EP1698203A2 - Position-finding method in a radiocommunication system, position-finding system and device for carrying out said method - Google Patents

Position-finding method in a radiocommunication system, position-finding system and device for carrying out said method

Info

Publication number
EP1698203A2
EP1698203A2 EP04821062A EP04821062A EP1698203A2 EP 1698203 A2 EP1698203 A2 EP 1698203A2 EP 04821062 A EP04821062 A EP 04821062A EP 04821062 A EP04821062 A EP 04821062A EP 1698203 A2 EP1698203 A2 EP 1698203A2
Authority
EP
European Patent Office
Prior art keywords
subsystem
mobile terminal
location
measurements
locating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04821062A
Other languages
German (de)
French (fr)
Inventor
Nidham Ben Rached
Thierry Lucidarme
Gabriel Linden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Nortel Networks Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nortel Networks Ltd filed Critical Nortel Networks Ltd
Publication of EP1698203A2 publication Critical patent/EP1698203A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present invention relates to localization in a heterogeneous radiocommunication system. It relates more particularly to the location of a mobile terminal in a radiocommunication system comprising two separate subsystems.
  • Many location services are known. Within the framework of these services, location information is generally required, from a client to a location server, for a given mobile terminal.
  • the location information which is an estimate of the positioning of the mobile terminal, is determined by the location server, on the basis of measurements made by base stations or, in the case which interests us later, by the mobile terminal following the location request. This information is finally returned to the customer at the origin of the location request.
  • Location services are for example provided in the second generation (2G) radiocommunication system called GSM ("Global System for Mobile communications") or in the extension of this system to packet data transmission, called GPRS ("General Packet Radio Service ").
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • FIG 1 shows a 2G radiocommunication system capable of implementing such a location service.
  • the system represented comprises in particular two base stations or BTS ("Base Transceiver Station") 11 and 12, connected to a base station controller or BSC ("Base Station Controller") 14, itself connected to a network core or CN (“Core Network”) 16.
  • a mobile terminal 10 is also in radio link with the BTS 11.
  • the system shown also includes a location center for mobile or SMLC ("Serving Mobile Location Center") 15, which can be integrated into the radio subsystem or else be independent equipment as illustrated in FIG. 1, where it is connected to the BSC 14 via an Lb interface.
  • the SMLC implements a location service for the terminal 10 at the request of a client 17 which can be internal or external to the radiocommunication system to which the terminal 10 is attached.
  • the protocol used between the SMLC and the mobile terminal is the RRLP. It is used in particular to command the terminal to make measurements with a view to localization, then to transmit these measurements to the SMLC for processing, via the radio subsystem.
  • the protocol is defined in the technical specification TS 44.031, version 6.1.0, "Location Services (LCS); Mobile Station (MS) - Serving Mobile Location Center (SMLC); Radio Resource LCS Protocol (RRLP)", published in September 2003 , by 3GPP.
  • Three main localization methods can be implemented by the system of Figure 1.
  • the first localization method is based on the Timing Advance parameter.
  • the BTS 11 which has a radio link with the terminal 10 measures a time difference between the reception of a frame from the terminal and a reference instant, which allows it to have an estimate of the propagation time of the frame between terminal 10 and BTS 11.
  • E-OTD Enhanced Observed Time Difference
  • LMU Location Measurement Unit
  • the LMU can either be integrated in a BTS of the system, or be an independent equipment whose position is well identified, as illustrated in figure 1.
  • SMLC 15 can then estimate a positioning of the mobile terminal 10 by subtracting RTD from OTD.
  • a third location method is based on the GPS positioning system ("Global Positioning System”).
  • the position of the mobile terminal 10 is then estimated by the SMLC 15 according to the GPS system.
  • Location services are also provided in the third generation (3G) radiocommunication system called UMTS ("Universal Mobile Telecommunication System").
  • FIG. 2 shows schematically a 3G radiocommunication system capable of implementing such a location service.
  • the system represented comprises in particular two base stations or Nodes B 21 and 22, connected to a radio network controller or RNC ("Radio Network Controller") 24, itself connected to a core network or CN ("Core Network ") 26.
  • RNC Radio Network Controller
  • a mobile terminal or UE (“ User Equipment ”) 20 is also in radio link with Node B 21.
  • the system shown also includes a location center (SMLC), which can be integrated into the subsystem radio or be independent equipment.
  • SMLC location center
  • the SMLC is then called SAS ("Stand-Alone SMLC").
  • a SAS 25 connected to the RNC 24 via a PCAP interface is thus represented in FIG. 2.
  • the PCAP interface is described in technical specification 25.453, version 6.2.0, "UTRAN lupc interface Positioning Calculation; Application Part (PCAP) signaling” , published in September 2003 by the 3GPP.
  • PCAP Application Part
  • the RNC 24 which is responsible for the implementation of the location procedure, at the request of a client 27 which may be internal or external to the radiocommunication system to which the UE 20 is attached.
  • the SAS 25 is then used as a simple location calculation server, when the RNC 24 does not perform the calculation itself.
  • the protocol used for exchanges between the RNC 24, which is then a Serving RNC, and the UE 20 is the RRC protocol, as defined in the technical specification TS 25.331, version 5.6.0, "Radio Resource Control (RRC) protocol specification ", published in September 2003 by 3GPP.
  • RRC Radio Resource Control
  • This protocol notably provides messages to command the terminal to make measurements with a view to localization, as well as for the feedback of these measurements to the RNC.
  • RRC Radio Resource Control
  • This protocol notably provides messages to command the terminal to make measurements with a view to localization, as well as for the feedback of these measurements to the RNC.
  • a first localization method is based on a cell identification or Cell ID. The UE is thus located by knowing the identity of the Node B with which it is linked, the position or the coverage area of the Node B being known.
  • the network can then probe it for example by paging, so that it is attached to a Node B.
  • This cell identification can be supplemented by other measurements such as RTT ("Round Trip Time”) measurements which give an approximation of the round trip propagation time between the UE and its Node B with which it is in association.
  • RTT Random Trip Time
  • a second location method is called OTDOA-IPDL
  • Each Node B can optionally introduce periods of silence (IPDL), so as to improve the listening quality of neighboring Nodes B by the UE, and to avoid the phenomenon of dazzling of the UE by a Node B close from which it receives a signal with a strong level of field.
  • IPDL periods of silence
  • a third location method is based on measurements of the GPS type performed by the EU, as in the 2G case described above.
  • a multimode UE with capacities to operate according to several systems, for example 2G or 2.5G and 3G (third generation) can perform measurements on command of the radiocommunication system to which it is attached at a given time. If, at a given time, the UE is in connection with a BTS 2G, it will be able to carry out measurements of type 2G on the order of an SMLC.
  • the UE If, at another time, the UE is in connection with a 3G Node B, it can carry out 3G type measurements on the order of its SRNC (Serving RNC).
  • SRNC Serving RNC
  • a location based on measurements made by such a UE according to its sub-system (2G-2.5G or 3G) of attachment is not always optimal. This is particularly noticeable in a heterogeneous radiocommunication system comprising a 2G (or 2.5G) subsystem and a 3G subsystem, the two subsystems having different service areas. For example, 2G coverage is almost uniform, while 3G coverage is more disparate.
  • a UE located in the 3G coverage area will then go back to measures for a 3G type location, while a 2G location would have benefited from the higher density of radio equipment and would therefore have resulted in a finer location .
  • the 3G location method implemented uses the IPDL functionality described above, the implementation of a 2G location method would have avoided the presence of periods of silence on the part of the Node B received by the EU with the strongest signal, and the degradation of the link, or even the momentary interruption of communication that results.
  • the location of a UE in connection with a BTS 2G, but also close to a Node B 3G from which it receives a slightly weaker signal may be less precise than if it had been carried out in 3G.
  • the accuracy of the location which is a random quantity, is inversely proportional to VB c, where B represents the bandwidth of the system and ⁇ represents an observation period. Since 3G bandwidth is approximately 15 times greater than 2G bandwidth, localization in 3G is approximately 4 times more precise than localization in 2G, for equal observation time. At almost equivalent radio conditions in the two subsystems, a 3G type location is therefore generally preferable to a 2G type location.
  • the location methods offered by each of the two subsystems based on measurements made by a dual-mode UE, are currently compartmentalized, so that the location performed is sometimes imprecise.
  • An object of the present invention is to overcome these drawbacks, and to improve the accuracy of the location of mobile terminals in a heterogeneous radiocommunication system. Another object of the invention is to take advantage of the location methods provided in different radiocommunication systems, in order to obtain an improved location according to the methods available.
  • the invention thus provides a method of localization in a radiocommunication system comprising at least a first and a second subsystem and means for locating a mobile terminal, the mobile terminal being able to communicate and to carry out measurements relating to localization.
  • the means for locating the mobile terminal being arranged to take into account at least some of the measurements made by the mobile terminal.
  • the method comprises the following steps when the mobile terminal is in connection with the first subsystem: - carrying out, at the mobile terminal, measurements relating to the location on the second subsystem; - transmit the measurements made to the first subsystem; and - implement the means for locating the mobile terminal by taking into account at least some of said measurements transmitted to the first subsystem.
  • a location is thus obtained based on measurements of the second subsystem, and possibly also of the first subsystem. This improves the reliability of the location.
  • the measurements are carried out at the mobile terminal on command of the first subsystem with which the mobile terminal is linked. This command can also be prompted by a request from location issued on the initiative of a customer internal or external to the radiocommunication system, which may be the mobile terminal itself if necessary.
  • a sounding mechanism is implemented in order to create such a link.
  • said first and second subsystems can be second generation (2G or 2.5G) radiocommunication systems for one and third generation (3G) for the other.
  • the first subsystem is capable of processing the measurements made on the second subsystem by the mobile terminal, it advantageously takes them into account in its location algorithm, in the same way as the location measurements possibly performed on the first subsystem -system by the mobile terminal. This case can arise in particular when the measurements carried out on the second subsystem are compatible with a localization method used by the first subsystem.
  • the first subsystem is not capable of processing the measurements made on the second subsystem by the mobile terminal itself, it then advantageously transmits them to the second subsystem so that they can be processed there. using an appropriate localization method.
  • the result of this processing gives location information which is returned to the first subsystem, in order to be taken into account in a location carried out further by taking into account measurements made by the mobile terminal on the first subsystem.
  • the invention further provides a location system for locating a mobile terminal, the location system being arranged to implement the above method.
  • the invention also provides a location device for locating a mobile terminal, in a first subsystem of a communication system. radiocommunication further comprising a second subsystem, the mobile terminal being capable of communicating and of carrying out measurements relating to the location on either of the first and of the second subsystems.
  • the location device comprises, relative to a mobile terminal in connection with the first subsystem: - means for commanding the mobile terminal to carry out measurements relating to the location on the second subsystem; - means for receiving the measurements made; and - means for locating the mobile terminal.
  • the 3 represents a heterogeneous system comprising a 2G or 2.5G subsystem and a 3G subsystem.
  • the 2G or 2.5G subsystem includes a BTS 31, connected to a BSC 33, itself connected to a core network switch 37 which can be an MSC ("Mobile Switching Center”) if one is in a context of communication in circuit mode, or a SGSN ("Serving GPRS Support Node”) if you are in a communication context in packet mode.
  • the 3G subsystem includes a Node B 32, connected to an RNC 34, itself connected to a core network switch 38 which can be an MSC or an SGSN.
  • a UE 30 is also capable of communicating with each of the two subsystems.
  • a radio link can be established with either of the BTS 31, in the case of 2G, or of the Node B 32, in the case of 3G.
  • the system shown in Figure 3 also includes locating means. Among these, there is in particular an SMLC 35 connected to the BSC 33 and a SAS 36 connected to the RNC 34.
  • a GMLC (“Gateway Mobile Location Center”) 39 is also connected to the two radiocommunication subsystems via their respective switches 37 and 38.
  • This GMLC 39 is a platform which constitutes the first access point for an external client 40 which wishes to require the implementation of a location service in one of the subsystems (it will be noted that the location request can also be made by a client internal to the radiocommunication system, which can moreover be the mobile terminal 10 itself).
  • the GMLC can then interrogate the HLR 41 to find the location area in which the UE 30 is located, if this is not being communicated.
  • the UE 30 has a radio link with the BTS 31, that is to say that the UE 30 is in 2G (or 2.5G) mode. This can happen in particular when the signal received at UE 30 from BTS 31 is greater than that received from Node B 32.
  • UE 30 is either during communication via the BTS 31, the communication being carried by a radio channel, either in a mode where it receives signaling from the BTS 31 without a real communication being in progress.
  • This poll may for example consist in paging the UE 30, after having determined the location zone in which the UE 30 is located, as indicated above.
  • a location required by a client 40 can then be made from measurements carried out in 3G, possibly in addition to 2G measurements.
  • this request is received by the GMLC 39, then transferred to the SMLC 35, for example via the MSC / SGSN 37.
  • An RRLP request is then transmitted from the SMLC 35 to the UE 30 so that the latter performs useful measurements for localization. It reaches the UE 30, via the radio equipment 33 and 31.
  • This request indicates to the UE 30 that measurements must be carried out on Nodes B of the 3G subsystem, possibly in addition to measurements on the BTS of the 2G subsystem, like BTS 31.
  • the UE 30 returns to SMLC 35 measurements made on the 3G subsystem, for example from signals received from Node B 32.
  • the measurements performed are of the 3G type and correspond to one of the 3G location methods presented in the introduction. It may for example be OTDOA type measurements. If the RRLP request transmitted to the UE 30 specifies a specific location method, the measurements carried out by the UE 30 will preferably conform to the specified method.
  • the SMLC 35 supports the implementation of a location method corresponding to the 3G measurements carried out. This can in particular be the case, when a shared location center is used for the 2G and 3G subsystems, combining the functions of SMLC 35 and SAS 36, and therefore capable of locating a UE from 2G, 3G or mixed 2G + 3G. If the SMLC 35 is not capable of processing 3G type measurements itself, it advantageously retransmits them to SAS 36 of the 3G subsystem.
  • This transmission can be done directly if a communication interface is available between the SMLC 35 and the SAS 36 (for example an Lp type interface as it currently exists between two SMLCs and that is described in the technical specification TS 48.031, version 5.0.0, "Technical Specification Group GSM EDGE Radio Access Network; Location Services (LCS); Serving Mobile Location Center - Serving Mobile Location Center (SMLC-SMLC); SMLCPP specification", published in July 2002 by 3GPP ), or via GMLC 39 which is connected to SMLC 35 and SAS 36.
  • the SAS 36 then has 3G type measurements which it can use to implement a 3G type location method as presented in the introduction. It thus plays its role of calculation server for the location of the UE 30.
  • the result of this location is then advantageously returned to the SMLC 35 which has subcontracted the location calculation based on 3G measurements, so that it provide it to the client 40 at the origin of the location request, via the GMLC 39.
  • the SAS 36 can return the result of its location calculation directly to the client 40.
  • both 2G type measurements on the 2G subsystem and 3G type measurements on the 3G subsystem these measurements are advantageously processed by SMLC 35 or SAS 36, if the one of these two pieces of equipment is capable of processing such mixed measurements.
  • 3G type measurements are transmitted to SAS 36, while 2G type measurements are processed at SMLC 35.
  • 3G measurements transmitted to SAS 36 can be the subject of a first location calculation. It is then advantageous to transmit the result of this calculation to the SMLC 35, so that the latter possibly supplements it from the measurements carried out on the 2G subsystem.
  • the UE 30 has a radio link with Node B 32. This can happen in particular when the signal received at UE 30 from Node B 32 is greater than that received from BTS 31. A communication is then in progress on the 3G infrastructure, or the UE 30 receives signaling from the 3G subsystem. As in the previously described case, if such a link does not exist, we probe then the UE 30 to establish one, for example by paging, in order to be able to command the UE 30 to carry out location measurements.
  • a location required by a client 40 can then be made according to a 2G location method, starting from 2G type measurements possibly supplemented by 3G type measurements.
  • the request from the client 40 is thus transmitted to the GMLC 39 which returns it to the RNC 34.
  • the latter transmits to the UE 30 a RRC message, via the Node B 32, commanding it to take measures capable of being used according to a 2G type location method, possibly in addition to 3G type measurements.
  • the type 2G measurements made by the UE 30 can be of a type specified in the RRC request, for example OTD measurements.
  • the latter returns them to the RNC 34.
  • the latter can then transfer the measurements to the SAS 36 via a PCAP interface, so that the SAS implements a localization method taking into account 2G measurements performed.
  • 3G type measurements made and reported by the UE 30 to the RNC 34 these are advantageously taken into account in the location calculation carried out by the SAS 36, in addition to the 2G type measurements. Similar to the previous case, we can rely on the SMLC 35 to determine a location based on the measurements made on the 2G subsystem, if the SAS 36 is not able to do this calculation itself, for example because the location methods implemented by the SAS 36 do not take as input parameters 2G measurements of the type of those reported by the UE 30.
  • the location is then made by the SMLC 35 according to a method of 2G localization corresponding to the type of measurements carried out. It can also be supplemented by a location based on measurements made on the 3G subsystem, the determination of which is advantageously entrusted to SAS 36 by the RNC 34.
  • the final location which can be that which has been determined on the a either of the 2G or 3G subsystems, or else according to a combination of the results obtained for each of these subsystems is then supplied to the GMLC 39 so that it communicates it to the requesting client 40.

Abstract

A position-finding method in a radiocommunication system comprising at least one first and one second sub-system and means (34, 35, 36, 39) for finding the position of a mobile terminal (30), wherein the mobile system can communicate and carry out measures relating to position-finding on each of the first and second sub-systems, and the position finding means for locating the mobile terminal are embodied in such a way that they can take into account certain measures carried out by the mobile terminal. The inventive method comprises the following steps when the mobile terminal is connected to the first sub-system: measures relating to position finding on the second sub-system are carried out in the mobile terminal; the measures thus carried out are transmitted to the first sub-system; and carrying out the measures in order to find the position of the mobile terminal by taking into account certain measures, at least those transmitted to the first sub-system.

Description

PROCEDE DE LOCALISATION DANS UN SYSTEME DE RADIOCOMMUNICATION, SYSTEME ET DISPOSITIF DE LOCALISATION POUR LA MISE EN ŒUVRE DU PROCEDE LOCATION METHOD IN A RADIO COMMUNICATION SYSTEM, LOCATION SYSTEM AND DEVICE FOR IMPLEMENTING THE METHOD
La présente invention concerne la localisation dans un système de radiocommunication hétérogène. Elle concerne plus particulièrement la localisation d'un terminal mobile dans un système de radiocommunication comprenant deux sous-systèmes distincts. De nombreux services de localisation sont connus. Dans le cadre de ces services, on requiert généralement une information de localisation, depuis un client vers un serveur de localisation, pour un terminal mobile donné. L'information de localisation, qui est une estimation du positionnement du terminal mobile, est déterminée par le serveur de localisation, sur la base de mesures effectuées par des stations de base ou, dans le cas qui nous intéresse plus par la suite, par le terminal mobile suite à la requête de localisation. Cette information est enfin retournée au client à l'origine de la requête de localisation. Des services de localisation sont par exemple prévus dans le système de radiocommunication de deuxième génération (2G) dit GSM ("Global System for Mobile communications") ou dans l'extension de ce système à la transmission de données par paquets, dite GPRS ("General Packet Radio Service"). Ces services sont notamment décrits dans la spécification technique TS 43.059, version 6.2.0, ("Functional stage 2 description of Location Services (LCS) in GERAN"), publiée en novembre 2003, par le 3GPP (3rd Génération Partnership Project). La figure 1 schématise un système de radiocommunication 2G apte à mettre en œuvre un tel service de localisation. Ainsi, le système représenté comporte notamment deux stations de base ou BTS ("Base Transceiver Station") 11 et 12, reliées à un contrôleur de stations de base ou BSC ("Base Station Controller") 14, lui-même connecté à un réseau cœur ou CN ("Core Network") 16. Un terminal mobile 10 est par ailleurs en liaison radio avec la BTS 11. Le système représenté comporte en outre un centre de localisation de mobile ou SMLC ("Serving Mobile Location Center") 15, qui peut être intégré au sous-système radio ou bien être un équipement indépendant comme illustré sur la figure 1 , où il est connecté au BSC 14 via une interface Lb. Le SMLC met en œuvre un service de localisation du terminal 10 sur requête d'un client 17 qui peut être interne ou externe au système de radiocommunication auquel le terminal 10 est attaché. Le protocole utilisé entre le SMLC et le terminal mobile est le RRLP. Il sert notamment à commander au terminal de faire des mesures en vue de la localisation, puis à remonter ces mesures au SMLC pour traitement, par l'intermédiaire du sous-système radio. Ce protocole est défini dans la spécification technique TS 44.031 , version 6.1.0, " Location Services (LCS); Mobile Station (MS) - Serving Mobile Location Centre (SMLC) ; Radio Resource LCS Protocol (RRLP)", publiée en septembre 2003, par le 3GPP. Trois méthodes de localisation principales peuvent être mises en œuvre par le système de la figure 1. La première méthode de localisation est basée sur le paramètre de Timing Advance. La BTS 11 qui a un lien radio avec le terminal 10 mesure un décalage temporel entre la réception d'une trame de la part du terminal et un instant de référence, qui lui permet d'avoir une estimation du temps de propagation de la trame entre le terminal 10 et la BTS 11. Lorsqu'une mesure de Timing Advance est effectuée par la BTS 11 et transmise au SMLC 15, ce dernier peut alors réaliser une approximation grossière d'une distance entre le terminal 10 et la BTS 11 , sur la base de cette mesure. Une deuxième méthode de localisation, appelée E-OTD ("Enhanced Observed Time Différence"), est basée sur des mesures comparatives de temps d'arrivée de trames émises par des BTS distinctes. Ainsi, lorsque le terminal 10 reçoit une trame numérotée depuis chacune des BTS 11 et 12, il observe la différence en temps OTD entre les deux réceptions. Si les BTS 11 et 12 ne sont pas synchronisées, il convient en outre de compenser le décalage RTD ("Real Time Différence") entre les émissions de ces deux BTS. A cet effet, un équipement LMU ("Location Measurement Unit") 13 est prévu dans le système de radiocommunication. Le LMU peut être soit intégré dans une BTS du système, soit être un équipement indépendant dont la position est bien identifiée, comme illustré sur la figure 1. Ces différentes mesures sont remontées au SMLC 15, qui peut alors estimer un positionnement du terminal mobile 10 en retranchant RTD à OTD. Une troisième méthode de localisation, enfin, est basée sur le système de positionnement par satellites GPS ("Global Positioning System"). La position du terminal mobile 10 est alors estimée par le SMLC 15 selon le système GPS. Des services de localisation sont également prévus dans le système de radiocommunication de troisième génération (3G) dit UMTS ("Universal Mobile Télécommunication System"). Ces services sont notamment décrits dans la spécification technique TS 25.305, version 5.7.0, ("User Equipment (UE) positioning in Universal Terrestrial Radio Access Network (UTRAN); Stage 2"), publiée en septembre 2003, par le 3GPP. La figure 2 schématise un système de radiocommunication 3G apte à mettre en œuvre un tel service de localisation. Ainsi, le système représenté comporte notamment deux stations de base ou Nodes B 21 et 22, reliées à un contrôleur de réseau radio ou RNC ("Radio Network Controller") 24, lui-même connecté à un réseau cœur ou CN ("Core Network") 26. Un terminal mobile ou UE ("User Equipment") 20 est par ailleurs en liaison radio avec le Node B 21. Le système représenté comporte en outre un centre de localisation (SMLC), qui peut être intégré au sous-système radio ou bien être un équipement indépendant. Le SMLC est alors appelé SAS ("Stand-Alone SMLC"). Un SAS 25 connecté au RNC 24 via une interface PCAP est ainsi représenté sur la figure 2. L'interface PCAP est décrite dans la spécification technique 25.453, version 6.2.0, "UTRAN lupc interface Positioning Calculation ; Application Part (PCAP) signalling ", publiée en septembre 2003 par le 3GPP. Dans ce système, c'est le RNC 24 qui est responsable de la mise en œuvre de la procédure de localisation, sur requête d'un client 27 qui peut être interne ou externe au système de radiocommunication auquel l'UE 20 est attaché. Le SAS 25 est alors utilisé comme simple serveur de calcul de localisation, lorsque le RNC 24 n'effectue pas le calcul lui-même. Le protocole utilisé pour les échanges entre le RNC 24, qui est alors un Serving RNC, et l'UE 20 est le protocole RRC, tel que défini dans la spécification technique TS 25.331 , version 5.6.0, " Radio Resource Control (RRC) protocol spécification", publiée en septembre 2003 par le 3GPP. Ce protocole prévoit notamment des messages pour commander au terminal de faire des mesures en vue de la localisation, ainsi que pour la remontée de ces mesures au RNC. Dans un tel système de troisième génération, plusieurs méthodes de localisation sont également disponibles. Par exemple, une première méthode de localisation est basée sur une identification de cellule ou Cell ID. L'UE est ainsi localisé par la connaissance de l'identité du Node B avec lequel il est en liaison, la position ou la zone de couverture du Node B étant connue. Si l'UE n'est en liaison avec aucune BTS, c'est-à-dire qu'il n'est pas en mode actif, le réseau peut alors le sonder par exemple par paging, pour qu'il soit rattaché à un Node B. Cette identification de cellule peut être complétée par d'autres mesures comme des mesures de RTT ("Round Trip Time") qui donnent une approximation du temps de propagation aller-retour entre l'UE et son Node B avec lequel il est en liaison. Une seconde méthode de localisation est appelée OTDOA-IPDLThe present invention relates to localization in a heterogeneous radiocommunication system. It relates more particularly to the location of a mobile terminal in a radiocommunication system comprising two separate subsystems. Many location services are known. Within the framework of these services, location information is generally required, from a client to a location server, for a given mobile terminal. The location information, which is an estimate of the positioning of the mobile terminal, is determined by the location server, on the basis of measurements made by base stations or, in the case which interests us later, by the mobile terminal following the location request. This information is finally returned to the customer at the origin of the location request. Location services are for example provided in the second generation (2G) radiocommunication system called GSM ("Global System for Mobile communications") or in the extension of this system to packet data transmission, called GPRS (" General Packet Radio Service "). These services are notably described in the technical specification TS 43.059, version 6.2.0, ("Functional stage 2 description of Location Services (LCS) in GERAN"), published in November 2003, by the 3GPP (3rd Generation Partnership Project). Figure 1 shows a 2G radiocommunication system capable of implementing such a location service. Thus, the system represented comprises in particular two base stations or BTS ("Base Transceiver Station") 11 and 12, connected to a base station controller or BSC ("Base Station Controller") 14, itself connected to a network core or CN ("Core Network") 16. A mobile terminal 10 is also in radio link with the BTS 11. The system shown also includes a location center for mobile or SMLC ("Serving Mobile Location Center") 15, which can be integrated into the radio subsystem or else be independent equipment as illustrated in FIG. 1, where it is connected to the BSC 14 via an Lb interface. The SMLC implements a location service for the terminal 10 at the request of a client 17 which can be internal or external to the radiocommunication system to which the terminal 10 is attached. The protocol used between the SMLC and the mobile terminal is the RRLP. It is used in particular to command the terminal to make measurements with a view to localization, then to transmit these measurements to the SMLC for processing, via the radio subsystem. This protocol is defined in the technical specification TS 44.031, version 6.1.0, "Location Services (LCS); Mobile Station (MS) - Serving Mobile Location Center (SMLC); Radio Resource LCS Protocol (RRLP)", published in September 2003 , by 3GPP. Three main localization methods can be implemented by the system of Figure 1. The first localization method is based on the Timing Advance parameter. The BTS 11 which has a radio link with the terminal 10 measures a time difference between the reception of a frame from the terminal and a reference instant, which allows it to have an estimate of the propagation time of the frame between terminal 10 and BTS 11. When a Timing Advance measurement is carried out by BTS 11 and transmitted to SMLC 15, the latter can then make a rough approximation of a distance between terminal 10 and BTS 11, on the basis of this measurement. A second location method, called E-OTD ("Enhanced Observed Time Difference"), is based on comparative measurements of the time of arrival of frames transmitted by separate BTSs. Thus, when the terminal 10 receives a frame numbered from each of the BTS 11 and 12, it observes the difference in OTD time between the two receptions. If BTS 11 and 12 are not synchronized, it is also necessary to compensate for the RTD ("Real Time Difference") offset between the transmissions of these two BTS. For this purpose, LMU ("Location Measurement Unit") equipment 13 is provided in the radiocommunication system. The LMU can either be integrated in a BTS of the system, or be an independent equipment whose position is well identified, as illustrated in figure 1. These different measurements are feedback to SMLC 15, which can then estimate a positioning of the mobile terminal 10 by subtracting RTD from OTD. A third location method, finally, is based on the GPS positioning system ("Global Positioning System"). The position of the mobile terminal 10 is then estimated by the SMLC 15 according to the GPS system. Location services are also provided in the third generation (3G) radiocommunication system called UMTS ("Universal Mobile Telecommunication System"). These services are described in particular in technical specification TS 25.305, version 5.7.0, ("User Equipment (UE) positioning in Universal Terrestrial Radio Access Network (UTRAN); Stage 2"), published in September 2003, by 3GPP. Figure 2 shows schematically a 3G radiocommunication system capable of implementing such a location service. Thus, the system represented comprises in particular two base stations or Nodes B 21 and 22, connected to a radio network controller or RNC ("Radio Network Controller") 24, itself connected to a core network or CN ("Core Network ") 26. A mobile terminal or UE (" User Equipment ") 20 is also in radio link with Node B 21. The system shown also includes a location center (SMLC), which can be integrated into the subsystem radio or be independent equipment. The SMLC is then called SAS ("Stand-Alone SMLC"). A SAS 25 connected to the RNC 24 via a PCAP interface is thus represented in FIG. 2. The PCAP interface is described in technical specification 25.453, version 6.2.0, "UTRAN lupc interface Positioning Calculation; Application Part (PCAP) signaling" , published in September 2003 by the 3GPP. In this system, it is the RNC 24 which is responsible for the implementation of the location procedure, at the request of a client 27 which may be internal or external to the radiocommunication system to which the UE 20 is attached. The SAS 25 is then used as a simple location calculation server, when the RNC 24 does not perform the calculation itself. The protocol used for exchanges between the RNC 24, which is then a Serving RNC, and the UE 20 is the RRC protocol, as defined in the technical specification TS 25.331, version 5.6.0, "Radio Resource Control (RRC) protocol specification ", published in September 2003 by 3GPP. This protocol notably provides messages to command the terminal to make measurements with a view to localization, as well as for the feedback of these measurements to the RNC. In such a third generation system, several location methods are also available. For example, a first localization method is based on a cell identification or Cell ID. The UE is thus located by knowing the identity of the Node B with which it is linked, the position or the coverage area of the Node B being known. If the UE is not in connection with any BTS, that is to say that it is not in active mode, the network can then probe it for example by paging, so that it is attached to a Node B. This cell identification can be supplemented by other measurements such as RTT ("Round Trip Time") measurements which give an approximation of the round trip propagation time between the UE and its Node B with which it is in association. A second location method is called OTDOA-IPDL
(Observed Time Différence Of Arrivai - Idle Period DownLink). Des mesures de différences d'instants de réception sont faites par l'UE 20 depuis plusieurs Nodes B (21 et 22 par exemple) et corrigées pour compenser l'absence de synchronisations des émissions depuis ces Nodes B par un équipement LMU 23, comme dans la méthode E-OTD utilisée dans les systèmes 2G (de deuxième génération) ou 2,5G (extension de la deuxième génération à la transmission de données par paquets), décrit plus haut. Chaque Node B peut en outre introduire des périodes de silence (IPDL) de façon optionnelle, de manière à améliorer la qualité d'écoute de Nodes B voisins par l'UE, et pour éviter le phénomène d'éblouissement de l'UE par un Node B proche dont il reçoit un signal avec un fort niveau de champ. Les mesures OTDOA sont alors améliorées lorsque IPDL est utilisé, au détriment toutefois de la qualité des communications en cours qui peuvent ainsi être interrompues lors des périodes de silence de certains Nodes B. Enfin, une troisième méthode de localisation s'appuie sur des mesures du type GPS réalisées par l'UE, comme dans le cas 2G décrit plus haut. Un UE multimode ayant des capacités pour fonctionner selon plusieurs systèmes, par exemple 2G ou 2,5G et 3G (troisième génération) peut effectuer des mesures sur commande du système de radiocommunication auquel il est rattaché à un instant donné. Si, à un instant donné, l'UE est en liaison avec une BTS 2G, il pourra effectuer des mesures de type 2G sur ordre d'un SMLC. Si, à un autre instant, l'UE est en liaison avec un Node B 3G, il pourra effectuer des mesures de type 3G sur ordre de son SRNC (Serving RNC). Toutefois, une localisation basée sur des mesures effectuées par un tel UE selon son sous-système (2G-2.5G ou 3G) de rattachement n'est pas toujours optimale. Cela est particulièrement sensible dans un système de radiocommunication hétérogène comprenant un sous-système 2G (ou 2,5G) et un sous-système 3G, les deux sous-systèmes ayant des zones de service différentes. Par exemple, la couverture 2G est quasi uniforme, tandis que la couverture 3G est plus disparate. Un UE se situant dans la zone de couverture 3G remontera alors des mesures pour une localisation de type 3G, tandis qu'une localisation de type 2G aurait tiré profit de la plus grande densité d'équipements radio et aurait ainsi abouti à une localisation plus fine. En outre, dans le cas où le méthode de localisation 3G mise en œuvre utilise la fonctionnalité IPDL décrite plus haut, la mise en œuvre d'une méthode de localisation 2G aurait évité la présence de périodes de silence de la part du Node B reçu par l'UE avec le plus fort signal, et la dégradation de la liaison, voire la coupure momentanée de communication qui en résulte. A l'inverse, la localisation d'un UE en liaison avec une BTS 2G, mais également proche d'un Node B 3G dont il reçoit un signal un peu plus faible, peut être moins précise que si elle avait été réalisée en 3G. En effet, la précision de la localisation, qui est une grandeur aléatoire, est inversement proportionnelle à VB c , où B représente la bande passante du système et τ représente une durée d'observation. La bande passante 3G étant environ 15 fois supérieure à la bande passante 2G, la localisation en 3G est environ 4 fois plus précise que la localisation en 2G, pour un temps d'observation égal. A conditions radio quasi équivalentes dans les deux sous-systèmes, une localisation de type 3G est donc généralement préférable à une localisation de type 2G. Cependant, comme cela a été indiqué plus haut, les méthodes de localisation offertes par chacun des deux sous-systèmes, basées sur des mesures faites par un UE bimode, sont actuellement cloisonnées, si bien que la localisation effectuée est parfois peu précise. Un but de la présente invention est de pallier ces inconvénients, et d'améliorer la précision de la localisation des terminaux mobiles dans un système de radiocommunication hétérogène. Un autre but de l'invention est de tirer profit des méthodes de localisation prévues dans différents systèmes de radiocommunication, pour obtenir une localisation améliorée selon les méthodes disponibles.(Observed Time Difference Of Arrivai - Idle Period DownLink). Measurements of differences in reception times are made by the UE 20 from several Nodes B (21 and 22 for example) and corrected to compensate for the absence of synchronization of the transmissions from these Nodes B by LMU equipment 23, as in the E-OTD method used in 2G (second generation) or 2.5G (extension of the second generation to packet data transmission) systems, described above. Each Node B can optionally introduce periods of silence (IPDL), so as to improve the listening quality of neighboring Nodes B by the UE, and to avoid the phenomenon of dazzling of the UE by a Node B close from which it receives a signal with a strong level of field. The OTDOA measurements are then improved when IPDL is used, to the detriment however of the quality of the communications in progress which can thus be interrupted during the periods of silence of certain Nodes B. Finally, a third location method is based on measurements of the GPS type performed by the EU, as in the 2G case described above. A multimode UE with capacities to operate according to several systems, for example 2G or 2.5G and 3G (third generation) can perform measurements on command of the radiocommunication system to which it is attached at a given time. If, at a given time, the UE is in connection with a BTS 2G, it will be able to carry out measurements of type 2G on the order of an SMLC. If, at another time, the UE is in connection with a 3G Node B, it can carry out 3G type measurements on the order of its SRNC (Serving RNC). However, a location based on measurements made by such a UE according to its sub-system (2G-2.5G or 3G) of attachment is not always optimal. This is particularly noticeable in a heterogeneous radiocommunication system comprising a 2G (or 2.5G) subsystem and a 3G subsystem, the two subsystems having different service areas. For example, 2G coverage is almost uniform, while 3G coverage is more disparate. A UE located in the 3G coverage area will then go back to measures for a 3G type location, while a 2G location would have benefited from the higher density of radio equipment and would therefore have resulted in a finer location . In addition, in the case where the 3G location method implemented uses the IPDL functionality described above, the implementation of a 2G location method would have avoided the presence of periods of silence on the part of the Node B received by the EU with the strongest signal, and the degradation of the link, or even the momentary interruption of communication that results. Conversely, the location of a UE in connection with a BTS 2G, but also close to a Node B 3G from which it receives a slightly weaker signal, may be less precise than if it had been carried out in 3G. Indeed, the accuracy of the location, which is a random quantity, is inversely proportional to VB c, where B represents the bandwidth of the system and τ represents an observation period. Since 3G bandwidth is approximately 15 times greater than 2G bandwidth, localization in 3G is approximately 4 times more precise than localization in 2G, for equal observation time. At almost equivalent radio conditions in the two subsystems, a 3G type location is therefore generally preferable to a 2G type location. However, as indicated above, the location methods offered by each of the two subsystems, based on measurements made by a dual-mode UE, are currently compartmentalized, so that the location performed is sometimes imprecise. An object of the present invention is to overcome these drawbacks, and to improve the accuracy of the location of mobile terminals in a heterogeneous radiocommunication system. Another object of the invention is to take advantage of the location methods provided in different radiocommunication systems, in order to obtain an improved location according to the methods available.
L'invention propose ainsi un procédé de localisation dans un système de radiocommunication comprenant au moins un premier et un second sous- systèmes et des moyens pour localiser un terminal mobile, le terminal mobile étant apte à communiquer et à effectuer des mesures relatives à la localisation sur chacun des premier et second sous-systèmes, les moyens pour localiser le terminal mobile étant agencés pour prendre en compte certaines au moins des mesures effectuées par le terminal mobile. Le procédé comprend les étapes suivantes lorsque le terminal mobile est en liaison avec le premier sous- système : - effectuer, au terminal mobile, des mesures relatives à la localisation sur le second sous-système ; - transmettre les mesures effectuées au premier sous-système ; et - mettre en œuvre les moyens pour localiser le terminal mobile en prenant en compte certaines au moins desdites mesures transmises au premier sous-système. On obtient ainsi une localisation basée sur des mesures du second sous-système, et éventuellement en outre du premier sous-système. On améliore ainsi la fiabilité de la localisation. De façon avantageuse, les mesures sont effectuées au terminal mobile sur commande du premier sous-système avec lequel le terminal mobile est en liaison. Cette commande peut en outre être suscitée par une requête de localisation émise à l'initiative d'un client interne ou externe au système de radiocommunication, qui peut être le terminal mobile lui-même le cas échéant. Lorsque le terminal mobile n'est pas en liaison avec le premier sous- système initialement, c'est-à-dire qu'il est attaché à ce sous-systèrne sans avoir une communication en cours avec lui et sans écouter un canal de signalisation émis par ce sous-système, un mécanisme de sondage est mis en œuvre en vue de créer une telle liaison. A titre illustratif, lesdits premier et second sous-systèmes peuvent être des systèmes de radiocommunication de deuxième génération (2G ou 2,5G) pour l'un et de troisième génération (3G) pour l'autre. Lorsque le premier sous-système est capable de traiter les mesures effectuées sur le second sous-système par le terminal mobile, il les prend avantageusement en compte dans son algorithme de localisation, au même titre que les mesures de localisation éventuellement effectuées sur le premier sous-système par le terminal mobile. Ce cas peut se présenter notamment lorsque les mesures effectuées sur le second sous-système sont compatibles avec une méthode de localisation utilisée par le premier sous-système. En revanche, lorsque le premier sous-système n'est pas capable de traiter lui-même les mesures effectuées sur le second sous-système par le terminal mobile, il les transmet alors avantageusement au second sous- système pour qu'elles y soient traitées selon une méthode de localisation appropriée. De façon avantageuse, le résultat de ce traitement donne des informations de localisation qui sont renvoyées au premier sous-système, afin d'être prises en compte dans une localisation réalisée en outre en prenant en compte des mesures effectuées par le terminal mobile sur le premier sous- système. L'invention propose en outre un système de localisation pour localiser un terminal mobile, le système de localisation étant agencé pour mettre en œuvre le procédé susmentionné. L'invention propose également un dispositif de localisation pour localiser un terminal mobile, dans un premier sous-système d'un système de radiocommunication comprenant en outre un second sous-système, le terminal mobile étant apte à communiquer et à effectuer des mesures relatives à la localisation sur l'un ou l'autre du premier et du second sous-systèmes. Le dispositif de localisation comprend, relativement à un terminal mobile en liaison avec le premier sous-système : - des moyens pour commander au terminal mobile d'effectuer des mesures relatives à la localisation sur le second sous-système ; - des moyens pour recevoir les mesures effectuées ; et - des moyens pour localiser le terminal mobile. D'autres particularités et avantages de la présente invention apparaîtront dans la description ci-après d'exemples de réalisation non limitatifs, en référence aux dessins annexés, dans lesquels : - la figure 1 , déjà commentée, est un schéma d'architecture d'un système de deuxième génération apte à mettre en œuvre un service de localisation de deuxième génération ; - la figure 2, déjà commentée, est un schéma d'architecture d'un système de troisième génération apte à mettre en œuvre un service de localisation de troisième génération; et - la figure 3 est un schéma d'architecture d'un système hétérogène dans lequel la présente invention peut être mise en œuvre. La figure 3 représente un système hétérogène comprenant un sous- système 2G ou 2,5G et un sous-système 3G. Le sous-système 2G ou 2,5G inclut une BTS 31 , reliée à un BSC 33, lui-même connecté à un commutateur de réseau cœur 37 qui peut être un MSC ("Mobile Switching Centre") si on est dans un contexte de communication en mode circuit, ou un SGSN ("Serving GPRS Support Node") si on se trouve dans un contexte de communication en mode paquets. Le sous-système 3G inclut un Node B 32, relié à un RNC 34, lui-même connecté à un commutateur de réseau cœur 38 qui peut être un MSC ou un SGSN. Un UE 30 est par ailleurs capable de communiquer avec chacun des deux sous-systèmes. A cet effet, un lien radio peut être établi avec l'une ou l'autre de la BTS 31 , dans le cas 2G, ou du Node B 32, dans le cas 3G . Le système représenté sur la figure 3 comprend aussi des moyens de localisation. Parmi ces derniers, on trouve notamment un SMLC 35 relié au BSC 33 et un SAS 36 relié au RNC 34. Un GMLC ("Gateway Mobile Location Centre") 39 est par ailleurs relié aux deux sous-systèmes de radiocommunication par l'intermédiaire de leurs commutateurs respectifs 37 et 38. Ce GMLC 39 est une plateforme qui constitue le premier point d'accès pour un client externe 40 qui souhaite requérir la mise en œuvre d'un service de localisation dans l'un des sous-systèmes (on notera que la requête de localisation peut également être faite par un client interne au système de radiocommunication, qui peut d'ailleurs être le terminal mobile 10 lui-même). Il est en outre relié au HLR ("Home Location Register") qui contient notamment des informations de routage concernant l'UE 30. Lorsqu'un client 4O requiert une localisation de l'UE 30, le GMLC peut alors interroger le HLR 41 pour retrouver la zone de localisation dans laquelle l'UE 30 se trouve, si celui-ci n'est pas en cours de communication. Dans un premier mode de réalisation, on considère que l'UE 30 a une liaison radio avec la BTS 31 , c'est-à-dire que l'UE 30 est en mode 2G (ou 2,5G). Ceci peut se produire notamment lorsque le signal reçu à l'UE 30 depuis la BTS 31 est supérieur à celui reçu depuis le Node B 32. Par liaison entre l'UE 30 et la BTS 31 , on entend que l'UE 30 est soit en cours de communication par l'intermédiaire de la BTS 31 , la communication étant portée par un canal radio, soit dans un mode où il reçoit de la signalisation depuis la BTS 31 sans qu'une véritable communication soit en cours. Lorsque l'UE 30 n'a pas de liaison radio initialement, tout en étant attaché au sous-système 2G, il est alors sondé par ce dernier, de manière à ce qu'une liaison puisse être établie avec la BTS 31. Ce sondage peut par exemple consister à pager l'UE 30, après avoir déterminé la zone de localisation dans laquelle l'UE 30 se situe, comme indiqué plus haut. Pour tirer profit notamment de la plus grande bande passante du système 3G par rapport au système 2G et donc d'une plus grande fiabilité de la localisation effectuée en 3G, une localisation requise par un client 40 pourra alors être faite à partir de mesures effectuées en 3G, éventuellement en complément de mesures effectuées en 2G. Lorsque le client 40 requiert une localisation de l'UE 30, cette requête est reçue par le GMLC 39, puis transférée au SMLC 35, par exemple par l'intermédiaire du MSC/SGSN 37. Une requête RRLP est alors transmise du SMLC 35 à l'UE 30 pour que ce dernier effectue des mesures utiles pour la localisation. Elle parvient à l'UE 30, par l'intermédiaire des équipements radio 33 et 31. Cette requête indique à l'UE 30 que des mesures doivent être effectuées sur des Nodes B du sous-système 3G, éventuellement en complément de mesures sur les BTS du sous-système 2G, comme la BTS 31. En réponse à cette requête, l'UE 30 retourne au SMLC 35 des mesures effectuées sur le sous-système 3G, par exemple à partir de signaux reçus du Node B 32. Les mesures effectuées sont de type 3G et correspondent à une des méthodes de localisation 3G présentées en introduction. Il peut par exemple s'agir de mesures de type OTDOA. Si la requête RRLP transmise à l'UE 30 précise une méthode de localisation spécifique, les mesures effectuées par l'UE 30 seront de préférence conformes à la méthode spécifiée. Une fois les mesures 3G effectuées par l'UE 30 transmises au SMLC 35 en réponse à la requête RRLP, celui-ci les traite comme le ferait un SAS s'il en a les capacités. A cet effet, le SMLC 35 supporte la mise en œuvre d'une méthode de localisation correspondant aux mesures 3G effectuées. Ceci peut être notamment le cas, lorsqu'on utilise un centre de localisation partagé pour les sous-systèmes 2G et 3G, réunissant les fonctions des SMLC 35 et SAS 36, et donc capable de localiser un UE à partir de mesures 2G, 3G ou mixtes 2G+3G. Si le SMLC 35 n'est pas capable de traiter lui-même les mesures de type 3G, il les retransmet avantageusement au SAS 36 du sous-système 3G. Cette transmission peut être faite de manière directe si une interface de communication est disponible entre le SMLC 35 et le SAS 36 (par exemple une interface de type Lp telle qu'elle existe actuellement entre deux SMLC et qu'elle est décrite dans la spécification technique TS 48.031 , version 5.0.0, "Technical Spécification Group GSM EDGE Radio Access Network ; Location Services (LCS) ; Serving Mobile Location Centre - Serving Mobile Location Centre (SMLC-SMLC) ; SMLCPP spécification ", publiée en juillet 2002 par le 3GPP), ou bien par l'intermédiaire du GMLC 39 qui est relié au SMLC 35 et au SAS 36. Le SAS 36 dispose alors de mesures de type 3G qu'il peut utiliser pour mettre en œuvre une méthode de localisation de type 3G tel que présentée en introduction. Il joue ainsi son rôle de serveur de calcul pour la localisation de l'UE 30. Le résultat de cette localisation est alors avantageusement retourné au SMLC 35 qui a sous-traité le calcul de localisation basé sur les mesures 3G, afin que celui-ci le fournisse au client 40 à l'origine de la requête de localisation, par l'intermédiaire du GMLC 39. En alternative, le SAS 36 peut retourner le résultat de son calcul de localisation directement au client 40. Lorsque la requête RRLP requiert de la part de l'UE 30 à la fois des mesures de type 2G sur le sous-système 2G et des mesures de type 3G sur le sous-système 3G, ces mesures sont avantageusement traitées par le SMLC 35 ou le SAS 36, si l'un de ces deux équipements est capable de traiter de telles mesures mixtes. Ce cas peut notamment se présenter lorsqu'on utilise un centre de localisation unifié pour les deux sous-systèmes 2G et 3G, et lorsque les mesures 2G et 3G peuvent être prises en compte par une même méthode de localisation mise en œuvre par ce centre de localisation unifié. En alternative, les mesures de type 3G sont transmises au SAS 36, tandis que les mesures de type 2G sont traitées au SMLC 35. Les mesures 3G transmises au SAS 36 peuvent faire l'objet d'un premier calcul de localisation. Il est alors avantageux de transmettre le résultat de ce calcul au SMLC 35, de manière à ce que celui-ci le complète éventuellement à partir des mesures réalisées sur le sous-système 2G. On dispose ainsi de deux résultats de localisation, obtenus selon des méthodes éventuellement différentes. Ces résultats peuvent alors être combinés (par exemple par une moyenne des résultats, pondérée par la fiabilité de chacune des méthodes de localisation employées) pour fournir une information de localisation améliorée au client 40. On se place désormais dans l'autre cas de figure, où l'UE 30 a une liaison radio avec le Node B 32. Ceci peut se produire notamment lorsque le signal reçu à l'UE 30 depuis le Node B 32 est supérieur à celui reçu depuis la BTS 31. Une communication est alors en cours sur l'infrastructure 3G, ou bien l'UE 30 reçoit de la signalisation en provenance du sous-système 3G. Comme dans le cas précédemment décrit, si une telle liaison n'existe pas, on sonde alors l'UE 30 pour en établir une, par exemple par paging, afin de pouvoir commander à l'UE 30 de réaliser des mesures de localisation. Pour tirer profit par exemple de la plus grande densité de stations de base du sous-système 2G par rapport à celle du sous-système 3G, une localisation requise par un client 40 pourra alors être faite selon une méthode de localisation 2G, à partir de mesures de type 2G éventuellement complétées par des mesures de type 3G. La requête du client 40 est ainsi transmise au GMLC 39 qui la renvoie au RNC 34. Ce dernier transmet alors à l'UE 30 un message RRC, par l'intermédiaire du Node B 32, lui commandant de faire des mesures susceptibles d'être utilisées selon une méthode de localisation de type 2G, éventuellement en plus de mesures de type 3G. Les mesures de type 2G effectuées par l'UE 30 peuvent être d'un type spécifié dans la requête RRC, par exemple des mesures OTD. Une fois les mesures requises réalisées par l'UE 30, celui-ci les renvoie au RNC 34. Ce dernier peut alors transférer les mesures au SAS 36 via une interface PCAP, afin que le SAS mette en œuvre une méthode de localisation prenant en compte les mesures 2G effectuées. Lorsqu'on dispose en outre au RNC 34 de mesures de type 3G effectuées et remontées par l'UE 30, celles-ci sont avantageusement prises en compte dans le calcul de localisation réalisé par le SAS 36, en complément des mesures de type 2G. De façon similaire au cas précédent, on peut s'appuyer sur le SMLC 35 pour déterminer une localisation sur la base des mesures effectuées sur le sous-système 2G, si le SAS 36 n'est pas apte à faire ce calcul lui-même, par exemple parce que les méthodes de localisation mises en œuvre par le SAS 36 ne prennent pas comme paramètres d'entrée des mesures 2G du type de celles remontées par l'UE 30. La localisation est alors faite par le SMLC 35 selon une méthode de localisation 2G correspondant au type de mesures réalisées. Elle peut par ailleurs être complétée par une localisation basée sur des mesures effectuées sur le sous-système 3G, dont la détermination est avantageusement confiée au SAS 36 par le RNC 34. La localisation finale, qui peut être celle qui a été déterminée sur l'un ou l'autre des sous-systèmes 2G ou 3G, ou bien selon une combinaison des résultats obtenus pour chacun de ces sous-systèmes est alors fournie au GMLC 39 pour qu'il la communique au client requérant 40. Bien que la présente invention ait été plus précisément décrite sur l'exemple d'un système de radiocommunication hétérogène comprenant un sous-système 2G ou 2,5G et un sous-système 3G, on comprendra qu'elle peut également être mise en œuvre dans tout système de radiocommunication hétérogène comprenant au moins deux sous-systèmes donnant lieu à des calculs de localisation de fiabilité différente. The invention thus provides a method of localization in a radiocommunication system comprising at least a first and a second subsystem and means for locating a mobile terminal, the mobile terminal being able to communicate and to carry out measurements relating to localization. on each of the first and second subsystems, the means for locating the mobile terminal being arranged to take into account at least some of the measurements made by the mobile terminal. The method comprises the following steps when the mobile terminal is in connection with the first subsystem: - carrying out, at the mobile terminal, measurements relating to the location on the second subsystem; - transmit the measurements made to the first subsystem; and - implement the means for locating the mobile terminal by taking into account at least some of said measurements transmitted to the first subsystem. A location is thus obtained based on measurements of the second subsystem, and possibly also of the first subsystem. This improves the reliability of the location. Advantageously, the measurements are carried out at the mobile terminal on command of the first subsystem with which the mobile terminal is linked. This command can also be prompted by a request from location issued on the initiative of a customer internal or external to the radiocommunication system, which may be the mobile terminal itself if necessary. When the mobile terminal is not in connection with the first subsystem initially, i.e. it is attached to this subsystem without having a communication in progress with it and without listening to a signaling channel issued by this subsystem, a sounding mechanism is implemented in order to create such a link. By way of illustration, said first and second subsystems can be second generation (2G or 2.5G) radiocommunication systems for one and third generation (3G) for the other. When the first subsystem is capable of processing the measurements made on the second subsystem by the mobile terminal, it advantageously takes them into account in its location algorithm, in the same way as the location measurements possibly performed on the first subsystem -system by the mobile terminal. This case can arise in particular when the measurements carried out on the second subsystem are compatible with a localization method used by the first subsystem. On the other hand, when the first subsystem is not capable of processing the measurements made on the second subsystem by the mobile terminal itself, it then advantageously transmits them to the second subsystem so that they can be processed there. using an appropriate localization method. Advantageously, the result of this processing gives location information which is returned to the first subsystem, in order to be taken into account in a location carried out further by taking into account measurements made by the mobile terminal on the first subsystem. The invention further provides a location system for locating a mobile terminal, the location system being arranged to implement the above method. The invention also provides a location device for locating a mobile terminal, in a first subsystem of a communication system. radiocommunication further comprising a second subsystem, the mobile terminal being capable of communicating and of carrying out measurements relating to the location on either of the first and of the second subsystems. The location device comprises, relative to a mobile terminal in connection with the first subsystem: - means for commanding the mobile terminal to carry out measurements relating to the location on the second subsystem; - means for receiving the measurements made; and - means for locating the mobile terminal. Other particularities and advantages of the present invention will appear in the following description of nonlimiting exemplary embodiments, with reference to the appended drawings, in which: - Figure 1, already commented on, is an architectural diagram of a second generation system capable of implementing a second generation location service; - Figure 2, already discussed, is an architectural diagram of a third generation system capable of implementing a third generation location service; and - Figure 3 is an architectural diagram of a heterogeneous system in which the present invention can be implemented. FIG. 3 represents a heterogeneous system comprising a 2G or 2.5G subsystem and a 3G subsystem. The 2G or 2.5G subsystem includes a BTS 31, connected to a BSC 33, itself connected to a core network switch 37 which can be an MSC ("Mobile Switching Center") if one is in a context of communication in circuit mode, or a SGSN ("Serving GPRS Support Node") if you are in a communication context in packet mode. The 3G subsystem includes a Node B 32, connected to an RNC 34, itself connected to a core network switch 38 which can be an MSC or an SGSN. A UE 30 is also capable of communicating with each of the two subsystems. For this purpose, a radio link can be established with either of the BTS 31, in the case of 2G, or of the Node B 32, in the case of 3G. The system shown in Figure 3 also includes locating means. Among these, there is in particular an SMLC 35 connected to the BSC 33 and a SAS 36 connected to the RNC 34. A GMLC ("Gateway Mobile Location Center") 39 is also connected to the two radiocommunication subsystems via their respective switches 37 and 38. This GMLC 39 is a platform which constitutes the first access point for an external client 40 which wishes to require the implementation of a location service in one of the subsystems (it will be noted that the location request can also be made by a client internal to the radiocommunication system, which can moreover be the mobile terminal 10 itself). It is also linked to the HLR ("Home Location Register") which notably contains routing information concerning the UE 30. When a 4O client requests a location of the UE 30, the GMLC can then interrogate the HLR 41 to find the location area in which the UE 30 is located, if this is not being communicated. In a first embodiment, it is considered that the UE 30 has a radio link with the BTS 31, that is to say that the UE 30 is in 2G (or 2.5G) mode. This can happen in particular when the signal received at UE 30 from BTS 31 is greater than that received from Node B 32. By connection between UE 30 and BTS 31, we mean that UE 30 is either during communication via the BTS 31, the communication being carried by a radio channel, either in a mode where it receives signaling from the BTS 31 without a real communication being in progress. When the UE 30 does not have a radio link initially, while being attached to the 2G subsystem, it is then probed by the latter, so that a link can be established with BTS 31. This poll may for example consist in paging the UE 30, after having determined the location zone in which the UE 30 is located, as indicated above. To take advantage in particular of the greater bandwidth of the 3G system compared to the 2G system and therefore of a greater reliability of the location carried out in 3G, a location required by a client 40 can then be made from measurements carried out in 3G, possibly in addition to 2G measurements. When the client 40 requests a location of the UE 30, this request is received by the GMLC 39, then transferred to the SMLC 35, for example via the MSC / SGSN 37. An RRLP request is then transmitted from the SMLC 35 to the UE 30 so that the latter performs useful measurements for localization. It reaches the UE 30, via the radio equipment 33 and 31. This request indicates to the UE 30 that measurements must be carried out on Nodes B of the 3G subsystem, possibly in addition to measurements on the BTS of the 2G subsystem, like BTS 31. In response to this request, the UE 30 returns to SMLC 35 measurements made on the 3G subsystem, for example from signals received from Node B 32. The measurements performed are of the 3G type and correspond to one of the 3G location methods presented in the introduction. It may for example be OTDOA type measurements. If the RRLP request transmitted to the UE 30 specifies a specific location method, the measurements carried out by the UE 30 will preferably conform to the specified method. Once the 3G measurements made by the UE 30 are transmitted to the SMLC 35 in response to the RRLP request, the latter treats them as an SAS would do if it has the capabilities. To this end, the SMLC 35 supports the implementation of a location method corresponding to the 3G measurements carried out. This can in particular be the case, when a shared location center is used for the 2G and 3G subsystems, combining the functions of SMLC 35 and SAS 36, and therefore capable of locating a UE from 2G, 3G or mixed 2G + 3G. If the SMLC 35 is not capable of processing 3G type measurements itself, it advantageously retransmits them to SAS 36 of the 3G subsystem. This transmission can be done directly if a communication interface is available between the SMLC 35 and the SAS 36 (for example an Lp type interface as it currently exists between two SMLCs and that is described in the technical specification TS 48.031, version 5.0.0, "Technical Specification Group GSM EDGE Radio Access Network; Location Services (LCS); Serving Mobile Location Center - Serving Mobile Location Center (SMLC-SMLC); SMLCPP specification", published in July 2002 by 3GPP ), or via GMLC 39 which is connected to SMLC 35 and SAS 36. The SAS 36 then has 3G type measurements which it can use to implement a 3G type location method as presented in the introduction. It thus plays its role of calculation server for the location of the UE 30. The result of this location is then advantageously returned to the SMLC 35 which has subcontracted the location calculation based on 3G measurements, so that it provide it to the client 40 at the origin of the location request, via the GMLC 39. Alternatively, the SAS 36 can return the result of its location calculation directly to the client 40. When the RRLP request requires from the EU 30, both 2G type measurements on the 2G subsystem and 3G type measurements on the 3G subsystem, these measurements are advantageously processed by SMLC 35 or SAS 36, if the one of these two pieces of equipment is capable of processing such mixed measurements. This case can arise in particular when using a unified location center for the two subsystems 2G and 3G, and when the 2G and 3G measurements can be taken into account by the same location method implemented by this location center. unified localization. Alternatively, 3G type measurements are transmitted to SAS 36, while 2G type measurements are processed at SMLC 35. 3G measurements transmitted to SAS 36 can be the subject of a first location calculation. It is then advantageous to transmit the result of this calculation to the SMLC 35, so that the latter possibly supplements it from the measurements carried out on the 2G subsystem. We thus have two localization results, obtained according to possibly different methods. These results can then be combined (for example by an average of the results, weighted by the reliability of each of the location methods used) to provide improved location information to the client 40. We are now in the other case, where the UE 30 has a radio link with Node B 32. This can happen in particular when the signal received at UE 30 from Node B 32 is greater than that received from BTS 31. A communication is then in progress on the 3G infrastructure, or the UE 30 receives signaling from the 3G subsystem. As in the previously described case, if such a link does not exist, we probe then the UE 30 to establish one, for example by paging, in order to be able to command the UE 30 to carry out location measurements. To take advantage, for example, of the higher density of base stations of the 2G subsystem compared to that of the 3G subsystem, a location required by a client 40 can then be made according to a 2G location method, starting from 2G type measurements possibly supplemented by 3G type measurements. The request from the client 40 is thus transmitted to the GMLC 39 which returns it to the RNC 34. The latter then transmits to the UE 30 a RRC message, via the Node B 32, commanding it to take measures capable of being used according to a 2G type location method, possibly in addition to 3G type measurements. The type 2G measurements made by the UE 30 can be of a type specified in the RRC request, for example OTD measurements. Once the required measurements have been made by the UE 30, the latter returns them to the RNC 34. The latter can then transfer the measurements to the SAS 36 via a PCAP interface, so that the SAS implements a localization method taking into account 2G measurements performed. When there are also 3G type measurements made and reported by the UE 30 to the RNC 34, these are advantageously taken into account in the location calculation carried out by the SAS 36, in addition to the 2G type measurements. Similar to the previous case, we can rely on the SMLC 35 to determine a location based on the measurements made on the 2G subsystem, if the SAS 36 is not able to do this calculation itself, for example because the location methods implemented by the SAS 36 do not take as input parameters 2G measurements of the type of those reported by the UE 30. The location is then made by the SMLC 35 according to a method of 2G localization corresponding to the type of measurements carried out. It can also be supplemented by a location based on measurements made on the 3G subsystem, the determination of which is advantageously entrusted to SAS 36 by the RNC 34. The final location, which can be that which has been determined on the a either of the 2G or 3G subsystems, or else according to a combination of the results obtained for each of these subsystems is then supplied to the GMLC 39 so that it communicates it to the requesting client 40. Although the present invention has been more precisely described on the example of a heterogeneous radiocommunication system comprising a 2G or 2.5G subsystem and a 3G subsystem, it will be understood that it can also be implemented in any heterogeneous radiocommunication system comprising at least two subsystems giving rise to location calculations of different reliability.

Claims

R E V E N D I C A T I O N S
1. Procédé de localisation dans un système de radiocommunication comprenant au moins un premier et un second sous-systèmes et des moyens (34, 35, 36, 39) pour localiser un terminal mobile (30), le terminal mobile étant apte à communiquer et à effectuer des mesures relatives à la localisation sur chacun des premier et second sous-systèmes, les moyens pour localiser le terminal mobile étant agencés pour prendre en compte certaines au moins des mesures effectuées par le terminal mobile, le procédé comprenant les étapes suivantes lorsque le terminal mobile est en liaison avec le premier sous- système : - effectuer, au terminal mobile, des mesures relatives à la localisation sur le second sous-système ; - transmettre les mesures effectuées au premier sous-système ; et - mettre en œuvre les moyens pour localiser le terminal mobile en prenant en compte certaines au moins desdites mesures transmises au premier sous-système.1. A method of localization in a radiocommunication system comprising at least a first and a second subsystem and means (34, 35, 36, 39) for locating a mobile terminal (30), the mobile terminal being able to communicate and to perform measurements relating to the location on each of the first and second subsystems, the means for locating the mobile terminal being arranged to take into account at least some of the measurements carried out by the mobile terminal, the method comprising the following steps when the mobile terminal is in connection with the first subsystem: - perform, at the mobile terminal, measurements relating to the location on the second subsystem; - transmit the measurements made to the first subsystem; and - implement the means for locating the mobile terminal by taking into account at least some of said measurements transmitted to the first subsystem.
2. Procédé selon la revendication 1 , dans lequel les mesures relatives à la localisation sont effectuées sur le second sous-système, au terminal mobile, sur commande du premier sous-système.2. Method according to claim 1, in which the measurements relating to the location are carried out on the second subsystem, at the mobile terminal, on command of the first subsystem.
3. Procédé selon la revendication 1 ou 2, dans lequel les mesures relatives à la localisation sont effectuées, au terminal mobile, sur le second sous-système, sur requête d'un client (40).3. Method according to claim 1 or 2, in which the measurements relating to the location are carried out, at the mobile terminal, on the second subsystem, at the request of a client (40).
4. Procédé selon la revendication 2 ou 3, comprenant une étape préalable de sondage du terminal mobile, lorsque le terminal mobile n'est pas en liaison avec le premier sous-système.4. Method according to claim 2 or 3, comprising a preliminary step of probing the mobile terminal, when the mobile terminal is not in connection with the first subsystem.
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel des mesures relatives à la localisation sont en outre effectuées, au terminal mobile, sur le premier sous-système, lesdites mesures étant transmises au premier sous-système et dans lequel la mise en œuvre des moyens pour localiser le terminal mobile prennent en compte en outre certaines au moins desdites mesures effectuées sur le premier sous-système.5. Method according to any one of the preceding claims, in which measurements relating to the location are also carried out, at the mobile terminal, on the first subsystem, said measurements being transmitted to the first subsystem and in which the implementation of the means for locating the mobile terminal also take into account at least some of said measurements carried out on the first subsystem.
6. Procédé selon l'une quelconque des revendications précédentes, dans lequel chacun des premier et second sous-systèmes comprend des moyens pour localiser un terminal mobile à partir de mesures relatives à la localisation effectuées par le terminal mobile sur le sous-système correspondant, et dans lequel on transmet en outre au second sous-système, depuis le premier sous-système, les mesures effectuées par le terminal sur le second sous-système, et dans lequel la mise en œuvre des moyens pour localiser le terminal mobile en prenant en compte certaines au moins des mesures transmises comprend la mise en œuvre des moyens du second sous- système pour localiser le terminal mobile en prenant en compte certaines au moins des mesures effectuées par le terminal mobile sur le second sous- système.6. Method according to any one of the preceding claims, in which each of the first and second subsystems comprises means for locating a mobile terminal from measurements relating to the location carried out by the mobile terminal on the corresponding subsystem, and in which the measurements made by the terminal on the second subsystem are also transmitted to the second subsystem from the first subsystem, and in which the implementation of the means for locating the mobile terminal by taking into account account at least of some of the measurements transmitted comprises the implementation of the means of the second subsystem for locating the mobile terminal by taking into account some at least of the measurements made by the mobile terminal on the second subsystem.
7. Procédé selon la revendications 6, dans lequel des mesures relatives à la localisation sont en outre effectuées, au terminal mobile, sur le premier sous-système, lesdites mesures étant transmises au premier sous- système, dans lequel le résultat fourni par les moyens du second sous-système pour localiser le terminal mobile est transmis aux moyens du premier sous- système pour localiser le terminal mobile, lesdits moyens du premier sous- système prenant en compte certaines au moins des mesures effectuées sur le premier sous-système et le résultat fourni par les moyens du second sous- système.7. The method as claimed in claim 6, in which measurements relating to location are also carried out, at the mobile terminal, on the first subsystem, said measurements being transmitted to the first subsystem, in which the result supplied by the means of the second subsystem for locating the mobile terminal is transmitted to the means of the first subsystem for locating the mobile terminal, said means of the first subsystem taking into account at least some of the measurements carried out on the first subsystem and the result supplied by the means of the second subsystem.
8. Procédé selon l'une quelconque des revendications précédentes, dans lequel lesdits premier et second sous-systèmes sont des systèmes de radiocommunication de deuxième génération pour l'un et de troisième génération pour l'autre.8. Method according to any one of the preceding claims, in which said first and second subsystems are second generation radiocommunication systems for one and third generation for the other.
9. Système de localisation (34, 35, 36) pour localiser un terminal mobile (30), le système de localisation étant agencé pour mettre en œuvre le procédé selon l'une quelconque des revendications précédentes. 9. Location system (34, 35, 36) for locating a mobile terminal (30), the location system being arranged to implement the method according to any one of the preceding claims.
10. Dispositif de localisation (34, 35, 36) pour localiser un terminal mobile (30), dans un premier sous-système d'un système de radiocommunication comprenant en outre un second sous-système, le terminal mobile étant apte à communiquer et à effectuer des mesures relatives à la localisation sur l'un ou l'autre du premier et du second sous-systèmes, le dispositif de localisation comprenant, relativement à un terminal mobile en liaison avec le premier sous-système : - des moyens pour commander au terminal mobile d'effectuer des mesures relatives à la localisation sur le second sous-système ; - des moyens pour recevoir les mesures effectuées ; et - des moyens pour localiser le terminal mobile.10. Locating device (34, 35, 36) for locating a mobile terminal (30), in a first subsystem of a radiocommunication system further comprising a second subsystem, the mobile terminal being able to communicate and to perform measurements relating to the location on either of the first and second subsystems, the location device comprising, relative to a mobile terminal in connection with the first subsystem: - means for controlling the mobile terminal to perform location-related measurements on the second subsystem; - means for receiving the measurements made; and - means for locating the mobile terminal.
11. Dispositif de localisation selon la revendication 10, comprenant en outre des moyens pour commander au terminal mobile d'effectuer des mesures relatives à la localisation sur le premier sous-système, des moyens pour recevoir les mesures effectuées par le terminal mobile sur le premier sous- système, et dans lequel les moyens pour localiser le terminal mobile (30) prennent en compte certaines au moins des mesures effectuées par le terminal mobile sur le premier sous-système.11. A location device according to claim 10, further comprising means for commanding the mobile terminal to perform measurements relating to the location on the first subsystem, means for receiving the measurements made by the mobile terminal on the first subsystem, and wherein the means for locating the mobile terminal (30) take into account at least some of the measurements made by the mobile terminal on the first subsystem.
12. Dispositif de localisation selon la revendication 10 ou 11 , dans lequel les moyens pour localiser le terminal mobile (30) prennent en compte certaines au moins des mesures effectuées par le terminal mobile sur le second sous- système et reçues par les moyens pour recevoir lesdites mesures effectuées.12. Locating device according to claim 10 or 11, wherein the means for locating the mobile terminal (30) take into account at least some of the measurements carried out by the mobile terminal on the second subsystem and received by the means for receiving said measurements performed.
13. Dispositif de localisation selon la revendication 10 ou 11 , comprenant des moyens pour transmettre au second sous-système les mesures effectuées par le terminal mobile (30) sur le second sous-système et reçues par les moyens pour recevoir lesdites mesures effectuées.13. Locating device according to claim 10 or 11, comprising means for transmitting to the second subsystem the measurements made by the mobile terminal (30) on the second subsystem and received by the means for receiving said measurements made.
14. Dispositif de localisation selon la revendication 13, comprenant des moyens pour recevoir des informations de localisation depuis le second sous- système, et dans lequel les moyens pour localiser le terminal mobile (30) prennent en compte certaines au moins desdites informations de localisation reçues depuis le second sous-système. 14. Location device according to claim 13, comprising means for receiving location information from the second subsystem, and wherein the means for locating the mobile terminal (30) take into account at least some of said received location information from the second subsystem.
15. Dispositif de localisation selon l'une quelconque des revendications 10 à 14, dans lequel les moyens pour commander au terminal mobile d'effectuer des mesures relatives à la localisation sont mis en œuvre sur requête d'un client (40).15. Location device according to any one of claims 10 to 14, in which the means for commanding the mobile terminal to perform measurements relating to the location are implemented at the request of a client (40).
16. Dispositif de localisation selon l'une quelconque des revendications 10 à 15, dans lequel lesdits premier et second sous-systèmes sont des systèmes de radiocommunication de deuxième génération pour l'un et de troisième génération pour l'autre. 16. Locating device according to any one of claims 10 to 15, in which said first and second subsystems are second generation radiocommunication systems for one and third generation for the other.
EP04821062A 2003-12-19 2004-11-10 Position-finding method in a radiocommunication system, position-finding system and device for carrying out said method Withdrawn EP1698203A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0315084A FR2864414B1 (en) 2003-12-19 2003-12-19 METHOD OF LOCALIZATION IN A RADIO COMMUNICATION SYSTEM, SYSTEM AND LOCATION DEVICE FOR IMPLEMENTING THE METHOD
PCT/EP2004/012738 WO2005069668A2 (en) 2003-12-19 2004-11-10 Position-finding method in a radiocommunication system, position system and device for carrying out said method

Publications (1)

Publication Number Publication Date
EP1698203A2 true EP1698203A2 (en) 2006-09-06

Family

ID=34630400

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04821062A Withdrawn EP1698203A2 (en) 2003-12-19 2004-11-10 Position-finding method in a radiocommunication system, position-finding system and device for carrying out said method

Country Status (4)

Country Link
US (1) US20090104917A1 (en)
EP (1) EP1698203A2 (en)
FR (1) FR2864414B1 (en)
WO (1) WO2005069668A2 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100409719C (en) * 2005-08-10 2008-08-06 中兴通讯股份有限公司 Method of implementing tracing positioning service in mobile communication system
US20080065775A1 (en) * 2006-09-13 2008-03-13 Cisco Technology, Inc. Location data-URL mechanism
US8892112B2 (en) 2011-07-21 2014-11-18 At&T Mobility Ii Llc Selection of a radio access bearer resource based on radio access bearer resource historical information
US8326319B2 (en) 2009-01-23 2012-12-04 At&T Mobility Ii Llc Compensation of propagation delays of wireless signals
FR2942097A1 (en) * 2009-02-06 2010-08-13 Thomson Licensing TRANSMITTING METHOD IN A WIRELESS NETWORK AND CORRESPONDING RECEIVING METHOD
JP2010263489A (en) * 2009-05-08 2010-11-18 Sony Corp Communication device and communication method, computer program, and communication system
US8380223B2 (en) * 2009-09-16 2013-02-19 Andrew Llc System and method for providing centralized positioning determination for multiple radio access networks
US8224349B2 (en) 2010-02-25 2012-07-17 At&T Mobility Ii Llc Timed fingerprint locating in wireless networks
US9008684B2 (en) 2010-02-25 2015-04-14 At&T Mobility Ii Llc Sharing timed fingerprint location information
US9053513B2 (en) 2010-02-25 2015-06-09 At&T Mobility Ii Llc Fraud analysis for a location aware transaction
US8254959B2 (en) 2010-02-25 2012-08-28 At&T Mobility Ii Llc Timed fingerprint locating for idle-state user equipment in wireless networks
US9196157B2 (en) 2010-02-25 2015-11-24 AT&T Mobolity II LLC Transportation analytics employing timed fingerprint location information
US8447328B2 (en) 2010-08-27 2013-05-21 At&T Mobility Ii Llc Location estimation of a mobile device in a UMTS network
US9009629B2 (en) 2010-12-01 2015-04-14 At&T Mobility Ii Llc Motion-based user interface feature subsets
US8612410B2 (en) * 2011-06-30 2013-12-17 At&T Mobility Ii Llc Dynamic content selection through timed fingerprint location data
US9462497B2 (en) 2011-07-01 2016-10-04 At&T Mobility Ii Llc Subscriber data analysis and graphical rendering
US9519043B2 (en) 2011-07-21 2016-12-13 At&T Mobility Ii Llc Estimating network based locating error in wireless networks
US8897802B2 (en) 2011-07-21 2014-11-25 At&T Mobility Ii Llc Selection of a radio access technology resource based on radio access technology resource historical information
US8761799B2 (en) 2011-07-21 2014-06-24 At&T Mobility Ii Llc Location analytics employing timed fingerprint location information
US8923134B2 (en) 2011-08-29 2014-12-30 At&T Mobility Ii Llc Prioritizing network failure tickets using mobile location data
US8666390B2 (en) 2011-08-29 2014-03-04 At&T Mobility Ii Llc Ticketing mobile call failures based on geolocated event data
US9398402B2 (en) * 2011-09-19 2016-07-19 Polaris Wireless, Inc. Tracking large numbers of wireless terminals
US8762048B2 (en) 2011-10-28 2014-06-24 At&T Mobility Ii Llc Automatic travel time and routing determinations in a wireless network
US8909247B2 (en) 2011-11-08 2014-12-09 At&T Mobility Ii Llc Location based sharing of a network access credential
US8970432B2 (en) 2011-11-28 2015-03-03 At&T Mobility Ii Llc Femtocell calibration for timing based locating systems
US9026133B2 (en) 2011-11-28 2015-05-05 At&T Mobility Ii Llc Handset agent calibration for timing based locating systems
CN103139905B (en) * 2011-11-29 2016-07-13 华为技术有限公司 The method and apparatus that subscriber equipment is positioned
US8925104B2 (en) 2012-04-13 2014-12-30 At&T Mobility Ii Llc Event driven permissive sharing of information
US8929827B2 (en) 2012-06-04 2015-01-06 At&T Mobility Ii Llc Adaptive calibration of measurements for a wireless radio network
US9094929B2 (en) 2012-06-12 2015-07-28 At&T Mobility Ii Llc Event tagging for mobile networks
US9326263B2 (en) 2012-06-13 2016-04-26 At&T Mobility Ii Llc Site location determination using crowd sourced propagation delay and location data
US9046592B2 (en) 2012-06-13 2015-06-02 At&T Mobility Ii Llc Timed fingerprint locating at user equipment
US8938258B2 (en) * 2012-06-14 2015-01-20 At&T Mobility Ii Llc Reference based location information for a wireless network
US8897805B2 (en) 2012-06-15 2014-11-25 At&T Intellectual Property I, L.P. Geographic redundancy determination for time based location information in a wireless radio network
US9408174B2 (en) 2012-06-19 2016-08-02 At&T Mobility Ii Llc Facilitation of timed fingerprint mobile device locating
US8892054B2 (en) 2012-07-17 2014-11-18 At&T Mobility Ii Llc Facilitation of delay error correction in timing-based location systems
US9351223B2 (en) 2012-07-25 2016-05-24 At&T Mobility Ii Llc Assignment of hierarchical cell structures employing geolocation techniques
KR102123636B1 (en) * 2013-10-02 2020-06-17 삼성전자주식회사 Method for positioning based on network and an electronic device thereof
US9351111B1 (en) 2015-03-06 2016-05-24 At&T Mobility Ii Llc Access to mobile location related information
US10516972B1 (en) 2018-06-01 2019-12-24 At&T Intellectual Property I, L.P. Employing an alternate identifier for subscription access to mobile location information

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030040323A1 (en) * 2001-08-24 2003-02-27 Nokia Mobile Phones Ltd. Method of locating a mobile station based on observed time difference

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0107949D0 (en) * 2001-03-30 2001-05-23 Koninkl Philips Electronics Nv Method of determining position in a cellular communications network
GB0207129D0 (en) * 2002-03-26 2002-05-08 Nokia Corp Positioning-triggered handover
US20050239476A1 (en) * 2002-05-31 2005-10-27 Arvind Betrabet Method and system for providing location information of a mobile station

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030040323A1 (en) * 2001-08-24 2003-02-27 Nokia Mobile Phones Ltd. Method of locating a mobile station based on observed time difference

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Stage 2 functional specification of User Equipment (UE) positioning in UTRAN (Release 6)", 3GPP STANDARD; 3GPP TS 25.305, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. V6.0.0, 1 December 2003 (2003-12-01), pages 1 - 54, XP050367430 *
See also references of WO2005069668A2 *

Also Published As

Publication number Publication date
FR2864414A1 (en) 2005-06-24
WO2005069668A2 (en) 2005-07-28
US20090104917A1 (en) 2009-04-23
FR2864414B1 (en) 2006-03-03
WO2005069668A3 (en) 2005-09-22

Similar Documents

Publication Publication Date Title
EP1698203A2 (en) Position-finding method in a radiocommunication system, position-finding system and device for carrying out said method
EP0593320B1 (en) Transmission method of time advance information to a mobile moving in a cellular radio telephone network, mobile, controller and information exchange system using this method
EP0589753B2 (en) Method of transmitting, together with a handover command in a cellular system, a timing advance signal to a mobile
CN114270882A (en) System and method for 5G location session handoff of NG-RAN location management component
CA2268322A1 (en) Transfer process for a connection between two relays of a cell in a digital cellular radio communication system
EP0766491A2 (en) Cellular mobile radio communications system, base station and control device therefor
EP0893931A1 (en) Method for determining timing advance in a cellular radio communication system
AU2009282218A1 (en) Variable coherence integration for the location of weak signals
FR2858162A1 (en) METHOD FOR ACCESSING RESOURCES OF A RADIOCOMMUNICATION SYSTEM, MOBILE TERMINAL AND BASE STATION FOR IMPLEMENTING THE METHOD
EP2394474B1 (en) Transmission method in a wireless network and corresponding reception method
EP1315392A1 (en) Method for cell change in a packet-switched cellular radio system
EP3408967B1 (en) Reconfigurable network of sensors
FR2729267A1 (en) METHOD AND SYSTEM FOR REDUCING THE CONNECTION PHASE DURATION OF A MOBILE TO A BASE STATION OF A CELLULAR RADIO COMMUNICATION NETWORK
EP2875678A1 (en) Management of roaming in a communication network as a function of the speed of a mobile terminal
FR2860382A1 (en) METHOD AND SYSTEM FOR LOCATING A MOBILE TERMINAL
FR2772927A1 (en) Locating a mobile telephone using standard communication signals
FR2816774A1 (en) Mobile radio communications transmission quality optimisation/interference minimisation having successive energy samples received energy levels evaluated with sampling time dependent estimated speed mobile station.
EP1476960A1 (en) Method for multiple broadcasting in a mobile radiocommunication system
CA2337814A1 (en) System for locating mobile telephones
JP2024502311A (en) Memory for positioning capabilities in networks
EP4281794A1 (en) Delay processing for a geolocation measurement
EP4207889A1 (en) Method for validating a positioning of a user terminal in a 5g cell network
WO2023009218A1 (en) Method and apparatus for acquisition of reliable time in a wireless network
FR3103991A1 (en) INTERCELLULAR TRANSFER PROCESS AND ASSOCIATED NETWORK
FR2866186A1 (en) Parameter server for mobile terminal, has storage unit storing co-relation between wireless reception parameters along channels between mobile terminals and base stations, and data localizing terminals within network

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060719

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20120613

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: APPLE INC.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: APPLE INC.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20181107