EP1690242A1 - Method for monitoring the development of the flight plan of a co-operating aircraft - Google Patents

Method for monitoring the development of the flight plan of a co-operating aircraft

Info

Publication number
EP1690242A1
EP1690242A1 EP04818150A EP04818150A EP1690242A1 EP 1690242 A1 EP1690242 A1 EP 1690242A1 EP 04818150 A EP04818150 A EP 04818150A EP 04818150 A EP04818150 A EP 04818150A EP 1690242 A1 EP1690242 A1 EP 1690242A1
Authority
EP
European Patent Office
Prior art keywords
aircraft
flight
waypoint
pseudo
pwpij
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04818150A
Other languages
German (de)
French (fr)
Inventor
Guy THALES Intellectual Property DEKER
Dominique THALES Intellectual Property VANYPRE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1690242A1 publication Critical patent/EP1690242A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0039Modification of a flight plan

Definitions

  • the present invention relates to the monitoring, by a control authority, of the progress of the flight plan of an aircraft provided with a flight management system FMS ("Flight Management System” in English) and connected by a system of transmission of data to the supervisory authority. It is particularly relevant to air traffic management using the ATM system ("Air Traffic Management System” in English).
  • Air traffic control authorities organize air traffic in the air volumes under their control from 4D flight plans, which are submitted to them in advance by aircraft crews. They verify that the different flight plans submitted are compatible with the safety of the different actors before approving them, then monitor, during their course, the deviations of the aircraft from the planned positions and give diversion instructions when these deviations tend to reconciliations between aircraft threatening their safety.
  • a 4D flight plan defines a 3D trajectory skeleton (latitude longitude, altitude) associated with a route chronology by means of a sequence of waypoints WP (“WayPoint” in English) which are placed, on the route of the aircraft, at locations where flight constraints change and which are individually associated with various local flight constraints: altitude, speed, capture heading, escape heading, ground speed, speed constraints vertical, crossing date, etc.
  • WP Waypoint
  • the sequence of WP crossing points defines the lateral projection of the planned route.
  • Local flight constraints determine the vertical projection of the planned route and the route chronology.
  • the tracking of a flight plan by an aircraft consists of joining the WP waypoints in the order of their sequence by traversing a straight line between two successive WP waypoints ("Legs" in English), makes a segment of a large arc of a terrestrial circle, while respecting the local constraints associated with the waypoints WP delimiting the ends of the segment.
  • the crew or the FMS flight management computer of an aircraft determines the 3D trajectory actually followed by the aircraft based on the 3D trajectory skeleton of the flight plan and the chronology of route specified in the flight plan, and taking into account the maneuvering capabilities of the aircraft and a desired degree of comfort. Taking into account the maneuvering capabilities of the aircraft and the desired comfort is reflected by the introduction, into the 3D trajectory actually followed by the aircraft, of transitions.
  • air traffic control authorities use of non-cooperative means of locating aircraft such as primary radars but also of cooperative means enabling aircraft to be asked for information on their actual instantaneous positions such as voice communications with crews, secondary radars interrogating answering machines on-board or the ATM system in connection by data transmission with the flight management computers of aircraft.
  • the FMS flight management computer of an aircraft provides on request the instantaneous position and the instantaneous speed vector of the aircraft as well as forecasts of date, altitude and crossing speed vector d '' a next WP waypoint, which allows air traffic control authorities to readjust an aircraft's position in relation to its flight plan to make it fit the real situation.
  • an aircraft does not necessarily pass exactly at the right of a waypoint mentioned in its flight plan if overflight of the waypoint is not compulsory. In this case, the instant of crossing a crossing point is assimilated to the closest crossing instant.
  • the object of the present invention is to improve the precision with which an air traffic control authority apprehends the positions and short-term trajectories of aircraft by allowing it to take account of the smoothed transitions embellishing the actual trajectories of aircraft between the consecutive segments. of their flight plans. Thanks to this increased precision, the control authority can either improve at constant traffic the effective separation distances between the aircraft operating in its space, or increase the traffic density for effective separation distances between aircraft unchanged.
  • the flight plan known to the control authority consists of a series of waypoints WP associated with local flight constraints defining a skeleton of the trajectory to be followed and a chronology of the course to be observed.
  • the control authority uses the flight plan to estimate the instantaneous position of the aircraft.
  • the FMS flight management computer builds, from the trajectory skeleton and the route chronology specified in the flight plan, an effective trajectory with softened lateral and vertical transitions, dimensioned to take into account the maneuvering capabilities of the aircraft and a comfort setpoint, and identified by means of PWP pseudo-crossing points associated with local flight constraints, the position of a PWP pseudo-crossing point marking the start of a transition and the local constraints associated flight defining the properties of the transition.
  • This method is remarkable in that the flight management computer FMS of the aircraft calculates the locations of the projections of the pseudo-waypoints PWP on the trajectory skeleton specified in the flight plan and communicates it by the data transmission link to the control authority which uses it to improve its estimation of the instantaneous position of the aircraft along its flight plan, and thus better ensure its mission of separation and separation of traffics.
  • the flight management computer FMS of the aircraft projects the pseudo-waypoints PWP onto the skeleton of the flight plan trajectory while preserving the distances, the distance to a waypoint WP from the projection of a pseudo PWP waypoint being equal to that separating the projected PWP pseudo-point from the point of the effective trajectory of the aircraft closest to the considered point of passage.
  • the flight management computer FMS of the aircraft projects the pseudo-waypoints PWP onto the skeleton of the flight plan trajectory while preserving the distances measured in unit of length, the distance to a waypoint WP of the projection of a pseudo-waypoint PWP being equal to that separating the pseudo-waypoint PWP projected, from the point of the effective trajectory of the aircraft closest to the waypoint considered.
  • the flight management computer FMS of the aircraft projects the pseudo-waypoints PWP onto the skeleton of the flight plan trajectory while keeping equivalent, the distances measured in travel time, the travel time of a point of passage WP to the projection of a pseudo-point of passage PWP being taken equal to the time of the journey of the pseudo-point of passage PWP projected, at the point of the effective trajectory of the aircraft closest to the passage point considered.
  • the flight management computer FMS of the aircraft communicates to the control authority, with the locations of the projections of the pseudo-crossing points PWP on the trajectory skeleton specified in the flight plan, indications of the nature and the magnitude of local flight setpoint changes associated with the projected PWP runway pseudopoints.
  • FIG. 1 shows an example of architecture of an aircraft-ground system suitable for the implementation of the invention
  • - a figure 2 is a diagram showing a trajectory actually followed with softened transitions and the corresponding flight plan portion, with the positions on the real trajectory considered as crossing WP waypoints and the positions on the flight plan communicated to ground control as pseudo-PWP waypoints.
  • the aircraft-ground air traffic control system shown in FIG. 1 comprises a ground air traffic control station 2 in radio link with the flight management computers FMS 30 of the aircraft 1 circulating in the air volume under its responsibility.
  • the flight management computer FMS 30 is on-board piloting equipment which acts on the behavior of an aircraft 1, by means of an automatic pilot and / or flight director FD / PA 20 and of control equipment. 11. Briefly, an aircraft is piloted by playing on the orientations of mobile aerodynamic surfaces (control surfaces, flaps, etc.) and on the speed of the propulsion engine (s).
  • a first essential level of piloting equipment consisting of actuators 10 orienting the moving surfaces and adjusting the thrust of the engines and flight control equipment 11 (joystick, spreaders, joysticks, etc.) which develop position setpoints for the actuators 10 and which are manipulated directly or indirectly by the crew of the aircraft.
  • a second level of piloting equipment constituted by the flight director / automatic pilot FD / AP20 ("Flight Director / automatic Pilot" in English) whose function is to facilitate the task of the crew by automating the monitoring of flight instructions such as heading, altitude, speed instructions ground, vertical speed, etc.
  • the flight director / autopilot FD / AP 20 operates in two main modes: a so-called “flight director” mode where it indicates to the pilot, via EFIS 52 display screens ("Electronic Flight Instrument System” in the orders to be given to flight commands 11 for the follow-up of a flight instruction and a so-called “automatic pilot” mode where it acts directly on flight commands 11.
  • EFIS 52 display screens Electronic Flight Instrument System
  • automated pilot mode where it acts directly on flight commands 11.
  • the flight management computer FMS 30 and the flight director / autopilot FD / AP 20 are configurable by the crew " by means of two man-machine interfaces, one 50 known as MCDU (" Multipurpose Control Display Unit “in Anglo-Saxon) resembling a calculator and allowing detailed configuration, and the other 51 known as FCU ("Flight Control Unit” in Anglo-Saxon) placed in strip at the base of the cockpit windshield and allowing a succinct configuration but easier than the MCDU 50.
  • MCDU Multipurpose Control Display Unit
  • FCU Flight Control Unit
  • EFIS 52 displays they use flight information provided by flight sensors FS 40 ("flight sensors” in English) such as a barometric altimeter or a radio altimeter, an inertial unit or a satellite positioning receiver, air speed probes, etc.
  • the aircraft has radio communication equipment AATNP 53 ("Airborne Aeronautical Telecommunication Network Part" in English) n) allowing it to use the ATN digital transmission network for information exchange with the ground.
  • the air traffic control ground station 2 includes a traffic management device TM 60 (Traffic Management ”in English) associated with radiocommunication equipment GATNP 61 (“ Ground Aeronautical Telecommunication Network Part ”in English). Saxon).
  • the crew of an aircraft chooses, to get from its starting point to its destination point, a 3D trajectory with instructions and speed constraints which induce a course chronology.
  • the 3D trajectory with its chronology of course is constructed from a skeleton made up of a chain of segments of a large arc of a terrestrial circle connecting the points corresponding to changes in flight instructions known as WP waypoints.
  • the waypoints WP and the local flight constraints associated with them constitute a document called flight plan intended on the one hand, for air traffic control authorities which uses it to estimate the theoretical position of the aircraft in the air volumes monitored and check that there is no risk of collision with other aircraft and, on the other hand, with the crew and the FMS flight management computer of the aircraft which use it for determine the trajectory and chronology of the course actually followed by the aircraft.
  • the management computer of flight FMS 30 of an aircraft 1 provides it, via the aeronautical telecommunication network ATN of the ATM system (AATNP and GATNP equipment in FIG.
  • FIG. 2 illustrates, in lateral projection, a portion of the LTFP flight plan consisting of four consecutive waypoints WPi-2, WPi-1, WPi and WPi + 1 with, for the latter, an imposed escape cap, for example, because it marks an entry to the runway.
  • the flight management computer FMS chooses, for the aircraft, a trajectory LT M S with softened transitions, which straightens the sequence of the segments 100, 101, 102 of the flight plan to remain in the maneuverability domain of the aircraft and comply with a comfort requirement while sticking to the flight plan as best as possible.
  • the FMS flight management computer softens the transition to the last waypoint WPi + 1 for taking the imposed exhaust course.
  • the flight management computer FMS places, on this trajectory LTFM S , particular points PWPij assigned with double indexing, an indexing by an index i identifying the straight segment concerned and an index j identifying their order of succession on the straight segment concerned including the crossing points.
  • These particular points PWPij called pseudo-crossing points which identify local flight instructions different from those associated with the crossing point when the pseudopoint is confused with a crossing point or changes in local flight instructions corresponding to the start of the maneuver transition points are not listed in the flight plan, unlike the waypoints WPi-2, WPi-1, WPi, WPi + 1.
  • the broken arrival segment 100 there are two passing pseudopoints PWPi-2,2 and PWPi-2,3, marking the beginning and the end of the change of heading of the aircraft to pass from the heading setpoint associated with the waypoint WPi-2 to that associated with the waypoint WPi-1.
  • the first PWPi-1, 2 there are two other pseudo-crossing points, the first PWPi-1, 2 corresponding to the start of a change of course maneuver of the aircraft to pass from the heading setpoint associated with the point waypoint WPi-1 to that associated with the waypoint WPi and the second PWPi-1, 3 corresponding to a start of descent in order to reach the altitude setpoint associated with the waypoint WPi + 1 supposed here to mark an entry runway.
  • the first PWPi, 2 corresponding to a deceleration maneuver preparing for a landing
  • the second PWPi, 3 marking the end of the course change maneuver carried out.
  • the aircraft to maintain the heading setpoint associated with the waypoint WPi
  • the third PWPi, 4 marking the start of a course change maneuver to allow effective overflight of the waypoint WPi + 1 with the set course
  • the fifth PWPi, 5 marking the start of the course change maneuver making it possible to comply with the course instruction associated with overflight of the waypoint WPi + 1.
  • the flight management computer FMS takes care to modify the local flight instructions at the aircraft crossings of these pseudo-crossing points PWPij.
  • the flight management computer FMS communicates to the ground station, by the aeronautical digital transmission network ATN, a forecast of the date of crossing of the next waypoint WPi-2, WPi-1, WPi or WPi + 1 to be reached.
  • the FMS flight management computer gives as a forecast of the date of crossing of the waypoint WPi, the planned date of the aircraft's passage at the point SWPi of its effective trajectory LT F MS-
  • the FMS flight management computer signals the locations SPWPi-1, 3 to the air traffic control ground station; SPWPi, 2; SPWPi, 5 of the projections of the pseudo-points of passage PWPi-1, 3; PWPi, 2; PWPi, 5 that it uses, on the trajectory skeleton specified in the flight plan.
  • Knowing the locations of the projection, on the flight plan, of the pseudo-crossing points where the aircraft begins transition maneuvers allows an air traffic control ground station to more precisely estimate the instantaneous position of an aircraft outside of the times when it performs transition maneuvers between two segments of the flight plan and adopt narrower protection corridors for the same degree of safety.
  • the information given by the flight management computer FMS, on the locations of the projections, on the flight plan, of pseudo-crossing points is supplemented by indications on the nature and the extent of the local setpoint changes of flight associated with the planned pseudo-crossing points in order to indicate to the air traffic control ground station the direction in which the protective corridor associated with the aircraft must be deformed to maintain safety at the same level.
  • the indications on the nature of the changes can consist in indicating that the indicated location is that of the projection on the skeletons of lateral and vertical trajectories of the flight plan of a passing pseudopoint corresponding to a start or end of a climb, a start or end of a descent, a vertical speed change, a turn, etc.
  • the indications on the 'extent of changes may consist of the radius of curvature of a turn and its opening (change of course sought), on the rate of slope adopted at the start of ascent or descent, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

The invention relates to a system for air traffic management ATM with co-operating aircrafts that are provided with a flight management calculator FMS, are connected to the control authority via a data transmission system ATN, and have presented a flight plan to the control authority. According to the inventive method, the projections SPWPi,j of pseudo-points of passage PWPi,j on the flight plan (LTFP), introduced by the FMS calculator during softened lateral transitions (between two flight plan segments) and/or vertical transitions (between two slope breaks) carried out by the aircraft at the moment of the instruction changes described in the flight plan (LTFP), are communicated to the control authority via the ATN link. Said information enables the control authority to estimate more precisely the future real position of the aircraft and the instruction changes, and thus to increase the level of security, especially for traffic separation.

Description

PROCEDE DE SUIVI DU DEROULEMENT DU PLAN DE VOL D'UN AERONEF COOPERATIF METHOD FOR MONITORING THE CONDUCT OF THE FLIGHT PLAN OF A COOPERATIVE AIRCRAFT
La présente invention concerne le suivi, par une autorité de contrôle, du déroulement du plan de vol d'un aéronef pourvu d'un calculateur de gestion du vol FMS (« Flight Management System » en anglo-saxon) et relié par un système de transmission de données à l'autorité de contrôle. Elle intéresse notamment la gestion du trafic aérien au moyen du système ATM (« Air Traffic Management System » en anglo-saxon). Les autorités de contrôle du trafic aérien organisent la circulation aérienne dans les volumes aériens placés sous leur contrôle à partir de plans de vol 4D, qui leur sont soumis à l'avance par les équipages des aéronefs. Elles vérifient que les différents plans de vol soumis sont compatibles avec la sécurité des différents acteurs avant de les approuver puis surveillent, lors de leurs déroulements, les écarts des aéronefs par rapport aux positions prévues et donnent des consignes de déroutement lorsque ces écarts tendent à des rapprochements entre aéronefs menaçant leur sécurité. Un plan de vol 4D définit un squelette de trajectoire 3D (latitude longitude, altitude) associé à une chronologie de parcours au moyen d'un enchaînement de points de passage WP (« WayPoint » en anglo-saxon) qui sont placés, sur le trajet de l'aéronef, aux endroits de changement de contraintes de vol et qui sont associés individuellement à diverses contraintes locales de vol : contraintes d'altitude, de vitesse, de cap de capture, de cap d'échappement, de vitesse sol, de vitesse verticale, de date de passage, etc.. L'enchaînement des points de passage WP définit la projection latérale de la route envisagée. Les contraintes locales de vol déterminent la projection verticale de la route envisagée et la chronologie de parcours. Le suivi d'un plan de vol par un aéronef consiste à rallier les points de passage WP dans l'ordre de leur enchaînement en parcourant entre deux points de passage WP successifs un segment de droite (« Legs » en anglo- saxon), en fait un segment de grand arc de cercle terrestre, tout en respectant les contraintes locales associées aux points de passage WP délimitant les extrémités du segment. L'équipage ou le calculateur de gestion du vol FMS d'un aéronef détermine la trajectoire 3D effectivement suivie par l'aéronef en se basant sur le squelette de trajectoire 3D du plan de vol et de la chronologie de parcours précisés dans le plan de vol, et en tenant compte des capacités de manœuvre de l'aéronef et d'un degré de confort désiré. La prise en compte des capacités de manœuvre de l'aéronef et du confort désiré se traduit par l'introduction, dans la trajectoire 3D effectivement suivie par l'aéronef de transitions. adoucies entre les segments de droite du squelette de trajectoire 3D du plan de vol. Ces transitions adoucies entraînent des changements de contraintes de vol en des points de passage spécifiques dits pseudo-points de passage PWP qui ne sont pas mentionnés dans le plan de vol. Les autorités de contrôle du trafic aérien utilisent les plans de vol qui leur sont soumis pour estimer les positions théoriques instantanées des aéronefs dans leurs volumes aériens et évaluer les risques de collision. L'évaluation des risques de collision se fait en attribuant à chaque aéronef, son propre corridor de protection (un volume en forme de tube placé autour de la position théorique à court terme de l'aéronef et orienté selon le vecteur vitesse théorique de l'aéronef) qui ne doit intercepter aucun autre corridor de protection. La largeur des corridors de protection tient compte des possibilités de transitions adoucies entre deux segments d'un plan de vol. Pour l'appréciation des écarts entre les positions réelles et théoriques des aéronefs en vue d'un recentrage éventuel de leurs volumes de protection et de possibles commandes d'évitement pour résoudre des risques de collision nouvellement apparus, les autorités de contrôle du trafic aérien font appel à des moyens non-coopératifs de repérage des aéronefs tels que des radars primaires mais également à des moyens coopératifs permettant de demander aux aéronefs des informations sur leurs positions instantanées réelles tels que des transmissions en phonie avec les équipages, des radars secondaires interrogeant des répondeurs embarqués ou le système ATM en relation par transmission de données avec les calculateurs de gestion du vol des aéronefs. Lorsque le système ATM est utilisé, le calculateur de gestion du vol FMS d'un aéronef fournit sur demande la position instantanée et le vecteur vitesse instantanée de l'aéronef ainsi que des prévisions de date, d'altitude et de vecteur vitesse de franchissement d'un prochain point de passage WP, ce qui permet aux autorités de contrôle du trafic aérien de recaler la position d'un aéronef par rapport à son plan de vol pour le faire cadrer avec la situation réelle. Compte-tenu des transitions adoucies agrémentant la trajectoire effectivement suivie, un aéronef ne passe pas nécessairement exactement au droit d'un point de passage mentionné dans son plan de vol si le survol du point de passage n'est pas obligatoire. Dans ce cas, l'instant de franchissement d'un point de passage est assimilé à l'instant de passage au plus près.The present invention relates to the monitoring, by a control authority, of the progress of the flight plan of an aircraft provided with a flight management system FMS ("Flight Management System" in English) and connected by a system of transmission of data to the supervisory authority. It is particularly relevant to air traffic management using the ATM system ("Air Traffic Management System" in English). Air traffic control authorities organize air traffic in the air volumes under their control from 4D flight plans, which are submitted to them in advance by aircraft crews. They verify that the different flight plans submitted are compatible with the safety of the different actors before approving them, then monitor, during their course, the deviations of the aircraft from the planned positions and give diversion instructions when these deviations tend to reconciliations between aircraft threatening their safety. A 4D flight plan defines a 3D trajectory skeleton (latitude longitude, altitude) associated with a route chronology by means of a sequence of waypoints WP (“WayPoint” in English) which are placed, on the route of the aircraft, at locations where flight constraints change and which are individually associated with various local flight constraints: altitude, speed, capture heading, escape heading, ground speed, speed constraints vertical, crossing date, etc. The sequence of WP crossing points defines the lateral projection of the planned route. Local flight constraints determine the vertical projection of the planned route and the route chronology. The tracking of a flight plan by an aircraft consists of joining the WP waypoints in the order of their sequence by traversing a straight line between two successive WP waypoints ("Legs" in English), makes a segment of a large arc of a terrestrial circle, while respecting the local constraints associated with the waypoints WP delimiting the ends of the segment. The crew or the FMS flight management computer of an aircraft determines the 3D trajectory actually followed by the aircraft based on the 3D trajectory skeleton of the flight plan and the chronology of route specified in the flight plan, and taking into account the maneuvering capabilities of the aircraft and a desired degree of comfort. Taking into account the maneuvering capabilities of the aircraft and the desired comfort is reflected by the introduction, into the 3D trajectory actually followed by the aircraft, of transitions. softened between the line segments of the 3D flight path skeleton of the flight plan. These softened transitions lead to changes in flight constraints at specific waypoints known as PWP pseudo waypoints which are not mentioned in the flight plan. Air traffic control authorities use the flight plans submitted to them to estimate the instantaneous theoretical positions of aircraft in their air volumes and assess the risk of collision. The risk of collision is assessed by assigning each aircraft its own protection corridor (a tube-shaped volume placed around the theoretical short-term position of the aircraft and oriented according to the theoretical speed vector of the aircraft) which must not intercept any other protective corridor. The width of the protection corridors takes into account the possibilities for smooth transitions between two segments of a flight plan. In order to assess the deviations between the actual and theoretical positions of aircraft with a view to refocusing their protection volumes and possible avoidance commands to resolve the risks of newly appeared collisions, air traffic control authorities use of non-cooperative means of locating aircraft such as primary radars but also of cooperative means enabling aircraft to be asked for information on their actual instantaneous positions such as voice communications with crews, secondary radars interrogating answering machines on-board or the ATM system in connection by data transmission with the flight management computers of aircraft. When the ATM system is used, the FMS flight management computer of an aircraft provides on request the instantaneous position and the instantaneous speed vector of the aircraft as well as forecasts of date, altitude and crossing speed vector d '' a next WP waypoint, which allows air traffic control authorities to readjust an aircraft's position in relation to its flight plan to make it fit the real situation. In view of the smoothed transitions embellishing the trajectory actually followed, an aircraft does not necessarily pass exactly at the right of a waypoint mentioned in its flight plan if overflight of the waypoint is not compulsory. In this case, the instant of crossing a crossing point is assimilated to the closest crossing instant.
La présente invention a pour but d'améliorer la précision avec laquelle une autorité de contrôle de trafic aérien appréhende les positions et les trajectoires à court terme des aéronefs en lui permettant de tenir compte des transitions adoucies agrémentant les trajectoires effectives des aéronefs entre les segments consécutifs de leurs plans de vol. Grâce à cette précision accrue, l'autorité de contrôle peut soit améliorer à trafic constant les distances effectives de séparation entre les aéronefs évoluant dans son espace, soit augmenter la densité du trafic pour des distances effectives de séparation entre aéronefs inchangées.The object of the present invention is to improve the precision with which an air traffic control authority apprehends the positions and short-term trajectories of aircraft by allowing it to take account of the smoothed transitions embellishing the actual trajectories of aircraft between the consecutive segments. of their flight plans. Thanks to this increased precision, the control authority can either improve at constant traffic the effective separation distances between the aircraft operating in its space, or increase the traffic density for effective separation distances between aircraft unchanged.
Elle a pour objet un procédé de suivi du déroulement d'un plan de vol d'un aéronef coopératif pourvu d'un calculateur de gestion du vol FMS relié par une liaison de transmission de données à une autorité de contrôle. Le plan de vol connu de l'autorité de contrôle est constitué d'un enchaînement de points de passage WP associés à des contraintes locales de vol définissant un squelette de trajectoire à suivre et une chronologie de parcours à respecter. L'autorité de contrôle se sert du plan de vol pour estimer la position instantanée de l'aéronef. Le calculateur de gestion du vol FMS construit, à partir du squelette de trajectoire et de la chronologie de parcours précisés dans le plan de vol, une trajectoire effective avec des transitions latérales et verticales adoucies, dimensionnées pour tenir compte des capacités de manœuvre de l'aéronef et d'une consigne de confort, et repérées au moyen de pseudo-points de passage PWP associés à des contraintes locales de vol, la position d'un pseudo-point de passage PWP marquant le début d'une transition et les contraintes locales de vol associées définissant les propriétés de la transition. Ce procédé est remarquable en ce que le calculateur de gestion du vol FMS de l'aéronef calcule les emplacements des projections des pseudo-points de passage PWP sur le squelette de trajectoire précisé dans le plan de vol et les communique par la liaison de transmission de données à l'autorité de contrôle qui les utilise pour améliorer son estimation de la position instantanée de l'aéronef le long de son plan de vol, et ainsi mieux assurer sa mission d'espacement et séparation des traffics.It relates to a process for monitoring the progress of a flight plan of a cooperative aircraft provided with an FMS flight management computer connected by a data transmission link to a control authority. The flight plan known to the control authority consists of a series of waypoints WP associated with local flight constraints defining a skeleton of the trajectory to be followed and a chronology of the course to be observed. The control authority uses the flight plan to estimate the instantaneous position of the aircraft. The FMS flight management computer builds, from the trajectory skeleton and the route chronology specified in the flight plan, an effective trajectory with softened lateral and vertical transitions, dimensioned to take into account the maneuvering capabilities of the aircraft and a comfort setpoint, and identified by means of PWP pseudo-crossing points associated with local flight constraints, the position of a PWP pseudo-crossing point marking the start of a transition and the local constraints associated flight defining the properties of the transition. This method is remarkable in that the flight management computer FMS of the aircraft calculates the locations of the projections of the pseudo-waypoints PWP on the trajectory skeleton specified in the flight plan and communicates it by the data transmission link to the control authority which uses it to improve its estimation of the instantaneous position of the aircraft along its flight plan, and thus better ensure its mission of separation and separation of traffics.
Avantageusement, le calculateur de gestion du vol FMS de l'aéronef projette les pseudo-points de passage PWP sur le squelette de trajectoire du plan de vol en conservant les distances, la distance à un point de passage WP de la projection d'un pseudo-point de passage PWP étant égale à celle séparant le pseudo-point de passage PWP projeté du point de la trajectoire effective de l'aéronef le plus proche du point de passage considéré.Advantageously, the flight management computer FMS of the aircraft projects the pseudo-waypoints PWP onto the skeleton of the flight plan trajectory while preserving the distances, the distance to a waypoint WP from the projection of a pseudo PWP waypoint being equal to that separating the projected PWP pseudo-point from the point of the effective trajectory of the aircraft closest to the considered point of passage.
Avantageusement, le calculateur de gestion du vol FMS de l'aéronef projette les pseudo-points de passage PWP sur le squelette de trajectoire du plan de vol en conservant les distances mesurées en unité de longueur, la distance à un point de passage WP de la projection d'un pseudo-point de passage PWP étant égale à celle séparant le pseudo-point de passage PWP projeté, du point de la trajectoire effective de l'aéronef le plus proche du point de passage considéré.Advantageously, the flight management computer FMS of the aircraft projects the pseudo-waypoints PWP onto the skeleton of the flight plan trajectory while preserving the distances measured in unit of length, the distance to a waypoint WP of the projection of a pseudo-waypoint PWP being equal to that separating the pseudo-waypoint PWP projected, from the point of the effective trajectory of the aircraft closest to the waypoint considered.
Avantageusement, le calculateur de gestion du vol FMS de l'aéronef projette les pseudo-points de passage PWP sur le squelette de trajectoire du plan de vol en conservant équivalentes, les distances mesurées en temps de parcours, le temps du parcours d'un point de passage WP à la projection d'un pseudo-point de passage PWP étant pris égal au temps du parcours du pseudo-point de passage PWP projeté, au point de la trajectoire effective de l'aéronef le plus proche du point de passage considéré.Advantageously, the flight management computer FMS of the aircraft projects the pseudo-waypoints PWP onto the skeleton of the flight plan trajectory while keeping equivalent, the distances measured in travel time, the travel time of a point of passage WP to the projection of a pseudo-point of passage PWP being taken equal to the time of the journey of the pseudo-point of passage PWP projected, at the point of the effective trajectory of the aircraft closest to the passage point considered.
Avantageusement, le calculateur de gestion du vol FMS de l'aéronef communique à l'autorité de contrôle, avec les emplacements des projections des pseudo-points de passage PWP sur le squelette de trajectoire précisé dans le plan de vol, des indications sur la nature et l'ampleur des changements de consigne locale de vol associées aux pseudopoints de passage PWP projetés.Advantageously, the flight management computer FMS of the aircraft communicates to the control authority, with the locations of the projections of the pseudo-crossing points PWP on the trajectory skeleton specified in the flight plan, indications of the nature and the magnitude of local flight setpoint changes associated with the projected PWP runway pseudopoints.
D'autres caractéristiques et avantages de l'invention ressortiront de la description d'un mode de réalisation donné à titre d'exemple. Cette description sera faite en regard du dessin dans lequel : - une figure 1 montre un exemple d'architecture d'un système aéronef- sol convenant à la mise en œuvre de l'invention, et - une figure 2 est un diagramme montrant une trajectoire réellement suivie à transitions adoucies et la portion de plan de vol correspondante, avec les positions sur la trajectoire réelle considérées comme franchissement des points de passage WP et les positions sur le plan de vol communiquées au contrôle sol comme pseudo-point de passage PWP.Other characteristics and advantages of the invention will emerge from the description of an embodiment given by way of example. This description will be made with reference to the drawing in which: - a figure 1 shows an example of architecture of an aircraft-ground system suitable for the implementation of the invention, and - a figure 2 is a diagram showing a trajectory actually followed with softened transitions and the corresponding flight plan portion, with the positions on the real trajectory considered as crossing WP waypoints and the positions on the flight plan communicated to ground control as pseudo-PWP waypoints.
Le système aéronef-sol de contrôle de trafic aérien représenté à la figure 1 comporte une station sol de contrôle du trafic aérien 2 en liaison radioélectrique avec les calculateurs de gestion du vol FMS 30 des aéronefs 1 circulant dans le volume aérien placé sous sa responsabilité. Le calculateur de gestion du vol FMS 30 est un équipement embarqué de pilotage qui agit sur le comportement d'un aéronef 1 , par l'intermédiaire d'un pilote automatique et/ou directeur de vol FD/PA 20 et d'équipements de commande de vol 11. Brièvement, un aéronef est piloté en jouant sur les orientations de surfaces aérodynamiques mobiles (gouvernes, volets, etc.) et sur le régime du ou des moteurs de propulsion. Il dispose pour cela d'un premier niveau indispensable d'équipements de pilotage constitué d'actionneurs 10 orientant les surfaces mobiles et ajustant la poussée des moteurs et d'équipements de commande de vol 11 (manche, palonniers, manettes, etc.) qui élaborent des consignes de position pour les actionneurs 10 et qui sont manipulés directement ou indirectement par l'équipage de l'aéronef. A ce premier niveau d'équipements indispensables pour le pilotage s'ajoute un deuxième niveau d'équipements de pilotage constitué par le directeur de vol / pilote automatique FD/AP20 (« Flight Director / automatic Pilot » en anglo-saxon) dont la fonction est de faciliter la tâche de l'équipage en automatisant le suivi de consignes de vol telles que des consignes de cap, d'altitude, de vitesse sol, de vitesse verticale, etc. Le directeur de vol /pilote automatique FD/AP 20 fonctionne selon deux modes principaux : un mode dit « directeur de vol » où il indique au pilote, par l'intermédiaire d'écrans de visualisation EFIS 52 (« Electronic Flight Instrument System » en anglo-saxon) les ordres à donner aux commandes de vol 11 pour le suivi d'une consigne de vol et un mode dit : « pilote automatique » où il agit directement sur les commandes de vol 11. Après ces premier et deuxième niveaux d'équipements de vol vient un troisième niveau constitué du calculateur de gestion du vol FMS 30 qui a pour fonction de faciliter, jusqu'à automatisation complète, les tâches de préparation et de suivi d'un plan de vol. Le calculateur de gestion du vol FMS 30 et le directeur de vol /pilote automatique FD/AP 20 sont paramétrables par l'équipage "au moyen de deux interfaces homme-machine, l'une 50 dite MCDU (« Multipurpose Control Display Unit » en anglo-saxon) ressemblant à une calculette et permettant un paramétrage fouillé, et l'autre 51 dite FCU (" Flight Control Unit" en anglo-saxon) placée en bandeau à la base du pare-brise du cockpit et permettant un paramétrage succinct mais plus aisé que le MCDU 50. Ils exploitent avec les afficheurs EFIS 52, des informations de vol fournies par des capteurs de vol FS 40 (« flight sensors » en anglo-saxon) tel qu'un altimètre barométrique ou un radioaltimètre, une centrale inertielle ou un récepteur de positionnement par satellites, des sondes de vitesse air, etc.. En plus de ces équipements de pilotage, l'aéronef dispose d'équipements de radiocommunication AATNP 53 (« Airborne Aeronautical Télécommunication Network Part » en anglo-saxon) lui permettant d'utiliser le réseau de transmission numérique ATN pour des échanges d'informations avec le sol. De son côté, la station sol de contrôle du trafic aérien 2 comporte un dispositif de gestion du trafic TM 60 ( Traffic Management » en anglo- saxon) associé à des équipements de radiocommunication GATNP 61 (« Ground Aeronautical Télécommunication Network Part » en anglo-saxon).The aircraft-ground air traffic control system shown in FIG. 1 comprises a ground air traffic control station 2 in radio link with the flight management computers FMS 30 of the aircraft 1 circulating in the air volume under its responsibility. The flight management computer FMS 30 is on-board piloting equipment which acts on the behavior of an aircraft 1, by means of an automatic pilot and / or flight director FD / PA 20 and of control equipment. 11. Briefly, an aircraft is piloted by playing on the orientations of mobile aerodynamic surfaces (control surfaces, flaps, etc.) and on the speed of the propulsion engine (s). It has for this a first essential level of piloting equipment consisting of actuators 10 orienting the moving surfaces and adjusting the thrust of the engines and flight control equipment 11 (joystick, spreaders, joysticks, etc.) which develop position setpoints for the actuators 10 and which are manipulated directly or indirectly by the crew of the aircraft. To this first level of essential equipment for piloting is added a second level of piloting equipment constituted by the flight director / automatic pilot FD / AP20 ("Flight Director / automatic Pilot" in English) whose function is to facilitate the task of the crew by automating the monitoring of flight instructions such as heading, altitude, speed instructions ground, vertical speed, etc. The flight director / autopilot FD / AP 20 operates in two main modes: a so-called "flight director" mode where it indicates to the pilot, via EFIS 52 display screens ("Electronic Flight Instrument System" in the orders to be given to flight commands 11 for the follow-up of a flight instruction and a so-called “automatic pilot” mode where it acts directly on flight commands 11. After these first and second levels of flight equipment comes a third level consisting of the FMS 30 flight management computer which has the function of facilitating, until complete automation, the tasks of preparing and monitoring a flight plan. The flight management computer FMS 30 and the flight director / autopilot FD / AP 20 are configurable by the crew " by means of two man-machine interfaces, one 50 known as MCDU (" Multipurpose Control Display Unit "in Anglo-Saxon) resembling a calculator and allowing detailed configuration, and the other 51 known as FCU ("Flight Control Unit" in Anglo-Saxon) placed in strip at the base of the cockpit windshield and allowing a succinct configuration but easier than the MCDU 50. With EFIS 52 displays, they use flight information provided by flight sensors FS 40 ("flight sensors" in English) such as a barometric altimeter or a radio altimeter, an inertial unit or a satellite positioning receiver, air speed probes, etc. In addition to these piloting equipment, the aircraft has radio communication equipment AATNP 53 ("Airborne Aeronautical Telecommunication Network Part" in English) n) allowing it to use the ATN digital transmission network for information exchange with the ground. For its part, the air traffic control ground station 2 includes a traffic management device TM 60 (Traffic Management ”in English) associated with radiocommunication equipment GATNP 61 (“ Ground Aeronautical Telecommunication Network Part ”in English). Saxon).
Lors d'une préparation de mission, l'équipage d'un aéronef choisit, pour se rendre de son point de départ à son point de destination, une trajectoire 3D avec des consignes et contraintes de vitesse qui induisent une chronologie de parcours. La trajectoire 3D avec sa chronologie de parcours est construite à partir d'un squelette constitué d'un enchaînement de segments de grand arc de cercle terrestre reliant les points correspondant à des changements de consignes de vol dits points de passage WP. Les points de passage WP et les contraintes locales de vol qui leur sont associées constituent un document dénommé plan de vol destiné d'une part, aux autorités de contrôle du trafic aérien qui l'utilise pour estimer la position théorique de l'aéronef dans les volumes aériens surveillés et vérifier qu'il n'y a pas de risques de collision avec d'autres aéronefs et, d'autre part, à l'équipage et au calculateur de gestion du vol FMS de l'aéronef qui l'utilisent pour déterminer la trajectoire et la chronologie de parcours effectivement suivies par l'aéronef. En vue de permettre à la station de contrôle du trafic aérien 2 d'améliorer son estimation de la position de l'aéronef faite à partir du squelette de trajectoire 3D et de la chronologie de parcours précisés dans le plan de vol, le calculateur de gestion du vol FMS 30 d'un aéronef 1 lui fournit, par l'intermédiaire du réseau aéronautique de télécommunication ATN du système ATM (équipements AATNP et GATNP figure 1), des informations sur le déroulement réel du plan de vol telles que la date prévue pour le franchissement d'un prochain point de passage, date d'acquisition d'une altitude donnée, etc.. Les informations sur le déroulement réel du plan de vol communiquées par le calculateur de gestion du vol FMS d'un aéronef à une station de contrôle du trafic aérien dans le nouveau système ATM sont cependant assez restreintes et ne permettent pas au contrôle aérien de tenir compte avec précision des adoucissements de transition entre des segments du plan de vol effectués par un calculateur de gestion du vol FMS en vue de tenir compte des capacités de manœuvre de l'aéronef et de garantir un certain degré de confort aux passagers de l'aéronef. On se propose d'améliorer l'information d'une station de contrôle du trafic aérien sur le déroulement réel d'un plan de vol en ajoutant aux informations déjà communiquées par le calculateur de gestion du vol FMS d'un aéronef, des informations supplémentaires concernant les adoucissements de transition pratiqués, qui soient faciles à exploiter à partir du plan de vol. La figure 2 illustre, en projection latérale, une portion de plan de vol LTFP constituée de quatre points de passage consécutifs WPi-2, WPi-1, WPi et WPi+1 avec, pour le dernier un cap d'échappement imposé par exemple, parce qu'il marque une entrée de piste d'atterrissage. Entre et autour de ces quatre points de passage consécutifs WPi-2, WPi-1 , WPi et WPi+1 s'enchaînent quatre segments rectilignes : un segment brisé 100 d'arrivée passant par le point de passage WPi-2 au point de passage WPi-1 , un premier segment intermédiaire 101 de ralliement s'étendant du point de passage WPi-1 au point de passage WPi, un deuxième segment intermédiaire 102 de ralliement s'étendant du point de passage WPi au point de passage WPi+1 et un segment 103 de sortie quittant le point de passage WPi+1. Compte tenu du faible écart de cap entre le segment d'arrivée 100 et le deuxième segment intermédiaire de ralliement 102, des forts écarts de cap du premier segment intermédiaire de ralliement 101 par rapport au segment d'arrivée 100 et au deuxième segment intermédiaire de ralliement 102, le calculateur de gestion du vol FMS choisit, pour l'aéronef, une trajectoire LT MS aux transitions adoucies, qui redresse l'enchaînement des segments 100, 101 , 102 du plan de vol pour rester dans le domaine de manœuvrabilité de l'aéronef et respecter une consigne de confort tout en collant au mieux au plan de vol. De la même façon, le calculateur de gestion du vol FMS adoucit la transition au dernier point de passage WPi+1 pour la prise du cap d'échappement imposé. Lorsqu'il élabore, à partir du plan de vol, la trajectoire LTFMS à faire suivre l'aéronef, le calculateur de gestion du vol FMS place, sur cette trajectoire LTFMS, des points particuliers PWPij affectés d'une double indexation, une indexation par un indice i repérant le segment rectiligne concerné et un indice j repérant leur ordre de succession sur le segment rectiligne concerné y compris les points de passage. Ces points particuliers PWPij, dits pseudo-points de passage qui repèrent des consignes locales de vol différentes de celles associées au point de passage lorsque le pseudopoint est confondu avec un point de passage ou des changements de consignes locales de vol correspondant à des débuts de manœuvre de transition entre segments, ne sont pas répertoriés dans le plan de vol contrairement aux points de passage WPi-2, WPi-1 , WPi, WPi+1. Sur le segment brisé d'arrivée 100, on distingue deux pseudopoints de passage PWPi-2,2 et PWPi-2,3, marquant le début et la fin de la manœuvre de changement de cap de l'aéronef pour passer de la consigne de cap associée au point de passage WPi-2 à celle associée au point de passage WPi-1. Sur le premier segment intermédiaire de ralliement 101 , on distingue deux autres pseudo-points de passage, le premier PWPi-1 ,2 correspondant à un début de manœuvre de changement de cap de l'aéronef pour passer de la consigne de cap associée au point de passage WPi-1 à celle associée au point de passage WPi et le deuxième PWPi-1 ,3 correspondant à un début de descente en vue d'atteindre la consigne d'altitude associée au point de passage WPi+1 supposé ici marquer une entrée de piste d'atterrissage. Sur le deuxième segment intermédiaire de ralliement 102, on distingue quatre autres pseudo-points de passage, le premier PWPi,2 correspondant à une manœuvre de décélération préparant un atterrissage, le deuxième PWPi,3 marquant la fin de la manœuvre de changement de cap effectuée par l'aéronef pour tenir la consigne de cap associée au point de passage WPi, le troisième PWPi,4 marquant le début d'une manœuvre de changement de cap pour permettre le survol effectif du point de passage WPi+1 avec le cap imposé et le cinquième PWPi,5 marquant le début de la manœuvre de changement de cap permettant de respecter la consigne de cap associée au survol du point de passage WPi+1. Lors du suivi de la trajectoire LTFMS retenue pour l'aéronef, le calculateur de gestion du vol FMS veille à modifier les consignes locales de vol aux franchissements par l'aéronef de ces pseudo-points de passage PWPij. Pour faciliter et améliorer le suivi, par une station sol de contrôle du trafic aérien, de la progression de l'aéronef le long de son plan de vol, il est prévu dans le système ATM que le calculateur de gestion du vol FMS communique à la station sol, par le réseau aéronautique de transmission numérique ATN, une prévision de date de franchissement du prochain point de passage WPi-2, WPi-1 , WPi ou WPi+1 à atteindre. Lorsque, du fait des possibilités d'adoucissement des transitions entre segments d'un plan de vol, l'aéronef prévoit de ne passer qu'à proximité d'un point de passage, son calculateur de vol assimile le franchissement d'un point de passage WP au franchissement du point de la trajectoire effectivement suivie par l'aéronef, considéré comme le plus proche du point de passage WP concerné. Ainsi, le calculateur de gestion du vol FMS donne comme prévision de date de franchissement du point de passage WPi, la date prévue du passage de l'aéronef au point SWPi de sa trajectoire effective LTFMS- En plus de ces dates de franchissement de points de passage WPi-2, WPi-1 , WPi, WPi+1 , le calculateur de gestion du vol FMS signale, à la station sol de contrôle du trafic aérien, les emplacements SPWPi-1 ,3 ; SPWPi,2 ; SPWPi,5 des projections des pseudo-points de passage PWPi-1 ,3 ; PWPi,2 ; PWPi,5 qu'il utilise, sur le squelette de trajectoire précisé dans le plan de vol. Lorsqu'il effectue ces projections, il conserve les distances en veillant à ce que la distance entre la projection d'un pseudo-point de passage PWP et un point de passage WP soit égale à celle séparant le pseudo-point de passage PWP projeté, du point de la trajectoire effective de l'aéronef le plus proche du point de passage WP considéré, cette conservation de distance pouvant avoir lieu en unité de longueur ou en unité de temps de parcours. Les emplacements des projections SPWPij des pseudo-points de passage PWPij signalés à la station sol de contrôle du trafic aérien sont repérés par les distances, exprimées en unité de longueur ou en temps de parcours, qui les séparent du point de passage WPi qui les précède ou du point de passage WPi+1 qui les suit. La connaissance des emplacements des projections, sur le plan de vol, des pseudo-points de passage où l'aéronef entame des manœuvres de transition permet à une station sol de contrôle du trafic aérien d'estimer de manière plus précise la position instantanée d'un aéronef en dehors des moments où il effectue des manœuvres de transition entre deux segments du plan de vol et d'adopter des couloirs de protection de moindre largeur pour un même degré de sécurité. Avantageusement, les informations données par le calculateur de gestion du vol FMS, sur les emplacements des projections, sur le plan de vol, des pseudo-points de passage sont complétées par des indications sur la nature et l'ampleur des changements de consigne locale de vol associées aux pseudo-points de passage projetés afin d'indiquer à la station sol de contrôle du trafic aérien la direction dans laquelle le couloir de protection associé à l'aéronef doit être déformé pour maintenir la sécurité à un même niveau. Les indications sur la nature des changements peuvent consister à signaler que l'emplacement indiqué est celui de la projection sur les squelettes de trajectoires latérale et verticale du plan de vol d'un pseudopoint de passage correspondant à un début ou une fin de montée, un début ou une fin de descente, un changement de vitesse verticale, un virage, etc.. Les indications sur l'ampleur des changements peuvent consister sur le rayon de courbure d'un virage et son ouverture (changement de cap recherché), sur le taux de pente adopté en début de montée ou de descente, etc.. During a mission preparation, the crew of an aircraft chooses, to get from its starting point to its destination point, a 3D trajectory with instructions and speed constraints which induce a course chronology. The 3D trajectory with its chronology of course is constructed from a skeleton made up of a chain of segments of a large arc of a terrestrial circle connecting the points corresponding to changes in flight instructions known as WP waypoints. The waypoints WP and the local flight constraints associated with them constitute a document called flight plan intended on the one hand, for air traffic control authorities which uses it to estimate the theoretical position of the aircraft in the air volumes monitored and check that there is no risk of collision with other aircraft and, on the other hand, with the crew and the FMS flight management computer of the aircraft which use it for determine the trajectory and chronology of the course actually followed by the aircraft. In order to allow the air traffic control station 2 to improve its estimation of the position of the aircraft made from the 3D trajectory skeleton and the course chronology specified in the flight plan, the management computer of flight FMS 30 of an aircraft 1 provides it, via the aeronautical telecommunication network ATN of the ATM system (AATNP and GATNP equipment in FIG. 1), information on the actual progress of the flight plan such as the date scheduled for the crossing of a next waypoint, date of acquisition of a given altitude, etc. The information on the actual progress of the flight plan communicated by the FMS flight management computer of an aircraft to a station air traffic control in the new ATM system are however quite limited and do not allow air traffic control to take into account precisely the transition softenings between segments of the flight plan and carried out by an FMS flight management computer in order to take account of the maneuvering capabilities of the aircraft and to guarantee a certain degree of comfort to the passengers of the aircraft. It is proposed to improve the information of an air traffic control station on the actual progress of a flight plan by adding to the information already communicated by the flight management computer FMS of an aircraft, additional information. concerning the transition softenings practiced, which are easy to use from the flight plan. FIG. 2 illustrates, in lateral projection, a portion of the LTFP flight plan consisting of four consecutive waypoints WPi-2, WPi-1, WPi and WPi + 1 with, for the latter, an imposed escape cap, for example, because it marks an entry to the runway. Between and around these four consecutive waypoints WPi-2, WPi-1, WPi and WPi + 1 are linked four straight segments: a broken segment 100 of arrival passing through the waypoint WPi-2 at the waypoint WPi-1, a first intermediate joining segment 101 extending from the crossing point WPi-1 to the crossing point WPi, a second intermediate joining segment 102 extending from the crossing point WPi to the crossing point WPi + 1 and an output segment 103 leaving the waypoint WPi + 1. Taking into account the small heading difference between the arrival segment 100 and the second intermediate rallying segment 102, the large course deviations of the first intermediate rallying segment 101 relative to the arrival segment 100 and the second intermediate rallying segment 102, the flight management computer FMS chooses, for the aircraft, a trajectory LT M S with softened transitions, which straightens the sequence of the segments 100, 101, 102 of the flight plan to remain in the maneuverability domain of the aircraft and comply with a comfort requirement while sticking to the flight plan as best as possible. In the same way, the FMS flight management computer softens the transition to the last waypoint WPi + 1 for taking the imposed exhaust course. When developing, from the flight plan, the trajectory LT F MS to be followed by the aircraft, the flight management computer FMS places, on this trajectory LTFM S , particular points PWPij assigned with double indexing, an indexing by an index i identifying the straight segment concerned and an index j identifying their order of succession on the straight segment concerned including the crossing points. These particular points PWPij, called pseudo-crossing points which identify local flight instructions different from those associated with the crossing point when the pseudopoint is confused with a crossing point or changes in local flight instructions corresponding to the start of the maneuver transition points are not listed in the flight plan, unlike the waypoints WPi-2, WPi-1, WPi, WPi + 1. On the broken arrival segment 100, there are two passing pseudopoints PWPi-2,2 and PWPi-2,3, marking the beginning and the end of the change of heading of the aircraft to pass from the heading setpoint associated with the waypoint WPi-2 to that associated with the waypoint WPi-1. On the first intermediate rallying segment 101, there are two other pseudo-crossing points, the first PWPi-1, 2 corresponding to the start of a change of course maneuver of the aircraft to pass from the heading setpoint associated with the point waypoint WPi-1 to that associated with the waypoint WPi and the second PWPi-1, 3 corresponding to a start of descent in order to reach the altitude setpoint associated with the waypoint WPi + 1 supposed here to mark an entry runway. On the second intermediate rallying segment 102, there are four other pseudo-waypoints, the first PWPi, 2 corresponding to a deceleration maneuver preparing for a landing, the second PWPi, 3 marking the end of the course change maneuver carried out. by the aircraft to maintain the heading setpoint associated with the waypoint WPi, the third PWPi, 4 marking the start of a course change maneuver to allow effective overflight of the waypoint WPi + 1 with the set course and the fifth PWPi, 5 marking the start of the course change maneuver making it possible to comply with the course instruction associated with overflight of the waypoint WPi + 1. When monitoring the trajectory LTFM S adopted for the aircraft, the flight management computer FMS takes care to modify the local flight instructions at the aircraft crossings of these pseudo-crossing points PWPij. To facilitate and improve the monitoring, by an air traffic control ground station, of the aircraft's progress along its flight plan, it is provided in the ATM system that the flight management computer FMS communicates to the ground station, by the aeronautical digital transmission network ATN, a forecast of the date of crossing of the next waypoint WPi-2, WPi-1, WPi or WPi + 1 to be reached. When, due to the possibilities of smoothing the transitions between segments of a flight plan, the aircraft plans to pass only near a waypoint, its flight computer assimilates the crossing of a WP passage on crossing the point of the path actually followed by the aircraft, considered to be closest to the WP passage point concerned. Thus, the FMS flight management computer gives as a forecast of the date of crossing of the waypoint WPi, the planned date of the aircraft's passage at the point SWPi of its effective trajectory LT F MS- In addition to these dates of crossing the waypoints WPi-2, WPi-1, WPi, WPi + 1, the FMS flight management computer signals the locations SPWPi-1, 3 to the air traffic control ground station; SPWPi, 2; SPWPi, 5 of the projections of the pseudo-points of passage PWPi-1, 3; PWPi, 2; PWPi, 5 that it uses, on the trajectory skeleton specified in the flight plan. When carrying out these projections, it keeps the distances while ensuring that the distance between the projection of a pseudo-waypoint PWP and a waypoint WP is equal to that separating the pseudo-waypoint PWP projected, from the point of the effective trajectory of the aircraft closest to the waypoint WP considered, this conservation of distance can take place in unit of length or in unit of journey time. The locations of the SPWPij projections of the pseudo waypoints PWPij reported to the air traffic control ground station are identified by the distances, expressed in units of length or in journey time, which separate them from the waypoint WPi which precedes them or the WPi + 1 waypoint that follows them. Knowing the locations of the projection, on the flight plan, of the pseudo-crossing points where the aircraft begins transition maneuvers allows an air traffic control ground station to more precisely estimate the instantaneous position of an aircraft outside of the times when it performs transition maneuvers between two segments of the flight plan and adopt narrower protection corridors for the same degree of safety. Advantageously, the information given by the flight management computer FMS, on the locations of the projections, on the flight plan, of pseudo-crossing points is supplemented by indications on the nature and the extent of the local setpoint changes of flight associated with the planned pseudo-crossing points in order to indicate to the air traffic control ground station the direction in which the protective corridor associated with the aircraft must be deformed to maintain safety at the same level. The indications on the nature of the changes can consist in indicating that the indicated location is that of the projection on the skeletons of lateral and vertical trajectories of the flight plan of a passing pseudopoint corresponding to a start or end of a climb, a start or end of a descent, a vertical speed change, a turn, etc. The indications on the 'extent of changes may consist of the radius of curvature of a turn and its opening (change of course sought), on the rate of slope adopted at the start of ascent or descent, etc.

Claims

REVENDICATIONS
1. Procédé de suivi du déroulement d'un plan de vol d'un aéronef coopératif (1) pourvu d'un calculateur de gestion du vol (FMS 30) relié par une liaison de transmission de données (53, 61 ) à une autorité de contrôle (2), le plan de vol étant connu de l'autorité de contrôle (2) et constitué d'un enchaînement de points de passage (WPi, WPi+1) associés à des contraintes locales de vol définissant un squelette de trajectoire (LTFP) à suivre et une chronologie de parcours à respecter, l'autorité de contrôle (2) se servant du plan de vol pour estimer la position instantanée de l'aéronef (1 ), le calculateur de gestion du vol (FMS 30) construisant, à partir du squelette de trajectoire (LTFP) et de la chronologie de parcours précisés dans le plan de vol, une trajectoire (LTFMS) effective avec des transitions latérales et verticales adoucies, dimensionnées pour tenir compte des capacités de manœuvre de l'aéronef (2) et d'une consigne de confort, et repérées au moyen de pseudo-points de passage (PWPij) associés à des contraintes locales de vol, la position d'un pseudo-point de passage (PWPij) marquant le début d'une transition et les contraintes locales de vol associées définissant les propriétés de la transition, ledit procédé étant caractérisé en ce que le calculateur de gestion du vol (FMS 30) de l'aéronef (2) calcule les emplacements des projections (SPWPij) des pseudo-points de passage (PWPij) sur le squelette de trajectoire (LTFP) précisé dans le plan de vol et les communique par la liaison de transmission de données (53, 61) à l'autorité de contrôle (2) qui les utilise pour améliorer son estimation de la position instantanée de l'aéronef (2).1. Method for monitoring the progress of a flight plan of a cooperative aircraft (1) provided with a flight management computer (FMS 30) connected by a data transmission link (53, 61) to an authority control (2), the flight plan being known to the control authority (2) and consisting of a chain of waypoints (WPi, WPi + 1) associated with local flight constraints defining a trajectory skeleton (LT F P) to follow and a chronology of course to respect, the control authority (2) using the flight plan to estimate the instantaneous position of the aircraft (1), the flight management computer (FMS) 30) constructing, from the skeleton of trajectory (LTF P ) and the chronology of course specified in the flight plan, an effective trajectory (LTFMS) with softened lateral and vertical transitions, dimensioned to take into account the maneuvering capacities of the aircraft (2) and a comfort instruction, and identified s by means of pseudo-waypoints (PWPij) associated with local flight constraints, the position of a pseudo-waypoint (PWPij) marking the start of a transition and the associated local flight constraints defining the properties of the transition, said method being characterized in that the flight management computer (FMS 30) of the aircraft (2) calculates the locations of the projections (SPWPij) of the pseudo-waypoints (PWPij) on the trajectory skeleton (LTFP) specified in the flight plan and communicates them via the data transmission link (53, 61) to the control authority (2) which uses them to improve its estimation of the instantaneous position of the aircraft (2 ).
2. Procédé selon la revendication 1 , caractérisé en ce que le calculateur de gestion du vol (FMS 30) de l'aéronef (2) projette les pseudopoints de passage (PWPij) sur le squelette de trajectoire (LTFP) du plan de vol en conservant les distances, la distance à un point de passage (WPi) de la projection (SPWPij) d'un pseudo-point de passage (PWPij) étant égale à celle séparant le pseudo-point de passage (PWPij) projeté du point (SWPi) de la trajectoire (LTFMS) effective de l'aéronef (2) le plus proche du point de passage (WPi) considéré. 2. Method according to claim 1, characterized in that the flight management computer (FMS 30) of the aircraft (2) projects the passage pseudopoints (PWPij) on the trajectory skeleton (LTFP) of the flight plan in keeping the distances, the distance to a waypoint (WPi) of the projection (SPWPij) of a pseudo-waypoint (PWPij) being equal to that separating the pseudo-waypoint (PWPij) projected from the point (SWPi ) of the effective trajectory (LTFMS) of the aircraft (2) closest to the waypoint (WPi) considered.
3. Procédé selon la revendication 2, caractérisé en ce que le calculateur de gestion du vol (FMS 30)de l'aéronef (2) projette les pseudopoints de passage (PWPij) sur le squelette de trajectoire (LTFP) du plan de vol en conservant les distances mesurées en unité de longueur, la distance à un point de passage (WPi) de la projection (SPWPij) d'un pseudo-point de passage (PWPij) étant égale à celle séparant le pseudo-point de passage (PWPij) projeté du point (SWPi) de la trajectoire (LTFMS) effective de l'aéronef (2) le plus proche du point de passage (WPi) considéré.3. Method according to claim 2, characterized in that the flight management computer (FMS 30) of the aircraft (2) projects the passage pseudopoints (PWPij) on the trajectory skeleton (LTFP) of the flight plan in keeping the distances measured in units of length, the distance to a waypoint (WPi) of the projection (SPWPij) of a pseudo-waypoint (PWPij) being equal to that separating the pseudo-waypoint (PWPij) projected from the point (SWPi) of the effective path (LTFM S ) of the aircraft (2) closest to the waypoint (WPi) considered.
4. Procédé selon la revendication 2, caractérisé en ce que le calculateur de gestion du vol (FMS 30) de l'aéronef (2) projette les pseudopoints de passage (PWPij) sur le squelette de trajectoire (LTFP) du plan de vol en conservant équivalentes, les distances mesurées en temps de parcours, le temps de parcours d'un point de passage (WPi) à la projection (SPWPij) d'un pseudo-point de passage (PWPij) étant pris égale au temps de parcours du pseudo-point de passage (PWPij) projeté, au point (SWPi) de la trajectoire (LTFMS) effective de l'aéronef (2) le plus proche du point de passage (WPi) considéré.4. Method according to claim 2, characterized in that the flight management computer (FMS 30) of the aircraft (2) projects the passing pseudopoints (PWPij) on the trajectory skeleton (LTF P ) of the flight plan keeping equivalent, the distances measured in travel time, the travel time from a waypoint (WPi) to the projection (SPWPij) of a pseudo-waypoint (PWPij) being taken equal to the travel time of the projected pseudo-waypoint (PWPij) at the point (SWPi) of the actual trajectory (LTFM S ) of the aircraft (2) closest to the waypoint (WPi) considered.
5. Procédé selon la revendication 1 , caractérisé en ce que le calculateur de gestion du vol (FMS 30) de l'aéronef (2) communique à l'autorité de contrôle (1 ), avec les emplacements des projections (SPWPij) des pseudo-points de passage (PWPij) sur le squelette de trajectoire (LTFP) précisé dans le plan de vol, des indications sur la nature et l'ampleur des changements de consigne locale de vol associées aux pseudo-points de passage (PWPij) projetés. 5. Method according to claim 1, characterized in that the flight management computer (FMS 30) of the aircraft (2) communicates to the control authority (1), with the locations of the pseudo projections (SPWPij) - waypoints (PWPij) on the trajectory skeleton (LTFP) specified in the flight plan, indications on the nature and extent of the local flight instruction changes associated with the pseudo-waypoints (PWPij) projected.
EP04818150A 2003-11-04 2004-11-03 Method for monitoring the development of the flight plan of a co-operating aircraft Withdrawn EP1690242A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0312930A FR2861871B1 (en) 2003-11-04 2003-11-04 METHOD FOR MONITORING THE FLOW OF THE FLIGHT PLAN OF A COOPERATIVE AIRCRAFT
PCT/EP2004/052761 WO2005045785A1 (en) 2003-11-04 2004-11-03 Method for monitoring the development of the flight plan of a co-operating aircraft

Publications (1)

Publication Number Publication Date
EP1690242A1 true EP1690242A1 (en) 2006-08-16

Family

ID=34429884

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04818150A Withdrawn EP1690242A1 (en) 2003-11-04 2004-11-03 Method for monitoring the development of the flight plan of a co-operating aircraft

Country Status (5)

Country Link
US (1) US7433779B2 (en)
EP (1) EP1690242A1 (en)
AU (1) AU2004287086A1 (en)
FR (1) FR2861871B1 (en)
WO (1) WO2005045785A1 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2864269B1 (en) * 2003-12-19 2006-04-07 Thales Sa METHOD FOR AIDING LOW ALTITUDE NAVIGATION OF AN AIRCRAFT
US7548183B2 (en) * 2005-03-01 2009-06-16 Honeywell International Inc. Systems and methods for automatically disabling a TCAS broadcast
FR2898672B1 (en) * 2006-03-14 2009-07-03 Thales Sa METHOD FOR AIDING NAVIGATION OF AN AIRCRAFT WITH FLIGHT PLAN UPDATE
US8310446B1 (en) * 2006-08-25 2012-11-13 Rockwell Collins, Inc. System for integrated coarse and fine graphical object positioning
FR2906921B1 (en) * 2006-10-10 2010-08-13 Thales Sa METHOD FOR FORMING A 3D EMERGENCY TRACK FOR AN AIRCRAFT AND DEVICE FOR IMPLEMENTING THE SAME
FR2907952B1 (en) * 2006-10-26 2008-12-19 Airbus France Sa METHOD AND DEVICE FOR AIDING THE GUIDANCE OF AN AIRCRAFT ALONG A FLIGHT TRACK.
FR2907951B1 (en) * 2006-10-26 2015-05-08 Airbus France METHOD AND DEVICE FOR AIDING THE GUIDANCE OF AN AIRCRAFT
FR2910124B1 (en) * 2006-12-15 2009-03-06 Thales Sa METHOD FOR CREATING AND UPDATING A REAL-TIME ATC FLIGHT PLAN FOR THE TAKING INTO ACCOUNT OF FLIGHT INSTRUCTIONS AND DEVICE FOR IMPLEMENTING THE SAME
US20080159158A1 (en) * 2006-12-29 2008-07-03 Clarence Edward Poisson Method for testing a maintenance and materials management system
FR2916842B1 (en) 2007-06-01 2010-02-26 Thales Sa METHOD OF OPTIMIZING A FLIGHT PLAN
FR2937454B1 (en) * 2008-10-22 2015-01-02 Airbus France METHOD AND SYSTEM FOR FIELD ENJOYMENT FOR AN AIRCRAFT
US20100211302A1 (en) * 2008-12-30 2010-08-19 Thales-Raytheon Systems Company Llc Airspace Deconfliction System
FR2942566B1 (en) * 2009-02-24 2016-01-22 Thales Sa METHOD FOR MANAGING THE FLIGHT OF AN AIRCRAFT
IT1394782B1 (en) * 2009-03-03 2012-07-13 Alenia Aeronautica Spa PROCEDURE FOR THE PREDICTION OF COLLISIONS BETWEEN A AIRCRAFT AND AN AIRCRAFT
US8515596B2 (en) * 2009-08-18 2013-08-20 Honeywell International Inc. Incremental position-based guidance for a UAV
US8788196B1 (en) * 2009-11-16 2014-07-22 The Boeing Company Presentation of a vehicle on a chart
FR2954490B1 (en) 2009-12-18 2016-01-15 Thales Sa METHOD AND SYSTEM FOR DYNAMICALLY MANAGING A FLIGHT PROCEDURE OF A FLIGHT PLAN OF AN AIRCRAFT
US8744747B1 (en) * 2010-08-20 2014-06-03 The Boeing Company Environmental waypoint insertion
US8639401B2 (en) 2011-09-20 2014-01-28 The Boeing Company Dynamic adaptation of trigger thresholds to manage when data messages are transmitted
EP2575121B1 (en) * 2011-09-30 2020-02-26 The Boeing Company Flight trajectory prediction with application of environmental conditions
US9098997B2 (en) 2011-09-30 2015-08-04 The Boeing Company Flight trajectory prediction with application of environmental conditions
US10102753B2 (en) 2011-09-30 2018-10-16 The Boeing Company Systems and methods for processing flight information
US8630790B1 (en) 2011-10-03 2014-01-14 The Boeing Company Systems and methods for amalgamating flight information
US8626429B2 (en) * 2012-02-15 2014-01-07 Hewlett-Packard Development Company, L.P. Allocation of flight legs to dispatcher positions
US8509968B1 (en) 2012-03-20 2013-08-13 The Boeing Company System and method for real-time aircraft efficiency analysis and compilation
FR2995415B1 (en) * 2012-09-11 2015-12-11 Airbus Operations Sas METHOD AND SYSTEM FOR AUTOMATICALLY MANAGING THE SPACING OF AT LEAST ONE REFERENCE AIRCRAFT BEHIND AT LEAST ONE TARGET AIRCRAFT.
CN103093650A (en) * 2013-01-08 2013-05-08 成都民航空管科技发展有限公司 Control operation quality diagnostic system and diagnostic method
US9177479B2 (en) * 2013-03-13 2015-11-03 General Electric Company System and method for determining aircraft operational parameters and enhancing aircraft operation
US9406236B1 (en) 2013-06-06 2016-08-02 The Boeing Company Multi-user disparate system communications manager
EP2849167B1 (en) * 2013-09-13 2016-04-27 The Boeing Company Method for controlling aircraft arrivals at a waypoint
US9262928B2 (en) * 2013-10-02 2016-02-16 The Boeing Company Prediction of flight path privacy
US9088647B2 (en) 2013-10-08 2015-07-21 Samsung Electronics Co., Ltd. Method and system for voice-based contact updation
US9417325B1 (en) * 2014-01-10 2016-08-16 Google Inc. Interface for accessing radar data
US20150268048A1 (en) * 2014-03-18 2015-09-24 Honeywell International Inc. System and method for optimizing aircraft lateral and vertical trajectory for published procedures
JP6423521B2 (en) 2015-03-31 2018-11-14 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd System for controlling unmanned aerial vehicles
CN107615359B (en) * 2015-03-31 2021-07-16 深圳市大疆创新科技有限公司 Authentication system and method for detecting unauthorized unmanned aerial vehicle activity
FR3053780B1 (en) * 2016-07-07 2018-07-06 Thales APPARATUS AND METHOD FOR CALCULATING NAVIGATION PERFORMANCE PREDICTION
AU2019307459A1 (en) 2018-01-29 2020-08-06 Aerovironment, Inc. Methods and systems for determining flight plans for vertical take-off and landing (VTOL) aerial vehicles
CN109557572A (en) * 2018-12-14 2019-04-02 西安索格亚航空科技有限公司 A kind of flight navigation system and method based on Beidou
CN117593919B (en) * 2024-01-18 2024-03-29 北京蓝天航空科技股份有限公司 Method and device for grouping flight planning route data packets

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4999782A (en) * 1989-05-03 1991-03-12 Honeywell Inc. Fixed curved path waypoint transition for aircraft
GB2232316B (en) * 1989-05-06 1993-07-07 Ferranti Int Signal Air traffic control system
EP0592436A1 (en) * 1990-10-09 1994-04-20 PILLEY, Harold R. Airport control/management system
FR2744525B1 (en) * 1996-02-02 1998-03-06 Sextant Avionique METHOD AND DEVICE FOR AIDING AIR NAVIGATION
FR2749677B1 (en) * 1996-06-07 1998-09-11 Sextant Avionique AUTOMATIC STEERING METHOD OF A VEHICLE FOR THE LATERAL AVOIDANCE OF A FIXED AREA
FR2749650B1 (en) * 1996-06-07 1998-09-11 Sextant Avionique STEERING METHOD OF A VEHICLE WITH A VIEW TO MAKING A CHANGE IN COURSE AND APPLICATION OF THE METHOD FOR SIDE BYPASSING OF A ZONE
FR2749686B1 (en) * 1996-06-07 1998-09-11 Sextant Avionique METHOD FOR THE VEHICLE LATERAL AVOIDANCE OF A MOBILE AREA
FR2749675B1 (en) * 1996-06-07 1998-08-28 Sextant Avionique METHOD FOR CONTROLLING AN AERODYNE FOR THE VERTICAL AVOIDANCE OF A ZONE
FR2752934B1 (en) * 1996-08-30 1998-11-13 Sextant Avionique METHOD FOR ASSISTING THE PILOTAGE OF AN AERODYNE
US7495612B2 (en) * 1999-03-05 2009-02-24 Era Systems Corporation Method and apparatus to improve ADS-B security
US6571171B1 (en) * 1999-09-08 2003-05-27 Rockwell Collins, Inc. Method and apparatus for graphically inserting waypoints for a flight management system
FR2803655B1 (en) * 2000-01-07 2002-06-14 Thomson Csf Sextant FLIGHT CALCULATOR SMOOTHING THE TRAJECTORY OF AN AIRCRAFT ON SEVERAL SEQUENCES
US20040078136A1 (en) * 2002-10-22 2004-04-22 Cornell Bradley D. Tailored trajectory generation system and method
US7228227B2 (en) * 2004-07-07 2007-06-05 The Boeing Company Bezier curve flightpath guidance using moving waypoints
US7248949B2 (en) * 2004-10-22 2007-07-24 The Mitre Corporation System and method for stochastic aircraft flight-path modeling
FR2905480B1 (en) * 2006-08-30 2011-03-25 Thales Sa METHOD OF CHANGING THE ROAD FOLLOWED BY AN AIRCRAFT, THE AIRCRAFT ORIGINALLY FOLLOWING A PREDEFINED TRACK, THE METHOD FOR AN ANCILLARY RETURN OF THE AIRCRAFT ON THE PREDEFINED TRACK.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005045785A1 *

Also Published As

Publication number Publication date
WO2005045785A1 (en) 2005-05-19
US7433779B2 (en) 2008-10-07
FR2861871A1 (en) 2005-05-06
US20070078572A1 (en) 2007-04-05
AU2004287086A1 (en) 2005-05-19
FR2861871B1 (en) 2006-02-03

Similar Documents

Publication Publication Date Title
EP1690242A1 (en) Method for monitoring the development of the flight plan of a co-operating aircraft
JP6001869B2 (en) How to select meteorological data to update aircraft flight path
CA2796923C (en) Determining landing sites for aircraft
US7945355B2 (en) Flight control method using wind data from airplane trajectory
EP1614086B1 (en) Secure interactive 3d navigation method and device
US8645009B2 (en) Method for flying an aircraft along a flight path
EP2375299B1 (en) Flight management system for an unmanned aircraft
EP1570325B1 (en) Method of validating a flight plan constraint
ES2922208T3 (en) Aircraft mission calculation system by combination of algorithms and associated procedure
CA2781863C (en) Weather data selection relative to an aircraft trajectory
FR2949897A1 (en) AIRCRAFT ASSISTING ASSISTANCE METHOD AND CORRESPONDING DEVICE.
US7930097B2 (en) Method and apparatus for displaying terrain elevation information
US20030093219A1 (en) Four-dimensional route planner
CN106249592B (en) Method and system for the automatic determination of an optimized descent and approach profile for an aircraft
FR2898673A1 (en) METHOD FOR AIDING NAVIGATION OF AN AIRCRAFT WITH FLIGHT PLAN UPDATE
FR3021107A1 (en) METHOD FOR AIDING NAVIGATION OF AN AIRCRAFT WITH CORRELATION OF DYNAMIC INFORMATION WITH A 4D FLIGHT TRACK
EP3489931B1 (en) Mission computing system for an aircraft including a mission plate
FR2939558A1 (en) METEOROLOGICAL MODELING METHOD FOR CALCULATING AN AIRCRAFT FLIGHT PLAN
FR3038750A1 (en) METHOD FOR INTEGRATING A NEW NAVIGATION SERVICE IN AN OPEN AIR ARCHITECTURE OPEN ARCHITECTURE SYSTEM OF A CLIENT-SERVER TYPE, IN PARTICULAR A FIM MANUFACTURING SERVICE
FR2787907A1 (en) AID SYSTEM FOR AVOIDING AIRCRAFT COLLISIONS WITH THE GROUND
CA3037319A1 (en) Operational flight plan establishment system for an aircraft and associated method
EP3715786A1 (en) Mission calculation system for an aircraft using at least one extended iso-displacement curve and associated method
FR2954490A1 (en) Method for dynamic management of flight procedure of flight plan of aircraft i.e. civil airplane, involves representing mandatory or optional flight characteristics of segment by additional attribute that is digitally coded in data base
FR3038751A1 (en) METHOD FOR INTEGRATING A CONSTRAINED ROAD OPTIMIZATION APPLICATION IN AN OPEN ARCHITECTURE AIRCRAFT SYSTEM OF CLIENT-TYPE SERVER
WO2006125725A1 (en) Method of providing information relating to an aircraft's situation in relation to an airport

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060413

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR GB

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): FR GB

17Q First examination report despatched

Effective date: 20110218

RIC1 Information provided on ipc code assigned before grant

Ipc: G05D 1/06 20060101AFI20110915BHEP

Ipc: G08G 5/00 20060101ALI20110915BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120420