EP1686200A2 - Protective coating for single crystal superalloy - Google Patents

Protective coating for single crystal superalloy Download PDF

Info

Publication number
EP1686200A2
EP1686200A2 EP06290129A EP06290129A EP1686200A2 EP 1686200 A2 EP1686200 A2 EP 1686200A2 EP 06290129 A EP06290129 A EP 06290129A EP 06290129 A EP06290129 A EP 06290129A EP 1686200 A2 EP1686200 A2 EP 1686200A2
Authority
EP
European Patent Office
Prior art keywords
tungsten
superalloy
coating
layer
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06290129A
Other languages
German (de)
French (fr)
Other versions
EP1686200B1 (en
EP1686200A3 (en
Inventor
Marie-Pierre Bacos
Pierre Josso
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Office National dEtudes et de Recherches Aerospatiales ONERA
Original Assignee
Office National dEtudes et de Recherches Aerospatiales ONERA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Office National dEtudes et de Recherches Aerospatiales ONERA filed Critical Office National dEtudes et de Recherches Aerospatiales ONERA
Publication of EP1686200A2 publication Critical patent/EP1686200A2/en
Publication of EP1686200A3 publication Critical patent/EP1686200A3/en
Application granted granted Critical
Publication of EP1686200B1 publication Critical patent/EP1686200B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/38Pretreatment of metallic surfaces to be electroplated of refractory metals or nickel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12458All metal or with adjacent metals having composition, density, or hardness gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/12743Next to refractory [Group IVB, VB, or VIB] metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12826Group VIB metal-base component
    • Y10T428/1284W-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component

Definitions

  • the invention relates to a method for protecting against corrosion a monocrystalline superalloy containing at least one refractory metal, wherein is formed on the surface of the superalloy a coating containing aluminum.
  • a protective coating containing aluminum in order to form on the surface of the coated part an oxide of protective aluminum.
  • This coating can be formed by a conventional aluminization treatment, which can be either in high activity or in low activity, for example a low activity aluminization in the vapor phase.
  • the aluminum present in this coating migrates as much towards the surface of the part where it renews the oxide layer as towards the superalloying substrate which it degrades the characteristics of use (the aluminum is then the chemical engine of this degradation) and correspondingly reduces the amount available for the renewal of the oxide layer.
  • compositions which are rich in refractory elements and at the limit of stability, the limit of solubility of these elements in the ⁇ phase being reached.
  • the nature of the substrate and its chemical composition seem to play a determining role in the appearance of the secondary reaction zones.
  • the secondary reaction zones grow inwardly thereof, further decreasing their mechanical strength over time.
  • compositional changes US 5,695,821, K. O'Hara S, WS Walston, EW Ross, Darolia R, Nickel base superalloy and article, US 5,482,789
  • carburizing treatments J. Fernihough, Process for strengthening the grain boundaries of a component made from Ni based superalloy, US 6,471,790, J. Schaeffer, AK Bartz, PJ Fink, Method for preventing recrystalli-sation after superalloy article superalloy, US 5,598,968) , or nitriding (O'Hara KS, WS Walston, JC Schaeffer, Substrate stabilization of superalloy protected by aluminum-rich coating, US 6,447,932).
  • the purpose of these is to create carbides or nitrides that pin the secondary reaction zones and inhibit their progression.
  • RG Wing teaches (Method of aluminizing a superalloy, US 6 080 246) that it is possible to stabilize the surface composition of superalloys highly enriched in refractory elements (Re and / or Ru) by the diffusion of a deposit cobalt or a deposit of chromium, the latter being preferably deposited by the thermo-chemical route (chromization).
  • cobalt in the case of the use cobalt, if this technique makes it possible to overcome the secondary reaction zones, it leads to the formation of a highly enriched protective coating of this element.
  • Warnes et al. Cyclic oxidation of diffusion aluminide coatings on cobalt base super alloys, Bruce M. Warnes, Nick S.
  • an interdiffusion layer is formed between the coating and the substrate.
  • This interdiffusion layer can be assimilated to a diffusion barrier because, during the diffusion of the nickel towards the coating under construction, all the gamma-gene elements soluble in the gamma phase precipitate at this interface thus forming TCP phases and slowing down the diffusion of aluminum towards the substrate.
  • the nickel loss of the ⁇ phase in addition to the precipitation of the insoluble elements in the ⁇ 'phase, the appearance of secondary reaction zones with inversion of dispersed phase structure / matrix from ⁇ / ⁇ ' to ⁇ '/ ⁇ ).
  • the low steric hindrance of TCP phases does not slow down the diffusion of aluminum from the coating to the substrate, which allows the secondary reaction zones created during the diffusion of nickel to the coating to grow (chemical engine).
  • tungsten-rhenium binary equilibrium diagram shows that the latter element is soluble in tungsten up to a concentration of 30% by mass. Beyond this limit a new phase is formed (the phase ⁇ ) which accepts up to 65% by mass of rhenium. If a quasi-continuous layer of tungsten is deposited on the surface of the superalloy, it will be used to capture rhenium and other gamma-gene elements, such as chromium, thus forming a quasi-continuous layer of TCP phase that will prevent the diffusion nickel to the coating under construction and that of aluminum to the substrate.
  • the invention aims in particular a method of the kind defined in the introduction, and provides that before forming said coating is deposited on said surface a layer containing tungsten, namely a layer consisting of tungsten and cobalt.
  • the invention favors the electrolytic deposition technique because it offers the advantage of being easily included in an existing treatment chain.
  • Other deposition techniques such as spray deposition, are also within the scope of the invention.
  • spray deposition is also within the scope of the invention.
  • only tungsten-cobalt co-deposition seems to be suitable. Indeed, such a deposit, well known to those skilled in the art and described in the work of A.
  • the part can be aluminized by any technique known to those skilled in the art, for example by aluminization of the low activity type in the case or vapor phase or high activity aluminization box or paint or by chemical vapor deposition. It is possible, in addition to nickel deposition, to deposit platinum and / or palladium depending on the nature of the desired coating (modified or unmodified aluminide).
  • the aluminization chosen may also be doped with an element such as zirconium and / or hafnium. All these variants are well known to those skilled in the art.
  • the surface of the part to be coated undergoes a preparation before the development of the deposit itself.
  • a preparation before the development of the deposit itself.
  • This preparation of the part makes it possible to avoid the problems of chipping due to the presence of residual oxides or to the passivation of the alloy to be treated. In addition, any operation likely to constrain the surface (elimination of the mechanical motor) is preferably avoided.
  • an electrolytic deposit of cobalt and tungsten is carried out.
  • the composition of this deposit, by weight, is as follows: 35% ⁇ Co ⁇ 80% 20% ⁇ W ⁇ 65%.
  • This strongly adherent deposit is intended, after diffusion annealing, to create the seeds of a diffusion barrier capable of curbing the diffusion of aluminum from the coating to the substrate. substrate and refractory elements to the coating.
  • This last action is at the origin of the evolutionary diffusion barrier: it is built by accretion of rhenium on the tungsten precipitates by avoiding the formation of a secondary reaction zone.
  • An additional electrolytic deposition or post-deposition may be performed, making it possible to form, in a thickness that may vary from 5 to 15 ⁇ m depending on the case, a layer made of nickel and / or platinum and / or palladium and / or nickel -palladium. This additional deposit is also strongly adherent.
  • the parts undergo the aluminization treatment mentioned above leading to a layer of ⁇ -NiAl modified or not by platinum or palladium and doped or not with zirconium and / or hafnium.
  • the comparative examples and examples below highlight the importance of the preparation of the piece and different deposits.
  • the coated parts were evaluated after aging for 500 hours and 1000 hours at 1100 ° C. in air.
  • the secondary reaction zones were quantified as a percentage representing the ratio of the sum of the perimeters of the secondary reaction zones to the total perimeter of the sample in the plane of the metallographic section.
  • the donor cement is a chromium alloy containing 30% by weight of aluminum (CA30), the activator of ammonium bifluoride (NH 4 F, HF).
  • the coating obtained is the defined ⁇ -NiAl compound of the Ni-Al phase diagram. Its thickness is about 40 microns.
  • the rate of secondary reaction zones as defined above is 100%, that is to say that a continuous secondary reaction zone is present under the coating.
  • the secondary reaction zone layer After 1000 hours the secondary reaction zone layer has thickened to reach more than 100 ⁇ m in places.
  • This comparative example confirms the existing literature data that a secondary reaction zone is systematically formed under diffusion coatings.
  • the rough grinding part undergoes a liquid sandblasting before being subjected to the aluminization treatment described in Comparative Example 1.
  • the surface of a blank similar to that of Comparative Example 1 is prepared by degreasing for 5 to 10 minutes in the following solution: Sodium hydroxide NaOH 10 g / l Sodium carbonate Na 2 CO 3 23 g / l Trisodium phosphate anhydrous Na 3 PO 4 10 g / l EDTA, disodium salt (NaO 2 CCH 2 ) 2 N (CH 2 ) 2 N (CH 2 CO 2 H) 2 2 ml / l Temperature 80 ° C.
  • the piece is plunged, without current, into a nitrofluoric solution (HNO 3 40% and HF 10% by volume).
  • a nitrofluoric solution HNO 3 40% and HF 10% by volume.
  • the current density applied is 3 A / dm 2 , the part serving as a cathode, and the treatment duration of 3 minutes.
  • the part After undergoing the preparation treatment of Comparative Example 3, the part is coated with a layer of cobalt and tungsten deposited concomitantly, instead of the pure cobalt layer.
  • the coating Co-W is obtained from a bath having the following formulation: Cobalt chloride CoCl 2 , 6H 2 O 100 g / l Sodium tungstate Na 2 WO 4 , 2 H 2 O 100 g / l Tartrate double of Na K NaKC 9 H 4 O 6 , 4 H 2 O 400 g / l Ammonium chloride NH 4 Cl 50 g / l pH (set by NH 4 OH) 8.5 Deposit temperature 70 ° C Current density 2 ⁇ J ⁇ 5 A / dm 2 .
  • an insoluble anode of platinum-coated titanium or pure platinum is preferably used in the invention.
  • the advantage is that the concentration of different electroactive species is by chemical assay and is independent of the anode potentials.
  • the W content can reach 65% by weight (depending on the tungsten concentration and the current density used).
  • the Co-W deposit is then coated with a layer of 5 to 25 ⁇ m of nickel intended to form the inter-metallic compound NiAl, from the following electrolytic bath: Nickel sulphamate Ni (SO 3 NH 2 ) 2 350 g / l Nickel chloride NiCl 2 , 6H 2 O 3.5 g / l Boric acid H 3 BO 3 40 g / l Temperature 45 ° C Current density 3 A / dm 2 .
  • the part has the microstructure shown in the single figure comprising a coating formed of four successive layers from the superalloy substrate 1, namely a conventional inter-diffusion layer 2, a tungsten diffusion barrier and rhenium 3, an intermediate layer 4 where the concentration of Ni and Al increases from the diffusion barrier and a conventional nickel aluminide 5 stoichiometric ⁇ -NiAl composition.
  • the interface After an aging of 500 and 1000 hours under air at 1100 ° C, the interface is stable.
  • the oxide layer is dense and regular, the ⁇ -NiAl coating has become discontinuous, the ⁇ '-Ni 3 Al phase having formed at the grain boundaries. This phenomenon is due to the consumption of aluminum by the thermally formed alumina layer.
  • the W-Re layer is enriched in rhenium, this element is now the majority. This layer thus ensures its role as a diffusion barrier formed in situ. No secondary reaction zone is observed.
  • the example was repeated by varying the tungsten content of the Co-W deposit between 35 and 65% by weight, its thickness between 5 and 25 ⁇ m, and the thickness of the complementary nickel deposit between 5 and 25 ⁇ m.
  • the expertises have shown the absence of secondary reaction zones with the exception of one or two in regions very strongly constrained (specimen angles and / or proximity of substrate porosities).
  • the samples are healthy: the oxide layer is of normal thickness for isothermal oxidation (6 ⁇ m on average), there has been no diffusion of aluminum from the coating to the substrate and the consumption of this element is only due to oxidation which causes the appearance of the phase ⁇ '-Ni 3 Al along the grain boundaries of the coating.
  • the most remarkable element of this series of tests is the absence of secondary reaction zones: this microstructure was observed neither before nor after aging. As a result, the mechanical properties of the alloy are preserved and the life of the coating is increased because the aluminum it contains is reserved for high temperature oxidation phenomena.
  • the sample is annealed in an oven under a vacuum better than 10 -3 Pa at the temperature of 900 ° C for two hours to promote the adhesion of the deposit on the substrate and to germinate the first precipitated tungsten.
  • a deposit of pure nickel of about 20 to 30 ⁇ m can be made.
  • This deposition can be done either electrolytically or by PCT.
  • the sample is aluminized as described in Comparative Example 1.
  • the part has on the treated side a four-layer microstructure comparable to that shown in the single figure while the untreated face shows a quasi-continuous SRZ and a depth of about 10 to 15 microns.
  • the sample is annealed in an oven under a vacuum better than 10 -3 Pa at the temperature of 1050 ° C for five hours to promote the adhesion of the deposit on the substrate, to germinate the first Tungsten precipitates and cause the first co-precipitation of rhenium on tungsten germs in the Co-W deposit.
  • a pure nickel deposit of approximately 20 to 30 ⁇ m per PCT was made and then an electrolytic platinum deposit with a thickness of between 5 and 7 ⁇ m.
  • the sample is aluminized as described in Comparative Example 1 except that the cement is very low activity (chromium alloy 20% by weight of aluminum said CA20) and that the deposition atmosphere is argon.
  • the sample undergoes a final anneal under a vacuum better than 10 -3 Pa for one hour at 1100 ° C in order to obtain a nickel-plated nickel aluminide coating strictly single-phase.
  • the part has a four-layer microstructure reminiscent of that shown in the single figure.
  • a negative platinum concentration gradient exists in zone 5 of the single figure.
  • the thickness of the diffusion barrier zone 3 of the single figure is then denser, a situation that can be explained by the duration of the annealing of the CoW deposit.
  • no SRZ can be distinguished while on the other side 100% of the interdiffutance zone surmounts a SRZ of about 20 ⁇ m in thickness.
  • the aluminide is still essentially formed of the beta phase (NiPt) Al without underlying SRZ while on the other side the Nickel aluminide consists essentially of gamma prime Ni 3 Al surmounting a continuous SRZ of more than 100 microns thick.
  • Examples 2 and 3 above show that the alloy of cobalt and tungsten can be deposited by techniques other than the electrolytic route, and in particular by spraying.
  • the piece thus treated is then placed in an enclosure to receive an aluminization.
  • the latter can be practiced for 2 to 16 hours under hydrogen and / or under argon, at a temperature between 700 and 1150 ° C, these two parameters (time and temperature) to be chosen according to the alloy treated as it is well known to those skilled in the art.
  • this aluminization will be high or low activity.
  • This aluminization can also be doped with zirconium or with hafnium as described in FR 2 853 329.
  • the base superalloy rich in refractory elements in particular rhenium and / or ruthenium
  • the life of such a coating is related to that of the alloy itself.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

The monocrystalline superalloy protection procedure consists of applying a surface layer of about 35-80 per cent by weight of cobalt and 65-20 per cent tungsten to the superalloy before coating it with aluminum. The cobalt and tungsten are deposited concomitantly by electrolysis in a layer, preferably between 10 and 20 mcm thick, followed by aluminium coating in the form of aluminisation. The aluminum coating can contain an additional element such as zirconium or hafnium, and the tungsten underlayer can contain platinum or palladium.

Description

L'invention concerne un procédé pour protéger contre la corrosion un superalliage monocristallin contenant au moins un métal réfractaire, dans lequel on forme sur la surface du superalliage un revêtement contenant de l'aluminium.The invention relates to a method for protecting against corrosion a monocrystalline superalloy containing at least one refractory metal, wherein is formed on the surface of the superalloy a coating containing aluminum.

Dans le but d'optimiser la tenue en température et à l'oxydation des pièces de turbomachines en superalliages, celles-ci sont recouvertes d'un revêtement protecteur contenant de l'aluminium afin de former en surface de la pièce revêtue un oxyde d'aluminium protecteur. Ce revêtement peut être formé par un traitement d'aluminisation classique, qui peut être soit en haute activité, soit en basse activité, par exemple une aluminisation basse activité en phase vapeur. Cependant, l'aluminium présent dans ce revêtement migre autant vers la surface de la pièce où il renouvelle la couche d'oxyde que vers le substrat en superalliage dont il dégrade les caractéristiques d'usage (l'aluminium est alors le moteur chimique de cette dégradation) et réduit d'autant la quantité disponible pour le renouvellement de la couche d'oxyde.In order to optimize the temperature resistance and the oxidation of turbine engine parts in superalloys, they are covered with a protective coating containing aluminum in order to form on the surface of the coated part an oxide of protective aluminum. This coating can be formed by a conventional aluminization treatment, which can be either in high activity or in low activity, for example a low activity aluminization in the vapor phase. However, the aluminum present in this coating migrates as much towards the surface of the part where it renews the oxide layer as towards the superalloying substrate which it degrades the characteristics of use (the aluminum is then the chemical engine of this degradation) and correspondingly reduces the amount available for the renewal of the oxide layer.

Pour améliorer les propriétés mécaniques des pièces de turbomachines en superalliages à base de nickel ont été développées des compositions riches en élément réfractaires et à la limite de la stabilité, la limite de solubilité de ces éléments dans la phase γ étant atteinte.In order to improve the mechanical properties of turbine engine parts made of nickel-based superalloys, compositions have been developed which are rich in refractory elements and at the limit of stability, the limit of solubility of these elements in the γ phase being reached.

Après l'élaboration d'un revêtement sur ce type de superalliage à structure γ/γ' apparaissent, dans la couche dite "de diffusion" située entre le revêtement et le substrat, des instabilités microstructurales entraînant la formation de phases dites TCP (Topologically Close Packed) et de zones de réaction secondaire évolutives (Secondary Reaction Zones ou SRZ). Ces dernières se forment dans la partie de la couche de diffusion la plus proche du substrat, appelée zone d'interdiffusion.After the development of a coating on this type of superalloy structure γ / γ 'appear in the so-called "diffusion layer" located between the coating and the substrate, microstructural instabilities resulting in the formation of so-called TCP phases (Topologically Close Packed) and Secondary Reaction Zones (SRZ). These are formed in the part of the diffusion layer closest to the substrate, called the interdiffusion zone.

L'influence des zones de réaction secondaire sur les propriétés mécaniques est encore mal connue. Cependant, le simple fait que se crée sous la zone de diffusion, dont l'épaisseur est typiquement de l'ordre de 20 µm, une zone de réaction secondaire dont l'épaisseur peut varier de 20 à 100 µm selon la quantité d'aluminium disponible réduit d'autant l'épaisseur d'alliage sain. Cela peut être particulièrement pénalisant dans le cas d'utilisation d'un composant à paroi mince tel que des aubes refroidies. De ce fait de nombreux travaux ont été entrepris afin d'identifier les causes d'apparition des zones de réaction secondaire et de les réduire, voire de les éliminer.The influence of the secondary reaction zones on the mechanical properties is still poorly known. However, the simple fact that is created under the diffusion zone, whose thickness is typically of the order of 20 microns, a secondary reaction zone whose thickness can vary from 20 to 100 microns depending on the amount of aluminum available reduces the thickness of healthy alloy by the same amount. This can be particularly disadvantageous in the case of using a thin-walled component such as cooled vanes. As a result, many studies have been undertaken to identify the causes of the occurrence of secondary reaction zones and to reduce or even eliminate them.

La nature du substrat et sa composition chimique (notamment alliage monocristallin riche en rhénium et pauvre en cobalt) semblent jouer un rôle déterminant dans l'apparition des zones de réaction secondaire.The nature of the substrate and its chemical composition (in particular monocrystalline alloy rich in rhenium and poor in cobalt) seem to play a determining role in the appearance of the secondary reaction zones.

Dans les conditions d'utilisation des pièces, les zones de réaction secondaire croissent vers l'intérieur de celles-ci, diminuant encore davantage leur tenue mécanique au cours du temps.Under the conditions of use of the parts, the secondary reaction zones grow inwardly thereof, further decreasing their mechanical strength over time.

Les contraintes locales favorisent aussi l'apparition des zones de réaction secondaire. Ces contraintes locales sont dues aux opérations préalables à tout revêtement (sablage en particulier) (moteur mécanique).Local constraints also favor the appearance of secondary reaction zones. These local stresses are due to operations prior to any coating (sandblasting in particular) (mechanical motor).

L'analyse d'une zone de réaction secondaire montre qu'elle est constituée de filaments γ dans une matrice γ'. Un joint de grain incohérent sépare la zones de réaction secondaire de la structure γ/γ' du superalliage.Analysis of a secondary reaction zone shows that it consists of γ filaments in a γ 'matrix. An incoherent grain boundary separates the secondary reaction zone from the γ / γ 'structure of the superalloy.

Certains auteurs ont cherché à s'affranchir du moteur mécanique par la réduction des contraintes en recristallisant une zone superficielle mince du superalliage avant de procéder aux étapes de réalisation du revêtement (Rebecca A. MacKay, Ivan E. Locci, Anita Garg, Frank J. Ritzert, Techniques Optimized for Reducing Instabilities in Advanced Nickel-Base Superalloys for Turbine Blades, RT2001 NASA Technology report, NASA TM 2002-211333; W.H. Murphy, W.S.Walston, Method for making a coated Ni base superalloy article of improved microstructural stability, US 5 695 821).Some authors have sought to overcome the mechanical motor by reducing stress by recrystallizing a superficial thin surface area of the superalloy before proceeding to the coating steps (Rebecca A. MacKay, Ivan E. Locci, Anita Garg, Frank J. Ritzert, Techniques Optimized for Reducing Instabilities in Advanced Nickel-Base Superalloys for Turbine Blades, RT2001 NASA Technology Report, NASA TM 2002-211333; WH Murphy, WSWalston, Method for making a Ni-base superalloy article of improved microstructural stability, US 5,695,821).

D'autres préconisent des changements de composition (US 5 695 821; K. S O'Hara, W. S. Walston, E. W. Ross, R. Darolia, Nickel base superalloy and article, US 5 482 789) ou des traitements de carburation (J. Fernihough, Process for strengthening the grain boundaries of a component made from a Ni based superalloy, US 6 471 790; J. Schaeffer, A.K. Bartz, P. J. Fink, Method for preventing recrystalli-sation after cold working superalloy article, US 5 598 968), ou de nitruration (K. S. O'Hara, W. S. Walston, J.C. Schaeffer, Substrate stabilisation of superalloy protected by an aluminium-rich coating, US 6 447 932). Ces derniers ont pour but de créer des carbures ou nitrures qui épingleraient les zones de réaction secondaire et inhiberaient leur progression.Others advocate compositional changes (US 5,695,821, K. O'Hara S, WS Walston, EW Ross, Darolia R, Nickel base superalloy and article, US 5,482,789) or carburizing treatments (J. Fernihough, Process for strengthening the grain boundaries of a component made from Ni based superalloy, US 6,471,790, J. Schaeffer, AK Bartz, PJ Fink, Method for preventing recrystalli-sation after superalloy article superalloy, US 5,598,968) , or nitriding (O'Hara KS, WS Walston, JC Schaeffer, Substrate stabilization of superalloy protected by aluminum-rich coating, US 6,447,932). The purpose of these is to create carbides or nitrides that pin the secondary reaction zones and inhibit their progression.

Kelly et al. (T.J. Kelly, P.K. Wright III, Article having a superalloy protective coating and its fabrication, US 6 641 929) proposent de déposer par pulvérisation cathodique une couche métallique avant l'opération de protection. Cette couche n'est autre qu'un second superalliage, l'interdiffusion d'alliages γ/γ' n'entraînant pas la formation de zones de réaction secondaire.Kelly et al. (TJ Kelly, PK Wright III, Article having a superalloy protective coating and its manufacture, US 6 641 929) propose to deposit by sputtering a metal layer before the protective operation. This layer is no other than a second superalloy, the interdiffusion of γ / γ alloys not causing the formation of secondary reaction zones.

Enfin, R. G. Wing enseigne (Method of aluminizing a superalloy, US 6 080 246) qu'il est possible de stabiliser la composition de la surface de superalliages fortement enrichis en éléments réfractaires (Re et/ou Ru) par la diffusion d'un dépôt de cobalt ou d'un dépôt de chrome, ce dernier étant préférentiellement déposé par la voie thermo-chimique (chromisation). Cependant, dans le cas de l'usage du cobalt, si cette technique permet de s'affranchir des zones de réaction secondaire, elle entraîne la formation d'un revêtement protecteur fortement enrichi de cet élément. Or, dans un article de Warnes et al. (Cyclic oxida-tion of diffusion aluminide coatings on cobalt base super alloys, Bruce M. Warnes, Nick S. DuShane, Jack E. Cocke-rill, Surface and Coatings Technology 148 (2001) 163-170) il est noté en conclusion que les revêtements obtenus par diffusion sur des alliages à base de cobalt (les aluminiures de cobalt) sont probablement insuffisants pour protéger les turbines en service. Cette technique permet donc de conserver la microstructure de l'alliage mais au détriment de sa résistance à l'oxydation.Finally, RG Wing teaches (Method of aluminizing a superalloy, US 6 080 246) that it is possible to stabilize the surface composition of superalloys highly enriched in refractory elements (Re and / or Ru) by the diffusion of a deposit cobalt or a deposit of chromium, the latter being preferably deposited by the thermo-chemical route (chromization). However, in the case of the use cobalt, if this technique makes it possible to overcome the secondary reaction zones, it leads to the formation of a highly enriched protective coating of this element. However, in an article by Warnes et al. (Cyclic oxidation of diffusion aluminide coatings on cobalt base super alloys, Bruce M. Warnes, Nick S. DuShane, Jack E. Cocke-rill, Surface and Coatings Technology 148 (2001) 163-170) it is noted in conclusion that coatings obtained by diffusion on cobalt-based alloys (cobalt aluminides) are probably insufficient to protect the turbines in service. This technique therefore makes it possible to preserve the microstructure of the alloy but at the expense of its resistance to oxidation.

C'est pour pallier tous ces inconvénients qu'a été explorée une voie originale qui tout en respectant la microstructure des superalliages riches en éléments réfractaires permet d'obtenir, par diffusion, un revêtement efficace contre la corrosion et l'oxydation à haute température.It is to overcome all these drawbacks that has been explored an original way that while respecting the microstructure of superalloys rich in refractory elements provides diffusion by an effective coating against corrosion and oxidation at high temperature.

En effet, lors de la création d'un revêtement par diffusion, il est bien connu de l'homme du métier qu'une couche d'interdiffusion se forme entre le revêtement et le substrat. Cette couche d'interdiffusion peut être assimilée à une barrière de diffusion car, lors de la diffusion du nickel vers le revêtement en construction, tous les éléments gamma-gènes soluble dans la phase gamma précipitent à cette interface formant ainsi des phases TCP et ralentissant la diffusion de l'aluminium vers le substrat. Cependant, dans le cas des alliages riches en éléments réfractaires, la perte en nickel de la phase γ. outre la précipitation des éléments insolubles dans la phase γ', entraîne l'apparition de zones de réaction secondaire avec inversion de structure phase dispersée/matrice de γ/γ' à γ'/γ). De plus, le faible encombrement stérique des phases TCP ralentit peu la diffusion de l'aluminium du revêtement vers le substrat, ce qui permet aux zones de réaction secondaire crées lors de la diffusion du nickel vers le revêtement de croître (moteur chimique).Indeed, when creating a diffusion coating, it is well known to those skilled in the art that an interdiffusion layer is formed between the coating and the substrate. This interdiffusion layer can be assimilated to a diffusion barrier because, during the diffusion of the nickel towards the coating under construction, all the gamma-gene elements soluble in the gamma phase precipitate at this interface thus forming TCP phases and slowing down the diffusion of aluminum towards the substrate. However, in the case of alloys rich in refractory elements, the nickel loss of the γ phase. in addition to the precipitation of the insoluble elements in the γ 'phase, the appearance of secondary reaction zones with inversion of dispersed phase structure / matrix from γ / γ' to γ '/ γ). In addition, the low steric hindrance of TCP phases does not slow down the diffusion of aluminum from the coating to the substrate, which allows the secondary reaction zones created during the diffusion of nickel to the coating to grow (chemical engine).

L'examen attentif du diagramme d'équilibre binaire tungstène-rhénium montre que ce dernier élément est soluble dans le tungstène jusqu'à une concentration de 30 % en masse. Au-delà de cette limite une nouvelle phase se forme (la phase σ) qui accepte jusqu'à 65 % en masse de rhénium. Si donc une couche quasi-continue de tungstène est déposée à la surface du superalliage, elle servira à capturer le rhénium et les autres éléments gamma-gènes, tels que le chrome, formant ainsi une couche quasi-continue de phase TCP qui empêchera la diffusion du nickel vers le revêtement en construction et celle de l'aluminium vers le substrat.Careful examination of the tungsten-rhenium binary equilibrium diagram shows that the latter element is soluble in tungsten up to a concentration of 30% by mass. Beyond this limit a new phase is formed (the phase σ) which accepts up to 65% by mass of rhenium. If a quasi-continuous layer of tungsten is deposited on the surface of the superalloy, it will be used to capture rhenium and other gamma-gene elements, such as chromium, thus forming a quasi-continuous layer of TCP phase that will prevent the diffusion nickel to the coating under construction and that of aluminum to the substrate.

L'invention vise notamment un procédé du genre défini en introduction, et prévoit qu'avant de former ledit revêtement on dépose sur ladite surface une couche contenant du tungstène, à savoir une couche constituée de tungstène et de cobalt.The invention aims in particular a method of the kind defined in the introduction, and provides that before forming said coating is deposited on said surface a layer containing tungsten, namely a layer consisting of tungsten and cobalt.

Des caractéristiques optionnelles de l'invention, complémentaires ou de substitution, sont énoncées ci-après:

  • Le superalliage est à base de nickel, de cobalt et/ou de fer.
  • Le superalliage contient au moins un métal réfractaire choisi parmi le rhénium et le ruthénium.
  • Le superalliage comprend une matrice de phase γ dans laquelle sont dispersées des particules durcissantes de phase γ', au moins un métal réfractaire étant contenu dans la phase γ à une concentration proche de sa limite de solubilité.
  • Le tungstène et le cobalt contenus dans ladite couche sont déposés concomitamment par voie électrolytique.
  • Ladite couche contient en masse environ 35 à 80 % de cobalt et 65 à 20 % de tungstène.
  • L'épaisseur de ladite couche est comprise entre 5 et 25 µm environ et de préférence entre 10 et 20 µm environ.
  • Ledit revêtement contenant de l'aluminium est formé par un traitement d'aluminisation.
  • Ledit revêtement contient en outre au moins un élément choisi parmi le zirconium et le hafnium.
  • Avant le traitement d'aluminisation, on dépose sur ladite couche contenant du tungstène une couche contenant au moins un élément choisi parmi le platine et le palladium.
  • Ladite couche contenant du platine et/ou du palladium a une épaisseur comprise entre 5 et 15 µm environ.
  • Un prédépôt électrolytique de nickel est effectué avant le dépôt de tungstène.
  • Ledit prédépôt a une épaisseur comprise entre 0,1 et 0,2 µm environ.
  • Un post-dépôt électrolytique de nickel est effectué après le dépôt de tungstène et avant le dépôt d'aluminium et le cas échéant avant le dépôt de platine et/ou de palladium.
  • Ledit post-dépôt a une épaisseur comprise entre 5 et 25 µm environ et de préférence entre 5 et 15 µm environ.
  • Le dépôt de ladite couche contenant du tungstène et/ou le cas échéant ledit prédépôt et/ou ledit post-dépôt sont suivis d'un recuit.
Optional features of the invention, complementary or substitution, are set out below:
  • The superalloy is based on nickel, cobalt and / or iron.
  • The superalloy contains at least one refractory metal selected from rhenium and ruthenium.
  • The superalloy comprises a phase matrix γ in which γ 'phase hardening particles are dispersed, at least one refractory metal being contained in the γ phase at a concentration close to its solubility limit.
  • The tungsten and cobalt contained in said layer are electrolytically deposited concomitantly.
  • Said layer contains by weight about 35 to 80% cobalt and 65 to 20% tungsten.
  • The thickness of said layer is between about 5 and 25 microns and preferably between 10 and 20 microns approximately.
  • Said aluminum-containing coating is formed by an aluminization treatment.
  • Said coating further contains at least one element selected from zirconium and hafnium.
  • Before the aluminization treatment, a layer containing at least one element selected from platinum and palladium is deposited on said tungsten-containing layer.
  • Said layer containing platinum and / or palladium has a thickness of between about 5 and 15 microns.
  • Electrolytic nickel pre-deposition is performed prior to deposition of tungsten.
  • Said predeposit has a thickness of between about 0.1 and 0.2 μm.
  • An electrolytic post-deposition of nickel is carried out after the deposition of tungsten and before the deposition of aluminum and, if appropriate, before the deposition of platinum and / or palladium.
  • Said post-deposition has a thickness of between 5 and 25 microns approximately and preferably between 5 and 15 microns approximately.
  • Deposition of said layer containing tungsten and / or, if appropriate, said pre-deposit and / or said post-deposit are followed by annealing.

L'invention a également pour objet une pièce métallique telle qu'on peut l'obtenir par le procédé défini ci-dessus, comprenant un substrat formé d'un superalliage muni d'un revêtement comportant quatre couches superposées, à savoir:

  • a) une zone d'interdiffusion contenant des phases TCP (Topologically Close Packed) riches en éléments insolubles ou peu solubles dans la phase β-NiAl;
  • b) une barrière de diffusion formée principalement de tungstène et d'au moins un autre métal réfractaire constitutif du superalliage, notamment de rhénium;
  • c) une zone de transition contenant Ni et Al à des concentration progressivement croissantes; et
  • d) une couche superficielle formée principalement de β-NiAl.
The invention also relates to a metal part such as can be obtained by the method defined above, comprising a substrate formed of a superalloy provided with a coating comprising four superposed layers, namely:
  • a) an interdiffusion zone containing TCP (Topologically Close Packed) phases rich in insoluble or poorly soluble elements in the β-NiAl phase;
  • b) a diffusion barrier formed mainly of tungsten and at least one other refractory metal constituting the superalloy, in particular rhenium;
  • c) a transition zone containing Ni and Al at progressively increasing concentrations; and
  • d) a surface layer formed mainly of β-NiAl.

Les caractéristiques et avantages de l'invention sont exposés plus en détail dans la description ci-après, avec référence à la figure unique annexée, qui représente une coupe métallographique d'une pièce selon l'invention.The features and advantages of the invention are described in more detail in the description below, with reference to the single appended figure, which shows a metallographic section of a part according to the invention.

L'invention privilégie la technique de dépôt électrolytique car elle offre l'avantage d'être aisément incluse dans une chaîne de traitement existant. D'autres techniques de dépôt, comme par exemple un dépôt par pulvérisation, entrent également dans le cadre de l'invention. Malheureusement il est impossible de déposer du tungstène pur par la voie électrolytique en milieu aqueux. Aussi après examen de toutes les techniques de dépôt, seul un co-dépôt tungstène-cobalt semble convenir. En effet, un tel dépôt, bien connu de l'homme du métier et décrit dans l'ouvrage de A. Brenner Electrodeposition of alloys, principle and practice, Acade-mic Press, 1963), peut contenir jusqu'à 65 % en masse de tungstène (Codeposition of cobalt and tungsten from an aqueous ammoniacal citrate bath, D. L. Roy, P. L. Annama-lai, H. V. K. Udupa and B. B. Dey, Electrodeposition and metal finishing, Indian Sect. Electrochem. Soc., Karaikudi, 1957 pp 42-51, 1957), contrairement aux autres alliages électrodéposés où la teneur en tungstène atteint au maximum 50 %. Lors du recuit de ce dépôt, le cobalt diffuse dans l'alliage favorisant ainsi l'apparition d'îlots riches en tungstène qui serviront à capturer le rhénium en provenance du substrat. Après un second dépôt de nickel destiné à former le β-NiAl la pièce peut être aluminisée par toute technique connue de l'homme du métier, par exemple par aluminisation du type basse activité en caisse ou en phase vapeur ou aluminisation haute activité en caisse ou en peinture ou encore par dépôt chimique en phase vapeur. I1 est possible, en plus du dépôt de nickel, d'effectuer un dépôt de platine et/ou de palladium selon la nature du revêtement désiré (aluminiure modifié ou non). L'aluminisation choisie peut être aussi dopée par un élément tel que le zirconium et/ou le hafnium. Toutes ces variantes sont bien connues de l'homme du métier.The invention favors the electrolytic deposition technique because it offers the advantage of being easily included in an existing treatment chain. Other deposition techniques, such as spray deposition, are also within the scope of the invention. Unfortunately it is impossible to deposit pure tungsten electrolytically in an aqueous medium. Also after examination of all the deposition techniques, only tungsten-cobalt co-deposition seems to be suitable. Indeed, such a deposit, well known to those skilled in the art and described in the work of A. Brenner Electrodeposition of alloys, principle and practice, Acade-mic Press, 1963), can contain up to 65% by weight Tungsten (Codeposition of cobalt and tungsten from an aqueous ammonia citrate bath, DL Roy, Annama-lai PL, HVK Udupa and BB Dey, Electrodeposition and metal finishing, Indian Electrochem Sect., Karaikudi, 1957 pp 42-51, 1957), unlike other electrodeposited alloys where the tungsten content reaches a maximum of 50%. During the annealing of this deposit, the cobalt diffuses into the alloy thus promoting the appearance of islands rich in tungsten which will be used to capture rhenium from the substrate. After a second nickel deposit intended to form the β-NiAl the part can be aluminized by any technique known to those skilled in the art, for example by aluminization of the low activity type in the case or vapor phase or high activity aluminization box or paint or by chemical vapor deposition. It is possible, in addition to nickel deposition, to deposit platinum and / or palladium depending on the nature of the desired coating (modified or unmodified aluminide). The aluminization chosen may also be doped with an element such as zirconium and / or hafnium. All these variants are well known to those skilled in the art.

Avantageusement, selon l'invention, la surface de la pièce à revêtir subit une préparation avant l'élaboration du dépôt lui-même. Après un éventuel cycle de désoxydation, dans le cas d'une pièce brute de fonderie, ou un dégraissage, dans le cas d'une pièce brute d'usinage, un traitement d'activation et de préparation au dépôt électrolytique est effectué.Advantageously, according to the invention, the surface of the part to be coated undergoes a preparation before the development of the deposit itself. After a possible deoxidation cycle, in the case of a blank casting, or a degreasing, in the case of a workpiece, an activation treatment and preparation for electroplating is performed.

Cette préparation de la pièce permet d'éviter les problèmes d'écaillage dus à la présence d'oxydes résiduels ou à la passivation de l'alliage à traiter. De plus, on évite de préférence toute opération susceptible de contraindre la surface (élimination du moteur mécanique).This preparation of the part makes it possible to avoid the problems of chipping due to the presence of residual oxides or to the passivation of the alloy to be treated. In addition, any operation likely to constrain the surface (elimination of the mechanical motor) is preferably avoided.

À la suite de ces opérations de préparation de surface, un dépôt électrolytique de cobalt et de tungstène est effectué. La composition de ce dépôt, en poids, est la suivante:
35 % ≤ Co ≤ 80 %
20 % ≤ W ≤ 65 %.
Following these surface preparation operations, an electrolytic deposit of cobalt and tungsten is carried out. The composition of this deposit, by weight, is as follows:
35% ≤ Co ≤ 80%
20% ≤ W ≤ 65%.

Ce dépôt fortement adhérent, dont l'épaisseur est comprise entre 10 et 20 µm, a pour objectif, après un recuit de diffusion, de créer les germes d'une barrière de diffusion susceptible de freiner la diffusion de l'aluminium du revêtement vers le substrat et des éléments réfractaires vers le revêtement. Cette dernière action est à l'origine de la barrière de diffusion évolutive: elle se construit par accrétion du rhénium sur les précipités de tungstène en évitant la formation d'une zone de réaction secondaire.This strongly adherent deposit, the thickness of which is between 10 and 20 μm, is intended, after diffusion annealing, to create the seeds of a diffusion barrier capable of curbing the diffusion of aluminum from the coating to the substrate. substrate and refractory elements to the coating. This last action is at the origin of the evolutionary diffusion barrier: it is built by accretion of rhenium on the tungsten precipitates by avoiding the formation of a secondary reaction zone.

Un dépôt électrolytique supplémentaire ou post-dépôt peut être effectué, permettant de former, sur une épaisseur pouvant varier de 5 à 15 µm selon les cas, une couche constituée de nickel et/ou de platine et/ou de palladium et/ou de nickel-palladium. Ce dépôt supplémentaire est lui aussi fortement adhérent.An additional electrolytic deposition or post-deposition may be performed, making it possible to form, in a thickness that may vary from 5 to 15 μm depending on the case, a layer made of nickel and / or platinum and / or palladium and / or nickel -palladium. This additional deposit is also strongly adherent.

Après ce ou ces dépôts, les pièces subissent le traitement d'aluminisation mentionné plus haut conduisant à une couche de β-NiAl modifiée ou non par du platine ou du palladium et dopée ou non au zirconium et/ou au hafnium.After this or these deposits, the parts undergo the aluminization treatment mentioned above leading to a layer of β-NiAl modified or not by platinum or palladium and doped or not with zirconium and / or hafnium.

Dans les exemples comparatifs et l'exemple qui suivent, les pièces à traiter sont en un superalliage appelé MCNG ayant la composition suivante en pourcentage en masse: Cr : 4,05 Al : 6,06 W : 5,03 Ta : 5,16 Re : 4,04 Ru : 4,02 Mo : 1,01 Ti : 0,53 Hf : 0,1 Si : 0,1 Ni : complément à 100. In the following comparative examples and the example which follows, the parts to be treated are in a superalloy called MCNG having the following composition in percentage by mass: Cr: 4.05 Al: 6.06 W: 5.03 Ta: 5.16 Re: 4.04 Ru: 4.02 Mo: 1.01 Ti: 0.53 Hf: 0.1 Yes : 0.1 Ni: complement to 100.

Des résultats analogues ont été obtenus avec d'autres superalliages présentant une forte concentration en rhénium, tels que ceux décrits dans FR 2 780 982 au nom du demandeur, l'alliage René N6 selon US 5 482 789 et l'alliage CMSX-10 selon US 5 366 695.Similar results have been obtained with other superalloys having a high concentration of rhenium, such as those described in FR 2 780 982 in the name of the applicant, the Rene N6 alloy according to US 5 482 789 and the CMSX-10 alloy according to US Pat. US 5,366,695.

Les exemples comparatifs et les exemples ci-après mettent en évidence l'importance de la préparation de la pièce et des différents dépôts. Afin de vérifier la stabilité dans le temps des revêtements obtenus, les pièces revêtues ont été expertisées après un vieillissement de 500 heures et de 1000 heures à 1100 °C sous air.The comparative examples and examples below highlight the importance of the preparation of the piece and different deposits. In order to verify the stability over time of the coatings obtained, the coated parts were evaluated after aging for 500 hours and 1000 hours at 1100 ° C. in air.

Les zones de réaction secondaire ont été quantifiées sous forme d'un pourcentage représentant le rapport de la somme des périmètres des zones de réaction secondaire au périmètre total de l'échantillon dans le plan de la coupe métallographique.The secondary reaction zones were quantified as a percentage representing the ratio of the sum of the perimeters of the secondary reaction zones to the total perimeter of the sample in the plane of the metallographic section.

Exemple comparatif 1Comparative Example 1

La pièce en superalliage, brute de rectification, subit un traitement d'aluminisation basse activité en phase vapeur pendant 5 heures à 1100 °C. Le cément donneur est un alliage de chrome à 30 % en poids d'aluminium (CA30), l'activateur du bifluorure d'ammonium (NH4F, HF). Le revêtement obtenu est le composé défini β-NiAl du diagramme de phase Ni-Al. Son épaisseur est d'environ 40 µm.The superalloy piece, rough rectification, undergoes a low activity aluminization treatment in the vapor phase for 5 hours at 1100 ° C. The donor cement is a chromium alloy containing 30% by weight of aluminum (CA30), the activator of ammonium bifluoride (NH 4 F, HF). The coating obtained is the defined β-NiAl compound of the Ni-Al phase diagram. Its thickness is about 40 microns.

Une expertise révèle que la pièce traitée présente environ 25 % de zones de réaction secondaire, essentiellement situées dans les zones fortement contraintes, comme les angles de la pièce.Expertise reveals that the treated part has about 25% of secondary reaction zones, essentially located in highly stressed areas, such as the corners of the room.

Après un vieillissement de 500 heures le taux de zones de réaction secondaire tel que défini plus haut est de 100 %, c'est-à-dire qu'une zone de réaction secondaire continue est présente sous le revêtement.After an aging of 500 hours the rate of secondary reaction zones as defined above is 100%, that is to say that a continuous secondary reaction zone is present under the coating.

Après 1000 heures la couche de zone de réaction secondaire s'est épaissie pour atteindre par endroit plus de 100 µm.After 1000 hours the secondary reaction zone layer has thickened to reach more than 100 μm in places.

Cet exemple comparatif confirme les données de la littérature existante, à savoir qu'une zone de réaction secondaire se forme systématiquement sous les revêtements obtenus par diffusion.This comparative example confirms the existing literature data that a secondary reaction zone is systematically formed under diffusion coatings.

Exemple comparatif 2Comparative Example 2

La pièce brute de rectification subit un sablage liquide avant d'être soumise au traitement d'aluminisation décrit dans l'exemple comparatif 1.The rough grinding part undergoes a liquid sandblasting before being subjected to the aluminization treatment described in Comparative Example 1.

Sur la pièce brute de dépôt, l'expertise révèle une quantité très importante de zones de réaction secondaire (> 90 %). L'expérience n'a pas été menée plus avant.On the deposit, the expertise reveals a very large amount of secondary reaction zones (> 90%). The experiment was not conducted further.

Exemple comparatif 3Comparative Example 3

La surface d'une pièce brute semblable à celle de l'exemple comparatif 1 est préparée par un dégraissage pendant 5 à 10 minutes dans la solution suivante: Hydroxyde de sodium NaOH 10 g/l Carbonate de sodium Na2CO3 23 g/l Phosphate trisodique anhydre Na3PO4 10 g/l EDTA, sel disodique (NaO2CCH2)2N(CH2)2N(CH2CO2H)2 2 ml/l Température 80°C. The surface of a blank similar to that of Comparative Example 1 is prepared by degreasing for 5 to 10 minutes in the following solution: Sodium hydroxide NaOH 10 g / l Sodium carbonate Na 2 CO 3 23 g / l Trisodium phosphate anhydrous Na 3 PO 4 10 g / l EDTA, disodium salt (NaO 2 CCH 2 ) 2 N (CH 2 ) 2 N (CH 2 CO 2 H) 2 2 ml / l Temperature 80 ° C.

À la suite de cette opération la pièce est plongée, sans courant, dans une solution nitrofluorhydrique (HNO3 40 % et HF 10 % en volume). Dès qu'un nuage de bulles uniforme est formé à la surface de la pièce, elle est plongée, sous courant cette fois-ci, dans un bain de nickel de Wood (bain pour le dépôt électrolytique de nickel en milieu chlorhydrique). La densité de courant appliquée est de 3 A/dm2, la pièce servant de cathode, et la durée du traitement de 3 minutes.Following this operation the piece is plunged, without current, into a nitrofluoric solution (HNO 3 40% and HF 10% by volume). As soon as a uniform cloud of bubbles is formed on the surface of the room, it is dipped, under current this time, in a nickel bath of Wood (bath for the electrolytic deposition of nickel in hydrochloric medium). The current density applied is 3 A / dm 2 , the part serving as a cathode, and the treatment duration of 3 minutes.

Ensuite, conformément aux enseignements de US 6 080 246, un dépôt électrolytique de cobalt est effectué sur la pièce ainsi préparée. La solution classique suivante est utilisée: Sulfate de cobalt heptahydraté CoSO4, 7 H2O 500 g/l Chlorure de sodium NaCl 17 g/l Acide borique H3BO3 45 g/l pH ≤ 5 Température de dépôt 25 ≤ T ≤ 45 °C Densité de courant 3,5 ≤ J ≤ 10 A/dm2. Then, according to the teachings of US 6,080,246, electrolytic deposition of cobalt is performed on the workpiece thus prepared. The following classic solution is used: Cobalt sulphate heptahydrate CoSO 4 , 7H 2 O 500 g / l Sodium chloride NaCl 17 g / l Boric acid H 3 BO 3 45 g / l pH ≤ 5 Deposit temperature 25 ≤ T ≤ 45 ° C Current density 3.5 ≤ J ≤ 10 A / dm 2 .

Après 10 minutes, un dépôt de 10 µm est obtenu. Comme il est bien connu de l'homme du métier ce dépôt est tendu et brillant.After 10 minutes, a deposit of 10 microns is obtained. As is well known to those skilled in the art this deposit is taut and shiny.

La pièce ainsi revêtue subit ensuite un traitement d'aluminisation semblable à celui décrit dans l'exemple comparatif 1.The thus coated part then undergoes an aluminization treatment similar to that described in Comparative Example 1.

L'expertise de la pièce brute de revêtement met en évidence la présence de 10 % de zones de réaction secondaire, principalement concentrées dans les régions fortement contraintes.The expertise of the rough-surfaced part shows the presence of 10% of secondary reaction zones, mainly concentrated in highly stressed regions.

Après un vieillissement de 500 heures on constate un accroissement du taux de zones de réaction secondaire (environ 30 à 40 % du périmètre), surtout par grossissement de celles qui préexistaient.After an aging of 500 hours, an increase in the rate of secondary reaction zones (approximately 30 to 40% of the perimeter) is observed, especially by magnification of the pre-existing ones.

Si la microstructure de l'alliage riche en éléments réfractaires semble avoir mieux résisté que dans les exemples comparatifs précédents, la source d'instabilité (l'aluminium du revêtement) n'en est pas pour autant tarie.While the microstructure of the alloy rich in refractory elements seems to have resisted better than in the previous comparative examples, the source of instability (the aluminum of the coating) is not necessarily dried up.

Ces trois exemples comparatifs confirment le rôle du moteur chimique (aluminisation sans sablage) et mécanique (aluminisation avec sablage), d'où l'importance de réduire les précontraintes initiales du superalliage favorisées en particulier par le sablage et d'empêcher la diffusion de l'aluminium vers le substrat. De plus, ils confirment qu'une simple augmentation de la stabilité de la composition chimique de l'alliage à sa surface est insuffisante. À la lumière de ces exemples comparatifs on peut conclure que seule une barrière d'interdiffusion entre le substrat et le revêtement aura un rôle suffisamment efficace pour éviter cette instabilité.These three comparative examples confirm the role of the chemical engine (aluminization without sanding) and mechanical (aluminization with sandblasting), hence the importance of reducing the initial prestressing of the superalloy favored in particular by sandblasting and preventing the diffusion of aluminum to the substrate. In addition, they confirm that a simple increase in the stability of the chemical composition of the alloy on its surface is insufficient. In light of these comparative examples, it can be concluded that only an interdiffusion barrier between the substrate and the coating will have a sufficiently effective role to avoid this instability.

Exemple 1Example 1

Après avoir subi le traitement de préparation de l'exemple comparatif 3, la pièce est revêtue d'une couche de cobalt et de tungstène déposés concomitamment, au lieu de la couche de cobalt pur.After undergoing the preparation treatment of Comparative Example 3, the part is coated with a layer of cobalt and tungsten deposited concomitantly, instead of the pure cobalt layer.

Le revêtement Co-W est obtenu à partir d'un bain ayant la formulation suivante: Chlorure de cobalt CoCl2, 6 H2O 100 g/l Tungstate de sodium Na2WO4, 2 H2O 100 g/l Tartrate double de Na K NaKC9H4O6, 4 H2O 400 g/l Chlorure d'ammonium NH4Cl 50 g/l pH (réglé par NH4OH) 8,5 Température de dépôt 70 °C Densité de courant 2 ≤ J ≤ 5 A/dm2. The coating Co-W is obtained from a bath having the following formulation: Cobalt chloride CoCl 2 , 6H 2 O 100 g / l Sodium tungstate Na 2 WO 4 , 2 H 2 O 100 g / l Tartrate double of Na K NaKC 9 H 4 O 6 , 4 H 2 O 400 g / l Ammonium chloride NH 4 Cl 50 g / l pH (set by NH 4 OH) 8.5 Deposit temperature 70 ° C Current density 2 ≤ J ≤ 5 A / dm 2 .

Au lieu du double système d'anodes de tungstène et de cobalt utilisé dans l'ouvrage précité de A. Brenner, une anode insoluble en titane revêtu de platine ou en platine pur est de préférence mise en oeuvre dans l'invention. L'avantage en est que la concentration des différentes espèces électroactives se fait par dosage chimique et est indépendante des potentiels anodiques. La teneur en W peut atteindre 65 % en poids (selon la concentration en tungstène et la densité de courant utilisée).Instead of the dual system of tungsten and cobalt anodes used in the aforementioned A. Brenner work, an insoluble anode of platinum-coated titanium or pure platinum is preferably used in the invention. The advantage is that the concentration of different electroactive species is by chemical assay and is independent of the anode potentials. The W content can reach 65% by weight (depending on the tungsten concentration and the current density used).

Après 30 minutes à une heure et demie, un dépôt de 10 à 30 µm est obtenu. L'aspect du dépôt au sortir du bain est lisse et brillant.After 30 minutes to an hour and a half, a deposit of 10 to 30 microns is obtained. The appearance of the deposit at the end of the bath is smooth and brilliant.

Le dépôt de Co-W est ensuite revêtu d'une couche de 5 à 25 µm de nickel destinée à former le composé inter-métallique NiAl, à partir du bain électrolytique suivant: Sulfamate de nickel Ni(SO3NH2)2 350 g/l Chlorure de nickel NiCl2, 6 H2O 3,5 g/l Acide borique H3BO3 40 g/l Température 45 °C Densité de courant 3 A/dm2. The Co-W deposit is then coated with a layer of 5 to 25 μm of nickel intended to form the inter-metallic compound NiAl, from the following electrolytic bath: Nickel sulphamate Ni (SO 3 NH 2 ) 2 350 g / l Nickel chloride NiCl 2 , 6H 2 O 3.5 g / l Boric acid H 3 BO 3 40 g / l Temperature 45 ° C Current density 3 A / dm 2 .

Après un recuit de 2 heures à 900 °C destiné d'une part à favoriser l'adhésion des dépôts entre eux et sur le substrat, d'autre part à précipiter les premiers germes de tungstène dans une matrice de cobalt de façon à bloquer la diffusion du rhénium au cours des opérations d'aluminisation, la pièce subit traitement d'aluminisation semblable à celui décrit dans l'exemple comparatif 1.After an annealing of 2 hours at 900 ° C intended on the one hand to promote the adhesion of deposits between them and on the substrate, on the other hand to precipitate the first tungsten germs in a cobalt matrix so as to block the diffusion of rhenium during aluminization operations, the part undergoes aluminization treatment similar to that described in Comparative Example 1.

À la suite de ce traitement la pièce présente la microstructure montrée sur la figure unique comprenant un revêtement formé de quatre couches successives à partir du substrat en superalliage 1, à savoir une couche d'inter-diffusion classique 2, une barrière de diffusion de tungstène et de rhénium 3, une couche intermédiaire 4 où la concentration en Ni et en Al augmente à partir de la barrière de diffusion et un aluminiure de nickel classique 5 de composition β-NiAl stoechiométrique.As a result of this treatment the part has the microstructure shown in the single figure comprising a coating formed of four successive layers from the superalloy substrate 1, namely a conventional inter-diffusion layer 2, a tungsten diffusion barrier and rhenium 3, an intermediate layer 4 where the concentration of Ni and Al increases from the diffusion barrier and a conventional nickel aluminide 5 stoichiometric β-NiAl composition.

L'expertise de la pièce met en évidence l'absence de zones de réaction secondaire.The expertise of the piece highlights the absence of secondary reaction zones.

Après un vieillissement de 500 puis de 1000 heures sous air à 1100 °C, l'interface est stable. La couche d'oxyde est dense et régulière, le revêtement de β-NiAl est devenu discontinu, la phase de γ' -Ni3Al s'étant formée aux joints de grains. Ce phénomène est dû à la consommation de l'aluminium par la couche d'alumine thermiquement formée. Enfin la couche de W-Re s'est enrichie en rhénium, cet élément étant maintenant majoritaire. Cette couche assure ainsi son rôle de barrière de diffusion formée in situ. Aucune zone de réaction secondaire n'est observée.After an aging of 500 and 1000 hours under air at 1100 ° C, the interface is stable. The oxide layer is dense and regular, the β-NiAl coating has become discontinuous, the γ '-Ni 3 Al phase having formed at the grain boundaries. This phenomenon is due to the consumption of aluminum by the thermally formed alumina layer. Finally, the W-Re layer is enriched in rhenium, this element is now the majority. This layer thus ensures its role as a diffusion barrier formed in situ. No secondary reaction zone is observed.

L'exemple a été répété en faisant varier la teneur en tungstène du dépôt Co-W entre 35 et 65 % en poids, son épaisseur entre 5 et 25 µm, l'épaisseur du dépôt de nickel complémentaire entre 5 et 25 µm. Dans tous les cas les expertises ont mis en évidence l'absence de zones de réaction secondaire à l'exception d'une ou deux dans des régions très fortement contraintes (angles d'éprouvette et/ou proximité de porosités du substrat).The example was repeated by varying the tungsten content of the Co-W deposit between 35 and 65% by weight, its thickness between 5 and 25 μm, and the thickness of the complementary nickel deposit between 5 and 25 μm. In all cases the expertises have shown the absence of secondary reaction zones with the exception of one or two in regions very strongly constrained (specimen angles and / or proximity of substrate porosities).

À l'issue des tests de vieillissement les plus longs (1000 heures) les échantillons sont sains: la couche d'oxyde est d'une épaisseur normale pour une oxydation isotherme (6 µm en moyenne), il n'y a pas eu de diffusion de l'aluminium du revêtement vers le substrat et la consommation de cet élément est seulement due à l'oxydation ce qui entraîne l'apparition de la phase γ'-Ni3Al le long des joints de grain du revêtement. L'élément le plus remarquable de cette série de tests est l'absence de zones de réaction secondaire: cette microstructure n'a été observée ni avant ni après vieillissement. Il en résulte que les propriétés mécaniques de l'alliage sont préservées et que la durée de vie du revêtement est augmentée car l'aluminium qu'il contient est réservé pour les phénomènes d'oxydation à haute température.After the longest aging tests (1000 hours), the samples are healthy: the oxide layer is of normal thickness for isothermal oxidation (6 μm on average), there has been no diffusion of aluminum from the coating to the substrate and the consumption of this element is only due to oxidation which causes the appearance of the phase γ'-Ni 3 Al along the grain boundaries of the coating. The most remarkable element of this series of tests is the absence of secondary reaction zones: this microstructure was observed neither before nor after aging. As a result, the mechanical properties of the alloy are preserved and the life of the coating is increased because the aluminum it contains is reserved for high temperature oxidation phenomena.

Exemple 2Example 2

On dépose à la surface d'un échantillon de l'alliage MCNG par pulvérisation cathodique triode (PCT) un alliage de cobalt et de tungstène. Pour ce faire on a choisi deux cibles : une en cobalt pur et l'autre en tungstène pur. In fine le dépôt obtenu, épais d'environ 20 µm, est un mélange de cobalt et de tungstène avec une teneur en tungstène variable d'environ 50% en poids. Pour vérifier l'efficacité de ce revêtement seule une face a été revêtue.At the surface of a sample of the MCNG alloy is deposited by triode cathode sputtering (PCT) an alloy of cobalt and tungsten. To do this we chose two targets: one in pure cobalt and the other in pure tungsten. In fine the deposit obtained, about 20 microns thick, is a mixture of cobalt and tungsten with a variable tungsten content of about 50% by weight. To verify the effectiveness of this coating only one side has been coated.

À la suite de cette opération l'échantillon est recuit dans un four sous un vide meilleur que 10-3 Pa à la température de 900°C pendant deux heures afin de favoriser l'adhésion du dépôt sur le substrat et de faire germer les premiers précipités de tungstène. À la suite de cette opération on peut faire un dépôt de nickel pur d'environ 20 à 30 µm. Ce dépôt, peut être fait soit de manière électrolytique soit par PCT. Après un nouveau recuit de 2 h sous vide à 900°C, l'échantillon est aluminisé comme il est décrit dans l'exemple comparatif 1. À la suite de ce traitement la pièce présente sur la face traitée une microstructure en quatre couches comparable à celle montrée sur la figure unique tandis que la face non traitée montre une SRZ quasi continue et d'une profondeur d'environ 10 à 15 µm.Following this operation the sample is annealed in an oven under a vacuum better than 10 -3 Pa at the temperature of 900 ° C for two hours to promote the adhesion of the deposit on the substrate and to germinate the first precipitated tungsten. As a result of this operation a deposit of pure nickel of about 20 to 30 μm can be made. This deposition can be done either electrolytically or by PCT. After a further 2 hour vacuum anneal at 900 ° C, the sample is aluminized as described in Comparative Example 1. As a result of this treatment the the part has on the treated side a four-layer microstructure comparable to that shown in the single figure while the untreated face shows a quasi-continuous SRZ and a depth of about 10 to 15 microns.

Après un traitement de vieillissement de 500 heures à 1100°C, la face traitée ne présente toujours pas de SRZ (zones de réaction secondaire évolutives) alors que celles présentes sur la face non traitée ont maintenant une profondeur d'environ 50 µm.After an aging treatment of 500 hours at 1100 ° C, the treated surface still does not show SRZ (evolutionary secondary reaction zones) while those present on the untreated side now have a depth of about 50 microns.

Exemple 3Example 3

On dépose à la surface d'un échantillon de l'alliage MCNG par pulvérisation cathodique triode (PCT) un alliage de cobalt et de tungstène. Pour ce faire on a choisi deux cibles : une en cobalt pur et l'autre en tungstène pur. In fine le dépôt obtenu, épais d'environ 20 µm, est un mélange de cobalt et de tungstène avec une teneur en tungstène variable d'environ 50% en poids. Pour vérifier l'efficacité de ce revêtement seule une face a été revêtue.At the surface of a sample of the MCNG alloy is deposited by triode cathode sputtering (PCT) an alloy of cobalt and tungsten. To do this we chose two targets: one in pure cobalt and the other in pure tungsten. In fine the deposit obtained, about 20 microns thick, is a mixture of cobalt and tungsten with a variable tungsten content of about 50% by weight. To verify the effectiveness of this coating only one side has been coated.

À la suite de cette opération l'échantillon est recuit dans un four sous un vide meilleur que 10-3 Pa à la température de 1050°C pendant cinq heures afin de favoriser l'adhésion du dépôt sur le substrat, de faire germer les premiers précipités de tungstène et de provoquer les premières coprécipitations de rhénium sur les germes de tungstène dans le dépôt de Co-W. À la suite de cette opération on a réalisé un dépôt de nickel pur d'environ 20 à 30 µm par PCT puis un dépôt électrolytique de platine dont l'épaisseur est comprise entre 5 et 7 µm. Après un nouveau recuit de 1 h sous vide à 1100°C (recuit classique fait dans le cas des aluminiures modifiés par le platine), l'échantillon est aluminisé comme il est décrit dans l'exemple comparatif 1, sauf que le cément est de très basse activité (alliage de chrome à 20 % en masse d'aluminium dit CA20) et que l'atmosphère de dépôt est l'argon.Following this operation the sample is annealed in an oven under a vacuum better than 10 -3 Pa at the temperature of 1050 ° C for five hours to promote the adhesion of the deposit on the substrate, to germinate the first Tungsten precipitates and cause the first co-precipitation of rhenium on tungsten germs in the Co-W deposit. Following this operation, a pure nickel deposit of approximately 20 to 30 μm per PCT was made and then an electrolytic platinum deposit with a thickness of between 5 and 7 μm. After a further 1 hour vacuum annealing at 1100 ° C (conventional annealing in the case of platinum-modified aluminides), the sample is aluminized as described in Comparative Example 1 except that the cement is very low activity (chromium alloy 20% by weight of aluminum said CA20) and that the deposition atmosphere is argon.

A l'issue des opérations d'aluminisation, l'échantillon subit un dernier recuit sous un vide meilleur que 10-3 Pa de une heure à 1100°C dans le but d'obtenir un revêtement d'aluminiure de nickel modifié par le platine strictement monophasé.At the end of the aluminization operations, the sample undergoes a final anneal under a vacuum better than 10 -3 Pa for one hour at 1100 ° C in order to obtain a nickel-plated nickel aluminide coating strictly single-phase.

À la suite de ce traitement la pièce présente une microstructure en quatre couches rappelant celle montrée sur la figure unique. Toutefois, il est à noter qu'un gradient de concentration négatif en platine (du bord du revêtement vers le substrat) existe dans la zone 5 de la figure unique. On remarque aussi que l'épaisseur de la barrière de diffusion (zone 3 de la figure unique) est alors plus dense, état de fait explicable par la durée du recuit du dépôt de CoW. Du côté traité on ne distingue aucune SRZ alors que sur l'autre face 100 % de la zone d'interdiffu-sion surmontent une SRZ d'environ 20 µm d'épaisseur. Cette différence est encore plus visible après un vieillissement de 500 heures à 1100°C : sur la face traitée, l'aluminiure est encore essentiellement formé de la phase beta (NiPt)Al sans SRZ sous-jacente alors que sur l'autre face l'aluminiure de nickel est essentiellement constitué de gamma prime Ni3Al surmontant une SRZ continue de plus de 100 µm d'épaisseur.As a result of this treatment the part has a four-layer microstructure reminiscent of that shown in the single figure. However, it should be noted that a negative platinum concentration gradient (from the edge of the coating to the substrate) exists in zone 5 of the single figure. It is also noted that the thickness of the diffusion barrier (zone 3 of the single figure) is then denser, a situation that can be explained by the duration of the annealing of the CoW deposit. On the treated side, no SRZ can be distinguished while on the other side 100% of the interdiffutance zone surmounts a SRZ of about 20 μm in thickness. This difference is even more visible after an aging of 500 hours at 1100 ° C: on the treated side, the aluminide is still essentially formed of the beta phase (NiPt) Al without underlying SRZ while on the other side the Nickel aluminide consists essentially of gamma prime Ni 3 Al surmounting a continuous SRZ of more than 100 microns thick.

Les exemples 2 et 3 ci-dessus montrent que l'alliage de cobalt et de tungstène peut être déposé par d'autres techniques que la voie électrolytique, et en particulier par pulvérisation.Examples 2 and 3 above show that the alloy of cobalt and tungsten can be deposited by techniques other than the electrolytic route, and in particular by spraying.

Comme indiqué plus haut, l'invention est applicable dans le cas de revêtements d'aluminiures de nickel modifiés par le platine et/ou le palladium et/ou dopés par le zirconium et/ou le hafnium. À titre d'illustration, la procédure ci-après peut être mise en oeuvre sur une pièce brute de fonderie telle qu'une aube de turbomachine, embarquée ou non:

  • * désoxydation en solution alcaline à teneur en soude élevée (telle que celle commercialisée par la société TURCO sous le nom commercial TURCO 4008-3) pendant une heure à 110 °C,
  • * activation de la surface dans une solution d'acide chlorhydrique à 20 % ([HCl] ≈ 2 M) pendant le temps nécessaire pour obtenir une activité homogène à la surface de la pièce à traiter (entre 30 secondes et 3 minutes),
  • * dépôt électrolytique de nickel dans un bain chlorhydrique acide (nickel de Wood) pendant 3 minutes pour atteindre une épaisseur d'environ 0,1 à 0,2 µm,
  • * dépôt électrolytique de Co-W dans un bain tel que décrit dans l'exemple, d'une teneur en tungstène comprise entre 35 et 65 % en poids et d'une épaisseur comprise entre 5 et 25 µm,
  • * dépôt électrolytique de nickel pur dans un bain de nickel classique, d'une épaisseur de 5 à 25 µm,
  • * dépôt électrolytique de platine dans une solution classique (par exemple le bain commercialisé par la société Englehard - CLAL sous la dénomination Pt 209), d'une épaisseur comprise entre 5 et 15 µm,
  • * et/ou dépôt électrolytique de palladium-nickel dans une solution classique (par exemple dans le bain commercialisé par la société Englehard - CLAL sous la dénomination "palladium nickel spécial aéro"),
  • * à la suite de l'ensemble de ces dépôts électrolytiques, recuit d'interdiffusion hors de toute atmosphère réactive (vide, argon, etc.) d'une durée comprise entre une et cinq heures à une température comprise entre 850 et 1050 °C.
As indicated above, the invention is applicable in the case of nickel aluminide coatings modified with platinum and / or palladium and / or doped with zirconium and / or hafnium. By way of illustration, the following procedure can be implemented on a foundry blank such as a turbomachine blade, on board or not:
  • deoxidation in alkaline solution with a high sodium content (such as that sold by the company TURCO under the trade name TURCO 4008-3) for one hour at 110 ° C,
  • * activation of the surface in a solution of 20% hydrochloric acid ([HCl] ≈ 2 M) for the time necessary to obtain a homogeneous activity on the surface of the piece to be treated (between 30 seconds and 3 minutes),
  • electrolytic deposition of nickel in an acidic hydrochloric bath (Wood nickel) for 3 minutes to reach a thickness of approximately 0.1 to 0.2 μm,
  • electrolytic deposition of Co-W in a bath as described in the example, with a tungsten content of between 35 and 65% by weight and a thickness of between 5 and 25 μm,
  • electrolytic deposition of pure nickel in a conventional nickel bath, with a thickness of 5 to 25 μm,
  • electrolytic deposition of platinum in a conventional solution (for example the bath marketed by Englehard-CLAL under the name Pt 209), of a thickness of between 5 and 15 μm,
  • * and / or electrolytic deposition of palladium-nickel in a conventional solution (for example in the bath marketed by Englehard-CLAL under the name "palladium nickel special aero"),
  • as a result of all these electrolytic deposits, interdiffusion annealing out of any reactive atmosphere (vacuum, argon, etc.) of between one and five hours at a temperature of between 850 and 1050 ° C. .

La pièce ainsi traitée est ensuite placée dans une enceinte pour recevoir une aluminisation. Cette dernière peut être pratiquée pendant 2 à 16 heures sous hydrogène et/ou sous argon, à une température comprise entre 700 et 1150 °C, ces deux paramètres (temps et température) étant à choisir en fonction de l'alliage traité comme il est bien connu de l'homme du métier. Selon le cément donneur d'aluminium cette aluminisation sera à haute ou basse activité. Cette aluminisation peut être aussi dopée au zirconium ou au hafnium comme décrit dans FR 2 853 329.The piece thus treated is then placed in an enclosure to receive an aluminization. The latter can be practiced for 2 to 16 hours under hydrogen and / or under argon, at a temperature between 700 and 1150 ° C, these two parameters (time and temperature) to be chosen according to the alloy treated as it is well known to those skilled in the art. According to the aluminum donor cement, this aluminization will be high or low activity. This aluminization can also be doped with zirconium or with hafnium as described in FR 2 853 329.

À l'issue de ce traitement, le superalliage de base riche en éléments réfractaires, notamment rhénium et/ou ruthénium, est revêtu d'un aluminiure de nickel modifié ou non par le platine et/ou le palladium et dopé ou non par le zirconium et/ou le hafnium, possédant une barrière de diffusion riche en tungstène, rhénium/ruthénium et chrome, formée in situ sur des germes de tungstène pur. La durée de vie d'un tel revêtement est en rapport avec celui de l'alliage lui-même.At the end of this treatment, the base superalloy rich in refractory elements, in particular rhenium and / or ruthenium, is coated with a nickel aluminide modified or not by platinum and / or palladium and doped or not by zirconium. and / or hafnium, having a rich tungsten, rhenium / ruthenium and chromium diffusion barrier formed in situ on pure tungsten seeds. The life of such a coating is related to that of the alloy itself.

Claims (18)

Procédé pour protéger contre la corrosion un superalliage monocristallin contenant au moins un métal réfractaire, dans lequel on forme sur la surface du superalliage un revêtement contenant de l'aluminium, caractérisé en ce qu'avant de former ledit revêtement on dépose sur ladite surface une couche constituée de tungstène et de cobalt.Process for the protection against corrosion of a monocrystalline superalloy containing at least one refractory metal, in which a coating containing aluminum is formed on the surface of the superalloy, characterized in that before forming said coating is deposited on said surface a layer consisting of tungsten and cobalt. Procédé selon la revendication 1, dans lequel le superalliage est à base de nickel, de cobalt et/ou de fer.The method of claim 1, wherein the superalloy is based on nickel, cobalt and / or iron. Procédé selon l'une des revendications 1 et 2, dans lequel le superalliage contient au moins un métal réfractaire choisi parmi le rhénium et le ruthénium.Method according to one of claims 1 and 2, wherein the superalloy contains at least one refractory metal selected from rhenium and ruthenium. Procédé selon l'une des revendications précédentes, dans lequel le superalliage comprend une matrice de phase γ dans laquelle sont dispersées des particules durcissantes de phase γ', au moins un métal réfractaire étant contenu dans la phase γ à une concentration proche de sa limite de solubilité.Method according to one of the preceding claims, in which the superalloy comprises a phase matrix γ in which γ 'phase hardening particles are dispersed, at least one refractory metal being contained in the γ phase at a concentration close to its limit of solubility. Procédé selon l'une des revendications précédentes, dans lequel le tungstène et le cobalt contenus dans ladite couche sont déposés concomitamment par voie électrolytique.Method according to one of the preceding claims, wherein the tungsten and cobalt contained in said layer are deposited concomitantly electrolytically. Procédé selon la revendication 5, dans lequel ladite couche contient en masse environ 35 à 80 % de cobalt et 65 à 20 % de tungstène.The method of claim 5, wherein said layer contains by weight about 35 to 80% cobalt and 65 to 20% tungsten. Procédé selon l'une des revendications précédentes, dans lequel l'épaisseur de ladite couche est comprise entre 5 et 25 µm environ et de préférence entre 10 et 20 µm environ.Method according to one of the preceding claims, wherein the thickness of said layer is between 5 and 25 microns and preferably about 10 to 20 microns. Procédé selon l'une des revendications précédentes, dans lequel ledit revêtement contenant de l'aluminium est formé par un traitement d'aluminisation.Method according to one of the preceding claims, wherein said aluminum-containing coating is formed by an aluminization treatment. Procédé selon la revendication 8, dans lequel ledit revêtement contient en outre au moins un élément choisi parmi le zirconium et le hafnium.The method of claim 8, wherein said coating further contains at least one member selected from zirconium and hafnium. Procédé selon l'une des revendications 8 et 9, dans lequel, avant le traitement d'aluminisation, on dépose sur ladite couche contenant du tungstène une couche contenant au moins un élément choisi parmi le platine et le palladium.Method according to one of claims 8 and 9, wherein, before the aluminization treatment, is deposited on said layer containing tungsten a layer containing at least one element selected from platinum and palladium. Procédé selon la revendication 10, dans lequel ladite couche contenant du platine et/ou du palladium a une épaisseur comprise entre 5 et 15 µm environ.The method of claim 10, wherein said layer containing platinum and / or palladium has a thickness of between about 5 and 15 μm. Procédé selon l'une des revendications précédentes, dans lequel un prédépôt électrolytique de nickel est effectué avant le dépôt de tungstène.Method according to one of the preceding claims, wherein an electrolytic predeposit of nickel is carried out prior to deposition of tungsten. Procédé selon la revendication 12, dans lequel ledit prédépôt a une épaisseur comprise entre 0,1 et 0,2 µm environ.The method of claim 12, wherein said predeposit has a thickness of between about 0.1 and 0.2 μm. Procédé selon l'une des revendications précédentes, dans lequel un post-dépôt électrolytique de nickel est effectué après le dépôt de tungstène et avant le dépôt d'aluminium et le cas échéant avant le dépôt de platine et/ou de palladium.Method according to one of the preceding claims, wherein an electrolytic post-deposition of nickel is performed after the deposition of tungsten and before the deposition of aluminum and optionally before the deposition of platinum and / or palladium. Procédé selon la revendication 14, dans lequel ledit post-dépôt a une épaisseur comprise entre 5 et 25 µm environ et de préférence entre 5 et 15 µm environ.The method of claim 14, wherein said post-deposition has a thickness of between about 5 and 25 microns and preferably between about 5 and 15 microns. Procédé selon l'une des revendications précédentes, dans lequel le dépôt de ladite couche contenant du tungstène et/ou le cas échéant ledit prédépôt et/ou ledit post-dépôt sont suivis d'un recuit.Method according to one of the preceding claims, in which the deposition of said layer containing tungsten and / or, if appropriate, said pre-deposit and / or said post-deposit are followed by an annealing. Pièce métallique telle qu'on peut l'obtenir par le procédé selon l'une des revendications précédentes, comprenant un substrat (1) formé d'un superalliage muni d'un revêtement comportant quatre couches superposées, à savoir: a) une zone d'interdiffusion (2) contenant des phases TCP (Topologically Close Packed) riches en éléments insolubles ou peu solubles dans la phase β-NiAl; b) une barrière de diffusion (3) formée principalement de tungstène et d'au moins un autre métal réfractaire constitutif du superalliage; c) une zone de transition (4) contenant Ni et Al à des concentration progressivement croissantes; et d) une couche superficielle (5) formée principalement de β-NiAl. Metal part as obtainable by the method according to one of the preceding claims, comprising a substrate (1) formed of a superalloy provided with a coating comprising four superimposed layers, namely: a) an interdiffusion zone (2) containing TCP (Topologically Close Packed) phases rich in insoluble or poorly soluble elements in the β-NiAl phase; b) a diffusion barrier (3) formed mainly of tungsten and at least one other refractory metal constituting the superalloy; c) a transition zone (4) containing Ni and Al at progressively increasing concentrations; and d) a superficial layer (5) formed mainly of β-NiAl. Pièce selon la revendication 17, dans laquelle ledit autre métal réfractaire est choisi parmi le rhénium et le ruthénium.The article of claim 17, wherein said other refractory metal is selected from rhenium and ruthenium.
EP06290129.3A 2005-02-01 2006-01-19 Protective coating for single crystal superalloy Active EP1686200B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0500984A FR2881439B1 (en) 2005-02-01 2005-02-01 PROTECTIVE COATING FOR SINGLE CRYSTALLINE SUPERALLIAGE

Publications (3)

Publication Number Publication Date
EP1686200A2 true EP1686200A2 (en) 2006-08-02
EP1686200A3 EP1686200A3 (en) 2008-04-02
EP1686200B1 EP1686200B1 (en) 2014-08-06

Family

ID=34954350

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06290129.3A Active EP1686200B1 (en) 2005-02-01 2006-01-19 Protective coating for single crystal superalloy

Country Status (4)

Country Link
US (1) US7482039B2 (en)
EP (1) EP1686200B1 (en)
CA (1) CA2534282C (en)
FR (1) FR2881439B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2961528B1 (en) * 2010-06-18 2012-07-20 Snecma METHOD FOR ALUMINATING A SURFACE WITH PRIOR DEPOSITION OF A PLATINUM AND NICKEL LAYER
FR3013996B1 (en) 2013-12-02 2017-04-28 Office National Detudes Et De Rech Aerospatiales Onera PROCESS FOR THE LOCAL REPAIR OF THERMAL BARRIERS
FR3014115B1 (en) 2013-12-02 2017-04-28 Office National Detudes Et De Rech Aerospatiales Onera METHOD AND SYSTEM FOR OXIDE DEPOSITION ON POROUS COMPONENT
CN111636079B (en) * 2019-03-01 2021-10-22 中国科学院金属研究所 Preparation method of single-phase low-diffusion platinum-aluminum coating for single-crystal high-temperature alloy

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366695A (en) 1992-06-29 1994-11-22 Cannon-Muskegon Corporation Single crystal nickel-based superalloy
US5482789A (en) 1994-01-03 1996-01-09 General Electric Company Nickel base superalloy and article
US5598968A (en) 1995-11-21 1997-02-04 General Electric Company Method for preventing recrystallization after cold working a superalloy article
US5695821A (en) 1995-09-14 1997-12-09 General Electric Company Method for making a coated Ni base superalloy article of improved microstructural stability
FR2780982A1 (en) 1998-07-07 2000-01-14 Onera (Off Nat Aerospatiale) MONOCRYSTALLINE SUPERALLIAGE BASED ON HIGH SOLVUS NICKEL
US6080246A (en) 1996-07-23 2000-06-27 Rolls-Royce, Plc Method of aluminising a superalloy
US6447932B1 (en) 2000-03-29 2002-09-10 General Electric Company Substrate stabilization of superalloys protected by an aluminum-rich coating
US6471790B1 (en) 1999-08-09 2002-10-29 Alstom (Switzerland) Ltd Process for strengthening the grain boundaries of a component made from a Ni based superalloy
US6641929B2 (en) 2001-08-31 2003-11-04 General Electric Co. Article having a superalloy protective coating, and its fabrication
FR2853329A1 (en) 2003-04-02 2004-10-08 Onera (Off Nat Aerospatiale) PROCESS FOR FORMING A PROTECTIVE COATING CONTAINING ALUMINUM AND ZIRCONIUM ON METAL

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4447503A (en) * 1980-05-01 1984-05-08 Howmet Turbine Components Corporation Superalloy coating composition with high temperature oxidation resistance
EP0207874B1 (en) * 1985-05-09 1991-12-27 United Technologies Corporation Substrate tailored coatings for superalloys
FR2638174B1 (en) * 1988-10-26 1991-01-18 Onera (Off Nat Aerospatiale) METHOD FOR PROTECTING THE SURFACE OF METAL WORKPIECES AGAINST CORROSION AT HIGH TEMPERATURE, AND WORKPIECE TREATED BY THIS PROCESS
US6444057B1 (en) * 1999-05-26 2002-09-03 General Electric Company Compositions and single-crystal articles of hafnium-modified and/or zirconium-modified nickel-base superalloys
US6746782B2 (en) * 2001-06-11 2004-06-08 General Electric Company Diffusion barrier coatings, and related articles and processes
EP1501957B1 (en) * 2002-05-03 2007-06-13 Honeywell International Inc. Oxidation and wear resistant rhenium metal matrix composites

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366695A (en) 1992-06-29 1994-11-22 Cannon-Muskegon Corporation Single crystal nickel-based superalloy
US5482789A (en) 1994-01-03 1996-01-09 General Electric Company Nickel base superalloy and article
US5695821A (en) 1995-09-14 1997-12-09 General Electric Company Method for making a coated Ni base superalloy article of improved microstructural stability
US5598968A (en) 1995-11-21 1997-02-04 General Electric Company Method for preventing recrystallization after cold working a superalloy article
US6080246A (en) 1996-07-23 2000-06-27 Rolls-Royce, Plc Method of aluminising a superalloy
FR2780982A1 (en) 1998-07-07 2000-01-14 Onera (Off Nat Aerospatiale) MONOCRYSTALLINE SUPERALLIAGE BASED ON HIGH SOLVUS NICKEL
US6471790B1 (en) 1999-08-09 2002-10-29 Alstom (Switzerland) Ltd Process for strengthening the grain boundaries of a component made from a Ni based superalloy
US6447932B1 (en) 2000-03-29 2002-09-10 General Electric Company Substrate stabilization of superalloys protected by an aluminum-rich coating
US6641929B2 (en) 2001-08-31 2003-11-04 General Electric Co. Article having a superalloy protective coating, and its fabrication
FR2853329A1 (en) 2003-04-02 2004-10-08 Onera (Off Nat Aerospatiale) PROCESS FOR FORMING A PROTECTIVE COATING CONTAINING ALUMINUM AND ZIRCONIUM ON METAL

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A. BRENNER: "ELECTRODEPOSITION OF ALLOYS, PRINCIPLE AND PRACTICE", 1963, ACADE- MIC PRESS
BRUCE M. WARNES; NICK S. DUSHANE; JACK E. COCKE- RILL: "Cyclic oxida- tion of diffusion aluminide coatings on cobalt base super alloys", SURFACE AND COATINGS TECHNOLOGY, vol. 148, 2001, pages 163 - 170
D. L. ROY ET AL., ELECTRODEPOSITION AND METAL FINISHING, INDIAN SECT. ELECTROCHEM. SOC., 1957, pages 42 - 51
REBECCA A. MACKAY ET AL.: "Techniques Optimized for Reducing Instabilities in Advanced Nickel-Base Superalloys for Turbine Blades", RT2001 NASA TECHNOLOGY REPORT, NASA TM 2002-211333

Also Published As

Publication number Publication date
EP1686200B1 (en) 2014-08-06
FR2881439A1 (en) 2006-08-04
US7482039B2 (en) 2009-01-27
CA2534282A1 (en) 2006-08-01
US20070071991A1 (en) 2007-03-29
FR2881439B1 (en) 2007-12-07
CA2534282C (en) 2015-09-29
EP1686200A3 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
US6933052B2 (en) Diffusion barrier and protective coating for turbine engine component and method for forming
RU2134313C1 (en) Process of precipitation of coat on substrate ( versions )
RU2142520C1 (en) Protective coating
US8475598B2 (en) Strip process for superalloys
US5334263A (en) Substrate stabilization of diffusion aluminide coated nickel-based superalloys
EP1652965A1 (en) Method for applying chromium-containing coating to metal substrate and coated article thereof
US20060127695A1 (en) Methods for making high-temperature coatings having Pt metal modified gamma-Ni + gamma'-Ni3Al alloy compositions and a reactive element
JP3844607B2 (en) Method for improving oxidation corrosion resistance of superalloy parts and superalloy parts obtained by the method
US6472018B1 (en) Thermal barrier coating method
EP1686200B1 (en) Protective coating for single crystal superalloy
JP2700931B2 (en) Method of protecting the surface of a metal component against corrosion at high temperatures, and component treated by that method
JP5264156B2 (en) Coating system including rhodium aluminide layer
US7604726B2 (en) Platinum aluminide coating and method thereof
CA2868953C (en) Method for producing a .beta.-nia1-type nickel aluminide coating on a metal substrate, and part having one such coating
US7138189B2 (en) Heat-resistant Ti alloy material excellent in resistance to corrosion at high temperature and to oxidation
Li et al. Cyclic oxidation behavior of palladium-modified aluminide coating
US20180195192A1 (en) Pulse plated abrasive grit
EP1123987A1 (en) Repairable diffusion aluminide coatings
US6565672B2 (en) Fabrication of an article having a protective coating with a flattened, pre-oxidized protective-coating surface
US6652982B2 (en) Fabrication of an article having a protective coating with a flat protective-coating surface and a low sulfur content
DE69936088T2 (en) Thermal protection coating and manufacturing process
EP1099775A1 (en) Platinum aluminide coating for cobalt-based superalloys
FR2924129A1 (en) Making a coating of platinum modified nickel aluminide on substrate e.g. blade/external ring of turbine engine made of nickel based alloy, by depositing and diffusing platinum layer in substrate by electrolytic path at high temperature

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20060719

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17Q First examination report despatched

Effective date: 20080605

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602006042573

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C25D0005240000

Ipc: C25D0005340000

RIC1 Information provided on ipc code assigned before grant

Ipc: C25D 5/34 20060101AFI20140204BHEP

Ipc: C25D 5/10 20060101ALI20140204BHEP

Ipc: C25D 5/38 20060101ALI20140204BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140327

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BACOS, MARIE-PIERRE

Inventor name: JOSSO, PIERRE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 681137

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KATZAROV S.A., CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006042573

Country of ref document: DE

Effective date: 20140918

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 681137

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140806

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140806

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141107

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141209

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141106

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141206

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006042573

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

26N No opposition filed

Effective date: 20150507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150119

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: AVENUE DES MORGINES 12, 1213 PETIT-LANCY (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231219

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231219

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231219

Year of fee payment: 19

Ref country code: CH

Payment date: 20240202

Year of fee payment: 19