EP1664306A2 - Secretion of proteins from yeasts - Google Patents

Secretion of proteins from yeasts

Info

Publication number
EP1664306A2
EP1664306A2 EP04765253A EP04765253A EP1664306A2 EP 1664306 A2 EP1664306 A2 EP 1664306A2 EP 04765253 A EP04765253 A EP 04765253A EP 04765253 A EP04765253 A EP 04765253A EP 1664306 A2 EP1664306 A2 EP 1664306A2
Authority
EP
European Patent Office
Prior art keywords
sequence
pheromone
seq
nucleic acid
shuttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04765253A
Other languages
German (de)
French (fr)
Inventor
Kai Ostermann
Gerhard RÖDEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1664306A2 publication Critical patent/EP1664306A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces

Definitions

  • the present invention relates to expression constructs comprising the coding nucleic acid sequence for a shuttle peptide construct processable by yeast cells; corresponding expression vectors containing such constructs; processes carried out with the aid thereof for the recombinant production of target proteins; hosts transformed with it; Shuttle peptides and nucleic acid sequences coding therefor; Nucleic acid sequences coding for such shuttle peptides, fused with a foreign protein; Hydrophobin proteins, which were produced using such shuttle peptides, and the use of hydrophobins for coating objects, such as e.g. Leather.
  • yeasts as hosts for heterologous protein expression are widely used. The reason for this is that yeast has several advantages as an expression system. Compared to bacteria and other eukaryotic cells, they can grow in higher density and have the ability for protein glycosylation and post-translational modification. In addition, the products produced and secreted by yeasts can be purified in a simple manner because the yeasts have high resistance to cell lysis and small amounts of foreign protein are usually found in the growth medium. In addition, yeasts can grow faster than other eukaryotic cells in high density on inexpensive nutrient media.
  • an expression vector for the expression of heterologous proteins in yeast which, flanked by suitable transcription and translation start or termination sequences, comprises the coding sequence for a hybrid precursor polypeptide which comprises the signal peptide as elements and the leader peptide of a protein secreted by yeasts and a heterologous protein flanked by N-terminal and C-terminal propeptide sequences of the heterologous protein.
  • Hydrophobins are small, approximately 100 amino acid residues, cysteine-rich proteins with interesting technical properties. You can make hydrophobic surfaces hydrophilic. They make hydrophilic surfaces hydrophobic.
  • hydrophobins from edible mushrooms (cf. SEQ ID NO: 21 and 22).
  • WO-A-00/58342 relates to the purification of hydrophobin-containing fusion proteins by phase extraction.
  • WO-A-01/57066 describes stabilization, solubilization and the associated better use of hydrophobins by sulfite treatment.
  • WO-A-01/57076 describes the purification of hydrophobin by adsorption on Teflon beads and the elution by means of a detergent such as Tween at low temperatures.
  • WO-A-01/57528 describes the fixation of hydrophobins on surfaces by the use of tween and temperatures up to 85 degrees Celsius.
  • WO-A-01/74864 describes atypical hydrophobins (only one disulfide bridge) with the names RdIA and RdlB (cf. SEQ ID NO: 19 and 20) from filamentous bacteria, in particular Streptomyces sp.
  • the hydrophobin is used for the surface treatment of various objects such as windows, contact lenses and vehicle bodies. It is also proposed to produce the proteins described there in a recombinant host that releases the proteins into the medium. After detachment The hydrophobin-containing medium should be suitable for surface coating of the host. Experimental evidence for actual expression and secretion is not provided.
  • the object of the present invention is to provide agents which make it possible to secrete expressed homologous or, in particular, heterologous proteins expressed in yeast, in particular Schizosaccharomyces pombe, from the yeast cells into the surrounding medium.
  • means should be provided which allow the secretion of recombinantly produced hydrophobin from the host cell.
  • Sig signal peptide
  • SP shuttle peptide
  • hydrophobin DewA protein protein according to SEQ ID NO: 14 with coding sequence according to SEQ ID NO: 13; preprotein with signal sequence: SEQ ID NO: 16 with coding nucleic acid sequence according to SEQ ID NO: 15
  • This protein is a class I representative of hydrophobins, i.e. of secreted fungal envelope proteins with the ability to self-assemble.
  • the DNA sequence coding for the target protein (DewA) (SEQ ID NO: 13) is at the 3'-terminal end for a peptide pheromone from S. pombe (P factor; amino acid sequence according to SEQ ID NO: 6 for mature P-factor) coding DNA sequence (SEQ ID NO: 5 for mature P-factor) fused.
  • the resulting fusion protein contains all the signal sequences necessary for the secretion of the pheromone and the target protein fused to it, in particular the cleavable signal peptide (SEQ ID NO: 4).
  • the fusion protein is processed proteolytically.
  • the pheromone (P factor) (SEQ ID NO: 6) and the target protein (hydrophobin; SEQ ID NO: 14) are secreted separately into the medium.
  • the finding according to the invention is surprising in that the regulatory elements of the P-factor preprotein (N-terminal to the mature pheromone) are obviously not sufficient to control the secretion of the target protein by the yeast cells. Only the use of a construct in which an additional, co-secreting protein component (the mature pheromone) is processably connected upstream of the target protein to be secreted enables the desired secretion of the target protein into the culture medium.
  • secrete is a protein which is expressed intracellularly by a host cell, in particular of yeasts, and is excreted from the cell, preferably into the surrounding medium, through the cell membrane via the cell's own mechanisms.
  • Protein precursor in its originally expressed form, such as a preprotein, with N- and / or C-terminal peptide sequences that are no longer present in the mature processed protein
  • proteolytic processes in and / or outside the host cell.
  • a "processable linkage" is given when individual protein sections in a protein to be processed are linked via peptide bonds which can be cleaved by a proteolytic enzyme of the host cell.
  • the “processing” can take place N-terminally and optionally also C-terminally to the sequence of the mature, processed protein (target protein).
  • target protein A “homologous” target protein, although originally expressed in the host used according to the invention, is therefore a host's own protein, but is secreted by the host cells due to the transformation of the host with an expression construct according to the invention.
  • a “heterologous” target protein is not originally expressed in the host used according to the invention, is therefore not a host protein, but is secreted by the host cells due to the transformation of the host with the expression construct according to the invention.
  • a “shuttle peptide” is part of a “shuttle peptide construct” that can be processed in the host cell used according to the invention. Together with one or more processable regulative C- and / or N-terminal, preferably N-terminal, associated peptide fragments, such as signal sequences, leader sequences, it forms the shuttle peptide construct.
  • the shuttle peptide is e.g. to the signal peptide a polypeptide secreted by the host cell.
  • the regulatory elements are preferably processed intracellularly.
  • the shuttle peptide can also be secreted if it is fused, preferably C-terminally, to a target protein in a processable manner. This C-terminal processing is preferably carried out, i.e. Cleavage of the target protein, proteolytic during secretion, e.g. during passage through the host cell envelope or in extracellular space, e.g. in the surrounding culture medium, by the cell's own proteases.
  • An “expression construct” or an “expression cassette” according to the present invention comprises, operatively linked, to the coding nucleic acid sequence of a processable shuttle peptide construct according to the above definition, the start and termination signals necessary for controlling expression in a special host system, such as in particular yeast cells Transcription and, if necessary, translation.
  • the expression construct in particular comprises binding sites for transcription factors. 5'- Upstream of the coding sequence is a constitutive or inducible, native or heterologous, natural or synthetic promoter operable in the host cell.
  • the expression construct also includes a number of restriction enzyme sites, e.g. B. those for inserting the construct into an expression vector.
  • the expression construct can include a gene for a selectable marker.
  • An “expression vector” describes a construct that can be obtained by inserting an expression cassette according to the invention into a replicon, such as, for example, into a plasmid, cosmid or a virus.
  • a replicon such as, for example, into a plasmid, cosmid or a virus.
  • Such a vector is capable of autonomous replication or integration into the host genome and contains the necessary ones Control sequences for controlling transcription and optionally translation of the coding nucleic acid sequences according to the invention for a processable shuttle peptide construct as defined above.
  • a first subject of the invention relates to an expression construct comprising the coding nucleic acid sequence for a shuttle peptide construct of the general formula which can be processed by yeast cells
  • telomere sequences for a) a signal peptide (Sig) in the 5'-3 'direction, processably linked to b) at least one shuttle peptide (SP) that can be secreted by the yeast cells; and optionally one or more nucleic acid sequences which promote processing and / or secretion, 5 'or 3' terminal to the coding signal peptide sequence.
  • Sig signal peptide
  • SP shuttle peptide
  • the coding sequences for SP and Sig are in the same reading frame and, in addition, a processable sequence between the C-terminus of Sig and the N-terminus of SP is formed during translation.
  • This processable sequence can be, for example, an artificially introduced, proteolytically cleavable natural or synthetic adapter sequence. However, this is preferably part of the C-terminus of Sig or N-terminus of SP.
  • the adapter sequence can be processed in such a way that the split sequence can be found in whole or in part at the C-terminus of Sig or the N-terminus of SP. The latter is possible as long as this does not significantly impair, in particular not prevent, the ability to secrete SP.
  • the invention relates to such expression constructs which code for a processable shuttle peptide construct which is derived from a polypeptide which is processed by yeasts in the broadest sense.
  • yeasts selected from Ascomycetes.
  • Preferred yeasts are selected from those of the Class of the Archiascomycetes, the order of the Schizosaccharomycetales and particularly preferably selected from yeasts of the genus Schizosaccharomyces, such as S. pombe.
  • the processable shuttle peptide construct is derived in particular from a pheromone preprotein from a yeast, the pheromone being produced from the preprotein by N- and C-terminal processing.
  • the pheromone N-terminal preferably has a polypeptide which can be split off by processing and which in particular comprises the elements required for processing and / or secretion of the preprotein, such as signal peptide and possibly leader peptide, and the required protease interfaces.
  • Mushroom pheromones are known and e.g. described both for basidiomycetes such as Ustilago maydis (Urban, M., Kahmann, R. and Bolker, M. (1996)
  • Three subfamilies of pheromone and reeeptor genes generate mutiple B mating speeifities in the mushroom Coprineus cinereus (Genetics 154 ( 3): 1115-1123)) and ascomycetes such as Schizosaccharomyces pombe (Imai, Y.
  • Pheromones suitable according to the invention are relatively small peptides (such as 5 to 40 or 8 to 30 amino acids). They usually do not show significant homology in the primary sequence. They are formed as preproteins, processed proteolytically and released into the culture medium.
  • pheromones or corresponding pre-proteins examples include the so-called P and M factors or their pre-proteins from S. pombe. (cf.Imai, Y. and Yamamoto, M. (1995) The fission yeast mating pheromone P-factor: its molecular strueture, gene strueture, and ability to induce gene expression and G1 arrest in the mating partner (Genes Dev 8 (3 ): 328-338), Davey, J.
  • the P-factor preprotein has, for example, a DNA sequence according to SEQ ID NO: 9 and a protein sequence according to SEQ ID NO: 10.
  • the preprotein comprises an N-terminal signal peptide sequence bridged with four successive pheromone peptide sequences which can be separated by processing (cf. FIG. 3).
  • the processable shuttle peptide construct is designed such that it contains a signal polypeptide (Sig) which is processably linked to the N-terminal end of a C-terminally processable pheromone polypeptide (Pher).
  • Sig signal polypeptide
  • Pher C-terminally processable pheromone polypeptide
  • the signal polypeptide comprises or is identical to the proteolytically cleavable native signal polypeptide (e.g. SEQ ID NO: 4 encoded by SEQ ID NO: 3) of the pheromone preprotein.
  • the C-terminal processed pheromone polypeptide comprises a C-terminal protease interface.
  • the expression construct preferably further comprises the coding nucleic acid sequence for a homologous or heterologous target protein (Targ), processably linked to the C-terminus of the shuttle peptide construct (Sig-SP).
  • the invention preferably relates to expression constructs of the type described above, comprising the coding nucleic acid sequence for a fusion protein of the general formula which can be processed by yeast cells
  • L1 and L2 stand for processable linkers or adapter sequences and n and m stand independently for 0 or 1. However, n is preferably 1 and m is O.
  • L1 and L2 can be natural or synthetic linkers. They comprise at least one proteolytically processable peptide sequence. If necessary, with L1 and / or L2, e.g. the processing, secreting, transcription and / or translation-promoting effector functions are associated.
  • the coding nucleic acid sequence for the processable shuttle peptide construct being a sequence coding for a signal polypeptide (Sig) according to SEQ ID NO: 3 or a functional equivalent thereof, operatively linked to that for the mature P factor pheromone (Pher) encoding nucleic acid sequence according to SEQ ID NO: 5 or a functional equivalent thereof.
  • Sig signal polypeptide
  • Pher mature P factor pheromone
  • the linker L2 is preferably not present.
  • the linker L1 is preferably provided and comprises the coding sequence for a polypeptide according to amino acid residues 21 to 30 in SEQ ID NO: 10.
  • L1 bridges the signal polypeptide with the first pheromone building block (positions 31 to 57 in SEQ ID NO : 10) the prehormone.
  • the C-terminal end of L1 corresponds to a recognition sequence of the protease required for the proteolytic processing.
  • the coding nucleic acid sequence for the processable shuttle peptide construct comprises a sequence according to SEQ ID NO: 1.
  • the same procedure can also be used with the help of the M factor - the second pheromone occurring in S. pombe - and applicable to the expression of any homo- and heterologous target proteins (target proteins).
  • Genomically there are three genes (mfmf, SEQ ID NO: 42; mfm2 SEQ ID NO: 45; and mfm3 + , SEQ ID NO: 48) which each encode the M factor, the pheromone of the cells with the minus pairing type.
  • a preprotein (SEQ ID NO: 43, 46 and 49) is first formed from each gene, which is processed as part of the secretion.
  • the M factor (YTPKVPYMC; SEQ ID NO: 51), encoded by SEQ ID NO: 44, 47 and 50) is released into the medium as a mature pheromone (cf. FIG. 9).
  • shuttle peptide constructs suitable according to the invention could therefore be derived from the coding sequences according to SEQ ID NO: 42, 45 or 48, which code for M factor signal peptide, functionally linked to an M factor pheromone.
  • Non-limiting examples of corresponding coding shuttle peptide sequences include e.g.
  • Functional equivalents can contain the sequence segments located 5 'upstream from the coding sequence of the mature M factor (SEQ ID NO: 44, 47 or 50) unchanged or modified (e.g. by deletion of one or more nucleic acid residues), and thus for an in encode its amino acid sequence modified shuttle peptide, which functionally links the mature M factor peptide sequence with a, eg C-terminal shortened signal sequence section includes.
  • a target protein (target) expressed according to the invention can be derived from any prokaryotic or eukaryotic organism, in particular humans, animals or yeasts, as long as it can be expressed by the host cell in the manner according to the invention as a component of a fusion protein with the shuttle peptide (SP) and is processable.
  • the secreted and processed product can be therapeutically useful or have other advantageous application properties.
  • therapeutically useful proteins are immunoglobulins, Peptide hormones, growth factors, lymphokines, protease inhibitors and the like. Hydrophobins are particularly worthy of mention as an example of target proteins with other properties which are of interest in terms of application technology.
  • the target protein is a hydrophobin, in particular a hydrophobin of class I.
  • hydrophobins are relatively small (100 + 25 amino acids) moderately hydrophobic proteins with a conserved motif of 8 cysteines (X -CX 2-38 5- 9-CCX 11-39 -CX 8- 23 -CX 5-9 -CCX. 6 18 -CX 2- ⁇ 3 ). Hydrophobins can assemble at hydrophilic-hydrophobic interfaces to protein films. Such aggregates of class I hydrophobins are insoluble in SDS, while aggregates of class II hydrophobins are soluble in SDS (Wessels, JGH (1997) Hydrophobins: Proteins that change the nature of the fungal surface. Adv Microb Physiol 38: 1-45) ,
  • Hydrophobins which can be used according to the invention are derived in particular from fungi, e.g. from Ascomycetes, such as those of the genus Aspergillus, in particular A. nidulans.
  • Useful hydrophobins are also known from the prior art mentioned above and are not restricted to those from fungi.
  • Non-limiting examples of useful hydrophobins are selected from SEQ ID NO: 14 (DewA), SEQ ID NO: 19 (RdIA) SEQ ID NO: 20 (RdlB) SEQ ID NO: 21 (HYP1) SEQ ID NO: 22 (HYP4) and SEQ ID NO: 56 (RodA).
  • the RodA protein together with the DewA protein is part of the outer spore shell of A. nidulans.
  • the invention also relates to expression vectors comprising, in operative linkage with at least one regulatory nucleic acid sequence, an expression construct as defined above.
  • the invention also relates to recombinant microorganisms which contain, if appropriate stably integrated into the host genome, at least one expression vector or an expression construct as defined above.
  • a “recombinant microorganism in the sense of the present invention comprises at least one expression vector according to the invention or an expression construct according to the invention and is derived from yeasts in the broadest sense.
  • the yeasts are derived from Ascomycetes.
  • Preferred yeasts are selected from the class of the Archiascomycetes, the order of the Schizosaccharomycetales, and particularly preferably selected from yeasts of the genus Schizosaccharomyces, such as S. pombe.
  • Another object of the invention relates to shuttle peptide constructs that can be processed by yeast cells, derived from a pheromone preprotein from a yeast, the pheromone being derivable and secrete from the preprotein by N- and C-terminal processing.
  • Preferred shuttle peptide constructs containing a signal polypeptide N-terminai are processably linked to the C-terminally processed pheromone polypeptide.
  • the signal polypeptide is preferably the proteolytically cleavable native signal polypeptide of the pheromone preprotein and the C-terminally processed pheromone polypeptide comprises the C-terminal protease interface.
  • Preferred shuttle peptide constructs are derived from pheromone preproteins, from yeasts, in particular preproteins of the factors P and M from S. pombe.
  • Particularly preferred shuttle peptides comprise an amino acid sequence according to SEQ ID NO: 2 or a functional equivalent thereof.
  • Another object of the invention relates to a method for the recombinant production of a target protein, wherein a recombinant microorganism according to the above definition is cultivated, which expresses the nucleic acid sequence encoding the target protein and the target protein secreted into the culture medium, such as e.g. a hydrophobin as defined above, isolated.
  • the invention further relates to nucleic acids coding for a shuttle peptide construct as defined above; as well as nucleic acids coding for a fusion protein which can be processed by yeast lines and comprises a target protein and as defined above.
  • the invention also relates to hydrophobins obtainable by a process according to the invention.
  • the invention relates to the use of such a hydrophobin for surface treatment, in particular the surface of objects selected from glass, fibers, fabrics, leather, lacquered objects, such as e.g. Motor vehicle bodies, foils, facades treated.
  • the invention also relates to the use of hydrophobins for the surface treatment of fibers, fabrics and leather.
  • polypeptide also included according to the invention are “functional equivalents” of the specifically disclosed or used polypeptide / proteins. This applies both to the intermediately formed fusion proteins and to their components, ie target proteins (target), shuttle peptides (SP) such as pheromones (Pher) also for signal peptides (Sig) and linkers.
  • target target proteins
  • SP shuttle peptides
  • Sig signal peptides
  • linkers linkers.
  • polypeptide is used as a generic term for polypeptide / protein.
  • “Functional equivalents” or analogs of the specifically disclosed polypeptides are, within the scope of the present invention, different polypeptides thereof which continue to have the desired biological activity.
  • Analog shuttle peptides should continue to be suitable for controlling the secretion and processing of the target protein.
  • the functional equivalents should also correspond accordingly of components of the shuttle peptide, such as signal polypeptide, pheromone, linker, furthermore have the properties required for effective secretion and processing of the fusion protein with release of the target protein.
  • “Functional equivalents” of polypeptides according to the invention can in particular contain residues of natural linker or adapter sequences which are formed by proteolytic cleavage at the C- and / or N-terminal.
  • “functional equivalents” are understood to mean, in particular, mutant proteins which have at least one of the sequence positions of the above-mentioned concrete sequences different from the specifically mentioned amino acid, but nevertheless have one of the above-mentioned biological activities.
  • “Functional equivalents” thus include the mutant proteins obtainable by one or more amino acid additions, substitutions (cf. examples in the following table), deletions and / or inversions, the changes mentioned being able to occur in any sequence position as long as they exist a mutant protein with the property profile according to the invention.
  • Suitable residues for amino acid substitutions include:
  • Functional equivalence is particularly given when the activity pattern between mutant and unchanged polypeptide matches qualitatively.
  • modified shuttle peptides express or secrete the same target protein with higher or lower efficiency in the same host; or that modified target proteins have an increased or decreased pharmacological effect or modified application properties.
  • “Functional equivalents” in the above sense also include precursors of the polypeptides described and functional derivatives and salts of the polypeptides.
  • salts means both salts of carboxyl groups and acid addition salts of amino groups of the protein molecules according to the invention.
  • Salts of carboxyl groups can be prepared in a manner known per se and include inorganic salts, such as, for example, sodium, calcium, ammonium, iron and zinc salts, and salts with organic bases, such as, for example, amines, such as triethanolamine, arginine , Lysine, piperidine and the like.
  • Acid addition salts such as, for example, salts with mineral acids, such as hydrochloric acid or sulfuric acid, and salts with organic acids, such as acetic acid and oxalic acid, are also a subject of the invention.
  • “Functional derivatives” of polypeptides according to the invention can also be prepared on functional amino acid side groups or on their N- or C-terminal end using known techniques.
  • Such derivatives include, for example, aliphatic esters of carboxylic acid groups, amides of carboxylic acid groups, obtainable by reaction with ammonia or with a primary or secondary amine, N-acyl derivatives of free amino groups, produced by reaction with acyl groups, or O-acyl derivatives of free hydroxyl groups, produced by reaction with acyl groups.
  • “Functional equivalents” naturally also include polypeptides which are accessible from organisms other than those specifically mentioned, and naturally occurring variants. For example, regions of homologous sequence regions can be determined by sequence comparison and, based on the specific requirements of the invention, equivalent enzymes can be determined.
  • “Functional equivalents” also include fragments, preferably individual domains or sequence motifs, of the polypeptides according to the invention which, for example, have the desired biological function.
  • “Functional equivalents” are also fusion proteins which contain one of the abovementioned polypeptide sequences or functional equivalents derived therefrom and at least one further, functionally different, heterologous sequence in functional N- or C-terminal linkage (ie without mutual substantial functional impairment of the fusion protein parts).
  • heterologous sequences are signal peptides, enzymes, immunoglobulins, surface antigens, receptors or receptor ligands.
  • “Functional equivalents” encompassed according to the invention are homologs to the specifically named polypeptides. These have at least 60%, preferably at least 75%, in particular at least 85%, such as 90%, 95% or 99%, homology to one of the concretely disclosed Sequences calculated according to the algorithm of Pearson and Lipman, Proc. Natl. Acad, Sei. (USA) 85 (8), 1988, 2444-2448.
  • a percentage homology of a homologous polypeptide according to the invention means in particular percentage identity of the amino acid residues based on the total length of one of the amino acid sequences specifically described herein.
  • equivalents according to the invention include polypeptides in deglycosylated or glycosylated form and also modified forms obtainable by changing the glycosylation pattern.
  • Homologs of the proteins or polypeptides according to the invention can be generated in a manner known per se by mutagenesis, e.g. by point mutation or shortening of the protein.
  • Nucleic acid sequences according to the invention in particular those which code for one of the above polypeptides and their functional equivalents, comprise single and double-stranded DNA and RNA sequences, such as e.g. also cDNA and mRNA.
  • nucleic acid sequences mentioned here are either of natural origin or can be prepared in a manner known per se by chemical synthesis from nucleotide components, such as, for example, by fragment condensation of individual overlapping, complementary nucleic acid components.
  • oligonucleotides can be carried out, for example, in a known manner using the phosphoamidite method (Voet, Voet, 2nd edition, Wiley Press New York, pages 896-897).
  • the attachment of synthetic oligonucleotides and the filling of gaps with the aid of the Klenow fragment of DNA polymerase and ligation reactions as well as general cloning methods are described in Sambrook et al. (1989) Molecular Cloning: A laboratory manual, Cold Spring Harbor Laboratory Press.
  • the invention also relates to nucleic acid sequences coding for one of the above polypeptides and their functional equivalents, which e.g. are accessible using artificial nucleotide analogs.
  • the invention relates both to isolated nucleic acid molecules which code for polypeptides according to the invention or biologically active sections thereof, and to nucleic acid fragments which e.g. are suitable for use as hybridization probes or primers for identifying or amplifying coding nucleic acids according to the invention.
  • nucleic acid molecules according to the invention can also contain untranslated sequences from the 3 'and / or 5' end of the coding gene region.
  • nucleic acid molecule is separated from other nucleic acid molecules that are present in the natural source of the nucleic acid and, moreover, can be substantially free of other cellular material or culture medium when produced by recombinant techniques, or free of chemical precursors or other chemicals be when it's chemically synthesized.
  • a nucleic acid molecule according to the invention can be isolated using standard molecular biological techniques and the sequence information provided according to the invention.
  • cDNA can be isolated from a suitable cDNA library by using one of the specifically disclosed complete sequences or a section thereof as a hybridization probe and standard hybridization techniques (as described, for example, in Sambrook, J., Fritsch, EF and Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).
  • nucleic acid molecule comprising one of the disclosed sequences or a portion thereof can be isolated by polymerase chain reaction using the oligonucleotide primers which have been created on the basis of this sequence.
  • the nucleic acid amplified in this way can be cloned into a suitable vector and characterized by DNA sequence analysis.
  • the invention further comprises the nucleic acid molecules complementary to the specifically described nucleotide sequences or a section thereof.
  • nucleotide sequences mentioned enable the generation of probes and primers which can be used for the identification and / or cloning of homologous sequences in other cell types and organisms.
  • probes or primers usually comprise a nucleotide sequence region which, under stringent conditions, can be attached to at least about 12, preferably at least about 25, e.g. about 40, 50 or 75 successive nucleotides of a sense strand of a nucleic acid sequence according to the invention or a corresponding antisense strand are hybridized.
  • nucleic acid sequences according to the invention are derived from the specifically disclosed sequences and differ from them by addition, substitution, insertion or deletion of one or more nucleotides, but continue to code for polypeptides with the desired property profile.
  • nucleic acid sequences which comprise so-called silent mutations or which are modified in accordance with the codon usage of a specific source or host organism, in comparison with a specifically named sequence, as well as naturally occurring variants, such as e.g. Splice variants or allele variants, thereof.
  • Sequences obtainable by conservative nucleotide substitutions i.e. the amino acid in question is replaced by an amino acid of the same charge, size, polarity and / or solubility are also a subject of the subject.
  • the invention also relates to the molecules derived from the specifically disclosed nucleic acids by sequence polymorphisms. These genetic polymorphisms can exist between individuals within a population due to natural variation. These natural variations usually cause a 1 to 5% variance in the nucleotide sequence of a gene.
  • the invention also encompasses nucleic acid sequences which hybridize with the abovementioned coding sequences or are complementary thereto.
  • These polynucleotides can be found when screening genomic or cDNA banks and, if appropriate, can be amplified therefrom using suitable primers by means of PCR and then isolated, for example, using suitable probes.
  • the property of being able to “hybridize” to polynucleotides means the ability of a poly- or oligonucleotide to bind to an almost complementary sequence under stringent conditions, while under these conditions non-specific bindings between non-complementary partners are avoided.
  • sequences should be closed 70-100%, preferably 90-100%, are complementary
  • the property of complementary sequences to be able to bind specifically to one another is demonstrated, for example, in the Northern or Southern blot technique or in primer binding in PCR or RT-PCR Usually oligonucleotides with a length of 30 base pairs or more are used for this purpose.
  • Stringent conditions mean, for example in Northern blot technology, the use of a washing solution, for example 50-70 ° C., preferably 60-65 ° C. 0.1x SSC buffer with 0.1% SDS (20x SSC: 3M NaCI, 0.3M Na citrate, pH 7.0) for the non-specific hybrid elution cDNA probes or oligonucleotides.
  • the invention also relates to expression constructs containing, under the genetic control of regulatory nucleic acid sequences, a nucleic acid sequence coding for a polypeptide to be expressed according to the invention; and vectors comprising at least one of these expression constructs.
  • Such constructs according to the invention preferably comprise a promoter 5'-upstream of the respective coding sequence and a terminator sequence 3'-downstream and, if appropriate, further customary regulatory elements, in each case operatively linked to the coding sequence.
  • An “operative linkage” is understood to mean the sequential arrangement of promoter, coding sequence, terminator and, if appropriate, further regulatory elements in such a way that each of the regulatory elements can fulfill its function as intended when expressing the coding sequence.
  • sequences which can be linked operatively are targeting sequences and enhancers, polyadenylation signals and the like.
  • Other regulatory elements include selectable markers, amplification signals, origins of replication and the like. Suitable regulatory sequences are described, for example, in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990).
  • the coding nucleic acid sequences can be contained in one or more copies in the gene construct.
  • yeast promoters ADC1, MFalpha, AC, P-60, CYC1, GAPDH, nmt1, nmt41 and nmt81.
  • Suitable promoters for the yeast S. pombe are e.g. to name: nmtl, nmt41, nmt81, adhl, fbpl, SV40 or CaMV. Further information at (http://pinqu.salk.edU/ ⁇ forsburq/vectors.html#exp).
  • the promoters differ in their transcription rate. The selection depends on the desired level of expression. The same applies to other yeasts.
  • Suitable yeast promoters are described, for example, in published US patent application 2003/0077831, which is hereby expressly incorporated by reference.
  • inducible promoters such as e.g. light-inducible and in particular temperature-inducible promoters.
  • the regulatory sequences mentioned are intended to enable the targeted expression of the nucleic acid sequences. Depending on the host organism, this can mean, for example, that the gene is only expressed or overexpressed after induction, or that it is expressed and / or overexpressed immediately.
  • the regulatory sequences or factors can preferably have a positive influence on the expression and thereby increase or decrease it.
  • the regulatory elements can advantageously be strengthened at the transcription level by using strong transcription signals such as promoters and / or "enhancers".
  • an increase in translation is also possible, for example, by improving the stability of the mRNA.
  • An expression cassette is produced by fusing a suitable promoter with a suitable coding nucleotide sequence and a terminator or polyadenylation signal. Common recombination and cloning techniques are used, such as those described in T. Maniatis, EF Fritsch and J.
  • the recombinant nucleic acid construct or gene construct is advantageously inserted into a host-specific vector which enables optimal expression of the genes in the host.
  • Vectors are well known to those skilled in the art and can be found, for example, in "Cloning Vectors" (Pouweis P.H. et al., Ed., Elsevier, Amsterdam-New York-Oxford, 1985).
  • vectors are also understood to mean all other vectors known to the person skilled in the art, such as phages, viruses such as SV40, CMV, baculovirus and adenovirus, transposons, IS elements, phasmids, cosmids, and linear or circular DNA. These vectors can be replicated autonomously in the host organism or replicated chromosomally.
  • Constructs suitable for the yeast S. pombe can be mentioned as examples of expression vectors suitable according to the invention (see, for example: (http://pinqu.salk.edU/ ⁇ forsburq/vectors.html#exp).
  • REP1, REP3, REP4 (Maundrell, K. (1990). Nmtl of fission yeast: a highly transcribed gene completely repressed by thiarnine. J. Biol. Chem. 265: 10857-10864) REP41, REP42, REP81, REP82 (Basi, G., Schmid, E. and Maundrell, K. (1993) TATA box mutations in the Schizosaccharomyces pombe nmtl promoter affect transcription efficiency but not the transcription start point or thiamine repressibility. Gene 123: 131-136)
  • Yeast expression vectors for expression in yeast S. cerevisiae such as pYEpSed (Baldari et al., (1987) Embo J. 6: 229-234), pMFa (Kurjan and Herskowitz (1982) Cell 30: 933-943), pJRY88 (Schultz et al. (1987) Gene 54: 113-123) and pYES2 (Invitrogen Corporation, San Diego, CA).
  • Vectors and methods of constructing vectors suitable for use in other fungi such as filamentous fungi include those described in detail in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer Systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, J.F. Peberdy et al., Eds., Pp. 1-28, Cambridge University Press: Cambridge.
  • recombinant microorganisms can be produced which, for example, have been transformed with at least one vector according to the invention and can be used to produce the polypeptides according to the invention.
  • the recombinant constructs according to the invention described above are advantageously introduced and expressed in a suitable host system.
  • Common cloning and transfection methods known to the person skilled in the art such as, for example, co-precipitation, protoplast fusion, electroporation, retroviral transfection and the like, are preferably used to bring the nucleic acids mentioned into expression in the respective expression system. Suitable systems are described, for example, in Current Protocols in Molecular Biology, F. Ausubel et al., Ed., Wiley Interscience, New York 1997, or Sambrook et al. Molecular Cloning: A Laboratory Manual. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.
  • all organisms which enable expression of the nucleic acids according to the invention, their allele variants, their functional equivalents or derivatives are suitable as host organisms.
  • Preferred host organisms are yeasts.
  • Auxotrophic markers are often used in yeasts to select transformants.
  • the strain to be transformed lacks a protein which is necessary for the production of certain metabolic products.
  • the corresponding active protein is introduced into the cell by the vector used. Commonly used markers are
  • Genes e.g. uracil, leucine, histidine or tryptophan biosynthesis.
  • Successfully transformed organisms can be selected using marker genes, which are also contained in the vector or in the expression cassette.
  • marker genes are genes for antibiotic resistance and for enzymes which catalyze a coloring reaction which stains the transformed cell. These can then be selected using automatic cell sorting.
  • Microorganisms which have been successfully transformed with a vector and carry an appropriate antibiotic resistance gene e.g. G418 or hygromycin
  • an appropriate antibiotic resistance gene e.g. G418 or hygromycin
  • Marker proteins that are presented on the cell surface can be used for selection by means of affinity chromatography.
  • the combination of the host organisms and the vectors which match the organisms, such as plasmids, viruses or phages, such as, for example, plasmids with the RNA polymerase / promoter system, the phages 8 or: or other temperate phages or transposons and / or further advantageous regulatory ones Sequences form an expression system.
  • the invention further relates to methods for the recombinant production of a target protein as defined above.
  • the recombinant microorganism can be cultivated and fermented by known methods.
  • suitable cultivation conditions for example for S. pombe in Alfa et al. (Alfa, C, Fantes, P., Hyams, J., McLeod, M. and Warbrick, E. (1993) Experiments with fission yeast. Cold Spring Harbor Laboratory Press, New York) and Gutz et al. (Gutz, H., Heslot, H., Leupold, U. and Loprieno, U. (1974) Schizosaccharomyces pombe. In: Handbook of Genetics 1, pp 395-446, Plenum Press, New York) or for S. cerevisiae in Kaiser et al. (Kaiser, C, Michaelis, S. and Mitchell, A. (1994) Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, New York).
  • the cells are separated from this and the target protein is obtained from the supernatant by known protein isolation methods.
  • Purification of the target protein can be achieved with known chromatographic methods, such as molecular sieve chromatography (gel filtration), ion exchange chromatography, such as Q-Sepharose chromatography, and hydrophobic chromatography, as well as with other conventional methods such as ultrafiltration, crystallization, salting out, dialysis and native gel electrophoresis. Suitable methods are described, for example, in Cooper, T.G., Biochemical Working Methods, Verlag Walter de Gruyter, Berlin, New York or in Scopes, R., Protein Purification, Springer Verlag, New York, Heidelberg, Berlin.
  • vector systems can also be used which code for modified polypeptides or fusion proteins which serve for easier purification.
  • suitable modifications are, for example, so-called “tags” which act as anchors, such as, for example, the modification known as a hexa-histidine anchor or epitopes which can be recognized as antigens of antibodies (described, for example, in Harlow, E. and Lane, D ., 1988, Antibodies: A Laboratory Manual, Cold Spring Harbor (NY) Press).
  • anchors can be used to attach the proteins to a solid support, such as, for example, a polymer matrix, which can be filled, for example, in a chromatography column, or can be used on a microtiter plate or on another support.
  • a solid support such as, for example, a polymer matrix, which can be filled, for example, in a chromatography column, or can be used on a microtiter plate or on another support.
  • these anchors can also be used to recognize the proteins.
  • customary markers such as fluorescent dyes, enzyme markers which form a detectable reaction product after reaction with a substrate, or radioactive markers, alone or in combination with the anchors, can be used to derivatize the proteins.
  • WO-A-01/57066 which describes the stabilization, solubilization and the associated better use of hydrophobins by sulfite treatment
  • WO-A-01/57076 which describes the purification of Hydrophobin by adsorption on Teflon beads and elution with detergent such as Tween describes at low temperatures
  • WO-A-01/57528 which describes the fixation of hydrophobins on surfaces by the use of Tween and temperatures up to 85 degrees Celsius
  • solid materials such as glass, fibers, fabrics, leather, lacquered objects, foils, facades, can be coated with hydrophobin.
  • Figure 1 different constructs according to the invention for the secretion of the hydrophobins from S. pombe.
  • FIG. 2A shows the genomic sequence of the DewA gene (SEQ ID NO: 39); the sequences of the two introns are underlined; B) the amino acid sequence and in brackets the corresponding DNA sequence of the DewA protein from Aspergillus nidulans; the signal sequence is printed in bold, the partial sequence following the signal sequence corresponds to the sequence of mature DewA; C) the amino acid sequence and in brackets the corresponding DNA sequence of the HA tag.
  • 3A the amino acid sequence and, in parentheses, the corresponding DNA sequence of the P-factor preprotein; the signal sequence is printed in bold; the underlined partial sequences following the signal sequence correspond to the sequences of the four maternal pheromone peptides; the pheromone closest to the signal peptide is called the P factor; B) amino acid sequence and in brackets the corresponding DNA sequence of the cleavable signal peptide and the subsequent 6 amino acids (underlined) of the P-factor preprotein; C) amino acid sequence and in brackets the corresponding DNA sequence for the "P-Shuttle" according to the invention; the signal sequence is printed in bold; the underlined sub-sequence following the signal sequence corresponds to the sequence of the material P factor;
  • FIG. 4 shows a fusion protein according to the invention consisting of the “P-shuttle” sequence (signal sequence bold; mature P protein underlined), the mature DewA (double underlined) and the C-terminally fused HA tag (SEQ ID NO: 18; coded) from SEQ ID NO: 17);
  • FIG. 5 shows the immunological detection of hydrophobins in S. pombe *
  • Detection fused with an HA tag cloned into the expression vector pJR1-3XL and transformed into S. pombe. "Membrane fraction” and “cytosolic proteins” were separated by SDS-PAGE. The detection in the Westem analysis was carried out with HA antibodies. The size standard in kDa is given on the left.
  • Figure 6 shows the immunological detection of the expression of hydrophobins in S. pombe.
  • the PDewAHA protein was expressed in S ⁇ pombe.
  • the cells were harvested, the culture supernatant was aliquoted and part of the TCA was precipitated.
  • the protein was detected by SDS-PAGE and Western blot with the help of HA antibodies.
  • the bands marked with * correspond to the precursor protein (approx. 18 kD, upper band) and the mature form (approx. 17 kD lower band).
  • S. pombe cells were transformed with plasmids which express P + 6DewA by a strong promoter (pJR1-3XL) or weaker promoter (pJR1-81XL).
  • the cells carry a version of the prp7 gene chromosomally with a c-myc tag. This serves as a control to rule out that the culture supernatant has been contaminated by lysed cells.
  • Cells were harvested (pellet), the culture supernatant TCA- precipitated (supernatant).
  • the proteins were detected by SDS-PAGE and Western blot with the help of antibodies against HA (A) or against c-myc (B).
  • Figure 8 shows the detection of secretion using the "P-Shuttle” method.
  • S. pombe cells were transformed with plasmids which express PfakDewA through a weaker promoter (pJR1-81XL). The cells were harvested (pellet), the culture supernatant TCA-precipitated (US). The protein was detected according to SDS-PAGE and Westem blot with the help of antibodies against HA.
  • FIG. 9 the three genes which each encode the M factor (SEQ ID NO: 51 for mature factor) from S. pombe: A) sequences for the mfm1 + ' gene; B) sequences for the tr7t / 772 + " gene; and C) sequences for the mfm3 * ' gene.
  • Figure 10 shows the RodA gene.
  • the genomic sequence (SEQ ID NO: 52) of the RodA gene contains two introns (underlined), which are not present in the corresponding coding ORF (SEQ ID NO: 53).
  • the preprotein (SEQ ID NO: 54) contains a cleavable signal sequence (printed in bold) which is missing in the mature protein (SEQ ID NO: 56; encoded by SEQ ID NO: 55).
  • the cloning steps carried out in the context of the present invention e.g. Restriction cleavage, agarose gel electrophoresis, purification of DNA fragments, transfer of nucleic acids to nitrocellulose and nylon membranes, linking of DNA fragments, transformation of E. coli cells, cultivation of
  • DNA was purified from reaction mixtures or after gel electrophoresis using the NucleoSpin Extract Kit (Machery-Nagel, Düren) and plasmid DNA from E. coli was isolated using the NucleoSpin Plasmid Quick Pure Kit (Machery-Nagel, Düren) the manufacturer's instructions.
  • Transformations in E. coli were carried out by electroporation using the Gene Pulser II device (BIO-RAD, Kunststoff) using 2 mm electroporation cuvettes (Biozym Diagnostik, Hess. Oldendorf) according to the manufacturer. Transformants were selected on LB medium (150 mg / l) containing ampicillin (Lennox, 1955, Virology, 1: 190).
  • PCR amplifications were carried out using the Combizyme DNA polymerase (Invitek, Berlin, Germany) according to the manufacturer's instructions. 100 ⁇ l of reaction volume per 1 pmol of the corresponding primers were used.
  • S. pombe The cultivation of S. pombe was carried out as in Alfa et al. (Alfa, C, Fantes, P., Hyams, J., McLeod, M. and Warbrick, E. (1993) Experiments with fission yeast. Cold Spring Harbor Laboratory Press, New York) and Gutz et al. (Gutz, H., Heslot, H., Leupold, U. and Loprieno, U. (1974) Schizosaccharomyces pombe. In: Handbook of Genetics 1, pp 395-446, Plenum Press, New York).
  • cells were harvested by centrifugation at 3,500xg for 5 min.
  • the cell pellets were resuspended in 1 ml of 1xPBS and 1 volume of glass beads was added. The mixture was vortexed for 5 min, the supernatant removed over the glass beads.
  • strains DH5 ⁇ (Invitrogen), XL10-Gold (Stratagene) or BL21 (BioLabs) were used to work with E. coli.
  • S. pombe strains used are from the gap yeast strain collection of the working group of Prof. Dr. G. Rodel taken from the Institute of Genetics at the Technical University of Dresden.
  • Example 1 Production of the expression construct DewA and DewAHA and cloning into the vector pJR1-3XL
  • the reaction mixture was separated by gel electrophoresis and the corresponding DNA band eluted as described above.
  • the fragment which is flanked on both sides by a Sa / ⁇ HI site, which was inserted through the primer, was cut with the restriction endonuclease ßamHI (Invitrogen) according to the manufacturer's instructions and purified from the reaction mixture (see above).
  • the vector pUC18 (Yanisch-Pron, C, Vieira, J. and Messing, J. (1985) Improved M13 phage cloning vectors and host strains: Nucleotide sequences of M13mp18 and pUC19 vectors. Gene 33: 103) was also cut with ßamHI, separated by gel electrophoresis and then eluted from the gel (see above).
  • Vector and fragment were ligated (see above) and the ligation mixture was transformed into E. coli.
  • Recombinant plasmids were identified after plasmid preparation and subsequent restriction digestion. After cloning, the correct DNA sequence of the cloned PCR products was - as with all constructs produced below - verified by sequencing. Sequencing reactions were carried out according to Sanger et al. (Sanger, F., Nicklen, S. and Coulson, A.R. (1977) DNA sequencing with chain terminating inhibitors. Proc NatI Acad Sei USA 74: 5463-5467).
  • the sequencing reactions were carried out using the "Thermo-Sequenase fluorescent labeled primer cycle sequencing kit with 7-deaza-dGTP" (Amesham Pharamacia Biotech, Freiburg) and S'-side IRD800 labeled primers (MWG Biotech AG, Ebersberg). The products were separated and the sequence evaluated using the automatic LI-COR 4000/4200 (MWG Biotech AG, Ebersberg) sequencing system.
  • a construct that contains the intron-containing genomic DewA gene cloned into the ßamHI site of the vector pUC18 was called pDewAgen.
  • the intronless ORF was amplified with the subfragments as a template and the distal primers ScDewBamfor and SpDewBamrev.
  • the approximately 410 bp long PCR product was separated by gel electrophoresis, purified and cut with the restriction endonuclease ßamHI. Appropriate interfaces had been inserted through the distal primers.
  • the cut fragment was purified and cloned into the vector pUC18, also cut with ßamHI. Vector and fragment were ligated (see above) and the ligation mixture was transformed into E. coli.
  • DEPA Since no specific antibodies against DewA are available, DEPA was fused with the HA epitope by OEP to detect heterologous expression.
  • the primer pairs SpDewXhofor / DewAHArev and DewAHAfor / DewAHANcorev were used in the primary PCRs.
  • DNA of the construct pDewAgen was used as a template for the production of DewHA (+ introns) and DNA of the construct pDewA-ORF for the production of DewHA (-ntrons).
  • the vector yEP351 HA (Kettner, K., Friederichs, S., Schlapp, T. and Rodel G (2001) Expression of a VEGF-like) carrying the DNA sequence of the HA tag was used as a template for the PCR with DewAHAfor / DewAHANcorev protein from Parapoxvirus ovis in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Protein Expr Purif Aug; 22 (3): 479-83). In the final PCRs using the primer pair
  • the DNA coding for the HA epitope was fused to the respective DewA DNA.
  • the fragments amplified in this way are flanked on the 5 'side by an Xho ⁇ restriction site and on the 3' side by a ⁇ / col restriction site which were introduced with the aid of the distal primers.
  • the fragments were separated by gel electrophoresis, purified and cut with the restriction endonucleases Xho ⁇ and Ncol and purified from the reaction mixture.
  • the vector pJR1-3XL (Moreno, MB, Duran, A.
  • the vectors DewA-HA (+ introns) and DewA-HA (introns) obtained according to a) and b) were in the S. pombe host strain K0103 (t? S ade6-M210 leu1-32 his7-366) as by Schiestl and Gietz (Schiestl, RH and Gietz, RD (1989) High efficency transformation of intact yeast cells using Single stranded nucleic acids as a carrier. Curr Genet 16: 339-346), which are described by the fe ⁇ / 7-32 mutation Conditional leucine auxotrophy of the S. pombe strain is complemented by the LE1 / 2 gene from S. cerevisiae present on the expression vectors. Transformants can thus be selected on minimal medium without leucine. The expression of the fusion proteins in corresponding yeast transformants was determined by means of Western blotting. Analyzes examined.
  • anti-HA article 1 583816, anti-HA (12CA5) -mouse monoclonal antibody
  • anti-c-myc article 1 667 149, anti-c-myc antibody
  • FIG. 5A shows samples of a culture with the insert-free vector (pJR1-3XL, negative control), with an HA-tagged control protein (positive control) and with a vector which contains the HA-tagged DewA gene with introns (DewA -HA (+ introns)).
  • samples are culture with the vector (pJR1-3XL, negative control), with a vector which contains the HA-tagged DewA gene without introns (DewA-HA (introns)) or the HA-tagged RodA gene with introns (Rod-AHA ( + lntrons)) contains, applied.
  • RodAHA (+ introns) was produced in analogy to the information in Examples 1a) and 1b).
  • RodA is another hydrophobin from A. nidulans.
  • Example 2 Production of expression vectors for the secretion of the expressed DewA vector containing the construct PDewAHA
  • the authentic secretion signal of the A. nidulans protein which is not effective in the split yeast, was first replaced by the cleavable signal peptide of the P factor from S. pombe.
  • the P factor is secreted by the cells into the medium as a peptide pheromone. It is synthesized in the cell as a precursor protein (preprotein) consisting of a cleavable N-terminal signal sequence and four P-factor copies, each separated by short spacer sequences, and matures during secretion, including the cleavage of the signal sequence and the proteolytic release of the four P-factor peptides.
  • preprotein precursor protein
  • the P-factor signal sequence was amplified by means of PCR and genomic DNA from S. pombe as a template using the primer pair SigPXhofor / PDewArev and the corresponding PCR product was purified.
  • the PDewAHA fragment was cut with the restriction endonucleases Xho ⁇ and ⁇ / col, separated by gel electrophoresis and ligated into the vector pJR1-3XL (see above) cut with the same restriction endonucleases.
  • Vector and fragment were ligated (see above) and the ligation mixture was transformed into E. coli by electroporation.
  • Recombinant plasmids were identified after plasmid minipreparation and the correct sequence of the cloned ORF was verified by sequencing.
  • the construct obtained was called PDewAHA.
  • the PDewAHA protein was expressed in S. pombe.
  • the cells were harvested, the culture supernatant was aliquoted and part of the TCA was precipitated.
  • the TCA precipitate was taken up in Laemmli buffer (Laemmli, UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (Nature 227: 680-685)). Cell pellet, supernatant and TCA-precipitated supernatant were examined.
  • the protein was detected by SDS-PAGE and Westem blot with the help of HA antibodies. The result is shown in FIG. 6.
  • the bands marked with * correspond the precursor protein (approx. 18 kD, upper band) and the mature form (approx. 17 kD lower band).
  • Example 3 Production of expression vectors for the secretion of the expressed DewA vector containing the construct P + 6DewAHA
  • the sequence of the signal peptide in the fusion protein was determined using OEP using the primer pairs SigPXhofor / P + 6DewArev and P + 6DewAfor / DewAHANcorev with DNA of the construct PDewAHA as template in the primary PCR reactions
  • the P + 6DewA fragment was cut with the restriction endonucleases Xho ⁇ and ⁇ / col, separated by gel electrophoresis and in those with the same restriction Sendonucleases cut vector pJR1-3XL (see above) and the ligation mixture transformed by electroporation in E. coli. Recombinant plasmids were identified after plasmid minipreparation and the correct sequence of the cloned ORF was verified by sequencing.
  • the P + 6DewA fragment was also cloned into the vector pJR-81XL.
  • the transcription of the fusion gene is under the control of the weak nmt ⁇ promoter. With this construct, a negative influence of the very high transcription in pJR1-3XL constants on the secretion should be tested.
  • Example 2a The experiment was carried out in analogy to Example 2a.
  • the amplified sequences are cloned in pJR1-3XI analogously to Example 2a.
  • S. pombe cells were transformed with the two plasmids, which express P + 6DewA by a strong promoter (pJR1-3XL) or weaker promoter (pJR1-81XL).
  • the cells carry a version of the prpl gene chromosomally with a c-myc tag. This serves as a control to rule out that the culture supernatant has been contaminated by lysed cells.
  • Cells were harvested (pellet), the culture supernatant TCA-precipitated (supernatant). The precipitate was taken up in Laemmli buffer and also analyzed.
  • the proteins were detected by SDS-PAGE and Western blot with the aid of antibodies against HA (FIG. 7A) or against c-myc (Röche Diagnostics) (FIG. 7B).
  • Example 4 Production of expression vectors for the secretion of the expressed DewA vector containing the construct PfakDewAHA
  • PCR fragments obtained were separated by gel electrophoresis, purified and used as a template for the final PCR using the primer pair SigPXhofor / DewAHANcorev.
  • the PfakDewA fragment thus obtained was cut with the restriction endonucleases Xho ⁇ and ⁇ / col, separated by gel electrophoresis and ligated into the vector pJR1-81XL cut with the same restriction endonucleases (see above).
  • the ligation mixture was transformed into E. coli by electroporation. Recombinant plasmids were identified after plasmid minipreparation and the correct sequence of the cloned ORF was verified by sequencing.
  • PfakDewA / pJR1-81XL Such a construct was called PfakDewA / pJR1-81XL.
  • the P-factor preprotein including the first amino terminal pheromone and the fused sequence encoding the hydrophobin are under the control of the nmt81 promoter.
  • Example 2a The experiment was carried out in analogy to Example 2a, but using the expression vector pJR1-81XL.
  • the amplified sequences were cloned into pJR1 -81XL analogously to Example 2a.
  • the amplified and cut with the restriction endonucleases Xho ⁇ and ⁇ / col DNA was cloned into the Xho ⁇ and ⁇ / col sites of the expression vector pJR1-81XL.
  • Example 5 Microscopic detection of the adsorption of expressed hydrophobin on Teflon
  • a fluorescence-labeled HA antibody (Molecular Probes, Cat. No. A-21287) is used for the microscopic detection of the adsorption of expressed hydrophobin on Teflon.
  • Transformed host cells produced according to one of Examples 1 to 4, are cultivated. Cells and any supernatant are harvested separately. Cells which have been transformed and cultured with a corresponding vector without hydrophobic genes or corresponding culture supernatants serve as reference sample.
  • Teflon plates are incubated at room temperature for 18 h in cell disruption or supernatant, rinsed with water (3 x 10 min).
  • the treated teflon is then incubated in PBS with fluorescence-labeled antibody.
  • PBS 3 x 15 min

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Treatment And Processing Of Natural Fur Or Leather (AREA)
  • Surface Treatment Of Glass (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

The invention relates to expression constructs comprising the coding nucleic acid sequence for a shuttle peptide construct that can be processed by yeast cells. Also disclosed are adequate expression vectors containing such constructs, methods for the recombinant production of target proteins, which are carried out with the aid thereof, hosts transformed therewith, shuttle peptides and nucleic acid sequences coding therefor, nucleic acid sequences that code for such shuttle peptides and are fused with a foreign protein, hydrophobin proteins produced by means of such shuttle peptides, and the use of hydrophobins for coating objects such as leather.

Description

Sekretion von Proteinen aus HefenSecretion of proteins from yeast
Beschreibungdescription
Die vorliegende Erfindung betrifft Expressionskonstrukte, umfassend die kodierende Nukleinsäuresequenz für ein von Hefezellen prozessierbares Shuttlepeptidkonstrukt; entsprechende Expressionsvektoren, enthaltend derartige Konstrukte; mit deren Hilfe durchgeführte Verfahren zur rekombinanten Herstellung von Zielproteinen; damit transformierte Wirte; Shuttlepeptide und dafür kodierende Nukleinsauresequenzen; Nuklein- säuresequenzen kodierend für solche Shuttlepeptide, fusioniert mit einem Fremdprotein; Hydrophobin-Proteine, welche unter Verwendung von derartigen Shuttlepeptiden hergestellt wurden, sowie die Verwendung Hydrophobinen zur Beschichtung von Gegenständen, wie z.B. Leder.The present invention relates to expression constructs comprising the coding nucleic acid sequence for a shuttle peptide construct processable by yeast cells; corresponding expression vectors containing such constructs; processes carried out with the aid thereof for the recombinant production of target proteins; hosts transformed with it; Shuttle peptides and nucleic acid sequences coding therefor; Nucleic acid sequences coding for such shuttle peptides, fused with a foreign protein; Hydrophobin proteins, which were produced using such shuttle peptides, and the use of hydrophobins for coating objects, such as e.g. Leather.
Stand der TechnikState of the art
a) Expression in Hefena) Expression in yeast
Hefen als Wirt für die heterologe Proteinexpression sind weit verbreitet. Grund dafür ist, dass Hefen als Expressionssystem mehrere Vorteile besitzen. Im Vergleich zu Bakterien und anderen eukaryotischen Zellen können sie nämlich in höherer Dichte wachsen und sie besitzen die Fähigkeit zur Proteinglykosilierung und post-translationalen Modifikation. Außerdem können die von Hefen produzierten und sezemierten Produkte deshalb in einfacher Weise gereinigt werden, weil die Hefen hohe Resistenz gegen Zelllyse besitzen, und im Wachstumsmedium gewöhnlich geringe Mengen an Fremdprotein zu finden sind. Darüber hinaus können Hefen schneller als andere eukaryoti- sche Zellen in hoher Dichte auf kostengünstigen Nährmedien wachsen.Yeasts as hosts for heterologous protein expression are widely used. The reason for this is that yeast has several advantages as an expression system. Compared to bacteria and other eukaryotic cells, they can grow in higher density and have the ability for protein glycosylation and post-translational modification. In addition, the products produced and secreted by yeasts can be purified in a simple manner because the yeasts have high resistance to cell lysis and small amounts of foreign protein are usually found in the growth medium. In addition, yeasts can grow faster than other eukaryotic cells in high density on inexpensive nutrient media.
Im Stand der Technik gibt es zahlreiche verschiedene Ansätze zur Expression und Sekretion heterologer Proteine in Hefen. So wird beispielsweise in der US 5,642,487 ein Verfahren zur rekombinanten Produktion von Proteinen in Hefen beschrieben, wobei man Hefe mit einer Expressionskassette transformiert, welche für ein Strukturelement kodiert, das eine Leadersequenz aus einem tierischen Peptidneurohormon, eine Adaptor-Sequenz, produzierend eine σ-Helixstruktur, ein Prozessierungssignal sowie ein Strukturgen kodiert. Weiterhin ist aus dem Stand der Technik bekannt, aus dem Gen des σ-Faktors, einem von Hefen produzierten Pheromon, regulative Elemente für die Steuerung der Expression heterologer Proteine in Hefen einzusetzen. So wurden beispielsweise -Faktor Signal-Leader-Peptidsequenzen zur Expression heterologer Proteine verwendet (vgl. z. B. US 5,010,182).There are numerous different approaches in the prior art for the expression and secretion of heterologous proteins in yeasts. For example, US Pat. No. 5,642,487 describes a process for the recombinant production of proteins in yeast, in which yeast is transformed with an expression cassette which codes for a structural element which produces a leader sequence from an animal peptide neurohormone, an adapter sequence, which produces a σ-helix structure , a processing signal and a structural gene are encoded. Furthermore, it is known from the prior art to use regulatory elements from the gene of the σ factor, a pheromone produced by yeasts, for controlling the expression of heterologous proteins in yeasts. For example, factor signal leader peptide sequences were used to express heterologous proteins (see, for example, US Pat. No. 5,010,182).
Aus der veröffentlichten US-Patentanmeldung US 2003/0077831 ist außerdem ein Expressionsvektor zur Expression heterologer Proteine in Hefen bekannt, welcher flankiert von geeig neten Transkriptions- und Translations-Start- bzw. Terminationssequenzen die kodierende Sequenz für ein Hybndprecursorpolypeptid umfasst, welches als Elemente das Signalpeptid und das Leaderpeptid eines von Hefen sezernierten Proteins sowie ein heterologes Protein, flankiert von N-terminalen und C-terminalen Propeptid-Sequenzen des heterologen Proteins umfasst.From the published US patent application US 2003/0077831 an expression vector for the expression of heterologous proteins in yeast is also known which, flanked by suitable transcription and translation start or termination sequences, comprises the coding sequence for a hybrid precursor polypeptide which comprises the signal peptide as elements and the leader peptide of a protein secreted by yeasts and a heterologous protein flanked by N-terminal and C-terminal propeptide sequences of the heterologous protein.
b) Hydrophobineb) hydrophobins
Hydrophobine sind kleine, circa 100 Aminosäurereste umfassende, cysteinreiche Proteine mit interessanten technischen Eigenschaften. Sie können hydrophobe Oberflächen hydrophil machen. Hydrophile Oberflächen werden durch sie hydrophobiert.Hydrophobins are small, approximately 100 amino acid residues, cysteine-rich proteins with interesting technical properties. You can make hydrophobic surfaces hydrophilic. They make hydrophilic surfaces hydrophobic.
Es gibt aber eine Reihe von Schutzrechten auf Hydrophobine und deren Anwendung: So beschreibt z.B. die WO-A-96/41882 Hydrophobine aus eßbaren Pilzen (vgl. SEQ ID NO:21 und 22). Die WO-A-00/58342 betrifft die Reinigung von Hydrophobin-haltigen Fusionsproteinen durch Phasenextraktion. Die WO-A-01/57066 beschreibt Stabilisie- rung, Solubilisierung und die damit verbundene bessere Anwendung von Hydrophobinen durch Sulfitbehandlung. Die WO-A-01/57076 beschreibt die Reinigung von Hydrophobin durch Adsorption an Teflon-Kügelchen und die Elution mittels Detergens, wie Tween, bei niedrigen Temperaturen. Die WO-A-01/57528 beschreibt die Fixierung von Hydrophobinen auf Oberflächen durch die Anwendung von Tween und Temperatu- ren bis 85 Grad Celsius.However, there are a number of property rights to hydrophobins and their application: For example, WO-A-96/41882 hydrophobins from edible mushrooms (cf. SEQ ID NO: 21 and 22). WO-A-00/58342 relates to the purification of hydrophobin-containing fusion proteins by phase extraction. WO-A-01/57066 describes stabilization, solubilization and the associated better use of hydrophobins by sulfite treatment. WO-A-01/57076 describes the purification of hydrophobin by adsorption on Teflon beads and the elution by means of a detergent such as Tween at low temperatures. WO-A-01/57528 describes the fixation of hydrophobins on surfaces by the use of tween and temperatures up to 85 degrees Celsius.
Die WO-A-01/74864 beschreibt untypische Hydrophobine (nur eine Disulfidbrücke) mit der Bezeichnung RdIA und RdlB (vgl. SEQ ID NO: 19 und 20) aus filamentösen Bakterien, insbesondere Streptomyces sp. Das Hydrophobin wird zur Oberflächenbehand- lung verschiedener Gegenstände, wie Fenster, Kontaktlinsen, Fahrzeugkarosserien verwendet. Weiterhin wird vorgeschlagen, die dort beschriebenen Proteine in einen rekombinanten Wirt zu produzieren, der die Proteine ins Medium abgibt. Nach Abtren- nung des Wirts soll das Hydrophobin-haltige Medium zur Oberflächenbeschichtung geeignet sein. Experimentelle Belege für die tatsächliche Expression und Sekretion werden nicht geliefert.WO-A-01/74864 describes atypical hydrophobins (only one disulfide bridge) with the names RdIA and RdlB (cf. SEQ ID NO: 19 and 20) from filamentous bacteria, in particular Streptomyces sp. The hydrophobin is used for the surface treatment of various objects such as windows, contact lenses and vehicle bodies. It is also proposed to produce the proteins described there in a recombinant host that releases the proteins into the medium. After detachment The hydrophobin-containing medium should be suitable for surface coating of the host. Experimental evidence for actual expression and secretion is not provided.
Kurze Beschreibung der ErfindungBrief description of the invention
Aufgabe der vorliegenden Erfindung ist es, Mittel bereitzustellen, die es ermöglichen, in der Hefe, insbesondere Schizosaccharomyces pombe, exprimierte homologe oder insbesondere heterologe Proteine, aus den Hefezellen in das umgebende Medium zu sezemieren. Insbesondere sollten Mittel bereitgestellt werden, welche die Sekretion von rekombinant hergestelltem Hydrophobin aus der Wirtszelle ermöglichen.The object of the present invention is to provide agents which make it possible to secrete expressed homologous or, in particular, heterologous proteins expressed in yeast, in particular Schizosaccharomyces pombe, from the yeast cells into the surrounding medium. In particular, means should be provided which allow the secretion of recombinantly produced hydrophobin from the host cell.
Gelöst wird obige Aufgabe durch Bereitstellung eines Expressionskonstrukts, umfassend die kodierende Nukleinsäuresequenz für ein von Hefezellen prozessierbares Shuttlepeptidkonstrukt der allgemeinen FormelThe above object is achieved by providing an expression construct comprising the coding nucleic acid sequence for a shuttle peptide construct of the general formula which can be processed by yeast cells
(Sig-SP),(Sig-SP),
enthaltend in 5'-3'-Richtung die kodierenden Nukleinsauresequenzen für a) ein Signalpeptid (Sig), prozessierbar verknüpft mit b) wenigstens einem von den Hefezellen sezernierbaren Shuttlepeptid (SP).containing the coding nucleic acid sequences for a) a signal peptide (Sig) in the 5'-3 'direction, processably linked to b) at least one shuttle peptide (SP) that can be secreted by the yeast cells.
Modellhaft wird die Lösung obiger Aufgabe am Beispiel des Hydrophobins DewA (Ma- tures Protein gemäß SEQ ID NO: 14 mit kodierender Sequenz gemäß SEQ ID NO:13; Präprotein mit Signalsequenz: SEQ ID NO:16 mit kodierender Nukleinsäuresequenz gemäß SEQ ID NO:15) aus Aspergillus nidulans als heterologem Zielprotein (Targ) veranschaulicht. Dieses Protein ist ein Vertreter der Klasse I von Hydrophobinen, d.h. von sezemierten pilzlichen Hüllproteinen mit der Befähigung zur Selbstassemblierung.The solution to the above problem is modeled on the example of the hydrophobin DewA (protein protein according to SEQ ID NO: 14 with coding sequence according to SEQ ID NO: 13; preprotein with signal sequence: SEQ ID NO: 16 with coding nucleic acid sequence according to SEQ ID NO: 15 ) from Aspergillus nidulans as a heterologous target protein (Targ). This protein is a class I representative of hydrophobins, i.e. of secreted fungal envelope proteins with the ability to self-assemble.
Insbesondere wird die für das Zielprotein (DewA) kodierende DNA-Sequenz (SEQ ID NO: 13) an das 3'-terminale Ende der für ein Peptid-Pheromon aus S. pombe (P-Faktor; Aminosäuresequenz gemäß SEQ ID NO:6 für reifen P-Faktor) kodierende DNA Sequenz (SEQ ID NO:5 für reifen P-Faktor) fusioniert. Das entstehende Fusionsprotein enthält alle für die Sekretion des Pheromons und des daran fusionierten Zielproteins notwendigen Signalsequenzen, insbesondere das abspaltbare Signalpeptid (SEQ ID NO:4). Im Rahmen der Sekretion wird das Fusionsprotein proteolytisch prozessiert. Als Folge wird das Pheromon (P-Faktor) (SEQ ID NO:6) und das Zielprotein (Hydrophobin; SEQ ID NO: 14) separat ins Medium sezerniert.In particular, the DNA sequence coding for the target protein (DewA) (SEQ ID NO: 13) is at the 3'-terminal end for a peptide pheromone from S. pombe (P factor; amino acid sequence according to SEQ ID NO: 6 for mature P-factor) coding DNA sequence (SEQ ID NO: 5 for mature P-factor) fused. The resulting fusion protein contains all the signal sequences necessary for the secretion of the pheromone and the target protein fused to it, in particular the cleavable signal peptide (SEQ ID NO: 4). As part of the secretion, the fusion protein is processed proteolytically. As As a result, the pheromone (P factor) (SEQ ID NO: 6) and the target protein (hydrophobin; SEQ ID NO: 14) are secreted separately into the medium.
Der erfindungsgemäße Befund ist insofern überraschend, weil offensichtlich die eigent- liehen regulativen Elemente des P-Faktor-Präproteins (N-terminal zum reifen Pheromon) nicht ausreichen, um die Sezernierung des Zielproteins durch die Hefezellen steuern. Erst die Verwendung eines Konstruktes, in welchem dem zu sezerniernden Zielprotein eine zusätzliche, co-sezernierende Proteinkomponente (das reife Pheromon) prozessierbar vorgeschaltet ist, ermöglicht die gewünschte Sezernierung des Zielproteins in das Kulturmedium.The finding according to the invention is surprising in that the regulatory elements of the P-factor preprotein (N-terminal to the mature pheromone) are obviously not sufficient to control the secretion of the target protein by the yeast cells. Only the use of a construct in which an additional, co-secreting protein component (the mature pheromone) is processably connected upstream of the target protein to be secreted enables the desired secretion of the target protein into the culture medium.
Detaillierte Beschreibung der Erfindung:Detailed description of the invention:
a) Allgemeine Angabena) General information
Die Proteinsequenzen sind in der Beschreibung und den Figuren gewöhnlich im "EinBuchstaben-Code" angegeben.The protein sequences are usually given in the "one letter code" in the description and the figures.
„Sezemierbar" im Sinne der vorliegenden Erfindung ist ein Protein, welches von einer Wirtszelle, insbesondere von Hefen, intrazellulär exprimiert und über zelleigene Mechanismen durch die Zellmembran aus der Zelle, vorzugsweise in das umgebende Medium, ausgeschieden wird.For the purposes of the present invention, "secrete" is a protein which is expressed intracellularly by a host cell, in particular of yeasts, and is excreted from the cell, preferably into the surrounding medium, through the cell membrane via the cell's own mechanisms.
„Prozessierbar" im Sinne der vorliegenden Erfindung ist eine Protein-Vorstufe (d.h. ein Protein in seiner ursprünglich exprimierten Form, wie z.B. ein Präprotein, mit N-und /oder C-terminalen Peptidsequenzen, die im reifen prozessierten Protein nicht mehr vorliegen) wenn es durch proteolytische Vorgänge in und/oder außerhalb der Wirtszelle in die reife Form überführbar ist."Processable" in the sense of the present invention is a protein precursor (ie a protein in its originally expressed form, such as a preprotein, with N- and / or C-terminal peptide sequences that are no longer present in the mature processed protein) if it is can be converted into the mature form by proteolytic processes in and / or outside the host cell.
Eine „prozessierbare Verknüpfung" ist dann gegeben, wenn einzelne Proteinabschnitte in einem zu prozessierenden Protein über Peptidbindungen verbunden sind, die von einem proteolytischen Enzym der Wirtszelle spaltbar sind.A "processable linkage" is given when individual protein sections in a protein to be processed are linked via peptide bonds which can be cleaved by a proteolytic enzyme of the host cell.
Die „Prozessierung" kann N-terminal und gegebenenfalls auch C-terminal zur Sequenz des reifen, prozessierten Proteins (Zielproteins) erfolgen. Ein „homologes" Zielprotein, wird zwar ursprünglich in dem erfindungsgemäß verwendeten Wirt exprimiert, ist also ein wirtseigenes Protein, wird aber aufgrund der Transformation des Wirts mit einem erfindungsgemäßen Expressionskonstrukt durch die Wirtszellen sezerniert.The “processing” can take place N-terminally and optionally also C-terminally to the sequence of the mature, processed protein (target protein). A “homologous” target protein, although originally expressed in the host used according to the invention, is therefore a host's own protein, but is secreted by the host cells due to the transformation of the host with an expression construct according to the invention.
Ein „heterologes" Zielprotein, wird ursprünglich in dem erfindungsgemäß verwendeten Wirt nicht exprimiert, ist also kein wirtseigenes Protein, wird aber aufgrund der Transformation des Wirts mit erfindungsgemäßen Expressionskonstrukt durch die Wirtszellen sezerniert.A “heterologous” target protein is not originally expressed in the host used according to the invention, is therefore not a host protein, but is secreted by the host cells due to the transformation of the host with the expression construct according to the invention.
Ein „Shuttlepeptid" ist Bestandteil eines in der erfindungsgemäß verwendeten Wirtszelle prozessierbares „Shuttlepeptidkonstrukts". Zusammen mit einem oder mehreren prozessierbaren regulativen C- und/oder N- terminal, vorzugsweise N-terminal, damit verknüpften Peptidfragmenten, wie Signalsequenzen, Leadersequenzen, bildet es das Shuttlepeptidkonstrukt. Das Shuttlepeptid ist im Gegensatz z.B. zum Signalpeptid ein von der Wirtszelle sezerniertes Polypeptid. Die Prozessierung der regulativen Elemente erfolgt vorzugsweise intrazellulär. Die Sezernierbarkeit des Shuttlepeptids bleibt auch dann erhalten, wenn es, vorzugsweise C-terminal, mit einem Zielprotein prozessierbar fusioniert wird. Vorzugsweise erfolgt diese C-terminale Prozessierung, d.h. Ab- Spaltung des Zielproteins, proteolytisch im Rahmen der Sekretion, z.B. während des Durchgangs durch die Zellhülle der Wirtszelle, oder im extrazellulären Raum, z.B. im umgebenden Kulturmedium, durch zelleigene, Proteasen.A “shuttle peptide” is part of a “shuttle peptide construct” that can be processed in the host cell used according to the invention. Together with one or more processable regulative C- and / or N-terminal, preferably N-terminal, associated peptide fragments, such as signal sequences, leader sequences, it forms the shuttle peptide construct. In contrast, the shuttle peptide is e.g. to the signal peptide a polypeptide secreted by the host cell. The regulatory elements are preferably processed intracellularly. The shuttle peptide can also be secreted if it is fused, preferably C-terminally, to a target protein in a processable manner. This C-terminal processing is preferably carried out, i.e. Cleavage of the target protein, proteolytic during secretion, e.g. during passage through the host cell envelope or in extracellular space, e.g. in the surrounding culture medium, by the cell's own proteases.
Ein „Expressionskonstrukt" oder eine „Expressionskassette" gemäß vorliegender Erfin- diung umfasst, operativ verknüpft, mit der kodierenden Nukleinsäuresequenz eines prozessierbaren Shuttlepeptidkonstrukts gemäß obiger Definition, die zur Steuerung der Expression in einem speziellen Wirtssystem, wie insbesondere Hefezellen, erforderlichen Start- und Terminationssignale für Transkription und gegebenenfalls Translation. Das Expressionskonstrukt umfasst insbesondere Bindungsstellen für Transkripi- onsfaktoren. 5'- Stromaufwärts von der kodierenden Sequenz ist ein konstitutiver oder induzierbarer, nativer oder heterologer, natürlicher oder synthetischer in der Wirtszelle operabler Promotor enthalten. Das Expressionskonstrukt umfasst außerdem eine Anzahl von Restriktionsenzymschnittstellen, wie z. B. solche zur Insertion des Konstruk- tes in einen Expressionsvektor. Zusätzlich kann das Expressionskonstrukt ein Gen für einen selektierbaren Marker umfassen. Ein „Expressionsvektor" beschreibt ein Konstrukt, erhältlich durch Einführung einer erfindungsgemäßen Expressionskassette in ein Replikon, wie z. B. in ein Plasmid, Cosmid oder einen Virus. Ein derartiger Vektor ist zur autonomen Replikation oder zur Integration in das Wirtsgenom befähigt und enthält die erforderlichen Kontrollsequenzen zur Steuerung von Transkription und gegebenenfalls Translation der erfindungsgemäßen kodierenden Nukleinsauresequenzen für ein prozessierbares Shuttlepeptidkonstrukt gemäß obiger Definition.An “expression construct” or an “expression cassette” according to the present invention comprises, operatively linked, to the coding nucleic acid sequence of a processable shuttle peptide construct according to the above definition, the start and termination signals necessary for controlling expression in a special host system, such as in particular yeast cells Transcription and, if necessary, translation. The expression construct in particular comprises binding sites for transcription factors. 5'- Upstream of the coding sequence is a constitutive or inducible, native or heterologous, natural or synthetic promoter operable in the host cell. The expression construct also includes a number of restriction enzyme sites, e.g. B. those for inserting the construct into an expression vector. In addition, the expression construct can include a gene for a selectable marker. An “expression vector” describes a construct that can be obtained by inserting an expression cassette according to the invention into a replicon, such as, for example, into a plasmid, cosmid or a virus. Such a vector is capable of autonomous replication or integration into the host genome and contains the necessary ones Control sequences for controlling transcription and optionally translation of the coding nucleic acid sequences according to the invention for a processable shuttle peptide construct as defined above.
b) Bevorzugte Ausführungsformenb) Preferred embodiments
Ein erster Gegenstand der Erfindung betrifft ein Expressionskonstrukt umfassend die kodierende Nukleinsäuresequenz für ein von Hefezellen prozessierbares Shuttlepeptidkonstrukt der allgemeinen FormelA first subject of the invention relates to an expression construct comprising the coding nucleic acid sequence for a shuttle peptide construct of the general formula which can be processed by yeast cells
(Sig-SP),(Sig-SP),
enthaltend in 5'-3'-Richtung die kodierenden Nukleinsauresequenzen für a) ein Signalpeptid (Sig), prozessierbar verknüpft mit b) wenigstens einem von den Hefezellen sezemierbaren Shuttlepeptid (SP); sowie gegebenenfalls eine oder mehrere die Prozessierung und/oder Sezernierung fördernde Nukleinsauresequenzen, 5'- oder 3'-terminal zur kodierenden Signalpeptid- sequenz.containing the coding nucleic acid sequences for a) a signal peptide (Sig) in the 5'-3 'direction, processably linked to b) at least one shuttle peptide (SP) that can be secreted by the yeast cells; and optionally one or more nucleic acid sequences which promote processing and / or secretion, 5 'or 3' terminal to the coding signal peptide sequence.
Die kodierenden Sequenzen für SP und Sig befinden sich dabei im gleichen Leseraster und außerdem wird bei der Translation eine prozessierbare Sequenz zwischen C- Terminus von Sig und N-Terminus von SP ausgebildet. Diese prozessierbare Sequenz kann beispielsweise ein künstlich eingeführte, proteolytisch spaltbare natürliche oder synthetische Adaptor-Sequenz sein. Bevorzugt ist diese aber Bestandteil des C- Terminus von Sig oder N-Terminus von SP. Die Adaptor-Sequenz kann dabei so prozessiert werden, dass die gespaltene Sequenz ganz oder teilweise am C-Terminus von Sig oder N-Terminus von SP zu finden ist. Letzteres ist möglich, solange dadurch die Sezernierbarkeit von SP nicht wesentlich negativ beeinflusst, insbesondere nicht unterbunden, wird.The coding sequences for SP and Sig are in the same reading frame and, in addition, a processable sequence between the C-terminus of Sig and the N-terminus of SP is formed during translation. This processable sequence can be, for example, an artificially introduced, proteolytically cleavable natural or synthetic adapter sequence. However, this is preferably part of the C-terminus of Sig or N-terminus of SP. The adapter sequence can be processed in such a way that the split sequence can be found in whole or in part at the C-terminus of Sig or the N-terminus of SP. The latter is possible as long as this does not significantly impair, in particular not prevent, the ability to secrete SP.
Insbesondere sind Gegenstand der Erfindung solche Expressionskonstrukte, kodierend für ein prozessierbares Shuttlepeptidkonstrukt, das von einem Polypeptid abgeleitet ist, das von Hefen im weitesten Sinn prozessiert wird. Insbesondere sind dies Hefen ausgewählt unter Ascomyceten. Bevorzugte Hefen sind ausgewählt unter solchen der Klasse der Archiascomycetes, der Ordnung der Schizosaccharomycetales und besonders bevorzugt ausgewählt unter Hefen des Genus Schizosaccharomyces, wie S. pombe. Obwohl es Daten gibt, die zeigen, dass auch Minus-Zellen den P-Faktor sezernieren, ist es bevorzugt, den zum Mating-Faktor (Pheromon) passenden Stamm (also beim Plus-Faktor (P-Faktor) Plus-Zellen und beim Minus-Faktor (M-Faktor) Minus-Zellen) zu benutzen.In particular, the invention relates to such expression constructs which code for a processable shuttle peptide construct which is derived from a polypeptide which is processed by yeasts in the broadest sense. In particular, these are yeasts selected from Ascomycetes. Preferred yeasts are selected from those of the Class of the Archiascomycetes, the order of the Schizosaccharomycetales and particularly preferably selected from yeasts of the genus Schizosaccharomyces, such as S. pombe. Although there is data showing that minus cells also secrete the P factor, it is preferred to select the strain that is suitable for the mating factor (pheromone) (i.e. the plus factor (P factor) plus cells and the minus) Factor (M factor) minus cells).
Das prozessierbare Shuttlepeptidkonstrukt ist insbesondere von einem Pheromon- Präprotein aus einer Hefe abgeleitet, wobei das Pheromon durch N- und C-terminale Prozessierung aus dem Präprotein entsteht. Vorzugsweise weist das Pheromon N- terminal ein durch Prozessierung abspaltbares Polypeptid auf, das insbesondere die zur Prozessierung und/oder Sezernierung des Präproteins erforderlichen Elemente, wie Signalpeptid und gegebenenfalls Leaderpeptid sowie die erforderlichen Protea- seschnittstellen umfasst.The processable shuttle peptide construct is derived in particular from a pheromone preprotein from a yeast, the pheromone being produced from the preprotein by N- and C-terminal processing. The pheromone N-terminal preferably has a polypeptide which can be split off by processing and which in particular comprises the elements required for processing and / or secretion of the preprotein, such as signal peptide and possibly leader peptide, and the required protease interfaces.
Pheromone aus Pilzen sind bekannt und z.B. beschrieben sowohl für Basidiomyceten wie Ustilago maydis (Urban, M., Kahmann, R. and Bolker, M. (1996) The biallelic a mating type locus of Ustilago maydis: remnants of an additional pheromone gene indicate evolution from a multiallelic ancestor (Mol Gen Genet 250(4):414-420)) oder Coprinopsis einem (Halsall, J.R., Milner, M.J. and Casselton, LA (2000) Three subfamilies of pheromone and reeeptor genes generate mutiple B mating speeifities in the mushroom Coprineus cinereus (Genetics 154(3): 1115-1123)) als auch Ascomyceten wie Schizosaccharomyces pombe (Imai, Y. and Yamamoto, M. (1995) The fission yeast mating pheromone P-factor: its molecular strueture, gene strueture, and ability to induce gene expression and G1 arrest in the mating partner (Genes Dev 8(3):328-338), Davey, J. (1992) Mating pheromones of the fission yeast Schizosaccharomyces pombe: purification and structural characterization of M-factor and isolation and analysis of two genes encoding the pheromone (EMBO J 11(3):951- 960)), Saccharomyces cerevisiae (Michaelis, S. and Herskowitz, I. (1988) The a-factor pheromone of Saccharomyces cerevisiae is essential for mating (Mol Cell BiolMushroom pheromones are known and e.g. described both for basidiomycetes such as Ustilago maydis (Urban, M., Kahmann, R. and Bolker, M. (1996) The biallelic a mating type locus of Ustilago maydis: remnants of an additional pheromone gene indicate evolution from a multiallelic ancestor (Mol Gen Genet 250 (4): 414-420)) or Coprinopsis one (Halsall, JR, Milner, MJ and Casselton, LA (2000) Three subfamilies of pheromone and reeeptor genes generate mutiple B mating speeifities in the mushroom Coprineus cinereus (Genetics 154 ( 3): 1115-1123)) and ascomycetes such as Schizosaccharomyces pombe (Imai, Y. and Yamamoto, M. (1995) The fission yeast mating pheromone P-factor: its molecular strueture, gene strueture, and ability to induce gene expression and G1 arrest in the mating partner (Genes Dev 8 (3): 328-338), Davey, J. (1992) Mating pheromones of the fission yeast Schizosaccharomyces pombe: purification and structural characterization of M-factor and isolation and analysis of two genes encoding the pheromones (EMBO J 11 (3): 95 1-960)), Saccharomyces cerevisiae (Michaelis, S. and Herskowitz, I. (1988) The a-factor pheromone of Saccharomyces cerevisiae is essential for mating (Mol Cell Biol
8(3):1309-1318), Kurjan, J. and Herskowitz, I. (1982) Strueture of a yeast pheromone gene (MF-alpha): a putative alpha-factor precursor contains four tandem copies of mature alpha-factor (Cell 30(3): 933-943)), Kluyveromyces delphensis (Wong, S., Fares, M.A., Zimmermann, W., Butler, G. and Wolfe, K.H. (2003) Evidence from comparative genomics for a complete sexual cycle in the 'asexual' pathogenic yeast Candida glabrata (Genome Biol 4(2)R10)) and Saccharomyces kluyveri (Egel-Mitani, M. and Hansen, M.T. (1987) Nucleotide sequence of the gene encoding the Saccharomyces kluyveri alpha mating pheromone (Nucleic Acids Res 15(15)6303)).8 (3): 1309-1318), Kurjan, J. and Herskowitz, I. (1982) Strueture of a yeast pheromone gene (MF-alpha): a putative alpha-factor precursor contains four tandem copies of mature alpha-factor ( Cell 30 (3): 933-943)), Kluyveromyces delphensis (Wong, S., Fares, MA, Zimmermann, W., Butler, G. and Wolfe, KH (2003) Evidence from comparative genomics for a complete sexual cycle in the 'asexual' pathogenic yeast Candida glabrata (Genome Biol 4 (2) R10)) and Saccharomyces kluyveri (Egel-Mitani, M. and Hansen, MT (1987) Nucleotide sequence of the gene encoding the Saccharomyces kluyveri alpha mating pheromone (Nucleic Acids Res 15 (15) 6303)).
Erfindungsgemäß geeignete Pheromone sind relativ kleine Peptide (wie z.B. 5 bis 40 oder 8 bis 30 Aminsäuren). Sie zeigen gewöhnlich keine signifikante Homologie in der Primärsequenz. Sie werden als Präproteine gebildet, proteolytisch prozessiert und in das Kulturmedium abgegeben.Pheromones suitable according to the invention are relatively small peptides (such as 5 to 40 or 8 to 30 amino acids). They usually do not show significant homology in the primary sequence. They are formed as preproteins, processed proteolytically and released into the culture medium.
Beispiele für besonders geeignete Pheromone bzw. entsprechende Präproteine sind die sogenannten P- und M-Faktoren bzw. deren Präproteine aus S. pombe. (vgl. Imai, Y. and Yamamoto, M. (1995) The fission yeast mating pheromone P-factor: its molecular strueture, gene strueture, and ability to induce gene expression and G1 arrest in the mating partner (Genes Dev 8(3):328-338), Davey, J. (1992) Mating pheromones of the fission yeast Schizosaccharomyces pombe: purification and structural characterization of M-factor and isolation and analysis of two genes encoding the pheromone (EMBO J 11 (3):951-960), Kjaerulff, S., Davey, J. and Nielsen, O. (1994) Analysis of the structural genes encoding M-factor in the fission yeast Schizosaccharomyces pombe: identification of a third gene, mfm3 (Mol Cell Biol 14(6)3895-3905)).Examples of particularly suitable pheromones or corresponding pre-proteins are the so-called P and M factors or their pre-proteins from S. pombe. (cf.Imai, Y. and Yamamoto, M. (1995) The fission yeast mating pheromone P-factor: its molecular strueture, gene strueture, and ability to induce gene expression and G1 arrest in the mating partner (Genes Dev 8 (3 ): 328-338), Davey, J. (1992) Mating pheromones of the fission yeast Schizosaccharomyces pombe: purification and structural characterization of M-factor and isolation and analysis of two genes encoding the pheromone (EMBO J 11 (3): 951 -960), Kjaerulff, S., Davey, J. and Nielsen, O. (1994) Analysis of the structural genes encoding M-factor in the fission yeast Schizosaccharomyces pombe: identification of a third gene, mfm3 (Mol Cell Biol 14 ( 6) 3895-3905)).
Das P-Faktor-Präprotein weist beispielsweise eine DNA-Sequenz gemäß SEQ ID NO: 9 und eine Proteinsequenz gemäß SEQ ID NO: 10 auf. Das Präprotein umfasst eine N- terminale Signalpeptid-Sequenz verbrückt mit vier aufeinander folgenden durch Prozessierung trennbaren Pheromon-Peptidsequenzen (vgl. Figur 3).The P-factor preprotein has, for example, a DNA sequence according to SEQ ID NO: 9 and a protein sequence according to SEQ ID NO: 10. The preprotein comprises an N-terminal signal peptide sequence bridged with four successive pheromone peptide sequences which can be separated by processing (cf. FIG. 3).
In bevorzugten erfindungsgemäßen Konstrukten ist das prozessierbares Shuttlepeptidkonstrukt so ausgebildet, dass es ein Signalpolypeptid (Sig) enthält, das mit dem N- terminalen Ende eines C-terminal prozessierbaren Pheromonpolypeptides (Pher) prozessierbar verknüpft ist.In preferred constructs according to the invention, the processable shuttle peptide construct is designed such that it contains a signal polypeptide (Sig) which is processably linked to the N-terminal end of a C-terminally processable pheromone polypeptide (Pher).
Insbesondere umfasst das Signalpolypeptid das proteolytisch abspaltbare native Signalpolypeptid (z.B. SEQ ID NO:4 kodiert von SEQ ID NO:3) des Pheromon-Präproteins oder ist damit identisch.In particular, the signal polypeptide comprises or is identical to the proteolytically cleavable native signal polypeptide (e.g. SEQ ID NO: 4 encoded by SEQ ID NO: 3) of the pheromone preprotein.
Bevorzugt ist weiterhin, dass das C-terminal prozessierte Pheromonpolypeptid eine C~ terminale Proteaseschnittstelle umfasst. Vorzugsweise umfasst das Expressionskonstrukt weiterhin die kodierende Nukleinsäuresequenz für ein homologes oder heterologes Zielprotein (Targ), prozessierbar verknüpft mit dem C-Terminus des Shuttlepeptidkonstrukts (Sig-SP).It is further preferred that the C-terminal processed pheromone polypeptide comprises a C-terminal protease interface. The expression construct preferably further comprises the coding nucleic acid sequence for a homologous or heterologous target protein (Targ), processably linked to the C-terminus of the shuttle peptide construct (Sig-SP).
Gegenstand der Erfindung sind bevorzugt Expressionskonstrukte der oben bezeichneten Art, umfassend die kodierende Nukleinsäuresequenz für ein von Hefezellen prozessierbares Fusionsprotein der allgemeinen FormelThe invention preferably relates to expression constructs of the type described above, comprising the coding nucleic acid sequence for a fusion protein of the general formula which can be processed by yeast cells
Sig-L1 n-Pher-L2m-TargSig-L1 n -Pher-L2 m -Targ
worinwherein
Sig, Pher und Targ wie oben definiert sind,Sig, Pher and Targ are as defined above,
L1 und L2 für prozessierbare Linker oder Adaptor-Sequenzen stehen und n und m unabhängig voneinander für 0 oder 1 stehen. Bevorzugt steht aber n für 1 und m für O.L1 and L2 stand for processable linkers or adapter sequences and n and m stand independently for 0 or 1. However, n is preferably 1 and m is O.
L1 und L2 können dabei natürliche oder synthetische Linker sein. Sie umfassen zumindest eine proteolytisch prozessierbare Peptidsequenz. Gegebenenfalls können mit L1 und/oder L2 weitere, wie z.B. die Prozessierung, Sezernierung, Transkription und/oder Translation fördernde, Effektorfunktionen assoziiert sein.L1 and L2 can be natural or synthetic linkers. They comprise at least one proteolytically processable peptide sequence. If necessary, with L1 and / or L2, e.g. the processing, secreting, transcription and / or translation-promoting effector functions are associated.
Besonders bevorzugt sind Expressionskonstrukte, wobei die kodierende Nukleinsäuresequenz für das prozessierbare Shuttlepeptidkonstrukt eine für ein Signalpolypeptid (Sig) kodierende Sequenz gemäß SEQ ID NO: 3 oder ein funktionales Äquivalent da- von, operativ verknüpft mit der für den reifen P-Faktor Pheromon (Pher) kodierenden Nukleinsäuresequenz gemäß SEQ ID NO:5 oder ein funktionales Äquivalent davon umfasst.Expression constructs are particularly preferred, the coding nucleic acid sequence for the processable shuttle peptide construct being a sequence coding for a signal polypeptide (Sig) according to SEQ ID NO: 3 or a functional equivalent thereof, operatively linked to that for the mature P factor pheromone (Pher) encoding nucleic acid sequence according to SEQ ID NO: 5 or a functional equivalent thereof.
Der Linker L2 ist dabei vorzugsweise nicht vorhanden. Der Linker L1 ist dagegen vor- zugsweise vorgesehen und umfasst die kodierende Sequenz für ein Polypeptid gemäß den Aminosäurereste 21 bis 30 in SEQ ID NO: 10. L1 verbrückt dabei das Signalpolypeptid mit dem ersten Pheromon-Baustein (Position 31 bis 57 in SEQ ID NO: 10) der Prähormons. Das C-terminale Ende von L1 entspricht einer Erkennungssequenz der für die proteolytische Prozessierung erforderlichen Protease. In einer besonders bevorzugten Ausführungsform umfasst die kodierende Nukleinsäuresequenz für das prozessierbares Shuttlepeptidkonstrukt eine Sequenz gemäß SEQ ID NO:1.The linker L2 is preferably not present. The linker L1, on the other hand, is preferably provided and comprises the coding sequence for a polypeptide according to amino acid residues 21 to 30 in SEQ ID NO: 10. L1 bridges the signal polypeptide with the first pheromone building block (positions 31 to 57 in SEQ ID NO : 10) the prehormone. The C-terminal end of L1 corresponds to a recognition sequence of the protease required for the proteolytic processing. In a particularly preferred embodiment, the coding nucleic acid sequence for the processable shuttle peptide construct comprises a sequence according to SEQ ID NO: 1.
Grundsätzlich ist die gleiche Vorgehensweise auch mit Hilfe des M-Faktors - des zweiten in S. pombe vorkommenden Pheromons - einsetzbar und auf die Expression beliebiger homo- und heterologer Zielproteine (Targetproteine) anwendbar. Genomisch gibt es drei Gene (mfmf, SEQ ID N0:42; mfm2 SEQ ID NO: 45; und mfm3+, SEQ ID NO:48 ) welche jeweils den M-Faktor, das Pheromon der Zellen mit Minus- Paarungstyp, kodieren. Von jedem Gen wird zunächst ein Präprotein (SEQ ID NO: 43, 46 und 49) gebildet, welches im Rahmen der Sekretion prozessiert wird. Letztlich wird der M-Faktor (YTPKVPYMC; SEQ ID NO:51), codiert von SEQ ID NO: 44, 47 bzw. 50) als reifes Pheromon in das Medium abgegeben, (vgl. Figur 9 ).Basically, the same procedure can also be used with the help of the M factor - the second pheromone occurring in S. pombe - and applicable to the expression of any homo- and heterologous target proteins (target proteins). Genomically there are three genes (mfmf, SEQ ID NO: 42; mfm2 SEQ ID NO: 45; and mfm3 + , SEQ ID NO: 48) which each encode the M factor, the pheromone of the cells with the minus pairing type. A preprotein (SEQ ID NO: 43, 46 and 49) is first formed from each gene, which is processed as part of the secretion. Ultimately, the M factor (YTPKVPYMC; SEQ ID NO: 51), encoded by SEQ ID NO: 44, 47 and 50) is released into the medium as a mature pheromone (cf. FIG. 9).
Weitere erfindungsgemäß geeignete Shuttlepeptid-Konstrukte könnten daher von den kodierenden Sequenzen gemäß SEQ ID NO:42, 45 oder 48 abgeleitet sein, welche für M-Faktor Signalpeptid, funktional verknüpft mit einem M-Faktor-Pheromon, kodieren. Nichtlimitierende Beispiele für entsprechende kodierende Shuttlepeptid-Sequenzen umfassen z.B. Nukleotidreste 1 bis 117 gemäß SEQ ID NO:42; Nukleotidreste 1 bis 123 gemäß SEQ ID NO:45; oder Nukleotidreste 1 bis 114 gemäß SEQ ID NO:48; oder davon abgeleitete funktional äquivalente Konstrukte, welche die Sekretion und Prozessierung des M-Faktor-Pheromons und eines mit dem Pheromon C-terminal und proteolytisch abspaltbar verknüpften homo- oder heterologen Zielproteins steuern. Funktionale Äquivalente können dabei die 5'-stromaufwärts von der kodierenden Sequenz des reifen M-Faktors (SEQ ID NO:44, 47 oder 50) gelegenen Sequenzabschnitte unverändert oder abgewandelt (z.B. durch Deletion einzelner oder mehrerer Nukleinsäurereste) enthalten, und somit für ein in seiner Aminosäuresequenz verändertes Shuttlepeptid kodieren, welches die mature M-Faktor-Peptidsequenz funktional verknüpft mit einem, z.B. C-terminal verkürzten, Signalsequenzabschnitt umfasst.Further shuttle peptide constructs suitable according to the invention could therefore be derived from the coding sequences according to SEQ ID NO: 42, 45 or 48, which code for M factor signal peptide, functionally linked to an M factor pheromone. Non-limiting examples of corresponding coding shuttle peptide sequences include e.g. Nucleotide residues 1 to 117 according to SEQ ID NO: 42; Nucleotide residues 1 to 123 according to SEQ ID NO: 45; or nucleotide residues 1 to 114 according to SEQ ID NO: 48; or functionally equivalent constructs derived therefrom which control the secretion and processing of the M-factor pheromone and a homo- or heterologous target protein linked to the pheromone C-terminally and proteolytically cleavable. Functional equivalents can contain the sequence segments located 5 'upstream from the coding sequence of the mature M factor (SEQ ID NO: 44, 47 or 50) unchanged or modified (e.g. by deletion of one or more nucleic acid residues), and thus for an in encode its amino acid sequence modified shuttle peptide, which functionally links the mature M factor peptide sequence with a, eg C-terminal shortened signal sequence section includes.
Ein erfindungsgemäß exprimiertes Zielprotein (Targ) kann von jedem beliebigen proka- ryotischen oder eukaryotischen Organismus, insbesondere Mensch, Tier oder Hefen, abgeleitet sein, solange es in der erfindungsgemäßen Weise als Bestandteil eines Fusionsproteins mit dem Shuttlepeptid (SP) von der Wirtszelle exprimierbar, sezernierbar und prozessierbar ist. Das sezemierte und prozessierte Produkt kann therapeutisch nützlich sein oder andere vorteilhafte anwendungstechnische Eigenschaften besitzen. Als Beispiele für therapeutisch nützliche Proteine sind zu nennen Immunglobuline, Peptidhormone, Wachstumsfaktoren, Lymphokine, Protease-Inhibitoren und dergleichen. Als Beispiel für Zielproteine mit anderen anwendungstechnisch interessanten Eigenschaften sind insbesondere Hydrophobine zu nennen.A target protein (target) expressed according to the invention can be derived from any prokaryotic or eukaryotic organism, in particular humans, animals or yeasts, as long as it can be expressed by the host cell in the manner according to the invention as a component of a fusion protein with the shuttle peptide (SP) and is processable. The secreted and processed product can be therapeutically useful or have other advantageous application properties. Examples of therapeutically useful proteins are immunoglobulins, Peptide hormones, growth factors, lymphokines, protease inhibitors and the like. Hydrophobins are particularly worthy of mention as an example of target proteins with other properties which are of interest in terms of application technology.
In einer besonders bevorzugten Ausfü rungsform der Erfindung ist das Zielprotein ein Hydrophobin, insbesondere ein Hydrophobin der Klasse I.In a particularly preferred embodiment of the invention, the target protein is a hydrophobin, in particular a hydrophobin of class I.
Typische Hydrophobine sind relativ kleine (100+25 Aminosäuren) moderat hydrophobe Proteine mit einem konservierten Motiv von 8 Cysteinen (X2-38-C-X5-9-C-C-X11-39-C-X8- 23-C-X5-9-C-C-X6.18-C-X2-ι3). Hydrophobine können an hydrophilen-hydrophoben Grenzflächen zu Proteinfilmen assemblieren. Solche Aggregate von Hydrophobinen der Klasse I sind in SDS unlöslich, während Aggregate der Klasse II Hydrophobine in SDS löslich sind (Wessels, J.G.H. (1997) Hydrophobins: Proteins that change the nature of the fungal surface. Adv Microb Physiol 38:1-45).Typical hydrophobins are relatively small (100 + 25 amino acids) moderately hydrophobic proteins with a conserved motif of 8 cysteines (X -CX 2-38 5- 9-CCX 11-39 -CX 8- 23 -CX 5-9 -CCX. 6 18 -CX 2- ι 3 ). Hydrophobins can assemble at hydrophilic-hydrophobic interfaces to protein films. Such aggregates of class I hydrophobins are insoluble in SDS, while aggregates of class II hydrophobins are soluble in SDS (Wessels, JGH (1997) Hydrophobins: Proteins that change the nature of the fungal surface. Adv Microb Physiol 38: 1-45) ,
Erfindungsgemäß brauchbare Hydrophobine sind dabei insbesondere aus Pilzen abgeleitet, z.B. aus Ascomyceten, wie solchen der Gattung Aspergillus, insbesondere A. nidulans.Hydrophobins which can be used according to the invention are derived in particular from fungi, e.g. from Ascomycetes, such as those of the genus Aspergillus, in particular A. nidulans.
Brauchbare Hydrophobine sind auch aus dem oben genannten Stand der Technik bekann und nicht auf solche aus Pilzen beschränkt.Useful hydrophobins are also known from the prior art mentioned above and are not restricted to those from fungi.
Nichtlimitierende Beispiele für brauchbare Hydrophobine sind ausgewählt unter SEQ ID NO: 14 (DewA), SEQ ID NO:19 (RdIA) SEQ ID NO:20 (RdlB) SEQ ID NO:21 (HYP1) SEQ ID NO:22 (HYP4) und SEQ ID NO:56 (RodA).Non-limiting examples of useful hydrophobins are selected from SEQ ID NO: 14 (DewA), SEQ ID NO: 19 (RdIA) SEQ ID NO: 20 (RdlB) SEQ ID NO: 21 (HYP1) SEQ ID NO: 22 (HYP4) and SEQ ID NO: 56 (RodA).
p52750 (DewA)p52750 (DewA)
MRFIVSLLAF TAAATATALP ASAAKNAKLA TSAAFAKQAE GTTCNVGSIA CCNSPAETNN DSLLSGLLGA GLLNGLSGNT GSACAKASLI DQLGLLALVD HTEEGPVCKN IVACCPEGTT NCVAVDNAGA GTKAEMRFIVSLLAF TAAATATALP ASAAKNAKLA TSAAFAKQAE GTTCNVGSIA CCNSPAETNN DSLLSGLLGA GLLNGLSGNT GSACAKASLI DQLGLLALVD HTEEGPVCKN IVACCPEGTT NCVAVDNAGA GTKAE
q9l 190 (RdIA)q9l 190 (RdIA)
MLKKAMVAAA AAASVIGMSA AAAPQALAIG DDNGPAVANG NGAESAFGNS ATKGDMSPQLSLVEGTLNKP CLGVEDVNVA VINLVPIQDI NVLADDLNQQ CADNSTQAKR DGALSHVLED LSVLSANGEG R q934f8 (RdlB)MLKKAMVAAA AAASVIGMSA AAAPQALAIG DDNGPAVANG NGAESAFGNS ATKGDMSPQLSLVEGTLNKP CLGVEDVNVA VINLVPIQDI NVLADDLNQQ CADNSTQAKR DGALSHVLED LSVLSANGEG R q934f8 (RdlB)
MIKKWAYAA IAASVMGASA AAAPQAMAIG DDSGPVSANG NGASQYFGNS MTTGNMSPQM ALIQGSFNKP CIAVSDIPVS VIGLVPIQDL NVLGDDMNQQ CAENSTQAKR DGALAHLLED VSILSSNGEG GKGMIKKWAYAA IAASVMGASA AAAPQAMAIG DDSGPVSANG NGASQYFGNS MTTGNMSPQM ALIQGSFNKP CIAVSDIPVS VIGLVPIQDL NVLGDDMNQQ CAENSTQAKR DGALAHLLED VSILSSNGEG GKG
HYP1_AGAB1 (P49072)HYP1_AGAB1 (P49072)
MISRVLVAAL VALPALVTAT PAPGKPKASS QCDVGE1HCC DTQQTPDHTS AAASGLLGVP INLGAFLGFD CTPISVLGVG GNNCAAQPVC CTGNQFTALI NALDCSPVNV NLMISRVLVAAL VALPALVTAT PAPGKPKASS QCDVGE1HCC DTQQTPDHTS AAASGLLGVP INLGAFLGFD CTPISVLGVG GNNCAAQPVC CTGNQFTALI NALDCSPVNV NL
HYP4_AGABI (043122)HYP4_AGABI (043122)
MVSTFITVAK TLLVALLFVN INIVVGTATT GKHCSTGPIE CCKQVMDSKS PQATELLTKN GLGLGVLAGV KGLVGANCSP ITAIGIGSGS QCSGQTVCCQ NNNFNGWAI CTPINANVMVSTFITVAK TLLVALLFVN INIVVGTATT GKHCSTGPIE CCKQVMDSKS PQATELLTKN GLGLGVLAGV KGLVGANCSP ITAIGIGSGS QCSGQTVCCQ NNNFNGWAI CTPINANV
RodARodA
LPPAHDSQFA GNGVGNKGNS NVKFPVPENV TVKQASDKCG DQAQLSCCNK ATYAGDTTTV DEGLLSGALS GLIGAGSGAE GLGLFDQCSK LDVAVLIGIQ DLVNQKCKQN IACCQNSPSS ADGNLIGVGL PCVALGSILLPPAHDSQFA GNGVGNKGNS NVKFPVPENV TVKQASDKCG DQAQLSCCNK ATYAGDTTTV DEGLLSGALS GLIGAGSGAE GLGLFDQCSK LDVAVLIGIQ DLVNQKCKQN IACCQNSPSS ADVALLGILGL
Das RodA-Protein ist zusammen mit dem DewA-Protein Bestandteil der äußeren Sporenhülle von A. nidulans.The RodA protein together with the DewA protein is part of the outer spore shell of A. nidulans.
Gegenstand der Erfindung sind außerdem Expressionsvektoren, umfassend in operativer Verknüpfung mit wenigstens einer regulativen Nukleinsäuresequenz ein Expressionskonstrukt nach obiger Definition.The invention also relates to expression vectors comprising, in operative linkage with at least one regulatory nucleic acid sequence, an expression construct as defined above.
Gegenstand der Erfindung sind auch rekombinante Mikroorganismen, enthaltend, ge- gebenenfalls stabil in das Wirtsgenom integriert, wenigstens einen Expressionsvektor oder ein Expressionskonstrukt gemäß obiger Definition. Ein „rekombinanter Mikroorganismus im Sinne der vorliegenden Erfindung umfasst wenigstens einen erfindungsgemäßen Expressionsvektor oder ein erfindungsgemäßes Expressionskonstrukt und ist abgeleitet von Hefen im weitesten Sinn. Insbesondere sind die Hefen abgeleitet von Ascomyceten. Bevorzugte Hefen sind ausgewählt aus der Klasse der Archiascomycetes, der Ordnung der Schizosaccharomycetales, und besonders bevorzugt ausgewählt unter Hefen des Genus Schizosaccharomyces, wie S. pombe.The invention also relates to recombinant microorganisms which contain, if appropriate stably integrated into the host genome, at least one expression vector or an expression construct as defined above. A “recombinant microorganism in the sense of the present invention comprises at least one expression vector according to the invention or an expression construct according to the invention and is derived from yeasts in the broadest sense. In particular, the yeasts are derived from Ascomycetes. Preferred yeasts are selected from the class of the Archiascomycetes, the order of the Schizosaccharomycetales, and particularly preferably selected from yeasts of the genus Schizosaccharomyces, such as S. pombe.
Ein weiterer Gegenstand der Erfindung betrifft von Hefezellen prozessierbare Shuttle- peptidkonstrukte, abgeleitet von einem Pheromon-Präprotein aus einer Hefe, wobei das Pheromon durch N- und C-terminale Prozessierung aus dem Präprotein ableitbar und sezemierbar ist.Another object of the invention relates to shuttle peptide constructs that can be processed by yeast cells, derived from a pheromone preprotein from a yeast, the pheromone being derivable and secrete from the preprotein by N- and C-terminal processing.
Bevorzugt sind solche Shuttlepeptidkonstrukte, enthaltend ein Signalpolypeptid N- terminai prozessierbar verknüpft mit dem C-terminal prozessierten Pheromonpolypeptid.Preferred shuttle peptide constructs containing a signal polypeptide N-terminai are processably linked to the C-terminally processed pheromone polypeptide.
Vorzugsweise ist dabei das Signalpolypeptid das proteolytisch abspaltbare native Signalpolypeptid des Pheromon-Präproteins und das C-terminal prozessierte Pheromon- polypeptid umfasst die C-terminale Proteaseschnittstelle.The signal polypeptide is preferably the proteolytically cleavable native signal polypeptide of the pheromone preprotein and the C-terminally processed pheromone polypeptide comprises the C-terminal protease interface.
Bevorzugte Shuttlepeptidkonstrukte sind dabei abgeleitet von Pheromon-Präproteinen, aus Hefen, insbesondere Präproteinen der Faktoren P und M aus S. pombe. Besonders bevorzugte Shuttlepeptide umfassen eine Aminosäuresequenz nach SEQ ID NO:2 oder ein funktionales Äquivalent davon.Preferred shuttle peptide constructs are derived from pheromone preproteins, from yeasts, in particular preproteins of the factors P and M from S. pombe. Particularly preferred shuttle peptides comprise an amino acid sequence according to SEQ ID NO: 2 or a functional equivalent thereof.
Ein weiterer Gegenstand der Erfindung betrifft ein Verfahren zur rekombinanten Herstellung eines Zielproteins, wobei man einen rekombinanten Mikroorganismus nach obiger Definition kultiviert, die das Zielprotein kodierende Nukleinsäuresequenz expri- miert und das in das Kulturmedium sezernierte Zielprotein, wie z.B. ein Hydrophobin gemäß obiger Definition, isoliert.Another object of the invention relates to a method for the recombinant production of a target protein, wherein a recombinant microorganism according to the above definition is cultivated, which expresses the nucleic acid sequence encoding the target protein and the target protein secreted into the culture medium, such as e.g. a hydrophobin as defined above, isolated.
Gegenstand der Erfindung sind weiterhin Nukleinsäuren, kodierend für ein Shuttlepeptidkonstrukt nach obiger Definition; sowie Nukleinsäuren, kodierend für ein von Hefe- Zeilen prozessierbares, ein Zielprotein u fassendes Fusionsprotein gemäß obiger Definition. Gegenstand der Erfindung sind auch Hydrophobine, erhältlich nach einem erfindungsgemäßen Verfahren.The invention further relates to nucleic acids coding for a shuttle peptide construct as defined above; as well as nucleic acids coding for a fusion protein which can be processed by yeast lines and comprises a target protein and as defined above. The invention also relates to hydrophobins obtainable by a process according to the invention.
Schließlich betrifft die Erfindung die Verwendung eines solchen Hydrophobins zur O- berflächenbehandlung, wobei man insbesondere die Oberfläche von Gegenständen, ausgewählt unter Glas, Fasern, Geweben, Leder, lackierten Gegenständen, wie z.B. Kraftfahrzeugkarosserien, Folien, Fassaden behandelt.Finally, the invention relates to the use of such a hydrophobin for surface treatment, in particular the surface of objects selected from glass, fibers, fabrics, leather, lacquered objects, such as e.g. Motor vehicle bodies, foils, facades treated.
Gegenstand der Erfindung ist auch die Verwendung von Hydrophobinen zur Oberflä- chenbehandlung von Fasern, Geweben und Leder.The invention also relates to the use of hydrophobins for the surface treatment of fibers, fabrics and leather.
c) Weitere Ausgestaltungen der Erfindungc) Further refinements of the invention
d) Polypeptide/Proteined) polypeptides / proteins
Erfindungsgemäß mit umfasst sind ebenfalls „funktionale Äquivalente" der konkret offenbarten bzw. verwendeten Polypeptid/Proteine. Dies gilt sowohl für die intermediär gebildeten Fusionsproteine als auch deren Komponenten, d.h. Zielproteine (Targ), Shuttlepeptide (SP), wie Pheromone (Pher), aber auch für Signalpeptide (Sig) und Linker. Im folgenden wird als Oberbegriff für Polypeptid/Protein nur noch „Polypeptid" verwendet.Also included according to the invention are “functional equivalents” of the specifically disclosed or used polypeptide / proteins. This applies both to the intermediately formed fusion proteins and to their components, ie target proteins (target), shuttle peptides (SP) such as pheromones (Pher) also for signal peptides (Sig) and linkers. In the following, only "polypeptide" is used as a generic term for polypeptide / protein.
„Funktionale Äquivalente" oder Analoga der konkret offenbarten Polypeptide sind im Rahmen der vorliegenden Erfindung davon verschiedene Polypeptide, welche weiterhin die gewünschte biologische Aktivität besitzen. Analoge Shuttlepeptide sollen weiterhin dazu geeignet sein die Sezernierung und Prozessierung des Zielproteins zu steuern. Entsprechend sollen auch die funktionalen Äquivalente von Komponenten des Shuttlepeptids, wie Signalpolypeptid, Pheromon, Linker, weiterhin die erforderlichen Eigenschaften für eine effektive Sezernierung und Prozessierung des Fusionsproteins unter Freisetzung des Zielproteins aufweisen.“Functional equivalents” or analogs of the specifically disclosed polypeptides are, within the scope of the present invention, different polypeptides thereof which continue to have the desired biological activity. Analog shuttle peptides should continue to be suitable for controlling the secretion and processing of the target protein. The functional equivalents should also correspond accordingly of components of the shuttle peptide, such as signal polypeptide, pheromone, linker, furthermore have the properties required for effective secretion and processing of the fusion protein with release of the target protein.
„Funktionale Äquivalente" erfindungsgemäßer Polypeptide, wie Zielproteine, Shuttlepeptide, können insbesondere durch proteolytische Spaltung entstehenden Reste von natürlichen Linker- oder Adaptor-Sequenzen C-und/oder N-terminal enthalten. Unter "funktionalen Äquivalenten" versteht man erfindungsgemäß insbesondere mutan- te Proteine, welche in wenigstens einer der Sequenzpositionen der oben genannten konkreten Sequenzen eine andere als die konkret genannte Aminosäure aufweisen, aber trotzdem eine der oben genannten biologischen Aktivitäten besitzen. "Funktionale Äquivalente" umfassen somit die durch eine oder mehrere Aminosäure-Additionen, - Substitutionen (vgl. Beispiele in folgender Tabelle), -Deletionen und/oder -Inversionen erhältlichen mutanten Proteine, wobei die genannten Veränderungen in jeglicher Sequenzposition auftreten können, solange sie zxi einem mutanten Protein mit dem erfindungsgemäßen Eigenschaftsprofil führen."Functional equivalents" of polypeptides according to the invention, such as target proteins, shuttle peptides, can in particular contain residues of natural linker or adapter sequences which are formed by proteolytic cleavage at the C- and / or N-terminal. According to the invention, “functional equivalents” are understood to mean, in particular, mutant proteins which have at least one of the sequence positions of the above-mentioned concrete sequences different from the specifically mentioned amino acid, but nevertheless have one of the above-mentioned biological activities. "Functional equivalents" thus include the mutant proteins obtainable by one or more amino acid additions, substitutions (cf. examples in the following table), deletions and / or inversions, the changes mentioned being able to occur in any sequence position as long as they exist a mutant protein with the property profile according to the invention.
Geeignete Reste für Aminosäuresubstitutionen sind z.B.:Suitable residues for amino acid substitutions include:
er Rest Beispiele der Substituti onhe rest examples of substitution
Ala SerAla Ser
Arg LysArg Lys
Asn Gin; HisAsn Gin; His
Asp GluAsp Glu
Cys SerCys Ser
Gin AsnGin Asn
Glu AspGlu Asp
Gly ProGly Pro
His Asn ; GinHis Asn; gin
He Leu; ValHey Leu; Val
Leu He; ValLeu He; Val
Lys Arg ; Gin ; GluLys Arg; Gin; Glu
Met Leu ; lleMet Leu; lle
Phe Met ; Leu ; TyrPhe Met; Leu; Tyr
Ser ThrSer Thr
Thr SerThr Ser
Trp TyrTrp Tyr
Tyr Trp ; PheTyr Trp; Phe
Val lle; LeuVal lle; Leu
Funktionale Äquivalenz ist insbesondere auch dann gegeben, wenn das Aktivitätsmus- ter zwischen mutantem und unverändertem Polypeptid qualitativ übereinstimmen. Die bedeutet z.B. dass abgewandelte Shuttlepeptide das gleiche Zielprotein mit höherer oder niedrigerer Effizienz im gleichen Wirt exprimieren oder sezernieren; oder dass abgewandelte Zielproteine eine erhöhte oder verminderte pharmakologische Wirkung oder modifizierte anwendungstechnische Eigenschaft besitzen. „Funktionale Äquivalente" im obigen Sinne umfassen auch Präkursoren der beschriebenen Polypeptide sowie funktionale Derivate und Salze der Polypeptide. Unter dem Ausdruck „Salze" versteht man sowohl Salze von Carboxylgruppen als auch Säureadditionssalze von Aminogruppen der erfindungsgemäßen Proteinmoleküle. Salze von Carboxylgruppen können in an sich bekannter Weise hergestellt werden und umfassen anorganische Salze, wie zum Beispiel Natrium-, Calcium-, Ammonium-, Eisen- und Zinksalze, sowie Salze mit organischen Basen, wie zum Beispiel Aminen, wie Trietha- nolamin, Arginin, Lysin, Piperidin und dergleichen. Säureadditionssalze, wie zum Beispiel Salze mit Mineralsäuren, wie Salzsäure oder Schwefelsäure und Salze mit orga- nischen Säuren, wie Essigsäure und Oxalsäure sind ebenfalls Gegenstand der Erfindung.Functional equivalence is particularly given when the activity pattern between mutant and unchanged polypeptide matches qualitatively. This means, for example, that modified shuttle peptides express or secrete the same target protein with higher or lower efficiency in the same host; or that modified target proteins have an increased or decreased pharmacological effect or modified application properties. “Functional equivalents” in the above sense also include precursors of the polypeptides described and functional derivatives and salts of the polypeptides. The term “salts” means both salts of carboxyl groups and acid addition salts of amino groups of the protein molecules according to the invention. Salts of carboxyl groups can be prepared in a manner known per se and include inorganic salts, such as, for example, sodium, calcium, ammonium, iron and zinc salts, and salts with organic bases, such as, for example, amines, such as triethanolamine, arginine , Lysine, piperidine and the like. Acid addition salts, such as, for example, salts with mineral acids, such as hydrochloric acid or sulfuric acid, and salts with organic acids, such as acetic acid and oxalic acid, are also a subject of the invention.
„Funktionale Derivate" erfindungsgemäßer Polypeptide können an funktioneilen Aminosäure-Seitengruppen oder an deren N- oder C-terminalen Ende mit Hilfe bekannter Techniken ebenfalls hergestellt werden. Derartige Derivate umfassen beispielsweise aliphatische Ester von Carbonsäuregruppen, Amide von Carbonsäuregruppen, erhältlich durch Umsetzung mit Ammoniak oder mit einem primären oder sekundären Amin; N-Acylderivate freier Aminogruppen, hergestellt durch Umsetzung mit Acylgruppen; oder O-Acylderivate freier Hydroxygruppen, hergestellt durch Umsetzung mit Acylgrup- pen."Functional derivatives" of polypeptides according to the invention can also be prepared on functional amino acid side groups or on their N- or C-terminal end using known techniques. Such derivatives include, for example, aliphatic esters of carboxylic acid groups, amides of carboxylic acid groups, obtainable by reaction with ammonia or with a primary or secondary amine, N-acyl derivatives of free amino groups, produced by reaction with acyl groups, or O-acyl derivatives of free hydroxyl groups, produced by reaction with acyl groups.
"Funktionale Äquivalente" umfassen natürlich auch Polypeptide, welche aus anderen als den konkret genannten Organismen, zugänglich sind, sowie natürlich vorkommende Varianten. Beispielsweise lassen sich durch Sequenzvergleich Bereiche homologer Sequenzregionen festlegen und in Anlehnung an die konkreten Vorgaben der Erfindung äquivalente Enzyme ermitteln."Functional equivalents" naturally also include polypeptides which are accessible from organisms other than those specifically mentioned, and naturally occurring variants. For example, regions of homologous sequence regions can be determined by sequence comparison and, based on the specific requirements of the invention, equivalent enzymes can be determined.
„Funktionale Äquivalente" umfassen ebenfalls Fragmente, vorzugsweise einzelne Domänen oder Sequenzmotive, der erfindungsgemäßen Polypeptide, welche z.B. die gewünschte biologische Funktion aufweisen."Functional equivalents" also include fragments, preferably individual domains or sequence motifs, of the polypeptides according to the invention which, for example, have the desired biological function.
„Funktionale Äquivalente" sind außerdem Fusionsproteine, welche eine der oben genannten Polypeptidsequenzen oder davon abgeleitete funktionale Äquivalente und wenigstens eine weitere, davon funktionell verschiedene, heterologe Sequenz in funk- tioneller N- oder C-terminaler Verknüpfung (d.h. ohne gegenseitigen wesentliche funk- tionelle Beeinträchtigung der Fusionsproteinteile) aufweisen. Nichtlimitierende Beispie- le für derartige heterologe Sequenzen sind z.B. Signalpeptide, Enzyme, Immunoglobu- line, Oberflächenantigene, Rezeptoren oder Rezeptorliganden.“Functional equivalents” are also fusion proteins which contain one of the abovementioned polypeptide sequences or functional equivalents derived therefrom and at least one further, functionally different, heterologous sequence in functional N- or C-terminal linkage (ie without mutual substantial functional impairment of the fusion protein parts). Examples of such heterologous sequences are signal peptides, enzymes, immunoglobulins, surface antigens, receptors or receptor ligands.
Erfindungsgemäß mit umfasste „funktionale Äquivalente" sind Homologe zu den kon- kret genannten Polypeptiden. Diese besitzen wenigstens 60 %, vorzugsweise wenigstens 75% ins besondere wenigstens 85 %, wie z.B. 90%, 95% oder 99%, Homologie zu einer der konkret offenbarten Sequenzen, berechnet nach dem Algorithmus von Pearson und Lipman, Proc. Natl. Acad, Sei. (USA) 85(8), 1988, 2444-2448. Eine prozentuale Homologie eines erfindungsgemäßen homologen Polypeptids bedeutet ins- besondere prozentuale Identität der Aminosäurereste bezogen auf die Gesamtlänge einer der hierin konkret beschriebenen Aminosäuresequenzen.“Functional equivalents” encompassed according to the invention are homologs to the specifically named polypeptides. These have at least 60%, preferably at least 75%, in particular at least 85%, such as 90%, 95% or 99%, homology to one of the concretely disclosed Sequences calculated according to the algorithm of Pearson and Lipman, Proc. Natl. Acad, Sei. (USA) 85 (8), 1988, 2444-2448. A percentage homology of a homologous polypeptide according to the invention means in particular percentage identity of the amino acid residues based on the total length of one of the amino acid sequences specifically described herein.
Im Falle einer möglichen Proteinglykosylierung umfassen erfindungsgemäße Äquivalente Polypeptide in deglykosylierter bzw. glykosylierter Form sowie durch Verände- rung des Glykosylierungsmusters erhältliche abgewandelte Formen.In the event of a possible protein glycosylation, equivalents according to the invention include polypeptides in deglycosylated or glycosylated form and also modified forms obtainable by changing the glycosylation pattern.
Homologe der erfindungsgemäßen Proteine oder Polypeptide können in an sich bekannter Weise durch Mutagenese erzeugt werden, z.B. durch Punktmutation oder Verkürzung des Proteins.Homologs of the proteins or polypeptides according to the invention can be generated in a manner known per se by mutagenesis, e.g. by point mutation or shortening of the protein.
c2) Nukleinsauresequenzen:c2) Nucleic acid sequences:
Erfindungsgemäße Nukleinsauresequenzen, insbesondere solche die für eines der obigen Polypeptide und deren funktionalen Äquivalente kodieren, umfassen einzel- und doppelsträngige DNA- und RNA-Sequenzen, wie z.B. auch cDNA und mRNA.Nucleic acid sequences according to the invention, in particular those which code for one of the above polypeptides and their functional equivalents, comprise single and double-stranded DNA and RNA sequences, such as e.g. also cDNA and mRNA.
Alle hierin erwähnten Nukleinsauresequenzen sind entweder natürlichen Ursprungs oder sind in an sich bekannter Weise durch chemische Synthese aus Nukleotid- bausteinen, wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäurebausteine herstellbar.All nucleic acid sequences mentioned here are either of natural origin or can be prepared in a manner known per se by chemical synthesis from nucleotide components, such as, for example, by fragment condensation of individual overlapping, complementary nucleic acid components.
Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, Seiten 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mit Hilfe des Klenow-Fragmentes der DNA-Polymerase und Ligationsreak- tionen sowie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular Cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben.The chemical synthesis of oligonucleotides can be carried out, for example, in a known manner using the phosphoamidite method (Voet, Voet, 2nd edition, Wiley Press New York, pages 896-897). The attachment of synthetic oligonucleotides and the filling of gaps with the aid of the Klenow fragment of DNA polymerase and ligation reactions as well as general cloning methods are described in Sambrook et al. (1989) Molecular Cloning: A laboratory manual, Cold Spring Harbor Laboratory Press.
Gegenstand der Erfindung sind auch Nukleinsauresequenzen, kodierend für eines der obigen Polypeptide und deren funktionalen Äquivalente, welche z.B. unter Verwendung künstlicher Nukleotidanaloga zugänglich sind.The invention also relates to nucleic acid sequences coding for one of the above polypeptides and their functional equivalents, which e.g. are accessible using artificial nucleotide analogs.
Die Erfindung betrifft sowohl isolierte Nukleinsäuremoleküle, welche für erfindungsgemäße Polypeptide oder biologisch aktive Abschnitte davon kodieren, sowie Nuklein- Säurefragmente, die z.B. zur Verwendung als Hybridisierungssonden oder Primer zur Identifizierung oder Amplifizierung von erfindungsgemäßer kodierenden Nukleinsäuren geeignet sind.The invention relates both to isolated nucleic acid molecules which code for polypeptides according to the invention or biologically active sections thereof, and to nucleic acid fragments which e.g. are suitable for use as hybridization probes or primers for identifying or amplifying coding nucleic acids according to the invention.
Die erfindungsgemäßen Nukleinsäuremoleküle können zudem untranslatierte Sequen- zen vom 3'- und/oder 5'-Ende des kodierenden Genbereichs enthalten.The nucleic acid molecules according to the invention can also contain untranslated sequences from the 3 'and / or 5' end of the coding gene region.
Ein "isoliertes" Nukleinsäuremolekül wird von anderen Nukleinsäuremolekülen abgetrennt, die in der natürlichen Quelle der Nukleinsäure zugegen sind und kann überdies im wesentlichen frei von anderem zellulären Material oder Kulturmedium sein, wenn es durch rekombinante Techniken hergestellt wird, oder frei von chemischen Vorstufen oder anderen Chemikalien sein, wenn es chemisch synthetisiert wird.An "isolated" nucleic acid molecule is separated from other nucleic acid molecules that are present in the natural source of the nucleic acid and, moreover, can be substantially free of other cellular material or culture medium when produced by recombinant techniques, or free of chemical precursors or other chemicals be when it's chemically synthesized.
Ein erfindungsgemäßes Nukleinsäuremolekül kann mittels molekularbiologischer Standard-Techniken und der erfindungsgemäß bereitgestellten Sequenzinformation isoliert werden. Beispielsweise kann cDNA aus einer geeigneten cDNA-Bank isoliert werden, indem eine der konkret offenbarten vollständigen Sequenzen oder ein Abschnitt davon als Hybridisierungssonde und Standard-Hybridisierungstechniken (wie z.B. beschrieben in Sambrook, J., Fritsch, E.F. und Maniatis, T. Molecular Cloning: A Laboratory Manual. 2. Aufl., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) verwendet werden. Überdies lässt sich ein Nukleinsäuremolekül, umfassend eine der offenbarten Sequenzen oder ein Abschnitt davon, durch Polymerasekettenreaktion isolieren, wobei die Oligonukleotidprimer, die auf der Basis dieser Sequenz erstellt wurden, verwendet werden. Die so amplifizierte Nukleinsäure kann in einen geeigneten Vektor kloniert werden und durch DNA- Sequenzanalyse charakterisiert werden. Die Erfindung umfasst weiterhin die zu den konkret beschriebenen Nukleotidsequen- zen komplementären Nukleinsäuremoleküle oder einen Abschnitt davon.A nucleic acid molecule according to the invention can be isolated using standard molecular biological techniques and the sequence information provided according to the invention. For example, cDNA can be isolated from a suitable cDNA library by using one of the specifically disclosed complete sequences or a section thereof as a hybridization probe and standard hybridization techniques (as described, for example, in Sambrook, J., Fritsch, EF and Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989). In addition, a nucleic acid molecule comprising one of the disclosed sequences or a portion thereof can be isolated by polymerase chain reaction using the oligonucleotide primers which have been created on the basis of this sequence. The nucleic acid amplified in this way can be cloned into a suitable vector and characterized by DNA sequence analysis. The invention further comprises the nucleic acid molecules complementary to the specifically described nucleotide sequences or a section thereof.
Die genannten Nukleotidsequenzen ermöglichen die Erzeugung von Sonden und Pri- mern, die zur Identifizierung und/oder Klonierung homologer Sequenzen in anderen Zelltypen und Organismen verwendbar sind. Solche Sonden bzw. Primer umfassen gewöhnlich einen Nukleotidsequenzbereich, der unter stringenten Bedingungen an mindestens etwa 12, vorzugsweise mindestens etwa 25, wie z.B. etwa 40, 50 oder 75 aufeinanderfolgende Nukleotide eines Sense-Stranges einer erfindungsgemäßen Nuk- leinsäuresequenz oder eines entsprechenden Antisense-Stranges hybridisiert.The nucleotide sequences mentioned enable the generation of probes and primers which can be used for the identification and / or cloning of homologous sequences in other cell types and organisms. Such probes or primers usually comprise a nucleotide sequence region which, under stringent conditions, can be attached to at least about 12, preferably at least about 25, e.g. about 40, 50 or 75 successive nucleotides of a sense strand of a nucleic acid sequence according to the invention or a corresponding antisense strand are hybridized.
Weitere erfindungsgemäße Nukleinsauresequenzen sind abgeleitet von den konkret offenbarten Sequenzen und unterscheiden sich davon durch Addition, Substitution, Insertion oder Deletion einzelner oder mehrerer Nukleotide, kodieren aber weiterhin für Polypeptide mit dem gewünschten Eigenschaftsprofil.Further nucleic acid sequences according to the invention are derived from the specifically disclosed sequences and differ from them by addition, substitution, insertion or deletion of one or more nucleotides, but continue to code for polypeptides with the desired property profile.
Erfindungsgemäß umfasst sind auch solche Nukleinsauresequenzen, die sogenannte stumme Mutationen umfassen oder entsprechend der Codon-Nutzung eins speziellen Ursprungs- oder Wirtsorganismus, im Vergleich zu einer konkret genannten Sequenz verändert sind, ebenso wie natürlich vorkommende Varianten, wie z.B. Spleißvarianten oder Allelvarianten, davon. Gegenstand sind ebenso durch konservative Nukleotid- substutionen (d.h. die betreffende Aminosäure wird durch eine Aminosäure gleicher Ladung, Größe, Polarität und/oder Löslichkeit ersetzt) erhältliche Sequenzen.Also included according to the invention are those nucleic acid sequences which comprise so-called silent mutations or which are modified in accordance with the codon usage of a specific source or host organism, in comparison with a specifically named sequence, as well as naturally occurring variants, such as e.g. Splice variants or allele variants, thereof. Sequences obtainable by conservative nucleotide substitutions (i.e. the amino acid in question is replaced by an amino acid of the same charge, size, polarity and / or solubility) are also a subject of the subject.
Gegenstand der Erfindung sind auch die durch Sequenzpolymorphismen von den konkret offenbarten Nukleinsäuren abgeleiteten Moleküle. Diese genetischen Poly- morphismen können zwischen Individuen innerhalb einer Population aufgrund der natürlichen Variation existieren. Diese natürlichen Variationen bewirken üblicherweise eine Varianz von 1 bis 5 % in der Nukleotidsequenz eines Gens.The invention also relates to the molecules derived from the specifically disclosed nucleic acids by sequence polymorphisms. These genetic polymorphisms can exist between individuals within a population due to natural variation. These natural variations usually cause a 1 to 5% variance in the nucleotide sequence of a gene.
Weiterhin umfasst die Erfindung auch Nukleinsauresequenzen, welchen mit oben genannten kodierenden Sequenzen hybridisieren oder dazu komplementär sind. Diese Polynukleotide lassen sich bei Durchmusterung von genomischen oder cDNA-Banken auffinden und gegebenenfalls daraus mit geeigneten Primern mittels PCR vermehren und anschließend beispielsweise mit geeigneten Sonden isolieren. Unter der Eigenschaft, an Polynukleotide „hybridisieren" zu können, versteht man die Fähigkeit eines Poly- oder Oligonukleotids unter stringenten Bedingungen an eine nahezu komplementäre Sequenz zu binden, während unter diesen Bedingungen unspezifische Bindungen zwischen nicht-komplementären Partnern unterbleiben. Dazu sollten die Sequenzen zu 70-100%, vorzugsweise zu 90-100%, komplementär sein. Die Eigenschaft komplementärer Sequenzen, spezifisch aneinander binden zu können, macht man sich beispielsweise in der Northern- oder Southern-Blot-Technik oder bei der Primerbindung in PCR oder RT-PCR zunutze. Üblicherweise werden dazu Oligo- nukleotide ab einer Länge von 30 Basenpaaren eingesetzt. Unter stringenten Bedin- gungen versteht man beispielsweise in der Northern-Blot-Technik die Verwendung einer 50 - 70 °C, vorzugsweise 6O - 65 °C warmen Waschlösung, beispielsweise 0,1x SSC-Puffer mit 0,1 % SDS (20x SSC: 3M NaCI, 0,3M Na-Citrat, pH 7,0) zur Elution unspezifisch hybridisierter cDNA-Sonden oder Oligonukleotide. Dabei bleiben, wie o- ben erwähnt, nur in hohem Maße komplementäre Nukleinsäuren aneinander gebun- den. Die Einstellung stringenter Bedingungen ist dem Fachmann bekannt und ist z:B. in Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. beschrieben.Furthermore, the invention also encompasses nucleic acid sequences which hybridize with the abovementioned coding sequences or are complementary thereto. These polynucleotides can be found when screening genomic or cDNA banks and, if appropriate, can be amplified therefrom using suitable primers by means of PCR and then isolated, for example, using suitable probes. The property of being able to “hybridize” to polynucleotides means the ability of a poly- or oligonucleotide to bind to an almost complementary sequence under stringent conditions, while under these conditions non-specific bindings between non-complementary partners are avoided. For this purpose, the sequences should be closed 70-100%, preferably 90-100%, are complementary The property of complementary sequences to be able to bind specifically to one another is demonstrated, for example, in the Northern or Southern blot technique or in primer binding in PCR or RT-PCR Usually oligonucleotides with a length of 30 base pairs or more are used for this purpose. Stringent conditions mean, for example in Northern blot technology, the use of a washing solution, for example 50-70 ° C., preferably 60-65 ° C. 0.1x SSC buffer with 0.1% SDS (20x SSC: 3M NaCI, 0.3M Na citrate, pH 7.0) for the non-specific hybrid elution cDNA probes or oligonucleotides. As mentioned above, only highly complementary nucleic acids remain bound to one another. The setting of stringent conditions is known to the person skilled in the art and is, for example: in Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, NY (1989), 6.3.1-6.3.6. described.
c3) Expressionskonstrukte und Vektoren:c3) Expression constructs and vectors:
Gegenstand der Erfindung sind außerdem Expressionskonstrukte, enthaltend unter der genetischen Kontrolle regulativer Nukleinsauresequenzen eine für ein erfindungsgemäß zu exprimierendes Polypeptid kodierende Nukleinsäuresequenz; sowie Vektoren, umfassend wenigstens eines dieser Expressionskonstrukte.The invention also relates to expression constructs containing, under the genetic control of regulatory nucleic acid sequences, a nucleic acid sequence coding for a polypeptide to be expressed according to the invention; and vectors comprising at least one of these expression constructs.
Vorzugsweise umfassen solche erfindungsgemäßen Konstrukte 5'-stromaufwärts von der jeweiligen kodierenden Sequenz einen Promotor und 3'-stromabwärts eine Terminatorsequenz sowie gegebenenfalls weitere übliche regulative Elemente, und zwar jeweils operativ verknüpft mit der kodierenden Sequenz.Such constructs according to the invention preferably comprise a promoter 5'-upstream of the respective coding sequence and a terminator sequence 3'-downstream and, if appropriate, further customary regulatory elements, in each case operatively linked to the coding sequence.
Unter einer „operativen Verknüpfung" versteht man die sequentielle Anordnung von Promotor, kodierender Sequenz, Terminator und gegebenenfalls weiterer regulativer Elemente derart, dass jedes der regulativen Elemente seine Funktion bei der Expression der kodierenden Sequenz bestimmungsgemäß erfüllen kann.An “operative linkage” is understood to mean the sequential arrangement of promoter, coding sequence, terminator and, if appropriate, further regulatory elements in such a way that each of the regulatory elements can fulfill its function as intended when expressing the coding sequence.
Beispiele für operativ verknüpfbare Sequenzen sind Targeting-Sequenzen sowie En- hancer, Polyadenylierungssignale und dergleichen. Weitere regulative Elemente um- fassen selektierbare Marker, Amplifikationssignale, Replikationsursprünge und dergleichen. Geeignete regulatorische Sequenzen sind z.B. beschrieben in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990).Examples of sequences which can be linked operatively are targeting sequences and enhancers, polyadenylation signals and the like. Other regulatory elements include selectable markers, amplification signals, origins of replication and the like. Suitable regulatory sequences are described, for example, in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990).
Die kodierenden Nukleinsauresequenzen können in einer oder mehreren Kopien im Genkonstrukt enthalten sein.The coding nucleic acid sequences can be contained in one or more copies in the gene construct.
Beispiele für brauchbare Promotoren sind die Hefepromotoren ADC1 , MFalpha , AC, P-60, CYC1 , GAPDH, nmt1 , nmt41 und nmt81.Examples of useful promoters are the yeast promoters ADC1, MFalpha, AC, P-60, CYC1, GAPDH, nmt1, nmt41 and nmt81.
Für die Hefe S. pombe sind als geeignete Promotoren z.B. zu nennen: nmtl , nmt41 , nmt81 , adhl , fbpl , SV40 oder CaMV. Weitere Angaben unter (http://pinqu.salk.edU/~forsburq/vectors.html#exp). Die Promotoren unterscheiden sich bezüglich ihrer Transkriptionsrate. Die Auswahl richtet sich nach der gewünschten Expressionshöhe. Entsprechendes gilt für andere Hefen.Suitable promoters for the yeast S. pombe are e.g. to name: nmtl, nmt41, nmt81, adhl, fbpl, SV40 or CaMV. Further information at (http://pinqu.salk.edU/~forsburq/vectors.html#exp). The promoters differ in their transcription rate. The selection depends on the desired level of expression. The same applies to other yeasts.
Geeignete Hefe-Promotoren sind beispielsweise beschrieben in der veröffentlichten US-Patentanmeldung 2003/0077831 , worauf hiermit ausdrücklich Bezug genommen wird.Suitable yeast promoters are described, for example, in published US patent application 2003/0077831, which is hereby expressly incorporated by reference.
Geeignet ist auch die Verwendung induzierbarer Promotoren, wie z.B. licht- und insbesondere temperaturinduzierbarer Promotoren.The use of inducible promoters, such as e.g. light-inducible and in particular temperature-inducible promoters.
Die genannten regulatorischen Sequenzen sollen die gezielte Expression der Nukleinsauresequenzen ermöglichen. Dies kann beispielsweise je nach Wirtsorganismus bedeuten, dass das Gen erst nach Induktion exprimiert oder überexprimiert wird, oder dass es sofort exprimiert und/oder überexprimiert wird.The regulatory sequences mentioned are intended to enable the targeted expression of the nucleic acid sequences. Depending on the host organism, this can mean, for example, that the gene is only expressed or overexpressed after induction, or that it is expressed and / or overexpressed immediately.
Die regulatorischen Sequenzen bzw. Faktoren können dabei vorzugsweise die Expression positiv beeinflussen und dadurch erhöhen oder erniedrigen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" ver- wendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird. Die Herstellung einer Expressionskassette erfolgt durch Fusion eines geeigneten Promotors mit einer geeigneten kodierenden Nukleotidsequenz sowie einem Terminatoroder Polyadenylierungssignal. Dazu verwendet man gängige Rekombinations- und Klonierungstechniken, wie sie beispielsweise in T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982) sowie in T.J. Silhavy, M.L. Berman und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausübet, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience (1987) beschrieben sind.The regulatory sequences or factors can preferably have a positive influence on the expression and thereby increase or decrease it. Thus, the regulatory elements can advantageously be strengthened at the transcription level by using strong transcription signals such as promoters and / or "enhancers". In addition, an increase in translation is also possible, for example, by improving the stability of the mRNA. An expression cassette is produced by fusing a suitable promoter with a suitable coding nucleotide sequence and a terminator or polyadenylation signal. Common recombination and cloning techniques are used, such as those described in T. Maniatis, EF Fritsch and J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982) and in TJ Silhavy, ML Berman and LW Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) and in Ausübet, FM et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience (1987).
Das rekombinante Nukleinsäurekonstrukt bzw. Genkonstrukt wird zur Expression in einem geeigneten Wirtsorganismus vorteilhafterweise in einen wirtsspezifischen Vektor insertiert, der eine optimale Expression der Gene im Wirt ermöglicht. Vektoren sind dem Fachmann wohl bekannt und können beispielsweise aus "Cloning Vectors" (Pou- weis P. H. et al., Hrsg, Elsevier, Amsterdam-New York-Oxford, 1985) entnommen werden. Unter Vektoren sind außer Plasmiden auch alle anderen dem Fachmann bekannten Vektoren, wie beispielsweise Phagen, Viren, wie SV40, CMV, Baculovirus und A- denovirus, Transposons, IS-Elemente, Phasmide, Cosmide, und lineare oder zirkuläre DNA zu verstehen. Diese Vektoren können autonom im Wirtsorganismus repliziert oder chromosomal repliziert werden.For expression in a suitable host organism, the recombinant nucleic acid construct or gene construct is advantageously inserted into a host-specific vector which enables optimal expression of the genes in the host. Vectors are well known to those skilled in the art and can be found, for example, in "Cloning Vectors" (Pouweis P.H. et al., Ed., Elsevier, Amsterdam-New York-Oxford, 1985). In addition to plasmids, vectors are also understood to mean all other vectors known to the person skilled in the art, such as phages, viruses such as SV40, CMV, baculovirus and adenovirus, transposons, IS elements, phasmids, cosmids, and linear or circular DNA. These vectors can be replicated autonomously in the host organism or replicated chromosomally.
Als Beispiele für erfindungsgemäß geeignete Expressionsvektoren können insbesondere für die Hefe S. pombe geeignete Konstrukte genannt werden (siehe z.B.: (http://pinqu.salk.edU/~forsburq/vectors.html#exp).Constructs suitable for the yeast S. pombe can be mentioned as examples of expression vectors suitable according to the invention (see, for example: (http://pinqu.salk.edU/~forsburq/vectors.html#exp).
Weitere Beispiele sind: pART1 (McLeod, M., Stein, M., and Beach, D. (1987) The product of the mei3+ gene expressed under control of the mating type locus, induces meiosis and sporulation in fission yeast. EMBO J. 6:729-736 pCHY21 (Hoffman, C. S. and Winston, F. (1991). Glucose repression of transcription of the schizosaccharomyces pombe fbpl gene occurs by a camp signaling pathway. Genes Dev. 5:561-571 )Other examples are: pART1 (McLeod, M., Stein, M., and Beach, D. (1987) The product of the mei3 + gene expressed under control of the mating type locus, induces meiosis and sporulation in fission yeast. EMBO J. 6: 729-736 pCHY21 (Hoffman, CS and Winston, F. (1991). Glucose repression of transcription of the schizosaccharomyces pombe fbpl gene occurs by a camp signaling pathway. Genes Dev. 5: 561-571)
REP1 ,REP3, REP4 (Maundrell, K. (1990). nmtl of fission yeast: a highly transcribed gene completely repressed by thiarnine. J. Biol. Chem. 265:10857-10864) REP41, REP42, REP81 , REP82 (Basi, G., Schmid, E. and Maundrell, K. (1993). TATA box mutations in the Schizosaccharomyces pombe nmtl promoter affect transcription efficiency but not the transcription start point or thiamine repressibility. Gene 123:131- 136)REP1, REP3, REP4 (Maundrell, K. (1990). Nmtl of fission yeast: a highly transcribed gene completely repressed by thiarnine. J. Biol. Chem. 265: 10857-10864) REP41, REP42, REP81, REP82 (Basi, G., Schmid, E. and Maundrell, K. (1993) TATA box mutations in the Schizosaccharomyces pombe nmtl promoter affect transcription efficiency but not the transcription start point or thiamine repressibility. Gene 123: 131-136)
Hefe-Expressionsvektoren zur Expression in der Hefe S. cerevisiae , wie pYEpSed (Baldari et al., (1987) Embo J. 6:229-234), pMFa (Kurjan und Herskowitz (1982) Cell 30:933-943), pJRY88 (Schultz et al. (1987) Gene 54:113-123) sowie pYES2 (Invitrogen Corporation, San Diego, CA). Vektoren und Verfahren zur Konstruktion von Vektoren, die sich zur Verwendung in anderen Pilzen, wie filamentösen Pilzen, eignen, umfassen diejenigen, die eingehend beschrieben sind in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991 ) "Gene transfer Systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, J.F. Peberdy et al., Hrsg., S. 1-28, Cambridge Uni- versity Press: Cambridge.Yeast expression vectors for expression in yeast S. cerevisiae, such as pYEpSed (Baldari et al., (1987) Embo J. 6: 229-234), pMFa (Kurjan and Herskowitz (1982) Cell 30: 933-943), pJRY88 (Schultz et al. (1987) Gene 54: 113-123) and pYES2 (Invitrogen Corporation, San Diego, CA). Vectors and methods of constructing vectors suitable for use in other fungi such as filamentous fungi include those described in detail in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer Systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, J.F. Peberdy et al., Eds., Pp. 1-28, Cambridge University Press: Cambridge.
Weitere geeignete Expressionssysteme sind in Kapitel 16 und 17 von Sambrook, J., Fritsch, E.F. und Maniatis, T., Molecular cloning: A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989 beschriebenFurther suitable expression systems are described in chapters 16 and 17 by Sambrook, J., Fritsch, E.F. and Maniatis, T., Molecular cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989
c4) Rekombinante Mikroorganismen:c4) Recombinant microorganisms:
Mit Hilfe der erfindungsgemäßen Vektoren sind rekombinante Mikroorganismen herstellbar, welche beispielsweise mit wenigstens einem erfindungsgemäßen Vektor transformiert sind und zur Produktion der erfindungsgemäßen Polypeptide eingesetzt werden können.With the aid of the vectors according to the invention, recombinant microorganisms can be produced which, for example, have been transformed with at least one vector according to the invention and can be used to produce the polypeptides according to the invention.
Vorteilhafterweise werden die oben beschriebenen erfindungsgemäßen rekombinanten Konstrukte in ein geeignetes Wirtssystem eingebracht und exprimiert. Dabei werden vorzugsweise dem Fachmann bekannte geläufige Klonierungs- und Transfektions- methoden, wie beispielsweise Co-Präzipitation, Protoplastenfusion, Elektroporation, retrovirale Transfektion und dergleichen, verwendet, um die genannten Nukleinsäuren im jeweiligen Expressionssystem zur Expression zu bringen. Geeignete Systeme werden beispielsweise in Current Protocols in Molecular Biology, F. Ausubel et al., Hrsg., Wiley Interscience, New York 1997, oder Sambrook et al. Molecular Cloning: A Laboratory Manual. 2. Aufl., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989 beschrieben. Als Wirtsorganismen sind prinzipiell alle Organismen geeignet, die eine Expression der erfindungsgemäßen Nukleinsäuren, ihrer Allelvarianten, ihrer funktionellen Äquivalente oder Derivate ermöglichen. Bevorzugte Wirtsorganismen sind Hefen.The recombinant constructs according to the invention described above are advantageously introduced and expressed in a suitable host system. Common cloning and transfection methods known to the person skilled in the art, such as, for example, co-precipitation, protoplast fusion, electroporation, retroviral transfection and the like, are preferably used to bring the nucleic acids mentioned into expression in the respective expression system. Suitable systems are described, for example, in Current Protocols in Molecular Biology, F. Ausubel et al., Ed., Wiley Interscience, New York 1997, or Sambrook et al. Molecular Cloning: A Laboratory Manual. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989. In principle, all organisms which enable expression of the nucleic acids according to the invention, their allele variants, their functional equivalents or derivatives are suitable as host organisms. Preferred host organisms are yeasts.
Verfahren zur Einführung von exogener DNA in Hefezellen sind aus dem Stand derMethods for introducing exogenous DNA into yeast cells are known from the prior art
Technik bekannt. Beispielsweise kann diese durch Sphäroplasten-Transformation nachTechnology known. For example, this can be done by transforming spheroplasts
Hinnen et al. (1978, Proc. Natl. Acad. Sei., USA, 75: 1919-1935) erfolgen.Hinnen et al. (1978, Proc. Natl. Acad. Sei., USA, 75: 1919-1935).
Chemische Transformationsmethoden finden sich z.B. für S. pombe bei Alfa et al.Chemical transformation methods can be found e.g. for S. pombe in Alfa et al.
(Alfa, C, Fantes, P., Hyams, J., McLeod, M. and Warbrick, E. (1993) Experiments with fission yeast. Cold Spring Harbor Laboratory Press, New York) oder für S. cerevisiae bei Kaiser et al. (Kaiser, C, Michaelis, S. and Mitchell, A. (1994) Methods in Yeast(Alfa, C, Fantes, P., Hyams, J., McLeod, M. and Warbrick, E. (1993) Experiments with fission yeast. Cold Spring Harbor Laboratory Press, New York) or for S. cerevisiae by Kaiser et al , (Kaiser, C, Michaelis, S. and Mitchell, A. (1994) Methods in Yeast
Genetics. Cold Spring Harbor Laboratory Press, New York).Genetics. Cold Spring Harbor Laboratory Press, New York).
In Hefen werden zur Selektion von Transformanden häufig auxotrophe Marker genutzt.Auxotrophic markers are often used in yeasts to select transformants.
Hierbei fehlt dem zu transformierenden Stamm ein Protein, welches zur Herstellung bestimmter Stoffwechselprodukte notwendig ist. Das entsprechende aktive Protein wird durch den genutzten Vektor in die Zelle eingebracht. Häufig genutzte Marker sindThe strain to be transformed lacks a protein which is necessary for the production of certain metabolic products. The corresponding active protein is introduced into the cell by the vector used. Commonly used markers are
Gene z.B. der Uracil-, Leucin-, Histidin- oder Tryptophan-Biosynthese.Genes e.g. uracil, leucine, histidine or tryptophan biosynthesis.
Die Selektion erfolgreich transformierter Organismen kann durch Markergene erfolgen, die ebenfalls im Vektor oder in der Expressionskassette enthalten sind. Beispiele für solche Markergene sind Gene für Antibiotikaresistenz und für Enzyme, die eine farb- gebende Reaktion katalysieren, die ein Anfärben der transformierten Zelle bewirkt. Diese können dann mittels automatischer Zellsortierung selektiert werden. Erfolgreich mit einem Vektor transformierte Mikroorganismen, die ein entsprechendes Antibiotika- resistenzgen (z.B. G418 oder Hygromycin) tragen, lassen sich durch entsprechende Antibiotika-enthaltende Medien oder Nährböden selektieren. Markerproteine, die an der Zelloberfläche präsentiert werden, können zur Selektion mittels Affinitätschromatographie genutzt werden.Successfully transformed organisms can be selected using marker genes, which are also contained in the vector or in the expression cassette. Examples of such marker genes are genes for antibiotic resistance and for enzymes which catalyze a coloring reaction which stains the transformed cell. These can then be selected using automatic cell sorting. Microorganisms which have been successfully transformed with a vector and carry an appropriate antibiotic resistance gene (e.g. G418 or hygromycin) can be selected using appropriate antibiotic-containing media or nutrient media. Marker proteins that are presented on the cell surface can be used for selection by means of affinity chromatography.
Die Kombination aus den Wirtsorganismen und den zu den Organismen passenden Vektoren, wie Plasmide, Viren oder Phagen, wie beispielsweise Plasmide mit dem RNA-Polymerase/Promotor-System, die Phagen 8 oder : oder andere temperente Phagen oder Transposons und/oder weiteren vorteilhaften regulatorischen Sequenzen bildet ein Expressionssystem.The combination of the host organisms and the vectors which match the organisms, such as plasmids, viruses or phages, such as, for example, plasmids with the RNA polymerase / promoter system, the phages 8 or: or other temperate phages or transposons and / or further advantageous regulatory ones Sequences form an expression system.
c5) Rekombinante Herstellung von Zielproteinen Gegenstand der Erfindung sind weiterhin Verfahren zur rekombinanten Herstellung eines Zielproteins gemäß obiger Definition.c5) Recombinant production of target proteins The invention further relates to methods for the recombinant production of a target protein as defined above.
Der rekombinante Mikroorganismus kann nach bekannten Verfahren kultiviert und fermentiert werden. Im Einzelnen werden geeignete Kultivierungsbedingungen beispielsweise für S. pombe in Alfa etal. (Alfa, C, Fantes, P., Hyams, J., McLeod, M. and Warbrick, E. (1993) Experiments with fission yeast. Cold Spring Harbor Laboratory Press, New York) und Gutz et al. (Gutz, H., Heslot, H., Leupold, U. and Loprieno, U. (1974) Schizosaccharomyces pombe. In: Handbook of Genetics 1, pp 395-446, Plenum Press, New York) oder für S. cerevisiae in Kaiser et al. (Kaiser, C, Michaelis, S. and Mitchell, A. (1994) Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, New York) beschrieben.The recombinant microorganism can be cultivated and fermented by known methods. In particular, suitable cultivation conditions for example for S. pombe in Alfa et al. (Alfa, C, Fantes, P., Hyams, J., McLeod, M. and Warbrick, E. (1993) Experiments with fission yeast. Cold Spring Harbor Laboratory Press, New York) and Gutz et al. (Gutz, H., Heslot, H., Leupold, U. and Loprieno, U. (1974) Schizosaccharomyces pombe. In: Handbook of Genetics 1, pp 395-446, Plenum Press, New York) or for S. cerevisiae in Kaiser et al. (Kaiser, C, Michaelis, S. and Mitchell, A. (1994) Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, New York).
Die Zellen werden, falls das Zielprotein in den Kulturüberstand sezerniert wird, von diesem abgetrennt und das Zielprotein wird aus dem Überstand nach bekannten Proteinisolierungsverfahren gewonnen.If the target protein is secreted into the culture supernatant, the cells are separated from this and the target protein is obtained from the supernatant by known protein isolation methods.
Eine Aufreinigung des Zielproteins kann mit bekannten, chromatographischen Verfahren erzielt werden, wie Molekularsieb-Chromatographie (Gelfiltration), lonenaustausch- Chromatographie, wie Q-Sepharose-Chromatographie, und hydrophobe Chromatographie, sowie mit anderen üblichen Verfahren wie Ultrafiltration, Kristallisation, Aussalzen, Dialyse und nativer Gelelektrophorese. Geeignete Verfahren werden beispielsweise in Cooper, T. G., Biochemische Arbeitsmethoden, Verlag Walter de Gruy- ter, Berlin, New York oder in Scopes, R., Protein Purification, Springer Verlag, New York, Heidelberg, Berlin beschrieben.Purification of the target protein can be achieved with known chromatographic methods, such as molecular sieve chromatography (gel filtration), ion exchange chromatography, such as Q-Sepharose chromatography, and hydrophobic chromatography, as well as with other conventional methods such as ultrafiltration, crystallization, salting out, dialysis and native gel electrophoresis. Suitable methods are described, for example, in Cooper, T.G., Biochemical Working Methods, Verlag Walter de Gruyter, Berlin, New York or in Scopes, R., Protein Purification, Springer Verlag, New York, Heidelberg, Berlin.
Zur Erleichterung der Isolierung des rekombinanten Proteins können auch Vektorsysteme verwendet werden, die für veränderte Polypeptide oder Fusionsproteine kodieren, die einer einfacheren Reinigung dienen. Derartige geeignete Modifikationen sind bei- spielsweise als Anker fungierende sogenannte "Tags", wie z.B. die als Hexa-Histidin- Anker bekannte Modifikation oder Epitope, die als Antigene von Antikörpern erkannt werden können (beschrieben zum Beispiel in Harlow, E. and Lane, D., 1988, Antibo- dies: A Laboratory Manual. Cold Spring Harbor (N.Y.) Press). Diese Anker können zur Anheftung der Proteine an einen festen Träger, wie z.B. eine Polymermatrix, dienen, die beispielsweise in einer Chromatographiesäule eingefüllt sein kann, oder an einer Mikrotiterplatte oder an einem sonstigen Träger verwendet werden kann. Gleichzeitig können diese Anker auch zur Erkennung der Proteine verwendet werden. Zur Erkennung der Proteine können außerdem übliche Marker, wie Fluoreszenzfarbstoffe, Enzymmarker, die nach Reaktion mit einem Substrat ein detektierbares Reaktionsprodukt bilden, oder radioaktive Marker, allein oder in Kombination mit den Ankern zur Derivatisierung der Proteine verwendet werden.To facilitate the isolation of the recombinant protein, vector systems can also be used which code for modified polypeptides or fusion proteins which serve for easier purification. Such suitable modifications are, for example, so-called "tags" which act as anchors, such as, for example, the modification known as a hexa-histidine anchor or epitopes which can be recognized as antigens of antibodies (described, for example, in Harlow, E. and Lane, D ., 1988, Antibodies: A Laboratory Manual, Cold Spring Harbor (NY) Press). These anchors can be used to attach the proteins to a solid support, such as, for example, a polymer matrix, which can be filled, for example, in a chromatography column, or can be used on a microtiter plate or on another support. At the same time, these anchors can also be used to recognize the proteins. To recognize the proteins, customary markers, such as fluorescent dyes, enzyme markers which form a detectable reaction product after reaction with a substrate, or radioactive markers, alone or in combination with the anchors, can be used to derivatize the proteins.
c6) Oberflächenbehandlung mit Hydrophobinc6) surface treatment with hydrophobin
Die Behandlung von Oberflächen mit Hydrophobinen zur Veränderung, z.B. zur Hydrophobierung oder Hydrophilisierung , der Oberflächeneigenschaften ist prinzipiell bekannt. Sie wird nun erfindungsgemäß dadurch wesentlich vereinfacht, dass mit deren rekombinanter Herstellung der Hydrophobine ausreichend Ausgangsmaterial zur Verfügung steht.Treatment of surfaces with hydrophobins for modification, e.g. for hydrophobization or hydrophilization, the surface properties are known in principle. According to the invention, it is now considerably simplified in that sufficient raw material is available with the recombinant production of the hydrophobins.
Unter Berücksichtigung der Lehre des Standes der Technik (wie z.B. der WO-A- 01/57066, die die Stabilisierung, Solubilisierung und die damit verbundene bessere Anwendung von Hydrophobinen durch Sulfitbehandlung beschreibt; der WO-A- 01/57076, die die Reinigung von Hydrophobin durch Adsorption an Teflon-Kügelchen und die Elution mittels Detergens, wie Tween, bei niedrigen Temperaturen beschreibt; oder der WO-A-01/57528, die die Fixierung von Hydrophobinen auf Oberflächen durch die Anwendung von Tween und Temperaturen bis 85 Grad Celsius beschreibt) sind die unterschiedlichsten festen Materialen, wie Glas, Fasern, Geweben, Leder, lackierte Gegenständen, Folien, Fassaden, Hydrophobin-beschichtbar.Taking into account the teaching of the prior art (such as, for example, WO-A-01/57066, which describes the stabilization, solubilization and the associated better use of hydrophobins by sulfite treatment; WO-A-01/57076, which describes the purification of Hydrophobin by adsorption on Teflon beads and elution with detergent such as Tween describes at low temperatures; or WO-A-01/57528, which describes the fixation of hydrophobins on surfaces by the use of Tween and temperatures up to 85 degrees Celsius ) a wide variety of solid materials, such as glass, fibers, fabrics, leather, lacquered objects, foils, facades, can be coated with hydrophobin.
Die Erfindung wird nun durch folgende nicht-limitierende Beispiele unter Bezugnahme auf beiliegende Figuren näher beschrieben. Dabei zeigtThe invention is now described in more detail by the following non-limiting examples with reference to the accompanying figures. It shows
Figur 1 verschiedene erfindungsgemäß hergestellte Konstrukte zur Sekretion der Hydrophobine aus S. pombe.Figure 1 different constructs according to the invention for the secretion of the hydrophobins from S. pombe.
Figur 2 A) die genomische Sequenz des DewA-Gens (SEQ ID NO:39); die Sequenzen der beiden Introns sind unterstrichen; B) die Aminosäuresequenz und in Klammern die entsprechende DNA-Sequenz des DewA-Proteins aus Aspergillus nidulans; die Signalsequenz ist fettgedruckt, die auf die Signalsequenz folgende Teilsequenz entspricht der Sequenz von maturem DewA; C) die Aminosäuresequenz und in Klammern die entsprechende DNA-Sequenz des HA-Tag. Figur 3 A) die Aminosäuresequenz und in Klammern die entsprechende DNA-Sequenz des P-Faktor Präproteins; die Signalsequenz ist fettgedruckt; die auf die Signalsequenz folgenden unterstrichenen Teilsequenzen entsprechen den Sequenzen der vier matu- ren Pheromon-Peptide; das dem Signalpeptid nächstgelegene Pheromon wird als P- Faktor bezeichnet; B) Aminosäuresequenz und in Klammern die entsprechende DNA- Sequenz des abspaltbaren Signalpeptides und der sich daran anschließenden 6 Aminosäuren (unterstrichen) des P-Faktor Präproteins; C) Aminosäuresequenz und in Klammern die entsprechende DNA-Sequenz zum erfindungsgemäßen "P-Shuttle"; die Signalsequenz ist fettgedruckt die auf die Signalsequenz folgende unterstrichene Teil- sequenz entspricht der Sequenz von matu rem P-Faktor;FIG. 2A shows the genomic sequence of the DewA gene (SEQ ID NO: 39); the sequences of the two introns are underlined; B) the amino acid sequence and in brackets the corresponding DNA sequence of the DewA protein from Aspergillus nidulans; the signal sequence is printed in bold, the partial sequence following the signal sequence corresponds to the sequence of mature DewA; C) the amino acid sequence and in brackets the corresponding DNA sequence of the HA tag. FIG. 3A) the amino acid sequence and, in parentheses, the corresponding DNA sequence of the P-factor preprotein; the signal sequence is printed in bold; the underlined partial sequences following the signal sequence correspond to the sequences of the four maternal pheromone peptides; the pheromone closest to the signal peptide is called the P factor; B) amino acid sequence and in brackets the corresponding DNA sequence of the cleavable signal peptide and the subsequent 6 amino acids (underlined) of the P-factor preprotein; C) amino acid sequence and in brackets the corresponding DNA sequence for the "P-Shuttle" according to the invention; the signal sequence is printed in bold; the underlined sub-sequence following the signal sequence corresponds to the sequence of the material P factor;
Figur 4 ein erfindungsgemäßes Fusionsprotein bestehend aus der "P-Shuttle"-Sequenz (Signalsequenz fett; matures P-Protein unterstrichen), dem maturen DewA (doppelt unterstrichen) und dem C-terminal fusionierten HA-Tag (SEQ ID NO: 18; kodiert von SEQ ID NO: 17);FIG. 4 shows a fusion protein according to the invention consisting of the “P-shuttle” sequence (signal sequence bold; mature P protein underlined), the mature DewA (double underlined) and the C-terminally fused HA tag (SEQ ID NO: 18; coded) from SEQ ID NO: 17);
Figur 5 den immunologischen Nachweis von Hydrophobinen in S. pombe* FIG. 5 shows the immunological detection of hydrophobins in S. pombe *
Die Hydrophobingene DewA und RodA aus A. nidulans wurden zum immunologischenThe hydrophobic genes DewA and RodA from A. nidulans became immunological
Nachweis mit einem HA-tag fusioniert, in den Expressionsvektor pJR1-3XL kloniert und in S. pombe transformiert. "Membranfraktion" und "cytosolische Proteine" wurden durch SDS-PAGE aufgetrennt. Der Nachweis in der Westem-Analyse erfolgte mit HA- Antikörpern. Der Größenstandard in kDa ist links angegeben. A: aufgetragen sind Proben einer Kultur mit dem Insert-freien Vektor (pJR1-3XL, Negativkontrolle), mit einem HA-getaggten Kontroll-Protein (Positivkontrolle) sowie mit einem Vektor, der das HA- getaggte DewA Gen mit Introns (DewA-HA(+ Introns)) enthält. B: aufgetragen sind jeweils Proben einer Kultur mit dem Vektor (pJR1-3XL, Negativkontrolle), mit einem Vektor, der das HA-getaggte DewA Gen ohne Introns (DewA-HA(-lntrons)) bzw. das HA- getaggte RodA Gen mit Introns (RodA-HA(-Hntrons)) enthält.Detection fused with an HA tag, cloned into the expression vector pJR1-3XL and transformed into S. pombe. "Membrane fraction" and "cytosolic proteins" were separated by SDS-PAGE. The detection in the Westem analysis was carried out with HA antibodies. The size standard in kDa is given on the left. A: samples of a culture with the insert-free vector (pJR1-3XL, negative control), with an HA-tagged control protein (positive control) and with a vector which contains the HA-tagged DewA gene with introns (DewA-HA (+ Introns)) contains. B: Samples of a culture with the vector (pJR1-3XL, negative control) are applied, with a vector which contains the HA-tagged DewA gene without introns (DewA-HA (intron)) or the HA-tagged RodA gene Contains introns (RodA-HA (-Hntrons)).
Figur 6 den immunologischen Nachweis der Expression von Hydrophobinen in S. pombe. Das PDewAHA-Protein wurde in S\ pombe exprimiert. Die Zellen wurden geerntet, der Kulturüberstand aliquotiert und ein Teil TCA-gefällt. Der Nachweis des Proteins erfolgte nach SDS-PAGE und Western-Blot mit Hilfe von HA-Antikörpern. Die mit * gekennzeichneten Banden entsprechen dem Precursor-Protein (ca. 18 kD, obere Bande) und der maturen Form (ca. 17 kD untere Bande).Figure 6 shows the immunological detection of the expression of hydrophobins in S. pombe. The PDewAHA protein was expressed in S \ pombe. The cells were harvested, the culture supernatant was aliquoted and part of the TCA was precipitated. The protein was detected by SDS-PAGE and Western blot with the help of HA antibodies. The bands marked with * correspond to the precursor protein (approx. 18 kD, upper band) and the mature form (approx. 17 kD lower band).
Figur 7 den Nachweis der Expression von Hydrophobinen in S. pombe. S. pombe Zellen wurden mit Plasmiden transformiert, welche P+6DewA durch einem starken Promotor (pJR1-3XL) bzw. schwächeren Promotor (pJR1-81XL) exprimieren. Die Zellen tragen chromosomal eine Version des prp7-Gens mit einem c-myc-Tag. Dieses dient als Kontrolle um auszuschließen, dass der Kulturüberstand durch lysierte Zellen verunreinigt wurde. Zellen wurden geerntet (Pellet), der Kultυrüberstand TCA- gefällt (Überstand). Der Nachweis der Proteine erfolgte nach SDS-PAGE und Western- Blot mit Hilfe von Antikörpern gegen HA (A) bzw. gegen c-myc (B).7 shows the detection of the expression of hydrophobins in S. pombe. S. pombe cells were transformed with plasmids which express P + 6DewA by a strong promoter (pJR1-3XL) or weaker promoter (pJR1-81XL). The cells carry a version of the prp7 gene chromosomally with a c-myc tag. This serves as a control to rule out that the culture supernatant has been contaminated by lysed cells. Cells were harvested (pellet), the culture supernatant TCA- precipitated (supernatant). The proteins were detected by SDS-PAGE and Western blot with the help of antibodies against HA (A) or against c-myc (B).
Figur 8 den Nachweis der Sekretion mit Hilfe des "P-Shuttle"-Verfahrens. S. pombe Zellen wurden mit Plasmiden transformiert, welche PfakDewA durch einen schwächeren Promotor (pJR1-81XL) exprimieren. Die Zellen wurden geerntet (Pellet), der Kulturüberstand TCA-gefällt (US). Der Nachweis des Proteins erfolgte nach SDS- PAGE und Westem-Blot mit Hilfe von Antikörpern gegen HA.Figure 8 shows the detection of secretion using the "P-Shuttle" method. S. pombe cells were transformed with plasmids which express PfakDewA through a weaker promoter (pJR1-81XL). The cells were harvested (pellet), the culture supernatant TCA-precipitated (US). The protein was detected according to SDS-PAGE and Westem blot with the help of antibodies against HA.
Figur 9 die drei Gene, welche jeweils den M-Faktor (SEQ ID NO:51 für maturen Faktor) aus S. pombe kodieren: A) Sequenzen für das mfm1+'Gen; B) Sequenzen für das tr7t/772+"Gen; und C) Sequenzen für das mfm3*'Gen.FIG. 9 the three genes which each encode the M factor (SEQ ID NO: 51 for mature factor) from S. pombe: A) sequences for the mfm1 + ' gene; B) sequences for the tr7t / 772 + " gene; and C) sequences for the mfm3 * ' gene.
Figur 10 das RodA-Gen. Die genomische Sequenz (SEQ ID NO:52) des RodA-Gens enthält zwei Introns (unterstrichen), welche im entsprechenden kodierenden ORF (SEQ ID NO:53) nicht vorhanden sind. Das Präprotein (SEQ ID NO:54) enthält eine abspaltbare Signalsequenz (fett gedruckt), welche im maturen Protein (SEQ ID NO:56; kodiert von SEQ ID NO:55) fehlt.Figure 10 shows the RodA gene. The genomic sequence (SEQ ID NO: 52) of the RodA gene contains two introns (underlined), which are not present in the corresponding coding ORF (SEQ ID NO: 53). The preprotein (SEQ ID NO: 54) contains a cleavable signal sequence (printed in bold) which is missing in the mature protein (SEQ ID NO: 56; encoded by SEQ ID NO: 55).
Experimenteller TeilExperimental part
Allgemeine experimentelle Angaben:General experimental information:
a) Allgemeine Klonierungsverfahrena) General cloning procedures
Die im Rahmen der vorliegenden Erfindung durchgeführten Klonierungsschritte wie z.B. Restriktionsspaltungen, Agarose Gelelektrophorese, Reinigung von DNA- Fragmenten, Transfer von Nukleinsäuren auf Nitrozellulose und Nylonmembranen, Verknüpfen von DNA-Fragmenten, Transformation von E. coli Zellen, Anzucht vonThe cloning steps carried out in the context of the present invention, e.g. Restriction cleavage, agarose gel electrophoresis, purification of DNA fragments, transfer of nucleic acids to nitrocellulose and nylon membranes, linking of DNA fragments, transformation of E. coli cells, cultivation of
Bakterien, Vermehrung von Phagen und Sequenzanalyse rekombinanter DNA wurden, wenn keine abweichenden Angaben gemacht werden, wie bei Sambrook et al. (1989) a.a.O. beschrieben durchgeführt.Bacteria, multiplication of phages and sequence analysis of recombinant DNA were if no other information is given, as in Sambrook et al. (1989) described above.
Die Aufreinigung von DNA aus Reaktionsgemischen oder nach Gelelektrophorese er- folgte mittels des NucleoSpin Extract Kit (Machery-Nagel, Düren) und die Isolierung von Plasmid DNA aus E. coli mit Hilfe des NucleoSpin Plasmid Quick Pure Kit (Machery-Nagel, Düren) nach den Angaben des Herstellers.DNA was purified from reaction mixtures or after gel electrophoresis using the NucleoSpin Extract Kit (Machery-Nagel, Düren) and plasmid DNA from E. coli was isolated using the NucleoSpin Plasmid Quick Pure Kit (Machery-Nagel, Düren) the manufacturer's instructions.
Restriktionsenzyme (Invitrogen) wurden nach Angaben des Herstellers eingesetzt. Li- gationen von DNA erfolgten mit Hilfe der T4-Ligase (Promega, Mannheim) nach Angaben des Herstellers.Restriction enzymes (Invitrogen) were used according to the manufacturer. DNA was ligated using the T4 ligase (Promega, Mannheim) according to the manufacturer.
Transformationen in E. coli erfolgten mittels Elektroporation mit dem Gene Pulser II Gerät (BIO-RAD, München) unter Verwendung von 2 mm Elektroporationsküvetten (Biozym Diagnostik, Hess. Oldendorf) nach Angaben der Hersteller. Transformanden wurden auf Ampicillin-haltigem (150 mg/l) LB Medium (Lennox, 1955, Virology, 1 :190) selektiert.Transformations in E. coli were carried out by electroporation using the Gene Pulser II device (BIO-RAD, Munich) using 2 mm electroporation cuvettes (Biozym Diagnostik, Hess. Oldendorf) according to the manufacturer. Transformants were selected on LB medium (150 mg / l) containing ampicillin (Lennox, 1955, Virology, 1: 190).
b) Polymerasekettenreaktion (PCR)b) Polymerase chain reaction (PCR)
PCR-Amplifikationen wurden mit Hilfe der Combizyme-DNA-Polymerase (lnvitek, Berlin, Deutschland) nach den Angaben des Herstellers durchgeführt. Es wurden je 100 μl Reaktionsvolumen je 1 pmol der entsprechenden Primer eingesetzt.PCR amplifications were carried out using the Combizyme DNA polymerase (Invitek, Berlin, Germany) according to the manufacturer's instructions. 100 μl of reaction volume per 1 pmol of the corresponding primers were used.
c) Kultivierungc) cultivation
Die Kultivierung von S. pombe wurde wie in Alfa et al. (Alfa, C, Fantes, P., Hyams, J., McLeod, M. and Warbrick, E. (1993) Experiments with fission yeast. Cold Spring Harbor Laboratory Press, New York) und Gutz et al. (Gutz, H., Heslot, H., Leupold, U. and Loprieno, U. (1974) Schizosaccharomyces pombe. In: Handbook of Genetics 1 , pp 395-446, Plenum Press, New York) beschrieben durchgeführt.The cultivation of S. pombe was carried out as in Alfa et al. (Alfa, C, Fantes, P., Hyams, J., McLeod, M. and Warbrick, E. (1993) Experiments with fission yeast. Cold Spring Harbor Laboratory Press, New York) and Gutz et al. (Gutz, H., Heslot, H., Leupold, U. and Loprieno, U. (1974) Schizosaccharomyces pombe. In: Handbook of Genetics 1, pp 395-446, Plenum Press, New York).
Die Kultivierung von rekombinanten Stämmen erfolgte wie in Alfa et al. (Alfa, C, Fantes, P., Hyams, J., McLeod, M. and Warbrick, E. (1993) Experiments with fission yeast. Cold Spring Harbor Laboratory Press, New York) und Gutz et. al. (Gutz, H., Heslot, H., Leupold, U. and Loprieno, U. (1974) Schizosaccharomyces pombe. In: Handbook of Genetics 1 , pp 395-446, Plenum Press, New York) beschrieben. d) ZellaufschlussThe cultivation of recombinant strains was carried out as in Alfa et al. (Alfa, C, Fantes, P., Hyams, J., McLeod, M. and Warbrick, E. (1993) Experiments with fission yeast. Cold Spring Harbor Laboratory Press, New York) and Gutz et. al. (Gutz, H., Heslot, H., Leupold, U. and Loprieno, U. (1974) Schizosaccharomyces pombe. In: Handbook of Genetics 1, pp 395-446, Plenum Press, New York). d) cell disruption
Für rasche Expressionskontrollen wurden Zellen abzentrifugiert (5 min, 3.500xg) und das Zellpellet direkt in Laemmli-Puffer (Laernmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (Nature 227:680-685)) für die Gelelektrophorese aufgenommen.For rapid expression controls, cells were centrifuged (5 min, 3,500xg) and the cell pellet directly in Laemmli buffer (Laernmli, UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (Nature 227: 680-685)) added for gel electrophoresis.
Für den Zellaufschluss wurden Zellen durch Zentrifugation bei 3.500xg für 5 min geern- tet. Die Zellpellets wurden in 1ml 1xPBS resuspendiert und 1 Volumen Glasperlen zugegeben. Der Ansatz wurde für 5 min gevortext, der Überstand über den Glasperlen abgenommen.For cell disruption, cells were harvested by centrifugation at 3,500xg for 5 min. The cell pellets were resuspended in 1 ml of 1xPBS and 1 volume of glass beads was added. The mixture was vortexed for 5 min, the supernatant removed over the glass beads.
e) Verwendete Organismene) Organisms used
Für Arbeiten mit E. coli wurden die Stämme DH5α (Invitrogen), XL10-Gold (Stratage- ne) oder BL21 (BioLabs) verwendet.The strains DH5α (Invitrogen), XL10-Gold (Stratagene) or BL21 (BioLabs) were used to work with E. coli.
Verwendete S. pombe Stämme sind der Spalthefe-Stammsammlung der Arbeitsgruppe von Prof. Dr. G. Rodel des Institutes für Genetik der Technischen Universität Dresden entnommen.S. pombe strains used are from the gap yeast strain collection of the working group of Prof. Dr. G. Rodel taken from the Institute of Genetics at the Technical University of Dresden.
Beispiel 1 : Herstellung des Expressionskonstrukts DewA und DewAHA und Klonie- rung in den Vektor pJR1-3XLExample 1: Production of the expression construct DewA and DewAHA and cloning into the vector pJR1-3XL
a) Isolierung der genomischen DNA Sequenz des DewA-Gens und Entfernung der Intronsa) Isolation of the genomic DNA sequence of the DewA gene and removal of the introns
Chromosomale DNA, die wie in Kaiser ef al. (Kaiser, C, Michaelis, S. and Mitchell, A. (1994) Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, New York) aus A. nidulans isoliert worden war, wurde freundlicherweise von Herrn Prof. Dr. A. Brakhage (Hannover) zur Verfügung gestellt.Chromosomal DNA, which, as in Kaiser ef al. (Kaiser, C, Michaelis, S. and Mitchell, A. (1994) Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, New York) from A. nidulans was kindly supervised by Prof. Dr. A. Brakhage (Hanover).
Mit chromosomaler DNA als Template unter Verwendung der Primer SpDewBamrev und ScDewBamfor wurde das ca. 550 bp lange genomische DNA Fragment PCR amplifiziert. ScDewBamfor:The approximately 550 bp genomic DNA fragment PCR was amplified using chromosomal DNA as a template using the primers SpDewBamrev and ScDewBamfor. ScDewBamfor:
5' . TAA TAA GGA TCC ATG CGC TTC ATC GTC TCT CTC C - 3' (SEQ ID NO:41 )5 '. TAA TAA GGA TCC ATG CGC TTC ATC GTC TCT CTC C - 3 '(SEQ ID NO: 41)
SpDewBamrev:SpDewBamrev:
5' . TAA TAA GGA TCC TTA CTC AGC CTT GGT ACC GGC - 3' (SEQ ID NO:28)5 '. TAA TAA GGA TCC TTA CTC AGC CTT GGT ACC GGC - 3 '(SEQ ID NO: 28)
Das Reaktionsgemisch wurde gelelektrophoretisch aufgetrennt und die entsprechende DNA Bande wie oben beschrieben eluiert. Das Fragment, welches an beiden Seiten von einer Sa/πHI-Schnittstelle, welche durch die Primer eingefügt wurde, flankiert wird, wurde mit der Restriktionsendonuclease ßamHI (Invitrogen) nach Angaben des Herstellers geschnitten und aus dem Reaktionsgemisch aufgereinigt (siehe oben).The reaction mixture was separated by gel electrophoresis and the corresponding DNA band eluted as described above. The fragment, which is flanked on both sides by a Sa / πHI site, which was inserted through the primer, was cut with the restriction endonuclease ßamHI (Invitrogen) according to the manufacturer's instructions and purified from the reaction mixture (see above).
Der Vektor pUC18 (Yanisch-Pron, C, Vieira, J. and Messing, J. (1985) Improved M13 phage cloning vectors and host strains: Nucleotide sequences of M13mp18 and pUC19 vectors. Gene 33:103) wurde ebenfalls mit ßamHI geschnitten, gelelektrophoretisch aufgetrennt und nachfolgend aus dem Gel eluiert (siehe oben).The vector pUC18 (Yanisch-Pron, C, Vieira, J. and Messing, J. (1985) Improved M13 phage cloning vectors and host strains: Nucleotide sequences of M13mp18 and pUC19 vectors. Gene 33: 103) was also cut with ßamHI, separated by gel electrophoresis and then eluted from the gel (see above).
Vektor und Fragment wurden ligiert (siehe oben) und die Ligationsmischung in E. coli transformiert. Rekombinante Plasmide wurden nach Plasmid-Präparation und anschließendem Restriktionsverdau identifiziert. Die korrekte DNA-Sequenz der klonier- ten PCR-Produkte wurde - wie auch bei allen im Folgenden hergestellten Konstrukten - nach Klonierung durch Sequenzierung verifiziert. Sequenzierungsreaktionen wurden nach Sanger et al. (Sanger, F., Nicklen, S. and Coulson, A.R. (1977) DNA sequencing with chain terminating inhibitors. Proc NatI Acad Sei USA 74:5463-5467) durchgeführt. Die Sequenzierreaktionen wurden mit Hilfe des "Thermo-Sequenase fluorescent labelled primer cycle sequencing kit with 7-deaza-dGTP" (Amesham Pharamacia Biotech, Freiburg) und S'-seitig IRD800 markierten Primern (MWG Biotech AG, Ebersberg) durchgeführt. Die Auftrennung der Produkte und Sequenzauswertung er- folgte mit dem automatischen LI-COR 4000/4200 (MWG Biotech AG, Ebersberg) Sequenziersystem.Vector and fragment were ligated (see above) and the ligation mixture was transformed into E. coli. Recombinant plasmids were identified after plasmid preparation and subsequent restriction digestion. After cloning, the correct DNA sequence of the cloned PCR products was - as with all constructs produced below - verified by sequencing. Sequencing reactions were carried out according to Sanger et al. (Sanger, F., Nicklen, S. and Coulson, A.R. (1977) DNA sequencing with chain terminating inhibitors. Proc NatI Acad Sei USA 74: 5463-5467). The sequencing reactions were carried out using the "Thermo-Sequenase fluorescent labeled primer cycle sequencing kit with 7-deaza-dGTP" (Amesham Pharamacia Biotech, Freiburg) and S'-side IRD800 labeled primers (MWG Biotech AG, Ebersberg). The products were separated and the sequence evaluated using the automatic LI-COR 4000/4200 (MWG Biotech AG, Ebersberg) sequencing system.
Ein Konstrukt, welches das intronhaltige, genomische DewA-Gen in die ßamHI- Schnittstelle des Vektors pUC18 kloniert enthält, wurde pDewAgen genannt.A construct that contains the intron-containing genomic DewA gene cloned into the ßamHI site of the vector pUC18 was called pDewAgen.
Die in der genomischen DNA von DewA befindlichen zwei Introns (siehe genomische Dew>A-Sequenz SEQ ID NO: 39) wurden mittels „Overlap Extension PCR" (OEP) (vgl. Pogulis, R.J., Vallejo, A.N. and Pease, L.R. In vitro recombination and mutagenesis by overlap extension PCR. Methods Mol Biol. 1996;57:167-76) entfernt.The two introns in the genomic DNA of DewA (see genomic Dew> A sequence SEQ ID NO: 39) were analyzed using "Overlap Extension PCR" (OEP) (cf. Pogulis, RJ, Vallejo, AN and Pease, LR In vitro recombination and mutagenesis by overlap extension PCR. Methods Mol Biol. 1996; 57: 167-76) removed.
Zunächst wurden unter Verwendung von DNA des Konstruktes pDewAgen als Templa- te mit Hilfe der Primerpaare ScDewBamfor/DewUrev, Dewl1for/Dewl2rev und De- wl2for/SpDewBamrev Subfragmente des offenen Leserahmes (ORF) von DewA PCR amplifiziert.First, using DNA of the construct pDewAgen as templates with the aid of the primer pairs ScDewBamfor / DewUrev, Dewl1for / Dewl2rev and Dewl2for / SpDewBamrev, subfragments of the open reading frame (ORF) of DewA PCR were amplified.
ScDewBamfor: 5' - TAA TAA GGA TCC ATG CGC TTC ATC GTC TCT CTC C - 3' (SEQ ID NO:41 )ScDewBamfor: 5 '- TAA TAA GGA TCC ATG CGC TTC ATC GTC TCT CTC C - 3' (SEQ ID NO: 41)
DewUrev:DewUrev:
5' - GT GTG GTC GAC GAG AGC GAG CAG ACC CAG CTG - 3' (SEQ ID NO:24)5 '- GT GTG GTC GAC GAG AGC GAG CAG ACC CAG CTG - 3' (SEQ ID NO: 24)
DewHfor:DewHfor:
5' - CAG CTG GGT CTG CTC GCT CTC GTC GAC CAC AC - 3' (SEQ ID NO:23)5 '- CAG CTG GGT CTG CTC GCT CTC GTC GAC CAC AC - 3' (SEQ ID NO: 23)
Dewl2rev:Dewl2rev:
5' - GTC GAC GGC AAC ACA GTT GGT GGT TCC CTC - 3' (SEQ ID NO:26)5 '- GTC GAC GGC AAC ACA GTT GGT GGT TCC CTC - 3' (SEQ ID NO: 26)
Dewl2for:Dewl2for:
5" - GAG GGA ACC ACC AAC TGT GTT GCC GTC GAC - 3' (SEQ ID NO:25)5 "- GAG GGA ACC ACC AAC TGT GTT GCC GTC GAC - 3 '(SEQ ID NO: 25)
SpDewBamrev: 5' - TAA TAA GGA TCC TTA CTC AGC CTT GGT ACC GGC - 3' (SEQ ID NO:28)SpDewBamrev: 5 '- TAA TAA GGA TCC TTA CTC AGC CTT GGT ACC GGC - 3' (SEQ ID NO: 28)
Diese Subfragmente wurden gelelektrophoretisch aufgetrennt und aufgereinigt. In der finalen PCR wurde der intronlose ORF mit den Subfragmenten als Template und den distalen Primern ScDewBamfor und SpDewBamrev amplifiziert. Das ca. 410 bp lange PCR Produkt wurde gelelektrophoretisch aufgetrennt, aufgereinigt und mit der Restrik- tionsendonuclease ßamHI geschnitten. Durch die distalen Primer waren entsprechende Schnittstellen eingefügt worden. Das geschnittene Fragment wurde aufgereinigt und in den ebenfalls mit ßamHI geschnittenen Vektor pUC18 kloniert. Vektor und Fragment wurden ligiert (siehe oben) und die Ligationsmischung in E. coli transformiert. Rekom- binante Plasmide wurden nach Plasmid-Minipräparation identifiziert und die korrekte Sequenz des klonierten ORF durch Sequenzierung verifiziert. Das so erhaltene Kon- strukt (pDewAORF) diente als Template für die Konstruktion entsprechender Expressi- onsplamide.These subfragments were separated and purified by gel electrophoresis. In the final PCR, the intronless ORF was amplified with the subfragments as a template and the distal primers ScDewBamfor and SpDewBamrev. The approximately 410 bp long PCR product was separated by gel electrophoresis, purified and cut with the restriction endonuclease ßamHI. Appropriate interfaces had been inserted through the distal primers. The cut fragment was purified and cloned into the vector pUC18, also cut with ßamHI. Vector and fragment were ligated (see above) and the ligation mixture was transformed into E. coli. Recombinant plasmids were identified after plasmid mini-preparation and the correct sequence of the cloned ORF was verified by sequencing. The con- strukt (pDewAORF) served as a template for the construction of corresponding expression plamides.
b) Herstellung der Expressionskonstrukte von DewHA(+lntrons) und DewHA(-lntrons) und Einführung eines C-terminalen Hämagglutinin-Tagsb) Preparation of the expression constructs of DewHA (+ introns) and DewHA (-trons) and introduction of a C-terminal hemagglutinin tag
Da keine spezifischen Antikörper gegen DewA zur Verfügung stehen, wurde zum Nachweis der heterologen Expression DewA mit dem HA-Epitop durch OEP fusioniert. Zunächst wurden in den primären PCRs die Primerpaare SpDewXhofor/DewAHArev und DewAHAfor/DewAHANcorev genutzt.Since no specific antibodies against DewA are available, DEPA was fused with the HA epitope by OEP to detect heterologous expression. First, the primer pairs SpDewXhofor / DewAHArev and DewAHAfor / DewAHANcorev were used in the primary PCRs.
SpDewXhofor:SpDewXhofor:
5' - TAA TAA CTC GAG ATG CGC TTC ATC GTC TCT CTC C - 3' (SEQ ID NO:27) De AHArev:5 '- TAA TAA CTC GAG ATG CGC TTC ATC GTC TCT CTC C - 3' (SEQ ID NO: 27) De AHArev:
5' - TCC ACG CGG AAC CAG CTC AGC CTT GGT ACC - 3' (SEQ ID NO:30)5 '- TCC ACG CGG AAC CAG CTC AGC CTT GGT ACC - 3' (SEQ ID NO: 30)
DewAHAfor:DewAHAfor:
5' - GGT ACC AAG GCT GAG CTG GTT CCG CGT GGA - 3' (SEQ ID NO:29) DewAHANcorev:5 '- GGT ACC AAG GCT GAG CTG GTT CCG CGT GGA - 3' (SEQ ID NO: 29) DewAHANcorev:
5' - ATT ATT CCA TGG CTA TTA GCG GCC GCA CTG AGC AGC - 3' (SEQ ID NO:31)5 '- ATT ATT CCA TGG CTA TTA GCG GCC GCA CTG AGC AGC - 3' (SEQ ID NO: 31)
Als Template für die Herstellung von DewHA(+lntrons) diente DNA des Konstruktes pDewAgen, für die Herstellung von DewHA(-lntrons) DNA des Konstruktes pDewA- ORF. Als Template für die PCR mit DewAHAfor/DewAHANcorev wurde der die DNA- Sequenz des HA-tag tragende Vektor yEP351 HA (Kettner, K., Friederichs, S., Schlapp, T. and Rodel G (2001) Expression of a VEGF-like protein from Parapoxvirus ovis in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Protein Expr Purif Aug;22(3):479-83) genutzt. In den finalen PCRs mittels des PrimerpaaresDNA of the construct pDewAgen was used as a template for the production of DewHA (+ introns) and DNA of the construct pDewA-ORF for the production of DewHA (-ntrons). The vector yEP351 HA (Kettner, K., Friederichs, S., Schlapp, T. and Rodel G (2001) Expression of a VEGF-like) carrying the DNA sequence of the HA tag was used as a template for the PCR with DewAHAfor / DewAHANcorev protein from Parapoxvirus ovis in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Protein Expr Purif Aug; 22 (3): 479-83). In the final PCRs using the primer pair
SpDewXhofor/ DewAHANcorev und den respektiven Subfragmenten erfolgte die Fusion der für das HA-Epitop kodierenden DNA an die jeweilige DewA-DNA. Die so ampli- fizierten Fragmente werden 5'-seitig von einer Xho\ Restriktionsschnittstelle und 3'- seitig von einer Λ/col Restriktionsschnittstelle flankiert, welche mit Hilfe der distalen Primer eingeführt wurden. Die Fragmente wurden gelelektrophoretisch aufgetrennt, aufgereinigt und mit den Restriktionsendonucleasen Xho\ und Ncol geschnitten und aus dem Reaktionsgemisch aufgereinigt. Der Vektor pJR1-3XL (Moreno, M.B., Duran, A. and Ribas, J.C. Afamily of multifunctional thiamine-repressible expression vectors for fission yeast. Yeast. 2000 Jun 30;16(9):861-72) wurde ebenfalls mit den Restriktionsenzymen Xho\ und Λ/col ge- schnitten, gelelektrophoretisch aufgetrennt und aufgereinigt. Vektor und Fragment wurden ligiert (siehe oben) und die Ligationsmischung durch Elektroporation in E. coli transformiert. Rekombinante Plasmide wurden nach Plasmid-Minipräparation identifiziert und die korrekte Sequenz des klonierten ORF durch Sequenzierung verifiziert. In den so erhaltenen Expressionsplamiden DewA-HA(+lntrons) und DewA-HA(-lntrons) steht die Expression der Fusionskonstrukte in S. pombe unter der Kontrolle des starken nmt7-Promotors.SpDewXhofor / DewAHANcorev and the respective subfragments, the DNA coding for the HA epitope was fused to the respective DewA DNA. The fragments amplified in this way are flanked on the 5 'side by an Xho \ restriction site and on the 3' side by a Λ / col restriction site which were introduced with the aid of the distal primers. The fragments were separated by gel electrophoresis, purified and cut with the restriction endonucleases Xho \ and Ncol and purified from the reaction mixture. The vector pJR1-3XL (Moreno, MB, Duran, A. and Ribas, JC Afamily of multifunctional thiamine-repressible expression vectors for fission yeast. Yeast. 2000 Jun 30; 16 (9): 861-72) was also used with the restriction enzymes Xho \ and Λ / col cut, separated and purified by gel electrophoresis. Vector and fragment were ligated (see above) and the ligation mixture was transformed into E. coli by electroporation. Recombinant plasmids were identified after plasmid minipreparation and the correct sequence of the cloned ORF was verified by sequencing. In the expression plamids DewA-HA (+ introns) and DewA-HA (introns) thus obtained, the expression of the fusion constructs in S. pombe is under the control of the strong nmt7 promoter.
c) Expression von DewA-HA(+lntron) und DewA-HA(-lntron)c) Expression of DewA-HA (+ Intron) and DewA-HA (-Intron)
Die gemäß a) und b) erhaltenen Vektoren DewA-HA(+lntrons) und DewA-HA(-lntrons) wurden in den S. pombe Wirtsstamm K0103 (t?"s ade6-M210 leu1-32 his7-366) wie von Schiestl und Gietz (Schiestl, R.H. and Gietz, R.D. (1989) High efficency transformation of intact yeast cells using Single stranded nucleic acids as a carrier. Curr Genet 16:339- 346) beschrieben transformiert. Die durch die feι/7-32-Mutation bedingte Leucin- auxotrophie des S. pombe Stammes wird durch das auf den Expressionsvektoren vorhandene LEl/2-Gen aus S. cerevisiae komplementiert. Transformanden können so auf Minimalmedium ohne Leucin selektiert werden. Die Expression der Fusionsproteine in entsprechenden Hefetransformanden wurde mittels Westem-Blot-Analysen untersucht.The vectors DewA-HA (+ introns) and DewA-HA (introns) obtained according to a) and b) were in the S. pombe host strain K0103 (t? S ade6-M210 leu1-32 his7-366) as by Schiestl and Gietz (Schiestl, RH and Gietz, RD (1989) High efficency transformation of intact yeast cells using Single stranded nucleic acids as a carrier. Curr Genet 16: 339-346), which are described by the feι / 7-32 mutation Conditional leucine auxotrophy of the S. pombe strain is complemented by the LE1 / 2 gene from S. cerevisiae present on the expression vectors. Transformants can thus be selected on minimal medium without leucine. The expression of the fusion proteins in corresponding yeast transformants was determined by means of Western blotting. Analyzes examined.
Die Antikörper Anti-HA (Artikel 1 583816, Anti-HA (12CA5)-mouse monoclonal Antikörper) und Anti-c-myc (Artikel 1 667 149, Anti-c-myc Antikörper) wurden von Röche Diagnostics (Mannheim) bezogen.The antibodies anti-HA (article 1 583816, anti-HA (12CA5) -mouse monoclonal antibody) and anti-c-myc (article 1 667 149, anti-c-myc antibody) were obtained from Röche Diagnostics (Mannheim).
Hefetransformanden wurden nach der Kultivierung geerntet, mit Glasperlen aufge- schlössen und der 3.500xg Überstand der Zentrifugation abgenommen. Es wurden je 50 μg des 20.000xg Pellets ("Membranfraktion") und des Überstands ("cytosolische Proteine") aufgetragen und im SDS-PAGE aufgetrennt. Der Nachweis in der Western- Analyse erfolgte mit HA-Antikörpern. Das Ergebnis ist in Figur 5 gezeigt. Der Größenstandard in kDa ist links angegeben. In Figur 5A sind Proben einer Kultur mit dem In- sert-freien Vektor (pJR1-3XL, Negativkontrolle), mit einem HA-getaggten Kontroll- Protein (Positivkontrolle) sowie mit einem Vektor, der das HA-getaggte DewA Gen mit Introns (DewA-HA(+lntrons)) enthält, aufgetragen. In Figur 5B sind jeweils Proben ei- ner Kultur mit dem Vektor (pJR1-3XL, Negativkontrolle), mit einem Vektor, der das HA- getaggte DewA Gen ohne Introns (DewA-HA(-lntrons)) bzw. das HA-getaggte RodA Gen mit Introns (Rod-AHA(+lntrons)) enthält, aufgetragen.After cultivation, yeast transformants were harvested, digested with glass beads and the 3,500xg supernatant from the centrifugation was removed. 50 μg each of the 20,000 × g pellet (“membrane fraction”) and the supernatant (“cytosolic proteins”) were applied and separated in SDS-PAGE. The detection in the Western analysis was carried out with HA antibodies. The result is shown in FIG. 5. The size standard in kDa is given on the left. FIG. 5A shows samples of a culture with the insert-free vector (pJR1-3XL, negative control), with an HA-tagged control protein (positive control) and with a vector which contains the HA-tagged DewA gene with introns (DewA -HA (+ introns)). In FIG. 5B, samples are culture with the vector (pJR1-3XL, negative control), with a vector which contains the HA-tagged DewA gene without introns (DewA-HA (introns)) or the HA-tagged RodA gene with introns (Rod-AHA ( + lntrons)) contains, applied.
Die Herstellung von RodAHA(+lntrons) erfolgte in Analogie zu den Angaben von Beispiel 1a) und 1 b). RodA ist ein weiteres Hydrophobin aus A. nidulans.RodAHA (+ introns) was produced in analogy to the information in Examples 1a) and 1b). RodA is another hydrophobin from A. nidulans.
Beispiel 2: Herstellung von Expressionsvektoren zur Sekretion des exprimierten DewA - Vektor enthaltend das Konstrukt PDewAHAExample 2: Production of expression vectors for the secretion of the expressed DewA vector containing the construct PDewAHA
a) Herstellung des Konstrukts PDewAHA, enthaltend die kodierende Sequenz für das P-Faktor Signalpeptida) Preparation of the construct PDewAHA, containing the coding sequence for the P-factor signal peptide
Um die Sekretion des Proteins aus S. pombe Zellen zu optimieren, wurde das authentische Sekretionssignal des A. nidulans Proteins, welches in der Spalthefe nicht effektiv ist, zunächst durch das abspaltbare Signalpeptid des P-Faktors aus S. pombe ersetzt. Der P-Faktor wird als Peptid-Pheromon von den Zellen in das Medium sezerniert. Er wird in der Zelle als Vorläuferprotein (Präprotein) bestehend aus einer abspaltbaren N- terminalen Signalsequenz, und vier P-Faktor Kopien, jeweils durch kurze Spacerse- quenzen getrennt, synthetisiert und durchläuft im Rahmen der Sekretion eine Reifung, darunter die Abspaltung der Signalsequenz und die proteolytische Freisetzung der vier P-Faktor Peptide.In order to optimize the secretion of the protein from S. pombe cells, the authentic secretion signal of the A. nidulans protein, which is not effective in the split yeast, was first replaced by the cleavable signal peptide of the P factor from S. pombe. The P factor is secreted by the cells into the medium as a peptide pheromone. It is synthesized in the cell as a precursor protein (preprotein) consisting of a cleavable N-terminal signal sequence and four P-factor copies, each separated by short spacer sequences, and matures during secretion, including the cleavage of the signal sequence and the proteolytic release of the four P-factor peptides.
Zunächst wurde die P-Faktor-Signalsequenz mittels PCR und genomischer DNA von S. pombe als Template unter Verwendung des Primerpaares SigPXhofor/PDewArev amplifiziert und das entsprechende PCR-Produkt aufgereinigt.First, the P-factor signal sequence was amplified by means of PCR and genomic DNA from S. pombe as a template using the primer pair SigPXhofor / PDewArev and the corresponding PCR product was purified.
SigPXhofor: 5' - TAA TTT CTC GAG ATG AAG ATC ACC GCT GTC ATT GCC CTT TTA TTC TCA C - 3' (SEQ ID NO:34) PDewArev: 5' - GGC AGA GGC CGG GAG TGG AAT AGG TGA GGC - 3' (SEQ ID NO:33)SigPXhofor: 5 '- TAA TTT CTC GAG ATG AAG ATC ACC GCT GTC ATT GCC CTT TTA TTC TCA C - 3' (SEQ ID NO: 34) PDewArev: 5 '- GGC AGA GGC CGG GAG TGG AAT AGG TGA GGC - 3' (SEQ ID NO: 33)
Ebenfalls wurde das PCR-Produkt des Primerpaares PDewfor/DewAHANcorev und DNA des Konstruktes DewA-HA(-Introns) als Template gelelektrophoretisch aufgetrennt und aufgereinigt. PDewfor:The PCR product of the primer pair PDewfor / DewAHANcorev and DNA of the construct DewA-HA (-Introns) were also separated and purified as a template by gel electrophoresis. PDewfor:
5' - GCC TCA CCT ATT CCA CTC CCG GCC TCT GCC - 3' (SEQ ID NO:32) DewAHANcorev: 5' - ATT ATT CCA TGG CTA TTA GCG GCC GCA CTG AGC AGC - 3' (SEQ ID NO:31)5 '- GCC TCA CCT ATT CCA CTC CCG GCC TCT GCC - 3' (SEQ ID NO: 32) DewAHANcorev: 5 '- ATT ATT CCA TGG CTA TTA GCG GCC GCA CTG AGC AGC - 3' (SEQ ID NO: 31)
Diese beiden primären PCR-Produkte wurden in der finalen PCR mit den distalen Primern SigPXhofor/DewAHANcorev als Template genutzt. Das so amplifi- zierte PDewAHA-Fragment wird 5'-seitig von einer Xho\ Restriktionsschnittstelle und an seinem 3'-Ende von einer Nco\ Restriktionsschnittstelle flankiert, welche mit Hilfe obiger Primer eingeführt wurden. In dem von diesem Fragment kodierten Fusionsprotein (PDewAHA) ist die abspaltbare Signalsequenz des DewA aus A. nidulans durch das abspaltbare Signalpeptid des P-Faktor-Vorläuferproteins ersetzt.These two primary PCR products were used in the final PCR with the distal primers SigPXhofor / DewAHANcorev as a template. The PDewAHA fragment amplified in this way is flanked on the 5 'side by an Xho \ restriction site and at its 3' end by an Nco \ restriction site which was introduced with the aid of the above primers. In the fusion protein (PDewAHA) encoded by this fragment, the cleavable signal sequence of the DewA from A. nidulans is replaced by the cleavable signal peptide of the P-factor precursor protein.
Das PDewAHA-Fragment wurde mit den Restriktionsendonucleasen Xho\ und Λ/col geschnitten, gelelektrophoretisch aufgetrennt und in den mit den mit den gleichen Restriktionsendonucleasen geschnittenen Vektor pJR1-3XL (siehe oben) ligiert. Vektor und Fragment wurden ligiert (siehe oben) und die Ligationsmischung durch E- lektroporation in E. coli transformiert. Rekombinante Plasmide wurden nach Plasmid-Minipräparation identifiziert und die korrekte Sequenz des klonierten ORF durch Sequenzierung verifiziert. Das erhaltene Konstrukt wurde PDewAHA genannt.The PDewAHA fragment was cut with the restriction endonucleases Xho \ and Λ / col, separated by gel electrophoresis and ligated into the vector pJR1-3XL (see above) cut with the same restriction endonucleases. Vector and fragment were ligated (see above) and the ligation mixture was transformed into E. coli by electroporation. Recombinant plasmids were identified after plasmid minipreparation and the correct sequence of the cloned ORF was verified by sequencing. The construct obtained was called PDewAHA.
b) Expressionb) Expression
Die Experimente wurden in Analogie zu Beispiel 1c) durchgeführt.The experiments were carried out in analogy to Example 1c).
Das PDewAHA-Protein wurde in S. pombe exprimiert. Die Zellen wurden geerntet, der Kulturüberstand aliquotiert und ein Teil TCA-gefällt. Der TCA-Niederschlag wurde in Laemmli-Puffer (Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (Nature 227:680-685)) aufgenommen. Zellpellet, Überstand und TCA-gefällter Überstand wurden untersucht. Der Nachweis des Proteins erfolgte nach SDS-PAGE und Westem-Blot mit Hilfe von HA-Antikörpern. Das Ergebnis ist in Figur 6 dargestellt. Die mit * gekennzeichneten Banden entsprechen dem Precursor-Protein (ca. 18 kD, obere Bande) und der maturen Form (ca. 17 kD untere Bande).The PDewAHA protein was expressed in S. pombe. The cells were harvested, the culture supernatant was aliquoted and part of the TCA was precipitated. The TCA precipitate was taken up in Laemmli buffer (Laemmli, UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (Nature 227: 680-685)). Cell pellet, supernatant and TCA-precipitated supernatant were examined. The protein was detected by SDS-PAGE and Westem blot with the help of HA antibodies. The result is shown in FIG. 6. The bands marked with * correspond the precursor protein (approx. 18 kD, upper band) and the mature form (approx. 17 kD lower band).
Die Analyse ergab, dass keine effektive Sekretion zu beobachten war. Die N-terminale Fusion des abspaltbaren Signalpeptides des P-Faktors ist für eine Sekretion des fusionierten Hydrophobin nicht hinreichend.The analysis showed that no effective secretion was observed. The N-terminal fusion of the cleavable signal peptide of the P factor is not sufficient for secretion of the fused hydrophobin.
Beispiel 3: Herstellung von Expressionsvektoren zur Sekretion des exprimierten DewA - Vektor enthaltend das Konstrukt P+6DewAHAExample 3: Production of expression vectors for the secretion of the expressed DewA vector containing the construct P + 6DewAHA
a) Herstellung des Konstrukts P+6DewAHA, enthaltend die kodierende Sequenz für- das P-Faktor Signalpeptid, C-terminal verlängert um 6 Aminosäurena) Preparation of the construct P + 6DewAHA, containing the coding sequence for the P-factor signal peptide, C-terminally extended by 6 amino acids
Um eine für die Sekretion möglicherweise wichtige authentische Sequenzumgebung des Signalpetides zu gewährleisten, wurde die Sequenz des Signalpetides im Fusionsprotein mittels OEP unter Verwendung der Primerpaare SigPXhofor/P+6DewArev und P+6DewAfor/DewAHANcorev mit DNA des Konstruktes PDewAHA als Template in den primären PCR-ReaktionenIn order to ensure an authentic sequence environment of the signal peptide, which may be important for secretion, the sequence of the signal peptide in the fusion protein was determined using OEP using the primer pairs SigPXhofor / P + 6DewArev and P + 6DewAfor / DewAHANcorev with DNA of the construct PDewAHA as template in the primary PCR reactions
SigPXhofor:SigPXhofor:
5' - TAA TTT CTC GAG ATG AAG ATC ACC GCT GTC ATT GCC CTT TTA TTC TCA5 '- TAA TTT CTC GAG ATG AAG ATC ACC GCT GTC ATT GCC CTT TTA TTC TCA
C - 3' (SEQ ID NO:34)C - 3 '(SEQ ID NO: 34)
P+6DewArev: 5' - CAC ACC AGG ATC GGC AAC TGG AAT AGG TGA GGC - 3' (SEQ ID NO:36)P + 6DewArev: 5 '- CAC ACC AGG ATC GGC AAC TGG AAT AGG TGA GGC - 3' (SEQ ID NO: 36)
P+6DewAfor:P + 6DewAfor:
5' - GTT GCC GAT CCT GGT GTG CTC CCG GCC TCT GCC - 3' (SEQ ID NO:35) DewAHANcorev: 5' - ATT ATT CCA TGG CTA TTA GCG GCC GCA CTG AGC AGC - 3' (SEQ ID NO:31)5 '- GTT GCC GAT CCT GGT GTG CTC CCG GCC TCT GCC - 3' (SEQ ID NO: 35) DewAHANcorev: 5 '- ATT ATT CCA TGG CTA TTA GCG GCC GCA CTG AGC AGC - 3' (SEQ ID NO: 31 )
und dem Primerpaar SigPXhofor/DewAHANcorev in der finalen PCR-Reaktion um die 6 sich C-terminal anschließenden Aminosäuren erweitert (P+6DewA).and the primer pair SigPXhofor / DewAHANcorev in the final PCR reaction with the 6 C-terminal amino acids (P + 6DewA).
Das P+6DewA-Fragment wurde mit den Restriktionsendonucleasen Xho\ und Λ/col geschnitten, gelelektrophoretisch aufgetrennt und in den mit den gleichen Restriktion- sendonucleasen geschnittenen Vektor pJR1-3XL (siehe oben) ligiert und die Ligati- onsmischung durch Elektroporation in E. coli transformiert. Rekombinante Plasmide wurden nach Plasmid-Minipräparation identifiziert und die korrekte Sequenz des Monierten ORF durch Sequenzierung verifiziert. Ebenso wurde das P+6DewA-Fragment in den Vektor pJR-81XL kloniert. Hier steht die Transkription des Fusionsgens unter der Kontrolle des schwachen nmtδ -Promotors. Mit diesem Kon- strukt sollte ein negativer Einfluss der sehr hohen Transkription in pJR1-3XL Konstanten auf die Sekretion getestet werden.The P + 6DewA fragment was cut with the restriction endonucleases Xho \ and Λ / col, separated by gel electrophoresis and in those with the same restriction Sendonucleases cut vector pJR1-3XL (see above) and the ligation mixture transformed by electroporation in E. coli. Recombinant plasmids were identified after plasmid minipreparation and the correct sequence of the cloned ORF was verified by sequencing. The P + 6DewA fragment was also cloned into the vector pJR-81XL. Here, the transcription of the fusion gene is under the control of the weak nmtδ promoter. With this construct, a negative influence of the very high transcription in pJR1-3XL constants on the secretion should be tested.
Die entsprechenden Konstrukte wurden P+6DewA/pJR1-3XL und P+6DewA/pJR1- 81XL genannt.The corresponding constructs were named P + 6DewA / pJR1-3XL and P + 6DewA / pJR1- 81XL.
Die Durchführung des Experiments erfolgte in Analogie zu Beispiel 2a. Die Klonierung der amplifizierten Sequenzen in pJR1-3XI erfolgt analog zu Beispiel 2a.The experiment was carried out in analogy to Example 2a. The amplified sequences are cloned in pJR1-3XI analogously to Example 2a.
b) Expressionb) Expression
Die Expression erfolgte in Analogie zu Beispiel 2b).The expression was carried out in analogy to Example 2b).
S. pombe Zellen wurden mit den beiden Plasmiden transformiert, welche P+6DewA durch einem starken Promotor (pJR1-3XL) bzw. schwächeren Promotor (pJR1-81XL) exprimieren. Die Zellen tragen chromosomal eine Version des prpl-Gens mit einem c- myc-Tag. Dieses dient als Kontrolle um auszuschließen, dass der Kulturüberstand durch lysierte Zellen verunreinigt wurde. Zellen wurden geerntet (Pellet), der Kulturüberstand TCA-gefällt (Überstand). Der Niederschlag wurde in Laemmli-Puffer aufge- nommen und ebenfalls analysiert. Der Nachweis der Proteine erfolgte nach SDS- PAGE und Western-Blot mit Hilfe von Antikörpern gegen HA (Figur 7A) bzw. gegen c- myc (Röche Diagnostics) (Figur 7B).S. pombe cells were transformed with the two plasmids, which express P + 6DewA by a strong promoter (pJR1-3XL) or weaker promoter (pJR1-81XL). The cells carry a version of the prpl gene chromosomally with a c-myc tag. This serves as a control to rule out that the culture supernatant has been contaminated by lysed cells. Cells were harvested (pellet), the culture supernatant TCA-precipitated (supernatant). The precipitate was taken up in Laemmli buffer and also analyzed. The proteins were detected by SDS-PAGE and Western blot with the aid of antibodies against HA (FIG. 7A) or against c-myc (Röche Diagnostics) (FIG. 7B).
Wie man in Figur 7 sieht, ist auch diese Konstruktion für eine effektive Sekretion nicht geeignet.As can be seen in FIG. 7, this construction is also unsuitable for effective secretion.
Beispiel 4: Herstellung von Expressionsvektoren zur Sekretion des exprimierten DewA - Vektor enthaltend das Konstrukt PfakDewAHAExample 4: Production of expression vectors for the secretion of the expressed DewA vector containing the construct PfakDewAHA
a) Herstellung des Konstrukts PfakDewAHA, enthaltend die kodierende Sequenz für den reifen ersten P-Faktor einschließlich dem P-Faktor-Signalpeptid Es wurde DewAHA mittels OEP an das carboxylterminale Ende der Sequenz des maturen P-Faktors fusioniert. Die in den primären PCR-Reaktionen unter Verwendung der Primerpaare SigPXhofor/PfakDewArev und genomischer DNA von S. pombe als Templatea) Preparation of the construct PfakDewAHA, containing the coding sequence for the mature first P-factor including the P-factor signal peptide DewAHA was fused to the carboxyl terminal end of the mature P factor sequence using OEP. The in the primary PCR reactions using the primer pairs SigPXhofor / PfakDewArev and genomic DNA from S. pombe as a template
SigPXhofor:SigPXhofor:
5' . TAA TTT CTC GAG ATG AAG ATC ACC GCT GTC ATT GCC CTT TTA TTC TCA C - 3' (SEQ ID NO:34) PfakDewArev: 5' - GGC AGA GGC CGG GAG GCG CTT TTT CAA GTT GGG TC - 3' (SEQ ID NO:38)5 '. TAA TTT CTC GAG ATG AAG ATC ACC GCT GTC ATT GCC CTT TTA TTC TCA C - 3 '(SEQ ID NO: 34) PfakDewArev: 5' - GGC AGA GGC CGG GAG GCG CTT TTT CAA GTT GGG TC - 3 '(SEQ ID NO: 38)
und PfakDewAfor/DewAHANcorev und DNA des Konstruktes P+6DewA/pJR1-81XL als Templateand PfakDewAfor / DewAHANcorev and DNA of the construct P + 6DewA / pJR1-81XL as a template
PfakDewAfor:PfakDewAfor:
5' - AAC TTG AAA AAG CGC CTC CCG GCC TCT GCC - 3' (SEQ ID NO:37)5 '- AAC TTG AAA AAG CGC CTC CCG GCC TCT GCC - 3' (SEQ ID NO: 37)
DewAHANcorev:DewAHANcorev:
5' - ATT ATT CCA TGG CTA TTA GCG GCC GCA CTG AGC AGC - 3' (SEQ ID NO:31)5 '- ATT ATT CCA TGG CTA TTA GCG GCC GCA CTG AGC AGC - 3' (SEQ ID NO: 31)
erhaltenen PCR-Fragmente wurden gelelektrophoretisch getrennt, aufgereinigt und als Template für die finale PCR mit Hilfe des Primerpaares SigPXhofor/ DewAHANcorev genutzt. Das so erhaltene PfakDewA-Fragment wurde mit den Restriktionsendonuc- leasen Xho\ und Λ/col geschnitten, gelelektrophoretisch aufgetrennt und in den mit den gleichen Restriktionsendonucleasen geschnittenen Vektor pJR1-81XL (siehe oben) ligiert. Die Ligationsmischung wurde durch Elektroporation in E. coli transformiert. Rekombinante Plasmide wurden nach Plasmid-Minipräparation identifiziert und die korrekte Sequenz des klonierten ORF durch Sequenzierung verifi- ziert. Ein solches Konstrukt wurde PfakDewA/pJR1-81XL genannt. In diesem Konstrukt steht die für das P-Faktor Präprotein einschließlich des ersten aminoterminalen Pheromons und die für das Hydrophobin kodierende fusionierte Sequenz, unter der Kontrolle des nmt81 Promotors.PCR fragments obtained were separated by gel electrophoresis, purified and used as a template for the final PCR using the primer pair SigPXhofor / DewAHANcorev. The PfakDewA fragment thus obtained was cut with the restriction endonucleases Xho \ and Λ / col, separated by gel electrophoresis and ligated into the vector pJR1-81XL cut with the same restriction endonucleases (see above). The ligation mixture was transformed into E. coli by electroporation. Recombinant plasmids were identified after plasmid minipreparation and the correct sequence of the cloned ORF was verified by sequencing. Such a construct was called PfakDewA / pJR1-81XL. In this construct, the P-factor preprotein including the first amino terminal pheromone and the fused sequence encoding the hydrophobin are under the control of the nmt81 promoter.
Die Durchführung des Experiments erfolgte in Analogie zu Beispiel 2a, wobei jedoch der Expressionsvektor pJR1-81XL verwendet wurde. Die Klonierung der amplifizierten Sequenzen in pJR1 -81XL erfolgte analog zu Beispiel 2a. Die amplifizierte und mit den Restriktionsendonucleasen Xho\ und Λ/col geschnittene DNA wurde dazu in die Xho\ und Λ/col Schnittstellen des Expressionsvektors pJR1- 81XL kloniert.The experiment was carried out in analogy to Example 2a, but using the expression vector pJR1-81XL. The amplified sequences were cloned into pJR1 -81XL analogously to Example 2a. The amplified and cut with the restriction endonucleases Xho \ and Λ / col DNA was cloned into the Xho \ and Λ / col sites of the expression vector pJR1-81XL.
b) Expressionb) Expression
Die Expression erfolgte in Analogie zu Beispiel 3b)The expression was carried out in analogy to Example 3b)
Die Zellen wurden pelletiert, der Kulturüberstand TCA-gefällt. Der Niederschlag wurde in Laemmli-Puffer aufenommen und ebenfalls analysiert. Der Nachweis des Proteins erfolgte nach SDS-PAGE und Western-Blot mit Hilfe von Antikörpern gegen HA. Das Ergebnis ist in Figur 8 gezeigt. Wie man sieht wird mit Hilfe dieser Konstruktion eine effektive Sekretion des Hydrophobins in das Medium erreicht. In dem entsprechenden Fusionsprotein liegen somit alle für die Sekretion notwendigen Sequenzen des P- Faktor Präproteins in ihrem authentischen Kontext vor. Der P-Faktor selbst wird proteolytisch abgespalten.The cells were pelleted and the culture supernatant was TCA-precipitated. The precipitate was taken up in Laemmli buffer and also analyzed. The protein was detected by SDS-PAGE and Western blot with the help of antibodies against HA. The result is shown in Figure 8. As can be seen, an effective secretion of the hydrophobin into the medium is achieved with the help of this construction. In the corresponding fusion protein, all sequences of the P-factor preprotein necessary for secretion are thus present in their authentic context. The P-factor itself is split off proteolytically.
Beispiel 5: Mikroskopischer Nachweis der Adsorption von exprimiertem Hydrophobin an TeflonExample 5: Microscopic detection of the adsorption of expressed hydrophobin on Teflon
Für den mikroskopischen Nachweis der Adsorption von exprimiertem Hydrophobin an Teflon wird ein fluoreszenzmarkierter HA-Antikörper (Molecular Probes, Kat.-Nr. A- 21287) verwendet.A fluorescence-labeled HA antibody (Molecular Probes, Cat. No. A-21287) is used for the microscopic detection of the adsorption of expressed hydrophobin on Teflon.
Transformierte Wirtszellen, hergestellt nach einem der Beispiele 1 bis 4 werden kultiviert. Zellen und gegebenenfalls Überstand werden getrennt geerntet. Als Referenzprobe dienen Zellen, welche mit einem entsprechenden Vektor ohne Hydrophobingen transformiert und kultiviert wurden, bzw. entsprechende Kulturüberstände.Transformed host cells, produced according to one of Examples 1 to 4, are cultivated. Cells and any supernatant are harvested separately. Cells which have been transformed and cultured with a corresponding vector without hydrophobic genes or corresponding culture supernatants serve as reference sample.
Die Zellen werden mechanisch aufgeschlosssen (Schwingmühle). Teflonplättchen werden bei Raumtemperatur für 18 h im Zellaufschluss bzw. Überstand inkubiert, mit Wasser gespült (3 x 10 min). Anschließend erfolgt die Inkubation des behandelten Teflons in PBS mit fluoreszenzmarkiertem Antikörper. Dann wird erneut mit PBS (3 x 15 min) gespült und im N2-Strahl getrocknet. Schließlich erfolgt die fluoreszenzmikroskopische Auswertung.The cells are opened mechanically (vibrating mill). Teflon plates are incubated at room temperature for 18 h in cell disruption or supernatant, rinsed with water (3 x 10 min). The treated teflon is then incubated in PBS with fluorescence-labeled antibody. Then again with PBS (3 x 15 min) rinsed and dried in an N 2 jet. Finally, the fluorescence microscopic evaluation is carried out.
Man beobachtet (Ergebnisse nicht gezeigt) keine Fluoreszenz auf Referenzprobe, da- gegen spotförmige Fluoreszenz nach Inkubation in Zellhomogenat oder Kulturüberstand (bei Sezernierung des Hydrophobins durch die exprimierenden Zellen). No fluorescence is observed on the reference sample (results not shown), but spot-shaped fluorescence after incubation in cell homogenate or culture supernatant (when the hydrophobin is secreted by the expressing cells).

Claims

Patentansprüche claims
1. Expressionskonstrukt, umfassend die kodierende Nukleinsäuresequenz für ein von Hefezellen prozessierbares Shuttlepeptidkonstrukt der allgemeinen Formel1. Expression construct comprising the coding nucleic acid sequence for a shuttle peptide construct of the general formula which can be processed by yeast cells
(Sig-SP),(Sig-SP),
enthaltend in 5'-3'-Richtung die kodierenden Nukleinsauresequenzen für a) ein Signalpeptid (Sig), prozessierbar verknüpft mit b) wenigstens einem von den Hefezellen sezemierbaren Shuttlepeptidcontaining the coding nucleic acid sequences for a) a signal peptide (Sig) in the 5'-3 'direction, processably linked to b) at least one shuttle peptide that can be secreted by the yeast cells
(SP).(SP).
2. Expressionskonstrukt nach Anspruch 1 , wobei das Shuttlepeptidkonstrukt (Sig-SP) von einem von Hefen der Gattung Schizosaccharomyces, insbeson- dere von S. pombe prozessierten Polypeptid abgeleitet ist.2. Expression construct according to claim 1, wherein the shuttle peptide construct (Sig-SP) is derived from a polypeptide processed by yeasts of the genus Schizosaccharomyces, in particular from S. pombe.
3. Expressionskonstrukt nach einem der vorhergehenden Ansprüche, wobei das Shuttlepeptidkonstrukt (Sig-SP) von einem Pheromon-Präprotein aus einer Hefe abgeleitet ist, wobei das Pheromon (Pher) durch N- und C-terminale Prozessierung aus dem Präprotein ableitbar und sezernierbar ist.3. Expression construct according to one of the preceding claims, wherein the shuttle peptide construct (Sig-SP) is derived from a pheromone preprotein from a yeast, wherein the pheromone (Pher) can be derived and secreted from the preprotein by N- and C-terminal processing.
4. Expressionskonstrukt nach Anspruch 3, wobei das Signalpolypeptid (Sig) das proteolytisch abspaltbare native Signalpolypeptid des Pheromon-Präproteins ist4. Expression construct according to claim 3, wherein the signal polypeptide (Sig) is the proteolytically cleavable native signal polypeptide of the pheromone preprotein
5. Expressionskonstrukt nach Anspruch 4, wobei das C-terminal prozessierte Pheromon (Pher) eine C-terminale Proteaseschnittstelle umfasst.5. Expression construct according to claim 4, wherein the C-terminal processed pheromone (Pher) comprises a C-terminal protease interface.
6. Expressionskonstrukt nach einem der vorhergehenden Ansprüche, weiterhin enthaltend die kodierende Nukleinsäuresequenz für ein homologes oder he- terologes Zielprotein (Targ), prozessierbar verknüpft mit dem C-Terminus des Shuttlepeptidkonstrukts (Sig-SP).6. Expression construct according to one of the preceding claims, further comprising the coding nucleic acid sequence for a homologous or heterologous target protein (Targ), processably linked to the C-terminus of the shuttle peptide construct (Sig-SP).
7. Expressionskonstrukt nach einem der vorhergehenden Ansprüche, umfas- send die kodierende Nukleinsäuresequenz für ein von Hefezellen prozessierbares Fusionsprotein der allgemeinen Formel7. Expression construct according to one of the preceding claims, comprising the coding nucleic acid sequence for a fusion protein processable by yeast cells of the general formula
Sig-L1n-Pher-L2m-TargSig-L1 n -Pher-L2 m -Targ
worin Sig, Pher und Targ wie oben definiert sind,wherein Sig, Pher and Targ are as defined above,
L1 und L2 für prozessierbare Linker stehen und n und m unabhängig voneinander für 0 oder 1 stehen.L1 and L2 stand for processable linkers and n and m stand independently for 0 or 1.
8. Expressionskonstrukt nach einem der vorhergehenden Ansprüche, wobei die kodierende Nukleinsäuresequenz für das Shuttlepeptidkonstrukt (Sig-SP)eine für ein Signalpolypeptid kodierende Sequenz gemäß SEQ ID NO: 3 oder ein funktionales Äquivalent davon, operativ verknüpft mit der für ein reifes Phe- romon-Protein (P-Faktor) kodierenden Nukleinsäuresequenz gemäß SEQ ID NO:5 oder ein funktionales Äquivalent davon umfasst.8. Expression construct according to one of the preceding claims, wherein the coding nucleic acid sequence for the shuttle peptide construct (Sig-SP) is a coding sequence for a signal polypeptide according to SEQ ID NO: 3 or a functional equivalent thereof, operatively linked to that for a mature phenomone Protein (P factor) encoding nucleic acid sequence according to SEQ ID NO: 5 or a functional equivalent thereof.
9. Expressionskonstrukt nach einem der vorhergehenden Ansprüche, wobei die kodierende Nukleinsäuresequenz für das Shuttlepeptidkonstrukt eine Sequenz gemäß SEQ ID NO:1 umfasst, am 3'-Ende gegebenenfalls verlängert um die kodierende Sequenz für ein Zielprotein (Targ)9. Expression construct according to one of the preceding claims, wherein the coding nucleic acid sequence for the shuttle peptide construct comprises a sequence according to SEQ ID NO: 1, optionally extended at the 3 'end by the coding sequence for a target protein (target)
10. Expressionskonstrukt nach einem der vorhergehenden Ansprüche, wobei das Zielprotein ein Hydrophobin, insbesondere ein Hydrophobin der Klasse I, ist.10. Expression construct according to one of the preceding claims, wherein the target protein is a hydrophobin, in particular a hydrophobin of class I.
11. Expressionskonstrukt nach Anspruch 10, wobei das Hydrophobin ausgewählt ist unter SEQ ID NO: 14 (DewA), SEQ ID NO:19 (RdIA) SEQ ID NO:20 (RdlB) SEQ ID NO:21 (HYP1) und SEQ ID NO: 22 (HYP4) oder von einer Nukleinsäuresequenz gemäß SEQ ID NO:13 kodiert wird.11. Expression construct according to claim 10, wherein the hydrophobin is selected from SEQ ID NO: 14 (DewA), SEQ ID NO: 19 (RdIA) SEQ ID NO: 20 (RdlB) SEQ ID NO: 21 (HYP1) and SEQ ID NO : 22 (HYP4) or from a nucleic acid sequence according to SEQ ID NO: 13.
12. Expressionsvektor, umfassend in operativer Verknüpfung mit wenigstens einer regulativen Nukleinsäuresequenz ein Expressionskonstrukt nach einem der vorhergehenden Ansprüche.12. Expression vector comprising, in operative linkage with at least one regulatory nucleic acid sequence, an expression construct according to one of the preceding claims.
13. Rekombinanter Mikroorganismus, enthaltend, gegebenenfalls stabil in das Wirtsgenom integriert, wenigstens einen Expressionsvektor nach Anspruch13. Recombinant microorganism containing, optionally stably integrated into the host genome, at least one expression vector according to claim
12 oder ein Expressionskonstrukt nach einem der Ansprüche 1 bis 11.12 or an expression construct according to one of claims 1 to 11.
14. Mikroorganismus nach Anspruch 13, ausgewählt unter Hefen.14. Microorganism according to claim 13, selected from yeast.
15. Mikroorganismus nach Anspruch 14, ausgewählt unter Hefen der Gattung15. Microorganism according to claim 14, selected from yeasts of the genus
Schizosaccharomyces, insbesondere S. pombe.Schizosaccharomyces, especially S. pombe.
16. Von Hefezellen prozessierbares Shuttlepeptidkonstrukt (Sig-SP), abgeleitet von einem Pheromon-Präprotein aus einer Hefe, wobei das Pheromon durch N- und C-terminale Prozessierung aus dem Präprotein ableitbar und sezer- nierbar ist.16. Shuttle peptide construct (Sig-SP) processable from yeast cells, derived from a pheromone preprotein from a yeast, the pheromone passing through N- and C-terminal processing can be derived and secreted from the preprotein.
17. Shuttlepeptidkonstrukt nach Anspruch 16, enthaltend ein Signalpolypeptid N- terminai prozessierbar verknüpft mit dem C-terminal prozessierten Pheromonpolypeptid.17. Shuttle peptide construct according to claim 16, comprising a signal polypeptide N-terminai processably linked to the C-terminal processed pheromone polypeptide.
18. Shuttlepeptidkonstrukt nach Anspruch 17, wobei das Signalpolypeptid das proteolytisch abspaltbare native Signalpolypeptid des Pheromon-Präproteins ist18. Shuttle peptide construct according to claim 17, wherein the signal polypeptide is the proteolytically cleavable native signal polypeptide of the pheromone preprotein
19. Shuttlepeptidkonstrukt nach Anspruch 17, wobei das C-terminal prozessierte Pheromonpolypeptid die C-terminale Proteaseschnittstelle umfasst.19. Shuttle peptide construct according to claim 17, wherein the C-terminal processed pheromone polypeptide comprises the C-terminal protease interface.
20. Shuttlepeptidkonstrukt nach einem der Ansprüche 16 bis 19, umfassend eine20. Shuttle peptide construct according to one of claims 16 to 19, comprising a
Aminosäuresequenz nach SEQ ID NO:2 oder ein funktionales Äquivalent davon.Amino acid sequence according to SEQ ID NO: 2 or a functional equivalent thereof.
21. Verfahren zur rekombinanten Herstellung eines Zielproteins, wobei man ei- nen Mikroorganismus nach einem der Ansprüche 13 bis 15 kultiviert, die das21. A method for the recombinant production of a target protein, wherein one cultivates a microorganism according to one of claims 13 to 15, which the
Zielprotein kodierende Nukleinsäuresequenz exprimiert und das in das Kulturmedium sezernierte Zielprotein isoliert.Nucleic acid sequence encoding target protein is expressed and the target protein secreted into the culture medium is isolated.
22. Verfahren nach Anspruch 21 , wobei das Zielprotein ein Hydrophobin gemäß der Definition in Anspruch 10 oder 1 1 ist.22. The method of claim 21, wherein the target protein is a hydrophobin as defined in claim 10 or 11.
23. Nukleinsäure, kodierend für ein Shuttlepeptidkonstrukt nach einem der Ansprüche 16 bis 20.23. Nucleic acid coding for a shuttle peptide construct according to one of claims 16 to 20.
24. Nukleinsäure gemäß der Definition in einem der Ansprüche 1 bis 11.24. Nucleic acid as defined in one of claims 1 to 11.
25. Hydrophobin erhältlich nach einem Verfahren gemäß Anspruch 22.25. Hydrophobin obtainable by a process according to claim 22.
26. Verwendung eines Hydrophobin nach Anspruch 25 zur Oberflächenbehand- lung.26. Use of a hydrophobin according to claim 25 for surface treatment.
27. Verwendung nach Anspruch 26, wobei man die Oberfläche von Gegenständen, ausgewählt unter Glas, Fasern, Geweben, Leder, lackierten Gegenständen, Folien und Fassaden behandelt. 27. Use according to claim 26, wherein the surface of objects selected from glass, fibers, fabrics, leather, lacquered objects, films and facades is treated.
8. Verwendung eines Hydrophobins gemäß der Definition in Anspruch 10 oder 11 zur Oberflächenbehandlung von Fasern, Geweben und Leder. 8. Use of a hydrophobin as defined in claim 10 or 11 for the surface treatment of fibers, fabrics and leather.
1/91.9
Fig.1Fig.1
Konstrukte zur Sekretion der Hydrophobine aus S. pombeConstructs for the secretion of the hydrophobins from S. pombe
Konstruktconstruct
Signalsequenz authentischesAuthentic signal sequence
Hydrophobin HA ProteinHydrophobin HA protein
P-Faktor SignalpeptidP-factor signal peptide
PDe A PDe A
P-Faktor Signalpeptid+ 6 Aminosäuren P-factor signal peptide + 6 amino acids
P-Faktor Signalpeptid einschließlich P-FaktorP-factor signal peptide including P-factor
PfakDewA PfakDewA
= postulierte Proteaseschnittstellen 2/9 = postulated protease interfaces 9.2
Fig. 2Fig. 2
A) Genomische Sequenz des DewA-Gens:A) Genomic sequence of the DewA gene:
(Die Sequenzen der zwei Introns sind unterstrichen)(The sequences of the two introns are underlined)
ATGCGCTTCA TCGTCTCTCT CCTCGCCTTC ACTG-CCGCGG CCACCGCAAC CGCCCTCCCG GCCTCTGCCG CAAAGAACGC GAAGCTGGCC ACCTCGGCGG CCTTCGCCAA GCAGGCTGAA GGCACCACCT GCAATGTCGG CTCGATCGCT TGCTGCAACT CCCCCGCTGA GACCAACAAC GACAGTCTGT TGAGCGGTCT GCTCGGTGCT GGCCTTCTCA ACGGGCTCTC GGGCAACACT GGCAGCGCCT GCGCCAAGGC GAGCTTGATT GACCAGCTGG GTCTGCTCGG TACGTGATCC CCACTCAGTC GCTCCCGGAG AGGCTGAGGG AAGACGAGCG ACGGTCTAGA AATGGTGTGC TAATAGATGC ATGTGTGCAG CTCTCGTCGA CCACACTGAG GAAGGCCCCG TCTGCAAGAA CATCGTCGCT TGCTGCCCTG AGGGAACCAC CAACGTACGT CTTTCAGATC TGCTACAAGT GAGGCGATCA AAACTAACAT ATTCCAGTGT GTTG-CCGTCG ACAACGCTGG CGCCGGTACC AAGGCTGAGT AAATGCGCTTCA TCGTCTCTCT CCTCGCCTTC ACTG-CCGCGG CCACCGCAAC CGCCCTCCCG GCCTCTGCCG CAAAGAACGC GAAGCTGGCC ACCTCGGCGG CCTTCGCCAA GCAGGCTGAA GGCACCACCT GCAATGTCGG CTCGATCGCT TGCTGCAACT CCCCCGCTGA GACCAACAAC GACAGTCTGT TGAGCGGTCT GCTCGGTGCT GGCCTTCTCA ACGGGCTCTC GGGCAACACT GGCAGCGCCT GCGCCAAGGC GAGCTTGATT GACCAGCTGG GTCTGCTCGG TACGTGATCC CCACTCAGTC GCTCCCGGAG AGGCTGAGGG AAGACGAGCG ACGGTCTAGA AATGGTGTGC TAATAGATGC ATGTGTGCAG CTCTCGTCGA CCACACTGAG GAAGGCCCCG TCTGCAAGAA CATCGTCGCT TGCTGCCCTG AGGGAACCAC CAACGTACGT CTTTCAGATC TGCTACAAGT GAGGCGATCA AAACTAACAT ATTCCAGTGT GTTG-CCGTCG ACAACGCTGG CGCCGGTACC AAGGCTGAGT AA
B) Sequenz des DewA-Proteins aus Aspergill s nidulans:B) Sequence of the DewA protein from Aspergill s nidulans:
MRFIVSLLAF TAAATATALP ASAAKNAKLA TSAAFAKQAE GTTCNVGSIA CCNSPAETNN DSLLSGLLGA GLLNGLSGNT GSACAKASLI DQLGLLALVD HTEEGPVCKN IVACCPEGTT NCVAVDNAGA GTKAEMRFIVSLLAF TAAATATALP ASAAKNAKLA TSAAFAKQAE GTTCNVGSIA CCNSPAETNN DSLLSGLLGA GLLNGLSGNT GSACAKASLI DQLGLLALVD HTEEGPVCKN IVACCPEGTT NCVAVDNAGA GTKAE
(ATGCGCTTCA TCGTCTCTCT CCTCGCCTTC ACTGCCGCGG CCACCGCAAC CGCCCTCCCG(ATGCGCTTCA TCGTCTCTCT CCTCGCCTTC ACTGCCGCGG CCACCGCAAC CGCCCTCCCG
GCCTCTGCCG CAAAGAACGC GAAGCTGGCC ACCTCGGCGG CCTTCGCCAA GCAGGCTGAAGCCTCTGCCG CAAAGAACGC GAAGCTGGCC ACCTCGGCGG CCTTCGCCAA GCAGGCTGAA
GGCACCACCT GCAATGTCGG CTCGATCGCT TGCTGCAACT CCCCCGCTGA GACCAACAACGGCACCACCT GCAATGTCGG CTCGATCGCT TGCTGCAACT CCCCCGCTGA GACCAACAAC
GACAGTCTGT TGAGCGGTCT GCTCGGTGCT GGCCTTCTCA ACGGGCTCTC GGGCAACACTGACAGTCTGT TGAGCGGTCT GCTCGGTGCT GGCCTTCTCA ACGGGCTCTC GGGCAACACT
GGCAGCGCCT GCGCCAAGGC GAGCTTGATT GACCAGCTGG GTCTGCTCGC TCTCGTCGACGGCAGCGCCT GCGCCAAGGC GAGCTTGATT GACCAGCTGG GTCTGCTCGC TCTCGTCGAC
CACACTGAGG AAGGCCCCGT CTGCAAGAAC AT7CGTCGCTT GCTGCCCTGA GGGAACCACC AACTGTGTTG CCGTCGACAA CGCTGGCGCC GGTACCAAGG CTGAGTAA)CACACTGAGG AAGGCCCCGT CTGCAAGAAC AT7CGTCGCTT GCTGCCCTGA GGGAACCACC AACTGTGTTG CCGTCGACAA CGCTGGCGCC GGTACCAAGG CTGAGTAA)
C) Sequenz des HA-Tag:C) Sequence of the HA tag:
LVPRGSIEGR GGRIFYPYDV PDYAGYPYDV PDYAGSYPYD VPDYAAQCGRLVPRGSIEGR GGRIFYPYDV PDYAGYPYDV PDYAGSYPYD VPDYAAQCGR
( CTGGT TCCGCGTGGA TCCATCGAAG GTCGTGGCGG CCGCATCTTT TACCCATACG(CTGGT TCCGCGTGGA TCCATCGAAG GTCGTGGCGG CCGCATCTTT TACCCATACG
ATGTTCCTGA CTATGCGGGC TATCCCTATG ACGTCCCGGA CTATGCAGGA TCCTATCCAT ATGACGTTCC AGATTACGCT GCTCAGTGCG GCCGCTAATA G) 3/9ATGTTCCTGA CTATGCGGGC TATCCCTATG ACGTCCCGGA CTATGCAGGA TCCTATCCAT ATGACGTTCC AGATTACGCT GCTCAGTGCG GCCGCTAATA G) 3.9
Fϊg.3Fϊg.3
A) Sequenz des P-Faktor Präproteins:A) Sequence of the P-factor preprotein:
MKITAVIALL FSLAAASPIP VADPGWSVS KSYADFLRVY QS NTFANPD RPNLKKREFEMKITAVIALL FSLAAASPIP VADPGWSVS KSYADFLRVY QS NTFANPD RPNLKKREFE
AAPAKTYADF LRAYQS NTF VNPDRPNLKK. RE FEAAPEKS YADFLRAYHS NTFVNPDRPAAPAKTYADF LRAYQS NTF VNPDRPNLKK. RE FEAAPEKS YADFLRAYHS NTFVNPDRP
NLKKREFEAA PAKTYADFLR AYQSWNTFVM PDRPNLKKRT EEDEENEEED EEYYRFLQFY I TVPENSTI TDVNITAKFE SNLKKREFEAA PAKTYADFLR AYQSWNTFVM PDRPNLKKRT EEDEENEEED EEYYRFLQFY I TVPENSTI TDVNITAKFE S
(ATGAAGATCA CCGCTGTCAT TGCCCTTTTA TTCTCACTTG CTGCTGCCTC ACCTATTCCA(ATGAAGATCA CCGCTGTCAT TGCCCTTTTA TTCTCACTTG CTGCTGCCTC ACCTATTCCA
GTTGCCGATC CTGGTGTGGT TTCAGTTAGC AAGTCATATG CTGATTTCCT TCGTGTTTACGTTGCCGATC CTGGTGTGGT TTCAGTTAGC AAGTCATATG CTGATTTCCT TCGTGTTTAC
CAAAGTTGGA ACACTTTTGC TAATCCTGAT AGACCCAACT TGAAAAAGCG CGAATTCGAACAAAGTTGGA ACACTTTTGC TAATCCTGAT AGACCCAACT TGAAAAAGCG CGAATTCGAA
GCTGCTCCCG CAAAAACTTA TGCTGATTTC CTTCGTGCTT ATCAAAGTTG GAACACTTTTGCTGCTCCCG CAAAAACTTA TGCTGATTTC CTTCGTGCTT ATCAAAGTTG GAACACTTTT
GTTAATCCTG ACAGACCCAA TTTGAAAAAG CGTGAGTTTG AAGCTGCCCC AGAGAAGAGTGTTAATCCTG ACAGACCCAA TTTGAAAAAG CGTGAGTTTG AAGCTGCCCC AGAGAAGAGT
TATGCTGATT TCCTTCGTGC TTACCATAGT TGGAACACTT TTGTTAATCC TGACAGACCCTATGCTGATT TCCTTCGTGC TTACCATAGT TGGAACACTT TTGTTAATCC TGACAGACCC
AACTTGAAAA AGCGCGAATT CGAAGCTGCT CCCGCAAAAA CTTATGCTGA TTTCCTTCGTAACTTGAAAA AGCGCGAATT CGAAGCTGCT CCCGCAAAAA CTTATGCTGA TTTCCTTCGT
GCTTACCAAA GTTGGAACAC TTTTGTTAAT CCTGACAGAC CCAACTTGAA AAAGCGCACTGCTTACCAAA GTTGGAACAC TTTTGTTAAT CCTGACAGAC CCAACTTGAA AAAGCGCACT
GAAGAAGATG AAGAGAATGA GGAAGAGGAT GAAGAATACT ATCGCTTTCT TCAGTTTTAT ATCATGACTG TCCCAGAGAA TTCCACTATT ACAGATGTCA ATATTACTGC CAAATTTGAG AGCTAA)GAAGAAGATG AAGAGAATGA GGAAGAGGAT GAAGAATACT ATCGCTTTCT TCAGTTTTAT ATCATGACTG TCCCAGAGAA TTCCACTATT ACAGATGTCA ATATTACTGC CAAATTTGAG AGCTAA)
B) Sequenz des abspaltbaren Signalpeptides und der sich daran anschließenden 6 Aminosäuren des P-Faktor Präproteins:B) Sequence of the cleavable signal peptide and the subsequent 6 amino acids of the P-factor preprotein:
MKITAVIALL FSLAAASPIP VADPGVMKITAVIALL FSLAAASPIP VADPGV
(ATGAAGATCA CCGCTGTCAT TGCCCTTTTA TTCTCACTTG CTGCTGCCTC ACCTATTCCA GTTGCCGATC CTGGTGTG)(ATGAAGATCA CCGCTGTCAT TGCCCTTTTA TTCTCACTTG CTGCTGCCTC ACCTATTCCA GTTGCCGATC CTGGTGTG)
C) Genutzte Sequenz zum "P-Shuttle":C) Sequence used for the "P-Shuttle":
MKITAVIALL FSLAAASPIP VADPGWSVS KSYADFLRVY QSWNTFANPD RPNLKKR (ATGAAGATCA CCGCTGTCAT TGCCCTTTTA TTCTCACTTG CTGCTGCCTC ACCTATTCCAMKITAVIALL FSLAAASPIP VADPGWSVS KSYADFLRVY QSWNTFANPD RPNLKKR (ATGAAGATCA CCGCTGTCAT TGCCCTTTTA TTCTCACTTG CTGCTGCCTC ACCTATTCCA
GTTGCCGATC CTGGTGTGGT TTCAGTTAGC AAGTCATATG CTGATTTCCT TCGTGTTTAC CAAAGTTGGA ACACTTTTGC TAATCCTGAT AGACCCAACT TGAAAAAGCG C) Fig. 4GTTGCCGATC CTGGTGTGGT TTCAGTTAGC AAGTCATATG CTGATTTCCT TCGTGTTTAC CAAAGTTGGA ACACTTTTGC TAATCCTGAT AGACCCAACT TGAAAAAGCG C) Fig. 4
Fusionsprotein bestehend aus der "P-Shuttle"-Sequenz, dem maturen DewA und dem C-terminal fusionierten HA-Tag:Fusion protein consisting of the "P-Shuttle" sequence, the mature DewA and the C-terminally fused HA tag:
MKITAVIALL FSLAAASPIP VADPGWSVS KSYADFLRVY QSWNTFANPD RPNLKKRLPAMKITAVIALL FSLAAASPIP VADPGWSVS KSYADFLRVY QSWNTFANPD RPNLKKRLPA
SAAKNAKLAT SAAFAKQAEG TTCNVGSIAC CNSPAETNND SLLSGLLGAG LLNGLSGNTGSAAKNAKLAT SAAFAKQAEG TTCNVGSIAC CNSPAETNND SLLSGLLGAG LLNGLSGNTG
SACAKASLID OLGLLALVDH TEEGPVCKNI VACCPEGTTN CVAVDNAGAG TKAELVPRGSSACAKASLID OLGLLALVDH TEEGPVCKNI VACCPEGTTN CVAVDNAGAG TKAELVPRGS
IEGRGGRIFY PYDVPDYAGY PYDVPDYAGS YPYDVPDYAA QCGRIEGRGGRIFY PYDVPDYAGY PYDVPDYAGS YPYDVPDYAA QCGR
(ATGAAGATCA CCGCTGTCAT TGCCCTTTTA TTCTCACTTG CTGCTGCCTC ACCTATTCCA GTTGCCGATC CTGGTGTGGT TTCAGTTAGC AAGTCATATG CTGATTTCCT TCGTGTTTAC CAAAGTTGGA ACACTTTTGC TAATCCTGAT AGACCCAACT TGAAAAAGCG CCTCCCGGCC TCTGCCGCAA AGAACGCGAA GCTGGCCACC TCGGCGGCCT TCGCCAAGCA GGCTGAAGGC ACCACCTGCA ATGTCGGCTC GATCGCTTGC TGCAACTCCC CCGCTGAGAC CAACAACGAC AGTCTGTTGA GCGGTCTGCT CGGTGCTGGC CTTCTCAACG GGCTCTCGGG CAACACTGGC AGCGCCTGCG CCAAGGCGAG CTTGATTGAC CAGCTGGGTC TGCTCGCTCT CGTCGACCAC ACTGAGGAAG GCCCCGTCTG CAAGAACATC GTCGCTTGCT GCCCTGAGGG AACCACCAAC TGTGTTGCCG TCGACAACGC TGGCGCCGGT ACCAAGGCTG AGCTGGTTCC GCGTGGATCC ATCGAAGGTC GTGGCGGCCG CATCTTTTAC CCATACGATG TTCCTGACTA TGCGGGCTAT CCCTATGACG TCCCGGACTA TGCAGGATCC TATCCATATG ACGTTCCAGA TTACGCTGCT CAGTGCGGCC GCTAATAG) (ATGAAGATCA CCGCTGTCAT TGCCCTTTTA TTCTCACTTG CTGCTGCCTC ACCTATTCCA GTTGCCGATC CTGGTGTGGT TTCAGTTAGC AAGTCATATG CTGATTTCCT TCGTGTTTAC CAAAGTTGGA ACACTTTTGC TAATCCTGAT AGACCCAACT TGAAAAAGCG CCTCCCGGCC TCTGCCGCAA AGAACGCGAA GCTGGCCACC TCGGCGGCCT TCGCCAAGCA GGCTGAAGGC ACCACCTGCA ATGTCGGCTC GATCGCTTGC TGCAACTCCC CCGCTGAGAC CAACAACGAC AGTCTGTTGA GCGGTCTGCT CGGTGCTGGC CTTCTCAACG GGCTCTCGGG CAACACTGGC AGCGCCTGCG CCAAGGCGAG CTTGATTGAC CAGCTGGGTC TGCTCGCTCT CGTCGACCAC ACTGAGGAAG GCCCCGTCTG CAAGAACATC GTCGCTTGCT GCCCTGAGGG AACCACCAAC TGTGTTGCCG TCGACAACGC TGGCGCCGGT ACCAAGGCTG AGCTGGTTCC GCGTGGATCC ATCGAAGGTC GTGGCGGCCG CATCTTTTAC CCATACGATG TTCCTGACTA TGCGGGCTAT CCCTATGACG TCCCGGACTA TGCAGGATCC TACGGTAGGAGCC TATGGCTGATG CAC
7/97.9
Fig.8 Figure 8
ÜS Pellet ÜS pellet
8/98.9
Fig. 9Fig. 9
A) mfm1+ GenA) mfm1 + gen
Sequenz des mfm1 -PräproteinSequence of the mfm1 preprotein
MDS ANSVSSSSWNAGNKPAETLNKTVKNYTPKVPYMCVIAMDS ANSVSSSSWNAGNKPAETLNKTVKNYTPKVPYMCVIA
Sequenz des mfm1*-Gens atggactcaa tggctaactc cgtttcttcc tcctctgtcg tcaacgctgg caacaagcct gctgaaactc ttaacaagac cgttaagaat tataccccca aggttcctta catgtgtgtc attgcataa mfml matures M-PheromonSequence of the mfm1 * gene atggactcaa tggctaactc cgtttcttcc tcctctgtcg tcaacgctgg caacaagcct gctgaaactc ttaacaagac cgttaagaat tataccccca aggttcctta catgtgtgtc attgcataa mfml matures M-pheromone
YTPKVPYMCYTPKVPYMC
DNA-Sequenz des maturen mfml M-Pheromon tataccccca aggttcctta catgtgtDNA sequence of the mature mfml M-pheromone tataccccca aggttcctta catgtgt
B) mfm2+-GenB) mfm2 + gene
Sequenz des mfm2-Präprotein DSIATNTHSSSIVNAYNNNPTDWKTQNIKNYTPKVPYMCVIASequence of the mfm2 preprotein DSIATNTHSSSIVNAYNNNPTDWKTQNIKNYTPKVPYMCVIA
Sequenz des mfm2+-Gens atggactcca ttgcaactaa cactcattct tcatccattg tcaatgccta caacaacaat cctaccgatg ttgtaaaaac tcaaaacatt aaaaattata ctccaaaggt tccttatatg tgtgtaattg cttaa mfm2 matures M-PheromonSequence of the mfm2 + gene atggactcca ttgcaactaa cactcattct tcatccattg tcaatgccta caacaacaat cctaccgatg ttgtaaaaac tcaaaacatt aaaaattata ctccaaaggt tccttatatg tgtgtaattg cttaa Mfheromon matures
YTPKVPYMCYTPKVPYMC
DNA-Sequenz des maturen mfm2 M-Pheromon tata ctccaaaggt tccttatatg tgtDNA sequence of the mature mfm2 M pheromone tata ctccaaaggt tccttatatg tgt
C) mfm3+-GenC) mfm3 + gene
Sequenz des mfm3-PräproteinSequence of the mfm3 preprotein
MDSMANTVSSSWNTGNKPSΞTLNKTVKNYTPKVPYMCVIAMDSMANTVSSSWNTGNKPSΞTLNKTVKNYTPKVPYMCVIA
Sequenz des mfm3*-Gens atggactcaa tggctaacac tgtttcttcc tccgtcgtta acactggcaa caagccttct gaaactctta acaagactgt taagaattat acccccaagg ttccttacat gtgtgtcatt gcataa mfm3 matures M-PheromonSequence of the mfm3 * gene atggactcaa tggctaacac tgtttcttcc tccgtcgtta acactggcaa caagccttct gaaactctta acaagactgt taagaattat acccccaagg ttccttacat gtgtgtcatt gcataa mfm3 matures M-pheromone
YTPKVPYMCYTPKVPYMC
DNA-Sequenz des maturen mfm3 M-Pheromon tat acccccaagg ttccttacat gtgt 9/9DNA sequence of the mature mfm3 M pheromone tat acccccaagg ttccttacat gtgt 9.9
Fig. 10Fig. 10
Genomische Sequenz des RodA GensGenomic sequence of the RodA gene
ATGAAGTTCT CCATTGCTGC CGCTGTCGTT GCTTTCGCCG CCTCCGTCGC GGCCCTCCCT CCTGCCCATG ATTCCCAGTT CGCTGGCAAT GGTGTTGGCA ACAAGGGCAA CAGCAACGTC AAGTTCCCTG TCCCCGAAAA CGTGACCGTC AAGCAGGCCT CCGACAAGTG CGGTGACCAG GCCCAGCTCT CTTGCTGCAA CAAGGCCACG TACGCCGGTG ACACCACAAC CGTTGATGAG GGTCTTCTGT CTGGTGCCCT CAGCGGCCTC ATCGGCGCCG GGTCTGGTGC CGAAGGTCTT GGTCTCTTCG ATCAGTGCTC CAAGCTTGAT GTTGCTGGTC AGTTCTTCGA AAATCACTTT CGTGATGCCC CAATGCTAAC AATTACCA.GT CCTCATTGGC ATCCAAGATC TTGTCAACCAATGAAGTTCT CCATTGCTGC CGCTGTCGTT GCTTTCGCCG CCTCCGTCGC GGCCCTCCCT CCTGCCCATG ATTCCCAGTT CGCTGGCAAT GGTGTTGGCA ACAAGGGCAA CAGCAACGTC AAGTTCCCTG TCCCCGAAAA CGTGACCGTC AAGCAGGCCT CCGACAAGTG CGGTGACCAG GCCCAGCTCT CTTGCTGCAA CAAGGCCACG TACGCCGGTG ACACCACAAC CGTTGATGAG GGTCTTCTGT CTGGTGCCCT CAGCGGCCTC ATCGGCGCCG GGTCTGGTGC CGAAGGTCTT GGTCTCTTCG ATCAGTGCTC CAAGCTTGAT GTTGCTGGTC AGTTCTTCGA AAATCACTTT CGTGATGCCC CAATGCTAAC AATTACCA.GT CCTCATTGGC ATCCAAGATC TTGTCAACCA
GAAGTGCAAG CAAAACATTG CCTGCTGCCA GAACTCCCCC TCCAGCGCGG TATGTTCCCT TGTTTTACAG CTTATTCACT TAAACCGATT AATCTAACAA CGCTCACA.GG ATGGCAACCT TATTGGTGTC GGTCTCCCTTGAAGTGCAAG CAAAACATTG CCTGCTGCCA GAACTCCCCC TCCAGCGCGG TATGTTCCCT TGTTTTACAG CTTATTCACT TAAACCGATT AATCTAACAA CGCTCACA.GG ATGGCAACCT TATTGGTGTC GGTCTCCCTT
GCGTTGCCCT TGGCTCCATC CTCTAAGCGTTGCCCT TGGCTCCATC CTCTAA
DNA-Sequenz des offenen Leserahmens (ORF) des RodA -GensDNA sequence of the open reading frame (ORF) of the RodA gene
ATGAAGTTCT CCATTGCTGC CGCTGTCGTT GCTTTCGCCG CCTCCGTCGC GGCCCTCCCT CCTGCCCATGATGAAGTTCT CCATTGCTGC CGCTGTCGTT GCTTTCGCCG CCTCCGTCGC GGCCCTCCCT CCTGCCCATG
ATTCCCAGTT CGCTGGCAAT GGTGTTGGCA ACAAGGGCAA CAGCAACGTC AAGTTCCCTG TCCCCGAAAAATTCCCAGTT CGCTGGCAAT GGTGTTGGCA ACAAGGGCAA CAGCAACGTC AAGTTCCCTG TCCCCGAAAA
CGTGACCGTC AAGCAGGCCT CCGACAAGTG CGGTGACCAG GCCCAGCTCT CTTGCTGCAA CAAGGCCACGCGTGACCGTC AAGCAGGCCT CCGACAAGTG CGGTGACCAG GCCCAGCTCT CTTGCTGCAA CAAGGCCACG
TACGCCGGTG ACACCACAAC CGTTGATGAG GGTCTTCTGT CTGGTGCCCT CAGCGGCCTC ATCGGCGCCGTACGCCGGTG ACACCACAAC CGTTGATGAG GGTCTTCTGT CTGGTGCCCT CAGCGGCCTC ATCGGCGCCG
GGTCTGGTGC CGAAGGTCTT GGTCTCTTCG ATCAGTGCTC CAAGCTTGAT GTTGCTGTCC TCATTGGCATGGTCTGGTGC CGAAGGTCTT GGTCTCTTCG ATCAGTGCTC CAAGCTTGAT GTTGCTGTCC TCATTGGCAT
CCAAGATCTT GTCAACCAGA AGTGCAAGCA AAACATTGCC TGCTGCCAGA ACTCCCCCTC CAGCGCGGAT GGCAACCTTA TTGGTGTCGG TCTCCCTTGC GTTGCCCTTG GCTCCATCCT CTAACCAAGATCTT GTCAACCAGA AGTGCAAGCA AAACATTGCC TGCTGCCAGA ACTCCCCCTC CAGCGCGGAT GGCAACCTTA TTGGTGTCGG TCTCCCTTGC GTTGCCCTTG GCTCCATCCT CTAA
Sequenz des RodA-ProteinsSequence of the RodA protein
MKFSIAAAW AFAASVAALP PAHDSQFAGN GVGNKGNSNV KPPVPENVTV KQASDKCGDQ AQLSCCNKAT YAGDTTTVDE GLLSGALSGL IGAGSGAEGL GLFDQCSKLD VAVLIGIQDL VNQKCKQNIA CCQNSPSSAD GNLIGVGLPC VALGSIL MKFSIAAAW AFAASVAALP PAHDSQFAGN GVGNKGNSNV KPPVPENVTV KQASDKCGDQ AQLSCCNKAT YAGDTTTVDE GLLSGALSGL IGAGSGAEGL GLFDQCSKLD VAVLIGIQDL VNQKCGLPCQNIAGQILVK
EP04765253A 2003-09-16 2004-09-15 Secretion of proteins from yeasts Withdrawn EP1664306A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10342794A DE10342794A1 (en) 2003-09-16 2003-09-16 Secretion of proteins from yeasts
PCT/EP2004/010346 WO2005033316A2 (en) 2003-09-16 2004-09-15 Secretion of proteins from yeasts

Publications (1)

Publication Number Publication Date
EP1664306A2 true EP1664306A2 (en) 2006-06-07

Family

ID=34352870

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04765253A Withdrawn EP1664306A2 (en) 2003-09-16 2004-09-15 Secretion of proteins from yeasts

Country Status (7)

Country Link
US (1) US20070077619A1 (en)
EP (1) EP1664306A2 (en)
JP (1) JP2007505602A (en)
CN (1) CN1852983A (en)
CA (1) CA2537492A1 (en)
DE (1) DE10342794A1 (en)
WO (1) WO2005033316A2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7892788B2 (en) 2005-02-07 2011-02-22 Basf Se Hydrophobin fusion products, production and use thereof
US20080319168A1 (en) * 2005-02-07 2008-12-25 Basf Aktiengesellschaft Method for Coating Surfaces with Hydrophobins
ATE483009T1 (en) * 2005-03-30 2010-10-15 Basf Se USE OF HYDROPHOBINS FOR THE DIRT-REPELLENT TREATMENT OF HARD SURFACES
MX2007012018A (en) * 2005-03-30 2007-11-16 Basf Ag Use of hydrophobins for the surface treatment of hardened mineral building materials, natural stone, artificial stone and ceramics.
EP1866150B1 (en) 2005-03-31 2016-10-19 Basf Se Metallic substrates having polypeptides as adhesive agents
US8535535B2 (en) 2005-04-01 2013-09-17 Basf Se Use of hydrophobin as a phase stabilizer
DK1869138T3 (en) 2005-04-01 2010-03-01 Basf Se Drilling fluid containing hydrophobin
KR20080014034A (en) * 2005-06-06 2008-02-13 바스프 악티엔게젤샤프트 Method for coating fibre substrate surfaces
DE102005027039A1 (en) * 2005-06-10 2006-12-21 Basf Ag Hydrophobin as a coating agent for expandable or expanded thermoplastic polymer particles
DE102005027139A1 (en) * 2005-06-10 2006-12-28 Basf Ag New cysteine-depleted hydrophobin fusion proteins, their production and use
DE102005029704A1 (en) * 2005-06-24 2007-01-11 Basf Ag Use of hydrophobin polypeptides and conjugates of hydrophobin polypeptides with active or effect substances and their preparation and their use in cosmetics
EP1913143A1 (en) * 2005-07-29 2008-04-23 Pharmexa A/S Improved protein expression
MX2008001056A (en) * 2005-08-01 2008-03-19 Basf Ag Use of surface-active non-enzymatic proteins for washing textiles.
DE102005048720A1 (en) * 2005-10-12 2007-04-19 Basf Ag Use of proteins as an antifoam component in fuels
US8096484B2 (en) 2006-08-15 2012-01-17 Basf Se Method for the production of dry free-flowing hydrophobin preparations
CA2679719C (en) * 2007-03-12 2015-04-28 Basf Se Method of treating cellulosic materials with hydrophobins
US20110126143A1 (en) * 2009-11-24 2011-05-26 Williams Michael D System and method for interfacing fitness equipment and physiological monitoring
WO2012004255A1 (en) * 2010-07-07 2012-01-12 Basf Se Composition containing a hydrophobin and method for cleaning hydrophobic surfaces
EP2631296A1 (en) 2012-02-22 2013-08-28 Kimmo Koivu A method for hydrophobin production in plants and methods to produce hydrophobin multimers in plants and microbes
US20220143049A1 (en) 2019-03-21 2022-05-12 Onxeo A dbait molecule in combination with kinase inhibitor for the treatment of cancer
EP4054579A1 (en) 2019-11-08 2022-09-14 Institut National de la Santé et de la Recherche Médicale (INSERM) Methods for the treatment of cancers that have acquired resistance to kinase inhibitors
US20230234995A1 (en) * 2019-12-02 2023-07-27 Lg Chem, Ltd Cho cell-derived protein secretory factors and expression vectors comprising the same
WO2021148581A1 (en) 2020-01-22 2021-07-29 Onxeo Novel dbait molecule and its use
KR102466926B1 (en) * 2020-05-20 2022-11-14 전남대학교산학협력단 Method for soluble expression and purification of hydrophobin

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1196484B (en) * 1986-07-11 1988-11-16 Sclavo Spa YEAST EXPRESSION AND SECRETION VECTOR, USEFUL FOR THE PREPARATION OF HETEROLOGICAL PROTEINS
US5010182A (en) * 1987-07-28 1991-04-23 Chiron Corporation DNA constructs containing a Kluyveromyces alpha factor leader sequence for directing secretion of heterologous polypeptides
JP3508157B2 (en) * 1993-05-19 2004-03-22 旭硝子株式会社 Fission yeast mating pheromone precursor gene
GB2281421B (en) * 1993-08-23 1998-04-01 Advanced Risc Mach Ltd Integrated circuit
EP0662515B1 (en) * 1993-12-10 2000-11-15 Korea Institute Of Science And Technology Signal sequences for secretion of heterologous proteins from yeast
JP3730256B2 (en) * 1995-02-03 2005-12-21 旭硝子株式会社 Secretion signal gene and expression vector having the same
WO1996041882A1 (en) * 1995-06-12 1996-12-27 Proefstation Voor De Champignoncultuur Hydrophobins from edible fungi, genes, nucleotide sequences and dna-fragments encoding for said hydrophobins, and expression thereof
US6017731A (en) * 1996-12-13 2000-01-25 Chiron Corporation Method for expression of heterologous proteins in yeast
EP0972834A4 (en) * 1997-10-31 2001-08-16 Asahi Glass Co Ltd Induction promoter gene and secretory signal gene usable in schizosaccharomyces pombe, expression vectors having the same, and use thereof
AU2001292574A1 (en) * 2000-09-06 2002-03-22 Zymogenetics Inc. Human phermone polypeptide
GB0030038D0 (en) * 2000-12-08 2001-01-24 Univ Warwick Yeast-based assay
FR2833490B1 (en) * 2001-12-14 2004-12-10 Oreal COSMETIC USE OF AT LEAST ONE HYDROPHOBIN FOR THE TREATMENT OF KERATINIC MATERIALS AND COMPOSITIONS IMPLEMENTED

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005033316A2 *

Also Published As

Publication number Publication date
JP2007505602A (en) 2007-03-15
CA2537492A1 (en) 2005-04-14
WO2005033316A2 (en) 2005-04-14
DE10342794A1 (en) 2005-04-21
WO2005033316A3 (en) 2005-10-06
CN1852983A (en) 2006-10-25
US20070077619A1 (en) 2007-04-05

Similar Documents

Publication Publication Date Title
EP1664306A2 (en) Secretion of proteins from yeasts
DE69822142T2 (en) TRANSFORMATION OF MOLDES BY AGROBACTERIUM, ESPECIALLY OF THE GENUS ASPERGILLUS
DE4226971C2 (en) Modified fungal cells and processes for the production of recombinant products
DD218118A5 (en) PROCESS FOR THE PREPARATION OF A YEAST OR NON-HEEPEPYPEPTIDE
DD267995A5 (en) Method for producing plasmid Pxx-11
EP0751995A1 (en) Riboflavin synthesis in fungi
DD267739A5 (en) Process for the preparation of a yeast heterologous poly-peptide
DD283838A5 (en) PROCESS FOR PREPARING A POLYPEPTIDE
DE69533420T2 (en) FOR CARBOXYPEPTIDASE-ENCODING GENE FROM ASPERGILLUS NIGER
DE69734449T2 (en) Alpha-amylase transcription factor
DE69333249T2 (en) New mold protease
DE69735242T2 (en) N-TERMINAL EXTENDED PROTEIN EXPRESSED IN YEAST
DE69233263T2 (en) NUCLEOTIDE SEQUENCES AND PROTEIN RESISTANT TO CYCLOHEXIMIDE
DE10196565B4 (en) Recombinant human parathyroid hormone producing yeast transformant and method for producing the hormone
DE69634757T2 (en) VECTOR FOR THE EXPRESSION OF N-TERMINAL EXTENDED PROTEINS IN HEF-CELLS
DE69333304T2 (en) INCREASED PRODUCTION OF SECRETED PROTEINS BY RECOMBINANT EUKARYOTIC CELLS
DE69936363T2 (en) DNAs encoding new fusion proteins and methods of producing useful polypeptides by expression of the DNAs
EP0161629A1 (en) Signal peptide for the excretion of polypeptides in Streptomycetes
DE69831242T2 (en) INCREASED PREPARATION OF SECRETATED PROTEINS BY RECOMBINANT HEAVY CELLS
DE69737007T2 (en) Protein disulfide isomerase gene of a methylotrophic yeast strain
DE69930118T2 (en) PROCESS FOR PRODUCING PROTEINS IN TRANSFORMED HEF-CELLS
WO2011124463A1 (en) Method for the production of sweet proteins
DE10101962B4 (en) DNA sequence with regulatory regions for the expression of proteins
WO2001038510A2 (en) Integration vectors and method for producing recombinant proteins in fungi
WO2002048338A2 (en) Yeast strain for testing the geno- and cytotoxicity of complex environmental contamination

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060418

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20061025

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20061025

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20071107