EP1685263B1 - Method for producing a component provided with a metal matrix and a fibre or particle reinforcement - Google Patents

Method for producing a component provided with a metal matrix and a fibre or particle reinforcement Download PDF

Info

Publication number
EP1685263B1
EP1685263B1 EP03773705A EP03773705A EP1685263B1 EP 1685263 B1 EP1685263 B1 EP 1685263B1 EP 03773705 A EP03773705 A EP 03773705A EP 03773705 A EP03773705 A EP 03773705A EP 1685263 B1 EP1685263 B1 EP 1685263B1
Authority
EP
European Patent Office
Prior art keywords
matrix material
fibers
temperature
particles
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03773705A
Other languages
German (de)
French (fr)
Other versions
EP1685263A1 (en
Inventor
Rainer Gadow
Marcus Speicher
Konstantin Von Niessen
Peter Unseld
Günther MESSMER
Klaus Siegert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universitaet Stuttgart
Original Assignee
Universitaet Stuttgart
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitaet Stuttgart filed Critical Universitaet Stuttgart
Publication of EP1685263A1 publication Critical patent/EP1685263A1/en
Application granted granted Critical
Publication of EP1685263B1 publication Critical patent/EP1685263B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/08Making alloys containing metallic or non-metallic fibres or filaments by contacting the fibres or filaments with molten metal, e.g. by infiltrating the fibres or filaments placed in a mould
    • C22C47/12Infiltration or casting under mechanical pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/007Semi-solid pressure die casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/12Making non-ferrous alloys by processing in a semi-solid state, e.g. holding the alloy in the solid-liquid phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • particle-reinforced semifinished products are produced with a thixoformable metal matrix and then converted by thixoforming into parts with near-net shape shape.
  • MMC materials metal matrix composites
  • high-strength reinforcing fibers can increase the lack of high-temperature strength and rigidity of these materials, which is the case for many applications.
  • short production cycles and the production of close-to-net shape components should reduce manufacturing costs.
  • the powder metallurgical shaping route is basically known by sintering and subsequent pressing, if necessary by hot pressing or hot isostatic pressing (HIP).
  • sintering process are very time-consuming and costly and do not allow net-shape molding of complex component geometries.
  • considerable residual porosities usually occur, which can adversely affect the properties.
  • melt metallurgical and liquid phase impregnations and die casting techniques are generally used.
  • the long reaction and contact times of molten metallic phases with the reinforcing fibers and the molds or surfaces cause undesirable damage.
  • dissolution and elimination processes as well as chemical interface reactions occur.
  • a complex system technology is required, which works with comparatively long cycle times for the shaping.
  • working with liquid, chemically highly active light metal melts usually aluminum
  • the Thixoumform compiler is basically known in the aforementioned prior art for the transformation of special particle-reinforced alloys, especially aluminum-based. With the known methods, however, it is not possible to produce components which have a near-net shape and which have high strength and can be adapted to specific loads. Also, the production of semi-finished products in the prior art is not disclosed.
  • MMC embedded fibers or particles
  • the method should also allow the most cost-effective and energy-saving production of components that are molded close to production (net-shape-molding).
  • a two-phase or multi-phase region in which a liquid phase fraction is present is utilized.
  • a pronounced solidification interval of the alloy to be formed is required, ie a temperature range in which both solid and liquid phase components are present next to one another (cf. Fig. 1 ).
  • thixo-forming for the production of composite materials reinforced by embedded fibers allows significantly improved properties to be achieved.
  • coated fiber composites are used for producing the semifinished product, particularly advantageous properties of the parts produced therefrom result.
  • a better homogeneity results in comparison to individual layers of fiber composites and matrix material.
  • Another advantage is the significantly lower temperature compared to the use of melt processes or melt infiltration processes and the significantly reduced shaping time. In this way it is possible to dispense with the coating of the stored fibers or particles, since the embedded fibers are hardly damaged by the short melting process at a relatively low temperature.
  • an alternating layer structure of the semifinished product allows significantly shorter infiltration paths of the melt to be achieved.
  • significantly improved tool life results, which leads to significant cost savings, for example compared to the squeeze casting. It can achieve fast process times in the range of milliseconds compared to several seconds for squeeze casting and several hours for diffusion bonding.
  • the shaping in a temperature range below the squeeze casting achieves energy savings of a corresponding size. Due to the reduced liquid phase content during shaping, a shortening of the solidification time in the tool and thus a reduction of the cycle time is made possible.
  • the entire melting operation (melting furnace, alloying furnace, degassing, alloying control, casting furnace) can be dispensed with. Furthermore, owing to the modified tool concept, significantly less circuit material accumulates, which must be remelted before re-introduction into the production process.
  • the Strength of the matrix material by a suitable heat treatment in particular by solution annealing and aging to increase.
  • the term “semifinished product” is understood to mean the preform, which is subsequently formed by thixoforming within the tool to form the component.
  • This semifinished product may be a prepreg consisting of a single or preferably of several laminate layers.
  • semifinished products are therefore always understood to mean the generic term which includes a prepreg and other preforms prepared in another way, which are manufactured inside the tool by thixotropic forming of the component.
  • a prepreg is produced by laminating layers of coated fiber composites and matrix material in the form of sheets.
  • layers of coated fiber composites are preferably joined together alternately with the suitable metal sheets by lamination in order to provide the desired shape of the semifinished product.
  • Thixoumformung provides the provision of the matrix material in the form of sheets, sufficiently short flow paths and yet to ensure even wetting of the trapped fibers or particles.
  • the sheets are provided in the form of cold-rolled sheets.
  • the sheets are provided in the form of cold-rolled sheets.
  • a fine-grained recrystallization with a globular structure occurs, which has a favorable effect on the resulting properties of the component.
  • the coating of the fiber composite with the metallic matrix material can be carried out according to a first process variant by a screen printing process.
  • Another variant of the method for coating a fiber composite with the metallic matrix material consists in an application by electrostatic charging.
  • Another method variant for coating a fiber composite with a metallic matrix material consists in an electrophoretic deposition (EPD) of an aqueous suspension with the assistance of an electric field.
  • EPD electrophoretic deposition
  • the fiber structure to be coated is connected electrically conductively as an electrode and the charge-carrying metal powder particles are driven by the electric field deposited on the fiber or fabric surface as a uniform layer.
  • Such process control is particularly useful with fiber composites that are inherently electrically conductive, such as C fibers.
  • other fibers which are not readily electrically conductive can also be processed using suitable intermediate layers.
  • metal particles are preferably used which have a particle size with a diameter between 10 nm and 100 microns, preferably with sizes between 100 nm and 10 microns.
  • targeted charge distributions of the solid particles in the suspension can be set, which permit a concentration and field strength-dependent mass transport for layer deposition. In this way, the properties of the subsequently produced component can be varied within wide limits and adapted to the respective requirements.
  • a Fa serverbund is coated by thermal spraying with the metallic matrix material.
  • thermal spraying is basically atmospheric Plasma spraying (APS), electric wire spraying, wire flame spraying or high-speed flame spraying in question.
  • the thermal spraying is preferably carried out by electric arc wire spraying or powder plasma spraying, in particular by atmospheric plasma spraying.
  • Fiber composites which are provided with thermally sprayed metal layers, offer the advantage of a finer grained structure compared to the use of alternating layers of sheets and fiber composites. While the grain sizes of thixotropically deformable Al-Si sheets are in the range of 2 to 20 ⁇ m, the dimensions of the individual phases in the thermally sprayed AlSi layer structure are in the sub-micron range due to the high cooling rate during layer application. As a result, an improved impregnability of the metallic phase in the fiber skeleton can be achieved in the thixotropic deformation.
  • the volume ratio of matrix material to fibers is preferably set between 0.3 and 8.0, in particular between 0.8 and 3.0, during thermal spraying.
  • the fiber composite is preferably cooled during thermal spraying, in particular using liquid carbon dioxide.
  • the fiber composite is held under tension during thermal spraying on a carrier device.
  • composites can be produced in this way, in which stored long fibers are subjected to tensile stress under load, without the matrix itself being claimed in an undesired manner beforehand.
  • the carrier device can promote fiber composite in allow continuously or in clock mode in a coating layer for thermal spray coating.
  • the fiber composite can be guided via a winding device.
  • a spray distance of 50 to 200 mm is maintained between the surface of the fiber composite and the nozzle exit during the coating by plasma spraying, while in a coating by electric arc spraying a spray distance of 80 to 300 mm is maintained.
  • a mixture of the matrix material and of short fibers is granulated or pelletized.
  • the volume ratio of matrix material to fibers in this case is preferably between 0.3 and 5, preferably between 1 and 2.
  • a mixture of the matrix material and powdered particles is granulated or pelletized.
  • the production of granules or pellets using short fibers or powdery particles can be advantageously used to produce special graded layers or to produce, for example, bearing materials.
  • the mixture produced by granulation or pelletizing is applied to a fiber composite by a suitable coating method.
  • a suitable coating method for this purpose, in turn, the thermal spraying, a screen printing or other previously mentioned method can be used.
  • Long fibers in this context are understood to mean a fiber length of at least 1 mm or an aspect ratio (ratio of length to diameter) of the fiber of at least 50, preferably of at least 100, particularly preferably of at least 150.
  • the layer sequence in the lamination of prepregs can be varied in a suitable manner in order to influence the properties of the component to be produced in a targeted manner.
  • fibrous composites of long fibers coated with matrix material can be laminated together in a suitable manner.
  • layers of matrix material in the form of sheets or foils can be inserted.
  • intermediate layers of granules or pellets can be inserted.
  • the combination of coated fiber composites with preforms made from pelletizing or granulating blends of matrix material and short fibers or particles is also conceivable.
  • a prepreg produced by laminating is provided with an outer layer of matrix material.
  • the surface of the manufactured component is largely free of embedded fibers or particles.
  • fiber composites can be used in a variety of forms to ensure certain properties of the manufactured component.
  • fiber composites can be used as a clutch of unidirectional long fibers (UD), it can spin nonwovens ("unwoven") or woven fiber composites in the form of 2D fiber composites, 3D fiber composites, in the form of knitted or crocheted used.
  • the semifinished product can be produced from graded layers, in order to achieve a specific influencing of the properties at particularly stressed areas of the component or in preferred stress directions.
  • the ratio of matrix material to fibers can be selectively changed over the component cross-section.
  • aluminum alloys or copper alloys are preferably used, in particular alloys which consist of the main components aluminum, magnesium and copper or which consist of the main components copper and tin or zinc.
  • the matrix material alloys consist of alloys of the type AlMg4.5Mn0.4 (AA 5182), of the type AlMgSi1 (EN AW-6082), of the type AlSi7Mg (EN AW-356, EN-AW-357), of the type AlSi3 (AA 208, AA 296), of the type AlSi12 (AA 336, AA 384), of the type CuZn40A12 or of the type CuSn13, 5A10.3.
  • the matrix material alloys consist of alloys of the type AlMg4.5Mn0.4 (AA 5182), of the type AlMgSi1 (EN AW-6082), of the type AlSi7Mg (EN AW-356, EN-AW-357), of the type AlSi3 (AA 208, AA 296), of the type AlSi12 (AA 336, AA 384), of the type CuZn40A12 or of the type CuSn13, 5A10.3.
  • the metallic matrix material itself is reinforced by embedded particles which are preferably formed as oxide ceramics, as carbides, as nitrides, as metals or alloys or as tribologically active substances.
  • Fiber reinforcement of the MMC according to the invention fibers are used, which consist of carbon, silicon carbide, alumina, mullite. Also, modifications of these fibers with nitrogen, titanium, boron, carbon or silicon and their compounds are conceivable.
  • coated fibers can also be used on their surface according to a further process variant, in particular fibers provided with diffusion barrier or protective layers or fibers provided with adhesion promoter layers.
  • the properties of the component to be manufactured can be adapted to the respective requirements to an even greater extent.
  • Adhesives the interfacial adhesion between embedded fibers and the metallic matrix phase can be improved.
  • fibers which are less compatible with the matrix phase used can also be incorporated.
  • Silicon carbide, silicon nitride, titanium carbide, titanium nitride, carbon or mixed phases or compounds thereof are particularly suitable for coating the fibers.
  • fibers are preferably used with a diameter between 0.5 and 150 .mu.m, more preferably between 5 and 20 microns.
  • the fibers can be used both as long fibers or continuous fibers and in the form of short fibers ("chopped fibers").
  • the semifinished product is heated to a specific temperature interval as a function of the matrix material used, within which the matrix material has a defined liquid phase fraction.
  • the semifinished product is heated to a temperature between 574 and 584 ° C. for thixoforming, whereby a liquid phase fraction of between 43 and 51% by volume is established.
  • a liquid phase fraction of between 43 and 51% by volume is established.
  • the alloy AlMgSi1 is used, heating to a temperature between 635.degree. C. and 645.degree. C. takes place for thixoforming, a liquid phase proportion of between about 15 and 35% being established.
  • heating takes place over a temperature range between 871 ° C. and 875 ° C., with a liquid phase fraction of between about 20 and 40%.
  • the Thixoumformung is preferably done as Thixoschmieden within a suitable tool (die) with controlled ram speed and pressing force. Tappet speed and pressing force are adapted to the process. Tappet speeds up to 800 mm / s are possible.
  • the impact velocity of the tool upper part on the workpiece is preferably set between 10 mm / s and 300 mm / s depending on the used fiber matrix ratio, the component complexity and the component volume.
  • the tool is preferably heated to temperatures between 100 ° C and 400 ° C.
  • the semifinished product is precompressed in a mold according to a first process variant.
  • the mold used here is preferably the tool used later for thixoforming.
  • the precompressed semi-finished product can now be preheated outside the tool, which can be done inductively, in a convection oven with inert gas atmosphere, with infrared radiators or with lasers, is then introduced in the preheated state in the tool and then converted thixotropic, in particular thixogeschmiedet.
  • the preferred matrix materials allow the semifinished product to be heated up to the temperature necessary for the thixotropic forming while the semifinished product still has sufficient strength, which permits handling of the semifinished product for insertion into the mold, which can happen automatically, for example. Only when the pressure is subsequently applied by thixoforging over the stamp does the semifinished product lose its shear strength, so that the material is formed in a very short time.
  • the semifinished products within the tool are heated to a temperature above the solidus line, but below the liquidus line of the matrix material.
  • the layered material can be brought by a slight pressure into contact with the mold wall. This improves the heat transfer and thus reduces the heating time.
  • the thixotropic transformation takes place, preferably by forging.
  • a controlled cooling of the thixotropically deformed component preferably takes place within the tool in order to achieve directional solidification of the metallic matrix.
  • composite materials produced in this way can preferably be used as production-shaped (net-shaped) high-strength structural components with high specific rigidity or with a high specific modulus of elasticity.
  • Fig. 1 is a phase diagram of the preferred eutectic system Al-Si (with magnesium additives) shown.
  • the solid content in the dark hatched area is ⁇ (Al).
  • Alloys suitable for thixotropic transformation are wrought alloy AlMgSi1 and casting alloy AlSi7Mg.
  • a narrow temperature range is required which lies between the solidus line and the liquidus line for the wrought alloy AlMgSi1 and Fig. 1 is characterized by the rectangular drawn temperature range, which is between 635 and 645 ° C. In this area, the liquid content (L) is 15 to 35%.
  • the Thixoumformung of such light metal materials has been developed in particular for the production of molded parts, which have a production-related shaping.
  • the semifinished product In the temperature range at which the Thixoumformung takes place, the semifinished product is still present with sufficient strength that allows handling of the semi-finished product (also called "bolt" in thixoforging).
  • the alloys in question ideally have a globolithic structure which forms a solid-phase skeleton and thus ensures good handleability of the heated semifinished product when it is placed in the tool (the mold) (cf. Fig. 4 ).
  • This solid-phase skeleton breaks up under shear stress and thus ensures a reduction of the yield stress, so that high flow paths in the tool and a near-net shape forming are ensured.
  • MMCs are now prepared with a metallic matrix material, which is reinforced by embedded fibers or particles, by preparing a semi-finished product in which the fibers or particles are contained in a metallic matrix material and the semifinished product by thixotropic forming in a tool at a temperature is formed above the solidus temperature and below the liquidus temperature of the metallic matrix material.
  • a semi-finished product designated generally by the numeral 10 is produced by laminating of alternating sheet metal and fiber fabric layers.
  • a fiber composite 12 consists for example of carbon fibers, which are arranged in the form of a fabric.
  • fiber composite layers 12 are laminated alternately with thin metal sheets 14 of the matrix material, for example AlSi7Mg.
  • the thicknesses d 1 of the fiber composites 12 and d 2 of the sheets 14 are adjusted.
  • the semifinished product 10 is enclosed by an outer layer 18 of matrix material, in order to ensure that as far as possible no fibers reach the surface of the component during the subsequent thixoforming.
  • an outer layer 18 of matrix material such as a semifinished product or prepreg is placed in a suitable die form and reshaped therein in the appropriate temperature range by thixoforging using a plunger.
  • precompacting can first be carried out within the tool in a still cold state, and then the semifinished product 10 outside the die mold can be preheated to the temperature necessary for thixotropic deformation.
  • This can be carried out inductively or alternatively in a circulating air oven with protective gas atmosphere or with high-power infrared radiators or by means of laser by rapid heating of the precompressed semifinished product.
  • a quick transfer takes place in the suitably preheated Gesenkform (100 to 400 ° C). This process can be done manually, semi or fully automated. Then the thixo forging process is carried out.
  • the ram meets with process-specifically adapted ram speed of up to 800 mm / s on the surface of the semi-finished product.
  • the impact velocity of the ram on the semi-finished product is preferably set between 10 mm / s and 300 mm / s depending on the fiber-matrix ratio, the component complexity and the component volume.
  • the plunger is expediently preheated accordingly.
  • the heating of the semifinished product can also take place within the die tooling.
  • the layered semifinished product can be brought into contact with the tool wall by a slight pressure, which improves the heat transfer and reduces the heating time.
  • the thixotropic transformation takes place by thixoforging.
  • sheets preferably cold-rolled sheets are used, since the high dislocation density during subsequent rewarming in the course of the thixo-forming results in fine-grained recrystallization with a globular structure.
  • a second process variant according to the invention for the production of a semifinished product consists in the coating of individual fiber composites, which are then laminated by superimposing into a prepreg and expediently again surrounded by an outer metal layer or film layer of matrix material.
  • a third alternative, which does not lie within the scope of the invention, for producing the semifinished product consists in producing a mixture of short fibers or pulverulent reinforcing particles with metallic matrix powders. This is followed by shaping by dry pressing or further processing, again by application to a fiber composite by a coating process.
  • application by electrostatic charging, application by screen printing or electrophoretic deposition (EPD) to the fiber structure is generally suitable for coating the fiber composite.
  • an electrically conductive or electrically rendered fiber structure is connected as an electrode, and the charge-carrying metal powder particles are driven by an electric field deposited on the fiber or fabric surface as a uniform layer.
  • the metal particles have a particle size with diameters between 10 nm and 100 ⁇ m, preferably with sizes between 100 nm and 10 ⁇ m.
  • a particularly preferred coating method is the coating by thermal spraying.
  • This is in particular Electro-arc wire spraying and powder plasma spraying, preferably atmospheric plasma spraying (APS) in the foreground.
  • APS atmospheric plasma spraying
  • a temperature increase of the fiber composite is largely avoided by targeted cooling measures, so that temperatures of at most 100 ° C can be maintained in the rule, and thus damage to the fibers is excluded.
  • long or continuous fibers or fiber composites produced therefrom stretched or zugvorgespannt on a suitable support device 30 (see. Fig. 6 ) and applying one or more layers of matrix metal by thermal spraying.
  • a winding system 30 according to Fig. 6 can be unwound continuously or intermittently from a roll 34, which contains fiber composite layers to be coated, in a coating plane (left-hand curved surface in FIG Fig. 6 ) and then rewind onto a roll 32 after coating.
  • suitable dimensioning and coating thickness in this case firstly a coating can take place on a first upper side and then a coating on the opposite surface.
  • a particular advantage lies in the targeted bias of the fabric in the coating plane, which can also be made controllable in order to ensure an equal, permanent bias.
  • thermally and convectively generated stresses in the fiber structure are mechanically compensated.
  • a 5-axis robotic motion system can be used which moves an arc or plasma torch in a manner such that NC controlled motion sequences can be retrieved from previously stored programs for consistent coating and reproducibly and processably realized .
  • spray gaps of 50 to 200 mm between nozzle exit and fiber surface are preferably used between 100 and 140 mm in APS and between 120 and 160 mm in electric arc spraying.
  • such layers 22 of fiber composites coated on both sides with matrix metal 24 are laminated together to form a prepreg, and preferably encased externally by a sheet metal 18 of matrix metal so as to produce a semifinished product 20.
  • the coating thickness d 3 can be suitably controlled in the previous coating operation. For this purpose, single or multiple layers can be applied and the layer thickness, of course, be influenced by the speed of transit or residence time and the other spray parameters. If larger layers of matrix metal are desired, individual metal sheets or foils can also be interposed.
  • mixtures of matrix metal powders and short fibers or reinforcing particle powders are produced. These granulated or pelletized mixtures can then be compacted into a green body by cold pressing, which is then used as a semi-finished product. If the matrix metal has sufficient ductility, cold pressing can take place without pressing aids. If the ductility of the metal matrix material is lower, suitable binder aids (eg paraffin) which volatilise easily during later heating are added.
  • suitable binder aids eg paraffin
  • Another variant of the method consists in the application of the mixtures produced by granulation or pelletizing by a suitable coating method on fiber composites, which in turn can be done for example by thermal spraying.
  • graded layers can be used to produce special component properties which are adapted to specific local thermal or mechanical stresses, for which purpose the entire spectrum in the processing of fiber composites can be utilized.

Abstract

A method is disclosed for producing a reinforced component from a composite material (MMC). A metallic matrix material is reinforced by embedded fibers or particles, for which purpose a semi-finished product is prepared that comprises fibers and particles or both, together with a metallic matrix material. Forming is effected by thixoforming in a mold at a temperature above the solidus temperature and below the liquidus temperature of the metallic matrix material. The method allows to manufacture near-net-shaped products with excellent mechanical properties.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Bauteils aus einem Verbundwerkstoff (MMC) mit einem metallischen Matrixwerkstoff, der durch eingelagerte Fasern oder Partikel verstärkt ist, umfassend die folgenden Schritte:

  • Herstellen eines Halbzeuges, in dem die Fasern oder Partikel und der metallische Matrixwerkstoff enthalten sind und
  • Thixoumformen des Halbzeuges in einem Werkzeug bei einer Temperatur oberhalb der Solidustemperatur und unterhalb der Liquidustemperatur des metallischen Matrixwerkstoffes.
The invention relates to a method for producing a component from a composite material (MMC) with a metallic matrix material, which is reinforced by embedded fibers or particles, comprising the following steps:
  • Producing a semifinished product in which the fibers or particles and the metallic matrix material are contained, and
  • Thixotropic shaping of the semifinished product in a tool at a temperature above the solidus temperature and below the liquidus temperature of the metallic matrix material.

Ein derartiges Verfahren ist aus der US-A-6 151 198 bekannt.Such a method is known from US-A-6 151 198 known.

Bei dem bekannten Verfahren werden partikelverstärkte Halbzeuge mit einer thixoformbaren Metallmatrix hergestellt und dann durch Thixoformen zu endkonturnah geformten Teilen umgeformt.In the known method, particle-reinforced semifinished products are produced with a thixoformable metal matrix and then converted by thixoforming into parts with near-net shape shape.

Ein ähnliches Verfahren ist aus der US-A-6 135 195 bekannt.A similar procedure is from the US-A-6,135,195 known.

Aus S.W. Youn et al., "Mechanical characteristics evaluation of hollow shape part with metal matrix composites fabricated by thixoforging process" in Journal of Materials Processing Technology, Bd. 130, 2002, S. 574-580, XP002277297 ist ferner das Thixoformen von SiC-verstärkten Halbzeugen bekannt.Out SW Youn et al., "Mechanical characteristics evaluation of hollow shape part with metal matrix composites fabricated by thixoforging process" in Journal of Materials Processing Technology, Vol. 130, 2002, pp. 574-580, XP002277297 Further, the thixoforming of SiC-reinforced semifinished products is known.

Die Notwendigkeit, primäre Energieträger einzusparen und Emissionen zu reduzieren, lässt dem Leichtmetallwerkstoff im Automobilbau und in der Luft- und Raumfahrttechnologie eine immer größere Bedeutung zukommen. Der Einsatz von MMC-Werkstoffen (Metal Matrix Composites) bzw. die Einlagerung hochfester Verstärkungsfasern kann die für viele Anwendungen mangelnde Hochtemperaturfestigkeit und Steifigkeit dieser Werkstoffe erhöhen. Zusätzlich sollen durch kurze Fertigungszyklen und die Herstellung endabmessungsnaher Bauteile ("net shape forming") die Fertigungskosten reduziert werden.The need to save primary energy sources and reduce emissions is making light metal in automotive and aerospace technology more and more important. The use of MMC materials (metal matrix composites) or the incorporation of high-strength reinforcing fibers can increase the lack of high-temperature strength and rigidity of these materials, which is the case for many applications. In addition, short production cycles and the production of close-to-net shape components ("net shape forming") should reduce manufacturing costs.

Im Stand der Technik führt die Einlagerung von faserförmigen Verstärkungskomponenten zu einer signifikanten Erhöhung der Herstellkosten. Zudem verhindert die mangelnde Beständigkeit der in Frage kommenden Fasertypen gegenüber den chemisch aggressiven Metallschmelzen bei den konventionellen Herstellprozessen aus der flüssigen Phase die optimale Ausnutzung der Faserfestigkeit. Die herkömmlichen Herstellungsrouten aus der flüssigen Phase für MMC-Werkstoffe sind meist Druckinfiltrationsprozesse, bei denen zur Überwindung des Kapillarwiderstandes die Schmelze durch einen Kolben in die poröse Faservorform eingedrückt wird ("squeeze casting"). Dieser Druckgießprozess kann auch vakuumunterstützt durchgeführt werden ("Vacural-Verfahren"). Zur Realisierung komplexer Geometrien und zur Minderung der mechanischen Belastung dieser faserhaltigen Vorform während des Infiltrationsvorganges kann diese in einem evakuierten Autoklaven in die Schmelze eingetaucht und dann mit Gasdruck beaufschlagt werden ("Gasdruckverfahren"). Daneben ist natürlich grundsätzlich die pulvermetallurgische Formgebungsroute durch Sintern und anschließendes Pressen, ggf. durch Heißpressen oder Heißisostatischpressen (HIP) bekannt. Sinterverfahren sind allerdings sehr zeit- und kostenaufwendig und ermöglichen keine Net-Shape-Abformung komplexer Bauteilgeometrien. Außerdem treten bei Sinterverfahren meist erhebliche Restporositäten auf, durch die die Eigenschaften nachteilig beeinflusst werden können.In the prior art, the incorporation of fibrous reinforcing components leads to a significant increase in manufacturing costs. In addition, the lack of resistance of the candidate fiber types compared to the chemically aggressive molten metal in the conventional manufacturing processes from the liquid phase prevents optimal utilization of fiber strength. The conventional production routes from the liquid phase for MMC materials are usually Druckinfiltrationsprozesse in which the melt is forced by a piston in the porous fiber preform to overcome the capillary resistance ("squeeze casting"). This die casting process can also be carried out under vacuum ("Vacural method"). To realize complex geometries and to reduce the mechanical stress of this fibrous preform during the infiltration process, this can be immersed in an evacuated autoclave in the melt and then pressurized with gas pressure ("gas pressure method"). In addition, of course, the powder metallurgical shaping route is basically known by sintering and subsequent pressing, if necessary by hot pressing or hot isostatic pressing (HIP). sintering process However, they are very time-consuming and costly and do not allow net-shape molding of complex component geometries. In addition, in sintering processes, considerable residual porosities usually occur, which can adversely affect the properties.

Bei der Herstellung von faserverstärkten Leichtmetallen auf Aluminiumbasis wird in der Regel auf schmelzmetallurgische und Flüssigphasenimprägnierungen sowie Druckgießtechniken zurückgegriffen. Durch die langen Rektions- und Kontaktzeiten von schmelzflüssigen metallischen Phasen mit den Verstärkungsfasern sowie den Formwerkzeugen oder -flächen kommt es zu unerwünschten Schädigungen. So treten beispielsweise Löse- und Ausscheidungsprozesse sowie chemische Grenzflächenreaktionen auf. Dies führt zu Schwierigkeiten durch Anhaften beim Trennen von der Form, durch wärmeübergangsbedingte Gefügeausbildungen mit einer insgesamt sehr aufwendigen Prozessführung. Hierdurch ist eine aufwendige Anlagentechnik bedingt, die mit vergleichsweise langen Taktzeiten für die Formgebung arbeitet. In allen Fällen wird mit flüssigen, chemisch hochaktiven Leichtmetallschmelzen (meist Aluminium) gearbeitet, so dass ein zusätzlicher Schutz der verwendeten Fasern durch eine geeignete Schutzschicht unumgänglich ist. Gerade, wenn Aluminium mit Kohlenstofffasern verstärkt werden soll, ist die Bildung einer Aluminiumkarbidschicht (Al3C4) an der Faser-Matrix-Grenzfläche unerwünscht, da diese Karbidphase durch ihre ausgeprägte Sprödbruchanfälligkeit und ihre mangelnde Korrosionsbeständigkeit ein vorzeitiges Versagen des Verbundes herbeiführt. Auf eine Faserbeschichtung kann grundsätzlich verzichtet werden, wenn man die Leichtmetallmatrix in der festen Phase mit der Verstärkungskomponente zusammenfügt ("diffusion bonding"). Bei diesem Umformprozess werden Laminate aus Fasergeweben und Metallblechen im Heißpressverfahren verarbeitet. Die Wirtschaftlichkeit dieses Verfahrens ist allerdings durch sehr hohe Taktzeiten in Frage gestellt. Eine Zusammenfassung der gängigen Verfahren zur Herstellung von faserverstärkten Aluminium-Verbundwerkstoffen findet sich in Talat Lecture 1402, Froyne, L., Verlinden, B., University of Leuven (Belgium), 1994, EAA European Aluminium Association .In the manufacture of aluminum-based fiber-reinforced light metals, melt metallurgical and liquid phase impregnations and die casting techniques are generally used. The long reaction and contact times of molten metallic phases with the reinforcing fibers and the molds or surfaces cause undesirable damage. For example, dissolution and elimination processes as well as chemical interface reactions occur. This leads to difficulties due to adhesion during separation from the mold, due to heat transfer-related microstructures with an overall very complex process control. As a result, a complex system technology is required, which works with comparatively long cycle times for the shaping. In all cases, working with liquid, chemically highly active light metal melts (usually aluminum), so that an additional protection of the fibers used by a suitable protective layer is essential. Especially when aluminum is to be reinforced with carbon fibers, the formation of an aluminum carbide (Al 3 C 4 ) at the fiber-matrix interface is undesirable because this carbide phase causes premature failure of the composite due to its pronounced brittle susceptibility and lack of corrosion resistance. A fiber coating can basically be dispensed with if the light metal matrix is combined in the solid phase with the reinforcing component ("diffusion bonding"). In this forming process Laminates made of fiber fabrics and metal sheets are processed by hot pressing. However, the cost-effectiveness of this method is questioned by very high cycle times. A summary of the common processes for making fiber reinforced aluminum composites can be found in Talat Lecture 1402, Froyne, L., Verlinden, B., University of Leuven (Belgium), 1994, EAA European Aluminum Association ,

Das Thixoumformverfahren ist im eingangs genannten Stand der Technik zwar grundsätzlich zur Umformung von speziellen partikelverstärkten Legierungen insbesondere auf Aluminiumbasis bekannt. Mit den bekannten Verfahren lassen sich jedoch keine endkonturnah geformte Bauteile herstellen, die eine hohe Festigkeit aufweisen und an spezielle Belastungen anpassbar sind. Auch ist die Herstellung der Halbzeuge im Stand der Technik nicht offenbart.The Thixoumformverfahren is basically known in the aforementioned prior art for the transformation of special particle-reinforced alloys, especially aluminum-based. With the known methods, however, it is not possible to produce components which have a near-net shape and which have high strength and can be adapted to specific loads. Also, the production of semi-finished products in the prior art is not disclosed.

Es ist daher eine Aufgabe der Erfindung, die Herstellung von Bauteilen aus einem Verbundwerkstoff mit metallischer Matrix, die durch eingelagerte Fasern oder Partikel verstärkt ist (MMC), zu ermöglichen, womit sich hohe Festigkeiten und eine gute Anpassungsmöglichkeit an unterschiedliche Anforderungen erzielen lassen. Das Verfahren soll ferner eine möglichst kostengünstige und energiesparende Herstellung von Bauteilen ermöglichen, die fertigungsnah geformt sind (Net-Shape-Abformung).It is therefore an object of the invention to enable the production of components made of a composite material with metallic matrix, which is reinforced by embedded fibers or particles (MMC), which can be achieved with high strength and a good adaptability to different requirements. The method should also allow the most cost-effective and energy-saving production of components that are molded close to production (net-shape-molding).

Diese Aufgabe wird durch ein Verfahren gemäß Anspruch 1 gelöst.This object is achieved by a method according to claim 1.

Erfindungsgemäß wird innerhalb eines speziell ausgewählten Temperaturbereiches oberhalb der Soliduslinie und unterhalb der Liquiduslinie ein zwei- oder mehrphasiger Bereich ausgenutzt, in dem ein Flüssigphasenanteil vorhanden ist. Bei dieser Warmumformung im teilerstarrten Zustand wird ein ausgeprägtes Erstarrungsintervall der umzuformenden Legierung benötigt, d.h. ein Temperaturbereich, in dem sowohl feste als auch flüssige Phasenanteile nebeneinander vorliegen (vgl. Fig. 1). In diesem Temperaturbereich lässt sich durch Anwendung von Druck in einem Werkzeug eine endkonturnahe Umformung erreichen (Thixotropie = scherratenentfestigendes Verhalten).According to the invention, within a specially selected temperature range above the solidus line and below the liquidus line, a two-phase or multi-phase region in which a liquid phase fraction is present is utilized. In this hot working in the partially solidified state, a pronounced solidification interval of the alloy to be formed is required, ie a temperature range in which both solid and liquid phase components are present next to one another (cf. Fig. 1 ). In this temperature range, application of pressure in a tool can achieve near-net-shape reshaping (thixotropy = shear-rate erosion behavior).

Durch die Ausnutzung der Thixoumformung zur Herstellung von Verbundwerkstoffen, die durch eingelagerte Fasern verstärkt sind, lassen sich deutlich verbesserte Eigenschaften erzielen.The use of thixo-forming for the production of composite materials reinforced by embedded fibers allows significantly improved properties to be achieved.

Da beschichtete Faserverbunde zur Herstellung des Halbzeugs verwendet werden, ergeben sich besonders vorteilhafte Eigenschaften der daraus hergestellten Teile. Insbesondere ergibt sich eine bessere Homogenität im Vergleich zu Einzellagen aus Faserverbunden und Matrixwerkstoff.Since coated fiber composites are used for producing the semifinished product, particularly advantageous properties of the parts produced therefrom result. In particular, a better homogeneity results in comparison to individual layers of fiber composites and matrix material.

Ein weiterer Vorteil besteht in der gegenüber der Verwendung von Schmelzverfahren oder Schmelzinfiltrationsverfahren deutlich erniedrigten Temperatur und der deutlich verkürzten Formgebungszeit. Auf diese Weise ist es möglich, auf die Beschichtung der eingelagerten Fasern oder Partikel zu verzichten, da die eingelagerten Fasern durch den nur kurzen Schmelzvorgang bei relativ niedriger Temperatur kaum geschädigt werden.Another advantage is the significantly lower temperature compared to the use of melt processes or melt infiltration processes and the significantly reduced shaping time. In this way it is possible to dispense with the coating of the stored fibers or particles, since the embedded fibers are hardly damaged by the short melting process at a relatively low temperature.

Im Vergleich zum Squeeze-Casting lassen sich durch einen alternierenden Schichtenaufbau des Halbzeuges deutlich verkürzte Infiltrationswege der Schmelze erzielen. In Folge der verkürzten Prozesszeiten und des nur relativ kurzen Kontaktes des benötigten Werkzeuges mit der Schmelze ergeben sich deutlich verbesserte Werkzeugstandzeiten, was zu erheblichen Kosteneinsparungen beispielsweise im Vergleich zum Squeeze-Casting führt. Es lassen sich schnelle Prozesszeiten im Bereich von Millisekunden im Vergleich zu mehreren Sekunden beim Squeeze-Casting und zu mehreren Stunden beim Diffusion-Bonding erzielen. Weiterhin wird durch die Formgebung in einem Temperaturbereich unterhalb des Squeeze-Castings (etwa 100 K niedriger) eine Energieeinsparung in entsprechender Größe erzielt. Durch den verringerten Flüssigphasenanteil während der Formgebung wird eine Verkürzung der Erstarrungszeit im Werkzeug und damit eine Verringerung der Taktzeit ermöglicht. Auf Grund einer geeigneten Vorkonditionierung des Matrixwerkstoffes kann auf den gesamten Schmelzbetrieb (Schmelzofen, Legierungsofen, Entgasung, Legierungskontrolle, Gießofen) verzichtet werden. Ferner fällt auf Grund des modifizierten Werkzeugkonzeptes deutlich weniger Kreislaufmaterial an, das vor dem erneuten Einbringen in den Produktionsprozess wieder eingeschmolzen werden muss.Compared to squeeze casting, an alternating layer structure of the semifinished product allows significantly shorter infiltration paths of the melt to be achieved. As a result of the shortened process times and the relatively short contact of the required tool with the melt, significantly improved tool life results, which leads to significant cost savings, for example compared to the squeeze casting. It can achieve fast process times in the range of milliseconds compared to several seconds for squeeze casting and several hours for diffusion bonding. Furthermore, the shaping in a temperature range below the squeeze casting (about 100 K lower) achieves energy savings of a corresponding size. Due to the reduced liquid phase content during shaping, a shortening of the solidification time in the tool and thus a reduction of the cycle time is made possible. Due to a suitable preconditioning of the matrix material, the entire melting operation (melting furnace, alloying furnace, degassing, alloying control, casting furnace) can be dispensed with. Furthermore, owing to the modified tool concept, significantly less circuit material accumulates, which must be remelted before re-introduction into the production process.

Aufgrund fehlender Lufteinschlüsse bei der Thixoumformung, insbesondere beim Thixoschmieden, ist es ferner möglich, die Festigkeit des Matrixwerkstoffes durch eine geeignete Wärmebehandlung, insbesondere durch Lösungsglühen und Auslagern, zu erhöhen.Due to lack of air pockets in the Thixoumformung, especially in Thixoschmieden, it is also possible, the Strength of the matrix material by a suitable heat treatment, in particular by solution annealing and aging to increase.

Ferner ist es beim Thixoschmieden möglich, das Bauteil stoffschlüssig mit anderen Bauteilen zu fügen.Furthermore, it is possible with Thixoschmieden to join the component cohesively with other components.

Im Rahmen dieser Anmeldung wird unter dem Begriff "Halbzeug" die Vorform verstanden, die anschließend durch Thixoumformung innerhalb des Werkzeuges zum Bauteil ausgeformt wird.In the context of this application, the term "semifinished product" is understood to mean the preform, which is subsequently formed by thixoforming within the tool to form the component.

Es kann sich bei diesem Halbzeug um ein Prepreg handeln, das aus einer einzelnen oder bevorzugt aus mehreren Laminatschichten besteht. Im Rahmen dieser Anmeldung wird daher unter Halbzeug immer der Oberbegriff verstanden, der ein Prepreg sowie andere auf sonstige Weise vorbereitete Vorformen einschließt, die innerhalb des Werkzeuges durch Thixoumformen zum Bauteil gefertigt werden.This semifinished product may be a prepreg consisting of a single or preferably of several laminate layers. In the context of this application, semifinished products are therefore always understood to mean the generic term which includes a prepreg and other preforms prepared in another way, which are manufactured inside the tool by thixotropic forming of the component.

Gemäß einer ersten Verfahrensvariante wird ein Prepreg durch Laminieren von Schichten aus beschichteten Faserverbunden und Matrixwerkstoff in Form von Blechen hergestellt.According to a first variant of the method, a prepreg is produced by laminating layers of coated fiber composites and matrix material in the form of sheets.

Bei dieser besonders einfachen Verfahrensvariante werden einfach Schichten aus beschichtete Faserverbunden vorzugsweise alternierend mit den geeigneten Blechen durch Laminieren zusammengefügt, um die gewünschte Form des Halbzeuges bereitzustellen. In Folge der Thixoumformung reicht die Bereitstellung des Matrixmaterials in Form von Blechen aus, ausreichend kurze Fließwege und dennoch gleichmäßige Benetzung der eingeschlossenen Fasern oder Partikel zu gewährleisten.In this particularly simple process variant, layers of coated fiber composites are preferably joined together alternately with the suitable metal sheets by lamination in order to provide the desired shape of the semifinished product. As a result of the Thixoumformung provides the provision of the matrix material in the form of sheets, sufficiently short flow paths and yet to ensure even wetting of the trapped fibers or particles.

In vorteilhafter weiterbildung dieser Verfahrensvariante werden die Bleche in Form von kaltgewalzten Blechen bereitgestellt. Hierbei kommt es bei der Erwärmung auf Grund der durch den Kaltwalzvorgang induzierten Versetzungsdichte zu einer feinkörnigen Rekristallisation mit globularem Gefüge, was sich günstig auf die sich ergebenden Eigenschaften des Bauteils auswirkt.In an advantageous development of this process variant, the sheets are provided in the form of cold-rolled sheets. In the case of heating, due to the dislocation density induced by the cold rolling process, a fine-grained recrystallization with a globular structure occurs, which has a favorable effect on the resulting properties of the component.

In zweckmäßiger Weiterbildung der Erfindung Ausführung werden mehrere beschichtete Faserverbunde zu einem Prepreg laminiert.In an expedient development of the invention, several coated fiber composites are laminated to form a prepreg.

Auf diese Weise lässt sich eine Near-Net-Shape-Geometrie annähern und es lassen sich gezielte gerichtete Eigenschaftscharakteristika erreichen.In this way, a near-net-shape geometry can be approximated and targeted, targeted characteristics can be achieved.

Die Beschichtung des Faserverbundes mit dem metallischen Matrixwerkstoff kann gemäß einer ersten Verfahrensvariante durch ein Siebdruckverfahren erfolgen.The coating of the fiber composite with the metallic matrix material can be carried out according to a first process variant by a screen printing process.

Eine weitere Verfahrensvariante zur Beschichtung eines Faserverbundes mit dem metallischen Matrixwerkstoff besteht in einer Applikation durch elektrostatische Aufladung.Another variant of the method for coating a fiber composite with the metallic matrix material consists in an application by electrostatic charging.

Eine weitere Verfahrensvariante zur Beschichtung eines Faserverbundes mit metallischem Matrixwerkstoff besteht in einer elektrophoretischen Abscheidung (EPD) aus einer wässrigen Suspension mit Unterstützung eines elektrischen Feldes.Another method variant for coating a fiber composite with a metallic matrix material consists in an electrophoretic deposition (EPD) of an aqueous suspension with the assistance of an electric field.

Hierbei wird die zu beschichtende Faserstruktur elektrisch leitend als Elektrode geschaltet und die ladungstragenden Metallpulverteilchen werden durch das elektrische Feld getrieben auf der Faser- bzw. Gewebeoberfläche als gleichmäßige Schicht abgeschieden. Eine derartige Verfahrensführung ist insbesondere bei Faserverbunden geeignet, die von Natur aus elektrisch leitfähig sind, wie beispielsweise C-Fasern. Jedoch lassen sich andere Fasern, die nicht ohne weiteres elektrisch leitfähig sind, bei Verwendung geeigneter Zwischenschichten gleichfalls verarbeiten.Here, the fiber structure to be coated is connected electrically conductively as an electrode and the charge-carrying metal powder particles are driven by the electric field deposited on the fiber or fabric surface as a uniform layer. Such process control is particularly useful with fiber composites that are inherently electrically conductive, such as C fibers. However, other fibers which are not readily electrically conductive can also be processed using suitable intermediate layers.

Mit einem derartigen Verfahren werden bevorzugt Metallteilchen verwendet, die eine Korngröße mit einem Durchmesser zwischen 10 nm und 100 µm aufweisen, bevorzugt mit Größen zwischen 100 nm und 10 µm. Durch die Verwendung von oberflächen aktiven flüssigen oder gelösten Hilfsstoffen lassen sich gezielte Ladungsverteilungen der Feststoffpartikel in der Suspension einstellen, die einen konzentrations- und feldstärkeabhängigen Stofftransport zur Schichtabscheidung erlauben. Auf diese Weise lassen sich die Eigenschaften des hieraus später hergestellten Bauteils in weiten Grenzen variieren und an die jeweiligen Anforderungen anpassen.With such a method, metal particles are preferably used which have a particle size with a diameter between 10 nm and 100 microns, preferably with sizes between 100 nm and 10 microns. Through the use of surface-active liquid or dissolved excipients, targeted charge distributions of the solid particles in the suspension can be set, which permit a concentration and field strength-dependent mass transport for layer deposition. In this way, the properties of the subsequently produced component can be varied within wide limits and adapted to the respective requirements.

Gemäß einer weiteren Variante der Erfindung wird ein Fa serverbund durch thermisches Spritzen mit dem metallischen Matrixwerkstoff beschichtet. Hierbei kommt grundsätzlich atmosphärisches Plasmaspritzen (APS), Lichtbogendrahtspritzen, Drahtflammspritzen oder Hochgeschwindigkeits-Flammspritzen in Frage. Vorzugsweise erfolgt das thermische Spritzen jedoch durch Elektrolichtbogendrahtspritzen oder Pulver-Plasmaspritzen, insbesondere durch atmosphärisches Plasmaspritzen.According to a further variant of the invention, a Fa serverbund is coated by thermal spraying with the metallic matrix material. Here is basically atmospheric Plasma spraying (APS), electric wire spraying, wire flame spraying or high-speed flame spraying in question. However, the thermal spraying is preferably carried out by electric arc wire spraying or powder plasma spraying, in particular by atmospheric plasma spraying.

Faserverbunde, die mit thermisch gespritzten Metallschichten versehen sind, bieten gegenüber der Verwendung von alternierenden Lagen aus Blechen und Faserverbunden den Vorteil einer feinkörnigeren Gefügeausbildung. Während etwa die Korngrößen bei thixotrop umformbaren Al-Si-Blechen im Bereich von 2 bis 20 µm liegen, liegen die Abmessungen der einzelnen Phasen im thermisch gespritzten AlSi-Schichtgefüge durch die hohe Abkühlgeschwindigkeit beim Schichtauftrag im Submikrometer-Bereich. Dadurch kann bei der thixotropen Umformung eine verbesserte Imprägnierbarkeit der metallischen Phase in das Faser gerüst erreicht werden.Fiber composites, which are provided with thermally sprayed metal layers, offer the advantage of a finer grained structure compared to the use of alternating layers of sheets and fiber composites. While the grain sizes of thixotropically deformable Al-Si sheets are in the range of 2 to 20 μm, the dimensions of the individual phases in the thermally sprayed AlSi layer structure are in the sub-micron range due to the high cooling rate during layer application. As a result, an improved impregnability of the metallic phase in the fiber skeleton can be achieved in the thixotropic deformation.

Das Volumenverhältnis von Matrixwerkstoff zu Fasern wird beim thermischen Spritzen vorzugsweise zwischen 0,3 und 8,0, insbesondere zwischen 0,8 und 3,0 eingestellt.The volume ratio of matrix material to fibers is preferably set between 0.3 and 8.0, in particular between 0.8 and 3.0, during thermal spraying.

Bei sämtlichen Verfahrensvarianten der Erfindung wird gewährleistet, dass bei der Herstellung des Halbzeuges aus Schichten für die metallische Matrix und die eingelagerten Verstärkungsschichten nur auf eine niedrige Temperatur erwärmt werden. Selbst bei der Beschichtung durch thermisches Spritzen lässt sich durch eine geeignete Verfahrensführung gewährleisten, dass das Halbzeug auf eine Temperatur von höchstens 300°C nur wenige Sekunden erwärmt wird. Hierbei kann diese Zeitdauer auf höchstens fünf Sekunden oder auf höchstens zwei Sekunden oder sogar darunter beschränkt werden. Durch diese Maßnahmen ist erfindungsgemäß gewährleistet, dass die Faserverbunde auch während der Halbzeugherstellung nicht degradiert oder chemisch angegriffen werden.In all variants of the method of the invention, it is ensured that, during the production of the semifinished product, layers for the metallic matrix and the incorporated reinforcing layers are heated only to a low temperature. Even with the coating by thermal spraying can be ensured by a suitable process management that the semi-finished product is heated to a temperature of at most 300 ° C only a few seconds. In this case, this period of time can be at most five seconds or at most two seconds or even be confined below. These measures according to the invention ensures that the fiber composites are not degraded or chemically attacked during the production of semifinished products.

Vorzugsweise wird hierzu der Faserverbund während des thermischen Spritzens gekühlt, insbesondere unter Verwendung von flüssigem Kohlendioxid.For this purpose, the fiber composite is preferably cooled during thermal spraying, in particular using liquid carbon dioxide.

Durch gezielte Kühlungsmaßnahmen lässt sich selbst eine kurzzeitige Erwärmung des Faserverbundes während der Beschichtung auf Temperaturen begrenzen, die deutlich geringer als 300°C sind und vorzugsweise im Bereich von etwa 100 bis 200°C maximal liegen.By means of targeted cooling measures even short-term heating of the fiber composite during the coating can be limited to temperatures that are significantly lower than 300 ° C. and preferably in the range of about 100 to 200 ° C. maximum.

Gemäß einer bevorzugten Weiterbildung der Erfindung wird der Faserverbund während des thermischen Spritzens auf einer Trägervorrichtung unter Zugspannung gehalten.According to a preferred development of the invention, the fiber composite is held under tension during thermal spraying on a carrier device.

Auf diese Weise lassen sich Unterschiede kompensieren, die durch die erheblich stärkere thermische Ausdehnung des metallischen Matrixwerkstoffes im Vergleich zu den eingelagerten Fasern bedingt sind. Insbesondere können auf diese Weise Verbundwerkstoffe hergestellt werden, bei denen eingelagerte Langfasern unter Belastung auf Zug beansprucht werden, ohne dass zuvor die Matrix selbst in unerwünschter Weise beansprucht wird.In this way, differences can be compensated, which are due to the significantly greater thermal expansion of the metallic matrix material compared to the embedded fibers. In particular, composites can be produced in this way, in which stored long fibers are subjected to tensile stress under load, without the matrix itself being claimed in an undesired manner beforehand.

Zwecks einer Beschichtung in einem industriellen Maßstab kann die Trägervorrichtung eine Förderung des Faserverbundes in kontinuierlicher Weise oder im Taktbetrieb in eine Beschichtungsebene zur thermischen Spritzbeschichtung erlauben.For the purpose of coating on an industrial scale, the carrier device can promote fiber composite in allow continuously or in clock mode in a coating layer for thermal spray coating.

Hierzu kann der Faserverbund über eine Wickeleinrichtung geführt werden.For this purpose, the fiber composite can be guided via a winding device.

Des Weiteren ist es möglich, den Faserverbund bei Verwendung einer derartigen Wickeleinrichtung zunächst auf einer ersten Seite zu beschichten und anschließend auf der gegenüberliegenden Seite zu beschichten.Furthermore, it is possible to first coat the fiber composite when using such a winding device on a first side and then to coat on the opposite side.

Gemäß einer bevorzugten Weiterbildung der Erfindung wird zwischen der Oberfläche des Faserverbundes und dem Düsenaustritt bei der Beschichtung durch Plasmaspritzen ein Spritzabstand von 50 bis 200 mm eingehalten, während bei einer Beschichtung durch Elektrolichtbogenspritzen ein Spritzabstand von 80 bis 300 mm eingehalten wird.According to a preferred embodiment of the invention, a spray distance of 50 to 200 mm is maintained between the surface of the fiber composite and the nozzle exit during the coating by plasma spraying, while in a coating by electric arc spraying a spray distance of 80 to 300 mm is maintained.

Unter Verwendung derartiger Verfahrensparameter lassen sich besonders günstige Beschichtungen von Faserverbunden erzielen, mit denen einerseits eine gleichmäßige Beschichtung erreicht wird und andererseits eine zu starke thermische Belastung der Faserverbunde vermieden wird.By using such process parameters, it is possible to achieve particularly favorable coatings of fiber composites with which, on the one hand, a uniform coating is achieved and, on the other hand, excessive thermal stress on the fiber composites is avoided.

Gemäß einer weiteren Verfahrensvariante der Erfindung wird eine Mischung aus dem Matrixwerkstoff und aus Kurzfasern granuliert oder pelletiert.According to a further process variant of the invention, a mixture of the matrix material and of short fibers is granulated or pelletized.

Hierbei werden bevorzugt Fasern mit einer Länge zwischen 0,5 und 20 mm, vorzugsweise zwischen 2 und 6 mm verwendet.In this case, preference is given to using fibers having a length of between 0.5 and 20 mm, preferably between 2 and 6 mm.

Das Volumenverhältnis von Matrixwerkstoff zu Fasern beträgt hierbei vorzugsweise zwischen 0,3 und 5, vorzugsweise zwischen 1 und 2.The volume ratio of matrix material to fibers in this case is preferably between 0.3 and 5, preferably between 1 and 2.

Gemäß einer weiteren Verfahrensvariante wird eine Mischung aus dem Matrixwerkstoff und aus pulverförmigen Partikeln granuliert oder pelletiert.According to a further process variant, a mixture of the matrix material and powdered particles is granulated or pelletized.

Die Erzeugung von Granulaten oder Pellets unter Verwendung von Kurzfasern oder pulverförmigen Partikeln kann vorteilhaft genutzt werden, um spezielle gradierte Schichten zu erzeugen oder aber um beispielsweise Lagerwerkstoffe herzustellen.The production of granules or pellets using short fibers or powdery particles can be advantageously used to produce special graded layers or to produce, for example, bearing materials.

Gemäß einer weiteren Ausführung der Erfindung wird die durch Granulieren oder Pelletieren erzeugte Mischung durch ein geeignetes Beschichtungsverfahren auf einen Faserverbund aufgetragen. Hierzu kann wiederum das thermische Spritzen, ein Siebdruckverfahren oder ein anderes zuvor erwähntes Verfahren genutzt werden.According to a further embodiment of the invention, the mixture produced by granulation or pelletizing is applied to a fiber composite by a suitable coating method. For this purpose, in turn, the thermal spraying, a screen printing or other previously mentioned method can be used.

Um gezielte Festigkeitsverbesserungen der erfindungsgemäß hergestellten Bauteile zu ermöglichen, wird bevorzugt wenigstens eine Schicht mit einem Faserverbund aus Langfasern zur Herstellung eines Prepregs verwendet. Unter Langfasern wird in diesem Zusammenhang eine Faserlänge von mindestens 1 mm oder ein Aspektverhältnis (Verhältnis von Länge zu Durchmesser) der Faser von mindestens 50, vorzugsweise von mindestens 100, besonders bevorzugt von mindestens 150 verstanden.In order to enable targeted improvements in the strength of the components produced according to the invention, preference is given to at least one layer having a fiber composite of long fibers for the production a prepreg used. Long fibers in this context are understood to mean a fiber length of at least 1 mm or an aspect ratio (ratio of length to diameter) of the fiber of at least 50, preferably of at least 100, particularly preferably of at least 150.

Es versteht sich, dass die Schichtenfolge bei der Laminierung von Prepregs in geeigneter Weise variiert werden kann, um die Eigenschaften des herzustellenden Bauteils in gezielter Weise zu beeinflussen. So können in geeigneter Weise mit Matrixwerkstoff beschichtete Faserverbunde aus Langfasern miteinander laminiert werden. Gleichzeitig können Schichten aus Matrixwerkstoff in Form von Blechen bzw. Folien eingefügt werden. Des Weiteren können Zwischenschichten aus Granulaten oder Pellets eingefügt werden. Schließlich ist auch die Kombination von beschichteten Faserverbunden mit Vorformen denkbar, die aus durch Pelletieren oder Granulieren hergestellten Mischungen aus Matrixwerkstoff und Kurzfasern oder Partikeln hergestellt sind.It is understood that the layer sequence in the lamination of prepregs can be varied in a suitable manner in order to influence the properties of the component to be produced in a targeted manner. For example, fibrous composites of long fibers coated with matrix material can be laminated together in a suitable manner. At the same time layers of matrix material in the form of sheets or foils can be inserted. Furthermore, intermediate layers of granules or pellets can be inserted. Finally, the combination of coated fiber composites with preforms made from pelletizing or granulating blends of matrix material and short fibers or particles is also conceivable.

Gemäß einer weiteren vorteilhaften Weiterbildung der Erfindung wird ein durch Laminieren hergestelltes Prepreg mit einer äußeren Schicht aus Matrixwerkstoff versehen.According to a further advantageous embodiment of the invention, a prepreg produced by laminating is provided with an outer layer of matrix material.

Auf diese Weise kann erreicht werden, dass die Oberfläche des hergestellten Bauteils weitgehend frei von eingelagerten Fasern oder Partikeln ist.In this way it can be achieved that the surface of the manufactured component is largely free of embedded fibers or particles.

Die Faserverbunde können in den verschiedensten Formen genutzt werden, um bestimmte Eigenschaften des hergestellten Bauteils zu gewährleisten. So können Faserverbunde als Gelege aus unidirektionalen Langfasern (UD) genutzt werden, es können Spinvliese ("unwoven") oder gewebte Faserverbunde in Form von 2D-Faserverbunden, 3D-Faserverbunden, in Form von Gewirken oder Gestricken verwendet werden.The fiber composites can be used in a variety of forms to ensure certain properties of the manufactured component. Thus, fiber composites can be used as a clutch of unidirectional long fibers (UD), it can spin nonwovens ("unwoven") or woven fiber composites in the form of 2D fiber composites, 3D fiber composites, in the form of knitted or crocheted used.

Hierbei kann ferner das Halbzeug aus gradierten Schichten hergestellt werden, um eine gezielte Eigenschaftsbeeinflussung an besonders beanspruchten Stellen des Bauteils oder in Vorzugsbeanspruchungsrichtungen zu erzielen. Auf diese Weise kann das Verhältnis von Matrixwerkstoff zu Fasern gezielt über den Bauteilquerschnitt verändert werden.In this case, furthermore, the semifinished product can be produced from graded layers, in order to achieve a specific influencing of the properties at particularly stressed areas of the component or in preferred stress directions. In this way, the ratio of matrix material to fibers can be selectively changed over the component cross-section.

Dies ist besonders vorteilhaft, um thermisch bzw. mechanisch lokal besonders stark beanspruchte Bauteile, wie etwa Kolben oder dgl., herstellen zu können.This is particularly advantageous in order to be able to produce structural components that are subject to particularly high thermal or mechanical stress locally, such as pistons or the like.

Als Matrixwerkstoff sind grundsätzlich alle Werkstoffe geeignet, die eine thixotrope Umformung erlauben.In principle, all materials which permit thixotropic transformation are suitable as the matrix material.

Bevorzugt werden hierzu Aluminiumlegierungen oder Kupferlegierungen verwendet, insbesondere Legierungen, die aus den Hauptbestandteilen Aluminium, Magnesium und Kupfer bestehen oder die aus den Hauptbestandteilen Kupfer und Zinn oder Zink bestehen.For this purpose, aluminum alloys or copper alloys are preferably used, in particular alloys which consist of the main components aluminum, magnesium and copper or which consist of the main components copper and tin or zinc.

In diesem Zusammenhang sind als Matrixwerkstoff Legierungen bevorzugt, die aus Legierungen des Typs AlMg4,5Mn0,4 (AA 5182), des Typs AlMgSi1 (EN AW-6082), des Typs AlSi7Mg (EN AW-356, EN-AW-357), des Typs AlSi3 (AA 208, AA 296), des Typs AlSi12 (AA 336, AA 384), des Typs CuZn40A12 oder des Typs CuSn13, 5A10,3 bestehen.In this context, as the matrix material alloys are preferred which consist of alloys of the type AlMg4.5Mn0.4 (AA 5182), of the type AlMgSi1 (EN AW-6082), of the type AlSi7Mg (EN AW-356, EN-AW-357), of the type AlSi3 (AA 208, AA 296), of the type AlSi12 (AA 336, AA 384), of the type CuZn40A12 or of the type CuSn13, 5A10.3.

Bei der Verwendung von Kupferlegierungen steht die Verschleiß reduzierende Wirkung von Verstärkungsfasern im Vordergrund. Mit diesen Werkstoffen lassen sich insbesondere vorteilhafte Lagerwerkstoffe herstellen, wozu insbesondere eine Kombination mit Kohlenstofffasern oder -partikeln in einer graphitnahen Modifikation geeignet ist, da sich so Notlaufeigenschaften erzielen lassen.The use of copper alloys focuses on the wear-reducing effect of reinforcing fibers. With these materials, in particular advantageous bearing materials can be produced, for which purpose in particular a combination with carbon fibers or particles in a near-graphite modification is suitable, since this allows emergency running properties to be achieved.

Gemäß einer weiteren Verfahrensvariante wird der metallische Matrixwerkstoff selbst durch eingelagerte Partikel verstärkt, die vorzugsweise als Oxidkeramiken, als Karbide, als Nitride, als Metalle oder Legierungen oder als tribologisch wirksame Stoffe ausgebildet sind.According to a further variant of the method, the metallic matrix material itself is reinforced by embedded particles which are preferably formed as oxide ceramics, as carbides, as nitrides, as metals or alloys or as tribologically active substances.

Zur Faserverstärkung des MMC werden erfindungsgemäß Fasern verwendet, die aus Kohlenstoff, Siliziumkarbid, Aluminiumoxid, Mullit bestehen. Auch Modifikationen dieser Fasern mit Stickstoff, Titan, Bor, Kohlenstoff oder Silizium und deren Verbindungen sind denkbar.Fiber reinforcement of the MMC according to the invention fibers are used, which consist of carbon, silicon carbide, alumina, mullite. Also, modifications of these fibers with nitrogen, titanium, boron, carbon or silicon and their compounds are conceivable.

Obwohl in Folge der verkürzten Prozesszeiten und der erniedrigten Prozesstemperaturen grundsätzlich keine Beschichtung der verwendeten Fasern notwendig ist, können gemäß einer weiteren Verfahrensvariante auch an ihrer Oberfläche beschichtete Fasern verwendet werden, insbesondere mit Diffusionssperr- oder Schutzschichten versehene Fasern oder mit Haftvermittlerschichten versehene Fasern.Although in principle no coating of the fibers used is necessary as a consequence of the shortened process times and the reduced process temperatures, coated fibers can also be used on their surface according to a further process variant, in particular fibers provided with diffusion barrier or protective layers or fibers provided with adhesion promoter layers.

Auf diese Weise lassen sich die Eigenschaften des herzustellenden Bauteils in einem noch größeren Umfang an die jeweiligen Anforderungen anpassen. So können etwa durch Verwendung von Haftvermittlern die Grenzflächenhaftungen zwischen eingelagerten Fasern und der metallischen Matrixphase verbessert werden. Gleichzeitig können auch solche Fasern eingelagert werden, die an sich mit der verwendeten Matrixphase weniger kompatibel sind.In this way, the properties of the component to be manufactured can be adapted to the respective requirements to an even greater extent. For example, by using Adhesives, the interfacial adhesion between embedded fibers and the metallic matrix phase can be improved. At the same time, fibers which are less compatible with the matrix phase used can also be incorporated.

Zur Beschichtung der Fasern eignen sich insbesondere Siliziumkarbid, Siliziumnitrid, Titankarbid, Titannitrid, Kohlenstoff oder Mischphasen oder Verbindungen hieraus.Silicon carbide, silicon nitride, titanium carbide, titanium nitride, carbon or mixed phases or compounds thereof are particularly suitable for coating the fibers.

Erfindungsgemäß werden bevorzugt Fasern mit einem Durchmesser zwischen 0,5 und 150 µm, besonders bevorzugt zwischen 5 und 20 µm verwendet.According to the invention fibers are preferably used with a diameter between 0.5 and 150 .mu.m, more preferably between 5 and 20 microns.

Wie bereits erwähnt, können die Fasern sowohl als Langfasern oder Endlosfasern als auch in Form von Kurzfasern ("chopped fibers") verwendet werden.As already mentioned, the fibers can be used both as long fibers or continuous fibers and in the form of short fibers ("chopped fibers").

Wie bereits erwähnt, wird bei der erfindungsgemäßen Thixoumformung das Halbzeug in Abhängigkeit vom verwendeten Matrixmaterial auf ein bestimmtes Temperaturintervall erwärmt, innerhalb dessen der Matrixwerkstoff einen definierten Flüssigphasenanteil aufweist.As already mentioned, in the thixotropic shaping according to the invention the semifinished product is heated to a specific temperature interval as a function of the matrix material used, within which the matrix material has a defined liquid phase fraction.

Wird beispielsweise die Legierung AlSi7Mg verwendet, so wird zur Thixoumformung das Halbzeug auf eine Temperatur zwischen 574 und 584°C aufgeheizt, wobei sich ein Flüssigphasenanteil zwischen 43 und 51 Volumenprozent einstellt. Wird etwa die Legierung AlMgSi1 verwendet, so erfolgt zur Thixoumformung eine Aufheizung auf eine Temperatur zwischen 635°C und 645°C, wobei sich ein Flüssigphasenanteil zwischen etwa 15 und 35 % einstellt. Bei Verwendung der Legierung CuZn40Al2 erfolgt eine Aufheizung auf einen Temperaturbereich zwischen 871°C und 875°C, wobei sich ein Flüssigphasenanteil zwischen etwa 20 und 40 % ergibt.If, for example, the AlSi7Mg alloy is used, the semifinished product is heated to a temperature between 574 and 584 ° C. for thixoforming, whereby a liquid phase fraction of between 43 and 51% by volume is established. If, for example, the alloy AlMgSi1 is used, heating to a temperature between 635.degree. C. and 645.degree. C. takes place for thixoforming, a liquid phase proportion of between about 15 and 35% being established. When using the alloy CuZn40Al2, heating takes place over a temperature range between 871 ° C. and 875 ° C., with a liquid phase fraction of between about 20 and 40%.

Die Thixoumformung geschieht vorzugsweise als Thixoschmieden innerhalb eines geeigneten Werkzeuges (Gesenk) mit kontrollierter Stößelgeschwindigkeit und Presskraft. Stößelgeschwindigkeit und Presskraft sind hierbei verfahrensspezifisch angepasst. Es sind Stößelgeschwindigkeiten bis zu 800 mm/s möglich. Die Auftreffgeschwindigkeit des Werkzeugoberteils auf das Werkstück wird in Abhängigkeit von dem verwendeten Faser-Matrix-Verhältnis, der Bauteilkomplexität und des Bauteilvolumens vorzugsweise zwischen 10 mm/s und 300 mm/s eingestellt.The Thixoumformung is preferably done as Thixoschmieden within a suitable tool (die) with controlled ram speed and pressing force. Tappet speed and pressing force are adapted to the process. Tappet speeds up to 800 mm / s are possible. The impact velocity of the tool upper part on the workpiece is preferably set between 10 mm / s and 300 mm / s depending on the used fiber matrix ratio, the component complexity and the component volume.

Um eine vorzeitige Erstarrung des metallischen Werkstoffs zu verhindern, wird das Werkzeug vorzugsweise auf Temperaturen zwischen 100°C und 400°C erwärmt.In order to prevent premature solidification of the metallic material, the tool is preferably heated to temperatures between 100 ° C and 400 ° C.

Insbesondere durch eine Erhöhung der Stößelgeschwindigkeit nach dem Aufsetzen kann eine besonders schnelle Infiltration erreicht werden, und zwar im Bereich von deutlich unterhalb einer Sekunde unter hohem Druck. So ergibt sich eine kurze Berührzeit zwischen metallischer Schmelze und Faserwerkstoff, was zu einem reduzierten chemischen Angriff der Schmelze auf die Fasern führt und so zu verbesserten Eigenschaften des hergestellten Bauteiles führt.In particular, by increasing the ram speed after setting up a particularly rapid infiltration can be achieved, in the range of well below one second under high pressure. This results in a short contact time between metallic melt and fiber material, which leads to a reduced chemical attack of the melt on the fibers and thus leads to improved properties of the manufactured component.

Ferner ist es möglich, zur Verringerung der Oxidbildung die Thixoumformung unter Schutzgasatmosphäre durchzuführen.Furthermore, it is possible to perform the Thixoumformung under inert gas atmosphere to reduce the oxide formation.

Zur Thixoumformung wird gemäß einer ersten Verfahrensvariante das Halbzeug in einer Form vorverdichtet. Als Form wird hierbei vorzugsweise das später zur Thixoumformung verwendete Werkzeug genutzt.For Thixoumformung the semifinished product is precompressed in a mold according to a first process variant. The mold used here is preferably the tool used later for thixoforming.

Das vorverdichtete Halbzeug kann nun außerhalb des Werkzeuges vorgeheizt werden, was etwa induktiv, in einem Umluftofen mit Schutzgasatmosphäre, mit Infrarotstrahlern oder mit Lasern erfolgen kann, wird dann im vorgeheizten Zustand in das Werkzeug eingeführt und sodann thixotrop umgeformt, insbesondere thixogeschmiedet.The precompressed semi-finished product can now be preheated outside the tool, which can be done inductively, in a convection oven with inert gas atmosphere, with infrared radiators or with lasers, is then introduced in the preheated state in the tool and then converted thixotropic, in particular thixogeschmiedet.

Die bevorzugten Matrixwerkstoffe erlauben eine Aufheizung des Halbzeuges bis auf die zum thixotropen Umformen notwendige Temperatur bei einer noch ausreichenden Festigkeit des Halbzeuges, die eine Handhabung des Halbzeuges zum Einlegen in die Form erlaubt, was beispielsweise automatisch geschehen kann. Erst durch den anschließend beim Thixoschmieden über den Stempel aufgebrachten Druck verliert das Halbzeug seine Scherfestigkeit, so dass das Material in kürzester Zeit ausgeformt wird.The preferred matrix materials allow the semifinished product to be heated up to the temperature necessary for the thixotropic forming while the semifinished product still has sufficient strength, which permits handling of the semifinished product for insertion into the mold, which can happen automatically, for example. Only when the pressure is subsequently applied by thixoforging over the stamp does the semifinished product lose its shear strength, so that the material is formed in a very short time.

Gemäß einer Verfahrensvariante erfolgt eine Aufheizung der Halbzeuge innerhalb des Werkzeuges auf eine Temperatur oberhalb der Soliduslinie, jedoch unterhalb der Liquiduslinie des Matrixmaterials. Dabei kann der geschichtete Werkstoff durch einen geringen Druck in Anlage an die Werkzeugwandung gebracht werden. Dadurch wird der Wärmeübergang verbessert und so die Aufheizzeit reduziert. Unmittelbar anschließend erfolgt hieran die thixotrope Umformung vorzugsweise durch Schmieden.According to a variant of the method, the semifinished products within the tool are heated to a temperature above the solidus line, but below the liquidus line of the matrix material. In this case, the layered material can be brought by a slight pressure into contact with the mold wall. This improves the heat transfer and thus reduces the heating time. Immediately thereafter, the thixotropic transformation takes place, preferably by forging.

Bei beiden Verfahrensvarianten erfolgt vorzugsweise eine kontrollierte Abkühlung des thixotrop umgeformten Bauteils innerhalb des Werkzeuges zur Erzielung einer gerichteten Erstarrung der metallischen Matrix.In both variants of the method, a controlled cooling of the thixotropically deformed component preferably takes place within the tool in order to achieve directional solidification of the metallic matrix.

So hergestellte Verbundwerkstoffe sind erfindungsgemäß vorzugsweise als fertigungsnah geformte (net shaped) hochfeste Konstruktionsbauteile mit hoher spezifischer Steifigkeit oder mit hohem spezifischen Elastizitätsmodul einsetzbar. Daneben ergibt sich ein vorteilhafter Einsatz als Lagerwerkstoffe.According to the invention, composite materials produced in this way can preferably be used as production-shaped (net-shaped) high-strength structural components with high specific rigidity or with a high specific modulus of elasticity. In addition, there is an advantageous use as bearing materials.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele unter Bezugnahme auf die Zeichnung. Es zeigen:

  • Fig. 1 ein Phasendiagramm Al-Si mit ausgewählten Bereichen für eine thixotrope Umformung für die Knetlegierung AlMgSil und die Gusslegierung AlSi7Mg;
  • Fig. 2 ein Prepreg, das aus einem Schichtenverbund von alternierenden Schichten aus Faserschichten und Blechen (Folien) besteht;
  • Fig. 3 ein Prepreg, das aus einer Folge von mit metallischem Matrixwerkstoff beschichteten Faserverbunden besteht;
  • Fig. 4 ein globolithisches Gefüge einer Al-Si-Legierung;
  • Fig. 5 einen Querschnitt durch einen mit einer Metallmatrix infiltrierten Al-Si-Verbundwerkstoff mit eingelagerten C-Fasern nach einem Thixo-Schmiedevorgang und
  • Fig. 6 eine schematische Darstellung einer Wickelanlage zur thermischen Spritzbeschichtung von Fasergeweben im industriellen Maßstab.
Further features and advantages of the invention will become apparent from the following description of preferred embodiments with reference to the drawings. Show it:
  • Fig. 1 a phase diagram Al-Si with selected areas for a thixotropic transformation for the wrought alloy AlMgSil and the casting alloy AlSi7Mg;
  • Fig. 2 a prepreg consisting of a layer composite of alternating layers of fibrous layers and sheets (foils);
  • Fig. 3 a prepreg consisting of a series of metallic matrix material-coated fiber composites;
  • Fig. 4 a globolithic microstructure of an Al-Si alloy;
  • Fig. 5 a cross section through an infiltrated with a metal matrix Al-Si composite material with embedded C-fibers after a Thixo-forging process and
  • Fig. 6 a schematic representation of a winding system for the thermal spray coating of fiber fabrics on an industrial scale.

In Fig. 1 ist ein Phasendiagramm des bevorzugten eutektischen Systems Al-Si (mit Magnesiumzusätzen) dargestellt. Der Festanteil in dem dunkel schraffierten Bereich ist α (Al). Als für eine thixotrope Umformung geeignete Legierungen sind die Knetlegierung AlMgSi1 und die Gusslegierung AlSi7Mg eingetragen. Für eine thixotrope Umformung wird ein enger Temperaturbereich benötigt, der für die Knetlegierung AlMgSi1 zwischen der Soliduslinie und der Liquiduslinie liegt und in Fig. 1 durch den rechteckig eingezeichneten Temperaturbereich gekennzeichnet ist, der zwischen 635 und 645°C liegt. In diesem Bereich ergibt sich ein Liquidanteil (L) von 15 bis 35 %. Zur thixotropen Umformung der Gusslegierung AlSi7Mg ergibt sich dagegen ein Temperaturbereich, der unmittelbar oberhalb der Eutektikalen liegt und wiederum durch ein Rechteck bezeichnet ist. Dieses Temperaturfenster liegt zwischen 574°C und 584°C. Hierbei ergibt sich ein Liquidanteil (L) von etwa 43 bis 51 %.In Fig. 1 is a phase diagram of the preferred eutectic system Al-Si (with magnesium additives) shown. The solid content in the dark hatched area is α (Al). Alloys suitable for thixotropic transformation are wrought alloy AlMgSi1 and casting alloy AlSi7Mg. For a thixotropic transformation, a narrow temperature range is required which lies between the solidus line and the liquidus line for the wrought alloy AlMgSi1 and Fig. 1 is characterized by the rectangular drawn temperature range, which is between 635 and 645 ° C. In this area, the liquid content (L) is 15 to 35%. For the thixotropic transformation of the AlSi7Mg casting alloy, on the other hand, there is a temperature range that lies just above the eutectics and is again denoted by a rectangle. This temperature window is between 574 ° C and 584 ° C. This results in a liquid content (L) of about 43 to 51%.

Derartige Zusammenhänge für die thixotrope Umformung von Leichtmetalllegierungen sind grundsätzlich bekannt (vgl. Siegert, K.; Messmer, G.; Baur, J.; Wolf, A.: "Thixoschmieden von Aluminiumbauteilen", in: Tagungsband zur 7. sächsischen Fachtagung Umformtechnik, Chemnitz, 2000 ; Baur. J., Messmer, G.: "Automated Thixoforging Unit, in: Proceeedings to the 7. Int. Conf. on Semi-Solid-Processing of Alloys and Composites, Tsukuba, Japan, September 24-28, 2002 ).Such relationships for the thixotropic transformation of light metal alloys are known in principle (see Siegert, K .; Messmer, G .; Baur, J .; Wolf, A .: "Thixoforging of Aluminum Components", in: Proceedings for the 7th Saxon Symposium Forming technology, Chemnitz, 2000 ; Baur. J., Messmer, G .: Automated Thixoforging Unit, in: Proceeedings to the 7th Int. Conf. On Semi-Solid Processing of Alloys and Composites, Tsukuba, Japan, September 24-28, 2002 ).

Die Thixoumformung derartiger Leichtmetallwerkstoffe wurde insbesondere zur Herstellung von Formbauteilen entwickelt, die eine fertigungsnahe Formgebung aufweisen. Im Temperaturbereich, bei dem die Thixoumformung erfolgt, liegt das betreffende Halbzeug noch mit einer ausreichenden Festigkeit vor, die eine Handhabung des Halbzeuges (beim Thixoschmieden auch "Bolzen" genannt) ermöglicht. Die betreffenden Legierungen weisen idealerweise ein globolithisches Gefüge auf, das ein Festphasenskelett ausbildet und so die gute Handhabbarkeit des erwärmten Halbzeuges beim Einlegen in das Werkzeug (die Pressform) sorgt (vgl. Fig. 4). Dieses Festphasenskelett bricht bei Scherbelastung auf und sorgt somit für eine Reduzierung der Fließspannung, so dass hohe Fließstrecken im Werkzeug und eine endkonturnahere Umformung gewährleistet werden.The Thixoumformung of such light metal materials has been developed in particular for the production of molded parts, which have a production-related shaping. In the temperature range at which the Thixoumformung takes place, the semifinished product is still present with sufficient strength that allows handling of the semi-finished product (also called "bolt" in thixoforging). The alloys in question ideally have a globolithic structure which forms a solid-phase skeleton and thus ensures good handleability of the heated semifinished product when it is placed in the tool (the mold) (cf. Fig. 4 ). This solid-phase skeleton breaks up under shear stress and thus ensures a reduction of the yield stress, so that high flow paths in the tool and a near-net shape forming are ensured.

Erfindungsgemäß werden nun MMCs mit einem metallischen Matrixwerkstoff, der durch eingelagerte Fasern oder Partikel verstärkt ist, hergestellt, indem ein Halbzeug, in dem die Fasern oder Partikel in einem metallischem Matrixwerkstoff enthalten sind, vorbereitet wird und das Halbzeug durch Thixoumformen in einem Werkzeug bei einer Temperatur oberhalb der Solidustemperatur und unterhalb der Liquidustemperatur des metallischen Matrixwerkstoffes ausgeformt wird.According to the invention MMCs are now prepared with a metallic matrix material, which is reinforced by embedded fibers or particles, by preparing a semi-finished product in which the fibers or particles are contained in a metallic matrix material and the semifinished product by thixotropic forming in a tool at a temperature is formed above the solidus temperature and below the liquidus temperature of the metallic matrix material.

Dabei reicht grundsätzlich ein loser Verbund von Fasern einerseits und metallischem Matrixwerkstoff andererseits aus, um ++ beim Thixoumformvorgang bei nur kurzer Umformzeit einen hochwertigen, praktisch porenfreien Verbundwerkstoff zu erzeugen.In principle, a loose combination of fibers on the one hand and metallic matrix material on the other hand is sufficient to ++ Thixoumformvorgang with a short forming time to produce a high-quality, virtually non-porous composite material.

Grundsätzlich sind hierzu mehrere Verfahrenslinien möglich.Basically, several process lines are possible for this purpose.

Bei einer ersten Verfahrenslinie, die in Fig. 2 schematisch dargestellt ist die allerdings nicht in Rahmen der Erfindung liegt, wird ein insgesamt mit der Ziffer 10 bezeichnetes Halbzeug durch Laminieren aus alternierenden Blech- und Fasergewebelagen hergestellt. Ein Faserverbund 12 besteht beispielsweise aus Karbonfasern, die in Form eines Gewebes angeordnet sind. Zur Herstellung des Halbzeuges 10 werden Faserverbundlagen 12 alternierend mit dünnen Blechen 14 aus dem Matrixwerkstoff, beispielsweise AlSi7Mg, laminiert. In Abhängigkeit von dem gewünschten Volumenverhältnis zwischen Fasern und Matrixwerkstoff werden die Dicken d1 der Faserverbunde 12 und d2 der Bleche 14 angepasst. Zweckmäßigerweise wird das Halbzeug 10 durch eine äußere Lage 18 aus Matrixwerkstoff eingeschlossen, um sicherzustellen, dass bei der späteren Thixoumformung möglichst keine Fasern an die Oberfläche des Bauteils gelangen. Ein derartiges Halbzeug oder Prepreg wird in eine geeignete Gesenkform eingelegt und hierin im geeigneten Temperaturbereich durch Thixoschmieden unter Verwendung eines Stößels umgeformt.In a first method line, which is in Fig. 2 is shown schematically, however, is not within the scope of the invention, a semi-finished product designated generally by the numeral 10 is produced by laminating of alternating sheet metal and fiber fabric layers. A fiber composite 12 consists for example of carbon fibers, which are arranged in the form of a fabric. To produce the semifinished product 10, fiber composite layers 12 are laminated alternately with thin metal sheets 14 of the matrix material, for example AlSi7Mg. Depending on the desired volume ratio between fibers and matrix material, the thicknesses d 1 of the fiber composites 12 and d 2 of the sheets 14 are adjusted. Expediently, the semifinished product 10 is enclosed by an outer layer 18 of matrix material, in order to ensure that as far as possible no fibers reach the surface of the component during the subsequent thixoforming. Such a semifinished product or prepreg is placed in a suitable die form and reshaped therein in the appropriate temperature range by thixoforging using a plunger.

Hierbei kann zunächst innerhalb des Werkzeuges in noch kaltem Zustand eine Vorkompaktierung erfolgen und anschließend das Halbzeug 10 außerhalb der Gesenkform auf die zur Thixoumformung notwendige Temperatur vorgeheizt werden. Dies kann durch schnelles Aufheizen des vorverdichteten Halbzeuges induktiv oder alternativ in einem Umluft-Ofen mit Schutzgasatmosphäre oder mit Hochleistungs-Infrarotstrahlern oder mittels Laser durchgeführt werden. Danach erfolgt eine schnelle Überführung in die zweckmäßigerweise vorgeheizte Gesenkform (100 bis 400°C). Dieser Vorgang kann manuell, semi- oder vollautomatisiert erfolgen. Anschließend wird der Thixo-Schmiedevorgang durchgeführt. Hierzu trifft der Stößel mit verfahrensspezifisch angepasster Stößelgeschwindigkeit von bis zu 800 mm/s auf die Oberfläche des Halbzeuges auf. Die Auftreffgeschwindigkäit des Stößels auf das Halbzeug wird in Abhängigkeit des Faser-Matrix-Verhältnisses, der Bauteilkomplexität und des Bauteilvolumens vorzugsweise zwischen 10 mm/s und 300 mm/s eingestellt. Um eine vorzeitige Erstarrung des metallischen Matrixwerkstoffes zu verhindern, wird auch der Stößel zweckmäßigerweise entsprechend vorgeheizt.In this case, precompacting can first be carried out within the tool in a still cold state, and then the semifinished product 10 outside the die mold can be preheated to the temperature necessary for thixotropic deformation. This can be carried out inductively or alternatively in a circulating air oven with protective gas atmosphere or with high-power infrared radiators or by means of laser by rapid heating of the precompressed semifinished product. Thereafter, a quick transfer takes place in the suitably preheated Gesenkform (100 to 400 ° C). This process can be done manually, semi or fully automated. Then the thixo forging process is carried out. For this purpose, the ram meets with process-specifically adapted ram speed of up to 800 mm / s on the surface of the semi-finished product. The impact velocity of the ram on the semi-finished product is preferably set between 10 mm / s and 300 mm / s depending on the fiber-matrix ratio, the component complexity and the component volume. In order to prevent premature solidification of the metallic matrix material, the plunger is expediently preheated accordingly.

Alternativ kann die Aufheizung des Halbzeuges auch innerhalb des Gesenkwerkzeuges erfolgen. Dabei kann das geschichtete Halbzeug durch einen geringen Druck in Anlage an die Werkzeugwandung gebracht werden, wodurch der Wärmeübergang verbessert und die Aufheizzeit reduziert wird. Unmittelbar anschließend erfolgt die thixotrope Umformung durch Thixoschmieden.Alternatively, the heating of the semifinished product can also take place within the die tooling. In this case, the layered semifinished product can be brought into contact with the tool wall by a slight pressure, which improves the heat transfer and reduces the heating time. Immediately thereafter, the thixotropic transformation takes place by thixoforging.

Bei der Verwendung von Blechen (Folien) werden vorzugsweise kaltgewalzte Bleche verwendet, da sich durch die hohe Versetzungsdichte bei der späteren Wiedererwärmung im Zuge der Thixoumformung eine feinkörnige Rekristallisation mit globularem Gefüge ergibt.When sheets (foils) are used, preferably cold-rolled sheets are used, since the high dislocation density during subsequent rewarming in the course of the thixo-forming results in fine-grained recrystallization with a globular structure.

Eine zweite erfindungsgemäße verfahrensvariante zur Herstellung eines Halbzeuges besteht in der Beschichtung von einzelnen Faserverbunden, die anschließend durch Übereinanderlegen zu einem Prepreg laminiert werden und zweckmäßigerweise wiederum von einer äußeren Blechschicht oder Folienschicht aus Matrixwerkstoff umgeben sind.A second process variant according to the invention for the production of a semifinished product consists in the coating of individual fiber composites, which are then laminated by superimposing into a prepreg and expediently again surrounded by an outer metal layer or film layer of matrix material.

Diese Verfahrensvariante wird nachfolgend an Hand von Fig. 3 und 6 näher erläutert.This variant of the method is described below with reference to Fig. 3 and 6 explained in more detail.

Eine dritte nicht im Rahmen der Erfindung liegende Alternative zur Herstellung des Halbzeuges besteht in der Herstellung einer Mischung aus Kurzfasern oder pulverförmigen Verstärkungspartikeln mit metallischen Matrixpulvern. Anschließend erfolgt eine Formgebung durch Trockenpressen oder eine Weiterverarbeitung wiederum durch Auftragung auf einen Faserverbund durch ein Beschichtungsverfahren.A third alternative, which does not lie within the scope of the invention, for producing the semifinished product consists in producing a mixture of short fibers or pulverulent reinforcing particles with metallic matrix powders. This is followed by shaping by dry pressing or further processing, again by application to a fiber composite by a coating process.

Bei der zweiten Verfahrensvariante eignet sich zur Beschichtung des Faserverbundes grundsätzlich eine Applikation durch elektrostatische Aufladung, eine Applikation durch Siebdruckverfahren oder eine elektrophoretische Abscheidung (EPD) auf die Faserstruktur.In the second variant of the method, application by electrostatic charging, application by screen printing or electrophoretic deposition (EPD) to the fiber structure is generally suitable for coating the fiber composite.

Mittels EPD wird eine elektrisch leitende oder elektrisch leitend gemachte Faserstruktur als Elektrode geschaltet, und die ladungstragenden Metallpulverteilchen werden durch ein elektrisches Feld getrieben auf der Faser- oder Gewebeoberfläche als gleichmäßige Schicht abgeschieden. Dabei weisen die Metallteilchen eine Korngröße mit Durchmessern zwischen 10 nm und 100 µm auf, bevorzugt mit Größen zwischen 100 nm und 10 µm. Durch die Verwendung von oberflächenaktiven flüssigen oder gelösten Hilfsstoffen lässt sich eine gezielte Ladungsverteilung der Feststoffpartikel in der Suspension einstellen, die einen konzentrations- und feldstärkeabhängigen Stofftransport zur Schichtabscheidung erlaubt.By means of EPD, an electrically conductive or electrically rendered fiber structure is connected as an electrode, and the charge-carrying metal powder particles are driven by an electric field deposited on the fiber or fabric surface as a uniform layer. The metal particles have a particle size with diameters between 10 nm and 100 μm, preferably with sizes between 100 nm and 10 μm. Through the use of surface-active liquid or dissolved excipients, a targeted charge distribution of the solid particles in the suspension can be set, which allows a concentration and field strength-dependent mass transfer for layer deposition.

Ein besonders bevorzugtes Beschichtungsverfahren besteht in der Beschichtung durch thermisches Spritzen. Hierbei steht insbesondere Elektrolichtbogendrahtspritzen und Pulver-Plasmaspritzen, bevorzugt atmosphärisches Plasmaspritzen (APS) im Vordergrund.A particularly preferred coating method is the coating by thermal spraying. This is in particular Electro-arc wire spraying and powder plasma spraying, preferably atmospheric plasma spraying (APS) in the foreground.

Während des thermischen Spritzbeschichtens der Fasern wird hierbei durch gezielte Kühlmaßnahmen ein Temperaturanstieg des Faserverbundes weitgehend vermieden, so dass in der Regel Temperaturen von höchstens 100°C eingehalten, werden können und somit eine Schädigung der Fasern ausgeschlossen ist. Hierzu kann simultan mittels Kühlmittelinjektoren und weiteren geeigneten Vorrichtungen lokal, vorzugsweise unter Verwendung von Druckluft und ggf. von flüssigem Kohlendioxid (CO2) gekühlt werden.During the thermal spray coating of the fibers, a temperature increase of the fiber composite is largely avoided by targeted cooling measures, so that temperatures of at most 100 ° C can be maintained in the rule, and thus damage to the fibers is excluded. For this purpose can be cooled locally by means of coolant injectors and other suitable devices locally, preferably using compressed air and possibly of liquid carbon dioxide (CO 2 ).

Des Weiteren ist es bei dieser Verfahrensvariante bevorzugt, Lang- oder Endlosfasern bzw. daraus hergestellte Faserverbunde (Gelege, Gewebe oder Gestricke) verstreckt bzw. zugvorgespannt auf eine geeignete Trägervorrichtung 30 (vgl. Fig. 6) aufzubringen und eine oder mehrere Schichten Matrixmetall durch thermisches Spritzen aufzutragen. Mit einer Wickelanlage 30 gemäß Fig. 6 lässt sich von einer Rolle 34, die zu beschichtende Faserverbundlagen enthält, das Faserverbundmaterial kontinuierlich oder taktweise abwickeln, in einer Beschichtungsebene (linke gewölbte Fläche in Fig. 6) beschichten und anschließend nach der Beschichtung wieder auf eine Rolle 32 aufwickeln. Bei geeigneter Dimensionierung und Beschichtungsdicke kann hierbei zunächst eine Beschichtung auf einer ersten Oberseite erfolgen und anschließend eine Beschichtung auf der gegenüberliegenden Oberfläche.Furthermore, it is preferred in this process variant, long or continuous fibers or fiber composites produced therefrom (scrim, fabric or knitted fabric) stretched or zugvorgespannt on a suitable support device 30 (see. Fig. 6 ) and applying one or more layers of matrix metal by thermal spraying. With a winding system 30 according to Fig. 6 can be unwound continuously or intermittently from a roll 34, which contains fiber composite layers to be coated, in a coating plane (left-hand curved surface in FIG Fig. 6 ) and then rewind onto a roll 32 after coating. With suitable dimensioning and coating thickness, in this case firstly a coating can take place on a first upper side and then a coating on the opposite surface.

Ein besonderer Vorteil liegt in der gezielten Vorspannung der Gewebe in der Beschichtungsebene, die darüber hinaus regelbar ausgeführt sein kann, um eine gleiche, bleibende Vorspannung zu gewährleisten. Dadurch werden thermisch und konvektiv erzeugte Spannungen in der Faserstruktur mechanisch kompensiert. Zur Beschichtung kann ein 5-Achsen-Roboter-gestütztes Bewegungssystem verwendet werden, das einen Lichtbogen- oder Plasmabrenner in einer Weise derart bewegt, dass NC-gesteuerte Bewegungsabläufe mit dem Ziel einer gleichmäßigen Beschichtung aus vorher gespeicherten Programmen abgerufen und reproduzierbar und prozessstabil realisiert werden können. Hierbei werden Spritzabstände von 50 bis 200 mm zwischen Düsenaustritt und Faseroberfläche bevorzugt zwischen 100 und 140 mm bei APS und zwischen 120 und 160 mm beim Elektrolichtbogenspritzen verwendet.A particular advantage lies in the targeted bias of the fabric in the coating plane, which can also be made controllable in order to ensure an equal, permanent bias. As a result, thermally and convectively generated stresses in the fiber structure are mechanically compensated. For coating, a 5-axis robotic motion system can be used which moves an arc or plasma torch in a manner such that NC controlled motion sequences can be retrieved from previously stored programs for consistent coating and reproducibly and processably realized , In this case, spray gaps of 50 to 200 mm between nozzle exit and fiber surface are preferably used between 100 and 140 mm in APS and between 120 and 160 mm in electric arc spraying.

Wie in Fig. 3 dargestellt, werden derartige Lagen 22 aus Faserverbunden, die beidseitig mit Matrixmetall 24 beschichtet sind, miteinander zu einem Prepreg laminiert und vorzugsweise außen wiederum durch ein Blech bzw. eine Folie 18 aus Matrixmetall eingeschlossen, um so ein Halbzeug 20 herzustellen. Die Beschichtungsdicke d3 kann beim vorherigen Beschichtungsvorgang in geeigneter Weise gesteuert werden. Hierzu können einfache oder mehrfache Schichten aufgetragen werden und die Schichtdicke natürlich durch die Überfahrgeschwindigkeit bzw. Verweildauer und die übrigen Spritzparameter beeinflusst werden. Sind größere Lagen von Matrixmetall erwünscht, so können auch einzelne Metallbleche bzw. Folien zwischengelegt werden.As in Fig. 3 As shown, such layers 22 of fiber composites coated on both sides with matrix metal 24 are laminated together to form a prepreg, and preferably encased externally by a sheet metal 18 of matrix metal so as to produce a semifinished product 20. The coating thickness d 3 can be suitably controlled in the previous coating operation. For this purpose, single or multiple layers can be applied and the layer thickness, of course, be influenced by the speed of transit or residence time and the other spray parameters. If larger layers of matrix metal are desired, individual metal sheets or foils can also be interposed.

Bei der dritten Verfahrensvariante durch Granulieren bzw. Pelletieren werden Mischungen aus Matrixmetallpulvern und Kurzfasern oder Verstärkungspartikelpulvern hergestellt. Diese granulierten oder pelletierten Mischungen können anschließend zu einem Grünkörper durch Kaltpressen kompaktiert werden, der anschließend als Halbzeug verwendet wird. Sofern das Matrixmetall eine ausreichende Duktilität aufweist, kann das Kaltpressen ohne Presshilfsmittel erfolgen. Bei geringerer Duktilität des Metallmatrixwerkstoffes werden geeignete sich bei der späteren Aufheizung leicht verflüchtigende Binderhilfsmittel (z.B. Paraffin) zugesetzt.In the third process variant by granulation or pelletizing, mixtures of matrix metal powders and short fibers or reinforcing particle powders are produced. These granulated or pelletized mixtures can then be compacted into a green body by cold pressing, which is then used as a semi-finished product. If the matrix metal has sufficient ductility, cold pressing can take place without pressing aids. If the ductility of the metal matrix material is lower, suitable binder aids (eg paraffin) which volatilise easily during later heating are added.

Eine weitere Verfahrensvariante besteht in der Auftragung der durch Granulieren oder Pelletieren hergestellten Mischungen durch ein geeignetes Beschichtungsverfahren auf Faserverbunde, was wiederum beispielsweise durch thermisches Spritzen erfolgen kann.Another variant of the method consists in the application of the mixtures produced by granulation or pelletizing by a suitable coating method on fiber composites, which in turn can be done for example by thermal spraying.

Wie eingangs bereits erwähnt, können zur Erzeugung von speziellen Bauteileigenschaften, die an spezielle örtliche thermische oder mechanische Beanspruchungen angepasst sind, gradierte Schichten verwendet werden, wozu das gesamte Spektrum bei der Verarbeitung von Faserverbunden ausgenutzt werden kann.As already mentioned, graded layers can be used to produce special component properties which are adapted to specific local thermal or mechanical stresses, for which purpose the entire spectrum in the processing of fiber composites can be utilized.

Die besonders günstige Verteilung, die sich bei einem Infiltrationsvorgang durch Thixoschmieden bei einem derartigen Verbundwerkstoff ergibt, ist aus Fig. 5 zu ersehen.The particularly favorable distribution that results in an infiltration process by thixoforging in such a composite is out Fig. 5 to see.

Claims (15)

  1. Method for producing a component from a composite material (MMC) having a metallic matrix material which is reinforced by embedded fibers or particles, the method comprising the steps of:
    - providing a semi-finished product (10; 20) in which the fibers (16) or particles and the metallic matrix material (14; 24) are contained, and
    - thixoforming the semi-finished product (10; 20) within a tool at a temperature above the solidus temperature and below the liquidus temperature of the metallic matrix material (14; 24);
    characterized in that the step of providing a semi-finished product (10; 20) comprises a coating of a fibrous structure with the metallic matrix material or with a granulatized or palletized mixture of a matrix material and short fibers or powdered particles, using a process which is selected from the group which is formed by:
    - coating a fibrous structure by thermal spraying, preferably by atmospheric plasma spraying (APS), wire flame spraying, or by electric arc spraying;
    - coating the fibrous structure with the metallic matrix material by a screen printing process;
    - coating the fibrous structure with the metallic matrix material by electrostatic charging;
    - coating the fibrous structure with the metallic matrix material by electrophoretic deposition from an aqueous suspension, at the aid of an electric field.
  2. Method according to claim 1, characterized in that a succession of layers (12, 14; 22) is laminated to form a prepreg (10; 20) which contains fiber composite structures (22) coated with matrix material, or with mixtures of matrix material and short fibers or particles, as well as metal sheets of matrix material (14) or mixtures of matrix material and short fibers or particles.
  3. Method according to claim 2, characterized in that the mixtures of matrix material (14) and short fibers or particles are prepared by granulatizing or pelletizing.
  4. Method according to any of the preceding claims, characterized in that the proportion by volume of matrix material and fibers is adjusted to between 0.3 and 8.0, preferably to between 0.8 and 3.0.
  5. Method according to any of the preceding claims, characterized in that during production of the semi-finished product the fibrous structure is heated up to a temperature of maximally 300° Celsius for a period of maximally 5 seconds, preferably of maximally 2 seconds.
  6. Method according to any of the preceding claims, characterized in that the fibrous structure is maintained under tensile stress during thermal spraying on a carrier device (30).
  7. Method according to any of claims 3 to 6, characterized in that during the step of pelletizing or granulatizing fibers are used having a length between 0.5 and 20 mm, preferably between 2 and 6 mm, and wherein preferably a proportion by volume of matrix material and fibers between 0.3 and 5, especially preferred between 1 and 2, is used.
  8. Method according to any of the preceding claims, characterized in that at least one layer comprising a fibrous structure of long fibers having a length of at least one millimeter, or of long fibers having an aspect ratio (ratio between length and diameter) of at least 50, preferably of at least 100, especially preferred of at least 150, is used for preparing the prepreg.
  9. Method according to any of the preceding claims, characterized in that an aluminium alloy or a copper alloy is used as the matrix material, in particular an alloy is used made of the main constituents aluminium, magnesium and silicon, or made of the main constituents copper, and tin or zinc, preferably an alloy is used which is selected from the group formed by alloys of the type AlMg4.5Mn0.4, AlMgSil, AlSi7Mg, AlSi3, AlSil2, CuZn40A12, and CuSn13.5A10.3.
  10. Method according to any of the preceding claims, characterized in that the metallic matrix material is reinforced by embedded particles, which are preferably configured as oxide ceramics, carbides, nitrides, metals or alloys or tribologically active materials.
  11. Method according to any of the preceding claims, characterized in that fibers are used that consist of carbon, silicon carbide, aluminium oxide, mullite or that contain modifications of these fibers with nitrogen, titanium, boron, carbon or silicon or compounds thereof, wherein the fibers are preferably coated on their surface, in particular with diffusion barrier layers and protective layers or primer layers.
  12. Method according to claim 11, characterized in that fibers are used that are coated with silicon carbide, silicon nitride, titanium carbide, titanium nitride, carbon or mixed phases or compounds thereof.
  13. Method according to any of the preceding claims, characterized in that the semi-finished product is heated up for the thixoforming process to a temperature of between 574 and 584° Celsius when using the alloy AlSi7Mg, to a temperature of between 635 and 645° Celsius when using the alloy AlMgSi1, and to a temperature of between 871 and 875° Celsius when using the alloy CuZn40A12.
  14. Method according to any of the preceding claims, characterized in that the tool is preheated, preferably to a temperature of between 100 and 400° Celsius.
  15. Method according to any of the preceding claims, characterized in that following the thixotropic transformation the component is cooled down within the tool to a temperature below the solidus temperature.
EP03773705A 2003-11-05 2003-11-05 Method for producing a component provided with a metal matrix and a fibre or particle reinforcement Expired - Lifetime EP1685263B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2003/012352 WO2005052199A1 (en) 2003-11-05 2003-11-05 Method for producing a component provided with a metal matrix and a fibre or particle reinforcement

Publications (2)

Publication Number Publication Date
EP1685263A1 EP1685263A1 (en) 2006-08-02
EP1685263B1 true EP1685263B1 (en) 2008-07-23

Family

ID=34626348

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03773705A Expired - Lifetime EP1685263B1 (en) 2003-11-05 2003-11-05 Method for producing a component provided with a metal matrix and a fibre or particle reinforcement

Country Status (6)

Country Link
US (1) US20060021728A1 (en)
EP (1) EP1685263B1 (en)
AT (1) ATE402271T1 (en)
AU (1) AU2003282089A1 (en)
DE (1) DE50310214D1 (en)
WO (1) WO2005052199A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011008646A1 (en) * 2011-01-14 2012-07-19 Recan Gmbh Manufacture of metal cast involves injecting light metal melt into mold, adding metallic raw material containing carbide to light metal melt, mixing metallic raw material and light metal melt, cooling and solidifying
DE102011003415A1 (en) * 2011-02-01 2012-08-02 Bayerische Motoren Werke Aktiengesellschaft Method for producing a metallic component
DE102014118747A1 (en) 2014-12-16 2016-06-16 Universität Stuttgart Method and device for connecting fiber materials to metal materials

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004001644A1 (en) * 2004-01-12 2005-08-04 Mtu Aero Engines Gmbh Composite semifinished product and method for producing a composite semifinished product
JP4685357B2 (en) * 2004-01-20 2011-05-18 本田技研工業株式会社 Molding method for metal matrix composite moldings
DE202006004118U1 (en) * 2006-03-14 2007-08-02 Institut für Umformtechnik Universität Stuttgart Component based on a hybrid material used in the production of vehicle parts comprises a first component formed as a matrix and a second component formed as a characterizing component
SE530892C2 (en) * 2007-06-01 2008-10-07 Skf Ab A bearing component for a rolling bearing or a sliding bearing
DE102007042494B4 (en) * 2007-09-03 2009-09-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Component as well as its use
DE102009015418B4 (en) * 2009-03-27 2017-07-13 Bayerische Motoren Werke Aktiengesellschaft Method for producing a component

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3000171C2 (en) * 1980-01-04 1982-04-29 Vereinigte Aluminium-Werke Ag, 5300 Bonn Fiber-reinforced composite material and process for its manufacture
US4469757A (en) * 1982-05-20 1984-09-04 Rockwell International Corporation Structural metal matrix composite and method for making same
US4894088A (en) * 1986-12-16 1990-01-16 Kabushiki Kaisha Kobe Seiko Sho Pellet for fabricating metal matrix composite and method of preparing the pellet
US5211776A (en) * 1989-07-17 1993-05-18 General Dynamics Corp., Air Defense Systems Division Fabrication of metal and ceramic matrix composites
US5468358A (en) * 1993-07-06 1995-11-21 General Atomics Fabrication of fiber-reinforced composites
KR100247143B1 (en) * 1998-02-04 2000-04-01 박호군 THIXOFORMABLE SIC/(2í í í AL+SI)COMPOSITE AND METHOD FOR MANUFACTURING THEREOF
US6151198A (en) * 1998-11-18 2000-11-21 International Business Machines Corporation Overmolding of actuator E-block by thixotropic or semisolid forging
US6250364B1 (en) * 1998-12-29 2001-06-26 International Business Machines Corporation Semi-solid processing to form disk drive components

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011008646A1 (en) * 2011-01-14 2012-07-19 Recan Gmbh Manufacture of metal cast involves injecting light metal melt into mold, adding metallic raw material containing carbide to light metal melt, mixing metallic raw material and light metal melt, cooling and solidifying
DE102011003415A1 (en) * 2011-02-01 2012-08-02 Bayerische Motoren Werke Aktiengesellschaft Method for producing a metallic component
DE102014118747A1 (en) 2014-12-16 2016-06-16 Universität Stuttgart Method and device for connecting fiber materials to metal materials
EP3034892A1 (en) 2014-12-16 2016-06-22 Universität Stuttgart Method and device for connecting fibre materials with metallic materials

Also Published As

Publication number Publication date
ATE402271T1 (en) 2008-08-15
EP1685263A1 (en) 2006-08-02
DE50310214D1 (en) 2008-09-04
WO2005052199A1 (en) 2005-06-09
US20060021728A1 (en) 2006-02-02
AU2003282089A1 (en) 2005-06-17

Similar Documents

Publication Publication Date Title
DE2642757C2 (en)
EP0270670B1 (en) Antifriction coating and process for its manufacture
EP0622476B1 (en) Metal substrates with laser-induced MMC coating
EP2261397A1 (en) Method of producing a metal matrix compound material
EP1632463B1 (en) Composite material
KR20180117203A (en) BCC materials made of titanium, aluminum, vanadium, and iron, and products made therefrom
EP1685263B1 (en) Method for producing a component provided with a metal matrix and a fibre or particle reinforcement
EP1678733B1 (en) Method for production of a composite body by high temperature welding of a non-metallic component to a metallic or non-metallic component
EP2123377A1 (en) Method for manufacturing a workpiece, in particular a forming tool or a forming tool component
KR20180112071A (en) HCP materials consisting of aluminum, titanium, and zirconium, and products made therefrom
DE102011120988A1 (en) Planar semifinished product of aluminum alloy matrix composite having boron carbide-particles, useful for manufacturing a plate, comprises boron carbide particles-containing layers, and a matrix-forming aluminum alloy comprising silicon
KR20100092969A (en) Magnesium-based composite material having ti particles dispersed therein, and method for production thereof
EP2140042B1 (en) Production of a partial fiber composite structure in a component using a laser remelting treatment
EP2327808A1 (en) Magnesium-based composite material having ti particles dispersed therein, and method for production thereof
EP2343143A2 (en) Method for producing components from refractory metals
DE102006040120B3 (en) Composite materials comprise ceramic or carbon fibers with a metal coating which are embedded in metal matrix whose melting point is lower than that of coating
DE4139421C2 (en) Process for covering a substrate surface with a sintered layer and powdered starting material therefor
WO2019053184A1 (en) Method for foaming metal in a liquid bath
AT406837B (en) METHOD AND DEVICE FOR PRODUCING METAL-MATRIX COMPOSITES
WO2004043875A2 (en) Ceramic-metal or metal-ceramic composite
DE102005059429B4 (en) Process for producing wear-resistant laminates with Fe-based coating materials containing hard material
US5217815A (en) Arc sprayed continously reinforced aluminum base composites
EP1096032B1 (en) Fibre reinforced metal-matrix composite
Siegert et al. Thixoforging of continuous fiber-reinforced AlSi/AlMg-alloys
DE102007005394B3 (en) Production of metal matrix-hard material composite coatings comprises heating sheet metal container filled with mixture of metal powder and hard material to temperature above 1000 degrees and extruding product on to steel substrate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050714

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MESSMER, GUENTHER

Inventor name: SPEICHER, MARCUS

Inventor name: GADOW, RAINER

Inventor name: SIEGERT, KLAUS

Inventor name: VON NIESSEN, KONSTANTIN

Inventor name: UNSELD, PETER

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070205

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50310214

Country of ref document: DE

Date of ref document: 20080904

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081223

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081103

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081023

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: UNIVERSITAT STUTTGART CENTER OF COMPETENCE FOR CA

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20090424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090124

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081105

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081024

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20101112

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101118

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20111130

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20111220

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 402271

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121105

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121105

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50310214

Country of ref document: DE

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121105

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130