EP1695762A2 - Common carrier for loading capillary vessels - Google Patents

Common carrier for loading capillary vessels Download PDF

Info

Publication number
EP1695762A2
EP1695762A2 EP06101121A EP06101121A EP1695762A2 EP 1695762 A2 EP1695762 A2 EP 1695762A2 EP 06101121 A EP06101121 A EP 06101121A EP 06101121 A EP06101121 A EP 06101121A EP 1695762 A2 EP1695762 A2 EP 1695762A2
Authority
EP
European Patent Office
Prior art keywords
vessel
capillary
common carrier
loading
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06101121A
Other languages
German (de)
French (fr)
Other versions
EP1695762A3 (en
Inventor
George Tsai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agilent Technologies Inc
Original Assignee
Agilent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/049,135 external-priority patent/US20060171858A1/en
Priority claimed from US11/049,210 external-priority patent/US20060170905A1/en
Application filed by Agilent Technologies Inc filed Critical Agilent Technologies Inc
Publication of EP1695762A2 publication Critical patent/EP1695762A2/en
Publication of EP1695762A3 publication Critical patent/EP1695762A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/06Test-tube stands; Test-tube holders
    • B01L9/065Test-tube stands; Test-tube holders specially adapted for capillary tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/06Test-tube stands; Test-tube holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/025Align devices or objects to ensure defined positions relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0642Filling fluids into wells by specific techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates

Definitions

  • the samples are typically stored in the wells of a microtiter plate, interior volumes of Eppendorf tubes, or some similar laboratory container. Each sample from these laboratory containers is typically analyzed one at a time using a pipette or similar device to transfer a microliter volume of the sample to the analytical instrument or an individual sample holder that is inserted into the analytical instrument for analysis, although an alignment fixture can be used to aid in positioning a pipette at the opening of each corresponding sample holder.
  • a pipette or similar device to transfer a microliter volume of the sample to the analytical instrument or an individual sample holder that is inserted into the analytical instrument for analysis, although an alignment fixture can be used to aid in positioning a pipette at the opening of each corresponding sample holder.
  • There are several problems with these techniques For example, using pipettes to transfer micoliter volume samples commonly results inconsistent fill levels between vessels. Another problem is that bubbles can be transferred from the pipette tip into the sample holder or Cuvette. These inconsistencies cause undesirable results when the vessel is
  • the present invention relates to simultaneously loading vessels using capillary action.
  • One aspect of the present invention is an apparatus for holding a plurality of capillary vessels.
  • the apparatus comprises a support member.
  • a plurality of vessel holders is operatively connected to the support member.
  • Each vessel holder is configured to retain a single capillary vessel.
  • the apparatus comprises a support member.
  • a plurality of vessel holders are operatively connected to the support member, and each vessel holder is configured to retain a single capillary vessel.
  • Each vessel holder including first and second elongated members, which can be resilient, define a seat, and define a gap. The gap forms an aperture for passing light through the capillary vessel.
  • the apparatus comprises a support member having a top portion and a bottom portion.
  • a base is operatively connected to the bottom portion of the support member, and the base has a dovetail-shaped cross-sectional area.
  • a plurality of vessel holders is operatively connected to the top portion of the support member.
  • Each vessel holder is configured to retain a single capillary vessel and includes first and second elongated members.
  • the first and second elongated members are resilient, define a seat, and define a gap. The gap forms an aperture for passing light through the capillary vessel.
  • Another aspect of this invention is a method of loading a fluid sample into a capillary vessel.
  • the method comprises attaching one or more capillary vessels to a common carrier, each capillary vessel having an opening and an interior volume sized for loading the capillary vessel by capillary action; positioning the common carrier so that the capillary vessel openings face downward; and positioning the capillary vessel openings into contact with a fluid in a reservoir.
  • Another aspect of this invention is a method of loading a fluid sample.
  • the method comprises attaching one or more Cuvettes to a common carrier, each Cuvette having an opening and an interior volume sized for loading the Cuvette by capillary action, the interior volume being about 2 ⁇ l or less; positioning the common carrier so that the Cuvette openings face downward; positioning the Cuvette openings into contact with a fluid in a reservoir; simultaneously loading fluid into the interior volume of the one or more Cuvettes by capillary action; and loading the common carrier into a spectrophotometer.
  • a common carrier 10 that provides a fixture for holding capillary vessels includes an elongated support member 12, eight vessel holders or brackets 14a-14h, and a base 15.
  • the elongated support member 12 has oppositely disposed sides 36 and 38 extending along its length, and has an end portion 40.
  • the brackets 14a-14h are operatively connected to (e.g., either directly or indirectly linked to) and are structured to hold a capillary vessel such as a Cuvette 28 (shown mounted in brackets 14a and 14h in Figure 1 and in bracket 14c in Figure 2).
  • the exemplary embodiment illustrates Cuvettes 28, other embodiments of the common carrier 10 are configured to hold capillary vessels other than Cuvettes 28.
  • Bracket 14d has a top edge 18, a bottom portion 19 attached to the elongated support member 12, and two opposing and elongated bracket members 16a and 16b such as fmgers, tines, or prongs.
  • the two opposing bracket members 16a and 16b are separated by a gap 20, which provides an aperture for an optical path when the common carrier 10 is used with a spectrophotometer or similar instrument so that light can pass through the Cuvette 28.
  • the width of the gap 20 can vary between embodiments to match the distance between the reservoirs (e.g., wells in a microtiter plate) from which samples are loaded.
  • Bracket member 16a has a recess 22a formed by a concave surface 24a and a radial surface 25a.
  • the recess 22a opens to the top edge 18 of the bracket 14d and extends toward the bottom portion 19 to the radial surface 25a.
  • the concave surface 24a and the radial surface 25a are substantially orthogonal.
  • Bracket member 14b has a recess 22b substantially similar to and opposing the recess 22a.
  • the recess 22b is formed by a concave surface 24b and a radial surface (not shown).
  • the shape of the recesses 22a and 22b conform to the outer circumference of the laboratory vessel, which in the exemplary embodiment is a Cuvette 28 (shown mounted in brackets 14a and 14h).
  • the recesses 22a and 22 b form a receptacle for holding the Cuvette 28.
  • the radial surface 25a of the elongated bracket member 16a and the radial surface (not shown) of the elongated bracket member 16b form a seat 26 against which the Cuvette 28 is positioned.
  • the distance between the seat 26 and the top edge 18 of the bracket 16d is smaller than the height of the Cuvette 28 so that when the Cuvette 28 is positioned against the seat 26, the top edge 30 of the Cuvette 28 extends at least slightly beyond the top edge 18 of the bracket 14d, which assists capillary uptake of the sample.
  • the distances from the elongated support member 12 to the seat 26 and from the top edge 18 to the seat 26 are substantially consistent between each of the brackets 14a-14h.
  • the bottom portion 19 of the bracket 14d defines a break 32 that is open to the gap 20 and extends between the sides 36 and 38 of the elongated support member 12 and has a circular cross-section with a circumference slightly larger than the width of the gap 20.
  • the break provides a relief that makes it easier to spread the bracket members 16a and 16b so that a Cuvette 28 can be mounted in the recesses 22a and 228.
  • An alternative embodiment does not includes the break 32, which makes the common carrier easier to mold when it is formed with a plastic, acrylic, or similar material.
  • the gap 20 terminates at the base portion of the bracket 14d.
  • the gap 20, with out without a break 32 terminates at a midpoint between the top edge 30 and the bottom portion 19 of the bracket 14d.
  • the common carrier 10 is formed with a resilient material so that the bracket members 16a and 16b of the bracket 14d can be spread and will naturally return to their original position.
  • the elongated bracket members 16a and 16b exert a spring force against the side of the Cuvette 28 and hold it in the receptacle formed by the recesses 22a and 22b.
  • the common carrier is a single piece and that is injection molded and formed with polycarbonate, acrylic, polysulphone, or another medical grade material that is resilient.
  • Brackets 14a-14c and 14e-14h are substantially similar to the bracket 14h.
  • the distance d between adjacent brackets 14 is about 9 mm, which corresponds to a typical distance between wells in the column of a microtiter plate. This spacing allows Cuvettes 28 mounted in the brackets 14a-14h to be simultaneously dipped in the wells of a microtiter plate.
  • the distance d is a distance other then 9 mm and matches the distance between adjacent reservoirs from which samples are loaded into the Cuvettes 28.
  • the Cuvette 28 has an internal cavity 24 with a depth of about 4 mm and cross-sectional dimensions of about 1 mm and about 1 mm to form a capacity volume of about 4 ⁇ l.
  • Other embodiments use Cuvettes of different sizes so long as they are capable of being loaded by capillary action.
  • a Cuvette of a particular size and structure is illustrated, other embodiments of the common carrier 10 can be used and configured for Cuvettes of other sizes and for other types of vessels that can be loaded with capillary action.
  • an alternative embodiment of a Cuvette has internal dimensions, of about 2 mm by about 1 mm by about 1 mm to form a capacity volume of about 2 ⁇ l.
  • the range of dimensions and structures for the laboratory vessel that can be used with the common carrier 10 and still maintain the properties for capillary action depend on the internal dimensions of the laboratory vessel, the type of material that forms the laboratory vessel, and the type of fluid that is being loaded into the laboratory vessel.
  • one possible embodiment of the Cuvette 28 or other capillary vessel has internal dimensions sized to be about the same size as or only slightly larger than the cross-sectional area of the light beam passed through the Cuvette 28. Any sample loaded in the Cuvette that is not in the path of the light-beam is not analyzed by the spectrophotometer. This embodiment prevents unnecessary waste of the sample from the microtiter plate from which the Cuvette 28 is loaded.
  • the end 40 of the elongated support member 12 has a grip 42, which is formed with a first grip groove 44 defined in the first side 36 of the elongated support member 12.
  • the first grip groove 44 is linear and extends from and is orthogonal to the base 15.
  • a second grip recess (not shown) that mirrors the first recess 44 is formed on the opposite side 38 of the elongated support member 12.
  • the grip 42 provides a structure by which a clamping mechanism 46 for an automated spectrometer can grip or latch onto the common carrier 10 while the common carrier 10 is indexed through an a spectrophotometer or other analytical instrument for testing samples loaded in the Cuvettes 28.
  • the structure of the grip 42 can vary depending on the clamping mechanism 46 that grips or latches onto the common carrier 10.
  • the base 15 extends along the bottom portion of the elongated support member 12 and has a dovetail cross-section providing a width substantially wider than the elongated support member 12. Sidewalls 50 and 52 slope downward from the sides 36 and 38, respectively, of the elongated support member 12 to the bottom portion of the base 15.
  • the base 15 provides a structure that stabilizes the common carrier 10 when it is set on a lab bench or tabletop. It also provides a structure that a user can grab when loading the Cuvettes 28 as described herein.
  • the base 15 is configured to be slidably inserted into a track or guide 62 that and retains the common carrier in the automated spectrophotometer.
  • the track 62 positions the common carrier in the automated spectrophotometer.
  • the base 15 includes indicia (not shown) indicating the location of each bracket on the common carrier 10.
  • Each of the indicia is a distinctive machine-readable marking that provides a positioning guide to locate and orient the Cuvettes 28 in the automated spectrophotometer.
  • the automated spectrophotometer indexes the common carrier 10 by translating the clamping mechanism 46 to the correct position so that the desired Cuvette 28 within the optical path of the automated spectrophotometer.
  • a microtiter plate 54 has a plurality of wells 56 organized into columns 58a-581 with eight wells 56a-56h in each column.
  • Each of the wells contains a liquid sample 60.
  • wells 56a-56c contain samples 60a-60c, respectively.
  • Separate wells 56 may contain the same sample or different samples 60.
  • Cuvettes 28 are inserted into each of the brackets 16a-16h of the common carrier 10 and positioned so that the bottom of the Cuvette 28 rests against the seat 26.
  • the common carrier 10 is then inverted or turned upside down so that the openings of the Cuvettes 28 are facing downward.
  • the inverted common carrier 10 is positioned over a column 58 of the microtiter plate 54 and lowered until each of the Cuvettes 28 enters a separate well 58a-58h in the column 58 of the microtiter plate 54.
  • the Cuvettes 28 are positioned so that the opening of each of the Cuvettes 28 is simultaneously in contact with the sample in the well 58a-58h, either touching the surface of the sample or positioned below the surface of the sample.
  • the sample in each well 58a-58h then flows into its respective Cuvette 28 by capillary action.
  • the common carrier 10 can be handled in a variety of ways when loading the Cuvettes 28 with samples and loading the common carrier 10 and Cuvettes 28 into a spectrophotometer.
  • the Cuvettes 28 are manually loaded with sample and the common carrier 10 is manually inserted into the analytically instrument and secured to a carriage by the clamping mechanism 46.
  • a robotic arm 46 is used to maneuver the common carrier when loading the Cuvettes 28 with sample, loading the common carrier 10 and Cuvettes 28 into the spectrophotometer, and or indexing the common carrier within the spectrophotometer.
  • the Cuvettes 28 are manually loaded with sample and then the common carrier 10 is automatically loaded into and indexed through the spectrophotometer using a robotic arm, conveyor system, or other automated mechanism.
  • the common carrier 10 is indexed through the spectrophotometer so that each gap 20 and Cuvette 28 is sequentially aligned with the light source and optics of the spectrometer for analysis of the sample loaded in the Cuvette 28.
  • the common carrier 10 is disclosed as being used with a spectrophotometer, it can be used with other analytical instruments as well.
  • the exemplary embodiment illustrates eight wells 56A-56h in a column of the microtiter plate 54 and eight brackets 16a-16h on the common carrier 10, other embodiments are possible.
  • the common carrier 10 has the same number of brackets 16 as the number of wells 56 of the microtiter plate 54 with which it is being used.
  • the number of brackets 16 and the number of wells 56 in a column 58 of the microtiter plate can 54 be eight, ten, twelve, sixteen, etc.
  • the number of brackets 16 on the common carrier 10 is less than and a factor of (i.e., evenly divisible into) the number of wells 56 in a column 58 of the microtiter plate 54. For example, if there are four brackets 16 on the common carrier 10, there are four, eight, or twelve, etc. wells 56 in a column 58 of the microtiter plate 54.
  • Cuvettes 18 are loaded into only a portion of the brackets 16.
  • Cuvettes 28 of different sizes are loaded into brackets 16 on a single common carrier 10. When this embodiment is used, care is take to ensure that the opening of all of the Cuvettes 28 are placed in contact with or below the surface of the samples in microtiter plate wells 56.
  • the Cuvettes 28 are typically discarded.
  • the Cuvettes 28 can be cleaned.
  • the Cuvettes 28 can be rinsed with Isopropanol alcohol, then rinsed with water, and then dried with a nitrogen air gun.
  • the common carrier 10 is also cleaned after use to prevent contamination of samples in later testing.
  • the Cuvettes 28 are discarded and the common carrier 10 is cleaned for reuse.

Landscapes

  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optical Measuring Cells (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

An apparatus for holding a plurality of capillary vessels. The apparatus comprises a support member. A plurality of vessel holders is operatively connected to the support member. Each vessel holder is configured to retain a single capillary vessel.

Description

    Background
  • When performing analytical procedures, it is often desirable to verify the quality of the sample that is being analyzed or otherwise processed. When sampling genetic material such as DNA or RNA for example, it is common perform an amplification process on a sample to increase the amount of genetic material. A small microliter portion of the amplified sample is then analyzed using a spectrophotometer to verify the amount or concentration of the genetic material in the sample.
  • The samples are typically stored in the wells of a microtiter plate, interior volumes of Eppendorf tubes, or some similar laboratory container. Each sample from these laboratory containers is typically analyzed one at a time using a pipette or similar device to transfer a microliter volume of the sample to the analytical instrument or an individual sample holder that is inserted into the analytical instrument for analysis, although an alignment fixture can be used to aid in positioning a pipette at the opening of each corresponding sample holder. There are several problems with these techniques. For example, using pipettes to transfer micoliter volume samples commonly results inconsistent fill levels between vessels. Another problem is that bubbles can be transferred from the pipette tip into the sample holder or Cuvette. These inconsistencies cause undesirable results when the vessel is inserted into an analytical instrument for analysis.
  • Summary
  • In general terms, the present invention relates to simultaneously loading vessels using capillary action.
  • One aspect of the present invention is an apparatus for holding a plurality of capillary vessels. The apparatus comprises a support member. A plurality of vessel holders is operatively connected to the support member. Each vessel holder is configured to retain a single capillary vessel.
  • Another aspect of the present invention is an apparatus for holding a plurality of capillary vessels. The apparatus comprises a support member. A plurality of vessel holders are operatively connected to the support member, and each vessel holder is configured to retain a single capillary vessel. Each vessel holder including first and second elongated members, which can be resilient, define a seat, and define a gap. The gap forms an aperture for passing light through the capillary vessel.
  • Yet another possible embodiment of the present invention is an apparatus for holding a plurality of capillary vessels. The apparatus comprises a support member having a top portion and a bottom portion. A base is operatively connected to the bottom portion of the support member, and the base has a dovetail-shaped cross-sectional area. A plurality of vessel holders is operatively connected to the top portion of the support member. Each vessel holder is configured to retain a single capillary vessel and includes first and second elongated members. The first and second elongated members are resilient, define a seat, and define a gap. The gap forms an aperture for passing light through the capillary vessel.
  • Another aspect of this invention is a method of loading a fluid sample into a capillary vessel. The method comprises attaching one or more capillary vessels to a common carrier, each capillary vessel having an opening and an interior volume sized for loading the capillary vessel by capillary action; positioning the common carrier so that the capillary vessel openings face downward; and positioning the capillary vessel openings into contact with a fluid in a reservoir.
  • Another aspect of this invention is a method of loading a fluid sample. The method comprises attaching one or more Cuvettes to a common carrier, each Cuvette having an opening and an interior volume sized for loading the Cuvette by capillary action, the interior volume being about 2 µl or less; positioning the common carrier so that the Cuvette openings face downward; positioning the Cuvette openings into contact with a fluid in a reservoir; simultaneously loading fluid into the interior volume of the one or more Cuvettes by capillary action; and loading the common carrier into a spectrophotometer.
  • Brief Description of the Drawings
  • Further details are explained below with the help of the examples illustrated in the attached drawings in which:
    • Figure 1 is an axonometric projection of a common carrier loaded with two Cuvettes.
    • Figure 2 is an axonometric projection of the common carrier illustrated in Figure 1, including three cuvette holder locations, with only one of them being loaded with a cuvette.
    • Figure 3 is an axonometric projection of a 96-well plate and the common carrier illustrated in Figure 1.
    • Figure 4 is an axonometric projection of an area of detail of Figure 3.
    • Figure 5 is an axonometric projection of the common carrier illustrated in Figure 1 and a clamping mechanism latched onto the common carrier.
    Detailed Description
  • Various embodiments of the present invention will be described in detail with reference to the drawings, wherein like reference numerals represent like parts and assemblies throughout the several views. Reference to various embodiments does not limit the scope of the invention, which is limited only by the scope of the claims attached hereto. Additionally, any examples set forth in this specification are not intended to be limiting and merely set forth some of the many possible embodiments for the claimed invention.
  • Referring to Figures 1 and 2, one possible embodiment of a common carrier 10 that provides a fixture for holding capillary vessels includes an elongated support member 12, eight vessel holders or brackets 14a-14h, and a base 15. The elongated support member 12 has oppositely disposed sides 36 and 38 extending along its length, and has an end portion 40. The brackets 14a-14h are operatively connected to (e.g., either directly or indirectly linked to) and are structured to hold a capillary vessel such as a Cuvette 28 (shown mounted in brackets 14a and 14h in Figure 1 and in bracket 14c in Figure 2). Although the exemplary embodiment illustrates Cuvettes 28, other embodiments of the common carrier 10 are configured to hold capillary vessels other than Cuvettes 28.
  • Bracket 14d has a top edge 18, a bottom portion 19 attached to the elongated support member 12, and two opposing and elongated bracket members 16a and 16b such as fmgers, tines, or prongs. The two opposing bracket members 16a and 16b are separated by a gap 20, which provides an aperture for an optical path when the common carrier 10 is used with a spectrophotometer or similar instrument so that light can pass through the Cuvette 28. The width of the gap 20 can vary between embodiments to match the distance between the reservoirs (e.g., wells in a microtiter plate) from which samples are loaded.
  • Bracket member 16a has a recess 22a formed by a concave surface 24a and a radial surface 25a. The recess 22a opens to the top edge 18 of the bracket 14d and extends toward the bottom portion 19 to the radial surface 25a. The concave surface 24a and the radial surface 25a are substantially orthogonal. Bracket member 14b has a recess 22b substantially similar to and opposing the recess 22a. The recess 22b is formed by a concave surface 24b and a radial surface (not shown). In one possible embodiment, as explained in more detail herein, the shape of the recesses 22a and 22b conform to the outer circumference of the laboratory vessel, which in the exemplary embodiment is a Cuvette 28 (shown mounted in brackets 14a and 14h).
  • The recesses 22a and 22 b form a receptacle for holding the Cuvette 28. Additionally, the radial surface 25a of the elongated bracket member 16a and the radial surface (not shown) of the elongated bracket member 16b form a seat 26 against which the Cuvette 28 is positioned. Additionally, the distance between the seat 26 and the top edge 18 of the bracket 16d is smaller than the height of the Cuvette 28 so that when the Cuvette 28 is positioned against the seat 26, the top edge 30 of the Cuvette 28 extends at least slightly beyond the top edge 18 of the bracket 14d, which assists capillary uptake of the sample. Additionally, the distances from the elongated support member 12 to the seat 26 and from the top edge 18 to the seat 26 are substantially consistent between each of the brackets 14a-14h.
  • The bottom portion 19 of the bracket 14d defines a break 32 that is open to the gap 20 and extends between the sides 36 and 38 of the elongated support member 12 and has a circular cross-section with a circumference slightly larger than the width of the gap 20. The break provides a relief that makes it easier to spread the bracket members 16a and 16b so that a Cuvette 28 can be mounted in the recesses 22a and 228. An alternative embodiment does not includes the break 32, which makes the common carrier easier to mold when it is formed with a plastic, acrylic, or similar material. In this alternative embodiment the gap 20 terminates at the base portion of the bracket 14d. In another alternative embodiment, the gap 20, with out without a break 32 terminates at a midpoint between the top edge 30 and the bottom portion 19 of the bracket 14d.
  • The common carrier 10 is formed with a resilient material so that the bracket members 16a and 16b of the bracket 14d can be spread and will naturally return to their original position. In this embodiment, the elongated bracket members 16a and 16b exert a spring force against the side of the Cuvette 28 and hold it in the receptacle formed by the recesses 22a and 22b. In one possible embodiment, the common carrier is a single piece and that is injection molded and formed with polycarbonate, acrylic, polysulphone, or another medical grade material that is resilient.
  • Brackets 14a-14c and 14e-14h are substantially similar to the bracket 14h. In one possible embodiment, the distance d between adjacent brackets 14 is about 9 mm, which corresponds to a typical distance between wells in the column of a microtiter plate. This spacing allows Cuvettes 28 mounted in the brackets 14a-14h to be simultaneously dipped in the wells of a microtiter plate. In other possible embodiments, the distance d is a distance other then 9 mm and matches the distance between adjacent reservoirs from which samples are loaded into the Cuvettes 28.
  • In the exemplary embodiment, the Cuvette 28 has an internal cavity 24 with a depth of about 4 mm and cross-sectional dimensions of about 1 mm and about 1 mm to form a capacity volume of about 4 µl. Other embodiments use Cuvettes of different sizes so long as they are capable of being loaded by capillary action. Although a Cuvette of a particular size and structure is illustrated, other embodiments of the common carrier 10 can be used and configured for Cuvettes of other sizes and for other types of vessels that can be loaded with capillary action. For example, an alternative embodiment of a Cuvette has internal dimensions, of about 2 mm by about 1 mm by about 1 mm to form a capacity volume of about 2 µl. The range of dimensions and structures for the laboratory vessel that can be used with the common carrier 10 and still maintain the properties for capillary action depend on the internal dimensions of the laboratory vessel, the type of material that forms the laboratory vessel, and the type of fluid that is being loaded into the laboratory vessel.
  • When the common carrier is used with a spectrophotometer, one possible embodiment of the Cuvette 28 or other capillary vessel has internal dimensions sized to be about the same size as or only slightly larger than the cross-sectional area of the light beam passed through the Cuvette 28. Any sample loaded in the Cuvette that is not in the path of the light-beam is not analyzed by the spectrophotometer. This embodiment prevents unnecessary waste of the sample from the microtiter plate from which the Cuvette 28 is loaded.
  • The end 40 of the elongated support member 12 has a grip 42, which is formed with a first grip groove 44 defined in the first side 36 of the elongated support member 12. The first grip groove 44 is linear and extends from and is orthogonal to the base 15. A second grip recess (not shown) that mirrors the first recess 44 is formed on the opposite side 38 of the elongated support member 12. The grip 42 provides a structure by which a clamping mechanism 46 for an automated spectrometer can grip or latch onto the common carrier 10 while the common carrier 10 is indexed through an a spectrophotometer or other analytical instrument for testing samples loaded in the Cuvettes 28. The structure of the grip 42 can vary depending on the clamping mechanism 46 that grips or latches onto the common carrier 10.
  • Referring back to Figures 1 and 2, in one possible embodiment, the base 15 extends along the bottom portion of the elongated support member 12 and has a dovetail cross-section providing a width substantially wider than the elongated support member 12. Sidewalls 50 and 52 slope downward from the sides 36 and 38, respectively, of the elongated support member 12 to the bottom portion of the base 15. The base 15 provides a structure that stabilizes the common carrier 10 when it is set on a lab bench or tabletop. It also provides a structure that a user can grab when loading the Cuvettes 28 as described herein.
  • In one possible embodiment, the base 15 is configured to be slidably inserted into a track or guide 62 that and retains the common carrier in the automated spectrophotometer. The track 62 positions the common carrier in the automated spectrophotometer. In yet another possible embodiment, the base 15 includes indicia (not shown) indicating the location of each bracket on the common carrier 10. Each of the indicia is a distinctive machine-readable marking that provides a positioning guide to locate and orient the Cuvettes 28 in the automated spectrophotometer. The automated spectrophotometer indexes the common carrier 10 by translating the clamping mechanism 46 to the correct position so that the desired Cuvette 28 within the optical path of the automated spectrophotometer.
  • In use, referring to Figures 3 and 4, a microtiter plate 54 has a plurality of wells 56 organized into columns 58a-581 with eight wells 56a-56h in each column. Each of the wells contains a liquid sample 60. For example, wells 56a-56c contain samples 60a-60c, respectively. Separate wells 56 may contain the same sample or different samples 60.
  • Cuvettes 28 are inserted into each of the brackets 16a-16h of the common carrier 10 and positioned so that the bottom of the Cuvette 28 rests against the seat 26. The common carrier 10 is then inverted or turned upside down so that the openings of the Cuvettes 28 are facing downward. The inverted common carrier 10 is positioned over a column 58 of the microtiter plate 54 and lowered until each of the Cuvettes 28 enters a separate well 58a-58h in the column 58 of the microtiter plate 54. The Cuvettes 28 are positioned so that the opening of each of the Cuvettes 28 is simultaneously in contact with the sample in the well 58a-58h, either touching the surface of the sample or positioned below the surface of the sample. The sample in each well 58a-58h then flows into its respective Cuvette 28 by capillary action.
  • The common carrier 10 can be handled in a variety of ways when loading the Cuvettes 28 with samples and loading the common carrier 10 and Cuvettes 28 into a spectrophotometer. In one possible embodiment, for example, the Cuvettes 28 are manually loaded with sample and the common carrier 10 is manually inserted into the analytically instrument and secured to a carriage by the clamping mechanism 46. In another possible embodiment, a robotic arm 46 is used to maneuver the common carrier when loading the Cuvettes 28 with sample, loading the common carrier 10 and Cuvettes 28 into the spectrophotometer, and or indexing the common carrier within the spectrophotometer. In yet another embodiment, the Cuvettes 28 are manually loaded with sample and then the common carrier 10 is automatically loaded into and indexed through the spectrophotometer using a robotic arm, conveyor system, or other automated mechanism.
  • After the common carrier 10 and Cuvettes 28 are loaded in to the spectrophotometer, the common carrier 10 is indexed through the spectrophotometer so that each gap 20 and Cuvette 28 is sequentially aligned with the light source and optics of the spectrometer for analysis of the sample loaded in the Cuvette 28. Although the common carrier 10 is disclosed as being used with a spectrophotometer, it can be used with other analytical instruments as well.
  • Although the exemplary embodiment illustrates eight wells 56A-56h in a column of the microtiter plate 54 and eight brackets 16a-16h on the common carrier 10, other embodiments are possible. In one possible embodiment, for example, the common carrier 10 has the same number of brackets 16 as the number of wells 56 of the microtiter plate 54 with which it is being used. In this embodiment, the number of brackets 16 and the number of wells 56 in a column 58 of the microtiter plate can 54 be eight, ten, twelve, sixteen, etc. In another embodiment, the number of brackets 16 on the common carrier 10 is less than and a factor of (i.e., evenly divisible into) the number of wells 56 in a column 58 of the microtiter plate 54. For example, if there are four brackets 16 on the common carrier 10, there are four, eight, or twelve, etc. wells 56 in a column 58 of the microtiter plate 54.
  • In another possible embodiment, Cuvettes 18 are loaded into only a portion of the brackets 16. In yet another possible embodiment, Cuvettes 28 of different sizes (e.g., volume) are loaded into brackets 16 on a single common carrier 10. When this embodiment is used, care is take to ensure that the opening of all of the Cuvettes 28 are placed in contact with or below the surface of the samples in microtiter plate wells 56.
  • After analysis of the samples loaded in the Cuvettes 28 is complete, the Cuvettes 28 are typically discarded. Alternately, the Cuvettes 28 can be cleaned. For example, the Cuvettes 28 can be rinsed with Isopropanol alcohol, then rinsed with water, and then dried with a nitrogen air gun. The common carrier 10 is also cleaned after use to prevent contamination of samples in later testing. In yet another possible embodiment, the Cuvettes 28 are discarded and the common carrier 10 is cleaned for reuse.
  • Experiment
  • An experiment was conducted in which Cuvettes were loaded with sample using the common carrier described herein and using pipettes. Each column (eight wells) in a Falcon 96-well microtiter plate was filled with a total solution volume of 200 µl. The first column was filled with 200 µl of solution formed with water and food color, the second column was filled with 200 µl of solution formed with 30 µg/ml raffinose and food coloring, and the third column was filled 200 µl of solution formed with 100 µg/ml raffinose and food coloring. After loading the common carrier with cuvettes, it was inverted and dipped into the first column in the microtiter plate. As the cuvettes contacted the liquid, capillary action filling of the cuvettes was observed. The common carrier was then turned to an upright position. This procedure was repeated for the second and third columns of the microtiter plate. After each repetition of the procedure, the Cuvettes and common carrier were rinsed with Isopropanol alcohol, rinsed with water, and then dried with a nitrogen air gun until it they were dry.
  • The observed results for Cuvettes loaded using the common carrier were consistent for the water solution, the 30 µg/ml raffinose solution, and the 100 µg/ml raffinose solution, and included quick uptake of the solution into the Cuvettes, consistent fill levels between all eight Cuvettes held in the common carrier, and an absence ofbubbles within the Cuvettes.
  • The common method of filling cuvettes by use of a pipette was also performed in the laboratory for the water solution, the 30 ml raffinose solution, and the 100 ml raffinose solution. Each Cuvette was filled with 4 µl of solution. Observed results included uneven filling and the transfer of bubbles from the pipette to the cuvette. Further, difficulty was encountered in positioning the tip of the pipette into the cuvette opening.
  • The various embodiments described above are provided by way of illustration only and should not be construed to limit the invention. Those skilled in the art will readily recognize various modifications and changes that may be made to the present invention without following the example embodiments and applications illustrated and described herein, and without departing from the true spirit and scope of the present invention, which is set forth in the following claims.

Claims (17)

  1. An apparatus for holding a plurality of capillary vessels, the apparatus comprising:
    a support member; and
    a plurality of vessel holders operatively connected to the support member, each vessel holder configured to retain a single capillary vessel.
  2. The apparatus of claim 1 wherein each vessel holder defines a seat for positioning the capillary vessel.
  3. The apparatus of claim 2 wherein:
    each vessel holder includes first and second elongated members, the first elongated members having a first concave surface and the second elongated member having a second concave surface opposing the first concave surface;
    the capillary vessel has an outer surface; and
    the first and second concave surfaces substantially conform to the outer surface of the laboratory vessel.
  4. The apparatus of claim 2 or 3, wherein the vessel holder includes a top edge, and a portion of the capillary vessel extends above the top edge of the vessel holder when the capillary vessel is positioned against the seat.
  5. The apparatus of claim 1 or any one of the above claims, further comprising at least one capillary vessel mounted in one of the plurality of vessel holders, wherein preferably the capillary vessel is a Cuvette.
  6. The apparatus of claim 1 or any one of the above claims, wherein each vessel holder includes first and second elongated members, the first and second elongated members defining a gap, the gap forming an aperture for passing light through the capillary vessel, wherein preferably the vessel holder has a top edge and the gap extends from the support member to the top edge.
  7. The apparatus of claim 1 or any one of the above claims, further comprising a microtiter plate, the microtiter plate having a plurality of wells organized into at least one column, and wherein adjacent vessel holders are spaced for simultaneous insertion into separate wells within a single column of wellswherein preferably the number of vessel holders equals the number of wells in a single column of wells or is less than and is a factor of the number of wells in a column.
  8. The apparatus of claim 1 or any one of the above claims, wherein the support member has a bottom portion and the apparatus further comprises a base operatively connected to the support member, wherein preferably the base has a dovetail-shaped cross-sectional area.
  9. The apparatus of the preceding claim further comprising a spectrometer, the spectrometer having a track, the track configured to receive the base.
  10. The apparatus of claim 1, comprising at least one of the features:
    the base portion defines a groove, the apparatus further comprising a spectrometer, the spectrometer including a clamp, the clamp configured to grip the base portion at the groove;
    the number of vessel holders is eight;
    each vessel holder includes first and second elongated members, the first and second elongated members being resilient.
  11. An apparatus for holding a plurality of capillary vessels, the apparatus comprising:
    a support member; and
    a plurality of vessel holders operatively connected to the support member, each vessel holder being configured to retain a single capillary vessel, each vessel holder including first and second elongated members, the first and second elongated members being resilient, defming a seat, and defining a gap, the gap forming an aperture for passing light through the capillary vessel.
  12. An apparatus for holding a plurality of capillary vessels, the apparatus comprising:
    a support member having a top portion and a bottom portion;
    a base operatively connected to the bottom portion of the support member, the base having a dovetail-shaped cross-sectional area; and
    a plurality of vessel holders operatively connected to the top portion of the support member, each vessel holder configured to retain a single capillary vessel, each vessel holder including first and second elongated members, the first and second elongated members being resilient, defming a seat, and defining a gap, the gap forming an aperture for passing light through the capillary vessel.
  13. A method of loading a fluid sample into a capillary vessel, the method comprising:
    attaching one or more capillary vessels to a common carrier, each capillary vessel having an opening and an interior volume sized for loading the capillary vessel by capillary action;
    positioning the common carrier so that the capillary vessel openings face downward; and
    positioning the capillary vessel openings into contact with a fluid in a reservoir.
  14. The method of claim 13 comprising at least one of the features:
    simultaneously loading fluid into the interior volume of the one or more capillary vessels by capillary action;
    the act of attaching one or more capillary vessels to a common carrier includes attaching one or more Cuvettes;
    the act of attaching one or more capillary vessels to a common carrier includes attaching a capillary vessel having an interior volume of about 4 µl or less;
    the act of attaching one or more capillary vessels to a common carrier includes attaching a capillary vessel having an interior volume of about 2 µl;
    the one or more capillary vessels includes at least a first and second capillary vessels, the method further comprising loading the first capillary vessel with a first volume and the second capillary vessel with a second volume.
  15. The method of claim 13 or 14, wherein the act of positioning the capillary vessel openings into contact with a fluid includes the reservoir consisting of a multi-well plate, wherein each capillary vessel contacts the fluid of one of a different well of the multi-well plate.
  16. The method of preceding claim, comprising at least one of the features:
    the reservoir consists of a multi-well plate that is structured in columns of wells that are a multiple number of a maximum number of capillary vessels held by the common carrier, wherein preferably the reservoir consists of a 96-well plate and the common carrier is able to hold a maximum of 8 capillary vessels;
    placing the common carrier in an upright position and loading the common carrier into an analytical instrument, wherein preferably loading the common carrier into an analytical instrument includes attaching the common carrier to guide and/or a clamp;
    placing the common carrier in an upright position and loading the common carrier into a spectrophotometer;
    disposing of the common carrier and the capillary vessels;
    cleaning the common carrier and the capillary vessels.
  17. A method of loading a fluid sample, the method comprising:
    attaching one or more Cuvettes to a common carrier, each Cuvette having an opening and an interior volume sized for loading the Cuvette by capillary action, the interior volume being about 2 µl or less;
    positioning the common carrier so that the Cuvette openings face downward;
    positioning the Cuvette openings into contact with a fluid in a reservoir;
    simultaneously loading fluid into the interior volume of the one or more Cuvettes by capillary action; and
    loading the common carrier into a spectrophotometer.
EP06101121A 2005-02-02 2006-01-31 Common carrier for loading capillary vessels Withdrawn EP1695762A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/049,135 US20060171858A1 (en) 2005-02-02 2005-02-02 Common carrier for loading capillary vessels
US11/049,210 US20060170905A1 (en) 2005-02-02 2005-02-02 Common carrier for loading capillary vessels

Publications (2)

Publication Number Publication Date
EP1695762A2 true EP1695762A2 (en) 2006-08-30
EP1695762A3 EP1695762A3 (en) 2007-03-28

Family

ID=36659883

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06101121A Withdrawn EP1695762A3 (en) 2005-02-02 2006-01-31 Common carrier for loading capillary vessels

Country Status (1)

Country Link
EP (1) EP1695762A3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2848309A1 (en) * 2013-09-13 2015-03-18 NanoTemper Technologies GmbH Holder for capillaries
WO2023030577A1 (en) 2021-08-31 2023-03-09 Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung Holder for an individual capillary tube, and collecting device for a plurality of holders

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3712465A (en) * 1970-11-24 1973-01-23 Sherwood Medical Ind Inc Tray for use in sealing capillary tubes
JPH04106457A (en) * 1990-08-28 1992-04-08 Shimadzu Corp Apparatus for automatic replacement of sample for spectrophotometer
US5651941A (en) * 1992-06-29 1997-07-29 Dade International Inc. Sample tube carrier
US20030175170A1 (en) * 2002-02-26 2003-09-18 Ciphergen Biosystems, Inc. System for preparing and handling multiple laser desorption ionization probes
FR2853565A1 (en) * 2003-04-11 2004-10-15 Commissariat Energie Atomique Equipment for simultaneous sampling, transfer and storage of micro-quantities of liquid, comprises plates with aligning micropipettes and reservoirs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3712465A (en) * 1970-11-24 1973-01-23 Sherwood Medical Ind Inc Tray for use in sealing capillary tubes
JPH04106457A (en) * 1990-08-28 1992-04-08 Shimadzu Corp Apparatus for automatic replacement of sample for spectrophotometer
US5651941A (en) * 1992-06-29 1997-07-29 Dade International Inc. Sample tube carrier
US20030175170A1 (en) * 2002-02-26 2003-09-18 Ciphergen Biosystems, Inc. System for preparing and handling multiple laser desorption ionization probes
FR2853565A1 (en) * 2003-04-11 2004-10-15 Commissariat Energie Atomique Equipment for simultaneous sampling, transfer and storage of micro-quantities of liquid, comprises plates with aligning micropipettes and reservoirs

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2848309A1 (en) * 2013-09-13 2015-03-18 NanoTemper Technologies GmbH Holder for capillaries
EP2848310A1 (en) * 2013-09-13 2015-03-18 NanoTemper Technologies GmbH Holder for capillaries
US10488326B2 (en) 2013-09-13 2019-11-26 Nanotemper Technologies Gmbh Capillary array
WO2023030577A1 (en) 2021-08-31 2023-03-09 Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung Holder for an individual capillary tube, and collecting device for a plurality of holders

Also Published As

Publication number Publication date
EP1695762A3 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
US4919894A (en) Multiple sample holder indexing means and method of using same
US8449836B2 (en) Fixtures for use in parallel processing bio-chips
US7166257B2 (en) Multiwell test apparatus
US5098663A (en) Specimen rack for specimen containers
DK3112473T3 (en) DOWNSTREAM PREPARATION OF AN ALKALIC PHOSPHATASE
JP4209679B2 (en) Holding device
EP1183103B1 (en) Apparatus and method for the precise location of reaction plates
EP1803499A1 (en) Sample tube holder
US7468164B2 (en) Automated fluid handling cartridge and fluid processing system
GB2472321A (en) A microplate and microplate holder
AU2003200123B2 (en) Pin tool apparatus and method
US7282362B2 (en) Tray with protrusions
US20130323829A1 (en) Biological sample holder and method of assembling same
JPS63502929A (en) modular storage system
EP1695762A2 (en) Common carrier for loading capillary vessels
EP1232011B1 (en) Pipette tip having plural channels and a corresponding titration kit
WO2015127422A1 (en) Multi-capillary cartridge for capillary electrophoresis
US20060170905A1 (en) Common carrier for loading capillary vessels
US20060171858A1 (en) Common carrier for loading capillary vessels
US20200147616A1 (en) Receptacle holder and receptacle rack
ES2911471T3 (en) Automatic laboratory apparatus for the automatic treatment of laboratory samples
JP2004521645A (en) Supply tray for multiwell inspection equipment
CN213482251U (en) Biochemical analyzer
JPH11276154A (en) Simultaneous transfer apparatus for sample

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AGILENT TECHNOLOGIES, INC.

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20071001

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566