EP1628832B1 - Inkjet printer - Google Patents

Inkjet printer Download PDF

Info

Publication number
EP1628832B1
EP1628832B1 EP04821194A EP04821194A EP1628832B1 EP 1628832 B1 EP1628832 B1 EP 1628832B1 EP 04821194 A EP04821194 A EP 04821194A EP 04821194 A EP04821194 A EP 04821194A EP 1628832 B1 EP1628832 B1 EP 1628832B1
Authority
EP
European Patent Office
Prior art keywords
jet
ink
printer
nozzle
stimulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04821194A
Other languages
German (de)
French (fr)
Other versions
EP1628832A2 (en
Inventor
Bruno Barbet
Pierre Henon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Markem Imaje SAS
Original Assignee
Imaje SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imaje SA filed Critical Imaje SA
Publication of EP1628832A2 publication Critical patent/EP1628832A2/en
Application granted granted Critical
Publication of EP1628832B1 publication Critical patent/EP1628832B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/115Ink jet characterised by jet control synchronising the droplet separation and charging time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/02Ink jet characterised by the jet generation process generating a continuous ink jet
    • B41J2/025Ink jet characterised by the jet generation process generating a continuous ink jet by vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/105Ink jet characterised by jet control for binary-valued deflection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/02Ink jet characterised by the jet generation process generating a continuous ink jet
    • B41J2002/022Control methods or devices for continuous ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/02Ink jet characterised by the jet generation process generating a continuous ink jet
    • B41J2/03Ink jet characterised by the jet generation process generating a continuous ink jet by pressure
    • B41J2002/033Continuous stream with droplets of different sizes

Definitions

  • the invention is in the field of printheads and continuous ink jet printers. It also relates to a selective projection process parts of a conductive ink jet and in particular a continuous inkjet printing process.
  • the method and printer according to the present invention can be used in all industrial fields related to writing, including marking, coding, addressing the personalization and decoration of industrial products.
  • the typical operation of a continuous jet printer can be described as follows. Electrically conductive ink maintained under pressure escapes from a calibrated nozzle. Under the action of a periodic stimulation device, the ink jet thus formed is broken at regular time intervals into a single position of the space. Downstream of the breaking position of the jet, the continuous jet is transformed into a train of identical and regularly spaced ink drops. In the vicinity of the breaking position is placed a first group of electrodes whose function usually recognized is to transfer selectively and each drop of the jet a predetermined amount of electric charge.
  • the set of drops thus selectively loaded then passes through a second arrangement of electrodes in which a constant electric field prevails which will modify the trajectory of the charged drops.
  • the amount of charge transferred to the drops of the jet is variable depending on the value of an electric potential applied to a charging electrode located in a drop formation zone.
  • the potential applied to the charging electrode is determined according to the write command. This potential is in correspondence with the intended destination of the drop on the substrate or in a recovery gutter if the drop is not intended for printing, for the drop that will pass into the electric field determined by the potential of the electrodes charge.
  • Another way to modify the value of the electric charge attributed to each drop is described in the patent application.
  • FR 2471278 corresponding to the patent US 4346387 , consists in creating an electric charge field for example increasing in an axial direction of the jet and controlling the point of formation of the drops so that the potential of the breaking point is as in the previous case in correspondence with the intended destination drop on the substrate or in a recovery gutter if the drop is not intended for printing.
  • Each drop records, as it passes through the second arrangement of constant-field electrodes, an increasing deflection with the electrical load previously assigned to it and is oriented towards a specific point of the print medium or towards the salvage gutter.
  • This technology thanks to its multiple levels of deflection, allows a single nozzle to print, by segment or frame, - point line of a given height -, the entirety of a pattern. The passage from one segment to another is effected by the continuous displacement, perpendicularly to said segment, of the substrate relative to the print head.
  • the second variant is that of the binary continuous stream.
  • This technique differs mainly from the previous one in that the level of charge drops is binary.
  • drops When passing through the deflection electrodes, drops are uniformly deflected or undirected depending on the load they have received.
  • the printing of characters or patterns therefore generally requires the use of multi-nozzle print heads, the spacing of the orifices coinciding with that of the impacts on the print medium.
  • the drops intended for printing are non-deflected drops, that is to say, whose binary level of charge is zero.
  • the ink which is not used to mark the substrate is directed to an unused gutter or ink recuperator and is recycled in a circuit which is ink so that it returns to the print nozzles.
  • a method for breaking down the jet into drops is very well described, for example, in a patent bearing the number US Patent 4,220,958 whose inventor is Mr. CROWLEY.
  • the inkjet conductive passes through electrodes worn periodically at a relatively high potential. Under the action of these electrodes, the ink jet is charged. The charges are attracted to the electrodes so that a force transverse to the jet deforms the surface of the jet. The axial velocity of the jet and the transverse movement of the surface of the jet combine so that at a certain distance from the electrodes, the jet breaks in a succession of drops.
  • the ink emission nozzles are vibrated.
  • the liquid jet is excited electro-hydrodynamically with an electro-hydrodynamic exciter (EHD).
  • EHD electro-hydrodynamic exciter
  • a third technique is to impose a pressure variation on the liquid at the nozzle by means of a piezoelectric crystal introduced into a cavity for feeding the nozzle. This latter technique is dominant in the literature and is used for example in the IBM 6640 machine (registered trademark).
  • the invention of CROWLEY concerns an electro-hydrodynamic exciter wherein the length of the electrodes traversed by the ink jet is equal to half the distance between the drops.
  • thermoresistive elements Another method of stimulating the ink jet for its transformation into drops is described, for example in the patent US-A-4,638,328 DRAKE et al. . It is an activation by thermoresistive elements.
  • a second family of printing ink projection called drop on demand is mainly implemented in office printers. This is to print text or graphic patterns in color on paper or plastic. In contrast to continuous jet printing, drop-on-demand technologies generate directly and only the ink drops actually needed to print the desired patterns. There is therefore no recirculating electrode or gutter ink between the outlet face of a nozzle and the print medium.
  • These printers comprise a plurality of nozzles, each nozzle is associated with a stimulation device having the dual function of expelling a drop (kinetic energy) and controlling its formation (profile of the drop).
  • This stimulation device which is activated on demand by an electrical signal, has two main variants:
  • the "Bubble Jet” technology initially developed by Canon and Hewlett-Packard is mainly implanted in the field of office automation.
  • a heating element placed in a duct produces the vaporization of the ink locally, the growth of the gas bubble produces the expulsion of a small drop of ink towards the print media.
  • piezoelectric technology is based on the deformation of a piezoelectric ceramic to create an overpressure and thus project drops of ink.
  • the fields of application of this technology concern office automation (Epson) or industrial printing (Trident, Xaar, Spectra).
  • Patent Application No. FR 2 799 688 having in the USA the deposit number 09/685 064 of 10/10/00 object of a second invention of Vago the publication in the newspaper Xerox disclosure ( Pincus - 1982, vol.7, p.23 ) describe a charging and sorting system based on a set of electrodes carried at constant potentials.
  • the fragmentation of the jet is in the set of electrodes and preferably in front of a well identified electrode according to whether the jet portion is to be printed or collected by the gutter.
  • the jet is in the form of a succession of drops electrically insulated, that is to say without embedded electrical load, physically separate, framed by electrically charged sections which are deflected to the gutter.
  • the generation of isolated drops is triggered by an undescribed intermittent pacing system.
  • the intermittent stimulation of a jet can be provided by an ElectroHydroDynamic actuator (patent US 4,220,958 - Crowley ) or thermal ( US 3,878,519 - Eaton ).
  • it is called external stimulation techniques because they consist in acting on an already formed jet.
  • An external stimulation technique easily makes it possible to form an isolated droplet in a jet inasmuch as the liquid flows in front of the stimulation device whose range of action is short-range, two configurations are presented.
  • a stimulation signal selects a perfectly defined jet portion whose length depends only on the speed of advance of the jet and the duration of the excitation signal. Under the effect of surface tension, the appropriately selected length of stimulated jet will produce an isolated drop in the continuous stream.
  • the breaking position of the continuous jet, to form a drop on demand is placed in an area where an electrode common to all the nozzles of the print head maintains a potential equal to that of the ink in the print head.
  • a charging electrode is placed downstream of this breaking position.
  • a jet portion placed downstream of the break position is in the area of influence of the charging electrodes.
  • the drops are formed before passing through the electric field of the charging electrodes, they are electrically insulated and do not charge.
  • An application of the digital data defining the pattern to be printed no longer downstream of the nozzles, but upstream, at the level of the jet stimulating means. It is these data that will determine or not the formation of the drops used for printing.
  • the invention also aims at these advantages but with improvements which will be described below.
  • the charging electrodes In the device described in the second invention of Vago, the charging electrodes must create a charging field in a separate area of the protection zone reserved for the drops intended for printing, at most the diameter of a drop. In this way the shortest sections whose length is about two drop diameters, have before break, a portion located in the charging zone and can be charged.
  • the charging electrodes have a zone of influence whose length in the direction of the axis of the jet, is large enough to ensure a charge of a section proportionally to the length of said section, and therefore to its mass. In this way the sections of different length and therefore of different masses, are all deviated in an identical manner and an inlet port of the recovery gutter can keep a reasonably small size, while ensuring the recovery of all sections regardless their length.
  • the present invention also aims at a better control of inkjet parts not intended for printing. It also aims to simplify the manufacture of the printheads by loosening the tolerances on the position of the electrodes common to all the nozzles of the head. It also aims at increased compaction of the overall dimensions of the print head, and a greater printing distance.
  • the jet stimulating means intended to break the jet, are capable of causing the jet to break in two positions of the jet axially separated from one another, an upstream breaking position and a downstream breaking position, the latter being further downstream in the direction of advancement of the jet than the upstream position. At the upstream breaking position the jet will be broken intermittently to create the drops of ink that will be used for printing.
  • the jet can be continuously from the nozzle, if no intermittent drop has been formed, or on the contrary divided into drop (s) and section (s) if one or more intermittent drops have been formed .
  • the upstream breaking position will be, for example, in an area in which electrodes maintain a potential equal to that of the ink in the print head, so that the intermittent drops will not be electrically charged.
  • the downstream breaking position is, in the example discussed here, in an area where charging electrodes maintain a potential different from that of the ink in the print head so that the continuous drops will be electrically charged.
  • the jet is broken if there is no break intermittent at the upstream position, on the other hand if there has been a break in the upstream position, the resulting jet section is continuously divided into drops.
  • the jet is entirely divided into drops. Deflection electrodes located downstream of the two breaking positions then make it possible to sort the charged drops and the uncharged drops to send the ones to a recovery gutter and the others to a printing medium.
  • the electrical control signal generator can be physically separated from the printer head. He can also be part of it physically. In the latter case, the invention also relates to the printer head.
  • the printer or printer head according to the invention is characterized in that the upstream electrode of the charge electrode arrangement is connected to the same potential as the ink.
  • the charged drops are those resulting from breaking the jet or sections of the jet in the downstream zone. They are deflected by the arrangement of deflection electrodes to the ink recovery means. Each period of the periodic signal creates a mechanical reaction of the stimulation means, this reaction causing the breaking of the jet or sections of the jet in the downstream zone. Each intermittent pulse of the pulse signal creates a mechanical reaction of the stimulation means causing the breaking of the jet in the upstream zone in a drop and a section. In a manner known per se, the charged drops could be directed towards the printing substrate and the uncharged drops to the ink recovery means.
  • the upstream breaking position where the drops intended for printing are formed, to be in an area where an electrode arrangement maintains a potential different from that of the ink, whereas the potential maintained in FIG. downstream zone is at a value equal to that of the ink.
  • the printer or the printer head according to the invention is characterized in that the stimulation means comprise a piezoelectric material, the generator of electrical control signals delivering to the stimulation means a signal of continuous printing formed by a periodic signal of period Tb, intermittently replaced by a pulse signal preceded and followed by transition signals.
  • the printer or the printer head according to the invention is characterized in that the pulse signal delivered by the electrical control signal generator is constituted by a pulse comprising 3 consecutive voltage stages connected to the one to the next by a steep rising or descending front.
  • the printer or the printer head according to the invention is characterized in that the pulse signal delivered by the electrical control signal generator is constituted by a succession of 3 rectangular pulses separated from each other by Lower level voltage levels at the lowest level pulse.
  • the printer or the printer head according to the invention is characterized in that the periodic signal delivered by the electrical control signal generator is constituted by a signal whose spectrum is constituted by two lines of a first frequency and a line at a second double frequency of the first, other possible lines of the spectrum having coefficients much lower than the coefficients associated with the lines of the first or second frequency, for example a signal resulting from a combination of two signals sinusoidal.
  • the periodic signal delivered by the electrical control signal generator may also consist of a combination of more than two sinusoidal signals.
  • the printer or the printer head according to the invention is characterized in that the sum of the durations of the pulse signal and the transition signals delivered by the electrical control signal generator is equal to an integer number of periods of the periodic signal.
  • the printer or the printer head according to the invention is characterized in that a Helmholtz frequency of a portion of a hydraulic path of the feed ink of a nozzle located in downstream of a restriction has a value located outside a bandwidth of the jet from this nozzle.
  • the printer or the printer head according to the invention is characterized in that the hydraulic path of the ink has a restriction and in that the length of a hydraulic path between an inlet of the restriction and the nozzle is less than a quarter of the wavelength of the sound in the ink.
  • the printer or the printer head according to the invention is characterized in that the system for stimulating a jet emitted by a nozzle is strictly non-resonant, ie the transfer function of the stimulation system is free of resonance peaks in the bandwidth of the jet. It is recalled that the transfer function of the stimulation system is defined as the relationship existing between the pressure induced by the action of the piezoelectric element and the speed modulation introduced into the jet ejection speed.
  • the stimulation system includes therefore not only the stimulation means but also the hydraulic path of the ink in the body of the print head.
  • the printer or the printer head according to the invention is characterized in that the stimulation means comprise, in addition to the piezoelectric material, a membrane which is mechanically coupled to it, a resonance frequency of one vibrating element formed of the membrane and the piezoelectric material being greater than a cutoff frequency of the jet.
  • the figure 1 shows schematically and in perspective the parts of a printer concerned by the invention.
  • the means of transport of the printing medium have not been represented in particular.
  • This figure is essentially intended to explain the operation of a printer based on the present invention
  • the printer 10 comprises one, as shown, or several print heads 1.
  • a head 1 having 3 nozzles 29 ejection of an ink jet 30.
  • a body 23 of the print head comprises in particular a hydraulic path of the ink and a stimulation chamber 28 which will be described in more detail later in connection with the figure 6 .
  • Each stimulation chamber 28 is, in itself known manner, constantly filled with an ink maintained at constant pressure by a supply of pressurized ink 27.
  • Each stimulation chamber 28 comprises means Stimulator 31 each formed by a piezoelectric element 25 and a membrane 24.
  • a generator 32 of control signals of the stimulation means 31 is connected to each of the piezoelectric elements 25.
  • Control signals IMP for each of the means stimulation 31 are received by the circuit 32 preferably, as shown figure 1 , on a parallel bus comprising a path for each means 31.
  • An ink supply circuit common to the chambers 28 is symbolized in this figure by arrows 14 showing that ink drops 43 formed at a downstream jet breaking position. 30 or sections 38 of this jet are recovered in a gutter 40 common to all of the nozzles of a head and directed to suction and pressurizing means symbolized by a block 13.
  • Such an ink circuit feeding with pressurized ink 16 each of the chamber inlets 27 is itself known.
  • the pressure exerted on the ink is large enough to cause an ink jet 30 to be ejected through each ink ejection nozzle 29 at an average speed V i.
  • a nozzle 29 has a section whose equivalent radius is equal to 'a', which is also approximately the radius of the jet 30.
  • the stimulation device 31, controlled by the electrical signal generator 32 makes it possible to create a disturbance at the inside the chamber 28, causing the breaking of the jet 30 into drops 33, 43.
  • the electrical stimulation signals are such that they cause intermittently, intermittently, a breakage of the so-called intermittent jet in a first axial position 11, and secondly a second breaking of the jet at a second axial position 12 downstream of the first, said continuous breaking.
  • the drops 33 are the drops resulting from the intermittent break and the drops 43 are the drops resulting from the continuous breaking. Examples of signals, capable of causing intermittent and continuous breaks, will be given later.
  • a charge electrode 35 common to all the nozzles 29 is located downstream of the nozzles 29, in the direct vicinity of the axes of the nozzles 29.
  • the charging electrode 35 is formed by a stack of two conductive materials. electricity 34, 37, separated by a layer 36 made of an electrically insulating material.
  • the conductor 34 is the most upstream, the conductor 36 is the downstream of the charging electrode 35.
  • the conductor 34 is connected to the same potential as the ink in a chamber 28, in general the zero potential of the mass electric.
  • the conductor 36 is connected to a non-zero electrical potential Vc, different from that of the ink in a chamber 28. Downstream of the charging electrode is in the direct vicinity of the axes of the nozzles an electrode assembly 39 deflection.
  • the set 39 of deflection electrodes is common to all the nozzles 29 of a head and is connected to a source of potential so that a uniform electric field E0, whose component perpendicular to a plane containing the axes of the nozzles 29 is preponderant.
  • a recovery gutter 40 common to all the nozzles and located downstream of the set 39 of deflection electrodes and outside the axes of the nozzles 29 is used in a known manner to recover ink that is not used for printing.
  • the ink used for printing is directed to a printing medium 41 on which each printing drop 33 forms a printing dot 58.
  • the operation of the print head is as follows.
  • the drops 33 are the drops that are used for printing.
  • the drops 33 result from the intermittent breaking of the jet creating an isolated drop, called intermittent drop 33.
  • the electric charge of the intermittent drops 33 is almost zero because they are formed at the first breaking position of the jet, facing the conductor 34 brought to the same potential that the ink in the chamber 28, in general the zero potential of the electrical mass.
  • the jet 30 is split into the drop 33 and a jet section 38.
  • the drops 43 are those that are not used for printing. They are formed at the second breaking position, facing the conductor 37 of the charging electrode 35 brought to the non-zero electrical potential Vc, different from that of the ink in the chamber 28.
  • the drops 43 embark electrostatically a greater electric charge in absolute value than the almost zero load embedded in the drops 33.
  • the second breaking position 12 where the drops 43 are formed is downstream of the first breaking position 11 where the intermittent drops 33 are formed. This break is called continuous downstream breaking of the jet sections 38, or jet 30 if intermittent breakage has not formed sections. All the drops which are detached from the jet then pass into the deflection zone defined by the deflection electrode 39.
  • the intermittent drops 33 whose electric charge is almost zero, thus pursue an almost rectilinear trajectory along the axis of the nozzle 29, up to the printing medium 41.
  • the trajectories of the drops 43 are deflected perpendicular to the axis of the jet according to their electric charge and terminate their trajectory in the recovery gutter 40, assuming that a judicious combination of electric potentials is applied to the charging and deflecting electrodes 35, 39.
  • the ink collected in the gutter 40 is in known manner reinjected into the ink circuit to be reused.
  • the printing of a pattern results in a manner known per se from the selection of ink drops to be directed towards the printing medium 41 or to the trough 40 and a relative movement of the print medium 41 and the print head 1.
  • it is the uncharged drops, whose trajectory is not deflected, which are used for printing.
  • This solution is generally preferred because the positioning accuracy of the drops contributing to the printing is greater, because the trajectory of these drops is shorter and less dependent on randomness relative to the exact mass drop, the value of the amount of electric charge on board and possible fluctuations of the deflection field.
  • it is not excluded to use, as in some known embodiments deviated drops for printing, while the non-deflected drops are directed to the gutter.
  • the set of charging electrodes 35, and of deflection 39 forming together a sorting system of the printing drops 33 and 43 of recovery is common for all jets.
  • the sections 38 formed each time an intermittent drop 33 is formed are in a downstream position, also divided into drops 43, the groove 40 common to all the jets may be smaller in size because the guiding accuracy of the drops is improved.
  • the figure 2 is intended to illustrate the jet breaking modes to form the intermittent and continuous drops 43.
  • On the figure 2 part a one is in a phase where there is no printing, or in which there has been no intermittent break during the time taken by the jet to go from the upstream breaking position 11 to the downstream breaking position 12.
  • a periodic signal breaks the jet continuously at the downstream position 12 to form the continuous drops 43.
  • figure 2 , part b there is shown the case where a drop 33 for example, is formed by a pulse of the break signal.
  • the jet 30 is split into a drop 33 and a jet section 38. This section carries the speed perturbation provided by the periodic signal. It is therefore broken at the downstream breaking position 12 to give continuous drops 43.
  • the jet is entirely divided into drops 33 and 43.
  • the intermittent break is a break designed to isolate a drop of a jet. This situation is different from the situation where a continuous train of drops is created, because in the case of the isolated drop, there is a tendency to the formation of satellite droplets and bulges which affect the quality of printing.
  • the breaking dynamics of an isolated drop corresponding to the invention in the case of the intermittent drop it will be described below in connection with the figure 3 the breaking dynamics of an isolated drop corresponding to the invention in the case of the intermittent drop.
  • the figure 3 includes parts a to g.
  • the sequence of the parts a to g shows a temporal succession of states of the intermittent breaking intended to make perceive the dynamics of the breaking.
  • a speed perturbation brought by a temporary overpressure induced at the chamber 28 creates in the jet a belly 33a.
  • An intermittent drop 33 separates consecutively to two breaks: an upstream breaking 49 represented in part b by a space between the upstream part of the jet 30 and the downstream part, and a downstream breaking 50 represented in part c by a space between the drop 33 which at this stage is formed and the downstream portion of the jet 30 which thereby becomes a jet section 38.
  • Upstream ligaments 51 and downstream 52 shown in parts b and c which respectively correspond to stretching of the upstream and downstream parts of the jet 30 with respect to the forming drop 33, may, if the stretch is large, give rise respectively to upstream and downstream satellite droplets 54 represented in part d.
  • On part d we also see that the upstream and downstream parts of the jet on either side of the drop 33 in formation undergo swelling.
  • An upstream breaking length Lbam is defined as being the distance Lbam between the outlet face of the nozzle 29 and upstream breaking.
  • a downstream break length Lbav is defined as the distance Lbav between the outlet face of the nozzle 29 and the downstream break 50.
  • the beads 55, 56 are recovered in the channel 40, it is necessary that they embark a sufficient electrical charge, and therefore, they detach themselves sufficiently far downstream of the upstream and downstream breaks 49, 50 of the intermittent drop 33 to be at the moment of their detachment from the jet in the zone where there is a potential different from that of the potential of the ink in the room 29. That's why on the figure 3 Parts f and g show the beginning and the end of the detachment of the beads 55, 56 in the zone subjected to the influence of the electrode 37. Similarly, it is desirable for the upstream and downstream satellites 53, 54 to be absorbed. in other drops quickly, because they can cause significant soiling of the sorting system or even the print medium.
  • the figure 4 part a shows an example of electrical control signal that can be applied to the stimulation device 31 to control the shape of the intermittent breaks so as to ensure proper operation of the sorting between the printing drops 33 and the drops 43 to be recovered in the gutter 40.
  • the signal represented figure 4 part a consists of three consecutive levels of respective voltage levels U 1 , U 2 , and U 3 , measured above a level U 0 .
  • the three levels have respective durations T 1 , T 2 , and T 3 .
  • Two consecutive levels are linked to each other by a steep rising or falling edge.
  • the durations T 1 , T 2 , and T 3 of the three consecutive levels of voltage constituting the stimulation signal are each close to a duration ⁇ opt.
  • ⁇ opt is the duration of a rectangular pulse that would, if it were applied to the stimulation means 31, the shortest upstream intermittent breaking length, constant amplitude and for the same jet (same speed, same section, same ink) .
  • ⁇ opt is a duration corresponding to a spatial disturbance of the jet of a length ⁇ opt / 2, where ⁇ opt is the optimal wavelength of the jet, ie the wavelength for which the coefficient of Amplification of capillary instability is maximal.
  • a is the equivalent diameter of the nozzle 29 which substantially corresponds to the diameter of the jet 30 and Vj is the ejection speed of the jet 30.
  • the principle of sorting the drops requires that the electrical charge on board by the drop intermittent 33 is, in this example, almost zero.
  • the electrical charge actually carried by this drop depends on the geometrical configuration of the charging electrode 35, the electric potentials applied to the two conductors 34, 37 which constitute it, but also on the algebraic distance between the upstream and downstream intermittent fractures. (Lbav - Lbam).
  • the signal represented figure 4 part a allows to control this distance (Lbav - Lbam) between the two breaks forming an intermittent drop, so as to ensure a stable and well-defined trajectory of the drop to print.
  • the distance (Lbav - Lbam) between the upstream and downstream drop formation breaks can be adjusted by modifying certain parameters of the stimulation signal.
  • adjustment of the amplitudes U1, U2 and U3 of the bearings constituting the pulse signal makes it possible to adjust (Lbav-Lbam). More precisely, a decrease in the absolute value of the absolute difference
  • the signal presented makes it possible to correct the trajectory of the drop to be printed by empirically choosing the parameters of the signal which affect the distance (Lbav - Lbam) between the intermittent upstream break and the downstream intermittent break.
  • FIG. figure 4 part b Another example of an impulse stimulation signal that can be used in one embodiment of the invention is described in FIG. figure 4 part b.
  • This signal is composed of a succession of 3 rectangular pulses, a first of a duration D 1 and of level U 1 , a second of a duration T 2 and of level U 2 and a third of duration D 2 and U level 3 .
  • the first and second pulses are separated from each other by a duration Tr 1
  • the second and third pulses are separated from one another by a duration Tr 2 .
  • the signal is at the base level U 0 .
  • the distance between the upstream and downstream breaks of the intermittent drop 33 can then be adjusted by modifying U1 and / or U3: the instant of the downstream breaking is delayed when U1 / U2 increases, the moment of the upstream break is delayed when U3 / U2 increases.
  • a continuous satellite-free break with a signal of sufficiently small amplitude to place the downstream continuous break in the vicinity of the charge conductor 37 is obtained by applying a two-mode signal, superposition of two sinusoidal signals of Fb and 2.Fb frequencies, amplitudes and phase shifts properly selected.
  • Fb 1 / Tb is the fundamental frequency of the continuous stimulation signal of drop formation 43.
  • ⁇ > 0 is the relative amplitude of the second mode, and ⁇ is its relative phase.
  • Ab is a coefficient that determines the amplitude of the continuous stimulation signal for drop formation 43.
  • a signal as described above is represented figure 5 part a. It is a periodic signal of period Tb whose amplitude as a function of time is represented by the formula (1). If this signal is applied alone continuously, the jet is broken as shown figure 2 part a where only drops 43 are produced.
  • At least one period Tb of the periodic signal of continuous downstream stimulation is to obtain an intermittent drop replaced, for example, by the pulse control signal described in connection with the figure 4 part a.
  • the combination of the pulse signal described in connection with the figure 4 part a and the periodic signal described in connection with the figure 5 part a is represented figure 5 part c.
  • the total duration of the intermittent stimulation signal is equal to a value Ti.
  • Ti ⁇ n.Tb, n being an integer.
  • the pulse stimulation signal is preceded by a downstream transition signal of duration tav, and followed by an upstream transition signal of duration tam.
  • the transition signals simply consist in maintaining the constant voltage between the interruption of the periodic signal of continuous stimulation and the beginning of the generation of the pulse signal.
  • the times tav and tam are chosen so as to respect the integrity of the jet sections 38 on either side of the intermittent drop 33 to the zone of influence of the charge conductor 37 ( figure 1 ).
  • the transition signals are also chosen so as to ensure the continuity of the electrical signal applied to the stimulation means 31 during the interruption and resumption of the generation of the periodic downstream continuous stimulation signal. Note that the transition signals can either or both have a zero duration.
  • the relative amplitudes of the periodic signal and the pulse signal that is to say the relative values of Ab in the formula (1) defining the periodic signal and the value of U2 are chosen to correctly position the upstream and downstream broken positions. in the zones of influence of the charging electrode 35.
  • the breaking lengths that is to say the distance between the nozzle 29 and a breaking position, depend on the amplitude of the stimulation.
  • the distance between the intermittent breaking position 11 and the downstream continuous breaking position 12 must be sufficient, at least 20 times the radius of the jet. In the preferred embodiment, a distance between these two broken positions is close to 50 times the radius of the jet.
  • the generator 32 of electrical control signals adapted to generate on demand the pulse signal for creating an intermittent drop 33 and the periodic signal for continuous generation of drops 33 and connected for this purpose to the stimulation means 31, is in the mode described embodiment, controlled by means of a print command, for example a logic signal, for example a binary signal IMP represented on the Figures 5b and 5d .
  • the signal IMP is a function of the data to be printed.
  • the logic value of the boolean signal IMP remains at 0. It is this signal constantly at 0 which is represented figure 5b .
  • the signal IMP goes to the value 1 for at least one period Tb, triggering the response of the electric control signal generator 32: thus, according to the preferred embodiment of the invention the signal generator 32 of control of the stimulation means 31 is able to combine a pulse-type signal and a periodic signal, by replacing an integer n of periods of the periodic signal by the pulse signal framed by transition signals.
  • the hydraulic path inside the body 23 of the print head 1 shown in section figure 6 along one or more xz planes, z being the direction of the jets 30 and x a direction perpendicular to z located in a plane perpendicular to the plane containing the axes nozzles 29 comprises, from upstream to downstream in the direction of flow of the ink, discrete functional elements.
  • a reservoir 17 of pressurized ink 16 is in communication as represented by arrows 27 with an unrepresented ink supply line.
  • the reservoir 17 is in communication with a narrow passage 18 called restriction.
  • a first connecting tube 20 puts the restriction 18 in communication with the stimulation chamber 28.
  • the stimulation chamber 28 is itself in communication with the nozzle 29 for forming the jet 30 by a second connecting tube 21.
  • the nozzle 29 is pierced in a nozzle plate 22 which may comprise a plurality of nozzles aligned in a direction y perpendicular to the representation plane xz.
  • a wall portion of the chamber 28 is formed by a membrane 24 whose thickness along the Z axis is much smaller than its dimensions in the X, Y plane.
  • a piezoelectric element 25 On the outer face of the membrane 24, that is to say the one outside the chamber 28, is bonded a piezoelectric element 25.
  • the diaphragm pair 24 / piezoelectric element 25 which in this example forms the stimulation means 31 forms a vibrating element 31 which deforms in flexion, the effect of which is produce a modulation of the volume and the pressure in the chamber 28; this results in a modulation of the average ejection speed of the ink 16 at the nozzle 29.
  • This type of actuator which is described in numerous patents was initially proposed by Silonics ( US-A-3,946,398 - Kyser & Sears ).
  • the need to form an isolated drop in a jet by the application of an intermittent signal as described figure 4 part a or b, and preferably to avoid the formation of satellite droplets such as 53, 54 described in connection with the figure 3 as well as the formation of a train of drops behind the isolated drop requires that the stimulation is strictly non-resonant.
  • This means that the transfer function of the pacing system must be free of resonance peaks in the bandwidth of the jet 30.
  • the transfer function of the pacing system is defined as the relationship between the pressure induced by the action of the pumping system. piezoelectric element 25 and the jet ejection velocity modulation 30.
  • the stimulation system is capable of producing resonant frequencies F R related to the mechanical and acoustic behavior of the device. To obtain a strictly non-resonant stimulation, it will be sought to place these resonant frequencies F R at the outside of the jet bandwidth. Preferably, the following relation will be satisfied: F R > 1 + 0.1 ⁇ Fc jet
  • the resonant frequency of the vibrating element 31 is typically of the order of 400 kHz.
  • Acoustic propagation phenomena can produce resonance peaks when one of the characteristic lengths of the stimulation system is not negligible compared to the length ⁇ of the acoustic waves in the ink 16.
  • the wavelength ⁇ is typically 7.5 mm in a water-based ink, MEK or alcohol for a cut-off frequency of jet Fc jet 160 kHz and for an average speed of sound, for example in the MEK, of 1200 m / s.
  • We mean by length feature any dimension of the restriction 18, the chamber 28, the first and second connecting tubes 20, 21, the nozzle 29 and the total path of the ink 16 in the stimulation system since the entry of the restriction 18 until the nozzle outlet 29.
  • the first resonance is around 200 kHz, which satisfies the criteria and precautions listed, it is easy to verify that the stimulation is non-resonant and advantageously allows to form a drop in a continuous stream ( Figures 6 and 7 ).
  • the volume contained in the parallelepiped-shaped chamber 28 is chosen such that the Helmholtz frequency of the system is not less than 200 kHz.
  • the thickness of the chamber 28 (in the Z direction) must be as small as possible to provide a maximum surface area for the vibrating element 31 but nevertheless not less than the diameter of the nozzle 29 in order to minimize the viscous loss of pressure in the 28. This thickness resulting from a compromise will be chosen close to the diameter of the nozzle 29.
  • the volume and the thickness being given, it fixes the surface of the chamber by ensuring good consistency with the design rule No. 1.
  • the invention makes it possible to use a common sorting system for a large number of jets, which eliminates the difficulties of producing the charging electrodes of a conventional binary printer, and makes it possible to take advantage of the advantages of the sorting system in intermittent stimulation. , especially its low cost of implementation.
  • the stimulation being internal, congestion problems and difficulties related to external stimulation techniques are eliminated.
  • the stimulation device controlled according to the principle of the invention also makes it possible to modify the behavior of the jet and the trajectory of the drops by the sole means of the stimulation signal, which simplifies the electronic part of the print head and gives a control very fine on jet stability and print quality.
  • the combination of two stable breaks also helps to control the two trajectories of the two types of drops created by the simple adjustment of the stimulation signal parameters, which contributes to improving the reliability of the machine and the print quality.
  • a print head using the invention may or may not include the circuit 32 for generating the break signals.

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

The invention relates to an inkjet printer (10) comprising a print head (1) which is equipped with an internal stimulation system (31). According to the invention, the stimulation system can be used to create: (i) an upstream break in a break position (11) upstream of a jet (30), said break forming drops (33) which are used for printing and jet segments (38) in a zero potential area; and (ii) a break in the jet (30) or jet segment (38) in a downstream break position (12), said break forming drops (43) which are recovered in a non-zero potential area. A sorting system (35) which is common to all of the jets (30) of the head can be used to simplify the head and to reduce the size thereof.

Description

DOMAINE TECHNIQUETECHNICAL AREA

L'invention se situe dans le domaine des têtes d'imprimantes et des imprimantes à jet d'encre continu. Elle concerne aussi un procédé de projection sélective de parties d'un jet d'encre conducteur et notamment un procédé d'impression par jet d'encre continu. Le procédé, et l'imprimante conformes à la présente invention peuvent être utilisés dans tous les domaines industriels liés à l'écriture, notamment au marquage, au codage, à l'adressage à la personnalisation et à la décoration de produits industriels.The invention is in the field of printheads and continuous ink jet printers. It also relates to a selective projection process parts of a conductive ink jet and in particular a continuous inkjet printing process. The method and printer according to the present invention can be used in all industrial fields related to writing, including marking, coding, addressing the personalization and decoration of industrial products.

ETAT DE LA TECHNIQUE ANTERIEURESTATE OF THE PRIOR ART

Le fonctionnement typique d'une imprimante à jet continu peut être décrit comme suit. De l'encre électriquement conductrice maintenue sous pression s'échappe d'une buse calibrée. Sous l'action d'un dispositif de stimulation périodique, le jet d'encre ainsi formé est brisé à intervalles temporels réguliers en une position unique de l'espace. En aval de la position de brisure du jet, le jet continu est transformé en un train de gouttes d'encre identiques et régulièrement espacées. Au voisinage de la position de brisure est placé un premier groupe d'électrodes dont la fonction habituellement reconnue est de transférer de manière sélective et à chaque goutte du jet une quantité de charge électrique prédéterminée.The typical operation of a continuous jet printer can be described as follows. Electrically conductive ink maintained under pressure escapes from a calibrated nozzle. Under the action of a periodic stimulation device, the ink jet thus formed is broken at regular time intervals into a single position of the space. Downstream of the breaking position of the jet, the continuous jet is transformed into a train of identical and regularly spaced ink drops. In the vicinity of the breaking position is placed a first group of electrodes whose function usually recognized is to transfer selectively and each drop of the jet a predetermined amount of electric charge.

L'ensemble des gouttes ainsi chargées de façon sélective traverse ensuite un second agencement d'électrodes au sein duquel règne un champ électrique constant qui va modifier la trajectoire des gouttes chargées.The set of drops thus selectively loaded then passes through a second arrangement of electrodes in which a constant electric field prevails which will modify the trajectory of the charged drops.

Dans une première variante d'imprimante dite à jet continu dévié, la quantité de charge transférée aux gouttes du jet est variable en fonction de la valeur d'un potentiel électrique appliqué à une électrode de charge situé dans une zone de formation des gouttes. Le potentiel appliqué à l'électrode de charge est déterminé en fonction de la commande d'écriture. Ce potentiel est en correspondance avec la destination prévue de la goutte sur le substrat ou dans une gouttière de récupération si la goutte n'est pas destinée à l'impression, pour la goutte qui va passer dans le champ électrique déterminé par le potentiel des électrodes de charge. Une autre façon de faire pour modifier la valeur de la charge électrique attribuée à chaque goutte est décrite dans la demande de brevet FR 2471278 correspondant au brevet US 4346387 , consiste à créer un champs électrique de charge par exemple croissant dans une direction axiale du jet et à contrôler le point de formation des gouttes de façon à ce que le potentiel du point de brisure soit comme dans le cas précédent en correspondance avec la destination prévue de la goutte sur le substrat ou dans une gouttière de récupération si la goutte n'est pas destinée à l'impression. Chaque goutte enregistre, lors du passage dans le second agencement d'électrodes à champ constant, une déflexion croissante avec la charge électrique qui lui a été précédemment attribuée et se trouve orientée vers un point précis du support d'impression ou vers la gouttière de récupération. Cette technologie, grâce à ses multiples niveaux de déflexion, permet à une buse unique d'imprimer, par segment ou trame, - ligne de point d'une hauteur donnée -, l'intégralité d'un motif. Le passage d'un segment à l'autre s'effectue par le déplacement continu, perpendiculairement audit segment, du substrat par rapport à la tête d'impression.In a first variant of deviated continuous jet printer, the amount of charge transferred to the drops of the jet is variable depending on the value of an electric potential applied to a charging electrode located in a drop formation zone. The potential applied to the charging electrode is determined according to the write command. This potential is in correspondence with the intended destination of the drop on the substrate or in a recovery gutter if the drop is not intended for printing, for the drop that will pass into the electric field determined by the potential of the electrodes charge. Another way to modify the value of the electric charge attributed to each drop is described in the patent application. FR 2471278 corresponding to the patent US 4346387 , consists in creating an electric charge field for example increasing in an axial direction of the jet and controlling the point of formation of the drops so that the potential of the breaking point is as in the previous case in correspondence with the intended destination drop on the substrate or in a recovery gutter if the drop is not intended for printing. Each drop records, as it passes through the second arrangement of constant-field electrodes, an increasing deflection with the electrical load previously assigned to it and is oriented towards a specific point of the print medium or towards the salvage gutter. This technology, thanks to its multiple levels of deflection, allows a single nozzle to print, by segment or frame, - point line of a given height -, the entirety of a pattern. The passage from one segment to another is effected by the continuous displacement, perpendicularly to said segment, of the substrate relative to the print head.

La seconde variante est celle du jet continu binaire. Cette technique se démarque principalement de la précédente par le fait que le niveau de charge des gouttes est binaire. Lors du passage au travers des électrodes de déflexion, des gouttes sont déviées de façon uniforme ou non déviées selon la charge qu'elles ont reçue. L'impression de caractères ou de motifs nécessite donc en général l'utilisation de têtes d'impression multibuses, l'entraxe des orifices coïncidant avec celui des impacts sur le support d'impression. Il faut noter qu'en général les gouttes destinées à l'impression sont les gouttes non défléchies, c'est-à-dire, dont le niveau binaire de charge est nul.The second variant is that of the binary continuous stream. This technique differs mainly from the previous one in that the level of charge drops is binary. When passing through the deflection electrodes, drops are uniformly deflected or undirected depending on the load they have received. The printing of characters or patterns therefore generally requires the use of multi-nozzle print heads, the spacing of the orifices coinciding with that of the impacts on the print medium. It should be noted that in general the drops intended for printing are non-deflected drops, that is to say, whose binary level of charge is zero.

Dans les deux technologies, celle du jet continu dévié et celle du jet continu binaire, l'encre qui n'est pas utilisée pour marquer le substrat est dirigée vers une gouttière ou un récupérateur d'encre non utilisée et est recyclée dans un circuit d'encre de telle sorte qu'elle revient vers les buses d'impression.In both technologies, that of the deviated continuous jet and that of the binary continuous jet, the ink which is not used to mark the substrate is directed to an unused gutter or ink recuperator and is recycled in a circuit which is ink so that it returns to the print nozzles.

Un procédé pour briser le jet en gouttes est très bien décrit par exemple dans un brevet portant le numéro US-A-4,220,958 dont l'inventeur est Mr. CROWLEY. Selon le procédé décrit par CROWLEY, le jet d'encre conductrice passe au travers d'électrodes portées périodiquement à un potentiel relativement élevé. Sous l'action de ces électrodes, le jet d'encre se charge. Les charges sont attirées par les électrodes en sorte qu'une force transversale au jet déforme la surface du jet. La vitesse axiale du jet et le mouvement transversal de la surface du jet se combinent pour qu'à une certaine distance des électrodes, le jet se brise en une succession de gouttes.A method for breaking down the jet into drops is very well described, for example, in a patent bearing the number US Patent 4,220,958 whose inventor is Mr. CROWLEY. According to the method described by CROWLEY, the inkjet conductive passes through electrodes worn periodically at a relatively high potential. Under the action of these electrodes, the ink jet is charged. The charges are attracted to the electrodes so that a force transverse to the jet deforms the surface of the jet. The axial velocity of the jet and the transverse movement of the surface of the jet combine so that at a certain distance from the electrodes, the jet breaks in a succession of drops.

Dans la description de l'art antérieur à son invention, CROWLEY cite un brevet de Richard G. SWEET portant le numéro US-A-3,596,275 . Selon cette citation, un point important d'une imprimante par jet d'encre est la génération de gouttes. Il est préféré que les gouttes soient générées à une fréquence fixe avec une masse et une vitesse constantes. Pour atteindre ce but, SWEET révèle trois techniques qui sont représentées aux figures 1, 2 et 10 de son brevet.In the description of the prior art to his invention, CROWLEY cites a patent of Richard G. SWEET bearing the number US Patent 3,596,275 . According to this quote, an important point of an inkjet printer is the generation of drops. It is preferred that the drops are generated at a fixed frequency with constant mass and velocity. To achieve this goal, SWEET reveals three techniques that are represented at figures 1 , 2 and 10 of his patent.

Selon une première technique, les buses d'émission d'encre sont vibrées. Selon une seconde technique, le jet de liquide est excité électro-hydrodynamiquement avec un excitateur électro-hydrodynamique (EHD). Une troisième technique est d'imposer une variation de pression sur le liquide au niveau de la buse au moyen d'un cristal piézo-électrique introduit dans une cavité d'alimentation de la buse. Cette dernière technique est dominante dans la littérature et est utilisée par exemple dans la machine IBM 6640 (marque déposée).According to a first technique, the ink emission nozzles are vibrated. According to a second technique, the liquid jet is excited electro-hydrodynamically with an electro-hydrodynamic exciter (EHD). A third technique is to impose a pressure variation on the liquid at the nozzle by means of a piezoelectric crystal introduced into a cavity for feeding the nozzle. This latter technique is dominant in the literature and is used for example in the IBM 6640 machine (registered trademark).

Par rapport à cet état de la technique, l'invention de CROWLEY concerne un excitateur électro-hydrodynamique dans lequel la longueur des électrodes traversées par le jet d'encre est égale à une demie fois la distance entre les gouttes.Compared with this state of the art, the invention of CROWLEY concerns an electro-hydrodynamic exciter wherein the length of the electrodes traversed by the ink jet is equal to half the distance between the drops.

Un autre procédé de stimulation du jet d'encre pour sa transformation en gouttes est décrit, par exemple dans le brevet US-A-4,638,328 DRAKE et al . Il s'agit d'une activation par éléments thermorésistifs.Another method of stimulating the ink jet for its transformation into drops is described, for example in the patent US-A-4,638,328 DRAKE et al. . It is an activation by thermoresistive elements.

Une seconde famille d'impression par projection d'encre dite goutte à la demande, est essentiellement mise en oeuvre dans les imprimantes de bureau. Il s'agit d'imprimer du texte ou des motifs graphiques en couleurs sur des supports papier ou plastique. A contrario de l'impression par jet continu, les technologies goutte à la demande, génèrent directement et uniquement les gouttes d'encre effectivement nécessaires à l'impression des motifs désirés. On ne trouve donc ni électrodes ni gouttière de recirculation d'encre entre la face de sortie d'une buse et le support d'impression. Ces imprimantes comportent une pluralité de buses, chaque buse est associée à un dispositif de stimulation ayant la double fonction d'expulser une goutte (énergie cinétique) et d'en contrôler la formation (profil de la goutte). Ce dispositif de stimulation qui est activé à la demande par un signal électrique décline deux variantes principales :A second family of printing ink projection called drop on demand, is mainly implemented in office printers. This is to print text or graphic patterns in color on paper or plastic. In contrast to continuous jet printing, drop-on-demand technologies generate directly and only the ink drops actually needed to print the desired patterns. There is therefore no recirculating electrode or gutter ink between the outlet face of a nozzle and the print medium. These printers comprise a plurality of nozzles, each nozzle is associated with a stimulation device having the dual function of expelling a drop (kinetic energy) and controlling its formation (profile of the drop). This stimulation device, which is activated on demand by an electrical signal, has two main variants:

La technologie "Bubble jet" initialement développée par Canon et Hewlett-Packard est principalement implantée dans le domaine de la bureautique. Un élément chauffant placé dans un conduit produit localement la vaporisation de l'encre, la croissance de la bulle de gaz produit l'expulsion d'une petite goutte d'encre en direction du support d'impression.The "Bubble Jet" technology initially developed by Canon and Hewlett-Packard is mainly implanted in the field of office automation. A heating element placed in a duct produces the vaporization of the ink locally, the growth of the gas bubble produces the expulsion of a small drop of ink towards the print media.

La technologie "piézo-électrique" est basée sur la déformation d'une céramique piézo-électrique pour créer une surpression et ainsi projeter des gouttes d'encre. Les domaines d'application de cette technologie concernent la bureautique (Epson) ou l'impression industrielle (Trident, Xaar, Spectra).The "piezoelectric" technology is based on the deformation of a piezoelectric ceramic to create an overpressure and thus project drops of ink. The fields of application of this technology concern office automation (Epson) or industrial printing (Trident, Xaar, Spectra).

La densité de points offerte par ces imprimantes de l'ordre de 600 points par pouce résulte de l'utilisation des matériaux et des techniques de fabrication développés pour l'industrie microélectronique.The dot density offered by these printers of the order of 600 dots per inch results from the use of materials and manufacturing techniques developed for the microelectronics industry.

Dans le domaine de l'impression industrielle, les performances des têtes d'impression par jet d'encre continu surclassent les capacités des modèles goutte à la demande. Les premières offrent :

  • une gamme d'encrë utilisable plus étendue et par conséquent une plus large variété de supports imprimables,
  • une fréquence d'émission des gouttes plus élevée et donc une vitesse d'impression accrue (environ 100 kHz et quelques mètres par seconde contre environ 10 kHz et quelques centimètres par seconde),
  • une distance d'impression de la face inférieure de la tête d'impression jusqu'au support supérieur (environ 10 à 30 mm contre 1 mm).
In the field of industrial printing, the performance of continuous ink jet printheads outperforms the capabilities of drop-on-demand models. The first offer:
  • a wider range of usable ink and therefore a wider variety of printable media,
  • a higher transmission frequency of the drops and therefore an increased printing speed (about 100 kHz and a few meters per second against about 10 kHz and a few centimeters per second),
  • a printing distance from the underside of the print head to the upper support (approximately 10 to 30 mm against 1 mm).

Toutefois la simplicité de la conception des têtes d'impression goutte à la demande ne se retrouve pas dans les imprimantes multibuses à jet continu binaire. Les électrodes dédiées à la charge des gouttes de chaque jet doivent être pilotées individuellement, à la fréquence de formation des gouttes et à des niveaux de tension pouvant atteindre 350 volts. La fabrication et la juxtaposition à un pas très fin de l'ensemble des buses et des électrodes d'une tête d'impression font alors apparaître des problèmes majeurs :

  • ■ de réalisation et de coût : la multiplication des circuits électroniques à haute tension reliés aux électrodes de charge et la multiplication de ces mêmes électrodes de charge induisent une commande électronique complexe et coûteuse,
  • ■ d'utilisation et de performance : la connectique haute tension très dense à proximité du jet provoque des diaphonies indésirables dont l'effet sur la qualité d'impression ne peut être limité que par une réduction du taux d'utilisation des gouttes, et par conséquent, une réduction de la vitesse d'impression, et/ou une diminution de la résolution.
However, the simplicity of designing drop-on-demand printheads is not found in multi-binary continuous jet printers. Electrodes dedicated to the charge of the drops Each jet must be controlled individually, at the drop formation frequency and at voltage levels up to 350 volts. The fabrication and the juxtaposition at a very fine pitch of all the nozzles and the electrodes of a print head then reveal major problems:
  • ■ realization and cost: the multiplication of high voltage electronic circuits connected to the charging electrodes and the multiplication of these same charging electrodes induce a complex and expensive electronic control,
  • ■ of use and performance: the high-density high-voltage connection near the jet causes unwanted crosstalk, whose effect on the print quality can only be limited by a reduction in the drop utilization rate, and by therefore, a reduction in print speed, and / or a decrease in the resolution.

Dans l'optique de conserver les avantages du jet continu binaire tout en remédiant aux inconvénients, une alternative consiste à utiliser un système de charge et de déviation des gouttes commun à tous les jets.

  • Une première invention ayant pour inventeur Vago est décrite dans la demande de brevet EP 949077 ou US 6,273,559 prévoit un dispositif de stimulation fonctionnant à une fréquence F, et piloté par deux niveaux de tension. Selon la tension appliquée au dispositif de stimulation, le point de brisure du jet se produit en un point C ou en un point L. Avant d'aller plus loin, il convient de savoir ce qui suit.
Considérons un jet soumis à une stimulation périodique, ce dernier se brise en un train de gouttes avec une période spatiale appelée longueur d'onde. A l'intérieur d'une longueur d'onde peuvent se former plusieurs gouttelettes qui accompagnent la goutte principale (celle de plus fort volume). Dans le métier du jet d'encre ces gouttelettes secondaires sont appelées satellites. Cette notion se démarque sans ambiguïté du terme de tronçon lequel désigne des portions continues de jets comportant au moins deux longueurs d'ondes.
Pour cette première invention de Vago, la différence de niveau de tension appliquée aux moyens de stimulation est telle que les points de brisure du jet C et D sont séparés l'un de l'autre par une distance qui est strictement inférieure à la longueur d'onde du jet. Le point de brisure C est à une position où existe un potentiel égal à celui de l'encre, en sorte que les gouttes formées en C ne sont pas chargées. Ces gouttes non chargées ne sont pas déviées ultérieurement par des électrodes de déviation et vont imprimer le substrat d'impression. Le point de brisure L est à une position où existe un potentiel différent de celui de l'encre, en sorte que les gouttes formées en L sont chargées. Ces gouttes chargées sont déviées ultérieurement par les électrodes de déviation et sont dirigées vers une gouttière de récupération pour être recyclées dans le circuit d'encre. Le point C se trouve sensiblement à mi distance entre des jeux d'électrodes amont et aval portés à des potentiels égaux et de signe opposé. La distance C-L est trop courte pour créer des tronçons.In order to preserve the advantages of the binary continuous stream while overcoming the disadvantages, an alternative is to use a system of charging and deflecting drops common to all streams.
  • A first invention invented by Vago is described in the patent application EP 949077 or US 6,273,559 provides a stimulation device operating at a frequency F, and controlled by two voltage levels. Depending on the voltage applied to the stimulation device, the jet breaking point occurs at a point C or at a point L. Before going any further, you should know the following.
Consider a jet subjected to periodic stimulation, the latter breaks into a train of drops with a spatial period called wavelength. Within a wavelength can form several droplets that accompany the main drop (the one of higher volume). In the ink jet business, these secondary droplets are called satellites. This concept stands out unambiguously from the section term which denotes continuous portions of jets having at least two wavelengths.
For this first invention of Vago, the difference in voltage level applied to the stimulation means is such that the break points of the jet C and D are separated from each other by a distance which is strictly less than the length of the current. wave of the jet. The breaking point C is at a position where there is a potential equal to that of the ink, so that the drops formed at C are not charged. These uncharged drops are not deflected later by deflection electrodes and will print the printing substrate. The breaking point L is at a position where there is a potential different from that of the ink, so that the drops formed in L are charged. These charged drops are later deflected by the deflection electrodes and are directed to a recovery gutter for recycling into the ink circuit. Point C is located approximately halfway between upstream and downstream electrode sets brought to equal potentials and opposite sign. The CL distance is too short to create chunks.

La demande de brevet n° FR 2 799 688 ayant aux USA le numéro de dépôt 09/685 064 du 10/10/00 objet d'une seconde invention de Vago, la publication dans le journal Xerox disclosure ( Pincus - 1982, vol.7, p.23 ) décrivent un système de charge et de tri basé sur un jeu d'électrodes portées à des potentiels constants. La fragmentation du jet se situe dans le jeu d'électrodes et préférentiellement en face d'une électrode bien identifiée selon que la portion de jet doit être imprimée ou collectée par la gouttière. En cours de fonctionnement, le jet se présente sous la forme d'une succession de gouttes isolées électriquement, c'est à dire sans charge électrique embarquée, physiquement distinctes, encadrées par des tronçons électriquement chargés qui sont défléchis vers la gouttière. La génération des gouttes isolées (de charge électrique nulle) est déclenchée par un système de stimulation intermittent non décrit. De façon en elle même connue, la stimulation intermittente d'un jet peut être assurée par un actuateur ElectroHydroDynamique (brevet US 4,220,958 - Crowley ) ou thermique ( US 3,878,519 - Eaton ). Dans les deux cas, il s'agit de techniques de stimulation dite externes car elles consistent à agir sur un jet déjà formé. Une technique de stimulation externe permet aisément de former une goutte isolée dans un jet dans la mesure où le liquide défile devant le dispositif de stimulation dont le rayon d'action est de courte portée, deux configurations se présentent.Patent Application No. FR 2 799 688 having in the USA the deposit number 09/685 064 of 10/10/00 object of a second invention of Vago, the publication in the newspaper Xerox disclosure ( Pincus - 1982, vol.7, p.23 ) describe a charging and sorting system based on a set of electrodes carried at constant potentials. The fragmentation of the jet is in the set of electrodes and preferably in front of a well identified electrode according to whether the jet portion is to be printed or collected by the gutter. During operation, the jet is in the form of a succession of drops electrically insulated, that is to say without embedded electrical load, physically separate, framed by electrically charged sections which are deflected to the gutter. The generation of isolated drops (of zero electrical charge) is triggered by an undescribed intermittent pacing system. In a manner known in itself, the intermittent stimulation of a jet can be provided by an ElectroHydroDynamic actuator (patent US 4,220,958 - Crowley ) or thermal ( US 3,878,519 - Eaton ). In both cases, it is called external stimulation techniques because they consist in acting on an already formed jet. An external stimulation technique easily makes it possible to form an isolated droplet in a jet inasmuch as the liquid flows in front of the stimulation device whose range of action is short-range, two configurations are presented.

En l'absence de signal de stimulation, le jet n'est pas perturbé et reste continu jusqu'à la position de brisure naturelle.In the absence of a stimulation signal, the jet is not disturbed and remains continuous until the natural breaking position.

L'application d'un signal de stimulation sélectionne une portion de jet parfaitement définie dont la longueur ne dépend que la vitesse d'avancement du jet et de la durée du signal d'excitation. Sous l'effet de la tension superficielle, le tronçon de jet stimulé de longueur correctement choisie produira une goutte isolée dans le jet continu.The application of a stimulation signal selects a perfectly defined jet portion whose length depends only on the speed of advance of the jet and the duration of the excitation signal. Under the effect of surface tension, the appropriately selected length of stimulated jet will produce an isolated drop in the continuous stream.

Dans la seconde invention de Vago, la position de brisure du jet continu, pour former une goutte à la demande est placée dans une zone où une électrode commune à toutes les buses de la tête d'impression maintient un potentiel égal à celui de l'encre dans la tête d'impression. Une électrode de charge est placée en aval de cette position de brisure. Tant que le jet n'est pas brisé, du fait que l'encre utilisée est conductrice, une portion de jet placée en aval de la position de brisure se trouve dans la zone d'influence des électrodes de charge. Par contre lorsque les gouttes sont formées avant de traverser le champ électrique des électrodes de charge, elles sont électriquement isolées et ne se chargent pas.In the second invention of Vago, the breaking position of the continuous jet, to form a drop on demand is placed in an area where an electrode common to all the nozzles of the print head maintains a potential equal to that of the ink in the print head. A charging electrode is placed downstream of this breaking position. As long as the jet is not broken, because the ink used is conductive, a jet portion placed downstream of the break position is in the area of influence of the charging electrodes. On the other hand, when the drops are formed before passing through the electric field of the charging electrodes, they are electrically insulated and do not charge.

Ces gouttes non chargées formées à la demande ne sont pas déviées par des électrodes de déviations placées en aval des électrodes de charges. Elles vont donc imprimer le substrat d'impression. Les tronçons qui eux sont chargés, sont déviés par les électrodes de déviations vers une gouttière de récupération. Dans la seconde de Vago, la commande d'écriture d'une goutte ne se fait pas comme dans les imprimantes à jet continu, au niveau d'électrodes de charge, placées dans le flux d'encre en aval des buses d'éjection de l'encre mais au niveau des moyens de stimulation se trouvant en amont de ces buses. Un tel dispositif dans lequel la perturbation de formation des gouttes dans le jet est effectuée en amont de la buse est dit à stimulation interne. Les premières et seconde inventions de Vago associent ainsi les avantages de l'impression goutte à la demande à ceux du jet continu.These unloaded drops formed on demand are not deflected by deflection electrodes placed downstream of the charge electrodes. They will print the printing substrate. The sections that are loaded, are deflected by the deflection electrodes to a recovery gutter. In the second of Vago, the writing command of a drop does not as in continuous jet printers, at charging electrodes, placed in the ink flow downstream of the ink ejection nozzles but at the level of the stimulation means upstream of these ink jet nozzles. nozzles. Such a device in which the perturbation of droplet formation in the jet is performed upstream of the nozzle is said to internal stimulation. Vago's first and second inventions thus combine the advantages of drop-on-demand printing with those of the continuous stream.

EXPOSÉ DE L'INVENTIONSTATEMENT OF THE INVENTION

La présente invention vise comme les premières et seconde inventions de Vago, à associer les avantages de l'impression goutte à la demande à ceux du jet continu. On rappelle que ces avantages comportent notamment :

  • une suppression pour chaque jet du jeu d'électrodes individuelles de charge des gouttes et du circuit de commande associé à ce jeu d'électrodes individuelles.
The present invention aims, like the first and second inventions of Vago, to combine the advantages of drop-on-demand printing with those of the continuous jet. These benefits include:
  • a suppression for each jet of the set of individual electrodes for charging the drops and the control circuit associated with this set of individual electrodes.

Une application des données numériques définissant le motif à imprimer non plus en aval des buses, mais en amont, au niveau des moyens de stimulation du jet. Ce sont ces données qui vont déterminer ou non la formation des gouttes servant à l'impression.An application of the digital data defining the pattern to be printed no longer downstream of the nozzles, but upstream, at the level of the jet stimulating means. It is these data that will determine or not the formation of the drops used for printing.

On améliore ainsi la qualité de l'impression grâce à une suppression de la diaphonie par couplage électrostatique entre les différents jets d'une même tête d'impression. De plus on simplifie la fabrication et on diminue la taille hors tout des têtes d'impression.This improves the quality of printing by eliminating the cross-talk by electrostatic coupling between the different jets of the same print head. In addition, the manufacturing is simplified and it decreases the overall size of the printheads.

L'invention vise également ces avantages mais avec des améliorations qui seront décrites ci-après.The invention also aims at these advantages but with improvements which will be described below.

Dans le dispositif décrit dans la seconde invention de Vago, les électrodes de charge doivent créer un champ de charge dans une zone séparée de la zone de protection réservée aux gouttes destinées à l'impression, d'au plus le diamètre d'une goutte. De la sorte les tronçons les plus courts dont la longueur est d'environ deux diamètres de goutte, ont avant la brisure, une partie située dans la zone de charge et peuvent se charger. De plus il est préférable que les électrodes de charge aient une zone d'influence dont la longueur dans la direction de l'axe du jet, soit assez grande pour assurer une charge d'un tronçon de façon proportionnelle à la longueur dudit tronçon, et donc à sa masse. De cette façon les tronçons de différentes longueur et donc de différentes masses, sont tous déviés de façon identique et un orifice d'entrée de la gouttière de récupération peut garder une dimension raisonnablement petite, tout en assurant la récupération de tous les tronçons quelle que soit leur longueur.In the device described in the second invention of Vago, the charging electrodes must create a charging field in a separate area of the protection zone reserved for the drops intended for printing, at most the diameter of a drop. In this way the shortest sections whose length is about two drop diameters, have before break, a portion located in the charging zone and can be charged. In addition it is preferable that the charging electrodes have a zone of influence whose length in the direction of the axis of the jet, is large enough to ensure a charge of a section proportionally to the length of said section, and therefore to its mass. In this way the sections of different length and therefore of different masses, are all deviated in an identical manner and an inlet port of the recovery gutter can keep a reasonably small size, while ensuring the recovery of all sections regardless their length.

La présente invention vise aussi à un meilleur contrôle des parties de jet d'encre non destinées à l'impression. Elle vise également une simplification de la fabrication des têtes d'impression par un relâchement des tolérances sur la position des électrodes communes à toutes les buses de la tête. Elle vise également une compaction accrue des dimensions hors tout de la tête d'impression, et une distance d'impression plus grande.The present invention also aims at a better control of inkjet parts not intended for printing. It also aims to simplify the manufacture of the printheads by loosening the tolerances on the position of the electrodes common to all the nozzles of the head. It also aims at increased compaction of the overall dimensions of the print head, and a greater printing distance.

Selon l'invention, au lieu de briser le jet, uniquement pour créer les gouttes nécessaires à l'impression, le jet étant alors divisé en gouttes et tronçons de jet, on le brise également de façon régulière et contrôlée pour créer des gouttes qui seront, par exemple, électriquement chargées et déviées par des électrodes de déflexion. Pour cela les moyens de stimulation du jet, destinés à briser le jet, sont aptes à provoquer des brisures du jet en deux positions du jet axialement séparées l'une de l'autre, une position de brisure amont et une position de brisure aval, cette dernière étant plus en aval dans le sens d'avancement du jet que la position amont. A la position de brisure amont le jet sera brisé de façon intermittente pour créer les gouttes d'encre qui seront utilisées pour l'impression. Ainsi après la position de brisure amont le jet pourra être sans interruption depuis la buse, si aucune goutte intermittente n'a été formée, ou au contraire réparti en goutte(s) et tronçon(s) si une ou plusieurs gouttes intermittentes ont été formées. La position de brisure amont sera, par exemple, dans une zone dans laquelle des électrodes maintiennent un potentiel égal à celui de l'encre dans la tête d'impression, en sorte que les gouttes intermittentes ne seront pas électriquement chargées. La position de brisure aval est dans l'exemple ici commenté, dans une zone où des électrodes de charge maintiennent un potentiel différent de celui de l'encre dans la tête d'impression en sorte que les gouttes continues seront électriquement chargées. A la position de brisure aval, c'est le jet qui est brisé s'il n'y pas eu de brisure intermittente à la position amont, par contre s'il y a eu une brisure à la position amont, le tronçon de jet en résultant est divisé de façon continue en gouttes. Ainsi après la position de brisure aval, le jet est entièrement divisé en gouttes. Des électrodes de déflexion situées en aval des deux positions de brisure permettent ensuite de faire un tri entre les gouttes chargées et les gouttes non chargées pour envoyer les unes vers une gouttière de récupération et les autres vers un support d'impression.According to the invention, instead of breaking the jet, only to create the drops necessary for printing, the jet then being divided into drops and jet sections, it is also broken in a regular and controlled manner to create drops that will be for example, electrically charged and deflected by deflection electrodes. For this, the jet stimulating means, intended to break the jet, are capable of causing the jet to break in two positions of the jet axially separated from one another, an upstream breaking position and a downstream breaking position, the latter being further downstream in the direction of advancement of the jet than the upstream position. At the upstream breaking position the jet will be broken intermittently to create the drops of ink that will be used for printing. Thus after the upstream breaking position the jet can be continuously from the nozzle, if no intermittent drop has been formed, or on the contrary divided into drop (s) and section (s) if one or more intermittent drops have been formed . The upstream breaking position will be, for example, in an area in which electrodes maintain a potential equal to that of the ink in the print head, so that the intermittent drops will not be electrically charged. The downstream breaking position is, in the example discussed here, in an area where charging electrodes maintain a potential different from that of the ink in the print head so that the continuous drops will be electrically charged. At the downstream breaking position, the jet is broken if there is no break intermittent at the upstream position, on the other hand if there has been a break in the upstream position, the resulting jet section is continuously divided into drops. Thus after the downstream breaking position, the jet is entirely divided into drops. Deflection electrodes located downstream of the two breaking positions then make it possible to sort the charged drops and the uncharged drops to send the ones to a recovery gutter and the others to a printing medium.

Ainsi, l'invention est-elle relative à une imprimante à jet d'encre comprenant :

  • une tête d'impression à une ou plusieurs buses ayant un corps de tête logeant notamment pour chaque buse,
  • un chemin hydraulique de l'encre comportant, une chambre de stimulation en communication hydraulique avec l'une des buses d'impression émettant un jet d'encre sous pression selon un axe de cette buse,
  • des moyens internes de stimulation du jet d'encre émis par la buse couplés mécaniquement à l'encre logée dans la chambre de stimulation, ces moyens agissant sur le jet émis par la buse pour briser le jet de façon contrôlée, et
  • des moyens de récupération de l'encre qui n'est pas reçue par un substrat d'impression,
  • un générateur de signaux électriques de commande recevant un signal de commande et délivrant aux moyens de stimulation, des signaux de stimulation,
  • un agencement d'électrodes de charge définissant autour de l'axe de la buse des zones amont et aval, la zone aval étant plus éloignée de la buse que la zone amont, des électrodes amont et aval de cet agencement étant reliées à des sources de potentiel électrique de façon à maintenir dans l'une des zones un potentiel égal à celui de l'encre se trouvant dans le corps de la tête d'impression, et dans l'autre de ces zones un potentiel différent de celui de l'encre se trouvant dans le corps de la tête d'impression,
  • un agencement d'électrode de déflexion situé axialement en aval de l'agencement d'électrode de charge
caractérisée en ce que le générateur de signaux électriques de commande délivre aux moyens de stimulation des signaux provoquant la brisure contrôlée du jet de façon intermittente en une position de brisure amont située dans la zone amont pour former de façon intermittente une goutte, séparant ainsi le jet en une goutte et un tronçon et provoquant également la brisure contrôlée du jet ou de tronçons du jet de façon continue en une position de brisure aval, le jet continu émis par la buse étant ainsi transformé après la zone aval en un train continu de gouttes d'encre électriquement chargées et non chargées.Thus, the invention relates to an ink jet printer comprising:
  • a print head with one or more nozzles having a head body housing in particular for each nozzle,
  • a hydraulic ink path comprising a stimulation chamber in hydraulic communication with one of the printing nozzles emitting a jet of ink under pressure along an axis of this nozzle,
  • internal means for stimulating the jet of ink emitted by the nozzle mechanically coupled to the ink housed in the stimulation chamber, these means acting on the jet emitted by the nozzle to break the jet in a controlled manner, and
  • means for recovering the ink which is not received by a printing substrate,
  • an electrical control signal generator receiving a control signal and delivering stimulation signals to the stimulation means,
  • an arrangement of charge electrodes defining upstream zones around the axis of the nozzle and downstream, the downstream zone being further from the nozzle than the upstream zone, upstream and downstream electrodes of this arrangement being connected to sources of electrical potential so as to maintain in one of the zones a potential equal to that of the ink in the body of the print head, and in the other of these areas a potential different from that of the ink in the body of the print head,
  • a deflection electrode arrangement located axially downstream of the charge electrode arrangement
characterized in that the electrical control signal generator supplies the stimulation means with signals causing the jet to be intermittently intermittently broken into an upstream break position in the upstream zone to intermittently form a drop, thereby separating the jet. in a drop and a section and also causing the controlled breaking of the jet or sections of the jet continuously to a downstream breaking position, the continuous jet emitted by the nozzle thus being transformed after the downstream zone into a continuous stream of drops of drip. electrically charged and uncharged ink.

Le générateur de signaux électriques de commande peut être physiquement séparé de la tête d'imprimante. Il peut aussi en faire partie physiquement. Dans ce dernier cas l'invention est également relative à la tête d'imprimante.The electrical control signal generator can be physically separated from the printer head. He can also be part of it physically. In the latter case, the invention also relates to the printer head.

Dans un mode de réalisation, l'imprimante ou la tête d'imprimante selon l'invention est caractérisée en ce que l'électrode amont de l'agencement d'électrodes de charge est connectée au même potentiel que l'encre.In one embodiment, the printer or printer head according to the invention is characterized in that the upstream electrode of the charge electrode arrangement is connected to the same potential as the ink.

Ainsi dans ce mode de réalisation, les gouttes chargées sont celles qui résultent d'une brisure du jet ou de tronçons du jet dans la zone aval. Elles sont déviées par l'agencement d'électrodes de déflexion vers les moyens de récupération de l'encre. Chaque période du signal périodique crée une réaction mécanique des moyens de stimulation, cette réaction provoquant la brisure du jet ou de tronçons du jet dans la zone aval. Chaque impulsion intermittente du signal impulsionnel crée une réaction mécanique des moyens de stimulation provoquant la brisure du jet dans la zone amont en une goutte et un tronçon. De façon en elle même connue, les gouttes chargées pourraient être dirigées vers le substrat d'impression et les gouttes non chargées vers les moyens de récupération de l'encre. Il suffit dans ce cas que la position de brisure amont, où se forment les gouttes destinées à l'impression soit dans une zone où un agencement d'électrodes maintient un potentiel différent de celui de l'encre, alors que le potentiel maintenu dans la zone aval est à une valeur égale à celle de l'encre.Thus, in this embodiment, the charged drops are those resulting from breaking the jet or sections of the jet in the downstream zone. They are deflected by the arrangement of deflection electrodes to the ink recovery means. Each period of the periodic signal creates a mechanical reaction of the stimulation means, this reaction causing the breaking of the jet or sections of the jet in the downstream zone. Each intermittent pulse of the pulse signal creates a mechanical reaction of the stimulation means causing the breaking of the jet in the upstream zone in a drop and a section. In a manner known per se, the charged drops could be directed towards the printing substrate and the uncharged drops to the ink recovery means. In this case, it suffices for the upstream breaking position, where the drops intended for printing are formed, to be in an area where an electrode arrangement maintains a potential different from that of the ink, whereas the potential maintained in FIG. downstream zone is at a value equal to that of the ink.

Dans un mode de réalisation, l'imprimante ou la tête d'imprimante selon l'invention est caractérisée en ce que les moyens de stimulation comportent un matériau piézo-électrique, le générateur de signaux électriques de commande délivrant aux moyens de stimulation un signal d'impression continu formé par un signal périodique de période Tb, remplacé de façon intermittente par un signal impulsionnel précédé et suivi de signaux de transition.In one embodiment, the printer or the printer head according to the invention is characterized in that the stimulation means comprise a piezoelectric material, the generator of electrical control signals delivering to the stimulation means a signal of continuous printing formed by a periodic signal of period Tb, intermittently replaced by a pulse signal preceded and followed by transition signals.

Dans un mode de réalisation, l'imprimante ou la tête d'imprimante selon l'invention est caractérisée en ce que le signal impulsionnel délivré par le générateur de signaux électriques de commande est constitué par une impulsion comportant 3 paliers de tension consécutifs reliés l'un au suivant par un front de montée ou de descente de tension raide.In one embodiment, the printer or the printer head according to the invention is characterized in that the pulse signal delivered by the electrical control signal generator is constituted by a pulse comprising 3 consecutive voltage stages connected to the one to the next by a steep rising or descending front.

Dans un mode de réalisation, l'imprimante ou la tête d'imprimante selon l'invention est caractérisée en ce que le signal impulsionnel délivré par le générateur de signaux électriques de commande est constitué par une succession de 3 impulsions rectangulaires séparées entre elles par des paliers de tension de niveau inférieur au niveau de l'impulsion de niveau le plus faible.In one embodiment, the printer or the printer head according to the invention is characterized in that the pulse signal delivered by the electrical control signal generator is constituted by a succession of 3 rectangular pulses separated from each other by Lower level voltage levels at the lowest level pulse.

Dans un mode de réalisation, l'imprimante ou la tête d'imprimante selon l'invention est caractérisée en ce que le signal périodique délivré par le générateur de signaux électriques de commande est constitué par un signal dont le spectre est constitué par deux raie à une première fréquence et une raie à une seconde fréquence double de la première, d'autres raies éventuelle du spectre ayant des coefficients très inférieurs aux coefficients associés aux raies des première ou seconde fréquence, par exemple un signal résultant d'une combinaison de deux signaux sinusoïdaux. Le signal périodique délivré par le générateur de signaux électriques de commande peut aussi être constitué par une combinaison de plus de deux signaux sinusoïdaux.In one embodiment, the printer or the printer head according to the invention is characterized in that the periodic signal delivered by the electrical control signal generator is constituted by a signal whose spectrum is constituted by two lines of a first frequency and a line at a second double frequency of the first, other possible lines of the spectrum having coefficients much lower than the coefficients associated with the lines of the first or second frequency, for example a signal resulting from a combination of two signals sinusoidal. The periodic signal delivered by the electrical control signal generator may also consist of a combination of more than two sinusoidal signals.

Dans un mode de réalisation, l'imprimante ou la tête d'imprimante selon l'invention est caractérisée en ce que la somme des durées du signal impulsionnel et des signaux de transition délivré par le générateur de signaux électriques de commande est égale à un nombre entier de périodes du signal périodique.In one embodiment, the printer or the printer head according to the invention is characterized in that the sum of the durations of the pulse signal and the transition signals delivered by the electrical control signal generator is equal to an integer number of periods of the periodic signal.

Dans un mode de réalisation, l'imprimante ou la tête d'imprimante selon l'invention est caractérisée en ce que une fréquence de Helmholtz d'une partie d'un chemin hydraulique de l'encre d'alimentation d'une buse située en aval d'une restriction a une valeur située en dehors d'une bande passante du jet issu de cette buse.In one embodiment, the printer or the printer head according to the invention is characterized in that a Helmholtz frequency of a portion of a hydraulic path of the feed ink of a nozzle located in downstream of a restriction has a value located outside a bandwidth of the jet from this nozzle.

Dans un mode de réalisation, l'imprimante ou la tête d'imprimante selon l'invention est caractérisée en ce que le chemin hydraulique de l'encre comporte une restriction et en ce que la longueur d'un chemin hydraulique entre une entrée de la restriction et la buse est inférieur au quart de la longueur d'onde du son dans l'encre.In one embodiment, the printer or the printer head according to the invention is characterized in that the hydraulic path of the ink has a restriction and in that the length of a hydraulic path between an inlet of the restriction and the nozzle is less than a quarter of the wavelength of the sound in the ink.

Dans un mode de réalisation visant à éviter la création de brisures non souhaitées, c'est-à-dire à éviter la formation de gouttelettes entre les gouttes que l'on veut réellement former et les autres parties du jet ou de tronçons du jet, l'imprimante ou la tête d'imprimante selon l'invention est caractérisée en ce que le système de stimulation d'un jet émis par une buse est strictement non résonant, i.e. la fonction de transfert du système de stimulation est exempte de pics de résonance dans la bande passante du jet. On rappelle que la fonction de transfert du système de stimulation est définie comme la relation existant entre la pression induite par l'action de l'élément piézo-électrique et la modulation de vitesse introduite dans la vitesse d'éjection du jet. Le système de stimulation comprend donc non seulement les moyens de stimulation mais aussi le chemin hydraulique de l'encre dans le corps de la tête d'impression.In an embodiment intended to avoid the creation of unwanted breaks, that is to say to avoid the formation of droplets between the drops that are actually wanted to form and the other parts of the jet or jet sections, the printer or the printer head according to the invention is characterized in that the system for stimulating a jet emitted by a nozzle is strictly non-resonant, ie the transfer function of the stimulation system is free of resonance peaks in the bandwidth of the jet. It is recalled that the transfer function of the stimulation system is defined as the relationship existing between the pressure induced by the action of the piezoelectric element and the speed modulation introduced into the jet ejection speed. The stimulation system includes therefore not only the stimulation means but also the hydraulic path of the ink in the body of the print head.

Des explications seront données plus loin sur la manière d'obtenir un tel résultat.Explanations will be given later on how to obtain such a result.

Dans un mode de réalisation, l'imprimante ou la tête d'imprimante selon l'invention est caractérisée en ce que les moyens de stimulation comportent outre le matériau piézo-électrique une membrane qui lui est mécaniquement couplée, une fréquence de résonance d'un élément vibrant formé de la membrane et du matériau piézo-électrique étant supérieure à une fréquence de coupure du jet.In one embodiment, the printer or the printer head according to the invention is characterized in that the stimulation means comprise, in addition to the piezoelectric material, a membrane which is mechanically coupled to it, a resonance frequency of one vibrating element formed of the membrane and the piezoelectric material being greater than a cutoff frequency of the jet.

Enfin l'invention concerne également un procédé d'impression d'un support au moyen d'une imprimante selon l'invention dans une de ses formes de réalisation dans lequel on fractionne un jet d'encre émis par une buse de l'imprimante pour former de façon intermittente des premières gouttes allant frapper le substrat pour former des points, et des tronçons,
caractérisé en ce que,

  • on fractionne en outre le jet ou les tronçons résultant du fractionnement du jet en premières gouttes et tronçons, en secondes gouttes, les secondes gouttes résultant de ce dernier fractionnement étant dirigés vers la gouttière.
Finally, the invention also relates to a method of printing a support by means of a printer according to the invention in one of its embodiments in which an ink jet emitted by a nozzle of the printer is intermittently forming first drops that will strike the substrate to form points, and sections,
characterized in that
  • the jet or the sections resulting from the splitting of the jet are further fractionated into first drops and sections, in second drops, the second drops resulting from the latter fraction being directed towards the gutter.

BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS

Des explications complémentaires et un exemple de réalisation d'une imprimante ou d'une tête d'imprimante selon l'invention seront maintenant données en liaison avec les dessins annexés dans lesquels,

  • la figure 1 est un schéma en perspective destiné à expliquer le mode de fonctionnement d'une imprimante à jet d'encre selon l'invention ;
  • la figure 2 comporte les parties a et b. La partie a est un schéma montrant le mode de brisure du jet en situation de non impression, la partie b est un schéma montrant le mode de brisure du jet en situation d'impression ;
  • la figure 3 comporte les parties a à g. Chacune des parties montre une étape du mode habituel de brisure du jet ;
  • la figure 4 comporte les parties a et b. Les parties a et b sont des graphiques portant en ordonnée des valeurs de tension et en abscisse des valeurs de durée, montrant chacun un exemple de signal impulsionnel pouvant être appliqué aux moyens de stimulation afin d'obtenir une brisure intermittente du jet ;
  • la figure 5 comporte les parties a à d. Les parties a à d sont des graphiques portant en ordonnée des valeurs de tension et en abscisse des valeurs de durée, le graphique en partie a est un exemple de signal qui peut être appliqué aux moyens de stimulation afin d'obtenir une brisure sans défaut du jet en situation de non impression ; le graphique en partie c est un exemple de signal qui peut être appliqué aux moyens de stimulation afin d'obtenir une brisure sans défaut du jet en situation d'impression ; les graphiques des parties b et d représentent chacun un état logique d'un signal de commande d'impression ;
  • la figure 6 est un exemple d'une coupe d'une tête d'impression faisant apparaître le chemin de l'encre dans un corps de cette tête ;
  • la figure 7 est un graphique faisant apparaître la fonction de transfert d'un exemple de système de stimulation. Il comporte en abscisse la perturbation de vitesse apportée localement au jet en fonction de la fréquence d'une stimulation mécanique présente dans le circuit d'encre en amont de la buse.
Additional explanations and an example of how to make a printer or a head in accordance with the invention will now be given in conjunction with the accompanying drawings, in which
  • the figure 1 is a perspective diagram for explaining the mode of operation of an ink jet printer according to the invention;
  • the figure 2 includes parts a and b. The part a is a diagram showing the jet breaking mode in a non-printing situation, the part b is a diagram showing the jet breaking mode in a printing situation;
  • the figure 3 includes parts a to g. Each of the parts shows a step of the usual jet breaking mode;
  • the figure 4 includes parts a and b. Parts a and b are graphs plotted on the ordinate of the voltage values and on the abscissa of the duration values, each showing an example of a pulse signal that can be applied to the stimulation means to obtain intermittent breaking of the jet;
  • the figure 5 includes parts a to d. The parts a to d are graphs plotting the voltage values on the ordinate and the duration values on the abscissa, the part-a graph is an example of a signal that can be applied to the stimulation means in order to obtain a faultless breaking of the duration values. jet in a non-printing situation; the graph in part c is an example of a signal that can be applied to the stimulation means in order to obtain a faultless break of the jet in a printing situation; the graphics of parts b and d each represent a logic state of a print control signal;
  • the figure 6 is an example of a section of a print head showing the path of the ink in a body of this head;
  • the figure 7 is a graph showing the transfer function of an example of a stimulation system. It comprises on the abscissa the speed perturbation provided locally to the jet as a function of the frequency of a mechanical stimulation present in the ink circuit upstream of the nozzle.

EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERSDETAILED PRESENTATION OF PARTICULAR EMBODIMENTS

La figure 1 représente schématiquement et en perspective les parties d'une imprimante concernées par l'invention. Sur cette figure on n'a pas représenté notamment les moyens de transport du support d'impression. Cette figure est essentiellement destinée à expliquer le fonctionnement d'une imprimante basé sur la présente inventionThe figure 1 shows schematically and in perspective the parts of a printer concerned by the invention. In this figure, the means of transport of the printing medium have not been represented in particular. This figure is essentially intended to explain the operation of a printer based on the present invention

Dans l'exemple de réalisation présenté, l'imprimante 10 comporte une, comme représenté, ou plusieurs têtes d'impression 1. Sur la figure 1 on a représenté une tête 1 comportant 3 buses 29 d'éjection d'un jet d'encre 30. Dans la réalité le nombre de buse est beaucoup plus important. Pour chacune des buses, un corps 23 de la tête d'impression comporte notamment un chemin hydraulique de l'encre et une chambre de stimulation 28 qui seront décrit plus en détails plus loin en liaison avec la figure 6. Chaque chambre de stimulation 28 est, de façon en elle même connue, remplie constamment par une encre maintenue à pression constante par une alimentation en encre sous pression 27. Chaque chambre de stimulation 28 comporte des moyens de stimulation 31 formés chacun par un élément piézo-électrique 25 et une membrane 24. Un générateur 32 de signaux de commande des moyens de stimulation 31 est connecté à chacun des éléments piézo-électriques 25. Des signaux de commande IMP destinés à chacun des moyens de stimulation 31 sont reçus par le circuit 32 de préférence, comme représenté figure 1, sur un bus parallèle comportant une voie pour chaque moyen 31. Un circuit d'alimentation en encre commun aux chambres 28 est symbolisé sur cette figure par des flèches 14 montrant que des gouttes d'encre 43 formées à une position aval de brisure du jet 30 ou de tronçons 38 de ce jet sont récupérée dans une gouttière 40 commune à l'ensemble des buses d'une tête et dirigées vers des moyens d'aspiration et de mise en pression symbolisés par un bloc 13. Un tel circuit d'encre alimentant avec de l'encre 16 sous pression chacune des entrées 27 de chambre 28 est en lui même connu.In the embodiment shown, the printer 10 comprises one, as shown, or several print heads 1. On the figure 1 there is shown a head 1 having 3 nozzles 29 ejection of an ink jet 30. In reality the number of nozzles is much larger. For each of the nozzles, a body 23 of the print head comprises in particular a hydraulic path of the ink and a stimulation chamber 28 which will be described in more detail later in connection with the figure 6 . Each stimulation chamber 28 is, in itself known manner, constantly filled with an ink maintained at constant pressure by a supply of pressurized ink 27. Each stimulation chamber 28 comprises means Stimulator 31 each formed by a piezoelectric element 25 and a membrane 24. A generator 32 of control signals of the stimulation means 31 is connected to each of the piezoelectric elements 25. Control signals IMP for each of the means stimulation 31 are received by the circuit 32 preferably, as shown figure 1 , on a parallel bus comprising a path for each means 31. An ink supply circuit common to the chambers 28 is symbolized in this figure by arrows 14 showing that ink drops 43 formed at a downstream jet breaking position. 30 or sections 38 of this jet are recovered in a gutter 40 common to all of the nozzles of a head and directed to suction and pressurizing means symbolized by a block 13. Such an ink circuit feeding with pressurized ink 16 each of the chamber inlets 27 is itself known.

La pression exercée sur l'encre est suffisamment importante pour provoquer l'éjection d'un jet d'encre 30, au travers de chaque buse 29 d'éjection d'encre, à une vitesse moyenne Vj. Une buse 29 a une section dont le rayon équivalent est égal à 'a', qui est aussi approximativement le rayon du jet 30. Le dispositif de stimulation 31, commandé par le générateur de signaux électriques 32, permet de créer une perturbation à l'intérieur de la chambre 28, provoquant la brisure du jet 30 en gouttes 33, 43. Conformément à l'invention, les signaux électriques de stimulation sont tels qu'ils provoquent d'une part, de façon intermittente, une brisure du jet dite intermittente en une première position axiale 11, et d'autre part une seconde brisure du jet à une seconde position axiale 12 en aval de la première, dite brisure continue. Les gouttes 33 sont les gouttes résultant de la brisure intermittente et les gouttes 43 sont les gouttes résultant de la brisure continue. Des exemples de signaux, aptes à provoquer les brisures intermittentes et continues, seront donnés plus loin. Une électrode de charge 35 commune à toutes les buses 29 est située en aval des buses 29, au voisinage direct des axes des buses 29. Dans l'exemple ici commenté, l'électrode de charge 35 est formée par un empilement de deux matériaux conducteurs de l'électricité 34, 37, séparés par une couche 36 constituée d'un matériaux isolant électriquement. Le conducteur 34 est le plus amont, le conducteur 36 est le plus aval de l'électrode de charge 35. Le conducteur 34 est connecté au même potentiel que l'encre se trouvant dans une chambre 28, en général le potentiel nul de la masse électrique. Le conducteur 36 est connecté à un potentiel électrique non nul Vc, différent de celui de l'encre se trouvant dans une chambre 28. En aval de l'électrode de charge se trouve au voisinage direct des axes des buses un ensemble 39 d'électrode de déflexion. L'ensemble 39 d'électrodes de déflexion est commun à toutes les buses 29 d'une tête et est reliée à une source de potentiel en sorte qu'un champ électrique uniforme E0, dont la composante perpendiculaire à un plan contenant les axes des buses 29 est prépondérante. Une gouttière de récupération 40 commune à l'ensemble des buses et située en aval de l'ensemble 39 d'électrodes de déflexion et en dehors des axes des buses 29 est utilisée de façon connue pour récupérer l'encre qui n'est pas utilisée pour l'impression. L'encre utilisée pour l'impression est dirigée vers un support d'impression 41 sur lequel chaque goutte d'impression 33 forme un point d'impression 58.The pressure exerted on the ink is large enough to cause an ink jet 30 to be ejected through each ink ejection nozzle 29 at an average speed V i. A nozzle 29 has a section whose equivalent radius is equal to 'a', which is also approximately the radius of the jet 30. The stimulation device 31, controlled by the electrical signal generator 32, makes it possible to create a disturbance at the inside the chamber 28, causing the breaking of the jet 30 into drops 33, 43. In accordance with the invention, the electrical stimulation signals are such that they cause intermittently, intermittently, a breakage of the so-called intermittent jet in a first axial position 11, and secondly a second breaking of the jet at a second axial position 12 downstream of the first, said continuous breaking. The drops 33 are the drops resulting from the intermittent break and the drops 43 are the drops resulting from the continuous breaking. Examples of signals, capable of causing intermittent and continuous breaks, will be given later. A charge electrode 35 common to all the nozzles 29 is located downstream of the nozzles 29, in the direct vicinity of the axes of the nozzles 29. In the example described here, the charging electrode 35 is formed by a stack of two conductive materials. electricity 34, 37, separated by a layer 36 made of an electrically insulating material. The conductor 34 is the most upstream, the conductor 36 is the downstream of the charging electrode 35. The conductor 34 is connected to the same potential as the ink in a chamber 28, in general the zero potential of the mass electric. The conductor 36 is connected to a non-zero electrical potential Vc, different from that of the ink in a chamber 28. Downstream of the charging electrode is in the direct vicinity of the axes of the nozzles an electrode assembly 39 deflection. The set 39 of deflection electrodes is common to all the nozzles 29 of a head and is connected to a source of potential so that a uniform electric field E0, whose component perpendicular to a plane containing the axes of the nozzles 29 is preponderant. A recovery gutter 40 common to all the nozzles and located downstream of the set 39 of deflection electrodes and outside the axes of the nozzles 29 is used in a known manner to recover ink that is not used for printing. The ink used for printing is directed to a printing medium 41 on which each printing drop 33 forms a printing dot 58.

Le fonctionnement de la tête d'impression est le suivant.The operation of the print head is as follows.

Dans l'exemple ici commenté les gouttes 33 sont les gouttes qui sont utilisées pour l'impression. Les gouttes 33 résultent de la brisure intermittente du jet créant une goutte isolée, dénommée goutte intermittente 33. La charge électrique des gouttes intermittentes 33 est quasiment nulle car elles sont formées à la première position de brisure du jet, face au conducteur 34 porté au même potentiel que l'encre se trouvant dans la chambre 28, en général le potentiel nul de la masse électrique. Après une brisure intermittente le jet 30 est scindé en la goutte 33 et un tronçon de jet 38.In the example here commented the drops 33 are the drops that are used for printing. The drops 33 result from the intermittent breaking of the jet creating an isolated drop, called intermittent drop 33. The electric charge of the intermittent drops 33 is almost zero because they are formed at the first breaking position of the jet, facing the conductor 34 brought to the same potential that the ink in the chamber 28, in general the zero potential of the electrical mass. After intermittent breakage the jet 30 is split into the drop 33 and a jet section 38.

Les gouttes 43 sont celles qui ne servent pas pour l'impression. Elles sont formées à la seconde position de brisure, face au conducteur 37 de l'électrode de charge 35 portée au potentiel électrique non nul Vc, différent de celui de l'encre se trouvant dans la chambre 28. Les gouttes 43 embarquent par influence électrostatique une charge électrique plus importante en valeur absolue que la charge quasi nulle embarquée par les gouttes 33. La seconde position de brisure 12 où se forment les gouttes 43, est en aval de la première position de brisure 11 où sont formées les gouttes intermittentes 33. Cette brisure est appelée brisure continue aval des tronçons de jet 38, ou du jet 30 si une brisure intermittente n'a pas formé de tronçons. Toutes les gouttes qui se détachent du jet passent ensuite dans la zone de déflexion définie par l'électrode de déflexion 39. Les gouttes d'encre 33, 43 traversant la zone de déflexion subissent une force électrostatique F=q.E0, q étant la charge électrique de la goutte considérée. Les gouttes intermittentes 33, dont la charge électrique est quasiment nulle, poursuivent donc une trajectoire quasiment rectiligne selon l'axe de la buse 29, jusqu'au support d'impression 41. Les trajectoires des gouttes 43 sont elles, défléchies perpendiculairement à l'axe du jet en fonction de leur charge électrique et terminent leur trajectoire dans la gouttière de récupération 40, en supposant qu'une combinaison judicieuse de potentiels électriques est appliquée aux électrodes de charge et de déflexion 35, 39. L'encre collectée dans la gouttière 40 est de façon connue réinjectée dans le circuit d'encre pour être réutilisée.The drops 43 are those that are not used for printing. They are formed at the second breaking position, facing the conductor 37 of the charging electrode 35 brought to the non-zero electrical potential Vc, different from that of the ink in the chamber 28. The drops 43 embark electrostatically a greater electric charge in absolute value than the almost zero load embedded in the drops 33. The second breaking position 12 where the drops 43 are formed, is downstream of the first breaking position 11 where the intermittent drops 33 are formed. This break is called continuous downstream breaking of the jet sections 38, or jet 30 if intermittent breakage has not formed sections. All the drops which are detached from the jet then pass into the deflection zone defined by the deflection electrode 39. The ink drops 33, 43 passing through the deflection zone undergo an electrostatic force F = q.E0, where q is the electric charge of the considered drop. The intermittent drops 33, whose electric charge is almost zero, thus pursue an almost rectilinear trajectory along the axis of the nozzle 29, up to the printing medium 41. The trajectories of the drops 43 are deflected perpendicular to the axis of the jet according to their electric charge and terminate their trajectory in the recovery gutter 40, assuming that a judicious combination of electric potentials is applied to the charging and deflecting electrodes 35, 39. The ink collected in the gutter 40 is in known manner reinjected into the ink circuit to be reused.

L'impression d'un motif résulte de façon en elle même connue de la sélection des gouttes d'encre à diriger vers le support d'impression 41 ou vers la gouttière 40 et d'un mouvement relatif du support d'impression 41 et de la tête d'impression 1. Dans l'exemple ci-dessus commenté, ce sont les gouttes non chargées, dont la trajectoire n'est pas défléchie, qui sont utilisées pour l'impression. Cette solution est en général préférée car la précision de positionnement des gouttes contribuant à l'impression est plus grande, du fait que la trajectoire de ces gouttes est plus courte et moins dépendantes d'aléas relatifs à la masse exacte de la goutte, à la valeur de la quantité de charge électrique embarquée et aux fluctuations éventuelles du champ de déflexion. Selon l'invention, il n'est pas exclu d'utiliser, comme dans certaines réalisations connues des gouttes déviées pour l'impression, alors que les gouttes non déviées sont dirigées vers la gouttière.The printing of a pattern results in a manner known per se from the selection of ink drops to be directed towards the printing medium 41 or to the trough 40 and a relative movement of the print medium 41 and the print head 1. In the above example commented, it is the uncharged drops, whose trajectory is not deflected, which are used for printing. This solution is generally preferred because the positioning accuracy of the drops contributing to the printing is greater, because the trajectory of these drops is shorter and less dependent on randomness relative to the exact mass drop, the value of the amount of electric charge on board and possible fluctuations of the deflection field. According to the invention, it is not excluded to use, as in some known embodiments deviated drops for printing, while the non-deflected drops are directed to the gutter.

L'un des principaux intérêts de l'invention est que comme dans la seconde invention de Vago, le jeu d'électrodes de charge 35, et de déflexion 39 formant ensemble un système de tri des gouttes 33 d'impression et 43 de récupération, est commun pour tous les jets. Cependant du fait que les tronçons 38 formées chaque fois qu'une goutte intermittente 33 est formée sont dans une position aval, également fractionnés en gouttes 43, la gouttière 40 commune à tous les jets peut être de dimension plus réduite car la précision de guidage des gouttes est améliorée.One of the main advantages of the invention is that, as in the second invention of Vago, the set of charging electrodes 35, and of deflection 39 forming together a sorting system of the printing drops 33 and 43 of recovery, is common for all jets. However, since the sections 38 formed each time an intermittent drop 33 is formed are in a downstream position, also divided into drops 43, the groove 40 common to all the jets may be smaller in size because the guiding accuracy of the drops is improved.

La figure 2 est destinée à illustrer les modes de brisure du jet pour former les gouttes intermittentes 33 et continues 43. Sur la figure 2 partie a, on se trouve dans une phase où il n'y a pas d'impression, ou dans laquelle il n'y a pas eu de brisure intermittente pendant le temps mis par le jet pour aller de la position de brisure amont 11 à la position de brisure aval 12. Dans ce cas seul un signal périodique brise le jet de façon continue au niveau de la position aval 12 pour former les gouttes continues 43. Sur la figure 2, partie b, on a représenté le cas où une goutte 33 par exemple, est formée par une impulsion du signal de brisure. Dans ce cas le jet 30 est scindé en une goutte 33 et un tronçon 38 de jet. Ce tronçon est porteur de la perturbation de vitesse apportée par le signal périodique. Il se brise donc au niveau de la position de brisure aval 12 pour donner des gouttes continues 43. Ainsi en aval de la position de brisure aval, le jet est entièrement divisé en gouttes 33 et 43.The figure 2 is intended to illustrate the jet breaking modes to form the intermittent and continuous drops 43. On the figure 2 part a, one is in a phase where there is no printing, or in which there has been no intermittent break during the time taken by the jet to go from the upstream breaking position 11 to the downstream breaking position 12. In this case only a periodic signal breaks the jet continuously at the downstream position 12 to form the continuous drops 43. figure 2 , part b, there is shown the case where a drop 33 for example, is formed by a pulse of the break signal. In this case the jet 30 is split into a drop 33 and a jet section 38. This section carries the speed perturbation provided by the periodic signal. It is therefore broken at the downstream breaking position 12 to give continuous drops 43. Thus downstream of the downstream breaking position, the jet is entirely divided into drops 33 and 43.

Des formes de signaux électriques propres à provoquer d'une part la brisure intermittente à la position de brisure amont 11, d'autre part la brisure continue aval à la position de brisure aval 12 et enfin une combinaison des signaux de brisure en positions amont et aval sera maintenant abordée.Forms of electrical signals capable of causing, on the one hand, the intermittent breaking at the upstream breaking position 11, on the other hand the downstream continuous break at the downstream breaking position 12 and finally a combination of the break signals in the upstream and downstream positions. downstream will now be addressed.

Il convient auparavant de remarquer que la brisure intermittente est une brisure destinée à isoler une goutte d'un jet. Cette situation est différente de la situation où l'on crée un train continu de gouttes, car dans le cas de la goutte isolée, il y a une tendance à la formation de gouttelettes satellites et de bourrelets qui nuisent à la qualité d'impression. Pour comprendre l'intérêt de formes possibles du signal de brisure intermittente il sera décrit ci-après en liaison avec la figure 3 la dynamique de brisure d'une goutte isolée correspondant pour l'invention au cas de la goutte intermittente.It should be noted before that the intermittent break is a break designed to isolate a drop of a jet. This situation is different from the situation where a continuous train of drops is created, because in the case of the isolated drop, there is a tendency to the formation of satellite droplets and bulges which affect the quality of printing. To understand the interest of possible forms of the intermittent break signal it will be described below in connection with the figure 3 the breaking dynamics of an isolated drop corresponding to the invention in the case of the intermittent drop.

La figure 3 comporte les parties a à g. La suite des parties a à g montre une succession temporelle d'états de la brisure intermittente destinée à faire apercevoir la dynamique de la brisure. Dans un premier stade représenté en a, une perturbation de vitesse apportée par une surpression temporaire induite au niveau de la chambre 28 crée dans le jet un ventre 33a.The figure 3 includes parts a to g. The sequence of the parts a to g shows a temporal succession of states of the intermittent breaking intended to make perceive the dynamics of the breaking. In a first stage represented in a, a speed perturbation brought by a temporary overpressure induced at the chamber 28 creates in the jet a belly 33a.

Une goutte intermittente 33 se détache consécutivement à deux brisures : une brisure amont 49 représentée en partie b par un espace entre la partie amont du jet 30 et la partie aval, et une brisure aval 50 représentée en partie c par un espace entre la goutte 33 qui à ce stade est formée et la partie aval du jet 30 qui devient de ce fait un tronçon de jet 38. Des ligaments amont 51 et aval 52 représentés en parties b et c qui correspondent respectivement à des étirements des parties amont et aval du jet 30 relativement à la goutte 33 en formation, peuvent, si l'étirement est grand, donner naissance respectivement à des gouttelettes satellites amont 53 et aval 54 représentées en partie d. Sur la partie d on voit également que les parties amont et aval du jet de part et d'autre de la goutte 33 en formation subissent un gonflement. Comme représenté par la succession des états représentés en partie e, et f. Ces gonflements des extrémités du jet et du tronçon de jet entourant la goutte en formation 33, peuvent aussi se détacher pour former des gouttes d'encre 55, 56 représentées en parties g. Ces gouttes d'encre 55, 56 amont et aval seront appelées par la suite bourrelet amont 55 et bourrelet aval 56. Une longueur de brisure amont Lbam est définie comme étant la distance Lbam entre la face de sortie de la buse 29 et la brisure amont 49, une longueur de brisure aval Lbav est définie comme étant la distance Lbav entre la face de sortie de la buse 29 et la brisure aval 50.An intermittent drop 33 separates consecutively to two breaks: an upstream breaking 49 represented in part b by a space between the upstream part of the jet 30 and the downstream part, and a downstream breaking 50 represented in part c by a space between the drop 33 which at this stage is formed and the downstream portion of the jet 30 which thereby becomes a jet section 38. Upstream ligaments 51 and downstream 52 shown in parts b and c which respectively correspond to stretching of the upstream and downstream parts of the jet 30 with respect to the forming drop 33, may, if the stretch is large, give rise respectively to upstream and downstream satellite droplets 54 represented in part d. On part d we also see that the upstream and downstream parts of the jet on either side of the drop 33 in formation undergo swelling. As represented by the succession of states represented in part e, and f. These swellings of the ends of the jet and the jet section surrounding the forming drop 33, can also be detached to form ink drops 55, 56 shown in parts g. These ink drops 55, 56 upstream and downstream will be called subsequently upstream bead 55 and downstream bead 56. An upstream breaking length Lbam is defined as being the distance Lbam between the outlet face of the nozzle 29 and upstream breaking. 49, a downstream break length Lbav is defined as the distance Lbav between the outlet face of the nozzle 29 and the downstream break 50.

De manière à ce que les bourrelets 55, 56 soient récupérés dans la gouttière 40, il est nécessaire que ceux-ci embarquent une charge électrique suffisante, et donc qu'ils se détachent suffisamment loin en aval des brisures amont et aval 49, 50 de la goutte intermittente 33 pour se trouver au moment de leur détachement du jet dans la zone où existe un potentiel différent de celui du potentiel de l'encre dans la chambre 29. C'est pourquoi sur la figure 3 parties f et g on a représenté le début et la fin du détachement des bourrelets 55, 56 dans la zone soumise à l'influence de l'électrode 37. De même, il est souhaitable que les satellites amont et aval 53, 54 soient absorbés dans d'autres gouttes rapidement, car ils peuvent causer d'importantes salissures du système de tri ou même du support d'impression.So that the beads 55, 56 are recovered in the channel 40, it is necessary that they embark a sufficient electrical charge, and therefore, they detach themselves sufficiently far downstream of the upstream and downstream breaks 49, 50 of the intermittent drop 33 to be at the moment of their detachment from the jet in the zone where there is a potential different from that of the potential of the ink in the room 29. That's why on the figure 3 Parts f and g show the beginning and the end of the detachment of the beads 55, 56 in the zone subjected to the influence of the electrode 37. Similarly, it is desirable for the upstream and downstream satellites 53, 54 to be absorbed. in other drops quickly, because they can cause significant soiling of the sorting system or even the print medium.

Tout signal électrique appliqué au dispositif de stimulation 31 et permettant d'obtenir les caractéristiques de brisures telles que les satellites et bourrelets n'introduisent pas de défauts d'impression comme expliqué ci-dessus, peut être utilisé pour réaliser l'invention.Any electrical signal applied to the stimulation device 31 and making it possible to obtain the characteristics of breaks such as the satellites and beads do not introduce printing defects as explained above, can be used to carry out the invention.

La figure 4 partie a montre un exemple de signal électrique de commande qui peut être appliqué au dispositif de stimulation 31 afin de contrôler la forme des brisures intermittentes de manière à assurer un fonctionnement correct du tri entre les gouttes à imprimer 33 et les gouttes 43 à récupérer dans la gouttière 40.The figure 4 part a shows an example of electrical control signal that can be applied to the stimulation device 31 to control the shape of the intermittent breaks so as to ensure proper operation of the sorting between the printing drops 33 and the drops 43 to be recovered in the gutter 40.

Le signal représenté figure 4 partie a est constitué de trois paliers consécutifs de tension de niveaux respectif U1, U2, et U3, mesurés au dessus d'un niveau U0. Les trois paliers ont des durées respectives T1, T2, et T3. Deux paliers consécutifs sont liés entre eux par un front raide montant ou descendant.The signal represented figure 4 part a consists of three consecutive levels of respective voltage levels U 1 , U 2 , and U 3 , measured above a level U 0 . The three levels have respective durations T 1 , T 2 , and T 3 . Two consecutive levels are linked to each other by a steep rising or falling edge.

Les durées T1, T2, et T3 des trois paliers consécutifs de tension qui constituent le signal de stimulation, sont chacune proches d'une durée τopt. τopt est la durée d'une impulsion rectangulaire qui donnerait, si elle était appliquée au moyen de stimulation 31, la longueur de brisure intermittente amont la plus courte, à amplitude constante et pour le même jet (même vitesse, même section, même encre). τopt est une durée qui correspond à une perturbation spatiale du jet d'une longueur λopt / 2, où λopt est la longueur d'onde optimale du jet, c'est-à-dire la longueur d'onde pour laquelle le coefficient d'amplification de l'instabilité capillaire est maximal.The durations T 1 , T 2 , and T 3 of the three consecutive levels of voltage constituting the stimulation signal, are each close to a duration τopt. τopt is the duration of a rectangular pulse that would, if it were applied to the stimulation means 31, the shortest upstream intermittent breaking length, constant amplitude and for the same jet (same speed, same section, same ink) . τopt is a duration corresponding to a spatial disturbance of the jet of a length λopt / 2, where λopt is the optimal wavelength of the jet, ie the wavelength for which the coefficient of Amplification of capillary instability is maximal.

Comme λopt ≅ 10.a pour un liquide visqueux, il vient que τopt = λopt / 2.Vj ≅ 5.a / Vj.Like λopt ≅ 10.a for a viscous liquid, it follows that τopt = λopt / 2.Vj ≅ 5.a / Vj.

On rappelle que dans les formules ci-dessus a est le diamètre équivalent de la buse 29 qui correspond sensiblement au diamètre du jet 30 et Vj est la vitesse d'éjection du jet 30.Recall that in the above formulas a is the equivalent diameter of the nozzle 29 which substantially corresponds to the diameter of the jet 30 and Vj is the ejection speed of the jet 30.

Dans l'exemple commenté en liaison avec la figure 4a, on a choisit les durées caractéristiques T1, T2, et T3 égales entre elles, c'est-à-dire que l'on a : T1 = T2 = T3 ≅ τopt, ainsi la forme de la brisure obtenue pour la formation d'une goutte intermittente 33 est stable, et donc assez peu sensible à des petites variations de la vitesse de jet, de la viscosité ou d'autres propriétés fluctuantes du jet.In the example commented in connection with the figure 4a the characteristic durations T 1 , T 2 , and T 3 are chosen to be equal to each other, that is to say that we have: T1 = T2 = T3 ≅ τopt, thus the shape of the break obtained for the The formation of an intermittent drop 33 is stable, and therefore quite insensitive to small variations in jet velocity, viscosity, or other fluctuating jet properties.

En outre le principe de tri des gouttes exige que la charge électrique embarquée par la goutte intermittente 33 soit, dans cet exemple, quasiment nulle. Or la charge électrique effectivement embarquée par cette goutte dépend de la configuration géométrique de l'électrode de charge 35, des potentiels électriques appliqués aux 2 conducteurs 34, 37 qui la constituent, mais aussi de la distance algébrique entre les brisures intermittentes amont et aval, (Lbav - Lbam).In addition the principle of sorting the drops requires that the electrical charge on board by the drop intermittent 33 is, in this example, almost zero. However, the electrical charge actually carried by this drop depends on the geometrical configuration of the charging electrode 35, the electric potentials applied to the two conductors 34, 37 which constitute it, but also on the algebraic distance between the upstream and downstream intermittent fractures. (Lbav - Lbam).

Le signal représenté figure 4 partie a permet de contrôler cette distance ( Lbav - Lbam ) entre les deux brisures formant une goutte intermittente, de manière à assurer une trajectoire stable et bien définie de la goutte à imprimer.The signal represented figure 4 part a allows to control this distance (Lbav - Lbam) between the two breaks forming an intermittent drop, so as to ensure a stable and well-defined trajectory of the drop to print.

La distance (Lbav - Lbam) entre les brisures amont et aval de formation d'une goutte peut être ajustée en modifiant certains paramètres du signal de stimulation. Dans ce mode de réalisation, l'ajustement des amplitudes U1, U2 et U3 des paliers constituant le signal impulsionnel permet d'ajuster (Lbav-Lbam). Plus précisément, une diminution de la valeur absolue de la différence absolue |U1-U2| entre les valeurs de tension des deux premiers paliers a pour conséquence de retarder le moment de la brisure aval, et de même une diminution de la différence absolue |U2-U3| entre les valeurs de tension des deux derniers paliers a pour conséquence de retarder le moment de la brisure amont. Il est possible de choisir T1 = 0 ou T3 = 0, si l'un des 3 paliers du signal est estimé inutile par l'homme du métier, en fonction du fonctionnement particulier du dispositif de stimulation considéré. Le signal présenté permet de corriger la trajectoire de la goutte à imprimer en choisissant empiriquement les paramètres du signal qui influent sur la distance (Lbav - Lbam) entre la brisure intermittente amont et la brisure intermittente aval.The distance (Lbav - Lbam) between the upstream and downstream drop formation breaks can be adjusted by modifying certain parameters of the stimulation signal. In this embodiment, adjustment of the amplitudes U1, U2 and U3 of the bearings constituting the pulse signal makes it possible to adjust (Lbav-Lbam). More precisely, a decrease in the absolute value of the absolute difference | U1-U2 | between the voltage values of the first two stages has the effect of delaying the moment of the downstream breaking, and likewise a decrease of the absolute difference | U2-U3 | between the voltage values of the two last stages has the consequence of delaying the moment of upstream breaking. It is possible to choose T1 = 0 or T3 = 0, if one of the 3 levels of the signal is considered unnecessary by the skilled person, depending on the particular operation of the stimulation device considered. The signal presented makes it possible to correct the trajectory of the drop to be printed by empirically choosing the parameters of the signal which affect the distance (Lbav - Lbam) between the intermittent upstream break and the downstream intermittent break.

Un autre exemple de signal de stimulation impulsionnel pouvant être utilisé dans un mode de réalisation de l'invention est décrit sur la figure 4 partie b. Ce signal est composé d'une succession de 3 impulsions rectangulaires, une première d'une durée D1 et de niveau U1, une seconde d'une durée T2 et de niveau U2 et une troisième d'une durée D2 et de niveau U3. Les première et seconde impulsions sont séparées l'une de l'autre par une durée Tr1, et les seconde et troisième impulsions sont séparées l'une de l'autre d'une durée Tr2. Pendant les temps de séparation entre impulsion le signal est au niveau de base U0. Si l'on choisit ce signal afin de maîtriser la brisure intermittente, les durées sont de préférence T2 ≅ τopt ; Tr1 = Tr2 ≅ τopt / 2 ; D1 et D2 proches de τopt / 10 ou τopt / 5 selon le dispositif de stimulation à piloter, τopt étant défini comme précédemment. La distance entre les brisures amont et aval de la goutte intermittente 33 peut alors être ajustée en modifiant U1 et/ou U3 : l'instant de la brisure aval est retardé lorsque U1/U2 augmente, l'instant de la brisure amont est retardé lorsque U3/U2 augmente.Another example of an impulse stimulation signal that can be used in one embodiment of the invention is described in FIG. figure 4 part b. This signal is composed of a succession of 3 rectangular pulses, a first of a duration D 1 and of level U 1 , a second of a duration T 2 and of level U 2 and a third of duration D 2 and U level 3 . The first and second pulses are separated from each other by a duration Tr 1 , and the second and third pulses are separated from one another by a duration Tr 2 . During the separation times between pulses the signal is at the base level U 0 . If this signal is chosen in order to control the intermittent break, the durations are preferably T2 ≅ τopt; Tr1 = Tr2 ≅ τopt / 2; D 1 and D 2 close to τopt / 10 or τopt / 5 depending on the stimulation device to be controlled, τopt being defined as above. The distance between the upstream and downstream breaks of the intermittent drop 33 can then be adjusted by modifying U1 and / or U3: the instant of the downstream breaking is delayed when U1 / U2 increases, the moment of the upstream break is delayed when U3 / U2 increases.

Il sera maintenant procédé à la description d'un signal propre à générer la brisure du jet ou de tronçons de jet dans la seconde position dite position aval, produisant les gouttes 43 qui vont être récupérées par la gouttière 40.It will now proceed to the description of a signal suitable for generating the breaking jet or jet sections in the second position called downstream position, producing the drops 43 which will be recovered by the channel 40.

L'application d'un simple signal sinusoïdal provoquerait la création de gouttelettes satellites entre les gouttes principales 43 issues de cette brisure. Dans le mode de réalisation décrit ici, une brisure continue sans satellites avec un signal d'amplitude suffisamment faible pour placer la brisure continue aval au voisinage du conducteur de charge 37 est obtenue en appliquant un signal à deux modes, superposition de deux signaux sinusoïdaux de fréquences Fb et 2.Fb, d'amplitudes et déphasages relatifs correctement choisis. Le signal généré est de la forme : Sb t = Ab . sin 2 π . Fb . t + α . sin 4 π . Fb . t + ϕ

Figure imgb0001
The application of a simple sinusoidal signal would cause the creation of satellite droplets between the main drops 43 resulting from this break. In the embodiment described here, a continuous satellite-free break with a signal of sufficiently small amplitude to place the downstream continuous break in the vicinity of the charge conductor 37 is obtained by applying a two-mode signal, superposition of two sinusoidal signals of Fb and 2.Fb frequencies, amplitudes and phase shifts properly selected. The generated signal is of the form: Sb t = ab . sin 2 π . Fb . t + α . sin 4 π . Fb . t + φ
Figure imgb0001

Dans la formule (1) ci dessus Fb = 1/ Tb est la fréquence fondamentale du signal de stimulation continue de formation des gouttes 43. α > 0 est l'amplitude relative du deuxième mode, et ϕ sa phase relative. Ab est un coefficient qui détermine l'amplitude du signal de stimulation continue de formation des gouttes 43. L'homme du métier sait choisir les valeurs des paramètres α et ϕ pour obtenir une brisure continue sans gouttelettes satellites. Un signal tel que décrit ci-dessus est représenté figure 5 partie a. Il s'agit d'un signal périodique de période Tb dont l'amplitude en fonction du temps est représenté par la formule (1). Si ce signal est appliqué seul de façon continue on obtient une brisure du jet tel que représenté figure 2 partie a où uniquement des gouttes 43 sont produites.In formula (1) above Fb = 1 / Tb is the fundamental frequency of the continuous stimulation signal of drop formation 43. α> 0 is the relative amplitude of the second mode, and φ is its relative phase. Ab is a coefficient that determines the amplitude of the continuous stimulation signal for drop formation 43. The skilled person knows how to choose the values of the parameters α and φ to obtain a continuous break without satellite droplets. A signal as described above is represented figure 5 part a. It is a periodic signal of period Tb whose amplitude as a function of time is represented by the formula (1). If this signal is applied alone continuously, the jet is broken as shown figure 2 part a where only drops 43 are produced.

La combinaison des signaux de génération des gouttes 33 et 43 sera maintenant explicitée. Il sera examiné successivement la combinaison temporelle des deux types de signaux, leur combinaison du point de vue des amplitudes relatives et enfin un mode de commande pour introduire un signal impulsionnel dans une succession de signaux périodiques.The combination of the generation signals of the drops 33 and 43 will now be explained. It will be examined successively the temporal combination of the two types of signals, their combination from the point of view of the relative amplitudes and finally a control mode for introducing a pulse signal into a succession of periodic signals.

D'un point de vue temporel, au moins une période Tb du signal périodique de stimulation continue aval est pour obtenir une goutte intermittente remplacée, par exemple, par le signal de commande impulsionnel décrit en liaison avec la figure 4 partie a. La combinaison du signal impulsionnel décrit en liaison avec la figure 4 partie a et du signal périodique décrit en liaison avec la figure 5 partie a est représenté figure 5 partie c. Comme le montre l'exemple de la figure 5, partie c, la durée totale du signal de stimulation intermittente est égale à une valeur Ti. Il est formé comme représenté figure 4 partie a par une succession de trois paliers consécutifs de durée respective T1, T2, et T3, T3 ayant dans cet exemple une durée nulle, en sorte que Ti = T1+T2+T3. En règle générale, Ti ≠ n.Tb, n étant un nombre entier. Dans le mode de réalisation choisi, le signal de stimulation impulsionnel est précédé d'un signal de transition aval de durée tav, et suivi d'un signal de transition amont de durée tam. Les durées de tav et tam sont choisies de façon à satisfaire la condition tav + Ti + tam = n.Tb. Dans l'exemple décrit en relation avec la figure 5 partie c, les signaux de transition consistent simplement à maintenir la tension constante entre l'interruption du signal périodique de stimulation continue et le début de la génération du signal impulsionnel. Les durées tav et tam sont choisies de manière à respecter l'intégrité des tronçons de jet 38 de part et d'autre de la goutte intermittente 33 jusqu'à la zone d'influence du conducteur de charge 37 (figure 1). Les signaux de transition sont choisis également de façon à assurer la continuité du signal électrique appliqué aux moyens de stimulation 31 lors de l'interruption et de la reprise de la génération du signal périodique de stimulation continue aval. On note que les signaux de transition peuvent l'un ou l'autre ou les deux avoir une durée nulle.From a temporal point of view, at least one period Tb of the periodic signal of continuous downstream stimulation is to obtain an intermittent drop replaced, for example, by the pulse control signal described in connection with the figure 4 part a. The combination of the pulse signal described in connection with the figure 4 part a and the periodic signal described in connection with the figure 5 part a is represented figure 5 part c. As the example of the figure 5 , part c, the total duration of the intermittent stimulation signal is equal to a value Ti. He is trained as shown figure 4 part a by a succession of three consecutive stages of respective duration T1, T2, and T3, T3 having in this example a zero duration, so that Ti = T1 + T2 + T3. As a rule, Ti ≠ n.Tb, n being an integer. In the embodiment chosen, the pulse stimulation signal is preceded by a downstream transition signal of duration tav, and followed by an upstream transition signal of duration tam. The durations of tav and tam are chosen so as to satisfy the condition tav + Ti + tam = n.Tb. In the example described in relation to the figure 5 in part c, the transition signals simply consist in maintaining the constant voltage between the interruption of the periodic signal of continuous stimulation and the beginning of the generation of the pulse signal. The times tav and tam are chosen so as to respect the integrity of the jet sections 38 on either side of the intermittent drop 33 to the zone of influence of the charge conductor 37 ( figure 1 ). The transition signals are also chosen so as to ensure the continuity of the electrical signal applied to the stimulation means 31 during the interruption and resumption of the generation of the periodic downstream continuous stimulation signal. Note that the transition signals can either or both have a zero duration.

Les amplitudes relatives du signal périodique et du signal impulsionnel, c'est-à-dire les valeurs relatives de Ab dans la formule (1) définissant le signal périodique et la valeur de U2 sont choisies pour placer correctement les positions de brisures amont et aval dans les zones d'influence de l'électrode de charge 35. Les longueurs de brisure, c'est-à-dire la distance entre la buse 29 et une position de brisure, dépendent de l'amplitude de la stimulation. Pour assurer une séparation efficace des gouttes 33 par rapport aux gouttes 43, la distance entre la position 11 de brisure intermittente et la position 12 de brisure continue aval doit être suffisante, au minimum de 20 fois le rayon du jet. Dans le mode préféré de réalisation, une distance entre ces deux positions de brisures est proche de 50 fois le rayon du jet.The relative amplitudes of the periodic signal and the pulse signal, that is to say the relative values of Ab in the formula (1) defining the periodic signal and the value of U2 are chosen to correctly position the upstream and downstream broken positions. in the zones of influence of the charging electrode 35. The breaking lengths, that is to say the distance between the nozzle 29 and a breaking position, depend on the amplitude of the stimulation. To ensure effective separation of the drops 33 with respect to the drops 43, the distance between the intermittent breaking position 11 and the downstream continuous breaking position 12 must be sufficient, at least 20 times the radius of the jet. In the preferred embodiment, a distance between these two broken positions is close to 50 times the radius of the jet.

Le générateur 32 de signaux électriques de commande propre à générer à la demande le signal impulsionnel de création d'une goutte intermittente 33 et le signal périodique de génération continue de gouttes 33 et connecté à cet effet aux moyens de stimulation 31, est dans le mode de réalisation décrit, piloté au moyen d'une commande d'impression, par exemple un signal logique, par exemple un signal binaire IMP représenté sur les figures 5b et 5d. Le signal IMP est une fonction des données à imprimer. Lorsque seul le signal de stimulation continue aval, de période Tb, est généré, la valeur logique du signal booléen IMP reste à 0. C'est ce signal constamment à 0 qui est représenté figure 5b.The generator 32 of electrical control signals adapted to generate on demand the pulse signal for creating an intermittent drop 33 and the periodic signal for continuous generation of drops 33 and connected for this purpose to the stimulation means 31, is in the mode described embodiment, controlled by means of a print command, for example a logic signal, for example a binary signal IMP represented on the Figures 5b and 5d . The signal IMP is a function of the data to be printed. When only the downstream continuous stimulation signal, of period Tb, is generated, the logic value of the boolean signal IMP remains at 0. It is this signal constantly at 0 which is represented figure 5b .

En situation d'impression, le signal IMP passe à la valeur 1 pendant au moins une période Tb, déclenchant la réponse du générateur de signaux électriques de commande 32 : ainsi selon le mode préféré de réalisation de l'invention le générateur 32 de signaux de commande des moyens de stimulation 31 est apte à combiner un signal de nature impulsionnel et un signal périodique, en remplaçant un nombre entier n de périodes du signal périodique par le signal impulsionnel encadré de signaux de transitions.In the printing situation, the signal IMP goes to the value 1 for at least one period Tb, triggering the response of the electric control signal generator 32: thus, according to the preferred embodiment of the invention the signal generator 32 of control of the stimulation means 31 is able to combine a pulse-type signal and a periodic signal, by replacing an integer n of periods of the periodic signal by the pulse signal framed by transition signals.

Des améliorations qui peuvent être apportées à la tête d'impression selon l'invention seront maintenant examinées en liaison avec les figures 6 et 7 qui représentent respectivement un exemple d'une coupe d'une tête d'impression 1 faisant apparaître le chemin de l'encre dans un corps 23 de cette tête 1 et un graphique faisant apparaître en abscisse la perturbation de vitesse apportée localement au jet en fonction de la fréquence d'une stimulation mécanique présente dans le circuit d'encre en amont de la buse.Improvements that can be made to the print head according to the invention will now be discussed in connection with the Figures 6 and 7 which respectively represent an example of a section of a print head 1 showing the path of the ink in a body 23 of this head 1 and a graph showing on the abscissa the speed perturbation brought locally to the jet in function the frequency of a mechanical stimulation present in the ink circuit upstream of the nozzle.

Le chemin hydraulique à l'intérieur du corps 23 de la tête d'impression 1 représenté en coupe figure 6 selon un ou plusieurs plan xz, z étant la direction des jets 30 et x une direction perpendiculaire à z située dans un plan perpendiculaire au plan contenant les axes des buses 29, comporte de l'amont vers l'aval dans le sens d'écoulement de l'encre, des éléments discrets fonctionnels. Un réservoir 17 d'encre pressurisée 16 est en communication comme représenté par des flèches 27 avec un conduit d'amenée d'encre non représenté. Le réservoir 17 est en communication avec un passage étroit 18 nommé restriction. Un premier tube de liaison 20 met en communication la restriction 18 avec la chambre de stimulation 28. La chambre de stimulation 28 est elle même en communication avec la buse 29 de formation du jet 30 par un second tube de liaison 21. La buse 29 est percée dans une plaque à buse 22 qui peut comporter plusieurs buses alignées selon une direction y perpendiculaire au plan de représentation xz.The hydraulic path inside the body 23 of the print head 1 shown in section figure 6 along one or more xz planes, z being the direction of the jets 30 and x a direction perpendicular to z located in a plane perpendicular to the plane containing the axes nozzles 29 comprises, from upstream to downstream in the direction of flow of the ink, discrete functional elements. A reservoir 17 of pressurized ink 16 is in communication as represented by arrows 27 with an unrepresented ink supply line. The reservoir 17 is in communication with a narrow passage 18 called restriction. A first connecting tube 20 puts the restriction 18 in communication with the stimulation chamber 28. The stimulation chamber 28 is itself in communication with the nozzle 29 for forming the jet 30 by a second connecting tube 21. The nozzle 29 is pierced in a nozzle plate 22 which may comprise a plurality of nozzles aligned in a direction y perpendicular to the representation plane xz.

Une partie de paroi de la chambre 28 est formée par une membrane 24 dont l'épaisseur, suivant l'axe Z, est très inférieure à ses dimensions dans le plan X,Y. Sur la face externe de la membrane 24, c'est-à-dire celle qui est extérieure à la chambre 28, est collé un élément piézo-électrique 25.A wall portion of the chamber 28 is formed by a membrane 24 whose thickness along the Z axis is much smaller than its dimensions in the X, Y plane. On the outer face of the membrane 24, that is to say the one outside the chamber 28, is bonded a piezoelectric element 25.

Lorsqu'un signal électrique est appliqué sur l'élément piézo-électrique 25, le couple membrane 24/ élément piézo-électrique 25 qui dans cet exemple forme les moyens de stimulation 31 forme un élément vibrant 31 qui se déforme en flexion ayant pour effet de produire une modulation du volume et de la pression dans la chambre 28 ; il en résulte une modulation de la vitesse moyenne d'éjection de l'encre 16 au niveau de la buse 29. Ce type d'actionneur qui est décrit dans de nombreux brevets a été proposé initialement par Silonics ( US-A-3,946,398 - Kyser & Sears ).When an electrical signal is applied to the piezoelectric element 25, the diaphragm pair 24 / piezoelectric element 25 which in this example forms the stimulation means 31 forms a vibrating element 31 which deforms in flexion, the effect of which is produce a modulation of the volume and the pressure in the chamber 28; this results in a modulation of the average ejection speed of the ink 16 at the nozzle 29. This type of actuator which is described in numerous patents was initially proposed by Silonics ( US-A-3,946,398 - Kyser & Sears ).

La nécessité de former une goutte isolée dans un jet par l'application d'un signal intermittent tel que décrit figure 4 partie a ou b, et de préférence d'éviter la formation de gouttelettes satellites telles que 53, 54 décrites en relation avec la figure 3 ainsi que la formation d'un train de gouttes derrière la goutte isolée requiert que la stimulation soit strictement non résonante. Cela signifie que la fonction de transfert du système de stimulation doit être exempte de pics de résonance dans la bande passante du jet 30. La fonction de transfert du système de stimulation est définie comme la relation existant entre la pression induite par l'action de l'élément piézo-électrique 25 et la modulation de vitesse d'éjection du jet 30.The need to form an isolated drop in a jet by the application of an intermittent signal as described figure 4 part a or b, and preferably to avoid the formation of satellite droplets such as 53, 54 described in connection with the figure 3 as well as the formation of a train of drops behind the isolated drop requires that the stimulation is strictly non-resonant. This means that the transfer function of the pacing system must be free of resonance peaks in the bandwidth of the jet 30. The transfer function of the pacing system is defined as the relationship between the pressure induced by the action of the pumping system. piezoelectric element 25 and the jet ejection velocity modulation 30.

La définition de la bande passante BPjet du jet 30 provient de théorie linéaire de l'instabilité capillaire, l'Homme du métier saura retrouver la relation suivante: BP jet 0 ; Fc jet Fc jet = V jet 2 π R jet

Figure imgb0002
The definition of the jet jet bandwidth of jet 30 comes from the linear theory of capillary instability, the skilled person will find the following relation: BP jet 0 ; Fc jet Fc jet = V jet 2 π R jet
Figure imgb0002

Pour l'application numérique:

  • Vjet : vitesse du jet 30,par exemple 15 m/s
  • Rjet : rayon du jet en sortie de buse 29, par exemple 15 µm.
  • Fcjet = Fréquence de coupure du jet par exemple 160 kHz
For the digital application:
  • Vjet: speed of the jet 30, for example 15 m / s
  • Rjet: jet radius at nozzle outlet 29, for example 15 μm.
  • Fcjet = Cutoff frequency of the jet eg 160 kHz

Le système de stimulation est susceptible de produire des fréquences de résonance FR liées au comportement mécanique et acoustique du dispositif. Pour obtenir une stimulation strictement non résonante on recherchera à placer ces fréquences de résonance FR à l'extérieur de la bande passante du jet. Préférentiellement on satisfera à la relation suivante : F R > 1 + 0.1 Fc jet

Figure imgb0003
The stimulation system is capable of producing resonant frequencies F R related to the mechanical and acoustic behavior of the device. To obtain a strictly non-resonant stimulation, it will be sought to place these resonant frequencies F R at the outside of the jet bandwidth. Preferably, the following relation will be satisfied: F R > 1 + 0.1 Fc jet
Figure imgb0003

Pour cela on cherchera à être conforme à l'une ou plusieurs des règles de conception ci-après.For this we will seek to comply with one or more of the design rules below.

Résonance d'origine mécanique et accoustique (Règle de conception n°1) Mechanical and Acoustic Resonance (Design Rule # 1)

L'élément vibrant 31 possède une fréquence de résonance propre FM qui dépend principalement de sa géométrie et des propriétés mécaniques des matériaux qui le compose. F M = 1 2 π L M * C M

Figure imgb0004

  • LM : terme d'inertie équivalent à une self en analogie électrique.
  • CM: terme d'élasticité équivalent à une capacité en analogie électrique.
The vibrating element 31 has a specific resonance frequency F M which depends mainly on its geometry and the mechanical properties of the materials that compose it. F M = 1 2 π The M * VS M
Figure imgb0004
  • L M : term of inertia equivalent to a self in electrical analogy.
  • C M : elasticity term equivalent to a capacity in electrical analogy.

Avec les valeurs nominales indiquées dans un tableau de dimension et de matériau faisant l'objet de l'annexe 1, la fréquence de résonance de l'élément vibrant 31 vaut typiquement de l'ordre 400 kHz.With the nominal values indicated in a dimension and material table in the appendix 1, the resonant frequency of the vibrating element 31 is typically of the order of 400 kHz.

En l'absence de phénomène de propagation, on s'intéressera à la fréquence de Helmholtz FH calculée à partir des termes d'inertie et d'élasticité (analogie électrique) de chaque élément discret constituant le dispositif de stimulation à savoir le restricteur, la chambre et la buse ainsi que des éléments de liaison hydrauliques entre ces composants s'ils existent.In the absence of propagation phenomenon, we will focus on the frequency of Helmholtz F H calculated from the terms of inertia and elasticity (electrical analogy) of each discrete element constituting the stimulation device namely the restrictor, the chamber and the nozzle as well as hydraulic connecting elements between these components if they exist.

Avec les valeurs nominales indiquées dans le tableau de dimension et de matériau, la fréquence de résonance de Helmholtz qui vaut typiquement de l'ordre de 200 kHz est située hors de la bande passante du jet. Dans le cas particulier des valeurs proposées dans le tableau faisant l'objet de l'annexe 1, la fréquence de Helmholtz FH est calculée à partir de l'expression simplifiée suivante qui ne retient que les termes dont le poids est prépondérant: F H = 1 2 π L B L R L B + L R * C M

Figure imgb0005

  • LR : terme d'inertie (analogie électrique) associé à la restriction 18.
  • LB : terme d'inertie (analogie électrique) associé à la buse 29.
  • CM : terme d'élasticité en analogie électrique de l'élément vibrant 31.
With the nominal values indicated in the dimension and material table, the Helmholtz resonance frequency which is typically of the order of 200 kHz is located outside the jet bandwidth. In the particular case of the values proposed in the table given in Appendix 1, the frequency of Helmholtz F H is calculated from the following simplified expression which retains only the terms whose weight is preponderant: F H = 1 2 π The B The R The B + The R * VS M
Figure imgb0005
  • L R : term of inertia (electrical analogy) associated with the restriction 18.
  • L B : term of inertia (electrical analogy) associated with the nozzle 29.
  • C M : elasticity term in electrical analogy of the vibrating element 31.

Résonance acoustique avec propagation (Règle de conception n°2) Acoustic Resonance with Propagation (Design Rule 2)

Les phénomènes de propagation acoustique peuvent produire des pics de résonance lorsqu'une des longueurs caractéristiques du système de stimulation n'est pas négligeable devant la longueur λ des ondes acoustique dans l'encre 16. A titre d'exemple, la longueur d'onde λ est typiquement de 7.5 mm dans une encre à base d'eau, MEK ou alcool pour une fréquence de coupure du jet Fcjet de 160kHz et pour une célérité moyenne du son, par exemple dans la MEK, de 1200 m/s. On entend par longueur caractéristique toute cote de la restriction 18, de la chambre 28, des premier et second tubes de liaison 20, 21, de la buse 29 et du trajet total de l'encre 16 dans le système de stimulation depuis l'entrée de la restriction 18 jusqu'en sortie de buse 29. Idéalement toutes les longueurs caractéristiques du système de stimulation seront inférieures λ/4 pour s'affranchir de la propagation d'ondes acoustiques. La contrainte en λ/4 fixe la longueur caractéristique maximale à 1.8 mm. Il est en général aisé de satisfaire à la contrainte en λ/4 pour la buse 29, la restriction 18 et les tubes de liaison 20, 21 comme indiqué dans le tableau de dimension et de matériau annexé. Pour la chambre 28, cette règle peut ne pas être respectée, car on recherche une surface de la chambre importante pour obtenir une bonne efficacité de stimulation, dans ce cas, il est indispensable de procéder à la modélisation de la fonction de transfert pour s'assurer qu'il n'y a pas de résonance dans la bande passante du jet.Acoustic propagation phenomena can produce resonance peaks when one of the characteristic lengths of the stimulation system is not negligible compared to the length λ of the acoustic waves in the ink 16. By way of example, the wavelength λ is typically 7.5 mm in a water-based ink, MEK or alcohol for a cut-off frequency of jet Fc jet 160 kHz and for an average speed of sound, for example in the MEK, of 1200 m / s. We mean by length feature any dimension of the restriction 18, the chamber 28, the first and second connecting tubes 20, 21, the nozzle 29 and the total path of the ink 16 in the stimulation system since the entry of the restriction 18 until the nozzle outlet 29. Ideally all the characteristic lengths of the stimulation system will be lower λ / 4 to overcome the propagation of acoustic waves. The constraint in λ / 4 sets the maximum characteristic length at 1.8 mm. It is generally easy to satisfy the λ / 4 stress for the nozzle 29, the restriction 18 and the connecting tubes 20, 21 as indicated in the dimension and attached material table. For the chamber 28, this rule may not be respected, because we are looking for a large chamber area to obtain a good stimulation efficiency, in this case, it is essential to proceed with the modeling of the transfer function for s' ensure that there is no resonance in the bandwidth of the jet.

Pour un système de stimulation comportant les cotes nominales indiquées dans le tableau de dimension et de matériau, il apparaît que sa fonction de transfert dont la courbe est présentée en figure 7 ne présente pas de fréquence de résonance dans la bande passante du jet, pic 26 de résonance à 200 kHz associé à la fréquence de Helmholtz.For a stimulation system with the nominal dimensions indicated in the dimension and material table, it appears that its transfer function whose curve is presented in figure 7 does not have a resonance frequency in the jet bandwidth, resonance peak 26 at 200 kHz associated with the Helmholtz frequency.

Pour une fréquence de coupure du jet de 160kHz et pour un système de stimulation ayant les cotes indiquées dans le tableau de l'annexe 1, la première résonance se situe vers 200 kHz ce qui satisfait aux critères et aux précautions énumérés, il est aisé de vérifier que la stimulation est non résonante et permet avantageusement des former une goutte dans un jet continu (Figures 6 et 7).For a jet cutoff frequency of 160 kHz and for a stimulation system having the ratings given in the table in Annex 1, the first resonance is around 200 kHz, which satisfies the criteria and precautions listed, it is easy to verify that the stimulation is non-resonant and advantageously allows to form a drop in a continuous stream ( Figures 6 and 7 ).

Optimisation de l'écoulement stationnaire et instationnaire (Règle de conception n°4). Optimization of Stationary and Unsteady Flow (Design Rule 4).

Sous l'effet de l'élément piézo-électrique 25, une impulsion de pression pousse de l'encre 16 vers la buse 29 et repousse de l'encre 16 vers la restriction 18, en effet ces deux éléments constituent, pour la chambre 28, les deux points de sortie de l'encre 16. Afin de maximiser l'efficacité de la stimulation i.e. la modulation de vitesse au niveau de la buse 29, il est souhaitable d'adapter l'impédance de la buse 29 à celle de la restriction 18 laquelle présente une impédance acoustique élevée. On définira le rendement de la stimulation par le ratio Rimp des impédances LB de la buse 29 et LR de la restriction 18 : R imp = L R L B = 1 R S R S B 1 B

Figure imgb0006
Under the effect of the piezoelectric element 25, a pressure pulse pushes ink 16 towards the nozzle 29 and pushes ink 16 towards the restriction 18, in fact these two elements constitute, for the chamber 28 the two output points of the ink 16. In order to maximize the effectiveness of the stimulation ie the speed modulation at the nozzle 29, it is desirable to adapt the impedance of the nozzle 29 to that of the restriction 18 which has a high acoustic impedance. The efficiency of the stimulation is defined by the ratio R imp of the impedances L B of the nozzle 29 and L R of the restriction 18: R imp = The R The B = 1 R S R S B 1 B
Figure imgb0006

Dans la formule ci-dessus :

  • lR : longueur de la restriction 18
  • lB : longueur de la buse 29 dans la direction Z
  • SR : section droite de la restriction 18
  • SB : section droite de la buse 29
In the formula above:
  • l R : length of the restriction 18
  • l B : length of the nozzle 29 in the Z direction
  • S R : right section of restriction 18
  • S B : straight section of the nozzle 29

Dans l'idée de maximiser Rimp, la solution intuitive qui consisterait à choisir IR >> IB et SR << SB est inintéressante car elle requiert une pression d'encre dans le réservoir 17 trop importante. En effet, la formation du jet continu 30 nécessite une pression d'encre statique en amont de la restriction 18 qui dépend fortement des pertes de charges visqueuses dans le système de stimulation et en particulier dans la buse 29 et la restriction 18 qui sont les deux zones de plus forte vitesse d'écoulement de l'encre. La résistance hydraulique de la buse 29 ou de la restriction 18 est décrite, en première approximation, par la loi de Poiseuille selon l'expression générique suivante : ΔP Q = R Hydro = 8 μ 1 π R 4

Figure imgb0007

  • ΔP : chute de pression statique entre l'entrée et la sortie de la buse 29 ou de la restriction 18
  • Q : débit volumique
  • R : rayon de la buse 29 ou de la restriction 18
  • 1 : longueur de la buse 29 ou de la restriction 18,
  • µ est la viscosité dynamique de l'encre.
In the idea of maximizing R imp , the intuitive solution of choosing I R >> I B and S R << S B is uninteresting because it requires an ink pressure in the reservoir 17 too large. Indeed, the formation of the continuous jet 30 requires a static ink pressure upstream of the restriction 18 which strongly depends on the viscous charge losses in the stimulation system and in particular in the nozzle 29 and the restriction 18 which are the two areas of higher ink flow velocity. The hydraulic resistance of the nozzle 29 or the restriction 18 is described, as a first approximation, by the Poiseuille law according to the following generic expression: .DELTA.P Q = R Hydro = 8 μ 1 π R 4
Figure imgb0007
  • ΔP: static pressure drop between inlet and outlet of nozzle 29 or restriction 18
  • Q: volume flow
  • R: radius of nozzle 29 or restriction 18
  • 1: length of nozzle 29 or restriction 18,
  • μ is the dynamic viscosity of the ink.

Afin de réduire la résistance hydraulique de la restriction 18 comparativement à la buse 29 et tout en conservant un bon rendement de stimulation on jouera sur l'équivalence [longueur ↔ section] en privilégiant une section et une longueur de la restriction 18 supérieures à celles de la buse 29. Les cotes nominales indiquées dans le tableau de dimension et de matériau de l'annexe 1, constituent un bon compromis entre le rendement de la stimulation et la perte de charge visqueuse. Pour des rapports de rayon, respectivement de longueur, de la buse 29 et de la restriction 18 valant typiquement 1/3, respectivement 1/10, on obtient : { R Imp 1 R Hydro restricteur 1 10 R Hydro buse

Figure imgb0008
In order to reduce the hydraulic resistance of the restriction 18 compared with the nozzle 29 and while maintaining a good pacing efficiency, we will play on the equivalence [length ↔ section] by favoring a section and a length of the restriction 18 greater than those of the nozzle 29. The nominal dimensions given in the dimension and material table in annex 1, constitute a good compromise between the efficiency of the stimulation and the viscous pressure drop. For ratios of radius, respectively length, of the nozzle 29 and the restriction 18 being typically 1/3, respectively 1/10, we obtain: { R Imp 1 R Hydro restrictor 1 10 R Hydro buzzard
Figure imgb0008

Le volume contenu dans la chambre 28 de forme parallélépipédique est choisi tel que la fréquence de Helmholtz du système ne soit pas inférieure à 200 kHz. L'épaisseur de la chambre 28 (dans la direction Z) doit être aussi faible que possible pour offrir une surface maximale à l'élément vibrant 31 mais néanmoins pas inférieure au diamètre de la buse 29 afin de minimiser la perte de charge visqueuse dans la chambre 28. Cette épaisseur qui résulte d'un compromis sera choisie voisine du diamètre de la buse 29. Le volume et l'épaisseur étant donnés, cela fixe la surface de la chambre en s'assurant de la bonne cohérence avec la règle de conception n°1.The volume contained in the parallelepiped-shaped chamber 28 is chosen such that the Helmholtz frequency of the system is not less than 200 kHz. The thickness of the chamber 28 (in the Z direction) must be as small as possible to provide a maximum surface area for the vibrating element 31 but nevertheless not less than the diameter of the nozzle 29 in order to minimize the viscous loss of pressure in the 28. This thickness resulting from a compromise will be chosen close to the diameter of the nozzle 29. The volume and the thickness being given, it fixes the surface of the chamber by ensuring good consistency with the design rule No. 1.

Ainsi, une imprimante selon l'invention inclut :

  • un dispositif d'éjection de liquide permettant de former au moins un jet d'encre,
  • un générateur de signaux électriques de commande,
  • un dispositif de stimulation interne, c'est-à-dire en amont de la buse, permettant de fractionner le jet en créant des perturbations à sa surface en sortie de buse. Ce dispositif de stimulation est capable de créer une goutte isolée dans le jet lorsqu'on applique le signal impulsionnel approprié sur les moyens de stimulation,
  • un système de tri consistant en un agencement d'électrodes portées à des potentiels électriques constants, et en une gouttière qui collecte les gouttes non imprimées.
Thus, a printer according to the invention includes:
  • a liquid ejection device for forming at least one ink jet,
  • a generator of electrical control signals,
  • an internal stimulation device, that is to say upstream of the nozzle, for splitting the jet by creating disturbances at its surface at the nozzle outlet. This stimulation device is capable of creating an isolated drop in the jet when the appropriate pulse signal is applied to the stimulation means.
  • a sorting system consisting of an arrangement of electrodes carried at electrical potentials constant, and in a gutter that collects the unprinted drops.

L'invention permet d'utiliser un système de tri commun pour un grand nombre de jets, ce qui élimine les difficultés de réalisation des électrodes de charge d'une imprimante binaire classique, et permet de profiter des avantages du système de tri en stimulation intermittente, notamment de son faible coût de réalisation. De plus, la stimulation étant interne, les problèmes d'encombrement et les difficultés liées aux techniques de stimulation externes sont éliminés. Le dispositif de stimulation piloté selon le principe de l'invention permet également de modifier le comportement du jet et la trajectoire des gouttes par le seul moyen du signal de stimulation, ce qui simplifie la partie électronique de la tête d'impression et donne un contrôle très fin sur la stabilité des jets et la qualité d'impression. La combinaison de deux brisures stables contribue également à maîtriser les deux trajectoires des 2 types de gouttes créés par le simple ajustement de paramètres du signal de stimulation, ce qui contribue à améliorer la fiabilité de la machine et la qualité d'impression.The invention makes it possible to use a common sorting system for a large number of jets, which eliminates the difficulties of producing the charging electrodes of a conventional binary printer, and makes it possible to take advantage of the advantages of the sorting system in intermittent stimulation. , especially its low cost of implementation. In addition, the stimulation being internal, congestion problems and difficulties related to external stimulation techniques are eliminated. The stimulation device controlled according to the principle of the invention also makes it possible to modify the behavior of the jet and the trajectory of the drops by the sole means of the stimulation signal, which simplifies the electronic part of the print head and gives a control very fine on jet stability and print quality. The combination of two stable breaks also helps to control the two trajectories of the two types of drops created by the simple adjustment of the stimulation signal parameters, which contributes to improving the reliability of the machine and the print quality.

On notera qu'une tête d'impression utilisant l'invention peut comprendre ou non le circuit 32 de génération des signaux de brisure.Note that a print head using the invention may or may not include the circuit 32 for generating the break signals.

Annexe 1Annex 1

Tableau de dimension et de matériauSize and material table FonctionFunction Long (X) / Larg (Y) / Rayon-Long (X) / Larg (Y) / Radius- Epaisseur (Z)Thickness (Z) MatériauxMaterials Restriction 18Restriction 18 250 µm / 130 µm / -250 μm / 130 μm / - 38 µm38 μm Inox 316316 stainless steel Tube de liaison 20Connecting tube 20 -/-/75 µm- / - / 75 μm 38 µm38 μm Inox 316316 stainless steel Chambre 29Room 29 1000 µm / 410 µm / -1000 μm / 410 μm / - 38 µm38 μm Inox 316316 stainless steel Elément vibrant 31:Vibrating element 31: - céramique piézo- piezo ceramic 1000 µm / 410 µm / -1000 μm / 410 μm / - 125 µm125 μm PZTPZT - membrane- membrane 1000 µm / 410 µm / -1000 μm / 410 μm / - 62.5 µm62.5 μm Inox 316316 stainless steel Tube de liaison 21Connecting tube 21 -/ - / 50 µm- / - / 50 μm 475 µm475 μm Inox 316316 stainless steel Buse 29Nozzle 29 -/-/15 µm- / - / 15 μm 50 µm50 μm Inox 316316 stainless steel

Annexe 2Annex 2 Liste des documents citésList of documents cited

  • US-A-4 220 958 CROWLEYUS-A-4,220,958 CROWLEY
  • US-A-3 596 275 SWEETUS-A-3,596,275 SWEET
  • US-A-4 638 328 DRAKE ET ALUS-A-4,638,328 DRAKE AND AL
  • FR 2 799 688 µ US 09/685 064 FR 2 799 688 μ US 09/685 064
  • Journal Xerox Disclosure ( Pincus - 1982, Vol. 7, p. 23 Xerox Disclosure Journal ( Pincus - 1982, Vol. 7, p. 23

Claims (25)

  1. An ink jet printer (10) comprising:
    - a generator (32) of electrical control signals receiving a control signal and delivering to stimulation means (31), stimulation signals,
    - a printing head (1) with one or more nozzles (29) having a head (1) body (23) notably accommodating for each nozzle (29),
    - a hydraulic path of the ink including, a stimulation chamber (28) in hydraulic communication with one of the printing nozzles (29) emitting a pressurized ink jet (30) along an axis of this nozzle (29),
    - internal means (31) for stimulating the ink jet (30) emitted by the nozzle (29), mechanically coupled with the ink (16) accommodated in the stimulation chamber (28), these means (31) acting on the jet (30) emitted by the nozzle (29) in order to break up the jet (30) in a controlled way, and
    - means (40) for recovering the ink which is not received by a printing substrate (41),
    - an arrangement (35) of charging electrodes defining around the axis of the nozzle (29), upstream and downstream areas, the downstream area being further away from the nozzle than the upstream area, upstream and downstream electrodes (34, 37) of this arrangement (35) being connected to sources of electric potential in order to maintain in one of the areas, a potential equal to that of the ink found in the body (23) of the printing head (1), and in the other one of the areas a potential different from that of the ink found in the body (23) of the printing head (1),
    - an arrangement (39) of deflection electrodes axially located downstream from the arrangement (35) of charging electrodes,
    characterized in that the generator (32) of electrical control signals delivers to the stimulation means (31), signals intermittently causing controlled breaking of the jet (30) in an upstream breaking position (11) located in the upstream area, to intermittently form a drop, thereby separating the jet into a drop and a jet section having a length larger than two wavelengths of the jet, and also causing controlled breaking of the jet (30) or of sections (38) of the jet (30) continuously in a downstream breaking position (12), the continuous jet (30) emitted by the nozzle (29) being thereby transformed after the downstream area into a continuous train of electrically charged and uncharged ink drops (33, 43).
  2. The printer (10) according to claim 1, characterized in that the upstream electrode (34) of the arrangement of charging electrodes (35) is connected to the same potential as the ink (16).
  3. The printer (10) according to any of claims 1 or 2, characterized in that the stimulation means (31) include a piezoelectric material (25), the generator (32) of electrical control signals delivering to the stimulation means (31), a continuous printing signal formed by a periodic signal of period Tb, intermittently replaced with a pulse signal preceded and followed by transition signals.
  4. The printer (10) according to claim 3, characterized in that the pulse signal delivered by the generator (32) of electrical control signals is formed by a pulse including three consecutive voltage steps connected from one to the next by a steep rising or falling voltage edge.
  5. The printer (10) according to claim 3, characterized in that the pulse signal delivered by the generator (32) of electrical control signals is formed by a succession of three rectangular pulses separated from each other by voltage steps with a level than the level of the pulse with the lowest level.
  6. The printer (10) according to any of claims 3 to 5, characterized in that the periodic signal delivered by the generator (32) of electrical control signals is formed by a combination of two sinusoidal signals.
  7. The printer (10) according to any of claims 3 to 5, characterized in that the periodic signal delivered by the generator (32) of electrical control signal is formed by a combination of more than two sinusoidal signals.
  8. The printer (10) according to any of claims 3 to 5, characterized in that the sum of the durations of the pulse signal and of the transition signals delivered by the generator (32) of electrical control signals is equal to an integral number of periods of the periodic signal.
  9. The printer (10) according to any of claims 1 to 8, characterized in that a Helmholtz frequency of a portion of a hydraulic path of the ink feeding a nozzle (29) comprising a restrictor (18) and the portion located downstream from this restrictor (18) has a value located outside a bandwidth of the jet (30) issued from this nozzle (29).
  10. The printer (10) according to any of claims 1 to 8, characterized in that the hydraulic path of the ink includes a restrictor (18) and in that the length of a hydraulic path between an inlet of the restrictor and the nozzle (29) is less than the quarter of the wavelength of sound in the ink.
  11. The printer (10) according to any of claims 1 to 8, characterized in that the system for stimulating a jet (30) emitted by a nozzle (29) is strictly non-resonant.
  12. The printer (10) according to any of claims 3 to 8, characterized in that the stimulation means (31) include, in addition to the piezoelectric material (25), a membrane (24) which is mechanically coupled with it, a resonance frequency of a vibrating component formed by the membrane (24) and the piezoelectric material (25) is larger than a cut-off frequency of the jet (30).
  13. A method for printing a medium by means of a printer (10) according to any of claims 1 to 12, wherein an ink jet (30) emitted by a nozzle (29) of the printer is fractionated in order to form in an upstream position, first drops (33) intended for printing, impinging a printing substrate in order to form points (58) and in a downstream position, second recovered drops directed towards a recovery trough (40),
    characterized in that,
    in the upstream position, the jet (30) is fractionated intermittently in order to generate the first intermittent drops (33) intended for printing, on the one hand, and jet sections with a length larger than two wavelengths of the jet on the other hand, and in that in the downstream position the jet or the sections (38) are further fractionated, resulting from the fractionation of the jet into first drops (33) and of sections (38) into said second drops (43) directed towards the trough (40).
  14. An ink jet printer (10) head (1) comprising:
    - one or more printing nozzles (29) and a head (1) body (23) notably accommodating for each nozzle (29),
    - a hydraulic path of the ink including a stimulation chamber (28) in hydraulic communication with one of the printing nozzles (29) emitting a pressurized ink jet (30) along an axis of this nozzle (29),
    - internal means (31) for stimulating the ink jet (30) emitted by the nozzle (29) mechanically coupled with the ink (16) accommodated in the stimulation chamber (28), these means (31) acting on the jet (30) emitted by the nozzle (29) for breaking up the jet (30) in a controlled way, and
    - means (40) for recovering the ink which is not received by a printing substrate (41),
    - a generator (32) of electrical control signals receiving a control signal and delivering stimulation signals to the stimulation means (31),
    - an arrangement (35) of charging electrodes defining around the axis of the nozzle (29), upstream and downstream areas, the downstream area being further away from the nozzle than the upstream area, upstream and downstream electrodes (34, 37) of this arrangement (35) being connected to sources of electric potential so as to maintain in one of the areas a potential equal to that of the ink found in the body (23) of the printing head (1), and in the other one of these areas, a potential different from that of the ink found in the body (23) of the printing head (1),
    - an arrangement (39) of deflection electrodes axially located downstream from the arrangement (35) of charging electrodes
    characterized in that the generator (32) of electrical control signals delivers to the stimulation means (31), signals intermittently causing controlled breaking up of the jet (30) in an upstream breaking position (11) located in the upstream area, this intermittent breaking up generating first intermittent drops (33) intended for printing, and jet sections having a length larger than two wavelengths of the jet, and also causing controlled breaking up of the jet (30) or of the sections (38) of the jet (30) continuously in a downstream breaking position (12), the continuous jet (30) emitted by the nozzle (29) being also transformed after the downstream area into a continuous train of electrically charged and uncharged ink drops (33, 43).
  15. The printer (10) head (1) according to claim 14, characterized in that the upstream electrode (34) of the arrangement of charging electrodes (35) is connected to the same potential as the ink (16).
  16. The printer (10) head (1) according to any of claims 14 or 15, characterized in that the stimulation means (31) include a piezoelectric material (25), the generator (32) of electrical control signals delivering to the stimulation means (31), a continuous printing signal formed by a periodic signal with period Tb, intermittently replaced with a pulse signal preceded and followed by transition signals.
  17. The printer (10) head (1) according to claim 16, characterized in that the pulse signal delivered by the generator (32) of electrical control signals is formed by a pulse including three consecutive voltage steps connected from one to the next by a steep rising or falling voltage edge.
  18. The printer (10) head (1) according to claim 16, characterized in that the pulse signal delivered by the generator (32) of electrical control signals is formed by a succession of three rectangular pulses separated from each other by voltage steps with a level less than the level of the pulse with the lowest level.
  19. The printer (10) head (1) according to any of claims 16 to 18, characterized in that the periodic signal delivered by generator (32) of electrical control signals is formed by a combination of two sinusoidal signals.
  20. The printer (10) head (1) according to any of claims 16 to 18, characterized in that the periodic signal delivered by the generator (32) of electrical control signals, is formed by a combination of more than two sinusoidal signals.
  21. The printer (10) head (1) according to any of claims 16 to 18, characterized in that the sum of the durations of the pulse signal and the transition signals delivered by the generator (32) of electrical control signals is equal to an integral number of periods of the periodic signal.
  22. The printer (10) head (1) according to any of claims 14 to 21, characterized in that the Helmholtz frequency of a portion of a hydraulic path of the ink feeding a nozzle (29) comprising a restrictor (18) and the portion located downstream from this restrictor (18), has a value located outside a bandwidth of the jet (30) issued from this nozzle (29).
  23. The printer (10) head (1) according to any of claims 14 to 21, characterized in that the hydraulic path of the ink includes a restrictor (18) and in that the length of a hydraulic path between an inlet of the restrictor and the nozzle (29) is less than the quarter of the wavelength of sound in the ink.
  24. The printer (10) head (1) according to any of claims 14 to 21, characterized in that the system for stimulating a jet (30) emitted by a nozzle (29) is strictly non-resonant.
  25. The printer (10) head (1) according to any of claims 16 to 21, characterized in that the stimulation means (31) include in addition to the piezoelectric material (25), a membrane (24) which is mechanically coupled with it, and in that a resonance frequency of a vibrating component formed by the membrane (24) and by the piezoelectric material (25), has a value located outside a bandwidth of the jet (30).
EP04821194A 2003-02-25 2004-02-24 Inkjet printer Expired - Lifetime EP1628832B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0302272A FR2851495B1 (en) 2003-02-25 2003-02-25 INKJET PRINTER
PCT/FR2004/050077 WO2005070676A2 (en) 2003-02-25 2004-02-24 Continuous inkjet printer

Publications (2)

Publication Number Publication Date
EP1628832A2 EP1628832A2 (en) 2006-03-01
EP1628832B1 true EP1628832B1 (en) 2008-04-16

Family

ID=32799555

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04821194A Expired - Lifetime EP1628832B1 (en) 2003-02-25 2004-02-24 Inkjet printer

Country Status (5)

Country Link
US (1) US7192121B2 (en)
EP (1) EP1628832B1 (en)
CN (1) CN100575086C (en)
FR (1) FR2851495B1 (en)
WO (1) WO2005070676A2 (en)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2879961B1 (en) 2004-12-23 2016-08-19 Imaje Sa CLEANING A PRINT HEAD
FR2890595B1 (en) * 2005-09-13 2009-02-13 Imaje Sa Sa GENERATION OF DROPS FOR INK JET PRINTING
CN101497265B (en) * 2008-01-28 2011-08-31 株式会社日立产机系统 Inkjet recording apparatus
FR2952851B1 (en) 2009-11-23 2012-02-24 Markem Imaje CONTINUOUS INK JET PRINTER WITH IMPROVED QUALITY AND AUTONOMY OF PRINTING
FR2955801B1 (en) 2010-02-01 2012-04-13 Markem Imaje DEVICE FORMING A CONTINUOUS INK JET PRINTER WITH SOLVENT VAPOR CONCENTRATIONS INSIDE AND AROUND THE DECREASED PUPITRE
FR2971199A1 (en) 2011-02-09 2012-08-10 Markem Imaje BINARY CONTINUOUS INK JET PRINTER WITH REDUCED PRINT HEAD CLEANING FREQUENCY
US8465129B2 (en) 2011-05-25 2013-06-18 Eastman Kodak Company Liquid ejection using drop charge and mass
JP2014515324A (en) 2011-05-25 2014-06-30 イーストマン コダック カンパニー Liquid discharge system with droplet velocity modulation
US8657419B2 (en) 2011-05-25 2014-02-25 Eastman Kodak Company Liquid ejection system including drop velocity modulation
US8382259B2 (en) 2011-05-25 2013-02-26 Eastman Kodak Company Ejecting liquid using drop charge and mass
EP2714405B1 (en) 2011-05-25 2018-10-24 Eastman Kodak Company System and method for liquid ejection
US8469496B2 (en) 2011-05-25 2013-06-25 Eastman Kodak Company Liquid ejection method using drop velocity modulation
FR2975632A1 (en) 2011-05-27 2012-11-30 Markem Imaje BINARY CONTINUOUS INKJET PRINTER
US8651633B2 (en) 2012-03-20 2014-02-18 Eastman Kodak Company Drop placement error reduction in electrostatic printer
US8651632B2 (en) * 2012-03-20 2014-02-18 Eastman Kodak Company Drop placement error reduction in electrostatic printer
US8646882B2 (en) 2012-03-20 2014-02-11 Eastman Kodak Company Drop placement error reduction in electrostatic printer
US8646883B2 (en) 2012-03-20 2014-02-11 Eastman Kodak Company Drop placement error reduction in electrostatic printer
US8585189B1 (en) 2012-06-22 2013-11-19 Eastman Kodak Company Controlling drop charge using drop merging during printing
US8641175B2 (en) 2012-06-22 2014-02-04 Eastman Kodak Company Variable drop volume continuous liquid jet printing
US8888256B2 (en) 2012-07-09 2014-11-18 Eastman Kodak Company Electrode print speed synchronization in electrostatic printer
US8696094B2 (en) 2012-07-09 2014-04-15 Eastman Kodak Company Printing with merged drops using electrostatic deflection
US9321071B2 (en) * 2012-09-28 2016-04-26 Amastan Technologies Llc High frequency uniform droplet maker and method
CN104015483B (en) * 2014-06-10 2015-12-30 大连理工大学 A kind of focusing electrohydrodynamic jet printing head
FR3025801B1 (en) 2014-09-16 2018-03-09 Dover Europe Sarl LIQUID COMPOSITION, IN PARTICULAR INK, FOR CONTINUOUS BINARY DIE PRINTING WITH UNLATCHED DROPS, USE OF THE SAME, MARKING METHOD, AND BRAND SUBSTRATE.
EP3194512B1 (en) 2014-09-18 2020-04-22 Markem-Imaje Corporation Ink compositions
FR3034426B1 (en) 2015-03-31 2017-05-05 Dover Europe Sarl PIGMENTARY INK COMPOSITION FOR BINARY CONTINUOUS JET PRINTING WITH UNLATCHED DROPS, TEXTILE SUBSTRATES, MARKING METHOD, AND TEXTILE SUBSTRATE THUS BRAND
US10556427B2 (en) * 2015-07-13 2020-02-11 Jan Franck Method for actuating an ink-jet print head
FR3045458B1 (en) 2015-12-22 2018-02-16 Dover Europe Sarl INK JET PRINTER WITH ENHANCED SOLVENT RECOVERY CIRCUIT
FR3045459B1 (en) 2015-12-22 2020-06-12 Dover Europe Sarl PRINTHEAD OR INK JET PRINTER WITH REDUCED SOLVENT CONSUMPTION
FR3046418B1 (en) 2016-01-06 2020-04-24 Dover Europe Sarl LIQUID COMPOSITION, ESPECIALLY INKED, FOR CONTINUOUS JET BINARY JET PRINTING WITH UNLOADED DROPS, USE OF SAID COMPOSITION, MARKING METHOD, AND SUBSTRATE MARKED.
FR3049214B1 (en) 2016-03-22 2018-04-27 Dover Europe Sarl DEBIT AND USE IN A PRINTER
FR3049343A1 (en) 2016-03-22 2017-09-29 Dover Europe Sarl DEVICE FOR MEASURING FLOW AND VISCOSITY AND ITS USE IN A PRINTER
FR3055108A1 (en) 2016-08-16 2018-02-23 Dover Europe Sarl METHOD AND DEVICE FOR FILTERING THE RECYCLED ATMOSPHERE OF A PRINTING HEAD
FR3059941A1 (en) 2016-12-14 2018-06-15 Dover Europe Sarl METHOD AND DEVICE FOR DETECTING THE PRESENCE OF JETS
FR3065394B1 (en) 2017-04-21 2019-07-05 Dover Europe Sàrl METHOD AND DEVICE FOR HYDRODYNAMIC INKJET DEFLECTION
FR3071768A1 (en) 2017-10-04 2019-04-05 Dover Europe Sarl MODULAR COVER OF TANK
FR3071769A1 (en) 2017-10-04 2019-04-05 Dover Europe Sarl COMPACT INK TANK
FR3082778A1 (en) 2018-06-21 2019-12-27 Dover Europe Sarl PRINTHEAD OF AN INK JET PRINTER WITH 2 RECOVERY GUTTERS, INCLUDING A MOBILE
FR3082779B1 (en) 2018-06-21 2021-02-12 Dover Europe Sarl METHOD AND DEVICE FOR MAINTENANCE OF A PRINTING HEAD BY NOZZLE
FR3082777A1 (en) 2018-06-21 2019-12-27 Dover Europe Sarl METHOD AND DEVICE FOR DETECTING THE PROPER FUNCTIONING OF NOZZLES OF A PRINTHEAD
FR3088242A1 (en) 2018-11-14 2020-05-15 Dover Europe Sarl METHOD AND DEVICE FOR FORMING DROPS USING A CAVITY WITH DEGRADED QUALITY FACTOR
FR3088241B1 (en) 2018-11-14 2021-05-28 Dover Europe Sarl METHOD AND DEVICE FOR FORMING DROPS USING AN INK OF MINIMUM VISCOSITY
EP3674088B1 (en) 2018-12-28 2023-11-29 Dover Europe Sàrl Improved ink jet print head with water protection
CN110757954A (en) * 2019-10-31 2020-02-07 广州市贝云科技有限公司 Spray head, ink jet printer and ink jet printing method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3596275A (en) 1964-03-25 1971-07-27 Richard G Sweet Fluid droplet recorder
US4027308A (en) * 1973-12-28 1977-05-31 International Business Machines Corporation Method and apparatus for forming droplets from a magnetic liquid stream
US3878519A (en) 1974-01-31 1975-04-15 Ibm Method and apparatus for synchronizing droplet formation in a liquid stream
US4220958A (en) 1978-12-21 1980-09-02 Xerox Corporation Ink jet electrohydrodynamic exciter
CA1158706A (en) * 1979-12-07 1983-12-13 Carl H. Hertz Method and apparatus for controlling the electric charge on droplets and ink jet recorder incorporating the same
US4321609A (en) * 1980-11-24 1982-03-23 Computer Peripherals, Inc. Bi-directional ink jet printer
JPS6256149A (en) * 1985-09-06 1987-03-11 Hitachi Ltd Ink jet recording apparatus
US4638328A (en) 1986-05-01 1987-01-20 Xerox Corporation Printhead for an ink jet printer
US4845512A (en) * 1988-10-12 1989-07-04 Videojet Systems International, Inc. Drop deflection device and method for drop marking systems
FR2777211B1 (en) * 1998-04-10 2000-06-16 Toxot Science Et Applic PROCESS FOR PROJECTING AN ELECTRICALLY CONDUCTIVE LIQUID AND CONTINUOUS INKJET PRINTING DEVICE USING THIS PROCESS
US6109739A (en) * 1998-06-12 2000-08-29 Marconi Data Systems Inc Dot positioning for continuous ink jet printer
FR2799688B1 (en) * 1999-10-15 2001-11-30 Imaje Sa PRINTER AND INK JET PRINTING METHOD

Also Published As

Publication number Publication date
CN1816449A (en) 2006-08-09
FR2851495B1 (en) 2006-06-30
WO2005070676A3 (en) 2005-12-22
US7192121B2 (en) 2007-03-20
FR2851495A1 (en) 2004-08-27
CN100575086C (en) 2009-12-30
WO2005070676A2 (en) 2005-08-04
EP1628832A2 (en) 2006-03-01
US20060139408A1 (en) 2006-06-29

Similar Documents

Publication Publication Date Title
EP1628832B1 (en) Inkjet printer
EP0521764B1 (en) Liquid projecting process and high resolution printing device in a continuous ink jet printer to perform this process
EP0949077B1 (en) Method for ejecting an electrically conductive liquid and continuous ink jet printing device using this method
EP1469997B1 (en) Converging axis dual-nozzled print head and printer fitted therewith
US8104879B2 (en) Printing by differential ink jet deflection
US7777395B2 (en) Continuous drop emitter with reduced stimulation crosstalk
JPH05338156A (en) High density ink jet printhead
FR2890596A1 (en) Conducting liquid e.g. ink, drops selective charging device for ink jet print head, has charge electrode and air gap, at constant potential, to transfer charge to jet sections, where electrode is provided downstream gap along jet path
FR2952851A1 (en) CONTINUOUS INK JET PRINTER WITH IMPROVED QUALITY AND AUTONOMY OF PRINTING
IL102824A (en) Sidewall actuator for a high density ink jet printhead
EP1234670B1 (en) Printhead and printer with improved deflection electrodes
JP2715001B2 (en) High density inkjet printer head with two U-shaped channel drives
FR2971199A1 (en) BINARY CONTINUOUS INK JET PRINTER WITH REDUCED PRINT HEAD CLEANING FREQUENCY
CA2000016C (en) High resolution printing process using satellite ink droplets and implemented in a continuous ink jet printer
FR2890595A1 (en) Ink drop formation and projection method for use in inkjet printing, particularly suited to use with a piezoelectric printer, in which jets are temporarily interrupted by application of a stimulation impulse
EP1092542B1 (en) Ink jet printer and printing process
JPS58168572A (en) Liquid droplet spouting method
FR2975632A1 (en) BINARY CONTINUOUS INKJET PRINTER
JP2001328259A (en) Method for driving ink jet recording head and ink jet recording apparatus
FR3088242A1 (en) METHOD AND DEVICE FOR FORMING DROPS USING A CAVITY WITH DEGRADED QUALITY FACTOR
JPH09174836A (en) Ink jet recording head and manufacture thereof
FR3088241A1 (en) METHOD AND DEVICE FOR FORMING DROPS USING MINIMUM VISCOSITY INK
JPH1120156A (en) Ink jet recorder and its manufacture
JP2008260288A (en) Method, device, and printhead for continuous mems ink-jet
JP2000000966A (en) Ink jet head, manufacture thereof and imaging device using ink jet head

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050819

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HENON, PIERRE

Inventor name: BARBET, BRUNO

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): GB

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): GB

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230214

Year of fee payment: 20

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20240223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240223