EP1692540A1 - Radar sensor - Google Patents

Radar sensor

Info

Publication number
EP1692540A1
EP1692540A1 EP04791200A EP04791200A EP1692540A1 EP 1692540 A1 EP1692540 A1 EP 1692540A1 EP 04791200 A EP04791200 A EP 04791200A EP 04791200 A EP04791200 A EP 04791200A EP 1692540 A1 EP1692540 A1 EP 1692540A1
Authority
EP
European Patent Office
Prior art keywords
antenna
radar
receiving
range
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04791200A
Other languages
German (de)
French (fr)
Inventor
Thomas Focke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1692540A1 publication Critical patent/EP1692540A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar

Definitions

  • the invention is based on a radar sensor based on the pulse-echo principle with at least two receiving antennas.
  • receiving antennas are provided in time with the pulse repetition frequency of the transmitted radar pulses, it is possible to obtain angle information from the entire, in particular enlarged, radar location field, ie in particular through the combination of monopulse and triangulation methods. This enables a better distinction between useful and wrong goals.
  • a calibration can be achieved in a simple manner by obtaining redundant information when combining two radar sensors.
  • FIG. 1 shows a block diagram of a conventional radar sensor
  • FIG. 2 is a block diagram of a radar sensor according to the invention.
  • FIG. 1 shows a block diagram of a conventional radar sensor to which the invention is based.
  • the radar sensor has a high-frequency source 1 which generates a continuous high-frequency signal of e.g. 24 GHz (CW signal) delivers.
  • This high-frequency signal arrives at a transmitter-side pulse modulator 2 for generating a
  • the pulse modulator 2 is controlled by a square-wave signal 5 of 5 MHz.
  • the radar receiving antenna 6 which likewise has a broad antenna characteristic, the radar pulses reflected at a radar target are received and fed to a quadrature mixer 8 via a receiving preamplifier 7.
  • This receives the time-delayed transmit pulses at its LO input in that the square-wave signal 5 switches the receive-side pulse modulator 10 with a delay of a maximum of 200 ns via a time delay element 9.
  • Quadrature mixer 8 match, there is a mixed product at the NF port (IQ outputs). That is, with the adjustable delay time, a time window is realized which, when linked via the propagation speed of electromagnetic waves, corresponds to a distance measurement. If the delay time is now varied according to a sawtooth function using a sawtooth generator 11, that the distance is "scanned” systematically for possible targets. If this "scanning" is relatively slow in relation to the pulse repetition frequency, then several pulses per target are received (usually several hundred) and by means of low pass 12, 13 to improve the signal-to-noise ratio integrated. This is followed by an analog-to-digital conversion (ADC) in stages 14 and 15 and a corresponding digital signal evaluation (DSP) with detection and distance measurement in module 16.
  • ADC analog-to-digital conversion
  • DSP digital signal evaluation
  • a dual beam sensor is shown.
  • the sensor of Figure 1 was around a receiving antenna 17 and
  • the supplemented antenna 17 is a strongly focusing antenna for the far range and has a higher gain in the main beam direction, which enables the detection of further distant targets (provided the range window is delayed to the maximum distance).
  • the system is expanded by a changeover switch 18 combined with a bistable flip-flop 19, which, in the pulse repetition cycle of the transmitted radar pulses, alternately conducts the RF signal energy from the two antennas to the mixer 8. That only half as many pulses are received per receiving antenna.
  • the low pass 12, 13 in front of the analog-digital converter ADC must then also not have an integrating effect, but rather only serve as an anti-aliasing low pass for band limitation. Accordingly, the ADC must have a higher sampling rate. The actual pulse integration for each antenna path then takes place digitally in the processor 16.
  • FIG. 3 shows the covering of the travel tube by two dual beam sensors 20 and 21.
  • the hatched areas show the overlap areas.
  • the target angle is determined by monopulse methods, and in the areas in which the characteristics of both sensors overlap, the angle is determined by triangulation. In the close range (overlap of four characteristics), redundant information is obtained, which can be used, for example, for simple calibration of the monopulse evaluation.

Abstract

The invention relates to a radar sensor that operates according to the pulse echo principle, comprising a first receiving antenna (6) with a broad antenna characteristic and a second receiving antenna (17) with a narrow antenna characteristic. A changeover (18) takes place in the receiving branch between the receiving signals of the two receiving antennas at the rate of the pulse repetition frequency of the emitted radar pulses.

Description

Radarsensorradar sensor
Die Erfindung geht aus von einem Radarsensor nach dem Puls-Echoprinzip mit mindestens zwei Empfangsantennen.The invention is based on a radar sensor based on the pulse-echo principle with at least two receiving antennas.
Stand der TechnikState of the art
Aus Skolnik „Introduction to radar Systems", 2nd Edition, Mc Craw Hill Book Company 1980, Seiten 160 bis 161 ist es bekannt zur Bestimmung der Winkelablage bei Monopuls- Radar zwei sich überlappende Antennencharakteristiken auszuwerten.From Skolnik "Introduction to radar systems", 2 nd Edition, Mc Craw Hill Book Company, 1980, pp 160-161, it is known to evaluate to determine the angular deviation in monopulse radar two overlapping antenna characteristics.
Aus der DE 101 42 170 AI ist eine Pulsradaranordnung bekannt mit mehreren Empfangszügen. Es können mehrere Empfangszellen gleichzeitig ausgewertet werden und/oder es kann zwischen unterschiedlichen Betriebsarten umgeschaltet werden.From DE 101 42 170 AI a pulse radar arrangement is known with several receiving trains. Several receiving cells can be evaluated simultaneously and / or it is possible to switch between different operating modes.
Vorteile der ErfindungAdvantages of the invention
Mit den Maßnahmen gemäß den Merkmalen des Anspruchs 1, d.h. einer ersten Empfangsantenne mit einer breiten Nahbereichs-Λntennencharakteristik und einer zweiten Empfangsantenne mit einer schmalen Fernbereichs-Antennencharakteristik, wobei im Empfangspfad eine Umschaltung zwischen den Empfangssignalen der beidenWith the measures according to the features of claim 1, i.e. a first receiving antenna with a wide short-range antenna characteristic and a second receiving antenna with a narrow long-range antenna characteristic, with a switchover between the received signals of the two in the receiving path
Empfangsantennen im Takt der Pulswiederholfrequenz der gesendeten Radarpulse vorgesehen ist, ist die Gewinnung von Winkelinformationen aus dem gesamten insbesondere vergrößerten Radarortungsfeld möglich, d.h. insbesondere durch die Kombination von Monopuls- und Triangulationsverfahren. Es ist dadurch eine bessere Unterscheidung von Nutz- und Falschzielen möglich.If receiving antennas are provided in time with the pulse repetition frequency of the transmitted radar pulses, it is possible to obtain angle information from the entire, in particular enlarged, radar location field, ie in particular through the combination of monopulse and triangulation methods. This enables a better distinction between useful and wrong goals.
Über die Gewinnung redundanter Informationen bei der Kombination zweier Radarsensoren lässt sich auf einfache Weise eine Kalibrierung erzielen.A calibration can be achieved in a simple manner by obtaining redundant information when combining two radar sensors.
Zeichnungendrawings
Anhand der Zeichnungen werden Ausführungsbeispiele der Erfindung erläutert. Es zeigen Figur 1 ein Blockschaltbild eines herkömmlichen Radarsensors,Exemplary embodiments of the invention are explained on the basis of the drawings. 1 shows a block diagram of a conventional radar sensor,
Figur 2 ein Blockschaltbild eines Radarsensors nach der Erfindung undFigure 2 is a block diagram of a radar sensor according to the invention and
Figur 3 Antennencharakteristiken von zwei Dual Beam Sensoren zur Abdeckungen einesFigure 3 antenna characteristics of two dual beam sensors to cover one
Fahrschlauches.Driving path.
Beschreibung von AusführungsbeispielenDescription of exemplary embodiments
Figur 1 zeigt ein Blockschaltbild eines herkömmlichen Radarsensors an den die Erfindung anknüpft. Der Radarsensor weist eine Hochfrequenzquelle 1 auf, die ein kontinuierliches Hochfrequenzsignal von z.B. 24 GHz (CW-Signal) liefert. Dieses Hochfrequenzsignal gelangt zu einem sendeseitigen Pulsmodulator 2 zur Erzeugung einesFigure 1 shows a block diagram of a conventional radar sensor to which the invention is based. The radar sensor has a high-frequency source 1 which generates a continuous high-frequency signal of e.g. 24 GHz (CW signal) delivers. This high-frequency signal arrives at a transmitter-side pulse modulator 2 for generating a
Radarpulses und über einen Verstärker 3 auf die Sendeantenne 4 mit breiter Nahbereichs- Antennenstrahlcharakteristik. Die Steuerung des Pulsmodulators 2 geschieht durch ein Rechtecksignal 5 von 5 MHz. Mit der Radarempfangsantenne 6, die ebenfalls eine breite Antennencharakteristik aufweist, werden die an einem Radarziel reflektierten Radarpulse empfangen, und über einen Empfangsvorverstärker 7 einem Quadraturmischer 8 zugeführt. Dieser erhält an seinem LO-Eingang die zeitlich verzögerten Sendepulse, dadurch dass das Rechtecksignal 5 über Zeitverzögerungsglied 9 mit einer Verzögerung von maximal 200 ns den empfangsseitigen Pulsmodulator 10 verzögert schaltet.Radar pulse and via an amplifier 3 to the transmitting antenna 4 with a wide short-range antenna beam characteristic. The pulse modulator 2 is controlled by a square-wave signal 5 of 5 MHz. With the radar receiving antenna 6, which likewise has a broad antenna characteristic, the radar pulses reflected at a radar target are received and fed to a quadrature mixer 8 via a receiving preamplifier 7. This receives the time-delayed transmit pulses at its LO input in that the square-wave signal 5 switches the receive-side pulse modulator 10 with a delay of a maximum of 200 ns via a time delay element 9.
Nur wenn Pulslaufzeit zum Ziel und Verzögerungszeit der Trägerpulse amOnly if the pulse run time to the target and the delay time of the carrier pulses on
Quadraturmischer 8 übereinstimmen, ergibt sich ein Mischprodukt am NF-Port (IQ- Ausgänge). D.h. mit der einstellbaren Verzögerungszeit wird eine zeitliche Fensterung realisiert, die verknüpft über die Ausbreitungsgeschwindigkeit elektromagnetischer Wellen, einer Entfernungsmessung entspricht. Wird die Verzögerungszeit nun gemäß einer Sägezahnfunktion mittels einem Sägezahngenerator 11 variiert, wird ermöglicht, dass die Entfernung systematisch nach möglichen Zielen „abgescannt" wird. Geschieht dieses „Scannen" relativ langsam im Verhältnis zur Pulsfolgefrequenz, so werden mehrere Pulse pro Ziel empfangen (üblicherweise mehrere hundert) und mittels Tiefjpass 12, 13 zur Verbesserung des Signal-Rausch-Abstandes aufintegriert. Anschließend erfolgt eine Analog-Digital-Wandlung (ADC) in den Stufen 14 und 15 sowie eine entsprechende digitale Signalauswertung (DSP) mit Detektion und Entfernungsmessung in der Baugruppe 16.Quadrature mixer 8 match, there is a mixed product at the NF port (IQ outputs). That is, with the adjustable delay time, a time window is realized which, when linked via the propagation speed of electromagnetic waves, corresponds to a distance measurement. If the delay time is now varied according to a sawtooth function using a sawtooth generator 11, that the distance is "scanned" systematically for possible targets. If this "scanning" is relatively slow in relation to the pulse repetition frequency, then several pulses per target are received (usually several hundred) and by means of low pass 12, 13 to improve the signal-to-noise ratio integrated. This is followed by an analog-to-digital conversion (ADC) in stages 14 and 15 and a corresponding digital signal evaluation (DSP) with detection and distance measurement in module 16.
Beim erfϊndungsgemäßen Ausführungsbeispiel nach Figur 2 ist ein Dual-Beam-Sensor dargestellt. Der Sensor aus Figur 1 wurde um eine Empfangsantenne 17 und einenIn the exemplary embodiment according to FIG. 2, a dual beam sensor is shown. The sensor of Figure 1 was around a receiving antenna 17 and
Umschalter 18 ergänzt. Die ergänzte Antenne 17 ist eine stark bündelnde Antenne für den Fembereich und besitzt einen höheren Gewinn in Hauptstrahlrichtung, welches die Detektion weiter entfernter Ziele ermöglicht (vorausgesetzt das Entfernungsfenster wird bis zur maximalen Entfernung verzögert).Switch 18 added. The supplemented antenna 17 is a strongly focusing antenna for the far range and has a higher gain in the main beam direction, which enables the detection of further distant targets (provided the range window is delayed to the maximum distance).
Desweiteren wird das System um einen Umschalter 18 kombiniert mit einem bistabilen Flip Flop 19, erweitert, der vorzugsweise im Pulswiederholtakt der gesendeten Radarpulse die HF-Signalenergie von den beiden Antennen wechselseitig zum Mischer 8 leitet. D.h. pro Empfangsantenne werden nur noch halb so viele Pulse empfangen. Der Tiefpass 12, 13 vor dem Analog-Digital- Wandler ADC darf dann auch keine integrierende Wirkung haben, sondern lediglich als Anti Aliasing-Tiefpass zur Bandbegrenzung dienen. Der ADC muss dementsprechend eine höhere Abtastrale besitzen. Die eigentliche Pulsintegration für jeden Λntennenpfad findet dann digital im Prozessor 16 statt. Der augenscheinliche Nachteil des Integrationsverlustes von 3 dB kann zranindest teilweise ausgeglichen werden, da für die Detektion die NF-Signale der beiden Empfangspfade eines Rampendurchlaufs im Prozessor 16 aufsummiert werden können, und so für Ziele die durch beide Antennen erfasst werden der Signal/Rauschabstand des Originalsensors erreicht wird. Liegt ein Ziel allerdings außerhalb des Sichtbereiches der schmalen Antenne, so ergibt sich ein Integrationsverlust von 3dB.Furthermore, the system is expanded by a changeover switch 18 combined with a bistable flip-flop 19, which, in the pulse repetition cycle of the transmitted radar pulses, alternately conducts the RF signal energy from the two antennas to the mixer 8. That only half as many pulses are received per receiving antenna. The low pass 12, 13 in front of the analog-digital converter ADC must then also not have an integrating effect, but rather only serve as an anti-aliasing low pass for band limitation. Accordingly, the ADC must have a higher sampling rate. The actual pulse integration for each antenna path then takes place digitally in the processor 16. The apparent disadvantage of the integration loss of 3 dB can be at least partially compensated for, since the AF signals of the two reception paths of a ramp run can be summed up in the processor 16 for the detection, and thus the signal / noise ratio of the original sensor for targets which are detected by both antennas is achieved. However, if a target lies outside the field of view of the narrow antenna, there is a loss of integration of 3dB.
Solange der Nahbereich des Sensors (entspricht der breiten Empfangscharakteristik) „abgescannt" wird, ist die Umschaltung aktiv. Im Bereich der Überlappungen beider Antennencharakteristiken ist dann auch eine Winkelbestimmung mittels des bekannten Monopulsverfahrens möglich. Auf die Winkelbstimmungsverfahren wir hier nicht näher eingegangen. Ab einer bestimmten „Scan-Entfernung" ist eine Umschaltung nicht mehr sinnvoll, da nur noch Ziele in der Ferncharakteristik detektiert werden.As long as the close range of the sensor (corresponds to the broad reception characteristic) is "scanned", the switchover is active. In the area of the overlap of both antenna characteristics, an angle determination is then also possible using the known monopulse method received. From a certain "scan distance", switching no longer makes sense, since only targets in the remote characteristic are detected.
Bei Verwendung von zwei oder besser drei „Dual Beam Sensoren" ist eine Wirikelbestinrmung durch Kombination von Monopuls und Triangulation im gesamtenWhen two or better three "dual beam sensors" are used, a determination of the active substance is achieved by combining monopulse and triangulation as a whole
Fahrschlauch möglich. Figur 3 zeigt die Abdeckung des Fahrschlauches durch zwei Dual Beam-Sensoren 20 und 21. Die schraffierten Bereiche zeigen die Überlappungsbereiche.Driving hose possible. FIG. 3 shows the covering of the travel tube by two dual beam sensors 20 and 21. The hatched areas show the overlap areas.
In den Bereichen, in denen sich die Antennencharakteristiken eines Sensors überlagern, wird der Zielwinkel durch Monopulsverfahren bestimmt, und in den Bereichen, in denen sich die Charakteristiken beider Sensoren überlagern, erfolgt die Winkelbestimmung durch Triangulation. Im Nahbereich (Überlappung von vier Charakteristiken) kommt es zur Gewinnung redundanter Informationen, die beispielsweise für eine einfache Kalibrierung der Monopulsauswertung verwendet werden können. In the areas in which the antenna characteristics of a sensor overlap, the target angle is determined by monopulse methods, and in the areas in which the characteristics of both sensors overlap, the angle is determined by triangulation. In the close range (overlap of four characteristics), redundant information is obtained, which can be used, for example, for simple calibration of the monopulse evaluation.

Claims

Palentansprüche Palentansprüche
1. Radarsensor nach dem Puls-Echoprinzip mit mindestens zwei Empfangsantennen, wobei eine erste Empfangsantenne (6) eine breite Nahbereichs- Anlennencharakteristik und eine zweite Empfangsantenne (17) eine schmale Fernbereichs-Antennencharakteristik aufweist und wobei im Empfangspfad eine Umschaltung (18) zwischen den Empfangssignalen der beiden Empfangsantennen im Takt der Pulswiederholfrequenz der gesendeten Radarpulse vorgesehen ist.1. radar sensor according to the pulse-echo principle with at least two receiving antennas, a first receiving antenna (6) having a wide short-range antenna characteristic and a second receiving antenna (17) having a narrow far-range antenna characteristic, and wherein in the receiving path a switchover (18) between the received signals of the two receiving antennas is provided in time with the pulse repetition frequency of the transmitted radar pulses.
2. Radarsensor nach Anspruch 1, dadurch gekennzeichnet, dass die Umschaltung nur innerhalb des Entfernungsfensters für die Nahbereichs-Anlennencharakteristik erfolgt.2. Radar sensor according to claim 1, characterized in that the switching takes place only within the distance window for the short-range antenna characteristic.
3. Radarsystem bestehend aus mindestens zwei Radarsensoren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass eine Zielwinkelbestimmung im Nahbereich durch sich überlagernde Antennencharakteristiken gemäß dem Monopulsverfahren und im Fernbereich durch Triangulation vorgesehen ist.3. Radar system consisting of at least two radar sensors according to one of claims 1 or 2, characterized in that a target angle determination in the close range is provided by overlapping antenna characteristics according to the monopulse method and in the far range by triangulation.
4. Radarsystem nach Anspruch 3, dadurch gekennzeichnet, dass eine Kalibrierung der Radarsensoren durch Gewinnung redundanter Informationen insbesondere im Überlappungsbereich verschiedener Empfangsantennen vorgesehen ist. 4. Radar system according to claim 3, characterized in that a calibration of the radar sensors is provided by obtaining redundant information, in particular in the overlap area of various receiving antennas.
EP04791200A 2003-12-06 2004-10-12 Radar sensor Withdrawn EP1692540A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10357148A DE10357148A1 (en) 2003-12-06 2003-12-06 radar sensor
PCT/EP2004/052507 WO2005054895A1 (en) 2003-12-06 2004-10-12 Radar sensor

Publications (1)

Publication Number Publication Date
EP1692540A1 true EP1692540A1 (en) 2006-08-23

Family

ID=34638460

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04791200A Withdrawn EP1692540A1 (en) 2003-12-06 2004-10-12 Radar sensor

Country Status (5)

Country Link
US (1) US20080007449A1 (en)
EP (1) EP1692540A1 (en)
JP (1) JP2008519246A (en)
DE (1) DE10357148A1 (en)
WO (1) WO2005054895A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112005003673B4 (en) * 2005-08-19 2014-07-10 Mitsubishi Denki K.K. Target detection method and target detection device
DE102006049879B4 (en) * 2006-10-23 2021-02-18 Robert Bosch Gmbh Radar system for automobiles
FR2913775B1 (en) * 2007-03-16 2010-08-13 Thales Sa OBSTACLE DETECTION SYSTEM, IN PARTICULAR FOR ANTICOLLISION SYSTEM
DE102007062566A1 (en) * 2007-12-22 2009-07-02 Audi Ag motor vehicle
JP2010091490A (en) * 2008-10-10 2010-04-22 Hitachi Automotive Systems Ltd Automotive radar system
DE102009024064A1 (en) * 2009-06-05 2010-12-09 Valeo Schalter Und Sensoren Gmbh Driver assistance means for determining a target angle of a device external object and method for correcting a target angle parameter characteristic
TWI481892B (en) 2012-12-13 2015-04-21 Ind Tech Res Inst Pulse radar ranging apparatus and ranging algorithm thereof
TWI495892B (en) * 2013-09-13 2015-08-11 Univ Nat Chiao Tung Comparator of mono-pulse radar and signal generation method thereof
JP2015068724A (en) * 2013-09-30 2015-04-13 富士通テン株式会社 Radar device, vehicle control system, and signal processing method
JP6848725B2 (en) * 2017-06-29 2021-03-24 株式会社デンソー Horizontal axis deviation determination method in the object detection device for vehicles and the object detection device for vehicles

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937471A (en) * 1982-08-25 1984-02-29 Fujitsu Ten Ltd Azimuth detection radar
US4990921A (en) * 1987-05-01 1991-02-05 Sundstrand Data Control, Inc. Multi-mode microwave landing system
JP2644521B2 (en) * 1988-03-11 1997-08-25 富士通テン株式会社 Prediction device for collision of moving objects with obstacles
JP2631137B2 (en) * 1988-09-08 1997-07-16 マツダ株式会社 Obstacle detection device for vehicles
JPH05103236A (en) * 1991-10-09 1993-04-23 Fujitsu Ten Ltd Back confirming device for traveling object
JPH05256941A (en) * 1992-03-13 1993-10-08 Honda Motor Co Ltd Fm radar apparatus
US5402129A (en) * 1993-08-04 1995-03-28 Vorad Safety Systems, Inc. Monopulse azimuth radar system for automotive vehicle tracking
JPH08105963A (en) * 1994-10-06 1996-04-23 Hitachi Ltd Radar device
JP3597678B2 (en) * 1997-08-18 2004-12-08 富士通株式会社 Radar equipment
DE19829762A1 (en) * 1998-07-03 2000-01-13 Adc Automotive Dist Control Radar system operating method, e.g. for motor vehicle separation distance or speed detection
JP2000258524A (en) * 1999-03-08 2000-09-22 Toyota Motor Corp Radar
US7068211B2 (en) * 2000-02-08 2006-06-27 Cambridge Consultants Limited Methods and apparatus for obtaining positional information
DE10056002A1 (en) * 2000-11-11 2002-05-23 Bosch Gmbh Robert Radar device has received echo pulses split between at least 2 reception paths controlled for providing different directional characteristics
DE10142170A1 (en) * 2001-08-29 2003-03-20 Bosch Gmbh Robert Pulsed radar acquiring immediate surroundings of vehicles, includes high frequency oscillator connected to pulse modulators for transmission and reception
JP2003248055A (en) * 2001-12-18 2003-09-05 Hitachi Ltd Monopulse radar system
US6750810B2 (en) * 2001-12-18 2004-06-15 Hitachi, Ltd. Monopulse radar system
DE60205711T2 (en) * 2001-12-18 2006-05-18 Hitachi, Ltd. Monopuls Radar with adjustment of beam expansion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005054895A1 *

Also Published As

Publication number Publication date
DE10357148A1 (en) 2005-07-07
US20080007449A1 (en) 2008-01-10
JP2008519246A (en) 2008-06-05
WO2005054895A1 (en) 2005-06-16

Similar Documents

Publication Publication Date Title
EP2044459B1 (en) Angular resolving radar sensor
EP0922967B1 (en) Method for operating a radar system
EP1570291B1 (en) Multistatic method and device for radar measuring a close distance
DE112005003673B4 (en) Target detection method and target detection device
DE102012102185A1 (en) Radar device that supports short and long range radar operation
DE19714570A1 (en) Multi-steel radar system
EP1792203A1 (en) Monostatic planar multibeam radar sensor
DE60304300T2 (en) Vehicle sensor for determining the distance and direction of an object
EP0980008A2 (en) Method of operating a radar system
DE10056002A1 (en) Radar device has received echo pulses split between at least 2 reception paths controlled for providing different directional characteristics
WO2004051308A1 (en) Device for measuring angle positions
EP1309885A1 (en) Method for pulse width modulation of a radar system
EP0908741B1 (en) Method of direction finding for determination of angle of arrival of high-frequency electromagnetic signal
DE102005044884A1 (en) radar system
EP1481260A1 (en) Pulsed radar device and method for registering, detecting and/or evaluating at least one object
WO2005054895A1 (en) Radar sensor
EP0355336A1 (en) Radar system for position determination of two or more objects
EP1245964B1 (en) Method for generation and evaluation of radar pulses and a radarsensor
DE102019131677A1 (en) PHASE MEASUREMENT IN A RADAR SYSTEM
DE102008050327A1 (en) Receiving mixer for homodyne receiving branch of radar unit, has mixer unit mixing cross talk signal with oscillator signal, where cross talk signal is developed based on cross talk effects, and amplifier producing difference signal
DE10253808A1 (en) Method and device for creating a radar image with a frequency-modulated continuous wave radar
WO2003027708A1 (en) Cw radar for determining the object distance by means of the transit time of a phase jump applied to the cw signal
WO2012041652A1 (en) Radar system
DE10240497A1 (en) Radar measuring device and method for operating a radar measuring device
DE102005060875A1 (en) Method and device for signal processing at an angle determination by means of microwave motion sensors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060706

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 20081023

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090303