EP1664677A1 - Distance-estimation method for a travelling object subjected to dynamic path constraints - Google Patents

Distance-estimation method for a travelling object subjected to dynamic path constraints

Info

Publication number
EP1664677A1
EP1664677A1 EP04766733A EP04766733A EP1664677A1 EP 1664677 A1 EP1664677 A1 EP 1664677A1 EP 04766733 A EP04766733 A EP 04766733A EP 04766733 A EP04766733 A EP 04766733A EP 1664677 A1 EP1664677 A1 EP 1664677A1
Authority
EP
European Patent Office
Prior art keywords
image
distance
line
column
map
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04766733A
Other languages
German (de)
French (fr)
Inventor
Elias Thales Intellectual Property BITAR
Nicolas Thales Intellectual Property MARTY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1664677A1 publication Critical patent/EP1664677A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/04Anti-collision systems
    • G08G5/045Navigation or guidance aids, e.g. determination of anti-collision manoeuvers

Definitions

  • the invention relates to terrain navigation for a mobile subject to course constraints varying over time, such as an aircraft limited in rate of climb, the limit being able to be negative, and operating above a zone of terrain with threatening terrain or obstacles close to or greater than its flight altitude.
  • Various systems have been developed to warn the crew of an aircraft of a risk of collision with the ground.
  • TAWS systems (acronym of the English expression: "Terrain Awareness and Warning System”), make a short-term trajectory forecast for the aircraft from flight information (position, course, orientation and amplitude of the speed vector) provided by the on-board equipment, place it in situation with respect to a map of the overflown region extracted from a terrain elevation database accessible from the edge and issue alarms intended for the aircraft crew whenever the foreseeable short-term trajectory collides with the ground.
  • TAWS systems enhance their alarms with rudimentary recommendations such as "Terrain Ahead, Pull up”.
  • Some of them also give information on the level of risk of collision posed by the reliefs and obstacles surrounding the aircraft in the form of a map presenting the reliefs or obstacles of the terrain overflown in strata of different colors.
  • this collision risk map with the environment only takes into account the altitudes of the relief relative to the position of the mobile and does not take into account the existence or not of a realistic trajectory allowing to reach the displayed areas.
  • the risk map for collision with the environment must display only the zones for which it exists a possible path from the current position of the mobile. Achieving such a display involves associating a metric with a relief map taken from a terrain elevation database.
  • a known method for associating a metric with a relief map taken from a terrain elevation database with regular mesh of the earth's surface or part of it consists in considering the map presenting the relief from altitude values appearing, with the geographical coordinates: latitude and longitude of the measurement points, in the elements of the base terrain elevation data such as an image whose pixels are the elevation values of the terrain elevation database points illustrated in the map with, for abscissa and ordinate coordinates within the image, the geographic coordinates latitude and longitude of these points appearing in the elements of the terrain elevation database and using a distance transform operating by propagation to estimate distances within this image.
  • the distance transforms operating by propagation also known by the name "chamfer distance transform” or “chamfer euclidean distance transform” in English) deduce the distance of a pixel called pixel goal with respect to another pixel called source pixel, distances previously estimated for the pixels in its vicinity, by scanning the pixels of the image.
  • the scanning makes it possible to estimate the distance of a new target pixel from the source pixel by searching for the path of minimum length going from the new target pixel to the source pixel passing through an intermediate pixel in its vicinity whose distance has already been estimated. , the distance from the new target pixel to an intermediate pixel in its vicinity, the distance of which has already been estimated, being given by application of a neighborhood mask commonly called a chamfer mask.
  • a distance transform of this kind was proposed in 1986 by Gunilla Borgefors to estimate distances between objects in a digital image, in an article entitled: "Distance Transformation in Digital Images.” and published in the journal “Computer Vision, Graphics and Image Processing", Vol. 34 pp. 344-378.
  • One of the advantages of these distance transforms by propagation is to reduce the complexity of the calculations of a distance estimate by authorizing the use of whole numbers.
  • a distance transform by propagation must test all the possible paths. This obligation results in a regularity constraint imposed on the order of scanning of the pixels of an image.
  • Borgefors proposes, to satisfy this constraint of regularity, to scan the pixels of an image twice consecutively, in two opposite orders from each other, which are either the lexicographic order, the image being analyzed from left to right line by line and from top to bottom, and the reverse lexicographic order, that is to say the transposed lexicographic order, the image having undergone a rotation of 90 °, and the reverse transposed lexicographic order. It also proposes to adopt a chamfer mask of dimensions 3x3 with two values (3, 4) of neighborhood distances or of dimensions 5x5 with three values (5, 7, 11) of neighborhood distances. Distance transforms operating by propagation are already used in the field of robot field navigation. In this context, it is known to use the distance transform of G.
  • the object of the present invention is a method for estimating the distances of the points of a map extracted from a terrain elevation database with respect to a reference point using a distance transform operating by propagation, with a constraint evolutionary dynamics over time suitable for terrain navigation for an aircraft having a trajectory with an imposed vertical profile.
  • the elevation database of terrain contains a set of points identified by an altitude, a latitude and a longitude meshing the terrain of evolution of the mobile.
  • the method implements a distance transform operating by propagation on the image constituted by the elements of the terrain elevation database corresponding to the map, arranged in rows and columns in orders of longitude and latitude values.
  • This distance transform estimates the distances of the different points of the image with respect to a source point placed near the mobile by applying, by scanning, a chamfer mask to the different points of the image.
  • the estimation of the distance from a point, by applying the chamfer mask to this point called the goal point is carried out by listing the different paths going from the goal point to the source point and passing through points in the vicinity of the goal point which are covered by the chamfer mask and the distances to the source point of which were previously estimated during the same scan, by determining the lengths of the different paths listed by summing the distance allocated to the neighborhood crossing point and its distance to the extracted goal point of the chamfer mask, by searching for the shortest path among the paths listed and adopting its length as an estimate of the distance from the goal point.
  • a distance value greater than the greatest measurable distance on the image is assigned to all the points of the image except for the source point, origin of the distance measurements, to which is assigned a value of zero distance.
  • the method is remarkable in that the lengths of the paths listed, when applying the chamfer mask to a target point, with a view to finding the shortest path, are translated into travel time for the mobile and in this that the journeys listed whose journey times for the mobile are such that the goal point would belong to a prohibited area when the mobile reaches it, are excluded from the search for the shortest route.
  • the mobile when the mobile is an aircraft having a vertical flight profile to be observed determining the evolution of its instantaneous altitude, the predicted values of the instantaneous altitudes that the aircraft would have when reaching the point are associated with the lengths of the paths listed. goal by these paths while respecting the vertical flight profile imposed, and we eliminate finding the shortest route, the routes listed associated with predictable altitude values less than or equal to that of the goal point given by the terrain elevation database and increased by a protection margin.
  • the distance estimate operated by propagation on the image made up of the elements of the terrain elevation database corresponding to the map is doubled by estimation of the foreseeable altitude for the aircraft at the various points of the image, assuming that it follows the shortest path selected for the distance estimation and that it respects the vertical flight profile imposed.
  • the altitudes of the various points on the map are subtracted from the estimates of altitudes. predictable for the aircraft at these points to obtain deviations from the ground.
  • the altitudes of the various points on the map are subtracted from the estimates of altitudes. predictable for the aircraft at these points to obtain deviations from the ground displayed on the map in color strata.
  • the distance transform by propagation scans the pixels of the image made up of the elements of the terrain elevation database corresponding to the map, in several successive passes according to different orders.
  • the distance transform by propagation scans the pixels of the image made up of the elements of the terrain elevation database belonging to the map, in several passes. successively in different orders and repeatedly until the distance estimates obtained stabilize.
  • the distance transform by propagation scans the pixels of the image made up of the elements of the terrain elevation database corresponding to the map, in several successive passes according to different orders including the lexicographic order, the order reverse lexicographic, transposed lexicographic order and reverse transposed lexicographic order.
  • the distance transform by propagation scans the pixels of the image made up of the elements of the terrain elevation database corresponding to the map, in a series of four passes repeated until the estimates of distances are stabilized: first pass made line by line from top to bottom of the image, each line being traversed from left to right, - a second pass made line by line from bottom to top of the image, each line being traversed from right to left, - a third pass made column by column from left to right of the image, each column being traversed from top to bottom, and - a fourth pass carried out column by column from right to left of the image, each column being traversed from bottom up.
  • the distance transform by propagation scans the pixels of the image made up of the elements of the terrain elevation database corresponding to the map, in a series of eight passes repeated until the estimates of distances are stabilized. : - a first pass made line by line from top to bottom of the image, each line being traversed from left to right, - a second pass performed line by line from bottom to top of the image, each line being traversed from right to the left, - a third pass made column by column from left to right of the image, each column being traversed from top to bottom, - a fourth pass carried out column by column from right to left of the image, each column being traversed from bottom to top, - a fifth pass made line by line from top to bottom of the image, each line being traversed from right to left, - a sixth pass performed line by line from bottom to top of the image, each line being traversed by left to right, - a seventh pass made column by column from right to left of the image, each column being traversed from top to
  • FIG. 1 represents an example of a chamfer mask
  • - figures 2a and 2b show the cells of the chamfer mask illustrated in figure 1, which are used in a scanning pass in lexicographic order and in a scanning pass in reverse lexicographic order
  • - Figure 3 is a diagram illustrating the main steps of a method, according to the invention, for estimating the distance from a point by taking account of a dynamic stress during the application of a chamfer mask
  • - a figure 4 is a diagram illustrating a variant of the method of estimation of the distance from a point shown in figure 3
  • FIG. 5 is a diagram of the main steps of a method, in accordance with the invention, of estimation, by propagation, of the distances of all the points of a map holding account for a dynamic constraint and implementing a method for estimating the distance from a point such as those shown in Figures 3 and 4.
  • the distance between two points on a surface is the minimum length of all possible routes on the surface starting from one of the points and ending at the other.
  • a distance transform by propagation estimates the distance of a pixel called "goal" pixel with respect to a pixel called “source” pixel by building gradually, starting from the source pixel, the shortest possible path following the mesh of the pixels and ending at the goal pixel and using the distances found for the pixels of the image already analyzed and a table called the chamfer mask listing the values distances between a pixel and its close neighbors.
  • a chamfer mask is in the form of a table with an arrangement of boxes reproducing the pattern of a pixel surrounded by its close neighbors.
  • a box assigned the value 0 identifies the pixel taken as the origin of the distances listed in the table.
  • Around this central box are agglomerated peripheral boxes filled with non-zero distance values and repeating the arrangement of the pixels in the vicinity of a pixel supposed to occupy the central box.
  • the distance value appearing in a peripheral box is that of the distance separating a pixel occupying the position of the peripheral box concerned, from a pixel occupying the position of the central box. Note that the distance values are distributed in concentric circles.
  • a first circle of four boxes corresponding to the four pixels closest to the pixel of the central box placed either on the line or on the pixel column of the central box are assigned a distance value D1.
  • a second circle of four boxes corresponding to the four pixels closest to the pixel of the central box placed outside the row and of the column of the pixel of the central box are assigned a distance value D2.
  • a third circle of eight boxes corresponding to the eight pixels closest to the pixel of the central box placed outside the row, column and diagonals of the pixel in the central box are assigned a value D3.
  • the chamfer mask can cover a more or less extended neighborhood of the pixel of the central box by listing the values of the distances of a more or less large number of concentric circles of pixels of the neighborhood.
  • the pixels of the image are assigned an infinite distance value, in fact a number large enough to exceed all the values of the measurable distances in the image, except for the source pixel which is assigned a value of zero distance.
  • the initial distance values assigned to the goal points are updated during the scanning of the image by the chamfer mask, an update consisting in replacing a distance value assigned to a goal point, by a new lower value. resulting from an estimation of distance made on the occasion of a new application of the chamfer mask at the target point considered.
  • a distance estimate by applying the chamfer mask to a target pixel consists in listing all the paths going from this target pixel to the source pixel and passing through a pixel in the vicinity of the target pixel, the distance of which has already been estimated during the same scan. , to search among the routes listed, the shortest route (s) and to adopt the length of the shortest route (s) as an estimate of distance.
  • the scanning order of the pixels in the image influences the reliability of the distance estimates and their updates because the paths taken into account depend on it.
  • Lexicographic orders (scanning pixels of the image line by line from top to bottom and, within a line, from left to right), reverse lexicographic (scanning pixels of the image line by line from bottom to top and, within a line, from right to left), the transposed lexicographic (scanning of the pixels of the image column by column from left to right and, within a column, from top to bottom), the reverse transposed lexicographic (pixel scanning by columns from right to left and within a column from bottom to top) satisfy this regularity condition and more generally all the scans in which the rows and columns, or the diagonals are scanned from right to left or from left to right.
  • Borgefors recommends double scanning the pixels of the image, once in lexicographic order and once in reverse lexicographic order.
  • FIG. 2a shows, in the case of a scanning pass in lexicographic order going from the upper left corner to the lower right corner of the image, the boxes of the chamfer mask of FIG. 1 used to list the paths going from d '' a goal pixel placed in the central box (box indexed by 0) to the source pixel via a pixel in the neighborhood whose distance has already been estimated during the same scan.
  • FIG. 2b shows, in the case of a scanning pass in reverse lexicographic order going from the lower right corner to the upper left corner of the image, the boxes of the chamfer mask of FIG.
  • the distance transform by propagation is applied to an image whose pixels are the elements of the terrain elevation database belonging to the map, that is to say, associated altitude values. to the latitude and longitude geographic coordinates of the nodes of the mesh where they were measured, classified, as on the map, by increasing or decreasing latitude and longitude according to a two-dimensional table of latitude and longitude coordinates.
  • the distance-by-propagation transform is used to estimate the distances of the points on the map of an evolutionary terrain extracted from a terrain elevation database with respect to the position of the mobile or a close position.
  • a prohibited area marker is associated with the elements of the terrain elevation database shown on the map. When it is activated, it signals an impassable or prohibited area and inhibits any update, other than initialization, of the distance estimate made by the distance transform by propagation for the pixel element considered.
  • the impassable zones evolve as a function of the vertical profile imposed on its trajectory so that an estimate of distance under static constraints by means of a distance transform by propagation is not satisfactory. It is proposed to take into account, in the definition of the prohibited passage zones, the foreseeable altitude of the aircraft at each goal point whose distance is being estimated. This foreseeable altitude, which obviously depends on the route taken, is that of the aircraft after following the route adopted for the distance measurement. The estimation of this foreseeable altitude of the aircraft at a target point is made by propagation during the scanning of the image by the chamfer mask in a manner analogous to the estimation of distance.
  • the foreseeable altitude of the aircraft is deduced from the length of the path and from the vertical profile imposed on the path of the aircraft.
  • This predictable altitude, estimated for each journey listed going from a target point whose distance is being estimated to a source point located near the position of the aircraft, is used as a criterion for selecting the journeys taken. counts in the distance estimate. If it is less than or equal to the altitude of the goal point appearing in the terrain elevation database plus a safety margin, the listed route with which it is associated is discarded and does not participate in the selection of the most short ride.
  • FIG. 3 illustrates the main stages of the processing carried out during the application of the chamfer mask to a target point P, tJ to estimate its distance for an aircraft having a vertical profile of imposed trajectory.
  • the goal point considered P, tJ is placed in the central box of the chamfer mask.
  • the processing consists in: - reading the estimated distance Dv from the neighboring point Pv (step 30), - read the altitude A, j of the goal point P u in the terrain elevation database (step 31), - read the coefficient C XY of the chamfer mask corresponding to the box occupied by the neighboring point P v (step 32), - calculate the propagated distance D P corresponding to the sum of the estimated distance D from the neighboring point P and the coefficient C x ⁇ assigned to the chamfer mask box occupied by the neighboring point P
  • step 33 - calculate the foreseeable altitude A P of the aircraft after crossing the distance D P directly from the distance D P if the vertical profile imposed on the trajectory of the aircraft is defined as a function of the distance traveled PV (D P ) and implicitly takes into account the travel time or indirectly via the travel time if the vertical profile imposed on the trajectory of the aircraft is defined by an altitude change speed (step 34), - compare the foreseeable altitude A obtained with that A, j of the goal point P, j taken from the terrain elevation database increased by a safety margin ⁇ (step 35), - eliminate the distance propagated D if the foreseeable altitude A P is less than or equal to that A u of the goal point P PJ taken from the terrain elevation database and increased by the safety margin ⁇ (step 36), - if the foreseeable altitude A P is higher than that A of the goal point P , j increased by the safety margin ⁇ , read the distance D, j already assigned to the goal point considered Pjj (step 37) and compare it to the propagated distance D
  • FIG. 4 illustrates the main steps of a variant of the processing carried out during the application of the chamfer mask to a target point Pj j to estimate its distance for an aircraft having a vertical profile of imposed trajectory.
  • This variant differs in the manner of developing the foreseeable altitude A of the aircraft. It assumes that the foreseeable altitude for the aircraft at each point in the terrain elevation database calculated as a function of the vertical profile imposed on its trajectory and from the length of the path selected for the distance measurement n ' is not considered as a transient variable, which allows the processing described relative to FIG. 3, but is memorized, in the same way as the distance estimate.
  • the steps 30, 31 of reading the estimated distance D v from the neighboring point P and the altitude Aj j from the goal point Pj j in the terrain elevation database are completed by a step 40 of reading of the foreseeable altitude A PV for the aircraft at the neighboring point P, and the calculation of the foreseeable altitude A P is done (step 34 ′) by summation of the foreseeable altitude A PV at the neighboring point P and of the variation in altitude over the distance separating the neighboring point Pv from the target point Pjj due to the vertical profile imposed on the trajectory of the aircraft.
  • the memorization of the foreseeable altitudes for the aircraft when it reaches the different points on the map which are accessible to it makes it possible to establish, by subtracting from them the altitudes of the points of the map drawn from the terrain elevation database, a map of the maximum possibilities of aircraft overflight heights representing the foreseeable deviations from the terrain in colored strata.
  • a map makes it easier for the crew of the aircraft to choose a realistic trajectory with the best ground clearance.
  • the estimation of the distances of the different points of the map is done by applying a chamfer mask treatment such as those which have just been described relative to FIGS.
  • FIG. 5 illustrates the main steps of an example of a global process allowing the estimation of the distances of all the points of a relief map for a mobile subject to dynamic constraints.
  • the first step 50 of the process is an initialization of the distances allocated to the different points of the map considered as the pixels of an image. This initialization of the distances consists, as indicated above, in assigning an infinite distance value, at least greater than the greatest measurable distance on the map, for all the points on the map considered as goal points, except considered as the source of all distances to which a zero distance value is assigned.
  • This source point is chosen near the instantaneous position of the mobile on the map.
  • the following steps 51 to 54 are regular scanning passes during which the chamfer mask is applied successively and repeatedly to all the points of the map considered as the pixels of an image, the application of the mask chamfer at a point on the map giving an estimate of the distance from this point to the source point, by performing one of the treatments described in relation to Figure 3 or Figure 4.
  • the first scan pass (step 51) is done in lexicographic order, the pixels of the image being analyzed line by line from the top to the bottom of the image and from left to right within the same line.
  • the second scanning pass (step 52) is done in reverse lexicographic order, the pixels of the image being always analyzed line by line but from the bottom to the top of the image and from right to left within a line.
  • the third scanning pass (step 53) is carried out in the transposed lexicographic order, the pixels of the image being analyzed column by column of the left to right of the image and from top to bottom within the same column.
  • the fourth scanning pass (step 54) is done in reverse transposed lexicographic order, the pixels of the image being analyzed column by column but from the right to the left of the image and from bottom to top within the same column.
  • the content of the distance image obtained is memorized (step 56) after each series of four passes (steps 51 to 54) and compared with the content of the distance image obtained from the previous series (step 55 ), the loop being broken only when the comparison shows that the content of the distance image no longer varies.
  • two scanning passes in lexicographic order and reverse lexicographic order may suffice.
  • the presence of concave zones of passage of concave shape can cause, in the phenomenon of propagation of distances, blind spots containing pixels for which the application of the chamfer mask does not give a distance estimate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Processing Or Creating Images (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Image Analysis (AREA)

Abstract

The invention relates to a method whereby a terrain elevation database can be used to calculate a distance map of the points accessible to a travelling object that is subjected to dynamic path constraints which change over time, e.g. an aircraft having an imposed vertical flight profile, said distances only being measured using the paths that can be passed by the travelling object. The inventive method employs a propagation distance transform which: (i) lists the passable paths from a target point to a source point, the distance of which is to be estimated in order to provide distance measurements; and compares the distance from the target point to the length of the shortest passable paths(s).

Description

PROCEDE D'ESTIMATION DE DISTANCE POUR UN MOBILE SOUMIS A DES CONTRAINTES DYNAMIQUES DE PARCOURS DISTANCE ESTIMATION METHOD FOR A MOBILE SUBJECT TO DYNAMIC ROUTE CONSTRAINTS
L'invention concerne la navigation de terrain pour un mobile soumis à des contraintes de parcours variant au cours du temps, tel qu'un aéronef limité en taux de montée, la limite pouvant être négative, et évoluant au-dessus d'une zone de terrain présentant des reliefs ou des obstacles menaçants proches ou supérieurs à son altitude de vol. Divers systèmes ont été développés pour prévenir l'équipage d'un aéronef d'un risque de collision avec le sol. Certains, tels que les systèmes TAWS (acronyme de l'expression anglo-saxonne : "Terrain Awareness and Warning System"), font une prévision de trajectoire à court terme pour l'aéronef à partir des informations de vol (position, cap, orientation et amplitude du vecteur vitesse) fournies par les équipements du bord, la placent en situation par rapport à une carte de la région survolée extraite d'une base de données d'élévation du terrain accessible du bord et émettent des alarmes à destination de l'équipage de l'aéronef à chaque fois que la trajectoire prévisible à court terme entre en collision avec le sol. Ces systèmes TAWS agrémentent leurs alarmes de recommandations rudimentaires du genre "Terrain Ahead, Pull up". Certains d'entre eux donnent également des informations sur le niveau de risque de collision que font encourir les reliefs et les obstacles environnant l'aéronef sous la forme d'une carte présentant les reliefs ou les obstacles du terrain survolé en strates de couleurs différentes. Cependant, cette carte de risques de collision avec l'environnement tient uniquement compte des altitudes du relief relativement à la position du mobile et ne prend pas en compte de l'existence ou non d'une trajectoire réaliste permettant de rejoindre les zones affichées. Pour satisfaire ce besoin de connaître les points du terrain survolé restant accessibles après une manœuvre d'évitement d'un relief ou d'un obstacle au sol, la carte de risque de collision avec l'environnement doit afficher uniquement les zones pour lesquelles il existe un chemin possible depuis la position courante du mobile. La réalisation d'un tel affichage passe par l'association d'une métrique à une carte du relief tirée d'une base de données d'élévation du terrain. Une méthode connue pour associer une métrique à une carte du relief tirée d'une base de données d'élévation du terrain à maillage régulier de la surface terrestre ou d'une partie de celle-ci, consiste à considérer la carte présentant le relief à partir de valeurs d'altitude figurant, avec les coordonnées géographiques : latitude et longitude des points de mesure, dans les éléments de la base de données d'élévation du terrain comme une image dont les pixels sont les valeurs d'altitude des points de la base de données d'élévation du terrain illustrées dans la carte avec, pour coordonnées abscisse et ordonnée au sein de l'image, les coordonnées géographiques latitude et longitude de ces points figurant dans les éléments de la base de données d'élévation du terrain et à faire appel à une transformée de distance opérant par propagation pour estimer des distances au sein de cette image. Les transformées de distance opérant par propagation également connues sous l'appellation "transformées distance de chanfrein" ("chamfer distance transform" ou "chamfer euclidean distance transform" en anglo- saxon) déduisent la distance d'un pixel dit pixel but par rapport à un autre pixel dit pixel source, des distances précédemment estimées pour les pixels de son voisinage, par un balayage des pixels de l'image. Le balayage permet d'estimer la distance d'un nouveau pixel but par rapport au pixel source par recherche du trajet de longueur minimale allant du nouveau pixel but au pixel source en passant par un pixel intermédiaire de son voisinage dont la distance a déjà été estimée, la distance du nouveau pixel but à un pixel intermédiaire de son voisinage dont la distance a déjà été estimée étant donnée par application d'un masque de voisinage communément appelé masque de chanfrein. Une transformée de distance de ce genre a été proposée en 1986 par Gunilla Borgefors pour estimer des distances entre objets dans une image numérique, dans un article intitulé :" Distance Transformation in Digital Images." et paru dans la revue "Computer Vision, Graphics and Image Processing", Vol. 34 pp. 344-378. Un des intérêts de ces transformées de distance par propagation est de réduire la complexité des calculs d'une estimation de distance en autorisant l'emploi de nombres entiers. Pour sélectionner le trajet de longueur minimale donnant l'estimation distance, une transformée de distance par propagation doit tester tous les trajets possibles. Cette obligation se traduit par une contrainte de régularité imposée à l'ordre de balayage des pixels d'une image. G. Borgefors propose, pour satisfaire cette contrainte de régularité, de balayer les pixels d'une image deux fois consécutivement, dans deux ordres inverses l'un de l'autre, qui sont soit l'ordre lexicographique, l'image étant analysée de gauche à droite ligne par ligne et de haut en bas, et l'ordre lexicographique inverse, soit l'ordre lexicographique transposé, l'image ayant subi une rotation de 90°, et l'ordre lexicographique transposé inverse. Elle propose également d'adopter un masque de chanfrein de dimensions 3x3 avec deux valeurs (3, 4) de distances de voisinage ou de dimensions 5x5 avec trois valeurs (5, 7, 11 ) de distances de voisinage. Les transformées de distance opérant par propagation sont déjà employées dans le domaine de la navigation terrain pour robot. Dans ce cadre, il est connu d'utiliser la transformée de distance de G. Borgefors avec une contrainte statique consistant à attribuer, de manière autoritaire, une distance infinie à un point en analyse lorsqu'il apparaît qu'il fait partie de reliefs ou d'obstacles à contourner répertoriés dans une mémoire de zones interdites de franchissement, cela de manière à éliminer, de l'ensemble des trajets testés lors d'une estimation de distance, ceux passant par les reliefs ou obstacles que le robot doit contourner. Cependant, une transformée de distance opérant par propagation utilisée avec une contrainte statique dans le cadre de la navigation terrain pour robot, ne convient pas à la navigation terrain pour aéronef pour lequel la menace présentée par un relief ou un obstacle au sol dépend du profil vertical de sa trajectoire.The invention relates to terrain navigation for a mobile subject to course constraints varying over time, such as an aircraft limited in rate of climb, the limit being able to be negative, and operating above a zone of terrain with threatening terrain or obstacles close to or greater than its flight altitude. Various systems have been developed to warn the crew of an aircraft of a risk of collision with the ground. Some, such as TAWS systems (acronym of the English expression: "Terrain Awareness and Warning System"), make a short-term trajectory forecast for the aircraft from flight information (position, course, orientation and amplitude of the speed vector) provided by the on-board equipment, place it in situation with respect to a map of the overflown region extracted from a terrain elevation database accessible from the edge and issue alarms intended for the aircraft crew whenever the foreseeable short-term trajectory collides with the ground. These TAWS systems enhance their alarms with rudimentary recommendations such as "Terrain Ahead, Pull up". Some of them also give information on the level of risk of collision posed by the reliefs and obstacles surrounding the aircraft in the form of a map presenting the reliefs or obstacles of the terrain overflown in strata of different colors. However, this collision risk map with the environment only takes into account the altitudes of the relief relative to the position of the mobile and does not take into account the existence or not of a realistic trajectory allowing to reach the displayed areas. To satisfy this need to know the points of the overflown terrain remaining accessible after a relief or ground obstacle avoidance maneuver, the risk map for collision with the environment must display only the zones for which it exists a possible path from the current position of the mobile. Achieving such a display involves associating a metric with a relief map taken from a terrain elevation database. A known method for associating a metric with a relief map taken from a terrain elevation database with regular mesh of the earth's surface or part of it, consists in considering the map presenting the relief from altitude values appearing, with the geographical coordinates: latitude and longitude of the measurement points, in the elements of the base terrain elevation data such as an image whose pixels are the elevation values of the terrain elevation database points illustrated in the map with, for abscissa and ordinate coordinates within the image, the geographic coordinates latitude and longitude of these points appearing in the elements of the terrain elevation database and using a distance transform operating by propagation to estimate distances within this image. The distance transforms operating by propagation also known by the name "chamfer distance transform" or "chamfer euclidean distance transform" in English) deduce the distance of a pixel called pixel goal with respect to another pixel called source pixel, distances previously estimated for the pixels in its vicinity, by scanning the pixels of the image. The scanning makes it possible to estimate the distance of a new target pixel from the source pixel by searching for the path of minimum length going from the new target pixel to the source pixel passing through an intermediate pixel in its vicinity whose distance has already been estimated. , the distance from the new target pixel to an intermediate pixel in its vicinity, the distance of which has already been estimated, being given by application of a neighborhood mask commonly called a chamfer mask. A distance transform of this kind was proposed in 1986 by Gunilla Borgefors to estimate distances between objects in a digital image, in an article entitled: "Distance Transformation in Digital Images." and published in the journal "Computer Vision, Graphics and Image Processing", Vol. 34 pp. 344-378. One of the advantages of these distance transforms by propagation is to reduce the complexity of the calculations of a distance estimate by authorizing the use of whole numbers. To select the path of minimum length giving the distance estimate, a distance transform by propagation must test all the possible paths. This obligation results in a regularity constraint imposed on the order of scanning of the pixels of an image. G. Borgefors proposes, to satisfy this constraint of regularity, to scan the pixels of an image twice consecutively, in two opposite orders from each other, which are either the lexicographic order, the image being analyzed from left to right line by line and from top to bottom, and the reverse lexicographic order, that is to say the transposed lexicographic order, the image having undergone a rotation of 90 °, and the reverse transposed lexicographic order. It also proposes to adopt a chamfer mask of dimensions 3x3 with two values (3, 4) of neighborhood distances or of dimensions 5x5 with three values (5, 7, 11) of neighborhood distances. Distance transforms operating by propagation are already used in the field of robot field navigation. In this context, it is known to use the distance transform of G. Borgefors with a static constraint consisting in assigning, in an authoritarian manner, an infinite distance to a point in analysis when it appears that it is part of reliefs or obstacles to be bypassed listed in a memory of prohibited crossing zones, this so as to eliminate, from the set of paths tested during a distance estimation, those passing through the reliefs or obstacles that the robot must bypass. However, a distance transform operating by propagation used with a static constraint within the framework of terrain navigation for robot, is not suitable for terrain navigation for aircraft for which the threat presented by a relief or an obstacle on the ground depends on the vertical profile. of its trajectory.
La présente invention a pour but un procédé d'estimation des distances des points d'une carte extraite d'une base de données d'élévation du terrain par rapport à un point de référence employant une transformée de distance opérant par propagation, avec une contrainte dynamique évolutive au cours du temps convenant à la navigation terrain pour un aéronef ayant une trajectoire à profil vertical imposé.The object of the present invention is a method for estimating the distances of the points of a map extracted from a terrain elevation database with respect to a reference point using a distance transform operating by propagation, with a constraint evolutionary dynamics over time suitable for terrain navigation for an aircraft having a trajectory with an imposed vertical profile.
Elle a pour objet un procédé d'estimation des distances des points d'une carte extraite d'une base de données d'élévation du terrain, pour un mobile soumis à des contraintes dynamiques lui interdisant certaines zones de la carte dites zones interdites de passage dont la configuration varie en fonction du temps de parcours du mobile. La base de données d'élévation du terrain renferme un ensemble de points repérés par une altitude, une latitude et une longitude maillant le terrain d'évolution du mobile. Le procédé met en œuvre une transformée de distance opérant par propagation sur l'image constituée par les éléments de la base de données d'élévation du terrain correspondant à la carte, disposés en lignes et colonnes par ordres de valeurs de longitude et de latitude. Cette transformée de distance estime les distances des différents points de l'image par rapport à un point source placé à proximité du mobile en appliquant, par balayage, un masque de chanfrein aux différents points de l'image. L'estimation de distance d'un point, par application du masque de chanfrein à ce point dit point but s'effectue en répertoriant les différents trajets allant du point but au point source et passant par des points du voisinage du point but qui sont recouverts par le masque de chanfrein et dont les distances au point source ont été préalablement estimées au cours du même balayage, en déterminant les longueurs des différents trajets répertoriés par sommation de la distance affectée au point de passage du voisinage et de sa distance au point but extraite du masque de chanfrein, en recherchant le trajet le plus court parmi les trajets répertoriés et en adoptant sa longueur comme estimation de la distance du point but. Initialement, en début de balayage, une valeur de distance supérieure à la plus grande distance mesurable sur l'image est attribuée à tous les points de l'image sauf pour le point source, origine des mesures de distance, auquel est affectée une valeur de distance nulle. Le procédé est remarquable en ce que les longueurs des trajets répertoriés, lors de l'application du masque de chanfrein à un point but, en vue de la recherche du trajet le plus court, sont traduites en temps de parcours pour le mobile et en ce que les trajets répertoriés dont les temps de parcours pour le mobile sont tels que le point but appartiendrait à une zone interdite de passage au moment où le mobile l'atteindrait, sont exclus de la recherche du trajet le plus court.It relates to a method of estimating the distances of the points of a map extracted from a terrain elevation database, for a mobile subject to dynamic constraints preventing it from certain areas of the map known as no-pass areas whose configuration varies according to the travel time of the mobile. The elevation database of terrain contains a set of points identified by an altitude, a latitude and a longitude meshing the terrain of evolution of the mobile. The method implements a distance transform operating by propagation on the image constituted by the elements of the terrain elevation database corresponding to the map, arranged in rows and columns in orders of longitude and latitude values. This distance transform estimates the distances of the different points of the image with respect to a source point placed near the mobile by applying, by scanning, a chamfer mask to the different points of the image. The estimation of the distance from a point, by applying the chamfer mask to this point called the goal point, is carried out by listing the different paths going from the goal point to the source point and passing through points in the vicinity of the goal point which are covered by the chamfer mask and the distances to the source point of which were previously estimated during the same scan, by determining the lengths of the different paths listed by summing the distance allocated to the neighborhood crossing point and its distance to the extracted goal point of the chamfer mask, by searching for the shortest path among the paths listed and adopting its length as an estimate of the distance from the goal point. Initially, at the start of scanning, a distance value greater than the greatest measurable distance on the image is assigned to all the points of the image except for the source point, origin of the distance measurements, to which is assigned a value of zero distance. The method is remarkable in that the lengths of the paths listed, when applying the chamfer mask to a target point, with a view to finding the shortest path, are translated into travel time for the mobile and in this that the journeys listed whose journey times for the mobile are such that the goal point would belong to a prohibited area when the mobile reaches it, are excluded from the search for the shortest route.
Avantageusement, lorsque le mobile est un aéronef ayant un profil vertical de vol à respecter déterminant l'évolution de son altitude instantanée, on associe, aux longueurs des trajets répertoriées, les valeurs prévisibles des altitudes instantanées qu'aurait l'aéronef en atteignant le point but par ces trajets tout en respectant le profil vertical de vol imposé, et on élimine de la recherche du trajet le plus court, les trajets répertoriés associés à des valeurs prévisibles d'altitude inférieures ou égales à celle du point but donnée par la base de données d'élévation du terrain et augmentée d'une marge de protection.Advantageously, when the mobile is an aircraft having a vertical flight profile to be observed determining the evolution of its instantaneous altitude, the predicted values of the instantaneous altitudes that the aircraft would have when reaching the point are associated with the lengths of the paths listed. goal by these paths while respecting the vertical flight profile imposed, and we eliminate finding the shortest route, the routes listed associated with predictable altitude values less than or equal to that of the goal point given by the terrain elevation database and increased by a protection margin.
Avantageusement, lorsque le mobile est un aéronef ayant un profil vertical de vol imposé, l'estimation de distance opérée par propagation sur l'image constituée des éléments de la base de données d'élévation du terrain correspondant à la carte est doublée d'une estimation de l'altitude prévisible pour l'aéronef au droit des différents points de l'image en supposant qu'il suive le trajet le plus court sélectionné pour l'estimation de distance et qu'il respecte le profil vertical de vol imposé.Advantageously, when the mobile is an aircraft having a vertical imposed flight profile, the distance estimate operated by propagation on the image made up of the elements of the terrain elevation database corresponding to the map is doubled by estimation of the foreseeable altitude for the aircraft at the various points of the image, assuming that it follows the shortest path selected for the distance estimation and that it respects the vertical flight profile imposed.
Avantageusement, lorsque le mobile est un aéronef à profil vertical de vol imposé et que l'estimation de distance est doublée par une estimation de l'altitude prévisible de l'aéronef, les altitudes des différents points de la carte sont soustraites des estimations des altitudes prévisibles pour l'aéronef en ces points pour obtenir des écarts par rapport au sol. Avantageusement, lorsque le mobile est un aéronef à profil vertical de vol imposé et que l'estimation de distance est doublée par une estimation de l'altitude prévisible de l'aéronef, les altitudes des différents points de la carte sont soustraites des estimations des altitudes prévisibles pour l'aéronef en ces points pour obtenir des écarts par rapport au sol affichés sur la carte en strates de couleurs.Advantageously, when the mobile is an aircraft with a vertical imposed flight profile and the estimate of distance is doubled by an estimate of the foreseeable altitude of the aircraft, the altitudes of the various points on the map are subtracted from the estimates of altitudes. predictable for the aircraft at these points to obtain deviations from the ground. Advantageously, when the mobile is an aircraft with a vertical imposed flight profile and the estimate of distance is doubled by an estimate of the foreseeable altitude of the aircraft, the altitudes of the various points on the map are subtracted from the estimates of altitudes. predictable for the aircraft at these points to obtain deviations from the ground displayed on the map in color strata.
Avantageusement, la transformée de distance par propagation balaie les pixels de l'image constituée des éléments de la base de données d'élévation du terrain correspondant à la carte, en plusieurs passes successives selon des ordres différents.Advantageously, the distance transform by propagation scans the pixels of the image made up of the elements of the terrain elevation database corresponding to the map, in several successive passes according to different orders.
Avantageusement, la transformée de distance par propagation balaie les pixels de l'image constituée des éléments de la base de données d'élévation du terrain appartenant à la carte, en plusieurs passes successives selon des ordres différents et de manière répétée jusqu'à ce que les estimations de distance obtenues se stabilisent.Advantageously, the distance transform by propagation scans the pixels of the image made up of the elements of the terrain elevation database belonging to the map, in several passes. successively in different orders and repeatedly until the distance estimates obtained stabilize.
Avantageusement, la transformée de distance par propagation balaie les pixels de l'image constituée des éléments de la base de données d'élévation du terrain correspondant à la carte, en plusieurs passes successives selon des ordres différents dont l'ordre lexicographique, l'ordre lexicographique inverse, l'ordre lexicographique transposé et l'ordre lexicographique transposé inverse.Advantageously, the distance transform by propagation scans the pixels of the image made up of the elements of the terrain elevation database corresponding to the map, in several successive passes according to different orders including the lexicographic order, the order reverse lexicographic, transposed lexicographic order and reverse transposed lexicographic order.
Avantageusement, la transformée de distance par propagation balaie les pixels de l'image constituée des éléments de la base de données d'élévation terrain correspondant à la carte, en une série de quatre passes répétée jusqu'à stabilisation des estimations de distances : - une première passe effectuée ligne par ligne de haut en bas de l'image, chaque ligne étant parcourue de gauche à droite, - une deuxième passe effectuée ligne par ligne de bas en haut de l'image, chaque ligne étant parcourue de droite à gauche, - une troisième passe effectuée colonne par colonne de gauche à droite de l'image, chaque colonne étant parcourue de haut en bas, et - une quatrième passe effectuée colonne par colonne de droite à gauche de l'image, chaque colonne étant parcourue de bas en haut.Advantageously, the distance transform by propagation scans the pixels of the image made up of the elements of the terrain elevation database corresponding to the map, in a series of four passes repeated until the estimates of distances are stabilized: first pass made line by line from top to bottom of the image, each line being traversed from left to right, - a second pass made line by line from bottom to top of the image, each line being traversed from right to left, - a third pass made column by column from left to right of the image, each column being traversed from top to bottom, and - a fourth pass carried out column by column from right to left of the image, each column being traversed from bottom up.
Avantageusement, la transformée de distance par propagation balaie les pixels de l'image constituée des éléments de la base de données d'élévation du terrain correspondant à la carte, en une série de huit passes répétée jusqu'à stabilisation des estimations de distances. : - une première passe effectuée ligne par ligne de haut en bas de l'image, chaque ligne étant parcourue de gauche à droite, - une deuxième passe effectuée ligne par ligne de bas en haut de l'image, chaque ligne étant parcourue de droite à gauche, - une troisième passe effectuée colonne par colonne de gauche à droite de l'image, chaque colonne étant parcourue de haut en bas, - une quatrième passe effectuée colonne par colonne de droite à gauche de l'image, chaque colonne étant parcourue de bas en haut, - une cinquième passe effectuée ligne par ligne de haut en bas de l'image, chaque ligne étant parcourue de droite à gauche, - une sixième passe effectuée ligne par ligne de bas en haut de l'image, chaque ligne étant parcourue de gauche à droite, - une septième passe effectuée colonne par colonne de droite à gauche de l'image, chaque colonne étant parcourue de haut en bas, et - une huitième passe effectuée colonne par colonne de gauche à droite de l'image, chaque colonne étant parcourue de bas en haut.Advantageously, the distance transform by propagation scans the pixels of the image made up of the elements of the terrain elevation database corresponding to the map, in a series of eight passes repeated until the estimates of distances are stabilized. : - a first pass made line by line from top to bottom of the image, each line being traversed from left to right, - a second pass performed line by line from bottom to top of the image, each line being traversed from right to the left, - a third pass made column by column from left to right of the image, each column being traversed from top to bottom, - a fourth pass carried out column by column from right to left of the image, each column being traversed from bottom to top, - a fifth pass made line by line from top to bottom of the image, each line being traversed from right to left, - a sixth pass performed line by line from bottom to top of the image, each line being traversed by left to right, - a seventh pass made column by column from right to left of the image, each column being traversed from top to bottom, and - an eighth pass made column by column from left to right of the image, each column being run from bottom to top.
D'autres caractéristiques et avantages de l'invention ressortiront de la description ci-après d'un mode de réalisation donné à titre d'exemple. Cette description sera faite en regard du dessin dans lequel : - une figure 1 représente un exemple de masque de chanfrein, - des figures 2a et 2b montrent les cellules du masque de chanfrein illustré à la figure 1 , qui sont utilisées dans une passe de balayage selon l'ordre lexicographique et dans une passe de balayage selon l'ordre lexicographique inverse, - une figure 3 est un diagramme illustrant les principales étapes d'un procédé, conforme à l'invention, pour estimer la distance d'un point en tenant compte d'une contrainte dynamique au cours de l'application d'un masque de chanfrein, - une figure 4 est un diagramme illustrant une variante du procédé d'estimation de la distance d'un point montré à la figure 3, et - une figure 5 est un diagramme des principales étapes d'un procédé, conforme à l'invention, d'estimation, par propagation, des distances de l'ensemble des points d'une carte tenant compte d'une contrainte dynamique et mettant en œuvre un procédé d'estimation de la distance d'un point tel que ceux montrés aux figures 3 et 4. La distance d'entre deux points d'une surface est la longueur minimale de tous les parcours possibles sur la surface partant de l'un des points et aboutissant à l'autre. Dans une image formée de pixels répartis selon un maillage régulier de lignes, colonnes et diagonales, une transformée de distance par propagation estime la distance d'un pixel dit pixel "but" par rapport à un pixel dit pixel "source" en construisant progressivement, en partant du pixel source, le plus court trajet possible suivant le maillage des pixels et aboutissant au pixel but et en s'aidant des distances trouvées pour les pixels de l'image déjà analysés et d'un tableau dit masque de chanfrein répertoriant les valeurs des distances entre un pixel et ses proches voisins. Comme montré à la figure 1 , un masque de chanfrein se présente sous la forme d'un tableau avec une disposition de cases reproduisant le motif d'un pixel entouré de ses proches voisins. Au centre du motif, une case affectée de la valeur 0 repère le pixel pris pour origine des distances répertoriées dans le tableau. Autour de cette case centrale, s'agglomèrent des cases périphériques remplies de valeurs de distance non nulles et reprenant la disposition des pixels du voisinage d'un pixel supposé occuper la case centrale. La valeur de distance figurant dans une case périphérique est celle de la distance séparant un pixel occupant la position de la case périphérique concernée, d'un pixel occupant la position de la case centrale. On remarque que les valeurs de distance se répartissent en cercles concentriques. Un premier cercle de quatre cases correspondant aux quatre pixels les plus proches du pixel de la case centrale placés soit sur la ligne soit sur la colonne du pixel de la case centrale sont affectées d'une valeur de distance D1. Un deuxième cercle de quatre cases correspondant aux quatre pixels les plus proches du pixel de la case centrale placés en dehors de la ligne et de la colonne du pixel de la case centrale sont affectées d'une valeur de distance D2. Un troisième cercle de huit cases correspondant aux huit pixels les plus proches du pixel de la case centrale placés en dehors de la ligne, de la colonne et des diagonales du pixel de la case centrale sont affectées d'une valeur D3. Le masque de chanfrein peut couvrir un voisinage plus ou moins étendu du pixel de la case centrale en répertoriant les valeurs des distances d'un nombre plus ou moins important de cercles concentriques de pixels du voisinage. Il peut être réduit aux deux premiers cercles formés par les pixels du voisinage d'un pixel occupant la case centrale ou être étendu au-delà des trois premiers cercles formés par les pixels du voisinage du pixel de la case centrale mais il est habituel de s'arrêter à trois premiers cercles comme celui représenté à la figure 1. Les valeurs des distances D1 , D2, D3 qui correspondent à des distances euclidiennes sont exprimées dans une échelle autorisant l'emploi de nombres entiers au prix d'une certaine approximation. C'est ainsi que G. Borgefors donne à la distance d1 correspondant à un échelon en abscisse x ou en ordonnée y la valeur 5, à la distance d2 correspondant à la racine de la somme des carrés des échelons en abscisse et ordonnée ^jx2 +y2 la valeur 7 qui est une approximation de 5 /2 , et à la distance d3 la valeur 11 qui est une approximation de 5- . La construction progressive du plus court trajet possible allant à un pixel but, en partant d'un pixel source et en suivant le maillage des pixels se fait par un balayage régulier des pixels de l'image au moyen du masque de chanfrein. Initialement, les pixels de l'image se voient affecter une valeur de distance infinie, en fait un nombre suffisamment élevé pour dépasser toutes les valeurs des distances mesurables dans l'image, à l'exception du pixel source qui se voit affecter une valeur de distance nulle. Puis les valeurs initiales de distance affectées aux points but sont mises à jour au cours du balayage de l'image par le masque de chanfrein, une mise à jour consistant à remplacer une valeur de distance attribuée à un point but, par une nouvelle valeur moindre résultant d'une estimation de distance faite à l'occasion d'une nouvelle application du masque de chanfrein au point but considéré. Une estimation de distance par application du masque de chanfrein à un pixel but consiste à répertorier tous les trajets allant de ce pixel but au pixel source et passant par un pixel du voisinage du pixel but dont la distance a déjà été estimée au cours du même balayage, à rechercher parmi les trajets répertoriés, le ou les trajets les plus courts et à adopter la longueur du ou des trajets les plus courts comme estimation de distance. Cela se fait en plaçant le pixel but dont on veut estimer la distance dans la case centrale du masque de chanfrein, en sélectionnant les cases périphériques du masque de chanfrein correspondant à des pixels du voisinage dont la distance vient d'être mise à jour, en calculant les longueurs des trajets les plus courts reliant le pixel à mettre à jour au pixel source en passant par un des pixels sélectionnés du voisinage, par addition de la valeur de distance affectée au pixel du voisinage concerné et de la valeur de distance donnée par le masque de chanfrein, et à adopter, comme estimation de distance, le minimum des valeurs de longueur de trajet obtenues et de l'ancienne valeur de distance affectée au pixel en cours d'analyse. L'ordre de balayage des pixels de l'image influe sur la fiabilité des estimations de distance et de leurs mises à jour car les trajets pris en compte en dépendent. En fait, il est soumis à une contrainte de régularité qui fait que si les pixels de l'image sont repérés selon l'ordre lexicographique (pixels classés dans un ordre croissant ligne par ligne en partant du haut de l'image et en progressant vers le bas de l'image, et de gauche à droite au sein d'une ligne), et si un pixel p a été analysé avant un pixel q alors un pixel p+x doit être analysés avant le pixel q+x. Les ordres lexicographique (balayage des pixels de l'image ligne par ligne de haut en bas et, au sein d'une ligne, de gauche à droite), lexicographique inverse (balayage des pixels de l'image ligne par ligne de bas en haut et, au sein d'une ligne, de droite à gauche), lexicographique transposé (balayage des pixels de l'image colonne par colonne de gauche à droite et, au sein d'une colonne, de haut en bas), lexicographique transposé inverse (balayage des pixels par colonnes de droite à gauche et au sein d'une colonne de bas en haut) satisfont cette condition de régularité et plus généralement tous les balayages dans lesquels les lignes et colonnes, ou les diagonales sont balayées de droite à gauche ou de gauche à droite. G. Borgefors préconise un double balayage des pixels de l'image, une fois dans l'ordre lexicographique et une autre dans l'ordre lexicographique inverse. La figure 2a montre, dans le cas d'une passe de balayage selon l'ordre lexicographique allant du coin supérieur gauche au coin inférieur droit de l'image, les cases du masque de chanfrein de la figure 1 utilisées pour répertorier les trajets allant d'un pixel but placé sur la case centrale (case indexée par 0) au pixel source en passant par un pixel du voisinage dont la distance a déjà fait l'objet d'une estimation au cours du même balayage. Ces cases sont au nombre de huit, disposées dans la partie supérieure gauche du masque de chanfrein. Il y a donc huit trajets répertoriés pour la recherche du plus court dont la longueur est prise pour estimation de la distance. La figure 2b montre, dans le cas d'une passe de balayage selon l'ordre lexicographique inverse allant du coin inférieur droit au coin supérieur gauche de l'image, les cases du masque de chanfrein de la figure 1 utilisées pour répertorier les trajets allant d'un pixel but placé sur la case centrale (case indexée par 0) au pixel source en passant par un pixel du voisinage dont la distance a déjà fait l'objet d'une estimation au cours du même balayage. Ces cases sont complémentaires de celles de la figure 2a. Elles sont également au nombre de huit mais disposées dans la partie inférieure droite du masque de chanfrein. Il y a donc encore huit trajets répertoriés pour la recherche du plus court dont la longueur est prise pour estimation de la distance. La transformée de distance par propagation dont le principe vient d'être rappelé sommairement a été conçue à l'origine pour l'analyse du positionnement d'objets dans une image mais elle n'a pas tardé à être appliquée à l'estimation des distances sur une carte du relief extraite d'une base de données d'élévation du terrain à maillage régulier de la surface terrestre. En effet, une telle carte ne dispose pas explicitement d'une métrique puisqu'elle est tracée à partir des altitudes des points du maillage de la base de données d'élévation du terrain de la zone représentée. Dans ce cadre, la transformée de distance par propagation est appliquée à une image dont les pixels sont les éléments de la base de données d'élévation du terrain appartenant à la carte, c'est-à-dire, des valeurs d'altitude associées aux coordonnées géographiques latitude, longitude des nœuds du maillage où elles ont été mesurées, classés, comme sur la carte, par latitude et par longitude croissantes ou décroissantes selon un tableau à deux dimensions de coordonnées latitude et longitude. Pour une navigation terrain de mobiles tels que des robots, la transformée de distance par propagation est utilisée pour estimer les distances des points de la carte d'un terrain d'évolution extraite d'une base de données d'élévation du terrain par rapport à la position du mobile ou une position proche. Dans ce cas, il est connu de tenir compte de contraintes statiques constituées par des zones de la carte infranchissables par le mobile en raison de leurs configurations accidentées. Pour ce faire, un marqueur de zone interdite est associé aux éléments de la base de données d'élévation du terrain figurant dans la carte. Il signale, lorsqu'il est activé, une zone infranchissable ou interdite et inhibe toute mise à jour autre qu'une initialisation, de l'estimation de distance faite par la transformée de distance par propagation pour l'élément pixel considéré. Dans le cas d'un aéronef, les zones infranchissables évoluent en fonction du profil vertical imposé à sa trajectoire si bien qu'une estimation de distance sous contraintes statiques au moyen d'une transformée de distance par propagation n'est pas satisfaisante. On propose de prendre en compte, dans la définition des zones interdites de passage, l'altitude prévisible de l'aéronef à chaque point but dont la distance est en cours d'estimation. Cette altitude prévisible, qui dépend bien évidemment du trajet emprunté, est celle de l'aéronef après suivi du trajet adopté pour la mesure de distance. L'estimation de cette altitude prévisible de l'aéronef en un point but, se fait par propagation au cours du balayage de l'image par le masque de chanfrein d'une manière analogue à l'estimation de distance. Pour chaque trajet répertorié allant d'un point but au point source en passant par un point du voisinage du point but dont la distance au point source et l'altitude prévisible de l'aéronef ont déjà été estimées au cours du même balayage, l'altitude prévisible de l'aéronef est déduite de la longueur du trajet et du profil vertical imposé à la trajectoire de l'aéronef. Cette altitude prévisible, estimée pour chaque trajet répertorié allant d'un point but dont la distance est en cours d'estimation à un point source placé à proximité de la position de l'aéronef, est utilisée comme un critère de sélection des trajets pris en compte dans l'estimation distance. Si elle est inférieure ou égale à l'altitude du point but figurant dans la base de données d'élévation du terrain majorée d'une marge de sécurité, le trajet répertorié auquel elle est associée est écarté et ne participe pas à la sélection du plus court trajet. Une fois la sélection du plus court trajet effectuée, sa longueur est prise pour distance du point but et l'altitude prévisible pour l'aéronef qui lui est associée est également retenue pour l'altitude de l'aéronef au point but. La figure 3 illustre les principales étapes du traitement effectué lors de l'application du masque de chanfrein à un point but P,tJ pour estimer sa distance pour un aéronef ayant un profil vertical de trajectoire imposé. Le point but considéré P,tJ est placé dans la case centrale du masque de chanfrein. Pour chaque point voisin Pv qui entre dans les cases du masque de chanfrein et dont la distance a déjà été estimée au cours du même balayage, le traitement consiste à : - lire la distance estimée Dv du point voisin Pv (étape 30), - lire l'altitude A,j du point but Pu dans la base de données d'élévation du terrain (étape 31), - lire le coefficient CXY du masque de chanfrein correspondant à la case occupée par le point voisin Pv(étape 32), - calculer la distance propagée DP correspondant à la somme de la distance estimée D du point voisin P et du coefficient C affecté à la case du masque de chanfrein occupée par le point voisin POther characteristics and advantages of the invention will emerge from the description below of an embodiment given by way of example. This description will be made with reference to the drawing in which: - a figure 1 represents an example of a chamfer mask, - figures 2a and 2b show the cells of the chamfer mask illustrated in figure 1, which are used in a scanning pass in lexicographic order and in a scanning pass in reverse lexicographic order, - Figure 3 is a diagram illustrating the main steps of a method, according to the invention, for estimating the distance from a point by taking account of a dynamic stress during the application of a chamfer mask, - a figure 4 is a diagram illustrating a variant of the method of estimation of the distance from a point shown in figure 3, and - a FIG. 5 is a diagram of the main steps of a method, in accordance with the invention, of estimation, by propagation, of the distances of all the points of a map holding account for a dynamic constraint and implementing a method for estimating the distance from a point such as those shown in Figures 3 and 4. The distance between two points on a surface is the minimum length of all possible routes on the surface starting from one of the points and ending at the other. In an image formed of pixels distributed in a regular mesh of lines, columns and diagonals, a distance transform by propagation estimates the distance of a pixel called "goal" pixel with respect to a pixel called "source" pixel by building gradually, starting from the source pixel, the shortest possible path following the mesh of the pixels and ending at the goal pixel and using the distances found for the pixels of the image already analyzed and a table called the chamfer mask listing the values distances between a pixel and its close neighbors. As shown in Figure 1, a chamfer mask is in the form of a table with an arrangement of boxes reproducing the pattern of a pixel surrounded by its close neighbors. In the center of the pattern, a box assigned the value 0 identifies the pixel taken as the origin of the distances listed in the table. Around this central box are agglomerated peripheral boxes filled with non-zero distance values and repeating the arrangement of the pixels in the vicinity of a pixel supposed to occupy the central box. The distance value appearing in a peripheral box is that of the distance separating a pixel occupying the position of the peripheral box concerned, from a pixel occupying the position of the central box. Note that the distance values are distributed in concentric circles. A first circle of four boxes corresponding to the four pixels closest to the pixel of the central box placed either on the line or on the pixel column of the central box are assigned a distance value D1. A second circle of four boxes corresponding to the four pixels closest to the pixel of the central box placed outside the row and of the column of the pixel of the central box are assigned a distance value D2. A third circle of eight boxes corresponding to the eight pixels closest to the pixel of the central box placed outside the row, column and diagonals of the pixel in the central box are assigned a value D3. The chamfer mask can cover a more or less extended neighborhood of the pixel of the central box by listing the values of the distances of a more or less large number of concentric circles of pixels of the neighborhood. It can be reduced to the first two circles formed by the pixels in the vicinity of a pixel occupying the central box or be extended beyond the first three circles formed by the pixels in the vicinity of the pixel in the central box but it is usual to s 'stop at the first three circles like the one represented in figure 1. The values of the distances D1, D2, D3 which correspond to Euclidean distances are expressed in a scale authorizing the use of whole numbers at the cost of a certain approximation. This is how G. Borgefors gives the distance d1 corresponding to a step on the abscissa x or on the ordinate y the value 5, to the distance d2 corresponding to the root of the sum of the squares of the steps on the abscissa and ordered ^ jx 2 + y 2 the value 7 which is an approximation of 5/2, and at the distance d3 the value 11 which is an approximation of 5-. The progressive construction of the shortest possible path going to a target pixel, starting from a source pixel and following the mesh of the pixels is done by a regular scanning of the pixels of the image by means of the chamfer mask. Initially, the pixels of the image are assigned an infinite distance value, in fact a number large enough to exceed all the values of the measurable distances in the image, except for the source pixel which is assigned a value of zero distance. Then the initial distance values assigned to the goal points are updated during the scanning of the image by the chamfer mask, an update consisting in replacing a distance value assigned to a goal point, by a new lower value. resulting from an estimation of distance made on the occasion of a new application of the chamfer mask at the target point considered. A distance estimate by applying the chamfer mask to a target pixel consists in listing all the paths going from this target pixel to the source pixel and passing through a pixel in the vicinity of the target pixel, the distance of which has already been estimated during the same scan. , to search among the routes listed, the shortest route (s) and to adopt the length of the shortest route (s) as an estimate of distance. This is done by placing the target pixel whose distance we want to estimate in the central box of the chamfer mask, by selecting the peripheral boxes of the chamfer mask corresponding to neighboring pixels whose distance has just been updated, by calculating the lengths of the shortest paths connecting the pixel to be updated to the source pixel passing through one of the selected pixels of the neighborhood, by adding the distance value assigned to the pixel of the neighborhood concerned and the distance value given by the chamfer mask, and to adopt, as distance estimation, the minimum of the path length values obtained and the old distance value assigned to the pixel being analyzed. The scanning order of the pixels in the image influences the reliability of the distance estimates and their updates because the paths taken into account depend on it. In fact, it is subject to a regularity constraint which means that if the pixels of the image are identified according to the lexicographic order (pixels classified in ascending order line by line starting from the top of the image and progressing towards the bottom of the image, and from left to right within a line), and if a pixel p has been analyzed before a pixel q then a pixel p + x must be analyzed before the pixel q + x. Lexicographic orders (scanning pixels of the image line by line from top to bottom and, within a line, from left to right), reverse lexicographic (scanning pixels of the image line by line from bottom to top and, within a line, from right to left), the transposed lexicographic (scanning of the pixels of the image column by column from left to right and, within a column, from top to bottom), the reverse transposed lexicographic (pixel scanning by columns from right to left and within a column from bottom to top) satisfy this regularity condition and more generally all the scans in which the rows and columns, or the diagonals are scanned from right to left or from left to right. G. Borgefors recommends double scanning the pixels of the image, once in lexicographic order and once in reverse lexicographic order. FIG. 2a shows, in the case of a scanning pass in lexicographic order going from the upper left corner to the lower right corner of the image, the boxes of the chamfer mask of FIG. 1 used to list the paths going from d '' a goal pixel placed in the central box (box indexed by 0) to the source pixel via a pixel in the neighborhood whose distance has already been estimated during the same scan. There are eight of these boxes, located in the upper left of the chamfer mask. There are therefore eight paths listed for the search for the shortest whose length is taken to estimate the distance. FIG. 2b shows, in the case of a scanning pass in reverse lexicographic order going from the lower right corner to the upper left corner of the image, the boxes of the chamfer mask of FIG. 1 used to list the paths going from a goal pixel placed in the central box (box indexed by 0) to the source pixel, passing through a neighboring pixel, the distance of which has already been estimated during the same scan. These boxes are complementary to those in Figure 2a. They are also eight in number but arranged in the lower right part of the chamfer mask. There are therefore still eight paths listed for the search for the shortest whose length is taken to estimate the distance. The distance transform by propagation, the principle of which has just been briefly recalled, was originally designed for the analysis of the positioning of objects in an image, but it was soon applied to the estimation of distances. on a relief map extracted from a terrain elevation database with regular mesh of the earth's surface. Indeed, such a map does not explicitly have a metric since it is drawn from the altitudes of the points of the mesh of the terrain elevation database of the area represented. In this context, the distance transform by propagation is applied to an image whose pixels are the elements of the terrain elevation database belonging to the map, that is to say, associated altitude values. to the latitude and longitude geographic coordinates of the nodes of the mesh where they were measured, classified, as on the map, by increasing or decreasing latitude and longitude according to a two-dimensional table of latitude and longitude coordinates. For terrain navigation of mobiles such as robots, the distance-by-propagation transform is used to estimate the distances of the points on the map of an evolutionary terrain extracted from a terrain elevation database with respect to the position of the mobile or a close position. In this case, it is known to take account of static constraints constituted by areas of the card which cannot be crossed by the mobile due to their uneven configurations. To do this, a prohibited area marker is associated with the elements of the terrain elevation database shown on the map. When it is activated, it signals an impassable or prohibited area and inhibits any update, other than initialization, of the distance estimate made by the distance transform by propagation for the pixel element considered. In the case of an aircraft, the impassable zones evolve as a function of the vertical profile imposed on its trajectory so that an estimate of distance under static constraints by means of a distance transform by propagation is not satisfactory. It is proposed to take into account, in the definition of the prohibited passage zones, the foreseeable altitude of the aircraft at each goal point whose distance is being estimated. This foreseeable altitude, which obviously depends on the route taken, is that of the aircraft after following the route adopted for the distance measurement. The estimation of this foreseeable altitude of the aircraft at a target point is made by propagation during the scanning of the image by the chamfer mask in a manner analogous to the estimation of distance. For each trip listed going from a goal point to the source point passing through a point in the vicinity of the goal point whose distance to the source point and the foreseeable altitude of the aircraft have already been estimated during the same scan, the foreseeable altitude of the aircraft is deduced from the length of the path and from the vertical profile imposed on the path of the aircraft. This predictable altitude, estimated for each journey listed going from a target point whose distance is being estimated to a source point located near the position of the aircraft, is used as a criterion for selecting the journeys taken. counts in the distance estimate. If it is less than or equal to the altitude of the goal point appearing in the terrain elevation database plus a safety margin, the listed route with which it is associated is discarded and does not participate in the selection of the most short ride. Once the shortest route has been selected, its length is taken as the distance from the goal point and the altitude predictable for the aircraft associated with it is also used for the altitude of the aircraft at the goal point. FIG. 3 illustrates the main stages of the processing carried out during the application of the chamfer mask to a target point P, tJ to estimate its distance for an aircraft having a vertical profile of imposed trajectory. The goal point considered P, tJ is placed in the central box of the chamfer mask. For each neighboring point P v which enters the boxes of the chamfer mask and the distance of which has already been estimated during the same scan, the processing consists in: - reading the estimated distance Dv from the neighboring point Pv (step 30), - read the altitude A, j of the goal point P u in the terrain elevation database (step 31), - read the coefficient C XY of the chamfer mask corresponding to the box occupied by the neighboring point P v (step 32), - calculate the propagated distance D P corresponding to the sum of the estimated distance D from the neighboring point P and the coefficient C assigned to the chamfer mask box occupied by the neighboring point P
(étape 33), - calculer l'altitude prévisible AP de l'aéronef après franchissement de la distance D P directement à partir de la distance DP si le profil vertical imposé à la trajectoire de l'aéronef est défini en fonction de la distance parcourue PV(DP) et prend implicitement en compte le temps de parcours ou indirectement par l'intermédiaire du temps de parcours si le profil vertical imposé à la trajectoire de l'aéronef est défini par une vitesse de changement d'altitude (étape 34), - comparer l'altitude prévisible A obtenue avec celle A,j du point but P,j tirée de la base de données d'élévation du terrain augmentée d'une marge de sécurité Δ (étape 35), - éliminer la distance propagée D si l'altitude prévisible AP est inférieure ou égale à celle Au du point but PPJ tirée de la base de données d'élévation du terrain et majorée par la marge de sécurité Δ (étape 36), - si l'altitude prévisible AP est supérieure à celle A du point but P,j majorée par la marge de sécurité Δ, lire la distance D,j déjà affectée au point but considéré Pjj ( étape 37) et la comparer à la distance propagée D (étape 38), - éliminer la distance propagée DP si elle est supérieure ou égale à la distance D déjà affectée au point but considéré P , et - remplacer la distance D déjà affectée au point but considéré Pjj, par la distance propagée DP si cette dernière est inférieure (étape 39). La figure 4 illustre les principales étapes d'une variante du traitement effectué lors de l'application du masque de chanfrein à un point but Pjj pour estimer sa distance pour un aéronef ayant un profil vertical de trajectoire imposé. Cette variante diffère dans la manière d'élaborer l'altitude prévisible A de l'aéronef. Elle suppose que l'altitude prévisible pour l'aéronef en chaque point de la base de données d'élévation du terrain calculée en fonction du profil vertical imposé à sa trajectoire et à partir de la longueur du trajet sélectionné pour la mesure de distance n'est pas considérée comme une variable passagère, ce que permet le traitement décrit relativement à la figure 3, mais est mémorisée, au même titre que l'estimation de distance. Dans cette variante, les étapes 30, 31 de lectures de la distance estimée Dv du point voisin P et de l'altitude Ajj du point but Pjj dans la base de données d'élévation du terrain sont complétées par une étape 40 de lecture de l'altitude prévisible APV pour l'aéronef au point voisin P , et le calcul de l'altitude prévisible AP se fait (étape 34') par sommation de l'altitude prévisible APV au point voisin P et de la variation d'altitude sur la distance séparant le point voisin Pv du point but Pjj due au profil vertical imposé à la trajectoire de l'aéronef. La mémorisation des altitudes prévisibles pour l'aéronef lorsqu'il atteint les différents points de la carte qui lui sont accessibles permet d'établir, en leur soustrayant les altitudes des points de la carte tirées de la base de données d'élévation du terrain, une carte des possibilités maximales de hauteurs de survol de l'aéronef représentant les écarts prévisibles par rapport au terrain en strates de couleurs. Une telle carte facilite pour l'équipage de l'aéronef le choix d'une trajectoire réaliste présentant la meilleure garde au sol. Comme indiqué précédemment, l'estimation des distances des différents points de la carte se fait en appliquant un traitement par masque de chanfrein tel que ceux qui viennent d'être décrits relativement aux figures 3 et 4, à l'ensemble des pixels de l'image formée par les éléments de la base de données d'élévation du terrain appartenant à la carte, pris successivement selon un balayage régulier comportant un minimum de deux passes réalisées dans des ordres inverses. La figure 5 illustre les principales étapes d'un exemple de processus global permettant l'estimation des distances de l'ensemble des points d'une carte de relief pour un mobile soumis à des contraintes dynamiques. La première étape 50 du processus est une initialisation des distances affectées aux différents points de la carte considérés comme les pixels d'une image. Cette initialisation des distances consiste, comme indiqué précédemment, à attribuer une valeur de distance infinie, à tout le moins supérieure à la plus grande distance mesurable sur la carte, pour tous les points de la carte considérés comme des points but, à l'exception d'un seul considéré comme la source de toutes les distances auquel est attribué une valeur de distance nulle. Ce point source est choisi à proximité de la position instantanée du mobile sur la carte. Les étapes suivantes 51 à 54 sont des passes d'un balayage régulier au cours desquelles le masque de chanfrein est appliqué successivement et à plusieurs reprises à tous les points de la carte considérés comme les pixels d'une image, l'application du masque de chanfrein à un point de la carte donnant une estimation de la distance de ce point par rapport au point source, par exécution d'un des traitements décrits relativement à la figure 3 ou à la figure 4. La première passe de balayage (étape 51 ) se fait dans l'ordre lexicographique, les pixels de l'image étant analysés ligne par ligne du haut vers le bas de l'image et de gauche à droite au sein d'une même ligne. La deuxième passe de balayage (étape 52) se fait dans l'ordre lexicographique inverse, les pixels de l'image étant toujours analysés ligne par ligne mais du bas vers le haut de l'image et de droite à gauche au sein d'une ligne. La troisième passe de balayage (étape 53) se fait dans l'ordre lexicographique transposé, les pixels de l'image étant analysés colonne par colonne de la gauche vers la droite de l'image et de haut en bas au sein d'une même colonne. La quatrième passe de balayage (étape 54) se fait dans l'ordre lexicographique transposé inverse, les pixels de l'image étant analysés colonne par colonne mais de la droite vers la gauche de l'image et de bas en haut au sein d'une même colonne. Ces quatre passes ( étapes 51 à 54) sont répétées tant que l'image de distance obtenue change. Pour ce faire, le contenu de l'image de distance obtenu est mémorisé (étape 56) après chaque série de quatre passes ( étapes 51 à 54) et comparé avec le contenu de l'image de distance obtenu à la série précédente (étape 55), la boucle n'étant brisée que lorsque la comparaison montre que le contenu de l'image distance ne varie plus. En théorie, deux passes de balayage selon l'ordre lexicographique et l'ordre lexicographique inverse peuvent suffire. Cependant la présence de zones interdites de passage de forme concave peut provoquer, dans le phénomène de propagation des distances, des angles morts renfermant des pixels pour lequel l'application du masque de chanfrein ne donne pas d'estimation distance. Pour diminuer ce risque d'angle mort, il y a lieu de faire varier la direction du phénomène de propagation distance en faisant varier la direction du balayage d'où le doublement des passes avec une transposition des ordres de balayage correspondant à une rotation de l'image de 90°. Pour une encore meilleure élimination des angles morts, on peut procéder à des séries de huit passes : - une première passe effectuée ligne par ligne de haut en bas de l'image, chaque ligne étant parcourue de gauche à droite, - une deuxième passe effectuée ligne par ligne de bas en haut de l'image, chaque ligne étant parcourue de droite à gauche, - une troisième passe effectuée colonne par colonne de gauche à droite de l'image, chaque colonne étant parcourue de haut en bas, - une quatrième passe effectuée colonne par colonne de droite à gauche de l'image, chaque colonne étant parcourue de bas en haut, - une cinquième passe effectuée ligne par ligne de haut en bas de l'image, chaque ligne étant parcourue de droite à gauche, - une sixième passe effectuée ligne par ligne de bas en haut de l'image, chaque ligne étant parcourue de gauche à droite, - une septième passe effectuée colonne par colonne de droite à gauche de l'image, chaque colonne étant parcourue de haut en bas, et - une huitième passe effectuée colonne par colonne de gauche à droite de l'image, chaque colonne étant parcourue de bas en haut. Il est possible d'introduire dans la série de passes de balayage d'autres types de passes de balayage déduits des passes précédentes en faisant jouer par les diagonales de l'image, les rôles joués précédemment par les lignes et colonnes de l'image. Cela revient à appliquer les passes de balayage décrites précédemment à une image tournée de 45e. De manière générale, plus les passes d'une série sont variées plus le risque d'angle mort diminue. (step 33), - calculate the foreseeable altitude A P of the aircraft after crossing the distance D P directly from the distance D P if the vertical profile imposed on the trajectory of the aircraft is defined as a function of the distance traveled PV (D P ) and implicitly takes into account the travel time or indirectly via the travel time if the vertical profile imposed on the trajectory of the aircraft is defined by an altitude change speed (step 34), - compare the foreseeable altitude A obtained with that A, j of the goal point P, j taken from the terrain elevation database increased by a safety margin Δ (step 35), - eliminate the distance propagated D if the foreseeable altitude A P is less than or equal to that A u of the goal point P PJ taken from the terrain elevation database and increased by the safety margin Δ (step 36), - if the foreseeable altitude A P is higher than that A of the goal point P , j increased by the safety margin Δ, read the distance D, j already assigned to the goal point considered Pjj (step 37) and compare it to the propagated distance D (step 38), - eliminate the propagated distance D P if it is greater than or equal to the distance D already assigned to the goal point considered P, and - replace the distance D already assigned to the target point considered Pj j , by the propagated distance D P if the latter is less (step 39). FIG. 4 illustrates the main steps of a variant of the processing carried out during the application of the chamfer mask to a target point Pj j to estimate its distance for an aircraft having a vertical profile of imposed trajectory. This variant differs in the manner of developing the foreseeable altitude A of the aircraft. It assumes that the foreseeable altitude for the aircraft at each point in the terrain elevation database calculated as a function of the vertical profile imposed on its trajectory and from the length of the path selected for the distance measurement n ' is not considered as a transient variable, which allows the processing described relative to FIG. 3, but is memorized, in the same way as the distance estimate. In this variant, the steps 30, 31 of reading the estimated distance D v from the neighboring point P and the altitude Aj j from the goal point Pj j in the terrain elevation database are completed by a step 40 of reading of the foreseeable altitude A PV for the aircraft at the neighboring point P, and the calculation of the foreseeable altitude A P is done (step 34 ′) by summation of the foreseeable altitude A PV at the neighboring point P and of the variation in altitude over the distance separating the neighboring point Pv from the target point Pjj due to the vertical profile imposed on the trajectory of the aircraft. The memorization of the foreseeable altitudes for the aircraft when it reaches the different points on the map which are accessible to it makes it possible to establish, by subtracting from them the altitudes of the points of the map drawn from the terrain elevation database, a map of the maximum possibilities of aircraft overflight heights representing the foreseeable deviations from the terrain in colored strata. Such a map makes it easier for the crew of the aircraft to choose a realistic trajectory with the best ground clearance. As indicated previously, the estimation of the distances of the different points of the map is done by applying a chamfer mask treatment such as those which have just been described relative to FIGS. 3 and 4, to all of the pixels of the image formed by the elements of the terrain elevation database belonging to the map, taken successively according to a regular scan comprising a minimum of two passes carried out in reverse orders. FIG. 5 illustrates the main steps of an example of a global process allowing the estimation of the distances of all the points of a relief map for a mobile subject to dynamic constraints. The first step 50 of the process is an initialization of the distances allocated to the different points of the map considered as the pixels of an image. This initialization of the distances consists, as indicated above, in assigning an infinite distance value, at least greater than the greatest measurable distance on the map, for all the points on the map considered as goal points, except considered as the source of all distances to which a zero distance value is assigned. This source point is chosen near the instantaneous position of the mobile on the map. The following steps 51 to 54 are regular scanning passes during which the chamfer mask is applied successively and repeatedly to all the points of the map considered as the pixels of an image, the application of the mask chamfer at a point on the map giving an estimate of the distance from this point to the source point, by performing one of the treatments described in relation to Figure 3 or Figure 4. The first scan pass (step 51) is done in lexicographic order, the pixels of the image being analyzed line by line from the top to the bottom of the image and from left to right within the same line. The second scanning pass (step 52) is done in reverse lexicographic order, the pixels of the image being always analyzed line by line but from the bottom to the top of the image and from right to left within a line. The third scanning pass (step 53) is carried out in the transposed lexicographic order, the pixels of the image being analyzed column by column of the left to right of the image and from top to bottom within the same column. The fourth scanning pass (step 54) is done in reverse transposed lexicographic order, the pixels of the image being analyzed column by column but from the right to the left of the image and from bottom to top within the same column. These four passes (steps 51 to 54) are repeated as long as the distance image obtained changes. To do this, the content of the distance image obtained is memorized (step 56) after each series of four passes (steps 51 to 54) and compared with the content of the distance image obtained from the previous series (step 55 ), the loop being broken only when the comparison shows that the content of the distance image no longer varies. In theory, two scanning passes in lexicographic order and reverse lexicographic order may suffice. However, the presence of concave zones of passage of concave shape can cause, in the phenomenon of propagation of distances, blind spots containing pixels for which the application of the chamfer mask does not give a distance estimate. To reduce this risk of blind spot, it is necessary to vary the direction of the distance propagation phenomenon by varying the direction of the scan hence the doubling of the passes with a transposition of the scan orders corresponding to a rotation of the image of 90 °. For an even better elimination of blind spots, we can proceed to series of eight passes: - a first pass made line by line from top to bottom of the image, each line being traversed from left to right, - a second pass performed line by line from bottom to top of the image, each line being traversed from right to left, - a third pass made column by column from left to right of the image, each column being traversed from top to bottom, - a fourth pass made column by column from right to left of the image, each column being traversed from bottom to top, - a fifth pass performed line by line from top to bottom of the image, each line being traversed from right to left, - a sixth pass made line by line from bottom to top of the image, each line being traversed from left to right, - a seventh pass carried out column by column from right to left of the image, each column being traversed from top to bottom, and - an eighth pass made column by column from left to right of the image, each column being traversed from bottom to top. It is possible to introduce into the series of scanning passes other types of scanning passes deduced from the previous passes by making the diagonals of the image play the roles previously played by the rows and columns of the image. This is equivalent to applying the scanning passes described above to an image rotated by 45 e . In general, the more varied the passes in a series, the less the risk of a blind spot.

Claims

REVENDICATIONS
1. Procédé d'estimation des distances des points d'une carte extraite d'une base de données d'élévation du terrain, pour un mobile soumis à des contraintes dynamiques lui interdisant certaines zones de la carte dites zones interdites de passage dont la configuration varie en fonction du temps de parcours du mobile ; la base de données d'élévation du terrain renfermant un ensemble de points repérés par une altitude, une latitude et une longitude maillant le terrain d'évolution du mobile ; ledit procédé mettant en œuvre une transformée de distance opérant par propagation sur l'image constituée par les éléments de la base de données d'élévation du terrain correspondant à la carte, disposés en lignes et colonnes par ordres de valeurs de longitude et de latitude ; la transformée de distance estimant les distances des différents points de l'image par rapport à un point source placé à proximité du mobile, en appliquant, par balayage, un masque de chanfrein aux différents points de l'image ; l'estimation de distance d'un point, par application du masque de chanfrein à ce point dit point but s'effectuant en répertoriant les différents trajets allant du point but au point source et passant par des points du voisinage du point but qui sont couverts par le masque de chanfrein et dont les distances au point source ont été préalablement estimées au cours du même balayage, en déterminant les longueurs des différents trajets répertoriés par sommation de la distance affectée au point de passage du voisinage et de sa distance au point but extraite du masque de chanfrein, en recherchant le trajet le plus court parmi les trajets répertoriés et en adoptant sa longueur comme estimation de la distance du point but ; une valeur de distance supérieure à la plus grande distance mesurable sur l'image étant initialement attribuée, en début de balayage, à tous les points de l'image sauf au point source, origine des mesures de distance, auquel est affectée une valeur de distance nulle ; ledit procédé étant caractérisé en ce que les longueurs des trajets répertoriés, lors de l'application du masque de chanfrein à un point but, en vue de la recherche du trajet le plus court, sont traduites en temps de parcours pour le mobile et en ce que les trajets répertoriés dont les temps de parcours pour le mobile sont tels que le point but appartiendrait à une zone interdite de passage au moment où le mobile l'atteindrait, sont exclus de la recherche du trajet le plus court. 1. Method for estimating the distances of the points of a map extracted from a terrain elevation database, for a mobile subject to dynamic constraints preventing it from certain areas of the map known as no-pass areas, the configuration of which varies according to the travel time of the mobile; the terrain elevation database containing a set of points identified by an altitude, a latitude and a longitude meshing the terrain of evolution of the mobile; said method implementing a distance transform operating by propagation on the image constituted by the elements of the terrain elevation database corresponding to the map, arranged in rows and columns in orders of longitude and latitude values; the distance transform estimating the distances of the different points of the image with respect to a source point placed near the mobile, by applying, by scanning, a chamfer mask to the different points of the image; the estimation of the distance from a point, by applying the chamfer mask to this point known as the goal point, by listing the different paths going from the goal point to the source point and passing through points in the vicinity of the goal point which are covered by the chamfer mask and the distances to the source point of which were previously estimated during the same scan, by determining the lengths of the different paths listed by summing the distance allocated to the neighborhood crossing point and its distance to the extracted goal point of the chamfer mask, by searching for the shortest path among the paths listed and adopting its length as an estimate of the distance from the goal point; a distance value greater than the largest measurable distance on the image being initially assigned, at the start of scanning, to all the points of the image except the source point, origin of the distance measurements, to which a distance value is assigned nothing ; said method being characterized in that the lengths of the paths listed, when applying the chamfer mask to a target point, with a view to finding the shortest path, are translated into travel times for the mobile and in this that the journeys listed whose journey times for the mobile are such that the goal point would belong to a prohibited area when the mobile reaches it, are excluded from the search for the shortest route.
2. Procédé selon la revendication 1 , appliqué à un aéronef ayant un profil vertical de vol à respecter déterminant l'évolution de son altitude instantanée, caractérisé en ce que, aux longueurs des trajets répertoriées lors de l'application du masque de chanfrein à un point but, sont associées les valeurs prévisibles des altitudes instantanées qu'aurait l'aéronef en atteignant le point but par ces trajets tout en respectant le profil vertical de vol imposé, et en ce que les trajets répertoriés associés à des valeurs prévisibles d'altitude inférieures ou égales à celle du point but donnée par la base de données d'élévation du terrain et augmentée d'une marge de protection sont exclus de la recherche du trajet le plus court,.2. Method according to claim 1, applied to an aircraft having a vertical flight profile to be observed determining the evolution of its instantaneous altitude, characterized in that, at the lengths of the paths listed during the application of the chamfer mask to a target point, are associated with the predictable values of the instantaneous altitudes that the aircraft would have when reaching the target point by these routes while respecting the imposed vertical flight profile, and in that the listed routes associated with predictable altitude values less than or equal to that of the goal point given by the terrain elevation database and increased by a protection margin are excluded from the search for the shortest path ,.
3. Procédé selon la revendication 2, caractérisé en ce que l'estimation de distance opérée par propagation sur l'image constituée des éléments de la base de données d'élévation du terrain correspondant à la carte est doublée d'une estimation de l'altitude prévisible pour l'aéronef au droit des différents points de l'image en supposant qu'il suive le trajet le plus court sélectionné pour l'estimation de distance et qu'il respecte le profil vertical de vol imposé.3. Method according to claim 2, characterized in that the estimate of distance operated by propagation on the image consisting of the elements of the terrain elevation database corresponding to the map is doubled by an estimate of the predictable altitude for the aircraft at the various points of the image, assuming that it follows the shortest path selected for the distance estimation and that it respects the vertical flight profile imposed.
4. Procédé selon la revendication 3, caractérisé en ce que les altitudes des différents points de la carte sont soustraites des estimations des altitudes prévisibles pour l'aéronef en ces points pour obtenir des écarts par rapport au sol.4. Method according to claim 3, characterized in that the altitudes of the different points of the map are subtracted from the estimates of the foreseeable altitudes for the aircraft at these points to obtain deviations from the ground.
5. Procédé selon la revendication 4, caractérisé en ce que les écarts par rapport au sol sont affichés sur la carte en strates de couleurs.5. Method according to claim 4, characterized in that the deviations from the ground are displayed on the map in color strata.
6. Procédé selon la revendication 1 , caractérisé en ce que la transformée de distance par propagation balaie les pixels de l'image constituée des éléments de la base de données d'élévation du terrain correspondant à la carte, en plusieurs passes successives selon des ordres différents. 6. Method according to claim 1, characterized in that the distance transform by propagation scans the pixels of the image made up of the elements of the terrain elevation database corresponding to the map, in several successive passes according to orders different.
7. Procédé selon la revendication 6, caractérisé en ce que la transformée de distance par propagation balaie les pixels de l'image constituée des éléments de la base de données d'élévation du terrain appartenant à la carte, en plusieurs passes successives selon des ordres différents et de manière répétée jusqu'à ce que les estimations de distance obtenues se stabilisent.7. Method according to claim 6, characterized in that the distance transform by propagation scans the pixels of the image consisting of the elements of the terrain elevation database belonging to the map, in several successive passes according to orders repeatedly until the distance estimates obtained stabilize.
8. Procédé selon la revendication 6, caractérisé en ce que la transformée de distance par propagation balaie les pixels de l'image constituée des éléments de la base de données d'élévation du terrain correspondant à la carte, en plusieurs passes successives selon des ordres différents dont l'ordre lexicographique, l'ordre lexicographique inverse, l'ordre lexicographique transposé et l'ordre lexicographique transposé inverse. 8. Method according to claim 6, characterized in that the distance transform by propagation scans the pixels of the image consisting of the elements of the terrain elevation database corresponding to the map, in several successive passes according to orders different including lexicographic order, reverse lexicographic order, transposed lexicographic order and reverse transposed lexicographic order.
9. Procédé selon la revendication 6, caractérisé en ce que la transformée de distance par propagation balaie les pixels de l'image constituée des éléments de la base de données d'élévation du terrain correspondant à la carte, en une série de quatre passes répétée jusqu'à stabilisation des estimations de distances : - une première passe effectuée ligne par ligne de haut en bas de l'image, chaque ligne étant parcourue de gauche à droite, - une deuxième passe effectuée ligne par ligne de bas en haut de l'image, chaque ligne étant parcourue de droite à gauche, - une troisième passe effectuée colonne par colonne de gauche à droite de l'image, chaque colonne étant parcourue de haut en bas, et - une quatrième passe effectuée colonne par colonne de droite à gauche de l'image, chaque colonne étant parcourue de bas en haut.9. Method according to claim 6, characterized in that the distance transform by propagation scans the pixels of the image made up of the elements of the terrain elevation database corresponding to the map, in a series of four repeated passes until the distance estimates have stabilized: - a first pass made line by line from top to bottom of the image, each line being traversed from left to right, - a second pass made line by line from bottom to top of the image, each line being traversed from right to left, - a third pass carried out column by column from left to right of the image, each column being traversed from top to bottom, and - a fourth pass carried out column by column from right to left of the image, each column being traversed from bottom to top.
10. Procédé selon la revendication 6, caractérisé en ce que la transformée de distance par propagation balaie les pixels de l'image constituée des éléments de la base de données d'élévation du terrain correspondant à la carte, en une série de huit passes répétée jusqu'à stabilisation des estimations de distances : - une première passe effectuée ligne par ligne de haut en bas de l'image, chaque ligne étant parcourue de gauche à droite, - une deuxième passe effectuée ligne par ligne de bas en haut de l'image, chaque ligne étant parcourue de droite à gauche, - une troisième passe effectuée colonne par colonne de gauche à droite de l'image, chaque colonne étant parcourue de haut en bas, - une quatrième passe effectuée colonne par colonne de droite à gauche de l'image, chaque colonne étant parcourue de bas en haut, - une cinquième passe effectuée ligne par ligne de haut en bas de l'image, chaque ligne étant parcourue de droite à gauche, - une sixième passe effectuée ligne par ligne de bas en haut de l'image, chaque ligne étant parcourue de gauche à droite, - une septième passe effectuée colonne par colonne de droite à gauche de l'image, chaque colonne étant parcourue de haut en bas, et - une huitième passe effectuée colonne par colonne de gauche à droite de l'image, chaque colonne étant parcourue de bas en haut.10. Method according to claim 6, characterized in that the distance transform by propagation scans the pixels of the image made up of the elements of the terrain elevation database corresponding to the map, in a series of eight repeated passes until the distance estimates have stabilized: - a first pass made line by line from top to bottom of the image, each line being traversed from left to right, - a second pass made line by line from bottom to top of the image, each line being traversed from right to left, - a third pass made column by column from left to right of the image, each column being traversed from top to bottom, - a fourth pass carried out column by column from right to left of the image, each column being traversed by bottom to top, - a fifth pass made line by line from top to bottom of the image, each line being traversed from right to left, - a sixth pass performed line by line from bottom to top of the image, each line being traversed from left to right, - a seventh pass carried out column by column from right to left of the image, each column being traversed from top to bottom, and - an eighth pass carried out column by column from left to right of the image, cha that column being traversed from bottom to top.
11. Procédé selon la revendication 6, caractérisé en ce que la transformée de distance par propagation balaie les pixels de l'image constituée des éléments de la base de données d'élévation du terrain appartenant à la carte, en plusieurs passes successives selon des ordres différents dont certains consistent en un balayage de l'image par diagonales, d'un bord à l'autre et, au sein d'une diagonale, d'une extrémité à l'autre. 11. Method according to claim 6, characterized in that the distance transform by propagation scans the pixels of the image consisting of the elements of the terrain elevation database belonging to the map, in several successive passes according to orders different, some of which consist of scanning the image diagonally, from one edge to the other and, within a diagonal, from one end to the other.
EP04766733A 2003-09-26 2004-09-08 Distance-estimation method for a travelling object subjected to dynamic path constraints Withdrawn EP1664677A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0311320A FR2860292B1 (en) 2003-09-26 2003-09-26 DISTANCE ESTIMATING METHOD FOR A MOBILE SUBJECT TO DYNAMIC TRAVEL CONSTRAINTS
PCT/EP2004/052078 WO2005031262A1 (en) 2003-09-26 2004-09-08 Distance-estimation method for a travelling object subjected to dynamic path constraints

Publications (1)

Publication Number Publication Date
EP1664677A1 true EP1664677A1 (en) 2006-06-07

Family

ID=34307206

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04766733A Withdrawn EP1664677A1 (en) 2003-09-26 2004-09-08 Distance-estimation method for a travelling object subjected to dynamic path constraints

Country Status (4)

Country Link
US (1) US7739035B2 (en)
EP (1) EP1664677A1 (en)
FR (1) FR2860292B1 (en)
WO (1) WO2005031262A1 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2861478B1 (en) * 2003-10-24 2006-04-14 Thales Sa METHOD FOR DETERMINING THE OPTIMAL COEFFICIENTS OF A CHAMFER MASK FOR REMOTE TRANSFORMATION
FR2864312B1 (en) 2003-12-19 2006-07-14 Thales Sa SIDE MANEUVERABLE CARD FOR MOBILE AND METHOD OF OBTAINING SAME
FR2867559B1 (en) * 2004-03-12 2006-05-26 Thales Sa TOPOGRAPHIC MAP DISPLAY DEVICE FOR AIRCRAFT
FR2867851B1 (en) * 2004-03-19 2006-05-26 Thales Sa METHOD OF MAPPING, ON A CARD, DIFFICULT POINTS OF ACCESS
FR2868835B1 (en) 2004-04-09 2006-11-17 Thales Sa METHOD FOR SELECTING, FOR AN AIRCRAFT, A POINT OF ACCESS TO A FREE ZONE OF LATERAL EVOLUTION
FR2869106B1 (en) 2004-04-20 2006-06-23 Thales Sa AIRCRAFT DISTANCE ESTIMATING METHOD WITH ACCOUNTANCE OF AIR NAVIGATION CONSTRAINTS
FR2875004B1 (en) 2004-09-07 2007-02-16 Thales Sa RISK SIGNALING DEVICE
US8150617B2 (en) 2004-10-25 2012-04-03 A9.Com, Inc. System and method for displaying location-specific images on a mobile device
FR2877721B1 (en) 2004-11-10 2007-01-19 Thales Sa CARTOGRAPHIC REPRESENTATION DEVICE FOR MINIMUM VERTICAL SPEEDS
FR2891644B1 (en) * 2005-09-30 2011-03-11 Thales Sa METHOD AND DEVICE FOR AIDING THE MOVEMENT OF A MOBILE TO THE SURFACE OF AN AIRPORT.
FR2891645B1 (en) 2005-09-30 2007-12-14 Thales Sa METHOD AND DEVICE FOR EVALUATING THE LICE OF THE SITUATION OF A MOBILE ON THE SURFACE OF AN AIRPORT.
FR2892192B1 (en) * 2005-10-14 2008-01-25 Thales Sa METHOD FOR AIDING NAVIGATION FOR AN AIRCRAFT IN EMERGENCY SITUATION
FR2893146B1 (en) 2005-11-10 2008-01-25 Thales Sa TERRAIN AVOIDANCE SYSTEM FOR AIRCRAFT AIRCRAFT
FR2894367B1 (en) 2005-12-07 2008-02-29 Thales Sa METHOD FOR DETERMINING THE HORIZONTAL PROFILE OF A FLIGHT PLAN RESPECTING A VERTICAL FLIGHT PROFILE IMPOSE
FR2895098B1 (en) 2005-12-20 2008-06-20 Thales Sa ON-BOARD AIRCRAFT COLLISION PREVENTION SYSTEM WITH FIELD
FR2898675B1 (en) * 2006-03-14 2008-05-30 Thales Sa METHOD FOR IMPROVING AERONAUTICAL SAFETY RELATING TO AIR / GROUND COMMUNICATIONS AND THE AIRCRAFT ENVIRONMENT
FR2905756B1 (en) 2006-09-12 2009-11-27 Thales Sa METHOD AND APPARATUS FOR AIRCRAFT, FOR COLLISION EVACUATION WITH FIELD
FR2906921B1 (en) * 2006-10-10 2010-08-13 Thales Sa METHOD FOR FORMING A 3D EMERGENCY TRACK FOR AN AIRCRAFT AND DEVICE FOR IMPLEMENTING THE SAME
FR2909782A1 (en) * 2006-12-08 2008-06-13 Thales Sa METHOD FOR SELECTIVELY FILTERING AN AIRCRAFT FLIGHT PLAN BASED ON OPERATIONAL NEEDS
FR2910640B1 (en) * 2006-12-21 2009-03-06 Thales Sa DISTANCE ESTIMATING METHOD FOR A MOBILE HAVING A VERTICAL PROFILE OF CONSTRAINT TRAJECTORY
FR2913800B1 (en) 2007-03-13 2010-08-20 Thales Sa DEVICES AND METHODS FOR FILTERING FIELD ANTI-COLLISION ALERTS AND OBSTACLES FOR AN AIRCRAFT
FR2913781B1 (en) 2007-03-13 2009-04-24 Thales Sa METHOD FOR REDUCING ANTICOLLISION ALERT NUTRIENTS WITH OBSTACLES FOR AN AIRCRAFT
FR2915611B1 (en) 2007-04-25 2010-06-11 Thales Sa AIDING SYSTEM FOR AN AIRCRAFT
FR2920580B1 (en) * 2007-08-31 2010-09-03 Thales Sa METHOD FOR SIMPLIFYING THE DISPLAY OF STATIONARY ELEMENTS OF AN EMBEDDED DATA BASE
FR2931265B1 (en) * 2008-05-13 2015-12-11 Thales Sa METHOD AND DEVICE FOR AIDING THE MAINTENANCE OF A SYSTEM
BRPI0912689B1 (en) 2008-05-14 2019-07-09 Elbit Systems Ltd. APPARATUS AND METHOD FOR EARLY LAND PREVENTION (FLTA) OBSERVATION ON A AIRCRAFT, METHOD FOR A PLANNING PHASE, METHOD FOR EARLY OBSERVATION LAND (FLTA) METHOD
FR2932306B1 (en) * 2008-06-10 2010-08-20 Thales Sa METHOD AND DEVICE FOR AIDING NAVIGATION FOR AN AIRCRAFT WITH RESPECT TO OBSTACLES
FR2932279B1 (en) 2008-06-10 2011-08-19 Thales Sa DEVICE AND METHOD FOR MONITORING OBSTRUCTIONS IN THE ENVIRONMENT CLOSE TO AN AIRCRAFT.
FR2935481B1 (en) 2008-09-02 2011-02-11 Thales Sa METHOD FOR MONITORING ATMOSPHERIC AREAS FOR AN AIRCRAFT
FR2967285B1 (en) * 2010-11-05 2013-07-19 Rockwell Collins France METHOD AND DEVICE FOR DETECTING POTENTIAL COLLISIONS THAT CAN BE IMPLEMENTED IN AN AIRCRAFT
US20160140851A1 (en) * 2014-11-18 2016-05-19 Ziv LEVY Systems and methods for drone navigation
IL239148A0 (en) 2015-06-02 2015-11-30 Elbit Systems Ltd Method and system for calculating and presenting terrain-clearance reachable regions
CN112036376A (en) * 2020-10-01 2020-12-04 深圳奥比中光科技有限公司 Method and device for detecting infrared image and depth image and face recognition system
CN117609748A (en) * 2024-01-17 2024-02-27 沈阳知友网络科技有限公司 System and method for evaluating reasoning effect of medical image key point detection model

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4646244A (en) * 1984-02-02 1987-02-24 Sundstrand Data Control, Inc. Terrain advisory system
FR2586120B1 (en) * 1985-08-07 1987-12-04 Armines METHOD AND DEVICE FOR SEQUENTIAL IMAGE TRANSFORMATION
JPH01298476A (en) * 1988-05-27 1989-12-01 Ezel Inc Method for processing picture
US5305395A (en) * 1990-06-08 1994-04-19 Xerox Corporation Exhaustive hierarchical near neighbor operations on an image
US5394325A (en) * 1993-04-07 1995-02-28 Exxon Production Research Company Robust, efficient three-dimensional finite-difference traveltime calculations
EP0750238B1 (en) * 1995-06-20 2000-03-01 Honeywell Inc. Integrated ground collision avoidance system
US5839090A (en) * 1995-11-22 1998-11-17 Landmark Graphics Corporation Trendform gridding method using distance
FR2747492B1 (en) * 1996-04-15 1998-06-05 Dassault Electronique TERRAIN ANTI-COLLISION DEVICE FOR AIRCRAFT WITH TURN PREDICTION
US5861920A (en) * 1996-11-08 1999-01-19 Hughes Electronics Corporation Hierarchical low latency video compression
US6084989A (en) * 1996-11-15 2000-07-04 Lockheed Martin Corporation System and method for automatically determining the position of landmarks in digitized images derived from a satellite-based imaging system
US5838262A (en) * 1996-12-19 1998-11-17 Sikorsky Aircraft Corporation Aircraft virtual image display system and method for providing a real-time perspective threat coverage display
DE69910836T2 (en) * 1998-12-11 2004-07-08 Alliedsignal Inc. METHOD AND DEVICE FOR AUTOMATIC SELECTION OF LAND WEBS
US6707394B2 (en) * 1999-02-01 2004-03-16 Honeywell, Inc. Apparatus, method, and computer program product for generating terrain clearance floor envelopes about a selected runway
US6262679B1 (en) * 1999-04-08 2001-07-17 Honeywell International Inc. Midair collision avoidance system
US6469664B1 (en) * 1999-10-05 2002-10-22 Honeywell International Inc. Method, apparatus, and computer program products for alerting surface vessels to hazardous conditions
US6563509B1 (en) * 2000-02-25 2003-05-13 Adobe Systems Incorporated Seeding map having intermediate seed values
US6748325B1 (en) * 2001-12-07 2004-06-08 Iwao Fujisaki Navigation system
US7120297B2 (en) * 2002-04-25 2006-10-10 Microsoft Corporation Segmented layered image system
FR2841999B1 (en) * 2002-07-05 2004-09-10 Thales Sa OBJECT-ORIENTED NETWORKING SYSTEM OF ON-BOARD AERONAUTICAL EQUIPMENT
US7098809B2 (en) * 2003-02-18 2006-08-29 Honeywell International, Inc. Display methodology for encoding simultaneous absolute and relative altitude terrain data
US6873269B2 (en) * 2003-05-27 2005-03-29 Honeywell International Inc. Embedded free flight obstacle avoidance system
DE102004026782A1 (en) * 2004-06-02 2005-12-29 Infineon Technologies Ag Method and apparatus for computer-aided motion estimation in at least two temporally successive digital images, computer-readable storage medium and computer program element
US7545979B2 (en) * 2005-04-12 2009-06-09 General Electric Company Method and system for automatically segmenting organs from three dimensional computed tomography images
US8013870B2 (en) * 2006-09-25 2011-09-06 Adobe Systems Incorporated Image masks generated from local color models

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005031262A1 *

Also Published As

Publication number Publication date
US20070031007A1 (en) 2007-02-08
WO2005031262A1 (en) 2005-04-07
FR2860292A1 (en) 2005-04-01
US7739035B2 (en) 2010-06-15
FR2860292B1 (en) 2005-12-02

Similar Documents

Publication Publication Date Title
WO2005031262A1 (en) Distance-estimation method for a travelling object subjected to dynamic path constraints
FR2910640A1 (en) DISTANCE ESTIMATING METHOD FOR A MOBILE HAVING A VERTICAL PROFILE OF CONSTRAINT TRAJECTORY
WO2005114109A1 (en) Method for estimating an aircraft distance taking into account air navigation constraints
EP0732676B1 (en) Apparatus for aircraft collision avoidance particularly with the ground
WO2006051031A1 (en) Device for cartographically representing minimum vertical speeds
WO2005100912A1 (en) Method for locating difficult access points on a map
WO2006029935A1 (en) Risk-warning device
WO2006032549A2 (en) Device and method for signalling lateral maneuver margins
WO2005095888A1 (en) Curvilinear distance estimation method for a moving vehicle with limited maneuverability
FR2892192A1 (en) METHOD FOR AIDING NAVIGATION FOR AN AIRCRAFT IN EMERGENCY SITUATION
FR2689668A1 (en) Aircraft ground collision avoidance method and device
FR2864312A1 (en) Aircraft navigation chart for terrain awareness and warning system, represents contours of free lateral movement regions of aircraft, within movement zone, using controlling capacities of aircraft, where zone is divided into three regions
FR2881862A1 (en) METHOD AND DEVICE FOR DETERMINING ROUTE WITH POINTS OF INTEREST
EP4256274A1 (en) Method and device for generating the path of a moving apparatus within a predetermined time constraint
EP3933810B1 (en) Method for determining the diversion trajectories of an aircraft
EP2909580B1 (en) Navigation system and method of a mobile vehicle adapted to determine and to display a security navigation zone
EP2491424B1 (en) Method for simultaneously locating and mapping via resilient non-linear filtering
WO2005050135A1 (en) Method for determining a trajectory having a minimum length in the presence of an obstacle
EP2957866B1 (en) Method for locating a device which is moved within a three-dimensional space
WO2015086587A1 (en) Method and device for aligning an inertial unit
WO2021228617A1 (en) Method and system for generating a probability map for the presence of a transmitter
WO2022017973A1 (en) Method for determining valley areas accessible by an aircraft
EP4121718A1 (en) Method for calculating a path, associated computer program product, storage medium and device
EP3640841A1 (en) Electronic device and method for monitoring a scene via a set of electronic sensor(s), associated computer program

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080227