EP1695762A2 - Halterung für das gemeinsame Beladen von Kapillaren - Google Patents
Halterung für das gemeinsame Beladen von Kapillaren Download PDFInfo
- Publication number
- EP1695762A2 EP1695762A2 EP06101121A EP06101121A EP1695762A2 EP 1695762 A2 EP1695762 A2 EP 1695762A2 EP 06101121 A EP06101121 A EP 06101121A EP 06101121 A EP06101121 A EP 06101121A EP 1695762 A2 EP1695762 A2 EP 1695762A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- vessel
- capillary
- common carrier
- loading
- support member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L9/00—Supporting devices; Holding devices
- B01L9/06—Test-tube stands; Test-tube holders
- B01L9/065—Test-tube stands; Test-tube holders specially adapted for capillary tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L9/00—Supporting devices; Holding devices
- B01L9/06—Test-tube stands; Test-tube holders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/02—Adapting objects or devices to another
- B01L2200/025—Align devices or objects to ensure defined positions relative to each other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0642—Filling fluids into wells by specific techniques
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0406—Moving fluids with specific forces or mechanical means specific forces capillary forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/508—Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
- B01L3/5085—Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
Definitions
- the samples are typically stored in the wells of a microtiter plate, interior volumes of Eppendorf tubes, or some similar laboratory container. Each sample from these laboratory containers is typically analyzed one at a time using a pipette or similar device to transfer a microliter volume of the sample to the analytical instrument or an individual sample holder that is inserted into the analytical instrument for analysis, although an alignment fixture can be used to aid in positioning a pipette at the opening of each corresponding sample holder.
- a pipette or similar device to transfer a microliter volume of the sample to the analytical instrument or an individual sample holder that is inserted into the analytical instrument for analysis, although an alignment fixture can be used to aid in positioning a pipette at the opening of each corresponding sample holder.
- There are several problems with these techniques For example, using pipettes to transfer micoliter volume samples commonly results inconsistent fill levels between vessels. Another problem is that bubbles can be transferred from the pipette tip into the sample holder or Cuvette. These inconsistencies cause undesirable results when the vessel is
- the present invention relates to simultaneously loading vessels using capillary action.
- One aspect of the present invention is an apparatus for holding a plurality of capillary vessels.
- the apparatus comprises a support member.
- a plurality of vessel holders is operatively connected to the support member.
- Each vessel holder is configured to retain a single capillary vessel.
- the apparatus comprises a support member.
- a plurality of vessel holders are operatively connected to the support member, and each vessel holder is configured to retain a single capillary vessel.
- Each vessel holder including first and second elongated members, which can be resilient, define a seat, and define a gap. The gap forms an aperture for passing light through the capillary vessel.
- the apparatus comprises a support member having a top portion and a bottom portion.
- a base is operatively connected to the bottom portion of the support member, and the base has a dovetail-shaped cross-sectional area.
- a plurality of vessel holders is operatively connected to the top portion of the support member.
- Each vessel holder is configured to retain a single capillary vessel and includes first and second elongated members.
- the first and second elongated members are resilient, define a seat, and define a gap. The gap forms an aperture for passing light through the capillary vessel.
- Another aspect of this invention is a method of loading a fluid sample into a capillary vessel.
- the method comprises attaching one or more capillary vessels to a common carrier, each capillary vessel having an opening and an interior volume sized for loading the capillary vessel by capillary action; positioning the common carrier so that the capillary vessel openings face downward; and positioning the capillary vessel openings into contact with a fluid in a reservoir.
- Another aspect of this invention is a method of loading a fluid sample.
- the method comprises attaching one or more Cuvettes to a common carrier, each Cuvette having an opening and an interior volume sized for loading the Cuvette by capillary action, the interior volume being about 2 ⁇ l or less; positioning the common carrier so that the Cuvette openings face downward; positioning the Cuvette openings into contact with a fluid in a reservoir; simultaneously loading fluid into the interior volume of the one or more Cuvettes by capillary action; and loading the common carrier into a spectrophotometer.
- a common carrier 10 that provides a fixture for holding capillary vessels includes an elongated support member 12, eight vessel holders or brackets 14a-14h, and a base 15.
- the elongated support member 12 has oppositely disposed sides 36 and 38 extending along its length, and has an end portion 40.
- the brackets 14a-14h are operatively connected to (e.g., either directly or indirectly linked to) and are structured to hold a capillary vessel such as a Cuvette 28 (shown mounted in brackets 14a and 14h in Figure 1 and in bracket 14c in Figure 2).
- the exemplary embodiment illustrates Cuvettes 28, other embodiments of the common carrier 10 are configured to hold capillary vessels other than Cuvettes 28.
- Bracket 14d has a top edge 18, a bottom portion 19 attached to the elongated support member 12, and two opposing and elongated bracket members 16a and 16b such as fmgers, tines, or prongs.
- the two opposing bracket members 16a and 16b are separated by a gap 20, which provides an aperture for an optical path when the common carrier 10 is used with a spectrophotometer or similar instrument so that light can pass through the Cuvette 28.
- the width of the gap 20 can vary between embodiments to match the distance between the reservoirs (e.g., wells in a microtiter plate) from which samples are loaded.
- Bracket member 16a has a recess 22a formed by a concave surface 24a and a radial surface 25a.
- the recess 22a opens to the top edge 18 of the bracket 14d and extends toward the bottom portion 19 to the radial surface 25a.
- the concave surface 24a and the radial surface 25a are substantially orthogonal.
- Bracket member 14b has a recess 22b substantially similar to and opposing the recess 22a.
- the recess 22b is formed by a concave surface 24b and a radial surface (not shown).
- the shape of the recesses 22a and 22b conform to the outer circumference of the laboratory vessel, which in the exemplary embodiment is a Cuvette 28 (shown mounted in brackets 14a and 14h).
- the recesses 22a and 22 b form a receptacle for holding the Cuvette 28.
- the radial surface 25a of the elongated bracket member 16a and the radial surface (not shown) of the elongated bracket member 16b form a seat 26 against which the Cuvette 28 is positioned.
- the distance between the seat 26 and the top edge 18 of the bracket 16d is smaller than the height of the Cuvette 28 so that when the Cuvette 28 is positioned against the seat 26, the top edge 30 of the Cuvette 28 extends at least slightly beyond the top edge 18 of the bracket 14d, which assists capillary uptake of the sample.
- the distances from the elongated support member 12 to the seat 26 and from the top edge 18 to the seat 26 are substantially consistent between each of the brackets 14a-14h.
- the bottom portion 19 of the bracket 14d defines a break 32 that is open to the gap 20 and extends between the sides 36 and 38 of the elongated support member 12 and has a circular cross-section with a circumference slightly larger than the width of the gap 20.
- the break provides a relief that makes it easier to spread the bracket members 16a and 16b so that a Cuvette 28 can be mounted in the recesses 22a and 228.
- An alternative embodiment does not includes the break 32, which makes the common carrier easier to mold when it is formed with a plastic, acrylic, or similar material.
- the gap 20 terminates at the base portion of the bracket 14d.
- the gap 20, with out without a break 32 terminates at a midpoint between the top edge 30 and the bottom portion 19 of the bracket 14d.
- the common carrier 10 is formed with a resilient material so that the bracket members 16a and 16b of the bracket 14d can be spread and will naturally return to their original position.
- the elongated bracket members 16a and 16b exert a spring force against the side of the Cuvette 28 and hold it in the receptacle formed by the recesses 22a and 22b.
- the common carrier is a single piece and that is injection molded and formed with polycarbonate, acrylic, polysulphone, or another medical grade material that is resilient.
- Brackets 14a-14c and 14e-14h are substantially similar to the bracket 14h.
- the distance d between adjacent brackets 14 is about 9 mm, which corresponds to a typical distance between wells in the column of a microtiter plate. This spacing allows Cuvettes 28 mounted in the brackets 14a-14h to be simultaneously dipped in the wells of a microtiter plate.
- the distance d is a distance other then 9 mm and matches the distance between adjacent reservoirs from which samples are loaded into the Cuvettes 28.
- the Cuvette 28 has an internal cavity 24 with a depth of about 4 mm and cross-sectional dimensions of about 1 mm and about 1 mm to form a capacity volume of about 4 ⁇ l.
- Other embodiments use Cuvettes of different sizes so long as they are capable of being loaded by capillary action.
- a Cuvette of a particular size and structure is illustrated, other embodiments of the common carrier 10 can be used and configured for Cuvettes of other sizes and for other types of vessels that can be loaded with capillary action.
- an alternative embodiment of a Cuvette has internal dimensions, of about 2 mm by about 1 mm by about 1 mm to form a capacity volume of about 2 ⁇ l.
- the range of dimensions and structures for the laboratory vessel that can be used with the common carrier 10 and still maintain the properties for capillary action depend on the internal dimensions of the laboratory vessel, the type of material that forms the laboratory vessel, and the type of fluid that is being loaded into the laboratory vessel.
- one possible embodiment of the Cuvette 28 or other capillary vessel has internal dimensions sized to be about the same size as or only slightly larger than the cross-sectional area of the light beam passed through the Cuvette 28. Any sample loaded in the Cuvette that is not in the path of the light-beam is not analyzed by the spectrophotometer. This embodiment prevents unnecessary waste of the sample from the microtiter plate from which the Cuvette 28 is loaded.
- the end 40 of the elongated support member 12 has a grip 42, which is formed with a first grip groove 44 defined in the first side 36 of the elongated support member 12.
- the first grip groove 44 is linear and extends from and is orthogonal to the base 15.
- a second grip recess (not shown) that mirrors the first recess 44 is formed on the opposite side 38 of the elongated support member 12.
- the grip 42 provides a structure by which a clamping mechanism 46 for an automated spectrometer can grip or latch onto the common carrier 10 while the common carrier 10 is indexed through an a spectrophotometer or other analytical instrument for testing samples loaded in the Cuvettes 28.
- the structure of the grip 42 can vary depending on the clamping mechanism 46 that grips or latches onto the common carrier 10.
- the base 15 extends along the bottom portion of the elongated support member 12 and has a dovetail cross-section providing a width substantially wider than the elongated support member 12. Sidewalls 50 and 52 slope downward from the sides 36 and 38, respectively, of the elongated support member 12 to the bottom portion of the base 15.
- the base 15 provides a structure that stabilizes the common carrier 10 when it is set on a lab bench or tabletop. It also provides a structure that a user can grab when loading the Cuvettes 28 as described herein.
- the base 15 is configured to be slidably inserted into a track or guide 62 that and retains the common carrier in the automated spectrophotometer.
- the track 62 positions the common carrier in the automated spectrophotometer.
- the base 15 includes indicia (not shown) indicating the location of each bracket on the common carrier 10.
- Each of the indicia is a distinctive machine-readable marking that provides a positioning guide to locate and orient the Cuvettes 28 in the automated spectrophotometer.
- the automated spectrophotometer indexes the common carrier 10 by translating the clamping mechanism 46 to the correct position so that the desired Cuvette 28 within the optical path of the automated spectrophotometer.
- a microtiter plate 54 has a plurality of wells 56 organized into columns 58a-581 with eight wells 56a-56h in each column.
- Each of the wells contains a liquid sample 60.
- wells 56a-56c contain samples 60a-60c, respectively.
- Separate wells 56 may contain the same sample or different samples 60.
- Cuvettes 28 are inserted into each of the brackets 16a-16h of the common carrier 10 and positioned so that the bottom of the Cuvette 28 rests against the seat 26.
- the common carrier 10 is then inverted or turned upside down so that the openings of the Cuvettes 28 are facing downward.
- the inverted common carrier 10 is positioned over a column 58 of the microtiter plate 54 and lowered until each of the Cuvettes 28 enters a separate well 58a-58h in the column 58 of the microtiter plate 54.
- the Cuvettes 28 are positioned so that the opening of each of the Cuvettes 28 is simultaneously in contact with the sample in the well 58a-58h, either touching the surface of the sample or positioned below the surface of the sample.
- the sample in each well 58a-58h then flows into its respective Cuvette 28 by capillary action.
- the common carrier 10 can be handled in a variety of ways when loading the Cuvettes 28 with samples and loading the common carrier 10 and Cuvettes 28 into a spectrophotometer.
- the Cuvettes 28 are manually loaded with sample and the common carrier 10 is manually inserted into the analytically instrument and secured to a carriage by the clamping mechanism 46.
- a robotic arm 46 is used to maneuver the common carrier when loading the Cuvettes 28 with sample, loading the common carrier 10 and Cuvettes 28 into the spectrophotometer, and or indexing the common carrier within the spectrophotometer.
- the Cuvettes 28 are manually loaded with sample and then the common carrier 10 is automatically loaded into and indexed through the spectrophotometer using a robotic arm, conveyor system, or other automated mechanism.
- the common carrier 10 is indexed through the spectrophotometer so that each gap 20 and Cuvette 28 is sequentially aligned with the light source and optics of the spectrometer for analysis of the sample loaded in the Cuvette 28.
- the common carrier 10 is disclosed as being used with a spectrophotometer, it can be used with other analytical instruments as well.
- the exemplary embodiment illustrates eight wells 56A-56h in a column of the microtiter plate 54 and eight brackets 16a-16h on the common carrier 10, other embodiments are possible.
- the common carrier 10 has the same number of brackets 16 as the number of wells 56 of the microtiter plate 54 with which it is being used.
- the number of brackets 16 and the number of wells 56 in a column 58 of the microtiter plate can 54 be eight, ten, twelve, sixteen, etc.
- the number of brackets 16 on the common carrier 10 is less than and a factor of (i.e., evenly divisible into) the number of wells 56 in a column 58 of the microtiter plate 54. For example, if there are four brackets 16 on the common carrier 10, there are four, eight, or twelve, etc. wells 56 in a column 58 of the microtiter plate 54.
- Cuvettes 18 are loaded into only a portion of the brackets 16.
- Cuvettes 28 of different sizes are loaded into brackets 16 on a single common carrier 10. When this embodiment is used, care is take to ensure that the opening of all of the Cuvettes 28 are placed in contact with or below the surface of the samples in microtiter plate wells 56.
- the Cuvettes 28 are typically discarded.
- the Cuvettes 28 can be cleaned.
- the Cuvettes 28 can be rinsed with Isopropanol alcohol, then rinsed with water, and then dried with a nitrogen air gun.
- the common carrier 10 is also cleaned after use to prevent contamination of samples in later testing.
- the Cuvettes 28 are discarded and the common carrier 10 is cleaned for reuse.
Landscapes
- Health & Medical Sciences (AREA)
- Clinical Laboratory Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sampling And Sample Adjustment (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Optical Measuring Cells (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/049,210 US20060170905A1 (en) | 2005-02-02 | 2005-02-02 | Common carrier for loading capillary vessels |
US11/049,135 US20060171858A1 (en) | 2005-02-02 | 2005-02-02 | Common carrier for loading capillary vessels |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1695762A2 true EP1695762A2 (de) | 2006-08-30 |
EP1695762A3 EP1695762A3 (de) | 2007-03-28 |
Family
ID=36659883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06101121A Withdrawn EP1695762A3 (de) | 2005-02-02 | 2006-01-31 | Halterung für das gemeinsame Beladen von Kapillaren |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP1695762A3 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2848309A1 (de) * | 2013-09-13 | 2015-03-18 | NanoTemper Technologies GmbH | Träger für Kapillaren |
WO2023030577A1 (de) | 2021-08-31 | 2023-03-09 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung | Halter für ein einzelnes kapillarröhrchen und sammelvorrichtung für mehrere halter |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3712465A (en) * | 1970-11-24 | 1973-01-23 | Sherwood Medical Ind Inc | Tray for use in sealing capillary tubes |
JPH04106457A (ja) * | 1990-08-28 | 1992-04-08 | Shimadzu Corp | 分光光度計用サンプル自動交換装置 |
US5651941A (en) * | 1992-06-29 | 1997-07-29 | Dade International Inc. | Sample tube carrier |
US20030175170A1 (en) * | 2002-02-26 | 2003-09-18 | Ciphergen Biosystems, Inc. | System for preparing and handling multiple laser desorption ionization probes |
FR2853565A1 (fr) * | 2003-04-11 | 2004-10-15 | Commissariat Energie Atomique | Microdispositif de transfert collectif d'une pluralite de liquide |
-
2006
- 2006-01-31 EP EP06101121A patent/EP1695762A3/de not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3712465A (en) * | 1970-11-24 | 1973-01-23 | Sherwood Medical Ind Inc | Tray for use in sealing capillary tubes |
JPH04106457A (ja) * | 1990-08-28 | 1992-04-08 | Shimadzu Corp | 分光光度計用サンプル自動交換装置 |
US5651941A (en) * | 1992-06-29 | 1997-07-29 | Dade International Inc. | Sample tube carrier |
US20030175170A1 (en) * | 2002-02-26 | 2003-09-18 | Ciphergen Biosystems, Inc. | System for preparing and handling multiple laser desorption ionization probes |
FR2853565A1 (fr) * | 2003-04-11 | 2004-10-15 | Commissariat Energie Atomique | Microdispositif de transfert collectif d'une pluralite de liquide |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2848309A1 (de) * | 2013-09-13 | 2015-03-18 | NanoTemper Technologies GmbH | Träger für Kapillaren |
EP2848310A1 (de) * | 2013-09-13 | 2015-03-18 | NanoTemper Technologies GmbH | Träger für Kapillaren |
US10488326B2 (en) | 2013-09-13 | 2019-11-26 | Nanotemper Technologies Gmbh | Capillary array |
WO2023030577A1 (de) | 2021-08-31 | 2023-03-09 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung | Halter für ein einzelnes kapillarröhrchen und sammelvorrichtung für mehrere halter |
Also Published As
Publication number | Publication date |
---|---|
EP1695762A3 (de) | 2007-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4919894A (en) | Multiple sample holder indexing means and method of using same | |
US8449836B2 (en) | Fixtures for use in parallel processing bio-chips | |
US7166257B2 (en) | Multiwell test apparatus | |
US5098663A (en) | Specimen rack for specimen containers | |
DK3112473T3 (en) | DOWNSTREAM PREPARATION OF AN ALKALIC PHOSPHATASE | |
US7258240B2 (en) | Blood bank testing workstations | |
US7468164B2 (en) | Automated fluid handling cartridge and fluid processing system | |
GB2472321A (en) | A microplate and microplate holder | |
WO2000072969A1 (en) | Apparatus and method for the precise location of reaction plates | |
AU2003200123B2 (en) | Pin tool apparatus and method | |
US7282362B2 (en) | Tray with protrusions | |
US9656264B2 (en) | Biological sample holder and method of assembling same | |
JPS63502929A (ja) | モジュール式貯蔵機構 | |
US20150241389A1 (en) | Multi-capillary cartridge for capillary electrophoresis | |
EP1695762A2 (de) | Halterung für das gemeinsame Beladen von Kapillaren | |
CN1540354A (zh) | 用于分析仪的具有探针导轨的测试单元支架 | |
EP1232011B1 (de) | Pipettenspitze mit mehreren kanälen und dazu gehörendes titrationskit | |
US20060170905A1 (en) | Common carrier for loading capillary vessels | |
ES2911471T3 (es) | Aparato automático de laboratorio para el tratamiento automático de muestras de laboratorio | |
US20060171858A1 (en) | Common carrier for loading capillary vessels | |
US11471890B2 (en) | Receptacle holder and receptacle rack | |
JP2004521645A (ja) | マルチウェル検査装置用供給トレイ | |
US20090020662A1 (en) | Container segment assembly | |
CN213482251U (zh) | 一种生化分析仪 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AGILENT TECHNOLOGIES, INC. |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
AKX | Designation fees paid | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20071001 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |