EP1671024A2 - Verfahren zur regelung eines magnetventils - Google Patents

Verfahren zur regelung eines magnetventils

Info

Publication number
EP1671024A2
EP1671024A2 EP04764943A EP04764943A EP1671024A2 EP 1671024 A2 EP1671024 A2 EP 1671024A2 EP 04764943 A EP04764943 A EP 04764943A EP 04764943 A EP04764943 A EP 04764943A EP 1671024 A2 EP1671024 A2 EP 1671024A2
Authority
EP
European Patent Office
Prior art keywords
solenoid valve
opening
current
control valve
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04764943A
Other languages
English (en)
French (fr)
Inventor
Ekkehard KÖHLER
Wolfgang Messerschmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP1671024A2 publication Critical patent/EP1671024A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2017Output circuits, e.g. for controlling currents in command coils using means for creating a boost current or using reference switching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2031Control of the current by means of delays or monostable multivibrators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2034Control of the current gradient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2051Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using voltage control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • H01F2007/185Monitoring or fail-safe circuits with armature position measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F2007/1894Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings minimizing impact energy on closure of magnetic circuit

Definitions

  • the invention relates to a method for regulating an opening and / or closing process of a solenoid valve according to the preamble of claim 1.
  • the known solenoid valve has an electromagnet arranged in a housing part, an axially movable armature which is guided in a slider and acted on by a closing spring, and a control valve member which moves with the armature and which cooperates with a valve seat of the solenoid valve and thus the fuel outflow from the control pressure chamber controls.
  • a solenoid valve for controlling an injection valve of an internal combustion engine is also known from DE 101 31 201 AI.
  • DE 196 07 073 AI describes a method and a device for controlling the movement of an armature of an electro- magnetic switching element (or a solenoid valve), which has an excitation winding, described.
  • a first setpoint value for the current can be specified from a first point in time and a second setpoint value for the current can be specified from a second point in time.
  • the second target value is less than, equal to or greater than the first target value and the second point in time lies before a third point in time at which the armature reaches its end position with a solenoid valve needle or the control valve member.
  • P -oblematic in general is that the control valve member or the armature has not yet been precisely regulated during the ballistic phase, that is to say during the flight phase.
  • the line resistance of the supply voltage is a factor that greatly impairs the flight phase, because a high internal resistance can lead to voltage fluctuations. Since the voltage measurement is usually carried out by averaging, voltage drops due to the internal resistance can hardly be determined. Exact current control at any discrete point in time is very complex since, for example, a separate processor would have to be made available for this. Due to these voltage fluctuations, however, the pulling and opening times of the armature or of the control valve element change, as a result of which a closing process or the ballistic phase of the armature disadvantageously cannot be reproduced exactly.
  • the time duration between the times of the previous opening and / or closing process is used as a controlled variable for regulating the current and / or voltage curve in the opening and / or closing process can advantageously precisely regulate the current curve.
  • the solenoid valve closes, the time at which the armature or the control valve member picks up and strikes is already detected, which means that the flight phase or the ballistic phase of the control valve member or the armature can be regulated in a simple manner by means of current - and voltage curve can be adjusted accordingly.
  • the flight phase of the control valve member is thus reproducible up to the point of impact and there is no complex regulation of the current value at any discrete point in time. As a result, production costs can be kept low.
  • the time of impact can also be recorded, as is known.
  • the total duration of the anchor's flight phase can be calculated using these variables. It can thus be reproducibly determined exactly how long the pull-in phase with a high voltage to accelerate the armature, the subsequent second phase with a lower voltage after exceeding a current threshold value until it opens (closing of the solenoid valve) and the holding phase after the opening time.
  • FIG. 1 shows a current flow diagram during the closing process of a solenoid valve with an increased internal resistance of the supply lines with and without a control according to the invention
  • 2 shows a flowchart of an embodiment of the control method according to the invention.
  • a solenoid valve (not shown here) for controlling the fuel injection of an internal combustion engine is known, for example, from DE 196 07 073 AI.
  • An excitation winding or coil of the solenoid valve is in series with a voltage source and at least one controllable switching means, for example a transistor, which is controlled by a control signal from a control signal.
  • the control signal is provided by a motor control.
  • the present exemplary embodiment shows a method for regulating an opening and / or closing process of the solenoid valve, the voltage source during the closing process of the solenoid valve, in which fuel is to be injected into the internal combustion engine, the excitation winding in three phases Pl, P2, P3 (see Fig. 1) supplied with a voltage which varies during each phase P1, P2, P3, as a result of which a control valve member is moved accordingly, in particular via an armature.
  • the voltage can also be modulated differently in the respective phases, for example.
  • a first voltage is applied at time T Be gi nn until a current threshold value, in the present exemplary embodiment numbered 14 amperes, is reached.
  • a current threshold value in the present exemplary embodiment numbered 14 amperes
  • the control valve member starts to move or is accelerated.
  • the voltage in phase P2 is reduced again in order not to accelerate the armature or the control valve member any further.
  • the voltage is kept constant in order to keep the control valve in the open state and the solenoid valve closed.
  • a current curve la is outlined without a temporal control of the phases P1 and P2.
  • a curve b shows a current waveform of the solenoid valve at nominal conditions or with an inventive temporal Einregelung particular phases Pl and P2 on the detected time points T Be beginning, nzug and t Au ftsch •
  • FIG. 2 shows a control method according to the invention as a flow diagram.
  • a step A marks the start of the method, in a step B the start values for the voltage conditions in the phases P1 and P2 are defined.
  • the energization of the solenoid valve begins at time T Be gi ⁇ m.
  • the corresponding voltage for phase P1 is then applied (step D).
  • the suit detection is carried out, ie the measurement of the time A n to g when the current value threshold is reached, after which in a step F the phase P2 is initiated by applying a further changed voltage.
  • a step G the impact detection follows, ie the measurement of the impact time T A schschiag, after which the phase P3 is initiated at a point H.
  • this phase P3 is characterized by an exact current control and represents the so-called holding phase of the solenoid valve.
  • the voltage is switched off quickly or the solenoid valve opens.
  • the resulting time behavior of the current curve remains in the required accuracy, as well as the injection behavior of the internal combustion engine, which is now constant regardless of mechanical and hydraulic disturbances.
  • the solution can easily be implemented by a computer program. An automatic compensation of aging effects and manufacturing variation of the solenoid valves is also achieved.
  • the flight time of the control valve member can be used to diagnose the internal combustion engine.
  • T Due to the constant pick-up and opening times T should be g / T _ impact of the valve of the respective physical beginning of injection is constant, and thus the fuel injected into the cylinder fuel amount, since the injection nozzle is acted upon in time always evenly with pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetically Actuated Valves (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Regelung eines Öffnungs- und/oder Schliessvorgangs eines Magnetventils durch Regelung eines Verlaufs eines Stroms und/oder einer Spannung mit welchen eine Spule des Magnetventils zur Bewegung eines Steuerventilglieds durchstrÖmt bzw. versorgt wird, wobei mehrere Zeitpunkte des öffnungs- und/oder Schliessvorgangs detektiert werden, welche sich insbesondere aus physikalischen Kennwerten des Stromverlaufs und/oder des Magnetventils ergeben. Als Regelgrösse zur Regelung des Strom- und/oder Spannungsverlaufs beim Öffnungs- und/oder Schliessvorgang wird die zeitliche Dauer zwischen den detektierten Zeitpunkten des vorhergehenden Öffnungs- und/oder Schliessvorgangs verwendet.

Description

Verfahren zur Regelung eines Magnetventils
Die Erfindung betrifft ein Verfahren zur Regelung eines Offnungs- und/oder Schließvorgangs eines Magnetventils gemäß dem Oberbegriff von Anspruch 1.
Ein' aus der DE 196 50 865 AI bekanntes Magnetventil wird zur Steuerung des Kraftstoffdrucks im Steuerdruckraum eines Ein- spritzventils, beispielsweise eines Injektors einer Common- Rail-Einspritzanlage, verwendet. Bei derartigen Einspritzventilen wird über den Kraftstoffdruck im Steuerdruckraum die Bewegung eines Ventilkolbens gesteuert, mit dem eine Einspritzöffnung des Einspritzventils geöffnet oder geschlossen wird. Das bekannte Magnetventil weist einen in einem Gehäuseteil angeordneten Elektromagneten, einen in einem Gleitstück geführten und von einer Schließfeder beaufschlagten, axialbeweglichen Anker und ein mit dem Anker bewegtes Steuerventil- glied auf, das mit einem Ventilsitz des Magnetventils zusammen wirkt und so den Kraftstoffabfluss aus dem Steuerdruckraum steuert .
Ein Magnetventil zur Steuerung eines Einspritzventils einer Brennkraftmaschine ist ebenfalls aus der DE 101 31 201 AI bekannt .
In der DE 196 07 073 AI ist ein Verfahren und eine Vorrichtung zur Steuerung der Bewegung eines Ankers eines elektro- magnetischen Schaltorgans (bzw. eines Magnetventils) , welches eine Erregerwicklung aufweist, beschrieben. Dabei ist ab einem ersten Zeitpunkt ein erster Soll-Wert für den Strom vorgebbar und ab einem zweiten Zeitpunkt ist ein zweiter Soll- Wert für den Strom vorgebbar. Der zweite Soll-Wert ist kleiner, gleich oder größer als der erste Soll-Wert und der zweite Zeitpunkt liegt vor einem dritten Zeitpunkt, bei dem der Anker mit einer Magnetventilnadel bzw. dem Steuerventilglied seine Endlage erreicht.
Es ist bekannt, den Aufprall- bzw. AufSchlagzeitpunkt des Ankers durch eine Auswertung des Stromverlaufs zu bestimmen. Des weiteren verwendet man dazu auch Sensoren oder ähnliches.
P -oblematisch ist im allgemeinen, dass das Steuerventilglied bzw. der Anker während der ballistischen Phase, dass heißt während der Flugphase, bisher nicht genau ausgeregelt wird. Insbesondere der Leitungswiderstand der Versorgungsspannung ist ein Faktor, der die Flugphase stark beeinträchtigt, denn ein hoher Innenwiderstand kann zu SpannungsSchwankungen führen. Da die Spannungsmessung in der Regel durch Mittelwert- bildung erfolgt, können Spannungseinbrüche durch den Innenwiderstand kaum festgestellt werden. Eine exakte Stromregelung zu jedem diskreten Zeitpunkt ist sehr aufwendig, da hierfür zum Beispiel ein eigener Prozessor zur Verfügung gestellt werden müsste. Durch diese SpannungsSchwankungen verändern sich jedoch Anzugs- und AufSchlagszeitpunkt des Ankers bzw. des Steuerventilglieds, wodurch ein Schließvorgang bzw. die ballistische Phase des Ankers in nachteilhafter Weise nicht exiakt reproduzierbar wird. Insbesondere bei genauen Anforderungen, zum Beispiel bei der Steuerung der Einspritzung in einer Brennkraftmaschine, ist dies problematisch, da der physikalische Einspritzbeginn jeweils zu einem anderen Zeitpunkt stattfindet als geplant. Dies führt zu Änderungen der in den Zylinder eingespritzten KraftStoffmenge, was wiederum zu einer ungewollten Änderung des Motordrehmoments führt.
Es ist daher die Aufgabe der vorliegenden Erfindung, ein Verfahren zur Regelung des Offnungs- und/oder Schließvorgangs eines Magnetventils der eingangs erwähnten Art zu schaffen, welches die Nachteile des Standes der Technik beseitigt und einen reproduzierbaren Offnungs- und oder Schließvorgang eines Magnetventils ermöglicht.
Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale von Anspruch 1 gelöst .
Dadurch, dass als Regelgröße zur Regelung des Strom- und/oder Spannungsverlaufs bei dem Offnungs- und/oder Schließvorgang die zeitliche Dauer zwischen den Zeitpunkten des vorhergehenden Offnungs- und/oder Schließvorgangs verwendet wird, kann in vorteilhafter Weise eine genaue Einregelung des Stromverlaufs erfolgen. Insbesondere werden beim Schließvorgang des Magnetventils Anzugs- und AufSchlagszeitpunkt des Ankers bzw. des Steuerventilglieds bereits erfasst, wodurch eine Regelung der Flugphase bzw. der ballistischen Phase des Steuerventil- glieds bzw. des Ankers mit diesen bereits erfassten Werten in einfacher Weise erfolgen kann, indem Strom- und Spannungsverlauf entsprechend angepasst werden. Somit wird die Flugphase des Steuerventilglieds bis zum AufSchlagszeitpunkt reproduzierbar und es rauss keine aufwendige Regelung des Stromwertes zu jedem diskreten Zeitpunkt erfolgen. Dadurch können Produktionskosten niedrig gehalten werden.
Insbesondere kann erfasst werden, wann die Anzugsphase des Steuerventilglieds vorüber ist (z.B. bei Überschreitung eines Stromschwellenwertes) , ebenfalls kann wie bekannt der Aufschlagzeitpunkt erfasst werden. Mit diesen Größen kann die Gesamtdauer der Flugphase des Ankers errechnet werden. Somit kann reproduzierbar genau bestimmt werden, wie länge die Anzugsphase mit einer hohen Spannung zur Beschleunigung des Ankers, die danach folgende zweite Phase mit einer geringeren Spannung nach Überschreiten eines Stromschwellwerts bis zum Aufschlag (Schließen des Magnetventils) und die Haltephase nach dem AufSchlagsZeitpunkt dauert.
Bei einem Einsatz der Regelung in einer Brennkraftmaschine zur Steuerung einer Einspritzung kann auf diese Weise ein konstantes Zeitverhalten der Magnetventile und dadurch bedingt ein reproduzierbarer physikalischer Einspritzbeginn bei der Einspritzung erreicht werden. Die in die Zylinder eingespritzte Kraftstoffmenge bleibt, genauso wie das Motordrehmoment, konstant. Zusätzlich können Serienstreuungen von Magnetventilen durch diese Ansteuerung bzw. Regelung ausgeglichen werden. Die mechanischen und elektrischen Toleranzen der bei der Einspritzung häufig verwendeten Steckpumpen werden berücksichtig und ausgeregelt.
Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen. Nachfolgend ist anhand der Zeichnung prinzipmäßig ein Ausführungsbeispiel beschrieben.
Es zeigt :
Fig. 1 ein Stromverlaufsdiagramm während des Schließvorgangs eines Magnetventils bei einem erhöhten Innenwiderstand der Versorgungsleitungen mit und ohne eine erfindungsgemäße Regelung; und Fig. 2 ein Flussdiagramm einer Ausführungsform des erfindungsgemäßen Regelungsverfahrens .
Bekannt ist der Einsatz eines hier nicht dargestellten Magnetventils zur Steuerung der Kraftstoffeinspritzung einer Brennkraftmaschine beispielsweise aus der DE 196 07 073 AI. Eine Erregerwicklung bzw. Spule des Magnetventils liegt in Reihe mit einer Spannungsquelle und mindestens einem steuerbaren Schaltmittel, beispielsweise einem Transistor, der von einer Steuer- und Regeleinheit entsprechend von einem Steuersignal angesteuert wird. Das Steuersignal wird von einer Motorregelung bereit gestellt.
Das vorliegende Ausführungsbeispiel zeigt ein Verfahren zur Regelung eines Offnungs- und/oder Schließvorgangs des Magnetventils, wobei die Spannungsquelle beim Schließvorgang des Magnetventils, bei dem Kraftstoff in die Brennkraftmaschine eingespritzt werden soll, die Erregerwicklung in drei Phasen Pl, P2, P3 (siehe Fig. 1) mit einer Spannung versorgt, welche während jeder Phase Pl, P2 , P3 , variiert, wodurch ein Steuerventilglied insbesondere über einen Anker entsprechend bewegt wird. In anderen Ausführungsbeispielen kann die Spannung beispielsweise auch in den jeweiligen Phasen verschieden moduliert werden.
In der ersten Phase, welche die Anzugsphase des Steuerventil- glieds bzw. des Ankers des Magnetventils beschreibt, wird eine erste Spannung zum Zeitpunkt TBeginn angelegt, bis ein Stromschwellenwert, im vorliegenden Ausführungsbeispiel mit 14 Ampere beziffert, erreicht ist. Dadurch setzt sich das Steuerventilglied in Bewegung bzw. wird beschleunigt. Nach Erreichen des Anzugzeitpunktes (d.h. des Stromschwellenwerts) wird die Spannung in der Phase P2 wieder gesenkt, um den Anker bzw. das Steuerventilglied nicht weiter zu beschleunigen. Nach dem Aufschlag des Steuerventilglieds zum Zeitpunkt TAufschιag in der Phase P3 wird die Spannung konstant gehalten, um das Steuerventil im Aufschlagszustand und das Magnetventil dabei geschlossen zu halten.
In Figur 1 ist eine Stromverlaufskurve la ohne eine zeitliche Regelung der Phasen Pl und P2 skizziert. Eine Kurve lb zeigt einen Stromverlauf des Magnetventils bei Nominalverhältnissen oder mit einer erfindungsgemäßen zeitlichen Einregelung insbesondere der Phasen Pl und P2 über die detektierten Zeitpunkte TBeginn, nzug Und TAufschlag •
In Figur 2 ist ein erfindungsgemäßes Regelungsverfahren als Flussdiagramm dargestellt. Dabei kennzeichnet ein Schritt A den Start des Verfahrens, in einem Schritt B werden die Startwerte für die Spannungsverhältnisse in den Phasen Pl und P2 festgelegt. In einem Schritt C erfolgt der Bestromungsbe- ginn des Magnetventils zum Zeitpunkt TBegiιm- Anschließend wird die entsprechende Spannung für die Phase Pl angelegt (Schritt D) . In einem Schritt E erfolgt die Anzugserkennung, d. h. die Messung des Zeitpunkts Anzug über das Erreichen der Stromwertschwelle, wonach in einem Schritt F die Phase P2 durch Anlegen einer weiteren veränderten Spannung eingeleitet wird. In einem Schritt G folgt die AufSchlagserkennung, d. h. die Messung des AufSchlagsZeitpunktes TAufschiag, wonach in einem Punkt H die Phase P3 eingeleitet wird. Diese Phase P3 ist im vorliegenden Ausführungsbeispiel durch eine exakte Stromregelung gekennzeichnet und stellt die sogenannte Haltephase des Magnetventils dar. Danach folgt in einem Schritt I die Schnellabschaltung der Spannung bzw. eine Öffnung des Magnetventils. In einem Schritt J wird die Dauer der Flugphase des Steuerventilglieds TFιug = TAufschiag - TAnzug berechnet und diese in einem Schritt K zur Regelung und in einem Schritt L zur Bestimmung neuer Spannungsverhältnisse für die Phasen Pl und P2 verwendet, wonach in Schritt D wieder ein erneuter Bestro- mungsbeginn mit den neuen Spannungsverhältnissen zur konstanten Einregelung von TAnzug und TAUfschiag erfolgen kann. Das resultierende Zeitverhalten des Stromverlaufs bleibt dadurch in der geforderten Genauigkeit, ebenso das Einspritzverhalten der Brennkraftmaschine, welches nun unabhängig von mechanischen- und hydraulischen Störgrößen konstant ist. Die Lösung kann leicht durch ein Computerprogramm umgesetzt werden. Eine automatische Kompensierung von Alterungseffekten und Fertigungsstreuungen der Magnetventile wird zudem erreicht. Die Flugzeit des Steuerventilglieds kann zur Diagnostik der Brennkraftmaschine herangezogen werden.
Durch die konstanten Anzugs- und AufSchlagsZeiten TAnzug/ TAuf_ schlag des Ventils bleibt der jeweilige physikalische Spritzbeginn konstant und somit auch die in die Zylinder eingespritzte Kraftstoffmenge, da die Einspritzdüse immer zeitlich gleichmäßig mit Druck beaufschlagt wird.

Claims

Patentansprüche
1. Verfahren zur Regelung eines Offnungs- und/oder Schließvorgangs eines Magnetventils durch Regelung eines Verlaufs eines Stroms und/oder einer Spannung mit welchen eine Spule des Magnetventils zur Bewegung eines Steuerventilglieds durchströmt bzw. versorgt wird, wobei mehrere Zeitpunkte des Offnungs- und/oder Schließvorgangs de- tektiert werden, welche sich insbesondere aus physikalischen Kennwerten des Stromverlaufs und/oder des Magnetventils ergeben, d a d u r c h g e k e n n z e i c h n e t , dass als Regelgröße zur Regelung des Strom- und/oder Spannungsverlaufs bei dem Offnungs- und/oder Schließvorgang die zeitliche Dauer zwischen den detektierten Zeitpunkten ( BeginAAnzug/TAufschlag) des vorhergehenden Offnungs- und/oder Schließvorgangs verwendet wird.
2. Verfahren nach Anspruch 1, d a du r c h g e k e n n z e i c h n e t , dass ein erster detektierter Zeitpunkt (TBeginrι) den Start der Bestromung und/oder der Spannungsversorgung der Spule zum Anzug des Steuerventilglieds des Magnetventils markiert .
3. Verfahren nach Anspruch 2 , d a du r c h g e k e n n z e i c h n e t , dass ein zweiter detektierter Zeitpunkt (TAnzug) das Ende der Anzugsphase nach Erreichen eines Stromschwellenwerts und den Start der AufSchlagphase des Steuerventilglieds des Magnetventils markiert .
4. Verfahren nach Anspruch 1 , 2 oder 3 , d a d u r c h g e k e n n z e i c h n e t , dass ein dritter detektierter Zeitpunkt (TAUfSchiag) den Aufschlag des Steuerventilglieds beim Schließen des Magnetventils markiert .
5. Verfahren nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , dass die Regelung während der ballistischen Phase des Steuerventilglieds zwischen dem ersten detektierten Zeitpunkt (TBeginn) und dem dritten detektierten Zeitpunkt (TAufschlag) erfolgt.
6. Verfahren nach einem der Ansprüche 1 bis 5, welches bei der Kraftstoffeinspritzung einer Brennkraftmaschine eingesetzt wird.
7. Verfahren nach Anspruch 6 , d a d u r c h g e k e n n z e i c h n e t , dass die Regelgröße als Diagnosewert für die Brennkraftmaschine verwendet wird.
EP04764943A 2003-10-07 2004-09-08 Verfahren zur regelung eines magnetventils Withdrawn EP1671024A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10347056A DE10347056A1 (de) 2003-10-07 2003-10-07 Verfahren zur Regelung eines Magnetventils
PCT/EP2004/010000 WO2005038827A2 (de) 2003-10-07 2004-09-08 Verfahren zur regelung eines magnetventils

Publications (1)

Publication Number Publication Date
EP1671024A2 true EP1671024A2 (de) 2006-06-21

Family

ID=34428273

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04764943A Withdrawn EP1671024A2 (de) 2003-10-07 2004-09-08 Verfahren zur regelung eines magnetventils

Country Status (5)

Country Link
US (1) US20060201488A1 (de)
EP (1) EP1671024A2 (de)
JP (1) JP2007507646A (de)
DE (1) DE10347056A1 (de)
WO (1) WO2005038827A2 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007059117A1 (de) * 2007-12-07 2009-06-10 Robert Bosch Gmbh Verfahren zum Betreiben eines Einspritzventils
WO2009135519A1 (de) * 2008-05-09 2009-11-12 Siemens Aktiengesellschaft Verfahren und vorrichtung zur steuerung eines magnetischen aktuators
US8671973B2 (en) * 2009-01-21 2014-03-18 Hitachi Metals, Ltd. Mass flow controller hysteresis compensation system and method
DE102009003214A1 (de) * 2009-05-19 2010-11-25 Robert Bosch Gmbh Verfahren zum Betreiben eines Kraftstoffeinspritzventils einer Brennkraftmaschine und Steuergerät für eine Brennkraftmaschine
EP2375041A3 (de) * 2010-04-08 2018-04-04 Delphi Technologies, Inc. System und Verfahren zur Steuerung einer Einspritzzeit eines Kraftstoffeinspritzers
DE102010018290B4 (de) 2010-04-26 2016-03-31 Continental Automotive Gmbh Elektrische Ansteuerung eines Ventils basierend auf einer Kenntnis des Schließzeitpunkts des Ventils
DE102010022536A1 (de) 2010-06-02 2011-12-08 Continental Automotive Gmbh Verfahren und Vorrichtung zum Steuern eines Ventils
EP2619437A1 (de) * 2010-09-23 2013-07-31 International Engine Intellectual Property Company, LLC Verfahren zur steuerung des betriebs eines intensivierungskolbens in einem kraftstoffeinspritzer
DE102010041880B4 (de) 2010-10-01 2022-02-03 Vitesco Technologies GmbH Ermitteln der ballistischen Flugbahn eines elektromagnetisch angetriebenen Ankers eines Spulenaktuators
FR2975436B1 (fr) 2011-05-20 2015-08-07 Continental Automotive France Systeme d'injection directe de carburant adaptatif
DE102012209965A1 (de) * 2012-06-14 2013-12-19 Robert Bosch Gmbh Verfahren zum Betreiben eines Ventils
EP3072138A4 (de) * 2013-11-20 2017-06-21 Eaton Corporation Magnetspule und zugehöriges steuerungsverfahren
US8968140B1 (en) * 2014-03-07 2015-03-03 Ramsey Winch Company Electronically actuated clutch for a planetary winch
DE102016208492B3 (de) * 2016-05-18 2017-08-17 Continental Automotive Gmbh Verfahren zum Betreiben eines Kraftstoffinjektors mit Leerhub

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4341797A1 (de) * 1993-12-08 1995-06-14 Bosch Gmbh Robert Verfahren und Vorrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers
GB9420617D0 (en) * 1994-10-13 1994-11-30 Lucas Ind Plc Drive circuit
GB9509610D0 (en) * 1995-05-12 1995-07-05 Lucas Ind Plc Fuel system
US5515830A (en) * 1995-05-22 1996-05-14 Kokusan Denki Co., Ltd. Fuel injection equipment for internal combustion engine
DE19607073A1 (de) * 1996-02-24 1997-08-28 Bosch Gmbh Robert Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Schaltorgans
DE19650865A1 (de) 1996-12-07 1998-06-10 Bosch Gmbh Robert Magnetventil
JP3707210B2 (ja) * 1997-07-22 2005-10-19 いすゞ自動車株式会社 燃料噴射制御装置
US6292345B1 (en) * 1998-09-02 2001-09-18 Siemens Aktiengesellschaft Method for controlling an electromechanical actuator
JP2001173468A (ja) * 1999-12-17 2001-06-26 Honda Motor Co Ltd 内燃機関の電磁バルブ装置の制御方法
FR2813642B1 (fr) * 2000-09-04 2002-12-20 Siemens Automotive Sa Procede de commande de la quantite de carburant injecte dans un moteur a combustion interne a injection directe
US6923161B2 (en) * 2002-03-28 2005-08-02 Siemens Vdo Automotive Corporation Fuel injection timer and current regulator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005038827A2 *

Also Published As

Publication number Publication date
DE10347056A1 (de) 2005-05-12
US20060201488A1 (en) 2006-09-14
WO2005038827A2 (de) 2005-04-28
WO2005038827A3 (de) 2005-06-23
JP2007507646A (ja) 2007-03-29

Similar Documents

Publication Publication Date Title
DE102012213883B4 (de) Gleichstellung des Stromverlaufs durch einen Kraftstoffinjektor für verschiedene Teileinspritzvorgänge einer Mehrfacheinspritzung
EP2681434B1 (de) Verfahren zum bestimmen einer eigenschaft eines kraftstoffs
DE3843138C2 (de)
DE102010042467B4 (de) Ermittlung des Öffnungszeitpunkts eines Steuerventils eines indirekt angetriebenen Kraftstoffinjektors
DE102010041320B4 (de) Bestimmung des Schließzeitpunkts eines Steuerventils eines indirekt angetriebenen Kraftstoffinjektors
DE102010063009B4 (de) Verfahren und Vorrichtung zur Charakterisierung einer Bewegung eines Kraftstoffinjektors mittels Erfassung und Auswertung einer magnetischen Hysteresekurve
DE4433209A1 (de) Verfahren zur Bestimmung des Ankeraufprallzeitpunktes bei Entstromung eines Magnetventils
DE102013206600B4 (de) Einspritzsystem zum Einspritzen von Kraftstoff in eine Brennkraftmaschine und Regelverfahren für ein solches Einspritzsystem
EP2100020B1 (de) Verfahren zum betreiben eines einspritzventils
WO2011039043A1 (de) Verfahren und steuergerät zum betreiben eines ventils
EP2386021A1 (de) Verfahren zum betreiben eines kraftstoffeinspritzsystems
DE19607073A1 (de) Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Schaltorgans
EP1671024A2 (de) Verfahren zur regelung eines magnetventils
DE102005042110A1 (de) Vorrichtung und Verfahren zum Ansteuern eines elektromagnetischen Aktors
DE102010041880B4 (de) Ermitteln der ballistischen Flugbahn eines elektromagnetisch angetriebenen Ankers eines Spulenaktuators
WO2016166142A1 (de) Steuern eines kraftstoffeinspritz-magnetventils
DE102016203136B3 (de) Bestimmung einer elektrischen Ansteuerzeit für einen Kraftstoffinjektor mit Magnetspulenantrieb
DE102014220795A1 (de) Verfahren zur Vorgabe eines Stroms in einem Magnetventil
DE102013214412A1 (de) Ermittlung des Zeitpunkts eines vorbestimmten Öffnungszustandes eines Kraftstoffinjektors
DE102018116364A1 (de) Optimierung des stromverlaufs der einspritzung für elektromagnetisch betriebene einspritzdüsen
WO2016188668A1 (de) Ansteuerung von kraftstoffinjektoren bei mehrfacheinspritzungen
DE102016200743A1 (de) Verfahren zur Bestimmung einer Öffnungsverzugsdauer eines Kraftstoffinjektors
DE102016219888B3 (de) Betreiben eines Kraftstoffinjektors mit hydraulischem Anschlag
DE102016222508A1 (de) Verfahren zur Ansteuerung eines Magnetventils eines Kraftstoffinjektors
DE102016219881B3 (de) Betreiben eines Kraftstoffinjektors mit hydraulischem Anschlag

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060324

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLERCHRYSLER AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLER AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080401