EP1700900B1 - Hydrocracking process with recycling which includes adsorption of polyaromatic compounds from recycled stream using a silica-alumina based adsorbant with limited macropores concentration - Google Patents

Hydrocracking process with recycling which includes adsorption of polyaromatic compounds from recycled stream using a silica-alumina based adsorbant with limited macropores concentration Download PDF

Info

Publication number
EP1700900B1
EP1700900B1 EP06290333A EP06290333A EP1700900B1 EP 1700900 B1 EP1700900 B1 EP 1700900B1 EP 06290333 A EP06290333 A EP 06290333A EP 06290333 A EP06290333 A EP 06290333A EP 1700900 B1 EP1700900 B1 EP 1700900B1
Authority
EP
European Patent Office
Prior art keywords
process according
adsorbent
hydrocracking
silica
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP06290333A
Other languages
German (de)
French (fr)
Other versions
EP1700900A1 (en
Inventor
Karin Barthelet
Patrick Euzen
Hugues Dulot
Patrick Bourges
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1700900A1 publication Critical patent/EP1700900A1/en
Application granted granted Critical
Publication of EP1700900B1 publication Critical patent/EP1700900B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/06Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including a sorption process as the refining step in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4093Catalyst stripping

Definitions

  • the invention relates to the elimination of polyaromatic compounds (PNA) in the field of hydrocracking processes.
  • PNA polyaromatic compounds
  • a hydrocracking process is a heavy charge conversion process (higher boiling point of hydrocarbons, generally at 380 ° C) from vacuum distillation. It operates at high temperature and under high pressure of hydrogen and makes it possible to obtain products of very good quality because rich in paraffinic and naphthenic compounds and with very few impurities.
  • this method has several drawbacks: it is, by its hydrogen consumption, expensive and it does not have a very high yield (30 to 40% of the unconverted load). It seems interesting to set up a recycling loop. Nevertheless, this recycling leads to an accumulation of polyaromatic compounds (called PNA) which are formed during the passage of the feedstock over the hydrocracking catalyst and ultimately to the formation of coke on the same catalyst.
  • PNA polyaromatic compounds
  • the polyaromatic molecules 1 are molecules consisting of an assembly of aromatic rings (presence also possible of one or more saturated rings), substituted or not by alkyl groups. Because of their high molecular weight, they are very low volatility compounds and often solid at room temperature. Finally, their strong aromaticity and the absence of polar substituents on the rings lead to a very low solubility of these molecules in water or in alkanes. This solubility decreases further when the number and length of the alkyl side chains become lower. 1 Julius Scherzer; AJGruia Hydrocracking Science and Technology, Marcel Dekker Inc .: New York, 1996; Chapter 11, pp 200-214 .
  • NAPs are sometimes classified into several categories according to their number of nuclei: light PNAs with 2 to 6 nuclei, heavy PNAs containing 7 to 10 nuclei and finally NAPs with cycles greater than 11. It is generally accepted that the hydrocracker inlet feedstocks mainly contain light PNA. After passing over the hydrocracking catalyst, a higher concentration of these molecules is observed on the one hand, but also the presence of heavy PNAs, which are the most harmful molecules for the hydrocracking process (deposition on the catalyst and on the catalyst). unit / precursors for coke formation).
  • These can be formed either by condensation of two or more light PNAs, or by dehydrogenation of larger polycyclic compounds, or by cyclization of the pre-existing side chains on the PNAs, followed by dehydrogenation. Subsequently reactions of combinations or dimerizations of heavy PNA can take place resulting in the formation of compounds with more than 11 nuclei.
  • NAPs For the detection and analysis of NAPs, several options are possible 2 . However, since they are often mixtures of PNA, it is preferable to separate the different molecules beforehand. For this purpose, liquid chromatography (HPLC) is used. Then, detection, identification and determination of PNA can be done either by UV absorption or by fluorescence. These are specific NAP methods and therefore sensitive, but they do not always detect all NAPs (average quantitative reliability). Direct analyzes by mass spectrometry or IR are also possible but they are more difficult to implement and exploit. 2 Milton L. Lee; Milos V.Novotny; Keith D.Bartle Analytical Chemistry of Polycyclic Aromatic Compounds; Academic Press, Inc .: London, 1981 .
  • the precipitation of PNA is caused by the addition of flocculent (patent US5,232,577 ) and / or a drop in temperature (patent US 5,120,426 ) and is followed by decantation or centrifugation and phase separation.
  • This is an effective technique but which seems unsuitable for a hydrocracking process operating continuously because of the high residence times required either for the precipitation itself or for the decantation of PNA and the probable crystallization of paraffins at low temperatures applied.
  • Adsorption is an effective method which, depending on the solid and the operating conditions chosen, is compatible with a hydrocracker operating continuously. In fact, it is the most frequently considered solution, as shown by the large number of patents filed on this subject. They cover several process configurations.
  • the adsorption zone may be put in place either before or after the hydrocracker. In the first case, it is a matter of pre-treating the load ( US 4,775,460 ) and eliminate the PNA precursors. Nevertheless, since NAPs are mainly formed during passage over the hydrocracking catalyst, the interest of this solution is limited. It is, on the contrary, useful to seek to reduce or even eliminate the PNA of the fraction that will be recycled on the catalyst to prevent these molecules from growing and accumulating.
  • the adsorption zone and in particular the nature of the adsorbent is more or less detailed.
  • all known conventional adsorbents are mentioned: silica gel, activated charcoal, activated or non-activated alumina, silica gel / alumina, clay, polystyrene gel, cellulose acetate, molecular sieve (zeolite).
  • zeolite molecular sieve
  • the most suitable ones seem to be activated carbons, aluminas and amorphous silicas.
  • the selected solids should have a pore volume, a BET surface and the largest possible pore diameter.
  • the exit effluent once cooled to 16-49 ° C, is then sent to a liquid-vapor separator and the liquid recovered in a distillation column to separate the mono compounds from the polyaromatic compounds.
  • the liquid desorbent it must have a certain affinity with the solid to be able to displace the PNAs and with the PNAs to solubilize them.
  • the best solvents are therefore aromatic compounds alone (toluene, benzene, ethylbenzene, cumene, xylenes) or mixed (light cuts from the FCC reactor) ( US 5,124,023 ).
  • Other types of solvents such as hydrocarbon-halogenated solvents, ketones, alcohols or light hydrocarbons alone or as a mixture ( US 4,732,665 ) were also mentioned.
  • Adsorption seems to be the most suitable solution for the removal of NAPs in a hydrocracking unit, the optimum positioning of this purification zone being that at the outlet of the distillation tower. This is confirmed by the fact that only this solution has been implemented industrially 3 .
  • the disadvantage of this method is that it does not provide regeneration of activated carbon and therefore has a high cost. 3 Stuart Frazer; Warren Berry PTQ 1999, 632, 25-35 .
  • activated carbons are the solids with the largest adsorption capacities, they can currently be regenerated only by solvent elution. In addition to the fact that the amount of solvent required is very important, it would be necessary to set up an additional separation system to recycle the solvent. This solution would be much too expensive to implement. In the context of a refinery, the ideal solution would be to regenerate solids by burning. This technique is not applicable to activated carbons. It was therefore a question of identifying sufficiently strong solids with respect to active carbons but more resistant than these.
  • the solid adsorbent must be capable of retaining selectively and in large amounts the PNA with a selectivity greater than 1 and preferably between 2 and 5 for the coronene compared to other lesser PNA such as pyrene (4 aromatic nuclei) or perylene (5 aromatic nuclei).
  • the porosity of the adsorbent it is necessary that it has free openings (taking into account the Van der Waals radii of the atoms pointing towards the center of the pore) of pores greater than 11.4 ⁇ (calculations from the literature, considering a plane molecule with 1.395 ⁇ for DC, 1.084 ⁇ for CH and 1.2 ⁇ for the van der Waals radius of hydrogen 4 ) and preferably greater than 20 ⁇ .
  • This condition excludes so-called microporous solids such as zeolites since the faujasite which is the zeolite with larger pores has tunnels opening 7.4 ⁇ .
  • the pore openings must not be too wide in order to prevent the specific surface, the pore volume and therefore the total adsorption capacity from becoming too small.
  • the specific surface must generally be greater than 200 m 2 / g and preferably greater than 400 m 2 / g. This explains why silica gels and aluminas which often have a BET surface area of less than 200 m 2 / g, are not suitable for PNA adsorption.
  • the solids that seem most suitable for the adsorption of NAPs with the exception of activated carbons are the amorphous mesoporous silica-aluminas. Although having porous volumes, specific surfaces and thus lower adsorption capacities As active carbons, they have the advantage of being prepared at high temperature and therefore of being resistant to burning. 4 Henry W. Haynes, Jr .; Jon F.Parcher; Norman E. Heimer Ind.Eng.Chem.Process Des.Dev. 1983, 22, 409 .
  • the present invention provides an improved hydrocracking process having a step of removing polyaromatic compounds from at least a portion of the adsorption-recycled fraction on a silica-alumina adsorbent which has good adsorption capacities because of its large specific surface and its pores of sufficient size to be accessible to molecules with more than 4 nuclei.
  • This invention therefore makes it possible to effectively eliminate the PNA from the charge while offering the possibility of using the same adsorbent for several cycles because of its regenerability by burning.
  • these solids have the advantage of being denser than activated carbon, which partially offsets their lower adsorption capacity to adsorbent iso-mass. In addition to the gain in consumption of solid, this avoids additional investments such as the establishment of a distillation column necessary in the case of solvent regeneration.
  • the adsorbent undergoes a regeneration treatment by burning after the adsorption step.
  • the adsorption step can be performed on all or only a portion of the recycled fraction and can operate continuously or discontinuously. Preferably, the adsorption step is performed on the entire recycled fraction.
  • fillers can be processed by the hydrocracking processes described below and generally contain at least 20% by volume and often at least 80% by volume of compounds boiling above 340 ° C.
  • the feedstock may be, for example, LCOs (light cycle oil - light gas oils from a catalytic cracking unit), atmospheric distillates, vacuum distillates, for example gaszoles obtained from the direct distillation of the crude or from conversion units such as FCC, coker or visbreaking, as well as feedstocks from aromatics extraction units of lubricating oil bases or from solvent dewaxing of lubricating oil bases, or process distillates.
  • LCOs light cycle oil - light gas oils from a catalytic cracking unit
  • atmospheric distillates for example gaszoles obtained from the direct distillation of the crude or from conversion units such as FCC, coker or visbreaking, as well as feedstocks from aromatics extraction units of lubricating oil bases or from solvent dewaxing of lubricating oil bases, or process distillates.
  • the feeds have a boiling point T5 greater than 340 ° C., and more preferably greater than 370 ° C., ie 95% of the compounds present in the feed have a boiling point greater than 340. ° C, and more preferably above 370 ° C.
  • the nitrogen content of the feedstocks treated in the hydrocracking processes is usually greater than 500 ppm, preferably between 500 and 10,000 ppm by weight, more preferably between 700 and 4000 ppm by weight and even more preferably between 1000 and 4000. ppm.
  • the sulfur content of the feedstocks treated in the hydrocracking processes is usually between 0.01 and 5% by weight, preferably between 0.2 and 4% and even more preferably between 0.5 and 2%.
  • the charge may optionally contain metals.
  • the cumulative nickel and vanadium content of the feeds treated in the hydrocracking processes is preferably less than 1 ppm by weight.
  • the asphaltene content is generally less than 3000 ppm, preferably less than 1000 ppm, even more preferably less than 200 ppm.
  • the feedstock contains resins and / or asphaltenes-type compounds
  • the catalysts or guard beds used are in the form of spheres or extrudates. It is however advantageous that the catalyst is in the form of extrudates with a diameter of between 0.5 and 5 mm and more particularly between 0.7 and 2.5 mm.
  • the shapes are cylindrical (which can be hollow or not), cylindrical twisted, multilobed (2, 3, 4 or 5 lobes for example), rings.
  • the cylindrical shape is preferably used, but any other shape may be used.
  • the guard catalysts may, in another preferred embodiment, have more particular geometric shapes in order to increase their void fraction.
  • the void fraction of these catalysts is between 0.2 and 0.75.
  • Their outer diameter can vary between 1 and 35 mm.
  • hollow cylinders hollow rings, Raschig rings, serrated hollow cylinders, crenellated hollow cylinders, pentaring carts, multi-hole cylinders, etc.
  • These catalysts may have been impregnated with an active phase or not.
  • the catalysts are impregnated with a hydro-dehydrogenation phase.
  • the CoMo or NiMo phase is used.
  • the guard beds can be marketed by Norton- Saint-Gobain, for example the MacroTrap® guard beds.
  • Guard beds can be marketed by Axens in the ACT family: ACT077, ACT935, ACT961 or HMC841, HMC845, HMC941 or HMC945.
  • the catalysts having the highest void content are preferably used in the first catalytic bed or first catalytic reactor inlet. It may also be advantageous to use at least two different reactors for these catalysts.
  • the preferred guard beds according to the invention are HMC and ACT961.
  • the hydrocracking / hydroconversion or hydrotreating catalyst is generally brought into contact, in the presence of hydrogen, with the charges described above, at a temperature above 200 ° C., often between 250 and 480 ° C., advantageously between 320 and 450 ° C, preferably between 330 and 435 ° C, under a pressure greater than 1 MPa, often between 2 and 25 MPa, preferably between 3 and 20 MPa, the space velocity being between 0.1 and 20h - 1 and preferably 0.1-6h -1 , preferably 0.2-3h -1 , and the amount of hydrogen introduced is such that the volume ratio by liter of hydrogen / liter of hydrocarbon is between 80 and 5000l / l and most often between 100 and 2000 l / l.
  • the hydrocracking / hydroconversion processes using the catalysts according to the invention cover the pressure and conversion ranges from mild hydrocracking to high pressure hydrocracking.
  • Mild hydrocracking is understood to mean hydrocracking leading to moderate conversions, generally less than 40%, and operating at low pressure, generally between 2 MPa and 6 MPa.
  • the hydrocracking catalyst can be used alone, in one or more fixed bed catalytic beds, in one or more reactors, in a so-called one-step hydrocracking scheme, with or without liquid recycling of the unconverted fraction, optionally in combination with a hydrorefining catalyst located upstream of the hydrocracking catalyst.
  • the hydrocracking catalyst may be used alone, in one or more bubbling bed reactors, in a so-called one-step hydrocracking scheme, with or without liquid recycling of the unconverted fraction, optionally in combination with a catalyst of hydrorefining located in a fixed bed reactor or bubbling bed upstream of the hydrocracking catalyst.
  • the bubbling bed operates with removal of spent catalyst and daily addition of new catalyst to maintain stable catalyst activity.
  • the hydrocracking catalyst may be used in one or both reactors in association or not with a hydrorefining catalyst located upstream of the hydrocracking catalyst.
  • the so-called hydrocracking in one step, comprises firstly and in a general manner advanced hydrorefining which aims to carry out a hydrodenitrogenation and hydrodesulphurization of the feed before it is sent to the hydrocracking catalyst proper , especially in the case where it comprises a zeolite.
  • This extensive hydrorefining of the feed leads only to a limited conversion of the feedstock into lighter fractions, which remains insufficient and must therefore be completed on the more active hydrocracking catalyst.
  • no separation occurs between the two types of catalysts. All of the effluent at the outlet of the reactor is injected onto the hydrocracking catalyst proper and only then is separation of the products formed carried out.
  • This version of the hydrocracking also called "Once Through" has a variant that has a recycling of the unconverted fraction to the reactor for further conversion of the charge.
  • silica-alumina-based catalyst is used upstream of a zeolitic hydrocracking catalyst, for example based on zeolite Y
  • a catalyst having a high silica content by weight say with silica weight contents of the support used in the composition of the catalyst between 20 and 80% and preferably between 30 and 60%.
  • a hydrorefining catalyst the latter being located upstream of the hydrocracking catalyst.
  • the conversion is generally (or preferably) less than 50% by weight and preferably less than 40%.
  • the hydrocracking catalyst may be used upstream or downstream of the zeolite catalyst. Downstream of the zeolite catalyst, it makes it possible to crack the PNA.
  • the hydrocracking catalyst may be used alone in one or more reactors.
  • the bubbling-bed reactor (s) containing the hydrocracking catalyst being preceded by one or more reactors containing at least one hydrorefining catalyst. in fixed bed or bubbling bed.
  • the conversion of the fraction of the feed caused by this hydrorefining catalyst is generally (or preferably) less than 30% by weight and preferred way less than 25%.
  • the silica-alumina-based catalyst may also be used in a one-step hydrocracking process comprising a hydrorefining zone, a zone allowing the partial elimination of the ammonia, for example by a hot flash, and a zone comprising a hydrocracking catalyst.
  • This process for the hydrocracking of hydrocarbon feeds in one step for the production of middle distillates and optionally of oil bases comprises at least a first reaction zone including hydrorefining, and at least a second reaction zone, in which hydrocracking is carried out. at least a part of the effluent of the first reaction zone.
  • This process also involves an incomplete separation of the ammonia from the effluent leaving the first zone. This separation is advantageously carried out by means of an intermediate hot flash.
  • the hydrocracking performed in the second reaction zone is carried out in the presence of ammonia in an amount less than the amount present in the feed, preferably less than 1500 ppm by weight, more preferably less than 1000 ppm. weight and even more preferably less than 800 ppm nitrogen weight.
  • the hydrocracking catalyst is preferably used in the hydrocracking reaction zone in association or not with a hydrorefining catalyst located upstream of the hydrocracking catalyst.
  • the hydrocracking catalyst may be used upstream or downstream of the zeolite catalyst. Downstream of the zeolite catalyst, it makes it possible in particular to convert the PNAs or the PNA precursors.
  • the hydrocracking catalyst can be used either in the first reaction zone in pretreatment converting, alone or in combination with a conventional hydrorefining catalyst, upstream of the hydrocracking catalyst, in one or more catalytic beds, in one or more reactors.
  • the proportion of the catalytic volume of hydrorefining catalyst generally represents 20 to 45% of the total catalytic volume.
  • the effluent from the first reaction zone is at least partly, preferably completely, introduced into the second reaction zone of said process.
  • An intermediate separation of the gases can be carried out as previously described.
  • the effluent leaving the second reaction zone is subjected to a so-called final separation (for example by atmospheric distillation optionally followed by vacuum distillation), so as to separate the gases.
  • a so-called final separation for example by atmospheric distillation optionally followed by vacuum distillation
  • At least one residual liquid fraction is obtained, essentially containing products whose boiling point is generally greater than 340 ° C., which may be at least partly recycled upstream of the second zone.
  • the conversion to products having boiling points below 340 ° C, or even lower than 370 ° C is at least 50% by weight.
  • the two-stage hydrocracking comprises a first step whose objective, as in the "one-step” process, is to perform the hydrorefining of the feedstock, but also to achieve a conversion of the latter of the order in general. from 40 to 60%.
  • the effluent from the first step then undergoes separation (distillation), which is often called intermediate separation, which aims to separate the conversion products from the unconverted fraction.
  • separation distillation
  • intermediate separation which aims to separate the conversion products from the unconverted fraction.
  • the second step of a two-stage hydrocracking process only the fraction of the unconverted feedstock in the first step is processed. This separation allows a two-stage hydrocracking process to be more selective in middle distillate (kerosene + diesel) than a one-step process.
  • the intermediate separation of the conversion products avoids their "over-cracking" in naphtha and gas in the second step on the hydrocracking catalyst.
  • the unconverted fraction of the feedstock treated in the second stage generally contains very low levels of NH 3 as well as organic nitrogen compounds, generally less than 20 ppm by weight or less than 10 ppm. weight.
  • the same configuration of fixed bed or bubbling bed catalytic beds can be used in the first step of a so-called two-stage scheme, whether the catalyst is used alone or in combination with a conventional hydrorefining catalyst.
  • the hydrocracking catalyst may be used upstream or downstream of the zeolite catalyst. Downstream of the zeolite catalyst, it makes it possible in particular to convert the PNAs or the PNA precursors.
  • the preferred hydrocracking catalysts are doped catalysts based on non-noble group VIII elements, even more preferably nickel and tungsten base and the preferred doping element being phosphorus.
  • the catalysts used in the second stage of the two-stage hydrocracking processes are preferably the noble group-based doped catalysts, more preferably the platinum and / or palladium catalysts and the preferred doping element being phosphorus.
  • Step 2 separation of the different cuts in a distillation tower
  • This step consists in separating the effluent from the hydrocracking reactor into different petroleum fractions. After separating the liquid and gaseous streams through high and medium pressure separators, the liquid effluent is injected into an atmospheric distillation column in order to separate and stabilize the sections at desired distillation intervals.
  • the unconverted fraction which is desired to be treated in the present invention is then obtained in the bottom of an atmospheric distillation column, more specifically in the withdrawal of the reboiler, and corresponds according to the present invention to a fraction of cutting point T05 greater than 340 °. vs.
  • the unconverted portion (having a boiling point greater than 340 ° C) is generally at least partially recycled and reinjected either at the inlet hydrorefining catalyst, either at the inlet of the hydrocracking catalyst (preferably).
  • the unconverted part (having a boiling point greater than 340 ° C.) is generally at least partially recycled and reinjected into the second hydrocracking reaction zone.
  • Step 3 adsorption of the PNA contained in the heavy residue by passing part or all of it in the adsorption zone
  • This step consists in eliminating all or part of the polyaromatic compounds contained in all or part of the recycled fraction from the bottom of the distillation tower column (fraction 380+ or heavy residue), that is to say The objective is to maintain the content of polyaromatic compounds below a certain critical concentration beyond which there would be a deactivation of the hydrocracking catalyst (deactivation due to accumulation of PNA in the porous network of the hydrocracking catalyst can cause poisoning of the active sites and / or blocking access to these same sites) and a deposit on the cold parts of the process. It is therefore a question of controlling the concentration of PNA in the fraction recycled to the hydrocracking catalyst. Depending on the case, it is therefore possible to limit the load volumes to be treated and thus to minimize the cost of the overall process.
  • the unconverted feedstock derived from the hydrocracker is placed at least in part in contact with a solid adsorbent which is generally capable of selectively and significantly retaining the PNAs with a selectivity greater than 1 and preferably between 2 and 5 for the coronene compared to other, less heavy PNAs such as pyrene (4 aromatic rings) or perylene (5 aromatic rings).
  • a solid adsorbent which is generally capable of selectively and significantly retaining the PNAs with a selectivity greater than 1 and preferably between 2 and 5 for the coronene compared to other, less heavy PNAs such as pyrene (4 aromatic rings) or perylene (5 aromatic rings).
  • the alumina-silica comprises from 30 to 50% of Q 2 sites, in which one Si atom is bonded to two Si or Al atoms and to two OH groups and also comprises 10-30% of Q sites. 3 in which one Si atom is bonded to three atoms of Si or Al or to an OH group.
  • the adsorbent consists of alumina-silica alone.
  • the adsorbent comprises from 1 to 40% by weight of binder.
  • the adsorbent can then result from the mixture of alumina-silica and at least one binder chosen from the group formed by silica, alumina, clays, titanium oxide, boron oxide and zirconia.
  • the proportion of the octahedral Al VIs determined by the MAS NMR spectral analysis of the solid Al 27 is generally greater than 50%.
  • the adsorbent may also contain a minor proportion of at least one promoter element selected from the group consisting of zirconia and titanium.
  • the adsorbent is subjected to hydrothermal treatment after synthesis, as described later.
  • the adsorbent is subjected to a sulfurization treatment, according to any technique known to those skilled in the art.
  • the adsorbent according to the invention may contain a zeolite (preferably it does not contain zeolite).
  • the total weight content of zeolite in the adsorbent is generally between 0% and 30%, advantageously between 0.2% and 25%, preferably between 0.3% and 20%, very preferably between 0.5%. and 20% and even more preferably between 1% and 10%.
  • the X-ray diffraction pattern of the adsorbent also generally contains the main characteristic lines of the selected zeolite or zeolites.
  • the adsorbent may be identical to the catalyst used in the hydrocracking zone.
  • the adsorbent may be a regenerated hydrorefining or hydrocracking catalyst.
  • the adsorption zone may be designed in various ways: it may consist of one or more fixed beds of adsorbents positioned in series or in parallel.
  • the operating conditions are generally a temperature of between 50 and 250 ° C., preferably of between 100 and 150 ° C., a pressure of between 1 and 200 bar (according to one embodiment of the invention).
  • the pressure is between 1 and 10 bar and according to another preferred embodiment, the pressure is between 30 and 200 bars) and a VVH between 0.01 and 500 h -1 , preferably between 0.1 and 300, terminals included.
  • the choice of temperature and pressure is made in order to ensure a good flow of the load (it must be liquid and viscosity not too high) and a good diffusion of the PNA in the porosity of the adsorbent while optimizing the adsorption phenomenon.
  • the contents of polyaromatic compounds in the feedstock to be recycled are generally between 0 and 500 ppm for coronene, from 0 and 5000 ppm for perylene and for pyrene. At the outlet of the adsorption zone, the contents generally become less than 40, 1000, 1500 ppm, respectively.
  • the determination of the molecules is carried out by liquid chromatography combined with detection by UV absorption.
  • Step 4 regeneration of the adsorbent of the adsorption zone by burning
  • This step aims to eliminate the PNA previously adsorbed on the solid of the adsorption zone (step 3) so as to make it reusable for a new adsorption step.
  • Regeneration of the adsorbent by burning is carried out under an N 2 -based gas stream containing from 0.1 to 21% of O 2 , preferably from 3 to 6%, at a temperature of between 400 and 650 ° C. preferably between 500 and 550 ° C. This operation can be performed ex situ or in situ.
  • the mesoporous silica-alumina can undergo these treatments about twenty times before it becomes necessary to renew it.
  • the invention is described in its embodiment in a step with recycling at the inlet of the first reactor in a nonlimiting manner according to the figure 1 .
  • the charge consisting of saturated compounds, resins and aromatic molecules (mono-, di-, triaromatic and PNA) arriving via a line (1) and a hydrogen flow brought by a line (2) are mixed and introduced into the hydrocracking reactor (4) by a line (3).
  • the output charge of the hydrocracker is conducted via a line (5) to a high pressure distiller (6) whose function is to separate the gaseous and liquid products.
  • the gas corresponds to unreacted hydrogen and is re-injected into the hydrocracking reactor inlet via the lines (8) and (3).
  • the liquid products are conveyed via the line (7) to a fractionation zone (9) where, thanks to the differences in boiling point, the cracked products (lighter compounds) are separated, which are thus recovered at the top of the column by line (10), of those which have not been transformed (residues 380+). These are the bottom of the column and come out through the line (11). Part of this fraction is optionally removed via line (12). The other part is sent into the recycling loop by the line (13). Then, according to the fixed PNA concentration criticality parameters, some or all of the charge is sent to an adsorption zone (17) or (18) via lines (14) and (15) or (16). .
  • an effluent whose concentration of PNA is low or zero is recovered by the lines (19) or (20) and (21). It is then sent in the line (22), which is the one carrying the part of the untreated charge by adsorption. The mixture of these two fractions is transported by the line (23) to the line containing the fresh charge, that is to say the line (1).
  • the adsorbent SA1 is obtained in the following manner.
  • the SA1 adsorbent is an alumina-silica which has a chemical composition by weight of 60% of Al 2 O 3 and 40% of SiO 2 . Its Si / Al ratio is 0.6. Its sodium content is of the order of 100-120 ppm by weight.
  • the extrusions are cylindrical with a diameter of 1.6 mm. Its specific surface is 345 m 2 / g. Its total pore volume, measured by mercury porosimetry is 0.83 cm 3 / g.
  • the porous distribution is bimodal. In the mesopore domain, a broad peak between 4 and 15 nm with a maximum at 7 nm is observed. For support, macropores, whose diameter is greater than 50 nm, represent about 40% of the total pore volume.
  • the feed used corresponds to the residues of the bottom of a fractionation column. Its pour point is of the order of 36 ° C and its density at 15 ° C of 0.8357. It contains 95% by weight of saturated compounds (83.6% by weight of paraffinic compounds and 11.4% by weight of naphthenic compounds), 0.5% by weight of resins and 2.9% by weight of aromatic compounds, of which 2.6% by weight monoaromatic compounds, 0.56% by weight of diaromatic compounds, 0.57% by weight of triaromatic compounds, 2704 ppm of pyrene (4 rings), 1215 ppm of perylene (5 rings) and 59 ppm of coronene (7 rings). '
  • the porous solids tested correspond to a mesoporous solid of the MCM-41 purely silicic type, a SiO 2 bridged beidellite type clay, a silica gel, an activated alumina, a physically activated carbon derived from a cellulosic precursor and a silica-alumina. according to the invention. They were chosen for their large surface area and their large diameter pores between 20 and 80 ⁇ as appropriate (Table 1) combined with their regenerability by burning. Table 1: BET surface and average pore diameters of different solids.
  • the filler is contacted with different fixed bed adsorbents with a VVH of 30 at a temperature of 150 ° C and a pressure of 10 bar.
  • the adsorption selectivities of coronene relative to perylene and pyrene are calculated.
  • ⁇ i / j q at ⁇ d ⁇ s , i VS i q at ⁇ d ⁇ s , j VS j .
  • the selectivities of coronene are calculated with respect to lighter PNAs, these values must be greater than 1 because the main objective is to preferentially eliminate the heavier molecules.
  • the volume of charge per volume of adsorbent that is maximally treatable is also determined so that the coronene concentration in the output charge does not exceed 2/3 of that at the inlet. This report makes it possible to estimate the adsorption capacity of the solids. All of these results are shown in Table 2. Table 2: Selectivities and volume of treatable load per volume of adsorbent for different solids.
  • Regeneration of the adsorbent is carried out by burning with a flow of N 2 containing 5% O 2 at 550 ° C. As a result of these operations, 97% of the capacities of the starting solid are recovered.
  • This operation can be performed about ten times before losing 30% of capacity.

Description

Domaine de l'inventionField of the invention

L'invention concerne l'élimination des composés polyaromatiques (PNA) dans le domaine des procédés d'hydrocraquage.The invention relates to the elimination of polyaromatic compounds (PNA) in the field of hydrocracking processes.

Description de l'art antérieurDescription of the prior art

Un procédé d'hydrocraquage est un procédé de conversion de charges lourdes (température d'ébullition des hydrocarbures supérieure, en général, à 380°C) issues de la distillation sous vide. Il fonctionne à haute température et sous pression élevée d'hydrogène et permet d'obtenir des produits de très bonne qualité car riches en composés paraffiniques et naphténiques et avec très peu d'impuretés. Cependant, ce procédé présente plusieurs inconvénients : il est, de par sa consommation d'hydrogène, coûteux et il ne possède pas un rendement très élevé (30 à 40 % de la charge non convertie). Il semble donc intéressant de mettre en place une boucle de recyclage. Néanmoins, ce recyclage conduit à une accumulation de composés polyaromatiques (appelés PNA) qui se forment lors du passage de la charge sur le catalyseur d'hydrocraquage et à terme à la formation de coke sur ce même catalyseur. Ceci entraîne une perte de capacité, voire une désactivation totale du catalyseur (empoisonnement des sites d'adsorption et blocage des pores). Par ailleurs, plus la taille de ces molécules augmente et plus leur solubilité devient faible : au-delà d'une certaine taille critique, elles précipitent et se déposent sur les parties froides des installations comme la tuyauterie et les pompes, ce qui génère des problèmes de transfert de chaleur au niveau des échangeurs et réduit leur efficacité.A hydrocracking process is a heavy charge conversion process (higher boiling point of hydrocarbons, generally at 380 ° C) from vacuum distillation. It operates at high temperature and under high pressure of hydrogen and makes it possible to obtain products of very good quality because rich in paraffinic and naphthenic compounds and with very few impurities. However, this method has several drawbacks: it is, by its hydrogen consumption, expensive and it does not have a very high yield (30 to 40% of the unconverted load). It seems interesting to set up a recycling loop. Nevertheless, this recycling leads to an accumulation of polyaromatic compounds (called PNA) which are formed during the passage of the feedstock over the hydrocracking catalyst and ultimately to the formation of coke on the same catalyst. This leads to a loss of capacity or even a total deactivation of the catalyst (poisoning of the adsorption sites and pore blocking). In addition, the larger the size of these molecules, the lower the solubility of these molecules: beyond a certain critical size, they precipitate and settle on the cold parts of installations such as piping and pumps, which generates problems. heat transfer at the exchangers and reduces their efficiency.

Pour éviter ces problèmes, la solution la plus simple est la mise en place d'une purge de déconcentration sur la boucle de recyclage ( US 3,619,407 , US 4,961,839 ). L'inconvénient de cette technique est qu'elle entraîne une diminution du rendement du procédé de quelques points de conversion. Le problème technique posé est donc de mettre au point une technique alternative qui assurerait l'élimination sélective, partielle ou totale, des PNA du résidu recyclé.To avoid these problems, the simplest solution is to set up a purge of deconcentration on the recycling loop ( US 3,619,407 , US 4,961,839 ). The disadvantage of this technique is that it causes a decrease in the efficiency of the process by a few conversion points. The technical problem is therefore to develop an alternative technique that would ensure the selective elimination, partial or total, of the PNA recycled residue.

Les molécules polyaromatiques1 (ou PNA) sont des molécules constituées d'un assemblage de noyaux aromatiques (présence également possible d'un ou plusieurs cycles saturés), substitués ou non par des groupements alkyles. De par leur masse moléculaire élevée, il s'agit de composés très peu volatils et souvent solides à température ambiante. Enfin, leur forte aromaticité et l'absence de substituants polaires sur les cycles entraînent une très faible solubilité de ces molécules dans l'eau ou dans les alcanes. Cette solubilité diminue encore davantage quand le nombre et la longueur des chaînes latérales alkyles deviennent plus faibles.
1 Julius Scherzer; A.J.Gruia Hydrocracking Science and Technology, Marcel Dekker Inc.: New York, 1996; Chapter 11, pp 200-214 .
The polyaromatic molecules 1 (or PNA) are molecules consisting of an assembly of aromatic rings (presence also possible of one or more saturated rings), substituted or not by alkyl groups. Because of their high molecular weight, they are very low volatility compounds and often solid at room temperature. Finally, their strong aromaticity and the absence of polar substituents on the rings lead to a very low solubility of these molecules in water or in alkanes. This solubility decreases further when the number and length of the alkyl side chains become lower.
1 Julius Scherzer; AJGruia Hydrocracking Science and Technology, Marcel Dekker Inc .: New York, 1996; Chapter 11, pp 200-214 .

Les PNA sont parfois classés en plusieurs catégories en fonction de leur nombre de noyaux : les PNA légers possédant 2 à 6 noyaux, les PNA lourds contenant 7 à 10 noyaux et enfin les PNA dont le nombre de cycles dépasse 11. Il est communément admis que les charges en entrée d'hydrocraqueur contiennent principalement des PNA légers. Après passage sur le catalyseur d'hydrocraquage, on observe d'une part une concentration plus élevée de ces molécules mais également la présence de PNA lourds qui sont les molécules les plus nuisibles pour le procédé d'hydrocraquage (dépôt sur le catalyseur et dans l'unité /précurseurs de formation de coke). Ces derniers peuvent être formés soit par condensation de deux ou plusieurs PNA légers, soit par déshydrogénation de composés polycycliques plus grands, soit par cyclisation des chaînes latérales préexistantes sur les PNA, suivie d'une déshydrogénation. Par la suite des réactions de combinaisons ou de dimérisations des PNA lourds peuvent avoir lieu entraînant la formation de composés à plus de 11 noyaux.NAPs are sometimes classified into several categories according to their number of nuclei: light PNAs with 2 to 6 nuclei, heavy PNAs containing 7 to 10 nuclei and finally NAPs with cycles greater than 11. It is generally accepted that the hydrocracker inlet feedstocks mainly contain light PNA. After passing over the hydrocracking catalyst, a higher concentration of these molecules is observed on the one hand, but also the presence of heavy PNAs, which are the most harmful molecules for the hydrocracking process (deposition on the catalyst and on the catalyst). unit / precursors for coke formation). These can be formed either by condensation of two or more light PNAs, or by dehydrogenation of larger polycyclic compounds, or by cyclization of the pre-existing side chains on the PNAs, followed by dehydrogenation. Subsequently reactions of combinations or dimerizations of heavy PNA can take place resulting in the formation of compounds with more than 11 nuclei.

La formation de ces PNA lourds dépend de la composition de la charge (plus elle est lourde et plus elle contient de précurseurs de PNA lourds) mais également de la température du réacteur. Plus celle-ci est élevée et plus la déshydrogénation et la condensation seront favorisées d'où la formation plus importante de PNA lourds. Cet effet de la température est d'autant plus marqué que le taux de conversion est élevé.The formation of these heavy PNAs depends on the composition of the filler (the heavier it is and the more it contains heavy PNA precursors) but also the temperature of the reactor. The higher it is, the more the dehydrogenation and condensation will be favored, hence the higher formation of heavy ANP. This effect of temperature is all the more marked as the conversion rate is high.

Pour la détection et l'analyse des PNA, plusieurs options sont possibles2. Néanmoins, comme il s'agit souvent de mélanges de PNA, il est préférable de séparer au préalable les différentes molécules. Pour cela, on utilise la chromatographie en phase liquide (HPLC). Puis, la détection, l'identification et le dosage des PNA peuvent se faire soit par absorption UV soit par fluorescence. Il s'agit de méthodes spécifiques des PNA et donc sensibles mais elles ne permettent pas toujours de détecter tous les PNA (fiabilité quantitative moyenne). Des analyses directes par spectrométrie de masse ou IR sont également envisageables mais elles sont plus difficiles de mise en oeuvre et d'exploitation.
2 Milton L.Lee; Milos V.Novotny; Keith D.Bartle Analytical Chemistry of Polycyclic Aromatic Compounds; Academic Press, Inc.: London, 1981 .
For the detection and analysis of NAPs, several options are possible 2 . However, since they are often mixtures of PNA, it is preferable to separate the different molecules beforehand. For this purpose, liquid chromatography (HPLC) is used. Then, detection, identification and determination of PNA can be done either by UV absorption or by fluorescence. These are specific NAP methods and therefore sensitive, but they do not always detect all NAPs (average quantitative reliability). Direct analyzes by mass spectrometry or IR are also possible but they are more difficult to implement and exploit.
2 Milton L. Lee; Milos V.Novotny; Keith D.Bartle Analytical Chemistry of Polycyclic Aromatic Compounds; Academic Press, Inc .: London, 1981 .

Plusieurs méthodes de retrait des PNA de la fraction recyclée ont déjà été proposées dans la littérature : précipitation suivie d'une filtration, hydrogénation et/ou hydrocraquage catalytique ou adsorption sur solide poreux.Several methods for removing NAP from the recycled fraction have already been proposed in the literature: precipitation followed by filtration, hydrogenation and / or catalytic hydrocracking or adsorption on porous solid.

La précipitation des PNA est provoquée via l'ajout de floculant (brevet US 5,232,577 ) et/ou une baisse de la température (brevet US 5,120,426 ) et est suivie d'une décantation ou d'une centrifugation et d'une séparation de phases. Il s'agit d'une technique efficace mais qui semble peu adaptée à un procédé d'hydrocraquage fonctionnant en continu à cause des temps de séjours élevés nécessaires soit pour la précipitation elle-même soit pour la décantation des PNA et de la probable cristallisation de paraffines aux basses températures appliquées.The precipitation of PNA is caused by the addition of flocculent (patent US5,232,577 ) and / or a drop in temperature (patent US 5,120,426 ) and is followed by decantation or centrifugation and phase separation. This is an effective technique but which seems unsuitable for a hydrocracking process operating continuously because of the high residence times required either for the precipitation itself or for the decantation of PNA and the probable crystallization of paraffins at low temperatures applied.

L'hydrogénation catalytique des PNA ( US 4,411,768 , US 4,618,412 , US 5,007,998 et US 5,139,644 ) permet la réduction de la teneur en PNA mais pas leur élimination complète. De plus, elle nécessite des conditions assez sévères de températures et de pression. Donc, bien que compatible avec un procédé d'hydrocraquage fonctionnant en continu, elle ne correspond pas, à l'heure actuelle, à une solution très rentable.Catalytic hydrogenation of NAPs ( US 4,411,768 , US 4,618,412 , US5,007,998 and US 5,139,644 ) allows the reduction of PNA content but not their complete elimination. In addition, it requires fairly severe conditions of temperature and pressure. Thus, although compatible with a hydrocracking process operating continuously, it does not, at present, a very cost-effective solution.

L'adsorption est une méthode efficace et qui selon le solide et les conditions opératoires choisis est compatible avec un hydrocraqueur fonctionnant en continu. De fait, il s'agit de la solution la plus fréquemment envisagée comme le montre le nombre important de brevets qui ont été déposés à ce sujet. Ils recouvrent plusieurs configurations de procédés. La zone d'adsorption peut être mise en place soit avant soit après l'hydrocraqueur. Dans le premier cas, il s'agit de prétraiter la charge ( US 4,775,460 ) et d'en éliminer les précurseurs de PNA. Néanmoins, étant donné que les PNA se forment principalement lors du passage sur le catalyseur d'hydrocraquage, l'intérêt de cette solution est limité. Il est, au contraire, utile de chercher à réduire, voire à éliminer les PNA de la fraction qui va être recyclée sur le catalyseur pour éviter que ces molécules ne grossissent et ne s'accumulent. Là encore, plusieurs positionnements de la zone d'adsorption sont envisageables : en sortie d'un premier SHP situé avant la tour de distillation ( US 4,954,242 , US 5,139,646 ) ou à la sortie de la tour de distillation sur une ligne où passe la totalité ou seulement une partie de la fraction recyclée ( US 4,447,315 , US 4,775,460 , US 5,124,023 , US 5,190,633 , US 5,464,526 , US 6,217,746 / WOO2/074882 ). Cette seconde solution est la meilleure. En effet, en positionnant la zone d'adsorption après et non avant la zone de fractionnement le volume de charge à traiter est beaucoup plus faible. Selon les brevets, la zone d'adsorption et notamment la nature de l'adsorbant est plus ou moins détaillée. D'une manière générale, tous les adsorbants classiques connus sont cités : gel de silice, charbon actif, alumine activée ou non, gel de silice / alumine, argile, gel de polystyrène, acétate de cellulose, tamis moléculaire (zéolithe). Parmi tous ces solides, les plus adaptés semblent être les charbons actifs, les alumines et les silices amorphes. De plus, il est souvent mentionné que les solides choisis doivent avoir un volume poreux, une surface BET et un diamètre de pores les plus grands possibles. Certains suggèrent l'utilisation de solides préparés spécifiquement, comme par exemple une silice amorphe poreuse traitée à l'acide sulfurique ( US 5,464,526 ) dans le but d'améliorer leur capacité d'adsorption vis-à-vis des PNA. Il existe également certains brevets qui ne concernent que l'adsorbant. Ainsi le brevet US 3,340,316 propose l'emploi de charbons actifs imprégnés de composés fluorés et la demande de brevet EP 0,274,432 A1 celui d'un matériau inorganique supportant un complexe à base de cuivre. Les brevets précisent souvent le fonctionnement du lit d'adsorbant (lit fixe ou mobile, système avec deux lits en parallèle) et le mode de régénération éventuellement envisageable pour l'adsorbant mais sans trop de détails. Il s'agit principalement de déplacement des PNA adsorbés par le passage d'un flux gazeux à des températures élevées (méthode applicable aussi bien in que ex situ) ou celui d'un liquide. Dans le premier cas, il est possible d'utiliser soit un gaz inerte peu efficace, soit un gaz oxydant efficace (technique du brûlage) mais pouvant entraîner une dégradation de l'adsorbant notamment dans le cas des charbons actifs. On peut également envisager un stripage à la vapeur qui permet de travailler à des températures un peu plus faibles (370-810°C) que dans les deux cas précédents. Le brevet US 5,792,898 propose l'emploi d'un gaz riche en hydrogène à une température comprise entre 149 et 371 °C pour désorber au moins partiellement les composés aromatiques. L'effluent de sortie, une fois refroidi à 16-49°C, est ensuite envoyé dans un séparateur liquide-vapeur et le liquide récupéré dans une colonne de distillation pour séparer les composés mono- des composés polyaromatiques. Pour ce qui est du désorbant liquide, il doit posséder une certaine affinité avec le solide pour être capable de déplacer les PNA et avec les PNA pour les solubiliser. Les meilleurs solvants sont donc des composés aromatiques seuls (le toluène, le benzène, l'éthylbenzène, le cumène, les xylènes) ou en mélange (coupes légères provenant du réacteur de FCC) ( US 5,124,023 ). D'autres types de solvants tels que des solvants hydrocarbo-halogénés, des cétones, des alcools ou des hydrocarbures légers seuls ou en mélange ( US 4,732,665 ) ont également été cités.Adsorption is an effective method which, depending on the solid and the operating conditions chosen, is compatible with a hydrocracker operating continuously. In fact, it is the most frequently considered solution, as shown by the large number of patents filed on this subject. They cover several process configurations. The adsorption zone may be put in place either before or after the hydrocracker. In the first case, it is a matter of pre-treating the load ( US 4,775,460 ) and eliminate the PNA precursors. Nevertheless, since NAPs are mainly formed during passage over the hydrocracking catalyst, the interest of this solution is limited. It is, on the contrary, useful to seek to reduce or even eliminate the PNA of the fraction that will be recycled on the catalyst to prevent these molecules from growing and accumulating. Here again, several positions of the adsorption zone are conceivable: at the outlet of a first SHP situated before the distillation tower ( US 4,954,242 , US 5,139,646 ) or at the outlet of the distillation tower on a line where all or only part of the recycled fraction passes ( US 4,447,315 , US 4,775,460 , US 5,124,023 , US 5,190,633 , US 5,464,526 , US 6,217,746 / WOO2 / 074,882 ). This second solution is the best. Indeed, by positioning the adsorption zone after and not before the fractionation zone the volume of charge to be treated is much lower. According to the patents, the adsorption zone and in particular the nature of the adsorbent is more or less detailed. In general, all known conventional adsorbents are mentioned: silica gel, activated charcoal, activated or non-activated alumina, silica gel / alumina, clay, polystyrene gel, cellulose acetate, molecular sieve (zeolite). Of all these solids, the most suitable ones seem to be activated carbons, aluminas and amorphous silicas. In addition, it is often mentioned that the selected solids should have a pore volume, a BET surface and the largest possible pore diameter. Some suggest the use of specifically prepared solids, such as porous amorphous silica treated with sulfuric acid ( US 5,464,526 ) in order to improve their adsorption capacity vis-à-vis the PNA. There are also some patents which only concern the adsorbent. So the patent US 3,340,316 proposes the use of active carbons impregnated with fluorinated compounds and the patent application EP 0.274.432 A1 that of an inorganic material supporting a copper-based complex. The patents often specify the operation of the adsorbent bed (fixed or mobile bed, system with two beds in parallel) and the possible regeneration mode for the adsorbent but without too much detail. This is mainly movement of PNA adsorbed by passing a gas stream at elevated temperatures (applicable method as well as in ex situ) or that of a liquid. In the first case, it is possible to use either a low efficiency inert gas or an effective oxidizing gas (burn technique) but which can lead to degradation of the adsorbent especially in the case of activated carbons. One can also consider a steam stripping which allows working at slightly lower temperatures (370-810 ° C) than in the two previous cases. The patent US 5,792,898 proposes the use of a gas rich in hydrogen at a temperature between 149 and 371 ° C to desorb at least partially the aromatic compounds. The exit effluent, once cooled to 16-49 ° C, is then sent to a liquid-vapor separator and the liquid recovered in a distillation column to separate the mono compounds from the polyaromatic compounds. As for the liquid desorbent, it must have a certain affinity with the solid to be able to displace the PNAs and with the PNAs to solubilize them. The best solvents are therefore aromatic compounds alone (toluene, benzene, ethylbenzene, cumene, xylenes) or mixed (light cuts from the FCC reactor) ( US 5,124,023 ). Other types of solvents such as hydrocarbon-halogenated solvents, ketones, alcohols or light hydrocarbons alone or as a mixture ( US 4,732,665 ) were also mentioned.

L'adsorption semble la solution la plus adaptée pour l'élimination des PNA dans une unité d'hydrocraquage, le positionnement optimum de cette zone de purification étant celui en sortie de la tour de distillation. Ceci est confirmé par le fait que seule cette solution a été mise en oeuvre industriellement3. Il s'agit de deux lits de 144 m3 de charbon actif, fonctionnant en mode downflow, installés en série. Au moment où le premier lit nécessite d'être traité (simple "back flush", applicable uniquement trois fois, ou renouvellement complet de l'adsorbant), le second lit fonctionne seul. L'inconvénient de ce procédé est qu'il ne prévoit pas de régénération du charbon actif et il possède donc un coût élevé.
3 Stuart Frazer; Warren Shirley PTQ 1999, 632, 25-35 .
Adsorption seems to be the most suitable solution for the removal of NAPs in a hydrocracking unit, the optimum positioning of this purification zone being that at the outlet of the distillation tower. This is confirmed by the fact that only this solution has been implemented industrially 3 . These are two beds of 144 m 3 of activated carbon, operating in downflow mode , installed in series. When the first bed needs to be treated (simple "back flush", applicable only three times, or complete renewal of the adsorbent), the second bed works alone. The disadvantage of this method is that it does not provide regeneration of activated carbon and therefore has a high cost.
3 Stuart Frazer; Warren Shirley PTQ 1999, 632, 25-35 .

Pour rendre ce procédé économiquement intéressant, il est nécessaire de trouver un solide possédant de bonnes capacités d'adsorption des PNA et qui soit simultanément régénérable. Bien que les charbons actifs soient les solides possédant les plus grandes capacités d'adsorption, ils ne peuvent, actuellement, être régénérés que par élution de solvant. Or outre le fait que la quantité de solvant requise est très importante, il faudrait mettre en place un système de séparation supplémentaire pour recycler le solvant. Cette solution serait donc beaucoup trop chère à mettre en oeuvre. Dans le contexte d'une raffinerie, la solution idéale serait de pouvoir régénérer les solides par brûlage. Or cette technique n'est pas applicable aux charbons actifs. Il s'agissait donc d'identifier des solides suffisamment performants par rapport aux charbons actifs mais plus résistants que ceux-ci. Les solides proposés jusqu'à présent en alternative des charbons actifs présentaient des performances assez faibles probablement du fait de taille de pores trop faibles (tamis moléculaire) ou de surface trop faible (gel de silice amorphe méso- et/ou macroporeuse, alumine activée).To make this process economically interesting, it is necessary to find a solid with good adsorption capabilities of PNA and which is simultaneously regenerable. Although activated carbons are the solids with the largest adsorption capacities, they can currently be regenerated only by solvent elution. In addition to the fact that the amount of solvent required is very important, it would be necessary to set up an additional separation system to recycle the solvent. This solution would be much too expensive to implement. In the context of a refinery, the ideal solution would be to regenerate solids by burning. This technique is not applicable to activated carbons. It was therefore a question of identifying sufficiently strong solids with respect to active carbons but more resistant than these. The solids proposed up to now as an alternative to activated carbons had rather low performances, probably because of too small pore size (molecular sieve) or too small a surface (amorphous silica gel meso- and / or macroporous, activated alumina) .

L'adsorbant solide doit être capable de retenir sélectivement et en quantité importante les PNA avec une sélectivité supérieure à 1 et préférentiellement entre 2 et 5 pour le coronène par rapport aux autres PNA moins lourds tels que le pyrène (4 noyaux aromatiques) ou le pérylène (5 noyaux aromatiques). De plus, pour pouvoir utiliser de manière optimale la porosité de l'adsorbant, il est nécessaire que celui-ci possède des ouvertures libres (prise en compte des rayons de Van der Waals des atomes pointant vers le centre du pore) de pores supérieures à 11,4 Å (calculs issus de la littérature effectués en considérant une molécule plane avec pour longueur de liaisons 1.395 Å pour C-C, 1.084 Å pour C-H et 1,2 Å pour le rayon de Van der Waals de l'atome d'hydrogène4) et de préférence supérieures à 20 Å. Cette condition exclut les solides dits microporeux tels que les zéolithes puisque la faujasite qui est la zéolithe à plus larges pores possède des tunnels d'ouverture 7,4 Å. A l'inverse, il ne faut pas que les ouvertures de pores soient trop larges afin d'éviter que la surface spécifique, le volume poreux et donc la capacité totale d'adsorption ne deviennent trop faibles. La surface spécifique doit généralement être supérieure à 200 m2/g et de préférence supérieure à 400 m2/g. Ceci explique pourquoi les gels de silice et les alumines qui possèdent souvent des surface BET inférieures à 200 m2/g, ne sont pas adaptées à l'adsorption de PNA. Enfin, il est préférable d'utiliser un solide dont le réseau poreux possède des ramifications de manière à éviter de se retrouver dans une situation où l'adsorption de molécules bloque l'entrée de pores ou de tunnels encore vacants. Or, ce n'est pas le cas ni des matériaux mésostructurés ni des argiles pontées. Au vu de ces contraintes, les solides qui semblent les plus appropriés pour l'adsorption des PNA à l'exception des charbons actifs sont les silices-alumines mésoporeuses amorphes. Bien que possédant des volumes poreux, des surfaces spécifiques et donc des capacités d'adsorption plus faibles que les charbons actifs, elles présentent l'avantage d'être préparées à haute température et donc d'être résistantes au brûlage.
4 Henry W.Haynes, Jr.; Jon F.Parcher; Norman E.Heimer Ind.Eng.Chem.Process Des.Dev. 1983, 22, 409 .
The solid adsorbent must be capable of retaining selectively and in large amounts the PNA with a selectivity greater than 1 and preferably between 2 and 5 for the coronene compared to other lesser PNA such as pyrene (4 aromatic nuclei) or perylene (5 aromatic nuclei). In addition, to be able to optimally use the porosity of the adsorbent, it is necessary that it has free openings (taking into account the Van der Waals radii of the atoms pointing towards the center of the pore) of pores greater than 11.4 Å (calculations from the literature, considering a plane molecule with 1.395 Å for DC, 1.084 Å for CH and 1.2 Å for the van der Waals radius of hydrogen 4 ) and preferably greater than 20 Å. This condition excludes so-called microporous solids such as zeolites since the faujasite which is the zeolite with larger pores has tunnels opening 7.4 Å. Conversely, the pore openings must not be too wide in order to prevent the specific surface, the pore volume and therefore the total adsorption capacity from becoming too small. The specific surface must generally be greater than 200 m 2 / g and preferably greater than 400 m 2 / g. This explains why silica gels and aluminas which often have a BET surface area of less than 200 m 2 / g, are not suitable for PNA adsorption. Finally, it is preferable to use a solid whose porous network has branches so as to avoid being in a situation where the adsorption of molecules blocks the entry of pores or tunnels still vacant. This is not the case either for mesostructured materials or bridged clays. In view of these constraints, the solids that seem most suitable for the adsorption of NAPs with the exception of activated carbons are the amorphous mesoporous silica-aluminas. Although having porous volumes, specific surfaces and thus lower adsorption capacities As active carbons, they have the advantage of being prepared at high temperature and therefore of being resistant to burning.
4 Henry W. Haynes, Jr .; Jon F.Parcher; Norman E. Heimer Ind.Eng.Chem.Process Des.Dev. 1983, 22, 409 .

Description de l'inventionDescription of the invention

La présente invention propose un procédé amélioré d'hydrocraquage possédant une étape d'élimination de composés polyaromatiques d'au moins une partie de la fraction recyclée par adsorption sur un adsorbant à base de silice-alumine qui présente de bonnes capacités d'adsorption du fait de sa large surface spécifique et de ses pores de taille suffisante pour être accessibles aux molécules à plus de 4 noyaux. Cette invention permet donc d'éliminer de manière efficace les PNA de la charge tout en offrant la possibilité d'utiliser sur plusieurs cycles le même adsorbant du fait de sa régénérabilité par brûlage. De plus, ces solides présentent l'intérêt d'être plus denses que les- charbons actifs ce qui compense partiellement leur plus faible capacité d'adsorption à iso-masse d'adsorbant. Outre le gain en consommation de solide, ceci permet d'éviter des investissements supplémentaires tels que la mise en place d'une colonne de distillation nécessaire dans le cas d'une régénération par solvant.The present invention provides an improved hydrocracking process having a step of removing polyaromatic compounds from at least a portion of the adsorption-recycled fraction on a silica-alumina adsorbent which has good adsorption capacities because of its large specific surface and its pores of sufficient size to be accessible to molecules with more than 4 nuclei. This invention therefore makes it possible to effectively eliminate the PNA from the charge while offering the possibility of using the same adsorbent for several cycles because of its regenerability by burning. In addition, these solids have the advantage of being denser than activated carbon, which partially offsets their lower adsorption capacity to adsorbent iso-mass. In addition to the gain in consumption of solid, this avoids additional investments such as the establishment of a distillation column necessary in the case of solvent regeneration.

Plus précisément, l'invention concerne un procédé amélioré d'hydrocraquage avec recyclage possédant une étape d'élimination de composés polyaromatiques d'au moins une partie de la fraction recyclée par adsorption sur un adsorbant à base d'alumine-silice (c'est-à-dire comprenant alumine et silice) de teneur massique en silice (SiO2) supérieure à 5 % poids et inférieure ou égale à 95 % poids ; ladite alumine-silice présentant :

  • un contenu en sodium inférieur à 0,03 % poids,
  • un volume poreux total mesuré par porosimétrie au mercure compris entre 0,45 et 1,2 ml/g,
  • une porosité telle que :
    1. i) le volume des mésopores avec un diamètre compris entre 40 et 150 Å et un diamètre moyen poreux compris entre 80 et 140 A (de préférence entre 80 et 120 Å) représente 40-70 % du volume poreux total mesuré par porosimétrie au mercure
    2. ii) le volume des macropores avec un diamètre supérieur à 500 Å représente 30-60 % du volume poreux total mesuré par porosimétrie au mercure
      • une surface spécifique BET comprise entre 200 et 550 m2/g,
      • un diagramme de diffraction X qui contient au moins les raies principales caractéristiques d'au moins une des alumines de transition comprise dans le groupe composé par les alumines alpha, rhô, khi, êta, gamma, kappa, thêta et delta.
More specifically, the invention relates to an improved process for hydrocracking with recycling having a step of removing polyaromatic compounds from at least a portion of the fraction recycled by adsorption on an alumina-silica adsorbent (that is that is, comprising alumina and silica) having a mass content of silica (SiO 2 ) greater than 5% by weight and less than or equal to 95% by weight; said alumina-silica having:
  • a sodium content of less than 0.03% by weight,
  • a total pore volume measured by mercury porosimetry of between 0.45 and 1.2 ml / g,
  • a porosity such as:
    1. i) the volume of the mesopores with a diameter between 40 and 150 Å and a mean pore diameter of between 80 and 140 Å (preferably between 80 and 120 Å) represents 40-70% of the total pore volume measured by mercury porosimetry
    2. ii) the volume of the macropores with a diameter greater than 500 Å represents 30-60% of the total pore volume measured by mercury porosimetry
      • a BET specific surface area of between 200 and 550 m 2 / g,
      • an X-ray diffraction pattern which contains at least the principal characteristic lines of at least one of the transition aluminas included in the group consisting of alpha, rho, khi, eta, gamma, kappa, theta and delta aluminas.

Le procédé comprend généralement les étapes suivantes :

  • une étape d'hydrocraquage (l'hydrocraquage étant avantageusement réalisé selon le mode dit en une étape ou selon le mode dit en deux étapes décrits ci-dessous),
  • une étape de séparation, généralement dans une tour de distillation atmosphérique, permettant de séparer (en fond de colonne) une fraction non convertie de point de coupe T05 supérieur à 340°C et
  • une étape d'adsorption en phase liquide d'une partie ou de la totalité des PNA contenus dans cette fraction non convertie (résidu lourd issu de la distillation).
The method generally comprises the following steps:
  • a hydrocracking step (the hydrocracking being advantageously carried out according to the so-called one-step mode or the so-called two-step mode described below),
  • a separation step, generally in an atmospheric distillation tower, for separating (at the bottom of the column) an unconverted fraction of cutting point T05 greater than 340 ° C. and
  • a step of adsorption in the liquid phase of part or all of the PNA contained in this unconverted fraction (heavy residue from the distillation).

De manière préférée, l'adsorbant subit un traitement de régénération par brûlage après l'étape d'adsorption.Preferably, the adsorbent undergoes a regeneration treatment by burning after the adsorption step.

L'étape d'adsorption peut être réalisée sur la totalité ou uniquement une partie de la fraction recyclée et peut fonctionner en continu ou en discontinu. De préférence, l'étape d'adsorption est réalisée sur la totalité de la fraction recyclée.The adsorption step can be performed on all or only a portion of the recycled fraction and can operate continuously or discontinuously. Preferably, the adsorption step is performed on the entire recycled fraction.

Description détaillée de l'inventionDetailed description of the invention Etape 1 : hydrocraquageStep 1: hydrocracking Chargesloads

Des charges très variées peuvent être traitées par les procédés d'hydrocraquage décrits ci-dessous et généralement elles contiennent au moins 20 % volume et souvent au moins 80 % volume de composés bouillant au-dessus de 340°C.A wide variety of fillers can be processed by the hydrocracking processes described below and generally contain at least 20% by volume and often at least 80% by volume of compounds boiling above 340 ° C.

La charge peut être par exemple des LCO (light cycle oil - gazoles légers issus d'une unité de craquage catalytique), des distillats atmosphériques, des distillats sous vide par exemple gaszoles issus de la distillation directe du brut ou d'unités de conversion telles que le FCC, le coker ou la viscoréduction, ainsi que des charges provenant d'unités d'extraction d'aromatiques des bases d'huile lubrifiante ou issues du déparaffinage au solvant des bases d'huile lubrifiante, ou encore des distillats provenant de procédés de désulfuration ou d'hydroconversion en lit fixe ou en lit bouillonnant de RAT (résidus atmosphériques) et/ou de RSV (résidus sous vide) et/ou d'huiles désasphaltées, ou encore la charge peut être une huile désasphaltée, ou encore tout mélange des charges précédemment citées. La liste ci-dessus n'est pas limitative. En général, les charges ont un point d'ébullition T5 supérieur à 340°C, et mieux encore supérieur à 370°C, c'est à dire que 95 % des composés présents dans la charge ont un point d'ébullition supérieur à 340°C, et mieux encore supérieur à 370°C.The feedstock may be, for example, LCOs (light cycle oil - light gas oils from a catalytic cracking unit), atmospheric distillates, vacuum distillates, for example gaszoles obtained from the direct distillation of the crude or from conversion units such as FCC, coker or visbreaking, as well as feedstocks from aromatics extraction units of lubricating oil bases or from solvent dewaxing of lubricating oil bases, or process distillates. desulphurization or hydroconversion in fixed bed or bubbling bed of RAT (atmospheric residues) and / or RSV (vacuum residues) and / or deasphalted oils, or the charge can be a deasphalted oil, or all mixture of the aforementioned fillers. The list above is not exhaustive. In general, the feeds have a boiling point T5 greater than 340 ° C., and more preferably greater than 370 ° C., ie 95% of the compounds present in the feed have a boiling point greater than 340. ° C, and more preferably above 370 ° C.

La teneur en azote des charges traitées dans les procédés d'hydrocraquage est usuellement supérieure à 500 ppm, de préférence comprise entre 500 et 10000 ppm poids, de manière plus préférée entre 700 et 4000 ppm poids et de manière encore plus préférée entre 1000 et 4000 ppm. La teneur en soufre des charges traitées dans les procédés d'hydrocraquage est usuellement comprise entre 0,01 et 5 % poids, de manière préférée comprise entre 0,2 et 4 % et de manière encore plus préférée entre 0,5 et 2 %.The nitrogen content of the feedstocks treated in the hydrocracking processes is usually greater than 500 ppm, preferably between 500 and 10,000 ppm by weight, more preferably between 700 and 4000 ppm by weight and even more preferably between 1000 and 4000. ppm. The sulfur content of the feedstocks treated in the hydrocracking processes is usually between 0.01 and 5% by weight, preferably between 0.2 and 4% and even more preferably between 0.5 and 2%.

La charge peut éventuellement contenir des métaux. La teneur cumulée en nickel et vanadium des charges traitées dans les procédés d'hydrocraquage est de préférence inférieure à 1 ppm poids.The charge may optionally contain metals. The cumulative nickel and vanadium content of the feeds treated in the hydrocracking processes is preferably less than 1 ppm by weight.

La teneur en asphaltènes est généralement inférieure à 3000 ppm, de manière préférée inférieure à 1000 ppm, de manière encore plus préférée inférieure à 200 ppm.The asphaltene content is generally less than 3000 ppm, preferably less than 1000 ppm, even more preferably less than 200 ppm.

Lits de gardeCribs

Dans le cas où la charge contient des composés de type résines et/ou asphaltènes, il est avantageux de faire passer au préalable la charge sur un lit de catalyseur ou d'adsorbant différent du catalyseur d'hydrocraquage ou d'hydrotraitement.In the case where the feedstock contains resins and / or asphaltenes-type compounds, it is advantageous to first pass the feedstock over a bed of catalyst or adsorbent other than the hydrocracking or hydrotreatment catalyst.

Les catalyseurs ou lits de garde utilisés ont la forme de sphères ou d'extrudés. Il est toutefois avantageux que le catalyseur se présente sous forme d'extrudés d'un diamètre compris entre 0,5 et 5 mm et plus particulièrement entre 0,7 et 2,5 mm. Les formes sont cylindriques (qui peuvent être creuses ou non), cylindriques torsadés, multilobées (2, 3, 4 ou 5 lobes par exemple), anneaux. La forme cylindrique est utilisée de manière préférée, mais toute autre forme peut être utilisée.The catalysts or guard beds used are in the form of spheres or extrudates. It is however advantageous that the catalyst is in the form of extrudates with a diameter of between 0.5 and 5 mm and more particularly between 0.7 and 2.5 mm. The shapes are cylindrical (which can be hollow or not), cylindrical twisted, multilobed (2, 3, 4 or 5 lobes for example), rings. The cylindrical shape is preferably used, but any other shape may be used.

Afin de remédier à la présence de contaminants et/ou de poisons dans la charge, les catalyseurs de garde peuvent, dans un autre de mode de réalisation préféré, avoir des formes géométriques plus particulières afin d'augmenter leur fraction de vide. La fraction de vide de ces catalyseurs est comprise entre 0,2 et 0,75. Leur diamètre extérieur peut varier entre 1 et 35 mm. Parmi les formes particulières possibles sans que cette liste soit limitative : les cylindres creux, les anneaux creux, les anneaux de Raschig, les cylindres creux dentelés, les cylindres creux crénelés, les roues de charrettes pentaring, les cylindres à multiples trous, etc.In order to overcome the presence of contaminants and / or poisons in the feed, the guard catalysts may, in another preferred embodiment, have more particular geometric shapes in order to increase their void fraction. The void fraction of these catalysts is between 0.2 and 0.75. Their outer diameter can vary between 1 and 35 mm. Among the particular forms possible without this list being exhaustive: hollow cylinders, hollow rings, Raschig rings, serrated hollow cylinders, crenellated hollow cylinders, pentaring carts, multi-hole cylinders, etc.

Ces catalyseurs peuvent avoir été imprégnés par une phase active ou non. De manière préférée, les catalyseurs sont imprégnés par une phase hydro-déshydrogénante. De manière très préférée, la phase CoMo ou NiMo est utilisée.These catalysts may have been impregnated with an active phase or not. Preferably, the catalysts are impregnated with a hydro-dehydrogenation phase. Very preferably, the CoMo or NiMo phase is used.

Ces catalyseurs peuvent présenter de la macroporosité. Les lits de garde peuvent être commercialisés par Norton-Saint-Gobain, par exemple les lits de garde MacroTrap®. Les lits de garde peuvent être commercialisés par Axens dans la famille ACT : ACT077, ACT935, ACT961 ou HMC841, HMC845, HMC941 ou HMC945.These catalysts may have macroporosity. The guard beds can be marketed by Norton-Saint-Gobain, for example the MacroTrap® guard beds. Guard beds can be marketed by Axens in the ACT family: ACT077, ACT935, ACT961 or HMC841, HMC845, HMC941 or HMC945.

Il peut être particulièrement avantageux de superposer ces catalyseurs dans au moins deux lits différents de hauteur variable. Les catalyseurs ayant le plus fort taux de vide sont de préférence utilisés dans le ou les premiers lits catalytiques en entrée de réacteur catalytique. Il peut également être avantageux d'utiliser au moins deux réacteurs différents pour ces catalyseurs.It may be particularly advantageous to superpose these catalysts in at least two different beds of variable height. The catalysts having the highest void content are preferably used in the first catalytic bed or first catalytic reactor inlet. It may also be advantageous to use at least two different reactors for these catalysts.

Les lits de garde préférés selon l'invention sont les HMC et l'ACT961.The preferred guard beds according to the invention are HMC and ACT961.

Conditions opératoiresOperating conditions

Les conditions opératoires telles que température, pression, taux de recyclage d'hydrogène, vitesse spatiale horaire, pourront être très variables en fonction de la nature de la charge, de la qualité des produits désirés et des installations dont dispose le raffineur. Le catalyseur d'hydrocraquage/hydroconversion ou hydrotraitement est généralement mis en contact, en présence d'hydrogène, avec les charges décrites précédemment, à une température supérieure à 200°C, souvent comprise entre 250 et 480°C, avantageusement comprise entre 320 et 450°C, de préférence entre 330 et 435°C, sous une pression supérieure à 1 MPa, souvent comprise entre 2 et 25 MPa, de manière préférée entre 3 et 20 MPa, la vitesse spatiale étant comprise entre 0,1 et 20h-1 et de préférence 0,1-6h-1, de préférence, 0,2-3h-1, et la quantité d'hydrogène introduite est telle que le rapport volumique litre d'hydrogène / litre d'hydrocarbure soit compris entre 80 et 5000l/l et le plus souvent entre 100 et 2000 l/l.Operating conditions such as temperature, pressure, hydrogen recycling rate, hourly space velocity, may be very variable depending on the nature of the load, the quality of desired products and facilities available to the refiner. The hydrocracking / hydroconversion or hydrotreating catalyst is generally brought into contact, in the presence of hydrogen, with the charges described above, at a temperature above 200 ° C., often between 250 and 480 ° C., advantageously between 320 and 450 ° C, preferably between 330 and 435 ° C, under a pressure greater than 1 MPa, often between 2 and 25 MPa, preferably between 3 and 20 MPa, the space velocity being between 0.1 and 20h - 1 and preferably 0.1-6h -1 , preferably 0.2-3h -1 , and the amount of hydrogen introduced is such that the volume ratio by liter of hydrogen / liter of hydrocarbon is between 80 and 5000l / l and most often between 100 and 2000 l / l.

Ces conditions opératoires utilisées dans les procédés d'hydrocraquage permettent généralement d'atteindre des conversions par passe, en produits ayant des points d'ébullition inférieurs à 340°C, et mieux inférieurs à 370°C, supérieures à 15 % et de manière encore plus préférée comprises entre 20 et 95 %.These operating conditions used in the hydrocracking processes generally make it possible to achieve pass conversions, products having boiling points below 340 ° C., and better still below 370 ° C., greater than 15%, and even more so. more preferably between 20 and 95%.

Modes de réalisationModes of realization

Les procédés d'hydrocraquage/hydroconversion mettant en oeuvre les catalyseurs selon l'invention couvrent les domaines de pression et de conversion allant de l'hydrocraquage doux à l'hydrocraquage haute pression. On entend par hydrocraquage doux, un hydrocraquage conduisant à des conversions modérées, généralement inférieures à 40 %, et fonctionnant à basse pression, généralement entre 2 MPa et 6 MPa.The hydrocracking / hydroconversion processes using the catalysts according to the invention cover the pressure and conversion ranges from mild hydrocracking to high pressure hydrocracking. Mild hydrocracking is understood to mean hydrocracking leading to moderate conversions, generally less than 40%, and operating at low pressure, generally between 2 MPa and 6 MPa.

Le catalyseur d'hydrocraquage peut être utilisé seul, en un seul ou plusieurs lits catalytiques en lit fixe, dans un ou plusieurs réacteurs, dans un schéma d'hydrocraquage dit en une étape, avec ou sans recyclage liquide de la fraction non convertie, éventuellement en association avec un catalyseur d'hydroraffinage situé en amont du catalyseur d'hydrocraquage.The hydrocracking catalyst can be used alone, in one or more fixed bed catalytic beds, in one or more reactors, in a so-called one-step hydrocracking scheme, with or without liquid recycling of the unconverted fraction, optionally in combination with a hydrorefining catalyst located upstream of the hydrocracking catalyst.

Le catalyseur d'hydrocraquage peut être utilisé seul, dans un seul ou plusieurs réacteurs en lit bouillonnant, dans un schéma d'hydrocraquage dit en une étape, avec ou sans recyclage liquide de la fraction non convertie, éventuellement en association avec un catalyseur d'hydroraffinage situé dans un réacteur en lit fixe ou en lit bouillonnant en amont du catalyseur d'hydrocraquage.The hydrocracking catalyst may be used alone, in one or more bubbling bed reactors, in a so-called one-step hydrocracking scheme, with or without liquid recycling of the unconverted fraction, optionally in combination with a catalyst of hydrorefining located in a fixed bed reactor or bubbling bed upstream of the hydrocracking catalyst.

Le lit bouillonnant s'opère avec retrait de catalyseur usé et ajout journalier de catalyseur neuf afin de conserver une activité du catalyseur stable.The bubbling bed operates with removal of spent catalyst and daily addition of new catalyst to maintain stable catalyst activity.

Dans un schéma d'hydrocraquage dit en deux étapes avec séparation intermédiaire entre les deux zones réactionnelles, dans une étape donnée, le catalyseur d'hydrocraquage peutêtre utilisé dans l'un ou dans les deux réacteurs en association ou non avec un catalyseur d'hydroraffinage situé en amont du catalyseur d'hydrocraquage.In a two-stage hydrocracking scheme with intermediate separation between the two reaction zones, in a given step, the hydrocracking catalyst may be used in one or both reactors in association or not with a hydrorefining catalyst located upstream of the hydrocracking catalyst.

Procédé dit en une étapeOne-step process

L'hydrocraquage dit en une étape, comporte en premier lieu et de façon générale un hydroraffinage poussé qui a pour but de réaliser une hydrodésazotation et une hydrodésulfuration poussées de la charge avant que celle-ci ne soit envoyée sur le catalyseur d'hydrocraquage proprement dit, en particulier dans le cas où celui-ci comporte une zéolithe. Cet hydroraffinage poussé de la charge n'entraîne qu'une conversion limitée de la charge, en fractions plus légères, qui reste insuffisante et doit donc être complétée sur le catalyseur d'hydrocraquage plus actif. Cependant, il est à noter qu'aucune séparation n'intervient entre les deux types de catalyseurs. La totalité de l'effluent en sortie de réacteur est injectée sur le catalyseur d'hydrocraquage proprement dit et ce n'est qu'ensuite qu'une séparation des produits formés est réalisée. Cette version de l'hydrocraquage, encore appelée "Once Through", possède une variante qui présente un recyclage de la fraction non convertie vers le réacteur en vue d'une conversion plus poussée de la charge.The so-called hydrocracking in one step, comprises firstly and in a general manner advanced hydrorefining which aims to carry out a hydrodenitrogenation and hydrodesulphurization of the feed before it is sent to the hydrocracking catalyst proper , especially in the case where it comprises a zeolite. This extensive hydrorefining of the feed leads only to a limited conversion of the feedstock into lighter fractions, which remains insufficient and must therefore be completed on the more active hydrocracking catalyst. However, it should be noted that no separation occurs between the two types of catalysts. All of the effluent at the outlet of the reactor is injected onto the hydrocracking catalyst proper and only then is separation of the products formed carried out. This version of the hydrocracking, also called "Once Through", has a variant that has a recycling of the unconverted fraction to the reactor for further conversion of the charge.

Procédé dit en une étape en lit fixeOne-step process in a fixed bed

Dans le cas où le catalyseur à base de silice-alumine est utilisé en amont d'un catalyseur zéolithique d'hydrocraquage, par exemple à base de zéolithe Y, on utilisera avantageusement un catalyseur présentant une forte teneur pondérale en silice, c'est à dire avec des teneurs pondérales en silice du support entrant dans la composition du catalyseur comprises entre 20 et 80 % et de préférence entre 30 et 60 %. Il pourra aussi être avantageusement utilisé en association avec un catalyseur d'hydroraffinage, ce dernier étant situé en amont du catalyseur d'hydrocraquage.In the case where the silica-alumina-based catalyst is used upstream of a zeolitic hydrocracking catalyst, for example based on zeolite Y, it will be advantageous to use a catalyst having a high silica content by weight. say with silica weight contents of the support used in the composition of the catalyst between 20 and 80% and preferably between 30 and 60%. It can also be advantageously used in combination with a hydrorefining catalyst, the latter being located upstream of the hydrocracking catalyst.

Lorsque le catalyseur à base de silice-alumine est utilisé en amont d'un catalyseur d'hydrocraquage à base d'alumine-silice ou à base de zéolithe, dans le même réacteur dans des lits catalytiques distincts ou dans des réacteurs distincts, la conversion est généralement (ou de préférence) inférieure à 50 % poids et de manière préférée inférieure à 40 %.When the silica-alumina catalyst is used upstream of an alumina-silica or zeolite-based hydrocracking catalyst, in the same reactor in separate catalytic beds or in separate reactors, the conversion is generally (or preferably) less than 50% by weight and preferably less than 40%.

Le catalyseur d'hydrocraquage peut être utilisé en amont ou en aval du catalyseur zéolithique. En aval du catalyseur zéolithique, il permet de craquer les PNA.The hydrocracking catalyst may be used upstream or downstream of the zeolite catalyst. Downstream of the zeolite catalyst, it makes it possible to crack the PNA.

Procédé dit en une étape en lit bouillonnantOne-step process in bubbling bed

Le catalyseur d'hydrocraquage peut être utilisé seul dans un ou plusieurs réacteurs. Dans le cadre d'un tel procédé, on pourra utiliser avantageusement plusieurs réacteurs en série, le ou les réacteurs en lit bouillonnant contenant le catalyseur d'hydrocraquage étant précédé(s) d'un ou plusieurs réacteurs contenant au moins un catalyseur d'hydroraffinage en lit fixe ou en lit bouillonnant.The hydrocracking catalyst may be used alone in one or more reactors. In the context of such a process, several reactors in series can advantageously be used, the bubbling-bed reactor (s) containing the hydrocracking catalyst being preceded by one or more reactors containing at least one hydrorefining catalyst. in fixed bed or bubbling bed.

Lorsque le catalyseur à base de silice-alumine est utilisé en aval d'un catalyseur d'hydroraffinage, la conversion de la fraction de la charge occasionnée par ce catalyseur d'hydroraffinage est généralement (ou de préférence) inférieure à 30 % poids et de manière préférée inférieure à 25 %.When the silica-alumina catalyst is used downstream of a hydrorefining catalyst, the conversion of the fraction of the feed caused by this hydrorefining catalyst is generally (or preferably) less than 30% by weight and preferred way less than 25%.

Procédé dit en une étape en lit fixe avec séparation intermédiaireOne-step process in fixed bed with intermediate separation

Le catalyseur à base de silice-alumine peut aussi être utilisé dans un procédé d'hydrocraquage dit en une étape comportant une zone d'hydroraffinage, une zone permettant l'élimination partielle de l'ammoniac, par exemple par un flash chaud, et une zone comportant un catalyseur d'hydrocraquage. Ce procédé d'hydrocraquage de charges hydrocarbonées en une étape pour la production de distillats moyens et éventuellement de bases huiles comporte au moins une première zone réactionnelle incluant un hydroraffinage, et au moins une deuxième zone réactionnelle, dans laquelle est opéré l'hydrocraquage d'au moins une partie de l'effluent de la première zone réactionnelle. Ce procédé comporte également une séparation incomplète de l'ammoniac de l'effluent sortant de la première zone. Cette séparation est avantageusement effectuée au moyen d'un flash chaud intermédiaire. L'hydrocraquage opéré en deuxième zone réactionnelle est réalisé en présence d'ammoniac en quantité inférieure à la quantité présente dans la charge, de préférence inférieure à 1500 ppm poids, de manière plus préférée inférieure à 1000 ppm poids et de manière encore plus préférée inférieure à 800 ppm poids d'azote. Le catalyseur d'hydrocraquage est utilisé de préférence dans la zone réactionnelle d'hydrocraquage en association ou non avec un catalyseur d'hydroraffinage situé en amont du catalyseur d'hydrocraquage. Le catalyseur d'hydrocraquage peut être utilisé en amont ou en aval du catalyseur zéolithique. En aval du catalyseur zéolithique, il permet notamment de convertir les PNA ou les précurseurs de PNA.The silica-alumina-based catalyst may also be used in a one-step hydrocracking process comprising a hydrorefining zone, a zone allowing the partial elimination of the ammonia, for example by a hot flash, and a zone comprising a hydrocracking catalyst. This process for the hydrocracking of hydrocarbon feeds in one step for the production of middle distillates and optionally of oil bases comprises at least a first reaction zone including hydrorefining, and at least a second reaction zone, in which hydrocracking is carried out. at least a part of the effluent of the first reaction zone. This process also involves an incomplete separation of the ammonia from the effluent leaving the first zone. This separation is advantageously carried out by means of an intermediate hot flash. The hydrocracking performed in the second reaction zone is carried out in the presence of ammonia in an amount less than the amount present in the feed, preferably less than 1500 ppm by weight, more preferably less than 1000 ppm. weight and even more preferably less than 800 ppm nitrogen weight. The hydrocracking catalyst is preferably used in the hydrocracking reaction zone in association or not with a hydrorefining catalyst located upstream of the hydrocracking catalyst. The hydrocracking catalyst may be used upstream or downstream of the zeolite catalyst. Downstream of the zeolite catalyst, it makes it possible in particular to convert the PNAs or the PNA precursors.

Le catalyseur d'hydrocraquage peut être utilisé soit dans la première zone réactionnelle en prétraitement convertissant, seul ou en association avec un catalyseur d'hydroraffinage classique, situé en amont du catalyseur d'hydrocraquage, dans un ou plusieurs lits catalytiques, dans un ou plusieurs réacteurs.The hydrocracking catalyst can be used either in the first reaction zone in pretreatment converting, alone or in combination with a conventional hydrorefining catalyst, upstream of the hydrocracking catalyst, in one or more catalytic beds, in one or more reactors.

Procédé d'hydrocraquage dit en une étape avec hydroraffinage préliminaire sur catalyseur d'acidité faible.One-step hydrocracking process with preliminary hydrorefining on low acid catalyst.

Le catalyseur d'hydrocraquage peut être utilisé dans un procédé d'hydrocraquage comprenant :

  • une première zone réactionnelle d'hydroraffinage dans laquelle la charge est mise en contact avec au moins un catalyseur d'hydroraffinage présentant dans le test standard d'activité un taux de conversion du cyclohexane inférieur à 10 % massique et
  • une deuxième zone réactionnelle d'hydrocraquage dans laquelle une partie au moins de l'effluent issu de l'étape d'hydroraffinage est mise en contact avec au moins un catalyseur d'hydrocraquage zéolithique présentant dans le test standard d'activité un taux de conversion du cyclohexane supérieur à 10 % massique, le catalyseur d'hydrocraquage étant présent dans au moins une des deux zones réactionnelles.
The hydrocracking catalyst may be used in a hydrocracking process comprising:
  • a first hydrorefining reaction zone in which the feedstock is brought into contact with at least one hydrotreatment catalyst having in the standard activity test a cyclohexane conversion rate of less than 10% by weight and
  • a second hydrocracking reaction zone in which at least a portion of the effluent from the hydrorefining stage is brought into contact with at least one zeolitic hydrocracking catalyst having in the standard activity test a conversion rate cyclohexane greater than 10% by weight, the hydrocracking catalyst being present in at least one of the two reaction zones.

La proportion du volume catalytique de catalyseur d'hydroraffinage représente généralement 20 à 45 % du volume catalytique total.The proportion of the catalytic volume of hydrorefining catalyst generally represents 20 to 45% of the total catalytic volume.

L'effluent issu de la première zone réactionnelle est au moins en partie, de préférence en totalité, introduit dans la deuxième zone réactionnelle dudit procédé. Une séparation intermédiaire des gaz peut être réalisée comme décrite précédemment.The effluent from the first reaction zone is at least partly, preferably completely, introduced into the second reaction zone of said process. An intermediate separation of the gases can be carried out as previously described.

L'effluent en sortie de deuxième zone réactionnelle est soumis à une séparation dite finale (par exemple par distillation atmosphérique éventuellement suivie d'une distillation sous vide), de manière à séparer les gaz. Il est obtenu au moins une fraction liquide résiduelle, contenant essentiellement des produits dont le point d'ébullition est généralement supérieur à 340°C, qui peut être au moins en partie recyclée en amont de la deuxième zone réactionnelle du procédé d'hydrocraquage, et de préférence en amont du catalyseur d'hydrocraquage à base d'alumine-silice, dans un objectif de production de distillats moyens.The effluent leaving the second reaction zone is subjected to a so-called final separation (for example by atmospheric distillation optionally followed by vacuum distillation), so as to separate the gases. At least one residual liquid fraction is obtained, essentially containing products whose boiling point is generally greater than 340 ° C., which may be at least partly recycled upstream of the second zone. reaction of the hydrocracking process, and preferably upstream of the hydrocracking catalyst based on alumina-silica, with a view to producing middle distillates.

La conversion en produits ayant des points d'ébullition inférieurs à 340°C, ou encore inférieurs à 370°C est d'au moins 50 % poids.The conversion to products having boiling points below 340 ° C, or even lower than 370 ° C is at least 50% by weight.

Procédé dit en deux étapesTwo-step process

L'hydrocraquage en deux étapes, comporte une première étape qui a pour objectif, comme dans le procédé "une étape", de réaliser l'hydroraffinage de la charge, mais aussi d'atteindre une conversion de cette dernière de l'ordre en général de 40 à 60 %. L'effluent issu de la première étape subit ensuite une séparation (distillation) appelée le plus souvent séparation intermédiaire, qui a pour objectif de séparer les produits de conversion de la fraction non convertie. Dans la deuxième étape d'un procédé d'hydrocraquage en deux étapes, seule la fraction de la charge non convertie lors de la première étape, est traitée. Cette séparation permet à un procédé d'hydrocraquage deux étapes d'être plus sélectif en distillat moyen (kérosène + diesel) qu'un procédé en une étape. En effet, la séparation intermédiaire des produits de conversion évite leur "sur-craquage" en naphta et gaz dans la deuxième étape sur le catalyseur d'hydrocraquage. Par ailleurs, il est à noter que la fraction non convertie de la charge traitée dans la deuxième étape contient en général de très faibles teneurs en NH3 ainsi qu'en composés azotés organiques, en général moins de 20 ppm poids voire moins de 10 ppm poids.The two-stage hydrocracking comprises a first step whose objective, as in the "one-step" process, is to perform the hydrorefining of the feedstock, but also to achieve a conversion of the latter of the order in general. from 40 to 60%. The effluent from the first step then undergoes separation (distillation), which is often called intermediate separation, which aims to separate the conversion products from the unconverted fraction. In the second step of a two-stage hydrocracking process, only the fraction of the unconverted feedstock in the first step is processed. This separation allows a two-stage hydrocracking process to be more selective in middle distillate (kerosene + diesel) than a one-step process. Indeed, the intermediate separation of the conversion products avoids their "over-cracking" in naphtha and gas in the second step on the hydrocracking catalyst. Furthermore, it should be noted that the unconverted fraction of the feedstock treated in the second stage generally contains very low levels of NH 3 as well as organic nitrogen compounds, generally less than 20 ppm by weight or less than 10 ppm. weight.

La même configuration de lits catalytiques en lit fixe ou en lit bouillonnant peut être utilisée dans la première étape d'un schéma dit en deux étapes, que le catalyseur soit utilisé seul ou en association avec un catalyseur d'hydroraffinage classique. Le catalyseur d'hydrocraquage peut être utilisé en amont ou en aval du catalyseur zéolithique. En aval du catalyseur zéolithique, il permet notamment de convertir les PNA ou les précurseurs de PNA.The same configuration of fixed bed or bubbling bed catalytic beds can be used in the first step of a so-called two-stage scheme, whether the catalyst is used alone or in combination with a conventional hydrorefining catalyst. The hydrocracking catalyst may be used upstream or downstream of the zeolite catalyst. Downstream of the zeolite catalyst, it makes it possible in particular to convert the PNAs or the PNA precursors.

Pour les procédés dits en une étape et pour la première étape des procédés d'hydrocraquage en deux étapes, les catalyseurs préférés d'hydrocraquage sont les catalyseurs dopés à base d'éléments du groupe VIII non nobles, de manière encore plus préférée les catalyseurs à base de nickel et de tungstène et l'élément dopant préféré étant le phosphore.For the so-called one-step processes and for the first step of the two-step hydrocracking processes, the preferred hydrocracking catalysts are doped catalysts based on non-noble group VIII elements, even more preferably nickel and tungsten base and the preferred doping element being phosphorus.

Les catalyseurs utilisés dans la deuxième étape des procédés d'hydrocraquage en deux étapes sont de préférence les catalyseurs dopés à base d'éléments nobles du groupe VIII, de manière encore plus préférée les catalyseurs à base de platine et/ou de palladium et l'élément dopant préféré étant le phosphore.The catalysts used in the second stage of the two-stage hydrocracking processes are preferably the noble group-based doped catalysts, more preferably the platinum and / or palladium catalysts and the preferred doping element being phosphorus.

Etape 2 : séparation des différentes coupes dans une tour de distillation Step 2: separation of the different cuts in a distillation tower

Cette étape consiste à séparer l'effluent du réacteur d'hydrocraquage en différentes coupes pétrolières. Après séparation des flux liquides et gazeux par le biais de séparateurs hautes et moyennes pressions, l'effluent liquide est injecté dans une colonne à distiller atmosphérique dans le but de séparer et de stabiliser les coupes selon des intervalles de distillation désirés.This step consists in separating the effluent from the hydrocracking reactor into different petroleum fractions. After separating the liquid and gaseous streams through high and medium pressure separators, the liquid effluent is injected into an atmospheric distillation column in order to separate and stabilize the sections at desired distillation intervals.

La fraction non convertie que l'on désire traiter dans la présente invention est alors obtenue en pieds de colonne à distiller atmosphérique, plus spécifiquement en soutirage du rebouilleur, et correspond selon la présente invention à une fraction de point de coupe T05 supérieur à 340°C.The unconverted fraction which is desired to be treated in the present invention is then obtained in the bottom of an atmospheric distillation column, more specifically in the withdrawal of the reboiler, and corresponds according to the present invention to a fraction of cutting point T05 greater than 340 °. vs.

Compte tenu de leur température normale d'ébullition; bien supérieure à 340°C, les composés polyaromatiques que la présente invention se propose d'éliminer se retrouvent tous concentrés dans cette fraction lourde issue du fond de colonne de la tour de distillation (résidu lourd).Given their normal boiling temperature; much greater than 340 ° C, the polyaromatic compounds that the present invention proposes to eliminate are all concentrated in this heavy fraction from the bottom of the column distillation tower (heavy residue).

Dans le cas du procédé d'hydrocraquage dit en une étape et une étape avec séparation intermédiaire, la partie non convertie (ayant un point d'ébullition supérieur à 340°C) est généralement au moins en partie recyclée et réinjectée soit à l'entrée du catalyseur d'hydroraffinage, soit à l'entrée du catalyseur d'hydrocraquage (de préférence).In the case of the one-step hydrocracking process and one intermediate separation step, the unconverted portion (having a boiling point greater than 340 ° C) is generally at least partially recycled and reinjected either at the inlet hydrorefining catalyst, either at the inlet of the hydrocracking catalyst (preferably).

Dans le cas du procédé d'hydrocraquage dit en deux étapes, la partie non convertie (ayant un point d'ébullition supérieur à 340°C) est généralement au moins en partie recyclée et réinjectée dans la deuxième zone réactionnelle d'hydrocraquage.In the case of the so-called two-stage hydrocracking process, the unconverted part (having a boiling point greater than 340 ° C.) is generally at least partially recycled and reinjected into the second hydrocracking reaction zone.

Etape 3 : adsorption des PNA contenu dans le résidu lourd via passage d'une partie ou de la totalité de celui-ci dans la zone d'adsorption Step 3: adsorption of the PNA contained in the heavy residue by passing part or all of it in the adsorption zone

Cette étape consiste à éliminer la totalité ou une partie des composés polyaromatiques contenus dans la totalité ou une partie de la fraction recyclée issue du fond de colonne de la tour de distillation (fraction 380+ ou résidu lourd), c'est-à-dire issue de l'étape 2. L'objectif est de maintenir la teneur en composés polyaromatiques en dessous d'une certaine concentration critique au-delà de laquelle on observerait une désactivation du catalyseur d'hydrocraquage (désactivation due à une accumulation des PNA dans le réseau poreux du catalyseur d'hydrocraquage pouvant entraîner un empoisonnement des sites actifs et/ou un blocage de l'accès de ces mêmes sites) et un dépôt sur les parties froides du procédé. Il s'agit donc de contrôler la concentration en PNA dans la fraction recyclée vers le catalyseur d'hydrocraquage. Selon les cas, il est donc possible de limiter les volumes de charge à traiter et donc de minimiser le coût du procédé global. Des études préliminaires ayant montrées que les molécules les plus nuisibles au catalyseur d'hydrocraquage sont les composés possédant au minimum 7 noyaux fusionnés (à partir du coronène), il s'agit de contrôler principalement la concentration en coronène, celle-ci ne devant pas dépasser celle de la fraction recyclée dans les procédés où l'on effectue une purge, c'est-à-dire 40 ppm. Cette concentration limite la désactivation du catalyseur à 2°C/mois.This step consists in eliminating all or part of the polyaromatic compounds contained in all or part of the recycled fraction from the bottom of the distillation tower column (fraction 380+ or heavy residue), that is to say The objective is to maintain the content of polyaromatic compounds below a certain critical concentration beyond which there would be a deactivation of the hydrocracking catalyst (deactivation due to accumulation of PNA in the porous network of the hydrocracking catalyst can cause poisoning of the active sites and / or blocking access to these same sites) and a deposit on the cold parts of the process. It is therefore a question of controlling the concentration of PNA in the fraction recycled to the hydrocracking catalyst. Depending on the case, it is therefore possible to limit the load volumes to be treated and thus to minimize the cost of the overall process. Preliminary studies having shown that the molecules most harmful to the hydrocracking catalyst are the compounds having at least 7 fused nuclei (from the coronene), it is a question of controlling mainly the concentration of coronene, which should not exceed that of the fraction recycled in the processes where purging is carried out, that is to say 40 ppm. This concentration limits the deactivation of the catalyst to 2 ° C / month.

La charge non convertie issue de l'hydrocraqueur est mise au moins en partie au contact d'un adsorbant solide qui est généralement capable de retenir sélectivement et en quantité importante les PNA avec une sélectivité supérieure à 1 et préférentiellement entre 2 et 5 pour le coronène par rapport aux autres PNA moins lourds tels que le pyrène (4 noyaux aromatiques) ou le pérylène (5 noyaux aromatiques).The unconverted feedstock derived from the hydrocracker is placed at least in part in contact with a solid adsorbent which is generally capable of selectively and significantly retaining the PNAs with a selectivity greater than 1 and preferably between 2 and 5 for the coronene compared to other, less heavy PNAs such as pyrene (4 aromatic rings) or perylene (5 aromatic rings).

Caractéristiques de l'adsorbant solide utilisable dans le procédé selon l'inventionCharacteristics of the solid adsorbent that can be used in the process according to the invention

L'adsorbant est à base d'alumine-silice, ladite alumine-silice présentant les caractéristiques suivantes :

  • un pourcentage de silice compris entre 5 et 95 % poids, de préférence entre 10 et 80 %, de manière plus préférée entre 20 et 60 % et de manière très préférée entre 30 et 50 %,
  • un contenu en sodium inférieur à 0,03 % poids,
  • un volume poreux total mesuré par porosimétrie au mercure compris entre 0,45 et 1,2 ml/g,
  • une porosité telle que :
    1. i) Le volume des mésopores dont le diamètre est compris entre 40 Å et 150 Å, et dont le diamètre moyen varie entre 80 et 140 Å (de préférence entre 80 et 120 Å) représente entre 40-70 % du volume poreux total précédemment défini.
    2. ii) Le volume des macropores, dont le diamètre est supérieur à 500 Å, et de préférence compris entre 1000 Å et 10000 Å représente entre 30-60 % du volume poreux total et de manière préférée le volume des macropores représente au moins 35 % du volume poreux total.
  • une surface spécifique BET comprise entre 200 et 550 m2/g, de préférence comprise entre 200 et 500 m2/g, de manière préférée inférieure à 350 m2/g et de manière encore plus préférée comprise entre 200 et 350 m2/g,
  • un diagramme de diffraction X qui contient au moins les raies principales caractéristiques d'au moins une des alumines de transition comprises dans le groupe composé par les alumines rhô, khi, kappa, êta, gamma, thêta et delta, de manière préférée qui contient au moins les raies principales caractéristiques d'au moins une des alumines de transition compris dans le groupe composé par l'alumine gamma, êta, thêta et delta, et de manière plus préférée qui contient au moins les raies principales caractéristiques de l'alumine gamma et êta, et de manière encore plus préférée qui contient les pics à un d compris entre 1,39 à 1,40 Å et à un d compris entre 1,97 Å à 2,00 Å.
The adsorbent is based on alumina-silica, said alumina-silica having the following characteristics:
  • a percentage of silica of between 5 and 95% by weight, preferably between 10 and 80%, more preferably between 20 and 60% and very preferably between 30 and 50%,
  • a sodium content of less than 0.03% by weight,
  • a total pore volume measured by mercury porosimetry of between 0.45 and 1.2 ml / g,
  • a porosity such as:
    1. (i) The volume of mesopores whose diameter is between 40 Å and 150 Å, and whose average diameter varies between 80 and 140 Å (preferably between 80 and 120 Å) represents between 40-70% of the total pore volume previously defined .
    2. ii) The volume of the macropores, whose diameter is greater than 500 Å, and preferably between 1000 Å and 10000 Å, represents between 30-60% of the total pore volume and, preferably, the volume of the macropores represents at least 35% of the total pore volume.
  • a BET specific surface area of between 200 and 550 m 2 / g, preferably between 200 and 500 m 2 / g, preferably less than 350 m 2 / g and even more preferably between 200 and 350 m 2 / g ,
  • an X-ray diffraction pattern which contains at least the main characteristic lines of at least one of the transition aluminas included in the group consisting of rho, khi, kappa, eta, gamma, theta and delta aluminas, preferred manner which contains at least the main characteristic lines of at least one of the transition aluminas included in the group consisting of gamma, eta, theta and delta alumina, and more preferably which contains at least the main characteristic lines of gamma and eta alumina, and even more preferably which contains the peaks at a d between 1.39 to 1.40 Å and a d ranging from 1.97 Å to 2.00 Å.

De manière préférée, l'alumine-silice comprend de 30 à 50 % de sites Q2, dans lesquels un atome de Si est lié à deux atomes de Si ou Al et à deux groupes OH et comprend également 10-30 % de sites Q3 dans lesquels un atome de Si est lié à trois atomes de Si ou Al ou à un groupe OH.Preferably, the alumina-silica comprises from 30 to 50% of Q 2 sites, in which one Si atom is bonded to two Si or Al atoms and to two OH groups and also comprises 10-30% of Q sites. 3 in which one Si atom is bonded to three atoms of Si or Al or to an OH group.

L'adsorbant utilisable dans le procédé selon l'invention comprend également :

  • de préférence une teneur en impuretés cationiques inférieure à 0,1 % poids, de manière préférée inférieure à 0,05 % poids et de manière encore plus préférée inférieure à 0,025 % poids. On entend par teneur en impuretés cationiques la teneur totale en alcalins.
  • de préférence une teneur en impuretés anioniques inférieure à 1 % poids, de manière préférée inférieure à 0,5 % poids et de manière encore plus préférée inférieure à 0,1 % poids.
  • éventuellement au moins un élément hydro-déshydrogénant choisi dans le groupe formé par les éléments du groupe VIB et du groupe VIII de la classification périodique, avec de préférence une teneur massique en métal(aux) du groupe VIB, sous forme métallique ou sous forme oxyde comprise entre 1 et 50 % en poids, de manière préférée entre 1,5 et 35 %, et de manière encore plus préférée entre 1,5 et 30 %, et de préférence une teneur massique en métaux du groupe VIII, sous forme métallique ou sous forme oxyde comprise entre 0,1 et 30 % en poids, de manière préférée entre 0,2 et 25 % et de manière encore plus préférée entre 0,2 et 20 %,
  • éventuellement de 0,01 à 6 % de phosphore comme élément dopant déposé sur l'adsorbant (on entend par élément dopant un élément introduit après la préparation de l'adsorbant alumino-silicate décrit précédemment), éventuellement en combinaison avec le bore et/ou le silicium. Ainsi on pourra utiliser comme éléments dopants une combinaison phosphore et bore ou une combinaison phosphore, bore et silicium. Lorsque les éléments bore et/ou silicium sont présents sur l'adsorbant, les teneurs massiques en bore et silicium, calculées sous leur forme oxyde, sont comprises entre 0,01 et 6 %, de préférence entre 0,1 et 4 %, de manière plus préférée entre 0,2 et 2,5 %.
  • éventuellement au moins un élément du groupe VIIB (manganèse par exemple et de préférence), et une teneur pondérale comprise entre 0 et 20 %, de préférence entre 0 et 10 % du composé sous forme oxyde ou métal,
  • éventuellement au moins un élément du groupe VB (niobium par exemple et de préférence), et une teneur pondérale comprise entre 0 et 40 %, de préférence entre 0 et 20 % du composé sous forme oxyde ou métal.
The adsorbent that can be used in the process according to the invention also comprises:
  • preferably a content of cationic impurities of less than 0.1% by weight, preferably less than 0.05% by weight and even more preferably less than 0.025% by weight. The content of cationic impurities means the total content of alkali.
  • preferably an anionic impurities content of less than 1% by weight, preferably less than 0.5% by weight and even more preferably less than 0.1% by weight.
  • optionally at least one hydro-dehydrogenating element selected from the group consisting of Group VIB and Group VIII elements of the Periodic Table, preferably with a mass content of Group VIB metal (s), in metallic form or in oxide form between 1 and 50% by weight, preferably between 1.5 and 35%, and even more preferably between 1.5 and 30%, and preferably a mass content of metals of group VIII, in metallic form or in oxide form of between 0.1 and 30% by weight, preferably between 0.2 and 25% and even more preferably between 0.2 and 20%,
  • optionally from 0.01 to 6% of phosphorus as doping element deposited on the adsorbent (the term "doping element" is understood to mean an element introduced after the preparation of the aluminosilicate adsorbent described above), optionally in combination with boron and / or silicon. Thus, it will be possible to use as doping elements a combination of phosphorus and boron or a combination of phosphorus, boron and silicon. When the boron and / or silicon elements are present on the adsorbent, the boron and silicon mass contents, calculated in their oxide form, are between 0.01 and 6%, preferably between 0.1 and 4%, more preferably between 0.2 and 2.5%.
  • optionally at least one element of the group VIIB (manganese for example and preferably), and a weight content of between 0 and 20%, preferably between 0 and 10% of the compound in oxide or metal form,
  • optionally at least one member of the group VB (niobium for example and preferably), and a weight content of between 0 and 40%, preferably between 0 and 20% of the compound in oxide or metal form.

Selon un mode préféré de l'invention, l'adsorbant est constitué d'alumine-silice seule.According to a preferred embodiment of the invention, the adsorbent consists of alumina-silica alone.

Selon un autre mode de réalisation de l'invention, l'adsorbant comprend de 1 à 40 % en poids de liant. L'adsorbant peut alors résulter du mélange de l'alumine-silice et d'au moins un liant choisi dans le groupe formé par la silice, l'alumine, les argiles, l'oxyde de titane, l'oxyde de bore et la zircone.According to another embodiment of the invention, the adsorbent comprises from 1 to 40% by weight of binder. The adsorbent can then result from the mixture of alumina-silica and at least one binder chosen from the group formed by silica, alumina, clays, titanium oxide, boron oxide and zirconia.

Dans l'adsorbant, la proportion des AlVI octaédriques déterminée par l'analyse des spectres RMN MAS du solide de 27Al est généralement supérieure à 50 %.In the adsorbent, the proportion of the octahedral Al VIs determined by the MAS NMR spectral analysis of the solid Al 27 is generally greater than 50%.

L'adsorbant peut également contenir une proportion mineure d'au moins un élément promoteur choisi dans le groupe formé par la zircone et le titane.The adsorbent may also contain a minor proportion of at least one promoter element selected from the group consisting of zirconia and titanium.

De préférence, avant utilisation, l'adsorbant est soumis à un traitement hydrothermal après la synthèse, comme décrit ultérieurement.Preferably, prior to use, the adsorbent is subjected to hydrothermal treatment after synthesis, as described later.

De préférence, avant utilisation, l'adsorbant est soumis à un traitement de sulfuration, selon toute technique connue de l'homme du métier.Preferably, before use, the adsorbent is subjected to a sulfurization treatment, according to any technique known to those skilled in the art.

L'adsorbant selon l'invention peut contenir une zéolithe (de préférence il ne contient pas de zéolithe). La teneur pondérale totale en zéolithe dans l'adsorbant est généralement comprise entre 0 % et 30 %, avantageusement entre 0,2 % et 25 %, de préférence entre 0,3 % et 20 %, de manière très préférée entre 0,5 % et 20 % et de manière encore plus préférée entre 1 % et 10 %.The adsorbent according to the invention may contain a zeolite (preferably it does not contain zeolite). The total weight content of zeolite in the adsorbent is generally between 0% and 30%, advantageously between 0.2% and 25%, preferably between 0.3% and 20%, very preferably between 0.5%. and 20% and even more preferably between 1% and 10%.

Selon la teneur en zéolithe introduite, le diagramme de diffraction X de l'adsorbant contient également de manière générale les raies principales caractéristiques de la ou des zéolithes choisies.Depending on the zeolite content introduced, the X-ray diffraction pattern of the adsorbent also generally contains the main characteristic lines of the selected zeolite or zeolites.

Les techniques de caractérisation et les caractéristiques de la silice-alumine base de l'adsorbant utilisé dans le procédé d'élimination des PNA selon l'invention, sont décrites dans la demande de brevet français ayant pour titre : "Catalyseur alumino-silicate dopé et procédé amélioré de traitement de charges hydrocarbonées", déposée par le demandeur le 22 septembre 2004, sous le numéro d'E.N. 04/09.997.The characterization techniques and characteristics of the silica-alumina base of the adsorbent used in the PNA removal process according to the invention are described in the French patent application entitled: "Alumino-silicate doped catalyst and improved process for treating hydrocarbon feedstocks ", filed by the applicant on 22 September 2004, under the number of EN 04 / 09.997.

Pour des raisons pratiques, l'adsorbant peut être identique au catalyseur utilisé dans la zone d'hydrocraquage.For practical reasons, the adsorbent may be identical to the catalyst used in the hydrocracking zone.

Pour des raisons pratiques, l'adsorbant peut être un catalyseur d'hydroraffinage ou d'hydrocraquage régénéré.For practical reasons, the adsorbent may be a regenerated hydrorefining or hydrocracking catalyst.

Caractéristiques du procédé d'adsorptionCharacteristics of the adsorption process

La zone d'adsorption peut être conçue de diverses manières : elle peut être constituée d'un ou plusieurs lits fixes d'adsorbants positionnés en série ou en parallèle.The adsorption zone may be designed in various ways: it may consist of one or more fixed beds of adsorbents positioned in series or in parallel.

Le choix de deux lits en parallèle est cependant le plus judicieux, car il permet un fonctionnement en continu. Lorsque le premier lit sera saturé, il suffira de basculer sur le second pour poursuivre l'adsorption tout en régénérant ou remplaçant simultanément le premier lit.The choice of two beds in parallel is however the most judicious because it allows a continuous operation. When the first bed is saturated, simply switch to the second to continue adsorption while simultaneously regenerating or replacing the first bed.

Il est également envisageable de faire fonctionner cette zone de manière discontinue, c'est-à-dire de ne déclencher sa mise en route que lorsque la concentration en PNA dépasse la concentration critique fixée. Ceci permet de minimiser les volumes de charge traités et donc les coûts de fonctionnement.It is also conceivable to operate this zone discontinuously, that is to say, to trigger its start-up only when the PNA concentration exceeds the critical concentration set. This makes it possible to minimize the processed charge volumes and therefore the operating costs.

Pour une bonne efficacité de la zone d'adsorption, les conditions opératoires sont généralement une température comprise entre 50 et 250°C, de préférence comprise entre 100 et 150°C, une pression comprise entre 1 et 200 bars (selon un mode de réalisation préféré, la pression est comprise entre 1 et 10 bars et selon un autre mode de réalisation préféré, la pression est comprise entre 30 et 200 bars) et une VVH comprise entre 0,01 et 500 h-1, de préférence entre 0,1 et 300, bornes incluses.For a good efficiency of the adsorption zone, the operating conditions are generally a temperature of between 50 and 250 ° C., preferably of between 100 and 150 ° C., a pressure of between 1 and 200 bar (according to one embodiment of the invention). preferred, the pressure is between 1 and 10 bar and according to another preferred embodiment, the pressure is between 30 and 200 bars) and a VVH between 0.01 and 500 h -1 , preferably between 0.1 and 300, terminals included.

Le choix de la température et de la pression est effectué de manière à assurer un bon écoulement de la charge (celle ci doit être liquide et de viscosité pas trop élevée) et une bonne diffusion des PNA dans la porosité de l'adsorbant tout en optimisant le phénomène d'adsorption.The choice of temperature and pressure is made in order to ensure a good flow of the load (it must be liquid and viscosity not too high) and a good diffusion of the PNA in the porosity of the adsorbent while optimizing the adsorption phenomenon.

Les teneurs en composés polyaromatiques dans la charge à recycler sont généralement comprises entre 0 et 500 ppm pour le coronène, de 0 et 5000 ppm pour le pérylène et pour le pyrène. A la sortie de la zone d'adsorption, les teneurs deviennent de manière générale respectivement inférieures à 40, 1000, 1500 ppm. Le dosage des molécules s'effectue par chromatographie en phase liquide combinée à une détection par absorption UV.The contents of polyaromatic compounds in the feedstock to be recycled are generally between 0 and 500 ppm for coronene, from 0 and 5000 ppm for perylene and for pyrene. At the outlet of the adsorption zone, the contents generally become less than 40, 1000, 1500 ppm, respectively. The determination of the molecules is carried out by liquid chromatography combined with detection by UV absorption.

Etape 4 : régénération de l'adsorbant de la zone d'adsorption par brûlageStep 4: regeneration of the adsorbent of the adsorption zone by burning

Cette étape a pour objectif d'éliminer les PNA préalablement adsorbés sur le solide de la zone d'adsorption (étape 3) de manière à le rendre réutilisable pour une nouvelle étape d'adsorption. La régénération de l'adsorbant par brûlage est effectuée sous flux gazeux à base de N2 contenant de 0,1 à 21 % de O2, de préférence de 3 à 6 %, à une température comprise entre 400 et 650°C, de préférence comprise entre 500 et 550°C. Cette opération peut être réalisée ex situ ou in situ. This step aims to eliminate the PNA previously adsorbed on the solid of the adsorption zone (step 3) so as to make it reusable for a new adsorption step. Regeneration of the adsorbent by burning is carried out under an N 2 -based gas stream containing from 0.1 to 21% of O 2 , preferably from 3 to 6%, at a temperature of between 400 and 650 ° C. preferably between 500 and 550 ° C. This operation can be performed ex situ or in situ.

De manière préférée :

  • On commence par un stripage à chaud avec un gaz inerte tel que l'azote à une température de l'ordre de 200-300°C. Ceci peut être réalisé aussi bien à co-courant qu'à contre-courant. Le but est d'éliminer les hydrocarbures piégés dans les porosités de grains et de lits de l'adsorbant et les éventuelles traces d'hydrogène.
  • Brûlage en présence d'air ajouté à l'azote dans une proportion de l'ordre de 5 %, ce mélange est envoyé à co-courant ou à contre-courant sur l'adsorbant. On commence par réaliser cette opération à une température de l'ordre de 400°C pour éliminer les hydrocarbures susceptibles d'être présents dans la porosité de l'adsorbant (réaction exothermique).
  • Cette opération est renouvelée à environ 450°C pour s'assurer que toute trace d'hydrocarbures a disparu.
  • Quand le système redevient de nouveau athermique, on élève la température à une température comprise entre 500 et 550°C et on la maintient pendant environ 12 heures pour brûler les PNA adsorbés à la surface du solide poreux.
In a preferred manner:
  • It starts with a hot stripping with an inert gas such as nitrogen at a temperature of about 200-300 ° C. This can be done both co-current and counter-current. The aim is to eliminate the hydrocarbons trapped in the pores of grains and beds of the adsorbent and any traces of hydrogen.
  • Burning in the presence of air added to the nitrogen in a proportion of the order of 5%, this mixture is sent co-current or against the current on the adsorbent. It begins with this operation at a temperature of about 400 ° C to remove hydrocarbons that may be present in the porosity of the adsorbent (exothermic reaction).
  • This operation is renewed at approximately 450 ° C to ensure that all trace of hydrocarbons has disappeared.
  • When the system becomes athermic again, the temperature is raised to 500-550 ° C and held for about 12 hours to burn adsorbed PNA on the surface of the porous solid.

La silice-alumine mésoporeuse peut subir ces traitements une vingtaine de fois avant qu'il ne devienne nécessaire de la renouveler.The mesoporous silica-alumina can undergo these treatments about twenty times before it becomes necessary to renew it.

Description de la figure 1Description of Figure 1

L'invention est décrite dans son mode de réalisation en une étape avec recyclage à l'entrée du premier réacteur de manière non limitative selon la figure 1. La charge constituée de composés saturés, de résines et de molécules aromatiques (mono-, di-, triaromatiques et PNA) arrivant par une ligne (1) et un flux d'hydrogène amené par une ligne (2) sont mélangés et introduits dans le réacteur d'hydrocraquage (4) par une ligne (3). La charge en sortie d'hydrocraqueur est conduite via une ligne (5) jusqu'à un distillateur haute pression (6) qui a pour rôle de séparer les produits gazeux et liquides. Le gaz correspond à l'hydrogène qui n'a pas réagi et est réinjecté en entrée du réacteur d'hydrocraquage via les lignes (8) et (3). Les produits liquides sont acheminés par la ligne (7) à une zone de fractionnement (9) où on sépare, grâce aux différences de point d'ébullition, les produits craqués (composés plus légers), qui sont donc récupérés en haut de colonne par la ligne (10), de ceux n'ayant pas été transformés (résidus 380+). Ces derniers constituent le fond de colonne et en sortent par la ligne (11). Une partie de cette fraction est éventuellement éliminée via la ligne (12). L'autre partie est envoyée dans la boucle de recyclage par la ligne (13). Puis, selon les paramètres de criticité en concentration de PNA fixés, on envoie une partie ou la totalité de la charge dans une zone d'adsorption (17) ou (18) via lés lignes (14) et (15) ou (16). En sortie de cette zone, on récupère un effluent dont la concentration en PNA est faible ou nulle par les lignes (19) ou (20) et (21). Il est alors envoyé dans la ligne (22), qui est celle transportant la partie de la charge non traitée par adsorption. Le mélange de ces deux fractions est transporté par la ligne (23) jusqu'à la ligne contenant la charge fraîche, c'est-à-dire la ligne (1).The invention is described in its embodiment in a step with recycling at the inlet of the first reactor in a nonlimiting manner according to the figure 1 . The charge consisting of saturated compounds, resins and aromatic molecules (mono-, di-, triaromatic and PNA) arriving via a line (1) and a hydrogen flow brought by a line (2) are mixed and introduced into the hydrocracking reactor (4) by a line (3). The output charge of the hydrocracker is conducted via a line (5) to a high pressure distiller (6) whose function is to separate the gaseous and liquid products. The gas corresponds to unreacted hydrogen and is re-injected into the hydrocracking reactor inlet via the lines (8) and (3). The liquid products are conveyed via the line (7) to a fractionation zone (9) where, thanks to the differences in boiling point, the cracked products (lighter compounds) are separated, which are thus recovered at the top of the column by line (10), of those which have not been transformed (residues 380+). These are the bottom of the column and come out through the line (11). Part of this fraction is optionally removed via line (12). The other part is sent into the recycling loop by the line (13). Then, according to the fixed PNA concentration criticality parameters, some or all of the charge is sent to an adsorption zone (17) or (18) via lines (14) and (15) or (16). . At the outlet of this zone, an effluent whose concentration of PNA is low or zero is recovered by the lines (19) or (20) and (21). It is then sent in the line (22), which is the one carrying the part of the untreated charge by adsorption. The mixture of these two fractions is transported by the line (23) to the line containing the fresh charge, that is to say the line (1).

Exemplesexamples Exemple 1 : Préparation de la silice-alumine SA 1Example 1 Preparation of silica-alumina SA 1

L'adsorbant SA1 est obtenu de la manière suivante.The adsorbent SA1 is obtained in the following manner.

L'adsorbant SA1 est une alumine-silice qui a une composition chimique en poids de 60 % de Al2O3 et 40 % de SiO2. Son rapport Si/AI est de 0,6. Sa teneur en sodium est de l'ordre de 100-120 ppm en poids. Les extrudés sont cylindriques de diamètre 1,6 mm. Sa surface spécifique est de 345 m2/g. Son volume poreux total, mesuré par porosimétrie au mercure est 0,83 cm3/g. La distribution poreuse est bimodale. Dans le domaine des mésopores, un large pic entre 4 et 15 nm avec un maximum à 7 nm est observé. Pour le support, les macropores, dont le diamètre est plus grand que 50 nm, représentent environ 40 % du volume poreux total.The SA1 adsorbent is an alumina-silica which has a chemical composition by weight of 60% of Al 2 O 3 and 40% of SiO 2 . Its Si / Al ratio is 0.6. Its sodium content is of the order of 100-120 ppm by weight. The extrusions are cylindrical with a diameter of 1.6 mm. Its specific surface is 345 m 2 / g. Its total pore volume, measured by mercury porosimetry is 0.83 cm 3 / g. The porous distribution is bimodal. In the mesopore domain, a broad peak between 4 and 15 nm with a maximum at 7 nm is observed. For support, macropores, whose diameter is greater than 50 nm, represent about 40% of the total pore volume.

Exemple 2 : Comparaison de l'élimination des PNA d'une charge par adsorption sur solide poreux Example 2 Comparison of the Removal of PNAs from an Adsorption Load on Porous Solids

La charge utilisée correspond aux résidus du fond d'une colonne de fractionnement. Son point d'écoulement est de l'ordre de 36°C et sa densité à 15°C de 0,8357. Elle contient 95 % poids de composés saturés (83,6 % poids de composés paraffiniques et 11,4 % poids de composés naphténiques), 0,5 % poids de résines et 2,9 % poids de composés aromatiques dont 2,6 % poids de composés monoaromatiques, 0,56 % poids de composés diaromatiques, 0,57 % poids de composés triaromatiques, 2704 ppm de pyrène (4 noyaux), 1215 ppm de pérylène (5 noyaux) et 59 ppm de coronène (7 noyaux). 'The feed used corresponds to the residues of the bottom of a fractionation column. Its pour point is of the order of 36 ° C and its density at 15 ° C of 0.8357. It contains 95% by weight of saturated compounds (83.6% by weight of paraffinic compounds and 11.4% by weight of naphthenic compounds), 0.5% by weight of resins and 2.9% by weight of aromatic compounds, of which 2.6% by weight monoaromatic compounds, 0.56% by weight of diaromatic compounds, 0.57% by weight of triaromatic compounds, 2704 ppm of pyrene (4 rings), 1215 ppm of perylene (5 rings) and 59 ppm of coronene (7 rings). '

Les solides poreux testés correspondent à un solide mésoporeux de type MCM-41 purement silicique, une argile de type beidellite pontée SiO2, un gel de silice, une alumine activée, un charbon activé physiquement issu d'un précurseur cellulosique et une silice-alumine selon l'invention. Ils ont été choisis pour leur importante surface spécifique et leur pores de diamètres larges compris entre 20 et 80 Å selon les cas (Tableau 1) combinés à leur régénérabilité par brûlage. Tableau 1 : Surface BET et diamètres moyens des pores des différents solides. Mésoporeux Argile pontée Gel de silice Alumine activée Charbon actif Silice-alumine 1 (SA1) SBET (m2/g) 360 403 550 352 1442 345 Φpores (Å) 56 26,5 20 50 25 75 + macropores The porous solids tested correspond to a mesoporous solid of the MCM-41 purely silicic type, a SiO 2 bridged beidellite type clay, a silica gel, an activated alumina, a physically activated carbon derived from a cellulosic precursor and a silica-alumina. according to the invention. They were chosen for their large surface area and their large diameter pores between 20 and 80 Å as appropriate (Table 1) combined with their regenerability by burning. Table 1: BET surface and average pore diameters of different solids. mesoporous Brushed clay Silica gel Activated alumina Charcoal Silica-alumina 1 (SA1) S BET (m 2 / g) 360 403 550 352 1442 345 Φ pores (Å) 56 26.5 20 50 25 75 + macropores

La charge est mise au contact de différents adsorbants en lit fixe avec une VVH de 30 à une température de 150°C et à une pression de 10 bars.The filler is contacted with different fixed bed adsorbents with a VVH of 30 at a temperature of 150 ° C and a pressure of 10 bar.

Pour chacun d'entre eux, on calcule les sélectivités d'adsorption du coronène par rapport au pérylène et au pyrène. La sélectivité d'un adsorbant pour deux molécules i et j est définie telle que: α i / j = q a d s , i C i q a d s , j C j .

Figure imgb0001
Quand elle est supérieure à 1, cela signifie que l'adsorbant adsorbe davantage le composé i par rapport au composé j. Dans notre cas, comme on calcule les sélectivités du coronène par rapport à des PNA plus légers, ces valeurs doivent être supérieures à 1 car l'objectif principal est d'éliminer préférentiellement les molécules les plus lourdes. On détermine également les volumes de charge par volume d'adsorbant qu'il est possible au maximum de traiter pour que la concentration en coronène dans la charge en sortie ne dépasse pas 2/3 de celle en entrée. Ce rapport permet d'estimer la capacité d'adsorption des solides. L'ensemble de ces résultats est indiqué dans le Tableau 2. Tableau 2 : Sélectivités et volume de charge traitable par volume d'adsorbant pour les différents solides. Mésoporeux Argile pontée Gel de silice Alumine activée Charbon actif Silice-alumine 1 (SA1) αcoronène/pérylène 5,5 3,1 1,4 1,5 4,8 5,5 αcoronène/pyrène 6,2 6 2,1 2,0 7,6 7,3 Vcharge/Vadsorbant (ml/ml) 4 8 6,5 12 38 20 For each of them, the adsorption selectivities of coronene relative to perylene and pyrene are calculated. The selectivity of an adsorbent for two molecules i and j is defined such that: α i / j = q at d s , i VS i q at d s , j VS j .
Figure imgb0001
When it is greater than 1, it means that the adsorbent further adsorbs compound i over compound j. In our case, since the selectivities of coronene are calculated with respect to lighter PNAs, these values must be greater than 1 because the main objective is to preferentially eliminate the heavier molecules. The volume of charge per volume of adsorbent that is maximally treatable is also determined so that the coronene concentration in the output charge does not exceed 2/3 of that at the inlet. This report makes it possible to estimate the adsorption capacity of the solids. All of these results are shown in Table 2. Table 2: Selectivities and volume of treatable load per volume of adsorbent for different solids. mesoporous Brushed clay Silica gel Activated alumina Charcoal Silica-alumina 1 (SA1) α coronene / perylene 5.5 3.1 1.4 1.5 4.8 5.5 α coronene / pyrene 6.2 6 2.1 2.0 7.6 7.3 V load / V adsorbent (ml / ml) 4 8 6.5 12 38 20

On remarque que les meilleures performances sont, comme attendu, celles du charbon actif. Cependant, le solide que l'on revendique dans le cadre de ce brevet présente également de bonnes sélectivités et capacités d'adsorption. Or comme il est régénérable plusieurs fois de suite par brûlage, son exploitation est plus rentable que celle des charbons actifs.We note that the best performances are, as expected, those of activated carbon. However, the solid claimed in this patent also has good selectivities and adsorption capabilities. Since it is regenerable several times in a row by burning, its exploitation is more profitable than that of activated carbons.

Exemple 3 : Régénération par brûlage de l'adsorbantExample 3: Regeneration by burning of the adsorbent

On effectue une régénération de l'adsorbant par brûlage à l'aide d'un flux de N2 contenant 5 % de O2 à 550°C. A la suite de ces opérations, on récupère 97 % des capacités du solide de départ.Regeneration of the adsorbent is carried out by burning with a flow of N 2 containing 5% O 2 at 550 ° C. As a result of these operations, 97% of the capacities of the starting solid are recovered.

Cette opération peut être réalisée environ une dizaine de fois avant de perdre 30 % de capacité.This operation can be performed about ten times before losing 30% of capacity.

Claims (20)

  1. An improved hydrocracking process with a recycle, having a step for eliminating polyaromatic compounds from at least a portion of the recycled portion by adsorption on an adsorbent based on alumina-silica with a mass content of silica (SiO2) of more than 5% by weight and 95% or less; said alumina-silica having:
    • a sodium content of less than 0.03% by weight;
    • a total pore volume, measured by mercury porosimetry, in the range 0.45 to 1.2 ml/g;
    • a porosity such that:
    i) the volume of mesopores with a diameter in the range 40 Å to 150 Å and a mean pore diameter in the range 80 Å to 140 Å represents 40-70% of the total pore volume measured by mercury porosimetry;
    ii) the volume of macropores with a diameter of more than 500 Å represents 30-60% of the total pore volume measured by mercury porosimetry;
    • a BET specific surface area in the range 200 to 550 m2/g; and
    • an X ray diffraction diagram which contains at least the principal characteristic peaks of at least one of the transition aluminas included in the group composed of alpha, rho, khi, eta, gamma, kappa, theta and delta aluminas.
  2. A process according to claim 1, which comprises in succession:
    • a hydrocracking step;
    • a separation step, to separate an unconverted fraction with a T05 cut point of more than 340°C; and
    • a step for liquid phase adsorption of all or part of the PNAs contained in said unconverted fraction from the separation step.
  3. A process according to claim 1 or claim 2, in which the hydrocracking step is carried out using a once-through mode, the hydrocracking step comprising firstly, deep hydrorefining before sending it to the more active hydrocracking catalyst, no separation is carried out between the two types of catalyst.
  4. A process according to claim 1 or claim 2, in which the hydrocracking step is carried out using a two-step mode, the hydrocracking step comprising a first hydrorefining step, an intermediate separation and a second hydrocracking step, in which only the fraction of feed that is not converted in the first step is treated
  5. A process according to one of the preceding claims, in which the adsorbent undergoes a burning regeneration treatment after the adsorption step.
  6. A process according to claim 5, in which bum regeneration of the adsorbent is carried out in a stream of gas based on N2 containing 0.1 % to 21 % of 02, at a temperature in the range 400°C to 650°C.
  7. A process according to claim 6, in which bum regeneration of the adsorbent is carried out in a stream of gas based on N2 containing 3% to 6% of 02, at a temperature in the range 500°C to 550°C.
  8. A process according to one of the preceding claims, in which adsorption is carried out continuously.
  9. A process according to one of claims 1 to 7, in which adsorption is carried out batchwise.
  10. A process according to one of the preceding claims, in which the adsorption step is carried out on the whole of the recycled fraction.
  11. A process according to one of the preceding claims, in which the adsorption step is carried out at a temperature in the range 50°C to 250°C, a pressure in the range 1 to 200 bars and a HSV in the range 0.01 to 500 h-1.
  12. A process according to one of the preceding claims, in which the adsorbent comprises a proportion of octahedral AlVI determined by solid 27A1 MAS NMR spectral analysis, of more than 50%.
  13. A process according to one of the preceding claims, in which the alumina-silica comprises 30% to 50% of Q2 sites in which one Si atom is bonded to two Si or Al atoms and to two OH groups and also comprises 10-30% of Q3sites in which one atom of Si is bonded to three atoms of Si or Al or to an OH group.
  14. A process according to one of the preceding claims, in which the adsorbent is constituted by alumina-silica.
  15. A process according to one of claims 1 to 12, in which the adsorbent comprises 1% to 40% by weight of binder.
  16. A process according to claim 14, in which the adsorbent results from mixing alumina-silica and at least one binder selected from the group formed by silica, alumina, clays, titanium oxide, boron oxide and zirconia.
  17. A process according to one of the preceding claims, in which the adsorbent comprises a cationic impurities content of less than 0.1% by weight, the cationic impurity content being the total content in alkaline.
  18. A process according to one of the preceding claims, in which the adsorbent undergoes a hydrothermal treatment before use.
  19. A process according to one of the preceding claims, in which the adsorbent undergoes a sulphurization treatment before use.
  20. A process according to one of the preceding claims, in which the adsorbent is identical to the hydrocracking catalyst.
EP06290333A 2005-03-09 2006-02-28 Hydrocracking process with recycling which includes adsorption of polyaromatic compounds from recycled stream using a silica-alumina based adsorbant with limited macropores concentration Expired - Fee Related EP1700900B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0502368A FR2883004B1 (en) 2005-03-09 2005-03-09 HYDROCRACKING PROCESS WITH RECYCLING COMPRISING THE ADSORPTION OF POLYAROMATIC COMPOUNDS OF THE RECYCLED FRACTION ON A MACROPORTED CONTROLLED CONTENT SILICA-ALUMINUM ADSORBENT

Publications (2)

Publication Number Publication Date
EP1700900A1 EP1700900A1 (en) 2006-09-13
EP1700900B1 true EP1700900B1 (en) 2008-07-09

Family

ID=35456006

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06290333A Expired - Fee Related EP1700900B1 (en) 2005-03-09 2006-02-28 Hydrocracking process with recycling which includes adsorption of polyaromatic compounds from recycled stream using a silica-alumina based adsorbant with limited macropores concentration

Country Status (7)

Country Link
US (1) US7678262B2 (en)
EP (1) EP1700900B1 (en)
JP (1) JP4875907B2 (en)
CA (1) CA2538167C (en)
DE (1) DE602006001665D1 (en)
ES (1) ES2308692T3 (en)
FR (1) FR2883004B1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7763163B2 (en) * 2006-10-20 2010-07-27 Saudi Arabian Oil Company Process for removal of nitrogen and poly-nuclear aromatics from hydrocracker feedstocks
US9315733B2 (en) * 2006-10-20 2016-04-19 Saudi Arabian Oil Company Asphalt production from solvent deasphalting bottoms
US8062509B2 (en) * 2008-09-30 2011-11-22 Uop Llc Process, system and facility for desorbing
CA2802533C (en) * 2010-06-22 2019-01-15 Phillips 66 Company Methodology to determine feed quality (di+ring aromatic content) of fcc and hydrocracking feeds
WO2012052116A2 (en) 2010-10-20 2012-04-26 Haldor Topsøe A/S Process for hydrocracking a hydrocarbon feedstock
EP2930225B1 (en) * 2010-10-20 2023-08-16 Topsoe A/S Process for hydrocracking a hydrocarbon feedstock
US8828219B2 (en) * 2011-01-24 2014-09-09 Saudi Arabian Oil Company Hydrocracking process with feed/bottoms treatment
KR101955704B1 (en) 2011-07-29 2019-03-07 사우디 아라비안 오일 컴퍼니 Integrated Isomerization and Hydrotreating Process
WO2013019586A2 (en) * 2011-07-29 2013-02-07 Saudi Arabian Oil Company Hydrotreating of aromatic-extracted hydrocarbon streams
US8877040B2 (en) * 2012-08-20 2014-11-04 Uop Llc Hydrotreating process and apparatus relating thereto
FR3024459B1 (en) * 2014-07-30 2018-04-13 Ifp Energies Now METHOD FOR FRACTIONING HYDROCARBON LOADS USING A DEVICE COMPRISING PERMUTABLE BACKGROUND AREAS
EP3204473B1 (en) * 2014-10-07 2020-05-06 Shell International Research Maatschappij B.V. A hydrocracking process integrated with solvent deasphalting to reduce heavy polycyclic aromatic buildup in heavy oil hydrocracker recycle stream
JP6684641B2 (en) * 2016-04-26 2020-04-22 昭和電工株式会社 Method for producing conjugated diene compound and dehydration catalyst for allylic unsaturated alcohol
US20180044599A1 (en) * 2016-08-10 2018-02-15 Uop Llc Process and apparatus for removal of heavy polynuclear aromatics in a hydrocracking process
US10934498B1 (en) 2019-10-09 2021-03-02 Saudi Arabian Oil Company Combustion of spent adsorbents containing HPNA compounds in a membrane wall partial oxidation gasification reactor
US11279886B2 (en) * 2019-11-05 2022-03-22 Saudi Arabian Oil Company Hydrocracking process and system including separation of heavy poly nuclear aromatics from recycle by sulfonation
US11292970B2 (en) * 2019-11-05 2022-04-05 Saudi Arabian Oil Company Hydrocracking process and system including separation of heavy poly nuclear aromatics from recycle by oxidation
US11613714B2 (en) 2021-01-13 2023-03-28 Saudi Arabian Oil Company Conversion of aromatic complex bottoms to useful products in an integrated refinery process

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3204006A (en) * 1962-05-14 1965-08-31 Universal Oil Prod Co Hydrotreatment of hydrocarbon stocks and separation of aromatic components
US3340316A (en) 1964-06-19 1967-09-05 Universal Oil Prod Co Separation of aromatic hydrocarbons using an improved activated carbon sorbent
US3619407A (en) 1969-12-17 1971-11-09 Union Oil Co Hydrocracking process with benzcoronenes bleedstream
US4411768A (en) 1979-12-21 1983-10-25 The Lummus Company Hydrogenation of high boiling hydrocarbons
US4447315A (en) * 1983-04-22 1984-05-08 Uop Inc. Hydrocracking process
US4618412A (en) 1985-07-31 1986-10-21 Exxon Research And Engineering Co. Hydrocracking process
US4732665A (en) 1985-12-27 1988-03-22 Uop Inc. High severity catalytic reforming process
GB8700240D0 (en) 1987-01-07 1987-02-11 Exxon Chemical Patents Inc Polynuclear aromatics
US4775460A (en) 1987-12-24 1988-10-04 Uop, Inc. Hydrocracking process with feed pretreatment
US4961839A (en) 1988-05-23 1990-10-09 Uop High conversion hydrocracking process
US5124023A (en) 1988-11-28 1992-06-23 Union Oil Company Of California Continuous removal of polynuclear aromatics from hydrocarbon recycle oil
US4954242A (en) * 1989-07-19 1990-09-04 Uop Process for refractory compound removal in a hydrocracker recycle liquid
US5007998A (en) 1990-03-26 1991-04-16 Uop Process for refractory compound conversion in a hydrocracker recycle liquid
US5232577A (en) 1990-08-14 1993-08-03 Chevron Research And Technology Company Hydrocracking process with polycyclic aromatic dimer removal
US5139646A (en) 1990-11-30 1992-08-18 Uop Process for refractory compound removal in a hydrocracker recycle liquid
US5120426A (en) 1990-12-21 1992-06-09 Atlantic Richfield Company Hydrocracking process
US5139644A (en) 1991-04-25 1992-08-18 Uop Process for refractory compound conversion in a hydrocracker recycle liquid
US5190633A (en) 1992-03-19 1993-03-02 Chevron Research And Technology Company Hydrocracking process with polynuclear aromatic dimer foulant adsorption
US5464526A (en) 1994-05-27 1995-11-07 Uop Hydrocracking process in which the buildup of polynuclear aromatics is controlled
US5792898A (en) 1996-09-27 1998-08-11 Uop Llc Process for the management of mononuclear and polynuclear aromatic compounds produced in a hydrocarbon dehydrogenation reaction zone
US6217746B1 (en) * 1999-08-16 2001-04-17 Uop Llc Two stage hydrocracking process
FR2875419B1 (en) * 2004-09-22 2007-02-23 Inst Francais Du Petrole ALUMINO-SILICATE DOPE CATALYST AND IMPROVED PROCESS FOR TREATING HYDROCARBON LOADS

Also Published As

Publication number Publication date
JP4875907B2 (en) 2012-02-15
ES2308692T3 (en) 2008-12-01
JP2006291181A (en) 2006-10-26
US20060213809A1 (en) 2006-09-28
EP1700900A1 (en) 2006-09-13
CA2538167C (en) 2013-07-09
FR2883004A1 (en) 2006-09-15
FR2883004B1 (en) 2007-04-20
CA2538167A1 (en) 2006-09-09
US7678262B2 (en) 2010-03-16
DE602006001665D1 (en) 2008-08-21

Similar Documents

Publication Publication Date Title
EP1700900B1 (en) Hydrocracking process with recycling which includes adsorption of polyaromatic compounds from recycled stream using a silica-alumina based adsorbant with limited macropores concentration
EP1700899B1 (en) Hydrocracking process with recycling which includes adsorption of polyaromatic compounds from recycled stream using a silica-alumina based adsorbant with limited macropores concentration
EP2256179B1 (en) Method for producing a hydrocarbon cut with a high octane level and low sulphur content
EP1849850B1 (en) Method of desulphurating olefin gasolines comprising at least two distinct hydrodesulphuration steps
FR2999190A1 (en) PROCESS FOR OBTAINING HYDROCARBON SOLVENTS WITH A BOILING TEMPERATURE EXCEEDING 300 ° C AND A FLOW POINT LESS THAN OR EQUAL TO -25 ° C
FR2983866A1 (en) PROCESS FOR HYDROCONVERSION OF PETROLEUM LOADS IN BEDS FOR THE PRODUCTION OF LOW SULFUR CONTENT FIELDS
EP3339400B1 (en) Method and device for hydrocracking with reduction of the aromatic polynuclear compounds
EP1454976A1 (en) Desulfurization, deazotation or dearomatization process of a hydrocarbon feedstock by adsorption over a solid spent sorbent
WO2008122706A2 (en) Improved method of desulphuration and denitrogenation of a gasoil hydrocarbonated fraction containing nitrogen compounds
WO2009133260A1 (en) Removal of chlorinated compounds in hydrocarbon cuts
EP4189038A1 (en) Method for the treatment of plastic pyrolysis oils including two-stage hydrocracking
FR2944028A1 (en) PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES BY HYDROISOMERIZATION AND HYDROCRACKING OF A HEAVY FRACTION FROM A FISCHER-TROPSCH EFFLUENT USING A RESIN
FR3091533A1 (en) TWO-STEP HYDROCRACKING PROCESS FOR THE PRODUCTION OF NAPHTA INCLUDING A HYDROGENATION STAGE IMPLEMENTED BEFORE THE SECOND HYDROCRACKING STAGE
JP5491912B2 (en) Method for producing kerosene oil base and alkylbenzenes
FR2944027A1 (en) PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES BY HYDROISOMERIZATION AND HYDROCRACKING OF A HEAVY FRACTION FROM A FISCHER-TROPSCH EFFLUENT
EP2796196B1 (en) Catalytic adsorber for arsenic collection and selective hydrodesulphurisation of gasoline
EP2606969B1 (en) Catalytic adsorber for arsenic collection and selective hydrodesulphurisation of catalytic cracked gasoline
WO2020144096A1 (en) Two-stage hydrocracking process comprising a hydrogenation stage upstream of the second hydrocracking stage, for the production of middle distillates
EP2277980B1 (en) Method for selectively reducing the benzene and unsaturated compounds content of various hydrocarbon cuts
WO2023110730A1 (en) Method for capturing mercaptans using a macro and mesoporous capture mass
FR2857370A1 (en) Production of distillates and lubricants comprises hydrocracking and fractionation with elimination of aromatics

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070313

AKX Designation fees paid

Designated state(s): DE ES FR IT NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR IT NL

REF Corresponds to:

Ref document number: 602006001665

Country of ref document: DE

Date of ref document: 20080821

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2308692

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090414

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602006001665

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL MALMAISON, FR

Effective date: 20110331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200323

Year of fee payment: 15

Ref country code: NL

Payment date: 20200225

Year of fee payment: 15

Ref country code: IT

Payment date: 20200224

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200225

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200429

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006001665

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210301