EP1676333A1 - Membrane polymere conductrice de protons contenant au moins une matiere de support poreuse et utilisation de ladite membrane dans des piles a combustible - Google Patents

Membrane polymere conductrice de protons contenant au moins une matiere de support poreuse et utilisation de ladite membrane dans des piles a combustible

Info

Publication number
EP1676333A1
EP1676333A1 EP04764852A EP04764852A EP1676333A1 EP 1676333 A1 EP1676333 A1 EP 1676333A1 EP 04764852 A EP04764852 A EP 04764852A EP 04764852 A EP04764852 A EP 04764852A EP 1676333 A1 EP1676333 A1 EP 1676333A1
Authority
EP
European Patent Office
Prior art keywords
group
divalent
aryl
halogen
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04764852A
Other languages
German (de)
English (en)
Inventor
Joachim Kiefer
Oemer Uensal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Fuel Cell GmbH
Original Assignee
Pemeas GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pemeas GmbH filed Critical Pemeas GmbH
Publication of EP1676333A1 publication Critical patent/EP1676333A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00931Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • B01D71/441Polyvinylpyrrolidone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2275Heterogeneous membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/1062Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the physical properties of the porous support, e.g. its porosity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • B01D2323/225Use of supercritical fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/26Electrical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2385/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon; Derivatives of such polymers
    • C08J2385/02Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon; Derivatives of such polymers containing phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Proton-conducting polymer membrane comprising at least one porous carrier material and their use in fuel cells
  • the present invention relates to a proton-conducting polymer membrane comprising at least one porous carrier material which, owing to its outstanding chemical and thermal properties, can be used in a variety of ways and is particularly suitable as a polymer electrolyte membrane (PEM) in so-called PEM fuel cells.
  • PEM polymer electrolyte membrane
  • a fuel cell usually contains an electrolyte and two electrodes separated by the electrolyte.
  • one of the two electrodes is supplied with a fuel, such as hydrogen gas or a methanol-water mixture, and the other electrode with an oxidizing agent, such as oxygen gas or air, and chemical energy from the fuel oxidation is thereby converted directly into electrical energy. Protons and electrons are formed in the oxidation reaction.
  • the electrolyte is for hydrogen ions, i.e. Protons, but not permeable to reactive fuels such as hydrogen gas or methanol and oxygen gas.
  • a fuel cell typically includes a plurality of single cells, so-called MEA 's (membrane electrode assembly), each of which contains an electrolyte and two electrodes separated by the electrolyte.
  • MEA 's membrane electrode assembly
  • Solids such as polymer electrolyte membranes or liquids such as phosphoric acid are used as the electrolyte for the fuel cell.
  • Polymer electrolyte membranes have recently attracted attention as electrolytes for fuel cells. In principle, one can differentiate between two categories of polymer membranes.
  • the first category includes cation exchange membranes consisting of a polymer structure which contains covalently bound acid groups, preferably sulfonic acid groups.
  • the sulfonic acid group changes into an anion with the release of a hydrogen ion and therefore conducts protons.
  • the mobility of the proton and thus the proton conductivity is directly linked to the water content. Due to the very good miscibility of methanol and water, such cation exchange membranes have a high methanol permeability and are therefore unsuitable for applications in a direct methanol fuel cell. If the membrane dries out, for example as a result of high temperature, the conductivity of the membrane and consequently the performance of the fuel cell decrease drastically.
  • the operating temperatures of fuel cells containing such cation exchange membranes is thus limited to the boiling point of the water.
  • the humidification of the fuels represents a major technical challenge for the Use of polymer electrolyte membrane fuel cells (PEMBZ), in which conventional, sulfonated membranes such as National are used.
  • PEMBZ polymer electrolyte membrane fuel cells
  • perfluorosulfonic acid polymers are used as materials for polymer electrolyte membranes.
  • the perfluorosulfonic acid polymer (such as National) generally has a perfluorocarbon backbone, such as a copolymer of tetrafluoroethylene and trifluorovinyl, and a side chain attached thereto with a sulfonic acid group, such as a side chain with a sulfonic acid group attached to a perfluoroalkylene group.
  • the cation exchange membranes are preferably organic polymers with covalently bonded acid groups, in particular sulfonic acid. Methods for sulfonating polymers are described in F. Kucera et. al. Polymer Engineering and Science 1988, Vol. 38, No 5, 783-792.
  • cation exchange membranes which have gained commercial importance for use in fuel cells are listed below: The most important representative is the perfluorosulfonic acid polymer National ® (US 3692569). This polymer can be brought into solution as described in US Pat. No. 4,453,991 and then used as an ionomer. Cation exchange membranes are also obtained by filling a porous support material with such an ionomer. Expanded Teflon is preferred as the carrier material (US 5635041).
  • Another perfluorinated cation exchange membrane can be prepared as described in US5422411 by copolymerization from trifluorostyrene and sulfonyl-modified trifuorostyrene.
  • Composite membranes consisting of a porous carrier material, in particular expanded Teflon, filled with ionomers consisting of such sulfonyl-modified trifluorostyrene copolymers are described in US5834523.
  • US6110616 describes copolymers of butadiene and styrene and their subsequent sulfonation for the production of cation exchange membranes for fuel cells.
  • Another class of partially fluorinated cation exchange membranes can be made by radiation grafting and subsequent sulfonation.
  • a grafting reaction is preferably carried out on a previously irradiated polymer film, preferably with styrene.
  • the sulfonation of the side chains then takes place in a subsequent sulfonation reaction.
  • Crosslinking can also be carried out at the same time as the grafting and the mechanical properties can thus be changed.
  • a cation exchange membrane known from the prior art can be mixed with a high-temperature stable polymer.
  • the production and properties of cation exchange membranes consisting of blends of sulfonated PEK and a) polysulfones (DE4422158), b) aromatic polyamides (42445264) or c) polybenzimidazole (DE19851498) are described.
  • Sulfonated polybenzimidazoles are also known from the literature.
  • US-A-4634530 describes sulfonation of an undoped polybenzimidazole film with a sulfonating agent such as sulfuric acid or oleum in the temperature range up to
  • Staiti et al P. Staiti in J. Membr. Sei. 188 (2001) 71 have described the preparation and properties of sulfonated polybenzimidazoles. It was not possible to carry out the sulfonation on the polymer in the solution.
  • the sulfonating agent is added to the PBl / DMAc solution, the polymer precipitates.
  • a PBI film was first produced and this was immersed in a dilute sulfuric acid.
  • the samples were then treated at temperatures of approx. 475 ° C for 2 minutes.
  • the sulfonated PBI membranes only have a maximum conductivity of 7.5 * 10 "5 S / cm at a temperature of 160 ° C.
  • the maximum ion exchange capacity is 0.12 meq / g. It has also been shown that such sulfonated PBI membranes are not suitable for are suitable for use in a fuel line.
  • polymer membranes are known from WO 00/22684, which have a porous material.
  • the water content of the membrane is preferably 20 to 100% by weight, based on the dry weight of the membrane. Accordingly, the proton conductivity is determined by the water content.
  • the disadvantage of all these cation exchange membranes is the fact that the membrane has to be moistened, the operating temperature is limited to 100 ° C., and that Membranes have a high methanol permeability.
  • the cause of these disadvantages is the conductivity mechanism of the membrane, in which the transport of the protons is coupled to the transport of the water molecule. This is called the "vehicle mechanism" (K.-D. Kreuer, Chem. Mater. 1996, 8, 610-641).
  • polymer electrolyte membranes with complexes of basic polymers and strong acids have been developed.
  • WO96 / 13872 and the corresponding US Pat. No. 5,525,436 describe a process for producing a proton-conducting polymer electrolyte membrane, in which a basic polymer, such as polybenzimidazole, is treated with a strong acid, such as phosphoric acid, sulfuric acid, etc.
  • the mineral acid usually concentrated phosphoric acid
  • the polymer serves as a carrier for the electrolyte consisting of the highly concentrated phosphoric acid.
  • the polymer membrane fulfills further essential functions, in particular it must have high mechanical stability and serve as a separator for the two fuels mentioned at the beginning.
  • CO arises as a by-product in the reforming of the hydrogen-rich gas from carbon-containing compounds, such as natural gas, methanol or gasoline, or as an intermediate in the direct oxidation of methanol.
  • the CO content of the fuel must be less than 100 ppm at temperatures ⁇ 100 ° C. At temperatures in the range of 150-200 °, however, 10,000 ppm CO or more can also be tolerated (NJ Bjerrum et. Al. Journal of Applied Electrochemistry, 2001, 31, 773-779).
  • a great advantage of fuel cells is the fact that the energy of the fuel is converted directly into electrical energy and heat during the electrochemical reaction. Water forms as a reaction product on the cathode. Heat is therefore a by-product of the electrochemical reaction.
  • the heat must be dissipated to prevent the system from overheating. Additional, energy-consuming devices are then required for cooling, which further reduce the overall electrical efficiency of the fuel cell.
  • the heat can be used efficiently using existing technologies such as heat exchangers.
  • High temperatures are used to increase efficiency. sought. If the operating temperature is above 100 ° C and the temperature difference between the ambient temperature and the operating temperature is large, it will be possible to cool the fuel cell system more efficiently or to use small cooling surfaces and to dispense with additional devices compared to fuel cells which, due to the membrane humidification, are below 100 ° C must be operated.
  • such a fuel cell system also has disadvantages.
  • the durability of membranes doped with phosphoric acid is relatively limited.
  • the service life is significantly reduced, in particular by operating the fuel cell below 100 ° C., for example at 80 ° C. In this context, however, it should be noted that when the fuel cell is started up and shut down, the cell must be operated at these temperatures.
  • DMBZ direct methanol fuel cell
  • the present invention is therefore based on the object of providing a novel polymer electrolyte membrane which achieves the objects set out above.
  • a membrane according to the invention should be able to be produced inexpensively and simply.
  • the conductivity should be achieved without additional humidification, especially at high temperatures.
  • the membrane should have a high mechanical stability in relation to its performance.
  • a polymer electrolyte membrane should be made available that can be used in many different fuel cells.
  • the membrane is said to be particularly suitable for fuel cells that use pure hydrogen and numerous carbon-containing fuels, in particular natural gas, gasoline, methanol and biomass, as energy sources.
  • the membrane should be able to be used in a hydrogen fuel cell and in a direct methanol fuel cell (DMBZ).
  • DMBZ direct methanol fuel cell
  • the operating temperature should be able to be extended from ⁇ 20 ° C to 200 ° C without reducing the service life of the fuel cell very much.
  • a polymer electrolyte membrane should be created which has a high mechanical stability, for example a high modulus of elasticity, high tensile strength and high fracture toughness.
  • the present invention relates to a proton-conducting polymer membrane comprising polymers comprising at least one porous support material and polymers comprising phosphonic acid groups obtainable by polymerizing monomers comprising phosphonic acid groups.
  • a membrane according to the invention exhibits a high temperature over a wide temperature range
  • a membrane according to the invention shows a relatively high mechanical stability.
  • a membrane according to the invention can be produced simply and inexpensively.
  • membranes have a surprisingly long service life.
  • a fuel cell that is equipped with a membrane according to the invention can also be operated at low temperatures, for example at 20 ° C., without the service life of the fuel cell being greatly reduced thereby.
  • a membrane according to the invention exhibits a high conductivity over a wide temperature range, which is also achieved without additional moistening. Furthermore, a fuel cell that is equipped with a membrane according to the invention can also be used for low temperatures, for example operated at 80 ° C, without thereby reducing the life of the fuel cell very much.
  • a polymer electrolyte membrane according to the invention has a very low methanol permeability and is particularly suitable for use in a DM.BZ. This enables permanent operation of a fuel cell with a variety of fuels such as hydrogen, methanol or reformer gas, which can be obtained from natural gas, gasoline or biomass, for example.
  • membranes of the present invention show high mechanical stability, in particular high modulus of elasticity, high tensile strength and high fracture toughness. Furthermore, these membranes have a surprisingly long service life.
  • preferred proton-conducting polymer membranes are obtainable by a process comprising the steps
  • Imbibement is understood to mean an increase in weight of the porous carrier material of at least 3% by weight.
  • the weight gain is preferably at least 5%, particularly preferably at least 10%.
  • the increase in weight is determined gravimetrically from the mass of the porous support material before the imbibition m 0 and the mass of the polymer membrane after the polymerization according to step B), m 2 .
  • Q (m 2 -m 0 ) / m 0 x 100
  • the imbibition is preferably carried out at a temperature above 0 ° C, in particular between room temperature (20 C G) and 180 ° C in a liquid, preferably at least 5 wt .-% Phosphonsaure phenomenon contains extensive monomers. Furthermore, the imbibing can also be carried out at elevated pressure and with the aid of ultrasound. The limits result from economic considerations and technical possibilities.
  • the carrier material used for imbibing generally has a thickness in the range from 5 to 1000 ⁇ m, preferably 10 to 500 ⁇ m, in particular 15 and 300 ⁇ m and particularly preferably between 30 and 250 ⁇ m.
  • the production of such carrier materials is generally known, some of which are commercially available.
  • Porous means that the carrier material has a large proportion of a free volume that can be filled with a liquid.
  • the free volume is preferably at least 30%, preferably at least 50%, at least 70% and very particularly preferably at least 90% by volume, based on the volume of the carrier material.
  • the pores of the carrier material can generally have a size in the range from 1 nm to 4000 nm, preferably 10 to 1000 nm.
  • the pores of the carrier material can generally have a volume in the range from 1 nm 3 to 1 ⁇ m 3 , preferably 10 nm 3 to 10000 nm 3 .
  • the pore volume of the carrier material results, for example, from the weight gain due to the imbibition with liquid. Furthermore, this size. can also be determined by the BET method (Brunauer, Emmett and Teller).
  • porous supports made of woven, non-woven or other porous materials can be used.
  • Porous materials can be known in particular based on organic or inorganic foams.
  • porous carrier materials are inorganic materials, such as ceramic materials such as silicon carbide SiC (US-A-4017664 and US-A-4695518) or inorganic glasses.
  • This carrier can represent, for example, a fabric or a fleece.
  • a particularly suitable carrier can be made from inorganic materials, for example from glass or materials, which have at least one compound made of a metal, a semimetal or a mixed metal or phosphorus with at least one element from the 3rd to 7th main group.
  • the material particularly preferably has at least one oxide of the elements Zr, Ti, Al or Si.
  • the carrier can be made of an electrically insulating material, such as. B. minerals, glasses, plastics, ceramics or natural materials.
  • the carrier preferably has special fabrics, nonwovens or porous materials made of quartz or glass that is resistant to high temperatures and acids.
  • the glass preferably contains at least one compound from the group Si0 2 , Al 2 0 3 or MgO.
  • the carrier comprises woven fabrics, nonwovens or porous materials made of Al 2 0 3 -, Zr0 2 -, Ti0 2 -, Si 3 N 4 , or SiC ceramic.
  • this carrier preferably has a very large porosity but also a small thickness of less than 1000 ⁇ m, preferably less than 500 ⁇ m and very particularly preferably less than 200 ⁇ m.
  • Carriers are preferably used which have woven fibers made of glass or quartz, the fabrics preferably consisting of 11-tex yarns with 5-50 warp or weft threads and preferably 20-28 warp and 28-36 weft threads. All 5.5-Tex yarns with 10-50 warp or weft threads are preferably used, and preferably 20-28 warp and 28 -36 weft threads.
  • Organic polymer films with an open pore structure, polymer fabric or polymer fleece can also be used as the porous support.
  • the open pore volume is more than 30%, preferably more than 50% and very particularly preferably more than 70%.
  • the glass transition temperature of the organic base polymer of such membranes is higher than the operating temperature of the fuel cell and is preferably at least 150 ° C., preferably at least 160 ° C. and very particularly preferably at least 180 ° C.
  • Such membranes are used as separation membranes for ultrafiltration, gas separation, pervaporation, nanofiltration, microfiltration or hemodialysis.
  • the preferred polymers include, inter alia, polyolefins, such as poly (chloroprene), polyacetylene, polyphenylene, poly (p-xylylene), polyarylmethylene, polystyrene, polymethylstyrene, polyvinyl alcohol, polyvinyl acetate, polyvinyl ether, polyvinylamine, poly (N-vinyl acetate), polyvinyl imidazole, polyvinyl carbazole , Polyvinylpyrrolidone, polyvinylpyridine, polyvinylchloride, polyvinylidene chloride, polytetrafluoroethylene, polyvinyldifluoride, polyhexafluoropropylene, polyethylene tetrafluorethylene, copolymers of PTFE with hexafluoropropylene, with perfluoropropylvinylether, with trifluoronitrosomethloroethane, with carbalkoxyvinylid
  • Polymers with CO bonds in the main chain for example polyacetal, polyoxymethylene, polyether, polypropylene oxide, polyepichlorohydrin, polytetrahydrofuran, polyphenylene oxide, polyether ketone, polyether ether ketone, polyether ketone ketone, polyether ketone ether ketone ketone, polyester, in particular polyhydroxy acetic acid, polybenzoate acetic acid, polybenzate acetic acid, polybenzenate acid, polybenzenate acid, polybenzenate acid, polybenzenate acid, polybenzenate acid, polybenzenate acid, polybenzenate acid, polybenzenate acid, polybenzenate acid, polybenzenate acid, polybenzenate acid, polybenzenate acid, polybenzenate acid, polybenzenate acid, polybenzenate acid, polybenzenate acid, polybenzenate acid, polybenzenate acid, polybenzenate, polybenzenate, Polybenzenate, Polybenzenate, Polybenzenate, Polybenzen
  • Inorganic polymers for example polysilanes, polycarbosilanes, polysiloxanes, polysilicic acid, polysilicates, silicones, polyphosphazenes and polythiazyl. These polymers can be used individually or as a mixture of two, three or more polymers. Polymers which contain at least one nitrogen atom, oxygen atom and / or sulfur atom in a repeating unit are particularly preferred. Particularly preferred are polymers which contain at least one aromatic ring with at least one nitrogen, oxygen and / or sulfur heteroatom per repeating unit. Polymers based on polyazoles are particularly preferred within this group. These basic polyazole polymers contain at least one aromatic ring with at least one nitrogen heteroatom per repeat unit.
  • the aromatic ring is preferably a five- or six-membered ring with one to three nitrogen atoms, which can be fused to another ring, in particular another aromatic ring.
  • Polymers based on polyazole generally contain recurring azole units of the general formula (I) and / or (II) and / or (III) and / or (IV) and / or (V) and / or (VI) and / or ( VII) and / or (VIII) and / or (IX) and / or (X) and / or (XI) and / or (XII) and / or (XIII) and / or (XIV) and / or (XV) and / or (XVI) and / or (XVI) and / or (XVII) and / or (XVIII) and / or (XIX) and / or (XX) and / or (XXI) and / or (XVIII) and / or (XIX) and / or (XX) and / or (XXI) and / or (XXII) and / or (XXII))
  • Ar are the same or different and for a tetra-bonded aromatic or heteroaromatic group, which can be mono- or polynuclear
  • Ar 1 are the same or different and for a divalent aromatic or heteroaromatic group, which can be mono- or polynuclear
  • Ar 2 are the same or different
  • Ar 3 are the same or different for a two or three-membered aromatic or heteroaromatic group, which may be mono- or polynuclear, and for a tridentic aromatic or heteroaromatic group, which may be single or polynuclear
  • Ar 4 are the same or different and for a three-membered aromatic or heteroaromatic group which may be mono- or polynuclear
  • Ar 5 are the same or different and for a tetra-aromatic or heteroaromatic group which may be mono- or polynuclear
  • Ar 6 are the same or different and for a divalent aromatic or heteroaromatic group, which can be mononuclear or polynuclear
  • Aromatic or heteroaromatic groups preferred according to the invention are derived from benzene, naphthalene, biphenyl, diphenyl ether, diphenylmethane, diphenyldimethylmethane, bisphenone, diphenylsulfone, thiophene, furan, pyrrole, thiazole, oxazole, imidazole, isothiazole, isoxazole, 3,4-oxazole, pyrazole , 2,5-diphenyl-1, 3,4-oxadiazole, 1, 3,4-thiadiazole, 1, 3,4-triazole, 2,5-diphenyl-1, 3,4-triazole, 1, 2.5 -Triphenyl-l, 3,4-triazole, 1,2,4-oxadiazole, 1, 2,4-thiadiazole, 1, 2,4-triazole, 1, 2,3-triazole, 1,2,3,4 -Tetrazole, Benzo [b] thioph
  • the substitution pattern of Ar 1 , Ar 4 , Ar 6 , Ar 7 , Ar 8 , Ar 9 , Ar 10 , Ar 11 is arbitrary, in the case of phenylene, for example, Ar 1 , Ar 4 , Ar 6 , Ar 7 , Ar 8 , Ar 9 , Ar 10 , Ar 11 are ortho-, meta- and para-phenylene. Particularly preferred groups are derived from benzene and biphenylene, which may also be substituted.
  • Preferred alkyl groups are short-chain alkyl groups with 1 to 4 carbon atoms, such as. B. methyl, ethyl, n- or i-propyl and t-butyl groups.
  • Preferred aromatic groups are phenyl or naphthyl groups.
  • the alkyl groups and the aromatic groups can be substituted.
  • Preferred substituents are halogen atoms such as. B. fluorine, amino groups, hydroxyl groups or short-chain alkyl groups such as. B. methyl or ethyl groups.
  • the polyazoles can also have different recurring units which differ, for example, in their radical X. However, it preferably has only the same X radicals in a recurring unit.
  • polyazole polymers are polyimidazoles, polybenzthiazoles, polybenzoxazoles, polyoxadiazoles, polyquinoxalines, polythiadiazoles poly (pyridines), poly (pyrimidines), and poly (tetrazapyrenes).
  • the polymer containing recurring azole units is a copolymer or a blend which contains at least two units of the formulas (I) to (XXII) which differ from one another.
  • the polymers can be present as block copolymers (diblock, triblock), statistical copolymers, periodic copolymers and / or alternating polymers.
  • the polymer containing recurring azole units is a polyazole which contains only units of the formula (I) and / or (II).
  • the number of repeating azole units in the polymer is preferably an integer greater than or equal to 10.
  • Particularly preferred polymers contain at least 100 repeating azole units.
  • polymers containing recurring benzimidazole units are preferred.
  • Some examples of the extremely useful polymers containing recurring benzimidazole units are represented by the following formulas:
  • n and m is an integer greater than or equal to 10, preferably greater than or equal to 100.
  • polyazole polymers are polyimidazoles, polybenzimidazole ether ketone, polybenzthiazoles, polybenzoxazoles, polytriazoles, polyoxadiazoles, polythiadiazoles, polypyrazoles, polyquinoxalines, poly (pyridines), poly (pyrimidines), and poly (tetrazapyrenes).
  • Preferred polyazoles are distinguished by a high molecular weight. This applies in particular to the polybenzimidazoles. Measured as intrinsic viscosity, this is preferably at least 0.2 dl / g, preferably 0.7 to 10 dl / g, in particular 0.8 to 5 dl / g.
  • Organic foams can also be produced as chemically inert carriers. These foams can be produced by releasing gases such as CO 2 in the synthesis of the organic polymer or by using volatile liquids. Methods for the production of organic foams are described in D. Klempner, KC Frisch “Handbook of Polymeric Foams and Foam Technology” and FA Shutov Advances in Polymer Science Volume 73/74, 1985, pages 63-123. Supercritical CO 2 can also be used as a pore former be used.
  • a particularly useful carrier is a phase separation membrane made of polybenzimidazole, which can be produced as described in US 4693824 or US 4666996 or US 5091087.
  • the chemical stability of these membranes can be further improved by crosslinking using the method described in US Pat. No. 4,634,530.
  • Expanded polymer films such as expanded Teflon can also be used as carrier materials. Methods for producing proton-conducting membranes by filling such an expanded perfluorinated membrane are described in US 5547551.
  • thermosets which were produced by chemically induced phase separation, can also be used as carrier materials.
  • a slightly volatile solvent is added to a mixture of several monomers capable of crosslinking. When crosslinked, this solvent becomes insoluble and a heterogeneous polymer is formed. Evaporation of the solvent produces a chemically inert, porous thermoset which can subsequently be impregnated with a liquid which contains monomers comprising phosphonic acid groups.
  • the flat structure according to step A) can be stable at high temperatures.
  • High temperature stable means that the support is stable at a temperature of at least 150 ° C., preferably at least 200 ° C. and particularly preferably at least 250 ° C.
  • Stable means that the essential properties of the carrier are retained. There is no change in the mechanical properties or the chemical composition when the sheet material is exposed for at least 1 hour.
  • the liquid containing monomers comprising phosphonic acid groups can be a solution, wherein the liquid can also contain suspended and / or dispersed constituents.
  • the viscosity of the liquid which contains monomers comprising phosphonic acid groups can be in wide ranges, with the addition of solvents or an increase in temperature in order to adjust the viscosity.
  • the dynamic viscosity is preferably in the range from 0.1 to 10000 mPa * s, in particular 0.2 to 2000 mPa * s, these values being able to be measured, for example, in accordance with DIN 53015.
  • Monomers comprising phosphonic acid groups are known in the art. These are compounds which have at least one carbon-carbon double bond and at least one phosphonic acid group.
  • the two carbon atoms which form the carbon-carbon double bond preferably have at least two, preferably 3, bonds to groups which lead to a slight steric hindrance of the double bond.
  • These groups include hydrogen atoms and halogen atoms, especially fluorine atoms.
  • the polymer comprising phosphonic acid groups results from the polymerization product which is obtained by polymerizing the monomer comprising phosphonic acid groups alone or with further monomers and / or crosslinking agents.
  • the monomer comprising phosphonic acid groups can comprise one, two, three or more carbon-carbon double bonds. Furthermore, the monomer comprising phosphonic acid groups may contain one, two, three or more phosphonic acid groups.
  • the monomer comprising phosphonic acid groups contains 2 to 20, preferably 2 to 10, carbon atoms.
  • the monomer comprising phosphonic acid groups used to prepare the polymers comprising phosphonic acid groups is preferably a compound of the formula
  • R denotes a bond, a divalent C1-C15 alkylene group, divalent C1-C15 alkyleneoxy group, for example ethyleneoxy group or divalent C5-C20-aryl or heteroaryl group, the above radicals in turn with halogen, -OH, COOZ, -CN, NZ 2 can be substituted,
  • Z independently of one another denotes hydrogen, C1-C15-alkyl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20-aryl or heteroaryl group, where the above radicals in turn can be substituted by halogen, -OH, -CN, and x is an integer 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 means y represents an integer 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 and / or the formula
  • R denotes a bond, a divalent C1-C15 alkylene group, divalent C1-C15 alkyleneoxy group, for example ethyleneoxy group or divalent C5-C20 aryl or heteroaryl group, the above radicals in turn being halogen, -OH, COOZ, -CN, NZ 2 can be substituted,
  • A represents a group of the formulas COOR 2 , CN, CONR 2 2 , OR 2 and / or R 2 , wherein R 2 is hydrogen, a C1-C15-alkyl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20-aryl or heteroaryl group means, where the above radicals in turn can be substituted with halogen, -OH, COOZ, -CN, NZ 2 R is a bond, a divalent C1-C15-alkylene group, divalent C1-C15-alkyleneoxy group, for example ethyleneoxy group or divalent C5-C20- Aryl or heteroaryl group, where the above radicals can in turn be substituted with halogen, -OH, COOZ, -CN, NZ 2 , Z independently of one another hydrogen, C1-C15-alkyl group, C1-C15-alkoxy group; Ethyleneoxy group or C5-C20-aryl or heteroaryl
  • the preferred monomers comprising phosphonic acid groups include alkenes which have phosphonic acid groups, such as ethenephosphonic acid, propenephosphonic acid, butenephosphonic acid; Acrylic acid and / or methacrylic acid compounds that have phosphonic acid groups, such as 2-phosphonomethyl-acrylic acid, 2-phosphonomethyl-methacrylic acid, 2-phosphonomethyl-acrylic acid amide and 2-phosphonomethyl-methacrylic acid amide.
  • vinylphosphonic acid ethenephosphonic acid
  • a preferred vinylphosphonic acid has a purity of more than 70%, in particular 90% and particularly preferably more than 97% purity.
  • the monomers comprising phosphonic acid groups can furthermore also be used in the form of derivatives which can subsequently be converted into the acid, the conversion to the acid also being able to take place in the polymerized state.
  • derivatives include, in particular, the salts, the esters, the amides and the halides of the monomers comprising phosphonic acid groups.
  • the liquid used in step A) preferably comprises at least 20% by weight, in particular at least 30% by weight and particularly preferably at least 50% by weight, based on the total weight of the mixture, of monomers comprising phosphonic acid groups.
  • the liquid used in step A) can additionally contain further organic and / or inorganic solvents.
  • the organic solvents include in particular polar aprotic solvents such as dimethyl sulfoxide (DMSO), esters such as ethyl acetate and polar protic solvents such as alcohols such as ethanol, propanol, isopropanol and / or butanol.
  • the inorganic solvents include in particular water, phosphoric acid and polyphosphoric acid.
  • the content of monomers comprising phosphonic acid groups in such liquids is generally at least 5% by weight, preferably at least 10% by weight, particularly preferably between 10 and 97% by weight.
  • compositions containing monomers comprising sulfonic acid groups can be used to prepare the polymers comprising phosphonic acid groups.
  • Monomers comprising sulfonic acid groups are known in the art. These are compounds which have at least one carbon-carbon double bond and at least one sulfonic acid group.
  • the two carbon atoms which form the carbon-carbon double bond preferably have at least two, preferably 3, bonds to groups which lead to a slight steric hindrance of the double bond. These groups include hydrogen atoms and halogen atoms, especially fluorine atoms.
  • the polymer comprising sulfonic acid groups results from the polymerization product which is obtained by polymerization of the monomer comprising sulfonic acid groups alone or with further monomers and / or crosslinking agents.
  • the monomer comprising sulfonic acid groups can comprise one, two, three or more carbon-carbon double bonds.
  • the monomer comprising sulfonic acid groups may contain one, two, three or more sulfonic acid groups.
  • the monomer comprising sulfonic acid groups contains 2 to 20, preferably 2 to 10, carbon atoms.
  • the monomer comprising sulfonic acid groups is preferably a compound of the formula wherein
  • R denotes a bond, a divalent C1-C15 alkylene group, divalent C1-C15 alkyleneoxy group, for example ethyleneoxy group or divalent C5-C20 aryl or heteroaryl group, the above radicals in turn being halogen, -OH, COOZ, -CN, NZ 2 can be substituted,
  • Z independently of one another denotes hydrogen, C1-C15-alkyl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20-aryl or heteroaryl group, it being possible for the above radicals themselves to be substituted by halogen, -OH, -CN, and x is an integer 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 means y an integer 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10
  • R denotes a bond, a divalent C1-C15 alkylene group, divalent C1-C15 alkyleneoxy group, for example ethyleneoxy group or divalent C5-C20 aryl or heteroaryl group, the above radicals in turn being halogen, -OH, COOZ, -CN, NZ 2 can be substituted,
  • Z independently of one another is hydrogen, C1-C15-alkyl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20-aryl or heteroaryl group, where the above radicals can in turn be substituted by halogen, -OH, -CN, and x is an integer 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 means
  • A represents a group of the formulas COOR 2 , CN, CONR 2 2 , OR 2 and / or R 2 , wherein R 2 is hydrogen, a C1-C15-alkyl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20-aryl or heteroaryl group means, where the above radicals in turn can be substituted with halogen, -OH, COOZ, -CN, NZ 2 R is a bond, a divalent C1-C15-alkylene group, divalent C1-C15-alkyleneoxy group, for example ethyleneoxy group or divalent C5-C20- Aryl or heteroaryl group, where the above radicals can in turn be substituted with halogen, -OH, COOZ, -CN, NZ 2 , Z independently of one another hydrogen, C1-C15-alkyl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20 -Aryl or heteroaryl
  • the preferred monomers comprising sulfonic acid groups include alkenes which have sulfonic acid groups, such as ethene sulfonic acid, propene sulfonic acid, butene sulfonic acid; Acrylic acid and / or methacrylic acid compounds which have sulfonic acid groups, such as 2-sulfonomethyl-acrylic acid, 2-sulfonomethyl-methacrylic acid, 2-sulfonomethyl-acrylic acid amide and 2-sulfonomethyl-methacrylic acid amide.
  • vinyl sulfonic acid ethene sulfonic acid
  • Aldrich or Clariant GmbH is particularly preferably used.
  • a preferred vinyl sulfonic acid has a purity of more than 70%, in particular 90% and particularly preferably more than 97% purity.
  • the monomers comprising sulfonic acid groups can also be used in the form of derivatives which can subsequently be converted into the acid, the conversion to the acid also being able to take place in the polymerized state.
  • derivatives include in particular the salts, the esters, the amides and the halides of the monomers comprising sulfonic acid groups.
  • the weight ratio of monomers comprising sulfonic acid groups to monomers comprising phosphonic acid groups can be in the range from 100: 1 to 1: 100, preferably 10: 1 to 1:10 and particularly preferably 2: 1 to 1: 2.
  • monomers capable of crosslinking can be used in the production of the polymer membrane. These monomers can be added to the liquid according to step A).
  • the monomers capable of crosslinking are, in particular, compounds which have at least 2 carbon-carbon double bonds. Dienes, trienes, tetraenes, dimethylacrylates, trimethylacrylates, tetramethylacrylates, diacrylates, triacrylates, tetraacrylates are preferred.
  • R is a C1-C15-alkyl group, C5-C20-aryl or heteroaryl group, NR ', -S0 2 , PR ' , Si (R ' ) 2 , where the above radicals can in turn be substituted, R ' independently of one another hydrogen, a C1-C15 alkyl group, C1-C15 alkoxy group, C5-C20 aryl or heteroaryl group and n is at least 2.
  • the substituents of the above radical R are preferably halogen, hydroxyl, carboxy, carboxyl, carboxyl esters, nitriles, amines, silyl, siloxane radicals.
  • crosslinkers are allyl methacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetra- and polyethylene glycol dimethacrylate, 1, 3-butanediol dimethacrylate, glycerol dimethacrylate, diurethane dimethacrylate, trimethylolpropane trimethacrylate, epoxy acrylates, for example Ebacryl, N ', N-methylenebisacrylamide, carbinol, butadiene, isoprene, chloroprene, divinylbenzene and / or bisphenol A dimethylacryfate.
  • crosslinking agents are optional, these compounds usually being in the range between 0.05 to 30% by weight, preferably 0.1 to 20% by weight, particularly preferably 1 and 10% by weight, based on the weight of the Monomers comprising phosphonic acid groups can be used.
  • Another polymer can be added to the liquid used in step A).
  • This polymer can be dissolved, dispersed or suspended, among other things.
  • These polymers have been described by way of example as an organic carrier material, to which reference is made.
  • the preferred polymers which are added to the liquid according to step A) include, among others, polyolefins, such as poly (chloroprene), polyacetylene, polyphenylene, poly (p-xylylene), polyarylmethylene, polystyrene, polymethylstyrene, polyvinyl alcohol, polyvinyl acetate , Polyvinyl ether, polyvinyl amine, poly (N-vinyl acetamide), polyvinyl imidazole, polyvinyl carbazole, polyvinyl pyrrolidone, polyvinyl pyridine, polyvinyl chloride, polyvinylidene chloride, polytetrafluoroethylene, polyvinyl difluoride, polyhexafluoropropylene, polyethylene tetrafluoroethylene, copolymers of PTFE with hexafluorethylene fluoride with fluorafluoromethylene fluoride with hexafluoromethylene fluoride
  • Inorganic polymers for example polysilanes, polycarbosians, polysiloxanes, polysilicic acid, polysilicates, silicones, polyphosphazenes and polythiazyl. These polymers can be used individually or as a mixture of two, three or more polymers. Polymers which contain at least one nitrogen atom, oxygen atom and / or sulfur atom in a repeating unit are particularly preferred. Particularly preferred are polymers which contain at least one aromatic ring with at least one nitrogen, oxygen and / or sulfur heteroatom per repeating unit. Polymers based on polyazoles are particularly preferred within this group. These basic polyazole polymers contain at least one aromatic ring with at least one nitrogen heteroatom per repeat unit.
  • fillers in particular proton-conducting fillers, and additional acids can also be added to the membrane.
  • Such substances preferably have an intrinsic conductivity at 100 ° C. of at least 10 6 S / cm, in particular 10 5 S / cm.
  • the addition can take place, for example, in step A).
  • these additives if they are in liquid form, can also be added after the polymerization according to step B).
  • Non-limiting examples of proton-conducting fillers are:
  • Sulfates such as: CsHS0 4 , Fe (S0 4 ) 2 , (NH 4 ) 3 H (S0 4 ) 2 , LiHS0 4 , NaHS0 4 , KHS0 4 , RbS0 4 , LiN 2 H 5 S0 4 , NH 4 HS0 4 , phosphates like Zr 3 (P0 4 ) 4 , Zr (HP0 4 ) 2 , HZr 2 (P0 4 ) 3 , U0 2 P0 4 .3H 2 0, H 8 U0 2 P0 4 , Ce (HP0 4 ) 2 , Ti (HP0 4 ) 2 , KH 2 P0 4 , NaH 2 P0 4 , LiH 2 P0 4 , NH 4 H 2 P0 4 , CsH 2 P0 4 , CaHP0 4 , MgHP0 4 , HSbP 2 0 8 , HSb 3 P 2 0 14l H 5 Sb 5 P 2 0 2
  • Oxides such as Al 2 0 3> Sb 2 0 5 , Th0 2 , Sn0 2 , Zr0 2 , Mo0 3
  • Silicates such as zeolites, zeolites (NH 4 +), layered silicates, framework silicates, H-natrolites, H-mordenites, NH 4 -analyses, NH 4 -sodalites, NH 4 -galates, H-montmorillonites acids such as HCI0 4 , SbF 5
  • Fillers such as carbides, in particular SiC, Si 3 N 4 , fibers, in particular glass fibers, glass powders and / or polymer fibers, preferably based on polyazoles.
  • the membrane after the polymerization in step B) comprises at most 80% by weight, preferably at most 50% by weight and particularly preferably at most 20% by weight of additives.
  • this membrane can also contain perfluorinated sulfonic acid additives (preferably 0.1-20% by weight, preferably 0.2-15% by weight, very preferably 0.2-10% by weight). These additives improve performance, increase proximity to the cathode to increase oxygen solubility and diffusion, and decrease the absorption of phosphoric acid and phosphate to platinum.
  • Non-limiting examples of perfluorinated sulfonic acid additives are: trifluomethanesulfonic acid, potassium trifluoromethanesulfonate, sodium trifluoromethanesulfonate, lithium, Ammoniumtrifluormethansulfonat, Kaliumperfluorohexansulfonat, Natriumperfluorohexansulfonat, Lithiumperfluorphexansulfonat, ammonium perfluorohexanesulphonate, perfluorohexanesulphonic acid, Kaliumnonafiuorbutansulfonat, Natriumnonafluorbutansulfonat, Lithiumnonafluorbutansulfonat, Ammoniumnonafluorbutansulfonat, Cäsiumnonafluorbutansulfonat, tri ethylammonium perfluorohexasulfonate and per
  • the polymerization of the monomers comprising phosphonic acid groups in step B) is preferably carried out by free radicals.
  • the radical formation can take place thermally, photochemically, chemically and / or electrochemically.
  • a starter solution which contains at least one substance capable of forming radicals can be added to the liquid in accordance with step A).
  • a starter solution can be applied to the imbibed carrier material. This can be done by means of measures known per se (e.g. spraying, dipping, etc.) which are known from the prior art.
  • Suitable radical formers include azo compounds, peroxy compounds, persulfate compounds or azoamidines.
  • Non-limiting examples are dibenzoyl peroxide, dicumol peroxide, cumene hydroperoxide, diisopropyl peroxidicarbonate, bis (4-t-butylcyclohexyl) peroxidicarbonate, dipotassium persulfate, ammonium peroxydisulfate, 2,2'-azobis (2-methylpropionitrile) (AIBN), 2,2'-azobisidine (2,2'-azobisidine), 2,2'-azobeamine, 2,2'-azobisidine, 2,2'-azobeamine ) hydrochloride, benzpinacol, dibenzyl derivatives, methyl ethylene ketone peroxide, 1, 1-azobiscyclohexane carbonitrile, methyl ethyl ketone peroxide, acetylacetone peroxide, dilauryl peroxide, didecanoyl per
  • radical formers can also be used which form radicals when irradiated.
  • the preferred compounds include ⁇ , ⁇ -diethoxyacetophenone (DEAP, Upjon Corp), n-butylbenzoin ether (®Trigonal-14, AKZO) and 2,2-dimethoxy-2-phenylacetophenone (®lgacure 651) and 1-benzoylcyclohexanol ( ®lgacure 184), bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide ( ⁇ Irgacure 819) and 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-phenylpropan-1-one ( ⁇ Irgacure 2959), each from Ciba Geigy Corp. are commercially available.
  • radical generator Usually between 0.0001 and 5% by weight, in particular 0.01 to 3% by weight (based on the weight of the monomers comprising phosphonic acid groups) are added to free radical formers.
  • the amount of radical generator can be varied depending on the desired degree of polymerization.
  • IR InfraRot, ie light with a wavelength of more than 700 nm
  • NIR Near IR, ie light with a wavelength in the range from approx. 700 to 2000 nm or an energy in the range of approx. 0.6 to 1.75 eV).
  • the polymerization can also be carried out by exposure to UV light with a wavelength of less than 400 nm.
  • This polymerization method is known per se and is described, for example, in Hans Joerg Elias, Macromolecular Chemistry, ⁇ .auflage, Volume 1, p.492-511; D.R. Arnold, N.C. Baird, J.R. Bolton, J.C. D. Brand, P.W. M Jacobs, P.de Mayo, W.R. Ware, Photochemistry-An Introduction, Academic Press, New York and M.K. Mishra, Radical Photopolymerization of Vinyl Monomers, J. Macromol. Sci.-Revs. Macromol. Chem. Phys. C22 (1982-1983) 409.
  • a membrane is irradiated with a radiation dose in the range from 1 to 300 kGy, preferably from 3 to 250 kGy and very particularly preferably from 20 to 200 kGy.
  • the polymerization of the monomers comprising phosphonic acid groups in step B) is preferably carried out at temperatures above room temperature (20 ° C.) and below 200 ° C., in particular at temperatures between 40 ° C. and 150 ° C., particularly preferably between 50 ° C. and 120 ° C.
  • the polymerization is preferably carried out under normal pressure, but can also be carried out under the action of pressure.
  • the polymerization can lead to a solidification of the flat structure, this solidification being followed by microhardness measurement can be.
  • the increase in hardness due to the polymerization is preferably at least 20%, based on the hardness of the imbibed carrier material.
  • the membranes have high mechanical stability. This size results from the hardness of the membrane, which is determined by means of microhardness measurement according to DIN 50539.
  • the membrane is successively loaded with a Vickers diamond within 20 s up to a force of 3 mN and the depth of penetration is determined.
  • the hardness at room temperature is at least 0.01 N / mm 2 , preferably at least 0.1 N / mm 2 and very particularly preferably at least 1 N / mm 2 , without any intention that this should impose a restriction.
  • the force is then kept constant at 3 mN for 5 s and the creep is calculated from the penetration depth.
  • the creep C-HU 0.003 / 20/5 under these conditions is less than 20%, preferably less than 10% and very particularly preferably less than 5%.
  • the module determined by means of microhardness measurement is YHU at least 0.5 MPa, in particular at least 5 MPa and very particularly preferably at least 10 MPa, without this being intended to impose a restriction.
  • the degree of polymerization of the polymers comprising phosphonic acid groups contained in the membrane according to the invention is not critical.
  • the degree of polymerization is preferably at least 2, in particular at least 5, particularly preferably at least 30 repeat units, in particular at least 50 repeat units, very particularly preferably at least 100 repeat units.
  • M n the number average molecular weight
  • the proportion by weight of monomers comprising phosphonic acid groups and of radical initiators is kept constant in comparison with the ratios of the manufacture of the membrane.
  • the conversion achieved in a comparative polymerization is preferably greater than or equal to 20%, in particular greater than or equal to 40% and particularly preferably greater than or equal to 75%, based on the monomers comprising phosphonic acid groups used.
  • the polymers comprising phosphonic acid groups contained in the membrane preferably have a broad molecular weight distribution.
  • the polymers comprising phosphonic acid groups can have a polydispersity M w / M n in the range from 1 to 20, particularly preferably from 3 to 10.
  • the water content of the proton-conducting membrane is preferably at most 15% by weight, particularly preferably at most 10% by weight and very particularly preferably at most 5% by weight.
  • the conductivity of the membrane can be based on the Grotthus mechanism, which means that the system does not require additional moistening.
  • preferred membranes comprise portions of polymers comprising low molecular weight phosphonic acid groups.
  • the polymerization in step B) can lead to a decrease in the layer thickness.
  • the thickness of the self-supporting membrane is preferably between 15 and 1000 ⁇ m, preferably between 20 and 500 ⁇ m, in particular between 30 and 250 ⁇ m.
  • the membrane can be crosslinked thermally, photochemically, chemically and / or electrochemically on the surface. This hardening of the membrane surface additionally improves the properties of the membrane.
  • the membrane can be heated to a temperature of at least 150 ° C., preferably at least 200 ° C. and particularly preferably at least 250 ° C.
  • the thermal crosslinking is preferably carried out in the presence of oxygen.
  • the oxygen concentration in this process step is usually in the range from 5 to 50% by volume, preferably 10 to 40% by volume, without any intention that this should impose a restriction.
  • Another method is radiation with ⁇ , ⁇ and / or electron beams.
  • the radiation dose is preferably between 5 and 250 kGy, in particular 10 to 200 kGy. Irradiation can take place in air or under inert gas. This improves the performance properties of the membrane, in particular its durability.
  • the duration of the crosslinking reaction can be in a wide range. In general, this reaction time is in the range from 1 second to 10 hours, preferably 1 minute to 1 hour, without this being intended to impose any restriction.
  • the membrane comprises at least 3% by weight, preferably at least 5% by weight and particularly preferably at least 7% by weight, of phosphorus (as an element), based on the total weight the membrane.
  • the proportion of phosphorus can be determined using an elementary analysis.
  • the membrane is dried at 110 ° C. for 3 hours in a vacuum (1 mbar).
  • the polymers comprising phosphonic acid groups preferably have a phosphonic acid group content of at least 5 meq / g, particularly preferably at least 10 meq / g. This value is determined via the so-called ion exchange capacity (IEC).
  • IEC ion exchange capacity
  • the phosphonic acid groups are converted into the free acid, the measurement being carried out before polymerization of the monomers comprising phosphonic acid groups.
  • the sample is then titrated with 0.1 M NaOH.
  • the ion exchange capacity (IEC) is then calculated from the consumption of the acid up to the equivalent point and the dry weight.
  • the polymer membrane according to the invention has improved material properties compared to the previously known doped polymer membranes. In particular, they already show an intrinsic conductivity in comparison with known undoped polymer membranes. This is due in particular to the presence of polymers containing phosphonic acid groups. - insert -
  • the polymer membrane according to the invention has improved material properties compared to the previously known doped polymer membranes. In particular, they perform better than known doped polymer membranes. This is due in particular to an improved proton conductivity. At temperatures of 120 ° C., this is at least 1 mS / cm, preferably at least 2 mS / cm, in particular at least 5 mS / cm, preferably measured without humidification.
  • the membrane can show a high conductivity even at a temperature of 70 ° C.
  • the conductivity depends, among other things, on the sulfonic acid group content of the membrane. The higher this proportion, the better the conductivity at low temperatures.
  • a membrane according to the invention can be moistened at low temperatures.
  • the compound used as an energy source for example hydrogen
  • the water formed by the reaction is sufficient to achieve humidification.
  • the specific conductivity is measured by means of impedance spectroscopy in a 4-pole arrangement in potentiostatic mode and using platinum electrodes (wire, 0.25 mm diameter). The distance between the current-consuming electrodes is 2 cm.
  • the spectrum obtained is evaluated using a simple model consisting of a parallel arrangement of an ohmic resistor and a capacitor.
  • the sample cross-section of the phosphoric acid-doped membrane is measured immediately before the sample assembly. To measure the temperature dependence, the measuring cell is in brought to the desired temperature in a furnace and controlled via a Pt-100 thermocouple positioned in the immediate vicinity of the sample. After reaching the temperature, the sample is kept at this temperature for 10 minutes before starting the measurement.
  • the passage current density when operating with 0.5 M methanol solution and 90 ° C. in a so-called liquid direct methanol fuel cell is preferably less than 100 mA / cm 2 , in particular less than 70 mA / cm 2, particularly preferably less than 50 mA / cm 2 and very particularly preferably less than 10 mA / cm 2 .
  • the passage current density when operating with a 2 M methanol solution and 160 ° C. in a so-called gaseous direct methanol fuel cell is preferably less than 100 mA / cm 2 , in particular less than 50 mA / cm 2, very particularly preferably less than 10 mA / cm 2 .
  • the amount of carbon dioxide released at the cathode is measured by means of a CO 2 sensor. From the value of the C0 2 amount thus obtained, as from P. Zelenay, SC Thomas, S. Gottesfeld in S. Gottesfeld, TF filler "Proton Conducting Membrane Fuei Cells II" ECS Proc. Vol. 98-27 p. 300 -308, the passage current density is calculated.
  • the intrinsically conductive polymer membranes according to the invention include use in fuel lines, in electrolysis, in capacitors and in battery systems. Because of their property profile, the polymer membranes can preferably be used in fuel cells, in particular in DMBZ fuel cells (direct methanol fuel cell).
  • the present invention also relates to a membrane electrode unit which has at least one polymer membrane according to the invention.
  • the membrane electrode assembly has a high performance even with a low content of catalytically active substances, such as platinum, ruthenium or palladium.
  • catalytically active substances such as platinum, ruthenium or palladium.
  • gas diffusion layers provided with a catalytically active layer can be used.
  • the gas diffusion layer generally shows electron conductivity.
  • Flat, electrically conductive and acid-resistant structures are usually used for this. These include, for example, carbon fiber papers, graphitized carbon fiber papers, carbon fiber fabrics, graphitized carbon fiber fabrics and / or flat structures which have been made conductive by adding carbon black.
  • the catalytically active layer contains a catalytically active substance.
  • a catalytically active substance include noble metals, in particular platinum, palladium, rhodium, iridium and / or ruthenium. These substances can also be used with one another in the form of alloys. Furthermore, these substances can also be used in alloys with base metals, such as Cr, Zr, Ni, Co and / or Ti. Furthermore the oxides of the aforementioned noble metals and / or base metals can also be used.
  • the catalytically active compounds are used in the form of particles which preferably have a size in the range from 1 to 1000 nm, in particular 10 to 200 nm and preferably 20 to 100 nm.
  • the catalytically active layer can contain conventional additives. These include fluoropolymers such as Polytetrafluoroethylene (PTFE) and surface-active substances.
  • fluoropolymers such as Polytetrafluoroethylene (PTFE) and surface-active substances.
  • the weight ratio of fluoropolymer to catalyst material is greater than 0.1, this ratio preferably being in the range from 0.2 to 0.6.
  • the catalyst layer has a thickness in the range from 1 to 1000 ⁇ m, in particular from 5 to 500, preferably from 10 to 300 ⁇ m.
  • This value represents an average value that can be determined by measuring the layer thickness in the cross section of images that can be obtained with a scanning electron microscope (SEM).
  • the noble metal content of the catalyst layer is 0.1 to 10.0 mg / cm 2 , preferably 0.2 to 6.0 mg / cm 2 and particularly preferably 0.3 to 3.0 mg / cm 2 , These values can be determined by elemental analysis of a flat sample.
  • a catalytically active layer can be applied to the membrane according to the invention and this can be connected to a gas diffusion layer.
  • the membrane formation can also take place directly on the electrode instead of on a support.
  • a membrane is also the subject of the present invention.
  • a catalytically active layer can be applied to the membrane according to the invention and this can be connected to a gas diffusion layer.
  • a membrane can be formed and the catalyst can be applied.
  • the present invention also relates to a membrane-electrode unit which has at least one coated electrode and / or at least one polymer membrane according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Transplantation (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Graft Or Block Polymers (AREA)
  • Fuel Cell (AREA)

Abstract

Membrane polymère conductrice de protons qui contient des polymères renfermant au moins une matière de support poreuse et des polymères renfermant des groupes acide phosphonique pouvant être obtenus par polymérisation de monomères contenant des groupes acide phosphonique.
EP04764852A 2003-09-04 2004-09-04 Membrane polymere conductrice de protons contenant au moins une matiere de support poreuse et utilisation de ladite membrane dans des piles a combustible Withdrawn EP1676333A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10340929A DE10340929A1 (de) 2003-09-04 2003-09-04 Protonenleitende Polymermembran umfassend mindestens ein poröses Trägermaterial und deren Anwendung in Brennstoffzellen
PCT/EP2004/009901 WO2005024989A1 (fr) 2003-09-04 2004-09-04 Membrane polymere conductrice de protons contenant au moins une matiere de support poreuse et utilisation de ladite membrane dans des piles a combustible

Publications (1)

Publication Number Publication Date
EP1676333A1 true EP1676333A1 (fr) 2006-07-05

Family

ID=34258423

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04764852A Withdrawn EP1676333A1 (fr) 2003-09-04 2004-09-04 Membrane polymere conductrice de protons contenant au moins une matiere de support poreuse et utilisation de ladite membrane dans des piles a combustible

Country Status (5)

Country Link
US (1) US20070202415A1 (fr)
EP (1) EP1676333A1 (fr)
JP (1) JP2007504315A (fr)
DE (1) DE10340929A1 (fr)
WO (1) WO2005024989A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142570A2 (fr) * 2007-03-21 2008-11-27 Advent Technologies Conducteurs de protons à base de polyéthers aromatiques et leur utilisation en tant qu'électrolytes dans des piles à combustible à membrane électrolytique polymère
US20100104918A1 (en) * 2007-04-13 2010-04-29 Michigan Molecular Institute Improved fuel cell proton exchange membranes
DE102007000646B4 (de) 2007-11-07 2012-04-12 Sineurop Nanotech Gmbh Verfahren zur Herstellung einer Membran-Elektroden-Einheit
US9943808B2 (en) 2016-02-19 2018-04-17 King Fahd University Of Petroleum And Minerals Aluminum oxide supported gas permeable membranes

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3692569A (en) * 1970-02-12 1972-09-19 Du Pont Surface-activated fluorocarbon objects
US4017664A (en) * 1975-09-02 1977-04-12 United Technologies Corporation Silicon carbide electrolyte retaining matrix for fuel cells
US4634530A (en) * 1980-09-29 1987-01-06 Celanese Corporation Chemical modification of preformed polybenzimidazole semipermeable membrane
US4453991A (en) * 1981-05-01 1984-06-12 E. I. Du Pont De Nemours And Company Process for making articles coated with a liquid composition of perfluorinated ion exchange resin
US4695518A (en) * 1983-07-21 1987-09-22 United Technologies Corporation Silicon carbide matrix for fuel cells
US4693824A (en) * 1985-09-23 1987-09-15 Celanese Corporation Process for the production of polybenzimidazole ultrafiltration membranes
US4666996A (en) * 1986-01-24 1987-05-19 Celanese Corporation Crosslinking of polybenzimidazole polymer with divinyl sulfone
US4997892A (en) * 1989-11-13 1991-03-05 Hoechst Celanese Corp. Sulfalkylation of hydroxyethylated polybenzimidazole polymers
US5091087A (en) * 1990-06-25 1992-02-25 Hoechst Celanese Corp. Fabrication of microporous PBI membranes with narrow pore size distribution
CH691209A5 (de) * 1993-09-06 2001-05-15 Scherrer Inst Paul Herstellungsverfahren für einen Polmerelektrolyten und elektrochemische Zelle mit diesem Polymerelektrolyten.
US5834523A (en) * 1993-09-21 1998-11-10 Ballard Power Systems, Inc. Substituted α,β,β-trifluorostyrene-based composite membranes
US5422411A (en) * 1993-09-21 1995-06-06 Ballard Power Systems Inc. Trifluorostyrene and substituted trifluorostyrene copolymeric compositions and ion-exchange membranes formed therefrom
US5525436A (en) * 1994-11-01 1996-06-11 Case Western Reserve University Proton conducting polymers used as membranes
US5547551A (en) * 1995-03-15 1996-08-20 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
DE19509748C2 (de) * 1995-03-17 1997-01-23 Deutsche Forsch Luft Raumfahrt Verfahren zur Herstellung eines Verbundes aus Elektrodenmaterial, Katalysatormaterial und einer Festelektrolytmembran
DE19509749C2 (de) * 1995-03-17 1997-01-23 Deutsche Forsch Luft Raumfahrt Verfahren zur Herstellung eines Verbundes aus Elektrodenmaterial, Katalysatormaterial und einer Festelektrolytmembran
JPH11111310A (ja) * 1997-09-30 1999-04-23 Aisin Seiki Co Ltd 燃料電池用の固体高分子電解質膜およびその製造方法
US6110616A (en) * 1998-01-30 2000-08-29 Dais-Analytic Corporation Ion-conducting membrane for fuel cell
DE19817374A1 (de) * 1998-04-18 1999-10-21 Univ Stuttgart Lehrstuhl Und I Engineering-Ionomerblends und Engineering-Ionomermembranen
DE19851498A1 (de) * 1998-11-09 2000-07-06 Aventis Res & Tech Gmbh & Co Polymerzusammensetzung, Membran enthaltend diese, Verfahren zu deren Herstellung und deren Verwendung
JP2002146014A (ja) * 2000-11-15 2002-05-22 Toyobo Co Ltd イオン伝導性ホスホン酸含有ポリアゾール
DE10209419A1 (de) * 2002-03-05 2003-09-25 Celanese Ventures Gmbh Verfahren zur Herstellung einer Polymerelektrolytmembran und deren Anwendung in Brennstoffzellen
DE50302234D1 (de) * 2002-03-06 2006-04-06 Pemeas Gmbh Mischungen umfassend vinylhaltige sulfonsaure, polymerelektrolytmembranen umfassend polyvinylsulfonsaure und deren anwendung in brennstoffzellen
WO2003074597A1 (fr) * 2002-03-06 2003-09-12 Pemeas Gmbh Membrane electrolytique conductrice de protons a permeabilite reduite au methanol et son utilisation dans des piles a combustible
DE10213540A1 (de) * 2002-03-06 2004-02-19 Celanese Ventures Gmbh Lösung aus Vinylphosphonsäure, Verfahren zur Herstellung einer Polymerelektrolytmembran aus Polyvinylphosphaonsäure und deren Anwendung in Brennstoffzellen
DE10230477A1 (de) * 2002-07-06 2004-01-15 Celanese Ventures Gmbh Funktionalisierte Polyazole, Verfahren zu ihrer Herstellung sowie ihre Verwendung
DE10235357A1 (de) * 2002-08-02 2004-02-12 Celanese Ventures Gmbh Protonenleitende Polymermembran umfassend Phosphonsäure- und Sulfonsäuregruppen enthaltende Polymere und deren Anwendung in Brennstoffzellen
DE10235358A1 (de) * 2002-08-02 2004-02-12 Celanese Ventures Gmbh Protonenleitende Polymermembran umfassend Phosphonsäuregruppen enthaltende Polymere und deren Anwendung in Brennstoffzellen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005024989A1 *

Also Published As

Publication number Publication date
US20070202415A1 (en) 2007-08-30
DE10340929A1 (de) 2005-04-07
JP2007504315A (ja) 2007-03-01
WO2005024989A1 (fr) 2005-03-17

Similar Documents

Publication Publication Date Title
EP1488473B1 (fr) Melanges contenant de l'acide phosphonique renfermant du vinyle, membranes electrolytiques polymeres contenant de l'acide polyvinylphosphonique et utilisation desdites membranes dans des piles a combustible
EP1483316B1 (fr) Membrane electrolytique conductrice de protons a permeabilite reduite au methanol et son utilisation dans des piles a combustible
EP1506591B1 (fr) Membrane electrolyte polymere, procede de production de cette membrane et son utilisation dans des piles a combustible
EP1527494B1 (fr) Membrane polymere conductrice de protons comprenant des polymeres a groupes acide sulfonique et application de ladite membrane dans des piles a combustible
EP1527493B1 (fr) Membrane polymere conductrice de protons comprenant des polymeres a groupes acide phosphonique et application de ladite membrane dans des piles a combustible
EP1485427B1 (fr) Melanges contenant de l'acide sulfonique renfermant du vinyle, membrane electrolytique polymere contenant de l'acide polyvinylsulfonique et utilisation de ladite membrane dans des piles a combustible
EP1483314A1 (fr) Membrane electrolytique conductrice de protons pour des applications a hautes temperatures et utilisation desdites membranes dans des piles a combustible
WO2003096464A2 (fr) Membrane electrolyte a polymere greffe, procede de production de cette membrane et son utilisation dans des piles a combustible
WO2004033079A2 (fr) Membrane polymere conductrice de protons comprenant des polyazoles contenant des groupes acide phosphonique et utilisation de cette membrane dans des piles a combustible
EP1559164A2 (fr) Membrane polymere conductrice de protons contenant des melanges de polyazoles, et son utilisation dans des piles a combustible
EP1927151B1 (fr) Procede de conditionnement d'unites membrane-electrodes destinees a des piles a combustible
EP1771911B1 (fr) Unites membrane-electrode et piles a combustible de longevite superieure
EP1678778A2 (fr) Membrane polymere conductrice de protons contenant des polymeres pourvus de groupes acide sulfonique lies de maniere covalente a des groupes aromatiques, unite membrane-electrodes et utilisation de ladite unite dans des piles a combustible
DE10235357A1 (de) Protonenleitende Polymermembran umfassend Phosphonsäure- und Sulfonsäuregruppen enthaltende Polymere und deren Anwendung in Brennstoffzellen
EP1955400A1 (fr) Ensembles membrane-electrodes ameliores et piles a combustible a duree de vie plus longue
DE10340928A1 (de) Mit einer Katalysatorschicht beschichtete protonenleitende Polymermembran enthaltend Phosphonensäuregruppen umfassende Polymere, Membran-Elektroden-Einheit und deren Anwendung in Brennstoffzellen
EP1676333A1 (fr) Membrane polymere conductrice de protons contenant au moins une matiere de support poreuse et utilisation de ladite membrane dans des piles a combustible
DE10235356A1 (de) Protonenleitende Polymermembran umfassend Sulfonsäuregruppen enthaltende Polymere und deren Anwendung in Brennstoffzellen
WO2005111123A1 (fr) Corps moule anisotrope, procede pour produire et utiliser des corps moules anisotropes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060404

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF FUEL CELL GMBH

17Q First examination report despatched

Effective date: 20080409

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150314