EP1658632B1 - Mass spectrometer and liquid-metal ion source for a mass spectrometer of this type - Google Patents

Mass spectrometer and liquid-metal ion source for a mass spectrometer of this type Download PDF

Info

Publication number
EP1658632B1
EP1658632B1 EP04740521A EP04740521A EP1658632B1 EP 1658632 B1 EP1658632 B1 EP 1658632B1 EP 04740521 A EP04740521 A EP 04740521A EP 04740521 A EP04740521 A EP 04740521A EP 1658632 B1 EP1658632 B1 EP 1658632B1
Authority
EP
European Patent Office
Prior art keywords
bismuth
ion
ions
mass
mass spectrometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP04740521A
Other languages
German (de)
French (fr)
Other versions
EP1658632A2 (en
Inventor
Felix Kollmer
Peter Hoerster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ION-TOF TECHNOLOGIES GMBH
Original Assignee
ION-TOF Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34305558&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1658632(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ION-TOF Technologies GmbH filed Critical ION-TOF Technologies GmbH
Publication of EP1658632A2 publication Critical patent/EP1658632A2/en
Application granted granted Critical
Publication of EP1658632B1 publication Critical patent/EP1658632B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/26Ion sources; Ion guns using surface ionisation, e.g. field effect ion sources, thermionic ion sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers

Definitions

  • the invention relates to a mass spectrometer for analyzing secondary ions and deionized neutral secondary particles with an ion source for generating a primary ion beam for irradiating a sample and generating secondary particles, which source has a heatable ion emitter, which is coated in the field-exposed area with a liquid metal layer, the contains ionizable metal that is emitted and ionized as a primary ion beam, the primary ion beam containing metal ions with different ionization levels and cluster states, as well as a spectrometer unit for mass analysis of the secondary particles.
  • the invention also relates to the ion source for such a mass spectrometer.
  • liquid metal ion sources in secondary ion mass spectrometry, which is especially operated as Time of Flight Secondary Ion Mass Spectroscopy (TOF-SIMS).
  • TOF-SIMS Time of Flight Secondary Ion Mass Spectroscopy
  • Applicant proposes a liquid metal gold cluster ion source for a spectrometer (see Prospectus "Liquid Metal Gold Cluster Ion Gun for Improved Molecular Spectroscopy and Imaging", no date, published 2002), which represents the state of the art according to the cited generic term.
  • bismuth is an anisotopic element with a melting point of 271.3 ° C.
  • bismuth alloys such as Bi + Pb, Bi + Sn and Bi + Zn are known which have a lower melting point (46 ° C - 140 ° C) than pure bismuth.
  • pure bismuth is preferred.
  • the document US 6,002,128 describes a secondary ion mass spectrometer in which the primary beam is generated by a gallium liquid metal ion source.
  • Other possible metal ions for the primary beam include cesium, indium, bismuth and gold.
  • a calibration alloy for a secondary ion mass spectrometer specified can be obtained with the mass spectra with high resolution.
  • the elements V, Ge, Cd, Os and Bi are mentioned as elements with high negative secondary ionization.
  • the isotope curves (patterns) with the aforementioned elements give characteristic, repeatable spectra.
  • this document does not speak of clustering or of a liquid metal ion source.
  • bismuth is particularly well suited for cluster production.
  • the invention thus has the task of developing an ion source with improved yield of cluster ions for the operation of secondary ion mass spectrometers in order to achieve a high efficiency of secondary ion formation with simultaneously high data rates and thus short analysis times.
  • the proposed improvement combines a high efficiency E of secondary ion formation from unchanged sample surfaces with high cluster currents and leads to a corresponding shortening of the analysis times.
  • a secondary ion mass spectrometer in which the liquid metal layer consists of pure metallic bismuth or a low melting bismuth alloy, wherein with the ion emitter under the influence of an electric field, a bismuth ion mixing beam is emitted one of several Bismutionenart, the mass of which is a multiple of the monatomic, singly or multiply charged bismuth Bi 1 p +, is filtered out using a filter device as a mass pure ion beam consisting exclusively of ions of a type Bi n pk , where n ⁇ 2 and p ⁇ 1 is and n and p are each a natural number.
  • the value of efficiency E corresponds to the number of secondary particles detected by the spectrometer, which can be detected per unit surface area of a fully consumed monolayer. From the efficiency it can be calculated, therefore, how many secondary ions are to be detected in a small-area chemical analysis under the selected bombardment conditions.
  • the filtered out for a mass-pure ion beam ions belong to one of the following type: Bi 2 +, Bi 3 +, Bi 3 2+, Bi 4 +, Bi 5 +, Bi 6 +, Bi 5 2+ or Bi 7 2+ . It should preferably be worked with an ionic species, which makes up a relatively high proportion of the total number of ions.
  • the mass spectrometer is operated as a time-of-flight secondary ion mass spectrometer (TOF-SIMS), since there is much experience for this type and the experimental operation has shown that the greatest user potential lies here.
  • TOF-SIMS time-of-flight secondary ion mass spectrometer
  • an ion emitter equipped with a nickel-chromium tip is, according to current knowledge, a favorable solution.
  • the average current in the operation of the secondary ion mass spectrometer is chosen for the emission current between 10 -8 and 5x10 -5 A.
  • a bismuth metallic alloy is chosen instead of pure bismuth, it is preferable to determine one having a low melting point with a high bismuth content.
  • bismuth alloys with one or more of the following metals as liquid metal coating in question Ni, Ag, Pb, Hg, Cu, Sn, Zn, wherein preferably an alloy is selected whose melting point is below the melting point of pure bismuth ,
  • a liquid metal ion source suitable for a TOF-SIMS is disclosed in U.S. Pat FIG. 1 shown.
  • Liquid metal ion sources are widely used for material processing and surface analysis. These ion sources have a very small virtual source size of about 10 nm and a high angle intensity. Due to these properties, liquid metal ion sources can focus very well, whereby up to 7 nm beam diameter can be achieved with relatively high beam currents.
  • FIG. 1 schematically the generation system for ions from a liquid metal ion source with an emitter unit 1 is shown.
  • the support unit 7 carries at its two ends depending on a rigid lead wire 6, wherein via the lead wires 6 a variable in its thickness heating current is supplied; Both supply wires 6 are connected to a reservoir 5 in which a supply of molten bismuth is present during operation of the emitter unit 1.
  • An emitter needle 1 protrudes centrally from the reservoir 5. The emitter needle 1 can thus be held at a temperature at which the bismuth remains molten and wets the needle.
  • the emitter needle 1 is made of a nickel-chromium alloy and is wetted to its tip with liquid bismuth 4.
  • the emitter needle has a wire diameter of about 200 microns and a radius of curvature at the top of 2 to 4 microns.
  • the emitter needle 1 is positioned centrally in front of an extraction panel 2 and surrounded by a suppression unit 3.
  • FIG. 2 shows the emission current components for bismuth and gold, normalized to the atomic, singly charged ions for AuGe and Bi emitters at an emission current of 1 ⁇ A.
  • the absolute emission currents of Au 1 + and Bi 1 + are approximately equal. While the atomic, singly charged beam components Au 1 + and Bi 1 + are comparable in size, the cluster yield shows a clear difference. For the singly charged ions, the advantage of Bi n + over Au n + increases steadily with the size of the clusters. Double-charged cluster ions are emitted only with bismuth with appreciable intensity.
  • the cluster components shown refer to a total emission current of 1 ⁇ A. Since the cluster components are emission current-dependent, the cluster current can still be increased depending on further parameters for bismuth.
  • the same liquid metal ion mass spectrometer was used to analyze the same organic surfaces with different kinds of primary ions (cf. Fig. 3 ).
  • the sample is a color filter array, which, for example, is switched in digital cameras in front of a photosensitive CCD surface to provide the color information.
  • This sample is very well suited as a comparison standard, since it is made very homogeneous and reproducible.
  • the differences achieved between the primary ion species are quite typical and can be qualitatively transferred to other molecular solid surfaces.
  • FIG. 3 Series of images shown show the lateral distribution of two dyes used with the masses 413u and 641u. Due to the increasing destruction of the surface as a result of the Primärionenbeschusses the signal intensity decreases continuously. Shown for all primary ion species of the designated type is the summed signal intensity with the same degree of surface damage (1 / e decrease in signal intensity). The signal intensity achieved is thus a measure of the efficiency of the analysis.
  • the primary ion currents over Au 3+ can be increased by a factor of 4 to fifth Due to the slightly increased yield, the increase in data rates is even higher.
  • the 1 / e decrease of the signal intensity is observed with Au 3 + primary ions after 750 s and with Bi 3 + primary ions already after a significantly reduced analysis time of 180s reached.
  • the reduction in the measuring time is essentially due to the increased Bi 3 + cluster currents.
  • An increase in efficiency can be achieved by using larger clusters, such as Bi 7 ++ , but these cluster currents are relatively small, so the analysis times are generally longer.
  • bismuth emitters have advantages over gold emitters in terms of emission stability at low emission currents and mass separation of the emitted ion species.
  • the advantages described therefore show that bismuth emitters have significant economic and analytical advantages which were not to be expected without further ado.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Combustion & Propulsion (AREA)
  • Electron Tubes For Measurement (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The invention relates to a mass spectrometer comprising an ion source for producing a primary ion beam, which has a heatable ion emitter coated by a liquid metal layer essentially comprised of pure metallic Bismuth or of a low-melting-point alloy containing, in essence, Bismuth. A Bismuth ion mixed beam can be emitted by the ion emitter under the influence of an electric field. From the Bismuth ion mixed beam, one of a number of Bismuth ion types whose mass is a multiple of monatomic singly or multiply charged Bismuth ions Bi1p+, is to be filtered out in the form of a mass-pure ion beam that is solely comprised of ions of a type Binp+, in which n≧2 and p≧1, and n and p are each a natural number.

Description

Die Erfindung betrifft ein Massenspektrometer zur Analyse von Sekundärionen und nachionisierten neutralen Sekundärteilchen mit einer Ionenquelle zur Erzeugung eines Primärionenstrahls zur Bestrahlung einer Probe und Erzeugung von Sekundärteilchen, welche Quelle einen heizbaren Ionenemitter besitzt, der im feldausgesetzten Bereich mit einer Flüssigmetall-Schicht überzogen ist, die ein ionisierbares Metall enthält, das als Primärionenstrahl emittiert und ionisiert wird, wobei der Primärionenstrahl Metallionen mit verschiedenen Ionisationsstufen und Clusterzuständen enthält, sowie mit einer Spektrometereinheit zur Massenanalyse der Sekundärteilchen. Die Erfindung betrifft auch die Ionenquelle für ein solches Massenspektrometer.The invention relates to a mass spectrometer for analyzing secondary ions and deionized neutral secondary particles with an ion source for generating a primary ion beam for irradiating a sample and generating secondary particles, which source has a heatable ion emitter, which is coated in the field-exposed area with a liquid metal layer, the contains ionizable metal that is emitted and ionized as a primary ion beam, the primary ion beam containing metal ions with different ionization levels and cluster states, as well as a spectrometer unit for mass analysis of the secondary particles. The invention also relates to the ion source for such a mass spectrometer.

In der Beschreibung wird die Schreibweise "Bismut" statt "Wismut" gemäß IUPAC-Empfehlung gewählt (vergl. RÖMPP; CHEMIELEXIKON, 9. Aufl., Stichworte "Bismut" und "Wismut"). Weiterhin wird die übliche Bezeichnung für Ionen in Clustern bezüglich ihrer Masse und ihrer Ladung wie folgt verwendet:

        Bin p+

wobei n die Zahl der Atome in einem Cluster und p+ die Ladung bezeichnen.
In the description, the notation "bismuth" instead of "bismuth" according to IUPAC recommendation is selected (see RÖMPP, CHEMIELEXIKON, 9th ed., Keywords "bismuth" and "bismuth"). Furthermore, the common name for ions in clusters in terms of their mass and their charge is used as follows:

Bi n p +

where n is the number of atoms in a cluster and p + is the charge.

Es ist bekannt, in der Sekundärionen-Massenspektroskopie, die insbesondere als Flugzeit-Sekundärionen-Massenspektroskopie betrieben wird (Time-of-Flight Secondary Ion Mass Spectroscopy; TOF-SIMS), Flüssigmetall-Ionenquellen zu verwenden. Von der Anmelderin wird eine Flüssigmetall-Goldcluster-Ionenquelle für einen Spektrometer angeboten (vergl. Prospekt "Liquid Metal Gold Cluster Ion Gun for Improved Molecular Spectroscopy and Imaging", ohne Datum, veröffentlicht 2002), das den Stand der Technik gemäß zitiertem Oberbegriff darstellt.It is known to use liquid metal ion sources in secondary ion mass spectrometry, which is especially operated as Time of Flight Secondary Ion Mass Spectroscopy (TOF-SIMS). Applicant proposes a liquid metal gold cluster ion source for a spectrometer (see Prospectus "Liquid Metal Gold Cluster Ion Gun for Improved Molecular Spectroscopy and Imaging", no date, published 2002), which represents the state of the art according to the cited generic term.

Die Effizienz der TOF-SIMS-Messungen gegenüber Primärionenstrahlen aus monoatomaren Gallium-Ionen konnte mit Gold-Primär-Cluster-Ionen, zum Beispiel des Typs Au3 +, wesentlich gesteigert werden. Nachteilig bei der Verwendung von Gold als Material für den Primärionenstrahl ist allerdings, dass bei der Erzeugung von Goldionen die des Typs Au1 + überwiegen, während Cluster-Formate, wie Au2 +, Au3 +, nur mäßig geringe Anteile im Gesamt-Ionenstrom ausmachen.The efficiency of the TOF-SIMS measurements compared to primary ion beams of monatomic gallium ions could be significantly increased with gold primary cluster ions, for example of the Au 3 + type. A disadvantage of using gold as a material for the primary ion beam, however, is that in the production of gold ions of the type Au 1 + predominate, while cluster formats such as Au 2 + , Au 3 + , only moderately small proportions in the total ionic current turn off.

Bei der intensiven Suche nach weiteren clusterbildenden, nur ein natürliches Isotop aufweisenden Substanzen für die Sekundärionen-Massenspektroskopie wurde erfolgreich Bismut getestet. Bismut ist ein anisotopisches Element mit einem Schmelzpunkt von 271,3°C. Daneben sind Bismut-Legierungen, wie Bi + Pb, Bi + Sn und Bi + Zn, bekannt, die einen niedrigeren Schmelzpunkt (46°C - 140°C) als reines Bismut aufweisen. Für eine Flüssigmetall-Ionenquelle wird jedoch reinem Bismut der Vorzug gegeben.In the intensive search for further cluster-forming, only one natural isotope substances for secondary ion mass spectroscopy was successfully tested bismuth. Bismuth is an anisotopic element with a melting point of 271.3 ° C. Besides, bismuth alloys such as Bi + Pb, Bi + Sn and Bi + Zn are known which have a lower melting point (46 ° C - 140 ° C) than pure bismuth. For a liquid metal ion source, however, pure bismuth is preferred.

Das Dokument US 6 002 128 beschreibt ein Sekundärionen-Massenspektrometer bei dem der Primärstrahl von einer Gallium-Flüssigmetallionenquelle erzeugt wird. Als weitere mögliche Metallionen für den Primärstrahl werden Caesium, Indium, Bismut und Gold genannt.The document US 6,002,128 describes a secondary ion mass spectrometer in which the primary beam is generated by a gallium liquid metal ion source. Other possible metal ions for the primary beam include cesium, indium, bismuth and gold.

Auch wird in der JP 03-084435 eine Kalibrierlegierung für ein Sekundärionen-Massenspektroskop angegeben, mit der Massenspektren mit hoher Auflösung erhalten werden können. Dabei werden als Elemente mit hoher negativer sekundärer Ionisation die Elemente V, Ge, Cd, Os und Bi genannt. Die Isotop-Kurven (patterns) mit den vorgenannten Elementen ergeben charakteristische, repetierbare Spektren. Jedoch wird in dieser Schrift nicht von einer Cluster-Bildung oder von einer Flüssigmetall-Ionen-Quelle gesprochen. Außerdem ist nicht angegeben, dass sich Bismut besonders gut für eine Cluster-Erzeugung eignet.Also, in the JP 03-084435 a calibration alloy for a secondary ion mass spectrometer specified, can be obtained with the mass spectra with high resolution. The elements V, Ge, Cd, Os and Bi are mentioned as elements with high negative secondary ionization. The isotope curves (patterns) with the aforementioned elements give characteristic, repeatable spectra. However, this document does not speak of clustering or of a liquid metal ion source. In addition, it is not stated that bismuth is particularly well suited for cluster production.

Für die Erfindung stellt sich damit die Aufgabe, für den Betrieb von Sekundärionen-Massenspektrometern eine Ionen-quelle mit verbesserter Ausbeute an Cluster-Ionen zu entwickeln, um eine hohe Effizienz der Sekundärionenbildung bei gleichzeitig hohen Datenraten und damit kurzen Analysezeiten zu erreichen. Die vorgeschlagene Verbesserung kombiniert eine hohe Effizienz E der Sekundärionenbildung von unveränderten Probeoberflächen mit hohen Clusterströmen und führt zu einer entsprechenden Verkürzung der Analysezeiten.The invention thus has the task of developing an ion source with improved yield of cluster ions for the operation of secondary ion mass spectrometers in order to achieve a high efficiency of secondary ion formation with simultaneously high data rates and thus short analysis times. The proposed improvement combines a high efficiency E of secondary ion formation from unchanged sample surfaces with high cluster currents and leads to a corresponding shortening of the analysis times.

Diese Aufgabe wird gelöst durch ein Sekundarionen-Massenspektrometer nach Ansprüchen 1 bzw. 6 and 9 bei dem die Flüssigkeitsmetallschicht aus reinem metallischen Bismut oder einer niedrigschmelzenden Bismut enthaltenden Legierung besteht, wobei mit dem Ionenemitter unter Einfluss eines elektrischen Feldes ein Bismutionen-Mischstrahl emittierbar ist, aus dem eine von mehreren Bismutionenarten, deren Masse ein Mehrfaches des monoatomaren, ein- oder mehrfach geladenen Bismutions Bi1 p+ beträgt, mit Hilfe einer Filtervorrichtung als massenreiner Ionenstrahl herauszufiltern ist, der ausschließlich aus Ionen einer Art Bin pk besteht, bei denen n≥2 und p≥1 ist und n und p jeweils eine natürliche Zahl ist.This object is achieved by a secondary ion mass spectrometer according to claims 1 or 6 and 9 in which the liquid metal layer consists of pure metallic bismuth or a low melting bismuth alloy, wherein with the ion emitter under the influence of an electric field, a bismuth ion mixing beam is emitted one of several Bismutionenarten, the mass of which is a multiple of the monatomic, singly or multiply charged bismuth Bi 1 p +, is filtered out using a filter device as a mass pure ion beam consisting exclusively of ions of a type Bi n pk , where n≥2 and p≥1 is and n and p are each a natural number.

Da die Sekundärionen-Massenspektrometrie auf der Zerstäubung der analysierten Festkörperoberfläche beruht, wird ein Teil der Oberfläche zerstört. Von einer gegebenen Festkörperoberfläche kann daher nur eine begrenzte Anzahl an molekularen Sekundärteilchen generiert und nachgewiesen werden. Insbesondere die molekularen Bestandteile der Festkörperoberfläche zerfallen durch den Primärionenbeschuss und stehen der Analyse damit nicht mehr zur Verfügung. Ein breiterer Einsatz der TOF-SIMS zur Analyse molekularer Oberflächen erfordert eine Steigerung der bisher erreichbaren Nachweisempfindlichkeit für organische Materialien. Eine solche Empfindlichkeitssteigerung setzt eine effizientere Bildung von Sekundärteilchen, insbesondere Sekundärionen, aus dickeren organischen Schichten voraus. Mit der vorgeschlagenen Verbesserung wird die Effizienz E der Sekundärionenbildung von unveränderten Probenoberflächen gesteigert.Since secondary ion mass spectrometry is based on the sputtering of the analyzed solid surface, part of the surface is destroyed. From a given solid surface, therefore, only a limited number of molecular secondary particles can be generated and detected. In particular, the molecular components of the solid surface disintegrate due to the primary ion bombardment and are thus no longer available for analysis. A broader use of the TOF-SIMS for the analysis of molecular surfaces requires an increase of the previously achievable detection sensitivity for organic materials. Such sensitivity enhancement requires more efficient formation of secondary particles, especially secondary ions, from thicker organic layers. The proposed improvement increases the efficiency E of secondary ion formation from unchanged sample surfaces.

Der Wert der Effizienz E entspricht der Anzahl der durch das Spektrometer nachgewiesenen Sekundärteilchen, die pro Oberflächeneinheit von einer vollständig konsumierten Monolage erfasst werden können. Aus der Effizienz lässt sich folglich berechnen, wie viele Sekundärionen bei einer kleinflächigen chemischen Analyse unter den gewählten Beschussbedingungen nachzuweisen sind.The value of efficiency E corresponds to the number of secondary particles detected by the spectrometer, which can be detected per unit surface area of a fully consumed monolayer. From the efficiency it can be calculated, therefore, how many secondary ions are to be detected in a small-area chemical analysis under the selected bombardment conditions.

Insbesondere ist vorteilhaft, wenn die für einen massereinen Ionenstrahl herausgefilterten Ionen zu einer der folgenden Art gehören: Bi2 +, Bi3 +, Bi3 2+, Bi4 +, Bi5 +, Bi6 +, Bi5 2+ oder Bi7 2+. Es sollte vorzugsweise mit einer Ionenart gearbeitet werden, die einen relativ hohen Anteil an der Gesamtionenzahl ausmacht.It is particularly advantageous when the filtered out for a mass-pure ion beam ions belong to one of the following type: Bi 2 +, Bi 3 +, Bi 3 2+, Bi 4 +, Bi 5 +, Bi 6 +, Bi 5 2+ or Bi 7 2+ . It should preferably be worked with an ionic species, which makes up a relatively high proportion of the total number of ions.

Vorzugsweise wird das Massenspektrometer als Flugzeit-Sekundärionen-Massenspektrometer (TOF-SIMS) betrieben, da für diesen Typ viel Erfahrungen vorliegen und der Versuchsbetrieb gezeigt hat, dass hier das größte Anwenderpotential liegt.Preferably, the mass spectrometer is operated as a time-of-flight secondary ion mass spectrometer (TOF-SIMS), since there is much experience for this type and the experimental operation has shown that the greatest user potential lies here.

Von der Benetzbarkeit, Standfestigkeit und Verarbeitbarkeit stellt für Bismutbeschichtungen ein Ionenemitter, der mit einer Nickel-Chrom-Spitze ausgerüstet ist, nach dem gegenwärtigen Kenntnisstand eine günstige Lösung dar.In terms of wettability, stability and processability, for bismuth coatings, an ion emitter equipped with a nickel-chromium tip is, according to current knowledge, a favorable solution.

Als mittlere Stromstärke im Betrieb des Sekundärionen-Massenspektrometers wird für den Emissionsstrom eine solche zwischen 10-8 und 5x10-5 A gewählt.As the average current in the operation of the secondary ion mass spectrometer is chosen for the emission current between 10 -8 and 5x10 -5 A.

Für den Fall, dass anstelle reinen Bismuts eine metallische Legierung von Bismut gewählt wird, wird vorzugsweise eine solche bestimmt, die einen niedrigen Schmelzpunkt bei hohem Bismutanteil besitzt. Hier kommen beispielsweise Bismut-Legierungen mit einem oder mehreren der folgenden Metalle als Flüssigmetall-Überzug in Frage: Ni, Ag, Pb, Hg, Cu, Sn, Zn, wobei vorzugsweise eine Legierung gewählt ist, deren Schmelzpunkt unterhalb des Schmelzpunktes des reinen Bismuts liegt.In the event that a bismuth metallic alloy is chosen instead of pure bismuth, it is preferable to determine one having a low melting point with a high bismuth content. Here, for example, bismuth alloys with one or more of the following metals as liquid metal coating in question: Ni, Ag, Pb, Hg, Cu, Sn, Zn, wherein preferably an alloy is selected whose melting point is below the melting point of pure bismuth ,

Wesentliche Eigenschaften, Vorteile und Bauprinzipien werden anhand einer Zeichnung erläutert, deren Figuren zeigen:

Fig. 1
ein Schema des Aufbaues eines Erzeugungssystems einer Flüssigmetall-Ionenquelle;
Fig. 2
Vergleich der Emissionsstromanteile, normiert auf die atomaren, einfach geladenen Spezies Bi1 + bzw. Au1 + für entsprechende Emitter bei 1µA Emissionsstrom;
Fig. 3
verschiedene Aufnahmen einer lateralen Farbstoffverteilung (413u und 640u) eines Farbfilter-Arrays mit verschiedenen Primärionenspezies, wobei als Analysebedingungen 25 keV Primärionenenergie bei einem Gesichtsfeld von 50 x 50 µm2 gewählt wurden.
Essential properties, advantages and construction principles are explained with reference to a drawing, whose figures show:
Fig. 1
a diagram of the structure of a generating system of a liquid metal ion source;
Fig. 2
Comparison of the emission current components normalized to the atomic, singly charged species Bi 1 + and Au 1 + for respective emitters at 1μA emission current;
Fig. 3
various images of a lateral dye distribution (413u and 640u) of a color filter array with different primary ion species, wherein as analysis conditions 25 keV primary ion energy were selected at a field of view of 50 x 50 microns 2 .

Der generelle Aufbau eines TOF-SIMS ist allgemein bekannt, so dass hier nur auf die Figur 1 und die zugehörige Beschreibung der DE 44 16 413 A1 der Anmelderin verwiesen wird.The general structure of a TOF-SIMS is well known, so here only on the FIG. 1 and the associated description of DE 44 16 413 A1 the applicant is referenced.

Eine für ein TOF-SIMS geeignete Flüssigmetall-Ionenquelle ist in Figur 1 dargestellt. Flüssigmetall-Ionenquellen werden sehr breit für die Materialbearbeitung und die Oberflächenanalyse eingesetzt. Diese Ionenquellen besitzen eine sehr geringe virtuelle Quellgröße von etwa 10 nm und eine hohe Winkelintensität. Aufgrund dieser Eigenschaften lassen Flüssigmetall-Ionenquellen sich sehr gut fokussieren, wobei bis zu 7 nm Strahldurchmesser bei gleichzeitig relativ hohen Strahlströmen zu erreichen sind.A liquid metal ion source suitable for a TOF-SIMS is disclosed in U.S. Pat FIG. 1 shown. Liquid metal ion sources are widely used for material processing and surface analysis. These ion sources have a very small virtual source size of about 10 nm and a high angle intensity. Due to these properties, liquid metal ion sources can focus very well, whereby up to 7 nm beam diameter can be achieved with relatively high beam currents.

In Figur 1 ist schematisch das Erzeugungssystem für Ionen aus einer Flüssigmetall-Ionenquelle mit einer Emittereinheit 1 dargestellt. Die Trägereinheit 7 trägt an ihren beiden Enden je einen steifen Zuleitungsdraht 6, wobei über die Zuleitungsdrähte 6 ein in seiner Stärke einstellbarer Heizstrom zugeführt wird; beide Zuleitungsdrähte 6 sind mit einem Reservoir 5, in dem sich im Betrieb der Emittereinheit 1 ein Vorrat an geschmolzenem Bismut befindet, verbunden. Aus dem Reservoir 5 ragt zentrisch eine Emitter-Nadel 1. Die Emitter-Nadel 1 kann damit auf einer Temperatur gehalten werden, bei der das Bismut geschmolzen bleibt und die Nadel benetzt.In FIG. 1 schematically the generation system for ions from a liquid metal ion source with an emitter unit 1 is shown. The support unit 7 carries at its two ends depending on a rigid lead wire 6, wherein via the lead wires 6 a variable in its thickness heating current is supplied; Both supply wires 6 are connected to a reservoir 5 in which a supply of molten bismuth is present during operation of the emitter unit 1. An emitter needle 1 protrudes centrally from the reservoir 5. The emitter needle 1 can thus be held at a temperature at which the bismuth remains molten and wets the needle.

Die Emitter-Nadel 1 besteht aus einer Nickel-Chrom-Legierung und ist bis zu ihrer Spitze mit flüssigem Bismut 4 benetzt. Die Emitter-Nadel hat einen Drahtdurchmesser von etwa 200 µm und einen Krümmungsradius an der Spitze von 2 bis 4 µm. Die Emitter-Nadel 1 ist zentrisch vor einer Extraktionsblende 2 positioniert und von einer Suppressionseinheit 3 umgeben.The emitter needle 1 is made of a nickel-chromium alloy and is wetted to its tip with liquid bismuth 4. The emitter needle has a wire diameter of about 200 microns and a radius of curvature at the top of 2 to 4 microns. The emitter needle 1 is positioned centrally in front of an extraction panel 2 and surrounded by a suppression unit 3.

Legt man eine Hochspannung zwischen der Extraktionsblende 2 und der benetzten Emitter-Nadel 4 an, so formt sich an der Nadelspitze ab einer bestimmten Spannung ein aus flüssigem Bismut geformter scharfer Konus, der sogenannte Taylor-Konus. Die damit verbundene Verjüngung der Spitze führt zu einem deutlichen Anstieg der Feldstärke. Ist die Feldstärke zur Felddesorption ausreichend, so setzt an der Spitze des Taylor-Konus die Emission von Metallionen ein. Der Emissionsstrom der Flüssigmetall-Ionenquelle der dargestellten Art liegt etwa zwischen 0,2 und 5 µA.If a high voltage is applied between the extraction aperture 2 and the wetted emitter needle 4, a sharp cone formed of liquid bismuth, the so-called Taylor cone, is formed at the tip of the needle at a certain voltage. The consequent rejuvenation of the tip leads to a significant increase in field strength. If the field strength is sufficient for field desorption, the emission of metal ions starts at the tip of the Taylor cone. The emission current of the liquid metal ion source of the type shown is approximately between 0.2 and 5 μA.

Figur 2 zeigt die Emissionsstromanteile bei Bismut und Gold, normiert auf die atomaren, einfach geladenen Ionen für AuGe- und Bi-Emittern bei einem Emissionsstrom von 1 µA. FIG. 2 shows the emission current components for bismuth and gold, normalized to the atomic, singly charged ions for AuGe and Bi emitters at an emission current of 1 μA.

Es ist zu erkennen, dass die normierten, relativen Emissionsanteile sich für Bismut deutlich besser ergeben als für Gold. Ein weiterer Vorteil gegenüber Gold, bei dem zur Erreichung niedriger Schmelzpunkte Legierungsbestandteile erforderlich sind, ist, dass Bismut als Reinmetall verwendet werden kann. Der Schmelzpunkt ist mit 271,3°C relativ niedrig. Hinzu kommt, dass bei Bismut der am Schmelzpunkt herrschende Dampfdruck geringer ist als bei Gold. Als weiterer Vorteil fällt ins Gewicht, dass bei Gold der emittierte Ionenstrom mit Legierungsbestandteilen, wie Germanium, vermischt ist, so dass sich eine höhere Anforderung an die Massenfilterung ergibt.It can be seen that the standardized, relative emission proportions are much better for bismuth than for gold. Another advantage over gold, which requires alloying components to achieve low melting points, is that bismuth can be used as the pure metal. The melting point is relatively low at 271.3 ° C. In addition, with bismuth the vapor pressure prevailing at the melting point is lower than with gold. Another advantage is the fact that in gold, the emitted ionic current is mixed with alloying constituents, such as germanium, so that there is a higher requirement for mass filtering.

Die absoluten Emissionsströme von Au1 + und Bi1 + sind annähernd gleich. Während demnach die atomaren, einfach geladenen Strahlanteile Au1 + und Bi1 + vergleichbar groß sind, zeigt sich in der Clusterausbeute ein deutlicher Unterschied. Bei den einfach geladenen Ionen nimmt der Vorteil von Bin + gegenüber Aun + mit der Größe der Cluster stetig zu. Doppelt geladene Cluster-Ionen werden nur bei Bismut mit nennenswerter Intensität emittiert.The absolute emission currents of Au 1 + and Bi 1 + are approximately equal. While the atomic, singly charged beam components Au 1 + and Bi 1 + are comparable in size, the cluster yield shows a clear difference. For the singly charged ions, the advantage of Bi n + over Au n + increases steadily with the size of the clusters. Double-charged cluster ions are emitted only with bismuth with appreciable intensity.

Die in Figur 2 dargestellten Cluster-Anteile beziehen sich auf einen totalen Emissionsstrom von 1 µA. Da die Cluster-Anteile emissionsstromabhängig sind, kann der Clusterstrom abhängig von weiteren Parametern für Bismut noch erhöht werden.In the FIG. 2 The cluster components shown refer to a total emission current of 1 μA. Since the cluster components are emission current-dependent, the cluster current can still be increased depending on further parameters for bismuth.

Zum Vergleich der Erfindung mit dem Stand der Technik wurden mit demselben Flüssigmetall-Ionenmassenspektrometer gleiche organische Oberflächen mit verschiedenen Primärionen-Arten analysiert (vergl. Fig. 3). Bei der Probe handelt es sich um ein Farbfilter (colour filter array), das zum Beispiel in Digitalkameras vor eine lichtempfindliche CCD-Fläche geschaltet wird, um die Farbinformation zu liefern. Diese Probe ist als Vergleichsstandard sehr gut geeignet, da sie sehr homogen und reproduzierbar gefertigt wird. Zudem sind die erzielten Unterschiede zwischen den Primärionen-Arten durchaus typisch und lassen sich qualitativ auf andere molekulare Festkörperoberflächen übertragen.To compare the invention with the prior art, the same liquid metal ion mass spectrometer was used to analyze the same organic surfaces with different kinds of primary ions (cf. Fig. 3 ). The sample is a color filter array, which, for example, is switched in digital cameras in front of a photosensitive CCD surface to provide the color information. This sample is very well suited as a comparison standard, since it is made very homogeneous and reproducible. In addition, the differences achieved between the primary ion species are quite typical and can be qualitatively transferred to other molecular solid surfaces.

Die in Figur 3 dargestellten Bilderreihen zeigen die laterale Verteilung zweier verwendeter Farbstoffe mit den Massen 413u und 641u. Durch die zunehmende Zerstörung der Oberfläche in Folge des Primärionenbeschusses nimmt die Signalintensität kontinuierlich ab. Dargestellt ist für alle Primärionenspezies der bezeichneten Art die auf summierte Signalintensität bei gleichem Schädigungsgrad der Oberfläche (1/e-Abfall der Signalintensität). Die erreichte Signalintensität ist somit ein Maß für die Effizienz der Analyse.In the FIG. 3 Series of images shown show the lateral distribution of two dyes used with the masses 413u and 641u. Due to the increasing destruction of the surface as a result of the Primärionenbeschusses the signal intensity decreases continuously. Shown for all primary ion species of the designated type is the summed signal intensity with the same degree of surface damage (1 / e decrease in signal intensity). The signal intensity achieved is thus a measure of the efficiency of the analysis.

Die sehr geringen Au3 +-Clusterströme führen zu relativ langen Messzeiten. Durch die Verwendung von Bi3 +-Clustern lassen sich die Primärionenströme gegenüber Au3 + um einen Faktor 4 bis 5 steigern. Durch die geringfügig erhöhte Ausbeute liegt die Steigerung in den Datenraten sogar noch darüber. Der 1/e-Abfall der Signalintensität wird mit Au3 +-Primärionen nach 750s und mit Bi3 +-Primärionen bereits nach einer deutlich verkürzten Analysezeit von 180s erreicht. Die Reduktion in der Messzeit ist dabei wesentlich auf die erhöhten Bi3 +-Clusterströme zurückzuführen. Auch die Wahl von Bi3 ++ führt zu ähnlich kurzen Messzeiten. Eine Steigerung der Effizienz kann durch die Verwendung von größeren Clustern, wie zum Beispiel Bi7 ++, erreicht werden, allerdings sind diese Clusterströme nur relativ gering, so dass die Analysezeiten sich insgesamt verlängern.The very low Au 3 + cluster currents lead to relatively long measurement times. By using Bi 3 + clusters, the primary ion currents over Au 3+ can be increased by a factor of 4 to fifth Due to the slightly increased yield, the increase in data rates is even higher. The 1 / e decrease of the signal intensity is observed with Au 3 + primary ions after 750 s and with Bi 3 + primary ions already after a significantly reduced analysis time of 180s reached. The reduction in the measuring time is essentially due to the increased Bi 3 + cluster currents. The choice of Bi 3 ++ leads to similarly short measurement times. An increase in efficiency can be achieved by using larger clusters, such as Bi 7 ++ , but these cluster currents are relatively small, so the analysis times are generally longer.

Da die Messzeit den wesentlichen Anteil an der Analysezeit ausmacht, führt die Steigerung der Datenraten durch die Verwendung von Bi3 + bzw. Bi3 ++ zu einem entsprechend erhöhten Probendurchsatz.Since the measurement time makes up the major part of the analysis time, increasing the data rates by using Bi 3 + or Bi 3 ++ leads to a correspondingly higher sample throughput.

Zusätzlich zu den beschriebenen Vorteilen hinsichtlich der Messzeit weisen Bismut-Emitter gegenüber Gold-Emittern Vorteile hinsichtlich der Stabilität der Emission bei kleinen Emissionsströmen und der Massenseparation der emittierten Ionenarten auf. Die beschriebenen Vorteile lassen daher erkennen, dass Bismut-Emitter wesentliche wirtschaftliche und analysentechnische Vorteile aufweisen, die nicht ohne weiteres zu erwarten waren.In addition to the described advantages in terms of measurement time, bismuth emitters have advantages over gold emitters in terms of emission stability at low emission currents and mass separation of the emitted ion species. The advantages described therefore show that bismuth emitters have significant economic and analytical advantages which were not to be expected without further ado.

Claims (10)

  1. A mass spectrometer for the analysis of secondary ions and post-ionized neutral secondary particles with an ion source to produce a primary-ion beam for irradiating a sample and to produce secondary particles, which ion source comprises a heatable ion emitter which is coated in the region exposed to a field with a liquid-metal layer which contains a metal which is capable of being ionized and which is emitted as a primary-ion beam and is ionized, wherein the primary-ion beam contains bismuth metallic ions with different stages of ionization and cluster states, and with a spectrometer unit for the mass analysis of the secondary ions and secondary particles, wherein the liquid-metal layer consists of pure metallic bismuth or a low-melting alloy containing bismuth, wherein a bismuth-ion mixed beam is capable of being emitted by the ion emitter under the influence of an electrical field, characterized in that the said mass spectrometer contains a filter apparatus by which one of a multiplicity of types of bismuth ions - the mass of which amounts to a multiple of the monatomic, singly or multiply charged bismuth ion Bi1 p+ as a mass-pure ion beam which consists exclusively of ions of a type Bin p+ in which n ≥ 2 and p ≥ 1 and n and p are in each case a natural number - is capable of being filtered out from the bismuth-ion mixed beam.
  2. A mass spectrometer according to Claim 1, characterized in that the ions filtered out for a mass-pure ion beam belong to one of the following type: Bi2 +, Bi3 +, Bi3 2+, Bi4 +, Bi5 +, Bi6 +, Bi5 2+ or Bi7 2+.
  3. A mass spectrometer according to Claim 1 or 2, characterized in that the secondary-ion mass spectrometer is capable of being operated as a flight-time secondary-ion mass spectrometer.
  4. A mass spectrometer according to any one of the preceding Claims, characterized in that the emission current of the primary-ion beam during operation amounts to between 10-8 and 5 × 10-5 A.
  5. A mass spectrometer according to any one of the preceding Claims, characterized in that a metallic alloy of bismuth with one or more of the following metals is selected as a liquid-metal covering: Ni, Ag, Hg, Cu, Sn, Zn, wherein it is preferable to select an alloy of which the melting point is below the melting point of pure bismuth.
  6. A method of analysing samples or surfaces, characterized in that the sample or surface is irradiated with a mass-pure ion beam of bismuth ions of a type Bin p+ in which n ≥ 2 and p ≥ 1 and n and p are in each case a natural number, so that secondary particles and/or secondary ions are formed, and wherein the mass of the secondary particles and/or secondary ions is analysed.
  7. A method according to the preceding Claim, characterized in that the mass-pure ion beam is generated by the bismuth ions of one type being filtered out from an ion beam generated in a liquid-metal ion source.
  8. A method according to Claims 6 and 7, characterized in that the sample or surface has organic materials.
  9. Use of a mass spectrometer according to any one of Claims 1 to 5 for the analysis of samples and/or surfaces.
  10. Use according to the preceding Claim, characterized in that the samples or surfaces have organic materials.
EP04740521A 2003-08-25 2004-07-01 Mass spectrometer and liquid-metal ion source for a mass spectrometer of this type Revoked EP1658632B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10339346A DE10339346B8 (en) 2003-08-25 2003-08-25 Mass spectrometer and liquid metal ion source for such a mass spectrometer
PCT/EP2004/007154 WO2005029532A2 (en) 2003-08-25 2004-07-01 Mass spectrometer and liquid-metal ion source for a mass spectrometer of this type

Publications (2)

Publication Number Publication Date
EP1658632A2 EP1658632A2 (en) 2006-05-24
EP1658632B1 true EP1658632B1 (en) 2008-09-17

Family

ID=34305558

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04740521A Revoked EP1658632B1 (en) 2003-08-25 2004-07-01 Mass spectrometer and liquid-metal ion source for a mass spectrometer of this type

Country Status (6)

Country Link
US (4) US20060202130A1 (en)
EP (1) EP1658632B1 (en)
JP (3) JP5128814B2 (en)
AT (1) ATE408891T1 (en)
DE (1) DE10339346B8 (en)
WO (1) WO2005029532A2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005027937B3 (en) * 2005-06-16 2006-12-07 Ion-Tof Gmbh Method for analyzing a solid sample
JP2009507212A (en) * 2005-09-02 2009-02-19 オーストラリアン ヌークリア サイエンス アンド テクノロジー オーガニゼイション Isotope ratio mass spectrometer and method for determining isotope ratio
WO2008031058A2 (en) * 2006-09-07 2008-03-13 Michigan Technological University Self-regenerating nanotips for low-power electric propulsion (ep) cathodes
US20080128608A1 (en) * 2006-11-06 2008-06-05 The Scripps Research Institute Nanostructure-initiator mass spectrometry
JP2008185547A (en) * 2007-01-31 2008-08-14 Canon Inc Information acquiring method and device
JP4854590B2 (en) * 2007-05-11 2012-01-18 キヤノン株式会社 Time-of-flight secondary ion mass spectrometer
US7723697B2 (en) * 2007-09-21 2010-05-25 Varian Semiconductor Equipment Associates, Inc. Techniques for optical ion beam metrology
EP2056333B1 (en) * 2007-10-29 2016-08-24 ION-TOF Technologies GmbH Liquid metal ion source, secondary ion mass spectrometer, secondary ion mass spectrometric analysis procedure and their applications
WO2009061313A1 (en) * 2007-11-06 2009-05-14 The Scripps Research Institute Nanostructure-initiator mass spectrometry
EP2313230A4 (en) 2008-07-09 2017-03-08 FEI Company Method and apparatus for laser machining
CN102226981B (en) * 2011-05-10 2013-03-06 中国科学院地质与地球物理研究所 Apparatus and method for protecting sample of secondary ion mass spectrometer
US9551079B2 (en) * 2013-09-13 2017-01-24 Purdue Research Foundation Systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions
CN104616962B (en) * 2015-02-16 2017-03-01 江苏天瑞仪器股份有限公司 Ion source component for liquid chromatography mass instrument
EP3290913B1 (en) * 2016-09-02 2022-07-27 ION-TOF Technologies GmbH Secondary ions mass spectroscopic method, system and uses thereof
CN106920735B (en) * 2017-03-20 2018-10-16 北京大学深圳研究生院 Method, electrospray ion source device and the mass spectrograph of detectable reactive intermediate
GB2585327B (en) * 2018-12-12 2023-02-15 Thermo Fisher Scient Bremen Gmbh Cooling plate for ICP-MS
US20220102131A1 (en) * 2019-01-11 2022-03-31 Helmholtz-Zentrum Potsdam - Deutsches Geoforschungszentrum GFZ Stiftung des Offentlichen Rechts des Ion source including structured sample for ionization

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002128A (en) * 1995-07-04 1999-12-14 Ionoptika, Ltd. Sample analyzer

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3508045A (en) * 1968-07-12 1970-04-21 Applied Res Lab Analysis by bombardment with chemically reactive ions
GB1483966A (en) * 1974-10-23 1977-08-24 Sharp Kk Vapourized-metal cluster ion source and ionized-cluster beam deposition
NL7415318A (en) * 1974-11-25 1976-05-28 Philips Nv WIENFILTER.
US4426582A (en) * 1980-01-21 1984-01-17 Oregon Graduate Center Charged particle beam apparatus and method utilizing liquid metal field ionization source and asymmetric three element lens system
JPS57132632A (en) * 1981-02-09 1982-08-17 Hitachi Ltd Ion source
JPS59138044A (en) * 1983-01-27 1984-08-08 Agency Of Ind Science & Technol Focusing ion beam device
JPS59157943A (en) * 1983-02-25 1984-09-07 Hitachi Ltd Molecule secondary ion mass analyzer
US4686414A (en) * 1984-11-20 1987-08-11 Hughes Aircraft Company Enhanced wetting of liquid metal alloy ion sources
JPS61248335A (en) * 1985-04-26 1986-11-05 Hitachi Ltd Liquid metallic ion source
JPH0756469B2 (en) * 1989-08-29 1995-06-14 株式会社日立製作所 Mixed standard sample for mass number calibration in SIMS
JPH03155025A (en) * 1989-11-10 1991-07-03 Sanyo Electric Co Ltd Indium bismuth ion source
DE4416413C2 (en) * 1994-05-10 1996-03-28 Ion Tof Gmbh Method of operating a time-of-flight secondary ion mass spectrometer
JPH11274255A (en) 1998-03-19 1999-10-08 Seiko Instruments Inc Cross-cut surface observation method
US6291820B1 (en) * 1999-01-08 2001-09-18 The Regents Of The University Of California Highly charged ion secondary ion mass spectroscopy
US6791078B2 (en) * 2002-06-27 2004-09-14 Micromass Uk Limited Mass spectrometer
EP1648595B1 (en) * 2003-06-06 2016-05-04 Ionwerks Gold implantation/deposition on biological samples for laser desorption three dimensional depth profiling of tissues
US7701138B2 (en) * 2003-07-02 2010-04-20 Canon Kabushiki Kaisha Information acquisition method, information acquisition apparatus and disease diagnosis method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002128A (en) * 1995-07-04 1999-12-14 Ionoptika, Ltd. Sample analyzer

Also Published As

Publication number Publication date
US9378937B2 (en) 2016-06-28
JP5128814B2 (en) 2013-01-23
DE10339346B4 (en) 2005-12-08
WO2005029532A2 (en) 2005-03-31
US20120104249A1 (en) 2012-05-03
JP2011243591A (en) 2011-12-01
DE10339346A1 (en) 2005-04-14
JP2014006265A (en) 2014-01-16
US20160254134A1 (en) 2016-09-01
DE10339346B8 (en) 2006-04-13
EP1658632A2 (en) 2006-05-24
ATE408891T1 (en) 2008-10-15
US20060202130A1 (en) 2006-09-14
JP2007503685A (en) 2007-02-22
JP5416178B2 (en) 2014-02-12
WO2005029532A3 (en) 2006-04-20

Similar Documents

Publication Publication Date Title
EP1658632B1 (en) Mass spectrometer and liquid-metal ion source for a mass spectrometer of this type
DE102008041813B4 (en) Method for the depth analysis of an organic sample
DE69402191T2 (en) METHOD FOR PLASMA MASS SPECTROMETRY WITH REDUCED SPACE CHARGING EFFECT
DE102005025499B4 (en) Mass spectrometric mixture analysis
DE112014006538T5 (en) Method of targeted mass spectrometric analysis
DE102020129645B4 (en) mass spectrometry method
DE4041871C2 (en) Mass spectrometer with plasma ion source
DE3636954A1 (en) MASS SPECTROMETER WITH ATMOSPHERIC PRESSURE IONIZATION
DE102007043456A1 (en) Matrix-assisted laser desorption with high ionization efficiency
EP2056333B1 (en) Liquid metal ion source, secondary ion mass spectrometer, secondary ion mass spectrometric analysis procedure and their applications
DE102013006428A1 (en) Time-of-flight mass spectrometer and data compression method therefor
DE2739829A1 (en) ARRANGEMENT FOR ANALYSIS OF A SAMPLE BY Bombardment With ELECTROMAGNETIC RADIATION
DE102016009643B4 (en) Improving the dynamic range for isotope ratio mass spectrometry
DE112004001212T5 (en) System and method for the analysis of isotopic signatures and mass analysis
DE112017007538T5 (en) Chromatography mass spectrometry and Chromatograph mass spectrometer
DE102007043298A1 (en) Mass analysis method and mass spectrometer
DE19635645C2 (en) Method for the high-resolution spectral recording of analyte ions in a linear time-of-flight mass spectrometer
DE19641981C2 (en) Procedure for the determination of depth profiles in the thin film area
DE1208914B (en) Detector for gas chromatograph
WO2020007581A1 (en) Dynamic ion filtering for reducing highly abundant ions
DE3925776C2 (en)
DE3636506A1 (en) SPIRAL SCAN PROCESS
EP0878827B1 (en) Sample analysis method
DE102018116305B4 (en) Dynamic ion filter to reduce highly abundant ions
DE102004022561B4 (en) mass spectrometry

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAK Availability of information related to the publication of the international search report

Free format text: ORIGINAL CODE: 0009015

17P Request for examination filed

Effective date: 20060306

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ION-TOF TECHNOLOGIES GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081228

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090217

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

26 Opposition filed

Opponent name: ULVAC-PHI, INC.

Effective date: 20090617

NLR1 Nl: opposition has been filed with the epo

Opponent name: ULVAC-PHI, INC.

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: DAS PATENT IST AUFGRUND DES WEITERBEHANDLUNGSANTRAGS VOM 25.03.2010 REAKTIVIERT WORDEN.

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: ULVAC-PHI, INC.

Effective date: 20090617

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150629

Year of fee payment: 12

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20150721

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PLX

27W Patent revoked

Effective date: 20150630

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20150630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20080917

Ref country code: CH

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20080917

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150721

Year of fee payment: 12

Ref country code: CH

Payment date: 20150721

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20150721

Year of fee payment: 12

Ref country code: SE

Payment date: 20150721

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150727

Year of fee payment: 12

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 408891

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150630

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC