EP1630914B1 - Vertically emitting semiconductor laser with external resonator and its method of fabrication - Google Patents

Vertically emitting semiconductor laser with external resonator and its method of fabrication Download PDF

Info

Publication number
EP1630914B1
EP1630914B1 EP20050016990 EP05016990A EP1630914B1 EP 1630914 B1 EP1630914 B1 EP 1630914B1 EP 20050016990 EP20050016990 EP 20050016990 EP 05016990 A EP05016990 A EP 05016990A EP 1630914 B1 EP1630914 B1 EP 1630914B1
Authority
EP
European Patent Office
Prior art keywords
current
region
emitting semiconductor
semiconductor laser
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20050016990
Other languages
German (de)
French (fr)
Other versions
EP1630914A1 (en
Inventor
Wolfgang Schmid
Klaus Streubel
Norbert Linder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Publication of EP1630914A1 publication Critical patent/EP1630914A1/en
Application granted granted Critical
Publication of EP1630914B1 publication Critical patent/EP1630914B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3054Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure p-doping

Definitions

  • the present invention relates to a vertically emitting semiconductor laser according to the preamble of claim 1 and a method for its production.
  • a generic radiation-emitting semiconductor laser is for example from the document WO 02/13334 A2 known.
  • a vertically emitting laser in the form of a so-called VCSEL (Vertical Cavity Surface Emitting Laser).
  • This VCSEL has a semiconductor body with a laser resonator formed by two resonator mirrors, wherein in the laser resonator inter alia an active layer and a current constriction layer are arranged.
  • the Stromeinschnürungstik used in operation to concentrate the operating current to a small portion of the active layer to generate there required for laser operation population inversion.
  • Such surface emitting VCSELs are characterized by a high beam quality, but have a comparatively low optical output power.
  • the electrical heat loss Beam quality or stability could adversely affect.
  • VECSELs Very External Cavity Surface Emitting Lasers
  • Such semiconductor lasers with an external resonator usually have a much larger lateral extent than a VCSEL and are operated at correspondingly higher powers.
  • the diameter of a VECSEL is in the range of 10 ⁇ m or even more. Due to the widely differing lateral dimensioning, the concepts for guiding the operating current in a VCSEL are generally not transferable to a VECSEL.
  • An external-cavity vertically-emitting semiconductor laser comprises a radiation-emitting semiconductor body having a vertical emission direction, comprising a current-guiding layer disposed within the semiconductor body having a current blocking region and a current transmitting region, and a radiation-generating active layer, the external resonator having a predetermined resonator volume overlapping with the current-passing region ,
  • the operating current is led to a region in the semiconductor body which is suitable for generating radiation within the resonator volume.
  • a coupling of the operating current is made possible via an electrical contact arranged outside the resonator volume, so that on the one hand this contact does not hinder the radiation extraction and on the other hand, an advantageous current flow is ensured for an efficient laser operation.
  • a radiation exit side is provided in the semiconductor body and a predetermined radiation exit region is provided on the radiation exit side, an electrical contact for impressing the operating current being arranged in the semiconductor body outside this radiation exit region.
  • the current blocking region of the current-carrying layer is arranged downstream of the electrical contact in the vertical direction, so that a current flow outside the resonator volume of the external resonator, which does not or only inefficiently contributes to the generation of radiation, is avoided.
  • the current blocking region is formed by means of at least one pn junction blocking during operation.
  • Such blocking pn junctions can be produced with relatively little technical effort.
  • the current-carrying layer is arranged between two cladding layers of a first conductivity type and has a second conductivity type in the current-blocking region.
  • the current-carrying layer in the current blocking region in conjunction with the adjacent cladding layers in each case forms a pn junction, wherein the forward directions of these pn junctions are opposite to one another and thus prevent current flow through the current blocking region.
  • the current-carrying layer has the first one Line type, so that in this area no blocking pn junctions are arranged.
  • the current-carrying layer is doped in the current-carrying region with dopants of the first and the second conductivity type. This facilitates the production of a corresponding semiconductor body, since first the current-carrying layer can be doped continuously with dopants of the second conductivity type. Subsequently, the current-carrying layer is selectively doped in the current-conducting region with a dopant of the first conductivity type in such a way that the doping of the first conductivity type predominates and the conductivity type is reversed so that overall the current-conducting region has the first conductivity type.
  • a mirror structure for forming the external resonator is furthermore arranged in the semiconductor body.
  • the mirror structure may be formed, for example, as a Bragg mirror. This facilitates the construction of the external resonator, since in addition to the semiconductor body only an external mirror is required.
  • the external resonator mirror is preferably a concave mirror, by which the laser radiation is more preferably coupled out.
  • a suitable dimensioning of the radius of curvature to the resonator length such a resonator has an advantageously increased stability compared to a Fabry-Perot resonator with planar resonator mirrors.
  • the semiconductor body is formed by an epitaxial process, successively growing a first cladding layer of a first conductivity type, the second conductivity type current-conducting layer, and a second cladding layer of the first conductivity type, and subsequently the current-guiding layer within the current passage region is doped with a dopant such that the current passage region has the first conductivity type.
  • a dopant source with the corresponding dopant is preferably applied in a structured manner to the second cladding layer in a region downstream of the current passage region in the vertical direction and subsequently the dopant diffuses into the current passage region. After the diffusion process, the dopant source can be removed again.
  • a semiconductor body 1 seen in the vertical direction comprises a substrate 2, a mirror layer 3, an active layer 4, a first cladding layer 5, a current-carrying layer 6 and a second cladding layer 7.
  • a first electrical contact 9 preferably in the form of a ring contact, is formed.
  • a continuous electrical contact 10 is arranged on the opposite side of the semiconductor body.
  • the laser resonator is formed by the mirror layer 3 and an external mirror 11, preferably with a curved mirror surface.
  • the mirror layer 3 can be embodied in a manner known per se as a Bragg mirror having a plurality of alternating semiconductor layers with different refractive indices.
  • As a material system for such layers for example, GaAs / AlGaAs is suitable, wherein the layer sequence is composed of layer pairs 3a, 3b with different aluminum content.
  • a metal mirror or a dielectric mirror may be provided, in which case the substrate 2 may be expediently eliminated.
  • this mirror can also be used as a contact 10.
  • the current-carrying layer 6 is arranged between two cladding layers 5 and 7 of a first conductivity type and also has the first conductivity type in the current-carrying region 13.
  • the current-carrying layer 6 has a second conductivity type, so that seen in the vertical direction together with the adjacent cladding layers 5 and 7, two pn junctions with opposite forward direction are formed which prevent a vertical current flow in the current blocking region 12.
  • an n-doped GaAs substrate may be provided as the substrate 2, onto which an n-doped GaAs / AlGaAs Bragg mirror is grown.
  • the active layer 4 is preferably designed as a single or multiple quantum well structure (SQW - single quantum well or MQW - multiple quantum well).
  • Such quantum well structures usually have one (SQW) or several (MQW) quantum well layers, which are arranged between barrier layers.
  • the quantum well structures may contain InGaP, InGaAs or GaAs quantum well layers and / or AlInGaP or AlGaAs barrier layers, respectively.
  • spacer layers can be provided between the individual quantum wells.
  • quantum well structure encompasses any structure in which charge carriers undergo quantization of their energy states by confinement.
  • Name Quantum well structure No information about the dimensionality of the quantization. It thus includes quantum wells, quantum wires and quantum dots and any combination of these structures.
  • the active layer 4 for example, a p-type InGaP layer embedded between two AlGaInP layers is suitable.
  • a p-doped first cladding layer 5 a current-carrying layer 6 n-doped in the current blocking regions 12 and p-doped in the current-carrying region 13, and a p-doped second cladding layer 7.
  • These three semiconductor layers 5, 6 and 7 can For example, AlGaAs or AlGaInP included. In this way, a blocking npn junction, that is to say a series connection of two opposite pn junctions, is formed in the current blocking regions 12.
  • the lateral width of the current passage region 13 is selected in the invention such that the current passage region overlaps with the predetermined resonator volume 14 of the external resonator, wherein the current passage region is preferably wider than the lateral cross section of the resonator volume 14 in the region of the current-carrying layer 6 shown embodiment, in particular by the resonator length in conjunction with the radius of curvature of the external mirror 11 set.
  • the 1 / e 2 radius of the basic electromagnetic field in the Gaussian approximation can be used as resonator limit in the present invention.
  • FIG. 1 In the Figures 2a, 2b and 2c is based on three intermediate steps, an inventive manufacturing method for in FIG. 1 shown semiconductor body shown.
  • a mirror structure 3 having a sequence of layer pairs 3a, 3b with a different refractive index, an active layer 4, a first cladding layer 5, a current-carrying layer 6 and a second cladding layer 7 is first epitaxially grown on a substrate 2.
  • the first cladding layer 5 continuously has a first conductivity type
  • the current-carrying layer 6 has a second conductivity type continuously
  • the second cladding layer 7 has the first conductivity type.
  • the first cladding layer 5 may be p-doped
  • the current-carrying layer 6 may be n-doped
  • the second cladding layer 7 may again be p-doped.
  • the current blocking region 12 and the current passage region 13 of the current-carrying layer 6 are formed.
  • a dopant source 15 is applied in a structured manner to the second cladding layer 7, in a region downstream of which the current passage region 13 is arranged in the vertical direction.
  • the dopant source 15 contains a dopant of the first conductivity type, which is subsequently diffused into the underlying layers and in particular into the current-carrying layer 6.
  • the doping is carried out in such a way that in the current passage region 13 of the current-carrying layer 6, the conductivity type is reversed. In this way, a vertical current path of the first conductivity type is formed in the current passage region.
  • a dopant for the above-mentioned semiconductor materials for example, zinc is suitable.
  • an electrical contact 9, for example a ring contact, and on the opposite side of the semiconductor body a continuous electrical contact 10 corresponding thereto are subsequently formed on the radiation-decoupling side 8 of the semiconductor body.
  • the ring contact is in this case arranged so that the ring opening is arranged downstream of the current passage region 13 in the vertical direction. In this way, it is ensured that the contact 9 does not engage in the intended resonator volume and adversely affects the radiation extraction from the semiconductor body.
  • the present invention is not limited to said semiconductor materials, such that the layers of the semiconductor body also include another material such as In x Al y Ga 1-xy As where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1 and 0 ⁇ x + y ⁇ 1, In x Al y Ga 1-xy P with 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1 and 0 ⁇ x + y ⁇ 1, In x Al y Ga 1-xy N with 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1 and 0 ⁇ x + y ⁇ 1, In x Al y Ga 1-xy As u N 1-u with 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1 and 0 ⁇ u ⁇ 1, In x Al y Ga 1-xy As u P 1-u with 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1 and 0 ⁇ u ⁇ 1, and / or In x Al y Ga 1-xy As where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1 and 0 ⁇ x + y

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

Die vorliegende Erfindung bezieht sich auf einen vertikal emittierenden Halbleiterlaser nach dem Oberbegriff des Patentanspruchs 1 sowie ein Verfahren zu dessen Herstellung.The present invention relates to a vertically emitting semiconductor laser according to the preamble of claim 1 and a method for its production.

Ein gattungsgemäßer strahlungsemittierender Halbleiterlaser ist beispielsweise aus der Druckschrift WO 02/13334 A2 bekannt. Hierin ist ein vertikal emittierender Laser in Form eines sogenannten VCSEL (Vertical Cavity Surface Emitting Laser) beschrieben. Dieser VCSEL weist einen Halbleiterkörper mit einem von zwei Resonatorspiegeln gebildeten Laserresonator auf, wobei in dem Laserresonator unter anderem eine aktive Schicht und eine Stromeinschnürungsschicht angeordnet sind. Die Stromeinschnürungsschicht dient im Betrieb zur Konzentration des Betriebsstroms auf einen kleinen Teilbereich der aktiven Schicht, um dort die für den Laserbetrieb erforderliche Besetzungsinversion zu erzeugen.A generic radiation-emitting semiconductor laser is for example from the document WO 02/13334 A2 known. Herein is described a vertically emitting laser in the form of a so-called VCSEL (Vertical Cavity Surface Emitting Laser). This VCSEL has a semiconductor body with a laser resonator formed by two resonator mirrors, wherein in the laser resonator inter alia an active layer and a current constriction layer are arranged. The Stromeinschnürungsschicht used in operation to concentrate the operating current to a small portion of the active layer to generate there required for laser operation population inversion.

Derartige oberflächenemittierende VCSEL zeichnen durch eine hohe Strahlqualität aus, besitzen aber eine vergleichsweise geringe optische Ausgangsleistung. Zudem ist, wie in der oben genannten Druckschrift beschrieben, auf eine wohldefinierte Stromführung zu achten, da ansonsten aufgrund der Nähe von Strompfad und Laserresonatorvolumen in Verbindung mit den vergleichsweise geringen lateralen Ausdehnungen eines solchen Halbleiterlasers die elektrische Verlustwärme die Strahlqualität beziehungsweise die Stabilität negativ beeinflussen könnte.Such surface emitting VCSELs are characterized by a high beam quality, but have a comparatively low optical output power. In addition, as described in the cited document, to pay attention to a well-defined current flow, otherwise due to the proximity of current path and laser resonator volume in conjunction with the comparatively small lateral dimensions of such a semiconductor laser, the electrical heat loss Beam quality or stability could adversely affect.

In der Druckschrift US 5,994,723 ist beschrieben, innerhalb eines Halbleiterkörpers mit einer npnp-Schichtenfolge einen Teilbereich der oberen n-dotierten Schicht durch Eindiffundieren eines p-Dotiertstoffs p-leitend zu machen, um einen Stromfluss durch den Halbleiterkörper in diesem Teilbereich des Halbleiterkörpers zu ermöglichen.In the publication US 5,994,723 It is described to make p-type a portion of the upper n-doped layer by diffusing a p-type dopant within a semiconductor body having an npnp layer sequence in order to allow a current to flow through the semiconductor body in this portion of the semiconductor body.

Ferner beschreibt die Druckschrift US2003/0185267 einen VCSEL, bei dem der Stromfluss mittels zweier n-dotierter Stromblenden, die innerhalb einer p-dotierten Schicht ausgebildet sind, auf einen zentralen Bereich des VCSELs eingeschränkt wird. Die Stromblenden haben einen von dem zentralen Bereich verschiedenen Brechungsindex und unterdrücken daher gleichzeitig höhere Moden des Lasers.Furthermore, the document describes US2003 / 0185267 a VCSEL in which the current flow is limited to a central region of the VCSEL by means of two n-doped current diaphragms formed within a p-doped layer. The current stops have a different refractive index from the central region and therefore simultaneously suppress higher modes of the laser.

Weiterhin ist bekannt, zur Steigerung der optischen Ausgangsleistung statt eines in den Halbleiterkörper integrierten Laserresonators einen Resonator mit einem externen Resonatorspiegel vorzusehen. Derartige Vorrichtungen werden auch als VECSEL (Vertical External Cavity Surface Emitting Laser) bezeichnet. Solche Halbleiterlaser mit einem externen Resonator weisen üblicherweise eine sehr viel größere laterale Ausdehnung als ein VCSEL auf und werden mit entsprechend höheren Leistungen betrieben. So liegt typischerweise der Durchmesser eines VECSELs im Bereich von 10 µm oder sogar darüber. Aufgrund der stark unterschiedlichen lateralen Dimensionierung sind in der Regel die Konzepte zur Führung des Betriebsstroms bei einen VCSEL nicht auf einen VECSEL übertragbar.It is furthermore known to provide a resonator with an external resonator mirror instead of a laser resonator integrated in the semiconductor body in order to increase the optical output power. Such devices are also referred to as VECSELs (Vertical External Cavity Surface Emitting Lasers). Such semiconductor lasers with an external resonator usually have a much larger lateral extent than a VCSEL and are operated at correspondingly higher powers. Typically, the diameter of a VECSEL is in the range of 10 μm or even more. Due to the widely differing lateral dimensioning, the concepts for guiding the operating current in a VCSEL are generally not transferable to a VECSEL.

Es ist Aufgabe der vorliegenden Erfindung, einen vertikal emittierenden Halbeiterlaser mit einem Halbleiterkörper mit hoher Ausgangsleistung und einer verbesserten Stromführung zu schaffen. Ferner soll der Halbleiterkörper des vertikal emittierenden Halbleiterlasers mit geringem technischem Aufwand herstellbar sein. Weiterhin ist es Aufgabe der vorliegenden Erfindung, ein Herstellungsverfahren für einen erfindungsgemäßen vertikal emittierenden Halbliterlaser anzugeben.It is an object of the present invention to provide a vertically emitting semiconductor laser with a semiconductor body having a high output power and an improved current conduction. Furthermore, the semiconductor body of the vertically emitting semiconductor laser should be producible with little technical effort. It is a further object of the present invention to specify a production method for a vertically emitting semiconductor laser according to the invention.

Diese Aufgabe wird durch einen vertikal emittierenden Halbleiterlaser gemäß Patentanspruch 1 sowie ein Herstellungsverfahren gemäß Patentanspruch 8 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche.This object is achieved by a vertically emitting semiconductor laser according to claim 1 and a manufacturing method according to claim 8. Advantageous developments of the invention are the subject of the dependent claims.

Ein erfindungsgemäßer vertikal emittierender Halbleiterlaser mit externem Resonator umfasst einen strahlungsemittierenden Halbleiterkörper mit vertikaler Emissionsrichtung, der eine innerhalb des Halbleiterkörpers angeordnete Stromführungsschicht mit einem Stromsperrbereich und einem Stromdurchlassbereich sowie eine strahlungserzeugende aktive Schicht aufweist, wobei der externe Resonator ein vorgegebenes Resonatorvolumen aufweist, das mit dem Stromdurchlassbereich überlappt.An external-cavity vertically-emitting semiconductor laser according to the present invention comprises a radiation-emitting semiconductor body having a vertical emission direction, comprising a current-guiding layer disposed within the semiconductor body having a current blocking region and a current transmitting region, and a radiation-generating active layer, the external resonator having a predetermined resonator volume overlapping with the current-passing region ,

Durch die Anpassung der Stromführungsschicht an das durch den externen Resonator vorgegebene Resonatorvolumen wird der Betriebsstrom zu einem für die Strahlungserzeugung innerhalb des Resonatorvolumens zweckmäßigen Bereich in dem Halbleiterkörper hingeführt. Hierdurch wird eine Einkopplung des Betriebsstroms über einen außerhalb des Resonatorvolumens angeordneten elektrischen Kontakt ermöglicht, so dass einerseits dieser Kontakt die Strahlungsauskopplung nicht behindert und andererseits eine vorteilhafte Stromführung für einen effizienten Laserbetrieb gewährleistet ist.By adapting the current-carrying layer to the resonator volume predetermined by the external resonator, the operating current is led to a region in the semiconductor body which is suitable for generating radiation within the resonator volume. As a result, a coupling of the operating current is made possible via an electrical contact arranged outside the resonator volume, so that on the one hand this contact does not hinder the radiation extraction and on the other hand, an advantageous current flow is ensured for an efficient laser operation.

Entsprechend ist bei einer bevorzugten Ausführungsform der vorliegenden Erfindung bei dem Halbleiterkörper eine Strahlungsaustrittsseite und auf der Strahlungsaustrittsseite ein vorgegebener Strahlungsaustrittsbereich vorgesehen, wobei außerhalb dieses Strahlungsaustrittsbereichs ein elektrischer Kontakt zur Einprägung des Betriebsstroms in den Halbleiterkörper angeordnet ist. Bevorzugt ist der Stromsperrbereich der Stromführungsschicht dem elektrischen Kontakt in vertikaler Richtung nachgeordnet, so dass ein Stromfluss außerhalb des Resonatorvolumens des externen Resonators, der zur Strahlungserzeugung nicht oder nur in ineffizienter Weise beiträgt, vermieden wird.Accordingly, in a preferred embodiment of the present invention, a radiation exit side is provided in the semiconductor body and a predetermined radiation exit region is provided on the radiation exit side, an electrical contact for impressing the operating current being arranged in the semiconductor body outside this radiation exit region. Preferably, the current blocking region of the current-carrying layer is arranged downstream of the electrical contact in the vertical direction, so that a current flow outside the resonator volume of the external resonator, which does not or only inefficiently contributes to the generation of radiation, is avoided.

Der Stromsperrbereich ist bei einer vorteilhaften Weiterbildung der vorliegenden Erfindung mittels mindestens eines im Betrieb sperrenden pn-Übergangs gebildet. Derartige sperrende pn-Übergänge können mit vergleichsweise geringem technischen Aufwand hergestellt werden.In an advantageous development of the present invention, the current blocking region is formed by means of at least one pn junction blocking during operation. Such blocking pn junctions can be produced with relatively little technical effort.

Die Stromführungsschicht ist zwischen zwei Mantelschichten eines ersten Leitungstyps angeordnet und weist in dem Stromsperrbereich einen zweiten Leitungstyp auf. Bei dieser Anordnung bildet die Stromführungsschicht in dem Stromsperrbereich in Verbindung mit den benachbarten Mantelschichten jeweils einen pn-Übergang, wobei die Durchlassrichtungen dieser pn-Übergänge einander entgegengesetzt sind und somit einen Stromfluss durch den Stromsperrbereich verhindern. In dem Stromdurchlassbereich weist hingegen die Stromführungsschicht den ersten Leitungstyp auf, so dass in diesem Bereich keine sperrenden pn-Übergänge angeordnet sind.The current-carrying layer is arranged between two cladding layers of a first conductivity type and has a second conductivity type in the current-blocking region. In this arrangement, the current-carrying layer in the current blocking region in conjunction with the adjacent cladding layers in each case forms a pn junction, wherein the forward directions of these pn junctions are opposite to one another and thus prevent current flow through the current blocking region. In the current passage region, by contrast, the current-carrying layer has the first one Line type, so that in this area no blocking pn junctions are arranged.

Die Stromführungsschicht ist in dem Stromdurchlassbereich mit Dotierstoffen des ersten und des zweiten Leitungstyps dotiert. Dies erleichtert die Herstellung eines entsprechenden Halbleiterkörpers, da zunächst die Stromführungsschicht durchgehend mit Dotierstoffen des zweiten Leitungstyps dotiert werden kann. Nachfolgend wird gezielt in dem Stromdurchlassbereich die Stromführungsschicht mit einem Dotierstoff des ersten Leitungstyps derart dotiert, dass die Dotierung des ersten Leitungstyps überwiegt und der Leitungstyp umgekehrt wird, so dass insgesamt der Stromdurchlassbereich den ersten Leitungstyp aufweist.The current-carrying layer is doped in the current-carrying region with dopants of the first and the second conductivity type. This facilitates the production of a corresponding semiconductor body, since first the current-carrying layer can be doped continuously with dopants of the second conductivity type. Subsequently, the current-carrying layer is selectively doped in the current-conducting region with a dopant of the first conductivity type in such a way that the doping of the first conductivity type predominates and the conductivity type is reversed so that overall the current-conducting region has the first conductivity type.

Bei einer vorteilhaften Ausgestaltung der vorliegenden Erfindung ist in dem Halbleiterkörper weiterhin eine Spiegelstruktur zur Bildung des externen Resonators angeordnet. Die Spiegelstruktur kann beispielsweise als Bragg-Spiegel ausgebildet sein. Dies erleichtert den Aufbau des externen Resonators, da zusätzlich zu dem Halbleiterkörper nur noch ein externer Spiegel erforderlich ist.In an advantageous embodiment of the present invention, a mirror structure for forming the external resonator is furthermore arranged in the semiconductor body. The mirror structure may be formed, for example, as a Bragg mirror. This facilitates the construction of the external resonator, since in addition to the semiconductor body only an external mirror is required.

Vorzugsweise ist der externe Resonatorspiegel ein konkav gekrümmter Spiegel, durch den weiter bevorzugt die Laserstrahlung ausgekoppelt wird. Bei geeigneter Dimensionierung des Krümmungsradius zur Resonatorlänge weist ein derartiger Resonator gegenüber einem Fabry-Perot-Resonator mit planen Resonatorspiegeln eine vorteilhaft erhöhte Stabilität auf.The external resonator mirror is preferably a concave mirror, by which the laser radiation is more preferably coupled out. With a suitable dimensioning of the radius of curvature to the resonator length, such a resonator has an advantageously increased stability compared to a Fabry-Perot resonator with planar resonator mirrors.

Zur Herstellung eines erfindungsgemäßen vertikal emittierenden Halbleiterlasers wird bei der vorliegenden Erfindung der Halbleiterkörper mittels eines Epitaxieverfahrens gefertigt, wobei nacheinander eine erste Mantelschicht eines ersten Leitungstyps, die Stromführungsschicht eines zweiten Leitungstyps und eine zweite Mantelschicht des ersten Leitungstyps aufgewachsen wird, und nachfolgend die Stromführungsschicht innerhalb des Stromdurchlassbereichs mit einem Dotierstoff derart dotiert wird, dass der Stromdurchlassbereich den ersten Leitungstyp aufweist.In the present invention, in order to fabricate a vertical emission type semiconductor laser according to the present invention, the semiconductor body is formed by an epitaxial process, successively growing a first cladding layer of a first conductivity type, the second conductivity type current-conducting layer, and a second cladding layer of the first conductivity type, and subsequently the current-guiding layer within the current passage region is doped with a dopant such that the current passage region has the first conductivity type.

Ein derartiges Herstellungsverfahren erfordert einen vergleichsweise geringen technischen Aufwand, da zusätzlich zum epitaktischen Aufwachsen der Halbleiterschichten nur eine strukturierte Diffusion innerhalb der Stromdurchlassbereichs erforderlich ist.Such a production method requires comparatively little technical effort since, in addition to the epitaxial growth of the semiconductor layers, only structured diffusion within the current passage region is required.

Bevorzugt wird zur Dotierung des Stromdurchlassbereichs eine Dotierstoffquelle mit dem entsprechenden Dotierstoff strukturiert auf die zweite Mantelschicht in einem Bereich aufgebracht, dem der Stromdurchlassbereich in vertikaler Richtung nachgeordnet ist und nachfolgend der Dotierstoff in den Stromdurchlassbereich diffundiert. Nach dem Diffusionsprozess kann die Dotierstoffquelle wieder entfernt werden.For doping the current passage region, a dopant source with the corresponding dopant is preferably applied in a structured manner to the second cladding layer in a region downstream of the current passage region in the vertical direction and subsequently the dopant diffuses into the current passage region. After the diffusion process, the dopant source can be removed again.

Weitere Merkmale, Vorzüge und Zweckmäßigkeiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung von zwei Ausführungsbeispielen in Verbindung mit den Figuren 1 und 2.Other features, advantages and advantages of the invention will become apparent from the following description of two embodiments in conjunction with the FIGS. 1 and 2 ,

Es zeigen:

  • Figur 1 eine schematische Schnittansicht eines Ausführungsbeispiels eines Halbleiterkörpers eines erfindungsgemäßen Halbleiterlasers und
  • Figur 2 eine schematische Darstellung eines Ausführungsbeispiels eines erfindungsgemäßen Herstellungsverfahrens anhand von drei Zwischenschritten.
Show it:
  • FIG. 1 a schematic sectional view of an embodiment of a semiconductor body of a semiconductor laser according to the invention and
  • FIG. 2 a schematic representation of an embodiment of a manufacturing method according to the invention with reference to three intermediate steps.

Gleiche oder gleichwirkende Elemente sind in den Figuren mit den selben Bezugszeichen versehen.The same or equivalent elements are provided in the figures with the same reference numerals.

Das in Figur 1 dargestellte Ausführungsbeispiel weist einen Halbleiterkörper 1 auf, der in vertikaler Richtung gesehen eine Substrat 2, eine Spiegelschicht 3, eine aktive Schicht 4, eine erste Mantelschicht 5, eine Stromführungsschicht 6 und eine zweite Mantelschicht 7 umfasst. Auf der Strahlungsauskopplungsseite 8 des Halbleiterkörpers ist ein erster elektrischer Kontakt 9, vorzugsweise in Form eines Ringkontakts, ausgebildet. Korrespondierend ist auf der gegenüberliegenden Seite des Halbleiterkörpers ein durchgehender elektrischer Kontakt 10 angeordnet.This in FIG. 1 illustrated embodiment, a semiconductor body 1, seen in the vertical direction comprises a substrate 2, a mirror layer 3, an active layer 4, a first cladding layer 5, a current-carrying layer 6 and a second cladding layer 7. On the radiation outcoupling side 8 of the semiconductor body, a first electrical contact 9, preferably in the form of a ring contact, is formed. Correspondingly, a continuous electrical contact 10 is arranged on the opposite side of the semiconductor body.

Der Laserresonator wird von der Spiegelschicht 3 und einem externen Spiegel 11, bevorzugt mit gekrümmter Spiegelfläche, gebildet. Die Spiegelschicht 3 kann in an sich bekannter Weise als Bragg-Spiegel mit einer Mehrzahl alternierender Halbleiterschichten mit unterschiedlichem Brechungsindex ausgeführt sein. Als Materialsystem für derartige Schichten eignet sich beispielsweise GaAs/AlGaAs, wobei die Schichtfolge sich aus Schichtpaaren 3a, 3b mit unterschiedlichem Aluminiumgehalt zusammensetzt. Alternativ kann als Spiegelstruktur 3 auch ein Metallspiegel oder ein dielektrischer Spiegel vorgesehen sein, wobei in diesem Fall das Substrat 2 zweckmäßigerweise entfallen kann. Weitergehend kann im Fall eines Metallspiegels dieser Spiegel zugleich als Kontakt 10 verwendet werden.The laser resonator is formed by the mirror layer 3 and an external mirror 11, preferably with a curved mirror surface. The mirror layer 3 can be embodied in a manner known per se as a Bragg mirror having a plurality of alternating semiconductor layers with different refractive indices. As a material system for such layers, for example, GaAs / AlGaAs is suitable, wherein the layer sequence is composed of layer pairs 3a, 3b with different aluminum content. Alternatively, as a mirror structure 3, a metal mirror or a dielectric mirror may be provided, in which case the substrate 2 may be expediently eliminated. Furthermore, in the case of a metal mirror, this mirror can also be used as a contact 10.

Die Stromführungsschicht 6 ist zwischen zwei Mantelschichten 5 und 7 eines ersten Leitungstyps angeordnet und weist in dem Stromdurchlassbereich 13 ebenfalls den ersten Leitungstyp auf. In den Stromsperrbereichen 12 hingegen weist die Stromführungsschicht 6 einen zweiten Leitungstyp auf, so dass in vertikaler Richtung gesehen zusammen mit den angrenzenden Mantelschichten 5 und 7 zwei pn-Übergänge mit entgegengesetzter Durchlassrichtung gebildet sind, die einen vertikalen Stromfluss im Stromsperrbereich 12 verhindern.The current-carrying layer 6 is arranged between two cladding layers 5 and 7 of a first conductivity type and also has the first conductivity type in the current-carrying region 13. In the current blocking regions 12, on the other hand, the current-carrying layer 6 has a second conductivity type, so that seen in the vertical direction together with the adjacent cladding layers 5 and 7, two pn junctions with opposite forward direction are formed which prevent a vertical current flow in the current blocking region 12.

Beispielsweise kann als Substrat 2 ein n-dotiertes GaAs-Substrat vorgesehen sein, auf das ein n-dotierter GaAs/AlGaAs Bragg-Spiegel aufgewachsen ist.For example, an n-doped GaAs substrate may be provided as the substrate 2, onto which an n-doped GaAs / AlGaAs Bragg mirror is grown.

Die aktive Schicht 4 ist bevorzugt als Einfach- oder Mehrfachquantentopstruktur (SQW - single quantum well bzw. MQW - multiple quantum well)ausgeführt. Derartige Quantentopfstrukturen weisen in der Regel eine (SQW) bzw. mehrere (MQW) Quantentopfschichten auf, die zwischen Barriereschichten angeordnet sind. Beispielsweise können die Quantentopfstrukturen InGaP-, InGaAs- oder GaAs-Quantentopfschichten und/oder AlInGaP- beziehungsweisew AlGaAs-Barriereschichten enthalten. Weiterhin können zwischen den einzelnen Quantentöpfen Spacerschichten vorgesehen sein.The active layer 4 is preferably designed as a single or multiple quantum well structure (SQW - single quantum well or MQW - multiple quantum well). Such quantum well structures usually have one (SQW) or several (MQW) quantum well layers, which are arranged between barrier layers. For example, the quantum well structures may contain InGaP, InGaAs or GaAs quantum well layers and / or AlInGaP or AlGaAs barrier layers, respectively. Furthermore, spacer layers can be provided between the individual quantum wells.

Die Bezeichnung Quantentopfstruktur umfasst im Rahmen der Anmeldung jegliche Struktur, bei der Ladungsträger durch Einschluss ("confinement") eine Quantisierung ihrer Energiezustände erfahren. Insbesondere beinhaltet die Bezeichnung Quantentopfstruktur keine Angabe über die Dimensionalität der Quantisierung. Sie umfasst somit u.a. Quantentröge, Quantendrähte und Quantenpunkte und jede Kombination dieser Strukturen.Within the scope of the application, the term quantum well structure encompasses any structure in which charge carriers undergo quantization of their energy states by confinement. In particular, the Name Quantum well structure No information about the dimensionality of the quantization. It thus includes quantum wells, quantum wires and quantum dots and any combination of these structures.

Ferner eignet sich als aktive Schicht 4 beispielsweise eine p-dotierte InGaP-Schicht, die zwischen zwei AlGaInP-Schichten eingebettet ist.Further, as the active layer 4, for example, a p-type InGaP layer embedded between two AlGaInP layers is suitable.

Hierauf folgt in vertikaler Richtung gesehen eine p-dotierte erste Mantelschicht 5, eine in den Stromsperrbereichen 12 n-dotierte und in dem Stromdurchlassbereich 13 p-dotierte Stromführungsschicht 6 und eine p-dotierte zweite Mantelschicht 7. Diese drei Halbleiterschichten 5, 6 und 7 können beispielsweise AlGaAs oder AlGaInP enthalten. Damit wird in den Stromsperrbereichen 12 ein sperrender npn-Übergang, also eine Serienschaltung zweier entgegengesetzter pn-Übergänge, gebildet.This is followed in the vertical direction by a p-doped first cladding layer 5, a current-carrying layer 6 n-doped in the current blocking regions 12 and p-doped in the current-carrying region 13, and a p-doped second cladding layer 7. These three semiconductor layers 5, 6 and 7 can For example, AlGaAs or AlGaInP included. In this way, a blocking npn junction, that is to say a series connection of two opposite pn junctions, is formed in the current blocking regions 12.

Die laterale Breite des Stromdurchlassbereichs 13 ist bei der Erfindung so gewählt, dass der Stromdurchlassbereich mit dem vorgegeben Resonatorvolumen 14 des externen Resonators überlappt, wobei bevorzugt der Stromdurchlassbereich breiter ist als der laterale Querschnitt des Resonatorvolumens 14 im Bereich der Stromführungsschicht 6. Das Resonatorvolumen wird bei dem gezeigten Ausführungsbeispiel insbesondere durch die Resonatorlänge in Verbindung mit dem Krümmungsradius des externen Spiegels 11 festgelegt. Im Zweifel kann als Resonatorbegrenzung bei der vorliegenden Erfindung der 1/e2-Radius des elektromagnetischen Grundmodenfeldes in Gausscher Näherung herangezogen werden.The lateral width of the current passage region 13 is selected in the invention such that the current passage region overlaps with the predetermined resonator volume 14 of the external resonator, wherein the current passage region is preferably wider than the lateral cross section of the resonator volume 14 in the region of the current-carrying layer 6 shown embodiment, in particular by the resonator length in conjunction with the radius of curvature of the external mirror 11 set. In doubt, the 1 / e 2 radius of the basic electromagnetic field in the Gaussian approximation can be used as resonator limit in the present invention.

In den Figuren 2a, 2b und 2c ist anhand von drei Zwischenschritten ein erfindungsgemäßes Herstellungsverfahren für den in Figur 1 gezeigten Halbleiterkörper dargestellt.In the Figures 2a, 2b and 2c is based on three intermediate steps, an inventive manufacturing method for in FIG. 1 shown semiconductor body shown.

In einem ersten Schritt, Figur 2a, wird auf ein Substrat 2 zunächst eine Spiegelstruktur 3 mit einer Abfolge von Schichtpaaren 3a, 3b mit verschiedenem Brechungsindex, eine aktive Schicht 4, eine erste Mantelschicht 5, eine Stromführungsschicht 6 und eine zweite Mantelschicht 7 epitaktisch aufgewachsen. Hierbei weist die erste Mantelschicht 5 durchgehend einen ersten Leitungstyp, die Stromführungsschicht 6 durchgehend einen zweiten Leitungstyp und die zweite Mantelschicht 7 durchgehend den ersten Leitungstyp auf. Beispielsweise kann die erste Mantelschicht 5 p-dotiert sein, die Stromführungsschicht 6 n-dotiert und die zweite Mantelschicht 7 wiederum p-dotiert sein.In a first step, FIG. 2a , a mirror structure 3 having a sequence of layer pairs 3a, 3b with a different refractive index, an active layer 4, a first cladding layer 5, a current-carrying layer 6 and a second cladding layer 7 is first epitaxially grown on a substrate 2. In this case, the first cladding layer 5 continuously has a first conductivity type, the current-carrying layer 6 has a second conductivity type continuously and the second cladding layer 7 has the first conductivity type. For example, the first cladding layer 5 may be p-doped, the current-carrying layer 6 may be n-doped, and the second cladding layer 7 may again be p-doped.

In einem zweiten Schritt, Figur 2b, werden der Stromsperrbereich 12 und der Stromdurchlassbereich 13 der Stromführungsschicht 6 ausgebildet. Hierzu wird auf die zweite Mantelschicht 7 eine Dotierstoffquelle 15 strukturiert in einem Bereich aufgebracht, dem der Stromdurchlassbereich 13 in vertikaler Richtung nachgeordnet ist. Die Dotierstoffquelle 15 enthält einen Dotierstoff des ersten Leitungstyps, der nachfolgend in die darunterliegenden Schichten und insbesondere in die Stromführungsschicht 6 eindiffundiert wird. Die Dotierung erfolgt dabei derart, dass in dem Stromdurchlassbereich 13 der Stromführungsschicht 6 der Leitungstyp umgekehrt wird. Auf diese Art und Weise entsteht in dem Stromdurchlassbereich ein vertikaler Strompfad des ersten Leitungstyps. Als Dotierstoff für die oben genannten Halbleitermaterialien eignet sich beispielsweise Zink.In a second step, FIG. 2b , the current blocking region 12 and the current passage region 13 of the current-carrying layer 6 are formed. For this purpose, a dopant source 15 is applied in a structured manner to the second cladding layer 7, in a region downstream of which the current passage region 13 is arranged in the vertical direction. The dopant source 15 contains a dopant of the first conductivity type, which is subsequently diffused into the underlying layers and in particular into the current-carrying layer 6. The doping is carried out in such a way that in the current passage region 13 of the current-carrying layer 6, the conductivity type is reversed. In this way, a vertical current path of the first conductivity type is formed in the current passage region. As a dopant for the above-mentioned semiconductor materials, for example, zinc is suitable.

In einem dritten Schritt, Figur 2c, werden nachfolgend auf die Strahlungsauskopplungsseite 8 des Halbleiterkörpers ein elektrischer Kontakt 9, beispielsweise eine Ringkontakt, und auf der gegenüberliegenden Seite des Halbleiterkörpers ein hierzu korrespondierender durchgehender elektrischer Kontakt 10 ausgebildet. Der Ringkontakt ist hierbei so angeordnet, dass die Ringöffnung dem Stromdurchlassbereich 13 in vertikaler Richtung nachgeordnet ist. Auf diese Weise wird sichergestellt, dass der Kontakt 9 nicht in das vorgesehene Resonatorvolumen eingreift und die Strahlungsauskopplung aus dem Halbleiterkörper nachteilig beeinflusst.In a third step, Figure 2c , an electrical contact 9, for example a ring contact, and on the opposite side of the semiconductor body a continuous electrical contact 10 corresponding thereto are subsequently formed on the radiation-decoupling side 8 of the semiconductor body. The ring contact is in this case arranged so that the ring opening is arranged downstream of the current passage region 13 in the vertical direction. In this way, it is ensured that the contact 9 does not engage in the intended resonator volume and adversely affects the radiation extraction from the semiconductor body.

Die Erläuterung der Erfindung anhand der Ausführungsbeispiele ist nicht als Beschränkung der Erfindung hierauf zu verstehen. Insbesondere ist die vorliegende Erfindung nicht auf die genannten Halbleitermaterialien beschränkt, so dass die Schichten des Halbleiterkörpers auch ein anderes Material wie etwa InxAlyGa1-x-yAs mit 0≤x≤1, 0≤y≤1 und 0≤x+y≤1,
InxAlyGa1-x-yP mit 0≤x≤1, 0≤y≤1 und 0≤x+y≤1,
InxAlyGa1-x-yN mit 0≤x≤1, 0≤y≤1 und 0≤x+y≤1,
InxAlyGa1-x-yAsuN1-u mit 0≤x≤1, 0≤y≤1, 0≤x+y≤1 und 0≤u≤1,
InxAlyGa1-x-yAsuP1-u mit 0≤x≤1, 0≤y≤1, 0≤x+y≤1 und 0≤u≤1, und/oder
InxAlyGa1-x-yPuN1-u mit 0≤x≤1, 0≤y≤1, 0≤x+y≤1 und 0≤u≤1 enthalten können.
The explanation of the invention with reference to the embodiments is not to be understood as limiting the invention thereto. In particular, the present invention is not limited to said semiconductor materials, such that the layers of the semiconductor body also include another material such as In x Al y Ga 1-xy As where 0≤x≤1, 0≤y≤1 and 0≤x + y ≦ 1,
In x Al y Ga 1-xy P with 0≤x≤1, 0≤y≤1 and 0≤x + y≤1,
In x Al y Ga 1-xy N with 0≤x≤1, 0≤y≤1 and 0≤x + y≤1,
In x Al y Ga 1-xy As u N 1-u with 0≤x≤1, 0≤y≤1, 0≤x + y≤1 and 0≤u≤1,
In x Al y Ga 1-xy As u P 1-u with 0≤x≤1, 0≤y≤1, 0≤x + y≤1 and 0≤u≤1, and / or
In x Al y Ga 1-xy P u N 1-u with 0≤x≤1, 0≤y≤1, 0≤x + y≤1 and 0≤u≤1.

Claims (11)

  1. Vertically emitting semiconductor laser with an external resonator,
    having a radiation-emitting semiconductor body (1) with a vertical emission direction, comprising a radiation-generating active layer (4) and a current-carrying layer (6) with a current blocking region (12) and a current transmission region (13), wherein
    - the current-carrying layer (6) is arranged between two cladding layers (5, 7) of a first conduction type and has a second conduction type in the current blocking region (12),
    - the current-carrying layer (6) has the first conduction type in the current transmission region (13) and
    - the external resonator has a predetermined resonator volume (14) that overlaps the current transmission region (13),
    characterized in that
    the current-carrying layer (6) is doped with dopants of the first and of the second conduction type in the current transmission region (13).
  2. Vertically emitting semiconductor laser (1) according to Claim 1,
    characterized in that
    the semiconductor body (1) has a radiation exit side (8) and a radiation exit region that is predetermined on the radiation exit side (8), wherein an electrical contact (9) is arranged outside the radiation exit region.
  3. Vertically emitting semiconductor laser (1) according to Claim 2,
    characterized in that
    the current blocking region (12) is disposed downstream of the electrical contact (9) in a vertical direction.
  4. Vertically emitting semiconductor laser (1) according to one of Claims 1 to 3,
    characterized in that
    the current blocking region (12) is formed by means of at least one pn junction that effects blocking during operation.
  5. Vertically emitting semiconductor laser (1) according to one of Claims 1 to 4,
    characterized in that
    a mirror structure (3) for forming the external resonator is formed in the semiconductor body (1).
  6. Vertically emitting semiconductor laser (1) according to Claim 5,
    characterized in that
    the mirror structure (3) is a Bragg mirror.
  7. Vertically emitting semiconductor laser (1) according to one of Claims 1 to 6,
    characterized in that
    the external resonator has a curved external mirror (11).
  8. Method for fabricating a vertically emitting semiconductor laser according to one of Claims 1 to 7, comprising the steps of
    - providing a growth substrate,
    - epitaxially growing the active layer (4), and
    - forming the current-carrying layer,
    characterized in that
    the current-carrying layer is formed by the steps of:
    - growing a first cladding layer (5) of a first conduction type,
    - growing the current-carrying layer (6) of a second conduction type,
    - growing a second cladding layer (7) of the first conduction type, and
    - doping the current-carrying layer (6) within the current transmission region (13) with a dopant in such a way that the current transmission region (13) has the first conduction type.
  9. Fabrication method according to Claim 8,
    characterized in that
    for the doping of the current-carrying layer (6), a dopant source (15) with the dopant is applied to the second cladding layer (7) in patterned fashion in a region downstream of which the current transmission region (13) is disposed in a vertical direction, and the dopant subsequently diffuses into the current transmission region (13).
  10. Fabrication method according to Claim 9,
    characterized in that
    the dopant source (15) is removed after the diffusion of the dopant.
  11. Fabrication method according to Claim 9 or 10,
    characterized in that
    the dopant is zinc.
EP20050016990 2004-08-31 2005-08-04 Vertically emitting semiconductor laser with external resonator and its method of fabrication Active EP1630914B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004042510 2004-08-31

Publications (2)

Publication Number Publication Date
EP1630914A1 EP1630914A1 (en) 2006-03-01
EP1630914B1 true EP1630914B1 (en) 2008-03-12

Family

ID=35311713

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20050016990 Active EP1630914B1 (en) 2004-08-31 2005-08-04 Vertically emitting semiconductor laser with external resonator and its method of fabrication

Country Status (2)

Country Link
EP (1) EP1630914B1 (en)
DE (1) DE502005003172D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013223499C5 (en) * 2013-11-18 2020-03-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wide strip laser and method for producing a wide strip laser

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03237784A (en) * 1990-02-15 1991-10-23 Omron Corp Semiconductor element and manufacture thereof
US5291502A (en) * 1992-09-04 1994-03-01 The Board Of Trustees Of The Leland Stanford, Jr. University Electrostatically tunable optical device and optical interconnect for processors
US6534331B2 (en) * 2001-07-24 2003-03-18 Luxnet Corporation Method for making a vertical-cavity surface emitting laser with improved current confinement
US6862301B2 (en) * 2001-12-31 2005-03-01 Finisar Corporation Tunable laser assembly
US6795478B2 (en) * 2002-03-28 2004-09-21 Applied Optoelectronics, Inc. VCSEL with antiguide current confinement layer
AU2003900172A0 (en) * 2003-01-15 2003-01-30 Edith Cowan University Laser array

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013223499C5 (en) * 2013-11-18 2020-03-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wide strip laser and method for producing a wide strip laser

Also Published As

Publication number Publication date
EP1630914A1 (en) 2006-03-01
DE502005003172D1 (en) 2008-04-24

Similar Documents

Publication Publication Date Title
DE69830463T2 (en) Vertical cavity surface emitting laser with separate optical conductors and conductors
DE112018005257B4 (en) VCSEL with elliptical aperture with reduced RIN
DE10136334B4 (en) High speed vertical resonator surface emitting laser
EP1287595B1 (en) Optically pumped, surface-emitting semiconductor laser device and a method for producing the same
DE102008014093B4 (en) Edge-emitting semiconductor laser chip with at least one current barrier
EP1793462B1 (en) Semiconductor component and laser device
DE102006010727B4 (en) Surface emitting semiconductor device with a tunnel junction
DE102004032467B4 (en) Single-mode vertical cavity resonator lasers and methods of making same
EP1683245B1 (en) Vcsel pumped in a monolithically optical manner and comprising a laterally applied edge emitter
WO2009082999A2 (en) Edge-emitting semiconductor laser chip having a structured contact strip
DE10214120A1 (en) Surface-emitting semiconductor laser arrangement comprises a vertical emitter having a radiation-producing layer, and a modulation radiation source for modulating the output of the laser arrangement
DE102005036820A1 (en) Solid state vertical laser has current blocking and transmitting regions formed in layered structure
EP1366548B1 (en) Surface-emitting semiconductor laser
EP1989765A2 (en) Semiconductor laser device
EP2218153B1 (en) Method for producing a radiation-emitting component and radiation-emitting component
EP2523279B1 (en) Wide stripe diode laser with high efficiency and low far-field divergence
EP1741170B1 (en) Optically pumped semiconductor device
DE10223540A1 (en) Optically pumped semiconductor laser for generation of coherent light has pump laser surrounding main laser with first mirror in form of Bragg multiple mirror and second semitransparent mirror
DE10085441T5 (en) A semiconductor surface-emitting laser device and a method of manufacturing the same, and a semiconductor surface-emitting laser matrix using the laser device
EP1630914B1 (en) Vertically emitting semiconductor laser with external resonator and its method of fabrication
EP1676346B1 (en) Surface-emitting semiconductor laser comprising a structured waveguide
EP1568112B1 (en) Method for producing a buried tunnel junction in a surface-emitting semiconductor laser
DE10317970B4 (en) A method of fabricating a waveguide structure in a surface emitting semiconductor laser and surface emitting semiconductor laser
EP1590865B1 (en) Method for producing a waveguide structure in a surface-emitting semiconductor laser and surface-emitting semiconductor laser
WO1998049759A1 (en) Diode laser oscillator or amplifier having at least one light conducting semiconductor layer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20060901

17Q First examination report despatched

Effective date: 20061009

AKX Designation fees paid

Designated state(s): DE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: VERTICALLY EMITTING SEMICONDUCTOR LASER WITH EXTERNAL RESONATOR AND ITS METHOD OF FABRICATION

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: OSRAM OPTO SEMICONDUCTORS GMBH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: OSRAM OPTO SEMICONDUCTORS GMBH

REF Corresponds to:

Ref document number: 502005003172

Country of ref document: DE

Date of ref document: 20080424

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081215

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230825

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230821

Year of fee payment: 19