EP1695473A1 - Method and device for increasing the capacity of non-spread transmission systems - Google Patents

Method and device for increasing the capacity of non-spread transmission systems

Info

Publication number
EP1695473A1
EP1695473A1 EP04804594A EP04804594A EP1695473A1 EP 1695473 A1 EP1695473 A1 EP 1695473A1 EP 04804594 A EP04804594 A EP 04804594A EP 04804594 A EP04804594 A EP 04804594A EP 1695473 A1 EP1695473 A1 EP 1695473A1
Authority
EP
European Patent Office
Prior art keywords
information
info
symbols
users
bits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04804594A
Other languages
German (de)
French (fr)
Inventor
Marc THALES Intellectual Property CHENU-TOURNIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1695473A1 publication Critical patent/EP1695473A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/005Iterative decoding, including iteration between signal detection and decoding operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0055MAP-decoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Definitions

  • the invention relates in particular to a method making it possible to increase the capacity of the transmission systems by multiplying the number of simultaneous transmitters in the same frequency band and making it possible to separate the users in particular through the use of iterative steps.
  • Methods are known from the prior art allowing the simultaneous transmission of different users. They are generally based on the use of spreading codes, such as CDMA (Anglo-Saxon abbreviation of Code Division Multiple Access), MCCDMA (Anglo-Saxon abbreviation of Multicarrier Code-Division-Multiple-Access) and / or the use of multiple antenna receivers.
  • CDMA Anglo-Saxon abbreviation of Code Division Multiple Access
  • MCCDMA Anglo-Saxon abbreviation of Multicarrier Code-Division-Multiple-Access
  • the method according to the invention is notably based on a new approach which exploits the independence of the bit streams (signals from the different transmitters), the channel coding and the difference of the majority of the propagation channels.
  • the invention relates to a method for increasing the capacity of signal transmission systems comprising Nj users, a monobloc receiver receiving the mixture of signals from the N ⁇ users. It is characterized in that it comprises at least the following steps: a) determining qualitative information Info (Qs) of the symbols estimated for each of the N ⁇ users, b) transmitting this information lnfo (Qs) to a processing block receiving a priori information and suitable for generating quality information on the bits constituting the lnfo symbols (Qbs), c) transmit the lnfo (Qbs) to a decoding step to obtain qualitative information lnfo (Qbs) on the coded bits and lnfo (Qbu) on the useful bits.
  • the method according to the invention allows in particular: • to increase the speed of transmission systems using existing standards for user stations by only modifying the access point. • to simply separate the different bit streams by exchanging information between the demodulation block and the decoding block. • increase the capacity of transmission systems by multiplying the number of transmitters without using multi-antenna receivers and without using spectrum spreading techniques, as part of normal operation.
  • Figure 1 the overall diagram of the process according to the invention
  • FIG. 2 the detailed generic diagram of the steps of the method according to the invention.
  • FIG. 1 shows schematically the different steps of the method according to the invention used in a communication or transmission system comprising several users or NT transmitters, and a receiver consisting for example of a single sensor R.
  • the different transmitters transmit the symbols simultaneously in the same frequency band, for example. Since communications are generally disturbed by a propagation channel, channel coding is conventionally used. The method uses, for example, this coding to perform the demodulation.
  • FIG. 2 represents the generic diagram of an example of a single-sensor receptor. It comprises a module 1 making it possible to receive the mixture of the signals emitted by the N ⁇ users or transmitters, to separate the different users and to provide qualitative information, lnfo (Qs), symbols estimated for each of the NT users (for example a probability of having received such a symbol).
  • Qs lnfo
  • Module 1 can be a detector in the sense of maximum a posteriori (MAP) which provides a probability of the symbols transmitted for the different NT transmitters by relying on a priori information.
  • MAP maximum a posteriori
  • the information on the estimated symbols lnfo (Qs) is then transmitted to a processing block which will deduce therefrom quality information on the bits constituting the symbols lnfo (Qbs).
  • This information lnfo (Qbs) is then transmitted to the decoding block 4i (a deinterlacing procedure can be applied before) which, in turn, will produce qualitative information lnfo (Qbs) on the coded bits and lnfo (Qbu) on the useful bits.
  • the information on the coded bits lnfo can be reused in order to re-estimate information on the symbols as described above.
  • the information on the useful bits is deduced from the information on the bits coded for example by the decoding procedure.
  • Prior processing of the information transmitted to the different blocks may prove necessary for the proper functioning of the process. For example, in the example described below, the information previously used to estimate new qualitative information on a bit is subtracted in order to bring only real new information to the block receiving it. These steps are repeated, either a fixed number of times, or until a criterion is verified (for example, the qualitative information no longer changes).
  • the operation of the method is described below as an example for the user Ni.
  • Qs is transmitted to a device 2 ⁇ (or de-mapping) having in particular the function of providing information on the probability of the bits transmitted L D (c k 1 ) by the user N1 Info (Qbs).
  • This information is for example sent in a 3 ⁇ deinterlacer then to a BCJR algorithm (coding block 4i) in order to obtain the probability of the coded bits L c (c k 1 ) (qualitative information on the coded bits lnfo (Qbs) and the useful bits, Info
  • This last information (L c (c k 1 )) is subtracted from the first probability information L D (c ⁇ 1 ) on the bits (quality information on the bits constituting the symbols Info (Qs)) before pass through the deinterlacer.
  • mapping, de-mapping, interleaver and deinterleaver devices are devices known to those skilled in the art which are not detailed in the present description.
  • invention, the following example is don born in the case of OFDM transmitters (Anglo-Saxon abbreviation of orthogonal frequency division multiplexing) synchronized in frequency. For this so-called multi-carrier or parallel waveform, the various symbols are transmitted simultaneously on orthogonal subcarriers. .
  • the different transmitters use a convolutional code as in the Hiperlan / 2 or IEEE802.11a standard.
  • the receiver conventionally performs a discrete Fourier transform (TFD) over a determined time interval to estimate the symbols transmitted.
  • TFD discrete Fourier transform
  • the signal received by the receiver after the Fourier Transform is given by: (1) with • y the received signal represented by a vector N Jxl with N the number of subcarriers, • a is the vector of dimension containing the sy J mboles transmitted by the N transmitters.
  • the first N elements are the symbols transmitted on the first subcarrier.
  • I PC ⁇ PC ®IN is the matrix of dimension NT (N l ⁇ _ + N DFT) xN TN W. which performs the insertion of the cyclic prefix (specific to OFDM) • H is the matrix of the samples representing the propagation channel, of dimension NT ⁇ [NW + N DFT) ⁇ + NH) xN ri N ⁇ + N CP with N the maximum length of the propagation channels.
  • G i contains the elements of the frequency response of the channel.
  • G is a vector of size lx N r.
  • the detector within the meaning of the MAP provides the following probabilities: (qualitative information of the estimated symbols - probability of the symbols emitted for the different emitters)
  • a a k contains the vectors of symbols a which have the symbol a at position k. These probabilities are then used to calculate the probability of the bits making up the symbols:
  • L D (c) L (c) -L c (c) (9) which is supplied to the decoding block.
  • These values L D (c) (L D (c) in fig. 2) are the inputs of the flexible decoder which, in the example, is a type algorithm BCJR, described for example in the document by L. Bahl, J. Cocke, F.
  • this decoder provides both a probability of the useful bits (before coding) and a probability of the coded bits which constitute the symbols.
  • the method is used for example for BPSK (Anglo-Saxon abbreviation for Bit Phase Shift Keying) or QPSK (Anglo-Saxon abbreviation for Quadrature Phase Shift Keying) modulations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method for increasing the capacity of signal transmission systems comprising NT users and a monobloc receiver receiving a mixture of signals from NT users, consisting of the following steps: determination of qualitative information Info(Qs) relating to estimated symbols for each NT user; transmission of said information Info(Qs) to a processing unit which receives information a priori and which is adapted in order to generate quality information Info(Qbs) on the bits making up said symbols; transmission of the Info(Qbs) to a decoding stage in order to obtain qualitative information on the coded bits and Info(Qbu) on the useful bits.

Description

PROCEDE ET DISPOSITIF PERMETTANT D'ACCROITRE LA CAPACITE DES SYSTEMES DE TRANSMISSION NON ETALES METHOD AND DEVICE FOR INCREASING THE CAPACITY OF NON-SPREAD TRANSMISSION SYSTEMS
L'invention concerne notamment un procédé permettant d'accroître la capacité des systèmes de transmission en multipliant le nombre d'émetteurs simultanés dans une même bande de fréquence et permettant de séparer les utilisateurs notamment grâce à l'utilisation d'étapes itératives. II est connu de l'art antérieur des procédés permettant la transmission simultanée de différents utilisateurs. Ils reposent généralement sur l'utilisation de codes d'étalement, tels que le CDMA (abréviation anglo- saxonne de Code Division Multiple Access), le MCCDMA (abréviation anglo- saxonne de Multicarrier Code-Division-Multiple-Access) et/ou sur l'utilisation de récepteurs à antennes multiples. Le procédé selon l'invention repose notamment sur une nouvelle approche qui exploite l'indépendance des flux binaires (signaux provenant des différents émetteurs), le codage de canal et la différence de la majorité des canaux de propagation.The invention relates in particular to a method making it possible to increase the capacity of the transmission systems by multiplying the number of simultaneous transmitters in the same frequency band and making it possible to separate the users in particular through the use of iterative steps. Methods are known from the prior art allowing the simultaneous transmission of different users. They are generally based on the use of spreading codes, such as CDMA (Anglo-Saxon abbreviation of Code Division Multiple Access), MCCDMA (Anglo-Saxon abbreviation of Multicarrier Code-Division-Multiple-Access) and / or the use of multiple antenna receivers. The method according to the invention is notably based on a new approach which exploits the independence of the bit streams (signals from the different transmitters), the channel coding and the difference of the majority of the propagation channels.
L'invention concerne un procédé pour accroître la capacité de systèmes de transmission de signaux comprenant Nj utilisateurs, un récepteur monobloc recevant le mélange des signaux provenant des Nτ utilisateurs. Il est caractérisé en ce qu'il comporte au moins les étapes suivantes : a) déterminer une information qualitative Info (Qs) des symboles estimés pour chacun des Nτ utilisateurs, b) transmettre cette information lnfo(Qs) à un bloc de traitement recevant une information a priori et adapté à générer une information de qualité sur les bits constituants les symboles lnfo(Qbs), c) transmettre l'lnfo(Qbs) à une étape de décodage pour obtenir une information qualitative lnfo(Qbs) sur les bits codés et lnfo(Qbu) sur les bits utiles. Le procédé selon l'invention permet notamment : • d'accroître le débit des systèmes de transmission utilisant des standards existants pour les stations utilisateurs en ne modifiant que le point d'accès. • de séparer simplement les différents flux binaires en échangeant de l'information entre le bloc de démodulation et le bloc de décodage. • d'augmenter la capacité des systèmes de transmission en multipliant le nombre d'émetteurs sans utiliser de récepteurs multi-antennes et sans utiliser de techniques d'étalement de spectre, dans le cadre d'un fonctionnement normal. D'autres avantages et caractéristiques de l'invention apparaîtront mieux à la lecture de la description qui suit d'un exemple détaillé, donné à titre illustratif et nullement limitatif, annexé des figures qui représentent : • La figure 1 le schéma global du procédé selon l'invention, et • La figure 2 le schéma générique détaillé des étapes du procédé selon l'invention.The invention relates to a method for increasing the capacity of signal transmission systems comprising Nj users, a monobloc receiver receiving the mixture of signals from the N τ users. It is characterized in that it comprises at least the following steps: a) determining qualitative information Info (Qs) of the symbols estimated for each of the N τ users, b) transmitting this information lnfo (Qs) to a processing block receiving a priori information and suitable for generating quality information on the bits constituting the lnfo symbols (Qbs), c) transmit the lnfo (Qbs) to a decoding step to obtain qualitative information lnfo (Qbs) on the coded bits and lnfo (Qbu) on the useful bits. The method according to the invention allows in particular: • to increase the speed of transmission systems using existing standards for user stations by only modifying the access point. • to simply separate the different bit streams by exchanging information between the demodulation block and the decoding block. • increase the capacity of transmission systems by multiplying the number of transmitters without using multi-antenna receivers and without using spectrum spreading techniques, as part of normal operation. Other advantages and characteristics of the invention will appear better on reading the following description of a detailed example, given by way of illustration and in no way limiting, appended to the figures which represent: • Figure 1 the overall diagram of the process according to the invention, and FIG. 2 the detailed generic diagram of the steps of the method according to the invention.
La figure 1 schématise les différentes étapes du procédé selon l'invention utilisé dans un système de communication ou de transmission comprenant plusieurs utilisateurs ou émetteurs NT, et un récepteur constitué par exemple d'un monocapteur R. Les différents émetteurs transmettent les symboles simultanément dans la même bande de fréquence, par exemple. Les communications étant généralement perturbées par un canal de propagation, un codage canal est classiquement utilisé. Le procédé se sert, par exemple, de ce codage pour effectuer la démodulation. La figure 2 représente le schéma générique d'un exemple de récepteur monocapteur. Il comporte un module 1 permettant de recevoir le mélange des signaux émis par les Nτ utilisateurs ou émetteurs, de séparer les différents utilisateurs et de fournir, une information qualitative, lnfo(Qs), des symboles estimés pour chacun des utilisateurs NT (par exemple une probabilité d'avoir reçu tel symbole). Le module 1 peut être un détecteur au sens du maximum a posteriori (MAP) qui fournit une probabilité des symboles émis pour les différents émetteurs NT en reposant sur une information a priori. L'information sur les symboles estimés lnfo(Qs) est ensuite transmise à un bloc de traitement qui va en déduire une information de qualité sur les bits constituants les symboles lnfo(Qbs). Cette information lnfo(Qbs) est ensuite transmise au bloc de décodage 4i (une procédure de désentrelacement peut être appliquée auparavant) qui, à son tour, va produire une information qualitative lnfo(Qbs) sur les bits codés et lnfo(Qbu) sur les bits utiles. L'information sur les bits codés lnfo(Qbs) peut être réutilisée afin d'estimer à nouveau une information sur les symboles comme décrit précédement. L'information sur les bits utiles est déduite de l'information sur les bits codés par exemple par la procédure de décodage. Un traitement préalable des informations transmises aux différents blocs peut s'avérer nécessaire pour un bon fonctionnement du procédé. Par exemple dans l'exemple décrit ci après, l'information précédemment utilisée pour estimer une nouvelle information qualitative sur un bit est retranchée afin de n'apporter qu'une réelle nouvelle information au bloc la recevant. Ces étapes sont réitérées, soit un nombre fixé de fois, soit jusqu'à ce qu'un critère soit vérifié (par exemple les informations qualitatives n'évoluent plus). Le fonctionnement du procédé est décrit ci-après en tant qu'exemple pour l'utilisateur N-i. L'information sur la probabilité de symboles émis P(a1Nu|yi), InfoFigure 1 shows schematically the different steps of the method according to the invention used in a communication or transmission system comprising several users or NT transmitters, and a receiver consisting for example of a single sensor R. The different transmitters transmit the symbols simultaneously in the same frequency band, for example. Since communications are generally disturbed by a propagation channel, channel coding is conventionally used. The method uses, for example, this coding to perform the demodulation. FIG. 2 represents the generic diagram of an example of a single-sensor receptor. It comprises a module 1 making it possible to receive the mixture of the signals emitted by the N τ users or transmitters, to separate the different users and to provide qualitative information, lnfo (Qs), symbols estimated for each of the NT users (for example a probability of having received such a symbol). Module 1 can be a detector in the sense of maximum a posteriori (MAP) which provides a probability of the symbols transmitted for the different NT transmitters by relying on a priori information. The information on the estimated symbols lnfo (Qs) is then transmitted to a processing block which will deduce therefrom quality information on the bits constituting the symbols lnfo (Qbs). This information lnfo (Qbs) is then transmitted to the decoding block 4i (a deinterlacing procedure can be applied before) which, in turn, will produce qualitative information lnfo (Qbs) on the coded bits and lnfo (Qbu) on the useful bits. The information on the coded bits lnfo (Qbs) can be reused in order to re-estimate information on the symbols as described above. The information on the useful bits is deduced from the information on the bits coded for example by the decoding procedure. Prior processing of the information transmitted to the different blocks may prove necessary for the proper functioning of the process. For example, in the example described below, the information previously used to estimate new qualitative information on a bit is subtracted in order to bring only real new information to the block receiving it. These steps are repeated, either a fixed number of times, or until a criterion is verified (for example, the qualitative information no longer changes). The operation of the method is described below as an example for the user Ni. Information on the probability of symbols emitted P (a 1 Nu | yi), Info
(Qs), est transmise à un dispositif 2ι (ou de-mapping) ayant notamment pour fonction de fournir une information sur la probabilité des bits émis LD(ck 1) par l'utilisateur N1 Info (Qbs). Cette information est par exemple envoyée dans un désentrelaceur 3^ puis à un algorithme de type BCJR (bloc de codage 4i) afin d'obtenir la probabilité des bits codés Lc(ck 1) (information qualitative sur les bits codés lnfo(Qbs) et les bits utiles, Info (Qbu). Cette dernière information (Lc(ck 1) ) est soustraite à la première information LD(cκ1) de probabilité sur les bits (information de qualité sur les bits constituants les symboles Info (Qs)) avant de passer dans le désentrelaceur. Elle est aussi envoyée vers un entrelaceur 5ι puis vers un dispositif 61 ayant une fonction de mapping, avant d'être réinjectée dans le dispositif 1 qui utilise cette information lnfo(Qs) au niveau de l'étape d'obtention de la probabilité des symboles émis. Les dispositifs de mapping, de de-mapping, les entrelaceurs et désentrelaceurs sont des dispositifs connus de l'Homme du métier qui ne sont pas détaillés dans la présente description. Afin d'illustrer le procédé selon l'invention, l'exemple qui suit est donné dans le cas d'émetteurs OFDM (abréviation anglo-saxone de orthogonal frequency division multiplexing) synchronisés en fréquence. Pour cette forme d'onde dite multi-porteuse ou parallèle, les différents symboles sont transmis simultanément sur des sous porteuses orthogonales. . Dans cet exemple de réalisation, les différents émetteurs utilisent un code convolutif comme dans la norme Hiperlan/2 ou IEEE802.11a. Le récepteur effectue classiquement une transformée de Fourier discrète (TFD) sur un intervalle de temps déterminé pour estimer les symboles transmis. Dans le cas de multiples émissions synchronisées en fréquences et suffisamment synchronisées en temps pour éviter de l'interférence inter symboles, le signal reçu par le récepteur après la Transformée de Fourier est donné par: (1) avec • y le signal reçu représenté par un vecteur N Jxl avec N le nombre de sous porteuses, • a est le vecteur de dimension contenant les sy J mboles transmis par les N émetteurs. Les N premiers éléments sont les symboles transmis sur la première sous porteuse. • F 1 =F 1 ®I N est la matrice effectuant la DFT à l'émission avec I N la matrice identité de dimension N et l'opérateur <8> le produit de Kronecker.(Qs), is transmitted to a device 2ι (or de-mapping) having in particular the function of providing information on the probability of the bits transmitted L D (c k 1 ) by the user N1 Info (Qbs). This information is for example sent in a 3 ^ deinterlacer then to a BCJR algorithm (coding block 4i) in order to obtain the probability of the coded bits L c (c k 1 ) (qualitative information on the coded bits lnfo (Qbs) and the useful bits, Info This last information (L c (c k 1 )) is subtracted from the first probability information L D (cκ 1 ) on the bits (quality information on the bits constituting the symbols Info (Qs)) before pass through the deinterlacer. It is also sent to an interleaver 5ι then to a device 6 1 having a mapping function, before being reinjected into device 1 which uses this information lnfo (Qs) at the step of obtaining the probability of the symbols emitted. The mapping, de-mapping, interleaver and deinterleaver devices are devices known to those skilled in the art which are not detailed in the present description. invention, the following example is don born in the case of OFDM transmitters (Anglo-Saxon abbreviation of orthogonal frequency division multiplexing) synchronized in frequency. For this so-called multi-carrier or parallel waveform, the various symbols are transmitted simultaneously on orthogonal subcarriers. . In this exemplary embodiment, the different transmitters use a convolutional code as in the Hiperlan / 2 or IEEE802.11a standard. The receiver conventionally performs a discrete Fourier transform (TFD) over a determined time interval to estimate the symbols transmitted. In the case of multiple transmissions synchronized in frequencies and sufficiently synchronized in time to avoid inter-symbol interference, the signal received by the receiver after the Fourier Transform is given by: (1) with • y the received signal represented by a vector N Jxl with N the number of subcarriers, • a is the vector of dimension containing the sy J mboles transmitted by the N transmitters. The first N elements are the symbols transmitted on the first subcarrier. • F 1 = F 1 ®IN is the matrix performing the DFT on transmission with IN the identity matrix of dimension N and the operator <8> the product of Kronecker.
• I PC =ï PC ®I N est la matrice de dimension N T { N lï_ +N DFT ) xN TN W . qui effectue l'insertion du préfixe cyclique (propre à l'OFDM) • H est la matrice des échantillons représentant le canal de propagation, de dimension N T \ [ N W +N DFT ) \ + N H ) xN r i N Λ + N CP avec N la longueur maximale des canaux de propagation. • I_ =Ï_ ®I est la matrice qui effectue la synchronisation et enlève CP CP Nτ le préfixe cyclique • F est la matrice qui effectue la TFD au niveau du récepteur • b est le vecteur de dimension N χl contenant les échantillons du SP bruit considérés dans cet exemple comme blancs temporellement. La matrice K définie ci après est bloc circulante et à ce titre elle peut s'écrire comme: • I PC = ï PC ®IN is the matrix of dimension NT (N lï_ + N DFT) xN TN W. which performs the insertion of the cyclic prefix (specific to OFDM) • H is the matrix of the samples representing the propagation channel, of dimension NT \ [NW + N DFT) \ + NH) xN ri N Λ + N CP with N the maximum length of the propagation channels. • I_ = Ï_ ®I is the matrix which carries out synchronization and removes CP CP N τ the cyclic prefix • F is the matrix which carries out TFD at the level of the receiver • b is the vector of dimension N χl containing the samples of SP noise considered in this example as temporally blank. The matrix K defined below is a circulating block and as such it can be written as:
avec G une matrice bloc diagonale et F et F des matrices de TFD Comme I_HI est bloc circulante, le signal reçu peut être écrit comme: y = Ga+b (3)with G a diagonal block matrix and F and F TFD matrices As I_HI is circulating block, the received signal can be written as: y = Ga + b (3)
avec G une matrice bloc diagonale avec des blocs de taille lχNwith G a diagonal block matrix with blocks of size lχN
Donc pour la sous porteuse i l'observation vectorielle y. peut s'écrire y =G a +b comme: •' «' <' <* (4)So for the subcarrier i the vector observation y. can be written y = G a + b like: • '''<'< * (4)
où G i contient les éléments de la réponse fréquentielle du canal.where G i contains the elements of the frequency response of the channel.
Ici comme nous n'utilisons qu'un unique récepteur, G est un vecteur de taille l x Nr .Here, as we only use a single receiver, G is a vector of size lx N r.
Ainsi l'observation y< est scalaire et s'écrit: yt ='∑fhal +bl (5) i=lThus the observation y <is scalar and is written: y t = ' ∑fha l + b l (5) i = l
Dans ce cas, le détecteur au sens du MAP fournit les probabilités suivantes: (information qualitative des symboles estimés - probabilité des symboles émis pour les différents émetteurs)In this case, the detector within the meaning of the MAP provides the following probabilities: (qualitative information of the estimated symbols - probability of the symbols emitted for the different emitters)
où σ2 est la variance du bruit et A ak est défini par: A ak contient les vecteurs de symboles a qui ont le symbole a à la position k . Ces probabilités sont ensuite utilisées pour calculer la probabilité des bits constituants les symboles: where σ 2 is the variance of the noise and A a k is defined by: A a k contains the vectors of symbols a which have the symbol a at position k. These probabilities are then used to calculate the probability of the bits making up the symbols:
avec A+ l'ensemble des symboles où le bit c vaut 1 et A" l'ensemble des symboles où le bit c vaut 0.with A + the set of symbols where bit c is 1 and A " the set of symbols where bit c is 0.
Ces quantités sont ensuite utilisées pour calculer: LD(c) = L(c)-Lc(c) (9) qui est fourni au bloc decodage.Sur la figure, l'équation (9) est représentée par les indices LD(ck') = L( c) - Lc(c '). Le terme Lc(c) (Lc(ck') sur la fig.2) correspond à l'information, a priori, issue du décodage précédent. A la première itération, Lc(c) = 0. Ces valeurs LD(c) (LD(c ) sur la fig.2) sont les entrées du décodeur souple qui, dans l'exemple, est un algorithme de type BCJR, décrit par exemple dans le document de L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, intitulé « Optimal decoding of linear codes for minimizing symbol error rate," IEEE Trans. Inform. Theory, pp. 284-287, Mar. 1974. Ce bloc n'est pas décrit plus en détail. Ce décodeur fournit à la fois une probabilité des bits utiles (avant codage) et un probabilité des bits codés qui constituent les symboles.These quantities are then used to calculate: L D (c) = L (c) -L c (c) (9) which is supplied to the decoding block. In the figure, equation (9) is represented by the indices L D (c k ') = L (c) - Lc (c'). The term L c (c) (L c (c k ') in fig. 2) corresponds to the information, a priori, from the previous decoding. At the first iteration, L c (c) = 0. These values L D (c) (L D (c) in fig. 2) are the inputs of the flexible decoder which, in the example, is a type algorithm BCJR, described for example in the document by L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, entitled "Optimal decoding of linear codes for minimizing symbol error rate," IEEE Trans. Inform. Theory, pp. 284 -287, Mar. 1974. This block is not described in more detail, this decoder provides both a probability of the useful bits (before coding) and a probability of the coded bits which constitute the symbols.
Le procédé est utilisé par exemple pour des modulations BPSK (abréviation anglo-saxonne de Bit Phase Shift Keying) ou QPSK (abréviation anglo-saxonne de Quadrature Phase Shift Keying). The method is used for example for BPSK (Anglo-Saxon abbreviation for Bit Phase Shift Keying) or QPSK (Anglo-Saxon abbreviation for Quadrature Phase Shift Keying) modulations.

Claims

REVENDICATIONS
1 - Procédé pour accroître la capacité de systèmes de transmission de signaux comprenant Nτ utilisateurs, un récepteur monobloc recevant le mélange des signaux provenant des Nτ utilisateurs caractérisé en ce qu'il comporte au moins les étapes suivantes : a) déterminer une information qualitative Info (Qs) des symboles estimés pour chacun des Nτ utilisateurs, b) transmettre cette information lnfo(Qs) à un bloc de traitement recevant une information a priori et adapté à générer une information de qualité, lnfo(Qbs),sur les bits constituants les symboles, c) transmettre l'lnfo(Qbs) à une étape de décodage pour obtenir une information qualitative sur les bits codés et Info (Qbu) sur les bits utiles.1 - Method for increasing the capacity of signal transmission systems comprising N τ users, a monobloc receiver receiving the mixture of signals from N τ users, characterized in that it comprises at least the following steps: a) determining qualitative information Info (Qs) of the symbols estimated for each of the N τ users, b) transmit this information lnfo (Qs) to a processing block receiving a priori information and adapted to generate quality information, lnfo (Qbs), on the bits constituting the symbols, c) transmitting the info (Qbs) to a decoding step to obtain qualitative information on the coded bits and Info (Qbu) on the useful bits.
2 - Procédé selon la revendication 1 caractérisé en ce que l'étape a) est réalisée à l'aide d'un détecteur MAP (Maximum a Posteriori).2 - Method according to claim 1 characterized in that step a) is carried out using a MAP detector (Maximum a Posteriori).
3 - Procédé selon la revendication 1 caractérisé en ce que les étapes a) à c) sont réitérées jusqu'à ce que les informations qualitatives soient sensiblement constantes. 4 - Utilisation du procédé selon l'une des revendications précédentes pour des émetteurs utilisant une des modulations suivantes : BPSK, QPSK, OFDM. 3 - Method according to claim 1 characterized in that steps a) to c) are repeated until the qualitative information is substantially constant. 4 - Use of the method according to one of the preceding claims for transmitters using one of the following modulations: BPSK, QPSK, OFDM.
EP04804594A 2003-11-28 2004-11-26 Method and device for increasing the capacity of non-spread transmission systems Withdrawn EP1695473A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0314014A FR2863122B1 (en) 2003-11-28 2003-11-28 METHOD AND APPARATUS FOR INCREASING THE CAPACITY OF NON-ETAL TRANSMISSION SYSTEMS
PCT/EP2004/053140 WO2005053212A1 (en) 2003-11-28 2004-11-26 Method and device for increasing the capacity of non-spread transmission systems

Publications (1)

Publication Number Publication Date
EP1695473A1 true EP1695473A1 (en) 2006-08-30

Family

ID=34566240

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04804594A Withdrawn EP1695473A1 (en) 2003-11-28 2004-11-26 Method and device for increasing the capacity of non-spread transmission systems

Country Status (6)

Country Link
US (1) US20070071135A1 (en)
EP (1) EP1695473A1 (en)
JP (1) JP2007513545A (en)
CA (1) CA2547555A1 (en)
FR (1) FR2863122B1 (en)
WO (1) WO2005053212A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114884525A (en) * 2022-07-08 2022-08-09 航大防务(海南)科技有限公司 Positioning method for ADS-B (automatic dependent surveillance broadcast) aviation system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19923407C1 (en) * 1999-05-21 2000-08-24 Siemens Ag Reception method for mobile radio applications
US6529559B2 (en) * 2001-01-12 2003-03-04 Comsys Communication & Signal Processing Ltd. Reduced soft output information packet selection
JP2003069531A (en) * 2001-08-23 2003-03-07 Mitsubishi Electric Corp Mobile communication system, multicarrier cdma transmitter and receiver thereof
EP1300977A1 (en) * 2001-10-04 2003-04-09 Mitsubishi Electric Information Technology Centre Europe B.V. Parallel interference cancellation in an MC-CDMA telecommunication system
US6704376B2 (en) * 2002-01-23 2004-03-09 Bae Systems Information And Electronic Systems Integration Inc. Power and confidence ordered low complexity soft turbomud with voting system
CN1797987B (en) * 2004-12-30 2011-02-16 都科摩(北京)通信技术研究中心有限公司 Communication system for self-adaptive scheduling MIMO, and method for self-adaptive scheduling users

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
A. VAN ZELST: "Extending the Capacity of Next Generation Wireless LANs using SDM combined with OFDM", October 2000, XP007903689 *
DEJONGHE A.; VANDENDORPE L.: "Turbo-equalization for multilevel modulation: an efficient low-complexity scheme", ICC 2002. 2002 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS. CONFERENCE PROCEEDINGS.NEW YORK, NY, APRIL 28 - MAY 2, 2002, IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, NEW YORK, NY : IEEE, US, 28 April 2002 (2002-04-28), pages 1863 - 1867, XP010589809 *
JELTING S.; SANZI F.; SPEIDEL J.: "A comparative study of iterative channel estimators for mobile ofdm systems", IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, September 2003 (2003-09-01), pages 849 - 859, XP011100591 *
See also references of WO2005053212A1 *
VANDENNAMEELE P. ET AL: "A COMBINED OFDM/SDMA APPROACH", IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, November 2000 (2000-11-01), pages 2312 - 2321, XP001063616 *
ZELST VAN A.; NEE VAN R.; AWATER G.A.: "SPACE DIVISION MULTIPLEXING (SDM) FOR OFDM SYSTEMS", VTC 2000-SPRING, vol. 2 OF 3, no. CONF. 51, 15 May 2000 (2000-05-15), NEW YORK, NY : IEEE, US, pages 1070 - 1074, XP000968034 *
ZUYDERHOFF D.; WAUTELET X.; DEJONGHE A.; VANDENDORPE L.: "MMSE turbo receiver for space-frequency bit-interleaved coded OFDM", VEHICULAR TECHNOLOGY CONFERENCE, 2003, VTC 2003-FALL. 2003, IEEE 58TH ORLANDO, FL, USA 6-9 OCT. 2003, PISCATAWAY, NJ,, 6 October 2003 (2003-10-06), pages 567 - 571, XP010700954 *

Also Published As

Publication number Publication date
US20070071135A1 (en) 2007-03-29
JP2007513545A (en) 2007-05-24
WO2005053212A1 (en) 2005-06-09
CA2547555A1 (en) 2005-06-09
FR2863122B1 (en) 2006-04-28
FR2863122A1 (en) 2005-06-03

Similar Documents

Publication Publication Date Title
EP1212872B1 (en) Receiver with orthogonal frequency distribution multiplexing having iterative channel estimation and corresponding method
EP2846506B1 (en) Fbmc receiver with carrier frequency offset compensation
EP2220803B1 (en) Reduction of interference in an ofdm signal with weighting vectors evolving in vector subspaces
CN1890937B (en) Residual frequency error estimation in an OFDM receiver
US7526020B2 (en) Circuit for improving channel impulse response estimation and compensating for remnant frequency offset in the orthogonal frequency division multiplexing (OFDM) baseband receiver for IEEE 802.11a/g wireless LAN standard
EP0709980B1 (en) Frequency synchronisation for OFDM system
JP4046515B2 (en) Iterative maximum likelihood channel estimation and signal detection system and method for OFDM systems
US20060291372A1 (en) Apparatus and method for reducing pilot overhead in a wireless communication system
EP0762703A1 (en) Multicarrier demodulation with reduction of white frequency distortion
US8817918B2 (en) Cyclic prefix and precursor joint estimation
EP3146687B1 (en) Method for transmitting a signal with a preamble and corresponding devices, signal with corresponding preamble for synchronisation of a receiver
EP1987645B1 (en) Transmission method with optimal power allocation emitted for multicarrier transmitter
FR2894416A1 (en) METHOD AND DEVICE FOR SELECTING THE SPREAD PARAMETERS OF A CDMA OFDM SYSTEM
US20040165683A1 (en) Channel estimation for communication systems
EP3800813B1 (en) Method and device for predicting the performance of a receiver in a communication system
FR2903833A1 (en) Signal receiving method for e.g. wireless telephone, involves estimating real and imaginary parts of transmission channel in neighboring region from complex values corresponding to drivers of group of region
EP1244242B1 (en) Global MMSE equalisation
EP1416689A1 (en) Channel estimation using the guard interval of a multicarrier signal
EP1695473A1 (en) Method and device for increasing the capacity of non-spread transmission systems
EP1244243A1 (en) Global MMSE equalisation
US7274758B1 (en) Coarse frequency estimation in an OFDM receiver based on autocorrelation of accumulated samples
EP1235398B1 (en) Channel estimation in orthogonal frequency division multiplexed systems
FR2800947A1 (en) Method for data transmitting in mobile telephone network; by applying inverse transform of a first vector by matrix-type multiplying to obtain first vector
Kang et al. Fast-varying doppler compensation for underwater acoustic OFDM systems
WO2007090995A2 (en) Method for receiving a signal using an improved propagation channel estimate, corresponding receiver device and computer programme product

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060619

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20060926

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080708