EP1637738B1 - Flow control for a peristaltic pump - Google Patents

Flow control for a peristaltic pump Download PDF

Info

Publication number
EP1637738B1
EP1637738B1 EP05025638A EP05025638A EP1637738B1 EP 1637738 B1 EP1637738 B1 EP 1637738B1 EP 05025638 A EP05025638 A EP 05025638A EP 05025638 A EP05025638 A EP 05025638A EP 1637738 B1 EP1637738 B1 EP 1637738B1
Authority
EP
European Patent Office
Prior art keywords
flow
sampler
signal
fluid
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP05025638A
Other languages
German (de)
French (fr)
Other versions
EP1637738A3 (en
EP1637738A2 (en
Inventor
Johann Beller
Robert Zeller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser Wetzer GmbH and Co KG
Original Assignee
Endress and Hauser Wetzer GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser Wetzer GmbH and Co KG filed Critical Endress and Hauser Wetzer GmbH and Co KG
Priority to DE50015594T priority Critical patent/DE50015594D1/en
Publication of EP1637738A2 publication Critical patent/EP1637738A2/en
Publication of EP1637738A3 publication Critical patent/EP1637738A3/en
Application granted granted Critical
Publication of EP1637738B1 publication Critical patent/EP1637738B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/08Machines, pumps, or pumping installations having flexible working members having tubular flexible members
    • F04B43/10Pumps having fluid drive
    • F04B43/113Pumps having fluid drive the actuating fluid being controlled by at least one valve
    • F04B43/1133Pumps having fluid drive the actuating fluid being controlled by at least one valve with fluid-actuated pump inlet or outlet valves; with two or more pumping chambers in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers

Definitions

  • the invention relates to a device for generating and guiding a fluid flow with a positive displacement pump and with a measuring arrangement and a method for monitoring this device.
  • Positive displacement pumps are known to be pumps which produce a discontinuous, in particular pulsating, fluid flow in the lumen of an at least section-wise, in particular elastically, deformable flow vessel, eg a hose. So is in the DE-A 196 47 882 . US-A 49 09 710 . US-A 51 65 873 . US-A 51 73 038 . US-A 52 63 830 . US-A 53 40 290 . US-A 56 83 233 . US-A 57 01 646 . US Pat. No. 5,871,341 . US-A 58 88 052 .
  • WO-A 97/41 353 and WO-A 98/31 935 a device for generating and guiding a discontinuous fluid flow is shown in each case, which device comprises a positive displacement pump with at least one deformable lumen flow vessel serving to guide the fluid flow and with a pump drive for deforming the lumen of the flow vessel.
  • the pump drive acts in sections on the fluid conducting flow vessel in such a way that it is temporarily, esp. Oscillating, deforming and thus the fluid directed transporting displacer displaced in the lumen.
  • the pump drive acts in sections on the fluid conducting flow vessel in such a way that it is temporarily, esp. Oscillating, deforming and thus the fluid directed transporting displacer displaced in the lumen.
  • Positive displacement pumps are each peristaltic displacer movements generated by a voltage applied to the flow vessel, non-circular cylindrical lateral surface of a pump drive which rotates about an axis of rotation, while in the US-A 51 65 873 .
  • US-A 58 88 052 as well as in the WO-A 98/31 935 the displacement movements are effected by linear thrusting movements, which performs a push rod comprehensive pump drive against the flow vessel.
  • an electric motor is usually used, which is mechanically coupled by means of a drive shaft directly to the pump drive.
  • Drive motor and pump drive can also be mechanically coupled to one another via a gear or a belt drive.
  • an eccentric or a cam disc or a crank gear can serve as a mechanical coupling between the electric motor and the pump drive, cf. this the DE-A 196 47 882 .
  • US-A 52 63 830 can serve as a mechanical coupling between the electric motor and the pump drive, cf. this the DE-A 196 47 882 .
  • Positive displacement pumps of the type described are due to a substantially homogeneous smooth inner wall of the flow vessel and due to the lack of rotating in the fluid flow drive elements particularly suitable for those applications in which leading to the fluid lumen of the flow vessel high chemical and / or biological purity requirements are made.
  • Displacement pumps are therefore often used, for example, in samplers for chemical-biological analyzes, especially in the drinking or in the wastewater sector. For example, in the US-A 55 87 926 and US-A 57 01 646 corresponding sampler, each with a positive displacement pump shown.
  • the volume flow is esp.
  • the volume flow is proportional to the speed of the displacement movements and thus also proportional to a set oscillation frequency of the lumen.
  • a mean volumetric flow of the calculation of the volume of fluid delivered is used as a basis.
  • the displacement of the flow vessel and thus the oscillations of the lumen are usually determined indirectly. These are a drive movement of the Drive motor, for example, at the drive shaft, detected by means of electrodynamic or optical tachometer and mapped into a drive signal representing this drive movement. In a corresponding evaluation electronics, the drive signal is converted into the volumetric flow and / or the conveyed fluid volume representing measuring signals.
  • the measurement signals thus generated as well as the aforementioned Drive movement and thus also the measuring signals derived from the drive signal are only representative of the volumetric flow rate if, on the one hand, the flow vessel is filled with liquid in a known manner, in particular completely, and, on the other hand, no slippage occurs between the pump drive and the drive motor.
  • the latter is readily possible, for example, in a drive belt connection or in a pump drive which is merely pressed onto the drive shaft.
  • the manner of filling the flow vessel in turn is dependent to a large extent on its current installation position, esp. From a current suction height. Although this can be determined a priori, for example during commissioning, and stored as a set value in the evaluation electronics without further notice; In the case of, in particular, mobile-operated samplers, the installation position is, however, variable to a great extent, ie to be newly determined for each application and to be stored, if necessary. Furthermore, the installation position, esp. Even with permanently installed samplers, for example, change that the liquid level at a corresponding liquid withdrawal point operationally subject to more or less large fluctuations.
  • An object of the invention is therefore to provide a device with a positive displacement pump and with a measuring arrangement which robustly and reliably detects an actual displacement movement of the flow vessel and provides a measuring signal representing this, esp. For generating a current volume flow representing the flow rate estimate and / or is suitable for generating a status signal signaling a current operating state.
  • Another object of the invention is to provide a method providing information for monitoring such a device.
  • the invention consists in the use of a device according to the invention in a sampler.
  • the evaluation electronics generates by means of the sensor signal a Quillingtonwert representing an instantaneous volume flow of the fluid flow.
  • the evaluation electronics generates a first measurement signal by means of the sensor signal, which represents a frequency of the displacement movements.
  • the evaluation electronics generates a volume estimated value by means of the sensor signal, which represents a totalized delivery volume.
  • the evaluation electronics generates by means of the sensor signal Status signal representing a current operating state of the positive displacement pump.
  • the second pressure is an atmospheric pressure surrounding the flow vessel.
  • the evaluation electronics generates a second measurement signal by means of the sensor signal, which represents an intake height of the device.
  • a basic idea of the invention is not to determine the displacement movement of the flow vessel or the oscillations of the lumen thereof on the basis of their causes, namely the drive movements of the drive motor, but on the basis of their effects in the device.
  • the responses of the device to the displacements to be detected are e.g. a changing pressure in the fluid flow.
  • An advantage of the invention is that the volume flow can be determined independently of the existing between the drive motor and the pump drive mechanical coupling and virtually by means of a single sensor signal.
  • Another advantage of the invention is that the measuring arrangement and thus also the method both at Devices can be used with electric motor driven positive displacement pump as well as device with hydraulically or pneumatically driven positive displacement pump.
  • Another advantage of the invention is also to be seen in the fact that even existing devices of the type described can be easily retrofitted with such a measuring arrangement.
  • a device for transporting a fluid, esp. A liquid, by means of a positive displacement pump 1 is shown.
  • the device is suitable in a particularly advantageous manner for use in the removal and, if necessary, the storage of liquids serving sampler PN.
  • the displacement pump 1 comprises in one embodiment according to the Fig. 2, 3rd a, in particular as a pump housing formed, carrier means 11, a held by this, esp. Designed as a displacer, pump drive 12 and a flow vessel 13 of variable lumen 13A, esp. Of at least partially variable cross-section, for guiding the fluid.
  • a flow vessel 13 all conventional in such positive displacement, for example made of polyethylene or silicone, elastic tubes can be used.
  • the flow vessel 13 can be embodied both in one piece and as a multi-part.
  • the flow vessel 13 is displaced by means of the pump drive 12 in a, esp. Peristaltic, displacement s 13 of predetermined frequency, for example in a range of 10 Hz to 20 Hz, that the fluid located in the oscillating lumen 13A, insb, pulsating, flows in a predetermined flow direction.
  • the displacer movement is practically a wave movement of a wall of the flow vessel 13 and thus of the lumen 13A enclosed by the latter, wherein a running speed of the wave movement sets the volume flow, cf. Fig. 4 ,
  • the pump drive 12 acts as in FIG Fig. 4 shown schematically, with a temporally and locally, esp. Periodic, variable compression force F on the flow vessel 13, in such a way that within a pump effective compression region, the flow vessel 13 and thus the lumen 13A fluidverdrnatureend, esp. Elastic deformed.
  • This is in the positive displacement pump 1 of the embodiment according to Fig. 2, 3rd causes the pump drive 12 with non-circular cross-section roll on the flow vessel 13 and thus the Flow vessel 13, resting against the support means 11, is periodically compressed and allowed to relax.
  • the pump drive 12 is partially in contact with the flow vessel 13, which is likewise held by the carrier 11.
  • the pump drive 12 is formed in the embodiment as a drum or disc-shaped displacer of non-circular cross-section, ie as a displacer with a non-circular cylindrical surface.
  • the displacer here four, spaced apart, esp. Rotationally supported, roller-shaped rolling elements, which act in accordance with a set direction of rotation of the pump drive 12 sequentially to the flow vessel 13 during operation of the positive displacement pump 1.
  • the pump drive 12 is, as usual with positive displacement pumps with rotary pump drive, with a drive shaft 15 of a, esp. Electric, drive motor 14, for example via a transmission or a drive belt connection, mechanically coupled; but he can also directly on the drive shaft 15 attached.
  • the drive motor 14 carries out corresponding drive movements of a predetermined speed - here rotational movements with a frequency proportional to the displacement movements S 13 , esp. Adjustable, engine speed of eg 200 min -1 to 3000 min -1 , via the drive shaft 15, possibly reduced by means of gear, be transferred to the pump drive 12.
  • the pump drive 12 is designed as a linear pump drive 12, it can also be driven by means of a hydraulic or by means of a pneumatic motor, cf. WO-A 98/31 935 ,
  • the flow vessel 13 For receiving liquid during operation of the device, the flow vessel 13 communicates with an inlet end with a corresponding liquid withdrawal point.
  • the liquid can be absorbed by the fact that the flow vessel 13 is immersed in, for example, in an open channel or basin, liquid and sucked against it due to the oscillating in the manner described above lumen 13A against gravity; but the liquid can also be flowed from a suitable liquid withdrawal point in the direction of gravity and / or from a pipeline.
  • the device comprises a measuring arrangement 2, which reacts to the displacements 13 carried out by the flow vessel 13 and has an evaluation electronics 22, to which a sensor signal X 21 representing the displacements S 13 is fed.
  • the measuring arrangement 2 of the invention comprises a fluid-contacting, in particular capacitive or resistive, pressure sensor 21 ', which, as in the Fig. 4 shown schematically reacts to a momentarily acting in the fluid, in particular static, first pressure p 1 in the lumen 13A.
  • the pressure sensor 21 at least one by means of at least one pressure diaphragm against the lumen 13A insulated and operating on said at least one pressure diaphragm to the pressure p 1 is acted upon pressure-measuring chamber.
  • p 1 is practically a means of the positive displacement pump 1 in an inlet side region of the flow vessel 13 set instantaneous internal pressure, which is in a calibratable function of a current operating state of the device, eg the current installation position and / or filling of the Flow vessel and and / or the instantaneous frequency of the displacement movements S 13 , sets.
  • pressure p 1 is at least temporarily, especially even when the flow vessel 13 is not filled with liquid, to a range from 200 hPa to 400 hPa (0.2 bar to 0.4 bar) and thus lower than from the outside set to the flow vessel 13 acting static second pressure P 2 .
  • the pressure p 2 may be, for example, an atmospheric air pressure of about 1000 hPa.
  • the measuring arrangement 2 insb serves to also detect the pressure p 1 and to map it into the sensor signal x 21 when the pressure p 1 is currently set lower than the pressure p 2 .
  • This can be the Pressure sensor 21 'be executed both as a pressure p 1 absolutely detecting pressure sensor with evacuated pressure measuring chamber and the pressure p 1 relative to the pressure p 2 detecting pressure sensor.
  • For holding the pressure sensor 21 ' is a portion of the flow vessel 13, as in Fig. 4 shown schematically, preferably designed as an adapter.
  • the measuring arrangement 2 comprises a piezo-resistive strain sensor 21 ", fixed in particular directly on the support means 11, which, as shown in FIG Fig. 5 shown schematically, one of the displacer S 13 of the flow vessel 13 caused elongation of the carrier 11 detected and converted into the sensor signal x 21 .
  • a strain sensor 21 " can also serve a strain relative or absolute detecting path, speed or acceleration sensor.
  • the force acting on the flow vessel 13 compression force F of the pump drive 12 is partially converted into a force acting on the support means 11 compression spring force, whereby the support means 11 sections, esp. Elastic, is deformed.
  • the carrier 11 undergoes a measurable strain, the extent of which esp. Is determined by the instantaneous pressure p 1 in the lumen 13A of the flow vessel 13.
  • the compression spring force and thus also the elongation of the carrier 11, for example, the material, esp. Of its modulus of elasticity, and / or a current spatial form of the flow vessel 13 is dependent.
  • This dependence of the deformation of the support means 11 is to be determined precisely by means of appropriate calibration measurements in which the flow vessel 13 is filled, for example, successively defined with corresponding liquids or left empty and a corresponding momentary signal value of the sensor signal x 21 as the reference value for the instantaneous filling in the evaluation. Electronics 22 is stored.
  • the sensor signal x 21 generated according to the invention by means of the pressure sensor 21 'can advantageously be used to determine a flow rate value x v currently representing the volume flow rate and / or a volume estimated value representing the totalized delivery volume, ie the volume flow rate integrated over a delivery time.
  • the evaluation electronics 22 includes, as in Fig. 6 shown, a signal portion of the sensor signal X 21 , esp. With the frequency of the displacement movement s 13 , transmitting band-pass circuit 220 of adjustable bandwidth and an output side of the band-pass circuit 220 downstream frequency counter circuit 221.
  • a band-pass circuit 220 may, for example Known expert switched capacitors filter and / or voltage-controlled active filter serve.
  • the bandpass circuit 220 serves esp. The removal of DC components of the sensor signal x 21 and for the suppression of higher-frequency noise voltages.
  • the bandwidth of the bandpass circuit 220 is accordingly set so that any changes in the frequency of the displacement movement s 13 , for example due to load-induced fluctuations in the engine speed, do not lead to a blocking of the sensor signal x 21 .
  • this frequency changes operationally over a wide range, for example ⁇ 5 s -1
  • the bandwidth of the band-pass circuit 220 configured in particular as a switched-capacitor circuit can also be determined, for example by means of one of the evaluation Electronics 22 generated, current set value for the motor speed, tracked.
  • the setting value can be derived, for example, from a drive signal directly tapped on the drive motor in the above-mentioned manner.
  • the volumetric flow of a transported liquid is dependent on the concrete realization of the positive displacement pump 1, namely the design of the pump drive 12 and the flow vessel 13, as well as on the frequency of the displacement movements s 13 .
  • the instantaneous volume flow is also from a determined by a current spatial distance between the positive displacement pump and a liquid level set suction height.
  • this suction height during commissioning of the device is determined accordingly and save as a fixed value K h in the evaluation electronics 22.
  • K 1 is a constant which determines the dependence of the volume flow on the frequency of the displacement movement s 13 and on the instantaneous suction height, in particular by calibration.
  • the flow estimate X v can also be approximated using a higher order polynomial.
  • the flow estimate X v can advantageously be derived virtually directly from the measurement signal x 221 .
  • the volume flow rate is practically proportional to four times the frequency of the displacement movement s 13th
  • the flow estimate X v is correspondingly only available over the delivery time integrate, for example by multiplication with the same or by multiplication with a number of measured zero crossings of the bandpass filtered sensor signal output of the bandpass circuit 220th
  • the current suction height for a more accurate determination of the flow rate X v, however, to update accordingly.
  • a second measurement signal X 222 is derived from the sensor signal X 21 , wherein an instantaneous signal value X h of the measurement signal X 222 currently represents the suction height.
  • an instantaneous signal value X h of the measurement signal X 222 currently represents the suction height.
  • K h K 1 ⁇ X H ⁇ X m
  • the sensor signal X 21 is determined according to FIG Fig. 6 by means of a low-pass circuit 222 of the evaluation electronics 22 smoothed.
  • the low-pass circuit 222 in this case has a cutoff frequency of, for example, 0.5 Hz to 2 Hz, which is set much smaller than the frequency of the displacement movement s 13 .
  • a measured signal as X 222 serving signal component with a frequency zero, that is a momentary mean value of the sensor signal is allowed to pass x 21 from the low-pass filter circuit 222 from the sensor signal x 21 practical.
  • a currently transmitted The mean value of the sensor signal x 21 serves as a measured value X h representing the instantaneous suction height.
  • the pressure p 1 detected by means of the sensor 21 would decrease and the sensor signal x z1 would have a correspondingly lower mean value; Analogously, the sensor signal x 21 has an increasing mean value as the suction height decreases.
  • the evaluation electronics 22 is used to derive from the sensor signal x 21 a filling level of the flow vessel 13 with liquid representing third measurement signal x 223 .
  • the sensor signal x 21 is according to Fig. 6 via bandpass circuit 220 of a rectifier circuit 223 supplied on the output side, the measurement signal x 223 inform informs of a DC voltage, wherein an instantaneous signal value of the measuring signal x 223 serves as an estimate for the current degree of filling; if necessary, it is of course also possible to use a corresponding direct current as measuring signal x 223 .
  • the rectifier circuit 223 for example, the amplitude-measuring or effective-value-measuring change-to-DC converter known to those skilled in the art can be used.
  • the evaluation electronics 22 further comprise a microcomputer 227 to which the measurement signal x 221 and / or the measurement signal x 223 and possibly the measurement signal x 222 on the input side via corresponding analog-to-digital converting signal Ports is supplied; if necessary, of course, the frequency counter circuit 221 and / or the rectifier circuit 223 are shown as a digital circuit, which then, of course, an output of the band-pass circuit 220 is supplied according digitisertes sensor signal.
  • the sensor signal x 21 generated by means of the pressure sensor 21 'according to the invention can also be advantageously used to generate, by means of the evaluation electronics 22, a digital, status signal Z, which signals a momentary operating state of the positive displacement pump 1.
  • the evaluation electronics 22 therefore, as in Fig. 7 schematically illustrated, a first Schmitt trigger 224, which converts the measurement signal x 221 output of the frequency counter circuit 221 in a binary first monitoring signal x 211 '.
  • the measuring signal x 221 is compared with a reference frequency value of the Schmitt trigger 224, which is set so that the monitoring signal x 221 ' assumes a high level when the frequency of the displacement movement s 13 is greater than or equal to one in stationary operation of the Positive displacement pump 1 is minimally adjusting frequency.
  • the frequency reference value during commissioning for the positive displacement pump 1 is determined and set, which is for example subjected to a maximum load to be expected during operation.
  • the via low-pass circuit 222 currently transmitted mean value of the sensor signal x 21 according to Fig. 7 a second Schmitt trigger 225 of the evaluation electronics 22 input side applied. Output of the Schmitt trigger 225, a binary second monitoring signal X 222 'of the evaluation electronics 22 can be tapped. The monitoring signal x 222 'is used to signal whether the pressure p 1 falls below a set at the Schmitt trigger 225 pressure reference value or not.
  • the pressure reference value is set so that the monitoring signal x 222 'assumes a high level when the pressure p 1 is less than or equal to the pressure value in the operation of the positive displacement pump 1 in an intact and in the manner described above the liquid Entnamstelle communicating flow vessel 13 sets at most; otherwise, the monitor signal x 222 'assumes a low level.
  • the evaluation electronics 22 as in Fig. 7 shown, a third Schmitt trigger 226, the input of the measurement signal x 223 is applied.
  • a corresponding filling reference value of the Schmitt trigger 226 is set here such that a binary third monitoring signal x 223 'supplied on the output side assumes a high level when the flow vessel 13 is filled with at least a predetermined minimum volume of the liquid to be conveyed; otherwise, esp. In an increased bubble formation in the fluid, the monitoring signal has a low level.
  • the filling reference value to be set can be determined, for example, by means of a corresponding calibration measurement and set during commissioning.
  • the status signal Z can be output via the output port sequentially or in parallel, eg to a display unit of the device serving to visualize the current operating state.
  • the status signal Z can also be applied to a control electronics for the positive displacement pump, which shuts off the positive displacement pump 1, for example, in the event of an error of the device detected by means of the measuring arrangement 2 '.
  • the monitoring signal x 221 ', the monitoring signal x 222 ' and / or the monitoring signal x 223 ' can also be derived from the measuring signal x 221 , from the measuring signal x 222 or from the measuring signal x 223 by means of trigger functions implemented in the microcomputer 227.
  • a triggered start function is preferably implemented, which serves the monitoring signal x 221 ', the monitoring signal x 222 ' and / or the monitoring signal x 223 'only after switching on the positive displacement pump 1, and that after the expiration to evaluate a set, corresponding to a startup time timing.
  • Monitoring signal y 14 may be a binary switching signal, for example, with a high level signals that the positive displacement pump 1 is turned on and signals with a low level that the positive displacement pump 1 is turned off.
  • a monitoring signal y 14 but can also serve a measuring signal, for example, represents a momentarily fed into the positive displacement pump 1 stream.
  • the adjustment signal y 14 can also be derived from the aforementioned drive signal, for example by means of amplitude-measuring or effective value-measuring change-to-direct-conversion converters.
  • the timing for the start function is set so that the positive displacement pump 1 is safely in steady state operation after being turned on, in the event that there is no malfunction.
  • the start-up time until steady-state operation is reached is again determined by appropriate calibration measurements and converted into the time specification.
  • Fig. 8 For this purpose, an example of a course of the sensor signal x 21 and a corresponding course of the measuring signal x 221 during a transition to steady-state operation are shown.
  • a first logic function activated by means of the start function is also implemented in the microcomputer 227, which sets a first signal value for the status signal Z if the monitoring signal X 222 'has a high level and the monitoring signal X 223 ' simultaneously has a low level.
  • the status signal Z can signal, for example, a clogged flow vessel 13.
  • a second logic function activated by means of the start function is implemented in the microcomputer 227, which sets a second signal value for the status signal Z if the monitoring signal x 221 'has a high level and the monitoring signal x 222 ' simultaneously has a low level.
  • the status signal Z can signal, for example, flow vessel 13 not immersed in the liquid and / or a leaking flow vessel 13 which is completely or partially filled with air.
  • This second signal value for the status signal Z can also be generated, for example, by comparing the measurement signal x 221 or the measurement signal x 222 by means of two trigger thresholds set to different levels with two mutually different signal reference values, the lower of the two trigger signals Thresholds of measurement signal x 221 or, x 222 is exceeded, while the higher of the two trigger thresholds is not reached.
  • the measuring arrangement may contain other sensors, e.g. temperature measuring temperature compensation sensors, e.g. can be attached to the flow vessel 13 or on the support means 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Measuring Volume Flow (AREA)
  • Reciprocating Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

A pressure sensor (21') measuring the static pressure in the fluid pumped, produces a signal (x21) representing movements of the pump displacer. An electronic unit (22) evaluates the sensor signal. An independent claim is included for the method of monitoring the unit, in which an operational status signal is derived from the fluctuating pressure signal.

Description

Die Erfindung betrifft eine Vorrichtung zum Erzeugen und Führen einer Fluidströmung mit einer Verdrängerpumpe und mit einer Meßanordnung sowie ein Verfahren zur Überwachung dieser Vorrichtung.The invention relates to a device for generating and guiding a fluid flow with a positive displacement pump and with a measuring arrangement and a method for monitoring this device.

Verdrängerpumpen sind bekanntlich Pumpen, die betriebsmäßig eine diskontinuierliche, insb. pulsierende, Fluidströmung im Lumen eines wenigstens abschnittsweisen, insb. elastisch, verformbaren Strömungsgefäßes, z.B. eines Schlauches, erzeugen. So ist in den DE-A 196 47 882 , US-A 49 09 710 , US-A 51 65 873 , US-A 51 73 038 , US-A 52 63 830 , US-A 53 40 290 , US-A 56 83 233 , US-A 57 01 646 , US-A 58 71 341 , US-A 58 88 052 , WO-A 97/41 353 und WO-A 98/31 935 jeweils eine Vorrichtung zum Erzeugen und Führen einer diskontinuierlichen Fluidströmung gezeigt, welche Vorrichtung eine Verdrängerpumpe mit mindestens einem dem Führen der Fluidströmung dienenden Strömungsgefäß von verformbarem Lumen und mit einem Pumpantrieb zum Verformen des Lumens des Strömungsgefäßes umfaßt.Positive displacement pumps are known to be pumps which produce a discontinuous, in particular pulsating, fluid flow in the lumen of an at least section-wise, in particular elastically, deformable flow vessel, eg a hose. So is in the DE-A 196 47 882 . US-A 49 09 710 . US-A 51 65 873 . US-A 51 73 038 . US-A 52 63 830 . US-A 53 40 290 . US-A 56 83 233 . US-A 57 01 646 . US Pat. No. 5,871,341 . US-A 58 88 052 . WO-A 97/41 353 and WO-A 98/31 935 a device for generating and guiding a discontinuous fluid flow is shown in each case, which device comprises a positive displacement pump with at least one deformable lumen flow vessel serving to guide the fluid flow and with a pump drive for deforming the lumen of the flow vessel.

Im Betrieb der Verdrängerpumpe wirkt der Pumpantrieb abschnittsweise derart auf das Fluid führende Strömungsgefäß ein, daß es in dessen Lumen temporär, insb. oszillierend, verformende und somit das Fluid gerichtet transportierende Verdrängerbewegungen versetzt wird. Bei den in US-A 49 09 710 , US-A 51 73 038 , US-A 53 40 290 , US-A 57 01 646 , US-A 58 71 341 und WO-A 97/41 353 beschriebenen Verdrängerpumpen werden jeweils peristaltische Verdrängerbewegungen durch eine am strömungsgefäß anliegende, nicht -kreiszylindrische Mantelfläche eines Pumpantriebes erzeugt, der um eine Drehachse rotiert, während in den US-A 51 65 873 , US-A 52 63 830 , US-A 56 83 233 , US-A 58 88 052 sowie in der WO-A 98/31 935 die Verdrängerbewegungen durch lineare Schubbewegungen bewirkt werden, die ein Schubstößel umfassender Pumpantrieb gegen das Strömungsgefäß ausführt.During operation of the positive displacement pump, the pump drive acts in sections on the fluid conducting flow vessel in such a way that it is temporarily, esp. Oscillating, deforming and thus the fluid directed transporting displacer displaced in the lumen. At the in US-A 49 09 710 . US-A 51 73 038 . US-A 53 40 290 . US-A 57 01 646 . US Pat. No. 5,871,341 and WO-A 97/41 353 described Positive displacement pumps are each peristaltic displacer movements generated by a voltage applied to the flow vessel, non-circular cylindrical lateral surface of a pump drive which rotates about an axis of rotation, while in the US-A 51 65 873 . US-A 52 63 830 . US-A 56 83 233 . US-A 58 88 052 as well as in the WO-A 98/31 935 the displacement movements are effected by linear thrusting movements, which performs a push rod comprehensive pump drive against the flow vessel.

Als Antriebsmotor für den Pumpantrieb wird üblicherweise ein Elektromotor verwendet, der mittels einer Antriebswelle direkt mit dem Pumpantrieb mechanisch gekoppelt ist. Antriebsmotor und Pumpantrieb können aber auch über ein Zahnrad- oder eine Treibriemengetriebe mechanisch aneinander gekoppelt sein. Des weiteren können z.B. auch eine Exzenter- oder eine Nockenscheibe oder ein Kurbelgetriebe als eine mechanische Kopplung zwischen dem Elektromotor und dem Pumpantrieb dienen, vgl. hierzu die DE-A 196 47 882 , US-A 51 65 873 , US-A 52 63 830 , US-A 56 83 233 sowie US-A 58 88 052 . Anstelle eines Elektromotors kann, wie z.B. in der WO-A 98/31 935 beschrieben, ein pneumatischer oder hydraulischer Kolbenmotor als Antriebsmotor zum Erzeugen linearer Stößel-Schubbewegungen verwendet werden.As the drive motor for the pump drive, an electric motor is usually used, which is mechanically coupled by means of a drive shaft directly to the pump drive. Drive motor and pump drive can also be mechanically coupled to one another via a gear or a belt drive. Furthermore, for example, an eccentric or a cam disc or a crank gear can serve as a mechanical coupling between the electric motor and the pump drive, cf. this the DE-A 196 47 882 . US-A 51 65 873 . US-A 52 63 830 . US-A 56 83 233 such as US-A 58 88 052 , Instead of an electric motor can, as in the WO-A 98/31 935 described a pneumatic or hydraulic piston motor can be used as a drive motor for generating linear plunger thrust movements.

Verdrängerpumpen der beschriebenen Art sind aufgrund einer im wesentlichen homogen ausgebildeten, glatten Innenwandung des Strömungsgefäßes sowie aufgrund des Fehlens von in der Fluidströmung rotierenden Antriebselementen besonders für solche Anwendungsfälle geeignet, bei denen an das Fluid führende Lumen des Strömungsgefäßes hohe chemische und/oder biologische Reinheitsanforderungen gestellt sind. Verdrängerpumpen werden daher z.B. häufig in Probennehmern für chemisch-biologische Analysen, insb. im Trink- oder im Abwasserbereich, verwendet. So sind z.B. in der US-A 55 87 926 und US-A 57 01 646 entsprechende Probennehmer mit jeweils einer Verdrängerpumpe gezeigt.Positive displacement pumps of the type described are due to a substantially homogeneous smooth inner wall of the flow vessel and due to the lack of rotating in the fluid flow drive elements particularly suitable for those applications in which leading to the fluid lumen of the flow vessel high chemical and / or biological purity requirements are made. Displacement pumps are therefore often used, for example, in samplers for chemical-biological analyzes, especially in the drinking or in the wastewater sector. For example, in the US-A 55 87 926 and US-A 57 01 646 corresponding sampler, each with a positive displacement pump shown.

Ein für den Betrieb derartiger Probennehmer, insb, für das Dosieren von Flüssigkeitsproben, wichtiger physikalischer Parameter ist ein tatsächlich gefördertes oder abdosiertes Flüssigkeitsvolumen. Zu dessen Bestimmung wird ein momentaner Volumendurchfluß der Flüssigkeitsströmung als ein Maß für ein je Zeiteinheit geförderte Flüssigkeitsvolumen ermittelt und über eine Förderzeit integriert.An important physical parameter for the operation of such samplers, esp. For the metering of liquid samples, is an actually conveyed or metered volume of liquid. To determine this, an instantaneous volume flow of the liquid flow is determined as a measure of a liquid volume delivered per unit time and integrated over a delivery time.

Im stationären Betrieb der Verdrängerpumpe ist der Volumendurchfluß insb. von einer Geschwindigkeit der Verdrängerbewegungen abhängig. Über einen weiten Arbeitsbereich der Pumpe ist dieser Zusammenhang praktisch linear, d.h. der Volumendurchfluß ist proportional zur Geschwindigkeit der verdrängerbewegungen und damit auch proportional zu einer eingestellten Oszillationsfrequenz des Lumens. Oftmals wird daher auch, insb. im stationären Betrieb der Verdrängerpumpe, für eine eingestellte Verdrängerbewegung ein mittlerer Volumendurchfluß der Berechnung des geförderten Fluidvolumens zu Grunde gelegt.In stationary operation of the positive displacement pump, the volume flow is esp. Depending on a speed of the displacement movements. Over a wide operating range of the pump, this relationship is practically linear, i. the volume flow is proportional to the speed of the displacement movements and thus also proportional to a set oscillation frequency of the lumen. Often, therefore, esp. In stationary operation of the positive displacement pump, for a set displacer movement, a mean volumetric flow of the calculation of the volume of fluid delivered is used as a basis.

Die Verdrängerbewegung des Strömungsgefäßes und damit die Oszillationen dessen Lumens werden üblicherweise indirekt ermittelt. Dazu werden eine Antriebsbewegung des Antriebsmotors, z.B. an dessen Antriebswelle, mittels elektrodynamischer oder optischer Drehzahlmesser erfaßt und in ein diese Antriebsbewegung repräsentierendes Antriebssignal abgebildet. In einer entsprechenden Auswerte-Elektronik wird das Antriebssignal in den Volumendurchfluß und/oder das geförderte Fluidvolumen repräsentierende Meßsignale umgewandelt.The displacement of the flow vessel and thus the oscillations of the lumen are usually determined indirectly. These are a drive movement of the Drive motor, for example, at the drive shaft, detected by means of electrodynamic or optical tachometer and mapped into a drive signal representing this drive movement. In a corresponding evaluation electronics, the drive signal is converted into the volumetric flow and / or the conveyed fluid volume representing measuring signals.

Ein weitere Möglichkeit zur Erfassung der Verdrängerbewegung des Strömungsgefäßes ist in der US-A 57 01 646 vorgeschlagen, wonach ein die Verdrängerbewegung des Strömungsgefäßes repräsentierendes Meßsignal mittels außen am Strömungsgefäß angebrachter, das darin geführte Fluid nicht berührende piezo-elektrischer Dehnungsmeßstreifen erzeugt wird.Another way to detect the displacement of the flow vessel is in the US-A 57 01 646 proposed, according to which a measuring signal representing the displacer movement of the flow vessel is produced by means of piezo-electric strain gauges which are attached to the outside of the flow vessel and do not contact the fluid carried therein.

Die so erzeugten Meßsignale wie auch die zuvor erwähnte Antriebsbewegung und somit auch die vom Antriebssignal abgeleiteten Meßsignale sind jedoch nur dann repräsentativ für den Volumendurchfluß, wenn einerseits das Strömungsgefäß in einer bekannten Weise, insb. vollständig, mit Flüssigkeit befüllt ist, und wenn andererseits zwischen dem Pumpantrieb und dem Antriebsmotor kein Schlupf auftritt. Letzteres ist z.B. bei einer Treibriemenverbindung oder bei einem auf die Antriebswelle lediglich aufgepreßten Pumpantrieb ohne weiteres möglich.The measurement signals thus generated as well as the aforementioned Drive movement and thus also the measuring signals derived from the drive signal are only representative of the volumetric flow rate if, on the one hand, the flow vessel is filled with liquid in a known manner, in particular completely, and, on the other hand, no slippage occurs between the pump drive and the drive motor. The latter is readily possible, for example, in a drive belt connection or in a pump drive which is merely pressed onto the drive shaft.

Die Art und Weise der Befüllung des Strömungsgefäß wiederum ist in einem hohen Maße von dessen momentaner Einbaulage, insb. von einer momentanen Ansaughöhe, abhängig. Diese kann zwar a priori, z.B. während einer Inbetriebnahme, festgestellt und als Einstellwert in der Auswerte-Elektronik ohne weiteres hinterlegt werden; bei, insb. mobil betriebenen, Probennehmern ist die Einbaulage jedoch in einem hohen Maße veränderlich, d.h. für jeden Einsatzfall neu zu ermitteln und ggf. abzuspeichern. Des weiteren kann sich die Einbaulage, insb. auch bei festinstallierten Probennehmern, z.B. dadurch ändern, daß der Flüssigkeitspegel an einer entsprechenden Flüssigkeits-Entnahmestelle betriebsbedingt mehr oder minder großen Schwankungen unterliegt.The manner of filling the flow vessel in turn is dependent to a large extent on its current installation position, esp. From a current suction height. Although this can be determined a priori, for example during commissioning, and stored as a set value in the evaluation electronics without further notice; In the case of, in particular, mobile-operated samplers, the installation position is, however, variable to a great extent, ie to be newly determined for each application and to be stored, if necessary. Furthermore, the installation position, esp. Even with permanently installed samplers, for example, change that the liquid level at a corresponding liquid withdrawal point operationally subject to more or less large fluctuations.

Es hat sich ferner gezeigt, daß auch Materialeigenschaften des Strömungsgefäßes, wie z.B. dessen Dichtigkeit, dessen Elastizität oder eine Beschaffenheit der Innenwandung, über die gesamte Betriebszeit gesehen dauerhaften Veränderungen unterliegen können. So können z.B. Ablagerungen an der Innenwandung zu abschnittsweise Querschnittsverengungen oder Verstopfungen des Strömungsgefäßes führen und müssen dementsprechend rechtzeitg erkannt oder ausgeschlossen werden. Ferner können auch Beschädigungen des Strömungsgefäßes, wie z.B. Leckagen, eine Unbrauchbarkeit der Vorrichtung nach sich ziehen.It has also been found that also material properties of the flow vessel, such as e.g. its tightness, its elasticity or a condition of the inner wall, seen over the entire operating time can be subject to permanent changes. Thus, e.g. Deposits on the inner wall to sections cross-sectional constrictions or blockages of the flow vessel lead and must be recognized accordingly timely or excluded. Furthermore, damage to the flow vessel, such as e.g. Leakages, a uselessness of the device.

Zur Überwachung einer Verdrängerpumpe, insb. hinsichtlich eines momentanen Betriebszustandes des Pumpantriebes und/oder des Strömungsgefäßes, sind daher zusätzliche Maßnahmen erforderlich, die einen oder mehrere der vorgenannten Parameter im Betrieb detektieren und die den Einfluß dieser Parameter auf den errrechneten Volumendurchfluß entsprechend kompensieren.For monitoring a positive displacement pump, esp. With regard to a current operating state of the pump drive and / or the flow vessel, therefore, additional measures are required to detect one or more of the aforementioned parameters during operation and compensate for the influence of these parameters on the Errechneten volume flow accordingly.

Eine Aufgabe der Erfindung besteht daher darin, eine Vorrichtung mit einer Verdrängerpumpe und mit einer Meßanordnung anzugeben, die eine tatsächliche Verdrängerbewegung des Strömungsgefäßes robust und zuverlässig erfaßt und ein diese repräsentierendes Meßsignal liefert, das insb. zum Erzeugen eines den momentanen Volumendurchfluß repräsentierenden Durchflußschätzwerts und/oder zum Erzeugen eines einen momentanen Betriebszustand signalisierenden Statussignals geeignet ist.An object of the invention is therefore to provide a device with a positive displacement pump and with a measuring arrangement which robustly and reliably detects an actual displacement movement of the flow vessel and provides a measuring signal representing this, esp. For generating a current volume flow representing the flow rate estimate and / or is suitable for generating a status signal signaling a current operating state.

Eine weitere Aufgabe der Erfindung ist es, ein Verfahren anzugeben, das der Überwachung einer derartigen Vorrichtung dienende Informationen liefert.Another object of the invention is to provide a method providing information for monitoring such a device.

Zur Lösung der Aufgabe besteht die Erfindung in einer Vorrichtung zum Erzeugen einer Fluidströmung, welche Vorrichtung umfaßt:

  • eine Verdrängerpumpe
    • -- mit mindestens einem dem Führen eines Fluids dienenden Strömungsgefäß von verformbarem Lumen,
    • -- mit einem Pumpantrieb zum Erzeugen von das Lumen verformenden und die Fluidströmung bewirkenden Verdrängerbewegungen des Strömungsgefäßes, und
    • mit einem Trägermittel zum Haltern des Strömungsgefäßes sowie
  • eine auf die vom Strömungsgefäß ausgeführten Verdrängerbewegungen reagierende Meßanordnung
    • -- mit einem Drucksensor, der einen statischen ersten Druck im Fluid erfaßt und ein die Verdrängerbewegungen repräsentierendes Sensorsignal liefert und
    • -- mit einer Auswerte-Elektronik für das Sensorsignal.
To achieve the object, the invention consists in a device for generating a fluid flow, which device comprises:
  • a positive displacement pump
    • with at least one deformable lumen flow vessel serving to guide a fluid,
    • - With a pump drive for generating the lumen-forming and the fluid flow causing displacement movements of the flow vessel, and
    • with a carrier for holding the flow vessel as well
  • a measuring arrangement responsive to the displacements of the flow vessel
    • - With a pressure sensor which detects a static first pressure in the fluid and a displacement signals representing the sensor signal provides and
    • - With an evaluation electronics for the sensor signal.

Ferner besteht die Erfindung in einem Verfahren zum Überwachung einer dem Erzeugen einer Fluidströmung dienenden Vorrichtung, die umfaßt:

  • eine Verdrängerpumpe
    • -- mit mindestens einem dem Führen eines Fluids dienenden Strömungsgefäß von verformbarem Lumen,
    • -- mit einem Pumpantrieb zum Erzeugen von das Lumen verformenden und die Fluidströmung bewirkenden Verdrängerbewegungen des Strömungsgefäßes,
    • -- mit einem Antriebsmotor für den Pumpantrieb und
    • -- mit einem Trägermittel zum Haltern des Strömungsgefäßes sowie
  • eine auf die vom Strömungsgefäß ausgeführten Verdrängerbewegungen reagierende Meßanordnung mit einem Drucksensor für einen statischen ersten Druck im Fluid, welches Verfahren folgende Schritte umfaßt:
  • Bewirken von Antriebsbewegungen des Antriebsmotor zum Erzeugen der Verdrängerbewegungen des Strömungsgefäßes,
  • Erfassen des ersten Drucks mittels des Drucksensors zum Erzeugen eines die Verdrängerbewegungen momentan repräsentierendes Sensorsignals und
  • Erzeugen eines einen momentanen Betriebszustand der Vorrichtung signalisierenden Statussignals mittels des Sensorsignals.
Further, the invention is a method of monitoring a fluid flow generating device comprising:
  • a positive displacement pump
    • with at least one deformable lumen flow vessel serving to guide a fluid,
    • with a pump drive for generating displacement of the flow vessel which deforms the lumen and causes the fluid flow,
    • - With a drive motor for the pump drive and
    • - With a support means for holding the flow vessel as well
  • a measuring arrangement, responsive to the displacement movements carried out by the flow vessel, having a pressure sensor for a static first pressure in the fluid, the method comprising the steps of:
  • Effecting drive movements of the drive motor for generating the displacement movements of the flow vessel,
  • Detecting the first pressure by means of the pressure sensor for generating a displacement signal currently representing the sensor signal and
  • Generating a status signal indicating a current operating state of the device by means of the sensor signal.

Des weiteren besteht die Erfindung in der Verwendung einer erfindungsgemäßen Vorrichtung in einem Probennehmer.Furthermore, the invention consists in the use of a device according to the invention in a sampler.

Nach einer bevorzugten ersten Ausgestaltung der Erfindung erzeugt die Auswerte-Elektronik mittels des Sensorsignals einen Durchflußschätzwert, der einen momentanen Volumendurchfluß der Fluidströmung repräsentiert.According to a preferred first embodiment of the invention, the evaluation electronics generates by means of the sensor signal a Durchflußschätzwert representing an instantaneous volume flow of the fluid flow.

Nach einer bevorzugten zweiten Ausgestaltung der Erfindung erzeugt die Auswerte-Elektronik mittels des Sensorsignals ein erstes Meßsignal , das eine Frequenz der Verdrängerbewegungen repräsentiert.According to a preferred second embodiment of the invention, the evaluation electronics generates a first measurement signal by means of the sensor signal, which represents a frequency of the displacement movements.

Nach einer bevorzugten dritten Ausgestaltung der Erfindung erzeugt die Auswerte-Elektronik mittels des Sensorsignals einen Volumenschätzwert , der ein totalisiertes Fördervolumen repräsentiert.According to a preferred third embodiment of the invention, the evaluation electronics generates a volume estimated value by means of the sensor signal, which represents a totalized delivery volume.

Nach einer bevorzugten vierten Ausgestaltung der Erfindung erzeugt die Auswerte-Elektronik mittels des Sensorsignals ein Statussignal, das einen momentanen Betriebszustand der Verdrängerpumpe repräsentiert.According to a preferred fourth embodiment of the invention, the evaluation electronics generates by means of the sensor signal Status signal representing a current operating state of the positive displacement pump.

Nach einer bevorzugten fünften Ausgestaltung der Erfindung ist der zweite Druck ein das Strömungsgefäß umgebender atmosphärischen Druck.According to a preferred fifth embodiment of the invention, the second pressure is an atmospheric pressure surrounding the flow vessel.

Nach einer bevorzugten sechsten Ausgestaltung der Erfindung erzeugt die Auswerte-Elektronik mittels des Sensorsignals ein zweites Meßsignal, das eine Ansaughöhe der Vorrichtung repräsentiert.According to a preferred sixth embodiment of the invention, the evaluation electronics generates a second measurement signal by means of the sensor signal, which represents an intake height of the device.

Ein Grundgedanke der Erfindung ist es, die Verdrängerbewegung des Strömungsgefäßes bzw. die Oszillationen von dessen Lumen nicht anhand von deren Ursachen, nämlich den Antriebsbewegungen des Antriebsmotors, sondern anhand von deren Wirkungen in der Vorrichtung zu ermitteln. Die zu erfassenden Reaktionen der Vorrichtung auf die Verdrängerbewegungen sind z.B. ein sich ändernder Druck in der Fluidströmung .A basic idea of the invention is not to determine the displacement movement of the flow vessel or the oscillations of the lumen thereof on the basis of their causes, namely the drive movements of the drive motor, but on the basis of their effects in the device. The responses of the device to the displacements to be detected are e.g. a changing pressure in the fluid flow.

Ein Vorteil der Erfindung besteht darin, daß der Volumendurchfluß unabhängig von der zwischen dem Antriebsmotor und dem Pumpantrieb bestehenden mechanischen Kopplung und praktisch mittels eines einzigen Sensorsignals ermittelt werden kann.An advantage of the invention is that the volume flow can be determined independently of the existing between the drive motor and the pump drive mechanical coupling and virtually by means of a single sensor signal.

Ein weiterer Vorteil der Erfindung ist es, daß die Meßanordnung und somit auch das Verfahren sowohl bei Vorrichtungen mit elektromotorisch angetriebenen Verdrängerpumpen als auch bei Vorrichtung mit hydraulisch oder pneumatisch angetriebenen Verdrängerpumpen eingesetz werden kann.Another advantage of the invention is that the measuring arrangement and thus also the method both at Devices can be used with electric motor driven positive displacement pump as well as device with hydraulically or pneumatically driven positive displacement pump.

Ein anderer Vorteil der Erfindung ist ferner darin zu sehen, das auch bereits bestehende Vorrichtungen der beschriebenen Art ohne weiteres mit einer derartigen Meßanordnung nachgerüstet werden können.Another advantage of the invention is also to be seen in the fact that even existing devices of the type described can be easily retrofitted with such a measuring arrangement.

Die Erfindung und weitere Vorteile werden anhand von Ausführungsbeispielen näher erläutert, die in den Figuren der Zeichnung dargestellt sind; gleiche Teile sind in den Figuren mit gleichen Bezugszeichen versehen. Falls es der Übersichtlichkeit dienlich ist, wird auf die Darstellung bereits vergebener Bezugszeichen in nachfolgenden Figuren verzichtet.

Fig. 1
zeigt schematisch die Verwendung einer Vorrichtung zum Transportieren eines Fluids in einem Probennehmer,
Fig. 2
zeigt ein Ausführungsbeispiel einer Verdrängerpumpe der Vorrichtung gemäß Fig. 1 in einer Vorderansicht,
Fig. 3
zeigt die Verdrängerpumpe gemäß Fig. 2 teilweise geschnitten in einer um eine Längsachse I-I der Fig. 2 gedrehten Seitenansicht,
Fig. 4
zeigt schematisch eine erste Wirkung der Verdrängerpumpe gemäß Fig. 2 sowie eine auf diese erste Wirkung reagierende Meßanordnung,
Fig. 5
zeigt schematisch anhand eines Ausschnitts der Seitenansicht von der Fig. 3 eine zweite Wirkung der verdrängerpumpe sowie eine auf diese zweite Wirkung reagierende Meßanordnung, die jedoch nicht im Rahmen dieser Erfindung beansprucht wird.
Fig. 6
zeigt schematisch im Blockschaltbild eine Ausgestaltung einer Auswerte-Elektronik der Meßanordnung von Fig. 4 und/oder 5,
Fig. 7
zeigt schematisch im Blockschaltbild eine andere Ausgestaltung der Auswerte-Elektronik der Meßanordnung von Fig. 1 und
Fig. 8
zeigt zeitliche Verläufe von mittels der Meßanordnung erzeugten Signalen.
The invention and further advantages will be explained in more detail with reference to exemplary embodiments, which are illustrated in the figures of the drawing; like parts are provided in the figures with the same reference numerals. If it is useful for the sake of clarity, the representation of already assigned reference symbols is omitted in the following figures.
Fig. 1
shows schematically the use of a device for transporting a fluid in a sampler,
Fig. 2
shows an embodiment of a positive displacement pump of the device according to Fig. 1 in a front view,
Fig. 3
shows the positive displacement pump according to Fig. 2 partially cut in a about a longitudinal axis II of Fig. 2 rotated side view,
Fig. 4
schematically shows a first effect of the positive displacement pump according to Fig. 2 and a measuring arrangement which reacts to this first action,
Fig. 5
schematically shows a partial section of the side view of the Fig. 3 a second effect of the displacement and a responsive to this second effect measuring arrangement, which is not claimed in the context of this invention.
Fig. 6
schematically shows a block diagram of an embodiment of an evaluation electronics of the measuring arrangement of Fig. 4 and / or 5,
Fig. 7
schematically shows in block diagram another embodiment of the evaluation electronics of the measuring arrangement of Fig. 1 and
Fig. 8
shows temporal courses of signals generated by means of the measuring arrangement.

In der Fig. 1 ist eine Vorrichtung zum Transportieren eines Fluids, insb. einer Flüssigkeit, mittels einer Verdrängerpumpe 1 dargestellt. Die vorrichtung ist in besonders vorteilhafter Weise für eine Verwendung in der Entnahme und ggf, dem Speichern von Flüssigkeiten dienenden Probennehmer PN geeignet.In the Fig. 1 a device for transporting a fluid, esp. A liquid, by means of a positive displacement pump 1 is shown. The device is suitable in a particularly advantageous manner for use in the removal and, if necessary, the storage of liquids serving sampler PN.

Die verdrängerpumpe 1 umfaßt in einem Ausführungsbeispiel gemäß der Fig. 2, 3 ein, insb. als Pumpen-Gehäuse ausgebildetes, Trägermittel 11, einen von diesem gehalterten, insb. als Verdränger ausgebildeten, Pumpantrieb 12 sowie ein Strömungsgefäß 13 von veränderbarem Lumen 13A, insb. von wenigstens abschnittsweise veränderbarem Querschnitt, zum Führen des Fluids. Als Strömungsgefäß 13 können alle in derartigen Verdrängerpumpen üblichen, z.B. aus Polyethylen oder Silikon bestehenden, elastischen Schläuche verwendet werden. Das Strömungsgefäß 13 kann dabei sowohl einteilig als auch als mehrteilig ausgeführt sein.The displacement pump 1 comprises in one embodiment according to the Fig. 2, 3rd a, in particular as a pump housing formed, carrier means 11, a held by this, esp. Designed as a displacer, pump drive 12 and a flow vessel 13 of variable lumen 13A, esp. Of at least partially variable cross-section, for guiding the fluid. As a flow vessel 13, all conventional in such positive displacement, for example made of polyethylene or silicone, elastic tubes can be used. The flow vessel 13 can be embodied both in one piece and as a multi-part.

Im Betrieb der Vorrichtung wird das Strömungsgefäß 13 mittels des Pumpantriebs 12 derart in eine, insb. peristaltische, Verdrängerbewegung s13 von vorgebbarer Frequenz, z.B. in einem Bereich von 10 Hz bis 20 Hz, versetzt, daß das in dessen oszillierenden Lumen 13A befindliche Fluid, insb, pulsierend, in einer vorgegebenen Durchflußrichtung strömt. Bei der Vorrichtung gemäß dem Ausführungsbeispiel ist die Verdrängerbewegung praktisch eine Wellenbewegung einer Wandung des Strömungsgefäßes 13 und somit des von dieser umschlossenen Lumens 13A, wobei eine Laufgeschwindigkeit der Wellenbewegung den Volumendurchfluß einstellt, vgl. Fig. 4.During operation of the apparatus, the flow vessel 13 is displaced by means of the pump drive 12 in a, esp. Peristaltic, displacement s 13 of predetermined frequency, for example in a range of 10 Hz to 20 Hz, that the fluid located in the oscillating lumen 13A, insb, pulsating, flows in a predetermined flow direction. In the apparatus according to the embodiment, the displacer movement is practically a wave movement of a wall of the flow vessel 13 and thus of the lumen 13A enclosed by the latter, wherein a running speed of the wave movement sets the volume flow, cf. Fig. 4 ,

Zum Erzeugen der Verdrängerbewegung s13 wirkt der Pumpantrieb 12, wie in Fig. 4 schematisch dargestellt, mit einer zeitlich und örtlich, insb. periodisch, veränderlichen Kompressionskraft F auf das Strömungsgefäß 13 ein, und zwar so, daß innerhalb eines pumpwirksamen Kompressionsbereichs das Strömungsgefäß 13 und somit dessen Lumen 13A fluidverdrängend, insb. elastisch, verformt werden. Dies wird bei der Verdrängerpumpe 1 des Ausführungsbeispiels gemäß Fig. 2, 3 dadurch bewirkt, daß der Pumpantrieb 12 mit nicht-kreisförmigen Querschnitt auf dem Strömungsgefäß 13 abrollen gelassen und somit das Strömungsgefäß 13, sich gegen das Trägermittel 11 abstützend, periodisch zusammengedrückt und entspannen gelassen wird. Gemäß Fig. 2 liegt der Pumpantrieb 12 dazu abschnittsweise am ebenfalls vom Trägermittel 11 gehalterten Strömungsgefäß 13 an.To generate the displacer movement s 13, the pump drive 12 acts as in FIG Fig. 4 shown schematically, with a temporally and locally, esp. Periodic, variable compression force F on the flow vessel 13, in such a way that within a pump effective compression region, the flow vessel 13 and thus the lumen 13A fluidverdrängend, esp. Elastic deformed. This is in the positive displacement pump 1 of the embodiment according to Fig. 2, 3rd causes the pump drive 12 with non-circular cross-section roll on the flow vessel 13 and thus the Flow vessel 13, resting against the support means 11, is periodically compressed and allowed to relax. According to Fig. 2 For this purpose, the pump drive 12 is partially in contact with the flow vessel 13, which is likewise held by the carrier 11.

Der Pumpantrieb 12 ist im Ausführungsbeispiel als ein trommel- oder scheibenförmiger verdränger von nicht-kreisförmigem Querschnitt, also als ein Verdränger mit einer nicht-kreiszylindrischer Mantelfläche, ausgebildet. Dazu weist der Verdränger, hier vier, voneinander beabstandete, insb. drehbar gehalterte, rollenförmige Wälzelemente auf, die im Betrieb der Verdrängerpumpe 1 entsprechend einer eingestellten Drehrichtung des Pumpantriebs 12 sequentiell auf das Strömungsgefäß 13 einwirken. Als Pumpantrieb 12 können aber auch alle anderen in derartige Pumpen üblicherweise verwendeten Verdränger mit nicht-kreisförmigem Querschnitt oder aber auch rotatorische Pumpantriebe mit exzentrisch gelagertem Wälzelement dienen, vgl. die US-A 51 73 038 , US-A 56 83 233 , US-A 57 01 646 , US-A 58 71 341 und WO-A 97/41 353 . Anstelle rotatorischer Pumpantriebe können auch lineare Pumpantriebe verwendet werden, die z.B. mittels Schubstößeln oder schraubenförmig gewundenen Verdrängern realisiert sind, vgl. die US-A 49 09 710 , US-A 51 65 873 , US-A 58 88 052 und US-A 52 63 830 .The pump drive 12 is formed in the embodiment as a drum or disc-shaped displacer of non-circular cross-section, ie as a displacer with a non-circular cylindrical surface. For this purpose, the displacer, here four, spaced apart, esp. Rotationally supported, roller-shaped rolling elements, which act in accordance with a set direction of rotation of the pump drive 12 sequentially to the flow vessel 13 during operation of the positive displacement pump 1. As a pump drive 12 but also all other commonly used in such pumps displacer with non-circular cross-section or even rotary pump drives can be used with eccentrically mounted rolling element, see. the US-A 51 73 038 . US-A 56 83 233 . US-A 57 01 646 . US Pat. No. 5,871,341 and WO-A 97/41 353 , Instead of rotary pump drives and linear pump drives can be used, which are realized for example by means of push rods or helically wound displacers, see. the US-A 49 09 710 . US-A 51 65 873 . US-A 58 88 052 and US-A 52 63 830 ,

Der Pumpantrieb 12 ist, wie bei Verdrängerpumpen mit rotatorischem Pumpantrieb üblich, mit einer Antriebswelle 15 eines, insb. elektrischen, Antriebsmotors 14, z.B. über ein Getriebe oder eine Treibriemen-Verbindung, mechanisch gekoppelt; er kann aber auch direkt auf die Antriebswelle 15 aufgesteckt sein. Im Betrieb führt der Antriebsmotor 14 entsprechende Antriebsbewegungen von vorgegebener Geschwindigkeit aus - hier Drehbewegungen mit einer zur Frequenz der Verdrängerbewegungen S13 proportionalen, insb. einstellbaren, Motor-Drehzahl von z.B. 200 min-1 bis 3000 min-1, die über die Antriebswelle 15, ggf. mittels Getriebe untersetzt, auf den Pumpantrieb 12 übertragen werden. Für den Fall, daß der Pumpantrieb 12 als linearer Pumpantrieb 12 ausgeführt ist, kann er auch mittels eines hydraulischen oder mittels eines pneumatischen Motors angetrieben sein, vgl. WO-A 98/31 935 .The pump drive 12 is, as usual with positive displacement pumps with rotary pump drive, with a drive shaft 15 of a, esp. Electric, drive motor 14, for example via a transmission or a drive belt connection, mechanically coupled; but he can also directly on the drive shaft 15 attached. In operation, the drive motor 14 carries out corresponding drive movements of a predetermined speed - here rotational movements with a frequency proportional to the displacement movements S 13 , esp. Adjustable, engine speed of eg 200 min -1 to 3000 min -1 , via the drive shaft 15, possibly reduced by means of gear, be transferred to the pump drive 12. In the event that the pump drive 12 is designed as a linear pump drive 12, it can also be driven by means of a hydraulic or by means of a pneumatic motor, cf. WO-A 98/31 935 ,

Zum Aufnehmen von Flüssigkeit im Betrieb der Vorrichtung, kommuniziert das Strömungsgefäß 13 mit einem einlaßseitigen Ende mit einer entsprechenden Flüssigkeits-Entnahmestelle. Wie in der Fig. 1 schematisch dargestellt, kann das Aufnehmen von Flüssigkeit dadurch erfolgen, daß das Strömungsgefäß 13 in die, z.B. in einem offenen Gerinne oder Becken geführte, Flüssigkeit eingetaucht und diese aufgrund des in der oben beschriebene Weise oszillierenden Lumens 13A entgegen der Schwerkraft angesaugt wird; die Flüssigkeit kann aber auch von einer geeigneten Flüssigkeits-Entnahmestelle aus in Richtung der Schwerkraft und/oder aus einer Rohrleitung einströmen gelassen werden.For receiving liquid during operation of the device, the flow vessel 13 communicates with an inlet end with a corresponding liquid withdrawal point. Like in the Fig. 1 shown schematically, the liquid can be absorbed by the fact that the flow vessel 13 is immersed in, for example, in an open channel or basin, liquid and sucked against it due to the oscillating in the manner described above lumen 13A against gravity; but the liquid can also be flowed from a suitable liquid withdrawal point in the direction of gravity and / or from a pipeline.

Ferner umfaßt die Vorrichtung eine auf die vom Strömungsgefäß 13 ausgeführten Verdrängerbewegungen s13 reagierende Meßanordnung 2 mit einer Auswerte-Elektronik 22, der ein die Verdrängerbewegungen S13 repräsentierendes Sensorsignal X21 zugeführt ist.Furthermore, the device comprises a measuring arrangement 2, which reacts to the displacements 13 carried out by the flow vessel 13 and has an evaluation electronics 22, to which a sensor signal X 21 representing the displacements S 13 is fed.

Zum Erzeugen des Sensorsignals x21 umfaßt die Meßanordnung 2 der Erfindung dazu einen das Fluid berührenden, insb. kapazitiver oder resistiven, Drucksensor 21', der, wie in der Fig. 4 schematisch dargestellt, auf einen momentan im Fluid wirkenden, insb. statischen, ersten Druck p1 im Lumen 13A reagiert. Dazu weist der Drucksensor 21 mindestens eine mittels wenigstens einer Druckmembran gegen das Lumen 13A isolierte und im Betrieb über diese wenigstens eine Druckmembran mit dem Druck p1 beaufschlagte Druckmeßkammer auf.For generating the sensor signal x 21, the measuring arrangement 2 of the invention comprises a fluid-contacting, in particular capacitive or resistive, pressure sensor 21 ', which, as in the Fig. 4 shown schematically reacts to a momentarily acting in the fluid, in particular static, first pressure p 1 in the lumen 13A. For this purpose, the pressure sensor 21 at least one by means of at least one pressure diaphragm against the lumen 13A insulated and operating on said at least one pressure diaphragm to the pressure p 1 is acted upon pressure-measuring chamber.

Bei dem zu erfassenden Druck p1 handelt es sich praktisch um einen mittels der Verdrängerpumpe 1 in einem einlaßseitigen Bereich des Strömungsgefäßes 13 eingestellten momentanen Innendruck, der sich in einer kalibrierbaren Abhängigkeit von einem momentanen Betriebszustand der vorrichtung, z.B. der momentanen Einbaulage und/oder Befüllung des Strömungsgefäßes sowie und/oder der momentanen Frequenz der Verdrängerbewegungen S13, einstellt. Im Betrieb der Verdrängerpumpe 1 ist Druck p1 zumindest zeitweise, insb. auch bei nicht mit Flüssigkeit gefülltem Strömungsgefäß 13, auf einen Bereich von 200 hPa bis 400 hPa (0,2 bar bis 0,4 bar) und damit niedriger als ein von außen auf das Strömungsgefäß 13 wirkender statischer zweiter Druck P2 eingestellt. Der Druck p2 kann z.B. ein atmosphärischer Luftdruck von ca. 1000 hPa sein.In the pressure to be detected p 1 is practically a means of the positive displacement pump 1 in an inlet side region of the flow vessel 13 set instantaneous internal pressure, which is in a calibratable function of a current operating state of the device, eg the current installation position and / or filling of the Flow vessel and and / or the instantaneous frequency of the displacement movements S 13 , sets. During operation of the positive displacement pump 1, pressure p 1 is at least temporarily, especially even when the flow vessel 13 is not filled with liquid, to a range from 200 hPa to 400 hPa (0.2 bar to 0.4 bar) and thus lower than from the outside set to the flow vessel 13 acting static second pressure P 2 . The pressure p 2 may be, for example, an atmospheric air pressure of about 1000 hPa.

Bei der Erfindung dient die Meßanordnung 2 insb, dazu, den Druck p1 auch dann zu erfassen und in das Sensorsignal x21 abzubilden, wenn der Druck p1 momentan niedriger als der Druck p2 eingestellt ist. Dazu kann der Drucksensor 21' sowohl als ein den Druck p1 absolut erfassender Drucksensor mit evakuierter Druckmeßkammer als auch den Druck p1 relativ zum Druck p2 erfassender Drucksensor ausgeführt sein. Zum Haltern des Drucksensor 21' ist ein Abschnitt des Strömungsgefäßes 13, wie in Fig. 4 schematisch dargestellt, bevorzugt als ein Adapter ausgebildet.In the invention, the measuring arrangement 2 insb serves to also detect the pressure p 1 and to map it into the sensor signal x 21 when the pressure p 1 is currently set lower than the pressure p 2 . This can be the Pressure sensor 21 'be executed both as a pressure p 1 absolutely detecting pressure sensor with evacuated pressure measuring chamber and the pressure p 1 relative to the pressure p 2 detecting pressure sensor. For holding the pressure sensor 21 'is a portion of the flow vessel 13, as in Fig. 4 shown schematically, preferably designed as an adapter.

Nach einem Beispiel, das nicht Teil dieser Erfindung ist umfaßt die Meßanordnung 2 einen, insb. direkt auf dem Trägermittel 11 fixierten piezo-resistiven, Dehnungssensor 21", der, wie in der Fig. 5 schematisch dargestellt, eine von den Verdrängerbewegungen S13 des Strömungsgefäßes 13 bewirkte Dehnung des Trägermittels 11 erfaßt und in das Sensorsignal x21 wandelt. Als Dehnungssensor 21 " kann ferner auch ein die Dehnung relativ oder absolut erfassender Weg-, Geschwindigkeits- oder Beschleunigungssensor dienen.According to an example which does not form part of this invention, the measuring arrangement 2 comprises a piezo-resistive strain sensor 21 ", fixed in particular directly on the support means 11, which, as shown in FIG Fig. 5 shown schematically, one of the displacer S 13 of the flow vessel 13 caused elongation of the carrier 11 detected and converted into the sensor signal x 21 . As a strain sensor 21 "can also serve a strain relative or absolute detecting path, speed or acceleration sensor.

Aufgrund des Zusammendrückens des Strömungsgefäßes 13 gegen das Trägermittel 11, wird die auf das Strömungsgefäß 13 wirkende Kompressionskraft F des Pumpantriebs 12 teilweise in eine auf das Trägermittel 11 einwirkende Druckfederkraft umgewandelt, wodurch auch das Trägermittel 11 abschnittsweise, insb. elastisch, verformt wird. Dies ist in der Fig. 5 mittels der punktierten Linien schematisch dargestellt. Dabei erfährt das Trägermittel 11 eine meßbare Dehnung, deren Ausmaß insb. vom momentanen Druck p1 im Lumen 13A des Strömungsgefäßes 13 mitbestimmt ist. Ferner ist die Druckfederkraft und somit auch die Dehnung des Trägermittels 11 z.B. auch vom Material, insb. von dessen Elastizitäts-Modul, und/oder einer momentanen Raumform des Strömungsgefäßes 13 abhängig.Due to the compression of the flow vessel 13 against the carrier 11, the force acting on the flow vessel 13 compression force F of the pump drive 12 is partially converted into a force acting on the support means 11 compression spring force, whereby the support means 11 sections, esp. Elastic, is deformed. This is in the Fig. 5 shown schematically by the dotted lines. In this case, the carrier 11 undergoes a measurable strain, the extent of which esp. Is determined by the instantaneous pressure p 1 in the lumen 13A of the flow vessel 13. Further, the compression spring force and thus also the elongation of the carrier 11, for example, the material, esp. Of its modulus of elasticity, and / or a current spatial form of the flow vessel 13 is dependent.

Diese Abhängigkeit der Verformung des Trägermittels 11 ist mittels entsprechender Kalibriermessungen genau zu ermitteln, bei denem das Strömungsgefäß 13 z.B. nacheinander definiert mit entsprechenden Flüssigkeiten befüllt oder leer gelassen ist und ein entsprechender momentaner Signalwert des Sensorsignals x21 als Referenzwert für die momentane Befüllung in der Auswerte-Elektronik 22 abgespeichert wird.This dependence of the deformation of the support means 11 is to be determined precisely by means of appropriate calibration measurements in which the flow vessel 13 is filled, for example, successively defined with corresponding liquids or left empty and a corresponding momentary signal value of the sensor signal x 21 as the reference value for the instantaneous filling in the evaluation. Electronics 22 is stored.

Das gemäß der Erfindung mittels des Drucksensors 21' erzeugte Sensorsignal x21 kann in vorteilhafter Weise dazu verwendet werden, einen den Volumendurchfluß momentan repräsentierenden Durchflußschätzwert xv und/oder einen das totalisierte Fördervolumen, also den über eine Förderdauer integrierten Volumendurchfluß, repräsentierenden Volumenschätzwert zu ermitteln.The sensor signal x 21 generated according to the invention by means of the pressure sensor 21 'can advantageously be used to determine a flow rate value x v currently representing the volume flow rate and / or a volume estimated value representing the totalized delivery volume, ie the volume flow rate integrated over a delivery time.

Nach einer bevorzugten Ausgestaltung der Erfindung umfaßt die Auswerte-Elektronik 22 dazu, wie in Fig. 6 dargestellt, eine einen Signalanteil des Sensorsignals X21, insb. mit der Frequenz der Verdrängerbewegung s13, übertragende Bandpaß-Schaltung 220 von einstellbarer Bandbreite und einen ausgangsseits der Bandpaß-Schaltung 220 nachgeschaltete Frequenzzähler-Schaltung 221. Als Bandpaß-Schaltung 220 können z.B. dem Fachmann bekannte Switched-Capacitor-Filter und/oder spannungsgesteuerte Aktivfilter dienen.According to a preferred embodiment of the invention, the evaluation electronics 22 includes, as in Fig. 6 shown, a signal portion of the sensor signal X 21 , esp. With the frequency of the displacement movement s 13 , transmitting band-pass circuit 220 of adjustable bandwidth and an output side of the band-pass circuit 220 downstream frequency counter circuit 221. As a band-pass circuit 220 may, for example Known expert switched capacitors filter and / or voltage-controlled active filter serve.

Mittels der Bandpaß-Schaltung 220 und der Frequenzzähler-Schaltung 221 wird das Sensorsignal X21 in ein, insb. digitales, erstes Meßsignal x221 umgeformt, wobei ein momentaner Signalwert Xm des Meßsignals x221 die Frequenz der Verdrängerbewegungen s13 repräsentiert.By means of the band-pass circuit 220 and the frequency counter circuit 221, the sensor signal X 21 in a, esp. digital, first measurement signal x 221 converted, wherein a current signal value X m of the measurement signal x 221 represents the frequency of the displacement movements s 13 .

Die Bandpaß-Schaltung 220 dient insb. dem Entfernen von Gleichanteilen des Sensorsignals x21 sowie zur Unterdrückung von höherfrequenten Störspannungen. Die Bandbreite der Bandpaß-Schaltung 220 ist dementsprechend so eingestellt, daß allfällige Änderungen der Frequenz der Verdrängerbewegung s13, z.B. aufgrund von lastbedingten Schwankungen der Motor-Drehzahl, nicht zu einer Blockierung des Sensorsignals x21 führen. Für den Fall, das diese Frequenz sich betriebsmäßig in einem weiten Bereich, von z.B. ± 5 s-1, ändert, kann die Bandbreite der insb. als Switched-Capacitor-Schaltung konfigurierten Bandpaß-Schaltung 220 auch, z.B. mittels eines von der Auswerte-Elektronik 22 generierten, momentanen Einstellwerts für die Motor-Drehzahl, nachgeführt werden. Der Einstellwert kann hierzu z.B. von einem in der oben erwähnten Weise am Antriebsmotor direkt abgegriffenen Antriebssignal abgeleitet werden.The bandpass circuit 220 serves esp. The removal of DC components of the sensor signal x 21 and for the suppression of higher-frequency noise voltages. The bandwidth of the bandpass circuit 220 is accordingly set so that any changes in the frequency of the displacement movement s 13 , for example due to load-induced fluctuations in the engine speed, do not lead to a blocking of the sensor signal x 21 . In the event that this frequency changes operationally over a wide range, for example ± 5 s -1 , the bandwidth of the band-pass circuit 220 configured in particular as a switched-capacitor circuit can also be determined, for example by means of one of the evaluation Electronics 22 generated, current set value for the motor speed, tracked. For this purpose, the setting value can be derived, for example, from a drive signal directly tapped on the drive motor in the above-mentioned manner.

Für eine Vorrichtung der beschriebenen Art ist der Volumendurchfluß einer transportierten Flüssigkeit von der konkreten Realisierung der Verdrängerpumpe 1, nämlich der Ausführung des Pumpantriebs 12 und des Strömungsgefäßes 13, sowie von der Frequenz der Verdrängerbewegungen s13 abhängig.For a device of the type described, the volumetric flow of a transported liquid is dependent on the concrete realization of the positive displacement pump 1, namely the design of the pump drive 12 and the flow vessel 13, as well as on the frequency of the displacement movements s 13 .

Neben der jeweiligen Ausprägung der Verdrängerbewegung s13 wird der momentane Volumendurchfluß ferner auch von einer durch einen momentanen räumlichen Abstand zwischen der Verdrängerpumpe und einem Flüssigkeitspegel festgelegten Ansaughöhe mitbestimmt. Bei einer fest installierten Vorrichtung, z.B. bei Verwendung der Vorrichtung in einem ortsfesten Probennehmer PN, und einem praktisch unveränderlichen Flüssigkeitspegel ist diese Ansaughöhe bei der Inbetriebnahme der Vorrichtung entsprechend zu ermitteln und als ein Festwert Kh in der Auswerte-Elektronik 22 zu speichern. Für den Durchflußschätzwert Xv gilt dann, insb. bei stationär strömender Flüssigkeit, in guter Näherung folgende einfache, durch entsprechende Kalibriermessungen ohne weiteres zu verifizierende Proportionalität: X v = K 1 K h X m

Figure imgb0001
In addition to the respective expression of the displacer s 13 , the instantaneous volume flow is also from a determined by a current spatial distance between the positive displacement pump and a liquid level set suction height. In a permanently installed device, for example, when using the device in a stationary sampler PN, and a virtually invariable liquid level, this suction height during commissioning of the device is determined accordingly and save as a fixed value K h in the evaluation electronics 22. For the flow rate estimate X v , the following simple apportionment applies, especially in the case of stationary flowing liquid, to a good approximation following simple proportionality to be verified by appropriate calibration measurements: X v = K 1 K H X m
Figure imgb0001

Darin sind K1 eine die Abhängigkeit des Volumendurchflusses von der Frequenz der Verdrängerbewegung s13 und von der momentanen Ansaughöhe vermitteltende, insb. durch Kalibration zu bestimmende, Konstante. Falls erforderlich, kann der Durchflußschätzwert Xv selbstverständlich auch mittels eines Polynoms höherer Ordnung approximiert werden.Therein, K 1 is a constant which determines the dependence of the volume flow on the frequency of the displacement movement s 13 and on the instantaneous suction height, in particular by calibration. Of course, if necessary, the flow estimate X v can also be approximated using a higher order polynomial.

Somit kann für den Fall eines stationären Betriebs der Vorrichtung der Durchflußschätzwert Xv in vorteilhafter Weise vom Meßsignal x221 praktisch direkt abgeleitet werden. Bei der Verdrängerpumpe 1 gemäß dem in der Fig. 2 dargestellten Ausführungsbeispiel ist der Volumendurchfluß praktisch proportional zu einem Vierfachen der Frequenz der Verdrängerbewegung s13. Zur Ermittlung des Volumenschätzwerts ist der Durchflußschätzwert Xv in entsprechender Weise lediglich über die Förderdauer zu integrieren, z.B. durch Multiplikation mit derselben oder durch Multiplikation mit einer Anzahl gemessener Nulldurchgänge des bandpaß-gefilterten Sensorsignals ausgangs der Bandpaß-Schaltung 220.Thus, in the case of steady-state operation of the device, the flow estimate X v can advantageously be derived virtually directly from the measurement signal x 221 . In the positive displacement pump 1 according to the in Fig. 2 illustrated embodiment, the volume flow rate is practically proportional to four times the frequency of the displacement movement s 13th In order to determine the volume estimate, the flow estimate X v is correspondingly only available over the delivery time integrate, for example by multiplication with the same or by multiplication with a number of measured zero crossings of the bandpass filtered sensor signal output of the bandpass circuit 220th

Bei einer veränderlichen Einbaulage des Strömungsgefäßes 13, z.B. bei der Verwendung der Vorrichtung in einem mobilen Probennehmer PN, und/oder bei schwankendem Flüssigkeitspegel ist die momentane Ansaughöhe für eine genauere Ermittlung des Durchflußschätzwerts Xv jedoch entsprechend zu aktualisieren.In a variable mounting position of the flow vessel 13, for example, when using the device in a mobile sampler PN, and / or fluctuating liquid level, the current suction height for a more accurate determination of the flow rate X v, however, to update accordingly.

Daher wird nach einer weiteren bevorzugten Ausgestaltung der Erfindung vom Sensorsignal X21 ein zweites Meßsignal X222 abgeleitet, wobei ein momentaner Signalwert Xh des Meßsignals X222 die Ansaughöhe momentan repräsentiert. In Gl. (1) ist daher lediglich der Festwert Kh durch den Signalwert Xh des Meßsignals x222 zu ersetzen, so daß nunmehr für den Durchflußschätzwert Xv gilt: X v = K 1 X h X m

Figure imgb0002
Therefore, according to a further preferred embodiment of the invention, a second measurement signal X 222 is derived from the sensor signal X 21 , wherein an instantaneous signal value X h of the measurement signal X 222 currently represents the suction height. In Eq. (1), therefore, only the fixed value K h is to be replaced by the signal value Xh of the measuring signal x 222 , so that now applies to the flow rate estimated value X v : X v = K 1 X H X m
Figure imgb0002

Zum Erzeugen des Meßsignals X222 wird das Sensorsignal X21 gemäß Fig. 6 mittels einer Tiefpaß-Schaltung 222 der Auswerte-Elektronik 22 geglättet. Die Tiefpaß-Schaltung 222 weist dabei eine Grenzfrequenz, von z.B. 0,5 Hz bis 2 Hz, auf, die viel kleiner als die Frequenz der verdrängerbewegung s13 eingestellt ist. Somit wird vom Sensorsignal x21 praktisch nur ein als Meßsignal X222 dienender Signalanteil mit einer Frequenz null, also ein momentaner Mittelwert des Sensorsignal x21 von der Tiefpaß-Schaltung 222 passieren gelassen. Ein momentan übertragener Mittelwert des Sensorsignals x21 dient hierbei als ein die momentane Ansaughöhe repräsentierender Meßwert Xh. Mit zunehmender Ansaughöhe, z.B. bei fallendem Flüssigkeitspegel, würde der mittels des Sensors 21 erfaßte Druck p1 absinken und das Sensorsignal xz1 einen dementsprechend niedriger werdenden Mittelwert aufweisen; analog dazu weist das Sensorsignal x21 bei abnehmender Ansaughöhe einen größer werdenden Mittelwert auf.For generating the measuring signal X 222 , the sensor signal X 21 is determined according to FIG Fig. 6 by means of a low-pass circuit 222 of the evaluation electronics 22 smoothed. The low-pass circuit 222 in this case has a cutoff frequency of, for example, 0.5 Hz to 2 Hz, which is set much smaller than the frequency of the displacement movement s 13 . Thus, only a measured signal as X 222 serving signal component with a frequency zero, that is a momentary mean value of the sensor signal is allowed to pass x 21 from the low-pass filter circuit 222 from the sensor signal x 21 practical. A currently transmitted The mean value of the sensor signal x 21 serves as a measured value X h representing the instantaneous suction height. With increasing suction height, for example with falling liquid level, the pressure p 1 detected by means of the sensor 21 would decrease and the sensor signal x z1 would have a correspondingly lower mean value; Analogously, the sensor signal x 21 has an increasing mean value as the suction height decreases.

Nach einer anderen Ausgestaltung der Erfindung dient die Auswerte-Elektronik 22 dazu, vom Sensorsignal x21 ein einen Befüllunggrad des Strömungsgefäßes 13 mit Flüssigkeit repräsentierendes drittes Meßsignal x223 abzuleiten. Dazu ist das Sensorsignal x21 gemäß Fig. 6 via Bandpaß-Schaltung 220 einer Gleichrichter-Schaltung 223 zugeführt, die ausgangsseitig eine das Meßsignal x223 inform von einer Gleichspannung liefert, wobei ein momentaner Signalwert des Meßsignals x223 als Schätzung für den momentanen Befüllunggrad dient; falls erforderlich kann selbstverständlich auch ein entsprechender Gleichstrom als Meßsignal x223 dienen. Als Gleichrichter-Schaltung 223 können z.B. dem Fachmann bekannte amplituden-messende oder effektivwert-messende Wechsel-zu-Gleichsignal-Wandler verwendet werden.According to another embodiment of the invention, the evaluation electronics 22 is used to derive from the sensor signal x 21 a filling level of the flow vessel 13 with liquid representing third measurement signal x 223 . For this, the sensor signal x 21 is according to Fig. 6 via bandpass circuit 220 of a rectifier circuit 223 supplied on the output side, the measurement signal x 223 inform informs of a DC voltage, wherein an instantaneous signal value of the measuring signal x 223 serves as an estimate for the current degree of filling; if necessary, it is of course also possible to use a corresponding direct current as measuring signal x 223 . As the rectifier circuit 223, for example, the amplitude-measuring or effective-value-measuring change-to-DC converter known to those skilled in the art can be used.

Zur Realisierung der Gln. (1) und/oder (2) umfaßt die Auswerte-Elektronik 22 ferner einen Mikrocomputer 227, dem das Meßsignal x221 und/oder das Meßsignal x223 und ggf. das Meßsignal x222 eingangsseitig über entsprechende analog-zu-digital wandelnde Signal-Ports zugeführt ist; falls erforderlich können selbstverständlich auch die Frequenzzähler-Schaltung 221 und/oder die Gleichrichter-Schaltung 223 als Digitalschaltung dargestellt werden, denen dann selbstverständlich ein ausgangs der Bandpaß-Schaltung 220 entsprechend digitalisertes Sensorsignal zugeführt wird.To realize the Gln. (1) and / or (2) the evaluation electronics 22 further comprise a microcomputer 227 to which the measurement signal x 221 and / or the measurement signal x 223 and possibly the measurement signal x 222 on the input side via corresponding analog-to-digital converting signal Ports is supplied; if necessary, of course, the frequency counter circuit 221 and / or the rectifier circuit 223 are shown as a digital circuit, which then, of course, an output of the band-pass circuit 220 is supplied according digitisertes sensor signal.

Das mittels des Drucksensors 21' gemäß der Erfindung erzeugte Sensorsignal x21 kann in vorteilhafter Weise auch dazu verwendet werden, mittels der Auswerte-Elektronik 22 ein, insb. digitales, Statussignal Z zu erzeugen, das einen momentanen Betriebszustand der Verdrängerpumpe 1 signalisiert.The sensor signal x 21 generated by means of the pressure sensor 21 'according to the invention can also be advantageously used to generate, by means of the evaluation electronics 22, a digital, status signal Z, which signals a momentary operating state of the positive displacement pump 1.

Nach einer bevorzugten Ausgestaltung der Erfindung weist die Auswerte-Elektronik 22 daher, wie in Fig. 7 schematisch dargestellt, einen ersten Schmitt-Trigger 224 auf, der das Meßsignal x221 ausgangs der Frequenzzähler-Schaltung 221 in ein binäres erstes Überwachungssignal x211' umwandelt. Dazu wird das Meßsignal x221 mit einem Frequenz-Referenzwert des Schmitt-Triggers 224 verglichen, der so eingestellt ist, daß das Überwachungssignal x221' einen High-Pegel annimmt, wenn die Frequenz der Verdrängerbewegung s13 größer oder gleich einer im stationären Betrieb der Verdrängerpumpe 1 sich minimal einstellenden Frequenz ist. Der Frequenz-Referenzwert während der Inbetriebnahme für die Verdrängerpumpe 1 ermittelt und eingestellt werden, die dazu z.B. mit einer im Betrieb maximal zu erwartenden Last beaufschlagt ist.According to a preferred embodiment of the invention, the evaluation electronics 22 therefore, as in Fig. 7 schematically illustrated, a first Schmitt trigger 224, which converts the measurement signal x 221 output of the frequency counter circuit 221 in a binary first monitoring signal x 211 '. For this purpose, the measuring signal x 221 is compared with a reference frequency value of the Schmitt trigger 224, which is set so that the monitoring signal x 221 ' assumes a high level when the frequency of the displacement movement s 13 is greater than or equal to one in stationary operation of the Positive displacement pump 1 is minimally adjusting frequency. The frequency reference value during commissioning for the positive displacement pump 1 is determined and set, which is for example subjected to a maximum load to be expected during operation.

Nach einer anderen bevorzugten Ausgestaltung der Erfindung wird der via Tiefpaß-Schaltung 222 momentan übertragene Mittelwert des Sensorsignals x21 gemäß Fig. 7 einem zweiten Schmitt-Trigger 225 der Auswerte-Elektronik 22 eingangseitig angelegt. Ausgangs des Schmitt-Triggers 225 ist ein binäres zweites Überwachungssignal X222' der Auswerte-Elektronik 22 abgreifbar. Das Überwachungssignal x222' dient dazu, zu signalisieren, ob der Druck p1 einen am Schmitt-Trigger 225 eingestellten Druck-Referenzwert unterschreitet oder nicht. Dem entsprechend ist der Druck-Referenzwert so eingestellt, daß das Überwachungssignal x222' einen High-Pegel annimmt, wenn der Druck p1 kleiner oder gleich Druckwert ist, der sich im Betrieb der Verdrängerpumpe 1 innerhalb eines intakten und in der oben beschriebenen Weise mit der Flüssigkeits-Entnamstelle kommunizierendem Strömungsgefäß 13 höchstens einstellt; anderenfalls nimmt das Überwachungssignal x222' einen Low-Pegel an.According to another preferred embodiment of the invention, the via low-pass circuit 222 currently transmitted mean value of the sensor signal x 21 according to Fig. 7 a second Schmitt trigger 225 of the evaluation electronics 22 input side applied. Output of the Schmitt trigger 225, a binary second monitoring signal X 222 'of the evaluation electronics 22 can be tapped. The monitoring signal x 222 'is used to signal whether the pressure p 1 falls below a set at the Schmitt trigger 225 pressure reference value or not. Accordingly, the pressure reference value is set so that the monitoring signal x 222 'assumes a high level when the pressure p 1 is less than or equal to the pressure value in the operation of the positive displacement pump 1 in an intact and in the manner described above the liquid Entnamstelle communicating flow vessel 13 sets at most; otherwise, the monitor signal x 222 'assumes a low level.

Nach einer anderen bevorzugten Weiterbildung der Erfindung umfaßt die Auswerte-Elektronik 22, wie in Fig. 7 dargestellt, einen dritten Schmitt-Trigger 226, dem eingangs das Meßsignal x223 angelegt ist. Ein entsprechender Befüllungs-Referenzwert des Schmitt-Triggers 226 ist hier so eingestellt, daß ein ausgangsseits geliefertes binäres drittes Überwachungssignal x223' einen High-Pegel annimmt, wenn daß Strömungsgefäß 13 mindestens mit einem vorgegebenen Minimalvolumen der zu fördernden Flüssigkeit gefüllt ist; anderenfalls, insb. bei einer erhöhten Luftblasenbildung im Fluid, weist das Überwachungssignal einen Low-Pegel auf. Der einzustellende Befüllungs-Referenzwert kann z.B. mittels einer entsprechende Kalibriermessung ermittelt und während der Inbetriebnahme eingestellt werden.According to another preferred embodiment of the invention, the evaluation electronics 22, as in Fig. 7 shown, a third Schmitt trigger 226, the input of the measurement signal x 223 is applied. A corresponding filling reference value of the Schmitt trigger 226 is set here such that a binary third monitoring signal x 223 'supplied on the output side assumes a high level when the flow vessel 13 is filled with at least a predetermined minimum volume of the liquid to be conveyed; otherwise, esp. In an increased bubble formation in the fluid, the monitoring signal has a low level. The filling reference value to be set can be determined, for example, by means of a corresponding calibration measurement and set during commissioning.

Das Überwachungssignal x221' , das Überwachungssignal x222' und/oder das Überwachungssignal x223' ist, falls erforderlich via Analog-zu-Digital-Wandler, dem Mikrocomputer 227 der Auswerte-Elektronik 22 zugeführt. Ausgangsseits des Mikrocomputers 227 kann das Statussignal Z via Ausgabe-Port sequentiell oder parallel, z.B. an eine dem Visualisieren des momentanen Betriebszustandes dienende Anzeige-Einheit der Vorrichtung, ausgegeben werden. Das Statussignal Z kann ferner einer Steuer-Elektronik für die Verdrängerpumpe angelegt sein, die z.B. bei einem mittels der Meßanordnung 2' detektierten Fehler der Vorrichtung die Verdrängerpumpe 1 abschaltet. Falls erforderlich, kann das Überwachungssignal x221', das Überwachungssignal x222' und/oder das Überwachungssignal x223' auch vom Meßsignal x221, vom Meßsignal x222 bzw. vom Meßsignal x223 mittels in den Mikrocomputer 227 implementierten Triggerfunktionen abgeleitet werden.The monitoring signal x 221 ', the monitoring signal x 222 ' and / or the monitoring signal x 223 ', if necessary via analog-to-digital converter, the microcomputer 227 of the evaluation electronics 22 supplied. On the output side of the microcomputer 227, the status signal Z can be output via the output port sequentially or in parallel, eg to a display unit of the device serving to visualize the current operating state. The status signal Z can also be applied to a control electronics for the positive displacement pump, which shuts off the positive displacement pump 1, for example, in the event of an error of the device detected by means of the measuring arrangement 2 '. If necessary, the monitoring signal x 221 ', the monitoring signal x 222 ' and / or the monitoring signal x 223 'can also be derived from the measuring signal x 221 , from the measuring signal x 222 or from the measuring signal x 223 by means of trigger functions implemented in the microcomputer 227.

Mittels des Mikrocomputers 227 ist ferner bevorzugt eine getriggerte Start-Funktion realisiert, die dazu dient, das Überwachungssignal x221', das Überwachungssignal x222' und/oder das Überwachungssignal x223' erst nach dem Einschalten der Verdrängerpumpe 1, und zwar nach dem Ablauf einer eingestellten, einer Anlaufdauer entsprechenden Zeitvorgabe auszuwerten.By means of the microcomputer 227, a triggered start function is preferably implemented, which serves the monitoring signal x 221 ', the monitoring signal x 222 ' and / or the monitoring signal x 223 'only after switching on the positive displacement pump 1, and that after the expiration to evaluate a set, corresponding to a startup time timing.

Zum Triggern der Start-Funktion dient ein viertes Überwachungssignal y14 der Vorrichtung, das eine im Betrieb in die Verdrängerpumpe 1 eingespeiste, insb, elektrische, Antriebsenergie E signalisiert. Überwachungssignal y14 kann z.B. ein binäres Schaltsignal sein, das mit einem High-Pegel signalisiert, daß die Verdrängerpumpe 1 eingeschaltet ist und das mit einem Low-Pegel signalisiert, daß die Verdrängerpumpe 1 ausgeschaltet ist. Als Überwachungssignal y14 kann aber auch ein Meßsignal dienen, das z.B. einen momentan in die Verdrängerpumpe 1 eingespeisten Strom repräsentiert. Ferner kann das Einstellsignal y14 auch von vorgenanntem Antriebssignal, z.B. mittels amplitudenmessender oder effektivwert-messender Wechsel-zu-Gleichsignal-Wandler, abgeleitet sein.To trigger the start function is a fourth monitoring signal y 14 of the device that signals a fed in operation in the positive displacement pump 1, insb, electric drive energy E. Monitoring signal y 14 may be a binary switching signal, for example, with a high level signals that the positive displacement pump 1 is turned on and signals with a low level that the positive displacement pump 1 is turned off. As a monitoring signal y 14 but can also serve a measuring signal, for example, represents a momentarily fed into the positive displacement pump 1 stream. Furthermore, the adjustment signal y 14 can also be derived from the aforementioned drive signal, for example by means of amplitude-measuring or effective value-measuring change-to-direct-conversion converters.

Die Zeitvorgabe für die Start-Funktion ist so eingestellt, daß sich die Verdrängerpumpe 1 nach dem Einschalten sicher im stationären Betrieb befindet, für den Fall, daß keine Störung vorliegt. Die Anlaufdauer bis zum Erreichen des stationären Betrieb ist wiederum durch entsprechende Kalibriermessungen zu ermitteln und in die Zeitvorgabe umzuwandeln. In der Fig. 8 ist dazu beispielhaft ein Verlauf des Sensorsignals x21 und ein dementsprechender Verlauf des Meßsignals x221 während eines Übergangs in den stationären Betrieb dargestellt.The timing for the start function is set so that the positive displacement pump 1 is safely in steady state operation after being turned on, in the event that there is no malfunction. The start-up time until steady-state operation is reached is again determined by appropriate calibration measurements and converted into the time specification. In the Fig. 8 For this purpose, an example of a course of the sensor signal x 21 and a corresponding course of the measuring signal x 221 during a transition to steady-state operation are shown.

Nach einer bevorzugten Ausgestaltung der Erfindung ist im Mikrocomputer 227 ferner eine mittels der Start-Funktion aktivierte erste Logik-Funktion implementiert, die einen ersten Signalwert für das Statussignal Z einstellt, wenn das Überwachungssignal X222' einen High-Pegel und das Überwachungssignal X223 ' gleichzeitig einen Low-Pegel aufweist. Für diesen Fall kann das Statussignal Z z.B. ein verstopftes Strömungsgefäß 13 signalisieren.According to a preferred embodiment of the invention, a first logic function activated by means of the start function is also implemented in the microcomputer 227, which sets a first signal value for the status signal Z if the monitoring signal X 222 'has a high level and the monitoring signal X 223 ' simultaneously has a low level. For this case, the status signal Z can signal, for example, a clogged flow vessel 13.

Nach einer anderen bevorzugten Ausgestaltung der Erfindung ist im Mikrocomputer 227 eine mittels der Start-Funktion aktivierte zweite Logik-Funktion implementiert, die einen zweiten Signalwert für das Statussignal Z einstellt, wenn das Überwachungssignal x221' einen High-Pegel und das Überwachungssignal x222' gleichzeitig einen Low-Pegel aufweist. Für diesen Fall kann das Statussignal Z z.B. nicht in die Flüssigkeit eingetauchtes Strömungsgefäß 13 und/oder ein ganz oder teilweise mit Luft befülltes, undichtes Strömungsgefäß 13 signalisieren. Dieser zweite Signalwert für das Statussignal Z kann z.B. auch dadurch erzeugt werden, daß das Meßsignal x221 oder das Meßsignal x222 mittels zweier verschieden hoch eingestellten Trigger-Schwellen jeweils mit zwei voneinander verschiedenen Signal-Referenzwerten verglichen werden, wobei die niedrigere der beiden Trigger-Schwellen vom Meßsignal x221 bzw, x222 überschritten ist, während der höhere der beiden Trigger-Schwellen nicht erreicht wird.According to another preferred embodiment of the invention, a second logic function activated by means of the start function is implemented in the microcomputer 227, which sets a second signal value for the status signal Z if the monitoring signal x 221 'has a high level and the monitoring signal x 222 ' simultaneously has a low level. In this case, the status signal Z can signal, for example, flow vessel 13 not immersed in the liquid and / or a leaking flow vessel 13 which is completely or partially filled with air. This second signal value for the status signal Z can also be generated, for example, by comparing the measurement signal x 221 or the measurement signal x 222 by means of two trigger thresholds set to different levels with two mutually different signal reference values, the lower of the two trigger signals Thresholds of measurement signal x 221 or, x 222 is exceeded, while the higher of the two trigger thresholds is not reached.

Neben dem Drucksensor 21' kann die Meßanordnung noch andere Sensoren, z.B. zur Temperaturkompensation der Messung dienende Temperatursensoren, umfassen, die z.B. am Strömungsgefäß 13 oder auf dem Trägermittel 11 angebracht werden können.In addition to the pressure sensor 21 ', the measuring arrangement may contain other sensors, e.g. temperature measuring temperature compensation sensors, e.g. can be attached to the flow vessel 13 or on the support means 11.

Claims (15)

  1. Sampler for sampling liquids comprising:
    - a displacement pump (1)
    -- with at least one flow vessel (13) with a ductile organ (13A), said vessel serving to convey a fluid
    -- with a pump drive (12) to generate displacement movements (s13) of the flow vessel (13), said movements shaping the organ (13A) and causing fluid flow
    -- with a support element (11) to retain the flow vessel (13)
    - a measuring arrangement (2) reacting to displacement movements (s13) executed by the flow vessel (13)
    -- with a pressure sensor (21') which is in contact with the fluid and measures a static first pressure (p1) in the fluid and returns a sensor signal (x21) representing the displacement movements (s13)
    -- with an electronic evaluation unit (22) for the sensor signal (x21).
  2. Sampler as per the previous claim, characterized in that the pressure sensor (21') measures the static first pressure (p1) in the fluid relative to a second pressure (p2) acting on the flow vessel (13) from the outside.
  3. Sampler as per the previous claim, where the second pressure (p2) is an atmospheric pressure surrounding the flow vessel (13).
  4. Sampler as per one of the previous claims, characterized in that the electronic evaluation unit (22) uses the sensor signal (x21) to generate a first measuring signal (x221) that represents a frequency of the displacement movements (s13).
  5. Sampler as per one of the previous claims, characterized in that the electronic evaluation unit (22) uses the sensor signal (x21) to generate a second measuring signal (x222) that represents a suction height of the sensor.
  6. Sampler as per one of the previous claims, characterized in that the electronic evaluation unit (22) uses the sensor signal (x21) to generate an estimated flow value (Xv) that represents an instantaneous volume flow of the fluid flow.
  7. Sampler as per one of the previous claims, characterized in that the electronic evaluation unit (22) uses the sensor signal (x21) to generate a status signal (Z) that represents an instantaneous operating state of the displacement pump (1).
  8. Sampler as per one of the previous claims, characterized in that the pressure sensor (21') is a pressure sensor in contact with a fluid.
  9. Sampler as per the previous claim, characterized in that the pressure sensor (21') is a capacitance or resistive pressure sensor.
  10. Sampler as per one of the previous claims designed as a mobile sampler.
  11. Sampler as per one of the previous claims designed as a stationary sampler.
  12. Use of a sampler as per one of the previous claims to meter liquid samples and/or store liquid.
  13. Process to operate and/or monitor a sampler for sampling liquids, said sampler comprising:
    - a displacement pump (1)
    -- with at least one flow vessel (13) with a ductile organ (13A), said vessel serving to convey a fluid
    -- with a pump drive (12) to generate displacement movements (s13) of the flow vessel (13), said movements shaping the organ (13A) and causing fluid flow
    - with a drive motor (14) for the pump drive and
    -- with a support element (11) to retain the flow vessel (13)
    - a measuring arrangement (2) reacting to displacement movements (s13) executed by the flow vessel (13) with a pressure sensor (21') which is in contact with the fluid for a static first pressure (p1) in the fluid
    where the process in question comprises the following steps:
    - drive movements of the drive motor (14) being caused to generate the displacement movements (s13) of the flow vessel (13)
    - the first pressure (p1) being measured with a pressure sensor (21') to generate a sensor signal (x21) currently representing the displacement movements (s13)
    - status signal (Z), signaling the instantaneous operating condition of the unit, being generated using the sensor signal (x21)
    - an estimated flow value (Xv) being generated with the sensor signal (x21) which represents an instantaneous volume flow of the fluid transported in the flow vessel (13).
  14. Process as per the previous claim further comprising a step where the flow vessel is immersed in liquid, particularly liquid conveyed in an open channel or basin.
  15. Process as per the previous claim further comprising a step where liquid is drawn in against gravity.
EP05025638A 2000-06-28 2000-06-28 Flow control for a peristaltic pump Expired - Lifetime EP1637738B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE50015594T DE50015594D1 (en) 2000-06-28 2000-06-28 Control of fluid flow in a peristaltic pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP00113614A EP1167767B1 (en) 2000-06-28 2000-06-28 Flow control for a peristaltic pump

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP00113614A Division EP1167767B1 (en) 2000-06-28 2000-06-28 Flow control for a peristaltic pump

Publications (3)

Publication Number Publication Date
EP1637738A2 EP1637738A2 (en) 2006-03-22
EP1637738A3 EP1637738A3 (en) 2006-04-05
EP1637738B1 true EP1637738B1 (en) 2009-03-11

Family

ID=8169088

Family Applications (2)

Application Number Title Priority Date Filing Date
EP00113614A Expired - Lifetime EP1167767B1 (en) 2000-06-28 2000-06-28 Flow control for a peristaltic pump
EP05025638A Expired - Lifetime EP1637738B1 (en) 2000-06-28 2000-06-28 Flow control for a peristaltic pump

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP00113614A Expired - Lifetime EP1167767B1 (en) 2000-06-28 2000-06-28 Flow control for a peristaltic pump

Country Status (5)

Country Link
EP (2) EP1167767B1 (en)
AT (2) ATE425364T1 (en)
CA (1) CA2350859C (en)
DE (2) DE50015594D1 (en)
ES (2) ES2323878T3 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2417052B (en) * 2004-08-12 2009-12-23 Single Use Surgical Ltd Pressure monitor for peristaltic pumps
DE102009001861A1 (en) 2009-03-25 2010-09-30 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Method for operating an analysis device
CN101963146B (en) * 2010-10-25 2012-06-06 哈尔滨工程大学 Constant flow peristaltic pump
BR112021007369A2 (en) * 2018-10-19 2022-02-01 Hoffmann La Roche microdosing
JP7509397B2 (en) * 2019-12-27 2024-07-02 学校法人 中央大学 Pump unit, pump, and method for detecting characteristics of transported object

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701646A (en) * 1990-02-02 1997-12-30 Isco, Inc. Method of making a sensor
US5695473A (en) * 1994-07-27 1997-12-09 Sims Deltec, Inc. Occlusion detection system for an infusion pump
US6213739B1 (en) * 1997-01-17 2001-04-10 Niagara Pump Corporation Linear peristaltic pump

Also Published As

Publication number Publication date
ES2323878T3 (en) 2009-07-27
EP1637738A3 (en) 2006-04-05
ATE330122T1 (en) 2006-07-15
EP1167767B1 (en) 2006-06-14
EP1637738A2 (en) 2006-03-22
ES2261123T3 (en) 2006-11-16
EP1167767A1 (en) 2002-01-02
DE50012987D1 (en) 2006-07-27
ATE425364T1 (en) 2009-03-15
DE50015594D1 (en) 2009-04-23
CA2350859A1 (en) 2001-12-28
CA2350859C (en) 2006-10-03

Similar Documents

Publication Publication Date Title
EP1061976B1 (en) Injector for applying fluids fitted with a pressure measuring system
EP2705336B1 (en) Method for operating a device for determining and/or monitoring at least one physical process variable
EP0374618A1 (en) Infusion pump
EP2188610A1 (en) Method for determining and/or monitoring viscosity, and corresponding apparatus
DE2119802A1 (en) Densitometer and flow rate monitoring device and associated procedure
EP1739307A2 (en) Progressive cavity pump
DE3546189C2 (en)
DE102013111800A1 (en) Precision metering device with expandable volume chamber
US6871551B2 (en) Apparatus for generating and conducting a fluid flow, and method of monitoring said apparatus
DE102009002941A1 (en) Method for detecting a blockage in a Coriolis flowmeter
EP2184492B1 (en) Method for controlling a peristaltic pump
EP3004648B1 (en) Assembly and method for detecting the delivery volume and the flow rate of a reciprocating pump
EP1637738B1 (en) Flow control for a peristaltic pump
DE102015122542A1 (en) Field device of process measuring technology
EP0401524B1 (en) Pressure sensor for infusion conduits
DE102009002942A1 (en) A method of determining a meter tube tube wall thickness of a Coriolis flowmeter
WO2017045887A1 (en) Method and measurement device for determining the compressibility of a flowing fluid
DE102011012590B4 (en) Method for determining the delivery rate of a liquid conveying device
DE102010006429A1 (en) Coriolis mass flow measuring device for mounting pipe line in processing plant, has evaluating device formed to monitor acceleration signal based on predetermined criterion and to output signal for displaying error condition
DE19800054A1 (en) Measuring device for a fuel gauge
DE102019201813A1 (en) Flow meter for a fluid with a pulsating flow
DE102005016812B3 (en) Measurement device for pressure in a flow channel has a closed flow channel filled by a flow substance and a membrane distorted by changes in pressure
DE102011079927A1 (en) Method for determining a dosing volume of an automatic peristaltic sampler
DE3214672C2 (en) Method and device for measuring the absolute pressure in a gas
WO2002008704A1 (en) Device for determining the mass flow rate of liquids

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AC Divisional application: reference to earlier application

Ref document number: 1167767

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RIC1 Information provided on ipc code assigned before grant

Ipc: F04B 49/06 20060101AFI20060215BHEP

17P Request for examination filed

Effective date: 20060708

17Q First examination report despatched

Effective date: 20060803

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1167767

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50015594

Country of ref document: DE

Date of ref document: 20090423

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2323878

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090611

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090824

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

BERE Be: lapsed

Owner name: ENDRESS + HAUSER WETZER G.M.B.H. + CO. KG

Effective date: 20090630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20091214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120622

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120615

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50015594

Country of ref document: DE

Owner name: ENDRESS + HAUSER CONDUCTA GESELLSCHAFT FUER ME, DE

Free format text: FORMER OWNER: ENDRESS + HAUSER WETZER GMBH + CO KG, 87484 NESSELWANG, DE

Effective date: 20130903

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130628

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20141013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130629

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170621

Year of fee payment: 18

Ref country code: FR

Payment date: 20170621

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170622

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50015594

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180628

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190101