EP1651852B1 - Method and device for converting heat energy into mechanical energy - Google Patents
Method and device for converting heat energy into mechanical energy Download PDFInfo
- Publication number
- EP1651852B1 EP1651852B1 EP04723151.9A EP04723151A EP1651852B1 EP 1651852 B1 EP1651852 B1 EP 1651852B1 EP 04723151 A EP04723151 A EP 04723151A EP 1651852 B1 EP1651852 B1 EP 1651852B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- stage
- volume
- mechanical energy
- heat energy
- work medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 27
- 238000006243 chemical reaction Methods 0.000 claims description 16
- 238000002485 combustion reaction Methods 0.000 claims description 13
- 230000003247 decreasing effect Effects 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 2
- 239000002609 medium Substances 0.000 description 44
- 230000008569 process Effects 0.000 description 11
- 239000012530 fluid Substances 0.000 description 10
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 9
- 230000009467 reduction Effects 0.000 description 8
- 230000008859 change Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01B—MACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
- F01B3/00—Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
- F01B3/0079—Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis having pistons with rotary and reciprocating motion, i.e. spinning pistons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01B—MACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
- F01B3/00—Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G1/00—Hot gas positive-displacement engine plants
- F02G1/04—Hot gas positive-displacement engine plants of closed-cycle type
- F02G1/043—Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
Definitions
- the invention relates to a method for converting thermal energy into mechanical energy by volume, pressure and temperature change of the working medium, in particular gases in several stages and a device for carrying out this method.
- Such a method and device is eg in the documents WO 03/102403 A and WO 03/012257 A disclosed.
- Methods for converting thermal energy into mechanical energy, in which the pressure and the temperature of the working medium change in a working space with a variable volume.
- pressure and temperature increase, both as a result of the noted volume change and, more specifically, in the final phase of volume reduction or in the first phase of repeated volume increase by additional heat energy input either from outside or through Heat development in the medium within the working space (for example, by combustion).
- additional heat energy input either from outside or through Heat development in the medium within the working space (for example, by combustion).
- the pressure created by the reduction in volume in the closed working space after deduction of the losses, carries out a work necessary for the subsequent reduction in volume, while the pressure resulting from the additional supply of heat energy also results in the resulting loss after deduction of the losses does mechanical work.
- volume increase for the supply of the medium used and volume reduction for the discharge of the medium used
- volume reduction for the discharge of the medium used
- it is a four-stroke process for the conversion of thermal energy into mechanical energy.
- the supply and discharge of the medium takes place at the beginning of the one clock or the end of the second clock, it is a two-stroke process. All these processes take place according to the known state of the art in a working space, which is subdivided in exceptional cases into two parts.
- the working medium is sucked into the first stage under volume increase of the first stage, after which the working medium is transferred in volume reduction of the first stage in the second stage by increasing the volume of the second stage, whereupon the working medium in volume reduction of the second stage on the third Stage is transferred with simultaneous heat supply in the fourth stage by increasing the volume of the fourth stage, whereupon it is transferred from the fourth stage with reduction of the volume of the fourth stage in the fifth stage and expanded in this fifth stage by increasing the volume of the fifth stage becomes.
- the working medium is transferred under volume reduction of the second stage via the third stage with simultaneous heating directly into the fifth stage.
- the working fluid is cooled when transferred from the first stage to the second stage.
- the working medium is transferred from the fifth stage with reduction of the volume of the fifth stage and simultaneous cooling in the first stage with simultaneous increase in the volume of the first stage.
- the working medium is transferred from the fifth stage with reduction of the volume of the fifth stage to the third stage and used for the heating process.
- the working medium is transferred by reducing the volume of the fifth stage and / or simultaneously cooling from the fifth stage directly into the second stage by increasing the volume of the second stage.
- the third stage is formed at least according to the invention as a working space with fixed volume, while the other stages are formed as working spaces with variable volume, in particular as rotary piston machines, and in the sense of the passage of the working medium behind the other, partly before the third stage and partly after this stage.
- the maximum volume of the first stage is greater than the maximum volume of the second stage, wherein the maximum volume of the fifth stage is greater than the maximum volume of the fourth stage and wherein the maximum volume of the fifth stage is greater than the maximum volume of the first stage or equal to the maximum volume of the first stage.
- the fifth stage is associated with the first stage.
- the third stage is formed as a combustion chamber and / or as a heat exchanger.
- the fifth stage is provided with a suction valve.
- a cooler between the first stage and the second stage and between the fifth stage and the first stage is interposed and a cooler between the combined stage and the second stage interposed.
- illustration 1 shows the basic embodiment of the invention, on the Figure 2 a modification with cooler between the first and the second stage and between the fifth and the first stage is shown.
- Figure 3 shows the embodiment in which the first stage is combined with the fifth stage and a cooler between the fifth and the second stage is interposed.
- the working medium is introduced into the first stage 1 by increasing the volume of the first stage 1, whereupon, when the volume of the first stage 1 is reduced, it changes into the second stage 2 by increasing the volume of the second stage. Then, the working medium is at volume reduction of the second stage 2 in the third stage 3 on.
- heat is supplied to the working fluid - either from the inside by combustion of fuel in the working fluid, or from outside by heating the third stage, for example, by an external combustion process.
- the working medium is transferred to the fourth stage 4 whose volume increases at the same time, whereupon the working medium from the fourth stage 4 passes under reduction of the volume of the fourth stage in the fifth stage 5.
- the working medium expands by increasing the volume of the fifth stage.
- the working medium is passed under volume reduction of the fifth stage 5 either to the outside or back to the first stage 1.
- air as a working medium and in an external combustion process as a form of heat supply for the third stage
- expanded hot air for the external combustion process.
- the method according to the invention thus represents a thermodynamic cycle with five cycles. In some cases it may be advantageous to take out the fourth step 4 and to lead the medium directly to the fifth step and to expand it here.
- the working medium advantageously cools during the transfer from the first stage 1 to the second stage 2 in an intermediate cooler 6.
- thermodynamic cycle has been modified with five cycles to a three-cycle process.
- the device for carrying out the method described for the conversion of thermal energy into mechanical energy is according to the invention arranged such that the third stage 3 is formed at least as a working space with fixed volume, while the other stages 1, 2, 4, 5, 51 as Workrooms with variable volume are formed. It is advantageous that all stages, with the exception of the third stage, are designed as a rotary piston machine, wherein upon rotation of the rotary piston on the connected by its apex edges surface, the volume of, by this surface and the opposite inner wall of the cylinder, in the piston rotates, delimited space, cyclically enlarged and reduced.
- the maximum volume of the first stage 1 is greater than the maximum volume of the second stage 2
- the maximum volume of the fifth stage 5 is greater than the maximum volume of the fourth stage.
- the third stage 3 serves as a combustion chamber and / or as a heat exchanger.
- the working medium is first introduced into the increasing volume of the first stage 1 (for example by suction). After reaching the maximum, the volume of this stage begins to decrease and the working medium is displaced into the increasing volume of the second stage 2.
- the state of the working medium changes in such a way that it has a higher pressure after the transition from the first stage 1 to the second stage 2 also a higher temperature. If an excessive temperature increase is undesirable, the cooler 6 can be interposed between the two stages, as shown in Figure 2. With renewed reduction in volume of the second stage 2, the working medium is transferred from this stage via the third stage 3 to the fourth stage 4 with increasing volume of the bottom.
- heat is supplied to the working fluid - either by an external combustion process, which stage serves as a heat exchanger, or by internal combustion, much like in combustion chambers of turbines, but with significantly higher pressures.
- the maximum volume of the fourth stage 4 is usually the same as the maximum volume of the second stage 2, the working medium in the final state in the fourth stage 4 after heating in the third stage. 3 have a higher pressure and a higher temperature compared to the initial state in the second stage. From the decreasing volume of the fourth stage 4 then expands the working medium in the increasing volume of the fifth stage 5, wherein work is done. It is of course possible to modify the device according to the invention such that the maximum volume of the fourth stage 4 is greater than the maximum volume of the second stage 2, thus resulting in a partial isobaric to isothermal expansion between the two stages, and the method according to the invention then resembles the Carnot cycle.
- the fourth stage can be completely removed, and the working medium can expand from the second stage 2 while heating in the third stage 3 directly in the fifth stage 5.
- the third stage has a non-zero volume, therefore, when no heat is supplied, partial expansion occurs at the beginning of the supply of the working medium and, after being transferred through the third stage, the working medium has a lower pressure in the fourth stage a lower temperature than in the second stage.
- the fourth stage of the third stage takes relatively less weight-based amount of working fluid than was transferred from the second stage to the third stage. The remaining amount forms or increases the residual pressure in the third stage.
- the third stage can be dimensioned both as a small outer surface combustion chamber (to prevent heat loss) and as a large area heat exchanger (to transfer as much heat as possible). In order to transfer as much heat as possible in the third stage and to reduce the work required for the compression phase of the cycle, it is necessary, if possible, to lower the temperature during the transfer from the first to the second phase.
- the size of the expansion ratio can be selected independently of the size of the compression ratio.
- the pressure at the end of the expansion corresponds to the pressure at the beginning of the expansion, and therefore the pressure at the lower end of the expansion can be reduced to the pressure of the environment.
- the working fluid is aspirated with a suction valve 8 at the end of expansion.
- the working cycle process realized according to the method and the device according to the invention is thus a five-cycle process.
- the Expansion ratio in the fifth stage 5 ie the ratio between the maximum volumes of the fifth and fourth stage, decreases at the end of the expansion not only the pressure, but also the temperature to a value which corresponds almost to the value of the environment.
- the fifth stage 5 and the first stage 1 can, in the case of a closed cycle and with an external heating of the working medium in the third stage 3 according to a further feature of the invention according to Figure 3 can be combined and the working fluid can be performed after expansion in the united stage 51 in the second stage 2 via an intermediate cooler 76 and compressed at the same time. Also in this case, it is advantageous to provide the united stage 51 with the suction valve 8. In the context of the invention, therefore, the five-cycle process can be modified in some cases to a three-cycle process.
- the invention shows both the examples of embodiment and other embodiments resulting from the claims in comparison with known thermal engines (especially with four-stroke cycle) its advantages in that higher working pressures and operating temperatures than turbine engines, as well as a longer period of time Heating the compressed working fluid and also lower pressures and temperatures at the end of the expansion are allowed as in previously known piston engines.
- the result is a higher efficiency of the cycle and a lower noise and lower emission of carbon and nitrogen oxides in the heating of the working medium by internal or external combustion.
- the Invention can also be used to advantage for the conversion of solar energy into mechanical energy.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Wind Motors (AREA)
- Powder Metallurgy (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Umwandlung von Wärmeenergie in mechanische Energie durch Volumen-, Druck- und Temperaturänderung des Arbeitsmediums, insbesondere Gase in mehreren Stufen sowie eine Einrichtung für die Durchführung dieses Verfahrens.The invention relates to a method for converting thermal energy into mechanical energy by volume, pressure and temperature change of the working medium, in particular gases in several stages and a device for carrying out this method.
Ein solches Verfahren und eine solche Einrichtung ist z.B. in den Dokumenten
Es sind Verfahren zur Umwandlung von Wärmeenergie in mechanische Energie bekannt, bei denen sich der Druck und die Temperatur des Arbeitsmediums in einem Arbeitsraum mit einem veränderlichen Volumen verändern. Bei sich verkleinerndem Volumen erhöhen sich Druck und Temperatur, und das sowohl in Folge der angeführten Volumenänderung als auch - und das besonders - in der letzten Phase der Volumenverkleinerung bzw. in der ersten Phase der wiederholten Volumenvergrößerung durch zusätzliche Zufuhr von Wärmeenergie entweder von außen oder durch Wärmeentwicklung im Medium innerhalb des Arbeitsraumes (zum Beispiel durch Verbrennung). Bei wiederholter Volumenvergrößerung wird durch den Druck, der durch die Volumenverkleinerung im geschlossenen Arbeitsraum entsteht, nach Abzug der Verluste eine für die anschließende Volumenverkleinerung notwendige Arbeit ausgeführt, während der Druck, der durch die zusätzliche Zufuhr von Wärmeenergie entsteht, ebenfalls nach Abzug der Verluste die resultierende mechanische Arbeit verrichtet. Bei einem ständig geschlossenen Arbeitsraum würde in Folge der zusätzlichen Zufuhr von Wärmeenergie die Temperatur des Mediums am Ende einer Volumenvergrößerung und somit auch zu Beginn der nachfolgenden Volumenverkleinerung immer größer sein als die Temperatur am Beginn des vorherigen Prozesses der Volumenvergrößerung. Somit würde die Temperatur des Mediums bei Wärmezufuhr von außen eine Temperatur erreichen, bei der Wärme von außen zugeführt wird, und die Temperaturdifferenz und somit auch die Menge zugeführter Wärme würden, Verluste nicht mitgerechnet, bei Null liegen. Die Wärmezufuhr durch Vorgänge im Medium würde jedoch bei einem geschlossenen Arbeitsraum aufgrund von Sauerstoffmangel zum Stehen kommen. Daher muss der Arbeitsraum für die Ableitung des verwendeten Mediums und die Zuleitung frischen Mediums für einen bestimmten Zeitraum geöffnet werden, und das sowohl zu Beginn der Volumenverkleinerung oder davor, als auch zum Ende der Volumenvergrößerung oder danach. Der Arbeitsprozess von Druck- und Temperaturänderungen bei Volumenverkleinerung und Volumenvergrößerung erfolgt in zwei Takten. Wenn zu diesen zwei Takten noch zwei weitere hinzugefügt werden, d.h. Volumenvergrößerung für die Zuleitung des verwendeten Mediums und Volumenverkleinerung für die Ableitung des verwendeten Mediums, handelt es sich um einen Viertaktprozess zur Umwandlung von Wärmeenergie in mechanische Energie. Wenn die Zuleitung und Ableitung des Mediums zu Beginn des einen Taktes bzw. zum Ende des zweiten Taktes erfolgt, handelt es sich um einen Zweitaktprozess. Alle diese Vorgänge laufen nach dem bekannten Stand der Technik in einem Arbeitsraum ab, der in Ausnahmefällen in zwei Teile unterteilt ist.Methods are known for converting thermal energy into mechanical energy, in which the pressure and the temperature of the working medium change in a working space with a variable volume. As volume decreases, pressure and temperature increase, both as a result of the noted volume change and, more specifically, in the final phase of volume reduction or in the first phase of repeated volume increase by additional heat energy input either from outside or through Heat development in the medium within the working space (for example, by combustion). With repeated increase in volume, the pressure created by the reduction in volume in the closed working space, after deduction of the losses, carries out a work necessary for the subsequent reduction in volume, while the pressure resulting from the additional supply of heat energy also results in the resulting loss after deduction of the losses does mechanical work. In a permanently closed working space would result in the additional supply of Heat energy, the temperature of the medium at the end of an increase in volume and thus at the beginning of the subsequent reduction in volume to be always greater than the temperature at the beginning of the previous process of increasing the volume. Thus, the temperature of the medium would reach a temperature at the outside when supplying heat from the outside, and the temperature difference and thus the amount of supplied heat would be zero, not including losses. The supply of heat through processes in the medium would, however, come to a standstill in a closed workspace due to lack of oxygen. Therefore, the working space for the discharge of the medium used and the supply of fresh medium must be opened for a certain period of time, both at the beginning of the volume reduction or before, and at the end of the volume increase or after. The working process of pressure and temperature changes with volume reduction and volume increase takes place in two cycles. If two more are added to these two cycles, ie volume increase for the supply of the medium used and volume reduction for the discharge of the medium used, it is a four-stroke process for the conversion of thermal energy into mechanical energy. If the supply and discharge of the medium takes place at the beginning of the one clock or the end of the second clock, it is a two-stroke process. All these processes take place according to the known state of the art in a working space, which is subdivided in exceptional cases into two parts.
Gemäss dem erfindungsgemäßen Verfahren zur Umwandlung von Wärmeenergie in mechanische Energie durch Volumen-, Druck- und Temperaturänderung des Arbeitsmediums wird das Arbeitsmedium in die erste Stufe unter Volumenvergrößerung der ersten Stufe angesaugt, woraufhin das Arbeitsmedium bei Volumenverkleinerung der ersten Stufe in die zweite Stufe unter Vergrößerung des Volumens der zweiten Stufe überführt wird, woraufhin das Arbeitsmedium bei Volumenverkleinerung der zweiten Stufe über die dritte Stufe unter gleichzeitiger Wärmezufuhr in die vierte Stufe unter Vergrößerung des Volumens der vierten Stufe überführt wird, woraufhin es von der vierten Stufe unter Verkleinerung des Volumens der vierten Stufe in die fünfte Stufe überführt wird und in dieser fünften Stufe unter Vergrößerung des Volumens der fünften Stufe expandiert wird. Mit Vorteil wird das Arbeitsmedium unter Volumenverkleinerung der zweiten Stufe über die dritte Stufe unter gleichzeitiger Erhitzung direkt in die fünfte Stufe überführt. Mit Vorteil wird das Arbeitsmedium bei Überführung von der ersten Stufe in die zweite Stufe abgekühlt. Mit Vorteil wird das Arbeitsmedium aus der fünften Stufe unter Verkleinerung des Volumens der fünften Stufe und gleichzeitiger Abkühlung in die erste Stufe unter gleichzeitiger Vergrößerung des Volumens der ersten Stufe überführt. Mit Vorteil wird das Arbeitsmedium aus der fünften Stufe unter Verkleinerung des Volumens der fünften Stufe zu der dritten Stufe überführt und für den Erwärmungsprozess verwendet. Mit Vorteil wird das Arbeitsmedium unter Verkleinerung des Volumens der fünften Stufe und/oder bei gleichzeitiger Abkühlung aus der fünften Stufe direkt in die zweite Stufe unter Vergrößerung des Volumens der zweiten Stufe überführt. Bei der Einrichtung zu einer mehrstufigen Umwandlung von Wärmeenergie in mechanische Energie durch Volumen-, Druck- und Temperaturänderung des Arbeitsmediums ist die dritte Stufe mindestens gemäss der Erfindung als ein Arbeitsraum mit unveränderlichem Volumen gebildet, während die anderen Stufen als Arbeitsräume mit veränderlichem Volumen, insbesondere als Drehkolbenmaschinen gebildet, und im Sinne des Durchgangs des Arbeitsmediums hintereinander angeordnet sind, zum Teil vor der dritten Stufe und zum Teil nach dieser Stufe. Mit Vorteil ist das maximale Volumen der ersten Stufe größer als das maximale Volumen der zweiten Stufe, wobei das maximale Volumen der fünften Stufe größer ist als das maximale Volumen der vierten Stufe und wobei das maximale Volumen der fünften Stufe größer als das maximale Volumen der ersten Stufe oder gleich groß wie das maximale Volumen der ersten Stufe ist. Mit Vorteil ist die fünfte Stufe mit der ersten Stufe vereinigt. Mit Vorteil ist die dritte Stufe als Verbrennungskammer und/oder als Wärmetauscher gebildet. Mit Vorteil ist die fünfte Stufe mit einem Ansaugventil versehen. Mit Vorteil ist ein Kühler zwischen der ersten Stufe und der zweiten Stufe sowie zwischen der fünften Stufe und der ersten Stufe zwischengeschaltet und ein Kühler zwischen der vereinigten Stufe und der zweiten Stufe zwischengeschaltet.According to the inventive method for converting heat energy into mechanical energy by volume, pressure and Temperature change of the working medium, the working medium is sucked into the first stage under volume increase of the first stage, after which the working medium is transferred in volume reduction of the first stage in the second stage by increasing the volume of the second stage, whereupon the working medium in volume reduction of the second stage on the third Stage is transferred with simultaneous heat supply in the fourth stage by increasing the volume of the fourth stage, whereupon it is transferred from the fourth stage with reduction of the volume of the fourth stage in the fifth stage and expanded in this fifth stage by increasing the volume of the fifth stage becomes. Advantageously, the working medium is transferred under volume reduction of the second stage via the third stage with simultaneous heating directly into the fifth stage. Advantageously, the working fluid is cooled when transferred from the first stage to the second stage. Advantageously, the working medium is transferred from the fifth stage with reduction of the volume of the fifth stage and simultaneous cooling in the first stage with simultaneous increase in the volume of the first stage. Advantageously, the working medium is transferred from the fifth stage with reduction of the volume of the fifth stage to the third stage and used for the heating process. Advantageously, the working medium is transferred by reducing the volume of the fifth stage and / or simultaneously cooling from the fifth stage directly into the second stage by increasing the volume of the second stage. In the device for a multi-stage conversion of heat energy into mechanical energy by volume, pressure and temperature change of the working medium is the third stage is formed at least according to the invention as a working space with fixed volume, while the other stages are formed as working spaces with variable volume, in particular as rotary piston machines, and in the sense of the passage of the working medium behind the other, partly before the third stage and partly after this stage. Advantageously, the maximum volume of the first stage is greater than the maximum volume of the second stage, wherein the maximum volume of the fifth stage is greater than the maximum volume of the fourth stage and wherein the maximum volume of the fifth stage is greater than the maximum volume of the first stage or equal to the maximum volume of the first stage. Advantageously, the fifth stage is associated with the first stage. Advantageously, the third stage is formed as a combustion chamber and / or as a heat exchanger. Advantageously, the fifth stage is provided with a suction valve. Advantageously, a cooler between the first stage and the second stage and between the fifth stage and the first stage is interposed and a cooler between the combined stage and the second stage interposed.
Die Erfindung wird auf der beigefügten Zeichnung näher dargestellt.
Gemäss der
Die Einrichtung zur Ausführung des beschriebenen Verfahrens zur Umwandlung von Wärmeenergie in mechanische Energie ist entsprechend der Erfindung derart angeordnet, dass die dritte Stufe 3 mindestens als ein Arbeitsraum mit unveränderlichem Volumen gebildet ist, während die anderen Stufen 1, 2, 4, 5, 51 als Arbeitsräume mit veränderlichem Volumen gebildet sind. Es ist vorteilhaft, dass alle Stufen, mit Ausnahme der dritten Stufe, als Drehkolbenmaschine ausgeführt sind, bei welchen bei Drehung des Drehkolbens sich über die, durch seine Scheitelkanten verbundene Fläche, das Volumen des, durch diese Fläche und die gegenüberliegende Innenwand des Zylinders , in dem sich der Kolben dreht, abgegrenzten Raumes, zyklisch vergrößert und verkleinert. Hierbei ist das maximale Volumen der ersten Stufe 1 größer als das maximale Volumen der zweiten Stufe 2, des weiteren ist das maximale Volumen der fünften Stufe 5 größer als das maximale Volumen der vierten Stufe 4 und das maximale Volumen der fünften Stufe 5 ist größer als das maximale Volumen der ersten Stufe 1 bzw. gleich groß wie das maximale Volumen der ersten Stufe 1. Das maximale Volumen der vereinigten Stufe 51 ist größer als das maximale Volumen der vierten Stufe 4 und größer als das maximale Volumen der zweiten Stufe 2. Die dritte Stufe 3 dient als Verbrennungskammer und/oder als Wärmetauscher. Das Arbeitsmedium wird zuerst in das sich vergrößernde Volumen der ersten Stufe 1 eingeführt (zum Beispiel durch Ansaugen). Nach Erreichen des Maximums beginnt sich das Volumen dieser Stufe zu verkleinern und das Arbeitsmedium wird in das sich vergrößernde Volumen der zweiten Stufe 2 verdrängt. Da das maximale Volumen der zweiten Stufe 2 vielfach kleiner ist, als das maximale Volumen der ersten Stufe 1, ändert sich der Zustand des Arbeitsmediums derart, dass es nach dem Übergang aus der ersten Stufe 1 in die zweite Stufe 2 einen höheren Druck aufweist und weist auch eine höhere Temperatur auf. Wenn ein zu großer Temperaturanstieg unerwünscht ist, kann zwischen beiden Stufen der Kühler 6 zwischengeschaltet werden, wie auf Bild 2 dargestellt ist. Bei erneuter Volumenverkleinerung der zweiten Stufe 2 wird das Arbeitsmedium aus dieser Stufe über die dritte Stufe 3 in die vierte Stufe 4 mit sich vergrößerndem Volumen derletzen überführt. In der dritten Stufe 3 wird dem Arbeitsmedium Wärme zugeführt - entweder durch einen äußeren Verbrennungsvorgang, wobei diese Stufe als Wärmetauscher dient, oder durch innere Verbrennung, ähnlich wie in Verbrennungskammern von Turbinen, jedoch mit bedeutend höheren Drücken. Da das maximale Volumen der vierten Stufe 4 in der Regel gleich groß ist wie das maximale Volumen der zweiten Stufe 2, wird das Arbeitsmedium im Endzustand in der vierten Stufe 4 nach der Erwärmung in der dritten Stufe 3 einen höheren Druck und eine höhere Temperatur aufweisen im Vergleich zum Anfangszustand in der zweiten Stufe. Aus dem sich verkleinernden Volumen der vierten Stufe 4 expandiert dann das Arbeitsmedium in das sich vergrößernde Volumen der fünften Stufe 5, wobei Arbeit verrichtet wird. Es ist natürlich möglich, die Einrichtung entsprechend der Erfindung derart zu modifizieren, dass das maximale Volumen der vierten Stufe 4 größer ist als das maximale Volumen der zweiten Stufe 2, somit kommt es zwischen beiden Stufen zu einer teilweisen isobaren bis isothermischen Expansion, und das Verfahren entsprechend der Erfindung ähnelt dann dem Carnotschen Kreisprozess. Im Extremfall kann die vierte Stufe komplett herausgenommen werden, und das Arbeitsmedium kann aus der zweiten Stufe 2 unter Erhitzen in der dritten Stufe 3 direkt in der fünften Stufe 5 expandieren. Die dritte Stufe hat ein Volumen, das ungleich Null ist, daher kommt es, wenn keine Wärme zugeführt wird, am Beginn der Zufuhr des Arbeitsmediums zu einer teilweisen Expansion und nach Überführung durch die dritte Stufe hat das Arbeitsmedium in der vierten Stufe einen niedrigeren Druck und eine niedrigere Temperatur als in der zweiten Stufe. In Folge dieses geringeren Druckes entnimmt die vierte Stufe von der dritten Stufe verhältnismäßig weniger gewichtsbezogene Menge an Arbeitsmedium, als aus der zweiten Stufe in die dritte Stufe übertragen wurde. Die verbleibende Menge bildet bzw. erhöht den Restdruck in der dritten Stufe. Entsprechend der Größe der dritten Stufe erhöht sich somit auch ohne Wärmezufuhr der Druck in der dritten Stufe sehr schnell derart, dass es bei der Überführung des Arbeitsmediums aus der zweiten in die vierte Stufe (über die dritte Stufe) zu keiner Expansion mehr kommt, und die Wärme unter Druck (bedingt durch Kompression des Arbeitsmediums aus der ersten Stufe in die zweite Stufe) zugeführt werden kann. Daher kann die dritte Stufe sowohl als Verbrennungskammer mit kleiner Außenfläche (zur Verhinderung von Wärmeverlusten) als auch als Wärmetauscher mit großer Fläche (um so viel Wärme wie möglich zu übertragen) dimensioniert werden. Damit in der dritten Stufe so viel Wärme wie möglich übertragen und die für die Kompressionsphase des Kreisprozess aufgewendete Arbeit verringert werden kann, muss, wenn möglich, die Temperatur bei der Überführung aus der ersten in die zweite Phase herabgesetzt werden. Das wird entsprechend der Erfindung ermöglicht, indem zwischen der ersten Stufe 1 und der zweiten Stufe 2 der Kühler 6 zwischengeschaltet wird. Bei einem geschlossenen Kreislauf, bei dem das Arbeitsmedium aus der fünften Stufe 5 zurück in die erste Stufe 1 geführt wird, ist es vorteilhaft, zwischen beiden Stufen einen weiteren Kühler 7 zwischenzuschalten. Bei erfindungsgemäßer Anordnung kann unabhängig von der Größe des Kompressionsverhältnisses die Größe des Expansionsverhältnisses gewählt werden. Somit kann man das komprimierte und erhitzte Arbeitsmedium bis zum Druck der Umgebung expandieren lassen, wodurch ein guter Wirkungsgrad des Kreisprozesses erzielt wird. Bei vorgegebener Größe des Expansionsverhältnisses entspricht der Druck am Ende der Expansion dem Druck zu seinem Anfang und daher kann der Druck bei geringerer Wärmezufuhr am Ende der Expansion unter den Druck der Umgebung fallen. Wenn dieser Druckabfall nicht erwünscht ist, kann ein weiteres Merkmal der Erfindung zur Anwendung kommen, dass das Arbeitsmedium am Ende der Expansion mit einem Ansaugventil 8 angesaugt wird. Der nach dem Verfahren und der Einrichtung entsprechend der Erfindung realisierte Arbeitskreisprozess ist somit ein Fünftakt-Kreisprozess. Bei einer bestimmten Größe des Expansionsverhältnisses in der fünften Stufe 5, d.h. des Verhältnisses zwischen den maximalen Volumina der fünften und vierten Stufe, sinkt am Ende der Expansion nicht nur der Druck, sondern auch die Temperatur auf einen Wert, der fast dem Wert der Umgebung entspricht. Die fünfte Stufe 5 und die erste Stufe 1 können im Falle eines geschlossenen Kreisprozesses und bei einer äußeren Erwärmung des Arbeitsmediums in der dritten Stufe 3 entsprechend eines weiteren Merkmals der Erfindung nach
Die Erfindung zeigt sowohl nach den Beispielen der Ausführung als auch nach anderen sich aus den Patentansprüchen ergebenden Ausführungen im Vergleich mit bekannten thermischen Motoren (insbesondere mit Viertakt-Kreisprozess) seine Vorteile darin, dass höhere Arbeitsdrücke und Arbeitstemperaturen als bei Turbinenmotoren, sowie ein längerer Zeitraum zur Erhitzung des komprimierten Arbeitsmediums und auch niedrigere Drücke und Temperaturen am Ende der Expansion als bei bisher bekannten Kolbenmotoren ermöglicht werden. Das Ergebnis liegt in einem höheren Wirkungsgrad des Kreisprozesses sowie in einer geringeren Lärmentwicklung und geringeren Emission von Kohlenstoff- und Stickstoffoxiden bei der Erhitzung des Arbeitsmediums durch innere oder äußere Verbrennung. Die Erfindung kann auch vorteilhaft für die Umwandlung von Sonnenenergie in mechanische Energie verwendet werden.The invention shows both the examples of embodiment and other embodiments resulting from the claims in comparison with known thermal engines (especially with four-stroke cycle) its advantages in that higher working pressures and operating temperatures than turbine engines, as well as a longer period of time Heating the compressed working fluid and also lower pressures and temperatures at the end of the expansion are allowed as in previously known piston engines. The result is a higher efficiency of the cycle and a lower noise and lower emission of carbon and nitrogen oxides in the heating of the working medium by internal or external combustion. The Invention can also be used to advantage for the conversion of solar energy into mechanical energy.
Claims (12)
- A method of multistage conversion of heat energy into mechanical energy by changing the volume, pressure and temperature of the work medium, especially gases,
characterized in that
the work medium is sucked into a first stage while increasing the volume of the first stage,
after which the work medium is transferred into the second stage, while the volume of the first stage is decreasing, and the volume of the second stage is increasing,
after which the volume of the second stage is decreasing, the working medium is transferred through the third stage with invariable volume, where heat is simultaneously supplied, into the fourth stage, the volume of which is increasing,
after which the work medium is transferred into the fifth stage, while the volume of the fourth stage is decreasing,
the work medium expanding in the fifth stage while the volume of the fifth stage increasing and work is performed and
after expansion the work medium is discharged from the fifth stage while the volume of the fifth stage is decreasing. - A method of multistage conversion of heat energy into mechanical energy according to claim 1
characterized in that
the working medium is transferred through the third stage directly into the fifth stage, while the volume of the second stage is decreasing and the work medium is simultaneously heated. - A method of multistage conversion of heat energy into mechanical energy according to claim 1 or 2,
characterized in that
when transferring the working medium from the first stage to the second stage, the working medium is cooled. - A method of multistage conversion of heat energy into mechanical energy according to one of the claims 1 to 3,
characterized in that
the work medium is transferred from the fifth stage into the first stage, while decreasing the volume of the fifth stage and simultaneous cooling the work medium and simultaneous increasing the volume of the first stage. - A method of multistage conversion of heat energy into mechanical energy according to one of the claims 1 to 3,
characterized in that
while decreasing the volume of the fifth stage the work medium is transferred from the fifth stage to the third stage and used for heating process. - A method of multistage conversion of heat energy into mechanical energy according to claim 1
characterized in that
the work medium is transferred from the fifth stage directly to the second stage while the volume of the fifth stage is decreasing and/or the work medium is simultaneously cooled and the volume of the second stage is increasing. - An apparatus for conversion of heat energy into mechanical energy by changing the volume, pressure and temperature of a work medium according to one of the claims 1 to 6,
characterized in that
the third stage (3) is created as at least one workspace with an invariable volume, while the other stages (1, 2, 4, 5) are created as workspaces with variable volume, specifically as a rotary-piston machine, and are arranged in series with respect to the passage of the work medium, some before the third stage (3) and some behind this stage. - An apparatus for multistage conversion of heat energy into mechanical energy according to claim 7,
characterized in that
the largest volume of the first stage (1) is greater than the largest volume of the second stage (2), while the largest volume of the fifth stage (5) is greater than the largest volume of the fourth stage (4) and whereas the largest volume of the fifth stage (5) is larger than the largest volume of the first stage (1) or equally as large as the largest volume of the first stage (1). - An apparatus for multistage conversion of heat energy into mechanical energy according to claims 7 or 8,
characterized in that
the fifth stage (5) is combined with the first stage (1). - An apparatus for multistage conversion of heat energy into mechanical energy according to one of claims 7 to 9,
characterized in that
the third stage (3) is created as a combustion chamber and/or heat exchanger. - An apparatus for multistage conversion of heat energy into mechanical energy according to one of claims 7 to 10,
characterized in that
the fifth stage (5) is provided with a suction valve (8). - An apparatus for multistage conversion of heat energy into mechanical energy according to one of claims 7 to 11,
characterized in that
a cooler (6, 7) is placed between the first stage (1) and the second stage (2) as well as between the fifth stage (5) and the first stage (1), and a cooler (76) is placed between the combined stage (51) and the second stage (2).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL04723151T PL1651852T3 (en) | 2003-04-01 | 2004-03-25 | Method and device for converting heat energy into mechanical energy |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CZ20030927A CZ297785B6 (en) | 2003-04-01 | 2003-04-01 | Method of and apparatus for conversion of thermal energy to mechanical one |
PCT/CZ2004/000015 WO2004088114A1 (en) | 2003-04-01 | 2004-03-25 | Method and device for converting heat energy into mechanical energy |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1651852A1 EP1651852A1 (en) | 2006-05-03 |
EP1651852B1 true EP1651852B1 (en) | 2015-06-10 |
Family
ID=33102934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04723151.9A Expired - Lifetime EP1651852B1 (en) | 2003-04-01 | 2004-03-25 | Method and device for converting heat energy into mechanical energy |
Country Status (21)
Country | Link |
---|---|
US (1) | US7634902B2 (en) |
EP (1) | EP1651852B1 (en) |
JP (1) | JP5142522B2 (en) |
KR (1) | KR100871734B1 (en) |
CN (1) | CN100434684C (en) |
AU (1) | AU2004225862B2 (en) |
BR (1) | BRPI0409153A (en) |
CA (1) | CA2521042C (en) |
CZ (1) | CZ297785B6 (en) |
EA (1) | EA010122B1 (en) |
EG (1) | EG25327A (en) |
ES (1) | ES2546613T3 (en) |
HU (1) | HUE025570T2 (en) |
IL (1) | IL171210A (en) |
MX (1) | MXPA05010534A (en) |
NO (1) | NO337189B1 (en) |
NZ (1) | NZ543325A (en) |
PL (1) | PL1651852T3 (en) |
UA (1) | UA88442C2 (en) |
WO (1) | WO2004088114A1 (en) |
ZA (1) | ZA200508827B (en) |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU22401A1 (en) * | 1930-05-22 | 1931-08-31 | Н.Т. Макаров | Internal combustion engine |
US3043283A (en) * | 1959-05-12 | 1962-07-10 | Vitale Salvatore | Internal combustion engines |
US4083663A (en) * | 1974-01-11 | 1978-04-11 | Lionel Morales Montalvo | Rotary engine with pistons and lenticular valves |
US4009573A (en) * | 1974-12-02 | 1977-03-01 | Transpower Corporation | Rotary hot gas regenerative engine |
US4074533A (en) * | 1976-07-09 | 1978-02-21 | Ford Motor Company | Compound regenerative engine |
US4289097A (en) * | 1979-11-13 | 1981-09-15 | Ward Charles P | Six-cycle engine |
US4553385A (en) * | 1983-11-18 | 1985-11-19 | Lamont John S | Internal combustion engine |
JPH03202662A (en) * | 1989-12-28 | 1991-09-04 | Aisin Seiki Co Ltd | Heat engine |
RU2006616C1 (en) * | 1991-03-04 | 1994-01-30 | Николай Васильевич Платонов | Method of operation of internal combustion engine and internal combustion engine |
DE4301036A1 (en) * | 1992-08-28 | 1994-07-21 | Josef Gail | Heat engine |
DE4301026A1 (en) * | 1993-01-16 | 1994-07-28 | Ver Glaswerke Gmbh | Vehicle window pane |
CN1065587C (en) * | 1993-12-28 | 2001-05-09 | 国家电力有限公司 | A heat engine and heat pump |
FR2748776B1 (en) * | 1996-04-15 | 1998-07-31 | Negre Guy | METHOD OF CYCLIC INTERNAL COMBUSTION ENGINE WITH INDEPENDENT COMBUSTION CHAMBER WITH CONSTANT VOLUME |
FR2758589B1 (en) * | 1997-01-22 | 1999-06-18 | Guy Negre | PROCESS AND DEVICE FOR RECOVERING AMBIENT THERMAL ENERGY FOR VEHICLE EQUIPPED WITH DEPOLLUTE ENGINE WITH ADDITIONAL COMPRESSED AIR INJECTION |
JP3953636B2 (en) * | 1998-04-30 | 2007-08-08 | 富士重工業株式会社 | Multistage turbocharging system for reciprocating engine |
CZ344798A3 (en) * | 1998-10-27 | 2000-05-17 | Zdeněk Heřman | Conversion process of hot gaseous medium to mechanical power and apparatus for making the same |
CZ20004456A3 (en) * | 1999-06-02 | 2001-05-16 | Guy Negre | Engine operation mode with auxiliary air injection and apparatus for making the same |
DE10009180C2 (en) * | 2000-02-26 | 2002-04-25 | Daimler Chrysler Ag | Process for producing a homogeneous mixture for self-igniting internal combustion engines and for controlling the combustion process |
AUPQ785000A0 (en) * | 2000-05-30 | 2000-06-22 | Commonwealth Scientific And Industrial Research Organisation | Heat engines and associated methods of producing mechanical energy and their application to vehicles |
BE1013791A5 (en) * | 2000-10-26 | 2002-08-06 | Gerhard Schmitz | FIVE-TIME INTERNAL COMBUSTION ENGINE. |
SE0100744L (en) * | 2001-03-07 | 2002-09-08 | Abiti Ab | rotary engine |
WO2003012257A1 (en) * | 2001-07-27 | 2003-02-13 | Manner David B | A stirling machine utilizing a double action planetary machine |
JP2003056402A (en) * | 2001-08-16 | 2003-02-26 | National Maritime Research Institute | Open type otto cycle external combustion engine |
RU2196237C1 (en) * | 2001-10-12 | 2003-01-10 | Южно-Уральский государственный университет | Rodless internal combustion engine (versions) |
AT500641B8 (en) * | 2002-06-03 | 2007-02-15 | Donauwind Erneuerbare Energieg | METHOD AND DEVICE FOR CONVERTING HEAT ENERGY IN KINETIC ENERGY |
US6776144B1 (en) * | 2003-05-28 | 2004-08-17 | Lennox G. Newman | Five stroke internal combustion engine |
US6932063B1 (en) * | 2004-08-12 | 2005-08-23 | Eaton Corporation | Internal EGR cooler |
-
2003
- 2003-04-01 CZ CZ20030927A patent/CZ297785B6/en not_active IP Right Cessation
-
2004
- 2004-03-25 BR BRPI0409153-1A patent/BRPI0409153A/en not_active IP Right Cessation
- 2004-03-25 CA CA2521042A patent/CA2521042C/en not_active Expired - Fee Related
- 2004-03-25 AU AU2004225862A patent/AU2004225862B2/en not_active Ceased
- 2004-03-25 KR KR1020057018825A patent/KR100871734B1/en active IP Right Grant
- 2004-03-25 CN CNB2004800092332A patent/CN100434684C/en not_active Expired - Fee Related
- 2004-03-25 NZ NZ543325A patent/NZ543325A/en not_active IP Right Cessation
- 2004-03-25 ZA ZA200508827A patent/ZA200508827B/en unknown
- 2004-03-25 HU HUE04723151A patent/HUE025570T2/en unknown
- 2004-03-25 WO PCT/CZ2004/000015 patent/WO2004088114A1/en active Application Filing
- 2004-03-25 JP JP2006504219A patent/JP5142522B2/en not_active Expired - Fee Related
- 2004-03-25 US US10/551,786 patent/US7634902B2/en not_active Expired - Fee Related
- 2004-03-25 PL PL04723151T patent/PL1651852T3/en unknown
- 2004-03-25 MX MXPA05010534A patent/MXPA05010534A/en active IP Right Grant
- 2004-03-25 EA EA200501545A patent/EA010122B1/en not_active IP Right Cessation
- 2004-03-25 ES ES04723151.9T patent/ES2546613T3/en not_active Expired - Lifetime
- 2004-03-25 EP EP04723151.9A patent/EP1651852B1/en not_active Expired - Lifetime
- 2004-03-25 UA UAA200510176A patent/UA88442C2/en unknown
-
2005
- 2005-09-29 IL IL171210A patent/IL171210A/en active IP Right Grant
- 2005-10-01 EG EGNA2005000601 patent/EG25327A/en active
- 2005-11-01 NO NO20055109A patent/NO337189B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
ZA200508827B (en) | 2007-04-25 |
NZ543325A (en) | 2009-03-31 |
CZ2003927A3 (en) | 2004-11-10 |
EA010122B1 (en) | 2008-06-30 |
AU2004225862B2 (en) | 2010-04-22 |
EA200501545A1 (en) | 2006-04-28 |
KR20050118303A (en) | 2005-12-16 |
EP1651852A1 (en) | 2006-05-03 |
WO2004088114A8 (en) | 2006-01-12 |
EG25327A (en) | 2011-12-14 |
NO20055109L (en) | 2005-12-28 |
BRPI0409153A (en) | 2006-03-28 |
CA2521042C (en) | 2011-11-29 |
KR100871734B1 (en) | 2008-12-03 |
MXPA05010534A (en) | 2006-03-09 |
CN1768199A (en) | 2006-05-03 |
IL171210A (en) | 2011-06-30 |
HUE025570T2 (en) | 2016-02-29 |
US7634902B2 (en) | 2009-12-22 |
JP5142522B2 (en) | 2013-02-13 |
CN100434684C (en) | 2008-11-19 |
ES2546613T3 (en) | 2015-09-25 |
NO337189B1 (en) | 2016-02-08 |
NO20055109D0 (en) | 2005-11-01 |
US20060196186A1 (en) | 2006-09-07 |
PL1651852T3 (en) | 2015-11-30 |
CZ297785B6 (en) | 2007-03-28 |
JP2006523278A (en) | 2006-10-12 |
WO2004088114A1 (en) | 2004-10-14 |
CA2521042A1 (en) | 2004-10-14 |
AU2004225862A1 (en) | 2004-10-14 |
UA88442C2 (en) | 2009-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE602004007792T2 (en) | METHOD AND DEVICE FOR COMPRESSED AIR OPERATION OF A TOOL | |
DE69510728T2 (en) | Cooling process and system | |
DE1949191C3 (en) | Reciprocating engine with a hot gas part and a cold gas part | |
EP2480780B1 (en) | Internal combustion engine | |
DE2633233A1 (en) | THERMAL POWER MACHINE WITH EXTERNAL HEAT SOURCE | |
EP3329191B1 (en) | Apparatus and method for carrying out a cold steam process | |
DE2925091A1 (en) | Open cycle gas turbine engine - has water and fuel injected in stages to give isothermal compression and expansion | |
DE2438118A1 (en) | METHOD AND DEVICE FOR HEATING THE INTAKE AIR OF A CHARGED DIESEL ENGINE AT LOW LOADS | |
EP1651852B1 (en) | Method and device for converting heat energy into mechanical energy | |
DE102017206172A1 (en) | Scroll expansion machine and exhaust residual heat utilization device, in particular a vehicle, with such an expansion machine | |
DE102013114210B3 (en) | Apparatus for compressing a gaseous fluid and method for operating the apparatus | |
EP3359778B1 (en) | Axial piston motor and method for operating an axial piston motor | |
DE10228986A1 (en) | Intercooling method and gas turbine system with intercooling | |
AT525537B1 (en) | Process and device for converting thermal energy into mechanical energy | |
DE3042313A1 (en) | Six-stroke IC engine with auxiliary air reservoir - has reservoir connected to cylinder head via third valve | |
DE626926C (en) | Method and device for generating heat and cold | |
EP3228842A1 (en) | Method and device for improved utilisation of the thermal energy contained in a gaseous medium | |
DE2422150C3 (en) | Hot gas piston machine with a device for regulating the weight of the working medium present in a working space | |
AT410826B (en) | Hot gas engine | |
DE677331C (en) | Thermal engine with a drip liquid as a working substance | |
DE102013200630A1 (en) | Method for operating engine system with internal combustion engine for motor car, involves introducing compressed air from compressed air source to end of exhaust stroke and prior to beginning of combustion cycle | |
WO2023011997A1 (en) | Heat engine | |
DE102022000712A1 (en) | Method of operating a cooling device | |
AT515218A4 (en) | Stirling engine | |
DE155606C (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20051031 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ZELEZNY, FILIP Owner name: TOLAROVA, SIMONA Owner name: ZELEZNY, EDUARD |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150323 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 731012 Country of ref document: AT Kind code of ref document: T Effective date: 20150715 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502004014924 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR Ref country code: CH Ref legal event code: NV Representative=s name: P&TS SA, CH |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2546613 Country of ref document: ES Kind code of ref document: T3 Effective date: 20150925 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150610 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150910 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150911 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 19266 Country of ref document: SK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150610 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150610 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151012 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E025570 Country of ref document: HU |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502004014924 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150610 |
|
26N | No opposition filed |
Effective date: 20160311 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150610 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160325 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150610 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160325 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150610 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150610 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190321 Year of fee payment: 16 Ref country code: PL Payment date: 20190325 Year of fee payment: 16 Ref country code: CH Payment date: 20190325 Year of fee payment: 16 Ref country code: FR Payment date: 20190326 Year of fee payment: 16 Ref country code: CZ Payment date: 20190320 Year of fee payment: 16 Ref country code: GB Payment date: 20190325 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20190322 Year of fee payment: 16 Ref country code: SE Payment date: 20190325 Year of fee payment: 16 Ref country code: NL Payment date: 20190321 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20190320 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20190329 Year of fee payment: 16 Ref country code: ES Payment date: 20190424 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20190411 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004014924 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200325 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20200401 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 731012 Country of ref document: AT Kind code of ref document: T Effective date: 20200325 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: MM4A Ref document number: E 19266 Country of ref document: SK Effective date: 20200325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200325 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201001 Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200326 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200326 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200325 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200325 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20210809 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20210810 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200326 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200325 |