EP1651389B1 - Composite tool for percussive and/or abrasive strains - Google Patents

Composite tool for percussive and/or abrasive strains Download PDF

Info

Publication number
EP1651389B1
EP1651389B1 EP04763716A EP04763716A EP1651389B1 EP 1651389 B1 EP1651389 B1 EP 1651389B1 EP 04763716 A EP04763716 A EP 04763716A EP 04763716 A EP04763716 A EP 04763716A EP 1651389 B1 EP1651389 B1 EP 1651389B1
Authority
EP
European Patent Office
Prior art keywords
composite tool
shaped body
base
base body
tool according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04763716A
Other languages
German (de)
French (fr)
Other versions
EP1651389A1 (en
Inventor
Bruno Mayer
Stephan O. Mayer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stahlwerke Bochum GmbH
Original Assignee
Stahlwerke Bochum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stahlwerke Bochum GmbH filed Critical Stahlwerke Bochum GmbH
Publication of EP1651389A1 publication Critical patent/EP1651389A1/en
Application granted granted Critical
Publication of EP1651389B1 publication Critical patent/EP1651389B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D17/00Details of, or accessories for, portable power-driven percussive tools
    • B25D17/02Percussive tool bits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/06Casting in, on, or around objects which form part of the product for manufacturing or repairing tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2222/00Materials of the tool or the workpiece
    • B25D2222/21Metals
    • B25D2222/42Steel

Definitions

  • the invention relates to a composite tool for beating loads.
  • Such tools are used for example for crushing metal, rock or demolition materials.
  • the tools are subjected to extreme loads both in the area of their surfaces which come into direct contact with the material to be comminuted and in the area in which they are held in the respective comminution machine.
  • a disadvantage of the above-explained monobloc simple tools is that they have a consistently low base hardness or are made of impact-hardening materials. They point in usually a too low wear resistance. In contrast, still differentiated, over several sections differently hardened monobloc tools, however, there is often the risk of breakage in the zones, which have a particularly high hardness and, consequently, a low ductility.
  • the present invention seeks to provide a composite tool of the type described above, which has a high wear resistance while minimizing the risk of tool breakage and in which the molded body is securely held in the body over a long period of operation ,
  • a composite tool for impacting and / or abrasive loads which is cast by a base body made of a highly ductile, schlaghärtenden iron-based alloy and at least one cast into the body, with the greatest possible exclusion of a cohesive connection form-fitting held shaped body is formed, which is arranged in the beating load directly exposed area of the composite tool and prefabricated from a deviating from the iron material of the body, highly wear-resistant metal material as a solid body, wherein the molded body starting from a base surface in the direction of his the base surface opposite end face has tapered shape and wherein the end face is assigned to the beating load directly exposed area of the composite tool.
  • Such a shape is given, for example, when the shaped body has the basic shape of a truncated pyramid. In such a substantially conically tapering from the base to the end face shape is ensured in a simple manner that the molded body is held securely in the base body even after a long period of operation.
  • the composite tool according to the invention essentially consists of a base body which is produced from a cast, highly ductile material.
  • a molded body is placed, which is made of a high-strength, also metallic, preferably iron-based alloy.
  • the shape of the shaped body is chosen such that the shaped body is securely held positively in the surrounding material of the base body.
  • the materials of the base body and the molded body are matched to one another in such a way that there is no significant cohesive connection between the molded body and the base body.
  • the shaped body is held by additional mechanically acting aids in the base body.
  • a universally usable in crushing machines, particularly easy to produce composite tool is available, which has a high wear resistance in its exposed primary wear work zone by the molded body arranged there and at the same time has a significantly reduced fracture sensitivity. Since the high impact or abrasive loads are absorbed by the body made of hard, wear-resistant material, the material of the body and applied during its processing heat treatments can be aligned regardless of the loads occurring in practical operation to the highest possible ductility of the body.
  • the heat treatment used in the production of composite tools according to the invention provides that the heat transfer during the manufacturing process takes into account the necessary parameters for the two materials to be combined.
  • the aim is to produce the highest possible ductility in the main body and the highest possible hardness in the molded body. This is achieved by a treatment in the high temperature range of 950 - 1100 ° C. Then there is a broken liquid hardening in the range of 350-600 ° C, which in turn followed by a cooling in air and a subsequent relaxation at temperatures of 300 - 400 ° C.
  • the molding can be prefabricated in any desired, cost-effective manner.
  • the molded body cast into the composite tool according to the invention can be a forged part, a stamped part, a cut part, a fired part, a sintered part or a cast piece.
  • the stamped part, fired or cut part can be made of a flat material.
  • the selection of the materials used for the main body and the molded body ensures that the specific mechanical-technological properties of both materials, namely on the one hand high-sealing strength for the molding and the other highly ductile for the body, both during the manufacturing process itself and in practical use stay.
  • an iron alloy which (in wt .-%) 8.0 - 22.0% Mn, 0.2 - 2.8% Cr, 0.5 1.5% C and balance Fe and unavoidable impurities.
  • an iron alloy which enables a high hardness of the molding contains (in% by weight) 6.0-16.0% Cr, 0.3-1.5% Mo, 0.3-1.4% W, 0.6 - 2.2% C and balance Fe and unavoidable impurities.
  • these alloys can be used to produce particularly durable, robust composite tools which withstand even the toughest loads over the respective required service life.
  • the materials of the base body and the molded body can be coordinated with one another within the alloy specified according to the invention be that the shaped body during and as a result of the use stress is permanently clamped in the composite tool.
  • Another embodiment of the invention which is particularly favorable in terms of increasing the wear resistance and minimizing the risk of tool breakage is characterized in that in the region in which the iron material of the base material laterally surrounds the shaped body, the ratio of the mean measured in a first axis Strength of the base material for measured on the same axis average thickness of the cast molded body is 0.2 to 1.0. Taking into account this range of strength ratios, a high degree of safety against breakage is ensured even in the case of heavily varying loads in the area of the clamping and bearing zone of the composite tool.
  • the production of a composite tool according to the invention is carried out deliberately so that there is no significant metallic bond between the molding and the body surrounding it at least partially.
  • the molded body is rather designed so that the molded body is embedded in a form-fitting manner in the material of the base body.
  • the form-fitting hold of the shaped body can also be achieved by forming depressions in the side surfaces of the shaped body. Alternatively or additionally, elevations may be formed on the side surfaces of the molded body for the same purpose.
  • Fig. 1 to 4 each show a composite tool in perspective view.
  • the composite tools 1, 11, 21, 31 shown in the figures each have a cuboid base body 2, which is cast from a highly ductile iron material.
  • the base body 2 is starting from its one narrow end face 2a in a practical use the direct contact with the material to be crushed, extending over about one third of the total length L of the base body 2 working section 2b, a subsequent to the working section 2b clamping section 2c, on which mounted composite tool 1, 11, 21, 31, the clamping device, not shown, a crusher also not shown, and a subsequent to the chucking section 2c bearing portion 2d divided, on which the composite tool 1 in the mounted position in the crusher is supported.
  • composite tool 1 is poured into the working portion of the base body 2 of a high-strength, hard iron material mass-produced molded body 3.
  • the molded body 3 has a hexagonal base 3a with two opposite long sides, which are connected at their ends in each case by two under a blunt, open in the direction of the inner surface open angle meeting each other short sides. Starting from the base surface 3a shaped in this way, the molded body 3 tapers in the direction of the end face 2a of the main body 2.
  • a shape of the molded body 3 tapering from the base 3 a in the direction of the end face 2 a of the base body 2 3 is associated.
  • the thus shaped molded body 3 is completely surrounded in the new state of the composite tool 1 laterally and in the region of its base 3a of the material of the base body 2.
  • the average thickness d G1 of the body 2 laterally surrounding the shaped body 3 in the thickness direction in a direction parallel to the end face 2 a in the direction of the wider side faces of the base body 2 and perpendicular to the measuring axis X is selected such that the ratio the average thickness d G1 for measured in the same measuring axis X mean thickness d F1 of the molded body 3 is about 0.3.
  • the spectrum measured in a transversely oriented to the measurement axis X measuring axis Y thickness d G2 is the 3 laterally surrounding widthwise wall 2e of the body 2 are chosen the shaped body so that the ratio of the mean thickness d of G2 to the measured in the same measurement axis Y average thickness d F2 of the molding 3 is about 0.2.
  • Composite tool 11 shown is also molded from a high-hardness iron material massively manufactured molded body 13. Unlike the composite tool 1, the material of the main body 2 completely surrounds the shaped body 3 in the new state of the composite tool 11.
  • the molded body 13 of the composite tool 11 has a starting from its base 13a in the direction of its end face 2a of the body 2 associated end face 13b tapered shape.
  • the base surface 13a and accordingly the end face 13b of the molded body 13 are also hexagonal, wherein the surfaces 13a, 13b are bounded in this case by two short, mutually parallel opposite sides, each blunt by two, to the respective surface 13a, 13b , open angles are juxtaposed on longer sides.
  • the substantially conical shape starting from the base surface 13a, the shaping of the solid shaped body 13 and the embedding of the molded body 13 in the material of the base body 12 ensure that the molded body 13 is safe even after a long service life held in the base body 2 and capable of acting on the composite tool 11 directly striking beating load just as safely record.
  • composite tool 21 is in turn cast in the working section 2 b of the base body 2, a generated from a hard metal material, solidly formed moldings 23.
  • the material of the main body 2 completely surrounds the shaped body 23 when new.
  • the molded body 23 has a truncated pyramid-shaped, four side surfaces 23c, 23d, 23e, 23f having basic shape whose base 23a is greater than its the end face 2a of the base body 2 associated end face 23b.
  • two of the opposite side surfaces 23c, 23d of the molded body 23 are formed at regular intervals, extending over the length of the molded body 23 channel-like recesses 23g formed while on the other two opposite side surfaces 23e, 23f in an irregular arrangement knob-like projections 23h are formed ,
  • the recesses 23g and the projections 23h in combination with the conically tapering shape of the molded body 23 starting from the base surface 23a in the direction of the end face 23b, support its secure, form-fitting hold in the material of the base body 2.
  • the composition of the iron material of the base body 2 is the same tuned to the composition of the iron material from which the molded body 23 is made, that the molded body 23 is additionally retained in the base body 2 in a force-locking manner after the completion of the composite tool 21 as a result of the different thermal expansion behavior of the two materials.
  • three composite molds 31 ', 33 "and 33''each made of a wear-resistant, hard iron material are produced as massive bodies.
  • the shaped bodies 33 ', 33 ", 33”' are each designed in the shape of a truncated pyramid and, starting from their rectangular base 33a in the direction of the end face 2a of the base body 2 of the composite tool 31, taper conically and in the new state flush with this aligned end face 33b.
  • the length of the molded body 33 "disposed between the two outer molded bodies 33 ', 33"' is about half the length of the two other molded bodies 33 'and 33 "'.
  • the molded bodies 33 ', 33" and 33 “' are included arranged at a distance such that both the ratio of the measured in the direction of the measuring axis X average thickness d G1 of the mold bodies 33 ', 33 “and 33”' in the thickness direction surrounding material of the base body 2 measured in the same measuring axis X average thickness d F1 the shape of the body 33 ', 33 “, 33”' and the ratio of measured in the direction of the measuring axis Y average thickness d G2 of the mold body 33 ', 33 “and 33”' respectively in the width direction surrounding material of the base body 2 in the same measuring axis Y measured average thickness d F2 of the shaped bodies 33 ', 33 ", 33”' is in the range of 0.2 to 1.0.

Abstract

The main body (2) is a highly-ductile impact-hardened steel alloy. Cast into it, held by interlocking only, the molding (3) is located in the impact region. It is a prefabricated, solid, highly wear-resistant metal alloy differing from that of the body.

Description

Die Erfindung betrifft ein Komposit-Werkzeug für schlagende Belastungen. Derartige Werkzeuge werden beispielsweise zum Zerkleinern von Metall-, Gesteins- oder Abbruchmaterialien eingesetzt. Dabei sind die Werkzeuge extremen Belastungen sowohl im Bereich ihrer direkt mit dem zu zerkleinernden Gut in Kontakt kommenden Flächen als auch in dem Bereich ausgesetzt, in dem sie in der jeweiligen Zerkleinerungsmaschine gehalten sind.The invention relates to a composite tool for beating loads. Such tools are used for example for crushing metal, rock or demolition materials. The tools are subjected to extreme loads both in the area of their surfaces which come into direct contact with the material to be comminuted and in the area in which they are held in the respective comminution machine.

Aus der Praxis bekannt und in der DE 28 29 847 A1 beschrieben sind im Einsatz schlagend und / oder abrasiv belastete Werkzeuge, die als so genannter "Monoblock" ausgeführt sind. Einfache Ausführungen dieser aus einem einzigen Metallmaterial bestehenden, blockartigen Werkzeuge weisen in der Regel eine über ihren Querschnitt und ihre Länge gleichmäßige Härte auf. Besser an die jeweils auftretenden Belastungen angepasste Monoblock-Werkzeuge weisen dagegen üblicherweise mindestens zwei Zonen unterschiedlicher Härte auf, von denen die härtere der direkten schlagenden Belastung ausgesetzt wird, während im Bereich der zäheren, weniger harten Zone die Einspannung des Werkzeugs in der jeweiligen Maschine vorgenommen wird.Known from practice and in the DE 28 29 847 A1 are described in use beating and / or abrasive loaded tools that are designed as a so-called "monoblock". Simple embodiments of these block-like tools consisting of a single metal material generally have a uniform hardness over their cross section and their length. On the other hand, monoblock tools better adapted to the loads occurring in each case usually have at least two zones of different hardness, of which the harder is subjected to the direct impact load, while in the region of the tougher, less hard zone the clamping of the tool is carried out in the respective machine ,

Ein Nachteil der voranstehend erläuterten einfach ausgeführten Monoblock-Werkzeuge ist, dass sie eine durchgehend niedrige Basishärte besitzen oder aus schlaghärtenden Materialien hergestellt sind. Sie weisen in der Regel einen zu geringen Verschleißwiderstand auf. Bei noch- bzw. differenziert, über mehrere Abschnitte unterschiedlich gehärteten Monoblock-Werkzeugen besteht dagegen häufig das Risiko eines Bruchs in den Zonen, die eine besonders hohe Härte und, damit einhergehend, eine niedrige Duktilität besitzen.A disadvantage of the above-explained monobloc simple tools is that they have a consistently low base hardness or are made of impact-hardening materials. They point in usually a too low wear resistance. In contrast, still differentiated, over several sections differently hardened monobloc tools, however, there is often the risk of breakage in the zones, which have a particularly high hardness and, consequently, a low ductility.

Es ist versucht worden, die Nachteile der Monoblock-Werkzeuge durch Werkzeuge aus Materialien mit von einander abweichenden mechanisch-technologischen Eigenschaften zu beseitigen. Die verschleißfesten, die hohen mechanischen Schlagbelastungen aufnehmenden Formteile sind dabei durch mechanische Hilfsmittel in dem jeweiligen Grundkörper eingespannt. Im praktischen Einsatz zeigt sich allerdings, dass die mechanischen Verbindungen zwischen den miteinander verkoppelten Elementen anfällig gegen Ermüdung in Folge der im Betrieb auftretenden hohen Belastungen sind.Attempts have been made to eliminate the disadvantages of monobloc tools by using tools made of materials with different mechanical and technological properties. The wear-resistant, the high mechanical impact loads receiving molded parts are clamped by mechanical aids in the respective body. In practical use, however, it can be seen that the mechanical connections between the elements coupled to one another are susceptible to fatigue as a result of the high loads occurring during operation.

Auch sind Werkzeuge für schlagende Belastungen bekannt, die durch Verbundguss erzeugt worden sind. Bei diesen Werkzeugen wird der verschließfeste Formkörper in der Regel durch eine stoffschlüssige Verbindung in dem Material des Grundkörpers gehalten. Nachteilig an diesen Werkzeugen sind allerdings die hohen Kosten ihrer Herstellung, die sich durch einen hohen Aufwand an Material und eine komplexe Prozessführung ergeben. Darüber hinaus besteht im Betrieb laufend das Risiko eines Bruchs der metallischen Verbindung zwischen verschleißbeständigem Formelement und Grundkörper. Werkzeuge dieser Art sind beispielsweise aus der DE-PS 592 580 bekannt.Also tools for impact loads are known, which have been produced by composite casting. In these tools, the seal-resistant molded body is usually held by a material connection in the material of the body. A disadvantage of these tools, however, the high cost of their production, resulting from a high cost of material and complex process control. In addition, there is a constant risk of breakage of the metallic connection between the wear-resistant molded element and the base body during operation. Tools of this kind are for example from the DE-PS 592 580 known.

Es sind auch Komposit-Werkzeuge bekannt, bei denen ein schwammartiges, porös ausgebildetes Insert, das aus Metall oder einer Keramik bestehen kann, in den Werkstoff des Grundkörpers eingegossen ist. Im Zuge des Abgießens dringt der Grundkörper-Werkstoff in die Öffnung und Höhlungen des Inserts ein, so dass sich eine intensive Verklammerung des Grundkörpers mit dem Inlay ergibt. Problematisch beim Einsatz solcherart hergestellter Werkzeuge ist jedoch, dass sich die Sprödigkeit der als Werkstoff für den Inlay-Werkstoff eingesetzten Metall-Oxide bei bestimmten Anwendungen nachteilig auf das Einsatzverhalten der Werkzeuge auswirkt.There are also known composite tools in which a sponge-like, porous trained insert made of metal or a ceramic can be cast in the material of the body. In the course of pouring the main body material penetrates into the opening and cavities of the insert, so that there is an intensive clamping of the base body with the inlay. However, a problem with the use of tools produced in this way is that the brittleness of the metal oxides used as the material for the inlay material has a disadvantageous effect on the application behavior of the tools in certain applications.

Schließlich ist aus der US 5,238,046 ein Komposit-Werkzeug gemäß dem Oberbegriff des Anspruchs 1 bekannt, bei dem der Grundkörper mit dem Formkörper über im Wesentlichen ausschließlich formschlüssig verbunden ist, indem der Formkörper eine Einschnürung aufweist. Derartige Einschnürungen bilden jedoch Schwachstellen, die sich nachteilig auf die Haltbarkeit des Komposit-Werkzeugs auswirken.Finally, out of the US 5,238,046 a composite tool according to the preamble of claim 1, in which the base body is connected to the molded body via substantially exclusively positively, in that the molded body has a constriction. However, such constrictions are weak points that adversely affect the durability of the composite tool.

Ausgehend vom voranstehend erläuterten Stand der Technik lag der Erfindung die Aufgabe zugrunde, ein Komposit-Werkzeug der eingangs angegebenen Art zu schaffen, das bei Minimierung des Risikos eines Werkzeugbruchs eine hohe Verschleißbeständigkeit aufweist und bei dem der Formkörper im Grundkörper über eine lange Betriebsdauer sicher gehalten ist.Based on the above-described prior art, the present invention seeks to provide a composite tool of the type described above, which has a high wear resistance while minimizing the risk of tool breakage and in which the molded body is securely held in the body over a long period of operation ,

Diese Aufgabe ist erfindungsgemäß durch ein Komposit-Werkzeug für schlagende und/oder abrasive Belastungen gelöst worden, das durch einen aus einer hochduktilen, schlaghärtenden Eisenbasis-Legierung erzeugten Grundkörper und mindestens einen in den Grundkörper eingegossenen, im Grundkörper unter weitestgehendem Ausschluss einer stoffschlüssigen Verbindung formschlüssig gehaltenen Formkörper gebildet ist, der im der schlagenden Belastung direkt ausgesetzten Bereich des Komposit-Werkzeugs angeordnet und aus einem vom Eisenwerkstoff des Grundkörpers abweichenden, hochverschleißfesten Metallwerkstoff als massiver Körper vorgefertigt ist, wobei der Formkörper eine ausgehend von einer Basisfläche sich in Richtung seiner der Basisfläche gegenüberliegenden Stirnfläche verjüngende Form besitzt und wobei die Stirnfläche dem der schlagenden Belastung direkt ausgesetzten Bereich des Komposit-Werkzeugs zugeordnet ist.This object is achieved according to the invention by a composite tool for impacting and / or abrasive loads, which is cast by a base body made of a highly ductile, schlaghärtenden iron-based alloy and at least one cast into the body, with the greatest possible exclusion of a cohesive connection form-fitting held shaped body is formed, which is arranged in the beating load directly exposed area of the composite tool and prefabricated from a deviating from the iron material of the body, highly wear-resistant metal material as a solid body, wherein the molded body starting from a base surface in the direction of his the base surface opposite end face has tapered shape and wherein the end face is assigned to the beating load directly exposed area of the composite tool.

Eine solche Form ist beispielsweise dann gegeben, wenn der Formkörper die Grundform eines Pyramidenstumpfes besitzt. Bei einer solchen im Wesentlichen konisch von der Basiszur Stirnfläche zulaufenden Formgebung ist auf einfache Weise sichergestellt, dass der Formkörper auch noch nach langer Betriebszeit sicher im Grundkörper gehalten ist.Such a shape is given, for example, when the shaped body has the basic shape of a truncated pyramid. In such a substantially conically tapering from the base to the end face shape is ensured in a simple manner that the molded body is held securely in the base body even after a long period of operation.

Das erfindungsgemäße Komposit-Werkzeug besteht im Wesentlichen aus einem Grundkörper, der aus einem gegossenen, hochduktilen Werkstoff erzeugt ist. In der im Betrieb schlagend und / oder abrasiv belasteten Zone dieses Grundkörpers ist ein Formkörper platziert, der aus einer hochfesten, ebenfalls metallischen, bevorzugt eisenbasierten Legierung gefertigt ist. Die Form des Formkörpers ist dabei so gewählt, dass der Formkörper im ihn umgebenden Material des Grundkörpers sicher formschlüssig gehalten ist. Gleichzeitig sind die Werkstoffe von Grundkörper und Formkörper so aufeinander abgestimmt, dass es zu keiner nennenswerten stoffschlüssigen Verbindung zwischen dem Formkörper und dem Grundkörper kommt. Ebenso wenig ist es erfindungsgemäß vorgesehen; dass der Formkörper durch zusätzliche mechanisch wirkende Hilfsmittel in dem Grundkörper gehalten ist.The composite tool according to the invention essentially consists of a base body which is produced from a cast, highly ductile material. In the striking during operation and / or abrasive zone of this body a molded body is placed, which is made of a high-strength, also metallic, preferably iron-based alloy. The shape of the shaped body is chosen such that the shaped body is securely held positively in the surrounding material of the base body. At the same time, the materials of the base body and the molded body are matched to one another in such a way that there is no significant cohesive connection between the molded body and the base body. Nor is it according to the invention intended; that the shaped body is held by additional mechanically acting aids in the base body.

Mit der Erfindung steht ein in Zerkleinerungsmaschinen universell einsetzbares, besonders einfach herstellbares Komposit-Werkzeug zur Verfügung, das in seiner dem primären Verschleiß ausgesetzten Arbeitszone durch den dort angeordneten Formkörper einen hohen Verschleißwiderstand besitzt und gleichzeitig eine deutlich reduzierte Bruchempfindlichkeit aufweist. Da die hohen schlagenden oder abrasiven Belastungen durch den aus hartem, verschleißfestem Material bestehenden Formkörper aufgenommen werden, können der Werkstoff des Grundkörpers und die bei seiner Verarbeitung angewendeten Wärmebehandlungen ohne Rücksicht auf die im praktischen Betrieb auftretenden Belastungen auf eine möglichst hohe Duktilität des Grundkörpers ausgerichtet sein.With the invention, a universally usable in crushing machines, particularly easy to produce composite tool is available, which has a high wear resistance in its exposed primary wear work zone by the molded body arranged there and at the same time has a significantly reduced fracture sensitivity. Since the high impact or abrasive loads are absorbed by the body made of hard, wear-resistant material, the material of the body and applied during its processing heat treatments can be aligned regardless of the loads occurring in practical operation to the highest possible ductility of the body.

Die bei der Erzeugung erfindungsgemäßer Komposit-Werkzeuge angewendete Wärmebehandlung sieht vor, dass die Wärmeführung während des Herstellprozesses die notwendigen Parameter für die beiden zu kombinierenden Werkstoffe berücksichtigt. Ziel ist es dabei, im Grundkörper eine möglichst hohe Duktilität und im Formkörper eine möglichst hohe Härte zu erzeugen. Dies wird erreicht durch eine Behandlung im Hochtemperaturbereich von 950 - 1100 °C. Dann erfolgt eine gebrochene Flüssigkeitshärtung im Bereich von 350 - 600 °C, an die sich wiederum eine Abkühlung an Luft und ein nachträgliches Entspannen bei Temperaturen von 300 - 400 °C anschließen.The heat treatment used in the production of composite tools according to the invention provides that the heat transfer during the manufacturing process takes into account the necessary parameters for the two materials to be combined. The aim is to produce the highest possible ductility in the main body and the highest possible hardness in the molded body. This is achieved by a treatment in the high temperature range of 950 - 1100 ° C. Then there is a broken liquid hardening in the range of 350-600 ° C, which in turn followed by a cooling in air and a subsequent relaxation at temperatures of 300 - 400 ° C.

Ein weiterer wesentlicher Vorteil der Erfindung besteht darin, dass der Formkörper in beliebiger, kostengünstiger Weise vorgefertigt werden kann. So kann es sich bei dem in das erfindungsgemäße Komposit-Werkzeug eingegossenen Formkörper beispielsweise um ein Schmiedeteil, ein Stanzteil, ein geschnittenes Teil, ein gebranntes Teil, ein Sinterteil oder ein Gussstück handeln. Dabei kann das Stanzteil, gebrannte bzw. geschnittene Teil aus einem Flachmaterial hergestellt sein.Another essential advantage of the invention is that the molding can be prefabricated in any desired, cost-effective manner. Thus, for example, the molded body cast into the composite tool according to the invention can be a forged part, a stamped part, a cut part, a fired part, a sintered part or a cast piece. In this case, the stamped part, fired or cut part can be made of a flat material.

Erfindungsgemäß wird durch die Auswahl der für den Grundkörper und den Formkörper verwendeten Werkstoffe sichergestellt, dass die spezifischen mechanisch-technologischen Eigenschaften beider Werkstoffe, nämlich einerseits hochverschließfest für den Formkörper und andererseits hochduktil für den Grundkörper, sowohl während des Herstellungsprozesses selbst als auch im praktischen Einsatz erhalten bleiben. Als für die Herstellung des Grundkörpers geeigneter Werkstoff, der diese Anforderungen erfüllt, erweist sich eine Eisenlegierung, die (in Gew.-%) 8,0 - 22,0 % Mn, 0,2 - 2,8 % Cr, 0,5 - 1,5 % C und als Rest Fe und unvermeidbare Verunreinigungen enthält. Eine eine hohe Härte des Formkörpers ermöglichende Eisenlegierung enthält dagegen (in Gew.-%) 6,0 - 16,0 % Cr, 0,3 - 1,5 % Mo, 0,3 - 1,4 % W , 0,6 - 2,2 % C und als Rest Fe und unvermeidbare Verunreinigungen. Unterstützt durch eine auf die jeweiligen Werkstoff-Zusammensetzungen abgestimmte Wärmebehandlung lassen sich mit diesen Legierungen besonders langlebige, robuste Komposit-Werkzeuge erzeugen, die auch härtesten Belastungen über die jeweils geforderte Einsatzdauer standhalten. Dabei können innerhalb der erfindungsgemäß vorgegebenen Legierung die Werkstoffe von Grundkörper und Formkörper so aufeinander abgestimmt werden, dass der Formkörper während und in Folge der Nutzungsbeanspruchung permanent im Komposit-Werkzeug verspannt ist.According to the invention, the selection of the materials used for the main body and the molded body ensures that the specific mechanical-technological properties of both materials, namely on the one hand high-sealing strength for the molding and the other highly ductile for the body, both during the manufacturing process itself and in practical use stay. As a material suitable for the production of the basic body, which fulfills these requirements, an iron alloy which (in wt .-%) 8.0 - 22.0% Mn, 0.2 - 2.8% Cr, 0.5 1.5% C and balance Fe and unavoidable impurities. In contrast, an iron alloy which enables a high hardness of the molding contains (in% by weight) 6.0-16.0% Cr, 0.3-1.5% Mo, 0.3-1.4% W, 0.6 - 2.2% C and balance Fe and unavoidable impurities. Supported by a heat treatment adapted to the respective material compositions, these alloys can be used to produce particularly durable, robust composite tools which withstand even the toughest loads over the respective required service life. In this case, the materials of the base body and the molded body can be coordinated with one another within the alloy specified according to the invention be that the shaped body during and as a result of the use stress is permanently clamped in the composite tool.

Eine weitere im Hinblick auf die Erhöhung der Verschleißbeständigkeit und die Minimierung des Risikos eines Werkzeugsbruchs besonders günstige Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass in dem Bereich, in dem der Eisenwerkstoff des Grundmaterials den Formkörper seitlich umgibt, das Verhältnis der in einer ersten Achse gemessenen mittleren Stärke des Grundmaterials zur in derselben Achse gemessenen mittleren Stärke des eingegossenen Formkörpers 0,2 bis 1,0 beträgt. Bei Berücksichtigung dieses Bereichs der Stärkenverhältnisse ist eine hohe Sicherheit gegen den Bruch auch bei stark wechselnden Belastungen im Bereich der Einspann- und Lagerzone des Komposit-Werkzeugs gewährleistet.Another embodiment of the invention which is particularly favorable in terms of increasing the wear resistance and minimizing the risk of tool breakage is characterized in that in the region in which the iron material of the base material laterally surrounds the shaped body, the ratio of the mean measured in a first axis Strength of the base material for measured on the same axis average thickness of the cast molded body is 0.2 to 1.0. Taking into account this range of strength ratios, a high degree of safety against breakage is ensured even in the case of heavily varying loads in the area of the clamping and bearing zone of the composite tool.

Die Herstellung eines erfindungsgemäßen Komposit-Werkzeugs erfolgt bewusst so, dass es zu keiner wesentlichen metallischen Bindung zwischen dem Formkörper und dem ihn zumindest teilweise umgebenden Grundkörper kommt. Um die permanente Verbindung zwischen dem Grundkörper und dem Formkörper zu gewährleisten, ist der Formkörper vielmehr so ausgelegt, dass der Formkörper formschlüssig im Material des Grundkörpers eingebettet ist.The production of a composite tool according to the invention is carried out deliberately so that there is no significant metallic bond between the molding and the body surrounding it at least partially. In order to ensure the permanent connection between the base body and the molded body, the molded body is rather designed so that the molded body is embedded in a form-fitting manner in the material of the base body.

Der formschlüssige Halt des Formkörpers kann auch dadurch erreicht werden, dass in die Seitenflächen des Formkörpers Vertiefungen eingeformt sind. Alternativ oder ergänzend können zum selben Zweck an die Seitenflächen des Formkörpers Erhöhungen angeformt sein.The form-fitting hold of the shaped body can also be achieved by forming depressions in the side surfaces of the shaped body. Alternatively or additionally, elevations may be formed on the side surfaces of the molded body for the same purpose.

Nachfolgend wird die Erfindung anhand einer Ausführungsbeispiele darstellenden Zeichnung näher erläutert. Fig. 1 bis 4 zeigen jeweils ein Komposit-Werkzeug in perspektivischer Darstellung.The invention will be explained in more detail with reference to an exemplary embodiments illustrative drawing. Fig. 1 to 4 each show a composite tool in perspective view.

Die in den Figuren dargestellten Komposit-Werkzeuge 1, 11, 21, 31 weisen jeweils einen quaderförmig ausgebildeten Grundkörper 2 auf, der aus einem hochduktilen Eisenwerkstoff gegossen ist. Der Grundkörper 2 ist dabei ausgehend von seiner einen schmalen Stirnseite 2a in einen im praktischen Einsatz dem direkten Kontakt mit dem zu zerkleinernden Material ausgesetzten, sich etwa über ein Drittel der Gesamtlänge L des Grundkörpers 2 erstreckenden Arbeitsabschnitt 2b, einen sich an den Arbeitsabschnitt 2b anschließenden Einspannabschnitt 2c, an dem bei montiertem Komposit-Werkzeug 1, 11, 21, 31 die nicht dargestellte Spanneinrichtung einer ebenfalls nicht gezeigten Zerkleinerungsmaschine angreift, und einen sich an den Einspannabschnitt 2c anschließenden Lagerabschnitt 2d unterteilt, an dem das Komposit-Werkzeug 1 in montierter Stellung in der Zerkleinerungsmaschine abgestützt ist.The composite tools 1, 11, 21, 31 shown in the figures each have a cuboid base body 2, which is cast from a highly ductile iron material. The base body 2 is starting from its one narrow end face 2a in a practical use the direct contact with the material to be crushed, extending over about one third of the total length L of the base body 2 working section 2b, a subsequent to the working section 2b clamping section 2c, on which mounted composite tool 1, 11, 21, 31, the clamping device, not shown, a crusher also not shown, and a subsequent to the chucking section 2c bearing portion 2d divided, on which the composite tool 1 in the mounted position in the crusher is supported.

Beim in Fig. 1 dargestellten Komposit-Werkzeug 1 ist in den Arbeitsabschnitt des Grundkörpers 2 ein aus einem hochfesten, harten Eisenwerkstoff massiv hergestellter Formkörper 3 eingegossen. Der Formkörper 3 weist eine sechseckige Grundfläche 3a mit zwei einander gegenüberliegenden langen Seiten auf, die an ihren Enden jeweils durch zwei unter einem stumpfen, in Richtung der Innenfläche geöffneten Winkel aufeinander treffende kurze Seiten miteinander verbunden sind. Ausgehend von der derart geformten Grundfläche 3a verjüngt sich der Formkörper 3 in Richtung der Stirnseite 2a des Grundkörpers 2.When in Fig. 1 shown composite tool 1 is poured into the working portion of the base body 2 of a high-strength, hard iron material mass-produced molded body 3. The molded body 3 has a hexagonal base 3a with two opposite long sides, which are connected at their ends in each case by two under a blunt, open in the direction of the inner surface open angle meeting each other short sides. Starting from the base surface 3a shaped in this way, the molded body 3 tapers in the direction of the end face 2a of the main body 2.

Auf diese Weise ist eine ausgehend von der Grundfläche 3a in Richtung der der Stirnseite 2a des Grundkörpers 2 zugeordneten Stirnfläche 3b des Formkörpers 3 konisch zulaufende Form des Formkörpers 3 gebildet. Der derart geformte Formkörper 3 ist im Neuzustand des Komposit-Werkzeugs 1 seitlich und im Bereich seiner Grundfläche 3a vom Werkstoff des Grundkörpers 2 vollständig umgeben. Die mittlere, in einer parallel zur Stirnseite 2a in Richtung der breiteren Seitenflächen des Grundkörpers 2 verlaufenden und senkrecht zu diesen ausgerichtete Messachse X gemessene Stärke dG1 der den Formkörper 3 in Dickenrichtung seitlich umgebenden Wand 2f des Grundkörpers 2 ist dabei so gewählt, dass das Verhältnis der mittleren Stärke dG1 zur in derselben Messachse X gemessenen mittleren Dicke dF1 des Formkörpers 3 etwa 0,3 beträgt. In entsprechender Weise ist die in einer quer zur Messachse X ausgerichteten Messachse Y gemessene Stärke dG2 der den Formkörper 3 in Breitenrichtung seitlich umgebenden Wand 2e des Grundkörpers 2 so gewählt, dass das Verhältnis der mittleren Stärke dG2 zur in derselben Messachse Y gemessenen mittleren Dicke dF2 des Formkörpers 3 etwa 0,2 beträgt.In this way, a shape of the molded body 3 tapering from the base 3 a in the direction of the end face 2 a of the base body 2 3 is associated. The thus shaped molded body 3 is completely surrounded in the new state of the composite tool 1 laterally and in the region of its base 3a of the material of the base body 2. The average thickness d G1 of the body 2 laterally surrounding the shaped body 3 in the thickness direction in a direction parallel to the end face 2 a in the direction of the wider side faces of the base body 2 and perpendicular to the measuring axis X is selected such that the ratio the average thickness d G1 for measured in the same measuring axis X mean thickness d F1 of the molded body 3 is about 0.3. Similarly, the spectrum measured in a transversely oriented to the measurement axis X measuring axis Y thickness d G2 is the 3 laterally surrounding widthwise wall 2e of the body 2 are chosen the shaped body so that the ratio of the mean thickness d of G2 to the measured in the same measurement axis Y average thickness d F2 of the molding 3 is about 0.2.

Durch diese Dimensionierung der den Formköper 3 seitlich umgebenden Wände 2e,2f des Grundkörpers 2 in Kombination mit der konisch sich in Richtung seiner Stirnfläche 3b verjüngenden Form des Formkörpers 3 ist sichergestellt, dass der Formkörper 3 auch unter hohen in der Praxis auftretenden schlagenden Belastungen sicher in dem Komposit-Werkzeug 1 gehalten ist. Dabei unterstützt die Abstimmung der Werkstoffe von Formkörper 3 und Grundkörper 2 nicht nur den festen Halt des Formkörpers 3 in dem Grundkörper 2, sondern stellt vor allen Dingen sicher, dass das Risiko eines Bruchs des Komposit-Werkzeugs 1 im Bereich des Einspannabschnitts 2c oder des Lagerabschnitts 2d auf ein Minimum reduziert ist.By this dimensioning of the mold body 3 laterally surrounding walls 2e, 2f of the base body 2 in combination with the conically tapering in the direction of its end face 3b shape of the molded body 3 ensures that the molded body 3 safely even under high impact loads occurring in practice the composite tool 1 is held. The coordination of the materials of the molded body 3 and body 2 not only supports the firm grip of the molded body 3 in the base body 2, but above all ensures that the risk of breakage of the composite tool 1 in the region of the clamping section 2c or the bearing section 2d is reduced to a minimum.

In den Arbeitsabschnitt 2b des Grundkörpers 2 des in Fig. 2 dargestellten Komposit-Werkzeugs 11 ist ebenfalls ein aus einem hochharten Eisenwerkstoff massiv gefertigter Formkörper 13 eingegossen. Anders als beim Komposit-Werkzeug 1 umgibt der Werkstoff des Grundkörpers 2 den Formkörper 3 im Neuzustand des Komposit-Werkzeugs 11 vollständig.In the working section 2b of the main body 2 of the in Fig. 2 Composite tool 11 shown is also molded from a high-hardness iron material massively manufactured molded body 13. Unlike the composite tool 1, the material of the main body 2 completely surrounds the shaped body 3 in the new state of the composite tool 11.

Wiederum, entsprechend dem in Fig. 1 dargestellten Formkörper 3, weist der Formkörper 13 des Komposit-Werkzeugs 11 eine ausgehend von seiner Grundfläche 13a in Richtung seiner der Stirnseite 2a des Grundkörpers 2 zugeordneten Stirnfläche 13b sich verjüngende Form auf. Die Grundfläche 13a und dementsprechend die Stirnfläche 13b des Formkörpers 13 sind ebenfalls sechseckig ausgebildet, wobei die Flächen 13a,13b in diesem Fall durch zwei kurze, einander parallel gegenüberliegende Seiten begrenzt sind, die durch jeweils zwei unter einem stumpfen, zur jeweiligen Fläche 13a,13b, geöffneten Winkel aufeinander treffende längere Seiten miteinander verbunden sind.Again, according to the in Fig. 1 Shaped body 3 shown, the molded body 13 of the composite tool 11 has a starting from its base 13a in the direction of its end face 2a of the body 2 associated end face 13b tapered shape. The base surface 13a and accordingly the end face 13b of the molded body 13 are also hexagonal, wherein the surfaces 13a, 13b are bounded in this case by two short, mutually parallel opposite sides, each blunt by two, to the respective surface 13a, 13b , open angles are juxtaposed on longer sides.

Auch beim Komposit-Werkzeug 11 ist so durch die im Wesentlichen konische, ausgehend von der Grundfläche 13a verjüngende, Formgebung des massiven Formkörpers 13 und die Einbettung des Formkörpers 13 in den Werkstoff des Grundkörpers 12 sichergestellt, dass der Formkörper 13 auch nach langer Betriebsdauer noch sicher im Grundkörper 2 gehalten und in der Lage ist, die auf das Komposit-Werkzeug 11 direkt treffende schlagende Belastung ebenso sicher aufzunehmen.In the case of the composite tool 11 as well, the substantially conical shape starting from the base surface 13a, the shaping of the solid shaped body 13 and the embedding of the molded body 13 in the material of the base body 12 ensure that the molded body 13 is safe even after a long service life held in the base body 2 and capable of acting on the composite tool 11 directly striking beating load just as safely record.

Beim in Fig. 3 gezeigten Komposit-Werkzeug 21 ist in den Arbeitsabschnitt 2b des Grundkörpers 2 wiederum ein aus einem harten Metallwerkstoff erzeugter, massiv ausgebildeter Formkörper 23 eingegossen. Wie beim Komposit-Werkzeug 11 umgibt der Werkstoff des Grundkörpers 2 den Formkörper 23 im Neuzustand vollständig.When in Fig. 3 shown composite tool 21 is in turn cast in the working section 2 b of the base body 2, a generated from a hard metal material, solidly formed moldings 23. As with the composite tool 11, the material of the main body 2 completely surrounds the shaped body 23 when new.

Der Formkörper 23 besitzt eine pyramidenstumpfförmige, vier Seitenflächen 23c,23d,23e,23f aufweisende Grundform, deren Grundfläche 23a größer ist als seine der Stirnseite 2a des Grundkörpers 2 zugeordnete Stirnfläche 23b. In zwei der einander gegenüberliegenden Seitenflächen 23c, 23d des Formkörpers 23 sind in regelmäßigen Abständen angeordnete, sich über die Länge des Formkörpers 23 erstreckende kanalartige Vertiefungen 23g eingeformt, während an die beiden anderen einander gegenüberliegenden Seitenflächen 23e,23f in unregelmäßiger Anordnung noppenartige Vorsprünge 23h angeformt sind. Die Vertiefungen 23g und die Vorsprünge 23h unterstützen in Kombination mit der konisch ausgehend von der Grundfläche 23a in Richtung der Stirnfläche 23b sich verjüngenden Form des Formkörpers 23 dessen sicheren, formschlüssigen Halt im Werkstoff des Grundkörpers 2. Die Zusammensetzung des Eisenwerkstoffs des Grundkörpers 2 ist dabei so auf die Zusammensetzung des Eisenwerkstoffs abgestimmt, aus dem der Formkörper 23 hergestellt ist, dass der Formkörper 23 nach der Fertigstellung des Komposit-Werkzeugs 21 in Folge des unterschiedlichen Wärmeausdehnungsverhaltens beider Werkstoffe zusätzlich in dem Grundkörper 2 unter Spannung kraftschlüssig gehalten ist.The molded body 23 has a truncated pyramid-shaped, four side surfaces 23c, 23d, 23e, 23f having basic shape whose base 23a is greater than its the end face 2a of the base body 2 associated end face 23b. In two of the opposite side surfaces 23c, 23d of the molded body 23 are formed at regular intervals, extending over the length of the molded body 23 channel-like recesses 23g formed while on the other two opposite side surfaces 23e, 23f in an irregular arrangement knob-like projections 23h are formed , The recesses 23g and the projections 23h, in combination with the conically tapering shape of the molded body 23 starting from the base surface 23a in the direction of the end face 23b, support its secure, form-fitting hold in the material of the base body 2. The composition of the iron material of the base body 2 is the same tuned to the composition of the iron material from which the molded body 23 is made, that the molded body 23 is additionally retained in the base body 2 in a force-locking manner after the completion of the composite tool 21 as a result of the different thermal expansion behavior of the two materials.

Beim in Fig. 4 dargestellten Komposit-Werkzeug 31 sind schließlich drei jeweils aus einem verschleißfesten, harten Eisenwerkstoff als massive Körper hergestellte Formkörper 33',33" und 33"' eingegossen. Die Formkörper 33',33", 33"' sind jeweils pyramidenstumpfförmig ausgebildet und laufen ausgehend von ihrer rechteckigen Grundfläche 33a in Richtung der Stirnseite 2a des Grundkörpers 2 des Komposit-Werkzeugs 31 zugeordneten und im Neuzustand bündig mit dieser ausgerichteten Stirnfläche 33b konisch zu. Die Länge des zwischen den beiden äußeren Formkörpern 33', 33"' angeordneten Formkörpers 33" ist etwa halb so groß wie die Länge der beiden anderen Formkörper 33' und 33"'. Die Formkörper 33',33 " und 33"' sind dabei in einem Abstand angeordnet, dass sowohl das Verhältnis der in Richtung der Messachse X gemessenen mittleren Stärke dG1 des die Formkörper 33',33" und 33"' jeweils in Dickenrichtung umgebenden Werkstoffs des Grundkörpers 2 zur in derselben Messachse X gemessenen mittleren Stärke dF1 der Formkörper 33',33" , 33"' als auch das Verhältnis der in Richtung der Messachse Y gemessenen mittleren Stärke dG2 des die Formkörper 33',33" und 33"' jeweils in Breitenrichtung umgebenden Werkstoffs des Grundkörpers 2 zur in derselben Messachse Y gemessenen mittleren Stärke dF2 der Formkörper 33',33" , 33"' im Bereich von 0,2 bis 1,0 liegt. Wie schon im Zusammenhang mit dem in Fig. 1 dargestellten Komposit-Werkzeug 1 erläutert, ist durch diese auf die Stärke dF1,dF2 des Formkörpers 33',33",33"' bezogene Abstimmung der Wandstärken dG1 bzw. dG2 sichergestellt, dass auch unter den im praktischen Einsatz auftretenden harten Belastungen der Formkörper 33',333', 33"' diese in einer für einen dauerhaft sicheren Halt ausreichend elastischen Weise in dem duktilen Eisenwerkstoff des Grundkörpers 2 im Komposit-Werkzeug 31 gehalten sind.When in Fig. 4 Finally, three composite molds 31 ', 33 "and 33''each made of a wear-resistant, hard iron material are produced as massive bodies. The shaped bodies 33 ', 33 ", 33"' are each designed in the shape of a truncated pyramid and, starting from their rectangular base 33a in the direction of the end face 2a of the base body 2 of the composite tool 31, taper conically and in the new state flush with this aligned end face 33b. The length of the molded body 33 "disposed between the two outer molded bodies 33 ', 33"' is about half the length of the two other molded bodies 33 'and 33 "'. The molded bodies 33 ', 33" and 33 "' are included arranged at a distance such that both the ratio of the measured in the direction of the measuring axis X average thickness d G1 of the mold bodies 33 ', 33 "and 33"' in the thickness direction surrounding material of the base body 2 measured in the same measuring axis X average thickness d F1 the shape of the body 33 ', 33 ", 33"' and the ratio of measured in the direction of the measuring axis Y average thickness d G2 of the mold body 33 ', 33 "and 33"' respectively in the width direction surrounding material of the base body 2 in the same measuring axis Y measured average thickness d F2 of the shaped bodies 33 ', 33 ", 33"' is in the range of 0.2 to 1.0. As already mentioned in connection with FIG Fig. 1 illustrated composite tool 1 illustrated, is through this to the thickness d F1, d F2 of the molding 33 ', 33 ", 33"' related adjustment of the wall thickness d G1 or d G2 ensures that hard under the occurring in practical use Loads of the molded body 33 ', 333', 33 "'' are held in a ductile iron material of the base body 2 in the composite tool 31 in a manner that is sufficiently elastic for a permanently secure grip.

Ein wichtiger Vorteil des in Fig. 4 dargestellten Komposit-Werkzeugs 31 besteht darin, dass mit dem Einbringen mehrerer härterer Formkörper 33',33",33"' in den hochduktilen Grundkörper 2 durch das zwischen den einzelnen Formkörpern 33',33",33"' vorhandene duktile Grundstoffmaterial das Bruchrisiko im praktischen Einsatz wesentlich minimiert wird. Die unterschiedliche Länge der Formkörper 33',33",33"' berücksichtigt dabei die Beschränkung des erwünscht erhöhten Verschleißwiderstandes auf Zonen der hauptsächlichen Verschleißbeanspruchung.An important advantage of in Fig. 4 shown composite tool 31 is that with the introduction of a plurality of harder molded body 33 ', 33 ", 33"' in the highly ductile base body 2 by the present between the individual moldings 33 ', 33 ", 33"' ductile base material fracture risk in practical use is substantially minimized. The different length of the molded bodies 33 ', 33 ", 33"' takes into account the limitation of the desired increased wear resistance on zones of the main wear stress.

BEZUGSZEICHENREFERENCE NUMBERS

1,11,21,311,11,21,31
Komposit-WerkzeugeComposite Tools
22
Grundkörperbody
2a2a
schmale Stirnseite des Grundkörpers 2narrow face of the body 2
LL
Gesamtlänge des Grundkörpers 2Total length of the main body 2
2b2 B
Arbeitsabschnitt des Grundkörpers 2Working section of the main body 2
2c2c
Einspannabschnitt des Grundkörpers 2Clamping section of the main body 2
2d2d
Lagerabschnitt des Grundkörpers 2Bearing portion of the body 2
3,13,23,33',33",33"'3,13,23,33 ', 33 ", 33"'
Formkörpermoldings
3a,13a,33a3a, 13a, 33a
Grundfläche des jeweiligen Formkörpers 3,13,23,33',33",33"'Base surface of the respective molded body 3, 13, 23, 33 ', 33 ", 33"'
3b,13b,33b3b, 13b, 33b
Stirnfläche des jeweiligen Formkörpers 3, 13End face of the respective shaped body 3, 13
dG1,dG2,dF1,dF2 d G1 , d G2 , d F1 , d F2
mittlere Stärke der den Formkörper 3 seitlich umgebenden Wand 2eaverage thickness of the mold body 3 laterally surrounding wall 2e
2e2e
Wände 2e des Grundkörpers 2Walls 2e of the main body 2
23c,23d,23e,23f23c, 23d, 23e, 23f
Seitenflächen des Formkörpers 23Side surfaces of the molded body 23
23g23g
kanalartige Vertiefungenchannel-like depressions
23h23h
Vorsprüngeprojections
X,YX, Y
Messachsenmeasuring axes

Claims (7)

  1. Composite tool for percussive and/or abrasive strains, having a base body (2) made of a highly ductile impact-hardening iron-based alloy, and at least one shaped body (3, 13, 23, 33', 33", 33"'), cast into the base body (2) and retained in the base body (2) by positive fit, excluding metallurgical joining as far as possible, which shaped body (3, 13, 23, 33', 33", 33"') is arranged in the area of the composite tool (1, 11, 21, 31) which is directly subjected to the percussive strain, and is prefabricated as a solid body from a highly wear-resistant metal material which deviates from the iron material of the base body (2), characterised in that the shaped body (3, 13, 23, 33', 33", 33"') has a shape which tapers from a base surface (3a, 13a, 33a) in the direction of its face surface (3b, 13b, 33b) located opposite the base surface (3a, 13a, 33a), and in that the face surface (3b, 13b, 33b) is allocated to the area (2a) of the composite tool (1, 11, 21, 31) which is directly subjected to the percussive strain.
  2. Composite tool according to Claim 1, characterised in that the iron alloy of the base body (2) contains (as % by weight): Mn: 8.0 - 22.0 % Cr: 0.2 - 2.8 % C: 0.5 - 1.5 %
    and the remainder being Fe and unavoidable impurities.
  3. Composite tool according to one of the preceding claims, characterised in that the metal material of the shaped body (3, 13, 23, 33', 33", 33"') contains (as % by weight) : Cr: 6.0 - 16.0 % Mo: 0.3 - 1.5 % W: 0.3 - 1.4 % C: 0.6 - 2.2 %
    and the remainder being Fe and unavoidable impurities.
  4. Composite tool according to one of the preceding claims, characterised in that, in the area in which the iron material of the base body (2) surrounds the shaped body (3, 13, 23, 33', 33", 33"') laterally, the ratio of the mean thickness (dG1, dG2) of the basic material, measured in a measurement axis (X, Y), to the respective mean thickness (dF1, dF2) of the shaped body (3, 13, 23, 33', 33", 33"'), measured in the same measurement axis (X, Y), amounts to 0.2 to 1.0.
  5. Composite tool according to one of the preceding claims, characterised in that the shaped body (3, 13, 23, 33', 33", 33"') has the shape of a truncated pyramid.
  6. Composite tool according to one of the preceding claims, characterised in that indentations are formed into the side surfaces (23c, 23d, 23e, 23f) of the shaped body (23).
  7. Composite tool according to one of the preceding claims, characterised in that elevations (23h) are formed into the side surfaces (23e, 23f) of the shaped body (23h).
EP04763716A 2003-08-07 2004-08-02 Composite tool for percussive and/or abrasive strains Not-in-force EP1651389B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10336169A DE10336169B4 (en) 2003-08-07 2003-08-07 Composite tool for impact and / or abrasive loads
PCT/EP2004/008648 WO2005014238A1 (en) 2003-08-07 2004-08-02 Composite tool for percussive and/or abrasive strains

Publications (2)

Publication Number Publication Date
EP1651389A1 EP1651389A1 (en) 2006-05-03
EP1651389B1 true EP1651389B1 (en) 2010-12-29

Family

ID=34129501

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04763716A Not-in-force EP1651389B1 (en) 2003-08-07 2004-08-02 Composite tool for percussive and/or abrasive strains

Country Status (6)

Country Link
EP (1) EP1651389B1 (en)
AT (1) ATE493233T1 (en)
DE (3) DE20321302U1 (en)
DK (1) DK1651389T3 (en)
ES (1) ES2358594T3 (en)
WO (1) WO2005014238A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1018129A3 (en) 2008-09-19 2010-05-04 Magotteaux Int COMPOSITE IMPACTOR FOR PERCUSSION CRUSHERS.
EP4155031A1 (en) * 2021-09-23 2023-03-29 Sandvik Mining and Construction Oy Breaking tool, breaking hammer and method of maintaining shape of breaking tool

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE592580C (en) * 1934-02-10 Walter Huelsbruch Dr Ing Pointed iron or chisel, primarily for mining
GB643790A (en) * 1947-10-27 1950-09-27 Rip Bits Ltd Improvements in or relating to drill-bits or drill-steels having hard metal tips suitable for rock drilling
DE1133089B (en) * 1954-12-07 1962-07-12 Georg Hufnagel Fa Method for manufacturing tools for machining by casting around sintered bodies, in particular hard metal bodies
AT319149B (en) * 1972-11-24 1974-12-10 Boehler & Co Ag Geb Excavator bucket
DE2829847C2 (en) * 1978-07-07 1983-05-05 Edelstahl GmbH & Co KG Techn. Beratung-Entwicklung-Verkauf, 4000 Düsseldorf Steel chisel
US4314616A (en) * 1980-01-28 1982-02-09 Acme-Cleveland Corporation Die-cast masonry drill with leading hard insert
DE3347501C3 (en) * 1983-12-29 1993-12-02 Uwe Christian Seefluth Drilling tool with hard metal insert body, manufacturing process for hard metal insert body
EP0178894A3 (en) * 1984-10-17 1987-06-24 BRADLEY & FOSTER LIMITED A method of heat treating high chromium cast ferrous-based alloys and a wearing element formed of a high chromium cast ferrous based alloy
US5238046A (en) 1990-09-20 1993-08-24 Magotteaux International Method of manufacturing a bimetal casting and wearing part produced by this method
US6216805B1 (en) * 1999-07-12 2001-04-17 Baker Hughes Incorporated Dual grade carbide substrate for earth-boring drill bit cutting elements, drill bits so equipped, and methods
US6799648B2 (en) * 2002-08-27 2004-10-05 Applied Process, Inc. Method of producing downhole drill bits with integral carbide studs

Also Published As

Publication number Publication date
EP1651389A1 (en) 2006-05-03
DE10336169A1 (en) 2005-03-10
DE20321302U1 (en) 2006-09-14
DE502004012067D1 (en) 2011-02-10
DK1651389T3 (en) 2011-03-28
DE10336169B4 (en) 2006-11-09
ES2358594T3 (en) 2011-05-12
WO2005014238A1 (en) 2005-02-17
ATE493233T1 (en) 2011-01-15

Similar Documents

Publication Publication Date Title
EP2049315B1 (en) Ejector pin for a mould and process for production of this ejector pin
DE19630115C2 (en) Method of manufacturing a bevel gear and combined press device
DE3929534C2 (en)
EP3088084B1 (en) Hard element for grid armoring for a roller press, method for producing the same, and roller for a roller press
DE102006017263A1 (en) Crankshaft and method for its production
EP0751234B1 (en) Blade body for saws such as circular or gang saws, cutting discs and cutting or scrapping apparatus
EP1651389B1 (en) Composite tool for percussive and/or abrasive strains
DE102010031313A1 (en) Tool i.e. chisel tool, for hand-held power tool, has shaft with spigot that is inserted into tool receiver, where wear-resistant component and adjacent region of spring steel are joined together in multi-orbital friction weld
DE102005040258A1 (en) Mold for fasteners in joining techniques
EP2364800A1 (en) Hot isostatic pressed composite body, method for its manufacture and application
DE102012013778B4 (en) Forming tool made of a steel material with different material properties in some areas for the massive forming of a metal material and method for producing such a forming tool
DE3615127C2 (en)
DE69813920T3 (en) High strength non-thermal virgin steel for hot forging
EP0238478A2 (en) Extrusion die
AT409831B (en) METHOD FOR THE POWDER METALLURGICAL PRODUCTION OF PRE-MATERIAL AND PRE-MATERIAL
EP0593691B1 (en) Process for producing sintered components
EP1213071A2 (en) Method, apparatus and cast iron alloy for producing a camshaft with moulded cams
EP1270121A2 (en) Plain cutter
AT394325B (en) METAL MOLD FOR EXTRUDING AND METHOD FOR PRODUCING THE SAME
WO2004020681A1 (en) Use of a hard metal alloy
EP1366895B1 (en) Composite flat element
AT409599B (en) Composite body used in the production of saw blades and saw bands for metal processing consists of two metallic parts having a different material composition and detachedly connected together
EP1760359A1 (en) Balancing weight
DE112023000190T5 (en) Precipitation hardening soft magnetic ferritic stainless steel with excellent machinability
DE102021128592A1 (en) Process for producing a cemented carbide body

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060201

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080916

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004012067

Country of ref document: DE

Date of ref document: 20110210

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004012067

Country of ref document: DE

Effective date: 20110210

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2358594

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110329

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110429

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004012067

Country of ref document: DE

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160824

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160825

Year of fee payment: 13

Ref country code: GB

Payment date: 20160824

Year of fee payment: 13

Ref country code: DK

Payment date: 20160823

Year of fee payment: 13

Ref country code: DE

Payment date: 20160824

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160825

Year of fee payment: 13

Ref country code: FR

Payment date: 20160829

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20160830

Year of fee payment: 13

Ref country code: ES

Payment date: 20160825

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004012067

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20170831

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170901

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 493233

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170802

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170802

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170802

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180301

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170802

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170803