EP1625628A2 - METHOD FOR PRODUCING TRANSPARENT P-CONDUCTIVE CuAlO2 - Google Patents

METHOD FOR PRODUCING TRANSPARENT P-CONDUCTIVE CuAlO2

Info

Publication number
EP1625628A2
EP1625628A2 EP04738539A EP04738539A EP1625628A2 EP 1625628 A2 EP1625628 A2 EP 1625628A2 EP 04738539 A EP04738539 A EP 04738539A EP 04738539 A EP04738539 A EP 04738539A EP 1625628 A2 EP1625628 A2 EP 1625628A2
Authority
EP
European Patent Office
Prior art keywords
cualo2
conductive
cuaio
transparent
cucl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04738539A
Other languages
German (de)
French (fr)
Inventor
Larissa Dloczik
Yvonne Tomm
Thomas Dittrich
Martha Christina Lux-Steiner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hahn Meitner Institut Berlin GmbH
Original Assignee
Hahn Meitner Institut Berlin GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hahn Meitner Institut Berlin GmbH filed Critical Hahn Meitner Institut Berlin GmbH
Publication of EP1625628A2 publication Critical patent/EP1625628A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/04Halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a method for producing transparent p-conducting CuAIO 2 , in particular for optoelectronic applications.
  • Transparent conductive materials are used for optoelectronic applications, e.g. needed in flat screens and thin-film solar cells.
  • the materials that have been tried and tested here so far such as tin oxide or zinc oxide doped as required, are n-type semiconductors.
  • transparent semiconductors of the p-type are also required in order to create transparent pn junctions and thus transparent circuits, e.g. in white light-emitting diodes or solar cells with a folded ultra-thin layer.
  • transparent semiconductors of the p-type are also required in order to create transparent pn junctions and thus transparent circuits, e.g. in white light-emitting diodes or solar cells with a folded ultra-thin layer.
  • CuSCN Cul or special polymer materials whose long-term stability is questionable. Oxides would promise greater stability here, but the structural conditions under which they can be p-type are according to H. Kawazoe, M. Yakusawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, Nature 389 (1997) 939-942 [1] very restrictive.
  • CUAIO 2 The synthesis of CUAIO 2 is complicated by the formation of the binary oxides CuO or CUO 2 , the oxide CUAI 2 O 4 of the spinel type and possibly metallic copper (Cu). Since copper is conductive and the binary copper oxides are p-semiconducting, they falsify the characterization of the CuAIO 2 contaminated with it.
  • DE-OS 101 15 971 A1 discloses a method for the micro- and nano-structuring of the surfaces of metal oxides and metal chalcogenides. This conversion process, however, relates to the transfer of the micro- and nano-structuring of surfaces, while the crystal structure inevitably has to change during the transition to other stoichiometries.
  • the object of the invention is to provide a process for the production of transparent p-type CuAIO 2 without disruptive accompanying products, in particular for optoelectronic applications, which, at a lower temperature, is economical for the production of long-term stable CuAIO 2 in powder form, in particular for the production of large-area optoelectronic applications such as flat screens and solar cells.
  • the object is achieved according to the invention by a crystal structure-compliant exchange reaction at a temperature below 600 ° C. in the process for the production of transparent p-type CuAIO 2 .
  • the alpha modification of the non-conductive, ceramic-like material LiAIO 2 and CuCl react in a metathesis reaction Ion exchange at a temperature from around 330 ° C to the desired crystal structure of CuAIO 2 and to LiCl.
  • MAIO 2 isostructural materials for example the alpha modification of LiAIO 2 or a modification of NaAIO 2 in the space group R3m.
  • the non-conductive, ceramic-like LiAIO 2 is non-toxic, available in large quantities and was selected for this because it is
  • alpha-LiAIO 2 can be used to specify the desired crystal structure of CuAIO 2 in a synthesis by ion exchange at a comparatively low temperature. According to the state of the art, this is only formed from about 700 ° C together with disruptive accompanying products (Cu, Cu 2 0, CuO, CuAI 2 O) and only from about 1000 ° C largely pure.
  • the synthesis takes place in a metathesis reaction.
  • This generally means a reaction of two reactants to two products by exchanging a part, in which one of the products generally has a higher stability than the reactants and thereby drives the reaction forward. Often the other product is the actual synthesis target.
  • LiAIO 2 reacts with CuCl to form CuAIO 2 and LiCl.
  • the LiCl can simply be removed by washing.
  • the reactant mixing ratio with excess CuCl is used in a further development of the invention, typically in twice the amount, since unreacted CuCl can be more easily removed by wet chemical means without destroying CuAIO 2 than unreacted LiAIO 2 .
  • the raw product mixture of the reaction is suspended in weakly acidic solution.
  • the excess, but poorly water-soluble CuCl is oxidized by adding a suitable oxidizing agent, for example H 2 O 2 , to more soluble Cu 2+ salts and thus removed.
  • the poorly soluble CuAIO 2 can then be filtered off together with any remaining unreacted LiAIO 2 .
  • LiAIO 2 is an insulator, the remaining small amounts of LiAIO 2 are less of an impurity in the CuAIO 2 than the p-semiconducting copper oxides themselves, which remain in known manufacturing processes.
  • Doping the CuAIO 2 is easily possible by adding suitable dopants to the reaction mixture.
  • the reactants can be implemented in compressed form.
  • the CuAIO 2 obtained can be used as a target material for vacuum deposition processes.
  • alpha-LiAIO 2 The structure-forming role of alpha-LiAIO 2 is evident from the fact that the same metathesis reaction does not yet take place when the more frequent modification gamma-LiAIO 2 is used, even at 500 ° C. The reactants remained unchanged.
  • alpha-LiAIO 2 (sample from Chemetall Foote Corp., 348 Holiday Inn Drive, Kings Mountain, NC 28086) are ground in the mortar with 3.6 g of CuCl (99 +% or 99.999 +%). This corresponds to twice the amount of CuCl in relation to LiAIO 2 in order to better promote its implementation.
  • the mixture is evacuated in a glass-like carbon boat in a quartz ampoule to 10 "5 mbar (10 " 3 Pa) and melted down. This is kept at 475 ° C. for 50 hours, a light blue-gray color indicating the formation of CuAIO 2 .
  • the ampoule is sawn up, the crude product is powdered and slurried in 80 ml of 1% citric acid solution (in demineralized water), the by-product LiCl completely dissolving.
  • 1% citric acid solution in demineralized water
  • To oxidize and dissolve the excess CuCl 1.9 ml of 30% H 2 0 2 are added with stirring, the turquoise color of the dissolved Cu 2+ ions appearing immediately and a side reaction with gas evolution sets in.
  • the slurry is suctioned off through a glass filter crucible (pore size G4), twice with 1% citric acid solution and with Wash demineralized water and dry in air or vacuum (possibly over drying agent).
  • the powder diffractogram shows only CuAI0 2 (delafossite, rhombohedral) with a small proportion (less than 10%) of unreacted alpha-LiAIO 2 , which, since it is an insulator, should cause less contamination as contamination in the CuAIO 2 than that itself p- semiconducting copper oxides that form as a by-product in other processes.
  • the structure-forming role of the alpha-LiAIO 2 is evident, in addition to the low reaction temperature compared to other processes (already at 400 ° C, the majority of LiAI0 2 was converted in 40 hours), in particular by the more common gamma modification of the LiAIO 2 500 ° C did not react with CuCl in 23 hours.
  • the method according to the invention is suitable for the production of transparent p-conducting CuAIO 2 for a wide variety of applications.
  • the main areas of application are optoelectronic applications, in particular large flat screens and thin-film solar cells.
  • the CuAIO 2 powder produced by the process according to the invention can serve as a starting material for the application of compact CuAIO 2 films in a vacuum process or can also be used directly for producing porous CuAIO 2 films, for example on glass.
  • the invention enables a process for the production of transparent p-conducting CuAIO 2 with a lower temperature and without disturbing accompanying products.
  • the process permits economical production of long-term stable CuAIO 2 in powder form and forms the basis for large-scale / mass production of large-area optoelectronic applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Photovoltaic Devices (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Transparent conductive materials are used for optoelectronic applications. However, the materials presently used are n-type semiconductors. Transparent p-type semiconductors are also required to produce pn transitions. Only a few such materials are known, but their long-term stability is questionable. Oxides would provide better stability for said application, but the structural conditions, under which they can be p-conductive are extremely restrictive. The synthesis of CuAlO2 is complicated by the formation of binary oxides, spinell-type CuAl2O4 or metallic copper. At present, to produce pulverulent, pure CuAlO2, binary oxides are reacted at temperatures of at least 1000 <°>C for at least 20 hours, with interruptions for renewed mixing and compression. The aim of the invention is to provide a method for producing transparent, p-conductive CuAlO2, without producing undesirable companion products, in particular for optoelectronic applications, said method facilitating the cost-effective production of pulverulent CuAlO2 with long-term stability. In said production method for transparent, p-conductive CuAlO2, an exchange reaction consistent with the crystalline structure takes place. The alpha modifications of the non-conductive, ceramic-type material LiAlO2 and CuCl then take part in a metathesis reaction by ion exchange, at a temperature in excess of approximately 330 °C, to form the desired crystalline structure of CuAlO2 and LiCl that can be washed out. The inventive method is suitable for the production of transparent p-conductive CuAlO2 for various optoelectronic applications, in particular large flat screens and thin-film solar cells.

Description

Bezeichnungdescription
Verfahren zur Herstellung von transparentem p-leitendem CuAIO2 Process for the production of transparent p-type CuAIO 2
Beschreibungdescription
Die Erfindung betrifft ein Verfahren zur Herstellung von transparentem p- leitendem CuAIO2, insbesondere für optoelektronische Anwendungen.The invention relates to a method for producing transparent p-conducting CuAIO 2 , in particular for optoelectronic applications.
Transparente leitfähige Materialien werden für optoelektronische Anwendungen, z.B. großflächig in Flachbildschirmen und Dünnschicht- Solarzellen, benötigt. Jedoch sind die hier bisher bewährten Materialien, wie nach Bedarf dotiertes Zinnoxid oder Zinkoxid, Halbleiter vom n- Typ.Transparent conductive materials are used for optoelectronic applications, e.g. needed in flat screens and thin-film solar cells. However, the materials that have been tried and tested here so far, such as tin oxide or zinc oxide doped as required, are n-type semiconductors.
Benötigt werden gleichermaßen auch transparente Halbleiter des p-Typs, um transparente pn-Übergänge und damit transparente Schaltkreise, z.B. in weißen Leuchtdioden oder Solarzellen mit gefalteter Ultradünnschicht, zu realisieren. Es sind jedoch nur wenige solche Materialien bekannt, z.B. CuSCN, Cul oder spezielle Polymermaterialien, deren Langzeitstabilität fraglich ist. Oxide würden hier eine höhere Stabilität verheißen, jedoch sind die strukturellen Bedingungen, unter denen sie p-leitend sein können, nach H. Kawazoe, M. Yakusawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, Nature 389 (1997) 939 - 942 [1] sehr restriktiv.Likewise, transparent semiconductors of the p-type are also required in order to create transparent pn junctions and thus transparent circuits, e.g. in white light-emitting diodes or solar cells with a folded ultra-thin layer. However, only a few such materials are known, e.g. CuSCN, Cul or special polymer materials whose long-term stability is questionable. Oxides would promise greater stability here, but the structural conditions under which they can be p-type are according to H. Kawazoe, M. Yakusawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, Nature 389 (1997) 939-942 [1] very restrictive.
In dem temären transparenten Oxid CuAI02 (Bandlücke 3,5 eV) wurde p- Leitung nachgewiesen und mit einer Leitfähigkeit von 0,1 bis 1 S/cm, einer Ladungsträgerdichte von 1 ,3 x 1017/cm3 und einer Ladungsträger- Beweglichkeit von 10,4 cm2/Vs charakterisiert. Während diese Beweglichkeit der der Ladungsträger in obengenannten n-Halbleitern ähnelt, liegt die Leitfähigkeit noch 3 bis 4 Größenordnungen nach [1] und H. Yanagi, S. Inoue, K. Ueda, H. Kawazoe, H. Hosono, J. Appl. Phys. 88 (2000) 4159 - 4163 [2] niedriger. Versuche zur Erhöhung der Ladungsträgerdichte durch Dotierung verliefen bisher erfolglos.In the ternary transparent oxide CuAI0 2 (band gap 3.5 eV) p-line was detected and with a conductivity of 0.1 to 1 S / cm, a charge carrier density of 1, 3 x 10 17 / cm 3 and a charge carrier mobility characterized by 10.4 cm 2 / Vs. While this mobility resembles that of the charge carriers in the above-mentioned n-semiconductors, the conductivity is still 3 to 4 orders of magnitude according to [1] and H. Yanagi, S. Inoue, K. Ueda, H. Kawazoe, H. Hosono, J. Appl. Phys. 88 (2000) 4159-4163 [2] lower. Attempts to increase the charge carrier density by doping have so far been unsuccessful.
Die Synthese von CUAIO2 wird durch die Bildung der binären Oxide CuO oder CUO2, des Oxides CUAI2O4 vom Spinell-Typ und eventuell metallischem Kupfer (Cu) erschwert. Da Kupfer leitend ist und die binären Kupferoxide ihrerseits p- halbleitend sind, verfälschen sie die Charakterisierung des damit verunreinigten CuAIO2.The synthesis of CUAIO 2 is complicated by the formation of the binary oxides CuO or CUO 2 , the oxide CUAI 2 O 4 of the spinel type and possibly metallic copper (Cu). Since copper is conductive and the binary copper oxides are p-semiconducting, they falsify the characterization of the CuAIO 2 contaminated with it.
In R. E. Stauber, J. D. Perkins, P. A. Parilla, D. S. Ginley, Electrochem. and Solid-State Lett. 2 (1999) 654 - 656 [3] ist zur Herstellung von pulverförmigem, reinem CuAIO2 bisher die Reaktion der binären Oxide bei Temperaturen von mindestens 1000 °C für mindestens 20 Stunden in [2] mit Unterbrechungen zum erneuten Vermischen und Verpressen beschrieben.In RE Stauber, JD Perkins, PA Parilla, DS Ginley, Electrochem. and Solid-State Lett. 2 (1999) 654 - 656 [3] for the production of powdery, pure CuAIO 2 the reaction of the binary oxides at temperatures of at least 1000 ° C. for at least 20 hours in [2] with interruptions for renewed mixing and pressing has been described.
Zur Herstellung dünner CuAIO2-Schichten ist Laser-Ablation in [1 , 2] oder auch Sputtern in [3] von jeweils aus solchem Pulver gepressten Targets beschrieben, samt anschließender Temperung bei 690 bis 1050°C. Dennoch wurden die so gesputterten Schichten nicht frei von CuAI2O4.For the production of thin CuAIO 2 layers, laser ablation in [1, 2] or sputtering in [3] of targets pressed from such powder, together with subsequent tempering at 690 to 1050 ° C., is described. However, the layers sputtered in this way did not become free of CuAI 2 O 4 .
Durch Sputtern von metallischen Targets konnte CuAIO2 bisher nicht erhalten werden.Up to now, CuAIO 2 could not be obtained by sputtering metallic targets.
Wie aus K. Tonooka, K. Shimokawa, O. Nishimura, Thin Solid Films 411 (2002) 129 - 133 und M. Ohashi, Y. lida, H. Morikawa, J. Am. Ceram. Soc. 85 (2002) 270 - 272 bekannt ist, konnte in nasschemisch aufgebrachten Schichten trotz Nachtempern bei bis zu 1100 °C keine Freiheit von störenden Kupferoxiden erzielt werden, ebensowenig wie bei Schichten, die in chemischer Dampf-Zersetzung (CVD) auf 745°C heißen Substraten nach H. Gong, Y. Wang, Y. Luo, Appl. Phys. Lett. 76 (2000) 3959 - 3961 erzeugt wurden. Aus der DE-OS 101 15 971 A1 ist ein Verfahren zur Mikro-und Nano- Strukturierung der Oberflächen von Metalloxiden und Metallchalkogeniden bekannt. Dieses Umwandlungsverfahren bezieht sich indes auf die Übertragung der Mikro- und Nano-Strukturierung von Oberflächen, während sich die Kristallstruktur dabei beim Übergang zu anderen Stöchiometrien zwangsläufig ändern muss.As from K. Tonooka, K. Shimokawa, O. Nishimura, Thin Solid Films 411 (2002) 129-133 and M. Ohashi, Y. lida, H. Morikawa, J. Am. Ceram. Soc. 85 (2002) 270-272, it was not possible to achieve freedom from disruptive copper oxides in wet-chemically applied layers despite post-annealing at up to 1100 ° C, just as little as with layers that are called chemical vapor decomposition (CVD) at 745 ° C Substrates according to H. Gong, Y. Wang, Y. Luo, Appl. Phys. Lett. 76 (2000) 3959-3961. DE-OS 101 15 971 A1 discloses a method for the micro- and nano-structuring of the surfaces of metal oxides and metal chalcogenides. This conversion process, however, relates to the transfer of the micro- and nano-structuring of surfaces, while the crystal structure inevitably has to change during the transition to other stoichiometries.
Aufgabe der Erfindung ist es, ein Verfahren zur Herstellung von transparentem p-leitendem CuAIO2 ohne störende Begleitprodukte anzugeben, insbesondere für optoelektronische Anwendungen, das mit geringerer Temperatur eine wirtschaftliche Herstellung von langzeitstabilem CuAIO2 in Pulverform, insbesondere zur Herstellung von großflächigen optoelektronischen Anwendungen wie Flachbildschirmen und Solarzellen ermöglicht.The object of the invention is to provide a process for the production of transparent p-type CuAIO 2 without disruptive accompanying products, in particular for optoelectronic applications, which, at a lower temperature, is economical for the production of long-term stable CuAIO 2 in powder form, in particular for the production of large-area optoelectronic applications such as flat screens and solar cells.
Aufgrund der im System Cu-Al-O neben CuAIO2 auftretenden, unerwünschten Nebenprodukte ist eine Niedertemperatur-Synthese wünschenswert, bei der die Delafossit-Kristallstruktur von CuAIO2 durch einen geeigneten Vorgänger MAIO2 (M = einfach geladenes Kation) vorgegeben wird. Diese Struktur ist rhomboedrisch und besteht aus einer Schichtfolge Cu-O-Al-O in Richtung der Hauptachse. Die Cu-Schichten liegen relativ locker zwischen den O-Al-O- Schichten, welche nach [1] in sich feste Bindungen aufweisen. Das Cu+-lon kann aufgrund seiner geringen Größe und Ladung bereits bei geringeren Temperaturen in Festkörpern wandern als größere oder höher geladene Metallionen, so dass ein Austausch M gegen Cu möglich erscheint.Because of the undesirable by-products occurring in the Cu-Al-O system in addition to CuAIO 2 , a low-temperature synthesis is desirable in which the delafossite crystal structure of CuAIO 2 is specified by a suitable predecessor MAIO 2 (M = single-charged cation). This structure is rhombohedral and consists of a layer sequence of Cu-O-Al-O in the direction of the main axis. The Cu layers lie relatively loosely between the O-Al-O layers, which according to [1] have fixed bonds. Due to its small size and charge, the Cu + ion can migrate in solids at lower temperatures than larger or more highly charged metal ions, so that an exchange M for Cu seems possible.
Die Aufgabe wird erfindungsgemäß durch eine Kristallstruktur-konforme Austausch reaktion bei einer Temperatur unterhalb von 600°C im Verfahren zur Herstellung von transparentem p-leitendem CuAIO2 gelöst.The object is achieved according to the invention by a crystal structure-compliant exchange reaction at a temperature below 600 ° C. in the process for the production of transparent p-type CuAIO 2 .
Nach der Erfindung reagieren die alpha-Modifikation des nichtleitenden, keramikartigen Materials LiAIO2 und CuCl in einer Metathesereaktion durch Ionen-Austausch bei einer Temperatur ab etwa 330 °C zur gewünschten Kristallstruktur von CuAIO2 und zu LiCl.According to the invention, the alpha modification of the non-conductive, ceramic-like material LiAIO 2 and CuCl react in a metathesis reaction Ion exchange at a temperature from around 330 ° C to the desired crystal structure of CuAIO 2 and to LiCl.
Es existieren isostrukturelle Materialien MAIO2, z.B. die alpha-Modifikation von LiAIO2 oder eine Modifikation von NaAIO2 in der Raumgruppe R3m. Das nichtleitende, keramikartige LiAIO2 ist ungiftig, in größeren Mengen erhältlich und wurde hierfür ausgewählt, weil esThere are MAIO 2 isostructural materials, for example the alpha modification of LiAIO 2 or a modification of NaAIO 2 in the space group R3m. The non-conductive, ceramic-like LiAIO 2 is non-toxic, available in large quantities and was selected for this because it is
• erstens eine rhomboedrische Kristallstruktur besitzt, die mit der des gewünschten Produktes identisch ist. Es besteht aus einer Schichtfolge Li-O-AI-0 bzw. Cu-O-Al-O, bei der die Li- bzw. Cu-Schichten relativ locker zwischen den O-Al-O-Schichten liegen, welche in sich feste Bindungen aufweisen.• firstly has a rhombohedral crystal structure that is identical to that of the desired product. It consists of a layer sequence Li-O-AI-0 or Cu-O-Al-O, in which the Li or Cu layers lie relatively loosely between the O-Al-O layers, which are inherently strong bonds exhibit.
• zweitens das auszutauschende Ion Li+ enthält, das ebenso wie Cu+ aufgrund seiner geringen Größe und Ladung bereits bei geringeren Temperaturen in Festkörpern wandern kann als größere oder höher geladene Metallionen.• secondly, contains the ion Li + to be exchanged, which, like Cu + due to its small size and charge, can migrate in solids at lower temperatures than larger or more highly charged metal ions.
Dadurch kann alpha-LiAIO2 verwendet werden, um in einer Synthese durch Ionen-Austausch bei vergleichsweise niedriger Temperatur die gewünschte Kristallstruktur von CuAIO2 vorzugeben. Diese wird nach Stand der Technik erst ab etwa 700 °C zusammen mit störenden Begleitprodukten (Cu, Cu20, CuO, CuAI2O ) und erst ab etwa 1000 °C weitgehend rein gebildet.As a result, alpha-LiAIO 2 can be used to specify the desired crystal structure of CuAIO 2 in a synthesis by ion exchange at a comparatively low temperature. According to the state of the art, this is only formed from about 700 ° C together with disruptive accompanying products (Cu, Cu 2 0, CuO, CuAI 2 O) and only from about 1000 ° C largely pure.
Die Synthese erfolgt in einer Metathesereaktion. Darunter versteht man allgemein eine Reaktion zweier Reaktanden zu zwei Produkten durch Austausch eines Teiles, bei der im allgemeinen eines der Produkte eine höhere Stabilität als die Reaktanden aufweist und dadurch die Reaktion vorantreibt. Häufig ist dabei das andere Produkt das eigentliche Syntheseziel.The synthesis takes place in a metathesis reaction. This generally means a reaction of two reactants to two products by exchanging a part, in which one of the products generally has a higher stability than the reactants and thereby drives the reaction forward. Often the other product is the actual synthesis target.
In diesem Sinne reagiert MAI02 (M = einfach geladenes Kation) mit einem Cu(l)-Salz CuX (X = Anion) unter Ausschluss von Sauerstoff zu CuAI02 und MX. Ist MAIO2 = alpha-LiA!O2 und CuX = CuCl (Anwendungsbeispiel), dann läuft die gewünschte Reaktion bei 330 °C erst in sehr geringem Maße ab. Bei 550 °C traten bereits, anders als bei tieferen Temperaturen, unerwünschte Nebenprodukte auf.In this sense, MAI0 2 (M = single charged cation) reacts with a Cu (l) salt CuX (X = anion) with the exclusion of oxygen to form CuAI0 2 and MX. If MAIO 2 = alpha-LiA! O 2 and CuX = CuCl (application example), then the desired reaction takes place at a very low level at 330 ° C. At 550 ° C, unlike at lower temperatures, undesirable by-products already occurred.
Im Ausführungsbeispiel reagiert LiAIO2 mit CuCl zu CuAIO2 und LiCl.In the exemplary embodiment, LiAIO 2 reacts with CuCl to form CuAIO 2 and LiCl.
Erfindungsgemäß kann das LiCl durch Auswaschen einfach entfernt werden. Um die Reaktion besser voranzutreiben, wird in Weiterbildung der Erfindung das Reaktanden-Mischverhältnis mit Überschuss von CuCl eingesetzt, typischerweise in doppelter Menge, da unreagiertes CuCl leichter ohne Zerstörung von CuAIO2 nasschemisch entfernt werden kann als unreagiertes LiAIO2.According to the invention, the LiCl can simply be removed by washing. In order to promote the reaction better, the reactant mixing ratio with excess CuCl is used in a further development of the invention, typically in twice the amount, since unreacted CuCl can be more easily removed by wet chemical means without destroying CuAIO 2 than unreacted LiAIO 2 .
Nach der Erfindung wird das Rohprodukt-Gemisch der Reaktion in schwach saurer Lösung suspendiert. Das überschüssige, aber schwer wasserlösliche CuCl wird durch Zusatz eines geeigneten Oxidationsmittels, z.B. H2O2, zu besser löslichen Cu2+-Salzen aufoxidiert und damit entfernt.According to the invention, the raw product mixture of the reaction is suspended in weakly acidic solution. The excess, but poorly water-soluble CuCl is oxidized by adding a suitable oxidizing agent, for example H 2 O 2 , to more soluble Cu 2+ salts and thus removed.
Das schwerlösliche CuAIO2 kann dann zusammen mit eventuell verbliebenem unreagiertem LiAIO2 abfiltriert werden.The poorly soluble CuAIO 2 can then be filtered off together with any remaining unreacted LiAIO 2 .
Auf diese Weise wurden bei 400 °C nach 40 h bereits etwa 70 % und bei 475 °C nach 50 h über 90 % des LiAIO2 konvertiert.In this way, about 70% of the LiAIO 2 was converted at 400 ° C after 40 h and over 90% at 475 ° C after 50 h.
Da LiAIO2 ein Isolator ist, stören verbliebene kleine Anteile von LiAIO2 als Verunreinigung im CuAIO2 weniger als die ihrerseits selbst p-halbleitenden Kupferoxide, die bei bekannten Herstellungsver ahren verbleiben.Since LiAIO 2 is an insulator, the remaining small amounts of LiAIO 2 are less of an impurity in the CuAIO 2 than the p-semiconducting copper oxides themselves, which remain in known manufacturing processes.
Eine Dotierung des CuAIO2 ist durch Zusatz geeigneter Dotierstoffe zum Reaktionsgemisch auf einfache Weise möglich. In Ausgestaltung der Erfindung können die Reaktanden in verpresster Form umgesetzt werden.Doping the CuAIO 2 is easily possible by adding suitable dopants to the reaction mixture. In an embodiment of the invention, the reactants can be implemented in compressed form.
Erfindungsgemäß kann das gewonnene CuAIO2 als Targetmaterial für Vakuum-Abscheidungs-Prozesse verwendet werden.According to the invention, the CuAIO 2 obtained can be used as a target material for vacuum deposition processes.
Die strukturbildende Rolle des alpha-LiAIO2 zeigt sich daran, dass dieselbe Metathese-Reaktion bei Verwendung der häufigeren Modifikation gamma- LiAI02 selbst bei 500 °C noch nicht abläuft. Die Reaktanden blieben unverändert.The structure-forming role of alpha-LiAIO 2 is evident from the fact that the same metathesis reaction does not yet take place when the more frequent modification gamma-LiAIO 2 is used, even at 500 ° C. The reactants remained unchanged.
Die Erfindung wird nachfolgend an einem Ausführungsbeispiel der Synthese von alpha-LiAIO2 und CuCl näher erläutert.The invention is explained in more detail below using an exemplary embodiment of the synthesis of alpha-LiAIO 2 and CuCl.
1 ,2 g alpha-LiAIO2 (Muster von Chemetall Foote Corp., 348 Holiday Inn Drive, Kings Mountain, NC 28086) werden mit 3,6 g CuCl (99+% oder 99.999+%) im Mörser verrieben. Dies entspricht der doppelten Menge CuCl im Verhältnis zu LiAIO2, um dessen Umsetzung besser voranzutreiben. Das Gemisch wird in einem Boot aus glasartigem Kohlenstoff in einer Quarzampulle auf 10"5 mbar (10"3 Pa) evakuiert und eingeschmolzen. Dieses wird für 50 Stunden auf 475 °C gehalten, wobei eine helle blaugraue Farbe die Bildung von CuAIO2 anzeigt.1.2 g of alpha-LiAIO 2 (sample from Chemetall Foote Corp., 348 Holiday Inn Drive, Kings Mountain, NC 28086) are ground in the mortar with 3.6 g of CuCl (99 +% or 99.999 +%). This corresponds to twice the amount of CuCl in relation to LiAIO 2 in order to better promote its implementation. The mixture is evacuated in a glass-like carbon boat in a quartz ampoule to 10 "5 mbar (10 " 3 Pa) and melted down. This is kept at 475 ° C. for 50 hours, a light blue-gray color indicating the formation of CuAIO 2 .
Die Ampulle wird aufgesägt, das Rohprodukt gepulvert und in 80 ml 1 %-iger Zitronensäure-Lösung (in entmineralisiertem Wasser) aufgeschlämmt, wobei das Nebenprodukt LiCl vollständig in Lösung geht. Zur Oxidation und Auflösung des überschüssigen CuCl werden unter Rühren 1 ,9 ml 30 %iges H202 zugesetzt, wobei alsbald die Türkis-Farbe der gelösten Cu2+-lonen auftritt und eine Nebenreaktion mit Gasentwicklung einsetzt. Nach etwa 30 min wird die Aufschlämmung durch einen Glasfiltertiegel (Porengröße G4) abgesaugt, je zwei Mal mit 1 %-iger Zitronensäurelösung und mit entmineralisiertem Wasser nachgewaschen und an Luft oder Vakuum getrocknet (eventuell über Trockenmittel).The ampoule is sawn up, the crude product is powdered and slurried in 80 ml of 1% citric acid solution (in demineralized water), the by-product LiCl completely dissolving. To oxidize and dissolve the excess CuCl, 1.9 ml of 30% H 2 0 2 are added with stirring, the turquoise color of the dissolved Cu 2+ ions appearing immediately and a side reaction with gas evolution sets in. After about 30 minutes, the slurry is suctioned off through a glass filter crucible (pore size G4), twice with 1% citric acid solution and with Wash demineralized water and dry in air or vacuum (possibly over drying agent).
Das Pulverdiffraktogramm zeigt ausschließlich CuAI02 (Delafossit, rhomboedrisch) mit einem kleinen Anteil (weniger als 10 %) unreagiertem alpha-LiAIO2, welches, da es ein Isolator ist, als Verunreinigung im CuAIO2 weit weniger stören sollte als die ihrerseits selbst p-halbleitenden Kupferoxide, die sich bei anderen Verfahren als Nebenprodukt bilden.The powder diffractogram shows only CuAI0 2 (delafossite, rhombohedral) with a small proportion (less than 10%) of unreacted alpha-LiAIO 2 , which, since it is an insulator, should cause less contamination as contamination in the CuAIO 2 than that itself p- semiconducting copper oxides that form as a by-product in other processes.
Die strukturbildende Rolle des alpha-LiAIO2 zeigt sich außer an der im Vergleich zu anderen Verfahren geringen Reaktionstemperatur (schon bei 400 °C wurde in 40 Stunden der überwiegende Teil LiAI02 umgewandelt) besonders daran, dass die geläufigere gamma-Modifikation des LiAIO2 bei 500 °C in 23 Stunden noch nicht mit CuCl reagierte.The structure-forming role of the alpha-LiAIO 2 is evident, in addition to the low reaction temperature compared to other processes (already at 400 ° C, the majority of LiAI0 2 was converted in 40 hours), in particular by the more common gamma modification of the LiAIO 2 500 ° C did not react with CuCl in 23 hours.
Das erfindungsgemäße Verfahren eignet sich zur Herstellung von transparentem p-leitendem CuAIO2 für die verschiedensten Anwendungen. Das Haupteinsatzgebiet sind optoelektronische Anwendungen, insbesondere großflächige Flachbildschirme und Dünnschicht-Solarzellen.The method according to the invention is suitable for the production of transparent p-conducting CuAIO 2 for a wide variety of applications. The main areas of application are optoelectronic applications, in particular large flat screens and thin-film solar cells.
Das nach dem erfindungsgemäßen Verfahren hergestellte CuAIO2-Pulver kann als Ausgangsmaterial für die Aufbringung kompakter CuAIO2-Filme in Vakuum- Verfahren dienen oder auch direkt zur Herstellung poröser CuAIO2-Filme verwendet werden, z.B. auf Glas.The CuAIO 2 powder produced by the process according to the invention can serve as a starting material for the application of compact CuAIO 2 films in a vacuum process or can also be used directly for producing porous CuAIO 2 films, for example on glass.
Die Erfindung ermöglicht ein Verfahren zur Herstellung von transparentem p- leitendem CuAIO2 mit geringerer Temperatur und ohne störende Begleitprodukte. Das Verfahren gestattet eine wirtschaftliche Herstellung von langzeitstabilem CuAIO2 in Pulverform und bildet die Grundlage für eine großtechnische/Massen-Fertigung von großflächigen optoelektronischen Anwendungen. The invention enables a process for the production of transparent p-conducting CuAIO 2 with a lower temperature and without disturbing accompanying products. The process permits economical production of long-term stable CuAIO 2 in powder form and forms the basis for large-scale / mass production of large-area optoelectronic applications.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung von transparentem, p-leitendem CuAIO2, insbesondere für optoelektronische Anwendungen, gekennzeichnet durch eine Kristallstruktur-konforme Austauschreaktion bei einer Temperatur von unterhalb von 600 °C.1. Process for the production of transparent, p-conducting CuAIO 2 , in particular for optoelectronic applications, characterized by an exchange reaction conforming to the crystal structure at a temperature of below 600 ° C.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Alpha-Modifikation des nichtleitenden, keramikartigen Materials LiAIO2 und CuCl in einer Metathesereaktion durch Ionen-Austausch bei einer Temperatur ab etwa 330 °C zur gewünschten Kristallstruktur von CuAIO2 und zu LiCl reagieren.2. The method according to claim 1, characterized in that the alpha modification of the non-conductive, ceramic-like material LiAIO 2 and CuCl react in a metathesis reaction by ion exchange at a temperature from about 330 ° C to the desired crystal structure of CuAIO 2 and to LiCl.
3. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass das LiCl durch Auswaschen entfernt wird.3. The method according to claims 1 and 2, characterized in that the LiCl is removed by washing.
4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass das Reaktanden-Mischverhältnis mit Überschuss von CuCl eingesetzt wird.4. Process according to claims 1 to 3, characterized in that the reactant mixing ratio is used with an excess of CuCl.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass CuCl in doppelter Menge eingesetzt wird.5. The method according to claim 4, characterized in that CuCl is used in double amount.
6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass das verbliebene CuCl nasschemisch vom CuAIO2 getrennt wird.6. The method according to claims 1 to 5, characterized in that the remaining CuCl is wet-chemically separated from the CuAIO 2 .
7. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass das Rohprodukt-Gemisch in schwach saurer Lösung suspendiert wird.7. The method according to claims 1 to 6, characterized in that the crude product mixture is suspended in weakly acidic solution.
8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass das überschüssige, schwer lösliche CuCl durch Zusatz eines8. The method according to claims 1 to 7, characterized in that the excess, poorly soluble CuCl by adding a
Oxidationsmittels zu besser löslichen Cu2+-Salzen aufoxidiert wird.Oxidizing agent is oxidized to more soluble Cu 2+ salts.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das Oxidationsmittel H2O2 ist.9. The method according to claim 8, characterized in that the oxidizing agent is H 2 O 2 .
10. Verfahren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, dass das schwerlösliche CuAIO2 zusammen mit eventuell verbliebenem unreagiertem LiAIO2 abfiltriert wird.10. The method according to claims 1 to 9, characterized in that the sparingly soluble CuAIO is filtered off together with any residual unreacted LiAIO 2. 2
11. Verfahren nach den Ansprüchen 1 bis10, dadurch gekennzeichnet, dass die Reaktanden in verpresster Form umgesetzt werden.11. The method according to claims 1 to 10, characterized in that the reactants are reacted in compressed form.
12. Verfahren nach den Ansprüchen 1 bis 11 , dadurch gekennzeichnet, dass eine Dotierung des CuAI02 durch Zusatz geeigneter Dotierstoffe erfolgt.12. The method according to claims 1 to 11, characterized in that the CuAI0 2 is doped by adding suitable dopants.
13. Verfahren nach den Ansprüchen 1 bis 12, dadurch gekennzeichnet, dass das gewonnene CuAIO2 als Targetmaterial für Vakuum-Abscheidungs- Prozesse verwendet wird. 13. The method according to claims 1 to 12, characterized in that the CuAIO 2 obtained is used as a target material for vacuum deposition processes.
EP04738539A 2003-05-21 2004-05-18 METHOD FOR PRODUCING TRANSPARENT P-CONDUCTIVE CuAlO2 Withdrawn EP1625628A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10323625A DE10323625B3 (en) 2003-05-21 2003-05-21 Process for the preparation of transparent p-type CuAIO2 and its use
PCT/DE2004/001069 WO2004106593A2 (en) 2003-05-21 2004-05-18 METHOD FOR PRODUCING TRANSPARENT P-CONDUCTIVE CuAlO2

Publications (1)

Publication Number Publication Date
EP1625628A2 true EP1625628A2 (en) 2006-02-15

Family

ID=33482154

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04738539A Withdrawn EP1625628A2 (en) 2003-05-21 2004-05-18 METHOD FOR PRODUCING TRANSPARENT P-CONDUCTIVE CuAlO2

Country Status (3)

Country Link
EP (1) EP1625628A2 (en)
DE (1) DE10323625B3 (en)
WO (1) WO2004106593A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110182839A (en) * 2019-05-31 2019-08-30 哈尔滨工业大学 A method of using copper aluminum oxide film as precursor preparation cupric oxide nano array

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100494064C (en) * 2006-07-19 2009-06-03 中国科学院合肥物质科学研究院 Preparation method of cuprous aluminate polycrystalline material with delafossite structure and material prepared by same
CN109980107B (en) * 2017-12-28 2020-12-01 Tcl科技集团股份有限公司 CuMO2Preparation method thereof and light-emitting device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3398638B2 (en) * 2000-01-28 2003-04-21 科学技術振興事業団 LIGHT EMITTING DIODE, SEMICONDUCTOR LASER AND METHOD FOR MANUFACTURING THE SAME
JP3527944B2 (en) * 2000-10-02 2004-05-17 独立行政法人産業技術総合研究所 Method for producing CuAlO2 thin film by chemical process
DE10115971A1 (en) * 2001-03-27 2002-10-10 Hahn Meitner Inst Berlin Gmbh Process for the micro- and nano-structuring of the surfaces of metal oxides and metal chalcogenides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004106593A2 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110182839A (en) * 2019-05-31 2019-08-30 哈尔滨工业大学 A method of using copper aluminum oxide film as precursor preparation cupric oxide nano array
CN110182839B (en) * 2019-05-31 2021-07-06 哈尔滨工业大学 Method for preparing copper oxide nano array by using copper-aluminum oxide film as precursor

Also Published As

Publication number Publication date
WO2004106593A3 (en) 2005-02-17
WO2004106593A2 (en) 2004-12-09
DE10323625B3 (en) 2005-01-05

Similar Documents

Publication Publication Date Title
DE69304143T2 (en) Method of making a chalcopyrite type composition
DE112010004154T9 (en) A method of manufacturing a semiconductor thin film and a photovoltaic device containing the thin film
DE102005010790A1 (en) Photovoltaic cell with a photovoltaically active semiconductor material contained therein
DE4037733A1 (en) METHOD FOR PRODUCING AN INDIUM / TIN OXIDE TARGET
EP2438634A1 (en) Composite material comprising nanoparticles and production of photoactive layers containing quaternary, pentanary and higher-order composite semiconductor nanoparticles
DE102011054795A1 (en) A method of depositing cadmium sulfide layers by sputtering for use in cadmium telluride based thin film photovoltaic devices
EP0173642A2 (en) Photoactive pyrite film, method for its preparation and application of such a pyrite film
DE68915462T2 (en) Superconducting powder and process for producing superconducting powder.
DE69024244T2 (en) Process for the production of bismuth-based superconducting material
DE10323625B3 (en) Process for the preparation of transparent p-type CuAIO2 and its use
EP0316275A2 (en) Process for manufacturing superconducting materials with a desired shape
DE19840527B4 (en) Process for the preparation of suspensions and powders of indium tin oxide
DE4217818C1 (en)
DE3882498T2 (en) Metal oxide material.
EP3188259B1 (en) Homogeneous coating solution and production method thereof, light-absorbing layer of solar cell and production method thereof, and solar cell and production method thereof
WO2017069022A1 (en) Oxide semiconductor
EP2887405A1 (en) Coating system for thin film solar cells
EP1807872B1 (en) Photovoltaic cell comprising a photovoltaic active semiconductor material
DE3856473T2 (en) Superconducting materials and processes for their manufacture
KR20110098753A (en) Method for manufacturing a powder for the production of p-type transparent conductive films
WO2013189976A1 (en) Layer system for thin-film solar cells
DE69402150T2 (en) Process for the preparation of lanthanum manganite powder
JP2017212404A (en) Method of manufacturing homogeneous coating liquid, method of manufacturing light-absorbing layer for solar battery, and method of manufacturing solar battery
DE3704372C2 (en)
DE2065068B2 (en) Compound for the production of electrical elements, in particular resistance elements

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051208

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20061013

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070424