EP1625303B1 - Method for controlling a pump means - Google Patents

Method for controlling a pump means Download PDF

Info

Publication number
EP1625303B1
EP1625303B1 EP04739239A EP04739239A EP1625303B1 EP 1625303 B1 EP1625303 B1 EP 1625303B1 EP 04739239 A EP04739239 A EP 04739239A EP 04739239 A EP04739239 A EP 04739239A EP 1625303 B1 EP1625303 B1 EP 1625303B1
Authority
EP
European Patent Office
Prior art keywords
cam
diaphragm
speed
compression stroke
drive unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04739239A
Other languages
German (de)
French (fr)
Other versions
EP1625303A1 (en
Inventor
Klaus Rutz
Albert Haberlander
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecolab Inc
Original Assignee
Ecolab Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecolab Inc filed Critical Ecolab Inc
Publication of EP1625303A1 publication Critical patent/EP1625303A1/en
Application granted granted Critical
Publication of EP1625303B1 publication Critical patent/EP1625303B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity

Definitions

  • the invention relates to a method for controlling a diaphragm or piston pump that is actuated via a ram or a connecting rod by a cam which is powered by an electric motor.
  • Diaphragm and piston pumps are used to supply metered quantities of liquids with various properties.
  • the pump behaviour is subject to various requirements in order to ensure that the delivered quantity of metered medium is as precise as possible and remains constant for as long as possible.
  • the pumps are driven by an electric motor via a cam, in such manner that the rotational motion of the motor is converted to linear motion of the pump diaphragm or pump piston.
  • a compression stroke takes place, with delivery of the metered medium for example into a metered line, and an aspiration stroke, in which the metered medium is aspirated from a reservoir or similar.
  • Electric motors used in the prior art for driving such mechanisms include a wide range of types, particularly mechanically commuted motors, synchronous and asynchronous motors and stepping motors.
  • most such drive units are associated with a number of disadvantages with regard to their respective use.
  • a diaphragm or piston pump driven by an asynchronous motor is shown in US-A-6 121 739 .
  • the torque gradient of synchronous motors is disadvantageous in that it causes the frictional connection to be broken if placed under excessive load.
  • the startup behaviour is also not ideal for the present purpose.
  • Asynchronous motors have a rotating speed curve that is dependent on its load, which is detrimental for precise metering of quantities.
  • the rotating speed of both synchronous and asynchronous motors is dependent on the frequency of the applied voltage, which means that electronic frequency converters are needed to control the rotating speed.
  • a further variant for reducing the delivery volume is pulse-pause control.
  • a metering cycle is completed and is then followed by a metering pause, which is dependent on the desired delivery quantity, and is calculated so that .the desired delivery quantity is adjusted in the temporal average.
  • the disadvantage of this arrangement is that the pauses occurring for low delivery quantities are very long, which can cause unacceptable mixing of the metering medium in the pipeline or the tank, and is moreover associated with highly inconsistent delivery behaviour.
  • a further option for reducing the metered quantity is to control the rotating speed of the drive motor.
  • the delivery quantity may be adjusted by influencing the speed of the piston or diaphragm.
  • a corresponding slowing of the drive unit and thus of the diaphragm causes a reduction in the quantity of metered medium delivered per unit of time.
  • the problem with this approach is that under certain circumstances for a desired lengthening of the compression stroke the aspiration stroke is also lengthened at the same time. The suction and delivery behaviour is degraded thereby, particularly when dealing with highly viscous media.
  • the applicant's DE 198 23 156 A1 describes a method for operating a metering pump with an asynchronous motor.
  • the rotating speed of the asynchronous motor is reduced during the compression stroke according to the desired metered output.
  • the rotating speed is increased to achieve the shortest possible aspiration stroke, and thereby also shortening the pauses between compression strokes.
  • the disadvantage of this method is that the use of an asynchronous motor necessitates a highly sophisticated system configuration, which requires a frequency converter to control the rotating speed of the asynchronous motor and sensor equipment to monitor and control the rotating speed of the motor in order to be able to compensate for the deviation caused by the load-dependent rotating speed curve.
  • the task of the present invention is to provide a method for controlling a diaphragm or piston pump that is actuated via a ram or a connecting rod by a cam which is powered by an electric motor, which allows the most precise and constant delivery possible of metered media, combined with a simple construction.
  • This task is solved with a method according to the type described in the introduction in which the diaphragm or piston of the pump is moved by the drive unit of the cam at approximately constant speed throughout the compression stroke, taking into account the position of the cam, to assure an approximately constant volume flow of the metered medium.
  • the diaphragm or piston mechanism driven by a circular cam which is rotating at constant speed, now describes a sinusoidal speed profile. Starting from the rear dead centre, the diaphragm is accelerated, reaches the fastest speed of the compression stroke after a quarter revolution, and then slows down again until front dead centre of the cam, at which point it then transitions to the aspiration stroke, which also includes a period in which the diaphragm speeds up to its maximum speed halfway through the aspiration stroke, and is then slowed until the cam reaches rear dead centre.
  • the speed of the cam is now controlled during the compression stroke in such manner that the speed profile produced is as linear and constant as possible, instead of the non-linear, sinusoidal profile created without the control.
  • the cam must be accelerated sharply at the start of the compression stroke and must be slowed to a minimum value by the middle of the compression stroke, at which point it is accelerated again to reach maximum speed again close to the front dead centre.
  • This form of control of the cam speed results in a speed profile of the diaphragm or piston that is highly linear and essentially at a constant level.
  • one refinement of the invention is characterised in that the drive unit drives the cam during the compression stroke with a rotating speed profile that compensates for temporal cosinusoidal movement of the piston or diaphragm conditioned by the cam.
  • the above formula may be approximated with a simplified or similar formula depending on an acceptable non-linearity of the metered quantity.
  • T D represents the length of the compression stroke, the maximum diaphragm excursion being standardised to 1.
  • the drive unit moves the cam with a different speed profile, particularly with constant and/or higher speed, during the aspiration stroke.
  • maintaining the pressure distribution as constant as possible during the aspiration stroke as well may be desirable, particularly for more viscous metered media, so that a rotating speed profile similar to that of the compression stroke is selected rather than constant rotation, when it may be necessary to set a higher diaphragm speed and thus a shorter period for the aspiration stroke.
  • an EC motor with integral rotor position sensors is used as the drive unit.
  • EC motors electrostaticically commuted motors
  • their brushless electronic commutation they have a very long operating life and low wear characteristics, which is important for metering pumps that may have operating lives longer than 10,000 hours.
  • most are equipped with integral sensors for the rotor position the signals from which may also be used to control the cam position according to the suggested method, thereby reducing total costs. Due to the high dynamic ratio of EC motors, it is also very easy to achieve the rapid changes in speed that are necessary for the suggested method.
  • One refinement of the method is notable in that in order to control the cam speed, the cam position is captured by a sensor and/or is calculated from position sensor signals that are in the drive unit.
  • the suggested method may be helpful in the suggested method to provide a position controller to improve the metering behaviour of the pump, particularly since the necessary rotating speed of the cam is determined by its current position.
  • the position of the cam may either be measured directly, or position signals may be used, as provided by the sensors located in the drive unit, or to capture the linear movement of the ram pr connecting rod.
  • a medium to be metered is delivered from a reservoir - not shown in detail - that is connected via a hose to an aspiration orifice 2 of diaphragm pump 1, through a delivery orifice 3 and to a metering hose - also not further shown - connected thereto.
  • the pump operation is effected by diaphragm 4, which is displaced linearly by a ram 5.
  • Ram 5 is moved by a circular cam 6, such that the rotating motion of a drive shaft 7, which is non-positively connected to cam 6, is converted by ram 5 to a backward and forward motion of diaphragm 4.
  • Shaft 7 is driven by an electronically commuting motor 9 via a transmission 8.
  • a motor controller 10 is connected to motor 9 via motor connector terminals 10a, and includes the power electronic components required for operation as well as a position control circuit.
  • Motor 9 is equipped with rotor position sensors 11, which transmit the current position of the rotor to motor controller 10 via control circuits 11 a, on the basis of which information the controller controls the flow of current to motor 9. Then, depending on the rotor position returned by sensors 11, current is applied to the corresponding phases of motor 9 such that a rotating field is created inside the motor, which field continuously sets the rotor in motion. Because of this electronically created rotating field, it is no longer necessary to provide for commutation of the motor's phases by mechanical means. This form of control enables motor 9 to be driven at the desired rotating speed without dependence on load or turning moment oscillations.
  • Motor controller 10 is supplied with energy from a mains supply circuit 12 via energy lines 12a.
  • Mains supply circuit 12 is connected to a conventional electric supply network 13 via energy supply lines 13a.
  • cam 6 The position of cam 6 is captured by a position sensor 14, whose position signal is transmitted via signal circuits 14a to a positional controller 15.
  • Positional controller 15 is also supplied with energy from a mains supply circuit 12 via energy lines 12b. Control signals with the required quantity of metered medium are passed to positional controller 15 via a data circuit 16. Positional controller 15 calculates the currently required rotating speed for motor 9 using the position of cam 6, as measured by sensor 14, and the quantity of metered medium to be measured, as transmitted by circuit 16, and transmits this to motor controller 10 via control line 15a. Depending on the position of the rotor in motor 9, as measured by rotor position sensors 11, the motor controller 10 then adjusts the rotating field via motor connectors 10a such that motor 9 reaches the required rotating speed. Thus cam 6 is moved via transmission 8 and shaft 7 in correspondence with the set quantity of metered medium. This creates a closed control circuit that may be used to precisely control the speed of diaphragm 4, as well as its excursion caused by cam 6 via ram 5.
  • Curve 17 represents the plot of the diaphragm excursion over the course of a metering cycle.
  • the duration of a complete metering cycle is standardised in this case to length 2.
  • the diaphragm excursion may thus vary in this context from -1 for rear dead centre of cam 6 through the neutral position for half and three-quarters of a revolution of cam 6 and to +1 for front dead centre of the cam.
  • the diaphragm excursion of a metering cycle that is controlled according to the invention begins at rear dead centre 18.
  • Cam 6 starts with a maximum rotating speed, at which the diaphragm follows the start of a cosinusoidal movement, as shown by partial curve 19. This corresponds to the plot of the diaphragm excursion, if cam 6 were to rotate at a constant, maximum speed.
  • the rotating speed of the cam 6 is slowed, precisely so that diaphragm excursion 17 has an approximately linear plot, meaning that the diaphragm is being moved at constant speed.
  • Cam 6 reaches its minimum rotating speed after half a compression stroke at a time of 0.75.
  • the aspiration stroke begins, in which diaphragm 4 is retracted and draws fresh metered medium out of suction line 2 and into the pump chamber.
  • this is performed with the cam at maximum rotating speed to that the plot of the diaphragm excursion matches the second half of cosine oscillation 21 until rear dead centre 18 is reached for the maximum negative excursion of the diaphragm at -1.
  • the diaphragm is either stopped or a further metering cycle is begun with a compression stroke similar to the one described previously.
  • the plot of the volume flow of metered medium is represented by curve 22.
  • the volume flow rises rapidly to its setpoint value in restriking phase 23.
  • a constant volume flow is delivered to metering line 2 from connection 3.
  • the volume flow at connection 3 falls to zero relatively quickly, and the aspiration stroke begins.
  • the volume flow of the aspirated medium at connection 2 describes a sinusoidal curve here, due to the cosinusoidal curve of the diaphragm excursion.
  • the length of the compression stroke relative to the aspiration stroke is important for the metering behaviour of the pump. In general, it is desirable to keep the aspiration stroke as short as possible and the compression stroke as long as possible.
  • the size of the volume flow and thus also the quantity of metered medium delivered per unit of time depend on the rotating speed of cam 6.
  • the cam starts at maximum speed and is then slowed until it reaches its minimum rotating speed halfway through the compression stroke, only to be accelerated over the course of the second half of the compression stroke, to reach maximum speed again by the end thereof. This is also shown in the plot of the angle of rotation in curve 26.
  • the invention is not limited to the example described in the aforegoing. It may be varied in many respects without exceeding the limits of the fundamental concept. Thus for example a controller similar to the one used for the compression stroke may also be used for the aspiration stroke, so that a constant delivered quantity of the metered medium may be obtained here too: this may be particularly beneficial in the case of very viscous media.
  • a further variant consists in briefly increasing the cam speed, and thus also the quantity of metered media delivered per unit of time, just before the end of the compression stroke in order to balance the metering gap. It may also prove helpful to dispense with the sensor for measuring the cam position and instead to calculate the position of the cam from the measured rotor position. Then, only the zero position of the cam needs to be captured.

Abstract

With a method for controlling a diaphragm or piston pump that is actuated by a cam driven by an electric motor and via a ram or connecting rod, a solution is suggested for a simple system construction that enables quantities of metered media to be delivered at the most constantly rate possible. This is achieved in that in order to deliver an approximately constant volume flow of metered medium, the diaphragm or piston of the pump is moved at approximately constant speed during the compression stroke by the driving unit of the cam with consideration for the cam position.

Description

  • The invention relates to a method for controlling a diaphragm or piston pump that is actuated via a ram or a connecting rod by a cam which is powered by an electric motor.
  • Diaphragm and piston pumps are used to supply metered quantities of liquids with various properties. Depending on the field of application, the pump behaviour is subject to various requirements in order to ensure that the delivered quantity of metered medium is as precise as possible and remains constant for as long as possible.
  • The pumps are driven by an electric motor via a cam, in such manner that the rotational motion of the motor is converted to linear motion of the pump diaphragm or pump piston. For each rotation of the cam, a compression stroke takes place, with delivery of the metered medium for example into a metered line, and an aspiration stroke, in which the metered medium is aspirated from a reservoir or similar.
  • Electric motors used in the prior art for driving such mechanisms include a wide range of types, particularly mechanically commuted motors, synchronous and asynchronous motors and stepping motors. However, most such drive units are associated with a number of disadvantages with regard to their respective use.
  • A diaphragm or piston pump driven by an asynchronous motor is shown in US-A-6 121 739 .
  • Mechanically commuted motors are prone to a high rate of mechanical wear and are therefore unsuitable for pumps with very long lifetimes.
  • The torque gradient of synchronous motors is disadvantageous in that it causes the frictional connection to be broken if placed under excessive load. The startup behaviour is also not ideal for the present purpose. Asynchronous motors have a rotating speed curve that is dependent on its load, which is detrimental for precise metering of quantities. The rotating speed of both synchronous and asynchronous motors is dependent on the frequency of the applied voltage, which means that electronic frequency converters are needed to control the rotating speed.
  • Particular problems arise when the pump is to be operated at less than its maximum metering output, which is unavoidable in many applications for precisely metered delivery. A variety of methods have been implemented to combat this in the prior art. Thus the delivered quantity of metered medium may be reduced by limiting the excursion of the pump diaphragm or piston. In this case, the cam runs freely for a part of its revolution and only moves the diaphragm or piston in a more or less extended area about front dead centre. The particular drawback of this method is that the piston or diaphragm is accelerated very rapidly for short periods depending on the delivery power, which leads to high pressure variations in the metered lines and negatively affects the metering behaviour. In the same way, the aspiration behaviour is impaired during the aspiration stroke, which degrades the aspiration behaviour of the pump if there is any air trapped in the suction line or in the case of small pump heads.
  • A further variant for reducing the delivery volume is pulse-pause control. In this, a metering cycle is completed and is then followed by a metering pause, which is dependent on the desired delivery quantity, and is calculated so that .the desired delivery quantity is adjusted in the temporal average. The disadvantage of this arrangement is that the pauses occurring for low delivery quantities are very long, which can cause unacceptable mixing of the metering medium in the pipeline or the tank, and is moreover associated with highly inconsistent delivery behaviour.
  • A further option for reducing the metered quantity is to control the rotating speed of the drive motor. In this case, the delivery quantity may be adjusted by influencing the speed of the piston or diaphragm. A corresponding slowing of the drive unit and thus of the diaphragm causes a reduction in the quantity of metered medium delivered per unit of time. The problem with this approach is that under certain circumstances for a desired lengthening of the compression stroke the aspiration stroke is also lengthened at the same time. The suction and delivery behaviour is degraded thereby, particularly when dealing with highly viscous media.
  • In order to avoid this problem, the applicant's DE 198 23 156 A1 describes a method for operating a metering pump with an asynchronous motor. In this case, the rotating speed of the asynchronous motor is reduced during the compression stroke according to the desired metered output. During the aspiration stroke, on the other hand, the rotating speed is increased to achieve the shortest possible aspiration stroke, and thereby also shortening the pauses between compression strokes. The disadvantage of this method is that the use of an asynchronous motor necessitates a highly sophisticated system configuration, which requires a frequency converter to control the rotating speed of the asynchronous motor and sensor equipment to monitor and control the rotating speed of the motor in order to be able to compensate for the deviation caused by the load-dependent rotating speed curve.
  • Accordingly, the task of the present invention is to provide a method for controlling a diaphragm or piston pump that is actuated via a ram or a connecting rod by a cam which is powered by an electric motor, which allows the most precise and constant delivery possible of metered media, combined with a simple construction.
  • This task is solved with a method according to the type described in the introduction in which the diaphragm or piston of the pump is moved by the drive unit of the cam at approximately constant speed throughout the compression stroke, taking into account the position of the cam, to assure an approximately constant volume flow of the metered medium.
  • The diaphragm or piston mechanism, driven by a circular cam which is rotating at constant speed, now describes a sinusoidal speed profile. Starting from the rear dead centre, the diaphragm is accelerated, reaches the fastest speed of the compression stroke after a quarter revolution, and then slows down again until front dead centre of the cam, at which point it then transitions to the aspiration stroke, which also includes a period in which the diaphragm speeds up to its maximum speed halfway through the aspiration stroke, and is then slowed until the cam reaches rear dead centre.
  • In the method according to the invention, the speed of the cam is now controlled during the compression stroke in such manner that the speed profile produced is as linear and constant as possible, instead of the non-linear, sinusoidal profile created without the control. To produce this, the cam must be accelerated sharply at the start of the compression stroke and must be slowed to a minimum value by the middle of the compression stroke, at which point it is accelerated again to reach maximum speed again close to the front dead centre. This form of control of the cam speed results in a speed profile of the diaphragm or piston that is highly linear and essentially at a constant level.
  • This approximately constant diaphragm speed during the compression stroke causes the metered medium to be delivered at a uniform rate, which leads to highly advantageous and precise metering behaviour, even for very viscous media. A good delivery result may also be achieved by this means for very small metering outputs.
  • Refinements of the invention are described in the subordinate claims. Accordingly, one refinement of the invention is characterised in that the drive unit drives the cam during the compression stroke with a rotating speed profile that compensates for temporal cosinusoidal movement of the piston or diaphragm conditioned by the cam.
  • Moreover, it may also be provided that the speed profile of the drive unit has approximately the shape ω t = 2 / T D × 1 - - 2 / T D × t + 1 2 - 1 / 2
    Figure imgb0001

    in the compression stroke throughout the period of constant diaphragm speed.
  • The physically correct formula indicated above for compensating the cosinusoidal piston or diaphragm movement is derived by transformation of the linear movement via an arccos function and subsequent differentiation. A similar equation is derived for drive units with additional transverse movement (connecting rods).
  • For practical cosine compensation, the above formula may be approximated with a simplified or similar formula depending on an acceptable non-linearity of the metered quantity.
  • The angular velocity of the cam shown results in a constant speed of the diaphragm, except at the start and end of the compression stroke. TD represents the length of the compression stroke, the maximum diaphragm excursion being standardised to 1.
  • It is also possible that the drive unit moves the cam with a different speed profile, particularly with constant and/or higher speed, during the aspiration stroke.
  • It is desirable to keep the aspiration stroke as short as possible. In this case, depending on the metered medium it is not absolutely essential to achieve constant pressure distribution during the aspiration stroke. As a result, at the end of the compression stroke, when the rotating speed of the cam is at its greatest, as previously described, delivery can be continued at this speed, which leads to a short aspiration stroke with sinusoidal diaphragm speed. The next compression stroke can then be begun at this increased speed, which ultimately provides good system response and is less harsh on the mechanical parts of the pump.
  • On the other hand, maintaining the pressure distribution as constant as possible during the aspiration stroke as well may be desirable, particularly for more viscous metered media, so that a rotating speed profile similar to that of the compression stroke is selected rather than constant rotation, when it may be necessary to set a higher diaphragm speed and thus a shorter period for the aspiration stroke.
  • It is advantageous if the delivered volume flow of metered medium is increased shortly before the end of the compression stroke in order to compensate for the metering gap during the aspiration stroke.
  • It is further advantageously provided that an EC motor with integral rotor position sensors is used as the drive unit.
  • EC motors (electronically commuted motors) offer several advantages. Because of the brushless electronic commutation, they have a very long operating life and low wear characteristics, which is important for metering pumps that may have operating lives longer than 10,000 hours. In addition, most are equipped with integral sensors for the rotor position, the signals from which may also be used to control the cam position according to the suggested method, thereby reducing total costs. Due to the high dynamic ratio of EC motors, it is also very easy to achieve the rapid changes in speed that are necessary for the suggested method.
  • One refinement of the method is notable in that in order to control the cam speed, the cam position is captured by a sensor and/or is calculated from position sensor signals that are in the drive unit.
  • Besides control of the cam position and thus also of the diaphragm excursion, under certain circumstances it may be helpful in the suggested method to provide a position controller to improve the metering behaviour of the pump, particularly since the necessary rotating speed of the cam is determined by its current position. In this way, by measuring and monitoring the cam position, it is possible to achieve the most constant diaphragm speed possible, as is desired. In such case, the position of the cam may either be measured directly, or position signals may be used, as provided by the sensors located in the drive unit, or to capture the linear movement of the ram pr connecting rod.
  • In the following, the invention will be explained in greater detail with reference to the drawing. In the drawing:
  • Fig. 1
    is a schematic representation of a diaphragm pump driven by the method according to the invention,
    Fig. 2
    is a diagram of the diaphragm or piston excursion that is achieved with the method according to the invention, also showing the volume flow of the metered medium, and
    Fig. 3
    is a diagram of the angle of rotation and the change of angle of rotation for the cam.
  • With a diaphragm pump 1 operated according to the method according to the invention, a medium to be metered is delivered from a reservoir - not shown in detail - that is connected via a hose to an aspiration orifice 2 of diaphragm pump 1, through a delivery orifice 3 and to a metering hose - also not further shown - connected thereto. The pump operation is effected by diaphragm 4, which is displaced linearly by a ram 5.
  • Ram 5 is moved by a circular cam 6, such that the rotating motion of a drive shaft 7, which is non-positively connected to cam 6, is converted by ram 5 to a backward and forward motion of diaphragm 4.
  • Shaft 7 is driven by an electronically commuting motor 9 via a transmission 8. A motor controller 10 is connected to motor 9 via motor connector terminals 10a, and includes the power electronic components required for operation as well as a position control circuit. Motor 9 is equipped with rotor position sensors 11, which transmit the current position of the rotor to motor controller 10 via control circuits 11 a, on the basis of which information the controller controls the flow of current to motor 9. Then, depending on the rotor position returned by sensors 11, current is applied to the corresponding phases of motor 9 such that a rotating field is created inside the motor, which field continuously sets the rotor in motion. Because of this electronically created rotating field, it is no longer necessary to provide for commutation of the motor's phases by mechanical means. This form of control enables motor 9 to be driven at the desired rotating speed without dependence on load or turning moment oscillations.
  • Motor controller 10 is supplied with energy from a mains supply circuit 12 via energy lines 12a. Mains supply circuit 12 is connected to a conventional electric supply network 13 via energy supply lines 13a.
  • The position of cam 6 is captured by a position sensor 14, whose position signal is transmitted via signal circuits 14a to a positional controller 15.
  • Positional controller 15 is also supplied with energy from a mains supply circuit 12 via energy lines 12b. Control signals with the required quantity of metered medium are passed to positional controller 15 via a data circuit 16. Positional controller 15 calculates the currently required rotating speed for motor 9 using the position of cam 6, as measured by sensor 14, and the quantity of metered medium to be measured, as transmitted by circuit 16, and transmits this to motor controller 10 via control line 15a. Depending on the position of the rotor in motor 9, as measured by rotor position sensors 11, the motor controller 10 then adjusts the rotating field via motor connectors 10a such that motor 9 reaches the required rotating speed. Thus cam 6 is moved via transmission 8 and shaft 7 in correspondence with the set quantity of metered medium. This creates a closed control circuit that may be used to precisely control the speed of diaphragm 4, as well as its excursion caused by cam 6 via ram 5.
  • The profile of the diaphragm excursion effected by positional controller 15 in conjunction with motor controller 10 via drive unit, transmission and cam, and the volume flow of metered medium resulting therefrom is shown in greater detail in figure 2.
  • Curve 17 represents the plot of the diaphragm excursion over the course of a metering cycle. The duration of a complete metering cycle is standardised in this case to length 2. The diaphragm excursion may thus vary in this context from -1 for rear dead centre of cam 6 through the neutral position for half and three-quarters of a revolution of cam 6 and to +1 for front dead centre of the cam.
  • The diaphragm excursion of a metering cycle that is controlled according to the invention begins at rear dead centre 18. Cam 6 starts with a maximum rotating speed, at which the diaphragm follows the start of a cosinusoidal movement, as shown by partial curve 19. This corresponds to the plot of the diaphragm excursion, if cam 6 were to rotate at a constant, maximum speed. Immediately after this short startup phase, however, the rotating speed of the cam 6 is slowed, precisely so that diaphragm excursion 17 has an approximately linear plot, meaning that the diaphragm is being moved at constant speed. Cam 6 reaches its minimum rotating speed after half a compression stroke at a time of 0.75. Subsequently, it is accelerated again until it reaches front dead centre 20, at which point cam 6 is again rotating at maximum speed, such that the plot for the diaphragm excursion approximates the curve 21 that would be returned if cam 6 were to be driven at a constant, maximum speed.
  • When front dead centre 20 has been passed, the aspiration stroke begins, in which diaphragm 4 is retracted and draws fresh metered medium out of suction line 2 and into the pump chamber. In order to keep the aspiration stroke as short as possible, this is performed with the cam at maximum rotating speed to that the plot of the diaphragm excursion matches the second half of cosine oscillation 21 until rear dead centre 18 is reached for the maximum negative excursion of the diaphragm at -1. At this dead centre, the diaphragm is either stopped or a further metering cycle is begun with a compression stroke similar to the one described previously.
  • The plot of the volume flow of metered medium is represented by curve 22. At the start of the compression stroke the volume flow rises rapidly to its setpoint value in restriking phase 23. In the period with constant diaphragm speed, a constant volume flow is delivered to metering line 2 from connection 3. At the end of compression stroke 24, the volume flow at connection 3 falls to zero relatively quickly, and the aspiration stroke begins. The volume flow of the aspirated medium at connection 2 describes a sinusoidal curve here, due to the cosinusoidal curve of the diaphragm excursion.
  • The length of the compression stroke relative to the aspiration stroke is important for the metering behaviour of the pump. In general, it is desirable to keep the aspiration stroke as short as possible and the compression stroke as long as possible. The size of the volume flow and thus also the quantity of metered medium delivered per unit of time depend on the rotating speed of cam 6.
  • The plot of a cam rotation during a compression stroke controlled according to the invention is shown in greater detail in figure 3. In the diagram, the length of a compression stroke is standardised to 1, the plot of the rotating speed being applied as the speed in curve 25, and the plot of the cam angle being applied in curve 26.
  • At the start of the compression stroke, the cam starts at maximum speed and is then slowed until it reaches its minimum rotating speed halfway through the compression stroke, only to be accelerated over the course of the second half of the compression stroke, to reach maximum speed again by the end thereof. This is also shown in the plot of the angle of rotation in curve 26.
  • The invention is not limited to the example described in the aforegoing. It may be varied in many respects without exceeding the limits of the fundamental concept. Thus for example a controller similar to the one used for the compression stroke may also be used for the aspiration stroke, so that a constant delivered quantity of the metered medium may be obtained here too: this may be particularly beneficial in the case of very viscous media. A further variant consists in briefly increasing the cam speed, and thus also the quantity of metered media delivered per unit of time, just before the end of the compression stroke in order to balance the metering gap. It may also prove helpful to dispense with the sensor for measuring the cam position and instead to calculate the position of the cam from the measured rotor position. Then, only the zero position of the cam needs to be captured.

Claims (7)

  1. A method for controlling a diaphragm or piston pump that is actuated via a ram or a connecting rod by a cam which is powered by an electric motor,
    characterised in that
    the diaphragm or piston of the pump is moved by the drive unit of the cam at approximately constant speed throughout the compression stroke, taking into account the position of the cam, to assure an approximately constant volume flow of the metered medium.
  2. The method according to claim 1,
    characterised in that
    the drive unit drives the cam during the compression stroke with a rotating speed profile that compensates for temporal cosinusoidal movement of the piston or diaphragm conditioned by the cam.
  3. The method according to claim 1 or 2,
    characterised in that
    the speed profile of the drive unit has approximately the shape ω t = 2 / T D × 1 - - 2 / T D × t + 1 2 - 1 / 2
    Figure imgb0002

    in the compression stroke throughout the period of constant diaphragm speed.
  4. The method according to any of the preceding claims,
    characterised in that
    the drive unit moves the cam with a different speed profile, particularly with constant and/or higher speed, during the aspiration stroke.
  5. The method according to any of the preceding claims,
    characterised in that
    the delivered volume flow of metered medium is increased shortly before the end of the compression stroke in order to compensate for the metering gap during the aspiration stroke.
  6. The method according to any of the preceding claims,
    characterised in that
    an EC motor, preferably with integral rotor position sensors, is used as the drive unit.
  7. The method according to any of the preceding claims,
    characterised in that
    in order to control the cam speed, the cam position is captured by a sensor and/or is calculated from position sensor signals that are in the drive unit.
EP04739239A 2003-05-21 2004-05-18 Method for controlling a pump means Active EP1625303B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10322868A DE10322868A1 (en) 2003-05-21 2003-05-21 Method for controlling a diaphragm or piston pump operated by an electric motor driven eccentric
PCT/EP2004/005337 WO2004104418A1 (en) 2003-05-21 2004-05-18 Method for controlling a pump means

Publications (2)

Publication Number Publication Date
EP1625303A1 EP1625303A1 (en) 2006-02-15
EP1625303B1 true EP1625303B1 (en) 2007-07-04

Family

ID=33441064

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04739239A Active EP1625303B1 (en) 2003-05-21 2004-05-18 Method for controlling a pump means

Country Status (6)

Country Link
US (1) US20070014673A1 (en)
EP (1) EP1625303B1 (en)
AT (1) ATE366367T1 (en)
CA (1) CA2521733C (en)
DE (2) DE10322868A1 (en)
WO (1) WO2004104418A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005039237A1 (en) * 2005-08-19 2007-02-22 Prominent Dosiertechnik Gmbh motor-driven metering
DE202005013090U1 (en) * 2005-08-19 2007-01-04 Prominent Dosiertechnik Gmbh Motor e.g. asynchronous motor, dosing pump for dosing e.g. oil, has position sensor providing motion sequence of displacement organ so that electronic controlling of pump responds to operating conditions of dosing circle and dosing pump
DE102010003218A1 (en) * 2010-03-24 2011-09-29 Prominent Dosiertechnik Gmbh Method for controlling and / or regulating a metering pump
US9822777B2 (en) * 2014-04-07 2017-11-21 i2r Solutions USA LLC Hydraulic pumping assembly, system and method
GB202115135D0 (en) 2021-10-21 2021-12-08 Univ Dublin City An improved pump

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4131393A (en) * 1977-01-21 1978-12-26 Altex Scientific, Inc. Fluid pump mechanism
US4321014A (en) * 1979-12-31 1982-03-23 Polaroid Corporation Constant flow pumping apparatus
DE3203722C2 (en) * 1982-02-04 1985-08-01 Gynkotek Gesellschaft für den Bau wissenschaftlich-technischer Geräte mbH, 8000 München Thrust piston pump for low-pulsation pumping of a liquid
US4797834A (en) * 1986-09-30 1989-01-10 Honganen Ronald E Process for controlling a pump to account for compressibility of liquids in obtaining steady flow
IT1202723B (en) * 1987-03-31 1989-02-09 Massimo Sanna SYSTEM AND DEVICE FOR DISPENSING PREFIXED QUANTITIES OF LIQUID FROM A DOSING PUMP IN VARIABLE FLOW RATE REGIME
US4919596A (en) * 1987-12-04 1990-04-24 Pacesetter Infusion, Ltd. Fluid delivery control and monitoring apparatus for a medication infusion system
JP3111790B2 (en) * 1994-02-03 2000-11-27 株式会社日立製作所 Flow control pump
US5482448A (en) * 1994-06-10 1996-01-09 Atwater; Richard G. Positive displacement pump with concentrically arranged reciprocating-rotating pistons
DE19654084C1 (en) * 1996-12-23 1998-04-23 Lang Apparatebau Gmbh Method of increasing dosing accuracy of liquid dosing pump driven by asynchronous motor with eccentric gear
DE19823156A1 (en) * 1998-05-23 1999-12-02 Lang Apparatebau Gmbh Dosing pump
US6227807B1 (en) * 1999-02-02 2001-05-08 Eric Chase Constant flow fluid pump
DE10041606B4 (en) * 2000-08-24 2008-07-24 Berger Lahr Gmbh & Co. Kg Electromotive drive and method for operating an electronically commutated electric motor
DE10119404A1 (en) * 2001-04-20 2002-10-24 Bosch Gmbh Robert Electronically commutated dc motor e.g. for cooling water pump in vehicle, has grid stamping for providing all connections to electronic system
US6913933B2 (en) * 2001-12-03 2005-07-05 Ortho-Clinical Diagnostics, Inc. Fluid dispensing algorithm for a variable speed pump driven metering system

Also Published As

Publication number Publication date
CA2521733A1 (en) 2004-12-02
DE602004007380T2 (en) 2008-03-13
DE10322868A1 (en) 2004-12-16
DE602004007380D1 (en) 2007-08-16
CA2521733C (en) 2011-05-10
US20070014673A1 (en) 2007-01-18
WO2004104418A1 (en) 2004-12-02
ATE366367T1 (en) 2007-07-15
EP1625303A1 (en) 2006-02-15

Similar Documents

Publication Publication Date Title
US8083498B2 (en) System and method for position control of a mechanical piston in a pump
RU2554703C2 (en) Method, device and driving unit of reciprocating double-acting line pump
US6293756B1 (en) Pump
CN102632599B (en) A kind of control system of injection machine
JP5827309B2 (en) Method for controlling and / or adjusting metering pump
JP3997318B2 (en) Pump control method and control apparatus
US9845812B2 (en) Method for operating a hydraulic device with pump and servomotor, and associated hydraulic device
EP1625303B1 (en) Method for controlling a pump means
US6457944B1 (en) Regulation of the stroke frequency of a dosing pump
US20100284827A1 (en) Homogenization of the conveying flow in oscillating positive displacement pumps
CN102904482B (en) Ultralow rotation speed control method of ultrasonic motor
JP2001263254A (en) Hydraulic device
CN104100508A (en) Use of a motor-driven speed-variable hydraulic pump as a hydrostatic transmission
EP1954946A2 (en) Systen and method for position control of a mechanical piston in a pump
DE10023523C1 (en) Run-up control for membrane and/or piston vacuum pump uses short-term reversal of pump when initial maximum torque in forwards rotation direction is not overcome
US6948914B2 (en) Metering pump with an electric motor
CN211174491U (en) Automatic stroke adjusting and controlling device for metering pump
CN216241211U (en) High-precision digital metering pump
CN110040109A (en) A kind of speed-adjusting and control system of windscreen wiper
US20190264679A1 (en) Volumetric Pump
JP2002531774A (en) Diaphragm pump controller
SU446762A1 (en) Device for calibration of flow meters
CN217440265U (en) Biological pump with automatic calibration function
KR20040015215A (en) Method for electronic regulation of electric motor
CN110193114B (en) Energy-saving driving system and method for infusion pump

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051017

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602004007380

Country of ref document: DE

Date of ref document: 20070816

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071015

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071004

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071204

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071005

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

26N No opposition filed

Effective date: 20080407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071004

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080519

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080105

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602004007380

Country of ref document: DE

Representative=s name: VON ROHR PATENTANWAELTE PARTNERSCHAFT MBB, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230321

Year of fee payment: 20