EP1670910A1 - Masp-2 crystal structure and uses thereof - Google Patents

Masp-2 crystal structure and uses thereof

Info

Publication number
EP1670910A1
EP1670910A1 EP04762809A EP04762809A EP1670910A1 EP 1670910 A1 EP1670910 A1 EP 1670910A1 EP 04762809 A EP04762809 A EP 04762809A EP 04762809 A EP04762809 A EP 04762809A EP 1670910 A1 EP1670910 A1 EP 1670910A1
Authority
EP
European Patent Office
Prior art keywords
atom
masp
remark
polypeptide
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04762809A
Other languages
German (de)
French (fr)
Inventor
Veronika Harmat
Peter Gal
Peter Zavodsky
Geza Ambrus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NatImmune AS
Original Assignee
NatImmune AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NatImmune AS filed Critical NatImmune AS
Publication of EP1670910A1 publication Critical patent/EP1670910A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/30Detection of binding sites or motifs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B15/00ICT specially adapted for analysing two-dimensional or three-dimensional molecular structures, e.g. structural or functional relations or structure alignment
    • G16B15/20Protein or domain folding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2299/00Coordinates from 3D structures of peptides, e.g. proteins or enzymes
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B15/00ICT specially adapted for analysing two-dimensional or three-dimensional molecular structures, e.g. structural or functional relations or structure alignment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations

Definitions

  • the present invention relates to crystals of a polypeptide comprising the catalytic domain of MASP-2. Furthermore the invention relates to uses of said crystal for in silico screening methods to identify compound capable of interacting with MASP-2 and/or compound capable of modulating the activity of MASP-2.
  • the complement system is a key element of innate immunity in vertebrates. It is capable of recognizing and eliminating invading pathogen microorganisms and altered host cells through opsonization and lysis. Complement is a sophisticated cascade system, where serine protease enzymes activate each other in a strictly ordered manner. According to our present knowledge the activation of the complement system can be initiated by three independent pathways: the classical, the lectin, and the alternative pathways.
  • the first components of the classical and lectin pathways are supramolecular enzyme complexes consisting of a recognition subunit and associated serine proteases (Gal and Ambrus, 2001).
  • the recognition subunit of the classical pathway is C1q, which resembles to a bunch of six tulips consisting of N-terminal collagen-like arms and C- terminal globular heads.
  • the globular heads bind to the activator structures, which results in the activation of the serine protease zymogens (C1r and C1s) associated with the collagen-like region.
  • C1r and C1s serine protease zymogens
  • One C1q together with a heterotetramer of C1r and C1s proteases (C1s-C1 r-C1r-C1s) form the C1 complex (Arlaud et al., 1987; Schu aker et al., 1987).
  • the first enzymatic event in the classical pathway is the autoactivation of C1r zymogen.
  • Activated C1 r then cleaves zymogen C1s, which in turn cleaves and activates C2 and C4, the components of the C3-convertase enzyme complex.
  • the initiation complex of the lectin activation pathway resembles superficially the C1 complex.
  • the recognition subunit of the lectin pathway, the mannose-binding lectin (MBL) has C-terminal globular C-type lectin domains and N-terminal collagen-like stalks (Turner, 1996). MBL is capable of binding to carbohydrate arrays on the surface of pathogens and trigger the activation of the complement cascade through associated serine proteases.
  • MASP-1/-2/-3 mannose-binding lectin-associated serine protease-1 , -2 and -3
  • MAp-19 small non enzymatic protein MAp-19
  • MBL-MASP complexes exist with respect to the oligomer status of the MBL (ranging from two trimeric subunits to six) and the number and type of MASPs that associate with it (Dahl et al., 2001 ; Thielens et al., 2001).
  • MASP-1 and MASP-2 can act independently, they do not form hetero oligomers and do not require each other in order to become activated. Both MASP-1 and MASP-2 can autoactivate, and the activated serine proteases show significant activity towards different substrates (Ambrus et al., 2003).
  • MASP-2 is a C1s- like enzyme, cleaving C4 and C2 (Thiel et al., 1997; Rossi et al., 2001). Unlike C1s however, MASP-2 can autoactivate and therefore trigger the complement cascade without the contribution of any other protease (Vorup-Jensen et al., 2000). It has been shown that a complex consisting of two MBL subunits and two MASP-2 molecules represents the minimal complement-fixing unit (Chen and Wallis, 2001). Consequently a MASP-2 dimer is able to perform all functions mediated by the C1r 2 C1s 2 tetramer in the C1 complex.
  • the C1r, C1s, MASP-1/-2/-3 enzymes form a family of proteases with common modular organization (Sim and Laich, 2000; Volanakis and Arlaud, 1998; Schwaeble et al., 2002).
  • the N-terminal interacting region of these enzymes contains an EGF-like domain surrounded by two CUB domains.
  • the C-terminal catalytic region contains the serine protease (SP) domain preceded by two complement control protein (CCP) (also referred to as SCR or sushi) modules.
  • SP serine protease
  • CCP complement control protein
  • the SP domain is sufficient for autoactivation and can cleave the C2 substrate as efficiently as the intact molecule.
  • the presence of the CCP2 module is essential.
  • the CCP2 module may contain additional substrate binding sites for the C4 molecule.
  • the CCP2-SP fragment can therefore be considered as the catalytic domain of MASP-2.
  • Information about the 3D structure of the catalytic domain of MASP proteins would facilitate identification of useful compounds capable of interacting with MASP proteins. For example information about the 3D structure of the catalytic domain of active and non- active MASP may be useful. In particular, modulators of MASP proteins, such as inhibitors may be designed using information of the 3D structure of the catalytic domain of MASP proteins.
  • polypeptide comprising at least 150 consecutive amino acids from the serine protease domain of MASP-2.
  • Said polypeptide may be catalytically active, or said polypeptide may be catalytically inactive.
  • Information of the 3D structure of MASP-2 may be used to identify compounds, capable of interacting with MASP-2.
  • in silico screening methods may be employed to identify compounds, which with high probability can interact with MASP-2.
  • the method may be repeated with another data set comprising the structure coordinates of another polypeptide comprising at least 150 consecutive amino acids from the serine protease domain of MASP-2.
  • the method may in particular be repeated using one catalytically active MASP-2 polypeptide and one MASP-2 polypeptide, which lacks catalytic activity, for example one MASP-2 polypeptide in the two-chain form and one MASP-2 polypeptide in the one chain form.
  • the method may comprise selecting compounds capable of interacting only with a catalytically active MASP-2 polypeptide, or compound capable of interacting only with MASP-2 lacking catalytic activity or compounds capable of interacting with both catalytically active MASP-2 and MASP-2 lacking catalytic activity.
  • the methods of the invention furthermore comprise the steps of vii) Providing at least one selected compound; viii) Providing a polypeptide comprising at least 150 consecutive amino acids from the serine protease domain of MASP-2; ix) Contacting said polypeptide with said selected compound under conditions for interaction; x) Detecting interaction between said polypeptide and said selected compound, thereby identifying compounds capable of interacting with said polypeptide
  • the polypeptide used for the in vitro methods may be the same polypeptide, which co- ordinates were used for establishing the 3D model or it may be a different polypeptide also comprising at least 150 consecutive amino acids from the serine protease domain of MASP-2.
  • the polypeptide used for the in vitro methods may be a full length MASP-2 polypeptide, whereas the polypeptide used for establishing the 3D model may be a polypeptide merely comprising the CCP-2 and serine protease domains of MASP-2.
  • Information of the 3D structure of MASP-2 may also be used to identify compounds, capable of inhibiting MASP-2 activity.
  • compounds capable of interacting with a site required for MASP-2 activity may be useful inhibitors of MASP-2 activity.
  • compounds capable of interacting with the C4 binding pocket of MASP-2 may be useful inhibitors of MASP-2.
  • a method for identifying a compound capable of inhibiting MASP-2 activity comprises the steps of i) providing a computer system for producing a three-dimensional representation of a molecule or molecular complex, wherein said computer system comprises: a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein said data comprises the structure co-ordinates of a polypeptide comprising the CCP- 2 and the serine protease domain of MASP-2; a working memory for storing instruction for processing said machine- readable data; a central-processing unit coupled to said working memory and to said machine-readable data storage medium for processing said machine- readable data into said three-dimensional representation; and a display coupled to said central-processing unit for displaying said three- dimensional representation; and ii) executing instructions on the computer for generating a three dimensional representation of a substrate binding site on said polypeptide from structural co-ordinates of a crystal of said polypeptide, such
  • an inhibitor could for example be a compound that interacts with the active site. If the MASP-2 polypeptide is zymogen MASP-2, then an inhibitor could for example be a compound that interacts with the MASP-2 auto-cleavage site. Such a compound could then inhibit activation of MASP- 2.
  • the methods of the invention may furthermore comprise the steps of vii) Providing at least one selected compound; viii) Providing MASP-2; ix) Determining MASP-2 activity in the presence and absence of said compound; x) Identifying compounds in the presence of which MASP-2 activity is lower than in the absence of said compound
  • Fig. 1 Overall structure of the MASP-2 CCP2-SP fragment.
  • A Stereo ribbon diagram of molecule A (dark grey) and molecule B (light grey) of the crystal structure, with the SP domains superimposed. The ⁇ -strands of the CCP2 module and the C-terminus are labelled. Residues of the catalytic triad are shown as sticks and are labelled 'a.s.'
  • B Superimposition of the CCP module of molecule A onto that of C1 s (light blue) and C1 r (green), with the ⁇ -strands labelledf.
  • C Superimposition of the active SP domain of molecule A onto that of C1s and C1r with the active site residues shown as sticks. The loops are labelled according to Perona and Craik (1997).
  • FIG. 2 The CCP2/SP interface region.
  • A Backbone conformations of MASP-2 molecule A (red), molecule B (yellow), C1s (light blue), and C1r (CCP2-SP active form: light green) are shown with the CCP2 module superimposed. Due to differences in the topology of the interface contacts, the active site of MASP-2 (serine c195 side chain shown as space filling representation; also shown for CCP2-SP zymogen in medium green and CCP1- CCP2-SP zymogen in dark green) is shifted significantly compared to that of C1 r and C1s. B-D represent a 90° rotated view (side view) from that of A.
  • MASP-2 The CCP2/SP interface region of MASP-2 molecule A (B), molecule B (C), and C1s (D) is shown.
  • Residues forming interdomain contacts in MASP-2 are shown as balls and sticks, as well as the corresponding residues of C1s.
  • these residues form a hydrogen bond network (shown as green dotted lines), which is not established in C1s.
  • green dotted lines For the sake of clarity, some side chain atoms are not shown, the carbon atoms and the ribbon representation of SP domains are shown in blue, while those of the interdomain linkers are in yellow, the N- terminal loop and B1 are in rose and the rest of CCP2 module is in orange, respectively.
  • Fig. 3 Substrate binding subsites of MASP-2.
  • A Sequences of the P4-P4' segments are shown for the natural substrates: MASP-2, C2 and C4, as well as for the pseudosubstrate C1 inhibitor.
  • B Stereo view of the molecular surface of MASP-2 substrate binding subsites region is colored by residue type (acidic: red, basic: blue, polar: yellow, hydrophobic: grey). A model peptide (drawn as sticks) representing the P4-P2' residues of C2 is shown superimposed over the MASP-2 structure.
  • C4d Molecular surface representation of C4d is colored for electrostatic potential (red: negative, blue: positive), with its residues possibly forming electrostatic interactions with the MASP-2/C1s CCP2 module labelled in italics. Conformations of side chains C1s E356 / MASP-2 E378 were adjusted.
  • D Side view of the superimposed structures. Ribbon representation of C4d is shown in light purple, with its C- and N-termini and thioester region labelled, while MASP-2 and C1s are shown in magenta and light blue, respectively.
  • Fig.6 Alignment of the human MASP-1 , MASP-2, C1 r and C1 s sequences indicating the presence of the individual domains is MASP-2. Amino acids conserved in the four proteins are furthermore indicated by asterisk.
  • Fig. 7 illustrates the IC 50 determination of PMSF and MASP2 ⁇ B.
  • Fig. 8 illustrates the IC 50 determination of Pefablock and MASP2 ⁇ B.
  • Fig. 9 illustrates the IC 50 determination of Benzamidin and MASP2 ⁇ B.
  • Fig. 10 illustrates the IC 50 determination of NPGB and MASP2 ⁇ B.
  • Fig. 11 illustrates the IC 50 determination of APMSF and MASP2 ⁇ B.
  • Fig. 12 illustrates the IC 50 determination of Leupeptine and MASP2 ⁇ B.
  • Fig. 13 illustrates the IC 50 determination of E64 and MASP2 ⁇ B.
  • Fig. 14 illustrates the structure of benzamidine
  • Fig. 15 illustrates the structure of leupeptin
  • Fig. 16 illustrates the structure of NPGB
  • Fig. 17A shows a superimposed view of the 200 docked conformations of benzamidine in the substrate binding pocket of MASP-2. There are two closely spaced separate clusters
  • Fig. 17B illustrates the structure of benzamidine in the substrate binding pocket of MASP- 2.
  • the protein is shown in surface, the benzamidine is shown in ball and sticks representation.
  • Fig. 18A shows a superimposed view of 200 docketed conformations of leupeptin in the substrate binding pocket of MASP-2.
  • Fig. 18B illustrates the minimum energy conformation of leupeptin in the substrate binding pocket of the MASP2.
  • the protein is shown in surface, leupeptin is shown in ball and sticks representation.
  • Fig. 19A shows a superimposed view of the 200 docked conformations of NPGB in the substrate binding pocket of MASP-2. Two close clusters are well visible.
  • Fig. 19B illustrates the minimum energy conformation of the NPGB in the substrate binding pocket of the MASP2.
  • the protein is shown in surface, NPGB is shown in ball and sticks representation.
  • the MASP-2 protein comprises of a number of domains namely the CUB1 , EGF, CUB2, CCP1 , CCP2 and serine protease domains.
  • a schematic presentation of MASP-2 is given in figure 5. Position of the individual domains within human MASP-2 is indicated in figure 2.
  • a catalytic domain of MASP-2 is any domain of MASP-2 comprising catalytic activity. In general the catalytic domain comprises at least the serine protease domain of MASP-2.
  • Catalytic activity of MASP-2 is preferably serine protease activity towards a suitable substrate, such as zymogen MASP-2, C2 and/or C4. Catalytic activity may be determined using any of the methods described herein below in the section "MASP-2 activity".
  • polypeptides comprising at least 150, for example at least 175, such as at least 200 consecutive amino acids from the serine protease domain of MASP-2.
  • polypeptides of MASP-2 are designated "polypeptides of MASP-2" herein.
  • Polypeptides of MASP-2 preferably comprise the serine protease domain of MASP-2.
  • polypeptides of MASP-2 may also comprise one or more further domains of MASP-2, such as the CCP-2 domain.
  • said polypeptides comprises the CCP-2 domain and the serine protease domain of MASP-2.
  • MASP-2 any MASP-2 molecule known to the person skilled in the art and functional homologues thereof.
  • Said MASP-2 may for example be derived from a mammal, for example MASP-2 may be derived from a human being.
  • MASP-2 is human MASP-2 as identified by SEQ ID 1 or a functional homologue thereof sharing at least 50%, preferably at least 60%, more preferably at least 70%, even more preferably at least 80%, yet more preferably at least 90%, yet even more preferably at least 95% homology or more preferably identity with SEQ ID 1.
  • polypeptide comprising the serine protease domain of MASP-2 comprises aa 363 to 686 of SEQ ID 1.
  • polypeptide comprising the serine protease domain of MASP-2 comprises aa 299 to 686 of SEQ ID 1.
  • polypeptide may comprise other sequences, for example an extra peptide sequence comprising at least one amino acid, preferably in the range of 1 to 500, such as 1 to 250, for example 1 to 100, such as 1 to 75, for example 1 to 50, such as 1 to 25, for example 1 to 10 amino acids not derived from MASP-2.
  • said extra peptide sequence consists of at the most 20, such as at the most 10, for example at the most 5, for example around 4 amino acids.
  • the extra peptide sequence may be situated at the N-terminus or at the C-terminus or internally in the MASP-2 fragment.
  • the fragment is situated at the N-terminus of the C- terminus of the MASP-2 derived fragment.
  • the polypeptide comprise an extra peptide of the sequence ALA SER MET THR.
  • said sequence is positioned N-terminally.
  • the polypeptide consists of the sequence ALA SER MET THR coupled N-terminally to aa 363 to 686 of SEQ ID1.
  • the polypeptide consists of the sequence ALA SER MET THR coupled N-terminally to aa 299 to 686 of SEQ ID 1.
  • the polypeptide of MASP-2 is in an enzymatically active form (herein also designated catalytically active form).
  • the polypeptide preferably has at least 20%, such as at least 30%, for example at least 40%, such as at least 50%, for example at least 60%, such as at least 70%, for example at least
  • MASP-2 activity may be determined as described herein elsewhere. It is thus preferred that the polypeptide is in the enzymatically active, two-chain form.
  • polypeptides of MASP-2 as used herein is meant to cover both the one-chain and two-chain form of MASP-2. '
  • MASP-2 is in the one-chain form.
  • the one-chain form is also referred to as zymogen MASP-2.
  • MASP-2 may comprise one or more mutations, preferably one or more mutations within the cleavage site.
  • the MASP-2 polypeptide may in one embodiment of the invention comprise at least 150 consecutive amino acids of MASP-2 of SEQ ID 1 , wherein one or more amino acids have been mutated. In particular, it is preferred that at least one of the amino acids 443 to 445 of SEQ ID 1 are mutated.
  • the MASP-2 polypeptide may comprise or consist of amino acid 296 to 686 of SEQ ID 1 , wherein aa 444 is mutated, preferably aa 444 is mutated from R to Q.
  • Functional equivalents or functional homologues of polypeptides of MASP-2 or polypeptides comprising the serine protease domain of MASP-2 are polypeptides which share at least some sequence identity with the predetermined amino acid sequence of said polypeptides (for example a fragment of the amino acid sequence outlined in SEQ ID 1).
  • Functional equivalents should furthermore retain at least 30%, such as at least 40%, for example at least 50%, such as at least 60%, for example at least 70%, such as at least 80%, for example at least 90%, such as at least 95% MASP-2 activity. Methods of determining MASP-2 activity are described herein below.
  • the terms "functional equivalent” and “functional homologue” are used interchangeably herein.
  • Functional homologues comprise polypeptides with an amino acid sequence, which are sharing a homology with the predetermined MASP-2 polypeptide sequences as outlined herein above.
  • polypeptides are at least about 40 percent, such as at least about 50 percent homologous, for example at least about 60 percent homologous, such as at least about 70 percent homologous, for example at least about 75 percent homologous, such as at least about 80 percent homologous, for example at least about 85 percent homologous, such as at least about 90 percent homologous, for example at least 92 percent homologous, such as at least 94 percent homologous, for example at least 95 percent homologous, such as at least 96 percent homologous, for example at least 97 percent homologous, such as at least 98 percent homologous, for example at least 99 percent homologous with the predetermined polypeptide sequences as outlined herein above.
  • Homology may preferably be calculated by any suitable algorithm or by computerised implementations of such algorithms for example CLUSTAL in the PC/Gene program by Intelligenetics or GAP, BESTFIT, BLAST, FASTA and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG).
  • the homology between amino acid sequences may furthermore be calculated with the aid of well known matrices such as for example any one of BLOSUM 30, BLOSUM 40, BLOSUM 45, BLOSUM 50, BLOSUM 55, BLOSUM 60, BLOSUM 62, BLOSUM 65, BLOSUM 70, BLOSUM 75, BLOSUM 80, BLOSUM 85, and BLOSUM 90.
  • Functional homologues according to the present invention are preferably polypeptides with an amino acid sequence, which is at least about 50 percent, preferably at least about 60 percent, more preferably at least about 70 percent, even more preferably at least about 75 percent, yet more preferably at least about 80 percent, even more preferably at least about 85 percent, yet more preferably at least about 90 percent, even more preferably at least 95 percent homologous, most preferably at least 98 percent identical with the predetermined MASP-2 polypeptide sequences as outlined herein above.
  • Functional homologues may comprise an amino acid sequence that comprises at least one substitution of one amino acid for any other amino acid.
  • a substitution may be a conservative amino acid substitution or it may be a non- conservative substitution.
  • said substitutions are conservative substitution.
  • a conservative amino acid substitution is a substitution of one amino acid within a predetermined group of amino acids for another amino acid within the same group, wherein the amino acids within a predetermined groups exhibit -similar or substantially similar characteristics.
  • conservative amino acid substitution is a substitution of one amino acid within a predetermined group of amino acids for another amino acid within the same group, wherein the amino acids within a predetermined groups exhibit -similar or substantially similar characteristics.
  • one amino acid may be substituted for another within groups of amino acids characterised by having
  • polar side chains (Asp, Glu, Lys, Arg, His, Asn, Gin, Ser, Thr, Tyr, and Cys,)
  • non-polar side chains (Gly, Ala, Val, Leu, lie, Phe, Trp, Pro, and Met)
  • amino acids being monoamino-dicarboxylic acids or monoamino-monocarboxylic- monoamidocarboxylic acids (Asp, Glu, Asn, Gin).
  • the addition or deletion of an amino acid may be an addition or deletion of from 2 to 5 amino acids, such as from 5 to 10 amino acids, for example from 10 to 20 amino acids, such as from 20 to 50 amino acids.
  • additions or deletions of more than 50 amino acids, such as additions from 50 to 200 amino acids are also comprised within the present invention.
  • sterically similar compounds may be formulated to mimic the key portions of the peptide structure and that such compounds may also be used in the same manner as the peptides of the invention. This may be achieved by techniques of modelling and chemical designing known to those of skill in the art. For example, esterification and other alkylations may be employed to modify the amino terminus of, e.g., a di-arginine peptide backbone, to mimic a tetra peptide structure. It will be understood that all such sterically similar constructs fall within the scope of the present invention.
  • Functional equivalents also comprise glycosylated and covalent or aggregative conjugates, including dimers or unrelated chemical moieties. Such functional equivalents are prepared by linkage of functionalities to groups which are found in fragment including at any one or both of the N- and C-termini, by means known in the art.
  • Functional equivalents may thus comprise fragments conjugated to aliphatic or acyl esters or amides of the carboxyl terminus, alkylamines or residues containing carboxyl side chains, e.g., conjugates to alkylamines at aspartic acid residues; O-acyl derivatives of hydroxyl group-containing residues and N-acyl derivatives of the amino terminal amino acid or amino-group containing residues, e.g. conjugates with Met-Leu-Phe.
  • Derivatives of the acyl groups are selected from the group of alkyl-moieties (including C3 to C10 normal alkyl), thereby forming alkanoyl species, and carbocyclic or heterocyclic compounds, thereby forming aroyl species.
  • the reactive groups preferably are difunctional compounds known per se for use in cross-linking proteins to insoluble matrices through reactive side groups.
  • Functional homologues may furthermore be polypeptide encoded by a nucleic acid which is able to hybridise to the complementary strand of a nucleic acid sequence encoding the predetermined MASP-2 polypeptide sequences as outlined herein above under stringent conditions.
  • Stringent conditions as used herein shall denote stringency as normally applied in connection with Southern blotting and hybridisation as described e.g. by Southern E. M., 1975, J. Mol. Biol. 98:503-517. For such purposes it is routine practise to include steps of prehybridization and hybridization.
  • Such steps are normally performed using solutions containing 6x SSPE, 5% Denhardt's, 0.5% SDS, 50% formamide, 100 ⁇ g/ml denaturated salmon testis DNA (incubation for 18 hrs at 42°C), followed by washings with 2x SSC and 0.5% SDS (at room temperature and at 37°C), and a washing with 0.1 x SSC and 0.5% SDS (incubation at 68°C for 30 min), as described by Sambrook et al., 1989, in "Molecular Cloning/A Laboratory Manual", Cold Spring Harbor), which is incorporated herein by reference.
  • a crystal of a polypeptide of MASP-2 according to the present invention should preferably be useful for determining the structure of said crystal using X-ray diffraction.
  • the crystal is a crystal of a polypeptide comprising the CCP-2 and serine protease domain of MASP-2.
  • the crystal may comprise more than one peptide, for example 2.
  • the crystal comprises the CCP-2 and serine protease domain of MASP-2 in the active two chain form.
  • the crystal diffracts X-rays for determination of atomic coordinates to a resolution of at least 5 A, preferably at least 4 A, more preferably at least 3 A, even more preferably at least 2.5 A, most preferably at least 2.25 A.
  • the crystal comprises atoms arranged in a spatial relationship represented by the structure co-ordinates of table 3, or by co-ordinates having a root mean square deviation therefrom of not more than 2.5 A, preferably not more than 2.25 A, more preferably not more than 2.0 A, even more preferably not more than 1.75 A, yet more preferably not more than 1.5 A, for example not more than 1.25 A, such as not more than 1.0 A.
  • the co-ordinates has a root mean square deviation therefrom, of not more than 2.5 A, preferably not more than 2.25 A, more preferably not more than 2.0 A, even more preferably not more than 1.75 A, yet more preferably not more than 1.5 A, for example not more than 1.25 A, such as not more than 1.0 A.
  • the crystal comprises or more preferably consists of the structure as deposited to the PDB with id 1q3x.
  • the crystal may also comprise the CCP-2 and the serine protease domain of MASP-2 in the one chain form, preferably such MASP-2 comprises at least one mutation within the cleavage site (see details regarding zymogen MASP-2 herein above).
  • the crystal comprises atoms arranged in a spatial relationship represented by the structure co-ordinates of table 4, or by co-ordinates having a root mean square deviation therefrom of not more than 2.5 A, preferably not more than 2.25 A, more preferably not more than 2.0 A, even more preferably not more than 1.75 A, yet more preferably not more than 1.5 A, for example not more than 1.25 A, such as not more than 1.0 A.
  • the co-ordinates has a root mean square deviation therefrom, of not more than 2.5 A, preferably not more than 2.25 A, more preferably not more than 2.0 A, even more preferably not more than 1.75 A, yet more preferably not more than 1.5 A, for example not more than 1.25 A, such as not more than 1.0 A.
  • the crystal may comprise more than one polypeptide of MASP-2 per asymmetric unit, in a preferred embodiment of the invention the crystal comprises polypeptides of MASP-2 per asymmetric unit.
  • crystal has the following data:
  • MASP-2 activity may be determined by any suitable assay.
  • Useful assays include assays, wherein serine protease activities of MASP-2/MBL complexes are tested.
  • Preferred assays are assays determining cleavage of C2 and/or C4 and/or MASP-2. Most preferably assays determining cleavage of C2 or C4.
  • Inhibitors of MASP-2 activity may be tested for inhibition of C2 and/or C4 deposition, i.e. inhibition of C2 and/or C4 cleavage.
  • the assays may involve the steps of preparing a solid surface on which an MBL associating agent is immobilised, binding MBL/MASP-2 complexes to said MBL associating agent and screening for inhibition of MASP-2 catalysed reactions.
  • the solid surface may be any useful solid surface, for example microtiter wells.
  • the MBL associating agent may be any compound to which MBL binds with high affinity, for example MBL antibodies, mannan or mannose, preferably however it is mannan.
  • the MBL/MASP-2 complexes may be derived from any suitable source, it may for example be recombinant MBL, recombinant MASP-2 or MBL and/or MASP-2 purified from serum. Recombinant MBL/MASP-2 may be full length MBL/MASP-2 or functional fragments thereof. Furthermore, recombinant MBL/MASP-2 may be attached to one or more other compounds, such as genetic tags.
  • MBL and/or MASP-2 may be derived from any suitable species for example it may be human MBL/MASP-2.
  • the MBL/MASP-2 complexes are found in full serum and are not purified prior to performing the assay. Said assays then test inhibition of deposition of substrate, i.e. C4 in full serum.
  • the MASP-2 catalysed reaction is preferably deposition of C2 and/or C4.
  • the compound to be screened for inhibition activity is added to the bound MBL/MASP-2. Controls without added compound are preferably also performed.
  • the compound may be added in any suitable concentration depending on the nature of the specific compound. For example in concentrations in the range of 1 ⁇ (g/ml to 10,000 ⁇ g/ml, such as in the range of 5 ⁇ (g/ml to 1000 ⁇ g/ml, for example in the range of 10 ⁇ (g/ml to 300 ⁇ g/ml, such as in the range of 15 ⁇ (g/ml to 200 ⁇ g/ml, for example in the range of 20 to 100 ⁇ (g/ml.
  • a MASP-2 substrate is added to the MBL/MASP-2 complexes.
  • said substrate is either C2 or C4 or a mixture of both or an artificial MASP-2 substrate.
  • the substrate is C4.
  • the substrate may be recombinantly produced or a serum derived substrate.
  • the substrate may or may not have been purified prior to use, but preferably it is purified.
  • the substrate may be labelled with a detectable label, for example with an enzyme, a radioactive compound, a fluorescent compound, a dye, a heavy metal, a chemilumniscent compound or the like.
  • deposition is detected using specific binding agent, such as an antibody, specifically recognising digested substrate.
  • specific binding agent such as an antibody, specifically recognising digested substrate.
  • antibodies recognising human complement C4c may be used.
  • Said antibodies may be labelled, by a directly or indirectly detectable label.
  • an enzyme a radioactive compound, a fluorescent compound, a dye, a heavy metal, a chemilumniscent compound or an affinity compound.
  • Affinity compounds include for example other antibodies or biotin, streptavidin.
  • MBL/MASP-2 complexes may be mixed with the substrate for example 5 min. to 2 hours.
  • MBL/MASP-2, substrate and antibody is premixed, when MBL/MASP-2 complexes are present in serum and have not previously been purified from serum.
  • the activity of MASP-2 is determined using any of the methods described in examples 2, 3 and 6 herein below.
  • compounds capable of inhibiting C4 deposition should preferably be able to inhibit C4 deposition in at least one, preferably both of the methods described in example 2 or 3.
  • Compounds capable of inhibiting C4 deposition should more preferably at least be able to inhibit C4 deposition according to the methods described in example 2, whereas compounds capable of inhibiting C4 deposition in full serum should be capable of inhibiting C4 deposition in full serum as described in example 3.
  • co-crystals of said polypeptide and a compound capable of interacting with said polypeptide are prepared.
  • Said compound may have been identified by any of the methods outlined herein below.
  • the compound may in one aspect of the invention be a modulator, such as an inhibitor of MASP-2 activity.
  • the co-crystals are useful for designing optimised compounds, with enhanced binding properties.
  • the co-crystals may be useful for designing better inhibitors of MASP-2.
  • the buffer preferably comprises in the range of 5 to 25% polyethylene glycol, more preferably in the range of 10 to 20%, even more preferably in the range of 12 to 18%, yet more preferably in the range of 14 to 16 %, most preferably around 15% polyethylene glycol.
  • Polyethylene glycol (PEG) may be any suitable PEG for example a PEG selected from the group consisting of PEG 4000, PEG 6000 and PEG 8000, preferably polyethylene glycol is PEG 6000.
  • the buffer preferably comprises in the range of 0.01 M to 0.5 M salt, more preferably in the range of 0.02 to 0.4 M, even more preferably in the range of 0.05 to 0.3 M, yet more preferably in the range of 0.08 to 0.2 M, most preferably around 0.12 M salt.
  • the salt may be any useful salt, preferably the salt is NaCl.
  • the buffer preferably comprises in the range of 1 to 10% an alcohol selected from the group consisting of glycerol and 2-methyl-2,4-penthanediol, more preferably in the range of 2 to 9%, even more preferably in the range of 3 to 8%, yet more preferably in the range of 4 to 6%, most preferably around 5% an alcohol selected from the group consisting of glycerol and 2-methyl-2,4-penthanediol.
  • said alcohol is glycerol.
  • the buffer preferably has a pH in the range of 6 to 9, more preferably in the range of 6.5 to 8.5, even more preferably in the range of 7 to 8, yet more preferably in the range of 7.4 to 7.5.
  • Incubation should be performed at a suitable temperature, preferably at a temperature in the range of 5 to 25°(C, more preferably in the range of 10 to 25°C, even more preferably in the range of 15 to 25°C, even more preferably in the range of 18 to 22°C, yet more preferably around 20°C.
  • the crystals may be grown by any suitable method, for example by the hanging drop method. Determination of structure
  • the structure of crystals may be determined by any method known to the person skilled in the art, for example using X-ray diffraction. Once a structure has been identified, said structure may be refined using suitable software.
  • a molecular replacement technique may be used. Such techniques involves that the structure is determined by obtaining x-ray diffraction data for crystals of the polypeptide or complex for which one wishes to determine the three dimensional structure. Then, one determines the three-dimensional structure of that polypeptide or complex by analysing the x-ray diffraction data using molecular replacement techniques with reference to known structural co-ordinates of a structurally similar protein. In the case of polypeptides comprising domains of MASP-2, structural coordinates of similar domains in C1 r or C1 s may be used. As described in U.S. Pat. No.
  • molecular replacement uses a molecule having a known structure as a starting point to model the structure of an unknown crystalline sample. This technique is based on the principle that two molecules which have similar structures, orientations and positions in the unit cell diffract similarly.
  • Molecular replacement involves positioning the known structure in the unit cell in the same location and orientation as the unknown structure. Once positioned, the atoms of the known structure in the unit cell are used to calculate the structure factors that would result from a hypothetical diffraction experiment. This involves rotating the known structure in the six dimensions (three angular and three spatial dimensions) until alignment of the known structure with the experimental data is achieved. This approximate structure can be fine-tuned to yield a more accurate and often higher resolution structure using various refinement techniques.
  • the resultant model for the structure defined by the experimental data may be subjected to rigid body refinement in which the model is subjected to limited additional rotation in the six dimensions yielding positioning shifts of under about 5%.
  • the refined model may then be further refined using other known refinement methods.
  • Homology modelling involves constructing a model of an unknown structure using structural co-ordinates of one or more related proteins, protein domains and/or subdomains. Homology modelling may be conducted by fitting common or homologous portions of the protein or peptide whose three dimensional structure is to be solved to the three dimensional structure of homologous structural elements. Homology modelling can include rebuilding part or all of a three dimensional structure with replacement of amino acids (or other components) by those of the related structure to be solved.
  • Structural coordinates of a crystalline polypeptide of this invention may be stored in a machine-readable form on a machine-readable storage medium, e.g. a computer hard drive, diskette, DATA tape, CD-ROM etc., for display as a three-dimensional shape or for other uses involving computer-assisted manipulation of, or computation based on, the structural coordinates or the three-dimensional structures they define.
  • a machine-readable storage medium e.g. a computer hard drive, diskette, DATA tape, CD-ROM etc.
  • data defining the three dimensional structure of a polypeptide of MASP-2 may be stored in a machine-readable storage medium, and may be displayed as a graphical three- dimensional representation of the protein structure, typically using a computer capable of reading the data from said storage medium and programmed with instructions for creating the representation from such data.
  • This invention thus encompasses a machine, such as a computer, having a memory which contains data representing the structural coordinates of a crystalline composition of this invention, e.g. the coordinates set forth in table 3 or the coordinates set forth in table 4, together with additional optional data and instructions for manipulating such data.
  • data may be used for a variety of purposes, such as the elucidation of other related structures and drug discovery.
  • a first set of such machine readable data may be combined with a second set of machine- readable data using a machine programmed with instructions for using the first data set and the second data set to determine at least a portion of the coordinates corresponding to the second set of machine-readable data.
  • the first set of data may comprise a Fourier transform of at least a portion of the coordinates for the complex set forth in table 3 or the coordinates set forth in table 4, while the second data set may comprise X-ray diffraction data of a molecule or molecular complex.
  • one of the objects of this invention is to provide three-dimensional structural information of co-complexes comprising the catalytic domain of MASP-2.
  • a 3D representation of the polypeptides described in the present invention may be useful for several purposes, for example for determining the structure of similar proteins or polypeptides (see also herein above) or for designing compounds capable of interacting with said polypeptides.
  • the three dimensional structure defined by the machine readable data for the polypeptide of MASP-2 may be computationally evaluated for its ability to associate with various chemical entities or test compounds.
  • chemical entity refers to chemical compounds, complexes of at least two chemical compounds, and fragments of such compounds or complexes.
  • a first set of machine-readable data defining the 3-D structure of polypeptide of MASP-2 or complex thereof is combined with a second set of machine-readable data defining the structure of a chemical entity or test compound of interest using a machine programmed with instructions for evaluating the ability of the chemical entity or compound to associate with the polypeptide of MASP-2 or complex thereof and/or the location and/or orientation of such association.
  • Such methods provide insight into the location, orientation and energetic of association of protein surfaces with such chemical entities.
  • the three dimensional structure defined by the data may be displayed in a graphical format permitting visual inspection of the structure, as well as visual inspection of the association of the polypeptide component(s) with an interacting compound. Alternatively, more quantitative or computational methods may be used.
  • one method of this invention for evaluating the ability of a chemical entity to associate with any of the molecules or molecular complexes set forth herein comprises the steps of: (a) employing computational means to perform a fitting operation between the chemical entity and a binding site or other surface feature of the molecule or molecular complex; and (b) analyzing the results of said fitting operation to quantify the association between the chemical entity and the binding site.
  • This invention further provides for the use of the structural coordinates of a crystalline composition of this invention, or portions thereof, to identify reactive amino acids, such as cysteine residues, within the three-dimensional structure, preferably within or adjacent to a binding site; to generate and visualise a molecular surface, such as a water-accessible surface or a surface comprising the space-filling van der Waals surface of all atoms; to calculate and visualise the size and shape of surface features of the protein or complex, e.g., substrate binding sites; to locate potential H-bond donors and acceptors within the three-dimensional structure, preferably within or adjacent to a ligand binding site; to calculate regions of hydrophobicity and hydrophilicity within the three-dimensional structure, preferably within or adjacent to a ligand binding site; and to calculate and visualize regions on or adjacent to the protein surface of favorable interaction energies with respect to selected functional groups of interest (e.g.
  • reactive amino acids e.g., cysteine
  • complementary characteristics e.g., size, shape, charge, hydrophobicity/hydrophilicity, ability to participate in hydrogen bonding, etc.
  • the structural coordinates of the polypeptide of MASP-2, or portion or complex thereof are entered in machine readable form into a machine programmed with instructions for carrying out the desired operation and containing any necessary additional data, e.g. data defining structural and/or functional characteristics of a potential interacting compound or moiety thereof, defining molecular characteristics of the various amino acids, etc.
  • One method of this invention provides for selecting from a database of chemical structures a compound capable of binding to a polypeptide of MASP-2.
  • the method starts with structural co-ordinates of a crystalline composition of the invention, e.g., co-ordinates defining_the_three dimensional structure of polypeptide of MASP-2 or a portion thereof or a complex thereof. Points associated with that three dimensional structure are characterised with respect to the favourability of interactions with one or more functional groups.
  • a database of chemical structures is then searched for candidate compounds containing one or more functional groups disposed for favorable interaction with the protein based on the prior characterisation. Compounds having structures which best fit the points of favourable interaction with the three dimensional structure are thus identified.
  • a first set of machine-readable data defining the 3D structure of a polypeptide of MASP-2, or a portion or polypeptide/interacting compound complex thereof is combined with a second set of machine readable data defining one or more moieties or functional groups of interest, using a machine programmed with instructions for identifying preferred locations for favourable interaction between the functional group(s) and atoms of the polypeptide.
  • a third set of data, i.e. data defining the location(s) of favourable interaction between polypeptide and functional group(s) is so generated.
  • That third set of data is then combined with a fourth set of data defining the 3D structures of one or more chemical entities using a machine programmed with instructions for identifying chemical entities containing functional groups so disposed as to best fit the locations of their respective favourable interaction with the polypeptide.
  • Compounds having the structures selected or designed by any of the foregoing means may be tested for their ability to bind to a polypeptide of MASP-2.
  • the compound is preferably a modulator of MASP-2 activity.
  • a compound capable of interacting with a substrate binding site of MASP-2 may be a good inhibitor of MASP-2 activity.
  • compounds having the structures selected or designed by any of the foregoing means may be tested for their ability to modulate MASP-2 activity, such as for inhibition of MASP-2 activity (see herein above).
  • the Molecular Similarity application permits comparisons between different structures, different conformations of the same structure, and different parts of the same structure.
  • the procedure used in Molecular Similarity to compare structures is divided into four steps: (1) load the structures to be compared; (2) define the atom equivalences in these structures; (3) perform a fitting operation; and (4) analyse the results.
  • Each structure is identified by a name.
  • One structure is identified as the target (i.e., the fixed structure); all remaining structures are working structures (i.e., moving structures). Since atom equivalency within QUANTA is defined by user input, for the purpose of this invention we define equivalent atoms as protein backbone atoms (N, C ⁇ ,(, C and O) for all conserved residues between the two structures being compared and consider only rigid fitting operations.
  • the working structure is translated and rotated to obtain an optimum fit with the target structure.
  • the fitting operation uses a least squares fitting algorithm that computes the optimum translation and rotation to be applied to the moving structure, such that the root mean square difference of the fit over the specified pairs of equivalent atom is an absolute minimum. This number, given in angstroms, is reported by QUANTA.
  • root mean square deviation means the square root of the arithmetic mean of the squares of the deviations from the mean. It is a way to express the deviation or variation from a trend or object.
  • the "root mean square deviation” defines the variation in the backbone of a protein from the backbone of a protein of this invention, such as the CCP-2/serine protease domain of MASP-2 as defined by the structural coordinates of table 3 or the zymogen CCP-2/serine protease domain of MASP-2 as defined by the structural coordinates of table 4 and described herein.
  • least squares refers to a method based on the principle that the best estimate of a value is that in which the sum of the squares of the deviations of observed values is a minimum.
  • the structural co-ordinates generated for a crystalline substance of this invention e.g. the structural co-ordinates set forth in table 3 or the structural coordinates set forth in table 4, it is often necessary or desirable to display them as, or convert them to, a three-dimensional shape, or to otherwise manipulate them. This is typically accomplished by the use of commercially available software such as a program, which is capable of generating three-dimensional graphical representations of molecules or portions thereof from a set of structural co-ordinates.
  • Midas (Univ. of California, San Francisco) MidasPlus (Univ. of Cal., San Francisco) MOIL (Univeristy of Illinois) Yummie (Yale University)
  • a machine-readable storage medium comprising a data storage material encoded with machine readable data which, when using a machine programmed with instructions for using said data, e.g. a computer loaded with one or more programs of the sort identified above, is capable of displaying a graphical three- dimensional representation of any of the molecules or molecular complexes described herein.
  • Machine-readable storage media comprising a data storage material include conventional computer hard drives, floppy disks, DAT tape, CD-ROM, and other magnetic, magneto-optical, optical, floptical and other media which may be adapted for use with a computer.
  • a machine-readable data storage medium that is capable of displaying a graphical three-dimensional representation of a molecule or molecular complex that is defined by the structural co-ordinates of a polypeptide of MASP-2, such as the co-ordinates set forth in table 3+/- a root mean square deviation from the conserved backbone atoms of the amino acids thereof of not more than 1.5 A.
  • An illustrative embodiment of this aspect of the invention is a conventional 3.5" diskette, DAT tape or hard drive encoded with a data set, preferably in PDB format, comprising the co-ordinates of table 3.
  • FIG. 1 illustrates a print-out of a graphical three-dimensional representation of such a polypeptide.
  • the machine-readable data storage medium comprises a data storage material encoded with a first set of machine readable data which comprises the Fourier transform of the structural coordinates set forth in table 3 or table 4 (or again, a derivative thereof), and which, when using a machine programmed with instructions for using said data, can be combined with a second set of machine readable data comprising the X-ray diffraction pattern of a molecule or molecular complex to determine at least a portion of the structural co-ordinates corresponding to the second set of machine readable data.
  • Such a system may for example include a computer comprising a central processing unit (“CPU"), a working memory which may be, e.g., RAM (random-access memory) or “core” memory, mass storage memory (such as one or more disk drives or CD-ROM drives), one or more cathode-ray tube (“CRT”) display terminals, one or more keyboards, one or more input lines (IP), and one or more output lines (OP), all of which are interconnected by a conventional bidirectional system bus.
  • CPU central processing unit
  • working memory which may be, e.g., RAM (random-access memory) or “core” memory
  • mass storage memory such as one or more disk drives or CD-ROM drives
  • CRT cathode-ray tube
  • keyboards such as one or more keyboards
  • IP input lines
  • OP output lines
  • Input hardware coupled to the computer by input lines, may be implemented in a variety of ways.
  • Machine-readable data of this invention may be inputted via the use of a modem or modems connected by a telephone line or dedicated data line.
  • the input hardware may comprise CD-ROM drives or disk drives.
  • a keyboard may also be used as an input device.
  • Output hardware coupled to the computer by output lines, may similarly be implemented by conventional devices.
  • output hardware may include a CRT display terminal for displaying a graphical representation of a protein of this invention (or portion thereof) using a program such as QUANTA as described herein.
  • Output hardware might also include a printer, so that hard copy output may be produced, or a disk drive, to store system output for later use.
  • the CPU coordinates the use of the various input and output devices, coordinates data accesses from mass storage and accesses to and from working memory, and determines the sequence of data processing steps.
  • a number of programs may be used to process the machine-readable data of this invention. Examples of such programs are discussed herein above. Algorithms suitable for this purpose are also implemented in programs such as Cast-3D (Chemical Abstracts Service), 3DB Unity (Tripos, Inc.), Quest- 3D (Cambridge Crystallographic Data Center), and MACCS/ISIS-3D (Molecular Design Limited). These geometric searches can be augmented by steric searching, in which the size and shape requirements of the binding site are used to weed out hits that have prohibitive dimensions.
  • Programs that may be used to synchronize the geometric and steric requirements in a search applied to the FRB of FRAP include CAVEAT (P. Bartlett, University of California, Berkeley), HOOK (MSI), ALADDIN (Daylight Software) and DOCK (http://www.cmpharm.ucsf.edu/kuntz-/kuntz.html and references cited therein). All of these searching protocols may be used in conjunction with existing corporate databases, the Cambridge Structural Database, or available chemical databases from chemical suppliers.
  • the methods involve identifying a number of compounds potentially capable of interacting with MASP-2 or a fragment thereof, for example the methods may involve identification of a sub-library of compounds potentially interacting with MASP-2 or fragments thereof. This may be accomplished using any conventional method. For example, alLthe.possible members of a combinatorial library may first be enumerated, according to the available reagents and the established synthetic chemistries. Individual members may then separately be docked into a binding site of a polypeptide of MASP-2. Finally, an optimal sub-library may be selected for synthesis, based on the ranking of their docking scores and/or diversity measures.
  • QuaSAR-CombiDesign is another combinatorial library design tool available in MOE that provides a non-enumerative method for combinatorial library generation, and can, e.g. test against rule of five filters using statistical sampling techniques during library creation, creating smaller sub-libraries with user-defined property ranges.
  • the docking step that follows library creation can be conducted using any of the available docking programs like DOCK or FlexX ⁇ , while the diversity selection for example may be performed using software available from Daylight, Tripos (diverse solutions), or BCI or by high throughput docking as for example described by Diller and Merz. In another example a 'divide-and-conquer' approach may be used.
  • the methods of invention comprise application of pharmacophores obtained using active site maps.
  • active site is meant to describe a site responsible of interaction with a compound and not a catalytically active site.
  • the method may for example be a computational approach comprising the generation of multiple, promising, structurally diverse test compounds.
  • the search for multiple structural series may be accomplished by coupling protein structural information with combinatorial library design using any suitable method. For example the "design in receptor” method (Murrary et al., 1999) or the method outlined herein below may be used.
  • Methods to account for multiple protein conformations for example as described by Mason et al., 2000 may also be used, including the creation of a dynamic pharmacophore model (as for example described by Carlson et al., 2000) from molecular dynamics simulations.
  • experimental and computational needle screening approaches for mapping active sites with molecular fragments may be used for example as described in Boehm et al., 2000.
  • Any suitable software tools for mapping site points e.g. GRID and SITEPOINT
  • MCSS techniques for generating site maps may be used.
  • Suitable methods may for example comprise generation of active site maps from protein structures. Then all possible 2-, 3- and 4-point pharmacophores can be enumerated from the site map and encoded as a bit string (signature) these pharmacophores define a space to be probed by compounds that are selected using the informative library design tool.
  • the metric used to evaluate the success of the approach is the number of active scaffolds selected in the library design, with the number of active compounds as a secondary measure.
  • Any suitable algorithm for site map generation may be used, for example algorithms generating between 10 and 80 feature positions for each active site. An example of such a method is outlined in example 4.
  • the method comprises preparing a 3D structure of a MASP-2 in pdbqs (protein data bank) format with partial charges and salvation parameters.
  • the partial charges may be assigned to a MASP-2 polypeptide X-ray crystal structure using a suitable computer program such as SYBYL 6.3 and for example the Mulliken population analysis method.
  • the structure thus prepared may be converted to pdbq format using a suitable script such as mol2topdbq.
  • Solvation parameters may be assigned to a MASP-2 using any suitable computer program such as ADDSOL.
  • the method furthermore comprises preparing structures in pdbq format of compounds potentially capable of interacting with and/or inhibiting MASP-2 in pdbqs format.
  • Charges may be assigned using for example Mulliken population analysis method.
  • any suitable algorithm may be used, such as the Lamarckian Genetic Algorithm.
  • a person skilled in the art will readily be able to set suitable parameters for use with the algorithm.
  • Based on the docking file several properties may be calculated. It is preferred that at least one of the following properties is determined: estimated free energy binding, estimated Ki or final docking energy. In general a compound interacting with and/or inhibiting MASP-2 has a low estimated free energy.
  • the estimated K is preferably less than 2.0x10 "6 M, more preferably less than I .OxlO "6 M, even more preferably less than 5x10 "7 M, more preferably less than 1.0x10 "7 M, even more preferably less than 5x10 "8 M, more preferably less than I .OxlO "8 , even more preferably less than 5x10 "9 , such as less than 3.0x10 "9 M, for example less than 2x10 "9 M.
  • an inhibitor of MASP-2 should have an estimated K, which is preferably less than 2.0x10 "6 M, more preferably less than I .OxlO "6 M, even more preferably less than 5x10 "7 M, more preferably less than 1.0x10 "7 M, even more preferably less than 5x10 "8 more preferably less than 1.0x10 "8 , even more preferably less than 5x10 "9 M, such as less than 3.0x10 "9 M, for example less than 2x10 "9 M.
  • K is preferably less than 2.0x10 "6 M, more preferably less than I .OxlO "6 M, even more preferably less than 5x10 "7 M, more preferably less than 1.0x10 "7 M, even more preferably less than 5x10 "8 more preferably less than 1.0x10 "8 , even more preferably less than 5x10 "9 M, such as less than 3.0x10 "9 M, for example less than 2x10 "9 M.
  • the invention relates to methods of identifying inhibitors of MASP-2 activity.
  • Compounds capable of interacting with a specific substrate binding site of MASP-2 are potential inhibitors of MASP-2 activity. Therefore, it is an object of the invention to identify compounds capable of interacting with a substrate binding site of MASP-2. This may for example be done using any of the methods outlined herein above.
  • Natural substrates of MASP-2 include MASP-2 itself (autoactivation), C2 and C4.
  • Pseudosubstrates include C1 inhibitor.
  • the substrate binding site may be selected from the group consisting of the C4 binding site, the C2_binding site, a MASP-2 binding site and the C1 inhibitor binding site.
  • the substrate binding site is selected from the group consisting of the C4 binding site, the C2 binding site and MASP-2 binding sites. More preferably, the substrate binding site is selected from the group consisting of the C4 binding site and the C2 binding site.
  • MASP-2 activity is C2 cleavage.
  • MASP-2 activity is C4 cleavage.
  • MASP-2 activity is MASP-2 autoactivation.
  • the invention relates to identification of compounds specifically interacting with MASP-2.
  • the invention relates to identification of specific modulators of MASP-2 activity.
  • the compounds are specific inhibitors of MASP-2 activity.
  • the compounds may inhibit the protease activity of MASP-2, but not the protease activity of other serine proteases.
  • the compound may inhibit the protease activity of MASP-2, but not the activity of the related serine proteases Cl r and C1s.
  • the methods of the invention may therefore comprise calculating using computer aided means, whether a compound may interact with C1r and/or C1s. This may be done as described herein above in relation to compounds capable of interacting with MASP-2 fragments. Compounds identified by in silico methods as being capable of interacting with MASP-2 or fragments thereof, but not with C1 r and/or C1 s may then be selected.
  • the specificity may be confirmed using for example in vitro methods, such as binding assays, competition assay or inhibition/activation assays.
  • the invention thus relates to methods, which also comprise the steps of i) executing instructions on the computer for generating a three dimensional representation of a second polypeptide from structural coordinates of a crystal of said second polypeptide, such that the computer loads into memory thereof computer-readable data comprising structural coordinates of a molecular model of said second polypeptide; iii) calculating, from said molecular models, one or more possible molecular complexes which could be formed by association of said second polypeptide with one or more selected test compounds; iv) generating output data indicative of the degree of interaction; v) selecting compounds not capable of interacting with said second polypeptide
  • said second polypeptide comprises C1 r, C1s, MASP-1 or a fragments thereof, wherein said fragments preferably comprises the serine protease domain.
  • said fragments preferably comprises the serine protease domain.
  • a compound capable of interacting with MASP-2 may be redesigned for enhanced interaction.
  • the compound is an inhibitor of MASP-2 activity, then a more efficient or a more specific inhibitors may be designed using said compound as starting point.
  • a co-crystal between a polypeptide of MASP-2 and said compound may be prepared.
  • Said co-crystal may for example be prepared by any of the methods of preparing crystals outlined herein above.
  • the structure of said crystal may then be determined, for example using any of the methods described above for determining the structure of a polypeptide of MASP-2.
  • a new compound capable of interacting with said polypeptide may be designed using information derived from said structure.
  • the compounds that may interact with MASP-2 or fragments thereof and optionally modulate the activity of MASP-2 may be any useful chemical entity.
  • the compounds may be small organic molecules, peptides, peptidomimetics, nucleic acids or the like.
  • the compounds may be a component of a combinatorial library, such as a combinatorial library of small organic molecules. It is also possible, that the compound is a component of a virtual combinatorial library.
  • Compounds designed, selected and/or optimised by methods described above may be evaluated for interacting activity with respect to polypeptides of MASP-2 using various approaches, a number of which are well known in the art. For instance, compounds may be evaluated for activity as competitive inhibitors of the binding of a natural substrate, such as C2, C4 or MASP-2. Competitive inhibition may be determined using any of the numerous available technologies known in the art.
  • the compounds may also be evaluated for interaction with MASP-2 polypeptides or fragments thereof using conventional binding assays.
  • assays may for example involve immobilisation of the compound on a solid support, incubation in the presence of MASP-2, washing and detection the presence/absence of immobilised MASP-2 using for example specific antibodies to MASP-2.
  • any other suitable method may also be employed.
  • the compounds may be further evaluated for modulation of MASP-2 activity. Assays for MASP-2 activity are described herein above.
  • Modulators of MASP-2 activity may for example be used in the treatment of clinical conditions characterised by aberrant activity of the MBLectin pathway.
  • inhibitors of MASP-2 activity may be used in the treatment of chronic inflammatory diseases or in clinical conditions characterised by massive cell loss, for example due to apoptosis or necrosis.
  • Non-limiting examples of inhibitors of MASP-2 includes NPGB, Leupeptin, APMSF, PMSF, Pefabloc-SC or Benzamidine.
  • the recombinant construct (328 amino acids) contains an Ala-Ser-Met-Thr extra tetrapeptide at the N-terminus, which is followed by the Ile363 residue of MASP-2. The purification and functional characterization of this fragment is described elsewhere (Ambrus et al., 2003). Since human MASP-2 does not contain glycosylated side chains, the recombinant protein produced in E.coli cells is identical to that isolated from natural sources. The structure was solved by molecular replacement, and refined to 2.25 A resolution (Table I). At the end of refinement the R work and R free factors were 0.174 and 0.224, respectively.
  • the asymmetric unit contains two molecules (denoted molecules A and B) with somewhat different conformations (Figure 1A). 97% of the residues could be built in the electron density maps. All residues are in the most favored (458) and additionally favored (67) regions of the Ramachandran plot, except for residue 405 of molecule A and residue 389 of molecule B, which are in the generously allowed region.
  • the conformations of the SP domains of the two molecules are very similar, except for the 439-441 region and some surface side chains. Non-crystallographic restraints were applied to the rest of the SP domain. There are small differences in the loop conformations of CCP2 modules, as well as in the interdomain linkers of both molecules.
  • the overall conformation of the CCP2 module with six ⁇ -strands (B1-B6, Figure 1 B) is very similar to that of CCP2 found in the C1s (Gaboriaud et al., 2000) and C1 r (Budayova- Spano et al., 2002a, b) catalytic fragment structures.
  • the highest B-factors of the CCP2 modules are those farthest from the interdomain linker.
  • the N-terminal segment and loop B4-B5 of molecule B are disordered.
  • the overall difference of the C ⁇ atoms of CCP2 for molecule A and B (r.m.s.d.
  • Figure 1B shows the CCP2 modules of molecule A, C1s and C1r active forms with the ⁇ -strands B1 , B2 and B4 superimposed.
  • the N-terminal end of the MASP-2 protein chain of molecule A is part of the CCP1-CCP2 linker. It has similar conformation to that detected in the C1r CCP1-CCP2-SP fragment structures (Budayova-Spano et al., 2002a), supporting the previous assumption (Feinberg et al., 2003) that the configuration around CCP1-CCP2 junction is similar to that of C1 r.
  • Comparison of the structure of the CCP2 module with those of C1r and C1s highlights three regions of major differences.
  • loop B1-B2 (residues 379-385), [MASP-2 numbering is used for the CCP2 module] C1s has a deletion. The conformation of this loop is similar in MASP-2 and C1r. Loop B3-B4 (residues 404-409) is disordered both in C1 r and C1s. In MASP-2 it is shorter and its conformation is stabilized by a hydrogen bond between the side chains of Asn406 and Glu424. The third region of major differences is loop B4-B5 (region 420-424), which is of the same length in the three molecules.
  • MASP-2 molecule A and B correspond to slight twists of the two end of the CCP2 module: the region far form the CCP2/SP interface (loops B1-B2, B3-B4 and B5-B6) is twisted about the long axis of the CCP2 module, while the region closer to the interface (loops B2-B3 and B3-B4) is twisted about an axis perpendicular to that.
  • the maximal C ⁇ atom shifts for B1-B2, B2-B3, B3-B4 and B5-B6 loops are of 1.7 A, 1.4 A 1.3 A and 2.3 A, respectively.
  • the C1r CCP2-SP zymogen form can be considered as an intermediate conformation between that of C1s and MASP-2 structures, possessing some of hydrogen bonds and contacts of both type, but with elongated interatomic distances. It should be noted, that the existence of two conformational variants of MASP-2 can not be an artefact caused by differences in the crystallization medium, since they are present in the same crystal structure. The domain orientations in the MASP-2 molecules are possibly not biased by crystal contacts either, because the CCP2 modules are loosely bound in the crystal network. It suggests a possibly emerged interdomain flexibility in solution, as well which can correspond to fulfilling different functions.
  • the Tyr401 hydroxyl group of molecule B is connected to Val542 (c112) carbonyl oxygen through a water molecule (W325), while that of molecule A is rotated further away and is stabilized by a hydrogen bond with the Asp475 (c49) side chain.
  • an interdomain hydrogen bond is formed by Lys541 (d 11) and Ser374 sidechains, which is not found in the C1s and C1 r structures.
  • a hydrogen-bonded network of water molecules stabilizes the interface.
  • a glycerol molecule is bound in a cavity formed by side chains of Leu473 (c47), Tyr474 (c48), residues Glu431 , Pro432, Cys434 (d) and backbone atoms of 550 (c120) - 552 (c122).
  • This cavity is more open and it has a more hydrophobic character in C1r and C1s, because Tyr474 is replaced by a shorter side chain and Glu431 by a hydrophobic residue.
  • Lys541 c111
  • Ser546 c1 16
  • Thr399 in the case of C1r only one is different).
  • the lower proline content of this region can also contribute to the higher flexibility detected in MASP-2.
  • the relatively high flexibility observed for the CCP2/SP interface of MASP-2 may have important functional implications.
  • MASP-2 forms homodimers through its N-terminal CUB-EGF-CUB region (Thielens et al., 2001).
  • MASP-2 and MASP-1 do not form hetero-oligomers and the MASP-2 dimer can bind directly to MBL.
  • MASP-2 the functional unit of MASP-2 is the homodimer form. It is remarkable that the MASP-2 homodimer can perform all those functions (e.g. binding to MBL, autoactivation, cleaving C4 and C2) that are mediated by the C1s-C1 r-C1r-C1s tetramer in the C1 complex.
  • the C1r 2 C1s 2 tetramer has a high degree of flexibility, which is required for its function (Arlaud et al., 1987; Tseng et al., 1 997; L ⁇ rinczLQLincz et al., 2000).
  • the MASP-2 homodimer should be at least as flexible as the C1 r 2 C1s 2 tetramer. Nevertheless, the C1 r 2 C1s 2 tetramer has twice as many hinge points as the MASP-2 dimer, to produce the same level of flexibility.
  • the hinge regions of MASP-2 should allow greater conformational movements than the corresponding regions of C1r and C1s.
  • the hinge bending between the CCP2 and SP domains can contribute to the correct positioning of the SP domains of the MASP-2 dimer during autoactivation, when the active site of one SP domain should contact with the activation site (Arg444-lle445 bond) of the other SP domain. After autoactivation the SP domains should turn outside of the dimer to access the large protein substrates: C2 and C4.
  • the SP domain consists of two six-stranded ⁇ -barrel domains packed against each other, with the catalytic residues Ser633 (c195), His483 (c57) and Asp532 (c102) located at the junction of the two barrels ( Figure 1C).
  • the structure shows the elements of the catalytic apparatus in active conformation 1 .
  • the SP domains of the two molecules of MASP-2 are in virtually equivalent conformations, except for 440 and 441 (c10, d 1) residues of the activation peptide and some surface side chains. Only the C-terminal residues of the cleaved activation peptide are disordered, which is typical for the activated SP structures.
  • MASP-2 has similar functions to C1r (autoactivation upon recognition of target surface by MBL/C1q) and C1s (C2 and C4 cleavage) conformation most of the surface loops is different from both of those.
  • Loop A [we use the loop nomenclature proposed by Perona and Craik (1997)] of MASP-2, C1r and C1s are similar in position, but their conformations are different, in spite of the fact, that loop A of MASP-2 and C1r are of same length. Only MASP-2 shows the extension of the preceding helix to residues 485-490 (c59-c60d) of loop B (residues 485- 496). The conformation of this segment is stabilized by sandwiching the His490 (c60e) ring with Tyr486 (c60) and Lys489 (c60c) side chain carbon atoms.
  • Loop B stabilizes loop A by the Gln488 N ⁇ 2 (c60b) Leu463 (c34) carbonyl oxygen hydrogen bond, as well as loop C by the stacking interaction established between the Tyr486 (c60) and His525 (c96) side chains.
  • Loop D and E of MASP-2 have deletions. Loop D MASP-2 and C1r possess similar positions, but different conformations. In C1s loop C is significantly longer than in C1r or MASP-2 and restricts the access to the active site. In MASP-2 it is loop 2 that has an insertion making the substrate binding site narrower, but from the other side. Loop 1 and 2 form the bottom and one side of the substrate specificity pocket, and they have very similar conformation to that of trypsin.
  • Loop 3 closes the substrate binding groove from the N-terminal end with Pro 605 (c170B) and Pro606 (c170C). In contrast to that, loop 3 of C1r and C1s is longer (the one of C1s shows disorder) and both leave the substrate binging groove more open than that of MASP-2. In the case of the C1r CCP1-CCP2-SP dimer structure, some residues of loop regions B and E are involved in intermolecular contacts in the CCP1-SP interactions.
  • MASP-2 The corresponding loops of MASP-2 are different in length and also in conformation, indicating that in contrast to a recent model of MBL-MASP-2 complex (Feinberg et al., 2003), the interactions and the way of dimer formation observed for the zymogen form of C1 r can not be directly transferred to MASP-2.
  • Substrate specificity of MASP-2 MASP-2 has only few natural substrates: zymogen MASP-2, C2, C4, and the pseudo-substrate C1 inhibitor, suggesting that the access to the substrate binding subsites is restricted.
  • the S2' and S3_subsit.es may establish more contacts with the substrate, while the S2 and S1' subsites are more exposed than those of C1 r and C1s.
  • MASP-2 shares substrates with C1s, most of its substrate binding subsites show differences.
  • the conformations of loops 1 and 2 are similar to those of trypsin forming an S1 pocket deeper than that of C1 r and C1s.
  • the access to the substrate binding pocket is not affected by any disordered side chains, as Arg630 (c192) side chain carbon atoms are stabilized by hydrophobic contacts with Leu575 (c143).
  • a glycerol molecule is bound at the entrance of the S1 pocket, and a sodium ion at the bottom of the pocket connected via a water molecule and Ser657 (c217) O ⁇ to the nearby acidic side chains of Asp627 (c189) and Glu662 (c221), respectively.
  • the sodium ion is bound in a pocket formed by the 657-662 (c217-c222) segment of loop 2, which includes a one residue insertion in this region and possesses a similar conformation to that of chymotrypsin.
  • the sodium ion as well, as the glycerol molecule must be dissociated from the S1 site upon substrate binding, since the glycerol and water molecules coordinated to the sodium ion overlap with the P1 arginine residue.
  • Asp627 (c189) the primary determinant of the S1 specificity is in a canonical conformation in the MASP-2 crystal structure.
  • the groove that binds the N-terminal part of the bound peptide is shallow compared to that of C1 r and C1s.
  • the S2 subsite is shallow, Phe529 (c99) is in a similar position to that of C1r and C1s.
  • the side chain of the P2 residue is partially solvent exposed, while this site is buried by loop C in C1s.
  • Water mediated hydrogen bonds may be established by a P2 Gin side chain and Tyr523 (c94) and Gln526 (c96a) side chains of loop C.
  • hydrophobic interactions can be established by Met658 (c218) of loop 2 with the apolar P3 side chain of the substrate.
  • P3 and residue Gly656 c216 stabilizing the backbone of the bound peptide.
  • the S1' site is open, like in C1r and C1s.
  • the small P1' side chains of C4 and C1 inhibitor can contact Thr466 (c37), while the P1' Lys side chain of C2 may form a salt bridge with Glu487 (c60a) of loop B.
  • P2' side chains are hydrophobic or aromatic, and are bound in a hydrophobic pocket formed by Gly631 (c193) and side chain carbon atoms of Arg630 (c192), Leu581 (c148), Leu575 (c143) and Thr467 (c41). This subsite is a hydrophobic pocket also in C1r and C1s, although it is built up by different residues among the three enzymes.
  • MASP-2 is a further example of an enzyme with Tyr in position c225. Its loop 2 region has a one residue insertion. Our in vitro experiments demonstrated that MASP-2 is not a Na + -activated enzyme (data not shown).
  • the structure of MASP-2 is in accordance with the experimental data, since it shows a closed S1 site, and the backbone conformation of the 661-667 (c221 A-c226) segment of loop 2 is virtually identical to that of trypsin.
  • the carbonyl oxygen of Gln665 (c224) is also in a position similar to that of trypsin, and different from those of enzymes with tyrosine c225 including C1r and C1s.
  • the trypsin-like conformation of the 665-666 (c224-c225) peptide bond can be explained by the fact that loop 1 is of equal length in MASP-2 and trypsin and similar backbone-backbone interactions are formed between loop 1 and 2 in MASP-2 and trypsin.
  • the 620-664 (c185-c223) and 623-662 (c188-c221) hydrogen bonds keep close the carbonyl group of residue Gln665 (c224) to that of Leu621 (c185), and force it to keep a position found previously in c225 proline containing enzymes of the family. This suggests, that the length of not only loop 2, but also loop 1 is more important, than the nature of the c225 residue in forming the Na + binding site.
  • CCP modules are widely spread in the complement system having an important role in modulating and regulating the action of the complement components. However there is little known of their binding sites and the structural details of the way of their action. For C4 the binding sites of CCP modules of other proteins are not known. Considering the high homology between C4 and C3 there is a likely CCP-module binding site on C4d, which is similar to C3d.
  • the structure of C3d with the CCP1 module of complement receptor 2 (CR2) bound on its surface, as well as the structure of C4d have been published (Szakonyi et al., 2001 , van den Elsen et al., 2002).
  • the C3d-CR2 complex can serve as a starting point for modeling the binding of CCP2 module of MASP-2/C1s by C4d.
  • the N- and C-terminal ends of the C3d chain are opposite to the CCP-binding surface of C3d.
  • CCP binding on the corresponding surface of C4d allows complex formation between C4 and MASP-2/C1s without steric conflicts of the other domains of these molecules.
  • MASP-2 plays a central role in the initiation of the lectin pathway of complement, since it is capable of autoactivating and cleaving C4 and C2 - the components of the C3 convertase enzyme complex.
  • these proteolytic activities are mediated by two distinct proteases: C1r and C1s.
  • the structure described in this study provides the first insight into the catalytic machinery of a protease of the lectin pathway, a constituent of innate immunity.
  • the MASP-2 dimer binds to the collagen-like stalks of MBL, like the C1 r 2 C1s 2 tetramer binds to C1q in the C1 complex.
  • the CCP2 module In the case of C1s the CCP2 module is fixed tightly at the surface of the SP module through a proline- and tyrosine-rich hydrophobic framework of side chains. In the case of C1 r the corresponding interaction is weaker and flexibility is detected. In the case of MASP-2, the CCP2/SP interface is not only flexible, but the different conformers are stabilized by different interactions. During autoactivation precise positioning of the interacting SP domains is required for efficient cleavage. The fact that both C1r and MASP-2 show flexibility at the CCP2/SP interface indicates that changes in the relative positions of CCP2 and SP domains could be an important factor in the autoactivation process.
  • the C1r molecules are linked together through the catalytic CCP1-CCP2-SP regions. This means that the SP domains of the two C1r monomers are relatively close in the resting state of the C1 complex.
  • the MASP-2 molecules form dimers via interactions of the N-terminal CUB1-EGF-CUB2 region, so the SP domains of the MASP-2 monomers are at the opposite ends of the dimer. It is likely, therefore, that significant flexibility is needed to place the distal SP domains of MASP-2 in the correct position during autoactivation.
  • the subsequent cleavage of C2 and C4 substrates also requires significant conformational movements of the MASP-2 dimer, and especially the SP domains.
  • the SP domains which are in close vicinity during autoactivation, should be separated in order to access the large protein substrates.
  • the closed circular conformation of the MASP-2 dimer should be converted into an open form.
  • Similar conformational changes should take place in the C1 complex, where C1s is responsible for the C4 and C2 cleavage.
  • the SP domains of C1s are in the two opposite ends of the C1r 2 C1s 2 tetramer.
  • the tetramer is about twice as long as the dimer, and a restricted flexibility at the hinge points can result in a significant conformational change.
  • the other potential hinge points of MASP-2 e.g.
  • the CCP1-CCP2 and the CUB2-CCP1 junctions are more flexible than the corresponding regions of C1s and possibly even those of C1r.
  • the substrate specificity of MASP-2 is determined by the CCP2 and SP domains (Ambrus et al., 2003).
  • the SP domain of MASP-2 and C1s contains all necessary contact sites for efficient C2 binding and cleavage and it forms a covalent complex with C1 -inhibitor. It is surprising, therefore, that most of the surface loops, which determine S1 and subsite preferences, exhibit different conformations in the two, functionally closely related, highly specific SP domains. It is likely that the same substrate specificity can be realized through different enzyme-substrate interactions.
  • variable Clr digestive, coagulation enzymes
  • the different conditions including testing PEG 6000 and PEG 3500 in different concentrations (from 10% to 30%), different temperatures (20°(C and 4°(C), at different pH values (from pH7 to pH8.5 using 0.2 increment). Other factors such as NaCl and glycerol were also varied. Furthermore the protein concentration and the volume of the hanging drop was optimised.
  • Crystals were grown by the hanging drop method at 20°C. Crystals were obtained by mixing 2 ⁇ (l reservoir solution and 2 ⁇ (l protein solution.
  • the reservoir solution contained 30% PEG 6000, 0.1 M NaCl, 10% glycerol and 0.1 M Tris-HCI pH 7.5.
  • the protein solution contained 0.8 mg/ml of the active form of MASP2 CCP2-SP (Ambrus et al., 2003), 140mM NaCl and 20mM Tris/HCI pH 7.4. Synchrotron data were collected at LURE on the DW32 beamline, and at SPring-8 on the BL41XU beamline. Due to scaling problems, the former dataset was used for structure determination.
  • the final model contains residues 362-440 and 445-686 of molecule A, and 366-412, 416-441 and 445-686 of molecule B.
  • the stereochemistry of the structure was assessed with PROCHECK (Laskowski et al 1993). Refinement statistics are shown in Table I.
  • the atomic coordinates and structure factors were deposited in the Protein Data Bank with accession code 1q3x. Figures were generated using the programs MOLSCRIPT (Kraulis, 1991),
  • Raster3D (Merritt and Bacon, 1997)
  • Swiss-PDBViewer (Guex and Peitsch, 1997).
  • Structural alignments were carried out using O program and Swiss-PDBViewer. Surface areas were calculated using the program SURFACE (Lee and Richards, 1971).
  • the assay is composed of three steps 1) preparation of mannan coated microtiter wells 2) binding of rMBL and rMASP-2 to mannan coated wells 3) screening for inhibition of MASP-2 catalysed C4 deposition.
  • 96 wells microtiter plates (FluroNunc, Nalgene Nunc Int., Denmark) are coated with mannan (10 mg/L, Sigma Chemical Co., St. Louis, USA) in a coating buffer r (Na 2 C0 3 : 3.18 g/L; NaHC0 3 : 5.86g/L; pH adjusted to 9.6 using HCl) over night at 4 ° C.
  • Wells are washed twice in TBS (10mM Tris, 150mM NaCl,, pH adjusted to 7.4 using HCl). Wells are then blocked by incubation for 1 hr at room temperature in a buffer as above except that 1 mg/mL of human albumin is added (State Serum Institute, Copenhagen Denmark).
  • 0.8ng/well of recombinant purified human His-tagged MASP-2 and 1 ng/well of recombinant purified human MBL are bound to mannan coated microtiter wells by in cubation over night at 4 ° C in the above washing buffer except that 1 mg/mL of human albumin is added (State Serum Institute, Copenhagen Denmark). Wells are then washed 3 timers in washing buffer and are ready for use.
  • the compound to be screened for inhibition activity is added to rMBL/rMASP-2 bound to mannan coated microtiter wells in the above washing buffer except that 1 mg/mL of human albumin is added (State Serum Institute, Copenhagen Denmark) and incubated for 1 hr at room temperature. Wells are washed 3 times in washing buffer and incubated 1.5 hr at 37 ° C with purified human complement component C4 (approx. 1.5-2 ng/mL) in a buffer of barbital sodium (5 mM), NaCl (181 mM), CaCI2 (2.5mM), MgCI2 (1.25 mM), pH 7.4, 1 mg/mL of human albumin (State Serum Institute, Copenhagen Denmark) is added before use.
  • Wells are washed 3 times in washing buffer and 0.89 mg/L biotinylated rabbit anti- human complement component C4c is added (Dako, Denmark, biotinylated according to standard procedures). Wells are incubated for 1 hr at room temperature and washed 3 times in washing buffer. Europium labelled streptavidin (Wallac, Turku, Finland) is added at a concentration of 0.1 mg/L in the above washing buffer except that calcium is omitted and 50 ⁇ M EDTA is included. Wells are incubated 1 hr at room temperature and washed 3 times in washing buffer.
  • Wells are developed by adding 100 ⁇ L of Delfia Enhancement Solution (Perkin Elmer Wallac, Norton, USA) and incubated on an orbital shaker for 5 min. at room temperature. Wells are counted in a Wallac Victor 2 d Multi counter 1420 (Wallac, Turku, Finland).
  • Inhibition is seen as decreased counts compared to wells where no inhibiting substance has been added.
  • the serum sample to be analysed is diluted 250 times (final concentration) in the above barbital buffer and C4 is added (1.5-2 ng/mL, final concentration).
  • the compound to be screened for inhibition activity is added and samples are incubated between 5 min and 2 hours at 37 ° C. Normally incubation is 15 min. 100 ⁇ l is added to mannan coated microtiter wells prepared as described above and incubated VA hr at 37 ° C. Wells are washed 3 times in the above washing buffer and 0.89 mg/L biotinylated rabbit anti-human complement component C4c is added (Dako, Denmark, biotinylated according to standard procedures). Wells are incubated for 1 hr at room temperature and washed 3 times in washing buffer.
  • Europium labelled streptavidin (Wallac, Turku, Finland) is added at a concentration of 0.1 mg/L in the above washing buffer except that calcium is omitted and 50 ⁇ M EDTA is included.
  • Wells are incubated 1 hr at room temperature and washed 3 times in washing buffer.
  • Wells are developed by adding 100 ⁇ L of Delfia Enhancement Solution (Perkin Elmer Wallac, Norton, USA) and incubated on an orbital shaker for 5 min. at room temperature. Wells are counted in a Wallac Victor 2 d Multi counter 1420 (Wallac, Turku, Finland).
  • Generating a site map Feature points complementary to the active site are computed using an internally developed software tool. For ex-ample, a hydrogen bond donor feature is mapped in the proximity of a hydrogen bond acceptor in the protein active site.
  • the collection of 3D coordinates and labels (acceptors, donors, negatives, positives, hydrophobes and aromatics) is called a site map.
  • the site map is the union of three separately computed maps, ESMap which contains the electrostatic feature points (P, N, and H)
  • the electrostatic feature map, ESMap is computed by first using the sphere placement algorithm employed in the program PASS (Brady et al., 2000). It generates an evenly- distributed setof points (ProbeMap) in regions of buried volume along the protein surface.
  • a subset of points in the ProbeMap comprises the P, N, and H feature points depending upon the local electrostatic character of the protein.
  • the CVFF molecular mechanics force field is used to compute the electrostatic potential, ⁇ i , at each point /of ProbeMap, along with the mean potential ⁇ and mean magnitude
  • ⁇ (X) denotes the standard deviation about the mean of quantity X. This normalizes the point assignments relative to the overall electrostatic environment of the active site. This presents non charge-neutral protein structures (which may result from counter ions not being resolved or present in the crystal structures) from skewing feature point assignments unreasonably.
  • the hydrogen-bonding feature map, HBMap is determined by projecting complementary points outward from known hydrogen-bonding atoms of the protein. The resulting superset of points is filtered on the basis of steric clash, insufficient burial and minimal proximity of alike feature points. Ideal hydrogen-bonding points are positioned on the basis of the mean angle and distance as observed in the PDB (see for example table 3). Points that clash with the protein are removed. However, for robustness, small positional perturbations are applied to retain potentially important hydrogen-bonding positions. Bifurcated hydrogen-bonding points are computed heuristically by investigating full rings of points equally bifurcated between protein atoms_that_are considered moderate or strong hydrogen bond participants.
  • the AroMap set of aromatic feature points is computed by repeatedly docking a benzene ring into the protein active site and retaining the centroids of the top-scoring configurations.
  • the protein is represented using a polar-hydrogen CVFF force field.
  • the docking is performed using internal code in local optimization mode. One hundred separate local docking trials with different starting positions are performed. Any of the docked configurations whose score lies within an energy window of 5 kcal/mol of the minimum-energy configuration is included in AroMap. Again points are subjected to filtration on the basis of burial and mutual proximity.
  • Pharmacophores are generated on the basis of feature points in the active site by exhaustive enumeration of all 2-,3-, and 4-point subsets of the feature points. For all pairs of feature points their distance in 3D-space is precomputed. In order to arrive at a discrete representation of a pharmacophore, the distances are binned, applying a user-defined binning scheme. Chirality is denoted by encoding the handedness of 4- point pharmacophores. Each pharmacophore is mapped onto a unique address, such that any possible combination of up to four features and distances is represented. The address is taken for a binary representation of the pharmacophores, called a signature.
  • the length of the signature is the highest possible address for an encoding of a 4-point pharmacophore. All bits in the signature are initially set to 0. In order to represent a pharmacophore the bit at the respective address in the signature is turned on (set to 1). For the representation of the active site all pharmacophores are exhaustively enumerated and the respective bits are turned on.
  • Multiple signatures may be combined.
  • the binary union of multiple signatures yields a single bit string representing all pharmacophores present in any structure.
  • Any consensus threshold c can be used to define the consensus representation of multiple active sites.
  • a pharmacophore is present in at least c of active site conformations. Note that this way of handling multiple active site snapshots is quite expedient.
  • Test compounds are encoded as follows. First, conformers are generated for each compound using an internal tool, that generates a fairly complete conformational model of the molecule. Features are assigned using a substructure-based set of rules. Pharmacophores are enumerated from these three-dimensional feature positions following the same protocol as for the active site, thus ensuring compatibility of the binary encodings. However, multiple conformers need to be represented simultaneously here. This is done by wrapping the exhaustive enumeration of pharmacophores for a single conformer into an extra loop over all the conformers of a compound. That is, any pharmacophore on any conformer of a compound is represented by turning the respective bit in the signature on.
  • the meaning of a bit at a certain address is the same (the same pharmacophore, within the tolerances of the distance binning). Therefore, representing a design space amounts to masking all molecule signatures by the active site signature.
  • Masking a signature means taking the logical anc of the bits of the site signature and the molecule signature. For a given molecule, bits representing pharmacophores not present in the active site are turned off, whereas the bits of the pharmacophores in the active site can be either on or off, depending on their presence or absence in the molecules. This way only the pharmacophore space defined by the active site is taken into account.
  • Informative library design is a molecule selection strategy that optimizes information return for a given virtual library. The goal is to detect a set of features (pharmacophores) that determine activity against a particular test compound. Informative design aims at selecting a set of compounds such that the resulting subset will interrogate the test compound in different, but overlapping ways. Molecules are selected for synthesis and screening such that each pharmacophore in the design space has a unique pattern of occurrence in the molecules of the set. This unique 'code' enables the identification and retention of the important pharmacophores when the set of compounds is assayed, regardless of the actual experimental outcome. This is in contrast to diversity methods that seek to produce a unique pattern of pharmacophore occurrences in each molecule.
  • a pharmacophore class refers to the subset of pharmacophores that all have the same code or pattern. Note that the optimum solution is a set of compounds that enables decoding each individual pharmacophore. However, this may not be possible due either to the source pool, bit correlation or to limited size of selection.
  • the cost function for an unconstrained optimization in terms of molecule selection is the entropy of the class distribution. The entropy is given by
  • H is the entropy of the feature classes
  • C the number of distinct classes
  • f the number of features in the design space
  • is the size of class i.
  • molecules are selected, such as to maximize H.
  • Example 5 A three dimensional model of the CCP-2 and serine protease domain of MASP-2 can be constructed based on the crystallographic co-ordinates of table 3 (see also example 1).
  • the molecular modeling is done achieved with commercially available Insightll 2000 20 and SYBYL 6.2 21 software packages.
  • the quantum chemistry calculation is carried out using Gaussian 98. 22 All of the computational work is performed on Silicon Graphics workstations (Indigo II and 02).
  • the size and spatial orientation of the active site are identified by the grid analysis implemented in the Binding Site Analysis module within Insightll.
  • the grid size for searching the polypeptides is set to 1 A x 1 A x 1 A.
  • MCSS multiple copy simultaneous search
  • the functional groups chosen for the MCSS calculation are benzene, propane, cyclohexane, phenol, methanol, ether, and water, representing a hydrophobic functional group, a polar functional group, and solvent. Replicas of a given functional group are randomly distributed inside the binding site and then simultaneously and independently energy- minimized.
  • Pairs of molecules are considered to be identical if the root-mean-square deviation (rmsd) between them is less than 0.2 A, and in such cases, one of the pairs is eliminated.
  • the above protocol may be repeated, for example 10 times for each of the functional groups to allow complete searching of the active site. All calculations may be performed using the CHARMM 22 force field and MCSS 2.1 program.24
  • the de novo design program LUDI may be employed to further explore the important regions in the active site for compound binding.
  • the grid points produced by the Insightll/Binding Site Analysis module are divided into four subsites. The residues inside a 6 A radius sphere, which is centered on the centroid of each subsite, are used to generate the interaction site.
  • Three different types of interaction sites are defined in the program: lipophilic, hydrogen bond donor, and hydrogen bond acceptor.
  • the standard default parameter and a fragment library supplied with the program are used during the LUDI search.
  • the best test compounds, i.e. lead molecules may be constructed by manually linking some of the MCSS minima. The new bond is constructed so that there is no introduction of significant internal strain in the candidate ligand.
  • the synthetic accessibility of the generated structures is taken into account during the fragment connection step.
  • the newly formed ligand molecules are subsequently energy-minimized in the rigid protein to regularize the internal coordinates using the CVFF force field in the Discover 95.0 program within Insightll.
  • the flexible ligand docking procedure in the Affinity module within In-sightll is then used to define the lowest energy position for the generated molecules by using a Monte Carlo docking protocol. All of the atoms within a defined radius (6 A) of the lead molecules are allowed to move.
  • the solvation grid supplied with the Affinity program is jsed. If the resulting compound/polypeptide of MASP-2 system is within a predefined energy tolerance of the previous structure, the system is subjected to minimization.
  • the resulting structure is accepted on the basis of an energy check, which used the Metropolis criterion, and also a check of the rms distance of the new structure versus the structure found so far.
  • the final conformations are obtained through a simulation annealing procedure from 500 to 300 K, and then 5000 rounds of energy minimization are performed to reach a convergence, where the resulting interaction energy values are used to define a rank order.
  • Each energy-minimized final docking position of the lead molecules is evaluated using the interaction score function in the LUDI
  • said molecule may be synthesised and interaction may be confirmed in vitro.
  • MASP-2 CCP1-CCP2-SP fragment also designated MASP2 ⁇ B herein.
  • the minimal catalytic unit of MASP-2 is the CCP2-SP fragment. It can cleave the protein substrates (C2 and C4) as efficiently as the entire molecule.
  • C2 and C4 protein substrates
  • small molecular weight synthetic substrates and inhibitors which interact with the active site of the protease domain.
  • the CCP modules stabilize the structure of the serine protease domain and make the fragment more suitable for experimental handling.
  • MASP-2 is a trypsin-like serine protease, it cleaves the polypeptide chain after Lys and Arg.
  • C1 r and C1s, related complement proteases can be measured as esterases using Lys-O-R or Arg-O-R synthetic substrates, while their amidolytic activity is hardly measurable.
  • Our preliminary experiments showed that the synthetic thiolester Z-Lys-S-Bzl (Sigma) substrate is readily cleaved by the recombinant MASP-2.
  • the kcat/KM value was 3X104M-1s-1 for the MASP-2 CCP1-CCP2-SP.
  • the leaving group reacts with the chromophore helper substrate DTDP (4,4'-dithiodipiridine), and the resulting complex can ⁇ be detected spectrophotometrically at 324 nm.
  • concentrations of the stock solutions were as follows: Z-Lys-S-Bzl ⁇ 10mM in H20 stored at -20°C DTDP 20mM in DMF stored at -20°C
  • Pefabloc-SC 4-(2-aminoethyl)-benzenesulfonyl fluoride
  • Chymostatin N-(N ⁇ -carbonyl-([S,S]- ⁇ -(2-iminohaxahydro-4-pyrimidyl)-glycine)-X-Phe-al)- Phe X Leu/Val/lle
  • E-64 trans-epoxylsuccinyl-L-leucilamido(4-guanidino)-butane
  • PMSF phenylmethyl sulfonyl fluoride Leupeptin acetyl-Leu-Leu-Arg-al NPGB p-nitrophenyl p
  • Table 6 summarizes several important features of the nine selected inhibitors, including suggested working concentrations.
  • the inhibitor stock solutions were stored in aliquots at -20°C to prevent excessive freeze- thaw cycle.
  • MASP-2 were incubated with the inhibitors for 30min at 37°C before the activity measurements, as stated in the protocol. All data points are the average of three independent measurements.
  • IC50 value was calculated by means of nonlinear curve fitting using the Grafit 5 program.
  • the data set for IC50 determination is shown in table 7 and in figure 7.
  • the ICso of PMSF is 16.4 ⁇ M
  • the IC 50 of Pefabloc-SC is 221.7 ⁇ M.
  • the IC50 of benzamidine is 0.688mM.
  • Data set for IC 50 determination is shown in table 10 and in figure 1.0.
  • the IC50 of NPGB is 229.6 nM.
  • the IC50 of APMSF is 11.0 ⁇ M.
  • the IC50 of leupeptin is 7.7 ⁇ M. 2.7 E64
  • E64 is a very weak inhibitor of MASP-2, it causes a low effect at relatively high inhibitor concentration.
  • the program calculates an IC 50 value (0.87 mM).
  • Table 16 summarizes the results of our measurements with nine different inhibitors. The inhibitors are ranked according to their IC 50 values (#1 has the smallest IC50 value, therefore it is the best inhibitor).
  • NPGB is the best inhibitor having an IC 0 value in the nanomolar range.
  • Leupeptin has an IC 50 value one order of magnitude higher than NPGB has, but it is still a very potent inhibitor.
  • PMSP and APMSF the two related inhibitors shows practically the same inhibitory effect.
  • Pefabloc-SC which is a newly developed very potent inhibitor of serine proteases (IC 50 values for trypsin and chymotrypsin are 81 ⁇ M and 44 ⁇ M, respectively) is an average inhibitor of MASP-2.
  • Benzamidine is a small but not very specific inhibitor of serine proteases. Three inhibitors showed essentially no inhibitory effect.
  • E64 is an inhibitor of cysteine protesases, it does not usually inhibit serine proteases.
  • Chymostatin and ⁇ ACA are serine protease inhibitors, but their inhibitory effect on the activity of recombinant MASP-2 is negligible.
  • the 3D structure of the enzyme was in pdbqs (protein data bank) format with partial charges, and solvation parameters.
  • pdbqs protein data bank
  • the total charge on the enzyme is -11 e.
  • the structure was saved as mol2 file format (/m-kollnolp.mol2), and then converted to pdbq format by the awk script mol2topdbq and saved as /m-kollnolp.pdbq.
  • the inhibitors structures were also in pdbq file format.
  • SYBYL 6.3 was used to develop the 3D structures of the inhibitors with AM1 semi-empirical calculations, and the charges were assigned by Mulliken population analysis method (log files: /ligands/chymostatinaml .out, /ligands/npgbgaussian.out). Since the inhibitors were treated flexible, we defined active torsions of the molecule, which were done by Autotors (Autodock 3.0 package). The following coordinate files were used for the inhibitors:
  • the benzamidine have +1 e total charge, and 2 active ratable bounds between atoms: C7_7, N1_8 and between A1_1 and C7_7.
  • the leupeptin also have +1 e total charge and have 19 active torsion angles.
  • Leupeptin The structure of Leupeptin is given in figure 15.
  • NPGB p-Nitrophenyl-p-guanidinobenzoate
  • Mw 336,74 Da NPGB has +1 e total charge and seven active torsions.
  • the structure of the NPGB is given in figure 16.
  • ATOM 12 A2 ⁇ 1> 0 -2.813 -1.271 -0.189 1. .00 0. .00 0 .013
  • the main parameters were: population size 100 max. number of energy evaluations 25000000 max. number of generations 27000 run number 200
  • the time needed for docking reflects the degree of freedom of the inhibitors.
  • Table 17 summarizes the time coast of the docking.
  • the Autodock calculates a free energy function, and based on it an estimated inhibition constant (Ki).
  • Ki estimated inhibition constant
  • the most likely docked conformation is the RUN 100.
  • the coordinates of the 3D structure is the RUN 100.
  • ATOM 8 HN LEU A 1 -12. .503 17, .581 72. .254 +0, .10 -0, .10 +0, .319 69 .370
  • the inhibitors can be ranked.
  • the strength of inhibitors are inversely proportional to free energy of binding, therefore the strongest inhibitor belongs to the lowest binding energy.
  • MASP-2 is a highly specific serine protease of the lectin pathway of the complement, that cleaves C2 andC4 protein substrates.
  • the present invention described resolution of the 3D structure of the catalytic region (CCP2-SP) of MASP-2 by means of X-ray crystallography (see example 1 above).
  • CCP2-SP catalytic region
  • X-ray crystallography see example 1 above.
  • the inhibitors were ranked according to their experimentally determined IC 50 values, and three inhibitors were selected for in silico docking studies.
  • NPGB very strong inhibitor
  • IC 50 229 nM
  • Table 4 comprises the structure coordinates of a zymogen MASP-2 with the primary sequence aa 296 to 686 of SEQ ID 1 , wherein aa R444 has been mutated to Q.
  • LamzinN.S. and Wilson, K.S. (1997) Automated refinement for protein crystallography. Methods Enzymol. , 277, 269-305.
  • MASPs mannan- binding lectin-associated serine proteases
  • MAp19 four components of the lectin pathway activation complex encoded by two genes. Immunbioi, 205, 455- 466.

Abstract

The present invention relates to crystals of MASP-2 polypeptides and uses thereof. The disclosed MASP-2 crystals are useful for determining the 3-dimensional structure of MASP-2 polypeptides, including catalytically active MASP-2 polypeptides as well as zymogen MASP-2 polypeptides. As disclosed by the invention said 3-dimensional structure may be used for identifying compounds capable of interacting with and/or inhibiting the activity of MASP-2.

Description

MASP-2 crystal structure and uses thereof
All patent and non-patent references cited in the application, or in the present application, are also hereby incorporated by reference in their entirety.
Field of invention
The present invention relates to crystals of a polypeptide comprising the catalytic domain of MASP-2. Furthermore the invention relates to uses of said crystal for in silico screening methods to identify compound capable of interacting with MASP-2 and/or compound capable of modulating the activity of MASP-2.
Background of invention The complement system is a key element of innate immunity in vertebrates. It is capable of recognizing and eliminating invading pathogen microorganisms and altered host cells through opsonization and lysis. Complement is a sophisticated cascade system, where serine protease enzymes activate each other in a strictly ordered manner. According to our present knowledge the activation of the complement system can be initiated by three independent pathways: the classical, the lectin, and the alternative pathways. The first components of the classical and lectin pathways are supramolecular enzyme complexes consisting of a recognition subunit and associated serine proteases (Gal and Ambrus, 2001). The recognition subunit of the classical pathway is C1q, which resembles to a bunch of six tulips consisting of N-terminal collagen-like arms and C- terminal globular heads. The globular heads bind to the activator structures, which results in the activation of the serine protease zymogens (C1r and C1s) associated with the collagen-like region. One C1q together with a heterotetramer of C1r and C1s proteases (C1s-C1 r-C1r-C1s) form the C1 complex (Arlaud et al., 1987; Schu aker et al., 1987). The first enzymatic event in the classical pathway is the autoactivation of C1r zymogen. Activated C1 r then cleaves zymogen C1s, which in turn cleaves and activates C2 and C4, the components of the C3-convertase enzyme complex. The initiation complex of the lectin activation pathway resembles superficially the C1 complex. The recognition subunit of the lectin pathway, the mannose-binding lectin (MBL) has C-terminal globular C-type lectin domains and N-terminal collagen-like stalks (Turner, 1996). MBL is capable of binding to carbohydrate arrays on the surface of pathogens and trigger the activation of the complement cascade through associated serine proteases. There are three serine proteases, mannose-binding lectin-associated serine protease-1 , -2 and -3 (MASP-1/-2/-3) (Thiel et al., 1997; Matsushita et al., 2000; Dahl et al., 2001) and a small non enzymatic protein MAp-19 (Stover et al., 1999; Takahashi et al., 1999) that associate with MBL. There are many open questions concerning the structure and function of the MBL-MASP complex. It has been demonstrated that different MBL-MASP complexes exist with respect to the oligomer status of the MBL (ranging from two trimeric subunits to six) and the number and type of MASPs that associate with it (Dahl et al., 2001 ; Thielens et al., 2001). Recent evidences indicate that, unlike C1 r and C1s, MASP-1 and MASP-2 can act independently, they do not form hetero oligomers and do not require each other in order to become activated. Both MASP-1 and MASP-2 can autoactivate, and the activated serine proteases show significant activity towards different substrates (Ambrus et al., 2003). MASP-2 is a C1s- like enzyme, cleaving C4 and C2 (Thiel et al., 1997; Rossi et al., 2001). Unlike C1s however, MASP-2 can autoactivate and therefore trigger the complement cascade without the contribution of any other protease (Vorup-Jensen et al., 2000). It has been shown that a complex consisting of two MBL subunits and two MASP-2 molecules represents the minimal complement-fixing unit (Chen and Wallis, 2001). Consequently a MASP-2 dimer is able to perform all functions mediated by the C1r2C1s2 tetramer in the C1 complex. The C1r, C1s, MASP-1/-2/-3 enzymes form a family of proteases with common modular organization (Sim and Laich, 2000; Volanakis and Arlaud, 1998; Schwaeble et al., 2002). The N-terminal interacting region of these enzymes contains an EGF-like domain surrounded by two CUB domains. The C-terminal catalytic region contains the serine protease (SP) domain preceded by two complement control protein (CCP) (also referred to as SCR or sushi) modules. Recently, the CCP1-CCP2-SP, CCP2-SP and SP fragments of MASP-2 were expressed and characterized (Ambrus et al., 2003). The SP domain is sufficient for autoactivation and can cleave the C2 substrate as efficiently as the intact molecule. For efficient C4 cleavage, however, the presence of the CCP2 module is essential. The CCP2 module may contain additional substrate binding sites for the C4 molecule. Thus the CCP2-SP fragment can therefore be considered as the catalytic domain of MASP-2. X-ray crystallography studies have resolved the structures of the catalytic region (CCP1-CCP2-SP) of zymogen C1r (Budayova-Spano et al., 2002a) and the catalytic region (CCP2-SP) of zymogen and activated C1 r (Budayova-Spano et al., 2002b) and activated C1s (Gaboriaud et al., 2000). Very recently the structure of the N-terminal CUB1-EGF fragment of C1s (Gregory et al., 2003) and the CUB1-EGF-CUB2 fragment of rat MASP-2 (Feinberg et al., 2003) have been published. However, no information about the 3D structure of the catalytic domain of any MASP enzymes are available in the literature.
Summary of invention
Information about the 3D structure of the catalytic domain of MASP proteins would facilitate identification of useful compounds capable of interacting with MASP proteins. For example information about the 3D structure of the catalytic domain of active and non- active MASP may be useful. In particular, modulators of MASP proteins, such as inhibitors may be designed using information of the 3D structure of the catalytic domain of MASP proteins.
Despite several technical difficulties, the inventors succeeded in preparing crystals of fragments of MASP proteins and solving the structure thereof.
It is hence one objective of the present invention to provide a crystal of a polypeptide comprising at least 150 consecutive amino acids from the serine protease domain of MASP-2. Said polypeptide may be catalytically active, or said polypeptide may be catalytically inactive.
Information of the 3D structure of MASP-2 may be used to identify compounds, capable of interacting with MASP-2. For example, in silico screening methods may be employed to identify compounds, which with high probability can interact with MASP-2.
It is thus a further objective of the present invention to provide methods of identifying compounds capable of interacting with a polypeptide comprising at least 150 consecutive amino acids from the serine protease domain of MASP-2, wherein said method comprises the steps of i) providing a computer system for producing a three-dimensional representation of a molecule or molecular complex, wherein said computer system comprises: a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein said data comprises the structure coordinates of a polypeptide comprising at least 150 consecutive amino acids from the serine protease domain of MASP-2; a working memory for storing instruction for processing said machine- readable data; a central-processing unit coupled to said working memory and to said machine-readable data storage medium for processing said machine- readable data into said three-dimensional representation; and a display coupled to said central-processing unit for displaying said three- dimensional representation; and ii) executing instructions on the computer for generating a three dimensional representation of said polypeptide from structural coordinates of a crystal of said polypeptide, such that the computer loads into memory thereof computer-readable data comprising structural coordinates of a molecular 3D model of said polypeptide; iii) generating molecular models of one or more test compounds; iv) calculating, from said molecular models, one or more possible molecular complexes which could be formed by association of said polypeptide with said one or more test compound; v) generating output data indicative of the degree of interaction and/or the location and/or the orientation of such interaction; vi) selecting compounds capable of interacting with said polypeptide
It is comprised within the present invention that the method may be repeated with another data set comprising the structure coordinates of another polypeptide comprising at least 150 consecutive amino acids from the serine protease domain of MASP-2. The method may in particular be repeated using one catalytically active MASP-2 polypeptide and one MASP-2 polypeptide, which lacks catalytic activity, for example one MASP-2 polypeptide in the two-chain form and one MASP-2 polypeptide in the one chain form. Thus, the method may comprise selecting compounds capable of interacting only with a catalytically active MASP-2 polypeptide, or compound capable of interacting only with MASP-2 lacking catalytic activity or compounds capable of interacting with both catalytically active MASP-2 and MASP-2 lacking catalytic activity.
Subsequent to selecting compounds capable of interacting with MASP-2 using in silico methods, it is frequently desirable to confirm the interaction in vitro.
It is therefore preferred that the methods of the invention furthermore comprise the steps of vii) Providing at least one selected compound; viii) Providing a polypeptide comprising at least 150 consecutive amino acids from the serine protease domain of MASP-2; ix) Contacting said polypeptide with said selected compound under conditions for interaction; x) Detecting interaction between said polypeptide and said selected compound, thereby identifying compounds capable of interacting with said polypeptide
The polypeptide used for the in vitro methods may be the same polypeptide, which co- ordinates were used for establishing the 3D model or it may be a different polypeptide also comprising at least 150 consecutive amino acids from the serine protease domain of MASP-2. By way of example the polypeptide used for the in vitro methods may be a full length MASP-2 polypeptide, whereas the polypeptide used for establishing the 3D model may be a polypeptide merely comprising the CCP-2 and serine protease domains of MASP-2.
It is a further objective of the present invention to provide compounds capable of interacting with a polypeptide of MASP-2 identified by the methods according to the invention. Information of the 3D structure of MASP-2 may also be used to identify compounds, capable of inhibiting MASP-2 activity. In particular, compounds capable of interacting with a site required for MASP-2 activity may be useful inhibitors of MASP-2 activity. For example, compounds capable of interacting with the C4 binding pocket of MASP-2 may be useful inhibitors of MASP-2.
Hence, it is an objective of the present invention to provide methods of identifying a compound capable of inhibiting MASP-2 activity, wherein said method comprises the steps of i) providing a computer system for producing a three-dimensional representation of a molecule or molecular complex, wherein said computer system comprises: a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein said data comprises the structure co-ordinates of a polypeptide comprising the CCP- 2 and the serine protease domain of MASP-2; a working memory for storing instruction for processing said machine- readable data; a central-processing unit coupled to said working memory and to said machine-readable data storage medium for processing said machine- readable data into said three-dimensional representation; and a display coupled to said central-processing unit for displaying said three- dimensional representation; and ii) executing instructions on the computer for generating a three dimensional representation of a substrate binding site on said polypeptide from structural co-ordinates of a crystal of said polypeptide, such that the computer loads into memory thereof computer-readable data comprising structural co-ordinates of a molecular model of said binding site; iii) generating molecular models of one or more test compounds; iv) calculating, from said molecular models, one or more possible molecular complexes which could be formed by association of said binding site with said one or more test compound; v) generating output data indicative of the degree of interaction and/or the location and/or the orientation of such interaction; vi) selecting compounds capable of interacting with said binding site, thereby identifying inhibitors of MASP-2 activity
If the MASP-2 polypeptide is a catalytically active MASP-2, then an inhibitor could for example be a compound that interacts with the active site. If the MASP-2 polypeptide is zymogen MASP-2, then an inhibitor could for example be a compound that interacts with the MASP-2 auto-cleavage site. Such a compound could then inhibit activation of MASP- 2.
Subsequent to selecting compounds capable of inhibiting MASP-2 activity using in silico methods, it is frequently desirable to confirm the inhibiting properties of the compound in vitro.
Accordingly, the methods of the invention may furthermore comprise the steps of vii) Providing at least one selected compound; viii) Providing MASP-2; ix) Determining MASP-2 activity in the presence and absence of said compound; x) Identifying compounds in the presence of which MASP-2 activity is lower than in the absence of said compound
It is also an objective of the present invention to provide compounds capable of inhibiting MASP-2 activity identified by the methods of the invention. Description of Drawings
Fig. 1. Overall structure of the MASP-2 CCP2-SP fragment. (A) Stereo ribbon diagram of molecule A (dark grey) and molecule B (light grey) of the crystal structure, with the SP domains superimposed. The β-strands of the CCP2 module and the C-terminus are labelled. Residues of the catalytic triad are shown as sticks and are labelled 'a.s.' (B) Superimposition of the CCP module of molecule A onto that of C1 s (light blue) and C1 r (green), with the β-strands labelledf. (C) Superimposition of the active SP domain of molecule A onto that of C1s and C1r with the active site residues shown as sticks. The loops are labelled according to Perona and Craik (1997).
Fig. 2. The CCP2/SP interface region. (A) Backbone conformations of MASP-2 molecule A (red), molecule B (yellow), C1s (light blue), and C1r (CCP2-SP active form: light green) are shown with the CCP2 module superimposed. Due to differences in the topology of the interface contacts, the active site of MASP-2 (serine c195 side chain shown as space filling representation; also shown for CCP2-SP zymogen in medium green and CCP1- CCP2-SP zymogen in dark green) is shifted significantly compared to that of C1 r and C1s. B-D represent a 90° rotated view (side view) from that of A. The CCP2/SP interface region of MASP-2 molecule A (B), molecule B (C), and C1s (D) is shown. Residues forming interdomain contacts in MASP-2 are shown as balls and sticks, as well as the corresponding residues of C1s. In MASP-2 these residues form a hydrogen bond network (shown as green dotted lines), which is not established in C1s. For the sake of clarity, some side chain atoms are not shown, the carbon atoms and the ribbon representation of SP domains are shown in blue, while those of the interdomain linkers are in yellow, the N- terminal loop and B1 are in rose and the rest of CCP2 module is in orange, respectively.
Fig. 3. Substrate binding subsites of MASP-2. (A) Sequences of the P4-P4' segments are shown for the natural substrates: MASP-2, C2 and C4, as well as for the pseudosubstrate C1 inhibitor. (B) Stereo view of the molecular surface of MASP-2 substrate binding subsites region is colored by residue type (acidic: red, basic: blue, polar: yellow, hydrophobic: grey). A model peptide (drawn as sticks) representing the P4-P2' residues of C2 is shown superimposed over the MASP-2 structure.
Fig.4. Possible binding site of MASP-2 and C1s on C4d. Molecular surfaces of MASP-2 CCP2 module (A) and C1s CCP2 module (B) are shown from the same viewpoint, colored for electrostatic potential (red: negative, blue: positive). Charged residues conserved between MASP-2 and C1s are labelled. Side chains that were disordered in the crystal structures were added. (C) MASP-2 (magenta) and C1s (light blue) ribbon representations are shown from back view superimposed over a possible CCP-binding site of C4d. The model is constructed on the basis of structural homology between C3d and C4d. Molecular surface representation of C4d is colored for electrostatic potential (red: negative, blue: positive), with its residues possibly forming electrostatic interactions with the MASP-2/C1s CCP2 module labelled in italics. Conformations of side chains C1s E356 / MASP-2 E378 were adjusted. (D) Side view of the superimposed structures. Ribbon representation of C4d is shown in light purple, with its C- and N-termini and thioester region labelled, while MASP-2 and C1s are shown in magenta and light blue, respectively.
Fig.5. Schematic representation MASP-2 indicating the individual domains
Fig.6. Alignment of the human MASP-1 , MASP-2, C1 r and C1 s sequences indicating the presence of the individual domains is MASP-2. Amino acids conserved in the four proteins are furthermore indicated by asterisk.
Fig. 7 illustrates the IC50 determination of PMSF and MASP2γB.
Fig. 8 illustrates the IC50 determination of Pefablock and MASP2γB.
Fig. 9 illustrates the IC50 determination of Benzamidin and MASP2γB.
Fig. 10 illustrates the IC50 determination of NPGB and MASP2γB.
Fig. 11 illustrates the IC50 determination of APMSF and MASP2γB.
Fig. 12 illustrates the IC50 determination of Leupeptine and MASP2γB.
Fig. 13 illustrates the IC50 determination of E64 and MASP2γB.
Fig. 14 illustrates the structure of benzamidine
Fig. 15 illustrates the structure of leupeptin Fig. 16 illustrates the structure of NPGB
Fig. 17A shows a superimposed view of the 200 docked conformations of benzamidine in the substrate binding pocket of MASP-2. There are two closely spaced separate clusters
Fig. 17B illustrates the structure of benzamidine in the substrate binding pocket of MASP- 2. The protein is shown in surface, the benzamidine is shown in ball and sticks representation.
Fig. 18A shows a superimposed view of 200 docketed conformations of leupeptin in the substrate binding pocket of MASP-2.
Fig. 18B illustrates the minimum energy conformation of leupeptin in the substrate binding pocket of the MASP2. The protein is shown in surface, leupeptin is shown in ball and sticks representation.
Fig. 19A shows a superimposed view of the 200 docked conformations of NPGB in the substrate binding pocket of MASP-2. Two close clusters are well visible.
Fig. 19B illustrates the minimum energy conformation of the NPGB in the substrate binding pocket of the MASP2. The protein is shown in surface, NPGB is shown in ball and sticks representation.
Detailed description of the invention
MASP-2
The MASP-2 protein comprises of a number of domains namely the CUB1 , EGF, CUB2, CCP1 , CCP2 and serine protease domains. A schematic presentation of MASP-2 is given in figure 5. Position of the individual domains within human MASP-2 is indicated in figure 2. A catalytic domain of MASP-2 is any domain of MASP-2 comprising catalytic activity. In general the catalytic domain comprises at least the serine protease domain of MASP-2. Catalytic activity of MASP-2 is preferably serine protease activity towards a suitable substrate, such as zymogen MASP-2, C2 and/or C4. Catalytic activity may be determined using any of the methods described herein below in the section "MASP-2 activity".
In one embodiment the invention relates to polypeptides comprising at least 150, for example at least 175, such as at least 200 consecutive amino acids from the serine protease domain of MASP-2. Such polypeptides are designated "polypeptides of MASP-2" herein.
Polypeptides of MASP-2 preferably comprise the serine protease domain of MASP-2. In addition, polypeptides of MASP-2 may also comprise one or more further domains of MASP-2, such as the CCP-2 domain. In a preferred embodiment said polypeptides comprises the CCP-2 domain and the serine protease domain of MASP-2.
By the term "MASP-2" is meant any MASP-2 molecule known to the person skilled in the art and functional homologues thereof. Said MASP-2 may for example be derived from a mammal, for example MASP-2 may be derived from a human being. In a preferred embodiment of the present invention, MASP-2 is human MASP-2 as identified by SEQ ID 1 or a functional homologue thereof sharing at least 50%, preferably at least 60%, more preferably at least 70%, even more preferably at least 80%, yet more preferably at least 90%, yet even more preferably at least 95% homology or more preferably identity with SEQ ID 1.
Hence, in a preferred embodiment the polypeptide comprising the serine protease domain of MASP-2 comprises aa 363 to 686 of SEQ ID 1. In another preferred embodiment the polypeptide comprising the serine protease domain of MASP-2 comprises aa 299 to 686 of SEQ ID 1.
In addition to sequences derived from MASP-2 the polypeptide may comprise other sequences, for example an extra peptide sequence comprising at least one amino acid, preferably in the range of 1 to 500, such as 1 to 250, for example 1 to 100, such as 1 to 75, for example 1 to 50, such as 1 to 25, for example 1 to 10 amino acids not derived from MASP-2. Preferably, said extra peptide sequence consists of at the most 20, such as at the most 10, for example at the most 5, for example around 4 amino acids. The extra peptide sequence may be situated at the N-terminus or at the C-terminus or internally in the MASP-2 fragment. Preferably, the fragment is situated at the N-terminus of the C- terminus of the MASP-2 derived fragment.
In one preferred embodiment of the invention the polypeptide comprise an extra peptide of the sequence ALA SER MET THR. Preferably said sequence is positioned N-terminally. Hence, it is preferred that the polypeptide consists of the sequence ALA SER MET THR coupled N-terminally to aa 363 to 686 of SEQ ID1. In another preferred embodiment the polypeptide consists of the sequence ALA SER MET THR coupled N-terminally to aa 299 to 686 of SEQ ID 1.
In a preferred embodiment of the invention the polypeptide of MASP-2 is in an enzymatically active form (herein also designated catalytically active form). Hence, the polypeptide preferably has at least 20%, such as at least 30%, for example at least 40%, such as at least 50%, for example at least 60%, such as at least 70%, for example at least
80%, such as at least 90%, for example at least 95% of the activity of wild type MASP-2.
MASP-2 activity may be determined as described herein elsewhere. It is thus preferred that the polypeptide is in the enzymatically active, two-chain form.
The term "polypeptides of MASP-2" as used herein is meant to cover both the one-chain and two-chain form of MASP-2. '
In one embodiment of the invention, MASP-2 is in the one-chain form. The one-chain form is also referred to as zymogen MASP-2. In order to secure that MASP-2 is in the one- chain form, such MASP-2 may comprise one or more mutations, preferably one or more mutations within the cleavage site. Thus the MASP-2 polypeptide may in one embodiment of the invention comprise at least 150 consecutive amino acids of MASP-2 of SEQ ID 1 , wherein one or more amino acids have been mutated. In particular, it is preferred that at least one of the amino acids 443 to 445 of SEQ ID 1 are mutated. More preferably the MASP-2 polypeptide may comprise or consist of amino acid 296 to 686 of SEQ ID 1 , wherein aa 444 is mutated, preferably aa 444 is mutated from R to Q. Functional equivalents or functional homologues of polypeptides of MASP-2 or polypeptides comprising the serine protease domain of MASP-2 are polypeptides which share at least some sequence identity with the predetermined amino acid sequence of said polypeptides (for example a fragment of the amino acid sequence outlined in SEQ ID 1). Functional equivalents should furthermore retain at least 30%, such as at least 40%, for example at least 50%, such as at least 60%, for example at least 70%, such as at least 80%, for example at least 90%, such as at least 95% MASP-2 activity. Methods of determining MASP-2 activity are described herein below. The terms "functional equivalent" and "functional homologue" are used interchangeably herein.
Functional homologues according to the present invention comprise polypeptides with an amino acid sequence, which are sharing a homology with the predetermined MASP-2 polypeptide sequences as outlined herein above. For example such polypeptides are at least about 40 percent, such as at least about 50 percent homologous, for example at least about 60 percent homologous, such as at least about 70 percent homologous, for example at least about 75 percent homologous, such as at least about 80 percent homologous, for example at least about 85 percent homologous, such as at least about 90 percent homologous, for example at least 92 percent homologous, such as at least 94 percent homologous, for example at least 95 percent homologous, such as at least 96 percent homologous, for example at least 97 percent homologous, such as at least 98 percent homologous, for example at least 99 percent homologous with the predetermined polypeptide sequences as outlined herein above.
Homology may preferably be calculated by any suitable algorithm or by computerised implementations of such algorithms for example CLUSTAL in the PC/Gene program by Intelligenetics or GAP, BESTFIT, BLAST, FASTA and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG). The homology between amino acid sequences may furthermore be calculated with the aid of well known matrices such as for example any one of BLOSUM 30, BLOSUM 40, BLOSUM 45, BLOSUM 50, BLOSUM 55, BLOSUM 60, BLOSUM 62, BLOSUM 65, BLOSUM 70, BLOSUM 75, BLOSUM 80, BLOSUM 85, and BLOSUM 90.
Functional homologues according to the present invention are preferably polypeptides with an amino acid sequence, which is at least about 50 percent, preferably at least about 60 percent, more preferably at least about 70 percent, even more preferably at least about 75 percent, yet more preferably at least about 80 percent, even more preferably at least about 85 percent, yet more preferably at least about 90 percent, even more preferably at least 95 percent homologous, most preferably at least 98 percent identical with the predetermined MASP-2 polypeptide sequences as outlined herein above.
Functional homologues may comprise an amino acid sequence that comprises at least one substitution of one amino acid for any other amino acid. For example such a substitution may be a conservative amino acid substitution or it may be a non- conservative substitution. Preferably, said substitutions are conservative substitution.
A conservative amino acid substitution is a substitution of one amino acid within a predetermined group of amino acids for another amino acid within the same group, wherein the amino acids within a predetermined groups exhibit -similar or substantially similar characteristics. Within the meaning of the term "conservative amino acid substitution" as applied herein, one amino acid may be substituted for another within groups of amino acids characterised by having
i) polar side chains (Asp, Glu, Lys, Arg, His, Asn, Gin, Ser, Thr, Tyr, and Cys,)
ii) non-polar side chains (Gly, Ala, Val, Leu, lie, Phe, Trp, Pro, and Met)
iii) aliphatic side chains (Gly, Ala Val, Leu, lie)
iv) cyclic side chains (Phe, Tyr, Trp, His, Pro)
v) aromatic side chains (Phe, Tyr, Trp)
vi) acidic side chains (Asp, Glu)
vii) basic side chains (Lys, Arg, His)
viii) amide side chains (Asn, Gin)
ix) hydroxy side chains (Ser, Thr) x) sulphor-containing side chains (Cys, Met), and
xi) amino acids being monoamino-dicarboxylic acids or monoamino-monocarboxylic- monoamidocarboxylic acids (Asp, Glu, Asn, Gin).
The addition or deletion of an amino acid may be an addition or deletion of from 2 to 5 amino acids, such as from 5 to 10 amino acids, for example from 10 to 20 amino acids, such as from 20 to 50 amino acids. However, additions or deletions of more than 50 amino acids, such as additions from 50 to 200 amino acids, are also comprised within the present invention.
In addition to the polypeptide compounds described herein, sterically similar compounds may be formulated to mimic the key portions of the peptide structure and that such compounds may also be used in the same manner as the peptides of the invention. This may be achieved by techniques of modelling and chemical designing known to those of skill in the art. For example, esterification and other alkylations may be employed to modify the amino terminus of, e.g., a di-arginine peptide backbone, to mimic a tetra peptide structure. It will be understood that all such sterically similar constructs fall within the scope of the present invention.
Peptides with N-terminal alkylations and C-terminal esterifications are also encompassed within the present invention. Functional equivalents also comprise glycosylated and covalent or aggregative conjugates, including dimers or unrelated chemical moieties. Such functional equivalents are prepared by linkage of functionalities to groups which are found in fragment including at any one or both of the N- and C-termini, by means known in the art.
Functional equivalents may thus comprise fragments conjugated to aliphatic or acyl esters or amides of the carboxyl terminus, alkylamines or residues containing carboxyl side chains, e.g., conjugates to alkylamines at aspartic acid residues; O-acyl derivatives of hydroxyl group-containing residues and N-acyl derivatives of the amino terminal amino acid or amino-group containing residues, e.g. conjugates with Met-Leu-Phe. Derivatives of the acyl groups are selected from the group of alkyl-moieties (including C3 to C10 normal alkyl), thereby forming alkanoyl species, and carbocyclic or heterocyclic compounds, thereby forming aroyl species. The reactive groups preferably are difunctional compounds known per se for use in cross-linking proteins to insoluble matrices through reactive side groups.
Functional homologues may furthermore be polypeptide encoded by a nucleic acid which is able to hybridise to the complementary strand of a nucleic acid sequence encoding the predetermined MASP-2 polypeptide sequences as outlined herein above under stringent conditions.
Stringent conditions as used herein shall denote stringency as normally applied in connection with Southern blotting and hybridisation as described e.g. by Southern E. M., 1975, J. Mol. Biol. 98:503-517. For such purposes it is routine practise to include steps of prehybridization and hybridization. Such steps are normally performed using solutions containing 6x SSPE, 5% Denhardt's, 0.5% SDS, 50% formamide, 100 μg/ml denaturated salmon testis DNA (incubation for 18 hrs at 42°C), followed by washings with 2x SSC and 0.5% SDS (at room temperature and at 37°C), and a washing with 0.1 x SSC and 0.5% SDS (incubation at 68°C for 30 min), as described by Sambrook et al., 1989, in "Molecular Cloning/A Laboratory Manual", Cold Spring Harbor), which is incorporated herein by reference.
Crystal
A crystal of a polypeptide of MASP-2 according to the present invention should preferably be useful for determining the structure of said crystal using X-ray diffraction.
In a preferred embodiment the crystal is a crystal of a polypeptide comprising the CCP-2 and serine protease domain of MASP-2. The crystal may comprise more than one peptide, for example 2. In a preferred embodiment the crystal comprises the CCP-2 and serine protease domain of MASP-2 in the active two chain form.
Hence, it is preferred that the crystal diffracts X-rays for determination of atomic coordinates to a resolution of at least 5 A, preferably at least 4 A, more preferably at least 3 A, even more preferably at least 2.5 A, most preferably at least 2.25 A. In a very preferred embodiment of the invention the crystal comprises atoms arranged in a spatial relationship represented by the structure co-ordinates of table 3, or by co-ordinates having a root mean square deviation therefrom of not more than 2.5 A, preferably not more than 2.25 A, more preferably not more than 2.0 A, even more preferably not more than 1.75 A, yet more preferably not more than 1.5 A, for example not more than 1.25 A, such as not more than 1.0 A. Preferably, the co-ordinates has a root mean square deviation therefrom, of not more than 2.5 A, preferably not more than 2.25 A, more preferably not more than 2.0 A, even more preferably not more than 1.75 A, yet more preferably not more than 1.5 A, for example not more than 1.25 A, such as not more than 1.0 A.
Preferably, the crystal comprises or more preferably consists of the structure as deposited to the PDB with id 1q3x.
The crystal may also comprise the CCP-2 and the serine protease domain of MASP-2 in the one chain form, preferably such MASP-2 comprises at least one mutation within the cleavage site (see details regarding zymogen MASP-2 herein above).
In another embodiment of the invention the crystal comprises atoms arranged in a spatial relationship represented by the structure co-ordinates of table 4, or by co-ordinates having a root mean square deviation therefrom of not more than 2.5 A, preferably not more than 2.25 A, more preferably not more than 2.0 A, even more preferably not more than 1.75 A, yet more preferably not more than 1.5 A, for example not more than 1.25 A, such as not more than 1.0 A. Preferably, the co-ordinates has a root mean square deviation therefrom, of not more than 2.5 A, preferably not more than 2.25 A, more preferably not more than 2.0 A, even more preferably not more than 1.75 A, yet more preferably not more than 1.5 A, for example not more than 1.25 A, such as not more than 1.0 A.
The crystal may comprise more than one polypeptide of MASP-2 per asymmetric unit, in a preferred embodiment of the invention the crystal comprises polypeptides of MASP-2 per asymmetric unit.
It is preferred that the crystal has unit cell dimensions of in the range of a=40 to 42, preferably 40.5 to 41.5, more preferably around 41 b=40.5 to 42.5, preferably 41 to 42, more preferably around 41.5 c=102 to 104, preferably 102.5 to 103.5, more preferably around 103 oc=(=95.5 to 97.5, preferably 96 to 97, more preferably around 96.4 β=(=90.8 to 92.8, preferably 91.3 to 92.3, more preferably around 91.8 γ=(=118.5 to 120.5, preferably 119 to 1.20, more preferably around 119.5
Most preferably the crystal has the following data:
Spacegroup: P1 , 2 molecules /asymmetric unit, unit cell dimensions of a=40.950 b=41.521 c=102.994 alpha=96.44 beta=91.77 gamma=119.52 A.
MASP-2 activity
In one aspect the present invention relates to methods of identifying compounds capable of inhibiting MASP-2 activity. MASP-2 activity may be determined by any suitable assay. Useful assays include assays, wherein serine protease activities of MASP-2/MBL complexes are tested. Preferred assays, are assays determining cleavage of C2 and/or C4 and/or MASP-2. Most preferably assays determining cleavage of C2 or C4.
Inhibitors of MASP-2 activity may be tested for inhibition of C2 and/or C4 deposition, i.e. inhibition of C2 and/or C4 cleavage.
The assays may involve the steps of preparing a solid surface on which an MBL associating agent is immobilised, binding MBL/MASP-2 complexes to said MBL associating agent and screening for inhibition of MASP-2 catalysed reactions.
The solid surface may be any useful solid surface, for example microtiter wells. The MBL associating agent, may be any compound to which MBL binds with high affinity, for example MBL antibodies, mannan or mannose, preferably however it is mannan. The MBL/MASP-2 complexes may be derived from any suitable source, it may for example be recombinant MBL, recombinant MASP-2 or MBL and/or MASP-2 purified from serum. Recombinant MBL/MASP-2 may be full length MBL/MASP-2 or functional fragments thereof. Furthermore, recombinant MBL/MASP-2 may be attached to one or more other compounds, such as genetic tags. MBL and/or MASP-2 may be derived from any suitable species for example it may be human MBL/MASP-2. In one embodiment of the invention, the MBL/MASP-2 complexes are found in full serum and are not purified prior to performing the assay. Said assays then test inhibition of deposition of substrate, i.e. C4 in full serum. The MASP-2 catalysed reaction is preferably deposition of C2 and/or C4.
The compound to be screened for inhibition activity is added to the bound MBL/MASP-2. Controls without added compound are preferably also performed. The compound may be added in any suitable concentration depending on the nature of the specific compound. For example in concentrations in the range of 1 μ(g/ml to 10,000 μg/ml, such as in the range of 5 μ(g/ml to 1000 μg/ml, for example in the range of 10 μ(g/ml to 300 μg/ml, such as in the range of 15 μ(g/ml to 200 μg/ml, for example in the range of 20 to 100 μ(g/ml.
A MASP-2 substrate is added to the MBL/MASP-2 complexes. Preferably, said substrate is either C2 or C4 or a mixture of both or an artificial MASP-2 substrate. In one preferred embodiment the substrate is C4. The substrate may be recombinantly produced or a serum derived substrate. The substrate may or may not have been purified prior to use, but preferably it is purified. In order to monitor deposition, the substrate, may be labelled with a detectable label, for example with an enzyme, a radioactive compound, a fluorescent compound, a dye, a heavy metal, a chemilumniscent compound or the like.
It is however preferred that deposition is detected using specific binding agent, such as an antibody, specifically recognising digested substrate. For example, antibodies recognising human complement C4c may be used. Said antibodies may be labelled, by a directly or indirectly detectable label. For example by an enzyme, a radioactive compound, a fluorescent compound, a dye, a heavy metal, a chemilumniscent compound or an affinity compound. Affinity compounds include for example other antibodies or biotin, streptavidin.
The above mentioned steps may be performed in any useful order, i.e. substrate may be added before or simultaneously to inhibiting antibody, MBL/MASP-2 complexes may be mixed with the substrate for example 5 min. to 2 hours. In general, MBL/MASP-2, substrate and antibody is premixed, when MBL/MASP-2 complexes are present in serum and have not previously been purified from serum.
In one preferred embodiment of the present invention, the activity of MASP-2 is determined using any of the methods described in examples 2, 3 and 6 herein below. In particular, compounds capable of inhibiting C4 deposition, should preferably be able to inhibit C4 deposition in at least one, preferably both of the methods described in example 2 or 3. Compounds capable of inhibiting C4 deposition, should more preferably at least be able to inhibit C4 deposition according to the methods described in example 2, whereas compounds capable of inhibiting C4 deposition in full serum should be capable of inhibiting C4 deposition in full serum as described in example 3.
Preparing crystals
After several unsuccessful attempts, suitable conditions for preparing crystals of a polypeptide of MASP-2 were identified.
It is therefore also an aspect of the present invention to provide methods of preparing a crystal comprising a polypeptide comprising at least 150 consecutive amino acids of MASP-2, wherein said method comprises the steps of i) Providing said polypeptide; ii) Optionally providing a compound capable of interacting with said polypeptide; i) Growing crystals under conditions wherein said polypeptide and optionally said compound is incubated in a buffer comprising in the range of 5 to 25% polyethylene glycol, in the range of 0.01 M to 0.5M salt, in the range of 1 to 10% of an alcohol selected from the group consisting of glycerol and 2- methyl-2,4-penthanediol, wherein said buffer has a pH in the range of 6 to 9; ii) Thereby preparing said crystals
In one embodiment of the invention, co-crystals of said polypeptide and a compound capable of interacting with said polypeptide are prepared. Said compound may have been identified by any of the methods outlined herein below. Hence, the compound may in one aspect of the invention be a modulator, such as an inhibitor of MASP-2 activity. The co-crystals are useful for designing optimised compounds, with enhanced binding properties. In particular, the co-crystals may be useful for designing better inhibitors of MASP-2.
The buffer preferably comprises in the range of 5 to 25% polyethylene glycol, more preferably in the range of 10 to 20%, even more preferably in the range of 12 to 18%, yet more preferably in the range of 14 to 16 %, most preferably around 15% polyethylene glycol. Polyethylene glycol (PEG) may be any suitable PEG for example a PEG selected from the group consisting of PEG 4000, PEG 6000 and PEG 8000, preferably polyethylene glycol is PEG 6000.
The buffer preferably comprises in the range of 0.01 M to 0.5 M salt, more preferably in the range of 0.02 to 0.4 M, even more preferably in the range of 0.05 to 0.3 M, yet more preferably in the range of 0.08 to 0.2 M, most preferably around 0.12 M salt. The salt may be any useful salt, preferably the salt is NaCl.
The buffer preferably comprises in the range of 1 to 10% an alcohol selected from the group consisting of glycerol and 2-methyl-2,4-penthanediol, more preferably in the range of 2 to 9%, even more preferably in the range of 3 to 8%, yet more preferably in the range of 4 to 6%, most preferably around 5% an alcohol selected from the group consisting of glycerol and 2-methyl-2,4-penthanediol. Preferably said alcohol is glycerol.
The buffer preferably has a pH in the range of 6 to 9, more preferably in the range of 6.5 to 8.5, even more preferably in the range of 7 to 8, yet more preferably in the range of 7.4 to 7.5.
Incubation should be performed at a suitable temperature, preferably at a temperature in the range of 5 to 25°(C, more preferably in the range of 10 to 25°C, even more preferably in the range of 15 to 25°C, even more preferably in the range of 18 to 22°C, yet more preferably around 20°C.
The crystals may be grown by any suitable method, for example by the hanging drop method. Determination of structure
The structure of crystals may be determined by any method known to the person skilled in the art, for example using X-ray diffraction. Once a structure has been identified, said structure may be refined using suitable software.
In one embodiment of the invention a molecular replacement technique may be used. Such techniques involves that the structure is determined by obtaining x-ray diffraction data for crystals of the polypeptide or complex for which one wishes to determine the three dimensional structure. Then, one determines the three-dimensional structure of that polypeptide or complex by analysing the x-ray diffraction data using molecular replacement techniques with reference to known structural co-ordinates of a structurally similar protein. In the case of polypeptides comprising domains of MASP-2, structural coordinates of similar domains in C1 r or C1 s may be used. As described in U.S. Pat. No. 5,353,236, for instance, molecular replacement uses a molecule having a known structure as a starting point to model the structure of an unknown crystalline sample. This technique is based on the principle that two molecules which have similar structures, orientations and positions in the unit cell diffract similarly. Molecular replacement involves positioning the known structure in the unit cell in the same location and orientation as the unknown structure. Once positioned, the atoms of the known structure in the unit cell are used to calculate the structure factors that would result from a hypothetical diffraction experiment. This involves rotating the known structure in the six dimensions (three angular and three spatial dimensions) until alignment of the known structure with the experimental data is achieved. This approximate structure can be fine-tuned to yield a more accurate and often higher resolution structure using various refinement techniques. For instance, the resultant model for the structure defined by the experimental data may be subjected to rigid body refinement in which the model is subjected to limited additional rotation in the six dimensions yielding positioning shifts of under about 5%. The refined model may then be further refined using other known refinement methods.
Another method for determining the three-dimensional structure of a polypeptide of MASP-2, or a complex of said polypeptide with an interacting compound, is homology modelling techniques. Homology modelling involves constructing a model of an unknown structure using structural co-ordinates of one or more related proteins, protein domains and/or subdomains. Homology modelling may be conducted by fitting common or homologous portions of the protein or peptide whose three dimensional structure is to be solved to the three dimensional structure of homologous structural elements. Homology modelling can include rebuilding part or all of a three dimensional structure with replacement of amino acids (or other components) by those of the related structure to be solved.
An example of structure determination is outlined in example 1.
Structural coordinates of a crystalline polypeptide of this invention may be stored in a machine-readable form on a machine-readable storage medium, e.g. a computer hard drive, diskette, DATA tape, CD-ROM etc., for display as a three-dimensional shape or for other uses involving computer-assisted manipulation of, or computation based on, the structural coordinates or the three-dimensional structures they define. For example, data defining the three dimensional structure of a polypeptide of MASP-2, may be stored in a machine-readable storage medium, and may be displayed as a graphical three- dimensional representation of the protein structure, typically using a computer capable of reading the data from said storage medium and programmed with instructions for creating the representation from such data. This invention thus encompasses a machine, such as a computer, having a memory which contains data representing the structural coordinates of a crystalline composition of this invention, e.g. the coordinates set forth in table 3 or the coordinates set forth in table 4, together with additional optional data and instructions for manipulating such data. Such data may be used for a variety of purposes, such as the elucidation of other related structures and drug discovery.
A first set of such machine readable data may be combined with a second set of machine- readable data using a machine programmed with instructions for using the first data set and the second data set to determine at least a portion of the coordinates corresponding to the second set of machine-readable data. For instance, the first set of data may comprise a Fourier transform of at least a portion of the coordinates for the complex set forth in table 3 or the coordinates set forth in table 4, while the second data set may comprise X-ray diffraction data of a molecule or molecular complex.
More specifically, one of the objects of this invention is to provide three-dimensional structural information of co-complexes comprising the catalytic domain of MASP-2. To that end, we provide for the use of the structural co-ordinates of a crystalline composition of this invention, or portions thereof, to solve, e.g. by molecular replacement or by homology modelling techniques, the three dimensional structure of a crystalline form of another similar serine protease, for example another MASP or a polypeptide:interacting compound complex.
For example, one may use molecular replacement to exploit a set of coordinates such as set forth in table 3 to determine the structure of a crystalline co-complex of a polypeptide comprising the catalytic domain of MASP-2 and an interacting compound. One may use molecular replacement to exploit a set of coordinates such as set forth in table 4 to determine the structure of a crystalline co-complex of a polypeptide comprising a zymogen MASP-2 polypeptide.and an interacting compound.
Uses of structures
A 3D representation of the polypeptides described in the present invention may be useful for several purposes, for example for determining the structure of similar proteins or polypeptides (see also herein above) or for designing compounds capable of interacting with said polypeptides.
For example, the three dimensional structure defined by the machine readable data for the polypeptide of MASP-2 may be computationally evaluated for its ability to associate with various chemical entities or test compounds. The term "chemical entity", as used herein, refers to chemical compounds, complexes of at least two chemical compounds, and fragments of such compounds or complexes.
For instance, a first set of machine-readable data defining the 3-D structure of polypeptide of MASP-2 or complex thereof, is combined with a second set of machine-readable data defining the structure of a chemical entity or test compound of interest using a machine programmed with instructions for evaluating the ability of the chemical entity or compound to associate with the polypeptide of MASP-2 or complex thereof and/or the location and/or orientation of such association. Such methods provide insight into the location, orientation and energetic of association of protein surfaces with such chemical entities. The three dimensional structure defined by the data may be displayed in a graphical format permitting visual inspection of the structure, as well as visual inspection of the association of the polypeptide component(s) with an interacting compound. Alternatively, more quantitative or computational methods may be used. For example, one method of this invention for evaluating the ability of a chemical entity to associate with any of the molecules or molecular complexes set forth herein comprises the steps of: (a) employing computational means to perform a fitting operation between the chemical entity and a binding site or other surface feature of the molecule or molecular complex; and (b) analyzing the results of said fitting operation to quantify the association between the chemical entity and the binding site.
This invention further provides for the use of the structural coordinates of a crystalline composition of this invention, or portions thereof, to identify reactive amino acids, such as cysteine residues, within the three-dimensional structure, preferably within or adjacent to a binding site; to generate and visualise a molecular surface, such as a water-accessible surface or a surface comprising the space-filling van der Waals surface of all atoms; to calculate and visualise the size and shape of surface features of the protein or complex, e.g., substrate binding sites; to locate potential H-bond donors and acceptors within the three-dimensional structure, preferably within or adjacent to a ligand binding site; to calculate regions of hydrophobicity and hydrophilicity within the three-dimensional structure, preferably within or adjacent to a ligand binding site; and to calculate and visualize regions on or adjacent to the protein surface of favorable interaction energies with respect to selected functional groups of interest (e.g. amino, hydroxyl, carboxyl, methylene, alkyl, alkenyl, aromatic carbon, aromatic rings, heteroaromatic rings, etc.). One may use the foregoing approaches for characterizing the polypeptide of MASP-2 and its interactions with moieties of potential interacting compounds to design or select compounds capable of specific covalent attachment to reactive amino acids (e.g., cysteine) and to design or select compounds of complementary characteristics (e.g., size, shape, charge, hydrophobicity/hydrophilicity, ability to participate in hydrogen bonding, etc.) to surface features of the protein, a set of which may be preselected. Using the structural coordinates, one may also predict or calculate the orientation, binding constant or relative affinity of a given ligand to the protein in the complexed state, and use that information to design or select compounds of improved affinity. In such cases, the structural coordinates of the polypeptide of MASP-2, or portion or complex thereof, are entered in machine readable form into a machine programmed with instructions for carrying out the desired operation and containing any necessary additional data, e.g. data defining structural and/or functional characteristics of a potential interacting compound or moiety thereof, defining molecular characteristics of the various amino acids, etc.
One method of this invention provides for selecting from a database of chemical structures a compound capable of binding to a polypeptide of MASP-2. The method starts with structural co-ordinates of a crystalline composition of the invention, e.g., co-ordinates defining_the_three dimensional structure of polypeptide of MASP-2 or a portion thereof or a complex thereof. Points associated with that three dimensional structure are characterised with respect to the favourability of interactions with one or more functional groups. A database of chemical structures is then searched for candidate compounds containing one or more functional groups disposed for favorable interaction with the protein based on the prior characterisation. Compounds having structures which best fit the points of favourable interaction with the three dimensional structure are thus identified.
It is often preferred, although not required, that such searching be conducted with the aid of a computer. In that case a first set of machine-readable data defining the 3D structure of a polypeptide of MASP-2, or a portion or polypeptide/interacting compound complex thereof, is combined with a second set of machine readable data defining one or more moieties or functional groups of interest, using a machine programmed with instructions for identifying preferred locations for favourable interaction between the functional group(s) and atoms of the polypeptide. A third set of data, i.e. data defining the location(s) of favourable interaction between polypeptide and functional group(s) is so generated. That third set of data is then combined with a fourth set of data defining the 3D structures of one or more chemical entities using a machine programmed with instructions for identifying chemical entities containing functional groups so disposed as to best fit the locations of their respective favourable interaction with the polypeptide.
Compounds having the structures selected or designed by any of the foregoing means may be tested for their ability to bind to a polypeptide of MASP-2. In one preferred embodiment of the invention, the compound is preferably a modulator of MASP-2 activity. For example, a compound capable of interacting with a substrate binding site of MASP-2 may be a good inhibitor of MASP-2 activity. Hence, compounds having the structures selected or designed by any of the foregoing means may be tested for their ability to modulate MASP-2 activity, such as for inhibition of MASP-2 activity (see herein above).
As practitioners in this art will appreciate, various computational analyses may be used to determine the degree of similarity between the three dimensional structure of a given polypeptide (or a portion or complex thereof) and a polypeptide of MASP-2 or complex thereof such as are described herein. Such analyses.may be carried out with commercially available software applications, such as the Molecular Similarity application of QUANTA (Molecular Simulations Inc., Waltham, Mass.) version 3.3, and as described in the accompanying User's Guide, Volume 3 pgs. 134-135.
The Molecular Similarity application permits comparisons between different structures, different conformations of the same structure, and different parts of the same structure. The procedure used in Molecular Similarity to compare structures is divided into four steps: (1) load the structures to be compared; (2) define the atom equivalences in these structures; (3) perform a fitting operation; and (4) analyse the results.
Each structure is identified by a name. One structure is identified as the target (i.e., the fixed structure); all remaining structures are working structures (i.e., moving structures). Since atom equivalency within QUANTA is defined by user input, for the purpose of this invention we define equivalent atoms as protein backbone atoms (N, Cα,(, C and O) for all conserved residues between the two structures being compared and consider only rigid fitting operations.
When a rigid fitting method is used, the working structure is translated and rotated to obtain an optimum fit with the target structure. The fitting operation uses a least squares fitting algorithm that computes the optimum translation and rotation to be applied to the moving structure, such that the root mean square difference of the fit over the specified pairs of equivalent atom is an absolute minimum. This number, given in angstroms, is reported by QUANTA. For the purpose of this invention, any set of structural co-ordinates of a polypeptide of MASP-2 or molecular complex thereof that has a root mean square deviation of conserved residue backbone atoms (N, Cα,(, C, O) of less than 1.5 A when superimposed-using backbone atoms-on the relevant structural coordinates of a protein or complex of this invention, e.g. the coordinates listed in table 3 or coordinates listed in table 4, are considered identical. More preferably, the root mean square deviation is less than 1.0 A. Most preferably, the root mean square deviation is less than 0.5 A.
The term "root mean square deviation" means the square root of the arithmetic mean of the squares of the deviations from the mean. It is a way to express the deviation or variation from a trend or object. For purposes of this invention, the "root mean square deviation" defines the variation in the backbone of a protein from the backbone of a protein of this invention, such as the CCP-2/serine protease domain of MASP-2 as defined by the structural coordinates of table 3 or the zymogen CCP-2/serine protease domain of MASP-2 as defined by the structural coordinates of table 4 and described herein.
The term "least squares" refers to a method based on the principle that the best estimate of a value is that in which the sum of the squares of the deviations of observed values is a minimum.
In order to use the structural co-ordinates generated for a crystalline substance of this invention, e.g. the structural co-ordinates set forth in table 3 or the structural coordinates set forth in table 4, it is often necessary or desirable to display them as, or convert them to, a three-dimensional shape, or to otherwise manipulate them. This is typically accomplished by the use of commercially available software such as a program, which is capable of generating three-dimensional graphical representations of molecules or portions thereof from a set of structural co-ordinates.
By way of illustration, a non-exclusive list of computer programs for viewing or otherwise manipulating protein structures include the following:
Midas (Univ. of California, San Francisco) MidasPlus (Univ. of Cal., San Francisco) MOIL (Univeristy of Illinois) Yummie (Yale University)
Sybyl (Tripos, Inc.)
Insight/Discover (Biosym Technologies) MacroModel (Columbia University)
Quanta (Molecular Simulations, Inc.)
Cerius (Molecular Simulations, Inc.)
Alchemy (Tripos, Inc.)
LabVision (Tripos, Inc.) Rasmol (Glaxo Research and Development)
Ribbon (University of Alabama)
NAOMI (Oxford University)
Explorer Eyechem (Silicon Graphics, Inc.)
Univision (Cray Research) Molscript (Uppsala University)
Chem-3D (Cambridge Scientific)
Chain (Baylor College of Medicine)
O (Uppsala University)
GRASP (Columbia University) X-Plor
(Molecular Simulations, Inc.; Yale Univ.)
Spartan (Wavefunction, Inc.)
Catalyst (Molecular Simulations, Inc.)
Molcadd (Tripos, Inc.) VMD (Univ.of lllinois/Beckman Institute)
Sculpt (Interactive Simulations, Inc.)
Procheck (Brookhaven Nat'l Laboratory)
DGEOM (QCPE)
RE_VIEW (Brunei University) Modeller (Birbeck Col., Univ. of London)
Xmol (Minnesota Supercomputing Center)
Protein Expert (Cambridge Scientific)
HyperChem (Hypercube)
MD Display (University of Washington) PKB (Nat'l Center for Biotech. Info., NIH) ChemX (Chemical Design, Ltd.) Cameleon (Oxford Molecular, Inc.) Iditis (Oxford Molecular, Inc.)
For storage, transfer and use with such programs of structural coordinates for a crystalline substance of this invention, a machine-readable storage medium is provided comprising a data storage material encoded with machine readable data which, when using a machine programmed with instructions for using said data, e.g. a computer loaded with one or more programs of the sort identified above, is capable of displaying a graphical three- dimensional representation of any of the molecules or molecular complexes described herein. Machine-readable storage media comprising a data storage material include conventional computer hard drives, floppy disks, DAT tape, CD-ROM, and other magnetic, magneto-optical, optical, floptical and other media which may be adapted for use with a computer.
Even more preferred is a machine-readable data storage medium that is capable of displaying a graphical three-dimensional representation of a molecule or molecular complex that is defined by the structural co-ordinates of a polypeptide of MASP-2, such as the co-ordinates set forth in table 3+/- a root mean square deviation from the conserved backbone atoms of the amino acids thereof of not more than 1.5 A. An illustrative embodiment of this aspect of the invention is a conventional 3.5" diskette, DAT tape or hard drive encoded with a data set, preferably in PDB format, comprising the co-ordinates of table 3. FIG. 1 illustrates a print-out of a graphical three-dimensional representation of such a polypeptide.
In another embodiment, the machine-readable data storage medium comprises a data storage material encoded with a first set of machine readable data which comprises the Fourier transform of the structural coordinates set forth in table 3 or table 4 (or again, a derivative thereof), and which, when using a machine programmed with instructions for using said data, can be combined with a second set of machine readable data comprising the X-ray diffraction pattern of a molecule or molecular complex to determine at least a portion of the structural co-ordinates corresponding to the second set of machine readable data. Such a system may for example include a computer comprising a central processing unit ("CPU"), a working memory which may be, e.g., RAM (random-access memory) or "core" memory, mass storage memory (such as one or more disk drives or CD-ROM drives), one or more cathode-ray tube ("CRT") display terminals, one or more keyboards, one or more input lines (IP), and one or more output lines (OP), all of which are interconnected by a conventional bidirectional system bus.
Input hardware, coupled to the computer by input lines, may be implemented in a variety of ways. Machine-readable data of this invention may be inputted via the use of a modem or modems connected by a telephone line or dedicated data line. Alternatively or additionally, the input hardware may comprise CD-ROM drives or disk drives. In conjunction with the CRT display terminal, a keyboard may also be used as an input device.
Output hardware, coupled to the computer by output lines, may similarly be implemented by conventional devices. By way of example, output hardware may include a CRT display terminal for displaying a graphical representation of a protein of this invention (or portion thereof) using a program such as QUANTA as described herein. Output hardware might also include a printer, so that hard copy output may be produced, or a disk drive, to store system output for later use.
In operation, the CPU coordinates the use of the various input and output devices, coordinates data accesses from mass storage and accesses to and from working memory, and determines the sequence of data processing steps. A number of programs may be used to process the machine-readable data of this invention. Examples of such programs are discussed herein above. Algorithms suitable for this purpose are also implemented in programs such as Cast-3D (Chemical Abstracts Service), 3DB Unity (Tripos, Inc.), Quest- 3D (Cambridge Crystallographic Data Center), and MACCS/ISIS-3D (Molecular Design Limited). These geometric searches can be augmented by steric searching, in which the size and shape requirements of the binding site are used to weed out hits that have prohibitive dimensions. Programs that may be used to synchronize the geometric and steric requirements in a search applied to the FRB of FRAP include CAVEAT (P. Bartlett, University of California, Berkeley), HOOK (MSI), ALADDIN (Daylight Software) and DOCK (http://www.cmpharm.ucsf.edu/kuntz-/kuntz.html and references cited therein). All of these searching protocols may be used in conjunction with existing corporate databases, the Cambridge Structural Database, or available chemical databases from chemical suppliers.
One non-limiting example of a method to identify compounds capable of interacting with polypeptides of MASP-2 is given in example 5.
In one embodiment of the invention the methods involve identifying a number of compounds potentially capable of interacting with MASP-2 or a fragment thereof, for example the methods may involve identification of a sub-library of compounds potentially interacting with MASP-2 or fragments thereof. This may be accomplished using any conventional method. For example, alLthe.possible members of a combinatorial library may first be enumerated, according to the available reagents and the established synthetic chemistries. Individual members may then separately be docked into a binding site of a polypeptide of MASP-2. Finally, an optimal sub-library may be selected for synthesis, based on the ranking of their docking scores and/or diversity measures. Software for fast library enumeration has been developed, including for example CombiLibMaker in Sybyl, Analog Builder in Cerius2, and the QuaSAR-CombiGen module available in MOE (MOE Software, Chemical Computing Group, 1010 Sherbrooke Street W., Suite 910, Montreal, Canada H3A 2R7). Most of these programs can easily generate all of the 2D or 3D structures for a combinatorial library containing millions of compounds, using either fragment-based or reaction-based schemes. Other tools within these software packages are also available for decreasing the size of a virtual library prior to docking. For example, a library enumerated through CombiLibMaker can subsequently be analyzed with diverse solutions (available in Sybyl) to provide a sub-library that adequately samples chemical space. QuaSAR-CombiDesign is another combinatorial library design tool available in MOE that provides a non-enumerative method for combinatorial library generation, and can, e.g. test against rule of five filters using statistical sampling techniques during library creation, creating smaller sub-libraries with user-defined property ranges. In principle, the docking step that follows library creation can be conducted using any of the available docking programs like DOCK or FlexX ©, while the diversity selection for example may be performed using software available from Daylight, Tripos (diverse solutions), or BCI or by high throughput docking as for example described by Diller and Merz. In another example a 'divide-and-conquer' approach may be used. With this strategy, all of the product structures in a combinatorial library are viewed as having variable substituents attached through one or multiple sites on a common template. The template is first docked into the binding site and only the top-scoring poses are saved for the further consideration. Individual substituents are then independently attached onto each pose of the template, to assess which substituents can fit well into the binding site. Only those combinations of top-scoring substituents are further considered and scored to identify the whole product structures that can dock really well into the binding site. This may be done with the aid of suitable software for example PRO SELECT, CombiBUILD, CombiDOCK, DREAM ++ and FlexX ©.
In one embodiment the methods of invention comprise application of pharmacophores obtained using active site maps. Herein the term "active site" is meant to describe a site responsible of interaction with a compound and not a catalytically active site. The method may for example be a computational approach comprising the generation of multiple, promising, structurally diverse test compounds. The search for multiple structural series may be accomplished by coupling protein structural information with combinatorial library design using any suitable method. For example the "design in receptor" method (Murrary et al., 1999) or the method outlined herein below may be used. Methods to account for multiple protein conformations for example as described by Mason et al., 2000 may also be used, including the creation of a dynamic pharmacophore model (as for example described by Carlson et al., 2000) from molecular dynamics simulations. Also experimental and computational needle screening approaches for mapping active sites with molecular fragments may be used for example as described in Boehm et al., 2000. Any suitable software tools for mapping site points (e.g. GRID and SITEPOINT) may be used with the invention. Also MCSS techniques for generating site maps may be used.
Suitable methods may for example comprise generation of active site maps from protein structures. Then all possible 2-, 3- and 4-point pharmacophores can be enumerated from the site map and encoded as a bit string (signature) these pharmacophores define a space to be probed by compounds that are selected using the informative library design tool. The metric used to evaluate the success of the approach is the number of active scaffolds selected in the library design, with the number of active compounds as a secondary measure. Any suitable algorithm for site map generation may be used, for example algorithms generating between 10 and 80 feature positions for each active site. An example of such a method is outlined in example 4.
In one embodiment of the invention the method comprises preparing a 3D structure of a MASP-2 in pdbqs (protein data bank) format with partial charges and salvation parameters. The partial charges may be assigned to a MASP-2 polypeptide X-ray crystal structure using a suitable computer program such as SYBYL 6.3 and for example the Mulliken population analysis method. The structure thus prepared may be converted to pdbq format using a suitable script such as mol2topdbq. Solvation parameters may be assigned to a MASP-2 using any suitable computer program such as ADDSOL.
In this embodiment of the invention the method furthermore comprises preparing structures in pdbq format of compounds potentially capable of interacting with and/or inhibiting MASP-2 in pdbqs format. Charges may be assigned using for example Mulliken population analysis method.
For docking the compound potentially interacting with and/or inhibiting MASP-2 any suitable algorithm may be used, such as the Lamarckian Genetic Algorithm. A person skilled in the art will readily be able to set suitable parameters for use with the algorithm. Based on the docking file several properties may be calculated. It is preferred that at least one of the following properties is determined: estimated free energy binding, estimated Ki or final docking energy. In general a compound interacting with and/or inhibiting MASP-2 has a low estimated free energy. Preferably, the estimated K, is preferably less than 2.0x10"6 M, more preferably less than I .OxlO"6 M, even more preferably less than 5x10"7 M, more preferably less than 1.0x10"7 M, even more preferably less than 5x10"8 M, more preferably less than I .OxlO"8, even more preferably less than 5x10"9, such as less than 3.0x10"9 M, for example less than 2x10"9 M. In general an inhibitor of MASP-2 should have an estimated K, which is preferably less than 2.0x10"6 M, more preferably less than I .OxlO"6 M, even more preferably less than 5x10"7 M, more preferably less than 1.0x10"7 M, even more preferably less than 5x10"8 more preferably less than 1.0x10"8, even more preferably less than 5x10"9 M, such as less than 3.0x10"9 M, for example less than 2x10"9 M. Inhibitors of MASP-2 activity
In one preferred embodiment the invention relates to methods of identifying inhibitors of MASP-2 activity. Compounds capable of interacting with a specific substrate binding site of MASP-2 are potential inhibitors of MASP-2 activity. Therefore, it is an object of the invention to identify compounds capable of interacting with a substrate binding site of MASP-2. This may for example be done using any of the methods outlined herein above.
Natural substrates of MASP-2 include MASP-2 itself (autoactivation), C2 and C4. Pseudosubstrates include C1 inhibitor. Hence, the substrate binding site may be selected from the group consisting of the C4 binding site, the C2_binding site, a MASP-2 binding site and the C1 inhibitor binding site. Preferably, the substrate binding site is selected from the group consisting of the C4 binding site, the C2 binding site and MASP-2 binding sites. More preferably, the substrate binding site is selected from the group consisting of the C4 binding site and the C2 binding site.
When the substrate binding site is the C2 binding site, then preferably MASP-2 activity is C2 cleavage. When the substrate binding site is the C4 binding site, then preferably MASP-2 activity is C4 cleavage. When the substrate binding site is a MASP-2 binding site, then preferably MASP-2 activity is MASP-2 autoactivation.
Substrate binding sites for C2, C4, MASP-2 and C1 inhibitor on human MASP-2 are described in detail in example 1 and in fig. 3.
Compounds interacting specifically with MASP-2
In one embodiment the invention relates to identification of compounds specifically interacting with MASP-2. In particular, the invention relates to identification of specific modulators of MASP-2 activity.
In one embodiment of the invention the compounds are specific inhibitors of MASP-2 activity. Hence, preferably the compounds may inhibit the protease activity of MASP-2, but not the protease activity of other serine proteases. In particular, it is preferred that the compound may inhibit the protease activity of MASP-2, but not the activity of the related serine proteases Cl r and C1s.
The methods of the invention may therefore comprise calculating using computer aided means, whether a compound may interact with C1r and/or C1s. This may be done as described herein above in relation to compounds capable of interacting with MASP-2 fragments. Compounds identified by in silico methods as being capable of interacting with MASP-2 or fragments thereof, but not with C1 r and/or C1 s may then be selected.
The specificity may be confirmed using for example in vitro methods, such as binding assays, competition assay or inhibition/activation assays.
In one embodiment the invention thus relates to methods, which also comprise the steps of i) executing instructions on the computer for generating a three dimensional representation of a second polypeptide from structural coordinates of a crystal of said second polypeptide, such that the computer loads into memory thereof computer-readable data comprising structural coordinates of a molecular model of said second polypeptide; iii) calculating, from said molecular models, one or more possible molecular complexes which could be formed by association of said second polypeptide with one or more selected test compounds; iv) generating output data indicative of the degree of interaction; v) selecting compounds not capable of interacting with said second polypeptide
Preferably, said second polypeptide comprises C1 r, C1s, MASP-1 or a fragments thereof, wherein said fragments preferably comprises the serine protease domain. Optimisation of compounds interacting with MASP-2
Once a compound capable of interacting with MASP-2 has been identified using the above-mentioned methods, said compound may be redesigned for enhanced interaction. In particular, if the compound is an inhibitor of MASP-2 activity, then a more efficient or a more specific inhibitors may be designed using said compound as starting point.
In one embodiment of the invention a co-crystal between a polypeptide of MASP-2 and said compound may be prepared. Said co-crystal may for example be prepared by any of the methods of preparing crystals outlined herein above.
The structure of said crystal may then be determined, for example using any of the methods described above for determining the structure of a polypeptide of MASP-2.
Once the structure of the co-crystal is known, a new compound capable of interacting with said polypeptide may be designed using information derived from said structure.
Compounds
The compounds that may interact with MASP-2 or fragments thereof and optionally modulate the activity of MASP-2, may be any useful chemical entity. For example the compounds may be small organic molecules, peptides, peptidomimetics, nucleic acids or the like.
In one embodiment of the invention the compounds may be a component of a combinatorial library, such as a combinatorial library of small organic molecules. It is also possible, that the compound is a component of a virtual combinatorial library.
Compounds designed, selected and/or optimised by methods described above may be evaluated for interacting activity with respect to polypeptides of MASP-2 using various approaches, a number of which are well known in the art. For instance, compounds may be evaluated for activity as competitive inhibitors of the binding of a natural substrate, such as C2, C4 or MASP-2. Competitive inhibition may be determined using any of the numerous available technologies known in the art.
The compounds may also be evaluated for interaction with MASP-2 polypeptides or fragments thereof using conventional binding assays. Such assays may for example involve immobilisation of the compound on a solid support, incubation in the presence of MASP-2, washing and detection the presence/absence of immobilised MASP-2 using for example specific antibodies to MASP-2. However, any other suitable method may also be employed.
The compounds may be further evaluated for modulation of MASP-2 activity. Assays for MASP-2 activity are described herein above.
Compounds capable of interacting with MASP-2 may be suitable for several purposes. Modulators of MASP-2 activity may for example be used in the treatment of clinical conditions characterised by aberrant activity of the MBLectin pathway. For example inhibitors of MASP-2 activity may be used in the treatment of chronic inflammatory diseases or in clinical conditions characterised by massive cell loss, for example due to apoptosis or necrosis.
Non-limiting examples of inhibitors of MASP-2 includes NPGB, Leupeptin, APMSF, PMSF, Pefabloc-SC or Benzamidine.
Examples
Example 1
Expression and structure determination The human recombinant MASP-2 CCP2-SP fragment was expressed in E.coli BL-
21 DE3 cells using the pET-17b expression vector. The recombinant construct (328 amino acids) contains an Ala-Ser-Met-Thr extra tetrapeptide at the N-terminus, which is followed by the Ile363 residue of MASP-2. The purification and functional characterization of this fragment is described elsewhere (Ambrus et al., 2003). Since human MASP-2 does not contain glycosylated side chains, the recombinant protein produced in E.coli cells is identical to that isolated from natural sources. The structure was solved by molecular replacement, and refined to 2.25 A resolution (Table I). At the end of refinement the Rwork and Rfree factors were 0.174 and 0.224, respectively. The asymmetric unit contains two molecules (denoted molecules A and B) with somewhat different conformations (Figure 1A). 97% of the residues could be built in the electron density maps. All residues are in the most favored (458) and additionally favored (67) regions of the Ramachandran plot, except for residue 405 of molecule A and residue 389 of molecule B, which are in the generously allowed region. The conformations of the SP domains of the two molecules are very similar, except for the 439-441 region and some surface side chains. Non-crystallographic restraints were applied to the rest of the SP domain. There are small differences in the loop conformations of CCP2 modules, as well as in the interdomain linkers of both molecules. Glycerol molecules and sodium ions, both present in the crystallization medium, were built in the electron density map. Comparisons of the CCP and SP domains with those of structurally similar C1 r (Budayova-Spano et al., 2002b) and C1s (Gaboriaud et al., 2000) are shown in Figures 1 B and C.
Table I. Refinement and model geometry statistics Protein residues 636
Protein atoms 4826
Water molecules/ions/glycerol molecules 362 12 Na+/7
Resolution range (A) 35.8 - 2.23
Rwork/No. of observations 0.174 / 25665
Rfre No. of observations 0.224 / 1356
Residues in dual conformations 3a
Residues with disordered side chains 20b
Disordered residues 15° R.m.s. bond lengths (A) 0.006
R.m.s. bons angles (°) 0.904
R.m.s. general planes (A) 0.003 a Molecule A: Asp491 , Glu603, molecule B: Val543 b Molecule A: Val364, Glu398, Lys409, Ser421, Lys422, Thr440, Lys556, molecule B: Ile380, Val385, Tyr388, Lys389, Ala390, Val391 , Lys409, Phe417, Ser421 , Lys422, Lys425, Lys556, Arg609 c Molecule A: Ala358-Met361 , of the N-terminal tetrapeptide, Thr441-Arg444, Molecule B: N-terminal tetrapeptide residues (Ala35-Thr362) Ile363-Asp365, Glu413-Asp415, Gly442- Arg444
Structure of the CCP2 module
The overall conformation of the CCP2 module with six β-strands (B1-B6, Figure 1 B) is very similar to that of CCP2 found in the C1s (Gaboriaud et al., 2000) and C1 r (Budayova- Spano et al., 2002a, b) catalytic fragment structures. The highest B-factors of the CCP2 modules are those farthest from the interdomain linker. The N-terminal segment and loop B4-B5 of molecule B are disordered. The overall difference of the Cα atoms of CCP2 for molecule A and B (r.m.s.d. 0.64A) is comparable to that of molecule A and C1s (Gaboriaud et al., 2000), which is 0.79 A. This corresponds to a significant level of flexibility of CCP2 in MASP-2. The C1r structures (Budayova-Spano et al., 2002a,b) are of significantly lower resolution, which may explain their somewhat higher overall differences (r.m.s.d. values for the C1 r - C1r, MASP-2 - C1 r and C1s - C1r pairs range between 0.55- 0.90 A, 0.84-1.07 A, and 0.71-1.08 A, respectively). Figure 1B shows the CCP2 modules of molecule A, C1s and C1r active forms with the β-strands B1 , B2 and B4 superimposed. The N-terminal end of the MASP-2 protein chain of molecule A is part of the CCP1-CCP2 linker. It has similar conformation to that detected in the C1r CCP1-CCP2-SP fragment structures (Budayova-Spano et al., 2002a), supporting the previous assumption (Feinberg et al., 2003) that the configuration around CCP1-CCP2 junction is similar to that of C1 r. Comparison of the structure of the CCP2 module with those of C1r and C1s highlights three regions of major differences. In loop B1-B2 (residues 379-385), [MASP-2 numbering is used for the CCP2 module] C1s has a deletion. The conformation of this loop is similar in MASP-2 and C1r. Loop B3-B4 (residues 404-409) is disordered both in C1 r and C1s. In MASP-2 it is shorter and its conformation is stabilized by a hydrogen bond between the side chains of Asn406 and Glu424. The third region of major differences is loop B4-B5 (region 420-424), which is of the same length in the three molecules. The conformation of this loop in MASP-2 is stabilized besides the Asn406 - Glu424 hydrogen bond by a weak electrostatic interaction of the side chains of Glu424 and Lys422. Superimposition of the CCP2 modules of MASP-2 on C1r and C1s reveals further minor differences in the positions of the loop region B2-B3 (residues 397-401), and residues 430-433 of the hinge region. These differences contribute the significantly different relative module orientation observed in the case of MASP-2 compared to that of C1r and C1s.
The main differences found between MASP-2 molecule A and B correspond to slight twists of the two end of the CCP2 module: the region far form the CCP2/SP interface (loops B1-B2, B3-B4 and B5-B6) is twisted about the long axis of the CCP2 module, while the region closer to the interface (loops B2-B3 and B3-B4) is twisted about an axis perpendicular to that. The maximal Cα atom shifts for B1-B2, B2-B3, B3-B4 and B5-B6 loops are of 1.7 A, 1.4 A 1.3 A and 2.3 A, respectively.
Semi-flexible CCP2/SP interface
The comparison of MASP-2 molecules A and B with C1 r and C1s exposed differences in the conformations of the regions of the CCP2 module that form the CCP2/SP interface. A limited flexibility was also observed between different fragment and mutant structures of C1 r at the CCP2/SP interface (Budayova-Spano et al., 2002b). However the network of hydrogen bonds and van der Waals contacts is very similar among the structures of zymogen C1 r CCP1-CCP2-SP, active form of C1r CCP2-SP and C1s. Surprisingly, in both molecules of the MASP-2 structure new patterns of interface interactions were found. Moreover we observed alternatives of the interface interactions resulting in different domain orientations of molecules A and B (Figure 2A). The C1r CCP2-SP zymogen form can be considered as an intermediate conformation between that of C1s and MASP-2 structures, possessing some of hydrogen bonds and contacts of both type, but with elongated interatomic distances. It should be noted, that the existence of two conformational variants of MASP-2 can not be an artefact caused by differences in the crystallization medium, since they are present in the same crystal structure. The domain orientations in the MASP-2 molecules are possibly not biased by crystal contacts either, because the CCP2 modules are loosely bound in the crystal network. It suggests a possibly emerged interdomain flexibility in solution, as well which can correspond to fulfilling different functions. The differences of the interface region cause large displacements of the SP domain with respect to the CCP2 module within the homologous structures of MASP-2, C1 r and C1s. Alignment of the CCP2 structures reveals large displacements of the catalytic residue Ser633 (c195) [chymotrypsin numbering marked with 'c' for the SP domain] Cα atoms from that of MASP-2 for C1s (distances of 11.1 A and 12.2 A) and C1r (distances between 9.1 A and 13.9A), respectively. These differences are significantly larger than those found between C1 r and C1s (maximal distance 6.6 A) (Figure 2A). While the long axis of the CCP2 module is nearly perpendicular to the SP surface at the module interface in the C1s structure and slightlyi)ent in C1r. In contrast, the angle between the main axes of the CCP2 and the SP surfaces are only 55° and 48° for MASP-2 molecule A and B, respectively. The area of the buried accessible surface of the interface, however, is similar for these molecules: 722A2, 748A2, 751 A2, and 578A2-667A2 for MASP-2 molecules A and B, C1s, as well as C1r structures, respectively (Gaboriaud et al., 2000; Budayova-Spano et al., 2002a,b). Though many of the interacting residues of the interface correspond to those described for C1 r and C1s, there are also striking differences. Detailed structure of the interdomain interface of MASP-2 compared to C1s is shown in Figures 2B, C and D. Conserved residues Phe400 and Tyr401 of the B3-B4 loop are bound between the hydrophobic CCP2-SP linker and 541-549 (c111-c119) and 474-475 (c48-c49) regions of the SP domain, as found in C1r and C1s. However the slight bending within the linker residues 429-434 of MASP-2, results in a shift of Phe400: its side chain is above Leu544 (c114) Asn545 (c115), while the corresponding tyrosine is located above the dipeptide moiety of C1s with next register (Gly527 c115 and Pro528 c116). Because of hinge bending, the Tyr401 side chain is too far from the Ile544 (c114) backbone NH so the hydrogen bond found in the C1s and C1 r structures is not established. The Tyr401 hydroxyl group of molecule B is connected to Val542 (c112) carbonyl oxygen through a water molecule (W325), while that of molecule A is rotated further away and is stabilized by a hydrogen bond with the Asp475 (c49) side chain. In both molecules an interdomain hydrogen bond is formed by Lys541 (d 11) and Ser374 sidechains, which is not found in the C1s and C1 r structures. For both variants of MASP-2 structure a hydrogen-bonded network of water molecules stabilizes the interface. In both molecules a glycerol molecule is bound in a cavity formed by side chains of Leu473 (c47), Tyr474 (c48), residues Glu431 , Pro432, Cys434 (d) and backbone atoms of 550 (c120) - 552 (c122). This cavity is more open and it has a more hydrophobic character in C1r and C1s, because Tyr474 is replaced by a shorter side chain and Glu431 by a hydrophobic residue. Three of the five pralines found in the interaction region in C1s are changed in MASP-2: Lys541 (c111), Ser546 (c1 16) and Thr399 (in the case of C1r only one is different). The lower proline content of this region can also contribute to the higher flexibility detected in MASP-2. The relatively high flexibility observed for the CCP2/SP interface of MASP-2 may have important functional implications. According to the current model of the initiation enzyme complex of the lectin pathway a homodimer of MASP-2 associated with an MBL molecule can trigger the complement cascade (Chen and Wallis, 2001 ; Wallis, 2002). MASP-2 forms homodimers through its N-terminal CUB-EGF-CUB region (Thielens et al., 2001). Unlike C1 r and C1s, MASP-2 and MASP-1 do not form hetero-oligomers and the MASP-2 dimer can bind directly to MBL. It is obvious that the functional unit of MASP-2 is the homodimer form. It is remarkable that the MASP-2 homodimer can perform all those functions (e.g. binding to MBL, autoactivation, cleaving C4 and C2) that are mediated by the C1s-C1 r-C1r-C1s tetramer in the C1 complex. The C1r2C1s2 tetramer has a high degree of flexibility, which is required for its function (Arlaud et al., 1987; Tseng et al., 1 997; LόrinczLQLincz et al., 2000). Theoretically, the MASP-2 homodimer should be at least as flexible as the C1 r2C1s2 tetramer. Nevertheless, the C1 r2C1s2 tetramer has twice as many hinge points as the MASP-2 dimer, to produce the same level of flexibility. We can suppose therefore, that the hinge regions of MASP-2 should allow greater conformational movements than the corresponding regions of C1r and C1s. The hinge bending between the CCP2 and SP domains can contribute to the correct positioning of the SP domains of the MASP-2 dimer during autoactivation, when the active site of one SP domain should contact with the activation site (Arg444-lle445 bond) of the other SP domain. After autoactivation the SP domains should turn outside of the dimer to access the large protein substrates: C2 and C4. The fact that the CCP2/SP interface of MASP-2 shows remarkable structural variability, is in line with this hypothesis.
Structure of the SP domain
As in other members of the chymotrypsin serine protease family, the SP domain consists of two six-stranded β-barrel domains packed against each other, with the catalytic residues Ser633 (c195), His483 (c57) and Asp532 (c102) located at the junction of the two barrels (Figure 1C). The structure shows the elements of the catalytic apparatus in active conformation1. The SP domains of the two molecules of MASP-2 are in virtually equivalent conformations, except for 440 and 441 (c10, d 1) residues of the activation peptide and some surface side chains. Only the C-terminal residues of the cleaved activation peptide are disordered, which is typical for the activated SP structures. We superimposed the structure of MASP-2 on C1r, C1s, digestion and coagulation serine proteases and compared the structural features of surface loops (Table II.) Surprisingly, some of the surface loops are more similar to thrombin or trypsin, than to C1r or C1s. Although MASP-2 has similar functions to C1r (autoactivation upon recognition of target surface by MBL/C1q) and C1s (C2 and C4 cleavage) conformation most of the surface loops is different from both of those. Loop A [we use the loop nomenclature proposed by Perona and Craik (1997)] of MASP-2, C1r and C1s are similar in position, but their conformations are different, in spite of the fact, that loop A of MASP-2 and C1r are of same length. Only MASP-2 shows the extension of the preceding helix to residues 485-490 (c59-c60d) of loop B (residues 485- 496). The conformation of this segment is stabilized by sandwiching the His490 (c60e) ring with Tyr486 (c60) and Lys489 (c60c) side chain carbon atoms. Loop B stabilizes loop A by the Gln488 Nε2 (c60b) Leu463 (c34) carbonyl oxygen hydrogen bond, as well as loop C by the stacking interaction established between the Tyr486 (c60) and His525 (c96) side chains. Loop D and E of MASP-2 have deletions. Loop D MASP-2 and C1r possess similar positions, but different conformations. In C1s loop C is significantly longer than in C1r or MASP-2 and restricts the access to the active site. In MASP-2 it is loop 2 that has an insertion making the substrate binding site narrower, but from the other side. Loop 1 and 2 form the bottom and one side of the substrate specificity pocket, and they have very similar conformation to that of trypsin. Loop 3 closes the substrate binding groove from the N-terminal end with Pro 605 (c170B) and Pro606 (c170C). In contrast to that, loop 3 of C1r and C1s is longer (the one of C1s shows disorder) and both leave the substrate binging groove more open than that of MASP-2. In the case of the C1r CCP1-CCP2-SP dimer structure, some residues of loop regions B and E are involved in intermolecular contacts in the CCP1-SP interactions. The corresponding loops of MASP-2 are different in length and also in conformation, indicating that in contrast to a recent model of MBL-MASP-2 complex (Feinberg et al., 2003), the interactions and the way of dimer formation observed for the zymogen form of C1 r can not be directly transferred to MASP-2. Substrate specificity of MASP-2 MASP-2 has only few natural substrates: zymogen MASP-2, C2, C4, and the pseudo-substrate C1 inhibitor, suggesting that the access to the substrate binding subsites is restricted. While all of them have Arg in the P1 position [nomenclature proposed by Schechter and Berger (1967)], the surrounding residues among these molecules vary in size and polarity, requiring some flexibility of the subsites (Figure 3A). Common features of substrate binding subsites found in the crystal structures of several members of the chymotrypsin family complexed with inhibitors were extensively studied. We superimposed such structures onto the MASP-2 SP domain in order to characterize the possible subsites (Figure 3B). We find that the S1 site is deeper than that of C1 r and C1s. In MASP-2 the S2' and S3_subsit.es may establish more contacts with the substrate, while the S2 and S1' subsites are more exposed than those of C1 r and C1s. Although MASP-2 shares substrates with C1s, most of its substrate binding subsites show differences. As described above, the conformations of loops 1 and 2 are similar to those of trypsin forming an S1 pocket deeper than that of C1 r and C1s. In contrast to C1s but similarly to C1 r, the access to the substrate binding pocket is not affected by any disordered side chains, as Arg630 (c192) side chain carbon atoms are stabilized by hydrophobic contacts with Leu575 (c143). In the crystal structure a glycerol molecule is bound at the entrance of the S1 pocket, and a sodium ion at the bottom of the pocket connected via a water molecule and Ser657 (c217) Oγ to the nearby acidic side chains of Asp627 (c189) and Glu662 (c221), respectively. The sodium ion is bound in a pocket formed by the 657-662 (c217-c222) segment of loop 2, which includes a one residue insertion in this region and possesses a similar conformation to that of chymotrypsin. The sodium ion as well, as the glycerol molecule must be dissociated from the S1 site upon substrate binding, since the glycerol and water molecules coordinated to the sodium ion overlap with the P1 arginine residue. Asp627 (c189), the primary determinant of the S1 specificity is in a canonical conformation in the MASP-2 crystal structure. The groove that binds the N-terminal part of the bound peptide is shallow compared to that of C1 r and C1s. The S2 subsite is shallow, Phe529 (c99) is in a similar position to that of C1r and C1s. The side chain of the P2 residue is partially solvent exposed, while this site is buried by loop C in C1s. Water mediated hydrogen bonds may be established by a P2 Gin side chain and Tyr523 (c94) and Gln526 (c96a) side chains of loop C. In the S3 subsite hydrophobic interactions can be established by Met658 (c218) of loop 2 with the apolar P3 side chain of the substrate. Hydrogen bonds formed by P3 and residue Gly656 (c216) stabilizing the backbone of the bound peptide. On the leaving group side the access to the subsites is more restricted. The S1' site is open, like in C1r and C1s. The small P1' side chains of C4 and C1 inhibitor can contact Thr466 (c37), while the P1' Lys side chain of C2 may form a salt bridge with Glu487 (c60a) of loop B. P2' side chains are hydrophobic or aromatic, and are bound in a hydrophobic pocket formed by Gly631 (c193) and side chain carbon atoms of Arg630 (c192), Leu581 (c148), Leu575 (c143) and Thr467 (c41). This subsite is a hydrophobic pocket also in C1r and C1s, although it is built up by different residues among the three enzymes.
Na+ - inducibility The enhanced activity of several haemostatic proteases upon Na+-binding was previously suggested to be determined by the residue in position c225 (Dang and Di Cera, 1996). This residue is Phe or Tyr in the above proteins, while it is Pro in the digestive enzymes preventing the c224 carbonyl oxygen to be in suitable position for Na+-binding. A further feature of the coagulation enzymes is the open base of the S1 site connected to the Na+-site through a water channel. Although for C1s and C1 r this residue is Tyr, the Na+ -binding can not be established because of steric closure with loop 2, which has three- and two-residue deletions in C1s and C1 r, respectively. Furthermore for both of these enzymes the S1 site is closed. MASP-2 is a further example of an enzyme with Tyr in position c225. Its loop 2 region has a one residue insertion. Our in vitro experiments demonstrated that MASP-2 is not a Na+ -activated enzyme (data not shown). The structure of MASP-2 is in accordance with the experimental data, since it shows a closed S1 site, and the backbone conformation of the 661-667 (c221 A-c226) segment of loop 2 is virtually identical to that of trypsin. In MASP-2 the carbonyl oxygen of Gln665 (c224) is also in a position similar to that of trypsin, and different from those of enzymes with tyrosine c225 including C1r and C1s. The trypsin-like conformation of the 665-666 (c224-c225) peptide bond can be explained by the fact that loop 1 is of equal length in MASP-2 and trypsin and similar backbone-backbone interactions are formed between loop 1 and 2 in MASP-2 and trypsin. The 620-664 (c185-c223) and 623-662 (c188-c221) hydrogen bonds keep close the carbonyl group of residue Gln665 (c224) to that of Leu621 (c185), and force it to keep a position found previously in c225 proline containing enzymes of the family. This suggests, that the length of not only loop 2, but also loop 1 is more important, than the nature of the c225 residue in forming the Na+ binding site.
Possible binding site on C4d Our previous solution studies with functionally active catalytic fragments of MASP-
2 revealed that while C2 cleavage is mediated by the SP domain of MASP-2, C4 cleavage efficiency of the MASP-2 CCP2-SP fragment is highly enhanced compared to the single SP domain (Ambrus et al., 2003). The essential role of the CCP2 module in C4 cleaving was also established for C1s (Rossi et al., 1998). It is very likely, that in addition to the binding sites on the SP domains of MASP-2 and C1s, the CCP2 modules have further binding sites for C4. Based upon homologous structure complexes, we present a model for C4 and MASP-2/C1s CCP2 interaction. CCP modules are widely spread in the complement system having an important role in modulating and regulating the action of the complement components. However there is little known of their binding sites and the structural details of the way of their action. For C4 the binding sites of CCP modules of other proteins are not known. Considering the high homology between C4 and C3 there is a likely CCP-module binding site on C4d, which is similar to C3d. The structure of C3d with the CCP1 module of complement receptor 2 (CR2) bound on its surface, as well as the structure of C4d have been published (Szakonyi et al., 2001 , van den Elsen et al., 2002). The C3d-CR2 complex can serve as a starting point for modeling the binding of CCP2 module of MASP-2/C1s by C4d. In the C3d - CR2 complex the N- and C-terminal ends of the C3d chain are opposite to the CCP-binding surface of C3d. As a consequence, CCP binding on the corresponding surface of C4d allows complex formation between C4 and MASP-2/C1s without steric conflicts of the other domains of these molecules.
In spite of the homology of C3d and C4d, the CCP binding interactions of C3d cannot be directly transferred to C4d due to two facts: (1.) The main chain hydrogen bonds and capping of the carboxylate end of H5 helix of C3d cannot be transferred, because of shifts in main chain atomic positions and differences in the carboxylate end of H5 helix caused by the different lengths of the corresponding helices of C3d and C4d (van den Elsen et al., 2002). (2.) On the CCP module side of the interaction, the B1-B2 loop of C1s and MASP-2 differ in length and conformation from CR2, and also from each other. However, for C3d and C4d the different charge distribution of their supposed CCP-module binding surfaces (i.e. surface of C3d is acidic, while that of C4d is neutral) was suggested to be an important factor in their specificity (van den Elsen et al., 2002). Localizing regions on MASP-2 and C1s CCP2 surfaces with conserved charge distribution that is complementary to the C4d surface can be a good starting point for identifying the binding surfaces, however further studies are needed for evidence.
Comparison of the sequences of CCP2 domain of MASP-2 and C1s reveals conservation of five charged residues, all within the N-terminal region, with four of them in the B1 β- strand and the short B2-B3 loop, forming a region with electrostatic complementarity to the C4d surface (Figures 4A, B and C). Therefore in complexes of C4 with MASP-2/C1s these regions may govern the alignment of molecules. The possible contacting regions are: Arg 1041 /Lys 1080 of C4d with Glu378 of MASP-2 (Glu356 of C1s), Asp1044/Asp1054/Glu1083 of C4d with Arg376 of MASP-2 (Lys354 of C1s), and
Arg1148/Lys1155 of C4d with Glu397/Glu398_of_MASP-2 (Glu372/Glu373 of C1s). The high flexibility of these side chains facilitates fine adjustment of the surface shape to confirm steric fit as well. The proposed model for C4d binding of MASP-2 and C1s is shown in Figure 4C and D
Functional implications MASP-2 plays a central role in the initiation of the lectin pathway of complement, since it is capable of autoactivating and cleaving C4 and C2 - the components of the C3 convertase enzyme complex. In the classical pathway of complement activation these proteolytic activities are mediated by two distinct proteases: C1r and C1s. The structure described in this study provides the first insight into the catalytic machinery of a protease of the lectin pathway, a constituent of innate immunity. The MASP-2 dimer binds to the collagen-like stalks of MBL, like the C1 r2C1s2 tetramer binds to C1q in the C1 complex. The nature of these bindings and the structure of the supramolecular complexes should be similar, since in in vitro experiments MBL can bind and activate also the C1 r2C1s2 tetramer (Ohta et al., 1990; Lu et al., 1990). The current models of MBL - MASP-2 (Feinberg et al., 2003) and C1 (Budayova-Spano et al., 2002b) complexes assume considerable flexibility of both the recognition molecules and the associated serine proteases during the activation process. Our present study strengthens these views: we observed significant flexibility at the CCP2/SP interface of MASP-2. In the case of C1s the CCP2 module is fixed tightly at the surface of the SP module through a proline- and tyrosine-rich hydrophobic framework of side chains. In the case of C1 r the corresponding interaction is weaker and flexibility is detected. In the case of MASP-2, the CCP2/SP interface is not only flexible, but the different conformers are stabilized by different interactions. During autoactivation precise positioning of the interacting SP domains is required for efficient cleavage. The fact that both C1r and MASP-2 show flexibility at the CCP2/SP interface indicates that changes in the relative positions of CCP2 and SP domains could be an important factor in the autoactivation process. In the C1 r2C1s2 tetramer the C1r molecules are linked together through the catalytic CCP1-CCP2-SP regions. This means that the SP domains of the two C1r monomers are relatively close in the resting state of the C1 complex. The MASP-2 molecules, however, form dimers via interactions of the N-terminal CUB1-EGF-CUB2 region, so the SP domains of the MASP-2 monomers are at the opposite ends of the dimer. It is likely, therefore, that significant flexibility is needed to place the distal SP domains of MASP-2 in the correct position during autoactivation. The subsequent cleavage of C2 and C4 substrates also requires significant conformational movements of the MASP-2 dimer, and especially the SP domains. The SP domains, which are in close vicinity during autoactivation, should be separated in order to access the large protein substrates. In other words, the closed circular conformation of the MASP-2 dimer should be converted into an open form. Similar conformational changes should take place in the C1 complex, where C1s is responsible for the C4 and C2 cleavage. Similarly to the MASP-2 dimer, the SP domains of C1s are in the two opposite ends of the C1r2C1s2 tetramer. However, we should take into account that the tetramer is about twice as long as the dimer, and a restricted flexibility at the hinge points can result in a significant conformational change. We can hypothesize, therefore, that the other potential hinge points of MASP-2 (e.g. the CCP1-CCP2 and the CUB2-CCP1 junctions) are more flexible than the corresponding regions of C1s and possibly even those of C1r. As we demonstrated earlier, the substrate specificity of MASP-2 is determined by the CCP2 and SP domains (Ambrus et al., 2003). The SP domain of MASP-2 and C1s contains all necessary contact sites for efficient C2 binding and cleavage and it forms a covalent complex with C1 -inhibitor. It is surprising, therefore, that most of the surface loops, which determine S1 and subsite preferences, exhibit different conformations in the two, functionally closely related, highly specific SP domains. It is likely that the same substrate specificity can be realized through different enzyme-substrate interactions. Using our MASP-2 structure it is possible to design synthetic inhibitors that would specifically block the unwanted pathological activation of the lectin pathway (e.g. in case of ischemia-reperfusion), without interfering with other activation routes. As for C4 cleavage, the presence of the CCP2 module is necessary for the efficient reaction. We can presume that the CCP2 module contains additional binding sites for the C4 substrate. This assumption is supported by kinetic data, since the presence of CCP2 module causes a decrease in the KM value, which indicates a stronger binding of the substrate (Ambrus et al., 2003). This phenomenon closely resembles to C1 r (Kardos et al., 2001) and C1s (Rossi et al., 1998), where the CCP modules also strongly influence the catalytic properties of the molecule. Modelling studies (on the basis of neutron scattering measurements) suggest that C4 has a two-domain structure in solution (Perkins et al., 1990). The two domains correspond to the C4c and C4d fragments, which can be separated after factor I cleavage of C4b. It is possible that both domains contain binding sites for CCP module-containing proteins. The dramatic increase in the catalytic efficiency of the C4 cleavage caused by the addition of CCP modules to the SP domains of C1s and MASP-2 suggests-a-very strong interaction between the enzyme and substrate. Although, we cannot exclude the possibility that the CCP modules establish contact with both the C4c and C4d domains, in the present study we use the structure of the C4d fragment (van den Elsen et al., 2002) and the structures of the CCP2 modules of MASP-2 and C1 s to model the interaction between C4 and the proteases. The surfaces of the SP domains of MASP-2 and C1s are formed mainly by loops showing high diversity in length and conformation, while surfaces of the CCP2 modules by structurally conserved secondary elements (i.e. β-2Dstrands). We can suppose therefore, that the potential C4 binding sites on the CCP2 modules should have similar interaction pattern. Site directed mutagenesis studies will explore the contributions of the side chains of the proposed binding site in the CCP2-C4 interaction.
Table II. Surface segments of significantly different (D>1.5 A) from the homologous segments of other SP domains (A) Overall structure C1s C1r trypsin chymo- Throm- protein factor factor trypsin bin C Xa IXa
(PDB id) (1elv) (1 md8) (1avw) (1ab9) (1k21) (1aut) (1fax) (1pfx)
Nb. Cα 203 218 206 203 214 203 199 202
R.m.s.d. 0.92 1.08 A 1.01 A 1.01 A 0.93 A 1.03A 1.04 1.19 A A - A (B) Surface segments of MASP-2
MASP-2 Chymotrypsin Loop label3 Type of variation Conformation similar to numbering numbering
436-441 3-8 act. peptide
451-454 22-25 variable Clr, digestive, coagulation enzymes
463-469 34-43 A deletion
485-496 59-65 B insertion
503-511 72-82 deletion
524-528 95-98 C insertion
555-562 125-130 insertion thrombin
575-582 143-152 D deletion
594-611 164-175 major insertion
621-625 185-187 insertion trypsin, chymotrypsin
641-645 203-205 insertion Clr, thrombin
657-665 217-224 insertion trypsin, thrombin, factors Xa,IXa a Loop labels as defined by Perona and Craik (1997). b activation peptide
Materials and methods Crystallization and data collection
In order to obtain good quality crystals extensive experimentation had to be undertaken, including testing several hundred different conditions for growing crystals.
The different conditions including testing PEG 6000 and PEG 3500 in different concentrations (from 10% to 30%), different temperatures (20°(C and 4°(C), at different pH values (from pH7 to pH8.5 using 0.2 increment). Other factors such as NaCl and glycerol were also varied. Furthermore the protein concentration and the volume of the hanging drop was optimised.
Good diffracting crystalls grew when mixing equal volumes of reservoir buffer (30% PEG 6000, 0.1 M NaCl, 10% glycerol, 0.1 M Tris pH7.5) and protein solution (0.8 mg/ml protein concentration, 140 mM NaCl, 20 mM Tris pH7.4) at 20°(C.
Crystals were grown by the hanging drop method at 20°C. Crystals were obtained by mixing 2μ(l reservoir solution and 2μ(l protein solution. The reservoir solution contained 30% PEG 6000, 0.1 M NaCl, 10% glycerol and 0.1 M Tris-HCI pH 7.5. The protein solution contained 0.8 mg/ml of the active form of MASP2 CCP2-SP (Ambrus et al., 2003), 140mM NaCl and 20mM Tris/HCI pH 7.4. Synchrotron data were collected at LURE on the DW32 beamline, and at SPring-8 on the BL41XU beamline. Due to scaling problems, the former dataset was used for structure determination. Data were processed and scaled to a resolution of 2.23 A using Mosflm (Leslie, 1993), as well as programs SCALA (Evans, 1993) and TRUNCATE (French and Wilson, 1978) of the Collaborative Computing Project 4 (CCP4, 1994). The asymmetric unit contains two molecules.
Structure determination and refinement The structure was solved by molecular replacement, with the CCP2 and SP domains of C1s (PDB id 1elv) as search models, using the program Beast (Read, 2001) of the Collaborative Computing Project 4. Refinement was carried out with Refmacδ (Murshudov et al., 1997), using restrained maximum likelihood refinement and TLS refinement (Winn et al, 2001). Arp (Lamzin and Wilson, 1997) was used for automatic solvent building. Model building was carried out using the O program (Jones et al., 1991). Tight non-crystallographic restraints were applied to SP domains except for some residues found in different conformations in the two molecules of the asymmetric unit. The final model contains residues 362-440 and 445-686 of molecule A, and 366-412, 416-441 and 445-686 of molecule B. The stereochemistry of the structure was assessed with PROCHECK (Laskowski et al 1993). Refinement statistics are shown in Table I. The atomic coordinates and structure factors were deposited in the Protein Data Bank with accession code 1q3x. Figures were generated using the programs MOLSCRIPT (Kraulis, 1991),
Raster3D (Merritt and Bacon, 1997), and Swiss-PDBViewer (Guex and Peitsch, 1997).
Molecular surfaces were generated using the program GRASP (Nicholls et al., 1991).
Structural alignments were carried out using O program and Swiss-PDBViewer. Surface areas were calculated using the program SURFACE (Lee and Richards, 1971).
Example 2
Assay for inhibition of MASP-2 catalysed C4 deposition:
The assay is composed of three steps 1) preparation of mannan coated microtiter wells 2) binding of rMBL and rMASP-2 to mannan coated wells 3) screening for inhibition of MASP-2 catalysed C4 deposition.
1 ) Preparation of mannan coated microtiter wells:
96 wells microtiter plates (FluroNunc, Nalgene Nunc Int., Denmark) are coated with mannan (10 mg/L, Sigma Chemical Co., St. Louis, USA) in a coating buffer r (Na2C03: 3.18 g/L; NaHC03: 5.86g/L; pH adjusted to 9.6 using HCl) over night at 4°C. Wells are washed twice in TBS (10mM Tris, 150mM NaCl,, pH adjusted to 7.4 using HCl). Wells are then blocked by incubation for 1 hr at room temperature in a buffer as above except that 1 mg/mL of human albumin is added (State Serum Institute, Copenhagen Denmark). Wells are washed 3 times in TBST+Ca2+ (10mM Tris, 150mM NaCl, 10mM CaCI2 ; 0.05%Tween 20, pH adjusted to 7.4 using HCl, from now on washing buffer) and are now ready for use.
2) Binding of rMBL and rMASP-2 to mannan coated wells:
0.8ng/well of recombinant purified human His-tagged MASP-2 and 1 ng/well of recombinant purified human MBL are bound to mannan coated microtiter wells by in cubation over night at 4°C in the above washing buffer except that 1 mg/mL of human albumin is added (State Serum Institute, Copenhagen Denmark). Wells are then washed 3 timers in washing buffer and are ready for use.
3) Screening for inhibition of MASP-2 catalysed C4 deposition:
The compound to be screened for inhibition activity is added to rMBL/rMASP-2 bound to mannan coated microtiter wells in the above washing buffer except that 1 mg/mL of human albumin is added (State Serum Institute, Copenhagen Denmark) and incubated for 1 hr at room temperature. Wells are washed 3 times in washing buffer and incubated 1.5 hr at 37°C with purified human complement component C4 (approx. 1.5-2 ng/mL) in a buffer of barbital sodium (5 mM), NaCl (181 mM), CaCI2 (2.5mM), MgCI2 (1.25 mM), pH 7.4, 1 mg/mL of human albumin (State Serum Institute, Copenhagen Denmark) is added before use. Wells are washed 3 times in washing buffer and 0.89 mg/L biotinylated rabbit anti- human complement component C4c is added (Dako, Denmark, biotinylated according to standard procedures). Wells are incubated for 1 hr at room temperature and washed 3 times in washing buffer. Europium labelled streptavidin (Wallac, Turku, Finland) is added at a concentration of 0.1 mg/L in the above washing buffer except that calcium is omitted and 50 μM EDTA is included. Wells are incubated 1 hr at room temperature and washed 3 times in washing buffer. Wells are developed by adding 100 μL of Delfia Enhancement Solution (Perkin Elmer Wallac, Norton, USA) and incubated on an orbital shaker for 5 min. at room temperature. Wells are counted in a Wallac Victor 2d Multi counter 1420 (Wallac, Turku, Finland).
Inhibition is seen as decreased counts compared to wells where no inhibiting substance has been added.
Example 3
Assay for inhibition of MASP-2 catalysed C4 deposition in full serum:
The serum sample to be analysed is diluted 250 times (final concentration) in the above barbital buffer and C4 is added (1.5-2 ng/mL, final concentration). The compound to be screened for inhibition activity is added and samples are incubated between 5 min and 2 hours at 37°C. Normally incubation is 15 min. 100μl is added to mannan coated microtiter wells prepared as described above and incubated VA hr at 37°C. Wells are washed 3 times in the above washing buffer and 0.89 mg/L biotinylated rabbit anti-human complement component C4c is added (Dako, Denmark, biotinylated according to standard procedures). Wells are incubated for 1 hr at room temperature and washed 3 times in washing buffer. Europium labelled streptavidin (Wallac, Turku, Finland) is added at a concentration of 0.1 mg/L in the above washing buffer except that calcium is omitted and 50 μM EDTA is included. Wells are incubated 1 hr at room temperature and washed 3 times in washing buffer. Wells are developed by adding 100 μL of Delfia Enhancement Solution (Perkin Elmer Wallac, Norton, USA) and incubated on an orbital shaker for 5 min. at room temperature. Wells are counted in a Wallac Victor 2d Multi counter 1420 (Wallac, Turku, Finland).
Example 4
Designing interacting compounds
2.1. Generating a site map Feature points complementary to the active site are computed using an internally developed software tool. For ex-ample, a hydrogen bond donor feature is mapped in the proximity of a hydrogen bond acceptor in the protein active site. The collection of 3D coordinates and labels (acceptors, donors, negatives, positives, hydrophobes and aromatics) is called a site map. Technically, the site map is the union of three separately computed maps, ESMap which contains the electrostatic feature points (P, N, and H)
HBMap with hydrogen-bonding feature points (D and A) and AroMap containing aromatic feature points (Ar).
The electrostatic feature map, ESMap, is computed by first using the sphere placement algorithm employed in the program PASS (Brady et al., 2000). It generates an evenly- distributed setof points (ProbeMap) in regions of buried volume along the protein surface.
A subset of points in the ProbeMap comprises the P, N, and H feature points depending upon the local electrostatic character of the protein. The CVFF molecular mechanics force field is used to compute the electrostatic potential, φ i , at each point /of ProbeMap, along with the mean potential φ and mean magnitude | φ | averaged over all points in ProbeMap. The value of φi determines whether or not point / is included as a P, N, or H feature point, according to the following definitions φi >φ+1.5*σ(φ), i=N feature point φi >φ. 1.5*σ(φ), i=P feature point
| φ | . 1.0*σ( | φ | )< | φi | <φ | +1.0* σ( | φ | ), i=H feature point
Here σ (X) denotes the standard deviation about the mean of quantity X. This normalizes the point assignments relative to the overall electrostatic environment of the active site. This presents non charge-neutral protein structures (which may result from counter ions not being resolved or present in the crystal structures) from skewing feature point assignments unreasonably.
The hydrogen-bonding feature map, HBMap, is determined by projecting complementary points outward from known hydrogen-bonding atoms of the protein. The resulting superset of points is filtered on the basis of steric clash, insufficient burial and minimal proximity of alike feature points. Ideal hydrogen-bonding points are positioned on the basis of the mean angle and distance as observed in the PDB (see for example table 3). Points that clash with the protein are removed. However, for robustness, small positional perturbations are applied to retain potentially important hydrogen-bonding positions. Bifurcated hydrogen-bonding points are computed heuristically by investigating full rings of points equally bifurcated between protein atoms_that_are considered moderate or strong hydrogen bond participants.
Points on such rings are retained as bifurcated HB points if they do not violate steric clash, burial and mutual proximity conditions. To build the final HBMap, the surviving sets of ideal and bifurcated HB points are combined and subjected to filtration on the basis of mutual proximity.
The AroMap set of aromatic feature points is computed by repeatedly docking a benzene ring into the protein active site and retaining the centroids of the top-scoring configurations. The protein is represented using a polar-hydrogen CVFF force field. The docking is performed using internal code in local optimization mode. One hundred separate local docking trials with different starting positions are performed. Any of the docked configurations whose score lies within an energy window of 5 kcal/mol of the minimum-energy configuration is included in AroMap. Again points are subjected to filtration on the basis of burial and mutual proximity.
2.2. Converting pharmacophores into a signature
Pharmacophores are generated on the basis of feature points in the active site by exhaustive enumeration of all 2-,3-, and 4-point subsets of the feature points. For all pairs of feature points their distance in 3D-space is precomputed. In order to arrive at a discrete representation of a pharmacophore, the distances are binned, applying a user-defined binning scheme. Chirality is denoted by encoding the handedness of 4- point pharmacophores. Each pharmacophore is mapped onto a unique address, such that any possible combination of up to four features and distances is represented. The address is taken for a binary representation of the pharmacophores, called a signature. The length of the signature is the highest possible address for an encoding of a 4-point pharmacophore. All bits in the signature are initially set to 0. In order to represent a pharmacophore the bit at the respective address in the signature is turned on (set to 1). For the representation of the active site all pharmacophores are exhaustively enumerated and the respective bits are turned on.
2.3. Union of signatures for multiple structures
Multiple signatures may be combined. The binary union of multiple signatures yields a single bit string representing all pharmacophores present in any structure. Any consensus threshold c can be used to define the consensus representation of multiple active sites.
That is, a pharmacophore is present in at least c of active site conformations. Note that this way of handling multiple active site snapshots is quite expedient.
2.4. Molecular signatures
Test compounds are encoded as follows. First, conformers are generated for each compound using an internal tool, that generates a fairly complete conformational model of the molecule. Features are assigned using a substructure-based set of rules. Pharmacophores are enumerated from these three-dimensional feature positions following the same protocol as for the active site, thus ensuring compatibility of the binary encodings. However, multiple conformers need to be represented simultaneously here. This is done by wrapping the exhaustive enumeration of pharmacophores for a single conformer into an extra loop over all the conformers of a compound. That is, any pharmacophore on any conformer of a compound is represented by turning the respective bit in the signature on.
2.5. Molecular signature masking
With the binary representation of the active site and the binary representation of the molecules being defined analogously, the meaning of a bit at a certain address is the same (the same pharmacophore, within the tolerances of the distance binning). Therefore, representing a design space amounts to masking all molecule signatures by the active site signature. Masking a signature means taking the logical anc of the bits of the site signature and the molecule signature. For a given molecule, bits representing pharmacophores not present in the active site are turned off, whereas the bits of the pharmacophores in the active site can be either on or off, depending on their presence or absence in the molecules. This way only the pharmacophore space defined by the active site is taken into account.
2.6. Informative library design
Informative library design is a molecule selection strategy that optimizes information return for a given virtual library. The goal is to detect a set of features (pharmacophores) that determine activity against a particular test compound. Informative design aims at selecting a set of compounds such that the resulting subset will interrogate the test compound in different, but overlapping ways. Molecules are selected for synthesis and screening such that each pharmacophore in the design space has a unique pattern of occurrence in the molecules of the set. This unique 'code' enables the identification and retention of the important pharmacophores when the set of compounds is assayed, regardless of the actual experimental outcome. This is in contrast to diversity methods that seek to produce a unique pattern of pharmacophore occurrences in each molecule.
Given a design space, the algorithm seeks to optimize decoding as many pharmacophores as possible, with the smoothest distribution across the size of pharmacophore classes. A pharmacophore class refers to the subset of pharmacophores that all have the same code or pattern. Note that the optimum solution is a set of compounds that enables decoding each individual pharmacophore. However, this may not be possible due either to the source pool, bit correlation or to limited size of selection. The cost function for an unconstrained optimization in terms of molecule selection is the entropy of the class distribution. The entropy is given by
where H is the entropy of the feature classes, C the number of distinct classes, f the number of features in the design space and |c | is the size of class i. During the course of the optimization, molecules are selected, such as to maximize H.
Example 5 A three dimensional model of the CCP-2 and serine protease domain of MASP-2 can be constructed based on the crystallographic co-ordinates of table 3 (see also example 1). The molecular modeling is done achieved with commercially available Insightll 2000 20 and SYBYL 6.2 21 software packages. The quantum chemistry calculation is carried out using Gaussian 98. 22 All of the computational work is performed on Silicon Graphics workstations (Indigo II and 02). The size and spatial orientation of the active site are identified by the grid analysis implemented in the Binding Site Analysis module within Insightll. The grid size for searching the polypeptides is set to 1 A x 1 A x 1 A. All of the solvent-accessible surfaces in the polypeptide are filled with grid points and only those having at least 125 grid points are accepted as possible compound binding sites. To explore the key regions in the active site that are necessary for compound binding, the multiple copy simultaneous search (MCSS) program is employed to calculate the energetically favorable position and the orientation of given functional groups in the active site of the polypeptide. The functional groups chosen for the MCSS calculation are benzene, propane, cyclohexane, phenol, methanol, ether, and water, representing a hydrophobic functional group, a polar functional group, and solvent. Replicas of a given functional group are randomly distributed inside the binding site and then simultaneously and independently energy- minimized. Pairs of molecules are considered to be identical if the root-mean-square deviation (rmsd) between them is less than 0.2 A, and in such cases, one of the pairs is eliminated. The above protocol may be repeated, for example 10 times for each of the functional groups to allow complete searching of the active site. All calculations may be performed using the CHARMM 22 force field and MCSS 2.1 program.24
The de novo design program LUDI may be employed to further explore the important regions in the active site for compound binding. The grid points produced by the Insightll/Binding Site Analysis module are divided into four subsites. The residues inside a 6 A radius sphere, which is centered on the centroid of each subsite, are used to generate the interaction site. Three different types of interaction sites are defined in the program: lipophilic, hydrogen bond donor, and hydrogen bond acceptor. The standard default parameter and a fragment library supplied with the program are used during the LUDI search. The best test compounds, i.e. lead molecules may be constructed by manually linking some of the MCSS minima. The new bond is constructed so that there is no introduction of significant internal strain in the candidate ligand. The synthetic accessibility of the generated structures is taken into account during the fragment connection step. The newly formed ligand molecules are subsequently energy-minimized in the rigid protein to regularize the internal coordinates using the CVFF force field in the Discover 95.0 program within Insightll. The flexible ligand docking procedure in the Affinity module within In-sightll is then used to define the lowest energy position for the generated molecules by using a Monte Carlo docking protocol. All of the atoms within a defined radius (6 A) of the lead molecules are allowed to move. The solvation grid supplied with the Affinity program is jsed. If the resulting compound/polypeptide of MASP-2 system is within a predefined energy tolerance of the previous structure, the system is subjected to minimization. The resulting structure is accepted on the basis of an energy check, which used the Metropolis criterion, and also a check of the rms distance of the new structure versus the structure found so far. The final conformations are obtained through a simulation annealing procedure from 500 to 300 K, and then 5000 rounds of energy minimization are performed to reach a convergence, where the resulting interaction energy values are used to define a rank order. Each energy-minimized final docking position of the lead molecules is evaluated using the interaction score function in the LUDI
Subsequent to identification of a lead molecule, said molecule may be synthesised and interaction may be confirmed in vitro.
Example 6
Validation of the MASP-2 crystal structure with respect to in silico inhibitor design
In order to validate the MASP-2 crystal structure we tested several known protease inhibitors in the wet laboratory. We ranked the inhibitors according to their IC50 values. In the next stage we docked several selected inhibitors to the MASP-2 structure in silico and calculated the strength of the protease-inhibitor interaction. The calculated and measured IC50 values were in good agreement indicating that the described MASP-2 structures are suitable for computer based inhibitor design.
Development of an in vitro assay for measuring the enzymatic activity of recombinant MASP-2
In order to measure the effect of inhibitors on the activity of MASP-2 we developed an in vitro assay system using recombinant MASP-2 and synthetic substrate.
Reagents:
1.1 Enzyme
In the protease activity measurements we used recombinant MASP-2 CCP1-CCP2-SP fragment (also designated MASP2γB herein). The minimal catalytic unit of MASP-2 is the CCP2-SP fragment. It can cleave the protein substrates (C2 and C4) as efficiently as the entire molecule. In the present study we used small molecular weight synthetic substrates and inhibitors which interact with the active site of the protease domain. The CCP modules stabilize the structure of the serine protease domain and make the fragment more suitable for experimental handling. The stock solution contained 0.2 mg/ml MASP-2 CCP1-CCP2-SP in a buffer (145 mM NaCl, 50 mM Tris-HCI, pH=7.5). It was stored at +4°C for weeks.
1.2 Substrates
Since MASP-2 is a trypsin-like serine protease, it cleaves the polypeptide chain after Lys and Arg. C1 r and C1s, related complement proteases can be measured as esterases using Lys-O-R or Arg-O-R synthetic substrates, while their amidolytic activity is hardly measurable. Our preliminary experiments showed that the synthetic thiolester Z-Lys-S-Bzl (Sigma) substrate is readily cleaved by the recombinant MASP-2. The kcat/KM value was 3X104M-1s-1 for the MASP-2 CCP1-CCP2-SP. The leaving group reacts with the chromophore helper substrate DTDP (4,4'-dithiodipiridine), and the resulting complex can ~ be detected spectrophotometrically at 324 nm. The concentrations of the stock solutions were as follows: Z-Lys-S-Bzl ~10mM in H20 stored at -20°C DTDP 20mM in DMF stored at -20°C The reaction buffer was 20mM HEPES pH=7.0 5 mM CaCI2
1.3 Instrument We used a thermostatable Jasco V560 spectrophotometer coupled with a computer which runs the Grafit 5 software for collecting, handling and storing the experimental data. All reactions were carried out in 1ml quartz cuvettes.
Protocol for measuring the activity of recombinant MASP-2 1.) Determination of the accurate substrate concentration Set the thermostate to 37°C and thermostate the buffer Turn on the computer and start running the program Turn on the spectrophotometer Fill two cuvettes (the reference cell and the sample cell) with buffer • Set the parameters: wavelength (3 324nm), location of the data file Use the Auto zero to set up the zero point Add 985μl buffer to the sample cuvette Add 5 μl trypsin stock solution (c=0.5 μg/ml) • Start the measuring program Add 5 μl of chromogenic reagent DTDP stock solution Add 5 μl substrate (Z-Lys-S-Bzl ) stock solution, mix well Let the trypsin to cleave all the substrate available (approx. 2 mins) Calculate the actual concentration of the substrate using the following formula: C=200 (maximal absorbance)/ε324 ε324=19800M-1cm-1
2.) Measurement of MASP-2 activity • Add the buffer into the cuvette (985 μl) • Add the MASP-2 stock solution (5 μl) • Incubate the reaction mixture for 30 min at 37°C • Add DTDP, twice the molar concentration of the substrate concentration, start the data collection • Add the substrate stock solution • Measure the rate of the reaction (read dAbs/dmin) for about 200 s • Determine the initial reaction rate by fitting a straight line to the initial part of the curve (approx. 10-20 s)
3.) Measurement of MASP-2 activity in the presence of inhibitor • Add the buffer to the cuvette • Add 5μl MASP-2 stock solution • Add proper amount of selected inhibitor (the volume of the organic solvent should not exceed 5% of the total reaction volume) • Mix well and incubate the enzyme with the inhibitor for 30 min at 37°C • Proceed as described in the previous section
4.) Finding the optimal substrate concentration
In order to determine the optimal working concentration of the substrate, at which the effect of the inhibitor could be easily detected we measured the enzyme activity at different substrate concentrations.
Table 5
Substrate concentration μM dAbs/dmin
100 0.0803
200 0.1545
300 0.1517 400 0.1805 150 0.0837
Conclusion: We selected the 150μM substrate concentration, since it is below saturation and gives a good measurable signal. Since IC50 value depends on the substrate concentration it is important to note that all the following measurements were carried out at 150μM substrate (Z-Lys-S-Bzl) concentration. 2. Measuring the effect of several protease inhibitors on the activity of recombinant MASP-2
We selected nine protease inhibitors for the IC50 measurements: Pefabloc-SC 4-(2-aminoethyl)-benzenesulfonyl fluoride APMSF 4-amidino-phenylmethane-sulfonyl fluoride Chymostatin N-(Nα-carbonyl-([S,S]-α-(2-iminohaxahydro-4-pyrimidyl)-glycine)-X-Phe-al)- Phe X=Leu/Val/lle E-64 trans-epoxylsuccinyl-L-leucilamido(4-guanidino)-butane PMSF phenylmethyl sulfonyl fluoride Leupeptin acetyl-Leu-Leu-Arg-al NPGB p-nitrophenyl p
Table 6 summarizes several important features of the nine selected inhibitors, including suggested working concentrations.
Table 6
The inhibitor stock solutions were stored in aliquots at -20°C to prevent excessive freeze- thaw cycle. MASP-2 were incubated with the inhibitors for 30min at 37°C before the activity measurements, as stated in the protocol. All data points are the average of three independent measurements.
2.1 PMSF phenylmethyl sulfonyl fluoride Mw= 174.2 Da Irreversible inhibitor of serine and cysteine proteases
Seven different inhibitor concentrations were tested and the IC50 value was calculated by means of nonlinear curve fitting using the Grafit 5 program. The data set for IC50 determination is shown in table 7 and in figure 7.
Table 7
The ICso of PMSF is 16.4 μM
2.2 Pefabloc-SC
4-(2-aminoethyl)-benzenesulfonyl fluoride Mw=239.7 Da irreversible inhibitor of serine proteases
Ten different inhibitor concentrations were tested and the IC50 value was calculated by means of nonlinear curve fitting using the Grafit 5 program. Data set for IC50 determination is shown in table 8 and in figure 8
Table 8
The IC50 of Pefabloc-SC is 221.7 μM.
2.3 Benzamidine
Mw=156.6 Da
Reversible inhibitor of serine proteases Eight different inhibitor concentrations were tested and the IC50 value was calculated by means of nonlinear curve fitting using the Grafit 5 program. Data set for IC50 determination is shown in table 9 and in figure 9.
Table 9
The IC50 of benzamidine is 0.688mM.
2.4 NPGB
p-nitrophenyl p'-guanidinobenzoate Mw=336,74 Da Reversible inhibitor of serine proteases
Nine different inhibitor concentrations were tested and the IC50 value was calculated by means of nonlinear curve fitting using the Grafit 5 program.
Data set for IC50 determination is shown in table 10 and in figure 1.0.
Table 10
The IC50 of NPGB is 229.6 nM.
2.5 APMSF
4-amidino-phenylmethane-sulfonyl fluoride Mw=252.7 Da Irreversible inhibitor of serine proteases
Ten different inhibitor concentrations were tested and the IC50 value was calculated by means of nonlinear curve fitting using the Grafit 5 program.
Data set for IC50 determination is shown in table 11 and figure 11. Table 11
The IC50 of APMSF is 11.0 μM.
2.6 Leupeptin acetyl-Leu-Leu-Arg-al
Mw=426.6 Da
Reversible inhibitor of serine and cysteine proteases
Eight different inhibitor concentrations were tested and the IC50 value was calculated by means of nonlinear curve fitting using the Grafit 5 program.
Data set for IC50 determination is shown in table 12 and figure 12.
Table 12
The IC50 of leupeptin is 7.7 μM. 2.7 E64
trans-epoxylsuccinyl-L-leucilamido(4-guanidino)-butane Mw=357.4 Irreversible inhibitor of cysteine proteases
Four different inhibitor concentrations were tested and the IC50 value was calculated by means of nonlinear curve fitting using the Grafit 5 program.
Data set for IC50 determination is shown in figure 13 and table 13.
E64 is a very weak inhibitor of MASP-2, it causes a low effect at relatively high inhibitor concentration. The program calculates an IC50 value (0.87 mM).
2.8 Chymostatin
N-(Nα-carbonyl-([S,S]-α-(2-iminohaxahydro-4-pyrimidyl)-glycine)-X-Phe-al)-Phe X=Leu/Val/lle Mw=604.7 Da Reversible inhibitor of serine proteases
Five different inhibitor concentrations were tested. Like E64, the inhibitory effect of chymostatin on MASP-2 is negligible (see data in table 14).
2.9 εACA ε-amino caproic acid Mw=131.2 Da Reversible inhibitor of serine proteases
Five different inhibitor concentrations were tested. Like E64 and chymostatin, the inhibitory effect of εACA on MASP-2 is negligible (see data in table 15).
Table 15
Summary of the results of the of the IC50 measurements
Table 16 below summarizes the results of our measurements with nine different inhibitors. The inhibitors are ranked according to their IC50 values (#1 has the smallest IC50 value, therefore it is the best inhibitor).
Table 16
NPGB is the best inhibitor having an IC 0 value in the nanomolar range. Leupeptin has an IC50 value one order of magnitude higher than NPGB has, but it is still a very potent inhibitor. PMSP and APMSF, the two related inhibitors shows practically the same inhibitory effect. Suprisingly, Pefabloc-SC which is a newly developed very potent inhibitor of serine proteases (IC50 values for trypsin and chymotrypsin are 81 μM and 44 μM, respectively) is an average inhibitor of MASP-2. Benzamidine is a small but not very specific inhibitor of serine proteases. Three inhibitors showed essentially no inhibitory effect. E64 is an inhibitor of cysteine protesases, it does not usually inhibit serine proteases. Chymostatin and εACA are serine protease inhibitors, but their inhibitory effect on the activity of recombinant MASP-2 is negligible.
3. Adaptation of docking program packages, and development of in silico screening protocols for the recombinant MASP-2 structure
In order to validate the crystal structure of MASP-2, we performed docking procedure with three different inhibitors (benzamidine, leupeptin and NPGB). The IC50 values ot these inhibitors were previously measured using an in vitro enzyme activity assay (see above). We compared the results of the in silico docking with the measured values of our inhibitor. AutoDock 3.05 was used for docking the inhibitors to MASP-2 and several other programs for data preprocessing.
3.1 Data preprocessing:
3.1.1 Enzyme
The 3D structure of the enzyme was in pdbqs (protein data bank) format with partial charges, and solvation parameters. We assigned the partial charges to MASP-2 X-ray crystal structure (pdb code :1q3x) with SYBYL 6.3 using the Mulliken population analysis method. The total charge on the enzyme is -11 e. The structure was saved as mol2 file format (/m-kollnolp.mol2), and then converted to pdbq format by the awk script mol2topdbq and saved as /m-kollnolp.pdbq.
Autodock needs solvation parameters in order to calculate the free energy of binding. We assigned solvation parameters by ADDSOL (Autodock 3.0 package) program, and saved the result as /m-kollnolp. pdbqs.
3.1.2 Inhibitors
The inhibitors structures were also in pdbq file format. SYBYL 6.3 was used to develop the 3D structures of the inhibitors with AM1 semi-empirical calculations, and the charges were assigned by Mulliken population analysis method (log files: /ligands/chymostatinaml .out, /ligands/npgbgaussian.out). Since the inhibitors were treated flexible, we defined active torsions of the molecule, which were done by Autotors (Autodock 3.0 package). The following coordinate files were used for the inhibitors:
Benzamidine Name: benzamidine
Mw: 156.6 Da
The benzamidine have +1 e total charge, and 2 active ratable bounds between atoms: C7_7, N1_8 and between A1_1 and C7_7.
The structure of benzamidine is given in figure 14.
The coordinate file of benzamidine structure (/ligands/ben.pdbq):
REMARK 2 active torsions:
REMARK status: CA' for Active; 'I' for Inactive)
REMARK 1 A between atoms: C7_7 and Nl_ .8
REMARK 2 A between atoms: Al_l and C7_ .7
ROOT
ATOM 1 C7 BEN 1 -7.849 22.628 66 .124 0. .00 0. .00 0. .773
ATOM 2 N2 BEN 1 -6.781 23.078 65 .487 0. .00 0. .00 -0. .764
ATOM 3 H21 BEN 1 -5.862 22.645 65 .654 0 .00 0 .00 0. .417
ATOM 4 H22 BEN 1 -6.868 23.862 64, .825 0. .00 0. .00 0. .402
ENDROOT
BRANCH 1 5
ATOM 5 Nl BEN 1 -9.010 23.211 65. .883 0. .00 0. .00 -0. .768
ATOM 6 Hll BEN 1 -9.091 23.902 65 .122 0. .00 0. .00 0. .407 ATOM 7 H12 BEN 1 -9 . 833 22 . 975 66 . 455 0 . 00 0 . 00 0 . 416
ENDBRANCH 1 5
BRANCH 1 8
ATOM 8 Al BEN 1 7 706 21 692 67 142 0 00 0 00 -0 259
ATOM 9 A6 BEN 1 6 486 21 070 67 341 0 00 0 00 0 073
ATOM 10 A2 BEN 1 8 773 21 391 67 946 0 00 0 00 0 086
ATOM 11 A5 BEN 1 6 319 20 124 68 349 0 00 0 00 0 027
ATOM 12 A4 BEN 1 7 401 19 800 69 172 0 00 0 00 0 171
ATOM 13 A3 BEN 1 8 633 20 441 68 965 0 00 0 00 0 020
ENDBRANCH 1 8
TORSDOF 0
Leupeptin
Name: acetyl-Leu-Leu-Arg-al Mw: 426.6 Da tion
The leupeptin also have +1 e total charge and have 19 active torsion angles. The loci of the active torsions listed in the REMARK lines.
The structure of Leupeptin is given in figure 15.
The coordinate file of leupeptin structure (/ligands/leupeptin.pdbq):
REMARK 19 active torsions:
REMARK status: ( 'A' for Active; 'I' for Inactive)
REMARK 1 A between atoms : CB_21 and CG_ 24
REMARK 2 A between atoms: CD_25 and NE_ 26
REMARK 3 A between atoms : CA_9 and C_22
REMARK 4 A between atoms : CA_1 and N_2
REMARK 5 A between atoms: CA_1 and C_4
REMARK 6 A between atoms: CA_11 and N_12
REMARK 7 A between atoms : N_2 and C_33
REMARK 8 A between atoms: CA_11 and CB_ 13
REMARK 9 A between atoms : CZ_27 and NH2 _28
REMARK 10 A between atoms : CG_2 and CD_ 25
REMARK 11 A between atoms -. CZ_27 and NH1 _29
REMARK 12 A between atoms : CA_9 and N_20
REMARK 13 A between atoms : CA_9 and CB_21
REMARK 14 A between atoms: CA_1 and CB_3
REMARK 15 A between atoms: C_4 and N_12
REMARK 16 A between atoms : CB_3 and CG_6
REMARK 17 A between atoms: CB_13 and CG_ 16
REMARK 18 A between atoms : CA_11 and C_14
REMARK 19 A between atoms : C_14 and N_20
ROOT
ATOM 1 CA LEU A 1 0.502 -1.532 -0.873 0 00 0 00 0 185
ENDROOT
BRANCH 1 2
ATOM 2 N LEU A 2 1.222 -1.008 0.259 0 00 0 00 -0 523
ATOM 3 HN LEU A ; 0.739 -0.963 1.127 0 00 0 00 0 318
BRANCH 2 4
ATOM 4 C LEU A 1 2.534 -0.583 0.175 0 00 0 00 0 354
ATOM 5 O LEU A ] 3.195 -0.706 -0.874 0 00 0 00 -0 391
BRANCH 4 6
ATOM 6 CA LEU A ] 3.074 0.159 1.425 0 00 0 00 0 185
BRANCH 6 7
ATOM 7 N LEU A 3 4.515 0.159 1.425 0 00 0 00 -0 523
ATOM 8 HN LEU A 1 4.972 0.158 0.543 0 00 0 00 0 319
BRANCH 7 9
ATOM 9 C ACE A 5.241 0.039 2.598 0 00 0 00 0 362
ATOM 10 O ACE A 4.657 0.012 3.700 0 00 0 00 -0 401 ATOM 11 CA ACE A 6 . 743 -0 . 047 2 .484 0 . 00 0 . 00 0 . 107
ENDBRANCH 7 9
ENDBRANCH 6 7
BRANCH 6 12
ATOM 12 CB LEU A 1 2 . 461 1.575 1 .425 0 . 00 0 . 00 0. 013
BRANCH 12 13
ATOM 13 CG LEU A 1 2 502 2 190 2.817 0 00 0 00 -0 001
ATOM 14 CD1 LEU A 1 2 087 3 645 2.726 0 00 0 00 0 005
ATOM 15 CD2 LEU A 1 1 620 1 441 3.796 0 00 0 00 0 025
ENDBRANCH 12 13
ENDBRANCH 6 12
ENDBRANCH 4 6
ENDBRANCH 2 4
ENDBRANCH 1 2
BRANCH 1 16
ATOM 16 CB LEU A 2 0 .774 -3 . 028 -1 . 148 0. 00 0 . 00 0 . 028
BRANCH 16 17
ATOM 17 CG LEU A 2 1 656 -3.229 -2.372 0.00 0 00 -0. 006
ATOM 18 CD1 LEU A 2 2 156 -4.660 -2.408 0.00 0 00 0 . 037
ATOM 19 CD2 LEU A 2 0 918 -2.906 -3.655 0.00 0 00 0 . 012
ENDBRANCH 16 17
ENDBRANCH 1 16
BRANCH 1 20
ATOM 20 C LEU A 2 1 025 -1.344 -0 693 0.00 0 00 0.352
ATOM 21 O LEU A 2 1 550 -1.036 0 398 0.00 0 00 -0.426
BRANCH 20 22
ATOM 22 N ARG A 3 1 790 -1.503 -1 831 0.00 0 00 -0.508
ATOM 23 HN ARG A 3 1 360 -1.817 -2 677 0.00 0 00 0.330
BRANCH 22 24
ATOM 24 CA ARG A 3 3 228 -1.569 -1 766 0.00 0 00 0.110
BRANCH 24 25
ATOM 25 CB ARG A 3 3 931 -0.204 -1 902 0.00 0 00 0.037
BRANCH 25 26
ATOM 26 CG ARG A 3 3 553 0.706 -0 754 0.00 0 00 0.078
BRANCH 26 27
ATOM 27 CD ARG A 3 4 415 1.968 -0 776 0.00 0 00 0.191
BRANCH 27 28
ATOM 28 NE ARG A 3 4 091 2.853 0 326 0.00 0 00 -0.455
ATOM 29 CZ ARG A 3 4 724 4.054 0 547 0.00 0 00 0.474
ATOM 30 HE ARG A 3 3 386 2.543 0 966 0.00 0 00 0.356
BRANCH 29 31
ATOM 31 NH2 ARG A 3 4 366 4.825 1 634 0.00 0 00 -0.544
ATOM 32 1HH2 ARG A 3 3 658 4.521 2 264 0.00 0 00 0.351
ATOM 33 2HH2 ARG A 3 4 806 5.700 1 807 0.00 0 00 0.349
ENDBRANCH 29 31
BRANCH 29 34
ATOM 34 NH1 ARG A 3 5 711 4.499 -0 304 0.00 0 00 -0.538
ATOM 35 1HH1 ARG A 3 5 980 3.960 -1 096 O.00 0 00 0.351
ATOM 36 2HH1 ARG A 3 6 163 5.372 -0 151 0.00 0 00 0.348
ENDBRANCH 29 34
ENDBRANCH 27 28
ENDBRANCH 26 27
ENDBRANCH 25 26
ENDBRANCH 24 25
BRANCH 24 37
ATOM 37 C ARG A 3 -3.839 -2.497 -2.816 0.00 0.00 0 . 322
ATOM 38 O ARG A 3 -3.218 -2.938 -3.778 0.00 0.00 -0 . 284
ENDBRANCH 24 37
ENDBRANCH 22 24
ENDBRANCH 20 22
ENDBRANCH 1 20
TORSDOF 17
NPGB
Name: p-Nitrophenyl-p-guanidinobenzoate, Mw 336,74 Da NPGB has +1 e total charge and seven active torsions. The structure of the NPGB is given in figure 16.
The coordinate file of NPGB structure (/ligands/npgb.pdbq):
REMARK 7 active torsions:
REMARK status: i ('A' for Active; 'I' for Inactive)
REMARK 1 A between atoms: A24_24 and N27_27
REMARK 2 A between atoms : N27_27 and C29_29
REMARK 3 A between atoms: C29_29 and N30_30
REMARK 4 A between atoms: A6_6 and Nll_ _11
REMARK 5 A between atoms: A3_3 and 014. .14
REMARK 6 A between atoms : 014_14 and C15_15
REMARK 7 A between atoms : C15_15 and A17_17
ROOT
ATOM 1 A17 <1> 0 1.390 0.647 -0.241 1. .00 0. .00 -0 .246
ATOM 2 A18 <1> 0 1.750 -0.675 -0.420 1. .00 0. .00 0. .135
ATOM 3 A19 <1> 0 2.349 1.645 -0.199 1. .00 0. .00 0 .154
ATOM 4 A20 <1> 0 3.086 -1.006 -0.553 1. .00 0. .00 0 .068
ATOM 5 A22 <1> 0 3.684 1.320 -0.335 1. .00 0. .00 0 .067
ATOM 6 A24 <1> 0 4.041 -0.006 -0.507 1. .00 0. .00 0 .216
ENDROOT
BRANCH 1 7
ATOM 7 C15 <1> 0 -0.028 1.065 -0.092 1. .00 0. .00 1 .029
ATOM 8 016 <1> 0 -0.375 2.204 0.068 1. .00 0. .00 -0 .591
BRANCH 7 9
ATOM 9 014 <1> 0 -0.859 0.005 -0.158 1. .00 0. .00 -0 .815
BRANCH 9 10
ATOM 10 A3 <1> 0 -2.254 -0.011 -0.067 1. .00 0. .00 0 .395
ATOM 11 A4 <1> 0 -3.037 1.110 0.127 1. .00 0. .00 0 .062
ATOM 12 A2 <1> 0 -2.813 -1.271 -0.189 1. .00 0. .00 0 .013
ATOM 13 A5 <1> 0 -4.408 0.954 0.199 1. .00 0. .00 0, .148
ATOM 14 A6 <1> 0 -4.962 -0.298 0.078 1, .00 0. .00 0, .270
ATOM 15 Al <1> 0 -4.179 -1.417 -0.116 1. .00 0. .00 0 .145
BRANCH 14 16
ATOM 16 Nil <1> 0 -6.399 -0.449 0.157 1. .00 0. .00 0, .181
ATOM 17 013 <1> 0 -7.072 0.580 0.331 1. .00 0. .00 -0. .374
ATOM 18 012 <1> 0 -6.857 -1.599 0.040 1. .00 0. .00 -0, .377
ENDBRANCH 14 16
ENDBRANCH 9 10
ENDBRANCH 7 9
ENDBRANCH 1 - !
BRANCH 6 19
ATOM 19 N27 <1> 0 5.438 -0.351 -0.666 1. .00 0. .00 -1. .001
ATOM 20 H28 <1> 0 5.793 -0.415 -1.601 1. .00 0. .00 0, .409
BRANCH 19 21
ATOM 21 C29 <1> 0 6.255 -0.590 0.354 1. .00 0. .00 1. .353
ATOM 22 N33 <1> 0 7.532 -0.869 0.122 1. .00 0. .00 -0, .945
BRANCH 21 23
ATOM 23 N30 <1> 0 5.797 -0.553 1.593 1. .00 0. .00 -0, .946
ATOM 24 H31 <1> 0 4.831 -0.366 1.774 1. .00 0. .00 0, .429
ATOM 25 H32 <1> 0 6.392 -0.700 2.381 1. .00 0. ,00 0, .406
ENDBRANCH 21 22 !
ATOM 26 H34 <1> 0 8.165 -1.090 0.863 1. ,00 0. ,00 0. .408
ATOM 27 H35 <1> 0 7.911 -0.868 -0.801 1. .00 0. .00 0. .407
ENDBRANCH 19 2]
ENDBRANCH 6 IS )
TORSDOF 5
3.2 Docking
We used the AutoDock 3.05 program for the docking. This program was acquired as source code, and compiled on a dual Linux workstation (dual 2.8GHz Xeon, 1GB RAM, RedHat 9.0 OS).
Based on literature we used the Lamarckian Genetic Algorithm (LGA) docking strategy.
The main parameters were: population size 100 max. number of energy evaluations 25000000 max. number of generations 27000 run number 200
We ran all of the dockings 200 times to collect enough data, to select the most likely docked conformation. The further parameters of the docking are listed in the docking parameter files. (/ben/ben.m-kollnolp.LGA.dpf, /leupeptin/leupeptin.m-kollnolp.LGA.dpf, /npgb/npgb.m-kollnolp.LGA.dpf)
The docking parameter file:
seed pid time # seeds for random generator types CANOH # atom type names fid m-kollxnolp.maps.fld # grid_data_file map m-kollxnolp.C.map # atom-specific affinity map map m-kollxnolp.A.map # atom-specific affinity map map m-kollxnolp.N.map # atom-specific affinity map map m-kollxnolp.O.map # atom-specific affinity map map m-kollxnolp.H.map # atom-specific affinity map map m-kollxnolp.e.map # electrostatics map move npgb.pdbq # small molecule about 1.1545 -0.1113 0.0793 # small molecule center tranO random # initial coordinates/A or random quatO random # initial quaternion ndihe 7 # number of active torsions diheO random # initial dihedrals (relative) or random tstep 2.0 # translation step/A qstep 50.0 # quaternion step/deg dstep 50.0 # torsion step/deg torsdof 5 0.3113 # torsional degrees of freedom and coeffiecent intnbp_r_eps 4.00 0.0222750 12 6 # C-C Ij intnbp_r_eps 4.00 0.0222750 12 6 # C-A Ij intnbp_r_eps 3.75 0.0230026 12 6 # C-N Ij intnbp_r_eps 3.60 0.0257202 12 6 # C-0 Ij intnbp_r_eps 3.00 0.0081378 12 6 # C-H Ij intnbp_r_eps 4.00 0.0222750 12 6 # A-A Ij intnbp_r_eps 3.75 0.0230026 12 6 # A-N Ij intnbp_r_eps 3.60 0.0257202 12 6 # A-0 lj intnbp_r_eps 3.00 0.0081378 12 6 # A-H lj intnbp_r_eps 3.50 0.0237600 12 6 # N-N Ij intnbp_r_eps 3.35 0.0265667 12 6 # N-0 Ij intnbp_r_eps 2.75 0.0084051 12 6 # N-H Ij intnbp_r_eps 3.20 0.0297000 12 6 # 0-0 Ij intnbp_r_eps 2.60 0.0093852 12 6 # O-H Ij intnbp_r_eps 2.00 0.0029700 12 6 # H-H Ij outlev 1 # diagnostic output level rmstol 0.5 # cluster_tolerance/A extnrg 1000.0 # external grid energy eOmax 0.0 10000 # max initial energy; max number of retries ga_pop_size 100 # number of individuals in population ga_num_evals 25000000 # maximum number of energy evaluations ga_num_generations 27000 # maximum number of generations ga_elitism 1 # number of top individuals to survive to next generation ga_mutation_rate 0.02 # rate of gene mutation ga_crossover_rate 0.8 # rate of crossover ga_window_size 10 # ga_cauchy_alpha 0.0 # Alpha parameter of Cauchy distribution ga_cauchy_beta 1.0 # Beta parameter Cauchy distribution set_ga # set the above parameters for GA or LGA sw_max_its 300 # iterations of Solis & Wets local search sw_max_succ 4 # consecutive successes before changing rho sw_max_fail 4 # consecutive failures before changing rho sw_rho 1.0 # size of local search space to sample sw lb rho 0.01 # lower bound on rho ls_search_freq 0.06 # probability of performing local search on individual set_psw1 # set the above pseudo-Solis & Wets parameters ga_run 200 # do this many hybrid GA-LS runs analysis # perform a ranked cluster analysis
The time needed for docking reflects the degree of freedom of the inhibitors. Table 17 summarizes the time coast of the docking.
Table 17
Inhibitor Time
Benzamidine 20h 20m
Leupeptin 74h 22m
NPGB 40h 32m
The run times for the 200 docking for each inhibitors.
3.3 Results:
The Autodock calculates a free energy function, and based on it an estimated inhibition constant (Ki). The estimated Ki values proportional to IC50, therefore we can compare the measured and the calculated values.
3.3.1 Benzamidine:
In the case of the benzamidine docking we had got four well populated close clusters, that can be seen in the result log (/ben/ben. m-kollnplo.LGA.dlg) files: CLUSTERING HISTOGRAM
I I I I I Clus I Lowest| Run | Mean | Num | Histogram -ter I Docked I | Docked | in | Rank | Energy | | Energy | Clus | 5 10 15 20 25 30 35 J L 1 | -7.40 | 133 | -7.38 1 96
10 \ Mmm ι«ttttmmiMimι ι ιm mι«m usιιιm mmwιw ι ιmι tt» ι mmmmmιm wMm mιmιm 2 1 -7.37 i 35 ι -7.36 1 75 \ιιιnιιιιιιιιιtιιnιιιιnnιιιιιιnittHiιm#ιu muιιnιιιιnιιι #mmmmHHiιιmιtιm mHHiiHHiι m 3 1-7.35 I 153 I -7.34 | 23 \ll II II II I! II II II II II II II II II II II II 4 I-7.34 | 25 | -7.33 1 6 |######
, _ I I I I I
1 D Number of multi-member conformational clusters found = 4, out of 200 runs.
20 The most likely docked conformation is the RUN 133. The coordinates of the 3D structure:
MODEL 133 USER Run = 133 USER Cluster Rank = 1
25 USER Number of conformations in this cluster = 96 USER USER RMSD from reference structure 2.808 A USER USER Estimated Free Energy of Binding -7.56 kcal/mol [=(l)+(3(]
30 USER Estimated Inhibition Constant, Ki +2.86e-06 [Temperature 298.15 K] USER USER Final Docked Energy -7.40 kcal/mol = (l) + (2)] USER USER (1) Final Intermolecular Energy -7.56 kcal/mol
35 USER (2) Final Internal Energy of Ligand +0.16 kcal/mol USER (3) Torsional Free Energy +0.00e+00 kcal/mol USER USER USER DPF = ben.m-kollxnolp.LGA.dpf 0 USER NEWDPF move ben. dbq USER NE DPF about -7.739400 22.063000 66.805000 USER NEWDPF tranO -8.828040 23.148807 67.684197 USER NEWDPF guatO -0.792628 0.598277 0.117493 -104.302833 USER NEWDPF ndihe 2 5 USER NEWDPF diheO -66.18 124.84 USER USER X y z vdW Elec q RMS ATOM 1 C7 BEN -8.683 23.802 68.273 -0.96 -1.09 +0 .773 2.80. ATOM 2 N2 BEN -7.881 23.572 69.300 -0.49 +0.79 -0 .764 2.80.
50 ATOM 3 H21 BEN -7.298 22.724 69.317 -0.17 -0.21 +0 .417 2.80: ATOM 4 H22 BEN -7.842 24.240 70.083 -0.02 -0.53 +0 .402 2.80: ATOM 5 Nl BEN -9.416 24.901 68.289 -0.55 +1.20 -0 .768 2.80: ATOM 6 Hll BEN 10.070 25.072 69.068 +0.06 -0.77 +0 .407 2.80: ATOM 7 HI2 BEN 1 -9 335 25 586 67 525 -0.05 -0 77 +0.416 2 808
ATOM 8 Al BEN 1 -8 867 22 822 67 305 -0.73 +0 33 -0.259 2 808
ATOM 9 A6 BEN 1 -10 109 22 231 67 149 -0.66 -0 08 +0.073 2 808
ATOM 10 A2 BEN 1 -7 820 22 447 66 506 -0.64 -0 11 +0.086 2 808
ATOM 11 A5 BEN 1 -10 318 21 242 66 191 -0.62 -0 02 +0.027 2 808
ATOM 12 A4 BEN 1 -9 257 20 843 65 375 -0.60 -0 16 +0.171 2 808
ATOM 13 A3 BEN 1 -8 002 21 453 65 537 -0.69 -0 02 +0.020 2 808
TER
ENDMDL
The superimposed view of the 200 docked conformations is shown in figure 17. There are two closely spaced separate clusters
3.3.2 Leupeptin:
In the case of leupeptin we found one well populated cluster, and because this represent the most likely docking cluster we selected the lowest energy structure from this cluster. The clustering histogram:
CLUSTERING HISTOGRAM
I I I I I
Clus I Lowest | Run| Mean | Num | Histogram -ter | Docked | | Docked | in | Rankj Energy | | Energy | Clus | 5 10 15 20 25 30 35 J L I I .I I 11 -2011 | 185| -2011 | 1 |# 2| -1945 I 125 I -1806 | 2|## 31 -1883140 I -18131 2|## 4| -1840170 I -18401 1 |# 51 -18281 7 I -18281 1 |# 6| -18261 95 I -18261 1 |# 7| -18121100 I -1654 | -17981 15 I -17981 1 |# 91 -1792 j 127 | -16471 10 -1790 -1698 | 3|### 11 -1778 160 | -1744 2|## 12 -1777 38 | -1777 | 1 |# 13 -1777 3| -17771 1 |# 14 -1776 44 | -1656 | 3|### 15 -1747 158| -1711 2|## 16 -1743 148| -1743 1 |# 17 -1733 147 I -1642 4|#### 18 -1730 116| -1685 2|## 19 -1729 199| -1645 3|### 20 -1720 22 I -16831 3|### 21 -1706 109 I -1706 1 |# 22 -1686 176| -1657 3|### 23 -1678 139| -1678 1 |# 24 -1674 108| -1592 2|## 25 -1672 36 I -16191 4 |#### 26 -1671 14 I -16591 3|### 27 -1671 103 | -1671 1 |# 28 -1671 69 | -1470 | 2|## 29 -1669 20 | -16691 1 |# 30 -1669 53 | -16691 1 |# 31 -1657 102| -1657 1 |# 32 -1655 110| -1543 311 -13881 1 |# 59 | -13861 1 |# 162 | -13861 1 |# 126| -13821 1 |# 80 | -1381 | 1 |# 21 -13781 1 |# 76| -1377 | 1 |# 113| -13771 1 |# 113 ( -13771 1 |# 128| -13761 1 |# 91 -13731 1 |# 123| -13681 1 |# 142 | -1361 | 1 |# 178| -13571 1 |# 81 -13561 1 |# 43| -13551 1 |# 183 | -1351 | 1 |# 133| -13461 1 |# 190| -13451 1 |# 58 | -13401 1 |# 81 | -13271 1 |# 68 | -13141 1 |# 184 | -1274 | 1 |# 28 | -12541 1 |# _L _L
Number of multi-member conformational clusters found = 33, out of 200 runs.
The most likely docked conformation is the RUN 100. The coordinates of the 3D structure:
MODEL 100
USER Run = 100
USER Cluster Rank = 7
USER Number of conformations in this cluster = 14
USER
USER RMSD from reference structure = 69.370 A
USER
USER Estimated Free Energy of Binding -11.87 kcal/mol [=(1)+(31]
USER Estimated Inhibition Constant, Ki +1.99e-09 [Temperature = 298.15 K]
USER
USER Final Docked Energy -18.12 kcal/mol [=(l)+(2)]
USER
USER (1) Final Intermolecular Energy -17.16 kcal/mol
USER (2) Final Internal Energy of Ligand -0.95 kcal/mol
USER (3) Torsional Free Energy +5.29 kcal/mol
USER
USER
USER DPF = leupeptin.m-kollxnoip.veron. LGA. άpf
USER NEWDPF move leupeptmveron.pdbq
USER NEWDPF about -0.505900 0.495000 0.067600
USER NEWDPF tranO -10.274409 18.561162 69.988136
USER NEWDPF quatO -0.001747 0.458661 0.888610 -86.011508
USER NEWDPF ndihe 19
USER NEWDPF diheO 131.13 76.21 -46.43 -30.41 47.91 40.08 -47.79 -6 2.79 -56.83
177.71 65.72 -18.51 -6.48 -29.65 59.73 29.17 -38.92 -23.03
USER
USER x y z vdW Elec q RMS
ATOM CA LEU A -11.568 16.774 68.919 -0.48 -0.07 +0.185 69.370 ATOM 2 N LEU A 2 -11..573 16,.702 70.358 -0.25 +0.22 -0.523 69.370
ATOM 3 HN LEU A 2 -12. .456 16. .741 70 .814 +0 .10 -0 .11 +0 .318 69 .370
ATOM 4 C LEU A 1 -10. .415 16. .576 71, .101 -0 .51 -0. .16 +0, .354 69 .370
ATOM 5 O LEU A 1 -9. .320 16, .319 70, .566 -0, .08 +0. .13 -0, .391 69 .370
ATOM 6 CA LEU A 1 -10. .557 16, .897 72, .612 -0. .51 -0, .07 +0, .185 69 .370
ATOM 7 N LEU A 1 -11, .715 17, .722 72, .843 -0, .27 +0, .17 -0, .523 69 .370
ATOM 8 HN LEU A 1 -12. .503 17, .581 72. .254 +0, .10 -0, .10 +0, .319 69 .370
ATOM 9 C ACE A -11. .697 18, .758 73, .762 -0, .57 -0, .06 +0, .362 69 .370
ATOM 10 O ACE A -11. .053 19, .800 73, .524 -0, .14 +0, .01 -0, .401 69 .370
ATOM 11 CA ACE A -12. .469 18, .568 75, .044 -0, .49 -0, .01 +0, .107 69 .370
ATOM 12 CB LEU A 1 -10. .601 15. .553 73, .369 -0, .37 -0. .00 +0, .013 69 .370
ATOM 13 CG LEU A 1 -9. .344 15. .354 74, .205 -0, .50 +0, .00 -0. .001 69 .370
ATOM 14 CD1 LEU A 1 -9. .744 15. .091 75, .643 -0. .50 -0. .00 +0, .005 69 .370
ATOM 15 CD2 LEU A 1 -8. .481 14. .227 73, .674 -0. .60 -0, .01 +0, .025 69 .370
ATOM 16 CB LEU A 2 -12. .748 16, .032 68, .252 -0, .30 -0, .01 +0, .028 69 .370
ATOM 17 CG LEU A 2 -12. .276 14. .854 67, .412 -0, .44 +0. .00 -0, .006 69 .370
ATOM 18 CD1 LEU A 2 -13. .172 13. .657 67, .667 -0, .33 -0. .01 +0. .037 69, .370
ATOM 19 CD2 LEU A 2 -12. .264 15, .187 65, .934 -0, .53 -0, .01 +0, .012 69 .370
ATOM 20 C LEU A 2 -11. .590 18, .247 68, .439 -0, .51 -0. .16 +0, .352 69 .370
ATOM 21 O LEU A 2 -12. .232 19, .145 69, .024 -0, .11 +0, .24 -0, .426 69 .370
ATOM 22 N ARG A 3 -10. .821 18, .530 67, .328 -0, .34 +0, .18 -0, .508 69 .370
ATOM 23 HN ARG A 3 -9. .971 18, .028 67, .174 -0, .16 -0. .03 +0. .330 69 .370
ATOM 24 CA ARG A 3 -11. .358 19, .266 66. .211 -0. .61 -0, .05 +0, .110 69 .370
ATOM 25 CB ARG A 3 -10, .618 20, .583 65. .907 -0, .71 -0, .02 +0, .037 69 .370
ATOM 26 CG ARG A 3 -11, .276 21, .741 66. .626 -0, .77 -0, .06 +0, .078 69 .370
ATOM 27 CD ARG A 3 -10, .405 22, .992 66, .517 -0, .84 -0. .23 +0, .191 69 .370
ATOM 28 NE ARG A 3 -9. .911 23, .411 67, .815 -0, .57 +0. .63 -0. .455 69, .370
ATOM 29 CZ ARG A 3 -8, .576 23. .569 68, .105 -0, .93 -0. .65 +0. .474 69 .370
ATOM 30 HE ARG A 3 -10, .595 23, .620 68, .516 -0, .29 -0. .59 +0. .356 69, .370
ATOM 31 NH2 ARG A 3 -8, .195 23. .992 69. .362 -0, .52 +0. .70 -0. .544 69 .370
ATOM 32 HH2 ARG A 3 -8. .579 23. .573 70. .179 -0, .39 -0. .43 +0. .351 69. .370
ATOM 33 HH2 ARG A 3 -7, .528 24. .721 69. .475 -0, .26 -0. .65 +0. .349 69, .370
ATOM 34 NH1 ARG A 3 -7, .612 23, .309 67. .156 -0, .49 +0. .82 -0. .538 69. .370
ATOM 35 HH1 ARG A 3 -7. .750 23, .572 66, .206 -0, .47 -0. .84 +0. .351 69. .370
ATOM 36 HH1 ARG A 3 -6, .768 22. .842 67, .400 -0, .08 -0. .38 +0. .348 69. .370
ATOM 37 C ARG A 3 -11. .390 18. .458 64. .914 -0, .66 -0. .14 +0. .322 69, .370
ATOM 38 O ARG A 3 -12, .422 18. ,174 64. .314 -0, .13 +0. .10 -0. .284 69, .370
TER
ENDMDL
The superimposed view of the 200 docked conformations is shown in figure 18.
3.3.3 NPGB:
NPGB docked into two close clusters (1 and 2), we used the RUN 177 as the most likely docked conformation. CLUSTERING HISTOGRAM
I I I I I
Clus | Lowest | Run | Mean | Num | Histogram -ter j Docked j | Docked | in | Rank | Energy | | Energy | Clus \ 5 10 15 20 25 30 35 I I I I I - I • I 1 1 -13.451 1771 -13.39 | 61 21 -13.44 I 281 -13.34 | 77 3 \ -13.37 \ 72 | -73.24 | 5 |##### 4 j -73.36 j 100 | -73.271 9 \ll II II II II II II II II 5 | -13.36 | f 05 | -73.26 | 9 \ll II II II II II II II II 61 -73.31 1 53 I -73.23 | 13 7 \ -13.29 | 88 | -73.25 | 8 | ######## 8 | -73.75 | 708 | -73.75 | 7 |# 9 | -73.75 | 72 | -73.15 | 7 |# 70 | -73.05 | 727 | -73.051 7 |# 77 | -1Z86 | 231 -7Z86 | 7 |# 72 | -7Z77 | 35 | -7Z68 | 3 |### 73 | -1Z74 | 59 | -72.74 | 7 |# 74 | -72.67 | 773 | -72.61 1 7 |# 75 | -72.531 74 I -7Z53 | 7 |# 16 I -12.48 1 11 1 -12.46 | 3 |### 1 1 -12.36 1 871 -7Z36 | 1 |# 18 | -12.33 j 146 | -1Z33 | 1 1# 191 -12.13 | 123 | -12.02 \ 31### I I I l_l
Number of multi-member conformational clusters found = 10, out of 200 runs.
The most likely docked conformation is the RUN 177. The coordinates of the 3D structure:
MODEL 177
USER Run = 177
USER Cluster Rank = 1
USER Number of conformations in this cluster = 61
USER
USER RMSD from reference structure 70.012 A
USER
USER Estimated Free Energy of Binding -12.15 kcal/mol [=(l)+(3)]
USER Estimated Inhibition Constant, Ki +1.24e-09 [Temperature 298.15 K]
USER
USER Final Docked Energy -13.45 kcal/mol [=(l)+(2)]
USER
USER (1) Final Intermolecular Energy -13.70 kcal/mol
USER (2) Final Internal Energy of Ligand +0.25 kcal/mol
USER (3) Torsional Free Energy +1.56 kcal/mol
USER
USER
USER DPF = npgb.m-kollxnolp.LGA.dpf
USER NEWDPF move npgbveron .pdbq
USER NEWDPF about 1.154500 -0.111300 0.079300
USER NEWDPF tranO -9.638000 19.195219 65.019151
USER NEWDPF quatO -0.271760 0.343534 -0.898961 -79.249333
USER NEWDPF ndihe 7
USER NEWDPF diheO 98.42 -60.53 -80.53 -81.62 -13.01 113.12 126.32
USER USER X Y z vdW Elec q RMS
ATOM 1 A17 <1> 0 -10 263 19 766 64 887 -0 62 +0 15 -0 246 70 012
ATOM 2 A18 <1> 0 -8 881 19 775 64 908 -0 66 -0 10 +0 135 70 012
ATOM 3 A19 <1> 0 -10 989 20 800 65 453 -0 49 -0 09 +0 154 70 012
ATOM 4 A20 <1> 0 -8 216 20 829 65 507 -0 67 -0 06 +0 068 70 012
ATOM 5 A22 <1> 0 -10 329 21 856 66 049 -0 60 -0 07 +0 067 70 012
ATOM 6 A24 <1> 0 -8 946 21 859 66 074 -0 66 -0 25 +0 216 70 012
ATOM 7 C15 <1> 0 -11 034 18 662 64 259 -0 74 -0 49 +1 029 70 012
ATOM 8 016 <1> 0 -10 869 18 291 63 128 -0 27 +0 32 -0 591 70 012
ATOM 9 014 <1> 0 -11 933 18 142 65 120 -0 07 +0 31 -0 815 70 012
ATOM 10 A3 <1> 0 -11 693 17 428 66 298 -0 42 -0 16 +0 395 70 012
ATOM 11 A4 <1> 0 -11 412 16 077 66 349 -0 45 -0 04 +0 062 70 012
ATOM 12 A2 <1> 0 -11 761 18 196 67 447 -0 41 -0 01 +0 013 70 012
ATOM 13 A5 <1> 0 -11 195 15 493 67 582 -0 45 -0 08 +0 148 70 012
ATOM 14 A6 <1> 0 -11 263 16 257 68 723 -0 43 -0 10 +0 270 70 012
ATOM 15 Al <1> 0 -11 544 17 606 68 671 -0 41 -0 06 +0 145 70 012
ATOM 16 Nil <1> 0 -11 036 15 634 70 009 -0 27 -0 06 +0 181 70 012
ATOM 17 013 <1> 0 -9 905 15 750 70 508 -0 13 +0 13 -0 374 70 012
ATOM 18 012 <1> 0 -11 993 15 030 70 525 +0 08 +0 11 -0 377 70 012
ATOM 19 N27 <1> 0 -8 248 22 972 66 683 -0 40 +1 58 -1 001 70 012
ATOM 20 H28 <1> 0 -7 796 23 623 66 071 -0 45 -1 07 +0 409 70 012
ATOM 21 C29 <1> 0 -8 176 23 161 67 996 -0 93 -1 60 +1 353 70 012
ATOM 22 N33 <1> 0 -7 070 22 823 68 649 -0 52 +0 84 -0 945 70 012
ATOM 23 N30 <1> 0 -9 201 23 680 68 649 -0 59 +1 31 -0 946 70 012
ATOM 24 H31 <1> 0 -9 551 24 586 68 410 -0 12 -0 67 +0 429 70 012
ATOM 25 H32 <1> 0 -9 650 23 197 69 398 -0 70 -0 65 +0 406 70 012
ATOM 26 H34 <1> 0 -6 995 22 917 69 641 -0 46 -0 34 +0 408 70 012
ATOM 27 H35 <1> 0 -6 269 22 463 68 175 -0 30 -0 39 +0 407 70 012
TER
ENDMDL
The superimposed view of the 200 docked conformations is shown in figure 19.
Several properties may be obtained by analyzing the docking result files (*.dlg). Table 18 summarizes the main docking results.
Table 18
Based on the estimated free energy of binding, the inhibitors can be ranked. The strength of inhibitors are inversely proportional to free energy of binding, therefore the strongest inhibitor belongs to the lowest binding energy.
4. Conclusions
MASP-2 is a highly specific serine protease of the lectin pathway of the complement, that cleaves C2 andC4 protein substrates. The present invention described resolution of the 3D structure of the catalytic region (CCP2-SP) of MASP-2 by means of X-ray crystallography (see example 1 above). In this example use of the X-ray structure for in silico inhibitor design is validated. We measured the effect of nine small molecular weight inhibitors on the activity of MASP-2. The inhibitors were ranked according to their experimentally determined IC50 values, and three inhibitors were selected for in silico docking studies. The inhibitors were selected according to their IC50 values: 1.) a very strong inhibitor (NPGB; IC50=229 nM) 2.) a relatively strong inhibitor with an IC 0 value in the range of micro molar range (leupeptin; IC50=7,7μM) and 3.) a weak inhibitor (benzamidine; IC50=688 μM). We compared the IC50 values with the calculated Ki values of each inhibitors (see table 19).
Table 19
The results of the docking approach are in good agreement with the laboratory experimental. According to the in silico results, NPGB is the best inhibitor, having the smallest Ki value. For leupeptin, a little larger Ki was calculated, however the docking results still show a fairly good enzyme-inhibitor interaction. In the case of benzamidine, the docking procedure supports the experimental results indicating this inhibitor is not a very specific one of MASP-2 (K, value is three order of magnitude larger than that of NPGB). These results demonstrated that the MASP-2 crystal structure is suitable for in silico inhibitor screening and-design.
Example 7
Table 4 comprises the structure coordinates of a zymogen MASP-2 with the primary sequence aa 296 to 686 of SEQ ID 1 , wherein aa R444 has been mutated to Q.
List of references
Ambrus.G., Gal, P., Kojima.M., Szilagyi.K., Balczer.J., Antal.J., Graf.L, Laich.A., MoffatB.E., Schwaeble.W., Sim.R.B. and Zavodszky.P. (2003) Natural substrates and inhibitors of mannan-binding lectin-associated serine protease 1 and 2: A study on recombinant catalytic fragments. J. Immunol., 170, 1374-1382.
Arlaud.G.J., Colomb.M.G. and Gagnon.J. (1987) A functional model of the human C1 complex. Immunol. Today, 8, 106-111.
Budayova-Spano, M., Lacroix.M., Thielens.N.M., Arlaud.G.J., Fontecilla-Camps.J.C. and Gaboriaud, C. (2002a) The crystal structure of the zymogen catalytic domain of complement protease C1r reveals that a disruptive mechanical stress is required to trigger activation of the C1 complex. EMBO J., 21, 231-239.
Budayova-Spano.M., Grabarse.W., Thielens.N.M., Hillen.H., Lacroix.M., Schmidt.M., Fontecilla-Camps.J.C, Arlaud.G.J. and Gaboriaud, C. (2002b) Monomeric structures of the zymogen and active catalytic domain of complement protease C1r: further insights into the C1 activation mechanism. Structure, 10, 1509-1519.
Chen,C.-B., and Wallis, R. (2001) Stoichiometry of complexes between mannose-binding protein and its associated serine proteases: Defining functional units for complement activation. J. Biol. Chem., 276, 25894-25902.
CCP4 (1994) The CCP4 Suite: Programs for Protein Crystallography. Acta Crystallogr., D50, 760-763.
Dahl.M.R., Thiel, S., Matsushita, M., Fujita.T., Willis.A.C, Christensen.T., Vorup-Jensen.T., and Jensenius.J.C. (2001) MASP-3 and its association with distinct complexes of the mannan-binding lectin complement activation pathway. Immunity, 15, 127-135.
Dang.Q.D. and Di Cera.E. (1996) Residue 225 determines the Na+-induced allosteric regulation of catalytic activity in serine proteases. Proc. Natl. Acad. Sci. USA, 93, 10653-10656. D.J. Diller, K.M. Merz, High throughput docking for library design and library prioritization, Proteins Struct. Funct. Genet. 43 (2001)
113-124 .
Evans.P.R. (1993) Data reduction. In Sawyer.L., Isaacs.N., and Bailey.S. (eds.), Proceedings of the CCP4 Study Weekend: 'Data Collection and Processing'. 29-30 January 1993. SERC Daresbury Laboratory, Daresbury, UK. pp. 114-122.
Feinberg, H., Uitdehaag.J.C.M., Davies.J.M., Wallis, R., Drickamer.K. and Weis.W.I. (2003) Crystal structure of the CUB1-EGF-CUB2 region of mannose-binding protein associated serine protease-2. EMBO J., 22, 2348-2359.
French, G.S. and Wilson, K.S. (1978) On the treatment of negative intensity observations. Acta. Crystallogr., A34, 517-525.
Gaboriaud.C., RossiN., Bally.l., Arlaud.G.J. and Fontecilla-Camps.J.C. (2000) Crystal structure of the catalytic domain of human complement C1s: a serine protease with a handle. EMBO J., 19, 1755-1765.
Gal, P. and Ambrus, G. (2001) Structure and function of complement activating enzyme complexes: C1 and MBL-MASPs. Curr. Prot. Pept. Sci., 2, 43-59.
Gregory.L.A., Thielens.N.M., Arlaud.G.J., Fontecilla-Camps.J.C. and Gaboriaud, C. (2003) X-ray structure of the Ca2+-binding interaction domain of C1s: insights into the assembly of the C1 complex of complement. J. Biol. Chem., [Epub ahead of print] www.jbc.org
Guex.N. and Peitsch.M.C. (1997) SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18, 2714-2723.
Hajela.K., Kojima.M., Ambrus, G., Wong.N.K.H., Moffatt.B.E., Ferluga.J., Hajela.S., Gal, P. and Sim.R.B. (2002) The biological functions of MBL-associated serine proteases (MASPs). Immunobiol., 205, 467-475. Jones.T.A, Zou,J-Y., Cowan, S.W. and Kjeldgaard.M. (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr., A47, 110-119.
Kardos.J., Gal", P., Szilagyi.L., Thielens.N.M., Szilagyi.K., Lδrincz.Zs., Kulcsar.P., Graf.L., Arlaud.G.J. and Zavodszky.P. (2001) The role of the individual domains in the structure and function of the catalytic region of a modular serine protease, C1r. J. Immunol., 1 D( )(B) 67, 5202-5208.
Kraulis.P. (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946-950.
LamzinN.S. and Wilson, K.S. (1997) Automated refinement for protein crystallography. Methods Enzymol. , 277, 269-305.
Laskowski.R.A., MacArthur.M.W., Moss.D.S. and Thornton, J.M. (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr., 26, 283-291.
Lee,B. and Richards.F.M. (1971) The interpretation of protein structures: estimation of static accessibility. J.Mol.Biol., 55, 379-400.
Leslie.A.G.W. (1993) Autoindexing of rotation diffraction images and parameter refinement. In Sawyer, L., Isaacs.N., and Bailey.S. (eds.), Proceedings of the CCP4 Study Weekend: 'Data Collection and Processing'. 29-30 January 1993. SERC Daresbury Laboratory, Daresbury, UK. pp. 44-51.
Lόrincz QUincz.Zs., Gal, P., Dobό,J., Cseh,S., Szilagyi.K., Ambrus, G. and ZavodszkyP. (2000) The cleavage of two C1s subunits by a single active C1 r reveals substantial flexibility of the C1s-C1 r-C1 r-C1s tetramer in the C1 complex. J. Immunol., 165, 2048- 2051.
Lu J., Thiel.S., Wiedermann.H., Timpl.R. and Reid.K.B.M. (1990) Binding of the pentamer/hexamer forms of mannan binding protein to zymosan activates the proenzyme C1 r2-C1s2 complex of the classical pathway, without involvement of C1q. J. Immunol., 144, 2287-2294. Matsushita.M. and Fujita.T. (1995) Cleavage of the third component of complement (C3) by mannose-binding protein-associated serine protease (MASP) with subsequent complement activation. Immunobiol., 194, 443-448.
Matsushita, M., Thiel, S., Jensenius.J.C, Terai.l. and FujitaT. (2000) Proteolytic activities of two types of mannose-binding lectin-associated serine protease. J. Immunol., 165, 2637-2642.
MerrittE.A. and Bacon, D.J. (1997) Raster3D photorealistic molecular graphics. Methods Enzymol., 277, 505-524.
Murshudov.G.N., Vagin.A.A. and Dodson.E.J. (1997) Refinement of macromolecular structures by the maximum-likelihood method Acta Crystallogr., D53, 240-255.
Nicholls.A., Sharp, K.A., and Honig.B. (1991) Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins: Struct. Funct. Genet. 11, 281-296.
Ohta.M., Okada.M., Yamashina . and Kawasaki.T. (1990) The mechanism of carbohydrate-mediated complement activation by the serum mannan-binding protein. J. Biol. Chem., 265, 1980-1984.
Perkins, S.J., Nealis.A.S. and Sim.R.B. (1990) Molecular modeling of human complement component C4 and its fragments by X-ray and neutron solution scattering. Biochemistry, 29, 1167-1175.
Perona.J.J. and Craik.C.S. (1997) Evolutionary divergence of substrate specificity within the chymotrypsin-like serine protease fold. J. Biol. Chem., 272, 29987-29990.
Read, R.J. (2001) Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr., D57, 1373-1382.
RossiN., Bally.l., Thielens.N.M., Esser.A.F. and Arlaud.G.J. (1998) Baculovirus-mediated expression of truncated modular fragments from the catalytic region of human complement serine protease C1s. J. Biol. Chem., 273, 1232-1239. RossiN., Cseh.S., Bally.l., Thielens.N.M., Jensenius.J.C. and Arlaud.G.J. (2001) Substrate specificities of recombinant mannan-binding lectin-associated serine proteases-1 and -2. J. Biol. Chem., 276, 40880-40887.
Schechter.l. and Berger.A. (1967) On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun., 27, 157-162.
Schumaker.V.N., Zavodszky,P. and Poon.P.H. (1987) Activation of the first component of complement. Annu. Rev. Immunol., 5, 21-42.
Schwaeble.W., Dahl.M.R., Thiel, S., Stover.C. and Jensenius.J.C. (2002) The mannan- binding lectin-associated serine proteases (MASPs) and MAp19: four components of the lectin pathway activation complex encoded by two genes. Immunbioi, 205, 455- 466.
Sim.R.B. and Laich.A. (2000) Serine proteases of the complement system. Biochem. Soc. Trans., 28, 545-550.
Stover.C. M., Thiel, S., Thelen.M., Lynch, N.J., Vorup-Jensen.T., Jensenius.J.C. and Schwaeble.W. (1999) Two constituents of the initiation complex of the mannan- binding lectin activation pathway of complement are encoded by a single structural gene. J. Immunol., 162, 3481-3490.
Szakonyi.G., Guthridge.J.M., Li,D., Young.K., HolersN.M. and Chen.X.S. (2001) Structure of complement receptor 2 in complex with its C3d ligand. Science, 292, 1725-1728.
Takahashi.M., Endo.Y., Fujita.T. and Matsushita.M. (1999) A truncated form of mannose- binding lectin-associated serine protease MASP-2 expressed by alternative polyadenylation is a component of the lectin complement pathway. Int. Immunol., 11, 859-863.
Thiel, S., Vorup-Jensen.T., Stover.C.M., Schwaeble.W., Laursen.S.B., Poulsen.K., Willis.A.C, Eggleton.P., Hansen.S., Holmskov.U., Reid.K.B.M. and Jensenius.J.C. (1997) A second serine protease associated with mannan-binding lectin that activates complement. Nature, 386, 506-510.
Thielens.M.N., Cseh.S., Thiel, S., Vorup-Jensen.T., Rossi.V., Jensenius.J.C. and Arlaud.G.J. (2001) Interaction properties of human mannan-binding lectin (MBL)- associated serine protease-1 and -2, MBL-associated protein 19, and MBL. J. Immunol. 166, 5068-5077.
Turner.M.W. (1996) Mannose-binding lectin: the pluripotent molecule of the innate immune system. Immunol. Today, 17, 532-540.
Tseng, Y., Phillips, M.L. and SchumakerN.N. (1997) Probing the structure of C1 with an anti-C1s monoclonal antibody: the possible existence of two forms of C1 in solution. Mol. Immunol., 34, 671-679.
van den Elsen.J.M.H., Martin.A., Wong.V., Clemenza.L., Rose.D.R. and Isenman.D.E. (2002) X-ray crystal structure of the C4d fragment of human complement component C4. J. Mol. Biol., 322, 1103-1115.
Volanakis.J.E. and Arlaud.G.J. (1998) Complement enzymes. In Frank.M. and Volanakis.J.E. (eds.), The human Complement System in Health and Disease. Marcel-Dekker, New York, U.S.A., pp. 49-81.
Vorup-Jensen,T., Petersen.S.V., Hansen,A.G., Poulsen.K., Schwaeble.W., Sim.R.B., Reid.K.B.M., Davis.S.J., Thiel, S. and Jensenius.J.C. (2000) Distinct pathways of mannan-binding lectin (MBL)- and C1 -complex autoactivation revealed by reconstitution of MBL with recombinant MBL-associated serine protease-2. J. Immunol., 165, 2093-2100.
Wallis.W. (2002) Structural and functional aspects of complement activation by mannose- binding protein. Immunbiol., 205, 433-445.
Winn.M., Isupov.M. and Murshudov.G.N. (2001) Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Cryst. D57, 122-33. Wong.N.K.H., Kojima.M., Dobό.J., Ambrus.G. and Sim.R.B. (1999) Activities of the MBL- associated serine proteases (MASPs) and their regulation by natural inhibitors. Mol. Immunol., 36, 853-861.
CM. Murrary, S.J. Cato, Design of libraries to explore receptor sites, J. Chem. Inf. Comput. Sci. 39 (1999) 46-50.
J.S. Mason, I. Morize, I.R. Menard, D.L. Cheney, C. Hulme, R.F. Labaudiniere, New 4-point pharmacophore method for molecular similarity and diversity applications: overview of the method and applications, including a novel approach to the design of combinatorial libraries containing privileged substructures, J. Med. Chem. 42 (1999) 3251-3264.
H.A. Carlson, K.M. Masukawa, K. Rubins, F.D. Bushman, W.L Jorgensen, R.D. Lins, J.M. Briggs, J.A. McCammon, Developing a dynamic pharmacophore model for HIV-1 integrase, J. Med. Chem. 43 (2000) 2100-2114.
H.-J. Boehm, M. Boehringer, D. Bur, H. Gmuender, W. Huber, W.
Klaus, D. Kostrewa, H. Kuehne, T. Luebbers, N. Meunier-Keller, F.
Mueller, Novel inhibitors of DNA gyrase: 3D structure based biased needle screening, hit validation by biophysical methods, and 3D guided optimization. A promising alternative to random screening, J. Med. Chem. 43 (2000) 2664-2674.
G.P. Brady Jr., P.F.W. Stouten, Fast prediction and visualization of protein binding pockets with PASS, J. Comput.-Aided Mol. Des. 14 (2000) 383^101. Table 3
1Q X
TITLE CRYSTAL STRUCTURE OF THE CATALYTIC REGION OF HUMAN MASP-2
COMPND MOL_ID: 1;
COMPND 2 MOLECULE: MANNAN-BINDING LECTIN SERINE PROTEASE 2;
COMPND 3 CHAIN: A, B;
COMPND 4 FRAGMENT: CCP2-SP;
COMPND 5 SYNONYM: MANNOSE-BINDING PROTEIN ASSOCIATED SERINE
COMPND 6 PROTEASE 2, MASP-2, MBL-ASSOCIATED SERINE PROTEASE 2;
COMPND 7 EC: 3.4.21.-;
COMPND 8 ENGINEERED: YES
SOURCE MOL_ID: 1;
SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS;
SOURCE 3 ORGANISM_COMMON: HUMAN;
SOURCE 4 GENE: MASP2 ,-
SOURCE 5 EXPRESSION_SYSTEM: ESCHERICHIA COLI ;
SOURCE 6 EXPRESSION_SYSTEM_COMMON: BACTERIA;
SOURCE 7 EXPRESSION_SYSTEM_STRAIN: BL21-DE3;
SOURCE 8 EXPRESSION_SYSTEM_VECTOR_TYPE : PLASMID,-
SOURCE 9 EXPRESSION_SYSTEM_PLASMID: PET-17B
KEYWDS COMPLEMENT, SERINE PROTEASE, MODULAR STRUCTURE, HINGE
KEYWDS 2 BENDING, AUTOACTIVATION
EXPDTA X-RAY DIFFRACTION
AUTHOR V. HARMAT, P.GAL, J.KARDOS.K. SZILAGYI, G.AMBRUS, G.NARAY-SZABO,
AUTHOR 2 P.ZAVODSZKY RNL AUTH V. HARMA , P . GAL , J . KARDOS , K . SZILAGYI , G .AMBRUS ,
JRNL AUTH G .NARAY-SZABO, P . ZAVODSZKY
JRNL TITL CRYSTAL STRUCTURE OF THE CATALYTIC REGION OF HUMAN
JRNL TITL MANNOSE-BINDING LECTIN-ASSOCIATED SERINE PROTEASE-2
JRNL REF TO BE PUBLISHED
JRNL REFN
REMARK
REMARK REFERENCE 1
REMARK AUTH G .AMBRUS , P . GA , M. KOJIMA, K. SZILAGYI , J. BALCZER,
REMARK AUTH 2 J.ANTAL, L.GRAF, A. LAICH, B . E .MOFFAT, . SCH AELBE,
REMARK AUTH 3 R.B.ΞIM,P.ZVODSZKY
REMARK TITL NATURAL SUBSTRATES AND INHIBITORS OF
REMARK TITL 2 MANNAN-BINDING LECTIN-ASSOCIATED SERINE PROTEASE 1
REMARK TITL 3 AND 2: A STUDY ON RECOMBINANT CATALYTIC FRAGMENTS
REMARK REF J.IMMUNOL. V. 170 1374 2003
REMARK REFN ASTM JOIMA3 US ISSN 0022-1767
REMARK REFERENCE 2
REMARK AUTH C.GABORIAUD, V.ROSSI, I.BALLY, G.J.ARLAUD,
REMARK AUTH 2 J.C.FONTECILLA-CAMPS
REMARK TITL CRYSTAL STRUCTURE OF THE CATALYTIC DOMAIN OF HUMAN
REMARK TITL 2 COMPLEMENT CIS: A SERINE PROTEASE WITH A HANDLE
REMARK REF EMBO J. V. 19 1755 2000
REMARK REFN ASTM EKJODG UK ISSN 0261-4189
REMARK
REMARK RESOLUTION. 2.23 ANGSTROMS.
REMARK
REMARK REFINEMENT.
REMARK PROGRAM REFMAC 5.1.24
REMARK AUTHORS MURSHUDOV, VAGIN, DODSON
REMARK
REMARK REFINEMENT TARGET : MAXIMUM LIKELIHOOD
REMARK
REMARK DATA USED IN REFINEMENT.
REMARK RESOLUTION RANGE HIGH (ANGSTROMS) 2.23
REMARK RESOLUTION RANGE LOW (ANGSTROMS) 50.64
REMARK DATA CUTOFF ( SIGMA (F) ) 0.000
REMARK COMPLETENESS FOR RANGE (%) 94.8
REMARK NUMBER OF REFLECTIONS 25664
REMARK
REMARK FIT TO DATA USED IN REFINEMENT.
REMARK CROSS-VALIDATION METHOD THROUGHOUT
REMARK FREE R VALUE TEST SET SELECTION RANDOM
REMARK R VALUE (WORKING + TEST SET) 0.176 REMARK R VALUE (WORKING SET) 0.174 REMARK FREE R VALUE 0.224 REMARK FREE R VALUE TEST SET SIZE (%) 5.000 REMARK FREE R VALUE TEST SET COUNT 1356 REMARK REMARK FIT IN THE HIGHEST RESOLUTION BIN. REMARK TOTAL NUMBER OF BINS USED 20 REMARK BIN RESOLUTION RANGE HIGH 2.23 REMARK BIN RESOLUTION RANGE LOW 2.29 REMARK REFLECTION IN BIN (WORKING SET) 1555 REMARK BIN R VALUE (WORKING SET) 0.2330 REMARK BIN FREE R VALUE SET COUNT 84 REMARK BIN FREE R VALUE 0.2730 REMARK REMARK NUMBER OF NON-HYDROGEN ATOMS USED IN REFINEMENT. REMARK ALL ATOMS : 5232 REMARK REMARK B VALUES. REMARK FROM WILSON PLOT (A**2) 23.90 REMARK MEAN B VALUE (OVERALL, A**2) 18.11 REMARK OVERALL ANISOTROPIC B VALUE. REMARK Bll (A**2) -0.46000 REMARK B22 (A**2) -0.70000 REMARK B33 (A**2) 1.29000 REMARK B12 <A**2) 0.18000 REMARK B13 (A**2) 0.19000 REMARK B23 (A**2) -0.26000 REMARK REMARK ESTIMATED OVERALL COORDINATE ERROR. REMARK ESU BASED ON R VALUE (A) 0.415 REMARK ESU BASED ON FREE R VALUE (A) 0.230 REMARK ESU BASED ON MAXIMUM LIKELIHOOD (A) 0.166 REMARK ESU FOR B VALUES BASED ON MAXIMUM LIKELIHOOD (A**2) 6.758 REMARK REMARK CORRELATION COEFFICIENTS . REMARK CORRELATION COEFFICIENT FO-FC .945 REMARK CORRELATION COEFFICIENT FO-FC FREE .910 REMARK REMARK RMS DEVIATIONS FROM IDEAL VALUES COUNT RMS WEIGHT REMARK BOND LENGTHS REFINED ATOMS (A) 4994 0.006 0.021 REMARK BOND LENGTHS OTHERS (A) NULL NULL NULL REMARK BOND ANGLES REFINED ATOMS (DEGREES) 6789 0.904 1.949 REMARK BOND ANGLES OTHERS (DEGREES) NULL NULL NULL REMARK TORSION ANGLES, PERIOD 1 (DEGREES) 631 5.139 5.000 REMARK TORSION ANGLES, PERIOD 2 (DEGREES) NULL NULL NULL REMARK TORSION ANGLES, PERIOD 3 (DEGREES) NULL NULL NULL REMARK TORSION ANGLES, PERIOD 4 (DEGREES) NULL NULL NULL REMARK CHIRAL-CENTER RESTRAINTS (A**3) 729 0.058 0.200 REMARK GENERAL PLANES REFINED ATOMS (A) 3826 0.003 0.020 REMARK GENERAL PLANES OTHERS (A) NULL NULL NULL REMARK NON-BONDED CONTACTS REFINED ATOMS (A) 2252 0.218 0.300 REMARK NON-BONDED CONTACTS OTHERS (A) NULL NULL NULL REMARK NON-BONDED TORSION REFINED ATOMS (A) NULL NULL NULL REMARK NON-BONDED TORSION OTHERS (A) NULL NULL NULL REMARK H-BOND (X...Y) REFINED ATOMS (A) 554 0.199 0.500 REMARK H-BOND (X.. -Y) OTHERS (A) NULL NULL NULL REMARK POTENTIAL METAL-ION REFINED ATOMS (A) NULL NULL NULL REMARK POTENTIAL METAL-ION OTHERS (A) NULL NULL NULL REMARK SYMMETRY VDW REFINED ATOMS (A) 100 0.266 0.300 REMARK SYMMETRY VDW OTHERS (A) NULL NULL NULL REMARK SYMMETRY H-BOND REFINED ATOMS (A) 45 0.191 0.500 REMARK SYMMETRY H-BOND OTHERS (A) NULL NULL NULL REMARK REMARK ISOTROPIC THERMAL FACTOR RESTRAINTS. COUNT RMS WEIGHT REMARK MAIN-CHAIN BOND REFINED ATOMS (A**2) 3137 1.365 2.000 REMARK MAIN-CHAIN ANGLE REFINED ATOMS (A**2) 5017 2.213 3.000 REMARK SIDE-CHAIN BOND REFINED ATOMS (A**2) 1857 1.593 2.000 REMARK SIDE-CHAIN ANGLE REFINED ATOMS (A**2) 1772 2.305 3.000 REMARK REMARK ANISOTROPIC THERMAL FACTOR RESTRAINTS. COUNT RMS WEIGHT REMARK RIGID-BOND RESTRAINTS (A**2) NULL NULL NULL REMARK SPHERICITY; FREE ATOMS (A**2) NULL NULL NULL REMARK SPHERICITY; BONDED ATOMS (A**2) NULL NULL NULL REMARK 3
REMARK 3 NCS RESTRAINTS STATISTICS
REMARK 3 NUMBER OF DIFFERENT NCS GROUPS : 1
REMARK 3
REMARK 3 NCS GROUP NUMBER : 1
REMARK 3 CHAIN NAMES A B
REMARK 3 NUMBER OF COMPONENTS NCS GROUP : 8
REMARK 3 COMPONENT C SSSEQI TO C SSSEQI CODE
REMARK 3 1 A 434 A 438 1
REMARK 3 1 B 434 B 438 1
REMARK 3 2 A 445 A 490 1
REMARK 3 2 B 445 B 490 1
REMARK 3 3 A 492 A 542 1
REMARK 3 3 B 492 B 542 1
REMARK 3 4 A 544 A 554 1
REMARK 3 4 B 544 B 554 1
REMARK 3 5 A 557 A 596 1
REMARK 3 5 B 557 B 596 1
REMARK 3 6 A 598 A 602 1
REMARK 3 6 B 598 B 602 1
REMARK 3 7 A 605 A 629 1
REMARK 3 7 B 605 B 629 1
REMARK 3 8 A 631 A 686 1
REMARK 3 8 B 631 B 686 1
REMARK 3 GROUP CHAIN COUNT RMS WE
REMARK 3 TIGHT POSITIONAL 1 A (A): 1819 ; 0.04 ; 0 05
REMARK 3 TIGHT THERMAL 1 A (A**2) : 1819 ; 0.06 ; 00.50
REMARK 3
REMARK 3 TLS DETAILS
REMARK 3 NUMBER OF TLS GROUPS 6
REMARK 3
REMARK 3 TLS GROUP : 1
REMARK 3 NUMBER OF COMPONENTS GROUP : 1
REMARK 3 COMPONENTS C SSSEQI TO C SSSEQI
REMARK 3 RESIDUE RANGE : A 434 A 686
REMARK 3 ORIGIN FOR THE GROUP (A): -6.0830 15.2490 56.6890
REMARK 3 T TENSOR
REMARK 3 Til: 0.2266 T22: 0.2474
REMARK 3 T33: 0.2307 T12: -0.0085
REMARK 3 T13: 0.0065 T23: 0.0159
REMARK 3 L TENSOR
REMARK 3 Lll: 1.0322 L22: 1.1034
REMARK 3 L33: 1.2303 L12: -0.2737
REMARK 3 L13: -0.1007 L23: 0.0994
REMARK 3 S TENSOR
REMARK 3 Sll: 0.0105 S12: -0.0249 S13 0.0365
REMARK 3 S21: -0.0092 S22: 0.0125 S23 0.0121
REMARK 3 S31: -0.0439 S32: 0.0395 S33 -0.0229
REMARK 3
REMARK 3 TLS GROUP : 2
REMARK 3 NUMBER OF COMPONENTS GROUP : 1
REMARK 3 COMPONENTS C SSSEQI TO C : SSSEQI
REMARK 3 RESIDUE RANGE : B 434 I 5 686
REMARK 3 ORIGIN FOR THE GROUP (A): -6.151C ) -18.3520 92.9570
REMARK 3 T TENSOR
REMARK 3 Til: 0.2303 T22: 0.2451
REMARK 3 T33: 0.2225 T12: -0.0156
REMARK 3 T13: -0.0084 T23: 0.0020
REMARK 3 L TENSOR
REMARK 3 Lll: 1.1665 L22: 0.9940
REMARK 3 L33: 1.1194 L12: 0.1304
REMARK 3 L13: -0.0553 L23: 0.0097
REMARK 3 S TENSOR
REMARK 3 Sll: 0.0063 S12: 0.0044 S13 0.0229
REMARK 3 S21: 0.0109 S22: 0.0129 S23 0.0118
REMARK 3 S31: 0.0350 S32: 0.0336 S33 -0.0192
REMARK 3
REMARK 3 TLS GROUP : 3
REMARK 3 NUMBER OF COMPONENTS GROUP : 1
REMARK 3 COMPONENTS C SSSEQI TO C : SSSEQI
REMARK 3 RESIDUE RANGE : A 405 1i 428
REMARK 3 ORIGIN FOR THE GROUP A): 12.003C ) -8.0150 31.0510
REMARK 3 T TENSOR REMARK 3 Til: 0.3863 T22 0.1237
REMARK 3 T33: 0.2793 T12 0.1222
REMARK 3 T13: 0.0281 T23 0.0495
REMARK 3 L TENSOR
REMARK 3 Lll: 4.1175 L22 23.8488
REMARK 3 L33: 22.7842 L12 -7.5125
REMARK 3 L13: 0.6778 L23 0.0715
REMARK 3 S TENSOR
REMARK 3 Sll: 0.2186 S12 -0.4958 S13: 0.4766
REMARK 3 S21: -0.2423 S22 -0.0865 S23-. -2.4778
REMARK 3 S31: 0.9787 S32 0.4213 S33: -0.1320
REMARK 3
REMARK 3 TLS GROUP : 4
REMARK 3 NUMBER OF COMPONENTS GROUP : 1
REMARK 3 COMPONENTS C SSSEQI TO C SSSEQI
REMARK 3 RESIDUE RANGE : B 405 B 428
REMARK 3 ORIGIN FOR THE GROUP (A): 8.1990 4.3070 119 8090
REMARK 3 T TENSOR
REMARK 3 Til: 0.2301 T22 0.2582
REMARK 3 T33: 0.2179 T12 -0.0879
REMARK 3 T13: -0.0087 T23 0.0089
REMARK 3 L TENSOR
REMARK 3 Lll: 15.1522 L22 128.1602
REMARK 3 L33: 47.0754 L12 25.3254
REMARK 3 L13: 0.9925 L23 27.5758
REMARK 3 S TENSOR
REMARK 3 Sll: 0.7151 S12 0.5356 S13: 0.2313
REMARK 3 S21: 1.0003 S22 -0.4254 S23: -2.9066
REMARK 3 S31: -0.7635 S32 1.7232 S33: -0.2897
REMARK 3
REMARK 3 TLS GROUP : 5
REMARK 3 NUMBER OF COMPONENT. 3 GROUP : 2
REMARK 3 COMPONENTS C SSSEQI TO C SSSEQI
REMARK 3 RESIDUE RANGE .- A 362 A 404
REMARK 3 RESIDUE RANGE : A 429 A 431
REMARK 3 ORIGIN FOR THE GROUI » (A) : 4.9190 -3.7720 26 5950
REMARK 3 T TENSOR
REMARK 3 Til: 0.5095 T22 0.0908
REMARK 3 T33: 0.0210 T12 0.0379
REMARK 3 T13: 0.0276 T23 -0.0202
REMARK 3 L TENSOR
REMARK 3 Lll: 4.1952 L22 11.0052
REMARK 3 L33: 14.4058 L12 -3.9835
REMARK 3 L13: -3.9060 L23 7.9041
REMARK 3 S TENSOR
REMARK 3 Sll: 0.3152 S12 -0.0332 S13: 0.0689
REMARK 3 Ξ21: -0.8435 S22 -0.3815 S23: -0.0240
REMARK 3 S31: 0.0836 S32 -0.4428 S33: 0.0662
REMARK 3
REMARK 3 TLS GROUP : 6
REMARK 3 NUMBER OF COMPONENTS 3 GROUP : 2
REMARK 3 COMPONENTS C SSSEQI TO C SSSEQI
REMARK 3 RESIDUE RANGE : B 366 B 404
REMARK 3 RESIDUE RANGE : B 429 B 431
REMARK 3 ORIGIN FOR THE GROUI 3 (A) : 1.4060 -1.5390 122 9040
REMARK 3 T TENSOR
REMARK 3 Til: 0.7235 T22 0.3939
REMARK 3 T33: 0.0728 T12 -0.2029
REMARK 3 T13: -0.0328 T23 -0.1397
REMARK 3 L TENSOR
REMARK 3 Lll: 0.7816 L22 23.9947
REMARK 3 L33: 16.5612 L12 2.5428
REMARK 3 L13-. 0.1409 L23 6.2470
REMARK 3 S TENSOR
REMARK 3 Sll: 0.4456 S12 -0.3780 S13: -0.0219
REMARK 3 S21: 2.1960 S22 -0.5222 S23: 0.1685
REMARK 3 S31: -1.4606 S32 0.7013 S33: 0.0767
REMARK 3
REMARK 3 BULK SOLVENT MODELLINC
REMARK 3 METHOD USED : BABINE" [ MODEL WITH MASK
REMARK 3 PARAMETERS FOR MASK C :ALCULATION
REMARK 3 VDW PROBE RADIUS 1.40 REMARK 3 ION PROBE RADIUS 0.80
REMARK 3 SHRINKAGE RADIUS 0.80
REMARK 3
REMARK 3 OTHER REFINEMENT REMARKS: NULL
REMARK 4
REMARK 4 1Q3X COMPLIES WITH FORMAT V. 2.3, 09-JULY-1998
REMARK 100
REMARK 100 THIS ENTRY HAS BEEN PROCESSED BY RCSB ON 08-AUG-2003.
REMARK 100 THE RCSB ID CODE IS RCSB019884.
REMARK 200
REMARK 200 EXPERIMENTAL DETAILS
REMARK 200 EXPERIMENT TYPE X-RAY DIFFRACTION
REMARK 200 DATE OF DATA COLLECTION 14-DEC-2001
REMARK 200 TEMPERATURE (KELVIN) 100.0
REMARK 200 PH 7.50
REMARK 200 NUMBER OF CRYSTALS USED 1
REMARK 200
REMARK 200 SYNCHROTRON (Y/N) Y
REMARK 200 RADIATION SOURCE LURE
REMARK 200 BEAMLINE DW32
REMARK 200 X-RAY GENERATOR MODEL NULL
REMARK 200 MONOCHROMATIC OR LAUE (M/L) M
REMARK 200 WAVELENGTH OR RANGE (A) 0.9474
REMARK 200 MONOCHROMATOR NULL
REMARK 200 OPTICS MIRRORS
REMARK 200
REMARK 200 DETECTOR TYPE IMAGE PLATE
REMARK 200 DETECTOR MANUFACTURER MARRESEARCH
REMARK 200 INTENSITY-INTEGRATION SOFTWARE MOSFLM
REMARK 200 DATA SCALING SOFTWARE SCALA
REMARK 200
REMARK 200 NUMBER OF UNIQUE REFLECTIONS 27022
REMARK 200 RESOLUTION RANGE HIGH (A) 2.230
REMARK 200 RESOLUTION RANGE LOW (A) 50.640
REMARK 200 REJECTION CRITERIA (SIGMA (I)) 0.000
REMARK 200
REMARK 200 OVERALL .
REMARK 200 COMPLETENESS FOR RANGE (%) 94.8
REMARK 200 DATA REDUNDANCY 1.800
REMARK 200 R MERGE (I) 0.08300
REMARK 200 R SYM (I) NULL
REMARK 200 <I/SIGMA(I)> FOR THE DATA SET 7.6000
REMARK 200
REMARK 200 IN THE HIGHEST RESOLUTION SHELL.
REMARK 200 HIGHEST RESOLUTION SHELL, RANGE HIGH (A) 2.23
REMARK 200 HIGHEST RESOLUTION SHELL, RANGE LOW (A) 2.29
REMARK 200 COMPLETENESS FOR SHELL (%)
REMARK 200 DATA REDUNDANCY IN SHELL
REMARK 200 R MERGE FOR SHELL (I)
REMARK 200 R SYM FOR SHELL (I)
REMARK 200 <I/SIGMA(I)> FOR SHELL
REMARK 200
REMARK 200 DIFFRACTION PROTOCOL: SINGLE WAVELENGTH
REMARK 200 METHOD USED TO DETERMINE THE STRUCTURE: MOLECULAR REPLACEMENT
REMARK 200 SOFTWARE USED: BEAST
REMARK 200 STARTING MODEL: PDB ENTRY 1ELV
REMARK 200
REMARK 200 REMARK: NULL
REMARK 280
REMARK 280 CRYSTAL
REMARK 280 SOLVENT CONTENT, VS (%): NULL
REMARK 280 MATTHEWS COEFFICIENT, VM (ANGSTROMS* *3 /DA) : NULL
REMARK 280
REMARK 280 CRYSTALLIZATION CONDITIONS: PEG 6000, SODIUM CHLORIDE,
REMARK 280 GLYCEROL, TRIS-HCL , PH 7.5 , VAPOR DIFFUSION, HANGING DROP,
REMARK 280 TEMPERATURE 293K, PH 7.50
REMARK 290
REMARK 290 CRYSTALLOGRAPHIC SYMMETRY
REMARK 290 SYMMETRY OPERATORS FOR SPACE GROUP: P 1
REMARK 290
REMARK 290 SYMOP SYMMETRY
REMARK 290 NNNMMM OPERATOR REMARK 290 1555 X,Y,Z REMARK 290 REMARK 290 WHERE NNN OPERATOR NUMBER REMARK 290 MMM TRANSLATION VECTOR REMARK 290 REMARK 290 CRYSTALLOGRAPHIC SYMMETRY TRANSFORMATIONS REMARK 290 THE FOLLOWING TRANSFORMATIONS OPERATE ON THE ATOM/HETATM REMARK 290 RECORDS IN THIS ENTRY TO PRODUCE CRYSTALLOGRAPHICALLY REMARK 290 RELATED MOLECULES.- REMARK 290 SMTRY1 1 1.000000 0.000000 - 0.000000 0.00000 REMARK 290 SMTRY2 1 0.000000 1.000000 0.000000 0.00000 REMARK 290 SMTRY3 1 0.000000 0.000000 1.000000 0.00000 REMARK 290 REMARK 290 REMARK: NULL REMARK 300 REMARK 300 BIOMOLECULE : 1 , 2 REMARK 300 THIS -ENTRY CONTAINS THE CRYSTALLOGRAPHIC ASYMMETRIC UNIT REMARK 300 WHICH CONSISTS OF 2 CHAIN (S) . SEE REMARK 350 FOR REMARK 300 INFORMATION ON GENERATING THE BIOLOGICAL MOLECULE (S) . REMARK 350 REMARK 350 GENERATING THE BIOMOLECULE REMARK 350 COORDINATES FOR A COMPLETE MULTIMER REPRESENTING THE KNOWN REMARK 350 BIOLOGICALLY SIGNIFICANT OLIGOMERIZATION STATE OF THE REMARK 350 MOLECULE CAN BE GENERATED BY APPLYING BIOMT TRANSFORMATIONS REMARK 350 GIVEN BELOW. BOTH NON-CRYSTALLOGRAPHIC AND REMARK 350 CRYSTALLOGRAPHIC OPERATIONS ARE GIVEN. REMARK 350 REMARK 350 BIOMOLECULE : 1 REMARK 350 APPLY THE FOLLOWING TO CHAINS: A REMARK 350 BIOMT1 1 1.000000 0.000000 0. .000000 0, .00000 REMARK 350 BIOMT2 1 0.000000 1.000000 0..000000 0..00000 REMARK 350 BIOMT3 1 0.000000 0.000000 1..000000 0..00000 REMARK 350 BIOMOLECULE: 2 REMARK 350 APPLY THE FOLLOWING TO CHAINS: B REMARK 350 BIOMT1 2 1.000000 0.000000 0. .000000 0. .00000 REMARK 350 BIOMT2 2 0.000000 1.000000 0..000000 0..00000 REMARK 350 BIOMT3 2 0.000000 0.000000 1..000000 0..00000 REMARK 465 REMARK 465 MISSING RESIDUES REMARK 465 THE FOLLOWING RESIDUES WERE NOT LOCATED IN THE REMARK 465 EXPERIMENT. (M=MODEL NUMBER; RES=RESIDUE NAME; C=CHAIN REMARK 465 IDENTIFIER; SSSEQ=SEQUENCE NUMBER; I=INSERTION CODE. ) REMARK 465 REMARK 465 M RES C SSSEQI REMARK 465 ALA A 359 REMARK 465 SER 360 REMARK 465 MET 361 REMARK 465 THR 441 REMARK 465. GLY 442 REMARK 465 GLY 443 REMARK 465 ARG 444 REMARK 465 ALA 359 REMARK 465 SER 360 REMARK 465 MET 361 REMARK 465 THR 362 REMARK 465 ILE 363 REMARK 465 VAL 364 REMARK 465 ASP 365 REMARK 465 GLU 413 REMARK 465 ALA 414 REMARK 465 ASP 415 REMARK 465 GLY 442 REMARK 465 GLY 443 REMARK 465 ARG 444 REMARK 470 REMARK 470 MISSING ATOM REMARK 470 THE FOLLOWING RESIDUES HAVE MISSING ATOMS (M=MODEL NUMBER; REMARK 470 RES=RESIDUE NAME; C=CHAIN IDENTIFIER; SSEQ=SEQUENCE NUMBER; REMARK 470 I=INSERTION CODE) : REMARK 470 M RES CSSEQI ATOMS REMARK 470 VAL A 364 CGI CG2 REMARK 470 GLU A 398 CG CD OE1 OE2 REMARK 470 LYS A 409 CG CD CE NZ
REMARK 470 SER A 421 OG
REMARK 470 LYS A 422 CE NZ
REMARK 470 THR A 440 OG1 CG2
REMARK 470 LYS A 556 CG CD CE NZ
REMARK 470 ILE B 380 CGI CG2 CD1
REMARK 470 VAL B 385 CGI CG2
REMARK 470 ' TTYYRR BB 338888 CCBB CCGG •. CCDD11 CCDD22 CE1 CE2 CZ
REMARK 470 TYR B 388 OH
REMARK 470 LYS B 389 CB CG CD CE NZ
REMARK 470 ALA B 390 CB
REMARK 470 VAL B 391 CB CGI CG2
REMARK 470 LYS B 409 CB CG CD CE NZ
REMARK 470 PHE B 417 CG CD1 CD2 CE1 CE2 CZ
REMARK 470 SER B 421 OG
REMARK 470 LYS B 422 CG CD CE NZ
REMARK 470 LYS B 425 CG CD CE NZ
REMARK 470 LYS B 556 CE NZ
REMARK 470 ARG B 609 CG CD NE CZ NH1 NH2
REMARK 500
REMARK 500 GEOMETRY AND STEREOCHEMISTRY
REMARK 500 SUBTOPIC: COVALENT BOND LENGTHS
REMARK 500
REMARK 500 THE STEREOCHEMICAL PARAMETERS OF THE FOLLOWING RESIDUES
REMARK 500 HAVE VALUES WHICH DEVIATE FROM EXPECTED VALUES BY MORE
REMARK 500 THAN 6*RMSD (M=MODEL NUMBER; RES=RESIDUE NAME; C=CHAIN
REMARK 500 IDENTIFIER; SSEQ=SEQUENCE NUMBER; I=INSERTION CODE) .
REMARK 500
REMARK 500 STANDARD TABLE:
REMARK 500 FORMAT: ( 10X, 13 , IX, 2 (A3 , IX, Al , 14 , l , IX, A4 , 3X) , F6.3 )
REMARK 500
REMARK 500 EXPECTED VALUES: ENGH AND HUBER, 1991
REMARK 500
REMARK 500 M RES CSSEQI ATM1 RES CSSEQI ATM2 DEVIATION
REMARK 500 MET A 499 SD MET A 499 CE -0.046
REMARK 500 ARG A 555 CG ARG A 555 CD 0.039
REMARK 500 MET A 562 SD MET A 562 CE 0.039
REMARK 500 MET A 586 SD MET A 586 CE -0.054
REMARK 500 ALA B 390 C VAL B 391 N 0.055
REMARK 500 MET B 499 SD MET B 499 CE -0.062
REMARK 500 MET B 586 SD MET B 586 CE -0.086
REMARK 500 ALA B 636 CA ALA B 636 CB 0.036
REMARK 500
REMARK 500 GEOMETRY AND STEREOCHEMISTRY
REMARK 500 SUBTOPIC: COVALENT BOND ANGLES
REMARK 500
REMARK 500 THE STEREOCHEMICAL PARAMETERS OF THE FOLLOWING RESIDUES
REMARK 500 HAVE VALUES WHICH DEVIATE FROM EXPECTED VALUES BY MORE
REMARK 500 THAN 6*RMSD (M=MODEL NUMBER; RES=REΞIDUE NAME; C=CHAIN
REMARK 500 IDENTIFIER; SSEQ=SEQUENCE NUMBER; I=INSΞRTION CODE) .
REMARK 500
REMARK 500 STANDARD TABLE:
REMARK 500 FORMAT: (10X, 13 , IX, A3 , IX, Al , 14 , Al , 3 (IX, A4 , 2X) , 12X, F5.1)
REMARK 500
REMARK 500 EXPECTED VALUES: ENGH AND HUBER, 1991
REMARK 500
REMARK 500 M RES CSSEQI ATM1 ATM2 ATM3
REMARK 500 THR B 549 OG1 - CB CG2 ANGL. DEV. = -7.1 DEGREES
REMARK 525
REMARK 525 SOLVENT
REMARK 525 THE FOLLOWING SOLVENT MOLECULES LIE FARTHER THAN EXPECTED
REMARK 525 FROM THE PROTEIN OR NUCLEIC ACID MOLECULE AND MAY BE
REMARK 525 ASSOCIATED WITH A SYMMETRY RELATED MOLECULE (M=MODEL
REMARK 525 NUMBER; RES=RESIDUE NAME; C=CHAIN IDENTIFIER; SSEQ=SEQUENCE
REMARK 525 NUMBER; I=INΞERTION CODE) :
REMARK 525
REMARK 525 M RES CSSEQI
REMARK 525 HOH 295 DISTANCE 5.29 ANGSTROMS
DBREF 1Q3X A 359 686 SWS 000187 MAS2_HUMAN 363 686
DBREF 1Q3X B 359 686 SWS 000187 MAS2_HUMAN 363 686
SEQADV 1Q3X ALA A 359 SWS 000187 CLONING ARTIFACT
SEQADV 1Q3X SER A 360 SWS 000187 CLONING ARTIFACT SEQADV 1Q3X MET A 361 SWS 000187 CLONING ARTIFACT
SEQADV 1Q3X THR A 362 SWS 000187 CLONING ARTIFACT
SEQADV 1Q3X ALA B 359 SWS 000187 CLONING ARTIFACT
SEQADV 1Q3X SER B 360 SWS 000187 CLONING ARTIFACT
SEQADV 1Q3X MET B 361 SWS 000187 CLONING ARTIFACT
SEQADV 1Q3X THR B 362 SWS 000187 CLONING ARTIFACT
SEQRES 1 A 328 ALA SER MET THR ILE VAL ASP CYS GLY PRO PRO ASP ASP
SEQRES 2 A 328 LEU PRO SER GLY ARG VAL GLU TYR ILE THR GLY PRO GLY
SEQRES 3 A 328 VAL THR THR TYR LYS ALA VAL ILE GLN TYR SER CYS GLU
SEQRES 4 A 328 GLU THR PHE TYR THR MET LYS VAL ASN ASP GLY LYS TYR
SEQRES 5 A 328 VAL CYS GLU ALA ASP GLY PHE TRP THR SER SER LYS GLY
SEQRES 6 A 328 GLU LYS SER LEU PRO VAL CYS GLU PRO VAL CYS GLY LEU
SEQRES 7 A 328 SER ALA ARG THR THR GLY GLY ARG ILE TYR GLY GLY GLN
SEQRES 8 A 328 LYS ALA LYS PRO GLY ASP PHE PRO TRP GLN VAL LEU ILE
SEQRES 9 A 328 LEU GLY GLY THR THR ALA ALA GLY ALA LEU LEU TYR ASP
SEQRES 10 A 328 ASN TRP VAL LEU THR ALA ALA HIS ALA VAL TYR GLU GLN
SEQRES 11 A 328 LYS HIS ASP ALA SER ALA ΕU ASP" ~UTE ARG MET GLY THR
SEQRES 12 A 328 LEU LYS ARG LEU SER PRO HIS TYR THR GLN ALA TRP SER
SEQRES 13 A 328 GLU ALA VAL PHE ILE HIS GLU GLY TYR THR HIS ASP ALA
SEQRES 14 A 328 GLY PHE ASP ASN ASP ILE ALA LEU ILE LYS LEU ASN ASN
SEQRES 15 A 328 LYS VAL VAL ILE ASN SER ASN ILE THR PRO ILE CYS LEU
SEQRES 16 A 328 PRO ARG LYS GLU ALA GLU SER PHE MET ARG THR ASP ASP
SEQRES 17 A 328 ILE GLY THR ALA SER GLY TRP GLY LEU THR GLN ARG GLY
SEQRES 18 A 328 PHE LEU ALA ARG ASN LEU MET TYR VAL ASP ILE PRO ILE
SEQRES 19 A 328 VAL ASP HIS GLN LYS CYS THR ALA ALA TYR GLU LYS PRO
SEQRES 20 A 328 PRO TYR PRO ARG GLY SER VAL THR ALA ASN MET LEU CYS
SEQRES 21 A 328 ALA GLY LEU GLU SER GLY GLY LYS ASP SER CYS ARG GLY
SEQRES 22 A 328 ASP SER GLY GLY ALA LEU VAL PHE LEU ASP SER GLU THR
SEQRES 23 A 328 GLU ARG TRP PHE VAL GLY GLY ILE VAL SER TRP GLY SER
SEQRES 24 A 328 MET ASN CYS GLY GLU ALA GLY GLN TYR GLY VAL TYR THR
SEQRES 25 A 328 LYS VAL ILE ASN TYR ILE PRO TRP ILE GLU ASN ILE ILE
SEQRES 26 A 328 SER ASP PHE
SEQRES 1 B 328 ALA SER MET THR ILE VAL ASP CYS GLY PRO PRO ASP ASP
SEQRES 2 B 328 LEU PRO SER GLY ARG VAL GLU TYR ILE THR GLY PRO GLY
SEQRES 3 B 328 VAL THR THR TYR LYS ALA VAL ILE GLN TYR SER CYS GLU
SEQRES 4 B 328 GLU THR PHE TYR THR MET LYS VAL ASN ASP GLY LYS TYR
SEQRES 5 B 328 VAL CYS GLU ALA ASP GLY PHE TRP THR SER SER LYS GLY
SEQRES 6 B 328 GLU LYS SER LEU PRO VAL CYS GLU PRO VAL CYS GLY LEU
SEQRES 7 B 328 SER ALA ARG THR THR GLY GLY ARG ILE TYR GLY GLY GLN
SEQRES 8 B 328 LYS ALA LYS PRO GLY ASP PHE PRO TRP GLN VAL LEU ILE
SEQRES 9 B 328 LEU GLY GLY THR THR ALA ALA GLY ALA LEU LEU TYR ASP
SEQRES 10 B 328 ASN TRP VAL LEU THR ALA ALA HIS ALA VAL TYR GLU GLN
SEQRES 11 B 328 LYS HIS ASP ALA SER ALA LEU ASP ILE ARG MET GLY THR
SEQRES 12 B 328 LEU LYS ARG LEU SER PRO HIS TYR THR GLN ALA TRP SER
SEQRES 13 B 328 GLU ALA VAL PHE ILE HIS GLU GLY TYR THR HIS ASP ALA
SEQRES 14 B 328 GLY PHE ASP ASN ASP ILE ALA LEU ILE LYS LEU ASN ASN
SEQRES 15 B 328 LYS VAL VAL ILE ASN SER ASN ILE THR PRO ILE CYS LEU
SEQRES 16 B 328 PRO ARG LYS GLU ALA GLU SER PHE MET ARG THR ASP ASP
SEQRES 17 B 328 ILE GLY THR ALA SER GLY TRP GLY LEU THR GLN ARG GLY
SEQRES 18 B 328 PHE LEU ALA ARG ASN LEU MET TYR VAL ASP ILE PRO ILE
SEQRES 19 B 328 VAL ASP HIS GLN LYS CYS THR ALA ALA TYR GLU LYS PRO
SEQRES 20 3 328 PRO TYR PRO ARG GLY SER VAL THR ALA ASN MET LEU CYS
SEQRES 21 3 328 ALA GLY LEU GLU SER GLY GLY LYS ASP SER CYS ARG GLY
SEQRES 22 3 328 ASP SER GLY GLY ALA LEU VAL PHE LEU ASP SER GLU THR
SEQRES 23 B 328 GLU ARG TRP PHE VAL GLY GLY ILE VAL SER TRP GLY SER
SEQRES 24 B 328 MET ASN CYS GLY GLU ALA GLY GLN TYR GLY VAL TYR THR
SEQRES 25 B 328 LYS VAL ILE ASN TYR ILE PRO TRP ILE GLU ASN ILE ILE
SEQRES 26 B 328 SER ASP PHE
KΞT NA 800 1
HET NA 850 1
HET GOL 700 6
HET GOL 701 6
HET GOL 702 6
HET GOL 703 6
HET GOL 750 6
HET GOL 751 6
HET GOL 754 6
HETNAM NA SODIUM ION
HETNAM GOL GLYCEROL
FORMUL 3 NA 2 (NAI 1+)
FORMUL 5 GOL 7(C3 H8 03)
FORMUL 12 HOH *362(H2 01) HELIX 1 1 ALA A 481 HIS A 490 1 10
HELIX 2 2 ARG A 555 MET A 562 5
HELIX 3 3 ASP A 594 TYR A 602 1 9
HELIX 4 4 TYR A f 575 PHE A 686 1 12
HELIX 5 5 ALA B 481 HIS B 490 1 10
HELIX 6 6 ARG B 555 MET B 562 5
HELIX 7 7 ASP B 594 TYR B 602 1
HELIX 8 8 TYR B 675 PHE B 686 1 12
SHEET 1 A 4 GLY A 375 TYR A 379 0
SHEET 2 A 4 VAL A 391 CYS A 396 -1 O GLN A 393 N GLU A 378
SHEET 3 A 4 LYS A 409 CYS A 412 -1 O TYR A 410 N ILE A 392
SHEET 4 A 4 TRP A 418 SER A 420 -1 0 THR A 419 N VAL A 411
SHEET 1 B 2 TYR A 401 LYS A 404 0
SHEET 2 B 2 VAL A 429 PRO A 432 -1 0 VAL A 429 N LYS A 404
SHEET 1 C 8 GLN A 449 LYS A 450 0
SHEET 2 C 8 MET A 586 VAL A 593 -1 0 TYR A 587 N GLN A 449
SHEET 3 C 8 MET A 616 ALA A 619 -1 0 CYS A 618 N VAL A 593
SHEET 4 C 8 GLY A 667 LYS A 671 -1 0 TYR A 669 N LEU A 617
SHEET 5 C 8 ARG A 646 TRP A 655 -1 N TRP A 655 O VAL A 668
SHEET 6 C 8 ALA A 636 ASP A 641 -1 N LEU A 637 O GLY A 651
SHEET 7 C 8 ILE A 567 GLY A 572 -1 N THR A 569 O VAL A 638
SHEET 8 C 8 MET A 586 VAL A 593 -1 0 ILE A 590 N GLY A 568
SHEET 1 D 7 GLN A 459 ILE A 462 0
SHEET 2 D 7 ALA A 468 LEU A 473 -1 0 ALA A 468 N ILE A 462
SHEET 3 D 7 TRP A 477 THR A 480 -1 0 LEU A 479 N ALA A 471
SHEET 4 D 7 ALA A 534 LEU A 538 -1 0 ILE A 536 N VAL A 478
SHEET 5 D 7 THR A 510 ILE A 519 -1 N PHE A 518 O LEU A 535
SHEET 6 D 7 ASP A 496 MET A 499 -1 N ILE A 497 O ALA A 512
SHEET 7 D 7 GLN A 459 ILE A 462 -1 N LEU A 461 O ARG A 498
SHEET 1 E 4 GLY B 375 TYR B 379 0
SHEET 2 E 4 VAL B 391 CYS B 396 -1 O SER B 395 N ARG B 376
SHEET 3 E 4 LYS B 409 VAL B 411 -1 0 TYR B 410 N ILE B 392
SHEET 4 E 4 THR B 419 SER B 420 -1 0 THR B 419 N VAL B 411
SHEET 1 F 2 TYR B 401 LYS B 404 0
SHEET 2 F 2 VAL B 429 PRO B 432 -1 0 GLU B 431 N THR B 402
SHEET 1 G 8 GLN B 449 LYS B 450 0
SHEET 2 G 8 MET B 586 VAL B 593 -1 0 TYR B 587 N GLN B 449
SHEET 3 G 8 MET B 616 ALA B 619 -1 0 CYS B 618 N VAL B 593
SHEET 4 G 8 GLY B 667 LYS B 671 -1 0 TYR B 669 N LEU B 617
SHEET 5 G 8 ARG B 646 TRP B 655 -1 N TRP B 655 O VAL B 668
SHEET 6 G 8 ALA B 636 ASP B 641 -1 N LEU B 637 O GLY B 651
SHEET 7 G 8 ILE B 567 GLY B 572 -1 N THR B 569 O VAL B 638
SHEET 8 G 8 MET B 586 VAL B 593 -1 O ILE B 590 N GLY B 568
SHEET 1 H 7 GLN B 459 ILE B 462 0
SHEET 2 H 7 ALA B 468 LEU B 473 -1 O ALA B 468 N ILE B 462
SHEET 3 H 7 TRP B 477 THR B 480 -1 O LEU B 479 N ALA B 471
SHEET 4 H 7 ALA B 534 LEU B 538 -1 O ILE B 536 N VAL B 478
SHEET 5 H 7 THR B 510 ILE B 519 -1 N PHE B 518 O LEU B 535
SHEET 6 H 7 ASP B 496 MET B 499 -1 N MET B 499 O THR B 510
SHEET 7 H 7 GLN B 459 ILE B 462 -1 N LEU B 461 O ARG B 498
SSBOND 1 CYS A 366 CYS A 412
SSBOND 2 CYS A 396 CYS A 430
SSBOND 3 CYS A 434 I CYS A 552
SSBOND 4 CYS A 598 CYS A 618
SSBOND 5 CYS A 62S ) CYS A 660
SSBOND 6 CYS B 366 CYS B 412
SSBOND 7 CYS B 39« CYS B 430
SSBOND 8 CYS B 434 I CYS B 552
SSBOND 9 CYS B 59£ i CYS B 618
SSBOND 10 CYS B 62S ) CYS B 660
CISPEP 1 PRO A 60E PRO A 606 0 7 .16
CISPEP 2 PRO B 60E PRO B 606 0 6 .90
CRYST1 4C 1.950 41. 521 102.994 96. 44 91 .77 119.52 P ' 1
ORIGX1 1.000000 ( 3.000000 0. .000000 ( 3.00000
ORIGX2 0.000000 : L.000000 0. .000000 ( 3.00000
ORIGX3 0.000000 ( 3.000000 1. .000000 ( 3.00000
SCALEl 0.024420 ( 3.013827 0. ,002810 ( 3.00000
SCALE2 0.000000 ( 3.027677 0. .004098 ( 3.00000
SCALE3 0.000000 0.000000 0. .009820 0.00000
ATOM 1 N THR A 362 11.836 -25.090 : L7. .152 1.00 50. .01
ATOM ! CA THR A 362 11.752 -25.409 : L8. .605 1.00 50. .12 1
ATOM -: : C THR A 362 11.922 -24.151 : L9, .454 1.00 49. .45 ATOM 4 O THR A 362 12.069 -24..231 20.675 1..00 48..77 0
ATOM 5 CB THR A 362 12. .811 -26. .462 18, .996 1. .00 50. .73 c
ATOM 6 OG1 THR A 362 14 .041 -25. .808 19, .331 1. .00 50, .91 0
ATOM 7 CG2 THR A 362 13 .186 -27. .323 17, .794 1. ,00 51, .16 c
ATOM 8 N ILE A 363 11 .897 -22, .993 18, .799 1. ,00 48, .38 N
ATOM 9 CA ILE A 363 12 .080 -21. .717 19, .485 1. .00 47. .95 C
ATOM 10 C ILE A 363 10. .997 -21. .473 20, .536 1. ,00 46. .39 C
ATOM 11 O ILE A 363 9. .847 -21, .882 20, .366 1. ,00 46. .67 0
ATOM 12 CB ILE A 363 12. .131 -20. .552 18, .472 1. .00 48. .53 c
ATOM 13 CGI ILE A 363 10. .717 -20, .127 18 .065 1. .00 48. .96 c
ATOM 14 CG2 ILE A 363 12 .957 -20, .943 17 .250 1. .00 49. .42 c
ATOM 15 CD1 ILE A 363 10 .674 -19, .205 16 .864 1. .00 49. .06 c
ATOM 16 N VAL A 364 11. .377 -20, .812 21 .626 1. .00 43. .96 N
ATOM 17 CA VAL A 364 10. .455 -20. .550 22 .726 1. .00 41. .82 c
ATOM 18 C VAL A 364 9. .550 -19, .351 22 .439 1. .00 39. .71 c
ATOM 19 O VAL A 364 9 .956 -18, .397 21 .777 1. .00 39. .12 0
ATOM 20 CB VAL A 364 11 .208 -20, .318 24 .052 1. .00 41, .87 c
ATOM 21 N ASP A 365 8. .321 -19, .417 22, .942 1. .00 37. .81 N
ATOM 22 CA ASP A 365 7. .343 -18, .348 22 .781 1. .00 36. .05 c
ATOM 23 C ASP A 365 6. .972 -17. .747 24, .138 1. .00 35. .45 c
ATOM 24 O ASP A 365 6. .370 -18. .418 24, .979 1. .00 34. .71 0
ATOM 25 CB ASP A 365 6. .089 -18. .881 22, .082 1. .00 35. .83 c
ATOM 26 CG ASP A 365 5. .251 -17. .779 21, .463 1. ,00 35. .44 c
ATOM 27 OD1 ASP A 365 5. .476 -16. .600 21, .795 1. .00 34. .58 0
ATOM 28 OD2 ASP A 365 4. .343 -17, .995 20. .634 1. .00 36. .08 0
ATOM 29 N CYS A 366 7 .333 -16, .482 24. .347 1. .00 34. .40 N
ATOM 30 CA CYS A 366 7. .022 -15, .794 25. .599 1. .00 33. .63 C
ATOM 31 C CYS A 366 5 .531 -15, .468 25. .684 1. .00 33. .60 C
ATOM 32 O CYS A 366 5 .026 -15. .084 26, .746 1. .00 33. .07 O
ATOM 33 CB CYS A 366 7. .849 -14, .509 25, .738 1. ,00 32. .92 c
ATOM 34 SG CYS A 366 9 .634 -14, .732 25, .962 1. .00 32. .22 s
ATOM 35 N GLY A 367 4 .836 -15, .621 24, .558 1. .00 33. .33 N
ATOM 36 CA GLY A 367 3 .416 -15, .326 24 .470 1. .00 34. .49 c
ATOM 37 C GLY A 367 3 .136 -13, .833 2 .486 1. .00 36. .04 c
ATOM 38 O GLY A 367 4 .051 -13. .023 24 .342 1. .00 36. .03 0
ATOM 39 N PRO A 368 1 .870 -13 .466 24, .660 1. .00 37. .13 N
ATOM 40 CA PRO A 368 1 .482 -12, .055 24 .781 1. .00 36, .72 C
ATOM 41 C PRO A 368 2. .034 -11, .427 26, .057 1. .00 36. .94 C
ATOM 42 O PRO A 368 2 .063 -12, .075 27 .104 1. .00 36. .46 O
ATOM 43 CB PRO A 368 -0. .049 -12, .113 24, .844 1. .00 36. .94 C
ATOM 44 CG PRO A 368 -0. .411 -13. .478 24, .334 1. .00 37. .65 C
ATOM 45 CD PRO A 368 0. .714 -14, .376 24, .741 1. .00 37. .40 C
ATOM 46 N PRO A 369 2. .472 -10, .177 25, .969 1. .00 37. .37 N
ATOM 47 CA PRO A 369 2. .978 -9, .453 27 .139 1. .00 38. .52 C
ATOM 48 C PRO A 369 1. .898 -9 .312 28 .207 1. .00 39. .41 C
ATOM 49 O PRO A 369 0. .709 -9, .267 27 .872 1. .00 39. .85 0
ATOM 50 CB PRO A 369 3. .330 -8 .075 26 .569 1. .00 38. .24 c
ATOM 51 CG PRO A 369 3. .493 -8 .296 25 .092 1. .00 37. .34 c
ATOM 52 CD PRO A 369 2 .514 -9 .362 24 .743 1. .00 37. .20 c
ATOM 53 N ASP A 370 2 .300 -9 .254 29 .474 1. .00 38. .99 N
ATOM 54 CA ASP A 370 1 .349 -9 .007 30 .550 1. .00 39. .26 c
ATOM 55 C ASP A 370 0. .684 -7 .648 30 .366 1. .00 38. .92 c
ATOM 56 O ASP A 370 1 .193 -6 .786 29 .645 1, .00 37. .46 0
ATOM 57 CB ASP A 370 2. .040 -9 .056 31. .912 1. .00 39. .67 c
ATOM 58 CG ASP A 370 2. .405 -10 .459 32 .327 1. .00 40, .84 c
ATOM 59 OD1 ASP A 370 1 .927 -11 .417 31 .683 1. .00 41. .33 0
ATOM 60 OD2 ASP A 370 3 .167 -10 .698 33 .287 1, .00 41, .52 0
ATOM 61 N ASP A 371 -0. .457 -7 .467 31 .022 1. .00 39, .11 N
ATOM 62 CA ASP A 371 -1. .157 -6 .191 31 .004 1. .00 39, .06 c
ATOM 63 C ASP A 371 -0. .455 -5 .177 31 .908 1. .00 37, .37 c
ATOM 64 O ASP A 371 -0. .149 -5 .469 33 .071 1. .00 37. .88 0
ATOM 65 CB ASP A 371 -2. .617 -6 .379 31 .438 1, .00 40, .70 c
ATOM 66 CG ASP A 371 -3 .259 -5 .087 31 .918 1. .00 41, .95 c
ATOM 67 OD1 ASP A 371 -3 .464 -4 .180 31 .085 1. .00 43, .14 0
ATOM 68 OD2 ASP A 371 -3 .595 -4 .888 33 .106 1. .00 42, .02 0
ATOM 69 N LEU A 372 -0 .194 -3 .991 31 .369 1. .00 34. .31 N
ATOM 70 CA LEU A 372 0 .341 -2 .897 32 .172 1, .00 31, .34 C
ATOM 71 C LEU A 372 -0 .770 -1 .928 32 .581 1. .00 30, .43 C
ATOM 72 O LEU A 372 -1 .236 -1. .131 31 .767 1, ,00 29, .66 0
ATOM 73 CB LEU A 372 1 .447 -2 .159 31 .416 1. .00 29, .42 c
ATOM 74 CG LEU A 372 2 .127 -0 .997 32 .152 1. .00 28, .16 c
ATOM 75 CD1 LEU A 372 2 .755 -1 .469 33 .462 1. .00 27, .21 c
ATOM 76 CD2 LEU A 372 3 .169 -0 .340 31 .258 1. .00 25. .73 c ATOM 77 N PRO A 373 -1.195 -2.002 33.841 1.00 30.32 N
ATOM 78 CA PRO A 373 -2. .247 -1 .121 34 .358 1 .00 30 .10 C
ATOM 79 C PRO A 373 -1 .885 0 .353 34 .169 1 .00 30 .46 C
ATOM 80 O PRO A 373 -0 .815 0. .793 34 .602 1 .00 29 .63 0
ATOM 81 CB PRO A 373 -2. .304 -1. .477 35 .847 1 .00 30 .33 c
ATOM 82 CG PRO A 373 -1 .766 -2 .866 35 .922 1. .00 30 .55 c
ATOM 83 CD PRO A 373 -0 .699 -2 .937 34 .867 1. .00 30 .56 c
ATOM 84 N SER A 374 -2 .778 1. .095 33 .515 1. .00 30 .72 N
ATOM 85 CA SER A 374 -2. .553 2 .502 33 .189 1 .00 30 .94 C
ATOM 86 C SER A 374 -1. .446 2. .669 32 .148 1 .00 30 .99 C
ATOM 87 0 SER A 374 -0 .828 3. .731 32 .038 1 .00 30 .79 O
ATOM 88 CB SER A 374 -2 .254 3. .320 34 .450 1. .00 30 .12 c
ATOM 89 OG SER A 374 -3. .406 3 .430 35 .268 1 .00 28 .75 0
ATOM 90 N GLY A 375 -1 .207 1. .611 31 .382 1 .00 31 .31 N
ATOM 91 CA GLY A 375 -0 .209 1. .640 30 .329 1 .00 33 .71 C
ATOM 92 C GLY A 375 -0 .621 0 .877 29 .084 1 .00 34 .22 C
ATOM 93 O GLY A 375 -1. .799 0 .573 28 .886 1 .00 34 .08 O
ATOM 94 N ARG A 376 0. .357 0. .568 28, .239 1, .00 35 .76 N
ATOM 95 CA ARG A 376 0 .093 -0, .124 26. .981 1. .00 36 .06 C
ATOM 96 C ARG A 376 1. .317 -0, .879 26. .475 1. .00 36 .28 C
ATOM 97 O ARG A 376 2 .455 -0, .465 26. .706 1. .00 37 .67 0
ATOM 98 CB ARG A 376 -0 .390 0, .863 25, .913 1. .00 36 .78 c
ATOM 99 CG ARG A 376 0. .643 1. .900 25, .483 1. .00 37, .16 c
ATOM 100 CD ARG A 376 0 .047 3, .241 25, .046 1. .00 37 .27 c
ATOM 101 NE ARG A 376 0 .912 4. .362 25, .404 1. .00 36 .98 N
ATOM 102 CZ ARG A 376 0 .477 5 .536 25. .847 1. .00 38 .09 C
ATOM 103 NH1 ARG A 376 -0 .824 5, .762 25. .988 1. .00 37, .93 N
ATOM 104 NH2 ARG A 376 1. .347 6 .494 26. .147 1. .00 38 .57 N
ATOM 105 N VAL A 377 1 .077 -1, .993 25, .790 1. .00 35, .78 N
ATOM 106 CA VAL A 377 2. .148 -2. .745 25, .149 1. .00 35 .20 C
ATOM 107 C VAL A 377 2. .157 -2, .466 23, .645 1. .00 35 .27 C
ATOM 108 O VAL A 377 1 .110 -2 .451 22, .994 1. .00 34 .39 O
ATOM 109 CB VAL A 377 2. .014 -4. .268 25, .392 1. .00 35 .23 C
ATOM 110 CGI VAL A 377 1. .347 -4 .543 26, .728 1. .00 36 .30 C
ATOM 111 CG2 VAL A 377 1. .235 -4, .935 24, .261 1. .00 34 .30 C
ATOM 112 N GLU A 378 3. .343 -2, .228 23, .101 1. .00 35. .63 N
ATOM 113 CA GLU A 378 3 .490 -2, .011 21, .671 1. .00 36, .60 C
ATOM 114 C GLU A 378 4. .630 -2, .869 21. .148 1. .00 35, .86 C
ATOM 115 O ' GLU A 378 5, .692 -2, .936 21. .762 1. .00 36, .37 0
ATOM 116 CB GLU A 378 3, .739 -0. .533 21. .371 1. .00 37, .10 C
ATOM 117 CG GLU A 378 2, .569 0, .363 21. .743 1. .00 38, .49 C
ATOM 118 CD GLU A 378 2, .691 1. .764 21. .180 1. .00 39, .21 C
ATOM 119 OE1 GLU A 378 3. .831 2, .257 21. .042 1. ,00 39. .17 O
ATOM 120 OE2 GLU A 378 1, .642 2. .373 20. .880 1. .00 39, .90 O
ATOM 121 N TYR A 379 4, .398 -3. .532 20. .020 1. .00 34, .47 N
ATOM 122 CA TYR A 379 5, .378 -4. .453 19. .452 1. .00 33. .85 C
ATOM 123 C TYR A 379 6, .408 -3, .709 18. .611 1. .00 31. .88 C
ATOM 124 O TYR A 379 6. .055 -2, .910 17. .745 1. .00 29. .54 0
ATOM 125 CB TYR A 379 4, .684 -5, .523 18. .605 1. .00 34. .64 c
ATOM 126 CG TYR A 379 3, .748 -6. .423 19. .383 1. .00 36. .17 c
ATOM 127 CD1 TYR A 379 2, .429 -6. .049 19. .620 1. .00 37. .18 c
ATOM 128 CD2 TYR A 379 4, .179 -7, .649 19. .875 1. .00 36. .61 c
ATOM 129 CE1 TYR A 379 1, .567 -6, .867 20. .329 1. .00 37. .71 c
ATOM 130 CE2 TYR A 379 3. .324 -8. .476 20. .583 1. .00 37. .74 c
ATOM 131 CZ TYR A 379 2. .018 -8, ,079 20. .807 1. ,00 38. .35 c
ATOM 132 OH TYR A 379 1. .159 -8. .892 21. ,513 1. .00 39. .48 0
ATOM 133 N ILE A 380 7. .684 -3, ,974 18. ,870 1. .00 31. .30 N
ATOM 134 CA ILE A 380 8. .751 -3. ,329 18. ,114 1. .00 30, .74 C
ATOM 135 C ILE A 380 9. .190 -4. .190 16. ,934 1. .00 30. .51 c
ATOM 136 O ΓLE A 380 9. .300 -3. ,695 15. .816 1. .00 29. .09 0
ATOM 137 CB ILE A 380 9. ,953 -2. .994 19. ,020 1. .00 30. .31 c
ATOM 138 CGI ILE A 380 9. .534 -2. .035 20. ,138 1. ,00 30. .09 c
ATOM 139 CG2 ILE A 380 11. .097 -2. .412 18. .195 1. ,00 29. .49 c
ATOM 140 CD1 ILE A 380 8. ,917 -0. ,743 19. .652 1. .00 30. .68 c
ATOM 141 N THR A 381 9. .434 -5. ,475 17. ,187 1. .00 29. .54 N
ATOM 142 CA THR A 381 9. .870 -6. ,388 16. ,133 1. ,00 30, .18 C
ATOM 143 C THR A 381 8. .783 -6. ,552 15. ,067 1. ,00 29. .58 C
ATOM 144 O THR A 381 9. ,018 -6. ,294 13. ,889 1. ,00 28. .92 0
ATOM 145 CB THR A 381 10. ,276 -7. ,760 16. ,721 1. ,00 30. .88 c
ATOM 146 OG1 THR A 381 11. ,276 -7. .576 17. ,733 1. ,00 30. ,50 0
ATOM 147 CG2 THR A 381 10. .991 -8. .595 15. 675 1. ,00 30. .41 c
ATOM 148 N GLY A 382 7. .592 -6. .966 15. 490 1. .00 28. .71 N
ATOM 149 CA GLY A 382 6. .457 -7. .073 14. 589 1. .00 27. .11 c ATOM 150 C GLY A 382 5.146 -7.248 15.334 1.00 26.15 c
ATOM 151 O GLY A 382 5 .127 -7 .756 16 .456 1 .00 23 .16 0
ATOM 152 N PRO A 383 4 .047 -6 .834 1 .705 1 .00 26 .14 N
ATOM 153 CA PRO A 383 2 .715 -6. .915 15 .318 1 .00 26 .42 C
ATOM 154 C PRO A 383 2 .357 -8. .334 15 .757 1, .00 27 .72 C
ATOM 155 O PRO A 383 2 .012 -9 .172 14 .924 1, .00 28 .54 O
ATOM 156 CB PRO A 383 1 .787 -6 .465 14 .186 1. .00 25 .40 C
ATOM 157 CG PRO A 383 2 .642 -5 .620 13 .325 1. .00 24 .64 C
ATOM 158 CD PRO A 383 4 .000 -6 .256 13 .352 1, .00 24 .91 C
ATOM 159 N GLY A 384 2 .452 -8 .596 17 .055 1. .00 28 .58 N
ATOM 160 CA GLY A 384 2 .057 -9 .880 17 .603 1, .00 29 .55 C
ATOM 161 C GLY A 384 3 .147 -10 .935 17 .646 1. .00 29 .99 C
ATOM 162 O GLY A 384 2 .862 -12 .104 17 .908 1, .00 30 .17 O
ATOM 163 N VAL A 385 4 .392 -10 .541 17 .390 1, .00 31 .06 N
ATOM 164 CA VAL A 385 5. .502 -11 .497 17 .430 1, .00 32 .53 C
ATOM 165 C VAL A 385 6 .114 -11 .576 18 .831 1, .00 32 .59 C
ATOM 166 O VAL A 385 6 .576 -10 .574 19 .388 1, .00 31 .85 O
ATOM 167 CB VAL A 385 6 .573 -11, .226 16. .330 1. .00 32. .89 C
ATOM 168 CGI VAL A 385 5. .911 -10. .753 15. .045 1. .00 32. .11 C
ATOM 169 CG2 VAL A 385 7. .617 -10. .229 16. .803 1. .00 33. .67 c
ATOM 170 N THR A 386 6. .088 -12. .774 19. .406 1. .00 32. .64 N
ATOM 171 CA THR A 386 6. .456 -12, .951 20, .807 1. .00 33. .15 C
ATOM 172 C THR A 386 7. .509 -14. .035 20, .983 1. .00 33. .86 C
ATOM 173 O THR A 386 7, .677 -14. .591 22, .070 1. .00 33. .83 O
ATOM 174 CB THR A 386 5, .210 -13. .273 21. .645 1. .00 32. .64 C
ATOM 175 OG1 THR A 386 4, .481 -14. .346 21, .030 1. .00 31, .13 O
ATOM 176 CG2 THR A 386 4, .229 -12, .103 21. .612 1. .00 32. .04 C
ATOM 177 N THR A 387 8, .227 -14. .320 19. .904 1. .00 33. .69 N
ATOM 178 CA THR A 387 9, .260 -15, .344 19. .927 1. .00 33, .50 C
ATOM 179 C THR A 387 10, .570 -14, .811 20. .509 1. .00 32. .78 C
ATOM 180 O THR A 387 10. .768 -13, .600 20. .620 1. .00 32. .70 O
ATOM 181 CB THR A 387 9 .491 -15, .891 18. .501 1, .00 33. .51 C
ATOM 182 OG1 THR A 387 9, .534 -14. .801 17. .570 1. .00 32, .74 O
ATOM 183 CG2 THR A 387 8, .285 -16. .698 18. .039 1. .00 33, .55 C
ATOM 184 N TYR A 388 11 .453 -15. .734 20, .878 1, .00 31. .88 N
ATOM 185 CA TYR A 388 12. .809 -15. .417 21, .321 1. .00 30. .90 C
ATOM 186 C TYR A 388 13, .407 -14. .242 20. .554 1. .00 31. .42 C
ATOM 187 O TYR A 388 13. .399 -14. .224 19, .321 1. .00 31. .98 O
ATOM 188 CB TYR A 388 13. .707 -16. .649 21, .155 1. .00 29. .49 C
ATOM 189 CG TYR A 388 15. .121 -16. .472 21. .663 1. .00 28. .06 C
ATOM 190 CD1 TYR A 388 15, .372 -16. .234 23. .007 1. .00 27. .91 C
ATOM 191 CD2 TYR A 388 16. .204 -16. .556 20, .800 1. .00 27. .33 C
ATOM 192 CE1 TYR A 388 16. .664 -16. .075 23, .477 1. .00 27. ,17 C
ATOM 193 CE2 TYR A 388 17, .500 -16. .399 21. .261 1. ,00 27. .16 C
ATOM 194 CZ TYR A 388 17, .722 -16. .158 22. .601 1. .00 26. .76 c
ATOM 195 OH TYR A 388 19. .006 -16. .001 23. .068 1. .00 26. .22 o
ATOM 196 N LYS A 389 13. .917 -13. .263 21, .298 1. .00 31. .98 N
ATOM 197 CA LYS A 389 14. .618 -12. .110 20. .730 1. .00 32. .51 C
ATOM 198 C LYS A 389 13, .689 -10. .974 20. .297 1. .00 32. .23 C
ATOM 199 O LYS A 389 14. .157 -9. .892 19. .938 1. .00 30. .81 0
ATOM 200 CB LYS A 389 15, .523 -12. .531 19. .564 1. .00 33. .54 c
ATOM 201 CG LYS A 389 16, .830 -13. .180 19. .996 1. .00 34. .47 c
ATOM 202 CD LYS A 389 17, .914 -12. .147 20, .255 1 , .00 34. .87 c
ATOM 203 CE LYS A 389 19, .157 -12. .448 19. .434 1. .00 35. .59 c
ATOM 204 NZ LYS A 389 20. .406 -12. .031 20. .129 1. .00 35. .95 N
ATOM 205 N ALA A 390 12, .381 -11, .222 20. .327 1. ,00 32. .71 N
ATOM 206 CA ALA A 390 11. .401 -10. .182 20, .009 1. ,00 33. ,32 C
ATOM 207 C ALA A 390 11. .381 -9. ,105 21. .092 1. .00 33. .23 C
ATOM 208 O ALA A 390 11. .592 -9. ,390 22. .271 1. .00 33. .56 O
ATOM 209 CB ALA A 390 10. .014 -10. .780 19. .825 1. .00 32. .93 C
ATOM 210 N VAL A 391 11. .120 -7. .869 20. .675 1. .00 33. .38 N
ATOM 211 CA VAL A 391 11. .190 -6. .707 21, .551 1. .00 31. ,78 C
ATOM 212 C VAL A 391 9. .830 -6. .026 21. .647 1. ,00 32. .00 C
ATOM 213 O VAL A 391 9. .117 -5. .917 20. .651 1. .00 32. .80 O
ATOM 214 CB VAL A 391 12. .211 -5. .678 21. .010 1. .00 31. .71 C
ATOM 215 CGI VAL A 391 12. .341 -4. ,485 21. .944 1. .00 31. ,89 C
ATOM 216 CG2 VAL A 391 13. .567 -6. .332 20, .778 1, .00 32. .05 C
ATOM 217 N ILE A 392 9, .469 -5. .569 22, .844 1. .00 31. .40 N
ATOM 218 CA ILE A 392 8, .272 -4. .750 23, .008 1. .00 31. ,70 C
ATOM 219 C ILE A 392 8, .579 -3. ,497 23. .817 1. .00 31. .54 C
ATOM 220 O ILE A 392 9. .560 -3. 453 24. ,560 1. ,00 32. 90 O
ATOM 221 CB ILE A 392 7. .122 -5. 547 23. .670 1. 00 32. 33 C
ATOM 222 CGI ILE A 392 7. ,434 -5. 821 25. .147 1. 00 32. 84 C ATOM 223 CG2 ILE A 392 6..820 -6.817 22.879 1.00 33.70 c
ATOM 224 CD1 ILE A 392 6 .811 -7 .080 25 .692 1 .00 32 .78 c
ATOM 225 N GLN A 393 7 .741 -2 .477 23 .668 1 .00 30. .58 N
ATOM 226 CA GLN A 393 7 .883 -1 .260 24 .459 1 .00 31. .38 c
ATOM 227 C GLN A 393 6 .625 -0 .995 25 .280 1 .00 31, .11 c
ATOM 228 0 GLN A 393 5 .522 -0 .906 24 .739 1. .00 31, .03 0
ATOM 229 CB GLN A 393 8 .198 -0 .058 23 .559 1. .00 31 .75 c
ATOM 230 CG GLN A 393 8 .626 1. .204 24 .302 1. .00 32, .09 c
ATOM 231 CD GLN A 393 9. .985 1 .070 24 .963 1. .00 3 .18 c
ATOM 232 OE1 GLN A 393 10, .738 0. .139 24 .660 1 .00 37 .07 0
ATOM 233 NE2 GLN A 393 10 .298 1. .981 25 .862 1 .00 36 .51 N
ATOM 234 N TYR A 394 6 .799 -0 .896 26 .592 1 .00 30 .51 N
ATOM 235 CA TYR A 394 5 .729 -0 .474 27 .488 1 .00 29 .86 C
ATOM 236 C TYR A 394 5 .786 1 .031 27 .630 1 .00 28 .40 C
ATOM 237 O TYR A 394 6 .867 1. .611 27 .669 1. .00 27 .33 O
ATOM 238 CB TYR A 394 5 .923 -1 .072 28 .878 1 .00 28 .83 C
ATOM 239 CG TYR A 394 5 .530 -2 .521 29 .019 1 .00 30 .55 C
ATOM 240 CD1 TYR A 394 6, .492 -3, .497 29. .264 1, .00 30. .78 C
ATOM 241 CD2 TYR A 394 4. .195 -2. .916 28. .940 1. .00 31. .42 C
ATOM 242 CE1 TYR A 394 6, .140 -4. .827 29. .420 1. .00 31. .90 C
ATOM 243 CE2 TYR A 394 3, .831 -4, .249 29. .089 1. .00 31. .92 C
ATOM 244 CZ TYR A 394 4, .810 -5. .200 29. .326 1. .00 32. .29 c
ATOM 245 OH TYR A 394 4. .466 -6. .522 29. .477 1. .00 33. .31 o
ATOM 246 N SER A 395 4, .623 1. .659 27, .726 1. .00 28. .44 N
ATOM 247 CA SER A 395 4. .551 3. .076 28. .046 1. .00 28. .51 C
ATOM 248 C SER A 395 3, .339 3. .357 28. .931 1. .00 29. .35 C
ATOM 249 O SER A 395 2, .430 2. .527 29. .048 1. .00 29. .60 0
ATOM 250 CB SER A 395 4, .522 3. .934 26. .774 1. .00 28. ,86 C
ATOM 251 OG SER A 395 3, .536 3. .488 25. .860 1. .00 27. .94 0
ATOM 252 N CYS A 396 3, .340 4, .526 29. .560 1. .00 27. .72 N
ATOM 253 CA CYS A 396 2. .264 4. .928 30, .450 1. .00 28. .08 C
ATOM 254 C CYS A 396 1, .397 5, .986 29, .777 1. .00 27. .55 C
ATOM 255 O CYS A 396 1, .828 6 .634 28, .827 1. .00 25. .35 O
ATOM 256 CB CYS A 396 2, .853 5, .494 31 .747 1. .00 27. .39 C
ATOM 257 SG CYS A 396 3, .667 4, .259 32 .781 1. .00 28. .06 S
ATOM 258 N GLU A 397 0. .196 6 .187 30, .231 1. .00 28. .14 N
ATOM 259 CA GLU A 397 -0, .547 7, .388 29, .876 1. .00 29. .45 C
ATOM 260 C GLU A 397 0, .235 8, .530 30, .503 1. .00 28. .50 C
ATOM 261 O GLU A 397 0, .142 8. .766 31, .707 1. .00 28. .29 O
ATOM 262 CB GLU A 397 -1, .970 7, .340 30, .428 1. .00 30. .37 C
ATOM 263 CG GLU A 397 -2. .876 6, .338 29, .729 1. .00 32. .72 C
ATOM 264 CD GLU A 397 -3, .829 5, .646 30. .689 1, .00 33. .56 C
ATOM 265 OE1 GLU A 397 -4, .233 6, .279 31. .689 1. .00 34. .52 O
ATOM 266 OE2 GLU A 397 -4, .173 4, .470 30. .449 1. .00 33. .68 O
ATOM 267 N GLU A 398 1. .027 9, .225 29, .693 1. .00 28. .76 N
ATOM 268 CA GLU A 398 2, .086 10. .080 30, .238 1. .00 28. .81 C
ATOM 269 C GLU A 398 1, .650 11. .435 30, .801 1. .00 26. .84 C
ATOM 270 O GLU A 398 2, .409 12, .071 31 .533 1. .00 28. .31 O
ATOM 271 CB GLU A 398 3, .217 10 .265 29 .223 1, .00 29, .10 C
ATOM 272 N THR A 399 0, .445 11 .885 30 .474 1. .00 23, .46 N
ATOM 273 CA THR A 399 -0, .002 13 .170 30 .995 1. .00 21. .70 C
ATOM 274 C THR A 399 -0, .152 13 .108 32 .516 1. .00 21. .44 C
ATOM 275 O THR A 399 0, .181 14 .058 33 .222 1. .00 22. .12 O
ATOM 276 CB THR A 399 -1, .326 13 .601 30 .338 1. .00 21. .29 C
ATOM 277 OG1 THR A 399 -1, .128 13 .779 28 .927 1. .00 22, .42 O
ATOM 278 CG2 THR A 399 -1, .739 14 .973 30 .819 1. .00 19, .49 C
ATOM 279 N PHE A 400 -0. .627 11 .972 33 .018 1. .00 20. .64 N
ATOM 280 CA PHE A 400 -0, .970 11 .855 34 .429 1. .00 19. .70 C
ATOM 281 C PHE A 400 -0, .208 10 .748 35 .155 1. .00 19, .57 C
ATOM 282 O PHE A 400 -0, .261 10 .664 36 .384 1. .00 19, .31 O
ATOM 283 CB PHE A 400 -2, .480 11 .658 34 .576 1. .00 19, .72 c
ATOM 284 CG PHE A 400 -3, .271 12, .920 34 .375 1. .00 20, .42 c
ATOM 285 CD1 PHE A 400 -4, .088 13 .081 33 .261 1. .00 20. .90 c
ATOM 286 CD2 PHE A 400 -3, .187 13 .955 35 .295 1. .00 20. .26 c
ATOM 287 CE1 PHE A 400 -4. .815 14 .253 33 .079 1. .00 20, .76 c
ATOM 288 CE2 PHE A 400 -3, .905 15 .123 35 .119 1. .00 20, .73 c
ATOM 289 CZ PHE A 400 -4, .719 15 .275 34 .008 1. .00 20, .42 c
ATOM 290 N TYR A 401 0, .497 9 .912 34 .391 1. .00 18. .27 N
ATOM 291 CA TYR A 401 1, .263 8 .795 34 .935 1. .00 18. .98 c
ATOM 292 C TYR A 401 2, .708 8 .860 34 .460 1. .00 20. .63 c
ATOM 293 O TYR A 401 2. .977 9, .353 33, .366 1. ,00 22. .82 0
ATOM 294 CB TYR A 401 0. .646 7. .462 34, .487 1. ,00 18. .63 c ATOM 295 CG TYR A 401 -0.710 .178 35.092 00 19.73 C
ATOM 296 CD1 TYR A 401 -1.859 .777 34.585 00 19.71 C
ATOM 297 CD2 TYR A 401 843 .317 36.182 00 20.39 C
ATOM 298 CE1 TYR A 401 105 .526 35.142 00 19.24 C
ATOM 299 CE2 TYR A 401 083 .061 36.747 00 19.94 C
ATOM 300 CZ TYR A 401 209 .665 36.222 00 20.01 C
ATOM 301 OH TYR A 401 -4.440 .407 36.783 00 20.65 O
ATOM 302 N THR A 402 640 8.374 35.278 00 22.09 N
ATOM 303 CA THR A 402 019 8.184 34.825 00 25.01 C
ATOM 304 C THR A 402 493 6.755 35.082 00 25.45 C
ATOM 305 O THR A 402 179 6.162 36.114 00 25.85 0
ATOM 306 CB THR A 402 5.995 9.200 35.470 00 25.34 c
ATOM 307 OG1 THR A 402 .895 9.133 36.897 00 27.28 0
ATOM 308 CG2 THR A 402 .599 10.628 35.133 00 26.74 c
ATOM 309 N MET A 403 .240 6.207 34.129 00 27.63 N
ATOM 310 CA MET A 403 .793 4.861 34.250 00 29.32 C
ATOM 311 C MET A 403 .908 4.840 35.274 00 30.17 C
ATOM 312 O MET A 403 8.790 5.701 35.266 00 29.55 O
ATOM 313 CB MET A 403 7.330 4.375 32.905 00 29.73 C
ATOM 314 CG MET A 403 7.816 2.935 32.915 00 30.02 C
ATOM 315 SD MET A 403 7.828 2.238 31.261 00 30.65 S
ATOM 316 CE MET A 403 6.087 .997 31.026 00 29.71 c
ATOM 317 N LYS A 404 7.864 .857 36.163 00 32.49 N
ATOM 318 CA LYS A 404 8.903 .710 37.172 00 35.13 C
ATOM 319 C LYS A 404 9.648 .384 37.011 00 36.22 C
ATOM 320 O LYS A 404 9.134 .438 36.406 00 35.89 0
ATOM 321 CB LYS A 404 8.314 .835 38.583 00 35.27 c
ATOM 322 CG LYS A 404 7.622 .163 38.856 00 36.05 c
ATOM 323 CD LYS A 404 8.521 .110 39.629 00 36.71 c
ATOM 324 CE LYS A 404 8.002 .534 39.555 00 37.79 c
ATOM 325 NZ LYS A 404 8.894 8.498 40.260 00 37.68 N
ATOM 326 N VAL A 405 10.873 2.351 37.534 00 37.71 N
ATOM 327 CA VAL A 405 11.699 1.142 37.628 00 38.72 C
ATOM 328 C VAL A 405 12.184 528 36.305 00 39.42 C
ATOM 329 O VAL A 405 13.024 385 36.314 00 40.88 O
ATOM 330 CB VAL A 405 11.038 056 38.530 00 39.12 C
ATOM 331 CGI VAL A 405 10.302 -0.991 37.697 00 38.74 C
ATOM 332 CG2 VAL A 405 12.083 -0.593 39.441 00 39.29 C
ATOM 333 N ASN A 406 11.699 1.002 35.147 00 39.50 N
ATOM 334 CA ASN A 406 12.162 0.540 33.838 1.00 39.30 C
ATOM 335 C ASN A 406 12.020 1.608 32.767 1.00 38.40 C
ATOM 336 O ASN A 406 11.373 2.643 32.981 1.00 38.68 o
ATOM 337 CB ASN A 406 11.390 -0.707 33.385 1.00 40.04 c
ATOM 338 CG ASN A 406 11.785 -1.957 34.152 1.00 40.82 c
ATOM 339 OD1 ASN A 406 10.958 -2.843 34.387 1.00 42.04 0
ATOM 340 ND2 ASN A 406 13.052 -2.037 34.544 1.00 40.46 N
ATOM 341 N ASP A 407 12.720 1.440 31.668 00 36.18 N
ATOM 342 CA ASP A 407 12.471 2.295 30.518 00 34.99 C
ATOM 343 C ASP A 407 11.426 1.639 29.617 00 33.61 C
ATOM 344 O ASP A 407 11.015 2.206 28.608 00 33.37 O
ATOM 345 CB ASP A 407 13.769 2.623 29.767 00 36.20 C
ATOM 346 CG AS? A 407 14.282 1.464 28.930 00 36.77 C
ATOM 347 OD1 ASP A 407 13.963 0.295 29.238 .00 36.79 O
ATOM 348 OD2 ASP A 407 15.024 1.634 27.939 .00 37.17 O
ATOM 349 N GLY A 408 11.000 0.436 30.002 .00 32.33 N
ATOM 350 CA GLY A 408 9.895 -0.242 29.348 .00 30.59 C
ATOM 351 C GLY A 408 10.272 -1.129 28.177 .00 30.90 C
ATOM 352 O GLY A 408 9.395 -1.718 27.544 .00 32.00 O
ATOM 353 N LYS A 409 11.567 -1.221 27.883 .00 29.83 N
ATOM 354 CA LYS A 409 12.058 -2.094 26.822 .00 29.71 C
ATOM 355 C LYS A 409 12.231 -3.524 27.333 .00 29.97 C
ATOM 356 O LYS A 409 13.086 -3.790 28.179 00 28.84 O
ATOM 357 CB LYS A 409 13.389 -1.576 26.268 .00 30.12 C
ATOM 358 N TYR A 410 11.413 -4.438 26.816 .00 30.78 N
ATOM 359 CA TYR A 410 11.480 -5.845 27.202 ,00 32.08 C
ATOM 360 C TYR A 410 11.808 -6.734 26.013 .00 32.01 C
ATOM 361 O TYR A 410 11.448 -6.425 24.879 ,00 33.03 0
ATOM 362 CB TYR A 410 10.167 -6.295 27.853 .00 32.65 c
ATOM 363 CG TYR A 410 10.045 -5.887 29.303 .00 32.85 c
ATOM 364 CD1 TYR A 410 9.988 -4.546 29.660 .00 33.05 c
ATOM 365 CD2 TYR A 410 993 -6.838 30.316 .00 33.65 c
ATOM 366 CE1 TYR A 410 879 -4.162 30.976 .00 33.63 c ATOM 367 CE2 TYR A 410 9.884 -6.459 31..648 1..00 33.65 C
ATOM 368 CZ TYR A 410 9. .828 -5 .118 31. .966 1. .00 33 .62 c
ATOM 369 OH TYR A 410 9 .726 -4 .711 33, .272 1. .00 34 .16 0
ATOM 370 N VAL A 411 12. .499 -7 .838 26. .285 1, .00 33 .43 N
ATOM 371 CA VAL A 411 12, .900 -8 .789 25. .251 1. .00 33 .30 C
ATOM 372 C VAL A 411 12, .559 -10 .215 25. .673 1, .00 34. .01 C
ATOM 373 O VAL A 411 12, .547 -10 .531 26. .867 1. .00 33, .73 O
ATOM 374 CB VAL A 411 14 .416 -8 .720 24, .972 1. .00 34. .13 C
ATOM 375 CGI VAL A 411 14, .778 -7 .437 24, .239 1. .00 33. .64 c
ATOM 376 CG2 VAL A 411 15 .208 -8 .846 26, .269 1. .00 34. .73 c
ATOM 377 N CYS A 412 12 .286 -11 .071 24. .692 1. .00 33. .99 N
ATOM 378 CA CYS A 412 12 .009 -12 .477 24. .965 1. .00 34. .00 C
ATOM 379 C CYS A 412 13 .309 -13. .214 25, .273 1. .00 33, .89 C
ATOM 380 O CYS A 412 14 .195 -13 .303 24, .426 1. .00 34, .20 O
ATOM 381 CB CYS A 412 11 .282 -13 .130 23, .784 1. .00 33. .07 C
ATOM 382 SG CYS A 412 10 .560 -14 .753 24. .146 1. .00 32 .90 S
ATOM 383 N GLU A 413 13 .421 -13 .730 26. .494 1. .00 33. .47 N
ATOM 384 CA GLU A 413 14 .642 -14 .396 26. .940 1. .00 34. .45 C
ATOM 385 C GLU A 413 14, .588 -15, .897 26. .660 1. .00 33. .82 C
ATOM 386 O GLU A 413 13 .530 -16 .440 26. .340 1. .00 33. .21 O
ATOM 387 CB GLU A 413 14, .879 -14, .132 28. .432 1. .00 36. .26 C
ATOM 388 CG GLU A 413 16 .292 -14 .415 28, .923 1. .00 38. .73 C
ATOM 389 CD GLU A 413 17, .306 -13 .385 28. .457 1. .00 39. .75 C
ATOM 390 OE1 GLU A 413 17, .203 -12 .210 28. .878 1. .00 40. .09 O
ATOM 391 OE2 GLU A 413 18, .216 -13 .753 27. .676 1. .00 40. .64 O
ATOM 392 N ALA A 414 15 .734 -16 .561 26, .788 1. .00 33. .46 N
ATOM 393 CA ALA A 414 15, .843 -17, .984 26. .484 1. .00 32. .79 C
ATOM 394 C ALA A 414 14 .994 -18 .851 27. .412 1. .00 32. .98 C
ATOM 395 O ALA A 414 14 .748 -20 .022 27. .123 1. .00 32. .92 O
ATOM 396 CB ALA A 414 17 .299 -18 .420 26. .533 1. .00 32. .80 C
ATOM 397 N ASP A 415 14 .543 -18 .272 28. .522 1. .00 33 .51 N
ATOM 398 CA ASP A 415 13 .761 -19 .012 29. .512 1, .00 33. .64 C
ATOM 399 C ASP A 415 12 .252 -18 .805 29. .369 1. .00 33 .19 C
ATOM 400 O ASP A 415 11 .483 -19 .179 30. .254 1. .00 33 .34 O
ATOM 401 CB ASP A 415 14 .212 -18 .663 30. .934 1, .00 34 .28 C
ATOM 402 CG ASP A 415 14 .618 -17 .210 31. .080 1. .00 35, .61 C
ATOM 403 OD1 ASP A 415 13 .799 -16 .319 30. .755 1. .00 35, .90 0
ATOM 404 OD2 ASP A 415 15, .737 -16 .864 31. .515 1. .00 36, .18 o
ATOM 405 N GLY A 416 11 .834 -18 .214 28. .256 1. .00 33. .22 N
ATOM 406 CA GLY A 416 10 .422 -18 .027 27. .973 1. .00 33. .22 C
ATOM 407 C GLY A 416 9 .811 -16 .805 28. .632 1. .00 33. .36 C
ATOM 408 O GLY A 416 8 .588 -16 .658 28. .658 1. .00 33. .20 O
ATOM 409 N PHE A 417 10 .657 -15 .918 29. .148 1. .00 33. .86 N
ATOM 410 CA PHE A 417 10 .188 -14 .758 29. .899 1. .00 33. .98 C
ATOM 411 C PHE A 417 10 .529 -13 .441 29. .217 1. .00 33. .00 C
ATOM 412 O PHE A 417 11 .609 -13 .289 28. .656 1. .00 33. .31 O
ATOM 413 CB PHE A 417 10 .805 -14 .747 31. .301 1. .00 35. .66 C
ATOM 414 CG PHE A 417 10 .224 -15 .767 32. .234 1. .00 37. .23 C
ATOM 415 CD1 PHE A 417 10 .748 -17 .047 32. .296 1. .00 37. .18 C
ATOM 416 CD2 PHE A 417 9 .164 -15 .440 33. .064 1. .00 38. .54 C
ATOM 417 CE1 PHE A 417 10 .218 -17 .989 33. .160 1. .00 38. .01 C
ATOM 418 CE2 PHE A 417 8 .629 -16 .379 33. .932 1. .00 38. .34 c
ATOM 419 CZ PHE A 417 9 .159 -17 .655 33. .979 1. .00 38. .30 c
ATOM 420 N TRP A 418 9 .606 -12 .487 29. .287 1. .00 31. .71 N
ATOM 421 CA TRP A 418 9 .888 -11 .112 28. .897 1. .00 31. .57 C
ATOM 422 C TRP A 418 10 .737 -10 .455 29. .984 1. .00 31 .42 c
ATOM 423 O TRP A 418 10 .352 -10 .454 31. .152 1. .00 31 .54 0
ATOM 424 CB TRP A 418 8 .583 -10 .331 28. .728 1. .00 30. .53 c
ATOM 425 CG TRP A 418 7 .765 -10 .764 27. .555 1. .00 30. .64 c
ATOM 426 CD1 TRP A 418 6 .622 -11 .515 27. .578 1. .00 30. .23 c
ATOM 427 CD2 TRP A 418 8 .023 -10 .473 26. .176 1. .00 29. .88 c
ATOM 428 NE1 TRP A 418 6 .155 -11 .706 26. .298 1. .00 29. .58 N
ATOM 429 CE2 TRP A 418 6 .999 -11 .079 25. .418 1. .00 29 .20 c
ATOM 430 CE3 TRP A 418 9 .021 -9 .760 25. .500 1. .00 30 .35 c
ATOM 431 CZ2 TRP A 418 6 .942 -10 .990 24, .028 1. .00 29 .18 c
ATOM 432 CZ3 TRP A 418 8 .962 -9 .673 24, .115 1, .00 28 .73 c
ATOM 433 CH2 TRP A 418 7 .931 -10 .286 23. .398 1. .00 28. .66 c
ATOM 434 N THR A 419 11 .895 -9 .912 29, .616 1. .00 30 .99 N
ATOM 435 CA THR A 419 12 .773 -9 .302 30. .615 1. .00 30 .49 C
ATOM 436 C THR A 419 13 .283 -7 .923 30. .208 1. .00 30. .41 C
ATOM 437 O THR A 419 13 .579 -7 .672 29. .038 1. .00 29. .42 O
ATOM 438 CB THR A 419 13 .942 -10 .256 31, .009 1. .00 30. .23 C ATOM 439 OG1 THR A 419 15.200 -9.678 30.637 1.00 30.33 O
ATOM 440 CG2 THR A 419 13.891 -11.529 30.204 1.00 28.44 C
ATOM 441 N SER A 420 13.367 -7.031 31.194 1.00 30.42 N
ATOM 442 CA SER A 420 13.756 -5.640 30.973 1.00 30.51 C
ATOM 443 C SER A 420 15.246 -5.485 30.702 1.00 30.00 C
ATOM 444 O SER A 420 16.002 -6.453 30.749 1.00 29.92 0
ATOM 445 CB SER A 420 13.366 -4.780 32.182 1.00 30.55 c
ATOM 446 OG SER A 420 14.262 -4.982 33.266 1. .0000 2299. .8855 0
ATOM 447 N SER A 421 15.657 -4.250 30.431 1. .0000 3300. .8855 N
ATOM 448 CA SER A 421 17.064 -3 .926 30.214 1. .0000 3300. .9911 c
ATOM 449 C SER A 421 17.901 -4.223 31.456 1. , 0000 3300. .8877 c
ATOM 450 O SER A 421 19.123 -4.370 31.375 1. , 0000 3300. .8888 0
ATOM 451 CB SER A 421 17.214 -2.454 29.818 1. , 0000 3311. .2266 c
ATOM 452 N LYS A 422 17.236 -4.311 32.604 1. ..0000 3300. .5577 N
ATOM 453 CA LYS A 422 17.911 -4.600 33.864 1...0000 3300. .3355 C
ATOM 454 C LYS A 422 17.837 -6.088 34.191 1...0000 3311. .2266 C
ATOM 455 O LYS A 422 18.383 -6.537 35.197 1...0000 3300. .6611 O
ATOM 456 CB LYS A 422 17.303 -3.776 35.002 1. .00 29. .53 C
ATOM 457 CG LYS A 422 17.559 275 34.896 1. 00 28, .75 c
ATOM 458 CD LYS A 422 17.229 560 36.198 1. 00 27, .98 c
ATOM 459 N GLY A 423 17.154 -6.846 33.335 1. ,00 32, .88 N
ATOM 460 CA GLY A 423 17.027 -8.284 33.502 1. 00 33, .47 C
ATOM 461 C GLY A 423 15.957 -8.687 34.499 1. ,00 33, .89 C
ATOM 462 O GLY A 423 16.026 -9.762 35.099 1. .00 33, .50 O
ATOM 463 N GLU A 424 14.964 -7.819 34.673 1. ,00 34. .05 N
ATOM 464 CA GLU A 424 13.876 -8.071 35.613 1. ,00 35. .27 C
ATOM 465 C GLU A 424 12.721 -8.816 34.950 1. .00 36. .74 C
ATOM 466 O GLU A 424 12.315 -8.492 33.832 1. .00 37. .55 O
ATOM 467 CB GLU A 424 13.367 -6.757 36.211 1. .00 34. .07 C
ATOM 468 CG GLU A 424 14.372 -6.041 37.098 1. .00 33. .37 C
ATOM 469 CD GLU A 424 14.187 -4.537 37.080 .00 32.78 c
ATOM 470 OE1 GLU A 424 13.843 -3.995 36.002 .00 31.72 O
ATOM 471 OE2 GLU A 424 14.382 -3.902 38.141 .00 31.37 0
ATOM 472 N LYS A 425 12.187 -9.812 35.649 .00 38.04 N
ATOM 473 CA LYS A 425 11.057 -10.574 35.130 .00 39.37 C
ATOM 474 C LYS A 425 9.725 -9.862 35.401 .00 39.71 C
ATOM 475 O LYS A 425 8.710 -10.165 34.774 .00 42.52 O
ATOM 476 CB LYS A 425 11.051 -11.989 35.714 .00 39.20 C
ATOM 477 CG LYS A 425 12.391 -12.728 35.606 .00 38.69 C
ATOM 478 CD LYS A 425 12.934 -12.741 34.173 .00 37.34 C
ATOM 479 CE LYS A 425 14.253 -13.518 34.073 .00 35.96 C
ATOM 480 NZ LYS A 425 4 .603 -13.912 32.670 .00 33.87 N
ATOM 481 N SER A 426 9 .744 -8.902 36.320 .00 37.68 N
ATOM 482 CA SER A 426 8 .541 -8.169 36.703 .00 36.50 C
ATOM 483 C SER A 426 8 .268 -6.964 35.800 .00 35.62 C
ATOM 484 O SER A 426 9 .160 -6.474 35.106 .00 34.95 O
ATOM 485 CB SER A 426 8 .647 -7.707 38.157 .00 37.03 C
ATOM 486 OG SER A 426 9 .869 -7.024 38.388 .00 37.45 O
ATOM 487 N LEU A 427 7 .025 -6.491 35.829 .00 34.25 N
ATOM 488 CA LEU A 427 6 .587 -5.372 35.000 .00 33.54 C
ATOM 489 C LEU A 427 77 .100 -4.034 35.536 .00 31.20 C
ATOM 490 O LEU A 427 77 .459 -3.929 36.710 .00 31.78 O
ATOM 491 C3 LEU A 427 55 .057 -5.334 34.950 .00 33.69 C
ATOM 492 CG LEU A 427 44 .316 -6.127 33.875 1 .00 34 .23 C
ATOM 493 CD1 LEU A 427 22 .929 -6.503 34.373 1 .00 33 .90 C
ATOM 494 CD2 LEU A 427 44 .210 -5.313 32.606 1 .00 34 .72 C
ATOM 495 N PRO A 428 77 .134 -3.017 34.676 1 .00 28 .41 N
ATOM 496 CA PRO A 428 77 .342 -1.640 35.126 1 .00 26 .72 C
ATOM 497 C PRO A 428 66 .053 -1.170 35.779 1 .00 25 .61 C
ATOM 498 O PRO A 428 55 .054 -1.883 35.699 1 .00 24 .66 O
ATOM 499 CB PRO A 428 77 .588 -0.878 33.820 1 .00 26. .75 C
ATOM 500 CG PRO A 428 66 .860 -1.661 32.786 1 .00 26 .81 C
ATOM 501 CD PRO A 428 66 .976 -3.101 33.211 1 .00 28 .56 C
ATOM 502 N VAL A 429 66 .067 -0.004 36.413 1 .0000 24 .67 N
ATOM 503 CA VAL A 429 44 .882 0.487 37.108 1 .0000 23 .33 C
ATOM 504 C VAL A 429 44 .492 1.870 36.594 00 23.40 C
ATOM 505 O VAL A 429 55 .334 2.765 36.506 23.83 O
ATOM 506 CB VAL A 429 55 .106 0.555 38.644 22.89 C
ATOM 507 CGI VAL A 429 33 .996 1.357 39.321 22.20 C
ATOM 508 CG2 VAL A 429 55 .210 -0.846 39.256 20.21 C
ATOM 509 N CYS A 430 33 .221 2.035 36.242 00 22.54 N
ATOM 510 CA CYS A 430 2.680 3.348 35.924 1.00 22.26 C ATOM 511 C CYS A 430 2 120 3 961 37 205 1 00 23 88 c
ATOM 512 O CYS A 430 1 178 3 434 37 808 1 00 24 29 0
ATOM 513 CB CYS A 430 1 606 3 249 34 843 1 00 24 78 c
ATOM 514 SG CYS A 430 2 265 2 853 33 197 1 00 26 45 s
ATOM 515 N GLU A 431 2 722 5 069 37 625 1 00 22 74 N
ATOM 516 CA GLU A 431 2 376 5 704 38 883 1 00 22 95 c
ATOM 517 C GLU A 431 1 824 7 101 38 633 1 00 23 66 c
ATOM 518 O GLU A 431 2 446 7 906 37 938 1 00 22 24 0
ATOM 519 CB GLU A 431 3 614 5 767 39 780 1 00 23 72 c
ATOM 520 CG GLU A 431 3 481 6 643 41 012 1 00 23 98 c
ATOM 521 CD GLU A 431 4 671 6 501 41 941 1 00 25 51 c
ATOM 522 OE1 GLU A 431 4 981 5 353 42 328 1 00 26 59 0
ATOM 523 OE2 GLU A 431 5 296 7 530 42 286 1 00 25 55 0
ATOM 524 N PRO A 432 0 648 7 383 39 190 1 00 25 44 N
ATOM 525 CA PRO A 432 0 021 8 699 39 028 1 00 25 71 C
ATOM 526 C PRO A 432 0 963 9 809 39 479 1 00 26 43 C
ATOM 527 O PRO A 432 1 579 9 693 40 530 1 00 28 09 o
ATOM 528 CB PRO A 432 1 212 8 623 39 942 1 00 25 34 c
ATOM 529 CG PRO A 432 1 506 7 144 40 071 1 00 25 52 c
ATOM 530 CD PRO A 432 0 173 6 456 39 993 1 00 24 15 c
ATOM 531 N VAL A 433 1 098 10 854 38 670 1 00 26 67 N
ATOM 532 CA VAL A 433 1 845 12 038 39 071 1 00 24 86 c
ATOM 533 C VAL A 433 1 169 12 636 40 313 1 00 22 42 c
ATOM 534 O VAL A 433 0 059 12 678 40 387 1 00 26 08 0
ATOM 535 CB VAL A 433 1 878 13 055 37 913 1 00 27 35 c
ATOM 536 CGI VAL A 433 2 534 14 360 38 352 1 00 28 16 c
ATOM 537 CG2 VAL A 433 2 641 12 452 36 722 1 00 26 41 c
ATOM 538 N CYS A 434 1 946 13 077 41 294 1 00 12 19 N
ATOM 539 CA CYS A 434 1 347 13 549 42 542 1 00 10 08 C
ATOM 540 C CYS A 434 1 744 14 980 42 877 1 00 9 37 C
ATOM 541 O CYS A 434 2 752 15 485 42 379 1 00 8 79 O
ATOM 542 CB CYS A 434 1 708 12 610 43 698 1 00 7 91 c
ATOM 543 SG CYS A 434 3 473 12 567 44 063 1 00 8 15 s
ATOM 544 N GLY A 435 0 938 15 638 43 703 1 00 9 31 N
ATOM 545 CA GLY A 435 1 308 16 925 44 270 1 00 8 50 C
ATOM 546 C GLY A 435 1 189 18 145 43 369 1 00 10 25 C
ATOM 547 O GLY A 435 1 752 19 200 43 661 1 00 10 27 O
ATOM 548 N LEU A 436 0 464 18 010 42 268 1 00 10 23 N
ATOM 549 CA LEU A 436 0 167 19 157 41 417 1 00 12 37 C
ATOM 550 C LEU A 436 0 913 20 025 42 055 1 00 11 64 C
ATOM 551 O LEU A 436 1 820 19 511 42 718 1 00 11 59 O
ATOM 552 CB LEU A 436 0 289 18 699 40 032 1 00 13 21 C
ATOM 553 CG LEU A 436 0 735 17 893 39 235 1 00 14 51 C
ATOM 554 CD1 LEU A 436 0 063 17 307 38 014 1 00 16 09 C
ATOM 555 CD2 LEU A 436 1 933 18 757 38 842 1 00 14 74 C
ATOM 556 N SER A 437 0 809 21 338 41 860 1 00 10 54 N
ATOM 557 CA SER A 437 1 779 22 271 42 410 1 00 10 41 C
ATOM 558 C SER A 437 1 884 23 529 41 562 1 00 13 02 C
ATOM 559 O SER A 437 0 887 24 013 41 037 1 00 12 96 O
ATOM 560 CB SER A 437 1 410 22 656 43 838 1 00 9 80 C
ATOM 561 OG SER A 437 2 366 23 551 44 382 1 00 9 36 O
ATOM 562 N ALA A 438 3 097 24 061 41 442 1 00 15 00 N
ATOM 563 CA ALA A 438 3 305 25 332 40 761 1 00 16 67 C
ATOM 564 C ALA A 438 2 846 26 489 41 644 1 00 19 94 C
ATOM 565 O ALA A 438 2 857 27 640 41 221 1 00 21 64 O
ATOM 566 CB ALA A 438 4 768 25 499 40 371 1 00 16 55 C
ATOM 567 N ARG A 439 2 450 26 171 42 876 1 00 24 08 N
ATOM 568 CA ARG A 439 1 842 27 139 43 789 1 00 27 28 C
ATOM 569 C ARG A 439 0 355 27 310 43 477 1 00 31 29 C
ATOM 570 O ARG A 439 0 265 28 296 43 884 1 00 32 36 O
ATOM 571 CB ARG A 439 1 972 26 666 45 236 1 00 25 01 C
ATOM 572 CG ARG A 439 3 315 26 892 45 878 1 00 23 18 C
ATOM 573 CD ARG A 439 3 363 26 432 47 326 1 00 20 95 C
ATOM 574 NE ARG A 439 2 974 27 501 48 239 1 00 20 72 N
ATOM 575 CZ ARG A 439 2 330 27 319 49 388 1 00 19 29 C
ATOM 576 NH1 ARG A 439 1 984 26 096 49 779 1 00 19 16 N
ATOM 577 NH2 ARG A 439 2 029 28 365 50 147 1 00 16 30 N
ATOM 578 N THR A 440 0 209 26 327 42 776 1 00 35 91 N
ATOM 579 CA THR A 440 1 630 26 305 42 411 1 00 38 71 C
ATOM 580 C THR A 440 2 486 25 594 43 454 1 00 39 07 C
ATOM 581 O THR A 440 3 284 24 718 43 112 1 00 39 17 0
ATOM 582 CB THR A 440 2 180 27 730 42 118 1 00 39 01 c ATOM 583 N ILE A 445 12 841 24 648 58 415 1 00 4 34 N
ATOM 584 CA ILE A 445 11 715 25 569 58 304 1 00 6 34 C
ATOM 585 C ILE A 445 12 066 26 971 58 833 1 00 8 46 C
ATOM 586 O ILE A 445 12 957 27 650 58 307 1 00 8 98 O
ATOM 587 CB ILE A 445 11 219 25 652 56 831 1 00 6 61 C
ATOM 588 CGI ILE A 445 10 722 24 289 56 339 1 00 5 54 C
ATOM 589 CG2 ILE A 445 10 137 26 725 56 680 1 00 5 97 C
ATOM 590 CD1 ILE A 445 -9 529 23 728 57 125 1 00 4 99 C
ATOM 591 N TYR A 446 11 342 27 393 59 865 1 00 8 51 N
ATOM 592 CA TYR A 446 11 552 28 676 60 530 1 00 9 79 C
ATOM 593 C TYR A 446 10 564 29 719 59 994 1 00 10 48 C
ATOM 594 O TYR A 446 -9 368 29 460 59 910 1 00 8 35 O
ATOM 595 CB TYR A 446 11 351 28 478 62 030 1 00 11 08 C
ATOM 596 CG TYR A 446 11 778 29 615 62 934 1 00 13 16 C
ATOM 597 CD1 TYR A 446 12 849 29 462 63 809 1 00 13 53 C
ATOM 598 CD2 TYR A 446 11 077 30 819 62 960 1 00 13 14 c
ATOM 599 CEl TYR A 446 13 232 30 483 64 656 1 00 15 00 c
ATOM 600 CE2 TYR A 446 11 453 31 846 63 807 1 00 13 23 c
ATOM 601 CZ TYR A 446 12 529 31 673 64 652 1 00 14 95 c
ATOM 602 OH TYR A 446 12 912 32 690 65 496 1 00 16 15 O
ATOM 603 N GLY A 447 11 075 30 893 59 624 1 00 12 39 N
ATOM 604 CA GLY A 447 10 238 31 988 59 162 1 00 11 24 C
ATOM 605 C GLY A 447 -9 563 31 757 57 820 1 00 12 59 C
ATOM 606 O GLY A 447 -8 502 32 316 57 545 1 00 12 64 O
ATOM 607 N GLY A 448 10 174 30 937 56 971 1 00 12 88 N
ATOM 608 CA GLY A 448 -9 593 30 649 55 675 1 00 11 83 C
ATOM 609 C GLY A 448 10 286 31 335 54 515 1 00 11 53 C
ATOM 610 O GLY A 448 10 926 32 368 54 676 1 00 9 70 O
ATOM 611 N GLN A 449 10 146 30 752 53 334 1 00 12 28 N
ATOM 612 CA GLN A 449 10 815 31 267 52 153 1 00 14 47 C
ATOM 613 C GLN A 449 11 153 30 126 51 202 1 00 12 26 C
ATOM 614 0 GLN A 449 10 686 29 000 51 382 1 00 11 56 O
ATOM 615 CB GLN A 449 -9 947 32 311 51 454 1 00 17 73 C
ATOM 616 CG GLN A 449 -8 694 31 740 50 849 1 00 21 98 C
ATOM 617 CD GLN A 449 -7 684 32 811 50 518 1 00 26 36 C
ATOM 618 OE1 GLN A 449 -7 810 33 495 49 501 1 00 28 68 O
ATOM 619 NE2 GLN A 449 -6 679 32 965 51 373 1 00 27 30 N
ATOM 620 N LYS A 450 11 965 30 430 50 196 1 00 10 17 N
ATOM 621 CA LYS A 450 12 513 29 422 49 292 1 00 9 90 C
ATOM 622 C LYS A 450 11 481 28 887 48 312 1 00 9 21 C
ATOM 623 O LYS A 450 10 803 29 655 47 623 1 00 10 04 0
ATOM 624 CB LYS A 450 13 704 29 998 48 511 1 00 9 14 c
ATOM 625 CG LYS A 450 14 409 28 982 47 617 1 00 9 41 c
ATOM 626 CD LYS A 450 15 845 29 387 47 302 1 00 10 89 c
ATOM 627 CE LYS A 450 15 907 30 364 46 137 1 00 11 74 c
ATOM 628 NZ LYS A 450 17 296 30 589 45 643 1 00 12 07 N
ATOM 629 N ALA A 451 11 383 27 566 48 241 1 00 9 07 N
ATOM 630 CA ALA A 451 10 510 26 911 47 274 1 00 8 23 c
ATOM 631 C ALA A 451 11 044 27 033 45 848 1 00 9 14 c
ATOM 632 O ALA A 451 12 251 27 126 45 628 1 00 6 81 0
ATOM 633 CB ALA A 451 10 326 25 450 47 637 1 00 6 47 c
ATOM 634 N LYS A 452 10 128 27 027 44 884 1 00 11 13 N
ATOM 635 CA LYS A 452 10 485 27 055 43 476 1 00 13 97 c
ATOM 636 C LYS A 452 10 310 25 658 42 910 1 00 14 02 c
ATOM 637 O LYS A 452 -9 653 24 823 43 520 1 00 16 31 0
ATOM 638 CB LYS A 452 -9 600 28 052 42 718 1 00 15 51 c
ATOM 639 CG LYS A 452 -9 992 29 505 42 943 1 00 18 10 c
ATOM 640 CD LYS A 452 -8 939 30 460 42 410 1 00 21 06 c
ATOM 641 CE LYS A 452 -9 570 31 752 41 917 1 00 22 61 c
ATOM 642 NZ LYS A 452 -9 046 32 159 40 580 1 00 23 65 N
ATOM 643 N PRO A 453 10 913 25 395 41 756 1 00 14 65 N
ATOM 644 CA PRO A 453 10 721 24 114 41 069 1 00 13 52 C
ATOM 645 C PRO A 453 -9 236 23 871 40 847 1 00 12 28 C
ATOM 646 O PRO A 453 -8 525 24 791 40 450 1 00 11 52 O
ATOM 647 CB PRO A 453 11 434 24 327 39 733 1 00 13 27 C
ATOM 648 CG PRO A 453 12 469 25 358 40 029 1 00 14 37 C
ATOM 649 CD PRO A 453 11 833 26 289 41 029 1 00 14 24 C
ATOM 650 N GLY A 454 -8 774 22 660 41 137 1 00 11 35 N
ATOM 651 CA GLY A 454 -7 376 22 313 40 966 1 00 10 78 C
ATOM 652 C GLY A 454 -6 466 22 691 42 122 1 00 11 19 C
ATOM 653 O GLY A 454 -5 294 22 313 42 130 1 00 11 27 O
ATOM 654 N ASP A 455 -6 983 23 444 43 091 1 00 9 92 N ATOM 655 CA ASP A 455 -6 179 23 834 44 248 1 00 10 48 c
ATOM 656 C ASP A 455 -5 787 22 607 45 071 1 00 9 00 c
ATOM 657 O ASP A 455 -4 611 22 408 45 380 1 00 8 89 0
ATOM 658 CB ASP A 455 -6 934 24 827 45 133 1 00 12 63 c
ATOM 659 CG ASP A 455 -6 795 26 271 44 656 1 00 13 82 c
ATOM 660 OD1 ASP A 455 -6 051 26 514 43 678 1 00 13 03 0
ATOM 661 OD2 ASP A 455 -7 395 27 224 45 202 1 00 13 74 0
ATOM 662 N PHE A 456 -6 785 21 795 45 411 1 00 7 62 N
ATOM 663 CA PHE Ά 456 -6 606 20 595 46 216 1 00 7 44 C
ATOM 664 C PHE A 456 -7 252 19 384 45 534 1 00 8 96 C
ATOM 665 O PHE A 456 -8 294 18 899 45 973 1 00 9 60 0
ATOM 666 CB PHE A 456 -7 224 20 811 47 598 1 00 6 16 c
ATOM 667 CG PHE A 456 -6 704 22 035 48 307 1 00 7 30 c
ATOM 668 CD1 PHE A 456 -7 366 23 246 48 204 1 00 5 39 c
ATOM 669 CD2 PHE A 456 -5 544 21 970 49 066 1 00 5 97 c
ATOM 670 CEl PHE A 456 -6 885 24 372 48 846 1 00 5 55 c
ATOM 671 CE2 PHE A 456 -5 058 23 084 49 713 1 00 6 31 c
ATOM 672 CZ PHE A 456 -5 729 24 295 49 600 1 00 6 67 c
ATOM 673 N PRO A 457 -6 643 18 902 44 454 1 00 9 76 N
ATOM 674 CA PRO A 457 -7 .268 17 867 43 621 1 00 10 27 C
ATOM 675 C PRO A 457 -7 276 16 481 44 279 1 00 11 01 C
ATOM 676 O PRO A 457 -7 979 15 586 43 813 1 00 12 21 o
ATOM 677 CB PRO A 457 -6 409 17 870 42 356 1 00 9 34 C
ATOM 678 CG PRO A 457 -5 076 18 406 42 785 1 00 8 36 c
ATOM 679 CD PRO A 457 -5 325 19 319 43 939 1 00 10 50 c
ATOM 680 N TRP A 458 -6 514 16 318 45 354 1 00 9 19 N
ATOM 681 CA TRP A 458 -6 524 15 085 46 129 1 00 8 98 C
ATOM 682 C TRP A 458 -7 641 15 087 47 179 1 00 9 81 C
ATOM 683 0 TRP A 458 -7 892 14 064 47 821 1 00 9 56 0
ATOM 684 CB TRP A 458 -5 193 14 926 46 840 1 00 6 17 c
ATOM 685 CG TRP A 458 -4 817 16 172 47 556 1 00 6 45 c
ATOM 686 CD1 TRP A 458 -5 291 16 607 48 773 1 00 5 45 c
ATOM 687 CD2 TRP A 458 -3 914 17 180 47 096 1 00 4 57 c
ATOM 688 NE1 TRP A 458 -4 .724 17 818 49 093 1 00 5 78 N
ATOM 689 CE2 TRP A 458 -3 873 18 192 48 082 1 00 5 68 C
ATOM 690 CE3 TRP A 458 -3 125 17 331 45 953 1 00 4 12 C
ATOM 691 CZ2 TRP A 458 -3 070 19 324 47 955 1 00 5 76 C
ATOM 692 CZ3 TRP A 458 -2 334 18 459 45 831 1 00 4 28 C
ATOM 693 CH2 TRP A 458 -2 310 19 434 46 823 1 00 5 33 C
ATOM 694 N GLN A 459 -8 300 16 230 47 361 1 00 10 06 N
ATOM 695 CA GLN A 459 -9 300 16 355 48 412 1 00 10 71 C
ATOM 696 C GLN A 459 10 458 15 393 48 188 1 00 11 43 C
ATOM 697 O GLN A 459 11 037 15 335 47 105 1 00 10 44 O
ATOM 698 CB GLN A 459 -9 811 17 796 48 540 1 00 10 45 C
ATOM 699 CG GLN A 459 10 834 17 983 49 664 1 00 9 66 C
ATOM 700 CD GLN A 459 10 193 18 098 51 046 1 00 10 97 C
ATOM 701 OE1 GLN A 459 10 858 17 879 52 064 1 00 12 81 O
ATOM 702 NE2 GLN A 459 -8 916 18 446 51 086 1 00 8 00 N
ATOM 703 N VAL A 460 10 786 14 639 49 225 1 00 9 67 N
ATOM 704 CA VAL Λ 460 11 819 13 629 49 131 1 00 11 04 C
ATOM 705 C VAL A 460 12 856 13 870 50 227 1 00 10 62 C
ATOM 706 O ΛT. 460 12 505 14 205 51 357 1 00 10 37 0
ATOM 707 CB VAL A 460 11 193 12 206 49 252 1 00 11 65 c
ATOM 708 CGI VAL -n 460 12 189 11 211 49 777 1 00 11 83 c
ATOM 709 CG2 VAL A 460 10 650 11 746 47 907 1 00 12 24 c
ATOM 710 N LEU A 461 14 128 13 725 49 878 1 00 10 36 N
ATOM 711 CA LEU A 461 15 216 13 792 50 850 1 00 10 21 C
ATOM 712 C LEU A 461 15 675 12 385 51 233 1 00 12 00 c
ATOM 713 O LEU A 461 15 897 11 540 50 365 1 00 10 00 0
ATOM 714 CB LEU A 461 16 394 14 579 50 278 1 00 8 70 c
ATOM 715 CG LEU A 461 17 658 14 658 51 139 1 00 9 46 c
ATOM 716 CD1 LEU A 461 17 464 15 625 52 302 1 00 7 51 c
ATOM 717 CD2 LEU A 461 18 862 15 050 50 283 1 00 9 06 c
ATOM 718 N ILE A 462 15 817 12 150 52 537 1 00 12 27 N
ATOM 719 CA ILE A 462 16 218 10 851 53 065 1 00 12 46 C
ATOM 720 C ILE A 462 17 504 10 981 53 878 1 00 15 06 C
ATOM 721 O ILE A 462 17 547 11 699 54 879 1 00 13 56 O
ATOM 722 CB ILE A 462 15 097 10 259 53 936 1 00 10 58 C
ATOM 723 CGI ILE A 462 13 796 10 176 53 131 1 00 9 72 c
ATOM 724 CG2 ILE A 462 15 514 8 894 54 498 1 00 9 81 c
ATOM 725 CD1 ILE A 462 12 616 9 597 53 898 1 00 7 62 c
ATOM 726 N LEU A 463 18 549 10 285 53 434 1 00 18 09 N ATOM 727 CA LEU A 463 19 865 10 370 54 062 1 00 23 87 c
ATOM 728 C LEU A 463 20 138 9 143 54 927 1 00 27 43 c
ATOM 729 O LEU A 463 19 252 8 315 55 136 1 00 29 43 O
ATOM 730 CB LEU A 463 20 961 10 505 53 001 1 00 23 99 c
ATOM 731 CG LEU A 463 21 009 11 776 52 148 1 00 24 74 c
ATOM 732 CD1 LEU A 463 22 413 11 981 51 618 1 00 26 73 c
ATOM 733 CD2 LEU A 463 20 566 12 994 52 932 1 00 26 61 c
ATOM 734 N GLY A 464 21 363 9 030 55 432 1 00 31 42 N
ATOM 735 CA GLY A 464 21 757 7 865 56 206 1 00 35 17 C
ATOM 736 C GLY A 464 21 821 8 116 57 702 1 00 36 55 C
ATOM 737 O GLY A 464 22 773 7 702 58 366 1 00 38 43 O
ATOM 738 N GLY A 465 20 798 8 775 58 237 1 00 36 75 N
ATOM 739 CA GLY A 465 20 824 9 231 59 615 1 00 36 60 C
ATOM 740 C GLY A 465 21 071 10 724 59 601 1 00 36 39 C
ATOM 741 O GLY A 465 21 864 11 215 58 797 1 00 37 37 O
ATOM 742 N THR A 466 20 394 11 457 60 476 1 00 35 19 N
ATOM 743 CA THR A 466 20 433 12 910 60 409 1 00 34 12 C
ATOM 744 C THR A 466 19 447 13 361 59 335 1 00 32 27 C
ATOM 745 O THR A 466 18 546 12 608 58 968 1 00 32 48 o
ATOM 746 CB THR A 466 20 092 13 528 61 778 1 00 35 77 c
ATOM 747 OG1 THR A 466 18 887 12 940 62 286 1 00 36 06 0
ATOM 748 CG2 THR A 466 21 145 13 138 62 821 1 00 36 05 c
ATOM 749 N THR A 467 19 617 14 575 58 819 1 00 28 06 N
ATOM 750 CA THR A 467 18 755 15 060 57 742 1 00 24 67 C
ATOM 751 C THR A 467 17 281 14 797 58 042 1 00 20 23 C
ATOM 752 O THR A 467 16 784 15 146 59 114 1 00 19 17 O
ATOM 753 CB THR A 467 18 976 16 568 57 483 1 00 25 51 C
ATOM 754 OG1 THR A 467 20 302 16 778 56 990 1 00 26 79 O
ATOM 755 CG2 THR A 467 18 098 17 048 56 330 1 00 25 46 c
ATOM 756 N ALA A 468 16 594 14 174 57 090 1 00 15 95 N
ATOM 757 CA ALA A 468 15 159 13 937 57 214 1 00 13 58 C
ATOM 758 C ALA A 468 14 496 13 959 55 837 1 00 11 95 C
ATOM 759 O ALA A 468 15 174 14 044 54 816 1 00 11 88 O
ATOM 760 CB ALA A 468 14 893 12 617 57 936 1 00 11 41 C
ATOM 761 N ALA A 469 13 171 13 875 55 810 1 00 11 60 N
ATOM 762 CA ALA A 469 12 436 14 001 54 554 1 00 10 24 C
ATOM 763 C ALA A 469 11 253 13 051 54 477 1 00 9 58 C
ATOM 764 O ALA A 469 10 889 12 409 55 464 1 00 9 63 0
ATOM 765 CB ALA A 469 11 956 15 445 54 364 1 00 8 31 c
ATOM 766 N GLY A 470 10 644 12 982 53 295 1 00 7 67 N
ATOM 767 CA GLY A 470 -9 396 12 269 53 127 1 00 7 25 C
ATOM 768 C GLY A 470 -8 550 12 862 52 020 1 00 8 93 C
ATOM 769 O GLY A 470 -8 850 13 930 51 478 1 00 9 11 O
ATOM 770 N ALA A 471 -7 478 12 166 51 673 1 00 7 28 N
ATOM 771 CA ALA A 471 -6 661 12 593 50 550 1 00 6 94 C
ATOM 772 C ALA A 471 -6 342 11 398 49 670 1 00 5 65 C
ATOM 773 O ALA A 471 -5 937 10 345 50 162 1 00 6 03 O
ATOM 774 CB ALA A 471 -5 381 13 269 51 038 1 00 6 12 c
ATOM 775 N LEU A 472 -6 547 11 562 48 370 1 00 4 24 N
ATOM 776 CA LEU A 472 -6 233 10 521 47 404 1 00 4 19 C
ATOM 777 C LEU A 472 -4 735 10 196 47 371 1 00 5 66 C
ATOM 778 O LEU A 472 -3 896 11 094 47 292 1 00 5 .25 O
ATOM 779 CB LEU A 472 -6 701 10 946 46 005 1 00 3 44 C
ATOM 780 CG LEU A 472 -6 459 9 914 44 898 1 00 4 46 C
ATOM 781 CD1 LEU A 472 -7 324 8 673 45 149 1 00 3 03 c
ATOM 782 CD2 LEU A 472 -6 733 10 498 43 516 1 00 3 23 c
ATOM 783 N LEU A 473 -4 412 8 906 47 435 1 00 6 09 N
ATOM 784 CA LEU A 473 -3 065 8 425 47 139 1 00 5 13 c
ATOM 785 C LEU A 473 -3 136 7 503 45 919 1 00 5 82 c
ATOM 786 O LEU A 473 -4 085 6 718 45 778 1 00 4 64 0
ATOM 787 CB LEU A 473 -2 488 7 652 48 328 1 00 6 36 c
ATOM 788 CG LEU A 473 -2 216 8 372 49 659 1 00 6 10 c
ATOM 789 CD1 LEU A 473 -1 767 7 357 50 708 1 00 4 00 c
ATOM 790 CD2 LEU A 473 -1 165 9 465 49 498 1 00 4 88 c
ATOM 791 N TYR A 474 -2 .128 7 577 45 048 1 00 5 66 N
ATOM 792 CA TYR A 474 -2 140 6 793 43 816 1 00 5 06 c
ATOM 793 C TYR A 474 -3 467 7 067 43 120 1 00 5 60 c
ATOM 794 O TYR A 474 -3 968 8 171 43 209 1 00 8 10 0
ATOM 795 CB TYR A 474 -1 903 5 300 44 118 1 00 5 47 c
ATOM 796 CG TYR A 474 -0 568 5 087 44 792 1 00 6 82 c
ATOM 797 CD1 TYR A 474 -0 458 5 107 46 181 1 00 6 56 c
ATOM 798 CD2 TYR A 474 0 594 4 929 44 045 1 00 6 19 c ATOM 799 CEl TYR A 474 0.764 4.949 46.812 1.00 6.95 c
ATOM 800 CE2 TYR A 474 1 .834 4 .767 44 .672 1 .00 7 .42 c
ATOM 801 CZ TYR A 474 1 .905 4 .782 46 .059 1 .00 7 .92 c
ATOM 802 OH TYR A 474 3 .112 4 .633 46 .704 1 .00 9 .27 O
ATOM 803 N ASP A 475 -4. .040 6 .092 42 .428 1 .00 6 .51 N
ATOM 804 CA ASP A 475 -5 .372 6 .275 41 .856 1 .00 7 .02 C
ATOM 805 C ASP A 475 -6 .401 5 .354 42 .512 1 .00 6 .45 C
ATOM 806 O ASP A 475 -7. .480 5 .168 41 .970 1 .00 6 .70 O
ATOM 807 CB ASP A 475 -5. .361 6 .026 40 .341 1 .00 6 .21 C
ATOM 808 CG ASP A 475 -4 .693 4 .717 39 .975 1 .00 8 .96 C
ATOM 809 OD1 ASP A 475 -4 .415 3 .908 40 .889 1 .00 9 .92 0
ATOM 810 OD2 ASP A 475 -4 .393 4 .407 38 .802 1 .00 11 .17 0
ATOM 811 N ASN A 476 -6 .080 4 .768 43 .661 1 .00 5 .08 N
ATOM 812 CA ASN A 476 -7 .003 3 .809 44 .269 1 .00 6 .17 C
ATOM 813 C ASN A 476 -6 .929 3 .676 45 .790 1 .00 6 .69 C
ATOM 814 O ASN A 476 -7 .435 2 .700 46 .352 1 .00 5 .18 O
ATOM 815 CB ASN A 476 -6 .843 2 .432 43 .618 1 .00 7 .75 C
ATOM 816 CG ASN A 476 -5. .446 1. .851 43. .807 1, .00 9, .09 C
ATOM 817 OD1 ASN A 476 -4. .468 2. .579 44. .017 1, .00 9, .27 O
ATOM 818 ND2 ASN A 476 -5. .350 0. .532 43. .737 1, .00 9, .48 N
ATOM 819 N TRP A 477 -6. .308 4. .657 46, .447 1, .00 6, .28 N
ATOM 820 CA TRP A 477 -6. .227 4, .680 47. .905 1, .00 6 .22 C
ATOM 821 C TRP A 477 -6, .631 6. .048 48. .465 1, .00 7. .96 C
ATOM 822 O TRP A 477 -6. .487 7. .076 47. .800 1, .00 7, .00 O
ATOM 823 CB TRP A 477 -4. .817 4. .338 48. .381 1, .00 4, .65 C
ATOM 824 CG TRP A 477 -4. .428 2, .896 48. .219 1, .00 6, .04 C
ATOM 825 CD1 TRP A 477 -3. .808 2, .337 47. .146 1. .00 5, .21 C
ATOM 826 CD2 TRP A 477 -4. .626 1, .835 49, .164 1, .00 4, .86 C
ATOM 827 NE1 TRP A 477 -3. .610 0. .995 47. .360 1, .00 6 .89 N
ATOM 828 CE2 TRP A 477 -4. .100 0. .663 48, .595 1, .00 5 .64 C
ATOM 829 CE3 TRP A 477 -5. .198 1. .758 50. .440 1, .00 6, .68 C
ATOM 830 CZ2 TRP A 477 -4. .131 -0. .572 49. .248 1. .00 6 .35 C
ATOM 831 CZ3 TRP A 477 -5. .227 0. .530 51, .092 1, .00 6 .95 C
ATOM 832 CH2 TRP A 477 -4, .698 -0. .615 50, .494 1, .00 7 .82 C
ATOM 833 N VAL A 478 -7, .125 6. .053 49, .699 1, .00 6 .86 N
ATOM 834 CA VAL A 478 -7, .445 7. .301 50, .367 1, .00 5, .68 C
ATOM 835 C VAL A 478 -6, .841 7. .299 51, .766 1. .00 7, .07 C
ATOM 836 O VAL A 478 -7, .102 6. .393 52. .567 1, .00 9. .13 O
ATOM 837 CB VAL A 478 -8, .978 7. .543 50. .438 1, .00 5, .69 C
ATOM 838 CGI VAL A 478 -9, .304 8. .691 51. .398 1. .00 3, .83 C
ATOM 839 CG2 VAL A 478 -9. .548 7. .831 49. .045 1, .00 4, .38 C
ATOM 840 N LEU A 479 -6, .014 8. .302 52. .045 1. .00 5, .35 N
ATOM 841 CA LEU A 479 -5. .456 8. .499 53. .375 1, .00 7, .43 C
ATOM 842 C LEU A 479 -6, .409 9. .353 54. .203 1, .00 6, .70 C
ATOM 843 O LEU A 479 -6. .853 10. .400 53. .745 1. .00 6, .83 O
ATOM 844 CB LEU A 479 -4, .089 9. .192 53. .285 1, .00 7, .13 C
ATOM 845 CG LEU A 479 -3. .302 9. .385 54. .593 1, .00 8. .23 c
ATOM 846 CD1 LEU A 479 -2. .905 8, .041 55. .195 1, .00 6, .49 c
ATOM 847 CD2 LEU A 479 -2, .060 10. .259 54. ,377 1, .00 5 .99 c
ATOM 848 N THR A 480 -6, .724 8. .906 55. .417 1, .00 6 .66 N
ATOM 849 CA THR A 480 -7. .620 9. .658 56, .295 1. .00 5 .12 C
ATOM 850 C THR A 480 -7, .296 9. .431 57. .771 1, .00 7, .58 C
ATOM 851 O THR A 480 -6, .295 8. .796 58. .104 1, .00 8 .56 O
ATOM 852 CB THR A 480 -9, .096 9. .296 56. .005 1, .00 5, .03 C
ATOM 853 OG1 THR A 480 -9. .951 10, .106 56. .819 1, .00 2, .90 O
ATOM 854 CG2 THR A 480 -9, .417 7, .861 56. .463 1, .00 2, .01 C
ATOM 855 N ALA A 481 -8, .136 9, .962 58. .656 1, .00 5, .69 N
ATOM 856 CA ALA A 481 -7, .960 9. .747 60. ,087 1, .00 7, .11 C
ATOM 857 C ALA A 481 -8, .737 8, .496 60. .509 1. .00 8, .87 C
ATOM 858 O ALA A 481 -9, .828 8, .256 60. .006 1. .00 9, .55 O
ATOM 859 CB ALA A 481 -8. .443 10. .962 60. .876 1. .00 4, .00 c
ATOM 860 N ALA A 482 -8, .179 7. .706 61. .425 1. .00 6, .77 N
ATOM 861 CA ALA A 482 -8. .890 6. .545 61. ,949 1. .00 6, .36 C
ATOM 862 C ALA A 482 -10, .203 6. .951 62. .617 1, .00 7. .74 C
ATOM 863 O ALA A 482 -11, .220 6. .279 62. .451 1. .00 7, .75 O
ATOM 864 CB ALA A 482 -8, .016 5. .767 62. .932 1. .00 4, .63 C
ATOM 865 N HIS A 483 -10. .185 8. .051 63. .368 1. .00 7, .80 N
ATOM 866 CA HIS A 483 -11. .372 8. .456 64. .116 1. .00 7, .88 C
ATOM 867 C HIS A 483 -12, .509 8. .807 63. .166 1. .00 8. .67 C
ATOM 868 O HIS A 483 -13, .687 8. .655 63. .502 1. .00 10, .96 O
ATOM 869 CB HIS A 483 -11. .073 9. .609 65. .089 1. .00 5. .29 C
ATOM 870 CG HIS A 483 -11. .148 10. 968 64. 466 1. ,00 7. .20 C ATOM 871 ND1 HIS A 483 10 039 11 624 63 974 1 00 5 11 N
ATOM 872 CD2 HIS A 483 12 200 11 794 64 251 1 00 8 06 C
ATOM 873 CEl HIS A 483 10 403 12 791 63 476 1 00 6 39 C
ATOM 874 NE2 HIS A 483 11 709 12 921 63 633 1 00 8 86 N
ATOM 875 N ALA A 484 12 151 9 253 61 969 1 00 7 87 N
ATOM 876 CA ALA A 484 13 143 9 664 60 984 1 00 7 33 C
ATOM 877 C ALA A 484 13 927 8 489 60 401 1 00 8 26 C
ATOM 878 O ALA A 484 15 061 8 660 59 969 1 00 6 84 O
ATOM 879 CB ALA A 484 12 480 10 468 59 866 1 00 7 47 C
ATOM 880 N VAL A 485 13 328 7 301 60 378 1 00 7 89 N
ATOM 881 CA VAL A 485 13 952 6 159 59 700 1 00 8 51 C
ATOM 882 C VAL A 485 14 133 4 927 60 581 1 00 9 72 C
ATOM 883 O VAL A 485 14 681 3 915 60 130 1 00 8 07 O
ATOM 884 CB VAL A 485 13 168 5 745 58 425 1 00 7 70 C
ATOM 885 CGI VAL A 485 13 102 6 901 57 431 1 00 8 48 C
ATOM 886 CG2 VAL A 485 11 767 5 256 58 782 1 00 6 34 C
ATOM 887 N TYR "A 486 13 685 5 017 61 830 1 00 9 67 Ή
ATOM 888 CA TYR A 486 13 720 3 875 62 746 1 00 12 09 c
ATOM 889 C TYR A 486 15 113 3 275 62 884 1 00 13 32 c
ATOM 890 O TYR A 486 15 286 2 061 62 786 1 00 13 45 o
ATOM 891 CB TYR A 486 13 194 4 272 64 131 1 00 12 46 c
ATOM 892 CG TYR A 486 13 001 3 105 65 081 1 00 14 21 c
ATOM 893 CD1 TYR A 486 11 780 2 454 65 164 1 00 14 62 c
ATOM 894 CD2 TYR A 486 14 039 2 659 65 895 1 00 14 90 c
ATOM 895 CEl TYR A 486 11 591 1 392 66 026 1 00 15 96 c
ATOM 896 CE2 TYR A 486 13 861 1 593 66 763 1 00 16 46 c
ATOM 897 CZ TYR A 486 12 632 0 964 66 822 1 00 17 58 c
ATOM 898 OH TYR A 486 12 432 -0 096 67 682 1 00 20 56 0
ATOM 899 N GLU A 487 16 106 4 130 63 115 1 00 16 53 N
ATOM 900 CA GLU A 487 17 468 3 665 63 368 1 00 19 72 c
ATOM 901 C GLU A 487 18 079 2 975 62 151 1 00 19 67 c
ATOM 902 O GLU A 487 18 748 1 947 62 275 1 00 19 74 0
ATOM 903 CB GLU A 487 18 356 4 823 63 817 1 00 21 04 c
ATOM 904 CG GLU A 487 19 671 4 384 64 429 1 00 25 53 c
ATOM 905 CD GLU A 487 20 636 5 540 64 616 1 00 28 51 c
ATOM 906 OE1 GLU A 487 20 169 6 669 64 895 1 00 29 76 0
ATOM 907 OE2 GLU A 487 21 862 5 318 64 484 1 00 30 51 0
ATOM 908 N GLN A 488 17 838 3 543 60 977 1 00 20 05 N
ATOM 909 CA GLN A 488 18 378 2 995 59 743 1 00 22 96 c
ATOM 910 C GLN A 488 17 729 1 666 59 371 1 00 22 42 c
ATOM 911 O GLN A 488 18 409 0 739 58 931 1 00 21 32 0
ATOM 912 CB GLN A 488 18 219 3 995 58 602 1 00 25 35 c
ATOM 913 CG GLN A 488 19 449 4 847 58 368 1 00 29 51 c
ATOM 914 CD GLN A 488 19 440 5 501 57 001 1 00 32 65 c
ATOM 915 OE1 GLN A 488 20 049 4 989 56 053 1 00 33 73 0
ATOM 916 NE2 GLN A 488 18 743 6 630 56 890 1 00 33 50 N
ATOM 917 N LYS A 489 16 417 1 576 59 548 1 00 22 30 N
ATOM 918 CA LYS A 489 15 701 0 349 59 222 1 00 23 21 c
ATOM 919 C LYS A 489 16 187 -0 813 60 092 1 00 25 15 c
ATOM 920 O LYS A 489 16 417 -1 921 59 594 1 00 25 74 0
ATOM 921 CB LYS A 489 14 194 0 550 59 372 1 00 21 76 c
ATOM 922 CG LYS A 489 13 549 -0 368 60 379 1 00 23 22 c
ATOM 923 CD LYS A 489 12 310 -1 021 59 825 1 00 23 13 c
ATOM 924 CE LYS A 489 12 524 -2 507 59 634 1 00 23 24 c
ATOM 925 NZ LYS A 489 11 259 -3 266 59 772 1 00 21 59 N
ATOM 926 N HIS A 490 16 365 -0 546 61 387 1 00 26 45 N
ATOM 927 CA HIS A 490 16 765 -1 577 62 342 1 00 27 07 C
ATOM 928 C HIS A 490 18 274 -1 781 62 379 1 00 27 22 C
ATOM 929 O HIS A 490 18 788 -2 529 63 202 1 00 28 07 O
ATOM 930 CB HIS A 490 16 213 -1 279 63 742 1 00 27 04 C
ATOM 931 CG HIS A 490 14 750 -1 562 63 878 1 00 27 59 C
ATOM 932 ND1 HIS A 490 13 811 -0 566 64 038 1 00 27 90 N
ATOM 933 CD2 HIS A 490 14 061 -2 728 63 854 1 00 28 06 C
ATOM 934 CEl HIS A 490 12 607 -1 108 64 117 1 00 27 81 C
ATOM 935 NE2 HIS A 490 12 732 -2 419 64 008 1 00 28 00 N
ATOM 936 N ASP A 491 18 985 -1 112 61 483 1 00 26 54 N
ATOM 937 CA ASP A 491 20 385 -1 436 61 258 1 00 25 64 C
ATOM 938 C ASP A 491 20 503 -2 147 59 899 1 00 23 87 C
ATOM 939 O ASP A 491 21 598 -2 405 59 405 1 00 22 75 O
ATOM 940 CB ASP A 491 21 277 -0 185 61 426 1 00 27 25 C
ATOM 941 CG AASP A 491 21 967 0 240 60 148 0 50 28 08 C
ATOM 942 CG BASP A 491 21 750 0 010 62 858 0 50 28 19 C ATOM 943 OD1AASP A 491 21 331 0 943 59 338 0 50 28 24 0
ATOM 944 OD1BASP A 491 21 177 -0 618 63 775 0 50 28 45 0
ATOM 945 OD2AASP A 491 23 155 -0 053 59 883 0 50 28 60 0
ATOM 946 OD2BASP A 491 22 692 0 772 63 162 0 50 28 53 0
ATOM 947 N ALA A 492 19 341 -2 493 59 335 1 00 23 80 N
ATOM 948 CA ALA A 492 19 234 -3 241 58 079 1 00 23 39 C
ATOM 949 C ALA A 492 19 983 -2 557 56 939 1 00 24 11 C
ATOM 950 O ALA A 492 20 608 -3 212 56 099 1 00 23 75 O
ATOM 951 CB ALA A 492 19 721 -4 683 58 263 1 00 22 30 C
ATOM 952 N SER A 493 19 920 -1 231 56 925 1 00 23 60 N
ATOM 953 CA SER A 493 20 596 -0 438 55 911 1 00 24 75 C
ATOM 954 C SER A 493 19 571 0 173 54 970 1 00 22 71 c
ATOM 955 O SER A 493 18 650 0 847 55 415 1 00 22 13 o
ATOM 956 CB SER A 493 21 414 0 677 56 567 1 00 26 26 c
ATOM 957 OG SER A 493 22 596 0 170 57 163 1 00 28 63 o
ATOM 958 N ALA A 494 19 730 -0 075 53 675 1 00 21 94 N
ATOM 959 CA ALA A 494 18 863 0 524 52 669 1 00 21 49 C
ATOM 960 C ALA A 494 18 975 2 048 52 735 1 00 20 54 c
ATOM 961 O ALA A 494 20 062 2 587 52 935 1 00 20 43 0
ATOM 962 CB ALA A 494 19 232 0 017 51 277 1 00 20 03 c
ATOM 963 N LEU A 495 17 850 2 739 52 580 1 00 19 53 N
ATOM 964 CA LEU A 495 17 827 4 201 52 677 1 00 16 45 c
ATOM 965 C LEU A 495 18 201 4 843 51 351 1 00 14 38 c
ATOM 966 O LEU A 495 17 728 4 415 50 295 1 00 13 60 0
ATOM 967 CB LEU A 495 16 441 4 702 53 108 1 00 16 38 c
ATOM 968 CG LEU A 495 15 839 4 090 54 372 1 00 18 39 c
ATOM 969 CD1 LEU A 495 14 558 4 802 54 773 1 00 19 05 c
ATOM 970 CD2 LEU A 495 16 838 4 119 55 507 1 00 19 87 c
ATOM 971 N ASP A 496 19 056 5 864 51 427 1 00 13 74 N
ATOM 972 CA ASP A 496 19 458 6 683 50 287 1 00 13 13 c
ATOM 973 C ASP A 496 18 402 7 760 50 091 1 00 13 33 c
ATOM 974 O ASP A 496 18 300 8 700 50 887 1 00 14 21 0
ATOM 975 CB ASP A 496 20 815 7 342 50 560 1 00 14 13 c
ATOM 976 CG ASP A 496 21 441 7 969 49 309 1 00 14 62 c
ATOM 977 OD1 ASP A 496 20 704 8 433 48 415 1 00 13 76 0
ATOM 978 OD2 ASP A 496 22 675 8 045 49 138 1 00 14 83 0
ATOM 979 N ILE A 497 17 612 7 616 49 034 1 00 11 15 N
ATOM 980 CA ILE A 497 16 453 8 469 48 839 1 00 10 21 C
ATOM 981 C ILE A 497 16 618 9 283 47 572 1 00 8 58 C
ATOM 982 O ILE A 497 16 897 8 727 46 515 1 00 8 01 0
ATOM 983 CB ILE A 497 15 172 7 602 48 797 1 00 10 89 C
ATOM 984 CGI ILE A 497 14 883 7 042 50 193 1 00 10 19 C
ATOM 985 CG2 ILE A 497 13 988 8 403 48 262 1 00 10 16 c
ATOM 986 CD1 ILE A 497 13 875 5 933 50 210 1 00 10 49 c
ATOM 987 N ARG A 498 16 454 10 599 47 693 1 00 7 97 N
ATOM 988 CA ARG A 498 16 702 11 525 46 593 1 00 8 36 C
ATOM 989 C ARG A 498 15 525 12 454 46 365 1 00 10 00 C
ATOM 990 O ARG A 498 14 988 13 036 47 304 1 00 11 03 O
ATOM 991 CB ARG A 498 17 961 12 360 46 864 1 00 7 70 C
ATOM 992 CG ARG A 498 19 143 11 533 47 335 1 00 8 82 c
ATOM 993 CD ARG A 498 20 431 12 294 47 588 1 00 7 86 c
ATOM 994 NE ARG A 498 21 485 11 369 47 992 1 00 9 50 N
ATOM 995 CZ ARG A 498 22 741 11 716 48 267 1 00 11 34 c
ATOM 996 NH1 ARG A 498 23 117 12 985 48 191 1 00 12 17 N
ATOM 997 NH2 ARG A 498 23 624 10 793 48 626 1 00 9 69 N
ATOM 998 N MET A 499 15 130 12 613 45 108 1 00 10 91 N
ATOM 999 CA MET A 499 14 070 13 563 44 795 1 00 11 41 C
ATOM 1000 C MET A 499 14 388 14 371 43 549 1 00 9 81 C
ATOM 1001 O MET A 499 15 454 14 223 42 965 1 00 7 62 O
ATOM 1002 CB MET A 499 12 716 12 864 44 662 1 00 15 03 C
ATOM 1003 CG MET A 499 12 755 11 506 44 015 1 00 17 82 c
ATOM 1004 SD MET A 499 11 302 10 531 44 481 1 00 22 32 S
ATOM 1005 CE MET A 499 12 056 8 985 44 776 1 00 20 00 c
ATOM 1006 N GLY A 500 13 460 15 239 43 162 1 00 8 66 N
ATOM 1007 CA GLY A 500 13 625 16 066 41 982 1 00 10 01 C
ATOM 1008 C GLY A 500 14 665 17 161 42 124 1 00 11 34 C
ATOM 1009 O GLY A 500 15 073 17 759 41 125 1 00 12 90 O
ATOM 1010 N THR A 501 15 106 17 421 43 353 1 00 10 79 N
ATOM 1011 CA THR A 501 16 099 18 472 43 605 1 00 11 93 C
ATOM 1012 C THR A 501 15 700 19 407 44 747 1 00 11 10 C
ATOM 1013 O THR A 501 15 132 18 974 45 748 1 00 10 88 0
ATOM 1014 CB THR A 501 17 488 17 866 43 892 1 00 13 13 C
ATOM 1015 OG1 THR A 501 18 433 18 921 44 114 1 00 13 32 0 ATOM 1016 CG2 THR A 501 17 490 17 114 45 220 1 00 13 50 C
ATOM 1017 N LEU A 502 16 013 20 691 44 585 1 00 11 94 N
ATOM 1018 CA LEU A 502 15 699 21 702 45 589 1 00 10 84 C
ATOM 1019 C LEU A 502 16 877 21 857 46 533 1 00 11 01 c
ATOM 1020 O LEU A 502 16 713 22 270 47 681 1 00 10 50 0
ATOM 1021 CB LEU A 502 15 413 23 049 44 927 1 00 10 68 c
ATOM 1022 CG LEU A 502 14 123 23 220 44 120 1 00 12 43 c
ATOM 1023 CD1 LEU A 502 14 106 24 594 43 453 1 00 11 55 c
ATOM 1024 CD2 LEU A 502 12 900 23 039 45 000 1 00 10 51 c
ATOM 1025 N -LYS A 503 18 068 21 540 46 030 1 00 12 00 N
ATOM 1026 CA LYS A 503 19 295 21 695 46 801 1 00 12 28 c
ATOM 1027 C LYS A 503 19 671 20 385 47 456 1 00 11 84 c
ATOM 1028 O LYS A 503 19 924 19 386 46 782 1 00 12 26 0
ATOM 1029 CB LYS A 503 20 445 22 195 45 926 1 00 13 85 c
ATOM 1030 CG LYS A 503 20 133 23 476 45 178 1 00 17 95 c
ATOM 1031 CD LYS A 503 21 393 24 105 44 599 1 00 21 28 c
ATOM 1032 CE LYS A 503 21 168 25 570 44 252 1 00 23 62 c
ATOM 1033 NZ LYS A 503 21 884 25 945 43 001 1 00 26 98 N
ATOM 1034 N ARG A 504 19 709 20 416 48 779 1 00 9 57 N
ATOM 1035 CA ARG A 504 19 988 19 262 49 614 1 00 9 35 C
ATOM 1036 C ARG A 504 21 320 18 581 49 277 1 00 9 48 C
ATOM 1037 O ARG A 504 21 407 17 350 49 249 1 00 8 69 O
ATOM 1038 CB ARG A 504 19 957 19 734 51 075 1 00 10 25 C
ATOM 1039 CG ARG A 504 20 450 18 761 52 110 1 00 11 36 c
ATOM 1040 CD ARG A 504 20 107 19 187 53 545 1 00 12 32 c
ATOM 1041 NE ARG A 504 20 691 20 479 53 905 1 00 11 03 N
ATOM 1042 CZ ARG A 504 21 908 20 631 54 413 1 00 11 92 C
ATOM 1043 NH1 ARG A 504 22 678 19 571 54 633 1 00 12 78 N
ATOM 1044 NH2 ARG A 504 22 360 21 840 54 705 1 00 9 30 N
ATOM 1045 N LEU A 505 22 346 19 385 49 006 1 00 8 79 N
ATOM 1046 CA LEU A 505 23 711 18 879 48 835 1 00 9 86 C
ATOM 1047 C LEU A 505 24 147 18 817 47 372 1 00 9 36 C
ATOM 1048 O LEU A 505 25 333 18 723 47 080 1 00 6 59 O
ATOM 1049 CB LEU A 505 24 713 19 735 49 629 1 00 8 72 C
ATOM 1050 CG LEU A 505 24 471 19 949 51 130 1 00 8 57 C
ATOM 1051 CD1 LEU A 505 25 235 21 156 51 651 1 00 7 12 C
ATOM 1052 CD2 LEU A 505 24 836 18 718 51 928 1 00 9 50 c
ATOM 1053 N SER A 506 23 187 18 880 46 455 1 00 10 98 N
ATOM 1054 CA SER A 506 23 494 18 812 45 029 1 00 10 74 C
ATOM 1055 C SER A 506 23 849 17 384 44 605 1 00 10 19 C
ATOM 1056 O SER A 506 23 287 16 418 45 129 1 00 9 59 O
ATOM 1057 CB SER A 506 22 303 19 312 44 208 1 00 11 40 C
ATOM 1058 OG SER A 506 22 577 19 250 42 815 1 00 10 97 O
ATOM 1059 N PRO A 507 24 786 17 258 43 666 1 00 9 56 N
ATOM 1060 CA PRO A 507 25 081 15 971 43 023 1 00 10 21 C
ATOM 1061 C PRO A 507 24 030 15 581 41 987 1 00 12 14 C
ATOM 1062 O PRO A 507 24 074 14 459 41 482 1 00 13 12 O
ATOM 1063 CB PRO A 507 26 420 16 224 42 318 1 00 10 07 C
ATOM 1064 CG PRO A 507 26 463 17 713 42 078 1 00 8 56 C
ATOM 1065 CD PRO A 507 25 651 18 346 43 175 1 00 9 61 C
ATOM 1066 N HIS A 508 23 109 16 491 41 676 1 00 13 17 N
ATOM 1067 CA HIS A 508 22 096 16 244 40 656 1 00 13 34 C
ATOM 1068 C HIS A 508 20 731 16 025 41 278 1 00 12 73 C
ATOM 1069 O HIS A 508 20 135 16 947 41 827 1 00 14 09 O
ATOM 1070 CB HIS A 508 22 033 17 412 39 673 1 00 15 77 C
ATOM 1071 CG HIS A 508 23 366 17 805 39 127 1 00 17 43 C
ATOM 1072 ND1 HIS A 508 24 182 16 920 38 456 1 00 18 72 N
ATOM 1073 CD2 HIS A 508 24 035 18 980 39 171 1 00 17 93 C
ATOM 1074 CEl HIS A 508 25 296 17 538 38 101 1 00 18 70 C
ATOM 1075 NE2 HIS A 508 25 231 18 789 38 523 1 00 18 46 N
ATOM 1076 N TYR A 509 20 242 14 795 41 181 1 00 11 25 N
ATOM 1077 CA TYR A 509 18 957 14 419 41 745 1 00 10 83 C
ATOM 1078 C TYR A 509 18 545 13 071 41 172 1 00 11 84 C
ATOM 1079 O TYR A 509 19 356 12 374 40 554 1 00 11 14 0
ATOM 1080 CB TYR A 509 19 050 14 315 43 270 1 00 9 75 c
ATOM 1081 CG TYR A 509 20 180 13 431 43 747 1 00 9 76 c
ATOM 1082 CD1 TYR A 509 20 000 12 061 43 913 1 00 10 44 c
ATOM 1083 CD2 TYR A 509 21 432 13 962 44 025 1 00 9 42 c
ATOM 1084 CEl TYR A 509 21 042 11 247 44 335 1 00 9 09 c
ATOM 1085 CE2 TYR A 509 22 472 13 157 44 453 1 00 10 68 c
ATOM 1086 CZ TYR A 509 22 271 11 803 44 607 1 00 10 69 c
ATOM 1087 OH TYR A 509 23 309 11 008 45 036 1 00 12 45 0 ATOM 1088 N THR A 510 17 284 12 711 41 389 1 00 11 77 N
ATOM 1089 CA THR A 510 16 795 11 387 41 051 1 00 12 43 C
ATOM 1090 C THR A 510 17 001 10 447 42 228 1 00 12 87 C
ATOM 1091 O THR A 510 16 519 10 701 43 337 1 00 13 44 0
ATOM 1092 CB THR A 510 15 318 11 445 40 654 1 00 12 53 c
ATOM 1093 OG1 THR A 510 15 192 12 224 39 458 1 00 13 52 0
ATOM 1094 CG2 THR A 510 14 819 10 067 40 226 1 00 11 73 c
ATOM 1095 N GLN A 511 17 734 9 369 41 971 1 00 13 45 N
ATOM 1096 CA GLN A 511 18 093 8 401 42 993 1 00 13 17 C
ATOM 1097 C GLN A 511 17 052 7 296 43 107 1 00 12 12 C
ATOM 1098 O GLN A 511 16 644 6 711 42 107 1 00 10 91 O
ATOM 1099 CB GLN A 511 19 464 7 792 42 678 1 00 14 24 c
ATOM 1100 CG GLN A 511 19 926 6 746 43 678 1 00 16 95 c
ATOM 1101 CD GLN A 511 20 473 7 362 44 942 1 00 18 05 c
ATOM 1102 OE1 GLN A 511 21 461 8 091 44 900 1 00 19 .91 0
ATOM 1103 NE2 GLN A 511 19 832 7 082 46 066 1 00 19 03 N
ATOM 1104 N ALA A 512 16 626 7 024 44 336 1 00 10 77 N
ATOM 1105 CA ALA A 512 15 794 5 864 44 632 1 00 10 69 c
ATOM 1106 C ALA A 512 16 404 5 121 45 816 1 00 11 63 c
ATOM 1107 O ALA A 512 17 191 5 683 46 577 1 00 11 88 0
ATOM 1108 CB ALA A 512 14 365 6 288 44 946 1 00 8 44 c
ATOM 1109 N TRP A 513 16 043 3 854 45 966 1 00 12 44 N
ATOM 1110 CA TRP A 513 16 551 3 046 47 063 1 00 12 77 C
ATOM 1111 C TRP A 513 15 394 2 314 47 717 1 00 12 34 C
ATOM 1112 O TRP A 513 14 486 1 852 47 032 1 00 11 10 O
ATOM 1113 CB TRP A 513 17 596 2 050 46 556 1 00 14 92 C
ATOM 1114 CG TRP A 513 18 857 2 704 46 086 1 00 16 67 C
ATOM 1115 CD1 TRP A 513 19 228 2 940 44 790 1 00 17 23 C
ATOM 1116 CD2 TRP A 513 19 915 3 216 46 904 1 00 18 25 c
ATOM 1117 NE1 TRP A 513 20 454 3 563 44 755 1 00 18 71 N
ATOM 1118 CE2 TRP A 513 20 896 3 749 46 040 1 00 18 76 C
ATOM 1119 CE3 TRP A 513 20 134 3 285 48 291 1 00 19 68 C
ATOM 1120 CZ2 TRP A 513 22 075 4 336 46 512 1 00 18 90 C
ATOM 1121 CZ3 TRP A 513 21 309 3 866 48 757 1 00 19 77 c
ATOM 1122 CH2 TRP A 513 22 262 4 385 47 868 1 00 19 21 c
ATOM 1123 N SER A 514 15 414 2 224 49 041 1 00 12 92 N
ATOM 1124 CA SER A 514 14 356 1 524 49 746 1 00 13 15 C
ATOM 1125 C SER A 514 14 489 0 029 49 526 1 00 13 88 C
ATOM 1126 O SER A 514 15 596 -0 511 49 495 1 00 12 09 O
ATOM 1127 CB SER A 514 14 365 1 857 51 239 1 00 13 73 C
ATOM 1128 OG SER A 514 15 294 1 061 51 942 1 00 16 01 O
ATOM 1129 N GLU A 515 13 347 -0 624 49 354 1 00 14 45 N
ATOM 1130 CA GLU A 515 13 278 -2 075 49 284 1 00 15 36 C
ATOM 1131 C GLU A 515 12 749 -2 614 50 606 1 00 13 46 C
ATOM 1132 O GLU A 515 13 130 -3 699 51 036 1 00 13 93 O
ATOM 1133 CB GLU A 515 12 370 -2 501 48 134 1 00 17 10 C
ATOM 1134 CG GLU A 515 12 032 -3 981 48 102 1 00 20 47 c
ATOM 1135 CD GLU A 515 11 029 -4 304 47 011 1 00 21 74 c
ATOM 1136 OE1 GLU A 515 10 251 -5 264 47 173 1 00 22 93 0
ATOM 1137 OE2 GLU A 515 11 012 -3 589 45 990 1 00 23 31 0
ATOM 1138 N ALA A 516 11 869 -1 847 51 244 1 00 11 90 N
ATOM 1139 CA ALA A 516 11 321 -2 216 52 545 1 00 10 50 C
ATOM 1140 C ALA A 516 10 844 -0 983 53 300 1 00 9 98 C
ATOM 1141 O ALA A 516 10 386 -0 010 52 702 1 00 10 10 O
ATOM 1142 CB ALA A 516 10 183 -3 209 52 391 1 00 9 42 C
ATOM 1143 N VAL A 517 10 956 -1 034 54 621 1 00 9 19 N
ATOM 1144 CA VAL A 517 10 508 0 049 55 473 1 00 8 64 C
ATOM 1145 C VAL A 517 -9 501 -0 505 56 461 1 00 8 78 C
ATOM 1146 O VAL A 517 -9 795 -1 437 57 204 1 00 8 98 O
ATOM 1147 CB VAL A 517 11 682 0 681 56 248 1 00 9 93 C
ATOM 1148 CGI VAL A 517 11 186 1 788 57 157 1 00 10 31 C
ATOM 1149 CG2 VAL A 517 12 729 1 223 55 289 1 00 10 67 C
ATOM 1150 N PHE A 518 -8 308 0 070 56 472 1 00 8 26 N
ATOM 1151 CA PHE A 518 -7 281 -0 337 57 417 1 00 6 70 C
ATOM 1152 C PHE A 518 -7 082 0 729 58 474 1 00 7 05 C
ATOM 1153 O PHE A 518 -6 647 1 834 58 172 1 00 7 78 O
ATOM 1154 CB PHE A 518 -5 966 -0 585 56 682 1 00 8 68 C
ATOM 1155 CG PHE A 518 -6 068 -1 620 55 609 1 00 8 81 C
ATOM 1156 CD1 PHE A 518 -6 536 -1 282 54 348 1 00 7 03 C
ATOM 1157 CD2 PHE A 518 -5 718 -2 939 55 867 1 00 8 67 C
ATOM 1158 CEl PHE A 518 -6 640 -2 235 53 353 1 00 7 82 c
ATOM 1159 CE2 PHE A 518 -5 . 820 -3 . 900 54 . 878 1 . 00 10 . 03 c ATOM 1160 CZ PHE A 518 -6.281 546 53.615 1 . 00 8 . 86 C
ATOM 1161 N ILE A 519 -7.407 392 59.716 1 . 00 9 . 32 N
ATOM 1162 CA ILE A 519 -7.217 300 60.840 1 . 00 9 . 62 C
ATOM 1163 C ILE A 519 -5.906 929 61.509 1 . 00 8 . 01 c
ATOM 1164 O ILE A 519 -5.662 244 61.746 1 . 00 8 . 79 0
ATOM 1165 CB ILE A 519 -8.395 154 61.830 1 . 00 10 . 78 c
ATOM 1166 CGI ILE A 519 -9.662 778 61.235 1 . 00 12 . 62 c
ATOM 1167 CG2 ILE A 519 -8.060 771 63.188 1 . 00 6 . 57 c
ATOM 1168 CD1 ILE A 519 10.911 486 62.043 1 . 00 15 . 51 c
ATOM 1169 N HIS A 520 -5.053 910 61.801 1 . 00 7 . 14 N
ATOM 1170 CA HIS A 520 -3.782 602 62.449 1 . 00 6 . 14 C
ATOM 1171 C HIS A 520 -4.045 0 . 786 63.711 1 . 00 6 . 74 C
ATOM 1172 O HIS A 520 -4.944 . 106 64.496 1. 00 3 . 35 O
ATOM 1173 CB HIS A 520 -2.986 . 866 62.794 1 . 00 6 .36 C
ATOM 1174 CG HIS A 520 -1.557 . 587 63.162 1 . 00 6 . 51 c
ATOM 1175 ND1 HIS A 520 -1.188 . 098 64.399 1 . 00 20 N
ATOM 1176 CD2 HIS A 520 -0.413 . 692 62.443 1 . 00 62 C
ATOM 1177 CEl HIS A 520 0.122 1. 928 64.432 00 40 C
ATOM 1178 NE2 HIS A 520 0.616 2 .281 63.257 00 63 N
ATOM 1179 N GLU A 521 -3.268 -0 .272 63.907 00 12 N
ATOM 1180 CA GLU A 521 -3.563 -1 .177 65.005 00 69 C
ATOM 1181 C GLU A 521 -3 132 646 66.374 00 02 C
ATOM 1182 O GLU A 521 -3 431 251 67.393 00 10.97 O
ATOM 1183 CB GLU A 521 -3 062 612 64.742 00 10.81 C
ATOM 1184 CG GLU A 521 -1 820 754 63.884 00 14.66 C
ATOM 1185 CD GLU A 521 -2 023 353 62.425 00 15.19 C
ATOM 1186 OE1 GLU A 521 -2.887 936 61.724 00 15.42 O
ATOM 1187 OE2 GLU A 521 -1.289 455 61.971 1.00 14.64 O
ATOM 1188 N GLY A 522 -2.476 512 66.392 1.00 9.45 N
ATOM 1189 CA GLY A 522 -2.167 197 67.640 1.00 8.32 C
ATOM 1190 C GLY A 522 -3.192 254 68.041 1.00 8.57 C
ATOM 1191 O GLY A 522 -3.074 879 69.099 1.00 8.98 o
ATOM 1192 N TYR A 523 -4.188 474 67.187 1.00 7.72 N
ATOM 1193 CA TYR A 523 -5.271 417 67.479 1.00 7.21 C
ATOM 1194 C TYR A 523 -6.297 804 68.439 1.00 7.67 C
ATOM 1195 O TYR A 523 -6.692 649 68.271 1.00 6.77 O
ATOM 1196 CB TYR A 523 -5.963 852 66.181 1.00 5.20 C
ATOM 1197 CG TYR A 523 -7.129 800 66.385 1.00 4.27 C
ATOM 1198 CD1 TYR A 523 -6.918 146 66.681 1.00 3.07 C
ATOM 1199 CD2 TYR A 523 -8.443 350 66.273 1.00 3.36 C
ATOM 1200 CEl TYR A 523 -7.988 007 66.872 1.00 2.40 C
ATOM 1201 CE2 TYR A 523 -9.509 204 66.459 1.00 2.92 C
ATOM 1202 CZ TYR A 523 -9.277 530 66.755 1.00 2.08 c
ATOM 1203 OH TYR A 523 -10.341 380 66.941 1.00 4.62 O
ATOM 1204 N THR A 524 -6.708 569 69.449 1.00 6.96 N
ATOM 1205 CA THR A 524 -7.759 132 70.367 1.00 9.31 C
ATOM 1206 C THR A 524 -8.886 162 70.390 1.00 10.49 C
ATOM 1207 O THR A 524 -8.769 208 71.037 10.13 O
ATOM 1208 CB THR A 524 -7.219 913 71.808 10.35 C
ATOM 1209 OG1 THR A 524 -6. 597 116 72.274 13.71 O
ATOM 1210 CG2 THR A 524 -6.084 904 71.835 8.06 c
ATOM 1211 N HIS A 525 -9.976 856 69.687 9.06 N
ATOM 1212 CA HIS A 525 -11.106 772 69.552 8.33 C
ATOM 1213 C HIS A 525 -11.628 315 70.880 8.41 C
ATOM 1214 O HIS A 525 -11.880 553 71.812 6.69 O
ATOM 1215 CB HIS A 525 -12. .249 114 68.777 7.55 C
ATOM 1216 CG HIS A 525 -13, .159 099 68.111 7.91 C
ATOM 1217 ND1 HIS A 525 -12, .696 073 67.251 9.19 N
ATOM 1218 CD2 HIS A 525 -14, .498 282 68.199 6.32 C
ATOM 1219 CEl HIS A 525 -13, .712 806 66.828 7.27 c
ATOM 1220 NE2 HIS A 525 -14, .817 6.343 67.385 78 N
ATOM 1221 N ASP A 526 -11, .784 6.638 70.947 96 N
ATOM 1222 CA ASP A 526 -12. .331 7.321 72.121 48 C
ATOM 1223 C ASP A 526 -11, .377 7.314 73.303 93 c
ATOM 1224 O ASP A 526 -11. .776 7.622 74.428 18 0
ATOM 1225 CB ASP A 526 -13. .668 6.706 72.554 41 c
ATOM 1226 CG ASP A 526 -14, .804 7.021 71.593 8.19 c
ATOM 1227 OD1 ASP A 526 -14, .640 7.863 70.694 6.89 o
ATOM 1228 OD2 ASP A 526 -15, .913 6.457 71.668 1.15 o
ATOM 1229 N ALA A 527 -10, .125 6.945 73.060 8.12 N
ATOM 1230 CA ALA A 527 -9. .107 6.954 74.113 1.00 7.00 C
ATOM 1231 C ALA A 527 823 7.612 73.613 1.00 6.76 C
ATOM 1232 O ALA A 527 788 6.968 73.493 1.00 8.02 O
ATOM 1233 CB ALA A 527 -8.838 5.526 74.626 1.00 4.13 c ATOM 1234 N GLY A 528 7 . 901 8.906 73.319 1.00 .11 N
ATOM 1235 CA GLY A 528 6 . 774 9.634 72.765 1.00 .02 C
ATOM 1236 C GLY A 528 6 . 695 9.424 71.264 1.00 32 C
ATOM 1237 O GLY A 528 7 . 428 8.597 70.698 1.00 .49 O
ATOM 1238 N PHE A 529 -5.796 10.161 70.617 1.00 .36 N
ATOM 1239 CA PHE A 529 -5.696 10.135 69.159 1.00 5.49 C
ATOM 1240 C PHE A 529 -4.329 9.687 68.678 1.00 6.06 C
ATOM 1241 O PHE A 529 -3.950 9.954 67.542 1.00 7.13 O
ATOM 1242 CB PHE A 529 -6.039 11.509 68.561 1.00 5.65 C
ATOM 1243 CG PHE A 529 -7.488 11.901 68.724 1.00 4.49 C
ATOM 1244 CD1 PHE A 529 -7.935 12.486 69.900 1.00 4.93 c
ATOM 1245 CD2 PHE A 529 -8.401 11.677 67.704 1.00 4.79 c
ATOM 1246 CEl PHE A 529 -9.267 12.847 70.057 1.00 4.99 c
ATOM 1247 CE2 PHE A 529 -9.739 12.026 67.854 1.00 4.88 c
ATOM 1248 CZ PHE A 529 -10.172 12.619 69.033 1.00 5.06 c
ATOM 1249 N ASP A 530 -3.578 9.019 69.547 1.00 43 N
ATOM 1250 CA ASP A 530 -2.303 8.437 69.143 00 33 C
ATOM 1251 C ASP A 530 -2.581 7.430 68.030 00 85 C
ATOM 1252 O ASP A 530 -3.533 6.658 68.114 00 45 O
ATOM 1253 CB ASP A 530 -1.619 7.757 70.335 00 56 C
ATOM 1254 CG ASP A 530 -0.124 7.532 70.106 00 25 C
ATOM 1255 OD1 ASP A 530 0.505 8.313 69.356 00 00 o
ATOM 1256 OD2 ASP A 530 0.510 6.588 70.625 00 8.19 o
ATOM 1257 N ASN A 531 -1.766 7.461 66.979 00 7.05 N
ATOM 1258 CA ASN A 531 -1.931 6.552 65.850 00 6.70 C
ATOM 1259 C ASN A 531 -3.228 6.779 65.082 00 6.57 C
ATOM 1260 O ASN A 531 -3..799 .844 64.513 1.00 7.59 0
ATOM 1261 CB ASN A 531 -1..823 .093 66.311 00 6.41 C
ATOM 1262 CG ASN A 531 -0..524 .810 67.026 00 6.30 C
ATOM 1263 OD1 ASN A 531 0..553 .131 66.526 1.00 7.81 0
ATOM 1264 ND2 ASN A 531 -0..615 .215 68.210 1.00 5.67 N
ATOM 1265 N ASP A 532 -3..671 8.029 65.028 1.00 6.20 N
ATOM 1266 CA ASP A 532 -4.921 8.366 64.353 1.00 5.44 C
ATOM 1267 C ASP A 532 -4.731 8.422 62.836 00 6.13 C
ATOM 1268 O ASP A 532 .602 9.502 62.243 00 67 O
ATOM 1269 CB ASP A 532 .475 9.694 64.888 00 98 C
ATOM 1270 CG ASP A 532 .869 10.004 64.368 1.00 8 45 C
ATOM 1271 OD1 ASP A 532 .518 9.097 63.783 00 8.03 O
ATOM 1272 OD2 ASP A 532 400 11.132 64.510 00 8.80 O
ATOM 1273 N ILE A 533 -4.723 7.251 62.211 1.00 6.86 N
ATOM 1274 CA ILE A 533 -4.477 7.161 60.777 00 6.83 C
ATOM 1275 C ILE A 533 -5.125 5.907 60.214 00 8.46 C
ATOM 1276 0 ILE A 533 -5.203 4.872 60.890 00 9.43 O
ATOM 1277 CB ILE A 533 -2.953 7.200 60.465 00 6.07 C
ATOM 1278 CGI ILE A 533 -2.704 7.206 58.955 00 4.95 C
ATOM 1279 CG2 ILE A 533 -2.222 6.045 61.132 1.00 6.23 C
ATOM 1280 CD1 ILE A 533 -1.241 7.255 58.572 1.00 4.43 C
ATOM 1281 N ALA A 534 -5.611 6.014 58.983 1.00 7.26 N
ATOM 1282 CA ALA A 534 -6.289 4.904 58.330 1.00 8.01 C
ATOM 1283 C ALA A 534 -6.107 4.968 56.820 1.00 7.82 C
ATOM 1284 O ALA A 534 -5.877 6.040 56.263 1.00 7.42 O
ATOM 1285 C3 ALA A 534 -7.776 4.909 58.685 1.00 6.63 C
ATOM 1286 N LEU A 535 -6.216 3.815 56.167 1.00 7.69 N
ATOM 1287 CA LEU A 535 -6.153 3.749 54.709 7.06 C
ATOM 1288 C LEU A 535 -7.405 3.089 54.161 6.95 C
ATOM 1289 0 LEU A 535 -7.842 2.057 54.653 6.92 O
ATOM 1290 CB LEU A 535 -4.911 2.983 54.236 6.30 C
ATOM 1291 CG LEU A 535 -3.610 3.792 54.196 1.00 7.22 C
ATOM 1292 CD1 LEU A 535 -2.414 2.879 54.078 1.00 6.04 c
ATOM 1293 CD2 LEU A 535 -3.614 ,812 53.069 1.00 5.95 c
ATOM 1294 N ILE A 536 -7.980 .703 53.139 1.00 7.87 N
ATOM 1295 CA ILE A 536 -9.100 .124 52.436 1.00 9.01 C
ATOM 1296 C ILE A 536 -8.651 .688 51.056 1.00 9.41 C
ATOM 1297 O ILE A 536 -8.107 .483 50.295 1.00 9.65 O
ATOM 1298 CB ILE A 536 -10.230 .146 52.300 1.00 8.87 C
ATOM 1299 CGI ILE A 536 -10.647 .672 53.672 1.00 8.55 C
ATOM 1300 CG2 ILE A 536 -11.420 .527 51.579 1.00 9.73 C
ATOM 1301 CD1 ILE A 536 -11.281 .050 53.616 1.00 8.32 c
ATOM 1302 N LYS A 537 -8.868 .419 50.736 1.00 9.62 N
ATOM 1303 CA LYS A 537 -8.645 .959 49.380 1.00 11.14 C
ATOM 1304 C LYS A 537 -9.948 .103 48.610 1.00 10.91 C
ATOM 1305 O LYS A 537 -11.000 .663 49.072 1.00 11.72 O ATOM 1306 CB LYS A 537 -8 167 -0 492 49 357 1 00 13 04 c
ATOM 1307 CG LYS A 537 -8 178 -1 100 47 967 1 00 15 08 c
ATOM 1308 CD LYS A 537 -6 967 -1 960 47 723 1 00 18 30 c
ATOM 1309 CE LYS A 537 -6 773 -2 208 46 241 1 00 20 41 c
ATOM 1310 NZ LYS A 537 -6 862 -3 659 45 920 1 00 21 86 N
ATOM 1311 N LEU A 538 -9 885 1 749 47 453 1 00 9 89 N
ATOM 1312 CA LEU A 538 11 067 1 902 46 613' 1 00 11 23 C
ATOM 1313 C LEU A 538 11 259 0 645 45 759 1 00 13 11 C
ATOM 1314 O LEU A 538 10 289 -0 011 45 392 1 00 13 86 O
ATOM 1315 CB LEU A 538 10 944 3 154 45 739 1 00 8 41 C
ATOM 1316 CG LEU A 538 10 615 4 443 46 511 1 00 8 65 C
ATOM 1317 CD1 LEU A 538 10 542 5 647 45 583 1 00 6 30 C
ATOM 1318 CD2 LEU A 538 11 624 4 696 47 634 1 00 6 53 C
ATOM 1319 N ASN A 539 12 506 0 296 45 456 1 00 14 43 N
ATOM 1320 CA ASN A 539 12 767 -0 928 44 701 1 00 17 73 C
ATOM 1321 C ASN A 539 12 443 -0 805 43 212 1 00 18 17 c
ATOM 1322 O ASN A 539 12 395 -1 809 4'2 498 1 00 18 70 0
ATOM 1323 CB ASN A 539 14 203 -1 427 44 921 1 00 19 44 c
ATOM 1324 CG ASN A 539 15 246 -0 445 44 439 1 00 21 71 c
ATOM 1325 OD1 ASN A 539 14 931 0 680 44 043 1 00 23 07 0
ATOM 1326 ND2 ASN A 539 16 506 -0 867 44 466 1 00 23 15 N
ATOM 1327 N ASN A 540 12 223 0 426 42 756 1 00 18 47 N
ATOM 1328 CA ASN A 540 11 807 0 691 41 378 1 00 19 85 c
ATOM 1329 C ASN A 540 10 843 1 868 41 295 1 00 19 49 c
ATOM 1330 O ASN A 540 10 854 2 746 42 150 1 00 20 03 0
ATOM 1331 CB ASN A 540 13 018 0 963 40 486 1 00 20 89 c
ATOM 1332 CG ASN A 540 13 719 -0 308 40 051 1 00 22 82 c
ATOM 1333 OD1 ASN A 540 14 843 -0 582 40 474 1 00 22 91 o
ATOM 1334 ND2 ASN A 540 13 054 -1 097 39 209 1 00 22 28 N
ATOM 1335 N LYS A 541 10 004 1 874 40 266 1 00 20 33 N
ATOM 1336 CA LYS A 541 -9 129 3 010 ' 40 011 1 00 21 38 C
ATOM 1337 C LYS A 541 -9 957 4 247 39 676 1 00 20 60 C
ATOM 1338 O LYS A 541 10 915 4 178 38 907 1 00 19 35 O
ATOM 1339 CB LYS A 541 -8 161 2 700 38 865 1 00 23 03 C
ATOM 1340 CG LYS A 541 -6 964 1 845 39 280 1 00 27 07 c
ATOM 1341 CD LYS A 541 -6 068 1 497 38 093 1 00 29 09 c
ATOM 1342 CE LYS A 541 -4 617 1 253 38 530 1 00 30 79 c
ATOM 1343 NZ LYS A 541 -3 654 2 203 37 874 1 00 30 52 N
ATOM 1344 N VAL A 542 -9 595 5 374 40 276 1 00 20 01 N
ATOM 1345 CA VAL A 542 10 184 6 655 39 917 1 00 20 98 c
ATOM 1346 C VAL A 542 -9 568 7 103 38 602 1 00 20 09 c
ATOM 1347 O VAL A 542 -8 378 6 891 38 375 1 00 18 96 o
ATOM 1348 CB VAL A 542 -9 876 7 733 40 976 1 00 21 07 c
ATOM 1349 CGI VAL A 542 10 521 9 045 40 592 1 00 22 76 c
ATOM 1350 CG2 VAL A 542 10 347 7 294 42 344 1 00 21 44 c
ATOM 1351 N VAL A 543 10 367 7 711 37 733 1 00 21 57 N
ATOM 1352 CA VAL A 543 -9 826 8 335 36 530 1 00 22 32 C
ATOM 1353 C VAL A 543 -9 143 9 653 36 918 1 00 22 22 C
ATOM 1354 O VAL A 543 -9 793 10 578 37 400 1 00 22 96 0
ATOM 1355 CB VAL A 543 10 917 8 560 35 453 1 00 24 15 C
ATOM 1356 CGI VAL A 543 10 289 8 853 34 086 1 00 23 60 c
ATOM 1357 CG2 VAL A 543 11 843 7 347 35 361 1 00 24 99 c
ATOM 1358 N ILE A 544 -7 828 9 709 36 720 1 00 22 45 N
ATOM 1359 CA ILE A 544 -6 989 10 843 37 111 1 00 23 00 C
ATOM 1360 C ILE A 544 -7 021 11 979 36 081 1 00 25 40 C
ATOM 1361 O ILE A 544 -6 702 11 770 34 914 1 00 26 46 O
ATOM 1362 CB ILE A 544 -5 524 10 358 37 316 1 00 20 45 c
ATOM 1363 CGI ILE A 544 -5 436 9 390 38 496 1 00 19 24 c
ATOM 1364 CG2 ILE A 544 -4 577 11 526 37 539 1 00 20 50 c
ATOM 1365 CD1 ILE A 544 -6 094 9 907 39 756 1 00 16 91 c
ATOM 1366 N ASN A 545 -7 413 13 174 36 519 1 00 26 68 N
ATOM 1367 CA ASN A 545 -7 387 14 364 35 662 1 00 26 95 C
ATOM 1368 C ASN A 545 -6 981 15 623 36 425 1 00 26 16 C
ATOM 1369 O ASN A 545 -6 591 15 553 37 593 1 00 25 85 0
ATOM 1370 CB ASN A 545 -8 730 14 577 34 955 1 00 27 31 c
ATOM 1371 CG ASN A 545 -9 889 14 713 35 923 1 00 28 45 c
ATOM 1372 OD1 ASN A 545 -9 825 15 474 36 894 1 00 28 99 0
ATOM 1373 ND2 ASN A 545 10 966 13 978 35 660 1 00 28 40 N
ATOM 1374 N SER A 546 -7 072 16 771 35 761 1 00 25 69 N
ATOM 1375 CA SER A 546 -6 670 18 037 36 368 1 00 25 55 C
ATOM 1376 C SER A 546 -7 395 18 312 37 681 1 00 23 91 C
ATOM 1377 O SER A 546 -6 853 18 977 -38 565 1 00 24 77 O
ATOM 1378 CB SER A 546 -6 892 19 193 35 398 1 00 26 62 C
ATOM 1379 OG SER A 546 -5 821 19 278 34 479 1 00 29 50 O ATOM 1380 N ASN A 547 -8..615 17.796 37.810 1.00 21.83 N
ATOM 1381 CA ASN A 547 -9 .400 18 .003 39 .025 1 .00 20 .84 C
ATOM 1382 C ASN A 547 -9 .247 16 .887 40 .046 1 .00 17 .59 C
ATOM 1383 O ASN A 547 -9 .673 17 .033 41 .195 1 .00 19 .64 O
ATOM 1384 CB ASN A 547 10. .880 18 .201 38 .695 1. .00 23 .89 C
ATOM 1385 CG ASN A 547 11. .199 19 .627 38 .309 1. .00 27 .24 C
ATOM 1386 OD1 ASN A 547 10. .757 20. .574 38 .966 1. .00 28 .13 O
ATOM 1387 ND2 ASN A 547 11. .956 19 .794 37 .224 1. .00 28 .47 N
ATOM 1388 N ILE A 548 -8. .666 15 .766 39 .626 1. .00 13 .11 N
ATOM 1389 CA ILE A 548 -8. .439 14. .647 40. .539 1, .00 14 .12 C
ATOM 1390 C ILE A 548 -7. .040 14 .056 40 .382 1. .00 13 .92 C
ATOM 1391 O ILE A 548 -6. .786 13 .287 39 .456 1. .00 15 .83 O
ATOM 1392 CB ILE A 548 -9. .500 13, .534 40 .338 1. .00 13 .20 C
ATOM 1393 CGI ILE A 548 10, .919 14 .092 40, .467 1. .00 12 .55 C
ATOM 1394 CG2 ILE A 548 -9, .277 12 .400 41 .343 1. .00 11 .80 C
ATOM 1395 CDl ILE A 548 11, .998 13 .083 40 .163 1. .00 12 .71 C
ATOM 1396 N THR A 549 -6 .135 14 .432 41 .280 1. .00 13 .53 N
ATOM 1397 CA THR A 549 -4, .784 13 .867 41 .317 1. .00 12 .52 C
ATOM 1398 C THR A 549 -4, .358 13, .664 42. .775 1. .00 10. .51 C
ATOM 1399 O THR A 549 -4, .740 14, .439 43 .650 1. .00 7 .10 O
ATOM 1400 CB THR A 549 -3. .766 14, .775 40 .578 1, .00 13. .35 C
ATOM 1401 OG1 THR A 549 -4, .133 16, .145 40 .742 1. .00 16 .05 O
ATOM 1402 CG2 THR A 549 -3, .855 14 .587 39 .074 1. .00 15 .82 C
ATOM 1403 N PRO A 550 -3, .559 12 .631 43 .029 1, .00 8 .29 N
ATOM 1404 CA PRO A 550 -3, .158 12 .283 44 .394 1. .00 7 .72 C
ATOM 1405 C PRO A 550 -2, .170 13 .281 44 .985 1. .00 7 .96 C
ATOM 1406 O PRO A 550 -1, .485 13 .991 44 .235 1. .00 5 .42 O
ATOM 1407 CB PRO A 550 -2 .463 10 .932 44 .218 1. .00 7 .47 C
ATOM 1408 CG PRO A 550 -1 .955 10 .952 42 .825 1 .00 8 .01 C
ATOM 1409 CD PRO A 550 -2 .960 11 .729 42 .024 1. .00 8 .07 C
ATOM 1410 N ILE A 551 -2 .123 13 .332 46 .317 1. .00 6 .61 N
ATOM 1411 CA ILE A 551 -1, .087 14. .052 47. .040 1. .00 6, .59 C
ATOM 1412 C ILE A 551 0, .155 13. .154 47. .091 1. .00 7, .08 C
ATOM 1413 O ILE A 551 0, .042 11, .921 47. .012 1, .00 7, .11 O
ATOM 1414 CB ILE A 551 -1, .580 14, .422 48 .474 1. .00 5, .49 C
ATOM 1415 CGI ILE A 551 -0, .542 15, .280 49. .218 1. .00 5. .55 C
ATOM 1416 CG2 ILE A 551 -1, .933 13. .174 49. .277 1. .00 3, .86 C
ATOM 1417 CDl ILE A 551 -0. .375 16. .685 48. .652 1. .00 4, .41 C
ATOM 1418 N CYS A 552 1. .334 13. .762 47. .203 1. .00 6, .52 N
ATOM 1419 CA CYS A 552 2. .571 12. .993 47, .345 1. .00 7, .52 C
ATOM 1420 C CYS A 552 2, .778 12. .578 48, .798 1. .00 8, .16 C
ATOM 1421 O CYS A 552 2. .488 13. .343 49, .714 1. .00 8, .17 0
ATOM 1422 CB CYS A 552 3. .787 13. .813 46. .904 1, .00 7. .35 c
ATOM 1423 SG CYS A 552 3. .875 14. .224 45. .156 1. .00 9, .92 s
ATOM 1424 N LEU A 553 3, .286 11. .366 49. .001 1. .00 8, .87 N
ATOM 1425 CA LEU A 553 3. .747 10. .948 50. .317 1, .00 9, .98 c
ATOM 1426 C - LEU A 553 5. .081 11. .644 50. .590 1. .00 10, .60 c
ATOM 1427 O LEU A 553 5. .866 11. .866 49. .668 1, .00 10, .57 0
ATOM 1428 CB LEU A 553 3. .910 9. .429 50, .367 1. .00 8 .81 c
ATOM 1429 CG LEU A 553 2. .600 8, .641 50, .427 1. .00 8 .28 c
ATOM 1430 CDl LEU A 553 2. .853 7, .162 50, .201 1. .00 8, .79 c
ATOM 1431 CD2 LEU A 553 1. .886 8, .864 51, .757 1. .00 6 .90 c
ATOM 1432 N PRO A 554 5. .327 12, .013 51 .844 1. .00 11, .08 N
ATOM 1433 CA PRO A 554 6. .578 12 .688 52, .209 1. .00 12, .29 C
ATOM 1434 C PRO A 554 7. .814 11 .808 52, .001 1, .00 14, .35 C
ATOM 1435 O PRO A 554 7. .838 10 .658 52 .437 1. .00 15, .22 O
ATOM 1436 CB PRO A 554 6. .387 12 .998 53 .698 1. .00 10, .52 c
ATOM 1437 CG PRO A 554 5. ,371 12, .009 54. .163 1. .00 10. .83 c
ATOM 1438 CD PRO A 554 4. .431 11. .828 53. .002 1. .00 9. ,92 c
ATOM 1439 N ARG A 555 8. .836 12. .348 51. .342 1. .00 18. ,10 N
ATOM 1440 CA ARG A 555 10. .097 11. .623 51, ,194 1. ,00 20. .38 C
ATOM 1441 C ARG A 555 10. .932 11, .768 52, .460 1. ,00 21. .18 C
ATOM 1442 0 ARG A 555 10. ,551 12, .503 53. .379 1. ,00 19. .54 O
ATOM 1443 CB ARG A 555 10. .877 12, .047 49. .931 1. .00 21. .52 C
ATOM 1444 CG ARG A 555 11. .188 13, .553 49. .754 1. .00 22. .34 C
ATOM 1445 CD ARG A 555 12. .053 13, .864 48, .495 1. .00 23. .02 c
ATOM 1446 NE ARG A 555 12. ,112 15, .290 48, .142 1. .00 23. .15 N
ATOM 1447 CZ ARG A 555 13. .239 15, .984 47, .909 1. .00 21. .76 C
ATOM 1448 NHl ARG A 555 14. .433 15, .400 47, .986 1. .00 18, .92 N
ATOM 1449 NH2 ARG A 555 13. .170 17, .276 47, .596 1. .00 19, .08 N
ATOM 1450 N LYS A 556 12. .058 11, .060 52, .508 1. .00 23, .42 N
ATOM 1451 CA LYS A 556 12. .911 11, .026 53. .694 1. ,00 25, .14 C
ATOM 1452 C LYS A 556 13. .133 12, .407 54. .288 1. .00 25, .45 C
ATOM 1453 O LYS A 556 12. .936 12, .618 55. .487 1. .00 27, .23 O ATOM 1454 CB LYS A 556 14.264 10.386 53.368 1.00 26.14 c
ATOM 1455 N GLU A 557 13 .527 13 .348 53 .438 1. .00 25 .49 N
ATOM 1456 CA GLU A 557 13 .961 14 .663 53 .891 1. .00 24 .95 C
ATOM 1457 C GLU A 557 12 .848 15 .700 53 .925 1 .00 23 .58 C
ATOM 1458 O GLU A 557 13, .119 16. .891 54. .066 1. .00 24 .78 O
ATOM 1459 CB GLU A 557 15. .102 15. .166 53. .005 1, .00 27 .47 C
ATOM 1460 CG GLU A 557 15. .761 14. .074 52. .176 1. .00 29 .23 C
ATOM 1461 CD GLU A 557 15, .289 14. .059 50. .732 1. .00 29 .55 C
ATOM 1462 OE1 GLU A 557 16. .022 14. .569 49. .859 1. .00 28 .32 O
ATOM 1463 OE2 GLU A 557 14. .189 13. .532 50. .471 1. .00 29 .61 O
ATOM 1464 N ALA A 558 11. .599 15. .257 53. .803 1, .00 20 .90 N
ATOM 1465 CA ALA A 558 10. .463 16. .181 53. .833 1. .00 17 .58 C
ATOM 1466 C ALA A 558 10. .360 16. .959 55. .158 1. .00 15 .18 C
ATOM 1467 O ALA A 558 9. .698 17. .999 55. .229 1. .00 12 .96 O
ATOM 1468 CB ALA A 558 9. .169 15, .443 53. .542 1. .00 18 .15 C
ATOM 1469 N GLU A 559 11. .021 16 .456 56. .199 1, .00 13 .96 N
ATOM 1470 CA GLTΓ A 559 11. .067 17 .154 57. .478 1. .00 13 .60 C
ATOM 1471 C GLU A 559 11. .711 18 .542 57, .354 1, .00 10 .65 C
ATOM 1472 O GLU A 559 11. .405 19. .435 58. .135 1. .00 11. .47 o
ATOM 1473 CB GLU A 559 11. .786 16 .313 58. .539 1. .00 18 .86 C
ATOM 1474 CG GLU A 559 11. .026 15. .058 58, .958 1. .00 25 .52 c
ATOM 1475 CD GLU A 559 10. .337 15. .187 60, .312 1. .00 28 .15 c
ATOM 1476 OE1 GLU A 559 9. .448 16. .064 60, .447 1. .00 29 .04 0
ATOM 1477 OE2 GLU A 559 10. .677 14 .404 61 .239 1. .00 28 .70 0
ATOM 1478 N SER A 560 12. .590 18 .723 56. .371 1. .00 6 .01 N
ATOM 1479 CA SER A 560 13. .220 20 .022 56 .136 1, .00 5 .39 C
ATOM 1480 C SER A 560 12. .211 21, .104 55. .738 1. .00 6 .24 C
ATOM 1481 O SER A 560 12. .513 22, .297 55 .810 1. .00 5 .85 O
ATOM 1482 CB SER A 560 14. .295 19 .918 55 .049 1. .00 5 .27 c
ATOM 1483 OG SER A 560 15 .397 19 .135 55 .474 1. .00 6 .25 o
ATOM 1484 N PHE A 561 11 .029 20 .686 55 .290 1. .00 5 .32 N
ATOM 1485 CA PHE A 561 9. .967 21, .623 54. .940 1. .00 5. .89 c
ATOM 1486 C PHE A 561 8. .903 21 .642 56. .025 1, .00 7 .14 c
ATOM 1487 O PHE A 561 7, .862 22 .272 55. .865 1. .00 7 .54 0
ATOM 1488 CB PHE A 561 9. .315 21, .244 53. .600 1. .00 7 .49 c
ATOM 1489 CG PHE A 561 10. .260 21, .280 52. .428 1. .00 6, .90 c
ATOM 1490 CDl PHE A 561 10, .621 20, .106 51. .774 1. .00 7, .14 c
ATOM 1491 CD2 PHE A 561 10. .782 22. .483 51. .977 1. .00 6, .24 c
ATOM 1492 CEl PHE A 561 11. .495 20. .133 50. .694 1. .00 6, .81 c
ATOM 1493 CE2 PHE A 561 11. .661 22. .520 50. .897 1. .00 7, .00 c
ATOM 1494 CZ PHE A 561 12. .015 21. .343 50. .253 1. .00 6, .54 c
ATOM 1495 N MET A 562 9. .155 20, .938 57, .124 1. .00 8, .33 N
ATOM 1496 CA MET A 562 8. .177 20, .841 58, .201 1. ,00 8, .23 c
ATOM 1497 C MET A 562 8. .776 21, .232 59. .548 1. .00 9, .89 c
ATOM 1498 O MET A 562 8. .534 20, .581 60. .560 1. ,00 10, .40 0
ATOM 1499 CB MET A 562 7. .589 19. .428 58. .270 1. .00 7, .22 c
ATOM 1500 CG MET A 562 6. .798 19. .021 57. .029 1, .00 7. .05 c
ATOM 1501 SD MET A 562 5. .815 17. .525 57. .258 1. .00 8, .42 Ξ
ATOM 1502 CE MET A 562 7. .088 16. .221 57. .086 1. .00 5, .95 C
ATOM 1503 N ARG A 563 9. .562 22. .299 59. .566 1. .00 9, .81 N
ATOM 1504 CA ARG A 563 10. .139 22. .752 60. .821 1. .00 10, .56 C
ATOM 1505 C ARG A 563 9. .217 23. .785 61. .446 1, .00 8. .55 C
ATOM 1506 0 ARG A 563 8, .335 24. .335 60. .779 1. .00 7 .11 0
ATOM 1507 CB ARG A 563 11. .544 23. .336 60. .615 1. .00 12, .55 c
ATOM 1508 CG ARG A 563 12. .463 22. .479 59. .756 1, .00 15 .77 c
ATOM 1509 CD ARG A 563 13. .506 21 .688 60. .538 1. .00 20, .08 c
ATOM 1510 NE ARG A 563 14. .577 21 .192 59, .669 1, .00 22 .59 N
ATOM 1511 CZ ARG A 563 14. .976 19. .925 59. .609 1. .00 22, .82 C
ATOM 1512 NH1 ARG A 563 14. .403 19. .003 60. .374 1. ,00 23, .56 N
ATOM 1513 NH2 ARG A 563 15. .950 19. .577 58. .781 1. ,00 22. .44 N
ATOM 1514 N THR A 564 9. ,425 24. .040 62. .729 1. ,00 7. .42 N
ATOM 1515 CA THR A 564 8. .696 25. .087 63. .422 1. ,00 9. .06 C
ATOM 1516 C THR A 564 8. .650- 26. .363 62. .578 1. .00 7. .90 C
ATOM 1517 O THR A 564 9. .675 26. .813 62. .074 1. ,00 8, .26 0
ATOM 1518 CB THR A 564 9. ,343 25. .343 64. .794 1. ,00 8, .24 c
ATOM 1519 OG1 THR A 564 9. ,315 24. .124 65, .546 1. ,00 8. .39 0
ATOM 1520 CG2 THR A 564 8. .490 26. .290 65, .630 1. ,00 7, .33 c
ATOM 1521 N ASP A 565 7. .450 26. .913 62, .411 1. .00 7. .83 N
ATOM 1522 CA ASP A 565 7. .218 28. .137 61, .635 1. .00 8. .74 C
ATOM 1523 C ASP A 565 7. ,098 27. .909 60, .127 1. .00 9, .64 C
ATOM 1524 O ASP A 565 6. .809 28. .845 59, .374 1. .00 9. .52 O
ATOM 1525 CB ASP A 565 8. .283 29. .193 61. .936 1. .00 10. .89 C
ATOM 1526 CG ASP A 565 8. .154 29, .760 63. .336 1. .00 13. .77 C
ATOM 1527 OD1 ASP A 565 7, ,075 29, .599 63. .941 1. .00 15, .01 O ATOM 1528 OD2 ASP A 565 9 071 30 374 63 917 1 00 16 98 O
ATOM 1529 N ASP A 566 7 336 26 676 59 679 1 00 8 54 N
ATOM 1530 CA ASP A 566 7 082 26 343 58 285 1 00 7 14 C
ATOM 1531 C ASP A 566 5 576 26 298 58 070 1 00 6 88 C
ATOM 1532 O ASP A 566 4 818 25 959 58 985 1 00 5 89 O
ATOM 1533 CB ASP A 566 7 725 25 010 57 906 1 00 8 15 C
ATOM 1534 CG ASP A 566 9 222 25 133 57 689 1 00 8 85 C
ATOM 1535 OD1 ASP A 566 9 692 26 268 57 460 1 00 9 20 O
ATOM 1536 OD2 ASP A 566 10 004 24 162 57 739 1 00 8 97 O
ATOM 1537 N ILE A 567 5 151 26 648 56 863 1 00 7 47 N
ATOM 1538 CA ILE A 567 3 741 26 842 56 573 1 00 7 74 C
ATOM 1539 C ILE A 567 3 127 25 610 55 920 1 00 9 23 C
ATOM 1540 O ILE A 567 3 638 25 101 54 929 1 00 10 87 o
ATOM 1541 CB ILE A 567 3 541 28 061 55 646 1 00 7 31 C
ATOM 1542 CGI ILE A 567 4 236 29 316 56 196 1 00 8 06 C
ATOM 1543 CG2 ILE A 567 2 064 28 298 55 410 1 00 6 51 c
ATOM 1544 CDl TLE~ A 567 4 076 29 539 57 677 1 00 9 19 c
ATOM 1545 N GLY A 568 2 017 25 141 56 472 1 00 8 34 N
ATOM 1546 CA GLY A 568 1 266 24 069 55 852 1 00 8 00 C
ATOM 1547 C GLY A 568 -0 128 24 550 55 522 1 00 8 05 C
ATOM 1548 O GLY A 568 -0 531 25 629 55 946 1 00 9 84 O
ATOM 1549 N THR A 569 -0 866 23 753 54 761 1 00 6 00 N
ATOM 1550 CA THR A 569 -2 214 24 129 54 373 1 00 6 02 C
ATOM 1551 C THR A 569 -3 238 23 077 54 747 1 00 6 21 c
ATOM 1552 O THR A 569 -3 119 21 912 54 367 1 00 6 42 0
ATOM 1553 CB THR A 569 -2 291 24 397 52 861 1 00 4 52 c
ATOM 1554 OG1 THR A 569 -1 326 25 392 52 509 1 00 4 51 0
ATOM 1555 CG2 THR A 569 -3 628 25 063 52 519 1 00 4 90 c
ATOM 1556 N ALA A 570 -4 248 23 499 55 493 1 00 5 66 N
ATOM 1557 CA ALA A 570 -5 364 22 629 55 814 1 00 5 17 C
ATOM 1558 C ALA A 570 -6 534 23 013 54 919 1 00 7 16 C
ATOM 1559 O ALA A 570 -6 805 24 204 54 715 1 00 6 23 O
ATOM 1560 CB ALA A 570 -5 745 22 780 57 273 1 00 7 21 C
ATOM 1561 N SER A 571 -7 222 22 010 54 380 1 00 5 98 N
ATOM 1562 CA SER A 571 -8 394 22 260 53 549 1 00 6 76 C
ATOM 1563 C SER A 571 -9 555 21 386 53 991 1 00 4 92 C
ATOM 1564 O SER A 571 -9 355 20 272 54 466 1 00 8 44 O
ATOM 1565 CB SER A 571 -8 071 21 993 52 077 1 00 7 12 C
ATOM 1566 OG SER A 571 -7 542 20 685 51 914 1 00 9 13 O
ATOM 1567 N GLY A 572 10 773 21 880 53 840 1 00 3 25 N
ATOM 1568 CA GLY A 572 11 915 21 068 54 190 1 00 2 16 C
ATOM 1569 C GLY A 572 13 228 21 806 54 189 1 00 4 24 C
ATOM 1570 O GLY A 572 13 284 22 999 53 873 1 00 4 87 0
ATOM 1571 N TRP A 573 14 284 21 079 54 548 1 00 3 76 N
ATOM 1572 CA TRP A 573 15 632 21 612 54 563 1 00 4 77 c
ATOM 1573 C TRP A 573 16 122 21 759 56 005 1 00 4 15 c
ATOM 1574 O TRP A 573 17 315 21 934 56 244 1 00 5 38 0
ATOM 1575 CB TRP A 573 16 588 20 689 53 797 1 00 4 46 c
ATOM 1576 CG TRP A 573 16 382 20 607 52 302 1 00 4 16 c
ATOM 1577 CDl TRP A 573 16 880 21 458 51 352 1 00 4 34 c
ATOM 1578 CD2 TRP A 573 15 671 19 588 51 584 1 00 5 58 c
ATOM 1579 NE1 TRP A 573 16 505 21 043 50 095 1 00 4 05 N
ATOM 1580 CE2 TRP A 573 15 761 19 898 50 207 1 00 4 61 C
ATOM 1581 CE3 TRP A 573 14 954 18 447 51 964 1 00 4 75 C
ATOM 1582 CZ2 TRP A 573 15 165 19 114 49 222 1 00 5 96 C
ATOM 1583 CZ3 TRP A 573 14 360 17 669 50 975 1 00 4 28 C
ATOM 1584 CH2 TRP A 573 14 468 18 010 49 623 1 00 4 03 c
ATOM 1585 N GLY A 574 15 199 21 685 56 957 1 00 3 97 N
ATOM 1586 CA GLY A 574 15 531 21 781 58 371 1 00 5 21 c
ATOM 1587 C GLY A 574 15 981 23 167 58 820 1 00 6 70 c
ATOM 1588 O GLY A 574 16 124 24 094 58 004 1 00 7 06 0
ATOM 1589 N LEU A 575 16 202 23 314 60 123 1 00 6 36 N
ATOM 1590 CA LEU A 575 16 742 24 554 60 682 1 00 6 78 c
ATOM 1591 C LEU A 575 15 860 25 758 60 368 1 00 8 04 c
ATOM 1592 O LEU A 575 14 624 25 671 60 426 1 00 4 95 0
ATOM 1593 CB LEU A 575 16 906 24 454 62 203 1 00 6 14 c
ATOM 1594 CG LEU A 575 17 737 23 348 62 857 1 00 7 61 c
ATOM 1595 CDl LEU A 575 17 797 23 583 64 364 1 00 5 28 c
ATOM 1596 CD2 LEU A 575 19 142 23 283 62 269 1 00 6 83 c
ATOM 1597 N THR A 576 16 507 26 875 60 037 1 00 8 52 N
ATOM 1598 CA THR A 576 15 827 28 151 59 863 1 00 11 62 C
ATOM 1599 C THR A 576 16 050 28 979 61 116 1 00 13 53 C
ATOM 1600 O THR A 576 16 601 28 475 62 093 1 00 14 45 O
ATOM 1601 CB THR A 576 16 378 28 900 58 635 1 00 11 53 c ATOM 1602 OG1 THR A 576 17 740 29 288 58 876 1 00 10 89 0
ATOM 1603 CG2 THR A 576 16 476 27 959 57 442 1 00 10 78 c
ATOM 1604 N GLN A 577 15 649 30 248 61 089 1 00 15 20 N
ATOM 1605 CA GLN A 577 15 855 31 118 62 247 1 00 16 61 C
ATOM 1606 C GLN A 577 17 335 31 365 62 541 1 00 15 23 C
ATOM 1607 O GLN A 577 17 683 31 820 63 626 1 00 15 71 O
ATOM 1608 CB GLN A 577 15 128 32 455 62 087 1 00 18 52 C
ATOM 1609 CG GLN A 577 14 986 33 208 63 410 1 00 22 91 C
ATOM 1610 CD GLN A 577 14 804 34 701 63 237 1 00 25 01 C
ATOM 1611 OE1 GLN A 577 14 262 35 153 62 227 1 00 27 97 O
ATOM 1612 NE2 GLN A 577 15 257 35 473 64 219 1 00 24 61 N
ATOM 1613 N ARG A 578 18 201 31 069 61 575 1 00 12 36 N
ATOM 1614 CA ARG A 578 19 646 31 215 61 770 1 00 12 22 C
ATOM 1615 C ARG A 578 20 210 30 117 62 667 1 00 12 28 C
ATOM 1616 O ARG A 578 21 317 30 246 63 195 1 00 12 25 0
ATOM 1617 CB ARG A 578 20 389 31 174 60 431 1 00 10 20 c
ATOM 1618 CG ARG A 578 20 098 32 320 59 477 1 00 9 47 c
ATOM 1619 CD ARG A 578 20 850 32 188 58 173 1 00 11 45 c
ATOM 1620 NE ARG A 578 22 265 31 904 58 408 1 00 13 49 N
ATOM 1621 CZ ARG A 578 22 940 30 918 57 836 1 00 14 93 c
ATOM 1622 NH1 ARG A 578 22 342 30 104 56 975 1 00 15 40 N
ATOM 1623 NH2 ARG A 578 24 223 30 745 58 122 1 00 17 09 N
ATOM 1624 N GLY A 579 19 463 29 024 62 804 1 00 10 88 N
ATOM 1625 CA GLY A 579 19 888 27 913 63 632 1 00 10 53 C
ATOM 1626 C GLY A 579 20 696 26 884 62 865 1 00 10 71 C
ATOM 1627 O GLY A 579 21 352 26 034 63 462 1 00 9 08 0
ATOM 1628 N PHE A 580 20 652 26 967 61 537 1 00 10 82 N
ATOM 1629 CA PHE A 580 21 342 26 012 60 682 1 00 10 14 C
ATOM 1630 C PHE A 580 20 370 25 424 59 676 1 00 9 59 C
ATOM 1631 O PHE A 580 19 345 26 032 59 370 1 00 8 67 O
ATOM 1632 CB PHE A 580 22 517 26 678 59 963 1 00 11 92 C
ATOM 1633 CG PHE A 580 23 530 27 280 60 896 1 00 14 62 C
ATOM 1634 CDl PHE A 580 23 524 28 639 61 168 1 00 15 62 C
ATOM 1635 CD2 PHE A 580 24 479 26 482 61 517 1 00 14 53 C
ATOM 1636 CEl PHE A 580 24 460 29 193 62 040 1 00 16 08 C
ATOM 1637 CE2 PHE A 580 25 408 27 025 62 385 1 00 14 99 C
ATOM 1638 CZ PHE A 580 25 402 28 379 62 649 1 00 15 19 c
ATOM 1639 N LEU A 581 20 691 24 232 59 179 1 00 8 81 N
ATOM 1640 CA LEU A 581 19 925 23 614 58 107 1 00 9 60 C
ATOM 1641 C LEU A 581 19 924 24 546 56 904 1 00 9 22 C
ATOM 1642 O LEU A 581 20 801 25 401 56 776 1 00 11 04 O
ATOM 1643 CB LEU A 581 20 526 22 253 57 724 1 00 9 99 C
ATOM 1644 CG LEU A 581 20 537 21 141 58 785 1 00 10 17 C
ATOM 1645 CDl LEU A 581 21 464 20 016 58 375 1 00 10 06 C
ATOM 1646 CD2 LEU A 581 19 147 20 594 59 051 1 00 9 79 c
ATOM 1647 N ALA A 582 18 929 24 405 56 036 1 00 9 07 N
ATOM 1648 CA ALA A 582 18 903 25 178 54 797 1 00 9 44 C
ATOM 1649 C ALA A 582 19 547 24 380 53 669 1 00 8 51 C
ATOM 1650 O ALA A 582 19 519 23 153 53 678 1 00 8 11 O
ATOM 1651 C3 ALA A 582 17 474 25 568 54 432 1 00 8 02 C
ATOM 1652 N ARG A 583 20 142 25 077 52 708 1 00 9 34 N
ATOM 1653 CA ARG A 583 20 743 24 408 51 561 1 00 9 51 C
ATOM 1654 C ARG 583 19 674 24 149 50 515 1 00 8 69 C
ATOM 1655 O ARG A 583 19 716 23 141 49 805 1 00 8 12 o
ATOM 1656 C3 ARG A 583 21 851 25 265 50 951 1 00 11 83 c
ATOM 1657 CG ARG A 583 22 972 25 606 51 904 1 00 15 01 c
ATOM 1658 CD ARG A 583 24 013 24 519 52 046 1 00 17 25 c
ATOM 1659 NE ARG A 583 25 356 25 011 51 747 1 00 20 43 N
ATOM 1660 CZ ARG A 583 26 389 24 895 52 567 1 00 21 12 c
ATOM 1661 NH1 ARG A 583 26 238 24 308 53 745 1 00 24 42 N
ATOM 1662 NK2 ARG A 583 27 572 25 368 52 218 1 00 21 65 N
ATOM 1663 N ASN A 584 18 734 25 086 50 418 1 00 6 73 N
ATOM 1664 CA ASN A 584 17 634 25 006 49 468 1 00 5 84 C
ATOM 1665 C ASN A 584 16 332 24 718 50 209 1 00 5 76 c
ATOM 1666 O ASN A 584 16 176 25 101 51 375 1 00 5 76 0
ATOM 1667 CB ASN A 584 17 489 26 317 48 700 1 00 5 83 c
ATOM 1668 CG ASN A 584 18 693 26 631 47 834 1 00 7 47 c
ATOM 1669 OD1 ASN A 584 18 702 26 328 46 641 1 00 9 68 0
ATOM 1670 ND2 ASN A 584 19 704 27 265 48 422 1 00 4 93 N
ATOM 1671 N LEU A 585 15 415 24 039 49 527 1 00 3 80 N
ATOM 1672 CA LEU A 585 14 113 23 706 50 088 1 00 6 24 C
ATOM 1673 C LEU A 585 13 349 24 974 50 463 1 00 4 45 C
ATOM 1674 O LEU A 585 13 226 25 891 49 650 1 00 4 00 O
ATOM 1675 CB LEU A 585 13 293 22 882 49 085 1 00 5 30 C ATOM 1676 CG LEU A 585 11..979 22..306 49..624 1.,00 6..74 c
ATOM 1677 CDl LEU A 585 12. ,252 21. .303 50. .732 1. ,00 5. .09 c
ATOM 1678 CD2 LEU A 585 11. ,162 21. .660 48. .502 1. .00 7. .52 c
ATOM 1679 N MET A 586 12. .846 25. .010 51. .694 1. .00 5. .65 N
ATOM 1680 CA MET A 586 12. ,033 26. .132 52, .185 1. .00 6, .78 c
ATOM 1681 C MET A 586 10. ,621 25. .666 52. .497 1. .00 5. .80 c
ATOM 1682 O MET A 586 10. .370 24. .465 52. .613 1. .00 5. .87 0
ATOM 1683 CB MET A 586 12. .634 26. .712 53. .466 1. .00 8. .11 c
ATOM 1684 CG MET A 586 14. .082 27. .094 53. .351 1. .00 10. .20 c
ATOM 1685 SD MET A' 586 14. .225 28. .562 52. .343 1. .00 11. .87 s
ATOM 1686 CE MET A 586 15. .687 29. .261 52. .969 1. .00 12. .70 c
ATOM 1687 N TYR A 587 -9. .708 26. .618 52. .659 1. .00 6. .02 N
ATOM 1688 CA TYR A 587 -8. .352 26. .305 53. .100 1. .00 7. .70 C
ATOM 1689 C TYR A 587 -7. .714 27. .438 53. .916 1. .00 8. .86 C
ATOM . 1690 O TYR A 587 -8. .124 28. .595 53, .803 1. .00 8. .37 O
ATOM 1691 CB TYR A 587 -7. .471 25. .951 51, .900 1. .00 7, .93 c
ATOM 1692 CG TYR A 587 -7. .101 27. .119 51, .017 1. .00 8. .19 c
ATOM 1693 CDl TYR A 587 -5. .882 27. .774 51, .173 1. .00 8. .97 c
ATOM 1694 CD2 TYR A 587 -7. .959 27. .555 50. .013 1. .00 8. .71 c
ATOM 1695 CEl TYR A 587 -5. .532 28. .840 50. .356 1. .00 8. .55 c
ATOM 1696 CE2 TYR A 587 -7. .620 28. .618 49. .188 1. .00 9. .21 c
ATOM 1697 CZ TYR A 587 -6. .408 29. .255 49. .368 1. .00 9. .60 c
ATOM 1698 OH TYR A 587 -6. .068 30. .304 48. .557 1. .00 11. .73 o
ATOM 1699 N VAL A 588 -6. .737 27. .085 54. .756 1. .00 8. .20 N
ATOM 1700 CA VAL A 588 -5. .895 28. .069 55. .441 1. .00 8. .54 C
ATOM 1701 C VAL A 588 -4, .435 27. .640 55. .475 1. .00 7. .17 c
ATOM 1702 O VAL A 588 -4. .127 26. .448 55. .560 1. .00 7. .52 0
ATOM 1703 CB VAL A 588 -6. .304 28, .303 56. .915 1. .00 9. .75 c
ATOM 1704 CGI VAL A 588 -7. .460 29, .249 57. .007 1. .00 9. .49 c
ATOM 1705 CG2 VAL A 588 -6. .587 26, .986 57. .630 1. .00 7. .73 c
ATOM 1706 N ASP A 589 -3. .542 28, .623 55. .418 1. .00 7. .00 N
ATOM 1707 CA ASP A 589 -2. .122 28, .397 55 .648 1. .00 7-. .17 c
ATOM 1708 C ASP A 589 -1. .834 28, .633 57 .122 1, .00 6. .82 c
ATOM 1709 O ASP A 589 -2. .208 29, .671 57 .664 1. .00 5. .47 o
ATOM 1710 CB ASP A 589 -1. .289 29, .368 54 .821 1. .00 6. .99 c
ATOM 1711 CG ASP A 589 -1. .355 29, .'078 53 .342 1. .00 8. .61 c
ATOM 1712 OD1 ASP A 589 -1. .911 28, .030 52 .957 1. .00 9. .79 o
ATOM 1713 OD2 ASP A 589 -0. .878 29, .848 52, .485 1. .00 11. .04 0
ATOM 1714 N ILE A 590 -1. .182 27. .673 57 .772 1. .00 6. .41 N
ATOM 1715 CA ILE A 590 -0. .880 27. .794 59, .197 1. .00 5. .90 C
ATOM 1716 C ILE A 590 0. .534 27. .306 59 .503 1. .00 5. .68 C
ATOM 1717 O ILE A 590 1. .023 26. .354 58 .886 1. .00 6. .24 0
ATOM 1718 CB ILE A 590 -1, .903 27. .010 60 .056 1. .00 5. .94 c
ATOM 1719 CGI ILE A 590 -2. .029 25. .566 59. .569 1. .00 5. .22 c
ATOM 1720 CG2 ILE A 590 -3. .260 27. .695 60 .057 1. .00 6. .85 c
ATOM 1721 CDl ILE A 590 -3. .139 24. .810 60 .239 1. .00 4. .76 c
ATOM 1722 N PRO A .591 1. .186 27. .946 60 .468 1. .00 4. .67 N
ATOM 1723 CA PRO A 591 2. .562 27. .596 60 .820 1. .00 3. .59 c
ATOM 1724 C PRO A 591 2. .597 26. .384 61 .734 1. .00 4. .95 c
ATOM 1725 O PRO A 591 1. .694 26. .211 62 .561 I .00 4. .40 o
ATOM 1726 CB PRO A 591 3. .047 28. .826 61 .585 1. .00 2. .85 c
ATOM 1727 CG PRO A 591 1. .822 29. .421 62 .182 1. .00 3. .66 c
ATOM 1728 CD PRO A 591 0. .654 29. .034 61 .308 1. .00 3. .70 c
ATOM 1729 N ILE A 592 3. .625 25. .555 61. .572 1. .00 5. .41 N
ATOM 1730 CA ILE A 592 3, .915 24. .480 62 .511 1. .00 5. .56 c
ATOM 1731 C ILE A 592 .315 25 .087 63 .852 1. .00 5 .42 c
ATOM 1732 O ILE A 592 5 .121 26. .020 63 .913 1. .00 4 .30 0
ATOM 1733 CB ILE A 592 5 .052 23. .592 61 .979 1. .00 6. .41 c
ATOM 1734 CGI ILE A 592 4 .583 22. .797 60 .766 1. .00 7. .18 c
ATOM 1735 CG2 ILE A 592 5 .587 22. .659 63 .080 1. .00 6. .48 c
ATOM 1736 CDl ILE A 592 5 .589 21. .807 60 .284 1. .00 7. .90 c
ATOM 1737 N VAL A 593 3 .753 24. .538 64 .921 1. .00 5. .67 N
ATOM 1738 CA VAL A 593 3 .997 25 .031 66 .267 1. .00 6 .13 C
ATOM 1739 C VAL A 593 4 .990 24 .139 67 .002 1 .00 6 .08 C
ATOM 1740 O VAL A 593 4 .944 22 .912 .66 .882 1 .00 4 .05 O
ATOM 1741 CB VAL A 593 2 .667 25 .109 67 .053 1 .00 7 .71 c
ATOM 1742 CGI VAL A 593 2 .909 25 .446 68 .520 1 .00 6 .63 c
ATOM 1743 CG2 VAL A 593 1 .740 26 .132 66 .403 1 .00 7 .69 c
ATOM 1744 N ASP A 594 5 .888 24 .766 67 .761 1 .00 6 .51 N
ATOM 1745 CA ASP A 594 6 .832 24 .042 68 .608 1 .00 8 .50 C
ATOM 1746 C ASP A 594 6 .127 22 .971 69 .441 1 .00 8 .21 C
ATOM 1747 O ASP A 594 5 .085 23 .226 70 .058 1 .00 7 .46 O
ATOM 1748 CB ASP A 594 7 .573 25 .014 69 .523 1 .00 10 .38 C
ATOM 1749 CG ASP A 594 8 .475 24 .307 70 .503 1 .00 13 .49 C ATOM 1750 OD1 ASP A 594 9.599 23.933 70.103 1.00 15.44 0
ATOM 1751 OD2 ASP A 594 8 .147 24 .078 71 .689 1 .00 14 .24 0
ATOM 1752 N HIS A 595 6. .705 21 .773 69 .460 1 .00 7 .91 N
ATOM 1753 CA HIS A 595 6 .053 20 .612 70 .063 1 .00 6 .50 C
ATOM 1754 C HIS A 595 5. .868 20 .725 71 .577 1 .00 6 .05 C
ATOM 1755 O HIS A 595 4 .833 20 .321 72 .104 1 .00 5 .53 O
ATOM 1756 CB HIS A 595 6. .813 19 .333 69 .712 1. .00 7. .50 C
ATOM 1757 CG HIS A 595 6. .058 18 .076 70 .019 1 .00 8 .03 C
ATOM 1758 ND1 HIS A 595 5 .398 17 .344 69 .075 1 .00 7. .93 N
ATOM 1759 CD2 HIS A 595 5. .862 17 .415 71 .170 1 .00 6 .98 C
ATOM 1760 CEl HIS A 595 4 .823 16 .293 69 .623 1 .00 6 .68 C
ATOM 1761 NE2 HIS A 595 5. .094 16 .311 70 .900 1 .00 7 .47 N
ATOM 1762 N GLN A 596 6 .862 21 .266 72 .275 1 .00 5 .38 N
ATOM 1763 CA GLN A 596 6 .743 21 .468 73 .719 1. .00 5 .49 C
ATOM 1764 C GLN A 596 5. .666 22 .497 74 .037 1 .00 5 .98 C
ATOM 1765 O GLN A 596 4 .877 22 .326 74 .966 1 .00 7 .36 O
ATOM 1766 CB GLN A 596 8. .077 21 .896 74 .344 1 .00 3 .68 C
ATOM 1767 CG GLN A 596 7. .989 21. .990 75. .860 1. .00 4, .40 C
ATOM 1768 CD GLN A 596 9. .259 22. .469 76. .525 1. .00 3. .78 C
ATOM 1769 OE1 GLN A 596 10, .250 22, .769 75. .861 1. .00 3. .14 O
ATOM 1770 NE2 GLN A 596 9. .233 22, .535 77. .851 1, .00 4. .14 N
ATOM 1771 N LYS A 597 5. .642 23, .569 73. .256 1. .00 7, .64 N
ATOM 1772 CA LYS A 597 4, .634 24, .612 73, .395 1. .00 9. .15 C
ATOM 1773 C LYS A 597 3. .237 24. .025 73, .186 1. .00 8, .44 c
ATOM 1774 O LYS A 597 2, .288 24. .370 73, .886 1. .00 6. .87 o
ATOM 1775 CB LYS A 597 4, .900 25. .707 72, .363 1. .00 12, .35 c
ATOM 1776 CG LYS A 597 4, .164 27. .007 72, .587 1. .00 15. .68 c
ATOM 1777 CD LYS A 597 4, .635 28 .030 71, .570 1, .00 18. .98 c
ATOM 1778 CE LYS A 597 3, .809 29 .300 71. .629 1. .00 23, .00 c
ATOM 1779 NZ LYS A 597 3, .936 30 .000 72. .948 1. .00 25. .20 N
ATOM 1780 N CYS A 598 3, .116 23. .132 72. .212 1. .00 7, .58 N
ATOM 1781 CA CYS A 598 1 .831 22 .511 71. .929 1. .00 7. .30 C
ATOM 1782 C CYS A 598 1, .445 21 .498 72 .997 1. .00 6. .45 C
ATOM 1783 O CYS A 598 0. .279 21 .385 73. .368 1. .00 5. .03 O
ATOM 1784 CB CYS A 598 1. .859 21 .825 70 .577 1. .00 6. .67 C
ATOM 1785 SG CYS A 598 0. .314 20 .983 70. .201 1. .00 8, .80 S
ATOM 1786 N THR A 599 2. .433 20 .747 73. .463 1. .00 6. .39 N
ATOM 1787 CA THR A 599 2. .242 19, .806 74. .554 1. .00 7. .05 C
ATOM 1788 C THR A 599 1. .686 20 .515 75. .791 1. .00 6. .95 C
ATOM 1789 O THR A 599 0. .676 20 .093 76. .357 1. .00 7. .05 O
ATOM 1790 CB THR A 599 3. .578 19. .107 74. .868 1, .00 8. .07 C
ATOM 1791 OG1 THR A 599 3. .815 18. .087 73. .883 1. .00 7. .31 O
ATOM 1792 CG2 THR A 599 3. .502 18. .344 76, .177 1. .00 9. .31 C
ATOM 1793 N ALA A 600 2. .334 21 .607 76, .189 1. .00 5. .82 N
ATOM 1794 CA ALA A 600 1. .925 22 .347 77, .385 1. .00 5. .80 C
ATOM 1795 C ALA A 600 0. .503 22 .903 77, .273 1. .00 5. .26 C
ATOM 1796 O ALA A 600 -0. .202 23 .033 78 .275 1. .00 4. .44 0
ATOM 1797 CB ALA A 600 2. .909 23 .467 77 .678 1. .00 4. .47 c
ATOM 1798 N ALA A 601 0 .089 23 .229 76 .050 1. .00 4. .40 N
ATOM 1799 CA ALA A 601 -1. .223 23 .819 75 .818 1. .00 3. .01 c
ATOM 1800 C ALA A 601 -2. .342 22 .817 76 .115 1. .00 4. .25 c
ATOM 1801 O ALA A 601 -3. .485 23 .203 76 .353 1, .00 3. .91 0
ATOM 1802 CB ALA A 601 -1. .326 24 .333 74 .379 1, .00 4. .07 c
ATOM 1803 N TYR A 602 -2. .012 21 .527 76 .103 1, .00 4. .43 N
ATOM 1804 CA TYR A 602 -3. .019 20 .498 76 .345 1, .00 4. .89 c
ATOM 1805 C TYR A 602 -2 .800 19 .769 77 .662 1. .00 7. .40 c
ATOM 1806 O TYR A 602 -3. .463 18 .769 77 .954 1, .00 5. .41 0
ATOM 1807 CB TYR A 602 -3. .083 19 .534 75 .164 1, .00 2. .77 c
ATOM 1808 CG TYR A 602 -3. .744 20 .189 73 .982 1, .00 4. .06 c
ATOM 1809 CDl TYR A 602 -3. .001 20 .635 72 .893 1, .00 2, .24 c
ATOM 1810 CD2 TYR A 602 -5. .115 20 .413 73 .979 1. .00 2. .91 c
ATOM 1811 CEl TYR A 602 -3. .625 21 .263 71 .813 1, .00 3, .77 c
ATOM 1812 CE2 TYR A 602 -5. .738 21 .035 72 .920 1, .00 2. .83 c
ATOM 1813 CZ TYR A 602 -4. .995 21 .456 71 .840 1, .00 2. .95 c
ATOM 1814 OH TYR A 602 -5. .643 22 .073 70 .794 1, .00 3. .60 0
ATOM 1815 N GLU A 603 -1, .872 20 .295 78 .452 1, .00 10. .03 N
ATOM 1816 CA GLU A 603 -1. .575 19 .764 79 .770 1 .00 15, .91 c
ATOM 1817 C GLU A 603 -2. .492 20 .398 80 .801 1, .00 17, .47 c
ATOM 1818 O GLU A 603 -2, .044 21 .134 81 .682 1, .00 20, .69 0
ATOM 1819 CB GLU A 603 -0, .117 20 .038 80 .132 1, .00 18, .92 c
ATOM 1820 CG GLU A 603 0. ,882 19, .195 79, .361 1. .00 23. .11 c
ATOM 1821 CD i hG ] A 603 2. .278 19, .273 79, .962 0. ,50 24. .68 c ATOM 1822 CD BGLU A 603 1.843 18.447 80.262 0.50 25.37 c
ATOM 1823 OE1AGLU A 603 2 .397 19 .690 81 .149 0. .50 25 .85 0
ATOM 1824 OE1BGLU A 603 1 .906 18 .779 81 .469 0. .50 26 .71 o
ATOM 1825 OE2AGLU A 603 3 .247 18 .853 79 .279 0 .50 26 .00 0
ATOM 1826 OE2BGLU A 603 2 .549 17 .534 79 .761 0. .50 26 .47 0
ATOM 1827 N LYS A 604 -3 .783 20 .110 80 .681 1 .00 17 .98 N
ATOM 1828 CA LYS A 604 -4. .790 20 .660 81 .576 1 .00 17 .52 C
ATOM 1829 C LYS A 604 -6 .102 19 .921 81 .344 1 .00 17 .16 C
ATOM 1830 O LYS A 604 -6 .312 19 .358 80 .271 1 .00 15 .53 O
ATOM 1831 CB LYS A 604 -4 .974 22 .156 81 .309 1 .00 18 .75 C
ATOM 1832 CG LYS A 604 -5 .185 22 .494 79 .845 1 .00 20 .24 c
ATOM 1833 CD LYS A 604 -5 .400 23 .977 79 .653 1 .00 21 .88 c
ATOM 1834 CE LYS A 604 -6 .323 24 .236 78 .485 1 .00 23 .49 c
ATOM 1835 NZ LYS A 604 -6 .768 25 .659 78 .453 1 .00 26 .02 N
ATOM 1836 N PRO A 605 -6 .978 19 .907 82 .345 1 .00 17 .47 N
ATOM 1837 CA PRO A 605 -8 .332 19 .370 82 .168 1, .00 17 .59 C
ATOM 1838 C" PRO A 605 -9 .017 .20 .080 81 .003 1 .00 16 .35 C
ATOM 1839 0 PRO A 605 -8 .808 21 .283 80 .843 1, .00 16 .91 O
ATOM 1840 CB PRO A 605 -9. .024 19. .717 83, .491 1. .00 18, .49 C
ATOM 1841 CG PRO A 605 -8, .130 20. .724 84, .155 1. .00 17, .93 C
ATOM 1842 CD PRO A 605 -6, .742 20. .389 83. .718 1. .00 17, .39 C
ATOM 1843 N PRO A 606 -9 .827 19. .372 80. .217 1. .00 15, .70 N
ATOM 1844 CA PRO A 606 10, .218 17. .987 80. .493 1. .00 14, .67 C
ATOM 1845 C PRO A 606 -9, .380 16. .938 79. .760 1. .00 14. .08 C
ATOM 1846 O PRO A 606 -9. .802 15. .777 79. .672 1. .00 13, .45 O
ATOM 1847 CB PRO A 606 11, .645 17. .943 79, .954 1. .00 14, .48 C
ATOM 1848 CG PRO A 606 11, .626 18. .907 78. .771 1. .00 16, .21 C
ATOM 1849 CD PRO A 606 10, .460 19. .878 78. .987 1. .00 16, .13 C
ATOM 1850 N TYR A 607 -8 .220 17. .339 79. .247 1. .00 12, .92 N
ATOM 1851 CA TYR A 607 -7, .352 16. .432 78. .493 1, .00 10, .82 C
ATOM 1852 C TYR A 607 -6 .572 15. .474 79. .396 1. .00 10, .88 C
ATOM 1853 O TYR A 607 -5 .990 15 .883 80. .403 1, .00 12 .02 O
ATOM 1854 CB TYR A 607 -6 .396 17, .229 77. .606 1. .00 8 .26 C
ATOM 1855 CG TYR A 607 -7 .089 18. .342 76. .869 1. .00 9 .86 C
ATOM 1856 CDl TYR A 607 -6 .972 19. .666 77. .290 1. .00 9 .20 C
ATOM 1857 CD2 TYR A 607 -7 .894 18, .070 75, .766 1. .00 9 .60 C
ATOM 1858 CEl TYR A 607 -7 .624 20, .692 76, .616 1. .00 9, .54 C
ATOM 1859 CE2 TYR A 607 -8, .546 19, .089 75. .089 1. .00 9, .58 C
ATOM 1860 CZ TYR A 607 -8. .410 20. .393 75, .521 1. .00 9. .65 C
ATOM 1861 OH TYR A 607 -9, .059 21. .397 74. .846 1. .00 12, .35 O
ATOM 1862 N PRO A 608 -6, .560 14. .197 79. .028 1. .00 10, .55 N
ATOM 1863 CA PRO A 608 -5, .789 13. .191 79. .762 1. .00 10, .02 C
ATOM 1864 C PRO A 608 -4, .290 13. .424 79. .586 1. .00 10, .15 C
ATOM 1865 O PRO A 608 -3, .878 13. .960 78. .551 1. .00 7, .90 O
ATOM 1866 CB PRO A 608 -6, .204 11. .873 79. .099 1. .00 10, .70 C
ATOM 1867 CG PRO A 608 -6, .669 12. .254 77. .733 1. .00 12. .49 C
ATOM 1868 CD PRO A 608 -7. .260 13. .635 77. .856 1. .00 10. .51 C
ATOM 1869 N ARG A 609 -3. .501 13. .031 80. .585 1. .00 11. .28 N
ATOM 1870 CA ARG A 609 -2, .042 13. .131 80. .530 1. ,00 13. .76 C
ATOM 1871 C ARG A 609 -1. .501 12. .570 79. .222 1. ,00 12, .57 C
ATOM 1872 O ARG A 609 -1. .965 11. .531 78. .740 1. ,00 11, .33 0
ATOM 1873 CB ARG A 609 -1. .403 12. .345 81. .680 1. .00 16, .85 c
ATOM 1874 CG ARG A 609 -1. .761 12. .795 83. .080 1. .00 22. .88 c
ATOM 1875 CD ARG A 609 -0. .824 12. .231 84. .164 1. .00 27. .34 c
ATOM 1876 NE ARG A 609 -1. .511 11. .308 85. .068 1. .00 30. .35 N
ATOM 1877 CZ ARG A 609 -1. .945 11. .634 86. .281 1. ,00 33. .14 c
ATOM 1878 NH1 ARG A 609 -1. .759 12. .865 86. .748 1. ,00 33, .76 N
ATOM 1879 NH2 ARG A 609 -2. .564 10. .730 87. ,034 1. ,00 34. .07 N
ATOM 1880 N GLY A 610 -0. .510 13. .248 78. ,655 1. ,00 10. .77 N
ATOM 1881 CA GLY A 610 0. .155 12. .751 77. ,467 1. .00 9. .07 C
ATOM 1882 C GLY A 610 -0. .743 12. .656 76. ,246 1. .00 9. .63 c
ATOM 1883 O GLY A 610 -0. .647 11. .702 75. .475 1. .00 11. .83 0
ATOM 1884 N SER A 611 -1. .608 13, .648 76. ,060 1. ,00 7. .95 N
ATOM 1885 CA SER A 611 -2. .494 13, .667 74. ,903 1. ,00 8. .32 c
ATOM 1886 C SER A 611 -1. .745 14. .005 73. ,616 1. .00 8. .85 c
ATOM 1887 O SER A 611 -2. .095 13. .500 72. .547 1. .00 8, .92 0
ATOM 1888 CB SER A 611 -3. .656 14, .640 75. .111 1. .00 9. .27 c
ATOM 1889 OG SER A 611 -4. .588 14. .119 76. ,043 1. .00 12. .01 0
ATOM 1890 N VAL A 612 -0. .731 14. .864 73. ,711 1. .00 7, .50 N
ATOM 1891 CA VAL A 612 0, .105 15. .172 72. ,546 1. ,00 6. .20 C
ATOM 1892 C VAL A 612 1. .329 14. .261 72. ,571 1. .00 5. .96 c
ATOM 1893 O VAL A 612 2. .106 14. .303 73. 519 1. 00 5. .40 0
ATOM 1894 CB VAL A 612 0. .540 16. ,664 72. 510 1. 00 5. .72 c
ATOM 1895 CGI VAL A 612 1. .436 16. ,943 71. 311 1. 00 4. .86 c ATOM 1896 CG2 VAL A 612 0.673 17.582 72.484 1 00 3 64 c
ATOM 1897 N THR A 613 1 .478 13 425 71 .541 1 00 6 .28 N
ATOM 1898 CA THR A 613 2 577 12 464 71 468 1 00 6 84 C
ATOM 1899 C THR A 613 3 554 12 755 70 335 1 00 7 64 C
ATOM 1900 O THR A 613 3 327 13 634 69 506 1 00 8 88 O
ATOM 1901 CB THR A 613 2 049 11 027 71 270 1 00 6 35 C
ATOM 1902 OG1 THR A 613 1 470 10 907 69 958 1 00 6 87 O
ATOM 1903 CG2 THR A 613 0 917 10 720 72 .226 1 00 5 62 C
ATOM 1904 N ALA A 614 4 628 11 973 70 295 1 00 5 75 N
ATOM 1905 CA ALA A 614 5 637 12 084 69 .249 1 00 6 71 C
ATOM 1906 C ALA A 614 5 093 11 703 67 877 1 00 6 57 C
ATOM 1907 O ALA A 614 5 758 11 923 66 .864 1 00 9 29 o
ATOM 1908 CB ALA A 614 6 .862 11 229 69 .595 1 00 3 29 c
ATOM 1909 N ASN A 615 3 892 11 126 67 .839 1 00 5 97 N
ATOM 1910 CA ASN A 615 3 245 10 810 66 .567 1 00 6 13 c
ATOM 1911 C ASN A 615 2 300 11 901 66 091 1 00 6 21 c
ATOM 1912 O ASN A 615 1 428 11 657 65 261 1 00 8 05 0
ATOM 1913 CB ASN A 615 2 488 9 491 66 654 1 00 6 76 c
ATOM 1914 CG ASN A 615 3 392 8 335 66 955 1 00 6 73 c
ATOM 1915 OD1 ASN A 615 4 412 8 146 66 294 1 00 5 92 0
ATOM 1916 ND2 ASN A 615 3 039 7 557 67 966 1 00 6 08 N
ATOM 1917 N MET A 616 2 499 13 108 66 604 1 00 5 91 N
ATOM 1918 CA MET A 616 1 660 14 243 66 261 1 00 7 06 C
ATOM 1919 C MET A 616 2 512 15 478 66 010 1 00 5 70 C
ATOM 1920 0 MET A 616 3 581 15 620 66 596 1 00 3 19 O
ATOM 1921 CB MET A 616 0 701 14 542 67 415 1 00 7 63 c
ATOM 1922 CG MET A 616 0 288 13 438 67 697 1 00 7 96 c
ATOM 1923 SD MET A 616 1 129 13 697 69 249 1 00 8 24 Ξ
ATOM 1924 CE MET A 616 1 826 12 049 69 489 1 00 8 06 C
ATOM 1925 N LEU A 617 2 038 16 352 65 123 1 00 5 84 N
ATOM 1926 CA LEU A 617 2 572 17 705 65 008 1 00 6 40 C
ATOM 1927 C LEU A 617 1 424 18 680 65 196 1 00 5 42 C
ATOM 1928 O LEU A 617 0 255 18 324 64 983 1 00 3 83 O
ATOM 1929 CB LEU A 617 3 244 17 939 63 653 1 00 10 21 C
ATOM 1930 CG LEU A 617 2 326 17 875 62 436 1 00 12 98 C
ATOM 1931 CDl LEU A 617 2 535 19 074 61 531 1 00 16 33 C
ATOM 1932 CD2 LEU A 617 2 568 16 597 61 673 1 00 16 17 C
ATOM 1933 N CYS A 618 1 756 19 902 65 597 1 00 4 25 N
ATOM 1934 CA CYS A 618 0 751 20 925 65 818 1 00 5 83 C
ATOM 1935 C CYS A 618 0 931 22 106 64 885 1 00 8 04 C
ATOM 1936 O CYS A 618 2 050 22 416 64 455 1 00 8 01 O
ATOM 1937 CB CYS A 618 0 811 21 406 67 253 1 00 7 38 C
ATOM 1938 SG CYS A 618 0 682 20 063 68 442 1 00 8 15 s
ATOM 1939 N ALA A 619 0 179 22 772 64 582 1 00 7 47 N
ATOM 1940 CA ALA A 619 0 149 23 905 63 672 1 00 7 14 C
ATOM 1941 C ALA A 619 1 291 24 852 63 992 1 00 7 21 C
ATOM 1942 O ALA A 619 2 403 24 419 64 293 1 00 6 44 o
ATOM 1943 CB ALA A 619 0 228 23 429 62 234 1 00 5 52 c
ATOM 1944 N GLY A 620 1 006 26 146 63 937 1 00 8 07 N
ATOM 1945 CA GLY A 620 1 993 27 157 64 255 1 00 8 41 C
ATOM 1946 C GLY A 620 1 353 28 434 64 768 1 00 9 54 C
ATOM 1947 O GLY A 620 0 124 28 555 64 801 1 00 9 68 O
ATOM 1948 N LEU A 621 2 195 29 379 65 176 1 00 9 53 N
ATOM 1949 CA LEU A 621 1 741 30 655 65 707 1 00 11 79 C
ATOM 1950 C LEU A 621 1 958 30 736 67 210 1 00 14 86 C
ATOM 1951 O LEU A 621 2 808 30 036 67 767 1 00 14 68 0
ATOM 1952 CB LEU A 621 2 489 31 805 65 030 1 00 9 30 c
ATOM 1953 CG LEU A 621 2 426 31 850 63 508 1 00 9 20 c
ATOM 1954 CDl LEU A 621 3 131 33 091 63 001 1 00 7 29 c
ATOM 1955 CD2 LEU A 621 0 980 31 820 63 046 1 00 8 59 c
ATOM 1956 N GLU A 622 1 189 31 603 67 857 1 00 18 04 N
ATOM 1957 CA GLU A 622 1 390 31 910 69 265 1 00 22 11 C
ATOM 1958 C GLU A 622 2 758 32 543 69 518 1 00 21 86 C
ATOM 1959 O GLU A 622 3 321 32 411 70 610 1 00 22 77 O
ATOM 1960 CB GLU A 622 0 294 32 854 69 750 1 00 24 87 C
ATOM 1961 CG GLU A 622 1 061 32 186 69 884 1 00 29 85 C
ATOM 1962 CD GLU A 622 1 336 31 742 71 305 1 00 33 10 c
ATOM 1963 OE1 GLU A 622 0 500 30 993 71 862 1 00 33 73 0
ATOM 1964 OE2 GLU A 622 2 381 32 151 71 867 1 00 34 34 0
ATOM 1965 N SER A 623 3 283 33 227 68 503 1 00 20 34 N
ATOM 1966 CA SER A 623 4 540 33 969 68 618 1 00 19 20 C
ATOM 1967 C SER A 623 5 762 33 102 68 332 1 00 19 15 C
ATOM 1968 O SER A 623 6 887 33 464 68 685 1 00 19 62 O
ATOM 1969 CB SER A 623 4 537 35 152 67 651 1 00 19 97 C ATOM 1970 OG SER A 623 -4 650 34 701 66 309 1 00 20 96 0
ATOM 1971 N GLY A 624 -5 541 31 969 67 672 1 00 17 46 N
ATOM 1972 CA GLY A 624 -6 625 31 090 67 277 1 00 15 87 C
ATOM 1973 C GLY A 624 -7 271 31 471 65 950 1 00 15 69 C
ATOM 1974 O GLY A 624 -8 208 30 818 65 502 1 00 14 44 O
ATOM 1975 N GLY A 625 -6 766 32 522 65 312 1 00 14 29 N
ATOM 1976 CA GLY A 625 -7 391 33 048 64 108 1 00 14 76 C
ATOM '1977 C GLY A 625 -7 479 32 127 62 901 1 00 13 44 C
ATOM 1978 O GLY A 625 -8 268 32 377 61 998 1 00 12 99 O
.ATOM 1979 N LYS A 626 -6 666 31 075 62 872 1 00 13 74 N
ATOM 1980 CA LYS A 626 -6 651 30 138 61 754 1 00 13 33 C
ATOM 1981 C LYS A 626 -6 567 28 708 62 280 1 00 14 52 C
ATOM 1982 O LYS A 626 -5 674 28 382 63 061 1 00 15 50 O
ATOM 1983 CB LYS A 626 -5 450 30 403 60 846 1 00 13 38 C
ATOM 1984 CG LYS A 626 -5 488 31 689 60 047 1 00 13 04 C
ATOM 1985 CD LYS A 626 -4 118 31 956 59 417 1 00 13 27 C
ATOM 1986 CE LYS A 626 -4 245 32 567 58 030 1 00 14 45 C
ATOM 1987 NZ LYS A 626 -2 959 32 541 57 265 1 00 14 85 N
ATOM 1988 N ASP A 627 -7 472 27 846 61 832 1 00 13 64 N
ATOM 1989 CA ASP A 627 -7 612 26 528 62 441 1 00 12 55 C
ATOM 1990 C ASP A 627 -8 387 25 572 61 536 1 00 11 03 C
ATOM 1991 O ASP A 627 -9 048 26 001 60 595 1 00 11 28 O
ATOM 1992 CB ASP A 627 -8 342 26 674 63 785 1 00 12 47 C
ATOM 1993 CG ASP A 627 -8 051 25 534 64 753 1 00 14 84 C
ATOM 1994 OD1 ASP A 627 -7 256 24 619 64 426 1 00 13 42 O
ATOM 1995 OD2 ASP A 627 -8 590 25 476 65 883 1 00 15 84 O
ATOM 1996 N SER A 628 -8 287 24 276 61 817 1 00 9 42 N
ATOM 1997 CA SER A 628 -9 174 23 296 61 198 1 00 10 19 C
ATOM 1998 C SER A 628 10 166 22 878 62 278 1 00 10 56 C
ATOM 1999 O SER A 628 -9 835 22 925 63 463 1 00 10 51 0
ATOM 2000 CB SER A 628 -8 393 22 102 60 647 1 00 9 36 C
ATOM 2001 OG SER A 628 -7 530 21 555 61 623 1 00 11 10 0
ATOM 2002 N CYS A 629 11 387 22 521 61 887 1 00 10 79 N
ATOM 2003 CA CYS A 629 12 441 22 267 62 871 1 00 11 98 C
ATOM 2004 C CYS A 629 13 165 20 962 62 662 1 00 12 18 c
ATOM 2005 O CYS A 629 12 881 20 222 61 727 1 00 13 77 0
ATOM 2006 CB CYS A 629 13 491 23 375 62 825 1 00 12 71 c
ATOM 2007 SG CYS A 629 12 817 25 029 62 691 1 00 17 07 s
ATOM 2008 N ARG A 630 14 116 20 697 63 552 1 00 12 56 N
ATOM 2009 CA ARG A 630 15 115 19 663 63 341 1 00 12 49 C
ATOM 2010 C ARG A 630 15 534 19 656 61 868 1 00 10 63 C
ATOM 2011 O ARG A 630 15 909 20 697 61 310 1 00 5 21 O
ATOM 2012 CB ARG A 630 16 327 19 944 64 230 1 00 14 79 C
ATOM 2013 CG ARG A 630 17 299 18 783 64 368 1 00 21 39 C
ATOM 2014 CD ARG A 630 18 621 19 153 65 045 1 00 26 38 c
ATOM 2015 NE ARG A 630 19 729 19 119 64 095 1 00 31 21 N
ATOM 2016 CZ ARG A 630 20 721 20 002 64 057 1 00 33 92 c
ATOM 2017 NH1 ARG A 630 20 758 21 008 64 925 1 00 35 16 N
ATOM 2018 NH2 ARG A 630 21 680 19 880 63 146 1 00 35 02 N
ATOM 2019 K GLY A 631 15 466 18 482 61 244 1 00 8 79 N
ATOM 2020 CA GLY A 631 15 811 18 334 59 841 1 00 7 85 C
-ATOM 2021 C GLY A 631 14 605 18 337 58 919 1 00 7 99 C
ATOM 2022 O GLY A 631 14 694 17 925 57 754 1 00 4 79 O
ATOM 2023 N ASP A 632 13 473 18 815 59 434 1 00 6 84 N
A.TOM 2024 CA ASP A 632 12 233 18 838 58 666 1 00 8 27 C
ATOM 2025 C ASP A 632 11 459 17 533 58 861 1 00 9 29 C
ATOM 2026 O ASP A 632 10 483 17 273 58 147 1 00 7 69 O
ATOM 2027 CB ASP A 632 11 361 20 025 59 075 1 00 7 30 C
ATOM 2028 CG ASP A 632 11 887 21 353 58 550 1 00 7 52 C
ATOM 2029 OD1 ASP A 632 11 810 22 358 59 297 1 00 7 42 O
ATOM 2030 OD2 ASP A 632 12 371 21 503 57 407 1 00 6 03 O
ATOM 2031 N SER A 633 11 903 16 739 59 839 1 00 8 53 N
ATOM 2032 CA SER A 633 11 330 15 432 60 171 1 00 9 01 C
ATOM 2033 C SER A 633 10 910 14 611 58 964 1 00 8 29 C
ATOM 2034 O SER A 633 11 696 14 414 58 034 1 00 8 59 O
ATOM 2035 CB SER A 633 12 340 14 603 60 977 1 00 8 62 C
ATOM 2036 OG SER A 633 12 551 15 153 62 267 1 00 13 26 O
ATOM 2037 N GLY A 634 -9 680 14 111 58 996 1 00 7 53 N
ATOM 2038 CA GLY A 634 -9 182 13 244 57 942 1 00 7 49 C
ATOM 2039 C GLY A 634 -8 440 13 971 56 832 1 00 8 52 C
ATOM 2040 O GLY A 634 -7 668 13 366 56 091 1 00 9 51 O
ATOM 2041 N GLY A 635 -8 668 15 274 56 714 1 00 6 94 N
ATOM 2042 CA GLY A 635 -8 010 16 066 55 691 1 00 6 25 C
ATOM 2043 C GLY A 635 -6 499 16 053 55 798 1 00 7 59 C ATOM 2044 O GLY A 635 -5.944 15.923 56.892 1.00 9.16 0
ATOM 2045 N ALA A 636 -5. .840 16 .179 54 .650 1 .00 5 .98 N
ATOM 2046 CA ALA A 636 -4 .393 16 .269 54 .587 1 .00 6 .06 C
ATOM 2047 C ALA A 636 -3. .922 17 .692 54 .857 1 .00 6 .32 C
ATOM 2048 O ALA A 636 -4 .393 18 .653 54 .218 1 .00 5 .46 0
ATOM 2049 CB ALA A 636 -3 .885 15, .797 53 .198 1 .00 4 .65 c
ATOM 2050 N LEU A 637 -3 .002 17, .823 55-, .808 1 .00 6 .58 N
ATOM 2051 CA LEU A -637 -2. .256 19, .061 56 .005 1 .00 6 .75 c
ATOM 2052 C LEU A 637 -1. .054 18, .968 '55 .074 1 .00 6 .14 c
ATOM 2053 O LEU A 637 -0. .150 18. .167 55 .306 1 .00 7 .21 0
ATOM 2054 CB LEU A 637 -1 .805 19. .203 57 .465 1. .00 6 .92 c
ATOM 2055 CG LEU A 637 -1, .030 20. .463 57 .858 1 .00 6 .78 c
ATOM 2056 CDl LEU A 637 -1 .949 21, .679 57 .898 1 .00 6 .78 c
ATOM 2057 CD2 LEU A 637 -0 .322 20 .275 59 .201 1 .00 6 .79 c
ATOM 2058 N VAL A 638 -1 .074 19, .759 54 .003 1 .00 5 .66 N
ATOM 2059 CA VAL A 638 -0 .067 19 .676 52 .945 1 .00 5 .90 C
ATOM 2060 C VAL A 638 1. .016 20 .751 53 .049 1. .00 7 .81 C
ATOM 2061 O VAL A 638 0, .791 21. .826 53. .605 1, .00 8 .44 O
ATOM 2062 CB VAL A 638 -0. .714 19. .744 51. .540 1. .00 5. .99 c
ATOM 2063 CGI VAL A 638 -1, .487 18. .460 51. .248 1, .00 7, .86 c
ATOM 2064 CG2 VAL A 638 -1. .636 20. .960 51. .417 1. .00 3, .93 c
ATOM 2065 N PHE A 639 2. .193 20. .441 52. .512 1, .00 6, .41 N
ATOM 2066 CA PHE A 639 3. .332 21. .353 52. .505 1, .00 5, .73 c
ATOM 2067 C PHE A 639 3. .952 21. .318 51. .113 1, .00 6. .00 c
ATOM 2068 O PHE A 639 3, .817 20. .324 50. .401 1. .00 5, .89 o
ATOM 2069 CB PHE A 639 4, .371 20. .908 53. .530 1. .00 6. .26 c
ATOM 2070 CG PHE A 639 3. .886 20. .960 54. .950 1, .00 8, .00 c
ATOM 2071 CDl PHE A 639 3. .113 19. .936 55. .467 1. .00 6, .88 c
ATOM 2072 CD2 PHE A 639 4, .214 22. .034 55, .773 1, .00 8. .32 c
ATOM 2073 CEl PHE A 639 2, .660 19. .978 56. .773 1, .00 7, .91 c
ATOM 2074 CE2 PHE A 639 3, .767 22. .082 57. .084 1. .00 8, .50 c
ATOM 2075 CZ PHE A 639 2, .985 21. .052 57. .584 1, .00 7 .20 c
ATOM 2076 N LEU A 640 4, .638 22. .388 50. .725 1. .00 6 .05 N
ATOM 2077 CA LEU A 640 5, .256 22. .443 49. .396 1, .00 7 .47 c
ATOM 2078 C LEU A 640 6, .750 22, .127 49. .422 1, .00 8 .39 c
ATOM 2079 O LEU A 640 7, .545 22, .854 50. .021 1. .00 10, .56 0
ATOM 2080 CB LEU A 640 5, .022 23, .809 48. .727 1, .00 5, .78 c
ATOM 2081 CG LEU A 640 5, .781 24, .110 47. .425 1, .00 8, .23 c
ATOM 2082 CDl LEU A 640 5, .323 23, .207 46. .293 1, .00 6, .56 c
ATOM 2083 CD2 LEU A 640 5. .625 25, .579 47. .016 1. .00 7, .86 c
ATOM 2084 N ASP A 641 7, .129 21, .047 48. .753 1. .00 8. .05 N
ATOM 2085 CA ASP A 641 8, .535 20, .772 48. .504 1. .00 8, .37 C
ATOM 2086 C ASP A 641 8, .996 21, .762 47. .446 1. .00 8, .39 c
ATOM 2087 O ASP A 641 8, .696 21. .594 46. .265 1. .00 8, .44 0
ATOM 2088 CB ASP A 641 8. .708 19, .331 48. .014 1. .00 8, .95 c
ATOM 2089 CG ASP A 641 10. .156 18. .964 47. .754 1. .00 10. .18 c
ATOM 2090 OD1 ASP A 641 10. .955 19. .846 47. .366 1. .00 9. .27 0
ATOM 2091 OD2 ASP A 641 10. .584 17. .801 47. .904 1. .00 12. .66 0
ATOM 2092 N SER A 642 9. .714 22. .802 47. .865 1. .00 8. .39 N
ATOM 2093 CA SER A 642 10. .069 23. .894 46. .959 .00 9. .36 C
ATOM 2094 C SER A 642 11. .097 23. .505 45. .894 1. .00 9. .87 C
ATOM 2095 O SER A 642 11. .336 24. .258 44. .952 .00 9, .53 0
ATOM 2096 CB SER A 642 10. .557 25. .110 47. .744 1. .00 9. .92 c
ATOM 2097 OG SER A 642 11. .762 24. .822 48. .426 1, .00 11, .24 0
ATOM 2098 N GLU A 643 11. .695 22. .329 46. .038 1. .00 9, .88 N
ATOM 2099 CA GLU A 643 12, .676 21 .857 45. .069 1 .00 10, .12 C
ATOM 2100 C GLU A 643 12, .038 21 .020 43. .961 1. .00 9, .52 C
ATOM 2101 O GLU A 643 12, .363 21. .195 42. .792 1. .00 9. .01 O
ATOM 2102 CB GLU A 643 13, .802 21. .087 45. .758 1. .00 9, .32 c
ATOM 2103 CG GLU A 643 14, .764 21. .972 46. .538 1. .00 12. .15 c
ATOM 2104 CD GLU A 643 15, .528 22. .945 45. .656 1. .00 12. .20 c
ATOM 2105 OEl GLU A 643 15, .920 22. .565 44, .533 1. .00 12. .41 0
ATOM 2106 OE2 GLU A 643 15, .733 24. .098 46, .088 1, .00 13. .59 0
ATOM 2107 N THR A 644 11 .136 20 .111 44, .320 1. .00 9. .99 N
ATOM 2108 CA THR A 644 10, .416 19 .345 43 .304 1, .00 11. .74 C
ATOM 2109 C THR A 644 9 .221 20 .141 42 .796 1, .00 12, .55 C
ATOM 2110 O THR A 644 8, .710 19 .883 41 .707 1, .00 14, .41 O
ATOM 2111 CB THR A 644 9, .931 17 .991 43 .852 1, .00 11, .12 C
ATOM 2112 OG1 THR A 644 9 .039 18 .216 44 .952 1, .00 11, .69 0
ATOM 2113 CG2 THR A 644 11, .081 17 .205 44 .462 1, .00 9, .06 c
ATOM 2114 N GLU A 645 8. .784 21. .105 43. .600 1. .00 12. .18 N
ATOM 2115 CA GLU A 645 7. .609 21. .914 43. ,297 1. .00 13. .55 C
ATOM 2116 C GLU A 645 6. .340 21. .078 43. ,333 1. .00 11. ,23 C
ATOM 2117 O GLU A 645 5. .412 21. .299 42. ,560 1. .00 11. ,63 O ATOM 2118 CB GLU A 645 7 764 22 622 41 953 1 00 15 53 c
ATOM 2119 CG GLU A 645 8 864 23 671 41 963 1 00 19 29 c
ATOM 2120 CD GLU A 645 8 902 24 486 40 688 1 00 21 64 c
ATOM 2121 OEl GLU A 645 8 938 23 886 39 594 1 00 22 32 0
ATOM 2122 OE2 GLU A 645 8 896 25 726 40 782 1 00 22 97 0
ATOM 2123 N ARG A 646 6 313 20 122 44 252 1 00 9 05 N
ATOM 2124 CA ARG A 646 5 180 19 229 44 410 1 00 9 41 C
ATOM 2125 C ARG A 646 4 730 19 300 45 856 1 00 9 84 C
ATOM 2126 O ARG A 646 5 553 19 411 46 768 1 00 10 14 O
ATOM 2127 CB ARG A 646 5 573 17 788 44 054 1 00 9 10 C
ATOM 2128 CG ARG A 646 5 952 17 580 42 592 1 00 12 31 c
ATOM 2129 CD ARG A 646 4 839 17 915 41 611 1 00 16 02 c
ATOM 2130 NE ARG A 646 5 315 18 025 40 237 1 00 21 72 N
ATOM 2131 CZ ARG A 646 5 681 16 990 39 484 1 00 24 44 C
ATOM 2132 NH1 ARG A 646 5 627 15 756 39 975 1 00 24 53 N
ATOM 2133 NH2 ARG A 646 6 104 17 189 38 239 1 00 24 90 N
ATOM 2134 N TRP A 647 3 422 19 246 46 062 1 00 8 53 N
ATOM 2135 CA TRP A 647 2 866 19 264 47 404 1 00 8 66 C
ATOM 2136 C TRP A 647 2 887 17 852 47 986 1 00 9 24 C
ATOM 2137 O TRP A 647 2 781 16 866 47 257 1 00 8 58 O
ATOM 2138 CB TRP A 647 1 439 19 805 47 373 1 00 9 53 C
ATOM 2139 CG TRP A 647 1 350 21 285 47 074 1 00 9 77 C
ATOM 2140 CDl TRP A 647 1 302 21 876 45 844 1 00 9 18 C
ATOM 2141 CD2 TRP A 647 1 294 22 351 48 031 1 00 9 39 C
ATOM 2142 NE1 TRP A 647 1 221 23 242 45 977 1 00 9 01 N
ATOM 2143 CE2 TRP A 647 1 215 23 560 47 311 1 00 9 14 C
ATOM 2144 CE3 TRP A 647 1 291 22 405 49 434 1 00 8 83 C
ATOM 2145 CZ2 TRP A 647 1 143 24 811 47 941 1 00 10 14 c
ATOM 2146 CZ3 TRP A 647 1 222 23 647 50 060 1 00 8 96 c
ATOM 2147 CH2 TRP A 647 1 147 24 831 49 311 1 00 9 61 c
ATOM 2148 N PHE A 648 3 035 17 752 49 301 1 00 8 99 N
ATOM 2149 CA PHE A 648 3 019 16 454 49 961 1 00 8 17 C
ATOM 2150 C PHE A 648 2 247 16 534 51 272 1 00 8 74 C
ATOM 2151 O PHE A 648 2 038 17 621 51 809 1 00 9 65 O
ATOM 2152 CB PHE A 648 4 444 15 923 50 181 1 00 8 13 C
ATOM 2153 CG PHE A 648 5 226 16 677 51 224 1 00 7 38 c
ATOM 2154 CDl PHE A 648 5 133 16 335 52 569 1 00 6 58 c
ATOM 2155 CD2 PHE A 648 6 061 17 723 50 860 1 00 7 23 c
ATOM 2156 CEl PHE A 648 5 849 17 026 53 531 1 00 6 82 c
ATOM 2157 CE2 PHE A 648 6 786 18 415 51 815 1 00 6 31 c
ATOM 2158 CZ PHE A 648 6 680 18 071 53 149 1 00 6 05 c
ATOM 2159 N VAL A 649 1 818 15 384 51 776 1 00 8 36 N
ATOM 2160 CA VAL A 649 1 026 15 349 52 985 1 00 8 09 C
ATOM 2161 C VAL A 649 1 939 15 106 54 179 1 00 9 21 c
ATOM 2162 O VAL A 649 2 575 14 057 54 286 1 00 9 80 0
ATOM 2163 CB VAL A 649 0 099 14 273 52 931 1 00 7 80 c
ATOM 2164 CGI VAL A 649 0 446 12 936 52 425 1 00 6 37 c
ATOM 2165 CG2 VAL A 649 0 751 14 112 54 316 1 00 5 76 c
ATOM 2166 N GLY A 650 2 012 16 091 55 070 1 00 7 37 N
ATOM 2167 CA GLY A 650 2 800 15 948 56 277 1 00 6 09 C
ATOM 2168 C GLY A 650 1 948 15 692 57 508 1 00 4 86 C
ATOM 2169 O GLY A 650 2 447 15 194 58 519 1 00 4 22 0
ATOM 2170 N GLY A 651 0 668 16 045 57 434 1 00 4 59 N
ATOM 2171 CA GLY A 651 0 242 15 842 58 546 1 00 5 55 C
ATOM 2172 C GLY A 651 1 640 15 412 58 145 1 00 7 02 C
ATOM 2173 O GLY A 651 2 055 15 579 56 997 1 00 9 18 O
ATOM 2174 N ILE A 652 2 362 14 842 59 105 1 00 7 20 N
ATOM 2175 CA ILE A 652 3 770 14 506 58 945 1 00 6 94 C
ATOM 2176 C ILE A 652 4 567 15 220 60 034 1 00 8 32 C
ATOM 2177 O ILE A 652 4 185 15 182 61 205 1 00 8 21 0
ATOM 2178 CB ILE A 652 3 977 12 978 59 051 1 00 7 09 c
ATOM 2179 CGI ILE A 652 3 272 12 250 57 897 1 00 6 46 c
ATOM 2180 CG2 ILE A 652 5 473 12 632 59 052 1 00 7 28 c
ATOM 2181 CDl ILE A 652 3 040 10 759 58 154 1 00 5 28 c
ATOM 2182 N VAL A 653 5 649 15 895 59 652 1 00 7 33 N
ATOM 2183 CA VAL A 653 6 495 16 574 60 635 1 00 6 10 C
ATOM 2184 C VAL A 653 7 026 15 570 61 655 1 00 7 52 C
ATOM 2185 O VAL A 653 7 829 14 694 61 324 1 00 8 62 O
ATOM 2186 CB VAL A 653 7 688 17 342 59 983 1 00 5 99 C
ATOM 2187 CGI VAL A 653 8 612 17 903 61 061 1 00 2 90 C
ATOM 2188 CG2 VAL A 653 7 183 18 474 59 081 1 00 2 66 c
ATOM 2189 N SER A 654 6 569 15 700 62 896 1 00 6 25 N
ATOM 2190 CA SER A 654 6 861 14 705 63 912 1 00 7 29 C
ATOM 2191 C SER A 654 7 726 15 236 65 067 1 00 7 65 C ATOM 2192 O SER A 654 -8 872 14 825 65 220 1 00 9 33 0
ATOM 2193 CB SER A 654 -5 561 14 063 64 420 1 00 6 36 c
ATOM 2194 OG SER A 654 -5 819 13 128 65 461 1 00 4 82 0
ATOM 2195 N TRP A 655 -7 186 16 147 65 872 1 00 5 88 N
ATOM 2196 CA TRP A 655 -7 934 16 688 67 000 1 00 5 86 C
ATOM 2197 C TRP A 655 -7 454 18 074 67 431 1 00 5 87 C
ATOM 2198 O TRP A 655 -6 521 18 630 66 862 1 00 7 27 O
ATOM 2199 CB TRP A 655 -7 895 15 723 68 191 1 00 4 74 C
ATOM 2200 CG TRP A 655 -6 538 15 568 68 800 1 00 5 17 c
ATOM 2201 CDl TRP A 655 -5 483 14 847 68 296 1 00 3 98 c
ATOM 2202 CD2 TRP A 655 -6 082 16 129 70 038 1 00 5 09 c
ATOM 2203 NE1 TRP A 655 -4 407 14 933 69 145 1 00 3 98 N
ATOM 2204 CE2 TRP A 655 -4 745 15 716 70 220 1 00 4 92 C
ATOM 2205 CE3 TRP A 655 -6 662 16 958 71 007 1 00 5 43 C
ATOM 2206 CZ2 TRP A 655 -3 989 16 094 71 333 1 00 4 89 C
ATOM 2207 CZ3 TRP A 655 -5 906 17 333 72 106 1 00 5 16 C
ATOM 2208 CH2 TRP A 655 -4 587 16 901 72 259 1 00 5 54 C
ATOM 2209 N GLY A 656 -8 120 18 620 68 438 1 00 7 04 N
ATOM 2210 CA GLY A 656 -7 792 19 916 68 999 1 00 8 65 C
ATOM 2211 C GLY A 656 -8 791 20 176 70 107 1 00 10 36 C
ATOM 2212 O GLY A 656 -9 523 19 263 70 502 1 00 9 14 O
ATOM 2213 N SER A 657 -8 830 21 405 70 616 1 00 12 10 N
ATOM 2214 CA SER A 657 -9 833 21 766 71 609 1 00 12 64 C
ATOM 2215 C SER A 657 11 218 21 779 70 967 1 00 13 46 C
ATOM 2216 O SER A 657 11 352 21 958 69 750 1 00 12 30 O
ATOM 2217 CB SER A 657 -9 519 23 121 72 256 1 00 13 59 C
ATOM 2218 OG SER A 657 -9 861 24 210 71 413 1 00 13 62 O
ATOM 2219 N MET A 658 12 234 21 582 71 799 1 00 14 53 N
ATOM 2220 CA MET A 658 13 626 21 524 71 370 1 00 17 22 C
ATOM 2221 C MET A 658 14 083 22 761 70 600 1 00 16 14 C
ATOM 2222 O MET A 658 14 773 22 646 69 595 1 00 17 74 O
ATOM 2223 CB MET A 658 14 514 21 316 72 592 1 00 20 63 C
ATOM 2224 CG MET A 658 15 923 20 845 72 305 1 00 24 57 C
ATOM 2225 SD MET A 658 16 825 20 748 73 875 1 00 28 53 S
ATOM 2226 CE MET A 658 15 496 21 053 75 043 1 00 27 77 C
ATOM 2227 N ASN A 659 13 716 23 941 71 078 1 00 14 66 N
ATOM 2228 CA ASN A 659 14 034 25 173 70 362 1 00 15 20 C
ATOM 2229 C ASN A 659 13 000 25 490 69 286 1 00 14 43 C
ATOM 2230 O ASN A 659 11 791 25 513 69 552 1 00 14 68 O
ATOM 2231 CB ASN A 659 14 156 26 337 71 333 1 00 15 55 C
ATOM 2232 CG ASN A 659 15 288 26 145 72 316 1 00 16 64 C
ATOM 2233 OD1 ASN A 659 16 457 26 105 71 933 1 00 17 25 O
ATOM 2234 ND2 ASN A 659 14 948 26 008 73 587 1 00 15 42 N
ATOM 2235 N CYS A 660 13 470 25 727 68 067 1 00 13 54 N
ATOM 2236 CA CYS A 660 12 544 25 976 66 975 1 00 14 46 C
ATOM 2237 C CYS A 660 11 999 27 394 66 947 1 00 14 33 C
ATOM 2238 O CYS A 660 12 723 28 364 67 206 1 00 13 70 o
ATOM 2239 CB CYS A 660 13 154 25 626 65 627 1 00 15 60 c
ATOM 2240 SG CYS A 660 11 863 25 364 64 398 1 00 17 58 s
ATOM 2241 N GLY A 661 10 715 27 501 66 622 1 00 15 38 N
ATOM 2242 CA GLY A 661 10 046 28 788 66 553 1 00 17 27 C
ATOM 2243 C GLY A 661 -9 858 29 419 67 922 1 00 19 21 C
ATOM 2244 O GLY A 661 -9 818 30 645 68 051 1 00 20 68 0
ATOM 2245 N GLU A 662 -9 753 28 574 68 943 1 00 17 51 N
ATOM 2246 CA GLϋ A 662 -9 516 29 027 70 307 1 00 17 93 C
ATOM 2247 C GLU A 662 -8 054 29 444 70 467 1 00 16 26 C
ATOM 2248 O GLU A 662 -7 149 28 726 70 033 1 00 14 44 0
ATOM 2249 CB GLU A 662 -9 858 27 911 71 298 1 00 18 32 C
ATOM 2250 CG GLϋ A 662 10 103 28 399 72 714 1 00 21 80 C
ATOM 2251 CD GLU A 662 10 319 27 270 73 698 1 00 22 90 C
ATOM 2252 OEl GLU A 662 10 546 26 121 73 260 1 00 23 74 0
ATOM 2253 OE2 GLU A 662 10 260 27 533 74 916 1 00 25 28 O
ATOM 2254 N ALA A 663 -7 827 30 598 71 089 1 00 14 93 N
ATOM 2255 CA ALA A 663 -6 472 31 117 71 275 1 00 14 71 C
ATOM 2256 C ALA A 663 -5 631 30 187 72 148 1 00 13 87 C
ATOM 2257 O ALA A 663 -6 082 29 741 73 200 1 00 13 31 O
ATOM 2258 CB ALA A 663 -6 516 32 513 71 881 1 00 13 04 C
ATOM 2259 N GLY A 664 -4 409 29 899 71 712 1 00 13 64 N
ATOM 2260 CA GLY A 664 -3 498 29 078 72 491 1 00 12 98 C
ATOM 2261 C GLY A 664 -3 776 27 579 72 476 1 00 14 22 C
ATOM 2262 O GLY A 664 -3 084 26 825 73 155 1 00 14 40 O
ATOM 2263 N GLN A 665 -4 781 27 141 71 717 1 00 12 23 N
ATOM 2264 CA GLN A 665 -5 071 25 712 71 590 1 00 12 17 C
ATOM 2265 C GLN A 665 -4 915 25 259 70 142 1 00 11 89 C ATOM 2266 O GLN A 665 5 873 25 251 69 363 1 00 12 39 0
ATOM 2267 CB GLN A 665 6 468 25 364 72 133 1 00 12 52 c
ATOM 2268 CG GLN A 665 6 751 25 902 73 542 1 00 13 14 c
ATOM 2269 CD GLN A 665 5 916 25 225 74 620 1 00 13 45 c
ATOM 2270 OEl GLN A 665 5 529 24 069 74 478 1 00 13 88 0
ATOM 2271 NE2 GLN A 665 5 649 25 942 75 700 1 00 14 18 N
ATOM 2272 N TYR A 666 3 692 24 872 69 801 1 00 9 61 N
ATOM 2273 CA TYR A 666 3 314 24 552 68 429 1 00 9 71 C
ATOM 2274 C TYR A 666 3 988 23 294 67 918 1 00 8 28 C
ATOM 2275 O TYR A 666 4 307 22 398 68 695 1 00 7 96 O
ATOM 2276 CB TYR A 666 1 790 24 426 68 337 1 00 9 95 C
ATOM 2277 CG TYR A 666 1 108 25 501 69 147 1 00 10 21 C
ATOM 2278 CDl TYR A 666 0 633 25 244 70 426 1 00 10 15 C
ATOM 2279 CD2 TYR A 666 0 992 26 793 68 649 1 00 11 35 C
ATOM 2280 CEl TYR A 666 0 030 26 239 71 174 1 00 12 23 C
ATOM 2281 CE2 TYR A 666 0 392 27 795 69 392 1 00 13 28 C
ATOM 2282 CZ TYR A 666 0 083 27 511 70 652 1 00 12 92 C
ATOM 2283 OH TYR A 666 0 674 28 505 71 389 1 00 16 75 O
ATOM 2284 N GLY A 667 4 219 23 249 66 610 1 00 6 04 N
ATOM 2285 CA GLY A 667 4 695 22 045 65 963 1 00 5 58 C
ATOM 2286 C GLY A 667 3 624 20 982 66 073 1 00 5 01 C
ATOM 2287 O GLY A 667 2 438 21 282 65 982 1 00 3 75 O
ATOM 2288 N VAL A 668 4 038 19 739 66 278 1 00 5 90 N
ATOM 2289 CA VAL A 668 3 094 18 638 66 422 1 00 6 13 C
ATOM 2290 C VAL A 668 3 273 17 668 65 266 1 00 7 70 C
ATOM 2291 O VAL A 668 4 388 17 206 64 994 1 00 9 60 O
ATOM 2292 CB VAL A 668 3 281 17 919 67 767 1 00 6 94 C
ATOM 2293 CGI VAL A 668 2 126 16 952 68 035 1 00 4 88 C
ATOM 2294 CG2 VAL A 668 3 411 18 945 68 893 1 00 3 96 C
ATOM 2295 N TYR A 669 2 178 17 382 64 565 1 00 8 49 N
ATOM 2296 CA TYR A 669 2 235 16 567 63 358 1 00 7 43 C
ATOM 2297 C TYR A 669 1 401 15 316 63 505 1 00 8 16 C
ATOM 2298 O TYR A 669 0 358 15 337 64 151 1 00 10 20 O
ATOM 2299 CB TYR A 669 1 756 17 374 62 151 1 00 6 49 C
ATOM 2300 CG TYR A 669 2 548 18 643 61 942 1 00 6 53 C
ATOM 2301 CDl TYR A 669 2 397 19 723 62 802 1 00 4 67 C
ATOM 2302 CD2 TYR A 669 3 468 18 749 60 903 1 00 7 08 C
ATOM 2303 CEl TYR A 669 3 121 20 877 62 628 1 00 7 03 C
ATOM 2304 CE2 TYR A 669 4 203 19 907 60 718 1 00 6 23 C
ATOM 2305 CZ TYR A 669 4 027 20 969 61 584 1 00 7 60 c
ATOM 2306 OH TYR A 669 4 754 22 128 61 416 1 00 5 69 0
ATOM 2307 N THR A 670 1 872 14 224 62 916 1 00 8 17 N
ATOM 2308 CA THR A 670 1 106 12 994 62 862 1 00 8 42 C
ATOM 2309 C THR A 670 0 148 13 241 62 039 1 00 8 86 C
ATOM 2310 O THR A 670 0 074 13 801 60 942 1 00 10 32 O
ATOM 2311 CB THR A 670 1 957 11 883 62 216 1 00 8 76 C
ATOM 2312 OG1 THR A 670 3 170 11 741 62 964 1 00 9 80 0
ATOM 2313 CG2 THR A 670 1 278 10 508 62 353 1 00 5 63 c
ATOM 2314 N LYS A 671 1 294 12 821 62 567 1 00 7 31 N
ATOM 2315 CA LYS A 671 2 578 13 046 61 910 1 00 7 00 C
ATOM 2316 C LYS A 671 2 825 11 967 60 865 1 00 7 38 C
ATOM 2317 O LYS A 671 3 367 10 901 61 163 1 00 7 85 O
ATOM 2318 CB LYS A 671 3 702 13 059 62 943 1 00 6 10 C
ATOM 2319 CG LYS A 671 4 965 13 764 62 474 1 00 6 90 c
ATOM 2320 CD LYS A 671 6 112 13 537 63 447 1 00 7 23 c
ATOM 2321 CE LYS A 671 7 334 14 338 63 041 1 00 10 39 c
ATOM 2322 NZ LYS A 671 8 123 14 749 64 235 1 00 14 84 N
ATOM 2323 N VAL A 672 2 412 12 251 59 635 1 00 6 07 N
ATOM 2324 CA VAL A 672 2 378 11 247 58 580 1 00 5 33 C
ATOM 2325 C VAL A 672 3 714 10 546 58 332 1 00 6 13 C
ATOM 2326 O VAL A 672 3 737 9 348 58 062 1 00 7 62 O
ATOM 2327 CB VAL A 672 1 833 11 852 57 250 1 00 4 76 C
ATOM 2328 CGI VAL A 672 2 114 10 941 56 091 1 00 3 13 C
ATOM 2329 CG2 VAL A 672 0 336 12 098 57 367 1 00 2 81 C
ATOM 2330 N ILE A 673 4 821 11 282 58 429 1 00 6 40 N
ATOM 2331 CA ILE A 673 6 129 10 706 58 125 1 00 7 98 C
ATOM 2332 C ILE A 673 6 480 9 534 59 054 1 00 8 38 C
ATOM 2333 O ILE A 673 7 234 8 651 58 675 1 00 8 53 O
ATOM 2334 CB ILE A 673 7 231 11 794 58 135 1 00 9 24 C
ATOM 2335 CGI ILE A 673 8 456 11 314 57 356 1 00 12 09 C
ATOM 2336 CG2 ILE A 673 7 620 12 179 59 580 1 00 6 93 C
ATOM 2337 CDl ILE A 673 9 277 12 438 56 756 1 00 15 58 C
ATOM 2338 N ASN A 674 5 917 9 528 60 260 1 00 8 79 N
ATOM 2339 CA ASN A 674 6 115 8 429 61 203 1 00 9 76 C ATOM 2340 C ASN A 674 5.498 7.121 60.699 1.00 9.60 C
ATOM 2341 O ASN A 674 5.891 6.032 61.124 1.00 8.16 O
ATOM 2342 CB ASN A 674 5.502 8.779 62.565 1.00 10.16 C
ATOM 2343 CG ASN A 674 6.360 9.737 63.366 1.00 13.15 C
ATOM 2344 OD1 ASN A 674 7.249 10.387 62.824 1.00 13.34 O
ATOM 2345 ND2 ASN A 674 6.095 9.826 64.671 1.00 13.18 N
ATOM 2346 N TYR A 675 4.534 7.240 59.786 1.00 8.17 N
ATOM 2347 CA TYR A 675 3.746 6.092 59.346 1.00 7.67 C
ATOM 2348 C TYR A 675 4.036 5.632 57.919 1.00 7.74 C
ATOM 2349 O TYR A 675 3.295 4.817 57.369 1.00 7.38 O
ATOM 2350 CB TYR A 675 2.255 6.387 59.522 1.00 6.52 C
ATOM 2351 CG TYR A 675 1.911 6.637 60.962 1.00 6.50 - C
ATOM 2352 CDl TYR A 675 1.919 7.921 61.488 1.00 6.65 C
ATOM 2353 CD2 TYR A 675 1.623 5.581 61.809 1.00 4.56 C
ATOM 2354 CEl TYR A 675 1.630 8.140 62.820 1.00 7.94 C
ATOM 2355 CE2 TYR A 675 1.329 5.789 63.126 1.00 7.16 c
ATOM 2356 CZ TYR A 675 1.336 7.065 63.634 1.00 8.37 c
ATOM 2357 OH TYR A 675 1.039 7.261 64.963 1.00 7.80 0
ATOM 2358 N ILE A 676 5.110 6.149 57.329 1.00 7.39 N
ATOM 2359 CA ILE A 676 5.507 5.749 55.975 1.00 7.40 c
ATOM 2360 C ILE A 676 5.696 4.220 55.819 1.00 8.01 c
ATOM 2361 O ILE A 676 5.205 3.640 54.853 1.00 8.99 0
ATOM 2362 CB ILE A 676 6.773 6.537 55.531 1.00 7.45 c
ATOM 2363 CGI ILE A 676 6.415 7.993 55.220 1.00 7.98 c
ATOM 2364 CG2 ILE A 676 7.454 5.877 54.348 1.00 5.53 c
ATOM 2365 CDl ILE A 676 5.329 8.161 54.167 1.00 9.46 c
ATOM 2366 N PRO A 677 6.402 3.564 56.743 1.00 6.79 N
ATOM 2367 CA PRO A 677 6.534 2.099 56.691 1.00 7.06 c
ATOM 2368 C PRO A 677 5.180 1.373 56.768 1.00 5.72 c
ATOM 2369 O PRO A 677 4.945 0.425 56.009 1.00 2.96 0
ATOM 2370 CB PRO A 677 7.408 1.780 57.923 1.00 6.83 c
ATOM 2371 CG PRO A 677 8.194 3.057 58.158 1.00 6.52 c
ATOM 2372 CD PRO A 677 7.171 4.141 57.864 1.00 7.40 c
ATOM 2373 N TRP A 678 4.315 1.815 57.678 1.00 5.27 N
ATOM 2374 CA TRP A 678 2.972 1.257 57.815 1.00 6.28 C
ATOM 2375 C TRP A 678 2.181 1.455 56.508 1.00 6.86 C
ATOM 2376 O TRP A 678 1.608 0.500 55.966 1.00 7.67 O
ATOM 2377 CB TRP A 678 2.252 1.893 59.024 1.00 6.51 C
ATOM 2378 CG TRP A 678 0.865 1.365 59.282 1.00 6.72 c
ATOM 2379 CDl TRP A 678 0.528 0.243 59.990 1.00 6.10 c
ATOM 2380 CD2 TRP A 678 -0.375 1.945 58.846 1.00 6.72 c
ATOM 2381 NE1 TRP A 678 -0.838 0.089 60.012 1.00 4.65 N
ATOM 2382 CE2 TRP A 678 -1.417 1.116 59.317 1.00 6.11 C
ATOM 2383 CE3 TRP A 678 -0.711 3.077 58.093 1.00 5.60 C
ATOM 2384 CZ2 TRP A 678 -2.765 1.382 59.059 1.00 5.60 C
ATOM 2385 CZ3 TRP A 678 -2.050 3.339 57.840 1.00 5.76 C
ATOM 2386 CH2 TRP A 678 -3.058 2.493 58.319 1.00 4.84 c
ATOM 2387 N ILE A 679 2.177 2.684 55.988 1.00 6.42 N
ATOM 2388 CA ILE A 679 1.501 2.986 54.722 1.00 5.99 c
ATOM 2389 C ILE A 679 2.018 2.123 53.562 1.00 7.97 C
ATOM 2390 O ILE A 679 1.233 1.509 52.823 1.00 8.51 O
ATOM 2391 CB ILE A 679 1.629 4.489 54.375 1.00 4.92 C
ATOM 2392 CGI ILE A 679 0.826 5.338 55.365 1.00 3.85 C
ATOM 2393 CG2 ILE A 679 1.170 4.759 52.933 1.00 3.27 c
ATOM 2394 CDl ILE A 679 1.285 6.759 55.461 1.00 3.39 c
ATOM 2395 N GLU A 680 3.338 2.077 53.404 1.00 8.92 N
ATOM 2396 CA GLU A 680 3.945 1.272 52.345 1.00 10.96 c
ATOM 2397 C GLU A 680 3.700 -0.241 52.522 1.00 9.82 c
ATOM 2398 O GLU A 680 3.557 -0.968 51.547 1.00 8.57 0
ATOM 2399 CB GLU A 680 5.446 1.581 52.227 1.00 13.06 c
ATOM 2400 CG GLU A 680 5.745 3.036 51.871 1.00 15.89 c
ATOM 2401 CD GLU A 680 7.235 3.322 51.693 1.00 17.90 c
ATOM 2402 OEl GLU A 680 8.073 2.626 52.312 1.00 17.18 0
ATOM 2403 OE2 GLU A 680 7.567 4.256 50.933 1.00 18.14 0
ATOM 2404 N ASN A 681 3.663 -0.706 53.767 1.00 9.14 N
ATOM 2405 CA ASN A 681 3.315 -2.094 54.056 1.00 9.42 c
ATOM 2406 C ASN A 681 1.923 -2.448 53.534 1.00 8.56 c
ATOM 2407 O ASN A 681 1.743 -3.463 52.864 1.00 9.08 0
ATOM 2408 CB ASN A 681 3.387 -2.361 55.567 1.00 10.68 c
ATOM 2409 CG ASN A 681 3.042 -3.803 55.939 1.00 13.05 c
ATOM 2410 OD1 ASN A 681 2.902 -4.133 57.120 1.00 13.72 0
ATOM 2411 ND2 ASN A 681 2.920 -4.664 54.940 1.00 15.31 N
ATOM 2412 N ILE A 682 0.937 -1.613 53.842 1.00 8.23 N
ATOM 2413 CA ILE A 682 -0.445 -1.916 53.477 1.00 7.65 C ATOM 2414 C ILE A 682 -0.681 -1.742 51.978 1.00 8.11 C
ATOM 2415 O ILE A 682 -1.252 -2.611 51.319 1.00 6.94 O
ATOM 2416 CB ILE A 682 -1.405 -1.042 54.290 1.00 8.60 C
ATOM 2417 CGI ILE A 682 -1.489 -1.570 55.725 1.00 8.03 C
ATOM 2418 CG2 ILE A 682 -2.784 -0.979 53.634 1.00 7.67 C
ATOM 2419 CDl ILE A 682 -2.175 -0.635 56.659 1.00 8.12 C
ATOM 2420 N ILE A 683 -0.224 -0.625 51.433 1.00 7.36 N
ATOM 2421 CA ILE A 683 -0.402 -0.379 50.015 1.00 7.04 C
ATOM 2422 C ILE A 683 0.313 -1.426 49.149 1.00 9.09 c
ATOM 2423 O ILE A 683 -0.226 .864 48.122 1.00 10.38 0
ATOM 2424 CB ILE A 683 0.037 .050 49.663 1.00 5.36 c
ATOM 2425 CGI ILE A 683 -0.981 .043 50.237 1.00 4.21 c
ATOM 2426 CG2 ILE A 683 0.220 .207 48.138 1.00 2.21 c
ATOM 2427 CDl ILE A 683 -0.680 .505 49.919 1.00 4.64 c
ATOM 2428 N SER A 684 1.509 .843 49.564 1.00 7.85 N
ATOM 2429 CA SER A 684 2.242 .851 48.794 1.00 8.32 C
ATOM 2430 C SER A 684 1.617 -4.245 48.915 .00 7.57 C
ATOM 2431 O SER A 684 1.673 -5.047 47.980 .00 7.19 o
ATOM 2432 CB SER A 684 3.723 -2.892 49.195 .00 9.04 c
ATOM 2433 OG SER A 684 3.911 .604 50.410 .00 6.97 0
ATOM 2434 N ASP A 685 1.009 .525 50.059 .00 6.87 N
ATOM 2435 CA ASP A 685 0.516 .874 50.335 1.00 6.87 C
ATOM 2436 C ASP A 685 -0.922 .129 49.858 00 8.22 C
ATOM 2437 O ASP A 685 -1.367 .276 49.790 00 7.96 O
ATOM 2438 CB ASP A 685 0.647 .189 51.827 00 4.02 C
ATOM 2439 CG ASP A 685 0.789 .673 52.101 00 3.71 C
ATOM 2440 OD1 ASP A 685 1.311 -8.403 51.224 00 2.00 o
ATOM 2441 OD2 ASP A 685 0.401 -8.197 53.165 1.00 2.34 0
ATOM 2442 N PHE A 686 -1.648 -5.064 49.536 1.00 10.84 N
ATOM 2443 CA PHE A 686 -3.029 -5.209 49.095 1.00 15.39 C
ATOM 2444 C PHE A 686 -3.252 -4.475 47.779 1.00 19.06 C
ATOM 2445 O PHE A 686 -2.320 -4.305 46.991 1.00 22.16 o
ATOM 2446 CB PHE A 686 .008 .713 50.175 1.00 14.18 c
ATOM 2447 CG PHE A 686 .936 .495 51.462 1.00 13.62 c
ATOM 2448 CDl PHE A 686 .071 .108 52.477 1.00 12.74 c
ATOM 2449 CD2 PHE A 686 .722 .623 51.652 ,00 13.51 c
ATOM 2450 CEl PHE A 686 .988 .829 53.652 12.67 c
ATOM 2451 CE2 PHE A 686 -4.647 .350 52.826 12.89 c
ATOM 2452 CZ PHE A 686 -3.777 -6.956 53.827 12.47 c
ATOM 2453 OXT PHE A 686 -4.365 -4.042 47.485 .00 22.21 o
TER 2454 PHE A 686
ATOM 2455 N CYS B 366 2.429 13. .395 126. .950 00 30.61 N
ATOM 2456 CA CYS B 366 2.133 12. .837 125 .594 00 32.00 c
ATOM 2457 C CYS B 366 0.689 12. .345 125. .492 00 30.86 c
ATOM 2458 O CYS B 366 0.190 12. .075 124 .399 00 29.89 o
ATOM 2459 C3 CYS B 366 3.108 11. .700 125. .251 00 32.82 c
ATOM 2460 SG CYS B 366 4.857 12. .088 125. .541 00 35.02 s
ATOM 2461 N GLY B 367 0.022 12. .240 126 .639 00 30.70 N
ATOM 2462 CA GLY B 367 -1.343 11. .749 126 .687 00 30.15 c
ATOM 2463 C GLY B 367 -1.385 10. .252 126 .454 00 30.00 c
ATOM 2464 O GLY 3 367 -0.340 9. .614 126 .334 00 31.13 0
ATOM 2465 N PRO 3 368 -2.5S5 9. .684 126 .392 00 29.20 N
ATOM 2466 CA PRO B 368 -2.740 8. .251 126 .134 00 28.66 C
ATOM 2467 C PRO B 368 -2.058 7. .863 124 .824 00 29.12 C
ATOM 2468 0 PRO 3 368 -2.130 8. .617 123 .851 00 29.05 O
ATOM 2469 CB PRO B 368 .257 8 .080 126 .018 00 28.48 C
ATOM 2470 CG PRO B 368 .825 9. .216 126 .776 00 28.70 C
ATOM 2471 CD PRO B 368 .881 10. .363 126, .562 1.00 29.06 C
ATOM 2472 N PRO B 369 .399 6 .707 12 .801 1.00 28.67 N
ATOM 2473 CA PRO B 369 .704 6 .245 123 .597 1.00 27.52 C
ATOM 2474 C PRO B 369 .702 5 .662 122 .605 1.00 27.71 C
ATOM 2475 O PRO B 369 -2.751 5 .164 123 .017 1.00 27.91 O
ATOM 2476 CB PRO B 369 0.225 5 .157 124 .130 1.00 27.20 C
ATOM 2477 CG PRO B 369 -0.486 4 .616 125 .334 1.00 27.69 C
ATOM 2478 CD PRO B 369 -1.279 5 .754 125 .921 1.00 27.97 C
ATOM 2479 N ASP B 370 -1.392 5 .735 121 .317 1.00 27.14 N
ATOM 2480 CA ASP B 370 -2.312 5 .241 120 .301 1.00 28.61 C
ATOM 2481 C ASP B 370 -2.573 3 .746 120 .468 1.00 29.21 C
ATOM 2482 O ASP B 370 -1.701 3 .000 120 .915 1.00 29.00 0
ATOM 2483 CB ASP B 370 -1.775 5 .535 118 .899 1.00 28.17 c
ATOM 2484 CG ASP B 370 -1.340 6 .978 118 .735 1.00 28.21 c
ATOM 2485 OD1 ASP B 370 -1.188 7 .675 119 .758 1.00 27.65 0
ATOM 2486 OD2 ASP B 370 -1.125 7 .501 117 .624 1.00 28.28 0
ATOM 2487 N ASP B 371 -3.785 3 .321 120 .126 1.00 29.87 N ATOM 2488 CA ASP B 371 4 125 1.906 120.127 1.00 30.42 c ATOM 2489 C ASP B 371 3 332 1 .226 119 .015 1 .00 30 .63 c ATOM 2490 O ASP B 371 3 159 1 786 117 929 1 00 30 .68 0 ATOM 2491 CB ASP B 371 5 638 1 .724 119 922 1 .00 31 .78 c ATOM 2492 CG ASP B 371 6 053 0 259 119 743 1 00 32 .65 c ATOM 2493 OD1 ASP B 371 5 257 -0 .554 119 233 1 .00 33 .47 0 ATOM 2494 OD2 ASP B 371 7 178 -0 171 120 074 1 00 32 74 o ATOM 2495 N LEU B 372 2 834 0 026 119 299 1 00 30 .42 N ATOM 2496 CA LEU B 372 2 114 -0 .764 118 308 1 00 29 .58 c ATOM 2497 C LEU B 372 2 992 -1 909 117 823 1 00 29 .54 c ATOM 2498 O LEU B 372 3 343 -2 .801 118 593 1 00 29 .43 o ATOM 2499 CB LEU B 372 0 806 -1 302 118 895 1 00 28 50 c ATOM 2500 CG LEU B 372 0 071 -2 404 118 129 1 00 27 80 c ATOM 2501 CDl LEU B 372 0 564 -1 .860 116 864 1 00 26 .26 c ATOM 2502 CD2 LEU B 372 0 977 -3 060 119 021 1 00 26 68 c ATOM 2503 N PRO B 373 3 359 -1 869 116 546 1 00 29 30 N ATOM 2504 CA "PRO B 373 4 202 -2 911 115 950 1 00 29 75 c ATOM 2505 C PRO B 373 3 593 -4 293 116 156 1 00 29 51 c ATOM 2506 O PRO B 373 2 398 -4 473 115 907 1 00 29 .66 o ATOM 2507 CB PRO B 373 4 200 -2 551 114 458 1 00 30 00 c ATOM 2508 CG PRO B 373 3 926 -1 080 114 428 1 00 30 .26 c ATOM 2509 CD PRO B 373 2 992 -0 821 115 579 1 00 29 37 c ATOM 2510 N SER B 374 4 404 -5 244 116 614 1 00 28 43 N ATOM 2511 CA SER B 374 3 960 -6 621 116 822 1 00 28 61 C ATOM 2512 C SER B 374 2 851 -6 710 117 871 1 00 29 70 C ATOM 2513 O SER B 374 2 081 -7 672 117 913 1 00 30 33 O ATOM 2514 CB SER B 374 3 515 -7 252 115 500 1 00 26 46 c ATOM 2515 OG SER B 374 4 381 -6 867 114 442 1 00 26 32 0 ATOM 2516 N GLY B 375 2 778 -5 693 118 719 1 00 31 12 N ATOM 2517 CA GLY B 375 1 823 -5 678 119 807 1 00 32 92 C ATOM 2518 C GLY B 375 2 415 -4 989 121 015 1 00 34 74 C ATOM 2519 O GLY B 375 3 617 -4 725 121 064 1 00 35 00 O ATOM 2520 N ARG B 376 1 568 -4 696 121 993 1 00 36 65 N ATOM 2521 CA ARG B 376 2 003 -3 987 123 181 1 00 38 33 C ATOM 2522 C ARG B 376 0 885 -3 085 123 683 1 00 39 14 C ATOM 2523 O ARG B 376 0 268 -3 229 123 271 1 00 38 14 O ATOM 2524 CB ARG B 376 2 438 -4 975 124 266 1 00 39 14 C ATOM 2525 CG ARG B 376 1 331 -5 878 124 771 1 00 39 74 C ATOM 2526 CD ARG B 376 1 752 -7 322 124 962 1 00 40 63 C ATOM 2527 NE ARG B 376 0 615 -8 233 124 865 1 00 41 38 N ATOM 2528 CZ ARG B 376 0 690 -9 478 124 411 1 00 41 58 C ATOM 2529 NH1 ARG B 376 1 855 -9 975 124 010 1 00 41 05 N ATOM 2530 NH2 ARG B 376 0 403 -10 229 124 360 1 00 41 82 N ATOM 2531 N VAL 377 1 240 -2 149 124 562 1 00 41 05 N ATOM 2532 CA VAL B 377 0 286 -1 210 125 142 1 00 41 52 C ATOM 2533 C VAL B 377 0 324 -1 308 126 659 1 00 42 86 C ATOM 2534 O VAL B 377 1 386 -1 509 127 253 1 00 42 82 O ATOM 2535 CB VAL B 377 0 576 0 247 124 712 1 00 41 65 ATOM 2536 CGI VAL B 377 1 737 0 301 123 733 1 00 41 99 C ATOM 2537 CG2 VAL B 377 0 871 1 117 125 919 1 00 42 26 C ATOM 2538 N GLU B 378 0 839 -1 161 127 284 1 00 43 95 N ATOM 2539 CA GLU B 378 0 950 -1 324 128 725 1 00 44 15 C ATOM 2540 C GLU B 378 1 917 -0 315 129 344 1 00 43 88 C ATOM 2541 O GLU B 378 3 084 -0 236 128 955 1 00 43 48 O ATOM 2542 CB GLU B 378 1 357 -2 762 129 055 1 00 45 09 C ATOM 2543 CG GLU B 378 0 179 -3 730 129 105 1 00 46 17 c ATOM 2544 CD GLU B 378 0 204 -4 796 128 013 1 00 46 55 c ATOM 2545 OEl GLU B 378 1 142 -4 797 127 188 1 00 47 24 o ATOM 2546 OE2 GLU B 378 0 721 -5 642 127 984 1 00 45 98 0 ATOM 2547 N TYR B 379 1 414 0 462 130 303 1 00 43 21 N ATOM 2548 CA TYR B 379 2 218 1 462 131 001 1 00 42 48 C ATOM 2549 C TYR B 379 3 213 0 775 131 929 1 00 40 89 C ATOM 2550 O TYR B 379 2 813 0 084 132 863 1 00 40 81 O ATOM 2551 CB TYR B 379 1 331 2 391 131 837 1 00 43 26 C ATOM 2552 CG TYR B 379 0 277 3 177 131 078 1 00 44 27 C ATOM 2553 CDl TYR B 379 0 652 2 539 130 263 1 00 45 18 C ATOM 2554 CD2 TYR B 379 0 193 4 558 131 205 1 00 44 80 C ATOM 2555 CEl TYR B 379 1 621 3 259 129 581 1 00 45 61 c ATOM 2556 CE2 TYR B 379 0 773 5 284 130 530 1 00 45 28 c ATOM 2557 CZ TYR B 379 1 677 4 630 129 720 1 00 45 32 c ATOM 2558 OH TYR B 379 2 640 5 348 129 047 1 00 45 41 0 ATOM 2559 N ILE B 380 4 503 0 967 131 679 1 00 39 47 N ATOM 2560 CA ILE B 380 5 524 0 387 132 543 1 00 38 99 c ATOM 2561 C ILE B 380 5.787 1 270 133.763 1 00 39.59 c
ATOM 2562 O ILE B 380 6 .092 0 766 134 .845 1 00 39 .74 O
ATOM 2563 CB ILE B 380 6 828 0 128 131 765 1 00 38 .22 c
ATOM 2564 N THR B 381 5 662 2 584 133 587 1 00 39 76 N
ATOM 2565 CA THR B 381 5 840 3 525 134 690 1 00 39 88 c
ATOM 2566 C THR B 381 4 705 3 394 135 699 1 00 39 88 c
ATOM 2567 O THR B 381 4 940 3 163 136 885 1 00 39 98 0
ATOM 2568 CB THR B 381 5 922 4 977 134 167 1 00 40 16 c
ATOM 2569 OG1 THR B 381 7 213 5 210 133 592 1 00 40 52 0
ATOM 2570 CG2 THR B 381 5 874 5 975 135 325 1 00 40 04 c
ATOM 2571 N GLY B 382 3 475 3 539 135 217 1 00 39 84 N
ATOM 2572 CA GLY B 382 2 303 3 454 136 068 1 00 39 60 C
ATOM 2573 C GLY B 382 1 019 3 672 135 294 1 00 40 01 C
ATOM 2574 O GLY B 382 1 016 4 337 134 254 1 00 39 49 O
ATOM 2575 N PRO B 383 0 074 3 110 135 802 1 00 40 26 N
ATOM 2576 CA PRO B 383 1 388 3 225 135 160 1 00 40 58 C
ATOM 2577 C "PRO B 383 1 824 4 679 135 014 1 00 40 76 C
ATOM 2578 O PRO B 383 2 017 5 365 136 016 1 00 39 84 0
ATOM 2579 CB PRO B 383 2 316 2 499 136 138 1 00 40 61 C
ATOM 2580 CG PRO B 383 1 420 1 573 136 886 1 00 40 49 c
ATOM 2581 CD PRO 3 383 0 126 2 311 137 038 1 00 40 28 c
ATOM 2582 N GLY B 384 1 970 5 139 133 776 1 00 40 94 N
ATOM 2583 CA GLY B 384 2 397 6 503 133 520 1 00 41 28 C
ATOM 2584 C GLY B 384 1 321 7 538 133 793 1 00 41 11 C
ATOM 2585 O GLY B 384 1 609 8 636 134 276 1 00 41 14 O
ATOM 2586 N VAL B 385 0 074 7 183 133 495 1 00 40 78 N
ATOM 2587 CA VAL B 385 1 034 8 126 133 592 1 00 40 54 C
ATOM 2588 C VAL B 385 1 548 8 434 132 191 1 00 40 45 C
ATOM 2589 O VAL B 385 2 142 7 577 131 531 1 00 40 27 0
ATOM 2590 CB VAL B 385 2 182 7 585 134 466 1 00 40 73 C
ATOM 2591 N THR B 386 1 299 9 660 131 740 1 00 39 82 N
ATOM 2592 CA THR B 386 1 625 10 067 130 379 1 00 38 56 C
ATOM 2593 C THR B 386 2 259 11 455 130 358 1 00 38 43 c
ATOM 2594 O THR B 386 2 182 12 166 129 357 1 00 38 75 0
ATOM 2595 CB THR B 386 0 353 10 070 129 515 1 00 38 31 c
ATOM 2596 OG1 THR B 386 0 598 10 987 130 068 1 00 37 74 o
ATOM 2597 CG2 THR B 386 0 367 8 730 129 603 1 00 38 41 c
ATOM 2598 N THR B 387 2 882 11 834 131 470 1 00 38 50 N
ATOM 2599 CA THR B 387 3 470 13 163 131 615 1 00 38 26 C
ATOM 2600 C THR B 387 4 667 13 369 130 690 1 00 37 92 C
ATOM 2601 O THR B 387 4 527 13 883 129 578 1 00 37 18 O
ATOM 2602 CB THR B 387 3 887 13 395 133 072 1 00 38 15 C
ATOM 2603 OG1 THR B 387 2 849 12 929 133 943 1 00 38 54 O
ATOM 2604 CG2 THR B 387 3 954 14 884 133 376 1 00 39 54 c
ATOM 2605 N TYR B 388 5 870 12 990 131 087 1 00 35 97 N
ATOM 2606 CA TYR B 388 7 140 13 174 130 380 1 00 34 23 C
ATOM 2607 C TYR B 388 8 215 12 275 130 991 1 00 33 50 C
ATOM 2608 O TYR B 388 8 622 12 466 132 156 1 00 32 50 O
ATOM 2609 N LYS B 389 8 659 11 290 130 201 1 00 32 83 N
ATOM 2610 CA LYS B 389 9 703 10 371 130 642 1 00 32 95 C
ATOM 2611 C LYS B 389 9 160 8 970 130 915 1 00 32 80 C
ATOM 2612 O LYS B 389 9 928 8 036 131 158 1 00 32 32 O
ATOM 2613 N ALA B 390 7 838 8 828 130 876 1 00 32 98 N
ATOM 2614 CA ALA B 390 7 194 7 537 131 109 1 00 32 78 C
ATOM 2615 C ALA B 390 7 564 6 537 130 020 1 00 33 23 C
ATOM 2616 O ALA B 390 7 618 6 888 128 837 1 00 33 61 0
ATOM 2617 N VAL B 391 7 869 5 251 130 430 1 00 33 24 N
ATOM 2618 CA VAL B 391 8 288 4 207 129 495 1 00 32 81 C
ATOM 2619 C VAL B 391 7 250 3 096 129 371 1 00 32 21 C
ATOM 2620 0 VAL B 391 7 058 2 313 130 298 1 00 32 74 O
ATOM 2621 N ILE B 392 6 589 3 036 128 218 1 00 31 16 N
ATOM 2622 CA ILE B 392 5 551 2 039 127 956 1 00 30 95 C
ATOM 2623 C ILE B 392 6 052 0 904 127 064 1 00 30 67 C
ATOM 2624 O ILE B 392 7 139 0 985 126 488 1 00 31 05 O
ATOM 2625 CB ILE B 392 4 317 2 699 127 303 1 00 30 19 C
ATOM 2626 CGI ILE B 392 4 648 3 152 125 875 1 00 30 32 C
ATOM 2627 CG2 ILE B 392 3 829 3 864 128 145 1 00 30 34 C
ATOM 2628 CDl ILE B 392 3 434 3 457 125 019 1 00 28 66 c
ATOM 2629 N GLN B 393 5 253 -0 146 126 942 1 00 30 69 N
ATOM 2630 CA GLN B 393 5 624 -1 301 126 129 1 00 30 08 c
ATOM 2631 C GLN B 393 4 496 -1 731 125 195 1 00 29 71 c
ATOM 2632 O GLN B 393 3 367 -1 961 125 634 1 00 29 68 0
ATOM 2633 CB GLN B 393 6 046 -2 472 127 020 1 00 30 42 c ATOM 2634 CG GLN B 393 6 646 -3 646 126 259 1 00 30 93 c
ATOM 2635 CD GLN B 393 8 104 -3 422 125 891 1 00 30 91 c
ATOM 2636 OEl GLN B 393 8 679 -2 377 126 216 1 00 29 67 0
ATOM 2637 NE2 GLN B 393 8 701 -4 385 125 216 1 00 30 93 N
ATOM 2638 N TYR B 394 4 812 -1 832 123 906 1 00 28 53 N
ATOM 2639 CA TYR B 394 3 874 -2 328 122 906 1 00 27 40 C
ATOM 2640 C TYR B 394 4 112 -3 818 122 673 1 00 27 82 C
ATOM 2641 O TYR B 394 5 253 -4 276 122 650 1 00 27 06 O
ATOM 2642 CB TYR B 394 4 029 -1 562 121 583 1 00 26 57 C
ATOM 2643 CG TYR B 394 3 156 -0 325 121 464 1 00 25 79 C
ATOM 2644 CDl TYR B 394 3 714 0 949 121 486 1 00 24 99 C
ATOM 2645 CD2 TYR B 394 1 774 -0 433 121 322 1 00 25 64 C
ATOM 2646 CEl TYR B 394 2 920 2 080 121 377 1 00 24 49 C
ATOM 2647 CE2 TYR B 394 0 972 0 692 121 211 1 00 24 08 C
ATOM 2648 CZ TYR B 394 1 550 1 946 121 240 1 00 24 18 C
ATOM 2649 OH TYR B 394 0 757 3 069 121 134 1 00 23 28 O
ATOM 2650 N SER B 395 3 032 -4 571 122 496 1 00 28 70 N
ATOM 2651 CA SER B 395 3 137 -6 007 122 262 1 00 29 14 C
ATOM 2652 C SER B 395 2 047 -6 483 121 308 1 00 29 00 C
ATOM 2653 O SER B 395 0 983 -5 874 121 217 1 00 29 77 O
ATOM 2654 CB SER B 395 3 079 -6 777 123 587 1 00 30 50 C
ATOM 2655 OG SER B 395 1 781 -6 731 124 158 1 00 31 26 O
ATOM 2656 N CYS B 396 2 325 -7 564 120 590 1 00 27 43 N
ATOM 2657 CA CYS B 396 1 381 -8 104 119 619 1 00 27 47 C
ATOM 2658 C CYS B 396 0 714 -9 361 120 146 1 00 26 81 C
ATOM 2659 O CYS B 396 1 245 -10 024 121 036 1 00 27 66 O
ATOM 2660 CB CYS B 396 2 106 -8 434 118 312 1 00 27 06 C
ATOM 2661 SG CYS B 396 2 595 -6 984 117 359 1 00 27 47 S
ATOM 2662 N GLU B 397 0 454 -9 684 119 604 1 00 28 07 N
ATOM 2663 CA GLU B 397 1 059 -10 991 119 855 1 00 29 37 C
ATOM 2664 C GLU B 397 0 167 -12 039 119 195 1 00 28 10 C
ATOM 2665 O GLU B 397 0 282 -12 300 117 999 1 00 27 95 O
ATOM 2666 CB GLU B 397 2 490 -11 054 119 307 1 00 29 91 C
ATOM 2667 CG GLU B 397 3 495 -10 226 120 101 1 00 31 94 C
ATOM 2668 CD GLU B 397 4 655 -9 722 119 257 1 00 33 10 C
ATOM 2669 OEl GLU B 397 5 043 -10 414 118 288 1 00 35 12 O
ATOM 2670 OE2 GLU B 397 5 189 -8 635 119 566 1 00 32 70 O
ATOM 2671 N GLU B 398 0 721 -12 631 119 990 1 00 27 89 N
ATOM 2672 CA GLU B 398 1 849 -13 413 119 477 1 00 27 81 C
ATOM 2673 C GLU B 398 1 503 -14 726 118 762 1 00 26 12 C
ATOM 2674 O GLU B 398 2 278 -15 191 117 923 1 00 27 50 O
ATOM 2675 CB GLU B 398 2 870 -13 667 120 592 1 00 28 89 C
ATOM 2676 CG GLU B 398 3 832 -12 512 120 819 1 00 31 16 C
ATOM 2677 CD GLU B 398 4 014 -12 167 122 289 1 00 33 01 C
ATOM 2678 OEl GLU B 398 3 273 -12 715 123 138 1 00 33 37 O
ATOM 2679 OE2 GLU B 398 4 904 -11 344 122 600 1 00 33 88 O
ATOM 2680 N THR B 399 0 356 -15 322 119 082 1 00 22 89 N
ATOM 2681 CA THR B 399 0 049 -16 577 118 440 1 00 19 45 C
ATOM 2682 C THR B 399 0 255 -16 418 116 927 1 00 20 12 C
ATOM 2683 O THR B 399 0 109 -17 305 116 157 1 00 20 76 O
ATOM 2684 CB THR B 399 1 333 -17 155 119 087 1 00 18 04 C
ATOM 2685 OG1 THR B 399 1 086 -17 475 120 460 1 00 18 46 O
ATOM 2686 CG2 THR B 399 1 685 -18 504 118 479 1 00 17 25 C
ATOM 2687 N PHE B 400 0 .828 -15 292 116 503 1 00 18 88 N
ATOM 2688 CA PHE B 400 1 187 -15 114 115 094 1 00 19 63 C
ATOM 2689 C PHE B 400 0 539 -13 895 114 429 1 00 19 49 C
ATOM 2690 O PHE B 400 0 680 -13 691 113 223 1 00 19 29 O
ATOM 2691 CB PHE B 400 2 711 -15 053 114 938 1 00 19 32 C
ATOM 2692 CG PHE B 400 3 398 -16 370 115 175 1 00 19 90 C
ATOM 2693 CDl PHE B 400 4 267 -16 532 116 247 1 00 19 76 C
ATOM 2694 CD2 PHE B 400 3 175 -17 445 114 330 1 00 20 14 C
ATOM 2695 CEl PHE B 400 4 900 -17 747 116 468 1 00 20 37 C
ATOM 2696 CE2 PHE B 400 3 803 -18 661 114 548 1 00 20 91 C
ATOM 2697 CZ PHE B 400 4 666 -18 812 115 622 1 00 19 51 c
ATOM 2698 N TYR B 401 0 157 -13 083 115 221 1 00 18 77 N
ATOM 2699 CA TYR B 401 0 826 -11 892 114 711 1 00 18 23 C
ATOM 2700 C TYR B 401 2 248 -11 795 115 248 1 00 19 46 C
ATOM 2701 O TYR B 401 2 561 -12 341 116 302 1 00 20 11 O
ATOM 2702 CB TYR B 401 0 058 -10 623 115 091 1 00 18 06 C
ATOM 2703 CG TYR B 401 1 411 -10 628 114 740 1 00 19 71 C
ATOM 2704 CDl TYR B 401 2 335 -11 280 115 545 1 00 19 92 C
ATOM 2705 CD2 TYR B 401 1 883 -9 966 113 604 1 00 21 25 c
ATOM 2706 CEl TYR B 401 3 682 -11 282 115 231 1 00 20 15 c
ATOM 2707 CE2 TYR B 401 3 236 -9 965 113 281 1 00 19 84 c ATOM 2708 CZ TYR B 401 -4.127 -10..625 114.100 1.00 19.92 c
ATOM 2709 OH TYR B 401 -5 .474 -10. .629 113 .804 1 .00 20 .28 0
ATOM 2710 N THR B 402 3 .116 -11 .113 114 .510 1 .00 22 .42 N
ATOM 2711 CA THR B 402 4 .456 -10 .818 114 .999 1 .00 24, .90 C
ATOM 2712 C THR B 402 4 .771 -9 .335 114 .813 1 .00 25, .69 C
ATOM 2713 O THR B 402 4 .496 -8 .757 113 .758 1. .00 25, .23 O
ATOM 2714 CB THR B 402 5 .522 -11 .698 114 .303 1 .00 25, .87 C
ATOM 2715 OG1 THR B 402 5 .855 -11. .142 113 .024 1. .00 27, .35 o
ATOM 2716 CG2 THR B 402 4 .955 -13. .068 113 .959 1 .00 26, .44 c
ATOM 2717 N MET B 403 5 .330 -8 .723 115 .853 1 .00 27, .23 N
ATOM 2718 CA MET B 403 5 .731 -7 .323 115 .804 1. .00 29 .01 C
ATOM 2719 C MET B 403 6 .844 -7. .136 114 .786 1 .00 29 .67 c
ATOM 2720 O MET B 403 7 .806 -7 .901 114 .760 1 .00 28, .89 o
ATOM 2721 CB MET B 403 6 .189 -6 .844 117 .185 1 .00 28, .99 c
ATOM 2722 CG MET B 403 6 .575 -5 .374 117 .225 1 .00 30, .02 c
ATOM 2723 SD MET B 403 6 .512 -4 .648 118 .873 1 .00 31 .50 s
ATOM 2724 CE MET B 403 4 .759 -4 .748 119 .219 1 .00 29 .24 C"
ATOM 2725 N LYS B 40 6 .704 -6. .125 113. .936 1. .00 32. .27 N
ATOM 2726 CA LYS B 404 7. .705 -5. .857 112. .909 1, .00 35. .32 C
ATOM 2727 C LYS B 404 8 .325 -4. .472 113. .078 1, .00 36. .57 C
ATOM 2728 O LYS B 404 7 .762 -3. .607 113. .757 1, .00 36. .60 O
ATOM 2729 CB LYS B 404 7. .100 -6. .005 111. .510 1, .00 35, .95 C
ATOM 2730 CG LYS B 404 6 .587 -7. .402 111. .200 1. .00 37. .05 c
ATOM 2731 CD LYS B 404 7. .505 -8. .136 110. .237 1 .00 37. .08 c
ATOM 2732 CE LYS B 404 7 .157 -9 .613 110. .179 1, .00 37. .37 c
ATOM 2733 NZ LYS B 404 8 .204 -10. .416 109. .491 1 .00 36. .71 N
ATOM 2734 N VAL B 405 9. .493 -4. .285 112. .467 1 .00 37. .82 N
ATOM 2735 CA VAL B 405 10 .194 -3. .001 112. .452 1, .00 39. .00 C
ATOM 2736 C VAL B 405 10 .410 -2. .398 113. .843 1, .00 39. .75 C
ATOM 2737 O VAL B 405 10 .758 -1. .223 113. .972 1 .00 40. .54 O
ATOM 2738 CB VAL B 405 9 .488 -1 .977 111. .518 1. .00 38. .97 C
ATOM 2739 CGI VAL B 405 8 .544 -1 .062 112 .296 1. .00 38. .51 C
ATOM 2740 CG2 VAL B 405 10 .512 -1 .173 110 .736 1 .00 38. .95 C
ATOM 2741 N ASN B 406 10 .224 -3 .212 114 .879 1. .00 40. .26 N
ATOM 2742 CA ASN B 406 10 .278 -2 .708 116 .247 1 .00 40 .07 C
ATOM 2743 C ASN B 406 10 .449 -3, .796 117. .307 1. .00 40. .30 C
ATOM 2744 O ASN B 406 10. .789 -4. .942 116. .992 1. .00 39. .02 O
ATOM 2745 CB ASN B 406 9, .022 -1. .893 116. .546 1. .00 39. .70 C
ATOM 2746 CG ASN B 406 9. .266 -0, .817 117. .574 1. .00 40. .47 C
ATOM 2747 OD1 ASN B 406 9. .977 -1. .034 118. .555 1. .00 41. .23 O
ATOM 2748 ND2 ASN B 406 8. .679 0. .353 117. .357 1. .00 39. .76 N
ATOM 2749 N ASP B 407 10. .219 -3. .420 118. .566 1. .00 39. .83 N
ATOM 2750 CA ASP B 407 10. .271 -4, .366 119. .677 1. .00 40. .03 C
ATOM 2751 C ASP B 407 9. .597 -3. .863 120. .958 1. .00 40. .25 C
ATOM 2752 O ASP B 407 9. .866 -4. .376 122. .055 1. .00 40. .57 O
ATOM 2753 CB ASP B 407 11. .709 -4, .821 119, .955 1. .00 39. .74 C
ATOM 2754 CG ASP B 407 12. .610 -3. .682 120, .398 1. .00 39. .76 C
ATOM 2755 OD1 ASP B 407 12, .229 -2. .503 120, .211 1. .00 39. .90 O
ATOM 2756 OD2 ASP B 407 13, .720 -3. .874 120, .940 1. .00 39, .38 o
ATOM 2757 N GLY B 408 8, .736 -2. .851 120, .818 1. .00 40. .04 N
ATOM 2758 CA GLY B 408 7. .843 -2. .470 121, .900 1. .00 40. .00 c
ATOM 2759 C GLY B 408 8, .178 -1. .238 122, .719 1. .00 40. .21 c
ATOM 2760 O GLY B 408 7, .314 -0. .387 122, .930 1. .00 40. .31 o
ATOM 2761 N LYS B 409 9, .418 -1. .149 123. .197 1. .00 40. .05 N
ATOM 2762 CA LYS B 409 9, .831 -0. ,065 124. ,092 1. .00 39. .61 C
ATOM 2763 C LYS B 409 9, .570 1. ,331 123. .522 1. .00 39. .39 C
ATOM 2764 O LYS B 409 10, .135 1. .703 122. .493 1. .00 40. .14 O
ATOM 2765 N TYR B 410 8. .710 2. ,093 124. ,198 1. .00 38. .65 N
ATOM 2766 CA TYR B 410 8. .378 3. ,462 123. .787 1. .00 37. .35 C
ATOM 2767 C TYR B 410 8. .342 4. ,413 124. .984 1. .00 36. .61 C
ATOM 2768 O TYR B 410 7. .963 4. ,019 126. ,089 1. ,00 36. .77 0
ATOM 2769 CB TYR B 410 7, .037 3. ,500 123. ,054 1. ,00 36. .16 C
ATOM 2770 CG TYR B 410 7, .137 3. ,199 121. ,576 1. .00 36. .03 C
ATOM 2771 CDl TYR B 410 7, .329 1. .897 121. ,121 1. ,00 36. .12 c
ATOM 2772 CD2 TYR B 410 7. .026 4. .211 120. .632 1. ,00 36. .04 c
ATOM 2773 CEl TYR B 410 7, .421 1. .613 119. ,766 1. ,00 35. .58 c
ATOM 2774 CE2 TYR B 410 7, .111 3. .935 119. .272 1. .00 36. .78 c
ATOM 2775 CZ TYR B 410 7, .309 2. .635 118. .845 1. .00 35. ,82 c
ATOM 2776 OH TYR B 410 7, .402 2. .357 117. .493 1. .00 36. .84 0
ATOM 2777 N VAL B 411 8, .722 5. .668 124. ,753 1. .00 36. .28 N
ATOM 2778 CA VAL B 411 8. .903 6. .633 125. 837 1. .00 35. 78 c
ATOM 2779 C VAL B 411 8. .239 7. .986 125. 551 1. .00 36. 13 c ATOM 2780 O VAL B 411 7.978 8.332 124.396 1.00 36.86 O
ATOM 2781 CB VAL B 411 10 .407 6 .839 126 .140 1 .00 35 .27 C
ATOM 2782 CGI VAL B 411 11 .047 7 .762 125 .106 1 .00 34 .98 C
ATOM 2783 CG2 VAL B 411 10 .613 7 .369 127 .552 1 .00 34 .56 C
ATOM 2784 N CYS B 412 7 .970 8 .745 126 .613 1 .00 35 .44 N
ATOM 2785 CA CYS B 412 7 .347 10 .060 126 .490 1 .00 34 .77 C
ATOM 2786 C CYS B 412 8 .397 11 .166 126 .433 1 .00 34 .94 C
ATOM 2787 O CYS B 412 8 .226 12 .167 125 .735 1 .00 34 .37 O
ATOM 2788 CB CYS 3 412 6 .385 10 .310 127 .655 1 .00 34 .40 C
ATOM 2789 SG CYS 3 412 5 .354 11 .788 127 .490 1 .00 33 .86 S
ATOM 2790 N GLY B 416 6 .224 16 .510 122 .686 1 .00 34 .74 N
ATOM 2791 CA GLY B 416 5 .028 16 .087 123 .391 1 .00 35 .12 C
ATOM 2792 C GLY B 416 4 .331 14 .917 122 .723 1 .00 35 .55 C
ATOM 2793 O GLY B 416 3 .103 14 .876 122 .649 1 .00 35 .66 O
ATOM 2794 N PHE B 417 5. .117 13 .962 122 .236 1 .00 35 .95 N
ATOM 2795 CA PHE B 417 4 .575 12 .783 121 .569 1 .00 36 .47 C
ATOM 2796 C PHE B 417 5 .305 11 .517 122 .009 1 .00 36 .62 C
ATOM 2797 O PHE B 417 6. .363 11, .592 122 .637 1 .00 37. .24 O
ATOM 2798 CB PHE B 417 4. .665 12, .940 120. .048 1. .00 36, .49 C
ATOM 2799 N TRP B 418 4, .735 10, .361 121. .677 1, .00 36, .37 N
ATOM 2800 CA TRP 3 418 5. .339 9 .071 122. .010 1. .00 35, .78 C
ATOM 2801 C TRP B 418 6. .410 8, .689 120. .994 1. .00 36. .60 c
ATOM 2802 O TRP B 418 6, .167 8, .711 119, .786 1. .00 37. .20 0
ATOM 2803 CB TRP B 418 4, .271 7. .977 122, .086 1. .00 34. .29 c
ATOM 2804 CG TRP B 418 3, .338 8, .133 123, .252 1. .00 33. .07 c
ATOM 2805 CDl TRP B 418 2. .045 8, .575 123, .218 1. .00 32. .75 c
ATOM 2806 CD2 TRP B 418 3. .628 7, .855 124. .627 1. .00 32. .56 c
ATOM 2807 NE1 TRP B 418 1, .514 8 .586 124. .486 1 .00 32. .31 N
ATOM 2808 CE2 TRP B 418 2 .465 8, .149 125. .370 1. .00 32. .31 C
ATOM 2809 CE3 TRP B 418 4, .755 7 .384 125. .310 1 .00 32. .25 C
ATOM 2810 CZ2 TRP B 418 2, .398 7 .987 126. .754 1. .00 32 .22 C
ATOM 2811 CZ3 TRP B 418 4, .687 7 .226 126. .683 1 .00 31. .97 C
ATOM 2812 CH2 TRP B 418 3 .517 7 .526 127. .390 1 .00 32 .27 c
ATOM 2813 N THR B 419 7. .593 8 .340 121. .491 1 .00 36. .24 N
ATOM 2814 CA THR B 419 8, .724 8 .011 120. .630 1 .00 35. .69 C
ATOM 2815 C THR B 419 9, .351 6 .684 121. .042 1. .00 36. .38 C
ATOM 2816 O THR B 419 9, .235 6, .269 122. .195 1. .00 35. .93 O
ATOM 2817 CB THR B 419 9, .777 9, .147 120. .655 1. .00 35. .64 C
ATOM 2818 OG1 THR B 419 11. .092 8, .594 120. .807 1. .00 34. .77 O
ATOM 2819 CG2 THR B 419 9, .609 10, .011 121, .898 1, .00 34. .90 C
ATOM 2820 N SER B 420 10. .020 6, .027 120. .097 1. .00 37. .31 N
ATOM 2821 CA SER B 420 10. .552 4, .681 120. .321 1. .00 37. .64 C
ATOM 2822 C SER B 420 11. .965 4, .673 120, .891 1. .00 36. .68 C
ATOM 2823 O SER B 420 12. .615 5. .713 120. .989 1. .00 37. .47 O
ATOM 2824 CB SER B 420 10, .509 3, .860 119. .027 1. .00 37. .30 C
ATOM 2825 OG SER B 420 11. .711 4, .012 118. .294 1. .00 36. .67 O
ATOM 2826 N SER B 421 12, .430 3, .482 121, .256 1, .00 36. .49 N
A.TOM 2827 CA SER B 421 13. .755 3, .300 121, .831 1. .00 36. .61 C
ATOM 2828 C SER B 421 14. .857 3, .552 120, .806 1. .00 36. .63 C
ATOM 2829 O SER B 421 15. .880 4, .159 121. .124 1. .00 36. .52 0
ATOM 2830 CB SER B 421 13. .895 1. .891 122. .413 1. .00 36. .86 c
ATOM 2831 N LYS 3 422 14. .643 3, .084 119, .580 1, .00 36. .38 N
ATOM 2832 CA LYS B 422 15. .627 3, .256 118, .514 1. .00 36. .26 c
ATOM 2833 C LYS B 422 15. .633 4, .689 117. .985 1. .00 36. .24 c
ATOM 2834 O LYS 3 422 16. .695 5, .259 117. .726 1. .00 36. .21 0
ATOM 2835 CB LYS B 422 15. .374 2, .268 117, .373 1. .00 35. .95 c
ATOM 2836 N GLY B 423 14. .445 5, .268 117, .832 1. .00 35. .97 N
ATOM 2837 CA GLY B 423 14. .317 6, .631 117, .349 1. .00 35. .94 C
ATOM 2838 C GLY 3 423 13, .161 6, .810 116. .386 1. .00 36. .10 C
ATOM 2839 O GLY B 423 13, .237 7, .611 115. .454 1. .00 35. .84 O
ATOM 2840 N GLU B 424 12, .088 6, .060 116, .612 1. .00 36. .83 N
ATOM 2841 CA GLU B 424 10, .899 6, .140 115, .770 1. .00 37. .06 C
ATOM 2842 C GLU B 424 9, .734 6, .766 116, .535 1. .00 37, .34 C
ATOM 2843 O GLU B 424 9, .692 6, .725 117, .765 1. .00 37, .01 O
ATOM 2844 CB GLU B 424 10, .517 4, .750 115, .245 1. .00 37, .13 C
ATOM 2845 CG GLU B 424 11, .483 4, .192 11 , .207 1, .00 37, .90 C
ATOM 2846 CD GLU B 424 11, .711 2, .697 114, .351 1. .00 38, .04 C
ATOM 2847 OEl GLU B 424 11, .009 2. .061 115, .168 1. .00 38, .54 O
ATOM 2848 OE2 GLU B 424 12, .593 2, .157 113. .647 1. .00 37, .44 O
ATOM 2849 N LYS B 425 8, .796 7, .357 115. .803 1. .00 37, .27 N
ATOM 2850 CA LYS B 425 7. .643 8. ,003 116. ,422 1. .00 37. ,27 C
ATOM 2851 C LYS B 425 6. .364 7. .191 116. .221 1. .00 37. .35 C
ATOM 2852 O LYS B 425 5. .570 7. .022 117. 151 1. .00 38. .59 O ATOM 2853 CB LYS B 425 7.461 9.421 115.871 1.00 36.58 c
ATOM 2854 N SER B 426 6 .178 6 .684 115 .005 1 .00 35 .77 N
ATOM 2855 CA SER B 426 4. .970 5 .947 114 .650 1. .00 33 .71 C
ATOM 2856 C SER B 426 4 .914 4 .569 115 .309 1 .00 32 .15 C
ATOM 2857 O SER B 426 5. .911 4 .077 115 .839 1 .00 31 .26 O
ATOM 2858 CB SER B 426 4 .847 5 .818 113 .130 1. .00 33 .88 C
ATOM 2859 OG SER B 426 5 .856 4 .972 112 .608 1 .00 33 .98 O
ATOM 2860 N LEU B 427 3. .733 3. .959 115 .257 1. .00 30 .75 N
ATOM 2861 CA LEU B 427 3. .457 2 .691 115 .928 1. .00 29 .35 C
ATOM 2862 C LEU B 427 4 .258 1 .518 115 .367 1. .00 28 .30 C
ATOM 2863 O LEU B 427 4 .657 1 .526 114 .200 1. .00 28 .79 O
ATOM 2864 CB LEU B 427 1. .963 2. .359 115 .813 1. .00 29 .68 C
ATOM 2865 CG LEU B 427 0 .935 3 .362 116 .338 1. .00 29 .66 C
ATOM 2866 CDl LEU B 427 .476 2. .865 116 .072 1. .00 29 .52 C
ATOM 2867 CD2 LEU B 427 1 .147 3. .619 117 .822 1. .00 30 .28 C
ATOM 2868 N PRO B 428 4 .485 0 .506 116 .199 1 .00 26 .62 N
ATOM 2869 CA PRO B 428 4 .952 -0 .793 115 .710 1. .00 25 .16 C
ATOM 2870 C PRO B 428 3 .879 -1 .412 114 .825 1. .00 23 .93 C
ATOM 2871 O PRO B 428 2. .760 -0. .904 114. .766 1. .00 24. .15 O
ATOM 2872 CB PRO B 428 5, .110 -1. .625 116. .988 1. .00 25. .06 C
ATOM 2873 CG PRO B 428 5. .134 -0. .643 118. .106 1. .00 26. .63 C
ATOM 2874 CD PRO B 428 4. .322 0. .532 117. .663 1. .00 27. .25 c
ATOM 2875 N VAL B 429 4. .215 -2. .498 114. .143 1. .00 22. .71 N
ATOM 2876 CA VAL B 429 3. .264 -3. .164 113. .269 1. .00 22. .23 C
ATOM 2877 C VAL B 429 3. .122 -4. .630 113, .651 1. .00 22. .02 C
ATOM 2878 0 VAL B 429 4. .100 -5. .369 113, .678 1. .00 23, .17 O
ATOM 2879 CB VAL B 429 3. .688 -3. .060 111, .783 1. .00 20 .40 C
ATOM 2880 CGI VAL B 429 2. .741 -3. .855 110. .897 1. .00 20, .13 C
ATOM 2881 CG2 VAL B 429 3, .738 -1. .604 111. .342 1. .00 19, .02 C
ATOM 2882 N CYS B 430 1. .901 -5. .041 113. .962 1. .00 22. .21 N
ATOM 2883 CA CYS B 430 1. .610 -6. .450 114. .182 1. .00 21. .43 C
ATOM 2884 C CYS B 430 1. .229 -7. .060 112. .840 1. .00 20. .72 C
ATOM 2885 O CYS B 430 0 .217 -6. .687 112 .260 1. .00 21 .05 o
ATOM 2886 CB CYS B 430 0. .466 -6. .595 115. .180 1. .00 22. .14 c
ATOM 2887 SG CYS B 430 0. .894 -6, .009 116, .838 1. .00 23. .70 s
ATOM 2888 N GLU B 431 2. .056 -7. .973 112, .338 1. .00 21. .47 N
ATOM 2889 CA GLU B 431 1, .831 -8. .585 111, .027 1. .00 20. .65 C
ATOM 2890 C GLU B 431 1. .382 -10. .033 111. .162 1. .00 22. .61 C
ATOM 2891 O GLU B 431 2. .018 -10. .827 111. .859 1. .00 20. .44 0
ATOM 2892 CB GLU B 431 3. .104 -8. .523 110. .186 1. .00 20. .30 c
ATOM 2893 CG GLU B 431 3. ,018 -9. .270 108. .863 1. .00 20. .70 c
ATOM 2894 CD GLU B 431 4. .235 -9. .041 107, .990 1. .00 21. .61 c
ATOM 2895 OEl GLU B 431 4. .553 -7. .863 107. .711 1. ,00 23. .01 o
ATOM 2896 OE2 GLU B 431 4. .878 -10. .033 107. .590 1. 00 20. .98 o
ATOM 2897 N PRO B 432 0. .281 -10. .372 110. .494 1. .00 25. .78 N
ATOM 2898 CA PRO B 432 .287 -11. .726 110. .559 1. .00 25. .46 c
ATOM 2899 C PRO B 432 0. .692 -12. .806 110. .114 1. .00 25. .79 c
ATOM 2900 O PRO B 432 1. .370 -12. .647 109. .108 1. .00 28. .88 o
ATOM 2901 CB PRO B 432 .479 -11. .659 109. .590 1. .00 26. .27 c
ATOM 2902 CG PRO B 432 1. .830 -10. .194 109. .514 , .00 26. .88 c
ATOM 2903 CD PRO B 432 .517 -9, .461 109. .648 1. .00 24. .80 c
ATOM 2904 N VAL B 433 0. .781 -13. .894 110. .870 1. .00 24. .57 N
ATOM 2905 CA VAL B 433 1, .585 -15. .026 110. .435 1. .00 25. .36 c
ATOM 2906 C VAL B 433 0, .911 -15, .624 109. .193 1. .00 22. .33 c
ATOM 2907 O VAL B 433 .322 -15. .615 109. .089 1. .00 24. .60 o
ATOM 2908 CB VAL B 433 1. .744 -16 .049 111. .576 1. .00 26. .58 c
ATOM 2909 CGI VAL B 433 2. .601 -17. .223 111. .159 1. ,00 27. .02 c
ATOM 2910 CG2 VAL B 433 2. ,379 -15. .356 112. .767 1. .00 29. .96 c
ATOM 2911 N CYS B 434 1. .704 -16. .103 108, .241 1. .00 12. .25 N
ATOM 2912 CA CYS B 434 1. .139 -16. .577 106. .980 1. .00 10. .07 C
ATOM 2913 C CYS B 434 1. .544 -18. .016 106. ,651 1. .00 9. .40 C
ATOM 2914 O CYS B 434 2. .555 -18. .515 107. .143 1. ,00 8. .72 0
ATOM 2915 CB CYS B 434 1, ,525 -15. .629 105. .834 1. .00 7, .87 C
ATOM 2916 SG CYS B 434 3. ,300 -15. .570 105. .472 1. .00 8. .54 s
ATOM 2917 N GLY B 435 0. .741 -18. .682 105. .825 1. .00 9. .37 N
ATOM 2918 CA GLY B 435 1. .151 -19, .944 105. .230 1. .00 8. .72 C
ATOM 2919 C GLY B 435 1. .068 -21. .177 106. .119 1. .00 10, .37 C
ATOM 2920 O GLY B 435 1. .637 -22. .223 105, .796 1. .00 10, .13 O
ATOM 2921 N LEU B 436 0. .363 -21. .055 107. .238 1. .00 10, .28 N
ATOM 2922 CA LEU B 436 0. .047 -22. ,208 108. .071 1. 00 12. .33 C
ATOM 2923 C LEU B 436 1. 038 -23. .056 107. ,418 1. 00 11. .48 C
ATOM 2924 O LEU B 436 1. 938 -22. .527 106. .768 1. 00 11. .43 O
ATOM 2925 CB LEU B 436 0. 422 -21. 752 109. 456 1. 00 13. 30 C ATOM 2926 CG LEU B 436 0 595 -20 941 110 256 1 00 14 44 c
ATOM 2927 CDl LEU B 436 -0 072 -20 347 111 493 1 00 16 02 c
ATOM 2928 CD2 LEU B 436 1 785 -21 814 110 628 1 00 14 82 c
ATOM 2929 N SER B 437 -0 947 -24 370 107 595 1 00 10 59 N
ATOM 2930 CA SER B 437 -1 931 -25 294 107 054 1 00 10 28 c
ATOM 2931 C SER B 437 -2 036 -26 550 107 904 1 00 13 03 c
ATOM 2932 0 SER B 437 -1 038 -27 028 108 444 1 00 13 06 0
ATOM 2933 CB SER B 437 -1 563 -25 684 105- 629 1 00 9 81 c
ATOM 2934 OG SER B 437 -2 514 -26 594 105 09'6 1 00 9 31 0
ATOM 2935 N ALA B 438 -3 247 -27 090 108 018 1 00 15 04 N
ATOM 2936 CA ALA B 438 -3 451 -28 338 108 743 1 00 16 58 c
ATOM 2937 C ALA B 438 -3 048 -29 519 107 879 1 00 19 86 c
ATOM 2938 O ALA B 438 -3 030 -30 652 108 344 1 00 21 62 o
ATOM 2939 CB ALA B 438 -4 899 -28 476 109 178 1 00 16 52 c
ATOM 2940 N ARG B 439 -2 735 -29 253 106 616 1 00 22 68 N
ATOM 2941 CA ARG B 439 -2 360 -30 315 105 695 1 00 26 51 C
ATOM 2942 C ARG B 439 -1 085 -31 013 106 136 1 00 31 02 C
ATOM 2943 O ARG B 439 0 022 -30 537 105 881 1 00 32 25 O
ATOM 2944 CB ARG B 439 -2 193 -29 774 104 281 1 00 23 41 C
ATOM 2945 CG ARG B 439 -3 471 -29 776 103 483 1 00 22 32 C
ATOM 2946 CD ARG B 439 -3 304 -29 235 102 078 1 00 20 14 C
ATOM 2947 NE ARG B 439 -2 935 -30 285 101 130 1 00 18 92 N
ATOM 2948 CZ ARG B 439 -2 387 -30 057 99 945 1 00 17 33 C
ATOM 2949 NH1 ARG B 439 -2 123 -28 812 99 561 1 00 17 51 N
ATOM 2950 NH2 ARG B 439 -2 094 -31 072 99 149 1 00 16 70 N
ATOM 2951 N THR B 440 -1 258 -32 142 106 811 1 00 37 08 N
ATOM 2952 CA THR B 440 -0 146 -32 988 107 212 1 00 42 27 C
ATOM 2953 C THR B 440 -0 175 -34 249 106 352 1 00 45 53 C
ATOM 2954 0 THR B 440 -0 778 -35 259 106 718 1 00 46 09 O
ATOM 2955 CB THR B 440 -0 237 -33 325 108 714 1 00 42 90 C
ATOM 2956 OGl THR B 440 0 578 -34 469 109 006 1 00 44 51 O
ATOM 2957 CG2 THR B 440 -1 649 -33 779 109 084 1 00 43 18 C
ATOM 2958 N THR B 441 0 466 -34 169 105 190 1 00 48 62 N
ATOM 2959 CA THR B 441 0 444 -35 254 104 217 1 00 50 97 C
ATOM 2960 C THR B 441 1 367 -36 394 104 636 1 00 51 68 C
ATOM 2961 O THR B 441 1 030 -37 185 105 521 1 00 51 44 O
ATOM 2962 CB THR B 441 0 832 -34 728 102 819 1 00 51 87 c
ATOM 2963 OGl THR B 441 2 164 -34 199 102 860 1 00 52 42 0
ATOM 2964 CG2 THR B 441 -0 022 -33 524 102 453 1 00 52 33 c
ATOM 2965 N ILE B 445 12 963 -27 695 91 043 1 00 4 56 N
ATOM 2966 CA ILE B 445 11 814 -28 586 91 137 1 00 6 40 C
ATOM 2967 C ILE B 445 12 155 -29 981 90 621 1 00 8 47 C
ATOM 2968 O ILE B 445 13 043 -30 651 91 156 1 00 9 06 O
ATOM 2969 CB ILE B 445 11 309 -28 673 92 593 1 00 6 68 C
ATOM 2970 CGI ILE B 445 10 829 -27 301 93 093 1 00 5 67 C
ATOM 2971 CG2 ILE B 445 10 214 -29 717 92 701 1 00 6 13 C
ATOM 2972 CDl ILE B 445 -9 656 -26 702 92 276 1 00 5 16 C
ATOM 2973 N TYR B 446 11 429 -30 405 89 588 1 00 8 56 N
ATOM 2974 CA TYR B 446 11 636 -31 685 88 922 1 00 9 63 C
ATOM 2975 C TYR B 446 10 651 -32 737 89 444 1 00 10 43 C
ATOM 2976 O TYR B 446 -9 447 -32 497 89 501 1 00 8 52 O
ATOM 2977 CB TYR B 446 11 440 -31 475 87 420 1 00 11 24 C
ATOM 2978 CG TYR B 446 11 857 -32 612 86 505 1 00 13 20 C
ATOM 2979 CDl TYR B 446 12 904 -32 449 85 608 1 00 13 49 C
ATOM 2980 CD2 TYR B 446 11 172 -33 825 86 501 1 00 13 13 C
ATOM 2981 CEl TYR B 446 13 276 -33 474 84 747 1 00 15 01 c
ATOM 2-982 CE2 TYR B 446 11 537 -34 850 85 651 1 00 13 34 c
ATOM 2983 CZ TYR B 446 12 589 -34 668 84 774 1 00 14 96 c
ATOM 2984 OH TYR B 446 12 958 -35 683 83 926 1 00 16 20 0
ATOM 2985 N GLY B 447 11 171 -33 901 89 825 1 00 12 24 N
ATOM 2986 CA GLY B 447 10 344 -35 004 90 282 1 00 11 23 C
ATOM 2987 C GLY B 447 -9 656 -34 779 91 620 1 00 12 49 C
ATOM 2988 O GLY B 447 -8 596 -35 337 91 874 1 00 12 68 O
ATOM 2989 N GLY B 448 10 254 -33 964 '92 479 1 00 12 82 N
ATOM 2990 CA GLY B 448 -9 657 -33 669 93 768 1 00 11 83 C
ATOM 2991 C GLY B 448 10 362 -34 346 94 924 1 00 11 53 C
ATOM 2992 O GLY B 448 11 014 -35 368 94 756 1 00 9 64 O
ATOM 2993 N GLN B 449 10 234 -33 766 96 109 1 00 12 48 N
ATOM 2994 CA GLN B 449 10 920 -34 293 97 274 1 00 14 40 C
ATOM 2995 C GLN B 449 11 264 -33 160 98 222 1 00 12 23 C
ATOM 2996 O GLN B 449 10 827 -32 027 98 023 1 00 11 44 O
ATOM 2997 CB GLN B 449 10 060 -35 343 97 976 1 00 17 79 C
ATOM 2998 CG GLN B 449 -8 805 -34 777 98 593 1 00 22 07 C
ATOM 2999 CD GLN B 449 -7 798 -35 852 98 932 1 00 26 52 C ATOM 3000 OEl GLN B 449 -7 916 -36 513 99 968 1 00 28 75 0
ATOM 3001 NE2 GLN B 449 -6 800 -36 032 98 065 1 00 27 33 N
ATOM 3002 N LYS B 450 12 038 -33 482 99 256 1 00 10 25 N
ATOM 3003 CA LYS B 450 12 606 -32 482 100 149 1 00 9 89 C
ATOM 3004 C LYS B 450 11 590 -31 942 101 134 1 00 9 05 C
ATOM 3005 O LYS B 450 10 918 -32 703 101 819 1 00 9 70 O
ATOM 3006 CB LYS B 450 13 820 -33 051 100 904 1 00 9 09 C
ATOM 3007 CG LYS B 450 14 529 -32 023 101 784 1 00 9 50 C
ATOM 3008 CD LYS B 450 15 963 -32 432 102 104 1 00 10 96 C
ATOM 3009 CE LYS B 450 16 020 -33 390 103 283 1 00 11 73 C
ATOM 3010 NZ LYS B 450 17 409 -33 591 103 787 1 00 12 22 N
ATOM 3011 N ALA B 451 11 497 -30 618 101 207 1 00 9 25 N
ATOM 3012 CA ALA B 451 10 615 -29 956 102 167 1 00 8 15 C
ATOM 3013 C ALA B 451 11 147 -30 082 103 597 1 00 9 13 C
ATOM 3014 0 ALA B 451 12 358 -30 193 103 823 1 00 6 76 O
ATOM 3015 CB ALA B 451 10 437 -28 490 101 796 1 00 6 38 C
ATOM 3016 N LYS B 452 10 231 -30 069 104 558 1 00 11 01 N
ATOM 3017 CA LYS B 452 10 595 - 0 093 105 969 1 00 14 01 C
ATOM 3018 C LYS B 452 10 416 -28 697 106 553 1 00 14 06 C
ATOM 3019 O LYS B 452 -9 740 -27 857 105 958 1 00 16 49 O
ATOM 3020 CB LYS B 452 -9 727 -31 099 106 728 1 00 15 62 C
ATOM 3021 CG LYS B 452 10 111 -32 546 106 487 1 00 18 05 C
ATOM 3022 CD LYS B 452 -9 048 -33 495 107 019 1 00 21 06 C
ATOM 3023 CE LYS B 452 -9 662 -34 800 107 517 1 00 22 60 C
ATOM 3024 NZ LYS B 452 -9 159 -35 167 108 878 1 00 23 64 N
ATOM 3025 N PRO B 453 11 030 -28 438 107 703 1 00 14 59 N
ATOM 3026 CA PRO B 453 10 849 -27 155 108 385 1 00 13 54 C
ATOM 3027 C PRO B 453 -9 363 -26 901 108 615 1 00 12 28 C
ATOM 3028 O PRO B 453 -8 643 -27 812 109 033 1 00 11 41 0
ATOM 3029 CB PRO B 453 11 575 -27 366 109 719 1 00 13 28 c
ATOM 3030 CG PRO B 453 12 611 -28 403 109 414 1 00 14 34 c
ATOM 3031 CD PRO B 453 11 949 -29 334 108 433 1 00 14 31 c
ATOM 3032 N GLY B 454 -8 909 -25 689 108 323 1 00 11 24 N
ATOM 3033 CA GLY B 454 -7 513 -25 338 108 508 1 00 10 76 C
ATOM 3034 C GLY B 454 -6 605 -25 719 107 352 1 00 11 23 C
ATOM 3035 O GLY B 454 -5 430 -25 339 107 340 1 00 11 07 O
ATOM 3036 N ASP B 455 -7 129 -26 463 106 378 1 00 9 80 N
ATOM 3037 CA ASP B 455 -6 313 -26 857 105 230 1 00 10 54 C
ATOM 3038 C ASP B 455 -5 921 -25 631 104 418 1 00 9 04 C
ATOM 3039 O ASP B 455 -4 739 -25 425 104 107 1 00 8 90 O
ATOM 3040 CB ASP B 455 -7 059 -27 842 104 331 1 00 12 73 C
ATOM 3041 CG ASP B 455 -6 928 -29 279 104 790 1 00 13 73 c
ATOM 3042 OD1 ASP B 455 -6 225 -29 542 105 788 1 00 12 94 o
ATOM 3043 OD2 ASP B 455 -7 505 -30 212 104 203 1 00 13 85 o
ATOM 3044 N PHE B 456 -6 925 -24 823 104 082 1 00 7 74 N
ATOM 3045 CA PHE B 456 -6 749 -23 632 103 251 1 00 7 59 c
ATOM 3046 C PHE B 456 -7 383 -22 413 103 922 1 00 9 10 c
ATOM 3047 O PHE 3 456 -8 414 -21 916 103 470 1 00 9 71 0
ATOM 3048 CB PHE B 456 -7 387 -23 860 101 877 1 00 6 15 c
ATOM 3049 CG PHE B 456 -6 855 -25 067 101 161 1 00 7 20 c
ATOM 3050 CDl PHE B 456 -7 495 -26 291 101 271 1 00 5 40 c
ATOM 3051 CD2 PHE B 456 -5 700 -24 986 100 400 1 00 6 07 c
ATOM 3052 CEl PHE B 456 -7 006 -27 401 100 629 1 00 5 57 c
ATOM 3053 CE2 PHE B 456 -5 207 -26 093 99 745 1 00 6 22 c
ATOM 3054 CZ PHE B 456 -5 858 -27 305 99 861 1 00 6 67 c
ATOM 3055 N PRO B 457 -6 777 -21 941 105 008 1 00 9 90 N
ATOM 3056 CA PRO B 457 -7 406 -20 907 105 840 1 00 10 46 c
ATOM 3057 C PRO B 457 -7 424 -19 524 105 173 1 00 10 94 c
ATOM 3058 O PRO B 457 -8 132 -18 622 105 622 1 00 11 87 0
ATOM 3059 CB PRO B 457 -6 548 -20 908 107 109 1 00 9 17 c
ATOM 3060 CG PRO B 457 -5 212 -21 437 106 687 1 00 8 27 c
ATOM 3061 CD PRO B 457 -5 460 -22 361 105 527 1 00 10 57 c
ATOM 3062 N TRP B 458 -6 652 -19 369 104 105 1 00 9 22 N
ATOM 3063 CA TRP B 458 -6 644 -18 131 103 339 1 00 9 02 C
ATOM 3064 C TRP B 458 -7 762 -18 126 102 304 1 00 9 58 c
ATOM 3065 O TRP B 458 -8 013 -17 105 101 661 1 00 9 63 0
ATOM 3066 CB TRP B 458 -5 305 -17 966 102 625 1 00 6 43 c
ATOM 3067 CG TRP B 458 -4 917 -19 200 101 908 1 00 6 38 c
ATOM 3068 CDl TRP B 458 -5 370 -19 624 100 686 1 00 5 30 c
ATOM 3069 CD2 TRP B 458 -4 024 -20 216 102 380 1 00 4 55 c
ATOM 3070 NE1 TRP B 458 -4 798 -20 833 100 368 1 00 5 66 N
ATOM 3071 CE2 TRP B 458 -3 968 -21 219 101 390 1 00 5 38 C
ATOM 3072 CE3 TRP B 458 -3 251 -20 372 103 536 1 00 4 11 C
ATOM 3073 CZ2 TRP B 458 -3 180 -22 358 101 525 1 00 5 64 C ATOM 3074 CZ3 TRP B 458 -2 469 -21 501 103 671 1 00 4 33 c
ATOM 3075 CH2 TRP B 458 -2 440 -22 482 102 672 1 00 5 56 c
ATOM 3076 N GLN B 459 -8 424 -19 267 102 126 1 00 9 96 N
ATOM 3077 CA GLN B 459 -9 427 -19 386 101 068 1 00 10 74 c
ATOM 3078 C GLN B 459 10 596 -18 428 101 294 1 00 11 46 c
ATOM 3079 O GLN B 459 11 171 -18 359 102 389 1 00 10 08 o
ATOM 3080 CB GLN B 459 -9 921 -20 830 100 910 1 00 10 61 c
ATOM 3081 CG GLN B 459 10 964 -21 006 99 804 1 00 9 65 c
ATOM 3082 CD GLN B 459 10 338 -21 126 98 425 1 00 11 01 c
ATOM 3083 OEl GLN B 459 11 002 -20 894 97 412 1 00 12 59 o
ATOM 3084 NE2 GLN B 459 -9 064 -21 488 98 382 1 00 8 39 N
ATOM 3085 N VAL B 460 10 934 -17 688 100 244 1 00 9 85 N
ATOM 3086 CA VAL B 460 11 960 -16 661 100 332 1 00 10 97 C
ATOM 3087 C VAL B 460 12 985 -16 879 99 226 1 00 10 69 C
ATOM 3088 O VAL B 460 12 628 -17 200 98 082 1 00 10 37 O
ATOM 3089 CB VAL B 460 11 333 -15 239 100 236 1 00 11 65 C
ATOM 3090 CGI VAL B 460 12 326 -14 234 99 695 1 00 11 76 C
ATOM 3091 CG2 VAL B 460 10 802 -14 792 101 587 1 00 12 12 C
ATOM 3092 N LEU B 461 14 258 -16 736 99 581 1 00 10 31 N
ATOM 3093 CA LEU B 461 15 347 -16 805 98 616 1 00 10 23 C
ATOM 3094 C LEU B 461 15 794 -15 390 98 214 1 00 12 11 C
ATOM 3095 O LEU B 461 16 025 -14 532 99 070 1 00 9 96 O
ATOM 3096 CB LEU B 461 16 525 -17 587 99 197 1 00 8 56 C
ATOM 3097 CG LEU B 461 17 767 -17 690 98 311 1 00 9 40 C
ATOM 3098 CDl LEU B 461 17 552 -18 662 97 150 1 00 7 57 c
ATOM 3099 CD2 LEU B 461 18 993 -18 078 99 135 1 00 9 19 c
ATOM 3100 N ILE B 462 15 912 -15 161 96 909 1 00 12 14 N
ATOM 3101 CA ILE B 462 16 321 -13 869 96 376 1 00 12 44 C
ATOM 3102 C ILE B 462 17 613 -13 997 95 569 1 00 15 09 C
ATOM 3103 O ILE B 462 17 658 -14 700 94 559 1 00 13 83 O
ATOM 3104 CB ILE B 462 15 197 -13 269 95 507 1 00 10 52 C
ATOM 3105 CGI ILE B 462 13 906 -13 162 96 327 1 00 9 53 c
ATOM 3106 CG2 ILE B 462 15 624 -11 911 94 948 1 00 9 85 c
ATOM 3107 CDl ILE B 462 12 716 -12 635 95 573 1 00 7 52 c
ATOM 3108 N LEU B 463 18 659 -13 317 96 027 1 00 17 89 N
ATOM 3109 CA LEU B 463 19 971 -13 390 95 396 1 00 23 90 C
ATOM 3110 C LEU B 463 20 239 -12 159 94 534 1 00 27 33 C
ATOM 3111 O LEU B 463 19 359 -11 327 94 342 1 00 29 34 O
ATOM 3112 CB LEU B 463 21 064 -13 516 96 459 1 00 23 96 c
ATOM 3113 CG LEU B 463 21 123 -14 790 97 298 1 00 24 72 c
ATOM 3114 CDl LEU B 463 22 533 -15 002 97 796 1 00 26 70 c
ATOM 3115 CD2 LEU B 463 20 675 -15 992 96 502 1 00 26 69 c
ATOM 3116 N GLY B 464 21 459 -12 045 94 020 1 00 31 44 N
ATOM 3117 CA GLY B 464 21 849 -10 883 93 234 1 00 35 17 C
ATOM 3118 C GLY B 464 21 908 -11 151 91 741 1 00 36 52 c
ATOM 3119 O GLY B 464 22 863 -10 759 91 072 1 00 38 50 o
ATOM 3120 N GLY B 465 20 876 -11 800 91 213 1 00 36 78 N
ATOM 3121 CA GLY B 465 20 885 -12 249 89 832 1 00 36 60 C
ATOM 3122 C GLY B 465 21 147 -13 738 89 847 1 00 36 37 C
ATOM 3123 O GLY B 465 21 927 -14 218 90 669 1 00 37 27 o
ATOM 3124 N THR B 466 20 497 -14 475 88 953 1 00 35 23 N
ATOM 3125 CA THR B 466 20 528 -15 932 89 028 1 00 34 21 C
ATOM 3126 C THR B 466 19 542 -16 372 90 109 1 00 32 31 c
ATOM 3127 O THR B 466 18 640 -15 612 90 469 1 00 32 58 0
ATOM 3128 CB THR B 466 20 174 -16 557 87 668 1 00 35 75 c
ATOM 3129 OGl THR B 466 18 968 -15 966 87 169 1 00 36 08 o
ATOM 3130 CG2 THR B 466 21 222 -16 177 86 615 1 00 36 14 c
ATOM 3131 N THR B 467 19 711 -17 583 90 633 1 00 28 05 N
ATOM 3132 CA THR B 467 18 838 -18 071 91 701 1 00 24 61 C
ATOM 3133 C THR B 467 17 361 -17 813 91 395 1 00 20 16 c
ATOM 3134 O THR B 467 16 866 -18 159 90 325 1 00 19 33 o
ATOM 3135 CB THR B 467 19 071 -19 577 91 960 1 00 25 61 c
ATOM 3136 OGl THR B 467 20 411 -19 782 92 430 1 00 26 85 o
ATOM 3137 CG2 THR B 467 18 208 -20 062 93 126 1 00 25 45 c
ATOM 3138 N ALA B 468 16 665 -17 193 92 339 1 00 15 93 N
ATOM 3139 CA ALA B 468 15 233 -16 959 92 210 1 00 13 47 C
ATOM 3140 C ALA B 468 14 602 -16 966 93 594 1 00 12 12 C
ATOM 3141 O ALA B 468 15 308 -17 052 94 605 1 00 12 12 O
ATOM 3142 CB ALA B 468 14 968 -15 636 91 499 1 00 11 44 C
ATOM 3143 N ALA B 469 13 277 -16 875 93 647 1 00 11 53 N
ATOM 3144 CA ALA B 469 12 567 -16 996 94 916 1 00 10 12 C
ATOM 3145 C ALA B 469 11 369 -16 064 94 984 1 00 9 48 C
ATOM 3146 O ALA B 469 11 025 -15 407 94 009 1 00 9 65 0
ATOM 3147 CB ALA B 469 12 118 -18 442 95 139 1 00 8 34 C ATOM 3148 N GLY B 470 10..731 -16.027 96.146 1.00 7.75 N
ATOM 3149 CA GLY B 470 -9 .499 -15 .293 96 .307 1 .00 7 .35 C
ATOM 3150 C GLY B 470 -8 .683 -15 .884 97 .429 1 .00 8 .81 C
ATOM 3151 O GLY B 470 -9. .030 -16 .928 97 .978 1 .00 9 .16 O
ATOM 3152 N ALA B 471 -7. .597 -15, .209 97. .777 1. .00 7. .29 N
ATOM 3153 CA ALA B 471 -6. .783 -15, .618 98. .908 1. .00 7 .06 C
ATOM 3154 C ALA B 471 -6. .454 -14, .416 99, .793 1. .00 5. .48 C
ATOM 3155 O ALA B 471 -6, .024 -13, .368 99. .303 1. .00 5. .99 O
ATOM 3156 CB ALA B 471 -5. .511 -16. .310 98. .424 1. .00 6 .03 C
ATOM 3157 N LEU B 472 -6. .666 -14. :581 101. .094 1. .00 4. .32 N
ATOM 3158 CA LEU B 472 -6. .352 -13. .554 102. .079 1. .00 4 .16 C
ATOM 3159 C LEU B 472 -4. .860 -13. .222 102. .123 1. .00 5 .66 C
ATOM 3160 0 LEU B 472 -4, .016 -14. .113 102. .172 1. .00 5. .37 0
ATOM 3161 CB LEU B 472 -6. .818 -13. .992 103. .473 1. .00 3 .37 c
ATOM 3162 CG LEU B 472 -6. .636 -12. .960 104. .595 1. .00 4. .40 c
ATOM 3163 CDl LEU B 472 -7. .508 -11. .727 104. .362 1. .00 2 .84 c
ATOM 3164 CD2 EEU B 472 -6. .915 -13 .553 105. .978 1. .00 2 .96 c
ATOM 3165 N LEU B 473 -4. .548 -11. .931 102. .099 1. .00 6. .13 N
ATOM 3166 CA LEU B 473 -3, .199 -11. .453 102, .360 1. .00 5. .36 C
ATOM 3167 C LEU B 473 -3. .258 -10. .540 103. .577 1. .00 5 .66 C
ATOM 3168 O LEU B 473 -4. .187 -9. .737 103. .699 1. .00 4. .85 0
ATOM 3169 CB LEU B 473 -2. .660 -10. .667 101. .160 1. .00 6. .39 c
ATOM 3170 CG LEU B 473 -2. .356 -11. .428 99. .867 1. .00 6 .14 c
ATOM 3171 CDl LEU B 473 -1. .914 -10. .452 98. .788 1 .00 4 .23 c
ATOM 3172 CD2 LEU B 473 -1. .287 -12. .488 100. .110 1. .00 4. .95 c
ATOM 3173 N TYR B 474 -2 .266 -10 .635 104. .453 1 .00 5 .36 N
ATOM 3174 CA TYR B 474 -2. .298 -9 .843 105. .680 1. .00 5 .07 C
ATOM 3175 C TYR B 474 -3. .668 -10 .091 106. .307 1. .00 5 .83 C
ATOM 3176 O TYR B 474 -4 .287 -11 .116 106. .042 1. .00 8 .66 O
ATOM 3177 CB TYR B 474 -2 .048 -8 .350 105. .379 1 .00 5 .47 C
ATOM 3178 CG TYR B 474 -0 .703 -8 .131 104. .716 1. .00 6 .93 C
ATOM 3179 CDl TYR B 474 -0. .579 -8. .150 103. .329 1. .00 6. .50 c
ATOM 3180 CD2 TYR B 474 0. .452 -7. .958 105. .475 1. .00 6. .30 c
ATOM 3181 CEl TYR B 474 0. .650 -7, .984 102. .715 1. .00 7. .16 c
ATOM 3182 CE2 TYR B 474 1. .702 -7. .787 104. .860 1. .00 7 .40 c
ATOM 3183 CZ TYR B 474 1, .784 -7. .802 103. .477 1. .00 7 .92 c
ATOM 3184 OH TYR B 474 2. .993 -7. .642 102. .839 1. .00 9, .35 0
ATOM 3185 N ASP B 475 -4. .176 -9. .205 107. .181 1. .00 6, .67 N
ATOM 3186 CA ASP B 475 -5, .540 -9, .366 107. .674 1. .00 6, .98 C
ATOM 3187 C ASP B 475 -6. .534 -8. .441 106. .958 1. .00 6, .68 C
ATOM 3188 O ASP B 475 -7, .635 -8. .215 107. .466 1. .00 6. .81 0
ATOM 3189 CB ASP B 475 -5. .575 -9. .054 109. .170 1. .00 6, .29 c
ATOM 3190 CG ASP B 475 -4, .877 -7. .757 109. .493 1. .00 8, .99 c
ATOM 3191 OD1 ASP B 475 -4. .554 -7. .015 108. .532 1. .00 10 .02 0
ATOM 3192 OD2 ASP B 475 -4. .596 -7. .400 110, .661 1. .00 11, .25 0
ATOM 3193 N ASN B 476 -6, .236 -7. .837 105. .795 1. .00 5, .15 N
ATOM 3194 CA ASN B 476 -7. .157 -6. .860 105. .210 1. .00 6 .12 c
ATOM 3195 C ASN 3 476 -7. .088 -6. .731 103. .689 1. .00 6 .65 c
ATOM 3196 O ASN B 476 -7. .610 -5 .770 103. .108 1 .00 5 .28 0
ATOM 3197 C3 ASN 3 476 -7. .007 -5 .484 105. .882 1. .00 7 .66 c
ATOM 3198 CG ASN B 476 -5. .610 -4. .901 105. .722 1 .00 8 .96 c
ATOM 3199 OD1 ASN 3 476 -4. .645 -5. .628 105. .502 1. .00 9 .11 0
ATOM 3200 ND2 ASN 3 476 -5. .502 -3 .581 105. .828 1 .00 9 .47 N
ATOM 3201 N TRP 3 477 -6. .459 -7 .706 103. .045 1 .00 6 .18 N
ATOM 3202 CA TRP B 477 -6, .378 -7 .715 101. .594 1 .00 6 .24 C
ATOM 3203 C TRP B 477 -6. .793 -9 .070 101. .040 1 .00 7 .89 C
ATOM 3204 O TRP B 477 -6. .665 -10 .097 101. .712 1 .00 7 .11 O
ATOM 3205 CB TRP B 477 -4. ,966 -7, .373 101. .125 1. .00 4, .74 C
ATOM 3206 CG TRP B 477 -4. .590 -5. .932 101. .295 1. .00 6, .00 C
ATOM 3207 CDl TRP B 477 -3. ,988 -5. .369 102. ,381 1. .00 5, .20 C
ATOM 3208 CD2 TRP B 477 -4. ,775 -4. .872 100. ,345 1. .00 4, .97 C
ATOM 3209 NE1 TRP B 477 -3. .791 -4. .026 102. ,168 1. .00 6, .82 N
ATOM 3210 CE2 TRP B 477 -4. ,266 -3. .694 100. .928 1. .00 5, .57 C
ATOM 3211 CE3 TRP B 477 -5. .320 -4. .799 99. .058 1, .00 6, .55 C
ATOM 3212 CZ2 TRP B 477 -4. .290 -2. .460 100, .277 1. .00 6, .30 C
ATOM 3213 CZ3 TRP B 477 -5. .344 -3, .572 98, .407 1. .00 6, .96 C
ATOM 3214 CH2 TRP B 477 -4. .827 -2. .418 99, .021 1. .00 7, .82 C
ATOM 3215 N VAL B 478 -7, .293 -9. .071 99, .809 1. .00 6, .86 N
ATOM 3216 CA VAL B 478 -7. .585 -10. .320 99, .128 1. .00 5 .75 C
ATOM 3217 C VAL B 478 -6. .963 -10. .321 97, .741 1. .00 7, .06 C
ATOM 3218 O VAL B 478 -7. .206 -9. .411 96, .946 1. .00 9, .06 0
ATOM 3219 CB VAL B 478 -9. .107 -10. .580 99, .033 1. .00 5, .47 c
ATOM 3220 CGI VAL B 478 -9. .397 -11, .723 98. .064 1. .00 3 .63 c
ATOM 3221 CG2 VAL B 478 -9, .681 -10, .894 100, .412 1. .00 4 .41 c ATOM 3222 N LEU B 479 -6 147 -11 335 97 465 1 00 5 54 N
ATOM 3223 CA LEU B 479 -5 574 -11 529 96 132 1 00 7 45 C
ATOM 3224 C LEU B 479 -6 519 -12 384 95 291 1 00 6 84 C
ATOM 3225 O LEU B 479 -6 952 -13 448 95 737 1 00 6 78 O
ATOM 3226 CB LEU B 479 -4 209 -12 225 96 228 1 00 6 89 C
ATOM 3227 CG LEU B 479 -3 394 -12 398 94 935 1 00 8 25 C
ATOM 3228 CDl LEU B 479 -3 005 -11 053 94 332 1 00 6 28 C
ATOM 3229 CD2 LEU B 479 -2 141 -13 248 95 184 1 00 5 91 C
ATOM 3230 N THR B 480 -6 835 -11 923 94 081 1 00 6 67 N
ATOM 3231 CA THR B 480 -7 710 -12 673 93 189 1 00 5 17 C
ATOM 3232 C THR B 480 -7 372 -12 440 91 717 1 00 7 64 c
ATOM 3233 O THR B 480 -6 378 -11 782 91 396' 1 00 8 57 0
ATOM 3234 CB THR B 480 -9 190 -12 322 93 466 1 00 5 05 c
ATOM 3235 OGl THR B 480 10 035 -13 143 92 650 1 00 2 80 0
ATOM 3236 CG2 THR B 480 -9 513 -10 901 92 996 1 00 2 01 c
ATOM 3237 N ALA B 481 -8 203 -12 976 90 825 1 00 5 66 N
ATOM 3238 CA ALA B 481 -8 045 -T2 732 89 393 1 00 7 09 C
ATOM 3239 C ALA B 481 -8 818 -11 477 88 977 1 00 8 81 C
ATOM 3240 O ALA B 481 -9 919 -11 227 89 470 1 00 9 57 O
ATOM 3241 CB ALA B 481 -8 530 -13 941 88 584 1 00 4 07 C
ATOM 3242 N ALA B 482 -8 250 -10 695 88 064 1 00 6 89 N
ATOM 3243 CA ALA B 482 -8 952 -9 539 87 520 1 00 6 41 C
ATOM 3244 C ALA B 482 10 257 -9 946 86 851 1 00 7 61 C
ATOM 3245 O ALA B 482 11 272 -9 274 87 023 1 00 7 81 O
ATOM 3246 CB ALA B 482 -8 074 -8 787 86 536 1 00 4 67 C
ATOM 3247 N HIS B 483 10 232 -11 037 86 086 1 00 7 55 N
ATOM 3248 CA HIS B 483 11 419 -11 461 85 341 1 00 7 90 C
ATOM 3249 C HIS B 483 12 565 -11 809 86 283 1 00 8 69 C
ATOM 3250 O HIS B 483 13 726 -11 658 85 923 1 00 10 91 O
ATOM 3251 CB HIS B 483 11 118 -12 617 84 363 1 00 5 03 C
ATOM 3252 CG HIS B 483 11 203 -13 978 84 980 1 00 7 24 C
ATOM 3253 ND1 HIS B 483 10 103 -14 633 85 496 1 00 4 87 N
ATOM 3254 CD2 HIS B 483 12 259 -14 805 85 176 1 00 8 18 C
ATOM 3255 CEl HIS B 483 10 478 -15 802 85 984 1 00 6 36 C
ATOM 3256 NE2 HIS B 483 11 780 -15 934 85 797 1 00 8 74 N
ATOM 3257 N ALA B 484 12 224 -12 254 87 490 1 00 7 75 N
ATOM 3258 CA ALA B 484 13 218 -12 675 88 476 1 00 7 31 C
ATOM 3259 C ALA B 484 13 998 -11 513 89 085 1 00 8 33 C
ATOM 3260 O ALA B 484 15 135 -11 695 89 532 1 00 6 87 0
ATOM 3261 CB ALA B 484 12 558 -13 504 89 589 1 00 7 35 c
ATOM 3262 N VAL B 485 13 402 -10 323 89 105 1 00 7 80 N
ATOM 3263 CA VAL B 485 14 041 -9 182 89 765 1 00 8 50 C
ATOM 3264 C VAL B 485 14 216 -7 948 88 876 1 00 9 80 C
ATOM 3265 O VAL B 485 14 745 -6 925 89 326 1 00 8 18 O
ATOM 3266 CB VAL B 485 13 279 -8 763 91 044 1 00 7 56 C
ATOM 3267 CGI VAL B 485 13 263 -9 902 92 056 1 00 8 65 C
ATOM 3268 CG2 VAL B 485 11 863 -8 326 90 708 1 00 6 45 C
ATOM 3269 N TYR B 486 13 776 -8 044 87 624 1 00 9 72 N
ATOM 3270 CA TYR B 486 13 799 -6 896 86 715 1 00 12 06 C
ATOM 3271 C TYR B 486 15 186 -6 286 86 589 1 00 13 26 C
ATOM 3272 O TYR B 486 15 353 -5 074 86 709 1 00 13 37 O
ATOM 3273 CB TYR B 486 13 281 -7 290 85 323 1 00 12 44 c
ATOM 3274 CG TYR B 486 13 072 -6 117 84 385 1 00 14 19 c
ATOM 3275 CDl TYR B 486 11 849 -5 458 84 326 1 00 14 63 c
ATOM 3276 CD2 TYR B 486 14 093 -5 674 83 553 1 00 14 94 c
ATOM 3277 CEl TYR B 486 11 647 -4 393 83 468 1 00 15 81 c
ATOM 3278 CE2 TYR B 486 13 903 -4 602 82 690 1 00 16 51 c
ATOM 3279 CZ TYR B 486 12 675 -3 967 82 655 1 00 17 59 c
ATOM 3280 OH TYR B 486 12 470 -2 902 81 805 1 00 20 57 O
ATOM 3281 N GLU B 487 16 178 -7 132 86 336 1 00 16 46 N
ATOM 3282 CA GLU B 487 17 538 -6 662 86 094 1 00 19 64 C
ATOM 3283 C GLU B 487 18 138 -5 968 87 313 1 00 19 65 c
ATOM 3284 O GLU B 487 18 782 -4 926 87 190 1 00 19 72 O
ATOM 3285 CB GLU B 487 18 432 -7 818 85 654 1 00 21 15 c
ATOM 3286 CG GLU B 487 19 746 -7 380 85 034 1 00 25 55 c
ATOM 3287 CD GLU B 487 20 710 -8 537 84 842 1 00 28 52 c
ATOM 3288 OEl GLU B 487 20 245 -9 668 84 554 1 00 29 69 o
ATOM 3289 OE2 GLU B 487 21 934 -8 312 84 978 1 00 30 42 0
ATOM 3290 N GLN B 488 17 922 -6 549 88 486 1 00 20 07 N
ATOM 3291 CA GLN B 488 18 461 -5 994 89 721 1 00 22 95 C
ATOM 3292 C GLN B 488 17 814 -4 667 90 088 1 00 22 38 C
ATOM 3293 O GLN B 488 18 487 -3 740 90 536 1 00 21 45 0
ATOM 3294 CB GLN B 488 18 300 -6 988 90 869 1 00 25 33 c
ATOM 3295 CG GLN B 488 19 524 -7 857 91 083 1 00 29 53 c ATOM 3296 CD GLN B 488 19.526 -8 524 92 438 1 00 32 58 c
ATOM 3297 OEl GLN B 488 20 .164 -8 035 93 376 1 00 33 70 0
ATOM 3298 NE2 GLN B 488 18 .810 -9 639 92 551 1 00 33 41 N
ATOM 3299 N LYS B 489 16 .504 -4 578 89 900 1 00 22 35 N
ATOM 3300 CA LYS B 489 15 789 -3 365 90 247 1 00 23 20 C
ATOM 3301 C LYS B 489 16 270 -2 211 89 373 1 00 25 08 C
ATOM 3302 O LYS B 489 16 508 -1 109 89 868 1 00 25 70 O
ATOM 3303 CB LYS B 489 14 282 -3 569 90 103 1 00 21 81 C
ATOM 3304 CG LYS B 489 13 632 -2 647 89 100 1 00 23 14 C
ATOM 3305 CD LYS B 489 12 407 -1 993 89 678 1 00 23 18 C
ATOM 3306 CE LYS B 489 12 614 -0 502 89 855 1 00 23 23 C
ATOM 3307 NZ LYS B 489 11 331 0 234 89 756 1 00 21 46 N
ATOM 3308 N HIS B 490 16 432 -2 477 88 078 1 00 26 39 N
ATOM 3309 CA HIS B 490 16 833 -1 443 87 127 1 00 27 13 C
ATOM 3310 C HIS B 490 18 344 -1 251 87 113 1 00 27 33 C
ATOM 3311 O HIS B 490 18 887 -0 505 86 297 1 00 28 12 O
ATOM 3312 CB HIS B 490 16 280 -1 733 85 727 1 00 27 11 C
ATOM 3313 CG HIS B 490 14 815 -1 450 85 599 1 00 27 59 C
ATOM 3314 ND1 HIS B 490 13 874 -2 445 85 444 1 00 27 90 N
ATOM 3315 CD2 HIS B 490 14 127 -0 284 85 633 1 00 28 04 C
ATOM 3316 CEl HIS B 490 12 671 -1 903 85 379 1 00 27 76 C
ATOM 3317 NE2 HIS B 490 12 797 -0 593 85 489 1 00 27 94 N
ATOM 3318 N ASP B 491 19 012 -1 933 88 036 1 00 28 21 N
ATOM 3319 CA ASP B 491 20 413 -1 670 88 317 1 00 27 98 C
ATOM 3320 C ASP B 491 20 520 -0 890 89 621 1 00 26 53 C
ATOM 3321 O ASP B 491 21 618 -0 643 90 124 1 00 26 12 O
ATOM 3322 CB ASP B 491 21 202 -2 973 88 403 1 00 30 03 C
ATOM 3323 CG ASP B 491 22 205 -3 109 87 282 1 00 32 36 C
ATOM 3324 OD1 ASP B 491 21 851 -2 786 86 124 1 00 31 79 O
ATOM 3325 OD2 ASP B 491 23 373 -3 512 87 467 1 00 34 67 O
ATOM 3326 N ALA B 492 19 363 -0 509 90 156 1 00 23 88 N
ATOM 3327 CA ALA B 492 19 286 0 246 91 401 1 00 23 42 C
ATOM 3328 C ALA B 492 20 062 -0 445 92 522 1 00 24 16 C
ATOM 3329 O ALA B 492 20 693 0 210 93 352 1 00 23 71 O
ATOM 3330 CB ALA B 492 19 785 1 670 91 195 1 00 22 27 C
ATOM 3331 N SER B 493 20 008 -1 774 92 530 1 00 23 69 N
ATOM 3332 CA SER B 493 20 695 -2 571 93 536 1 00 24 78 C
ATOM 3333 C SER B 493 19 675 -3 176 94 492 1 00 22 70 C
ATOM 3334 O SER B 493 18 727 -3 819 94 055 1 00 22 28 O
ATOM 3335 CB SER B 493 21 499 -3 690 92 862 1 00 26 34 C
ATOM 3336 OG SER B 493 22 673 -3 186 92 247 1 00 28 63 O
ATOM 3337 N ALA B 494 19 868 -2 966 95 791 1 00 22 04 N
ATOM 3338 CA ALA B 494 18 985 -3 556 96 796 1 00 21 53 C
ATOM 3339 C ALA B 494 19 090 -5 080 96 739 1 00 20 55 C
ATOM 3340 O ALA B 494 20 181 -5 625 96 551 1 00 20 35 O
ATOM 3341 CB ALA B 494 19 331 -3 042 98 190 1 00 20 13 C
ATOM 3342 N LEU B 495 17 955 -5 763 96 884 1 00 19 57 N
ATOM 3343 CA LEU B 495 17 927 -7 227 96 786 1 00 16 41 C
ATOM 3344 C LEU B 495 18 290 -7 873 98 115 1 00 14 40 c
ATOM 3345 O LEU B 495 17 784 -7 473 99 167 1 00 13 66 o
ATOM 3346 CB LEU B 495 16 552 -7 729 96 329 1 00 16 41 c
ATOM 3347 CG LEU B 495 15 937 -7 108 95 071 1 00 18 32 c
ATOM 3348 CDl LEU B 495 14 662 -7 824 94 670 1 00 18 98 c
ATOM 3349 CD2 LEU B 495 16 920 -7 129 93 934 1 00 19 84 c
ATOM 3350 N ASP B 496 19 178 -8 863 98 045 1 00 13 66 N
ATOM 3351 CA ASP B 496 19 572 -9 689 99 178 1 00 13 14 C
ATOM 3352 C ASP B 496 18 512 -10 767 99 367 1 00 13 26 C
ATOM 3353 O ASP B 496 18 414 -11 705 98 578 1 00 14 13 O
ATOM 3354 CB ASP B 496 20 938 -10 338 98 895 1 00 14 28 c
ATOM 3355 CG ASP B 496 21 552 -11 003 100 124 1 00 14 61 c
ATOM 3356 OD1 ASP B 496 20 799 -11 478 101 000 1 00 13 80 0
ATOM 3357 OD2 ASP B 496 22 788 -11 107 100 292 1 00 14 86 0
ATOM 3358 N ILE B 497 17 721 -10 629 100 421 1 00 11 22 N
ATOM 3359 CA ILE B 497 16 567 -11 488 100 617 1 00 10 22 c
ATOM 3360 C ILE B 497 16 747 -12 327 101 871 1 00 8 56 c
ATOM 3361 O ILE B 497 17 067 -11 797 102 931 1 00 7 96 0
ATOM 3362 CB ILE B 497 15 276 -10 623 100 676 1 00 10 91 c
ATOM 3363 CGI ILE B 497 14 955 -10 079 99 276 1 00 10 23 c
ATOM 3364 CG2 ILE B 497 14 105 -11 422 101 240 1 00 10 09 c
ATOM 3365 CDl ILE B 497 13 961 -8 960 99 264 1 00 10 33 c
ATOM 3366 N ARG B 498 16 559 -13 638 101 739 1 00 7 99 N
ATOM 3367 CA ARG B 498 16 812 -14 566 102 835 1 00 8 37 C
ATOM 3368 C ARG B 498 15 633 -15 493 103 058 1 00 10 08 c
ATOM 3369 O ARG B 498 15 080 -16 057 102 106 1 00 10 93 0 ATOM 3370 CB ARG B 498 18 072 -15 391 102 553 1 00 7 71 c
ATOM 3371 CG ARG B 498 19 251 -14 551 102 085 1 00 8 65 c
ATOM 3372 CD ARG B 498 20 545 -15 312 101 855 1 00 7 87 c
ATOM 3373 NE ARG B 498 21 609 -14 387 101 473 1 00 9 66 N
ATOM 3374 CZ ARG B 498 22 857 -14 742 101 171 1 00 11 39 C
ATOM 3375 NH1 ARG B 498 23 223 -16 013 101 200 1 00 12 07 N
ATOM 3376 NH2 ARG B 498 23 744 -13 817 100 834 1 00 9 81 N
ATOM 3377 N MET B 499 15 247 -15 658 104 317 1 00 10 63 N
ATOM 3378 CA MET B 499 14 186 -16 601 104 642 1 00 11 39 C
ATOM 3379 C MET B 499 14 502 -17 390 105 901 1 00 9 78 C
ATOM 3380 O MET B 499 15 555 -17 206 106 513 1 00 7 65 O
ATOM 3381 CB MET B 499 12 834 -15 892 104 769 1 00 14 87 C
ATOM 3382 CG MET B 499 12 885 -14 547 105 440 1 00 17 75 c
ATOM 3383 SD MET B 499 11 429 -13 559 105 025 1 00 22 11 s
ATOM 3384 CE MET B 499 12 188 -12 043 104 686 1 00 20 04 c
ATOM 3385 N GLY B 500 13 587 -18 281 106 268 1 00 8 67 N
ATOM 3386 CA GLY B 500 13 745 -19 104 107 455 1 00 10 10 C
ATOM 3387 C GLY B 500 14 787 -20 199 107 323 1 00 11 36 C
ATOM 3388 O GLY B 500 15 181 -20 801 108 328 1 00 12 91 O
ATOM 3389 N THR B 501 15 240 -20 450 106 096 1 00 10 54 N
ATOM 3390 CA THR B 501 16 212 -21 510 105 836 1 00 11 91 C
ATOM 3391 C THR B 501 15 789 -22 454 104 702 1 00 11 14 C
ATOM 3392 O THR B 501 15 176 -22 037 103 715 1 00 11 29 O
ATOM 3393 CB THR B 501 17 615 -20 928 105 554 1 00 13 13 C
ATOM 3394 OGl THR B 501 18 539 -22 003 105 322 1 00 13 03 O
ATOM 3395 CG2 THR B 501 17 628 -20 150 104 231 1 00 13 59 C
ATOM 3396 N LEU B 502 16 110 -23 734 104 863 1 00 12 01 N
ATOM 3397 CA LEU B 502 15 822 -24 741 103 845 1 00 10 93 C
ATOM 3398 C LEU B 502 17 005 -24 893 102 899 1 00 10 79 C
ATOM 3399 O LEU B 502 16 847 -25 289 101 749 1 00 10 32 O
ATOM 3400 CB LEU B 502 15 525 -26 094 104 498 1 00 10 77 C
ATOM 3401 CG LEU B 502 14 243 -26 265 105 321 1 00 12 31 C
ATOM 3402 CDl LEU B 502 14 232 -27 631 106 000 1 00 11 49 C
ATOM 3403 CD2 LEU B 502 13 012 -26 100 104 448 1 00 10 49 C
ATOM 3404 N LYS B 503 18 196 -24 597 103 407 1 00 11 98 N
ATOM 3405 CA LYS B 503 19 423 -24 726 102 633 1 00 12 20 C
ATOM 3406 C LYS B 503 19 792 -23 406 101 978 1 00 11 70 c
ATOM 3407 O LYS B 503 20 020 -22 402 102 651 1 00 11 97 0
ATOM 3408 CB LYS B 503 20 569 -25 224 103 507 1 00 13 79 c
ATOM 3409 CG LYS B 503 20 271 -26 533 104 197 1 00 17 94 c
ATOM 3410 CD LYS B 503 21 528 -27 127 104 812 1 00 21 30 c
ATOM 3411 CE LYS B 503 21 317 -28 594 105 163 1 00 23 74 c
ATOM 3412 NZ LYS B 503 22 014 -28 957 106 429 1 00 27 06 N
ATOM 3413 N ARG B 504 19 846 -23 440 100 653 1 00 9 56 N
ATOM 3414 CA ARG B 504 20 100 -22 281 99 811 1 00 9 30 C
ATOM 3415 C ARG B 504 21 428 -21 581 100 141 1 00 9 58 C
ATOM 3416 O ARG B 504 21 502 -20 344 100 166 1 00 8 87 O
ATOM 3417 CB ARG B 504 20 075 -22 758 98 358 1 00 10 17 C
ATOM 3418 CG ARG B 504 20 542 -21 782 97 322 1 00 11 45 C
ATOM 3419 CD ARG B 504 20 195 -22 220 95 897 1 00 12 28 C
ATOM 3420 NE ARG B 504 20 805 -23 498 95 534 1 00 11 04 N
ATOM 3421 CZ ARG B 504 22 025 -23 622 95 017 1 00 11 86 C
ATOM 3422 NH1 ARG B 504 22 768 -22 543 94 814 1 00 12 72 N
ATOM 3423 NH2 ARG B 504 22 508 -24 818 94 702 1 00 9 20 N
ATOM 3424 N LEU B 505 22 462 -22 377 100 413 1 00 8 82 N
ATOM 3425 CA LEU B 505 23 824 -21 869 100 568 1 00 9 85 C
ATOM 3426 C LEU B 505 24 264 -21 794 102 028 1 00 9 34 C
ATOM 3427 O LEU B 505 25 449 -21 675 102 306 1 00 6 78 O
ATOM 3428 CB LEU B 505 24 819 -22 748 99 790 1 00 8 66 C
ATOM 3429 CG LEU B 505 24 576 -22 987 98 298 1 00 8 74 C
ATOM 3430 CDl LEU B 505 25 371 -24 190 97 795 1 00 7 20 C
ATOM 3431 CD2 LEU B 505 24 911 -21 746 97 484 1 00 9 58 C
ATOM 3432 N SER B 506 23 312 -21 885 102 952 1 00 10 95 N
ATOM 3433 CA SER B 506 23 624 -21 847 104 377 1 00 10 74 C
ATOM 3434 C SER B 506 23 974 -20 432 104 816 1 00 10 19 C
ATOM 3435 O SER B 506 23 418 -19 464 104 297 1 00 9 70 O
ATOM 3436 CB SER B 506 22 431 -22 343 105 194 1 00 11 42 C
ATOM 3437 OG SER B 506 22 715 -22 301 106 580 1 00 10 79 O
ATOM 3438 N PRO B 507 24 901 -20 316 105 765 1 00 9 81 N
ATOM 3439 CA PRO B 507 25 206 -19 029 106 403 1 00 10 15 C
ATOM 3440 C PRO B 507 24 160 -18 632 107 439 1 00 11 94 C
ATOM 3441 O PRO B 507 24 188 -17 505 107 927 1 00 13 00 O
ATOM 3442 CB PRO B 507 26 552 -19 291 107 093 1 00 9 98 C
ATOM 3443 CG PRO B 507 26 583 -20 769 107 345 1 00 8 46 C ATOM 3444 CD PRO B 507 25 750 -21 411 106 274 1 00 9 54 c
ATOM 3445 N HIS B 508 23 253 -19 546 107 770 1 00 13 06 N
ATOM 3446 CA HIS B 508 22 238 -19 295 108 791 1 00 13 38 C
ATOM 3447 C HIS B 508 20 863 -19 071 108 183 1 00 12 75 c
ATOM 3448 O HIS B 508 20 251 -19 993 107 649 1 00 14 03 0
ATOM 3449 CB HIS B 508 22 180 -20 454 109 783 1 00 15 66 c
ATOM 3450 CG HIS B 508 23 518 -20 850 110 317 1 00 17 55 c
ATOM 3451 ND1 HIS B 508 24 347 -19 965 110 976 1 00 18 81 N
ATOM 3452 CD2 HIS B 508 24 182 -22 030 110 278 1 00 18 01 C
ATOM 3453 CEl HIS B 508 25 460 -20 586 111 325 1 00 18 58 C
ATOM 3454 NE2 HIS B 508 25 385 -21 840 110 914 1 00 18 32 N
ATOM 3455 N TYR B 509 20 384 -17 838 108 281 1 00 11 13 N
ATOM 3456 CA TYR B 509 19 099 -17 460 107 722 1 00 10 86 C
ATOM 3457 C TYR B 509 18 684 -16 122 108 303 1 00 11 68 C
ATOM 3458 O TYR B 509 19 485 -15 438 108 939 1 00 11 33 O
ATOM 3459 CB TYR B 509 19 194 -17 342 106 200 1 00 9 92 C
ATOM 3460 CG TYR B 509 20 326 -16 457 105 724 1 00 9 80 C
ATOM 3461 CDl TYR B 509 20 143 -15 084 105 554 1 00 10 50 C
ATOM 3462 CD2 TYR B 509 21 581 -16 990 105 451 1 00 9 35 C
ATOM 3463 CEl TYR B 509 21 184 -14 269 105 127 1 00 9 15 C
ATOM 3464 CE2 TYR B 509 22 621 -16 187 105 020 1 00 10 62 C
ATOM 3465 CZ TYR B 509 22 417 -14 831 104 861 1 00 10 89 C
ATOM 3466 OH TYR B 509 23 452 -14 040 104 423 1 00 12 60 O
ATOM 3467 N THR B 510 17 430 -15 754 108 082 1 00 11 91 N
ATOM 3468 CA THR B 510 16 951 -14 423 108 418 1 00 12 36 C
ATOM 3469 C THR B 510 17 170 -13 484 107 237 1 00 12 78 C
ATOM 3470 O THR B 510 16 695 -13 734 106 134 1 00 13 53 O
ATOM 3471 CB THR B 510 15 471 -14 473 108 804 1 00 12 58 C
ATOM 3472 OGl THR B 510 15 327 -15 253 109 999 1 00 13 32 0
ATOM 3473 CG2 THR B 510 14 975 -13 085 109 213 1 00 11 67 c
ATOM 3474 N GLN B 511 17 903 -12 405 107 488 1 00 13 62 N
ATOM 3475 CA GLN B 511 18 252 -11 432 106 464 1 00 13 14 C
ATOM 3476 C GLN B 511 17 203 -10 329 106 366 1 00 12 15 C
ATOM 3477 O GLN B 511 16 784 -9 768 107 378 1 00 10 89 O
ATOM 3478 CB GLN B 511 19 620 -10 816 106 780 1 00 14 27 C
ATOM 3479 CG GLN B 511 20 082 -9 773 105 784 1 00 16 91 C
ATOM 3480 CD GLN B 511 20 605 -10 393 104 505 1 00 18 10 C
ATOM 3481 OEl GLN B 511 21 595 -11 123 104 525 1 00 19 95 0
ATOM 3482 NE2 GLN B 511 19 940 -10 109 103 394 1 00 18 93 N
ATOM 3483 N ALA B 512 16 783 -10 042 105 137 1 00 10 77 N
ATOM 3484 CA ALA B 512 15 937 -8 898 104 831 1 00 10 75 C
ATOM 3485 C ALA B 512 16 534 -8 174 103 625 1 00 11 66 C
ATOM 3486 O ALA B 512 17 327 -8 745 102 869 1 00 11 82 O
ATOM 3487 CB ALA B 512 14 499 -9 343 104 540 1 00 8 48 C
ATOM 3488 N TRP B 513 16 159 -6 912 103 454 1 00 12 58 N
ATOM 3489 CA TRP B 513 16 674 -6 097 102 364 1 00 12 59 C
ATOM 3490 C TRP B 513 15 527 -5 346 101 722 1 00 12 24 C
ATOM 3491 O TRP B 513 14 626 -4 870 102 411 1 00 10 92 O
ATOM 3492 CB TRP B 513 17 715 -5 105 102 886 1 00 14 91 C
ATOM 3493 CG TRP B 513 18 989 -5 753 103 360 1 00 16 65 C
ATOM 3494 CDl TRP B 513 19 367 -5 974 104 654 1 00 17 19 C
ATOM 3495 CD2 TRP B 513 20 049 -6 261 102 543 1 00 18 20 C
ATOM 3496 NE1 TRP B 513 20 595 -6 590 104 691 1 00 18 69 N
ATOM 3497 CE2 TRP B 513 21 037 -6 779 103 407 1 00 18 70 C
ATOM 3498 CE3 TRP B 513 20 266 -6 333 101 159 1 00 19 68 C
ATOM 3499 CZ2 TRP B 513 22 219 -7 357 102 938 1 00 18 92 C
ATOM 3500 CZ3 TRP B 513 21 443 -6 906 100 693 1 00 19 85 C
ATOM 3501 CH2 TRP B 513 22 404 -7 411 101 581 1 00 19 28 C
ATOM 3502 N SER B 514 15 552 -5 241 100 400 1 00 12 88 N
ATOM 3503 CA SER B 514 14 492 -4 533 99 703 1 00 13 15 C
ATOM 3504 C SER B 514 14 623 -3 037 99 917 1 00 13 97 C
ATOM 3505 O SER B 514 15 723 -2 495 99 919 1 00 12 10 O
ATOM 3506 CB SER B 514 14 489 -4 863 98 213 1 00 13 82 C
ATOM 3507 OG SER B 514 15 423 -4 072 97 505 1 00 16 00 O
ATOM 3508 N GLU B 515 13 482 -2 384 100 112 1 00 14 54 N
ATOM 3509 CA GLU B 515 13 410 -0 936 100 183 1 00 15 26 C
ATOM 3510 C GLU B 515 12 863 -0 399 98 862 1 00 13 54 C
ATOM 3511 O GLU B 515 13 226 0 689 98 419 1 00 13 78 O
ATOM 3512 CB GLU B 515 12 509 -0 521 101 343 1 00 17 06 C
ATOM 3513 CG GLU B 515 12 171 0 960 101 392 1 00 20 43 C
ATOM 3514 CD GLU B 515 11 158 1 274 102 474 1 00 21 74 C
ATOM 3515 OEl GLU B 515 10 403 2 254 102 316 1 00 22 85 O
ATOM 3516 OE2 GLU B 515 11 115 0 533 103 483 1 00 23 25 O
ATOM 3517 N ALA B 516 11 989 -1 176 98 232 1 00 12 04 N ATOM 3518 CA ALA B 516 -11..428 -0..804 96.940 1.00 10.63 c
ATOM 3519 C ALA B 516 -10. .967 -2. .040 96 .189 1 .00 9 .94 c
ATOM 3520 O ALA B 516 -10. .525 -3. .017 96 .790 1 .00 10 .06 0
ATOM 3521 CB ALA B 516 -10. .271 0. .170 97 .116 1 .00 9 .33 c
ATOM 3522 N VAL B 517 -11. .072 -1. .989 94. .870 1 .00 9 .04 N
ATOM 3523 CA VAL B 517 -10. .622 -3. .073 94. .026 1 .00 8 .77 c
ATOM 3524 C VAL B 517 -9. .607 -2. .520 93. .035 1 .00 8 .87 c
ATOM 3525 O VAL B 517 -9. .904 -1. .578 92. .301 1, .00 8 .91 0
ATOM 3526 CB VAL B 517 -11. .791 -3. .702 93. .241 1. .00 9 .89 c
ATOM 3527 CGI VAL B 517 -11. .282 -4. .800 92. .333 1, .00 10 .30 c
ATOM 3528 CG2 VAL B 517 -12. .837 -4. .251 94. .186 1 .00 10 .68 c
ATOM 3529 N PHE B 518 -8. .412 -3. .103 93. .022 1 .00 8 .01 N
ATOM 3530 CA PHE B 518 -7. .376 -2. .698 92. .084 1 .00 6 .79 C
ATOM 3531 C PHE B 518 -7. .187 -3. .752 91. .005 1 .00 7 .20 C
ATOM 3532 O PHE B 518 -6. .790 -4. .873 91. .290 1, .00 7 .70 0
ATOM 3533 CB PHE B 518 -6. .064 -2. .447 92 .820 1 .00 8 .63 c
ATOM 3534 CG PHE B 518 -6 .174 -1 .408 93. .893 1 .00 8 .84 c
ATOM 3535 CDl PHE B 518 -6. .634 -1. .746 95. .158 1, .00 7. .13 c
ATOM 3536 CD2 PHE B 518 -5. .831 -0. .086 93. .635 1. .00 8. .81 c
ATOM 3537 CEl PHE B 518 -6. .744 -0. .789 96. .153 1. .00 7, .91 c
ATOM 3538 CE2 PHE B 518 -5. .939 0. .878 94. .627 1, .00 10. .06 c
ATOM 3539 CZ PHE B 518 -6. .401 0. .525 95. .887 1. .00 8, .76 c
ATOM 3540 N ILE B 519 -7. .491 -3. .384 89. .765 1, .00 9. .05 N
ATOM 3541 CA ILE B 519 -7. .303 -4. .278 88. .639 1, .00 9. .65 c
ATOM 3542 C ILE B 519 -5. .989 -3. .920 87. .971 1. .00 8. .06 c
ATOM 3543 O ILE B 519 -5. .753 -2, .750 87. .703 1, .00 8. .70 0
ATOM 3544 CB ILE B 519 -8. .481 -4. .132 87. .644 1, .00 10. .86 c
ATOM 3545 CGI ILE B 519 -9. .749 -4. .757 88, .233 1, .00 12. .61 c
ATOM 3546 CG2 ILE B 519 -8, .141 -4, .765 86. .291 1, .00 6 .68 c
ATOM 3547 CDl ILE B 519 -10. .981 -4. .489 87. .413 1, .00 15 .46 c
ATOM 3548 N HIS B 520 -5. .131 -4. .909 87. .706 1, .00 7. .03 N
ATOM 3549 CA HIS B 520 -3. .850 -4. .611 87. .065 1. .00 6 .19 C
ATOM 3550 C HIS B 520 -4. .112 -3. .801 85. .810 1, .00 6 .72 C
ATOM 3551 O HIS B 520 -5. .011 -4. .128 85. .031 1, .00 3. .46 O
ATOM 3552 CB HIS B 520 -3. .057 -5. .877 86. .717 1, .00 6 .30 c
ATOM 3553 CG HIS B 520 -1. .630 -5. .601 86. .350 1, .00 6. .46 c
ATOM 3554 ND1 HIS B 520 -1. .260 -5. .128 85. .109 1. .00 7. .22 N
ATOM 3555 CD2 HIS B 520 -0. .488 -5. .692 87. .073 1, .00 5. .75 C
ATOM 3556 CEl HIS B 520 0. .049 -4. .952 85. .078 1, .00 6. .36 C
ATOM 3557 NE2 HIS B 520 0. .541 -5. .293 86. .256 1. .00 7. .58 N
ATOM 3558 N GLU B 521 -3, .339 -2. .740 85. .612 1, .00 6. .31 N
ATOM 3559 CA GLU B 521 -3. .639 -1. .834 84. .508 1, .00 9. .78 C
ATOM 3560 C GLU B 521 -3. .223 -2. .386 83. .138 1, .00 9. .03 C
ATOM 3561 O GLU B 521 -3. .520 -1. .785 82. .109 1, .00 10. .96 0
ATOM 3562 CB GLU B 521 -3, .122 -0, .406 84. .758 1, .00 10. .66 c
ATOM 3563 CG GLU B 521 -1. .882 -0. .270 85. .622 1, .00 14. .77 c
ATOM 3564 CD GLU B 521 -2. .094 -0. .655 87. .083 1, .00 15. .13 c
ATOM 3565 OEl GLU B 521 -2. .961 -0. .069 87, .773 1, .00 15. .25 0
ATOM 3566 OE2 GLU B 521 -1. .365 -1. .548 87. .544 1, .00 14. .72 0
ATOM 3567 N GLY B 522 -2, .567 -3, .543 83, .130 1, .00 9. .28 N
ATOM 3568 CA GLY B 522 -2. .206 -4. .205 81, .886 1, .00 8 .31 C
ATOM 3569 C GLY B 522 -3. .221 -5. .254 81, .456 1, .00 8. .56 C
ATOM 3570 O GLY B 522 -3. .086 -5, .861 80. .389 1, .00 9. .19 O
ATOM 3571 N TYR B 523 -4. .229 -5. .477 82. .292 1, .00 7 .48 N
ATOM 3572 CA TYR B 523 -5. .312 -6. .415 81, .988 1, .00 7 .08 C
ATOM 3573 C TYR B 523 -6. .322 -5. .789 81. .029 1, .00 7 .55 C
ATOM 3574 O TYR B 523 -6. .696 -4, .632 81. .187 1, .00 6. .76 O
ATOM 3575 CB TYR B 523 -6. .019 -6. .842 83. .282 1, .00 5 .19 C
ATOM 3576 CG TYR B 523 -7. .187 -7. .783 83. .079 1, .00 4. .26 C
ATOM 3577 CDl TYR B 523 -6. .982 -9. .129 82, .776 1, .00 3. .17 C
ATOM 3578 CD2 TYR B 523 -8. .493 -7. .334 83. .208 1, .00 3 .40 C
ATOM 3579 CEl TYR B 523 -8, .051 -9. .990 82. .593 1, .00 2. .34 C
ATOM 3580 CE2 TYR B 523 -9. .564 -8. .194 83. .028 1, .00 3 .17 c
ATOM 3581 CZ TYR B 523 -9. .334 -9. .517 82. .724 1 .00 2 .12 c
ATOM 3582 OH TYR B 523 -10. .405 -10, .366 82, .532 1 .00 4 .83 0
ATOM 3583 N THR B 524 -6. .756 -6, .557 80, .034 1 .00 7. .28 N
ATOM 3584 CA THR B 524 -7. .804 -6, .113 79, .117 1 .00 9 .44 C
ATOM 3585 C THR B 524 -8. .924 -7, .148 79, .087 1 .00 10 .57 C
ATOM 3586 O THR B 524 -8. .795 -8, .189 78, .432 1 .00 10 .27 O
ATOM 3587 CB THR B 524 -7. .253 -5, .901 77. .687 1, .00 10 .30 C
ATOM 3588 OGl THR B 524 -6. .602 -7. .098 77. .243 1, ,00 13, .58 O
ATOM 3589 CG2 THR B 524 -6. ,137 -4. .875 77. ,668 1. .00 8, .16 c
ATOM 3590 N HIS B 525 -10. .018 -6. .853 79. ,789 1. .00 9. .06 N
ATOM 3591 CA HIS B 525 -11. .145 -7. .777 79. ,914 1. .00 8. .42 c ATOM 3592 C HIS B 525 11 662 -8.319 78 586 1 00 8 44 c
ATOM 3593 O HIS B 525 11 940 -7 .554 77 663 1 00 6 50 0
ATOM 3594 CB HIS B 525 12 299 -7 124 80 683 1 00 7 68 c
ATOM 3595 CG HIS B 525 13 206 -8 .111 81 349 1 00 8 01 c
ATOM 3596 ND1 HIS B 525 12 742 -9 082 82 210 1 00 9 01 N
ATOM 3597 CD2 HIS B 525 14 546 -8 288 81 270 1 00 6 33 C
ATOM 3598 CEl HIS B 525 13 757 -9 813 82 636 1 00 7 13 C
ATOM 3599 NE2 HIS B 525 14 862 -9 352 82 079 1 00 6 62 N
ATOM 3600 N ASP B 526 11 793 -9 645 78 511 1 00 8 02 N
ATOM 3601 CA ASP B 526 12 369 -10 .322 77 349 1 00 8 48 C
ATOM 3602 C ASP B 526 11 420 -10 332 76 161 1 00 8 01 C
ATOM 3603 O ASP B 526 11 820 -10 666 75 045 1 00 8 80 0
ATOM 3604 CB ASP B 526 13 708 -9 694 76 928 1 00 7 36 C
ATOM 3605 CG ASP B 526 14 849 -10 033 77 878 1 00 8 37 c
ATOM 3606 OD1 ASP B 526 14 670 -10 880 78 782 1 00 7 27 0
ATOM 3607 OD2 ASP B 526 15 972 -9 492 77 798 1 00 11 16 o
ATOM 3608 N ALA B 527 10 168 -9 954 76 406 1 00 8 29 N
ATOM 3609 CA ALA B 527 -9 139 -9 950 75 363 1 00 6 98 c
ATOM 3610 C ALA B 527 -7 851 -10 594 75 881 1 00 6 93 c
ATOM 3611 O ALA B 527 -6 821 -9 933 76 039 1 00 7 99 0
ATOM 3612 CB ALA B 527 -8 884 -8 522 74 843 1 00 3 95 c
ATOM 3613 N GLY B 528 -7 915 -11 897 76 139 1 00 8 12 N
ATOM 3614 CA GLY B 528 -6 778 -12 613 76 686 1 00 6 07 C
ATOM 3615 C GLY B 528 -6 702 -12 385 78 184 1 00 7 11 C
ATOM 3616 O GLY B 528 -7 402 -11 521 78 720 1 00 5 41 O
ATOM 3617 N PHE B 529 -5 844 -13 150 78 852 1 00 6 33 N
ATOM 3618 CA PHE B 529 -5 755 -13 129 80 312 1 00 5 54 C
ATOM 3619 C PHE B 529 -4 390 -12 671 80 816 1 00 6 08 C
ATOM 3620 O PHE B 529 -4 023 -12 941 81 958 1 00 7 09 O
ATOM 3621 CB PHE B 529 -6 094 -14 508 80 889 1 00 5 60 C
ATOM 3622 CG PHE B 529 -7 543 -14 895 80 735 1 00 4 33 C
ATOM 3623 CDl PHE B 529 -7 989 -15 506 79 576 1 00 4 93 C
ATOM 3624 CD2 PHE B 529 -8 454 -14 649 81 751 1 00 4 76 C
ATOM 3625 CEl PHE B 529 -9 322 -15 862 79 428 1 00 5 11 C
ATOM 3626 CE2 PHE B 529 -9 791 -15 001 81 620 1 00 4 69 C
ATOM 3627 CZ PHE B 529 10 228 -15 610 80 457 1 00 5 12 C
ATOM 3628 N ASP B 530 -3 633 -11 989 79 962 1 00 7 41 N
ATOM 3629 CA ASP B 530 -2 352 -11 427 80 374 1 00 5 37 C
ATOM 3630 C ASP B 530 -2 617 -10 413 81 478 1 00 5 79 C
ATOM 3631 O ASP B 530 -3 547 -9 618 81 386 1 00 3 36 0
ATOM 3632 CB ASP B 530 -1 657 -10 755 79 187 1 00 3 63 c
ATOM 3633 CG ASP B 530 -0 168 -10 509 79 429 1 00 6 21 c
ATOM 3634 OD1 ASP B 530 0 476 -11 273 80 182 1 00 5 94 0
ATOM 3635 OD2 ASP 3 530 0 448 -9 568 78 895 1 00 8 14 o
ATOM 3636 N ASN B 531 -1 803 -10 449 82 528 1 00 6 81 N
ATOM 3637 CA ASN B 531 -1 979 -9 540 83 658 1 00 6 82 C
ATOM 3638 C ASN B 531 -3 286 -9 761 84 408 1 00 6 51 C
ATOM 3639 O ASN 3 531 -3 863 -8 819 84 952 1 00 7 27 O
ATOM 3640 CB ASN B 531 -1 860 -8 076 83 208 1 00 6 50 C
ATOM 3641 CG ASN B 531 -0 567 -7 802 82 469 1 00 6 29 C
ATOM 3642 OD1 ASN B 531 0 509 -8 093 82 971 1 00 7 64 0
ATOM 3643 ND2 ASN 3 531 -0 670 -7 255 81 261 1 00 5 55 N
ATOM 3644 N ASP B 532 -3 741 -11 012 84 449 1 00 6 30 N
ATOM 3645 CA ASP B 532 -4 997 -II 350 85 123 1 00 5 58 C
ATOM 3646 C ASP B 532 -4 795 -11 414 86 641 1 00 6 14 c
ATOM 3647 O ASP B 532 -4 669 -12 488 87 230 1 00 5 89 0
ATOM 3648 CB ASP B 532 -5 550 -12 672 84 581 1 00 5 10 c
ATOM 3649 CG ASP B 532 -6 949 -12 977 85 077 1 00 8 54 c
ATOM 3650 OD1 ASP B 532 -7 582 -12 0S4 85 691 1 00 8 19 0
ATOM 3651 OD2 ASP B 532 -7 505 -14 088 84 884 1 00 8 97 0
ATOM 3652 N ILE B 533 -4 755 -10 251 87 272 1 00 6 94 N
ATOM 3653 CA ILE B 533 -4 546 -10 183 88 711 1 00 6 84 C
ATOM 3654 C ILE B 533 -5 205 -8 932 89 261 1 00 8 46 C
ATOM 3655 O ILE B 533 -5 281 -7 901 88 572 1 00 9 60 0
ATOM 3656 CB ILE B 533 -3 028 -10 208 89 046 1 00 6 20 c
ATOM 3657 CGI ILE B 533 -2 802 -10 215 90 562 1 00 4 95 c
ATOM 3658 CG2 ILE B 533 -2 301 -9 040 88 401 1 00 6 21 c
ATOM 3659 CDl ILE B 533 -1 353 -10 183 90 948 1 00 4 60 c
ATOM 3660 N ALA B 534 -5 692 -9 031 90 495 1 00 7 45 N
ATOM 3661 CA ALA B 534 -6 352 -7 914 91 151 1 00 7 94 c
ATOM 3662 C ALA B 534 -6 168 -7 980 92 664 1 00 7 94 c
ATOM 3663 O ALA B 534 -5 945 -9 056 93 221 1 00 7 59 0
ATOM 3664 CB ALA B 534 -7 830 -7 898 90 799 1 00 6 71 c
ATOM 3665 N LEU B 535 -6 260 -6 823 93 317 1 00 7 48 N ATOM 3666 CA LEU B 535 -6 237 -6 765 94 772 1 00 7 12 c
ATOM 3667 C LEU B 535 -7 493 -6 105 95 312 1 00 6 96 c
ATOM 3668 O LEU B 535 -7 913 -5 052 94 829 1 00 6 84 0
ATOM 3669 CB LEU B 535 -5 009 -6 006 95 274 1 00 6 52 c
ATOM 3670 CG LEU B 535 -3 718 -6 828 95 312 1 00 7 40 c
ATOM 3671 CDl LEU B 535 -2 506 -5 919 95 434 1 00 6 08 c
ATOM 3672 CD2 LEU B 535 -3 769 -7 833 96 455 1 00 6 13 c
ATOM 3673 N ILE B 536 -8 084 -6 736 96 316 1 00 7 74 N
ATOM 3674 CA ILE B 536 -9 197 -6 150 97 038 1 00 9 05 C
ATOM 3675 C ILE B 536 -8 733 -5 715 98 421 1 00 9 51 C
ATOM 3676 O ILE B 536 -8 183 -6 514 99 184 1 00 9 32 0
ATOM 3677 CB ILE B 536 10 350 -7 160 97 180 1 00 8 76 c
ATOM 3678 CGI ILE B 536 10 781 -7 688 95 818 1 00 8 69 c
ATOM 3679 CG2 ILE B 536 11 537 -6 527 97 890 1 00 9 78 c
ATOM 3680 CDl ILE B 536 11 353 -9 095 95 897 1 00 8 33 c
ATOM 3681 N LYS B 537 -8 949 -4 445 98 739 1 00 9 64 N
ATOM 3682 CA LYS B 537 -8 753 -3 986 100 099 1 00 11 10 c
ATOM 3683 C LYS B 537 10 066 -4 132 100 864 1 00 10 83 c
ATOM 3684 O LYS B 537 11 109 -3 690 100 396 1 00 11 58 0
ATOM 3685 CB LYS B 537 -8 281 -2 534 100 122 1 00 12 99 c
ATOM 3686 CG LYS B 537 -8 285 -1 946 101 523 1 00 15 07 c
ATOM 3687 CD LYS B 537 -7 089 -1 075 101 775 1 00 18 28 c
ATOM 3688 CE LYS B 537 -6 918 -0 834 103 265 1 00 20 31 c
ATOM 3689 NZ LYS B 537 -6 971 0 616 103 573 1 00 21 89 N
ATOM 3690 N LEU B 538 10 017 -4 771 102 028 1 00 9 94 N
ATOM 3691 CA LEU B 538 11 208 -4 927 102 858 1 00 11 09 C
ATOM 3692 C LEU B 538 11 395 -3 682 103 728 1 00 13 06 C
ATOM 3693 O LEU B 538 10 420 -3 036 104 105 1 00 14 02 O
ATOM 3694 CB LEU B 538 11 108 -6 191 103 717 1 00 8 40 C
ATOM 3695 CG LEU B 538 10 755 -7 472 102 944 1 00 8 72 C
ATOM 3696 CDl LEU B 538 10 596 -8 677 103 871 1 00 6 43 C
ATOM 3697 CD2 LEU B 538 11 788 -7 778 101 850 1 00 6 54 C
ATOM 3698 N ASN B 539 12 641 -3 334 104 036 1 00 14 42 N
ATOM 3699 CA ASN B 539 12 906 -2 113 104 790 1 00 17 67 C
ATOM 3700 C ASN B 539 12 602 -2 245 106 284 1 00 18 17 C
ATOM 3701 O ASN B 539 12 573 -1 249 107 008 1 00 18 77 O
ATOM 3702 CB ASN B 539 14 340 -1 619 104 558 1 00 19 50 C
ATOM 3703 CG ASN B 539 15 381 -2 610 105 030 1 00 21 70 C
ATOM 3704 OD1 ASN B 539 15 064 -3 753 105 368 1 00 23 04 O
ATOM 3705 ND2 ASN B 539 16 638 -2 180 105 055 1 00 23 18 N
ATOM 3706 N ASN B 540 12 376 -3 477 106 734 1 00 18 40 N
ATOM 3707 CA ASN B 540 11 945 -3 736 108 104 1 00 19 81 C
ATOM 3708 C ASN B 540 10 971 -4 907 108 179 1 00 19 52 C
ATOM 3709 O ASN B 540 10 957 -5 779 107 310 1 00 20 19 O
ATOM 3710 CB ASN B 540 13 147 -4 017 109 010 1 00 20 93 C
ATOM 3711 CG ASN B 540 13 867 -2 750 109 442 1 00 22 83 C
ATOM 3712 OD1 ASN B 540 14 997 -2 496 109 024 1 00 23 04 O
ATOM 3713 ND2 ASN B 540 13 218 -1 952 110 284 1 00 22 26 N
ATOM 3714 N LYS B 541 10 154 -4 924 109 223 1 00 20 44 N
ATOM 3715 CA LYS B 541 -9 281 -6 059 109 480 1 00 21 40 C
ATOM 3716 C LYS B 541 10 110 -7 298 109 805 1 00 20 67 C
ATOM 3717 O LYS B 541 11 065 -7 233 110 585 1 00 19 25 O
ATOM 3718 CB LYS B 541 -8 316 -5 747 110 623 1 00 22 87 c
ATOM 3719 CG LYS B 541 -7 144 -4 860 110 212 1 00 26 99 c
ATOM 3720 CD LYS B 541 -6 238 -4 532 111 391 1 00 28 99 c
ATOM 3721 CE LYS B 541 -4 793 -4 325 110 943 1 00 30 78 c
ATOM 3722 NZ LYS B 541 -3 843 -5 280 111 609 1 00 30 61 N
ATOM 3723 N VAL B 542 -9 757 -8 418 109 180 1 00 20 05 N
ATOM 3724 CA VAL B 542 10 329 -9 712 109 540 1 00 20 95 C
ATOM 3725 C VAL B 542 -9 707 -10 196 110 849 1 00 20 11 C
ATOM 3726 O VAL B 542 -8 513 -9 990 111 089 1 00 18 80 O
ATOM 3727 CB VAL B 542 10 034 -10 787 108 474 1 00 21 02 C
ATOM 3728 CGI VAL B 542 10 688 -12 098 108 861 1 00 22 70 C
ATOM 3729 CG2 VAL B 542 10 500 -10 341 107 112 1 00 21 43 C
ATOM 3730 N VAL B 543 10 505 -10 853 111 684 1 00 20 90 N
ATOM 3731 CA VAL B 543 -9 964 -11 479 112 884 1 00 21 49 C
ATOM 3732 C VAL B 543 -9 267 -12 788 112 516 1 00 22 05 C
ATOM 3733 O VAL B 543 -9 890 -13 732 112 025 1 00 21 15 O
ATOM 3734 CB VAL B 543 11 029 -11 692 113 984 1 00 22 26 C
ATOM 3735 CGIAVAL B 543 10 447 -12 487 115 149 0 50 21 96 C
ATOM 3736 CG1BVAL B 543 11 221 -10 414 114 793 0 50 21 91 C
ATOM 3737 CG2AVAL B 543 11 567 -10 350 114 470 0 50 22 07 C ATOM 3738 CG2BVAL B 543 12..345 -12..165 113..382 0..50 22..12 c
ATOM 3739 N ILE B 544 -7. .960 -12. .814 112. .750 1. .00 22. .50 N
ATOM 3740 CA ILE B 544 -7. .115 -13, .930 112. .355 1. .00 22. .93 C
ATOM 3741 C ILE B 544 -7. .145 -15. .055 113. .391 1. .00 25. .46 c
ATOM 3742 O ILE B 544 -6. .797 -14. .848 114. .557 1. .00 26. .52 0
ATOM 3743 CB ILE B 544 -5, .668 -13. .436 112. .147 1. .00 20. .38 c
ATOM 3744 CGI ILE B 544 -5. .598 -12, .452 110. .978 1. .00 19, .13 c
ATOM 3745 CG2 ILE B 544 -4. .717 -14, .606 111, ,918 1. .00 20. .45 c
ATOM 3746 CDl ILE B 544 -6. .264 -12, .954 109. .724 1. .00 16. .81 c
ATOM 3747 N .ASN B 545 -7. .563 -16, .243 112. .959 1. .00 26. .66 N
ATOM 3748 CA ASN B 545 -7. .535 -17. .431 113. .812 1, .00 26. .90 c
ATOM 3749 C ASN B 545 -7. .130 -18, .687 113. .042 1. .00 26. .13 c
ATOM 3750 O ASN B 545 -6. .738 -18, .613 111. .879 1. .00 25. .80 0
ATOM 3751 CB ASN B 545 -8. .880 -17, .643 114. .513 1. .00 27. .34 c
ATOM 3752 CG ASN B 545 10. .031 -17. .760 113. .540 1. .00 28, .45 c
ATOM 3753 OD1 ASN B 545 -9, .952 -18. .491 112. .553 1. .00 28, .89 0
ATOM 3754 ND2 ASN B 545 11. .113 -17. .034 113. .812 1. .00 28, .44 N
ATOM 3755 N SER B 546 -7. .233 -19. .839 113. .696 1. .00 25. .66 N
ATOM 3756 CA SER B 546 -6. .821 -21. .103 113. .091 1. .00 25. .53 C
ATOM 3757 C SER B 546 -7, .539 -21. .373 111. .774 1, .00 23. .92 C
ATOM 3758 O SER B 546 -6. .991 -22. .027 110. .886 1. .00 24. .67 0
ATOM 3759 CB SER B 546 -7. .056 -22. .266 114. .056 1. .00 26. .70 c
ATOM 3760 OG SER B 546 -5. .993 -22. .373 114. .993 1. .00 29. .67 0
ATOM 3761 N ASN B 547 -8. .759 -20, .859 111. .647 1. .00 21. .91 N
ATOM 3762 CA ASN B 547 -9, .551 -21. .057 110. .438 1. .00 20. .93 c
ATOM 3763 C ASN B 547 -9. .394 -19. .947 109. .408 1. .00 17. .57 c
ATOM 3764 O ASN B 547 -9. .808 -20. .102 108. .264 1. .00 19. .56 o
ATOM 3765 CB ASN B 547 11. .032 -21. .240 110. .786 1. .00 23. .93 c
ATOM 3766 CG ASN B 547 11. .366 -22, .670 111. .149 1. .00 27. .25 c
ATOM 3767 OD1 ASN B 547 10. .942 -23. .613 110. .474 1. .00 28. .15 0
ATOM 3768 ND2 ASN B 547 ■12. .117 -22. .843 112. .230 1. .00 28. .41 N
ATOM 3769 N ILE B 548 -8. .816 -18. .825 109, .821 1. .00 13. .18 N
ATOM 3770 CA ILE B 548 -8. .591 -17. .700 108, .918 1 .00 14. .12 C
ATOM 3771 C ILE B 548 -7. .190 -17. .114 109, .095 1. .00 13, .96 C
ATOM 3772 O ILE B 548 -6. .937 -16. .371 110, .044 1. .00 15, .90 O
ATOM 3773 CB ILE B 548 -9. .645 -16. .593 109. .137 1. .00 13, .10 C
ATOM 3774 CGI ILE B 548 11. .061 -17. .141 108. .960 1. .00 12, .50 C
ATOM 3775 CG2 ILE B 548 -9, .399 -15, .429 108. .187 1. .00 11, .75 C
ATOM 3776 CDl ILE B 548 12. .127 -16, .128 109. .287 1. .00 12, .64 C
ATOM 3777 N THR B 549 -6. .287 -17, .462 108. .182 1. .00 13. .38 N
ATOM 3778 CA THR B 549 -4. .931 -16, .914 108. .161 1. .00 12. .64 C
ATOM 3779 C THR B 549 -4. .500 -16, .716 106. .704 1. .00 10. .43 C
ATOM 3780 O THR B 549 -4. .883 -17, .492 105. .832 1, .00 7, .06 0
ATOM 3781 CB THR B 549 -3. .920 -17. .836 108. .909 1. .00 13. .53 c
ATOM 3782 OGl THR B 549 -4. .306 -19. .201 108. .764 1. .00 15. .93 o
ATOM 3783 CG2 THR B 549 -3. .999 -17. .638 110. .410 1. .00 15. .86 c
ATOM 3784 N PRO B 550 -3. .712 -15, .676 106. .446 1. .00 7. .95 N
ATOM 3785 CA PRO B 550 -3. .318 -15, .324 105. .082 1. .00 7. .70 C
ATOM 3786 C PRO B 550 -2. .332 -16, .317 104. .473 1. .00 7. .89 C
ATOM 3787 O PRO B 550 -1. .644 -17, .047 105. .194 1. .00 5. .29 O
ATOM 3788 C3 PRO B 550 -2. .625 -13. .972 105, .265 1. .00 7, .65 C
ATOM 3789 CG PRO B 550 -2. .100 -14. .014 106, .655 1. .00 7. .92 C
ATOM 3790 CD PRO B 550 -3. .134 -14. .758 107. .443 1. .00 8. .18 C
ATOM 3791 N ILE B 551 -2. .281 -16. .340 103. .143 1. .00 6. .69 N
ATOM 3792 CA ILE B 551 -1. .229 -17. .051 102. .431 1. .00 6. .70 C
ATOM 3793 C ILE B 551 0. .034 -16. .175 102, .407 1. .00 6. .89 C
ATOM 3794 O ILE B 551 -0. .056 -14 .952 102, .538 1. .00 7. .02 O
ATOM 3795 CB ILE B 551 -1. .705 -17 .437 101, ,000 1. .00 5. .65 C
ATOM 3796 CGI ILE B 551 -0. .657 -18. .308 100. .294 1. .00 5. .61 C
ATOM 3797 CG2 ILE B 551 -2. .053 -16. .191 100. .160 1. .00 3. .97 C
ATOM 3798 CDl ILE B 551 -0. .501 -19. .697 100, ,883 1. .00 4, .54 C
ATOM 3799 N CYS B 552 1. .206 -16 .790 102. .283 1. .00 6. .43 N
ATOM 3800 CA CYS B 552 2. .445 -16 .020 102. .153 1. .00 7, .39 C
ATOM 3801 C CYS B 552 2. .675 -15 .609 100, .702 1. .00 8. .31 C
ATOM 3802 O CYS B 552 2. .420 -16 .388 99, .779 1. .00 8. .38 O
ATOM 3803 CB CYS B 552 3 .654 -16 .828 102. .611 1. .00 7. .41 C
ATOM 3804 SG CYS B 552 3 .725 -17 .206 104. .368 1. .00 9. .95 S
ATOM 3805 N LEU B 553 3. .147 -14 .383 100. .500 1. .00 8. .86 N
ATOM 3806 CA LEU B 553 3. .622 -13 .970 99. .188 1. .00 10. .15 C
ATOM 3807 C LEU B 553 4. .948 -14 .671 98, .928 1. .00 10. .56 C
ATOM 3808 O LEU B 553 5. .719 -14 .883 99. .853 1. .00 10. .63 0
ATOM 3809 CB LEU B 553 3. .810 -12. .452 99. .136 1. .00 8. .91 c
ATOM 3810 CG LEU B 553 2. .497 -11. .670 99. .082 1. .00 8. .36 c
ATOM 3811 CDl LEU B 553 2. .754 -10. .191 99. .317 1. .00 8. .93 c ATOM 3812 CD2 LEU B 553 1..782 -11.902 97.753 1,.00 6.87 c
ATOM 3813 N PRO B- 554 5 .209 -15. .029 97 .676 1, .00 11 .06 N
ATOM 3814 CA PRO B 554 6 .455 -15. .710 97, .321 1, .00 12 .32 C
ATOM 3815 C PRO B 554 7 .680 -14. .825 97, .544 1. .00 14 .41 c
ATOM 3816 O PRO B 554 7. .717 -13. .686 97, .094 1, .00 15 .43 O
ATOM 3817 CB PRO B 554 6 .276 -16. .015 95, .828 1, .00 10 .53 c
ATOM 3818 CG PRO B 554 5 .268 -15. .029 95, .355 1, .00 10 .75 c
ATOM 3819 CD PRO B 554 4 .334 -14. .812 96. .506 1. .00 9 .87 c
ATOM 3820 N ARG B 555 8 .667 -15. .354 98. .254 1. .00 19, .54 N
ATOM 3821 CA ARG B 555 9 .947 -14. .678 98. .427 1. .00 24, .27 C
ATOM 3822 C ARG B 555 10 .747 -14. .812 97. .133 1, .00 23 .80 C
ATOM 3823 O ARG B 555 10 .339 -15. .533 96. .214 1. .00 21 .53 O
ATOM 3824 CB ARG B 555 10 .716 -15. .288 99. .603 1, .00 29 .53 C
ATOM 3825 CG ARG B 555 9 .936 -15. .316 100. .927 1, .00 35, .27 C
ATOM 3826 CD ARG B 555 8 .779 -16. .329 100. .969 1. .00 38, .78 c
ATOM 3827 NE ARG B 555 8 .642 -16 .974 102. .276 1, .00 41 .10 N
ATOM 3828 CZ ARG B 555 7 .848 -18. .012 102. .514 1, .00 41 .49 C
ATOM 3829 NH1 ARG B 555 7. .115 -18. .522 101. .534 1. .00 41. .76 N
ATOM 3830 NH2 ARG B 555 7. .785 -18. .541 103. .730 1. .00 40. .40 N
ATOM 3831 N LYS B 556 11. .889 -14. .135 97. .064 1. .00 24. .03 N
ATOM 3832 CA LYS B 556 12. .653 -14. .059 95. .819 1. .00 25. .77 C
ATOM 3833 C LYS B 556 13. .015 -15. .424 95. .234 1. .00 25. .08 C
ATOM 3834 O LYS B 556 12. .915 -15. .635 94. .027 1. .00 26. .56 o
ATOM 3835 CB LYS B 556 13. .909 -13. .195 95. .996 1. .00 27. .35 c
ATOM 3836 CG LYS B 556 14. .780 -13. .559 97. .184 1. .00 27. .98 c
ATOM 3837 CD LYS B 556 15. .999 -12. .646 97. .258 1. .00 28. .52 c
ATOM 3838 N GLU B 557 13. .414 -16. .353 96. .094 1. .00 25. .49 N
ATOM 3839 CA GLU B 557 13. .854 -17. .669 95, .651 1. .00 24. .94 C
ATOM 3840 C GLU B 557 12. .739 -18. .709 95, .605 1. .00 23 .63 C
ATOM 3841 O GLU B 557 13. .012 -19. .901 95, .456 1. .00 24. .84 O
ATOM 3842 CB GLU B 557 14. .986 -18. .170 96, .551 1. .00 27. .46 C
ATOM 3843 CG GLU B 557 15. .641 -17. .079 97. .381 1. .00 29. .22 c
ATOM 3844 CD GLU B 557 15 .183 -17, .081 98. .831 1. .00 29. .58 c
ATOM 3845 OEl GLU B 557 15. .915 -17, .621 99. .688 1. .00 28 .26 0
ATOM 3846 OE2 GLU B 557 14 .092 -16, .539 99. .115 1. .00 29. .75 0
ATOM 3847 N ALA B 558 11 .487 -18, .273 95. .731 1. .00 20. .88 N
ATOM 3848 CA ALA B 558 10. .360 -19. .208 95. .696 1. .00 17. .52 C
ATOM 3849 C ALA B 558 10. .274 -19, .984 94. .378 1. .00 15. .04 C
ATOM 3850 O ALA B 558 9. .638 -21, .036 94. .315 1. .00 12. .94 O
ATOM 3851 CB ALA B 558 9. .053 -18. .488 95. .977 1. .00 18. .07 C
ATOM 3852 N GLU B 559 10. .914 -19. .466 93. .331 1. .00 13, .99 N
ATOM 3853 CA GLU B 559 10. .976 -20. .162 92. .045 1. .00 13, .64 C
ATOM 3854 C GLU B 559 11. .623 -21. .551 92. .165 1. .00 10, .74 c
ATOM 3855 O GLU B 559 11. .327 -22. .443 91. .375 1. .00 11, .69 0
ATOM 3856 CB GLU B 559 11. .702 -19. .318 90. .991 1. .00 18, .94 c
ATOM 3857 CG GLU B 559 10. .944 -18. .064 90. .563 1. .00 25, .49 c
ATOM 3858 CD GLU B 559 10. .263 -18. .196 89. .206 1. .00 28. .18 c
ATOM 3859 OEl GLU B 559 9. .397 -19. .093 89. .054 1. .00 29. .19 0
ATOM 3860 OE2 GLU B 559 10 .583 -17. .394 88. .291 1. .00 28. .78 0
ATOM 3861 N SER B 560 12. .489 -21. .734 93. .161 1. .00 6. .21 N
ATOM 3862 CA SER B 560 13. .113 -23. .033 93. .415 .00 5. .42 C
ATOM 3863 C SER B 560 12. .102 -24. .110 93. .803 1. .00 6. .17 C
ATOM 3864 O SER B 560 12. .405 -25. .301 93. .735 1. .00 5. .91 O
ATOM 3865 CB SER B 560 14. .168 -22. .928 94. .513 1. .00 5. .08 c
ATOM 3866 OG SER B 560 15. .284 -22. .171 94. .085 1. .00 6. .38 0
ATOM 3867 N PHE B 561 10 .912 -23. .690 94. .229 1. .00 5 .19 N
ATOM 3868 CA PHE B 561 9 .852 -24, .629 94. .576 1. .00 5 .92 C
ATOM 3869 C PHE B 561 8. .798 -24, .657 93. .483 1. .00 7. .25 C
ATOM 3870 O PHE B 561 7 .758 -25, .300 93. .628 1. .00 7. .69 0
ATOM 3871 CB PHE B 561 9 .196 -24, .245 95, .912 1. .00 7. .59 c
ATOM 3872 CG PHE B 561 10 .133 -24, .289 97. .087 1. .00 6 .74 c
ATOM 3873 CDl PHE B 561 10 .479 -23, .125 97. .755 1. .00 7. .14 c
ATOM 3874 CD2 PHE B 561 10 .675 -25, .492 97. .516 1. .00 6. .18 c
ATOM 3875 CEl PHE B 561 11 .353 -23, .159 98. .855 1. .00 6 .80 c
ATOM 3876 CE2 PHE B 561 11 .558 -25, .538 98. .608 1. .00 7 .13 c
ATOM 3877 CZ PHE B 561 11 .891 -24, .368 99. .278 1. .00 6 .49 c
ATOM 3878 N MET B 562 9 .060 -23, .948 92. .389 1. .00 8 .43 N
ATOM 3879 CA MET B 562 8 .089 -23, .843 91. .315 1. .00 8 .32 C
ATOM 3880 C MET B 562 8 .708 -24, .218 89. .976 1. .00 9 .97 C
ATOM 3881 O MET B 562 8 .500 -23, .531 88. .971 1. .00 10 .40 0
ATOM 3882 CB MET B 562 7. .497 -22. .431 91. .252 1. ,00 7. .28 c
ATOM 3883 CG MET B 562 6. .672 -22. ,035 92. ,485 1. ,00 6. .88 c
ATOM 3884 SD MET B 562 5, .716 -20. ,501 92. .229 1. ,00 8. .80 s
ATOM 3885 CE MET B 562 7. .001 -19. ,240 92. ,443 1. ,00 6. .00 c ATOM 3886 N ARG B 563 9..470 -25..304 89..955 1..00 9..73 N
ATOM 3887 CA ARG B 563 10. .060 -25. .757 88. .699 1. .00 10. .53 C
ATOM 3888 C ARG B 563 9. .146 -26. .783 88. .057 1. .00 8. .53 C
ATOM 3889 O ARG B 563 8. .263 -27. .333 88, .710 1. ,00 7, .29 O
ATOM 3890 CB ARG B 563 11, .459 -26. .345 88, .919 1. ,00 12. .49 C
ATOM 3891 CG ARG B 563 12. .375 -25. .480 89, .772 1. .00 15. .81 C
ATOM 3892 CD ARG B 563 13. .406 -24. .672 88. .990 1. .00 20. .11 c
ATOM 3893 NE ARG B 563 14. .484 -24. .193 89. .860 1. .00 22, .70 N
ATOM 3894 CZ ARG B 563 14. .902 -22. .930 89, .925 1. ,00 22, .90 C
ATOM 3895 NH1 ARG B 563 14, .349 -21. .997 89. .160 1. .00 23, .54 N
ATOM 3896 NH2 ARG B 563 15, .878 -22. .601 90. .760 1. .00 22, .59 N
ATOM 3897 N THR B 564 9, .349 -27. .027 86. .771 1. .00 7. .53 N
ATOM 3898 CA THR B 564 8, .617 -28. .075 86. .074 1. .00 8, .98 C
ATOM 3899 C THR B 564 8, .578 -29. .348 86. .923 1. .00 8, .06 C
ATOM 3900 O THR B 564 9, .607 -29. .783 87. .442 1. .00 8, .33 O
ATOM 3901 CB THR B 564 9, .272 -28. .341 84, .708 1. .00 8. .23 C
ATOM 3902 OGl THR B 564 9, .264 -27. .127 83, .949 1. .00 8, .47 O
ATOM 3903 CG2 THR B 564 8, .412 -29. .284 83, .868 1. .00 7, .36 C
ATOM 3904 N ASP B 565 7. .378 -29. .909 87, .085 1. .00 8. .01 N
ATOM 3905 CA ASP B 565 7. .154 -31. .136 87. .858 1. .00 8. .73 C
ATOM 3906 C ASP B 565 7. .038 -30. .921 89. .366 1. ,00 9. .53 C
ATOM 3907 O ASP B 565 6. .737 -31, .856 90. .109 1. .00 9. .41 O
ATOM 3908 CB ASP B 565 8. .223 -32, .187 87. .554 1. .00 10. .93 C
ATOM 3909 CG ASP B 565 8. .106 -32, .742 86. .151 1. .00 13. .81 C
ATOM 3910 OD1 ASP B 565 7. .024 -32, .600 85. .538 1. .00 14, .93 O
ATOM 3911 OD2 ASP B 565 9. .043 -33. .340 85, .581 1, .00 16, .96 O
ATOM 3912 N ASP B 566 7. .280 -29. .694 89. .823 1. .00 8, .51 N
ATOM 3913 CA ASP B 566 7. .004 -29. .366 91. .212 1. .00 7, .12 C
ATOM 3914 C ASP B 566 5, .501 -29. .349 91. .417 1. .00 6, .83 C
ATOM 3915 O ASP B 566 4. .749 -29. .057 90. .489 1. .00 6, .03 O
ATOM 3916 CB ASP B 566 7. .632 -28. .032 91. .600 1. .00 7. .97 C
ATOM 3917 CG ASP B 566 9. .123 -28. .148 91. .834 1. .00 8, .86 C
ATOM 3918 OD1 ASP B 566 9. .581 -29 .278 92. .113 1. .00 9, .38 O
ATOM 3919 OD2 ASP B 566 9. .913 -27. .182 91. .753 1, .00 9, .04 O
ATOM 3920 N ILE B 567 5. .068 -29. .669 92. .633 1. .00 7, .57 N
ATOM 3921 CA ILE B 567 3. .654 -29. .868 92. .924 1. .00 7. .79 C
ATOM 3922 C ILE B 567 3. .025 -28. .639 93. .585 1. .00 9, .37 C
ATOM 3923 O ILE B 567 3. .507 -28. .151 94. .603 1. .00 10, .76 o
ATOM 3924 CB ILE B 567 3, .456 -31. .086 93. .842 1, .00 7, .24 c
ATOM 3925 CGI ILE B 567 4. .138 -32, .342 93. .273 1. .00 8, .05 c
ATOM 3926 CG2 ILE B 567 1. .975 -31, .316 94. .100 1. .00 6, .58 c
ATOM 3927 CDl ILE B 567 3. .983 -32, .534 91. .789 1. .00 9, .38 c
ATOM 3928 N GLY B 568 1. .939 -28. .150 93, .003 1, .00 8, .19 N
ATOM 3929 CA GLY B 568 1, .179 -27. .081 93. .615 1. .00 8, .11 c
ATOM 3930 C GLY B 568 -0. .216 -27. .571 93. .945 1. .00 8. .10 c
ATOM 3931 O GLY B 568 -0. .613 -28. .660 93. .524 1, .00 9, .87 o
ATOM 3932 N THR B 569 -0. .961 -26. .770 94. .694 1. .00 6, .09 N
ATOM 3933 CA THR B 569 -2, .313 -27. .143 95. .081 1. .00 6, .03 C
ATOM 3934 C THR B 569 -3. .327 -26. .075 94. .731 1. .00 6, .16 C
ATOM 3935 O THR B 569 -3. .194 -24. .909 95. .129 1. .00 6. .01 O
ATOM 3936 CB THR B 569 -2. .379 -27. .428 96. .577 1. .00 4 .39 C
ATOM 3937 OGl THR B 569 -1. .429 -28. .444 96, .892 1. .00 4, .52 O
ATOM 3938 CG2 THR B 569 -3. .722 -28. .058 96, .936 1. .00 4, .87 c
ATOM 3939 N ALA B 570 -4. .336 -26. .492 93, .980 1. .00 5, .47 N
ATOM 3940 CA ALA B 570 -5. .461 -25. .645 93, .659 1. .00 5, .26 C
ATOM 3941 C ALA B 570 -6. .645 -26. .036 94, .541 1. .00 7, .07 c
ATOM 3942 O ALA B 570 -6. .940 -27. .227 94, .722 1. .00 6, .18 0
ATOM 3943 CB ALA B 570 -5. .814 -25. .783 92. .180 1. .00 7, .29 c
ATOM 3944 N SER B 571 -7. .310 -25. .034 95. .110 1. .00 6, .23 N
ATOM 3945 CA SER B 571 -8. .501 -25. .278 95. .923 1. .00 6, .59 C
ATOM 3946 C SER B 571 -9. .650 -24. .395 95. .460 1. .00 4, .91 C
ATOM 3947 O SER B 571 -9. .431 -23, .295 94, .968 1, .00 8, .23 O
ATOM 3948 CB SER B 571 -8. .209 -25. .029 97, .402 1. .00 6, .88 C
ATOM 3949 OG SER B 571 -7. .627 -23. .749 97, .586 1. .00 8. .87 O
ATOM 3950 N GLY B 572 10 .877 -24. .872 95, .617 1. .00 3, .15 N
ATOM 3951 CA GLY B 572 12. .018 -24. .082 95, .226 1. .00 2, .08 C
ATOM 3952 C GLY B 572 13. .336 -24, .816 95, .289 1. .00 4, .26 C
ATOM 3953 O GLY B 572 13. .405 -26, .002 95, .641 1. .00 4, .75 O
ATOM 3954 N TRP B 573 14. .391 -24, .093 94, .932 1. .00 4, .01 N
ATOM 3955 CA TRP B 573 15. .737 -24, .639 94, .899 1. .00 4, .93 C
ATOM 3956 C TRP B 573 16. .207 -24, .785 93, .448 1. .00 4. .14 C
ATOM 3957 O TRP B 573 17, .401 -24, .941 93, .181 1. .00 5, .47 O
ATOM 3958 CB TRP B 573 16. .692 -23, .723 95, .657 1. .00 4, .32 C ATOM 3959 CG TRP B 573 16 485 -23 643 97 143 1 00 4 22 c
ATOM 3960 CDl TRP B 573 16 979 -24 504 98 095 1 00 4 34 c
ATOM 3961 CD2 TRP B 573 15 789 -22 611 97 866 1 00 5 60 c
ATOM 3962 NE1 TRP B 573 16 604 -24 086 99 350 1 00 4 10 N
ATOM 3963 CE2 TRP B 573 15 878 -22 926 99 240 1 00 4 72 c
ATOM 3964 CE3 TRP B 573 15 087 -21 457 97 491 1 00 4 79 c
ATOM 3965 CZ2 TRP B 573 15 292 -22 132 100 231 1 00 6 13 c
ATOM 3966 CZ3 TRP B 573 14 505 -20 676 98 474 1 00 4 11 c
ATOM 3967 CH2 TRP B 573 14 613 -21 013 99 826 1 00 4 15 c
ATOM 3968 N GLY 3 574 15 266 -24 731 92 512 1 00 3 83 N
ATOM 3969 CA GLY B 574 15 593 -24 812 91 094 1 00 5 24 C
ATOM 3970 C GLY B 574 16 043 -26 186 90 624 1 00 6 56 C
ATOM 3971 O GLY B 574 16 165 -27 114 91 426 1 00 7 03 0
ATOM 3972 N LEU B 575 16 283 -26 319 89 322 1 00 6 32 N
ATOM 3973 CA LEU B 575 16 806 -27 564 88 752 1 00 6 87 C
ATOM 3974 C LEU B 575 15 939 -28 776 89 082 1 00 7 96 c
ATOM 3975 O XEU B 575 14 703 -28 699 89 058 1 00 4 81 o
ATOM 3976 CB LEU B 575 16 953 -27 462 87 228 1 00 5 97 c
ATOM 3977 CG LEU B 575 17 788 -26 359 86 570 1 00 7 72 c
ATOM 3978 CDl LEU B 575 17 830 -26 581 85 049 1 00 5 40 c
ATOM 3979 CD2 LEU B 575 19 202 -26 275 87 135 1 00 6 74 c
ATOM 3980 N THR B 576 16 600 -29 892 89 390 1 00 8 50 N
ATOM 3981 CA THR B 576 15 923 -31 172 89 557 1 00 11 56 C
ATOM 3982 C THR B 576 16 135 -31 995 88 297 1 00 13 56 C
ATOM 3983 O THR B 576 16 662 -31 486 87 309 1 00 14 44 O
ATOM 3984 CB THR B 576 16 465 -31 928 90 785 1 00 11 57 C
ATOM 3985 OGl THR B 576 17 825 -32 324 90 547 1 00 10 96 o
ATOM 3986 CG2 THR B 576 16 563 -30 992 91 983 1 00 10 70 c
ATOM 3987 N GLN B 577 15 735 -33 263 88 323 1 00 15 24 N
ATOM 3988 CA GLN B 577 15 929 -34 125 87 159 1 00 16 60 C
ATOM 3989 C GLN B 577 17 413 -34 361 86 858 1 00 15 25 C
ATOM 3990 O GLN B 577 17 763 -34 793 85 761 1 00 15 70 O
ATOM 3991 CB GLN B 577 15 203 -35 465 87 321 1 00 18 57 C
ATOM 3992 CG GLN B 577 15 040 -36 216 86 003 1 00 22 87 C
ATOM 3993 CD GLN B 577 14 885 -37 715 86 176 1 00 24 98 C
ATOM 3994 OEl GLN B 577 14 340 -38 177 87 177 1 00 27 90 O
ATOM 3995 NE2 GLN B 577 15 367 -38 478 85 200 1 00 24 58 N
ATOM 3996 N ARG B 578 18 276 -34 083 87 832 1 00 12 40 N
ATOM 3997 CA ARG B 578 19 721 -34 225 87 647 1 00 12 21 C
ATOM 3998 C ARG B 578 20 280 -33 125 86 754 1 00 12 20 C
ATOM 3999 O ARG B 578 21 380 -33 253 86 222 1 00 12 34 O
ATOM 4000 CB ARG B 578 20 460 -34 179 88 986 1 00 10 02 C
ATOM 4001 CG ARG B 578 20 170 -35 315 89 930 1 00 9 44 C
ATOM 4002 CD ARG B 578 20 907 -35 171 91 242 1 00 11 43 C
ATOM 4003 NE ARG B 578 22 324 -34 918 91 005 1 00 13 46 N
ATOM 4004 CZ ARG B 578 23 024 -33 968 91 599 1 00 14 95 C
ATOM 4005 NH1 ARG B 578 22 449 -33 171 92 490 1 00 15 34 N
ATOM 4006 NH2 ARG B 578 24 309 -33 816 91 305 1 00 17 02 N
ATOM 4007 N GLY B 579 19 537 -32 032 86 622 1 00 10 92 N
ATOM 4008 CA GLY B 579 19 968 -30 925 85 793 1 00 10 61 C
ATOM 4009 C GLY B 579 20 788 -29 907 86 565 1 00 10 82 c
ATOM 4010 O GLY B 579 21 452 -29 058 85 975 1 00 9 33 0
ATOM 4011 N PHE B 580 20 754 -30 003 87 891 1 00 10 85 N
ATOM 4012 CA PHE B 580 21 440 -29 040 88 743 1 00 10 21 C
ATOM 4013 C PHE B 580 20 476 -28 458 89 753 1 00 9 60 C
ATOM 4014 O PHE B 580 19 477 -29 089 90 096 1 00 8 81 O
ATOM 4015 CB PHE B 580 22 615 -29 698 89 465 1 00 11 90 C
ATOM 4016 CG PHE B 580 23 625 -30 293 88 534 1 00 14 59 C
ATOM 4017 CDl PHE B 580 23 619 -31 654 88 261 1 00 15 59 C
ATOM 4018 CD2 PHE B 580 24 562 -29 490 87 907 1 00 14 46 C
ATOM 4019 CEl PHE B 580 24 542 -32 203 87 382 1 00 15 99 c
ATOM 4020 CE2 PHE B 580 25 482 -30 033 87 032 1 00 15 02 c
ATOM 4021 CZ PHE B 580 25 474 -31 390 86 772 1 00 15 19 c
ATOM 4022 N LEU B 581 20 773 -27 247 90 214 1 00 8 73 N
ATOM 4023 CA LEU B 581 20 016 -26 640 91 296 1 00 9 70 C
ATOM 4024 C LEU B 581 20 034 -27 570 92 503 1 00 9 17 C
ATOM 4025 O LEU B 581 20 918 -28 416 92 632 1 00 11 05 O
ATOM 4026 CB LEU B 581 20 609 -25 274 91 670 1 00 10 20 C
ATOM 4027 CG LEU B 581 20 629 -24 172 90 599 1 00 10 13 C
ATOM 4028 CDl LEU B 581 21 555 -23 049 91 025 1 00 10 03 C
ATOM 4029 CD2 LEU B 581 19 233 -23 631 90 319 1 00 9 77 C
ATOM 4030 N ALA B 582 19 051 -27 429 93 381 1 00 9 19 N
ATOM 4031 CA ALA B 582 19 034 -28 212 94 616 1 00 9 35 C
ATOM 4032 C ALA B 582 19 676 -27 415 95 745 1 00 8 54 C ATOM 4033 O ALA B 582 19 656 -26 184 95 739 1 00 8 12 0
ATOM 4034 CB ALA B 582 17 612 -28 623 94 979 1 00 7 90 c
ATOM 4035 N ARG B 583 20 269 -28 116 96 701 1 00 9 32 N
ATOM 4036 CA ARG B 583 20 852 -27 454 97 859 1 00 9 54 C
ATOM 4037 C ARG B 583 19 781 -27 192 98 902 1 00 8 61 C
ATOM 4038 O ARG B 583 19 808 -26 169 99 585 1 00 8 12 O
ATOM 4039 CB ARG B 583 21 966 -28 304 98 469 1 00 11 85 C
ATOM 4040 CG ARG B 583 23 081 -28 640 97 504 1 00 14 93 c
ATOM 4041 CD ARG B 583 24 105 -27 545 97 343 1 00 17 19 c
ATOM 4042 NE ARG B 583 25 449 -28 024 97 653 1 00 20 39 N
ATOM 4043 CZ ARG B 583 26 485 -27 899 96 841 1 00 21 07 C
ATOM 4044 NH1 ARG B 583 26 336 -27 310 95 665 1 00 24 37 N
ATOM 4045 NH2 ARG B 583 27 672 -28 358 97 202 1 00 21 67 N
ATOM 4046 N ASN B 584 18 853 -28 142 99 021 1 00 6 78 N
ATOM 4047 CA ASN B 584 17 740 -28 054 99 955 1 00 5 78 C
ATOM 4048 C ASN B 584 16 437 -27 773 99 221 1 00 5 67 C
ATOM 4049 O ASN B 584 16 255 -28 195 98 066 1 00 5 88 0
ATOM 4050 CB ASN B 584 17 598 -29 354 100 738 1 00 5 89 c
ATOM 4051 CG ASN B 584 18 805 -29 656 101 596 1 00 7 39 c
ATOM 4052 OD1 ASN B 584 18 806 -29 367 102 791 1 00 9 78 o
ATOM 4053 ND2 ASN B 584 19 830 -30 265 101 002 1 00 4 96 N
ATOM 4054 N LEU B 585 15 541 -27 055 99 893 1 00 3 83 N
ATOM 4055 CA LEU B 585 14 218 -26 743 99 361 1 00 6 19 C
ATOM 4056 C LEU B 585 13 446 -28 015 98 991 1 00 4 33 C
ATOM 4057 O LEU B 585 13 309 -28 922 99 809 1 00 3 89 O
ATOM 4058 CB LEU B 585 13 412 -25 917 100 383 1 00 5 30 C
ATOM 4059 CG LEU B 585 12 112 -25 312 99 839 1 00 6 79 C
ATOM 4060 CDl LEU B 585 12 398 -24 319 98 710 1 00 4 98 C
ATOM 4061 CD2 LEU B 585 11 271 -24 656 100 953 1 00 7 49 c
ATOM 4062 N MET B 586 12 958 -28 067 97 753 1 00 5 72 N
ATOM 4063 CA MET B 586 12 137 -29 176 97 267 1 00 6 56 C
ATOM 4064 C MET B 586 10 733 -28 699 96 953 1 00 5 67 c
ATOM 4065 O MET B 586 10 497 -27 502 96 854 1 00 5 67 O
ATOM 4066 CB MET B 586 12 732 -29 766 95 994 1 00 8 32 c
ATOM 4067 CG MET B 586 14 193 -30 129 96 094 1 00 10 23 c
ATOM 4068 SD MET B 586 14 408 -31 565 97 117 1 00 11 90 s
ATOM 4069 CE MET B 586 15 772 -32 273 96 379 1 00 12 81 c
ATOM 4070 N TYR B 587 -9 805 -29 639 96 786 1 00 5 83 N
ATOM 4071 CA TYR B 587 -8 449 -29 309 96 361 1 00 7 62 C
ATOM 4072 C TYR B 587 -7 812 -30 440 95 549 1 00 8 85 C
ATOM 4073 O TYR B 587 -8 231 -31 594 95 654 1 00 8 54 O
ATOM 4074 CB TYR B 587 -7 569 -28 950 97 566 1 00 7 84 C
ATOM 4075 CG TYR B 587 -7 203 -30 123 98 449 1 00 8 19 c
ATOM 4076 CDl TYR B 587 -5 988 -30 772 98 303 1 00 8 95 c
ATOM 4077 CD2 TYR B 587 -8 075 -30 578 99 431 1 00 8 78 c
ATOM 4078 CEl TYR B 587 -5 645 -31 840 99 108 1 00 8 50 c
ATOM 4079 CE2 TYR B 587 -7 740 -31 648 100 245 1 00 9 29 c
ATOM 4080 CZ TYR B 587 -6 526 -32 273 100 075 1 00 9 52 c
ATOM 4081 OH TYR B 587 -6 188 -33 333 100 872 1 00 11 71 o
ATOM 4082 N VAL B 588 -6 818 -30 093 94 728 1 00 8 41 N
ATOM 4083 CA VAL B 588 -5 982 -31 086 94 032 1 00 8 63 C
ATOM 4084 C VAL B 588 -4 531 -30 650 93 976 1 00 7 08 c
ATOM 4085 O VAL B 588 -4 235 -29 462 93 864 1 00 7 63 o
ATOM 4086 CB VAL B 588 -6 395 -31 319 92 557 1 00 9 83 c
ATOM 4087 CGI VAL B 588 -7 529 -32 282 92 468 1 00 9 55 c
ATOM 4088 CG2 VAL B 588 -6 700 -29 990 91 842 1 00 7 62 c
ATOM 4089 N ASP B 589 -3 636 -31 627 94 039 1 00 7 07 N
ATOM 4090 CA ASP B 589 -2 217 -31 408 93 803 1 00 7 33 C
ATOM 4091 C ASP B 589 -1 934 -31 636 92 327 1 00 6 70 C
ATOM 4092 O ASP B 589 -2 341 -32 647 91 760 1 00 5 65 O
ATOM 4093 CB ASP B 589 -1 380 -32 381 94 632 1 00 7 09 c
ATOM 4094 CG ASP B 589 -1 440 -32 086 96 113 1 00 8 67 c
ATOM 4095 OD1 ASP B 589 -2 008 -31 045 96 503 1 00 9 90 o
ATOM 4096 OD2 ASP B 589 -0 939 -32 844 96 964 1 00 11 12 0
ATOM 4097 N ILE B 590 -1 253 -30 690 91 696 1 00 6 54 N
ATOM 4098 CA ILE B 590 -0 952 -30 811 90 273 1 00 6 04 C
ATOM 4099 C ILE B 590 0 459 -30 318 89 985 1 00 5 68 C
ATOM 4100 O ILE B 590 0 941 -29 382 90 621 1 00 6 11 O
ATOM 4101 CB ILE B 590 -1 974 -30 024 89 423 1 00 5 85 C
ATOM 4102 CGI ILE B 590 -2 103 -28 588 89 924 1 00 5 24 c
ATOM 4103 CG2 ILE B 590 -3 330 -30 695 89 451 1 00 6 93 c
ATOM 4104 CDl ILE B 590 -3 247 -27 837 89 284 1 00 4 86 c
ATOM 4105 N PRO B 591 1 109 -30 940 89 007 1 00 4 72 N
ATOM 4106 CA PRO B 591 2 487 -30 598 88 657 1 00 3 61 C ATOM 4107 C PRO B 591 2.539 -29.396 87..728 1..00 5..07 c
ATOM 4108 O PRO B 591 1 .673 -29. .251 86. .861 1. .00 4. .61 o
ATOM 4109 CB PRO B 591 2 .971 -31 .839 87. .905 1. .00 2. .87 c
ATOM 4110 CG PRO B 591 1 .740 -32 .395 87. .256 1. .00 3. .85 c
ATOM 4111 CD PRO B 591 0 .564 -32. .009 88. .151 1. .00 3. .82 c
ATOM 4112 N ILE B 592 3 .544 -28. .548 87. .916 1. .00 5. .36 N
ATOM 4113 CA ILE B 592 3 .841 -27. .478 86. .973 1, ,00 5. .47 c
ATOM 4114 C ILE B 592 4 .244 -28. .083 85. .633 1. .00 5. .49 c
ATOM 4115 O ILE B 592 5 .030 -29. .036 85. .574 1. .00 4. .30 0
ATOM 4116 CB ILE B 592 4 .981 -26. .600 87. .516 1. .00 6. .41 c
ATOM 4117 CGI ILE B 592 4 .510 -25. .824 88. .746 1. .00 7. .13 c
ATOM 4118 CG2 ILE B 592 5 .519 -25. .667 86. .428 1. .00 6. .34 c
ATOM 4119 CDl ILE B 592 5 .512 -24. .823 89. .241 1. .00 8. .00 c
ATOM 4120 N VAL B 593 3 .705 -27. .516 84. .561 1. .00 5. .64 N
ATOM 4121 CA VAL B 593 3. .940 -28. .023 83. .221 1. .00 6. .06 c
ATOM 4122 C VAL B 593 4 .931 -27. .143 82. .459 1. .00 6, .00 c
ATOM 4123 O VAL B 593 4 .909 -25. .913 82. .576 1. .00 4. .13 0
ATOM 4124 CB VAL B 593 2 .606 -28. .113 82. .452 1. .00 7. .68 c
ATOM 4125 CGI VAL B 593 2 .837 -28. .443 80, .980 1. .00 6. .66 c
ATOM 4126 CG2 VAL B 593 1. .686 -29. .136 83, .118 1. .00 7, .50 c
ATOM 4127 N ASP B 594 5. .811 -27. .779 81. .690 1. .00 6, .29 N
ATOM 4128 CA ASP B 594 6. .769 -27, .048 80. .868 1. .00 8. .62 C
ATOM 4129 C ASP B 594 6. .070 -25. .966 80. .039 1. .00 8. .09 C
ATOM 4130 O ASP B 594 5 .034 -26. .215 79. .420 1. .00 7, .33 O
ATOM 4131 CB ASP B 594 7. .536 -28, .011 79. .960 1. .00 10. .40 C
ATOM 4132 CG ASP B 594 8 .430 -27, .292 78. .986 1. .00 13. .52 c
ATOM 4133 OD1 ASP B 594 9. .558 -26, .921 79. .382 1. .00 15. .59 0
ATOM 4134 OD2 ASP B 594 8 .090 -27, .044 77. .808 1. .00 14. .11 0
ATOM 4135 N HIS B 595 6 .641 -24, .766 80. .038 1. .00 7. .84 N
ATOM 4136 CA HIS B 595 5 .996 -23, .603 79. .425 1. .00 6. .36 C
ATOM 4137 C HIS B 595 5 .833 -23. .712 77. .904 1. .00 5. .95 C
ATOM 4138 O HIS B 595 4 .809 -23. .318 77. .359 1. .00 5. .38 O
ATOM 4139 CB HIS B 595 6 .754 -22. .326 79. .779 1. .00 7. .41 C
ATOM 4140 CG HIS B 595 5. .951 -21. .076 79. .593 1. .00 8. .02 c
ATOM 4141 ND1 HIS B 595 6 .144 -20 .201 78. .564 1, .00 7. .78 N
ATOM 4142 CD2 HIS B 595 4 .947 -20. .550 80, .312 1. .00 7. .12 C
ATOM 4143 CEl HIS B 595 5. .301 -19. .191 78, .654 1. .00 6. .55 C
ATOM 4144 NE2 HIS B 595 4. .560 -19. .379 79. .711 1. .00 7. .26 N
ATOM 4145 N GLN B 596 6. .845 -24. .223 77. .215 1. ,00 5. .27 N
ATOM 4146 CA GLN B 596 6. .712 -24, .448 75. .780 1. .00 5. .45 C
ATOM 4147 C GLN B 596 5. .614 -25, .467 75, .471 1. .00 5. .98 C
ATOM 4148 O GLN B 596 4. .836 -25. .295 74. .533 1. ,00 7. .19 O
ATOM 4149 CB GLN B 596 8. .036 -24. .897 75. .150 1. .00 3, .61 C
ATOM 4150 CG GLN B 596 7. .942 -25. .001 73. .629 1. .00 4. .39 C
ATOM 4151 CD GLN B 596 9. .224 -25. .449 72. .960 1. .00 3. .82 C
ATOM 4152 OEl GLN B 596 10. .204 -25. .784 73, .628 1. .00 3. .23 O
ATOM 4153 NE2 GLN B 596 9. .218 -25. .457 71, .630 1. .00 3. .98 N
ATOM 4154 N LYS B 597 5. .563 -26. .532 76, .261 1. .00 7. .27 N
ATOM 4155 CA LYS B 597 4. .588 -27. .594 76. .055 1. .00 9. .51 C
ATOM 4156 C LYS B 597 3. .174 -27. .055 76, .305 1. .00 9, .34 C
ATOM 4157 O LYS B 597 2. .215 -27. .432 75. .624 1. .00 8. .63 O
ATOM 4158 C3 LYS B 597 4. .899 -28. .777 76. .977 1. .00 11. .56 C
ATOM 4159 CG LYS B 597 3 .954 -29. .948 76. .840 1, .00 15. .82 C
ATOM 4160 CD LYS B 597 4. .644 -31, .255 77. .174 1, .00 19. .77 C
ATOM 4161 CE LYS B 597 4. .153 -31, .819 78. .497 1. .00 21. .49 C
ATOM 4162 NZ LYS B 597 4. .758 -33, .155 78. .762 1, .00 23. .00 N
ATOM 4163 N CYS B 598 3 .058 -26. .150 77. .268 1. .00 7. .44 N
ATOM 4164 CA CYS B 598 1. .781 -25. .510 77. .541 1. .00 7. .25 C
ATOM 4165 C CYS B 598 1. .403 -24. .500 76. .465 1. .00 6, .46 C
ATOM 4166 O CYS B 598 0. .244 -24. .383 76, .092 1. .00 4. .86 0
ATOM 4167 CB CYS B 598 1. .826 -24. .803 78. .877 1. .00 6. .64 c
ATOM 4168 SG CYS B 598 0. .270 -24. .005 79. .277 1. .00 9. .39 s
ATOM 4169 N THR B 599 2. .396 -23. .759 75. .990 1. .00 6. .33 N
ATOM 4170 CA THR B 599 2. .202 -22. .798 74. .925 1. .00 7. .05 c
ATOM 4171 C THR B 599 1. .653 -23. .491 73. .677 1. .00 6. .95 c
ATOM 4172 O THR B 599 0. .661 -23, .045 73. .087 1. .00 7 .16 0
ATOM 4173 CB THR B 599 3. .541 -22. .104 74. .613 1. .00 8. .12 c
ATOM 4174 OGl THR B 599 3. .797 -21. .102 75. .606 1, .00 7. .30 0
ATOM 4175 CG2 THR B 599 3. .445 -21. .322 73. .317 1. .00 9. .38 c
ATOM 4176 N ALA B 600 2. .287 -24, .595 73. .298 1. .00 5. .68 N
ATOM 4177 CA ALA B 600 1. .901 -25, .336 72. .100 1. .00 5. .91 c
ATOM 4178 C ALA B 600 0. .479 -25, .892 72. .211 1. .00 5. .27 c
ATOM 4179 O ALA B 600 -0. .234 -26. .007 71. .215 1. .00 4. .47 0
ATOM 4180 CB ALA B 600 2. .896 -26. .458 71. .822 1. .00 4. .41 c ATOM 4181 N ALA B 601 0.070 -26.224 73.429 1.00 4.39 N
ATOM 4182 CA ALA B 601 -1 .244 -26 .809 73 .657 1 .00 3 .07 C
ATOM 4183 C ALA B 601 -2 .357 -25 .809 73 .331 1 .00 4 .19 C
ATOM 4184 O ALA B 601 -3 .485 -26 .196 73 .046 1 .00 3 .79 O
ATOM 4185 CB ALA B 601 -1 .355 -27 .293 75 .106 1 .00 4 .03 C
ATOM 4186 N TYR B 602 -2 .033 -24. .521 73 .371 1 .00 4 .29 N
ATOM 4187 CA TYR B 602 -3. .035 -23 .489 73 .127 1 .00 4 .85 C
ATOM 4188 C TYR B 602 -2. .813 -22. .768 71. .805 1, .00 7 .34 C
ATOM 4189 O TYR B 602 -3 .460 -21. .763 71. .507 1, .00 5 .44 0
ATOM 4190 CB TYR B 602 -3. .095 -22. .521 74 .310 1, .00 2 .60 c
ATOM 4191 CG TYR B 602 -3 .762 -23. .181 75 .493 1. .00 4 .16 c
ATOM 4192 CDl TYR B 602 -3. .020 -23. .618 76 .591 1, .00 2 .03 c
ATOM 4193 CD2 TYR B 602 -5 .135 -23. .429 75 .481 1, .00 2 .83 c
ATOM 4194 CEl TYR B 602 -3 .640 -2 .245 77 .659 1. .00 3 .81 c
ATOM 4195 CE2 TYR B 602 -5. .759 -24. .054 76. .538 1, .00 2 .89 c
ATOM 4196 CZ TYR B 602 -5 .013 -24 .464 77 .626 1. .00 3 .17 c
ATOM 4197 OH TYR B 602 -5 .648 -25. .090 78 .680 1 .00 3 .79 0
ATOM 4198 N GLU B 603 -1 .900 -23. .306 71 .006 1, .00 10. .77 N
ATOM 4199 CA GLU B 603 -1. .597 -22. .730 69. .705 1. .00 14. .93 c
ATOM 4200 C GLU B 603 -2. .492 -23. .358 68 .664 1, .00 15. .65 c
ATOM 4201 O GLU B 603 -2. .036 -24. .114 67. .807 1. .00 17. .17 o
ATOM 4202 CB GLU B 603 -0. .133 -22. .954 69. .344 1, .00 18. .48 c
ATOM 4203 CG GLU B 603 0. .631 -21. .675 69 .056 1, .00 22. .07 c
ATOM 4204 CD GLU B 603 2. .033 -21. .952 68. .551 1, .00 25. .54 c
ATOM 4205 OEl GLU B 603 2. .206 -22. .065 67. .313 1, .00 27. .93 o
ATOM 4206 OE2 GLU B 603 2 .956 -22. .067 69 .390 1. .00 24. .91 0
ATOM 4207 N LYS B 604 -3. .776 -23. .039 68. .758 1, .00 16. .17 N
ATOM 4208 CA LYS B 604 -4 .796 -23. .626 67 .905 1, .00 15. .99 c
ATOM 4209 C LYS B 604 -6 .103 -22. .872 68 .124 1, .00 15. .98 c
ATOM 4210 O LYS B 604 -6 .298 -22. .263 69 .174 1, .00 13. .87 0
ATOM 4211 CB LYS B 604 -4 .982 -25. .112 68 .237 1, .00 15. .27 c
ATOM 4212 CG LYS B 604 -5 .067 -25. .408 69 .719 1, .00 17 .91 c
ATOM 4213 CD LYS B 604 -6 .213 -26. .350 70 .029 1, .00 19 .16 c
ATOM 4214 CE LYS B 604 -5 .719 -27. .595 70 .745 1, .00 20 .37 c
ATOM 4215 NZ LYS B 604 -6 .866 -28. .380 71 .289 1, .00 22 .41 N
ATOM 4216 N PRO B 605 -6 .984 -22. .884 67 .126 1, .00 17. .41 N
ATOM 4217 CA PRO B 605 -8. .340 -22. .352 67. .302 1, .00 17. .63 C
ATOM 4218 C PRO B 605 -9 .021 -23. .066 68 .466 1, .00 16. .27 C
ATOM 4219 O PRO B 605 -8. .802 -24. .260 68. .633 1. .00 16. .95 O
ATOM 4220 CB PRO B 605 -9. .030 -22. .688 65. .972 1. .00 18. .40 C
ATOM 4221 CG PRO B 605 -8. .127 -23. .681 65. .293 1. .00 17. .93 C
ATOM 4222 CD PRO B 605 -6. .745 -23. .381 65. .760 1. .00 17. .32 C
ATOM 4223 N PRO B 606 -9. .834 -22, .362 69. .251 1. .00 15. .81 N
ATOM 4224 CA PRO B 606 10. .223 -20, .977 68. .971 1. .00 14. .75 C
ATOM 4225 C PRO B 606 -9. .380 -19, .934 69. .705 1. .00 14. .04 C
ATOM 4226 O PRO B 606 -9. .799 -18. .778 69. .806 1. .00 13. .70 O
ATOM 4227 CB PRO B 606 11. .647 -20. .930 69. .512 1. .00 14. .46 C
ATOM 4228 CG PRO B 606 11. .616 -21. .889 70. .698 1. .00 16. .25 C
ATOM 4229 CD PRO B 606 10. .467 -22. .865 70. .481 1. .00 16, .10 C
ATOM 4230 N TYR B 607 -8. .217 -20. .332 70. .208 1. .00 12. .92 N
ATOM 4231 CA TYR B 607 -7. .366 -19. .425 70. .979 1. .00 10. .92 C
ATOM 4232 C TYR B 607 -6. .577 -18. .455 70. .092 1, .00 10. .86 C
ATOM 4233 O TYR B 607 -5. .968 -18. .855 69. .101 1. .00 12. .09 O
ATOM 4234 CB TYR B 607 -6. .421 -20. .221 71. .871 1. .00 8. .22 c
ATOM 4235 CG TYR B 607 -7. .111 -21. .341 72. .600 1. .00 9. .82 c
ATOM 4236 CDl TYR B 607 -6. .967 -22. .664 72. .189 1. .00 9, .04 c
ATOM 4237 CD2 TYR B 607 -7. .927 -21. ,077 73. .697 1. .00 9. .68 c
ATOM 4238 CEl TYR B 607 -7. .611 -23. .689 72. .857 1. .00 9, .48 c
ATOM 4239 CE2 TYR B 607 -8. .569 -22. .088 74. .367 1. .00 9. .40 c
ATOM 4240 CZ TYR B 607 -8. .409 -23. .392 73. .944 1. .00 9, .76 c
ATOM 4241 OH TYR B 607 -9. .052 -24. .400 74. .618 1. .00 12. .39 0
ATOM 4242 N PRO B 608 -6, .590 -17. .177 70. .453 1. .00 10. .54 N
ATOM 4243 CA PRO B 608 -5. .801 -16. .169 69. :732 1. .00 10, .09 c
ATOM 4244 C PRO B 608 -4. .299 -16. .408 69. .904 1. .00 10, .15 c
ATOM 4245 O PRO B 608 -3. .874 -16. .958 70. .924 1. .00 7, .99 0
ATOM 4246 CB PRO B 608 -6. .213 -14. .849 70. .399 1, .00 10. .69 c
ATOM 4247 CG PRO B 608 -6. .735 -15. ,237 71, .744 1. .00 12, .51 c
ATOM 4248 CD PRO B 608 -7. .342 -16. ,609 71, .586 1, .00 10, .41 c
ATOM 4249 N ARG B 609 -3. .513 -16. ,007 68. .909 1. .00 11, .22 N
ATOM 4250 CA ARG B 609 -2. .059 -16. .119 68. .969 1, .00 13, .72 C
ATOM 4251 C ARG B 609 -1. .504 -15. .524 70, .258 1. .00 12, .56 C
ATOM 4252 O ARG B 609 -1. .966 -14. .479 70, .714 1. .00 11. .40 O
ATOM 4253 CB ARG B 609 -1. .421 -15. .408 67. .772 1, .00 16. .60 C
ATOM 4254 N GLY B 610 -0. .514 -16. .194 70. ,840 1. .00 10. .73 N ATOM 4255 CA GLY B 610 0 128 -15 705 72 047 1 00 9 04 c
ATOM 4256 C GLY B 610 0 766 -15 629 73 278 1 00 9 74 c
ATOM 4257 O GLY B 610 0 676 -14 681 74 060 1 00 11 97 0
ATOM 4258 N SER B 611 1 623 -16 626 73 467 1 00 8 04 N
ATOM 4259 CA SER B 611 2 512 -16 649 74 620 1 00 8 28 C
ATOM 4260 C SER B 611 1 755 -17 002 75 899 1 00 9 00 C
ATOM 4261 O SER B 611 2 089 -16 513 76 983 1 00 8 98 O
ATOM 4262 CB SER B 611 3 657 -17 643 74 399 1 00 9 27 C
ATOM 4263 OG SER B 611 4 594 -17 138 73 464 1 00 12 17 o
ATOM 4264 N VAL B 612 0 744 -17 863 75 786 1 00 7 52 N
ATOM 4265 CA VAL B 612 0 088 -18 178 76 945 1 00 6 15 C
ATOM 4266 C VAL B 612 1 299 -17 256 76 929 1 00 5 97 C
ATOM 4267 O VAL B 612 2 051 -17 257 75 970 1 00 5 49 O
ATOM 4268 CB VAL B 612 0 529 -19 668 76 979 1 00 5 72 C
ATOM 4269 CGI VAL B 612 1 423 -19 945 78 192 1 00 4 91 C
ATOM 4270 CG2 VAL B 612 0 684 -20 589 77 010 1 00 3 51 C
ATOM 4271 N THR- "B 613 1 468 -16 457 77 985 1 00 6 61 N
ATOM 4272 CA THR B 613 2 550 -15 472 78 044 1 00 6 95 C
ATOM 4273 C THR B 613 3 523 -15 755 79 175 1 00 7 49 C
ATOM 4274 O THR B 613 3 309 -16 645 79 994 1 00 8 87 O
ATOM 4275 CB THR B 613 2 000 -14 040 78 238 1 00 6 32 C
ATOM 4276 OGl THR B 613 1 376 -13 949 79 523 1 00 6 88 O
ATOM 4277 CG2 THR B 613 0 877 -13 732 77 265 1 00 5 69 C
ATOM 4278 N ALA B 614 4 583 -14 962 79 225 1 00 5 73 N
ATOM 4279 CA ALA B 614 5 585 -15 075 80 270 1 00 6 63 C
ATOM 4280 C ALA B 614 5 032 -14 687 81 644 1 00 6 50 C
ATOM 4281 O ALA B 614 5 687 -14 901 82 659 1 00 9 38 o
ATOM 4282 CB ALA B 614 6 812 -14 229 79 921 1 00 3 20 c
ATOM 4283 N ASN B 615 3 834 -14 116 81 681 1 00 5 90 N
ATOM 4284 CA ASN B 615 3 188 -13 812 82 960 1 00 6 26 C
ATOM 4285 C ASN B 615 2 242 -14 913 83 431 1 00 6 30 C
ATOM 4286 O ASN B 615 1 373 -14 677 84 257 1 00 8 07 O
ATOM 4287 CB ASN B 615 2 430 -12 491 82 881 1 00 6 72 C
ATOM 4288 CG ASN B 615 3 330 -11 335 82 547 1 00 6 61 C
ATOM 4289 OD1 ASN B 615 4 329 -11 096 83 225 1 00 5 61 O
ATOM 4290 ND2 ASN B 615 2 990 -10 611 81 491 1 00 6 04 N
ATOM 4291 N MET B 616 2 426 -16 115 82 901 1 00 5 95 N
ATOM 4292 CA MET B 616 1 591 -17 253 83 242 1 00 7 04 C
ATOM 4293 C MET B 616 2 444 -18 490 83 488 1 00 5 55 C
ATOM 4294 O MET B 616 3 511 -18 630 82 904 1 00 3 34 O
ATOM 4295 CB MET B 616 0 625 -17 550 82 095 1 00 7 58 C
ATOM 4296 CG MET B 616 0 344 -16 419 81 797 1 00 8 04 C
ATOM 4297 SD MET B 616 1 167 -16 661 80 234 1 00 8 55 S
ATOM 4298 CE MET B 616 1 858 -15 012 79 972 1 00 7 90 c
ATOM 4299 N LEU B 617 1 977 -19 366 84 370 1 00 5 52 N
ATOM 4300 CA LEU B 617 2 518 -20 711 84 481 1 00 6 25 C
ATOM 4301 C LEU B 617 1 373 -21 685 84 279 1 00 5 28 C
ATOM 4302 O LEU B 617 0 206 -21 330 84 455 1 00 3 80 O
ATOM 4303 CB LEU B 617 3 171 -20 950 85 842 1 00 10 23 c
ATOM 4304 CG LEU B 617 2 255 -20 879 87 063 1 00 12 92 c
ATOM 4305 CDl LEU B 617 2 484 -22 078 87 966 1 00 16 38 c
ATOM 4306 CD2 LEU B 617 2 510 -19 605 87 824 1 00 16 15 c
ATOM 4307 N CYS B 618 1 705 -22 914 83 912 1 00 4 26 N
ATOM 4308 CA CYS B 618 0 696 -23 924 83 665 1 00 5 80 C
ATOM 4309 C CYS B 618 0 868 -25 105 84 588 1 00 7 92 C
ATOM 4310 O CYS B 618 1 986 -25 430 84 996 1 00 7 86 0
ATOM 4311 CB CYS B 618 0 787 -24 402 82 229 1 00 7 35 c
ATOM 4312 SG CYS B 618 0 645 -23 073 81 033 1 00 8 45 s
ATOM 4313 N ALA B 619 0 243 -25 766 84 891 1 00 7 34 N
ATOM 4314 CA ALA B 619 0 222 -26 893 85 806 1 00 7 04 c
ATOM 4315 C ALA B 619 1 351 -27 854 85 467 1 00 7 19 c
ATOM 4316 O ALA B 619 2 457 -27 432 85 136 1 00 6 20 0
ATOM 4317 CB ALA B 619 0 337 -26 401 87 249 1 00 5 53 c
ATOM 4318 N GLY B 620 1 060 -29 150 85 529 1 00 8 21 N
ATOM 4319 CA GLY B 620 2 047 -30 170 85 229 1 00 8 44 C
ATOM 4320 C GLY B 620 1 421 -31 440 84 690 1 00 9 48 C
ATOM 4321 O GLY B 620 0 200 -31 569 84 647 1 00 9 70 O
ATOM 4322 N LEU B 621 2 265 -32 378 84 273 1 00 9 55 N
ATOM 4323 CA LEU B 621 1 801 -33 658 83 756 1 00 11 71 C
ATOM 4324 C LEU B 621 2 005 -33 729 82 255 1 00 14 84 C
ATOM 4325 O LEU B 621 2 843 -33 023 81 698 1 00 14 66 O
ATOM 4326 CB LEU B 621 2 548 -34 812 84 428 1 00 9 27 C
ATOM 4327 CG LEU B 621 2 507 -34 828 85 953 1 00 9 19 C
ATOM 4328 CDl LEU B 621 3 218 -36 056 86 505 1 00 7 33 C ATOM 4329 CD2 LEU B 621 -1 061 -34 802 86 394 1 00 8 81 C
ATOM 4330 N GLU B 622 -1 231 -34 589 81 606 1 00 18 10 N
ATOM 4331 CA GLU B 622 -1 435 -34 896 80 199 1 00 22 09 C
ATOM 4332 C GLU B 622 -2 799 -35 536 79 947 1 00 21 79 C
ATOM 4333 O GLU B 622 -3 358 -35 412 78 852 1 00 22 88 O
ATOM 4334 CB GLU B 622 -0 338 -35 838 79 714 1 00 24 84 c
ATOM 4335 CG GLU B 622 1 019 -35 172 79 593 1 00 29 82 c
ATOM 4336 CD GLU 3 622 1 302 -34 734 78 174 1 00 33 10 c
ATOM 4337 OEl GLU 3 622 0 469 -33 990 77 608 1 00 33 72 0
ATOM 4338 OE2 GLU B 622 2 349 -35 144 77 -622 1 00 34 41 0
ATOM 4339 N SER 3 623 -3 322 -36 227 80 957 1 00 20 21 N
ATOM 4340 CA SER B 623 -4 577 -36 969 80 833 1 00 19 14 c
ATOM 4341 C SER B 623 -5 798 -36 102 81 111 1 00 19 12 c
ATOM 4342 O SER B 623 -6 914 -36 453 80 729 1 00 19 45 0
ATOM 4343 CB SER B 623 -4 587 -38 146 81 805 1 00 20 01 c
ATOM 4344 OG SER B 623 -4 726 -37 685 83 144 1 00 21 06 o
ATOM 4345 N GLY B 624 -5 582 -34 980 81 794 1 00 17 34 N
ATOM 4346 CA GLY B 624 -6 668 -34 101 82 181 1 00 15 85 C
ATOM 4347 C GLY B 624 -7 316 -34 479 83 505 1 00 15 70 C
ATOM 4348 O GLY B 624 -8 248 -33 814 83 958 1 00 14 56 O
ATOM 4349 N GLY 3 625 -6 813 -35 533 84 140 1 00 14 39 N
ATOM 4350 CA GLY B 625 -7 420 -36 058 85 355 1 00 14 71 C
ATOM 4351 C GLY 3 625 -7 531 -35 123 86 551 1 00 13 39 C
ATOM 4352 O GLY B 625 -8 344 -35 352 87 445 1 00 12 90 O
ATOM 4353 N LYS B 626 -6 711 -34 078 86 585 1 00 13 64 N
ATOM 4354 CA LYS B 626 -6 718 -33 139 87 705 1 00 13 28 C
ATOM 4355 C LYS B 626 -6 638 -31 711 87 181 1 00 14 50 c
ATOM 4356 O LYS B 626 -5 774 -31 401 86 361 1 00 15 59 0
ATOM 4357 CB LYS B 626 -5 538 -33 399 88 636 1 00 13 36 c
ATOM 4358 CG LYS B 626 -5 585 -34 703 89 420 1 00 13 04 c
ATOM 4359 CD LYS B 626 -4 216 -34 986 90 044 1 00 13 32 c
ATOM 4360 CE LYS B 626 -4 331 -35 596 91 427 1 00 14 47 c
ATOM 4361 NZ LYS B 626 -3 021 -35 599 92 146 1 00 14 72 N
ATOM 4362 N ASP B 627 -7 520 -30 837 87 658 1 00 13 63 N
ATOM 4363 CA ASP B 627 -7 676 -29 524 87 036 1 00 12 46 C
ATOM 4364 C ASP B 627 -8 451 -28 574 87 938 1 00 11 18 c
ATOM 4365 O ASP B 627 -9 098 -29 005 88 893 1 00 11 53 0
ATOM 4366 CB ASP B 627 -8 415 -29 679 85 701 1 00 12 51 c
ATOM 4367 CG ASP B 627 -8 112 -28 557 84 712 1 00 14 93 c
ATOM 4368 OD1 ASP B 627 -7 301 -27 646 85 019 1 00 13 55 0
ATOM 4369 OD2 ASP B 627 -8 661 -28 511 83 591 1 00 15 77 o
ATOM 4370 N SER B 628 -8 367 -27 281 87 641 1 00 9 25 N
ATOM 4371 CA SER B 628 -9 253 -26 298 88 249 1 00 10 01 C
ATOM 4372 C SER B 628 10 230 -25 860 87 168 1 00 10 57 C
ATOM 4373 O SER B 628 -9 878 -25 852 85 985 1 00 10 44 O
ATOM 4374 CB SER B 628 -8 462 -25 107 88 806 1 00 9 50 C
ATOM 4375 OG SER B 628 -7 597 -24 557 87 832 1 00 11 01 0
A.TOM 4376 N CYS 3 629 11 461 -25 530 87 555 1 00 10 91 N
ATOM 4377 CA CYS B 629 12 515 -25 271 86 571 1 00 12 10 C
ATOM 4378 C CYS 3 629 13 231 -23 959 86 779 1 00 12 28 C
ATOM 4379 O CYS 3 629 12 912 -23 207 87 695 1 00 13 84 O
ATOM 4380 CB CYS 3 629 13 570 -26 371 86 616 1 00 12 69 C
ATOM 4381 SG CYS 3 629 12 905 -28 019 86 807 1 00 17 23 Ξ
ATOM 4382 N ARG 3 630 14 210 -23 704 85 912 1 00 12 02 N
ATOM 4383 CA ARG 3 630 15 189 -22 652 86 135 1 00 13 53 C
ATOM 4384 C ARG B 630 15 610 -22 645 87 613 1 00 12 51 C
ATOM 4385 O ARG B 630 15 971 -23 690 88 180 1 00 10 67 O
ATOM 4386 CB ARG B 630 16 405 -22 888 85 239 1 00 14 96 C
ATOM 4387 CG ARG 3 630 17 491 -21 826 85 346 1 00 19 97 C
ATOM 4388 CD ARG B 630 18 115 -21 443 84 007 1 00 21 89 C
ATOM 4389 NE ARG 3 630 19 531 -21 109 84 129 1 00 24 02 N
ATOM 4390 CZ ARG B 630 20 211 -20 401 83 231 1 00 26 52 C
ATOM 4391 NH1 ARG B 630 19 602 -19 951 82 141 1 00 28 58 N
ATOM 4392 NH2 ARG B 630 21 503 -20 143 83 417 1 00 26 20 N
ATOM 4393 N GLY B 631 15 544 -21 474 88 237 1 00 8 83 N
ATOM 4394 CA GLY B 631 15 896 -21 345 89 639 1 00 7 90 C
ATOM 4395 C GLY B 631 14 684 -21 333 90 553 1 00 8 05 C
ATOM 4396 O GLY B 631 14 764 -20 881 91 699 1 00 4 60 O
ATOM 4397 N ASP B 632 13 559 -21 832 90 044 1 00 6 68 N
ATOM 4398 CA ASP B 632 12 315 -21 848 90 798 1 00 8 43 C
ATOM 4399 C ASP B 632 11 541 -20 538 90 601 1 00 9 33 C
ATOM 4400 O ASP B 632 10 567 -20 277 91 302 1 00 7 33 O
ATOM 4401 CB ASP B 632 11 448 -23 038 90 380 1 00 7 57 C
ATOM 4402 CG ASP B 632 11 975 -24 354 90 910 1 00 7 65 C ATOM 4403 OD1 ASP B 632 11.921 -25.363 90.171 1..00 7..32 0
ATOM 4404 OD2 ASP B 632 12 .450 -24 .473 92 .061 1. .00 6. .40 0
ATOM 4405 N SER B 633 12 .004 -19 .736 89 .640 1. .00 8. .72 N
ATOM 4406 CA SER B 633 11. .417 -18 .446 89. .286 1. .00 9. .00 c
ATOM 4407 C SER B 633 10. .988 -17 .625 90. .483 1. .00 8. .28 c
ATOM 4408 O SER B 633 11. .774 -17 .406 91. .409 1. .00 8. .56 0
ATOM 4409 CB SER B 633 12. .423 -17 .623 88. .481 1. .00 8. .54 c
ATOM 4410 OG SER B 633 12. .657 -18 .195 87. .209 1. .00 12. .80 0
ATOM 4411 N GLY B 634 -9. .744 -17. .156 90. .451 1. .00 7. .43 N
ATOM 4412 CA GLY B 634 -9. .243 -16. .266 91. .483 1. .00 7. .48 c
ATOM 4413 C GLY B 634 -8. .537 -16 .982 92. .619 1. .00 8. .57 c
ATOM 4414 O GLY B 634 -7. .812 -16 .353 93. .393 1. .00 9. .69 0
ATOM 4415 N GLY B 635 -8. .739 -18. .295 92. .719 1. .00 6. .80 N
ATOM 4416 CA GLY B 635 -8. .100 -19 .081 93. .758 1. .00 6. .37 c
ATOM 4417 C GLY B 635 -6. .584 -19. .062 93. .682 1, .00 7. .45 c
ATOM 4418 O GLY B 635 -6. .013 -18. .944 92. .601 1. .00 9. .03 0
ATOM 4419 N ALA B 636 -5. .936 -19 .196 94. .836 1. .00 6. .05 N
ATOM 4420 CA ALA B 636 -4. .480 -19. .296 94. .906 1. .00 6. .09 c
ATOM 4421 C ALA B 636 -4. .008 -20 .719 94. .623 1. .00 6. .34 c
ATOM 4422 O ALA B 636 -4. .468 -21. .678 95. .259 1. .00 5. .15 0
ATOM 4423 CB ALA B 636 -3. .963 -18. .828 96. .298 1. .00 4. .52 c
ATOM 4424 N LEU B 637 -3. .104 -20 .850 93. .655 1. .00 6. .46 N
ATOM 4425 CA LEU B 637 -2. .344' -22. .078 93. .471 1. .00 6. .71 C
ATOM 4426 C LEU B 637 -1. .152 -21. .979 94. .411 1. .00 6. .20 C
ATOM 4427 O LEU B 637 -0. .267 -21. .153 94. .207 1. .00 7. .47 O
ATOM 4428 CB LEU B 637 -1. .880 -22. .229 92. .017 1. .00 7. .02 C
ATOM 4429 CG LEU B 637 -1. .121 -23 .510 91. .638 1. .00 6. .98 C
ATOM 4430 CDl LEU B 637 -2. .055 -24. .702 91. .577 1. .00 6. .80 c
ATOM 4431 CD2 LEU B 637 -0. .369 -23 .343 90. .308 1. .00 6. .87 c
ATOM 4432 N VAL B 638 -1 .151 -22 .802 95. .455 1. .00 5. .56 N
ATOM 4433 CA VAL B 638 -0. .159 -22. .698 96. .519 1. .00 5. .96 c
ATOM 4434 C VAL B 638 0 .931 -23 .760 96 .427 1. .00 7. .82 c
ATOM 4435 O VAL B 638 0 .704 -24 .859 95 .901 1. .00 8. .38 o
ATOM 4436 CB VAL B 638 -0 .828 -22 .753 97 .929 1. .00 5. .98 c
ATOM 4437 CGI VAL B 638 -1 .640 -21 .498 98 .178 1. .00 7. .84 c
ATOM 4438 CG2 VAL B 638 -1. .714 -23 .984 98. .069 1. .00 4. .00 c
ATOM 4439 N PHE B 639 2 .112 -23 .419 96. .944 1. .00 6. .17 N
ATOM 4440 CA PHE B 639 3. .244 -24. .332 96. .992 1. .00 5. .63 C
ATOM 4441 C PHE B 639 3. .853 -24. .306 98. .392 1. .00 6. .09 C
ATOM 4442 O PHE B 639 3. .737 -23. .305 99. .099 1. .00 6. .00 O
ATOM 4443 CB PHE B 639 4. .305 -23. .917 95. .967 1. .00 6. .35 C
ATOM 4444 CG PHE B 639 3. .821 -23, .958 94, .542 1, .00 8, .03 c
ATOM 4445 CDl PHE B 639 3. .036 -22, .933 94. .029 1. .00 6. .77 c
ATOM 4446 CD2 PHE B 639 4. .143 -25, .026 93. .719 1. .00 8. .33 c
ATOM 4447 CEl PHE B 639 2. .586 -22. .975 92. .727 1. .00 7. .91 c
ATOM 4448 CE2 PHE B 639 3. .695 -25. .072 92. .408 1. .00 8. .44 c
ATOM 4449 CZ PHE B 639 2. .914 -24. .052 91. .914 1. .00 7. .20 c
ATOM 4450 N LEU B 640 4. .507 -25. .393 98. .789 1. .00 6. .07 N
ATOM 4451 CA LEU B 640 5. .143 -25. .455 100. .101 1, .00 7. .37 C
ATOM 4452 C LEU B 640 6. .641 -25 .136 100. .052 1. .00 8. .38 C
ATOM 4453 0 LEU B 640 7 .422 -25. .848 99. .422 1. .00 10. .52 0
ATOM 4454 CB LEU B 640 4. .916 -26. .819 100. .759 1. .00 5. .79 c
ATOM 4455 CG LEU B 640 5 .660 -27 .111 102. .071 1. .00 o . .34 c
ATOM 4456 CDl LEU B 640 5 .190 -26. .192 103. .196 1. .00 6. .70 c
ATOM 4457 CD2 LEU B 640 5. .505 -28. .583 102. .480 1. .00 7. .86 c
ATOM 4458 N ASP B 641 7 .034 -24 .063 100 .727 1. .00 7. .83 N
ATOM 4459 CA ASP B 641 8 .441 -23 .794 100. .980 1. .00 8. .17 c
ATOM 4460 C ASP B 641 8 .869 -24 .776 102. .058 1. .00 8. .40 c
ATOM 4461 O ASP B 641 8. .561 -24 .579 103. .239 1. .00 8, .44 0
ATOM 4462 CB ASP B 641 8 .607 -22. .353 101. .465 1. .00 8. .95 c
ATOM 4463 CG ASP B 641 10 .049 -21 .980 101. .755 1. .00 10. .20 c
ATOM 4464 OD1 ASP B 641 10 .856 -22 .845 102. .161 1. .00 9. .08 0
ATOM 4465 OD2 ASP B 641 10 .459 -20 .813 101. .612 1. .00 12. .64 0
ATOM 4466 N SER B 642 9 .563 -25 .839 101. .656 1. .00 8. .34 N
ATOM 4467 CA SER B 642 9 .920 -26 .915 102 .578 1. .00 9. .42 c
ATOM 4468 C SER B 642 10 .946 -26 .509 103 .638 1. .00 9. .92 c
ATOM 4469 O SER B 642 11 .182 -27 .250 104. .594 1. .00 9. .59 0'
ATOM 4470 CB SER B 642 10 .426 -28 .135 101 .811 1. .00 9. .92 c
ATOM 4471 OG SER B 642 11 .603 -27 .815 101. .098 1. .00 11. .42 0
ATOM 4472 N GLU B 643 11 .553 -25 .339 103 .471 1. .00 9. .75 N
ATOM 4473 CA GLU B 643 12. .543 -24 .872 104. .432 1. .00 10. .19 C
ATOM 4474 C GLU B 643 11 .920 -24 .034 105. .553 1. .00 9. .53 C
ATOM 4475 O GLU B 643 12. .270 -24 .199 106. .723 1, .00 9. .00 O
ATOM 4476 CB GLU B 643 13. .670 -24 .105 103. .731 1. .00 9. .28 C ATOM 4477 CG GLU B 643 14 644 -24.991 102.968 00 12.13 C
ATOM 4478 CD GLU B 643 15 400 -25.968 103.862 00 12.04 C
ATOM 4479 OEl GLU B 643 15 819 -25.580 104.968 00 12.50 O
ATOM 4480 OE2 GLU B 643 15 579 -27.132 103.456 00 13.36 O
ATOM 4481 N THR B 644 11 006 -23.135 105.197 00 9.85 N
ATOM 4482 CA THR B 644 10 290 -22.360 106.207 00 11.77 C
ATOM 4483 C THR B 644 9 091 -23.147 106.708 00 12.54 C
ATOM 4484 O THR B 644 8 569 -22.877 107.788 00 14.50 O
ATOM 4485 CB THR B 644 9 820 -20.992 105.654 00 11.24 C
ATOM 4486 OGl THR B 644 8 929 -21.196 104.545 00 11.49 O
ATOM 4487 CG2 THR B 644 10 989 -20.215 105.057 00 C
ATOM 4488 N GLU B 645 8 661 -24.120 105.912 1.00 12.19 N
ATOM 4489 CA GLU B 645 7 486 -24.921 106.231 1.00 13.61 C
ATOM 4490 C GLU B 645 6 230 -24.067 106.218 1.00 11.15 C
ATOM 4491 O GLU B 645 5.332 -24.254 107.028 1.00 11.62 O
ATOM 4492 CB GLU B 645 7.652 -25.631 107.575 .00 15.47 C
ATOM 4493 CG GLU B 645 8.744 -26.686 107.567 .00 19.25 C
ATOM 4494 CD GLU B 645 8.774 -27.502 108.844 .00 21.70 C
ATOM 4495 OEl GLU B 645 8.752 -26.898 109.938 .00 22.25 O
ATOM 4496 OE2 GLU B 645 8.819 -28.748 108.754 .00 22.92 o
ATOM 4497 N ARG B 646 6.187 -23.128 105.283 .00 9.09 N
ATOM 4498 CA ARG B 646 5.047 -22.247 105.105 .00 9.36 C
ATOM 4499 C ARG B 646 4.608 -22.320 103.659 .00 9.86 C
ATOM 4500 O ARG B 646 5.439 -22.404 102.754 ,00 10.27 O
ATOM 4501 CB ARG B 646 5.427 -20.803 105.451 00 9.13 c
ATOM 4502 CG ARG B 646 5.824 -20.591 106.906 1.00 12.31 c
ATOM 4503 CD ARG B 646 4.720 -20.915 107.899 1.00 16.11 c
ATOM 4504 NE ARG B 646 5.224 -21.028 109.268 1.00 21.85 N
ATOM 4505 CZ ARG B 646 5.580 -19.992 110.024 1.00 24.46 C
ATOM 4506 NH1 ARG B 646 5.492 -18.750 109.556 1.00 24.46 N
ATOM 4507 NH2 ARG B 646 6.026 -20.198 111.256 1.00 24.99 N
ATOM 4508 N TRP B 647 .302 -22.293 103.442 8.52 N
ATOM 4509 CA TRP B 647 .754 -22.307 102.097 8.73 C
ATOM 4510 C TRP B 647 .787 -20.896 101.518 9.24 C
ATOM 4511 O TRP B 647 .714 -19.915 102.257 8.56 O
ATOM 4512 CB TRP B 647 315 -22.839 102.123 9.45 c
ATOM 4513 CG TRP B 647 .226 -24.316 102.421 1.00 9.72 c
ATOM 4514 CDl TRP B 647 179 -24.912 103.657 00 9.24 c
ATOM 4515 CD2 TRP B 647 172 -25.383 101.464 00 9.37 c
ATOM 4516 NE1 TRP B 647 102 -26.279 103.521 00 9.06 N
ATOM 4517 CE2 TRP B 647 098 -26.595 102.186 00 9.15 C
ATOM 4518 CE3 TRP B 647 173 -25.438 100.065 00 8.71 C
ATOM 4519 CZ2 TRP B 647 035 -27.841 101.556 00 10.16 C
ATOM 4520 CZ3 TRP B 647 1.119 -26.675 99.443 00 8.89 C
ATOM 4521 CH2 TRP B 647 1.048 -27.858 100.186 00 9.51 C
ATOM 4522 N PHE B 648 2.911 -20.793 100.197 1.00 9.03 N
ATOM 4523 CA PHE B 648 2.891 -19.490 99.537 1.00 8.05 C
ATOM 4524 C PHE B 648 2.116 -19.561 98.233 1.00 8.65 C
ATOM 4525 O PHE B 648 .905 -20.644 97.681 1.00 9.63 O
ATOM 4526 CB PHE B 648 .316 -18.939 99.315 1.00 8.12 c
ATOM 4527 CG PHE B 648 .113 -19.690 98.279 1.00 7.38 c
ATOM 4528 CDl PHE B 6 8 .012 -19.363 96.938 00 6.44 c
ATOM 4529 CD2 PHE B 648 .960 -20.727 98.654 00 7.26 c
ATOM 4530 CEl PHE B 648 .738 -20.055 95.979 00 6.79 c
ATOM 4531 CE2 PHE B 648 .697 -21.422 97.705 00 6.40 c
ATOM 4532 CZ PHE B 648 .583 -21.087 96.361 00 6.05 c
ATOM 4533 N VAL B 649 .685 -18.405 97.740 00 8.60 N
ATOM 4534 CA VAL B 649 308 -18.360 96.507 00 8.14 C
ATOM 4535 C VAL B 649 .833 -18.144 95.320 00 9.05 C
ATOM 4536 O VAL B 649 .495 -17.116 95.212 00 9.94 0
ATOM 4537 CB VAL B 649 .202 -17.272 96.554 00 7.71 c
ATOM 4538 CGI VAL B 649 0.352 -15.933 97.061 1.00 6.17 c
ATOM 4539 CG2 VAL B 649 -0.876 -17.122 95.185 1.00 5.77 c
ATOM 4540 N GLY B 650 1.896 -19.130 94.440 1.00 7.18 N
ATOM 4541 CA GLY B 650 2.705 -19.002 93.250 00 6.07 c
ATOM 4542 C GLY B 650 1.866 -18.708 92.024 00 4.95 c
ATOM 4543 O GLY B 650 2.382 -18.212 91.021 00 3.87 0
ATOM 4544 N GLY B 651 0.574 -19.023 92.105 00 4.64 N
ATOM 4545 CA GLY B 651 -0.330 -18.834 90.984 00 5.69 C
ATOM 4546 C GLY B 651 -1.737 -18.418 91.363 00 7.09 C
ATOM 4547 O GLY B 651 -2.157 -18.569 92.516 00 9.23 O
ATOM 4548 N ILE B 652 -2.457 -17.868 90.387 00 7.17 N
ATOM 4549 CA ILE B 652 -3.863 -17.519 90.542 00 6.94 C
ATOM 4550 C ILE B 652 -4.652 -18.223 89.448 00 8.31 c ATOM 4551 O ILE B 652 -4 261 -18 166 88 280 1 00 8 20
ATOM 4552 CB ILE B 652 -4 063 -15 990 90 427 1 00 7 23
ATOM 4553 CGI ILE B 652 -3 376 -15 263 91 584 1 00 6 52
ATOM 4554 CG2 ILE B 652 -5 559 -15 641 90 401 1 00 7 43
ATOM 4555 CDl ILE B 652 -3 200 -13 770 91 343 1 00 5 45
ATOM 4556 N VAL B 653 -5 740 -18 901 89 819 1 00 7 41
ATOM 4557 CA VAL B 653 -6 585 -19 580 88 836 1 00 5 84
ATOM 4558 C VAL B 653 -7 102 -18 573 87 814 1 00 7 58
ATOM 4559 O VAL B 653 -7 887 -17 681 88 144 1 00 8 69
ATOM 4560 CB VAL B 653 -7 777 -20 344 89 483 1 00 5 95
ATOM 4561 CGI VAL B 653 -8 682 -20 939 88 403 1 00 2 70
ATOM 4562 CG2 VAL 3 653 -7 279 -21 460 90 420 1 00 2 80
ATOM 4563 N SER B 654 -6 657 -18 712 86 568 1 00 6 47
ATOM 4564 CA SER B 654 -6 951 -17 704 85 561 1 00 7 38
ATOM 4565 C SER B 654 -7 797 -18 233 84 385 1 00 7 68
ATOM 4566 O SER B 654 -8 920 -17 780 84 175 1 00 9 39
ATOM 4567 CB SER B 654 -5 647 -17 057 85 065 1 00 6 48
ATOM 4568 OG SER B 654 -5 890 -16 172 83 985 1 00 4 85
ATOM 4569 N TRP 3 655 -7 260 -19 171 83 613 1 00 5 91
ATOM 4570 CA TRP B 655 -7 978 -19 686 82 448 1 00 5 90
ATOM 4571 C TRP 3 655 -7 490 -21 061 81 999 1 00 5 89
ATOM 4572 O TRP B 655 -6 561 -21 623 82 569 1 00 7 30
ATOM 4573 CB TRP B 655 -7 926 -18 698 81 281 1 00 4 63
ATOM 4574 CG TRP B 655 -6 570 -18 546 80 671 1 00 5 14
ATOM 4575 CDl TRP B 655 -5 523 -17 832 81 175 1 00 3 76
ATOM 4576 CD2 TRP B 655 -6 110 -19 118 79 437 1 00 4 95
ATOM 4577 NE1 TRP B 655 -4 440 -17 927 80 336 1 00 3 91
ATOM 4578 CE2 TRP B 655 -4 773 -18 710 79 260 1 00 4 82
ATOM 4579 CE3 TRP B 655 -6 689 -19 951 78 469 1 00 5 39
ATOM 4580 CZ2 TRP B 655 -4 008 -19 094 78 152 1 00 4 89
ATOM 4581 CZ3 TRP B 655 -5 934 -20 328 77 365 1 00 5 05
ATOM 4582 CH2 TRP B 655 -4 607 -19 903 77 218 1 00 5 65
ATOM 4583 N GLY B 656 -8 145 -21 595 80 979 1 00 7 16
ATOM 4584 CA GLY B 656 -7 826 -22 909 80 452 1 00 8 72
ATOM 4585 C GLY B 656 -8 822 -23 182 79 351 1 00 10 20
ATOM 4586 O GLY B 656 -9 531 -22 272 78 942 1 00 9 32
ATOM 4587 N SER B 657 -8 873 -24 414 78 856 1 00 12 03
ATOM 4588 CA SER B 657 -9 866 -24 764 77 846 1 00 12 56
ATOM 4589 C SER B 657 11 250 -24 785 78 490 1 00 13 45
ATOM 4590 O SER B 657 11 377 -24 936 79 712 1 00 12 28
ATOM 4591 CB SER B 657 -9 537 -26 108 77 177 1 00 13 54
ATOM 4592 OG SER B 657 -9 854 -27 215 78 008 1 00 13 15
ATOM 4593 N MET B 658 12 272 -24 612 77 660 1 00 14 68
ATOM 4594 CA MET B 658 13 664 -24 525 78 095 1 00 17 19
ATOM 4595 C MET B 658 14 123 -25 765 78 868 1 00 16 32
ATOM 4596 O MET B 658 14 804 -25 659 79 888 1 00 17 64
ATOM 4597 CB MET B 658 14 547 -24 318 76 868 1 00 20 71
ATOM 4598 CG MET B 658 15 957 -23 838 77 141 1 00 24 67
ATOM 4599 SD MET 3 658 16 826 -23 695 75 560 1 00 28 68
ATOM 4600 CE MET B 658 15 491 -24 007 74 412 1 00 27 83
ATOM 4601 N ASN B 659 13 757 -26 943 78 375 1 00 14 77
ATOM 4602 CA ASN 3 659 14 079 -28 180 79 074 1 00 15 33
ATOM 4603 C ASN 3 659 13 048 -28 509 80 143 1 00 14 28
ATOM 4604 O ASN B 659 852 -28 558 79 862 1 00 13 98
ATOM 4605 CB ASN 3 659 14 204 -29 333 78 081 1 00 15 55
ATOM 4606 CG ASN B 659 15 343 -29 127 77 108 1 00 16 66
ATOM 4607 OD1 ASN B 659 16 508 -29 070 77 505 1 00 17 25
ATOM 4608 ND2 ASN B 659 15 015 -28 994 75 831 1 00 15 37
ATOM 4609 N CYS B 660 13 509 -28 725 81 370 1 00 13 58
ATOM 4610 CA CYS B 660 12 588 -28 978 82 474 1 00 14 45
ATOM 4611 C CYS B 660 12 042 -30 400 82 496 1 00 14 24
ATOM 4612 O CYS B 660 12 764 -31 366 82 238 1 00 13 76
ATOM 4613 CB CYS B 660 13 218 -28 652 83 826 1 00 15 65
ATOM 4614 SG CYS B 660 11 952 -28 362 85 083 1 00 17 43
ATOM 4615 N GLY B 661 10 760 -30 513 82 821 1 00 15 34
ATOM 4616 CA GLY B 661 10 093 -31 799 82 886 1 00 17 15
ATOM 4617 C GLY B 661 -9 904 -32 417 81 516 1 00 19 25
ATOM 4618 O GLY B 661 -9 872 -33 638 81 378 1 00 20 80
ATOM 4619 N GLU B 662 -9 797 -31 570 80 497 1 00 17 60
ATOM 4620 CA GLU B 662 -9 550 -32 025 79 135 1 00 17 90
ATOM 4621 C GLU B 662 -8 086 -32 435 78 971 1 00 16 22
ATOM 4622 O GLU B 662 -7 182 -31 692 79 353 1 00 14 36
ATOM 4623 CB GLU B 662 -9 885 -30 909 78 145 1 00 18 29
ATOM 4624 CG GLU B 662 10 099 -31 392 76 725 1 00 21 78 ATOM 4625 CD GLU B 662 10.350 -30.262 75.749 1.00 22.87 C
ATOM 4626 OEl GLU B 662 10 .591 -29 .121 76 .197 1 .00 23 .67 0
ATOM 4627 OE2 GLU B 662 10 .305 -30 .521 74 .527 1. .00 25 .26 0
ATOM 4628 N ALA B 663 -7 .860 -33 .613 78 .396 1 .00 15 .01 N
ATOM 4629 CA ALA B 663 -6 .506 -34 .133 78 .191 1 .00 14 .79 C
ATOM 4630 C ALA B 663 -5 .663 -33 .197 77 .324 1 .00 13 .93 C
ATOM 4631 O ALA B 663 -6 .119 -32 .734 76 .280 1 .00 13 .33 o
ATOM 4632 CB ALA B 663 -6 .558 -35 .529 77 .566 1 .00 12, .97 c
ATOM 4633 N GLY B 664 -4 .440 -32 .917 77 .766 1 .00 13, .65 N
ATOM 4634 CA GLY B 664 -3 .528 -32 .082 77 .003 1 .00 13 .05 C
ATOM 4635 C GLY B 664 -3 .812 -30 .583 77 .001 1 .00 14 .18 C
ATOM 4636 O GLY B 664 -3 .127 -29 .833 76 .305 1 .00 14 .31 O
ATOM 4637 N GLN B 665 -4 .814 -30 .142 77, .763 1. .00 12, .29 N
ATOM 4638 CA GLN B 665 -5 .118 -28 .713 77, .883 1. .00 12, .14 C
ATOM 4639 C GLN B 665 -4 .969 -28 .246 79 .337 1. .00 11, .89 C
ATOM 4640 O GLN B 665 -5 .933 -28 .210 80 .108 1 .00 12 .30 0
ATOM 4641 CB GLN B 665 -6 .512 -28 .377 77 .333 1 .00 12 .46 c
ATOM 4642 CG GLN B 665 -6. .783 -28 .889 75, .905 1. .00 13. .12 c
ATOM 4643 CD GLN B 665 -5. .928 -28. .201 74. .847 1. .00 13. .52 c
ATOM 4644 OEl GLN B 665 -5. .564 -27 .033 74. .991 1. .00 13. .86 0
ATOM 4645 NE2 GLN B 665 -5. .613 -28. .925 73. .780 1. .00 14. .19 N
ATOM 4646 N TYR B 666 -3. .742 -27. .885 79. .685 1. .00 9. .50 N
ATOM 4647 CA TYR B 666 -3. .363 -27. .550 81. .049 1. .00 9. .62 C
ATOM 4648 C TYR B 666 -4. .035 -26. .283 81. .558 1. .00 8. .22 C
ATOM 4649 O TYR B 666 -4. .339 -25. .373 80. .782 1. .00 8. .10 o
ATOM 4650 CB TYR B 666 -1. .838 -27. .413 81. .116 1, .00 10, .01 c
ATOM 4651 CG TYR B 666 -1. .157 -28. .493 80. .314 1. .00 10. .20 c
ATOM 4652 CDl TYR B 666 -0. .683 -28. .243 79. .034 1. .00 10. .22 c
ATOM 4653 CD2 TYR B 666 -1. .033 -29 .777 80. .821 1. .00 11. .36 c
ATOM 4654 CEl TYR B 666 -0. .078 -29. .239 78. .287 1. .00 12. .25 c
ATOM 4655 CE2 TYR B 666 -0. .424 -30 .785 80. .081 1. .00 13. .37 c
ATOM 4656 CZ TYR B 666 0. .043 -30 .509 78. .816 1. .00 13. .01 c
ATOM 4657 OH TYR B 666 0. .641 -31 .503 78. .080 1. .00 16. .73 o
ATOM 4658 N GLY B 667 -4, .282 -26 .245 82. .864 1. .00 6. .07 N
ATOM 4659 CA GLY B 667 -4. .756 -25 .043 83. .522 1. .00 5. .52 C
ATOM 4660 C GLY B 667 -3. .682 -23 .977 83, .415 1. .00 5. .07 c
ATOM 4661 O GLY B 667 -2. .486 -24 .268 83, .489 1. .00 3. .60 0
ATOM 4662 N VAL B 668 -4. .100 -22. .737 83. .214 1. .00 5. .89 N
ATOM 4663 CA VAL B 668 -3. .146 -21. .650 83. .070 1. .00 6. .19 c
ATOM 4664 C VAL B 668 -3. .336 -20. .698 84. .235 1. .00 7. .62 c
ATOM 4665 O VAL B 668 -4. .455 -20. .293 84. .529 1. .00 9. .53 0
ATOM 4666 CB VAL B 668 -3. .325 -20. .926 81. .715 1. .00 6. .97 c
ATOM 4667 CGI VAL B 668 -2, .192 -19. .932 81. .470 1. .00 4. .88 c
ATOM 4668 CG2 VAL B 668 -3. .395 -21. .944 80. .584 1. .00 3. .86 c
ATOM 4669 N TYR B 669 -2. .243 -20. .374 84. .916 1. .00 8. .37 N
ATOM 4670 CA TYR B 669 -2, .305 -19. .559 86. .119 1. .00 7. .49 c
ATOM 4671 C TYR B 669 -1. .467 -18. .302 85. .971 1. .00 8. .35 c
ATOM 4672 O TYR B 669 -0, .406 -18. .325 85. .349 1. .00 9. .63 o
ATOM 4673 CB TYR B 669 -1. .846 -20 .362 87. .346 1. .00 6. .37 c
ATOM 4674 CG TYR B 669 -2. .632 -21 .635 87. .550 1. .00 6. .31 c
ATOM 4675 CDl TYR B 669 -2, .472 -22 .713 86. .691 1. .00 4. .82 c
ATOM 4676 CD2 TYR B 669 -3. .551 -21. .749 88. .581 1. .00 7. .11 c
ATOM 4677 CEl TYR B 669 -3. .190 -23 .872 86. .857 1. .00 7. .11 c
ATOM 4678 CE2 TYR B 669 -4. .283 -22 .911 88. .764 1. .00 6. .32 c
ATOM 4679 CZ TYR B 669 -4, .102 -23. .971 87. .896 1. .00 7. .76 c
ATOM 4680 OH TYR B 669 -4. .822 -25. .135 88. .057 1. .00 5. .76 0
ATOM 4681 N THR B 670 -1. .959 -17. .203 86. .540 1. .00 8, .42 N
ATOM 4682 CA THR B 670 -1, .195 -15. .967 86. .605 1. .00 8, .45 c
ATOM 4683 C THR B 670 0. .050 -16. .227 87. .425 1. .00 8. .81 c
ATOM 4684 O THR B 670 -0. ,034 -16. .787 88. .520 1. .00 10. .54 0
ATOM 4685 CB THR B 670 -2. ,037 -14. .863 87. .265 1. .00 8. .82 c
ATOM 4686 OGl THR B 670 -3. .248 -14. .681 86. .521 1. .00 9. .52 0
ATOM 4687 CG2 THR B 670 -1. .331 -13. .497 87. .176 1. .00 5, .66 c
ATOM 4688 N LYS B 671 1. .202 -15 .839 86, .889 1. .00 7. .13 N
ATOM 4689 CA LYS B 671 2, .480 -16. .051 87, .568 1. .00 7, .27 C
ATOM 4690 C LYS B 671 2. .728 -14 .963 88, .609 1. .00 7. .41 C
ATOM 4691 O LYS B 671 3. .269 -13. .902 88, .291 1. .00 7. .69 0
ATOM 4692 CB LYS B 671 3. .619 -16 .073 86. .549 1. .00 6. .03 c
ATOM 4693 CG LYS B 671 4. .890 -16. .733 87. .055 1. .00 6. .90 c
ATOM 4694 CD LYS B 671 6, .040 -16 .530 86. .070 1. .00 7, .37 c
ATOM 4695 CE LYS B 671 7. ,242 -17. ,359 86. .467 1. ,00 10. .50 c
ATOM 4696 NZ LYS B 671 8. 051 -17. .734 85. .268 1. ,00 14. .97 N
ATOM 4697 N VAL B 672 2. .326 -15. .240 89. .847 1. .00 6. .04 N
ATOM 4698 CA VAL B 672 2. .292 -14. ,239 90. .910 1. ,00 5. .20 C ATOM 4699 C VAL B 672 3..632 -13.534 91.154 1.00 6..06 c
ATOM 4700 O VAL B 672 3. .662 -12 .328 91 .406 1 .00 7. .41 0
ATOM 4701 CB VAL B 672 1. .770 -14 .853 92 .229 1 .00 4. .66 c
ATOM 4702 CGI VAL B 672 2. .087 -13 .956 93 .411 1 .00 3. .26 c
ATOM 4703 CG2 VAL B 672 0. .275 -15 .098 92 .135 1 .00 3. .00 c
ATOM 4704 N ILE B 673 4, .733 -14. .279 91 .074 1. .00 6. .43 N
ATOM 4705 CA ILE B 673 6. .046 -13 .722 91 .391 1 .00 7. .94 C
ATOM 4706 C ILE B 673 6. .413 -12 .562 90. .460 1. .00 8. .41 C
ATOM 4707 O ILE B 673 7. .176 -11 .685 90. .840 1. .00 8. .79 0
ATOM 4708 CB ILE B 673 7. .139 -14 .826 91. .395 1. .00 9. .10 c
ATOM 4709 CGI ILE B 673 8. .396 -14 .331 92 .114 1. .00 12. .12 c
ATOM 4710 CG2 ILE B 673 7. .473 -15. .280 89. .971 1. .00 6. .93 c
ATOM 4711 CDl ILE B 673 9. .211 -15 .432 92. .775 1. .00 15. .48 c
ATOM 4712 N ASN B 674 5. .849 -12 .553 89. .253 1. .00 8. .81 N
ATOM 4713 CA ASN B 674 6. .036 -11. .448 88. .315 1. .00 9. .76 C
ATOM 4714 C ASN B 674 5. .409 -10 .141 88. .795 1. .00 9. .54 C
ATOM 4715 O ASN B 674 5. .754 -9 .060 88 .299 1. .00 8. .31 O
ATOM 4716 CB ASN B 674 5. .437 -11. .801 86. .947 1. .00 10. .22 C
ATOM 4717 CG ASN B 674 6. .305 -12, .764 86. .157 1. .00 13. .19 C
ATOM 4718 OD1 ASN B 674 7. .170 -13, .437 86. .718 1. .00 13. .62 o
ATOM 4719 ND2 ASN B 674 6. .081 -12, .832 84. .846 1. .00 13. .16 N
ATOM 4720 N TYR B 675 4. .486 -10, .245 89. .752 1. .00 8. .25 N
ATOM 4721 CA TYR B 675 3. .661 -9, .106 90. .174 1. .00 7. .50 c
ATOM 4722 C TYR B 675 3. .933 -8, .646 91. .598 1. .00 7. .59 c
ATOM 4723 O TYR B 675 3. .179 -7, .855 92. .148 1. .00 7. .16 0
ATOM 4724 CB TYR B 675 2. .173 -9 .438 89, .994 1, .00 6. .46 c
ATOM 4725 CG TYR B 675 1. .829 -9, .664 88. .543 1. .00 6. .40 c
ATOM 4726 CDl TYR B 675 1. .816 -10, .941 88, .006 1. .00 6. .56 c
ATOM 4727 CD2 TYR B 675 1. .571 -8. .593 87. .704 1, .00 4. .52 c
ATOM 4728 CEl TYR B 675 1. .533 -11, .151 86. .681 1. .00 7. .87 c
ATOM 4729 CE2 TYR B 675 1. .290 -8 .786 86. .377 1. .00 7. .35 c
ATOM 4730 CZ TYR B 675 1. .268 -10 .067 85. .865 1. .00 8, .48 c
ATOM 4731 OH TYR B 675 0, .990 -10 .253 84. .535 1. .00 7. .48 0
ATOM 4732 N ILE B 676 5. .014 -9 .146 92. .185 1. .00 7. .31 N
ATOM 4733 CA ILE B 676 5. .404 -8 .762 93. .534 1. .00 7. .28 c
ATOM 4734 C ILE B 676 5. .586 -7, .235 93. .701 1. .00 8. .01 c
ATOM 4735 O ILE B 676 5. .067 -6 .653 94. .653 1. .00 8, .97 0
ATOM 4736 CB ILE B 676 6, .664 -9, .562 93, .966 1. .00 7. .39 c
ATOM 4737 CGI ILE B 676 6. .288 -11 .014 94, .292 1. .00 8. .07 c
ATOM 4738 CG2 ILE B 676 7. .386 -8, .904 95, .140 1. .00 5. .65 c
ATOM 4739 CDl ILE B 676 5. .252 -11, .165 95, .384 1, .00 9, .40 c
ATOM 4740 N PRO B 677 6. .306 -6. .576 92. .792 1. .00 6. .82 N
ATOM 4741 CA PRO B 677 6. .432 -5 .113 92. .855 1. .00 6. .99 C
ATOM 4742 C PRO B 677 5. .078 -4, .391 92. .780 1. .00 5, .65 c
ATOM 4743 O PRO B 677 4. .847 -3, .452 93. .548 1. .00 2. .69 o
ATOM 4744 CB PRO B 677 7. .310 -4, .780 91. .637 1. .00 6. .57 c
ATOM 4745 CG PRO B 677 8, .093 -6, .048 91. .402 1. .00 6. .66 c
ATOM 4745 CD PRO 3 677 7. .082 -7, .147 91. .674 1, .00 7. .37 c
ATOM 4747 N TRP B 678 4. .213 -4 .821 91. .863 1. .00 5. .21 N
ATOM 4748 CA TRP 3 678 2. .872 -4 .263 91. .731 1. .00 6. .27 C
ATOM 4749 C TRP 3 678 2. .089 -4 .471 93. .027 1, .00 6, .63 c
ATOM 4750 0 TRP 3 678 1, .517 -3 .527 93. .569 1. .00 7. .71 0
ATOM 4751 CB TR? B 678 2. .144 -4 .891 90. .530 1. .00 6. .66 c
ATOM 4752 CG TRP B 678 0. .758 -4 .353 90. .268 1. .00 6. .67 c
ATOM 4753 CDl TRP B 678 0. .426 -3 .223 89 .566 1. .00 6. .32 c
ATOM 4754 CD2 TRP B 678 -0. .485 -4 .940 90 .685 1, .00 6. .70 c
ATOM 4755 NE1 TRP B 678 -0. .942 -3 .065 89 .539 1. .00 4. .64 N
ATOM 4756 CE2 TRP B 678 -1. .525 -4 .104 90. .219 1, .00 6. .21 c
ATOM 4757 CE3 TRP B 678 -0, .825 -6 .082 91. .425 1. .00 5. .58 c
ATOM 4758 CZ2 TRP B 678 -2. .878 -4 .382 90. .457 1. .00 5, .51 c
ATOM 4759 CZ3 TRP B 678 -2. .161 -6 .353 91. .663 1, .00 5. .70 c
ATOM 4760 CH2 TRP B 678 -3. .173 -5 .504 91. .180 1. .00 4. .80 c
ATOM 4761 N ILE B 679 2. .097 -5 .698 93 .541 1. .00 6. .29 N
ATOM 4762 CA ILE B 679 1. .414 -6 .008 94 .799 1. .00 6. .09 C
ATOM 4763 C ILE B 679 1. .926 -5 .153 95 .957 1. .00 7. .83 C
ATOM 4764 O ILE B 679 1. .136 -4 .572 96 .708 1. .00 8. .57 0
ATOM 4765 CB ILE B 679 1. .536 -7 .512 95 .150 1. .00 4. .70 c
ATOM 4766 CGI ILE B 679 0. .706 -8 .358 94. .179 1, .00 4. .00 c
ATOM 4767 CG2 ILE B 679 1. .091 -7 .762 96. .582 1. .00 3. .33 c
ATOM 4768 CDl ILE B 679 1. .167 -9 .814 94 .079 1. .00 3, .40 c
ATOM 4769 N GLU B 680 3. .245 -5, .078 96. .100 1. ,00 8. .69 N
ATOM 4770 CA GLU B 680 3. .845 -4, .292 97. .177 1. .00 11. .00 c
ATOM 4771 C GLU B 680 3. .594 -2, .787 97. .023 1. .00 9. .80 c
ATOM 4772 O GLU B 680 3. .389 -2, .088 98. .016 1. .00 8. .60 0 ATOM 4773 CB GLU B 680 5.344 -4.601 97.316 1.00 13.04 C
ATOM 4774 CG GLU B 680 5 .623 -6.062 97 .655 1.00 15.92 C
ATOM 4775 CD GLU B 680 7. .102 -6.376 97. .841 1.00 17.98 C
ATOM 4776 OEl GLU B 680 7. .953 -5.722 97 .196 1.00 17.28 O
ATOM 4777 OE2 GLU B 680 7 .411 -7.298 98 .632 1.00 18.15 O
ATOM 4778 N ASN B 681 3. .604 -2.299 95 .786 1.00 9.08 N
ATOM 4779 CA ASN B 681 3. .220 -0.914 95. .493 1.00 9.41 C
ATOM 4780 C ASN B 681 1. .816 -0.571 96. .002 1.00 8.45 C
ATOM 4781 O ASN B 681 1. .622 0.439 96. .671 1.00 8.86 O
ATOM 4782 CB ASN B 681 3. .301 -0.643 93. .986 1.00 10.59 C
ATOM 4783 CG ASN B 681 2. .929 0.789 93. .619 1.00 12.95 C
ATOM 4784 OD1 ASN B 681 2. .819 1.127 92. .445 1.00 13.85 0
ATOM 4785 ND2 ASN B 681 2. .752 1.635 94 .621 1.00 15.33 N
ATOM 4786 N ILE B 682 0 .835 -1.407 95 .683 1.00 8.17 N
ATOM 4787 CA ILE B 682 -0. .549 -1.099 96. .048 1.00 7.73 C
ATOM 4788 C ILE B 682 -0. .786 -1.262 97 .550 1.00 7.96 C
ATOM 4789 O ILE B 682 -1. .357 -0.388 98 .204 1.00 6.65 O
ATOM 4790 CB ILE B 682 -1. .530 -1.961 95. .237 1.00 8.64 C
ATOM 4791 CGI ILE B 682 -1. .626 -1.434 93. .800 1.00 8.07 C
ATOM 4792 CG2 ILE B 682 -2. .908 -2.000 95. .909 1.00 7.50 C
ATOM 4793 CDl ILE B 682 -2. .262 -2.401 92. .859 1.00 8.16 C
ATOM 4794 N ILE B 683 -0 .322 -2.374 98 .100 1.00 7.38 N
ATOM 4795 CA ILE B 683 -0. .509 -2.629 99. .518 1.00 6.88 C
ATOM 4796 C ILE B 683 0. .199 -1.601 100. .397 1.00 8.99 C
ATOM 4797 O ILE B 683 -0. .331 -1.205 101. .440 1.00 10.68 0
ATOM 4798 CB ILE B 683 -0 .087 -4.067 99 .867 1.00 5.22 C
ATOM 4799 CGI ILE B 683 -1. .132 -5.045 99. .310 1.00 4.27 c
ATOM 4800 CG2 ILE B 683 0. .077 -4.230 101. .384 1.00 2.13 c
ATOM 4801 CDl ILE B 683 -0. .844 -6.515 99. .599 1.00 4.74 c
ATOM 4802 N SER B 684 1 .374 -1.141 99 .972 1.00 7.76 N
ATOM 4803 CA SER B 684 2. .113 -0.149 100 .750 1.00 8.24 C
ATOM 4804 C SER B 684 1. .523 1.252 100 .612 1.00 7.58 C
ATOM 4805 O SER B 684 1 .651 2.079 101 .511 1.00 7.22 O
ATOM 4806 CB SER B 684 3. .602 -0.128 100. .359 1.00 9.06 C
ATOM 4807 OG SER B 684 3. .822 0.597 99. .157 1.00 6.80 O
ATOM 4808 N ASP B 685 0. .884 1.521 99. .481 1.00 7.02 N
ATOM 4809 CA ASP B 685 0. .397 2.865 99. .193 1.00 6.83 C
ATOM 4810 C ASP B 685 -1. .043 3.114 99. .654 1.00 8.11 C
ATOM 4811 O ASP B 685 -1. .488 4.256 99. .704 1.00 7.90 O
ATOM 4812 CB ASP B 685 0. .537 3.170 97. .699 1.00 4.13 C
ATOM 4813 CG ASP B 685 0. .688 4.648 97. .419 1.00 3.70 c
ATOM 4814 OD1 ASP B 685 1. .179 5.374 98. .307 1.00 2.16 0
ATOM 4815 OD2 ASP B 685 0. .348 5.177 96. .343 1.00 2.25 0
ATOM 4816 N PHE B 686 -1. .769 2.050 99. .980 1.00 10.94 N
ATOM 4817 CA PHE B 686 -3. .154 2.187 100. .425 1.00 15.36 C
ATOM 4818 C PHE B 686 -3. .379 1.449 101. .737 1.00 19.12 C
ATOM 4819 O PHE B 686 -2. .463 1.303 102. .551 1.00 22.23 O
ATOM 4820 CB PHE B 686 -4. .137 1.700 99. .351 1.00 14.13 C
ATOM 4821 CG PHE B 686 -4. .057 2.475 98. .064 1.00 13.57 C
ATOM 4822 CDl PHE B 686 -3. .188 2.087 97. .053 1.00 12.72 C
ATOM 4823 CD2 PHE B 686 -4. .833 3.607 97. .871 1.00 13.53 c
ATOM 4824 CEl PHE B 686 -3. .100 2.809 95. .877 1.00 12.54 c
ATOM 4825 CE2 PHE B 686 -4. .750 4.333 96. .692 1.00 12.99 c
ATOM 4826 CZ PHE B 686 -3. .883 3.933 95. .696 1.00 12.39 c
ATOM 4827 OXT PHE B 686 -4. .482 0.990 102. .022 1.00 22.36 0
TER 4828 PHE B 686
HETATM 4829 NA NA 800 -10 .031 24.163 69 .183 1.00 33.07 NA
HETATM 4830 NA NA 850 -9 .855 -26.986 80. .704 1.00 52.64 NA
HETATM 4831 CI GOL 700 2. .135 8.560 44. .195 1.00 33.91 c
HETATM 4832 01 GOL 700 1, .159 8.653 43. .172 1.00 32.00 0
HETATM 4833 C2 GOL 700 1. .443 8.376 45. .544 1.00 34.32 c
HETATM 4834 02 GOL 700 0. .374 9.289 45, .657 1.00 32.29 0
HETATM 4835 C3 GOL 700 2. .424 8.564 46. .703 1.00 35.95 c
HETATM 4836 03 GOL 700 3. .125 9.794 46. .614 1.00 36.17 0
HETATM 4837 CI GOL 701 -10. .558 17.680 64. .214 1.00 68.97 c
HETATM 4838 01 GOL 701 -11 .934 17.644 63 .908 1.00 69.43 0
HETATM 4839 C2 GOL 701 -10. .191 18.959 64. .961 1.00 68.15 c
HETATM 4840 02 GOL 701 -11. .346 19.698 65. .270 l.oo 68.42 0
HETATM 4841 C3 GOL 701 -9. .278 19.809 64. .093 1.00 68.30 c
HETATM 4842 03 GOL 701 -8. .231 20.340 64. .874 1.00 68.18 0
HETATM 4843 CI GOL 702 -24. .283 9.821 40. .460 1.00 83.39 c
HETATM 4844 01 GOL 702 -24. .299 9.699 41. .866 1.00 83.27 0 HETATM 4845 C2 GOL 702 22.946 10.395 40.003 1..00 83.21 c
HETATM 4846 02 GOL 702 21 .915 9. .454 40 .196 1 .00 82 .80 0
HETATM 4847 C3 GOL 702 22 .630 11. .656 40. .795 1 .00 82 .99 c
HETATM 4848 03 GOL 702 22. .407 12. .721 39. .899 1. .00 82 .61 0
HETATM 4849 CI GOL 703 7. .745 15. .717 46. .647 1. .00 67. .72 c
HETATM 4850 01 GOL 703 8. .123 15. .476 45, .311 1. .00 66. .46 0
HETATM 4851 C2 GOL 703 8 .361 14. .659 47, .556 1 .00 68 .32 c
HETATM 4852 02 GOL 703 7. .914 13, .375 47, .177 1. .00 67 .89 0
HETATM 4853 C3 GOL 703 7. .946 14, .936 48, .993 1. .00 68 .42 c
HETATM 4854 03 GOL 703 8, .917 15. .750 49, .614 1. .00 68 .88 0
HETATM 4855 CI GOL 750 2. .001 -11. .770 105, .375 1. .00 43. .37 c
HETATM 4856 01 GOL 750 1, .044 -11. .715 106, .418 1. .00 42, .14 0
HETATM 4857 C2 GOL 750 1. .322 -11. .442 104, .046 1 .00 44 .36 c
HETATM 4858 02 GOL 750 0. .222 -12. .298 103, .825 1. .00 42 .79 o
HETATM 4859 C3 GOL 750 2. .301 -11. .546 102. .878 1. .00 45, .95 c
HETATM 4860 03 GOL 750 3. .129 -12. .686 102. .994 1. .00 46, .80 o
HETATM 4861 CI GOL 751 11. .276 -21. .000 84. .287 1. .00 69, .12 c
HETATM 4862 01 GOL 751 11. .689 -20. .791 85. .621 1. .00 69, .50 o
HETATM 4863 C2 GOL 751 10. .418 -22. .256 84. .181 1. .00 68, .87 c
HETATM 4864 02 GOL 751 11. .143 -23, .360 84. .660 1. .00 68. .88 0
HETATM 4865 C3 GOL 751 -9. .149 -22. .113 85. .008 1. .00 68, .78 c
HETATM 4866 03 GOL 751 -8. .439 -23. .334 85. .016 1. .00 68, .83 0
HETATM 4867 CI GOL 754 -1. .142 -4. .673 105. .389 1. .00 61. .38 c
HETATM 4868 01 GOL 754 -2 .222 -4. .834 106. .282 1. .00 60. .88 o
HETATM 4869 C2 GOL 754 -0. .897 -3. .191 105, .134 1. .00 61. .37 c
HETATM 4870 02 GOL 754 -0. .344 -2. .614 106, .293 1. .00 62. .13 0
HETATM 4871 C3 GOL 754 -2. .204 -2. .489 104. .770 1. .00 60. .85 c
HETATM 4872 03 GOL 754 -2. .123 -1. .976 103. .455 1, .00 59. .88 0
HETATM 4873 0 HOH 1 11. .193 15. .281 66. .457 1, .00 33. .07 0
HETATM 4874 0 HOH 2 12 .458 15. .684 70. .347 1 .00 49 .57 o
HETATM 4875 0 HOH 3 -7 .772 22. .577 65. .981 1 .00 32 .93 o
HETATM 4876 0 HOH 4 -8 .799 25. .943 68. .425 1. .00 42. .55 o
HETATM 4877 0 HOH 5 -7 .829 23. .408 68. .384 1. .00 36 .67 0
HETATM 4878 0 HOH 6 10. .310 23. .075 67. .178 1. .00 54. .00 0
HETATM 4879 0 HOH 7 -9. .078 14. .620 73. .684 1. .00 50. .51 0
HETATM 4880 0 HOH 8 11 .450 -18. .300 82. .979 1 .00 28 .67 o
HETATM 4881 0 HOH 9 13 .241 -16, .346 82. .106 1. .00 47. .96 o
HETATM 4882 0 HOH 10 -8. .005 -25. .710 83. .445 1. .00 34. .13 0
HETATM 4883 0 HOH 11 -7. .804 -26. .241 80. .852 1. .00 37. .49 o
HETATM 4884 0 HOH 12 10. .407 -26. .261 82. .817 1. .00 59. .04 o
HETATM 4885 0 HOH 13 5. .204 28. .454 65. .369 1. .00 45. .75 0
HETATM 4886 0 HOH 14 -9. .420 -0. .996 85. .486 1. .00 51. .96 0
HETATM 4887 0 HOH 15 -7. .063 -1. .401 85. .537 1. .00 47. .31 0
HETATM 4888 0 HOH 16 -7. .123 -2, .816 83. .365 1. .00 42. .63 o
HETATM 4889 0 HOH 17 0. .667 3. .655 94, .049 1, .00 31. .22 o
HETATM 4890 0 HOH 18 14, .345 24. .793 55, .991 1. .00 19. .96 o
HETATM 4891 0 HOH 19 12, .806 29. .918 56, .759 1. .00 29, .76 0
HETATM 4892 0 HOH 20 -3 .152 9. .931 89, .539 1 .00 30 .19 0
HETATM 4893 0 HOH 21 -1, .032 -13. .073 83, .456 1 .00 26, .99 0
HETATM 4894 0 HOH 22 -5. .019 -27. .000 86, .273 1. .00 31, .97 0
HETATM 4895 0 HOH 23 -4, .883 24. .131 63, .097 1. .00 33. .57 o
HETATM 4896 0 HOH 24 -5, .008 19. .543 51, .404 1. .00 25. .25 o
HETATM 4897 0 HOH 25 13, .688 18. .318 55, .317 1. .00 33. .93 0
HETATM 4898 0 HOH 26 -7 .588 -37. .820 90 .564 1 .00 41 .29 0
HETATM 4899 0 HOH 27 14, .417 -28. .845 102, .463 1. .00 29. .69 0
HETATM 4900 0 HOH 28 -7, .004 -22. .394 94, .448 1. .00 33. .00 0
HETATM 4901 0 HOH 29 -7, .220 16. .282 51, .953 1. .00 26. .51 o
HETATM 4902 0 HOH 30 12, .811 -3. .294 55. .896 1. .00 41. .47 0
HETATM 4903 0 HOH 31 9, .806 -24. .480 78. .313 1, .00 42. .59 0
HETATM 4904 0 HOH 32 10, .701 -26. .998 81. .780 1. .00 46. .71 0
HETATM 4905 0 HOH 33 -3, .073 -15. .207 83. .646 1. .00 23. .18 0
HETATM 4906 0 HOH 34 5. .027 -6. .233 89, .019 1. .00 27. .86 0
HETATM 4907 0 HOH 35 -4, .995 28. .792 65, .466 1. .00 32. .19 0
HETATM 4908 0 HOH 36 9, .875 21. .439 70. .935 1, .00 40. .88 0
HETATM 4909 0 HOH 37 -0, .136 17. .119 76. .132 1. .00 37. .43 0
HETATM 4910 0 HOH 38 22 .456 -25. .260 100. .267 1 .00 32. .66 0
HETATM 4911 0 HOH 39 3. .322 -5, .179 87. .197 1. .00 29. .77 0
HETATM 4912 0 HOH 40 10, .242 -11. .562 79. .978 1. .00 28. .08 0
HETATM 4913 0 HOH 41 8, .145 13. .130 66. .642 1, .00 35, .40 0
HETATM 4914 0 HOH 42 29, .823 -29. .190 98. .548 1. .00 37, .95 0
HETATM 4915 0 HOH 43 -8. .243 -2. .370 60, .093 1. .00 41. .71 0
HETATM 4916 0 HOH 44 14. .447 -27. .837 93. .330 1. .00 28. .71 0
HETATM 4917 0 HOH 45 23. .425 23, .192 59. .940 1. .00 29. .46 0
HETATM 4918 0 HOH 46 -1. .077 10. .144 66. .134 1. .00 23. .93 0 HETATM 4919 0 HOH 47 -5.095 -22.522 97.935 1.00 26.91 0
HETATM 4920 0 HOH 48 10 .882 18 .128 55 .406 1 .00 27 .33 0
HETATM 4921 0 HOH 49 13 .685 -21 .460 94 .128 1 .00 26 .61 0
HETATM 4922 0 HOH 50 14. .210 25, .852 47 .102 1. .00 36. .87 0
HETATM 4923 0 HOH 51 -6 .949 19 .295 55 .177 1 .00 33 .23 0
HETATM 4924 0 HOH 52 1. .501 25 .981 52 .570 1. .00 33 .25 0
HETATM 4925 0 HOH 53 -2. .900 12, .172 65 .746 1. .00 25. .16 0
HETATM 4926 0 HOH 54 -5. .983 18 .960 63 .564 1. .00 34 .33 0
HETATM 4927 0 HOH 55 -2. .256 -26, .056 101 .858 1. .00 42. .31 0
HETATM 4928 0 HOH 56 14. .050 -35. .898 95. .969 1. .00 39. .07 o
HETATM 4929 0 HOH 57 5. .092 3 .182 60 .572 1. .00 28 .59 0
HETATM 4930 0 HOH 58 16. .639 -27 .162 101 .084 1. .00 36. .74 0
HETATM 4931 0 HOH 59 19. .822 28. .313 57. .928 1. .00 41. .40 0
HETATM 4932 0 HOH 60 -7. .485 -19 .212 97 .641 1. .00 29. .05 o
HETATM 4933 0 HOH 61 14. .120 22. .341 66 .030 1. .00 39. .86 0
HETATM 4934 0 HOH 62 13, .178 37. .863 61. .726 1. .00 30. .38 o
ΗETATM 4935 0 HOH 63 15 .863 1 .929 85 .892 1. .00 46. .31 0
HETATM 4936 0 HOH 64 2 .859 -6 .807 82 .819 1. .00 32. .18 0
HETATM 4937 0 HOH 65 4. .824 -17. .266 90 .776 1, .00 30. .21 0
HETATM 4938 0 HOH 66 -5 .958 -21 .997 85 .780 1. .00 33 .22 0
HETATM 4939 0 HOH 67 5, .772 -30 .776 81 .620 1. .00 26. .28 0
HETATM 4940 0 HOH 68 4, .292 20 .414 66 .589 1. .00 34. .38 o
HETATM 4941 0 HOH 69 - .138 18 .025 38 .827 1. .00 41. .02 o
HETATM 4942 0 HOH 70 -1 .771 -0 .925 46 .225 1. .00 56 .85 0
HETATM 4943 0 HOH 71 -4, .384 12. .001 72 .321 1. .00 30. .30 o
HETATM 4944 0 HOH 72 ■11 .155 17 .068 68 .781 1. .00 31 .23 0
HETATM 4945 0 HOH 73 6, .281 -19 .211 89 .302 1. .00 26. .31 0
HETATM 4946 0 HOH 74 22, .311 22 .280 49 .037 1. .00 31. .00 o
HETATM 4947 0 HOH 75 10. .949 15. .735 44. .567 1. .00 30. .05 0
HETATM 4948 0 HOH 76 -0. .260 -20 .416 73 .235 1. .00 35 .43 0
HETATM 4949 0 HOH 77 -2. .968 9 .574 73 .388 1. .00 47. .39 0
HETATM 4950 0 HOH 78 14. .009 -31. .697 105. .814 1. .00 40. .92 0
HETATM 4951 0 HOH 79 6 .955 27 .035 54 .736 1. .00 35 .09 0
HETATM 4952 0 HOH 80 ■18. .889 -11. .912 110 .126 1. .00 37, .43 0
HETATM 4953 0 HOH 81 -2. .056 -19. .236 71. .633 1. .00 36. .47 0
HETATM 4954 0 HOH 82 -8. .708 -2 .206 105 .673 1, .00 46. .58 o
HETATM 4955 0 HOH 83 18. .495 -13. .749 92. .088 1. .00 43. .69 0
HETATM 4956 0 HOH 84 13, .665 31. .298 59. .042 1. .00 34. .01 0
HETATM 4957 0 HOH 85 17, .104 24. .263 48 .344 1. .00 38, .02 0
HETATM 4958 0 HOH 86 13. .763 -34, .343 90. .335 1. .00 31. .83 0
HETATM 4959 0 HOH 87 4. .995 14, .181 58. .857 1. .00 27. .80 0
HETATM 4960 0 HOH 88 3, .372 2, .299 62. .261 1. .00 29. .34 0
HETATM 4961 0 HOH 89 10. .867 20, .032 45. .335 1. ,00 38. ,62 0
HETATM 4962 0 HOH 90 6. .541 19. .453 64. .729 1. .00 37. .94 0
HETATM 4963 0 HOH 91 -4. .621 -34, .240 94. .636 1. .00 36. .47 0
HETATM 4964 0 HOH 92 21. .321 -8. .060 95. .554 1. .00 48. .09 0
HETATM 4965 0 HOH 93 10. .912 -21. .192 93. .945 1. .00 25. .86 0
HETATM 4966 0 HOH 94 24. .121 -3. .313 84. .823 1. .00 48. .48 0
HETATM 4967 0 HOH 95 1. .480 -28. .899 96. .865 1. .00 30. .27 o
HETATM 4968 0 HOH 96 -4. .772 -31, .110 80. .685 1. .00 42. .61 0
HETATM 4969 0 HOH 97 14. .392 2, .875 43. .767 1. .00 31. .85 o
HETATM 4970 0 HOH 98 -5. .710 -9, .175 79. .679 1. .00 27. .93 o
HETATM 4971 0 HOH 99 1. .436 -18. .120 73. .648 1. ,00 36. .41 0
HETATM 4972 0 HOH 100 16. .549 -28. .967 81. .657 1. .00 44. .11 o
HETATM 4973 0 HOH 101 18. .021 10. .773 57, .263 1. .00 35. ,51 0
HETATM 4974 0 HOH 102 -4. .060 -21. .277 110. .574 1. .00 42. ,00 0
HETATM 4975 0 HOH 103 -2. ,185 23, .075 47. .812 1. ,00 43. ,01 0
HETATM 4976 0 HOH 104 -9. .583 -25. .427 104. .307 1. ,00 32. .89 0
HETATM 4977 0 HOH 105 -5. .644 6. .247 69. ,733 1. 00 30. .57 0
HETATM 4978 0 HOH 106 10. .849 -22. .854 104. .219 1. ,00 31. .23 0
HETATM 4979 0 HOH 107 -5. .281 12. .805 54. .532 1. .00 27. .20 0
HETATM 4980 0 HOH 108 -4. 303 7. .375 72. .163 1. 00 41. .05 0
HETATM 4981 0 HOH 109 10. 119 1. .120 69. .167 1. 00 35. 45 0
HETATM 4982 0 HOH 110 -4. .546 31. .125 54. .629 1. .00 41. .84 0
HETATM 4983 0 HOH 111 11. .755 -23. .839 75. .201 1. 00 39. 04 0
HETATM 4984 0 HOH 112 6. 530 16. 028 60. .022 1. 00 34. 37 0
HETATM 4985 0 HOH 113 11. .379 22. .728 73. .331 1. .00 48. .38 0
HETATM 4986 0 HOH 114 12. 805 -32. .847 92. .531 1. 00 29. 56 0
HETATM 4987 0 HOH 115 -5. 550 -31. 692 107. .277 1. 00 45. 92 0
HETATM 4988 0 HOH 116 8. .086 -27. .971 98. .355 1. 00 39. 61 o
HETATM 4989 0 HOH 117 -5. .341 -15. .883 94, .882 1. .00 27. .78 0
HETATM 4990 0 HOH 118 -5. .939 -2. .097 80. .087 1. .00 62. .33 0
HETATM 4991 0 HOH 119 11. ,724 -27. .999 93. .489 1. .00 50. .62 0
HETATM 4992 0 HOH 120 6. ,242 -10. .022 101. .037 1. .00 62. .29 0 HETATM 4993 0 HOH 121 0 609 9 346 75 420 1 00 32 28 0
HETATM 4994 0 HOH 122 4 531 26 887 51 107 1 00 46 23 0
HETATM 4995 0 HOH 123 16 039 22 219 57 208 1 00 33 20 0
HETATM 4996 0 HOH 124 13 380 13 954 67 000 1 00 37 72 0
HETATM 4997 0 HOH 125 21 472 16 570 59 778 1 00 46 01 0
HETATM 4998 0 HOH 126 18 028 -18 542 98 546 1 00 43 46 0
HETATM 4999 0 HOH 127 11 863 -9 262 72 588 1 00 44 42 0
HETATM 5000 0 HOH 128 -9 693 22 496 45 377 1 00 35 06 0
HETATM 5001 0 HOH 129 4 318 -23 456 82 983 1 00 31 59 0
HETATM 5002 0 HOH 130 4 562 24 583 52 421 1 00 38 05 0
HETATM 5003 0 HOH 131 25 939 -15 446 103 576 1 00 54 04 0
HETATM 5004 0 HOH 132 10 144 8 329 69 468 1 00 28 57 0
HETATM 5005 0 HOH 133 17 171 21 473 41 665 1 00 41 38 0
HETATM 5006 0 HOH 134 21 591 -18 941 95 687 1 00 55 05 0
HETATM 5007 0 HOH 135 11 851 -25 407 85 564 1 00 38 96 0
HETATM 5008 0 HOH 136 21 776 -1 566 66 526 1 00 44 03 0
HETATM 5009 0 HOH 137 11 515 -25 442 76 229 1 00 41 28 0
HETATM 5010 0 HOH 138 13 439 7 630 38 312 1 00 44 68 o
HETATM 5011 0 HOH 139 4 586 14 992 73 517 1 00 53 88 0
HETATM 5012 0 HOH 140 6 870 -1 978 94 345 1 00 38 58 0
HETATM 5013 0 HOH 141 17 259 6 246 60 898 1 00 52 84 0
HETATM 5014 0 HOH 142 5 833 27 573 68 053 1 00 31 59 0
HETATM 5015 0 HOH 143 -5 458 -2 284 59 855 1 00 44 99 0
HETATM 5016 0 HOH 144 16 511 -31 071 84 326 1 00 38 07 0
HETATM 5017 0 HOH 145 1 480 -29 995 74 140 1 00 52 18 0
HETATM 5018 0 HOH 146 11 693 34 103 56 803 1 00 34 67 0
HETATM 5019 0 HOH 147 8 476 -3 344 96 773 1 00 46 61 0
HETATM 5020 0 HOH 148 -1 223 1 732 38 732 1 00 52 63 o
HETATM 5021 0 HOH 149 5 117 -12 902 77 217 1 00 37 74 0
HETATM 5022 0 HOH 150 10 419 19 711 42 257 1 00 46 32 0
HETATM 5023 0 HOH 151 4 215 -6 905 84 949 1 00 48 37 0
HETATM 5024 0 HOH 152 11 350 18 848 61 250 1 00 63 85 0
HETATM 5025 0 HOH 153 10 819 -18 338 105 167 1 00 34 53 0
HETATM 5026 0 HOH 154 24 409 7 407 51 121 1 00 44 62 0
HETATM 5027 0 HOH 155 21 716 15 602 47 227 1 00 38 16 0
HETATM 5028 0 HOH 156 16 375 4 997 73 769 1 00 54 25 0
HETATM 5029 0 HOH 157 -3 780 32 383 52 417 1 00 62 09 0
HETATM 5030 0 HOH 158 13 964 -19 855 103 222 1 00 42 00 0
HETATM 5031 0 HOH 159 5 056 -31 439 84 058 1 00 40 20 0
HETATM 5032 0 HOH 160 15 854 -25 246 92 263 1 00 35 82 0
HETATM 5033 0 HOH 161 10 600 -0 229 38 239 1 00 50 52 0
HETATM 5034 0 HOH 162 -2 129 16 169 77 602 1 00 39 28 o
HETATM 5035 0 HOH 163 18 402 22 149 67 380 1 00 55 82 0
HETATM 5036 0 HOH 164 13 891 28 846 43 971 1 00 45 53 o
HETATM 5037 0 HOH 165 8 191 -16 124 83 047 1 00 38 08 0
HETATM 5038 0 HOH 166 29 536 26 370 51 007 1 00 41 51 0
HETATM 5039 0 HOH 167 16 517 26 208 67 415 1 00 50 02 0
HETATM 5040 0 HOH 168 15 005 -18 971 86 798 1 00 43 39 o
HETATM 5041 0 HOH 169 16 480 27 862 64 721 1 00 37 73 o
HETATM 5042 0 HOH 170 16 362 9 204 68 684 1 00 47 22 o
HETATM 5043 0 HOH 171 4 571 1 716 24 133 1 00 43 41 o
HETATM 5044 0 HOH 172 16 123 -12 323 80 716 1 00 54 02 0
HETATM 5045 0 HOH 173 21 788 -18 624 102 323 1 00 47 66 o
HETATM 5046 0 HOH 174 2 024 -32 930 83 545 1 00 49 01 o
HETATM 5047 0 HOH 175 16 738 26 321 44 953 1 00 50 04 o
HETATM 5048 0 HOH 176 -5 446 26 302 66 541 1 00 40 29 0
HETATM 5049 0 HOH 177 0 680 -6 619 55 434 1 00 38 24 0
HETATM 5050 0 HOH 178 15 392 -1 437 53 372 1 00 44 44 0
HETATM 5051 0 HOH 179 10 812 -22 758 106 802 1 00 39 97 o
HETATM 5052 0 HOH 180 -9 689 35 167 62 050 1 00 43 12 0
HETATM 5053 0 HOH 181 15 547 10 778 37 089 1 00 49 99 0
HETATM 5054 0 HOH 182 3 419 -6 810 100 495 1 00 33 95 0
HETATM 5055 0 HOH 183 13 888 10 146 70 255 1 00 47 28 0
HETATM 5056 0 HOH 184 15 492 -1 437 96 670 1 00 44 52 0
HETATM 5057 0 HOH 185 7 207 -13 310 31 340 1 00 49 66 0
HETATM 5058 0 HOH 186 13 476 10 952 67 446 1 00 48 61 0
HETATM 5059 0 HOH 187 5 291 8 872 45 242 1 00 45 35 0
HETATM 5060 0 HOH 188 18 555 8 535 39 210 1 00 44 30 0
HETATM 5061 0 HOH 189 13 870 32 951 53 492 1 00 41 92 0
HETATM 5062 0 HOH 190 6 836 -30 313 94 877 1 00 35 87 0
HETATM 5063 0 HOH 191 13 277 -29 339 91 936 1 00 45 73 0
HETATM 5064 0 HOH 192 16 549 -8 172 75 919 1 00 44 64 0
HETATM 5065 0 HOH 193 14 148 30 594 54 573 1 00 47 39 0
HETATM 5066 0 HOH 194 2 367 -27 567 107 013 1 00 52 10 0 HETATM 5067 0 HOH 195 •19.994 -31.245 91.704 1.00 39.82 0
HETATM 5068 0 HOH 196 22 .783 -14 .778 109 .033 1 .00 44 .77 0
HETATM 5069 0 HOH 197 11 .881 6 .465 76 .793 1 .00 48 .56 0
HETATM 5070 0 HOH 198 6 .885 -3 .003 50 .904 1 .00 51 .72 0
HETATM 5071 0 HOH 199 9 .765 9 .037 53 .760 1 .00 52 .10 0
HETATM 5072 0 HOH 200 1 .715 -31 .442 98 .032 1 .00 49 .47 0
HETATM 5073 0 HOH 201 15 .513 -26 .254 72 .592 1 .00 37 .64 0
HETATM 5074 0 HOH 202 6 .926 -1 .094 55 .201 1. .00 46 .69 0
HETATM 5075 0 HOH 203 •21 .930 -19 .702 89 .670 1. .00 53 .24 0
HΞTA.TM 5076 0 HOH 204 -5 .019 -31 .753 83 .991 1 .00 36 .99 0
HETATM 5077 0 HOH 205 -5 .242 28 .298 68 .186 1. .00 41 .69 0
HETATM 5078 0 HOH 206 14 .323 11 .412 49 .112 1 .00 53 .30 0
HETATM 5079 0 HOH 207 0 .893 -1 .428 86 .525 1. .00 37 .10 0
HETATM 5080 0 HOH 208 -9 .970 -5 .371 59 .602 1, .00 46 .03 0
HETATM 5081 0 HOH 209 20 .818 25 .414 66 .223 1. .00 47 .61 0
HETATM 5082 0 HOH 210 15 .946 -9 .955 86 .132 1. .00 47 .69 0
HETATM" 5083 0 HOH 211 -7 .843 34 .422 58 .993 1. .00 45 .21 0
HETATM 5084 0 HOH 212 10 .486 14 .639 76. .764 1. .00 46 .07 0
HETATM 5085 0 HOH 213 -2 .070 -14 .304 120. .287 1. .00 58. .39 0
HETATM 5086 0 HOH 214 10 .476 -17 .732 72. .842 1. .00 44 .56 0
HETATM 5087 0 HOH 215 19 .373 11 .791 37. .760 1. .00 48. .62 0
HETATM 5088 0 HOH 216 •17 .401 -38 .604 87. .430 1. .00 48. .86 o
HETATM 5089 0 HOH 217 -9 .710 -37 .610 87. .180 1. .00 36. .56 o
HETATM 5090 0 HOH 218 11 .626 -37 .212 92. .682 1. .00 38. .79 o
HETATM 5091 0 HOH 219 10 .206 -3 .761 80. .075 1. .00 35. .36 0
HETATM 5092 0 HOH 220 21 .036 15 .971 54. .407 1. .00 61. .88 0
HETATM 5093 0 HOH 221 -1. .670 -5. .270 28. .274 1. .00 47. .64 0
HETATM 5094 0 HOH 222 -5. .258 -29 .439 83. .128 1. .00 53. .41 0
HETATM 5095 0 HOH 223 13 .738 -10 .342 111. .310 1 .00 39. .17 0
HETATM 5096 0 HOH 224 1 .038 -1 .654 63. .065 1. .00 33. .88 0
HETATM 5097 0 HOH 225 1. .710 26 .813 75. .234 1. .00 46. .10 0
HETATM 5098 0 HOH 226 1 .321 0 .171 36. .350 1. .00 42. .29 0
HETATM 5099 0 HOH 227 ■17 .165 -9 .464 89 .192 1. .00 56 .73 0
HETATM 5100 0 HOH 228 7 .406 -7 .752 18. .866 1. .00 43. .78 o
HETATM 5101 0 HOH 229 15 .943 -18 .023 110. .349 1. .00 46. .48 0
HETATM 5102 0 HOH 230 2 .201 29 .977 65. .962 1. .00 42. .47 0
HETATM 5103 0 HOH 231 6. .758 7 .799 68. .268 1. .00 49. .96 0
HETATM 5104 0 HOH 232 14. .831 16 .200 62. .670 1. .00 48. .34 0
HETATM 5105 0 HOH 233 10. .882 -2 .873 111. .461 1. .00 48, .43 0
HETATM 5106 0 HOH 234 12. .444 25, .232 42, .077 1. .00 55, .12 o
HETATM 5107 0 HOH 235 -3. .545 -20, .066 69, .287 1. .00 49, .79 o
HETATM 5108 0 HOH 236 -3. .404 -33, .572 101. .383 1. .00 72. .05 0
HETATM 5109 0 HOH 237 12. .295 21, .137 41. .044 1. .00 52. .49 o
HETATM 5110 0 HOH 238 2. .580 -11, .775 14. .673 1. .00 50, .41 o
HETATM 5111 0 HOH 239 3. .154 -5. .820 107, .412 1. .00 41, .01 o
HETATM 5112 0 HOH 240 3. .679 3, .668 48. .919 1, .00 47, .60 o
HETATM 5113 0 HOH 241 4. .340 -27, .590 96. .931 1. .00 39. .82 o
HETATM 5114 0 HOH 242 -0. .445 3, .886 103. .252 1. .00 60. .54 0
HETATM 5115 0 HOH 243 4. .691 -14, .474 117. .057 1. .00 52, .31 o
HETATM 5116 0 HOH 244 17. .470 -27, .275 74. .557 1. .00 49, .31 0
HETATM 5117 0 HOH 245 2. .608 -18, .547 116. .421 1. .00 46, .49 o
HETATM 5118 0 HOH 246 -9. .961 -35, .353 77. .436 1. .00 39. .71 0
HETATM 5119 0 HOH 247 22, .686 29, .769 65. .668 1, .00 42. .91 0
HETATM 5120 0 HOH 248 -5. .297 -3, .696 67. .666 1. .00 48. .13 0
KΞTATM 5121 0 HOH 249 -6. .831 32, .809 55. .523 1. .00 40. .61 0
HETATM 5122 0 HOH 250 10, .121 26, .645 43. .931 1. .00 51. .71 0
HETATM 5123 0 HOH 251 10, .422 -9, .406 109. ,123 1, .00 58. .59 0
HETATM 5124 0 HOH 252 1, .680 -31. .824 100. .825 1. .00 46. ,17 0
HETATM 5125 0 HOH 253 -0. .637 -6. .796 46. .421 1. .00 50. ,54 0
HETATM 5126 0 HOH 254 -4. .833 -13. .762 67. .489 1. .00 58. .49 0
HETATM 5127 0 HOH 255 11. .697 21. .005 74. .690 1. .00 40. .87 0
HETATM 5128 0 HOH 256 6. .697 0. .183 98. ,621 1. ,00 50. .48 0
HETATM 5129 0 HOH 257 17. ,210 -24. .512 107. ,106 1. .00 46. ,04 0
HETATM 5130 0 HOH 258 18. .765 -18. .478 110. ,872 1. .00 49. ,07 0
HETATM 5131 0 HOH 259 14. .259 -14. .301 100. .298 1. ,00 51. .20 0
HETATM 5132 0 HOH 260 -0. .148 3. .228 41. .244 1. .00 42. .95 0
HETATM 5133 0 HOH 261 -1. ,550 1. .860 43. .678 1. ,00 43. .39 0
HETATM 5134 0 HOH 262 8. ,744 -24. ,286 82. .675 1. ,00 41. ,44 0
HETATM 5135 0 HOH 263 13. ,721 -25. .289 83. ,234 1. .00 35. .68 o
HETATM 5136 0 HOH 264 -4. ,051 -10. .477 77. ,195 1. .00 39. .63 0
HETATM 5137 0 HOH 265 -4. ,840 2. ,207 83. ,772 1. .00 41. .20 0
HETATM 5138 0 HOH 266 -9. ,560 -2. .002 64. ,071 1. ,00 51. .91 0
HETATM 5139 0 HOH 267 10. ,618 27. .868 59. ,608 1. .00 43. .33 0
HETATM 5140 0 HOH 268 6. ,654 -22. .405 84. ,389 1. .00 37. .77 0 HETATM 5141 0 HOH 269 25 374 -30 710 91 834 1 00 41 46 0
HETATM 5142 0 HOH 270 -2 953 -12 398 75 889 1 00 44 19 0
HETATM 5143 0 HOH 271 10 068 -16 621 68 426 1 00 48 68 0
HETATM 5144 0 HOH 272 5 984 -34 373 89 703 1 00 55 20 0
HETATM 5145 0 HOH 273 -3 200 -8 364 48 353 1 00 58 81 0
HETATM 5146 0 HOH 274 -5 208 5 563 118 909 1 00 58 64 0
HETATM 5147 0 HOH 275 14 719 32 210 67 916 1 00 48 07 0
HETATM 5148 0 HOH 276 7 131 -19 808 83 872 1 00 46 76 0
HETATM 5149 0 HOH 277 20 853 5 657 53 770 1 00 60 36 o
HETATM 5150 0 HOH 278 -6 897 -1 426 63 908 1 00 46 61 0
HETATM 5151 0 HOH 279 -8 431 -1 212 43 968 1 00 54 59 0
HETATM 5152 0 HOH 280 7 957 -33 722 82 854 1 00 54 25 0
HETATM 5153 0 HOH 281 19 249 -4 072 84 304 1 00 58 88 0
HETATM 5154 0 HOH 282 -8 007 2 288 100 419 1 00 60 15 0
HETATM 5155 0 HOH 283 2 580 -2 353 37 018 1 00 44 90 o
HETATM 5156 0 HOH 284 10 501 24 388 67 790 1 00 47 28 0
HETATM 5157 0 HOH 285 6 674 16 819 65 513 1 00 55 07 0
HETATM 5158 0 HOH 286 4 505 -17 878 76 273 1 00 52 00 o
HETATM 5159 0 HOH 287 -4 269 -35 186 97 283 1 00 53 43 o
HETATM 5160 0 HOH 288 -8 225 -4 671 43 992 1 00 49 38 o
HETATM 5161 0 HOH 289 18 128 15 803 50 959 1 00 44 78 o
HETATM 5162 0 HOH 290 23 439 -13 655 93 653 1 00 42 22 o
HETATM 5163 0 HOH 291 5 904 -8 631 105 153 1 00 58 19 o
HETATM 5164 0 HOH 292 21 817 -1 639 96 752 1 00 57 18 o
HETATM 5165 0 HOH 293 -0 420 -3 331 113 867 1 00 57 22 o
HETATM 5166 0 HOH 294 14 138- -13 431 78 539 1 00 62 44 o
HETATM 5167 0 HOH 295 27 961 27 376 59 755 1 00 37 56 0
HETATM 5168 0 HOH 296 13 729 -28 219 102 295 1 00 44 05 0
HETATM 5169 0 HOH 297 -3 157 30 748 47 777 1 00 57 13 o
HETATM 5170 0 HOH 298 12 207 -37 981 99 172 1 00 55 16 o
HETATM 5171 0 HOH 299 -3 545 3 780 71 645 1 00 58 18 o
HETATM 5172 0 HOH 300 16 465 -35 219 105 786 1 00 55 55 o
HETATM 5173 0 HOH 301 -7 127 -0 129 66 065 1 00 42 94 0
HETATM 5174 0 HOH 302 -0 610 -8 476 25 667 1 00 54 07 o
HETATM 5175 0 HOH 303 6 915 -3 632 100 868 1 00 42 43 o
HETATM 5176 0 HOH 304 19 944 0 864 95 978 1 00 48 67 o
HETATM 5177 0 HOH 305 22 029 27 206 55 148 1 00 45 55 o
HETATM 5178 0 HOH 306 2 280 2 756 41 663 1 00 58 50 o
HETATM 5179 0 HOH 307 0 186 -12 253 74 200 1 00 45 00 o
HETATM 5180 0 HOH 308 13 448 -18 260 112 050 1 00 51 62 o
HETATM 5181 0 HOH 309 -9 925 33 873 67 367 1 00 52 34 0
HETATM 5182 0 HOH 310 15 832 7 022 63 356 1 00 42 52 o
HETATM 5183 0 HOH 311 -5 073 0 591 81 603 1 00 52 27 0
HETATM 5184 0 HOH 312 10 042 13 064 81 037 1 00 50 19 o
HETATM 5185 0 HOH 313 7 406 24 472 54 308 1 00 46 92 0
HETATM 5186 0 HOH 314 -3 004 6 132 101 382 1 00 48 78 o
HETATM 5187 0 HOH 315 5 541 6 204 29 660 1 00 48 65 0
HETATM 5188 0 HOH 316 14 179 -18 819 114 927 1 00 57 02 o
HETATM 5189 0 HOH 317 8 702 30 197 57 590 1 00 44 87 o
HETATM 5190 0 HOH 318 -6 500 -32 536 104 302 1 00 51 53 0
HETATM 5191 0 HOH 319 26 420 -2 757 87 495 1 00 52 17 o
HETATM 5192 0 HOH 320 -3 624 17 119 80 054 1 00 50 53 0
HETATM 5193 0 HOH 321 13 276 4 431 42 263 1 00 50 75 0
HETATM 5194 0 HOH 322 23 182 -32 792 84 171 1 00 43 13 o
HETATM 5195 0 HOH 323 23 396 ε 477 46 670 1 00 45 89 o
HETATM 5196 0 HOH 324 20 267 31 374 66 229 1 00 49 83 0
HETATM 5197 0 HOH 325 -6 971 -9 089 112 838 1 00 46 32 0
HETATM 5198 0 HOH 326 15 788 -2 636 57 034 1 00 64 58 0
HETATM 5199 0 HOH 327 29 649 -31 876 97 785 1 00 54 28 0
HETATM 5200 0 HOH 328 17 393 -0 304 98 015 1 00 55 60 0
HETATM 5201 0 HOH 329 21 462 21 489 41 573 1 00 47 52 0
HETATM 5202 0 HOH 330 7 350 -27 637 95 381 1 00 49 66 0
HETATM 5203 0 HOH 331 8 758 -29 640 104 963 1 00 46 90 0
HETATM 5204 0 HOH 332 11 381 -23 610 110 251 1 00 49 80 0
HETATM 5205 0 HOH 333 -9 917 32 123 72 053 1 00 51 42 0
HETATM 5206 0 HOH 334 13 908 25 282 47 069 1 00 45 78 0
HETATM 5207 0 HOH 335 17 609 6 039 66 735 1 00 61 98 0
HETATM 5208 0 HOH 336 10 347 -30 594 89 578 1 00 51 87 0
HETATM 5209 0 HOH 337 -5 893 28 962 75 876 1 00 57 94 0
HETATM 5210 0 HOH 338 -8 529 -28 901 80 976 1 00 32 13 0
HETATM 5211 0 HOH 339 1 656 23 376 80 806 1 00 50 54 0
HETATM 5212 0 HOH 340 3 976 -4 271 100 997 1 00 47 21 o
HETATM 5213 0 HOH 341 15 530 -19 739 93 540 1 00 59 81 0
HETATM 5214 0 HOH 342 3 376 -3 447 103 367 1 00 49 36 o HETATM 5215 O HOH 343 4.161 10.002 41.597 1.00 61.03
HETATM 5216 O HOH 344 -6 .960 9 .218 33. .776 1 .00 54. .00
HETATM 5217 O HOH 345 12 .478 -24 .183 107. .741 1. .00 46. .77
HETATM 5218 O HOH 346 15 .814 16 .720 56. .134 1. .00 48. .17
HETATM 5219 O HOH 347 -4. .538 -23 .816 109. .522 1. .00 46. .33
HETATM 5220 O HOH 348 5 .043 8 .384 70. .352 1. .00 55. .22
HETATM 5221 O HOH 349 14 .496 -5 .878 -106. .066 1. .00 29. .59
HETATM 5222 O HOH 350 12 .305 -18 .579 79. .103 1. .00 44, .44
HETATM 5223 O HOH 351 1 .354 15 .162 75. .996 1. .00 37, .25
HETATM 5224 O HOH 352 11 .371 -20 .648 81. .041 1. .00 32, .70
HETATM 5225 O HOH 353 4 .659 4 .434 65 .086 1. .00 45, .33
HETATM 5226 O HOH 354 0 .943 25 .858 39. .892 1. .00 47. .43
HETATM 5227 O HOH 355 15 .621 0 .037 31. .961 1. .00 53, .76
HETATM 5228 O HOH 356 4 .378 -1 .561 90. .795 1. .00 52. .55
HETATM 5229 O HOH 357 13. .273 -20 .315 101. .657 1. .00 43. .23
HETATM 5230 O HOH 358 14 .432 -33 .368 94 .446 1. .00 54. .66
HETATM 5231 O HOH 359 17 .551 -9 .551 83 .270 1. .00 52. .31
HETATM 5232 O HOH 360 -5. .020 -4. .996 65. .284 1. .00 54. .84
HETATM 5233 O HOH 361 -6. .692 -16, .539 75. .728 1. .00 44. .71
HETATM 5234 O HOH 362 -6. .768 13, .875 73. .331 1. .00 48. ,11
CONECT 34 382
CONECT 257 514
CONECT 382 34
CONECT 514 257
CONECT 543 1423
CONECT 1423 543
CONECT 1785 1938
CONECT 1938 1785
CONECT 2007 2240
CONECT 2240 2007
CONECT 2460 2789
CONECT 2661 2887
CONECT 2789 2460
CONECT 2887 2661
CONECT 2916 3804
CONECT 3804 2916
CONECT 4168 4312
CONECT 4312 4168
CONECT 4381 4614
CONECT 4614 4381
CONECT 4831 4832 4833
CONECT 4832 4831
CONECT 4833 4831 4834 4835
CONECT 4834 4833
CONECT 4835 4833 4836
CONECT 4836 4835
CONECT 4837 4838 4839
CONECT 4838 4837
CONECT 4839 4837 4840 4841
CONECT 4840 4839
CONECT 4841 4839 4842
CONECT 4842 4841
CONECT 4843 4844 4845
CONECT 4844 4843
CONECT 4845 4843 4846 4847
CONECT 4846 4845
CONECT 4847 4845 4848
CONECT 4848 4847
CONECT 4849 4850 4851
CONECT 4850 4849
CONECT 4851 4849 4852 4853
CONECT 4852 4851
CONECT 4853 4851 4854
CONECT 4854 4853
CONECT 4855 4856 4857 CONECT 4856 4855 CONECT 4857 4855 4858 4859 CONECT 4858 4857 CONECT 4859 4857 4860 CONECT 4860 4859 CONECT 4861 4862 4863 CONECT 4862 4861 CONECT 4863 4861 4864 4865
CONECT 4864 4863
CONECT 4865 4863 4866
CONECT 4866 4865 CONECT 4867 4868 4869
CONECT 4868 4867
CONECT 4869 4867 4870 4871
CONECT 4870 4869
CONECT 4871 4369 4872 CONECT 4872 4871
MASTER 467 0 9 8 42 0 0 6 5232 2 62 52 END
Table 4
HEADER MASP-2 gam aB fragment zymogen form COMPND MASP-2 REMARK REMARK REFINEMENT. REMARK PROGRAM REFMAC 5.1.24 REMARK AUTHORS MURΞHUDOV, VAGIN, DODSON REMARK REMARK REFINEMENT TARGET : MAXIMUM LIKELIHOOD REMARK REMARK DATA USED IN REFINEMENT. REMARK RESOLUTION RANGE HIGH (ANGSTROMS) 2.18 REMARK RESOLUTION RANGE LOW (ANGSTROMS) 60.86 REMARK DATA CUTOFF ( SIGMA (F) ) NONE REMARK COMPLETENESS FOR RANGE (%) 88.18 REMARK NUMBER OF REFLECTIONS 17391 REMARK REMARK FIT TO DATA USED IN REFINEMENT. REMARK CROSS-VALIDATION METHOD THROUGHOUT REMARK FREE R VALUE TEST SET SELECTION RANDOM REMARK R VALUE (WORKING + TEST SET) 0.20733 REMARK R VALUE (WORKING SET) 0.20491 REMARK FREE R VALUE 0.25285 REMARK FREE R VALUE TEST SET SIZE (%) 5.1 REMARK FREE R VALUE TEST SET COUNT 938 REMARK REMARK FIT IN THE HIGHEST RESOLUTION BIN. REMARK TOTAL NUMBER OF BINS USED 20 REMARK BIN RESOLUTION RANGE HIGH 2.180 REMARK BIN RESOLUTION RANGE LOW 2.237 REMARK REFLECTION IN BIN (WORKING SET) 615 REMARK BIN R VALUE (WORKING SET) 0.309 REMARK BIN FREE R VALUE SET COUNT 27 REMARK BIN FREE R VALUE 0.346 REMARK REMARK NUMBER OF NON-HYDROGEN ATOMS USED IN REFINEMENT. REMARK ALL ATOMS : 2993 REMARK REMARK B VALUES. REMARK FROM WILSON PLOT (A**2) NULL REMARK MEAN B VALUE (OVERALL, A**2) 25.915 REMARK OVERALL ANISOTROPIC B VALUE. REMARK Bll (A**2) -0.27 REMARK B22 (A**2) -2.56 REMARK B33 (A**2) 2.83 REMARK B12 (A**2) 0.00 REMARK B13 (A**2) 0.00 REMARK B23 (A**2) 0.00 REMARK REMARK ESTIMATED OVERALL COORDINATE ERROR. REMARK ESU BASED ON R VALUE (A) 0.352 REMARK ESU BASED ON FREE R VALUE (A) 0.243 REMARK ESU BASED ON MAXIMUM LIKELIHOOD (A) 0.194 REMARK ESU FOR B VALUES BASED ON MAXIMUM LIKELIHOOD (A **2) 8.011 REMARK REMARK CORRELATION COEFFICIENTS. REMARK CORRELATION COEFFICIENT FO-FC : 0.942 REMARK CORRELATION COEFFICIENT FO-FC FREE : 0.908 REMARK REMARK RMS DEVIATIONS FROM IDEAL VALUES COUNT RMS WEIGHT REMARK BOND LENGTHS REFINED ATOMS (A) 2996 005 0.021 REMARK BOND LENGTHS OTHERS (A) 2605 001 .020 REMARK BOND ANGLES REFINED ATOMS (DEGREES) 4091 875 .944 REMARK BOND ANGLES OTHERS (DEGREES) 6045 639 .000 REMARK TORSION ANGLES, PERIOD 1 (DEGREES) 388 190 .000 REMARK CHIRAL-CENTER RESTRAINTS (A**3) 441 056 .200 REMARK GENERAL PLANES REFINED ATOMS (A) 3408 002 .020 REMARK GENERAL PLANES OTHERS (A) 610 001 .020 REMARK NON-BONDED CONTACTS REFINED ATOMS (A) 717 201 .300 REMARK NON-BONDED CONTACTS OTHERS (A) 2956 239 .300 REMARK NON-BONDED TORSION OTHERS (A) 2061 119 .500 REMARK 3 H-BOND (X...Y) REFINED ATOMS (A) 130 0 228 0 . 500
REMARK 3 SYMMETRY VDW REFINED ATOMS (A) 24 0 168 0 .300
REMARK 3 SYMMETRY VDW OTHERS (A) 72 0 269 0 .300
REMARK 3 SYMMETRY H-BOND REFINED ATOMS (A) 13 0 144 0 . 500
REMARK 3
REMARK 3 ISOTROPIC THERMAL FACTOR RESTRAINTS. COUNT RMS WEIGHT
REMARK 3 MAIN-CHAIN BOND REFINED ATOMS (A**2) 1924 - 1 290 2.000
REMARK 3 MAIN-CHAIN ANGLE REFINED ATOMS (A**2) 3075 2 135 3.000
REMARK 3 SIDE-CHAIN BOND REFINED ATOMS (A**2) 1072 0 988 2.000
REMARK 3 SIDE-CHAIN ANGLE REFINED ATOMS (A**2) 1016 1 491 3.000
REMARK 3
REMARK 3 NCS RESTRAINTS STATISTICS
REMARK 3 NUMBER OF NCS GROUPS : NULL
REMARK 3
REMARK 3
REMARK 3 TLS DETAILS
REMARK 3 NUMBER OF "TLS GROUPS : 3
REMARK 3
REMARK 3 TLS GROUP : 1
REMARK 3 NUMBER OF COMPONENTS GROUP : 1
REMARK 3 COMPONENTS C SSSEQI TO C SSSEQI
REMARK 3 RESIDUE RANGE : A 296 A 365
REMARK 3 ORIGIN FOR THE GROUP (A) : -31 4330 46.5090 52 7690
REMARK 3 T TENSOR
REMARK 3 Til: 0.2401 T22 0.2142
REMARK 3 T33: 0.2412 T12 0.1266
REMARK 3 T13: -0.0294 T23 -0.0380
REMARK 3 L TENSOR
REMARK 3 Lll: 8.1843 L22 19.7067
REMARK 3 L33: 5.0478 L12 -7.5141
REMARK 3 L13: -2.4613 L23 6.7154
REMARK 3 S TENSOR
REMARK 3 Sll: 0.1942 S12 0.3119 S13: 0.5193
REMARK 3 S21: -0.5264 S22 -0.5768 S23: 0.9744
REMARK 3 S31: -0.5584 S32 -0.5178 S33: 0.3826
REMARK 3
REMARK 3 TLS GROUP : 2
REMARK 3 NUMBER OF COMPONENT! 3 GROUP : 1
REMARK 3 COMPONENTS C SSSEQI TO C SSSEQI
REMARK 3 RESIDUE RANGE : A 366 A 433
REMARK 3 ORIGIN FOR THE GROUI > (A) : -11 1300 17.2330 48 0550
REMARK 3 T TENSOR
REMARK 3 Til: 0.2453 T22 0.2332
REMARK 3 T33: 0.0157 T12 0.0345
REMARK 3 T13: 0.0436 T23 0.0243
REMARK 3 L TENSOR
REMARK 3 Lll: 4.8401 L22 6.2761
REMARK 3 L33: 1.9652 L12 -3.0045
REMARK 3 L13: -0.9603 L23 1.8449
REMARK 3 S TENSOR
REMARK 3 Sll: -0.0231 S12 0.0506 S13: 0.0047
REMARK 3 S21: 0.1939 S22 -0.1193 Ξ23: - -0.1215
REMARK 3 S31: 0.1490 S32 0.1171 S33: 0.1424
REMARK 3
REMARK 3 TLS GROUP : 3
REMARK 3 NUMBER OF COMPONENT; 3 GROUP : 1
REMARK 3 COMPONENTS C SSSEQI TO C SSSEQI
REMARK 3 RESIDUE RANGE : A 434 A 686
REMARK 3 ORIGIN FOR THE GROUI 3 (A) : 14 4270 2.9460 27 4620
REMARK 3 T TENSOR
REMARK 3 Til: 0.0852 T22 0.1179
REMARK 3 T33: 0.0679 T12 0.0441
REMARK 3 T13: -0.0409 T23 -0.0325
REMARK 3 L TENSOR
REMARK 3 Lll: 3.9499 L22 3.3076
REMARK 3 L33: 2.7452 L12 0.3759
REMARK 3 L13: -1.1198 L23 0.4010
REMARK 3 S TENSOR
REMARK 3 Sll: -0.1479 S12 0.0168 S13: 0.0506
REMARK 3 S21: 0.1178 S22 0.2136 S23: - -0.2928
REMARK 3 S31: 0.1335 S32 0.1127 Ξ33: - -0.0658
REMARK 3
REMARK 3
REMARK 3 BULK SOLVENT MODELLINC REMARK 3 METHOD USED : BABINET MODEL WITH MASK
REMARK 3 PARAMETERS FOR MASK CALCULATION
REMARK 3 VDW PROBE RADIUS : 1.40
REMARK 3 ION PROBE RADIUS : 0.80
REMARK 3 SHRINKAGE RADIUS : 0.80
REMARK 3
REMARK 3 OTHER REFINEMENT REMARKS:
REMARK 3 HYDROGENS HAVE BEEN ADDED IN THE RIDING POSITIONS
REMARK 3
CISPEP 1 PRO A 605 PRO A 606 0.00
LINK CYS A 660 GLU A 662 gap
LINK THR A 441 GLN A 444 gap
LINK CYS A 660 ALA A 663 gap
SSBOND 1 CYS A 300 CYS A 348
SSBOND 2 CYS A 328 CYS A 361
SSBOND 3 CYS A 366 CYS A 412
SSBOND 4 CYS A 396 CYS A 430
SSBOND 5 CYS A 434 CYS A 552
SSBOND 6 CYS A 598 CYS A 618
SSBOND 7 CYS A 629 CYS A 660
CRYST1 47. 665 72.689 110.989 90.00 90.00 90.00 P 21 21 21
SCALEl 0.020980 0.000000 0.000000 0.00000
SCALE2 0.000000 0.013757 0.000000 0.00000
SCALE3 0.000000 0.000000 0.009010 0.00000
ATOM 1 N THR A 296 -43.796 68.498 52.930 1.00 39 97 A N
ATOM 3 CA THR A 296 -44.222 67.174 52.395 1.00 39 77 A C
ATOM 8 C THR A 296 -43.103 66.152 52.539 1.00 39 81 A C
ATOM 9 O THR A 296 -42.694 65.524 51.562 1.00 40 20 A 0
ATOM 12 N ALA A 297 -42.612 65.992 53.765 1.00 39 62 A N
ATOM 14 CA ALA A 297 -41.533 65.052 54.049 1.00 39 66 A C
ATOM 16 CB ALA A 297 -40.274 65.804 54.457 1.00 39 64 A C
ATOM 20 C ALA A 297 -41.962 64.088 55.151 1.00 39 47 A C
ATOM 21 O ALA A 297 -42.079 64.479 56.313 1.00 40 09 A O
ATOM 22 N HIS A 298 -42.198 62.831 54.784 1.00 38 75 A N
ATOM 24 CA HIS A 298 -42.699 61.844 55.737 1.00 38 20 A C
ATOM 26 CB HIS A 298 -44.169 61.516 55.449 1.00 38 37 A C
ATOM 29 CG HIS A 298 -44.415 60.882 54.113 1.00 38 44 A C
ATOM 30 ND1 HIS A 298 -44.448 61.605 52.939 1.00 38 35 A N
ATOM 32 CEl HIS A 298 -44.702 60.790 51.930 1.00 38 36 A C
ATOM 34 NE2 HIS A 298 -44.847 59.567 52.408 1.00 38 26 A N
ATOM 36 CD2 HIS A 298 -44.679 59.598 53.771 1.00 38 28 A C
ATOM 38 C HIS A 298 -41.857 60.571 55.790 1.00 37 58 A C
ATOM 39 O HIS A 298 -40.957 60.367 54.974 1.00 37 07 A O
ATOM 40 N ALA A 299 -42.164 59.722 56.766 1.00 37 09 A N
ATOM 42 CA ALA A 299 -41.327 58.571 57.089 1.00 37 31 A C
ATOM 44 CB ALA A 299 -41.542 58.170 58.545 1.00 37 43 A C
ATOM 48 C ALA A 299 -41.570 57.371 56.174 1.00 36 76 A C
ATOM 49 O ALA A 299 -42.658 57.200 55.628 1.00 36 25 A O
ATOM 50 N CYS A 300 -40.536 56.549 56.012 1.00 37 04 A N
ATOM 52 CA CYS A 300 -40.648 55.275 55.309 1.00 37 26 A C
ATOM 54 C3 CYS A 300 -39.444 55.048 54.391 1.00 37 05 A C
ATOM 57 SG CYS A 300 -39.661 55.627 52.690 1.00 37 30 A S
ATOM 58 C CYS A 300 -40.716 54.164 56.351 1.00 37 24 A C
ATOM 59 O CYS A 300 -40.176 54.313 57.447 1.00 37 05 A O
ATOM 60 N PRO A 301 -41.381 53.060 56.021 1.00 37 67 A N
ATOM 61 CA PRO A 301 -41.486 51.920 56.939 1.00 37 89 A C
ATOM 63 CB PRO A 301 -41.996 50.793 56.036 1.00 38 23 A c
ATOM 66 CG PRO A 301 -42.770 51.487 54.967 1.00 38 32 A c
ATOM 69 CD PRO A 301 -42.094 52.815 54.754 1.00 38 24 A c
ATOM 72 C PRO A 301 -40.136 51.551 57.550 1.00 37 76 A c
ATOM 73 O PRO A 301 -39.148 51.443 56.827 1.00 37 22 A 0
ATOM 74 N TYR A 302 -40.092 51.371 58.865 1.00 38 16 A N
ATOM 76 CA TYR A 302 -38.833 51.073 59.534 1.00 38 93 A C
ATOM 78 CB TYR A 302 -39.034 50.934 61.045 1.00 39 32 A C
ATOM 81 CG TYR A 302 -37.739 51.031 61.815 1.00 39 82 A C
ATOM 82 CDl TYR A 302 -37.132 52.260 62.034 1.00 40 14 A C
ATOM 84 CEl TYR A 302 -35.941 52.355 62.726 1.00 40 38 A C
ATOM 86 CZ TYR A 302 -35.337 51.210 63.207 1.00 40 66 A c
ATOM 87 OH TYR A 302 -34.150 51.297 63.900 1.00 41 33 A 0
ATOM 89 CE2 TYR A 302 -35.920 49.977 63.000 1.00 40 30 A c
ATOM 91 CD2 TYR A 302 -37.111 49.892 62.304 1.00 39 82 A c
ATOM 93 C TYR A 302 -38.212 49.800 58.954 1.00 38 68 A c
ATOM 94 O TYR A 302 -38.853 48.751 58.917 1.00 38 73 A 0 ATOM 95 N PRO A 303 36 965 49 896 58 497 1 00 39 10 A N
ATOM 96 CA PRO A 303 36 310 48 781 57 802 1 00 39 02 A C
ATOM 98 CB PRO A 303 35 055 49 429. 57 205 1 00 39 27 A C
ATOM 101 CG PRO A 303 34 754 50 584 58 101 1 00 39 07 A C
ATOM 104 CD PRO A 303 36 081 51 069 58 617 1 00 39 18 A C
ATOM 107 C PRO A 303 35 924 47 637 58 730 1 00 38 82 A C
ATOM 108 O PRO A 303 35 074 47 812 59 605 1 00 38 55 A O
ATOM 109 N MET A 304 36 548 46 479 58 539 1 00 39 10 A N
ATOM 111 CA MET A 304 36 180 45 287 59 292 1 00 39 31 A C
ATOM 113 CB MET A 304 37 425 44 489 59 693 1 00 41 37 A C
ATOM 116 CG MET A 304 38 149 45 055 60 924 1 00 43 19 A c
ATOM 119 SD MET A 304 38 956 43 798 61 958 1 00 45 35 A S
ATOM 120 CE MET A 304 37 553 43 126 62 891 1 00 45 38 A c
ATOM 124 C MET A 304 35 235 44 440 58 447 1 00 37 45 A c
ATOM 125 0 MET A 304 35 598 43 979 57 365 1 00 36 99 A 0
ATOM 126 N ALA A 305 34 014 44 256 58 940 1 00 35 26 A N
ATOM 128 CA ALA A 305 33 001 43 498 58 215 1 00 33 38 A C
ATOM 130 CB ALA A 305 31 665 43 574 58 938 1 00 33 55 A C
ATOM 134 C ALA A 305 33 423 42 042 58 058 1 00 31 61 A C
ATOM 135 O ALA A 305 34 163 41 510 58 885 1 00 30 28 A 0
ATOM 136 N PRO A 306 32 962 41 397 56 993 1 00 29 08 A N
ATOM 137 CA PRO A 306 33 165 39 955 56 836 1 00 29 10 A C
ATOM 139 CB PRO A 306 32 694 39 690 55 401 1 00 29 27 A c
ATOM 142 CG PRO A 306 31 729 40 788 55 110 1 00 29 13 A c
ATOM 145 CD PRO A 306 32 238 41 985 55 852 1 00 28 70 A c
ATOM 148 C PRO A 306 32 323 39 155 57 830 1 00 27 91 A c
ATOM 149 O PRO A 306 31 390 39 695 58 427 1 00 28 22 A 0
ATOM 150 N PRO A 307 32 662 37 886 58 018 1 00 27 40 A N
ATOM 151 CA PRO A 307 31 812 36 968 58 783 1 00 27 73 A C
ATOM 153 CB PRO A 307 32 456 35 601 58 527 1 00 27 64 A C
ATOM 156 CG PRO A 307 33 882 35 899 58 196 1 00 27 22 A c
ATOM 159 CD PRO A 307 33 892 37 238 57 532 1 00 27 23 A c
ATOM 162 C PRO A 307 30 366 36 970 58 281 1 00 28 01 A c
ATOM 163 O PRO A 307 30 141 36 901 57 074 1 00 26 43 A 0
ATOM 164 N ASN A 308 29 414 37 037 59 210 1 00 29 09 A N
ATOM 166 CA ASN A 308 27 988 37 067 58 896 1 00 30 06 A C
ATOM 168 CB ASN A 308 27 565 35 801 58 147 1 00 31 00 A C
ATOM 171 CG ASN A 308 27 998 34 539 58 854 1 00 31 51 A C
ATOM 172 OD1 ASN A 308 27 421 34 156 59 870 1 00 32 75 A O
ATOM 173 ND2 ASN A 308 29 019 33 883 58 322 1 00 32 68 A N
ATOM 176 C ASN A 308 27 574 38 304 58 106 1 00 29 90 A C
ATOM 177 O ASN A 308 26 642 38 257 57 308 1 00 30 96 A O
ATOM 178 N GLY A 309 28 270 39 409 58 339 1 00 30 14 A N
ATOM 180 CA GLY A 309 27 902 40 685 57 763 1 00 30 14 A C
ATOM 183 C GLY A 309 28 230 41 799 58 731 1 00 31 47 A C
ATOM 184 O GLY A 309 28 961 41 589 59 697 1 00 30 36 A O
ATOM 185 N HIS A 310 27 694 42 987 58 471 1 00 33 30 A N
ATOM 187 CA HIS A 310 27 984 44 152 59 299 1 00 34 52 A C
ATOM 189 CB HIS A 310 26 988 44 251 60 464 1 00 36 70 A C
ATOM 192 CG HIS A 310 25 554 44 332 60 038 1 00 38 38 c
ATOM 193 ND1 HIS A 310 24 932 45 527 59 743 1 00 40 36 A N
ATOM 195 CEl HIS A 310 23 674 45 296 59 408 1 00 40 90 z_. c
ATOM 197 NE2 HIS A 310 23 457 43 995 59 482 1 00 41 20 A N
ATOM 199 CD2 HIS A 310 24 615 43 370 59 879 1 00 39 89 A C
ATOM 201 C HIS A 310 28 004 45 449 58 483 1 00 34 28 1. C
ATOM 202 O HIS A 310 27 443 45 521 57 384 1 00 31 35 A O
ATOM 203 N VAL A 311 28 671 46 458 59 044 1 00 35 32 A N
ATOM 205 CA VAL A 311 28 829 47 778 58 437 1 00 36 46 A C
ATOM 207 CB VAL A 311 30 203 48 382 58 818 1 00 37 51 A C
ATOM 209 CGI VAL A 311 30 387 49 766 58 203 1 00 37 79 A c
ATOM 213 CG2 VAL A 311 31 338 47 450 58 401 1 00 37 29 A c
ATOM 217 C VAL A 311 27 715 48 710 58 931 1 00 37 99 A c
ATOM 218 O VAL A 311 27 469 48 795 60 133 1 00 38 01 A 0
ATOM 219 N SER A 312 27 056 49 414 58 013 1 00 40 23 A N
ATOM 221 CA SER A 312 25 817 50 13θ" 58 340 1 00 42 43 A C
ATOM 223 CB SER A 312 25 062 50 564 57 078 1 00 44 39 A C
ATOM 226 OG SER A 312 25 949 50 861 56 010 1 00 46 15 A O
ATOM 228 C SER A 312 26 049 51 326 59 252 1 00 42 99 A C
ATOM 229 O SER A 312 25 593 51 314 60 399 1 00 45 07 A O
ATOM 230 N PRO A 313 26 720 52 368 58 759 1 00 41 28 A N
ATOM 231 CA PRO A 313 27 136 53 462 59 637 1 00 39 61 A C
ATOM 233 CB PRO A 313 27 317 54 637 58 673 1 00 40 06 A C
ATOM 236 CG PRO A 313 27 703 54 012 57 375 1 00 40 45 A C
ATOM 239 CD PRO A 313 27 115 52 617 57 361 1 00 40 86 A C ATOM 242 C PRO A 313 28.445 53 115 60.335 1.00 38 18 A C
ATOM 243 0 PRO A 313 29 .493 53 096 59 .694 1 00 37 10 A O
ATOM 244 N VAL A 314 28 373 52 815 61 628 1 00 37 36 A N
ATOM 246 CA VAL A 314 29 570 52 585 62 429 1 00 36 48 A C
ATOM 248 CB VAL A 314 29 299 51 628 63 614 1 00 36 14 A C
ATOM 250 CGI VAL A 314 30 506 51 557 64 546 1 00 36 14 A C
ATOM 254 CG2 VAL A 314 28 943 50 239 63 106 1 00 36 14 A C
ATOM 258 C VAL A 314 30 080 53 928 62 949 1 00 35 11 A C
ATOM 259 O VAL A 314 29 523 54 493 63 889 1 00 36 20 A O
ATOM 260 N GLN A 315 31 128 54 441 62 311 1 00 33 20 A N
ATOM 262 CA GLN A 315 31 754 55 691 62 718 1 00 32 43 A C
ATOM 264 CB GLN A 315 31 975 56 603 61 505 1 00 31 22 A C
ATOM 267 CG GLN A 315 30 732 56 816 60 642 1 00 29 95 A C
ATOM 270 CD GLN A 315 30 999 57 685 59 422 1 00 29 28 A C
ATOM 271 OEl GLN A 315 30 129 57 830 58 560 1 00 28 46 A O
ATOM 272 NE2 GLN A 315 32 196 58 263 59 344 1 00 27 45 A N
ATOM 275 C GLN A 315 33 088 55 378 63 379 1 00 32 51 A C
ATOM 276 O GLN A 315 33 671 54 322 63 139 1 00 33 45 A O
ATOM 277 N ALA A 316 33 565 56 294 64 215 1 00 31 96 A N
ATOM 279 CA ALA A 316 34 862 56 136 64 865 1 00 31 25 A C
ATOM 281 CB ALA A 316 35 054 57 206 65 920 1 00 31 32 A C
ATOM 285 C ALA A 316 35 997 56 190 63 841 1 00 30 51 A c
ATOM 286 O ALA A 316 37 019 55 521 64 003 1 00 29 45 A 0
ATOM 287 N LYS A 317 35 809 56 994 62 794 1 00 30 19 A N
ATOM 289 CA LYS A 317 36 772 57 095 61 696 1 00 30 07 A C
ATOM 291 CB LYS A 317 37 879 58 091 62 048 1 00 30 74 A C
ATOM 298 C LYS A 317 36 080 57 521 60 396 1 00 29 99 A c
ATOM 299 O LYS A 317 35 079 58 240 60 423 1 00 31 06 A 0
ATOM 300 N TYR A 318 36 609 57 061 59 263 1 00 29 15 A N
ATOM 302 CA TYR A 318 36 069 57 414 57 948 1 00 27 73 A C
ATOM 304 CB TYR A 318 35 654 56 154 57 179 1 00 27 03 A C
ATOM 307 CG TYR A 318 34 667 55 251 57 902 1 00 25 77 A C
ATOM 308 CDl TYR A 318 35 091 54 375 58 893 1 00 25 25 A C
ATOM 310 CEl TYR A 318 34 199 53 549 59 548 1 00 24 34 A c
ATOM 312 CZ TYR A 318 32 861 53 583 59 212 1 00 23 99 A c
ATOM 313 OH TYR A 318 31 975 52 755 59 866 1 00 21 90 A 0
ATOM 315 CE2 TYR A 318 32 413 54 440 58 231 1 00 24 17 A c
ATOM 317 CD2 TYR A 318 33 314 55 266 57 580 1 00 24 79 A c
ATOM 319 C TYR A 318 37 115 58 182 57 138 1 00 28 02 A c
ATOM 320 O TYR A 318 38 269 57 767 57 070 1 00 28 95 A 0
ATOM 321 N ILE A 319 36 716 59 297 56 527 1 00 27 43 A N
ATOM 323 CA ILE A 319 37 633 60 105 55 719 1 00 28 66 A C
ATOM 325 CB ILE A 319 37 872 61 486 56 377 1 00 28 19 A C
ATOM 330 C ILE A 319 37 104 60 284 54 297 1 00 28 94 A C
ATOM 331 O ILE A 319 36 166 59 604 53 891 1 00 27 82 A 0
ATOM 332 N LEU A 320 37 715 61 199 53 547 1 00 29 78 A N
ATOM 334 CA LEU A 320 37 326 61 466 52 161 1 00 30 64 A C
ATOM 336 CB LEU A 320 38 090 62 685 51 630 1 00 31 61 A C
ATOM 339 CG LEU A 320 37 549 63 367 50 367 1 00 31 95 A c
ATOM 341 CDl LEU A 320 37 834 62 531 49 124 1 00 32 17 A c
ATOM 345 CD2 LEU A 320 38 137 64 764 50 227 1 00 31 82 A c
ATOM 349 C LEU A 320 35 822 61 698 52 014 1 00 31 28 A c
ATOM 350 O LEU A 320 35 200 62 349 52 855 1 00 31 13 A 0
.ATOM 351 N LYS A 321 35 252 61 154 50 940 1 00 31 76 A N
ATOM 353 CA LYS A 321 33 836 61 324 50 609 1 00 32 03 A C
ATOM 355 CB LYS A 321 33 424 62 795 50 728 1 00 32 15 A C
ATOM 362 C LYS A 321 32 894 60 450 51 444 1 00 32 62 A C
ATOM 363 O LYS A 321 31 760 60 196 51 031 1 00 32 99 A O
ATOM 364 N ASP A 322 33 356 59 987 52 604 1 00 32 95 A N
ATOM 366 CA ASP A 322 32 525 59 177 53 491 1 00 33 12 A C
ATOM 368 CB ASP A 322 33 211 58 956 54 845 1 00 33 80 A C
ATOM 371 CG ASP A 322 33 045 60 139 55 786 1 00 34 44 A c
ATOM 372 OD1 ASP A 322 32 241 61 044 55 480 1 00 34 57 A 0
ATOM 373 OD2 ASP A 322 33 675 60 252 56 858 1 00 35 40 A 0
ATOM 374 C ASP A 322 32 188 57 840 52 842 1 00 32 65 A c
ATOM 375 O ASP A 322 32 651 57 536 51 739 1 00 33 35 A 0
ATOM 376 N SER A 323 31 376 57 044 53 526 1 00 31 22 A N
ATOM 378 CA SER A 323 30 814 55 851 52 915 1 00 29 96 A C
ATOM 380 CB SER A 323 29 584 56 241 52 090 1 00 29 47 A C
ATOM 383 OG SER A 323 29 485 55 455 50 914 1 00 28 81 A O
ATOM 385 C SER A 323 30 419 54 808 53 948 1 00 29 27 A C
ATOM 386 O SER A 323 30 223 55 112 55 120 1 00 29 62 A 0
ATOM 387 N PHE A 324 30 311 53 566 53 498 1 00 29 07 A N ATOM 389 CA PHE A 324 29 754 52 506 54 322 1 00 29 14 A C
ATOM 391 CB PHE A 324 30 777 52 006 55 347 1 00 28 07 A C
ATOM 394 CG PHE A 324 31 726 50 973 54 812 1 00 27 83 A c
ATOM 395 CDl PHE A 324 31 353 49 636 54 727 1 00 26 99 A c
ATOM 397 CEl PHE A 324 32 229 48 692 54 242 1 00 26 03 A c
ATOM 399 CZ PHE A 324 33 497 49 070 53 836 1 00 26 85 A c
ATOM 401 CE2 PHE A 324 33 882 50 391 53 918 1 00 26 94 A c
ATOM 403 CD2 PHE A 324 33 000 51 335 54 407 1 00 27 26 A c
ATOM 405 C PHE A 324 29 264 51 369 53 440 1 00 29 18 A c
ATOM 406 O PHE A 324 29 803 51 129 52 361 1 00 30 76 A 0
ATOM 407 N SER A 325 28 228 50 682 53 903 1 00 28 55 A N
ATOM 409 CA SER A 325 27 671 49 548 53 185 1 00 28 76 A C
ATOM 411 CB SER A 325 26 199 49 805 52 846 1 00 28 95 A C
ATOM 414 OG SER A 325 26 035 51 053 52 189 1 00 29 76 A 0
ATOM 416 C SER A 325 27 798 48 288 54 031 1 00 28 92 A c
ATOM 417 O SER A 325 28 016 48 360 55 237 1 00 26 89 A 0
ATOM 418 N ILE A 326 27 668 47 132 53 392 1 00 29 50 A N
ATOM 420 CA ILE A 326 27 670 45 867 54 111 1 00 29 33 A C
ATOM 422 CB ILE A 326 28 902 45 019 53 721 1 00 28 47 A C
ATOM 424 CGI ILE A 326 30 148 45 574 54 406 1 00 28 70 A C
ATOM 427 CDl ILE A 326 31 421 45 197 53 712 1 00 29 66 A C
ATOM 431 CG2 ILE A 326 28 708 43 554 54 112 1 00 27 44 A c
ATOM 435 C ILE A 326 26 376 45 112 53 839 1 00 30 03 A c
ATOM 436 O ILE A 326 25 973 44 926 52 690 1 00 30 70 A 0
ATOM 437 N PHE A 327 25 725 44 690 54 912 1 00 31 02 A N
ATOM 439 CA PHE A 327 24 505 43 910 54 813 1 00 32 24 A C
ATOM 441 CB PHE A 327 23 333 44 718 55 368 1 00 33 03 A C
ATOM 444 CG PHE A 327 23 147 46 037 54 680 1 00 33 94 A C
ATOM 445 CDl PHE A 327 23 598 47 211 55 260 1 00 34 03 A c
ATOM 447 CEl PHE A 327 23 430 48 425 54 615 1 00 34 45 A c
ATOM 449 CZ PHE A 327 22 815 48 475 53 374 1 00 34 85 A c
ATOM 451 CE2 PHE A 327 22 368 47 314 52 784 1 00 34 74 A c
ATOM 453 CD2 PHE A 327 22 538 46 099 53 435 1 00 34 81 A c
ATOM 455 C PHE A 327 24 688 42 593 55 557 1 00 31 75 A c
ATOM 456 O PHE A 327 25 217 42 560 56 665 1 00 29 65 A 0
ATOM 457 N CYS A 328 24 269 41 506 54 921 1 00 32 86 A N
ATOM 459 CA CYS A 328 24 470 40 170 55 461 1 00 31 68 A C
ATOM 461 CB CYS A 328 24 624 39 168 54 319 1 00 31 81 A C
ATOM 464 SG CYS A 328 26 010 39 524 53 212 1 00 31 46 A S
ATOM 465 C CYS A 328 23 296 39 770 56 334 1 00 30 95 A c
ATOM 466 O CYS A 328 22 214 40 334 56 213 1 00 29 03 A 0
ATOM 467 N GLU A 329 23 522 38 795 57 211 1 00 31 60 A N
ATOM 469 CA GLU A 329 22 443 38 201 57 998 1 00 32 76 A C
ATOM 471 CB GLU A 329 22 983 37 131 58 953 1 00 34 54 A C
ATOM 474 CG GLU A 329 24 220 37 526 59 745 1 00 36 69 A C
ATOM 477 CD GLU A 329 24 656 36 443 60 718 1 00 37 99 A c
ATOM 478 OEl GLU A 329 24 705 35 262 60 304 1 00 38 23 A 0
ATOM 479 OE2 GLU A 329 24 950 36 771 61 892 1 00 37 76 A 0
ATOM 480 C GLU A 329 21 436 37 555 57 054 1 00 30 44 A c
ATOM 481 O GLU A 329 21 734 37 331 55 884 1 00 30 75 A 0
ATOM 482 N THR A 330 20 249 37 255 57 567 1 00 29 46 A N
ATOM 484 CA THR A 330 19 235 36 537 56 803 1 00 28 77 A C
ATOM 486 CB THR A 330 17 952 36 354 57 644 1 00 28 66 A c
ATOM 488 OGl THR A 330 17 494 37 622 58 126 1 00 27 26 A 0
ATOM 490 CG2 THR A 330 16 794 35 845 56 783 1 00 28 94 A c
ATOM 494 C THR A 330 19 768 35 167 56 398 1 00 28 56 A c
ATOM 495 O THR A 330 20 338 34 446 57 215 1 00 28 36 A 0
ATOM 496 N GLY A 331 19 586 34 812 55 134 1 00 28 21 A N
ATOM 498 CA GLY A 331 20 024 33 519 54 642 1 00 28 94 A C
ATOM 501 C GLY A 331 21 441 33 543 54 100 1 00 29 41 A C
ATOM 502 O GLY A 331 21 935 32 528 53 608 1 00 29 30 A O
ATOM 503 N TYR A 332 22 095 34 698 54 201 1 00 29 08 A N
ATOM 505 CA TYR A 332 23 432 34 887 53 652 1 00 29 58 A C
ATOM 507 CB TYR A 332 24 418 35 310 54 742 1 00 29 60 A C
ATOM 510 CG TYR A 332 24 718 34 208 55 729 1 00 30 75 A c
ATOM 511 CDl TYR A 332 23 767 33 806 56 659 1 00 31 06 A c
ATOM 513 CEl TYR A 332 24 028 32 788 57 553 1 00 31 46 A c
ATOM 515 CZ TYR A 332 25 256 32 155 57 533 1 00 31 99 A c
ATOM 516 OH TYR A 332 25 515 31 144 58 435 1 00 32 82 A 0
ATOM 518 CE2 TYR A 332 26 217 32 531 56 618 1 00 31 32 A c
ATOM 520 CD2 TYR A 332 25 944 33 552 55 720 1 00 31 32 A c
ATOM 522 C TYR A 332 23 366 35 940 52 566 1 00 29 76 A c
ATOM 523 O TYR A 332 22 521 36 830 52 611 1 00 30 25 A 0 ATOM 524 N GLU A 333 24 259 35 838 51 589 1 00 31 17 A N
ATOM 526 CA GLU A 333 24 227 36 731 50 440 1 00 33 03 A C
ATOM 528 CB GLU A 333 23 749 35 983 49 195 1 00 34 17 A C
ATOM 531 CG GLU A 333 24 557 34 747 48 833 1 00 35 03 A C
ATOM 534 CD GLU A 333 24 022 34 069 47 585 1 00 37 26 A C
ATOM 535 OEl GLU A 333 22 915 34 450 47 145 1 00 40 24 A O
ATOM 536 OE2 GLU A 333 24 701 33 169 47 037 1 00 37 08 A O
ATOM 537 C GLU A 333 25 585 37 367 50 172 1 00 32 89 A C
ATOM 538 O GLU A 333 26 625 36 763 50 423 1 00 31 91 A O
ATOM 539 N LEU A 334 25 551 38 595 49 661 1 00 33 92 A N
ATOM 541 CA LEU A 334 26 754 39 334 49 302 1 00 34 28 A C
ATOM 543 CB LEU A 334 26 418 40 800 49 012 1 00 34 11 A C
ATOM 546 CG LEU A 334 26 123 41 673 50 235 1 00 34 13 A c
ATOM 548 CDl LEU A 334 25 207 42 844 49 878 1 00 33 61 A c
ATOM 552 CD2 LEU A 334 27 423 42 173 50 871 1 00 33 36 A c
ATOM 556 C LEU A 334 27 370 38 703 48 067 1 00 34 77 A c
ATOM 557 O LEU A 334 26 690 38 484 47 069 1 00 35 30 A 0
ATOM 558 N LEU A 335 28 658 38 398 48 144 1 00 36 07 A N
ATOM 560 CA LEU A 335 29 372 37 823 47 017 1 00 36 40 A C
ATOM 562 CB LEU A 335 29 614 36 330 47 241 1 00 36 66 A C
ATOM 565 CG LEU A 335 28 446 35 367 47 034 1 00 36 42 A C
ATOM 567 CDl LEU A 335 28 831 33 998 47 547 1 00 36 59 A C
ATOM 571 CD2 LEU A 335 28 042 35 291 45 567 1 00 36 99 A c
ATOM 575 C LEU A 335 30 710 38 509 46 834 1 00 37 19 A c
ATOM 576 O LEU A 335 31 498 38 601 47 771 1 00 36 68 A 0
ATOM 577 N GLN A 336 30 954 39 002 45 625 1 00 38 59 A N
ATOM 579 CA GLN A 336 32 287 39 402 45 218 1 00 39 03 A C
ATOM 581 CB GLN A 336 32 279 40 817 44 628 1 00 39 84 A C
ATOM 584 CG GLN A 336 33 660 41 467 44 530 1 00 40 33 A C
ATOM 587 CD GLN A 336 34 068 42 199 45 803 1 00 41 15 A C
ATOM 588 OEl GLN A 336 33 521 43 259 46 125 1 00 41 04 A O
ATOM 589 NE2 GLN A 336 35 037 41 640 46 523 1 00 41 14 A N
ATOM 592 C GLN A 336 32 743 38 360 44 202 1 00 39 61 A C
ATOM 593 O GLN A 336 32 386 38 419 43 023 1 00 39 12 A O
ATOM 594 N GLY A 337 33 515 37 389 44 678 1 00 40 01 A N
ATOM 596 CA GLY A 337 33 884 36 243 43 873 1 00 40 18 A C
ATOM 599 C GLY A 337 32 715 35 284 43 813 1 00 41 22 A c
ATOM 600 O GLY A 337 32 170 34 896 44 845 1 00 41 15 A 0
ATOM 601 N HIS A 338 32 324 34 908 42 602 1 00 42 62 A N
ATOM 603 CA HIS A 338 31 180 34 029 42 399 1 00 42 51 A C
ATOM 605 CB HIS A 338 31 506 32 980 41 333 1 00 42 63 A C
ATOM 613 C HIS A 338 29 948 34 829 41 983 1 00 42 72 A C
ATOM 614 O HIS A 338 28 934 34 254 41 592 1 00 43 09 A O
ATOM 615 N LEU A 339 30 039 36 155 42 077 1 00 42 95 A N
ATOM 617 CA LEU A 339 28 957 37 041 41 651 1 00 43 26 A C
ATOM 619 CB LEU A 339 29 525 38 197 40 826 1 00 43 64 A C
ATOM 622 CG LEU A 339 28 543 38 879 39 868 1 00 44 22 A C
ATOM 624 CDl LEU A 339 28 404 38 074 38 579 1 00 44 17 A C
ATOM 628 CD2 LEU A 339 28 981 40 309 39 567 1 00 44 47 A C
ATOM 632 C LEU A 339 28 185 37 610 42 840 1 00 43 18 A C
ATOM 633 O LEU A 339 28 755 38 322 43 664 1 00 42 00 A O
ATOM 634 N PRO A 340 26 896 37 294 42 939 1 00 43 62 A N
ATOM 635 CA PRO A 340 26 035 37 933 43 940 1 00 43 92 A C
ATOM 637 CB PRO A 340 24 708 37 168 43 817 1 00 44 12 A c
ATOM 640 CG PRO A 340 25 017 35 941 43 026 1 00 44 38 A c
ATOM 643 CD PRO A 340 26 162 36 302 42 135 1 00 44 18 A c
ATOM 646 C PRO A 340 25 835 39 407 43 609 1 00 42 70 A c
ATOM 647 O PRO A 340 25 670 39 740 42 439 1 00 43 11 A 0
ATOM 648 N LEU A 341 25 856 40 271 44 617 1 00 41 39 A N
ATOM 650 CA LEU A 341 25 667 41 699 44 393 1 00 41 34 A c
ATOM 652 CB LEU A 341 26 688 42 521 45 190 1 00 41 09 A c
ATOM 655 CG LEU A 341 28 164 42 127 45 101 1 00 41 30 A c
ATOM 657 CDl LEU A 341 28 925 42 677 46 301 1 00 41 80 A c
ATOM 661 CD2 LEU A 341 28 786 42 615 43 804 1 00 41 22 A c
ATOM 665 C LEU A 341 24 260 42 130 44 790 1 00 40 83 A c
ATOM 666 O LEU A 341 23 678 41 592 45 737 1 00 40 11 A 0
ATOM 667 N LYS A 342 23 719 43 098 44 053 1 00 39 90 A N
ATOM 669 CA LYS A 342 22 490 43 771 44 456 1 00 39 21 A C
ATOM 671 CB LYS A 342 22 155 44 906 43 485 1 00 38 71 A C
ATOM 674 CG LYS A 342 21 644 44 438 42 128 1 00 37 87 A C
ATOM 677 CD LYS A 342 21 046 45 579 41 328 1 00 37 01 A c
ATOM 680 CE LYS A 342 22 116 46 344 40 570 1 00 36 65 A c
ATOM 683 NZ LYS A 342 21 549 47 488 39 810 1 00 36 22 A N
ATOM 687 C LYS A 342 22 690 44 327 45 862 1 00 39 03 A C ATOM 688 O LYS A 342 21 891 44 074 46 767 1 00 39 94 A O
ATOM 689 N SER A 343 23 775 45 079 46 029 1 00 38 20 A N
ATOM 691 CA SER A 343 24 185 45 607 47 328 1 00 37 07 A C
ATOM 693 CB SER A 343 23 349 46 835 47 695 1 00 37 42 A C
ATOM 696 OG SER "A 343 23 482 47 856 46 718 1 00 38 18 A O
ATOM 698 C SER A 343 25 669 45 974 47 292 1 00 35 86 A C
ATOM 699 O SER A 343 26 326 45 856 46 256 1 00 35 53 A O
ATOM 700 N PHE A 344 26 198 46 413 48 427 1 00 34 74 A N
ATOM 702 CA PHE A 344 27 589 46 843 48 497 1 00 33 36 A C
ATOM 704 CB PHE A 344 28 443 45 786 49 195 1 00 33 45 A C
ATOM 707 CG PHE A 344 29 907 46 118 49 231 1 00 33 49 A c
ATOM 708 CDl PHE A 344 30 732 45 789 48 164 1 00 33 82 A c
ATOM 710 CEl PHE A 344 32 083 46 093 48 193 1 00 33 56 A c
ATOM 712 CZ PHE A 344 32 622 46 733 49 294 1 00 33 24 A c
ATOM 714 CE2 PHE A 344 31 809 47 067 50 365 1 00 32 82 A c
ATOM 716 CD2 PHE A 344 30 460 46 760 50 329 1 00 32 89 A c
ATOM 718 C PHE A 344 27 711 48 167 49 233 1 00 32 79 A c
ATOM 719 O PHE A 344 27 150 48 340 50 313 1 00 33 33 A 0
ATOM 720 N THR A 345 28 443 49 101 48 637 1 00 32 15 A N
ATOM 722 CA THR A 345 28 751 50 372 49 282 1 00 31 95 A C
ATOM 724 C3 THR A 345 27 662 51 424 48 974 1 00 31 68 A C
ATOM 726 OGl THR A 345 26 413 51 012 49 540 1 00 31 65 A 0
ATOM 728 CG2 THR A 345 27 948 52 745 49 682 1 00 32 09 A C
ATOM 732 C THR A 345 30 118 50 859 48 812 1 00 31 71 A c
ATOM 733 O THR A 345 30 321 51 103 47 625 1 00 31 25 A 0
ATOM 734 N ALA A 346 31 055 50 978 49 749 1 00 31 73 A N
ATOM 736 CA ALA A 346 32 396 51 462 49 447 1 00 32 28 A C
ATOM 738 CB ALA A 346 33 436 50 611 50 159 1 00 32 11 A C
ATOM 742 C ALA A 346 32 536 52 925 49 855 1 00 33 21 A C
ATOM 743 O ALA A 346 32 066 53 331 50 919 1 00 32 80 A 0
ATOM 744 N VAL A 347 33 192 53 709 49 004 1 00 34 39 A N
ATOM 746 CA VAL A 347 33 373 55 137 49 242 1 00 35 14 A C
ATOM 748 CB VAL A 347 32 642 55 994 48 169 1 00 35 96 A C
ATOM 750 CGI VAL A 347 32 719 55 337 46 788 1 00 36 39 A C
ATOM 754 CG2 VAL A 347 33 192 57 427 48 130 1 00 35 78 A C
ATOM 758 C VAL A 347 34 864 55 478 49 281 1 00 35 23 A C
ATOM 759 O VAL A 347 35 620 55 110 48 382 1 00 35 10 A O
ATOM 760 N CYS A 348 35 276 56 171 50 339 1 00 35 60 A N
ATOM 762 CA CYS A 348 36 670 56 553 50 530 1 00 35 75 A C
ATOM 764 CB CYS A 348 36 896 56 951 51 990 1 00 36 00 A C
ATOM 767 SG CYS A 348 38 609 57 343 52 410 1 00 35 96 A S
ATOM 768 C CYS A 348 37 046 57 710 49 605 1 00 35 51 A C
ATOM 769 O CYS A 348 36 520 58 811 49 743 1 00 34 93 A 0
ATOM 770 N GLN A 349 37 955 57 457 48 665 1 00 35 65 A N
ATOM 772 CA GLN A 349 38 354 58 468 47 686 1 00 36 25 A C
ATOM 779 C GLN A 349 39 454 59 391 48 212 1 00 36 85 A C
ATOM 780 O GLN A 349 39 740 59 410 49 409 1 00 36 24 A O
ATOM 781 N LYS A 350 40 066 60 156 47 311 1 00 37 87 A N
ATOM 783 CA LYS A 350 41 172 61 042 47 673 1 00 38 70 A C
ATOM 785 C3 LYS A 350 41 469 62 023 46 537 1 00 38 71 A C
ATOM 792 C LYS A 350 42 429 60 241 48 011 1 00 39 62 A c
ATOM 793 O LYS A 350 43 315 60 729 48 715 1 00 38 96 A 0
ATOM 794 N AS? A 351 42 497 59 011 47 505 1 00 40 94 A N
ATOM 796 CA AS? A 351 43 600 58 102 47 804 1 00 41 80 A c
ATOM 798 CB ASP A 351 43 520 56 853 46 915 1 00 41 90 A c
ATOM 801 CG ASP A 351 43 455 57 187 45 438 1 00 41 63 A c
ATOM 802 OD1 ASP A 351 43 856 58 307 45 062 1 00 41 80 A 0
ATOM 803 OD2 AS? A 351 43 018 56 391 44 581 1 00 40 99 A 0
ATOM 804 C ASP A 351 43 562 57 674 49 269 1 00 42 32 A c
ATOM 805 O AS? A 351 42 669 58 072 50 020 1 00 42 69 A 0
ATOM 806 N GLY A 352 44 531 56 855 49 667 1 00 42 35 A N
ATOM 808 CA GLY A 352 44 547 56 284 51 002 1 00 41 87 A C
ATOM 811 C GLY A 352 43 668 55 049 51 127 1 00 41 06 A C
ATOM 812 O GLY A 352 43 340 54 627 52 237 1 00 41 08 A O
ATOM 813 N SER A 353 43 278 54 470 49 993 1 00 39 87 A N
ATOM 815 CA SER A 353 42 522 53 220 49 991 1 00 38 37 A C
ATOM 819 C SER A 353 41 029 53 382 49 697 1 00 37 14 A C
ATOM 820 O SER A 353 40 588 54 416 49 190 1 00 36 39 A O
ATOM 821 N TRP A 354 40 261 52 347 50 035 1 00 35 87 A N
ATOM 823 CA TRP A 354 38 854 52 263 49 651 1 00 34 79 A C
ATOM 825 CB TRP A 354 38 134 51 166 50 441 1 00 33 83 A C
ATOM 828 CG TRP A 354 37 946 51 489 51 887 1 00 32 21 A C
ATOM 829 CDl TRP A 354 38 711 51 055 52 929 1 00 31 61 A C ATOM 831 NE1 TRP A 354 38.233 51 564 54 112 1 00 31.03 A N
ATOM 833 CE2 TRP A 354 37 135 52 341 53 851 1 00 30 .68 A C
ATOM 834 CD2 TRP A 354 36 925 52 314 52 457 1 00 31 .07 A C
ATOM 835 CE3 TRP A 354 35 852 53 040 51 931 1 00 30 82 A C
ATOM 837 CZ3 TRP A 354 35 041 53 755 52 796 1 00 30 23 A C
ATOM 839 CH2 TRP A 354 35 280 53 759 54 173 1 00 30 00 A C
ATOM 841 CZ2 TRP A 354 36 317 53 058 54 719 1 00 29 86 A C
ATOM 843 C TRP A 354 38 771 51 948 48 167 1 00 34 83 A C
ATOM 844 O TRP A 354 39 704 51 385 47 596 1 00 35 29 A O
ATOM 845 N ASP A 355 37 653 52 305 47 545 1 00 34 88 A N
ATOM 847 CA ASP A 355 37 480 52 084 46 114 1 00 35 20 A C
ATOM 849 CB ASP A 355 36 420 53 035 45 549 1 00 35 49 A C
ATOM 852 CG ASP A 355 35 010 52 507 45 711 1 00 36 09 A c
ATOM 853 OD1 ASP A 355 34 690 51 962 46 790 1 00 36 48 A 0
ATOM 854 OD2 ASP A 355 34 150 52 599 44 810 1 00 36 34 A 0
ATOM 855 C ASP A 355 37 126 50 630 45 806 1 00 35 60 A c
ATOM 856 O ASP A 355 37 359 50 155 44 695 1 00 35 78 A 0
ATOM 857 N ARG A 356 36 577 49 927 46 796 1 00 35 99 A N
ATOM 859 CA ARG A 356 36 175 48 532 46 628 1 00 36 45 A C
ATOM 861 CB ARG A 356 34 650 48 429 46 519 1 00 36 20 A C
ATOM 864 CG ARG A 356 34 110 48 674 45 118 1 00 36 58 A C
ATOM 867 CD ARG A 356 32 594 48 784 45 049 1 00 36 46 A C
ATOM 874 C ARG A 356 36 659 47 665 47 794 1 00 36 74 A C
ATOM 875 O ARG A 356 36 648 48 101 48 950 1 00 35 54 A 0
ATOM 876 N PRO A 357 37 077 46 437 47 490 1 00 37 27 A N
ATOM 877 CA PRO A 357 37 495 45 482 48 522 1 00 37 34 A C
ATOM 879 CB PRO A 357 38 278 44 437 47 726 1 00 37 35 A C
ATOM 882 CG PRO A 357 37 637 44 445 46 376 1 00 37 32 A C
ATOM 885 CD PRO A 357 37 178 45 862 46 137 1 00 37 33 A C
ATOM 888 C PRO A 357 36 299 44 830 49 221 1 00 37 07 A C
ATOM 889 O PRO A 357 35 186 44 858 48 695 1 00 36 01 A 0
ATOM 890 N MET A 358 36 538 44 250 50 393 1 00 37 16 A N
ATOM 892 CA MET A 358 35 478 43 627 51 172 1 00 37 21 A C
ATOM 894 CB MET A 358 35 998 43 193 52 546 1 00 39 10 A C
ATOM 897 CG MET A 358 36 337 44 341 53 478 1 00 41 31 A C
ATOM 900 SD MET A 358 34 885 45 269 54 035 1 00 43 92 A S
ATOM 901 CE MET A 358 35 683 46 487 55 101 1 00 44 20 A C
ATOM 905 C MET A 358 34 917 42 410 50 445 1 00 35 47 A C
ATOM 906 O MET A 358 35 671 41 558 49 971 1 00 34 60 A 0
ATOM 907 N PRO A 359 33 592 42 332 50 363 1 00 32 72 A N
ATOM 908 CA PRO A 359 32 922 41 162 49 806 1 00 32 11 A C
ATOM 910 CB PRO A 359 31 580 41 730 49 349 1 00 32 01 A C
ATOM 913 CG PRO A 359 31 289 42 813 50 348 1 00 32 22 A C
ATOM 916 CD PRO A 359 32 625 43 355 50 793 1 00 32 32 A C
ATOM 919 C PRO A 359 32 705 40 118 50 884 1 00 31 07 A C
ATOM 920 O PRO A 359 32 955 40 387 52 058 1 00 31 64 A O
ATOM 921 N ALA A 360 32 247 38 940 50 482 1 00 30 43 A N
ATOM 923 CA ALA A 360 31 903 37 887 51 421 1 00 29 98 A C
ATOM 925 CB ALA A 360 32 230 36 524 50 824 1 00 29 33 A C
ATOM 929 C ALA A 360 30 425 37 965 51 774 1 00 30 23 A C
ATOM 930 O ALA A 360 29 618 38 481 51 001 1 00 29 92 A O
ATOM 931 N CYS A 361 30 086 37 468 52 958 1 00 31 20 A N
ATOM 933 CA CYS A 361 28 701 37 174 53 314 1 00 30 59 A C
ATOM 935 CB CYS A 361 28 299 37 913 54 585 00 30 67 A C
ATOM 938 SG CYS A 361 27 749 39 608 54 269 X 00 32 23 A S
ATOM 939 C CYS A 361 28 604 35 665 53 495 1 00 29 90 A C
ATOM 940 O CYS A 361 28 917 35 129 54 560 1 00 32 29 A O
ATOM 941 N SER A 362 28 191 34 988 52 432 1 00 27 65 A N
ATOM 943 CA SER A 362 28 249 33 538 52 361 1 00 26 45 A C
ATOM 945 CB SER A 362 29 065 33 109 51 135 1 00 27 02 A C
ATOM 948 OG SER A 362 28 301 32 309 50 259 1 00 28 06 A O
ATOM 950 C SER A 362 26 851 32 934 52 318 1 00 24 22 A C
ATOM 951 O SER A 362 25 933 33 494 51 726 1 00 23 45 A O
ATOM 952 N ILE A 363 26 702 31 785 52 963 1 00 22 39 A N
ATOM 954 CA ILE A 363 25 394 31 182 53 161 1 00 20 83 A C
ATOM 956 CB ILE A 363 25 515 29 949 54 097 1 00 20 93 A C
ATOM 958 CGI ILE A 363 24 139 29 548 54 631 1 00 20 74 A c
ATOM 961 CDl ILE A 363 24 193 28 718 55 890 1 00 20 98 A c
ATOM 965 CG2 ILE A 363 26 219 28 784 53 392 1 00 20 79 A c
ATOM 969 C ILE A 363 24 740 30 830 51 819 1 00 20 77 A c
ATOM 970 O ILE A 363 25 417 30 439 50 868 1 00 18 66 A 0
ATOM 971 N VAL A 364 23 426 31 021 51 742 1 00 19 57 A N
ATOM 973 CA VAL A 364 22 674 30 744 50 524 1 00 18 93 A c
ATOM 975 CB VAL A 364 21 221 31 299 50 616 1 00 19 00 A c ATOM 977 CGI VAL A 364 20 338 30 713 49 533 1 00 20 51 A C
ATOM 981 CG2 VAL A 364 21 215 32 824 50 528 1 00 18 67 A C
ATOM 985 C VAL A 364 22 673 29 230 50 295 1 00 17 70 A C
ATOM 986 O VAL A 364 22 556 28 448 51 240 1 00 15 90 A O
ATOM 987 N ASP A 365 22 823 28 822 49 043 1 00 16 00 A N
ATOM 989 CA ASP A 365 22 861 27 412 48 700 1 00 15 67 A C
ATOM 991 CB ASP A 365 24 243 27 039 48 165 1 00 16 22 A C
ATOM 994 CG ASP A 365 24 468 25 548 48 122 1 00 15 57 A C
ATOM 995 OD1 ASP A 365 23 535 24 779 48 434 1 00 15 75 A 0
ATOM 996 OD2 ASP A 365 25 554 25 048 47 782 1 00 18 06 A 0
ATOM 997 C ASP A 365 21 809 27 110 47 657 1 00 16 33 A c
ATOM 998 O ASP A 365 21 844 27 653 46 555 1 00 17 71 A 0
ATOM 999 N CYS A 366 20 874 26 233 48 003 1 00 16 86 A N
ATOM 1001 CA CYS A 366 19 781 25 890 47 109 1 00 16 41 A C
ATOM 1003 CB CYS A 366 18 587 25 396 47 919 1 00 17 48 A C
ATOM 1006 SG CYS A 366 17 865 26 664 48 984 1 00 13 34 A S
ATOM 1007 C CYS A 366 20 208 24 843 46 085 1 00 17 54 A C
ATOM 1008 O CYS A 366 19 471 24 544 45 144 1 00 17 46 A O
ATOM 1009 N GLY A 367 21 406 24 293 46 269 1 00 16 48 A N
ATOM 1011 CA GLY A 367 21 969 23 350 45 322 1 00 15 43 A C
ATOM 1014 C GLY A 367 21 402 21 964 45 519 1 00 15 24 A C
ATOM 1015 O GLY A 367 20 483 21 787 46 302 1 00 13 84 A O
ATOM 1016 N PRO A 368 21 958 20 978 44 821 1 00 17 73 A N
ATOM 1017 CA PRO A 368 21 454 19 604 44 891 1 00 18 75 A C
ATOM 1019 CB PRO A 368 22 339 18 846 43 893 1 00 19 38 A c
ATOM 1022 CG PRO A 368 23 561 19 687 43 738 1 00 18 90 A c
ATOM 1025 CD PRO A 368 23 117 21 102 43 919 1 00 18 39 A c
ATOM 1028 C PRO A 368 19 996 19 541 44 462 1 00 18 96 A c
ATOM 1029 O PRO A 368 19 623 20 167 43 470 1 00 19 97 A 0
ATOM 1030 N PRO A 369 19 174 18 814 45 203 1 00 20 20 A N
ATOM 1031 CA PRO A 369 17 745 18 759 44 899 1 00 21 44 A c
ATOM 1033 CB PRO A 369 17 152 18 041 46 111 1 00 22 21 A c
ATOM 1036 CG PRO A 369 18 279 17 243 46 691 1 00 21 56 A c
ATOM 1039 CD PRO A 369 19 531 17 990 46 370 1 00 21 06 A c
ATOM 1042 C PRO A 369 17 508 17 981 43 623 1 00 21 10 A c
ATOM 1043 O PRO A 369 18 164 16 966 43 401 1 00 21 29 A 0
ATOM 1044 N ASP A 370 16 600 18 466 42 784 1 00 20 99 A N
ATOM 1046 CA ASP A 370 16 300 17 802 41 529 1 00 21 46 A C
ATOM 1048 CB ASP A 370 15 280 18 612 40 728 1 00 22 68 A C
ATOM 1051 CG ASP A 370 15 890 19 831 40 060 1 00 23 68 A C
ATOM 1052 OD1 ASP A 370 17 119 19 849 39 841 1 00 23 18 A O
ATOM 1053 OD2 ASP A 370 15 211 20 821 39 714 1 00 25 59 A 0
ATOM 1054 C ASP A 370 15 752 16 399 41 767 1 00 22 73 A c
ATOM 1055 O ASP A 370 15 122 16 125 42 800 1 00 22 49 A 0
ATOM 1056 N ASP A 371 15 988 15 523 40 794 1 00 24 03 A N
ATOM 1058 CA ASP A 371 15 472 14 163 40 837 1 00 24 50 A C
ATOM 1060 CB ASP A 371 16 058 13 323 39 702 1 00 26 33 A C
ATOM 1063 CG ASP A 371 17 565 13 151 39 809 1 00 28 24 A C
ATOM 1064 OD1 ASP A 371 18 124 13 275 40 922 1 00 29 58 A O
ATOM 1065 OD2 ASP A 371 18 275 12 881 38 820 1 00 30 35 A 0
ATOM 1066 C ASP A 371 13 961 14 206 40 703 1 00 23 37 A c
ATOM 1067 O ASP A 371 13 425 14 970 39 900 1 00 23 84 A 0
ATOM 1068 N LEU A 372 13 277 13 391 41 500 1 00 22 57 A N
ATOM 1070 CA LEU A 372 11 828 13 286 41 419 1 00 21 37 A c
ATOM 1072 CB LEU A 372 11 223 13 167 42 824 1 00 21 13 A c
ATOM 1075 CG LEU A 372 -9 751 12 775 42 953 1 00 20 25 A c
ATOM 1077 CDl LEU A 372 -8 845 13 755 42 237 1 00 20 46 A c
ATOM 1081 CD2 LEU A 372 -9 376 12 680 44 417 1 00 21 41 A c
ATOM 1085 C LEU A 372 11 488 12 057 40 583 1 00 21 48 A c
ATOM 1086 O LEU A 372 11 783 10 939 40 991 1 00 23 26 A 0
ATOM 1087 N PRO A 373 10 901 12 256 39 406 1 00 21 97 A N
ATOM 1088 CA PRO A 373 10 443 11 128 38 580 1 00 21 99 A C
ATOM 1090 CB PRO A 373 -9 701 11 808 37 421 1 00 21 59 A C
ATOM 1093 CG PRO A 373 10 264 13 191 37 350 1 00 22 12 A C
ATOM 1096 CD PRO A 373 10 650 13 557 38 759 1 00 22 29 A c
ATOM 1099 C PRO A 373 -9 497 10 185 39 333 1 00 21 51 A c
ATOM 1100 O PRO A 373 -8 524 10 639 39 942 1 00 20 30 A 0
ATOM 1101 N SER A 374 -9 796 8 889 39 277 1 00 21 18 A N
ATOM 1103 CA SER A 374 -9 015 7 858 39 963 1 00 21 12 A c
ATOM 1105 CB SER A 374 -7 559 7 868 39 490 1 00 20 91 A c
ATOM 1108 OG SER A 374 -7 470 7 431 38 143 1 00 23 23 A 0
ATOM 1110 C SER A 374 -9 096 8 006 41 484 1 00 19 96 A c
ATOM 1111 O SER A 374 -8 250 7 503 42 218 1 00 19 69 A 0 ATOM 1112 N GLY A 375 10 137 8 679 41 948 1 00 19 61 A N
ATOM 1114 CA GLY A 375 10 322 8 923 43 366 1 00 19 49 A C
ATOM 1117 C GLY A 375 11 790 8 956 43 733 1 00 19 40 A C
ATOM 1118 O GLY A 375 12 654 8 597 42 932 1 00 20 59 A O
ATOM 1119 N ARG A 376 12 067 9 389 44 956 1 00 20 29 A N
ATOM 1121 CA ARG A 376 13 428 9 481 45 461 1 00 20 79 A C
ATOM 1123 CB ARG A 376 13 847 8 150 46 090 1 00 22 91 A C
ATOM 1126 CG ARG A 376 13 175 7 849 47 430 1 00 24 76 A C
ATOM 1129 CD ARG A 376 13 337 6 409 47 907 1 00 27 11 A C
ATOM 1132 NE ARG A 376 12 173 5 955 48 667 1 00 29 76 A N
ATOM 1134 CZ ARG A 376 11 039 5 513 48 125 1 00 31 61 A C
ATOM 1135 NH1 ARG A 376 10 894 5 449 46 806 1 00 33 30 A N
ATOM 1138 NH2 ARG A 376 10 036 5 134 48 906 1 00 32 38 A N
ATOM 1141 C ARG A 376 13 503 10 601 46 491 1 00 19 86 A C
ATOM 1142 O ARG A 376 12 468 11 100 46 943 1 00 19 69 A O
ATOM 1143 N VAL A 377 14 721 10 987 46 865 1 00 19 08 A N
ATOM 1145 CA VAL A 377 14 926 12 061 47 837 1 00 18 17 "A C
ATOM 1147 CB VAL A 377 15 557 13 326 47 189 1 00 18 53 A c
ATOM 1149 CGI VAL A 377 17 081 13 198 47 074 1 00 19 32 A c
ATOM 1153 CG2 VAL A 377 15 187 14 576 47 980 1 00 18 01 A c
ATOM 1157 C VAL A 377 15 786 11 622 49 014 1 00 17 06 A c
ATOM 1158 O VAL A 377 16 671 10 782 48 878 1 00 17 16 A 0
ATOM 1159 N GLU A 378 15 511 12 216 50 168 1 00 17 70 A N
ATOM 1161 CA GLU A 378 16 238 11 938 51 399 1 00 17 47 A C
ATOM 1163 CB GLU A 378 15 323 11 178 52 360 1 00 19 62 A C
ATOM 1166 CG GLU A 378 15 917 10 832 53 721 1 00 22 94 A C
ATOM 1169 CD GLU A 378 14 988 9 944 54 547 1 00 25 04 A c
ATOM 1170 OEl GLU A 378 15 417 9 439 55 609 1 00 25 08 A 0
ATOM 1171 OE2 GLU A 378 13 820 9 745 54 126 1 00 27 34 A 0
ATOM 1172 C GLU A 378 16 682 13 270 52 008 1 00 15 82 A c
ATOM 1173 O GLU A 378 15 926 14 233 52 005 1 00 10 10 A 0
ATOM 1174 N TYR A 379 17 922 13 322 52 494 1 00 16 85 A N
ATOM 1176 CA TYR A 379 18 433 14 484 53 215 1 00 18 94 A C
ATOM 1178 CB TYR A 379 19 955 14 609 53 060 1 00 21 35 A C
ATOM 1181 CG TYR A 379 20 419 14 987 51 674 1 00 22 39 A C
ATOM 1182 CDl TYR A 379 20 666 14 015 50 716 1 00 23 85 A C
ATOM 1184 CEl TYR A 379 21 094 14 358 49 440 1 00 25 58 A c
ATOM 1186 CZ TYR A 379 21 288 15 686 49 119 1 00 26 07 A c
ATOM 1187 OH TYR A 379 21 711 16 028 47 856 1 00 26 90 A 0
ATOM 1189 CE2 TYR A 379 21 054 16 670 50 057 1 00 24 87 A c
ATOM 1191 CD2 TYR A 379 20 626 16 316 51 329 1 00 23 82 A c
ATOM 1193 C TYR A 379 18 106 14 327 54 691 1 00 17 89 A c
ATOM 1194 O TYR A 379 18 501 13 339 55 312 1 00 16 83 A 0
ATOM 1195 N ILE A 380 17 391 15 302 55 248 1 00 17 21 A N
ATOM 1197 CA ILE A 380 16 974 15 254 56 648 1 00 17 79 A C
ATOM 1199 CB ILE A 380 15 584 15 934 56 823 1 00 18 87 A C
ATOM 1201 CGI ILE A 380 14 523 15 237 55 958 1 00 19 37 A c
ATOM 1204 CDl ILE A 380 14 247 13 787 56 322 1 00 20 00 A c
ATOM 1208 CG2 ILE A 380 15 158 15 955 58 291 1 00 19 02 A c
ATOM 1212 C ILE A 380 18 019 15 902 57 558 1 00 16 51 A c
ATOM 1213 O ILE 380 18 438 15 308 58 543 1 00 16 62 A 0
ATOM 1214 N THR A 381 18 446 17 112 57 222 1 00 16 62 A N
ATOM 1216 CA THR A 381 19 440 17 822 58 031 1 00 16 72 A C
ATOM 1218 CB THR A 381 19 665 19 235 57 475 1 00 16 89 A c
ATOM 1220 OGl THR A 381 IS 425 19 943 57 448 1 00 17 09 A 0
ATOM 1222 CG2 THR A 381 20 534 20 064 58 405 1 00 17 22 A c
ATOM 1226 C THR A 381 20 761 17 067 58 064 1 00 16 69 A c
ATOM 1227 O THR A 381 21 370 16 913 59 119 1 00 16 36 A 0
ATOM 1228 N GLY A 382 21 198 16 586 56 908 1 00 17 18 A N
ATOM 1230 CA GLY A 382 22 446 15 848 56 832 1 00 18 82 A C
ATOM 1233 C GLY A 382 22 859 15 576 55 400 1 00 17 53 A C
ATOM 1234 O GLY A 382 22 501 16 327 54 506 1 00 19 11 A O
ATOM 1235 N PRO A 383 23 626 14 512 55 185 1 00 17 06 A N
ATOM 1236 CA PRO A 383 24 011 14 093 53 834 1 00 16 15 A C
ATOM 1238 CB PRO A 383 25 042 12 991 54 094 1 00 16 06 A C
ATOM 1241 CG PRO A 383 24 649 12 433 55 410 1 00 16 63 A C
ATOM 1244 CD PRO A 383 24 189 13 621 56 217 1 00 16 76 A C
ATOM 1247 C PRO A 383 24 622 15 210 52 998 1 00 16 44 A C
ATOM 1248 O PRO A 383 25 636 15 787 53 377 1 00 16 46 A O
ATOM 1249 N GLY A 384 23 983 15 518 51 874 1 00 17 68 A N
ATOM 1251 CA GLY A 384 24 517 16 458 50 902 1 00 18 43 A C
ATOM 1254 C GLY A 384 24 397 17 924 51 269 1 00 18 73 A C
ATOM 1255 O GLY A 384 24 866 18 785 50 520 1 00 19 45 A O
ATOM 1256 N VAL A 385 23 772 18 206 52 411 1 00 18 92 A N ATOM 1258 CA VAL A 385 23 631 19 569 52 919 1 00 18 52 A C
ATOM 1260 CB VAL A 385 23 402 19 568 54 446 1 00 20 01 A C
ATOM 1262 CGI VAL A 385 23 261 20 996 54 991 1 00 19 57 A c
ATOM 1266 CG2 VAL A 385 24 544 18 834 55 167 1 00 20 60 A c
ATOM 1270 C VAL A 385 22 456 20 253 52 207 1 00 17 75 A c
ATOM 1271 O VAL A 385 21 329 19 758 52 232 1 00 18 14 A 0
ATOM 1272 N THR A 386 22 731 21 380 51 560 1 00 16 51 A N
ATOM 1274 CA THR A 386 21 754 22 028 50 689 1 00 16 33 A C
ATOM 1276 CB THR A 386 22 133 21 797 49 206 1 00 15 72 A C
ATOM 1278 OGl THR A 386 23 476 22 244 48 972 1 00 15 27 A O
ATOM 1280 CG2 THR A 386 22 164 20 322 48 865 1 00 14 59 A C
ATOM 1284 C THR A 386 21 643 23 527 50 925 1 00 16 27 A C
ATOM 1285 O THR A 386 21 061 24 236 50 110 1 00 16 53 A 0
ATOM 1286 N THR A 387 22 187 24 004 52 037 1 00 17 44 A N
ATOM 1288 CA THR A 387 22 249 25 436 52 311 1 00 18 00 A c
ATOM 1290 CB THR A 387 23 547 25 766 53 079 1 00 17 22 A c
ATOM 1292 OGl THR A 387 23 785 24 767 54 079 1 00 16 49 A 0
ATOM 1294 CG2 THR A 387 24 756 25 666 52 166 1 00 17 52 A c
ATOM 1298 C THR A 387 21 046 25 921 53 109 1 00 18 18 A c
ATOM 1299 O THR A 387 20 183 25 138 53 478 1 00 19 11 A 0
ATOM 1300 N TYR A 388 21 014 27 225 53 373 1 00 18 98 A N
ATOM 1302 CA TYR A 388 19 914 27 878 54 072 1 00 19 26 A c
ATOM 1304 CB TYR A 388 20 393 29 241 54 594 1 00 19 77 A c
ATOM 1307 CG TYR A 388 19 323 30 090 55 249 1 00 19 27 A c
ATOM 1308 CDl TYR A 388 18 193 30 482 54 547 1 00 19 12 A c
ATOM 1310 CEl TYR A 388 17 215 31 266 55 141 1 00 19 12 A c
ATOM 1312 CZ TYR A 388 17 366 31 668 56 451 1 00 18 78 A c
ATOM 1313 OH TYR A 388 16 397 32 445 57 042 1 00 20 41 A 0
ATOM 1315 CE2 TYR A 388 18 481 31 294 57 173 1 00 19 19 A c
ATOM 1317 CD2 TYR A 388 19 453 30 509 56 569 1 00 19 98 A c
ATOM 1319 C TYR A 388 19 370 27 031 55 230 1 00 18 75 A c
ATOM 1320 O TYR A 388 20 115 26 630 56 123 1 00 17 54 A 0
ATOM 1321 N LYS A 389 18 069 26 756 55 177 1 00 18 01 A N
ATOM 1323 CA LYS A 389 17 329 26 050 56 230 1 00 18 54 A c
ATOM 1325 CB LYS A 389 17 552 26 698 57 605 1 00 19 24 A c
ATOM 1328 CG LYS A 389 16 812 28 018 57 799 1 00 19 80 A c
ATOM 1331 CD LYS A 389 15 314 27 881 57 547 1 00 21 04 A c
ATOM 1334 CE LYS A 389 14 571 29 176 57 850 1 00 21 61 A c
ATOM 1337 NZ LYS A 389 13 585 29 507 56 781 1 00 22 17 A N
ATOM 1341 C LYS A 389 17 580 24 542 56 314 1 00 18 28 A C
ATOM 1342 O LYS A 389 17 080 23 892 57 223 1 00 15 09 A O
ATOM 1343 N ALA A 390 18 322 23 982 55 360 1 00 18 30 A N
ATOM 1345 CA ALA A 390 18 461 22 533 55 278 1 00 17 60 A c
ATOM 1347 CB ALA A 390 19 561 22 152 54 302 1 00 18 57 A c
ATOM 1351 C ALA A 390 17 128 21 938 54 828 1 00 17 31 A c
ATOM 1352 O ALA A 390 16 379 22 569 54 079 1 00 16 90 A O
ATOM 1353 N VAL A 391 16 840 20 722 55 276 1 00 15 51 A N
ATOM 1355 CA VAL A 391 15 565 20 080 54 994 1 00 13 99 A c
ATOM 1357 CB VAL A 391 14 846 19 700 56 299 1 00 12 90 A c
ATOM 1359 CGI VAL A 391 13 418 19 252 56 027 1 00 12 12 A c
ATOM 1363 CG2 VAL A 391 14 870 20 873 57 283 1 00 13 69 c
ATOM 1367 C VAL A 391 15 797 18 815 54 183 1 00 14 45 A c
ATOM 1368 O VAL A 391 16 686 18 037 54 507 1 00 14 21 A 0
ATOM 1369 N ILE A 392 15 008 18 629 53 125 1 00 14 05 A N
ATOM 1371 CA ILE A 392 14 993 17 381 52 355 1 00 14 57 A c
ATOM 1373 CB ILE A 392 15 523 17 589 50 909 1 00 15 18 A C
ATOM 1375 CGI ILE A 392 14 765 18 722 50 208 1 00 15 25 A C
ATOM 1378 CDl ILE A 392 14 929 18 739 48 695 1 00 15 46 A c
ATOM 1382 CG2 ILE A 392 17 026 17 860 50 919 1 00 15 98 A c
ATOM 1386 C ILE A 392 13 569 16 821 52 306 1 00 15 04 A c
ATOM 1387 O ILE A 392 12 596 17 546 52 525 1 00 14 21 A 0
ATOM 1388 N GLN A 393 13 451 15 531 52 017 1 00 13 10 A N
ATOM 1390 CA GLN A 393 12 161 14 864 52 049 1 00 13 81 A C
ATOM 1392 CB GLN A 393 11 987 14 078 53 355 1 00 14 86 A C
ATOM 1395 CG GLN A 393 10 738 13 196 53 413 1 00 17 74 A C
ATOM 1398 CD GLN A 393 -9 468 13 963 53 779 1 00 19 32 A c
ATOM 1399 OEl GLN A 393 -9 341 14 481 54 890 1 00 20 40 A 0
ATOM 1400 NE2 GLN A 393 -8 522 14 022 52 846 1 00 19 14 A N
ATOM 1403 C GLN A 393 12 019 13 941 50 853 1 00 13 77 A C
ATOM 1404 O GLN A 393 12 743 12 955 50 719 1 00 12 31 A O
ATOM 1405 N TYR A 394 11 067 14 279 49 992 1 00 13 13 A N
ATOM 1407 CA TYR A 394 10 741 13 482 48 831 1 00 14 04 A C
ATOM 1409 CB TYR A 394 10 152 14 381 47 751 1 00 15 48 A C ATOM 1412 CG TYR A 394 11 184 15 180 47 008 1 00 15 52 A C
ATOM 1413 CDl TYR A 394 11 384 16 522 47 285 1 00 15 48 A C
ATOM 1415 CEl TYR A 394 12 342 17 256 46 602 1 00 16 28 A C
ATOM 1417 CZ TYR A 394 13 103 16 647 45 633 1 00 16 75 A C
ATOM 1418 OH TYR A 394 14 049 17 374 44 940 1 00 17 48 A O
ATOM 1420 CE2 TYR A 394 12 916 15 310 45 338 1 00 16 75 A C
ATOM 1422 CD2 TYR A 394 11 965 14 589 46 022 1 00 17 73 A C
ATOM 1424 C TYR A 394 -9 756 12 366 49 169 1 00 13 92 A C
ATOM 1425 O TYR A 394 -8 912 12 514 50 046 1 00 15 56 A O
ATOM 1426 N SER A 395 -9 888 11 255 48 454 1 00 14 29 A N
ATOM 1428 CA SER A 395 -9 032 10 082 48 598 1 00 16 45 A C
ATOM 1430 CB SER A 395 -9 758 8 981 49 374 1 00 16 81 A C
ATOM 1433 OG SER A 395 -9 511 9 058 50 758 1 00 20 77 A O
ATOM 1435 C SER A 395 -8 737 9 549 47 201 1 00 17 27 A C
ATOM 1436 O SER A 395 -9 574 9 653 46 316 1 00 18 28 A O
ATOM 1437 N CYS A 396 -7 562 8 960 47 014 1 00 19 07 A N
ATOM 1439 CA CYS A 396 -7 212 8 315 45 754 1 00 19 45 A C
ATOM 1441 CB CYS A 396 -5 764 8 649 45 392 1 00 21 18 A C
ATOM 1444 SG CYS A 396 -5 518 10 376 44 918 1 00 22 65 A S
ATOM 1445 C CYS A 396 -7 391 6 802 45 866 1 00 19 51 A C
ATOM 1446 O CYS A 396 -7 343 6 253 46 961 1 00 21 67 A O
ATOM 1447 N GLU A 397 -7 592 6 125 44 740 1 00 21 29 A N
ATOM 1449 CA GLU A 397 -7 691 4 663 44 737 1 00 23 17 A C
ATOM 1451 CB GLU A 397 -7 939 4 132 43 323 1 00 24 96 A C
ATOM 1454 CG GLU A 397 -9 415 4 091 42 946 1 00 26 97 A c
ATOM 1457 CD GLU A 397 -9 667 4 316 41 461 1 00 29 17 A c
ATOM 1458 OEl GLU A 397 -8 933 3 738 40 630 1 00 29 06 A 0
ATOM 1459 OE2 GLU A 397 10 611 5 068 41 125 1 00 30 34 A 0
ATOM 1460 C GLU A 397 -6 433 4 039 45 357 1 00 23 07 A c
ATOM 1461 O GLU A 397 -5 307 4 427 45 037 1 00 22 69 A 0
ATOM 1462 N GLU A 398 -6 657 3 043 46 211 1 00 23 79 A N
ATOM 1464 CA GLU A 398 -5 727 2 660 47 280 1 00 25 43 A C
ATOM 1466 CB GLU A 398 -6 342 1 532 48 133 1 00 25 95 A C
ATOM 1469 CG GLU A 398 -6 257 0 138 47 518 1 00 27 03 A C
ATOM 1472 CD GLU A 398 -6 781 -0 961 48 435 1 00 27 74 A c
ATOM 1473 OEl GLU A 398 -8 016 -1 088 48 576 1 00 28 75 A 0
ATOM 1474 OE2 GLU A 398 -5 958 -1 709 49 007 1 00 27 37 A 0
ATOM 1475 C GLU A 398 -4 292 2 273 46 900 1 00 27 18 A c
ATOM 1476 O GLU A 398 -3 349 2 694 47 579 1 00 31 37 A 0
ATOM 1477 N THR A 399 -4 099 1 464 45 865 1 00 24 35 A N
ATOM 1479 CA THR A 399 -2 775 0 864 45 678 1 00 24 14 A C
ATOM 1481 C3 THR A 399 -2 863 -0 699 45 651 1 00 25 14 A C
ATOM 1483 OGl THR A 399 -1 654 -1 260 45 120 1 00 24 46 A O
ATOM 1485 CG2 THR A 399 -3 956 -1 202 44 702 1 00 25 65 A c
ATOM 1489 C THR A 399 -2 014 1 405 44 467 1 00 22 83 A c
ATOM 1490 O THR A 399 -0 787 1 434 44 470 1 00 22 82 A 0
ATOM 1491 N PHE A 400 -2 736 1 865 43 452 1 00 21 49 A N
ATOM 1493 CA PHE A 400 -2 104 2 296 42 215 1 00 19 02 A C
ATOM 1495 CB PHE A 400 -2 874 1 722 41 027 1 00 18 24 A C
ATOM 1498 CG PHE A 400 -2 780 0 233 40 932 1 00 17 84 A C
ATOM 1499 CDl PHE A 400 -3 889 -0 564 41 161 1 00 17 67 A C
ATOM 1501 CEl ?HS A 400 -3 793 -1 941 41 096 1 00 17 31 A C
ATOM 1503 Z PHE A 400 -2 576 -2 536 40 804 1 00 17 75 A c
ATOM 1505 CE2 PHE A 400 -1 459 -1 754 40 586 1 00 17 45 A c
ATOM 1507 CD2 PHE A 400 -1 563 -0 377 40 656 1 00 18 22 A c
ATOM 1509 C PHE A 400 -1 960 3 810 42 096 1 00 18 23 A c
ATOM 1510 O PHE A 400 -1 259 4 294 41 203 1 00 16 67 A 0
ATOM 1511 N TYR A 401 -2 603 4 552 42 996 1 00 17 53 A N
ATOM 1513 CA TYR A 401 -2 513 6 012 42 991 1 00 18 11 A C
ATOM 1515 CB TYR A 401 -3 844 6 635 42 544 1 00 17 46 A C
ATOM 1518 CG TYR A 401 -4 236 6 287 41 128 1 00 16 23 A C
ATOM 1519 CDl TYR A 401 -3 872 7 103 40 063 1 00 16 79 A c
ATOM 1521 CEl TYR A 401 -4 224 6 782 38 756 1 00 15 90 A c
ATOM 1523 CZ TYR A 401 -4 945 5 633 38 509 1 00 15 47 A c
ATOM 1524 OH TYR A 401 -5 297 5 307 37 227 1 00 15 82 A 0
ATOM 1526 CE2 TYR A 401 -5 318 4 808 39 547 1 00 16 72 A c
ATOM 1528 CD2 TYR A 401 -4 961 5 137 40 850 1 00 16 61 A c
ATOM 1530 C TYR A 401 -2 126 6 574 44 357 1 00 19 87 A c
ATOM 1531 O TYR A 401 -2 472 6 014 45 399 1 00 21 14 A 0
ATOM 1532 N THR A 402 -1 400 7 686 44 337 1 00 20 93 A N
ATOM 1534 CA THR A 402 -1 085 8 433 45 551 1 00 23 45 A C
ATOM 1536 CB THR A 402 0 418 8 354 45 892 1 00 23 76 A c
ATOM 1538 OGl THR A 402 0 759 9 406 46 800 1 00 25 11 A 0 ATOM 1540 CG2 THR A 402 1 292 8 634 44 673 1 00 24 00 A C
ATOM 1544 C THR A 402 -1 506 9 891 45 384 1 00 23 67 A C
ATOM 1545 O THR A 402 -1 536 10 418 44 270 1 00 20 27 A O
ATOM 1546 N MET A 403 -1 826 10 539 46 499 1 00 25 30 A N
ATOM 1548 CA MET A 403 -2 324 11 910 46 463 1 00 27 74 A C
ATOM 1550 CB MET A 403 -3 293 12 149 47 611 1 00 28 82 A C
ATOM 1553 CG MET A 403 -3 666 13 610 47 785 1 00 31 21 A C
ATOM 1556 SD MET A 403 -5 381 13 927 47 394 1 00 32 05 A S
ATOM 1557 CE MET A 403 -6 120 13 284 48- 826 1 00 31 16 A C
ATOM 1561 C MET A 403 -1 200 12 935 46 536 1 00 28 26 A C
ATOM 1562 0 MET A 403 -0 398 12 925 47 465 1 00 26 90 A O
ATOM 1563 N LYS A 404 -1 159 13 820 45 543 1 00 29 90 A N
ATOM 1565 CA LYS A 404 -0 223 14 938 45 532 1 00 30 74 A C
ATOM 1567 CB LYS A 404 0 602 14 931 44 244 1 00 30 58 A C
ATOM 1570 CG LYS A 404 1 271 13 602 43 926 1 00 30 77 A C
ATOM 1573 CD LYS A 404 2 090 13 080 45 100 1 00 31 26 A C
ATOM 1576 CE LYS A 404 3 214 12 152 44 642 1 00 31 13 A C
ATOM 1579 NZ LYS A 404 4 341 12 126 45 614 1 00 31 21 A N
ATOM 1583 C LYS A 404 -0 979 16 262 45 654 1 00 31 15 A C
ATOM 1584 O LYS A 404 -2 211 16 284 45 600 1 00 30 09 A O
ATOM 1585 N VAL A 405 -0 227 17 352 45 828 1 00 32 46 A N
ATOM 1587 CA VAL A 405 -0 763 18 724 45 840 1 00 33 62 A C
ATOM 1589 CB VAL A 405 -1 761 18 974 44 657 1 00 34 45 A C
ATOM 1591 CGI VAL A 405 -2 154 20 452 44 577 1 00 34 71 A c
ATOM 1595 CG2 VAL A 405 -1 154 18 532 43 326 1 00 35 32 A c
ATOM 1599 C VAL A 405 -1 411 19 155 47 175 1 00 33 62 A c
ATOM 1600 O VAL A 405 -1 547 20 353 47 433 1 00 37 10 A 0
ATOM 1601 N ASN A 406 -1 815 18 187 48 002 1 00 32 81 A N
ATOM 1603 CA ASN A 406 -2 336 18 443 49 358 1 00 31 64 A C
ATOM 1605 CB ASN A 406 -3 329 19 630 49 406 1 00 31 14 A C
ATOM 1608 CG ASN A 406 -4 587 19 400 48 578 1 00 31 54 A C
ATOM 1609 OD1 ASN A 406 -5 327 18 443 48 799 1 00 31 72 A O
ATOM 1610 ND2 ASN A 406 -4 848 20 304 47 638 1 00 31 58 A N
ATOM 1613 C ASN A 406 -2 929 17 162 49 979 1 00 29 93 A C
ATOM 1614 O ASN A 406 -2 804 16 084 49 401 1 00 29 58 A O
ATOM 1615 N ASP A 407 -3 556 17 279 51 152 1 00 28 28 A N
ATOM 1617 CA ASP A 407 -4 048 16 113 51 904 1 00 25 64 A C
ATOM 1619 CB ASP A 407 -3 849 16 326 53 414 1 00 27 02 A C
ATOM 1622 CG ASP A 407 -4 793 17 383 54 006 1 00 28 58 A C
ATOM 1623 OD1 ASP A 407 -5 369 18 193 53 256 1 00 28 82 A O
ATOM 1624 OD2 ASP A 407 -5 018 17 484 55 231 1 00 31 76 A O
ATOM 1625 C ASP A 407 -5 516 15 752 51 610 1 00 22 21 A C
ATOM 1626 O ASP A 407 -6 090 14 884 52 268 1 00 17 10 A O
ATOM 1627 N GLY A 408 -6 116 16 429 50 634 1 00 19 78 A N
ATOM 1629 CA GLY A 408 -7 462 16 108 50 187 1 00 19 00 A C
ATOM 1632 C GLY A 408 -8 593 16 792 50 936 1 00 18 40 A C
ATOM 1633 O GLY A 408 -9 752 16 619 50 579 1 00 16 41 A O
ATOM 1634 N LYS A 409 -8 268 17 553 51 977 1 00 16 85 A N
ATOM 1636 CA LYS A 409 -9 230 18 229 52 766 1 00 17 37 A C
ATOM 1638 CB LYS A 409 -8 836 18 343 54 223 1 00 18 01 A C
ATOM 1641 CG LYS A 409 -9 957 18 624 55 197 1 00 19 78 A C
ATOM 1644 CD LYS A 409 -9 461 18 634 56 661 1 00 21 71 A C
ATOM 1647 CE LYS A 409 -9 157 17 226 57 173 1 00 22 89 A C
ATOM 1650 NZ LYS A 409 -9 242 17 119 56 672 1 00 24 20 A N
ATOM 1654 C LYS A 409 -9 559 19 613 52 196 1 00 15 80 A C
ATOM 1655 O LYS A 409 -8 644 20 422 52 020 1 00 16 49 A O
ATOM 1656 N TYR A 410 10 830 19 872 51 911 1 00 13 37 A N
ATOM 1658 CA TYR A 410 11 272 21 159 51 399 1 00 13 79 A C
ATOM 1660 CB TYR A 410 11 740 21 035 49 943 1 00 13 87 A C
ATOM 1663 CG TYR A 410 10 604 20 798 48 978 1 00 13 79 A c
ATOM 1664 CDl TYR A 410 -9 960 19 566 48 927 1 00 14 35 A c
ATOM 1666 CEl TYR A 410 -8 907 19 344 48 059 1 00 15 06 A c
ATOM 1668 CZ TYR A 410 -8 491 20 355 47 218 1 00 15 57 A c
ATOM 1669 OH TYR A 410 -7 444 20 129 46 357 1 00 18 55 A 0
ATOM 1671 CE2 TYR A 410 -9 108 21 589 47 248 1 00 14 51 A c
ATOM 1673 CD2 TYR A 410 10 164 21 804 48 130 1 00 15 31 A c
ATOM 1675 C TYR A 410 12 400 21 697 52 258 1 00 13 77 A c
ATOM 1676 O TYR A 410 13 255 20 944 52 723 1 00 13 98 A 0
ATOM 1677 N VAL A 411 12 380 23 005 52 469 1 00 15 31 A N
ATOM 1679 CA VAL A 411 13 405 23 700 53 226 1 00 16 57 A c
ATOM 1681 CB VAL A 411 12 786 24 535 54 371 1 00 17 26 A c
ATOM 1683 CGI VAL A 411 13 877 25 173 55 238 1 00 18 36 A c
ATOM 1687 CG2 VAL A 411 11 852 23 669 55 222 1 00 16 38 A c
ATOM 1691 C VAL A 411 14 129 24 622 52 263 1 00 17 54 A c ATOM 1692 O VAL A 411 13 519 25 176 51 346 1 00 21 11 A O
ATOM 1693 N CYS A 412 15 434 24 766 52 445 1 00 17 33 A N
ATOM 1695 CA CYS A 412 16 206 25 691 51 636 1 00 17 12 A C
ATOM 1697 CB CYS A 412 17 697 25 366 51 731 1 00 15 49 A C
ATOM 1700 SG CYS A 412 18 739 26 516 50 815 1 00 16 83 A S
ATOM 1701 C CYS A 412 15 943 27 096 52 159 1 00 17 54 A C
ATOM 1702 O CYS A 412 16 318 27 404 53 274 1 00 18 16 A O
ATOM 1703 N GLU A 413 15 281 27 944 51 377 1 00 19 83 A N
ATOM 1705 CA GLU A 413 14 926 29 278 51 873 1 00 21 13 A C
ATOM 1707 CB GLU A 413 13 502 29 662 51 445 1 00 21 52 A c
ATOM 1710 CG GLU A 413 12 418 28 755 52 021 1 00 22 37 A c
ATOM 1713 CD GLU A 413 12 321 28 796 53 543 1 00 24 28 A c
ATOM 1714 OEl GLU A 413 11 524 28 007 54 104 1 00 25 61 A 0
ATOM 1715 OE2 GLU A 413 13 030 29 605 54 187 1 00 22 90 A 0
ATOM 1716 C GLU A 413 15 931 30 362 51 463 1 00 20 84 A c
ATOM 1717 O GLU A 413 16 872 30 110 50 708 1 00 20 36 A 0
ATOM 1718 N ALA A 414 15 715 31 569 51 980 1 00 21 04 A N
ATOM 1720 CA ALA A 414 16 642 32 686 51 813 1 00 20 24 A C
ATOM 1722 CB ALA A 414 16 193 33 870 52 673 1 00 20 65 A c
ATOM 1726 C ALA A 414 16 784 33 126 50 364 1 00 19 51 A c
ATOM 1727 O ALA A 414 17 810 33 696 49 988 1 00 20 15 A 0
ATOM 1728 N ASP A 415 15 754 32 871 49 560 1 00 18 28 A N
ATOM 1730 CA ASP A 415 15 768 33 248 48 147 1 00 19 72 A C
ATOM 1732 CB ASP A 415 14 336 33 474 47 615 1 00 19 88 A C
ATOM 1735 CG ASP A 415 13 450 32 228 47 707 1 00 21 51 A C
ATOM 1736 OD1 ASP A 415 13 888 31 197 48 271 1 00 19 59 A 0
ATOM 1737 OD2 ASP A 415 12 286 32 199 47 239 1 00 21 92 A 0
ATOM 1738 C ASP A 415 16 513 32 239 47 280 1 00 18 59 A c
ATOM 1739 O ASP A 415 16 603 32 402 46 061 1 00 19 14 A 0
ATOM 1740 N GLY A 416 17 041 31 193 47 908 1 00 18 80 A N
ATOM 1742 CA GLY A 416 17 830 30 202 47 204 1 00 18 09 A C
ATOM 1745 C GLY A 416 17 016 29 088 46 584 1 00 18 40 A C
ATOM 1746 O GLY A 416 17 555 28 311 45 805 1 00 21 04 A O
ATOM 1747 N PHE A 417 15 736 28 989 46 936 1 00 18 50 A N
ATOM 1749 CA PHE A 417 14 869 27 935 46 405 1 00 17 81 A C
ATOM 1751 CB PHE A 417 13 644 28 538 45 706 1 00 18 59 A C
ATOM 1754 CG PHE A 417 13 949 29 153 44 368 1 00 18 46 A C
ATOM 1755 CDl PHE A 417 14 249 30 499 44 263 1 00 18 67 A C
ATOM 1757 CEl PHE A 417 14 541 31 065 43 041 1 00 19 13 A C
ATOM 1759 CZ PHE A 417 14 525 30 286 41 905 1 00 20 25 A C
ATOM 1761 CE2 PHE A 417 14 224 28 942 41 996 1 00 19 89 A C
ATOM 1763 CD2 PHE A 417 13 939 28 382 43 223 1 00 18 36 A C
ATOM 1765 C PHE A 417 14 389 26 962 47 483 1 00 16 86 A C
ATOM 1766 O PHE A 417 13 973 27 367 48 572 1 00 15 71 A 0
ATOM 1767 N TRP A 418 14 450 25 676 47 158 1 00 14 99 A N
ATOM 1769 CA TRP A 418 13 768 24 651 47 927 1 00 15 64 A c
ATOM 1771 CB TRP A 418 13 994 23 273 47 315 1 00 15 47 A c
ATOM 1774 CG TRP A 418 15 406 22 811 47 392 1 00 15 54 A c
ATOM 1775 CDl TRP A 418 16 283 22 690 46 358 1 00 16 15 A c
ATOM 1777 NE1 TRP A 418 17 493 22 223 46 813 1 00 15 77 A N
ATOM 1779 CE2 TRP A 418 17 413 22 029 48 165 1 00 15 17 A C
ATOM 1780 CD2 TRP A 418 16 107 22 387 48 562 1 00 15 65 A C
ATOM 1781 CE3 TRP A 418 15 768 22 277 49 916 1 00 15 36 A C
ATOM 1783 CZ3 TRP A 418 16 721 21 823 50 803 1 00 13 38 A C
ATOM 1785 CH2 TRP A 418 18 004 21 476 50 372 1 00 13 98 A c
ATOM 1787 CZ2 TRP A 418 18 370 21 575 49 062 1 00 14 64 A c
ATOM 1789 C TRP A 418 12 284 24 960 47 936 1 00 16 32 A c
ATOM 1790 O TRP A 418 11 669 25 125 46 882 1 00 17 11 A 0
ATOM 1791 N THR A 419 11 711 25 007 49 131 1 00 15 51 A N
ATOM 1793 CA THR A 419 10 379 25 555 49 327 1 00 14 82 A C
ATOM 1795 CB THR A 419 10 499 26 930 50 002 1 00 13 42 A C
ATOM 1797 OGl THR A 419 11 374 27 779 49 243 1 00 13 69 A O
ATOM 1799 CG2 THR A 419 -9 171 27 660 50 003 1 00 13 03 A C
ATOM 1803 C THR A 419 -9 557 24 628 50 203 1 00 15 03 A C
ATOM 1804 O THR A 419 -9 999 24 236 51 275 1 00 17 45 A 0
ATOM 1805 N SER A 420 -8 360 24 275 49 754 1 00 16 22 A N
ATOM 1807 CA SER A 420 -7 479 23 434 50 558 1 00 16 72 A c
ATOM 1809 CB SER A 420 -6 432 22 756 49 674 1 00 16 73 A c
ATOM 1812 OG SER A 420 -5 255 23 540 49 594 1 00 19 04 A 0
ATOM 1814 C SER A 420 -6 782 24 232 51 669 1 00 15 00 A c
ATOM 1815 O SER A 420 -6 880 25 459 51 743 1 00 10 96 A 0
ATOM 1816 N SER A 421 -6 063 23 508 52 518 1 00 16 22 A N
ATOM 1818 CA SER A 421 -5 298 24 102 53 608 1 00 17 22 A C ATOM 1820 CB SER A 421 .712 22.993 54.484 1.00 18.01 A C
ATOM 1823 OG SER A 421 .008 22.043 53.697 19.84 A O
ATOM 1825 C SER A 421 -4.170 25.016 53.111 17.00 A C
ATOM 1826 O SER A 421 -3.716 25.902 53.837 17.25 A O
ATOM 1827 N LYS A 422 -3.709 24.781 51.885 16.28 A N
ATOM 1829 CA LYS A 422 -2.712 25.639 51.259 16.92 A C
ATOM 1831 CB LYS A 422 -1.810 24.813 50.338 16.75 A C
ATOM 1834 CG LYS A 422 -1.314 23.512 50.950 16.10 A C
ATOM 1837 CD LYS A 422 -0.253 22.864 50.081 16.62 A C
ATOM 1840 CE LYS 422 0.126 21.488 50.597 16.78 A C
ATOM 1843 NZ LYS A 422 1.394 21.003 49.989 17.50 A N
ATOM 1847 C LYS A 422 -3.350 26.790 50.465 17.55 A C
ATOM 1848 O LYS A 422 -2.646 27.590 49.857 18.11 A O
ATOM 1849 N GLY A 423 -4.678 26.859 50.465 18.52 A N
ATOM 1851 CA GLY A 423 -5.401 27.925 49.793 19.72 A C
ATOM 1854 C GLY A 423 -5.741 27.608 48.347 21.08 A C
ATOM 1855 O GLY A 423 -6.151 28.486 47.599 22.74 A O
ATOM 1856 N GLU A 4,24 -5.571 26.351 47.953 1.00 22.18 A N
ATOM 1858 CA GLU A 424 -5.802 25.935 46.578 1.00 21.97 A C
ATOM 1860 CB GLU A 424 -5.036 24.642 46.292 1.00 23.46 A C
ATOM 1863 CG GLU A 424 -3.521 24.824 46.327 1.00 25.08 A C
ATOM 1866 CD GLU A 424 -2.776 23.625 46.895 1.00 25.70 A C
ATOM 1867 OEl GLU A 424 -3.353 22.861 47.705 1.00 25.57 A O
ATOM 1868 OE2 GLU A 424 -1.595 23.453 46.530 1.00 28.13 A O
ATOM 1869 C GLU A 424 -7.286 25.733 46.293 1.00 20.54 A C
ATOM 1870 O GLU A 424 -7.995 25.111 47.074 1.00 19.86 A O
ATOM 1871 N LYS A 425 -7.746 26.262 45.165 1.00 19.58 A N
ATOM 1873 CA LYS A 425 -9.151 26.179 44.785 1.00 19.36 A C
ATOM 1875 CB LYS A 425 -9.699 27.582 44.538 .00 19.74 A C
ATOM 1878 CG LYS A 425 -9.798 28.406 45.809 .00 20.39 A C
ATOM 1881 CD LYS A 425 -9.860 29.899 45.524 .00 21.59 A C
ATOM 1884 CE LYS A 425 -9.733 30.703 46.812 .00 21.43 A C
ATOM 1887 NZ LYS A 425 -10.639 30.172 47.874 .00 21.06 A N
ATOM 1891 C LYS A 425 -9.335 25.299 43.554 .00 19.09 A C
ATOM 1892 O LYS A 425 -10.319 25.418 42.830 .00 18.42 A 0
ATOM 1893 N SER A 426 -8.374 24.411 43.329 .00 19.20 A N
ATOM 1895 CA SER A 426 -8.471 23.407 42.282 .00 19.57 A C
ATOM 1897 CB SER A 426 -7.293 23.537 41.325 00 19.28 A C
ATOM 1900 OG SER A 426 -7.582 24.455 40.286 1.00 18.88 A O
ATOM 1902 C SER A 426 -8.471 22.020 42.928 1.00 22.10 A C
ATOM 1903 O SER A 426 -8.082 21.870 44.088 1.00 22.07 A O
ATOM 1904 N LEU A 427 -8.916 21.013 42.183 1.00 23.41 A N
ATOM 1906 CA LEU A 427 -8.921 19.635 42.675 1.00 24.70 A C
ATOM 1908 CB LEU A 427 -9.541 18.700 41.630 1.00 25.01 A C
ATOM 1911 CG LEU A 427 -11.056 18.490 41.654 1.00 24.97 A C
ATOM 1913 CDl LEU A 427 -11.523 17.811 40.381 1.00 26.70 A C
ATOM 1917 CD2 LEU A 427 -11.465 17.665 42.854 1.00 25.96 A C
ATOM 1921 C LEU A 427 -7.496 19.170 42.957 1.00 25.19 A C
ATOM 1922 O LEU A 427 -6.554 19.688 42.367 24.05 A O
ATOM 1923 N PRO A 428 -7.327 18.188 43.841 26.35 A N
ATOM 1924 CA PRO 428 -6.012 17.571 44.021 26.97 A C
ATOM 1926 C3 PRO 428 -6.124 16.863 45.372 26.49 A C
ATOM 1929 CG PRO A 428 -7.589 16.626 45.588 26.48 A C
ATOM 1932 CD PRO A 428 -8.350 17.581 44.710 26.40 A C
ATOM 1935 C PRO A. 428 -5.782 16.583 42.884 28.46 A C
ATOM 1936 O PRO A 428 -6.723 16.305 42.144 29. A O
ATOM 1937 N VAL A 429 -4.568 16.074 42.724 28. A N
ATOM 1939 CA VAL A 429 -4 312 15.133 41.641 29.42 A C
ATOM 1941 CB VAL A 429 -3 250 15.659 40.626 30.84 A C
ATOM 1943 CGI VAL A 429 -3 599 17.069 40.163 30.91 A c
ATOM 1947 CG2 VAL A 429 -1 840 15.605 41.206 31.73 A c
ATOM 1951 C VAL A 429 -3 909 13.764 42.174 27.23 A c
ATOM 1952 O VAL A 429 -3 113 13.648 43.101 26.29 A 0
ATOM 1953 N CYS A 430 4.489 12.728 41.580 25.80 A N
ATOM 1955 CA CYS A 430 4.153 11.358 41.925 23.10 A c
ATOM 1957 CB CYS A 430 395 10.470 41.837 23.01 A c
ATOM 1960 SG CYS A 430 547 10.750 43.207 21.26 A s
ATOM 1961 C CYS A 430 077 10.882 40.975 21.68 A c
ATOM 1962 O CYS A 430 365 10.547 39.829 22.85 A 0
ATOM 1963 N GLU A 431 833 10.897 41.452 20.67 A N
ATOM 1965 CA GLU A 431 0.673 10.484 40.666 1.00 20.29 A C
ATOM 1967 CB GLU A 431 0.599 11.165 41.178 1.00 21.19 A c
ATOM 1970 CG GLU A 431 0.774 12.601 40.710 1.00 23.29 A c
ATOM 1973 CD GLU A 431 2.233 13.027 40.622 1.00 23.81 A c ATOM 1974 OEl GLU A 431 2..476 14..218 40..325 1,.00 24.09 A O
ATOM 1975 OE2 GLU A 431 3. .133 12. .180 40. .846 1. .00 24. .37 A O
ATOM 1976 C GLU A 431 -0. .472 8. .981 40. .761 1, .00 18 .46 A C
ATOM 1977 O GLU A 431 -0. .576 8. .413 41. .842 1, .00 16. .91 A O
ATOM 1978 N PRO A 432 -0. .154 8, .333 39. .646 1. .00 15. .91 A N
ATOM 1979 CA PRO A 432 0. .131 6. .901 39. .678 1. .00 14. .74 A C
ATOM 1981 CB PRO A 432 0. ,448 6. .571 38. .222 1. .00 15. .32 A C
ATOM 1984 CG PRO A 432 -0. ,132 7. .681 37. .438 1. .00 16. .18 A c
ATOM 1987 CD PRO A 432 -0. .021 8. .894 38. .293 1. .00 15. .74 A c
ATOM 1990 C PRO A 432 1. .343 6. .617 40. .550 1. .00 13. .86 A c
ATOM 1991 O PRO A 432 2, .322 7. .358 40, .478 1. .00 11. .40 A 0
ATOM 1992 N VAL A 433 1, .276 5, .574 41. .369 1. .00 13. .66 A N
ATOM 1994 CA VAL A 433 2. .467 5. .094 42. .050 1. .00 16. .09 A C
ATOM 1996 CB VAL A 433 2. .154 4. .074 43. .179 1. .00 17. .22 A C
ATOM 1998 CGI VAL A 433 1. .039 4. .596 44. .111 1. .00 16. .92 A C
ATOM 2002 CG2 VAL A 433 1. .797 2. .721 42. .607 1. .00 17. .81 A c
ATOM 2006 C VAL A 433 3, .371 4. .466 40. .990 1. .00 17. .17 A c
ATOM 2007 O VAL A 433 2. .906 3. .773 40. .086 1. .00 16. .62 A 0
ATOM 2008 N CYS A 434 4. .664 4. .727 41. .096 1. .00 19. .01 A N
ATOM 2010 CA CYS A 434 5. .602 4. .329 40. .065 1. .00 21. .05 A C
ATOM 2012 CB CYS A 434 6. .413 5. .555 39. .630 1. .00 22. .28 A C
ATOM 2015 SG CYS A 434 7. .566 6. .191 40. .869 1. .00 24, .48 A S
ATOM 2016 C CYS A 434 6. .522 3. .200 40. .537 1. .00 21. .81 A C
ATOM 2017 O CYS A 434 6, .657 2. .958 41. .738 1. .00 23. .18 A 0
ATOM 2018 N GLY A 435 7. .117 2. .488 39. .584 1. .00 22. .19 A N
ATOM 2020 CA GLY A 435 8. .207 1. .570 39. .865 1. .00 23. .12 A C
ATOM 2023 C GLY A 435 7. .842 0. .218 40. .449 1. .00 23. .69 A C
ATOM 2024 O GLY A 435 8. .718 -0. .505 40, .920 1. .00 23. .35 A O
ATOM 2025 N LEU A 436 6. .558 -0. .127 40. .432 1. .00 25. .67 A N
ATOM 2027 CA LEU A 436 6. .112 -1. .436 40. .898 1, .00 25. .07 A C
ATOM 2029 CB LEU A 436 4. .610 -1. .416 41. .215 1. .00 24. .89 A C
ATOM 2032 CG LEU A 436 4. .057 -0 .419 42. .247 1, .00 24 .74 A C
ATOM 2034 CDl LEU A 436 2. .542 -0. .591 42. .369 1. .00 24 .82 A C
ATOM 2038 CD2 LEU A 436 4. .713 -0 .560 43. .621 1. .00 23 .96 A C
ATOM 2042 C LEU A 436 6. .394 -2. .492 39. .823 1. .00 25. .91 A C
ATOM 2043 O LEU A 436 6. .254 -2. .226 38. .636 1, .00 25. .27 A O
ATOM 2044 N SER A 437 6. .794 -3. .686 40, .246 1. .00 27. .59 A N
ATOM 2046 CA SER A 437 7. .027 -4. .791 39, .319 1. .00 28. .59 A C
ATOM 2048 CB SER A 437 8. .487 -4. .803 38, .859 1. .00 28. .61 A C
ATOM 2051 OG SER A 437 8, .703 -5. .749 37. .826 1. .00 28. .94 A O
ATOM 2053 C SER A 437 6. .681 -6. .121 39. .983 1. .00 29. .08 A c
ATOM 2054 O SER A 437 6. .614 -6. .210 41. .204 1. .00 28. .79 A O
ATOM 2055 N ALA A 438 6. .473 -7. .150 39. .168 1. .00 30. .46 A N
ATOM 2057 CA ALA A 438 6. .132 -8. .480 39. .658 1. .00 31. .01 A C
ATOM 2059 CB ALA A 438 5. .118 -9. .132 38. .727 1. .00 29. .98 A C
ATOM 2063 C ALA A 438 7. .371 -9. .371 39. .799 1. .00 33. .21 A C
ATOM 2064 O ALA A 438 7. .270 -10. .519 40. .233 1. .00 32. .75 A 0
ATOM 2065 N ARG A 439 8. .537 -8. .841 39. .440 1. .00 36. .37 A N
ATOM 2067 CA ARG A 439 9. .779 -9 .610 39. .494 1. .00 39. .63 A C
ATOM 2069 CB ARG A 439 10. .874 -8. .897 38. .712 1. .00 39. .11 A c
ATOM 2072 CG ARG A 439 10. .707 -8. .987 37. .220 1, .00 39. .30 A c
ATOM 2075 CD ARG A 439 11 .715 -8. .165 36. .458 1. .00 39. .03 A c
ATOM 2078 NE ARG A 439 13. .063 -8. .700 36. .605 1, .00 39. .14 A N
ATOM 2080 CZ ARG A 439 14 .174 -7. .985 36. .467 1. .00 39. .19 A C
ATOM 2081 NH1 ARG A 439 14 .112 -6 .686 36 .182 1. .00 39 .10 A N
ATOM 2084 NH2 ARG A 439 15 .354 -8 .571 36 .619 1. .00 38 .52 A N
ATOM 2087 C ARG A 439 10. .265 -9 .835 40. .919 1. .00 43 .48 A C
ATOM 2088 O ARG A 439 9. .879 -9 .110 41. .837 1. .00 43 .42 A O
ATOM 2089 N THR A 440 11 .128 -10 .835 41. .090 1. .00 48. .17 A N
ATOM 2091 CA THR A 440 11 .684 -11 .169 42. .402 1. .00 51 .87 A C
ATOM 2093 CB THR A 440 12 .365 -12 .554 42 .366 1. .00 51 .88 A C
ATOM 2095 OGl THR A 440 11 .517 -13 .498 41 .698 1. .00 51 .92 A 0
ATOM 2097 CG2 THR A 440 12 .524 -13 .127 43 .775 1 .00 51 .76 A c
ATOM 2101 C THR A 440 12 .680 -10 .104 42 .875 1. .00 55 .34 A c
ATOM 2102 O THR A 440 12 .488 -9 .491 43 .929 1 .00 56 .29 A 0
ATOM 2103 N THR A 441 13 .744 -9 .898 42 .101 1. .00 58 .35 A N
ATOM 2105 CA THR A 441 14 .736 -8 .858 42 .392 1. .00 60 .30 A C
ATOM 2107 CB THR A 441 15. .614 -9 .253 43 .617 1. .00 60 .81 A C
ATOM 2109 OGl THR A 441 15, .118 -10 .454 44 .225 1. .00 61 .25 A O
ATOM 2111 CG2 THR A 441 15, .519 -8 .202 44 .726 1. .00 60 .97 A C
ATOM 2115 C THR A 441 15, .616 -8 .622 41. .163 1. .00 61 .16 A C
ATOM 2116 O THR A 441 15, .186 -8 .859 40. .033 1. .00 61 .41 A O
ATOM 2117 N GLY A 442 16, .839 -8 .144 41. .386 1. .00 61 .94 A N ATOM 2119 CA GLY A 442 17.850 -8.108 40.344 1.00 62.21 A C
ATOM 2122 C GLY A 442 18 .724 -9 .352 40 .395 1. .00 62 .31 A C
ATOM 2123 O GLY A 442 19 .950 -9 .256 40 .307 1. .00 62 .39 A O
ATOM 2124 N GLY A 443 18 .089 -10 .517 40 .539 1 .00 61 .88 A N
ATOM 2126 CA GLY A 443 18. .791 -11 .789 40 .633 1, .00 61. .34 A C
ATOM 2129 C GLY A 443 19. .155 -12 .346 39 .269 1. .00 60. .66 A C
ATOM 2130 O GLY A 443 18. .641 -13 .388 38, .850 1. .00 61. .15 A O
ATOM 2131 N GLN A 444 20, .061 -11 .641 38. .593 1. .00 59. .18 A N
ATOM 2133 CA GLN A 444 20, .497 -11 .953 37. .233 1, .00 57. .11 A C
ATOM 2135 CB GLN A 444 21. .822 -11. .218 36. .966 1. .00 57. .37 A. C
ATOM 2138 CG GLN A 444 22. .542 -11 .588 35 .679 1. .00 57. .62 A C
ATOM 2141 CD GLN A 444 24. .029 -11 .271 35. .733 1. .00 58. .06 A C
ATOM 2142 OEl GLN A 444 24. .718 -11 .661 36 .681 1. .00 58. .07 A O
ATOM 2143 NE2 GLN A 444 24. .525 -10 .564 34 .720 1. .00 58. .26 A N
ATOM 2146 C GLN A 444 20. .643 -13. .461 36 .974 1. .00 54. .86 A C
ATOM 2147 0 GLN A 444 21, .437 -14 .150 37 .638 1. .00 55. .61 A O
ATOM 2148 N ILE A 445 19. .859 -13 .964 36 .014 1. .00 50. .68 A N
ATOM 2150 CA ILE A 445 19. .944 -15 .362 35. .584 1. .00 46. .11 A C
ATOM 2152 CB ILE A 445 18. .606 -16. .092 35 .833 1. .00 44. .03 A C
ATOM 2154 CGI ILE A 445 18. .570 -16. .605 37. .281 1. .00 41. .41 A C
ATOM 2157 CDl ILE A 445 17. .184 -16. .633 37. .914 1. .00 39. .27 A C
ATOM 2161 CG2 ILE A 445 18. .415 -17. .235 34 .842 1. .00 44. .81 A C
ATOM 2165 C ILE A 445 20, .374 -15. .404 34 .114 1. .00 43. .08 A C
ATOM 2166 O ILE A 445 19. .098 -15. .845 33 .194 0, .00 18. .22 A O
ATOM 2167 N TYR A 446 21. .616 -14. .960 33. .952 1. .00 39. .14 A N
ATOM 2169 CA TYR A 446 22. .297 -14 .777 32 .669 1. .00 35. .94 A C
ATOM 2171 CB TYR A 446 23. .526 -15. .676 32 .599 1. .00 35. .53 A C
ATOM 2174 CG TYR A 446 24. .645 -15. .060 31 .796 1. .00 34. .99 A C
ATOM 2175 CDl TYR A 446 25. .504 -14 .128 32 .368 1. .00 35 .04 A C
ATOM 2177 CEl TYR A 446 26. .531 -13 .559 31 .636 1. .00 34. .73 A C
ATOM 2179 CZ TYR A 446 26 .701 -13. .912 30 .313 1. .00 34. .16 A C
ATOM 2180 OH TYR A 446 27. .720 -13. .346 29. .582 1. .00 33. .56 A O
ATOM 2182 CE2 TYR A 446 25. .853 -14. .827 29. .720 1. .00 34. .08 A C
ATOM 2184 CD2 TYR A 446 24. .832 -15. .392 30. .460 1. .00 34. .17 A C
ATOM 2186 C TYR A 446 21. .498 -14. .924 31. .371 1. .00 33. .24 A C
ATOM 2187 O TYR A 446 20, .867 -15, .954 31. .120 1. .00 30. .84 A 0
ATOM 2188 N GLY A 447 21. .577 -13, .891 30. .535 1. .00 30, .68 A N
ATOM 2190 CA GLY A 447 21. .070 -13, .950 29. .176 1. .00 29. .27 A C
ATOM 2193 C GLY A 447 19. .608 -13, .576 29. .051 1. ,00 27. .58 A C
ATOM 2194 O GLY A 447 18. .977 -13, .144 30. .011 1. .00 26. .20 A 0
ATOM 2195 N GLY A 448 19. .075 -13, .750 27, .847 1. .00 27, .09 A N
ATOM 2197 CA GLY A 448 17. .680 -13, .470 27. .574 1. .00 26, .79 A C
ATOM 2200 C GLY A 448 16. .730 -14, .208 28. .501 1. ,00 27. .08 A C
ATOM 2201 O GLY A 448 16. .995 -15, .337 28. .918 1. .00 26. .51 A O
ATOM 2202 N GLN A 449 15. .623 -13, .550 28. .831 1. .00 26, .44 A N
ATOM 2204 CA GLN A 449 14. .569 -14, .140 29. .644 1. .00 26, .44 A C
ATOM 2206 CB GLN A 449 14. .723 -13, .723 31. .111 1. .00 27, .74 A C
ATOM 2209 CG GLN A 449 16. .064 -14, .077 31. .733 1. .00 29, .04 A C
ATOM 2212 CD GLN A 449 16. .122 -13, .758 33. .216 1. .00 29, .95 A C
ATOM 2213 OEl GLN A 449 15. .360 -14, .318 34. .006 1. .00 30, .81 A O
ATOM 2214 NE2 GLN A 449 17. .023 -12, .857 33. .597 1. .00 30, .48 A N
ATOM 2217 C GLN A 449 13. .213 -13, .676 29. .115 1. .00 25, .59 A C
ATOM 2218 O GLN A 449 13. .115 -12. .623 28. .493 1, .00 22, .50 A O
ATOM 2219 N LYS A 450 12. .171 -14. .466 29. .362 1. .00 25, .06 A N
ATOM 2221 CA LYS A 450 10. .824 -14. .099 28. .944 1. .00 23, .74 A C
ATOM 2223 CB LYS A 450 10. .001 -15. .344 28. .614 1. .00 24, .46 A C
ATOM 2230 C LYS A 450 10, .143 -13. .291 30. .040 1, .00 22, .74 A C
ATOM 2231 O LYS A 450 10. .198 -13. .645 31. ,216 1. .00 22. ,18 A 0
ATOM 2232 N ALA A 451 9. .516 -12. .189 29. .647 1. .00 21. ,54 A N
ATOM 2234 CA ALA A 451 8. .821 -11. .337 30. ,590 1. .00 20. ,94 A C
ATOM 2236 CB ALA A 451 8. .573 -9. .969 29. ,979 1. .00 20. ,49 A C
ATOM 2240 C ALA A 451 7. ,505 -11. .978 31. .014 1. .00 20. ,61 A c
ATOM 2241 O ALA A 451 6. .794 -12. .562 30. ,204 1. .00 20. ,40 A 0
ATOM 2242 N LYS A 452 7. .200 -11. .872 32. ,300 1. .00 21. ,77 A N
ATOM 2244 CA LYS A 452 5. .916 -12. .308 32. .830 1. .00 22. .22 A c
ATOM 2246 CB LYS A 452 6. .101 -12. .946 34. .212 1. .00 22. .29 A c
ATOM 2249 CG LYS A 452 6. ,919 -14. .242 34. .201 1. .00 22. ,31 A c
ATOM 2255 C LYS A 452 5. .001 -11. .088 32. ,914 1. .00 22. ,09 A c
ATOM 2256 O LYS A 452 5. .471 -9. .951 32. .840 1. .00 20. .95 A 0
ATOM 2257 N PRO A 453 3. .696 -11. .307 33. .042 1. .00 22. .32 A N
ATOM 2258 CA PRO A 453 2. .763 -10. .191 33. .233 1. .00 21. .89 A C
ATOM 2260 CB PRO A 453 1. .416 -10. .890 33. .447 1. ,00 22. ,49 A C
ATOM 2263 CG PRO A 453 1. .572 -12. .231 32. .799 1. .00 22. .37 A C
ATOM 2266 CD PRO A 453 3. .007 -12. ,609 32. ,991 1. .00 22. .04 A c ATOM 2269 C PRO A 453 3.142 -9.353 34.455 1..00 21.46 A C
ATOM 2270 O PRO A 453 3. .420 -9 .907 35 .514 1. .00 20 .90 A O
ATOM 2271 N GLY A 454 3. .184 -8 .035 34 .296 1. .00 21 .38 A N
ATOM 2273 CA GLY A 454 3. .471 -7 .140 35 .403 1. .00 21 .28 A C
ATOM 2276 C GLY A 454 4. .948 -6 .922 35 .686 1. .00 21 .19 A C
ATOM 2277 O GLY A 454 5. .292 -6 .155 36 .578 1. .00 19 .85 A O
ATOM 2278 N ASP A 455 5, .823 -7 .596 34 .942 1. .00 21 .79 A N
ATOM 2280 CA ASP A 455 7. .264 -7 .447 35 .132 1. .00 20 .45 A C
ATOM 2282 CB ASP A 455 8. .035 -8. .496 34 .319 1. .00 20 .06 A C
ATOM 2285 CG ASP A 455 8. .153 -9. .829 35. .037 1. .00 19 .99 A C
ATOM 2286 OD1 ASP A 455 7. .475 -10 .021 36 .070 1. .00 18 .89 A O
ATOM 2287 OD2 ASP A 455 8. .910 -10 .747 34 .644 1. .00 19 .20 A O
ATOM 2288 C ASP A 455 7. .697 -6 .045 34 .712 1. .00 19 .47 A C
ATOM 2289 O ASP A 455 8. .412 -5 .366, 35. .439 1. .00 20. .38 A O
ATOM 2290 N PHE A 456 7. .238 -5 .615 33 .542 1. .00 20 .10 A N
ATOM 2292 CA PHE" A 456 7 .591 -4 .305 32 .991 1. .00 19. .10 A C
ATOM 2294 CB PHE A 456 8. .534 -4. .479 31. .795 1. .00 19. .65 A C
ATOM 2297 CG PHE A 456 9. .755 -5. .310 32. .102 1. .00 19. .79 A c
ATOM 2298 CDl PHE A 456 9. .718 -6. .688 31. .988 1. ,00 19. .40 A c
ATOM 2300 CEl PHE A 456 10. .827 -7. .448 32. .267 1. .00 19. .33 A c
ATOM 2302 CZ PHE A 456 11. .995 -6. .836 32. .669 1. .00 19. .92 A c
ATOM 2304 CE2 PHE A 456 12. .047 -5. .467 32, .782 1. .00 19. .20 A c
ATOM 2306 CD2 PHE A 456 10. .934 -4. .711 32, .499 1. .00 19. .69 A c
ATOM 2308 C PHE A 456 6. .332 -3. .549 32, .560 1. .00 17. .94 A c
ATOM 2309 O PHE A 456 6. .103 -3. .346 31. .371 1. .00 18. .71 A 0
ATOM 2310 N PRO A 457 5. .529 -3. .121 33. .529 1. .00 16. .96 A N
ATOM 2311 CA PRO A 457 4. .245 -2 .468 33. .252 1. .00 17. .92 A C
ATOM 2313 CB PRO A 457 3, .597 -2. .385 34. .638 1. .00 18. .21 A C
ATOM 2316 CG PRO A 457 4. .736 -2. .367 35. .589 1. .00 19. .03 A c
ATOM 2319 CD PRO A 457 5. .790 -3. .234 34. .974 1. .00 18, .78 A c
ATOM 2322 C PRO A 457 4. .359 -1. .073 32. .612 1. .00 19, .06 A c
ATOM 2323 O PRO A 457 3. .350 -0. .534 32 .139 1. .00 16, .87 A 0
ATOM 2324 N TRP A 458 5. .570 -0. .517 32. .592 1. .00 18. .94 A N
ATOM 2326 CA TRP A 458 5. .853 0. .763 31. .939 1. .00 18. .70 A c
ATOM 2328 CB TRP A 458 7. .050 1. .431 32. .615 1. .00 19. .45 A c
ATOM 2331 CG TRP A 458 8. .189 0. .488 32. .873 1. .00 18. .11 A c
ATOM 2332 CDl TRP A 458 9. .168 0. .114 31, .985 1. ,00 18. .91 A c
ATOM 2334 NE1 TRP A 458 10. .036 -0. .770 32. .583 1. ,00 17. .49 A N
ATOM 2336 CE2 TRP A 458 9. .633 -0. .989 33. .875 1. ,00 18. .47 A C
ATOM 2337 CD2 TRP A 458 8. .468 -0. .214 34. .090 1. .00 17. .70 A C
ATOM 2338 CE3 TRP A 458 7. .858 -0. .266 35. .349 1. .00 18. .58 A c
ATOM 2340 CZ3 TRP A 458 8. .418 -1, .072 36. .334 1. ,00 18. .93 A c
ATOM 2342 CH2 TRP A 458 9. .573 -1. .830 36. .085 1. .00 17. .19 A c
ATOM 2344 CZ2 TRP A 458 10, .194 -1. .801 34. .870 1. .00 16. .94 A c
ATOM 2346 C TRP A 458 6. .188 0. .598 30. .462 1. .00 20. .39 A c
ATOM 2347 O TRP A 458 6. .379 1. .583 29. .755 1. .00 20. .53 A 0
ATOM 2348 N GLN A 459 6. .292 -0. .645 30, .000 1. .00 20. .76 A N
ATOM 2350 CA GLN A 459 6. .712 -0. .906 28. .632 1. .00 19. .00 A c
ATOM 2352 CB GLN A 459 6. .933 -2. .401 28. .399 1. .00 19. .92 A c
ATOM 2355 CG GLN A 459 7. .422 -2. .759 26. .991 1. .00 20. .14 A c
ATOM 2358 CD GLN A 459 8. .839 -2. .318 26. .723 1, .00 20. .37 A c
ATOM 2359 OEl GLN A 459 9. .131 -1. .757 25. .663 1. .00 23. .74 A 0
ATOM 2360 NE2 GLN A 459 9. .726 -2. .563 27. .673 1. .00 20. .51 A N
ATOM 2363 C GLN A 459 5. .692 -0. .368 27. .645 1. .00 18. .62 A c
ATOM 2364 0 GLN A 459 4. .489 -0 .611 27 .773 1. .00 16. .82 A 0
ATOM 2365 N VAL A 460 6. .199 0 .355 26 .652 1, .00 17, .58 A N
ATOM 2367 CA VAL A 460 5. .374 0. .995 25. .654 1. .00 18. .05 A c
ATOM 2369 CB VAL A 460 5. .380 2. .524 25. .841 1, .00 18. .62 A c
ATOM 2371 CGI VAL A 460 4. .568 3. .205 24. .759 1. .00 19. .60 A c
ATOM 2375 CG2 VAL A 460 4. .837 2 .894 27. .212 1. .00 18. .66 A c
ATOM 2379 C VAL A 460 5. .905 0. .647 24. .273 1, .00 19, .19 A c
ATOM 2380 O VAL A 460 7. .109 0. .590 24. .063 1. .00 19, .83 A 0
ATOM 2381 N LEU A 461 4. .991 0 .404 23. .341 1, .00 20, .04 A N
ATOM 2383 CA LEU A 461 5. .335 0 .127 21. .959 1. .00 21, .32 A c
ATOM 2385 CB LEU A 461 4. .685 -1 .193 21 .531 1. .00 22, .28 A c
ATOM 2388 CG LEU A 461 4. .824 -1 .611 20 .065 1, .00 22, .33 A c
ATOM 2390 CDl LEU A 461 6. .279 -1. .833 19 .701 1. .00 23, .28 A c
ATOM 2394 CD2 LEU A 461 3. .995 -2 .861 19. .785 1, .00 22, .23 A c
ATOM 2398 C LEU A 461 4, .860 1 .280 21 .067 1. .00 21. .10 A c
ATOM 2399 O LEU A 461 3. .706 1. .690 21. .129 1. ,00 21. .55 A 0
ATOM 2400 N ILE A 462 5. ,755 1. .802 20, .238 1. ,00 21. .94 A N
ATOM 2402 CA ILE A 462 5. ,451 2. .969 19. .421 1. .00 22. .77 A c
ATOM 2404 CB ILE A 462 6. .471 4. .090 19, .696 1. .00 22. .42 A c ATOM 2406 CGI ILE A 462 6.594 4.325 21.206 1.00 22.09 A C
ATOM 2409 CDl ILE A 462 7 .651 5 .333 21 .594 1 .00 23 .09 A C
ATOM 2413 CG2 ILE A 462 6 .059 5 .380 18 .990 1 .00 20 .72 A C
ATOM 2417 C ILE A 462 5 .422 2 .593 17 .942 1 .00 25 .40 A C
ATOM 2418 O ILE A 462 6 .448 2 .254 17 .349 1 .00 26 .61 A O
ATOM 2419 N LEU A 463 4 .233 2 .667 17 .356 1 .00 27 .42 A N
ATOM 2421 CA LEU A 463 4 .000 2. .222 15 .987 1 .00 30 .24 A "c
ATOM - 2423 CB LEU A 463 2 .931 1 .124 15 .964 1 :oo 30 .51 A C
ATOM 2426 CG LEU A 463 3 .292 -0 .228 16 .587 1 .00 31 .49 A - c
ATOM 2428 CDl LEU A 463 2 .073 -1 .133 16 .559 1 .00 '32 .16 A c
ATOM 2432 CD2 LEU A 463 4 .474 -0 .898 15 .879 1 .00 31 .22 A c
ATOM 2436 C LEU A 463 3 .559 3 .383 15 .111 1 .00 32 .12 A c
ATOM 2437 O LEU A 463 3 .481 4 .520 15 .564 1, .00 32 .13 A 0
ATOM 2438 N GLY A 464 3. .259 3 .083 13 .852 1 .00 36 .34 A N
ATOM 2440 CA GLY A 464 2. .890 4 .100 12 .887 1, .00 37 .73 A c
ATOM 2443 C GLY A 464 4 .089 4 .407 12 .017 1, .00 39 .66 A c
ATOM 2444 O "GEY- "A 464 4. .656 3. .503 11 .400 1, .00 40 .65 A 0
ATOM 2445 N GLY A 465 4 .490 5. .675 11, .977 1, .00 40. .79 A N
ATOM 2447 CA GLY A 465 5 .638 6 .084 11 .188 1, .00 41 .25 A C
ATOM 2450 C GLY A 465 6. .929 5. .417 11 .628 1 .00 41 .45 A C
ATOM 2451 O GLY A 465 7 .789 5. .104 10 .801 1, .00 42. .85 A O
ATOM 2452 N THR A 466 7. .069 5 .198 12 .930 1, .00 40 .77 A N
ATOM 2454 CA THR A 466 8 .294 4. .615 13, .480 1. .00 40 .96 A C
ATOM 2456 CB THR A 466 8 .975 5. .604 14, .467 1, .00 41 .34 A C
ATOM 2458 OGl THR A 466 10. .255 5. .096 14. .876 1, .00 42. .21 A O
ATOM 2460 CG2 THR A 466 8. .184 5. .734 15. .771 1, .00 41. .02 A C
ATOM 2464 C THR A 466 8. .003 3. .287 14. .173 1, .00 39. .51 A C
ATOM 2465 O THR A 466 6. .848 2. .963 14. .454 1, .00 41. .57 A O
ATOM 2466 N THR A 467 9 .053 2 .513 14 .418 1 .00 35 .63 A N
ATOM 2468 CA THR A 467 8. .943 1 .319 15 .234 1. .00 3 .91 A C
ATOM 2470 CB THR A 467 9 .111 0 .054 14 .391 1, .00 36 .96 A C
ATOM 2472 OGl THR A 467 8 .355 0. .171 13 .175 1, .00 38 .68 A 0
ATOM 2474 CG2 THR A 467 8 .485 -1. .142 15 .098 1, .00 37 .33 A c
ATOM 2478 C THR A 467 10. .002 1. .385 16. .326 1, .00 33 .28 A c
ATOM 2479 0 THR A 467 11. .198 1. .242 16. .058 1. .00 34. .44 A 0
ATOM 2480 N ALA A 468 9. .549 1. .615 17. .555 1. .00 27. .66 A N
ATOM 2482 CA ALA A 468 10, .440 1. .859 18. .668 1. .00 25. .75 A c
ATOM 2484 CB ALA A 468 10. .907 3. .307 18, .633 1. .00 25. .77 A c
ATOM 2488 C ALA A 468 9. .725 1. .546 19. .986 1. .00 22. .63 A c
ATOM 2489 O ALA A 468 8. .596 1. .080 19. .988 1. .00 20. .15 A 0
ATOM 2490 N ALA A 469 10. .391 1. .795 21. .105 1. .00 22, .05 A N
ATOM 2492 CA ALA A 469 9. .809 1. .538 22. .417 1. .00 20, .51 A c
ATOM 2494 CB ALA A 469 10. .540 0. .405 23, .082 1. .00 21. .40 A c
ATOM 2498 C ALA A 469 9, .862 2. .792 23. .287 1. .00 20. .73 A c
ATOM 2499 O ALA A 469 10. .418 3. .819 22. .890 1. .00 19. .83 A 0
ATOM 2500 N GLY A 470 9. .270 2. .700 24. .475 1. .00 20. .15 A N
ATOM 2502 CA GLY A 470 9. .326 3. ,771 25. .450 1. .00 19. .61 A C
ATOM 2505 C GLY A 470 8. .977 3. ,279 26. .838 1. .00 19. .76 A C
ATOM 2506 O GLY A 470 8. .851 2. ,079 27. .069 1. .00 22. .43 A O
ATOM 2507 N ALA A 471 8. .837 4, .215 27. .768 1. .00 19. .03 A N
ATOM 2509 CA ALA A 471 8. .410 3. .906 29. .121 1. .00 18. .22 A C
ATOM 2511 CB ALA A 471 9, .592 3. .872 30, .052 1. .00 18. .66 A C
ATOM 2515 C ALA A 471 7. .413 4. .948 29, .589 1. .00 18. .37 A C
ATOM 2516 O ALA A 471 7. .630 6. ,136 29. .422 1. .00 19. .33 A O
ATOM 2517 N LEU A 472 6. .330 4. ,491 30. .197 1. .00 19. .83 A N
ATOM 2519 CA LEU A 472 5. ,313 5. ,375 30. .728 1. .00 19, .44 A C
ATOM 2521 CB LEU A 472 4. ,061 4. ,570 31. ,090 1. .00 19. .78 A C
ATOM 2524 CG LEU A 472 2. ,842 5. .347 31. .609 1. .00 20. .47 A C
ATOM 2526 CDl LEU A 472 2. ,138 6. 107 30. .486 1. 00 19. .69 A C
ATOM 2530 CD2 LEU A 472 1. 877 4. 398 32. 295 1. 00 20. .70 A C
ATOM 2534 C LEU A 472 5. ,833 6. .123 31. .950 1. .00 19, .81 A C
ATOM 2535 O LEU A 472 6. ,470 5. ,544 32. ,838 1. .00 19. .78 A O
ATOM 2536 N LEU A 473 5. .569 7. ,424 31. ,960 1. .00 18. .58 A N
ATOM 2538 CA LEU A 473 5. ,795 8. ,285 33. ,102 1. .00 16. .02 A C
ATOM 2540 CB LEU A 473 6. .697 9. 447 32. ,705 1. 00 16. ,50 A C
ATOM 2543 CG LEU A 473 8. .123 9. 143 32. ,277 1. 00 15. ,92 A C
ATOM 2545 CDl LEU A 473 8. .842 10. 451 31. ,950 1. 00 16. ,28 A C
ATOM 2549 CD2 LEU A 473 8. 862 8. 373 33. 371 1. 00 17. ,07 A C
ATOM 2553 C LEU A 473 4. 444 8. 835 33. 525 1. 00 16. 40 A C
ATOM 2554 O LEU A 473 3. .686 9. ,315 32. 681 1. 00 15. ,77 A O
ATOM 2555 N TYR A 474 4. .144 8. 779 34. ,821 1. 00 16. ,65 A N
ATOM 2557 CA TYR A 474 2. 821 9. 150 35. 324 1. 00 17. ,43 A C
ATOM 2559 CB TYR A 474 2. 585 10. 667 35. 199 1. 00 19. 65 A C ATOM 2562 CG TYR A 474 3.676 11.487 35.859 1.00 21.05 A C
ATOM 2563 CDl TYR A 474 4 .811 11 .858 35 .155 1 .00 22 .68 A C
ATOM 2565 CEl TYR A 474 5 .818 12 .596 35 .751 1 .00 23 .45 A C
ATOM 2567 CZ TYR A 474 5 .710 12 .964 37 .073 1 .00 23 .38 A C
ATOM 2568 OH TYR A 474 6 .723 13 .689 37 .649 1 .00 23 .42 A O
ATOM 2570 CE2 TYR A 474 4 .596 12 .606 37 .805 1 .00 23 .61 A C
ATOM 2572 CD2 TYR A 474 3 .584 11 .863 37 .195 1 .00 22 .27 A C
ATOM 2574 C TYR A 474 1 .791 8 .333 34 .553 1 .00 18 .06 A C
ATOM 2575 O TYR A 474 2 .010 7 .149 34 .321 1 .00 18 .65 A O
ATOM 2576 N ASP A 475 0 .679 8 .936 34 .146 1 .00 19 .52 A N
ATOM 2578 CA ASP A 475 -0 .316 8 .191 33 .372 1 .00 18 .90 A C
ATOM 2580 CB ASP A 475 -1 .607 7 .956 34. .175 1 .00 18 .51 A C
ATOM 2583 CG ASP A 475 -2 .184 9. .229 34. .793 1 .00 19. .24 A c
ATOM 2584 OD1 ASP A 475 -1 .607 10 .327 34 .623 1 .00 18 .91 A 0
ATOM 2585 OD2 ASP A 475 -3 .241 .204 35 .466 1 .00 16 .46 A 0
ATOM 2586 C ASP A 475 -0 .609 8 .823 32 .013 1 .00 19 .07 A c
ATOM 2587 O ASP A 475 -1 .526 8 .403 31 .304 1 .00 20 .00 A 0
ATOM 2588 N ASN A 476 0 .196 9 .807 31. .630 1. .00 17 .16 A N
ATOM 2590 CA ASN A 476 -0 .035 10. .506 30. .373 1, .00 16. .23 A C
ATOM 2592 CB ASN A 476 -1 .027 11. .668 30. .579 1, .00 15. .58 A C
ATOM 2595 CG ASN A 476 -0, .535 12. .707 31. .572 1, .00 13. .73 A C
ATOM 2596 OD1 ASN A 476 0, .389 12, .466 32. .342 1. .00 14. .66 A O
ATOM 2597 ND2 ASN A 476 -1 .161 13 .874 31. .556 1. .00 11. .92 A N
ATOM 2600 C ASN A 476 1 .233 10, .981 29. .663 1 .00 16 .23 A C
ATOM 2601 O ASN A 476 1 .155 11. .843 28. .795 1, .00 15. .27 A O
ATOM 2602 N TRP A 477 2 .388 10. .406 30. .010 1 .00 15. .89 A N
ATOM 2604 CA TRP A 477 3 .651 10, .724 29. .330 1. .00 16. .28 A C
ATOM 2606 CB TRP A 477 4 .555 11, .610 30. .199 1. .00 16, .54 A C
ATOM 2609 CG TRP A 477 4, .066 13, .016 30. .324 1. .00 16, .16 A c
ATOM 2610 CDl TRP A 477 3 .234 13, .508 31. .283 1. .00 15, .22 A c
ATOM 2612 NE1 TRP A 477 2, .999 14. .845 31. .066 1. .00 16, .34 A N
ATOM 2614 CE2 TRP A 477 3 .686 15 .243 29 .950 1. .00 16 .41 A C
ATOM 2615 CD2 TRP A 477 4 .372 14. .117 29 .457 1 .00 15, .95 A C
ATOM 2616 CE3 TRP A 477 5 .159 14. .266 28. .310 1. .00 16, .53 A C
ATOM 2618 CZ3 TRP A 477 5 .232 15. .511 27. .704 1. .00 16, .15 A C
ATOM 2620 CH2 TRP A 477 4 .536 16. .607 28. .220 1. .00 17, .22 A C
ATOM 2622 CZ2 TRP A 477 3, .763 16. .496 29. .341 1. .00 17, .30 A C
ATOM 2624 C TRP A 477 4. .405 9. .456 28. .972 1. .00 17. .45 A C
ATOM 2625 O TRP A 477 4, .268 8. .436 29. .643 1. .00 16. .56 A 0
ATOM 2626 N VAL A 478 5. .203 9. .531 27. .908 1. ,00 18. .19 A N
ATOM 2628 CA VAL A 478 6, .038 8. .418 27. .475 1. .00 17. .96 A C
ATOM 2630 CB VAL A 478 5, .496 7. .741 26. .194 1. .00 18. .03 A C
ATOM 2632 CGI VAL A 478 6, .537 6. .782 25. .614 1. .00 18. .37 A C
ATOM 2636 CG2 VAL A 478 4. .200 6. .991 26. .482 1. .00 18. .26 A C
ATOM 2640 C VAL A 478 7, .437 8. .935 27. .195 1. .00 18. .68 A C
ATOM 2641 O VAL A 478 7. .618 9. .877 26. .419 1. .00 19. .58 A 0
ATOM 2642 N LEU A 479 8. .417 8. .313 27. .836 1. .00 18. .36 A N
ATOM 2644 CA LEU A 479 9. .819 8. .676 27. .680 1. ,00 19. .31 A C
ATOM 2646 CB LEU A 479 10. .547 8. .477 29. .005 1. .00 20. .05 A C
ATOM 2649 CG LEU A 479 12. .019 8. .876 29. .104 1. .00 21. .07 A C
ATOM 2651 CDl LEU A 479 12. .173 10. .382 29. .159 1. .00 21. .70 A c
ATOM 2655 CD2 LEU A 479 12. .640 8. .236 30. .334 1. .00 21. .16 A c
ATOM 2659 C LEU A 479 10, .427 7. .780 26. .624 1. .00 19. .02 A c
ATOM 2660 O LEU A 479 10. .251 6. .563 26. ,663 1. .00 16. ,33 A 0
ATOM 2661 N THR A 480 11. .132 8. .372 25. ,667 1. .00 19. ,97 A N
ATOM 2663 CA THR A 480 11. .744 7. .589 24. ,610 1. .00 19. ,05 A C
ATOM 2665 CB THR A 480 10. .720 7. 377 23. ,461 1. .00 19. ,43 A C
ATOM 2667 OGl THR A 480 11, .212 6. .418 22. .516 1. .00 18. .98 A O
ATOM 2669 CG2 THR A 480 10, .529 8. .639 22. ,642 1. ,00 20. ,67 A C
ATOM 2673 C THR A 480 13. .036 8. .249 24. ,123 1. .00 18. ,91 A c
ATOM 2674 O THR A 480 13. .532 9. ,175 24. ,749 1. .00 17. ,56 A 0
ATOM 2675 N ALA A 481 13. .597 7. 742 23. ,029 1. .00 19. ,30 A N
ATOM 2677 CA ALA A 481 14. ,785 8. .338 22. 438 1. .00 19. ,27 A C
ATOM 2679 CB ALA A 481 15. ,686 7. 264 21. 848 1. 00 19. 27 A C
ATOM 2683 C ALA A 481 14. ,357 9. 316 21. 360 1. .00 18. ,66 A C
ATOM 2684 O ALA A 481 13. ,399 9. 076 20. 633 1. 00 19. 59 A O
ATOM 2685 N ALA A 482 15. .069 10. .429 21. ,267 1. .00 18. ,31 A N
ATOM 2687 CA ALA A 482 14. ,831 11. .401 20. ,214 1. .00 17. ,67 A C
ATOM 2689 CB ALA A 482 15. .738 12. 605 20. ,407 1. .00 18. ,10 A C
ATOM 2693 C ALA A 482 15. ,023 10. 807 18. 818 1. .00 17. ,71 A C
ATOM 2694 O ALA A 482 14. .301 11. 174 17. 897 1. 00 17. 72 A O
ATOM 2695 N HIS A 483 15. .983 9. 897 18. 649 1. 00 17. 97 A N
ATOM 2697 CA HIS A 483 16. .238 9. 323 17. 324 1. 00 18. 94 A C
ATOM 2699 CB HIS A 483 17. 579 8. 565 17. 286 1. 00 19. 17 A C ATOM 2702 CG HIS A 483 17.495 7.155 17.776 1.00 19.86 A C
ATOM 2703 ND1 HIS A 483 17 .675 6 .818 19 .101 1 .00 20 .81 A N
ATOM 2705 CEl HIS A 483 17 .528 5 .513 19 .243 1 .00 20 .71 A C
ATOM 2707 NE2 HIS A 483 17 .266 4 .990 18 .058 1 .00 19 .35 A N
ATOM 2709 CD2 HIS A 483 17. .245 5. .995 17. .122 1. .00 19. .37 A C
ATOM 2711 C HIS A 483 15. .078 8. .428 16. .872 1. .00 19. .08 A C
ATOM 2712 O HIS A 483 14, .888 8, .199 15. .686 1. .00 19. .58 A 0
ATOM 2713 N ALA A 484 14. .292 7. .947 17. .827 1. .00 20. .17 A N
ATOM 2715 CA ALA A 484 13, .175 7. .049 17. .539 1. .00 20. .26 A C
ATOM 2717 CB ALA A 484 12. .768 6. .321 18. .814 1. .00 20. .46 A C
ATOM 2721 C ALA A 484 11. .954 7. .760 16. .948 1. .00 21. .43 A C
ATOM 2722 O ALA A 484 11. .187 7. .156 16. .193 1. .00 21. .49 A O
ATOM 2723 N VAL A 485 11. .760 9. .027 17. .313 1. .00 21. .15 A N
ATOM 2725 CA VAL A 485 10. .559 9. .761 16 .921 1. .00 21. .30 A C
ATOM 2727 CB VAL A 485 9. .606 9. .975 18. .123 1. .00 21. .89 A C
ATOM 2729 CGI VAL A 485 9. .067 8. .645 18 .632 1. .00 22 .52 A C
ATOM 2733 CG2 VAL A 485 10. .297 10. .741 19 .252 1 .00 21 .95 A C
ATOM 2737 C VAL A 485 10. .850 11. .125 16. .289 1. .00 22. .29 A C
ATOM 2738 O VAL A 485 9. .927 11. .918 16. .075 1. .00 20. .89 A 0
ATOM 2739 N TYR A 486 12. .114 11. .389 15. .971 1. .00 23. .39 A N
ATOM 2741 CA TYR A 486 12. .508 12. .684 15. .418 1. .00 25. .35 A C
ATOM 2743 CB TYR A 486 14. .014 12. .732 15 .140 1. .00 25. .05 A c
ATOM 2746 CG TYR A 486 14. .498 14. .073 14 .617 1. .00 25. .46 A c
ATOM 2747 CDl TYR A 486 14. .896 15. .078 15 .488 1. .00 25. .65 A c
ATOM 2749 CEl TYR A 486 15. .343 16. .299 15. .014 1. .00 26. .35 A c
ATOM 2751 CZ TYR A 486 15. .390 16. .528 13 .655 1 .00 26. .41 A c
ATOM 2752 OH TYR A 486 15. .834 17. .738 13 .178 1 .00 28. .03 A 0
ATOM 2754 CE2 TYR A 486 15. .002 15. .545 12 .770 1 .00 26 .20 A c
ATOM 2756 CD2 TYR A 486 14. .559 14 .328 13 .252 1 .00 25. .72 A c
ATOM 2758 C TYR A 486 11. .754 12 .997 14 .137 1 .00 26 .44 A c
ATOM 2759 O TYR A 486 11 .351 14 .131 13 .915 1. .00 24 .78 A 0
ATOM 2760 N GLU A 487 11. .560 11. .984 13 .301 1. .00 30. .74 A N
ATOM 2762 CA GLU A 487 10, .967 12. .189 11 .983 1. .00 34. .09 A c
ATOM 2764 CB GLU A 487 11. .234 10. .978 11. .080 1. .00 35. .76 A c
ATOM 2767 CG GLU A 487 12. .661 10. .450 11 .184 1. .00 37. .95 A c
ATOM 2770 CD GLU A 487 13, .309 10. .196 9 .835 1. .00 39. .42 A c
ATOM 2771 OEl GLU A 487 13. .080 9. .108 9. .261 1. .00 40. .11 A 0
ATOM 2772 OE2 GLU A 487 14. .054 11. .081 9. .352 1. .00 40. .37 A 0
ATOM 2773 C GLU A 487 9. .470 12, .489 12. .081 1, .00 35. .19 A c
ATOM 2774 O GLU A 487 8. .894 13. .104 11. .185 1. .00 35. .38 A 0
ATOM 2775 N GLN A 488 8. .851 12. .060 13. .178 1. .00 38. .04 A N
ATOM 2777 CA GLN A 488 7. .453 12. .378 13. .462 1. .00 39. .56 A c
ATOM 2779 CB GLN A 488 6. .702 11. .128 13, .932 1. .00 40. .06 A c
ATOM 2782 CG GLN A 488 6. .648 10. .017 12. .892 1. .00 40. .21 A c
ATOM 2785 CD GLN A 488 7. .852 9. .094 12. .955 1. .00 40, .61 A c
ATOM 2786 OEl GLN A 488 8. .588 9. .087 13. .944 1. .00 40. .18 A 0
ATOM 2787 NE2 GLN A 488 8. .052 8. .312 11. .902 1. .00 40. .40 A N
ATOM 2790 C GLN A 488 7. .356 13. .483 14. .514 1. .00 40. .43 A C
ATOM 2791 O GLN A 488 6. .483 13. .461 15. .383 1. .00 43. .49 A O
ATOM 2792 N LYS A 489 8. .262 14. .449 14. .426 1. .00 40. .90 A N
ATOM 2794 CA LYS A 489 8. .265 15. .604 15. .315 1. .00 40. .88 A C
ATOM 2796 CB LYS A 489 9. .633 16. .293 15. .262 1. .00 40. .19 A C
ATOM 2799 CG LYS A 489 9. .663 17. .713 15. .805 1. .00 40. .03 A C
ATOM 2802 CD LYS A 489 11. .067 18. .301 15. .764 1. .00 39. .53 A C
ATOM 2805 CE LYS A 489 11. .774 18 .003 14 .449 1. .00 39. .24 A C
ATOM 2808 NZ LYS A 489 12. .902 18 .937 14 .194 1. .00 38. .93 A N
ATOM 2812 C LYS A 489 7. .154 16. ,582 14. .922 1. .00 41. .04 A C
ATOM 2813 O LYS A 489 6. .543 17. .211 15. .782 1. .00 41. .22 A O
ATOM 2814 N HIS A 490 6. .894 16. .695 13. .621 1. .00 41. .84 A N
ATOM 2816 CA HIS A 490 5. .844 17. .577 13. .111 1. .00 42. .70 A C
ATOM 2818 CB HIS A 490 6. .355 18. .367 11. .903 1. .00 43. .11 A C
ATOM 2821 CG HIS A 490 7. .547 19. .223 12. .201 1. .00 44. .05 A C
ATOM 2822 ND1 HIS A 490 8. .558 19. .433 11. .289 1. .00 44. .55 A N
ATOM 2824 CEl HIS A 490 9. .471 20. .227 11. .821 1. .00 44. .92 A C
ATOM 2826 NE2 HIS A 490 9, .089 20. .536 13. .047 1. .00 45, .07 A N
ATOM 2828 CD2 HIS A 490 7. .889 19. .921 13. .310 1. .00 44. .67 A C
ATOM 2830 C HIS A 490 4. .604 16, .784 12. .709 1. .00 42. .63 A C
ATOM 2831 O HIS A 490 3. ,920 17, .128 11, .745 1. .00 43, .96 A 0
ATOM 2832 N ASP A 491 4. .319 15. .721 13. .450 1. ,00 42, .72 A N
ATOM 2834 CA ASP A 491 3. .183 14, .858 13. .155 1. .00 42. .82 A C
ATOM 2836 CB ASP A 491 3. .399 14, .118 11. .828 1. .00 43. .01 A C
ATOM 2839 CG ASP A 491 2. .123 13. .496 11. .289 1. .00 43, .57 A C
ATOM 2840 OD1 ASP A 491 1. .082 13. .556 11, .980 1. .00 43. .16 A O ATOM 2841 OD2 ASP A 491 2 070 12 926 10 178 1 00 44 34 A O
ATOM 2842 C ASP A 491 3 000 13 864 14 299 1 00 42 74 A C
ATOM 2843 O ASP A 491 3 309 12 678 14 169 1 00 42 62 A O
ATOM 2844 N ALA A 492 2 498 14 360 15 424 1 00 42 89 A N
ATOM 2846 CA ALA A 492 2 334 13 538 16 616 1 00 42 55 A C
ATOM 2848 CB ALA A 492 2 089 14 422 17 833 1 00 42 46 A C
ATOM 2852 C ALA A 492 1 201 12 522 16 457 1 00 42 76 A C
ATOM 2853 O ALA A 492 1 230 11 455 17 072 1 00 43 24 A O
ATOM 2854 N SER A 493 0 207 12 848 15 635 1 00 42 04 A N
ATOM 2856 CA SER A 493 0 950 11 973 15 457 1 00 41 86 A C
ATOM 2858 CB SER A 493 1 997 12 644 14 559 1 00 41 59 A C
ATOM 2861 OG SER A 493 1 486 12 889 13 261 1 00 41 75 A O
ATOM 2863 C SER A 493 0 562 10 602 14 892 1 00 41 90 A C
ATOM 2864 O SER A 493 1 151 9 587 15 260 1 00 42 88 A O
ATOM 2865 N ALA A 494 0 445 10 574 14 022 1 00 41 73 A N
ATOM 2867 CA ALA A 494 0 896 9 329 13 390 1 00 41 53 A C
ATOM 2869 CB ALA A 494 1 786 9 645 12 188 1 00 41 69 A C
ATOM 2873 C ALA A 494 1 626 8 366 14 341 1 00 40 70 A C
ATOM 2874 O ALA A 494 2 106 7 316 13 909 1 00 41 01 A O
ATOM 2875 N LEU A 495 1 720 8 716 15 624 1 00 39 24 A N
ATOM 2877 CA LEU A 495 2 301 7 813 16 616 1 00 36 67 A C
ATOM 2879 CB LEU A 495 3 097 8 587 17 666 1 00 36 12 A C
ATOM 2882 CG LEU A 495 4 361 9 292 17 168 1 00 34 80 A c
ATOM 2884 CDl LEU A 495 5 005 10 038 18 312 1 00 35 03 A c
ATOM 2888 CD2 LEU A 495 5 345 8 315 16 537 1 00 34 16 A c
ATOM 2892 C LEU A 495 1 218 6 982 17 291 1 00 35 78 A c
ATOM 2893 O LEU A 495 0 468 7 473 18 136 1 00 37 24 A 0
ATOM 2894 N ASP A 496 1 139 5 721 16 882 1 00 33 75 A N
ATOM 2896 CA ASP A 496 0 240 4 746 17 473 1 00 30 06 A C
ATOM 2898 CB ASP A 496 0 054 3 644 16 455 1 00 29 83 A C
ATOM 2901 CG ASP A 496 0 983 2 574 16 992 1 00 29 82 A C
ATOM 2902 OD1 ASP A 496 1 098 2 438 18 225 1 00 29 20 A O
ATOM 2903 OD2 ASP A 496 1 639 1 817 16 243 1 00 30 28 A O
ATOM 2904 C ASP A 496 0 917 4 169 18 706 1 00 27 65 A c
ATOM 2905 O ASP A 496 1 898 3 437 18 604 1 00 24 55 A 0
ATOM 2906 N ILE A 497 0 386 4 497 19 875 1 00 25 69 A N
ATOM 2908 CA ILE A 497 1 023 4 123 21 128 1 00 23 32 A C
ATOM 2910 CB ILE A 497 1 199 5 366 22 003 1 00 23 56 A C
ATOM 2912 CGI ILE A 497 2 206 6 303 21 333 1 00 24 52 A C
ATOM 2915 CDl ILE A 497 2 264 7 683 21 944 1 00 26 04 A C
ATOM 2919 CG2 ILE A 497 1 656 4 988 23 416 1 00 22 78 A c
ATOM 2923 C ILE A 497 0 199 3 051 21 824 1 00 22 52 A c
ATOM 2924 O ILE A 497 1 017 3 176 21 948 1 00 21 15 A 0
ATOM 2925 N ARG A 498 0 878 1 989 22 250 1 00 20 31 A N
ATOM 2927 CA ARG A 498 0 233 0 813 22 813 1 00 20 38 A C
ATOM 2929 CB ARG A 498 0 196 -0 315 21 784 1 00 20 46 A C
ATOM 2932 CG ARG A 498 0 312 0 085 20 418 1 00 20 83 A C
ATOM 2935 CD ARG A 498 0 256 -1 048 19 420 1 00 21 01 A C
ATOM 2938 NE ARG A 498 0 984 -0 739 18 200 1 00 22 93 A N
ATOM 2940 CZ ARG A 498 1 334 -1 644 17 289 1 00 25 09 A c
ATOM 2941 NH1 ARG A 498 1 022 -2 924 17 455 1 00 26 11 A N
ATOM 2944 NH2 ARG A 498 1 996 -1 266 16 202 1 00 25 37 A N
ATOM 2947 C ARG A 498 0 981 0 310 24 041 1 00 19 03 A C
ATOM 2948 O ARG A 498 2 202 0 400 24 117 1 00 17 87 A 0
ATOM 2949 N MET A 499 0 239 -0 242 24 990 1 00 19 57 A N
ATOM 2951 CA MET A 499 0 833 -0 763 26 205 1 00 20 20 A C
ATOM 2953 CB MET A 499 1 173 0 382 27 167 1 00 22 62 A C
ATOM 2956 CG MET A 499 0 005 1 231 27 613 1 00 24 98 A C
ATOM 2959 SD MET A 499 0 540 2 811 28 342 1 00 27 17 A S
ATOM 2960 CE MET A 499 0 500 3 865 26 890 1 00 26 02 A C
ATOM 2964 C MET A 499 0 082 -1 795 26 858 1 00 19 52 A C
ATOM 2965 O MET A 499 1 140 -2 137 26 319 1 00 14 93 A O
ATOM 2966 N GLY A 500 0 356 -2 319 27 999 1 00 18 47 A N
ATOM 2968 CA GLY A 500 0 423 -3 286 28 752 1 00 19 34 A C
ATOM 2971 C GLY A 500 0 348 -4 706 28 227 1 00 21 70 A C
ATOM 2972 O GLY A 500 1 071 -5 573 28 705 1 00 21 93 A O
ATOM 2973 N THR A 501 0 517 -4 961 27 248 1 00 25 40 A N
ATOM 2975 CA THR A 501 0 571 -6 282 26 627 1 00 26 78 A C
ATOM 2977 CB THR A 501 0 162 -6 262 25 263 1 00 29 52 A C
ATOM 2979 OGl THR A 501 0 456 -7 602 24 846 1 00 31 84 A O
ATOM 2981 CG2 THR A 501 0 720 -5 715 24 153 1 00 31 11 A C
ATOM 2985 C THR A 501 1 995 -6 825 26 480 1 00 25 95 A C
ATOM 2986 O THR A 501 2 932 -6 081 26 176 1 00 26 05 A O
ATOM 2987 N LEU A 502 2 142 -8 129 26 716 1 00 24 96 A N ATOM 2989 CA LEU A 502 3 . 424 -8.815 26.592 1 00 25 16 A C
ATOM 2991 CB LEU A 502 3 . 412 -10.126 27.384 1 00 26 20 A C
ATOM 2994 CG LEU A 502 3 . 520 -10.065 28.910 1 00 27 02 A C
ATOM 2996 CDl LEU A 502 3 . 461 -11.474 29.497 1 00 26 76 A C
ATOM 3000 CD2 LEU A 502 4 . 792 -9.356 29.339 1 00 27 58 A C
ATOM 3004 C LEU A 502 3 . 729 148 25.139 1 00 25 16 A C
ATOM 3005 O LEU A 502 4 . 877 396 24.777 1 00 23 47 A 0
ATOM 3006 N LYS A 503 2 . 688 177 24.317 1 00 26 11 A N
ATOM 3008 CA LYS A 503 2 . 808 628 22.943 1 00 26 26 A c
ATOM 3010 CB LYS A 503 1.815 -10.756 22.697 1 00 27 90 A c
ATOM 3013 CG LYS A 503 2.034 -11.953 23.606 1 00 28 32 A c
ATOM 3016 CD LYS A 503 0.729 -12.592 24.006 1 00 28 49 A c
ATOM 3021 C LYS A 503 2 .569 -8.482 21.968 1 00 26 46 A c
ATOM 3022 O LYS A 503 .467 -7.941 21.894 1 00 28 26 A 0
ATOM 3023 N ARG A 504 . 601 -8.126 21.211 1 00 25 11 A N
ATOM 3025 CA ARG A 504 . 531 -6.972 20.319 1 00 26 19 A C
ATOM 3027 "CB ARG A 504 . 906 -6.686 19.692 1 00 25 17 A C
ATOM 3030 CG ARG A 504 .431 -7.786 18.801 1 00 24 26 A C
ATOM 3033 CD ARG A 504 . 760 -7.461 18.125 1 00 24 15 A C
ATOM 3036 NE ARG A 504 . 033 -8.398 17.037 1 00 23 22 A N
ATOM 3038 CZ ARG A 504 .482 -8.326 15.831 1 00 25 40 A C
ATOM 3039 NH1 ARG A 504 . 634 -7.347 15.537 .00 26 . 65 A N
ATOM 3042 NH2 ARG A 504 . 782 -9.231 14.908 .00 24 .64 A N
ATOM 3045 C ARG A 504 . 460 -7.098 19.226 . 00 27 .66 A C
ATOM 3046 O ARG A 504 2. 024 -6.088 18.670 . 00 27 .59 A O
ATOM 3047 N LEU A 505 2 . 035 -8.326 18.928 . 00 28 . 59 A N
ATOM 3049 CA LEU A 505 1. 034 -8.560 17.887 . 00 29 . 90 A C
ATOM 3051 CB LEU A 505 1.447 -9.754 17.024 . 00 31.21 A C
ATOM 3054 CG LEU A 505 2 . 646 -9.553 16.097 00 32 . 62 A c
ATOM 3056 CDl LEU A 505 .022 -10.880 15.439 1 00 32 97 A c
ATOM 3060 CD2 LEU A 505 2 358 -8.477 15.044 1 00 33 21 A c
ATOM 3064 C LEU A 505 0 375 -8.809 18.434 1 00 29 97 A c
ATOM 3065 O LEU A 505 1 310 -9.034 17.669 1 00 30 48 A 0
ATOM 3066 N SER A 506 0 531 -8.773 19.751 1 00 30 27 A N
ATOM 3068 CA SER A 506 1 821 -9.063 20.358 1 00 30 67 A C
ATOM 3070 CB SER A 506 1 684 -9.219 21.873 1 00 32 02 A C
ATOM 3073 OG SER A 506 2 792 -9.921 22.419 1 00 32 73 A 0
ATOM 3075 C SER A 506 2 842 -7.972 20.041 1 00 30 02 A c
ATOM 3076 O SER A 506 2 .517 -6.784 20.038 1 00 28 15 A 0
ATOM 3077 N PRO A 507 4 075 -8.385 19.760 1 00 29 03 A N
ATOM 3078 CA PRO A 507 5 190 -7.443 19.626 1 00 28 60 A C
ATOM 3080 CB PRO A 507 6 .289 -8.292 18.986 1 0000 28 65 A C
ATOM 3083 CG PRO A 507 5 .978 -9.698 19.385 1 0000 28 39 A C
ATOM 3086 CD PRO A 507 4 491 -9.780 19.531 1 0000 28 33 A C
ATOM 3089 C PRO A 507 5 .643 -6.907 20.981 1 00 29 03 A C
ATOM 3090 O PRO A 507 6 .446 -5.975 21.037 1 00 28 39 A 0
ATOM 3091 N HIS A 508 5 .123 -7.491 22.058 1 00 30 04 A N
ATOM 3093 CA HIS A 508 .464 -7.071 23.412 1 00 30 40 A C
ATOM 3095 CB HIS A 508 .640 -8.292 24.320 1 00 31 27 A C
ATOM 3098 CG HIS A 508 .716 -9.230 23.869 1 .00 32 57 A C
ATOM 3099 ND1 HIS A 508 .474 -10.557 23.585 1 00 32 92 A N
ATOM 3101 CEl HIS A 508 601 -11.137 23.213 1 00 33 17 A C
ATOM 3103 NΞ2 HIS A 508 8.565 -10.234 23.244 1 00 33 19 A N
ATOM 3105 CD2 HIS A 508 8.038 -9.033 23.653 1 00 32 94 A C
ATOM 3107 C HIS A 508 4.385 -6.160 23.983 1 00 29 95 A C
ATOM 3108 O HIS A 508 3.467 -6.616 24.670 1 00 32 14 A O
ATOM 3109 N TYR A 509 4.497 -4.873 23.684 1 00 28 10 A N
ATOM 3111 CA TYR A 509 3.579 -3.868 24.216 1 00 26 05 A C
ATOM 3113 CB TYR A 509 514 -3.493 23.176 1 00 24 . 9900 A C
ATOM 3116 CG TYR A 509 091 -2.898 21.905 1 00 24 . 1122 A C
ATOM 3117 CDl TYR A 509 262 -1.529 21.773 1 00 22 53 A c
ATOM 3119 CEl TYR A 509 793 -0.983 20.624 1 00 23 47 A c
ATOM 3121 CZ TYR A 509 169 -1.809 19.574 1 00 24 39 A c
ATOM 3122 OH TYR A 509 4.705 -1.260 18.430 1 00 23 97 A 0
ATOM 3124 CE2 TYR A 509 014 -3.177 19.677 1 00 24 37 A c
ATOM 3126 CD2 TYR A 509 473 -3.713 20.843 1 00 25 06 A c
ATOM 3128 C TYR A 509 372 -2.633 24.603 1 00 23 89 A c
ATOM 3129 O TYR A 509 544 -2..499 24.254 1 00 22 71 A 0
ATOM 3130 N THR A 510 718 -1..728 25.315 1 00 22 98 A N
ATOM 3132 CA THR A 510 4.306 -0..450 25.666 1.00 23.38 A C
ATOM 3134 CB THR A 510 3.991 -0..124 27.129 1.00 24.06 A C
ATOM 3136 OGl THR A 510 4.690 -1..039 27.982 1.00 24.34 A 0
ATOM 3138 CG2 THR A 510 4.530 1.242 27.523 1.00 25.04 A c ATOM 3142 C THR A 510 -3..779 0.634 24.727 1.00 23.45 A C
ATOM 3143 O THR A 510 -2. .565 0 .838 24 .599 1 .00 21 .96 A O
ATOM 3144 N GLN A 511 -4 .709 1 .322 24 .072 1. .00 2 .39 A N
ATOM 3146 CA GLN A 511 -4 .394 2 .300 23 .035 1. .00 24 .98 A C
ATOM 3148 CB GLN A 511 -5. .462 2 .254 21. .941 1. .00 25, .98 "A C
ATOM 3151 CG GLN A 511 -5. .268 3 .245 20. .798 1. .00 26. .67 A C
ATOM 3154 CD GLN A 511 -4, .355 2 .720 19. .709 1. .00 26. .89 A C
ATOM 3155 OEl GLN A 511 -4. .685 1 .748 19. .023 1. .00 26. .94 A O
ATOM 3156 NE2 GLN A 511 -3. .210 3 .368 19. .537 1. .00 26. .51 A N
ATOM 3159 C GLN A 511 -4. .295 3 .712 23. .602 1. .00 25. .00 A C
ATOM 3160 0 GLN A 511 -5. .037 4 .090 24. .515 1. .00 25. .16 A O
ATOM 3161 N ALA A 512 -3. .364 4 .478 23. .041 1. .00 24. .45 A N
ATOM 3163 CA ALA A 512 -3. .151 5 .870 23. .410 1. .00 24. .11 A C
ATOM 3165 CB ALA A 512 -2. .139 5. .971 24. .530 1. .00 24, .00 A C
ATOM 3169 C ALA A 512 -2. .669 6 .634 22. .187 1. .00 25. .25 A C
ATOM 3170 O ALA A 512 -2. .187 6 .042 21. .221 1. .00 25. .94 A O
ATOM 3171 TH TRP A 513 -2 .813 7 .951 22. .221 1. .00 26. .87 A Ttf
ATOM 3173 CA TRP A 513 -2. .434 8 .790 21. .095 1. .00 28. .03 A c
ATOM 3175 CB TRP A 513 -3. .673 9 .313 20. .373 1. .00 28. .76 A c
ATOM 3178 CG TRP A 513 -4. .436 8 .238 19. .696 1. .00 29. .69 A c
ATOM 3179 CDl TRP A 513 -5. .626 7. .712 20. .089 1. .00 30. .10 A c
ATOM 3181 NE1 TRP A 513 -6 .016 6 .726 19. .215 1. .00 31. .22 A N
ATOM 3183 CE2 TRP A 513 -5. .068 6 .597 18. .234 1. .00 31. .08 A C
ATOM 3184 CD2 TRP A 513 - .055 7 .535 18. .509 1. .00 30. .32 A C
ATOM 3185 CE3 TRP A 513 -2. .954 7. .603 17. .644 1. .00 30. .37 A C
ATOM 3187 CZ3 TRP A 513 -2 .903 6 .754 16. .561 1 .00 30. .21 A C
ATOM 3189 CH2 TRP A 513 -3. .929 5 .832 16. .315 1 .00 31. .52 A c
ATOM 3191 CZ2 TRP A 513 -5 .020 5 .740 17. .135 1 .00 31. .27 A c
ATOM 3193 C TRP A 513 -1 .613 9 .955 21. .580 1 .00 28. .44 A c
ATOM 3194 O TRP A 513 -1. .857 10 .484 22. .657 1 .00 28. .03 A 0
ATOM 3195 N SER A 514 -0 .638 10 .358 20. .778 1 .00 30. .31 A N
ATOM 3197 CA SER A 514 0. .206 11. .475 21. .150 1. .00 31. .01 A C
ATOM 3199 CB SER A 514 1. .547 11. .424 20. .425 1. .00 31. .30 A C
ATOM 3202 OG SER A 514 1. .372 11. .176 19, .048 1. .00 32. .51 A O
ATOM 3204 C SER A 514 -0. .505 12. .775 20, .844 1. .00 31. .15 A C
ATOM 3205 O SER A 514 -1. .142 12. .926 19, .802 1. .00 29. .67 A O
ATOM 3206 N GLU A 515 -0. .393 13. .701 21, .787 1. .00 31, .86 A N
ATOM 3208 CA GLU A 515 -0. .860 15. .063 21. .630 1. .00 32. .76 A c
ATOM 3210 CB GLU A 515 -1, .258 15. .605 23. .003 1. .00 34. .70 A c
ATOM 3213 CG GLU A 515 -2. .120 16. .850 22. .978 1. .00 36. .90 A c
ATOM 3216 CD GLU A 515 -2. .911 17. .017 24. .259 1. .00 38, .56 A c
ATOM 3217 OEl GLU A 515 -2. .310 17. .419 25. .278 1. .00 39. .39 A 0
ATOM 3218 OE2 GLU A 515 -4, .132 16. .742 24. .247 1. .00 40. .34 A 0
ATOM 3219 C GLU A 515 0. .281 15. .893 21. .048 1. .00 30. .84 A c
ATOM 3220 O GLU A 515 0. .118 16. .593 20. .048 1. .00 29. .84 A 0
ATOM 3221 N ALA A 516 1. .442 15. .790 21. .689 1. .00 29. .11 A N
ATOM 3223 CA ALA A 516 2. .624 16. .545 21. .305 1. .00 27. .81 A c
ATOM 3225 CB ALA A 516 2. .667 17. .858 22. .070 1. .00 28. .54 A c
ATOM 3229 C ALA A 516 3. .904 15. .745 21. .557 1. .00 25. .98 A c
ATOM 3230 O ALA A 516 3. .946 14. .860 22. .407 1. .00 26. .14 A 0
ATOM 3231 N VAL A 517 4 .944 16 .064 20. .796 1. .00 25. .16 A N
ATOM 3233 CA VAL A 517 6. .245 15. .417 20. .933 1, .00 24. .01 A C
ATOM 3235 CB VAL A 517 6 .639 14 .670 19. .640 1. .00 23, .29 A c
ATOM 3237 CGI VAL A 517 8. .051 14. .131 19. .739 1. .00 22. .22 A c
ATOM 3241 CG2 VAL A 517 5. .649 13. .543 19. .353 1. .00 23. .59 A c
ATOM 3245 C VAL A 517 7. .298 16 .475 21. .245 1 .00 22. .61 A c
ATOM 3246 O VAL A 517 7. .338 17 .525 20. .605 1 .00 19. .85 A 0
ATOM 3247 N PHE A 518 8. ,146 16, .186 22. ,228 1. .00 21. .08 A N
ATOM 3249 CA PHE A 518 9. .147 17, .134 22. .684 1. .00 21. .35 A c
ATOM 3251 CB PHE A 518 8. .872 17, .517 24. .139 1. .00 21. .99 A c
ATOM 3254 CG PHE A 518 7. .574 18, .252 24. .334 1. .00 22. ,64 A c
ATOM 3255 CDl PHE A 518 6. .397 17, .557 24. .588 1. .00 22. .62 A c
ATOM 3257 CEl PHE A 518 5, ,199 18, .230 24. .771 1. .00 22. ,81 A c
ATOM 3259 CZ PHE A 518 5. .168 19. .610 24. .701 1. .00 22. .83 A c
ATOM 3261 CE2 PHE A 518 6, .335 20. .315 24, .444 1, .00 23. .34 A c
ATOM 3263 CD2 PHE A 518 7. .531 19. .634 24. .265 1. .00 22. .67 A c
ATOM 3265 C PHE A 518 10, .553 16. .557 22. .545 1. .00 20. .25 A c
ATOM 3266 O PHE A 518 10, .972 15. .715 23. .339 1. .00 20. .24 A 0
ATOM 3267 N ILE A 519 11, .273 17. .021 21. .529 1. .00 19. .58 A N
ATOM 3269 CA ILE A 519 12. .645 16. .596 21. .282 1. .00 18. .14 A c
ATOM 3271 CB ILE A 519 12. .993 16. .702 19. .780 1. .00 18. .55 A c
ATOM 3273 CGI ILE A 519 11, .971 15. .958 18. .904 1, .00 18. .96 A c
ATOM 3276 CDl ILE A 519 11, .881 14. .478 19. .148 1. .00 19. .25 A c
ATOM 3280 CG2 ILE A 519 14, .428 16. .210 19. .518 1. .00 17. .65 A c ATOM 3284 c ILE A 519 13.584 17.502 22.062 1.00 18.69 A C
ATOM 3285 O ILE A 519 13 .377 18 .710 22 .116 1 .00 19 .78 A O
ATOM 3286 N HIS A 520 14 .617 16 .927 22 .663 1. .00 17 .70 A N
ATOM 3288 CA HIS A 520 15 .644 17 .735 23 .297 1. .00 19 .26 A C
ATOM 3290 CB HIS A 520 16 .713 16 .870 23 .970 1 .00 18 .85 A C
ATOM 3293 CG HIS A 520 17 .523 17 .610 24 .990 1 .00 18 .78 A C
ATOM 3294 ND1 HIS A 520 18 .691 18 .268 24 .677 1 .00 19 .28 A N
ATOM 3296 CEl HIS A 520 19 .175 18 .844 25 .763 1 .00 19 .56 A C
ATOM 3298 NE2 HIS A 520 18 .362 18 .585 26 .770 1. .00 18 .13 A N
ATOM 3300 CD2 HIS A 520 17 .318 17 .818 26 .312 1. .00 19 .39 A C
ATOM 3302 C HIS A 520 16 .273 18. .617 22 .234 1, .00 20 .06 A C
ATOM 3303 O HIS A 520 16 .707 18. .133 21 .195 1. .00 19 .28 A O
ATOM 3304 N GLU A 521 16 .302 19 .916 22 .506 1. .00 22 .02 A N
ATOM 3306 CA GLU A 521 16 .829 20 .907 21 .572 1. .00 24 .61 A C
ATOM 3308 CB GLU A 521 16 .558 22 .322 22 .098 1 .00 27 .57 A C
ATOM 3311 CG GLU A 521 16 .924 22 .527 23 .564 1 .00 30 .48 A c
ATOM 3314 CD GLU A 521 15 .713 22 .506 24 .494 1. .00 32. .94 A c
ATOM 3315 OEl GLU A 521 15. .456 23. .537 25 .158 1. .00 34. .80 A 0
ATOM 3316 OE2 GLU A 521 15. .021 21. .461 24 .570 1. .00 32. .59 A 0
ATOM 3317 C GLU A 521 18. .324 20. .731 21. .316 1. .00 22. .85 A c
ATOM 3318 O GLU A 521 18. .872 21. .327 20. .392 1. .00 21. .09 A 0
ATOM 3319 N GLY A 522 18. .975 19 .912 22 .138 1. .00 21 .83 A N
ATOM 3321 CA GLY A 522 20. .396 19 .654 21 .996 1. .00 21. .79 A C
ATOM 3324 C GLY A 522 20. .700 18. .447 21 .127 1. .00 22. .00 A C
ATOM 3325 O GLY A 522 21. .864 18. .180 20 .815 1. .00 21. .42 A O
ATOM 3326 N TYR A 523 19, .657 17. .716 20. .737 1. .00 21. .22 A N
ATOM 3328 CA TYR A 523 19, .810 16. .568 19. .851 1. .00 21. .13 A C
ATOM 3330 CB TYR A 523 18, .653 15. .574 20. .033 1. .00 20. .58 A C
ATOM 3333 CG TYR A 523 18, .682 14. .430 19. .047 1. .00 19. .34 A C
ATOM 3334 CDl TYR A 523 19. .573 13. .375 19. .204 1. .00 19. .19 A C
ATOM 3336 CEl TYR A 523 19. .606 12 .327 18 .307 1. .00 19 .08 A c
ATOM 3338 CZ TYR A 523 18. .747 12 .323 17 .227 1. .00 18. .67 A c
ATOM 3339 OH TYR A 523 18. .792 11. .277 16 .330 1. .00 18. .59 A 0
ATOM 3341 CE2 TYR A 523 17. .851 13. .354 17 .047 1. .00 17. .64 A c
ATOM 3343 CD2 TYR A 523 17. .828 14. .406 17. .950 1. .00 19. .01 A c
ATOM 3345 C TYR A 523 19. .865 17. .026 18. .402 1. .00 20, .40 A c
ATOM 3346 O TYR A 523 19. .014 17. .796 17, .961 1. .00 19. .76 A 0
ATOM 3347 N THR A 524 20. .869 16. .536 17, .676 1. .00 20. .48 A N
ATOM 3349 CA THR A 524 21. .031 16. .800 16. .249 1. .00 20. .34 A c
ATOM 3351 CB THR A 524 22. .382 17. .498 15. .988 1. .00 20. .25 A c
ATOM 3353 OGl THR A 524 22. .517 18. .644 16. .842 1. .00 19. .83 A 0
ATOM 3355 CG2 THR A 524 22. .441 18. .082 14. .575 1. .00 20. .01 A c
ATOM 3359 C THR A 524 20. .964 15. .479 15. .481 1. .00 21. .72 A c
ATOM 3360 O THR A 524 21. .810 14. .598 15. .667 1. .00 21. .62 A 0
ATOM 3361 N HIS A 525 19. .970 15. .351 14. .609 1. ,00 22. .85 A N
ATOM 3363 CA HIS A 525 19. .655 14. .065 13. .989 1. ,00 24. .74 A C
ATOM 3365 CB HIS A 525 18. .405 14. .177 13. .113 1. ,00 24. .49 A C
ATOM 3368 CG HIS A 525 17. .735 12. .862 12. .853 1. .00 24. .66 A C
ATOM 3369 ND1 HIS A 525 17. .515 11. .930 13. .844 1. .00 24. .65 A N
ATOM 3371 CEl HIS A 525 16. .913 10. .873 13. .327 1. .00 24, .48 A C
ATOM 3373 NE2 HIS A 525 16. .734 11. .086 12. .037 1. .00 24. .70 A N
ATOM 3375 CD2 HIS A 525 17. .243 12. .322 11. .713 1. ,00 24. .55 A C
ATOM 3377 C HIS A 525 20. .800 13. ,463 13. .174 1. ,00 27. .24 A c
.ATOM 3378 O HIS A 525 21. .100 12. ,277 13, .311 1. ,00 29. .85 A 0
ATOM 3379 N ASP A 526 21. .431 14. ,270 12. .328 1. ,00 27. ,43 A N
ATOM 3381 CA ASP A 526 22. .503 13. ,779 11. .463 1. 00 28. .71 A c
ATOM 3383 CB ASP A 526 22. ,426 14. .463 10. .090 1. .00 29. .42 A c
ATOM 3389 C ASP A 526 23. ,901 13. ,997 12, .044 1. .00 28. .23 A c
ATOM 3390 O ASP A 526 24. ,843 14. ,243 11, .293 1. .00 27. .47 A 0
ATOM 3391 N ALA A 527 24. ,044 13. ,896 13. .364 1. 00 28. .21 A N
ATOM 3393 CA ALA A 527 25. ,324 14. ,175 14. .012 1. 00 28. .08 A C
ATOM 3395 CB ALA A 527 25. ,567 15. .676 14. .060 1. 00 28. .39 A C
ATOM 3399 C ALA A 527 25. .408 13. .596 15. .419 1. 00 28. .37 A C
ATOM 3400 O ALA A 527 25. .426 14. .341 16. ,403 1. 00 31. .36 A O
ATOM 3401 N GLY A 528 25. 461 12. 269 15. ,518 1. 00 26. .75 A N
ATOM 3403 CA GLY A 528 25. .680 11. ,624 16. .799 1. .00 24. .95 A C
ATOM -3406 C GLY A 528 24. .468 11. .626 17. .709 1. .00 22. .23 A C
ATOM 3407 O GLY A 528 23. .437 12. .221 17. .402 1. 00 21. .51 A O
ATOM 3408 N PHE A 529 24. .618 10. .979 18. .859 1. 00 19. .79 A N
ATOM 3410 CA PHE A 529 23. 493 10. .652 19. .721 1. 00 17. .41 A C
ATOM 3412 CB PHE A 529 23. 491 9. 150 19. .988 1. 00 16. 95 A C
ATOM 3415 CG PHE A 529 23. 129 8. 314 18. .787 1. 00 16. 85 A C
ATOM 3416 CDl PHE A 529 24. 117 7. 768 17. 982 1. 00 16. 57 A C ATOM 3418 CEl PHE A 529 23.781 6.982 16.883 1.00 17.55 A C
ATOM 3420 CZ PHE A 529 22 .444 6 .731 16 .593 1. .00 16 .92 A C
ATOM 3422 CE2 PHE A 529 21 .454 7 .273 17 .395 1. .00 15 .15 A C
ATOM 3424 CD2 PHE A 529 21 .796 8 .053 18 .481 1. .00 15 .81 A C
ATOM 3426 C PHE A 529 23 .526 11. .396 21 .056 1. .00 18 .28 A C
ATOM 3427 O PHE A 529 22 .858 11. .002 22 .016 1. .00 18 .36 A O
ATOM 3428 N ASP A 530 24 .301 12. .471 21 .126 1. .00 17 .70 A N
ATOM 3430 CA ASP A 530 24. .289 13. .316 22 .311 1. .00 18 .22 A C
ATOM 3432 CB ASP A 530 25 .296 14. .469 22 .162 1. .00 17 .78 A C
ATOM 3435 CG ASP A 530 25 .824 14. .983 23, .502 1. .00 18 .11 A C
ATOM 3436 OD1 ASP A 530 25 .574 14. .339 24 .545 1. .00 17 .83 A O
ATOM 3437 OD2 ASP A 530 26 .507 16. .031 23, .605 1. .00 19 .30 A O
ATOM 3438 C ASP A 530 22 .863 13. .848 22 .512 1. .00 16 .97 A C
ATOM 3439 O ASP A 530 22 .200 14. .257 21 .554 1. .00 17 .68 A O
ATOM 3440 N ASN A 531 22 .391 13. .815 23 .753 1. .00 15. .87 A N
ATOM 3442 CA ASN A 531 21 .074 14 .343 24 .101 1. .00 15 .38 A C
ATOM 3444 CB ASN A. 531 21 .009 15 .841 23 .810 1. .00 15 .40 A C
ATOM 3447 CG ASN A 531 22. .146 16. .595 24. .451 1. ,00 14. .95 A C
ATOM 3448 OD1 ASN A 531 22. .371 16. .483 25. .659 1. .00 14. .78 A O
ATOM 3449 ND2 ASN A 531 22. .877 17. .359 23. .651 1. .00 12. .14 A N
ATOM 3452 C ASN A 531 19. .939 13. .618 23. .403 1. .00 15. .86 A C
ATOM 3453 O ASN A 531 18. .930 14. .218 23. .031 1. .00 15. .46 A O
ATOM 3454 N ASP A 532 20. .110 12. .311 23. .257 1. .00 16. .35 A N
ATOM 3456 CA ASP A 532 19. .132 11. .466 22. .602 1. .00 16. .73 A C
ATOM 3458 CB ASP A 532 19. .822 10. .189 22. .134 1. .00 16. .74 A C
ATOM 3461 CG ASP A 532 18. .943 9. .334 21. .273 1. .00 17. .53 A C
ATOM 3462 OD1 ASP A 532 17. .844 9. .807 20. .908 1. .00 17. .59 A O
ATOM 3463 OD2 ASP A 532 19. .270 8. .175 20. .914 1. .00 16, .87 A O
ATOM 3464 C ASP A 532 17. .992 11. .154 23. .578 1. .00 18. .95 A C
ATOM 3465 O ASP A 532 17. .978 10. .106 24. .225 1. .00 20. .57 A O
ATOM 3466 N ILE A 533 17. .047 12. .084 23. .689 1. .00 17, .99 A N
ATOM 3468 CA ILE A 533 15. .935 11. .949 24. .619 1. .00 18, .17 A C
ATOM 3470 CB ILE A 533 16. .343 12. .406 26. .039 1. .00 18, .22 A C
ATOM 3472 CGI ILE A 533 15. .200 12. .145 27. .031 1. .00 19, .18 A C
ATOM 3475 CDl ILE A 533 15. .617 12. .185 28 .491 1. .00 19, .50 A C
ATOM 3479 CG2 ILE A 533 16. .740 13, .880 26. .040 1. .00 17, .21 A C
ATOM 3483 C ILE A 533 14. .730 12, .750 24. .129 1. .00 19, .35 A C
ATOM 3484 O ILE A 533 14. .870 13. .857 23. .606 1. .00 19, .69 A O
ATOM 3485 N ALA A 534 13. .547 12. .168 24. .297 1. .00 20. .83 A N
ATOM 3487 CA ALA A 534 12. .311 12. .785 23. .847 1. .00 21. .07 A C
ATOM 3489 CB ALA A 534 12. .005 12. .370 22. .426 1. .00 20. .61 A C
ATOM 3493 C ALA A 534 11. .151 12. .418 24. .767 1. .00 22. .04 A C
ATOM 3494 O ALA A 534 11. .149 11. .354 25. .389 1. .00 21. .66 A O
ATOM 3495 N LEU A 535 10. .165 13. .312 24. .845 1. .00 22. .61 A N
ATOM 3497 CA LEU A 535 8. .942 13. .055 25, .598 1. .00 21. .59 A C
ATOM 3499 CB LEU A 535 8. .782 14. .082 26. .718 1. .00 21. .70 A C
ATOM 3502 CG LEU A 535 9. .642 13. .881 27. .968 1. .00 22. .65 A C
ATOM 3504 CDl LEU A 535 .9. .572 15. .121 28. .835 1. .00 21. .37 A C
ATOM 3508 CD2 LEU A 535 9. .202 12. .637 28. .759 1. .00 23. .31 A C
ATOM 3512 C LEU A 535 7. .718 13. .102 24. .685 1. .00 19, .87 A C
ATOM 3513 O LEU A 535 7. .648 13. .904 23. .769 1. .00 20. .78 A O
ATOM 3514 N ILE A. 536 6. .752 12. .237 24. .960 1. .00 20. .25 A N
ATOM 3516 CA ILE A 536 5. .513 12. .175 24. .200 1. .00 19. .32 A C
ATOM 3518 CB ILE A 536 5. .377 10. .813 23. .502 1. .00 18, .23 A C
ATOM 3520 CGI ILE A 536 6. .512 10. .611 22. .492 1. .00 18, .13 A C
ATOM 3523 CDl ILE A 536 6. .615 9. .198 21. .983 1. .00 17, .94 A C
ATOM 3527 CG2 ILE A 536 4. .021 10, .703 22. .826 1. .00 19, .51 A C
ATOM 3531 C ILE A 536 4. .353 12. .374 25. .164 1. .00 19, .72 A C
ATOM 3532 O ILE A 536 4. .240 11. .666 26, .159 1. ,00 19, .89 A O
ATOM 3533 N LYS A 537 3. .503 13. .349 24. .871 1. ,00 20, .16 A N
ATOM 3535 CA LYS A 537 2. .344 13. .629 25. .696 1. ,00 19, .78 A C
ATOM 3537 CB LYS A 537 2. .033 15. .127 25. .653 1. .00 20, .82 A c
ATOM 3540 CG LYS A 537 0. .725 15. .525 26. .308 1. .00 21, .91 A c
ATOM 3543 CD LYS A 537 0. .872 15. .651 27 .804 1. .00 22, .33 A c
ATOM 3546 CE LYS A 537 -0 .471 15. .960 28 .462 1. .00 23, .32 A c
ATOM 3549 NZ LYS A 537 -0 .936 17. .323 28. .122 1. .00 23, .02 A N
ATOM 3553 C LYS A 537 1. .171 12. .819 25. .177 1, .00 18, .99 A C
ATOM 3554 O LYS A 537 0. .865 12. .860 23. .993 1, .00 19, .82 A 0
ATOM 3555 N LEU A 538 0. .522 12. .066 26. .055 1. .00 19, .85 A N
ATOM 3557 CA LEU A 538 -0. .668 11. .319 25. .667 1. ,00 19. .63 A C
ATOM 3559 CB LEU A 538 -0. ,851 10. ,100 26. .567 1. .00 19. .20 A C
ATOM 3562 CG LEU A 538 0. ,331 9. ,122 26. .649 1. 00 18. .53 A C
ATOM 3564 CDl LEU A 538 -0. .092 7. ,856 27. .394 1. .00 17. .93 A C ATOM 3568 CD2 LEU A 538 0 893 8 780 25 270 1 00 17 05 A C
ATOM 3572 C LEU A 538 1 903 12 216 25 724 1 00 20 63 A C
ATOM 3573 O LEU A 538 1 989 13 113 26 554 1 00 19 71 A O
ATOM 3574 N ASN A 539 2 853 11 965 24 830 1 00 24 99 A N
ATOM 3576 CA ASN A 539 4 058 12 778 24 723 1 00 27 63 A C
ATOM 3578 CB ASN A 539 4 814 12 439 23 440 1 00 30 95 A C
ATOM 3581 CG ASN A 539 4 364 13 276 22 254 1 00 34 40 A C
ATOM 3582 OD1 ASN A 539 4 201 14 497 22 362 1 00 37 35 A O
ATOM 3583 ND2 ASN A 539 4 170 12 625 21 108 1 00 34 90 A N
ATOM 3586 C ASN A 539 4 979 12 567 25 916 1 00 28 78 A C
ATOM 3587 O ASN A 539 5 712 13 471 26 312 1 00 30 21 A O
ATOM 3588 N ASN A 540 4 941 11 361 26 473 1 00 28 43 A N
ATOM 3590 CA ASN A 540 5 732 11 013 27 642 1 00 27 41 A C
ATOM 3592 CB ASN A 540 6 952 10 179 27 237 1 00 27 70 A C
ATOM 3595 CG ASN A 540 8 059 11 014 26 605 1 00 28 47 A C
ATOM 3596 OD1 ASN A 540 8 754 10 550 25 701 1 00 28 30 A O
ATOM 3597 ND2 ASN" A 540 8 233 12 244 27 084 1 00 27 73 A N
ATOM 3600 C ASN A 540 4 881 10 218 28 616 1 00 25 51 A C
ATOM 3601 0 ASN A 540 3 876 9 634 28 232 1 00 26 67 A O
ATOM 3602 N LYS A 541 5 284 10 203 29 879 1 00 24 80 A N
ATOM 3604 CA LYS A 541 4 609 9 399 30 887 1 00 25 25 A C
ATOM 3606 CB LYS A 541 4 985 9 880 32 290 1 00 27 52 A c
ATOM 3609 CG LYS A 541 4 367 11 220 32 677 1 00 28 52 A c
ATOM 3612 CD LYS A 541 5 164 11 897 33 787 1 00 29 25 A c
ATOM 3615 CE LYS A 541 4 546 13 231 34 187 1 00 29 51 A c
ATOM 3618 NZ LYS A 541 3 145 13 080 34 668 1 00 29 05 A N
ATOM 3622 C LYS A 541 4 986 7 927 30 725 1 00 23 57 A C
ATOM 3623 O LYS A 541 6 130 7 606 30 404 1 00 22 61 A O
ATOM 3624 N VAL A 542 4 020 7 038 30 939 1 00 22 06 A N
ATOM 3626 CA VAL A 542 4 280 5 602 30 880 1 00 21 83 A C
ATOM 3628 CB VAL A 542 3 086 4 798 30 277 1 00 21 34 A C
ATOM 3630 CGI VAL A 542 2 930 5 109 28 786 1 00 20 86 A C
ATOM 3634 CG2 VAL A 542 1 783 5 063 31 022 1 00 21 84 A C
ATOM 3638 C VAL A 542 4 635 5 068 32 266 1 00 22 30 A C
ATOM 3639 O VAL A 542 4 198 5 612 33 283 1 00 22 49 A O
ATOM 3640 N VAL A 543 5 444 4 015 32 299 1 00 22 73 A N
ATOM 3642 CA VAL A 543 5 784 3 357 33 552 1 00 24 19 A C
ATOM 3644 CB VAL A 543 6 890 2 286 33 374 1 00 26 79 A C
ATOM 3646 CGI VAL A 543 7 125 1 529 34 679 1 00 28 15 A C
ATOM 3650 CG2 VAL A 543 8 201 2 912 32 892 1 00 27 26 A C
ATOM 3654 C VAL A 543 4 527 2 688 34 087 1 00 23 92 A C
ATOM 3655 0 VAL A 543 3 780 2 053 33 338 1 00 23 26 A O
ATOM 3656 N ILE A 544 4 293 2 850 35 384 1 00 23 40 A N
ATOM 3658 CA ILE A 544 3 140 2 260 36 036 1 00 23 04 A C
ATOM 3660 CB ILE A 544 2 473 3 297 36 949 1 00 22 29 A C
ATOM 3662 CGI ILE A 544 2 084 4 541 36 139 1 00 22 00 A C
ATOM 3665 CDl ILE A 544 0 984 4 321 35 106 1 00 21 65 A C
ATOM 3669 CG2 ILE A 544 1 262 2 696 37 673 1 00 22 08 A C
ATOM 3673 C ILE A 544 3 563 1 029 36 837 1 00 24 60 A C
ATOM 3674 O ILE A 544 4 385 1 127 37 753 1 00 24 50 A O
ATOM 3675 N ASN A 545 3 011 -0 125 36 457 1 00 24 33 A N
ATOM 3677 CA ASN A 545 3 226 -1 386 37 162 1 00 23 48 A C
ATOM 3679 CB ASN A 545 4 432 -2 126 36 567 1 00 23 82 A C
ATOM 3682 CG ASN A 545 4 256 -2 446 35 091 1 00 23 49 A c
ATOM 3683 OD1 ASN A 545 3 141 -2 627 34 612 1 00 24 80 A 0
ATOM 3684 ND2 ASN A 545 5 364 -2 514 34 363 1 00 23 11 A N
ATOM 3687 C ASN A 545 1 956 -2 255 37 117 1 00 23 21 A C
ATOM 3688 O ASN A 545 0 878 -1 761 36 779 1 00 23 53 A O
ATOM 3689 N SER A 546 2 083 -3 538 37 455 1 00 22 72 A N
ATOM 3691 CA SER A 546 0 937 -4 453 37 518 1 00 22 49 A C
ATOM 3693 CB SER A 546 1 408 -5 870 37 843 1 00 22 50 A C
ATOM 3696 OG SER A 546 1 674 -5 998 39 224 1 00 24 93 A O
ATOM 3698 C SER A 546 0 110 -4 501 36 237 1 00 21 76 A C
ATOM 3699 O SER A 546 1 108 -4 695 36 284 1 00 22 34 A O
ATOM 3700 N ASN A 547 0 776 -4 340 35 100 1 00 20 04 A N
ATOM 3702 CA ASN A 547 0 118 -4 433 33 805 1 00 20 44 A C
ATOM 3704 CB ASN A 547 1 060 -5 106 32 809 1 00 20 74 A C
ATOM 3707 CG ASN A 547 1 372 -6 528 33 189 1 00 21 05 A C
ATOM 3708 OD1 ASN A 547 0 467 -7 336 33 403 1 00 24 56 A O
ATOM 3709 ND2 ASN A 547 2 651 -6 845 33 290 1 00 21 33 A N
ATOM 3712 C ASN A 547 0 347 -3 096 33 232 1 00 19 71 A C
ATOM 3713 O ASN A 547 1 140 -3 069 32 291 1 00 21 78 A O
ATOM 3714 N ILE A 548 0 170 -1 997 33 773 1 00 18 61 A N
ATOM 3716 CA ILE A 548 0 188 -0 660 33 305 1 00 19 52 A C ATOM 3718 CB ILE A 548 -0.961 -0.049 32.477 1.00 20.35 A C
ATOM 3720 CGI ILE A 548 -1.194 -0.876 31.207 1.00 20.88 A C
ATOM 3723 CDl ILE A 548 -2.510 -0.585 30.491 1.00 22.19 A C
ATOM 3727 CG2 ILE A 548 -0.650 1.404 32.130 1.00 21.42 A C
ATOM 3731 C ILE A 548 0.537 0.241 34.495 1.00 20.58 A C
ATOM 3732 O ILE A 548 -0.342 0.669 35.238 1.00 20.86 A O
ATOM 3733 N THR A 549 1.829 0.507 34.667 1.00 19.77 A N
ATOM 3735 CA THR A 549 2.342 305 35.776 1.00 19.04 A C
ATOM 3737 CB THR A 549 2.720 382 36.972 1.00 19.68 A C
ATOM 3739 OGl THR A 549 1.539 -0.159 37.572 1.00 18.98 A 0
ATOM 3741 CG2 THR A 549 3.371 1.161 38.114 1.00 19.97 A c
ATOM 3745 C THR A 549 3.579 2.039 35.279 1.00 18.57 A c
ATOM 3746 O THR A 549 4.437 1.429 34.646 1.00 19.82 A 0
ATOM 3747 N PRO A 550 3.698 3.333 35.564 1.00 18.16 A N
ATOM 3748 CA PRO A 550 4.868 4.098 35.110 1.00 17.29 A c
ATOM 3750 CB PRO A 550 4.519 5.532 35.500 1.00 17.59 A c
ATOM 3753 CG PRO A 550 3.578 5.404 36.619 1.00 17.33 A c
ATOM 3756 CD PRO A 550 2.766 4.168 36.339 1.00 17.55 A c
ATOM 3759 C PRO A 550 6.167 3.681 35.799 1.00 18.63 A c
ATOM 3760 O PRO A 550 6.157 3.164 36.919 1.00 16.88 A 0
ATOM 3761 N ILE A 551 7.282 3.904 35.118 1.00 17.38 A N
ATOM 3763 CA ILE A 551 8.580 3.768 35.746 1.00 16.45 A C
ATOM 3765 CB ILE A 551 9.670 3.496 34.689 1.00 15.33 A C
ATOM 3767 CGI ILE A 551 10.972 3.063 35.362 1.00 15.27 A C
ATOM 3770 CDl ILE A 551 10.888 1.726 36.093 1.00 13.29 A C
ATOM 3774 CG2 ILE A 551 9.909 4.726 33.809 1.00 16.30 A c
ATOM 3778 C ILE A 551 8.873 5.041 36.545 1.00 17.64 A c
ATOM 3779 O ILE A 551 8.380 6.115 36.212 1.00 15.18 A 0
ATOM 3780 N CYS A 552 9.654 4.909 37.612 1.00 18.84 A N
ATOM 3782 CA CYS A 552 10.044 6.055 38.424 1.00 20.39 A C
ATOM 3784 CB CYS A 552 10.496 5.609 39.814 1.00 21.15 A C
ATOM 3787 SG CYS A 552 9.186 4.920 40.842 1.00 21.37 A S
ATOM 3788 C CYS A 552 11.188 6.800 37.768 1.00 21.70 A C
ATOM 3789 O CYS A 552 12.041 6.206 37.115 1.00 24.05 A 0
ATOM 3790 N LEU A 553 11.201 8.110 37.939 1.00 21.96 A N
ATOM 3792 CA LEU A 553 12.332 8.898 37.510 1.00 23.05 A C
ATOM 3794 CB LEU A 553 11.917 10.351 37.286 1.00 23.74 A C
ATOM 3797 CG LEU A 553 11.125 10.577 36.000 1.00 24.23 A C
ATOM 3799 CDl LEU A 553 10.516 11.979 35.989 1.00 24.75 A C
ATOM 3803 CD2 LEU A 553 12.011 10.354 34.783 1.00 24.13 A C
ATOM 3807 C LEU A 553 13.399 8.800 38.587 1.00 22.32 A C
ATOM 3808 O LEU A 553 13.083 8.665 39.766 1.00 21.58 A O
ATOM 3809 N PRO A 554 14.660 8.841 38.180 1.00 23.83 A N
ATOM 3810 CA PRO A 554 15.780 8.747 39.122 1.00 25.36 A C
ATOM 3812 CB PRO A 554 16.993 8.585 38.199 1.00 24.91 A C
ATOM 3815 CG PRO A 554 16.587 9.227 36.933 1.00 24.60 A c
ATOM 3818 CD PRO A 554 15.115 8.971 36.786 1.00 23.57 A c
ATOM 3821 C PRO A 554 15.910 10.004 39.982 1.00 26.81 A c
ATOM 3822 O PRO A 554 15.960 11.113 39.445 1.00 26.90 A 0
ATOM 3823 N ARG A 555 15.936 9.829 41.299 1.00 29.30 A N
ATOM 3825 CA ARG A 555 16.123 10.952 42.219 1.00 31.39 A c
ATOM 3827 C3 ARG A 555 15.517 10.637 43.595 1.00 32.76 A c
ATOM 3830 CG ARG A 555 15.897 9.278 44.175 1.00 33.98 A c
ATOM 3833 CD ARG A 555 16.199 9.307 45.670 1.00 34.75 A c
ATOM 3836 NE ARG A 555 16.239 7.969 46.265 1.00 34.64 A N
ATOM 3838 CZ ARG A 555 16.685 7.710 47.493 1.00 34.90 A C
ATOM 3839 NH1 ARG A 555 17.132 8.693 48.263 1.00 34.15 A N
ATOM 3842 NH2 ARG A 555 16.684 6.466 47.956 1.00 34.63 A N
ATOM 3845 C ARG A 555 17.606 11.320 42.347 1.00 32.33 A C
ATOM 3846 O ARG A 555 18.472 10.647 41.793 1.00 32.64 A O
ATOM 3847 N LYS A 556 17.893 12.400 43.066 1.00 33.64 A N
ATOM 3849 CA LYS A 556 19.262 12.883 43.218 1.00 34.28 A C
ATOM 3851 CB LYS A 556 19.329 13.931 44.332 1.00 34.48 A C
ATOM 3858 C LYS A 556 20.235 11.748 43.526 1.00 34.57 A c
ATOM 3859 O LYS A 556 21.268 11.608 42.871 1.00 35.09 A 0
ATOM 3860 N GLU A 557 19.886 10.929 44.514 1.00 34.95 A N
ATOM 3862 CA GLU A 557 20.781 9.887 45.012 1.00 35.21 A c
ATOM 3864 CB GLU A 557 20.529 9.666 46.506 1.00 35.69 A c
ATOM 3867 CG GLU A 557 20.515 10.943 47.333 1.00 35.65 A c
ATOM 3873 C GLU A 557 20.638 8.556 44.264 1.00 35.63 A c
ATOM 3874 O GLU A 557 20.910 7.492 44.827 1.00 35.01 A 0
ATOM 3875 N ALA A 558 20.227 8.615 42.998 1.00 35.37 A N
ATOM 3877 CA ALA A 558 20.031 7.411 42.193 1.00 35.07 A C ATOM 3879 CB ALA A 558 19.082 7.695 41.037 1.00 35.79 A C
ATOM 3883 C ALA A 558 21.358 6.876 41.665 34.73 A C
ATOM 3884 O ALA A 558 21.470 5.698 41.330 33.37 A O
ATOM 3885 N GLU A 559 22.360 7.748 41.593 35.06 A N
ATOM 3887 CA GLU A 559 23.693 7.357 41.146 36.00 A C
ATOM 3889 CB GLU A 559 24.635 8.568 41.164 37.68 A C
ATOM 3892 CG GLU A 559 24.315 9.623 40.110 1.00 39.14 A C
ATOM 3895 CD GLU A 559 24.940 9.325 38.752 1.00 39.60 A C
ATOM 3896 OEl GLU A 559 24.770 8.192 38.246 1.00 38.62 A O
ATOM 3897 OE2 GLU A 559 25.597 10.232 38.188 1.00 39.59 A O
ATOM 3898 C GLU A 559 24.282 .231 42.002 1.00 34.33 A C
ATOM 3899 O GLU A 559 25.151 .489 41.544 1.00 32.38 A O
ATOM 3900 N SER A 560 23.806 .112 43.240 33.49 A N
ATOM 3902 CA SER A 560 24.277 .077 44.162 33.24 A C
ATOM 3904 CB SER A 560 23.557 .188 45.512 32.92 A C
ATOM 3907 OG SER A 560 23.587 .512 46.013 33.55 A O
ATOM 3909 C SER A 560 24.061 .672 43.601 32.55 A C
ATOM 3910 O SER A 560 24.883 .781 43.805 30.63 A O
ATOM 3911 N PHE A 561 22.947 3.485 42.900 1.00 31.90 A N
ATOM 3913 CA PHE A 561 22.552 2.165 42.413 1.00 32.27 A C
ATOM 3915 CB PHE A 561 21.054 .942 42.646 1.00 33.60 A C
ATOM 3918 CG PHE A 561 20.577 .385 44.003 1.00 34.46 A C
ATOM 3919 CDl PHE A 561 20.033 .646 44.183 1.00 35.05 A C
ATOM 3921 CEl PHE A 561 19.589 .056 45.424 .00 35.91 A C
ATOM 3923 CZ PHE A 561 19.685 .204 46.509 .00 36.71 A C
ATOM 3925 CE2 PHE A 561 20.222 1.943 46.344 .00 36.31 A C
ATOM 3927 CD2 PHE A 561 20.664 1.537 45.093 .00 35.79 A C
ATOM 3929 C PHE A 561 22.877 1.952 40.935 .00 30.12 A C
ATOM 3930 O PHE A 561 22.442 0.967 40.343 .00 28.28 A 0
ATOM 3931 N MET A 562 23.655 2.862 40.353 .00 30.12 A N
ATOM 3933 CA MET A 562 24.053 2.762 38. 949 1.00 30.30 A C
ATOM 3935 CB MET A 562 23.400 3.878 38.147 29.52 A C
ATOM 3938 CG MET A 562 21.894 3.772 38.051 30.09 A C
ATOM 3941 SD MET A 562 21.203 5.128 37.098 30.06 A S
ATOM 3942 CE MET A 562 22.173 .039 35.606 30.17 A C
ATOM 3946 C MET A 562 25.570 .850 38.761 30.80 A C
ATOM 3947 O MET A 562 26.049 .396 37.763 31.78 A O
ATOM 3948 N ARG A 563 26.321 .304 39.711 29.46 A N
ATOM 3950 CA ARG A 563 27.778 .348 39.654 29.50 A C
ATOM 3952 CB ARG A 563 28.367 .208 41.058 30.13 A C
ATOM 3955 CG ARG A 563 27.826 3.221 42.042 1.00 31.17 A C
ATOM 3958 CD ARG A 563 28.013 2.836 43.497 1.00 33.11 A C
ATOM 3961 NE ARG A 563 27.589 3.921 44.379 1.00 34.13 A N
ATOM 3963 CZ ARG A 563 27.894 4.012 45.667 1.00 34.23 A C
ATOM 3964 NH1 ARG A 563 28.644 3.084 46.255 35.27 A N
ATOM 3967 NH2 ARG A 563 27.451 5.044 46.371 34.06 A N
ATOM 3970 C ARG A 563 28.306 1.240 38.753 27.99 A C
ATOM 3971 O ARG A 563 27.567 0.328 38.388 27.72 A O
ATOM 3972 N THR A 564 29.581 1.323 38.387 26.21 A N
ATOM 3974 CA THR A 564 30.192 0.292 37.562 26.24 A C
ATOM 3976 CB THR A 564 31.699 0.547 37.410 1.00 26.65 A C
ATOM 3978 OGl THR A 564 31.915 1.744 36.655 1.00 27.26 A O
ATOM 3980 CG2 THR A 564 32.362 -0.535 36.568 1.00 27.02 A c
ATOM 3984 C THR A 564 29.937 -1.072 38.196 1.00 26.07 A c
ATOM 3985 O THR A 564 30.215 -1.275 39.374 1.00 26.54 A 0
ATOM 3986 N ASP A 565 29.373 -1.984 37.411 1.00 26.61 A N
ATOM 3988 CA ASP A 565 29.078 -3.354 37.842 1.00 27.76 A c
ATOM 3990 CB ASP A 565 30.164 -3 .899 38.777 1.00 28.45 A c
ATOM 3993 CG ASP A 565 31.532 -3 .945 38.119 1.00 29.06 A c
ATOM 3994 OD1 ASP A 565 31.605 -4 .274 36.916 1.00 29.43 A 0
ATOM 3995 OD2 ASP A 565 32.589 -3 .675 38.729 1.00 30.32 A 0
ATOM 3996 C ASP A 565 27.697 -3 .515 38.488 1.00 28.51 A c
ATOM 3997 O ASP A 565 27.276 -4.639 38.773 29.92 A 0
ATOM 3998 N ASP A 566 26.996 -2.406 38.718 27.59 A N
ATOM 4000 CA ASP A 566 25.611 -2.463 39.178 27.82 A c
ATOM 4002 CB ASP A 566 25.147 -1.098 39.700 28.73 A c
ATOM 4005 CG ASP A 566 25.563 -0.844 41.141 28.47 A c
ATOM 4006 OD1 ASP A 566 26.309 -1.665 41.714 29.62 A 0
ATOM 4007 OD2 ASP A 566 25.189 0.157 41.785 27.54 A 0
ATOM 4008 C ASP A 566 24.706 -2.928 38.032 27.09 A c
ATOM 4009 O ASP A 566 24.950 -2.616 36.868 1.00 25.57 A 0
ATOM 4010 N ILE A 567 23.654 -3.664 38.373 1.00 27.22 A N
ATOM 4012 CA ILE A 567 22.863 -4.385 37.383 1.00 26.20 A C
ATOM 4014 CB ILE A 567 22.481 -5.786 37.932 1.00 26.75 A C ATOM 4016 CGI ILE A 567 23.713 -6,.505 38.497 1..00 28,.07 A C
ATOM 4019 CDl ILE A 567 24 .884 -6, .638 37 .520 1. .00 28, .17 A C
ATOM 4023 CG2 ILE A 567 21 .817 -6, .634 36 .854 1. .00 27, .67 A C
ATOM 4027 C ILE A 567 21 .606 -3, .615 36 .975 1. .00 25, .90 A C
ATOM 4028 O ILE A 567 20 .788 -3. .241 37 .818 1. .00 27, .14 A O
ATOM 4029 N GLY A 568 21 .478 -3. .370 35 .675 1. .00 23, .29 A N
ATOM 4031 CA GLY A 568 20 .281 -2, .792 35 .098 1. .00 22. .51 A C
ATOM 4034 C GLY A 568 19 .612 -3, .770 34 .150 1. .00 20. .44 A C
ATOM 4035 O GLY A 568 20 .230 -4, .735 33 .715 1. .00 17. .69 A O
ATOM 4036 N THR A 569 18 .349 -3. .515 33 .821 1. .00 20. .37 A N
ATOM 4038 CA THR A 569 17 .569 -4-, .423 32 .991 1 .00 19 .90 A C
ATOM 4040 CB THR A 569 16 .408 -5 .013 33 .810 1 .00 19 .41 A C
ATOM 4042 OGl THR A 569 16 .921 -5, .684 34 .964 1 .00 20. .28 A 0
ATOM 4044 CG2 THR A 569 15 .690 -6, .105 33 .043 1 .00 18. .48 A c
ATOM 4048 C THR A 569 17 .011 -3, .706 31 .771 1 .00 20. .65 A c
ATOM 4049 O THR A 569 16 .422 -2 .640 31 .893 1 .00 21 .81 A 0
ATOM 4050 N ALA A 570 17 .198 -4 .299 30 .596 1 .00 22. .12 A TJ
ATOM 4052 CA ALA A 570 16. .617 -3, .777 29, .365 1. .00 23. .49 A c
ATOM 4054 CB ALA A 570 17. .698 -3. .580 28, .329 1. .00 23. .43 A c
ATOM 4058 C ALA A 570 15. .560 -4. .751 28, .850 1, .00 24. .03 A c
ATOM 4059 O ALA A 570 15. .760 -5. .960 28, .889 1. .00 24. .01 A 0
ATOM 4060 N SER A 571 14. .433 -4, .227 28, .376 1. .00 23. .42 A N
ATOM 4062 CA SER A 571 13. .375 -5, .073 27, .834 1. .00 22. .06 A c
ATOM 4064 CB SER A 571 12. .150 -5, .034 28, .744 1. .00 21. .76 A c
ATOM 4067 OG SER A 571 11. .639 -3. .719 28. .890 1. .00 19. .28 A 0
ATOM 4069 C SER A 571 12. .985 -4, .672 26 .408 1. .00 23. .63 A c
ATOM 4070 O SER A 571 13. .072 -3. .506 26. .038 1. .00 25. .48 A 0
ATOM 4071 N GLY A 572 12. .562 -5, .648 25. .609 1. .00 23. .56 A N
ATOM 4073 CA GLY A 572 12. .073 -5, .372 24. .272 1. .00 22. .56 A C
ATOM 4076 C GLY A 572 11 .767 -6, .610 23 .451 1. .00 21. .23 A C
ATOM 4077 O GLY A 572 11 .869 -7, .739 23 .926 1. .00 22. .76 A O
ATOM 4078 N TRP A 573 11 .394 -6 .387 22 .198 1 .00 21. .64 A N
ATOM 4080 CA TRP A 573 11 .071 -7, .468 21 .278 1 .00 23. .20 A c
ATOM 4082 CB TRP A 573 9 .754 -7 .151 20 .572 1 .00 22 .84 A c
ATOM 4085 CG TRP A 573 8. .582 -7. .213 21. .493 1. .00 23. .34 A c
ATOM 4086 CDl TRP A 573 7. .860 -8. .321 21. .820 1. .00 22. .87 A c
ATOM 4088 NE1 TRP A 573 6. .857 -7. .989 22. .698 1. .00 23. .69 A N
ATOM 4090 CE2 TRP A 573 6. .916 -6. .645 22. .956 1. .00 23. .55 A C
ATOM 4091 CD2 TRP A 573 7. .995 -6. .124 22, .216 1. .00 22. .02 A C
ATOM 4092 CE3 TRP A 573 8. .266 -4. .755 22. .308 1. .00 22. .90 A c
ATOM 4094 CZ3 TRP A 573 7. .469 -3. .965 23. .129 1, .00 22. .67 A c
ATOM 4096 CH2 TRP A 573 6, .408 -4. .514 23. .851 1. .00 23. .02 A c
ATOM 4098 CZ2 TRP A 573 6. .112 -5. .849 23. .779 1. .00 24. .01 A c
ATOM 4100 C TRP A 573 12. .176 -7. .698 20. .249 1. .00 23. .29 A c
ATOM 4101 O TRP A 573 12. .066 -8. .584 19. .411 1. .00 22. .50 A 0
ATOM 4102 N GLY A 574 13. .244 -6, .912 20. .329 1. .00 26, .39 A N
ATOM 4104 CA GLY A 574 14, .348 -7. .004 19. .385 1. .00 28. .84 A C
ATOM 4107 C GLY A 574 14, .163 -6. .101 18 .178 1 .00 31. .77 A c
ATOM 4108 O GLY A 574 14, .660 -6. .400 17 .092 1 .00 32. .04 A 0
ATOM 4109 N LEU A 575 13, .468 -4. .981 18 .380 1 .00 35. .53 A N
ATOM 4111 CA LEU A 575 13, .105 -4. .058 17 .298 1 .00 37. .30 A c
ATOM 4113 CB LEU A 575 12 .262 -2. .897 17 .853 1 .00 37. .48 A c
ATOM 4116 CG LEU A 575 10. .883 -3. .258 18. .424 1. .00 38. .17 A c
ATOM 4118 CDl LEU A 575 10, .243 -2. ,070 19. .152 1. .00 38. .25 A c
ATOM 4122 CD2 LEU A 575 9, .955 -3. .764 17. .332 1, .00 38. ,76 A c
ATOM 4126 C LEU A 575 14, .297 -3. .498 16. .520 1. .00 38. .53 A c
ATOM 4127 O LEU A 575 14, .167 -3. .192 15. .332 1. .00 40. .14 A 0
ATOM 4128 N THR A 576 15, .446 -3. .364 17. .184 1. .00 39. .35 A N
ATOM 4130 CA THR A 576 16, .627 -2. ,747 16. .578 1. .00 40. .19 A C
ATOM 4132 CB THR A 576 17, .011 -1. ,464 17. .365 1. .00 42, .36 A C
ATOM 4134 OGl THR A 576 15, .866 -0. .606 17. .485 1. .00 41, .67 A O
ATOM 4136 CG2 THR A 576 18, .030 -0. .610 16. .591 1. .00 42, .83 A c
ATOM 4140 C THR A 576 17, .838 -3. .689 16. .465 1. .00 40, .23 A c
ATOM 4141 O THR A 576 18, .905 -3, .273 16. .001 1. .00 41. .66 A 0
ATOM 4142 N GLN A 577 17, .686 -4. .949 16. .881 1. .00 38. .84 A N
ATOM 4144 CA GLN A 577 18, .672 -5. .985 16. .552 1. .00 36. .08 A C
ATOM 4146 CB GLN A 577 18, .510 -7. .217 17 .456 1. .00 37, .93 A C
ATOM 4149 CG GLN A 577 18. .839 -6, .971 18 .935 1. .00 40, .12 A C
ATOM 4152 CD GLN A 577 18. .122 -7. .934 19 .887 1. .00 41, .19 A C
ATOM 4153 OEl GLN A 577 18. .091 -9. .147 19. .655 1. .00 40. ,91 A 0
ATOM 4154 NE2 GLN A 577 17. .555 -7. .390 20. .965 1. .00 42. .35 A N
ATOM 4157 C GLN A 577 18. .472 -6. .339 15. .073 1. ,00 32. .14 A C
ATOM 4158 O GLN A 577 18. ,130 -5. ,468 14. .279 1. ,00 33. .41 A 0 ATOM 4159 N ARG A 578 18.684 -7.595 14.690 1..00 26.70 A N
ATOM 4161 CA ARG A 578 18. .402 -8 .020 13 .320 1. .00 22 .57 A C
ATOM 4163 CB ARG A 578 19. .703 -8 .113 12 .510 1. .00 23 .37 A C
ATOM 4166 CG ARG A 578 20. .733 -9 .081 13 .083 1. .00 24 .05 A C
ATOM 4169 CD ARG A 578 21. .973 -9. .237 12. .222 1, .00 25 .05 A C
ATOM 4172 NE ARG A 578 22. .763 -10. .407 12 .595 1. .00 26 .36 A N
ATOM 4174 CZ ARG A 578 23. .885 -10. .781 11 .987 1, .00 28 .38 A C
ATOM 4175 NH1 ARG A 578 24. .366 -10. .082 10 .963 1, .00 29 .05 A N
ATOM 4178 NH2 ARG A 578 24. .532 -11. .865 12 .401 1. .00 29 .00 A N
ATOM 4181 C ARG A 578 17. .668 -9. .362 13 .290 1. .00 18 .00 A C
ATOM 4182 O ARG A 578 17. .370 -9 .935 14 .338 1. .00 15 .00 A O
ATOM 4183 N GLY A 579 17. .358 -9. .838 12 .086 1. .00 11 .09 A N
ATOM 4185 CA GLY A 579 16. .856 -11. .186 11 .889 1. .00 9 .85 A C
ATOM 4188 C GLY A 579 15. .356 -11. .344 12 .027 1. .00 10 .26 A C
ATOM 4189 O GLY A 579 14. .636 -11. .382 11 .028 1. .00 7 .15 A O
ATOM 4190 N PHE A 580 14. .903 -11. .447 13 .276 1. .00 9 .38 A N
ATOM 4192 CA "PHE A 580 13 .508 -11 .705 13 .605 1, .00 9 .95 A C
ATOM 4194 CB PHE A 580 13. .295 -13. .192 13. .875 1. .00 8. .49 A C
ATOM 4197 CG PHE A 580 13. .000 -13. .992 12, .656 1. .00 6. .32 A C
ATOM 4198 CDl PHE A 580 13. .860 -14. .995 12. .250 1. .00 6. .71 A C
ATOM 4200 CEl PHE A 580 13. .589 -15. .729 11. .135 1. .00 4. .71 A C
ATOM 4202 CZ PHE A 580 12. .444 -15. .476 10. .408 1. .00 4. .96 A C
ATOM 4204 CE2 PHE A 580 11. .585 -14. .481 10. .800 1. .00 3. .59 A C
ATOM 4206 CD2 PHE A 580 11. .858 -13. .752 11, .915 1. .00 4, .31 A C
ATOM 4208 C PHE A 580 13. .101 -10. .953 14, .862 1. .00 11. .86 A c
ATOM 4209 O PHE A 580 13. .898 -10. .784 15, .785 1. .00 11. .73 A 0
ATOM 4210 N LEU A 581 11. .849 -10. .516 14, .897 1. .00 13. .32 A N
ATOM 4212 CA LEU A 581 11. .273 -9. .943 16, .104 1. .00 14. .01 A C
ATOM 4214 CB LEU A 581 10. .196 -8. .923 15, .742 1. .00 15. .02 A C
ATOM 4217 CG LEU A 581 10. .726 -7. .726 14. .956 1. .00 17. .15 A C
ATOM 4219 CDl LEU A 581 9. .590 -6, .924 14. .333 1. .00 18. .33 A C
ATOM 4223 CD2 LEU A 581 11. .572 -6. .860 15. .861 1. .00 16. .98 A C
ATOM 4227 C LEU A 581 10. .665 -11. .044 16. .959 1. .00 13. .48 A C
ATOM 4228 O LEU A 581 10. .139 -12. .027 16. .444 1. ,00 11. .80 A O
ATOM 4229 N ALA A 582 10, .733 -10, .863 18. .271 1. .00 13 .97 A N
ATOM 4231 CA ALA A 582 10. .131 -11, .796 19, .206 1. .00 15. .18 A C
ATOM 4233 CB ALA A 582 10. .774 -11, .643 20, .585 1. .00 15. .59 A C
ATOM 4237 C ALA A 582 8. .649 -11. .490 19, .272 1. .00 15. .56 A C
ATOM 4238 O ALA A 582 8. .250 -10. .335 19, .161 1. .00 17. .38 A 0
ATOM 4239 N ARG A 583 7. .827 -12. .517 19, .432 1. .00 17. .29 A N
ATOM 4241 CA ARG A 583 6. .396 -12. .302 19, .625 1. .00 18. .53 A C
ATOM 4243 CB ARG A 583 5. .595 -13. .575 19. .307 1. ,00 20. .08 A C
ATOM 4246 CG ARG A 583 5. .024 -13. .600 17. .889 1. .00 20. .70 A C
ATOM 4249 CD ARG A 583 4. .096 -14. .779 17. .602 1. .00 22. .67 A C
ATOM 4252 NE ARG A 583 3. .769 -14. .887 16. .180 1. .00 22. .15 A N
ATOM 4254 CZ ARG A 583 4. .576 -15. .400 15. .261 1. .00 24. .85 A C
ATOM 4255 NK1 ARG A 583 5. .769 -15. .871 15. .606 1. .00 25. .61 A N
ATOM 4258 NH2 ARG A 583 4. .189 -15. .452 13. .988 1. .00 25. .82 A N
ATOM 4261 C ARG A 583 6. .139 -11. .847 21. .057 1. .00 18. .84 A C
ATOM 4262 O ARG A 583 5. .246 -11. .038 21. .307 1. .00 19. .73 A O
ATOM 4263 N ASN A 584 6. .945 -12. .354 21. .987 1. .00 18. .23 A N
ATOM 4265 CA ASN A 584 6. .788 -12. .050 23. .400 1. .00 19. .15 A C
ATOM 4267 CB ASN A 584 6. .747 -13. .346 24. .207 1. ,00 20. .47 A C
ATOM 4270 CG ASN A 584 5. .696 -14. .310 23. .701 1. .00 21. .29 A C
ATOM 4271 OD1 ASN A 584 4. .506 -14. .001 23. .701 1. .00 22. .09 A O
ATOM 4272 ND2 ASN A 584 6. .130 -15. .485 23. .258 1. .00 22 .46 A N
ATOM 4275 C ASN A 584 7. .894 -11. .148 23. .937 1. .00 19 .12 A C
ATOM 4276 O ASN A 584 9. .036 -11. .194 23. .481 1. .00 17 .66 A O
ATOM 4277 N LEU A 585 7. .541 -10. .335 24. .923 1. .00 19 .62 A N
ATOM 4279 CA LEU A 585 8. .481 -9. .404 25. .524 1. .00 20. .70 A C
ATOM 4281 CB LEU A 585 7. .764 -8. .518 26. .549 1. .00 21 .01 A C
ATOM 4284 CG LEU A 585 8. .590 -7, .415 27 .218 1. .00 21. .10 A C
ATOM 4286 CDl LEU A 585 9. .144 -6. .463 26. .183 1. .00 21 .70 A C
ATOM 4290 CD2 LEU A 585 7. .753 -6. .663 28 .245 1. .00 21 .52 A C
ATOM 4294 C LEU A 585 9. .615 -10. .167 26 .197 1. ,00 19 .70 A C
ATOM 4295 O LEU A 585 9. .376 -11. .146 26 .899 1. .00 17 .65 A O
ATOM 4296 N MET A 586 10. .843 -9 .717 25 .962 1. .00 20 .87 A N
ATOM 4298 CA MET A 586 12. .025 -10. .321 26 .572 1. .00 22 .54 A C
ATOM 4300 CB MET A 586 12. .958 -10. .887 25 .495 1. .00 23 .22 A C
ATOM 4303 CG MET A 586 12. .310 -11. .876 24. .525 1. .00 24 .38 A c
ATOM 4306 SD MET A 586 11. .976 -13. ,502 25. .238 1. 00 26. .58 A s
ATOM 4307 CE . AMET A 586 13. .656 -14. ,153 25. .422 0. 50 26. .69 A c
ATOM 4308 CE : BMET A 586 11. ,160 -14. ,328 23. .863 0. 50 26. .97 A c
ATOM 4315 c MET A 586 12. .781 -9. .277 27. .398 1. 00 21. .82 A c ATOM 4316 O MET A 586 12..580 -8,.075 27.229 1..00 21.97 A O
ATOM 4317 N TYR A 587 13. .650 -9. .739 28 .290 1, .00 21 .30 A N
ATOM 4319 CA TYR A 587 14. .512 -8. .838 29 .039 1. .00 21 .03 A C
ATOM 4321 CB TYR A 587 13. .839 -8. .381 30, .337 1. .00 21 .28 A C
ATOM 4324 CG TYR A 587 13, .633 -9. .448 31, .395 1. .00 20. .66 A . C
ATOM 4325 CDl TYR A 587 14, .551 -9, .621 32, .426 1. .00 20 .88 A c
ATOM 4327 CEl TYR A 587 14, .351 -10. .574 33, .414 1, .00 20 .53 A c
ATOM 4329 CZ TYR A 587 13, .218 -11. .364 33, .382 1. .00 20. .33 A c
ATOM 4330 OH TYR A 587 13. .017 -12. .313 34, .357 1. .00 20. .29 A 0
ATOM 4332 CE2 TYR A 587 12. .284 -11. .202 32, .378 1, .00 19 .88 A c
ATOM 4334 CD2 TYR A 587 12. .496 -10. .248 31, .391 1. .00 20 .58 A c
ATOM 4336 C TYR A 587 15. .866 -9. .454 29, .336 1. .00 21 .99 A c
ATOM 4337 O TYR A 587 16. .042 -10. .667 29, .254 1. .00 21 .94 A 0
ATOM 4338 N VAL A 588 16. .823 -8. .599 29, .677 1. .00 23 .07 A N
ATOM 4340 CA VAL A 588 18 .166 -9. .044 30 .010 1. .00 23 .67 A C
ATOM 4342 "CB" VAL A 588 19. .089 -9. .073 28 .764 1. .00 24 .38 A C
ATOM 4344 CGI VAL A 588 19, .201 -7. .695 28. .116 1. .00 24. .07 A c
ATOM 4348 CG2 VAL A 588 20. .471 -9. .615 29. .139 1. .00 24. .55 A c
ATOM 4352 C VAL A 588 18. .781 -8. ,167 31. .097 1. .00 23. .51 A c
ATOM 4353 O VAL A 588 18. .730 -6. ,938 31. .029 1. .00 22. .42 A 0
ATOM 4354 N ASP A 589 19. .337 -8. ,821 32. .111 1. .00 24. .42 A N
ATOM 4356 CA ASP A 589 20. .066 -8. .147 33. .175 1. .00 25. .88 A c
ATOM 4358 CB ASP A 589 20. .046 -8. .992 34. .452 1. .00 26. .48 A c
ATOM 4361 CG ASP A 589 18. .668 -9. .052 35. .093 1. .00 27. .65 A c
ATOM 4362 OD1 ASP A 589 17. .886 -8. .091 34. .937 1. .00 26, .23 A 0
ATOM 4363 OD2 ASP A 589 18. .275 -10. .022 35. .770 1. .00 29. .79 A 0
ATOM 4364 C ASP A 589 21. .500 -7. .916 32. .720 1. .00 27. .01 A c
ATOM 4365 O ASP A 589 22. .199 -8. .857 32. .345 1. .00 27. .08 A 0
ATOM 4366 N ILE A 590 21, .930 -6. .660 32. .741 1. .00 28. .35 A N
ATOM 4368 CA ILE A 590 23, .262 -6. .294 32. .276 1. .00 28. .81 A C
ATOM 4370 CB ILE A 590 23, .188 -5. .714 30. .852 1. .00 29. .50 A C
ATOM 4372 CGI ILE A 590 22, .067 -4. .673 30. .744 1. .00 30, .56 A C
ATOM 4375 CDl ILE A 590 22, .047 -3. .922 29. .418 1. .00 31. .46 A c
ATOM 4379 CG2 ILE A 590 22, .967 -6. .833 29. .844 1. .00 29. .86 A c
ATOM 4383 C ILE A 590 23, .916 -5. .295 33. .230 1. .00 28. .55 A c
ATOM 4384 0 ILE A 590 23, .246 -4. .432 33. .782 1. .00 29. .44 A 0
ATOM 4385 N PRO A 591 25, .224 -5. .428 33. .433 1. .00 27, .59 A N
ATOM 4386 CA PRO A 591 25, .966 -4. .534 34. .326 1. .00 26. .67 A C
ATOM 4388 CB PRO A 591 27, .190 -5. .374 34. .693 1. .00 26. .02 A C
ATOM 4391 CG PRO A 591 27, .448 -6. .184 33, .478 1. .00 26. .03 A c
ATOM 4394 CD PRO A 591 26, .098 -6. .464 32. .854 1. .00 26. .69 A c
ATOM 4397 C PRO A 591 26, .426 -3. .249 33. .654 1. .00 25. .58 A c
ATOM 4398 O PRO A 591 26, .709 -3. .243 32. .453 1. .00 23. .53 A 0
ATOM 4399 N ILE A 592 26, .517 -2. .178 34. .434 1. .00 25. .41 A N
ATOM 4401 CA ILE A 592 27, .114 -0, .937 33. .959 1. .00 26. .00 A C
ATOM 4403 CB ILE A 592 26, .950 0. .195 35. .000 1. .00 27. .12 A C
ATOM 4405 CGI ILE A 592 25, .475 0. .470 35. .282 1. .00 26. .95 A C
ATOM 4408 CDl ILE A 592 24 .622 0. .524 34. .042 1. .00 28. .96 A C
ATOM 4412 CG2 ILE A 592 27 .664 1. .471 34. .527 1. .00 27. .42 A c
ATOM 4416 C ILE A 592 28 .591 -1. .178 33. .722 1. .00 24. .84 A c
ATOM 4417 O ILE A 592 29 .264 -1. .783 34. .549 1. .00 24. .24 A 0
ATOM 4418 N VAL A 593 29 .091 -0, .704 32. .589 1. .00 24. .50 A N
ATOM 4420 CA VAL A 593 30 .500 -0. .844 32. .256 1. .00 23. .70 A c
ATOM 4422 CB VAL A 593 30 .668 -1. .279 30 .788 1. .00 24. .19 A. c
ATOM 4424 CGI VAL A 593 32 .088 -1. .040 30 .297 1. .00 23 .60 A c
ATOM 4428 CG2 VAL A 593 30 .279 -2. .742 30 .637 1. .00 24 .95 A c
ATOM 4432 C VAL A 593 31 .204 0. .480 32 .501 1. .00 23. .62 A c
ATOM 4433 O VAL A 593 30 .685 1. .540 32 .164 1. .00 23 .34 A 0
ATOM 4434 N ASP A 594 32 .381 0. .414 33 .110 1. .00 24 .22 A N
ATOM 4436 CA ASP A 594 33 .193 1. .598 33 .350 1. .00 24 .93 A c
ATOM 4438 CB ASP A 594 34 .642 1. .184 33 .615 1. .00 26 .39 A c
ATOM 4441 CG ASP A 594 35 .475 2 .306 34 .191 1. .00 27 .42 A c
ATOM 4442 OD1 ASP A 594 35 .312 2. .623 35 .388 1. .00 29 .06 A 0
ATOM 4443 OD2 ASP A 594 36 .323 2. .926 33 .520 1 .00 28 .54 A 0
ATOM 4444 C ASP A 594 33 .121 2. .543 32 .151 1. .00 2 .48 A c
ATOM 4445 O ASP A 594 33 .367 2. .133 31 .015 1 .00 22 .91 A 0
ATOM 4446 N HIS A 595 32 .776 3. .803 32 .408 1 .00 23 .82 A N
ATOM 4448 CA HIS A 595 32 .610 4. .7.89 31 .343 1. .00 23 .92 A c
ATOM 4450 CB HIS A 595 32 .151 6. .130 31 .911 1. .00 24 .64 A c
ATOM 4453 CG HIS A 595 31, .612 7. .070 30. .876 1. .00 24. .84 A c
ATOM 4454 ND1 HIS A 595 32, .159 8. .314 30. .644 1. ,00 24, .96 A N
ATOM 4456 CEl HIS A 595 31, .479 8. .918 29. .685 1. .00 25, .61 A C
ATOM 4458 NE2 HIS A 595 30, .511 8. ,112 29. .288 1. .00 23, .91 A N ATOM 4460 CD2 HIS A 595 30..575 6.948 30.015 1..00 24.50 A C
ATOM 4462 C HIS A 595 33, .889 5. .002 30 .555 1. .00 23 .67 A C
ATOM 4463 O HIS A 595 33, .852 5. .142 29 .336 1. .00 22. .50 A O
ATOM 4464 N GLN A 596 35, .017 5. .042 31. .257 1. .00 24. .31 A N
ATOM 4466 CA GLN A 596 36, .305 5. .262 30. .611 1. .00 24. .84 A C
ATOM 4468 CB GLN A 596 37, .410 5. .480 31. .651 1. .00 24. .68 A C
ATOM 4471 CG GLN A 596 37, .579 6. .926 32. .087 1. .00 24. .98 A C
ATOM 4474 CD GLN A 596 38, .652 7. .100 33. .152 1. .00 26. .13 A C
ATOM 4475 OEl GLN A 596 39, .177 6, .118 33. .683 1. ,00 25. .64 A O
ATOM 4476 NE2 GLN A 596 38. .982 8. .351 33. .464 1. .00 26. .44 A N
ATOM 4479 C GLN A 596 36. .658 4. .094 29 .697 1. .00 25. .49 A C
ATOM 4480 0 GLN A 596 37. .224 4. .295 28. .626 1. .00 25. .95 A O
ATOM 4481 N LYS A 597 36. .323 2. .878 30. .123 1. .00 26. .56 A N
ATOM 4483 CA LYS A 597 36, .553 1. .684 29 .309 1. .00 26. .94 A C
ATOM 4485 CB LYS A 597 36, .270 0. .411 30. .119 1. .00 27. .56 A C
ATOM 4488 CG LYS A 597 36, .361 -0. .883 29. .300 1. .00 28. .33 A C
ATOM 4491 CD LYS A 597 36, .866 -2. .057 30. ."130 1. .00 28. .05 A C
ATOM 4496 C LYS A 597 35, .689 1. .690 28. .048 1. .00 25. .65 A C
ATOM 4497 O LYS A 597 36. .102 1, .219 26, .998 1. ,00 24. .63 A O
ATOM 4498 N CYS A 598 34. .486 2. .230 28. .156 1. .00 26. .28 A N
ATOM 4500 CA CYS A 598 33. .559 2. .239 27. .033 1. .00 26, .31 A C
ATOM 4502 CB CYS A 598 32. .137 2. .344 27. .561 1. .00 27. .49 A c
ATOM 4505 SG CYS A 598 30. .860 2. .608 26. .322 1. .00 28. .32 A s
ATOM 4506 C CYS A 598 33. .875 3. .384 26. .073 1. .00 25. .00 A c
ATOM 4507 O CYS A 598 33. .856 3. .213 24. .855 1. .00 24. .52 A 0
ATOM 4508 N THR A 599 34, .170 4. .550 26. .632 1. .00 24. .24 A N
ATOM 4510 CA THR A 599 34. .662 5. .672 25. .853 1. .00 25. .01 A C
ATOM 4512 CB THR A 599 35. .177 6. .785 26. .796 1. .00 25. .48 A C
ATOM 4514 OGl THR A 599 34. .081 7. .393 27. .491 1. .00 25. .85 A O
ATOM 4516 CG2 THR A 599 35. .805 7. .937 26. .014 1. .00 25. .56 A C
ATOM 4520 C THR A 599 35. .790 5. .210 24. .931 1. .00 25. .91 A C
ATOM 4521 O THR A 599 35. .710 5. .366 23 .712 1. .00 26. .76 A 0
ATOM 4522 N ALA A 600 36. .826 4. .625 25 .527 1. .00 25. .03 A N
ATOM 4524 CA ALA A 600 38. .035 4. .234 24. .802 1. .00 25. .86 A C
ATOM 4526 CB ALA A 600 39. .138 3. .864 25. .787 1. .00 25. .41 A C
ATOM 4530 C ALA A 600 37, .804 3, .087 23. .816 1. .00 26. .01 A c
ATOM 4531 O ALA A 600 38, .463 3. .015 22. .781 1. .00 26. .46 A 0
ATOM 4532 N ALA A 601 36. .881 2. .192 24. .145 1. .00 27. .00 A N
ATOM 4534 CA ALA A 601 36, .545 1. .073 23. .265 1. ,00 27, .97 A C
ATOM 4536 CB ALA A 601 35. .544 0. .141 23. .948 1. .00 27. .13 A C
ATOM 4540 C ALA A 601 35. .981 1. .566 21. .932 1. .00 28. .71 A C
ATOM 4541 O ALA A 601 36. .218 0. .960 20. .886 1. .00 29. .11 A O
ATOM 4542 N TYR A 602 35. .243 2. .672 21. .976 1. .00 29. .18 A N
ATOM 4544 CA TYR A 602 34. .602 3. .227 20. .787 1. ,00 30. .11 A C
ATOM 4546 CB TYR A 602 33, .232 3. .821 21. .152 1. .00 29. .74 A C
ATOM 4549 CG TYR A 602 32. .128 2, .784 21, .209 1. .00 30. .38 A C
ATOM 4550 CDl TYR A 602 31. .542 2. .424 22. .418 1. .00 30. .34 A C
ATOM 4552 CEl TYR A 602 30. .539 1. .469 22, .468 1. .00 30. .80 A C
ATOM 4554 CZ TYR A 602 30. .117 0. .859 21. .298 1. .00 30. .86 A C
ATOM 4555 OE TYR A 602 29, .123 -0. .090 21. .338 1. .00 31. .29 A O
ATOM 4557 CE2 TYR A 602 30, .685 1. .199 20. .089 1. .00 29. .96 A C
ATOM 4559 CD2 TYR A 602 31, .679 2. .155 20. .049 1. .00 30. .03 A C
ATOM 4561 C TYR A 602 35, .478 4. .280 20. .107 1. .00 30. .97 A c
ATOM 4562 O TYR A 602 34, .990 5. .079 19. .307 1. .00 30. .83 A O
ATOM 4563 N GLU A 603 36, .770 4. .275 20. .426 1. .00 32. .68 A N
ATOM 4565 CA GLU A 603 37, .723 5. .189 19 .802 1. .00 34. .74 A C
ATOM 4567 CB GLU A 603 38, .440 6. .025 20. .866 1. .00 35. .03 A C
ATOM 4570 CG GLU A 603 37, .517 6. .917 21. .683 1. ,00 34, .89 A C
ATOM 4573 CD GLU A 603 37, .900 8. .382 21. .604 1. .00 34, .81 A C
ATOM 4574 OEl GLU A 603 39, .009 8. .736 22. .054 1. .00 34, .59 A 0
ATOM 4575 OE2 GLU A 603 37, .088 9. .178 21. .094 1. .00 35, .12 A O
ATOM 4576 C GLU A 603 38, .760 4. .463 18. .946 1. ,00 36, .03 A c
ATOM 4577 O GLU A 603 39. .469 5. .097 18. .165 1. .00 36, .62 A 0
ATOM 4578 N LYS A 604 38. .859 3. .144 19 .089 1. .00 37 .81 A N
ATOM 4580 CA LYS A 604 39. .832 2. .378 18. .311 1. .00 39, .45 A C
ATOM 4582 CB LYS A 604 40. .042 0. .977 18. .904 1. .00 39, .48 A C
ATOM 4585 CG LYS A 604 38. .792 0. .121 19. .030 1. .00 39, .44 A C
ATOM 4588 CD LYS A 604 39. .135 -1. .299 19. .465 1. .00 39, .22 A C
ATOM 4591 CE LYS A 604 39. .441 -1, .383 20. .954 1. ,00 38, .79 A C
ATOM 4594 NZ LYS A 604 40. .571 -2. .311 21. .233 1. .00 39. .01 A N
ATOM 4598 C LYS A 604 39. .400 2. .290 16. .848 1. .00 41. .09 A C
ATOM 4599 O LYS A 604 38. .209 2. .209 16. .562 1. .00 41. .04 A O
ATOM 4600 N PRO A 605 40. .363 2. .297 15. .926 1. .00 43. .55 A N ATOM 4601 CA PRO A 605 40.052 384 14.494 ,00 44.97 A C
ATOM 4603 CB PRO A 605 41.418 662 13.855 .00 44.25 A C
ATOM 4606 CG PRO A 605 42.409 078 14.797 .00 43.81 A C
ATOM 4609 CD PRO A 605 41.813 195 16.170 .00 43.52 A C
ATOM 4612 C PRO A 605 39.448 093 13.933 .00 47.06 A C
ATOM 4613 O PRO A 605 39.778 009 14.422 00 47.28 A O
ATOM 4614 N PRO A 606 38.581 202 12.926 1.00 49.10 A N
ATOM 4615 CA PRO A 606 38.173 489 12.349 1.00 49.33 A C
ATOM 4617 CB PRO A 606 37.898 136 10.882 1.00 49.82 A C
ATOM 4620 CG PRO A 606 37.625 623 10.869 1.00 50.02 A C
ATOM 4623 CD PRO A 606 37.919 074 12.250 00 49.78 A C
ATOM 4626 C PRO A 606 36.908 015 13.011 00 49.19 A C
ATOM 4627 O PRO A 606 35.843 423 12.835 00 50.16 A O
ATOM 4628 N TYR A 607 37.026 101 13.767 00 48.42 A N
ATOM 4630 CA TYR A 607 35.890 648 14.500 00 48.44 A C
ATOM 4632 CB TYR A 607 35.794 012 15.890 00 49.25 A C
ATOM 4635 CG TYR A 607 34.917 779 15.970 00 49.92 A c
ATOM 4636 CDl TYR A 607 35.399 529 15.594 1.00 50.38 A c
ATOM 4638 CEl TYR A 607 34.603 0.402 15.672 50.74 A c
ATOM 4640 CZ TYR A 607 33.310 0.512 16.138 50.77 A c
ATOM 4641 OH TYR A 607 32.515 610 16.219 51.80 A 0
ATOM 4643 CE2 TYR A 607 32.810 740 16.523 50.62 A c
ATOM 4645 CD2 TYR A 607 33.613 862 16.441 50.23 A c
ATOM 4647 C TYR A 607 36.008 161 14.655 47.29 A c
ATOM 4648 O TYR A 607 37.104 720 14.584 1.00 46.94 A 0
ATOM 4649 N PRO A 608 34.873 819 14.870 .00 46.23 A N
ATOM 4650 CA PRO A 608 34.856 254 15.163 .00 45.62 A C
ATOM 4652 CB PRO A 608 33.430 666 14.788 .00 46.02 A c
ATOM 4655 CG PRO A 608 32.601 430 15.023 .00 46.26 A c
ATOM 4658 CD PRO A 608 33.514 246 14.841 .00 46.14 A c
ATOM 4661 C PRO A 608 35.120 527 16.642 .00 44.27 A c
ATOM 4662 O PRO A 608 34.825 676 17.487 .00 45.29 A 0
ATOM 4663 N ARG A 609 35.665 700 16.944 ,00 41.87 A N
ATOM 4665 CA ARG A 609 35.932 10.093 18.323 ,00 39.67 A C
ATOM 4667 CB ARG A 609 37.267 10.828 18.412 ,00 39.45 A c
ATOM 4670 CG ARG A 609 38.452 9.971 18.034 ,00 39.37 A c
ATOM 4673 CD ARG A 609 39.781 10.656 18.235 1.00 38.95 A c
ATOM 4676 NE ARG A 609 40.772 10.195 17.272 1.00 39.11 A N
ATOM 4678 CZ ARG A 609 41.958 10.757 17.096 1.00 39.00 A C
ATOM 4679 NH1 ARG A 609 42.315 11.810 17.821 1.00 39.16 A N
ATOM 4682 NH2 ARG A 609 42.796 10.264 16.192 1.00 39.21 A N
ATOM 4685 C ARG A 609 34.818 10.980 18.866 1.00 37.04 A C
ATOM 4686 0 ARG A 609 33.978 11.466 18.110 1.00 36.85 A O
ATOM 4687 N GLY A 610 34.821 11.189 20.179 1.00 34.27 A N
ATOM 4689 CA GLY A 610 33.792 11.977 20.833 1.00 32.33 A C
ATOM 4692 C GLY A 610 32.446 11.277 20.824 30.65 A C
ATOM 4693 O GLY A 610 31.421 11.882 21.139 31.07 A O
ATOM 4694 N SER A 611 32.453 9.995 20.468 28.29 A N
ATOM 4696 CA SER A 611 31.225 9.218 20.348 27.30 A C
ATOM 4698 CB SER A 611 31.532 7.802 19.851 28.25 A C
ATOM 4701 OG SER A 611 31.083 7.619 18.523 1.00 28.90 A O
ATOM 4703 C SER A 611 30.498 9.134 21.680 1.00 24.40 A C
ATOM 4704 O SER A 611 29.310 9.432 21.760 1.00 22.96 A O
ATOM 4705 N VAL A 612 31.225 8.731 22.719 1.00 21.87 A N
ATOM 4707 CA VAL A 612 30.652 8.550 24.047 1.00 21.14 A C
ATOM 4709 CB VAL A 612 31.257 7.325 24.763 1.00 21.04 A c
ATOM 4711 CGI VAL A 612 30.459 6.990 26.019 1.00 21.21 A c
ATOM 4715 CG2 VAL A 612 31.312 6.118 23.823 1.00 20.81 A c
ATOM 4719 C VAL A 612 30.860 9.799 24.905 1.00 21.15 A c
ATOM 4720 O VAL A 612 31.993 10.164 25.228 1.00 22.69 A 0
ATOM 4721 N THR A 613 29.758 10.445 25.280 1.00 20.48 A N
ATOM 4723 CA THR A 613 29.817 11.691 26.039 1.00 20.34 A C
ATOM 4725 CB THR A 613 28.869 12.739 25.425 1.00 20.35 A C
ATOM 4727 OGl THR A 613 27.515 12.287 25.532 1.00 17.51 A O
ATOM 4729 CG2 THR A 613 29.092 12.881 23.923 1.00 21.34 A C
ATOM 4733 C THR A 613 29.426 11.468 27.495 1.00 20.44 A C
ATOM 4734 O THR A 613 28.942 10.396 27.866 1.00 19.80 A 0
ATOM 4735 N ALA A 614 29.615 12.503 28.306 1.00 19.26 A N
ATOM 4737 CA ALA A 614 29.203 12.477 29.705 1.00 20.04 A C
ATOM 4739 CB ALA A 614 29.707 13.730 30.428 1.00 19.35 A C
ATOM 4743 C ALA A 614 27.677 12.343 29.867 1.00 20.23 A C
ATOM 4744 O ALA A 614 27.198 12.067 30.963 1.00 21.69 A 0
ATOM 4745 N ASN A 615 26.930 12.543 28.781 1.00 19.83 A N
ATOM 4747 CA ASN A 615 25.478 12.367 28.781 1.00 19.89 A C ATOM 4749 CB ASN A 615 24.822 13.310 27.767 1.00 19.21 A C
ATOM 4752 CG ASN A 615 25 .129 14 .768 28 .034 1 .00 19 .04 A C
ATOM 4753 OD1 ASN A 615 25. .046 15 .241 29 .171 1. .00 17 .40 A 0
ATOM 4754 ND2 ASN A 615 25. .479 15. .495 26 .978 1. .00 18 .17 A N
ATOM 4757 C ASN A 615 25. .043 10. .940 28 .443 1. .00 20 .94 A C
ATOM 4758 O ASN A 615 23. .889 10. .706 28 .083 1. .00 20 .95 A O
ATOM 4759 N MET A 616 25. .963 9. .990 28 .544 1. .00 21 .65 A N
ATOM 4761 CA MET A 616 25. .658 8. .603 28 .228 1. .00 20 .40 A C
ATOM 4763 CB MET A 616 26. .192 8. .234 26. .842 1. .00 19 .16 A C
ATOM 4766 CG MET A 616 25. .767 9. .159 25 .723 1. .00 17, .93 A C
ATOM 4769 SD MET A 616 26. .701 8. .814 24 .230 1. .00 19 .33 A S
ATOM 4770 CE MET A 616 26 .302 10. .253 23 .218 1. .00 19 .31 A C
ATOM 4774 C MET A 616 26. .279 7. .669 29 .253 1. .00 22, .25 A C
ATOM 4775 O MET A 616 27. .276 8. .005 29. .901 1. .00 23 .57 A 0
ATOM 4776 N LEU A 617 25. .675 6. .498 29. .406 1. .00 23, .55 A N
ATOM 4778 CA LEU A 617 26. .270 5. .432 30. .195 1. .00 25 .45 A C
ATOM 4780 CB LEU A 617 25. .470 5. .186 31. .478 1. .00 26 .94 A C
ATOM 4783 CG LEU A 617 24. .048 4. .643 31. .310 1. .00 28, .53 A C
ATOM 4785 CDl LEU A 617 23, .848 3. .394 32. .141 1. .00 29. .80 A C
ATOM 4789 CD2 LEU A 617 23, .037 5. .686 31. .685 1, .00 28. .95 A C
ATOM 4793 C LEU A 617 26, .331 4. .175 29. .338 1. .00 24. .66 A C
ATOM 4794 O LEU A 617 25, .632 4. .066 28. .336 1. .00 22 .82 A O
ATOM 4795 N CYS A 618 27, .174 3. .230 29. .735 1. .00 25. .22 A N
ATOM 4797 CA CYS A 618 27, .363 2, .012 28. .967 1. .00 25. .65 A C
ATOM 4799 CB CYS A 618 28. .805 1. .935 28. .481 1, .00 27. .31 A C
ATOM 4802 SG CYS A 618 29. .322 3. .317 27. .434 1. .00 27. .96 A s
ATOM 4803 C CYS A 618 27. .037 0. .785 29. .805 1. .00 25. .86 A c
ATOM 4804 O CYS A 618 27. .386 0. .716 30. .977 1. .00 26. .26 A 0
ATOM 4805 N ALA A 619 26. .357 -0. .176 29. .194 1. .00 26. .91 A N
ATOM 4807 CA ALA A 619 26. .066 -1. .454 29. .827 1. .00 28. .22 A C
ATOM 4809 CB ALA A 619 24. .721 -1. .403 30. .526 1. .00 28. .63 A C
ATOM 4813 C ALA A 619 26. .082 -2. .574 28. .782 1. .00 30. .50 A C
ATOM 4814 O ALA A 619 25. .891 -2. .329 27. .594 1. .00 29. .68 A O
ATOM 4815 N GLY A 620 26. .308 -3. .803 29 .235 1, .00 31. .93 A N
ATOM 4817 CA GLY A 620 26. .350 -4. .950 28. .346 1. .00 32 .77 A C
ATOM 4820 C GLY A 620 27. .102 -6. .110 28. .968 1. .00 33. .50 A C
ATOM 4821 O GLY A 620 27. .877 -5. .923 29. .906 1. .00 32. .94 A O
ATOM 4822 N LEU A 621 26. .865 -7. .311 28. .450 1. .00 35. .42 A N
ATOM 4824 CA LEU A 621 27. .569 -8. .506 28. .914 1, .00 36. .56 A C
ATOM 4826 CB LEU A 621 26. .644 -9. .728 28. .901 1. .00 36. .27 A C
ATOM 4829 CG LEU A 621 25, .442 -9, .668 29. .851 1. .00 36. .09 A C
ATOM 4831 CDl LEU A 621 24. .355 -10. .652 29, .430 1, .00 35. .77 A C
ATOM 4835 CD2 LEU A 621 25. .869 -9. .920 31, .292 1. .00 36. .10 A C
ATOM 4839 C LEU A 621 28. .781 -8. .767 28. .036 1. .00 38, .26 A c
ATOM 4840 O LEU A 621 28. .872 -8, .256 26, .920 1, .00 38. .37 A 0
ATOM 4841 N GLU A 622 29. .707 -9. .573 28, .544 1. .00 40. .71 A N
ATOM 4843 CA GLU A 622 30. .928 -9. .900 27, .815 1. .00 42. .45 A c
ATOM 4845 CB GLU A 622 32. .117 -9. .924 28, .779 1, .00 43. .18 A C
ATOM 4848 CG GLU A 622 32. .688 -8. .546 29. .083 1. .00 44. .09 A C
ATOM 4851 CD GLU A 622 33. .585 -8. .020 27. .976 1, .00 45. .02 A C
ATOM 4852 OEl GLU A 622 34. .144 -8. .838 27. .207 1. .00 45. .70 A 0
ATOM 4853 OE2 GLU A 622 33, .737 -6. .785 27, .877 1. .00 46. .05 A 0
ATOM 4854 C GLU A 622 30. .820 -11. .237 27, .076 1, .00 43. .71 A c
ATOM 4855 O GLU A 622 31. .834 -11. .868 26, .770 1. .00 45. .14 A 0
ATOM 4856 N SER A 623 29. .594 -11. .670 26, .787 1. .00 44. .71 A N
ATOM 4858 CA SER A 623 29, .390 -12, .914 26, .048 1. .00 45. .87 A c
ATOM 4862 C SER A 623 27, .967 -13, .458 26, .160 1, .00 46. .74 A c
ATOM 4863 O SER A 623 27. .768 -14. .614 26, .529 1. .00 46. .34 A 0
ATOM 4864 N GLY A 624 26. .987 -12. .618 25, .836 1. .00 48. .01 A N
ATOM 4866 CA GLY A 624 25. .590 -13. .016 25, .844 1, .00 49, .01 A C
ATOM 4869 C GLY A 624 25, .038 -13, .023 24, .431 1. .00 50, .41 A C
ATOM 4870 O GLY A 624 24, .440 -12, .044 23, .982 1. .00 51, .82 A O
ATOM 4871 N GLY A 625 25, .244 -14, .134 23, .729 1. .00 51, .47 A N
ATOM 4873 CA GLY A 625 24, .882 -14, .249 22, .327 1. .00 52, .23 A C
ATOM 4876 C GLY A 625 23. .445 -13. .882 22, .000 1. .00 53, .07 A C
ATOM 4877 O GLY A 625 22. .569 -13. .924 22, .863 1. .00 53, .77 A O
ATOM 4878 N LYS A 626 23. .218 -13. .527 20, .736 1. .00 54, .11 A N
ATOM 4880 CA LYS A 626 21. .892 -13. .174 20. .222 1. .00 54, .54 A C
ATOM 4887 C LYS A 626 20. .876 -12, .719 21. .264 1. .00 55. .38 A C
ATOM 4888 O LYS A 626 20. .690 -11, .519 21. .480 1. .00 54. .37 A O
ATOM 4889 N ASP A 627 20. .212 -13. .688 21, .891 1. .00 56. .42 A N
ATOM 4891 CA ASP A 627 19. .175 -13. .414 22, .884 1. ,00 57. .40 A C
ATOM 4897 C ASP A 627 19. .425 -12. .146 23. .697 1. ,00 58. .03 A C ATOM 4898 O ASP A 627 18.540 -11.306 23.833 1.00 58.85 A O
ATOM 4899 N SER A 628 20 .636 -12 .016 24 .230 1 .00 58 .46 A N
ATOM 4901 CA SER A 628 21 .000 -10 .884 25 .075 1 .00 58 .67 A C
ATOM 4903 CB SER A 628 22 .056 -11 .316 26 .096 1 .00 58 .77 A C
ATOM 4906 OG SER A 628 23 .308 -10 .702 25 .829 1 .00 58 .36 A 0
ATOM 4908 C SER A 628 21 .554 -9 .728 24 .249 1 .00 58 .95 A c
ATOM 4909 O SER A 628 22 .442 -9 .928 23 .425 1 .00 60 .09 A 0
ATOM 4910 N CYS A 629 21 .037 -8 .523 24 .472 1 .00 58 .60 A N
ATOM 4912 CA CYS A 629 21 .591 -7 .338 23 .820 1 .00 58 .31 A C
ATOM 4914 CB CYS A 629 21 .371 -7 .407 22 .307 1 .00 59 .40 A C
ATOM 4917 SG CYS A 629 22 .930 -7 .396 21 .383 1 .00 60 .75 A s
ATOM 4918 C CYS A 629 21 .061 -6 .016 24 .388 1 .00 56 .22 A c
ATOM 4919 O CYS A 629 20 .436 -5 .993 25 .448 1 .00 57 .13 A 0
ATOM 4920 N ARG A 630 21. .328 -4 .924 23 .673 1 .00 53 .25 A N
ATOM 4922 CA ARG A 630 21. .058 -3 .564 24 .156 1 .00 49 .89 A c
ATOM 4924 CB ARG A 630 21 .440 -2 .529 23 .088 1 .00 49 .82 A c
ATOM 4927 CG 7CTIG A 630 22 .753 -2 .795 22 .368 1 .00 50 .06 A c
ATOM 4930 CD ARG A 630 23. .288 -1 .598 21. .590 1. .00 50. .25 A c
ATOM 4933 NE ARG A 630 22 .550 -1 .340 20 .350 1 .00 50 .58 A N
ATOM 4935 CZ ARG A 630 21 .626 -0 .392 20 .190 1 .00 50 .97 A C
ATOM 4936 NH1 ARG A 630 21 .293 0 .409 21 .196 1 .00 51 .03 A N
ATOM 4939 NH2 ARG A 630 21 .023 -0 .247 19 .016 1 .00 50 .85 A N
ATOM 4942 C ARG A 630 19. .605 -3 .321 24 .572 1 .00 46. .35 A C
ATOM 4943 O ARG A 630 19. .345 -2 .819 25 .667 1 .00 44 .68 A 0
ATOM 4944 N GLY A 631 18. .671 -3 .667 23. .686 1 .00 42 .08 A N
ATOM 4946 CA GLY A 631 17 .258 -3 .382 23 .882 1 .00 38 .42 A C
ATOM 4949 C GLY A 631 16. .679 -2 .719 22 .643 1. .00 34. .95 A C
ATOM 4950 O GLY A 631 17. .391 -2 .533 21 .658 1 .00 35. .10 A O
ATOM 4951 N ASP A 632 15 .393 -2 .375 22. .680 1 .00 32. .43 A N
ATOM 4953 CA ASP A 632 14. .757 -1 .651 21. .578 1 .00 29. .97 A C
ATOM 4955 CB ASP A 632 13 .241 -1 .842 21. .577 1. .00 29. .62 A C
ATOM 4958 CG ASP A 632 12. .822 -3 .290 21. .469 1 .00 31. .00 A C
ATOM 4959 OD1 ASP A 632 13. .692 -4 .157 21. .244 1. .00 32. .15 A O
ATOM 4960 OD2 ASP A 632 11. .630 -3 .650 21. .598 1. .00 30. .18 A O
ATOM 4961 C ASP A 632 15. .035 -0 .156 21. .691 1. .00 27. .80 A C
ATOM 4962 O ASP A 632 14. .979 0, .407 22. .777 1. .00 25. .65 A O
ATOM 4963 N SER A 633 15. .300 0, .479 20. .556 1. .00 25. .93 A N
ATOM 4965 CA SER A 633 15. .478 1, .921 20, .495 1. .00 26. .26 A C
ATOM 4967 CB SER A 633 15. .482 2, .361 19, .031 1. .00 28, .17 A C
ATOM 4970 OG SER A 633 15. .483 3, .772 18. .929 1. .00 33. .32 A O
ATOM 4972 C SER A 633 14. .373 2. .659 21. .259 1, .00 23. .25 A C
ATOM 4973 O SER A 633 13. .197 2. .485 20. .958 1. .00 22. .97 A O
ATOM 4974 N GLY A 634 14. .758 3. .466 22. .247 1. .00 18. .24 A N
ATOM 4976 CA GLY A 634 13. .814 4. .238 23. .045 1. .00 19. .33 A C
ATOM 4979 C GLY A 634 13. .420 3. .596 24. .371 1. .00 20. .65 A C
ATOM 4980 O GLY A 634 12. .829 4. .244 25. .253 1. .00 21. ,72 A O
ATOM 4981 N GLY A 635 13. .740 2. .316 24. .518 1. .00 18. .52 A N
ATOM 4983 CA GLY A 635 13. .341 1. .556 25. .680 1. .00 18. .91 A C
ATOM 4986 C GLY A 635 14. .104 1. .992 26. .907 1. .00 20. .46 A C
ATOM 4987 O GLY A 635 15. .155 2. .623 26. .803 1. .00 20. .88 A O
ATOM 4988 N A 636 13. .568 1. .643 28. .070 1. .00 19. .75 A N
ATOM 4990 CA A 636 14. ,125 2. .066 29. .334 1. .00 19. .28 A C
ATOM 4992 CB ALA A 636 13. ,004 2. .380 30. .314 1. ,00 20. .52 A C
ATOM 4996 C ALA 636 15. ,034 0. .991 29. .908 1. .00 20. .07 A C
ATOM 4997 O ALA A 636 14. ,678 -0. .187 29. ,924 1. .00 17. .70 A O
ATOM 4998 N LEU A 637 16. ,207 1. .420 30. .377 1. .00 21. 87 A N
ATOM 5000 CA LEU A 637 17. 123 0. 581 31. .137 1. .00 20. 47 A C
ATOM 5002 CB LEU A 637 18. 572 0. 905 30. .759 1. .00 20. 96 A C
ATOM 5005 CG LEU A 637 19. 697 0. 088 31. 414 1. .00 21. 98 A C
ATOM 5007 CDl LEU A 637 19. 612 -1. 373 31. 019 1. 00 22. 80 A C
ATOM 5011 CD2 LEU A 637 21. 066 0. 645 31. 042 1. 00 21. 46 A C
ATOM 5015 C LEU A 637 16. 877 0. 882 32. 606 1. 00 21. 55 A C
ATOM 5016 O LEU A 637 17. 191 1. 972 33. 073 1. 00 20. 73 A O
ATOM 5017 N VAL A 638 16. 321 -0. 087 33. 332 1. 00 21. 87 A N
ATOM 5019 CA VAL A 638 15. 846 0. 147 34. 695 1. 00 20. 18 A C
ATOM 5021 CB VAL A 638 14. 407 -0. 393 34. 892 1. 00 19. 28 A C
ATOM 5023 CGI VAL A 638 13. 438 0. 288 33. 925 1. 00 18. 03 A c
ATOM 5027 CG2 VAL A 638 14. 357 -1. 915 34. 737 1. 00 18. 50 A c
ATOM 5031 C VAL A 638 16. 750 -0. 439 35. 774 1. 00 19. 86 A c
ATOM 5032 O VAL A 638 17. 490 -1. 388 35. 540 1. 00 20. 77 A 0
ATOM 5033 N PHE A 639 16. 670 0. .141 36. 968 1. .00 21. 12 A N
ATOM 5035 CA PHE A 639 17. 473 -0. 283 38. .112 1. .00 19. 13 A C
ATOM 5037 CB PHE A 639 18. 645 0. 676 38. 327 1. 00 19. 15 A C
ATOM 5040 CG PHE A 639 19. 570 0. 779 37. 145 1. 00 18. 01 A c ATOM 5041 CDl PHE A 639 19.265 1.616 36.089 1.00 16.79 A C
ATOM 5043 CEl PHE A 639 20 .105 1 .715 34 .997 1 .00 16 .93 A C
ATOM 5045 CZ PHE A 639 21 .260 0 .976 34 .945 1 .00 17 .03 A C
ATOM 5047 CE2 PHE A 639 21 .589 0 .136 35 .997 1 .00 18 .21 A C
ATOM 5049 CD2 PHE A 639 20 .743 0 .042 37 .094 1 .00 18 .09 A C
ATOM 5051 C PHE A 639 16 .609 -0 .317 39 .360 1 .00 20 .26 A C
ATOM 5052 O PHE A 639 15 .575 0 .338 39 .423 1 .00 18 .05 A O
ATOM 5053 N LEU A 640 17 .041 -1 .071 40. .364 1. .00 22 .34 A N
ATOM 5055 CA LEU A 640 16 .261 -1 .216 41. .581 1. .00 23 .28 A C
ATOM 5057 CB LEU A 640 16 .236 -2 .681 42. .017 1 .00 22. .85 A C
ATOM 5060 CG LEU A 640 15 .336 -3 .031 43. .203 1. .00 23 .18 A C
ATOM 5062 CDl LEU A 640 13 .953 -2 .389 43 .090 1 .00 23 .35 A C
ATOM 5066 CD2 LEU A 640 15 .215 -4 .541 43 .343 1. .00 23 .99 A C
ATOM 5070 C LEU A 640 16 .780 -0 .345 42 .718 1. .00 25 .12 A C
ATOM 5071 O LEU A 640 17 .831 -0 .610 43 .296 1 .00 26 .16 A O
ATOM 5072 N ASP A 641 16 .036 0 .705 43 .036 1. .00 27 .30 A N
ATOM 5074 CA ASP A 641 16 .237 1 .411 44 .289 1 .00 28 .93 A C
ATOM 5076 CB ASP A 641 15. .298 2. .612 44. .372 1. .00 30. .10 A C
ATOM 5079 CG ASP A 641 15. .752 3. .646 45. .386 1. .00 30. .47 A C
ATOM 5080 OD1 ASP A 641 16. .145 3. .259 46. .508 1. .00 30. .72 A 0
ATOM 5081 OD2 ASP A 641 15. .740 4. .872 45. .144 1. .00 30. .57 A 0
ATOM 5082 C ASP A 641 15. .935 0, .402 45. .399 1. .00 30. .02 A c
ATOM 5083 O ASP A 641 14. .788 -0. .002 45. .579 1. .00 29. .09 A 0
ATOM 5084 N SER A 642 16. .969 -0. .023 46. .120 1. .00 31. .64 A N
ATOM 5086 CA SER A 642 16. .816 -1. .067 47. .131 1. .00 33. .16 A C
ATOM 5088 CB SER A 642 18. .167 -1. .720 47. .447 1. .00 33. .93 A C
ATOM 5091 OG SER A 642 19. .228 -0. .782 47. .383 1. .00 33. .99 A 0
ATOM 5093 C SER A 642 16. .174 -0. .527 48. .409 1, .00 34. .44 A c
ATOM 5094 O SER A 642 15. .491 -1. .261 49. .125 1. .00 35. .08 A 0
ATOM 5095 N GLU A 643 16. .397 0. .757 48. .686 1. .00 35 .16 A N
ATOM 5097 CA GLU A 643 15, .788 1. .424 49. .834 1. .00 35 .10 A C
ATOM 5099 CB GLU A 643 16, .381 2 .828 50. .012 1 .00 35 .58 A C
ATOM 5102 CG GLU A 643 17, .466 2. .917 51. .073 1. .00 35 .78 A C
ATOM 5108 C GLU A 643 14, .262 1. .521 49. .697 1. .00 34 .66 A C
ATOM 5109 O GLU A 643 13. .535 1. .327 50. .673 1. .00 33 .66 A O
ATOM 5110 N THR A 644 13. .785 1. .817 48. .489 1. .00 34. .51 A N
ATOM 5112 CA THR A 644 12. .347 1. .971 48. .242 1. .00 33. .71 A C
ATOM 5114 CB THR A 644 12. .070 3. .216 47. .373 1. .00 33. .53 A C
ATOM 5116 OGl THR A 644 12. .757 3. .101 46. .123 1. .00 33. .94 A 0
ATOM 5118 CG2 THR A 644 12. .651 4. .471 47. .996 1. .00 34. .16 A C
ATOM 5122 C THR A 644 11. .725 0. .753 47. .560 1. .00 33. .05 A C
ATOM 5123 O THR A 644 10. .504 0. .668 47. .438 1. .00 32 .92 A 0
ATOM 5124 N GLU A 645 12, .560 -0. .183 47. .119 1. .00 32. .00 A N
ATOM 5126 CA GLU A 645 12. .091 -1. .332 46. .349 1. .00 31. .73 A C
ATOM 5128 CB GLU A 645 11. .245 -2. .263 47. .220 1, .00 32. .72 A C
ATOM 5135 C GLU A 645 11. .290 -0. .884 45. .127 1. .00 31. .56 A C
ATOM 5136 O GLU A 645 10. .360 _ .566 44. .692 1. .00 32. .08 A 0
ATOM 5137 N ARG A 646 11. .668 0. .265 44. .572 1. .00 30. .08 A N
ATOM 5139 CA ARG A 646 11. .023 0. .795 43. .384 1. .00 28. .29 A C
ATOM 5141 CB ARG A 646 10. .521 2. .214 43. .644 1. .00 29. .35 A C
ATOM 5144 CG ARG A 646 9. .415 2. .311 44. .670 1. .00 30. .71 A. C
ATOM 5147 CD ARG A 646 8. .186 1. .468 44. .347 1. .00 31. .84 A C
ATOM 5150 NE ARG A 646 7. .160 1. .573 45. .380 1. .00 32. .62 A N
ATOM 5152 CZ ARG A 646 6. .366 2. .625 45. .561 1. .00 33. .55 A C
ATOM 5153 NH1 ARG A 646 6 .464 3 .694 44, .777 1. .00 33 .51 A N
ATOM 5156 NH2 ARG A 646 5. .465 2. .609 46, .540 1. .00 33 .62 A N
ATOM 5159 C ARG A 646 12. .004 0. .820 42. .221 1, .00 25. .50 A C
ATOM 5160 O ARG A 646 13. .148 1. .242 42. .374 1. .00 22. .62 A O
ATOM 5161 N TRP A 647 11. .545 0. .364 41. .061 1. .00 24. .02 A N
ATOM 5163 CA TRP A 647 12. .317 0. .471 39. .827 1. .00 22. .66 A C
ATOM 5165 CB TRP A 647 11 .800 -0. .509 38. .776 1, .00 22. .56 A C
ATOM 5168 CG TRP A 647 12 .003 -1. .924 39. .177 1, .00 23 .99 A C
ATOM 5169 CDl TRP A 647 11 .143 -2. .702 39. .889 1. .00 25 .11 A C
ATOM 5171 NE1 TRP A 647 11 .688 -3 .947 40. .090 1 .00 26 .43 A N
ATOM 5173 CE2 TRP A 647 12 .923 -3 .994 39. .498 1. .00 25 .42 A C
ATOM 5174 CD2 TRP A 647 13 .156 -2 .733 38. .918 1. .00 24 .82 A C
ATOM 5175 CE3 TRP A 647 14 .366 -2. .521 38. .250 1. .00 24 .96 A C
ATOM 5177 CZ3 TRP A 647 15 .279 -3. .550 38. .183 1. .00 24 .98 A C
ATOM 5179 CH2 TRP A 647 15 .017 -4. .790 38, .770 1. .00 25 .53 A c
ATOM 5181 CZ2 TRP A 647 13. .845 -5. ,034 39. .427 1. .00 25. .47 A c
ATOM 5183 C TRP A 647 12, .253 1. .890 39. .281 1. .00 21. .73 A c
ATOM 5184 O TRP A 647 11. .199 2. .533 39. .297 1. .00 18. .44 A 0
ATOM 5185 N PHE A 648 13. .398 2. .373 38. .812 1. .00 21. .21 A N ATOM 5187 CA PHE A 648 13.480 3.663 38.151 1.00 20.91 A C
ATOM 5189 CB PHE A 648 14 .125 4 .701 39 .071 1 .00 20 .26 A C
ATOM 5192 CG PHE A 648 15 .562 4 .408 39 .414 1 .00 20 .26 A C
ATOM 5193 CDl PHE A 648 16 .593 4 .890 38 .618 1 .00 20 .21 A C
ATOM 5195 CEl PHE A 648 17 .919 4 .633 38 .939 1 .00 19 .54 A C
ATOM 5197 CZ PHE A 648 18 .226 3 .887 40 .060 1 .00 19 .13 A C
ATOM 5199 CE2 PHE A 648 17 .211 3 .398 40 .860 1 .00 18 .68 A C
ATOM 5201 CD2 PHE A 648 15 .886 3 .660 40 .539 1 .00 20 .02 A C
ATOM 5203 C PHE A 648 14 .284 3 .526 36 .867 1 .00 21 .21 A C
ATOM 5204 O PHE A 648 15 .139 2 .640 36 .748 1 .00 20 .00 A 0
ATOM 5205 N VAL A 649 14 .007 4 .409 35 .915 1 .00 19 .96 A N
ATOM 5207 CA VAL A 649 14 .737 4 .437 34 .656 1 .00 20 .38 A C
ATOM 5209 CB VAL A 649 13 .897 5 .078 33 .512 1 .00 20 .02 A C
ATOM 5211 CGI VAL A 649 13 .459 6 .507 33 .850 1. .00 19 .46 A C
ATOM 5215 CG2 VAL A 649 14 .667 5 .040 32 .198 1. .00 20 .71 A C
ATOM 5219 C VAL A 649 16 .069 5 .168 3 .825 1 .00 21 .68 A C
ATOM 5220 O VAL A 649 16 .110 6 .310 35 .294 1 .00 21 .54 A O
ATOM 5221 N GLY A 650 17 .155 4 .487 34. .462 1, .00 20 .72 A N
ATOM 5223 CA GLY A 650 18 .485 5 .067 34 .502 1 .00 19 .78 A C
ATOM 5226 C GLY A 650 19 .038 5 .370 33 .120 1 .00 19 .96 A C
ATOM 5227 O GLY A 650 19 .834 6 .288 32 .952 1. .00 20 .93 A O
ATOM 5228 N GLY A 651 18 .625 4 .598 32 .124 1. .00 20 .41 A N
ATOM 5230 CA GLY A 651 19 .104 4 .797 30 .769 1. .00 18 .88 A C
ATOM 5233 C GLY A 651 18 .006 4 .721 29 .728 1. .00 17 .84 A c
ATOM 5234 O GLY A 651 16 .933 4 .191 29. .995 1. .00 16 .64 A O
ATOM 5235 N ILE A 652 18 .284 5 .261 28 .540 1 .00 19 .72 A N
ATOM 5237 CA ILE A 652 17 .412 5 .105 27 .375 1 .00 19 .93 A C
ATOM 5239 CB ILE A 652 16 .828 6 .450 26 .901 1. .00 19 .34 A C
ATOM 5241 CGI ILE A 652 15 .899 7 .049 27 .954 1 .00 19 .30 A C
ATOM 5244 CDl ILE A 652 15 .774 8 .555 27. .875 1 .00 17 .98 A C
ATOM 5248 CG2 ILE A 652 16 .057 6 .255 25. .593 1. .00 19 .78 A C
ATOM 5252 C ILE A 652 18 .213 4 .508 26 .236 1 .00 21 .17 A C
ATOM 5253 O ILE A 652 19 .207 5 .083 25. .805 1. .00 23 .77 A O
ATOM 5254 N VAL A 653 17 .763 3 .361 25. .742 1. .00 21 .28 A N
ATOM 5256 CA VAL A 653 18 .426 2 .671 24. .648 1. .00 19 .77 A C
ATOM 5258 CB VAL A 653 17 .601 1, .457 24. .159 1. .00 19. .57 A C
ATOM 5260 CGI VAL A 653 18 .315 0, .756 23. .023 1. .00 18. .31 A C
ATOM 5264 CG2 VAL A 653 17. .327 0. .471 25. .302 1. .00 18. .06 A C
ATOM 5268 C VAL A 653 18 .615 3, .637 23, .495 1. .00 19. .61 A C
ATOM 5269 O VAL A 653 17. .640 4. .134 22. .930 1. .00 20. .10 A O
ATOM 5270 N SER A 654 19. .871 3, .895 23. .143 1. .00 18. .77 A N
ATOM 5272 CA SER A 654 20. .205 4. .969 22. .214 1. .00 18, .12 A C
ATOM 5274 CB SER A 654 21. .016 6. .046 22. .940 1. .00 16, .67 A C
ATOM 5277 OG SER A 654 21, .417 7. .063 22. ,045 1. ,00 17. .79 A O
ATOM 5279 C SER A 654 20. .959 4. .463 20. ,983 1. ,00 18. .91 A C
ATOM 5280 O SER A 654 20. .489 4. .637 19. ,854 1. .00 20. .44 A O
ATOM 5281 N TRP A 655 22. .117 3. .842 21. ,201 1. .00 19. .25 A N
ATOM 5283 CA TRP A 655 22. .925 3. .293 20. .108 1. .00 21. .26 A C
ATOM 5285 CB TRP A 655 23. .691 4. ,410 19. ,390 1. .00 21. .47 A C
ATOM 5288 CG TRP A 655 24. .655 5. .163 20. ,260 1. .00 21. ,76 A c
ATOM 5289 CDl TRP A 655 24. .352 6. .123 21. ,175 1. .00 21. .70 A c
ATOM 5291 NE1 TRP A 655 25. .498 6. .592 21. ,770 1. .00 22. .18 A N
ATOM 5293 CE2 TRP A 655 26. .575 5. .937 21. ,238 1. .00 21. .85 A C
ATOM 5294 CD2 TRP A 655 26. .083 5. .029 20. ,283 1. .00 21. .99 A C
ATOM 5295 CE3 TRP A 655 26. .995 4. .224 19. ,597 1. 00 22. .19 A C
ATOM 5297 CZ3 TRP A 655 28. ,338 4. 353 19. 876 1. 00 23. .74 A C
ATOM 5299 CH2 TRP A 655 28. ,793 5. 265 20. 832 1. 00 23. .93 A C
ATOM 5301 CZ2 TRP A 655 27. ,928 6. 065 21. 522 1. 00 22. .98 A C
ATOM 5303 C TRP A 655 23. ,906 2. 226 20. 587 1. 00 23. .30 A C
ATOM 5304 O TRP A 655 23. ,990 1. 933 21. 769 1. 00 24. .52 A 0
ATOM 5305 N GLY A 656 24. ,646 1. 640 19. 657 1. 00 28. 38 A N
ATOM 5307 CA GLY A 656 25. ,604 0. 606 20. 000 1. 00 32. 37 A C
ATOM 5310 C GLY A 656 25. 997 -0. 227 18. 801 1. 00 36. 58 A C
ATOM 5311 O GLY A 656 25. 436 -0. 077 17. 719 1. 00 37. 80 A O
ATOM 5312 N SER A 657 26. 969 -1. 112 18. 998 1. 00 41. 95 A N
ATOM 5314 CA SER A 657 27. 472 -1. 955 17. 918 1. 00 45. 36 A C
ATOM 5316 CB SER A 657 28. 719 -2. 717 18. 372 1. 00 45. 79 A C
ATOM 5319 OG SER A 657 29. 532 -3. 077 17. 266 1. 00 46. 05 A O
ATOM 5321 C SER A 657 26. 412 -2. 943 17. 442 1. 00 48. 28 A C
ATOM 5322 O SER A 657 25. 517 -3. 322 18. 200 1. 00 47. 50 A O
ATOM 5323 N MET A 658 26. 527 -3. 350 16. 180 1. 00 52. 47 A N
ATOM 5325 CA MET A 658 25. 616 -4. 327 15. 587 1. 00 56. 31 A C
ATOM 5327 CB MET A 658 25. 666 -4. 247 14. 053 1. 00 57. 56 A C
ATOM 5330 CG MET A 658 26. 933 -4. 815 13. 424 1. 00 58. 83 A c ATOM 5333 SD MET A 658 27.122 -4..368 11.678 1.00 60.85 A S
ATOM 5334 CE MET A 658 28 .515 -5. .410 11 .206 1 .00 60 .64 A C
ATOM 5338 C MET A 658 25 .945 -5. .746 16 .057 1 .00 57 .90 A C
ATOM 5339 O MET A 658 25 .041 -6. .555 16 .280 1. .00 58 .06 A O
ATOM 5340 N ASN A 659 27 .236 -6. .040 16 .206 1. .00 59 .72 A N
ATOM 5342 CA ASN A 659 27. .687 -7. .349 16 .676 1. .00 60 .92 A C
ATOM 5344 CB ASN A 659 29. .182 -7. .530 16 .395 1. .00 60 .64 A C
ATOM 5350 C ASN A 659 27. .409 -7. .528 18 .169 1. .00 61 .91 A c
ATOM 5351 O ASN A 659 28. .220 -7. .136 19 .010 1. .00 62 .61 A 0
ATOM 5352 N CYS A 660 26 .262 -8. .129 18 .483 1. .00 62 .56 A N
ATOM 5354 CA CYS A 660 25 .799 -8. .268 19 .866 1. .00 62 .96 A C
ATOM 5356 CB CYS A 660 24 .908 -9. .507 20 .014 1. .00 62 .92 A C
ATOM 5359 SG CYS A 660 23 .167 -9. .161 20 .390 1. .00 62 .79 A s
ATOM 5360 C CYS A 660 26 .953 -8. .350 20 .861 1. .00 63 .23 A c
ATOM 5361 O CYS A 660 26 .937 -7. .682 21 .895 1. .00 63 .06 A 0
ATOM 5363 CA GLU A 662 29 .968 -9. .407 21 .750 1. .00 29 .91 A c
ATOM 5370 C GLU A 662 30. .902 -8. .652 22. .694 1. .00 31. .26 A c
ATOM 5371 O GLU A 662 30. .568 -7. .569 23. .181 1. .00 32. .30 A 0
ATOM 5372 N ALA A 663 32. .075 -9. .230 22. .941 1. ,00 31. .82 A N
ATOM 5374 CA ALA A 663 33. .057 -8. .650 23. .858 1. .00 33. .58 A c
ATOM 5376 CB ALA A 663 34. .152 -9. .676 24. .169 1. .00 33. .76 A c
ATOM 5380 C ALA A 663 33. .684 -7. .366 23. .303 1. .00 35. .39 A c
ATOM 5381 O ALA A 663 34. .228 -7. .360 22. .196 1. .00 36. .40 A 0
ATOM 5382 N GLY A 664 33. .612 -6. .288 24. .080 1. .00 36. .98 A N
ATOM 5384 CA GLY A 664 34. .184 -5. .010 23. .682 1. .00 37, .80 A c
ATOM 5387 C GLY A 664 33. .185 -4. .099 22. .987 1. .00 38, .17 A c
ATOM 5388 O GLY A 664 33. .515 -2. .977 22. .599 1. .00 37, .78 A 0
ATOM 5389 N GLN A 665 31. .956 -4. .582 22. .836 1. .00 38, .54 A N
ATOM 5391 CA GLN A 665 30. .919 -3. .848 22. .121 1, .00 38. .67 A C
ATOM 5393 CB GLN A 665 30. .630 -4. .513 20. .773 1. .00 40. .68 A C
ATOM 5396 CG GLN A 665 31. .636 -4. .130 19. .686 1. .00 42. .35 A C
ATOM 5399 CD GLN A 665 31 .805 -5. .200 18. .621 1, .00 44. .08 A C
ATOM 5400 OEl GLN A 665 31. .474 -4. .975 17. .454 1. .00 45. .37 A O
ATOM 5401 NE2 GLN A 665 32 .329 -6. .360 19. .013 1. .00 45. .12 A N
ATOM 5404 C GLN A 665 29. .665 -3. .780 22 .978 1. .00 36. .70 A C
ATOM 5405 O GLN A 665 28. .807 -4, .660 22. .926 1. .00 38. .47 A 0
ATOM 5406 N TYR A 666 29. .574 -2. .718 23. .769 1. .00 33, .68 A N
ATOM 5408 CA TYR A 666 28. .501 -2. .564 24. .732 1. .00 31, .60 A C
ATOM 5410 CB TYR A 666 29. .032 -2. .005 26. .057 1. .00 32. .97 A C
ATOM 5413 CG TYR A 666 30. .459 -2. .388 26. .399 1. .00 33. .02 A C
ATOM 5414 CDl TYR A 666 31. .525 -1. .583 26, .017 1. .00 33. .59 A c
ATOM 5416 CEl TYR A 666 32. .831 -1. .922 26, .337 1. .00 34. .43 A c
ATOM 5418 CZ TYR A 666 33. .080 -3. .076 27, .054 1. .00 34. .69 A c
ATOM 5419 OH TYR A 666 34. .378 -3. .416 27. .371 1. .00 36, .21 A 0
ATOM 5421 CE2 TYR A 666 32. .036 -3. .889 27. .451 1. .00 34. .02 A c
ATOM 5423 CD2 TYR A 666 30. .735 -3. .541 27. .125 1. .00 33. .75 A c
ATOM 5425 C TYR A 666 27. .444 -1. .626 24. .180 1. .00 27. .86 A c
ATOM 5426 O TYR A 666 27. .696 -0. .874 23. .242 1, .00 26. .43 A 0
ATOM 5427 N GLY A 667 26. .254 -1. .689 24. .760 1. .00 24. .30 A N
ATOM 5429 CA GLY A 667 25. .199 -0. .755 24 .427 1. .00 24. .10 A C
ATOM 5432 C GLY 667 25. .434 0. .602 25. .068 1. .00 23. .27 A C
ATOM 5433 O GLY A 667 25. .990 0. .703 26 .160 1. .00 21. .96 A 0
ATOM 5434 N VAL A 668 25. .007 1. .655 24 .384 1, .00 22. .39 A N
ATOM 5436 CA VAL A 668 25. .122 2. .999 24. .920 1. .00 21. .53 A C
ATOM 5438 CB VAL A 668 25 .969 3. .906 24 .017 1. .00 21. .52 A C
ATOM 5440 CGI VAL A 668 26 .378 5. .157 24 .777 1. .00 21 .96 A C
ATOM 5444 CG2 VAL A 668 27. .199 3. .157 23 .512 1. .00 21. .21 A C
ATOM 5448 C VAL A 668 23. .735 3. .595 25 .111 1, .00 21. .69 A c
ATOM 5449 O VAL A 668 22. .875 3. .500 24. .226 1. .00 18. .19 A 0
ATOM 5450 N TYR A 669 23. .541 4. .209 26 .277 1. .00 20. .78 A N
ATOM 5452 CA TYR A 669 22. .241 4. .681 26 .723 1. .00 21. .61 A c
ATOM 5454 CB TYR A 669 21. .766 3, .844 27 .912 1. .00 22. .39 A c
ATOM 5457 CG TYR A 669 21 .711 2. .362 27 .638 1. .00 22 .57 A c
ATOM 5458 CDl TYR A 669 22 .864 1. .596 27 .621 1. .00 23 .10 A c
ATOM 5460 CEl TYR A 669 22 .813 0. .242 27 .370 1, .00 22. .68 A c
ATOM 5462 CZ TYR A 669 21 .602 -0. .356 27 .142 1. .00 21 .57 A c
ATOM 5463 OH TYR A 669 21 .530 -1. .698 26 .892 1. .00 23. .07 A 0
ATOM 5465 CE2 TYR A 669 20 .448 0. .383 27 .160 1, .00 22. .98 A c
ATOM 5467 CD2 TYR A 669 20 .505 1, .729 27 .409 1. .00 22. .78 A c
ATOM 5469 C TYR A 669 22. .292 6. .138 27. .161 1. .00 21. ,84 A c
ATOM 5470 O TYR A 669 23, .272 6. .590 27. .753 1. .00 19. ,45 A 0
ATOM 5471 N THR A 670 21, .222 6. .870 26. .884 1. .00 20. .93 A N
ATOM 5473 CA THR A 670 21, .126 8. .241 27. .343 1. .00 20. ,70 A c ATOM 5475 CB THR A 670 19,.877 8..889 26.752 1.00 20..61 A C
ATOM 5477 OGl THR A 670 19, .975 8. .894 25 .319 1 .00 20. .64 A O
ATOM 5479 CG2 THR A 670 19 .787 10. .363 27 .143 1 .00 21. .44 A C
ATOM 5483 C THR A 670 21 .069 8 .239 28 .862 1 .00 20. .49 A C
ATOM 5484 O THR A 670 20, .253 7. .530 29. .448 1. .00 21. .71 A O
ATOM 5485 N LYS A 671 21, .949 9. .010 29 .496 1 .00 20. .13 A N
ATOM 5487 CA LYS A 671 21. .990 9. .107 30 .956 1 .00 21. .09 A C
ATOM 5489 CB LYS A 671 23 .330 9 .672 31 .425 1 .00 23. .13 A C
ATOM 5492 CG LYS A 671 23 .677 9 .314 32 .862 1 .00 24. .98 A C
ATOM 5495 CD LYS A 671 25. .091 9. .771 33. .226 1. .00 26. .56 A C
ATOM 5498 CE LYS A 671 25 .350 9 .648 34 .727 1 .00 27. .42 A C
ATOM 5501 NZ LYS A 671 25 .784 10 .940 35 .336 1 .00 28. .37 A N
ATOM 5505 C LYS A 671 20 .858 9 .983 31 .466 1 .00 20. .07 A C
ATOM 5506 O LYS A 671 20 .977 11. .205 31 .526 1. .00 17. .32 A O
ATOM 5507 N VAL A 672 19 .766 9 .329 31 .841 1. .00 21. .33 A N
ATOM 5509 CA VAL A 672 18 .514 9 .994 32 .186 1 .00 21. .02 A C
ATOM 5511 CB "VAL A 672 17 .442 8 .950 32 .580 1 .00 20 .93 A C
ATOM 5513 CGI VAL A 672 16. .192 9. .624 33. .144 1. .00 21. .48 A C
ATOM 5517 CG2 VAL A 672 17, .087 8. .083 31, .384 1. .00 21. .86 A C
ATOM 5521 C VAL A 672 18, .656 11. .023 33, .304 1. .00 20. .57 A C
ATOM 5522 O VAL A 672 17, .998 12. .057 33, .277 1. .00 19. .09 A O
ATOM 5523 N ILE A 673 19, .510 10 .747 34, .284 1. .00 21. .10 A N
ATOM 5525 CA ILE A 673 19, .624 11. .616 35. .456 1. .00 21. .54 A C
ATOM 5527 CB ILE A 673 20, .542 10. .975 36. .527 1. .00 22. .34 A C
ATOM 5529 CGI ILE A 673 20, .267 11. .602 37. .895 1. .00 24. .03 A C
ATOM 5532 CDl ILE A 673 20, .949 10 .892 39 .048 1. .00 24. .86 A C
ATOM 5536 CG2 ILE A 673 22. .008 11. .116 36. .141 1. .00 21. .93 A C
ATOM 5540 C ILE A 673 20. .104 13. .027 35. .106 1. .00 22. .49 A C
ATOM 5541 O ILE A 673 19. .802 13 .985 35 .823 1. .00 23. .56 A 0
ATOM 5542 N ASN A 674 20 .848 13 .157 34 .010 1. .00 22. .41 A N
ATOM 5544 CA ASN A 674 21 .318 14. .465 33. .545 1. .00 21. .77 A C
ATOM 5546 CB ASN A 674 22. .400 14 .284 32 .478 1. .00 21. .42 A C
ATOM 5549 CG ASN A 674 23 .708 13 .776 33 .049 1 .00 22. .03 A C
ATOM 5550 OD1 ASN A 674 23 .799 13 .428 34 .230 1 .00 23 .24 A O
ATOM 5551 ND2 ASN A 674 24. .736 13 .746 32 .212 1. .00 21. .44 A N
ATOM 5554 C ASN A 674 20. .198 15. .335 32. .971 1. .00 21. .65 A C
ATOM 5555 O ASN A 674 20. .388 16. .532 32. .747 1. .00 22. .21 A O
ATOM 5556 N TYR A 675 19. .034 14. .735 32. .738 1. .00 21. .67 A N
ATOM 5558 CA TYR A 675 17. .940 15. .405 32. .037 1. .00 21. .22 A C
ATOM 5560 CB TYR A 675 17, .570 14. .605 30. .793 1. .00 20. .22 A C
ATOM 5563 CG TYR A 675 18. .712 14. .547 29. .819 1, .00 20. .89 A C
ATOM 5564 CDl TYR A 675 19. .546 13. .438 29. .758 1. .00 20. .09 A C
ATOM 5566 CEl TYR A 675 20 .605 13 .397 28. .879 1. .00 20. .10 A c
ATOM 5568 CZ TYR A 675 20. .846 14. .476 28. .059 1. .00 19. .73 A c
ATOM 5569 OH TYR A 675 21. .901 14. .459 27. .177 1. .00 20. .78 A 0
ATOM 5571 CE2 TYR A 675 20. .039 15 .592 28. .118 1, .00 20. .86 A c
ATOM 5573 CD2 TYR A 675 18 .990 15 .626 28. .996 1. .00 19. .60 A c
ATOM 5575 C TYR A 675 16 .708 15 .610 32 .903 1, .00 21. .75 A c
ATOM 5576 O TYR A 675 15. .640 15 .935 32. .392 1. .00 22. .59 A 0
ATOM 5577 N ILE A 676 16 .856 15 .441 34. .212 1 , .00 21. .73 A N
ATOM 5579 CA ILE A 676 15 .721 15 .559 35 .124 1, .00 21. .78 A c
ATOM 5581 CB ILE A 676 16 .124 15 .143 36 .555 1, .00 21. .64 A c
ATOM 5583 CGI ILE A 676 16. .365 13, .633 36. .610 1. .00 21. .78 A c
ATOM 5586 CDl ILE A 676 15. .198 12, .789 36. .097 1. .00 23. .13 A c
ATOM 5590 CG2 ILE A 676 15. .054 15, .569 37. .570 1. .00 21. .22 A c
ATOM 5594 C ILE A 676 15 .088 16 .950 35. .118 1. .00 20. .55 A c
ATOM 5595 O ILE A 676 13 .870 17 .050 35. .092 1. .00 20. .08 A 0
ATOM 5596 N PRO A 677 15. .888 18, .016 35. .142 1. .00 19. ,21 A N
ATOM 5597 CA PRO A 677 15. .335 19. .369 35. .012 1, .00 19. .47 A C
ATOM 5599 CB PRO A 677 16 .559 20 .285 35, .203 1. .00 19. .50 A C
ATOM 5602 CG PRO A 677 17 .610 19 .425 35 .828 1. .00 19. .63 A c
ATOM 5605 CD PRO A 677 17 .352 18. .036 35, .306 1. .00 20. .04 A c
ATOM 5608 C' PRO A 677 14 .687 19 .599 33 .645 1. .00 18. .95 A c
ATOM 5609 O PRO A 677 13 .693 20 .308 33 .559 1 .00 18. .18 A 0
ATOM 5610 N TRP A 678 15 .237 19. .009 32, .592 1. .00 19. .26 A N
ATOM 5612 CA TRP A 678 14 .620 19 .110 31 .271 1. .00 21. .50 A C
ATOM 5614 CB TRP A 678 15 .531 18 .509 30 .192 1. .00 21. .67 A C
ATOM 5617 CG TRP A 678 14 .956 18 .635 28 .814 1 .00 21. .20 A C
ATOM 5618 CDl TRP A 678 15 .015 19 .725 27 .995 1 .00 20, .34 A C
ATOM 5620 NE1 TRP A 678 14. .365 19. .464 26. .812 1. ,00 21. .21 A N
ATOM 5622 CE2 TRP A 678 13. .865 18. .187 26. .852 1. .00 20. ,70 A C
ATOM 5623 CD2 TRP A 678 14. .218 17, .637 28. .099 1. .00 20. .94 A C
ATOM 5624 CE3 TRP A 678 13. .822 16, .324 28. .385 1. .00 20. .03 A c ATOM 5626 CZ3 TRP A 678 13.102 15.623 27.440 1.00 19.08 A C
ATOM 5628 CH2 TRP A 678 12 .764 16. .200 26 .215 1 .00 19 .50 A c
ATOM 5630 CZ2 TRP A 678 13. .137 17. .476 25 .900 1 .00 20 .60 A c
ATOM 5632 C TRP A 678 13. .250 18. .418 31 .253 1 .00 22 .26 A c
ATOM 5633 O TRP A 678 12. .295 18. .931 30 .665 1 .00 22 .98 A 0
ATOM 5634 N ILE A 679 13. .152 17. .272 31 .919 1 .00 22 .04 A N
ATOM 5636 CA ILE A 679 11. .906 16. .512 31 .960 1 .00 23 .55 A C
ATOM 5638 CB ILE A 679 12. .167 15. .064 32 .450 1. .00 22. .63 A C
ATOM 5640 CGI ILE A 679 12. .988 14. .293 31 .412 1. .00 21. .52 A C
ATOM 5643 CDl ILE A 679 13. .600 13. .006 31. .924 1. .00 21. .09 A C
ATOM 5647 CG2 ILE A 679 10. .844 14. .353 32 .733 1. .00 22 .49 A C
ATOM 5651 C ILE A 679 10. .884 17. .202 32 .866 1. .00 25. .71 A C
ATOM 5652 O ILE A 679 9. .733 17. .392 32 .486 1. .00 26. .39 A 0
ATOM 5653 N GLU A 680 11. .320 17. .567 34 .065 1. .00' 28. .81 A N
ATOM 5655 CA GLU A 680 10. .485 18. .284 35. .027 1. .00 30. .64 A C
ATOM 5657 CB GLU A 680 11. .313 18. .665 36 .263 1. .00 32. .48 A C
ATOM 5660 CG GLU A 680 11. .525 17. .534 37 .261 1. .00 34. .64 A C
ATOM 5663 CD GLU A 680 12. .003 18. .023 38. .623 1. .00 37. .36 A C
ATOM 5664 OEl GLU A 680 12. .628 19. .111 38. .694 1, .00 38. .24 A 0
ATOM 5665 OE2 GLU A 680 11. .753 17. .316 39. .628 1. .00 38. .57 A 0
ATOM 5666 C GLU A 680 9. .891 19. .551 34. .420 1. .00 30. .60 A c
ATOM 5667 O GLU A 680 8, .734 19. .890 34. .668 1. .00 30. .42 A 0
ATOM 5668 N ASN A 681 10, .695 20. .253 33. .631 1. .00 29, .79 A N
ATOM 5670 CA ASN A 681 10, .286 21. .530 33. .061 1. .00 29, .01 A C
ATOM 5672 CB ASN A 681 11. .493 22. .223 32. .422 1. .00 28, .23 A C
ATOM 5675 CG ASN A 681 11. .134 23. .544 31. .781 1, .00 28, .20 A C
ATOM 5676 OD1 ASN A 681 11, .155 23. .679 30. .559 1. .00 27. .71 A O
ATOM 5677 ND2 ASN A 681 10, .804 24, .530 32. .605 1. .00 28. .39 A N
ATOM 5680 C ASN A 681 9, .164 21, .380 32. .034 1. .00 28. .56 A C
ATOM 5681 O ASN A 681 8, .322 22, .260 31 .901 1. .00 28. .82 A O
ATOM 5682 N ILE A 682 9. .154 20, .269 31 .306 1. .00 29. .02 A N
ATOM 5684 CA ILE A 682 8, .136 20, .049 30 .284 1. .00 29. .54 A C
ATOM 5686 CB ILE A 682 8, .659 19: .083 29 .196 1. .00 29. .67 A C
ATOM 5688 CGI ILE A 682 9, .466 19, .862 28. .152 1. .00 29. .30 A C
ATOM 5691 CDl ILE A 682 10, .622 19, .090 27 .572 1. .00 28. .45 A C
ATOM 5695 CG2 ILE A 682 7. .509 18, .345 28 .515 1. .00 29. .39 A ' C
ATOM 5699 C ILE A 682 6, .845 19. .524 30 .910 1. .00 29. .90 A C
ATOM 5700 O ILE A 682 5, .752 19. .988 30. .580 1. .00 28. .51 A O
ATOM 5701 N ILE A 683 6, .981 18. .572 31. .827 1. .00 29. .72 A N
ATOM 5703 CA ILE A 683 5, .827 17. .927 32. .438 1. .00 31. .27 A C
ATOM 5705 CB ILE A 683 6, .268 16. .632 33. .167 1. .00 30. .51 A C
ATOM 5707 CGI ILE A 683 6, .478 15. .514 32. .136 1. .00 29. .73 A C
ATOM 5710 CDl ILE A 683 7, .238 14. .309 32. .638 1. .00 28, .68 A C
ATOM 5714 CG2 ILE A 683 5, .238 16. .207 34. .206 1. .00 31. .18 A C
ATOM 5718 C ILE A 683 5. .063 18. .882 33. .363 1. .00 33. .98 A C
ATOM 5719 O ILE A 683 3. .867 18. .694 33. .600 1. .00 33. .58 A O
ATOM 5720 N SER A 684 5, .746 19. .924 33. .844 1. .00 37. .50 A N
ATOM 5722 CA SER A 684 5, .136 20. .930 34. .726 1. .00 39. .42 A C
ATOM 5724 CB SER A 684 6, .218 21. .696 35. .499 1. .00 39. .96 A C
ATOM 5727 OG SER A 684 6. .695 22. .816 34 .762 1. .00 40. .20 A 0
ATOM 5729 C SER A 684 4, .247 21. .932 33. .981 1. .00 41. .40 A c
ATOM 5730 O SER A 684 3, .448 22. .637 34. .602 1. .00 40. .80 A 0
ATOM 5731 N ASP A 685 4, .395 22. .001 32. .660 1. .00 44. .27 A N
ATOM 5733 CA ASP A 685 3, .580 22. .892 31. .843 1. .00 46. .55 A c
ATOM 5735 CB AS? A 685 4, .368 23. .375 30 .625 1. .00 47. .27 A c
ATOM 5738 CG ASP A 685 3, .569 24, .342 29 .761 1. .00 48. .50 A c
ATOM 5739 OD1 ASP A 685 2. .994 25. .311 30 .312 1, .00 48, .07 A 0
ATOM 5740 OD2 ASP A 685 3, .451 24. .207 28. .525 1. .00 49, .46 A 0
ATOM 5741 C ASP A 685 2, .299 22. .219 31 .366 1. .00 48. ,70 A c
ATOM 5742 O ASP A 685 1, .607 22. .740 30. .491 1. .00 50. .39 A 0
ATOM 5743 N PHE A 686 1. .982 21. .063 31. .936 1. .00 50. .20 A N
ATOM 5745 CA PHE A 686 0, .819 20. .301 31. .505 1. .00 51. .18 A C
ATOM 5747 CB PHE A 686 1, .228 19. .252 30 .460 1. .00 51. .10 A C
ATOM 5750 CG PHE A 686 1, .588 19. ,836 29 .111 1. .00 50. ,83 A C
ATOM 5751 CDl PHE A 686 2, .902 20. ,164 28 .808 1. .00 '50. .72 A c
ATOM 5753 CEl PHE A 686 3, .236 20. .698 27 .572 1, .00 50. .56 A c
ATOM 5755 CZ PHE A 686 2, .253 20. ,908 26. .620 1. .00 50. ,87 A c
ATOM 5757 CE2 PHE A 686 0, .940 20. ,585 26. .907 1. .00 51. .24 A c
ATOM 5759 CD2 PHE A 686 0, .612 20. .051 28. .147 1, .00 51. .24 A c
ATOM 5761 C PHE A 686 0, .154 19. .634 32. .707 1. .00 51. .99 A c
ATOM 5762 O PHE A 686 -0. .206 20. .303 33, .681 1. .00 52. ,02 A 0
ATOM 5763 O HOH W 1 10. .827 0. .500 28, .290 1. .00 22. ,74 W 0
ATOM 5766 O HOH W 2 5. .884 -7. .358 31, .557 1, .00 42. ,82 W 0
ATOM 5769 O HOH W 3 22. .707 14. .421 19, .024 1. .00 31. .70 W 0 ATOM 5772 O HOH W 4 23..042 11.469 25.624 1.00 31.46 W 0
ATOM- 5775 O HOH W . 5 -7. .116 1 .998 41 .222 1 .00 44 .45 W 0
ATOM 5778 O HOH W 6 12, .241 10 .146 50 .898 1 .00 49 .08 W 0
ATOM 5781 O HOH W 7 13, .615 32 .084 54 .017 1. .00 42 .35 W 0
ATOM 5784 O HOH W 8 8, .997 -14 .942 21. .285 1 .00 39 .38 W 0
ATOM 5787 O HOH W 9 26, .767 22 .939 49. .863 1. .00 54 .99 W 0
ATOM 5790 O HOH W 10 2, .751 -1. .635 29. .514 1. .00 29 .52 W 0
ATOM 5793 O HOH W 11 12, .212 -1. .642 30. .786 1. .00 26 .03 W 0
ATOM 5796 O HOH W 12 -4, .821 7. .046 35. .617 1. .00 34. .24 W 0
ATOM 5799 O HOH W 13 27, .147 13. .239 19. .717 1. .00 42. .59 w 0
ATOM 5802 O HOH W 14 23, .400 30. .766 46. .659 1 .00 40 .61 w 0
ATOM 5805 O HOH W 15 18, .479 18 .706 32. .212 ' 1. .00 31. .26 w 0
ATOM 5808 O HOH W 16 12, .379 5. .237 27. .898 1 .00 33. .97 w 0
ATOM 5811 O HOH W 17 19. .475 -11 .875 32 .502 1 .00 36 .43 w 0
ATOM 5814 O HOH W 18 20. .808 8. .259 34. .485 1. .00 33. .10 w 0
ATOM 5817 O HOH W 19 2. .393 -5 .456 31 .372 1 .00 48 .96 w 0
ATOM 5820 O HOH W 20 27. .419 9 .590 19 .562 1 .00 36 .68 w 0
ATOM 5823 O HOH W 21 29. .285 3. .931 32. .002 1. .00 41. .47 w 0
ATOM 5826 O HOH w 22 -2. .164 19. .402 52. .917 1. .00 50. .60 w 0
ATOM 5829 O HOH w 23 10. .694 -6, .416 41. .787 1. .00 44. .59 w 0
ATOM 5832 O HOH w 24 -8. .310 4. .913 37. .559 1. .00 43. .34 w 0
ATOM 5835 O HOH w 25 4. .063 8. .654 41. .947 1. .00 51. .22 w 0
ATOM 5838 O HOH w 26 26. .949 16. .266 55, .630 1. .00 41. .38 w 0
ATOM 5841 O HOH w 27 12. .661 5. .699 43, .556 1. .00 49. .05 w 0
ATOM 5844 O HOH w 28 4. .444 -5. .433 29. .821 1. .00 41. .98 w 0
ATOM 5847 O HOH w 29 19. .316 22. .926 43. .164 1. .00 36. .17 w 0
ATOM 5850 O HOH w 30 23. .869 18. .468 59. .175 1. .00 48. .53 w 0
ATOM 5853 0 HOH w 31 -3. .160 8. .943 48. .890 1. .00 35, .04 w 0
ATOM 5856 0 HOH w 32 -6. .873 12. .531 39. .504 1, .00 36, .49 w 0
ATOM 5859 0 HOH w 33 1. .365 -7. .262 31. .201 1. .00 47, .56 w 0
ATOM 5862 0 HOH w 34 -5. .477 9. .241 49. .385 1. .00 38, .08 w 0
ATOM 5865 0 HOH w 35 34. .473 7. .984 22. .822 1. .00 55. .50 w 0
ATOM 5868 0 HOH w 36 19. .636 11. .028 52. .320 1. .00 36. .15 w 0
ATOM 5871 0 HOH w 37 18, .396 -5. .102 11. .759 1. .00 43. .68 w 0
ATOM 5874 0 HOH w 38 21, .662 0. .825 24. .213 1. .00 42. .51 w 0
ATOM 5877 0 HOH w 39 11, .403 27. .636 56. .628 1. .00 56. .36 w 0
ATOM 5880 0 HOH w 40 22. .557 9. .016 24. .136 1. .00 38. .24 w 0
ATOM 5883 0 HOH w 41 34. .710 8. .641 31. .192 1. .00 57. .34 w 0
ATOM 5886 0 HOH w 42 1. .866 -2. .969 38. .464 1. .00 45. .11 w 0
ATOM 5889 0 HOH w 43 22. .318 -11. .599 32. .742 1. .00 55. .96 w 0
ATOM 5892 0 HOH w 44 3. .313 -5. .008 38. .209 1. .00 39. .87 w 0
ATOM 5895 0 HOH w 45 9. .078 2. .934 10. .986 1. .00 73. .29 w 0
ATOM 5898 0 HOH w 46 -4. .445 7. .504 26. .411 1. .00 41. .31 w 0
ATOM 5901 0 HOH w 47 -6. .103 20. .306 52. .071 1. .00 59. .53 w 0
ATOM 5904 0 HOH w 48 -6. .844 2. .782 29. .791 1. .00 62. .68 w 0
ATOM 5907 0 HOH w 49 36. .649 47. .354 52. .038 1. .00 70. .50 w 0
ATOM 5910 0 HOH w 50 18. .990 2. .073 19. .547 1. .00 49. .74 w 0
ATOM 5913 0 HOH w 51 -4. .523 9. .091 24. .572 1. .00 41. .37 w 0
ATOM 5916 0 HOH w 52 20. .309 3. .677 17. .300 1. .00 42. .84 w 0
ATOM 5919 0 HOH w 53 26. .183 31. .540 48. .651 1. .00 41. .62 w 0
ATOM 5922 0 HOH w 54 -0. .495 12. .423 37. .247 1, .00 50. .55 w 0
ATOM 5925 0 HOH w 55 -7. .603 0. .235 24. .350 1. .00 54. .02 w 0
ATOM 5928 0 HOH w 56 17. .478 -10. .793 17. .152 1. .00 38. .86 w 0
ATOM 5931 0 HOH w 57 21. .918 51. .608 54. .663 1. .00 59. .19 w 0
ATOM 5934 0 HOH w 58 -7, .637 0 .355 29 .035 1. .00 47 .01 w 0
ATOM 5937 0 HOH w 59 38. .581 -0 .291 26 .583 1. .00 44 .88 w 0
ATOM 5940 0 HOH w 60 26. .560 53. .964 53. .076 1. .00 51. .47 w 0
ATOM 5943 0 HOH w 61 2. .568 -6. .391 40. .030 1, .00 48. .05 w 0
ATOM 5946 0 HOH w 62 1. .844 14. .686 35. .182 1. .00 49. .40 w 0
ATOM 5949 0 HOH w 63 24. .572 17 .799 47. .233 1. .00 57. .61 w 0
ATOM 5952 0 HOH w 64 16. .687 12 .954 60. .039 1. .00 47. .70 w 0
ATOM 5955 0 HOH w 65 27. .437 28 .418 50 .497 1. .00 53. .64 w 0
ATOM 5958 0 HOH w 66 -3. .297 14 .011 29 .301 1 .00 55 .52 w 0
ATOM 5961 0 HOH w 67 22, .497 25 .011 56 .219 1 .00 45 .03 w 0
ATOM 5964 0 HOH w 68 21, .371 23 .317 58 .233 1 .00 52 .56 w 0
ATOM 5967 0 HOH w 69 14. .748 -1 .306 27 .433 1 .00 43 .87 w 0
ATOM 5970 0 HOH w 70 1. .288 16 .470 33 .431 1 .00 52 .49 w 0
ATOM 5973 0 HOH w 71 5. .781 -8 .921 12 .300 1 .00 34 .80 w 0
ATOM 5976 0 HOH w 72 10, .289 21 .693 39 .394 1 .00 32 .87 w 0
ATOM 5979 0 HOH w 73 -5. .953 5. .680 27. .181 1. .00 60. .97 w 0
ATOM 5982 0 HOH w 74 21. .059 32. .494 45. .656 1. .00 64. .63 w 0
ATOM 5985 0 HOH w 75 22. .928 40. .097 50. .573 1, .00 54. .43 w 0
ATOM 5988 0 HOH w 76 5. .606 -4. .542 16. .009 1. .00 42. .16 w 0 ATOM 5991 O HOH W 77 14.770 23.967 58.858 1..00 46.13 W 0
ATOM 5994 O HOH W 78 12 .265 20 .717 38 .846 1. .00 43 .05 W 0
ATOM 5997 O HOH W 79 16. .510 18. .658 18 .272 1 .00 42 .48 W 0
ATOM 6000 O HOH W 80 2. .758 22. .520 48 .732 1. .00 4 .32 W 0
ATOM 6003 O HOH W 81 10. .100 18. .920 19 .194 1. .00 56. .20 W 0
ATOM 6006 O HOH W 82 6. .134 8 .615 37 .541 1. .00 53. .12 W 0
ATOM 6009 O HOH W 83 16. .151 -7. .913 24 .380 1. .00 50. .88 W 0
ATOM 6012 O HOH W 84 25. .578 21. .997 51 .365 1. .00 35. .63 W 0
END

Claims

Claims
1. A crystal of a polypeptide comprising at least 150 consecutive amino acids from the serine protease domain of MASP-2.
2. The crystal according to claim 1 , wherein the polypeptide comprises the serine protease domain.
3. The crystal according to claim 2, wherein said polypeptide further comprises the CCP- 2 domain of MASP-2.
4. The crystal according to any of claims 1 and 2, wherein MASP-2 is human MASP-2 of SEQ ID 1 or a functional homologue thereof, wherein said functional homologue has a sequence, which is at least 70% identical to SEQ ID 1.
5. The crystal according to claim 1 , wherein the polypeptide comprises aa 483 to 633 of SEQ ID 1.
6. The crystal according to claim 1 , wherein the polypeptide comprises aa 363 to 686 of SEQ ID 1.
7. The crystal according to claim 1 , wherein the polypeptide consists of aa 363 to 686 of SEQ ID 1 and an extra peptide of at least one amino acid, preferably of around 4 amino acids.
8. The crystal according to claim 1, wherein MASP-2 is human MASP-2 of SEQ ID 1 wherein at least one of the amino acids 443 to 445 are mutated.
9. The crystal according to claim 1 , wherein said crystal diffracts X-rays for determination of atomic coordinates to a resolution of at least 5 A, preferably at least 4 A, more preferably at least 3 A, even more preferably at least 2.5 A, most preferably at least 2.25 A.
10. The crystal according to claim 1 , wherein said crystal comprises atoms arranged in a spatial relationship represented by the structure coordinates of table 3 or by coordinates having a root mean square deviation therefrom of not more than 2.5 A.
11. The crystal according to claim 1 , wherein said crystal has unit cell dimensions of a=40.950, b=41.521 , c=102.994, alpha=96.44, beta=91.77, gamma=119.52.
12. The crystal according to claim 1 , wherein said crystal comprises atoms arranged in a spatial relationship represented by the structure coordinates of table 4 or by co- ordinates having a root mean square deviation therefrom of not more than 2.5 A.
13. A method of preparing a crystal comprising a polypeptide at least 150 consecutive amino acids from the serine protease domain of MASP-2, wherein said method comprises the steps of i) Providing said polypeptide; ii) Optionally providing a compound capable of interacting with said polypeptide; iii) Growing crystals under conditions wherein said polypeptide and optionally said compound is incubated in a buffer comprising in the range of 5 to 25% polyethylene glycol, in the range of 0.01 M to 0.5M salt, in the range of 1 to 10% of an alcohol selected from the group consisting of glycerol and 2- methyl-2,4-penthanediol, wherein said buffer has a pH in the range of 6 to 9; iv) Thereby preparing said crystals
14. The method according to claim 12, wherein step iii) comprises incubation at a temperature in the range of 5 to 25°(C.
15. The method according to claim 12, wherein said polypeptide comprises the CCP-2 and the serine protease domains of MASP-2.
16. The method according to claim 12 wherein MASP-2 is human MASP-2 of SEQ ID 1 or a functional homologue thereof, wherein said functional homologue has a sequence which is at least 70% identical to SEQ ID 1.
17. The method according to claim 16, wherein the polypeptide comprises aa 299 to 686 of SEQ ID 1.
18. The method according to claim 16, wherein the polypeptide consists of aa 299 to 686 of SEQ ID 1 and an extra peptide of at the most 20 amino acids, preferably of around 4 amino acids.
19. The method according to claim 12, wherein MASP-2 is human MASP-2 of SEQ ID 1 wherein at least one of the amino acids 443 to 445 are mutated.
20. The method according to claim 12, wherein said crystal diffracts X-rays for determination of atomic co-ordinates to a resolution of at least 5 A, preferably at least 4 A, more preferably at least 3 A, even more preferably at least 2.5 A, most preferably at least 2.25 A.
21. A method of identifying compounds capable of interacting with a polypeptide comprising at least 150 consecutive amino acids from the serine protease domain of MASP-2, wherein said method comprises the steps of i) providing a computer system for producing a three-dimensional representation of a molecule or molecular complex, wherein said computer system comprises: a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein said data comprises the structure coordinates of a polypeptide comprising at least 150 amino acids from the serine protease domain of MASP-2; a working memory for storing instruction for processing said machine- readable data; a central-processing unit coupled to said working memory and to said machine-readable data storage medium for processing said machine- readable data into said three-dimensional representation; and a display coupled to said central-processing unit for displaying said three- dimensional representation; and ii) executing instructions on the computer for generating a three dimensional representation of said polypeptide from structural coordinates of a crystal of said polypeptide, such that the computer loads into memory thereof computer-readable data comprising structural coordinates of a molecular model of said polypeptide; iii) generating molecular models of one or more test compounds; iv) calculating, from said molecular models, one or more possible molecular complexes which could be formed by association of said polypeptide with said one or more test compound; v) generating output data indicative of the degree of interaction and/or the location and/or the orientation of such interaction; vi) selecting compounds capable of interacting with said polypeptide
22. The method according to claim 21 wherein the method furthermore comprises the steps of vii) Providing at least one selected compound; viii) Providing the polypeptide comprising at least 150 amino acids from the serine protease domain of MASP-2; ix) Contacting said polypeptide with said selected compound under conditions for interaction; x) Detecting interaction between said polypeptide and said selected compound, thereby identifying compounds capable of interacting with said polypeptide
23. The method according to any of claims 21 and 22, wherein said polypeptide comprises the CCP-2 domain and the serine protease domain of MASP-2.
24. The method according to any of claims 21 and 22, wherein MASP-2 is human MASP-2 of SEQ ID 1 or a functional homologue thereof, wherein said functional homologue has a sequence which is at least 70% identical to SEQ ID 1.
25. The method according to any of claims 21 and 22, wherein the polypeptide comprises aa 299 to 686 of SEQ ID 1.
26. The method according to any of claims 21 and 22, wherein the polypeptide consists of aa 299 to 686 of SEQ ID 1 and an extra peptide of at the most 20 amino acids, preferably of around 4 amino acids.
27. The method according to any of claims 21 and 22, wherein the structural coordinates are the coordinates set forth in table 3, or coordinates having a root mean square deviation therefrom, with respect to conserved protein backbone atoms, of not more than 1.5 A.
28. The method according to any of claims 21 and 22, wherein the structural coordinates are the coordinates set forth in table 4, or coordinates having a root mean square deviation therefrom, with respect to conserved protein backbone atoms, of not more than 1.5 A.
29. The method according to claim 21 , wherein the method involves generating a 3D representation of a substrate binding site on said polypetide and selecting compounds capable of interacting with said site.
30. The method according to claim 29, wherein the substrate binding site is the C4 binding site.
31. The method according to claim 29, wherein the substrate binding site is the C2 binding site.
32. The method according to claim 29, wherein the substrate binding site is a MASP-2 binding site.
33. The method according to claim 29, wherein the substrate binding site is the C1 inhibitor binding site.
34. The method according to claim 21 , wherein the selected compound is a modulator of MASP-2 activity.
35. The method according to claim 21 , wherein the selected compound is an inhibitor of MASP-2 activity.
36. The method according to claim 21 , wherein the selected compound is an activator or enhancer of MASP-2 activity.
37. The method according to any of claims 21 to 36, wherein the method furthermore comprises the steps of i) Executing instrructions on the computer for generating a three dimensional representation of a second polypeptide comprising the serine protease domain of C1 r from structural coordinates of a crystal of said second polypeptide, such that the computer loads into memory thereof computer- readable data comprising structural coordinates of a molecular model of said second polypeptide; i) calculating, from said molecular models, one or more possible molecular complexes which could be formed by association of said second polypeptide with one or more selected test compounds; i) generating output data indicative of the degree of interaction; ii) selecting compounds not capable of interacting with said second polypeptide
38. The method according to any of claims 21 to 36, wherein the method furthermore comprises the steps of v) executing instructions on the computer for generating a three dimensional representation of a second polypeptide comprising the serine protease domain of C1s from structural coordinates of a crystal of said second polypeptide, such that the computer loads into memory thereof computer- readable data comprising structural coordinates of a molecular model of said second polypeptide; i) calculating, from said molecular models, one or more possible molecular complexes which could be formed by association of said second polypeptide with one or more selected test compounds; ii) generating output data indicative of the degree of interaction; iii) selecting compounds not capable of interacting with said second polypeptide.
39. The method according to any of claims 21 to 38, wherein the method further comprises preparing a crystal comprising said polypeptide comprising at least 150 consecutive amino acids from the serine protease domain of MASP-2 and at least one selected compound capable of interacting with said polypeptide.
40. The method according to claim 39, wherein the crystal is prepared by the method according to any of claims 13 to 20.
41. The method according to claim 39, wherein the structure of said crystal is determined.
42. The method according to any of claims 21 to 41 , wherein the method further comprises preparing another compound capable of interacting with said polypeptide using information derived from said structure.
43. A compound capable of interacting with a polypeptide comprising at least 150 amino acids from the serine protease domain of MASP-2 identified by the method according to any of claims 21 to 42.
44. A method of identifying a compound capable of inhibiting MASP-2 activity, wherein said method comprises the steps of i) providing a computer system for producing a three-dimensional representation of a molecule or molecular complex, wherein said computer system comprises: a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein said data comprises the structure co-ordinates of a polypeptide comprising the CCP- 2 and the serine protease domain of MASP-2; a working memory for storing instruction for processing said machine- readable data; a central-processing unit coupled to said working memory and to said machine-readable data storage medium for processing said machine- readable data into said three-dimensional representation; and a display coupled to said central-processing unit for displaying said three- dimensional representation; and ii) executing instructions on the computer for generating a three dimensional representation of a substrate binding site on said polypeptide from structural co-ordinates of a crystal of said polypeptide, such that the computer loads into memory thereof computer-readable data comprising structural co-ordinates of a molecular model of said binding site; iii) generating molecular models of one or more test compounds; iv) calculating, from said molecular models, one or more possible molecular complexes which could be formed by association of said binding site with said one or more test compound; v) generating output data indicative of the degree of interaction and/or the location and/or the orientation of such interaction; vi) selecting compounds capable of interacting with said binding site, thereby identifying inhibitors of MASP-2 activity
41. The method according to claim 44, wherein the method furthermore comprises the steps of i) Providing at least one selected compound; ii) Providing MASP-2; iii) Determining MASP-2 activity in the presence and absence of said compound; iv) Identifying compounds in the presence of which MASP-2 activity is lower than in the absence of said compound
42. The method according to any of claims 44 and 41 , wherein the substrate binding site is the C4 binding site.
43. The method according to any of claims 44 and 41 , wherein the substrate binding site is the C2 binding site.
44. The method according to any of claims 44 and 41 , wherein the substrate binding site is a MASP-2 binding site.
45. The method according to any of claims 44 and 41 , wherein the substrate binding site is the C1 inhibitor binding site.
46. The method according to claim 44, wherein MASP-2 activity is C4 cleavage.
47. The method according to any of claims 44 to 46, wherein MASP-2 is human MASP-2 of SEQ ID 1 or a functional homologue thereof, wherein said functional homologue has a sequence, which is at least 70% identical to SEQ ID 1.
48. The method according to any of claims 44 and 41 , wherein the structural co-ordinates are the co-ordinates set forth in table 3, or coordinates having a root mean square deviation therefrom, with respect to conserved protein backbone atoms, of not more than 1.5 A.
49. The method according to any of claims 44 to 41 , wherein the structural co-ordinates are the co-ordinates set forth in table 4, or coordinates having a root mean square deviation therefrom, with respect to conserved protein backbone atoms, of not more than 1.5 A.
50. The method according to any of claims 40 to 49, wherein the method further comprises preparing a crystal comprising said polypeptide comprising at least 150 consecutive amino acids from the serine protease domain of MASP-2 and at least one selected compound capable of interacting with said binding site.
51. The method according to claim 50, wherein the crystal is prepared by the method according to any of claims 13 to 20.
52. The method according to claim 51 , wherein the structure of said crystal is determined.
53. The method according to claim 52, wherein the method further comprises preparing another compound capable of interacting with said binding site using information derived from said structure.
54. A compound capable of inhibiting MASP-2 activity identified by the method according to any of claims 44 to 53.
EP04762809A 2003-09-05 2004-09-06 Masp-2 crystal structure and uses thereof Withdrawn EP1670910A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DKPA200301282 2003-09-05
US52360103P 2003-11-21 2003-11-21
DKPA200400837 2004-05-27
PCT/DK2004/000589 WO2005024013A1 (en) 2003-09-05 2004-09-06 Masp-2 crystal structure and uses thereof

Publications (1)

Publication Number Publication Date
EP1670910A1 true EP1670910A1 (en) 2006-06-21

Family

ID=34279319

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04762809A Withdrawn EP1670910A1 (en) 2003-09-05 2004-09-06 Masp-2 crystal structure and uses thereof

Country Status (3)

Country Link
EP (1) EP1670910A1 (en)
JP (1) JP2007504805A (en)
WO (1) WO2005024013A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7083786B2 (en) 1997-04-03 2006-08-01 Jensenius Jens Chr MASP-2, a complement-fixing enzyme, and uses for it
EP1625166B1 (en) 2003-05-12 2015-04-08 Helion Biotech ApS Antibodies to masp-2
US7919094B2 (en) 2004-06-10 2011-04-05 Omeros Corporation Methods for treating conditions associated with MASP-2 dependent complement activation
US8840893B2 (en) 2004-06-10 2014-09-23 Omeros Corporation Methods for treating conditions associated with MASP-2 dependent complement activation
GB0412966D0 (en) 2004-06-10 2004-07-14 Univ Leicester Genetically modified non-human mammals and cells
HUP0900319A2 (en) * 2009-05-25 2011-01-28 Eotvos Lorand Tudomanyegyetem New peptides, method of producing therof and use thereof
NZ624065A (en) 2009-10-16 2015-10-30 Univ Leicester Methods for treating disseminated intravascular coagulation by inhibiting masp-2 dependent complement activation
CA2782465C (en) * 2009-12-02 2018-03-20 Zymeworks Inc. Combined on-lattice/off-lattice optimization method for rigid body docking

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005024013A1 *

Also Published As

Publication number Publication date
JP2007504805A (en) 2007-03-08
WO2005024013A1 (en) 2005-03-17

Similar Documents

Publication Publication Date Title
Iyer et al. Crystal structure of the catalytic domain of matrix metalloproteinase-1 in complex with the inhibitory domain of tissue inhibitor of metalloproteinase-1
US20050196851A1 (en) Crystal structure of the BTK kinase domain
CA2401063A1 (en) Solution and crystal structures of mmp-13 active site and uses thereof
Bertini et al. Crystal structure of the catalytic domain of human matrix metalloproteinase 10
WO2009100173A2 (en) Demethylation and inactivation of protein phosphatase 2a
EP1360286A2 (en) Characterization of the gsk-3beta protein and methods of use thereof
WO2005024013A1 (en) Masp-2 crystal structure and uses thereof
AU2009301631A1 (en) Amyloid-beta peptide crystal structure
WO2006063300A2 (en) Crystal structure of hepatocyte growth factor activator complexed with kunitz domain inhibitor
CN1788084A (en) Crystal structure of human coronavirus 229E main proteinase, and uses thereof for developing SARS inhibitors
WO2003012089A2 (en) Crystal structure of beta-site app cleaving enzyme (bace) and use thereof
WO2009108745A1 (en) Structure of a protein phosphatase 2a holoenzyme: insights into tau dephosphorylation
EP2727032A2 (en) Methods for designing, selecting and/or optimizing allosteric processing inhibitors for matrix metalloproteinases
WO2013003360A1 (en) Methods of treatment using allosteric processing inhibitors for matrix metalloproteinases
AU6960696A (en) Crystalline zap family proteins
WO2007010285A2 (en) Crystal structure of human soluble adenylate cyclase
WO2001055443A9 (en) Crystallization and structure determination of staphylococcus aureus nad synthetase
US20100173381A1 (en) Crystal structures of hiv-1 protease inhibitors bound to hiv-1 protease
CN1878862A (en) MASP-2 crystal structure and uses thereof
US7166454B1 (en) Codon-optimized β-secretase and methods of refolding and processing
EP2727038A1 (en) Crystal structure of the pro form of a matrix metalloproteinase and an allosteric processing inhibitor
WO2008037688A2 (en) Crystalline forms of pkc alpha kinase, methods of making such crystals, and uses thereof
WO2004011641A2 (en) Crystal structure of beta-site app-cleaving enzyme (bace) mutants and uses thereof
WO2023104916A1 (en) Crystal structure of btk protein and binding pockets thereof
WO2012037150A1 (en) Crystal structures of o-glcnac transferase and uses thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060405

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080401