EP1658377A1 - Method for producing ketocarotinoids in genetically modified, non-human organisms - Google Patents

Method for producing ketocarotinoids in genetically modified, non-human organisms

Info

Publication number
EP1658377A1
EP1658377A1 EP04741347A EP04741347A EP1658377A1 EP 1658377 A1 EP1658377 A1 EP 1658377A1 EP 04741347 A EP04741347 A EP 04741347A EP 04741347 A EP04741347 A EP 04741347A EP 1658377 A1 EP1658377 A1 EP 1658377A1
Authority
EP
European Patent Office
Prior art keywords
nucleic acids
activity
sequence
sequence seq
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04741347A
Other languages
German (de)
French (fr)
Inventor
Ralf Flachmann
Christel Renate Schopfer
Karin Herbers
Irene Kunze
Matt Sauer
Martin Klebsattel
Thomas Luck
Dirk Voeste
Angelika-Maria Pfeiffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SunGene GmbH
Original Assignee
SunGene GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/EP2003/009102 external-priority patent/WO2004018693A2/en
Priority claimed from PCT/EP2003/009101 external-priority patent/WO2004018688A1/en
Priority claimed from DE102004007622A external-priority patent/DE102004007622A1/en
Application filed by SunGene GmbH filed Critical SunGene GmbH
Priority to EP04741347A priority Critical patent/EP1658377A1/en
Publication of EP1658377A1 publication Critical patent/EP1658377A1/en
Withdrawn legal-status Critical Current

Links

Definitions

  • the present invention relates to a process for the preparation of ketocarotenoids by cultivating genetically modified organisms which, compared to the wild type, have an altered ketolase activity and an altered ⁇ -cyclase activity, the genetically modified organisms, and their use as food and feed and for the production of ketocarotenoid extracts.
  • Carotenoids are synthesized de novo in bacteria, algae, fungi and plants. .. ketocarotenoids, ie carotenoids, which contain at least one keto group, such as, "for example astaxanthin, canthaxanthin, echinenone, 3-hydroxyechinenone, 3'-hydroxyechinenone, adonirubin and adonixanthin are natural antioxidants and pigments, which are considered by some algae and microorganisms Secondary metabolites are produced.
  • ketocarotenoids ie carotenoids, which contain at least one keto group, such as, "for example astaxanthin, canthaxanthin, echinenone, 3-hydroxyechinenone, 3'-hydroxyechinenone, adonirubin and adonixanthin are natural antioxidants and pigments, which are considered by some algae and microorganisms Secondary metabolites are produced.
  • ketocarotenoids and in particular astaxanthin are used as pigmenting aids in animal nutrition, especially in trout, salmon and shrimp farming.
  • ketocarotenoids such as natural astaxanthin
  • biotechnological processes by cultivating algae, for example Haematococcus pluvialis or by fermentation of genetically optimized microorganisms and subsequent isolation.
  • An economical biotechnological process for the production of natural ketocarotenoids is therefore of great importance.
  • Nucleic acids encoding a ketolase and the corresponding protein sequences have been isolated and annotated from various organisms, such as nucleic acids encoding a ketolase from Agrobacterium aurantiacum (EP 735 137, Accession NO: D58420), from Alcaligenes sp. PC-1 (EP 735137, Accession NO: D58422), Haematococcus pluvialis Flotow em.
  • EP 735 137 describes the production of xanthophylls in microorganisms, such as, for example, E. coli by introducing ketolase genes (crtW) from Agrobacterium aurantiacum or Alcaligenes sp. PC-1 in microorganisms.
  • ketolase genes crtW
  • WO 98/18910 and Hirschberg et al. describe the synthesis of ketocarotenoids in nectaries of tobacco flowers by introducing the ketolase gene from Haematococcus pluvialis (crtO) into tobacco.
  • WO 01/20011 describes a DNA construct for the production of ketocarotenoids, in particular astaxanthin, in seeds of oilseed plants such as oilseed rape, sunflower, soybean and mustard using a seed-specific promoter and a ketolase from Haematococcus pluvialis.
  • the invention was therefore based on the object of providing a process for the preparation of ketocarotenoids by cultivating genetically modified, non-human organisms, or of providing further genetically modified, non-human organisms which produce ketocarotenoids which have the disadvantages of the prior art described above to a lesser extent or no longer or which provide the desired ketocarotenoids in higher yields. Accordingly, a method for producing ketocarotenoids has been found by cultivating genetically modified, non-human organisms which have an altered ketolase activity and an altered ⁇ -cyclase activity compared to the wild type, and the altered ⁇ -cyclase activity by a ⁇ -cyclase is caused, containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has.
  • an altered ketolase activity compared to the wild type is preferably understood to mean a “ketolase activity caused compared to the wild type”.
  • an altered ketolase activity compared to the wild type is preferably understood to mean an “increased ketolase activity compared to the wild type”.
  • ⁇ -cyclase activity changed compared to the wild type is preferably understood to mean “ ⁇ -cyclase activity caused compared to the wild type”.
  • ⁇ -cyclase activity changed compared to the wild type is preferably understood to mean “ ⁇ -cyclase activity increased compared to the wild type”.
  • non-human organisms according to the invention are preferably naturally able, as starting organisms, to produce carotenoids such as, for example, ⁇ -carotene or zeaxanthin, or can be enabled by genetic modification, such as re-regulation of metabolic pathways or complementation are to produce carotenoids such as ß-carotene or zeaxanthin.
  • ketocarotenoids such as astaxanthin or canthaxanthin.
  • These organisms such as Haematococcus pluvialis, Paracoccus marcusii, Xan- thophyllomyces dendrorhous, Bacillus circulans, Chlorococcum, Phaffia rhodozyma, Adonis, Neochlohs wimmeri, Protosiphon vacuolätus botryoides, Scotiellopsis oocystifor- mis, Scenedesmus, Chlorela zofingiensis, Ankistrodesmus braunii, Euglena sanguinea and Bacillus atrophaeus, already as starting or wild-type organisms a ketolase activity and a ⁇ -cyclase activity.
  • wild type is understood to mean the corresponding starting organism.
  • organism can be understood to mean the non-human starting organism (wild type) or an inventive, genetically modified, non-human organism or both.
  • wild type is used for increasing or causing ketolase activity, for increasing or causing hydroxylase activity described below, for that described below
  • Increasing or causing the ⁇ -cyclase activity for the increase in the HMG-CoA reductase activity described below, for the increase in the (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase described below
  • Increase in isopentenyl diphosphate ⁇ isomerase activity for the increase in geranyl diphosphate synthase activity described below, for the E described below increase in farnesyl diphosphate synthase activity, for the increase in geranyl-geranyl diphosphate synthase activity described below, for the increase in phytoen
  • This reference organism is preferably Haematococcus pluvialis for microorganisms which already have ketolase activity as a wild type.
  • This reference organism is preferably Blakeslea for microorganisms which, as a wild type, have no ketolase activity.
  • This reference organism is preferably Adonis aestivalis, Adonis flammeus or Adonis for plants which already have a ketolase activity as a wild type annuus, particularly preferably Adonis aestivalis.
  • This reference organism is particularly preferred for plants which, as wild type, have no ketolase activity in petals, preferably Tagetes erecta, Tagetes patula, Tagetes lucida, Tagetes pringlei, Tagetes palms, Tagetes minuta or Tagetes campanulata.
  • Ketolase activity means the enzyme activity of a ketolase.
  • a ketolase is understood to mean a protein which has the enzymatic activity of introducing a keto group on the optionally substituted ⁇ -ionone ring of carotenoids.
  • a ketolase is understood to be a protein which has the enzymatic activity to convert ⁇ -carotene into canthaxanthin.
  • ketolase activity is understood to mean the amount of ⁇ -carotene or amount of canthaxanthin formed by the protein ketolase in a certain time.
  • non-human organisms are used as starting organisms which already have a ketolase activity as wild type or starting organism, such as, for example, Haematococcus pluvialis, Paracoccus marcusii, Xanthophyllomyces dendrorhous, Bacillus circulans, Chlorococcum, Phaffia rhodozyma, Adonis florets Neochloris wimmeri, Protosiphon botryoides, Scotiellopsis oocystiformis, Scenedesmus vacuolatus, Cholrela zofingiensis, Ankistrodesmus braunii, Euglena sanguinea or Bacillus atrophaeus.
  • the genetic modification causes an increase in ketolase activity compared to the wild type or parent organism.
  • the ketolase activity is higher than that of the wild type, the amount of ⁇ -carotene or the amount of canthaxanthin formed is increased by the protein ketolase in a certain time compared to the wild type.
  • ketolase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the ketolase activity of the wild type.
  • the ketolase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably determined under the following conditions:
  • the ketolase activity in plant or microorganism material is determined in accordance with the method of Fraser et al., (J. Biol. Chem. 272 (10): 6128-6135, 1997).
  • the ketolase activity in plant or microorganism extracts is determined with the substrates ⁇ -carotene and canthaxanthin in the presence of lipid (soy lecithin) and detergent (sodium cholate).
  • Substrate / product ratios from the ketolase assays are determined by means of HPLC.
  • the ketolase activity can be increased in various ways, for example by switching off inhibitory regulatory mechanisms at the translation and protein levels or by increasing the gene expression of a nucleic acid encoding a ketolase compared to the wild type, for example by inducing the ketolase gene by activators or by Introduction of nucleic acids encoding a ketolase into the organism.
  • Increasing the gene expression of a nucleic acid encoding a ketolase is understood according to the invention in this embodiment as also the manipulation of the expression of the organism's own endogenous ketolases. This can be achieved, for example, by changing the promoter DNA sequence for genes encoding ketolase. Such a change, which results in a changed or preferably increased expression rate of at least one endogenous ketolase gene, can be carried out by deleting or inserting DNA sequences.
  • an increased expression of at least one endogenous ketolase gene can be achieved in that a regulator protein which is not found or modified in the wild-type organism interacts with the promoter of these genes.
  • Such a regulator can represent a chimeric protein which consists of a DNA binding domain and a transcription activator domain, as described, for example, in WO 96/06166.
  • the ketolase activity is increased compared to the wild type by increasing the gene expression of a nucleic acid encoding a ketolase.
  • the gene expression of a nucleic acid encoding a ketolase is increased by introducing nucleic acids encoding ketolases into the organism.
  • At least one further ketolase gene is thus present in the transgenic organisms according to the invention compared to the wild type.
  • non-human organisms are used as starting organisms which, as a wild type, have no ketolase activity, such as, for example, Blakeslea, Marigold, Tagetes erecta, Tagetes lucida, Tagetes minuta, Tagetes pringlei, Tagetes palmeri and Tagetes campanulata ,
  • the genetic modification causes ketolase activity in the organisms.
  • the genetically modified organism according to the invention thus has a ketolase activity in comparison with the genetically unmodified wild type and is therefore preferably capable of transgenically expressing a ketolase.
  • the gene expression of a nucleic acid encoding a ketolase is caused analogously to the above-described increase in gene expression of a nucleic acid encoding a ketolase, preferably by introducing nucleic acids which encode ketolases into the starting organism.
  • any ketolase gene that is to say any nucleic acids encoding a ketolase, can be used in both embodiments.
  • nucleic acids mentioned in the description can be, for example, an RNA, DNA or cDNA sequence.
  • genomic ketolase sequences from eukaryotic sources which contain introns in the event that the host organism is unable or not able to the position can be shifted to express the corresponding ketolase, preferably to use already processed nucleic acid sequences, such as the corresponding cDNAs.
  • nucleic acids encoding a ketolase and the corresponding ketolases that can be used in the method according to the invention are, for example, sequences from
  • Haematoccus pluvialis especially from Haematoccus pluvialis Flotow em. Wille (Accession NO: X86782; nucleic acid: SEQ ID NO: 3, protein SEQ ID NO: 4),
  • Agrobacterium aurantiacum (Accession NO: D58420; nucleic acid: SEQ ID NO: 37, protein SEQ ID NO: 38),
  • Alicaligenes spec. (Accession NO: D58422; nucleic acid: SEQ ID NO: 39, protein SEQ ID NO: 40),
  • Paracoccus marcusii (Accession NO: Y15112; nucleic acid: SEQ ID NO: 41, protein SEQ ID NO: 42).
  • Synechocystis sp. Strain PC6803 (Accession NO: NP442491; nucleic acid: SEQ ID NO: 43, protein SEQ ID NO: 44).
  • Bradyrhizobium sp. (Accession NO: AF218415; nucleic acid: SEQ ID NO: 45, protein SEQ ID NO: 46).
  • Nostoc punctiforme ATCC 29133 (Accession NO: NZ_AABC01000195, ZP_00111258; nucleic acid: SEQ ID NO: 57, protein: SEQ ID NO: 58)
  • Nucleic acid Acc.-No. NZ_ AABD01000001, base pair 1, 354.725-1, 355.528 (SEQ ID NO: 75), protein: Acc.-No. ZP_00115639 (SEQ ID NO: 76) (annotated as putative protein),
  • sequences derived from these sequences such as, for example
  • ketolases of the sequence SEQ ID NO: 64 or 66 and the corresponding coding nucleic acid sequences SEQ ID NO: 63 or SEQ ID NO: 65 which result, for example, from the sequence SEQ ID NO: 58 or SEQ ID NO: 57 by variation / mutation .
  • ketolases of the sequence SEQ ID NO: 68 or 70 and the corresponding coding nucleic acid sequences SEQ ID NO: 67 or SEQ ID NO: 69 which result, for example, from the sequence SEQ ID NO: 60 or SEQ ID NO: 59 by variation / mutation , or
  • ketolases and ketolase genes that can be used in the method according to the invention can be obtained, for example, from different organisms whose genomic sequence is known by comparing the identity of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the sequences described above and easy to find especially with the sequences SEQ ID NO: 4 and / or 48 and / or 58 and / or 60.
  • ketolases and ketolase genes can furthermore be derived from the nucleic acid sequences described above, in particular from the sequences SEQ ID NO: 3 and / or 47 and / or 57 and / or 59 from different organisms, the genomic sequence of which is not known is easy to find by hybridization techniques in a manner known per se.
  • the hybridization can take place under moderate (low stringency) or preferably under stringent (high stringency) conditions.
  • the conditions during the washing step can be selected from the range of conditions limited by those with low stringency (with 2X SSC at 50 ° C) and those with high stringency (with 0.2X SSC at 50 ° C, preferably at 65 ° C) (20X SSC: 0.3 M sodium citrate, 3 M sodium chloride, pH 7.0).
  • the temperature during the washing step can be raised from moderate conditions at room temperature, 22 ° C, to stringent conditions at 65 ° C.
  • Both parameters, salt concentration and temperature, can be varied simultaneously, one of the two parameters can be kept constant and only the other can be varied.
  • Denaturing agents such as formamide or SDS can also be used during hybridization. In the presence of 50% formamide, the hybridization is preferably carried out at 42 ° C.
  • nucleic acids are encoded which encode a protein containing the amino acid sequence SEQ ID NO: 4 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which have an identity of at least 70% , preferably at least 80%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, more preferably at least 97%, more preferably at least 98%, particularly preferably at least 99% at the amino acid level with the sequence SEQ ID NO: 4 and the enzymatic property has a ketolase.
  • This can be a natural ketolase sequence, which can be found as described above, by comparing the identity of the sequences from other organisms, or an artificial ketolase sequence which, starting from the sequence SEQ ID NO: 4, can be found by artificial variation, for example by Substitution, insertion or deletion of amino acids has been modified.
  • nucleic acids are encoded which encode a protein containing the amino acid sequence SEQ ID NO: 48 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and which have an identity of at least 70%, preferably at least 80%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, more preferably at least 97%, more preferably at least 98%, particularly preferably at least 99% at the amino acid level with the sequence SEQ ID NO: 48 and exhibits enzymatic property of a ketolase.
  • This can be a natural ketolase sequence which, as described above, can be found by comparing the identity of the sequences from other organisms or an artificial ketolase sequence which can be derived from the sequence SEQ ID NO: 48 by artificial variation , for example by substitution, insertion or deletion of amino acids.
  • nucleic acids which encode a protein are introduced, containing the amino acid sequence SEQ ID NO: 58 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and having an identity of at least 70%, preferably at least 80%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, more preferably at least 97%, more preferably at least 98%, particularly preferably at least 99% at the amino acid level of the sequence SEQ ID NO: 58 and has the enzymatic property of a ketolase.
  • This can be a natural ketolase sequence which, as described above, can be found by comparing the identity of the sequences from other organisms or an artificial ketolase sequence which, starting from the sequence SEQ ID NO: 58, can be found by artificial variation, for example was modified by substitution, insertion or deletion of amino acids.
  • nucleic acids which encode a protein are introduced, comprising the amino acid sequence SEQ ID NO: 60 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and having an identity of at least 70%, preferably at least 80%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, more preferably at least 97%, more preferably at least 98%, particularly preferably at least 99% at the amino acid level with the sequence SEQ ID NO: 60 and the enzymatic Has property of a ketolase.
  • This can be a natural ketolase sequence which, as described above, can be found by comparing the identity of the sequences from other organisms or an artificial ketolase sequence which, starting from the sequence SEQ ID NO: 60, can be found by artificial variation, for example was modified by substitution, insertion or deletion of amino acids.
  • substitution is understood to mean the replacement of one or more amino acids by one or more amino acids for all proteins. So-called conservative exchanges are preferably carried out, in which the replaced amino acid has a similar property to the original amino acid, for example replacement of Glu by Asp, Gin by Asn, Val by Ile, Leu by Ile, Ser by Thr.
  • Deletion is the replacement of an amino acid with a direct link.
  • Preferred positions for deletions are the termini of the polypeptide and the links between the individual protein domains.
  • Inserts are insertions of amino acids into the polypeptide chain, with a direct bond being formally replaced by one or more amino acids.
  • Identity between two proteins is understood to mean the identity of the amino acids over the respective total protein length, in particular the identity which is obtained by comparison using the Vector NTI Suite 7.1 software from Informax (USA) using the Clustal method (Higgins DG, Sharp PM.Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl. Biosci. 1989 Apr; 5 (2): 151-1) is calculated using the following parameters:
  • Gap opening penalty 10 Gap extension penalty 10
  • a protein which has an identity of at least 70% at the amino acid level with a specific sequence is accordingly understood to be a protein which, when comparing its sequence with the specific sequence, in particular according to the above program logarithm with the above parameter set, has an identity of at least 70%.
  • a protein which has, for example, an identity of at least 70% at the amino acid level with the sequence SEQ ID NO: 4 or 48 or 58 or 60 is accordingly understood to be a protein which, when its sequence is compared with the sequence SEQ ID NO: 4 or 48 or 58 or 60, in particular according to the above program logarithm with the above parameter set, has an identity of at least 70%.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
  • codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this.
  • the codon usage can easily be determined on the basis of computer evaluations of other known genes of the organisms in question.
  • a nucleic acid containing the sequence SEQ ID NO: 3 is introduced into the plant.
  • a nucleic acid containing the sequence SEQ ID NO: 48 is introduced into the plant.
  • nucleic acid containing the sequence SEQ ID NO: 58 is introduced into the plant.
  • a nucleic acid containing the sequence SEQ ID NO: 60 is introduced into the plant.
  • ketolase genes can also be produced in a manner known per se by chemical synthesis from the nucleotide building blocks, for example by fragment condensation of individual overlapping, complementary nucleic acid building blocks of the double helix.
  • the chemical synthesis of oligonucleotides can be carried out, for example, in a known manner using the phosphoamidite method (Voet, Voet, 2nd edition, Wiley Press New York, pp. 896-897).
  • the attachment of synthetic oligonucleotides and the filling of gaps using the Klenow fragment of DNA polymerase and ligation reactions as well as general cloning methods are described in Sambrook et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press
  • non-human organisms used in the process according to the invention have an altered ketolase activity and an altered ⁇ -cyclase activity compared to the wild type, the altered ⁇ -cyclase activity being caused by a ⁇ -cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has.
  • non-human organisms are used as starting organisms which already have a ⁇ -cyclase activity as wild type or starting organism.
  • the genetic modification brings about an increase in the ⁇ -cyclase activity in comparison to the wild type or starting organism, the increased ⁇ -cyclase activity being caused by a ⁇ -cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has.
  • ⁇ -cyclase activity means the enzyme activity of a ⁇ -cyclase.
  • a ß-cyclase is understood to mean a protein which has the enzymatic activity to convert a terminal, linear residue of lycopene into a ß-ionone ring.
  • a ⁇ -cyclase is understood to be a protein which has the enzymatic activity to convert ⁇ -carotene into ⁇ -carotene.
  • ß-cyclase activity is understood to mean the amount of ⁇ -carotene converted or the amount of ß-carotene formed in a certain time by the protein ß-cyclase.
  • the amount of lycopene or ⁇ -carotene converted or the amount of ⁇ -carotene formed from lycopene or the formed amount of ß-carotene from ⁇ -carotene increased.
  • This increase in the ⁇ -cyclase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the ⁇ - Wild-type cyclase activity.
  • ⁇ -cyclase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably carried out under the following conditions:
  • the activity of the ⁇ -cyclase is determined according to Fräser and Sandmann (Biochem. Biophys. Res. Comm. 185 (1) (1992) 9-15) / ⁇ vitro. It becomes a certain amount Potassium phosphate as buffer (pH 7.6), lycopene as substrate, paprika stromal protein, NADP +, NADPH and ATP added to organism extract.
  • the ⁇ -cyclase activity is particularly preferably determined under the following conditions according to Bouvier, d'Harlingue and Camara (Molecular Analysis of carotenoid cyclae inhibition; Arch. Biochem. Biophys. 346 (1) (1997) 53-64):
  • the in vitro assay is carried out in a volume of 250 ⁇ l volume.
  • the mixture contains 50 mM potassium phosphate (pH 7.6), different amounts of organism extract, 20 nM lycopene, 250 ⁇ g of chromoplastid stromal protein from paprika, 0.2 M NADP +, 0.2 M NADPH and 1 mM ATP.
  • NADP / NADPH and ATP are dissolved in 10 ml ethanol with 1 mg Tween 80 immediately before adding to the incubation medium. After a reaction time of 60 minutes at 30 ° C., the reaction is terminated by adding chloroform / methanol (2: 1). The reaction products extracted in chloroform are analyzed by HPLC.
  • the ß-cyclase activity can be increased in various ways, for example by switching off inhibitory regulatory mechanisms at the expression and protein level or by increasing gene expression compared to the wild type of nucleic acids encoding a ß-cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has.
  • the increase in the gene expression of the nucleic acids encoding a ⁇ -cyclase compared to the wild type can also be achieved in various ways, for example by inducing the ⁇ -cyclase gene by activators or by introducing one or more ⁇ -cyclase gene copies, ie by introducing at least one nucleic acid encoding a ⁇ -cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has in the organism.
  • nucleic acid encoding a ⁇ -cyclase By increasing the gene expression of a nucleic acid encoding a ⁇ -cyclase, the manipulation of the expression of the organism's own endogenous ⁇ -cyclase containing the amino acid sequence SEQ is also carried out according to the invention.
  • an altered or increased expression of an endogenous ⁇ -cyclase gene can be achieved in that a regulator protein which does not occur in the non-transformed organism interacts with the promoter of this gene.
  • Such a regulator can represent a chimeric protein which consists of a DNA binding domain and a transcription activator domain, as described, for example, in WO 96/06166.
  • the gene expression of a nucleic acid coding for a ⁇ -cyclase is increased by introducing into the organism at least one nucleic acid coding for a ⁇ -cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has.
  • non-human organisms are used as starting organisms which, as a wild type, have no ⁇ -cyclase activity.
  • the genetic modification causes the ⁇ -cyclase activity in the organisms.
  • the genetically modified organism according to the invention thus has in this, Embodiment compared to the genetically unmodified wild type on a ß-cyclase activity and is therefore preferably able to transgenically express a ß-cyclase.
  • the gene expression of a nucleic acid encoding a ⁇ -cyclase is caused analogously to the above-described increase in gene expression of a nucleic acid encoding a ⁇ -cyclase, preferably by introducing nucleic acids which encode ⁇ -cyclase into the starting organism.
  • each ⁇ -cyclase gene that is to say any nucleic acid which encodes a ⁇ -cyclase, contains the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has to be used.
  • a particularly preferred ⁇ -cyclase is the chromoplast-specific ⁇ -cyclase from tomato (AAG21133) (nucleic acid: SEQ ID No. 1; protein: SEQ ID No. 2).
  • ⁇ -cyclase genes which can be used according to the invention are nucleic acids which encode proteins, containing the amino acid sequence SEQ ID NO: 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and which have an identity of at least 70%, preferably at least 80 %, preferably at least 85%, more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 2, and which have the enzymatic property of a ⁇ -cyclase.
  • ⁇ -cyclases and ⁇ -cyclase genes can easily be found, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SEQ ID NO: 2. Further examples of ⁇ -cyclases and ⁇ -cyclase genes can also be easily found, for example, starting from the sequence SEQ ID NO: 1 from various organisms whose genomic sequence is not known, using hybridization and PCR techniques in a manner known per se.
  • nucleic acids are introduced into organisms which code for proteins containing the amino acid sequence of the ⁇ -cyclase of the sequence SEQ ID NO: 2.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
  • codons that are frequently used in accordance with the organism-specific codon usage are preferably used for this.
  • the codon usage can easily be determined on the basis of computer evaluations of other, known genes of the organisms in question.
  • a nucleic acid containing the sequence SEQ ID NO: 1 is introduced into the organism.
  • All of the ⁇ -cyclase genes mentioned above can also be produced in a manner known per se by chemical synthesis from the nucleotide building blocks, for example by fragment condensation of individual overlapping, complementary nucleic acid building blocks of the double helix.
  • the chemical synthesis of oligonucleotides can be carried out, for example, in a known manner using the phosphoamidite method (Voet, Voet, 2nd edition, Wiley Press New York, pages 896-897).
  • the attachment of synthetic oligonucleotides and the filling of gaps using the Klenow fragment of DNA polymerase and ligation reactions as well as general cloning methods are described in Sambrook et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press.
  • non-human organisms are cultivated which, compared to the wild type, have an altered hydroxylase activity in addition to the altered ketolase activity and altered ⁇ -cyclase activity.
  • an “hydroxylase activity changed compared to the wild type” is preferably understood to mean “hydroxylase activity caused compared to the wild type”.
  • an “hydroxylase activity changed in comparison to the wild type” is preferably understood to mean an “increased hydroxylase activity in comparison to the wild type”.
  • non-human organisms are cultivated which, compared to the wild type, have a caused or increased hydroxylase activity in addition to the changed ketolase activity and changed ⁇ -cyclase activity.
  • Hydroxylase activity means the enzyme activity of a hydroxylase.
  • a hydroxylase is understood to mean a protein which has the enzymatic activity of introducing a hydroxyl group on the optionally substituted ⁇ -ionone ring of carotenoids.
  • a hydroxylase is understood to mean a protein which has the enzymatic activity to convert ⁇ -carotene into zeaxanthin or canthaxanthin into astaxanthin.
  • hydroxyase activity is understood to mean the amount of ⁇ -carotene or canthaxanthin or the amount of zeaxanthin or astaxanthin formed in a certain time by the protein hydroxylase.
  • the amount of ⁇ -carotene or cantaxantin or the amount of zeaxanthin or astaxanthin formed is increased in a certain time by the protein hydroxylase compared to the wild type.
  • This increase in the hydroxylase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the hydroxylase activity of the wild type.
  • hydroxylase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably determined under the following conditions:
  • the activity of the hydroxylase is according to Bouvier et al. (Biochim. Biophys. Acta 1391 (1998), 320-328) in vitro. There is a certain amount of organizing Mus extract, ferredoxin, ferredoxin-NADP oxidoreductase, catalase, NADPH and beta-carotene with mono- and digalactosylglycerides added.
  • the hydroxylase activity is particularly preferably determined under the following conditions according to Bouvier, Keller, d'Harlingue and Camara (xanthophyll bio-synthesis: molecular and functional characterization of carotenoid hydroxylases from pepper fruits (Capsicum annuum L; Biochim. Biophys. Acta 1391 (1998), 320-328):
  • the in vitro assay is carried out in a volume of 0.250 ml volume.
  • the mixture contains 50 mM potassium phosphate (pH 7.6), 0.025 mg ferredoxin from spinach, 0.5 units ferredoxin-NADP + oxidoreductase from spinach, 0.25 mM NADPH, 0.010 mg beta-carotene (emulsified in 0.1 mg Tween 80), 0.05 mM a mixture of mono - and Digalactosylglyceriden (1: 1), 1 unit catalysis,, 0.2 mg bovine serum albumin and organism extract in different volumes.
  • the reaction mixture is incubated at 30 ° C for 2 hours.
  • the reaction products are extracted with organic solvent such as acetone or chloroform / methanol (2: 1) and determined by means of HPLC.
  • the hydroxylase activity can be increased or caused in various ways, for example by switching off inhibitory regulatory mechanisms at the expression and protein level or by increasing or causing the gene expression of nucleic acids encoding a hydroxylase compared to the wild type.
  • the increase or causation of the gene expression of the nucleic acids encoding a hydroxylase compared to the wild type can also take place in different ways, for example by inducing the hydroxylase gene, by activators or by introducing one or more hydroxylase gene copies, i.e. by introducing at least one nucleic acid encoding one Hydroxylase in the organism.
  • Increasing the gene expression of a nucleic acid encoding a hydroxylase also means manipulating the expression of the organism's own endogenous hydroxylase.
  • a caused or increased expression of an endogenous hydroxylase gene can be achieved in that a regulator protein which does not occur in the non-transformed organism interacts with the promoter of this gene.
  • Such a regulator can represent a chimeric protein which consists of a DNA binding domain and a transcription activator domain, as described, for example, in WO 96/06166.
  • the gene expression of a nucleic acid encoding a hydroxylase is increased or caused by introducing at least one nucleic acid encoding a hydroxylase into the organism.
  • any hydroxylase gene that is to say any nucleic acid which codes for a hydroxylase, can be used for this purpose.
  • nucleic acid sequences which have already been processed such as the corresponding cDNAs, are preferred use.
  • hydroxylase gene examples include:
  • nucleic acid encoding a hydroxylase from Haematococcus pluvialis, Accession AX038729, WO 0061764); (Nucleic acid: SEQ ID NO: 77, protein: SEQ ID NO: 78),
  • a particularly preferred hydroxylase is also the hydroxylase from tomato (Accession Y14810) (nucleic acid: SEQ ID NO: 5; protein: SEQ ID NO. 6).
  • the preferred transgenic organisms according to the invention therefore have at least one further hydroxylase gene compared to the wild type.
  • the genetically modified organism has, for example, at least one exogenous nucleic acid encoding a hydroxylase or at least two endogenous nucleic acids encoding a hydroxylase.
  • the preferred hydroxylase genes used are nucleic acids encoding proteins containing the amino acid sequence SEQ ID NO: 6 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and having an identity of at least 70%, preferably at least 80%, more preferably at least 85%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 6, and which have the enzymatic property of a hydroxylase.
  • hydroxylases and hydroxylase genes can easily be found, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 6.
  • hydroxylases and hydroxylase genes can also be easily found, for example, starting from the sequence SEQ ID NO: 5 from various organisms whose genomic sequence is not known, as described above, by hybridization and PCR techniques in a manner known per se.
  • nucleic acids are introduced into organisms which code for proteins containing the amino acid sequence of the hydroxylase of the sequence SEQ ID NO: 6.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
  • codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this.
  • the codon usage can easily be determined on the basis of computer evaluations of other known genes of the organisms in question.
  • a nucleic acid containing the sequence SEQ ID NO: 5 is introduced into the organism.
  • All of the above-mentioned hydroxylase genes can also be produced in a manner known per se by chemical synthesis from the nucleotide building blocks, for example by fragment condensation of individual overlapping, complementary nucleic acid building blocks of the double helix.
  • the chemical synthesis of oligonucleotides can be carried out, for example, in a known manner using the phosphoamidite method (Voet, Voet, 2nd edition, Wiley Press New York, pages 896-897).
  • the attachment of synthetic oligonucleotides and the filling of gaps using the Klenow fragment of DNA polymerase and ligation reactions as well as general cloning methods are described in Sambrook et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press.
  • Genetically modified non-human organisms which have as starting organisms a .beta.-cyclase activity and no ketolase activity are particularly preferably used, the genetically modified organisms having an increased .beta.-cyclase activity, caused by a ⁇ -cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 and have caused ketolase activity.
  • Genetically modified non-human organisms which have no ⁇ -cyclase activity and no ketolase activity as starting organisms are particularly preferably used in the process according to the invention, the genetically modified organisms compared to the wild type having a ⁇ -cyclase activity, caused by a ß-cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 and has caused ketolase Have activity.
  • Genetically modified non-human organisms which have a .beta.-cyclase activity and a ketolase activity as starting organisms are particularly preferably used in the process according to the invention, the genetically modified organisms having an increased .beta.-cyclase activity, caused by, in comparison to the wild type a ⁇ -cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 and have an increased ketolase activity.
  • Genetically modified non-human organisms are particularly preferably used in the process according to the invention which have as starting organisms a ⁇ -cyclase activity, no ketolase activity and no hydroxylase activity, the genetically modified organisms having an increased ⁇ -cyclase activity compared to the wiid type.
  • Activity caused by a ⁇ -cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 have a caused ketolase activity and a caused hydroxylase activity.
  • Genetically modified non-human organisms are particularly preferably used in the process according to the invention which have as starting organisms a ⁇ -cyclase activity, a hydroxylase activity and no ketolase activity, the genetically modified organisms having an increased ⁇ -cyclase activity compared to the wild type.
  • Activity caused by a ⁇ -cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has an increased hydroxylase activity and a caused ketolase activity.
  • Genetically modified, non-human organisms which have no ⁇ -cyclase activity, no hydroxylase activity and no ketolase activity as starting organisms are particularly preferably used in the process according to the invention, the genetically modified organisms causing a ⁇ - Cyclase activity caused by a ⁇ -cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has a caused hydroxylase activity and a caused ketolase activity te hydroxylase activity and have caused ketolase activity.
  • Genetically modified non-human organisms which have a .beta.-cyclase activity, a hydroxylase activity and a ketolase activity as starting organisms are particularly preferably used in the process according to the invention, the genetically modified organisms having an increased .beta.-cyclase compared to the wild type Activity, caused by a ⁇ -cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has an increased ⁇ -cyclase activity, an increased hydroxylase activity and an increased ketolase activity.
  • genetically modified, non-human organisms are cultivated which, in addition to the wild type, have an increased activity of at least one of the activities selected from the group HMG-CoA reductase activity, (E) -4-hydroxy-3- Methylbut-2-enyl-diphosphate reductase activity, 1 -deoxy-D-xylose-5-phosphate synthase activity, 1 -deoxy-D-xylose-5-phosphate-reductoisomerase activity, isopentenyl-diphosphate- ⁇ - Isomerase activity, geranyl diphosphate synthase activity, farnesyl diphosphate synthase activity, geranyl geranyl diphosphate synthase activity, phytoene synthase activity, phytoene desaturase activity, zeta-carotene desaturase activity, have crtlSO activity, FtsZ activity and MinD activity.
  • HMG-CoA reductase activity is understood to mean the enzyme activity of an HMG-CoA reductase (3-hydroxy-3-methyl-glutaryl-coenzyme A reductase).
  • HMG-CoA reductase is understood to be a protein which has the enzymatic activity to convert 3-hydroxy-3-methyl-glutaryl-coenzyme-A into mevalonate.
  • HMG-CoA reductase activity is understood to mean the amount of 3-hydroxy-3-methyl-glutaryl-coenzyme A converted or amount of mevalonate formed in a certain time by the protein HMG-CoA reductase.
  • the HMG-CoA reductase activity is increased compared to the wild type, the amount of 3-hydroxy-3-methyl-glutaryl-coenzyme-A or the formed amount of mevalonate increased.
  • This increase in the HMG-CoA reductase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the Wild-type HMG-CoA reductase activity.
  • the determination of the HMG-CoA reductase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably carried out under the following conditions:
  • Frozen organism material is homogenized by intensive Mosern in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20.
  • the respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible.
  • the extraction buffer can consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ⁇ -aminocaproic acid, 10% glycerin, 5mM KHC03. Shortly before the extraction, 2 mM DTT and 0.5 mM PMSF are added.
  • HMG-CoA reductase The activity of HMG-CoA reductase can be measured according to published descriptions (e.g. Schaller, Grausem, Benveniste, Chye, Tan, Song and Chua, Plant Physiol. 109 (1995), 761-770; Chappell, Wolf, Proulx, Cuellar and Saunders, Plant Physiol. 109 (1995) 1337-1343).
  • Organism tissue can be homogenized and extracted in cold buffer (100 M potassium phosphate (pH 7.0), 4 mM MgCl 2 , 5 mM DTT). The homogenate is centrifuged at 10,000 g at 4C for 15 minutes. The supernatant is then centrifuged again at 100,000 g for 45-60 minutes.
  • the activity of the HMG-CoA reductase is determined in the supernatant and in the pellet of the microsomal fraction (after resuspending in 100 mM potassium phosphate (pH 7.0) and 50 mM DTT). Aliquots of the solution and the suspension (the protein content of the suspension corresponds to approximately 1-10 ⁇ g) are dissolved in 100 mM potassium phosphate buffer (pH 7.0 with 3 mM NADPH and 20 ⁇ M ( 4 C) HMG-CoA (58 ⁇ Ci / ⁇ M) ideally incubated in a volume of 26 ⁇ l for 15-60 minutes at 30 C.
  • the reaction is terminated by adding 5 ⁇ l mevalonate lactone (1 mg / ml) and 6 N HCl, after which the mixture is incubated at room temperature for 15 minutes
  • the ( 4 C) -evalonate formed in the reaction is quantified by adding 125 ⁇ l of a saturated potassium phosphate solution (pH 6.0) and 300 ⁇ l of ethyl acetate, the mixture is mixed well and centrifuged, and the radioactivity can be determined by scintillation measurement.
  • An (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase means a protein which has the enzymatic activity, (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate in Convert isopentenyl diphosphate and dimethylallyldiphosphate.
  • the protein (E) -4-hydroxy-3- Methylbut-2-enyl diphosphate reductase increases the amount of (E) -4-hydroxy-3-methylbut-2-enyl diphosphate converted or the amount of isopentenyl diphosphate and / or dimethylallyldiphosphate formed.
  • This increase in the (E) -4-hydroxy-3-methylbut-2-enyldiphosphate reductase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, more preferably at least 500%, especially at least 600% of the (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase activity of the wild type.
  • the (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase activity is preferably determined in genetically modified, non-human organisms according to the invention and in wild-type or reference organisms under the following conditions:
  • Frozen organism material is homogenized by intensive Mosern in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20.
  • the respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible.
  • the extraction buffer can consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCl 2, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ⁇ - Aminocaproic acid, 10% glycerin, 5 mM KHC03. Shortly before the extraction, 2 mM DTT and 0.5 mM PMSF added.
  • the (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase activity can be determined by immunological detection.
  • the production of specific antibodies is by Rohdich and colleagues (Rohdich, Hecht, Gärtner, A-dam, Krieger, Amslinger, Arigoni, Bacher and Eisenreich: Studies on the nonmevalonat terpene biosynthetic pathway: metabolic role of IspH (LytB) protein, Natl Acad. Natl. USA 99 (2002), 1158-1163).
  • LytB protein catalyzes the terminal step of the 2-C-methyl-D-erythritol 4-phosphate pathway of isoprenoid biosynthesis; FEBS Letters 532 (2002,) 437-440) an in vitro system which reduces the reduction of (E) -4-hydroxy-3-methyl-but-2-enyl diphosphate into the isopentenyl diphosphate and tracked dimethyl allyl diphosphate.
  • 1-Deoxy-D-xylose-5-phosphate synthase activity means the enzyme activity of a 1-deoxy-D-xylose-5-phosphate synthase activity.
  • a 1-deoxy-D-xylose-5-phosphate synthase is understood to mean a protein which has the enzymatic activity to convert hydroxyethyl-ThPP and glyceraldehyde-3-phosphate into 1-deoxy-D-xylose-5-phosphate.
  • 1-deoxy-D-xylose-5-phosphate synthase activity means the amount of hydroxyethyl-ThPP and / or glyceraldehyde converted by the protein 1-deoxy-D-xylose-5-phosphate synthase in a certain time -3-phosphate or the amount of 1-deoxy-D-xylose-5-phosphate formed.
  • the protein 1-deoxy-D-xylose-5-phosphate synthase With an increased 1-deoxy-D-xylose-5-phosphate synthase activity compared to the wild type, the protein 1-deoxy-D-xylose-5-phosphate synthase thus converts the amount converted in a certain time compared to the wild type Hydroxyethyl-ThPP and / or glyceraldehyde-3-phosphate or the amount formed -deoxy-D-xylose-5-phosphate increased.
  • This increase in the 1-deoxy-D-xylose-5-phosphate synthase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600%, of the wild-type 1-deoxy-D-xylose-5-phosphate synthase activity.
  • the determination of the 1-deoxy-D-xylose-5-phosphate synthase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably carried out under the following conditions:
  • Frozen organism material is homogenized by intensive mortar in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20.
  • the respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible.
  • the extraction buffer can consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ⁇ - Aminocaproic acid, 10% glycerin, 5 mM KHC03. Shortly before the extraction, 2 mM DTT and 0.5 mM PMSF are added.
  • the reaction solution (50-200 ⁇ l) for the determination of the D-1-deoxyxylulose-5-phosphate synthase activity consists of 100 mM Tris-HCl (pH 8.0), 3 mM MgCl 2 , 3 mM MnCl 2 , 3 mM ATP, 1 mM thiamine diphosphate, 0.1% Tween-60, 1 mM Ka liumfluorid, 30 ⁇ M (2- 14 C) pyruvate (0.5 ⁇ Ci), 0.6 mM DL-Glyerinaldehyd-3-phosphate.
  • the organism extract is incubated for 1 to 2 hours in the reaction solution at 37C.
  • 1-Deoxy-D-xylose-5-phosphate reductoisomerase activity describes the enzyme activity of a 1-deoxy-D-xylose-5-phosphate reductoisomerase, also called 1-deoxy-D-xylulose-5-phosphate reductoisomerase. Roger that.
  • a 1-deoxy-D-xylose-5-phosphate reductoisomerase means a protein which has the enzymatic activity, 1-deoxy-D-xylose-5-phosphate in 2-C-methyl-D-erythritol 4-phosphate convert.
  • 1-deoxy-D-xyiose-5-phosphate reductoisomerase - activity which is determined in a certain time by the protein 1-deoxy-D-xylose-5-phosphate - Reductoisomerase understood amount of 1-deoxy-D-xylose-5-phosphate or amount of 2-C-methyl-D-erythritol 4-phosphate formed.
  • the protein 1-deoxy-D-xylose-5-phosphate-reductoisomerase in a certain time compared to the wild type converted amount of 1-deoxy-D-xylose-5-phosphate or the amount of 2-C-methyl-D-erythritol 4-phosphate formed increased.
  • This increase in 1-deoxy-D-xylose-5-phosphate is preferably
  • Reductoisomerase activity at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% 1-deoxy-D-xylose-5- Wild-type phosphate reductoisomerase activity.
  • the determination of the 1-deoxy-D-xylose-5-phosphate reductoisomerase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably carried out under the following conditions:
  • Frozen organism material is homogenized by intensive mortar in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20.
  • the respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible.
  • the extraction buffer can consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCl 2, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ⁇ -aminocaproic acid, 10% glycerin, 5 mM KHC03. Shortly before the extraction, 2 mM DTT and 0.5 mM PMSF are added.
  • D-1-deoxyxylulose-5-phosphate reductoisomerase is measured in a buffer of 100 mM Tris-HCl (pH 7.5), 1 mM MnCl 2 , 0.3 mM NADPH and 0.3 mM 1-Deoxy-D-xylulose-4-phosphate, which can be synthesized, for example, enzymatically (Kuzuyama, Takahashi, Watanabe and Seto: Tetrahedon letters 39 (1998) 4509-4512).
  • the reaction is started by adding the organism extract.
  • the reaction volume can typically be 0.2 to 0.5 mL; incubation takes place at 37C for 30-60 minutes. During this time, the oxidation of NADPH is monitored photometrically at 340 nm.
  • Isopentenyl diphosphate ⁇ isomerase activity is understood to mean the enzyme activity of an isopentenyl diphosphate ⁇ isomerase.
  • An isopentenyl diphosphate ⁇ isomerase is understood to mean a protein which has the enzymatic activity to convert isopentenyl diphosphate to dimethylallyl phosphate.
  • isopentenyl-diphosphate- ⁇ -isomerase activity is understood to mean the amount of isopentenyl-diphosphate or amount of dimethylallylphosphate formed in a certain time by the protein isopentenyl-diphosphate-D- ⁇ -isomerase.
  • the protein isopentenyl-diphosphate- ⁇ -isomerase increases the amount of isopentenyl-diphosphate or the amount of dimethylallylphosphate formed in a certain time compared to the wild type.
  • This increase in the isopentenyl diphosphate ⁇ -isomerase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of wild type isopentenyl diphosphate ⁇ isomerase activity.
  • the determination of the isopentenyl-diphosphate- ⁇ -isomerase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably carried out under the following conditions:
  • Frozen organism material is homogenized by intensive mortaring in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20.
  • the respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible.
  • the extraction buffer can consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCl 2, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ⁇ -aminocaproic acid, 10% glycerin, 5 mM KHC03. Shortly before the extraction, 2 mM DTT and 0.5 mM PMSF are added.
  • IPP isomerase activity determinations of isopentenyl diphosphate isomerase (IPP isomerase) can be carried out using the method presented by Fräser and colleagues (Fräser, Römer, Shipton, Mills, Kiano, Misawa, Drake, Schuch and Bramley: Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner; Proc. Natl. Acad. Be. USA 99 (2002), 1092-1097, based on milling cutters, Pinto, Holloway and Bramley, Plant Journal 24 (2000), 551-558).
  • Geranyl diphosphate synthase activity means the enzyme activity of a geranyl diphosphate synthase.
  • a geranyl diphosphate synthase is understood to mean a protein which has the enzymatic activity to convert isopentenyl diphosphate and dimethylallyl phosphate to geranyl diphosphate.
  • geranyl diphosphate synthase activity means the amount of isopentenyl diphosphate and / or dimethylallyl phosphate or amount of geranyl diphosphate formed in a certain time by the protein geranyl diphosphate synthase.
  • the amount of isopentenyl diphosphate and / or dimethylallyl phosphate or the amount of geranyl diphosphate formed is increased by the protein geranyl diphosphate synthase in a certain time compared to the wild type ,
  • This increase in geranyl diphosphate synthase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% the geranyl Wild-type diphosphate synthase activity.
  • the geranyl diphosphate synthase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably determined under the following conditions:
  • Frozen organism material is homogenized by intensive mortar in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20.
  • the respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible.
  • the extraction buffer can consist of 50 M HEPES-KOH (pH 7.4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ⁇ - Aminocaproic acid, 10% glycerin, 5 mM KHC03. Shortly before the extraction, 2 mM DTT and 0.5 mM PMSF are added.
  • the activity of geranyl diphosphate synthase can be found in 50 mM Tris-HCl (pH 7.6), 10 mM MgCl 2 , 5 mM MnCl 2 , 2 mM DTT, 1 mM ATP, 0.2% Tween-20.5 ⁇ M ( 14C ) IPP and 50 ⁇ M DMAPP (dimethylallyl pyrophosphate) can be determined after adding organism extract (according to Bouvier, Suire, d'Harlingue, Backhaus and Camara: Meolcular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells, plant Journal 24 (2000) 241-252).
  • reaction products are dephosphyrylated (according to Koyama, Fuji and Ogura: Enzymatic hydrolysis of polyprenyl pyrophosphats, Methods Enzymol. 110 (1985), 153-155) and analyzed by means of thin layer chromatography and measurement of the incorporated radioactivity (Dogbo, Bardat, Quennemet and Camara: Metabolism of plastid terpenoids: In vitrp inhibition of phytoene synthesis by phenethyl pyrophosphate derivates, FEBS Letters 219 (1987) 211-215).
  • Farnesyl diphosphate synthase activity means the enzyme activity of a farnesyl diphosphate synthase.
  • a famesyl diphosphate synthase is understood to mean a protein which has the enzymatic activity to sequentially convert 2 molecular sopentenyl diphosphate with dimethyl allyl diphosphate and the resulting geranyl diphosphate into farnesyl diphosphate.
  • the amount of dimethylallyl diphosphate and / or isopentenyl diphosphate or the amount formed in a certain time by famesyl diphosphate synthase activity is converted by the protein famesyl diphosphate synthase Farnesyl diphosphate understood.
  • the converted amount of dimethylallyl diphosphate and / or isopentenyl diphosphate or the amount formed is thus in a certain time compared to the wild type by the protein farnesyl diphosphate synthase Farnesyl diphosphate increased.
  • This increase in the famesyl diphosphate synthase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the Wild-type farnesyl diphosphate synthase activity.
  • the determination of the farnesyl diphosphate synthase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably carried out under the following conditions:
  • Frozen organism material is homogenized by intensive mortar in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20.
  • the respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible.
  • the extraction buffer can consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ⁇ - Aminocaproic acid, 10% glycerin, 5 mM KHC03. Shortly before the extraction, 2 mM DTT and 0.5 M PMSF are added.
  • the activity of franesyl pyrophosphate snthase can be determined according to a protocol by Joly and Edwards (Journal of Biological Chemistry 268 (1993), 26983-26989). The enzyme activity is then measured in a buffer of 10 mM HEPES (pH 7.2), 1 mM MgCl 2 , 1 mM dithiothreitol, 20 ⁇ M geranyl pyrophosphate and 40 ⁇ M (1- 4 C) isopentenyl pyrophosphate (4 Ci / mmol). The reaction mixture is incubated at 37 ° C; the reaction is stopped by adding 2.5 N HCl (in 70% ethanol with 19 ⁇ g / ml Famesol).
  • reaction products are thus hydrolyzed within 30 minutes by acid hydrolysis at 37C.
  • the mixture is neutralized by adding 10% NaOH and extracted with hexane.
  • An aliquot of the hexane phase can be measured using a scintillation counter to determine the built-in radioactivity.
  • the reaction products can be separated into benzene / methanol (9: 1) by means of thin layer chromatography (silica gel SE60, Merck).
  • Radioactively labeled products are eluted and the radioactivity determined (according to Gaffe, Bru, Causse, Vidal, Stamitti-Bert, Carde and Gallusci: LEFPS1, a tomato farnesyl pyrophosphate gene highly expressed during early fruit development; Plant Physiology 123 (2000) 1351 -1362).
  • Geranyl-geranyl diphosphate synthase activity is understood to mean the enzyme activity of a geranyl-geranyl diphosphate synthase.
  • a geranyl-geranyl diphosphate synthase is understood to mean a protein which has the enzymatic activity to convert farnesyl diphosphate and isopentenyl diphosphate into geranyl-geranyl diphosphate. Accordingly, geranyl-geranyl diphosphate synthase activity is understood to mean the amount of farnesyl diphosphate and / or isopentenyl diphosphate or the amount of geranyl-geranyl diphosphate formed in a certain time by the protein geranyl-geranyl diphosphate synthase.
  • the amount of farnesyl diphosphate and / or isopentenyl diphosphate or the formed amount of geranyl-geranyl diphosphate increased.
  • This increase in geranyl-geranyl diphosphate synthase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600 % of wild type geranyl-geranyl ⁇ piphosphate synthase activity.
  • the geranyl-geranyl-diphosphate synthase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably determined under the following conditions:
  • Frozen organism material is homogenized by intensive mortar in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20.
  • the respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible.
  • the Extraction buffers consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ⁇ -aminocaproic acid , 10% glycerin, 5 mM KHC03. Shortly before the extraction, 2 mM DTT and 0.5 mM PMSF are added.
  • GGPP synthase Activity measurements of geranylgeranyl pyrophosphate synthase (GGPP synthase) can be carried out by the method described by Dogbo and Camara (in Biochim. Biophys. Acta 920 (1987), 140-148: Purification of isopentenyl pyrophosphate isomerase and geranylgeranyl pyrophosphate synthase from Capsicochrome chromoplasts by affinity ) can be determined.
  • a buffer 50 mM Tris-HCl (pH 7.6), 2 mM MgCl 2, 1 mM MnCl 2, 2 mM dithiothreitol, (1- 14 C) IPP (0.1 is ⁇ Ci, 10 "M), 15 ": M DMAPP, GPP or FPP) with a total volume of about 200 ul of organism extract.
  • Incubation can be for 1-2 hours (or longer) at 30C.
  • the reaction is carried out by adding 0.5 ml of ethanol and 0.1 ml of 6N HCl. After incubation at 37 ° C.
  • reaction mixture is neutralized with 6N NaOH, mixed with 1 ml of water and extracted with 4 ml of diethyl ether.
  • amount of radioactivity is determined in an aliquot (for example 0.2 ml) of the ether phase by means of scintillation counting.
  • the radioactively labeled prenyl alcohols can be shaken out in ether and HPLC (25 cm column Spherisorb ODS-1, 5 ⁇ m; elution with methanol / water (90:10; v / v) at a flow rate of 1 ml / min) are separated and quantified using a radioactivity monitor (according to Wiedemann, Misawa and Sandmann: Purification and enzymatic characterization of the geranylgeranyl pyrophosphate synthase from Erwinia uredovora after expression in Escherichia coli; Archives Biochemistry and Biophysics 306 (1993), 152-157 ).
  • Phytoene synthase activity means the enzyme activity of a phytoene synthase.
  • a phytoene synthase is understood to mean a protein which has the enzymatic activity of converting geranyl-geranyl diphosphate into phytoene.
  • phytoene synthase activity is understood to mean the amount of geranyl-geranyl diphosphate or amount of phytoene formed in a certain time by the protein phytoene synthase.
  • the amount of geranyl-geranyl diphosphate or the amount of phytoene formed is increased in a certain time by the protein phytoene synthase compared to the wild type.
  • This increase in phytoene synthase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the phytoene Wild-type synthase activity.
  • the phytoene synthase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably determined under the following conditions:
  • Frozen organism material is homogenized by intensive mortar in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20.
  • the respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible.
  • the extraction buffer can consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCl 2, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ⁇ -aminocaproic acid, 10% glycerin, 5 mM KHC03. Shortly before the extraction, 2 mM DTT and 0.5 mM PMSF are added.
  • PY phytoene synthase
  • Fräser and colleagues Fräser, Romer, Shipton, Mills, Kiano, Misawa, Drake, Schuch and Bramley: Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit- specific manner; Proc. Natl. Acad. Sci. USA 99 (2002), 1092-1097, based on Fraser, Pinto, Holloway and Bramley, Plant Journal 24
  • the radioactively labeled phytoene formed during the reaction is separated by thin layer chromatography on silica plates in methanol / water (95: 5; v / v).
  • Phytoene can be identified on the silica plates in an iodine-enriched atmosphere (by heating fewer iodine crystals).
  • a phytoene standard serves as a reference.
  • the amount of radioactively labeled product is determined by measurement in a scintillation counter.
  • phytoene can also be quantified using HPLC, which is equipped with a radioactivity detector (Fräser, Albrecht and Sandmann: Development of high performance liquid chromatography systems for the separation of radiolabeled carotenes and precursors formed in specific enzymatic reactions; J. Chromatogr. 645 (1993) 265-272).
  • Phytoene desaturase activity means the enzyme activity of a phytoene desaturase.
  • a phytoene desaturase is understood to mean a protein which has the enzymatic activity to convert phytoene into phytofluene and / or phytofluene into ⁇ -carotene (zeta-carotene).
  • phytoene desaturase activity is understood to mean the amount of phytoene or phytofluene or amount of phytofluene or ⁇ -caotin converted in a certain time by the protein phytoene desaturase.
  • the amount of phytoene or phytofluene or the amount of phytofluen or inclin.-carotene formed is increased in a certain time by the protein phytoen desaturase compared to the wild type.
  • This increase in phytoene desaturase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the phytoene Wild-type desaturase activity.
  • the phytoene desaturase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably determined under the following conditions:
  • Frozen organism material is homogenized by intensive mortar in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20.
  • the respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible.
  • the extraction buffer can consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCl 2, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ⁇ -aminocaproic acid, 10% glycerin, 5 mM KHC03.
  • PDS phytoene desaturase
  • Radioactive labeled phytoenes can be synthesized according to Fräser (Fräser, De la Rivas, Mackenzie, Bramley: Phycomyces blakesleanus CarB mutants: their use in assays of phytoene desaturase; Phytochemistry 30 (1991), 3971-3976).
  • Membranes of plastids of the target tissue can be incubated with 100 mM MES buffer (pH 6.0) with 10 mM MgCl 2 and 1 mM dithiothreitol in a total volume of 1 mL.
  • Zeta-carotene desaturase activity means the enzyme activity of a zeta-carotene desaturase.
  • a zeta-carotene desaturase is understood to mean a protein which has the enzymatic activity to convert ⁇ -carotene into neurosporin and / or neurosporin into lycopene.
  • zeta-carotene desaturase activity means the amount of ⁇ -carotene or neurosporin or the amount of neurosporin or lycopene formed in a certain time by the protein zeta-carotene desaturase.
  • the amount of ⁇ -carotene or neurosporin or the amount of neurosporin or lycopene formed is increased in a certain time by the protein zeta-carotene desaturase compared to the wild type ,
  • This increase in zeta-carotene desaturase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 00%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the Zeta-carotene desaturase - Wild type activity.
  • zeta-carotene desaturase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably determined under the following conditions:
  • Frozen organism material is homogenized by intensive mortar in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20.
  • the respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible.
  • the extraction buffer can consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCl 2, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ⁇ -aminocaproic acid, 10% glycerin, 5 mM KHC03. Shortly before the extraction, 2 mM DTT and 0.5 mM PMSF are added.
  • ZDS desaturase can be carried out in 0.2 M potassium phosphate (pH 7.8, buffer volume of about 1 ml).
  • the analysis method was developed by Schunbach and colleagues (Breitenbach, Kuntz, Takaichi and Sandmann: Catalytic properties of an expressed and purified higher plant type ⁇ -carotene desaturase from Capsicum annuum; European Journal of Biochemistry. 265 (1): 376-383 , 1999).
  • Each analysis batch contains 3 mg phosphytidylcholine, which is suspended in 0.4 M potassium phosphate buffer (pH 7.8), 5 ⁇ g ⁇ -carotene or neurosporin, 0.02% butylhydroxytoluene, 10 ⁇ l decyl plastoquinone (1 mM methanolic see Stock solution) and organism extract.
  • the volume of the organism extract must be adjusted to the amount of ZDS desaturase activity present in order to enable quantifications in a linear measuring range.
  • Incubations typically take place for about 17 hours with vigorous shaking (200 revolutions / minute) at about 28 ° C in the dark.
  • Carotenoids are extracted by adding 4 ml acetone at 50 ° C for 10 minutes while shaking.
  • the carotenoids are transferred from this mixture to a petroleum ether phase (with 10% diethyl ether).
  • the ethyl ether / petroleum ether phase is evaporated under nitrogen, the carotenoids redissolved in 20 ul and separated and quantified by HPLC.
  • CrtlSO activity means the enzyme activity of a crtlSO protein.
  • a crtlSO protein is understood to mean a protein which has the enzymatic activity of converting 7,9,7 ', 9'-tetra-cis-lycopene into all-trans-lycopene. Accordingly, crtlSO activity is understood to mean the amount of 7,9,7 ', 9'-tetra-cis-lycopene or amount of all-trans-lycopene formed in a certain time by the crtlSO protein.
  • crtlSO activity is higher than that of the wild type, the amount of 7,9,7 ', 9'-tetra-cis-lycopene converted or the amount of all-trans formed by the crtlSO protein is reduced in a certain time compared to the wild type - Lycopene increased.
  • This increase in crtlSO activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the crtlSO- Wild type activity.
  • FtsZ activity is understood to mean the physiological activity of an FtsZ protein.
  • FtsZ protein is understood to be a protein which has a cell division and plastid division promoting effect and has homologies to tubulin proteins.
  • MinD activity is understood to mean the physiological activity of a MinD protein.
  • a MinD protein is understood to be a protein that has a multifunctional role in cell division. It is a membrane-associated ATPase and can show an oscillating movement from pole to pole within the cell.
  • enzymes in the non-mevalonate pathway can lead to a further increase in the desired ketocarotenoid end product.
  • examples of this are the 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase, the 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase and the 2-C-methyl-D-erythritol kinase 2,4-cyclodiphoshate synthase.
  • the activity of the enzymes mentioned can be increased by changing the gene expression of the corresponding genes.
  • the changed concentrations of the relevant proteins can be detected using antibodies and corresponding blotting techniques as standard.
  • Synthase activity and / or 1-deoxy-D-xylose-5-phosphate reductoisomerase activity and / or isopentenyl diphosphate ⁇ isomerase activity and / or geranyl diphosphate synthase activity and / or famesyl diphosphate Synthase activity and / or geranylgeranyl diphosphate synthase activity and / or phytoene synthase activity and / or phytoene desaturase activity and / or zeta-carotene desaturase activity and / or crtlSO activity and / or FtsZ activity and / or MinD activity can take place in various ways, for example by switching off inhibitory regulatory mechanisms at the expression and protein level or by increasing the gene expression of nucleic acids encoding an HMG-CoA reductase and / or nucleic acids encoding an (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase and /
  • a change which is an increased expression rate of the gene can result, for example, by deletion or insertion of DNA sequences.
  • the gene expression of a nucleic acid encoding an HMG-CoA reductase is increased and / or the gene expression of a nucleic acid encoding an (E) -4-hydroxy-3-methylbut-2-enyldiphosphate reductase and / or is increased.
  • the preferred transgenic organisms according to the invention therefore have at least one further HMG-CoA reductase gene and / or (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase gene and compared to the wild type / or 1-deoxy-D-xylose-5-phosphate synthase gene and / or 1-deoxy-D-xylose-5-phosphate reductoisomerase gene and / or isopentenyl-diphosphate- ⁇ -isomerase gene and / or Geranyl diphosphate synthase gene and / or famesyl diphosphate synthase gene and / or geranyl geranyl diphosphate synthase gene and / or phytoene synthase gene and / or phytoene desaturase gene and / or zeta Carotene desaturase gene and / or crtlSO gene and / or FtsZ gene and / or MinD gene.
  • the genetically modified plant has, for example, at least one exogenous nucleic acid encoding an HMG-CoA reductase or at least two endogenous nucleic acids encoding an HMG-CoA reductase and / or at least one exogenous nucleic acid encoding an (E) -4 - Hydroxy-3-methylbut-2-enyl-diphosphate reductase or at least two endogenous Nucleic acids encoding an (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase and / or at least one exogenous nucleic acid encoding a 1-deoxy-D-xylose-5-phosphate synthase or at least two endogenous Nucleic acids encoding a 1-deoxy-D-xylose-5-phosphate synthase and / or at least one exogenous nucleic acid encoding a 1-deoxy-D-xylose-5-phosphate reductoi
  • HMG-CoA reductase genes are:
  • HMG-CoA reductase genes as well as other HMG-CoA reductase genes from other organisms with the following accession numbers:
  • Examples of 1-deoxy-D-xylose-5-phosphate synthase genes are:
  • nucleic acid encoding a 1-deoxy-D-xylose-5-phosphate synthase from Lycopersicon esculentum, ACCESSION # AF143812 (nucleic acid: SEQ ID NO: 103, protein: SEQ ID NO: 12), as well as further 1-deoxy-D-xylose-5-phosphate synthase genes from other organisms with the following accession numbers:
  • Examples of 1-deoxy-D-xylose-5-phosphate reductoisomerase genes are:
  • nucleic acid encoding a 1-deoxy-D-xylose-5-phosphate reductoisomerase from Arabidopsis thaliana, ACCESSION # AF148852, (nucleic acid: SEQ ID NO: 13, protein: SEQ ID NO: 14),
  • isopentenyl diphosphate ⁇ isomerase genes are:
  • geranyl diphosphate synthase genes are:
  • Arabidopsis thaliana contains two differentially expressed famesyl-diphosphate synthase genes, J. Biol. Chem. 271 (13), 7774-7780 (1996), (nucleic acid: SEQ ID NO: 19, protein: SEQ ID NO: 112),
  • geranyl-geranyl diphosphate synthase genes are:
  • phytoene synthase genes examples include:
  • phytoene desaturase genes are:
  • phytoene desaturase genes from other organisms with the following accession numbers: AAL15300, A39597, CAA42573, AAK51545, BAB08179, CAA48195, BAB82461, AAK92625, CAA55392, AAG10426, AAD02489, AA024235, AAC12846, AAA99519, AAL38046, CAA60479, CAA75094, ZP_001041, ZP_001163, CAA39004, CAA44452, ZP_001142, ZP_000718, BAB82462, AAM45380, CAB56040, ZP_001091, BAC091 13, AAP79175, AAL80005, AAM72642, AAM72043, ZP_000745, ZP_001141, BAC07889, CAD55814, ZP_001041, CAD27442, CAE00192, ZP_001163, ZP_000197, BAA18400, AAG10425, ZP
  • zeta-carotene desaturase genes are:
  • a nucleic acid encoding a Narcissus pseudonarcissus zeta-carotene desaturase ACCESSION # AJ224683, published by AI-Babili, S., Oelschlegel.J. and Beyer.P .: A cDNA encoding for beta carotene desaturase (Accession No.AJ224683) from Narcissus pseudonarcissus L. (PGR98-103), Plant Physiol. 117, 719-719 (1998), (nucleic acid: SEQ ID NO: 119, protein: SEQ ID NO: 28),
  • crtlSO genes are:
  • FtsZ genes are:
  • MinD genes are: A nucleic acid encoding a MinD from Tagetes erecta, ACCESSION # AF251019, published by Moehs.CP, Tian.L, Osteryoung.KW and Dellapena, D .: Analysis of carotenoid biosynthetic gene expression during marigold petal development; Plant Mol. Biol. 45 (3), 281-293 (2001), (nucleic acid: SEQ ID NO: 33, protein: SEQ ID NO: 34),
  • nucleic acids which encode proteins are preferably used as HMG-CoA reductase genes, comprising the amino acid sequence SEQ ID NO: 8 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and having an identity of at least 30%, preferably at least 50%, more preferably at least 70%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 8, and which have the enzymatic property of an HMG-CoA reductase.
  • HMG-CoA reductases and HMG-CoA reductase genes can be found, for example, from different organisms, their genomic sequence is known, as described above, by homology comparisons of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 8.
  • HMG-CoA reductases and HMG-CoA reductase genes can also be obtained, for example, starting from the sequence SEQ ID NO: 7 from various organisms whose genomic sequence is not known, as described above, by hybridization and PCR techniques easy to find in a manner known per se.
  • nucleic acids which encode proteins containing the amino acid sequence of the HMG-CoA reductase of the sequence SEQ ID NO: 8 are introduced into organisms to increase the HMG-CoA reductase activity.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
  • codons are preferably used for this which are frequently used in accordance with the organism-specific codon usage.
  • the codon usage can easily be determined on the basis of computer evaluations of other known genes of the organisms in question.
  • a nucleic acid containing the sequence SEQ ID NO: 7 is introduced into the organism.
  • (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductases and (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase genes can also be obtained, for example, from the sequence SEQ ID NO: 9 from various organisms, the genomic sequence of which is not known, as described above, can easily be found by hybridization and PCR techniques in a manner known per se.
  • nucleic acids are introduced into organisms which code for proteins containing the amino acid sequence of (E) - 4- Hydroxy-3-methylbut-2-enyl-diphosphate reductase of the sequence SEQ ID NO: 10.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
  • codons are preferably used for this which are frequently used in accordance with the organism-specific codon usage.
  • the codon usage can easily be determined on the basis of computer evaluations of other known genes of the organisms in question.
  • a nucleic acid containing the sequence SEQ ID NO: 9 is introduced into the organism.
  • nucleic acids which encode proteins containing the amino acid sequence SEQ ID NO: 12 or one of these sequences by substitution, insertion or deletion sequence derived from amino acids, which has an identity of at least 30%, preferably at least 50%, more preferably at least 70%, more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 12, and which has the enzymatic property a (1-deoxy-D-xylose-5-phosphate synthase.
  • (1-deoxy-D-xylose-5-phosphate synthase and (1-deoxy-D-xylose-5-phosphate synthase genes can be obtained, for example, from various organisms whose genomic sequence is known, as described above , easily by homology comparisons of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 12 find.
  • (1-deoxy-D-xylose-5-phosphate synthase and (1-deoxy-D-xylose-5-phosphate synthase genes can also be obtained from different organisms, for example, starting from the sequence SEQ ID NO: 11 whose genomic sequence is not known, as described above, can easily be found by hybridization and PCR techniques in a manner known per se.
  • nucleic acids are introduced into organisms which code for proteins containing the amino acid sequence of the (1-deoxy-D-xylose-5 Phosphate synthase of sequence SEQ ID NO: 12.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
  • codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this.
  • the codon usage can easily be determined on the basis of computer evaluations of other, known genes of the organisms concerned.
  • a nucleic acid containing the sequence SEQ ID NO: 11 is introduced into the organism.
  • 1-deoxy-D-xylose-5-phosphate reductoisomerase genes are preferably used nucleic acids which encode proteins containing the amino acid sequence SEQ ID NO: 14 or one of these sequences by substitution, insertion or deletion of Amino acid-derived sequence which has an identity of at least 30%, preferably at least 50%, more preferably at least 70%, more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 14, and which is the enzymatic Have property of a 1-deoxy-D-xylose-5-phosphate reductoisomerase.
  • 1-deoxy-D-xylose-5-phosphate reductoisomerase and 1-deoxy-D-xylose-5-phosphate reductoisomerase genes can be obtained, for example, from various organisms, the genomic sequence of which is known, as described above Homology comparisons of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 14 easy to find.
  • 1-deoxy-D-xylose-5-phosphate reductoisomerases and 1-deoxy-D-xylose-5-phosphate reductoisomerase genes can also be found, for example, starting from the sequence SEQ ID NO: 13 from different organisms, their genomic Sequence is not known, as described above, can be easily found by hybridization and PCR techniques in a manner known per se.
  • nucleic acids are introduced into organisms which code for proteins containing the amino acid sequence of the 1-deoxy-D-xylose-5-phosphate Reductoisomerase of sequence SEQ ID NO: 14.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
  • codon usage can be determined on the basis of computer evaluations of other known genes of the relevant organ. easily identify nisms.
  • a nucleic acid containing the sequence SEQ ID NO: 13 is introduced into the organism.
  • nucleic acids which encode proteins are preferably used as isopentenyl-D-isomerase genes, containing the amino acid sequence SEQ ID NO: 16 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and having an identity of at least 30%, preferably at least 50%, more preferably at least 70%, more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 16, and which have the enzymatic property of an isopentenyl-D-isomerase.
  • isopentenyl-D-isomerases and isopentenyl-D-isomerase genes can be obtained, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 16 easy to find.
  • Further examples of isopentenyl-D-isomerases and isopentenyl-D-isomerase genes can also be obtained, for example, starting from the sequence SEQ ID NO: 15 from various organisms whose genomic sequence is not known, as described above, by hybridization and PCR techniques easy to find in a manner known per se.
  • nucleic acids are introduced into organisms which code for proteins containing the amino acid sequence of the isopentenyl-D-isomerase of the sequence SEQ ID NO: 16.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
  • codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this.
  • the codon usage can easily be determined on the basis of computer evaluations of other known genes of the organisms in question.
  • a nucleic acid containing the sequence SEQ ID NO: 15 is introduced into the organism.
  • the geranyl diphosphate synthase genes used are preferably nucleic acids which encode proteins, the amino acid sequence SEQ ID NO: 18 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which is a Identity of at least 30%, preferably at least 50%, more preferably at least 70%, more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 18, and which has the enzymatic property of a geranyl diphosphate Have synthase.
  • geranyl diphosphate synthases and geranyl diphosphate synthase genes can be obtained, for example, from various organisms whose genomic sequence is known, as described above, by comparing the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 18 easy to find.
  • geranyl diphosphate synthases and geranyl diphosphate synthase genes can also be derived, for example, starting from the sequence SEQ ID NO: 17 from different organisms whose genomic sequence cannot be determined. is, as described above, easy to find by hybridization and PCR techniques in a manner known per se.
  • nucleic acids are introduced into organisms which encode proteins containing the amino acid sequence of the geranyl diphosphate synthase of the sequence SEQ ID NO: 18.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
  • codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this.
  • the codon usage can easily be determined on the basis of computer evaluations of other, known genes of the organisms in question.
  • a nucleic acid containing the sequence SEQ ID NO: 17 is introduced into the organism.
  • nucleic acids which encode proteins, containing the amino acid sequence SEQ ID NO: 20 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and which have an identity of at least 30%, preferably at least 50%, more preferably at least 70%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 20, and which have the enzymatic property of a farnesyl diphosphate synthase ,
  • famesyl diphosphate synthases and famesyl diphosphate synthase genes can be obtained, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 20 easy to find.
  • farnesyl diphosphate synthases and famesyl diphosphate synthase genes can also be obtained, for example, starting from the sequence SEQ ID NO: 19 from various organisms whose genomic sequence is not known, as described above, by means of hybridization and PCR techniques easy to find in a manner known per se.
  • nucleic acids which encode proteins containing the amino acid sequence of the farnesyl diphosphate synthase of the sequence SEQ ID NO: 20 are introduced into organisms in order to increase the famesyl diphosphate synthase activity.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
  • codons are preferably used for this which are frequently used in accordance with the organism-specific codon usage.
  • the codon usage can easily be determined on the basis of computer evaluations of other known genes of the organisms in question.
  • a nucleic acid containing the sequence SEQ ID NO: 19 is introduced into the organism.
  • the geranyl-geranyl-diphosphate synthase genes used are preferably nucleic acids which encode proteins containing the amino acid sequence SEQ ID NO: 22 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which is a Identity of at least 30%, preferably at least 50%, more preferably at least 70%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 22, and which the enzymatic property of a geranyl-geranyl-diphosphate Have synthase.
  • geranyl-geranyl-diphosphate synthases and geranyl-geranyl-diphosphate synthase genes can be obtained, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases easy to find with SeQ ID NO: 22.
  • geranyl-geranyl-diphosphate synthases and geranyl-geranyl-diphosphate synthase genes can also be obtained, for example, starting from the sequence SEQ ID NO: 21 from various organisms whose genomic sequence is not known, as described above, by hybridization. and PCR techniques can be easily found in a manner known per se.
  • nucleic acids are introduced into organisms which code for proteins containing the amino acid sequence of the geranyl-geranyl- Diphosphate synthase of sequence SEQ ID NO: 22.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
  • codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this.
  • the codon usage can easily be determined on the basis of computer evaluations of other known genes of the organisms in question.
  • a nucleic acid containing the sequence SEQ ID NO: 21 is introduced into the organism.
  • nucleic acids encoding proteins are preferably used as phytoene synthase genes, containing the amino acid sequence SEQ ID NO: 24 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and having an identity of at least 30 %, preferably at least 50%, more preferably at least 70%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 24, and which have the enzymatic property of a phytoene synthase.
  • phytoene synthases and phytoene synthase genes can easily be found, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 24.
  • phytoene synthases and phytoene synthase genes can also be obtained, for example, starting from the sequence SEQ ID NO: 23 from various organisms whose genomic sequence is not known, as described above, by hybridization and PCR techniques in a manner known per se Easy to find.
  • nucleic acids are introduced into organisms which code for proteins containing the amino acid sequence of the phytoene synthase of the sequence SEQ ID NO: 24. Suitable nucleic acid sequences are, for example, by back-translating the
  • codons are preferably used for this which are frequently used in accordance with the organism-specific codon usage.
  • the codon usage can easily be determined on the basis of computer evaluations of other known genes of the organisms in question.
  • a nucleic acid containing the sequence SEQ ID NO: 23 is introduced into the organism.
  • the phytoene desaturase genes used are preferably nucleic acids which encode proteins containing the amino acid sequence SEQ ID NO: 26 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and having an identity of at least 30 %, preferably at least 50%, more preferably at least 70%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 26, and which have the enzymatic property of a phytoene desaturase.
  • phytoene desaturases and phytoene desaturase genes can easily be found, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 26.
  • phytoene desaturases and phytoene desaturase genes can also be obtained, for example, starting from the sequence SEQ ID NO: 25 from various organisms whose genomic sequence is not known, as described above, by hybridization and PCR techniques in a manner known per se Easy to find.
  • nucleic acids which encode proteins containing the amino acid sequence of the phytoene desaturase of the sequence SEQ ID NO: 26 are introduced into organisms in order to increase the phytoene desaturase activity.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code. Those codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this. The codon usage can easily be determined on the basis of computer evaluations of other, known genes of the organisms in question.
  • a nucleic acid containing the sequence SEQ ID NO: 25 is introduced into the organism.
  • the zeta-carotene desaturase genes used are preferably nucleic acids which encode proteins containing the amino acid sequence SEQ ID NO: 28 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and which have an identity of at least 30%, preferably at least 50%, more preferably at least 70%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 28, and which have the enzymatic property of a zeta-carotene desaturase ,
  • zeta-carotene desaturases and zeta-carotene desaturase genes can be obtained, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SEQ ID NO: 28 easy to find.
  • zeta-carotene desaturases and zeta-carotene desaturase genes can also be obtained, for example, starting from the sequence SEQ ID NO: 119 from various organisms whose genomic sequence is not known, as described above, by hybridization and PCR techniques easy to find in a manner known per se.
  • nucleic acids are introduced into organisms which encode proteins containing the amino acid sequence of the zeta-carotene desaturase of the sequence SEQ ID NO: 28.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
  • codon usage can be determined on the basis of computer evaluations of other known genes of the relevant organ easily identify nisms.
  • a nucleic acid containing the sequence SEQ ID NO: 119 is introduced into the organism.
  • nucleic acids which encode proteins are preferably used as CrtlSO genes, comprising the amino acid sequence SEQ ID NO: 30 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and having an identity of at least 30%, preferably at least 50%, more preferably at least 70%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 30, and which have the enzymatic property of a Crtlso.
  • CrtlSO and CrtlSO genes can easily be found, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 30.
  • CrtlSO and CrtlSO genes can also be easily found, for example, starting from the sequence SEQ ID NO: 29 from various organisms whose genomic sequence is not known, as described above, by hybridization and PCR techniques in a manner known per se.
  • nucleic acids which encode proteins containing the amino acid sequence of the CrtlSO of the sequence SEQ ID NO: 30 are introduced into organisms to increase the CrtlSO activity.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
  • codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this.
  • the codon usage can easily be determined on the basis of computer evaluations of other known genes of the organisms in question.
  • a nucleic acid containing the sequence SEQJD NO: 29 is introduced into the organism.
  • the FtsZ genes used are preferably nucleic acids which encode proteins, containing the amino acid sequence SEQ ID NO: 32 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and having an identity of at least 30%, preferably at least 50%, more preferably at least 70%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 32, and which have the enzymatic property of an FtsZ.
  • FtsZn and FtsZ genes can easily be found, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 32.
  • FtsZn and FtsZ genes can also be easily found, for example, starting from the sequence SEQ ID NO: 31 from various organisms whose genomic sequence is not known, as described above, by hybridization and PCR techniques in a manner known per se.
  • FtsZ activity Nucleic acids introduced into organisms which encode proteins, containing the amino acid sequence of the FtsZ of the sequence SEQ ID NO: 32
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
  • codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this.
  • the codon usage can easily be determined on the basis of computer evaluations of other, known genes of the organisms concerned.
  • a nucleic acid containing the sequence SEQ ID NO: 31 is introduced into the organism.
  • the preferred MinD genes are nucleic acids encoding proteins containing the amino acid sequence SEQ ID NO: 34 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and having an identity of at least 30%, preferably at least 50%, more preferably at least 70%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the Sequence SEQ ID NO: 34, and which have the enzymatic property of a MinD.
  • MinDn and MinD genes can easily be found, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 34.
  • MinDn and MinD genes can also easily be obtained, for example, starting from the sequence SEQ ID NO: 33 from various organisms whose genomic sequence is not known, as described above, by hybridization and PCR techniques in a manner known per se find.
  • nucleic acids are introduced into organisms which encode proteins containing the amino acid sequence of the MinD of the sequence SEQ ID NO: 34.
  • Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
  • codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this.
  • the codon usage can easily be determined on the basis of computer evaluations of other known genes of the organisms in question.
  • a nucleic acid containing the sequence SEQ ID NO: 33 is introduced into the organism.
  • 5-phosphate synthase genes 1-deoxy-D-xylose-5-phosphate reductoisomerase genes, isopentenyl diphosphate ⁇ isomerase genes, geranyl diphosphate synthase genes, fernesyl diphosphate synthase genes Genes, geranyl-geranyl diphosphate synthase genes, phytoene synthase genes, phytoene desaturase genes, zeta-carotene desaturase genes, crtl-SO genes, FtsZ genes or MinD genes are still in themselves can be prepared in a known manner by chemical synthesis from the nucleotide building blocks, for example by fragment condensation of individual overlapping, complementary nucleic acid building blocks of the double helix.
  • oligonucleotides can be carried out, for example, in a known manner using the phosphoamidite method (Voet, Voet, 2nd edition, Wiley Press New York, pages 896-897).
  • the attachment of synthetic Oligonucleotides and gap filling using the Klenow fragment of DNA polymerase and ligation reactions as well as general cloning methods are described in Sambrook et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press.
  • nucleic acids encoding a ketolase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO.
  • nucleic acids encoding an HMG-CoA reductase nucleic acids encoding an (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase, nucleic acids encoding a 1-deoxy-D-xylose-5 Phosphate synthase, nucleic acids encoding a 1-deoxy-D-xylose-5-phosphate reductoisomerase, nucleic acids encoding an isopentenyl diphosphate ⁇ isomerase, nucleic acids encoding a geranyl diphosphate synthase, nucleic acids encoding a farnesyl diphosphate synthase, Nucleic acids encoding a geranyl-geranyl diphosphate synthase, nucleic acids encoding a phytoene synthase, nucleic acids encoding a phytoene desaturase, nucleic acids encoding a zeta-carotene
  • the genetically modified, non-human organisms can be produced, as described below, for example by introducing individual nucleic acid constructs (expression cassettes) containing an effect gene or by introducing multiple constructs which contain up to two or three of the effect genes or more than three effect genes
  • organisms are preferably understood to mean organisms which, as wild-type or starting organisms, naturally or by genetic complementation and / or reorganization of the metabolic pathways, are capable of producing carotenoids, in particular ⁇ -carotene and / or zeaxanthin and / or neoxanthine and / or violaxanthin and / or to produce lutein.
  • Preferred organisms already have hydroxylase activity as wild-type or starting organisms and are therefore able to produce zeaxanthin as wild-type or starting organisms.
  • Preferred organisms are plants or microorganisms, such as bacteria, yeasts, algae or fungi.
  • Both bacteria can be used as bacteria that are able to synthesize xanthophylls due to the introduction of genes of the carotenoid biosynthesis of a carotenoid-producing organism, such as, for example, bacteria of the genus Escherichia, which contain, for example, crt genes from Erwinia, as well Bacteria that are able to synthesize xanthophylls on their own, such as, for example, bacteria of the genus Erwinia, Agrobacterium, Flavobacterium, Alcaligenes, Paracoccus, Nostoc or cyanobacteria of the genus Synechocystis.
  • Preferred bacteria are Escherichia coli, Erwinia herbicola, Erwinia uredovora, Agrobacterium aurantiacum, Alcaligenes sp. PC-1, Flavobacterium sp. strain R1534, the Cyanobacterium Synechocystis sp. PCC6803, Paracoccus marcusii or Paracoccus carotinifaciens.
  • yeasts are Candida, Saccharomyces, Hansenula, Pichia or Phaffia. Particularly preferred yeasts are Xanthophyllomyces dendrorhous or Phaffia rhodozyma.
  • Preferred mushrooms are Aspergillus, Trichoderma, Ashbya, Neurospora, Blakeslea, in particular Blakeslea trispora, Phycomyces, Fusarium or others in Indian Chem. Engr. Section B. Vol. 37, No. 1, 2 (1995) on page 15, table 6 described mushrooms.
  • Preferred algae are green algae, such as algae of the genus Haematococcus, Phaedactylum tricornatum, Volvox or Dunaliella. Particularly preferred algae are Haematococcus puvialis or Dunaliella bardawil.
  • Particularly preferred plants are plants selected from the families Amaranthaceae, Amaryllidaceae, Apocynaceae ceae, Asteraceae, Balsaminaceae, Begonia-, Berberidaceae, Brassicaceae.Cannabaceae, Caprifoliaceae, Caryophyllaceae, Chenopodiaceae, Compositae, Cucurbitaceae, Cruciferae, Euphorbiaceae, Fabaceae, Gentianaceae, Geraniaceae , Graminae, llliaceae, Labiatae, Lamiaceae, Leguminosae, Liliaceae, Linaceae, Lobeliaceae, Malvaceae, Oleaceae, Orchidaceae, Papaveraceae, Plumbaginaceae, Poaceae, Polemoniaceae, Primulacaceae, Roseaeaeae, Rosunceae ceae, Vitaceae and Violacea
  • Very particularly preferred plants are selected from the group of the plant genera Marigold, Tagetes errecta, Tagetes patula, Acacia, Aconitum, Adonis, Arnica, Aquilegia, Aster, Astragalus, Bignonia, Calendula, Caltha, Campanula, Canna, Centaurea, Cheiranthus, Chrysanthemum , Citrus, Crepis, Crocus, Curcurbita, Cytisus, Delonia, Delphinium, Dianthus, Dimorphotheca, Doronicum, Eschscholtzia, Forsythia, Fremontia, Gazania, Gelsemium, Genista, Gentiana, Geranium, Gerbera, Geum, Grevillaea, Helenium, Helianthus, Hepatica , Heracleum, Hisbiscus, Heliopsis, Hypericum, Hypochoeris, Impatiens, Iris, Jacaranda, Kenya, Laburnum, Lathyrus, Leontodon, Lili
  • the cultivation step of the genetically modified organisms is preferably followed by harvesting the organisms and, more preferably, additionally isolating ketocarotenoids from the organisms.
  • the organisms are harvested in a manner known per se in accordance with the respective organism.
  • Microorganisms such as bacteria, yeast, algae or fungi or plant cells, which are cultivated by fermentation in liquid nutrient media, can be separated off, for example, by centrifuging, decanting or filtering. Plants are grown on nutrient media in a manner known per se and harvested accordingly.
  • the cultivation of the genetically modified microorganisms is preferably carried out in the presence of oxygen at a cultivation temperature of at least about 20 ° C., for example 20 ° C. to 40 ° C., and a pH of about 6 to 9.
  • a cultivation temperature of at least about 20 ° C., for example 20 ° C. to 40 ° C., and a pH of about 6 to 9.
  • genetically modified microorganisms preferably first culturing the microorganisms in the presence of oxygen and in a complex medium, such as, for example, TB or LB medium at a cultivation temperature of about 20 ° C. or more, and a pH of about 6 to 9, until a sufficient cell density is reached is.
  • a complex medium such as, for example, TB or LB medium
  • an inducible promoter is preferred.
  • the cultivation is carried out after induction of ketolase expression in presence of oxygen, for example 12 hours to 3 days.
  • ketocarotenoids are isolated from the harvested biomass in a manner known per se, for example by extraction and, if appropriate, further chemical or physical purification processes, such as, for example, precipitation methods, crystallography, thermal separation processes, such as rectification processes or physical separation processes, such as chromatography.
  • ketocarotenoids in the genetically modified plants according to the invention can preferably be produced specifically in various plant tissues, such as, for example, seeds, leaves, fruits, flowers, in particular in petals.
  • Ketocarotenoids are isolated from the harvested petals in a manner known per se, for example by drying and subsequent extraction and, if appropriate, further chemical or physical purification processes, such as, for example, precipitation methods, crystallography, thermal separation processes, such as rectification processes or physical separation processes, such as chromatography. Ketocarotenoids are isolated from the petals, for example, preferably by organic solvents such as acetone, hexane, ether or tert-methylbutyl ether.
  • ketocarotenoids in particular from petals, are described, for example, in Egger and Kleinig (Phytochemistry (1967) 6, 437-440) and Egger (Phytochemistry (1965) 4, 609-618).
  • ketocarotenoids are preferably selected from the group of astaxanthin, canthaxanthin, echinenone, 3-hydroxyechinenone, 3'-hydroxyechinenone, adonirubin and adonixanthin.
  • ketocarotenoid is astaxanthin.
  • ketocarotenoids are obtained in free form or as fatty acid esters or as diglucosides
  • the ketocarotenoids are obtained in the process according to the invention in the form of their mono- or diesters with fatty acids.
  • Some detected fatty acids are, for example, myristic acid, palmitic acid, stearic acid, oleic acid, linolenic acid, and lauric acid (Kamata and Simpson (1987) Comp. Biochem. Physiol. Vol. 86B (3), 587-591).
  • the ketocarotenoids can be produced in the whole plant or, in a preferred embodiment, specifically in plant tissues which contain chromoplasts.
  • Preferred plant tissues are, for example, roots, seeds, leaves, fruits, flowers and in particular nectaries and petals, which are also called petals.
  • genetically modified plants are used which have the highest expression rate of a ketolase in flowers.
  • the gene expression of the ketolase takes place under the control of a flower-specific promoter.
  • the nucleic acids described above, as described in detail below are introduced into the plant in a functionally linked manner with a flower-specific promoter in a nucleic acid construct.
  • genetically modified plants are used which have the highest expression rate of a ketolase in fruits.
  • the gene expression of the ketolase takes place under the control of a fruit-specific promoter.
  • the nucleic acids described above, as described in detail below are introduced into the plant in a nucleic acid construct functionally linked with a fruit-specific promoter.
  • genetically modified plants are used which have the highest expression rate of a ketolase in seeds.
  • the gene expression of the ketolase takes place under the control of a seed-specific promoter.
  • the nucleic acids described above, as described in detail below are introduced into the plant in a nucleic acid construct functionally linked with a seed-specific promoter.
  • the targeting in the chrome peaks is carried out by a functionally linked plastid transit peptide.
  • Cyclase activity described wherein the altered ß-cyclase activity is caused by a ß-cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has.
  • Increasing other activities such as hydroxylase activity, HMG-CoA reductase activity, (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase activity, 1-deoxy-D-xylose- 5-phosphate synthase activity, 1-deoxy-D-xylose-5-phosphate reductoisomerase activity, isopentenyl diphosphate ⁇ isomerase activity, geranyl diphosphate synthase activity, famesyl diphosphate synthase activity, Geranyl-geranyl diphosphate synthase activity, phytoene synthase activity, phytoene desaturase activity, zeta-carotene desaturase activity, crtlSO activity, FtsZ activity and / or MinD activity can be used analogously corresponding effects occur.
  • the transformation can take place individually or through multiple constructs.
  • the transgenic plants are preferably produced by transforming the starting plants, using a nucleic acid construct which contains the nucleic acids described above, coding for a ketolase and coding for a .beta.-cyclase, which are functionally linked to one or more regulation signals which relate to transcription and translation in plants ensure, wherein the nucleic acid encodes a ⁇ -cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has.
  • the transgenic plants are preferably produced by transforming the starting plants using two nucleic acid constructs.
  • a nucleic acid construct contains at least one nucleic acid described above, encoding a ketolase, which is functionally linked to one or more regulatory signals which ensure transcription and translation in plants.
  • the second nucleic acid construct contains at least one nucleic acid described above, encoding a ⁇ -cyclase, which are functionally linked to one or more regulatory signals which ensure transcription and translation in plants, the nucleic acid encoding a ⁇ -cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has ..
  • nucleic acid constructs in which the effect genes are functionally linked to one or more regulation signals which ensure transcription and translation in plants, are also called expression cassettes below.
  • the regulation signals preferably contain one or more promoters which ensure transcription and translation in plants.
  • an expression cassette contains regulatory signals, that is to say regulatory nucleic acid sequences which control the expression of the effect genes in the host cell.
  • an expression cassette comprises upstream, i.e. at the 5 'end of the coding sequence, a promoter and downstream, i.e. at the 3 'end, a polyadenylation signal and optionally further regulatory elements which are operatively linked to the coding sequence of the effect gene in between for at least one of the genes described above.
  • An operative link is understood to mean the sequential arrangement of promoter, coding sequence, terminator and, if appropriate, further regulatory elements in such a way that each of the regulatory elements can fulfill its function as intended when expressing the coding sequence.
  • nucleic acid constructs, expression cassettes and vectors for plants and methods for producing transgenic plants and the transgenic plants themselves are described below by way of example.
  • sequences which are preferred, but not limited to, for operative linking are targeting sequences to ensure subcellular localization in the apoplast, in the vacuole, in plastids, in the mitochondrion, in the endoplasmic reticulum (ER), in the cell nucleus, in oil bodies or other compartments and translation enhancers such as the 5 'leader sequence from the tobacco mosaic virus (Gallie et al., Nucl. Acids Res. 15 (1987), 8693-8711).
  • any promoter which can control the expression of foreign genes in plants is suitable as the promoter of the expression cassette.
  • Constuent promoter means those promoters which ensure expression in numerous, preferably all, tissues over a relatively long period of plant development, preferably at all times during plant development.
  • a plant promoter or a plant virus-derived promoter is preferably used.
  • Particularly preferred is the promoter of the 35S transcript of the CaMV cauliflower mosaic virus (Franck et al. (1980) Cell 21: 285-294; Odell et al. (1985) Nature 313: 810-812; Shewmaker et al. (1985) Virology 140: 281-288; Gardner et al. (1986) Plant Mol Biol 6: 221-228), the 19S CaMV promoter (US 5,352,605; WO 84/02913; Benfey et al.
  • TPT triose-phosphate translocator
  • Another suitable constitutive promoter is the pds promoter (Pecker et al. (1992) Proc. Natl. Acad. Be USA 89: 4962-4966) or the "Rubisco small subunit (SSU)" promoter (US 4,962,028), the LeguminB Promoter (GenBank Acc. No. X03677), the promoter of nopaline synthase from Agrobacterium, the TR double promoter, the OCS (octopine synthase) promoter from Agrobacterium, the ubiquitin promoter (Holtorf S et al. (1995) Plant Mol Biol 29: 637-649), the Ubiquitin 1 promoter (Christensen et al.
  • the expression cassettes can also contain a chemically inducible promoter (review article: Gatz et al. (1997) Annu Rev Plant Physiol Plant Mol Biol 48: 89-108), by means of which the expression of the effect genes in the plant can be controlled at a specific point in time.
  • a chemically inducible promoter such as the PRP1 promoter (Ward et al. (1993) Plant Mol Biol 22: 361-366), a promoter induced by salicylic acid (WO 95/19443), a promoter induced by benzenesulfonamide (EP 0 388 186) , a tetracycline-inducible promoter (Gatz et al.
  • an abscisic acid-inducible promoter (EP 0 335 528) or an ethanol- or cyclohexanone-inducible promoter (WO 93 / 21334) can also be used.
  • promoters that are induced by biotic or abiotic stress such as the pathogen-inducible promoter of the PRP1 gene (Ward et al.
  • Pathogen-inducible promoters include those of genes that are induced as a result of a pathogen attack, such as, for example, genes from PR proteins, SAR proteins, b-1, 3-glucanase, chitinase etc. (for example Redolfi et al. (1983) Neth J Plant Pathol 89: 245-254; Uknes, et al. (1992) The Plant Cell 4: 645-656; Van Loon
  • wound inducible promoters such as that of the pinll gene (Ryan (1990) Ann Rev Phytopath 28: 425-449; Duan et al. (1996) Nat Biotech 14: 494-498), the wunl and wun2 genes ( US 5,428,148), the winl and win2 genes (Stanford et al. (1989) Mol Gen Genet 215: 200-208), the systemin gene (McGurl et al. (1992) Science 225: 1570-1573), des WIP1 gene (Rohmeier et al. (1993) Plant Mol Biol 22: 783-792; Ekeikamp et al. (1993) FEBS Letters 323: 73-76), the MPI gene (Corderok et al. (1994) The Plant J 6 (2): 141-150) and the like.
  • suitable promoters are, for example, fruit-ripening-specific promoters, such as the fruit-ripening-specific promoter from tomato (WO 94/21794, EP 409 625).
  • Development-dependent promoters partly include the tissue-specific promoters, since the formation of individual tissues is naturally development-dependent.
  • promoters are particularly preferred which ensure expression in tissues or parts of plants in which, for example, the biosynthesis of ketocarotenoids or their precursors takes place.
  • promoters with specificities for the anthers, ovaries, petals, sepals, flowers, leaves, stems, seeds and roots and combinations thereof are preferred.
  • Tuber-, storage-root or root-specific promoters are, for example, the patatin promoter class I (B33) or the promoter of the cathepsin D inhibitor from cardiac toffel.
  • Leaf-specific promoters are, for example, the promoter of the cytosolic FBPase from potato (WO 97/05900), the SSU promoter (small subunit) of Rubisco (ribulose-1, 5-bisphosphate carboxylase) or the ST-LSI promoter from potato (Stockhaus et al. ( 1989) EMBO J 8: 2445-2451).
  • Flower-specific promoters are, for example, the phytoene synthase promoter (WO 92/16635) or the promoter of the P-rr gene (WO 98/22593), the AP3 promoter from Arabidopsis thaliana, the CHRC promoter (chromoplast-specific carotenoid-associated protein ( CHRC) gene promoter from Cucumis sativus Acc.-No. AF099501, base pair 1 to 1532), the EPSP_Synthase promoter (5-enolpyruvylshikimate-3-phosphate synthase gene promoter from Petunia hybrida, Acc.-No.
  • the PDS promoter (Phytoene desaturase gene promoter from Solanum lycopersicum, Acc.-No. U46919, base pair 1 to 2078), the DFR-A promoter (dihydroflavonol 4-reductase gene A promoter from Petunia hybrida, Acc.-No. X79723 , Base pair 32 to 1902) or the FBP1 promoter (floral binding protein 1 gene promoter from Petunia hybrida, Acc.-No. L10115, base pair 52 to 1069).
  • Anther-specific promoters are, for example, the 5126-
  • Seed-specific promoters are, for example, the ACP05 promoter (acyl carrier protein gene, W09218634), the promoters AtS1 and AtS3 from Arabidopsis (WO 9920775), the LeB4 promoter from Vicia faba (WO 9729200 and US 06403371), the napin Promoter from Brassica napus (US 5608152; EP 255378; US 5420034), the SBP promoter from Vicia faba (DE 9903432) or the corn promoters End1 and End2 (WO 0011177).
  • ACP05 promoter acyl carrier protein gene, W09218634
  • the promoters AtS1 and AtS3 from Arabidopsis WO 9920775
  • the LeB4 promoter from Vicia faba WO 9729200 and US 06403371
  • the napin Promoter from Brassica napus US 5608152; EP 255378; US 5420034
  • SBP promoter from Vicia faba
  • An expression cassette is preferably produced by fusing a suitable promoter with at least one of the effects described above.
  • ne and preferably a nucleic acid inserted between promoter and nucleic acid sequence, which codes for a plastid-specific transit peptide, and a polyadenylation signal according to common recombination and cloning techniques, as described, for example, in T. Maniatis, EF Fritsch and J.
  • nucleic acids encoding a plastid transit peptide ensure localization in plastids and in particular in chromoplasts.
  • Expression cassettes the nucleic acid sequence of which codes for an effect gene-product fusion protein, can also be used, part of the fusion protein being a transit peptide which controls the translocation of the polypeptide.
  • Preferred transit peptides are preferred for the chromoplasts, which are split off enzymatically from the effect gene product part after translocation of the effect genes into the chromoplasts.
  • the transit peptide which is derived from the plastid Nicotiana tabacum transketolase or another transit peptide (for example the transit peptide of the small subunit of the Rubisco (rbcS) or the ferredoxin NADP oxidoreductase as well as the isopentenyl pyrophosphate isomerase-2) or its functional equivalent is particularly preferred ,
  • Nucleic acid sequences of three cassettes of the plastid transit peptide of plastid transketolase from tobacco in three reading frames are particularly preferred as Kpnl / BamHI fragments with an ATG codon in the Ncol interface:
  • a plastid transit peptide examples include the transit peptide of plastid isopentenyl pyrophosphate isomerase-2 (IPP-2) from Arabisopsis thaliana and the transit peptide of the small subunit of ribulose bisphosphate carboxylase (rbcS) from pea (Guerineau, F, Woolston, S Brooks, L, Mullineaux, P (1988) An expression casette for targeting foreign proteins into the chloroplasts. Nucl. Acids Res. 16: 11380).
  • IPP-2 plastid isopentenyl pyrophosphate isomerase-2
  • rbcS ribulose bisphosphate carboxylase
  • nucleic acids according to the invention can be produced synthetically or obtained naturally or contain a mixture of synthetic and natural nucleic acid constituents, and can consist of different heterologous gene segments from different organisms.
  • various DNA fragments can be manipulated in order to obtain a nucleotide sequence which expediently reads in the correct direction and which is equipped with a correct reading frame.
  • adapters or linkers can be attached to the fragments.
  • the promoter and terminator regions can expediently be provided in the transcription direction with a linker or polylinker which contains one or more restriction sites for the insertion of this sequence.
  • the linker has 1 to 10, usually 1 to 8, preferably 2 to 6, restriction sites.
  • the linker has a size of less than 100 bp within the regulatory areas, often less than 60 bp, but at least 5 bp.
  • the promoter can be native or homologous as well as foreign or heterologous to the host plant.
  • the expression cassette preferably contains, in the 5'-3 'transcription direction, the promoter, a coding nucleic acid sequence or a nucleic acid construct and a region for the transcriptional termination. Different termination areas are interchangeable.
  • Examples of a terminator are the 35S terminator (Guerineau et al. (1988) Nucl Acids Res. 16: 11380), the nos terminator (Depicker A, Stachel S, Dhaese P, Zambryski P, Goodman HM. Nopaline synthase: transeript mapping and DNA sequence. J Mol Appl Genet.
  • Manipulations which provide suitable restriction sites or which remove superfluous DNA or restriction sites can also be used. Where insertions, deletions or substitutions such as Transitions and transversions can be used in w ⁇ ro mutagenesis, "primer repair", restriction or ligation.
  • Preferred polyadenylation signals are plant polyadenylation signals, preferably those which essentially correspond to T-DNA polyadenylation signals from Agrobacterium tumefaciens, in particular gene 3 of T-DNA (octopine synthase) of the ti plasmid pTiACH ⁇ (Gielen et al., EMBO J. 3 ( 1984), 835 ff) or functional equivalents.
  • transformation The transfer of foreign genes into the genome of a plant is called transformation.
  • Methods known per se for the transformation and regeneration of plants from plant tissues or plant cells for transient or stable transformation can be used for this purpose.
  • Suitable methods for the transformation of plants are the protoplast transformation by polyethylene glycol-induced DNA uptake, the biolistic method with the gene cannon - the so-called "particle bombardment” method, the electroporation, the incubation of dry embryos in DNA-containing solution, the Microinjection and the Agrobacterium-mediated gene transfer described above.
  • the methods mentioned are described, for example, in B. Jenes et al., Techniques for Gene
  • the construct to be expressed is preferably cloned into a vector which is suitable for transforming Agrobacterium tumefaciens, for example pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984), 8711) or particularly preferably pSUN2, pSUN3, pSUN4 or pSUN5 (WO 02/00900).
  • Agrobacteria transformed with an expression plasmid can be used in a known manner to transform plants, e.g. by bathing wounded leaves or leaf pieces in an agrobacterial solution and then cultivating them in suitable media.
  • the fused expression cassette is cloned into a vector, for example pBin19 or in particular pSUN5 and pSUN3, which is suitable for being transformed into Agrobacterium tumefaciens.
  • Agrobacteria transformed with such a vector can then be used in a known manner to transform plants, in particular crop plants, for example by bathing wounded leaves or leaf pieces in an agrobacterial solution and then cultivating them in suitable media.
  • the expression cassettes can be cloned into suitable vectors which allow their multiplication, for example in E. coli.
  • suitable cloning vectors include pJIT117 (Guerineau et al. (1988) Nucl. Acids Res. 16: 11380), pBR332, pUC series, M13mp series and pACYC184.
  • Binary vectors which can replicate both in E. coli and in agrobacteria are particularly suitable.
  • the production of genetically modified microorganisms according to the invention with increased or caused ketolase activity and increased or caused ⁇ -cyclase activity is described in more detail, the changed ⁇ -cyclase activity being caused by a ⁇ -cyclase containing the amino acid sequence SEQ , ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has.
  • Phosphate reductoisomerase activity isopentenyl diphosphate ⁇ isomerase activity, geranyl diphosphate synthase activity, farnesyl diphosphate synthase activity, geranyl geranyl diphosphate synthase activity, phytoene synthase activity, Phytoene desaturase activity, zeta-carotene desaturase activity, crtlSO activity, FtsZ activity and / or Min D activity can be carried out analogously using the corresponding effect genes.
  • nucleic acids described above encoding a ketolase, ⁇ -hydroxylase or ⁇ -cyclase
  • nucleic acids encoding an HMG-CoA reductase nucleic acids encoding an (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate
  • nucleic acids encoding a 1-deoxy-D-xylose-5-phosphate synthase nucleic acids encoding a 1-deoxy-D-xylose-5-phosphate reductoisomerase, nucleic acids encoding an isopentenyl-diphosphate- ⁇ -isomerase, nucleic acids encoding one Geranyl diphosphate synthase, nucleic acids encoding a farnesyl diphosphate synthase, nucleic acids encoding a geranyl geranyl diphosphate synthase, nucleic acids encoding a phytoene synthase, encoding nucleic acids linseed acids encoding a phytoene synthase, nucleic acids encoding a phytoene desaturase, nucleic acids encoding a zeta-carotene desaturase, nucleic acids encoding a crtlSO protein, nucleic acids encoding an isopenteny
  • Such constructs according to the invention preferably comprise a promoter 5 'upstream of the respective coding sequence and a terminator sequence 3' downstream and, if appropriate, further customary regulatory elements, in each case operatively linked to the effect gene.
  • An “operative linkage” is understood to mean the sequential arrangement of promoter, coding sequence (effect gene), terminator and, if appropriate, further regulatory elements in such a way that each of the regulatory elements can perform its function as intended in the expression of the coding sequence.
  • sequences which can be linked operatively are targeting sequences and translation enhancers, enhancers, polyadenylation signals and the like.
  • Further regulatory elements include selectable markers, amplification signals, origins of replication and the like.
  • the natural regulation sequence can still be present before the actual effect gene. This natural regulation can possibly be switched off by genetic modification and the expression of the genes increased or decreased.
  • the gene construct can also have a simpler structure, ie no additional regulation signals are inserted in front of the structural gene and the natural promoter with its regulation is not removed. Instead, the natural regulatory sequence is mutated so that regulation no longer takes place and gene expression is increased or decreased.
  • the nucleic acid sequences can be contained in one or more copies in the gene construct.
  • Examples of useful promoters in microorganisms are: cos-, tac-, trp-, tet-, trp-tet-, Ipp-, lac-, Ipp-lac-, laclq-, T7-, T5-, T3-, gal- , trc, ara, SP6, lambda PR or in the lambda PL promoter, which are advantageously used in gram-negative bacteria; as well as the gram-positive promoters amy and SP02 or the yeast promoters ADC1, MFa, AC, P-60, CYC1, GAPDH.
  • inducible promoters such as, for example, light-inducible and in particular temperature-inducible, is particularly preferred Promoters, such as the P r P r promoter.
  • the regulatory sequences mentioned are intended to enable the targeted expression of the nucleic acid sequences and the protein expression. Depending on the host organism, this can mean, for example, that the gene is only expressed or overexpressed after induction, or that it is expressed and / or overexpressed immediately.
  • the regulatory sequences or factors can preferably have a positive influence on the expression and thereby increase or decrease it.
  • the regulatory elements can advantageously be strengthened at the transcription level by using strong transcription signals such as promoters and / or "enhancers".
  • an increase in translation is also possible, for example, by improving the stability of the mRNA.
  • An expression cassette is produced by fusing a suitable promoter with the nucleic acid sequences described above, encoding a ketolase, ⁇ -hydroxylase, ⁇ -cyclase, HMG-CoA reductase, (E) -4-hydroxy-3-methylbut-2- enyl diphosphate reductase, 1-deoxy-D-xylose-5-phosphate synthase, 1 - deoxy-D-xylose-5-phosphate reductoisomerase, isopentenyl diphosphate ⁇ isomerase, geranyl diphosphate synthase, farnesyl Diphosphate synthase, geranyl-geranyl diphosphate synthase, phytoene synthase, phytoene desaturase, zeta-carotene desaturase, crtlSO protein, FtsZ protein and / or a MinD protein and a terminator or polyadenylation signal.
  • Vectors are well known to those skilled in the art and can be found, for example, in "Cloning Vectors" (Pouwels PH et al., Ed., Elsevier, Amsterdam-New York-Oxford, 1985).
  • vectors are also known to all those skilled in the art.
  • vectors such as phages, viruses such as SV40, CMV, baculovirus and adevirus, transposons, IS elements, phasmids, cosmids, and linear or circular DNA. These vectors can be replicated autonomously in the host organism or replicated chromosomally.
  • fusion expression vectors such as pGEX (Pharmacia Biotech Ine; Smith, DB and Johnson, KS (1988) Gene 67: 31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT 5 (Pharmacia, Piscataway, NJ) which glutathione-S-transferase (GST), maltose E-binding protein or protein A is fused to the recombinant target protein.
  • GST glutathione-S-transferase
  • Non-fusion protein expression vectors such as pTrc (Amann et al., (1988) Gene 69: 301-315) and pET 11d (Studier et al. Gene Expression Technology: Methods in
  • yeast expression vector for expression in the yeast S. cerevisiae such as pYepSed (Baldari et al., (1987) Embo J. 6: 229-234), pMFa (Kurjan and Herskowitz (1982) Cell
  • Vectors and methods of constructing vectors suitable for use in other fungi such as filamentous fungi include those described in detail in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer Systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, J.F. Peberdy et al., Eds., Pp. 1-28, Cambridge University Press: Cambridge.
  • Baculovirus vectors available for expression of proteins in cultured insect cells include the pAc series (Smith et al., (1983) Mol. Cell Biol .. 3: 2156-2165) and pVL series (Lucklow and Summers (1989) Virology 170: 31-39).
  • recombinant constructs according to the invention described above are advantageously introduced and expressed in a suitable host system.
  • Common cloning and transfection methods known to the person skilled in the art such as, for example, co-precipitation, protoplast fusion, electroporation, retroviral transfection and the like, are preferably used to bring the nucleic acids mentioned into expression in the respective expression system. Suitable systems are described, for example, in Current Protocols in Molecular Biology, F. Ausubel et al., Ed., Wiley Interscience, New York 1997.
  • marker genes which are also contained in the vector or in the expression cassette.
  • marker genes are genes for antibiotic resistance and for enzymes which catalyze a coloring reaction which stains the transformed cell. These can then be selected using automatic cell sorting.
  • Microorganisms successfully transformed with a vector and carrying an appropriate antibiotic resistance gene can be selected using appropriate antibiotic-containing media or nutrient media.
  • Marker proteins that are presented on the cell surface can be used for selection by means of affinity chromatography.
  • the invention further relates to the genetically modified, non-human organisms, the genetic modification being the activity of a ketolase
  • ⁇ -cyclase activity increased after C or caused after D is caused by a ⁇ -cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has.
  • the ketolase activity is increased (according to A) or caused (according to B) compared to the wild type, preferably by increasing the gene expression of a nucleic acid encoding a ketolase.
  • the gene expression of a nucleic acid encoding a ketolase is increased by introducing nucleic acids encoding ketolases into the organism.
  • the transgenic organisms according to the invention therefore have at least one further ketolase gene compared to the wild type.
  • any ketolase gene that is to say any nucleic acids encoding a ketolase, can be used for this purpose.
  • Preferred nucleic acids encoding a ketolase are described above in the method according to the invention.
  • the ⁇ -cyclase activity is preferably increased or caused, as described above, by increasing the gene expression compared to the wild type of nucleic acids, coding for a ⁇ -cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% Amino acid level with the sequence SEQ. ID. NO. 2 has.
  • the gene expression of a nucleic acid coding for a ⁇ -cyclase is increased by introducing into the organism at least one nucleic acid coding for a ⁇ -cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has.
  • the transgenic organisms according to the invention therefore have at least one further ⁇ -cyclase gene compared to the wild type.
  • any ⁇ -cyclase gene that is to say any nucleic acid encoding a ⁇ -cyclase, containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has to be used.
  • genetically modified organisms additionally have an increased or caused hydroxlase activity compared to the wild-type organism. Further preferred embodiments are described above in the method according to the invention.
  • genetically modified non-human organisms additionally have at least one further increased activity compared to the wild type, selected from the group HMG-CoA reductase activity, (E) - 4-hydroxy-3-methylbut - 2-enyl-diphosphate reductase activity, 1-deoxy-D-xylose-5-phosphate synthase activity, 1-deoxy-D-xylose-5-phosphate reductoisomerase activity, isopentenyl-diphosphate- ⁇ -isomerase -Activity, geranyl diphosphate synthase activity, farnesyl diphosphate synthase activity, geranyl geranyl diphosphate synthase activity, phytoene synthase activity, phytoene desaturase activity, zeta-carotene desaturase activity, crtlSO Activity, FtsZ activity and MinD activity.
  • HMG-CoA reductase activity selected from the group HMG-CoA reductase activity
  • E 4-hydroxy-3
  • organisms are preferably understood to mean organisms which, as wild-type or starting organisms, naturally or by genetic complementation and / or reorganization of the metabolic pathways, are capable of producing carotenoids, in particular ⁇ -carotene and / or zeaxanthin and / or neoxanthine and / or violaxanthin and / or to produce lutein.
  • Further preferred organisms already have hydroxylase activity as wild-type or starting organisms and are therefore capable of producing zeaxanthin as wild-type or starting organisms.
  • Preferred organisms are plants or microorganisms, such as bacteria, yeasts, algae or fungi.
  • Both bacteria can be used as bacteria that are able to synthesize xanthophylls due to the introduction of genes of the carotenoid biosynthesis of a carotenoid-producing organism, such as bacteria of the genus Escherichia, which contain, for example, crt genes from Erwinia, as well as bacteria. which are capable of synthesizing xanthophylls, such as, for example, bacteria of the genus Erwinia, Agrobacterium, Flavobacterium, Alcaligenes, Paracoccus, Nostoc or cyanobacteria of the genus Synechocystis.
  • Preferred bacteria are Escherichia coli, Erwinia herbicola, Erwinia uredovora, Agrobacterium aurantiacum, Alcaligenes sp. PC-1, Flavobacterium sp. strain R1534, the Cyanobacterium Synechocystis sp. PCC6803, Paracoccus marcusii or Paracoccus carotinifaciens.
  • yeasts are Candida, Saccharomyces, Hansenula, Pichia or Phaffia. Particularly preferred yeasts are Xanthophyllomyces dendrorhous or Phaffia rhodozyma.
  • Preferred mushrooms are Aspergillus, Trichoderma, Ashbya, Neurospora, Blakeslea, in particular Blakeslea trispora, Phycomyces, Fusarium or others in Indian Chem. Engr. Section B. Vol. 37, No. 1, 2 (1995) on page 15, table 6 described mushrooms.
  • Preferred algae are green algae, such as algae of the genus Haematococcus, Phaedactylum tricomatum, Volvox or Dunaliella. Particularly preferred algae are Haematococcus puvialis or Dunaliella bardawil. Further useful microorganisms and their preparation for carrying out the method according to the invention are known, for example, from DE-A-199 16 140, to which reference is hereby made.
  • Particularly preferred plants are plants selected from the families amateur ranthaceae.Amaryllidaceae, Apocynaceae, Asteraceae, Balsaminaceae Begoniaceae, Berberidaceae, Brassicaceae.Cannabaceae, Caprifoliaceae, Caryophyllaceae, Chemischen nopodiaceae, Compositae, Cucurbitaceae, Cruciferae, Euphorbiaceae, Fabaceae, Gentianaceae, Geraniaceae , Graminae, liliaceae, Labiatae, Lamiaceae, Leguminosae, Liliaceae, Linaceae, Lobeliaceae, Malvaceae, Oleaceae, Orchidaceae, Papaveraceae, Plumbaginaceae, Poaceae, Polemoniaceae, Primulacaceae, Roseaaceae, Rosunceae , Vitaceae and Violaceae.
  • Very particularly preferred plants are selected from the group of the plant genera Marigold, Tagetes Errecta, Tagetes patula, Acacia, Aconitum, Adonis, Arnica, Aquilegia, Aster, Astragalus, Bignonia, Calendula, Caltha, Campanula, Canna, Centaurea, Cheiranthus, Chrysanthemum , Citrus, Crepis, Crocus, Curcurbita, Cytisus, Delonia, Delphinium, Dianthus, Dimorphotheca, Doronicum, Eschscholtzia, Forsythie, Fremontia, Gazania, Gelsemium, Genista, Gentiana, Geranium, Gerbera, Geum, Grevillaea, Helenium, Helianthus, Hepatica , Heracleum, Hisbiscus, Heliopsis, Hypericum, Hypochoeris, Impatiens, Iris, Jacaranda, Kenya, Laburnum, Lathyrus, Leontodon, Lilium
  • Very particularly preferred genetically modified plants are selected from the plant genera Marigold, Tagetes erecta, Tagetes patula, Adonis, Lycopersicon, Rosa, Calendula, Physalis, Medicago, Helianthus, Chrysanthemum, Aster, Tulipa, Narcissus, Petunia, Geranium or Tropaeolum, whereby the genetically modified plant contains at least one transgenic nucleic acid encoding a ketolase.
  • transgenic plants, their reproductive material and their plant cells, tissue or parts, in particular their fruits, seeds, flowers and petals are another object of the present invention.
  • the genetically modified plants can be used to produce ketocarotenoids, in particular astaxanthin.
  • Genetically modified organisms according to the invention in particular plants or parts of plants, such as, in particular, petals with an increased content of ketocarotenoids, in particular astaxanthin, which can be consumed by humans and animals can also be used, for example, directly or after processing known per se as food or feed or as feed and food supplements.
  • the genetically modified organisms can be used for the production of ketocarotenoid-containing extracts of the organisms and / or for the production of feed and food supplements.
  • the genetically modified organisms have an increased ketocarotenoid content compared to the wild type.
  • An increased ketocarotenoid content is generally understood to mean an increased total ketocarotenoid content.
  • ketocarotenoids is also understood to mean, in particular, a changed content of the preferred ketocarotenoids, without the total carotenoid content necessarily having to be increased.
  • the genetically modified plants according to the invention have an increased astaxanthin content compared to the wild type.
  • an increased content is also understood to mean a caused content of ketocarotenoids or astaxanthin.
  • the sequencing of recombinant DNA molecules was carried out using a laser fluorescence DNA sequencer from Licor (distributed by MWG Biotech, Ebersbach) according to the Sanger's method (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463-5467).
  • the DNA required for the NOST ketolase from Nostoc sp. PCC 7120 coded was by means of PCR from Nostoc sp. PCC 7120 (strain of the "Pasteur Culture Collection of Cyanobacterium”) amplified.
  • the bacterial cells were pelleted from a 10 ml liquid culture by centrifugation at 8,000 rpm for 10 minutes. The bacterial cells were then crushed and ground in liquid nitrogen using a mortar. The cell material was resuspended in 1 ml of 10 mM Tris HCl (pH 7.5) and transferred to an Eppendorf reaction vessel (2 ml volume). After adding 100 ⁇ l Proteinase K (concentration: 20 mg / ml), the cell suspension was incubated for 3 hours at 37 ° C. The suspension was then extracted with 500 ⁇ l of phenol. After centrifugation at 13,000 rpm for ⁇ minutes, the upper, aqueous phase was transferred to a new 2 ml Eppendorf reaction vessel.
  • the extraction with phenol was repeated 3 times.
  • the DNA was precipitated by adding 1/10 volume of 3 M sodium acetate (pH 5.2) and 0.6 volume of isopropanol and then washed with 70% ethanol.
  • the DNA pellet was dried at room temperature, taken up in 25 ⁇ l of water and dissolved with heating to 65 ° C.
  • the nucleic acid encoding a ketolase from Nostoc PCC 7120 was determined by means of a "polymerase chain reaction” (PCR) from Nostoc sp. PCC 7120 using a sense-specific primer (NOSTF, SEQ ID No. 79) and an antisense specific primers (NOSTG SEQ ID No. 80).
  • PCR polymerase chain reaction
  • the PCR conditions were as follows:
  • the PCR for the amplification of the DNA which codes for a ketolase protein consisting of the entire primary sequence, was carried out in a 50 ⁇ l reaction mixture which contained:
  • the PCR was carried out under the following cycle conditions:
  • PCR amplification with SEQ ID No. 79 and SEQ ID No. 80 resulted in an 805 bp fragment which codes for a protein consisting of the entire primary sequence (SEQ ID No. 81).
  • the amplificate was cloned into the PCR cloning vector pGEM-T (Promega) and the clone pNOSTF-G was obtained.
  • This clone pNOSTF-G was therefore used for the cloning into the expression vector pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380).
  • the cloning was carried out by isolating the 799 bp Sphl fragment from pNOSTF-G and ligating into the SphI-cut vector pJIT117.
  • the clone that is the ketolase from Nostoc sp. PCC 7120, in the correct orientation as an N-terminal translational fusion with the rbcS transit peptide, is called pJNOST.
  • Example 2 Construction of the plasmid pMCL-CrtYlBZ idi / gps for the synthesis of zeaxanthin in E. coli
  • PMCL-CrtYlBZ / idi / gps was constructed in three steps using the intermediate stages pMCL-CrtYlBZ and pMCL-CrtYlBZ / idi.
  • the plasmid pMCL200 compatible with high-copy-number vectors was used as the vector (Nakano, Y., Yoshida, Y., Yamashita, Y. and Koga, T .; Construction of a series of pACYC-derived plasmid vectors; Gene 162 ( 1995), 157-158).
  • Example 2.1 Construction of pMCL-CrtYlBZ
  • the biosynthetic genes crtY, crtB, crtl and crtZ come from the bacterium Erwinia uredovora and were amplified by PCR.
  • Erwinia uredovora genomic DNA (DSM 30080) was prepared by the German Collection of Microorganisms and Cell Culture (DSMZ, Braunschweig) as part of a service.
  • the PCR reaction was carried out according to the manufacturer's instructions (Röche, Long Template PCR: Procedure for amplification of 5-20 kb targets with the expand long template PCR system).
  • the PCR conditions for the amplification of the Erwinia uredovora biosynthesis cluster were as follows:
  • PCR amplification with SEQ ID No. 82 and SEQ ID No. 83 resulted in a fragment (SEQ ID NO: 84) which is responsible for the genes CrtY (protein: SEQ ID NO: 85), CrtI (protein: SEQ ID NO: 86), crtB (protein: SEQ ID NO: 87) and CrtZ (iDNA) encoded.
  • the amplificate was cloned into the PCR cloning vector pCR2.1 (Invitrogen) and the clone pCR2.1-CrtYIBZ was obtained.
  • the plasmid pCR2.1-CrtYIBZ was cut Sall and Hindill, the resulting Sall / Hindlll fragment isolated and transferred by ligation into the Sall / Hindlll cut vector pMCL200.
  • the Sall / Hindlll fragment from pCR2.1-CrtYIBZ cloned in pMCL 200 is 4624 bp long, codes for the genes CrtY, CrtI, crtB and CrtZ and corresponds to the sequence from positions 2295 to 6918 in D90087 (SEQ ID No. 84).
  • the gene CrtZ is transcribed against the reading direction of the genes CrtY, CrtI and CrtB by means of its endogenous promoter.
  • the resulting clone is called pMCL-CrtYlBZ.
  • Example 2.2 Construction of pMCL-CrtYlBZ / idi
  • the gene ⁇ (isopentenyl diphosphate isomerase; IPP isomerase) was amplified from E. coli by means of PCR.
  • the nucleic acid encoding the entire idi gene with idi promoter and ribosome binding site was extracted from E. coli by means of "polymerase chain reaction” (PCR) using a sense-specific primer (5'-idi SEQ ID No. 88) and an antisense-specific primer (3'-idi SEQ ID No. 89) was amplified.
  • the PCR conditions were as follows:
  • the PCR for the amplification of the DNA was carried out in a 50 ⁇ l reaction mixture, which contained:
  • the PCR was carried out under the following cycle conditions:
  • PCR amplification with SEQ ID No. 88 and SEQ ID No. 89 resulted in a 679 bp fragment coding for a protein consisting of the entire primary sequence (SEQ ID No. 90).
  • the amplificate was cloned into the PCR cloning vector pCR2.1 (Invitrogen) and the clone pCR2.1-idi was obtained.
  • Sequencing of the clone pCR2.1-idi confirmed a sequence that does not differ from the published sequence AE000372 in position 8774 to position 9440. This region includes the promoter region, the potential ribosome binding site and the entire "open reading frame" for the IPP isomerase.
  • the fragment cloned in pCR2.1-idi has a total length of 679 bp by inserting an Xhol site at the 5 'end and a SalI site at the 3' end of the / oY gene.
  • This clone was therefore used for the cloning of the / oY gene in the vector pMCL-CrtYlBZ.
  • the cloning was carried out by isolating the Xhol / Sall fragment from pCR2.1-idi and ligating into the Xhol / Sall cut vector pMCL-CrtYlBZ.
  • the resulting clone is called pMCL-CrtYlBZ / idi.
  • Example 2.3 Construction of pMCL-CrtYlBZ / idi / gps
  • the gene gps (geranylgeranyl pyrophosphate synthase; GGPP synthase) was amplified from Archaeoglobus fulgidus by means of PCR.
  • the DNA of Archaeoglobus fulgidus was prepared by the German Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig) as part of a service.
  • the PCR conditions were as follows: The PCR for the amplification of the DNA, which codes for a GGPP synthase protein consisting of the entire primary sequence, was carried out in a 50 ⁇ l reaction mixture which contained:
  • the PCR was carried out under the following cycle conditions:
  • Sequencing of the clone pCB-gps confirmed a sequence for the GGPP synthase from A. fulgidus, which differs from the published sequence AF120272 in one nucleotide.
  • the second codon of the GGPP synthase was changed by inserting an Ncol site in the grps gene.
  • CTG (position 4-6) codes for leucine.
  • SEQ ID No. 92 and SEQ ID No. In 93 this second codon was changed to GTG, which codes for valine.
  • the clone pCB-gps was therefore used for the cloning of the gps gene into the vector pMCL-CrtYlBZ / idi.
  • the cloning was carried out by isolating the Kpnl / Xhol fragment from pCB-gps and ligation into the Kpnl and Xhol cut vector pMCL-CrtYlBZ / idi.
  • the cloned Kpnl / Xhol fragment (SEQ ID No.
  • GGPP synthase carries the Prm16 promoter together with a minimal 5 'UTR sequence of rbcL, the first 6 codons of rbcL, which extend the GGPP synthase N-terminally and 3 'from the gps gene the psbA sequence.
  • the N-terminus of the GGPP synthase thus has the changed amino acid sequence Met-Thr-Pro-Gln-Thr-Ala-Met instead of the natural amino acid sequence with Met-Leu-Lys-Glu (amino acid 1 to 4 from AF120272) -Val-Lys- Glu.
  • the recombinant GGPP synthase starting with Lys in position 3 (in AF120272), is identical and has no further changes in the amino acid sequence.
  • the rbcL and psbA sequences were based on a reference according to EibI et al. (Plant J. 19. (1999), 1-13).
  • the resulting clone is called pMCL-CrtYlBZ / idi / gps.
  • the plasmid pMCL-CrtYlBZ idi / gps was constructed to produce E. co // strains which enable the synthesis of zeaxanthin in high concentration.
  • the plasmid carries the genes crtY, crtB, crtl and crtY from Erwinia uredovora, the gene gps (for geranylgeranyl pyrophoshate synthastase) from Archaeoglobus fulgidus and the gene idi (isopentenyl diphosphate isomerase) from E. coli. Limiting steps for a high accumulation of carotenoids and their biosynthetic precursors were eliminated with this construct. This was previously reported by Wang et al.
  • E. coli TOP10 Cultures of E. coli TOP10 were transformed in a manner known per se with the two plasmids pNOSTF-G and pMCL-CrtYlBZ / idi / gps and cultured in LB medium at 30 ° C. and 37 ° C. overnight. Ampicillin (50 ⁇ g / ml), chloramphenicol (50 ⁇ g / ml) and isopropyl- ⁇ -thiogalactoside (1 mmol) were also added overnight in a conventional manner.
  • the cells were extracted with acetone, the organic solvent was evaporated to dryness and the Ca Rotinoids separated by HPLC on a C30 column. The following process conditions were set.
  • Detection 300 - 500 nm
  • the spectra were determined directly from the elution peaks using a photodiode array detector.
  • the isolated substances were identified by their absorption spectra and their retention times in comparison to standard samples.
  • an E.co// strain which contains a ketolase from Haematococcus pluvialis Flotow em. Will expressed.
  • the cDNA which is responsible for the entire primary sequence of the ketolase from Haematococcus pluvialis Flotow em. Will is coded amplified and cloned into the same expression vector according to Example 1.
  • the cDNA coding for the ketolase from Haematococcus pluvialis was amplified by means of PCR from a Haematococcus pluvialis (strain 192.80 from the "Collection of algal cultures of the University of Göttingen") suspension culture.
  • RNA For the preparation of total RNA from a suspension culture of Haematococcus pluvialis (strain 192.80), which was exposed to indirect daylight at room temperature in Haematococ cus medium (1.2 g / l sodium acetate, 2 g / l yeast extract, 0.2 g / l MgCI2x6H20, 0.02 CaCI2x2H20; pH 6.8; after autoclaving, 400 mg / l L-asparagine, 10 mg / l FeS04xH20) had been grown the cells are harvested, frozen in liquid nitrogen and pulverized in a mortar.
  • Haematococ cus medium 1.2 g / l sodium acetate, 2 g / l yeast extract, 0.2 g / l MgCI2x6H20, 0.02 CaCI2x2H20; pH 6.8; after autoclaving, 400 mg / l L-asparagine, 10 mg / l FeS04
  • RNA For the cDNA synthesis, 2.5 ⁇ g of total RNA were denatured for 10 min at 60 ° C., cooled on ice for 2 min and using a cDNA kit (ready-to-go-you-prime beads, Pharmacia Biotech) according to the manufacturer's instructions rewritten into cDNA using an antisense specific primer PR1 (gcaagctcga cagctacaaa cc).
  • the nucleic acid encoding a kematolase from Haematococcus pluvialis was amplified by means of a polymerase chain reaction (PCR) from Haematococcus pluvialis using a sense-specific primer PR2 (gaagcatgca gctagcagcg acag) and an antisense-specific primer PR1.
  • PCR polymerase chain reaction
  • the PCR conditions were as follows:
  • the PCR for the amplification of the cDNA which codes for a ketolase protein consisting of the entire primary sequence, was carried out in a 50 ml reaction mixture which contained:
  • the PCR was carried out under the following cycle conditions:
  • the PCR amplification with PR1 and PR2 resulted in a 1155 bp fragment consisting encodes a protein consisting of the entire primary sequence: gaagcatgca gctagcagcg acagtaatgt tggagcagct taccggaagc gctgaggcac 60 tcaaggagaa ggagaaggag gttgcaggca gctctgacgt gtgtaca tgggcgaccc 120 agtactcgct tccgtcagag gagtcagacg cggccccc gggactgaag aatgcctaca 180 agccaccaccacc ttccgacaca aagggcatca caatggcgct agctcatc ggctctggg 240 ccgcagtgttt c
  • the amplificate was cloned into the PCR cloning vector pGEM-Teasy (Promega) and the clone pGKET02 was obtained.
  • This clone was used for the expression of Haematococcus pluvialis ketolase.
  • the transformation of the E. coli strains, their cultivation and the analysis of the carotenoid profile were carried out as described in Example 3.
  • Table 1 shows a comparison of the bacterially produced amounts of carotenoids:
  • Table 1 Comparison of the bacterial ketocarotenoid synthesis when using two different ketolases, the NOST ketolase from Nostoc sp. PCC7120 (Example 1) and the Haematococcus pluvialis ketolase (Example 4). Amounts of carotenoids are in ng / ml culture fluid.
  • Example 5 Amplification of a DNA encoding the entire primary sequence of the NP196 ketolase from Nostoc punctiforme ATCC 29133
  • the DNA which codes for the NP196 ketolase from Nostoc punctiform ATCC 29133 was amplified by means of PCR from Nostoc punctiform ATCC 29133 (strain of the "American Type Culture Collection").
  • the bacterial cells were pelleted from a 10 ml liquid culture by centrifugation at 8000 rpm for 10 minutes. The bacterial cells were then crushed and ground in liquid nitrogen using a mortar. The cell material was resuspended in 1 ml of 10 mM Tris-HCl (pH 7.5) and transferred into an Eppendorf reaction vessel (2 ml volume). After adding 100 QCI Proteinase K (concentration: 20 mg / ml), the cell suspension was incubated for 3 hours at 37 ° C. The suspension was then extracted with 500 ⁇ l of phenol. After centrifugation at 13000 rpm for 5 minutes, the upper, aqueous phase was transferred to a new 2 ml Eppendorf reaction vessel.
  • the extraction with phenol was repeated 3 times.
  • the DNA was precipitated by adding 1/10 volume of 3 M sodium acetate (pH 5.2) and 0.6 volume of isopropanol and then washed with 70% ethanol.
  • the DNA pellet was temperature dried, in 25 ⁇ l
  • the nucleic acid encoding a ketolase from Nostoc punctiform ATCC 29133 was synthesized by means of a "polymerase chain reaction” (PCR) from Nostoc punctiform ATCC 29133 using a sense-specific primer (NP196-1, SEQ ID No. 100) and an antisense -specific primer (NP196-2 SEQ ID No. 101).
  • PCR polymerase chain reaction
  • the PCR conditions were as follows:
  • the PCR for the amplification of the DNA which codes for a ketolase protein consisting of the entire primary sequence, was carried out in a 50 ⁇ l reaction mixture which contained:
  • the PCR was carried out under the following cycle conditions:
  • PCR amplification with SEQ ID No. 100 and SEQ ID No. 101 resulted in a 792 bp fragment that codes for a protein consisting of the entire primary sequence (NP196, SEQ ID No. 102).
  • the amplificate was cloned into the PCR cloning vector pCR 2.1 (Invitrogen) and the clone pNP196 was obtained.
  • This clone pNP196 was therefore used for the cloning into the expression vector pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380).
  • pJIT117 was modified by the 35S terminator using the OCS terminator (octopine synthase) of the Ti plasmid pTi15955 from Agrobacterium tumefaciens (database entry X00493 from position 12.541-12.350, Gielen et al. (1984) EMBO J. 3 835-846) was replaced.
  • OCS terminator octopine synthase
  • the DNA fragment containing the OCS terminator region was PCR-isolated using the plasmid pHELLSGATE (database entry AJ311874, Wesley et al. (2001) Plant J. 27 581-590, isolated from E. coli by standard methods) and the primer OCS-1 (SEQ ID No. 133) and OCS-2 (SEQ ID No. 134).
  • the PCR conditions were as follows:
  • the PCR for the amplification of the DNA which contains the octopine synthase (OCS) terminator region (SEQ ID No. 106), was carried out in a 50 ⁇ l reaction mixture, which contained:
  • the PCR was carried out under the following cycle conditions:
  • Sequencing of the clone pOCS confirmed a sequence which corresponds to a sequence section on the Ti plasmid pTi 15955 from Agrobacterium tumefaciens (database entry X00493) from positions 12,541 to 12,350.
  • the cloning was carried out by isolating the 210 bp Sall-Xhol fragment from pOCS and ligation into the Sall-Xhol cut vector pJIT117.
  • This clone is called pJO and was therefore used for the cloning into the expression vector pJONPI 96.
  • the cloning was carried out by isolating the 782 bp Sphl fragment from pNP196 and ligating into the SphI cut vector pJO.
  • the clone that contains the NP196 ketolase from Nostoc punctiforme in the correct orientation as an N-terminal translational fusion with the rbcS transit peptide is called pJONP196.
  • Example 6 Production of expression vectors for the constitutive expression of the NP196 ketolase from Nostoc punctiforme ATCC 29133 in Lycopersicon esculentum and Tagetes erecta.
  • NP196 ketolase from Nostoc punctiforme in L. esculentum and in Tagetes erecta was carried out under the control of the constitutive promoter FNR (ferredoxin NADPH oxidoreductase, database entry AB011474 position 70127 to 69493;
  • WO03 / 006660 from Arabidopsis thaliana.
  • the FNR gene begins at base pair 69492 and is annotated with "ferredoxin-NADP + reductase”. Expression was carried out using the pea transit peptide rbcS (Anderson et al. 1986, Biochem J. 240: 709-715).
  • the DNA fragment containing the FNR promoter region from Arabidopsis thaliana was PCR-analyzed using genomic DNA (isolated from Arabidopsis thaliana according to standard methods) and the primers FNR-1 (SEQ ID No. 107) and FNR-2 (SEQ ID No. 108).
  • the PCR conditions were as follows:
  • the PCR for the amplification of the DNA which contains the FNR promoter fragment FNR (SEQ ID No. 109), was carried out in a 50 ⁇ l reaction mixture which contained:
  • the PCR was carried out under the following cycle conditions:
  • the 652 bp amplificate was cloned into the PCR cloning vector pCR 2.1 (Invitrogen) using standard methods and the plasmid pFNR was obtained.
  • Sequencing of the clone pFNR confirmed a sequence which corresponds to a sequence section on chromosome 5 of Arabidopsis thaliana (database entry AB011474) from positions 70127 to 69493.
  • This clone is called pFNR and was therefore used for the cloning into the expression vector pJONP196 (described in Example 5).
  • the cloning was carried out by isolating the 644 bp Smal-Hindlll fragment from pFNR and ligating into the Ecl136ll-Hindlll cut vector pJONP196.
  • the clone which contains the promoter FNR instead of the original promoter d35S and the fragment NP196 in the correct orientation as an N-terminal fusion with the rbcS transit peptide is called pJOFNR: NP196.
  • the expression vector MSP105 contains fragment FNR promoter the FNR promoter (635 bp), fragment rbcS TP FRAGMENT the rbcS transit peptide from pea (194 bp), fragment NP196 KETO CDS (761 bp), coding for the Nostoc punctiforme NP196 ketolase, fragment OCS terminator (192 bp) the polyadenylation signal from the octopine synthase.
  • MSP106 To produce the Tagetes expression vector MSP106, the 1,839 bp EcoRI-Xhol fragment from pJOFNR: NP196 was ligated with the EcoRI-Xhol cut vector pSUN5.
  • MSP106 contains fragment FNR promoter the FNR promoter (635 bp), fragment rbcS TP FRAGMENT the rbcS transit peptide from pea (194 bp), fragment NP196 KETO CDS (761 bp), coding for the nostoc punctiform NP196 ketolase, fragment OCS terminator (192 bp) the polyadenylation signal of octopine synthase.
  • NP196 ketolase from Nostoc punctiforme in L. esculentum and Tagetes erecta was carried out with the transit peptide rbcS from pea (Anderson et al. 1986, Biochem J. 240: 709-715). The expression was carried out under the control of the flower-specific promoter EPSPS from Petunia hybrida (database entry M37029: nucleotide region 7-1787; Benfey et al. (1990) Plant Cell 2: 849-856).
  • the DNA fragment which contains the EPSPS promoter region (SEQ ID No. 112) from Petunia hybrida was PCR-analyzed using genomic DNA (isolated from Petunia hybrida according to standard methods) and the primers EPSPS-1 (SEQ ID No. 110) and EPSPS -2 (SEQ ID No. 111).
  • the PCR conditions were as follows:
  • the PCR for the amplification of the DNA which contains the EPSPS promoter fragment (database entry M37029: nucleotide region 7-1787), was carried out in a 50 ⁇ l reaction mixture which contained:
  • the PCR was carried out under the following cycle conditions:
  • the 1773 bp amplificate was cloned into the PCR cloning vector pCR 2.1 (Invitrogen) using standard methods and the plasmid pEPSPS was obtained.
  • Sequencing of the clone pEPSPS confirmed a sequence consisting only of two deletions (bases ctaagtttcagga in position 46-58 of sequence M37029; bases aaaaatat in positions 1422-1429 of sequence M37029) and the base changes (T instead of G in position 1447 of sequence M37029 ; A instead of C in position 1525 of sequence M37029; A instead of G in position 1627 of sequence M37029) differs from the published EPSPS sequence (database entry M37029: nucleotide region 7-1787).
  • the two deletions and the two base changes at positions 1447 and 1627 of sequence M37029 were reproduced in an independent amplification experiment and thus represent the actual nucleotide sequence in the Petunia hybrida plants used.
  • the clone pEPSPS was therefore used for the cloning into the expression vector pJONP196 (described in Example 5).
  • the cloning was carried out by isolating the 1763 bp SacI-HindIII fragment from pEPSPS and ligation into the SacI-HindIII cut vector pJ0NP196.
  • the clone that contains the EPSPS promoter instead of the original d35S promoter is called pJOESP: NP196.
  • This expression cassette contains the fragment NP196 in the correct orientation as an N-terminal fusion with the rbcS transit peptide.
  • the expression vector MSP107 contains fragment EPSPS the EPSPS promoter (1761 bp), fragment rbcS TP FRAGMENT the rbcS transit peptide from pea (194 bp), fragment NP196 KETO CDS (761 bp), coding for the Nostoc punctiform NP196 ketolase (fragment OCS terminator) bp) the polyadenylation signal of octopine synthase.
  • An expression vector for the Agrobacterium -mediated transformation of the EPSPS-controlled NP196 ketolase from Nostoc punctiforme in Tagetes erecta was produced using the binary vector pSUN5 (WO02 / 00900).
  • the expression vector MSP108 contains fragment EPSPS the EPSPS promoter (1761 bp), fragment rbcS TP FRAGMENT the rbcS transit peptide from pea (194 bp), fragment NP196 KETO CDS (761 bp), coding for the nostoc punctiform NP196 ketolase, fragment OCS terminator 192 bp) the polyadenylation signal of octopine synthase.
  • the DNA encoding the NP195 ketolase from Nostoc punctiform ATCC 29133 was amplified by PCR from Nostoc punctiform ATCC 29133 (strain of the "American Type Culture Collection"). The preparation of genomic DNA from a suspension culture of Nostoc punctiforme ATCC 29133 was described in Example 5.
  • the nucleic acid encoding a Nostoc punctiform ATCC 29133 ketolase was synthesized by means of a "polymerase chain reaction” (PCR) from Nostoc punctiform ATCC 29133 using a sense-specific primer (NP195-1, SEQ ID No. 113) and an antisense-specific one Primers (NP195-2 SEQ ID No. 114) amplified.
  • PCR polymerase chain reaction
  • the PCR conditions were as follows:
  • the PCR for the amplification of the DNA which codes for a ketolase protein consisting of the entire primary sequence, was carried out in a 50 ⁇ l reaction mixture in which hold was:
  • the PCR was carried out under the following cycle conditions:
  • PCR amplification with SEQ ID No. 113 and SEQ ID No. 114 resulted in an 819 bp fragment which codes for a protein consisting of the entire primary sequence (NP195, SEQ ID No. 115).
  • the amplificate was cloned into the PCR cloning vector pCR 2.1 (Invitrogen) and the clone pNP195 was obtained.
  • Primer confirmed a sequence identical to the DNA sequence 55.604-56.392 of database entry NZ_AABC010001965, except that T at position 55.604 was replaced by A to create a standard ATG start codon.
  • This nucleotide sequence was reproduced in an independent amplification experiment and thus represents the nucleotide sequence in the Nostoc punctiforme ATCC 29133 used.
  • This clone pNP195 was therefore used for the cloning into the expression vector pJO (described in Example 5).
  • the cloning was carried out by isolating the 809 bp Sphl fragment from pNP195 and ligation into the SphI-cut vector pJO.
  • the clone which contains the NP 95 ketolase from Nostoc punctiforme in the correct orientation as an N-terminal translational fusion with the rbcS transit peptide is called pJONP195.
  • Example 9 Production of expression vectors for the constitutive expression of NP195-ketolase from Nostoc punctiforme ATCC 29133 in Lycopersicon esculentum and Tagetes erecta.
  • the expression of the NP195 ketolase from Nostoc punctiforme in L. esculentum and in Tagetes erecta was carried out under the control of the constitutive promoter FNR (ferredoxin-NADPH-oxidoreductase, database entry AB011474 position 70127 to 69493; WO03 / 006660), from Arabidopsis thaliana.
  • FNR constitutive promoter
  • the FNR gene begins at base pair 69492 and is annotated with "ferredoxin-NADP + reductase”. Expression was carried out using the pea transit peptide rbcS (Anderson et al. 1986, Biochem J. 240: 709-715).
  • the clone pFNR (described in Example 6) was therefore used for the cloning into the expression vector pJONP 95 (described in Example 8).
  • the cloning was carried out by isolating the 644 bp Sma-Hindill fragment from pFNR and ligation in the Ecl136ll-
  • Hindlll cut vector pJONP195 The clone which contains the promoter FNR instead of the original promoter d35S and the fragment NP195 in the correct orientation as an N-terminal fusion with the rbcS transit peptide is called pJOFNR: NP195.
  • the expression vector MSP109 contains fragment FNR promoter the FNR promoter (635 bp), fragment rbcS TP FRAGMENT the rbcS transit peptide from pea (194 bp), fragment NP195 KETO CDS (789 bp), coding for the nostoc punctiform NP195-Ketolator, fragment (192 bp) the polyadenylation signal from the octopine synthase.
  • the expression vector MSP110 contains fragment FNR promoter the FNR Promoter (635 bp), fragment rbcS TP FRAGMENT the rbcS transit peptide from pea (194 bp), fragment NP195 KETO CDS (789 bp), coding for the Nostoc punctiform NP195 ketolase, fragment OCS terminator (192 bp) the polyadenylation signal from octopine synthase.
  • NP195 ketolase from Nostoc punctiforme in L. esculentum and Tagetes erecta was carried out with the transit peptide rbcS from pea (Anderson et al. 1986, Biochem J. 240: 709-715). The expression was carried out under the control of the flower-specific promoter EPSPS from Petunia hybrida (database entry M37029: nucleotide region 7-1787; Benfey et al. (1990) Plant Cell 2: 849-856).
  • the clone pEPSPS (described in Example 7) was therefore used for the cloning into the expression vector pJONP195 (described in Example 8).
  • the cloning was carried out by isolating the 1763 bp SacI-HindIII fragment from pEPSPS and ligation into the SacI-HindIII cut vector pJ0NP195.
  • the clone that contains the EPSPS promoter instead of the original d35S promoter is called pJOESP: NP195.
  • This expression cassette contains the fragment NP195 in the correct orientation as an N-terminal fusion with the rbcS transit peptide.
  • An expression vector for the Agrobacterium -mediated transformation of the EPSPS-controlled NP195 ketolase from Nostoc punctiforme ATCC 29133 in L. esculentum was produced using the binary vector pSUN3 (WO02 / 00900).
  • the expression vector MSP111 contains fragment EPSPS the EPSPS promoter (1761 bp), fragment rbcS TP FRAGMENT the rbcS transit peptide from pea (194 bp), fragment NP195 KETO CDS (789 bp), coding for the nostoc punctiform NP195 ketolase (fragment OCS terminator) 192 bp) the polyadenylation signal of octopine synthase.
  • An expression vector for the Agrobacterium -mediated transformation of the EPSPS-controlled NP195 ketolase from Nostoc punctiforme in Tagetes erecta was produced using the binary vector pSUN5 (WO02 / 00900).
  • the expression vector MSP112 contains fragment EPSPS the EPSPS promoter (1761 bp), fragment rbcS TP FRAGMENT the rbcS transit peptide from pea (194 bp), fragment NP195 KETO CDS (789 bp), coding for the nostoc punctiform NP195 ketolase (fragment OCS terminator) 192 bp) the polyadenylation signal of octopine synthase.
  • the expression of the chromoplast-specific beta-hydroxylase from Lycopersicon esculentum in Tagetes erecta takes place under the control of the flower-specific promoter EPSPS from Petunia (Example 7).
  • EPSPS flower-specific promoter
  • LB3 from Vicia faba is used as the terminator element.
  • the sequence of the chromoplast-specific beta-hydroxylase was generated by RNA isolation, reverse transcription and PCR.
  • genomic DNA from Vicia faba tissue is isolated according to standard methods and used by genomic PCR using the primers PR206 and PR207.
  • the PCR for the amplification of this LB3 DNA fragment is carried out in a 50 ⁇ l reaction mixture which contains:
  • PCR amplification with PR206 and PR207 results in a 0.3 kb fragment which contains the LB terminator.
  • the amplificate is cloned into the cloning vector pCR-BluntII (Invitrogen). Sequencing with the primers T7 and M13 confirm a sequence identical to the sequence SEQ ID: 118. This clone is called pTA-LB3 and is therefore used for the cloning into the vector pJIT117 (see below).
  • RNA from tomato is prepared for the production of the beta-hydroxylase sequence. For this, 100 mg of the frozen, powdered flowers are transferred to a reaction vessel and taken up in 0.8 ml of Trizol buffer (LifeTechnologies). The suspension is extracted with 0.2 ml of chloroform. After centrifugation at 12,000 g for 15 minutes, the aqueous supernatant is removed and transferred to a new reaction vessel and extracted with a volume of ethanol. The RNA is precipitated with a volume of isopropanol, washed with 75% ethanol and the pellet is dissolved in DEPC water (overnight incubation of water with 1/1000 volume of diethyl pyrocarbonate at room temperature, then autoclaved).
  • RNA concentration is determined photometrically.
  • cDNA synthesis 2.5 ⁇ g of total RNA are denatured for 10 min at 60 ° C., cooled on ice for 2 min and using a cDNA kit (ready-to-go-you-prime-beads, Pharmacia Biotech) according to the manufacturer's instructions using an antisense-specific primer (PR215 SEQ ID No. 119) transcribed into cDNA.
  • a cDNA kit ready-to-go-you-prime-beads, Pharmacia Biotech
  • the PCR for the amplification of the VPR203-PR215 DNA fragment which codes for the beta-hydroxylase is carried out in a 50 ⁇ l reaction mixture which contained:
  • the PCR amplification with VPR203 and PR215 results in a 0.9 kb fragment which codes for the beta-hydroxylase.
  • the amplificate is cloned into the cloning vector pCR-BluntII (Invitrogen). Sequencing with primers T7 and M13 confirms a sequence SEQ ID No. 121 identical sequence. This clone is called pTA-CrtR-b2 and is therefore used for cloning into the vector pCSP02 (see below).
  • the EPSPS promoter sequence from petunia is produced by PCR amplification using the plasmid MSP107 (see Example 7) and the primers VPR001 and VPR002.
  • the PCR for the amplification of this EPSPS-DNA fragment is carried out in a 50 ⁇ l reaction mixture, which contains: 1 ul cDNA (prepared as described above)
  • the PCR amplification with VPR001 and VPR002 results in a 1.8 kb fragment which encodes the EPSPS promoter.
  • the amplificate is cloned into the cloning vector pCR-BluntII (Invitrogen). Sequencing with the primers T7 and M13 confirm a sequence identical to the sequence SEQ ID: 124. This clone is called pTA-EPSPS and is therefore used for cloning into the vector pCSP03 (see below).
  • the first cloning step is carried out by isolating the 0.3 kb PR206-PR207 EcoRI-Xhol fragment from pTA-LB3, derived from the cloning vector pCR-BluntII (Invitrogen), and ligation with the EcoRI-Xhol cut vector pJIT117.
  • the clone that contains the 0.3 kb terminator LB3 is called pCSP02.
  • the second cloning step is carried out by isolating the 0.9 kb VPR003-PR215 Eco-Rl-Hindlll fragment from pTA-CrtR-b2, derived from the cloning vector pCR-Bluntll (Invitrogen), and ligation with the EcoRI-Hindlll cut vector pCSP02.
  • the clone that contains the 0.9 kb beta-hydroxylase fragment CrtR-b2 is called pCSP03.
  • the ligation creates a transcriptional fusion between the terminator LB3 and the beta-hydroxylase fragment CrtR-b2.
  • the third cloning step is carried out by isolating the 1.8 kb VPR001-VPR002 Ncol-Sacl fragment from pTA-EPSPS, derived from the cloning vector pCR-BluntII (Invitrogen), and ligation with the Ncol-Sacl cut vector pCSP03.
  • the clone that contains the 1.8 kb EPSPS promoter fragment is called pCSP04.
  • the ligation results in a transcriptional fusion between the EPSPS promoter and the beta hydroxylase fragment CrtR-b2.
  • pCSP04 contains fragment EPSPS fragment (1792 bp) the EPSPS promoter, fragment crtRb2 (929 bp) beta-hydroxylase CrtRb2, fragment LB3 (301 bp) the LB3 terminator.
  • the beta hydroxylase cassette is isolated as a 3103 bp Ecl136II-Xhol fragment.
  • the 3 'ends (30 min at 30 ° C) are filled using standard methods (Klenow fill-in).
  • the expression vector is called pCSEbhyd
  • promoter P76 SEQ ID NO. 125
  • the oligonucleotides were provided with a 5 'phosphate residue during the synthesis.
  • genomic DNA was isolated from Arabidopsis thaliana as described (Galbiati M et al. Funct. Integr. Genomics 2000, 20 1: 25-34).
  • the PCR amplification was carried out as follows:
  • the vector pSun ⁇ is digested with the restriction endonuclease EcoRV and also purified by agarose gel electrophoresis and obtained by gel elution.
  • the purified PCR product is cloned into the vector treated in this way.
  • This construct is called p76.
  • the 1032 bp fragment representing the Arabidopsis promoter P76 was sequenced (Seq ID NO. 131).
  • the terminator 35ST is obtained from pJIT 117 by digestion with the restriction endonucleases Kpnl and Smal.
  • the resulting 969 bp fragment is purified by agarose gel electrophoresis and isolated by gel elution.
  • the vector p76 is also digested with the restriction endonucleases Kpnl and Smal.
  • the resulting 7276bp fragment is purified by agarose gel electrophoresis and isolated by gel elution.
  • the 35ST fragment obtained in this way is cloned into the p76 treated in this way.
  • the resulting vector is called p76_35ST.
  • the Bgene (SEQ ID NO. 128) was isolated by means of PCR using genomic DNA from Lycopersicon esculentum as a template.
  • the oligonucleotides were provided with a 5 'phosphate residue during the synthesis.
  • the genomic DNA was isolated from Lycopersicon esculentum as described (Galbiati M et al. Funct. Integr. Genomics 2000, 20 1: 25-34).
  • the PCR amplification was carried out as follows:
  • the PCR product was purified by agarose gel electrophoresis and the 1665 bp fragment isolated by gel elution.
  • the vector p76_35ST is digested with the restriction endonuclease Smal and also purified by agarose gel electrophoresis and obtained by gel elution.
  • the purified PCR product is cloned into the vector treated in this way.
  • This construct is called pB.
  • pB is digested with the restriction endonucleases Pmel and Sspl and the 3906bp fragment containing the promoter P76, Bgene and the 35ST is purified by agarose gel electrophoresis and obtained by gel elution
  • MSP108 (Example 7) is digested with the restriction endonuclease Ecl126ll, purified by agarose gel electrophoresis and obtained by gel elution
  • the purified 3906bp fragment containing the promoter P76, Bgene and the 35ST from pB is cloned into the Vector MSP108 treated in this way.
  • This construct is called pMKP1.
  • Example 13 Production and analysis of transgenic Lycopersicon esculentum plants
  • Transformation and regeneration of tomato plants was carried out according to the published method by Ling and co-workers (Plant Cell Reports (1998), 17: 843-847).
  • kanamycin concentrations 100 mg / L
  • the starting explant for the transformation was cotyledons and hypocotyls, seven to ten day old seedlings of the Microtome line.
  • the culture medium according to Murashige and Skoog (1962: Murashige and Skoog, 1962, Physiol. Plant 15, 473-) with 2% sucrose, pH 6.1 was used for germination. Germination took place at 21 ° C with little light (20 to 100 ⁇ E).
  • the cotyledons were divided transversely and the hypocotyls were cut into sections about 5 to 10 mm long and placed on the medium MSBN (MS, pH 6.1, 3% sucrose + 1 mg / l BAP, 0.1 mg / l NAA), which was loaded with suspension-cultivated tomato cells the day before.
  • the tomato cells were covered with sterile filter paper without air bubbles.
  • the explants were precultured on the medium described for three to five days. Cells from the Agrobacterium tumefaciens LBA4404 strain were individually transformed with the plasmids.
  • the explants were transferred to MSZ2 medium (MS pH 6.1 + 3% sucrose, 2 mg / l zeatin, 100 mg / l kanamycin, 160 mg / l timentin) and for selective regeneration at 21 ° C stored under weak conditions (20 to 100 ⁇ E, light rhythm 16 h / 8 h).
  • MSZ2 medium MS pH 6.1 + 3% sucrose, 2 mg / l zeatin, 100 mg / l kanamycin, 160 mg / l timentin
  • the explants were transferred every two to three weeks until shoots formed. Small shoots could be separated from the explant and rooted on MS (pH 6.1 + 3% sucrose) 160 mg / l timentin, 30 mg / l kanamycin, 0.1 mg / l IAA. Rooted plants were transferred to the greenhouse.
  • MSP107 we got: msp107-1, msp107-2, msp107-3
  • MSP109 we got: mspl 09-1, mspl 09-2, mspl 09-3
  • germination medium MS medium; Murashige and Skoog, Physiol. Plant. 15 (1962), 473-497) pH 5.8, 2% sucrose.
  • Germination takes place in a temperature / light / time interval of 18 to 28 ° G20-200 ⁇ E / 3 to 16 weeks, but preferably at 21 ° C, 20 to 70 mE, for 4 to 8 weeks.
  • the bacterial strain can be grown as follows: A single colony of the corresponding strain is in YEB (0.1% yeast extract, 0.5% beef extract, 0.5% peptone, 0.5% sucrose, 0.5% magnesium sulfate x 7 H) 2 0) inoculated with 25 mg / l kanamycin and dressed at 28 ° C for 16 to 20 hours.
  • the bacterial suspension is then harvested by centrifugation at 6000 g for 10 min and resuspended in liquid MS medium in such a way that an OD 6 oo of approximately 0.1 to 0.8 was obtained. This suspension is used for the co-cultivation with the leaf material.
  • the MS medium in which the leaves have been kept is replaced by the bacterial suspension.
  • the leaflets were incubated in the agrobacterial suspension for 30 min with gentle shaking at room temperature.
  • the infected explants are then placed on an MS medium solidified with agar (for example 0.8% plant agar (Duchefa, NL) with growth regulators, such as 3 mg / l benzylaminopurine (BAP) and 1 mg / l indolylacetic acid (IAA).
  • agar for example 0.8% plant agar (Duchefa, NL) with growth regulators, such as 3 mg / l benzylaminopurine (BAP) and 1 mg / l indolylacetic acid (IAA).
  • the orientation of the leaves on the medium is irrelevant: the explants are cultivated for 1 to 8 days, but preferably for 6 days, the following conditions being able to be used: light intensity: 30 to 80 ⁇ mol / m 2 x sec, temperature : 22 to 24 ° C., light / dark change of 16/8 hours, after which the co-cultivated explants are transferred to fresh MS medium, preferably with the same growth regulators, this second medium additionally containing an antibiotic to suppress bacterial growth.
  • Timentin in a concentration of 200 to 500 mg / l is very suitable for this purpose
  • the second selective component is used to select the success of the transformation.
  • Phosphinothricin in a concentration of 1 to 5 mg / l selects very efficiently, but other selective components according to the method to be used are also conceivable.
  • the explants are transferred to fresh medium until shoot buds and small shoots develop, which are then on the same basal medium including timentin and PPT or alternative components with growth regulators, namely, for example, 0.5 mg / l indolylbutyric acid (IBA) and 0.5 mg / l gibberillic acid GA 3 , are transferred for rooting. Rooted shoots can be transferred to the greenhouse.
  • IBA 0.5 mg / l indolylbutyric acid
  • GA 3 gibberillic acid
  • the explants Before the explants are infected with the bacteria, they can be preincubated for 1 to 12 days, preferably 3 to 4, on the medium described above for the co-culture. The infection, co-culture and selective regeneration then take place as described above.
  • the pH value for regeneration (normally 5.8) can be lowered to pH 5.2. This improves the control of agrobacterial growth.
  • Liquid culture medium can also be used for the entire process.
  • the culture can also be incubated on commercially available carriers which are positioned on the liquid medium.
  • MSP108 we got: msp108-1, msp108-2, msp108-3
  • MSP110 we got: mspl 10-1, mspl 10-2, mspl 10-3
  • MSP112 the following was obtained: mspl 12-1, mspl 12-2, mspl 12-3
  • Example 15 Enzymatic lipase-catalyzed hydrolysis of carotenoid esters from plant material and identification of the carotenoids
  • Mortar plant material e.g. petal material (30-100 mg fresh weight) is extracted with 100% acetone (three times 500 ⁇ l; shake for about 15 minutes each). The solvent is evaporated. Carotenoids are then taken up in 495 ⁇ l of acetone, 4.95 ml of potassium phosphate buffer (100 mM, pH 7.4) are added and mixed well. Then about 17 mg of Bile salts (Sigma) and 149 ⁇ l of a NaCl / CaCl 2 solution (3M NaCl and 75 mM CaCl 2 ) are added. The suspension is incubated at 37 ° C for 30 minutes.
  • a NaCl / CaCl 2 solution 3M NaCl and 75 mM CaCl 2
  • a lipase solution 50 mg / ml lipase type 7 from Candida rugosa (Sigma)
  • 595 ⁇ l of lipase solution 50 mg / ml lipase type 7 from Candida rugosa (Sigma)
  • 595 ⁇ l of lipase was added again and incubation was continued for at least 5 hours at 37 ° C.
  • 700 mg Na 2 S0 4 are dissolved in the solution.
  • the carotenoids are extracted into the organic phase by vigorous mixing. This shaking is repeated until the organic phase remains colorless.
  • the petroleum ether fractions are combined and the petroleum ether evaporated. Free carotenoids are taken up in 100-120 ⁇ l acetone. Free carotenoids can be identified on the basis of retention time and UV-VIS spectra using HPLC and C30 reverse phase columns.
  • the Bile salts or bile acid salts used are 1: 1 mixtures of cholate and deoxycholate.
  • the hydrolysis of the carotenoid esters by lipase from Candida rugosa can be achieved after separation by means of thin layer chromatography. For this, 50-100mg of plant material are extracted three times with about 750 ⁇ l acetone. The solvent extract is rotated in a vacuum (elevated temperatures of 40-50 ° C are tolerable). Then add 300 ⁇ l petroleum ether acetone (ratio 5: 1) and good Mixing. Suspended matter is sedimented by centrifugation (1-2 minutes). The upper phase is transferred to a new reaction vessel. The remaining residue is extracted again with 200 ⁇ l of petroleum ether acetone (ratio 5: 1) and suspended matter is removed by centrifugation.
  • the two extracts are combined (volume 500 ⁇ l) and the solvents evaporated.
  • the residue is resuspended in 30 ⁇ l of petroleum ether: acetone (ratio 5: 1) and applied to a thin-layer plate (silica gel 60, Merck). If more than one application is required for preparative-analytical purposes, several aliquots, each with a fresh weight of 50-100 mg, should be prepared in the manner described for thin-layer chromatography separation.
  • the thin-layer plate is developed in petroleum ether-acetone (ratio 5: 1). Carotenoid bands can be identified visually based on their color. Individual carotenoid bands are scraped out and can be pooled for preparative-analytical purposes.
  • the carotenoids are eluted from the silica material with acetone; the solvent is evaporated in vacuo.
  • the residue is dissolved in 495 ⁇ l acetone, 17 mg Bile salts (Sigma), 4.95 ml 0.1 M potassium phosphate buffer (pH 7.4) and 149 ⁇ l (3M NaCl, 75mM CaCl 2 ) are added. After thorough mixing, equilibrate at 37 ° C for 30 minutes.
  • Candida rugosa lipase Sigma, stock solution of 50 mg / ml in 5 mM CaCl 2 . Incubation with lipase takes place overnight with shaking at 37 ° C. After about 21 hours, the same amount of lipase is added again; Incubate again at 37 ° C with shaking for at least 5 hours. Then 700 mg of Na 2 S0 4 (anhydrous) are added; with 1800 ⁇ l of petroleum ether is shaken for about 1 minute and the mixture is centrifuged at 3500 revolutions / minute for 5 minutes. The upper
  • Phase is transferred to a new reaction vessel and the shaking is repeated until the upper phase is colorless.
  • the combined petroleum ether phase is concentrated in vacuo (temperatures of 40-50 ° C are possible).
  • the residue is dissolved in 120 ⁇ l acetone, possibly using ultrasound.
  • the dissolved carotenoids can be separated by means of HPLC using a C30 column and quantified using reference substances.
  • Example 15 The analysis of the samples obtained according to the working instructions in Example 15 is carried out under the following conditions:
  • Some typical retention times for carotenoids formed according to the invention are, for example, violaxanthin 11.7 minutes, astaxanthin 17.7 minutes, adonixanthin 19 minutes, adonirubin 19.9 minutes and zeaxanthin 21 minutes.

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention relates to a method for producing ketocarotinoids by cultivation of genetically modified organisms that have a modified ketolase activity and modified beta -cyclase activity as compared to the wild-type organism. The invention also relates to the genetically modified organisms, to their use as food stuff or feeding stuff and to their use for producing ketocarotinoid extracts.

Description

Verfahren zur Herstellung von Ketocarotinoiden in genetisch veränderten, nichthumanen Organismen Process for the production of ketocarotenoids in genetically modified, non-human organisms
Beschreibungdescription
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Ketocarotinoiden durch Kultivierung von genetisch veränderten Organismen, die im Vergleich zum Wildtyp eine veränderte Ketolase-Aktivität und eine veränderte ß-Cyclase-Aktivität aufweisen, die genetisch veränderten Organismen, sowie deren Verwendung als Nahrungs- und Futtermittel und zur Herstellung von Ketocarotinoidextrakten.The present invention relates to a process for the preparation of ketocarotenoids by cultivating genetically modified organisms which, compared to the wild type, have an altered ketolase activity and an altered β-cyclase activity, the genetically modified organisms, and their use as food and feed and for the production of ketocarotenoid extracts.
Carotinoide werden de novo in Bakterien, Algen, Pilzen und Pflanzen synthetisiert. .. Ketocarotinoide, also Carotincide, die mindestens eine Keto-Gruppe enthalten, wie ,„ beispielsweise Astaxanthin, Canthaxanthin, Echinenon, 3-Hydroxyechinenon, 3'- Hydroxyechinenon, Adonirubin und Adonixanthin sind natürliche Antioxidantien und Pigmente, die von einigen Algen und Mikroorganismen als Sekundärmetabolite produziert werden.Carotenoids are synthesized de novo in bacteria, algae, fungi and plants. .. ketocarotenoids, ie carotenoids, which contain at least one keto group, such as, "for example astaxanthin, canthaxanthin, echinenone, 3-hydroxyechinenone, 3'-hydroxyechinenone, adonirubin and adonixanthin are natural antioxidants and pigments, which are considered by some algae and microorganisms Secondary metabolites are produced.
Aufgrund ihrer farbgebenden Eigenschaften werden die Ketocarotinoide und insbeson- dere Astaxanthin als Pigmentierhilfsstoffe in der Tierernährung, insbesondere in der Forellen-, Lachs- und Shrimpszucht verwendet.Due to their coloring properties, the ketocarotenoids and in particular astaxanthin are used as pigmenting aids in animal nutrition, especially in trout, salmon and shrimp farming.
Die Herstellung von Astaxanthin erfolgt heutzutage größtenteils durch chemische Syntheseverfahren. Natürliche Ketocarotinoide, wie beispielsweise natürliches Astaxanthin, werden heutzutage in biotechnologischen Verfahren in kleinen Mengen durch Kultivierung von Algen, beispielsweise Haematococcus pluvialis oder durch Fermentation von gentechnologisch optimierten Mikroorganismen und anschließender Isolierung gewonnen. Ein wirtschaftliches biotechnologisches Verfahren zur Herstellung von natürlichen Ketocarotinoiden ist daher von großer Bedeutung.Nowadays, astaxanthin is mainly produced using chemical synthesis processes. Natural ketocarotenoids, such as natural astaxanthin, are nowadays obtained in small amounts in biotechnological processes by cultivating algae, for example Haematococcus pluvialis or by fermentation of genetically optimized microorganisms and subsequent isolation. An economical biotechnological process for the production of natural ketocarotenoids is therefore of great importance.
Nukleinsäuren kodierend eine Ketolase und die entsprechenden Proteinsequenzen sind aus verschiedenen Organismen isoliert und annotiert worden, wie beispielsweise Nukleinsäuren kodierend eine Ketolase aus Agrobacterium aurantiacum (EP 735 137, Accession NO: D58420), aus Alcaligenes sp. PC-1 (EP 735137, Accession NO: D58422), Haematococcus pluvialis Flotow em. Wille und Haematoccus pluvialis, NIES- 144 (EP 725137, WO 98/18910 und Lotan et al, FEBS Letters 1995, 364, 125-128, Accession NO: X86782 und D45881), Paracoccus marcusii (Accession NO: Y15112), Synechocystis sp. Strain PC6803 (Accession NO: NP_442491), Bradyrhizobium sp. (Accession NO: AF218415) und Nostoc sp. PCC 7120 (Kaneko et al, DNA Res. 2001 , 8(5), 205 - 213; Accession NO: AP003592, BAB74888).Nucleic acids encoding a ketolase and the corresponding protein sequences have been isolated and annotated from various organisms, such as nucleic acids encoding a ketolase from Agrobacterium aurantiacum (EP 735 137, Accession NO: D58420), from Alcaligenes sp. PC-1 (EP 735137, Accession NO: D58422), Haematococcus pluvialis Flotow em. Wille and Haematoccus pluvialis, NIES-144 (EP 725137, WO 98/18910 and Lotan et al, FEBS Letters 1995, 364, 125-128, Accession NO: X86782 and D45881), Paracoccus marcusii (Accession NO: Y15112), Synechocystis sp , Strain PC6803 (Accession NO: NP_442491), Bradyrhizobium sp. (Accession NO: AF218415) and Nostoc sp. PCC 7120 (Kaneko et al, DNA Res. 2001, 8 (5), 205-213; Accession NO: AP003592, BAB74888).
EP 735 137 beschreibt die Herstellung von Xanthophyllen in Mikroorganismen, wie beispielsweise E. coli durch Einbringen von Ketolase-Genen (crtW) aus Agrobacterium aurantiacum oder Alcaligenes sp. PC-1 in Mikroorganismen.EP 735 137 describes the production of xanthophylls in microorganisms, such as, for example, E. coli by introducing ketolase genes (crtW) from Agrobacterium aurantiacum or Alcaligenes sp. PC-1 in microorganisms.
Aus EP 725 137, WO 98/18910, Kajiwara et al. (Plant Mol. Biol. 1995, 29, 343-352) und Hirschberg et al. (FEBS Letters 1995, 364, 125-128) ist es bekannt, Astaxanthin durch Einbringen von Ketolase-Genen aus Haematococcus pluvialis (crtW, crtO oder bkt) in E. coli herzustellen.From EP 725 137, WO 98/18910, Kajiwara et al. (Plant Mol. Biol. 1995, 29, 343-352) and Hirschberg et al. (FEBS Letters 1995, 364, 125-128) it is known to produce astaxanthin by introducing ketolase genes from Haematococcus pluvialis (crtW, crtO or bkt) into E. coli.
Hirschberg et al. (FEBS Letters 1997, 404, 129-134) beschreiben die Herstellung von Astaxanthin in Synechococcus durch Einbringen von Ketolase-Genen (crtO) aus Haematococcus pluvialis. Sandmann et al. (Photochemistry and Photobiology 2001 , 73(5), 551-55) beschreiben ein analoges Verfahren, das jedoch zur Herstellung von Cantha- xanthin führt und nur Spuren Astaxanthin liefert.Hirschberg et al. (FEBS Letters 1997, 404, 129-134) describe the production of astaxanthin in Synechococcus by introducing ketolase genes (crtO) from Haematococcus pluvialis. Sandmann et al. (Photochemistry and Photobiology 2001, 73 (5), 551-55) describe an analogous method which, however, leads to the production of cantaxanthin and only provides traces of astaxanthin.
WO 98/18910 und Hirschberg et al. (Nature Biotechnology 2000, 18(8), 888-892) beschreiben die Synthese von Ketocarotinoiden in Nektarien von Tabakblüten durch Ein- bringen des Ketolase-Gens aus Haematococcus pluvialis (crtO) in Tabak.WO 98/18910 and Hirschberg et al. (Nature Biotechnology 2000, 18 (8), 888-892) describe the synthesis of ketocarotenoids in nectaries of tobacco flowers by introducing the ketolase gene from Haematococcus pluvialis (crtO) into tobacco.
WO 01/20011 beschreibt ein DNA Konstrukt zur Produktion von Ketocarotinoiden, insbesondere Astaxanthin, in Samen von Ölsaatpflanzen wie Raps, Sonnenblume, Sojabohne und Senf unter Verwendung eines Samen-spezifischen Promotors und einer Ketolase aus Haematococcus pluvialis.WO 01/20011 describes a DNA construct for the production of ketocarotenoids, in particular astaxanthin, in seeds of oilseed plants such as oilseed rape, sunflower, soybean and mustard using a seed-specific promoter and a ketolase from Haematococcus pluvialis.
Alle im Stand derTechnik beschriebenen Verfahren zur Herstellung von Ketocarotinoiden und insbesondere die beschriebenen Verfahren zur Herstellung von Astaxanthin weisen den Nachteil auf, dass einerseits die Ausbeute noch nicht befriedigend ist und andererseits die transgenen Organismen eine große Menge an hydroxylierten Nebenprodukten, wie beispielsweise Zeaxanthin und Adonixanthin liefern.All processes described in the prior art for the production of ketocarotenoids and in particular the processes described for the production of astaxanthin have the disadvantage that on the one hand the yield is not yet satisfactory and on the other hand the transgenic organisms provide a large amount of hydroxylated by-products such as zeaxanthin and adonixanthin ,
Der Erfindung lag daher die Aufgabe zugrunde, ein Verfahren zur Herstellung von Ketocarotinoiden durch Kultivierung von genetisch veränderten, nicht-humanen Organis- men zur Verfügung zu stellen, bzw. weitere genetisch veränderte, nicht-humane Organismen, die Ketocarotinoide herstellen, zur Verfügung zu stellen, die die vorstehend beschriebenen Nachteile des Standes der Technik in geringerem Maße oder nicht mehr aufweisen oder die gewünschten Ketocarotenoide in höheren Ausbeuten liefern. Demgemäß wurde ein Verfahren zur Herstellung von Ketocarotinoiden gefunden, indem man genetisch veränderte, nicht-humane Organismen kultiviert, die im Vergleich zum Wildtyp eine veränderte Ketolase-Aktivität und eine veränderte ß-Cyclase-Aktivität aufweisen, und die veränderte ß-Cyclase-Aktivität durch eine ß-Cyclase verursacht wird, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.The invention was therefore based on the object of providing a process for the preparation of ketocarotenoids by cultivating genetically modified, non-human organisms, or of providing further genetically modified, non-human organisms which produce ketocarotenoids which have the disadvantages of the prior art described above to a lesser extent or no longer or which provide the desired ketocarotenoids in higher yields. Accordingly, a method for producing ketocarotenoids has been found by cultivating genetically modified, non-human organisms which have an altered ketolase activity and an altered β-cyclase activity compared to the wild type, and the altered β-cyclase activity by a β-cyclase is caused, containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has.
Unter einer „im Vergleich zum Wildtyp veränderten Ketolase-Aktivität" wird für den Fall, dass der Ausgangsorganismus oder Wildtyp keine Ketolase-Aktivität aufweist, vorzugsweise eine „im Vergleich zum Wildtyp verursachte Ketolase-Aktivität" verstanden.In the case that the starting organism or wild type has no ketolase activity, “an altered ketolase activity compared to the wild type” is preferably understood to mean a “ketolase activity caused compared to the wild type”.
Unter einer „im Vergleich zum Wildtyp veränderten Ketolase-Aktivität" wird für den Fall, dass der Ausgangsorganismus oder Wildtyp eine Ketolase-Aktivität aufweist, vorzugsweise eine „im Vergleich zum Wildtyp erhöhte Ketolase-Aktivität" verstanden.In the case that the starting organism or wild type has a ketolase activity, “an altered ketolase activity compared to the wild type” is preferably understood to mean an “increased ketolase activity compared to the wild type”.
Unter einer „im Vergleich zum Wildtyp veränderten ß-Cyclase-Aktivität" wird für den Fall, dass der Ausgangsorganismus oder Wildtyp keine ß-Cyclase-Aktivität aufweist, vorzugsweise eine „im Vergleich zum Wildtyp verursachte ß-Cyclase-Aktivität" verstanden.In the event that the starting organism or wild type has no β-cyclase activity, “β-cyclase activity changed compared to the wild type” is preferably understood to mean “β-cyclase activity caused compared to the wild type”.
Unter einer „im Vergleich zum Wildtyp veränderten ß-Cyclase-Aktivität" wird für den Fall, dass der Ausgangsorganismus oder Wildtyp eine ß-Cyclase-Aktivität aufweist, vorzugsweise eine „im Vergleich zum Wildtyp erhöhte ß-Cyclase -Aktivität" verstanden.In the case that the starting organism or wild type has a β-cyclase activity, “β-cyclase activity changed compared to the wild type” is preferably understood to mean “β-cyclase activity increased compared to the wild type”.
Die erfindungsgemäßen, nicht-humanen Organismen wie beispielsweise Mikroorganismen oder Pflanzen sind vorzugsweise als Ausgangsorganismen natürlicherweise in der Lage, Carotinoide wie beispielsweise ß-Carotin oder Zeaxanthin herzustellen, oder können durch genetische Veränderung, wie beispielsweise Umregulierung von Stoff- wechselwegen oder Komplementierung in die Lage versetzt werden, Carotinoide wie beispielsweise ß-Carotin oder Zeaxanthin herzustellen.The non-human organisms according to the invention, such as, for example, microorganisms or plants, are preferably naturally able, as starting organisms, to produce carotenoids such as, for example, β-carotene or zeaxanthin, or can be enabled by genetic modification, such as re-regulation of metabolic pathways or complementation are to produce carotenoids such as ß-carotene or zeaxanthin.
Einige Organismen sind als Ausgangs- oder Wildtyporganismen bereits in der Lage, Ketocarotinoidewie beispielsweise Astaxanthin oder Canthaxanthin herzustellen. Diese Organismen, wie beispielsweise Haematococcus pluvialis, Paracoccus marcusii, Xan- thophyllomyces dendrorhous, Bacillus circulans, Chlorococcum, Phaffia rhodozyma, Adonisröschen, Neochlohs wimmeri,Protosiphon botryoides, Scotiellopsis oocystifor- mis, Scenedesmus vacuolätus, Chlorela zofingiensis, Ankistrodesmus braunii, Euglena sanguinea und Bacillus atrophaeus weisen, bereits als Ausgangs- oder Wildtyporga- nismus eine Ketolase-Aktivität und eine ß-Cyclase-Aktivität auf.Some organisms, as starting or wild-type organisms, are already able to produce ketocarotenoids such as astaxanthin or canthaxanthin. These organisms, such as Haematococcus pluvialis, Paracoccus marcusii, Xan- thophyllomyces dendrorhous, Bacillus circulans, Chlorococcum, Phaffia rhodozyma, Adonis, Neochlohs wimmeri, Protosiphon vacuolätus botryoides, Scotiellopsis oocystifor- mis, Scenedesmus, Chlorela zofingiensis, Ankistrodesmus braunii, Euglena sanguinea and Bacillus atrophaeus, already as starting or wild-type organisms a ketolase activity and a β-cyclase activity.
Unter dem Begriff "Wildtyp" wird erfindungsgemäß der entsprechende Ausgangsorganismus verstanden.According to the invention, the term “wild type” is understood to mean the corresponding starting organism.
Je nach Zusammenhang kann unter dem Begriff "Organismus" der nicht-humane Ausgangsorganismus (Wildtyp) oder ein erfindungsgemäßer, genetisch veränderter, nichthumaner Organismus oder beides verstanden werden.Depending on the context, the term “organism” can be understood to mean the non-human starting organism (wild type) or an inventive, genetically modified, non-human organism or both.
Vorzugsweise und insbesondere in Fällen, in denen die Pflanze oder der Wildtyp nicht eindeutig zugeordnet werden kann, wird unter "Wildtyp" für die Erhöhung oder Verursachung der Ketolase-Aktivität, für die nachstehend beschriebene Erhöhung oder Verursachung der Hydroxylase-Aktivität, für die nachstehend beschriebene Erhöhung oder Verursachung der ß-Cyclase-Aktivität, für die nachstehend beschriebene Erhöhung der HMG-CoA-Reduktase-Aktivität, für die nachstehend beschriebene Erhöhung der (E)-4- Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Aktivität, für die nachstehend beschriebene Erhöhung der 1-Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität, für die nachstehend beschriebene Erhöhung der 1 -Deoxy-D-Xylose-5-Phosphat- Reduktoisomerase-Aktivität, für die nachstehend beschriebene Erhöhung der Isopen- tenyl-Diphosphat-Δ-lsomerase-Aktivität, für die nachstehend beschriebene Erhöhung der Geranyl-Diphosphat-Synthase-Aktivität, für die nachstehend beschriebene Erhöhung der Farnesyl-Diphosphat-Synthase-Aktivität, für die nachstehend beschriebene Erhöhung der Geranyl-geranyl-Diphosphat-Synthase-Aktivität, für die nachstehend beschriebene Erhöhung der Phytoen-Synthase-Aktivität, für die nachstehend beschrie- bene Erhöhung der Phytoen-Desaturase-Aktivität, für die nachstehend beschriebene Erhöhung der Zeta-Carotin-Desaturase-Aktivität, für die nachstehend beschriebene Erhöhung der crtlSO-Aktivität, für die nachstehend beschriebene Erhöhung der FtsZ- Aktivität, für die nachstehend beschriebene Erhöhung der MinD-Aktivität, für die nachstehend beschriebene Reduzierung der ε-Cyclase-Aktivität und für die nachstehend beschriebene Reduzierung der endogenen ß-Hydroxylase Aktivität und die Erhöhung des Gehalts an Ketocarotinoiden jeweils ein Referenzorganismus verstanden.Preferably and particularly in cases where the plant or the wild type cannot be clearly assigned, "wild type" is used for increasing or causing ketolase activity, for increasing or causing hydroxylase activity described below, for that described below Increasing or causing the β-cyclase activity, for the increase in the HMG-CoA reductase activity described below, for the increase in the (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase described below Activity for increasing the 1-deoxy-D-xylose-5-phosphate synthase activity described below, for increasing the 1-deoxy-D-xylose-5-phosphate reductoisomerase activity described below for that described below Increase in isopentenyl diphosphate Δ isomerase activity, for the increase in geranyl diphosphate synthase activity described below, for the E described below increase in farnesyl diphosphate synthase activity, for the increase in geranyl-geranyl diphosphate synthase activity described below, for the increase in phytoene synthase activity described below, for the increase in phytoene desaturase described below Activity, for the increase in zeta-carotene desaturase activity described below, for the increase in crtlSO activity described below, for the increase in FtsZ activity described below, for the increase in MinD activity described below, for that described below Reduction of the ε-cyclase activity and for the reduction of the endogenous ß-hydroxylase activity described below and the increase in the content of ketocarotenoids each understood a reference organism.
Dieser Referenzorganimus ist für Mikroorganismen, die bereits als Wildtyp eine Ketolase Aktivität aufweisen, vorzugsweise Haematococcus pluvialis.This reference organism is preferably Haematococcus pluvialis for microorganisms which already have ketolase activity as a wild type.
Dieser Referenzorganismus ist für Mikroorganismen, die als Wildtyp keine Ketolase Aktivität aufweisen, vorzugsweise Blakeslea.This reference organism is preferably Blakeslea for microorganisms which, as a wild type, have no ketolase activity.
Dieser Referenzorganismus ist für Pflanzen, die bereits als Wildtyp eine Ketolase- Aktivität aufweisen, vorzugsweise Adonis aestivalis, Adonis flammeus oder Adonis annuus, besonders bevorzugt Adonis aestivalis.This reference organism is preferably Adonis aestivalis, Adonis flammeus or Adonis for plants which already have a ketolase activity as a wild type annuus, particularly preferably Adonis aestivalis.
Dieser Referenzorganismus ist für Pflanzen, die als Wildtyp keine Ketolase-Aktivität in Blütenblätter aufweisen, vorzugsweise Tagetes erecta, Tagetes patula, Tagetes lucida, Tagetes pringlei, Tagetes palmen, Tagetes minuta oder Tagetes campanulata, besonders bevorzugt Tagetes erecta.This reference organism is particularly preferred for plants which, as wild type, have no ketolase activity in petals, preferably Tagetes erecta, Tagetes patula, Tagetes lucida, Tagetes pringlei, Tagetes palms, Tagetes minuta or Tagetes campanulata.
Unter Ketolase-Aktivität wird die Enzymaktivität einer Ketolase verstanden.Ketolase activity means the enzyme activity of a ketolase.
Unter einer Ketolase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, am, gegebenenfalls substituierten, ß-lonon-Ring von Carotinoiden eine Keto- Gruppe einzuführen.A ketolase is understood to mean a protein which has the enzymatic activity of introducing a keto group on the optionally substituted β-ionone ring of carotenoids.
Insbesondere wird unter einer Ketolase ein Protein verstanden, das die enzymatische Aktivität aufweist, ß-Carotin in Canthaxanthin umzuwandeln.In particular, a ketolase is understood to be a protein which has the enzymatic activity to convert β-carotene into canthaxanthin.
Dementsprechend wird unter Ketolase-Aktivität die in einer bestimmten Zeit durch das Protein Ketolase umgesetzte Menge ß-Carotin bzw. gebildete Menge Canthaxanthin verstanden.Accordingly, ketolase activity is understood to mean the amount of β-carotene or amount of canthaxanthin formed by the protein ketolase in a certain time.
In einer Ausführungsform des erfindungsgemäßen Verfahrens werden als Ausgangsorganismen nicht-humane Organismen verwendet, die bereits als Wildtyp oder Ausgangsorganismus eine Ketolase-Aktivität aufweisen, wie beispielsweise Haematococcus pluvialis, Paracoccus marcusii, Xanthophyllomyces dendrorhous, Bacillus circu- lans, Chlorococcum, Phaffia rhodozyma, Adonisröschen, Neochloris wimme- ri,Protosiphon botryoides, Scotiellopsis oocystiformis, Scenedesmus vacuolatus, Chlo- rela zofingiensis, Ankistrodesmus braunii, Euglena sanguinea oder Bacillus atrophaeus. In dieser Ausführungsform bewirkt die genetische Veränderung eine Erhöhung der Ketolase-Aktivität im Vergleich zum Wildtyp oder Ausgangsorganismus.In one embodiment of the method according to the invention, non-human organisms are used as starting organisms which already have a ketolase activity as wild type or starting organism, such as, for example, Haematococcus pluvialis, Paracoccus marcusii, Xanthophyllomyces dendrorhous, Bacillus circulans, Chlorococcum, Phaffia rhodozyma, Adonis florets Neochloris wimmeri, Protosiphon botryoides, Scotiellopsis oocystiformis, Scenedesmus vacuolatus, Cholrela zofingiensis, Ankistrodesmus braunii, Euglena sanguinea or Bacillus atrophaeus. In this embodiment, the genetic modification causes an increase in ketolase activity compared to the wild type or parent organism.
Bei einer erhöhten Ketolase-Aktivität gegenüber dem Wildtyp wird im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Ketolase die umgesetzte Menge ß- Carotin bzw. die gebildete Menge Canthaxanthin erhöht.If the ketolase activity is higher than that of the wild type, the amount of β-carotene or the amount of canthaxanthin formed is increased by the protein ketolase in a certain time compared to the wild type.
Vorzugsweise beträgt diese Erhöhung der Ketolase-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der Ketolase-Aktivität des Wildtyps. Die Bestimmung der Ketolase-Aktivität in erfindungsgemäßen genetisch veränderten Organismen und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:This increase in ketolase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the ketolase activity of the wild type. The ketolase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably determined under the following conditions:
Die Bestimmung der Ketolase-Aktivität in Pflanzen- oder Mikroorganismenmaterial erfolgt in Anlehnung an die Methode von Fräser et al., (J. Biol. Chem. 272(10): 6128- 6135, 1997). Die Ketolase-Aktivität in pflanzlichen oder Mikroorganismus-Extrakten wird mit den Substraten ß-Carotin und Canthaxanthin in Gegenwart von Lipid (Sojaleci- thin) und Detergens (Natriumcholat) bestimmt. Substrat/Produkt-Verhältnisse aus den Ketolase-Assays werden mittels HPLC ermittelt.The ketolase activity in plant or microorganism material is determined in accordance with the method of Fraser et al., (J. Biol. Chem. 272 (10): 6128-6135, 1997). The ketolase activity in plant or microorganism extracts is determined with the substrates β-carotene and canthaxanthin in the presence of lipid (soy lecithin) and detergent (sodium cholate). Substrate / product ratios from the ketolase assays are determined by means of HPLC.
Die Erhöhung der Ketolase-Aktivität kann durch verschiedene Wege erfolgen, beispielsweise durch Ausschalten von hemmenden Regulationsmechanismen auf Trans- lations- und Proteinebene oder durch Erhöhung der Genexpression einer Nukleinsäure kodierend eine Ketolase gegenüber dem Wildtyp, beispielsweise durch Induzierung des Ketolase-Gens durch Aktivatoren oder durch Einbringen von Nukleinsäuren kodierend eine Ketolase in den Organismus.The ketolase activity can be increased in various ways, for example by switching off inhibitory regulatory mechanisms at the translation and protein levels or by increasing the gene expression of a nucleic acid encoding a ketolase compared to the wild type, for example by inducing the ketolase gene by activators or by Introduction of nucleic acids encoding a ketolase into the organism.
Unter Erhöhung der Genexpression einer Nukleinsäure kodierend eine Ketolase wird erfindungsgemäß in dieser Ausführungsform auch die Manipulation der Expression der Organismus eigenen endogenen Ketolasen verstanden. Dies kann beispielsweise durch Veränderung der Promotor DNA-Sequenz für Ketolase kodierende Gene erreicht werden. Eine solche Veränderung, die eine veränderte oder vorzugsweise erhöhte Expressionsrate mindestens eines endogenen Ketolase Gens zur Folge hat, kann durch Deletion oder Insertion von DNA Sequenzen erfolgen.Increasing the gene expression of a nucleic acid encoding a ketolase is understood according to the invention in this embodiment as also the manipulation of the expression of the organism's own endogenous ketolases. This can be achieved, for example, by changing the promoter DNA sequence for genes encoding ketolase. Such a change, which results in a changed or preferably increased expression rate of at least one endogenous ketolase gene, can be carried out by deleting or inserting DNA sequences.
Es ist wie vorstehend beschrieben möglich, die Expression mindestens einer endogenen Ketolase durch die Applikation exogener Stimuli zu verändern. Dies kann durch besondere physiologische Bedingungen, also durch die Applikation von Fremdsub- stanzen erfolgen.As described above, it is possible to change the expression of at least one endogenous ketolase by applying exogenous stimuli. This can take place through special physiological conditions, ie through the application of foreign substances.
Des weiteren kann eine erhöhte Expression mindestens eines endogenen Ketolase- Gens dadurch erzielt werden, dass ein im Wildtyporganismus nicht vorkommendes oder modifiziertes Regulator-Protein mit dem Promotor dieser Gene in Wechselwirkung tritt.Furthermore, an increased expression of at least one endogenous ketolase gene can be achieved in that a regulator protein which is not found or modified in the wild-type organism interacts with the promoter of these genes.
Solch ein Regulator kann ein chimäres Protein darstellen, welches aus einer DNA- Bindedomäne und einer Transkriptionsaktivator-Domäne besteht, wie beispielsweise in WO 96/06166 beschrieben. In einer bevorzugten Ausführungsform erfolgt die Erhöhung der Ketolase-Aktivität gegenüber dem Wildtyp durch die Erhöhung der Genexpression einer Nukleinsäure, kodierend eine Ketolase.Such a regulator can represent a chimeric protein which consists of a DNA binding domain and a transcription activator domain, as described, for example, in WO 96/06166. In a preferred embodiment, the ketolase activity is increased compared to the wild type by increasing the gene expression of a nucleic acid encoding a ketolase.
In einer weiter bevorzugten Ausführungsform erfolgt die Erhöhung der Genexpression einer Nukleinsäure kodierend eine Ketolase durch Einbringen von Nukleinsäuren, die Ketolasen kodieren, in den Organismus.In a further preferred embodiment, the gene expression of a nucleic acid encoding a ketolase is increased by introducing nucleic acids encoding ketolases into the organism.
In den erfindungsgemäßen transgenen Organismen liegt also in dieser Ausführungs- form gegenüber dem Wildtyp mindestens ein weiteres Ketolase-Gen vor. In dieser Ausführungsform weist der erfindungsgemäße genetisch veränderte Organismus vor- zusgweise mindestens eine exogene (=heterologe) Nukleinsäure, kodierend eine Ketolase, auf oder mindestens zwei endogene Nukleinsäuren, kodierend eine Ketolase, aufIn this embodiment, at least one further ketolase gene is thus present in the transgenic organisms according to the invention compared to the wild type. In this embodiment, the genetically modified organism according to the invention preferably has at least one exogenous (= heterologous) nucleic acid, coding for a ketolase, or at least two endogenous nucleic acids, coding for a ketolase
In einer anderen, bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden als Ausgangsorganismen nicht-humane Organismen verwendet, die als Wildtyp keine Ketolase-Aktivität aufweisen, wie beispielsweise Blakeslea, Marigold, Tagetes erecta, Tagetes lucida, Tagetes minuta, Tagetes pringlei, Tagetes palmeri und Tagetes campanulata.In another preferred embodiment of the method according to the invention, non-human organisms are used as starting organisms which, as a wild type, have no ketolase activity, such as, for example, Blakeslea, Marigold, Tagetes erecta, Tagetes lucida, Tagetes minuta, Tagetes pringlei, Tagetes palmeri and Tagetes campanulata ,
In dieser, bevorzugten Ausführungsform verursacht die genetische Veränderung die Ketolase-Aktivität in den Organismen. Der erfindungsgemäße genetisch veränderte Organismus weist somit in dieser, bevorzugten Ausführungsform im Vergleich zum genetisch nicht veränderten Wildtyp eine Ketolase-Aktivität auf und ist somit vorzugs- weise in der Lage, transgen eine Ketolase zu exprimieren.In this preferred embodiment, the genetic modification causes ketolase activity in the organisms. In this preferred embodiment, the genetically modified organism according to the invention thus has a ketolase activity in comparison with the genetically unmodified wild type and is therefore preferably capable of transgenically expressing a ketolase.
In dieser bevorzugten Ausführungsform erfolgt die Verursachung der Genexpression einer Nukleinsäure kodierend eine Ketolase analog zu der vorstehend beschriebenen Erhöhung der Genexpression einer Nukleinsäure kodierend eine Ketolase vorzugswei- se durch Einbringen von Nukleinsäuren, die Ketolasen kodieren in den Ausgangsorganismus.In this preferred embodiment, the gene expression of a nucleic acid encoding a ketolase is caused analogously to the above-described increase in gene expression of a nucleic acid encoding a ketolase, preferably by introducing nucleic acids which encode ketolases into the starting organism.
Dazu kann in beiden Ausführungsformen prinzipiell jedes Ketolase-Gen, also jede Nukleinsäuren die eine Ketolase kodiert verwendet werden.In principle, any ketolase gene, that is to say any nucleic acids encoding a ketolase, can be used in both embodiments.
Alle in der Beschreibung erwähnten Nukleinsäuren können beispielsweise eine RNA-, DNA- oder cDNA-Sequenz sein.All nucleic acids mentioned in the description can be, for example, an RNA, DNA or cDNA sequence.
Bei genomischen Ketolase-Sequenzen aus eukaryontischen Quellen, die Introns ent- halten, sind für den Fall, dass die Wirtsorganismus nicht in der Lage ist oder nicht in die Lage versetzt werden kann, die entsprechenden Ketolase zu exprimieren, bevorzugt bereits prozessierte Nukleinsäuresequenzen, wie die entsprechenden cDNAs zu verwenden.In the case of genomic ketolase sequences from eukaryotic sources which contain introns, in the event that the host organism is unable or not able to the position can be shifted to express the corresponding ketolase, preferably to use already processed nucleic acid sequences, such as the corresponding cDNAs.
Beispiele für Nukleinsäuren, kodierend eine Ketolase und die entsprechenden Ketolasen, die im erfindungsgemäßen Verfahren verwendet werden können sind beispielsweise Sequenzen ausExamples of nucleic acids encoding a ketolase and the corresponding ketolases that can be used in the method according to the invention are, for example, sequences from
Haematoccus pluvialis, insbesondere aus Haematoccus pluvialis Flotow em. Wille (Ac- cession NO: X86782; Nukleinsäure: SEQ ID NO: 3, Protein SEQ ID NO: 4),Haematoccus pluvialis, especially from Haematoccus pluvialis Flotow em. Wille (Accession NO: X86782; nucleic acid: SEQ ID NO: 3, protein SEQ ID NO: 4),
Haematoccus pluvialis, NIES-144 (Accession NO: D45881 ; Nukleinsäure: SEQ ID NO: 35, Protein SEQ ID NO: 36),Haematoccus pluvialis, NIES-144 (Accession NO: D45881; nucleic acid: SEQ ID NO: 35, protein SEQ ID NO: 36),
Agrobacterium aurantiacum (Accession NO: D58420; Nukleinsäure: SEQ ID NO: 37, Protein SEQ ID NO: 38),Agrobacterium aurantiacum (Accession NO: D58420; nucleic acid: SEQ ID NO: 37, protein SEQ ID NO: 38),
Alicaligenes spec. (Accession NO: D58422; Nukleinsäure: SEQ ID NO: 39, Protein SEQ ID NO: 40),Alicaligenes spec. (Accession NO: D58422; nucleic acid: SEQ ID NO: 39, protein SEQ ID NO: 40),
Paracoccus marcusii (Accession NO: Y15112; Nukleinsäure: SEQ ID NO: 41 , Protein SEQ ID NO: 42).Paracoccus marcusii (Accession NO: Y15112; nucleic acid: SEQ ID NO: 41, protein SEQ ID NO: 42).
Synechocystis sp. Strain PC6803 (Accession NO: NP442491 ; Nukleinsäure: SEQ ID NO: 43, Protein SEQ ID NO: 44).Synechocystis sp. Strain PC6803 (Accession NO: NP442491; nucleic acid: SEQ ID NO: 43, protein SEQ ID NO: 44).
Bradyrhizobium sp. (Accession NO: AF218415; Nukleinsäure: SEQ ID NO: 45, Protein SEQ ID NO: 46).Bradyrhizobium sp. (Accession NO: AF218415; nucleic acid: SEQ ID NO: 45, protein SEQ ID NO: 46).
Nostoc sp. Strain PCC7120 (Accession NO: AP003592, BAB74888; Nukleinsäure: SEQ ID NO: 47, Protein SEQ ID NO: 48).Nostoc sp. Strain PCC7120 (Accession NO: AP003592, BAB74888; nucleic acid: SEQ ID NO: 47, protein SEQ ID NO: 48).
Haematococcus pluvialisHaematococcus pluvialis
(Accession NO: AF534876, AAN03484; Nukleinsäure: SEQ ID NO: 49, Protein : SEQ ID NO: 50)(Accession NO: AF534876, AAN03484; nucleic acid: SEQ ID NO: 49, protein: SEQ ID NO: 50)
Paracoccus sp. MBIC1143Paracoccus sp. MBIC1143
(Accession NO: D58420, P54972; Nukleinsäure: SEQ ID NO: 51 , Protein : SEQ ID NO: 52) Brevundimonas aurantiaca(Accession NO: D58420, P54972; nucleic acid: SEQ ID NO: 51, protein: SEQ ID NO: 52) Brevundimonas aurantiaca
(Accession NO: AY166610, AAN86030; Nukleinsäure: SEQ ID NO: 53, Protein : SEQ(Accession NO: AY166610, AAN86030; nucleic acid: SEQ ID NO: 53, protein: SEQ
ID NO: 54)ID NO: 54)
Nodularia spumigena NSOR10Nodularia spumigena NSOR10
(Accession NO: AY210783, AA064399; Nukleinsäure: SEQ ID NO: 55, Protein : SEQ ID NO: 56)(Accession NO: AY210783, AA064399; nucleic acid: SEQ ID NO: 55, protein: SEQ ID NO: 56)
Nostoc punctiforme ATCC 29133 (Accession NO: NZ_AABC01000195, ZP_00111258; Nukleinsäure: SEQ ID NO: 57, Protein : SEQ ID NO: 58)Nostoc punctiforme ATCC 29133 (Accession NO: NZ_AABC01000195, ZP_00111258; nucleic acid: SEQ ID NO: 57, protein: SEQ ID NO: 58)
Nostoc punctiforme ATCC 29133Nostoc punctiform ATCC 29133
(Accession NO: NZ_AABC01000196; Nukleinsäure: SEQ ID NO: 59, Protein : SEQ ID NO: 60)(Accession NO: NZ_AABC01000196; nucleic acid: SEQ ID NO: 59, protein: SEQ ID NO: 60)
Deinococcus radiodurans R1Deinococcus radiodurans R1
(Accession NO: E75561 , AE001872; Nukleinsäure: SEQ ID NO: 61 , Protein : SEQ ID(Accession NO: E75561, AE001872; nucleic acid: SEQ ID NO: 61, protein: SEQ ID
NO: 62),NO: 62),
Synechococcus sp. WH 8102,Synechococcus sp. WH 8102,
Nukleinsäure: Acc.-No. NZ_ AABD01000001 , Basenpaar 1 ,354,725-1 ,355,528 (SEQ ID NO: 75), Protein: Acc.-No. ZP_00115639 (SEQ ID NO: 76) (als putatives Protein annotiert),Nucleic acid: Acc.-No. NZ_ AABD01000001, base pair 1, 354.725-1, 355.528 (SEQ ID NO: 75), protein: Acc.-No. ZP_00115639 (SEQ ID NO: 76) (annotated as putative protein),
oder von diesen Sequenzen abgeleitete Sequenzen, wie beispielsweiseor sequences derived from these sequences, such as, for example
die Ketolasen der Sequenz SEQ ID NO: 64 oder 66 und die entsprechenden kodierenden Nukleinsäuresequenzen SEQ ID NO: 63 oder SEQ ID NO: 65, die beispielsweise durch Variation/Mutation aus der Sequenz SEQ ID NO: 58 bzw. SEQ ID NO: 57 hervorgehen,the ketolases of the sequence SEQ ID NO: 64 or 66 and the corresponding coding nucleic acid sequences SEQ ID NO: 63 or SEQ ID NO: 65, which result, for example, from the sequence SEQ ID NO: 58 or SEQ ID NO: 57 by variation / mutation .
die Ketolasen der Sequenz SEQ ID NO: 68 oder 70 und die entsprechenden kodierenden Nukleinsäuresequenzen SEQ ID NO: 67 oder SEQ ID NO: 69, die beispielsweise durch Variation/Mutation aus der Sequenz SEQ ID NO: 60 bzw. SEQ ID NO: 59 hervorgehen, oderthe ketolases of the sequence SEQ ID NO: 68 or 70 and the corresponding coding nucleic acid sequences SEQ ID NO: 67 or SEQ ID NO: 69, which result, for example, from the sequence SEQ ID NO: 60 or SEQ ID NO: 59 by variation / mutation , or
die Ketolasen der Sequenz SEQ ID NO: 72 oder 74 und die entsprechenden kodierenden Nukleinsäuresequenzen SEQ ID NO: 71 oder SEQ ID NO: 73, die beispielsweise durch Variation bzw. Mutation aus der Sequenz SEQ ID NO: 76 bzw. SEQ ID NO: 75 hervorgehen.the ketolases of the sequence SEQ ID NO: 72 or 74 and the corresponding coding nucleic acid sequences SEQ ID NO: 71 or SEQ ID NO: 73, for example by variation or mutation from the sequence SEQ ID NO: 76 or SEQ ID NO: 75 emerge.
Weitere natürliche Beispiele für Ketolasen und Ketolase-Gene, die im erfindungsgemäßen Verfahren verwendet werden können, lassen sich beispielsweise aus verschie- denen Organismen, deren genomische Sequenz bekannt ist, durch Identitätsvergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit den vorstehend beschriebenen Sequenzen und insbesondere mit den Sequenzen SEQ ID NO: 4 und/oder 48 und/oder 58 und/oder 60 leicht auffinden.Further natural examples of ketolases and ketolase genes that can be used in the method according to the invention can be obtained, for example, from different organisms whose genomic sequence is known by comparing the identity of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the sequences described above and easy to find especially with the sequences SEQ ID NO: 4 and / or 48 and / or 58 and / or 60.
Weitere natürliche Beispiele für Ketolasen und Ketolase-Gene lassen sich weiterhin ausgehend von den vorstehend beschriebenen Nukleinsäuresequenzen, insbesondere ausgehend von den Sequenzen SEQ ID NO: 3 und/oder 47 und/oder 57 und/oder 59 aus verschiedenen Organismen, deren genomische Sequenz nicht bekannt ist, durch Hybridisierungstechniken in an sich bekannter Weise leicht auffinden.Further natural examples of ketolases and ketolase genes can furthermore be derived from the nucleic acid sequences described above, in particular from the sequences SEQ ID NO: 3 and / or 47 and / or 57 and / or 59 from different organisms, the genomic sequence of which is not known is easy to find by hybridization techniques in a manner known per se.
Die Hybridisierung kann unter moderaten (geringe Stringenz) oder vorzugsweise unter stringenten (hohe Stringenz) Bedingungen erfolgen.The hybridization can take place under moderate (low stringency) or preferably under stringent (high stringency) conditions.
Solche Hybridisierungsbedingungen, die für alle Nukleinsäuren der Beschreibung gelten, sind beispielsweise bei Sambrook, J., Fritsch, E.F., Maniatis, T., in: Molecular Clo- ning (A Laboratory Manual), 2. Auflage, Cold Spring Harbor Laboratory Press, 1989, Seiten 9.31-9.57 oder in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6 beschrieben.Such hybridization conditions, which apply to all nucleic acids in the description, are described, for example, by Sambrook, J., Fritsch, EF, Maniatis, T., in: Molecular Cloning (A Laboratory Manual), 2nd edition, Cold Spring Harbor Laboratory Press, 1989, pages 9.31-9.57 or in Current Protocols in Molecular Biology, John Wiley & Sons, NY (1989), 6.3.1-6.3.6.
Beispielhaft können die Bedingungen während des Waschschrittes ausgewählt sein aus dem Bereich von Bedingungen begrenzt von solchen mit geringer Stringenz (mit 2X SSC bei 50°C) und solchen mit hoher Stringenz (mit 0.2X SSC bei 50°C, bevorzugt bei 65°C) (20X SSC: 0,3 M Natriumeitrat, 3 M Natriumchlorid, pH 7.0).For example, the conditions during the washing step can be selected from the range of conditions limited by those with low stringency (with 2X SSC at 50 ° C) and those with high stringency (with 0.2X SSC at 50 ° C, preferably at 65 ° C) (20X SSC: 0.3 M sodium citrate, 3 M sodium chloride, pH 7.0).
Darüberhinaus kann die Temperatur während des Waschschrittes von moderaten Bedingungen bei Raumtemperatur, 22°C, bis zu stringenten Bedingungen bei 65°C angehoben werden.In addition, the temperature during the washing step can be raised from moderate conditions at room temperature, 22 ° C, to stringent conditions at 65 ° C.
Beide Parameter, Salzkonzentration und Temperatur, können gleichzeitig variiert werden, auch kann einer der beiden Parameter konstant gehalten und nur der andere variiert werden. Während der Hybridisierung können auch denaturierende Agenzien wie zum Beispiel Formamid oder SDS eingesetzt werden. In Gegenwart von 50 % Forma- mid wird die Hybridisierung bevorzugt bei 42°C ausgeführt. Einige beispielhafte Bedingungen für Hybridisierung und Waschschritt sind infolge gegeben:Both parameters, salt concentration and temperature, can be varied simultaneously, one of the two parameters can be kept constant and only the other can be varied. Denaturing agents such as formamide or SDS can also be used during hybridization. In the presence of 50% formamide, the hybridization is preferably carried out at 42 ° C. Some exemplary conditions for hybridization and washing step are given as a result:
(l)Hybridiserungsbedingungen mit zum Beispiel(l) Hybridization conditions with, for example
(i) 4X SSC bei 65°C, oder(i) 4X SSC at 65 ° C, or
(ii) 6X SSC bei 45°C, oder(ii) 6X SSC at 45 ° C, or
(iii) 6X SSC bei 68°C, 100 mg/ml denaturierter Fischsperma-DNA, oder(iii) 6X SSC at 68 ° C, 100 mg / ml denatured fish sperm DNA, or
(iv) 6X SSC, 0.5 % SDS, 100 mg/ml denaturierte, fragmentierte Lachssperma-DNA bei 68°C, oder(iv) 6X SSC, 0.5% SDS, 100 mg / ml denatured, fragmented salmon sperm DNA at 68 ° C, or
(v)6XSSC, 0.5 % SDS, 100 mg/ml denaturierte, fragmentierte Lachssperma-DNA, 50 % Formamid bei 42°C, oder(v) 6XSSC, 0.5% SDS, 100 mg / ml denatured, fragmented salmon sperm DNA, 50% formamide at 42 ° C, or
(vi) 50 % Formamid, 4X SSC bei 42°C, oder(vi) 50% formamide, 4X SSC at 42 ° C, or
(vii) 50 % (vol/vol) Formamid, 0.1 % Rinderserumalbumin, 0.1 % Ficoll, 0.1 % Polyvi- nylpyrrolidon, 50 mM Natriumphosphatpuffer pH 6.5, 750 mM NaCI, 75 mM Natriumcit- rat bei 42°C, oder(vii) 50% (vol / vol) formamide, 0.1% bovine serum albumin, 0.1% Ficoll, 0.1% polyvinyl pyrrolidone, 50 mM sodium phosphate buffer pH 6.5, 750 mM NaCI, 75 mM sodium citrate at 42 ° C, or
(viii)2X oder 4X SSC bei 50°C (moderate Bedingungen), oder(viii) 2X or 4X SSC at 50 ° C (moderate conditions), or
(ix) 30 bis 40 % Formamid, 2X oder 4X SSC bei 42_ (moderate Bedingungen).(ix) 30 to 40% formamide, 2X or 4X SSC at 42_ (moderate conditions).
(2) Waschschritte für jeweils 10 Minuten mit zum Beispiel(2) washing steps for 10 minutes each with for example
(i) 0.015 M NaCI/0.0015 M Natriumcitrat/0.1 % SDS bei 50°C, oder(i) 0.015 M NaCI / 0.0015 M sodium citrate / 0.1% SDS at 50 ° C, or
(ii) 0.1X SSC bei 65°C, oder(ii) 0.1X SSC at 65 ° C, or
(iii) 0.1X SSC, 0.5 % SDS bei 68°C, oder(iii) 0.1X SSC, 0.5% SDS at 68 ° C, or
(iv) 0.1X SSC, 0.5 % SDS, 50 % Formamid bei 42°C, oder(iv) 0.1X SSC, 0.5% SDS, 50% formamide at 42 ° C, or
(v)0.2X SSC, 0.1 % SDS bei 42°C, oder (vi) 2X SSC bei 65°C (moderate Bedingungen).(v) 0.2X SSC, 0.1% SDS at 42 ° C, or (vi) 2X SSC at 65 ° C (moderate conditions).
In einer bevorzugten Ausführungsform der erfindungsgemäßen Verfahren bringt man Nukleinsäuren ein, die ein Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 4 oder eine von dieser Sequenz durch Substitution, Insertion oder Deleti- on von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 %, vorzugsweise mindestens 80 %, bevorzugter mindestens 85 %, bevorzugter mindestens 90 %, bevorzugter mindestens 95 %, bevorzugter mindestens 97 %, bevorzugter mindestens 98 %, besonders bevorzugt mindestens 99 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 4 und die enzymatische Eigenschaft einer Ketolase aufweist.In a preferred embodiment of the method according to the invention, nucleic acids are encoded which encode a protein containing the amino acid sequence SEQ ID NO: 4 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which have an identity of at least 70% , preferably at least 80%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, more preferably at least 97%, more preferably at least 98%, particularly preferably at least 99% at the amino acid level with the sequence SEQ ID NO: 4 and the enzymatic property has a ketolase.
Dabei kann es sich um eine natürliche Ketolase-Sequenz handeln, die wie vorstehend beschrieben, durch Identitätsvergleich der Sequenzen aus anderen Organismen gefunden werden kann oder um eine künstliche Ketolase-Sequenz die ausgehend von der Sequenz SEQ ID NO: 4 durch künstliche Variation, beispielsweise durch Substitution, Insertion oder Deletion von Aminosäuren abgewandelt wurde.This can be a natural ketolase sequence, which can be found as described above, by comparing the identity of the sequences from other organisms, or an artificial ketolase sequence which, starting from the sequence SEQ ID NO: 4, can be found by artificial variation, for example by Substitution, insertion or deletion of amino acids has been modified.
In einer weiteren, bevorzugten Ausführungsform der erfindungsgemäßen Verfahren bringt man Nukleinsäuren ein, die ein Protein kodieren, enthaltend die Aminosäurese- quenz SEQ ID NO: 48 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 %, vorzugsweise mindestens 80 %, bevorzugter mindestens 85 %, bevorzugter mindestens 90 %, bevorzugter mindestens 95 %, bevorzugter mindestens 97 %, bevorzugter mindestens 98 %, besonders bevorzugt mindestens 99 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 48 und die enzymatische Eigenschaft einer Ketolase aufweist.In a further preferred embodiment of the method according to the invention, nucleic acids are encoded which encode a protein containing the amino acid sequence SEQ ID NO: 48 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and which have an identity of at least 70%, preferably at least 80%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, more preferably at least 97%, more preferably at least 98%, particularly preferably at least 99% at the amino acid level with the sequence SEQ ID NO: 48 and exhibits enzymatic property of a ketolase.
Dabei kann es sich um eine natürliche Ketolase-Sequenz handeln, die, wie vorstehend beschrieben, durch Identitätsvergleich der Sequenzen aus anderen Organismen ge- funden werden kann oder um eine künstliche Ketolase-Sequenz die ausgehend von der Sequenz SEQ ID NO: 48 durch künstliche Variation, beispielsweise durch Substitution, Insertion oder Deletion von Aminosäuren abgewandelt wurde.This can be a natural ketolase sequence which, as described above, can be found by comparing the identity of the sequences from other organisms or an artificial ketolase sequence which can be derived from the sequence SEQ ID NO: 48 by artificial variation , for example by substitution, insertion or deletion of amino acids.
In einer weiteren, bevorzugten Ausführungsform der erfindungsgemäßen Verfahren bringt man Nukleinsäuren ein die ein Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 58 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 %, vorzugsweise mindestens 80 %, bevorzugter mindestens 85 %, bevorzugter mindestens 90 %, bevorzugter mindestens 95 %, bevorzugter mindestens 97 %, bevorzug- ter mindestens 98 %, besonders bevorzugt mindestens 99 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 58 und die enzymatische Eigenschaft einer Ketolase aufweist.In a further preferred embodiment of the method according to the invention, nucleic acids which encode a protein are introduced, containing the amino acid sequence SEQ ID NO: 58 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and having an identity of at least 70%, preferably at least 80%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, more preferably at least 97%, more preferably at least 98%, particularly preferably at least 99% at the amino acid level of the sequence SEQ ID NO: 58 and has the enzymatic property of a ketolase.
Dabei kann es sich um eine natürliche Ketolase-Sequenz handeln, die, wie vorstehend beschrieben, durch Identitätsvergleich der Sequenzen aus anderen Organismen gefunden werden kann oder um eine künstliche Ketolase-Sequenz die ausgehend von der Sequenz SEQ ID NO: 58 durch künstliche Variation, beispielsweise durch Substitution, Insertion oder Deletion von Aminosäuren abgewandelt wurde.This can be a natural ketolase sequence which, as described above, can be found by comparing the identity of the sequences from other organisms or an artificial ketolase sequence which, starting from the sequence SEQ ID NO: 58, can be found by artificial variation, for example was modified by substitution, insertion or deletion of amino acids.
In einer weiteren, bevorzugten Ausführungsform der erfindungsgemäßen Verfahren bringt man Nukleinsäuren ein die ein Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 60 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 %, vorzugsweise mindestens 80 %, bevorzugter mindestens 85 %, bevorzugter min- destens 90 %, bevorzugter mindestens 95 %, bevorzugter mindestens 97 %, bevorzugter mindestens 98 %, besonders bevorzugt mindestens 99 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 60 und die enzymatische Eigenschaft einer Ketolase aufweist.In a further preferred embodiment of the method according to the invention, nucleic acids which encode a protein are introduced, comprising the amino acid sequence SEQ ID NO: 60 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and having an identity of at least 70%, preferably at least 80%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, more preferably at least 97%, more preferably at least 98%, particularly preferably at least 99% at the amino acid level with the sequence SEQ ID NO: 60 and the enzymatic Has property of a ketolase.
Dabei kann es sich um eine natürliche Ketolase-Sequenz handeln, die, wie vorstehend beschrieben, durch Identitätsvergleich der Sequenzen aus anderen Organismen gefunden werden kann oder um eine künstliche Ketolase-Sequenz die ausgehend von der Sequenz SEQ ID NO: 60 durch künstliche Variation, beispielsweise durch Substitution, Insertion oder Deletion von Aminosäuren abgewandelt wurde.This can be a natural ketolase sequence which, as described above, can be found by comparing the identity of the sequences from other organisms or an artificial ketolase sequence which, starting from the sequence SEQ ID NO: 60, can be found by artificial variation, for example was modified by substitution, insertion or deletion of amino acids.
Unter dem Begriff "Substitution" ist in der Beschreibung für alle Proteine der Austausch einer oder mehrerer Aminosäuren durch eine oder mehrere Aminosäuren zu verstehen. Bevorzugt werden sog. konservative Austausche durchgeführt, bei denen die ersetzte Aminosäure eine ähnliche Eigenschaft hat wie die ursprüngliche Aminosäure, beispielsweise Austausch von Glu durch Asp, Gin durch Asn, Val durch lle, Leu durch lle, Ser durch Thr.In the description, the term “substitution” is understood to mean the replacement of one or more amino acids by one or more amino acids for all proteins. So-called conservative exchanges are preferably carried out, in which the replaced amino acid has a similar property to the original amino acid, for example replacement of Glu by Asp, Gin by Asn, Val by Ile, Leu by Ile, Ser by Thr.
Deletion ist das Ersetzen einer Aminosäure durch eine direkte Bindung. Bevorzugte Positionen für Deletionen sind die Termini des Polypeptides und die Verknüpfungen zwischen den einzelnen Proteindomänen.Deletion is the replacement of an amino acid with a direct link. Preferred positions for deletions are the termini of the polypeptide and the links between the individual protein domains.
Insertionen sind Einfügungen von Aminosäuren in die Polypeptidkette, wobei formal eine direkte Bindung durch ein oder mehrere Aminosäuren ersetzt wird. Unter Identität zwischen zwei Proteinen wird die Identität der Aminosäuren über die jeweils gesamte Proteinlänge verstanden, insbesondere die Identität die durch Vergleich mit Hilfe der Vector NTI Suite 7.1 Software der Firma Informax (USA) unter Anwendung der Clustal Methode (Higgins DG, Sharp PM. Fast and sensitive multiple se- quence alignments on a microcomputer. Comput Appl. Biosci. 1989 Apr;5(2): 151-1) unter Einstellung folgender Parameter berechnet wird:Inserts are insertions of amino acids into the polypeptide chain, with a direct bond being formally replaced by one or more amino acids. Identity between two proteins is understood to mean the identity of the amino acids over the respective total protein length, in particular the identity which is obtained by comparison using the Vector NTI Suite 7.1 software from Informax (USA) using the Clustal method (Higgins DG, Sharp PM.Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl. Biosci. 1989 Apr; 5 (2): 151-1) is calculated using the following parameters:
Multiple alignment parameter:Multiple alignment parameters:
Gap opening penalty 10 Gap extension penalty 10Gap opening penalty 10 Gap extension penalty 10
Gap Separation penalty ränge 8Gap Separation penalty ranks 8th
Gap Separation penalty offGap separation penalty off
% identity for alignment delay 40% identity for alignment delay 40
Residue specific gaps off Hydrophilic residue gap offResidue specific gaps off Hydrophilic residue gap off
Transition weighing 0Transition weighing 0
Pairwise alignment parameter:Pairwise alignment parameters:
FAST algorithm onFAST algorithm on
K-tuplesize 1 Gap penalty 3K-tuplesize 1 gap penalty 3
Window size 5Window size 5
Number of best diagonals 5Number of best diagonals 5
Unter einem Protein, das eine Identität von mindestens 70 % auf Aminosäureebene mit einer bestimmten Sequenz aufweist, wird dementsprechend ein Protein verstanden, das bei einem Vergleich seiner Sequenz mit der bestimmten Sequenz insbesondere nach obigem Programmlogarithmus mit obigem Parametersatz eine Identität von mindestens 70 % aufweist.A protein which has an identity of at least 70% at the amino acid level with a specific sequence is accordingly understood to be a protein which, when comparing its sequence with the specific sequence, in particular according to the above program logarithm with the above parameter set, has an identity of at least 70%.
Unter einem Protein, das beispielsweise eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 4 oder 48 oder 58 oder 60 aufweist, wird dementsprechend ein Protein verstanden, das bei einem Vergleich seiner Sequenz mit der Sequenz SEQ ID NO: 4 oder 48 oder 58 oder 60, insbesondere nach obigen Programmlogarithmus mit obigem Parametersatz eine Identität von mindestens 70 % aufweist. Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.A protein which has, for example, an identity of at least 70% at the amino acid level with the sequence SEQ ID NO: 4 or 48 or 58 or 60 is accordingly understood to be a protein which, when its sequence is compared with the sequence SEQ ID NO: 4 or 48 or 58 or 60, in particular according to the above program logarithm with the above parameter set, has an identity of at least 70%. Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der organismus- spezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.Those codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this. The codon usage can easily be determined on the basis of computer evaluations of other known genes of the organisms in question.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, ent- haltend die Sequenz SEQ ID NO: 3 in die Pflanze ein.In a particularly preferred embodiment, a nucleic acid containing the sequence SEQ ID NO: 3 is introduced into the plant.
In einer weiteren, besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 48 in die Pflanze ein.In a further, particularly preferred embodiment, a nucleic acid containing the sequence SEQ ID NO: 48 is introduced into the plant.
In einer weiteren, besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 58 in die Pflanze ein.In a further, particularly preferred embodiment, a nucleic acid containing the sequence SEQ ID NO: 58 is introduced into the plant.
In einer weiteren, besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 60 in die Pflanze ein.In a further, particularly preferred embodiment, a nucleic acid containing the sequence SEQ ID NO: 60 is introduced into the plant.
Alle vorstehend erwähnten Ketolase-Gene sind weiterhin in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch - Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäurebau- steine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, S. 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mithilfe des Klenow-Fragmentes der DNA- Polymerase und Ligationsreaktionen sowie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, beschriebenAll of the above-mentioned ketolase genes can also be produced in a manner known per se by chemical synthesis from the nucleotide building blocks, for example by fragment condensation of individual overlapping, complementary nucleic acid building blocks of the double helix. The chemical synthesis of oligonucleotides can be carried out, for example, in a known manner using the phosphoamidite method (Voet, Voet, 2nd edition, Wiley Press New York, pp. 896-897). The attachment of synthetic oligonucleotides and the filling of gaps using the Klenow fragment of DNA polymerase and ligation reactions as well as general cloning methods are described in Sambrook et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press
Wie vorstehend erwähnt, weisen die im erfindungsgemäßen Verfahren verwendeten nicht-humanen Organismen im Vergleich zum Wildtyp eine veränderte Ketolase- Aktivität und eine veränderte ß-Cyclase-Aktivität auf, wobei die veränderte ß-Cyclase- Aktivität durch eine ß-Cyclase verursacht wird, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist. In einer Ausführungsform des erfindungsgemäßen Verfahrens werden als Ausgangsorganismen nicht-humane Organismen verwendet, die bereits als Wildtyp oder Ausgangsorganismus eine ß-Cyclase-Aktivität aufweisen. In dieser Ausführungsform bewirkt die genetische Veränderung eine Erhöhung der ß-Cyclase-Aktivität im Vergleich zum Wildtyp oder Ausgangsorganismus, wobei die erhöhte ß-Cyclase-Aktivität durch eine ß-Cyclase verursacht wird, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.As mentioned above, the non-human organisms used in the process according to the invention have an altered ketolase activity and an altered β-cyclase activity compared to the wild type, the altered β-cyclase activity being caused by a β-cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has. In one embodiment of the method according to the invention, non-human organisms are used as starting organisms which already have a β-cyclase activity as wild type or starting organism. In this embodiment, the genetic modification brings about an increase in the β-cyclase activity in comparison to the wild type or starting organism, the increased β-cyclase activity being caused by a β-cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has.
Unter ß-Cyclase-Aktivität wird die Enzymaktivität einer ß-Cyclase verstanden.Β-cyclase activity means the enzyme activity of a β-cyclase.
Unter einer ß-Cyclase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, einen endständigen, linearen Rest von Lycopin in einen ß-lonon-Ring zu über- führen.A ß-cyclase is understood to mean a protein which has the enzymatic activity to convert a terminal, linear residue of lycopene into a ß-ionone ring.
Insbesondere wird unter einer ß-Cyclase ein Protein verstanden, das die enzymatische Aktivität aufweist, γ-Carotin in ß-Carotin umzuwandeln.In particular, a β-cyclase is understood to be a protein which has the enzymatic activity to convert γ-carotene into β-carotene.
Dementsprechend wird unter ß-Cyclase-Aktivität die in einer bestimmten Zeit durch das Protein ß-Cyclase umgesetzte Menge γ-Carotin bzw. gebildete Menge ß-Carotin verstanden.Accordingly, ß-cyclase activity is understood to mean the amount of γ-carotene converted or the amount of ß-carotene formed in a certain time by the protein ß-cyclase.
Bei einer erhöhten ß-Cyclase -Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein ß-Cyclase die umgesetzte Menge an Lycopin bzw. γ-Carotin oder die gebildete Menge an γ-Carotin aus Lycopin bzw. die gebildete Menge an ß-Carotin aus γ-Carotin erhöht.With an increased ß-cyclase activity compared to the wild type, the amount of lycopene or γ-carotene converted or the amount of γ-carotene formed from lycopene or the formed amount of ß-carotene from γ-carotene increased.
Vorzugsweise beträgt diese Erhöhung der ß-Cyclase-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der ß-Cyclase-Aktivität des Wildtyps.This increase in the β-cyclase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the β- Wild-type cyclase activity.
Die Bestimmung der ß-Cyclase-Aktivität in erfindungsgemäßen genetisch veränderten Organismen und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:The determination of the β-cyclase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably carried out under the following conditions:
Die Aktivität der ß-Cyclase wird nach Fräser und Sandmann (Biochem. Biophys. Res. Comm. 185(1) (1992) 9-15)/π vitro bestimmt. Es werden zu einer bestimmten Menge an Organismusextrakt Kaliumphosphat als Puffer (pH 7.6), Lycopin als Substrat, Stromaprotein von Paprika, NADP+, NADPH und ATP zugegeben.The activity of the β-cyclase is determined according to Fräser and Sandmann (Biochem. Biophys. Res. Comm. 185 (1) (1992) 9-15) / π vitro. It becomes a certain amount Potassium phosphate as buffer (pH 7.6), lycopene as substrate, paprika stromal protein, NADP +, NADPH and ATP added to organism extract.
Besonders bevorzugt erfolgt die Bestimmung der ß-Cyclase -Aktivität unter folgenden Bedingungen nach Bouvier, d'Harlingue und Camara (Molecular Analysis of carotenoid cyclae inhibition; Arch. Biochem. Biophys. 346(1) (1997) 53-64):The β-cyclase activity is particularly preferably determined under the following conditions according to Bouvier, d'Harlingue and Camara (Molecular Analysis of carotenoid cyclae inhibition; Arch. Biochem. Biophys. 346 (1) (1997) 53-64):
Der in-vitro Assay wird in einem Volumen von 250 μl Volumen durchgeführt. Der Ansatz enthält 50 mM Kaliumphosphat (pH 7.6), unterschiedliche Mengen an Organis- musextrakt, 20 nM Lycopin, 250 μg an chromoplastidärem Stromaprotein aus Paprika, 0.2 M NADP+, 0.2 M NADPH und 1 mM ATP. NADP/NADPH und ATP werden in 10 ml Ethanol mit 1 mg Tween 80 unmittelbar vor der Zugabe zum Inkubationsmedium gelöst. Nach einer Reaktionszeit von 60 Minuten bei 30°C wird die Reaktion durch Zugabe von Chloroform/Methanol (2:1) beendet. Die in Chloroform extrahierten Reakti- onsprodukte werden mittels HPLC analysiert.The in vitro assay is carried out in a volume of 250 μl volume. The mixture contains 50 mM potassium phosphate (pH 7.6), different amounts of organism extract, 20 nM lycopene, 250 μg of chromoplastid stromal protein from paprika, 0.2 M NADP +, 0.2 M NADPH and 1 mM ATP. NADP / NADPH and ATP are dissolved in 10 ml ethanol with 1 mg Tween 80 immediately before adding to the incubation medium. After a reaction time of 60 minutes at 30 ° C., the reaction is terminated by adding chloroform / methanol (2: 1). The reaction products extracted in chloroform are analyzed by HPLC.
Ein alternativer Assay mit radioaktivem Substrat ist beschrieben in Fräser und Sandmann (Biochem. Biophys. Res. Comm. 185(1) (1992) 9-15).An alternative assay with a radioactive substrate is described in Fräser and Sandmann (Biochem. Biophys. Res. Comm. 185 (1) (1992) 9-15).
Die Erhöhung der ß-Cyclase-Aktivität kann durch verschiedene Wege erfolgen, beispielsweise durch Ausschalten von hemmenden Regulationsmechanismen auf Expressions- und Proteinebene oder durch Erhöhung der Genexpression gegenüber dem Wildtyp von Nukleinsäuren, kodierend eine ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Inser- tion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.The ß-cyclase activity can be increased in various ways, for example by switching off inhibitory regulatory mechanisms at the expression and protein level or by increasing gene expression compared to the wild type of nucleic acids encoding a ß-cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has.
Die Erhöhung der Genexpression der Nukleinsäuren, kodierend eine ß-Cyclase, gegenüber dem Wildtyp kann ebenfalls durch verschiedene Wege erfolgen, beispielswei- se durch Induzierung des ß-Cyclase-Gens durch Aktivatoren oder durch Einbringen von einer oder mehrerer ß-Cyclase-Genkopien, also durch Einbringen mindestens einer Nukleinsäure, kodierend eine ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, in den Organismus.The increase in the gene expression of the nucleic acids encoding a β-cyclase compared to the wild type can also be achieved in various ways, for example by inducing the β-cyclase gene by activators or by introducing one or more β-cyclase gene copies, ie by introducing at least one nucleic acid encoding a β-cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has in the organism.
Unter Erhöhung der Genexpression einer Nukleinsäure, kodierend eine ß-Cyclase, wird erfindungsgemäß auch die Manipulation der Expression der Organismus eigenen endogenen ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleite- te Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, verstanden.By increasing the gene expression of a nucleic acid encoding a β-cyclase, the manipulation of the expression of the organism's own endogenous β-cyclase containing the amino acid sequence SEQ is also carried out according to the invention. ID. NO. 2 or one derived from this sequence by substitution, insertion or deletion of amino acids te sequence that has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has understood.
Dies kann beispielsweise durch Veränderung der Promotor DNA-Sequenz für ß- Cyclasen kodierende Gene erreicht werden. Eine solche Veränderung, die eine erhöhte Expressionsrate des Gens zur Folge hat, kann beispielsweise durch Deletion oder Insertion von DNA Sequenzen erfolgen.This can be achieved, for example, by changing the promoter DNA sequence for genes coding for β-cyclases. Such a change, which results in an increased expression rate of the gene, can take place, for example, by deleting or inserting DNA sequences.
Es ist, wie vorstehend beschrieben, möglich, die Expression der endogenen ß-Cyclase durch die Applikation exogener Stimuli zu verändern. Dies kann durch besondere physiologische Bedingungen, also durch die Applikation von Fremdsubstanzen erfolgen.As described above, it is possible to change the expression of the endogenous β-cyclase by applying exogenous stimuli. This can take place through special physiological conditions, ie through the application of foreign substances.
Des weiteren kann eine veränderte bzw. erhöhte Expression eines endogenen ß- Cyclase-Gens dadurch erzielt werden, dass ein im nicht transformierten Organismus nicht vorkommendes Regulator-Protein mit dem Promotor dieses Gens in Wechselwirkung tritt.Furthermore, an altered or increased expression of an endogenous β-cyclase gene can be achieved in that a regulator protein which does not occur in the non-transformed organism interacts with the promoter of this gene.
Solch ein Regulator kann ein chimäres Protein darstellen, welches aus einer DNA- Bindedomäne und einer Transkriptionsaktivator-Domäne besteht, wie beispielsweise in WO 96/06166 beschrieben.Such a regulator can represent a chimeric protein which consists of a DNA binding domain and a transcription activator domain, as described, for example, in WO 96/06166.
In einer bevorzugten Ausführungsform erfolgt die Erhöhung der Genexpression einer Nukleinsäure, kodierend eine ß-Cyclase, durch Einbringen in den Organismus von mindestens einer Nukleinsäure, kodierend eine ß-Cyclase, enthaltend die Aminosäure- sequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.In a preferred embodiment, the gene expression of a nucleic acid coding for a β-cyclase is increased by introducing into the organism at least one nucleic acid coding for a β-cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has.
In den erfindungsgemäßen transgenen Organismen liegt also in dieser Ausführungs- form gegenüber dem Wildtyp mindestens ein weiteres ß-Cyclase-Gen vor. In dieser Ausführungsform weist der erfindungsgemäße genetisch veränderte Organismus vor- zusgweise mindestens eine exogene (=heterologe) Nukleinsäure, kodierend eine ß- Cyclase, auf oder mindestens zwei endogene Nukleinsäuren, kodierend eine ß- Cyclase, auf.In this embodiment, at least one further β-cyclase gene is thus present in the transgenic organisms according to the invention compared to the wild type. In this embodiment, the genetically modified organism according to the invention preferably has at least one exogenous (= heterologous) nucleic acid coding for a β-cyclase or at least two endogenous nucleic acids coding for a β-cyclase.
In einer anderen, bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden als Ausgangsorganismen nicht-humane Organismen verwendet, die als Wildtyp keine ß-Cyclase-Aktivität aufweisen. In dieser, weniger bevorzugten Ausführungsform verursacht die genetische Veränderung die ß-Cyclase -Aktivität in den Organis- men. Der erfindungsgemäße genetisch veränderte Organismus weist somit in dieser, Ausführungsform im Vergleich zum genetisch nicht veränderten Wildtyp eine ß-Cyclase -Aktivität auf und ist somit vorzugsweise in der Lage, transgen eine ß-Cyclase zu exprimieren.In another preferred embodiment of the method according to the invention, non-human organisms are used as starting organisms which, as a wild type, have no β-cyclase activity. In this, less preferred embodiment, the genetic modification causes the β-cyclase activity in the organisms. The genetically modified organism according to the invention thus has in this, Embodiment compared to the genetically unmodified wild type on a ß-cyclase activity and is therefore preferably able to transgenically express a ß-cyclase.
In dieser bevorzugten Ausführungsform erfolgt die Verursachung der Genexpression einer Nukleinsäure kodierend eine ß-Cyclase analog zu der vorstehend beschriebenen Erhöhung der Genexpression einer Nukleinsäure kodierend eine ß-Cyclase vorzugsweise durch Einbringen von Nukleinsäuren, die ß-Cyclase kodieren in den Ausgangsorganismus.In this preferred embodiment, the gene expression of a nucleic acid encoding a β-cyclase is caused analogously to the above-described increase in gene expression of a nucleic acid encoding a β-cyclase, preferably by introducing nucleic acids which encode β-cyclase into the starting organism.
Dazu kann in beiden Ausführungsformen prinzipiell jedes ß-Cyclase-Gen, also jede Nukleinsäure, die eine ß-Cyclase kodiert, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Amino- säureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, verwendet werden.In principle, in both embodiments, each β-cyclase gene, that is to say any nucleic acid which encodes a β-cyclase, contains the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has to be used.
Bei genomischen ß-Cyclase-Nukleinsäure-Sequenzen aus eukaryotischen Quellen, die Introns enthalten, sind für den Fall, dass der Wirtsorganismus nicht in der Lage ist oder nicht in die Lage versetzt werden kann, die entsprechende ß-Cyclase zu exprimie- ren, bevorzugt bereits prozessierte Nukleinsäuresequenzen, wie die entsprechenden cDNAs, zu verwenden.In the case of genomic β-cyclase nucleic acid sequences from eukaryotic sources which contain introns, preference is given to the case in which the host organism is unable or unable to express the corresponding β-cyclase to use already processed nucleic acid sequences, such as the corresponding cDNAs.
Eine besonders bevorzugte ß-Cyclase ist die chromoplastenspezifische ß-Cyclase aus Tomate (AAG21133) (Nukleinsäure: SEQ ID No. 1 ; Protein: SEQ ID No. 2).A particularly preferred β-cyclase is the chromoplast-specific β-cyclase from tomato (AAG21133) (nucleic acid: SEQ ID No. 1; protein: SEQ ID No. 2).
Die erfindungsgemäße verwendbaren ß-Cyclase-Gene sind Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 %, vorzugsweise mindestens 80 %, bevor- zugter mindestens 85 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 2, und die die enzymatische Eigenschaft einer ß-Cyclase aufweisen.The β-cyclase genes which can be used according to the invention are nucleic acids which encode proteins, containing the amino acid sequence SEQ ID NO: 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and which have an identity of at least 70%, preferably at least 80 %, preferably at least 85%, more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 2, and which have the enzymatic property of a β-cyclase.
Weitere Beispiele für ß-Cyclasen und ß-Cyclase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SEQ ID NO: 2 leicht auffinden. Weitere Beispiele für ß-Cyclasen und ß-Cyclase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 1 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, durch Hybridisierungs- und PCR- Techniken in an sich bekannter Weise leicht auffinden.Further examples of β-cyclases and β-cyclase genes can easily be found, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SEQ ID NO: 2. Further examples of β-cyclases and β-cyclase genes can also be easily found, for example, starting from the sequence SEQ ID NO: 1 from various organisms whose genomic sequence is not known, using hybridization and PCR techniques in a manner known per se.
In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der ß- Cyclase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der ß-Cyclase der Sequenz SEQ ID NO: 2.In a further particularly preferred embodiment, to increase the β-cyclase activity, nucleic acids are introduced into organisms which code for proteins containing the amino acid sequence of the β-cyclase of the sequence SEQ ID NO: 2.
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der organismusspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich an- hand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.Those codons that are frequently used in accordance with the organism-specific codon usage are preferably used for this. The codon usage can easily be determined on the basis of computer evaluations of other, known genes of the organisms in question.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 1 in den Organismus ein.In a particularly preferred embodiment, a nucleic acid containing the sequence SEQ ID NO: 1 is introduced into the organism.
Alle vorstehend erwähnten ß-Cyclase-Gene sind weiterhin in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäurebau- steine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, Seite 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mithilfe des Klenow-Fragmentes der DNA- Polymerase und Ligationsreaktionen sowie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben.All of the β-cyclase genes mentioned above can also be produced in a manner known per se by chemical synthesis from the nucleotide building blocks, for example by fragment condensation of individual overlapping, complementary nucleic acid building blocks of the double helix. The chemical synthesis of oligonucleotides can be carried out, for example, in a known manner using the phosphoamidite method (Voet, Voet, 2nd edition, Wiley Press New York, pages 896-897). The attachment of synthetic oligonucleotides and the filling of gaps using the Klenow fragment of DNA polymerase and ligation reactions as well as general cloning methods are described in Sambrook et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press.
In einer bevorzugten Ausführungsform werden nicht-humane Organismen kultiviert, die gegenüber dem Wildtyp zusätzlich zur veränderten Ketolase-Aktivität und veränderten ß-Cyclase-Aktivität eine veränderte Hydroxylase-Aktivität aufweisen.In a preferred embodiment, non-human organisms are cultivated which, compared to the wild type, have an altered hydroxylase activity in addition to the altered ketolase activity and altered β-cyclase activity.
Unter einer „im Vergleich zum Wildtyp veränderten Hydroxylase-Aktivität" wird für den Fall, dass der Ausgangsorganismus oder Wildtyp keine Hydroxylase-Aktivität aufweist, vorzugsweise eine „im Vergleich zum Wildtyp verursachte Hydroxylase-Aktivität" verstanden. Unter einer „im Vergleich zum Wildtyp veränderten Hydroxylase-Aktivität" wird für den Fall, dass der Ausgangsorganismus oder Wildtyp eine Hydroxylase-Aktivität aufweist, vorzugsweise eine „im Vergleich zum Wildtyp erhöhte Hydroxylase-Aktivität" verstanden.In the case that the starting organism or wild type has no hydroxylase activity, an “hydroxylase activity changed compared to the wild type” is preferably understood to mean “hydroxylase activity caused compared to the wild type”. In the case that the starting organism or wild type has a hydroxylase activity, an “hydroxylase activity changed in comparison to the wild type” is preferably understood to mean an “increased hydroxylase activity in comparison to the wild type”.
Dementsprechend werden in einer bevorzugten Ausführungsform nicht-humane Organismen kultiviert, die gegenüber dem Wildtyp zusätzlich zur veränderten Ketolase- Aktivität und veränderten ß-Cyclase-Aktivität eine verursachte oder erhöhte Hydroxylase-Aktivität aufweisen.Accordingly, in a preferred embodiment, non-human organisms are cultivated which, compared to the wild type, have a caused or increased hydroxylase activity in addition to the changed ketolase activity and changed β-cyclase activity.
Unter Hydroxylase-Aktivität wird die Enzymaktivität einer Hydroxylase verstanden.Hydroxylase activity means the enzyme activity of a hydroxylase.
Unter einer Hydroxylase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, am, gegebenenfalls substituierten, ß-lonon-Ring von Carotinoiden eine Hydroxy-Gruppe einzuführen.A hydroxylase is understood to mean a protein which has the enzymatic activity of introducing a hydroxyl group on the optionally substituted β-ionone ring of carotenoids.
Insbesondere wird unter einer Hydroxylase ein Protein verstanden, das die enzymatische Aktivität aufweist, ß-Carotin in Zeaxanthin oder Canthaxanthin in Astaxanthin umzuwandeln.In particular, a hydroxylase is understood to mean a protein which has the enzymatic activity to convert β-carotene into zeaxanthin or canthaxanthin into astaxanthin.
Dementsprechend wird unter Hydroxyase-Aktivität die in einer bestimmten Zeit durch das Protein Hydroxylase umgesetzte Menge ß-Carotin oder Canthaxanthin bzw. gebildete Menge Zeaxanthin oder Astaxanthin verstanden.Accordingly, hydroxyase activity is understood to mean the amount of β-carotene or canthaxanthin or the amount of zeaxanthin or astaxanthin formed in a certain time by the protein hydroxylase.
Bei einer erhöhten Hydroxylase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Hydroxylase die umgesetzte Menge ß-Carotin oder Cantaxantin bzw. die gebildete Menge Zeaxanthin oder Astaxanthin erhöht.With an increased hydroxylase activity compared to the wild type, the amount of β-carotene or cantaxantin or the amount of zeaxanthin or astaxanthin formed is increased in a certain time by the protein hydroxylase compared to the wild type.
Vorzugsweise beträgt diese Erhöhung der Hydroxylase-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der Hydroxylase-Aktivität des Wildtyps.This increase in the hydroxylase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the hydroxylase activity of the wild type.
Die Bestimmung der Hydroxylase-Aktivität in erfindungsgemäßen genetisch veränderten Organismus und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:The hydroxylase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably determined under the following conditions:
Die Aktivität der Hydroxylase wird nach Bouvier et al. (Biochim. Biophys. Acta 1391 (1998), 320-328) in vitro bestimmt. Es wird zu einer bestimmten Menge an Organis- musextrakt Ferredoxin, Ferredoxin-NADP Oxidoreductase, Katalase, NADPH sowie beta-Carotin mit Mono- und Digalaktosylglyzeriden zugegeben.The activity of the hydroxylase is according to Bouvier et al. (Biochim. Biophys. Acta 1391 (1998), 320-328) in vitro. There is a certain amount of organizing Mus extract, ferredoxin, ferredoxin-NADP oxidoreductase, catalase, NADPH and beta-carotene with mono- and digalactosylglycerides added.
Besonders bevorzugt erfolgt die Bestimmung der Hydroxylase-Aktivität unter folgen- den Bedingungen nach Bouvier, Keller, d'Harlingue und Camara (Xanthophyll bio- synthesis: molecular and functional characterization of carotenoid hydroxylases from pepper fruits (Capsicum annuum L; Biochim. Biophys. Acta 1391 (1998), 320-328):The hydroxylase activity is particularly preferably determined under the following conditions according to Bouvier, Keller, d'Harlingue and Camara (xanthophyll bio-synthesis: molecular and functional characterization of carotenoid hydroxylases from pepper fruits (Capsicum annuum L; Biochim. Biophys. Acta 1391 (1998), 320-328):
Der in-vitro Assay wird in einem Volumen von 0.250 ml Volumen durchgeführt. Der Ansatz enthält 50 mM Kaliumphosphat (pH 7.6), 0.025 mg Ferredoxin von Spinat, 0.5 Einheiten Ferredoxin-NADP+ Oxidoreduktase von Spinat, 0.25 mM NADPH, 0.010 mg beta-Carotin (in 0.1 mg Tween 80 emulgiert), 0.05 mM einer Mischung von Mono- und Digalaktosylglyzeriden (1 :1), 1 Einheit Katalyse, , 0.2 mg Rinderserumalbumin und Organismusextrakt in unterschiedlichem Volumen. Die Reaktionsmischung wird 2 Stunden bei 30°C inkubiert. Die Reaktionsprodukte werden mit organischem Lösungsmittel wie Aceton oder Chloroform/Methanol (2:1) extrahiert und mittels HPLC bestimmt.The in vitro assay is carried out in a volume of 0.250 ml volume. The mixture contains 50 mM potassium phosphate (pH 7.6), 0.025 mg ferredoxin from spinach, 0.5 units ferredoxin-NADP + oxidoreductase from spinach, 0.25 mM NADPH, 0.010 mg beta-carotene (emulsified in 0.1 mg Tween 80), 0.05 mM a mixture of mono - and Digalactosylglyceriden (1: 1), 1 unit catalysis,, 0.2 mg bovine serum albumin and organism extract in different volumes. The reaction mixture is incubated at 30 ° C for 2 hours. The reaction products are extracted with organic solvent such as acetone or chloroform / methanol (2: 1) and determined by means of HPLC.
Die Erhöhung oder Verursachung der Hydroxylase-Aktivität kann durch verschiedene Wege erfolgen, beispielsweise durch Ausschalten von hemmenden Regulationsmechanismen auf Expressions- und Proteinebene oder durch Erhöhung oder Verursachung der Genexpression von Nukleinsäuren kodierend eine Hydroxylase gegenüber dem Wildtyp.The hydroxylase activity can be increased or caused in various ways, for example by switching off inhibitory regulatory mechanisms at the expression and protein level or by increasing or causing the gene expression of nucleic acids encoding a hydroxylase compared to the wild type.
Die Erhöhung oder Verursachung der Genexpression der Nukleinsäuren kodierend eine Hydroxylase gegenüber dem Wildtyp kann ebenfalls durch verschiedene Wege erfolgen, beispielsweise durch Induzierung des Hydroxylase-Gens, durch Aktivatoren oder durch Einbringen von einer oder mehrerer Hydroxylase-Genkopien, also durch Einbringen mindestens einer Nukleinsäure kodierend eine Hydroxylase in den Orga- nismus.The increase or causation of the gene expression of the nucleic acids encoding a hydroxylase compared to the wild type can also take place in different ways, for example by inducing the hydroxylase gene, by activators or by introducing one or more hydroxylase gene copies, i.e. by introducing at least one nucleic acid encoding one Hydroxylase in the organism.
Unter Erhöhung der Genexpression einer Nukleinsäure kodierend eine Hydroxylase wird erfindungsgemäß auch die Manipulation der Expression der Organismus eigenen, endogenen Hydroxylase verstanden.Increasing the gene expression of a nucleic acid encoding a hydroxylase also means manipulating the expression of the organism's own endogenous hydroxylase.
Dies kann beispielsweise durch Veränderung der Promotor DNA-Sequenz für Hydroxy- lasen kodierende Gene erreicht werden. Eine solche Veränderung, die eine erhöhte Expressionsrate des Gens zur Folge hat, kann beispielsweise durch Deletion oder Insertion von DNA Sequenzen erfolgen. Es ist, wie vorstehend beschrieben, möglich, die Expression der endogenen Hydroxylase durch die Applikation exogener Stimuli zu verändern. Dies kann durch besondere physiologische Bedingungen, also durch die Applikation von Fremdsubstanzen erfolgen.This can be achieved, for example, by changing the promoter DNA sequence for genes encoding hydroxylases. Such a change, which results in an increased expression rate of the gene, can take place, for example, by deleting or inserting DNA sequences. As described above, it is possible to change the expression of the endogenous hydroxylase by applying exogenous stimuli. This can take place through special physiological conditions, ie through the application of foreign substances.
Des weiteren kann eine verursachte oder erhöhte Expression eines endogenen Hydro- xylase-Gens dadurch erzielt werden, dass ein in dem nicht transformierten Organismus nicht vorkommendes Regulator-Protein mit dem Promotor dieses Gens in Wechselwirkung tritt.Furthermore, a caused or increased expression of an endogenous hydroxylase gene can be achieved in that a regulator protein which does not occur in the non-transformed organism interacts with the promoter of this gene.
Solch ein Regulator kann ein chimäres Protein darstellen, welches aus einer DNA- Bindedomäne und einer Transkriptionsaktivator-Domäne besteht, wie beispielsweise in WO 96/06166 beschrieben.Such a regulator can represent a chimeric protein which consists of a DNA binding domain and a transcription activator domain, as described, for example, in WO 96/06166.
In einer bevorzugten Ausführungsform erfolgt die Erhöhung oder Verursachung der Genexpression einer Nukleinsäure kodierend eine Hydroxylase durch Einbringen von mindestens einer Nukleinsäure kodierend eine Hydroxylase in den Organismus.In a preferred embodiment, the gene expression of a nucleic acid encoding a hydroxylase is increased or caused by introducing at least one nucleic acid encoding a hydroxylase into the organism.
Dazu kann prinzipiell jedes Hydroxylase-Gen, also jede Nukleinsäure, die eine Hydro- xylase kodiert, verwendet werden.In principle, any hydroxylase gene, that is to say any nucleic acid which codes for a hydroxylase, can be used for this purpose.
Bei genomischen Hydroxylase-Sequenzen aus eukaryontischen Quellen, die Introns enthalten, sind für den Fall das die Wirtspflanze nicht in der Lage ist oder nicht in die Lage versetzt werden kann, die entsprechende Hydroxylase zu exprimieren, bevorzugt bereits prozessierte Nukleinsäuresequenzen, wie die entsprechenden cDNAs zu verwenden.In the case of genomic hydroxylase sequences from eukaryotic sources which contain introns, in the event that the host plant is unable or unable to express the corresponding hydroxylase, nucleic acid sequences which have already been processed, such as the corresponding cDNAs, are preferred use.
Beispiele für ein Hydroxylase-Gene sind:Examples of a hydroxylase gene are:
eine Nukleinsäure, kodierend eine Hydroxylase aus Haematococcus pluvialis, Accession AX038729, WO 0061764); (Nukleinsäure: SEQ ID NO: 77, Protein: SEQ ID NO: 78),a nucleic acid encoding a hydroxylase from Haematococcus pluvialis, Accession AX038729, WO 0061764); (Nucleic acid: SEQ ID NO: 77, protein: SEQ ID NO: 78),
sowie Hydroxylasen der folgenden Accession Nummern:and hydroxylases of the following accession numbers:
|emb|CAB55626.1 , CAA70427.1 , CAA70888.1 , CAB55625.1 , AF499108 , AF315289 , AF296158 , AAC49443.1 , NP_194300.1 , NP_200070.1 , AAG10430.1 , CAC06712.1 , AAM88619.1 , CAC95130.1 , AAL80006.1 , AF 162276 , AA053295.1 , AAN85601.1 , CRTZ_ERWHE, CRTZ_PANAN, BAB79605.1 , CRTZ_ALCSP, CRTZ_AGRAU, CAB56060.1 , ZP_00094836.1 , AAC44852.1 , BAC77670.1 , NP_745389.1 , NP_344225.1 , NP_849490.1 , ZP_00087019.1 , NP_503072.1 ,| emb | CAB55626.1, CAA70427.1, CAA70888.1, CAB55625.1, AF499108, AF315289, AF296158, AAC49443.1, NP_194300.1, NP_200070.1, AAG10430.1, CAC06712.1, AAM88619.1, CAC95130 .1, AAL80006.1, AF 162276, AA053295.1, AAN85601.1, CRTZ_ERWHE, CRTZ_PANAN, BAB79605.1, CRTZ_ALCSP, CRTZ_AGRAU, CAB56060.1, ZP_00094836.1, AAC44852.1, BAC77670.1 NP_745389.1, NP_344225.1, NP_849490.1, ZP_00087019.1, NP_503072.1,
NP_852012.1 , NP_115929.1 , ZP_00013255.1NP_852012.1, NP_115929.1, ZP_00013255.1
Eine besonders bevorzugte Hydroxylase ist weiterhin die Hydroxylase aus Tomate (Accession Y14810) (Nukleinsäure: SEQ ID NO: 5; Protein: SEQ ID NO. 6).A particularly preferred hydroxylase is also the hydroxylase from tomato (Accession Y14810) (nucleic acid: SEQ ID NO: 5; protein: SEQ ID NO. 6).
In den erfindungsgemäßen bevorzugten transgenen Organismen liegt also in dieser bevorzugten Ausführungsform gegenüber dem Wildtyp mindestens ein weiteres Hydroxylase-Gen vor.In this preferred embodiment, the preferred transgenic organisms according to the invention therefore have at least one further hydroxylase gene compared to the wild type.
In dieser bevorzugten Ausführungsform weist der genetisch veränderte Organismus beispielsweise mindestens eine exogene Nukleinsäure, kodierend eine Hydroxylase oder mindestens zwei endogene Nukleinsäuren, kodierend eine Hydroxylase auf.In this preferred embodiment, the genetically modified organism has, for example, at least one exogenous nucleic acid encoding a hydroxylase or at least two endogenous nucleic acids encoding a hydroxylase.
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Hydroxylase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 6 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 %, vorzugsweise mindestens 80 %, bevorzugter mindestens 85%, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 6, und die die enzymatische Eigenschaft einer Hydroxylase aufweisen.In the preferred embodiment described above, the preferred hydroxylase genes used are nucleic acids encoding proteins containing the amino acid sequence SEQ ID NO: 6 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and having an identity of at least 70%, preferably at least 80%, more preferably at least 85%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 6, and which have the enzymatic property of a hydroxylase.
Weitere Beispiele für Hydroxylasen und Hydroxylase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 6 leicht auffinden.Further examples of hydroxylases and hydroxylase genes can easily be found, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 6.
Weitere Beispiele für Hydroxylasen und Hydroxylase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 5 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.Further examples of hydroxylases and hydroxylase genes can also be easily found, for example, starting from the sequence SEQ ID NO: 5 from various organisms whose genomic sequence is not known, as described above, by hybridization and PCR techniques in a manner known per se.
In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Hydroxylase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Hydroxylase der Sequenz SEQ ID NO: 6. Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.In a further particularly preferred embodiment, to increase the hydroxylase activity, nucleic acids are introduced into organisms which code for proteins containing the amino acid sequence of the hydroxylase of the sequence SEQ ID NO: 6. Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der organismus- spezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.Those codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this. The codon usage can easily be determined on the basis of computer evaluations of other known genes of the organisms in question.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, ent- haltend die Sequenz SEQ ID NO: 5 in den Organismus ein.In a particularly preferred embodiment, a nucleic acid containing the sequence SEQ ID NO: 5 is introduced into the organism.
Alle vorstehend erwähnten Hydroxylase-Gene sind weiterhin in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäurebau- steine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, Seite 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mithilfe des Klenow-Fragmentes der DNA- Polymerase und Ligationsreaktionen sowie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben.All of the above-mentioned hydroxylase genes can also be produced in a manner known per se by chemical synthesis from the nucleotide building blocks, for example by fragment condensation of individual overlapping, complementary nucleic acid building blocks of the double helix. The chemical synthesis of oligonucleotides can be carried out, for example, in a known manner using the phosphoamidite method (Voet, Voet, 2nd edition, Wiley Press New York, pages 896-897). The attachment of synthetic oligonucleotides and the filling of gaps using the Klenow fragment of DNA polymerase and ligation reactions as well as general cloning methods are described in Sambrook et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press.
Besonders bevorzugt werden im erfindungsgemäßen Verfahren genetisch veränderte nicht-humane Organismen eingesetzt, die als Ausgangsorganismen eine ß-Cyclase- Aktivität und keine Ketolase-Aktivität aufweisen, wobei die genetisch veränderten Organismen im Vergleich zum Wildtyp eine erhöhte ß-Cyclase-Aktivität, verursacht durch eine ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Se- quenz SEQ. ID. NO. 2 aufweist und eine verursachte Ketolase-Aktivität aufweisen.Genetically modified non-human organisms which have as starting organisms a .beta.-cyclase activity and no ketolase activity are particularly preferably used, the genetically modified organisms having an increased .beta.-cyclase activity, caused by a β-cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 and have caused ketolase activity.
Besonders bevorzugt werden im erfindungsgemäßen Verfahren weiterhin genetisch veränderte nicht-humane Organismen eingesetzt, die als Ausgangsorganismen keine ß-Cyclase-Aktivität und keine Ketolase-Aktivität aufweisen, wobei die genetisch verän- derten Organismen im Vergleich zum Wildtyp eine verursachte ß-Cyclase-Aktivität, verursacht durch eine ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäure- ebene mit der Sequenz SEQ. ID. NO. 2 aufweist und eine verursachte Ketolase- Aktivität aufweisen.Genetically modified non-human organisms which have no β-cyclase activity and no ketolase activity as starting organisms are particularly preferably used in the process according to the invention, the genetically modified organisms compared to the wild type having a β-cyclase activity, caused by a ß-cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 and has caused ketolase Have activity.
Besonders bevorzugt werden im erfindungsgemäßen Verfahren weiterhin genetisch veränderte nicht-humane Organismen eingesetzt, die als Ausgangsorganismen eine ß- Cyclase-Aktivität und eine Ketolase-Aktivität aufweisen, wobei die genetisch veränderten Organismen im Vergleich zum Wildtyp eine erhöhte ß-Cyclase-Aktivität, verursacht durch eine ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist und eine erhöhte Ketolase-Aktivität aufweisen.Genetically modified non-human organisms which have a .beta.-cyclase activity and a ketolase activity as starting organisms are particularly preferably used in the process according to the invention, the genetically modified organisms having an increased .beta.-cyclase activity, caused by, in comparison to the wild type a β-cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 and have an increased ketolase activity.
Besonders bevorzugt werden im erfindungsgemäßen Verfahren genetisch veränderte nicht-humäne Organismen eingesetzt, die als Ausgangsorganismen eine ß-Cyclase- Aktivität, keine Ketolase-Aktivität und keine Hydroxylase-Aktivität aufweisen, wobei die genetisch veränderten Organismen im Vergleich zum Wiidtyp eine erhöhte ß-Cyclase- Aktivität, verursacht durch eine ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, eine verursachte Ketola- se-Aktivität und eine verursachte Hydroxylase-Aktivität aufweisen.Genetically modified non-human organisms are particularly preferably used in the process according to the invention which have as starting organisms a β-cyclase activity, no ketolase activity and no hydroxylase activity, the genetically modified organisms having an increased β-cyclase activity compared to the wiid type. Activity caused by a β-cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2, have a caused ketolase activity and a caused hydroxylase activity.
Besonders bevorzugt werden im erfindungsgemäßen Verfahren genetisch veränderte nicht-humane Organismen eingesetzt, die als Ausgangsorganismen eine ß-Cyclase- Aktivität, eine Hydroxylase-Aktivität und keine Ketolase-Aktivität aufweisen, wobei die genetisch veränderten Organismen im Vergleich zum Wildtyp eine erhöhte ß-Cyclase- Aktivität, verursacht durch eine ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, eine erhöhte Hydroxyla- se-Aktivität und eine verursachte Ketolase-Aktivität aufweisen.Genetically modified non-human organisms are particularly preferably used in the process according to the invention which have as starting organisms a β-cyclase activity, a hydroxylase activity and no ketolase activity, the genetically modified organisms having an increased β-cyclase activity compared to the wild type. Activity caused by a β-cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has an increased hydroxylase activity and a caused ketolase activity.
Besonders bevorzugt werden im erfindungsgemäßen Verfahren weiterhin genetisch veränderte, nicht-humane Organismen eingesetzt, die als Ausgangsorganismen keine ß-Cyclase-Aktivität, keine Hydroxylase-Aktivität und keine Ketolase-Aktivität aufweisen, wobei die genetisch veränderten Organismen im Vergleich zum Wildtyp eine verursachte ß-Cyclase-Aktivität, verursacht durch eine ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Amiήosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, eine verursachte Hydroxylase-Aktivität und eine verursachte Ketolase-Aktivität te Hydroxylase-Aktivität und eine verursachte Ketolase-Aktivität aufweisen.Genetically modified, non-human organisms which have no β-cyclase activity, no hydroxylase activity and no ketolase activity as starting organisms are particularly preferably used in the process according to the invention, the genetically modified organisms causing a β- Cyclase activity caused by a β-cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has a caused hydroxylase activity and a caused ketolase activity te hydroxylase activity and have caused ketolase activity.
Besonders bevorzugt werden im erfindungsgemäßen Verfahren weiterhin genetisch veränderte nicht-humane Organismen eingesetzt, die als Ausgangsorganismen eine ß- Cyclase-Aktivität, eine Hydroxylase-Aktivität und eine Ketolase-Aktivität aufweisen, wobei die genetisch veränderten Organismen im Vergleich zum Wildtyp eine erhöhte ß- Cyclase-Aktivität, verursacht durch eine ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, eine erhöhte ß-Cyclase- Aktivität eine erhöhte Hydroxylase-Aktivität und eine erhöhte Ketolase-Aktivität aufweisen.Genetically modified non-human organisms which have a .beta.-cyclase activity, a hydroxylase activity and a ketolase activity as starting organisms are particularly preferably used in the process according to the invention, the genetically modified organisms having an increased .beta.-cyclase compared to the wild type Activity, caused by a β-cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has an increased β-cyclase activity, an increased hydroxylase activity and an increased ketolase activity.
In einer weiter bevorzugten Ausführungsform werden genetisch veränderte, nicht- humane Organismen kultiviert, die zusätzlich gegenüber dem Wildtyp eine erhöhte Aktivität mindestens einer der Aktivitäten, ausgewählt aus der Gruppe HMG-CoA- Reduktase-Aktivität, (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Aktivität, 1 -Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität, 1 -Deoxy-D-Xylose-5-Phosphat- Reduktoisomerase-Aktivität, Isopentenyl-Diphosphat-Δ-Isomerase-Aktivität, Geranyl- Diphosphat-Synthase-Aktivität, Farnesyl-Diphosphat-Synthase-Aktivität, Geranyl- Geranyl-Diphosphat-Synthase-Aktivität, Phytoen-Synthase-Aktivität, Phytoen- Desaturase-Aktivität, Zeta-Carotin-Desaturase-Aktivität, crtlSO-Aktivität, FtsZ-Aktivität und MinD-Aktivität aufweisen.In a further preferred embodiment, genetically modified, non-human organisms are cultivated which, in addition to the wild type, have an increased activity of at least one of the activities selected from the group HMG-CoA reductase activity, (E) -4-hydroxy-3- Methylbut-2-enyl-diphosphate reductase activity, 1 -deoxy-D-xylose-5-phosphate synthase activity, 1 -deoxy-D-xylose-5-phosphate-reductoisomerase activity, isopentenyl-diphosphate-Δ- Isomerase activity, geranyl diphosphate synthase activity, farnesyl diphosphate synthase activity, geranyl geranyl diphosphate synthase activity, phytoene synthase activity, phytoene desaturase activity, zeta-carotene desaturase activity, have crtlSO activity, FtsZ activity and MinD activity.
Unter HMG-CoA-Reduktase-Aktivität wird die Enzymaktivität einer HMG-CoA- Reduktase (3-Hydroxy-3-Methyl-Glutaryl-Coenzym-A-Reduktase) verstanden.HMG-CoA reductase activity is understood to mean the enzyme activity of an HMG-CoA reductase (3-hydroxy-3-methyl-glutaryl-coenzyme A reductase).
Unter einer HMG-CoA-Reduktase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, 3-Hydroxy-3-Methyl-Glutaryl-Coenzym-A in Mevalonat umzuwan- dein.An HMG-CoA reductase is understood to be a protein which has the enzymatic activity to convert 3-hydroxy-3-methyl-glutaryl-coenzyme-A into mevalonate.
Dementsprechend wird unter HMG-CoA-Reduktase-Aktivität die in einer bestimmten Zeit durch das Protein HMG-CoA-Reduktase umgesetzte Menge 3-Hydroxy-3-Methyl- Glutaryl-Coenzym-A bzw. gebildete Menge Mevalonat verstanden.Accordingly, HMG-CoA reductase activity is understood to mean the amount of 3-hydroxy-3-methyl-glutaryl-coenzyme A converted or amount of mevalonate formed in a certain time by the protein HMG-CoA reductase.
Bei einer erhöhten HMG-CoA-Reduktase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein HMG-CoA- Reduktase die umgesetzte Menge 3-Hydroxy-3-Methyl-Glutaryl-Coenzym-A bzw. die gebildete Menge Mevalonat erhöht. Vorzusgweise beträgt diese Erhöhung der HMG-CoA-Reduktase-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der HMG-CoA-Reduktase-Aktivität des Wildtyps.If the HMG-CoA reductase activity is increased compared to the wild type, the amount of 3-hydroxy-3-methyl-glutaryl-coenzyme-A or the formed amount of mevalonate increased. This increase in the HMG-CoA reductase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the Wild-type HMG-CoA reductase activity.
Die Bestimmung der HMG-CoA-Reduktase-Aktivität in erfindungsgemäßen genetisch veränderten Organismus und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:The determination of the HMG-CoA reductase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably carried out under the following conditions:
Eingefrorenes Organismenmaterial wird durch intensives Mosern in flüssigem Stickstoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1 :1 bis 1 :20 extrahiert. Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren Organismenmaterial, so dass eine Bestimmung und Quantifizierung der Enzymaktivitä- ten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7.4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0.1% (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10% Glyzerin, 5 mM KHC03. Kurz vor der Extraktion wird 2 mM DTT und 0.5 mM PMSF zugegeben.Frozen organism material is homogenized by intensive Mosern in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20. The respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible. Typically, the extraction buffer can consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ε-aminocaproic acid, 10% glycerin, 5mM KHC03. Shortly before the extraction, 2 mM DTT and 0.5 mM PMSF are added.
Die Aktivität der HMG-CoA-Reduktase kann nach veröffentlichen Beschreibungen gemessen werden (z.B. Schaller, Grausem, Benveniste, Chye, Tan, Song und Chua, Plant Physiol. 109 (1995), 761-770; Chappell, Wolf, Proulx, Cuellar und Saunders, Plant Physiol. 109 (1995) 1337-1343). Organismengewebe kann in kaltem Puffer (100 M Kaliumphosphat (pH 7.0), 4 mM MgCI2, 5 mM DTT) homogenisiert und extrahiert werden. Das Homogenisat wird 15 Minuten lang bei 10.000g bei 4C zentrifugiert. Der Überstand wird danach bei 100.000g für 45-60 Minuten nochmals zentrifugiert. Die Aktivität der HMG-CoA-Reduktase wird im Überstand und im Pellet der mikrosomalen Fraktion (nach dem Resuspendieren in 100 mM Kaliumphosphat (pH 7.0) und 50 mM DTT) bestimmt. Aliquots der Lösung und der Suspension (der Proteingehalt der Suspension entspricht etwa 1-10 υg) werden in 100 mM Kaliumphosphat-Puffer (pH 7,0 mit 3 mM NADPH und 20 μM ( 4C)HMG-CoA (58 μCi/μM) idealerweise in einem Volumen von 26 μl für 15-60 Minuten bei 30C inkubiert. Die Reaktion wird terminiert durch die Zugabe von 5 μl Mevalonatlacton (1 mg/ml) und 6 N HCI. Nach Zugabe wird die Mischung bei Raumtemperatur 15 Minuten inkubiert. Das in der Reaktion gebildete ( 4C)-Mevalonat wird quantifiziert, indem 125 μl einer gesättigten Kaliumphosphat- Lösung (pH 6.0) und 300 μl Ethylacetat zugegeben werden. Die Mischung wird gut vermischt und zentrifugiert. Mittels Szintillationsmessung kann die Radioaktivität bestimmt werden. Unter (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Aktivität, auch lytB oder IspH bezeichnet, wird die Enzymaktivität einer (E)-4-Hydroxy-3-Methylbut-2-enyl- Diphosphat-Reduktase verstanden.The activity of HMG-CoA reductase can be measured according to published descriptions (e.g. Schaller, Grausem, Benveniste, Chye, Tan, Song and Chua, Plant Physiol. 109 (1995), 761-770; Chappell, Wolf, Proulx, Cuellar and Saunders, Plant Physiol. 109 (1995) 1337-1343). Organism tissue can be homogenized and extracted in cold buffer (100 M potassium phosphate (pH 7.0), 4 mM MgCl 2 , 5 mM DTT). The homogenate is centrifuged at 10,000 g at 4C for 15 minutes. The supernatant is then centrifuged again at 100,000 g for 45-60 minutes. The activity of the HMG-CoA reductase is determined in the supernatant and in the pellet of the microsomal fraction (after resuspending in 100 mM potassium phosphate (pH 7.0) and 50 mM DTT). Aliquots of the solution and the suspension (the protein content of the suspension corresponds to approximately 1-10 μg) are dissolved in 100 mM potassium phosphate buffer (pH 7.0 with 3 mM NADPH and 20 μM ( 4 C) HMG-CoA (58 μCi / μM) ideally incubated in a volume of 26 μl for 15-60 minutes at 30 C. The reaction is terminated by adding 5 μl mevalonate lactone (1 mg / ml) and 6 N HCl, after which the mixture is incubated at room temperature for 15 minutes The ( 4 C) -evalonate formed in the reaction is quantified by adding 125 μl of a saturated potassium phosphate solution (pH 6.0) and 300 μl of ethyl acetate, the mixture is mixed well and centrifuged, and the radioactivity can be determined by scintillation measurement. Under (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase activity, also called lytB or IspH, the enzyme activity of an (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate is -Reductase understood.
Unter einer (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, (E)-4-Hydroxy-3-Methylbut-2-enyl- Diphosphat in Isopentenyldiphosphat und Dimethylallyldiphosphate umzuwandeln.An (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase means a protein which has the enzymatic activity, (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate in Convert isopentenyl diphosphate and dimethylallyldiphosphate.
Dementsprechend wird unter (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat- Reduktase-Aktivität die in einer bestimmten Zeit durch das Protein (E)-4-Hydroxy-3- Methylbut-2-enyl-Diphosphat-Reduktase umgesetzte Menge (E)-4-Hydroxy-3- Methylbut-2-enyl-Diphosphat bzw. gebildete Menge Isopentenyldiphosphat und/oder Dimethylallyldiphosphat verstanden.Accordingly, under (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase activity the protein (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate- Reductase converted amount (E) -4-hydroxy-3-methylbut-2-enyl diphosphate or amount formed isopentenyl diphosphate and / or dimethyl allyl diphosphate understood.
Bei einer erhöhten (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase -Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase die umgesetzte Menge (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat bzw. die gebildete Menge Isopentenyldiphosphat und/oder Dimethylallyldiphosphat erhöht.With an increased (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase activity compared to the wild type, the protein (E) -4-hydroxy-3- Methylbut-2-enyl diphosphate reductase increases the amount of (E) -4-hydroxy-3-methylbut-2-enyl diphosphate converted or the amount of isopentenyl diphosphate and / or dimethylallyldiphosphate formed.
Vorzugsweise beträgt diese Erhöhung der (E)-4-Hydroxy-3-Methylbut-2-enyl- Diphosphat-Reduktase-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase -Aktivität des Wildtyps.This increase in the (E) -4-hydroxy-3-methylbut-2-enyldiphosphate reductase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, more preferably at least 500%, especially at least 600% of the (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase activity of the wild type.
Die Bestimmung der (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase- Aktivität in erfindungsgemäßen genetisch veränderten, nicht-humanen Organismen und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:The (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase activity is preferably determined in genetically modified, non-human organisms according to the invention and in wild-type or reference organisms under the following conditions:
Eingefrorenes Organismenmaterial wird durch intensives Mosern in flüssigem Stickstoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1:1 bis 1 :20 extrahiert. Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren Organismenmaterial, sodaß eine Bestimmung und Quantifizierung der Enzymaktivitäten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Ex- traktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7.4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0.1 % (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10 % Glyzerin, 5 mM KHC03. Kurz vor der Extraktion wird 2 mM DTT und 0,5 mM PMSF zugegeben.Frozen organism material is homogenized by intensive Mosern in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20. The respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible. Typically, the extraction buffer can consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCl 2, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ε- Aminocaproic acid, 10% glycerin, 5 mM KHC03. Shortly before the extraction, 2 mM DTT and 0.5 mM PMSF added.
Die Bestimmung der (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase- Aktivität kann über einen immunologischen Nachweis erbracht werden. Die Herstellung spezifischer Antikörper ist durch Rohdich und Kollegen (Rohdich, Hecht, Gärtner, A- dam, Krieger, Amslinger, Arigoni, Bacher und Eisenreich: Studies on the nonmevalona- te terpene biosynthetic pathway: metabolic role of IspH (LytB) protein, Natl. Acad. Natl. Sei. USA 99 (2002), 1158-1163) beschrieben worden. Zur Bestimmung der katalyti- schen Aktivität bschreiben Altincicek und Kollegen (Altincicek, Duin, Reichenberg, Hedderich, Kollas, Hintz, Wagner, Wiesner, Beck und Jomaa: LytB protein catalyzes the terminal step of the 2-C-methyl-D-erythritol-4-phosphate pathway of isoprenoid biosynthesis; FEBS Letters 532 (2002,) 437-440) ein in vitro-System, welches die Reduktion von (E)-4-hydroxy-3-methyl-but-2-enyl diphosphat in die Isopentenyldiphosphat und Dimethylallyldiphosphat verfolgt.The (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase activity can be determined by immunological detection. The production of specific antibodies is by Rohdich and colleagues (Rohdich, Hecht, Gärtner, A-dam, Krieger, Amslinger, Arigoni, Bacher and Eisenreich: Studies on the nonmevalonat terpene biosynthetic pathway: metabolic role of IspH (LytB) protein, Natl Acad. Natl. USA 99 (2002), 1158-1163). To determine the catalytic activity, Altincicek and colleagues (Altincicek, Duin, Reichenberg, Hedderich, Kollas, Hintz, Wagner, Wiesner, Beck and Jomaa describe: LytB protein catalyzes the terminal step of the 2-C-methyl-D-erythritol 4-phosphate pathway of isoprenoid biosynthesis; FEBS Letters 532 (2002,) 437-440) an in vitro system which reduces the reduction of (E) -4-hydroxy-3-methyl-but-2-enyl diphosphate into the isopentenyl diphosphate and tracked dimethyl allyl diphosphate.
Unter 1-Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität wird die Enzymaktivität einer 1 -Deoxy-D-Xylose-5-Phosphat-Synthase verstanden.1-Deoxy-D-xylose-5-phosphate synthase activity means the enzyme activity of a 1-deoxy-D-xylose-5-phosphate synthase activity.
Unter einer 1-Deoxy-D-Xylose-5-Phosphat-Synthase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, Hydroxyethyl-ThPP und Glycerinaldehyd-3- Phosphat in 1-Deoxy-D-Xylose-5-Phosphat umzuwandeln.A 1-deoxy-D-xylose-5-phosphate synthase is understood to mean a protein which has the enzymatic activity to convert hydroxyethyl-ThPP and glyceraldehyde-3-phosphate into 1-deoxy-D-xylose-5-phosphate.
Dementsprechend wird unter 1-Deoxy-D-Xylose-5-Phosphat-Synthase -Aktivität die in einer bestimmten Zeit durch das Protein 1-Deoxy-D-Xylose-5-Phosphat-Synthase um- gesetzte Menge Hydroxyethyl-ThPP und/oder Glycerinaldehyd-3-Phosphat bzw. gebildete Menge 1-Deoxy-D-Xylose-5-Phosphat verstanden.Accordingly, 1-deoxy-D-xylose-5-phosphate synthase activity means the amount of hydroxyethyl-ThPP and / or glyceraldehyde converted by the protein 1-deoxy-D-xylose-5-phosphate synthase in a certain time -3-phosphate or the amount of 1-deoxy-D-xylose-5-phosphate formed.
Bei einer erhöhten 1-Deoxy-D-Xylose-5-Phosphat-Synthase -Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein 1-Deoxy-D-Xylose-5-Phosphat-Synthase die umgesetzte Menge Hydroxyethyl-ThPP und/oder Glycerinaldehyd-3-Phosphat bzw. die gebildete Menge -Deoxy-D-Xylose-5- Phosphat erhöht.With an increased 1-deoxy-D-xylose-5-phosphate synthase activity compared to the wild type, the protein 1-deoxy-D-xylose-5-phosphate synthase thus converts the amount converted in a certain time compared to the wild type Hydroxyethyl-ThPP and / or glyceraldehyde-3-phosphate or the amount formed -deoxy-D-xylose-5-phosphate increased.
Vorzugsweise beträgt diese Erhöhung der 1 -Deoxy-D-Xylose-5-Phosphat-Synthase - Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der 1-Deoxy-D- Xylose-5-Phosphat-Synthase-Aktivität des Wildtyps. Die Bestimmung der 1-Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität in erfindungsgemäßen genetisch veränderten Organismen und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:This increase in the 1-deoxy-D-xylose-5-phosphate synthase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600%, of the wild-type 1-deoxy-D-xylose-5-phosphate synthase activity. The determination of the 1-deoxy-D-xylose-5-phosphate synthase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably carried out under the following conditions:
Eingefrorenes Organismenmaterial wird durch intensives Mörsern in flüssigem Stickstoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1 :1 bis 1 :20 extrahiert. Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren Organismenmaterial, so dass eine Bestimmung und Quantifizierung der Enzymaktivitäten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7.4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0,1 % (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10 % Glyzerin, 5 mM KHC03. Kurz vor der Extraktion wird 2 mM DTT und 0,5 mM PMSF zugegeben.Frozen organism material is homogenized by intensive mortar in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20. The respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible. Typically, the extraction buffer can consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ε- Aminocaproic acid, 10% glycerin, 5 mM KHC03. Shortly before the extraction, 2 mM DTT and 0.5 mM PMSF are added.
Die Reaktionslösung (50-200 ul) für die Bestimmung der D-1-Deoxyxylulose-5- Phosphat-Synthase-Aktivität (DXS) besteht aus 100 mM Tris-HCI (pH 8.0), 3 mM MgCI2, 3 mM MnCI2, 3 mM ATP, 1 mM Thiamindiphosphat, 0.1% Tween-60, 1 mM Ka- liumfluorid, 30 υM (2-14C)-Pyruvat (0.5 υCi), 0.6 mM DL-Glyerinaldehyd-3-phosphat. Der Organismenextrakt wird 1 bis 2 Stunden in der Reaktionslösung bei 37C inkubiert. Danach wird die Reaktion durch Erhitzen auf 80C für 3 Minuten gestoppt. Nach Zentri- fugation bei 13.000 Umdrehungen/Minute für 5 Minuten wird der Überstand evaporiert, der Rest in 50 υl Methanol resuspendiert, auf eine TLC-Platte für Dünnschichtchromatographie (Silica-Gel 60, Merck, Darmstadt) aufgetragen und in N- Propylalkohol/Ethylacetat/Wasser (6:1 :3; v/v/v) aufgetrennt. Dabei trennt sich radioaktiv markiertes D-1-deoxyxylulose-5-phosphat (oder D-1-deoxyxylulose) von (2-1 C)- Pyruvat. Die Quantifizierung erfolgt mittels Scintillationszähler. Die Methode wurde beschrieben in Harker und Bramley (FEBS Letters 448 (1999) 115-119). Alternativ wurde ein fluorometrischer Assay zur Bestimmung der DXS-Synthaseaktivität von Que- rol und Kollegen beschrieben (Analytical Biochemistry 296 (2001) 101-105).The reaction solution (50-200 μl) for the determination of the D-1-deoxyxylulose-5-phosphate synthase activity (DXS) consists of 100 mM Tris-HCl (pH 8.0), 3 mM MgCl 2 , 3 mM MnCl 2 , 3 mM ATP, 1 mM thiamine diphosphate, 0.1% Tween-60, 1 mM Ka liumfluorid, 30 υM (2- 14 C) pyruvate (0.5 υCi), 0.6 mM DL-Glyerinaldehyd-3-phosphate. The organism extract is incubated for 1 to 2 hours in the reaction solution at 37C. Then the reaction is stopped by heating at 80C for 3 minutes. After centrifugation at 13,000 revolutions / minute for 5 minutes, the supernatant is evaporated, the rest is resuspended in 50 ul of methanol, applied to a TLC plate for thin layer chromatography (silica gel 60, Merck, Darmstadt) and in N-propyl alcohol / ethyl acetate / Water (6: 1: 3; v / v / v) separated. Radio-labeled D-1-deoxyxylulose-5-phosphate (or D-1-deoxyxylulose) separates from (2- 1 C) - pyruvate. The quantification is carried out using a scintillation counter. The method was described in Harker and Bramley (FEBS Letters 448 (1999) 115-119). Alternatively, a fluorometric assay to determine the DXS synthase activity of Queol and colleagues has been described (Analytical Biochemistry 296 (2001) 101-105).
Unter 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Aktivität wird die Enzymaktivität einer 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase, auch 1-Deoxy-D-Xylulose- 5-Phosphat-Reduktoisomerase genannt, verstanden.1-Deoxy-D-xylose-5-phosphate reductoisomerase activity describes the enzyme activity of a 1-deoxy-D-xylose-5-phosphate reductoisomerase, also called 1-deoxy-D-xylulose-5-phosphate reductoisomerase. Roger that.
Unter einer 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, 1-Deoxy-D-Xylose-5-Phosphat in 2- C-methyl-D-erythritol 4-Phosphat umzuwandeln.A 1-deoxy-D-xylose-5-phosphate reductoisomerase means a protein which has the enzymatic activity, 1-deoxy-D-xylose-5-phosphate in 2-C-methyl-D-erythritol 4-phosphate convert.
Dementsprechend wird unter 1-Deoxy-D-Xyiose-5-Phosphat-Reduktoisomerase - Aktivität die in einer bestimmten Zeit durch das Protein 1-Deoxy-D-Xylose-5-Phosphat- Reduktoisomerase umgesetzte Menge 1-Deoxy-D-Xylose-5-Phosphat bzw. gebildete Menge 2-C-methyl-D-erythritol 4-Phosphat verstanden.Correspondingly, 1-deoxy-D-xyiose-5-phosphate reductoisomerase - activity which is determined in a certain time by the protein 1-deoxy-D-xylose-5-phosphate - Reductoisomerase understood amount of 1-deoxy-D-xylose-5-phosphate or amount of 2-C-methyl-D-erythritol 4-phosphate formed.
Bei einer erhöhten 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Aktivität gegen- über dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase die umgesetzte Menge 1-Deoxy-D-Xylose-5-Phosphat bzw. die gebildete Menge 2-C-methyl-D-erythritol 4- Phosphat erhöht.With an increased 1-deoxy-D-xylose-5-phosphate-reductoisomerase activity compared to the wild type, the protein 1-deoxy-D-xylose-5-phosphate-reductoisomerase in a certain time compared to the wild type converted amount of 1-deoxy-D-xylose-5-phosphate or the amount of 2-C-methyl-D-erythritol 4-phosphate formed increased.
Vorzugsweise beträgt diese Erhöhung der 1-Deoxy-D-Xylose-5-Phosphat-This increase in 1-deoxy-D-xylose-5-phosphate is preferably
Reduktoisomerase -Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % 1 -Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Aktivität des Wildtyps.Reductoisomerase activity at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% 1-deoxy-D-xylose-5- Wild-type phosphate reductoisomerase activity.
Die Bestimmung der 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase -Aktivität in erfindungsgemäßen genetisch veränderten Organismen und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:The determination of the 1-deoxy-D-xylose-5-phosphate reductoisomerase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably carried out under the following conditions:
Eingefrorenes Organismenmaterial wird durch intensives Mörsern in flüssigem Stickstoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1 :1 bis 1 :20 extrahiert. Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren Organismenmaterial, sodaß eine Bestimmung und Quantifizierung der Enzymaktivitäten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7,4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0,1 % (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10 % Glyzerin, 5 mM KHC03. Kurz vor der Extraktion wird 2 mM DTT und 0,5 mM PMSF zugegeben.Frozen organism material is homogenized by intensive mortar in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20. The respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible. Typically, the extraction buffer can consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCl 2, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ε-aminocaproic acid, 10% glycerin, 5 mM KHC03. Shortly before the extraction, 2 mM DTT and 0.5 mM PMSF are added.
Die Aktivität der D-1-Deoxyxylulose-5-Phosphat-Reduktoisomerase (DXR) wird gemessen in einem Puffer aus 100 mM Tris-HCI (pH 7,5), 1 mM MnCI2, 0,3 mM NADPH und 0,3 mM 1-Deoxy-D-Xylulose-4-Phosphat, welches z.B. enzymatisch synthetisiert werden kann (Kuzuyama, Takahashi, Watanabe und Seto: Tetrahedon letters 39 (1998) 4509-4512). Die Reaktion wird durch Zugabe des Organismenextraktes gestar- tet. Das Reaktionsvolumen kann typischerweis 0,2 bis 0,5 mL betragen; die Inkubation erfolgt bei 37C über 30-60 Minuten. Während dieser Zeit wird die Oxidation von NADPH photometrisch bei 340 nm verfolgt. Unter Isopentenyl-Diphosphat-Δ-Isomerase -Aktivität wird die Enzymaktivität einer Iso- pentenyl-Diphosphat-Δ-lsomerase verstanden.The activity of D-1-deoxyxylulose-5-phosphate reductoisomerase (DXR) is measured in a buffer of 100 mM Tris-HCl (pH 7.5), 1 mM MnCl 2 , 0.3 mM NADPH and 0.3 mM 1-Deoxy-D-xylulose-4-phosphate, which can be synthesized, for example, enzymatically (Kuzuyama, Takahashi, Watanabe and Seto: Tetrahedon letters 39 (1998) 4509-4512). The reaction is started by adding the organism extract. The reaction volume can typically be 0.2 to 0.5 mL; incubation takes place at 37C for 30-60 minutes. During this time, the oxidation of NADPH is monitored photometrically at 340 nm. Isopentenyl diphosphate Δ isomerase activity is understood to mean the enzyme activity of an isopentenyl diphosphate Δ isomerase.
Unter einer Isopentenyl-Diphosphat-Δ-Isomerase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, Isopentenyl-Diphosphat in Dimethylallylphosphat umzuwandeln.An isopentenyl diphosphate Δ isomerase is understood to mean a protein which has the enzymatic activity to convert isopentenyl diphosphate to dimethylallyl phosphate.
Dementsprechend wird unter Isopentenyl-Diphosphat-Δ-Isomerase -Aktivität die in einer bestimmten Zeit durch das Protein Isopentenyl-Diphosphat-D-Δ-Isomerase um- gesetzte Menge Isopentenyl-Diphosphat bzw. gebildete Menge Dimethylallylphosphat verstanden.Accordingly, isopentenyl-diphosphate-Δ-isomerase activity is understood to mean the amount of isopentenyl-diphosphate or amount of dimethylallylphosphate formed in a certain time by the protein isopentenyl-diphosphate-D-Δ-isomerase.
Bei einer erhöhten Isopentenyl-Diphosphat-Δ-Isomerase -Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Isopentenyl-Diphosphat-Δ-Isomerase die umgesetzte Menge Isopentenyl-Diphosphat bzw. die gebildete Menge Dimethylallylphosphat erhöht.If the isopentenyl-diphosphate-Δ-isomerase activity is higher than that of the wild type, the protein isopentenyl-diphosphate-Δ-isomerase increases the amount of isopentenyl-diphosphate or the amount of dimethylallylphosphate formed in a certain time compared to the wild type.
Vorzugsweise beträgt diese Erhöhung der Isopentenyl-Diphosphat- Δ-Isomerase -Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter be- vorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der Isopentenyl-Diphosphat-Δ-Isomerase Aktivität des Wildtyps.This increase in the isopentenyl diphosphate Δ-isomerase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of wild type isopentenyl diphosphate Δ isomerase activity.
Die Bestimmung der Isopentenyl-Diphosphat-Δ-Isomerase-Aktivität in erfindungsge- mäßen genetisch veränderten Organismen und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:The determination of the isopentenyl-diphosphate-Δ-isomerase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably carried out under the following conditions:
Eingefrorenes Organismenmaterial wird durch intensives Mörtsern in flüssigem Stickstoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1 :1 bis 1 :20 ext- rahiert. Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren Organismenmaterial, so dass eine Bestimmung und Quantifizierung der Enzymaktivitäten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7,4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0,1 % (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10 % Glyzerin, 5 mM KHC03. Kurz vor der Extraktion wird 2 mM DTT und 0,5 mM PMSF zugegeben.Frozen organism material is homogenized by intensive mortaring in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20. The respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible. Typically, the extraction buffer can consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCl 2, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ε-aminocaproic acid, 10% glycerin, 5 mM KHC03. Shortly before the extraction, 2 mM DTT and 0.5 mM PMSF are added.
Aktivitätsbestimmungen der Isopentenyl-Diphosphat-Isomerase (IPP-lsomerase) können nach der von Fräser und Kollegen vorgestellten Methode (Fräser, Römer, Shipton, Mills, Kiano, Misawa, Drake, Schuch und Bramley: Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner; Proc. Natl. Acad. Sei. USA 99 (2002), 1092-1097, basierend auf Fräser, Pinto, Holloway und Bramley, Plant Journal 24 (2000), 551-558) durchgeführt werden. Für Enzymmessungen werden Inkubationen mit 0,5 υCi (1-14C)IPP (Isopentenylpyrophosphat) (56 mCi/mmol, Amersham pic) als Substrat in 0,4 M Tris-HCI (pH 8,0) mit 1 mM DTT, 4 mM MgCI2, 6 mM Mn Cl2, 3 mM ATP, 0,1 % Tween 60, 1 mM Kaliumfluorid in einem Volumen von etwa 150-500 υl durchgeführt. Extrakte werden mit Puffer gemischt (z.B. im Verhältnis 1 :1) und für wenigstens 5 Stunden bei 28°C inkubiert. Danach wird etwa 200 υlMethanol zugegeben und durch Zugabe von konzentrierter Salzsäure (Endkon- zentration 25 %) eine Säurehydrolyse für etwa 1 Stunde bei 37C durchgeführt. Anschließend erfolgt eine zweimalige Extraktion (jeweils 500 μl) mit Petrolether (versetzt mit 10% Diethy lether). Die Radioaktivität in einem Aliquot der Hyperphase wird mittels Szintillationszähler bestimmt. Die spezifische Enzymaktivität kann bei kurzer Inkubation von 5 Minuten bestimmt werden, da kurze Reaktionszeiten die Bildung von Reaktions- nebenprodukten unterdrückt (siehe Lützow und Beyer: The isopentenyl-diphosphate Δ- isomerase and its relation to the phytoene synthase complex in daffodil chromoplasts; Biochim. Biophys. Acta 959 (1988), 118-126)Activity determinations of isopentenyl diphosphate isomerase (IPP isomerase) can be carried out using the method presented by Fräser and colleagues (Fräser, Römer, Shipton, Mills, Kiano, Misawa, Drake, Schuch and Bramley: Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner; Proc. Natl. Acad. Be. USA 99 (2002), 1092-1097, based on milling cutters, Pinto, Holloway and Bramley, Plant Journal 24 (2000), 551-558). For enzyme assays, incubations with 0.5 υCi (1- 14 C) IPP (isopentenyl pyrophosphate) (56 mCi / mmol, Amersham pic) as substrate in 0.4 M Tris-HCl (pH 8.0) containing 1 mM DTT, 4 mM MgCl 2 , 6 mM Mn Cl 2 , 3 mM ATP, 0.1% Tween 60, 1 mM potassium fluoride in a volume of about 150-500 ul. Extracts are mixed with buffer (eg in a ratio of 1: 1) and incubated for at least 5 hours at 28 ° C. Then about 200 μl of methanol is added and, by adding concentrated hydrochloric acid (final concentration 25%), acid hydrolysis is carried out at 37 ° C. for about 1 hour. This is followed by a double extraction (500 μl each) with petroleum ether (mixed with 10% diethyl ether). The radioactivity in an aliquot of the hyperphase is determined using a scintillation counter. The specific enzyme activity can be determined with a short incubation of 5 minutes, since short reaction times suppress the formation of reaction by-products (see Lützow and Beyer: The isopentenyl-diphosphate Δ-isomerase and its relation to the phytoene synthase complex in daffodil chromoplasts; Biochim. Biophys. Acta 959 (1988) 118-126)
Unter Geranyl-Diphosphat-Synthase -Aktivität wird die Enzymaktivität einer Geranyl- Diphosphat-Synthase verstanden.Geranyl diphosphate synthase activity means the enzyme activity of a geranyl diphosphate synthase.
Unter einer Geranyl-Diphosphat-Synthase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, Isopentenyl-Diphosphat und Dimethylallylphosphat in Ge- ranyl-Diphosphat umzuwandeln.A geranyl diphosphate synthase is understood to mean a protein which has the enzymatic activity to convert isopentenyl diphosphate and dimethylallyl phosphate to geranyl diphosphate.
Dementsprechend wird unter Geranyl-Diphosphat-Synthase-Aktivität die in einer bestimmten Zeit durch das Protein Geranyl-Diphosphat-Synthase umgesetzte Menge Isopentenyl-Diphosphat und/oder Dimethylallylphosphat bzw. gebildete Menge Gera- nyl-Diphosphat verstanden.Accordingly, geranyl diphosphate synthase activity means the amount of isopentenyl diphosphate and / or dimethylallyl phosphate or amount of geranyl diphosphate formed in a certain time by the protein geranyl diphosphate synthase.
Bei einer erhöhten Geranyl-Diphosphat-Synthase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Geranyl-Diphosphat-Synthase die umgesetzte Menge Isopentenyl-Diphosphat und/oder Dimethylallylphosphat bzw. die gebildete Menge Geranyl-Diphosphat erhöht.If the geranyl diphosphate synthase activity is higher than that of the wild type, the amount of isopentenyl diphosphate and / or dimethylallyl phosphate or the amount of geranyl diphosphate formed is increased by the protein geranyl diphosphate synthase in a certain time compared to the wild type ,
Vorzugsweise beträgt diese Erhöhung der Geranyl-Diphosphat-Synthase -Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 •%, insbesondere mindestens 600 % der Geranyl- Diphosphat-Synthase-Aktivität des Wildtyps.This increase in geranyl diphosphate synthase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% the geranyl Wild-type diphosphate synthase activity.
Die Bestimmung der Geranyl-Diphosphat-Synthase-Aktivität in erfindungsgemäßen genetisch veränderten Organsimen und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:The geranyl diphosphate synthase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably determined under the following conditions:
Eingefrorenes Organismenmaterial wird durch intensives Mörsern in flüssigem Stickstoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1 :1 bis 1 :20 extrahiert. Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfüg- baren Organismenmaterial, so dass eine Bestimmung und Quantifizierung der Enzymaktivitäten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 M HEPES-KOH (pH 7.4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0,1 % (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10 % Glyzerin, 5 mM KHC03. Kurz vor der Extraktion wird 2 mM DTT und 0,5 mM PMSF zugegeben.Frozen organism material is homogenized by intensive mortar in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20. The respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible. Typically, the extraction buffer can consist of 50 M HEPES-KOH (pH 7.4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ε- Aminocaproic acid, 10% glycerin, 5 mM KHC03. Shortly before the extraction, 2 mM DTT and 0.5 mM PMSF are added.
Die Aktivität der Geranyl-Diphosphat-Synthase (GPP-Synthase) kann in 50 mM Tris- HCI (pH 7.6), 10 mM MgCI2, 5 mM MnCI2, 2 mM DTT, 1 mM ATP, 0.2 % Tween-20, 5 μM (14C)IPP und 50 μM DMAPP (Dimethylallylpyrophosphat) nach Zugabe von Orga- nismenextrakt bestimmt werden (nach Bouvier, Suire, d'Harlingue, Backhaus und Camara: Meolcular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells, Plant Journal 24 (2000) 241-252). Nach der Inkubation von z.B. 2 Stunden bei 37 °C werden die Reaktionsprodukte dephosphyryliert (nach Koyama, Fuji und Ogura: Enzymatic hydrolysis of polyprenyl pyrophosphats, Methods Enzymol. 110 (1985), 153-155) und mittels Dünnschichtchromatographie und Messung der inkorporierten Radioaktivität analysiert (Dogbo, Bardat, Quennemet und Camara: Metabolism of plastid terpenoids: In vitrp inhibition of phytoene synthesis by phenethyl pyrophosphate derivates, FEBS Letters 219 (1987) 211-215).The activity of geranyl diphosphate synthase (GPP synthase) can be found in 50 mM Tris-HCl (pH 7.6), 10 mM MgCl 2 , 5 mM MnCl 2 , 2 mM DTT, 1 mM ATP, 0.2% Tween-20.5 μM ( 14C ) IPP and 50 μM DMAPP (dimethylallyl pyrophosphate) can be determined after adding organism extract (according to Bouvier, Suire, d'Harlingue, Backhaus and Camara: Meolcular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells, plant Journal 24 (2000) 241-252). After incubation of, for example, 2 hours at 37 ° C., the reaction products are dephosphyrylated (according to Koyama, Fuji and Ogura: Enzymatic hydrolysis of polyprenyl pyrophosphats, Methods Enzymol. 110 (1985), 153-155) and analyzed by means of thin layer chromatography and measurement of the incorporated radioactivity (Dogbo, Bardat, Quennemet and Camara: Metabolism of plastid terpenoids: In vitrp inhibition of phytoene synthesis by phenethyl pyrophosphate derivates, FEBS Letters 219 (1987) 211-215).
Unter Farnesyl-Diphosphat-Synthase-Aktivität wird die Enzymaktivität einer Farnesyl- Diphosphat-Synthase verstanden.Farnesyl diphosphate synthase activity means the enzyme activity of a farnesyl diphosphate synthase.
Unter einer Famesyl-Diphosphat-Synthase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, sequentiell 2 Molekülelsopentenyl-Diphosphatmit Dimethy- lallyl-Diphosphat und dem resultierenden Geranyl-Diphosphat in Farnesyl-Diphosphat umzuwandeln.A famesyl diphosphate synthase is understood to mean a protein which has the enzymatic activity to sequentially convert 2 molecular sopentenyl diphosphate with dimethyl allyl diphosphate and the resulting geranyl diphosphate into farnesyl diphosphate.
Dementsprechend wird unter Famesyl-Diphosphat-Synthase-Aktivität die in einer bestimmten Zeit durch das Protein Famesyl-Diphosphat-Synthase umgesetzte Menge Dimethylallyl-Diphosphate und/oder Isopentenyl-Diphosphat bzw. gebildete Menge Farnesyl-Diphosphat verstanden.Accordingly, the amount of dimethylallyl diphosphate and / or isopentenyl diphosphate or the amount formed in a certain time by famesyl diphosphate synthase activity is converted by the protein famesyl diphosphate synthase Farnesyl diphosphate understood.
Bei einer erhöhten Famesyl-Diphosphat-Synthase -Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Farne- syl-Diphosphat-Synthase die umgesetzte Menge Dimethylallyl-Diphosphate und/oder Isopentenyl-Diphosphat bzw. die gebildete Menge Farnesyl-Diphosphat erhöht.With an increased famesyl diphosphate synthase activity compared to the wild type, the converted amount of dimethylallyl diphosphate and / or isopentenyl diphosphate or the amount formed is thus in a certain time compared to the wild type by the protein farnesyl diphosphate synthase Farnesyl diphosphate increased.
Vorzugsweise beträgt diese Erhöhung der Famesyl-Diphosphat-Synthase -Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der Farnesyl- Diphosphat-Synthase-Aktivität des Wildtyps.This increase in the famesyl diphosphate synthase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the Wild-type farnesyl diphosphate synthase activity.
Die Bestimmung der Farnesyl-Diphosphat-Synthase-Aktivität in erfindungsgemäßen genetisch veränderten Organismen und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:The determination of the farnesyl diphosphate synthase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably carried out under the following conditions:
Eingefrorenes Organismenmaterial wird durch intensives Mörsern in flüssigem Stickstoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1 :1 bis 1 :20 ext- rahiert. Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren Organismenmaterial, so dass eine Bestimmung und Quantifizierung der Enzymaktivitäten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7.4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0,1 % (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10 % Glyzerin, 5 mM KHC03. Kurz vor der Extraktion wird 2 mM DTT und 0,5 M PMSF zugegeben.Frozen organism material is homogenized by intensive mortar in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20. The respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible. Typically, the extraction buffer can consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ε- Aminocaproic acid, 10% glycerin, 5 mM KHC03. Shortly before the extraction, 2 mM DTT and 0.5 M PMSF are added.
Die Aktivität der Franesylpyrophosphat-Snthase (FPP-Synthase) kann nach einer Vorschrift von Joly und Edwards (Journal of Biological Chemistry 268 (1993), 26983- 26989) bestimmt werden. Danach wird die Enzymaktivität in einem Puffer aus 10 mM HEPES (pH 7,2), 1 mM MgCI2, 1 mM Dithiothreitol, 20 υM Geranylpyrophosphat und 40 μM (1- 4C) Isopentenylpyrophosphat (4 Ci/mmol) gemessen. Die Reaktionsmischung wird bei 37°C inkubiert; die Reaktion wird durch Zugabe von 2,5 N HCI (in 70 % Ethanol mit 19 μg/ml Famesol) gestoppt. Die Reaktionsproduckte werden somit durch Säurehydrolyse bei 37C innerhalb von 30 Minuten hydrolysiert. Durch Zugabe von 10% NaOH wird die Mischung neutralisiert und mit Hexan ausgeschüttelt. Ein Aliquot der Hexanphase kann zur Bestimmung der eingebauten Radioaktivität mittels Szintillati- onszähler gemessen werden. Alternativ können nach Inkubation von Organismenextrakt und radioaktiv markierten IPP die Reaktionsprodukte mittels Dünnschichtchromatographie (Silica-Gel SE60, Merck) in Benzol/Methanol (9:1) getrennt werden. Radioaktiv markierte Produkte werden eluiert und die Radioaktivität bestimmt (nach Gaffe, Bru, Causse, Vidal, Stamitti- Bert, Carde und Gallusci: LEFPS1 , a tomato farnesyl pyrophosphate gene highly ex- pressed during early fruit development; Plant Physiology 123 (2000) 1351-1362).The activity of franesyl pyrophosphate snthase (FPP synthase) can be determined according to a protocol by Joly and Edwards (Journal of Biological Chemistry 268 (1993), 26983-26989). The enzyme activity is then measured in a buffer of 10 mM HEPES (pH 7.2), 1 mM MgCl 2 , 1 mM dithiothreitol, 20 μM geranyl pyrophosphate and 40 μM (1- 4 C) isopentenyl pyrophosphate (4 Ci / mmol). The reaction mixture is incubated at 37 ° C; the reaction is stopped by adding 2.5 N HCl (in 70% ethanol with 19 μg / ml Famesol). The reaction products are thus hydrolyzed within 30 minutes by acid hydrolysis at 37C. The mixture is neutralized by adding 10% NaOH and extracted with hexane. An aliquot of the hexane phase can be measured using a scintillation counter to determine the built-in radioactivity. Alternatively, after incubation of organism extract and radioactively labeled IPP, the reaction products can be separated into benzene / methanol (9: 1) by means of thin layer chromatography (silica gel SE60, Merck). Radioactively labeled products are eluted and the radioactivity determined (according to Gaffe, Bru, Causse, Vidal, Stamitti-Bert, Carde and Gallusci: LEFPS1, a tomato farnesyl pyrophosphate gene highly expressed during early fruit development; Plant Physiology 123 (2000) 1351 -1362).
Unter Geranyl-Geranyl-Diphosphat-Synthase -Aktivität wird die Enzymaktivität einer Geranyl-Geranyl-Diphosphat-Synthase verstanden.Geranyl-geranyl diphosphate synthase activity is understood to mean the enzyme activity of a geranyl-geranyl diphosphate synthase.
Unter einer Geranyl-Geranyl-Diphosphat-Synthase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, Farnesyl-Diphosphat und Isopentenyl-Diphosphat in Geranyl-Geranyl-Diphosphat umzuwandeln. Dementsprechend wird unter Geranyl-Geranyl-Diphosphat-Synthase-Aktivität die in einer bestimmten Zeit durch das Protein Geranyl-Geranyl-Diphosphat-Synthase umgesetzte Menge Farnesyl-Diphosphat und/oder Isopentenyl-Diphosphat bzw. gebildete Menge Geranyl-Geranyl-Diphosphat verstanden. Bei einer erhöhten Geranyl-Geranyl-Diphosphat-Synthase -Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Geranyl-Geranyl-Diphosphat-Synthase die umgesetzte Menge Farnesyl-Diphosphat und/oder Isopentenyl-Diphosphat bzw. die gebildete Menge Geranyl-Geranyl- Diphosphat erhöht.A geranyl-geranyl diphosphate synthase is understood to mean a protein which has the enzymatic activity to convert farnesyl diphosphate and isopentenyl diphosphate into geranyl-geranyl diphosphate. Accordingly, geranyl-geranyl diphosphate synthase activity is understood to mean the amount of farnesyl diphosphate and / or isopentenyl diphosphate or the amount of geranyl-geranyl diphosphate formed in a certain time by the protein geranyl-geranyl diphosphate synthase. If the geranyl-geranyl-diphosphate synthase activity is higher than that of the wild type, the amount of farnesyl diphosphate and / or isopentenyl diphosphate or the formed amount of geranyl-geranyl diphosphate increased.
Vorzugsweise beträgt diese Erhöhung der Geranyl-Geranyl-Diphosphat-Synthase - Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der Geranyl-Geranyl- ~ Piphosphat-Synthase-Aktivität des Wildtyps.This increase in geranyl-geranyl diphosphate synthase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600 % of wild type geranyl-geranyl ~ piphosphate synthase activity.
Die Bestimmung der Geranyl-Geranyl-Diphosphat-Synthase -Aktivität in erfindungsgemäßen genetisch veränderten Organismen und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:The geranyl-geranyl-diphosphate synthase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably determined under the following conditions:
Eingefrorenes Organismenmaterial wird durch intensives Mörsern in flüssigem Stickstoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1 :1 bis 1 :20 extrahiert. Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren Organismenmaterial, so dass eine Bestimmung und Quantifizierung der Enzym- aktivitäten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7,4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0,1 % (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10 % Glyzerin, 5 mM KHC03. Kurz vor der Extraktion wird 2 mM DTT und 0,5 mM PMSF zugegeben.Frozen organism material is homogenized by intensive mortar in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20. The respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible. Typically, the Extraction buffers consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ε-aminocaproic acid , 10% glycerin, 5 mM KHC03. Shortly before the extraction, 2 mM DTT and 0.5 mM PMSF are added.
Aktivitätsmessungen der Geranylgeranylpyrophosphat-Synthase (GGPP-Synthase) können nach der von Dogbo und Camara beschriebenen Methode (in Biochim. Biophys. Acta 920 (1987), 140-148: Purification of isopentenyl pyrophosphate isomerase and geranylgeranyl pyrophosphate synthase from Capsicum chromoplasts by affinity chromatography) bestimmt werden. Dazu wird einem Puffer (50 mM Tris-HCI (pH 7,6), 2 mM MgCI2, 1 mM MnCI2, 2 mM Dithiothreitol, (1-14C)IPP (0,1 υCi, 10 «M), 15 «:M DMAPP, GPP oder FPP) mit einem Gesamtvolumen von etwa 200 υl Organismenextrakt zugesetzt. Die Inkubation kann für 1-2 Stunden (oder länger) bei 30C erfolgen. Die Reaktion wird durch Zugabe von 0,5 ml Ethanol und 0,1 ml 6N HCI. Nach 10minütiger Inkubation bei 37°C wird die Reaktionsmischung mit 6N NaOH neutralisiert, mit 1 ml Wasser vermischt und mit 4 ml Diethylether ausgeschüttelt. In einem Aliquot (z.B. 0,2 mL) der Etherphase wird mittels Szintillationszählung die Menge an Radioaktivität bestimmt. Alternativ können nach Säurehydrolyse die radioaktiv markierten Prenylalkohole in Ether ausgeschüttelt werden und mit HPLC (25 cm-Säule Spheri- sorb ODS-1 , 5υm; Elution mit Methanol/Wasser (90:10; v/v) bei einer Flussrate von 1 ml/min) getrennt und mittels Radioaktivitätsmonitor quantifiziert werden (nach Wiede- mann, Misawa und Sandmann: Purification and enzymatic characterization of the geranylgeranyl pyrophosphate synthase from Erwinia uredovora after expression in E- scherichia coli; Archives Biochemistry and Biophysics 306 (1993), 152-157).Activity measurements of geranylgeranyl pyrophosphate synthase (GGPP synthase) can be carried out by the method described by Dogbo and Camara (in Biochim. Biophys. Acta 920 (1987), 140-148: Purification of isopentenyl pyrophosphate isomerase and geranylgeranyl pyrophosphate synthase from Capsicochrome chromoplasts by affinity ) can be determined. For this purpose, a buffer (50 mM Tris-HCl (pH 7.6), 2 mM MgCl 2, 1 mM MnCl 2, 2 mM dithiothreitol, (1- 14 C) IPP (0.1 is υCi, 10 "M), 15 ": M DMAPP, GPP or FPP) with a total volume of about 200 ul of organism extract. Incubation can be for 1-2 hours (or longer) at 30C. The reaction is carried out by adding 0.5 ml of ethanol and 0.1 ml of 6N HCl. After incubation at 37 ° C. for 10 minutes, the reaction mixture is neutralized with 6N NaOH, mixed with 1 ml of water and extracted with 4 ml of diethyl ether. The amount of radioactivity is determined in an aliquot (for example 0.2 ml) of the ether phase by means of scintillation counting. Alternatively, after acid hydrolysis, the radioactively labeled prenyl alcohols can be shaken out in ether and HPLC (25 cm column Spherisorb ODS-1, 5μm; elution with methanol / water (90:10; v / v) at a flow rate of 1 ml / min) are separated and quantified using a radioactivity monitor (according to Wiedemann, Misawa and Sandmann: Purification and enzymatic characterization of the geranylgeranyl pyrophosphate synthase from Erwinia uredovora after expression in Escherichia coli; Archives Biochemistry and Biophysics 306 (1993), 152-157 ).
Unter Phytoen-Synthase-Aktivität wird die Enzymaktivität einer Phytoen-Synthase verstanden.Phytoene synthase activity means the enzyme activity of a phytoene synthase.
Insbesondere wird unter einer Phytoen-Synthase ein Protein verstanden, das die en- zymatische Aktivität aufweist, Geranyl-Geranyl-Diphosphat in Phytoen umzuwandeln.In particular, a phytoene synthase is understood to mean a protein which has the enzymatic activity of converting geranyl-geranyl diphosphate into phytoene.
Dementsprechend wird unter Phytoen-Synthase -Aktivität die in einer bestimmten Zeit durch das Protein Phytoen-Synthase umgesetzte Menge Geranyl-Geranyl-Diphosphat bzw. gebildete Menge Phytoen verstanden.Accordingly, phytoene synthase activity is understood to mean the amount of geranyl-geranyl diphosphate or amount of phytoene formed in a certain time by the protein phytoene synthase.
Bei einer erhöhten Phytoen-Synthase -Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Phytoen-Synthase die umgesetzte Menge Geranyl-Geranyl-Diphosphat bzw. die gebildete Menge Phytoen erhöht. Vorzugsweise beträgt diese Erhöhung der Phytoen-Synthase-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der Phytoen-Synthase-Aktivität des Wildtyps.With an increased phytoene synthase activity compared to the wild type, the amount of geranyl-geranyl diphosphate or the amount of phytoene formed is increased in a certain time by the protein phytoene synthase compared to the wild type. This increase in phytoene synthase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the phytoene Wild-type synthase activity.
Die Bestimmung der Phytoen-Synthase-Aktivität in erfindungsgemäßen genetisch veränderten Organismen und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:The phytoene synthase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably determined under the following conditions:
Eingefrorenes Organismenmaterial wird durch intensives Mörsern in flüssigem Stickstoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1 :1 bis 1 :20 extrahiert. Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren Organismenmaterial, so dass eine Bestimmung und Quantifizierung der Enzym- aktivitäten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7,4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0,1 % (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10 % Glyzerin, 5 mM KHC03. Kurz vor der Extraktion wird 2 mM DTT und 0,5 mM PMSF zugegeben.Frozen organism material is homogenized by intensive mortar in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20. The respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible. Typically, the extraction buffer can consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCl 2, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ε-aminocaproic acid, 10% glycerin, 5 mM KHC03. Shortly before the extraction, 2 mM DTT and 0.5 mM PMSF are added.
Aktivitätsbestimmungen der Phytoen-Synthase (PSY) können nach der von Fräser und Kollegen vorgestellten Methode (Fräser, Romer, Shipton, Mills, Kiano, Misawa, Drake, Schuch und Bramley: Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner; Proc. Natl. Acad. Sei. USA 99 (2002), 1092-1097, basierend auf Fräser, Pinto, Holloway und Bramley, Plant Journal 24Activity determinations of phytoene synthase (PSY) can be carried out using the method presented by Fräser and colleagues (Fräser, Romer, Shipton, Mills, Kiano, Misawa, Drake, Schuch and Bramley: Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit- specific manner; Proc. Natl. Acad. Sci. USA 99 (2002), 1092-1097, based on Fraser, Pinto, Holloway and Bramley, Plant Journal 24
(2000) 551-558) durchgeführt werden. Für Enzymmessungen werden Inkubationen mit (3H)Geranylgeranyl-pyrophosphat (15 mCi/mM, American Radiolabeled Chemicals, St. Louis) als Substrat in 0.4 M Tris-HCI (pH 8,0) mit 1 mM DTT, 4 mM MgCI2, 6 mM Mn Cl2, 3 mM ATP, 0,1 % Tween 60, 1 mM Kaliumfluorid durchgeführt. Organismenextrak- te werden mit Puffer gemischt, z B. 295 υl Puffer mit Extrakt in einem Gesamtvolumen von 500 υl. Inkubiert wird für wenigstens 5 Stunden bei 28C. Anschließend wird Phytoene durch zweimaliges Ausschütteln (jeweils 500 o l) mit Chloroform extrahiert. Das während der Reaktion gebildete radioaktiv markierte Phytoene wird mittels Dünnschichtchromatographie auf Silicaplatten in Methanol/Wasser (95:5; v/v) getrennt. Phy- toene kann in einer Jod-angereicherten Atmosphäre (durch Erhitzen weniger lodkristal- le) auf den Silicaplatten identifiziert werden. Ein Phytoene-Standard dient als Referenz. Die Menge an radioaktiv markiertem Produckt wird mittels Messung im Szintillations- zähler bestimmt. Alternativ kann Phytoene auch mittels HPLC, die mit einem Radioaktivitätsdetektor versehen ist, quantifiziert werden (Fräser, Albrecht und Sandmann: De- velopment of high Performance liquid Chromatographie Systems for the Separation of radiolabeled carotenes and precursors formed in specific enzymatic reactions; J. Chromatogr. 645 (1993) 265-272).(2000) 551-558). For enzyme measurements, incubations with ( 3 H) geranylgeranyl pyrophosphate (15 mCi / mM, American Radiolabeled Chemicals, St. Louis) as a substrate in 0.4 M Tris-HCl (pH 8.0) with 1 mM DTT, 4 mM MgCl 2 , 6 mM Mn Cl 2 , 3 mM ATP, 0.1% Tween 60, 1 mM potassium fluoride. Organism extracts are mixed with buffer, eg 295 ul buffer with extract in a total volume of 500 ul. Incubate for at least 5 hours at 28C. Then phytoene is extracted by shaking twice (500 ol each) with chloroform. The radioactively labeled phytoene formed during the reaction is separated by thin layer chromatography on silica plates in methanol / water (95: 5; v / v). Phytoene can be identified on the silica plates in an iodine-enriched atmosphere (by heating fewer iodine crystals). A phytoene standard serves as a reference. The amount of radioactively labeled product is determined by measurement in a scintillation counter. Alternatively, phytoene can also be quantified using HPLC, which is equipped with a radioactivity detector (Fräser, Albrecht and Sandmann: Development of high performance liquid chromatography systems for the separation of radiolabeled carotenes and precursors formed in specific enzymatic reactions; J. Chromatogr. 645 (1993) 265-272).
Unter Phytoen-Desaturase-Aktivität wird die Enzymaktivität einer Phytoen-Desaturase verstanden.Phytoene desaturase activity means the enzyme activity of a phytoene desaturase.
Unter einer Phytoen-Desaturase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, Phytoen in Phytofluen und/oder Phytofluen in ζ-Carotin (Zetacarotin) umzuwandeln.A phytoene desaturase is understood to mean a protein which has the enzymatic activity to convert phytoene into phytofluene and / or phytofluene into ζ-carotene (zeta-carotene).
Dementsprechend wird unter Phytoen-Desaturase-Aktivität die in einer bestimmten Zeit durch das Protein Phytoen-Desaturase umgesetzte Menge Phytoen bzw. Phytofluen bzw. gebildete Menge Phytofluen bzw. ζ-Caιotin verstanden.Accordingly, phytoene desaturase activity is understood to mean the amount of phytoene or phytofluene or amount of phytofluene or ζ-caotin converted in a certain time by the protein phytoene desaturase.
Bei einer erhöhten Phytoen-Desaturase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Phytoen-Desaturase die umgesetzte Menge Phytoen bzw. Phytofluen bzw. die gebildete Menge Phytofluen bzw. ζ-Carotin erhöht.With an increased phytoene desaturase activity compared to the wild type, the amount of phytoene or phytofluene or the amount of phytofluen or bzw.-carotene formed is increased in a certain time by the protein phytoen desaturase compared to the wild type.
Vorzugsweise beträgt diese Erhöhung der Phytoen-Desaturase-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der Phytoen-Desaturase-Aktivität des Wildtyps.This increase in phytoene desaturase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the phytoene Wild-type desaturase activity.
Die Bestimmung der Phytoen-Desaturase-Aktivität in erfindungsgemäßen genetisch veränderten Organismen und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:The phytoene desaturase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably determined under the following conditions:
Eingefrorenes Organismenmaterial wird durch intensives Mörsern in flüssigem Stickstoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1 :1 bis 1 :20 extrahiert. Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren Organismenmaterial, so dass eine Bestimmung und Quantifizierung der Enzymaktivitäten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7,4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0,1 % (v/v) Triton X-100, 2 mM ε- Aminocapronsäure, 10 % Glyzerin, 5 mM KHC03. Kurz vor der Extraktion wird 2 mM DTT und 0,5 mM PMSF zugegeben. Die Aktivität der Phytoen-Desaturase (PDS) kann durch die Inkorporation von radioaktiv markiertem (14C)-Phytoen in ungesättigte Carotine gemessen werden (nach Römer, Fräser, Kiano, Shipton, Misawa, Schuch und Bramley: Elevation of the provitamin A content of transgenic tomato plants; Nature Biotechnology 18 (2000) 666-669). Radio- aktiv markiertes Phytoene kann synthetisiert werden nach Fräser (Fräser, De la Rivas, Mackenzie, Bramley: Phycomyces blakesleanus CarB mutants: their use in assays of phytoene desaturase; Phytochemistry 30 (1991), 3971-3976). Membranen von Plast- iden des Zielgewebes können mit 100 mM MES-Puffer (pH 6,0) mit 10 mM MgCI2 und 1 mM Dithiothreitol in einem Gesamtvolumen von 1 mL inkubiert werden. In Aceton gelöstes ( 4C)-Phytoen (etwa 100.000 Zerfälle/Minute für jeweils eine Inkubation) wird zugegeben, wobei die Acetonkonzentration 5 % (v/v) nicht übersteigen sollte. Diese Mischung wird bei 28C für etwa 6 bis 7 Stunden im Dunklen unter Schütteln inkubiert. Danach werden Pigmente dreimal mit etwa 5 mL Petrolether (mit 10 % Diethylether versetzt) extrahiert und mittels HPLC getrennt und quantifiziert.Frozen organism material is homogenized by intensive mortar in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20. The respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible. Typically, the extraction buffer can consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCl 2, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ε-aminocaproic acid, 10% glycerin, 5 mM KHC03. Shortly before the extraction, 2 mM DTT and 0.5 mM PMSF are added. The activity of phytoene desaturase (PDS) can be measured by incorporating radioactively labeled ( 14 C) phytoene in unsaturated carotenes (according to Römer, Fraser, Kiano, Shipton, Misawa, Schuch and Bramley: Elevation of the provitamin A content of transgenic tomato plants; Nature Biotechnology 18 (2000) 666-669). Radioactive labeled phytoenes can be synthesized according to Fräser (Fräser, De la Rivas, Mackenzie, Bramley: Phycomyces blakesleanus CarB mutants: their use in assays of phytoene desaturase; Phytochemistry 30 (1991), 3971-3976). Membranes of plastids of the target tissue can be incubated with 100 mM MES buffer (pH 6.0) with 10 mM MgCl 2 and 1 mM dithiothreitol in a total volume of 1 mL. ( 4 C) -Phytoene dissolved in acetone (about 100,000 decays / minute for one incubation each) is added, the acetone concentration not exceeding 5% (v / v). This mixture is incubated at 28C for about 6 to 7 hours in the dark with shaking. Then pigments are extracted three times with about 5 mL petroleum ether (mixed with 10% diethyl ether) and separated and quantified by HPLC.
Alternativ kann die Aktivität der Phytoen-Desaturase nach Fräser et al. (Fräser, Misawa, Linden, Yamano, Kobayashi und Sandmann: Expression in Escherichia coli, purification, and reactivation of the recombinant Erwinia uredovora phytoene desaturase, Journal of Biological Chemistry 267 (1992), 19891-9895) gemessen werden.Alternatively, the activity of phytoene desaturase according to Fräser et al. (Fräser, Misawa, Linden, Yamano, Kobayashi and Sandmann: Expression in Escherichia coli, purification, and reactivation of the recombinant Erwinia uredovora phytoene desaturase, Journal of Biological Chemistry 267 (1992), 19891-9895).
Unter Zeta-Carotin-Desaturase-Aktivität wird die Enzymaktivität einer Zeta-Carotin- Desaturase verstanden.Zeta-carotene desaturase activity means the enzyme activity of a zeta-carotene desaturase.
Unter einer Zeta-Carotin-Desaturase wird ein Protein verstanden, das die enzymati- sehe Aktivität aufweist, ζ-Carotin in Neurosporin und/oder Neurosporin in Lycopin umzuwandeln.A zeta-carotene desaturase is understood to mean a protein which has the enzymatic activity to convert ζ-carotene into neurosporin and / or neurosporin into lycopene.
Dementsprechend wird unter Zeta-Carotin-Desaturase-Aktivität die in einer bestimmten Zeit durch das Protein Zeta-Carotin-Desaturase umgesetzte Menge ζ-Carotin oder Neurosporin bzw. gebildete Menge Neurosporin oder Lycopin verstanden.Accordingly, zeta-carotene desaturase activity means the amount of ζ-carotene or neurosporin or the amount of neurosporin or lycopene formed in a certain time by the protein zeta-carotene desaturase.
Bei einer erhöhten Zeta-Carotin-Desaturase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Zeta- Carotin-Desaturase die umgesetzte Menge ζ-Carotin oder Neurosporin bzw. die gebil- dete Menge Neurosporin oder Lycopin erhöht.If the zeta-carotene desaturase activity is increased compared to the wild type, the amount of ζ-carotene or neurosporin or the amount of neurosporin or lycopene formed is increased in a certain time by the protein zeta-carotene desaturase compared to the wild type ,
Vorzugsweise beträgt diese Erhöhung der Zeta-Carotin-Desaturase-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 00 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der Zeta-Carotin-Desaturase - Aktivität des Wildtyps.This increase in zeta-carotene desaturase activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 00%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the Zeta-carotene desaturase - Wild type activity.
Die Bestimmung der Zeta-Carotin-Desaturase-Aktivität in erfindungsgemäßen genetisch veränderten Organismen und in Wildtyp- bzw. Referenzorganismen erfolgt vor- zugsweise unter folgenden Bedingungen:The zeta-carotene desaturase activity in genetically modified organisms according to the invention and in wild-type or reference organisms is preferably determined under the following conditions:
Eingefrorenes Organsimenmaterial wird durch intensives Mörsern in flüssigem Stickstoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1 :1 bis 1 :20 extrahiert. Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfüg- baren Organsimenmaterial, so dass eine Bestimmung und Quantifizierung der Enzymaktivitäten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7,4), 10 mM MgCI2, 10 mM KCI, 1 mM EDTA, 1 mM EGTA, 0,1 % (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10 % Glyzerin, 5 mM KHC03. Kurz vor der Extraktion wird 2 mM DTT und 0,5 mM PMSF zugegeben.Frozen organism material is homogenized by intensive mortar in liquid nitrogen and extracted with extraction buffer in a ratio of 1: 1 to 1:20. The respective ratio depends on the enzyme activities in the available organism material, so that a determination and quantification of the enzyme activities within the linear measuring range is possible. Typically, the extraction buffer can consist of 50 mM HEPES-KOH (pH 7.4), 10 mM MgCl 2, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 0.1% (v / v) Triton X-100, 2 mM ε-aminocaproic acid, 10% glycerin, 5 mM KHC03. Shortly before the extraction, 2 mM DTT and 0.5 mM PMSF are added.
Analysen zur Bestimmung der ξ-Carotin-Desaturase (ZDS-Desaturase) können in 0.2 M Kaliumphosphat (pH 7.8, Puffervolumen von etwa 1 ml) durchgeführt werden. Die Anlysemethode dazu wurde von Breitenbach und Kollegen (Breitenbach, Kuntz, Takai- chi und Sandmann: Catalytic properties of an expressed and purified higher plant type ξ-carotene desaturase from Capsicum annuum; European Journal of Biochemistry. 265(1 ):376-383, 1999) publiziert. Jeder Analyseansatz enthält 3 mg Phosphytidylcho- lin, das in 0,4 M Kaliumphosphatpuffer (pH 7,8) suspendiert ist, 5 υg ξ-Carotin oder Neurosporin, 0,02 % Butylhydroxytoluol, 10 υl Decyl-Plastochinon (1 mM methanoli- sehe Stammlösung) und Organismenextrakt. Das Volumen des Organismenextraktes muß der Menge an vorhandener ZDS-Desaturase-Aktivität angepasst werden, um Quantifizierungen in einem linearen Messbereich zu ermöglichen. Inkubationen erfolgen typischerweise für etwa 17 Stunden bei kräftigem Schütteln (200 Umdrehungen/Minute) bei etwa 28°C im Dunklen. Carotinoide werden durch Zu- gäbe von 4 ml Aceton bei 50°C für 10 Minuten unter Schütteln extrahiert. Aus dieser Mischung werden die Carotinoide in eine Petroletherpahse (mit 10 % Diethylether) ü- berführt. Die Dethylether/Petroletherphase wird unter Stickstoff evaporiert, die Carotinoide wieder in 20 υl gelöst und mittels HPLC getrennt und quantifiziert.Analyzes to determine the ξ-carotene desaturase (ZDS desaturase) can be carried out in 0.2 M potassium phosphate (pH 7.8, buffer volume of about 1 ml). The analysis method was developed by Breitenbach and colleagues (Breitenbach, Kuntz, Takaichi and Sandmann: Catalytic properties of an expressed and purified higher plant type ξ-carotene desaturase from Capsicum annuum; European Journal of Biochemistry. 265 (1): 376-383 , 1999). Each analysis batch contains 3 mg phosphytidylcholine, which is suspended in 0.4 M potassium phosphate buffer (pH 7.8), 5 µg ξ-carotene or neurosporin, 0.02% butylhydroxytoluene, 10 µl decyl plastoquinone (1 mM methanolic see Stock solution) and organism extract. The volume of the organism extract must be adjusted to the amount of ZDS desaturase activity present in order to enable quantifications in a linear measuring range. Incubations typically take place for about 17 hours with vigorous shaking (200 revolutions / minute) at about 28 ° C in the dark. Carotenoids are extracted by adding 4 ml acetone at 50 ° C for 10 minutes while shaking. The carotenoids are transferred from this mixture to a petroleum ether phase (with 10% diethyl ether). The ethyl ether / petroleum ether phase is evaporated under nitrogen, the carotenoids redissolved in 20 ul and separated and quantified by HPLC.
Unter crtlSO -Aktivität wird die Enzymaktivität eines crtlSO-Proteins verstanden.CrtlSO activity means the enzyme activity of a crtlSO protein.
Unter einem crtlSO-Proteins wird ein Protein verstanden, das die enzymatische Aktivität aufweist, 7,9,7',9'-tetra-cis-Lycopin in all-trans-Lycopin umzuwandeln. Dementsprechend wird unter crtlSO-Aktivität die in einer bestimmten Zeit durch das Protein crtlSO umgesetzte Menge 7,9,7',9'-tetra-cis-Lycopin bzw. gebildete Menge all- trans-Lycopin verstanden.A crtlSO protein is understood to mean a protein which has the enzymatic activity of converting 7,9,7 ', 9'-tetra-cis-lycopene into all-trans-lycopene. Accordingly, crtlSO activity is understood to mean the amount of 7,9,7 ', 9'-tetra-cis-lycopene or amount of all-trans-lycopene formed in a certain time by the crtlSO protein.
Bei einer erhöhten crtlSO-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das crtlSO-Proteins die umgesetzte Menge 7,9,7',9'-tetra-cis-Lycopin bzw. die gebildete Menge all-trans-Lycopin erhöht.If crtlSO activity is higher than that of the wild type, the amount of 7,9,7 ', 9'-tetra-cis-lycopene converted or the amount of all-trans formed by the crtlSO protein is reduced in a certain time compared to the wild type - Lycopene increased.
Vorzugsweise beträgt diese Erhöhung der crtlSO-Aktivität mindestens 5 %, weiter be- vorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der crtlSO-Aktivität des Wildtyps.This increase in crtlSO activity is preferably at least 5%, more preferably at least 20%, more preferably at least 50%, more preferably at least 100%, more preferably at least 300%, even more preferably at least 500%, in particular at least 600% of the crtlSO- Wild type activity.
Unter FtsZ-Aktivität wird die physiologische Aktivität eines FtsZ-Proteins verstanden.FtsZ activity is understood to mean the physiological activity of an FtsZ protein.
Unter einem FtsZ-Protein wird ein Protein verstanden, das eine Zellteilungs und Plasti- denteilungs-fördemde Wirkung hat und Homologien zu Tubulinproteinen aufweist.An FtsZ protein is understood to be a protein which has a cell division and plastid division promoting effect and has homologies to tubulin proteins.
Unter MinD -Aktivität wird die physiologische Aktivität eines MinD -Proteins verstanden.MinD activity is understood to mean the physiological activity of a MinD protein.
Unter einem MinD -Protein wird ein Protein verstanden, das eine multifunktionele Rolle bei der Zellteilung aufweist. Es ist eine Membran-assoziierte ATPase und kann innerhalb der Zelle eine oszillierende Bewegung von Pol zu Pol zeigen.A MinD protein is understood to be a protein that has a multifunctional role in cell division. It is a membrane-associated ATPase and can show an oscillating movement from pole to pole within the cell.
Weiterhin kann die Erhöhung der Aktivität von Enzymen des Nicht-Mevalonatweges zu einer weiteren Erhöhung des gewünschten Ketocarotenoid-Endproduktes führen. Bei- piele hierfür sind die 4-Diphosphocytidyl-2-C-Methyl-D-Erythritol-Synthase, die 4- Diphosphocytidyl-2-C-Methyl-D-Erythritol-Kinase und die 2-C-Methyl-D-Erythritol-2,4- cyclodiphoshat-Synthase. Durch Änderungen der Genexpression der entsprechenden Gene kann die Aktivität der genannten Enzyme erhöht werden. Die veränderten Konzentrationen der relavanten Proteine können standardgemäß mittels Antikörpern und entsprechenden Blotting-techniken nachgewiesen werden.Furthermore, increasing the activity of enzymes in the non-mevalonate pathway can lead to a further increase in the desired ketocarotenoid end product. Examples of this are the 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase, the 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase and the 2-C-methyl-D-erythritol kinase 2,4-cyclodiphoshate synthase. The activity of the enzymes mentioned can be increased by changing the gene expression of the corresponding genes. The changed concentrations of the relevant proteins can be detected using antibodies and corresponding blotting techniques as standard.
Die Erhöhung der HMG-CoA-Reduktase-Aktivität und/oder (E)-4-Hydroxy-3-Methylbut- 2-enyl-Diphosphat-Reduktase-Aktivität und/oder 1-Deoxy-D-Xylose-5-Phosphat-The increase in HMG-CoA reductase activity and / or (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase activity and / or 1-deoxy-D-xylose-5-phosphate
Synthase-Aktivität und/oder 1 -Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Aktivität und/oder Isopentenyl-Diphosphat-Δ-Isomerase-Aktivität und/oder Geranyl-Diphosphat- Synthase-Aktivität und/oder Famesyl-Diphosphat-Synthase-Aktivität und/oder Geranyl- geranyl-Diphosphat-Synthase-Aktivität und/oder Phytoen-Synthase-Aktivität und/oder Phytoen-Desaturase-Aktivität und/oder Zeta-Carotin-Desaturase-Aktivität und/oder crtlSO-Aktivität und/oder FtsZ-Aktivität und/oder MinD-Aktivität kann durch verschiedene Wege erfolgen, beispielsweise durch Ausschalten von hemmenden Regulationsmechanismen auf Expressions- und Proteinebene oder durch Erhöhung der Genexpression von Nukleinsäuren kodierend eine HMG-CoA-Reduktase und/oder Nukleinsäuren kodierend eine (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase und/oder Nukleinsäuren kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Synthase und/oder Nukleinsäuren kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase und/oder Nukleinsäuren kodierend eine Isopentenyl-Diphosphat-Δ-Isomerase und/oder Nukleinsäuren kodierend eine Geranyl-Diphosphat-Synthase und/oder Nukleinsäuren kodie- rend eine Farnesyl-Diphosphat-Synthase und/oder Nukleinsäuren kodierend eine Ge- ranyl-geranyl-Diphosphat-Synthase und/oder Nukleinsäuren kodierend eine Phytoen- Synthase und/oder Nukleinsäuren kodierend eine Phytoen-Desaturase und/oder Nukleinsäuren kodierend eine Zeta-Carotin-Desaturase und/oder Nukleinsäuren kodierend ein crtlSO-Protein und/oder Nukleinsäuren kodierend ein FtsZ-Protein und/oder Nuk- leinsäuren kodierend ein MinD-Protein gegenüber dem Wildtyp.Synthase activity and / or 1-deoxy-D-xylose-5-phosphate reductoisomerase activity and / or isopentenyl diphosphate Δ isomerase activity and / or geranyl diphosphate synthase activity and / or famesyl diphosphate Synthase activity and / or geranylgeranyl diphosphate synthase activity and / or phytoene synthase activity and / or phytoene desaturase activity and / or zeta-carotene desaturase activity and / or crtlSO activity and / or FtsZ activity and / or MinD activity can take place in various ways, for example by switching off inhibitory regulatory mechanisms at the expression and protein level or by increasing the gene expression of nucleic acids encoding an HMG-CoA reductase and / or nucleic acids encoding an (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase and / or nucleic acids encoding a 1-deoxy-D-xylose-5-phosphate synthase and / or nucleic acids encoding a 1-deoxy D-xylose-5-phosphate reductoisomerase and / or nucleic acids encoding an isopentenyl diphosphate Δ isomerase and / or nucleic acids encoding a geranyl diphosphate synthase and / or nucleic acids encoding a farnesyl diphosphate synthase and / or nucleic acids encoding a geranyl-geranyl diphosphate synthase and / or nucleic acids encoding a phytoene synthase and / or nucleic acids encoding a phytoene desaturase and / or nucleic acids encoding a cell ta-carotene desaturase and / or nucleic acids encoding a crtlSO protein and / or nucleic acids encoding an FtsZ protein and / or nucleic acids encoding a MinD protein compared to the wild type.
Die Erhöhung der Genexpression der Nukleinsäuren kodierend eine HMG-CoA- Reduktase und/oder Nukleinsäuren kodierend eine (E)-4-Hydroxy-3-Methylbut-2-enyl- Diphosphat-Reduktase und/oder Nukleinsäuren kodierend eine 1 -Deoxy-D-Xylose-5- Phosphat-Synthase und/oder Nukleinsäuren kodierend eine 1-Deoxy-D-Xylose-5- Phosphat-Reduktoisomerase und/oder Nukleinsäuren kodierend eine Isopentenyl- Diphosphat-Δ-Isomerase und/oder Nukleinsäuren kodierend eine Geranyl-Diphosphat- Synthase und/oder Nukleinsäuren kodierend eine Farnesyl-Diphosphat-Synthase und/oder Nukleinsäuren kodierend eine Geranyl-geranyl-Diphosphat-Synthase und/oder Nukleinsäuren kodierend eine Phytoen-Synthase und/oder Nukleinsäuren kodierend eine Phytoen-Desaturase und/oder Nukleinsäuren kodierend eine Zeta- Carotin-Desaturase und/oder Nukleinsäuren kodierend ein crtlSO-Protein und/oder Nukleinsäuren kodierend ein FtsZ-Protein und/oder Nukleinsäuren kodierend ein MinD- Protein gegenüber dem Wildtyp kann ebenfalls durch verschiedene Wege erfolgen, beispielsweise durch Induzierung des HMG-CoA-Reduktase-Gens und/oder (E)-4-The increase in the gene expression of the nucleic acids encoding an HMG-CoA reductase and / or nucleic acids encoding an (E) -4-hydroxy-3-methylbut-2-enyldiphosphate reductase and / or nucleic acids encoding a 1 -deoxy-D- Xylose-5-phosphate synthase and / or nucleic acids encoding a 1-deoxy-D-xylose-5-phosphate reductoisomerase and / or nucleic acids encoding an isopentenyl-diphosphate-Δ-isomerase and / or nucleic acids encoding a geranyl-diphosphate synthase and / or nucleic acids encoding a farnesyl diphosphate synthase and / or nucleic acids encoding a geranyl-geranyl diphosphate synthase and / or nucleic acids encoding a phytoene synthase and / or nucleic acids encoding a phytoene desaturase and / or nucleic acids encoding a zeta Carotene desaturase and / or nucleic acids encoding a crtlSO protein and / or nucleic acids encoding an FtsZ protein and / or nucleic acids encoding a MinD protein compared to the wild type can also by different routes, for example by inducing the HMG-CoA reductase gene and / or (E) -4-
Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Gens und/oder 1 -Deoxy-D-Xylose- 5-Phosphat-Synthase-Gens und/oder 1-Deoxy-D-Xylose-5-Phosphat- Reduktoisomerase-Gens und/oder Isopentenyl-Diphosphat-Δ-Isomerase-Gens und/oder Geranyl-Diphosphat-Synthase-Gens und/oder Farnesyl-Diphosphat- Synthase-Gens und/oder Geranyl-geranyl-Diphosphat-Synthase-Gens und/oder Phy- toen-Synthase-Gens und/oder Phytoen-Desaturase-Gens und/oder Zeta-Carotin- Desaturase-Gens und/oder crtlSO-Gens und/oder FtsZ-Gens und/oder MinD-Gens durch Aktivatoren oder durch Einbringen von einer oder mehrerer Kopien des HMG- CoA-Reduktase-Gens und/oder (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat- Reduktase-Gens und/oder 1-Deoxy-D-Xylose-5-Phosphat-Synthase-Gens und/oder 1- Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Gens und/oder Isopentenyl- Diphosphat-Δ-Isomerase-Gens und/oder Geranyl-Diphosphat-Synthase-Gens und/oder Famesyl-Diphosphat-Synthase-Gens und/oder Geranyl-geranyl-Diphosphat-Synthase- Gens und/oder Phytoen-Synthase-Gens und/oder Phytoen-Desaturase-Gens und/oder Zeta-Carotin-Desaturase-Gens und/oder crtlSO-Gens und/oder FtsZ-Gens und/oder MinD-Gens, also durch Einbringen mindestens einer Nukleinsäure kodierend eine HMG-CoA-Reduktase und/oder mindestens einer Nukleinsäure kodierend eine (E)-4- Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase und/oder mindestens einer Nukleinsäure kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Synthase und/oder mindes- tens einer Nukleinsäure kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Hydroxy-3-methylbut-2-enyl-diphosphate reductase gene and / or 1-deoxy-D-xylose 5-phosphate synthase gene and / or 1-deoxy-D-xylose-5-phosphate reductoisomerase Gene and / or isopentenyl diphosphate Δ isomerase gene and / or geranyl diphosphate synthase gene and / or farnesyl diphosphate synthase gene and / or geranyl geranyl diphosphate synthase gene and / or phy- toen synthase gene and / or phytoene desaturase gene and / or zeta-carotene desaturase gene and / or crtlSO gene and / or FtsZ gene and / or MinD gene by activators or by introducing one or more Copies of the HMG-CoA reductase gene and / or (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase gene and / or 1-deoxy-D-xylose-5-phosphate synthase- Gene and / or 1- Deoxy-D-xylose-5-phosphate reductoisomerase gene and / or isopentenyl diphosphate Δ isomerase gene and / or geranyl diphosphate synthase gene and / or famesyl diphosphate synthase gene and / or geranyl geranyl diphosphate synthase gene and / or phytoene synthase gene and / or phytoene desaturase gene and / or zeta-carotene desaturase gene and / or crtlSO gene and / or FtsZ gene and / or MinD- Gene, ie by introducing at least one nucleic acid encoding an HMG-CoA reductase and / or at least one nucleic acid encoding an (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase and / or at least one nucleic acid 1-deoxy-D-xylose-5-phosphate synthase and / or at least one nucleic acid encoding a 1-deoxy-D-xylose-5-phosphate
Reduktoisomerase und/oder mindestens einer Nukleinsäure kodierend eine Isopente- nyl-Diphosphat-Δ-lsomerase und/oder mindestens einer Nukleinsäure kodierend eine Geranyl-Diphosphat-Synthase und/oder mindestens einer Nukleinsäure kodierend eine Farnesyl-Diphosphat-Synthase und/oder mindestens einer Nukleinsäure kodierend eine Geranyl-geranyl-Diphosphat-Synthase und/oder mindestens einer Nukleinsäure kodierend eine Phytoen-Synthase und/oder mindestens einer Nukleinsäure kodierend eine Phytoen-Desaturase und/oder mindestens einer Nukleinsäure kodierend eine Zeta-Carotin-Desaturase und/oder mindestens einer Nukleinsäure kodierend ein crtlSO- Protein und/oder mindestens einer Nukleinsäure kodierend ein FtsZ-Protein und/oder mindestens einer Nukleinsäure kodierend ein MinD-Protein in die Pflanze.Reductoisomerase and / or at least one nucleic acid encoding an isopentyl diphosphate Δ isomerase and / or at least one nucleic acid encoding a geranyl diphosphate synthase and / or at least one nucleic acid encoding a farnesyl diphosphate synthase and / or at least one nucleic acid encoding a geranyl-geranyl diphosphate synthase and / or at least one nucleic acid encoding a phytoene synthase and / or at least one nucleic acid encoding a phytoene desaturase and / or at least one nucleic acid encoding a zeta-carotene desaturase and / or at least one nucleic acid encoding a crtlSO protein and / or at least one nucleic acid encoding an FtsZ protein and / or encoding at least one nucleic acid a MinD protein into the plant.
Unter Erhöhung der Genexpression einer Nukleinsäure kodierend eine HMG-CoA- Reduktase und/oder (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase und/oder 1-Deoxy-D-Xylose-5-Phosphat-Synthase und/oder 1-Deoxy-D-Xylose-5- Phosphat-Reduktoisomerase und/oder Isopentenyl-Diphosphat-Δ-Isomerase und/oder Geranyl-Diphosphat-Synthase und/oder Farnesyl-Diphosphat-Synthase und/oder Ge- ranyl-geranyl-Diphosphat-Synthase und/oder Phytoen-Synthase und/oder Phytoen- Desaturase und/oder Zeta-Carotin-Desaturase und/oder ein crtlSO-Protein und/oder FtsZ-Protein und/oder MinD-Protein wird erfindungsgemäß auch die Manipulation der Expression der Organismen eigenen, endogenen HMG-CoA-Reduktase und/oder (E)- 4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase und/oder 1 -Deoxy-D-Xylose-5- Phosphat-Synthase und/oder 1 -Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase und/oder Isopentenyl-Diphosphat-Δ-Isomerase und/oder Geranyl-Diphosphat- Synthase und/oder Farnesyl-Diphosphat-Synthase und/oder Geranyl-geranyl- Diphosphat-Synthase und/oder Phytoen-Synthase und/oder Phytoen-Desaturase und/oder Zeta-Carotin-Desaturase und/oder des Organismen eigenen crtlSO-Proteins und/oder FtsZ-Proteins und/oder MinD-Proteins verstanden.Increasing the gene expression of a nucleic acid encoding an HMG-CoA reductase and / or (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase and / or 1-deoxy-D-xylose-5-phosphate Synthase and / or 1-deoxy-D-xylose-5-phosphate reductoisomerase and / or isopentenyl diphosphate Δ isomerase and / or geranyl diphosphate synthase and / or farnesyl diphosphate synthase and / or geranyl Geranyl diphosphate synthase and / or phytoene synthase and / or phytoene desaturase and / or zeta-carotene desaturase and / or a crtlSO protein and / or FtsZ protein and / or MinD protein is also the manipulation of the invention Expression of the organism's own endogenous HMG-CoA reductase and / or (E) - 4-hydroxy-3-methylbut-2-enyl-diphosphate reductase and / or 1-deoxy-D-xylose-5-phosphate synthase and / or 1-deoxy-D-xylose-5-phosphate reductoisomerase and / or isopentenyl diphosphate Δ isomerase and / or geranyl diphosphate synthase and / or farnesyl diphosphate synthase and / or geranyl-gera nyl diphosphate synthase and / or phytoene synthase and / or phytoene desaturase and / or zeta-carotene desaturase and / or the organism's own crtlSO protein and / or FtsZ protein and / or MinD protein understood.
Dies kann beispielsweise durch Veränderung der entsprechenden Promotor DNA- Sequenz erreicht werden. Eine solche Veränderung, die eine erhöhte Expressionsrate des Gens zur Folge hat, kann beispielsweise durch Deletion oder Insertion von DNA Sequenzen erfolgen.This can be achieved, for example, by changing the corresponding promoter DNA sequence. Such a change, which is an increased expression rate of the gene can result, for example, by deletion or insertion of DNA sequences.
In einer bevorzugten Ausführungsform erfolgt die Erhöhung der Genexpression einer Nukleinsäure kodierend eine HMG-CoA-Reduktase und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend eine (E)-4-Hydroxy-3-Methylbut-2-enyl- Diphosphat-Reduktase und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Synthase und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend eine 1 -Deoxy-D-Xylose-5-Phosphat- Reduktoisomerase und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend eine Isopentenyl-Diphosphat-Δ-Isomerase und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend eine Geranyl-Diphosphat-Synthase und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend eine Farnesyl-Diphosphat-Synthase und/oder die Erhöhung der Genexpression einer Nukleinsäu- re kodierend eine Geranyl-geranyl-Diphosphat-Synthase und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend eine Phytoen-Synthase und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend eine Phytoen-Desaturase und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend eine Zeta- Carotin-Desaturase und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend ein crtlSO-Protein und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend ein FtsZ-Protein und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend ein MinD-Protein durch Einbringen von mindestens einer Nukleinsäure kodierend eine HMG-CoA-Reduktase und/oder durch Einbringen von mindestens einer Nukleinsäure kodierend eine (E)-4-Hydroxy- 3-Methylbut-2-enyl-Diphosphat-Reduktase und/oder durch Einbringen von mindestens einer Nukleinsäure kodierend eine 1-Deoxy-D-In a preferred embodiment, the gene expression of a nucleic acid encoding an HMG-CoA reductase is increased and / or the gene expression of a nucleic acid encoding an (E) -4-hydroxy-3-methylbut-2-enyldiphosphate reductase and / or is increased. or increasing the gene expression of a nucleic acid encoding a 1-deoxy-D-xylose-5-phosphate synthase and / or increasing the gene expression of a nucleic acid encoding a 1-deoxy-D-xylose-5-phosphate reductoisomerase and / or the Increasing the gene expression of a nucleic acid encoding an isopentenyl diphosphate Δ isomerase and / or increasing the gene expression of a nucleic acid encoding a geranyl diphosphate synthase and / or increasing the gene expression of a nucleic acid encoding a farnesyl diphosphate synthase and / or the Increasing the gene expression of a nucleic acid encoding a geranylgeranyl diphosphate synthase and / or increasing the gene expression encoding a nucleic acid and a phytoene synthase and / or the increase in gene expression of a nucleic acid encoding a phytoene desaturase and / or the increase in gene expression of a nucleic acid encoding a zeta-carotene desaturase and / or the increase in gene expression of a nucleic acid encoding a crtlSO protein and / or the increase in the gene expression of a nucleic acid encoding an FtsZ protein and / or the increase in the gene expression of a nucleic acid encoding a MinD protein by introducing at least one nucleic acid encoding an HMG-CoA reductase and / or by introducing at least one nucleic acid an (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase and / or by introducing at least one nucleic acid encoding a 1-deoxy-D-
Xylose-5-Phosphat-Synthase und/oder durch Einbringen von mindestens einer Nukleinsäure kodierend eine 1-Deoxy-D-Xylose-5- Phosphat-Reduktoisomerase und/oder durch Einbringen von mindestens einer Nuk- leinsäure kodierend eine Isopentenyl-Diphosphat-Δ-Isomerase und/oder durch Einbringen von mindestens einer Nukleinsäure kodierend eine Geranyl-Diphosphat-Synthase und/oder durch Einbringen von mindestens einer Nukleinsäure kodierend eine Farnesyl-Diphosphat-Synthase und/oder durch Einbringen von mindestens einer Nukleinsäure kodierend eine Geranyl-geranyl-Diphosphat-Synthase und/oder durch Einbrin- gen von mindestens einer Nukleinsäure kodierend eine Phytoen-Synthase und/oder durch Einbringen von mindestens einer Nukleinsäure kodierend eine Phytoen- Desaturase und/oder durch Einbringen von mindestens einer Nukleinsäure kodierend eine Zeta-Carotin-Desaturase und/oder durch Einbringen von mindestens einer Nukleinsäure kodierend ein crtlSO-Protein und/oder durch Einbringen von mindestens ei- ner Nukleinsäure kodierend ein FtsZ-Protein und/oder durch Einbringen von mindes- tens einer Nukleinsäure kodierend ein MinD-Protein in die Pflanze.Xylose-5-phosphate synthase and / or a 1-deoxy-D-xylose-5-phosphate reductoisomerase and / or by introduction of at least one nucleic acid encoding an isopentenyl-diphosphate-Δ- by introducing at least one nucleic acid Isomerase and / or by introducing at least one nucleic acid encoding a geranyl diphosphate synthase and / or by introducing at least one nucleic acid encoding a farnesyl diphosphate synthase and / or by introducing at least one nucleic acid encoding a geranyl geranyl diphosphate Synthase and / or by introducing at least one nucleic acid encoding a phytoene synthase and / or by introducing at least one nucleic acid encoding a phytoene desaturase and / or by introducing at least one nucleic acid encoding a zeta-carotene desaturase and / or by introducing at least one nucleic acid encoding a crtlSO protein and / or by introducing at least one at least one nucleic acid encoding an FtsZ protein and / or by introducing at least at least one nucleic acid encoding a MinD protein into the plant.
Dazu kann prinzipiell jedes HMG-CoA-Reduktase-Gen bzw. (E)-4-Hydroxy-3- Methylbut-2-enyl-Diphosphat-Reduktase-Gen bzw. 1 -Deoxy-D-Xylose-5-Phosphat- Synthase-Gen bzw. 1-Deoxy-D-Xylose-In principle, any HMG-CoA reductase gene or (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase gene or 1 -deoxy-D-xylose-5-phosphate synthase- Gene or 1-deoxy-D-xylose
5-Phosphat-Reduktoisomerase-Gen bzw. Isopentenyl-Diphosphat- Δ-Isomerase-Gen bzw. Geranyl-Diphosphat-Synthase-Gen bzw. Farnesyl-Diphosphat- Synthase-Gen bzw. Geranyl-geranyl-Diphosphat-Synthase-Gen bzw. Phytoen- Synthase-Gen bzw. Phytoen-Desaturase-Gen bzw. Zeta-Carotin-Desaturase-Gen bzw. crtlSO-Gen bzw. FtsZ-Gen bzw. MinD-Gen verwendet werden.5-phosphate reductoisomerase gene or isopentenyl diphosphate Δ isomerase gene or geranyl diphosphate synthase gene or farnesyl diphosphate synthase gene or geranyl geranyl diphosphate synthase gene or phytoen - Synthase gene or phytoene desaturase gene or zeta-carotene desaturase gene or crtlSO gene or FtsZ gene or MinD gene can be used.
Bei genomischen HMG-CoA-Reduktase-Sequenzen bzw. (E)-4-Hydroxy- 3-Methylbut-2-enyl-Diphosphat-Reduktase-Sequenzen bzw. 1-Deoxy-D Xylose-5- Phosphat-Synthase-Sequenzen bzw. 1 -Deoxy-D-Xylose- 5-Phosphat-Reduktoisomerase-Sequenzen bzw. Isopentenyl-Diphosphat-Δ-Isomerase- Sequenzen bzw. Geranyl-Diphosphat-Synthase-Sequenzen bzw. Farnesyl-Diphosphat- Synthase-Sequenzen bzw. Geranyl-geranyl-Diphosphat-Synthase-Sequenzen bzw. Phytoen-Synthase-Sequenzen bzw. Phytoen-Desaturase-Sequenzen bzw. Zeta- Carotin-Desaturase-Sequenzen bzw. crtlSO-Sequenzen bzw. FtsZ-Sequenzen bzw. MinD-Sequenzen aus eukaryontischen Quellen, die Introns enthalten, sind für den Fall das die Wirtspflanze nicht in der Lage ist oder nicht in die Lage versetzt werden kann, die entsprechenden Proteine zu exprimieren, bevorzugt bereits prozessierte Nukleinsäuresequenzen, wie die entsprechenden cDNAs zu verwenden.For genomic HMG-CoA reductase sequences or (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase sequences or 1-deoxy-D xylose-5-phosphate synthase sequences or 1 -deoxy-D-xylose- 5-phosphate reductoisomerase sequences or isopentenyl diphosphate Δ isomerase sequences or geranyl diphosphate synthase sequences or farnesyl diphosphate synthase sequences or geranyl geranyl Diphosphate synthase sequences or phytoene synthase sequences or phytoene desaturase sequences or zeta-carotene desaturase sequences or crtlSO sequences or FtsZ sequences or MinD sequences from eukaryotic sources which contain introns In the event that the host plant is unable or unable to express the corresponding proteins, it is preferable to use nucleic acid sequences that have already been processed, such as the corresponding cDNAs.
In den erfindungsgemäßen bevorzugten transgenen Organismen liegt also in dieser bevorzugten Ausführungsform gegenüber dem Wildtyp mindestens ein weiteres HMG- CoA-Reduktase-Gen und/oder (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat- Reduktase-Gen und/oder 1-Deoxy-D-Xylose-5-Phosphat-Synthase-Gen und/oder 1- Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Gen und/oder Isopentenyl- Diphosphat-Δ-Isomerase-Gen und/oder Geranyl-Diphosphat-Synthase-Gen und/oder Famesyl-Diphosphat-Synthase-Gen und/oder Geranyl-geranyl-Diphosphat-Synthase- Gen und/oder Phytoen-Synthase-Gen und/oder Phytoen-Desaturase-Gen und/oder Zeta-Carotin-Desaturase-Gen und/oder crtlSO-Gen und/oder FtsZ-Gen und/oder MinD-Gen vor.In this preferred embodiment, the preferred transgenic organisms according to the invention therefore have at least one further HMG-CoA reductase gene and / or (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase gene and compared to the wild type / or 1-deoxy-D-xylose-5-phosphate synthase gene and / or 1-deoxy-D-xylose-5-phosphate reductoisomerase gene and / or isopentenyl-diphosphate-Δ-isomerase gene and / or Geranyl diphosphate synthase gene and / or famesyl diphosphate synthase gene and / or geranyl geranyl diphosphate synthase gene and / or phytoene synthase gene and / or phytoene desaturase gene and / or zeta Carotene desaturase gene and / or crtlSO gene and / or FtsZ gene and / or MinD gene.
In dieser bevorzugten Ausführungsform weist die genetisch veränderte Pflanze beispielsweise mindestens eine exogene Nukleinsäure, kodierend eine HMG-CoA- Reduktase oder mindestens zwei endogene Nukleinsäuren, kodierend eine HMG-CoA- Reduktase und/oder mindestens eine exogene Nukleinsäure, kodierend eine (E)-4- Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase oder mindestens zwei endogene Nukleinsäuren, kodierend eine (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat- Reduktase und/oder mindestens eine exogene Nukleinsäure, kodierend eine 1-Deoxy- D-Xylose-5-Phosphat-Synthase oder mindestens zwei endogene Nukleinsäuren, kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Synthase und/oder mindestens eine exogene Nukleinsäure, kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase oder mindestens zwei endogene Nukleinsäuren, kodierend eine 1 -Deoxy-D-Xylose- 5-Phosphat-Reduktoisomerase und/oder mindestens eine exogene Nukleinsäure, kodierend eine Isopentenyl-Diphosphat-Δ-Isomerase oder mindestens zwei endogene Nukleinsäuren, kodierend eine Isopentenyl-Diphosphat-Δ-Isomerase und/oder mindes- tens eine exogene Nukleinsäure, kodierend eine Geranyl-Diphosphat-Synthase oder mindestens zwei endogene Nukleinsäuren, kodierend eine Geranyl-Diphosphat- Synthase und/oder mindestens eine exogene Nukleinsäure, kodierend eine Farnesyl- Diphosphat-Synthase oder mindestens zwei endogene Nukleinsäuren, kodierend eine Farnesyl-Diphosphat-Synthase und/oder mindestens eine exogene Nukleinsäure, kodierend eine Geranyl-geranyl-Diphosphat-Synthase oder mindestens zwei endogene Nukleinsäuren, kodierend eine Geranyl-geranyl-Diphosphat-Synthase und/oder mindestens eine exogene Nukleinsäure, kodierend eine Phytoen-Synthase oder mindestens zwei endogene Nukleinsäuren, kodierend eine Phytoen-Synthase und/oder mindestens eine exogene Nukleinsäure, kodierend eine Phytoen-Desaturase oder mindes- tens zwei endogene Nukleinsäuren, kodierend eine Phytoen-Desaturase und/oder mindestens eine exogene Nukleinsäure, kodierend eine Zeta-Carotin-Desaturase oder mindestens zwei endogene Nukleinsäuren, kodierend eine Zeta-Carotin-Desaturase und/oder mindestens eine exogene Nukleinsäure, kodierend ein crtlSO-Protein oder mindestens zwei endogene Nukleinsäuren, kodierend ein crtlSO-Protein und/oder min- destens eine exogene Nukleinsäure, kodierend ein FtsZ-Protein oder mindestens zwei endogene Nukleinsäuren, kodierend eine FtsZ-Protein und/oder mindestens eine exogene Nukleinsäure, kodierend ein MinD-Protein oder mindestens zwei endogene Nukleinsäuren, kodierend ein MinD-Protein auf.In this preferred embodiment, the genetically modified plant has, for example, at least one exogenous nucleic acid encoding an HMG-CoA reductase or at least two endogenous nucleic acids encoding an HMG-CoA reductase and / or at least one exogenous nucleic acid encoding an (E) -4 - Hydroxy-3-methylbut-2-enyl-diphosphate reductase or at least two endogenous Nucleic acids encoding an (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase and / or at least one exogenous nucleic acid encoding a 1-deoxy-D-xylose-5-phosphate synthase or at least two endogenous Nucleic acids encoding a 1-deoxy-D-xylose-5-phosphate synthase and / or at least one exogenous nucleic acid encoding a 1-deoxy-D-xylose-5-phosphate reductoisomerase or at least two endogenous nucleic acids encoding a 1 - Deoxy-D-xylose-5-phosphate reductoisomerase and / or at least one exogenous nucleic acid encoding an isopentenyl diphosphate Δ isomerase or at least two endogenous nucleic acids encoding an isopentenyl diphosphate Δ isomerase and / or at least one exogenous nucleic acid encoding a geranyl diphosphate synthase or at least two endogenous nucleic acids encoding a geranyl diphosphate synthase and / or at least one exogenous nucleic acid encoding a farnesyl diphosphate synthase or at least two endogenous ne nucleic acids encoding a farnesyl diphosphate synthase and / or at least one exogenous nucleic acid, encoding a geranyl geranyl diphosphate synthase or at least two endogenous nucleic acids, encoding a geranyl geranyl diphosphate synthase and / or at least one exogenous nucleic acid, encoding a phytoene synthase or at least two endogenous nucleic acids, encoding a phytoene synthase and / or at least one exogenous nucleic acid, encoding a phytoene desaturase or at least two endogenous nucleic acids, encoding a phytoene desaturase and / or at least one exogenous nucleic acid, encoding a zeta-carotene desaturase or at least two endogenous nucleic acids, encoding a zeta-carotene desaturase and / or at least one exogenous nucleic acid, encoding a crtlSO protein or at least two endogenous nucleic acids, encoding a crtlSO protein and / or at least an exogenous nucleic acid encoding an FtsZ protein or at least between an endogenous nucleic acid encoding an FtsZ protein and / or at least one exogenous nucleic acid encoding a MinD protein or at least two endogenous nucleic acids encoding a MinD protein.
Beispiele für HMG-CoA-Reduktase-Gene sind:Examples of HMG-CoA reductase genes are:
Eine Nukleinsäure, kodierend eine HMG-CoA-Reduktase aus Arabidopsis thaliana, Accession NM_106299; (Nukleinsäure: SEQ ID NO: 7, Protein: SEQ ID NO: 8),A nucleic acid encoding an Arabidopsis thaliana HMG-CoA reductase, Accession NM_106299; (Nucleic acid: SEQ ID NO: 7, protein: SEQ ID NO: 8),
sowie weitere HMG-CoA-Reduktase -Gene aus anderen Organismen mit den folgenden Accession Nummern:as well as other HMG-CoA reductase genes from other organisms with the following accession numbers:
P54961 , P54870, P54868, P54869, 002734, P22791 , P54873, P54871, P23228, P13704, P54872, Q01581, P17425, P54874, P54839, P14891 , P34135, 064966, P29057, P48019, P48020, P12683, P43256, Q9XEL8, P34136, 064967, P29058, P48022, Q41437, P12684, Q00583, Q9XHL5, Q41438, Q9YAS4, 076819, 028538, Q9Y7D2, P54960, 051628, P48021, Q03163, P00347, P14773, Q12577, Q59468, P04035, 024594, P09610, Q58116, 026662, Q01237, Q01559, Q12649, 074164, 059469, P51639, Q10283, 008424, P20715, P13703, P13702, Q96UG4, Q8SQZ9, 015888, Q9TUM4, P93514, Q39628, P93081 , P93080, Q944T9, Q40148, Q84MM0, Q84LS3, Q9Z9N4, Q9KLM0P54961, P54870, P54868, P54869, 002734, P22791, P54873, P54871, P23228, P13704, P54872, Q01581, P17425, P54874, P54839, P14891, P34135, 064966, P29057, P480436, P480436, P480436, P480196, P48043, P480196 064967, P29058, P48022, Q41437, P12684, Q00583, Q9XHL5, Q41438, Q9YAS4, 076819, 028538, Q9Y7D2, P54960, 051628, P48021, Q03163, P00347, P14773, Q12577, Q59468, P0946202, Q0946202, P0406202, P0405806, Q05405, Q05405, Q05405, Q05405, Q05405, Q05405, Q05405, Q05605 Q12649, 074164, 059469, P51639, Q10283, 008424, P20715, P13703, P13702, Q96UG4, Q8SQZ9, 015,888, Q9TUM4, P93514, Q39628, P93081, P93080, Q944T9, Q40148, Q84MM0, Q84LS3, Q9Z9N4, Q9KLM0
Beispiele für (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Gene sind:Examples of (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase genes are:
Eine Nukleinsäure, kodierend eine (E)-4-Hydroxy-3-Methylbut-A nucleic acid encoding an (E) -4-hydroxy-3-methylbut-
2-enyl-Diphosphat-Reduktase aus Arabidopsis thaliana (lytB/ISPH), ACCESSION AY168881, (Nukleinsäure: SEQ ID NO: 9, Protein: SEQ ID NO:102),2-enyl diphosphate reductase from Arabidopsis thaliana (lytB / ISPH), ACCESSION AY168881, (nucleic acid: SEQ ID NO: 9, protein: SEQ ID NO: 102),
sowie weitere (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase -Gene aus anderen Organismen mit den folgenden Accession Nummern:as well as other (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase genes from other organisms with the following accession numbers:
T04781, AF270978_1, NP_485028.1, NP_442089.1, NP_681832.1, ZP_00110421.1, ZP_00071594.1, ZP_00114706.1, ISPH_SYNY3, ZP_00114087.1, ZP_00104269.1, AF398145 , AF398146_1, AAD55762.1, AF514843 , NP_622970.1, NP_348471.1, NP_562001.1, NP_223698.1, NP_781941.1, ZP_00080042.1, NP_859669.1, NP_214191.1, ZP_00086191.1, ISPH_VIBCH, NP_230334.1, NP_742768.1, NP_302306.1, ISPH_MYCLE, NP_602581.1, ZP_00026966.1 , NP_520563.1, NP_253247.1, NP_282047.1, ZP_00038210.1, ZP_00064913.1, CAA61555.1, ZP_00125365.1, ISPH_ACICA, EAA24703.1, ZP_00013067.1, ZP_00029164.1, NP_790656.1, NP_217899.1, NP_641592.1, NP_636532.1, NP_719076.1, NP_660497.1, NP_422155.1, NP_715446.1, ZP_00090692.1, NP_759496.1, ISPH_BURPS, ZP_00129657.1, NP_215626.1, NP_335584.1, ZP_00135016.1, NP_789585.1 , NP_787770.1 , NP_769647.1 , ZP_00043336.1 , NP_242248.1 , ZP_00008555.1, NP_246603.1, ZP_00030951.1, NP_670994.1, NP_404120.1, NP_540376.1 , NP_733653.1 , NP_697503.1 , NP_840730.1 , NP_274828.1 ,T04781, AF270978_1, NP_485028.1, NP_442089.1, NP_681832.1, ZP_00110421.1, ZP_00071594.1, ZP_00114706.1, ISPH_SYNY3, ZP_00114087.1, ZP_00104269.1, AF398146_1, AF398146A, AF398146A, AF398146, AF398146, AF398146, AF398146, AF398146, AF398146, AF398146.1, AF398146, AF398146.1, AF398146, AF398146, AF398146.1, AF398146, AF398146.1, AF398146.1, AF398146, AF398146.1, AF398146, AF398146, AF398146.1, AF398146.1, AF398146.1, AF398146, AF398146.143 1, NP_348471.1, NP_562001.1, NP_223698.1, NP_781941.1, ZP_00080042.1, NP_859669.1, NP_214191.1, ZP_00086191.1, ISPH_VIBCH, NP_230334.1, NP_742768.1, NP_30230Y.1.1, ISPH NP_602581.1, ZP_00026966.1, NP_520563.1, NP_253247.1, NP_282047.1, ZP_00038210.1, ZP_00064913.1, CAA61555.1, ZP_00125365.1, ISPH_ACICA, EAA24703.1, ZP_00013029.1.1, ZP_00013067.1, ZAA NP_790656.1, NP_217899.1, NP_641592.1, NP_636532.1, NP_719076.1, NP_660497.1, NP_422155.1, NP_715446.1, ZP_00090692.1, NP_759496.1, ISPH_BURPS, ZP_00122156.1, NP NP_335584.1, ZP_00135016.1, NP_789585.1, NP_787770.1, NP_769647.1, ZP_00043336.1, NP_242248.1, ZP_00008555.1, NP_246603.1, ZP_00030951.1, NP_670994.1, NP_405206.1. 1, NP_733653.1, NP_697503.1, NP_840730.1, NP_274828.1,
NP_796916.1, ZP_00123390.1, NP_824386.1, NP_737689.1, ZP_00021222.1, NP_757521.1, NP_390395.1, ZP_00133322.1, CAD76178.1, NP_600249.1, NP_454660.1, NP_712601.1, NP_385018.1, NP_751989.1NP_796916.1, ZP_00123390.1, NP_824386.1, NP_737689.1, ZP_00021222.1, NP_757521.1, NP_390395.1, ZP_00133322.1, CAD76178.1, NP_600249.1, NP_454660.1, NP_7126018.1. 1, NP_751989.1
Beispiele für 1-Deoxy-D-Xylose-5-Phosphat-Synthase -Gene sind:Examples of 1-deoxy-D-xylose-5-phosphate synthase genes are:
Eine Nukleinsäure, kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Synthase aus Lyco- persicon esculentum, ACCESSION #AF143812 (Nukleinsäure: SEQ ID NO:103 , Protein: SEQ ID NO: 12), sowie weitere 1-Deoxy-D-Xylose-5-Phosphat-Synthase -Gene aus anderen Organismen mit den folgenden Accession Nummern:A nucleic acid encoding a 1-deoxy-D-xylose-5-phosphate synthase from Lycopersicon esculentum, ACCESSION # AF143812 (nucleic acid: SEQ ID NO: 103, protein: SEQ ID NO: 12), as well as further 1-deoxy-D-xylose-5-phosphate synthase genes from other organisms with the following accession numbers:
AF143812_1, DXS_CAPAN, CAD22530.1, AF182286_1, NP_193291.1, T52289, AAC49368.1, AAP14353.1, D71420, DXS_ORYSA, AF443590_1, BAB02345.1, CAA09804.2, NP_850620.1, CAD22155.2, AAM65798.1, NP_566686.1, CAD22531.1, AAC33513.1, CAC08458.1, AAG10432.1, T08140, AAP14354.1, AF428463 , ZP_00010537.1, NP_769291.1, AAK59424.1, NP 07784.1, NP_697464.1, NP_540415.1, NP_196699.1, NP_384986.1, ZP_00096461.1, ZP_00013656.1, NP_353769.1, BAA83576.1, ZP_00005919.1, ZP_00006273.1, NP_420871.1, AAM48660.1, DXS_RHOCA, ZP_00045608.1, ZP_00031686.1, NP_841218.1, ZP_00022174.1, ZP_00086851.1, NP_742690.1, NP_520342.1, ZP_00082120.1, NP_790545.1, ZP_00125266.1, CAC17468.1, NP_252733.1, ZP_00092466.1, NP_439591.1, NP_414954.1, NP_752465.1, NP_622918.1, NP_286162.1, NP_836085.1, NP_706308.1, ZP_00081148.1, NP_797065.1, NP_213598.1, NP_245469.1, ZP_00075029.1, NP_455016.1, NP_230536.1, NP_459417.1, NP_274863.1, NP_283402.1, NP_759318.1, NP_406652.1, DXS_SYNLE, DXS_SYNP7, NP_440409.1, ZP_00067331.1, ZP_00122853.1, NP_717142.1, ZP_00104889.1, NP_243645.1, NP_681412.1, DXS_SYNEL, NP_637787.1, DXS_CHLTE, ZP_00129863.1, NP_661241.1, DXS_XANCP, NP_470738.1, NP_484643.1, ZP_00108360.1, NP_833890.1, NP_846629.1, NP_658213.1,AF143812_1, DXS_CAPAN, CAD22530.1, AF182286_1, NP_193291.1, T52289, AAC49368.1, AAP14353.1, D71420, DXS_ORYSA, AF443590_1, BAB02345.1, CAA09804.2, NP_850620.1, AAM65155.1 NP_566686.1, CAD22531.1, AAC33513.1, CAC08458.1, AAG10432.1, T08140, AAP14354.1, AF428463, ZP_00010537.1, NP_769291.1, AAK59424.1, NP 07784.1, NP_697464.1, NP_5404 , NP_196699.1, NP_384986.1, ZP_00096461.1, ZP_00013656.1, NP_353769.1, BAA83576.1, ZP_00005919.1, ZP_00006273.1, NP_420871.1, AAM48660.1, DXS_RHOCA, ZP_0004560316, , NP_841218.1, ZP_00022174.1, ZP_00086851.1, NP_742690.1, NP_520342.1, ZP_00082120.1, NP_790545.1, ZP_00125266.1, CAC17468.1, NP_252733.1, ZP_00092466.1, NP_439591 .1, NP_752465.1, NP_622918.1, NP_286162.1, NP_836085.1, NP_706308.1, ZP_00081148.1, NP_797065.1, NP_213598.1, NP_245469.1, ZP_00075029.1, NP_455016.1, NP_230536.1 , NP_459417.1, NP_274863.1, NP_283402.1, NP_759318.1, NP_406652.1, DXS_SYNLE, DXS_SYNP7, NP_440409.1, ZP_00067331.1, ZP_00122853.1, N P_717142.1, ZP_00104889.1, NP_243645.1, NP_681412.1, DXS_SYNEL, NP_637787.1, DXS_CHLTE, ZP_00129863.1, NP_661241.1, DXS_XANCP, NP_470738.1, NP_48464388, ZP90_001033 NP_846629.1, NP_658213.1,
NP_642879.1, ZP_00039479.1 , ZP_00060584.1, ZP_00041364.1, ZP_00117779.1,NP_642879.1, ZP_00039479.1, ZP_00060584.1, ZP_00041364.1, ZP_00117779.1,
NP_299528.1NP_299528.1
Beispiele für 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Gene sind:Examples of 1-deoxy-D-xylose-5-phosphate reductoisomerase genes are:
Eine Nukleinsäure, kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase aus Arabidopsis thaliana, ACCESSION #AF148852, (Nukleinsäure: SEQ ID NO: 13 , Protein: SEQ ID NO: 14),A nucleic acid encoding a 1-deoxy-D-xylose-5-phosphate reductoisomerase from Arabidopsis thaliana, ACCESSION # AF148852, (nucleic acid: SEQ ID NO: 13, protein: SEQ ID NO: 14),
sowie weitere 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Gene aus anderen Organismen mit den folgenden Accession Nummern:as well as further 1-deoxy-D-xylose-5-phosphate reductoisomerase genes from other organisms with the following accession numbers:
AF148852, AY084775, AY054682, AY050802, AY045634, AY081453, AY091405, AY098952, AJ242588, AB009053, AY202991, NP_201085.1, T52570, AF331705 , BAB16915.1, AF367205_1, AF250235_1, CAC03581.1, CAD22156.1, AF182287_1, DXR_MENPI, ZP_00071219.1, NP_488391.1, ZP_00111307.1, DXR_SYNLE, AAP56260.1, NP_681831.1, NP_442113.1, ZP_00115071.1, ZP_00105106.1, ZP_00113484.1, NP_833540.1, NP_657789.1, NP_661031.1, DXR_BACHD, NP_833080.1, NP_845693.1, NP_562610.1, NP_623020.1, NP_810915.1, NP_243287.1, ZP_00118743.1, NP_464842.1, NP_470690.1, ZP_00082201.1, NP_781898.1, ZP_00123667.1, NP_348420.1, NP_604221.1, ZP_00053349.1, ZP_00064941.1, NP_246927.1, NP_389537.1, ZP_00102576.1, NP_519531.1, AF124757 9, DXR_ZYMMO, NP_713472.1, NP_459225.1, NP_454827.1, ZP_00045738.1, NP_743754.1, DXR_PSEPK, ZP_00130352.1, NP_702530.1, NP_841744.1, NP_438967.1, AF514841 , NP_706118.1, ZP_00125845.1, NP_404661.1, NP_285867.1, NP_240064.1, NP_414715.1, ZP_00094058.1,AF148852, AY084775, AY054682, AY050802, AY045634, AY081453, AY091405, AY098952, AJ242588, AB009053, AY202991, NP_201085.1, T52570, AF331705, BAB167205121, AF361205151_1, AF361705.121, AF3617051501_1 ZP_00071219.1, NP_488391.1, ZP_00111307.1, DXR_SYNLE, AAP56260.1, NP_681831.1, NP_442113.1, ZP_00115071.1, ZP_00105106.1, ZP_00113484.1, NP_833540.1, NP_657789 DXR_BACHD, NP_833080.1, NP_845693.1, NP_562610.1, NP_623020.1, NP_810915.1, NP_243287.1, ZP_00118743.1, NP_464842.1, NP_470690.1, ZP_00082201.1, NP_781898.1, ZP_00123667 NP_348420.1, NP_604221.1, ZP_00053349.1, ZP_00064941.1, NP_246927.1, NP_389537.1, ZP_00102576.1, NP_519531.1, AF124757 9, DXR_ZYMMO, NP_713472.1, NP_459225.1, NP_454827.1, ZP_00045738.1, NP_743754.1, DXR , NP_702530.1, NP_841744.1, NP_438967.1, AF514841, NP_706118.1, ZP_00125845.1, NP_404661.1, NP_285867.1, NP_240064.1, NP_414715.1, ZP_00094058.1,
NP_791365.1, ZP_00012448.1, ZP_00015132.1, ZP_00091545.1, NP_629822.1, NP_771495.1, NP_798691.1, NP_231885.1, NP_252340.1, ZP_00022353.1, NP_355549.1, NP_420724.1, ZP_00085169.1, EAA17616.1, NP_273242.1, NP_219574.1, NP_387094.1, NP_296721.1, ZP_00004209.1, NP_823739.1, NP_282934.1, BAA77848.1, NP_660577.1, NP_760741.1, NP_641750.1, NP_636741.1, NP_829309.1, NP_298338.1, NP_444964.1, NP_717246.1, NP_224545.1, ZP_00038451.1, DXR_KITGR, NP_778563.1.NP_791365.1, ZP_00012448.1, ZP_00015132.1, ZP_00091545.1, NP_629822.1, NP_771495.1, NP_798691.1, NP_231885.1, NP_252340.1, ZP_00022353.1, NP_355549.1, NP_420785.1, ZP. 1, EAA17616.1, NP_273242.1, NP_219574.1, NP_387094.1, NP_296721.1, ZP_00004209.1, NP_823739.1, NP_282934.1, BAA77848.1, NP_660577.1, NP_760741.1, NP_641750.1, NP_636741.1, NP_829309.1, NP_298338.1, NP_444964.1, NP_717246.1, NP_224545.1, ZP_00038451.1, DXR_KITGR, NP_778563.1.
Beispiele für Isopentenyl-Diphosphat-Δ-Isomerase-Gene sind:Examples of isopentenyl diphosphate Δ isomerase genes are:
Eine Nukleinsäure, kodierend eine Isopentenyl-Diphosphat-Δ-Isomerase aus Adonis palaestina clone AplPI28, (ipiAal), ACCESSION #AF188060, veröffentlicht durch Cun- ningham.F.X. Jr. and Gantt.E.: Identification of multi-gene families encoding isopente- nyl diphosphate isomerase in plants by heterologous complementation in Escherichia coli, Plant Cell Physiol.41 (1), 119-123 (2000) (Nukleinsäure: SEQ ID NO: 15, Protein: SEQ ID NO: 16),A nucleic acid encoding an isopentenyl diphosphate Δ isomerase from Adonis palaestina clone AplPI28, (ipiAal), ACCESSION # AF188060, published by Cunningham.F.X. Jr. and Gantt.E .: Identification of multi-gene families encoding isopentenyl diphosphate isomerase in plants by heterologous complementation in Escherichia coli, Plant Cell Physiol. 41 (1), 119-123 (2000) (nucleic acid: SEQ ID NO : 15, protein: SEQ ID NO: 16),
sowie weitere Isopentenyl-Diphosphat-Λ-Isomerase-Gene aus anderen Organismen mit den folgenden Accession Nummern:as well as other isopentenyl diphosphate Λ isomerase genes from other organisms with the following accession numbers:
Q38929, 048964, Q39472, Q13907, 035586, P58044, 042641 , 035760, Q10132, P15496, Q9YB30, Q8YNH4, Q42553, 027997, P50740, 051627, 048965, Q8KFR5, Q39471, Q39664, Q9RVE2, Q01335, Q9HHE4, Q9BXS1, Q9KWF6, Q9CIF5, Q88WB6, Q92BX2, Q8Y7A5, Q8TT35 Q9KK75, Q8NN99, Q8XD58, Q8FE75, Q46822, Q9HP40, P72002, P26173, Q9Z5D3, Q8Z3X9, Q8ZM82, Q9X7Q6, 013504, Q9HFW8, Q8NJL9, Q9UUQ1, Q9NH02, Q9M6K9, Q9M6K5, Q9FXR6, 081691, Q9S7C4, Q8S3L8, Q9M592, Q9M6K3, Q9M6K7, Q9FV48, Q9LLB6, Q9AVJ1, Q9AVG8, Q9M6K6, Q9AVJ5, Q9M6K2, Q9AYS5, Q9M6K8, Q9AVG7, Q8S3L7, Q8W250, Q94IE1, Q9AVI8, Q9AYS6, Q9SAY0, Q9M6K4, Q8GVZ0, Q84RZ8, Q8KZ12, Q8KZ66, Q8FND7, Q88QC9, Q8BFZ6, BAC26382, CAD94476.Q38929, 048964, Q39472, Q13907, 035586, P58044, 042641, 035760, Q10132, P15496, Q9YB30, Q8YNH4, Q42553, 027997, P50740, 051627, 048965, Q8KFR5, Q39471F926, Q39471F926 Q9CIF5, Q88WB6, Q92BX2, Q8Y7A5, Q8TT35 Q9KK75, Q8NN99, Q8XD58, Q8FE75, Q46822, Q9HP40, P72002, P26173, Q9Z5D3, Q8Z3X9, Q8ZM82, Q9X7Q6, 013504, Q9HFW8, Q8NJL9, Q9UUQ1, Q9NH02, Q9M6K9, Q9M6K5, Q9FXR6, 081,691 , Q9S7C4, Q8S3L8, Q9M592, Q9M6K3, Q9M6K7, Q9FV48, Q9LLB6, Q9AVJ1, Q9AVG8, Q9M6K6, Q9AVJ5, Q9M6K2, Q9AYS5, Q9M6K8, Q9AVG7, Q8S3L7, Q8W250, Q94IE1, Q9AVI8, Q9AYS6, Q9SAY0, Q9M6K4, Q8GVZ0, Q84RZ8, Q8KZ12 , Q8KZ66, Q8FND7, Q88QC9, Q8BFZ6, BAC26382, CAD94476.
Beispiele für Geranyl-Diphosphat-Synthase -Gene sind:Examples of geranyl diphosphate synthase genes are:
Eine Nukleinsäure, kodierend eine Geranyl-Diphosphat-Synthase aus Arabidopsis tha- liana, ACCESSION #Y17376, Bouvier.F., Suire.C, d'Harlingue.A., Backhaus.R.A. and Camara, B.; Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells, Plant J. 24 (2), 241-252 (2000) (Nukleinsäure: SEQ ID NO: 17, Protein: SEQ ID NO: 18),A nucleic acid encoding a geranyl diphosphate synthase from Arabidopsis thaliana, ACCESSION # Y17376, Bouvier.F., Suire.C, d'Harlingue.A., Backhaus.RA and Camara, B .; Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells, Plant J. 24 (2), 241-252 (2000) (nucleic acid: SEQ ID NO: 17, protein: SEQ ID NO: 18),
sowie weitere Geranyl-Diphosphat-Synthase-Gene aus anderen Organismen mit den folgenden Accession Nummern:as well as other geranyl diphosphate synthase genes from other organisms with the following accession numbers:
Q9FT89, Q8LKJ2, Q9FSW8, Q8LKJ3, Q9SBR3, Q9SBR4, Q9FET8, Q8LKJ1 , Q84LG1. Q9JK86Q9FT89, Q8LKJ2, Q9FSW8, Q8LKJ3, Q9SBR3, Q9SBR4, Q9FET8, Q8LKJ1, Q84LG1. Q9JK86
Beispiele für Famesyl-Diphosphat-Synthase-Gene sind:Examples of famesyl diphosphate synthase genes are:
Eine Nukleinsäure, kodierend eine Farnesyl-Diphosphat-Synthase aus Arabidopsis thaliana (FPS1), ACCESSION #U80605, veröffentlicht durch Cunillera.N., Arro.M., De- lourme.D., Karst.F., Boronat.A. und Ferrer.A.: Arabidopsis thaliana contains two diffe- rentially expressed famesyl-diphosphate synthase genes, J. Biol. Chem. 271 (13), 7774-7780 (1996), (Nukleinsäure: SEQ ID NO: 19, Protein: SEQ ID NO:112),A nucleic acid encoding a farnesyl diphosphate synthase from Arabidopsis thaliana (FPS1), ACCESSION # U80605, published by Cunillera.N., Arro.M., DeLourme.D., Karst.F., Boronat.A. and Ferrer.A .: Arabidopsis thaliana contains two differentially expressed famesyl-diphosphate synthase genes, J. Biol. Chem. 271 (13), 7774-7780 (1996), (nucleic acid: SEQ ID NO: 19, protein: SEQ ID NO: 112),
sowie weitere Famesyl-Diphosphat-Synthase-Gene aus anderen Organismen mit den folgenden Accession Nummern:as well as other famesyl diphosphate synthase genes from other organisms with the following accession numbers:
P53799, P37268, Q02769, Q09152, P49351 , 024241 , Q43315, P49352, 024242, P49350, P08836, P14324, P49349, P08524, 066952, Q08291 , P54383, Q45220, P57537, Q8K9A0, P22939, P45204, 066126, P55539, Q9SWH9, Q9AVI7, Q9FRX2, Q9AYS7, Q94IE8, Q9FXR9, Q9ZWF6, Q9FXR8, Q9AR37, O50009,Q94IE9,Q8RVK7, Q8RVQ7, 004882, Q93RA8, Q93RB0, Q93RB4, Q93RB5.Q93RB3, Q93RB1 , Q93RB2, Q920E5.P53799, P37268, Q02769, Q09152, P49351, 024241, Q43315, P49352, 024242, P49350, P08836, P14324, P49349, P08524, 066952, Q08291, P54383, Q45220, P539A550, Q59A5506, Q59A5506, Q5395256, Q5395256, Q5395256, Q5395256, Q5395256, Q5395, Q5 Q9AVI7, Q9FRX2, Q9AYS7, Q94IE8, Q9FXR9, Q9ZWF6, Q9FXR8, Q9AR37, O50009, Q94IE9, Q8RVK7, Q8RVQ7, 004882, Q93RA8, Q93RB0, Q93RB4, Q93R31, Q93RB3, Q93R3, Q93R3, Q93R3, Q93R3, Q93R3, Q93R3, Q93R3, Q93R3, Q93R3, Q93R3, Q93B3
Beispiele für Geranyl-geranyl-Diphosphat-Synthase -Gene sind:Examples of geranyl-geranyl diphosphate synthase genes are:
Eine Nukleinsäure, kodierend eine Geranyl-geranyl-Diphosphat-Synthase aus Sinaps alba, ACCESSION #X98795, veröffentlicht durch Bonk.M., Hoffmann,B., Von Lintig.J., Schledz.M., AI-Babili,S., Hobeika.E., Kleinig, H. and Beyer.P.: Chloroplast import of four carotenoid biosynthetic enzymes in vitro reveals differential fates prior to membrane binding and oligomeric assembly, Eur. J. Biochem. 247 (3), 942-950 (1997), (Nukleinsäure: SEQ ID NO: 21 , Protein: SEQ ID NO: 114),A nucleic acid encoding a geranyl-geranyl diphosphate synthase from Sinaps alba, ACCESSION # X98795, published by Bonk.M., Hoffmann, B., Von Lintig.J., Schledz.M., AI-Babili, S., Hobeika.E., Kleinig, H. and Beyer.P .: Chloroplast import of four carotenoid biosynthetic enzymes in vitro reveals differential fates prior to membrane binding and oligomeric assembly, Eur. J. Biochem. 247 (3), 942-950 (1997), (nucleic acid: SEQ ID NO: 21, protein: SEQ ID NO: 114),
sowie weitere Geranyl-geranyl-Diphosphat-Synthase-Gene aus anderen Organismen r mit den folgenden Accession Nummern: P22873, P34802 ,P56966, P80042, Q42698, Q92236, 095749, Q9WTN0, Q50727, P24322, P39464, Q9FXR3, Q9AYN2, Q9FXR2, Q9AVG6, Q9FRW4, Q9SXZ5, Q9AVJ7, Q9AYN1 , Q9AVJ4, Q9FXR7, Q8LSC5, Q9AVJ6, Q8LSC4, Q9AVJ3, Q9SSU0, Q9SXZ6, Q9SST9, Q9AVJ0, Q9AVI9, Q9FRW3, Q9FXR5, Q94IF0, Q9FRX1, Q9K567, Q93RA9, Q93QX8, CAD95619, EAA31459as well as other geranyl-geranyl-diphosphate synthase genes from other organisms r with the following accession numbers: P22873, P34802, P56966, P80042, Q42698, Q92236, 095749, Q9WTN0, Q50727, P24322, P39464, Q9FXR3, Q9AYN2, Q9FXR2, Q9AVG6, Q9FRW4, Q9SXZ5, QAV9J7 Q9SSU0, Q9SXZ6, Q9SST9, Q9AVJ0, Q9AVI9, Q9FRW3, Q9FXR5, Q94IF0, Q9FRX1, Q9K567, Q93RA9, Q93QX8, CAD95619, EAA31459
Beispiele für Phytoen-Synthase-Gene sind:Examples of phytoene synthase genes are:
Eine Nukleinsäure, kodierend eine Phytoen-Synthase aus Erwinia uredovora, ACCES- SION # D90087; veröffentlicht durch Misawa.N., Nakagawa.M., Kobayashi.K., Yama- no,S., lzawa,Y.,Nakamura,K. und Harashima.K.: Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed inA nucleic acid encoding a phytoene synthase from Erwinia uredovora, ACCESSION # D90087; published by Misawa.N., Nakagawa.M., Kobayashi.K., Yamano, S., lzawa, Y., Nakamura, K. and Harashima.K .: Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in
Escherichia cell; J. Bacteriol. 172 (12), 6704-6712 (1990), (Nukleinsäure: SEQ ID NO:Escherichia cell; J. Bacteriol. 172 (12), 6704-6712 (1990), (nucleic acid: SEQ ID NO:
23, Protein: SEQ ID NO: 24),23, protein: SEQ ID NO: 24),
sowie weitere Phytoen-Synthase -Gene aus anderen Organismen mit den folgendenas well as other phytoene synthase genes from other organisms with the following
Accession Nummern:Accession numbers:
CAB39693, BAC69364, AAF10440, CAA45350, BAA20384, AAM72615, BAC09112, CAA48922, P_001091 , CAB84588, AAF41518, CAA48155, AAD38051 , AAF33237, AAG10427, AAA34187, BAB73532, CAC19567, AAM62787, CAA55391 , AAB65697, AAM45379, CAC27383, AAA32836, AAK07735, BAA84763, P_000205, AAB60314, P_001163, P_000718, AAB71428, AAA34153, AAK07734, CAA42969, CAD76176, CAA68575, P_000130, P_001142, CAA47625, CAA85775, BAC14416, CAA79957, BAC76563, P_000242, P_000551 , AAL02001 , AAK15621 , CAB94795, AAA91951 , P_000448CAB39693, BAC69364, AAF10440, CAA45350, BAA20384, AAM72615, BAC09112, CAA48922, P_001091, CAB84588, AAF41518, CAA48155, AAD38051, AAF33237, AAG10427, AAA34187, BAB73532, CAC19567, AAM62787, CAA55391, AAB65697, AAM45379, CAC27383, AAA32836, AAK07735, BAA84763, P_000205, AAB60314, P_001163, P_000718, AAB71428, AAA34153, AAK07734, CAA42969, CAD76176, CAA68575, P_000130, P_001142, CAA47625, CAA85775, BAC14416, CAA79957, BAC76563, P_000242, P_000551, AAL02001, AAK15621, CAB94795, AAA91951, P_000448
Beispiele für Phytoen-Desaturase-Gene sind:Examples of phytoene desaturase genes are:
Eine Nukleinsäure, kodierend eine Phytoen-Desaturase aus Erwinia uredovora, ACCESSION # D90087; veröffentlicht durch Misawa.N., Nakagawa.M., Kobayashi.K., Yamano,S., lzawa,Y.,Nakamura,K. und Harashima.K.: Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli; J. Bacteriol. 172 (12), 6704-6712 (1990), (Nukleinsäure: SEQ ID NO: 25, Protein: SEQ ID NO: 26),A nucleic acid encoding a phytoene desaturase from Erwinia uredovora, ACCESSION # D90087; published by Misawa.N., Nakagawa.M., Kobayashi.K., Yamano, S., lzawa, Y., Nakamura, K. and Harashima.K .: Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli; J. Bacteriol. 172 (12), 6704-6712 (1990), (nucleic acid: SEQ ID NO: 25, protein: SEQ ID NO: 26),
sowie weitere Phytoen-Desaturase -Gene aus anderen Organismen mit den folgenden Accession Nummern: AAL15300, A39597, CAA42573, AAK51545, BAB08179, CAA48195, BAB82461 , AAK92625, CAA55392, AAG10426, AAD02489, AA024235, AAC12846, AAA99519, AAL38046, CAA60479, CAA75094, ZP_001041 , ZP_001163, CAA39004, CAA44452, ZP_001142, ZP_000718, BAB82462, AAM45380, CAB56040, ZP_001091 , BAC091 13, AAP79175, AAL80005, AAM72642, AAM72043, ZP_000745, ZP_001141 , BAC07889, CAD55814, ZP_001041 , CAD27442, CAE00192, ZP_001163, ZP_000197, BAA18400, AAG10425, ZP_001119, AAF13698, 2121278A, AAB35386, AAD02462, BAB68552, CAC85667, AAK51557, CAA12062, AAG51402, AAM63349, AAF85796, BAB74081 , AAA91 161 , CAB56041 , AAC48983, AAG14399, CAB65434, BAB73487, ZP_001117, ZP_000448, CAB39695, CAD76175, BAC69363, BAA17934, ZP_000171 , AAF65586, ZP_000748, BAC07074, ZP_001133, CAA64853, BAB74484, ZP_001156, AAF23289, AAG28703, AAP09348, AAM71569, BAB69140, ZP_000130, AAF41516, AAG18866, CAD95940, NP_656310, AAG10645, ZP_000276, ZP_000192, ZP_000186, AAM94364, EAA31371 , ZP_000612, BAC75676, AAF65582as well as other phytoene desaturase genes from other organisms with the following accession numbers: AAL15300, A39597, CAA42573, AAK51545, BAB08179, CAA48195, BAB82461, AAK92625, CAA55392, AAG10426, AAD02489, AA024235, AAC12846, AAA99519, AAL38046, CAA60479, CAA75094, ZP_001041, ZP_001163, CAA39004, CAA44452, ZP_001142, ZP_000718, BAB82462, AAM45380, CAB56040, ZP_001091, BAC091 13, AAP79175, AAL80005, AAM72642, AAM72043, ZP_000745, ZP_001141, BAC07889, CAD55814, ZP_001041, CAD27442, CAE00192, ZP_001163, ZP_000197, BAA18400, AAG10425, ZP_001119, AAF13698, 2121278A, AAB35386, AAD02462, BAB68552, CAC85667 , AAK51557, CAA12062, AAG51402, AAM63349, AAF85796, BAB74081, AAA91 161, CAB56041, AAC48983, AAG14399, CAB65434, BAB73487, ZP_001117, ZP_000448, CAB39695, CAD76173, B6 BAB74484, ZP_001156, AAF23289, AAG28703, AAP09348, AAM71569, BAB69140, ZP_000130, AAF41516, AAG18866, CAD95940, NP_656310, AAG10645, ZP_000276, ZP_000192, ZPAM60006, ZPAM6136, ZPAM6126, ZPAM6126, ZPAM6126, ZPAM6126, ZPAM6126, ZPAM6126, ZPAM6126, ZPAM6126, ZPAM6126, ZPAM6126, ZPAM6126, ZPAM612611,
Beispiele für Zeta-Carotin-Desaturase-Gene sind:Examples of zeta-carotene desaturase genes are:
Eine Nukleinsäure, kodierend eine Zeta-Carotin-Desaturase aus Narcissus pseudonar- cissus, ACCESSION #AJ224683, veröffentlicht durch AI-Babili,S., Oelschlegel.J. and Beyer.P.: A cDNA encoding for beta carotene desaturase (Accession No.AJ224683) from Narcissus pseudonarcissus L. (PGR98-103), Plant Physiol. 117, 719-719 (1998), (Nukleinsäure: SEQ ID NO: 119, Protein: SEQ ID NO: 28),A nucleic acid encoding a Narcissus pseudonarcissus zeta-carotene desaturase, ACCESSION # AJ224683, published by AI-Babili, S., Oelschlegel.J. and Beyer.P .: A cDNA encoding for beta carotene desaturase (Accession No.AJ224683) from Narcissus pseudonarcissus L. (PGR98-103), Plant Physiol. 117, 719-719 (1998), (nucleic acid: SEQ ID NO: 119, protein: SEQ ID NO: 28),
sowie weitere Zeta-Carotin-Desaturase-Gene aus anderen Organismen mit den fol- genden Accession Nummern:as well as other zeta-carotene desaturase genes from other organisms with the following accession numbers:
Q9R6X4, Q38893, Q9SMJ3, Q9SE20, Q9ZTP4, 049901 , P74306, Q9FV46, Q9RCT2, ZDS_NARPS, BAB68552.1 , CAC85667.1 , AF372617_1 , ZDS_TARER, CAD55814.1 , CAD27442.1 , 2121278A, ZDS_CAPAN, ZDSJ.YCES, NP_187138.1 , AAM63349.1 , ZDS_ARATH, AAA91161.1 , ZDS_MAIZE, AAG14399.1 , NP_441720.1 , NP_486422.1 , ZP_00111920.1 , CAB56041.1 , ZP_00074512.1 , ZP_00116357.1 , NP_681127.1 , ZP_00114185.1 , ZP_00104126.1 , CAB65434.1 , NP_662300.1Q9R6X4, Q38893, Q9SMJ3, Q9SE20, Q9ZTP4, 049901, P74306, Q9FV46, Q9RCT2, ZDS_NARPS, BAB68552.1, CAC85667.1, AF372617_1, ZDS_TARER, CAD55814Z_2_1227C7DS2, CAD2778A13.1, CAD1278A4DS1, CAD2778A13.1, CAD2778A4D. 1, AAM63349.1, ZDS_ARATH, AAA91161.1, ZDS_MAIZE, AAG14399.1, NP_441720.1, NP_486422.1, ZP_00111920.1, CAB56041.1, ZP_00074512.1, ZP_00116357.1, NP_68112114.1, ZP_00116357.1 ZP_00104126.1, CAB65434.1, NP_662300.1
Beispiele für crtlSO-Gene sind:Examples of crtlSO genes are:
Eine Nukleinsäure, kodierend eine crtlSO aus Lycopersicon esculentum; ACCESSION #AF416727, veröffentlicht durch Isaacson.T., Ronen, G., Zamir.D. and Hirschberg, J.: Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the pro- duction of beta-carotene apd xanthophylls in plants; Plant Cell 14 (2), 333-342 (2002), (Nukleinsäure: SEQ ID NO: 29, Protein: SEQ ID NO: 122),A nucleic acid encoding a crtlSO from Lycopersicon esculentum; ACCESSION # AF416727, published by Isaacson.T., Ronen, G., Zamir.D. and Hirschberg, J .: Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of beta-carotene apd xanthophylls in plants; Plant Cell 14 (2), 333-342 (2002), (Nucleic acid: SEQ ID NO: 29, protein: SEQ ID NO: 122),
sowie weitere crtlSO -Gene aus anderen Organismen mit den folgenden Accession Nummern:as well as other crtlSO genes from other organisms with the following accession numbers:
AAM53952AAM53952
Beispiele für FtsZ-Gene sind:Examples of FtsZ genes are:
Eine Nukleinsäure, kodierend eine FtsZ aus Tagetes erecta, ACCESSION #AF251346, veröffentlicht durch Moehs.C.P., Tian.L., Osteryoung.K.W. and Dellapenna.D.: Analysis of carotenoid biosynthetic gene expression during marigold petal development Plant Mol. Biol.45 (3), 281-293 (2001), (Nukleinsäure: SEQ ID NO: 31, Protein: SEQ ID NO: 32),A nucleic acid encoding an FtsZ from Tagetes erecta, ACCESSION # AF251346, published by Moehs.C.P., Tian.L., Osteryoung.K.W. and Dellapenna.D .: Analysis of carotenoid biosynthetic gene expression during marigold petal development Plant Mol. Biol. 45 (3), 281-293 (2001), (nucleic acid: SEQ ID NO: 31, protein: SEQ ID NO: 32) .
sowie weitere FtsZ -Gene aus anderen Organismen mit den folgenden Accession Nummern:as well as other FtsZ genes from other organisms with the following accession numbers:
CAB89286.1, AF205858_1, NP_200339.1, CAB89287.1, CAB41987.1, AAA82068.1, T06774,AF383876_1 , BAC57986.1, CAD22047.1, BAB91150.1, ZP_00072546.1 , NP_440816.1, T51092, NP_683172.1, BAA85116.1, NP_487898.1, JC4289, BAA82871.1, NP_781763.1, BAC57987.1, ZP_00111461.1, T51088, NP 90843.1, ZP_00060035.1, NP_846285.1, AAL07180.1, NP_243424.1, NP_833626.1, AAN04561.1, AAN04557.1, CAD22048.1, T51089, NP_692394.1, NP_623237.1, NP_565839.1, T51090, CAA07676.1, NP_113397.1, T51087, CAC44257.1, E84778, ZP_00105267.1, BAA82091.1, ZP_00112790.1, BAA96782.1, NP_348319.1, NP_471472.1, ZP_00115870.1, NP_465556.1, NP_389412.1, BAA82090.1, NP_562681.1, AAM22891.1, NP_371710.1, NP_764416.1, CAB95028.1, FTSZ_STRGR, AF120117_1, NP_827300.1, JE0282, NP_626341.1, AAC45639.1, NP_785689.1, NP_336679.1, NP_738660.1, ZP_00057764.1, AAC32265.1, NP_814733.1, FTSZ_MYCKA, NP_216666.1, CAA75616.1, NP_301700.1, NP_601357.1, ZP_00046269.1, CAA70158.1, ZP_00037834.1, NP_268026.1, FTSZ_ENTHR, NP_787643.1, NP_346105.1, AAC32264.1, JC5548, AAC95440.1, NP_710793.1, NP_687509.1, NP_269594.1, AAC32266.1, NP_720988.1, NP_657875.1 , ZP_00094865.1 , ZP_00080499.1 , ZP_00043589.1 , JC7087, NP_660559.1, AAC46069.1, AF179611_14, AAC44223.1, NP_404201.1.CAB89286.1, AF205858_1, NP_200339.1, CAB89287.1, CAB41987.1, AAA82068.1, T06774, AF383876_1, BAC57986.1, CAD22047.1, BAB91150.1, ZP_00072546.1, NP_440816.1_ T683172,. 1, BAA85116.1, NP_487898.1, JC4289, BAA82871.1, NP_781763.1, BAC57987.1, ZP_00111461.1, T51088, NP 90843.1, ZP_00060035.1, NP_846285.1, AAL07180.1, NP_243424.1, NP_833626 .1, AAN04561.1, AAN04557.1, CAD22048.1, T51089, NP_692394.1, NP_623237.1, NP_565839.1, T51090, CAA07676.1, NP_113397.1, T51087, CAC44257.1, E84778, ZP_00105267 , BAA82091.1, ZP_00112790.1, BAA96782.1, NP_348319.1, NP_471472.1, ZP_00115870.1, NP_465556.1, NP_389412.1, BAA82090.1, NP_562681.1, AAM22891.1, NP_371710.1, NP_764416 .1, CAB95028.1, FTSZ_STRGR, AF120117_1, NP_827300.1, JE0282, NP_626341.1, AAC45639.1, NP_785689.1, NP_336679.1, NP_738660.1, ZP_00057764.1, AAC32265M.1, NP_KA14733.1 , NP_216666.1, CAA75616.1, NP_301700.1, NP_601357.1, ZP_00046269.1, CAA70158.1, ZP_00037834.1, NP_268026.1, FTSZ_ENTHR, NP_787643.1, NP_346105.1, AAC32 264.1, JC5548, AAC95440.1, NP_710793.1, NP_687509.1, NP_269594.1, AAC32266.1, NP_720988.1, NP_657875.1, ZP_00094865.1, ZP_00080499.1, ZP_00043589.1, JC7087, NP_66055 AAC46069.1, AF179611_14, AAC44223.1, NP_404201.1.
Beispiele für MinD -Gene sind: Eine Nukleinsäure, kodierend eine MinD aus Tagetes erecta, ACCESSION #AF251019, veröffentlicht durch Moehs.C.P., Tian.L, Osteryoung.K.W. und Dellapen- na,D.: Analysis of carotenoid biosynthetic gene expression during marigold petal deve- lopment; Plant Mol. Biol.45 (3), 281-293 (2001), (Nukleinsäure: SEQ ID NO: 33, Protein: SEQ ID NO: 34),Examples of MinD genes are: A nucleic acid encoding a MinD from Tagetes erecta, ACCESSION # AF251019, published by Moehs.CP, Tian.L, Osteryoung.KW and Dellapena, D .: Analysis of carotenoid biosynthetic gene expression during marigold petal development; Plant Mol. Biol. 45 (3), 281-293 (2001), (nucleic acid: SEQ ID NO: 33, protein: SEQ ID NO: 34),
sowie weitere MinD -Gene mit den folgenden Accession Nummern:as well as other MinD genes with the following accession numbers:
NP_197790.1, BAA90628.1, NP_038435.1, NP_045875.1, AAN33031.1, NP_050910.1, CAB53105.1, NP_050687.1, NP_682807.1, NP_487496.1, ZP_001117081, ZP_00071109.1, NP_442592.1, NP_603083.1, NP_782631.1, ZP_000973671, ZP_00104319.1, NP_294476.1, NP_622555.1, NP_563054.1, NP_347881.1 ZP_00113908.1, NP_834154.1, NP_658480.1, ZP_00059858.1, NP_470915.1 NP_243893.1, NP_465069.1, ZP_00116155.1, NP_390677.1, NP_692970.1 NP_298610.1, NP_207129.1, ZP_00038874.1, NP_778791.1, NP_223033.1 NP_641561.1, NP_636499.1, ZP_00088714.1, NP_213595.1, NP_743889.1 NP_231594.1, ZP_00085067.1, NP_797252.1, ZP_00136593.1, NP_251934.1 NP_405629.1, NP_759144.1, ZP_00102939.1, NP_793645.1, NP_699517.1 NP_460771.1, NP_860754.1, NP_456322.1, NP_718163.1, NP_229666.1 NP_357356.1, NP_541904.1, NP_287414.1, NP_660660.1, ZP_001282731, NP 03411.1, NP_785789.1, NP_715361.1, AF149810 , NP_841854.1 NP_437893.1, ZP_00022726.1, EAA24844.1, ZP_00029547.1, NP_521484.1 NP_240148.1, NP_770852.1, AF345908_2, NP_777923.1, ZP_000488791, NP_579340.1, NP_143455.1, NP_126254.1, NP_142573.1, NP_613505.1 NP I27112.1, NP_712786.1, NP_578214.1, NP_069530.1, NP_247526.1 AAA85593.1, NP_212403.1, NP_782258.1, ZP_00058694.1, NP_247137.1 NP_219149.1, NP_276946.1, NP_614522.1, ZP_00019288.1, CAD78330.1NP_197790.1, BAA90628.1, NP_038435.1, NP_045875.1, AAN33031.1, NP_050910.1, CAB53105.1, NP_050687.1, NP_682807.1, NP_487496.1, ZP_001117081, ZP_00071109.1, NP_4425 NP_603083.1, NP_782631.1, ZP_000973671, ZP_00104319.1, NP_294476.1, NP_622555.1, NP_563054.1, NP_347881.1 ZP_00113908.1, NP_834154.1, NP_658480.1, ZP_0005938815.1, NP_24709. 1, NP_465069.1, ZP_00116155.1, NP_390677.1, NP_692970.1 NP_298610.1, NP_207129.1, ZP_00038874.1, NP_778791.1, NP_223033.1 NP_641561.1, NP_636499.1, ZP_00088135.1,. 1, NP_743889.1 NP_231594.1, ZP_00085067.1, NP_797252.1, ZP_00136593.1, NP_251934.1 NP_405629.1, NP_759144.1, ZP_00102939.1, NP_793645.1, NP_699517.1 NP_4607714.1, NP_860755.1 , NP_456322.1, NP_718163.1, NP_229666.1 NP_357356.1, NP_541904.1, NP_287414.1, NP_660660.1, ZP_001282731, NP 03411.1, NP_785789.1, NP_715361.1, AF149810, NP_84789.1 ZP_00022726.1, EAA24844.1, ZP_00029547.1, NP_521484.1 NP_240148.1, NP_770852.1, AF345908_2, NP_777923.1, ZP_000488791, NP _579340.1, NP_143455.1, NP_126254.1, NP_142573.1, NP_613505.1 NP I27112.1, NP_712786.1, NP_578214.1, NP_069530.1, NP_247526.1 AAA85593.1, NP_212403.1, NP_782258.1 , ZP_00058694.1, NP_247137.1 NP_219149.1, NP_276946.1, NP_614522.1, ZP_00019288.1, CAD78330.1
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als HMG-CoA-Reduktase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 8 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 8, und die die enzymatische Eigenschaft einer HMG-CoA-Reduktase aufweisen.In the preferred embodiment described above, nucleic acids which encode proteins are preferably used as HMG-CoA reductase genes, comprising the amino acid sequence SEQ ID NO: 8 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and having an identity of at least 30%, preferably at least 50%, more preferably at least 70%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 8, and which have the enzymatic property of an HMG-CoA reductase.
Weitere Beispiele für HMG-CoA-Reduktasen und HMG-CoA-Reduktase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäure- sequeπzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 8 leicht auffinden.Further examples of HMG-CoA reductases and HMG-CoA reductase genes can be found, for example, from different organisms, their genomic sequence is known, as described above, by homology comparisons of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 8.
Weitere Beispiele für HMG-CoA-Reduktasen und HMG-CoA-Reduktase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 7 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.Further examples of HMG-CoA reductases and HMG-CoA reductase genes can also be obtained, for example, starting from the sequence SEQ ID NO: 7 from various organisms whose genomic sequence is not known, as described above, by hybridization and PCR techniques easy to find in a manner known per se.
In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der HMG-CoA-Reduktase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der HMG-CoA-Reduktase der Sequenz SEQ ID NO: 8.In a further particularly preferred embodiment, nucleic acids which encode proteins containing the amino acid sequence of the HMG-CoA reductase of the sequence SEQ ID NO: 8 are introduced into organisms to increase the HMG-CoA reductase activity.
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organis- menspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.Those codons are preferably used for this which are frequently used in accordance with the organism-specific codon usage. The codon usage can easily be determined on the basis of computer evaluations of other known genes of the organisms in question.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, ent- haltend die Sequenz SEQ ID NO: 7 in den Organismus ein.In a particularly preferred embodiment, a nucleic acid containing the sequence SEQ ID NO: 7 is introduced into the organism.
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 10 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70%, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 10, und die die enzymatische Eigenschaft einer (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat- Reduktase aufweisen.In the preferred embodiment described above, preference is given to using (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase genes nucleic acids which code for proteins containing the amino acid sequence SEQ ID NO: 10 or one of these sequences Substitution, insertion or deletion of amino acid-derived sequence that have an identity of at least 30%, preferably at least 50%, more preferably at least 70%, more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 10, and which have the enzymatic property of an (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase.
Weitere Beispiele für (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktasen und (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 10 leicht auffinden.Further examples of (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductases and (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase genes can be obtained, for example, from different organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or find the corresponding back-translated nucleic acid sequences from databases with SeQ ID NO: 10.
Weitere Beispiele für (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktasen und (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 9 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.Further examples of (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductases and (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase genes can also be obtained, for example, from the sequence SEQ ID NO: 9 from various organisms, the genomic sequence of which is not known, as described above, can easily be found by hybridization and PCR techniques in a manner known per se.
In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der (E)- 4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der (E)- 4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase der Sequenz SEQ ID NO: 10.In a further particularly preferred embodiment, to increase the (E) - 4-hydroxy-3-methylbut-2-enyl-diphosphate reductase activity, nucleic acids are introduced into organisms which code for proteins containing the amino acid sequence of (E) - 4- Hydroxy-3-methylbut-2-enyl-diphosphate reductase of the sequence SEQ ID NO: 10.
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organis- menspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.Those codons are preferably used for this which are frequently used in accordance with the organism-specific codon usage. The codon usage can easily be determined on the basis of computer evaluations of other known genes of the organisms in question.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, ent- haltend die Sequenz SEQ ID NO: 9 in den Organismus ein.In a particularly preferred embodiment, a nucleic acid containing the sequence SEQ ID NO: 9 is introduced into the organism.
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als (1-Deoxy-D-Xyiose-5-Phosphat-Synthase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70%, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 12, und die die enzymatische Eigenschaft einer (1-Deoxy-D-Xylose-5-Phosphat-Synthase aufweisen.In the preferred embodiment described above, use is preferably made of (1-deoxy-D-xyiosis-5-phosphate synthase genes) nucleic acids which encode proteins containing the amino acid sequence SEQ ID NO: 12 or one of these sequences by substitution, insertion or deletion sequence derived from amino acids, which has an identity of at least 30%, preferably at least 50%, more preferably at least 70%, more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 12, and which has the enzymatic property a (1-deoxy-D-xylose-5-phosphate synthase.
Weitere Beispiele für (1-Deoxy-D-Xylose-5-Phosphat-Synthasen und (1-Deoxy-D- Xylose-5-Phosphat-Synthase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rück- übersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 12 leicht auffinden.Further examples of (1-deoxy-D-xylose-5-phosphate synthase and (1-deoxy-D-xylose-5-phosphate synthase genes can be obtained, for example, from various organisms whose genomic sequence is known, as described above , easily by homology comparisons of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 12 find.
Weitere Beispiele für (1-Deoxy-D-Xylose-5-Phosphat-Synthasen und (1-Deoxy-D- Xylose-5-Phosphat-Synthase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 11 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.Further examples of (1-deoxy-D-xylose-5-phosphate synthase and (1-deoxy-D-xylose-5-phosphate synthase genes can also be obtained from different organisms, for example, starting from the sequence SEQ ID NO: 11 whose genomic sequence is not known, as described above, can easily be found by hybridization and PCR techniques in a manner known per se.
In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der (1- Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der (1-Deoxy-D- Xylose-5-Phosphat-Synthase der Sequenz SEQ ID NO: 12.In a further particularly preferred embodiment, in order to increase the (1-deoxy-D-xylose-5-phosphate synthase activity, nucleic acids are introduced into organisms which code for proteins containing the amino acid sequence of the (1-deoxy-D-xylose-5 Phosphate synthase of sequence SEQ ID NO: 12.
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organismenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Orga- nismen leicht ermitteln.Those codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this. The codon usage can easily be determined on the basis of computer evaluations of other, known genes of the organisms concerned.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 11 in den Organismus ein.In a particularly preferred embodiment, a nucleic acid containing the sequence SEQ ID NO: 11 is introduced into the organism.
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 14 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevor- zugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 14, und die die enzymatische Eigenschaft einer 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase aufweisen.In the preferred embodiment described above, 1-deoxy-D-xylose-5-phosphate reductoisomerase genes are preferably used nucleic acids which encode proteins containing the amino acid sequence SEQ ID NO: 14 or one of these sequences by substitution, insertion or deletion of Amino acid-derived sequence which has an identity of at least 30%, preferably at least 50%, more preferably at least 70%, more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 14, and which is the enzymatic Have property of a 1-deoxy-D-xylose-5-phosphate reductoisomerase.
Weitere Beispiele für 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerasen und 1-Deoxy- D-Xylose-5-Phosphat-Reduktoisomerase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 14 leicht auffinden.Further examples of 1-deoxy-D-xylose-5-phosphate reductoisomerase and 1-deoxy-D-xylose-5-phosphate reductoisomerase genes can be obtained, for example, from various organisms, the genomic sequence of which is known, as described above Homology comparisons of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 14 easy to find.
Weitere Beispiele für 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerasen und 1-Deoxy- D-Xylose-5-Phosphat-Reduktoisomerase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 13 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisie- rungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.Further examples of 1-deoxy-D-xylose-5-phosphate reductoisomerases and 1-deoxy-D-xylose-5-phosphate reductoisomerase genes can also be found, for example, starting from the sequence SEQ ID NO: 13 from different organisms, their genomic Sequence is not known, as described above, can be easily found by hybridization and PCR techniques in a manner known per se.
In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der 1- Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der 1-Deoxy-D- Xylose-5-Phosphat-Reduktoisomerase der Sequenz SEQ ID NO: 14.In a further particularly preferred embodiment, in order to increase the 1-deoxy-D-xylose-5-phosphate reductoisomerase activity, nucleic acids are introduced into organisms which code for proteins containing the amino acid sequence of the 1-deoxy-D-xylose-5-phosphate Reductoisomerase of sequence SEQ ID NO: 14.
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organismenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Orga- . nismen leicht ermitteln.Those codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this. The codon usage can be determined on the basis of computer evaluations of other known genes of the relevant organ. easily identify nisms.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 13 in den Organismus ein.In a particularly preferred embodiment, a nucleic acid containing the sequence SEQ ID NO: 13 is introduced into the organism.
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Isopentenyl-D-Isomerase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 16 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 16, und die die enzymatische Eigenschaft einer Isopentenyl-D-Isomerase aufweisen.In the preferred embodiment described above, nucleic acids which encode proteins are preferably used as isopentenyl-D-isomerase genes, containing the amino acid sequence SEQ ID NO: 16 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and having an identity of at least 30%, preferably at least 50%, more preferably at least 70%, more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 16, and which have the enzymatic property of an isopentenyl-D-isomerase.
Weitere Beispiele für Isopentenyl-D-Isomerasen und Isopentenyl-D-Isomerase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 16 leicht auffinden. Weitere Beispiele für Isopentenyl-D-Isomerasen und Isopentenyl-D-Isomerase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 15 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.Further examples of isopentenyl-D-isomerases and isopentenyl-D-isomerase genes can be obtained, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 16 easy to find. Further examples of isopentenyl-D-isomerases and isopentenyl-D-isomerase genes can also be obtained, for example, starting from the sequence SEQ ID NO: 15 from various organisms whose genomic sequence is not known, as described above, by hybridization and PCR techniques easy to find in a manner known per se.
In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Isopentenyl-D-Isomerase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Isopentenyl-D-Isomerase der Sequenz SEQ ID NO: 16.In a further particularly preferred embodiment, to increase the isopentenyl-D-isomerase activity, nucleic acids are introduced into organisms which code for proteins containing the amino acid sequence of the isopentenyl-D-isomerase of the sequence SEQ ID NO: 16.
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organismenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.Those codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this. The codon usage can easily be determined on the basis of computer evaluations of other known genes of the organisms in question.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 15 in den Organismus ein.In a particularly preferred embodiment, a nucleic acid containing the sequence SEQ ID NO: 15 is introduced into the organism.
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Geranyl-Diphosphat-Synthase-Gene Nukleinsäuren, die Proteine kodieren, enthal- tend die Aminosäuresequenz SEQ ID NO: 18 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 18, und die die enzymatische Ei- genschaft einer Geranyl-Diphosphat-Synthase aufweisen.In the preferred embodiment described above, the geranyl diphosphate synthase genes used are preferably nucleic acids which encode proteins, the amino acid sequence SEQ ID NO: 18 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which is a Identity of at least 30%, preferably at least 50%, more preferably at least 70%, more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 18, and which has the enzymatic property of a geranyl diphosphate Have synthase.
Weitere Beispiele für Geranyl-Diphosphat-Synthasen und Geranyl-Diphosphat- Synthase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologie- vergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 18 leicht auffinden.Further examples of geranyl diphosphate synthases and geranyl diphosphate synthase genes can be obtained, for example, from various organisms whose genomic sequence is known, as described above, by comparing the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 18 easy to find.
Weitere Beispiele für Geranyl-Diphosphat-Synthasen und Geranyl-Diphosphat- Synthase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 17 aus verschiedenen Organismen deren genomische Sequenz nicht be- kannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.Further examples of geranyl diphosphate synthases and geranyl diphosphate synthase genes can also be derived, for example, starting from the sequence SEQ ID NO: 17 from different organisms whose genomic sequence cannot be determined. is, as described above, easy to find by hybridization and PCR techniques in a manner known per se.
In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Geranyl-Diphosphat-Synthase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Geranyl-Diphosphat- Synthase der Sequenz SEQ ID NO: 18.In a further particularly preferred embodiment, to increase the geranyl diphosphate synthase activity, nucleic acids are introduced into organisms which encode proteins containing the amino acid sequence of the geranyl diphosphate synthase of the sequence SEQ ID NO: 18.
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organismenspezifischen codon usage häufig verwendet werden. Dia codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Orga- nismen leicht ermitteln.Those codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this. The codon usage can easily be determined on the basis of computer evaluations of other, known genes of the organisms in question.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 17 in den Organismus ein.In a particularly preferred embodiment, a nucleic acid containing the sequence SEQ ID NO: 17 is introduced into the organism.
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Farnesyl-Diphosphat-Synthase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 20 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindes- tens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 20, und die die enzymatische Eigenschaft einer Farnesyl-Diphosphat-Synthase aufweisen.In the preferred embodiment described above, preference is given to using, as farnesyl diphosphate synthase genes, nucleic acids which encode proteins, containing the amino acid sequence SEQ ID NO: 20 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and which have an identity of at least 30%, preferably at least 50%, more preferably at least 70%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 20, and which have the enzymatic property of a farnesyl diphosphate synthase ,
Weitere Beispiele für Famesyl-Diphosphat-Synthasen und Famesyl-Diphosphat- Synthase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 20 leicht auffinden.Further examples of famesyl diphosphate synthases and famesyl diphosphate synthase genes can be obtained, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 20 easy to find.
Weitere Beispiele für Farnesyl-Diphosphat-Synthasen und Famesyl-Diphosphat- Synthase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 19 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden. In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Famesyl-Diphosphat-Synthase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Farnesyl-Diphosphat- Synthase der Sequenz SEQ ID NO: 20.Further examples of farnesyl diphosphate synthases and famesyl diphosphate synthase genes can also be obtained, for example, starting from the sequence SEQ ID NO: 19 from various organisms whose genomic sequence is not known, as described above, by means of hybridization and PCR techniques easy to find in a manner known per se. In a further particularly preferred embodiment, nucleic acids which encode proteins containing the amino acid sequence of the farnesyl diphosphate synthase of the sequence SEQ ID NO: 20 are introduced into organisms in order to increase the famesyl diphosphate synthase activity.
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organis- menspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.Those codons are preferably used for this which are frequently used in accordance with the organism-specific codon usage. The codon usage can easily be determined on the basis of computer evaluations of other known genes of the organisms in question.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, ent- haltend die Sequenz SEQ ID NO: 19 in den Organismus ein.In a particularly preferred embodiment, a nucleic acid containing the sequence SEQ ID NO: 19 is introduced into the organism.
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Geranyl-geranyl-Diphosphat-Synthase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 22 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 22, und die die enzymatische Eigenschaft einer Geranyl-geranyl-Diphosphat-Synthase aufweisen.In the preferred embodiment described above, the geranyl-geranyl-diphosphate synthase genes used are preferably nucleic acids which encode proteins containing the amino acid sequence SEQ ID NO: 22 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which is a Identity of at least 30%, preferably at least 50%, more preferably at least 70%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 22, and which the enzymatic property of a geranyl-geranyl-diphosphate Have synthase.
Weitere Beispiele für Geranyl-geranyl-Diphosphat-Synthasen und Geranyl-geranyl- Diphosphat-Synthase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetz- ten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 22 leicht auffinden.Further examples of geranyl-geranyl-diphosphate synthases and geranyl-geranyl-diphosphate synthase genes can be obtained, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases easy to find with SeQ ID NO: 22.
Weitere Beispiele für Geranyl-geranyl-Diphosphat-Synthasen und Geranyl-geranyl- Diphosphat-Synthase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 21 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR- Techniken in an sich bekannter Weise leicht auffinden.Further examples of geranyl-geranyl-diphosphate synthases and geranyl-geranyl-diphosphate synthase genes can also be obtained, for example, starting from the sequence SEQ ID NO: 21 from various organisms whose genomic sequence is not known, as described above, by hybridization. and PCR techniques can be easily found in a manner known per se.
In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Geranyl-geranyl-Diphosphat-Synthase-Aktivität Nukleinsäuren in Organismen einge- bracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Geranyl-geranyl- Diphosphat-Synthase der Sequenz SEQ ID NO: 22.In a further particularly preferred embodiment, to increase the geranyl-geranyl-diphosphate synthase activity, nucleic acids are introduced into organisms which code for proteins containing the amino acid sequence of the geranyl-geranyl- Diphosphate synthase of sequence SEQ ID NO: 22.
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organismenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.Those codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this. The codon usage can easily be determined on the basis of computer evaluations of other known genes of the organisms in question.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 21 in den Organismus ein.In a particularly preferred embodiment, a nucleic acid containing the sequence SEQ ID NO: 21 is introduced into the organism.
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Phytoen-Synthase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 24 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Amino- säureebene mit der Sequenz SEQ ID NO: 24, und die die enzymatische Eigenschaft einer Phytoen-Synthase aufweisen.In the preferred embodiment described above, nucleic acids encoding proteins are preferably used as phytoene synthase genes, containing the amino acid sequence SEQ ID NO: 24 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and having an identity of at least 30 %, preferably at least 50%, more preferably at least 70%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 24, and which have the enzymatic property of a phytoene synthase.
Weitere Beispiele für Phytoen-Synthasen und Phytoen-Synthase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 24 leicht auffinden.Further examples of phytoene synthases and phytoene synthase genes can easily be found, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 24.
Weitere Beispiele für Phytoen-Synthasen und Phytoen-Synthase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 23 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.Further examples of phytoene synthases and phytoene synthase genes can also be obtained, for example, starting from the sequence SEQ ID NO: 23 from various organisms whose genomic sequence is not known, as described above, by hybridization and PCR techniques in a manner known per se Easy to find.
In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Phytoen-Synthase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Phytoen-Synthase der Sequenz SEQ ID NO: 24. Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung derIn a further particularly preferred embodiment, in order to increase the phytoene synthase activity, nucleic acids are introduced into organisms which code for proteins containing the amino acid sequence of the phytoene synthase of the sequence SEQ ID NO: 24. Suitable nucleic acid sequences are, for example, by back-translating the
Polypeptidsequenz gemäß dem genetischen Code erhältlich.Polypeptide sequence available according to the genetic code.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organis- menspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermittein.Those codons are preferably used for this which are frequently used in accordance with the organism-specific codon usage. The codon usage can easily be determined on the basis of computer evaluations of other known genes of the organisms in question.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, ent- haltend die Sequenz SEQ ID NO: 23 in den Organismus ein.In a particularly preferred embodiment, a nucleic acid containing the sequence SEQ ID NO: 23 is introduced into the organism.
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Phytoen-Desaturase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 26 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 26, und die die enzymatische Eigenschaft einer Phytoen-Desaturase aufweisen.In a preferred embodiment described above, the phytoene desaturase genes used are preferably nucleic acids which encode proteins containing the amino acid sequence SEQ ID NO: 26 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and having an identity of at least 30 %, preferably at least 50%, more preferably at least 70%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 26, and which have the enzymatic property of a phytoene desaturase.
Weitere Beispiele für Phytoen-Desaturasen und Phytoen-Desaturase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 26 leicht auffinden.Further examples of phytoene desaturases and phytoene desaturase genes can easily be found, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 26.
Weitere Beispiele für Phytoen-Desaturasen und Phytoen-Desaturase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 25 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.Further examples of phytoene desaturases and phytoene desaturase genes can also be obtained, for example, starting from the sequence SEQ ID NO: 25 from various organisms whose genomic sequence is not known, as described above, by hybridization and PCR techniques in a manner known per se Easy to find.
In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Phytoen-Desaturase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Phytoen-Desaturase der Sequenz SEQ ID NO: 26.In a further particularly preferred embodiment, nucleic acids which encode proteins containing the amino acid sequence of the phytoene desaturase of the sequence SEQ ID NO: 26 are introduced into organisms in order to increase the phytoene desaturase activity.
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich. Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organismenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code. Those codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this. The codon usage can easily be determined on the basis of computer evaluations of other, known genes of the organisms in question.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 25 in den Organismus ein.In a particularly preferred embodiment, a nucleic acid containing the sequence SEQ ID NO: 25 is introduced into the organism.
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Zeta-Carotin-Desaturase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 28 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Amino- säureebene mit der Sequenz SEQ ID NO: 28, und die die enzymatische Eigenschaft einer Zeta-Carotin-Desaturase aufweisen.In the preferred embodiment described above, the zeta-carotene desaturase genes used are preferably nucleic acids which encode proteins containing the amino acid sequence SEQ ID NO: 28 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and which have an identity of at least 30%, preferably at least 50%, more preferably at least 70%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 28, and which have the enzymatic property of a zeta-carotene desaturase ,
Weitere Beispiele für Zeta-Carotin-Desaturasen und Zeta-Carotin-Desaturase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Se- quenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SEQ ID NO: 28 leicht auffinden.Further examples of zeta-carotene desaturases and zeta-carotene desaturase genes can be obtained, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SEQ ID NO: 28 easy to find.
Weitere Beispiele für Zeta-Carotin-Desaturasen und Zeta-Carotin-Desaturase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 119 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.Further examples of zeta-carotene desaturases and zeta-carotene desaturase genes can also be obtained, for example, starting from the sequence SEQ ID NO: 119 from various organisms whose genomic sequence is not known, as described above, by hybridization and PCR techniques easy to find in a manner known per se.
In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Zeta-Carotin-Desaturase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Zeta-Carotin-Desaturase der Sequenz SEQ ID NO: 28.In a further particularly preferred embodiment, in order to increase the zeta-carotene desaturase activity, nucleic acids are introduced into organisms which encode proteins containing the amino acid sequence of the zeta-carotene desaturase of the sequence SEQ ID NO: 28.
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organismenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Orga- nismen leicht ermitteln.Those codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this. The codon usage can be determined on the basis of computer evaluations of other known genes of the relevant organ easily identify nisms.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 119 in den Organismus ein.In a particularly preferred embodiment, a nucleic acid containing the sequence SEQ ID NO: 119 is introduced into the organism.
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als CrtlSO-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 30 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 30, und die die enzymatische Eigenschaft einer Crtlso aufweisen.In a preferred embodiment described above, nucleic acids which encode proteins are preferably used as CrtlSO genes, comprising the amino acid sequence SEQ ID NO: 30 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and having an identity of at least 30%, preferably at least 50%, more preferably at least 70%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 30, and which have the enzymatic property of a Crtlso.
Weitere Beispiele für CrtlSO und CrtlSO-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 30 leicht auffinden.Further examples of CrtlSO and CrtlSO genes can easily be found, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 30.
Weitere Beispiele für CrtlSO und CrtlSO-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 29 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.Further examples of CrtlSO and CrtlSO genes can also be easily found, for example, starting from the sequence SEQ ID NO: 29 from various organisms whose genomic sequence is not known, as described above, by hybridization and PCR techniques in a manner known per se.
In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der CrtlSO-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der CrtlSO der Sequenz SEQ ID NO: 30.In a further particularly preferred embodiment, nucleic acids which encode proteins containing the amino acid sequence of the CrtlSO of the sequence SEQ ID NO: 30 are introduced into organisms to increase the CrtlSO activity.
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organismenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.Those codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this. The codon usage can easily be determined on the basis of computer evaluations of other known genes of the organisms in question.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQJD NO: 29 in den Organismus ein. Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als FtsZ-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 32 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 32, und die die enzymatische Eigenschaft einer FtsZ aufweisen.In a particularly preferred embodiment, a nucleic acid containing the sequence SEQJD NO: 29 is introduced into the organism. In the preferred embodiment described above, the FtsZ genes used are preferably nucleic acids which encode proteins, containing the amino acid sequence SEQ ID NO: 32 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and having an identity of at least 30%, preferably at least 50%, more preferably at least 70%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the sequence SEQ ID NO: 32, and which have the enzymatic property of an FtsZ.
Weitere Beispiele für FtsZn und FtsZ-Gene lassen sich beispielsweise aus verschie- denen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 32 leicht auffinden.Further examples of FtsZn and FtsZ genes can easily be found, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 32.
Weitere Beispiele für FtsZn und FtsZ-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 31 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.Further examples of FtsZn and FtsZ genes can also be easily found, for example, starting from the sequence SEQ ID NO: 31 from various organisms whose genomic sequence is not known, as described above, by hybridization and PCR techniques in a manner known per se.
In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung derIn a further particularly preferred embodiment, to increase the
FtsZ-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der FtsZ der Sequenz SEQ ID NO: 32FtsZ activity Nucleic acids introduced into organisms which encode proteins, containing the amino acid sequence of the FtsZ of the sequence SEQ ID NO: 32
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organismenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Orga- nismen leicht ermitteln.Those codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this. The codon usage can easily be determined on the basis of computer evaluations of other, known genes of the organisms concerned.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 31 in den Organismus ein.In a particularly preferred embodiment, a nucleic acid containing the sequence SEQ ID NO: 31 is introduced into the organism.
Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als MinD-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 34 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 34, und die die enzymatische Eigenschaft einer MinD aufweisen.In the preferred embodiment described above, the preferred MinD genes are nucleic acids encoding proteins containing the amino acid sequence SEQ ID NO: 34 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids and having an identity of at least 30%, preferably at least 50%, more preferably at least 70%, even more preferably at least 90%, most preferably at least 95% at the amino acid level with the Sequence SEQ ID NO: 34, and which have the enzymatic property of a MinD.
Weitere Beispiele für MinDn und MinD-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrie- ben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 34 leicht auffinden.Further examples of MinDn and MinD genes can easily be found, for example, from various organisms whose genomic sequence is known, as described above, by comparing the homology of the amino acid sequences or the corresponding back-translated nucleic acid sequences from databases with the SeQ ID NO: 34.
Weitere Beispiele für MinDn und MinD-Gene lassen sich weiterhin beispielsweise aus- gehend von der Sequenz SEQ ID NO: 33 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.Further examples of MinDn and MinD genes can also easily be obtained, for example, starting from the sequence SEQ ID NO: 33 from various organisms whose genomic sequence is not known, as described above, by hybridization and PCR techniques in a manner known per se find.
In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Min D-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der MinD der Sequenz SEQ ID NO: 34.In a further particularly preferred embodiment, to increase the Min D activity, nucleic acids are introduced into organisms which encode proteins containing the amino acid sequence of the MinD of the sequence SEQ ID NO: 34.
Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence in accordance with the genetic code.
Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organismenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.Those codons which are frequently used in accordance with the organism-specific codon usage are preferably used for this. The codon usage can easily be determined on the basis of computer evaluations of other known genes of the organisms in question.
In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 33 in den Organismus ein.In a particularly preferred embodiment, a nucleic acid containing the sequence SEQ ID NO: 33 is introduced into the organism.
Alle vorstehend erwähnten HMG-CoA-Reduktase-Gene, (E)-4-Hydroxy- 3-Methylbut-2-enyl-Diphosphat-Reduktase-Gene, 1 -Deoxy-D-Xylose-All of the above-mentioned HMG-CoA reductase genes, (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase genes, 1 -deoxy-D-xylose-
5-Phosphat-Synthase-Gene, 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Gene, Isopentenyl-Diphosphat-Δ-Isomerase-Gene, Geranyl-Diphosphat-Synthase-Gene, Far- nesyl-Diphosphat-Synthase-Gene, Geranyl-geranyl-Diphosphat-Synthase-Gene, Phytoen-Synthase-Gene, Phytoen-Desaturase-Gene, Zeta-Carotin-Desaturase-Gene, crtl- SO-Gene, FtsZ-Gene oder MinD-Gene sind weiterhin in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäurebau- steine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, Seite 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mithilfe des Klenow-Fragmentes der DNA- Polymerase und Ligationsreaktionen sowie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben.5-phosphate synthase genes, 1-deoxy-D-xylose-5-phosphate reductoisomerase genes, isopentenyl diphosphate Δ isomerase genes, geranyl diphosphate synthase genes, fernesyl diphosphate synthase genes Genes, geranyl-geranyl diphosphate synthase genes, phytoene synthase genes, phytoene desaturase genes, zeta-carotene desaturase genes, crtl-SO genes, FtsZ genes or MinD genes are still in themselves can be prepared in a known manner by chemical synthesis from the nucleotide building blocks, for example by fragment condensation of individual overlapping, complementary nucleic acid building blocks of the double helix. The chemical synthesis of oligonucleotides can be carried out, for example, in a known manner using the phosphoamidite method (Voet, Voet, 2nd edition, Wiley Press New York, pages 896-897). The attachment of synthetic Oligonucleotides and gap filling using the Klenow fragment of DNA polymerase and ligation reactions as well as general cloning methods are described in Sambrook et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press.
Die Nukleinsäuren, kodierend eine Ketolase, Nukleinsäuren kodierend eine ß- Hydroxylase, Nukleinsäuren kodierend eine ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, sowie die Nukleinsäuren kodierend eine HMG-CoA-Reduktase, Nukleinsäuren kodierend eine (E)-4- Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase, Nukleinsäuren kodierend eine 1- Deoxy-D-Xylose-5-Phosphat-Synthase, Nukleinsäuren kodierend eine 1-Deoxy-D- Xylose-5-Phosphat-Reduktoisomerase, Nukleinsäuren kodierend eine Isopentenyl- Diphosphat-Δ-Isomerase, Nukleinsäuren kodierend eine Geranyl-Diphosphat- Synthase, Nukleinsäuren kodierend eine Farnesyl-Diphosphat-Synthase, Nukleinsäuren kodierend eine Geranyl-Geranyl-Diphosphat-Synthase, Nukleinsäuren kodierend eine Phytoen-Synthase, Nukleinsäuren kodierend eine Phytoen-Desaturase, Nukleinsäuren kodierend eine Zeta-Carotin-Desaturase, Nukleinsäuren kodierend ein CrtlSO Protein, Nukleinsäuren kodierend ein FtsZ Protein und/oder Nukleinsäuren kodierend ein MinD Protein werden im folgenden auch "Effektgene" genannt.The nucleic acids encoding a ketolase, nucleic acids encoding a β-hydroxylase, nucleic acids encoding a β-cyclase, containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2, and the nucleic acids encoding an HMG-CoA reductase, nucleic acids encoding an (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase, nucleic acids encoding a 1-deoxy-D-xylose-5 Phosphate synthase, nucleic acids encoding a 1-deoxy-D-xylose-5-phosphate reductoisomerase, nucleic acids encoding an isopentenyl diphosphate Δ isomerase, nucleic acids encoding a geranyl diphosphate synthase, nucleic acids encoding a farnesyl diphosphate synthase, Nucleic acids encoding a geranyl-geranyl diphosphate synthase, nucleic acids encoding a phytoene synthase, nucleic acids encoding a phytoene desaturase, nucleic acids encoding a zeta-carotene desaturase, nucleic acids encoding a CrtlSO protein, nucleic acids encoding / a FtsZ protein a MinD protein are also called "effect genes" below.
Die Herstellung der genetisch veränderten, nicht-humanen Organismen kann, wie nachstehend beschrieben, beispielsweise durch Einbringen einzelner Nukleinsäure- konstrukte (Expressionskassetten), enthaltend ein Effektgen oder durch Einbringen von Mehrfachkonstrukten erfolgen, die bis zu zwei oder drei der Effektgene enthalten oder mehr als drei EffektgeneThe genetically modified, non-human organisms can be produced, as described below, for example by introducing individual nucleic acid constructs (expression cassettes) containing an effect gene or by introducing multiple constructs which contain up to two or three of the effect genes or more than three effect genes
Unter Organismen werden erfindungsgemäß vorzugsweise Organismen verstanden, die als Wildtyp- oder Ausgangsorganismen natürlicherweise oder durch genetische Komplementierung und/oder Umregulierung der Stoffwechselwege in der Lage sind, Carotinoide, insbesondere ß-Carotin und/oder Zeaxanthin und/oder Neoxanthin und/oder Violaxanthin und/oder Lutein herzustellen.According to the invention, organisms are preferably understood to mean organisms which, as wild-type or starting organisms, naturally or by genetic complementation and / or reorganization of the metabolic pathways, are capable of producing carotenoids, in particular β-carotene and / or zeaxanthin and / or neoxanthine and / or violaxanthin and / or to produce lutein.
Weiter bevorzugte Organismen weisen als Wildtyp- oder Ausgangsorganismen bereits eine Hydroxylase-Aktivität auf und sind somit als Wildtyp- oder Ausgangsorganismen in der Lage, Zeaxanthin herzustellen. Bevorzugte Organismen sind Pflanzen oder Mikroorganismen, wie beispielsweise Bakterien, Hefen, Algen oder Pilze.Further preferred organisms already have hydroxylase activity as wild-type or starting organisms and are therefore able to produce zeaxanthin as wild-type or starting organisms. Preferred organisms are plants or microorganisms, such as bacteria, yeasts, algae or fungi.
Als Bakterien können sowohl Bakterien verwendet werden, die aufgrund des Einbrin- gens von Genen der Carotinoidbiosynthese eines Carotinoid-produzierenden Organismus in der Lage sind, Xanthophylle zu synthetisieren, wie beispielsweise Bakterien der Gattung Escherichia, die beispielsweise crt-Gene aus Erwinia enthalten, als auch Bakterien, die von sich aus in der Lage sind, Xanthophylle zu synthetisieren wie beispielsweise Bakterien der Gattung Erwinia, Agrobacterium, Flavobacterium, Alcaligenes, Paracoccus, Nostoc oder Cyanobakterien der Gattung Synechocystis.Both bacteria can be used as bacteria that are able to synthesize xanthophylls due to the introduction of genes of the carotenoid biosynthesis of a carotenoid-producing organism, such as, for example, bacteria of the genus Escherichia, which contain, for example, crt genes from Erwinia, as well Bacteria that are able to synthesize xanthophylls on their own, such as, for example, bacteria of the genus Erwinia, Agrobacterium, Flavobacterium, Alcaligenes, Paracoccus, Nostoc or cyanobacteria of the genus Synechocystis.
Bevorzugte Bakterien sind Escherichia coli, Erwinia herbicola, Erwinia uredovora, Agrobacterium aurantiacum, Alcaligenes sp. PC-1, Flavobacterium sp. strain R1534, das Cyanobacterium Synechocystis sp. PCC6803, Paracoccus marcusii oder Paracoc- cus carotinifaciens.Preferred bacteria are Escherichia coli, Erwinia herbicola, Erwinia uredovora, Agrobacterium aurantiacum, Alcaligenes sp. PC-1, Flavobacterium sp. strain R1534, the Cyanobacterium Synechocystis sp. PCC6803, Paracoccus marcusii or Paracoccus carotinifaciens.
Bevorzugte Hefen sind Candida, Saccharomyces, Hansenula, Pichia oder Phaffia. Besonders bevorzugte Hefen sind Xanthophyllomyces dendrorhous oder Phaffia rhodo- zyma.Preferred yeasts are Candida, Saccharomyces, Hansenula, Pichia or Phaffia. Particularly preferred yeasts are Xanthophyllomyces dendrorhous or Phaffia rhodozyma.
Bevorzugte Pilze sind Aspergillus, Trichoderma, Ashbya, Neurospora, Blakeslea, insbesondere Blakeslea trispora, Phycomyces, Fusarium oder weitere in Indian Chem. Engr. Section B. Vol. 37, No. 1 , 2 (1995) auf Seite 15, Tabelle 6 beschriebene Pilze.Preferred mushrooms are Aspergillus, Trichoderma, Ashbya, Neurospora, Blakeslea, in particular Blakeslea trispora, Phycomyces, Fusarium or others in Indian Chem. Engr. Section B. Vol. 37, No. 1, 2 (1995) on page 15, table 6 described mushrooms.
Bevorzugte Algen sind Grünalgen, wie beispielsweise Algen der Gattung Haematococcus, Phaedactylum tricornatum, Volvox oder Dunaliella. Besonders bevorzugte Algen sind Haematococcus puvialis oder Dunaliella bardawil.Preferred algae are green algae, such as algae of the genus Haematococcus, Phaedactylum tricornatum, Volvox or Dunaliella. Particularly preferred algae are Haematococcus puvialis or Dunaliella bardawil.
Weitere brauchbare Mikroorganismen und deren Herstellung zur Durchführung des erfindungsgemäßen Verfahrens sind beispielsweise aus der DE-A-199 16 140 bekannt, worauf hiermit Bezug genommen wird.Further useful microorganisms and their preparation for carrying out the method according to the invention are known, for example, from DE-A-199 16 140, to which reference is hereby made.
Besonders bevorzugte Pflanzen sind Pflanzen ausgewählt aus den Familien Ama- ranthaceae, Amaryllidaceae, Apocynaceae, Asteraceae, Balsaminaceae, Begonia- ceae, Berberidaceae, Brassicaceae.Cannabaceae, Caprifoliaceae, Caryophyllaceae, Chenopodiaceae, Compositae, Cucurbitaceae, Cruciferae, Euphorbiaceae, Fabaceae, Gentianaceae, Geraniaceae, Graminae, llliaceae, Labiatae, Lamiaceae, Leguminosae, Liliaceae, Linaceae, Lobeliaceae, Malvaceae, Oleaceae, Orchidaceae, Papaveraceae , Plumbaginaceae, Poaceae, Polemoniaceae, Primulaceae, Ranunculaceae, Rosaceae, Rubiaceae, Scrophulariaceae, Solanaceae, Tropaeolaceae.Umbelliferae, Verbana- ceae, Vitaceae und Violaceae.Particularly preferred plants are plants selected from the families Amaranthaceae, Amaryllidaceae, Apocynaceae ceae, Asteraceae, Balsaminaceae, Begonia-, Berberidaceae, Brassicaceae.Cannabaceae, Caprifoliaceae, Caryophyllaceae, Chenopodiaceae, Compositae, Cucurbitaceae, Cruciferae, Euphorbiaceae, Fabaceae, Gentianaceae, Geraniaceae , Graminae, llliaceae, Labiatae, Lamiaceae, Leguminosae, Liliaceae, Linaceae, Lobeliaceae, Malvaceae, Oleaceae, Orchidaceae, Papaveraceae, Plumbaginaceae, Poaceae, Polemoniaceae, Primulacaceae, Roseaeaeae, Rosunceae ceae, Vitaceae and Violaceae.
Ganz besonders bevorzugte Pflanzen sind ausgewählt aus der Gruppe der Pflanzengattungen Marigold, Tagetes errecta, Tagetes patula, Acacia, Aconitum, Adonis, Arni- ca, Aquilegia, Aster, Astragalus, Bignonia, Calendula, Caltha, Campanula, Canna, Centaurea, Cheiranthus, Chrysanthemum, Citrus, Crepis, Crocus, Curcurbita, Cytisus, Delonia, Delphinium, Dianthus, Dimorphotheca, Doronicum, Eschscholtzia, Forsythia, Fremontia, Gazania, Gelsemium, Genista, Gentiana, Geranium, Gerbera, Geum, Gre- villea, Helenium, Helianthus, Hepatica, Heracleum, Hisbiscus, Heliopsis, Hypericum, Hypochoeris, Impatiens, Iris, Jacaranda, Kenia, Laburnum, Lathyrus, Leontodon, Lili- um, Linum, Lotus, Lycopersicon, Lysimachia, Maratia, Medicago, Mimulus, Narcissus, Oenothera, Osmanthus, Petunia, Photinia, Physalis, Phyteuma, Potentilla, Pyracantha, Ranunculus, Rhododendron, Rosa, Rudbeckia, Senecio, Silene, Silphium, Sinapsis, Sorbus, Spartium, Tecoma, Torenia, Tragopogon, Trollius, Tropaeolum, Tulipa, Tussi- lago, Ulex, Viola oder Zinnia, besonders bevorzugt ausgewählt aus der Gruppe der Pflanzengattungen Marigold, Tagetes erecta, Tagetes patula, Lycopersicon, Rosa, Calendula, Physalis, Medicago, Helianthus, Chrysanthemum, Aster, Tulipa, Narcissus, Petunia, Geranium, Tropaeolum oder Adonis.Very particularly preferred plants are selected from the group of the plant genera Marigold, Tagetes errecta, Tagetes patula, Acacia, Aconitum, Adonis, Arnica, Aquilegia, Aster, Astragalus, Bignonia, Calendula, Caltha, Campanula, Canna, Centaurea, Cheiranthus, Chrysanthemum , Citrus, Crepis, Crocus, Curcurbita, Cytisus, Delonia, Delphinium, Dianthus, Dimorphotheca, Doronicum, Eschscholtzia, Forsythia, Fremontia, Gazania, Gelsemium, Genista, Gentiana, Geranium, Gerbera, Geum, Grevillaea, Helenium, Helianthus, Hepatica , Heracleum, Hisbiscus, Heliopsis, Hypericum, Hypochoeris, Impatiens, Iris, Jacaranda, Kenya, Laburnum, Lathyrus, Leontodon, Lilium, Linum, Lotus, Lycopersicon, Lysimachia, Maratia, Medicago, Mimulus, Narcissus, Oenothera, Osiaanthus , Photinia, Physalis, Phyteuma, Potentilla, Pyracantha, Ranunculus, Rhododendron, Rosa, Rudbeckia, Senecio, Silene, Silphium, Sinapsis, Sorbus, Spartium, Tecoma, Torenia, Tragopogon, Trollius, Tropaeolum, Tulipa, Tussilago, U lex, viola or zinnia, particularly preferably selected from the group of the plant genera Marigold, Tagetes erecta, Tagetes patula, Lycopersicon, Rosa, Calendula, Physalis, Medicago, Helianthus, Chrysanthemum, Aster, Tulipa, Narcissus, Petunia, Geranium, Tropaeolum or Adonis.
Im erfindungsgemäßen Verfahren zur Herstellung von Ketocarotinoiden wird vorzugsweise dem Kultivierungsschritt der genetisch veränderten Organismen ein Ernten der Organismen und weiter bevorzugt zusätzlich ein Isolieren von Ketocarotinoiden aus den Organismen angeschlossen.In the process according to the invention for the production of ketocarotenoids, the cultivation step of the genetically modified organisms is preferably followed by harvesting the organisms and, more preferably, additionally isolating ketocarotenoids from the organisms.
Das Ernten der Organismen erfolgt in an sich bekannter Weise dem jeweiligen Organismus entsprechend. Mikroorganismen, wie Bakterien, Hefen, Algen oder Pilze oder Pflanzenzellen, die durch Fermentation in flüßigen Nährmedien kultiviert werden, können beispielsweise durch Zentrifugieren, Dekantieren oder Filtrieren abgetrennt werden. Pflanzen werden in an sich bekannter Weise auf Nährböden gezogen und ent- sprechend geerntet.The organisms are harvested in a manner known per se in accordance with the respective organism. Microorganisms, such as bacteria, yeast, algae or fungi or plant cells, which are cultivated by fermentation in liquid nutrient media, can be separated off, for example, by centrifuging, decanting or filtering. Plants are grown on nutrient media in a manner known per se and harvested accordingly.
Die Kultivierung der genetisch veränderten Mikroorganismen erfolgt bevorzugt in Gegenwart von Sauerstoff bei einer Kultivierungstemperatur von mindestens etwa 20°C, wie z.B. 20°C bis 40 °C, und einem pH-Wert von etwa 6 bis 9. Bei genetisch veränder- ten Mikroorganismen erfolgt vorzugsweise zunächst die Kultivierung der Mikroorganismen in Gegenwart von Sauerstoff und in einem Komplexmedium, wie z.B. TB- oder LB- Medium bei einer Kultivierungstemperatur von etwa 20 °C oder mehr, und einem pH-Wert von etwa 6 bis 9, bis eine ausreichende Zelldichte erreicht ist. Um die Oxidati- onsreaktion besser steuern zu können, bevorzugt man die Verwendung eines induzier- baren Promotors. Die Kultivierung wird nach Induktion der Ketolaseexpression in Ge- genwart von Sauerstoff, z.B. 12 Stunden bis 3 Tage, fortgesetzt.The cultivation of the genetically modified microorganisms is preferably carried out in the presence of oxygen at a cultivation temperature of at least about 20 ° C., for example 20 ° C. to 40 ° C., and a pH of about 6 to 9. In the case of genetically modified microorganisms preferably first culturing the microorganisms in the presence of oxygen and in a complex medium, such as, for example, TB or LB medium at a cultivation temperature of about 20 ° C. or more, and a pH of about 6 to 9, until a sufficient cell density is reached is. In order to be able to better control the oxidation reaction, the use of an inducible promoter is preferred. The cultivation is carried out after induction of ketolase expression in presence of oxygen, for example 12 hours to 3 days.
Die Isolierung der Ketocarotinoide aus der geernteten Biomasse erfolgt in an sich bekannter Weise, beispielsweise durch Extraktion und gegebenenfalls weiterer chemi- sehe oder physikalischer Reinigungsprozesse, wie beispielsweise Fällungsmethoden, Kristallographie, thermische Trennverfahren, wie Rektifizierverfahren oder physikalische Trennverfahren, wie beispielsweise Chromatographie.The ketocarotenoids are isolated from the harvested biomass in a manner known per se, for example by extraction and, if appropriate, further chemical or physical purification processes, such as, for example, precipitation methods, crystallography, thermal separation processes, such as rectification processes or physical separation processes, such as chromatography.
Wie nachstehend erwähnt, können die Ketocarotinoide in den erfindungsgemäßen, genetisch veränderten Pflanzen vorzugsweise in verschiedenen Pflanzengeweben, wie beispielsweise Samen, Blätter, Früchte, Blüten, insbesondere in Blütenblättern spezifisch hergestellt werden.As mentioned below, the ketocarotenoids in the genetically modified plants according to the invention can preferably be produced specifically in various plant tissues, such as, for example, seeds, leaves, fruits, flowers, in particular in petals.
Die Isolierung von Ketocarotinoiden aus den geernteten Blütenblättern erfolgt in an sich bekannter weise, beispielsweise durch Trocknung und anschließender Extraktion und gegebenenfalls weiterer chemischer oder physikalischer Reinigungsprozesse, wie beispielsweise Fällungsmethoden, Kristallographie, thermische Trennverfahren, wie Rektifizierverfahren oder physikalische Trennverfahren, wie beispielsweise Chromatographie. Die Isolierung von Ketocarotinoiden aus den Blütenblättern erfolgt bei- spielsweise bevorzugt durch organische Lösungsmittel wie Aceton, Hexan, Ether oder tert.-Methylbutylether.Ketocarotenoids are isolated from the harvested petals in a manner known per se, for example by drying and subsequent extraction and, if appropriate, further chemical or physical purification processes, such as, for example, precipitation methods, crystallography, thermal separation processes, such as rectification processes or physical separation processes, such as chromatography. Ketocarotenoids are isolated from the petals, for example, preferably by organic solvents such as acetone, hexane, ether or tert-methylbutyl ether.
Weitere Isolierverfahren von Ketocarotinoiden, insbesondere aus Blütenblättern, sind beispielsweise in Egger und Kleinig (Phytochemistry (1967) 6, 437-440) und Egger (Phytochemistry (1965) 4, 609-618) beschrieben.Further isolation processes for ketocarotenoids, in particular from petals, are described, for example, in Egger and Kleinig (Phytochemistry (1967) 6, 437-440) and Egger (Phytochemistry (1965) 4, 609-618).
Vorzugsweise sind die Ketocarotinoide ausgewählt aus der Gruppe Astaxanthin, Canthaxanthin, Echinenon, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Adonirubin und Adonixanthin.The ketocarotenoids are preferably selected from the group of astaxanthin, canthaxanthin, echinenone, 3-hydroxyechinenone, 3'-hydroxyechinenone, adonirubin and adonixanthin.
Ein besonders bevorzugtes Ketocarotinoid ist Astaxanthin.A particularly preferred ketocarotenoid is astaxanthin.
Je nach verwendetem Organismus fallen die Ketocarotinoide in freier Form oder als Fettsäureester an oder als DiglucosideDepending on the organism used, the ketocarotenoids are obtained in free form or as fatty acid esters or as diglucosides
In Blütenblättern von Pflanzen fallen die Ketocarotinlide im erfindungsgemäßen Verfahren in Form ihrer Mono- oder Diester mit Fettsäuren an. Einige nachgewiesene Fettsäuren sind z.B. Myristinsäure, Palmitinsäure, Stearinsäure, Ölsäure, Linolensäure, und Laurinsäure (Kamata und Simpson (1987) Comp. Biochem. Physiol. Vol. 86B(3), 587-591).In the petals of plants, the ketocarotenoids are obtained in the process according to the invention in the form of their mono- or diesters with fatty acids. Some detected fatty acids are, for example, myristic acid, palmitic acid, stearic acid, oleic acid, linolenic acid, and lauric acid (Kamata and Simpson (1987) Comp. Biochem. Physiol. Vol. 86B (3), 587-591).
Die Herstellung der Ketocarotinoide kann in der ganzen Pflanze oder in einer bevorzugten Ausführungsform spezifisch in Pflanzengeweben, die Chromoplasten enthalten, erfolgen. Bevorzugte Pflanzengewebe sind beispielsweise Wurzeln, Samen, Blätter, Früchte, Blüten und insbesondere Nektarien und Blütenblätter, die auch Petalen bezeichnet werden.The ketocarotenoids can be produced in the whole plant or, in a preferred embodiment, specifically in plant tissues which contain chromoplasts. Preferred plant tissues are, for example, roots, seeds, leaves, fruits, flowers and in particular nectaries and petals, which are also called petals.
In einer besonderes bevorzugten Ausführungsform der erfindungsgemäßen Verfahrens verwendet man genetisch veränderte Pflanzen, die in Blüten die höchste Expressionsrate einer Ketolase aufweisen.In a particularly preferred embodiment of the method according to the invention, genetically modified plants are used which have the highest expression rate of a ketolase in flowers.
Vorzugsweise wird dies dadurch erreicht, dass die Genexpression der Ketolase unter Kontrolle eines blütenspezifischen Promotors erfolgt. Beispielsweise werden dazu die vorstehend beschriebenen Nukleinsäuren, wie nachstehend ausführlich beschrieben, in einem Nukleinsäurekonstrukt funktioneil verknüpft mit einem blütenspezifischen Promotor in die Pflanze eingebracht.This is preferably achieved in that the gene expression of the ketolase takes place under the control of a flower-specific promoter. For example, the nucleic acids described above, as described in detail below, are introduced into the plant in a functionally linked manner with a flower-specific promoter in a nucleic acid construct.
In einer weiteren, besonderes bevorzugten Ausführungsform der erfindungsgemäßen Verfahrens verwendet man genetisch veränderte Pflanzen, die in Früchten die höchste Expressionsrate einer Ketolase aufweisen.In a further, particularly preferred embodiment of the method according to the invention, genetically modified plants are used which have the highest expression rate of a ketolase in fruits.
Vorzugsweise wird dies dadurch erreicht, dass die Genexpression der Ketolase unter Kontrolle eines fruchtspezifischen Promotors erfolgt. Beispielsweise werden dazu die vorstehend beschriebenen Nukleinsäuren, wie nachstehend ausführlich beschrieben, in einem Nukleinsäurekonstrukt funktionell verknüpft mit einem fruchtspezifischen Promotor in die Pflanze eingebracht.This is preferably achieved in that the gene expression of the ketolase takes place under the control of a fruit-specific promoter. For example, the nucleic acids described above, as described in detail below, are introduced into the plant in a nucleic acid construct functionally linked with a fruit-specific promoter.
In einer weiteren, besonderes bevorzugten, Ausführungsform der erfindungsgemäßen Verfahrens verwendet man genetisch veränderte Pflanzen, die in Samen die höchste Expressionsrate einer Ketolase aufweisen.In a further, particularly preferred, embodiment of the method according to the invention, genetically modified plants are used which have the highest expression rate of a ketolase in seeds.
Vorzugsweise wird dies dadurch erreicht, dass die Genexpression der Ketolase unter Kontrolle eines samenspezifischen Promotors erfolgt. Beispielsweise werden dazu die vorstehend beschriebenen Nukleinsäuren, wie nachstehend ausführlich beschrieben, in einem Nukleinsäurekonstrukt funktionell verknüpft mit einem samenspezifischen Promotor in die Pflanze eingebracht. Das Targeting in die Chromplasten erfolgt durch ein funktionell verknüpftes plastidäres Transitpeptid.This is preferably achieved in that the gene expression of the ketolase takes place under the control of a seed-specific promoter. For example, the nucleic acids described above, as described in detail below, are introduced into the plant in a nucleic acid construct functionally linked with a seed-specific promoter. The targeting in the chrome peaks is carried out by a functionally linked plastid transit peptide.
Im folgenden wird exemplarisch die Herstellung genetisch veränderter Pflanzen mit erhöhter oder verursachter Ketolase-Aktivität und erhöhter oder verursachter ß-In the following, the production of genetically modified plants with increased or caused ketolase activity and increased or caused ß-
Cyclase-Aktivität beschrieben, wobei die veränderte ß-Cyclase-Aktivität durch eine ß- Cyclase verursacht wird, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.Cyclase activity described, wherein the altered ß-cyclase activity is caused by a ß-cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has.
Die Erhöhung weiterer Aktivitäten, wie beispielsweise der Hydroxylase-Aktivität, HMG- CoA-Reduktase-Aktivität, (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase- Aktivität, 1 -Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität, 1 -Deoxy-D-Xylose-5- Phosphat-Reduktoisomerase-Aktivität, Isopentenyl-Diphosphat-Δ-Isomerase-Aktivität, Geranyl-Diphosphat-Synthase-Aktivität, Famesyl-Diphosphat-Synthase-Aktivität, Ge- ranyl-geranyl-Diphosphat-Synthase-Aktivität, Phytoen-Synthase-Aktivität, Phytoen- Desaturase-Aktivität, Zeta-Carotin-Desaturase-Aktivität, crtlSO-Aktivität, FtsZ-Aktivität und/oder MinD-Aktivität kann analog unter Verwendung der entsprechenden Effektge- ne erfolgen.Increasing other activities, such as hydroxylase activity, HMG-CoA reductase activity, (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase activity, 1-deoxy-D-xylose- 5-phosphate synthase activity, 1-deoxy-D-xylose-5-phosphate reductoisomerase activity, isopentenyl diphosphate Δ isomerase activity, geranyl diphosphate synthase activity, famesyl diphosphate synthase activity, Geranyl-geranyl diphosphate synthase activity, phytoene synthase activity, phytoene desaturase activity, zeta-carotene desaturase activity, crtlSO activity, FtsZ activity and / or MinD activity can be used analogously corresponding effects occur.
Die Transformation kann bei den Kombinationen von genetischen Veränderungen einzeln oder durch Mehrfachkonstrukte erfolgen.In the combination of genetic changes, the transformation can take place individually or through multiple constructs.
Die Herstellung der transgenen Pflanzen erfolgt vorzugsweise durch Transformation der Ausgangspflanzen, mit einem Nukleinsäurekonstrukt, das die vorstehend beschriebenen Nukleinsäuren, kodierend eine Ketolase und kodierend eine ß-Cyclase enthält, die mit einem oder mehreren Regulationssignalen funktionell verknüpft sind, die die Transkription und Translation in Pflanzen gewährleisten, wobei die Nukleinsäure eine ß-Cyclase kodiert, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.The transgenic plants are preferably produced by transforming the starting plants, using a nucleic acid construct which contains the nucleic acids described above, coding for a ketolase and coding for a .beta.-cyclase, which are functionally linked to one or more regulation signals which relate to transcription and translation in plants ensure, wherein the nucleic acid encodes a β-cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has.
Alternativ erfolgt die Herstellung der transgenen Pflanzen vorzugsweise durch Transformation der Ausgangspflanzen, mit zwei Nukleinsäurekonstrukten. Ein Nukleinsäurekonstrukt enthält mindestens eine vorstehend beschriebene Nukleinsäure, kodierend eine Ketolase, die mit einem oder mehreren Regulationssignalen funktionell verknüpft ist, die die Transkription und Translation in Pflanzen gewährleisten. Das zweite Nuk- leinsäurekonstrukt enthält mindestens eine vorstehend beschriebene Nukleinsäure, kodierend eine ß-Cyclase, die mit einem oder mehreren Regulationssignalen funktionell verknüpft sind, die die Transkription und Translation in Pflanzen gewährleisten, wobei die Nukleinsäure eine ß-Cyclase kodiert, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Dele- tion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist..Alternatively, the transgenic plants are preferably produced by transforming the starting plants using two nucleic acid constructs. A nucleic acid construct contains at least one nucleic acid described above, encoding a ketolase, which is functionally linked to one or more regulatory signals which ensure transcription and translation in plants. The second nucleic acid construct contains at least one nucleic acid described above, encoding a β-cyclase, which are functionally linked to one or more regulatory signals which ensure transcription and translation in plants, the nucleic acid encoding a β-cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has ..
Diese Nukleinsäurekonstrukte, in denen die Effektgene mit einem oder mehreren Regulationssignalen funktionell verknüpft sind, die die Transkription und Translation in Pflanzen gewährleisten, werden im folgenden auch Expressionskassetten genannt.These nucleic acid constructs, in which the effect genes are functionally linked to one or more regulation signals which ensure transcription and translation in plants, are also called expression cassettes below.
Vorzugsweise enthalten die Regulationssignale einen oder mehrere Promotoren, die die Transkription und Translation in Pflanzen gewährleisten.The regulation signals preferably contain one or more promoters which ensure transcription and translation in plants.
Die Expressionskassetten beinhalten Regulationssignale, also regulative Nukleinsäuresequenzen, welche die Expression der Effektgene in der Wirtszelle steuern. Gemäß einer bevorzugten Ausführungsform umfasst eine Expressionskassette stromaufwärts, d.h. am 5'-Ende der kodierenden Sequenz, einen Promotor und stromabwärts, d.h. am 3'-Ende, ein Polyadenylierungssignal und gegebenenfalls weitere regulatorische Ele- mente, welche mit der dazwischenliegenden kodierenden Sequenz des Effektgens für mindestens eines der vorstehend beschriebenen Gene operativ verknüpft sind. Unter einer operativen Verknüpfung versteht man die sequenzielle Anordnung von Promotor, kodierender Sequenz, Terminator und ggf. weiterer regulativer Elemente derart, das jedes der regulativen Elemente seine Funktion bei der Expression der kodierenden Sequenz bestimmungsgemäß erfüllen kann.The expression cassettes contain regulatory signals, that is to say regulatory nucleic acid sequences which control the expression of the effect genes in the host cell. According to a preferred embodiment, an expression cassette comprises upstream, i.e. at the 5 'end of the coding sequence, a promoter and downstream, i.e. at the 3 'end, a polyadenylation signal and optionally further regulatory elements which are operatively linked to the coding sequence of the effect gene in between for at least one of the genes described above. An operative link is understood to mean the sequential arrangement of promoter, coding sequence, terminator and, if appropriate, further regulatory elements in such a way that each of the regulatory elements can fulfill its function as intended when expressing the coding sequence.
Im folgenden werden beispielhaft die bevorzugten Nukleinsäurekonstrukte, Expressionskassetten und Vektoren für Pflanzen und Verfahren zur Herstellung von transgenen Pflanzen, sowie die transgenen Pflanzen selbst beschrieben.The preferred nucleic acid constructs, expression cassettes and vectors for plants and methods for producing transgenic plants and the transgenic plants themselves are described below by way of example.
Die zur operativen Verknüpfung bevorzugten, aber nicht darauf beschränkten Sequenzen sind Targeting-Sequenzen zur Gewährleistung der subzellulären Lokalisation im Apoplasten, in der Vakuole, in Piastiden, im Mitochondrium, im Endoplasmatischen Retikulum (ER), im Zellkern, in ölkörperchen oder anderen Kompartimenten und Translationsverstärkern wie die 5'-Führungssequenz aus dem Tabak-Mosaik-Virus (Gallie et al., Nucl. Acids Res. 15 (1987), 8693 -8711).The sequences which are preferred, but not limited to, for operative linking are targeting sequences to ensure subcellular localization in the apoplast, in the vacuole, in plastids, in the mitochondrion, in the endoplasmic reticulum (ER), in the cell nucleus, in oil bodies or other compartments and translation enhancers such as the 5 'leader sequence from the tobacco mosaic virus (Gallie et al., Nucl. Acids Res. 15 (1987), 8693-8711).
Als Promotor der Expressionskassette ist grundsätzlich jeder Promotor geeignet, der die Expression von Fremdgenen in Pflanzen steuern kann. " Konstituier" Promotor meint solche Promotoren, die eine Expression in zahlreichen, bevorzugt allen, Geweben über einen größeren Zeitraum der Pflanzenentwicklung, bevorzugt zu allen Zeitpunkten der Pflanzenentwicklung, gewährleisten.In principle, any promoter which can control the expression of foreign genes in plants is suitable as the promoter of the expression cassette. “Constituent” promoter means those promoters which ensure expression in numerous, preferably all, tissues over a relatively long period of plant development, preferably at all times during plant development.
Vorzugsweise verwendet man insbesondere einen pflanzlichen Promotor oder einen Promotor, der einem Pflanzenvirus entstammt. Insbesondere bevorzugt ist der Promotor des 35S-Transkript.es des CaMV Blumenkohlmosaikvirus (Franck et al. (1980) Cell 21 :285-294; Odell et al. (1985) Nature 313:810-812; Shewmaker et al. (1985) Virology 140:281-288; Gardner et al. (1986) Plant Mol Biol 6:221-228), der 19S CaMV Promotor (US 5,352,605; WO 84/02913; Benfey et al. (1989) EMBO J 8:2195-2202), den Triose- Phosphat Translokator (TPT) Promotor aus Arabidopsis thaliana Acc.-No. AB006698 , Basenpaar 53242 bis 55281 ; das Gen beginnend ab bp 55282 ist mit "phos- phate/triose-phosphate translocator" annotiert, oder den 34S Promotor aus Figwort - mosaic virus Acc.-No. X16673, Basenpaar 1 bis 554.In particular, a plant promoter or a plant virus-derived promoter is preferably used. Particularly preferred is the promoter of the 35S transcript of the CaMV cauliflower mosaic virus (Franck et al. (1980) Cell 21: 285-294; Odell et al. (1985) Nature 313: 810-812; Shewmaker et al. (1985) Virology 140: 281-288; Gardner et al. (1986) Plant Mol Biol 6: 221-228), the 19S CaMV promoter (US 5,352,605; WO 84/02913; Benfey et al. (1989) EMBO J 8: 2195- 2202), the triose-phosphate translocator (TPT) promoter from Arabidopsis thaliana Acc.-No. AB006698, base pair 53242 to 55281; the gene starting from bp 55282 is annotated with "phosphate / triose-phosphate translocator", or the 34S promoter from Figwort - mosaic virus Acc.-No. X16673, base pair 1 to 554.
Ein weiterer geeigneter konstitutiver Promotor ist der pds Promotor (Pecker et al. (1992) Proc. Natl. Acad. Sei USA 89: 4962-4966) oder der "Rubisco small subunit (SSU)"-Promotor (US 4,962,028), der LeguminB-Promotor (GenBank Acc.-Nr. X03677), der Promotor der Nopalinsynthase aus Agrobacterium, der TR- Doppelpromotor, der OCS (Octopin Synthase) Promotor aus Agrobacterium, der Ubi- quitin Promotor (Holtorf S et al. (1995) Plant Mol Biol 29:637-649), der Ubiquitin 1 Promotor (Christensen et al. (1992) Plant Mol Biol 18:675-689; Bruce et al. (1989) Proc Natl Acad Sei USA 86:9692-9696), der Smas Promotor, der Cinnamylalkoholdehydro- genase-Promotor (US 5,683,439), die Promotoren der vakuolärer ATPase Untereinhei- ten oder der Promotor eines prolinreichen Proteins aus Weizen (WO 91/13991), der Pnit-Promotor (Y07648.L, Hillebrand et al. (1998), Plant. Mol. Biol. 36, 89-99, Hille- brand et al. (1996), Gene, 170, 197-200) sowie weitere Promotoren von Genen, deren konstitutive Expression in Pflanzen dem Fachmann bekannt ist.Another suitable constitutive promoter is the pds promoter (Pecker et al. (1992) Proc. Natl. Acad. Be USA 89: 4962-4966) or the "Rubisco small subunit (SSU)" promoter (US 4,962,028), the LeguminB Promoter (GenBank Acc. No. X03677), the promoter of nopaline synthase from Agrobacterium, the TR double promoter, the OCS (octopine synthase) promoter from Agrobacterium, the ubiquitin promoter (Holtorf S et al. (1995) Plant Mol Biol 29: 637-649), the Ubiquitin 1 promoter (Christensen et al. (1992) Plant Mol Biol 18: 675-689; Bruce et al. (1989) Proc Natl Acad Sei USA 86: 9692-9696), the Smas Promoter, the cinnamyl alcohol dehydrogenase promoter (US 5,683,439), the promoters of the vacuolar ATPase subunits or the promoter of a proline-rich protein from wheat (WO 91/13991), the Pnit promoter (Y07648.L, Hillebrand et al. ( 1998), Plant. Mol. Biol. 36, 89-99, Hillebrand et al. (1996), Gene, 170, 197-200) as well as other promoters of genes whose constitutive expression in Pf lances is known to the expert.
Die Expressionskassetten können auch einen chemisch induzierbaren Promotor enthalten (Übersichtsartikel: Gatz et al. (1997) Annu Rev Plant Physiol Plant Mol Biol 48:89-108), durch den die Expression der Effektgene in der Pflanze zu einem bestimmten Zeitpunkt gesteuert werden kann. Derartige Promotoren, wie z.B. der PRP1 Promotor (Ward et al. (1993) Plant Mol Biol 22:361-366), ein durch Salicylsäure induzierbarer Promotor (WO 95/19443), ein durch Benzolsulfonamid-induzierbarer Promotor (EP 0 388 186), ein durch Tetrazyklin-induzierbarer Promotor (Gatz et al. (1992) Plant J 2:397-404), ein durch Abscisinsäure induzierbarer Promotor (EP 0 335 528) bzw. ein durch Ethanol- oder Cyclohexanon-induzierbarer Promotor (WO 93/21334) können ebenfalls verwendet werden. Ferner sind Promotoren bevorzugt, die durch biotischen oder abiotischen Stress induziert werden wie beispielsweise der pathogen-induzierbare Promotor des PRP1-Gens (Ward et al. (1993) Plant Mol Biol 22:361-366), der hitzeinduzierbare hsp70- oder hsp80-Promotor aus Tomate (US 5,187,267), der kälteinduzierbare alpha-Amylase Promotor aus der Kartoffel (WO 96/12814), der licht-induzierbare PPDK Promotor oder der verwundungsinduzierte pinll-Promotor (EP375091).The expression cassettes can also contain a chemically inducible promoter (review article: Gatz et al. (1997) Annu Rev Plant Physiol Plant Mol Biol 48: 89-108), by means of which the expression of the effect genes in the plant can be controlled at a specific point in time. Such promoters, such as the PRP1 promoter (Ward et al. (1993) Plant Mol Biol 22: 361-366), a promoter induced by salicylic acid (WO 95/19443), a promoter induced by benzenesulfonamide (EP 0 388 186) , a tetracycline-inducible promoter (Gatz et al. (1992) Plant J 2: 397-404), an abscisic acid-inducible promoter (EP 0 335 528) or an ethanol- or cyclohexanone-inducible promoter (WO 93 / 21334) can also be used. Also preferred are promoters that are induced by biotic or abiotic stress, such as the pathogen-inducible promoter of the PRP1 gene (Ward et al. (1993) Plant Mol Biol 22: 361-366), the heat-inducible hsp70 or hsp80 promoter from tomato (US 5,187,267), the cold-inducible alpha-amylase promoter from the potato (WO 96/12814), the light-inducible PPDK promoter or the wound-induced pinII promoter (EP375091).
Pathogen-induzierbare Promotoren umfassen die von Genen, die infolge eines Patho- genbefalls induziert werden wie beispielsweise Gene von PR-Proteinen, SAR- Proteinen, b-1 ,3-Glucanase, Chitinase usw. (beispielsweise Redolfi et al. (1983) Neth J Plant Pathol 89:245-254; Uknes, et al. (1992) The Plant Cell4: 645-656; Van LoonPathogen-inducible promoters include those of genes that are induced as a result of a pathogen attack, such as, for example, genes from PR proteins, SAR proteins, b-1, 3-glucanase, chitinase etc. (for example Redolfi et al. (1983) Neth J Plant Pathol 89: 245-254; Uknes, et al. (1992) The Plant Cell 4: 645-656; Van Loon
(1985) Plant Mol Viral 4:111-116; Marineau et al. (1987) Plant Mol Biol 9:335-342; Mat- ton et al. (1987) Molecular Plant-Microbe Interactions 2:325-342; Somssich et al.(1985) Plant Mol Viral 4: 111-116; Marineau et al. (1987) Plant Mol Biol 9: 335-342; Matton et al. (1987) Molecular Plant-Microbe Interactions 2: 325-342; Somssich et al.
(1986) Proc Natl Acad Sei USA 83:2427-2430; Somssich et al. (1988) Mol Gen Genet- ics 2:93-98; Chen et al. (1996) Plant J 10:955-966; Zhang and Sing (1994) Proc Natl(1986) Proc Natl Acad Sei USA 83: 2427-2430; Somssich et al. (1988) Mol Gen Genetics 2: 93-98; Chen et al. (1996) Plant J 10: 955-966; Zhang and Sing (1994) Proc Natl
Acad Sei USA 91 :2507-2511 ; Warner, et al. (1993) Plant J 3:191-201 ; Siebertz et al. (1989) Plant Cell 1 :961-968(1989).Acad Sei USA 91: 2507-2511; Warner, et al. (1993) Plant J 3: 191-201; Siebertz et al. (1989) Plant Cell 1: 961-968 (1989).
Umfasst sind auch verwundungsinduzierbare Promotoren wie der des pinll-Gens (Ry- an (1990) Ann Rev Phytopath 28:425-449; Duan et al. (1996) Nat Biotech 14:494-498), des wunl und wun2-Gens (US 5,428,148), des winl- und win2-Gens (Stanford et al. (1989) Mol Gen Genet 215:200-208), des Systemin-Gens (McGurl et al. (1992) Science 225:1570-1573), des WIP1-Gens (Rohmeier et al. (1993) Plant Mol Biol 22:783-792; Ekeikamp et al. (1993) FEBS Letters 323:73-76), des MPI-Gens (Corderok et al. (1994) The Plant J 6(2):141-150) und dergleichen.Also included are wound inducible promoters such as that of the pinll gene (Ryan (1990) Ann Rev Phytopath 28: 425-449; Duan et al. (1996) Nat Biotech 14: 494-498), the wunl and wun2 genes ( US 5,428,148), the winl and win2 genes (Stanford et al. (1989) Mol Gen Genet 215: 200-208), the systemin gene (McGurl et al. (1992) Science 225: 1570-1573), des WIP1 gene (Rohmeier et al. (1993) Plant Mol Biol 22: 783-792; Ekeikamp et al. (1993) FEBS Letters 323: 73-76), the MPI gene (Corderok et al. (1994) The Plant J 6 (2): 141-150) and the like.
Weitere geeignete Promotoren sind beispielsweise fruchtreifung-spezifische Promotoren, wie beispielsweise der fruchtreifung-spezifische Promotor aus Tomate (WO 94/21794, EP 409 625). Entwicklungsabhängige Promotoren schließt zum Teil die ge- webespezifischen Promotoren ein, da die Ausbildung einzelner Gewebe naturgemäß entwicklungsabhängig erfolgt.Other suitable promoters are, for example, fruit-ripening-specific promoters, such as the fruit-ripening-specific promoter from tomato (WO 94/21794, EP 409 625). Development-dependent promoters partly include the tissue-specific promoters, since the formation of individual tissues is naturally development-dependent.
Weiterhin sind insbesondere solche Promotoren bevorzugt, die die Expression in Geweben oder Pflanzenteilen sicherstellen, in denen beispielsweise die Biosynthese von Ketocarotinoiden bzw. dessen Vorstufen stattfindet. Bevorzugt sind beispielsweise Promotoren mit Spezifitäten für die Antheren, Ovarien, Petalen, Sepalen, Blüten, Blätter, Stengel, Samen und Wurzeln und Kombinationen hieraus.Furthermore, promoters are particularly preferred which ensure expression in tissues or parts of plants in which, for example, the biosynthesis of ketocarotenoids or their precursors takes place. For example, promoters with specificities for the anthers, ovaries, petals, sepals, flowers, leaves, stems, seeds and roots and combinations thereof are preferred.
Knollen-, Speicherwurzel- oder Wurzel-spezifische Promotoren sind beispielsweise der Patatin-Promotor Klasse I (B33) oder der Promotor des Cathepsin D Inhibitors aus Kar- toffel.Tuber-, storage-root or root-specific promoters are, for example, the patatin promoter class I (B33) or the promoter of the cathepsin D inhibitor from cardiac toffel.
Blattspezifische Promotoren sind beispielsweise der Promotor der cytosolischen FBPase aus Kartoffel (WO 97/05900), der SSU Promotor (small subunit) der Rubisco (Ribulose-1 ,5-bisphosphatcarboxylase) oder der ST-LSI Promotor aus Kartoffel (Stockhaus et al. (1989) EMBO J 8:2445-2451).Leaf-specific promoters are, for example, the promoter of the cytosolic FBPase from potato (WO 97/05900), the SSU promoter (small subunit) of Rubisco (ribulose-1, 5-bisphosphate carboxylase) or the ST-LSI promoter from potato (Stockhaus et al. ( 1989) EMBO J 8: 2445-2451).
Blütenspezifische Promotoren sind beispielsweise der Phytoen-Synthase Promotor (WO 92/16635) oder der Promotor des P-rr Gens (WO 98/22593), der AP3 Promotor aus Arabidopsis thaliana, der CHRC-Promotor (Chromoplast-specific carotenoid- associated protein (CHRC) gene promoter aus Cucumis sativus Acc.-No. AF099501 , Basenpaar 1 bis 1532), der EPSP_Synthase Promotor (5-enolpyruvylshikimate-3- phosphate synthase gene promoteraus Petunia hybrida, Acc.-No. M37029, Basenpaar 1 bis 1788), der PDS Promotor (Phytoene desaturase gene promoter aus Solanum lycopersicum, Acc.-No. U46919, Basenpaar 1 bis 2078), der DFR-A Promotor (Di- hydroflavonol 4-reductase gene A promoter aus Petunia hybrida, Acc.-No. X79723, Basenpaar 32 bis 1902) oder der FBP1 Promotor (Floral Binding Protein 1 gene promoter aus Petunia hybrida, Acc.-No. L10115, Basenpaar 52 bis 1069).Flower-specific promoters are, for example, the phytoene synthase promoter (WO 92/16635) or the promoter of the P-rr gene (WO 98/22593), the AP3 promoter from Arabidopsis thaliana, the CHRC promoter (chromoplast-specific carotenoid-associated protein ( CHRC) gene promoter from Cucumis sativus Acc.-No. AF099501, base pair 1 to 1532), the EPSP_Synthase promoter (5-enolpyruvylshikimate-3-phosphate synthase gene promoter from Petunia hybrida, Acc.-No. M37029, base pair 1 to 1788), the PDS promoter (Phytoene desaturase gene promoter from Solanum lycopersicum, Acc.-No. U46919, base pair 1 to 2078), the DFR-A promoter (dihydroflavonol 4-reductase gene A promoter from Petunia hybrida, Acc.-No. X79723 , Base pair 32 to 1902) or the FBP1 promoter (floral binding protein 1 gene promoter from Petunia hybrida, Acc.-No. L10115, base pair 52 to 1069).
Antheren-spezifische Promotoren sind beispielsweise der 5126-Anther-specific promoters are, for example, the 5126-
Promotor (US 5,689,049, US 5,689,051), der glob-l Promotor oder der g-Zein Promotor.Promoter (US 5,689,049, US 5,689,051), the glob-l promoter or the g-zein promoter.
Samen-spezifische Promotoren sind beispielsweise der ACP05-Promotor (Acyl-carrier- Protein Gen, W09218634), die Promotoren AtS1 und AtS3 von Arabidopsis (WO 9920775), der LeB4-Promotor von Vicia faba (WO 9729200 und US 06403371), der Napin-Promotor von Brassica napus (US 5608152; EP 255378; US 5420034),der SBP-Promotor von Vicia faba (DE 9903432) oder die Maispromotoren End1 und End2 (WO 0011177).Seed-specific promoters are, for example, the ACP05 promoter (acyl carrier protein gene, W09218634), the promoters AtS1 and AtS3 from Arabidopsis (WO 9920775), the LeB4 promoter from Vicia faba (WO 9729200 and US 06403371), the napin Promoter from Brassica napus (US 5608152; EP 255378; US 5420034), the SBP promoter from Vicia faba (DE 9903432) or the corn promoters End1 and End2 (WO 0011177).
Weitere zur Expression in Pflanzen geeignete Promotoren sind beschrieben in Rogers et al. (1987) Meth in Enzymol 153:253-277; Schardl et al. (1987) Gene 61:1-11 und Berger et al. (1989) Proc Natl Acad Sei USA 86:8402-8406).Further promoters suitable for expression in plants are described in Rogers et al. (1987) Meth in Enzymol 153: 253-277; Schardl et al. (1987) Gene 61: 1-11 and Berger et al. (1989) Proc Natl Acad Sei USA 86: 8402-8406).
Besonders bevorzugt im erfindungsgemäßen Verfahren sind konstitutive, samenspezifische, fruchtspezifische, blütenspezifische und insbesondere blütenblattspezifische Promotoren.In the method according to the invention, particular preference is given to constitutive, seed-specific, fruit-specific, flower-specific and in particular flower-leaf-specific promoters.
Die Herstellung einer Expressionskassette erfolgt vorzugsweise durch Fusion eines geeigneten Promotors mit mindestens einem der vorstehend beschriebenen Effektge- ne, und vorzugsweise einer zwischen Promotor und Nukleinsäure-Sequenz inserierten Nukleinsäure, die für ein plastidenspezifisches Transitpeptid kodiert, sowie einem Po- lyadenylierungssignal nach gängigen Rekombinations- und Klonierungstechniken, wie sie beispielsweise in T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) sowie in T.J. Silhavy, M.L. Berman und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley- Interscience (1987), beschrieben sind.An expression cassette is preferably produced by fusing a suitable promoter with at least one of the effects described above. ne, and preferably a nucleic acid inserted between promoter and nucleic acid sequence, which codes for a plastid-specific transit peptide, and a polyadenylation signal according to common recombination and cloning techniques, as described, for example, in T. Maniatis, EF Fritsch and J. Sambrook, Molecular Cloning : A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) and in TJ Silhavy, ML Berman and LW Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) and in Ausubel , FM et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley-Interscience (1987).
Die vorzugsweise insertierte Nukleinsäuren, kodierend ein plastidäres Transitpeptid, gewährleisten die Lokalisation in Piastiden und insbesondere in Chromoplasten.The preferably inserted nucleic acids encoding a plastid transit peptide ensure localization in plastids and in particular in chromoplasts.
Es können auch Expressionskassetten verwendet werden, deren Nukleinsäure- Sequenz für ein Effektgen-Produkt-Fusionsprotein kodiert, wobei ein Teil des Fusionsproteins ein Transitpeptid ist, das die Translokation des Polypeptides steuert. Bevorzugt sind für die Chromoplasten spezifische Transitpeptide, welche nach Translokation der Effektgene in die Chromoplasten vom Effektgenprodukt-Teil enzymatisch abgespalten werden.Expression cassettes, the nucleic acid sequence of which codes for an effect gene-product fusion protein, can also be used, part of the fusion protein being a transit peptide which controls the translocation of the polypeptide. Preferred transit peptides are preferred for the chromoplasts, which are split off enzymatically from the effect gene product part after translocation of the effect genes into the chromoplasts.
Insbesondere bevorzugt ist das Transitpeptid, das von der plastidären Nicotiana taba- cum Transketolase oder einem anderen Transitpeptid (z.B. dem Transitpeptid der kleinen Untereinheit der Rubisco (rbcS) oder der Ferredoxin NADP Oxidoreduktase als auch der Isopentenylpyrophosphat lsomerase-2) oder dessen funktionellem Äquivalent abgeleitet ist.The transit peptide which is derived from the plastid Nicotiana tabacum transketolase or another transit peptide (for example the transit peptide of the small subunit of the Rubisco (rbcS) or the ferredoxin NADP oxidoreductase as well as the isopentenyl pyrophosphate isomerase-2) or its functional equivalent is particularly preferred ,
Besonders bevorzugt sind Nukleinsäure-Sequenzen von drei Kassetten des Plastiden- Transitpeptids der plastidären Transketolase aus Tabak in drei Leserastern als Kpnl/BamHI Fragmente mit einem ATG-Codon in der Ncol Schnittstelle:Nucleic acid sequences of three cassettes of the plastid transit peptide of plastid transketolase from tobacco in three reading frames are particularly preferred as Kpnl / BamHI fragments with an ATG codon in the Ncol interface:
pTP09pTP09
Kpnl_GGTACCATGGCGTCTTCTTCTTCTCTCACTCTCTCTCAAGCTATCCTCTCTC GTTCTGTCCCTCGCCATGGCTCTGCCTCTTCTTCTCAACTTTCCCCTTCTTCTCT- CAC M I M CCGGCCTTAAATCCAATCCCAATATCACCACCTCCCGCCGCCG- TACTCCTTCCTCCGCCGCCGCCGCCGCCGTCGTAAGGTCACCGGC- GATTCGTGCCTCAGCTGCAACCGAAACCATAGAGAAAACTGAGACTGCGG- GATCC BamHI pTP10Kpnl_GGTACCATGGCGTCTTCTTCTTCTCTCACTCTCTCTCAAGCTATCCTCTCTC GTTCTGTCCCTCGCCATGGCTCTGCCTCTTCTTCTCAACTTTCCCCTTCTTCTCT- CAC MIM CCGGCCTTAAATCCAATCCCAATATCACCACCTCCCGCCGCCG- TACTCCTTCCTCCGCCGCCGCCGCCGCCGTCGTAAGGTCACCGGC- GATTCGTGCCTCAGCTGCAACCGAAACCATAGAGAAAACTGAGACTGCGG- GATCC Bam PTP10
Kpnl_GGTACCATGGCGTCTTCTTCTTCTCTCACTCTCTCTCAAGCTATCCTCTCTC GTTCTGTCCCTCGCCATGGCTCTGCCTCTTCTTCTCAACTTTCCCCTTCTTCTCT- CACTTTTTCCGGCCTTAAATCCAATCCCAATATCACCACCTCCCGCCGCCG- TACTCCTTCCTCCGCCGCCGCCGCCGCCGTCGTAAGGTCACCGGC- GATTCGTGCCTCAGCTGCAACCGAAACCATAGAGAAAACTGAGACTGCGCTG- GATCC_BamHIKpnl_GGTACCATGGCGTCTTCTTCTTCTCTCACTCTCTCTCAAGCTATCCTCTCTC GTTCTGTCCCTCGCCATGGCTCTGCCTCTTCTTCTCAACTTTCCCCTTCTTCTCT- CACTTTTTCCGGCCTTAAATCCAATCCCAATATCACCACCTCCCGCCGCCG- TACTCCTTCCTCCGCCGCCGCCGCCGCCGTCGTAAGGTCACCGGC- GATTCGTGCCTCAGCTGCAACCGAAACCATAGAGAAAACTGAGACTGCGCTG- GATCC_BamHI
pTP11pTP11
Kpnl_GGTACCATGGCGTCTTCTTCTTCTCTCACTCTCTCTCAAGCTATCCTCTCTC GTTCTGTCCCTCGCCATGGCTCTGCCTCTTCTTCTCAACTTTCCCCTTCTTCTCT- CACTTTTTCCGGCCTTAAATCCAATCCCAATATCACCACCTCCCGCCGCCG- TACTCCTTCCTCCGCCGCCGCCGCCGCCGTCGTAAGGTCACCGGC-Kpnl_GGTACCATGGCGTCTTCTTCTTCTCTCACTCTCTCTCAAGCTATCCTCTCTC GTTCTGTCCCTCGCCATGGCTCTGCCTCTTCTTCTCAACTTTCCCCTTCTTCTCT- CACTTTTTCCGGCCTTAAATCCAATCCCACCCCCCCCCCCCCCGCCCCTACCGCCCC
GATTCGTGCCTCAGCTGCAACCGAAACCATAGAGAAAACTGAGACTGCGGG- GATCC_BamHIGATTCGTGCCTCAGCTGCAACCGAAACCATAGAGAAAACTGAGACTGCGGG- GATCC_BamHI
Weitere Beispiele für ein plastidäres Transitpeptid sind das Transitpeptid der plastidä- ren Isopentenyl-pyrophosphat lsomerase-2 (IPP-2) aus Arabisopsis thaliana und das Transitpeptid der kleinen Untereinheit der Ribulosebisphosphat Carboxylase (rbcS) aus Erbse (Guerineau, F, Woolston, S, Brooks, L, Mullineaux, P (1988) An expression cas- sette for targeting foreign proteins into the chloroplasts. Nucl. Acids Res. 16: 11380).Further examples of a plastid transit peptide are the transit peptide of plastid isopentenyl pyrophosphate isomerase-2 (IPP-2) from Arabisopsis thaliana and the transit peptide of the small subunit of ribulose bisphosphate carboxylase (rbcS) from pea (Guerineau, F, Woolston, S Brooks, L, Mullineaux, P (1988) An expression casette for targeting foreign proteins into the chloroplasts. Nucl. Acids Res. 16: 11380).
Die erfindungsgemäßen Nukleinsäuren können synthetisch hergestellt oder natürlich gewonnen sein oder eine Mischung aus synthetischen und natürlichen Nukleinsäure- Bestandteilen enthalten, sowie aus verschiedenen heterologen Genabschnitten verschiedener Organismen bestehen.The nucleic acids according to the invention can be produced synthetically or obtained naturally or contain a mixture of synthetic and natural nucleic acid constituents, and can consist of different heterologous gene segments from different organisms.
Bevorzugt sind, wie vorstehend beschrieben, synthetische Nukleotid-Sequenzen mit Kodons, die von Pflanzen bevorzugt werden. Diese von Pflanzen bevorzugten Kodons können aus Kodons mit der höchsten Proteinhäufigkeit bestimmt werden, die in den meisten interessanten Pflanzenspezies exprimiert werden.As described above, preference is given to synthetic nucleotide sequences with codons which are preferred by plants. These plant-preferred codons can be determined from the highest protein frequency codons expressed in most interesting plant species.
Bei der Präparation einer Expressionskassette können verschiedene DNA-Fragmente manipuliert werden, um eine Nukleotid-Sequenz zu erhalten, die zweckmäßigerweise in der korrekten Richtung liest und die mit einem korrekten Leseraster ausgestattet ist. Für die Verbindung der DNA-Fragmente miteinander können an die Fragmente Adap- toren oder Linker angesetzt werden. Zweckmäßigerweise können die Promotor- und die Terminator-Regionen in Transkriptionsrichtung mit einem Linker oder Polylinker, der eine oder mehrere Restriktionsstellen für die Insertion dieser Sequenz enthält, versehen werden. In der Regel hat der Linker 1 bis 10, meistens 1 bis 8, vorzugsweise 2 bis 6 Restriktionsstellen. Im allge- meinen hat der Linker innerhalb der regulatorischen Bereiche eine Größe von weniger als 100 bp, häufig weniger als 60 bp, mindestens jedoch 5 bp. Der Promotor kann sowohl nativ bzw. homolog als auch fremdartig bzw. heterolog zur Wirtspflanze sein. Die Expressionskassette beinhaltet vorzugsweise in der 5'-3'-Transkriptionsrichtung den Promotor, eine kodierende Nukleinsäuresequenz oder ein Nukleinsäurekonstrukt und eine Region für die transkriptionale Termination. Verschiedene Terminationsbereiche sind gegeneinander beliebig austauschbar.When preparing an expression cassette, various DNA fragments can be manipulated in order to obtain a nucleotide sequence which expediently reads in the correct direction and which is equipped with a correct reading frame. To connect the DNA fragments to one another, adapters or linkers can be attached to the fragments. The promoter and terminator regions can expediently be provided in the transcription direction with a linker or polylinker which contains one or more restriction sites for the insertion of this sequence. As a rule, the linker has 1 to 10, usually 1 to 8, preferably 2 to 6, restriction sites. In general, the linker has a size of less than 100 bp within the regulatory areas, often less than 60 bp, but at least 5 bp. The promoter can be native or homologous as well as foreign or heterologous to the host plant. The expression cassette preferably contains, in the 5'-3 'transcription direction, the promoter, a coding nucleic acid sequence or a nucleic acid construct and a region for the transcriptional termination. Different termination areas are interchangeable.
Beispiele für einen Terminator sind der 35S-Terminator (Guerineau et al. (1988) Nucl Acids Res. 16: 11380), der nos Terminator (Depicker A, Stachel S, Dhaese P, Zambryski P, Goodman HM. Nopaline synthase: transeript mapping and DNA sequen- ce. J Mol Appl Genet. 1982;1 (6):561-73) oder der ocs Terminator (Gielen, J, de Beuckeleer, M, Seurinck, J, Debroek, H, de Greve, H, Lemmers, M, van Montagu, M, Schell, J (1984) The complete sequence of the TL-DNA of the Agrobacterium tumefaciens plasmid pTiAchδ. EMBO J. 3: 835-846).Examples of a terminator are the 35S terminator (Guerineau et al. (1988) Nucl Acids Res. 16: 11380), the nos terminator (Depicker A, Stachel S, Dhaese P, Zambryski P, Goodman HM. Nopaline synthase: transeript mapping and DNA sequence. J Mol Appl Genet. 1982; 1 (6): 561-73) or the ocs terminator (Gielen, J, de Beuckeleer, M, Seurinck, J, Debroek, H, de Greve, H, Lemmers , M, van Montagu, M, Schell, J (1984) The complete sequence of the TL-DNA of the Agrobacterium tumefaciens plasmid pTiAchδ. EMBO J. 3: 835-846).
Ferner können Manipulationen, die passende Restriktionsschnittstellen bereitstellen oder die überflüssige DNA oder Restriktionsschnittstellen entfernen, eingesetzt werden. Wo Insertionen, Deletionen oder Substitutionen wie z.B. Transitionen und Transversionen in Frage kommen, können in wϊro-Mutagenese, "primer-repair", Restriktion oder Ligation verwendet werden.Manipulations which provide suitable restriction sites or which remove superfluous DNA or restriction sites can also be used. Where insertions, deletions or substitutions such as Transitions and transversions can be used in wϊro mutagenesis, "primer repair", restriction or ligation.
Bei geeigneten Manipulationen, wie z.B. Restriktion, "chewing-back" oder Auffüllen von Überhängen für "bluntends", können komplementäre Enden der Fragmente für die Ligation zur Verfügung gestellt werden.With suitable manipulations, e.g. Restriction, "chewing-back" or filling of overhangs for "bluntends", complementary ends of the fragments can be made available for the ligation.
Bevorzugte Polyadenylierungssignale sind pflanzliche Polyadenylierungssignale, vorzugsweise solche, die im wesentlichen T-DNA-Polyadenylierungssignale aus Agrobacterium tumefaciens, insbesondere des Gens 3 der T-DNA (Octopin Synthase) des Ti- Plasmids pTiACHδ entsprechen (Gielen et al., EMBO J. 3 (1984), 835 ff) oder funktio- nelle Äquivalente.Preferred polyadenylation signals are plant polyadenylation signals, preferably those which essentially correspond to T-DNA polyadenylation signals from Agrobacterium tumefaciens, in particular gene 3 of T-DNA (octopine synthase) of the ti plasmid pTiACHδ (Gielen et al., EMBO J. 3 ( 1984), 835 ff) or functional equivalents.
Die Übertragung von Fremdgenen in das Genom einer Pflanze wird als Transformation bezeichnet. Dazu können an sich bekannte Methoden zur Transformation und Regeneration von Pflanzen aus Pflanzengeweben oder Pflanzenzellen zur transienten oder stabilen Transformation genutzt werden.The transfer of foreign genes into the genome of a plant is called transformation. Methods known per se for the transformation and regeneration of plants from plant tissues or plant cells for transient or stable transformation can be used for this purpose.
Geeignete Methoden zur Transformation von Pflanzen sind die Protoplastentransfor- mation durch Polyethylenglykol-induzierte DNA-Aufnahme, das biolistische Verfahren mit der Genkanone - die sogenannte "particle bombardment" Methode, die Elektropo- ration, die Inkubation trockener Embryonen in DNA-haltiger Lösung, die Mikroinjektion und der, vorstehend beschriebene, durch Agrobacterium vermittelte Gentransfer. Die genannten Verfahren sind beispielsweise in B. Jenes et al., Techniques for GeneSuitable methods for the transformation of plants are the protoplast transformation by polyethylene glycol-induced DNA uptake, the biolistic method with the gene cannon - the so-called "particle bombardment" method, the electroporation, the incubation of dry embryos in DNA-containing solution, the Microinjection and the Agrobacterium-mediated gene transfer described above. The methods mentioned are described, for example, in B. Jenes et al., Techniques for Gene
Transfer, in: Transgenic Plants, Vol. 1 , Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press (1993), 128-143 sowie in Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225) beschrieben.Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, edited by S.D. Kung and R. Wu, Academic Press (1993), 128-143 and in Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225).
Vorzugsweise wird das zu exprimierende Konstrukt in einen Vektor kloniert, der geeignet ist, Agrobacterium tumefaciens zu transformieren, beispielsweise pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984), 8711) oder besonders bevorzugt pSUN2, pSUN3, pSUN4 oder pSUN5 (WO 02/00900).The construct to be expressed is preferably cloned into a vector which is suitable for transforming Agrobacterium tumefaciens, for example pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984), 8711) or particularly preferably pSUN2, pSUN3, pSUN4 or pSUN5 (WO 02/00900).
Mit einem Expressionsplasmid transformierte Agrobakterien können in bekannter Weise zur Transformation von Pflanzen verwendet werden, z.B. indem verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden.Agrobacteria transformed with an expression plasmid can be used in a known manner to transform plants, e.g. by bathing wounded leaves or leaf pieces in an agrobacterial solution and then cultivating them in suitable media.
Zur bevorzugten Herstellung von genetisch veränderten Pflanzen, im folgenden auch transgene Pflanzen bezeichnet, wird die fusionierte Expressionskassette in einen Vektor, beispielsweise pBin19 oder insbesondere pSUN5 und pSUN3 kloniert, der geeignet ist, in Agrobacterium tumefaciens transformiert zu werden. Mit einem solchen Vektor transformierte Agrobakterien können dann in bekannter Weise zur Transformation von Pflanzen, insbesondere von Kulturpflanzen verwendet werden, indem beispielsweise verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden.For the preferred production of genetically modified plants, hereinafter also referred to as transgenic plants, the fused expression cassette is cloned into a vector, for example pBin19 or in particular pSUN5 and pSUN3, which is suitable for being transformed into Agrobacterium tumefaciens. Agrobacteria transformed with such a vector can then be used in a known manner to transform plants, in particular crop plants, for example by bathing wounded leaves or leaf pieces in an agrobacterial solution and then cultivating them in suitable media.
Die Transformation von Pflanzen durch Agrobakterien ist unter anderem bekannt aus F.F. White, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1 , Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press, 1993, S. 15-38. Aus den transformierten Zellen der verwundeten Blätter bzw. Blattstücke können in bekannter Weise transgene Pflanzen regeneriert werden, die ein oder mehrere in die Expressionskassette integrierte Gene enthalten. Zur Transformation einer Wirtspflanze mit einem oder mehreren erfindungsgemäßen Effektgenen wird eine Expressionskassette als Insertion in einen rekombinanten Vektor eingebaut, dessen Vektor-DNA zusätzliche funktioneile Regulationssignale, beispielsweise Sequenzen für Replikation oder Integration enthält. Geeignete Vektoren sind unter anderem in "Methods in Plant Molecular Biology and Biotechnology" (CRC Press), Kap. 6/7, S. 71-119 (1993) beschrieben.The transformation of plants by agrobacteria is known, inter alia, from FF White, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1, Engineering and Utilization, edited by SD Kung and R. Wu, Academic Press, 1993, pp. 15-38. Transgenic plants which contain one or more genes integrated into the expression cassette can be regenerated in a known manner from the transformed cells of the wounded leaves or leaf pieces. To transform a host plant with one or more effect genes according to the invention, an expression cassette is inserted as an insert into a recombinant vector whose vector DNA contains additional functional regulatory signals, for example sequences for replication or integration. Suitable vectors are inter alia in "Methods in Plant Molecular Biology and Biotechnology" (CRC Press), Chap. 6/7, pp. 71-119 (1993).
Unter Verwendung der oben zitierten Rekombinations- und Klonierungstechniken können die Expressionskassetten in geeignete Vektoren kloniert werden, die ihre Vermeh- rung, beispielsweise in E. coli, ermöglichen. Geeignete Klonierungsvektoren sind u.a. pJIT117 (Guerineau et al. (1988) Nucl. Acids Res.16 :11380), pBR332, pUC-Serien, M13mp-Serien und pACYC184. Besonders geeignet sind binäre Vektoren, die sowohl in E. coli als auch in Agrobakterien replizieren können.Using the recombination and cloning techniques cited above, the expression cassettes can be cloned into suitable vectors which allow their multiplication, for example in E. coli. Suitable cloning vectors include pJIT117 (Guerineau et al. (1988) Nucl. Acids Res. 16: 11380), pBR332, pUC series, M13mp series and pACYC184. Binary vectors which can replicate both in E. coli and in agrobacteria are particularly suitable.
Im folgenden wird exemplarisch die Herstellung erfindungsgemäßer, genetisch veränderter Mikroorganismen mit erhöhter oder verursachter Ketolase-Aktivität und erhöhter oder verursachter ß-Cyclase-Aktivität näher beschrieben, wobei die veränderte ß- Cyclase-Aktivität durch eine ß-Cyclase verursacht wird, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.In the following, the production of genetically modified microorganisms according to the invention with increased or caused ketolase activity and increased or caused β-cyclase activity is described in more detail, the changed β-cyclase activity being caused by a β-cyclase containing the amino acid sequence SEQ , ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has.
Die Erhöhung weiterer Aktivitäten, wie beispielsweise der Hydroxylase-Aktivität, HMG- CoA-Reduktase-Aktivität, (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase- Aktivität, 1-Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität, 1-Deoxy-D-Xylose-5-Increasing other activities such as hydroxylase activity, HMG-CoA reductase activity, (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase activity, 1-deoxy-D-xylose 5-phosphate synthase activity, 1-deoxy-D-xylose-5-
Phosphat-Reduktoisomerase-Aktivität, Isopentenyl-Diphosphat-Δ-Isomerase-Aktivität, Geranyl-Diphosphat-Synthase-Aktivität, Farnesyl-Diphosphat-Synthase-Aktivität, Ge- ranyl-geranyl-Diphosphat-Synthase-Aktivität, Phytoen-Synthase-Aktivität, Phytoen- Desaturase-Aktivität, Zeta-Carotin-Desaturase-Aktivität, crtlSO-Aktivität, FtsZ-Aktivität und/oder Min D-Aktivität kann analog unter Verwendung der entsprechenden Effektgene erfolgen.Phosphate reductoisomerase activity, isopentenyl diphosphate Δ isomerase activity, geranyl diphosphate synthase activity, farnesyl diphosphate synthase activity, geranyl geranyl diphosphate synthase activity, phytoene synthase activity, Phytoene desaturase activity, zeta-carotene desaturase activity, crtlSO activity, FtsZ activity and / or Min D activity can be carried out analogously using the corresponding effect genes.
Die vorstehend beschriebenen Nukleinsäuren, kodierend eine Ketolase, ß-Hydroxylase oder ß-Cyclase, sowie die Nukleinsäuren kodierend eine HMG-CoA-Reduktase, Nukleinsäuren kodierend eine (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-The nucleic acids described above, encoding a ketolase, β-hydroxylase or β-cyclase, and the nucleic acids encoding an HMG-CoA reductase, nucleic acids encoding an (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate
Reduktase, Nukleinsäuren kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Synthase, Nukleinsäuren kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase, Nukleinsäuren kodierend eine Isopentenyl-Diphosphat-Δ-Isomerase, Nukleinsäuren kodierend eine Geranyl-Diphosphat-Synthase, Nukleinsäuren kodierend eine Farnesyl- Diphosphat-Synthase, Nukleinsäuren kodierend eine Geranyl-Geranyl-Diphosphat- Synthase, Nukleinsäuren kodierend eine Phytoen-Synthase, Nukleinsäuren kodierend leinsäuren kodierend eine Phytoen-Synthase, Nukleinsäuren kodierend eine Phytoen- Desaturase, Nukleinsäuren kodierend eine Zeta-Carotin-Desaturase, Nukleinsäuren kodierend ein crtlSO Protein, Nukleinsäuren kodierend ein FtsZ Protein und/oder Nukleinsäuren kodierend ein MinD Protein sind vorzugsweise in Expressionskonstrukte eingebaut, enthaltend unter der genetischen Kontrolle regulativer Nukleinsäuresequenzen eine für ein erfindungsgemäßes Enzym kodierende Nukleinsäuresequenz; sowie Vektoren, umfassend wenigstens eines dieser Expressionskonstrukte.Reductase, nucleic acids encoding a 1-deoxy-D-xylose-5-phosphate synthase, nucleic acids encoding a 1-deoxy-D-xylose-5-phosphate reductoisomerase, nucleic acids encoding an isopentenyl-diphosphate-Δ-isomerase, nucleic acids encoding one Geranyl diphosphate synthase, nucleic acids encoding a farnesyl diphosphate synthase, nucleic acids encoding a geranyl geranyl diphosphate synthase, nucleic acids encoding a phytoene synthase, encoding nucleic acids linseed acids encoding a phytoene synthase, nucleic acids encoding a phytoene desaturase, nucleic acids encoding a zeta-carotene desaturase, nucleic acids encoding a crtlSO protein, nucleic acids encoding an FtsZ protein and / or nucleic acids encoding a MinD protein are preferably incorporated into expression constructs the genetic control of regulatory nucleic acid sequences is a nucleic acid sequence coding for an enzyme according to the invention; and vectors comprising at least one of these expression constructs.
Vorzugsweise umfassen solche erfindungsgemäßen Konstrukte 5'-stromaufwärts von der jeweiligen kodierenden Sequenz einen Promotor und 3'-stromabwärts eine Terminatorsequenz sowie gegebenenfalls weitere übliche regulative Elemente, und zwar jeweils operativ verknüpft mit dem Effektgen. Unter einer "operativen Verknüpfung" versteht man die sequentielle Anordnung von Promotor, kodierender Sequenz (Effektgen), Terminator und gegebenenfalls weiterer regulativer Elemente derart, dass jedes der regulativen Elemente seine Funktion bei der Expression der kodierenden Sequenz bestimmungsgemäß erfüllen kann.Such constructs according to the invention preferably comprise a promoter 5 'upstream of the respective coding sequence and a terminator sequence 3' downstream and, if appropriate, further customary regulatory elements, in each case operatively linked to the effect gene. An “operative linkage” is understood to mean the sequential arrangement of promoter, coding sequence (effect gene), terminator and, if appropriate, further regulatory elements in such a way that each of the regulatory elements can perform its function as intended in the expression of the coding sequence.
Beispiele für operativ verknüpfbare Sequenzen sind Targeting-Sequenzen sowie Translationsverstärker, Enhancer, Polyadenylierungssignale und dergleichen. Weitere regulative Elemente umfassen selektierbare Marker, Amplifikationssignale, Replikati- onsursprünge und dergleichen.Examples of sequences which can be linked operatively are targeting sequences and translation enhancers, enhancers, polyadenylation signals and the like. Further regulatory elements include selectable markers, amplification signals, origins of replication and the like.
Zusätzlich zu den artifiziellen Regulationssequenzen kann die natürliche Regulationssequenz vor dem eigentlichen Effektgen noch vorhanden sein. Durch genetische Ver- änderung kann diese natürliche Regulation gegebenenfalls ausgeschaltet und die Expression der Gene erhöht oder erniedrigt werden. Das Genkonstrukt kann aber auch einfacher aufgebaut sein, das heißt es werden keine zusätzlichen Regulationssignale vor das Strukturgen insertiert und der natürliche Promotor mit seiner Regulation wird nicht entfernt. Statt dessen wird die natürliche Regulationssequenz so mutiert, dass keine Regulation mehr erfolgt und die Genexpression gesteigert oder verringert wird. Die Nukleinsäuresequenzen können in einer oder mehreren Kopien im Genkonstrukt enthalten sein.In addition to the artificial regulation sequences, the natural regulation sequence can still be present before the actual effect gene. This natural regulation can possibly be switched off by genetic modification and the expression of the genes increased or decreased. However, the gene construct can also have a simpler structure, ie no additional regulation signals are inserted in front of the structural gene and the natural promoter with its regulation is not removed. Instead, the natural regulatory sequence is mutated so that regulation no longer takes place and gene expression is increased or decreased. The nucleic acid sequences can be contained in one or more copies in the gene construct.
Beispiele für brauchbare Promotoren in Mikroorganismen sind: cos-, tac-, trp-, tet-, trp- tet-, Ipp-, lac-, Ipp-lac-, laclq-, T7-, T5-, T3-, gal-, trc-, ara-, SP6-, lambda-PR- oder im lambda-PL-Promotor, die vorteilhafterweise in gram-negativen Bakterien Anwendung finden; sowie die gram-positiven Promotoren amy und SP02 oder die Hefepromotoren ADC1 , MFa , AC, P-60, CYC1 , GAPDH. Besonders bevorzugt ist die Verwendung induzierbarer Promotoren, wie z.B. licht- und insbesondere temperaturinduzierbarer Promotoren, wie der PrPrPromotor.Examples of useful promoters in microorganisms are: cos-, tac-, trp-, tet-, trp-tet-, Ipp-, lac-, Ipp-lac-, laclq-, T7-, T5-, T3-, gal- , trc, ara, SP6, lambda PR or in the lambda PL promoter, which are advantageously used in gram-negative bacteria; as well as the gram-positive promoters amy and SP02 or the yeast promoters ADC1, MFa, AC, P-60, CYC1, GAPDH. The use of inducible promoters, such as, for example, light-inducible and in particular temperature-inducible, is particularly preferred Promoters, such as the P r P r promoter.
Prinzipiell können alle natürlichen Promotoren mit ihren Regulationssequenzen verwendet werden. Darüber hinaus können auch synthetische Promotoren vorteilhaft ver- wendet werden.In principle, all natural promoters with their regulatory sequences can be used. In addition, synthetic promoters can also be used advantageously.
Die genannten regulatorischen Sequenzen sollen die gezielte Expression der Nukleinsäuresequenzen und die Proteinexpression ermöglichen. Dies kann beispielsweise je nach Wirtsorganismus bedeuten, dass das Gen erst nach Induktion exprimiert oder überexprimiert wird, oder dass es sofort exprimiert und/oder überexprimiert wird.The regulatory sequences mentioned are intended to enable the targeted expression of the nucleic acid sequences and the protein expression. Depending on the host organism, this can mean, for example, that the gene is only expressed or overexpressed after induction, or that it is expressed and / or overexpressed immediately.
Die regulatorischen Sequenzen bzw. Faktoren können dabei vorzugsweise die Expression positiv beeinflussen und dadurch erhöhen oder erniedrigen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene er- folgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird.The regulatory sequences or factors can preferably have a positive influence on the expression and thereby increase or decrease it. Thus, the regulatory elements can advantageously be strengthened at the transcription level by using strong transcription signals such as promoters and / or "enhancers". In addition, an increase in translation is also possible, for example, by improving the stability of the mRNA.
Die Herstellung einer Expressionskassette erfolgt durch Fusion eines geeigneten Pro- motors mit den vorstehend beschriebenen Nukleinsäuresequenzen, kodierend eine Ketolase, ß-Hydroxylase, ß-Cyclase, HMG-CoA-Reduktase, (E)-4-Hydroxy-3- Methylbut-2-enyl-Diphosphat-Reduktase, 1 -Deoxy-D-Xylose-5-Phosphat-Synthase, 1 - Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase, Isopentenyl-Diphosphat-Δ-Isomerase, Geranyl-Diphosphat-Synthase, Farnesyl-Diphosphat-Synthase, Geranyl-Geranyl- Diphosphat-Synthase, Phytoen-Synthase, Phytoen-Desaturase, Zeta-Carotin- Desaturase, crtlSO Protein, FtsZ Protein und/oder ein MinD Protein sowie einem Terminator- oder Polyadenylierungssignal. Dazu verwendet man gängige Rekombinationsund Klonierungstechniken, wie sie beispielsweise in T. Maniatis, E.F. Fritsch und J. - Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) sowie in T.J. Silhavy, M.L. Berman und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience (1987) beschrieben sind. Das rekombinante Nukleinsäurekonstrukt bzw. Genkonstrukt wird zur Expression in einem geeigneten Wirtsorganismus vorteilhafterweise in einen wirtsspezifischen Vektor insertiert, der eine optimale Expression der Gene im Wirt ermöglicht. Vektoren sind dem Fachmann wohl bekannt und können beispielsweise aus "Cloning Vectors" (Pou- wels P. H. et al., Hrsg, Elsevier, Amsterdam-New York-Oxford, 1985) entnommen wer- den. Unter Vektoren sind außer Plasmiden auch alle anderen dem Fachmann bekann- te Vektoren, wie beispielsweise Phagen, Viren, wie SV40, CMV, Baculovirus und Ade- novirus, Transposons, IS-Elemente, Phasmide, Cosmide, und lineare oder zirkuläre DNA zu verstehen. Diese Vektoren können autonom im Wirtsorganismus repliziert oder chromosomal repliziert werden.An expression cassette is produced by fusing a suitable promoter with the nucleic acid sequences described above, encoding a ketolase, β-hydroxylase, β-cyclase, HMG-CoA reductase, (E) -4-hydroxy-3-methylbut-2- enyl diphosphate reductase, 1-deoxy-D-xylose-5-phosphate synthase, 1 - deoxy-D-xylose-5-phosphate reductoisomerase, isopentenyl diphosphate Δ isomerase, geranyl diphosphate synthase, farnesyl Diphosphate synthase, geranyl-geranyl diphosphate synthase, phytoene synthase, phytoene desaturase, zeta-carotene desaturase, crtlSO protein, FtsZ protein and / or a MinD protein and a terminator or polyadenylation signal. Common recombination and cloning techniques are used, such as those described in T. Maniatis, EF Fritsch and J. - Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) and TJ Silhavy, ML Berman and LW Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) and in Ausubel, FM et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience (1987). For expression in a suitable host organism, the recombinant nucleic acid construct or gene construct is advantageously inserted into a host-specific vector which enables optimal expression of the genes in the host. Vectors are well known to those skilled in the art and can be found, for example, in "Cloning Vectors" (Pouwels PH et al., Ed., Elsevier, Amsterdam-New York-Oxford, 1985). In addition to plasmids, vectors are also known to all those skilled in the art. To understand vectors such as phages, viruses such as SV40, CMV, baculovirus and adevirus, transposons, IS elements, phasmids, cosmids, and linear or circular DNA. These vectors can be replicated autonomously in the host organism or replicated chromosomally.
Als Beispiele für geeignete Expressionsvektoren können genannt werden:The following may be mentioned as examples of suitable expression vectors:
Übliche Fusionsexpressionsvektoren, wie pGEX (Pharmacia Biotech Ine; Smith, D.B. und Johnson, K.S. (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, MA) und pRIT 5 (Pharmacia, Piscataway, NJ), bei denen Glutathion-S-Transferase (GST), Maltose E-bindendes Protein bzw. Protein A an das rekombinante Zielprotein fusioniert wird.Common fusion expression vectors such as pGEX (Pharmacia Biotech Ine; Smith, DB and Johnson, KS (1988) Gene 67: 31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT 5 (Pharmacia, Piscataway, NJ) which glutathione-S-transferase (GST), maltose E-binding protein or protein A is fused to the recombinant target protein.
Nicht-Fusionsprotein-Expressionsvektoren wie pTrc (Amann et al., (1988) Gene 69:301-315) und pET 11d (Studier et al. Gene Expression Technology: Methods inNon-fusion protein expression vectors such as pTrc (Amann et al., (1988) Gene 69: 301-315) and pET 11d (Studier et al. Gene Expression Technology: Methods in
Enzymology 185, Academic Press, San Diego, Kalifornien (1990) 60-89) oder pBluesc- ript und pUC-Vektoren.Enzymology 185, Academic Press, San Diego, California (1990) 60-89) or pBluescript and pUC vectors.
Hefe-Expressionsvektor zur Expression in der Hefe S. cerevisiae , wie pYepSed (Bal- dari et al., (1987) Embo J. 6:229-234), pMFa (Kurjan und Herskowitz (1982) CellYeast expression vector for expression in the yeast S. cerevisiae, such as pYepSed (Baldari et al., (1987) Embo J. 6: 229-234), pMFa (Kurjan and Herskowitz (1982) Cell
30:933-943), pJRY88 (Schultz et al. (1987) Gene 54:1 13-123) sowie pYES2 (Invitrogen Corporation, San Diego, CA).30: 933-943), pJRY88 (Schultz et al. (1987) Gene 54: 1 13-123) and pYES2 (Invitrogen Corporation, San Diego, CA).
Vektoren und Verfahren zur Konstruktion von Vektoren, die sich zur Verwendung in anderen Pilzen, wie filamentösen Pilzen, eignen, umfassen diejenigen, die eingehend beschrieben sind in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer Systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, J.F. Peberdy et al., Hrsg., S. 1-28, Cambridge University Press: Cambridge.Vectors and methods of constructing vectors suitable for use in other fungi such as filamentous fungi include those described in detail in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer Systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, J.F. Peberdy et al., Eds., Pp. 1-28, Cambridge University Press: Cambridge.
Baculovirus-Vektoren, die zur Expression von Proteinen in gezüchteten Insektenzellen (bspw. Sf9-Zellen) verfügbar sind, umfassen die pAc-Reihe (Smith et al., (1983) Mol. Cell Biol.. 3:2156-2165) und die pVL-Reihe (Lucklow und Summers (1989) Virology 170:31-39).Baculovirus vectors available for expression of proteins in cultured insect cells (e.g. Sf9 cells) include the pAc series (Smith et al., (1983) Mol. Cell Biol .. 3: 2156-2165) and pVL series (Lucklow and Summers (1989) Virology 170: 31-39).
Weitere geeignete Expressionssysteme für prokaryontische und eukaryotische Zellen sind in Kapitel 16 und 17 von Sambrook, J., Fritsch, E.F. und Maniatis, T., Molecular cloning: A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989 beschrieben. Mit Hilfe der erfindungsgemäßen Expressionskonstrukte bzw. Vektoren sind genetisch veränderte Mikroorganismen herstellbar, welche beispielsweise mit wenigstens einem erfindungsgemäßen Vektor transformiert sind.Further suitable expression systems for prokaryotic and eukaryotic cells are in chapters 16 and 17 of Sambrook, J., Fritsch, EF and Maniatis, T., Molecular cloning: A Laboratory Manual, 2nd edition, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press , Cold Spring Harbor, NY, 1989. The expression constructs or vectors according to the invention can be used to produce genetically modified microorganisms which have been transformed, for example, with at least one vector according to the invention.
Vorteilhafterweise werden die oben beschriebenen erfindungsgemäßen rekombinanten Konstrukte in ein geeignetes Wirtssystem eingebracht und exprimiert. Dabei werden vorzugsweise dem Fachmann bekannte geläufige Klonierungs- und Transfektions- methoden, wie beispielsweise Co-Präzipitation, Protoplastenfusion, Elektroporation, retrovirale Transfektion und dergleichen, verwendet, um die genannten Nukleinsäuren im jeweiligen Expressionssystem zur Expression zu bringen. Geeignete Systeme werden beispielsweise in Current Protocols in Molecular Biology, F. Ausubel et al., Hrsg., Wiley Interscience, New York 1997, beschrieben.The recombinant constructs according to the invention described above are advantageously introduced and expressed in a suitable host system. Common cloning and transfection methods known to the person skilled in the art, such as, for example, co-precipitation, protoplast fusion, electroporation, retroviral transfection and the like, are preferably used to bring the nucleic acids mentioned into expression in the respective expression system. Suitable systems are described, for example, in Current Protocols in Molecular Biology, F. Ausubel et al., Ed., Wiley Interscience, New York 1997.
Die Selektion erfolgreich transformierter Organismen kann durch Markergene erfolgen, die ebenfalls im Vektor oder in der Expressionskassette enthalten sind. Beispiele für solche Markergene sind Gene für Antibiotikaresistenz und für Enzyme, die eine farb- gebende Reaktion katalysieren, die ein Anfärben der transformierten Zelle bewirkt. Diese können dann mittels automatischer Zellsortierung selektiert werden.Successfully transformed organisms can be selected using marker genes, which are also contained in the vector or in the expression cassette. Examples of such marker genes are genes for antibiotic resistance and for enzymes which catalyze a coloring reaction which stains the transformed cell. These can then be selected using automatic cell sorting.
Erfolgreich mit einem Vektor transformierte Mikroorganismen, die ein entsprechendes Antibiotikaresistenzgen (z.B. G418 oder Hygromycin) tragen, lassen sich durch entsprechende Antibiotika-enthaltende Medien oder Nährböden selektieren. Markerproteine, die an der Zelloberfläche präsentiert werden, können zur Selektion mittels Affinitätschromatographie genutzt werden.Microorganisms successfully transformed with a vector and carrying an appropriate antibiotic resistance gene (e.g. G418 or hygromycin) can be selected using appropriate antibiotic-containing media or nutrient media. Marker proteins that are presented on the cell surface can be used for selection by means of affinity chromatography.
Die Kombination aus den Wirtsorganismen und den zu den Organismen passenden Vektoren, wie Plasmide, Viren oder Phagen, wie beispielsweise Plasmide mit dem RNA-Polymerase/Promotor-System, die Phagen 8 oder andere temperente Phagen oder Transposons und/oder weiteren vorteilhaften regulatorischen Sequenzen bildet ein Expressionssystem.The combination of the host organisms and the vectors which match the organisms, such as plasmids, viruses or phages, such as, for example, plasmids with the RNA polymerase / promoter system, which forms phages 8 or other temperate phages or transposons and / or further advantageous regulatory sequences an expression system.
Die Erfindung betrifft ferner die genetisch veränderten, nicht-humanen Organismen, wobei die genetische Veränderung die Aktivität einer KetolaseThe invention further relates to the genetically modified, non-human organisms, the genetic modification being the activity of a ketolase
A für den Fall, dass der Wildtyporganismus bereits eine Ketolase-Aktivität aufweist, gegenüber dem Wildtyp erhöht undA in the event that the wild-type organism already has ketolase activity, increased compared to the wild-type and
B für den Fall, dass der Wildtyporganismus keine Ketolase-Aktivität aufweist, gegenüber dem Wildtyp verursacht, und wobei die genetische Veränderung die Aktivität einer ß-CyclaseB if the wild-type organism has no ketolase activity against the wild-type, and wherein the genetic modification is the activity of a β-cyclase
C für den Fall, dass der Wildtyporganismus bereits eine ß-Cyclase -Aktivität aufweist, gegenüber dem Wildtyp erhöht undC in the event that the wild-type organism already has a β-cyclase activity, increased compared to the wild-type and
D für den Fall, dass der Wildtyporganismus keine ß-Cyclase -Aktivität aufweist, gegenüber dem Wildtyp verursachtD in the event that the wild-type organism has no β-cyclase activity compared to the wild-type
und die nach C erhöhte oder nach D verursachte ß-Cyclase-Aktivität durch eine ß- Cyclase verursacht wird, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.and the β-cyclase activity increased after C or caused after D is caused by a β-cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has.
Wie vorstehend ausgeführt erfolgt die Erhöhung (gemäß A) oder Verursachung (gemäß B) der Ketolase-Aktivität gegenüber dem Wildtyp vorzugsweise durch die Erhöhung der Genexpression einer Nukleinsäure, kodierend eine Ketolase.As stated above, the ketolase activity is increased (according to A) or caused (according to B) compared to the wild type, preferably by increasing the gene expression of a nucleic acid encoding a ketolase.
In einer weiter bevorzugten Ausführungsform erfolgt die Erhöhung der Genexpression einer Nukleinsäure kodierend eine Ketolase durch Einbringen von Nukleinsäuren, die Ketolasen kodieren, in den Organismus.In a further preferred embodiment, the gene expression of a nucleic acid encoding a ketolase is increased by introducing nucleic acids encoding ketolases into the organism.
In den erfindungsgemäßen transgenen Organismen liegt also in dieser Ausführungsform gegenüber dem Wildtyp mindestens ein weiteres Ketolase-Gen vor. In dieser Ausführungsform weist der erfindungsgemäße genetisch veränderte Organismus vor- zusgweise mindestens eine exogene (=heterologe) Nukleinsäure, kodierend eine Ketolase, auf oder mindestens zwei endogene Nukleinsäuren, kodierend eine Ketolase, auf:In this embodiment, the transgenic organisms according to the invention therefore have at least one further ketolase gene compared to the wild type. In this embodiment, the genetically modified organism according to the invention preferably has at least one exogenous (= heterologous) nucleic acid, coding for a ketolase, or at least two endogenous nucleic acids, coding for a ketolase:
Dazu kann prinzipiell jedes Ketolase-Gen, also jede Nukleinsäuren die eine Ketolase kodiert verwendet werden.In principle, any ketolase gene, that is to say any nucleic acids encoding a ketolase, can be used for this purpose.
Bevorzugte Nukleinsäuren, kodierend eine Ketolase sind vorstehend bei den erfindungsgemäßen Verfahren beschrieben.Preferred nucleic acids encoding a ketolase are described above in the method according to the invention.
Vorzugsweise erfolgt die Erhöhung oder Verursachung der ß-Cyclase-Aktivität, wie vorstehend beschrieben, durch Erhöhung der Genexpression gegenüber dem Wildtyp von Nukleinsäuren, kodierend eine ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.The β-cyclase activity is preferably increased or caused, as described above, by increasing the gene expression compared to the wild type of nucleic acids, coding for a β-cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% Amino acid level with the sequence SEQ. ID. NO. 2 has.
In einer bevorzugten Ausführungsform erfolgt die Erhöhung der Genexpression einer Nukleinsäure, kodierend eine ß-Cyclase, durch Einbringen in den Organismus von mindestens einer Nukleinsäure, kodierend eine ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.In a preferred embodiment, the gene expression of a nucleic acid coding for a β-cyclase is increased by introducing into the organism at least one nucleic acid coding for a β-cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has.
In den erfindungsgemäßen transgenen Organismen liegt also in dieser Ausführungsform gegenüber dem Wildtyp mindestens ein weiteres ß-Cyclase-Gen vor. In dieser Ausführungsform weist der erfindungsgemäße genetisch veränderte Organismus vor- zusgweise mindestens eine exogene (=heterologe) Nukleinsäure, kodierend eine ß- Cyclase, auf oder mindestens zwei endogene Nukleinsäuren, kodierend eine ß- Cyclase, auf.In this embodiment, the transgenic organisms according to the invention therefore have at least one further β-cyclase gene compared to the wild type. In this embodiment, the genetically modified organism according to the invention preferably has at least one exogenous (= heterologous) nucleic acid coding for a β-cyclase or at least two endogenous nucleic acids coding for a β-cyclase.
Dazu kann prinzipiell jedes ß-Cyclase-Gen, also jede Nukleinsäure, die eine ß-Cyclase kodiert, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Se- quenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, verwendet werden.In principle, any β-cyclase gene, that is to say any nucleic acid encoding a β-cyclase, containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has to be used.
Bevorzugte ß-Cyclase-Gene sind vorstehend beschrieben.Preferred β-cyclase genes are described above.
Besonders bevorzugte, genetisch veränderte Organismen weisen, wie vorstehend erwähnt, zusätzlich eine erhöhte oder verursachte Hydroxlase-Aktivität gegenüber dem Wildtyporganismus auf. Weiter bevorzugte Ausführungsformen sind vorstehend im erfindungsgemäßen Verfahren beschrieben.As mentioned above, particularly preferred, genetically modified organisms additionally have an increased or caused hydroxlase activity compared to the wild-type organism. Further preferred embodiments are described above in the method according to the invention.
Weitere, besonders bevorzugte, genetisch veränderte nicht-humane Organismen weisen, wie vorstehend erwähnt, zusätzlich gegenüber dem Wildtyp mindestens eine weitere erhöhte Aktivität, ausgewählt aus der Gruppe HMG-CoA-Reduktase-Aktivität, (E)- 4-Hydroxy-3-Methylbut- 2-enyl-Diphosphat-Reduktase-Aktivität, 1-Deoxy-D-Xylose-5-Phosphat-Synthase- Aktivität, 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Aktivität, Isopentenyl- Diphosphat-Δ-Isomerase-Aktivität, Geranyl-Diphosphat-Synthase-Aktivität, Farnesyl- Diphosphat-Synthase-Aktivität, Geranyl-geranyl-Diphosphat-Synthase-Aktivität, Phytoen-Synthase-Aktivität, Phytoen-Desaturase-Aktivität, Zeta-Carotin-Desaturase- Aktivität, crtlSO-Aktivität, FtsZ-Aktivität und MinD-Aktivität auf. Weiter bevorzugte Aus- führungsformen sind vorstehend im erfindungsgemäßeπ Verfahren beschrieben. Unter Organismen werden erfindungsgemäß vorzugsweise Organismen verstanden, die als Wildtyp- oder Ausgangsorganismen natürlicherweise oder durch genetische Komplementierung und/oder Umregulierung der Stoffwechselwege in der Lage sind, Carotinoide, insbesondere ß-Carotin und/oder Zeaxanthin und/oder Neoxanthin und/oder Violaxanthin und/oder Lutein herzustellen.As mentioned above, further, particularly preferred, genetically modified non-human organisms additionally have at least one further increased activity compared to the wild type, selected from the group HMG-CoA reductase activity, (E) - 4-hydroxy-3-methylbut - 2-enyl-diphosphate reductase activity, 1-deoxy-D-xylose-5-phosphate synthase activity, 1-deoxy-D-xylose-5-phosphate reductoisomerase activity, isopentenyl-diphosphate-Δ-isomerase -Activity, geranyl diphosphate synthase activity, farnesyl diphosphate synthase activity, geranyl geranyl diphosphate synthase activity, phytoene synthase activity, phytoene desaturase activity, zeta-carotene desaturase activity, crtlSO Activity, FtsZ activity and MinD activity. Further preferred embodiments are described above in the process according to the invention. According to the invention, organisms are preferably understood to mean organisms which, as wild-type or starting organisms, naturally or by genetic complementation and / or reorganization of the metabolic pathways, are capable of producing carotenoids, in particular β-carotene and / or zeaxanthin and / or neoxanthine and / or violaxanthin and / or to produce lutein.
Weiter bevorzugte Organismen weisen als Wildtyp- oder Ausgangsorganismen bereits eine Hydroxylase-Aktivität auf und sind somit als Wildtyp- oder Ausgangsorganismen in der Lage, Zeaxanthin herzustellen.Further preferred organisms already have hydroxylase activity as wild-type or starting organisms and are therefore capable of producing zeaxanthin as wild-type or starting organisms.
Bevorzugte Organismen sind Pflanzen oder Mikroorganismen, wie beispielsweise Bakterien, Hefen, Algen oder Pilze.Preferred organisms are plants or microorganisms, such as bacteria, yeasts, algae or fungi.
Als Bakterien können sowohl Bakterien verwendet werden, die aufgrund des Einbringens von Genen der Carotinoidbiosynthese eines Carotinoid-produzierenden Organismus in der Lage sind, Xanthophylle zu synthetisieren, wie beispielsweise Bakterien der Gattung Escherichia, die beispielsweise crt-Gene aus Erwinia enthalten, als auch Bakterien, die von sich aus in der Lage sind, Xanthophylle zu synthetisieren wie beispiels- weise Bakterien der Gattung Erwinia, Agrobacterium, Flavobacterium, Alcaligenes, Paracoccus, Nostoc oder Cyanobakterien der Gattung Synechocystis.Both bacteria can be used as bacteria that are able to synthesize xanthophylls due to the introduction of genes of the carotenoid biosynthesis of a carotenoid-producing organism, such as bacteria of the genus Escherichia, which contain, for example, crt genes from Erwinia, as well as bacteria. which are capable of synthesizing xanthophylls, such as, for example, bacteria of the genus Erwinia, Agrobacterium, Flavobacterium, Alcaligenes, Paracoccus, Nostoc or cyanobacteria of the genus Synechocystis.
Bevorzugte Bakterien sind Escherichia coli, Erwinia herbicola, Erwinia uredovora, Agrobacterium aurantiacum, Alcaligenes sp. PC-1 , Flavobacterium sp. strain R1534, das Cyanobacterium Synechocystis sp. PCC6803, Paracoccus marcusii oder Paracoccus carotinifaciens.Preferred bacteria are Escherichia coli, Erwinia herbicola, Erwinia uredovora, Agrobacterium aurantiacum, Alcaligenes sp. PC-1, Flavobacterium sp. strain R1534, the Cyanobacterium Synechocystis sp. PCC6803, Paracoccus marcusii or Paracoccus carotinifaciens.
Bevorzugte Hefen sind Candida, Saccharomyces, Hansenula, Pichia oder Phaffia. Besonders bevorzugte Hefen sind Xanthophyllomyces dendrorhous oder Phaffia rhodo- zyma.Preferred yeasts are Candida, Saccharomyces, Hansenula, Pichia or Phaffia. Particularly preferred yeasts are Xanthophyllomyces dendrorhous or Phaffia rhodozyma.
Bevorzugte Pilze sind Aspergillus, Trichoderma, Ashbya, Neurospora, Blakeslea, insbesondere Blakeslea trispora, Phycomyces, Fusarium oder weitere in Indian Chem. Engr. Section B. Vol. 37, No. 1 , 2 (1995) auf Seite 15, Tabelle 6 beschriebene Pilze.Preferred mushrooms are Aspergillus, Trichoderma, Ashbya, Neurospora, Blakeslea, in particular Blakeslea trispora, Phycomyces, Fusarium or others in Indian Chem. Engr. Section B. Vol. 37, No. 1, 2 (1995) on page 15, table 6 described mushrooms.
Bevorzugte Algen sind Grünalgen, wie beispielsweise Algen der Gattung Haematococcus, Phaedactylum tricomatum, Volvox oder Dunaliella. Besonders bevorzugte Algen sind Haematococcus puvialis oder Dunaliella bardawil. Weitere brauchbare Mikroorganismen und deren Herstellung zur Durchführung des erfindungsgemäßen Verfahrens sind beispielsweise aus der DE-A-199 16 140 bekannt, worauf hiermit Bezug genommen wird.Preferred algae are green algae, such as algae of the genus Haematococcus, Phaedactylum tricomatum, Volvox or Dunaliella. Particularly preferred algae are Haematococcus puvialis or Dunaliella bardawil. Further useful microorganisms and their preparation for carrying out the method according to the invention are known, for example, from DE-A-199 16 140, to which reference is hereby made.
Besonders bevorzugte Pflanzen sind Pflanzen ausgewählt aus den Familien Ama- ranthaceae.Amaryllidaceae, Apocynaceae, Asteraceae, Balsaminaceae, Begoniaceae, Berberidaceae, Brassicaceae.Cannabaceae, Caprifoliaceae, Caryophyllaceae, Che- nopodiaceae, Compositae, Cucurbitaceae, Cruciferae, Euphorbiaceae, Fabaceae, Gentianaceae, Geraniaceae, Graminae, liliaceae, Labiatae, Lamiaceae, Leguminosae, Liliaceae, Linaceae, Lobeliaceae, Malvaceae, Oleaceae, Orchidaceae, Papaveraceae , Plumbaginaceae, Poaceae, Polemoniaceae, Primulaceae, Ranunculaceae, Rosaceae, Rubiaceae, Scrophulariaceae, Solanaceae, Tropaeolaceae.Umbelliferae, Verbana- ceae, Vitaceae und Violaceae.Particularly preferred plants are plants selected from the families amateur ranthaceae.Amaryllidaceae, Apocynaceae, Asteraceae, Balsaminaceae Begoniaceae, Berberidaceae, Brassicaceae.Cannabaceae, Caprifoliaceae, Caryophyllaceae, Chemischen nopodiaceae, Compositae, Cucurbitaceae, Cruciferae, Euphorbiaceae, Fabaceae, Gentianaceae, Geraniaceae , Graminae, liliaceae, Labiatae, Lamiaceae, Leguminosae, Liliaceae, Linaceae, Lobeliaceae, Malvaceae, Oleaceae, Orchidaceae, Papaveraceae, Plumbaginaceae, Poaceae, Polemoniaceae, Primulacaceae, Roseaaceae, Rosunceae , Vitaceae and Violaceae.
Ganz besonders bevorzugte Pflanzen sind ausgewählt aus der Gruppe der Pflanzengattungen Marigold, Tagetes errecta, Tagetes patula, Acacia, Aconitum, Adonis, Arni- ca, Aquilegia, Aster, Astragalus, Bignonia, Calendula, Caltha, Campanula, Canna, Centaurea, Cheiranthus, Chrysanthemum, Citrus, Crepis, Crocus, Curcurbita, Cytisus, Delonia, Delphinium, Dianthus, Dimorphotheca, Doronicum, Eschscholtzia, Forsythie, Fremontia, Gazania, Gelsemium, Genista, Gentiana, Geranium, Gerbera, Geum, Gre- villea, Helenium, Helianthus, Hepatica, Heracleum, Hisbiscus, Heliopsis, Hypericum, Hypochoeris, Impatiens, Iris, Jacaranda, Kenia, Laburnum, Lathyrus, Leontodon, Lili- um, Linum, Lotus, Lycopersicon, Lysimachia, Maratia, Medicago, Mimulus, Narcissus, Oenothera, Osmanthus, Petunia, Photinia, Physalis, Phyteuma, Potentilla, Pyracantha, Ranunculus, Rhododendron, Rosa, Rudbeckia, Senecio, Silene, Silphium, Sinapsis, Sorbus, Spartium, Tecoma, Torenia, Tragopogon, Trollius, Tropaeolum, Tulipa, Tussi- lago, Ulex, Viola oder Zinnia, besonders bevorzugt ausgewählt aus der Gruppe der Pflanzengattungen Marigold, Tagetes erecta, Tagetes patula, Lycopersicon, Rosa, Calendula, Physalis, Medicago, Helianthus, Chrysanthemum, Aster, Tulipa, Narcissus, Petunia, Geranium, Tropaeolum oder Adonis.Very particularly preferred plants are selected from the group of the plant genera Marigold, Tagetes Errecta, Tagetes patula, Acacia, Aconitum, Adonis, Arnica, Aquilegia, Aster, Astragalus, Bignonia, Calendula, Caltha, Campanula, Canna, Centaurea, Cheiranthus, Chrysanthemum , Citrus, Crepis, Crocus, Curcurbita, Cytisus, Delonia, Delphinium, Dianthus, Dimorphotheca, Doronicum, Eschscholtzia, Forsythie, Fremontia, Gazania, Gelsemium, Genista, Gentiana, Geranium, Gerbera, Geum, Grevillaea, Helenium, Helianthus, Hepatica , Heracleum, Hisbiscus, Heliopsis, Hypericum, Hypochoeris, Impatiens, Iris, Jacaranda, Kenya, Laburnum, Lathyrus, Leontodon, Lilium, Linum, Lotus, Lycopersicon, Lysimachia, Maratia, Medicago, Mimulus, Narcissus, Oenothera, Osiaanthus , Photinia, Physalis, Phyteuma, Potentilla, Pyracantha, Ranunculus, Rhododendron, Rosa, Rudbeckia, Senecio, Silene, Silphium, Sinapsis, Sorbus, Spartium, Tecoma, Torenia, Tragopogon, Trollius, Tropaeolum, Tulipa, Tussilago, U lex, viola or zinnia, particularly preferably selected from the group of the plant genera Marigold, Tagetes erecta, Tagetes patula, Lycopersicon, Rosa, Calendula, Physalis, Medicago, Helianthus, Chrysanthemum, Aster, Tulipa, Narcissus, Petunia, Geranium, Tropaeolum or Adonis.
Ganz besonders bevorzugte genetisch veränderte Pflanzen sind ausgewählt aus den Pflanzengattungen Marigold, Tagetes erecta, Tagetes patula, Adonis, Lycopersicon, Rosa, Calendula, Physalis, Medicago, Helianthus, Chrysanthemum, Aster, Tulipa, Nar- cissus, Petunia, Geranium oder Tropaeolum, wobei die genetisch veränderte Pflanze mindestens eine transgene Nukleinsäure, kodierend eine Ketolase, enthält.Very particularly preferred genetically modified plants are selected from the plant genera Marigold, Tagetes erecta, Tagetes patula, Adonis, Lycopersicon, Rosa, Calendula, Physalis, Medicago, Helianthus, Chrysanthemum, Aster, Tulipa, Narcissus, Petunia, Geranium or Tropaeolum, whereby the genetically modified plant contains at least one transgenic nucleic acid encoding a ketolase.
Die transgenen Pflanzen, deren Vermehrungsgut, sowie deren Pflanzenzellen, - gewebe oder -teile, insbesondere deren Früchte, Samen, Blüten und Blütenblätter sind ein weiterer Gegenstand der vorliegenden Erfindung.The transgenic plants, their reproductive material and their plant cells, tissue or parts, in particular their fruits, seeds, flowers and petals are another object of the present invention.
Die genetisch veränderten Pflanzen können, wie vorstehend beschrieben, zur Herstellung von Ketocarotinoiden, insbesondere Astaxanthin verwendet werden.As described above, the genetically modified plants can be used to produce ketocarotenoids, in particular astaxanthin.
Von Menschen und Tieren verzehrbare erfindungsgemäße, genetisch veränderte Organismen, insbesondere Pflanzen oder Pflanzenteile, wie insbesondere Blütenblätter mit erhöhtem Gehalt an Ketocarotinoiden, insbesondere Astaxanthin können auch beispielsweise direkt oder nach an sich bekannter Prozessierung als Nahrungsmittel oder Futtermittel oder als Futter- und Nahrungsergänzungsmittel verwendet werden.Genetically modified organisms according to the invention, in particular plants or parts of plants, such as, in particular, petals with an increased content of ketocarotenoids, in particular astaxanthin, which can be consumed by humans and animals can also be used, for example, directly or after processing known per se as food or feed or as feed and food supplements.
Ferner können die genetisch veränderten Organismen zur Herstellung von Ketocaroti- noid-haltigen Extrakten der Organismen und/oder zur Herstellung von Futter- und Nah- rungsergänzungsmitteln verwendet werden.Furthermore, the genetically modified organisms can be used for the production of ketocarotenoid-containing extracts of the organisms and / or for the production of feed and food supplements.
Die genetisch veränderten Organismen weisen im Vergleich zum Wildtyp einen erhöhten Gehalt an Ketocarotinoiden auf.The genetically modified organisms have an increased ketocarotenoid content compared to the wild type.
Unter einem erhöhten Gehalt an Ketocarotinoiden wird in der Regel ein erhöhter Ge- halt an Gesamt-Ketocarotinoid verstanden.An increased ketocarotenoid content is generally understood to mean an increased total ketocarotenoid content.
Unter einem erhöhten Gehalt an Ketocarotinoiden wird aber auch insbesondere ein veränderter Gehalt der bevorzugten Ketocarotinoide verstanden, ohne dass zwangsläufig der Gesamt-Carotinoidgehalt erhöht sein muss.An increased content of ketocarotenoids is also understood to mean, in particular, a changed content of the preferred ketocarotenoids, without the total carotenoid content necessarily having to be increased.
In einer besonders bevorzugten Ausführungsform weisen die erfindungsgemäßen, genetisch veränderten Pflanzen im Vergleich zum Wildtyp einen erhöhten Gehalt an Astaxanthin auf.In a particularly preferred embodiment, the genetically modified plants according to the invention have an increased astaxanthin content compared to the wild type.
Unter einem erhöhten Gehalt wird in diesem Fall auch ein verursachter Gehalt an Ketocarotinoiden, bzw. Astaxanthin verstanden.In this case, an increased content is also understood to mean a caused content of ketocarotenoids or astaxanthin.
Die Erfindung wird durch die nun folgenden Beispiele erläutert, ist aber nicht auf diese beschränkt:The invention is illustrated by the following examples, but is not limited to these:
Allgemeine Experimentelle Bedingungen: Sequenzanalyse rekombinanter DNAGeneral experimental conditions: Sequence analysis of recombinant DNA
Die Sequenzierung rekombinanter DNA-Moleküle erfolgte mit einem Laserfluoreszenz- DNA-Sequenzierer der Firma Licor (Vertrieb durch MWG Biotech, Ebersbach) nach der Methode von Sanger (Sanger et al., Proc. Natl. Acad. Sei. USA 74 (1977), 5463-5467).The sequencing of recombinant DNA molecules was carried out using a laser fluorescence DNA sequencer from Licor (distributed by MWG Biotech, Ebersbach) according to the Sanger's method (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463-5467).
Beispiel 1 :Example 1 :
Amplifikation einer DNA, die die gesamte Primärsequenz der NOST-Ketolase aus Nostoc sp. PCC 7120 codiertAmplification of a DNA that contains the entire primary sequence of the NOST ketolase from Nostoc sp. PCC 7120 coded
Die DNA, die für die NOST-Ketolase aus Nostoc sp. PCC 7120 kodiert, wurde mittels PCR aus Nostoc sp. PCC 7120 (Stamm der "Pasteur Culture Collection of Cyanobacterium") amplifiziert.The DNA required for the NOST ketolase from Nostoc sp. PCC 7120 coded, was by means of PCR from Nostoc sp. PCC 7120 (strain of the "Pasteur Culture Collection of Cyanobacterium") amplified.
Für die Präparation von genomischer DNA aus einer Suspensionskultur von Nostoc sp. PCC 7120, die 1 Woche mit Dauerlicht und konstantem Schütteln (150 rpm) at 25°C in BG 11 -Medium (1.5 g/l NaN03, 0.04 g/l K2P04x3H20, 0.075 g/l MgS04xH20, 0.036 g/l CaCI2x2H20, 0.006 g/l citric aeid, 0.006 g/l Ferric ammonium citrate, 0.001 g/l ED- TA disodium magnesium, 0.04 g/l Na2C03, 1ml trace metal mix „A5+Co" (2.86 g/lFor the preparation of genomic DNA from a suspension culture from Nostoc sp. PCC 7120, the 1 week with constant light and constant shaking (150 rpm) at 25 ° C in BG 11 medium (1.5 g / l NaN03, 0.04 g / l K2P04x3H20, 0.075 g / l MgS04xH20, 0.036 g / l CaCI2x2H20, 0.006 g / l citric acid, 0.006 g / l ferric ammonium citrate, 0.001 g / l EDTA disodium magnesium, 0.04 g / l Na2C03, 1ml trace metal mix "A5 + Co" (2.86 g / l
H3B03, 1.81 g/l MnCI2x4H2o, 0.222 g/l ZnSO4x7H2o,0.39 g/l NaMo04X2H20, 0.079 g/l CuS04x5H20, 0.0494 g/l Co(N03)2x6H20)) gewachsen war, wurden die Zellen durch Zentrifugation geerntet, in flüssigem Stickstoff eingefroren und im Mörser pulverisiert.H3B03, 1.81 g / l MnCI2x4H2o, 0.222 g / l ZnSO4x7H2o, 0.39 g / l NaMo04X2H20, 0.079 g / l CuS04x5H20, 0.0494 g / l Co (N03) 2x6H20)), the cells were harvested by centrifugation nitrogen, harvested by centrifugation nitrogen frozen and pulverized in a mortar.
Protokoll für DNA Isolation aus Nostoc PCC7120:Protocol for DNA isolation from Nostoc PCC7120:
Aus einer 10 ml Flüssigkultur wurden die Bakterienzellen durch 10minütige Zentrifugation bei 8 000 rpm pelletiert. Anschließend wurden die Bakterienzellen in flüssigem Stickstoff mit einem Mörser zerstoßen und gemahlen. Das Zellmaterial wurde in 1 ml 10mM Tris HCI (pH 7.5) resuspendiert und in ein Eppendorf Reaktionsgefäß (2ml Volumen) überführt. Nach Zugabe von 100 μl Proteinase K (Konzentration: 20 mg/ml) wurde die Zellsuspension für 3 Stunden bei 37°C inkubiert. Anschließend wurde die Suspension mit 500 μl Phenol extrahiert. Nach δminütiger Zentrifugation bei 13 000 upm wurde die obere, wässrige Phase in ein neues 2 ml-Eppendorf Reaktionsgefäß überführt. Die Extraktion mit Phenol wurde 3mal wiederholt. Die DNA wurde durch Zugabe von 1/10 Volumen 3 M Natriumacetat (pH 5.2) und 0.6 Volumen Isopropanol gefällt und anschließend mit 70% Ethanol gewaschen. Das DNA-Pellet wurde bei Raumtemperatur getrocknet, in 25 μl Wasser aufgenommen und unter Erhitzung auf 65°C gelöst.The bacterial cells were pelleted from a 10 ml liquid culture by centrifugation at 8,000 rpm for 10 minutes. The bacterial cells were then crushed and ground in liquid nitrogen using a mortar. The cell material was resuspended in 1 ml of 10 mM Tris HCl (pH 7.5) and transferred to an Eppendorf reaction vessel (2 ml volume). After adding 100 μl Proteinase K (concentration: 20 mg / ml), the cell suspension was incubated for 3 hours at 37 ° C. The suspension was then extracted with 500 μl of phenol. After centrifugation at 13,000 rpm for δ minutes, the upper, aqueous phase was transferred to a new 2 ml Eppendorf reaction vessel. The extraction with phenol was repeated 3 times. The DNA was precipitated by adding 1/10 volume of 3 M sodium acetate (pH 5.2) and 0.6 volume of isopropanol and then washed with 70% ethanol. The DNA pellet was dried at room temperature, taken up in 25 μl of water and dissolved with heating to 65 ° C.
Die Nukleinsäure, kodierend eine Ketolase aus Nostoc PCC 7120, wurde mittels "po- lymerase chain reaction" (PCR) aus Nostoc sp. PCC 7120 unter Verwendung eines sense-spezifischen Primers (NOSTF, SEQ ID No. 79) und eines antisense- spezifischen Primers (NOSTG SEQ ID No. 80) amplifiziert.The nucleic acid encoding a ketolase from Nostoc PCC 7120 was determined by means of a "polymerase chain reaction" (PCR) from Nostoc sp. PCC 7120 using a sense-specific primer (NOSTF, SEQ ID No. 79) and an antisense specific primers (NOSTG SEQ ID No. 80).
Die PCR-Bedingungen waren die folgenden:The PCR conditions were as follows:
Die PCR zur Amplifikation der DNA, die für ein Ketolase Protein bestehend aus der gesamten Primärsequenz kodiert, erfolgte in einem 50 ul Reaktionsansatz, in dem enthalten war:The PCR for the amplification of the DNA, which codes for a ketolase protein consisting of the entire primary sequence, was carried out in a 50 μl reaction mixture which contained:
- 1 ul einer Nostoc sp. PCC 7120 DNA (hergestellt wie oben beschrieben) - 0.25 mM dNTPs- 1 ul of a Nostoc sp. PCC 7120 DNA (prepared as described above) - 0.25 mM dNTPs
- 0.2 mM NOSTF (SEQ ID No. 79)- 0.2 mM NOSTF (SEQ ID No. 79)
- 0.2 mM NOSTG (SEQ ID No. 80)- 0.2 mM NOSTG (SEQ ID No. 80)
- 5 ul 10X PCR-Puffer (TAKARA)- 5 ul 10X PCR buffer (TAKARA)
- 0.25 ul R Taq Polymerase (TAKARA) - 25.8 ul Aq. Dest.- 0.25 ul R Taq polymerase (TAKARA) - 25.8 ul Aq. Least.
Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:The PCR was carried out under the following cycle conditions:
1X 94°C 2 Minuten 35X94°C 1 Minute 55°C 1 Minuten 72°C 3 Minuten 1X72°C 10 Minuten1X 94 ° C 2 minutes 35X94 ° C 1 minute 55 ° C 1 minute 72 ° C 3 minutes 1X72 ° C 10 minutes
Die PCR-Amplifikation mit SEQ ID No. 79 und SEQ ID No. 80 resultierte in einem 805 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (SEQ ID No. 81). Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR-Klonierungsvektor pGEM-T (Promega) kloniert und der Klon pNOSTF-G erhalten.PCR amplification with SEQ ID No. 79 and SEQ ID No. 80 resulted in an 805 bp fragment which codes for a protein consisting of the entire primary sequence (SEQ ID No. 81). Using standard methods, the amplificate was cloned into the PCR cloning vector pGEM-T (Promega) and the clone pNOSTF-G was obtained.
Sequenzierung des Klons pNOSTF-G mit dem M13F- und dem M13R-Primer bestätigte eine Sequenz, welche mit der DNA-Sequenz von 88,886-89,662 des Datenbankeintrages AP003592 identisch ist. Diese Nukleotidsequenz wurde in einem unabhängigem Amplifikationsexperiment reproduziert und repräsentiert somit die Nukleotidsequenz im verwendeten Nostoc sp. PCC 7120.Sequencing of the clone pNOSTF-G with the M13F and M13R primers confirmed a sequence which is identical to the DNA sequence from 88.886-89.662 of the database entry AP003592. This nucleotide sequence was reproduced in an independent amplification experiment and thus represents the nucleotide sequence in the Nostoc sp. PCC 7120.
Dieser Klon pNOSTF-G wurde daher für die Klonierung in den Expressionsvektor pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380) verwendet. Die Klonierung erfolgte durch Isolierung des 799 Bp Sphl-Fragmentes aus pNOSTF-G und Ligie- rung in den SphI geschnittenen Vektor pJIT117. Der Klon, der die Ketolase von Nostoc sp. PCC 7120 in der korrekten Orientierung als N-terminale translationale Fusion mit dem rbcS Transitpeptid enthält, heisst pJNOST.This clone pNOSTF-G was therefore used for the cloning into the expression vector pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380). The cloning was carried out by isolating the 799 bp Sphl fragment from pNOSTF-G and ligating into the SphI-cut vector pJIT117. The clone that is the ketolase from Nostoc sp. PCC 7120, in the correct orientation as an N-terminal translational fusion with the rbcS transit peptide, is called pJNOST.
Beispiel 2: Konstruktion des Plasmides pMCL-CrtYlBZ idi/gps für die Synthese von Zeaxanthin in E. coliExample 2: Construction of the plasmid pMCL-CrtYlBZ idi / gps for the synthesis of zeaxanthin in E. coli
Die Konstruktion von pMCL-CrtYlBZ/idi/gps erfolgte in drei Schritten über die Zwischenstufen pMCL-CrtYlBZ und pMCL-CrtYlBZ/idi. Als Vektor wurde das mit high- copy-number Vektoren kompatible Plasmid pMCL200 verwendet (Nakano, Y., Yoshida, Y., Yamashita, Y. und Koga, T.; Construction of a series of pACYC-derived plasmid vectors; Gene 162 (1995), 157-158).PMCL-CrtYlBZ / idi / gps was constructed in three steps using the intermediate stages pMCL-CrtYlBZ and pMCL-CrtYlBZ / idi. The plasmid pMCL200 compatible with high-copy-number vectors was used as the vector (Nakano, Y., Yoshida, Y., Yamashita, Y. and Koga, T .; Construction of a series of pACYC-derived plasmid vectors; Gene 162 ( 1995), 157-158).
Beispiel 2.1.: Konstruktion von pMCL-CrtYlBZ Die Biosynthesegene crtY, crtB, crtl und crtZ entstammen dem Bakterium Erwinia uredovora und wurden mittels PCR amplifiziert. Genomische DNA von Erwinia uredovora (DSM 30080)wurde von der Deutschen Sammlung von Mikroorganismen und Zellkutu- ren (DSMZ, Braunschweig) innerhalb eines Service-Dienstes präpariert. Die PCR- Reaktion wurde entsprechend den Angaben des Herstellers durchgeführt (Röche, Long Template PCR: Procedure for amplification of 5-20 kb targets with the expand long template PCR System). Die PCR-Bedingungen für die Amplifikation des Biosynthesec- lusters von Erwinia uredovora waren die folgenden:Example 2.1 .: Construction of pMCL-CrtYlBZ The biosynthetic genes crtY, crtB, crtl and crtZ come from the bacterium Erwinia uredovora and were amplified by PCR. Erwinia uredovora genomic DNA (DSM 30080) was prepared by the German Collection of Microorganisms and Cell Culture (DSMZ, Braunschweig) as part of a service. The PCR reaction was carried out according to the manufacturer's instructions (Röche, Long Template PCR: Procedure for amplification of 5-20 kb targets with the expand long template PCR system). The PCR conditions for the amplification of the Erwinia uredovora biosynthesis cluster were as follows:
Master Mix 1 :Master Mix 1:
- 1.75 ul dNTPs (Endkonzentration 350 μM)- 1.75 ul dNTPs (final concentration 350 μM)
- 0.3 μM Primer Crt1 (SEQ ID No. 82)- 0.3 μM primer Crt1 (SEQ ID No. 82)
- 0.3 μM Primer Crt2 (SEQ ID No. 83)- 0.3 μM primer Crt2 (SEQ ID No. 83)
- 250 - 500 ng genomische DNA von DSM 30080 Aq. Dest. bis zu einem Gesamtvolumen von 50 μl- 250-500ng genomic DNA from DSM 30080 Aq. Dest. Up to a total volume of 50 μl
Master Mix 2:Master Mix 2:
- 5 ul 10x PCR Puffer 1 (Endkonzentration 1x, mit 1.75 mM Mg2+) - 10x PCR Puffer 2 (Endkonzentration 1x, mit 2.25 mM Mg2+)- 5 ul 10x PCR buffer 1 (final concentration 1x, with 1.75 mM Mg2 +) - 10x PCR buffer 2 (final concentration 1x, with 2.25 mM Mg2 +)
- 10x PCR Puffer 3 (Endkonzentration 1x, mit 2.25 mM Mg2+)- 10x PCR buffer 3 (final concentration 1x, with 2.25 mM Mg2 +)
- 0.75 ul Expand Long Template Enzyme Mix (Endkonzentration 2.6 Units) Aq. Dest. bis zu einem Gesamtvolumen von 50 μl Die beiden Ansätze "Master Mix 1" und "Master Mix 2" wurden zusammenpipetiert. Die PCR wurde in einem Gesamtvolumen von 50 ul unter folgenden Zyklusbedingungen durchgeführt:- 0.75 ul Expand Long Template Enzyme Mix (final concentration 2.6 units) Aq. Dest. Up to a total volume of 50 μl The two approaches "Master Mix 1" and "Master Mix 2" were pipetted together. The PCR was carried out in a total volume of 50 μl under the following cycle conditions:
1X94°C 2 Minuten 30X94°C 30 Sekunden 58°C 1 Minute 68°C 4 Minuten 1X72°C 10 Minuten1X94 ° C 2 minutes 30X94 ° C 30 seconds 58 ° C 1 minute 68 ° C 4 minutes 1X72 ° C 10 minutes
Die PCR-Amplifikation mit SEQ ID No. 82 und SEQ ID No. 83 resultierte in einem Fragment (SEQ ID NO: 84), das für die Gene CrtY (Protein: SEQ ID NO: 85), CrtI (Protein: SEQ ID NO: 86), crtB (Protein: SEQ ID NO: 87) und CrtZ (iDNA) kodiert. Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR- Klonierungsvektor pCR2.1 (Invitrogen) kloniert und der Klon pCR2.1-CrtYIBZ erhalten.PCR amplification with SEQ ID No. 82 and SEQ ID No. 83 resulted in a fragment (SEQ ID NO: 84) which is responsible for the genes CrtY (protein: SEQ ID NO: 85), CrtI (protein: SEQ ID NO: 86), crtB (protein: SEQ ID NO: 87) and CrtZ (iDNA) encoded. Using standard methods, the amplificate was cloned into the PCR cloning vector pCR2.1 (Invitrogen) and the clone pCR2.1-CrtYIBZ was obtained.
Das Plasmid pCR2.1-CrtYIBZ wurde Sall und Hindill geschnitten, das resultierende Sall/Hindlll-Fragment isoliert und durch Ligierung in den Sall/Hindlll geschnittenen Vektor pMCL200 transferiert. Das in pMCL 200 klonierte Sall/Hindlll Fragment aus pCR2.1-CrtYIBZ ist 4624 Bp lang, kodiert für die Gene CrtY, CrtI, crtB und CrtZ und entspricht der Sequenz von Position 2295 bis 6918 in D90087 (SEQ ID No. 84). Das Gen CrtZ wird entgegen der Leserichtung der Gene CrtY, CrtI und CrtB mittels seines endogenen Promotors transkribiert. Der resultierende Klon heisst pMCL-CrtYlBZ.The plasmid pCR2.1-CrtYIBZ was cut Sall and Hindill, the resulting Sall / Hindlll fragment isolated and transferred by ligation into the Sall / Hindlll cut vector pMCL200. The Sall / Hindlll fragment from pCR2.1-CrtYIBZ cloned in pMCL 200 is 4624 bp long, codes for the genes CrtY, CrtI, crtB and CrtZ and corresponds to the sequence from positions 2295 to 6918 in D90087 (SEQ ID No. 84). The gene CrtZ is transcribed against the reading direction of the genes CrtY, CrtI and CrtB by means of its endogenous promoter. The resulting clone is called pMCL-CrtYlBZ.
Beispiel 2.2.: Konstruktion von pMCL-CrtYlBZ/idiExample 2.2 .: Construction of pMCL-CrtYlBZ / idi
Das Gen ^ (Isopentenyldiphosphat-Isomerase; IPP-lsomerase) wurde aus E. coli mittels PCR amplifiziert. Die Nukleinsäure, kodierend das gesamte idi Gen mit idi- Promotor und Ribosomenbindestelle, wurde aus E. coli mittels "polymerase chain reac- tion" (PCR) unter Verwendung eines sense-spezifischen Primers (5'-idi SEQ ID No. 88) und eines antisense-spezifischen Primers (3'-idi SEQ ID No. 89) amplifiziert.The gene ^ (isopentenyl diphosphate isomerase; IPP isomerase) was amplified from E. coli by means of PCR. The nucleic acid encoding the entire idi gene with idi promoter and ribosome binding site was extracted from E. coli by means of "polymerase chain reaction" (PCR) using a sense-specific primer (5'-idi SEQ ID No. 88) and an antisense-specific primer (3'-idi SEQ ID No. 89) was amplified.
Die PCR-Bedingungen waren die folgenden:The PCR conditions were as follows:
Die PCR zur Amplifikation der DNA erfolgte in einem 50 μl Reaktionsansatz, in dem enthalten war:The PCR for the amplification of the DNA was carried out in a 50 μl reaction mixture, which contained:
- 1 ul einer £. coli TOP10- Suspension- 1 ul of a £. coli TOP10 suspension
- 0.25 mM dNTPs- 0.25 mM dNTPs
- 0.2 mM 5'-idi (SEQ ID No. 88) - 0.2 mM 3'-idi (SEQ ID No. 89) - 5 ul 10X PCR-Puffer (TAKARA)- 0.2 mM 5'-idi (SEQ ID No. 88) - 0.2 mM 3'-idi (SEQ ID No. 89) - 5 ul 10X PCR buffer (TAKARA)
- 0.25 ul R Taq Polymerase (TAKARA)- 0.25 ul R Taq polymerase (TAKARA)
- 28.8 ul Aq. Dest.- 28.8 ul Aq. Least.
Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:The PCR was carried out under the following cycle conditions:
1X94°C 2 Minuten 20X94°C 1 Minute 62 °C1 Minute 72°C 1 Minute1X94 ° C 2 minutes 20X94 ° C 1 minute 62 ° C1 minute 72 ° C 1 minute
1X72°C 10 Minuten1X72 ° C 10 minutes
Die PCR-Amplifikation mit SEQ ID No. 88 und SEQ ID No. 89 resultierte in einem 679 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (SEQ ID No. 90). Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR-Klonierungsvektor pCR2.1 (Invitrogen) kloniert und der Klon pCR2.1-idi erhalten.PCR amplification with SEQ ID No. 88 and SEQ ID No. 89 resulted in a 679 bp fragment coding for a protein consisting of the entire primary sequence (SEQ ID No. 90). Using standard methods, the amplificate was cloned into the PCR cloning vector pCR2.1 (Invitrogen) and the clone pCR2.1-idi was obtained.
Sequenzierung des Klons pCR2.1-idi bestätigte eine Sequenz, die sich nicht von der publizierten Sequenz AE000372 in Position 8774 bis Position 9440 unterscheidet. Diese Region umfaßt die Promotor-Region, die potentielle Ribosomenbindestelle und den gesamten "open reading frame" für die IPP-lsomerase. Das in pCR2.1-idi klonierte Fragment hat durch das Einfügen einer Xhol-Schnittstelle am 5'-Ende und einer Sall- Schnittstelle am 3'-Ende des /oY-Gens eine Gesamtlänge von 679 Bp.Sequencing of the clone pCR2.1-idi confirmed a sequence that does not differ from the published sequence AE000372 in position 8774 to position 9440. This region includes the promoter region, the potential ribosome binding site and the entire "open reading frame" for the IPP isomerase. The fragment cloned in pCR2.1-idi has a total length of 679 bp by inserting an Xhol site at the 5 'end and a SalI site at the 3' end of the / oY gene.
Dieser Klon wurde daher für die Klonierung des /oY-Gens in den Vektor pMCL-CrtYlBZ verwendet. Die Klonierung erfolgte_durch Isolierung des Xhol/Sall-Fragmentes aus pCR2.1-idi und Ligierung in den Xhol/Sall geschnittenen Vektor pMCL-CrtYlBZ. Der resultierende Klon heisst pMCL-CrtYlBZ/idi.This clone was therefore used for the cloning of the / oY gene in the vector pMCL-CrtYlBZ. The cloning was carried out by isolating the Xhol / Sall fragment from pCR2.1-idi and ligating into the Xhol / Sall cut vector pMCL-CrtYlBZ. The resulting clone is called pMCL-CrtYlBZ / idi.
Beispiel 2.3.: Konstruktion von pMCL-CrtYlBZ/idi/gpsExample 2.3 .: Construction of pMCL-CrtYlBZ / idi / gps
Das Gen gps (Geranylgeranylpyrophosphat-Synthase; ; GGPP-Synthase) wurde aus Archaeoglobus fulgidus mittels PCR amplifiziert. Die Nukleinsäure, kodierend gps aus Archaeoglobus fulgidus, wurde mittels "polymerase chain reaction" (PCR) unter Ver- wendung eines sense-spezifischen Primers (5'-gps SEQ ID No. 92) und eines anti- sense-spezifischen Primers (3'-gps SEQ ID No. 93) amplifiziert.The gene gps (geranylgeranyl pyrophosphate synthase; GGPP synthase) was amplified from Archaeoglobus fulgidus by means of PCR. The nucleic acid, encoding gps from Archaeoglobus fulgidus, was determined using a "polymerase chain reaction" (PCR) using a sense-specific primer (5'-gps SEQ ID No. 92) and an antisense-specific primer (3 ' -gps SEQ ID No. 93).
Die DNA von Archaeoglobus fulgidus wurde von der Deutschen Sammlung von Mikroorganismen und Zellkulturen (DSMZ, Braunschweig) innerhalb eines Service-Dienstes präpariert. Die PCR-Bedingungen waren die folgenden: Die PCR zur Amplifikation der DNA, die für ein GGPP-Synthase Protein bestehend aus der gesamten Primärsequenz kodiert, erfolgte in einem 50 μl Reaktionsansatz, in dem enthalten war:The DNA of Archaeoglobus fulgidus was prepared by the German Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig) as part of a service. The PCR conditions were as follows: The PCR for the amplification of the DNA, which codes for a GGPP synthase protein consisting of the entire primary sequence, was carried out in a 50 μl reaction mixture which contained:
- 1 ul einer Archaeoglobus fulgidus-DNA- 1 µl of Archaeoglobus fulgidus DNA
- 0.25 mM dNTPs- 0.25 mM dNTPs
- 0.2 mM 5'-gps (SEQ ID No. 92)- 0.2 mM 5'-gps (SEQ ID No. 92)
- 0.2 mM 3'-gps (SEQ ID No. 93) - 5 ul 10X PCR-Puffer (TAKARA)- 0.2 mM 3'-gps (SEQ ID No. 93) - 5 ul 10X PCR buffer (TAKARA)
- 0.25 ul R Taq Polymerase (TAKARA)- 0.25 ul R Taq polymerase (TAKARA)
- 28.8 ul Aq. Dest.- 28.8 ul Aq. Least.
Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:The PCR was carried out under the following cycle conditions:
1X94°C 2 Minuten 20X94°C 1 Minute 56°C 1 Minute 72°C 1 Minute 1X72°C 10 Minuten1X94 ° C 2 minutes 20X94 ° C 1 minute 56 ° C 1 minute 72 ° C 1 minute 1X72 ° C 10 minutes
Das mittels PCR und den Primern SEQ ID No. 92 und SEQ ID No. 93 amplifizierte DNA-Fragment wurde mit an sich bekannten Methoden aus dem Agarosegel eluiert und mit den Restriktionsenzymen Ncol und Hindill geschnitten. Daraus resultiert ein 962 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (SEQ ID No. 94). Unter Verwendung von Standardmethoden wurde das Ncol/Hindlll geschnittene Amplifikat in den Vektor pCB97-30 kloniert und der Klon pCB-gps erhalten.Using PCR and the primers SEQ ID No. 92 and SEQ ID No. 93 amplified DNA fragments were eluted from the agarose gel using known methods and cut with the restriction enzymes Ncol and Hindill. This results in a 962 bp fragment which codes for a protein consisting of the entire primary sequence (SEQ ID No. 94). Using standard methods, the Ncol / HindIII cut amplificate was cloned into the vector pCB97-30 and the clone pCB-gps was obtained.
Sequenzierung des Klons pCB-gps bestätigte eine Sequenz für die GGPP-Synthase aus A. fulgidus, die sich von der publizierten Sequenz AF120272 in einem Nukleotid unterscheidet. Durch das Einfügen einer Ncol-Schnittstelle im grps-Gen wurde das zweite Kodon der GGPP-Synthase verändert. In der publizierten Sequenz AF120272 kodiert CTG (Position 4-6) für Leucin. Durch die Amplifikation mit den beiden Primern SEQ ID No. 92 und SEQ ID No. 93 wurde dieses zweite Kodon in GTG verändert, welches für Valin kodiert.Sequencing of the clone pCB-gps confirmed a sequence for the GGPP synthase from A. fulgidus, which differs from the published sequence AF120272 in one nucleotide. The second codon of the GGPP synthase was changed by inserting an Ncol site in the grps gene. In the published sequence AF120272, CTG (position 4-6) codes for leucine. By amplification with the two primers SEQ ID No. 92 and SEQ ID No. In 93 this second codon was changed to GTG, which codes for valine.
Der Klon pCB-gps wurde daher für die Klonierung des gps-Gens in den Vektor pMCL- CrtYlBZ/idi verwendet. Die Klonierung erfolgte durch Isolierung des Kpnl/Xhol- Fragmentes aus pCB-gps und Ligierung in den Kpnl und Xhol geschnittenen Vektor pMCL-CrtYlBZ/idi. Das klonierte Kpnl/Xhol-Fragment (SEQ ID No. 94) trägt den Prm16-Promotor zusammen mit einer minimalen 5'-UTR-Sequenz von rbcL, den ersten 6 Kodons von rbcL, die die GGPP-Synthase N-terminal verlängern, und 3' vom gps-Gen die psbA-Sequenz. Der N-Terminus der GGPP-Synthase hat somit anstelle der natürlichen Aminosäure-Abfolge mit Met-Leu-Lys-Glu (Aminosäure 1 bis 4 aus AF120272) die veränderte Aminosäure-Abfolge Met-Thr-Pro-Gln-Thr-Ala-Met-Val-Lys- Glu. Daraus resultiert, dass die rekombinante GGPP-Synthase, beginnend mit Lys in Position 3 (in AF120272) identisch ist und keine weiteren Änderungen in der Aminosäuresequenz aufweist. Die rbcL- und psbA-Sequenzen wurden gemäß einer Referenz nach EibI et al. (Plant J. 19. (1999), 1-13) verwendet. Der resultierende Klon heisst pMCL-CrtYlBZ/idi/gps.The clone pCB-gps was therefore used for the cloning of the gps gene into the vector pMCL-CrtYlBZ / idi. The cloning was carried out by isolating the Kpnl / Xhol fragment from pCB-gps and ligation into the Kpnl and Xhol cut vector pMCL-CrtYlBZ / idi. The cloned Kpnl / Xhol fragment (SEQ ID No. 94) carries the Prm16 promoter together with a minimal 5 'UTR sequence of rbcL, the first 6 codons of rbcL, which extend the GGPP synthase N-terminally and 3 'from the gps gene the psbA sequence. The N-terminus of the GGPP synthase thus has the changed amino acid sequence Met-Thr-Pro-Gln-Thr-Ala-Met instead of the natural amino acid sequence with Met-Leu-Lys-Glu (amino acid 1 to 4 from AF120272) -Val-Lys- Glu. As a result, the recombinant GGPP synthase, starting with Lys in position 3 (in AF120272), is identical and has no further changes in the amino acid sequence. The rbcL and psbA sequences were based on a reference according to EibI et al. (Plant J. 19. (1999), 1-13). The resulting clone is called pMCL-CrtYlBZ / idi / gps.
Beispiel 3:Example 3:
Biotransformation von Zeaxanthin in rekombinanten E. coli-StämmenBiotransformation of zeaxanthin in recombinant E. coli strains
Zur Zeaxanthin-Biotransformation wurden rekombinante £. co//-Stämme hergestellt, welche durch heterologe Komplementation zur Zeaxanthin-Produktion befähigt sind. Stämme von E. coli TOP10 wurden als Wirtszellen für die Komplementations- Experimente mit den Plasmiden pNOSTF-G und pMCL-CrtYlBZ/idi/gps verwendet.Recombinant £ were used for zeaxanthin biotransformation. co // - strains produced which are capable of producing zeaxanthin by heterologous complementation. Strains of E. coli TOP10 were used as host cells for the complementation experiments with the plasmids pNOSTF-G and pMCL-CrtYlBZ / idi / gps.
Um E. co//-Stämme herzustellen, die die Synthese von Zeaxanthin in hoher Konzentration ermöglichen, wurde das Plasmid pMCL-CrtYlBZ idi/gps konstruiert. Das Plasmid trägt die Bioynthesegene crtY, crtB, crtl und crtY von Erwinia uredovora, das Gen gps (für Geranylgeranylpyrophoshat-Synthastase) aus Archaeoglobus fulgidus und das Gen idi (Isopentenyldiphosphat-Isomerase) aus E. coli. Mit diesem Konstrukt wurden limitierende Schritte für eine hohe Akkumulation von Carotinoiden und deren bio- synthtischen Vorstufen beseitigt. Dies wurde zuvor von Wang et al. in ähnlicher Weise mit mehreren Plasmiden beschrieben (Wang, C.-W., Oh, M.-K. und Liao, J.C.; Engi- neered isoprenoid pathway enhances astaxanthin production in Escherichia coli, Bio- technology and Bioengineering 62 (1999), 235-241).The plasmid pMCL-CrtYlBZ idi / gps was constructed to produce E. co // strains which enable the synthesis of zeaxanthin in high concentration. The plasmid carries the genes crtY, crtB, crtl and crtY from Erwinia uredovora, the gene gps (for geranylgeranyl pyrophoshate synthastase) from Archaeoglobus fulgidus and the gene idi (isopentenyl diphosphate isomerase) from E. coli. Limiting steps for a high accumulation of carotenoids and their biosynthetic precursors were eliminated with this construct. This was previously reported by Wang et al. similarly described with several plasmids (Wang, C.-W., Oh, M.-K. and Liao, JC; engineered isoprenoid pathway enhancements astaxanthin production in Escherichia coli, Biotechnology and Bioengineering 62 (1999), 235-241).
Kulturen von E.coli TOP10 wurden in an sich bekannter Weise mit den beiden Plasmiden pNOSTF-G und pMCL-CrtYlBZ/idi/gps transformiert und in LB-Medium bei 30°C bzw. 37°C über Nacht kultiviert. Ampicillin (50 μg/ml), Chloramphenicol (50 μg/ml) und Isopropyl-ß-thiogalactosid (1 mmol) wurden in an sich üblicher Weise ebenfalls über Nacht zugegeben.Cultures of E. coli TOP10 were transformed in a manner known per se with the two plasmids pNOSTF-G and pMCL-CrtYlBZ / idi / gps and cultured in LB medium at 30 ° C. and 37 ° C. overnight. Ampicillin (50 μg / ml), chloramphenicol (50 μg / ml) and isopropyl-β-thiogalactoside (1 mmol) were also added overnight in a conventional manner.
Zur Isolierung der Carotinoide aus den rekombinanten Stämmen wurden die Zellen mit Aceton extrahiert, das organische Lösungsmittel zur Trockne eingedampft und die Ca- rotinoide mittels HPLC über eine C30-Säule aufgetrennt. Folgende Verfahrensbedingungen wurden eingestellt.To isolate the carotenoids from the recombinant strains, the cells were extracted with acetone, the organic solvent was evaporated to dryness and the Ca Rotinoids separated by HPLC on a C30 column. The following process conditions were set.
Trennsäule: Prontosil C30-Säule, 250 x 4,6 mm, (Bischoff, Leonberg) Flussrate: 1.0 ml/min Eluenten: Laufmittel A - 100% Methanol Laufmittel B - 80% Methanol, 0.2% Ammoniumacetat Laufmittel C - 100% t-Butyl-methylether Gradientprofil:Separation column: Prontosil C30 column, 250 x 4.6 mm, (Bischoff, Leonberg) Flow rate: 1.0 ml / min Eluents: mobile solvent A - 100% methanol mobile solvent B - 80% methanol, 0.2% ammonium acetate mobile solvent C - 100% t- Butyl methyl ether gradient profile:
Detektion: 300 - 500 nm Die Spektren wurden direkt aus den Elutionspeaks unter Verwendung eines Photodio- denarraydetektors bestimmt. Die isolierten Substanzen wurden über ihre Absorptionsspektren und ihre Retentionszeiten im Vergleich zu Standardproben identifiziert.Detection: 300 - 500 nm The spectra were determined directly from the elution peaks using a photodiode array detector. The isolated substances were identified by their absorption spectra and their retention times in comparison to standard samples.
Beispiel 4Example 4
Analog zu den vorhergehenden Beispielen wurde ein E.co//-Stamm hergestellt, der eine Ketolase aus Haematococcus pluvialis Flotow em. Wille exprimiert. Dazu wurde die cDNA, die für die gesamte Primärsequenz der Ketolase aus Haematococcus pluvialis Flotow em. Wille kodiert amplifiziert und gemäß Beispiel 1 in den gleichen Expressionsvektor kloniert.Analogously to the preceding examples, an E.co// strain was produced which contains a ketolase from Haematococcus pluvialis Flotow em. Will expressed. For this purpose, the cDNA which is responsible for the entire primary sequence of the ketolase from Haematococcus pluvialis Flotow em. Will is coded amplified and cloned into the same expression vector according to Example 1.
Die cDNA, die für die Ketolase aus Haematococcus pluvialis kodiert, wurde mittels PCR aus einer Haematococcus pluvialis (Stamm 192.80 der "Sammlung von Algenkulturen der Universität Göttingen") Suspensionskultur amplifiziert. Für die Präparation von Total-RNA aus einer Suspensionskultur von Haematococcus pluvialis (Stamm 192.80), die 2 Wochen mit indirektem Tageslicht bei Raumtemperatur in Haematococ- cus- Medium (1.2 g/l Natriumacetat, 2 g/l Hefeextrakt, 0.2 g/l MgCI2x6H20, 0.02 CaCI2x2H20; pH 6.8; nach Autoklavieren Zugabe von 400 mg/l L-Asparagin, 10 mg/l FeS04xH20) gewachsen war, wurden die Zellen geerntet, in flüssigem Stickstoff eingefroren und im Mörser pulverisiert. Anschließend wurden 100 mg der gefrorenen, pul- verisierten Algenzellen in ein Reaktionsgefäß überführt und in 0.8 ml Trizol-Puffer (Li- feTechnologies) aufgenommen. Die Suspension wurde mit 0.2 ml Chloroform extrahiert. Nach 15 minütiger Zentrifugation bei 12 000 g wurde der wässrige Überstand abgenommen und in ein neues Reaktionsgefäß überführt und mit einem Volumen E- thanol extrahiert. Die RNA wurde mit einem Volumen Isopropanol gefällt, mit 75% E- thanol gewaschen und das Pellet in DEPC Wasser (über Nacht Inkubation von Wasser mit 1/1000 Volumen Diethylpyrocarbonat bei Raumtemperatur, anschließend autokla- viert) gelöst. Die RNA-Konzentration wurde photometrisch bestimmt.The cDNA coding for the ketolase from Haematococcus pluvialis was amplified by means of PCR from a Haematococcus pluvialis (strain 192.80 from the "Collection of algal cultures of the University of Göttingen") suspension culture. For the preparation of total RNA from a suspension culture of Haematococcus pluvialis (strain 192.80), which was exposed to indirect daylight at room temperature in Haematococ cus medium (1.2 g / l sodium acetate, 2 g / l yeast extract, 0.2 g / l MgCI2x6H20, 0.02 CaCI2x2H20; pH 6.8; after autoclaving, 400 mg / l L-asparagine, 10 mg / l FeS04xH20) had been grown the cells are harvested, frozen in liquid nitrogen and pulverized in a mortar. Then 100 mg of the frozen, powdered algae cells were transferred to a reaction vessel and taken up in 0.8 ml of Trizol buffer (Life Technologies). The suspension was extracted with 0.2 ml chloroform. After centrifugation at 12,000 g for 15 minutes, the aqueous supernatant was removed and transferred to a new reaction vessel and extracted with a volume of ethanol. The RNA was precipitated with a volume of isopropanol, washed with 75% ethanol and the pellet was dissolved in DEPC water (overnight incubation of water with 1/1000 volume of diethyl pyrocarbonate at room temperature, then autoclaved). The RNA concentration was determined photometrically.
Für die cDNA-Synthese wurden 2.5 ug Gesamt-RNA für 10 min bei 60°C denaturiert, für 2 min auf Eis abgekühlt und mittels eines cDNA-Kits (Ready-to-go-you-prime- beads, Pharmacia Biotech) nach Herstellerangaben unter Verwendung eines antisense spezifischen Primers PR1 (gcaagctcga cagctacaaa cc) in cDNA umgeschrieben.For the cDNA synthesis, 2.5 μg of total RNA were denatured for 10 min at 60 ° C., cooled on ice for 2 min and using a cDNA kit (ready-to-go-you-prime beads, Pharmacia Biotech) according to the manufacturer's instructions rewritten into cDNA using an antisense specific primer PR1 (gcaagctcga cagctacaaa cc).
Die Nukleinsäure codierend eine Ketolase aus Haematococcus pluvialis (Stamm 192.80) wurde mittels polymerase chain reaction (PCR) aus Haematococcus pluvialis unter Verwendung eines sense spezifischen Primers PR2 (gaagcatgca gctagcagcg acag) und eines antisense spezifischen Primers PR1 amplifiziert.The nucleic acid encoding a kematolase from Haematococcus pluvialis (strain 192.80) was amplified by means of a polymerase chain reaction (PCR) from Haematococcus pluvialis using a sense-specific primer PR2 (gaagcatgca gctagcagcg acag) and an antisense-specific primer PR1.
Die PCR-Bedingungen waren die folgenden:The PCR conditions were as follows:
Die PCR zur Amplifikation der cDNA, die für ein Ketolase Protein bestehend aus der gesamten Primärsequenz codiert, erfolgte in einem 50 ml Reaktionsansatz, in dem enthalten war:The PCR for the amplification of the cDNA, which codes for a ketolase protein consisting of the entire primary sequence, was carried out in a 50 ml reaction mixture which contained:
- 4 ml einer Haematococcus pluvialis cDNA (hergestellt wie oben beschrieben)4 ml of a Haematococcus pluvialis cDNA (prepared as described above)
- 0.25 mM dNTPs- 0.25 mM dNTPs
- 0.2 mM PR1- 0.2 mM PR1
- 0.2 mM PR2- 0.2 mM PR2
- 5 ml 10X PCR-Puffer (TAKARA) - 0.25 ml R Taq Polymerase (TAKARA)- 5 ml 10X PCR buffer (TAKARA) - 0.25 ml R Taq Polymerase (TAKARA)
- 25.8 ml Aq. Dest.- 25.8 ml Aq. Least.
Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:The PCR was carried out under the following cycle conditions:
1X94°C 2 Minuten 35X94°C 1 Minute 53°C 2 Minuten 72°C 3 Minuten 1X72°C 10 Minuten1X94 ° C 2 minutes 35X94 ° C 1 minute 53 ° C 2 minutes 72 ° C 3 minutes 1X72 ° C 10 minutes
Die PCR-Amplifikation mit PR1 und PR2 resultierte in einem 1155 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz codiert: gaagcatgca gctagcagcg acagtaatgt tggagcagct taccggaagc gctgaggcac 60 tcaaggagaa ggagaaggag gttgcaggca gctctgacgt gttgcgtaca tgggcgaccc 120 agtactcgct tccgtcagag gagtcagacg cggcccgccc gggactgaag aatgcctaca 180 agccaccacc ttccgacaca aagggcatca caatggcgct agctgtcatc ggctcctggg 240 ccgcagtgtt cctccacgcc atttttcaaa tcaagcttcc gacctccttg gaccagctgc 300 actggctgcc cgtgtcagat gccacagctc agctggttag cggcagcagc agcctgctgc 360 acatcgtcgt agtattcttt gtcctggagt tcctgtacac aggccttttt atcaccacgc 420 atgatgctat catggcacc atcgccatga gaaacaggca gcttaatgac ttcttgggca 480 gagtatgcat ctccttgtac gcctggtttg attacaacat gctgcaccgc aagcattggg 540 agcaccacaa ccacactggc gaggtgggca aggaccctga cttccacagg ggaaaccctg 600 gcattgtgcc ctggtttgcc agcttcatgt ccagctacat gtcgatgtgg cagtttgcgc 660 gcctcgcatg gtggacggtg gtcatgcagc tgctgggtgc gccaatggcg aacctgctgg 720 tgttcatggc ggccgcgccc atcctgtccg ccttccgctt gttctacttt ggcacgtaca 780 tgccccacaa gcctgagcct ggcgccgcgt caggctcttc accagccgtc atgaactggt 840 ggaagtcgcg cactagccag gcgtccgacc tggtcagctt tctgacctgc taccacttcg 900 acctgcactg ggagcaccac cgctggccct ttgccccctg gtgggagctg cccaactgcc 960 gccgcctgtc tggccgaggt ctggttcctg cctagctgga cacactgcag tgggccctgc 1020 tgccagctgg gcatgcaggt tgtggcagga ctgggtgagg tgaaaagctg caggcgctgc 1080 tgccggacac gctgcatggg ctaccctgtg tagctgccgc cactagggga gggggtttgt 1140 agctgtcgag cttgcThe PCR amplification with PR1 and PR2 resulted in a 1155 bp fragment consisting encodes a protein consisting of the entire primary sequence: gaagcatgca gctagcagcg acagtaatgt tggagcagct taccggaagc gctgaggcac 60 tcaaggagaa ggagaaggag gttgcaggca gctctgacgt gttgcgtaca tgggcgaccc 120 agtactcgct tccgtcagag gagtcagacg cggcccgccc gggactgaag aatgcctaca 180 agccaccacc ttccgacaca aagggcatca caatggcgct agctgtcatc ggctcctggg 240 ccgcagtgtt cctccacgcc atttttcaaa tcaagcttcc gacctccttg gaccagctgc 300 actggctgcc cgtgtcagat gccacagctc agctggttag cggcagcagc agcctgctgc 360 acatcgtcgt agtattcttt gtcctggagt tcctgtacac aggccttttt atcaccacgc 420 atgatgctat catggcacc atcgccatga gaaacaggca gcttaatgac ttcttgggca 480 gagtatgcat ctccttgtac gcctggtttg attacaacat gctgcaccgc aagcattggg 540 agcaccacaa ccacactggc gaggtgggca aggaccctga cttccacagg ggaaaccctg 600 gcattgtgcc ctggtttgcc agcttcatgt ccagctacat gtcgatgtgg cagtttgcgc 660 gcctcgcatg gtggacggtg gtcatgcagc tgctgggtgc gccaatggcg aacctgctgg 720 tgttcatggc vs. ccgcgccc atcctgtccg ccttccgctt gttctacttt ggcacgtaca 780 tgccccacaa gcctgagcct ggcgccgcgt caggctcttc accagccgtc atgaactggt 840 ggaagtcgcg cactagccag gcgtccgacc tggtcagctt tctgacctgc taccacttcg 900 acctgcactg ggagcaccac cgctggccct ttgccccctg gtgggagctg cccaactgcc 960 gccgcctgtc tggccgaggt ctggttcctg cctagctgga cacactgcag tgggccctgc 1020 tgccagctgg gcatgcaggt tgtggcagga ctgggtgagg tgaaaagctg caggcgctgc 1080 tgccggacac gctgcatggg ctaccctgtg tagctgccgc cactagggga gggggtttgt 1140 agctgtcgag cttgc
Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR- Klonierungsvektor pGEM-Teasy (Promega) kloniert und der Klon pGKET02 erhalten.Using standard methods, the amplificate was cloned into the PCR cloning vector pGEM-Teasy (Promega) and the clone pGKET02 was obtained.
Sequenzierung des Klons pGKET02 mit dem T7- und dem SP6-Primer bestätigte eine Sequenz, die sich lediglich in den drei Codons 73, 114 und 119 in je einer Base von der publizierten Sequenz X86782 unterscheidet. Diese Nukleotidaustausche wurden in einem unabhängigem Amplifikationsexperiment reproduziert und repräsentieren somit die Nukleotidsequenz im verwendeten Haematococcus pluvialis Stamm 192.80.Sequencing of the clone pGKET02 with the T7 and the SP6 primer confirmed a sequence which differs from the published sequence X86782 only in the three codons 73, 114 and 119 in one base each. These nucleotide changes were reproduced in an independent amplification experiment and thus represent the nucleotide sequence in the Haematococcus pluvialis strain 192.80 used.
Dieser Klon wurde für die Expression der Ketolase von Haematococcus pluvialis verwendet. Die Transformation der E.coli Stämme, deren Kultivierung und die Analyse des Carotinoidprofils erfolgte wie in Beispiel 3 beschrieben.This clone was used for the expression of Haematococcus pluvialis ketolase. The transformation of the E. coli strains, their cultivation and the analysis of the carotenoid profile were carried out as described in Example 3.
Tabelle 1 zeigt einen Vergleich der bakteriell produzierten Carotinoidmengen:Table 1 shows a comparison of the bacterially produced amounts of carotenoids:
Tablelle 1 : Vergleich der bakteriellen Ketocarotinoid-Synthese bei Verwendung zweier verschiedener Ketolasen, der NOST-Ketolase aus Nostoc sp. PCC7120 (Beispiel 1) und der Ketolase aus Haematococcus pluvialis (Beispiel 4). Carotinoidmengen sind in ng/ ml Kulturflüssigkeit angegeben.Table 1: Comparison of the bacterial ketocarotenoid synthesis when using two different ketolases, the NOST ketolase from Nostoc sp. PCC7120 (Example 1) and the Haematococcus pluvialis ketolase (Example 4). Amounts of carotenoids are in ng / ml culture fluid.
Beispiel 5: Amplifikation einer DNA, die die gesamte Primärsequenz der NP196-Ketolase aus Nostoc punctiforme ATCC 29133 kodiert Example 5: Amplification of a DNA encoding the entire primary sequence of the NP196 ketolase from Nostoc punctiforme ATCC 29133
Die DNA, die für die NP196-Ketolase aus Nostoc punctiforme ATCC 29133 kodiert, wurde mittels PCR aus Nostoc punctiforme ATCC 29133 (Stamm der "American Type Culture Collection") amplifiziert.The DNA which codes for the NP196 ketolase from Nostoc punctiform ATCC 29133 was amplified by means of PCR from Nostoc punctiform ATCC 29133 (strain of the "American Type Culture Collection").
Für die Präparation von genomischer DNA aus einer Suspensionskultur von Nostoc punctiforme ATCC 29133, die 1 Woche mit Dauerlicht und konstantem Schütteln (150 rpm) at 25°C in BG 77-Medium (1 ,5 g/l NaN03, 0,04 g/l K2P04x3H20, 0,075 g/l MgS04xH20, 0,036 g/l CaCI2x2H20, 0,006 g/l citric acid, 0,006 g/l Ferric ammonium citrate, 0,001 g/l EDTA disodium magnesium, 0,04 g/l Na2C03, 1 ml Trace Metal Mix "A5+Co" (2,86 g/l H3B03, 1 ,81 g/l MnCI2x4H2o, 0,222 g/l ZnSO4x7H20, 0,39 g/l Na- oθ4X2H2o, 0,079 g/l CuS04x5H20, 0,0494 g/l Co(N03)2x6H20)) gewachsen war, wurden die Zellen durch Zentrifugation geerntet, in flüssigem Stickstoff eingefroren und im Mörser pulverisiert.For the preparation of genomic DNA from a suspension culture of Nostoc punctiforme ATCC 29133, which 1 week with continuous light and constant shaking (150 rpm) at 25 ° C in BG 77 medium (1.5 g / l NaN0 3 , 0.04 g / l K 2 P0 4 x3H 2 0, 0.075 g / l MgS0 4 xH 2 0, 0.036 g / l CaCI 2 x2H 2 0, 0.006 g / l citric acid, 0.006 g / l ferric ammonium citrate, 0.001 g / l EDTA disodium magnesium, 0.04 g / l Na 2 C0 3 , 1 ml trace metal mix "A5 + Co" (2.86 g / l H 3 B0 3 , 1.81 g / l MnCl 2 x4H 2 o, 0.222 g / l ZnSO 4 x7H 2 0, 0.39 g / l Na- oθ 4 X2H 2 o, 0.079 g / l CuS0 4 x5H 2 0, 0.0494 g / l Co (N0 3 ) 2 x6H 2 0)) the cells were harvested by centrifugation, frozen in liquid nitrogen and pulverized in a mortar.
Protokoll für die DNA-Isolation aus Nostoc punctiforme ATCC 29133:Protocol for DNA isolation from Nostoc punctiform ATCC 29133:
Aus einer 10 ml Flüssigkultur wurden die Bakterienzellen durch 10minütige Zentrifuga- tion bei 8000 rpm pelletiert. Anschließend wurden die Bakterienzellen in flüssigem Stickstoff mit einem Mörser zerstoßen und gemahlen. Das Zellmaterial wurde in 1 ml 10mM Tris-HCI (pH 7.5) resuspendiert und in ein Eppendorf-Reaktionsgefäß (2ml Volumen) überführt. Nach Zugabe von 100 QCI Proteinase K (Konzentration: 20 mg/ml) wurde die Zellsuspension für 3 Stunden bei 37°C inkubiert. Anschließend wurde die Suspension mit 500 μl Phenol extrahiert. Nach 5minütiger Zentrifugation bei 13000 upm wurde die obere, wässrige Phase in ein neues 2-ml-Eppendorf-Reaktionsgefäß überführt. Die Extraktion mit Phenol wurde 3mal wiederholt. Die DNA wurde durch Zugabe von 1/10 Volumen 3 M Natriumacetat (pH 5,2) und 0,6 Volumen Isopropanol gefällt und anschließend mit 70 % Ethanol gewaschen. Das DNA-Pellet wurde bei Raum- temperatur getrocknet, in 25 μl | Wasser aufgenommen und unter Erhitzung auf 65°C gelöst.The bacterial cells were pelleted from a 10 ml liquid culture by centrifugation at 8000 rpm for 10 minutes. The bacterial cells were then crushed and ground in liquid nitrogen using a mortar. The cell material was resuspended in 1 ml of 10 mM Tris-HCl (pH 7.5) and transferred into an Eppendorf reaction vessel (2 ml volume). After adding 100 QCI Proteinase K (concentration: 20 mg / ml), the cell suspension was incubated for 3 hours at 37 ° C. The suspension was then extracted with 500 μl of phenol. After centrifugation at 13000 rpm for 5 minutes, the upper, aqueous phase was transferred to a new 2 ml Eppendorf reaction vessel. The extraction with phenol was repeated 3 times. The DNA was precipitated by adding 1/10 volume of 3 M sodium acetate (pH 5.2) and 0.6 volume of isopropanol and then washed with 70% ethanol. The DNA pellet was temperature dried, in 25 μl | Water was taken up and dissolved while heating to 65 ° C.
Die Nukleinsäure, kodierend eine Ketolase aus Nostoc punctiforme ATCC 29133, wur- de mittels "polymerase chain reaction" (PCR) aus Nostoc punctiforme ATCC 29133 unter Verwendung eines sense-spezifischen Primers (NP196-1 , SEQ ID No. 100) und eines antisense-spezifischen Primers (NP196-2 SEQ ID No. 101) amplifiziert.The nucleic acid encoding a ketolase from Nostoc punctiform ATCC 29133 was synthesized by means of a "polymerase chain reaction" (PCR) from Nostoc punctiform ATCC 29133 using a sense-specific primer (NP196-1, SEQ ID No. 100) and an antisense -specific primer (NP196-2 SEQ ID No. 101).
Die PCR-Bedingungen waren die folgenden:The PCR conditions were as follows:
Die PCR zur Amplifikation der DNA, die für ein Ketolase Protein bestehend aus der gesamten Primärsequenz kodiert, erfolgte in einem 50 ul Reaktionsansatz, in dem enthalten war:The PCR for the amplification of the DNA, which codes for a ketolase protein consisting of the entire primary sequence, was carried out in a 50 μl reaction mixture which contained:
- 1 ul einer Nostoc punctiforme ATCC 29133 DNA (hergestellt wie oben beschrieben)- 1 µl of a Nostoc punctiform ATCC 29133 DNA (prepared as described above)
- 0.25 mM dNTPs- 0.25 mM dNTPs
- 0.2 mM NP196-1 (SEQ ID No. 100)- 0.2 mM NP196-1 (SEQ ID No. 100)
- 0.2 mM NP196-2 (SEQ ID No. 101)- 0.2 mM NP196-2 (SEQ ID No. 101)
- 5 ul 10X PCR-Puffer (TAKARA) - 0.25 ul R Taq Polymerase (TAKARA)- 5 ul 10X PCR buffer (TAKARA) - 0.25 ul R Taq polymerase (TAKARA)
- 25.8 ul Aq. Dest.- 25.8 ul Aq. Least.
Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:The PCR was carried out under the following cycle conditions:
1X94°C 2 Minuten 35X94°C 1 Minute 55°C 1 Minuten 72°C 3 Minuten 1X72°C 10 Minuten1X94 ° C 2 minutes 35X94 ° C 1 minute 55 ° C 1 minute 72 ° C 3 minutes 1X72 ° C 10 minutes
Die PCR-Amplifikation mit SEQ ID No. 100 und SEQ ID No. 101 resultierte in einem 792 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (NP196, SEQ ID No. 102). Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR-Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und der Klon pNP196 erhalten.PCR amplification with SEQ ID No. 100 and SEQ ID No. 101 resulted in a 792 bp fragment that codes for a protein consisting of the entire primary sequence (NP196, SEQ ID No. 102). Using standard methods, the amplificate was cloned into the PCR cloning vector pCR 2.1 (Invitrogen) and the clone pNP196 was obtained.
Sequenzierung des Klons pNP196 mit dem M13F- und dem M13R- Primer bestätigte eine Sequenz, welche mit der DNA-Sequenz von 140.571-139.810 des Datenbank-eintrages NZ_AABC01000196 identisch ist (inverse orientiert zum ver- öffentlichen Datenbankeintrag) mit der Ausnahme, daß G in Position 140.571 durch A ersetzt wurde, um ein Standard-Startkodon ATG zu erzeugen. Diese Nukleotidsequenz wurde in einem unabhängigem Amplifikationsexperiment reproduziert und repräsentiert somit die Nukleotidsequenz im verwendeten Nostoc punctiforme ATCC 29133.Sequencing of the clone pNP196 with the M13F and M13R primers confirmed a sequence which is identical to the DNA sequence from 140.571-139.810 of the database entry NZ_AABC01000196 (inverse oriented to the published database entry) with the exception that G in Item 140.571 through A was replaced to create a standard start codon ATG. This nucleotide sequence was reproduced in an independent amplification experiment and thus represents the nucleotide sequence in the Nostoc punctiforme ATCC 29133 used.
Dieser Klon pNP196 wurde daher für die Klonierung in den Expressionsvektor pJIT117(Guerineau et al. 1988, Nucl. Acids Res. 16: 11380) verwendet.This clone pNP196 was therefore used for the cloning into the expression vector pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380).
pJIT117 wurde modifiziert, indem der 35S-Terminator durch den OCS-Terminator (Oc- topine Synthase) des Ti-Plasmides pTi15955 von Agrobacterium tumefaciens (Daten- bankeintrag X00493 von Position 12,541-12,350, Gielen et al. (1984) EMBO J. 3 835- 846) ersetzt wurde.pJIT117 was modified by the 35S terminator using the OCS terminator (octopine synthase) of the Ti plasmid pTi15955 from Agrobacterium tumefaciens (database entry X00493 from position 12.541-12.350, Gielen et al. (1984) EMBO J. 3 835-846) was replaced.
Das DNA-Fragment, das die OCS-Terminatorregion beinhaltet, wurde mittels PCR unter Verwendung des Plasmides pHELLSGATE (Datenbankeintrag AJ311874, Wesley et al. (2001) Plant J. 27 581-590, nach Standardmethoden aus E.coli isoliert) sowie der Primer OCS-1 (SEQ ID No. 133) und OCS-2 (SEQ ID No. 134) hergestellt.The DNA fragment containing the OCS terminator region was PCR-isolated using the plasmid pHELLSGATE (database entry AJ311874, Wesley et al. (2001) Plant J. 27 581-590, isolated from E. coli by standard methods) and the primer OCS-1 (SEQ ID No. 133) and OCS-2 (SEQ ID No. 134).
Die PCR-Bedingungen waren die folgenden:The PCR conditions were as follows:
Die PCR zur Amplifikation der DNA, die die Octopin Synthase (OCS) Terminatorregion (SEQ ID No. 106) beinhaltet, erfolgte in einem 50 ul Reaktionsansatz, in dem enthalten waren:The PCR for the amplification of the DNA, which contains the octopine synthase (OCS) terminator region (SEQ ID No. 106), was carried out in a 50 μl reaction mixture, which contained:
- 100 ng pHELLSGATE plasmid DNA - 0.25 mM dNTPs- 100ng pHELLSGATE plasmid DNA - 0.25mM dNTPs
- 0.2 mM OCS-1 (SEQ ID No. 104)- 0.2 mM OCS-1 (SEQ ID No. 104)
- 0.2 mM OCS-2 (SEQ ID No. 105)- 0.2 mM OCS-2 (SEQ ID No. 105)
- 5 ul 10X PCR-Puffer (Stratagene)- 5 ul 10X PCR buffer (Stratagene)
- 0.25 ul Pfu Polymerase (Stratagene) - 28.8 ul Aq. Dest.- 0.25 ul Pfu polymerase (Stratagene) - 28.8 ul Aq. Least.
Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:The PCR was carried out under the following cycle conditions:
1X94°C 2 Minuten 35X94°C 1 Minute 50°C 1 Minute 72°C 1 Minute 1X72°C 10 Minuten Das 210 bp Amplifikat wurde unter Verwendung von Standardmethoden in den PCR- Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und das Plasmid pOCS erhalten.1X94 ° C 2 minutes 35X94 ° C 1 minute 50 ° C 1 minute 72 ° C 1 minute 1X72 ° C 10 minutes The 210 bp amplificate was cloned into the PCR cloning vector pCR 2.1 (Invitrogen) using standard methods and the plasmid pOCS was obtained.
Sequenzierung des Klons pOCS bestätigte eine Sequenz, die mit einem Sequenzab- schnitt auf dem Ti-Plasmid pTi 15955 von Agrobacterium tumefaciens (Datenbankeintrag X00493) von Position 12.541 bis 12.350 übereinstimmt.Sequencing of the clone pOCS confirmed a sequence which corresponds to a sequence section on the Ti plasmid pTi 15955 from Agrobacterium tumefaciens (database entry X00493) from positions 12,541 to 12,350.
Die Klonierung erfolgte durch Isolierung des 210 bp Sall-Xhol Fragmentes aus pOCS und Ligierung in den Sall-Xhol geschnittenen Vektor pJIT117.The cloning was carried out by isolating the 210 bp Sall-Xhol fragment from pOCS and ligation into the Sall-Xhol cut vector pJIT117.
Dieser Klon heisst pJO und wurde daher für die Klonierung in den Expressionsvektor pJONPI 96 verwendet.This clone is called pJO and was therefore used for the cloning into the expression vector pJONPI 96.
Die Klonierung erfolgte durch Isolierung des 782 Bp Sphl-Fragmentes aus pNP196 und Ligierung in den SphI geschnittenen Vektor pJO. Der Klon, der die NP196-Ketolase von Nostoc punctiforme in der korrekten Orientierung als N-terminale translationale Fusion mit dem rbcS Transitpeptid enthält, heisst pJONP196.The cloning was carried out by isolating the 782 bp Sphl fragment from pNP196 and ligating into the SphI cut vector pJO. The clone that contains the NP196 ketolase from Nostoc punctiforme in the correct orientation as an N-terminal translational fusion with the rbcS transit peptide is called pJONP196.
Beispiel 6: Herstellung von Expressionsvektoren zur konstitutiven Expression der NP196-Ketolase aus Nostoc punctiforme ATCC 29133 in Lycopersicon esculentum und Tagetes erecta.Example 6: Production of expression vectors for the constitutive expression of the NP196 ketolase from Nostoc punctiforme ATCC 29133 in Lycopersicon esculentum and Tagetes erecta.
Die Expression der NP196-Ketolase aus Nostoc punctiforme in L. esculentum und in Tagetes erecta erfolgte unter Kontrolle des konstitutiven Promotors FNR (Ferredoxin- NADPH- Oxidoreductase, Datenbankeintrag AB011474 Position 70127 bis 69493;The expression of the NP196 ketolase from Nostoc punctiforme in L. esculentum and in Tagetes erecta was carried out under the control of the constitutive promoter FNR (ferredoxin NADPH oxidoreductase, database entry AB011474 position 70127 to 69493;
WO03/006660), aus Arabidopsis thaliana. Das FNR-Gen beginnt bei Basenpaar 69492 und ist mit "Ferredoxin-NADP+ Reductase" annotiert. Die Expression erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715).WO03 / 006660), from Arabidopsis thaliana. The FNR gene begins at base pair 69492 and is annotated with "ferredoxin-NADP + reductase". Expression was carried out using the pea transit peptide rbcS (Anderson et al. 1986, Biochem J. 240: 709-715).
Das DNA Fragment, das die FNR Promotorregion aus Arabidopsis thaliana beinhaltet, wurde mittels PCR unter Verwendung genomischer DNA (nach Standardmethoden aus Arabidopsis thaliana isoliert) sowie der Primer FNR-1 (SEQ ID No. 107) und FNR-2 (SEQ ID No. 108) hergestellt.The DNA fragment containing the FNR promoter region from Arabidopsis thaliana was PCR-analyzed using genomic DNA (isolated from Arabidopsis thaliana according to standard methods) and the primers FNR-1 (SEQ ID No. 107) and FNR-2 (SEQ ID No. 108).
Die PCR-Bedingungen waren die folgenden:The PCR conditions were as follows:
Die PCR zur Amplifikation der DNA, die das FNR-Promotorfragment FNR (SEQ ID No. 109) beinhaltet, erfolgte in einem 50 ul Reaktionsansatz, in dem enthalten war:The PCR for the amplification of the DNA, which contains the FNR promoter fragment FNR (SEQ ID No. 109), was carried out in a 50 μl reaction mixture which contained:
- 100 ng genomischer DNA aus A.thaliana - 0.25 mM dNTPs- 100ng of A. thaliana genomic DNA - 0.25 mM dNTPs
- 0.2 mM FNR-1 (SEQ ID No. 107)- 0.2 mM FNR-1 (SEQ ID No. 107)
- 0.2 mM FNR-2 (SEQ ID No. 108)- 0.2 mM FNR-2 (SEQ ID No. 108)
- 5 ul 10X PCR-Puffer (Stratagene) - 0.25 ul Pfu Polymerase (Stratagene)- 5 µl 10X PCR buffer (Stratagene) - 0.25 µl Pfu polymerase (Stratagene)
- 28.8 ul Aq. Dest.- 28.8 ul Aq. Least.
Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:The PCR was carried out under the following cycle conditions:
1X94°C 2 Minuten 35X94°C 1 Minute 50°C 1 Minute 72°C 1 Minute 1X72°C 10 Minuten1X94 ° C 2 minutes 35X94 ° C 1 minute 50 ° C 1 minute 72 ° C 1 minute 1X72 ° C 10 minutes
Das 652 bp Amplifikat wurde unter Verwendung von Standardmethoden in den PCR- Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und das Plasmid pFNR erhalten.The 652 bp amplificate was cloned into the PCR cloning vector pCR 2.1 (Invitrogen) using standard methods and the plasmid pFNR was obtained.
Sequenzierung des Klons pFNR bestätigte eine Sequenz, die mit einem Sequenzab- schnitt auf Chromosom 5 von Arabidopsis thaliana (Datenbankeintrag AB011474) von Position 70127 bis 69493 übereinstimmt.Sequencing of the clone pFNR confirmed a sequence which corresponds to a sequence section on chromosome 5 of Arabidopsis thaliana (database entry AB011474) from positions 70127 to 69493.
Dieser Klon heisst pFNR und wurde daher für die Klonierung in den Expressionsvektor pJONP196 (in Beispiel 5 beschrieben) verwendet.This clone is called pFNR and was therefore used for the cloning into the expression vector pJONP196 (described in Example 5).
Die Klonierung erfolgte durch Isolierung des 644 bp Smal-Hindlll Fragmentes aus pFNR und Ligierung in den Ecl136ll-Hindlll geschnittenen Vektor pJONP196. Der Klon, der den Promotor FNR anstelle des ursprünglichen Promotors d35S und das Fragment NP196 in der korrekten Orientierung als N-terminale Fusion mit dem rbcS Transitpeptid enthält, heisst pJOFNR:NP196.The cloning was carried out by isolating the 644 bp Smal-Hindlll fragment from pFNR and ligating into the Ecl136ll-Hindlll cut vector pJONP196. The clone which contains the promoter FNR instead of the original promoter d35S and the fragment NP196 in the correct orientation as an N-terminal fusion with the rbcS transit peptide is called pJOFNR: NP196.
Die Herstellung einer Expressionskassette für die Agrobacterium vermittelte Transformation der NP196-Ketolase aus Nostoc in L. esculentum erfolgte unter der Verwendung des binären Vektors pSUN3 (WO02/00900).An expression cassette for the Agrobacterium-mediated transformation of the NP196 ketolase from Nostoc into L. esculentum was produced using the binary vector pSUN3 (WO02 / 00900).
Zur Herstellung des Expressionsvektors MSP105 wurde das 1.839 bp EcoRI-Xhol Fragment aus pJOFNR:NP196 mit dem EcoRI-Xhol geschnittenen Vektor pSUN3 li- giert. Der Expressionsvektors MSP105 enthält Fragment FNR Promotor den FNR Promotor (635 bp), Fragment rbcS TP FRAGMENT das rbcS Transitpeptid aus Erbse (194 bp), Fragment NP196 KETO CDS (761 bp), kodierend für die Nostoc punctiforme NP196-Ketolase , Fragment OCS Terminator (192 bp) das Polyadenylierungssignal von der Octopin- Synthase.To produce the expression vector MSP105, the 1,839 bp EcoRI-Xhol fragment from pJOFNR: NP196 was ligated with the EcoRI-Xhol cut vector pSUN3. The expression vector MSP105 contains fragment FNR promoter the FNR promoter (635 bp), fragment rbcS TP FRAGMENT the rbcS transit peptide from pea (194 bp), fragment NP196 KETO CDS (761 bp), coding for the Nostoc punctiforme NP196 ketolase, fragment OCS terminator (192 bp) the polyadenylation signal from the octopine synthase.
Die Herstellung einer Expressionskassette für die Transfor- mation des Expressionsvektor mit der NP196-Ketolase aus Nostoc punctiforme in Tagetes erecta erfolgte unter der Verwendung des binären Vektors pSUN5 (WO02/00900).The production of an expression cassette for the The expression vector was transformed with the NP196 ketolase from Nostoc punctiforme in Tagetes erecta using the binary vector pSUN5 (WO02 / 00900).
Zur Herstellung des Tagetes-Expressionsvektors MSP106 wurde das 1.839 bp EcoRI- Xhol Fragment aus pJOFNR:NP196 mit dem EcoRI-Xhol geschnittenen Vektor pSUN5 ligiert . MSP106 beinhaltet Fragment FNR Promotor den FNR Promotor (635 bp), Fragment rbcS TP FRAGMENT das rbcS Transitpeptid aus Erbse (194 bp), Fragment NP196 KETO CDS (761 bp), kodierend für die Nostoc punctiforme NP196-Ketolase , Fragment OCS Terminator (192 bp) das Polyadenylierungssignal von Octopin- Synthase.To produce the Tagetes expression vector MSP106, the 1,839 bp EcoRI-Xhol fragment from pJOFNR: NP196 was ligated with the EcoRI-Xhol cut vector pSUN5. MSP106 contains fragment FNR promoter the FNR promoter (635 bp), fragment rbcS TP FRAGMENT the rbcS transit peptide from pea (194 bp), fragment NP196 KETO CDS (761 bp), coding for the nostoc punctiform NP196 ketolase, fragment OCS terminator (192 bp) the polyadenylation signal of octopine synthase.
Beispiel 7:Example 7:
Herstellung von Expressionsvektoren zur blütenspezifischen Expression der NP196- Ketolase aus Nostoc punctiforme ATCC 29133 in Lycopersicon esculentum und Tage- tes erectaProduction of expression vectors for the flower-specific expression of the NP196 ketolase from Nostoc punctiforme ATCC 29133 in Lycopersicon esculentum and Tagetes erecta
Die Expression der NP196-Ketolase aus Nostoc punctiforme in L. esculentum und Tagetes erecta erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715). Die Expression erfolgte unter Kontrolle des blütenspezifischen Promotors EPSPS aus Petunia hybrida (Datenbankeintrag M37029: Nukleotidregion 7- 1787; Benfey et al. (1990) Plant Cell 2: 849-856).The expression of the NP196 ketolase from Nostoc punctiforme in L. esculentum and Tagetes erecta was carried out with the transit peptide rbcS from pea (Anderson et al. 1986, Biochem J. 240: 709-715). The expression was carried out under the control of the flower-specific promoter EPSPS from Petunia hybrida (database entry M37029: nucleotide region 7-1787; Benfey et al. (1990) Plant Cell 2: 849-856).
Das DNA Fragment, das die EPSPS Promotorregion (SEQ ID No. 112) aus Petunia hybrida beinhaltet, wurde mittels PCR unter Verwendung genomischer DNA (nach Standardmethoden aus Petunia hybrida isoliert) sowie der Primer EPSPS-1 (SEQ ID No. 110) und EPSPS-2 (SEQ ID No. 111) hergestellt.The DNA fragment which contains the EPSPS promoter region (SEQ ID No. 112) from Petunia hybrida was PCR-analyzed using genomic DNA (isolated from Petunia hybrida according to standard methods) and the primers EPSPS-1 (SEQ ID No. 110) and EPSPS -2 (SEQ ID No. 111).
Die PCR-Bedingungen waren die folgenden:The PCR conditions were as follows:
Die PCR zur Amplifikation der DNA, die das EPSPS-Promotorfragment (Datenbankeintrag M37029: Nukleotidregion 7-1787) beinhaltet, erfolgte in einem 50 μl Reaktionsansatz, in dem enthalten war:The PCR for the amplification of the DNA, which contains the EPSPS promoter fragment (database entry M37029: nucleotide region 7-1787), was carried out in a 50 μl reaction mixture which contained:
- 100 ng genomischer DNA aus A. thaliana - 0.25 mM dNTPs - 0.2 mM EPSPS-1 (SEQ ID No. 110)- 100ng of A. thaliana genomic DNA - 0.25mM dNTPs - 0.2 mM EPSPS-1 (SEQ ID No. 110)
- 0.2 mM EPSPS-2 (SEQ ID No. 111)- 0.2 mM EPSPS-2 (SEQ ID No. 111)
- 5 ul 10X PCR-Puffer (Stratagene)- 5 ul 10X PCR buffer (Stratagene)
- 0.25 ul Pfu Polymerase (Stratagene) - 28.8 ul Aq. Dest.- 0.25 ul Pfu polymerase (Stratagene) - 28.8 ul Aq. Least.
Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:The PCR was carried out under the following cycle conditions:
1X94°C 2 Minuten 35X94°C 1 Minute 50°C 1 Minute 72°C 2 Minuten 1X72°C 10 Minuten1X94 ° C 2 minutes 35X94 ° C 1 minute 50 ° C 1 minute 72 ° C 2 minutes 1X72 ° C 10 minutes
Das 1773 Bp Amplifikat wurde unter Verwendung von Standardmethoden in den PCR- Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und das Plasmid pEPSPS erhalten.The 1773 bp amplificate was cloned into the PCR cloning vector pCR 2.1 (Invitrogen) using standard methods and the plasmid pEPSPS was obtained.
Sequenzierung des Klons pEPSPS bestätigte eine Sequenz, die sich lediglich durch zwei Deletion (Basen ctaagtttcagga in Position 46-58 der Sequenz M37029; Basen aaaaatat in Position 1422-1429 der Sequenz M37029) und die Basenaustausche (T statt G in Position 1447 der Sequenz M37029; A statt C in Position 1525 der Sequenz M37029; A statt G in Position 1627 der Sequenz M37029) von der publizierten EPSPS- Sequenz (Datenbankeintrag M37029: Nukleotidregion 7-1787) unterscheidet. Die zwei Deletionen und die zwei Basenaustausche an den Positionen 1447 und 1627 der Se- quenz M37029 wurden in einem unabhängigen Amplifikationsexperiment reproduziert und repräsentieren somit die tatsächliche Nukleotidsequenz in den verwendeten Petunia hybrida Pflanzen.Sequencing of the clone pEPSPS confirmed a sequence consisting only of two deletions (bases ctaagtttcagga in position 46-58 of sequence M37029; bases aaaaatat in positions 1422-1429 of sequence M37029) and the base changes (T instead of G in position 1447 of sequence M37029 ; A instead of C in position 1525 of sequence M37029; A instead of G in position 1627 of sequence M37029) differs from the published EPSPS sequence (database entry M37029: nucleotide region 7-1787). The two deletions and the two base changes at positions 1447 and 1627 of sequence M37029 were reproduced in an independent amplification experiment and thus represent the actual nucleotide sequence in the Petunia hybrida plants used.
Der Klon pEPSPS wurde daher für die Klonierung in den Expressionsvektor pJONP196 (in Beispiel 5 beschrieben) verwendet.The clone pEPSPS was therefore used for the cloning into the expression vector pJONP196 (described in Example 5).
Die Klonierung erfolgte durch Isolierung des 1763 Bp Sacl-Hindlll Fragmentes aus pEPSPS und Ligierung in den Sacl-Hindlll geschnittenen Vektor pJ0NP196. Der Klon, der den Promotor EPSPS anstelle des ursprünglichen Promotors d35S enthält, heisst pJOESP:NP196. Diese Expressionskassette enthält das Fragment NP196 in der korrekten Orientierung als N-terminale Fusion mit dem rbcS-Transitpeptid.The cloning was carried out by isolating the 1763 bp SacI-HindIII fragment from pEPSPS and ligation into the SacI-HindIII cut vector pJ0NP196. The clone that contains the EPSPS promoter instead of the original d35S promoter is called pJOESP: NP196. This expression cassette contains the fragment NP196 in the correct orientation as an N-terminal fusion with the rbcS transit peptide.
Die Herstellung eines Expressionsvektors für die Agrobacterium-vermittelte Transformation der EPSPS-kontrollierten NP196-Ketolase aus Nostoc punctiforme ATCC 29133 in L. esculentum erfolgte unter der Verwendung des binären Vektors pSUN3 Zur Herstellung des Expressionsvektors MSP107 wurde das 2.961 KB bp Sacl-Xhol Fragment aus pJOESP:NP196 mit dem Sacl-Xhol geschnittenen Vektor pSUN3 ligiert . Der Expressionsvektors MSP107beinhaltet Fragment EPSPS den EPSPS Promotor (1761 bp), Fragment rbcS TP FRAGMENT das rbcS Transitpeptid aus Erbse (194 bp), Fragment NP196 KETO CDS (761 bp), kodierend für die Nostoc punctiforme NP196- Ketolase, Fragment OCS Terminator (192 bp) das Polyadenylierungssignal von Octo- pin-Synthase.An expression vector for the Agrobacterium -mediated transformation of the EPSPS-controlled NP196 ketolase from Nostoc punctiforme ATCC 29133 in L. esculentum was produced using the binary vector pSUN3 To produce the expression vector MSP107, the 2,961 KB bp Sacl-Xhol fragment from pJOESP: NP196 was ligated with the Sacl-Xhol cut vector pSUN3. The expression vector MSP107 contains fragment EPSPS the EPSPS promoter (1761 bp), fragment rbcS TP FRAGMENT the rbcS transit peptide from pea (194 bp), fragment NP196 KETO CDS (761 bp), coding for the Nostoc punctiform NP196 ketolase (fragment OCS terminator) bp) the polyadenylation signal of octopine synthase.
Die Herstellung einer Expressionsvektors für die Agrobacterium-vermittelte Transformation der EPSPS-kontrollierten NP196-Ketolase aus Nostoc punctiforme in Tagetes erecta erfolgte unter der Verwendung des binären Vektors pSUN5 (WO02/00900).An expression vector for the Agrobacterium -mediated transformation of the EPSPS-controlled NP196 ketolase from Nostoc punctiforme in Tagetes erecta was produced using the binary vector pSUN5 (WO02 / 00900).
Zur Herstellung des Expressionsvektors MSP108 wurde das 2.961 KB bp Sacl-Xhol Fragment aus pJOESP:NP196 mit dem Sacl-Xhol geschnittenen Vektor pSUN5 ligiert . Der Expressionsvektors MSP108 beinhaltet Fragment EPSPS den EPSPS Promotor (1761 bp), Fragment rbcS TP FRAGMENT das rbcS Transitpeptid aus Erbse (194 bp), Fragment NP196 KETO CDS (761 bp), kodierend für die Nostoc punctiforme NP196- Ketolase, Fragment OCS Terminator (192 bp) das Polyadenylierungssignal von Octo- pin-Synthase.To produce the expression vector MSP108, the 2,961 KB bp Sacl-Xhol fragment from pJOESP: NP196 was ligated to the Sacl-Xhol cut vector pSUN5. The expression vector MSP108 contains fragment EPSPS the EPSPS promoter (1761 bp), fragment rbcS TP FRAGMENT the rbcS transit peptide from pea (194 bp), fragment NP196 KETO CDS (761 bp), coding for the nostoc punctiform NP196 ketolase, fragment OCS terminator 192 bp) the polyadenylation signal of octopine synthase.
Beispiel 8:Example 8:
Amplifikation einer DNA, die die gesamte Primärsequenz der NP195-Ketolase aus Nostoc punctiforme A TCC 29133 kodiertAmplification of a DNA encoding the entire primary sequence of the NP195 ketolase from Nostoc punctiforme A TCC 29133
Die DNA, die für die NP195-Ketolase aus Nostoc punctiforme ATCC 29133 kodiert, wurde mittels PCR aus Nostoc punctiforme ATCC 29133 (Stamm der "American Type Culture Collection") amplifiziert. Die Präparation von genomischer DNA aus einer Sus- pensionskultur von Nostoc punctiforme ATCC 29133 wurde in Beispiel 5 beschrieben.The DNA encoding the NP195 ketolase from Nostoc punctiform ATCC 29133 was amplified by PCR from Nostoc punctiform ATCC 29133 (strain of the "American Type Culture Collection"). The preparation of genomic DNA from a suspension culture of Nostoc punctiforme ATCC 29133 was described in Example 5.
Die Nukleinsäure, kodierend eine Ketolase aus Nostoc punctiforme ATCC 29133, wurde mittels "polymerase chain reaction" (PCR) aus Nostoc punctiforme ATCC 29133 unter Verwendung eines sense-spezifischen Primers (NP195-1 , SEQ ID No. 113) und eines antisense-spezifischen Primers (NP195-2 SEQ ID No. 114) amplifiziert.The nucleic acid encoding a Nostoc punctiform ATCC 29133 ketolase was synthesized by means of a "polymerase chain reaction" (PCR) from Nostoc punctiform ATCC 29133 using a sense-specific primer (NP195-1, SEQ ID No. 113) and an antisense-specific one Primers (NP195-2 SEQ ID No. 114) amplified.
Die PCR-Bedingungen waren die folgenden:The PCR conditions were as follows:
Die PCR zur Amplifikation der DNA, die für ein Ketolase Protein bestehend aus der gesamten Primärsequenz kodiert, erfolgte in einem 50 ul Reaktionsansatz, in dem ent- halten war:The PCR for the amplification of the DNA, which codes for a ketolase protein consisting of the entire primary sequence, was carried out in a 50 μl reaction mixture in which hold was:
- 1 ul einer Nostoc punctiforme ATCC 29133 DNA (hergestellt wie oben beschrieben)- 1 µl of a Nostoc punctiform ATCC 29133 DNA (prepared as described above)
- 0.25 mM dNTPs - 0.2 mM NP195-1 (SEQ ID No. 113)- 0.25 mM dNTPs - 0.2 mM NP195-1 (SEQ ID No. 113)
- 0.2 mM NP195-2 (SEQ ID No. 114)- 0.2 mM NP195-2 (SEQ ID No. 114)
- 5 ul 10X PCR-Puffer (TAKARA)- 5 ul 10X PCR buffer (TAKARA)
- 0.25 ul R Taq Polymerase (TAKARA)- 0.25 ul R Taq polymerase (TAKARA)
- 25.8 ul Aq. Dest.- 25.8 ul Aq. Least.
Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:The PCR was carried out under the following cycle conditions:
1X94°C 2 Minuten 35X94°C 1 Minute 55°C 1 Minuten 72°C 3 Minuten 1X72°C 10 Minuten1X94 ° C 2 minutes 35X94 ° C 1 minute 55 ° C 1 minute 72 ° C 3 minutes 1X72 ° C 10 minutes
Die PCR-Amplifikation mit SEQ ID No. 113 und SEQ ID No. 114 resultierte in einem 819 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (NP195, SEQ ID No. 115). Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR-Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und der Klon pNP195 erhalten.PCR amplification with SEQ ID No. 113 and SEQ ID No. 114 resulted in an 819 bp fragment which codes for a protein consisting of the entire primary sequence (NP195, SEQ ID No. 115). Using standard methods, the amplificate was cloned into the PCR cloning vector pCR 2.1 (Invitrogen) and the clone pNP195 was obtained.
Sequenzierung des Klons pNP195 mit dem M13F- und dem M13R-Sequencing of the clone pNP195 with the M13F- and the M13R-
Primer bestätigte eine Sequenz, welche mit der DNA-Sequenz von 55,604-56,392 des Datenbank-eintrages NZ_AABC010001965 identisch ist, mit der Ausnahme, daß T in Position 55.604 durch A ersetzt wurde, um ein Standard-Startkodon ATG zu erzeugen. Diese Nukleotidsequenz wurde in einem unabhängigem Amplifikationsexperiment re- produziert und repräsentiert somit die Nukleotidsequenz im verwendeten Nostoc punctiforme ATCC 29133.Primer confirmed a sequence identical to the DNA sequence 55.604-56.392 of database entry NZ_AABC010001965, except that T at position 55.604 was replaced by A to create a standard ATG start codon. This nucleotide sequence was reproduced in an independent amplification experiment and thus represents the nucleotide sequence in the Nostoc punctiforme ATCC 29133 used.
Dieser Klon pNP195 wurde daher für die Klonierung in den Expressionsvektor pJO (in Beispiel 5 beschrieben) verwendet. Die Klonierung erfolgte durch Isolierung des 809 Bp Sphl-Fragmentes aus pNP195 und Ligierung in den SphI geschnittenen Vektor pJO. Der Klon, der die NP 95-Ketolase von Nostoc punctiforme in der korrekten Orientierung als N-terminale translationale Fusion mit dem rbcS Transitpeptid enthält, heisst pJONP195.This clone pNP195 was therefore used for the cloning into the expression vector pJO (described in Example 5). The cloning was carried out by isolating the 809 bp Sphl fragment from pNP195 and ligation into the SphI-cut vector pJO. The clone which contains the NP 95 ketolase from Nostoc punctiforme in the correct orientation as an N-terminal translational fusion with the rbcS transit peptide is called pJONP195.
Beispiel 9: Herstellung von Expressionsvektoren zur konstitutiven Expression der NP195-Ketolase aus Nostoc punctiforme ATCC 29133 in Lycopersicon esculentum und Tagetes erecta.Example 9: Production of expression vectors for the constitutive expression of NP195-ketolase from Nostoc punctiforme ATCC 29133 in Lycopersicon esculentum and Tagetes erecta.
Die Expression der NP195-Ketolase aus Nostoc punctiforme in L. esculentum und in Tagetes erecta erfolgte unter Kontrolle des konstitutiven Promotors FNR (Ferredoxin- NADPH-Oxidoreductase, Datenbankeintrag AB011474 Position 70127 bis 69493; WO03/006660), aus Arabidopsis thaliana. Das FNR-Gen beginnt bei Basenpaar 69492 und ist mit "Ferredoxin-NADP+ Reductase" annotiert. Die Expression erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715).The expression of the NP195 ketolase from Nostoc punctiforme in L. esculentum and in Tagetes erecta was carried out under the control of the constitutive promoter FNR (ferredoxin-NADPH-oxidoreductase, database entry AB011474 position 70127 to 69493; WO03 / 006660), from Arabidopsis thaliana. The FNR gene begins at base pair 69492 and is annotated with "ferredoxin-NADP + reductase". Expression was carried out using the pea transit peptide rbcS (Anderson et al. 1986, Biochem J. 240: 709-715).
Der Klon pFNR (in Beispiel 6 beschrieben) wurde daher für die Klonierung in den Expressionsvektor pJONP 95 (in Beispiel 8 beschrieben) verwendet.The clone pFNR (described in Example 6) was therefore used for the cloning into the expression vector pJONP 95 (described in Example 8).
Die Klonierung erfolgte durch Isolierung des 644 bp Sma- Hindill Fragmentes aus pFNR und Ligierung in den Ecl136ll-The cloning was carried out by isolating the 644 bp Sma-Hindill fragment from pFNR and ligation in the Ecl136ll-
Hindlll geschnittenen Vektor pJONP195. Der Klon, der den Promotor FNR anstelle des ursprünglichen Promotors d35S und das Fragment NP195 in der korrekten Orientierung als N-terminale Fusion mit dem rbcS Transitpeptid enthält, heisst pJOFNR:NP195.Hindlll cut vector pJONP195. The clone which contains the promoter FNR instead of the original promoter d35S and the fragment NP195 in the correct orientation as an N-terminal fusion with the rbcS transit peptide is called pJOFNR: NP195.
Die Herstellung einer Expressionskassette für die Agrobacterium vermittelte Transformation der NP195-Ketolase aus Nostoc punctiforme in L. esculentum erfolgte unter der Verwendung des binären Vektors pSUN3 (WO02/00900).An expression cassette for the Agrobacterium-mediated transformation of the NP195 ketolase from Nostoc punctiforme into L. esculentum was produced using the binary vector pSUN3 (WO02 / 00900).
Zur Herstellung des Expressionsvektors MSP109 wurde das 1.866 bp EcoRI-Xhol Fragment aus pJOFNR:NP195 mit dem EcoRI-Xhol geschnittenen Vektor pSUN3 ligiert. Der Expressionsvektor MSP109 beinhaltet Fragment FNR Promotor den FNR Promotor (635 bp), Fragment rbcS TP FRAGMENT das rbcS Transitpeptid aus Erbse (194 bp), Fragment NP195 KETO CDS (789 bp), kodierend für die Nostoc punctiforme NP195-Ketolase, Fragment OCS Terminator (192 bp) das Polyadenylierungssignal von der Octopin- Synthase.To produce the expression vector MSP109, the 1,866 bp EcoRI-Xhol fragment from pJOFNR: NP195 was ligated with the EcoRI-Xhol cut vector pSUN3. The expression vector MSP109 contains fragment FNR promoter the FNR promoter (635 bp), fragment rbcS TP FRAGMENT the rbcS transit peptide from pea (194 bp), fragment NP195 KETO CDS (789 bp), coding for the nostoc punctiform NP195-Ketolator, fragment (192 bp) the polyadenylation signal from the octopine synthase.
Die Herstellung einer Expressionskassette für die Λgroibacte ym-vermittelte Transformation des Expressionsvektor mit der NP195-Ketolase aus Nostoc punctiforme puncti- forme in Tagetes erecta erfolgte unter der Verwendung des binären Vektors pSUN5 (WO 02/00900).An expression cassette for the Λgroibacte ym-mediated transformation of the expression vector with the NP195 ketolase from Nostoc punctiforme puncti- forme in Tagetes erecta was produced using the binary vector pSUN5 (WO 02/00900).
Zur Herstellung des Tagetes-Expressionsvektors MSP110 wurde das 1.866 bp EcoRI- Xhol Fragment aus pJOFNR:NP195 mit dem EcoRI-Xhol geschnittenen Vektor pSUN5 ligiert. Der Expressionsvektor MSP110 beinhaltet Fragment FNR Promotor den FNR Promotor (635 bp), Fragment rbcS TP FRAGMENT das rbcS Transitpeptid aus Erbse (194 bp), Fragment NP195 KETO CDS (789 bp), kodierend für die Nostoc punctiforme NP195-Ketolase, Fragment OCS Terminator (192 bp) das Polyadenylierungssignal von Octopin-Synthase.To produce the Tagetes expression vector MSP110, the 1,866 bp EcoRI-Xhol fragment from pJOFNR: NP195 was ligated with the EcoRI-Xhol cut vector pSUN5. The expression vector MSP110 contains fragment FNR promoter the FNR Promoter (635 bp), fragment rbcS TP FRAGMENT the rbcS transit peptide from pea (194 bp), fragment NP195 KETO CDS (789 bp), coding for the Nostoc punctiform NP195 ketolase, fragment OCS terminator (192 bp) the polyadenylation signal from octopine synthase.
Beispiel 10:Example 10:
Herstellung von Expressionsvektoren zur blütenspezifischen Expression der NP195- Ketolase aus Nostoc punctiforme ATCC 29133 in Lycopersicon esculentum und Tagetes erecta.Production of expression vectors for the flower-specific expression of the NP195 ketolase from Nostoc punctiforme ATCC 29133 in Lycopersicon esculentum and Tagetes erecta.
Die Expression der NP195-Ketolase aus Nostoc punctiforme in L. esculentum und Tagetes erecta erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715). Die Expression erfolgte unter Kontrolle des blütenspezifischen Promotors EPSPS aus Petunia hybrida (Datenbankeintrag M37029: Nukleotidregion 7- 1787; Benfey et al. (1990) Plant Cell 2: 849-856).The expression of the NP195 ketolase from Nostoc punctiforme in L. esculentum and Tagetes erecta was carried out with the transit peptide rbcS from pea (Anderson et al. 1986, Biochem J. 240: 709-715). The expression was carried out under the control of the flower-specific promoter EPSPS from Petunia hybrida (database entry M37029: nucleotide region 7-1787; Benfey et al. (1990) Plant Cell 2: 849-856).
Der Klon pEPSPS (in Beispiel 7 beschrieben) wurde daher für die Klonierung in den Expressionsvektor pJONP195 (in Beispiel 8 beschrieben) verwendet.The clone pEPSPS (described in Example 7) was therefore used for the cloning into the expression vector pJONP195 (described in Example 8).
Die Klonierung erfolgte durch Isolierung des 1763 Bp Sacl- Hindlll Fragmentes aus pEPSPS und Ligierung in den Sacl-Hindlll geschnittenen Vektor pJ0NP195. Der Klon, der den Promotor EPSPS anstelle des ursprünglichen Promotors d35S enthält, heisst pJOESP:NP195. Diese Expressionskassette enthält das Fragment NP195 in der korrekten Orientierung als N-terminale Fusion mit dem rbcS- Transitpeptid.The cloning was carried out by isolating the 1763 bp SacI-HindIII fragment from pEPSPS and ligation into the SacI-HindIII cut vector pJ0NP195. The clone that contains the EPSPS promoter instead of the original d35S promoter is called pJOESP: NP195. This expression cassette contains the fragment NP195 in the correct orientation as an N-terminal fusion with the rbcS transit peptide.
Die Herstellung eines Expressionsvektors für die Agrobacterium-vermittelte Transformation der EPSPS-kontrollierten NP195-Ketolase aus Nostoc punctiforme ATCC 29133 in L. esculentum erfolgte unter der Verwendung des binären Vektors pSUN3 (WO02/00900).An expression vector for the Agrobacterium -mediated transformation of the EPSPS-controlled NP195 ketolase from Nostoc punctiforme ATCC 29133 in L. esculentum was produced using the binary vector pSUN3 (WO02 / 00900).
Zur Herstellung des Expressionsvektors MSP111 wurde das 2.988 KB bp Sacl-Xhol Fragment aus pJOESP:NP195 mit dem Sacl-Xhol geschnittenen Vektor pSUN3 ligiert . Der Expressionsvektor MSP111 beinhaltet Fragment EPSPS den EPSPS Promotor (1761 bp), Fragment rbcS TP FRAGMENT das rbcS Transitpeptid aus Erbse (194 bp), Fragment NP195 KETO CDS (789 bp), kodierend für die Nostoc punctiforme NP195- Ketolase, Fragment OCS Terminator (192 bp) das Polyadenylierungssignal von Octopin-Synthase. Die Herstellung einer Expressionsvektors für die Agrobacterium-vermittelte Transformation der EPSPS-kontrollierten NP195-Ketolase aus Nostoc punctiforme in Tagetes erecta erfolgte unter der Verwendung des binären Vektors pSUN5 (WO02/00900).To produce the expression vector MSP111, the 2,988 KB bp Sacl-Xhol fragment from pJOESP: NP195 was ligated with the Sacl-Xhol cut vector pSUN3. The expression vector MSP111 contains fragment EPSPS the EPSPS promoter (1761 bp), fragment rbcS TP FRAGMENT the rbcS transit peptide from pea (194 bp), fragment NP195 KETO CDS (789 bp), coding for the nostoc punctiform NP195 ketolase (fragment OCS terminator) 192 bp) the polyadenylation signal of octopine synthase. An expression vector for the Agrobacterium -mediated transformation of the EPSPS-controlled NP195 ketolase from Nostoc punctiforme in Tagetes erecta was produced using the binary vector pSUN5 (WO02 / 00900).
Zur Herstellung des Expressionsvektors MSP112 wurde das 2.988 KB bp Sacl-Xhol Fragment aus pJOESP:NP195 mit dem Sacl-Xhol geschnittenen Vektor pSUN5 ligiert . Der Expressionsvektors MSP112 beinhaltet Fragment EPSPS den EPSPS Promotor (1761 bp), Fragment rbcS TP FRAGMENT das rbcS Transitpeptid aus Erbse (194 bp), Fragment NP195 KETO CDS (789 bp), kodierend für die Nostoc punctiforme NP195- Ketolase, Fragment OCS Terminator (192 bp) das Polyadenylierungssignal von Octo- pin-Synthase.To produce the expression vector MSP112, the 2,988 KB bp Sacl-Xhol fragment from pJOESP: NP195 was ligated with the Sacl-Xhol cut vector pSUN5. The expression vector MSP112 contains fragment EPSPS the EPSPS promoter (1761 bp), fragment rbcS TP FRAGMENT the rbcS transit peptide from pea (194 bp), fragment NP195 KETO CDS (789 bp), coding for the nostoc punctiform NP195 ketolase (fragment OCS terminator) 192 bp) the polyadenylation signal of octopine synthase.
Beispiel 11 :Example 11:
Herstellung einer Expressionskassette zur blütenspezifischen Überexpression der chromoplastenspezifischen Beta-Hydroxylase aus Lycopersicon esculentum.Production of an expression cassette for the flower-specific overexpression of the chromoplast-specific beta-hydroxylase from Lycopersicon esculentum.
Die Expression der chromoplastenspezifischen Beta-Hydroxylase aus Lycopersicon esculentum in Tagetes erecta erfolgt unter Kontrolle des blütenspezifischen Promotors EPSPS aus Petunie (Beispiel 7). Als Terminatorelement wird LB3 aus Vicia faba ver- wendet. Die Sequenz der chromoplastenspezifischen Beta-Hydroxylase wurde durch RNA Isolierung, reverse Transkription und PCR hergestellt.The expression of the chromoplast-specific beta-hydroxylase from Lycopersicon esculentum in Tagetes erecta takes place under the control of the flower-specific promoter EPSPS from Petunia (Example 7). LB3 from Vicia faba is used as the terminator element. The sequence of the chromoplast-specific beta-hydroxylase was generated by RNA isolation, reverse transcription and PCR.
Für die Herstellung der LB3-Terminator-Sequenz aus Vicia faba wird genomische DNA aus Vicia faba-Gewebe nach Standardmethoden isoliert und durch genomische PCR unter Verwendung der Primer PR206 und PR207 eingesetzt. Die PCR zur Amplifikation dieses LB3 DNA-Fragmentes, erfolgt in einem 50 ul Reaktionsansatz, in dem enthalten ist:For the production of the LB3 terminator sequence from Vicia faba, genomic DNA from Vicia faba tissue is isolated according to standard methods and used by genomic PCR using the primers PR206 and PR207. The PCR for the amplification of this LB3 DNA fragment is carried out in a 50 μl reaction mixture which contains:
- 1 ul cDNA (hergestellt wie oben beschrieben) - 0.25 mM dNTPs- 1 µl cDNA (prepared as described above) - 0.25 mM dNTPs
- 0.2 uM PR206 (SEQ ID No. 1 16)- 0.2 uM PR206 (SEQ ID No. 1 16)
- 0.2 uM PR207 (SEQ ID No. 117)- 0.2 uM PR207 (SEQ ID No. 117)
- 5 ul 10X PCR-Puffer (TAKARA)- 5 ul 10X PCR buffer (TAKARA)
- 0.25 ul R Taq Polymerase (TAKARA) - 28.8 ul Aq. Dest.- 0.25 ul R Taq polymerase (TAKARA) - 28.8 ul Aq. Least.
Die PCR-Amplifikation mit PR206 und PR207 resultiert in einem 0.3 kb Fragment das für den LB-Terminator enthaelt. Das Amplifikat wird in den Klonierungsvektor pCR- Bluntll (Invitrogen) kloniert-. Sequenzierungen mit den Primern T7 und M13 bestätigen eine zur Sequenz SEQ ID: 118 identische Sequenz. Dieser Klon heisst pTA-LB3 und wird daher für die Klonierung in den Vektor pJIT117 verwendet (siehe unten).PCR amplification with PR206 and PR207 results in a 0.3 kb fragment which contains the LB terminator. The amplificate is cloned into the cloning vector pCR-BluntII (Invitrogen). Sequencing with the primers T7 and M13 confirm a sequence identical to the sequence SEQ ID: 118. This clone is called pTA-LB3 and is therefore used for the cloning into the vector pJIT117 (see below).
Für die Herstellung der Beta-Hydroxylase-Sequenz wird Total-RNA aus Tomate präpariert. Dazu werden 100 mg der gefrorenen, pulverisierten Blüten in ein Reaktioπsgefäß überführt und in 0,8 ml Trizol-Puffer (LifeTechnologies) aufgenommen. Die Suspension wird mit 0,2 ml Chloroform extrahiert. Nach 15 minütiger Zentrifugation bei 12000 g wird der wässrige Überstand abgenommen und in ein neues Reaktionsgefäß überführt und mit einem Volumen Ethanol extrahiert. Die RNA wird mit einem Volumen Isopro- panol gefällt, mit 75 % Ethanol gewaschen und das Pellet in DEPC Wasser (über Nacht Inkubation von Wasser mit 1/1000 Volumen Diethylpyrocarbonat bei Raumtemperatur, anschließend autoklaviert) gelöst. Die RNA-Konzentration wird photometrisch bestimmt. Für die cDNA-Synthese werden 2,5 ug Gesamt-RNA für 10 min bei 60°C denaturiert, für 2 min auf Eis abgekühlt und mittels eines cDNA-Kits (Ready-to-go-you- prime-beads, Pharmacia Biotech) nach Herstellerangaben unter Verwendung eines antisense spezifischen Primers (PR215 SEQ ID No. 119) in cDNA umgeschrieben.Total RNA from tomato is prepared for the production of the beta-hydroxylase sequence. For this, 100 mg of the frozen, powdered flowers are transferred to a reaction vessel and taken up in 0.8 ml of Trizol buffer (LifeTechnologies). The suspension is extracted with 0.2 ml of chloroform. After centrifugation at 12,000 g for 15 minutes, the aqueous supernatant is removed and transferred to a new reaction vessel and extracted with a volume of ethanol. The RNA is precipitated with a volume of isopropanol, washed with 75% ethanol and the pellet is dissolved in DEPC water (overnight incubation of water with 1/1000 volume of diethyl pyrocarbonate at room temperature, then autoclaved). The RNA concentration is determined photometrically. For cDNA synthesis, 2.5 μg of total RNA are denatured for 10 min at 60 ° C., cooled on ice for 2 min and using a cDNA kit (ready-to-go-you-prime-beads, Pharmacia Biotech) according to the manufacturer's instructions using an antisense-specific primer (PR215 SEQ ID No. 119) transcribed into cDNA.
Die Bedingungen der anschließenden PCR-Reaktionen sind die folgenden:The conditions of the subsequent PCR reactions are as follows:
Die PCR zur Amplifikation des VPR203-PR215 DNA-Fragmentes, das fuer die Beta- Hydroxylase kodiert, erfolgt in einem 50 ul Reaktionsansatz, in dem enthalten war:The PCR for the amplification of the VPR203-PR215 DNA fragment which codes for the beta-hydroxylase is carried out in a 50 μl reaction mixture which contained:
- 1 ul cDNA (hergestellt wie oben beschrieben)1 ul cDNA (prepared as described above)
- 0.25 mM dNTPs- 0.25 mM dNTPs
- 0.2 uM VPR203 (SEQ ID No. 120) - 0.2 uM PR215 (SEQ ID No. 119)- 0.2 uM VPR203 (SEQ ID No. 120) - 0.2 uM PR215 (SEQ ID No. 119)
- 5 ul 10X PCR-Puffer (TAKARA)- 5 ul 10X PCR buffer (TAKARA)
- 0.25 ul R Taq Polymerase (TAKARA)- 0.25 ul R Taq polymerase (TAKARA)
- 28.8 ul Aq. Dest.- 28.8 ul Aq. Least.
Die PCR-Amplifikation mit VPR203 und PR215 resultiert in einem 0.9 kb Fragment das für die Beta-Hydroxylase kodiert. Das Amplifikat wird in den Klonierungsvektor pCR- Bluntll (Invitrogen) kloniert. Sequenzierungen mit den Primern T7 und M13 bestätigen eine zur Sequenz SEQ ID No. 121 identische Sequenz. Dieser Klon heisst pTA-CrtR- b2 und wird daher für die Klonierung in den Vektor pCSP02 verwendet (siehe unten).The PCR amplification with VPR203 and PR215 results in a 0.9 kb fragment which codes for the beta-hydroxylase. The amplificate is cloned into the cloning vector pCR-BluntII (Invitrogen). Sequencing with primers T7 and M13 confirms a sequence SEQ ID No. 121 identical sequence. This clone is called pTA-CrtR-b2 and is therefore used for cloning into the vector pCSP02 (see below).
Die EPSPS-Promotor-Sequenz aus Petunie wird durch PCR Amplifikation unter Verwendung des Plasmides MSP107 (s. Beispiel 7) und der Primer VPR001 und VPR002 hergestellt. Die PCR zur Amplifikation dieses EPSPS-DNA-Fragmentes, erfolgt in einem 50 ul Reaktionsansatz, in dem enthalten ist: - 1 ul cDNA (hergestellt wie oben beschrieben)The EPSPS promoter sequence from petunia is produced by PCR amplification using the plasmid MSP107 (see Example 7) and the primers VPR001 and VPR002. The PCR for the amplification of this EPSPS-DNA fragment is carried out in a 50 μl reaction mixture, which contains: 1 ul cDNA (prepared as described above)
- 0.25 mM dNTPs- 0.25 mM dNTPs
- 0.2 uM VPR001 (SEQ ID No. 122)- 0.2 uM VPR001 (SEQ ID No. 122)
- 0.2 uM VPR002 (SEQ ID No. 123) - 5 ul 10X PCR-Puffer (TAKARA)- 0.2 uM VPR002 (SEQ ID No. 123) - 5 ul 10X PCR buffer (TAKARA)
- 0.25 ul R Taq Polymerase (TAKARA)- 0.25 ul R Taq polymerase (TAKARA)
- 28.8 ul Aq. Dest.- 28.8 ul Aq. Least.
Die PCR-Amplifikation mit VPR001 und VPR002 resultiert in einem 1.8 kb Fragment das den EPSPS-Promotor kodiert. Das Amplifikat wird in den Klonierungsvektor pCR- Bluntll (Invitrogen) kloniert. Sequenzierungen mit den Primern T7 und M13 bestätigen eine zur Sequenz SEQ ID: 124 identische Sequenz. Dieser Klon heisst pTA-EPSPS und wird daher für die Klonierung in den Vektor pCSP03 verwendet (siehe unten).The PCR amplification with VPR001 and VPR002 results in a 1.8 kb fragment which encodes the EPSPS promoter. The amplificate is cloned into the cloning vector pCR-BluntII (Invitrogen). Sequencing with the primers T7 and M13 confirm a sequence identical to the sequence SEQ ID: 124. This clone is called pTA-EPSPS and is therefore used for cloning into the vector pCSP03 (see below).
Der erste Klonierungsschritt erfolgt durch Isolierung des 0,3 kb PR206-PR207 EcoRI- Xhol Fragmentes aus pTA-LB3, abgeleitet vom Klonierungsvektor pCR-Bluntll (Invitrogen), und Ligierung mit dem EcoRI-Xhol geschnittenen Vektor pJIT117. Der Klon, der den 0,3 kb Terminator LB3 enthält, heisst pCSP02.The first cloning step is carried out by isolating the 0.3 kb PR206-PR207 EcoRI-Xhol fragment from pTA-LB3, derived from the cloning vector pCR-BluntII (Invitrogen), and ligation with the EcoRI-Xhol cut vector pJIT117. The clone that contains the 0.3 kb terminator LB3 is called pCSP02.
Der zweite Klonierungsschritt erfolgt durch Isolierung des 0,9 kb VPR003-PR215 Eco- Rl-Hindlll Fragmentes aus pTA-CrtR-b2, abgeleitet vom Klonierungsvektor pCR-Bluntll (Invitrogen), und Ligierung mit dem EcoRI-Hindlll geschnittenen Vektor pCSP02. Der Klon, der das 0,9 kb Beta-Hydroxylase-Fragment CrtR-b2 enthält, heisst pCSP03. Durch die Ligation entsteht eine transkriptioneile Fusion zwischen dem Terminator LB3 und dem Beta-Hydroxylase-Fragment CrtR-b2.The second cloning step is carried out by isolating the 0.9 kb VPR003-PR215 Eco-Rl-Hindlll fragment from pTA-CrtR-b2, derived from the cloning vector pCR-Bluntll (Invitrogen), and ligation with the EcoRI-Hindlll cut vector pCSP02. The clone that contains the 0.9 kb beta-hydroxylase fragment CrtR-b2 is called pCSP03. The ligation creates a transcriptional fusion between the terminator LB3 and the beta-hydroxylase fragment CrtR-b2.
Der dritte Klonierungsschritt erfolgt durch Isolierung des 1 ,8 kb VPR001-VPR002 Ncol- Sacl Fragmentes aus pTA-EPSPS, abgeleitet vom Klonierungsvektor pCR-Bluntll (Invitrogen), und Ligierung mit dem Ncol-Sacl geschnittenen Vektor pCSP03. Der Klon, der das 1 ,8 kb EPSPS Promotor-Fragment enthält, heisst pCSP04. Durch die Ligation entsteht eine transkriptioneile Fusion zwischen dem EPSPS-Promotor und dem Beta- Hydroxylase-Fragment CrtR-b2. pCSP04 beinhaltet Fragment Fragment EPSPS (1792 bp) den EPSPS Promotor, das Fragment crtRb2 (929 bp) die Beta-Hydroxylase CrtRb2, Fragment LB3 (301 bp) den LB3 Terminator.The third cloning step is carried out by isolating the 1.8 kb VPR001-VPR002 Ncol-Sacl fragment from pTA-EPSPS, derived from the cloning vector pCR-BluntII (Invitrogen), and ligation with the Ncol-Sacl cut vector pCSP03. The clone that contains the 1.8 kb EPSPS promoter fragment is called pCSP04. The ligation results in a transcriptional fusion between the EPSPS promoter and the beta hydroxylase fragment CrtR-b2. pCSP04 contains fragment EPSPS fragment (1792 bp) the EPSPS promoter, fragment crtRb2 (929 bp) beta-hydroxylase CrtRb2, fragment LB3 (301 bp) the LB3 terminator.
Zur Klonierung dieser Hydroxylase-Überexpressionskassette in Expressionsvektoren für die Agrobacterium-vermittelte Transformation von Tagetes erecta wird die Beta- Hydroxylase-Kassette als 3103 bp Ecl136II-Xhol Fragmentes isoliert. Das Auffüllen der 3'Enden (30 min bei 30°C) erfolgt nach Standardmethoden (Klenow-fill-in). Der Expressionsvektor heißt pCSEbhydTo clone this hydroxylase overexpression cassette into expression vectors for the Agrobacterium-mediated transformation of Tagetes erecta, the beta hydroxylase cassette is isolated as a 3103 bp Ecl136II-Xhol fragment. The 3 'ends (30 min at 30 ° C) are filled using standard methods (Klenow fill-in). The expression vector is called pCSEbhyd
Beispiel 12:Example 12:
Herstellung von Expressionsvektoren zur blütenspezifischen Expression der chro- moplastenspezifischen Lycopin Beta-Ccyclase aus Lycopersicon esculentum unter Kontrolle des Promotors P76 und zur blütenspezifischen Expression der Ketolase NP196 aus Nostoc punctiforme ATCC 29133 unter Kontrolle des EPSPS PromotorsProduction of expression vectors for the flower-specific expression of the chromoplast-specific lycopene beta-cyclase from Lycopersicon esculentum under the control of the promoter P76 and for the flower-specific expression of the ketolase NP196 from Nostoc punctiform ATCC 29133 under the control of the EPSPS promoter
Isolation von Promotor P76 (SEQ ID NO. 125) mittels PCR mit genomischer DNA von Arabidopsis thaliana als Matrize.Isolation of promoter P76 (SEQ ID NO. 125) by means of PCR using genomic DNA from Arabidopsis thaliana as a template.
Hierzu wurden die Oligonukleotid Primer P76for (SEQ ID NO. 126) und P76rev (SEQ ID NO. 127) verwendet. Die Oligonukleotide wurden bei der Synthese mit einem 5' Phosphatrest versehen. P76 for5'-CCCGGGTGCCAAAGTAACTCTTTAT-3'For this, the oligonucleotide primers P76for (SEQ ID NO. 126) and P76rev (SEQ ID NO. 127) were used. The oligonucleotides were provided with a 5 'phosphate residue during the synthesis. P76 for5'-CCCGGGTGCCAAAGTAACTCTTTAT-3 '
P76 rev 5'-GTCGACAGGTGCATGACCAAGTAAC-3"P76 rev 5'-GTCGACAGGTGCATGACCAAGTAAC-3 "
Die genomische DNA wurde aus Arabidopsis thaliana wie beschrieben (Galbiati M et al. Funct. Integr. Genomics 2000, 20 1 :25-34) isoliert.The genomic DNA was isolated from Arabidopsis thaliana as described (Galbiati M et al. Funct. Integr. Genomics 2000, 20 1: 25-34).
Die PCR Amplifikation wurde wie folgt durchgeführt:The PCR amplification was carried out as follows:
80 ng genomische DNA 1x Expand Long Template PCR Puffer 2,5 mM MgCI2 je 350 μM dATP, dCTP, dGTP, dTTp je 300 nM eines jeden Primers80 ng genomic DNA 1x Expand Long Template PCR buffer 2.5 mM MgCl2 each 350 μM dATP, dCTP, dGTP, dTTp each 300 nM each primer
2,5 Units Expand Long Template Polymerase in einem Endvolumen von 25 μl2.5 units of expand long template polymerase in a final volume of 25 μl
Folgendes Temperaturprogramm wird verwendet:The following temperature program is used:
1 Zyklus mit 120 sec bei 94°C 35 Zyklen mit 94°C für 10 sec, 48°C für 30 sec und 68°C für 3 min 1 Zyklus mit 68°C für 10 min Das PCR Produkt wird mit Agarosegelektrophorese aufgetrennt und das 1032 bp Fragment durch Gelelution isoliert.1 cycle with 120 sec at 94 ° C 35 cycles with 94 ° C for 10 sec, 48 ° C for 30 sec and 68 ° C for 3 min 1 cycle with 68 ° C for 10 min The PCR product is separated by agarose gel electrophoresis and the 1032 bp fragment is isolated by gel elution.
Der Vektor pSunδ wird mit der Restriktionsendonuklease EcoRV verdaut und ebenfalls über Agarosegelektrophorese aufgereinigt und durch Gelelution gewonnen.The vector pSunδ is digested with the restriction endonuclease EcoRV and also purified by agarose gel electrophoresis and obtained by gel elution.
Das gereinigte PCR Produkt wird in den so behandelten Vektor kloniert.The purified PCR product is cloned into the vector treated in this way.
Dieses Konstrukt wird mit p76 bezeichnet. Das 1032 bp lange Fragment, welches den Promotor P76 aus Arabidopsis darstellt, wurde sequenziert (Seq ID NO. 131).This construct is called p76. The 1032 bp fragment representing the Arabidopsis promoter P76 was sequenced (Seq ID NO. 131).
Der Terminator 35ST wird aus pJIT 117 durch Verdau mit den Restriktionsendonukleasen Kpnl und Smal gewonnen. Das hierbei entstehende 969 bp Fragment wird mit Agarosegelektrophorese gereinigt und durch Gelelution isoliert. Der Vektor p76 wird ebenfalls mit den Restriktionsendonukleasen Kpnl und Smal verdaut. Das entstehende 7276bp Fragment wird mit Agarosegelektrophorese gereinigt und durch Gelelution isoliert.The terminator 35ST is obtained from pJIT 117 by digestion with the restriction endonucleases Kpnl and Smal. The resulting 969 bp fragment is purified by agarose gel electrophoresis and isolated by gel elution. The vector p76 is also digested with the restriction endonucleases Kpnl and Smal. The resulting 7276bp fragment is purified by agarose gel electrophoresis and isolated by gel elution.
Das so gewonnene 35ST- Fragment wird in den so behandelten p76 kloniert. Der entstehende Vektor wird mit p76_35ST bezeichnet.The 35ST fragment obtained in this way is cloned into the p76 treated in this way. The resulting vector is called p76_35ST.
Die Isolation des Bgene (SEQ ID NO. 128) erfolgte mittels PCR mit genomischer DNA von Lycopersicon esculentum als Matrize.The Bgene (SEQ ID NO. 128) was isolated by means of PCR using genomic DNA from Lycopersicon esculentum as a template.
Hierzu wurden die Oligonukleotid Primer BgeneFor (SEQ ID NO. 129) und BgeneRev (SEQ ID NO. 130) verwendet. Die Oligonukleotide wurden bei der Synthese mit einem 5' Phosphatrest versehen. SEQ ID NO 129: Bgenefor: 5'-CTATTGCTAGATTGCCAATCAG-3'For this, the oligonucleotide primers BgeneFor (SEQ ID NO. 129) and BgeneRev (SEQ ID NO. 130) were used. The oligonucleotides were provided with a 5 'phosphate residue during the synthesis. SEQ ID NO 129: Bgenefor: 5'-CTATTGCTAGATTGCCAATCAG-3 '
SEQ ID NO 130 Bgenerev:5'-ATGGAAGCTCTTCTCAAG-3'SEQ ID NO 130 Bgenerev: 5'-ATGGAAGCTCTTCTCAAG-3 '
Die genomische DNA wurde aus Lycopersicon esculentum wie beschrieben (Galbiati M et al. Funct. Integr. Genomics 2000, 20 1 :25-34) isoliert.The genomic DNA was isolated from Lycopersicon esculentum as described (Galbiati M et al. Funct. Integr. Genomics 2000, 20 1: 25-34).
Die PCR Amplifikation wurde wie folgt durchgeführt:The PCR amplification was carried out as follows:
80ng genomische DNA80ng genomic DNA
1x Expand Long Template PCR Puffer1x Expand Long Template PCR buffer
2,5 mM MgCI2 je 350 μM dATP, dCTP, dGTP, dTTp je 300 nM eines jeden Primers 2,5 Units Expand Long Template Polymerase in einem Endvolumen von 25 μl2.5 mM MgCI2 each 350 μM dATP, dCTP, dGTP, dTTp each 300 nM each primer 2.5 units expand long template polymerase in a final volume of 25 μl
Folgendes Temperaturprogramm wurde verwendet:The following temperature program was used:
1 Zyklus mit 120 sec bei 94°C1 cycle with 120 sec at 94 ° C
35 Zyklen mit 94°C für 10 sec,35 cycles at 94 ° C for 10 sec,
48°C für 30 sec und48 ° C for 30 sec and
68°C für 3 min68 ° C for 3 min
1 Zyklus mit 68°C für 10 min1 cycle at 68 ° C for 10 min
Das PCR Produkt wurde mit Agarosegelektrophorese gereinigt und das 1665 bp Fragment durch Gelelution isoliert.The PCR product was purified by agarose gel electrophoresis and the 1665 bp fragment isolated by gel elution.
Der Vektor p76_35ST wird mit der Restriktionsendonuklease Smal verdaut und eben- falls über Agarosegelektrophorese aufgereinigt und durch Gelelution gewonnen.The vector p76_35ST is digested with the restriction endonuclease Smal and also purified by agarose gel electrophoresis and obtained by gel elution.
Das gereinigte PCR Produkt wird in den so behandelten Vektor kloniert. Dieses Konstrukt wird mit pB bezeichnet. Das 1486 bp lange Fragment, welches das Bgene aus Tomate darstellt, wurde sequenziert und ist in seiner Nukleotidsequenz identisch mit dem Datenbankeintrag AF254793 (Seq ID NO. 1).The purified PCR product is cloned into the vector treated in this way. This construct is called pB. The 1486 bp fragment, which represents the tomato bgene, was sequenced and is identical in its nucleotide sequence to the database entry AF254793 (Seq ID NO. 1).
pB wird mit den Restriktionsendonukleasen Pmel und Sspl verdaut und das 3906bp Fragment enthaltend den Promotor P76, Bgene und den 35ST durch Agarosegele- lektrophorese gereinigt und durch Gelelution gewonnenpB is digested with the restriction endonucleases Pmel and Sspl and the 3906bp fragment containing the promoter P76, Bgene and the 35ST is purified by agarose gel electrophoresis and obtained by gel elution
MSP108 (Beispiel 7) wird mit der Restriktionsendonuklease Ecl126ll verdaut, durch Agarosegelelektrophorese gereinigt und durch Gelelution gewonnenMSP108 (Example 7) is digested with the restriction endonuclease Ecl126ll, purified by agarose gel electrophoresis and obtained by gel elution
Das gereinigte 3906bp Fragment enthaltend den Promotor P76, Bgene und den 35ST aus pB wird in den so behandelten Vector MSP108 kloniert.The purified 3906bp fragment containing the promoter P76, Bgene and the 35ST from pB is cloned into the Vector MSP108 treated in this way.
Dieses Konstrukt wird mit pMKP1 bezeichnet.This construct is called pMKP1.
Beispiel 13: Herstellung und Analyse transgener Lycopersicon esculentum PflanzenExample 13: Production and analysis of transgenic Lycopersicon esculentum plants
Transformation und Regeneration von Tomatenpflanzen erfolgte nach der publizierten Methode von Ling und Mitarbeitern (Plant Cell Reports (1998), 17:843-847). Für die Varietät Microtom wurde mit höherer Kanamycin-Konzentration (100mg/L) selektioniert. Als Ausgangsexplantat für die Transformation dienten Kotyledonen und Hypokotyle sieben bis zehn Tage alter Keimlinge der Linie Microtom. Für die Keimung wurde das Kulturmedium nach Murashige und Skoog (1962: Murashige and Skoog, 1962, Physiol. Plant 15, 473-) mit 2 % Saccharose, pH 6.1 verwendet. Die Keimung fand bei 21 °C bei wenig Licht (20 bis 100 μE) statt. Nach sieben bis zehn Tagen wurden die Kotyledonen quer geteilt und die Hypokotyle in ca. 5 bis 10 mm lange Abschnitte geschnitten und auf das Medium MSBN (MS, pH 6,1 , 3% Saccharose + 1 mg/l BAP, 0,1 mg/l NAA) gelegt, das am Vortag mit suspensionskultivierten Tomatenzellen beschickt wurde. Die Tomatenzellen wurden luftblasenfrei mit sterilem Filterpapier abgedeckt. Die Vorkultur der Explantate auf dem beschriebenen Medium erfolgte für drei bis fünf Tage. Zellen des Stammes Agrobakterium tumefaciens LBA4404 wurden einzeln mit den Plasmiden transformiert. Von den einzelnen mit den Binärvektoren transformierten Agrobakterium- Stämmen wurde jeweils eine Übernachtkultur in YEB Medium mit Kanamycin (20 mg/l) bei 28 Gard Celsius kultiviert und die Zellen zentrifugiert.Das Bakterienpellet wurde mit flüssigem MS Medium (3 % Saccharose, pH 6,1) resuspendiert und auf eine optische Dichte von 0,3 (bei 600 nm) eingestellt. Die vorkultivierten Explantate wurden in die Suspension überführt und für 30 Minuten bei Zimmertemperatur unter leichtem Schütteln inkubiert. Anschließend wurden die Explantate mit sterilem Filterpapier getrocknet und für die dreitägige Co-Kultur (21 °C) auf ihr Vorkulturmedium zurück gelegt.Transformation and regeneration of tomato plants was carried out according to the published method by Ling and co-workers (Plant Cell Reports (1998), 17: 843-847). For the Microtome variety, higher kanamycin concentrations (100 mg / L) were selected. The starting explant for the transformation was cotyledons and hypocotyls, seven to ten day old seedlings of the Microtome line. The culture medium according to Murashige and Skoog (1962: Murashige and Skoog, 1962, Physiol. Plant 15, 473-) with 2% sucrose, pH 6.1 was used for germination. Germination took place at 21 ° C with little light (20 to 100 μE). After seven to ten days, the cotyledons were divided transversely and the hypocotyls were cut into sections about 5 to 10 mm long and placed on the medium MSBN (MS, pH 6.1, 3% sucrose + 1 mg / l BAP, 0.1 mg / l NAA), which was loaded with suspension-cultivated tomato cells the day before. The tomato cells were covered with sterile filter paper without air bubbles. The explants were precultured on the medium described for three to five days. Cells from the Agrobacterium tumefaciens LBA4404 strain were individually transformed with the plasmids. An overnight culture of each of the individual Agrobacterium strains transformed with the binary vectors was cultivated in YEB medium with kanamycin (20 mg / l) at 28 ° C. and the cells were centrifuged. The bacterial pellet was washed with liquid MS medium (3% sucrose, pH 6, 1) resuspended and adjusted to an optical density of 0.3 (at 600 nm). The precultivated explants were transferred to the suspension and incubated for 30 minutes at room temperature with gentle shaking. The explants were then dried with sterile filter paper and placed back on their preculture medium for the three-day co-culture (21 ° C.).
Nach der Co-kultur wurden die Explantate auf MSZ2 Medium (MS pH 6,1 + 3 % Saccharose, 2 mg/l Zeatin, 100 mg/l Kanamycin, 160 mg/l Timentin) transferiert und für die selektive Regeneration bei 21°C unter Schwach Bedingungen (20 bis 100 μE, Licht- rhythmus 16 h/8 h) aufbewahrt. Aller zwei bis drei Wochen erfolgte der Transfer der Explantate bis sich Sprosse bilden. Kleine Sprosse konnten vom Explantat abgetrennt werden und auf MS (pH 6,1 + 3 % Saccharose) 160 mg/l Timentin, 30 mg/l Kanamycin, 0,1 mg/l IAA bewurzelt werden. Bewurzelte Pflanzen wurden ins Gewächshaus überführt.After the co-culture, the explants were transferred to MSZ2 medium (MS pH 6.1 + 3% sucrose, 2 mg / l zeatin, 100 mg / l kanamycin, 160 mg / l timentin) and for selective regeneration at 21 ° C stored under weak conditions (20 to 100 μE, light rhythm 16 h / 8 h). The explants were transferred every two to three weeks until shoots formed. Small shoots could be separated from the explant and rooted on MS (pH 6.1 + 3% sucrose) 160 mg / l timentin, 30 mg / l kanamycin, 0.1 mg / l IAA. Rooted plants were transferred to the greenhouse.
Gemäß der oben beschriebenen Transformationsmethode wurden mit folgenden Ex- pressionskonstrukten folgende Linien erhalten:According to the transformation method described above, the following lines were obtained with the following expression constructs:
Mit MSP105 wurde erhalten: mspl 05-1 , mspl 05-2, mspl 05-3With MSP105 the following was obtained: mspl 05-1, mspl 05-2, mspl 05-3
Mit MSP107 wurde erhalten: msp107-1 , msp107-2, msp107-3 Mit MSP109 wurde erhalten: mspl 09-1 , mspl 09-2, mspl 09-3With MSP107 we got: msp107-1, msp107-2, msp107-3 With MSP109 we got: mspl 09-1, mspl 09-2, mspl 09-3
Mit MSP111 wurde erhalten: msp111-1 , msp111-2, msp111-3 Beispiel 14:With MSP111 it was obtained: msp111-1, msp111-2, msp111-3 Example 14:
Herstellung transgener Tagetes PflanzenProduction of transgenic tagetes plants
Tagetessamen werden sterilisiert und auf Keimungsmedium (MS-Medium; Murashige and Skoog, Physiol. Plant. 15(1962), 473-497) pH 5,8, 2 % Saccharose) aufgelegt. Die Keimung erfolgt in einem Temperatur/Licht/Zeitintervall von 18 bis 28°G20-200 μE/3 bis 16 Wochen, bevorzugt jedoch bei 21 °C, 20 bis 70 mE, für 4 bis 8 Wochen.Day tea seeds are sterilized and placed on germination medium (MS medium; Murashige and Skoog, Physiol. Plant. 15 (1962), 473-497) pH 5.8, 2% sucrose). Germination takes place in a temperature / light / time interval of 18 to 28 ° G20-200 μE / 3 to 16 weeks, but preferably at 21 ° C, 20 to 70 mE, for 4 to 8 weeks.
Alle Blätter der sich bis dahin entwickelten in vitro Pflanzen werden geerntet und quer zur Mittelrippe geschnitten. Die dadurch entstehenden Blattexplantate mit einer Größe von 10 bis 60 mm2 werden im Verlaufe der Präparation in flüssigem MS-Medium bei Raumtemperatur für maximal 2 Stunden aufbewahrt.All leaves of the in vitro plants that had developed up to that point are harvested and cut across the midrib. The resulting leaf explants with a size of 10 to 60 mm 2 are kept in the course of the preparation in liquid MS medium at room temperature for a maximum of 2 hours.
Ein beliebiger Agrobakterium tumefaciens Stamm, bevorzugt aber ein supervirulenter Stamm, wie z.B. EHA105 mit einem entsprechenden Binärplasmid, das ein Selekti- onsmarkergen (bevorzugt bar oder pat) sowie ein oder mehrere Trait- oder Reportergene tragen kann wird, über Nacht angezogen und für die Co-Kultivierung mit dem Blattmaterial verwendet. Die Anzucht des Bakterienstammes kann wie folgt erfolgen: Eine Einzelkolonie des entsprechenden Stammes wird in YEB (0,1 % Hefeextrakt, 0,5 % Rindfleischextrakt, 0,5 % Pepton, 0,5 % Saccharose, 0,5 % Magnesiumsulfat x 7 H20) mit 25 mg/l Kanamycin angeimpft und bei 28°C für 16 bis 20 Stunden angezogen. Anschließend wird die Bakteriensuspension durch Zentrifugation bei 6000 g für 10 min geerntet und derart in flüssigem MS Medium resuspendiert, dass eine OD6oo von ca. 0,1 bis 0,8 entstand. Diese Suspension wird für die Co-Kultivierung mit dem Blattmate- rial verwendet.Any Agrobacterium tumefaciens strain, but preferably a supervirulent strain, such as EHA105 with a corresponding binary plasmid, which can carry a selection marker gene (preferably bar or pat) and one or more trait or reporter genes, is grown overnight and used for the co -Cultivation with the leaf material used. The bacterial strain can be grown as follows: A single colony of the corresponding strain is in YEB (0.1% yeast extract, 0.5% beef extract, 0.5% peptone, 0.5% sucrose, 0.5% magnesium sulfate x 7 H) 2 0) inoculated with 25 mg / l kanamycin and dressed at 28 ° C for 16 to 20 hours. The bacterial suspension is then harvested by centrifugation at 6000 g for 10 min and resuspended in liquid MS medium in such a way that an OD 6 oo of approximately 0.1 to 0.8 was obtained. This suspension is used for the co-cultivation with the leaf material.
Unmittelbar vor der Co-Kultivierung wird das MS-Medium, in dem die Blätter aufbewahrt worden sind, durch die Bakteriensuspension ersetzt. Die Inkubation der Blättchen in der Agrobakteriensuspension erfolgte für 30 min unter leichtem Schütteln bei Raumtemperatur. Anschließend werden die infizierten Explantate auf ein mit Agar (z.B. 0,8 % Plant Agar (Duchefa, NL) verfestigtes MS-Medium mit Wachstumsregulatoren, wie beispielsweise 3 mg/l Benzylaminopurin (BAP) sowie 1 mg/l Indolylessigsäure (IAA) aufgelegt. Die Orientierung der Blätter auf dem Medium ist bedeutungslos. Die Kultivierung der Explantate findet für 1 bis 8 Tage, bevorzugt aber für 6 Tage statt, da- bei können folgende Bedingungen angewendet werden: Lichtintensität: 30 bis 80 μMol/m2 x sec, Temperatur: 22 bis 24°C, hell/dunkel Wechsel von 16/8 Stunden. Anschließend werden die co-kultivierten Explantate auf frisches MS-Medium, bevorzugt mit den gleichen Wachstumsregulatoren übertragen, wobei dieses zweite Medium zusätzlich ein Antibiotikum zur Unterdrückung des Bakterienwachstums enthält. Timentin in einer Konzentration von 200 bis 500 mg/l ist für diesen Zweck sehr geeignet. Als zweite selektive Komponente wird eine für die Selektion des Transformationserfolges eingesetzt. Phosphinothricin in einer Konzentration von 1 bis 5 mg/l selektiert sehr effizient, aber auch andere selektive Komponenten gemäß des zu verwendenden Verfahrens sind denkbar.Immediately before the co-cultivation, the MS medium in which the leaves have been kept is replaced by the bacterial suspension. The leaflets were incubated in the agrobacterial suspension for 30 min with gentle shaking at room temperature. The infected explants are then placed on an MS medium solidified with agar (for example 0.8% plant agar (Duchefa, NL) with growth regulators, such as 3 mg / l benzylaminopurine (BAP) and 1 mg / l indolylacetic acid (IAA). The orientation of the leaves on the medium is irrelevant: the explants are cultivated for 1 to 8 days, but preferably for 6 days, the following conditions being able to be used: light intensity: 30 to 80 μmol / m 2 x sec, temperature : 22 to 24 ° C., light / dark change of 16/8 hours, after which the co-cultivated explants are transferred to fresh MS medium, preferably with the same growth regulators, this second medium additionally containing an antibiotic to suppress bacterial growth. Timentin in a concentration of 200 to 500 mg / l is very suitable for this purpose The second selective component is used to select the success of the transformation. Phosphinothricin in a concentration of 1 to 5 mg / l selects very efficiently, but other selective components according to the method to be used are also conceivable.
Nach jeweils ein bis drei Wochen erfolgt der Transfer der Explantate auf frisches Medium bis sich Sprossknospen und kleine Sprosse entwickeln, die dann auf das gleiche Basalmedium einschließlich Timentin und PPT oder alternative Komponenten mit Wachstumsregulatoren, nämlich z.B. 0,5 mg/l Indolylbuttersäure (IBA) und 0,5 mg/l Gibberillinsäure GA3, zur Bewurzelung übertragen werden. Bewurzelte Sprosse können ins Gewächshaus überführt werden.After one to three weeks, the explants are transferred to fresh medium until shoot buds and small shoots develop, which are then on the same basal medium including timentin and PPT or alternative components with growth regulators, namely, for example, 0.5 mg / l indolylbutyric acid (IBA) and 0.5 mg / l gibberillic acid GA 3 , are transferred for rooting. Rooted shoots can be transferred to the greenhouse.
Zusätzlich zu der beschriebenen Methode sind folgende vorteilhafte Modifikationen möglich:In addition to the described method, the following advantageous modifications are possible:
• Bevor die Explantate mit den Bakterien infiziert werden, können sie für 1 bis 12 Tage, bevorzugt 3 bis 4, auf das oben beschriebene Medium für die Co-Kultur vorinkubiert werden. Anschließend erfolgt die Infektion, Co-Kultur und selektive Regeneration wie oben beschrieben.Before the explants are infected with the bacteria, they can be preincubated for 1 to 12 days, preferably 3 to 4, on the medium described above for the co-culture. The infection, co-culture and selective regeneration then take place as described above.
• Der pH Wert für die Regeneration (normalerweise 5,8) kann auf pH 5,2 gesenkt werden. Dadurch wird die Kontrolle des Agrobakterienwachstums verbessert.• The pH value for regeneration (normally 5.8) can be lowered to pH 5.2. This improves the control of agrobacterial growth.
• Die Zugabe von AgN03 (3 bia 10 mg/l) zum Regenerationsmedium verbessert den Zustand der Kultur einschließlich der Regeneration selbst.• The addition of AgN0 3 (3 to 10 mg / l) to the regeneration medium improves the condition of the culture, including the regeneration itself.
• Komponenten, die die Phenolbildung reduzieren und dem Fachmann bekannt sind, wie z.B. Zitronensäure, Ascorbinsäure, PVP u.v.a. m., wirken sich positiv auf die Kultur aus.Components that reduce phenol formation and are known to those skilled in the art, such as Citric acid, ascorbic acid, PVP and many more m., have a positive effect on the culture.
• Für das gesamte Verfahren kann auch flüssiges Kulturmedium Verwendung finden. Die Kultur kann auch auf handelsüblichen Trägern, die auf dem flüssigen Medium positioniert werden inkubiert werden.• Liquid culture medium can also be used for the entire process. The culture can also be incubated on commercially available carriers which are positioned on the liquid medium.
Gemäß der oben beschriebenen Transformationsmethode wurden mit folgenden Ex- pressionskonstrukten folgende Linien erhalten:According to the transformation method described above, the following lines were obtained with the following expression constructs:
Mit MSP106 wurde erhalten: msp106-1 , msp106-2, msp106-3With MSP106 it was obtained: msp106-1, msp106-2, msp106-3
Mit MSP108 wurde erhalten: msp108-1 , msp108-2, msp108-3 Mit MSP110 wurde erhalten: mspl 10-1 , mspl 10-2, mspl 10-3 Mit MSP112 wurde erhalten: mspl 12-1 , mspl 12-2, mspl 12-3With MSP108 we got: msp108-1, msp108-2, msp108-3 With MSP110 we got: mspl 10-1, mspl 10-2, mspl 10-3 With MSP112 the following was obtained: mspl 12-1, mspl 12-2, mspl 12-3
Mit pCSEbhydwurde erhalten: csebhyd-1 , csebhyd-2, csebhyd-3. Mit pMKPLwurde erhalten: mkp1-1 , mkp1-2, mkp1-3.With pCSEbhyd was obtained: csebhyd-1, csebhyd-2, csebhyd-3. With pMKPL was obtained: mkp1-1, mkp1-2, mkp1-3.
Beispiel 15: Enzymatische Lipase-katalysierte Hydrolyse von Carotinoidestern aus Pflanzenmaterial und Identifizierung der CarotinoideExample 15: Enzymatic lipase-catalyzed hydrolysis of carotenoid esters from plant material and identification of the carotenoids
Allgemeine ArbeitsvorschriftGeneral working instructions
a) Gemörsertes Pflanzen material (z.B. Petalenmaterial) (30-100 mg Frischgewicht) wird mit 100% Aceton (dreimal 500μl; jeweils etwa 15 Minuten schütteln) extrahiert. Das Lösungsmittel wird evaporiert. Carotinoide werden anschließend in 495 μl Aceton aufgenommen, 4,95 ml Kaliumphosphatpuffer (100 mM, pH7.4) zugegeben und gut gemischt. Danach erfolgt die Zugabe von ca. 17 mg Bile-Salze (Sigma) und 149 μl einer NaCI/CaCI2-Lösung (3M NaCI und 75 mM CaCI2). Die Suspension wird für 30 Minuten bei 37°C inkubiert. Für die enzymatische Hydrolyse der Carotinoidester wird 595 μl einer Lipaselösung (50 mg/ml Lipase Typ7 von Candida rugosa (Sigma)) zugegeben und unter Schütteln bei 37C inkubiert. Nach etwa 21 Stunden erfolgte nochmals eine Zugabe von 595 μl Lipase mit erneuter Inkubation von mindestens 5 Stunden bei 37°C. Anschließend werden etwa ca. 700 mg Na2S04 in der Lösung gelöst. Nach Zugabe von 1800 μl Petrolether werden die Carotinoide durch kräftig Mischen in die organische Phase extrahiert. Dieses Ausschütteln wird solange wiederholt, bis die organische Phase farblos bleibt. Die Petroletherfraktionen werden vereinigt und der Petrolether evaporiert. Freie Carotinoide werden in 100-120 μl Aceton aufgenommen. Mittels HPLC und C30-reverse phase-Säule können freie Carotinoide aufgrund von Retenti- onszeit und UV-VIS-Spektren identifiziert werden.a) Mortar plant material (e.g. petal material) (30-100 mg fresh weight) is extracted with 100% acetone (three times 500μl; shake for about 15 minutes each). The solvent is evaporated. Carotenoids are then taken up in 495 μl of acetone, 4.95 ml of potassium phosphate buffer (100 mM, pH 7.4) are added and mixed well. Then about 17 mg of Bile salts (Sigma) and 149 μl of a NaCl / CaCl 2 solution (3M NaCl and 75 mM CaCl 2 ) are added. The suspension is incubated at 37 ° C for 30 minutes. For the enzymatic hydrolysis of the carotenoid esters, 595 μl of a lipase solution (50 mg / ml lipase type 7 from Candida rugosa (Sigma)) is added and incubated with shaking at 37C. After about 21 hours, 595 μl of lipase was added again and incubation was continued for at least 5 hours at 37 ° C. Then about 700 mg Na 2 S0 4 are dissolved in the solution. After adding 1800 μl of petroleum ether, the carotenoids are extracted into the organic phase by vigorous mixing. This shaking is repeated until the organic phase remains colorless. The petroleum ether fractions are combined and the petroleum ether evaporated. Free carotenoids are taken up in 100-120 μl acetone. Free carotenoids can be identified on the basis of retention time and UV-VIS spectra using HPLC and C30 reverse phase columns.
Die verwendeten Bile-Salze oder Gallensäuresalze sind 1 :1 Mischungen von Cholat und Desoxycholat.The Bile salts or bile acid salts used are 1: 1 mixtures of cholate and deoxycholate.
b) Arbeitsvorschrift für Aufarbeitung, wenn nur geringe Mengen an Carotinoidestern im Pflanzenmaterial vorhanden sindb) Working procedure for processing if only small amounts of carotenoid esters are present in the plant material
Alternativ kann die Hydrolyse der Carotinoidester durch Lipase aus Candida rugosa nach Trennung mittels Dünnschichtchromatographie erreicht werden. Dazu werden 50- 100mg Pflanzenmaterial dreimal mit etwa 750μl Aceton extrahiert. Der Lösungsmittelextrakt wird im Vakuum einrotiert (erhöhte Temperaturen von 40-50°C sind tolera- bei). Danach erfolgt Zugabe von 300μl PetroletherAceton (Verhältnis 5:1) und gute Durchmischung. Schwebstoffe werden durch Zentrifugation (1-2 Minuten) sedimentiert. Die obere Phase wird in ein neues Reaktionsgefäß überführt. Das verbleibende Rest wird erneut mit 200μl PetroletherAceton (Verhältnis 5:1) extrahiert und Schwebstoffe werden durch Zentrifugation entfernt. Die beiden Extrakte werden zusammengeführt (Volumen 500μl) und die Lösungsmittel evaporiert. Der Rückstand wird in 30μl Petrol- ether:Aceton (Verhältnis 5:1) resuspendiert und auf eine Dünnschichtplatte (Silica-Gel 60, Merck) aufgetragen. Falls mehr als eine Auftragung für präparativ-analytische Zwecke erforderlich ist, sollten mehrere Aliquots mit jeweils 50-100 mg Frischgewicht in der beschriebenen Weise für die dünnschichtchromatographische Trennung aufbereitet werden.Alternatively, the hydrolysis of the carotenoid esters by lipase from Candida rugosa can be achieved after separation by means of thin layer chromatography. For this, 50-100mg of plant material are extracted three times with about 750μl acetone. The solvent extract is rotated in a vacuum (elevated temperatures of 40-50 ° C are tolerable). Then add 300μl petroleum ether acetone (ratio 5: 1) and good Mixing. Suspended matter is sedimented by centrifugation (1-2 minutes). The upper phase is transferred to a new reaction vessel. The remaining residue is extracted again with 200 μl of petroleum ether acetone (ratio 5: 1) and suspended matter is removed by centrifugation. The two extracts are combined (volume 500 μl) and the solvents evaporated. The residue is resuspended in 30 μl of petroleum ether: acetone (ratio 5: 1) and applied to a thin-layer plate (silica gel 60, Merck). If more than one application is required for preparative-analytical purposes, several aliquots, each with a fresh weight of 50-100 mg, should be prepared in the manner described for thin-layer chromatography separation.
Die Dünnschichtplatte wird in PetroletherAceton (Verhältnis 5:1) entwickelt. Caroti- noidbanden können visuell aufgrund ihrer Farbe identifiziert werden. Einzelne Caroti- noidbanden werden ausgekratzt und können für präparativ-analytische Zwecke gepoolt werden. Mit Aceton werden die Carotinoide vom Silica-Material eluiert; das Lösungsmittel wird im Vakuum evaporiert. Zur Hydrolyse der Carotinoidester wird der Rückstand in 495μl Aceton gelöst, 17mg Bile-Salze (Sigma), 4,95ml 0.1 M Kaliumphosphat- puffer (pH 7,4) und 149μl (3M NaCI, 75mM CaCI2) zugegeben. Nach guter Durchmischung wird 30min bei 37°C äquilibriert. Danach erfolgt die Zugabe von 595μl Lipase von Candida rugosa (Sigma, Stammlösung von 50mg/ml in 5mM CaCI2). Über Nacht erfolgt die Inkubation mit Lipase unter Schütteln bei 37°C. Nach etwa 21 Stunden wird nochmals die gleiche Menge an Lipase zugegeben; für mindestens 5 Stunden wird nochmals bei 37°C unter Schütteln inkubiert. Dann erfolgt die Zugabe von 700mg Na2S04 (wasserfrei); mit 1800μl Petrolether wird für ca. 1 Minute ausgeschüttelt und die Mischung bei 3500 Umdrehungen/Minute für 5 Minuten zentrifugiert. Die obereThe thin-layer plate is developed in petroleum ether-acetone (ratio 5: 1). Carotenoid bands can be identified visually based on their color. Individual carotenoid bands are scraped out and can be pooled for preparative-analytical purposes. The carotenoids are eluted from the silica material with acetone; the solvent is evaporated in vacuo. For the hydrolysis of the carotenoid esters, the residue is dissolved in 495 μl acetone, 17 mg Bile salts (Sigma), 4.95 ml 0.1 M potassium phosphate buffer (pH 7.4) and 149 μl (3M NaCl, 75mM CaCl 2 ) are added. After thorough mixing, equilibrate at 37 ° C for 30 minutes. This is followed by the addition of 595 μl of Candida rugosa lipase (Sigma, stock solution of 50 mg / ml in 5 mM CaCl 2 ). Incubation with lipase takes place overnight with shaking at 37 ° C. After about 21 hours, the same amount of lipase is added again; Incubate again at 37 ° C with shaking for at least 5 hours. Then 700 mg of Na 2 S0 4 (anhydrous) are added; with 1800μl of petroleum ether is shaken for about 1 minute and the mixture is centrifuged at 3500 revolutions / minute for 5 minutes. The upper
Phase wird in ein neues Reaktionsgefäß überführt und das Ausschütteln so lange wiederholt, bis die obere Phase farblos ist. Die vereinigte Petrolether-Phase wird im Vakuum eingeengt (Temperaturen von 40-50°C sind möglich). Der Rückstand wird in 120μl Aceton, eventuell mittels Ultraschall, gelöst. Die gelösten Carotinoide können mittels HPLC unter Verwendung einer C30-Säule getrennt und anhand von Referenzsubstanzen quantifiziert werden.Phase is transferred to a new reaction vessel and the shaking is repeated until the upper phase is colorless. The combined petroleum ether phase is concentrated in vacuo (temperatures of 40-50 ° C are possible). The residue is dissolved in 120μl acetone, possibly using ultrasound. The dissolved carotenoids can be separated by means of HPLC using a C30 column and quantified using reference substances.
Beispiel 16: HPLC-Analyse freier CarotinoideExample 16: HPLC analysis of free carotenoids
Die Analyse der nach der Arbeitsvorschriften in Beispiel 15 erhaltenen Proben erfolgt unter folgenden Bedingungen:The analysis of the samples obtained according to the working instructions in Example 15 is carried out under the following conditions:
Folgende HPLC-Bedingungen wurden eingestellt.The following HPLC conditions were set.
Trennsäule: Prontosil C30-Säule, 250 x 4,6 mm, (Bischoff, Leonberg, Germany) Flussrate: 1.0 ml/min Eluenten: Laufmittel A - 100% Methanol Laufmittel B - 80% Methanol, 0.2% Ammoniumacetat Laufmittel C - 100% t-Butyl-methylether Detektion: 300-530 nmSeparation column: Prontosil C30 column, 250 x 4.6 mm, (Bischoff, Leonberg, Germany) Flow rate: 1.0 ml / min Eluents: solvent A - 100% methanol solvent B - 80% methanol, 0.2% ammonium acetate solvent C - 100% t-butyl methyl ether detection: 300-530 nm
Gradientenprofil:gradient:
Einige typische Retenfionszeiten für erfindungsgemäß gebildete Carotinoide sind z.B. Violaxanthin 11 , 7 min, Astaxanthin 17,7 min, Adonixanthin 19 min, Adonirubin 19,9 min, Zeaxanthin 21 min. Some typical retention times for carotenoids formed according to the invention are, for example, violaxanthin 11.7 minutes, astaxanthin 17.7 minutes, adonixanthin 19 minutes, adonirubin 19.9 minutes and zeaxanthin 21 minutes.

Claims

Patenansprüche patent claims
1. Verfahren zur Herstellung von Ketocarotinoiden durch Kultivierung von genetisch veränderten, nicht-humanen Organismen, die im Vergleich zum Wildtyp eine ver- änderte Ketolase-Aktivität und eine veränderte ß-Cyclase-Aktivität aufweisen, und die veränderte ß-Cyclase-Aktivität durch eine ß-Cyclase verursacht wird, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.1. A process for the preparation of ketocarotenoids by cultivating genetically modified, non-human organisms which have an altered ketolase activity and an altered β-cyclase activity compared to the wild type, and the altered β-cyclase activity by an β-cyclase is caused, containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass man nicht-humane Organismen verwendet, die als Wildtyp bereits eine Ketolase-Aktivität aufweisen, und die genetische Veränderung eine Erhöhung der Ketolase-Aktivität im Vergleich zum Wildtyp bewirkt.2. The method according to claim 1, characterized in that non-human organisms are used which already have a ketolase activity as wild type, and the genetic change brings about an increase in ketolase activity compared to the wild type.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass man zur Erhöhung der Ketolase-Aktivität die Genexpression einer Nukleinsäure, kodierend eine Ketolase, gegenüber dem Wildtyp erhöht.3. The method according to claim 2, characterized in that to increase the ketolase activity, the gene expression of a nucleic acid encoding a ketolase is increased compared to the wild type.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass man zur Erhöhung der Genexpression Nukleinsäuren in den Organismus einbringt, die Ketolasen kodieren.4. The method according to claim 3, characterized in that to increase the gene expression nucleic acids are introduced into the organism, which encode ketolases.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass man als Nukleinsäure, kodierend eine Ketolase, Nukleinsäuren einbringt, die eine Ketolase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 4 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 4 aufweist.5. The method according to claim 4, characterized in that nucleic acid encoding a ketolase is introduced, nucleic acids encoding a ketolase containing the amino acid sequence SEQ ID NO: 4 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids which has an identity of at least 70% at the amino acid level with the sequence SEQ ID NO: 4.
6. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass man nicht-humane Organismen verwendet, die als Wildtyp keine Ketolase-Aktivität aufweisen und die genetische Veränderung eine Ketolase-Aktivität im Vergleich zum Wildtyp verur- sacht.6. The method according to claim 1, characterized in that non-human organisms are used which have no ketolase activity as a wild type and the genetic change causes a ketolase activity compared to the wild type. gently.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass man genetisch veränderte Organismen verwendet, die transgen eine Ketolase exprimieren.7. The method according to claim 6, characterized in that one uses genetically modified organisms which transgenically express a ketolase.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass man zur Verursachung der Genexpression Nukleinsäuren in die Organismen einbringt, die Ketolasen kodieren.8. The method according to claim 6 or 7, characterized in that in order to cause the gene expression nucleic acids are introduced into the organisms which code for ketolases.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass man Nukleinsäuren einbringt, kodierend eine Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 4 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 4 aufweist.9. The method according to claim 8, characterized in that introducing nucleic acids encoding a ketolase containing the amino acid sequence SEQ. ID. NO. 4 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 4 has.
10. Verfahren nach Anspruch 5 oder 9, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ. ID. NO. 3 einbringt.10. The method according to claim 5 or 9, characterized in that nucleic acids containing the sequence SEQ. ID. NO. 3 brings.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass man Organismen verwendet, die als Wildtyp bereits eine ß-Cyclase-Aktivität aufweisen, und die genetische Veränderung eine Erhöhung der ß-Cyclase-Aktivität im Vergleich zum Wildtyp bewirkt.11. The method according to any one of claims 1 to 10, characterized in that organisms are used which as a wild type already have a β-cyclase activity, and the genetic change brings about an increase in the β-cyclase activity compared to the wild type.
12. Verfahren nach Anspruch 11 , dadurch gekennzeichnet, dass man zur Erhöhung der ß-Cyclase-Aktivität die Genexpression einer Nukleinsäure, kodierend eine ß- Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, gegenüber dem Wildtyp erhöht.12. The method according to claim 11, characterized in that to increase the β-cyclase activity, the gene expression of a nucleic acid, encoding a β-cyclase, containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2, increased compared to the wild type.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass man zur Erhöhung der Genexpression Nukleinsäuren in den Organismus einbringt, die ß-Cyclasen kodieren, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.13. The method according to claim 12, characterized in that in order to increase gene expression nucleic acids are introduced into the organism, which encode β-cyclases containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the SEQ sequence. ID. NO. 2 has.
14. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass man Organismen verwendet, die als Wildtyp keine ß-Cyclase-Aktivität aufweisen und die genetische Veränderung eine ß-Cyclase-Aktivität im Vergleich zum Wildtyp verursacht.14. The method according to any one of claims 1 to 10, characterized in that organisms are used which have no ß-cyclase activity as a wild type and the genetic change causes a ß-cyclase activity compared to the wild type.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass man genetisch veränderte Organismen verwendet, die transgen eine ß-Cyclase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, exprimieren.15. The method according to claim 14, characterized in that one uses genetically modified organisms, the transgenic a β-cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 express.
16. Verfahren nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass man zur Verursachung der Genexpression Nukleinsäuren in die Organismen einbringt, die ß- Cyclasen kodieren, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebe- ne mit der Sequenz SEQ. ID. NO. 2 aufweist.16. The method according to claim 14 or 15, characterized in that in order to cause the gene expression, nucleic acids are introduced into the organisms which encode β-cyclases containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has.
17. Verfahren nach Anspruch 13 oder 16, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ. ID. NO. 1 einbringt.17. The method according to claim 13 or 16, characterized in that nucleic acids containing the sequence SEQ. ID. NO. 1 brings.
18. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass die nicht-humanen Organismen zusätzlich gegenüber dem Wildtyp eine erhöhte oder verursachte Hydroxylase-Aktivität aufweisen.18. The method according to any one of claims 1 to 17, characterized in that the non-human organisms additionally have an increased or caused hydroxylase activity compared to the wild type.
19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass man zur zusätzlichen Erhöhung oder Verursachung der Hydroxylase-Aktivität, die Genexpression einer Nukleinsäure kodierend eine Hydroxylase 'gegenüber dem Wildtyp erhöht oder verursacht.19. The method according to claim 18, characterized in that for additional increase or causation of the hydroxylase activity, the gene expression of a nucleic acid encoding a hydroxylase is increased or caused compared to the wild type.
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass man zur Erhöhung oder Verursachung der Genexpression eine Nukleinsäure kodierend eine Hydroxy- läse in den Organismus einbringt.20. The method according to claim 19, characterized in that to increase or cause the gene expression encoding a nucleic acid a hydroxy brings into the organism.
21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, dass man als Nukleinsäure, kodierend eine Hydroxylase, Nukleinsäuren einbringt, die eine Hydroxylase ko- dieren, enthaltend die Aminosäuresequenz SEQ ID NO: 6 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 6 aufweist.21. The method according to claim 20, characterized in that nucleic acid encoding a hydroxylase is introduced, nucleic acids encoding a hydroxylase containing the amino acid sequence SEQ ID NO: 6 or one of this sequence by substitution, insertion or deletion of amino acids derived sequence which has an identity of at least 70% at the amino acid level with the sequence SEQ ID NO: 6.
22. Verfahren nach Anspruch 21 , dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 5 einbringt.22. The method according to claim 21, characterized in that nucleic acids containing the sequence SEQ ID NO: 5 are introduced.
23. Verfahren nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, dass die Organismen zusätzlich gegenüber dem Wildtyp eine erhöhte oder verursachte Ak- tivität mindestens einer der Aktivitäten, ausgewählt aus der Gruppe HMG-CoA- Reduktase-Aktivität, (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase- Aktivität, 1 -Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität, 1 -Deoxy-D-Xylose-5- Phosphat-Reduktoisomerase-Aktivität, Isopentenyl-Diphosphat-Δ-Isomerase- Aktivität, Geranyl-Diphosphat-Synthase-Aktivität, Famesyl-Diphosphat-Synthase- Aktivität, Geranyl-geranyl-Diphosphat-Synthase-Aktivität, Phytoen-Synthase- Aktivität, Phytoen-Desaturase-Aktivität, Zeta-Carotin-Desaturase-Aktivität, crtlSO- Aktivität, FtsZ-Aktivität und MinD-Aktivität aufweisen.23. The method according to any one of claims 1 to 22, characterized in that the organisms in addition to the wild type an increased or caused activity of at least one of the activities selected from the group HMG-CoA reductase activity, (E) -4 -Hydroxy-3-methylbut-2-enyl-diphosphate reductase activity, 1 -deoxy-D-xylose-5-phosphate synthase activity, 1 -deoxy-D-xylose-5-phosphate reductoisomerase activity, isopentenyl -Diphosphate-Δ-isomerase activity, geranyl diphosphate synthase activity, famesyl diphosphate synthase activity, geranyl geranyl diphosphate synthase activity, phytoene synthase activity, phytoene desaturase activity, zeta-carotene -Desaturase activity, crtlSO activity, FtsZ activity and MinD activity.
24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, dass man zur zusätzlichen Erhöhung oder Verursachung mindestens einer der Aktivitäten, die Genexpression mindestens einer Nukleinsäure ausgewählt aus der Gruppe, Nukleinsäuren kodierend eine HMG-CoA-Reduktase, Nukleinsäuren kodierend eine (E)-4-Hydroxy-3- Methylbut-2-enyl-Diphosphat-Reduktase, Nukleinsäuren kodierend eine 1-Deoxy- D-Xylose-5-Phosphat-Synthase, Nukleinsäuren kodierend eine 1 -Deoxy-D-Xylose- 5-Phosphat-Reduktoisomerase, Nukleinsäuren kodierend eine Isopentenyl- Diphosphat-Δ-Isomerase, Nukleinsäuren kodierend eine Geranyl-Diphosphat- Synthase, Nukleinsäuren kodierend eine Farnesyl-Diphosphat-Synthase, Nukleinsäuren kodierend eine Geranyl-Geranyl-Diphosphat-Synthase, Nukleinsäuren kodierend eine Phytoen-Synthase, Nukleinsäuren kodierend eine Phytoen- Desaturase, Nukleinsäuren kodierend eine Zeta-Carotin-Desaturase, Nukleinsäu- ren kodierend ein crtlSO Protein, Nukleinsäuren kodierend ein FtsZ Protein und Nukleinsäuren kodierend ein MinD Protein gegenüber dem Wildtyp erhöht.24. The method according to claim 23, characterized in that for additional increase or causation of at least one of the activities, the gene expression of at least one nucleic acid selected from the group encoding an HMG-CoA reductase, nucleic acids encoding an (E) -4- Hydroxy-3-methylbut-2-enyl-diphosphate reductase, nucleic acids encoding a 1-deoxy-D-xylose-5-phosphate synthase, nucleic acids encoding a 1-deoxy-D-xylose-5-phosphate reductoisomerase, encoding nucleic acids an isopentenyl diphosphate Δ isomerase, encoding nucleic acids a geranyl diphosphate synthase, nucleic acids encoding a farnesyl diphosphate synthase, nucleic acids encoding a geranyl geranyl diphosphate synthase, nucleic acids encoding a phytoene synthase, nucleic acids Desaturase, nucleic acids encoding a zeta-carotene desaturase, nucleic acid ren encoding a crtlSO protein, nucleic acids encoding an FtsZ protein and nucleic acids encoding a MinD protein increased compared to the wild type.
25. Verfahren nach Anspruch 24, dadurch gekennzeichnet, dass man zur Erhöhung oder Verursachung der Genexpression mindestens einer der Nukleinsäuren, mindestens eine Nukleinsäure ausgewählt aus der Gruppe, Nukleinsäuren kodierend eine HMG-CoA-Reduktase, Nukleinsäuren kodierend eine (E)-4-Hydroxy-3- Methylbut-2-enyl-Diphosphat-Reduktase, Nukleinsäuren kodierend eine 1-Deoxy- D-Xylose-5-Phosphat-Synthase, Nukleinsäuren kodierend eine 1 -Deoxy-D-Xylose- 5-Phosphat-Reduktoisomerase, Nukleinsäuren kodierend eine Isopentenyl- Diphosphat-Δ-Isomerase, Nukleinsäuren kodierend eine Geranyl-Diphosphat- Synthase, Nukleinsäuren kodierend eine Farnesyl-Diphosphat-Synthase, Nukleinsäuren kodierend eine Geranyl-Geranyl-Diphosphat-Synthase, Nukleinsäuren kodierend eine Phytoen-Synthase, Nukleinsäuren kodierend eine Phytoen- Desaturase, Nukleinsäuren kodierend eine Zeta-Carotin-Desaturase, Nukleinsäuren kodierend ein crtlSO Protein, Nukleinsäuren kodierend ein FtsZ Protein und Nukleinsäuren kodierend ein MinD Protein in die nicht-humanen Organismen einbringt.25. The method according to claim 24, characterized in that to increase or cause the gene expression of at least one of the nucleic acids, at least one nucleic acid selected from the group, nucleic acids encoding an HMG-CoA reductase, nucleic acids encoding an (E) -4-hydroxy -3- Methylbut-2-enyl-diphosphate reductase, nucleic acids encoding a 1-deoxy-D-xylose-5-phosphate synthase, nucleic acids encoding a 1-deoxy-D-xylose-5-phosphate reductoisomerase, nucleic acids encoding one Isopentenyl-diphosphate-Δ-isomerase, nucleic acids encoding a geranyl diphosphate synthase, nucleic acids encoding a farnesyl diphosphate synthase, nucleic acids encoding a geranyl-geranyl diphosphate synthase, nucleic acids encoding a phytoene synthase, phasing nucleic acids , Nucleic acids encoding a zeta-carotene desaturase, nucleic acids encoding a crtlSO protein, nucleic acids encoding an FtsZ protein and nucleins acid encoding a MinD protein in the non-human organisms.
26. Verfahren nach Anspruch 25, dadurch gekennzeichnet, dass man als Nukleinsäure kodierend eine HMG-CoA-Reduktase, Nukleinsäuren einbringt die eine HMG- CoA-Reduktase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 8 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Amino- säureebene mit der Sequenz SEQ ID NO: 8 aufweist.26. The method according to claim 25, characterized in that the nucleic acid encoding an HMG-CoA reductase, nucleic acids which encode an HMG-CoA reductase, containing the amino acid sequence SEQ ID NO: 8 or one of these sequences by substitution, insertion or deletion of amino acid-derived sequence which has an identity of at least 20% at the amino acid level with the sequence SEQ ID NO: 8.
27. Verfahren nach Anspruch 26, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 7 einbringt.27. The method according to claim 26, characterized in that nucleic acids containing the sequence SEQ ID NO: 7 are introduced.
28. Verfahren nach Anspruch 25, dadurch gekennzeichnet, dass man als Nukleinsäure kodierend eine (E)-4-Hydroxy-3-Methylbut- 2-enyl-Diphosphat-Reduktase, Nukleinsäuren einbringt die eine (E)-4-Hydroxy-3- Methylbut-2-enyl-Diphosphat-Reduktase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 10, oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von min- destens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 10 aufweist.28. The method according to claim 25, characterized in that the nucleic acid encoding is an (E) -4-hydroxy-3-methylbut-2-enyl-diphosphate reductase; nucleic acids are introduced which are an (E) -4-hydroxy-3- Encoding methylbut-2-enyl-diphosphate reductase containing the amino acid sequence SEQ ID NO: 10, or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of min. at least 20% at the amino acid level with the sequence SEQ ID NO: 10.
29. Verfahren nach Anspruch 28, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 9 einbringt.29. The method according to claim 28, characterized in that nucleic acids containing the sequence SEQ ID NO: 9 are introduced.
30. Verfahren nach Anspruch 25, dadurch gekennzeichnet, dass man als Nukleinsäure kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Synthase, Nukleinsäuren einbringt die eine 1-Deoxy-D-Xylose-5-Phosphat-Synthase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 12 aufweist.30. The method according to claim 25, characterized in that a 1-deoxy-D-xylose-5-phosphate synthase encoding nucleic acid is introduced, containing nucleic acids encoding a 1-deoxy-D-xylose-5-phosphate synthase the amino acid sequence SEQ ID NO: 12 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 20% at the amino acid level with the sequence SEQ ID NO: 12.
31. Verfahren nach Anspruch 30, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 11 einbringt.31. The method according to claim 30, characterized in that nucleic acids containing the sequence SEQ ID NO: 11 are introduced.
32. Verfahren nach Anspruch 25, dadurch gekennzeichnet, dass man als Nukleinsäure kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase, Nukleinsäuren einbringt die eine 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase kodieren, ent- haltend die Aminosäuresequenz SEQ ID NO: 14 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 14 aufweist.32. The method according to claim 25, characterized in that a 1-deoxy-D-xylose-5-phosphate reductoisomerase is encoded as nucleic acid, nucleic acids which encode a 1-deoxy-D-xylose-5-phosphate reductoisomerase are introduced - Holding the amino acid sequence SEQ ID NO: 14 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 20% at the amino acid level with the sequence SEQ ID NO: 14.
33. Verfahren nach Anspruch 32, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 13 einbringt.33. The method according to claim 32, characterized in that nucleic acids containing the sequence SEQ ID NO: 13 are introduced.
34. Verfahren nach Anspruch 25, dadurch gekennzeichnet, dass man als Nukleinsäure kodierend eine Isopentenyl-Diphosphat-Δ-Isomerase, Nukleinsäuren einbringt die eine Isopentenyl-Diphosphat-Δ-Isomerase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 16 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 16 aufweist. 34. The method according to claim 25, characterized in that the nucleic acid encoding an isopentenyl diphosphate Δ isomerase, nucleic acids which encode an isopentenyl diphosphate Δ isomerase, containing the amino acid sequence SEQ ID NO: 16 or one of these sequences sequence derived by substitution, insertion or deletion of amino acids, which has an identity of at least 20% at the amino acid level with the sequence SEQ ID NO: 16.
35. Verfahren nach Anspruch 34, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 15 einbringt.35. The method according to claim 34, characterized in that nucleic acids containing the sequence SEQ ID NO: 15 are introduced.
36. Verfahren nach Anspruch 25, dadurch gekennzeichnet, dass man als Nukleinsäure kodierend eine Geranyl-Diphosphat-Synthase, Nukleinsäuren einbringt die eine Geranyl-Diphosphat-Synthase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 18 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 18 aufweist.36. The method according to claim 25, characterized in that a nucleic acid encoding a geranyl diphosphate synthase is introduced, nucleic acids encoding a geranyl diphosphate synthase containing the amino acid sequence SEQ ID NO: 18 or one of these sequences by substitution, insertion or deletion of amino acid-derived sequence which has at least 20% identity at the amino acid level with the sequence SEQ ID NO: 18.
37. Verfahren nach Anspruch 36, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 17 einbringt.37. The method according to claim 36, characterized in that nucleic acids containing the sequence SEQ ID NO: 17 are introduced.
38. Verfahren nach Anspruch 25, dadurch gekennzeichnet, dass man als Nukleinsäure kodierend eine Farnesyl-Diphosphat-Synthase, Nukleinsäuren einbringt die eine Farnesyl-Diphosphat-Synthase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 20 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 20 aufweist.38. The method according to claim 25, characterized in that the nucleic acid coding is a farnesyl diphosphate synthase, nucleic acids are introduced which encode a farnesyl diphosphate synthase containing the amino acid sequence SEQ ID NO: 20 or one of these sequences by substitution, insertion or deletion of amino acid-derived sequence which has at least 20% identity at the amino acid level with the sequence SEQ ID NO: 20.
39. Verfahren nach Anspruch 38, dadurch gekennzeichnet, dass' man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 19 einbringt.39. The method according to claim 38, characterized in that 'nucleic acids containing the sequence SEQ ID NO: 19 are introduced.
40. Verfahren nach Anspruch 25, dadurch gekennzeichnet, dass man als Nukleinsäure kodierend eine Geranyl-Geranyl-Diphosphat-Synthase, Nukleinsäuren einbringt die eine Geranyl-Geranyl-Diphosphat-Synthase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 22 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 22 aufweist.40. The method according to claim 25, characterized in that a nucleic acid encoding a geranyl-geranyl diphosphate synthase is introduced, nucleic acids encoding a geranyl-geranyl diphosphate synthase containing the amino acid sequence SEQ ID NO: 22 or one of these sequences sequence derived by substitution, insertion or deletion of amino acids, which has an identity of at least 20% at the amino acid level with the sequence SEQ ID NO: 22.
41. Verfahren nach Anspruch 40, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 21 einbringt.41. The method according to claim 40, characterized in that nucleic acids containing the sequence SEQ ID NO: 21 are introduced.
42. Verfahren nach Anspruch 25, dadurch gekennzeichnet, dass man als Nukleinsäure kodierend eine Phytoen-Synthase, Nukleinsäuren einbringt die eine Phytoen- Synthase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 24 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 24 aufweist.42. The method according to claim 25, characterized in that a nucleic acid encoding a phytoene synthase, nucleic acids are introduced which a phytoene Coding synthase containing the amino acid sequence SEQ ID NO: 24 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 20% at the amino acid level with the sequence SEQ ID NO: 24.
43. Verfahren nach Anspruch 42, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 23 einbringt.43. The method according to claim 42, characterized in that nucleic acids containing the sequence SEQ ID NO: 23 are introduced.
44. Verfahren nach Anspruch 25, dadurch gekennzeichnet, dass man als Nukleinsäure kodierend eine Phytoen-Desaturase, Nukleinsäuren einbringt die eine Phytoen- Desaturase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 26 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 26 aufweist.44. The method according to claim 25, characterized in that a nucleic acid encoding a phytoene desaturase is introduced, nucleic acids encoding a phytoene desaturase containing the amino acid sequence SEQ ID NO: 26 or one of this sequence by substitution, insertion or deletion of amino acids derived sequence which has an identity of at least 20% at the amino acid level with the sequence SEQ ID NO: 26.
45. Verfahren nach Anspruch 44, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 25 einbringt.45. The method according to claim 44, characterized in that nucleic acids containing the sequence SEQ ID NO: 25 are introduced.
46. Verfahren nach Anspruch 25, dadurch gekennzeichnet, dass man als Nukleinsäu- re kodierend eine Zeta-Carotin-Desaturase, Nukleinsäuren einbringt die eine Zeta- Carotin-Desaturase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 28 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 28 aufweist.46. The method according to claim 25, characterized in that a nucleic acid encoding a zeta-carotene desaturase is introduced, nucleic acids encoding a zeta-carotene desaturase containing the amino acid sequence SEQ ID NO: 28 or one of these sequences by substitution , Insertion or deletion of amino acid-derived sequence which has an identity of at least 20% at the amino acid level with the sequence SEQ ID NO: 28.
47. Verfahren nach Anspruch 46, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 27 einbringt.47. The method according to claim 46, characterized in that nucleic acids containing the sequence SEQ ID NO: 27 are introduced.
48. Verfahren nach Anspruch 25, dadurch gekennzeichnet, dass man als Nukleinsäure kodierend ein crtlSO Protein, Nukleinsäuren einbringt die ein crtlSO Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 30 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 30 aufweist. 48. The method according to claim 25, characterized in that the nucleic acid coding is a crtlSO protein, nucleic acids which encode a crtlSO protein are introduced, containing the amino acid sequence SEQ ID NO: 30 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids which has an identity of at least 20% at the amino acid level with the sequence SEQ ID NO: 30.
49. Verfahren nach Anspruch 48, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 29 einbringt.49. The method according to claim 48, characterized in that nucleic acids containing the sequence SEQ ID NO: 29 are introduced.
50. Verfahren nach Anspruch 25, dadurch gekennzeichnet, dass man als Nukleinsäure kodierend ein FtsZ Protein, Nukleinsäuren einbringt die ein FtsZ Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 32 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 32 aufweist.50. The method according to claim 25, characterized in that the nucleic acid encoding is an FtsZ protein, nucleic acids which encode an FtsZ protein are introduced, containing the amino acid sequence SEQ ID NO: 32 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids which has an identity of at least 20% at the amino acid level with the sequence SEQ ID NO: 32.
51. Verfahren nach Anspruch 50, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 31 einbringt.51. The method according to claim 50, characterized in that nucleic acids containing the sequence SEQ ID NO: 31 are introduced.
52. Verfahren nach Anspruch 25, dadurch gekennzeichnet, dass man als Nukleinsäure kodierend ein MinD Protein, Nukleinsäuren einbringt die ein MinD Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 34 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 34 aufweist.52. The method according to claim 25, characterized in that the nucleic acid encoding is a MinD protein, nucleic acids encoding a MinD protein are introduced, containing the amino acid sequence SEQ ID NO: 34 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids which has an identity of at least 20% at the amino acid level with the sequence SEQ ID NO: 34.
53. Verfahren nach Anspruch 52, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 33 einbringt.53. The method according to claim 52, characterized in that nucleic acids containing the sequence SEQ ID NO: 33 are introduced.
54. Verfahren nach einem der Ansprüche 1 bis 53, dadurch gekennzeichnet, dass man nach dem Kultivieren die genetisch veränderten Organismen erntet und anschließend die Ketocarotinoide aus den Organismen isoliert.54. The method according to any one of claims 1 to 53, characterized in that after culturing, the genetically modified organisms are harvested and then the ketocarotenoids are isolated from the organisms.
55. Verfahren nach einem der Ansprüche 1 bis 54, dadurch gekennzeichnet, dass man als Organismus einen Organismus verwendet, der als Ausgangsorganismus natür- licherweise oder durch genetische Komplementierung oder Umregulierung von Stoffwecheselwegen in der Lage ist, Carotinoide herzustellen.55. The method according to any one of claims 1 to 54, characterized in that the organism used is an organism which, as a starting organism, is of course capable of producing carotenoids or by genetic complementation or re-regulation of metabolic pathways.
56. Verfahren nach einem der Ansprüche 1 bis 55, dadurch gekennzeichnet, dass man als Organismen Mikroorganismen oder Pflanzen verwendet. 56. The method according to any one of claims 1 to 55, characterized in that microorganisms or plants are used as organisms.
57. Verfahren nach Anspruch 56, dadurch gekennzeichnet, dass man als Mikroorganismen Bakterien, Hefen, Algen oder Pilze verwendet.57. The method according to claim 56, characterized in that bacteria, yeasts, algae or fungi are used as microorganisms.
58. Verfahren nach Anspruch 57, dadurch gekennzeichnet, dass die Mikroorganismen ι ausgewählt sind aus der Gruppe Escherichia, Erwinia, Agrobacterium, Flavobacterium, Alcaligenes, Paracoccus, Nostoc, Cyanobakterien der Gattung Synechocystis, Candida, Saccharomyces, Hansenula, Phaffia, Pichia, Aspergillus, Tricho- derma, Ashbya, Neurospora, Blakeslea, Phycomyces, Fusarium, Haematococcus, Phaedactylum tricornatum, Volvox oder Dunaliella.58. The method according to claim 57, characterized in that the microorganisms are selected from the group Escherichia, Erwinia, Agrobacterium, Flavobacterium, Alcaligenes, Paracoccus, Nostoc, cyanobacteria of the genus Synechocystis, Candida, Saccharomyces, Hansenula, Phaffia, Pichia, Aspergillus, Trichoderma, Ashbya, Neurospora, Blakeslea, Phycomyces, Fusarium, Haematococcus, Phaedactylum tricornatum, Volvox or Dunaliella.
59. Verfahren nach Anspruch 56, dadurch gekennzeichnet, dass man als Organismen Pflanzen verwendet.59. The method according to claim 56, characterized in that plants are used as organisms.
60. Verfahren nach Anspruch 59, dadurch gekennzeichnet, dass man als Pflanze eine Pflanze, ausgewählt aus den Familien Amaranthaceae, Amaryllidaceae, Apocyna- ceae, Asteraceae, Balsaminaceae, Begoniaceae, Berberidaceae, Brassica- ceae.Cannabaceae, Caprifoliaceae, Caryophyllaceae, Chenopodiaceae, Compo- sitae, Cucurbitaceae, Cruciferae, Euphorbiaceae, Fabaceae, Gentianaceae, Gera- niaceae, Graminae, liliaceae, Labiatae, Lamiaceae, Leguminosae, Liliaceae, Lina- ceae, Lobeliaceae, Malvaceae, Oleaceae, Orchidaceae, Papaveraceae , Plumba- ginaceae, Poaceae, Polemoniaceae, Primulaceae, Ranunculaceae, Rosaceae, Rubiaceae, Scrophulariaceae, Solanaceae, Tropaeolaceae, Umbelliferae, Verba- naceae, Vitaceae oder Violaceae verwendet. 60. The method according to claim 59, characterized in that the plant is a plant selected from the families Amaranthaceae, Amaryllidaceae, Apocynaceae, Asteraceae, Balsaminaceae, Begoniaceae, Berberidaceae, Brassica-ceae.Cannabaceae, Caprifoliaceae, Caryophopodlac, Caryophoplaceae - sitae, Cucurbitaceae, Cruciferae, Euphorbiaceae, Fabaceae, Gentianaceae, Geraniaceae, Graminae, liliaceae, Labiatae, Lamiaceae, Leguminosae, Liliaceae, Lina- ceae, Lobeliaceae, Malvaceeaeaeaeaeaeaeaeaeaeaeaeaeaeaeaeaeaeaeaceaaceae , Primulaceae, Ranunculaceae, Rosaceae, Rubiaceae, Scrophulariaceae, Solanaceae, Tropaeolaceae, Umbelliferae, Verbanaceae, Vitaceae or Violaceae.
61. Verfahren nach Anspruch 60, dadurch gekennzeichnet, dass man als Pflanze eine Pflanze, ausgewählt aus den Pflanzengattungen Marigold, Tagetes erecta, Tagetes patula, Acacia, Aconitum, Adonis, Arnica, Aqulegia, Aster, Astragalus, Bigno- nia, Calendula, Caltha, Campanula, Canna, Centaurea, Cheiranthus, Chrysanthemum, Citrus, Crepis, Crocus, Curcurbita, Cytisus, Delonia, Delphinium, Dianthus, Dimorphotheca, Doronicum, Eschscholtzia, Forsythia, Fremontia, Gazania, Gel- semium, Genista, Gentiana, Geranium, Gerbera, Geum, Grevillea, Helenium, Helianthus, Hepatica, Heracleum, Hisbiscus, Heliopsis, Hypericum, Hypochoeris, Impatiens, Iris, Jacaranda, Kerria, Laburnum, Lathyrus, Leontodon, Lilium, Linum, Lotus, Lycopersicon, Lysjmachia, Maratia, Medicago, Mimulus, Narcissus, Oenothe- ra, Osmanthus, Petunia, Photinia, Physalis, Phyteuma, Potentilla, Pyracantha, Ra- nunculus, Rhododendron, Rosa, Rudbeckia, Senecio, Silene, Silphium, Sinapsis, Sorbus, Spartium, Tecoma, Torenia, Tragopogon, Trollius, Tropaeolum, Tulipa, Tussilago, Ulex, Viola oder Zinnia verwendet.61. The method according to claim 60, characterized in that a plant is selected from the plant genera Marigold, Tagetes erecta, Tagetes patula, Acacia, Aconitum, Adonis, Arnica, Aqulegia, Aster, Astragalus, Bignonia, Calendula, Caltha , Campanula, Canna, Centaurea, Cheiranthus, Chrysanthemum, Citrus, Crepis, Crocus, Curcurbita, Cytisus, Delonia, Delphinium, Dianthus, Dimorphotheca, Doronicum, Eschscholtzia, Forsythia, Fremontia, Gazania, Gelemium, Genista, Genta, Geranium, Geranium, Geranium, Geranium , Geum, Grevillea, Helenium, Helianthus, Hepatica, Heracleum, Hisbiscus, Heliopsis, Hypericum, Hypochoeris, Impatiens, Iris, Jacaranda, Kerria, Laburnum, Lathyrus, Leontodon, Lilium, Linum, Lotus, Lycopersicon, Lysjmachia, Maratia, Medicago , Narcissus, Oenothe- ra, Osmanthus, Petunia, Photinia, Physalis, Phyteuma, Potentilla, Pyracantha, Ra- nunculus, rhododendron, Rosa, Rudbeckia, Senecio, Silene, Silphium, Sinapsis, Sorbus, Spartium, Tecoma, Torenia, Tragopogon, Trollius, Tropaeolum, Tulipa, Tussilago, Ulex, Viola or Zinnia.
62. Verfahren nach einem der Ansprüche 1 bis 61, dadurch gekennzeichnet, dass die Ketocarotinoide ausgewählt sind aus der Gruppe Astaxanthin, Canthaxanthin, E- chinenon, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Adonirubin und Adonixanthin.62. The method according to any one of claims 1 to 61, characterized in that the ketocarotenoids are selected from the group of astaxanthin, canthaxanthin, echinenone, 3-hydroxyechinenone, 3'-hydroxyechinenone, adonirubin and adonixanthin.
63. Genetisch veränderter, nicht-humaner Organismus, wobei die genetische Veränderung die Aktivität einer Ketolase63. Genetically modified, non-human organism, the genetic modification being the activity of a ketolase
A für den Fall, dass der Wildtyporganismus bereits eine Ketolase-Aktivität aufweist, gegenüber dem Wildtyp erhöht undA in the event that the wild-type organism already has ketolase activity, increased compared to the wild-type and
B für den Fall, dass der Wildtyporganismus keine Ketolase-Aktivität aufweist, gegenüber dem Wildtyp verursacht, und wobei die genetische Veränderung die Aktivität einer ß-CyclaseB in the event that the wild-type organism has no ketolase activity compared to the wild-type, and the genetic modification being the activity of a β-cyclase
C für den Fall, dass der Wildtyporganismus bereits eine ß-Cyclase -Aktivität aufweist, gegenüber dem Wildtyp erhöht undC in the event that the wild-type organism already has a β-cyclase activity, increased compared to the wild-type and
D für den Fall, dass der Wildtyporganismus keine ß-Cyclase -Aktivität aufweist, gegenüber dem Wildtyp verursacht und die nach C erhöhte oder nach D verursachte ß-Cyclase-Aktivität durch eine ß- Cyclase verursacht wird, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Amino- säuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.D in the event that the wild-type organism has no β-cyclase activity, is caused compared to the wild-type and the β-cyclase activity increased after C or caused according to D is caused by a β-cyclase containing the amino acid sequence SEQ. ID. NO. 2 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70% at the amino acid level with the sequence SEQ. ID. NO. 2 has.
64. Genetisch veränderter Organismus nach Anspruch 63, dadurch gekennzeichnet dass er als Ausgangsorganismus natürlicherweise oder durch genetische Korn- plementierung in der Lage ist, Carotinoide herzustellen.64. Genetically modified organism according to claim 63, characterized in that it is natural as a starting organism or by genetic grain implementation is able to produce carotenoids.
65. Genetisch veränderter Organismus nach Anspruch 63 oder 64, ausgewählt aus der Gruppe Mikroorganismen oder Pflanzen.65. Genetically modified organism according to claim 63 or 64, selected from the group of microorganisms or plants.
66. Genetisch veränderter Mikroorganismus nach Anspruch 65, dadurch gekennzeichnet, dass die Mikroorganismen ausgewählt sind aus der Gruppe Bakterien, Hefen, Algen oder Pilze.66. Genetically modified microorganism according to claim 65, characterized in that the microorganisms are selected from the group of bacteria, yeast, algae or fungi.
67. Genetisch veränderter Mikroorganismus nach Anspruch 66, dadurch gekennzeichnet, dass die Mikroorganismen ausgewählt sind aus der Gruppe Escherichia, Erwinia, Agrobacterium, Flavobacterium, Alcaligenes, Paracoccus, Nostoc, Cyanobak- terien der Gattung Synechocystis, Candida, Saccharomyces, Hansenula, Pichia, Aspergillus, Trichoderma, Ashbya, Neurospora, Blakeslea, Phycomyces, Fusari- um, Haematococcus, Phaedactylum tricornatum, Volvox oder Dunaliella.67. Genetically modified microorganism according to claim 66, characterized in that the microorganisms are selected from the group Escherichia, Erwinia, Agrobacterium, Flavobacterium, Alcaligenes, Paracoccus, Nostoc, Cyanobacteria of the genus Synechocystis, Candida, Saccharomyces, Hansenula, Pichia, Aspergillus , Trichoderma, Ashbya, Neurospora, Blakeslea, Phycomyces, Fusarium, Haematococcus, Phaedactylum tricornatum, Volvox or Dunaliella.
68. Genetisch veränderte Pflanze nach Anspruch 65, dadurch gekennzeichnet, dass die Pflanzen ausgewählt sind aus den Familien Amaranthaceae.Amaryllidaceae, Apocynaceae, Asteraceae, Balsaminaceae, Begoniaceae, Berberidaceae, Brassi- caceae.Cannabaceae, Caprifoliaceae, Caryophyllaceae, Chenopodiaceae, Com- positae, Cucurbitaceae, Cruciferae, Euphorbiaceae, Fabaceae, Gentianaceae, Ge- raniaceae, Graminae, liliaceae, Labiatae, Lamiaceae, Leguminosae, Liliaceae, Linaceae, Lobeliaceae, Malvaceae, Oleaceae, Orchidaceae, Papaveraceae , Plum- baginaceae, Poaceae, Polemoniaceae, Primulaceae, Ranunculaceae, Rosaceae, Rubiaceae, Scrophulariaceae, Solanaceae, Tropaeolaceae, Umbelliferae, Verba- naceae, Vitaceae und Violaceae verwendet.68. Genetically modified plant according to claim 65, characterized in that the plants are selected from the families Amaranthaceae.Amaryllidaceae, Apocynaceae, Asteraceae, Balsaminaceae, Begoniaceae, Berberidaceae, Brassi- caceae.Cannabaceae, Caprifoliaceae, Caryophyllaceae, Caryophyllaceae, Caryophyllaceae, Caryophyllaceae, Caryophyllaceae, Caryophyllaceae, Caryophyllaceae, Caryophyllaceae, Caryophyllaceae, Caryophyllaceae, Caryophyllaceae, Caryophyllaceae, Caryopyleaceae Cucurbitaceae, Cruciferae, Euphorbiaceae, Fabaceae, Gentianaceae, Geraniaceae, Graminae, liliaceae, Labiatae, Lamiaceae, Leguminosae, Liliaceae, Linaceae, Lobeliaceae, Malvaceae, Oleaceae, Plidaumaceae, Orchidacaceae, Orchidaceae Rosaceae, Rubiaceae, Scrophulariaceae, Solanaceae, Tropaeolaceae, Umbelliferae, Verbanaceae, Vitaceae and Violaceae are used.
69. Genetisch veränderte Pflanze nach Anspruch 68, dadurch gekennzeichnet, dass Pflanzen ausgewählt sind aus den Pflanzengattungen Marigold, Tagetes erecta, Tagetes patula, Acacia, Aconitum, Adonis, Arnica, Aqulegia, Aster, Astragalus, Bignonia, Calendula, Caltha, Campanula, Canna, Centaurea, Cheiranthus, Chrysanthemum, Citrus, Crepis, Crocus, Curcurbita, Cytisus, Delonia, Delphinium, Di- anthus, Dimorphotheca, Doronicum, Eschscholtzia, Forsythia, Fremontia, Gazania, Gelsemium, Genista, Gentiana, Geranium, Gerbera, Geum, Grevillea, Helenium, Helianthus, Hepatica, Heracleum, Hisbiscus, Heliopsis, Hypericum, Hypochoeris, Impatiens, Iris, Jacaranda, Kerria, Laburnum, Lathyrus, Leontodon, Lilium, Linum, Lotus, Lycopersicon, Lysimachia, Maratia, Medicago, Mimulus, Narcissus, Oe- nothera, Osmanthus, Petunia, Photinia, Physalis, Phyteuma, Potentilla, Pyra- cantha, Ranunculus, Rhododendron, Rosa, Rudbeckia, Senecio, Silene, Silphium, Sinapsis, Sorbus, Spartium, Tecoma, Torenia, Tragopogon, Trollius, Tropaeolum, Tulipa, Tussilago, Ulex, Viola oder Zinnia verwendet.69. Genetically modified plant according to claim 68, characterized in that plants are selected from the plant genera Marigold, Tagetes erecta, Tagetes patula, Acacia, Aconitum, Adonis, Arnica, Aqulegia, Aster, Astragalus, Bignonia, Calendula, Caltha, Campanula, Canna , Centaurea, Cheiranthus, Chrysanthemum, Citrus, Crepis, Crocus, Curcurbita, Cytisus, Delonia, Delphinium, Dianthus, Dimorphotheca, Doronicum, Eschscholtzia, Forsythia, Fremontia, Gazania, Gelsemium, Genista, Gentiana, Geranium, Gervillea, Geum , Helenium, helianthus, hepatica, heracleum, hisbiscus, heliopsis, hypericum, hypochoeris, Impatiens, Iris, Jacaranda, Kerria, Laburnum, Lathyrus, Leontodon, Lilium, Linum, Lotus, Lycopersicon, Lysimachia, Maratia, Medicago, Mimulus, Narcissus, Oenothera, Osmanthus, Petunia, Photinia, Physalis, Phyteuma, Potentilla, Pyra- cantha, ranunculus, rhododendron, pink, rudbeckia, senecio, silene, silphium, sinapsis, sorbus, spartium, tecoma, torenia, tragopogon, trollius, tropaeolum, tulipa, tussilago, ulex, viola or zinnia.
70. Verwendung der genetisch veränderten Organismen nach einem der Ansprüche 63 bis 69 als Futter- oder Nahrungsmittel.70. Use of the genetically modified organisms according to one of claims 63 to 69 as feed or food.
71. Verwendung der genetisch veränderten Organismen nach einem der Ansprüche 63 bis 69 zur Herstellung von Ketocarotinoid-haltigen Extrakten oder zur Herstellung von Futter- und Nahrungsergänzungsmittel. 71. Use of the genetically modified organisms according to one of claims 63 to 69 for the production of ketocarotenoid-containing extracts or for the production of feed and food supplements.
EP04741347A 2003-08-18 2004-07-31 Method for producing ketocarotinoids in genetically modified, non-human organisms Withdrawn EP1658377A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04741347A EP1658377A1 (en) 2003-08-18 2004-07-31 Method for producing ketocarotinoids in genetically modified, non-human organisms

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
PCT/EP2003/009102 WO2004018693A2 (en) 2002-08-20 2003-08-18 Method for the production of ketocarotinoids in flower petals on plants
PCT/EP2003/009109 WO2004017749A2 (en) 2002-08-20 2003-08-18 Use of astaxanthin-containing plants or parts of plants of the genus tagetes as animal feed
PCT/EP2003/009101 WO2004018688A1 (en) 2002-08-20 2003-08-18 Method for the production of $g(b)-carotinoids
PCT/EP2003/009106 WO2004018694A2 (en) 2002-08-20 2003-08-18 Method for producing ketocarotinoids in genetically modified organisms
PCT/EP2003/009105 WO2004018385A2 (en) 2002-08-20 2003-08-18 Method for the production of zeaxanthin and/or the biosynthetic intermediates and/or subsequent products thereof
PCT/EP2003/009107 WO2004018695A2 (en) 2002-08-20 2003-08-18 Method for producing ketocarotinoids in plant fruit
DE102004007622A DE102004007622A1 (en) 2004-02-17 2004-02-17 Preparation of ketocarotenoids, useful in foods and animal feeds, by growing genetically modified organism that has altered activity of ketolase and beta-cyclase
EP04741347A EP1658377A1 (en) 2003-08-18 2004-07-31 Method for producing ketocarotinoids in genetically modified, non-human organisms
PCT/EP2004/008623 WO2005019467A1 (en) 2003-08-18 2004-07-31 Method for producing ketocarotinoids in genetically modified, non-human organisms

Publications (1)

Publication Number Publication Date
EP1658377A1 true EP1658377A1 (en) 2006-05-24

Family

ID=36204098

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04741347A Withdrawn EP1658377A1 (en) 2003-08-18 2004-07-31 Method for producing ketocarotinoids in genetically modified, non-human organisms

Country Status (1)

Country Link
EP (1) EP1658377A1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005019467A1 *

Similar Documents

Publication Publication Date Title
ZA200602230B (en) Method for producing ketocarotinoids in genetically modified, non-human organisms
WO2004063366A1 (en) Method for producing ketocarotenoids by cultivating genetically modified organisms
WO2005019467A1 (en) Method for producing ketocarotinoids in genetically modified, non-human organisms
WO2010079032A1 (en) Production of ketocarotenoids in plants
WO2005019460A2 (en) Promoters for the expression of genes in tagetes
JP2007502605A6 (en) Method for producing ketocarotenoids in genetically modified non-human organisms
WO2005019461A2 (en) Novel ketolases and method for producing ketocarotinoids
DE10238980A1 (en) Method for preparing ketocarotenoids, useful e.g. as food or feed supplements, by increasing, or introducing, ketolase activity in the petals of transgenic plants, also new nucleic acid constructs
DE10253112A1 (en) Production of ketocarotenoids with low hydroxylated by-product content, for use e.g. in pigmenting feedstuffs, by culturing genetically modified organisms having modified ketolase activity
EP1658377A1 (en) Method for producing ketocarotinoids in genetically modified, non-human organisms
EP1658372A2 (en) Novel ketolases and method for producing ketocarotinoids
DE10238978A1 (en) Method for preparing ketocarotenoids, useful e.g. as food or feed supplements, by increasing, or introducing, ketolase activity in the fruits of transgenic plants, also new nucleic acid constructs
AU2004267196A1 (en) Method for producing ketocarotinoids in genetically modified, non-human organisms
DE10238979A1 (en) Preparing zeaxanthin and its precursors or products, useful as food and feed supplements, comprises growing transgenic plants that have reduced epsilon-cyclase activity
EP1658371A2 (en) Promoters for the expression of genes in tagetes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060320

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070403

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20081223