EP1633923A2 - Airlaidverfahren mit verbessertem durchsatz - Google Patents

Airlaidverfahren mit verbessertem durchsatz

Info

Publication number
EP1633923A2
EP1633923A2 EP04739911A EP04739911A EP1633923A2 EP 1633923 A2 EP1633923 A2 EP 1633923A2 EP 04739911 A EP04739911 A EP 04739911A EP 04739911 A EP04739911 A EP 04739911A EP 1633923 A2 EP1633923 A2 EP 1633923A2
Authority
EP
European Patent Office
Prior art keywords
fibers
short
short fibers
nonwoven fabric
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04739911A
Other languages
English (en)
French (fr)
Inventor
Alexander SCHMIDT-FÖRST
Franz Aschenbrenner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimberly Clark GmbH
Original Assignee
Hakle Kimberly Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hakle Kimberly Deutschland GmbH filed Critical Hakle Kimberly Deutschland GmbH
Publication of EP1633923A2 publication Critical patent/EP1633923A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/15577Apparatus or processes for manufacturing
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • D04H1/4258Regenerated cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4266Natural fibres not provided for in group D04H1/425
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43828Composite fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43835Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5412Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/544Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/55Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/559Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving the fibres being within layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/732Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by fluid current, e.g. air-lay
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/165Ethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/165Ethers
    • D06M13/17Polyoxyalkyleneglycol ethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/224Esters of carboxylic acids; Esters of carbonic acid
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/224Esters of carboxylic acids; Esters of carbonic acid
    • D06M13/2243Mono-, di-, or triglycerides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/46Compounds containing quaternary nitrogen atoms
    • D06M13/47Compounds containing quaternary nitrogen atoms derived from heterocyclic compounds
    • D06M13/473Compounds containing quaternary nitrogen atoms derived from heterocyclic compounds having five-membered heterocyclic rings
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M7/00Treating fibres, threads, yarns, fabrics, or fibrous goods made of other substances with subsequent freeing of the treated goods from the treating medium, e.g. swelling, e.g. polyolefins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/15577Apparatus or processes for manufacturing
    • A61F2013/15821Apparatus or processes for manufacturing characterized by the apparatus for manufacturing
    • A61F2013/15934Apparatus or processes for manufacturing characterized by the apparatus for manufacturing for making non-woven
    • A61F2013/15943Apparatus or processes for manufacturing characterized by the apparatus for manufacturing for making non-woven by air-laid technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/46Textile oils
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/40Reduced friction resistance, lubricant properties; Sizing compositions
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/20Cellulose-derived artificial fibres
    • D10B2201/22Cellulose-derived artificial fibres made from cellulose solutions
    • D10B2201/24Viscose
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2509/00Medical; Hygiene
    • D10B2509/02Bandages, dressings or absorbent pads
    • D10B2509/026Absorbent pads; Tampons; Laundry; Towels

Definitions

  • the present invention relates to a process for producing a nonwoven fabric by an areodynamic process (hereinafter “airlaid process”), a nonwoven fabric produced by the process, and a short fiber suitable for use in the process.
  • airlaid process an areodynamic process
  • Figure 1 is a graph showing the dependence of the throughput on the humidity
  • Figure 2 is a graph showing the dependence of the throughput on the finish quantity.
  • the present invention thus relates to a process for producing a nonwoven fabric, comprising the laying down of at least one layer comprising short fibers by an airlaid process, at least some of the short fibers having a finish in an amount of greater than 0.035% by weight, based on the fiber weight the finish-containing short fibers.
  • a fiber fleece is understood to mean a layer of fibers which comprises short fibers, the fibers not being arranged regularly.
  • Short fibers are defined herein as fibers with a length in the range of 2 to 12 mm.
  • the term short fibers as used herein denotes all short fibers used in the process, to the exclusion any binding short fibers and superabsorbent short fibers that may be present.
  • a "layer comprising short fibers” is understood here to mean a layer in which the fibers which essentially form the layer are short fibers, but additional materials, such as binding materials, superabsorbents, etc. , may be in the form of longer fibers or in a form other than fibers.
  • the short fibers generally make up more than 50% by weight, typically more than 60% by weight, of the layer.
  • Short fibers plus short bond fibers and / or superabsorbent short fibers generally make up more than 90% by weight, typically more than 95% by weight of the layer.
  • the short fibers are provided with the finish.
  • at least 5% by weight of the short fibers are provided with the finish, preferably at least 10% by weight, such as at least 25% by weight, for example at least 50% by weight.
  • fiber mixtures e.g. preferably more than 25%, in particular more than 50%, for example all of the short fibers whose throughput is problematic, such as viscose fibers, provided with the finish, while the short fibers which can be used without problems have no finish.
  • essentially all of the short fibers used in the airlaid process can be provided with the finish.
  • a binding material is also deposited in addition to the short fibers.
  • Binder material is generally understood here to mean materials which, owing to their dissolving or melting properties, can cause the short fibers to bond to one another.
  • the binders have any shape as long as this is compatible with the use in an airlaid process, for example powder, etc.
  • the binder materials are preferably also short fibers, i.e. Binding short fibers.
  • fibers which can be used as binder fibers because of their solvent properties are polyvinyl alcohol fibers (PVA fibers) and 'alginate fibers.
  • Fibers because of their Thermal properties that are suitable as binding fibers are generally hot-melt adhesives or fibers comprising a thermoplastic material that has a lower softening temperature than the fibers to be bound.
  • Melt binding fibers can be used as full profile fibers or multi-component fibers.
  • a preferred melt binding fiber is a two-component fiber (BIKO fiber), for example a two-component fiber with a fiber jacket made of a polymer, which has a lower melting point than the polymer of the fiber core.
  • BIKO fiber two-component fiber
  • An example of this is a two-component fiber, comprising a polyester core and a polyethylene jacket.
  • short binding fibers denotes fibers with a length in the range of 2-12 mm, preferably of 4-8 mm.
  • the short binding fibers generally have a length-to-weight ratio of 1.0 to 6.0 dtex, preferably 2.0 to 4.0 dtex, for example approximately 3.0 dtex.
  • the binder is used in an amount that is ultimately dictated by the desired properties of the final product. Parameters that thus influence the amount of binder are therefore both the type of binder and the type of fibers or fiber mixture to be bonded, as well as the intended strength, softness / rigidity and weight per unit area of the end product, etc. In general, the amount is of binder 1-30 wt .-%, based on the total weight of the short fibers to be bound and the binder, in particular 1-20 wt .-%, such as 3-10 wt .-%, for example 5-8 wt .-%.
  • the short fibers preferably have a moisture content in the range of 4-16%, in particular 6-14%, for example 8-12%. Moisture is measured according to the method described below.
  • Short fibers which are suitable for use in the method according to the invention essentially comprise all fiber types known in the art, ie natural fibers, cellulosic chemical fibers, synthetic fibers and inorganic fibers and combinations from that.
  • natural fibers include natural vegetable fibers, such as fibers made from cellulose, cotton, jute, flax, hemp and coconut, and natural animal fibers, such as wool and silk.
  • Cellulosic chemical fibers include regenerated cellulose fibers, such as viscose fibers, cupro fibers and lyocell fibers.
  • Synthetic fibers include, for example, polyolefin fibers, polyester fibers and polyamide fibers
  • inorganic fibers include glass fibers, silicate fibers, carbon fibers, boron fibers and metal fibers.
  • Preferred types of fibers for use in the method according to the invention are natural fibers, in particular vegetable natural fibers and cellulosic chemical fibers, in particular cellulose fibers, cotton fibers, viscose fibers and lyocell fibers.
  • the method of the present invention was originally developed with a view to using a high proportion of viscose fibers.
  • the short fibers thus comprise short viscose fibers, at least some of the short viscose fibers being provided with the finish. Preferably at least 20%, more preferably at least 50%, of the short viscose fibers are provided with the finish. For example, the entire short viscose fibers are finished.
  • the viscose short fibers advantageously have a multi-section, such as a three-section.
  • Such fibers are known in the art, see e.g. U.S. Patent No. 5,643,914, the contents of which are incorporated by reference in their entirety.
  • Three-section cross-section fibers are e.g. can be seen from Figures 1-5 of this document.
  • the viscose fibers are usually present in an amount of greater than 85% by weight, based on the total weight of the short fibers, in particular in an amount of greater than 90% by weight, such as greater than 95% by weight.
  • the short fibers are by definition in the range of 2-12 mm, and preferably in the range of 4-8 mm, such as 5-6 mm.
  • the short fibers have a length to weight ratio of 1.0 to 6.0 dtex, preferably 2.0 to 4.0 dtex, for example about 3.3 dtex.
  • a superabsorbent material is also deposited in the method according to the invention.
  • Superabsorbers SAP
  • SAPs usually consist of polymers based on acrylates and are characterized in that they can absorb several times their own weight in liquid.
  • the superabsorbent materials are used in the process according to the invention in any suitable form which is compatible with the airlaid process, for example in the form of granules, preferably in the form of fibers, in particular short fibers with a length in the range from 2-12 mm, in particular from 4- 8 mm.
  • the amount of superabsorbent material is generally 0.1-50% by weight, in particular 5-10% by weight, based on the weight of the short fibers (excluding any binding short fibers that may be present).
  • finish is present in an amount greater than 0.035% by weight, based on the weight of the short fibers provided with the finish.
  • finish quantity is understood to mean the amount actually present on the fiber according to the information of the fiber manufacturer.
  • the quantity values mentioned in this description thus relate to analysis values of the fiber manufacturer (Acordis), as determined by Soxleth extraction, derivalization (methylation) of the sample, gas-atographic separation and detection by means of a flame ionization detector.
  • the amount of finish is preferably greater than 0.05% by weight, more preferably greater than 0.10% by weight, most preferably greater than 0.15% by weight.
  • the upper limit of the finish quantity is the quantity at which a further increase in the throughput, for example due to other limiting process parameters, no longer makes sense, the throughput is already almost optimal and further costs for more finish do not seem justified, or the high amount of finish leads to or contributes to undesirable product properties. The maximum amount is therefore dependent on the airlaid system used, the short fibers or short fiber mixtures used as well as on the end product and its desired properties.
  • the maximum amount of finish based on the weight of the short fibers provided with the finish, is 1% by weight, in particular 0.75% by weight, for example 0.50% by weight. Analog finish quantities are assumed for other types of fibers.
  • finish is preferably selected from:
  • R1 is independently a saturated or unsaturated hydrocarbon radical with 12-22, in particular 14-20 carbons, which may optionally have one or more free hydroxyl groups, o and p are independently 0 or 1, m is 0 or Is 1 and n is 1-15, preferably 3-11, in particular 4-7,
  • the imidazolium ethosulfates or methosulfates generally have a structure according to the general formula (I) below
  • R2 is H or a C1-C6 alkyl radical
  • R3 independently of each other is a saturated or unsaturated hydrocarbon radical with 6-22 carbon atoms, which may optionally have one or more free hydroxyl groups
  • R4 is methyl or ethyl
  • r is 2, 3 or 4
  • s is 0 or 1.
  • R2 and R3 are defined as in the first preferred embodiment, and s is 0.
  • R2 is methyl or ethyl, more preferably methyl
  • R3 is independently a hydrocarbon residue with 6-12 in each occurrence Carbon atoms, r is 2 and s is 1.
  • R3 is an alkyl radical.
  • Examples of ethylene oxide derivatives are the diesters of lauric acid, palmitic acid, oleic acid and / or stearic acid with polyethylene glycol with an average molecular weight of, for example, 400 or 600.
  • Examples of sorbitan esters are ethoxylated derivatives of sorbitan monoesters, diesters and triesters with lauric acid, palmitic acid, oleic acid and / or stearic acid.
  • An example of the glyceride derivatives is hydrogenated, ethoxylated castor oil, and examples of the imidazolium derivatives are Rewoguat ® W75 and Rewoquat ® W90 from Degussa.
  • the improvement in throughput through the use of short fibers, at least part of which is finished, is preferably at least 20%, more preferably at least 50% and most preferably at least 100%, compared to the same short fibers, but without that Finish.
  • the invention is optionally combined with further steps to form a fiber layer, in particular a nonwoven fabric. Accordingly, the method according to the invention can be carried out in such a way that the layer which forms is deposited on a previously formed fiber layer.
  • the previously formed fiber layer can be, for example, a layer formed by an airlaid process, or a layer formed by another process, for example a spunbond or meltblown layer, or a combination of such layers.
  • the method according to the invention can include the deposition of several layers, for example the deposition of two or three layers, optionally in combination with one or more other layers, as explained above.
  • One or more other layers, as explained above, can be deposited on the (uppermost) layer according to the invention.
  • the nonwoven fabric Following the formation of the nonwoven fabric according to the invention, this can be subjected to further process steps.
  • Such steps include, for example, heat treatment, especially if thermoplastic binder fibers were used.
  • the heat treatment comprises heating the nonwoven fabric to a temperature above the softening temperature of the binding fiber or the lowest melting component of the binding fiber, for a sufficient period of time to at least partially melt the fiber or component to reach.
  • Other optional process steps include compacting, embossing, printing, etc.
  • Another object of the present invention is a nonwoven fabric produced by the method according to the invention. Accordingly, the present invention also provides a nonwoven fabric comprising at least one layer comprising short fibers, at least some of the short fibers having a finish in an amount of greater than 0.035% by weight, based on the fiber weight of the finish-containing short fibers.
  • the layer comprises short fibers in an amount of 70-99% by weight and binding material in an amount of 1-30% by weight, based on the total weight of short fibers and binding material.
  • the binding material is as explained above in relation to the method according to the invention, and preferably comprises short binding fibers, in particular multicomponent fibers, such as, for example, two-component fibers, comprising a polyester core and a polyethylene jacket.
  • Short binding fibers generally have a length-to-weight ratio of 1.0 to 6.0 dtex, preferably 2.0 to 4.0 dtex.
  • the short fibers are as explained above in relation to the method according to the invention, and preferably comprise natural fibers, in particular vegetable natural fibers and cellulosic chemical fibers, in particular cellulose fibers, cotton fibers, viscose fibers and lyocell fibers.
  • the layer of the nonwoven fabric according to the invention comprises short viscose fibers, at least some of which are provided with the finish. Preferably at least 20%, more preferably at least 50%, of the short viscose fibers are provided with the finish. For example, the entire short viscose fibers are finished.
  • the viscose short fibers advantageously have a multi-section, such as a three-section.
  • the viscose fibers are usually present in an amount of more than 85% by weight, based on the total weight of the short fibers, in particular in an amount of more than 90% by weight, such as more than 95% by weight.
  • the short fibers are exclusively viscose short fibers.
  • the short fibers are by definition in the range of 2-12 mm, and preferably in the range of 4-8 mm, such as 5-6 mm. In general, the short fibers have a length to weight ratio of 1.0 to 6.0 dtex, preferably 2.0 to 4.0 dtex, for example about 3.3 dtex.
  • the layer optionally comprises a superabsorbent material (SAP), preferably in the form of fibers, in particular short fibers, with a length in the range of 2-12 mm, in particular 4-8 mm. If used, the amount of superabsorbent material is generally 0.1-50% by weight, in particular 5-10% by weight, based on the weight of the short fibers.
  • SAP superabsorbent material
  • the finish is in an amount of greater than 0.035% by weight, preferably greater than 0.05% by weight, more preferably greater than 0.10% by weight, most preferably greater than 0 , 15% by weight, and at most in an amount of 1% by weight, in particular 0.75% by weight, for example 0.50% by weight.
  • These quantities refer to the weight of the short fibers provided with the finish.
  • the finish is as discussed above in connection with the method according to the invention.
  • the nonwoven fabric according to the invention optionally comprises several layers according to the invention and / or other layers, as explained above.
  • the layer comprising short fibers of the nonwoven fabric according to the invention generally has a basis weight of 50-350 g / m2, typically 75-250 g / m 2, in particular 150-220 g / m2. such as about 180 g / m2.
  • the density of the layer is generally from 0.02-0.5 g / cm3, typically from 0.03-0.2 g / cm3, in particular from 0.04-0.1 g / cm3.
  • the above values relate to the material web as deposited in the airlaid process, before carrying out compacting process steps, such as calendering or embossing.
  • the density is determined according to standard methods, under a load of 0.2 kPa.
  • the short fiber layer of the nonwoven fabric according to the invention generally has an absorbency of at least 3 g / g nonwoven fabric, preferably at least 4 g / g, particularly preferably at least 4.8 g / g.
  • the absorbency is measured according to the well-known Syngina-Test ("Syn- gina Absorbancy Test") and in the absence of superabsorbent materials.
  • Yet another object of the present invention is a short fiber which is provided with a finish in an amount greater than 0.035% by weight, based on the weight of the fiber.
  • the short fiber is a chemical cellulose fiber or a synthetic fiber.
  • the short fiber is a viscose fiber, which may have a multi-section, such as a three-section.
  • the short fiber has a length in the range of 2-12 mm, and preferably a length in the range of 4-8 mm, such as 5-6 mm.
  • the short fiber has a length-to-weight ratio of 1.0 to 6.0 dtex, preferably 2.0 to 4.0 dtex, for example approximately 3.3 dtex.
  • the finish is present in an amount greater than 0.035 weight percent, preferably greater than 0.05 weight percent, more preferably greater than 0.10 weight percent, most preferably greater than 0.15 weight percent, and at most in an amount of 1% by weight, in particular 0.75% by weight, for example 0.50% by weight.
  • Suitable finish materials are those explained above in connection with the method according to the invention.
  • Yet another object of the present invention is the use of a short fiber as described above in an airlaid process.
  • Yet another object of the present invention is an absorbent object comprising a nonwoven fabric produced by the method according to the invention, or a nonwoven fabric as described above.
  • the absorbent article has an absorbency of at least 3 g / g nonwoven, preferably at least 4 g / g, particularly preferably at least 4.8 g / g, as measured by the Syngina test.
  • the absorbent article is, for example, a personal hygiene article, such as a tampon, a sanitary napkin, a diaper or an incontinence article, or a household article, industrial article or medical article.
  • a personal hygiene article such as a tampon, a sanitary napkin, a diaper or an incontinence article, or a household article, industrial article or medical article.
  • the absorbent object according to the invention is a tampon which comprises a spiral winding of a layer comprising short fibers according to the invention.
  • the layer comprises 60-100% by weight three-part viscose short fiber and 0-40% by weight short cellulose fiber, based on the total weight of the short fibers.
  • the short cellulose fiber and the short viscose fiber have a length of 4-8 mm, preferably about 6 mm and a length-to-weight ratio of 3-4 dtex.
  • the layer further comprises 5-15% by weight of a BIKO short fiber, based on the total weight of short fibers and short fibers.
  • the tampon has an absorption capacity of at least 4 g / g under load, a rigidity of at least 20N and an expansion capacity of at least 150%.
  • a fiber sample (approx. 5 g) is placed in the container, the container is closed with the lid in a water vapor-tight manner and weighed with an accuracy of ⁇ 0.005 g.
  • the value GRT (weight at room temperature) is noted.
  • the lid of the container is removed and the container and lid are placed in a hot air oven at a temperature of 105 ⁇ 3 ° C.
  • Drying is carried out for at least three hours, for example overnight. The oven must not be opened during the drying period.
  • the containers are sealed in a water vapor-tight manner with the lids in the oven.
  • the sealed container is weighed at the same temperature at which the GJJ was measured. The value is noted as GJJ (hot weight).
  • fibers with the specification given in Table 1 were produced.
  • the finish used was polyglycol palate stearate ester.
  • the fibers were then used to produce airlaid nonwovens using a Danweb airlaid system with 4 laying heads and a laying width of 600 mm.
  • the system is suitable for multibonding as well as for the production of latex-bound and thermally bound products.
  • the bore diameter of the laying heads was 4.5 mm.
  • the fibers of samples 1-5 were combined with a binding fiber Trevira T255 (P ⁇ T / PE) with a length-to-weight ratio of 3.0 dtex and a length of 6 mm, in a weight ratio of rayon fiber : 93: 7 binding fiber used.
  • the ambient conditions were 23 ° C and 73% relative air humidity, the target weight per unit area was 180-220 g / m.2, with a density of 0.04 g / cm3.
  • the maximum amount of fibers that are transported through the laying heads without blocking them is determined.
  • the basis weight must remain stable, with a maximum deviation of ⁇ 10% from the target value both in the machine direction and in the transverse direction.
  • the maximum capacity is the maximum fiber quantity supplied to the laying heads per unit of time, measured on the fiber metering device.
  • test was carried out successively with samples 1-5, the moisture and / or finish values being increased from test to test so as to avoid contamination of the system by fibers with a higher moisture content or amount of finish.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Manufacturing & Machinery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Nonwoven Fabrics (AREA)
  • Preliminary Treatment Of Fibers (AREA)
  • Multicomponent Fibers (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines Faservlieses nach einem areodynamischen Verfahren, mit einem verbesserten Durchsatz, ein nach dem Verfahren hergestelltes Faservlies, sowie eine zur Verwendung in dem Verfahren geeignete Kurzfaser.

Description

Airlaidverfahren mit verbessertem Durchsatz
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Faservlieses nach einem areodynamischen Verfahren (hierin nachstehend "Airlaidverfahren") , ein nach dem Verfahren hergestelltes Faservlies, sowie eine zur Verwendung in dem Verfahren geeignete Kurzfaser.
Die Bildung . von Faservliesen durch Airlaidverfahren ist in der Technik bekannt. Dabei handelt es' sich um Trockenverfahren, bei denen die Fasern nach dem Öffnungsprozess einem Luftstrom übergeben werden und danach auf einer Siebfläche abgelegt werden.
In Airlaidverfahren wurden bisher vor allem Zellstofffasern eingesetzt, die geringe Beimengungen an anderen Fasern, wie beispielsweise Viskosefasern enthalten können. Ein Problem bei der Verwendung insbesondere -von Viskosefasern in höheren- Anteilen besteht . darin, dass der in herkömmlichen Airlaidanlagen . zu erreichende Durchsatz erheblich geringer ist als bei alleiniger Verwendung von Zellstofffasern. Durchsatz bedeutet die in einer Zeiteinheit an den Transportluftstom abgegebene Gewichtsmenge an Fasern. Dies führt weiterhin auch zu starken Abweichungen im Soll-Flächengewicht, und somit zu einer niedrigen Qualität der resultierenden Faservliese.
Die Anmelder der vorliegenden Anmeldung haben in Testversuchen festgestellt, dass bei alleiniger Verwendung von handelsüblichen Viskosekurzfasern in einem Airlaidverfahren lediglich ein Durchsatz erreicht wird, der im Allgemeinen weniger als 10 Prozent des Durchsatzes von Zellstofffasern beträgt.
Es besteht somit ein Bedarf für Airlaidverfahren, bei denen mit höheren Anteilen von Viskosefasern ein erhöhter Durchsatz erreicht werden kann und somit die Kapazität der 'Produktionsanlagen besser genutzt werden kann. Die Anmelder der vorliegenden Erfindung haben überraschenderweise herausgefunden, dass durch Versehen von Viskosekurzfasern mit einem Finish der Durchsatz in einem Airlaidverfahren erheblich gesteigert werden kann. Die erzielte Verbesserung liegt in einer Größenordnung, welche sogar den Durchsatz bei der herkömmlichen Verwendung von Zellstofffasern übersteigt, so dass davon ausgegangen wird, dass das erfindungsgemäße Verfahren allgemein anwendbar ist, unabhängig von der besonderen Faser.
Das Versehen von Fasern mit einem Finish ist in der Technik prinzipiell bekannt und Fasen mit Finish werden beispielsweise in Kardierverfahren eingesetzt. Dabei handelt es sich jedoch um ein grundsätzlich anderes Verfahren, das zudem längere Fasern verwendet. Für Airlaidverfahren gab es nach derzeitigem Wissenstand der Anmelder jedoch bisher keinen Anlass, Fasern mit einem Finish zu versehen.
Die Erfindung wird nachstehend ausführlich beschrieben, unter Bezugnahme auf die beigefügten Zeichnungen, in denen:
Figur 1 ein Graph ist, der die Abhängigkeit des Durchsatzes von der Feuchtigkeit zeigt, und
Figur 2 ein Graph ist, der die Abhängigkeit des Durchsatzes von der Finishmenge zeigt.
Ein Gegenstand der vorliegenden Erfindung ist somit ein Verfahren zur Herstellung eines Faservlieses, umfassend das Ablegen mindestens einer Kurzfasern umfassenden Schicht nach einem Airlaidverfahren, wobei mindestens ein Teil der Kurzfasern mit einem Finish in einer Menge von größer 0,035 Gew.-%, bezogen auf das Fasergewicht der Finish-enthaltenden Kurzfasern, versehen ist.
Unter einem Faservlies wird in der vorliegenden Anmeldung eine Schicht von Fasern verstanden, welche Kurzfasern umfasst, wobei die Fasern nicht regelmäßig angeordnet sind. Kurzfasern sind hierin definiert als Fasern mit einer Länge im Bereich von 2 bis 12 mm. Der Begriff Kurzfasern wie hierin verwendet bezeichnet sämtliche im Verfahren verwendeten Kurzfasern, unter Ausschluss von gegebenenfalls vorhandenen Bindekurzfasern und Superabsorberkurzfasern. Unter einer "Kurzfasern umfassenden Schicht" wird hierin eine Schicht verstanden, bei der die Fasern, welche die Schicht im Wesentlichen ausmachen, Kurzfasern sind, jedoch zusätzliche Materialien, wie etwa Bindematerialien, Superabsorber etc . , in Form von längeren Fasern oder in einer von Fasern verschiedenen Form vorliegen können. Wenn Bindematerialien und/oder Superabsorber vorhanden sind und nicht in Form von Kurzfasern vorliegen, machen die Kurzfasern im Allgemeinen mehr als 50 Gew.-%, typischerweise mehr als 60 Gew.-% der Schicht aus. Kurzfasern plus Bindekurzfasern und/oder Superabsorberkurzfasern machen im Allgemeinen mehr als 90 Gew.-%, typischerweise mehr als.95 Gew.-% der Schicht aus.
Erfindungsgemäß ist mindestens ein Teil der Kurzfasern mit dem Finish versehen. Im Allgemeinen sind mindestens 5 Gew.-% der Kurzfasern mit dem Finish versehen, bevorzugt mindestens 10 Gew.-%, wie etwa mindestens 25 Gew.-%, beispielsweise mindestens 50 Gew.-%. Als ein Beispiel für die Verwendung von Fasergemischen sind z.B. bevorzugt mehr als 25%, insbesondere mehr als 50%, beispielsweise die Gesamtheit der Kurzfasern, deren Durchsatz problematisch ist, wie etwa Viskosefasern, mit dem Finish versehen, während die unproblematisch zu verwendenden Kurzfasern kein Finish aufweisen. Alternativ können im Wesentlichen die gesamten im Airlaidverfahren eingesetzten Kurzfasern mit dem Finish versehen sein.
In einer besonderen Ausführungsform des erfindungsgemäßen Verfahren wird zusätzlich zu den Kurzfasern auch ein Bindematerial abgelegt . Unter Bindematerial werden hierin allgemein Materialien verstanden, die aufgrund ihrer Löse- oder Schmelzeigenschaften eine Verklebung der Kurzfasern untereinander bewirken können. Die Bindemittel haben eine beliebige Form, solange dies mit der Verwendung in einem Airlaidverfahren zu vereinbaren ist, beispielsweise Pulver, etc. Bevorzugt sind die Bindematerialien jedoch ebenfalls Kurzfasern, d.h. Bindekurzfasern.
Beispiele für Fasern, die aufgrund ihrer Löseeigenschaften als Bindefasern verwendet werden können, sind Polyvinylalkoholfasern (PVA Fasern) und ' Alginatfasern. Fasern, die aufgrund ihrer Sσhmelzeigenschaften als Bindefasern geeignet sind, sind allgemein Schmelzklebstoffe oder Fasern, umfassend ein thermoplastisches Material, das eine niedrigere Erweichungstemperatur als die zu bindenden Fasern aufweist. Schmelzbindefasern können als Vollprofilfasern oder Mehrkomponentenfasern verwendet werden. Eine bevorzugte Schmelzbindefaser ist eine Zweikomponentenfaser (BIKO Faser) , beispielsweise eine Zweikomponentenfaser mit einem Fasermantel aus einem Polymer, das einen niedrigeren Schmelzpunkt als das Polymer des Faserkerns aufweist . Ein Beispiel dafür ist eine Zweikomponentenfaser, umfassend einen Polyesterkern und einen Polyethylenmantel .
Der Begriff "Bindekurzfasern" wie hierin verwendet bezeichnet Fasern mit einer Länge im Bereich von 2-12 mm, bevorzugt von 4-8 mm. Die Bindekurzfasern haben im Allgemeinen ein Länge-zu-Ge- wicht-Verhältnis von 1,0 bis 6,0 dtex, bevorzugt von 2,0 bis 4,0 dtex, beispielsweise etwa 3,0 dtex.
Das Bindemittel wird in einer Menge verwendet, die letztlich von den gewünschten Eigenschaften des Endprodukts diktiert wird. Parameter, die somit die Menge des Bindemittels beeinflussen, sind daher sowohl der Typ des Bindemittels und die Art der zu bindenden Fasern bzw. des zu bindenden Fasergemisches als auch vorgesehene Festigkeit, Weichheit/Steifigkeit und Flächengewicht des Endprodukts, etc. Im Allgemeinen beträgt die Menge an Bindemittel 1-30 Gew.-%, bezogen auf das Gesamtgewicht der zu bindenden Kurzfasern und des Bindemittels, insbesondere 1-20 Gew.-%, wie etwa 3-10 Gew.-%, beispielsweise 5-8 Gew.-%.
Die Erfinder haben auch festgestellt, dass die Feuchtigkeit der im Airlaidverfahren verwendeten Kurz asern einen Einfluss auf den Durchsatz ausübt. Demgemäss weisen die Kurzfasern bevorzugt eine Feuchtigkeit im Bereich von 4-16%, insbesondere von 6-14%, beispielsweise von 8-12% auf. Feuchtigkeit wird gemäss dem hierin nachstehend beschriebenen Verfahren gemessen.
Kurzfasern, die zur Verwendung im erfindungsgemäßen Verfahren geeignet sind, umfassen im Wesentlichen sämtliche in der Technik bekannte Fasertypen, d.h. Naturfasern, zellulosische Chemiefasern, Synthesefasern und anorganische Fasern sowie Kombinationen davon. Beispiele für Naturfasern umfassen pflanzliche Naturfasern, wie etwa Fasern aus Zellstoff, Baumwolle, Jute, Flachs, Hanf und Kokosnuss sowie tierische Naturfasern wie etwa Wolle und Seide. Zellulosische Chemiefasern umfassen regenerierte Zellulosefasern, wie etwa Viskosefasern, Cuprofasern und Lyocellfa- sern. Synthesefasern umfassen beispielsweise Polyolefinfasern, Polyesterfasern und Polyamidfasern, und anorganische Fasern umfassen Glasfasern, Silikatfasern, Kohlenstofffasern, Borfasern und Metallfasern.
Bevorzugte Fasertypen zur Verwendung im erfindungsgemäßen Verfahren sind Naturfasern, insbesondere pflanzliche Naturfasern und zellulosische Chemiefasern, insbesondere Zellstofffasern, Baumwollfasern, Viskosefasern und Lyozellfasern.
Wie eingangs erwähnt, wurde das Verfahren der vorliegenden Erfindung ursprünglich im Hinblick auf die Verwendung eines hohen Anteils von Viskosefasern entwickelt. Gemäß einer besonderen Ausführungsform umfassen die Kurzfasern somit Viskosekurzfasern, wobei mindestens ein Teil der Viskosekurzfasern mit dem Finish versehen ist. Bevorzugt sind mindestens 20%, stärker bevorzugt mindestens 50% der Viskosekurzfasern mit dem Finish versehen. Beispielsweise sind die gesamten Viskosekurzfasern mit dem Finish versehen.
Die Viskosekurzfasern weisen vorteilhaft einen mehrgliedrigen Querschnitt auf, wie beispielsweise einen dreigliedrigen Querschnitt. Derartige Fasern sind in der Technik bekannt, siehe z.B. US Patent Nr. 5,643, 914, dessen Inhalt durch Bezugnahme hierin vollständig aufgenommen wird. Fasern mit dreigliedrigem Querschnitt sind z.B. aus den Figuren 1-5 dieses Dokuments ersichtlich.
Die Viskosefasern werden gemäß dieser Ausführungsform üblicherweise in einer Menge von größer 85 Gew.-%, bezogen auf das Gesamtgewicht der Kurzfasern, insbesondere in einer Menge von größer 90 Gew.-%, wie etwa größer 95 Gew.-%. verwendet. Beispielsweise werden als die Kurzfasern ausschließlich Viskosekurzfasern, d.h. 100 Gew.-%, verwendet. Die Kurzfasern haben definitionsgemäß eine Länge im Bereich von 2-12 mm, und bevorzugt eine Länge im Bereich von 4-8 mm, wie etwa 5-6 mm. Im Allgemeinen haben die Kurzfasern ein Länge-zuGewicht-Verhältnis von 1,0 bis 6,0 dtex, bevorzugt von 2,0 bis 4,0 dtex, beispielsweise etwa 3,3 dtex.
Gegebenenfalls wird im erfindungsgemäßen Verfahren weiterhin ein superabsorbierendes Material abgelegt. Superabsorber (SAP) sind in der Technik gut bekannt und werden daher hierin nicht näher erläutert. SAPs bestehen üblicherweise aus Polymeren auf Basis von Acrylaten und sind dadurch gekennzeichnet, dass sie ein mehrfaches ihres Eigengewichts an Flüssigkeit absorbieren können. Die superabsorbierenden Materialien werden im erfindungsgemäßen Verfahren in jeder geeigneten Form verwendet, die mit dem Airlaidverfahren kompatibel, ist, wie etwa in Granulatform, bevorzugt in Form von Fasern, insbesondere von Kurzfasern mit einer Länge im Bereich von 2-12 mm, insbesondere von 4-8 mm. Falls verwendet, beträgt die Menge an superabsorbierendem Material im Allgemeinen 0.1-50 Gew.-%, insbesondere 5-10 Gew.-%, bezogen auf das Gewicht der Kurzfasern (ausschließlich gegebenenfalls vorhandenen Bindekurzfasern) .
Das Finish ist in einer Menge von größer 0,035 Gew.-%, bezogen auf das Gewicht der mit dem Finish versehenen Kurzfasern, vorhanden. Unter Finishmenge wird in dieser Beschreibung die nach Angabe des Faserherstellers tatsächlich auf der Faser vorhandene Menge verstanden.
Die in dieser Beschreibung genannten Mengenwerte beziehen sich somit auf Analysewerte des Faserherstellers (Acordis) , wie bestimmt durch Soxleth-Extraktion, Derivalisierung (Methylierung) der Probe, gaschro atografische Auftrennung und Detektion mittels eines Flammenionisationsdetektors.
Bezogen auf Viskosefasern beträgt die Finishmenge bevorzugt größer 0,05 Gew.-%, stärker bevorzugt größer 0,10 Gew.-%, am meisten bevorzugt größer 0,15 Gew.-%. Die Obergrenze der Finishmenge ist diejenige Menge, bei der eine weitere Erhöhung des Durchsatzes beispielsweise aufgrund anderer limitierender Verfahrensparameter nicht mehr sinnvoll erscheint, der Durchsatz bereits nahezu optimal ist und weitere Kosten für mehr Finish nicht gerechtfertigt erscheinen, oder die hohe Finishmenge zu unerwünschten Produkteigenschaften führt oder beiträgt . Die Maximalmenge ist somit sowohl von der verwendeten Airlaidanlage, den verwendeten Kurzfasern bzw. Kurzfasergemischen als auch vom Endprodukt und dessen gewünschten Eigenschaften abhängig.
Bezogen auf Viskosefasern wird derzeit davon ausgegangen, dass die maximale Finishmenge, bezogen auf das Gewicht der mit dem Finish versehenen Kurzfasern, 1 Gew.-%, insbesondere 0,75 Gew. - %, beispielsweise 0,50 Gew.-% beträgt. Für andere Fasertypen wird von analogen Finishmengen ausgegangen.
Als Finish eignet sich jedes Material, das wenn auf der Oberfläche der Kurzfaser im angegebenen Mengenbereich vorhanden, geeignet ist, den Durchsatz des erfindungsgemäßen Airlaidverfahren zu verbessern. Bevorzugt wird das Finish ausgewählt aus:
(a) Ester- und Etherderivaten von Polyethylenoxid und Polypropylenoxid der allgemeinen Formel :
Rl- (CO) o-0- [-CH2- (CH2)m-0-] n- (CO) p-Rl
worin Rl unabhängig voneinander bei jedem Vorkommen jeweils ein gesättigter oder ungesättigter Kohlenwasserstoffrest mit 12-22, insbesondere 14-20 Kohlenstoffen, ist, der gegebenenfalls eine oder mehrere freie Hydroxylgruppen aufweisen kann, o und p unabhängig voneinander 0 oder 1 sind, m gleich 0 oder 1 ist, und n gleich 1-15, bevorzugt 3-11, insbesondere 4-7 ist,
(b) Mono-, Di- und Triestern von Sorbitanen mit Fettsäuren der Formel Rl-COOH, worin Rl unabhängig bei jedem Vorkommen wie vorstehend definiert ist,
(c) Mono-, Di- und Triglyzeriden von Fettsäuren der Formel Rl- COOH, worin Rl unabhängig bei jedem Vorkommen wie vorstehend definiert ist,
(d) Imidazoliumethosulfaten und -methosulfaten, (e) ethoxylierten und propoxylierten Derivaten der Verbindungen nach (a) , (b) , (c) und (d) , und
(f) Gemischen von Verbindungen nach (a) , (b) , (c) , (d) oder/und (e) .
Die Imidazoliumethosulfate oder -methosulfate haben im Allgemeinen eine Struktur gemäß der nachstehenden allgemeinen Formel (I)
(I )
worin R2 H oder ein C1-C6 Alkylrest ist, R3 unabhängig voneinander bei jedem Vorkommen ein gesättigter oder ungesättigter Kohlenwasserstoffrest mit 6-22 Kohlenstoffatomen ist, der gegebenenfalls eine oder mehrere freie Hydroxylgruppen aufweisen kann, R4 Methyl oder Ethyl ist , r gleich 2, 3 oder 4 ist, und s gleich 0 oder 1 ist.
Bevorzugte Imdiazoliumderivate nach Formel (I) gemäß einer ersten Ausfuhrungsform sind Imidazoliummethosulfate (R4 = Methyl) , worin R2 Methyl oder Ethyl, stärker bevorzugt Methyl ist, R3 unabhängig bei jedem Vorkommen ein Kohlenwasserstoffrest mit 14-18 Kohlenstoffatomen ist, r gleich 2 ist und s gleich 1 i'st. Gemäß einer zweiten bevorzugten Ausführungsform sind R2 und R3 wie bei der ersten bevorzugten Ausfuhrungsform definiert, und s ist gleich 0. Gemäß einer weiteren bevorzugten Ausfuhrungsform ist R2 Methyl oder Ethyl, stärker bevorzugt Methyl, ist R3 unabhängig bei jedem Vorkommen ein KohlenwasserStoffrest mit 6-12 Kohlenstoffatomen, ist r gleich 2 und ist s gleich 1. Gemäß einer nochmals weiteren besonderen Ausfuhrungsform ist R3 ein Alkylrest .
Beispiele für Ethylenoxidderivate sind die Diester von Laurin- säure, Palmitinsäure, Ölsäure und/oder Stearinsäure mit Poly- ethylenglykol mit einem mittleren Molekulargewicht von beispielsweise 400 oder 600. Beispiele für Sorbitanester sind die ethoxylierten Derivate von Sorbitanmonoestern, -diestern und - triestern mit Laurinsäure, Palmitinsäure, Ölsäure und/oder Stearinsäure. Ein Beispiel für die Glyzeridderivate ist hydriertes, ethoxyliertes Kastoröl, und Beispiele für die Imidazoliumderi- vate sind Rewoguat ® W75 und Rewoquat ® W90 von Degussa.
Die Verbesserung des Durchsatzes durch die Verwendung von Kurzfasern, von denen mindestens ein Teil mit dem Finish versehen ist, beträgt bevorzugt mindestens 20%, stärker bevorzugt mindestens 50% und am meisten bevorzugt mindestens 100%, im Vergleich zu den selben Kurzfasern, jedoch ohne das Finish.
Das erfindungsgemäße. Verfahren wird gegebenenfalls mit weiteren Schritten zur Bildung einer Faserschicht, insbesondere eines Faservlieses kombiniert. Demgemäß kann das erfindungsgemäße Verfahren derart durchgeführt werden, dass die sich bildende Schicht auf eine zuvor gebildete Faserlage abgelegt wird. Die zuvor gebildete Faserlage kann beispielsweise eine nach einem Airlaidverfahren gebildete Lage sein, oder eine nach einem anderen Verfahren gebildete Lage, beispielsweise eine spinngebundene oder schmelzgeblasene Lage, oder eine Kombination derartiger Lagen.
Weiterhin kann das erfindungsgemäße Verfahren das Ablegen von mehreren Schichten umfassen, beispielsweise das Ablegen von zwei oder drei Schichten, gegebenenfalls in Kombination mit einer oder mehreren anderen Lagen, wie vorstehend erläutert. Auf der (obersten) erfindungsgemäßen Schicht können eine oder mehrere andere Lagen, wie vorstehend erläutert, abgelegt werden.
Nachfolgend auf die erfindungsgemäße Bildung des Faservlieses kann dieses weiteren Verfahrensschritten unterzogen werden. Derartige Schritte umfassen beispielsweise eine Wärmebehandlung, insbesondere wenn thermoplastische Bindefasern verwendet wurden. Die Wärmebehandlung umfasst in diesem Fall das Erwärmen des Faservlieses auf eine Temperatur oberhalb der Erweichungstemperatur der Bindefaser bzw. der am niedrigsten schmelzenden Komponente der Bindefaser, während eines ausreichenden Zeitraums, um ein mindestens partielles Aufschmelzen der Faser bzw, Komponente zu erreichen. Weitere optionale Verfahrensschritte umfassen Ko - paktieren, Prägen, Bedrucken, etc.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein nach dem erfindungsgemäßen Verfahren hergestelltes Faservlies. Dementsprechend stellt die vorliegende Erfindung auch ein Faservlies bereit, umfassend mindestens eine Kurzfasern umfassende Schicht, wobei mindestens ein Teil der Kurzfasern mit einem Finish in einer Menge von größer 0,035 Gew.-%, bezogen auf das Fasergewicht der Finish-enthaltenden Kurzfasern, versehen ist.
Gemäß einer besonderen Ausführungsform umfasst die Schicht Kurz- fasern in einer Menge von 70-99 Gew.-% und Bindematerial in einer Menge von 1-30 Gew.-%, bezogen auf das Gesamtgewicht von Kurzfasern und Bindematerial .
Das Bindematerial ist wie vorstehend in Bezug auf das erfindungsgemäße Verfahren erläutert, und umfasst bevorzugt Bindekurzfasern, insbesondere Mehrkomponentenfasern, wie beispielsweise Zweikomponentenfasern, umfassend einen Polesterkern und einen Polyethylenmantel. Bindekurzfasern haben im Allgemeinen ein Länge-zu-Gewicht-Verhältnis von 1,0 bis 6,0 dtex, bevorzugt von 2,0 bis 4,0 dtex.
Die Kurzfasern sind wie vorstehend in Bezug auf das erfindungsgemäße Verfahren erläutert, und umfassen bevorzugt Naturfasern, insbesondere pflanzliche Naturfasern und zellulosische Chemiefasern, insbesondere Zellstofffasern, Baumwollfasern, Viskosefasern und Lyozellf sern.
Gemäß einer besonderen Ausfuhrungsform umfasst die Schicht des erfindungsgemäßen Faservlieses Viskosekurzfasern, wovon mindestens ein Teil mit dem Finish versehen ist. Bevorzugt sind mindestens 20%, stärker bevorzugt mindestens 50% der Viskosekurzfasern mit dem Finish versehen. Beispielsweise sind die gesamten Viskosekurzfasern mit dem Finish versehen. Die Viskosekurzfasern weisen vorteilhaft einen mehrgliedrigen Querschnitt auf, wie beispielsweise einen dreigliedrigen Querschnitt. Die Viskosefasern sind gemäß dieser Ausfuhrungsform üblicherweise in einer Menge von größer 85 Gew.-%, bezogen auf das Gesamtgewicht der Kurzfasern, insbesondere in einer Menge von größer 90 Gew.-%, wie etwa größer 95 Gew.-%, vorhanden. Beispielsweise sind die Kurzfasern ausschließlich Viskosekurzfasern.
Die Kurzfasern haben definitionsgemäß eine Länge im Bereich von 2-12 mm, und bevorzugt eine Länge im Bereich von 4-8 mm, wie etwa 5-6 mm. Im Allgemeinen haben die Kurzfasern ein Länge-zuGewicht-Verhältnis von 1,0 bis 6,0 dtex, bevorzugt von 2,0 bis 4,0 dtex, beispielsweise etwa 3,3 dtex.
Die Schicht umfasst gegebenenfalls ein superabsorbierendes Material (SAP) , bevorzugt in Form von Fasern, insbesondere von Kurz- fasern mit einer Länge im Bereich von 2-12 mm, insbesondere von 4-8 mm. Falls verwendet, beträgt die Menge an superabsorbierendem Material im Allgemeinen 0.1-50 Gew.-%, insbesondere 5-10 Gew.-%, bezogen auf das Gewicht der Kurzfasern.
Wie vorstehend in Zusammenhang mit dem erfindungsgemäßen Verfahren erläutert, ist das Finish in einer Menge von größer 0,035 Gew.-%, bevorzugt größer 0,05 Gew.-%, stärker bevorzugt größer 0,10 Gew.-%, am meisten bevorzugt größer 0,15 Gew.-% vorhanden, und maximal in einer Menge von 1 Gew.-%, insbesondere 0,75 Gew.- %, beispielsweise 0,50 Gew.-%. Diese Mengenangaben beziehen sich auf das Gewicht der mit dem Finish versehenen Kurzfasern.
Das Finish ist wie vorstehend in Zusammenhang mit dem erfindungsgemäßen Verfahren diskutiert.
Das erfindungsgemäße Faservlies umfasst gegebenenfalls mehrere erfindungsgemäße Schichten und/oder andere Lagen, wie vorstehend erläutert .
Die Kurzfasern umfassende Schicht des erfindungsgemäßen Faservlieses hat im Allgemeinen ein Flächengewicht von 50-350 g/m2, typischerweise von 75-250 g/m.2, insbesondere von 150-220 g/m2. wie etwa 180 g/m.2. Die Dichte der Schicht beträgt im Allgemeinen von 0,02-0,5 g/cm3, typischerweise von 0,03-0,2 g/cm3, insbesondere von 0,04- 0,1 g/cm3. Die vorstehenden Werte beziehen sich auf die Materialbahn wie im Airlaidverfahren abgelegt, vor Durchführung kompaktierender Verfahrenschritte, wie Kalandrieren oder Prägung. Die Dichte wird bestimmt nach Standardverfahren, unter einer Belastung von 0,2 kPa.
Die Kurzfasern umfassende Schicht des erfindungsgemäßen Faservlieses hat im Allgemeinen eine Absorptionsfähigkeit von mindestens 3 g/g Faservlies, bevorzugt von mindestens 4 g/g, besonders bevorzugt von mindestens 4,8 g/g. Die Absorptionsfähigkeit wird gemessen nach dem allgemein bekannten Syngina-Test ("Syn- gina Absorbancy Test") und in Abwesenheit von superabsorbieren- den Materialien.
Ein nochmals weiterer Gegenstand der vorliegenden Erfindung ist eine Kurzfaser, die mit einem Finish in einer Menge von größer •0,035 Gew.-%, bezogen auf das Fasergewicht, versehen ist.
Gemäß einer Ausfuhrungsform ist die Kurzfaser eine chemische Zellulosefaser oder eine Synthesefaser.
Gemäß einer bevorzugten Ausfuhrungsform ist die Kurzfaser eine Viskosefaser, die gegebenenfalls einen mehrgliedrigen Querschnitt, wie etwa einen dreigliedrigen Querschnitt aufweist.
Die Kurzfaser hat eine Länge im Bereich von 2-12 mm, und bevorzugt eine Länge im Bereich von 4-8 mm, wie etwa 5-6 mm. Im Allgemeinen hat die Kurzfaser ein Länge-zu-Gewicht-Verhältnis von 1,0 bis 6,0 dtex, bevorzugt von 2,0 bis 4,0 dtex, beispielsweise etwa 3,3 dtex.
Das Finish ist in einer Menge von größer 0,035 Gew.-%, bevorzugt größer- 0,05 Gew.-%, stärker bevorzugt größer 0,10 Gew.-%, am meisten bevorzugt größer 0,15 Gew.-% vorhanden, und maximal in einer Menge von 1 Gew.-%, insbesondere 0,75 Gew.-%, beispielsweise 0,50 Gew.-%. Geeignete Finishmaterialien sind die vorstehend in Zusammenhang mit dem erfindungsgemäßen Verfahren erläuterten.
Ein nochmals weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung einer Kurzfaser wie vorstehend beschrieben in einem Airlaid-Verfahren.
Ein nochmals weiterer Gegenstand der vorliegenden Erfindung ist ein absorbierender Gegenstand, umfassend ein nach dem erfindungsgemäßen Verfahren hergestelltes Faservlies, bzw. ein Faservlies wie vorstehend beschrieben. Der absorbierende Gegenstand hat eine Absorptionsfähigkeit von mindestens 3 g/g Faservlies, bevorzugt von mindestens 4 g/g, besonders bevorzugt von mindestens 4.8 g/g, wie mit dem Syngina-Test gemessen.
Der absorbierende Gegenstand ist beispielsweise ein Körperhygienegegenstand, wie etwa ein Tampon, eine Damenbinde, eine Windel oder ein Inkontinenzartikel, oder ein Haushaltsgegenstand, Industriegegenstand oder medizinischer Gegenstand.
Gemäß einer besonders bevorzugten Ausfuhrungs orm ist der erfindungsgemäße absorbierende Gegenstand ein Tampon, der eine spiralförmigen Wicklung einer erfindungsgemäßen, Kurzfasern umfassenden Schicht umfasst. Die Schicht umfasst 60-100 Gew. -% dreigliedrige Viskosekurzfaser und 0-40 Gew.-% Zellstoffkurzfaser, bezogen auf das Gesamtgewicht der Kurzfasern. Die Zellstoffkurz- faser und die Viskosekurzfaser haben eine Länge von 4-8 mm, bevorzugt von etwa 6 mm und ein Länge-zu-Gewicht-Verhältnis von 3- 4 dtex. Die Schicht umfasst weiter 5-15 Gew.-% einer BIKO-Binde- kurzfaser, bezogen auf das Gesamtgewicht von Kurzfasern und Bindekurzfaser. Der Tampon hat eine Absorptionsfähigkeit von mindestens 4 g/g unter Belastung, eine Steifigkeit von mindestens 20N und ein Expansionsvermögen von mindestens 150%.
Die Erfindung wird im nachstehenden Beispiel weiter beschrieben. Das Beispiel dient lediglich dem Zweck der Veranschaulichung und sollte nicht in irgendeiner Form als einschränkend interpretiert werde .
MESSVERFAHREN BESTIMMUNG DER FEUCHTIGKEIT VON FASERN
1. Wasserdampfdichte Behälter werden bei Raumtemperatur und der Temperatur, bei der die Faserproben nach der Ofentrocknung gewogen werden, mit einer Genauigkeit von ± 0,005 g gewogen, und die Werte T^>p (Taragewicht bei Raumtemperatur) und TJJ (Taragewicht heiß) notiert. Es ist darauf zu achten, dass die- Bestimmung von GH mit geöffnetem Deckel durchgeführt wird.
2. Eine Faserprobe (ca. 5 g) wird in den Behälter gegeben, der Behälter wird mit dem Deckel wasserdampfdicht verschlossen, und mit einer Genauigkeit von ±0,005 g gewogen. Der Wert GRT (Gewicht bei Raumtemperatur) wird notiert.
3. Der Deckel des Behälters wird abgenommen, und Behälter und Deckel werden in einen Heißluftofen mit einer Temperatur von 105 ± 3°C gestellt.
4. Das Trocknen wird während mindestens drei Stunden durchgeführt, beispielsweise über Nacht. Während des Trocknungszeitraums darf der Ofen nicht geöffnet werden.
5. Noch im Ofen werden die Behälter wasserdampfdicht mit den Deckeln verschlossen. Der verschlossene Behälter wird bei der gleichen Temperatur gewogen, bei der GJJ gemessen worden ist. Der Wert wird als GJJ (Gewicht heiß) notiert.
6 . Berechnung:
% Feuchtigkeit = x l00
BEISPIEL
Nach Vorversuchen, bei denen er Einfluss eines auf den Fasern vorhandenen Finishs festgestellt worden war, sowie ein geringerer Einfluss der Feuchtigkeit der Fasern, wurden Fasern mit der in Tabelle 1 angegebenen Spezifikation hergestellt. Die Kurzfa- Länge-zu-Gewicht-Verhältnis von 3,3 dtex und einer Länge von 5 mm, erhalten durch Trockenschnitt unter Verwendung eines Guillotineverfahrens. Das verwendete Finish war Polyglykolpal i- tatstearatester.
Die Fasern wurden danach zur Herstellung von Airlaidvliesen verwendet, unter Verwendung einer Danweb Airlaidanlage mit 4 Legeköpfen und einer Legebreite von 600 mm. Die Anlage ist für Multibonding sowie zur Herstellung von Latex-gebundenen und thermisch gebundenen Produkten geeignet. Der Bohrungsdurchmesser der Legeköpfe betrug 4,5 mm.
Die Fasern der Proben 1-5 wurden in Kombination mit einer Binde- faser Trevira T255 (PΞT/PE) mit einem Länge-zu-Gewicht-Verhält- nis von 3 , 0 dtex und einer Länge von 6 mm, in einem Gewichtsverhältnis von Rayonfaser:Bindefaser von 93:7 eingesetzt. Die Umgebungsbedingungen waren 23 °C und 73% relative Luftfeuchtigkeit, das Soll-Flächengewicht betrug 180-220 g/m.2, bei einer Dichte von 0,04 g/cm3.
Um den Maximaldurchsatz der Airlaidanlage zu bestimmen wird die Maximalmenge an Fasern ermittelt, welche durch die Legeköpfe transportiert wird ohne sie zu blockieren. Zusätzlich muss das Basisgewicht stabil bleiben, mit einer maximalen Abweichung von ± 10% vom Sollwert sowohl in Maschinenrichtung als auch in Querrichtung. Die maximale Kapazität ist die maximale, den Legekδp- fen zugeführte Fasermenge pro Zeiteinheit, gemessen an der Faserzudosiervorrichtung.
Der Versuch wurde nacheinander mit den Proben 1-5 durchgeführt, wobei die Feuchtigkeits- und/oder Finishwerte somit von Versuch zu Versuch erhöht wurden, um so eine Kontamination des Systems durch Fasern mit höherer Feuchtigkeit oder Finishmenge zu vermeiden.
In jedem Versuch wurde die Faserzufuhr bis zu dem Punkt erhöht, bei dem eine Faserakkumulation in den Legeköpfen auftrat . Die letzte stabile Einstellung ist der maximale Durchsatz in der Airlaidanlage. Die Airlaidanlage verwendete zwei von vier Legeköpfen. Die Ergebnisse der Versuche sind in Tabelle 1 zusam- mengefasst .
Tabelle 1
Feuchtigkeit: gemessen nach dem hierin beschriebenen Verfahren
Finishtyp : Polyglykolpalmitatstearatester
Maximaler Durchsatz: angegeben in kg/h pro 2 Legekδpfe
Die Ergebnisse sind in den Figuren 1 und 2 graphisch dargestellt. Die Ergebnisse zeigen insbesondere:
1. Eine höhere Finishmenge sowie höhere Feuchtigkeit steigern den Durchsatz von Viskosefasern auf der Airlaidanlage.
2. Eine Erhöhung der Feuchtigkeit von 4,1% auf 8,7% bei vergleichbarer Finishmenge erhöht den Durchsatz von 120,5 auf 154,0 kg (+ 28%) (Fig. 1) .
3. Eine Erhöhung der Finishmenge von 0,052 auf 0,085 und weiter auf 0,16, bei vergleichbarer Feuchtigkeit, erhöht den Durchsatz von 154 auf 170,1 kg (+ 10%), bzw. auf 222,6 kg (+ 45%) (Fig. 2).
4. Der höchste Durchsatz wurde mit 9,3% Feuchtigkeit und 0,16% Finish erhalten. Die graphische Auswertung in den Figuren 1 und 2 deutet an, dass bei weiterer Erhöhung der Feuchtigkeit und/oder des Finish eine weitere Steigerung des Durchsatzes erwartet werden kann. 5. Die in diesen Versuchen erreichten Durchsätze übertrafen alle bisherigen Ergebnisse mit Synthesefasern auf der verwendeten Airlaidanlage.
6. Es wird davon ausgegangen, dass die in diesen Versuchen erreichten Durchsätze auch die Maximaldurchsätze von 100% Zellstoff übertreffen. Für die verwendeten Köpfe mit 4,5 mm Bohrungen liegen noch keine gesicherten Daten vor, bei Legekδpfen mit 4,0 mm Bohrungen liegen die Maximalwerte für 100% bei etwa 80 kg/h pro Legekopf, d.h. 160 kg/h pro zwei Legeköpfe.

Claims

Patentansprüche
1. Verfahren zur Herstellung eines Faservlieses, umfassend das Ablegen mindestens einer Kurzfasern umfassenden Schicht nach einem Airlaidverfahren, wobei mindestens ein Teil der Kurzfasern mit einem Finish in einer Menge von größer 0,035 Gew.-%, bezogen auf das Fasergewicht der Finish-enthaltenden Kurzfasern, versehen ist.
2. Verfahren nach Anspruch 1, wobei die Schicht Kurzfasern in einer Menge von 70-99 Gew.-% und Bindematerial in einer Menge von 1-30 Gew.-%, bezogen auf das Gesamtgewicht von Kurzfasern und Bindematerial umfasst.
3. Verfahren nach Anspruch 2, wobei das Bindematerial Bindekurzfasern umfasst.
4. Verfahren nach Anspruch 3, wobei die Bindekurzfasern Mehrkomponentenfasern sind.
5. Verfahren nach Anspruch 4, wobei die Bindekurzfasern Zweikomponentenfasern, umfassend einen Polesterkern und einen Polyethylenmantel , sind.
6. Verfahren nach einem der Ansprüche 2 bis 5, wobei die Bindekurzfasern ein Länge-zu-Gewicht-Verhältnis von 1,0 bis 6,0 dtex haben.
7. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Kurzfaserrn eine Feuchtigkeit im Bereich von 4 bis 16% aufweisen.
8. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Kurzfasern Zellstoffkurzfasern, Baumwollkurzfasern, zellulosische Chemiekurzfasern, Synthesekurzfasern oder eine Kombination davon umfassen.
9. Verfahren nach Anspruch 8, wobei die Kurzfasern Viskosekurzfasern umfassen und mindestens ein Teil der Viskosekurzfasern mit dem Finish versehen ist.
10. Verfahren nach Anspruch 9, wobei mindestens ein Teil der Viskosekurzfasern einen mehrgliedrigen Querschnitt aufweist.
11. Verfahren nach Anspruch 10, der mehrgliedrige Querschnitt ein dreigliedriger Querschnitt ist.
12. Verfahren nach einem der Ansprüche 9 bis 11, wobei die Kurzfasern die Viskosefasern in einer Menge von größer 85 Gew.-%, bezogen auf das Gesamtgewicht der Kurzfasern, umfassen.
13. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Kurzfasern eine Länge im Bereich von 4-8 mm aufweisen.
14. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Kurzfasern ein Länge-zu-Gewicht-Verhältnis von 1,0 bis 6,0 dtex aufweisen.
15. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Schicht weiterhin superabsorbierendes Material umfasst.
16. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Finish ausgewählt wird aus
(a) Ester- und Etherderivaten von Polyethylenoxid und Polypropylenoxid der allgemeinen Formel :
Rl-(C0)o-0- [-CH2- (CH )m-0-]n- (CO)p-Rl
worin Rl unabhängig voneinander bei jedem Vorkommen jeweils ein gesättigter oder ungesättigter Kohlenwasserstoffrest mit 12-22, insbesondere 14-20 Kohlenstoffen, ist, der gegebenenfalls eine oder mehrere freie Hydroxylgruppen aufweisen kann, o und p unabhängig voneinander 0 oder 1 sind, m gleich 0 oder 1 ist, und n gleich 1-15, bevorzugt 3-11, insbesondere 4-7 ist,
(b) Mono-, Di- und Triestern von Sorbitanen mit Fettsäuren der Formel Rl-COOH, worin Rl unabhängig bei jedem Vorkommen wie vorstehend definiert ist, (c) Mono-, Di- und Triglyzeriden von Fettsäuren der Formel Rl-COOH, worin Rl unabhängig bei jedem Vorkommen wie vorstehend definiert ist,
(d) Imidazoliumethosulfaten und -methosulfaten,
(e) ethoxylierten und propoxylierten Derivaten der Verbindungen nach (a) , (b) , (c) und (d) , und
(f) Gemischen von Verbindungen nach (a) , (b) , (c) , (d) oder/und (e) .
17. Verfahren nach einem der vorhergehenden Ansprüche, wobei die mindestens eine Kurzfasern umfassende Schicht auf einer Faserlage abgelegt wird.
18. Verfahren nach Anspruch 17, wobei die Fäserlage eine Kurzfasern umfassende Schicht ist, welche nach einem Airlaidverfahren abgelegt worden ist.
19. Verfahren nach einem der vorhergehenden Ansprüche, umfassend das Ablegen von zwei oder drei Kurzfasern umfassenden Schichten.
20. Faservlies, umfassend mindestens eine Kurzfasern umfassende Schicht, wobei mindestens ein Teil der Kurzfasern mit einem Finish in einer Menge von größer 0,035 Gew.-%, bezogen auf das Fasergewicht der Finish-enthaltenden Kurzfasern, versehen ist.
21. Faservlies nach Anspruch 20, wobei die Schicht Kurzfasern in einer Menge von 70-99 Gew.-% und Bindematerial in einer Menge von 1-30 Gew.-%, bezogen auf das Gesamtgewicht von Kurzfasern und Bindematerial, umfasst.
22. Faservlies nach Anspruch 21, wobei das Bindematerial Bindekurzfasern umfasst.
23. Faservlies nach Anspruch 22, wobei die Bindekurzfasern Mehrkomponentenfasern sind.
24. Faservlies nach Anspruch 23, wobei die Bindekurzfasern Zweikomponentenfasern, umfassend einen Polesterkern und einen Polyethylenmantel, sind.
25. Faservlies nach einem der Ansprüche 22 bis 24, wobei die Bindekurzfasern ein Länge-zu-Gewicht-Verhältnis von 1,0 bis 6,0 dtex haben.
26. Faservlies nach einem der Ansprüche 20 bis 25, wobei die Kurzfasern Zellstoffkurzfasern, Baumwollkurzfasern, zellulosische Chemiekurzfasern, Synthesekurzfasern oder eine Kombination davon umfassen.
27. Faservlies nach Anspruch 26, wobei die Kurzfasern Viskosekurzfasern umfassen und die Viskosefasern mit dem Finish versehen sind.
28. Faservlies nach Anspruch 27, wobei mindestens ein Teil der Viskosekurzfasern einen mehrgliedrigen Querschnitt aufweist.
29. Faservlies nach Anspruch 28, wobei der mehrgliedrige Querschnitt ein dreigliedriger Querschnitt ist.
30. Faservlies nach einem der Ansprüche 27 bis 29, wobei die Kurzfasern die Viskosefasern in einer Menge größer 85 Gew.-%, bezogen auf das Gesamtgewicht der Kurzfasern, umfassen.
31. Faservlies nach einem der Ansprüche 20 bis 30, wobei die Kurzfasern eine Länge im Bereich von 4-8 mm aufweisen.
32. Faservlies nach einem der Ansprüche 20 bis 31, wobei die Kurzfasern ein Länge-zu-Gewicht-Verhältnis von 1,0 bis 6,0 dtex aufweisen.
33. Faservlies nach einem der Ansprüche 20 bis 32, wobei die Schicht weiterhin superabsorbierendes Material umfasst.
34. Faservlies nach einem der Ansprüche 20 bis 33, wobei das Finish ausgewählt ist aus
(a) Ester- und Etherderivaten von Polyethylenoxid und Polypropylenoxid der allgemeinen Formel :
Rl- (C0)o-0- [-CH2- (CH2)m-0-]n- (CO)p-Rl
worin Rl unabhängig voneinander bei jedem Vorkommen jeweils ein gesättigter oder ungesättigter Kohlenwasserstoffrest mit 12-22, insbesondere 14-20 Kohlenstoffen, ist, der gegebenenfalls eine oder mehrere freie Hydroxylgruppen aufweisen kann, o und p unabhängig voneinander 0 oder 1 sind, m gleich 0 oder 1 ist, und n gleich 1-15, bevorzugt 3-11, insbesondere 4-7 ist,
(b) Mono-, Di- und Triestern von Sorbitanen mit Fettsäuren der Formel Rl-COOH, worin Rl unabhängig bei jedem Vorkommen wie vorstehend definiert ist,
(c) Mono-, Di- und Triglyzeriden von Fettsäuren der Formel Rl-COOH, worin Rl unabhängig bei jedem Vorkommen wie vorstehend definiert ist,
(d) Imidazoliumethosulfaten und -methosulfaten
(e) ethoxylierten und propoxylierten Derivaten der Verbindungen nach (a) , (b) , (c) und (d) , und
(f) Gemischen von Verbindungen nach (a) , (b) , (c) , (d) oder/und (e) .
35. Mehrschichtiges Faservlies, umfassend mindestens eine Schicht eines Faservlieses nach einem der Ansprüche 20 bis 34.
36. Kurzfaser mit einem Finish in einer Menge größer 0,035 Gew.- %, bezogen auf das Fasergewicht.
37. Kurzfaser nach Anspruch 36, wobei die Kurzfaser eine Viskosefaser ist.
38. Kurzfaser nach Anspruch 37, wobei die Kurzfaser einen mehrgliedrigen Querschnitt hat.
39. Kurzfaser nach einem der Ansprüche 36 bis 38, mit einem Länge-zu-Gewicht-Verhältnis von 1,0 bis 6,0 dtex.
40. Kurzfaser nach einem der Ansprüche 36 bis 39, wobei das Finish ausgewählt ist aus
(a) Ester- und Etherderivaten von Polyethylenoxid und Polypropylenoxid der allgemeinen Formel :
Rl- (C0)o-0- [-CH2- (CH2)m-0-]n- (CO)p-Rl
worin Rl unabhängig voneinander bei jedem Vorkommen jeweils ein gesättigter oder ungesättigter Kohlenwasserstoffrest mit 12-22, insbesondere 14-20 Kohlenstoffen, ist, der gegebenenfalls eine oder mehrere freie Hydroxylgruppen aufweisen kann, o und p unabhängig voneinander 0 oder 1 sind, m gleich 0 oder 1 ist, und n gleich 1-15, bevorzugt 3-11, insbesondere 4-7 ist,
(b) Mono-, Di- und riestern von Sorbitanen mit Fettsäuren der Formel Rl-COOH, worin Rl unabhängig bei jedem Vorkommen wie vorstehend definiert ist,
(c) Mono-, Di- und Triglyzeriden von Fettsäuren der Formel Rl-COOH, worin Rl unabhängig bei jedem Vorkommen wie vorstehend definiert ist,
(d) Imidazoliumethosulfaten und -methosulfaten, und
(e) ethoxylierten und propoxylierten Derivaten der Verbindungen nach (a) , (b) , (c) und (d) , und
(f) Gemischen von Verbindungen nach (a) , (b) , (c) , (d) oder/und (e) .
41. Verwendung einer Kurzfaser nach einem der Ansprüche 36 bis 40 in einem Airlaid-Verfahren.
42. Absorbierender Gegenstand, umfassend ein Faservlies nach einem der Ansprüche 20 bis 35, mit einer Absorptionsfähigkeit von mindestens 3 g/g Faservlies.
43. Absorbierender Gegenstand nach Anspruch 42, wobei der Gegenstand ein Kδrperhygienegegenstand ist .
44. Absorbierender Gegenstand nach Anspruch 43 , wobei der Körperhygienegegenstand ein Tampon, eine Damenbinde, eine Windel oder ein Inkontinenzartikel ist .
45. Absorbierender Gegenstand nach Anspruch 42, wobei der Gegenstand ein Haushaltsgegenstand, ein Industriegegenstand oder ein medizinischer Gegenstand ist.
EP04739911A 2003-06-16 2004-06-15 Airlaidverfahren mit verbessertem durchsatz Withdrawn EP1633923A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10327026A DE10327026B4 (de) 2003-06-16 2003-06-16 Airlaidverfahren mit verbessertem Durchsatz, Faservlies, Verwendung einer Viskosekurzfaser und Absorbierender Gegenstand
PCT/EP2004/006441 WO2004113608A2 (de) 2003-06-16 2004-06-15 Airlaidverfahren mit verbessertem durchsatz

Publications (1)

Publication Number Publication Date
EP1633923A2 true EP1633923A2 (de) 2006-03-15

Family

ID=33520610

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04739911A Withdrawn EP1633923A2 (de) 2003-06-16 2004-06-15 Airlaidverfahren mit verbessertem durchsatz

Country Status (12)

Country Link
US (1) US20070266503A1 (de)
EP (1) EP1633923A2 (de)
JP (1) JP4792391B2 (de)
KR (1) KR101121362B1 (de)
AR (1) AR044784A1 (de)
AU (1) AU2004249862B2 (de)
BR (1) BRPI0411471A (de)
CA (1) CA2528421A1 (de)
DE (1) DE10327026B4 (de)
MX (1) MXPA05013207A (de)
WO (1) WO2004113608A2 (de)
ZA (1) ZA200509720B (de)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004009556A1 (de) * 2004-02-25 2005-09-22 Concert Gmbh Verfahren zur Herstellung einer Faserbahn aus Cellulosefasern in einem Trockenlegungsprozess
US8293968B2 (en) 2005-04-29 2012-10-23 Kimberly-Clark Worldwide, Inc. Dual mode absorbent tampon
US20070018364A1 (en) * 2005-07-20 2007-01-25 Pierre Riviere Modification of nonwovens in intelligent nips
US8827974B2 (en) 2005-12-30 2014-09-09 Kimberly-Clark Worldwide, Inc. Absorbent tampon for feminine hygiene
CN102575393B (zh) 2009-10-21 2015-01-21 3M创新有限公司 多孔支承制品及其制备方法
DE102009055951A1 (de) 2009-11-27 2011-06-01 Glatfelter Falkenhagen Gmbh Absorbierende Struktur
CN102883693B (zh) 2010-01-28 2017-04-26 格拉特费尔特法尔肯哈根股份有限责任公司 柔性的高吸收性材料
DE102010006228A1 (de) 2010-01-28 2011-08-18 Glatfelter Falkenhagen GmbH, 16928 Flexibles, stark absorbierendes Material
US20110184365A1 (en) 2010-01-28 2011-07-28 Glatfelter Falkenhagen Gmbh Flexible, highly absorbent material
DK2576881T3 (en) * 2010-05-25 2018-10-29 Ananas Anam Ltd NATURAL NON-WOVEN MATERIALS
US9027765B2 (en) 2010-12-17 2015-05-12 Hollingsworth & Vose Company Filter media with fibrillated fibers
US9814630B2 (en) 2010-12-23 2017-11-14 Kimberly-Clark Worldwide, Inc. Vaginal insert device having a support portion with plurality of foldable areas
US9022919B2 (en) 2010-12-23 2015-05-05 Kimberly-Clark Worldwide, Inc. Vaginal insert device having a support portion with plurality of struts
US8530721B2 (en) 2011-03-18 2013-09-10 Kimberly-Clark Worldwide, Inc. Resilient tampon and method for making
US20130115451A1 (en) * 2011-09-27 2013-05-09 FiberVision Corporation Bonding fiber for airlaid multi-layer products and process for production of said airlaid multi-layer products
US8911344B2 (en) 2011-12-20 2014-12-16 Kimberly-Clark Worldwide, Inc. Vaginal insert device having perpendicular segments
US9352267B2 (en) 2012-06-20 2016-05-31 Hollingsworth & Vose Company Absorbent and/or adsorptive filter media
US8882876B2 (en) 2012-06-20 2014-11-11 Hollingsworth & Vose Company Fiber webs including synthetic fibers
US9511330B2 (en) 2012-06-20 2016-12-06 Hollingsworth & Vose Company Fibrillated fibers for liquid filtration media
US10137392B2 (en) 2012-12-14 2018-11-27 Hollingsworth & Vose Company Fiber webs coated with fiber-containing resins
DE112015002324T5 (de) * 2014-06-11 2017-03-23 Fibervisions, L.P. Mischfaserfllter
CN106012295A (zh) * 2016-08-03 2016-10-12 江苏盛纺纳米材料科技股份有限公司 一种纳米纤维热风亲水非织造材料及制备方法
EP3534857B1 (de) 2016-11-07 2023-07-12 The Procter & Gamble Company Tampon
KR20180001590U (ko) * 2016-11-18 2018-05-29 권영원 미용 마스크 팩 제조용 섬유기재
US20230372573A1 (en) * 2022-05-17 2023-11-23 Better Made Hemp, LLC Hemp-based absorbent article

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3093502A (en) * 1959-12-30 1963-06-11 Johnson & Johnson Nonwoven fabrics and methods of manufacturing the same
GB1029651A (en) * 1961-03-01 1966-05-18 British United Shoe Machinery Improvements in or relating to fibrous sheet material
US3617439A (en) * 1969-01-02 1971-11-02 Buckeye Cellulose Corp Process for improving comminution pulp sheets and resulting air-laid absorbent products
US4432834A (en) * 1978-10-25 1984-02-21 Nalco Chemical Company Additive for felted cellulose fibers
GR79230B (de) * 1982-06-30 1984-10-22 Procter & Gamble
US4575376A (en) * 1983-11-07 1986-03-11 International Playtex Method for increasing the absorbency of cellulosic fibers
US4540521A (en) * 1984-01-16 1985-09-10 National Distillers And Chemical Corporation Liquid quaternary ammonium antistatic compositions
JPS63303184A (ja) * 1987-05-29 1988-12-09 松本油脂製薬株式会社 バインダ−繊維用処理剤
US5234720A (en) * 1990-01-18 1993-08-10 Eastman Kodak Company Process of preparing lubricant-impregnated fibers
JPH0551872A (ja) * 1991-08-09 1993-03-02 Matsumoto Yushi Seiyaku Co Ltd バインダー繊維用処理剤
US5308896A (en) * 1992-08-17 1994-05-03 Weyerhaeuser Company Particle binders for high bulk fibers
JP3278288B2 (ja) * 1994-04-12 2002-04-30 日本バイリーン株式会社 絡合不織布およびこれを用いた芯地
US5505719A (en) * 1994-06-30 1996-04-09 Mcneil-Ppc, Inc. Multilayered absorbent structures
CA2256550A1 (en) * 1996-06-19 1997-12-24 Chisso Corporation Nonwoven short fibre fabric and absorbent article made by using same
WO1998017746A1 (en) * 1996-10-24 1998-04-30 Fibervisions A/S Polyolefin fibres and method for the production thereof
US20020032421A1 (en) * 1997-04-24 2002-03-14 John B Scott Nonwoven, absorbent fibrous web and method of manufacture
JPH11107164A (ja) * 1997-09-30 1999-04-20 Kawashima:Kk 医療用ディスポーザブルシーツおよびその製造方法
JP4221849B2 (ja) * 1998-11-20 2009-02-12 チッソ株式会社 熱接着性複合繊維、繊維集合体およびそれを用いた不織布
US6344109B1 (en) * 1998-12-18 2002-02-05 Bki Holding Corporation Softened comminution pulp
US6554814B1 (en) * 1999-05-10 2003-04-29 The Procter & Gamble Company Protection tampon and method of making
JP3404555B2 (ja) * 1999-09-24 2003-05-12 チッソ株式会社 親水性繊維及び不織布、それらを用いた不織布加工品
US6378179B1 (en) * 2001-01-05 2002-04-30 Gary F. Hirsch System and method for reconstituting fibers from recyclable waste material
US6759567B2 (en) * 2001-06-27 2004-07-06 Kimberly-Clark Worldwide, Inc. Pulp and synthetic fiber absorbent composites for personal care products

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004113608A2 *

Also Published As

Publication number Publication date
JP2007526950A (ja) 2007-09-20
ZA200509720B (en) 2007-03-28
DE10327026B4 (de) 2010-11-04
KR101121362B1 (ko) 2012-03-09
WO2004113608A3 (de) 2005-04-21
US20070266503A1 (en) 2007-11-22
AU2004249862B2 (en) 2010-08-19
AU2004249862A1 (en) 2004-12-29
DE10327026A1 (de) 2005-01-20
BRPI0411471A (pt) 2006-07-11
KR20060025553A (ko) 2006-03-21
JP4792391B2 (ja) 2011-10-12
WO2004113608A2 (de) 2004-12-29
MXPA05013207A (es) 2006-03-09
AR044784A1 (es) 2005-10-05
CA2528421A1 (en) 2004-12-29

Similar Documents

Publication Publication Date Title
DE10327026B4 (de) Airlaidverfahren mit verbessertem Durchsatz, Faservlies, Verwendung einer Viskosekurzfaser und Absorbierender Gegenstand
DE60312918T2 (de) Verbesserte bindefasern und vliesstoff mit bindefasern und absorbierendem material
AT512621B1 (de) Hygieneprodukt
DE69826504T2 (de) Multikomponenten-fasern
DE3720031C2 (de)
EP2917398B1 (de) Zusammensetzung zur permanenten hydrophilierung von polyolefinfasern und deren verwendung
DE102014103393A1 (de) Vliessubstrate
DE112014002457T5 (de) Wasserstrahlverfestigte Faserstrukturen
EP3077590B1 (de) Verwendung einer tensidzusammensetzung zur hydrophilen ausrüstung von textilfasern und daraus hergestellten textilerzeugnissen
DE10227246A1 (de) Aerodynamisch gebildetes Vlies mit hochmoduligen Fasern
DE69915673T2 (de) Materialstruktur zur verwendung in absorbierenden artikeln, und absorbierender artikel, der eine solche materialstruktur enthält
DE112014001475T5 (de) Tücher mit verbesserten Eigenschaften
WO2005051439A1 (de) Absorbierender hygieneartikel
EP3237675B1 (de) Zusammensetzung zur permanent-hydrophilen ausrüstung von textilfasern und textilerzeugnissen
DE69936684T2 (de) Verfahren zur Verbesserung und Regulierung der Haftfestigkeit zwischen Cellulosefasern oder eines Cellulose-Synthesefaser-Gemischs in einem Verfahren zur Herstellung von Vlieserzeugnissen
DE102006000781A1 (de) Deck- und Transferschichtstruktur für einen Hygieneartikel
EP1066809B1 (de) Aufnahme- und Verteilungselement für Flüssigkeiten in absorbierenden Artikeln
DE10227247A1 (de) Trockenvlies mit Synthesehohlfasern
DE3317724A1 (de) Fasern auf cellulosebasis, insbesondere fuer die herstellung von vliesen, vlies mit solchen fasern und verfahren zur herstellung der fasern
EP0914512B1 (de) Verfahren zur hydrophilen ausrüstung von fasern oder vliesstoffen
EP1141472A2 (de) Verfahren zur hydrophilen ausrüstung von fasern
DE10257730B4 (de) Verwendung einer Mischung zur Herstellung hydrophiler Polyolefinmaterialien

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051209

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): GB TR

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): GB TR

17Q First examination report despatched

Effective date: 20080305

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KIMBERLY-CLARK GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100916