A1 (de) 1999-04-01 2000-12-07 Implex Hear Tech Ag Implantierbares Hörsystem mit Audiometer
AU4278300A (en) * 1999-04-26 2000-11-10 Dspfactory Ltd. Loudness normalization control for a digital hearing aid
DE10041726C1 (de) 2000-08-25 2002-05-23 Implex Ag Hearing Technology I Implantierbares Hörsystem mit Mitteln zur Messung der Ankopplungsqualität
DK1582086T3 (da) * 2002-12-09 2009-01-19 Microsound As Fremgangsmåde til tilpasning af en bærbar kommunikationsindretning til en hörehæmmet bruger

Also Published As

Publication number Publication date
EP1705950A2 (de) 2006-09-27
WO2007107292A3 (en) 2007-11-01
WO2007107292A2 (en) 2007-09-27
AU2007229057A1 (en) 2007-09-27
AU2007229057B2 (en) 2010-11-25
EP1705950A3 (de) 2007-01-24
EP2278827A1 (de) 2011-01-26

Similar Documents

Publication Publication Date Title
US7715571B2 (en) Method for individually fitting a hearing instrument
EP1705950B1 (de) Verfahren zur individuellen Anpassung eines Hörgeräts
AU2008229850B2 (en) Method for fitting a bone anchored hearing aid to a user and bone anchored bone conduction hearing aid system
US20210160636A1 (en) Customization of bone conduction hearing devices
US7068793B2 (en) Method of automatically fitting hearing aid
AU2001268142B2 (en) Method and apparatus for measuring the performance of an implantable middle ear hearing aid, and the response of patient wearing such a hearing aid
AU2001268142A1 (en) Method and apparatus for measuring the performance of an implantable middle ear hearing aid, and the response of patient wearing such a hearing aid
EP2726017B1 (de) Verfahren und system zur konfiguration einer medizinischen vorrichtung zur stimulation des menschlichen physiologischen systems
CN106331972B (zh) 用于将耳内式通信装置放在用户耳道中的方法和设备
US10842418B2 (en) Method and apparatus for tinnitus evaluation with test sound automatically adjusted for loudness

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070710

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070829

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140227

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 681514

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006042562

Country of ref document: DE

Effective date: 20140911

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 681514

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140806

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140806

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141107

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141209

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141206

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006042562

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150323

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150323

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060323

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20171116 AND 20171122

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: COCHLEAR LIMITED, AU

Effective date: 20180214

Ref country code: FR

Ref legal event code: TP

Owner name: COCHLEAR LIMITED, AU

Effective date: 20180214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210210

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210310

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220323

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240327

Year of fee payment: 19