EP1619785B1 - Converter circuit with voltage rise rate limitation - Google Patents

Converter circuit with voltage rise rate limitation Download PDF

Info

Publication number
EP1619785B1
EP1619785B1 EP05405380A EP05405380A EP1619785B1 EP 1619785 B1 EP1619785 B1 EP 1619785B1 EP 05405380 A EP05405380 A EP 05405380A EP 05405380 A EP05405380 A EP 05405380A EP 1619785 B1 EP1619785 B1 EP 1619785B1
Authority
EP
European Patent Office
Prior art keywords
power semiconductor
limiting network
semiconductor switch
diode
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05405380A
Other languages
German (de)
French (fr)
Other versions
EP1619785A2 (en
EP1619785A3 (en
Inventor
Bjoern Oedegard
Oscar Apeldoorn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Schweiz AG
Original Assignee
ABB Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Schweiz AG filed Critical ABB Schweiz AG
Publication of EP1619785A2 publication Critical patent/EP1619785A2/en
Publication of EP1619785A3 publication Critical patent/EP1619785A3/en
Application granted granted Critical
Publication of EP1619785B1 publication Critical patent/EP1619785B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters

Definitions

  • the invention relates to the field of power electronics. It is based on a converter circuit according to the preamble of claim 1.
  • IGCT integrated thyristors with commutated drive electrode
  • the converter circuit comprises a DC voltage circuit formed by two series-connected capacitors, wherein the DC voltage circuit has a first main terminal and a second main terminal and a partial terminal formed by the two adjacent and interconnected capacitors.
  • the capacitance value of the two capacitors is usually the same chosen big.
  • a DC voltage Between the first main terminal and the second main terminal is a DC voltage, between which the first main terminal and the sub-terminal, ie at one capacitor consequently half the DC voltage applied and between the sub-terminal and the second main terminal, that is on the other capacitor also half the DC voltage ,
  • the converter circuit has a first current increase limiting network, wherein an inductance and a resistance of the first current increase limiting network is connected to the first main terminal, a capacitance of the first current increase limiting network is connected to the resistor and to the partial terminal, and a diode of the first current increase limiting network is connected to the connection point of the resistor connected to the capacity.
  • the converter circuit has a second current increase limiting network, wherein an inductance and a resistance of the second current increase limiting network is connected to the second main terminal, a capacitance of the second current increase limiting network is connected to the resistor and to the partial terminal, and a diode of the second current increase limiting network is connected to the connection point of the resistor connected to the capacity.
  • a first, second, third, fourth, fifth and sixth bidirectional power semiconductor switch are provided, wherein the first, second, third and fourth power semiconductor switches are connected in series and the first power semiconductor switch with the inductance of the first current increase limiting network and the fourth power semiconductor switch with the Inductance of the second current increase limiting network is connected.
  • the fifth and sixth power semiconductor switches are connected in series, the connection point of the fifth power semiconductor switch to the sixth power semiconductor switch being connected to the sub-terminal, the fifth power semiconductor switch being connected to the connection point of the first power semiconductor switch to the second power semiconductor switch, and the sixth power semiconductor switch being connected to the connection point of the third Power semiconductor switch is connected to the fourth power semiconductor switch.
  • a series circuit of a resistor is connected in parallel with a capacitor in each case, wherein the capacitance has a value of typically 500nF and the Resistor has a value typically 10hm.
  • the respective series connection of the resistor with the capacity with the above-mentioned value-based design serves to achieve a balanced voltage distribution at the associated power semiconductor switch at switching state transitions, ie in the transition from the on state to the off state or from the off state to the on state.
  • EP 0 321 865 describes a converter circuit where the fifth and sixth power semiconductor switches are replaced by diodes. These diodes allow the current to lead only one direction.
  • EP 1 047 180 describes a converter circuit having capacitances used as the voltage slew limiting network for each line semiconductor switch.
  • the object of the invention is therefore to develop a converter circuit of the type mentioned in such a way that the turn-off of power semiconductor switches of the converter circuit can be minimized.
  • This object is solved by the features of claim 1.
  • advantageous developments of the invention are given.
  • the converter circuit according to the invention comprises a DC voltage circuit formed by two capacitors connected in series, wherein the DC voltage circuit has a first main terminal and a second main terminal and a partial terminal formed by the two adjacent and interconnected capacitors. Furthermore, a first current increase limiting network is provided, wherein an inductance and a resistance of the first current increase limiting network is connected to the first main terminal, a capacitance of the first current increase limiting network is connected to the resistor and to the partial terminal, and a diode of the first current increase limiting network is connected to the connection point of the resistor with the capacitance.
  • the inventive converter circuit has a second current increase limiting network, wherein an inductance and a resistance of the second current increase limiting network is connected to the second main terminal, a capacitance of the second current increase limiting network is connected to the resistor and to the partial terminal and a diode of the second current increase limiting network is connected to the connection point of the second current increase limiting network Resistor connected to capacity.
  • a first, second, third, fourth, fifth and sixth bidirectional power semiconductor switch are provided, wherein the first, second, third and fourth power semiconductor switches are connected in series and the first power semiconductor switch with the inductance of the first current increase limiting network and the fourth power semiconductor switch with the Inductance of the second current increase limiting network is connected.
  • the fifth and sixth power semiconductor switches are connected in series, the connection point of the fifth power semiconductor switch to the sixth power semiconductor switch being connected to the sub-terminal, the fifth power semiconductor switch being connected to the connection point of the first power semiconductor switch to the second power semiconductor switch, and the sixth power semiconductor switch being connected to the connection point of the third Power semiconductor switch is connected to the fourth power semiconductor switch.
  • a first voltage increase limiting network is connected in parallel with the series connection of the first and second power semiconductor switches and connected to the diode of the first current increase limiting network.
  • a second voltage increase limiting network is connected in parallel with the series connection of the third and fourth power semiconductor switches and connected to the diode of the second current increase limiting network.
  • first and secondmatsantrainsbegrenzungsnetzwerks it is possible by means of the inventive first and secondmatsantrainsbegrenzungsnetzwerks to limit the voltage increase during the shutdown of the first, second, third, fourth, fifth and sixth power semiconductor switch, resulting in a significant reduction of Abschaltmanne and a significant increase in the maximum turn-off current in the power semiconductor switch leads.
  • the respective power semiconductor switch can thereby be largely protected against damage or destruction.
  • a first embodiment of the inventive converter circuit is shown.
  • the converter circuit according to Fig. 1 comprises a DC voltage circuit 1 formed by two capacitors connected in series, the DC voltage circuit 1 having a first main terminal 2 and a second main terminal 3 and a partial terminal 4 formed by the two adjacent and interconnected capacitors.
  • a first current increase limiting network 5 is provided, according to Fig.
  • an inductor 6 and a resistor 7 of the first current increase limiting network 5 is connected to the first main terminal 2
  • a capacitor 8 of the first current increase limiting network 5 is connected to the resistor 7 and to the partial terminal 4
  • a diode 9 of the first current increase limiting network 5 is connected to the connection point of the resistor 7 is connected to the capacity 8.
  • a second current increase limiting network 10 is provided, wherein an inductor 11 and a resistor 12 of the second current increase limiting network 10 is connected to the second main terminal 3, a capacitor 13 of the second current increase limiting network 10 is connected to the resistor 12 and to the partial terminal 4 and a diode 14 of the second Current increase limiting network 10 is connected to the connection point of the resistor 12 to the capacitor 13.
  • the converter circuit according to the invention has a first, second, third, fourth, fifth and sixth controllable bidirectional power semiconductor switches S1, S2, S3, S4, S5, S6.
  • the fifth and sixth power semiconductor switches S5 and S6 form an active clamp switching group.
  • the first, second, third, fourth, fifth and sixth controllable bidirectional power semiconductor switches S1, S2, S3, S4, S5, S6 are each formed by an integrated thyristor with commutated drive electrode and by a diode connected in anti-parallel to the thyristor.
  • the first, second, third and fourth power semiconductor switches S1, S2, S3, S4 are connected in series and the first power semiconductor switch S1 is connected to the inductance 6 of the first current increase limiting network 5 and the fourth power semiconductor switch S4 to the inductance 11 of the second current increase limiting network 10.
  • the fifth and sixth power semiconductor switches S5, S6 are connected in series, the connection point of the fifth power semiconductor switch S5 is connected to the sixth power semiconductor switch S6 to the sub-terminal 4, the fifth power semiconductor switch S6 is connected to the connection point of the first power semiconductor switch S1 to the second power semiconductor switch S2, and sixth power semiconductor switch S6 connected to the connection point of the third power semiconductor switch S3 to the fourth power semiconductor switch S4.
  • a first voltage increase limiting network 15 is connected in parallel to the series connection of the first and second power semiconductor switches S1, S2 and connected to the diode 9 of the first current increase limiting network 5. Further, a second voltage increase limiting network 16 is connected in parallel with the series circuit of the third and fourth power semiconductor switches S3, S4 and connected to the diode 14 of the second current increase limiting network 10.
  • the twoistsanierisbegrenzungs networks 15, 16 cause at the shutdown of the first and second, third, fourth, fifth and sixth power semiconductor switch S1, S2, S3, S4, S5 and S6, that each a share of electricity in the capacitances 19 and 20 of the twocertainsanierisbegrenzungsnetztechnike 15, 16th are driven, so that the voltage increase at the first and second, third, fourth, fifth and sixth power semiconductor switches S1, S2, S3, S4, S5 and S6 is limited.
  • the limitation of the voltage rise advantageously leads to a significant reduction in the turn-off losses and to a significant increase in the maximum turn-off current at the respective power semiconductor switches S1, S2, S3, S4, S5, S6, whereby they can be largely protected against damage or destruction.
  • the first and second voltage increase limiting network 15, 16 are preferably each formed by a series connection of a diode 17, 18, a capacitor 19, 20 and a resistor 21, 22.
  • the diode 9 of the first current increase limiting network 5 is after Fig. 1 is connected to the connection point of the diode 17 with the capacitance 19 of the first voltage increase limiting network 15.
  • the diode 17 of the first voltage increase limiting network 15 is connected to the connection point of the first power semiconductor switch S1 to the inductance 6 of the first current increase limiting network 5.
  • the diode 14 of the second current increase limiting network 10 is according to Fig.
  • the diode 18 of the second voltage increase limiting network 16 is connected to the connection point of the fourth power semiconductor switch S4 with the inductance 11 of the second current increase limiting network 10.
  • the converter circuit according to the invention has a controllable short-circuit element 23, which is connected to the partial connection 4 and to the connection point of the second to the third power semiconductor switch S2, S3.
  • the controllable short-circuit element 23 can thus be very easily integrated into the existing network of power semiconductor switches S1, S2, S3, S4, S5, S6 of the converter circuit, so that space can advantageously be saved.
  • the controllable short-circuit element 23 is used in the event of a short circuit in one or more of the power semiconductor switches S1, S2, S3, S4, S5, S6 to cause a short-circuit current resulting from the short-circuit from the capacitors of the DC voltage circuit 1 is only very briefly over the short-circuited power semiconductor switch S1, S2, S3, S4, S5, S6 and then directed via the short-circuit element 23 to the partial connection 4, so that or the short-circuited power semiconductor switches S1, S2, S3, S4, S5 , S6 should not be further damaged, loaded or destroyed.
  • the controllable short-circuit element 23 according to Fig.
  • a short circuit current from the phases caused by the short circuit is not or only with a small amplitude via the power semiconductor switches S1, S2, S3, S4, S5, S6 , in particular via the diodes of the power semiconductor switches S1, S2, S3, S4, S5, S6 flows, so that the power semiconductor switches S1, S2, S3, S4, S5, S6 no longer or not at all damaged, loaded or destroyed.
  • Such a short-circuit current or fault current is directed in this case via the short-circuit element 17 to the partial connection 4.
  • the short-circuit element 23 is then activated when a short-circuit current is detected by means of a detection device.
  • Fig. 2 a second embodiment of the inventive converter circuit is shown.
  • the second embodiment according to Fig. 2 differs from the first embodiment described in detail above Fig. 1 in that a controllable short-circuit element is provided, which is connected via an inductor 24 to the connection point of the second to the third power semiconductor switch S2, S3, wherein a series circuit of a resistor 25 with a capacitor 26 is connected in parallel to the drivable short-circuit element 23.
  • the inductance 24 and series connection of the resistor 25 with the capacitance 26 are optional.
  • the short-circuit element 23 is then activated when a short-circuit current is detected by means of a detection device, wherein the activatable short-circuit element 23 then short-circuits the phases connected to the short-circuit element 23.
  • the short-circuit element 23 after Fig. 1 and Fig. 2 is formed with advantage of two antiparallel connected controllable power semiconductors with respective pressure contact, such as disc thyristors or GTOs.
  • the respective controllable power semiconductor switch of the activatable short-circuit element 23 can also be formed by an integrated thyristor with commutated drive electrode or by a triac.
  • Fig. 1 and Fig. 2 is connected in parallel with the series connection of the fifth and sixth power semiconductor switch S5, S6 a balancing resistor 27.
  • the Symmetri fürswiderstand 27 is advantageously used, for example, in a shutdown of all power semiconductor switches S1, S2, S3, S4, S5, S6 to achieve a nearly symmetrical voltage distribution across the power semiconductor switch S1, S2, S3, S4, S5, S6 and thus individual power semiconductor switch S1 , S2, S3, S4, S5, S6 to protect against excessive voltages.

Abstract

A converter circuit has a DC voltage circuit (1) formed by two series-connected capacitors and a first (5) current rise limiting network (5) connected to a first main terminal (2) and a second current rise limiting network (10) with an inductance (11) and a resistance (12) connected to the second main terminal (3). A first voltage limiting network (15) is connected in parallel to a series circuit of the first and second power semiconductor switches (S1,S2) and to a diode of the first current limiting network (5). A second voltage limiting network (16) is connected in parallel to the series circuit of the third and fourth power semiconductor switches (S3,S4) and to the diode (14) of the second current limiting network (10).

Description

Technisches GebietTechnical area

Die Erfindung bezieht sich auf das Gebiet der Leistungselektronik. Sie geht aus von einer Umrichterschaltung gemäss dem Oberbegriff des Anspruchs 1.The invention relates to the field of power electronics. It is based on a converter circuit according to the preamble of claim 1.

Stand der TechnikState of the art

Leistungshalbleiterschalter, insbesondere integrierte Thyristoren mit kommutierter Ansteuerelektrode (IGCT), werden derzeit vermehrt in der Umrichtertechnik und insbesondere in Umrichterschaltungen zur Schaltung von drei Spannungsniveaus eingesetzt. Eine solche Umrichterschaltung zur Schaltung von drei Spannungsniveaus ist in "Characterization of IGCTs for Series Connected Operation, Conference Record of Annual Meeting of IEEE Industry Applications Society, 2000, October". Darin umfasst die Umrichterschaltung einen durch zwei in Serie geschaltete Kondensatoren gebildeten Gleichspannungskreis, wobei der Gleichspannungskreis einen ersten Hauptanschluss und einen zweiten Hauptanschluss und einen durch die zwei benachbarten und miteinander verbundenen Kondensatoren gebildeten Teilanschluss aufweist. Der Kapazitätswert der beiden Kondensatoren ist üblicherweise gleich gross gewählt. Zwischen dem ersten Hauptanschluss und dem zweiten Hauptanschluss liegt eine Gleichspannung an, wobei zwischen dem ersten Hauptanschluss und dem Teilanschluss, d.h. am einen Kondensator folglich die halbe Gleichspannung anliegt und zwischen dem Teilanschluss und dem zweiten Hauptanschluss, d.h. am anderen Kondensator folglich ebenfalls die halbe Gleichspannung an.Power semiconductor switches, in particular integrated thyristors with commutated drive electrode (IGCT), are currently being used increasingly in converter technology and in particular in converter circuits for switching three voltage levels. Such a converter circuit for switching three voltage levels is described in "Characterization of IGCTs for Series Connected Operation, Conference Record of the Annual Meeting of the IEEE Industry Applications Society, 2000, October". Therein, the converter circuit comprises a DC voltage circuit formed by two series-connected capacitors, wherein the DC voltage circuit has a first main terminal and a second main terminal and a partial terminal formed by the two adjacent and interconnected capacitors. The capacitance value of the two capacitors is usually the same chosen big. Between the first main terminal and the second main terminal is a DC voltage, between which the first main terminal and the sub-terminal, ie at one capacitor consequently half the DC voltage applied and between the sub-terminal and the second main terminal, that is on the other capacitor also half the DC voltage ,

Ferner weist die Umrichterschaltung ein erstes Stromanstiegsbegrenzungsnetzwerk auf, wobei eine Induktivität und ein Widerstand des ersten Stromanstiegsbegrenzungsnetzwerks mit dem ersten Hauptanschluss verbunden ist, eine Kapazität des ersten Stromanstiegsbegrenzungsnetzwerks mit dem Widerstand und mit dem Teilanschluss verbunden ist und eine Diode des ersten Stromanstiegsbegrenzungsnetzwerks mit dem Verbindungspunkt des Widerstands mit der Kapazität verbunden ist. Desweiteren weist die Umrichterschaltung ein zweites Stromanstiegsbegrenzungsnetzwerk auf, wobei eine Induktivität und ein Widerstand des zweiten Stromanstiegsbegrenzungsnetzwerks mit dem zweiten Hauptanschluss verbunden ist, eine Kapazität des zweiten Stromanstiegsbegrenzungsnetzwerks mit dem Widerstand und mit dem Teilanschluss verbunden ist und eine Diode des zweiten Stromanstiegsbegrenzungsnetzwerks mit dem Verbindungspunkt des Widerstands mit der Kapazität verbunden ist. Darüber hinaus ist ein erster, zweiter, dritter, vierter, fünfter und sechster ansteuerbarer bidirektionaler Leistungshalbleiterschalter vorgesehen, wobei der erste, zweite, dritte und vierte Leistungshalbleiterschalter in Serie geschaltet sind und der erste Leistungshalbleiterschalter mit der Induktivität des ersten Stromanstiegsbegrenzungsnetzwerks und der vierte Leistungshalbleiterschalter mit der Induktivität des zweiten Stromanstiegsbegrenzungsnetzwerks verbunden ist. Der fünfte und sechste Leistungshalbleiterschalter ist in Serie geschaltet, wobei der Verbindungspunkt des fünften Leistungshalbleiterschalters mit dem sechsten Leistungshalbleiterschalter mit dem Teilanschluss verbunden ist, der fünfte Leistungshalbleiterschalter mit dem Verbindungspunkt des ersten Leistungshalbleiterschalters mit dem zweiten Leistungshalbleiterschalter verbunden ist und der sechste Leistungshalbleiterschalter mit dem Verbindungspunkt des dritten Leistungshalbleiterschalters mit dem vierten Leistungshalbleiterschalter verbunden ist.Furthermore, the converter circuit has a first current increase limiting network, wherein an inductance and a resistance of the first current increase limiting network is connected to the first main terminal, a capacitance of the first current increase limiting network is connected to the resistor and to the partial terminal, and a diode of the first current increase limiting network is connected to the connection point of the resistor connected to the capacity. Furthermore, the converter circuit has a second current increase limiting network, wherein an inductance and a resistance of the second current increase limiting network is connected to the second main terminal, a capacitance of the second current increase limiting network is connected to the resistor and to the partial terminal, and a diode of the second current increase limiting network is connected to the connection point of the resistor connected to the capacity. In addition, a first, second, third, fourth, fifth and sixth bidirectional power semiconductor switch are provided, wherein the first, second, third and fourth power semiconductor switches are connected in series and the first power semiconductor switch with the inductance of the first current increase limiting network and the fourth power semiconductor switch with the Inductance of the second current increase limiting network is connected. The fifth and sixth power semiconductor switches are connected in series, the connection point of the fifth power semiconductor switch to the sixth power semiconductor switch being connected to the sub-terminal, the fifth power semiconductor switch being connected to the connection point of the first power semiconductor switch to the second power semiconductor switch, and the sixth power semiconductor switch being connected to the connection point of the third Power semiconductor switch is connected to the fourth power semiconductor switch.

Zum ersten, zweiten, dritten, vierten, fünften und sechsten ansteuerbaren bidirektionalen Leistungshalbleiterschalter ist jeweils eine Serienschaltung eines Widerstands mit einer Kapazität parallel geschaltet, wobei die Kapazität einen Wert von typischerweise 500nF und der Widerstand einen Wert typischerweise 10hm aufweist. Die jeweilige Serienschaltung des Widerstands mit der Kapazität mit der vorstehend erwähnten wertemässigen Auslegung dient dazu, eine ausgeglichene Spannungsverteilung an dem zugehörigen Leistungshalbleiterschalter bei Schaltzustandsübergängen, d.h. beim Übergang vom eingeschalteten Zustand zum ausgeschalteten Zustand oder vom ausgeschalteten Zustand zum eingeschalteten Zustand, zu erreichen.To the first, second, third, fourth, fifth and sixth controllable bidirectional power semiconductor switch, a series circuit of a resistor is connected in parallel with a capacitor in each case, wherein the capacitance has a value of typically 500nF and the Resistor has a value typically 10hm. The respective series connection of the resistor with the capacity with the above-mentioned value-based design serves to achieve a balanced voltage distribution at the associated power semiconductor switch at switching state transitions, ie in the transition from the on state to the off state or from the off state to the on state.

Problematisch bei einer Umrichterschaltung nach "Characterization of IGCTs for Series Connected Operation, Conference Record of Annual Meeting of IEEE Industry Applications Society, 2000, October" ist, dass durch die beschriebene wertemässige Auslegung des Widerstands und der Kapazität der Serienschaltung bei der Abschaltung des zugehörigen Leistungshalbleiterschalters ein hoher Spannungsanstieg bei gleichzeitig hohem Strom auftritt, was zu sehr hohen Abschaltverlusten und dynamischen Überhöhungen des elektrischen Fel im Leistungshalbleiterschalter führt. Solche Abschaltverluste und Feldüberhöhungen am jeweiligen Leistungshalbleiterschalter können aber diesen beschädigen oder gar zerstören.A problem with a converter circuit according to the "Characterization of IGCTs for Series Connected Operation, Conference Record of the Annual Meeting of the IEEE Industry Applications Society, 2000, October" is that the described value-based design of the resistance and the capacity of the series circuit in the shutdown of the associated power semiconductor switch a high voltage rise at the same time high current occurs, which leads to very high turn-off and dynamic elevations of the electric Fel in the power semiconductor switch. However, such turn-off losses and field overshoots on the respective power semiconductor switch can damage or even destroy it.

EP 0 321 865 beschreibt eine Umrichterschaltung, wo die fünfte und sechste Leistungshalbleiterschalter von Dioden ersetzt werden. Diese Dioden erlauben der Strom nur einer Richtung zu führen. EP 1 047 180 beschreibt eine Umrichterschaltung mit Kapazitäten, die als Spannungsanstiegsbegrenzungsnetwerk für jede Leitungshalbleiterschalter benutzt werden. EP 0 321 865 describes a converter circuit where the fifth and sixth power semiconductor switches are replaced by diodes. These diodes allow the current to lead only one direction. EP 1 047 180 describes a converter circuit having capacitances used as the voltage slew limiting network for each line semiconductor switch.

Darstellung der ErfindungPresentation of the invention

Aufgabe der Erfindung ist es deshalb, eine Umrichterschaltung der eingangs genannten Art derart weiterzuentwickeln, dass die Abschaltverluste an Leistungshalbleiterschaltern der Umrichterschaltung minimiert werden können. Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. In den abhängigen Ansprüchen sind vorteilhafte Weiterbildungen der Erfindung angegeben.The object of the invention is therefore to develop a converter circuit of the type mentioned in such a way that the turn-off of power semiconductor switches of the converter circuit can be minimized. This object is solved by the features of claim 1. In the dependent claims advantageous developments of the invention are given.

Die erfindungsgemässe Umrichterschaltung umfasst einen durch zwei in Serie geschaltete Kondensatoren gebildeten Gleichspannungskreis, wobei der Gleichspannungskreis einen ersten Hauptanschluss und einen zweiten Hauptanschluss und einen durch die zwei benachbarten und miteinander verbundenen Kondensatoren gebildeten Teilanschluss aufweist. Ferner ist ein erstes Stromanstiegsbegrenzungsnetzwerk vorgesehen, wobei eine Induktivität und ein Widerstand des ersten Stromanstiegsbegrenzungsnetzwerks mit dem ersten Hauptanschluss verbunden ist, eine Kapazität des ersten Stromanstiegsbegrenzungsnetzwerks mit dem Widerstand und mit dem Teilanschluss verbunden ist und eine Diode des ersten Stromanstiegsbegrenzungsnetzwerks mit dem Verbindungspunkt des Widerstands mit der Kapazität verbunden ist. Desweiteren weist die erfindungsgemässe Umrichterschaltung ein zweites Stromanstiegsbegrenzungsnetzwerk auf, wobei eine Induktivität und ein Widerstand des zweiten Stromanstiegsbegrenzungsnetzwerks mit dem zweiten Hauptanschluss verbunden ist, eine Kapazität des zweiten Stromanstiegsbegrenzungsnetzwerks mit dem Widerstand und mit dem Teilanschluss verbunden ist und eine Diode des zweiten Stromanstiegsbegrenzungsnetzwerks mit dem Verbindungspunkt des Widerstands mit der Kapazität verbunden ist. Darüber hinaus ist ein erster, zweiter, dritter, vierter, fünfter und sechster ansteuerbarer bidirektionaler Leistungshalbleiterschalter vorgesehen, wobei der erste, zweite, dritte und vierte Leistungshalbleiterschalter in Serie geschaltet sind und der erste Leistungshalbleiterschalter mit der Induktivität des ersten Stromanstiegsbegrenzungsnetzwerks und der vierte Leistungshalbleiterschalter mit der Induktivität des zweiten Stromanstiegsbegrenzungsnetzwerks verbunden ist. Der fünfte und sechste Leistungshalbleiterschalter ist in Serie geschaltet, wobei der Verbindungspunkt des fünften Leistungshalbleiterschalters mit dem sechsten Leistungshalbleiterschalter mit dem Teilanschluss verbunden ist, der fünfte Leistungshalbleiterschalter mit dem Verbindungspunkt des ersten Leistungshalbleiterschalters mit dem zweiten Leistungshalbleiterschalter verbunden ist und der sechste Leistungshalbleiterschalter mit dem Verbindungspunkt des dritten Leistungshalbleiterschalters mit dem vierten Leistungshalbleiterschalter verbunden ist. Erfindungsgemäss ist ein erstes Spannungsanstiegsbegrenzungsnetzwerk parallel zur Serienschaltung des ersten und zweiten Leistungshalbleiterschalters geschaltet und mit der Diode des ersten Stromanstiegsbegrenzungsnetzwerks verbunden. Weiterhin ist erfindungsgemäss ein zweites Spannungsanstiegsbegrenzungsnetzwerk parallel zur Serienschaltung des dritten und vierten Leistungshalbleiterschalters geschaltet und mit der Diode des zweiten Stromanstiegsbegrenzungsnetzwerks verbunden.The converter circuit according to the invention comprises a DC voltage circuit formed by two capacitors connected in series, wherein the DC voltage circuit has a first main terminal and a second main terminal and a partial terminal formed by the two adjacent and interconnected capacitors. Furthermore, a first current increase limiting network is provided, wherein an inductance and a resistance of the first current increase limiting network is connected to the first main terminal, a capacitance of the first current increase limiting network is connected to the resistor and to the partial terminal, and a diode of the first current increase limiting network is connected to the connection point of the resistor with the capacitance. Furthermore, the inventive converter circuit has a second current increase limiting network, wherein an inductance and a resistance of the second current increase limiting network is connected to the second main terminal, a capacitance of the second current increase limiting network is connected to the resistor and to the partial terminal and a diode of the second current increase limiting network is connected to the connection point of the second current increase limiting network Resistor connected to capacity. In addition, a first, second, third, fourth, fifth and sixth bidirectional power semiconductor switch are provided, wherein the first, second, third and fourth power semiconductor switches are connected in series and the first power semiconductor switch with the inductance of the first current increase limiting network and the fourth power semiconductor switch with the Inductance of the second current increase limiting network is connected. The fifth and sixth power semiconductor switches are connected in series, the connection point of the fifth power semiconductor switch to the sixth power semiconductor switch being connected to the sub-terminal, the fifth power semiconductor switch being connected to the connection point of the first power semiconductor switch to the second power semiconductor switch, and the sixth power semiconductor switch being connected to the connection point of the third Power semiconductor switch is connected to the fourth power semiconductor switch. According to the invention, a first voltage increase limiting network is connected in parallel with the series connection of the first and second power semiconductor switches and connected to the diode of the first current increase limiting network. Furthermore, according to the invention, a second voltage increase limiting network is connected in parallel with the series connection of the third and fourth power semiconductor switches and connected to the diode of the second current increase limiting network.

Vorteilhaft ist es mittels des erfindungsgemässen ersten und zweiten Spannungsanstiegsbegrenzungsnetzwerks möglich, den Spannungsanstieg bei der Abschaltung des ersten, zweiten, dritten, vierten, fünften und sechsten Leistungshalbleiterschalters zu begrenzen, was zu einer signifikanten Verringerung der Abschaltverluste sowie einer signifikanten Erhöhung des maximal abschaltbaren Stromes im Leistungshalbleiterschalter führt. Der jeweilige Leistungshalbleiterschalter kann dadurch weitestgehend vor einer Beschädigung oder Zerstörung geschützt werden.Advantageously, it is possible by means of the inventive first and second Spannungsanstiegsbegrenzungsnetzwerks to limit the voltage increase during the shutdown of the first, second, third, fourth, fifth and sixth power semiconductor switch, resulting in a significant reduction of Abschaltverluste and a significant increase in the maximum turn-off current in the power semiconductor switch leads. The respective power semiconductor switch can thereby be largely protected against damage or destruction.

Diese und weitere Aufgaben, Vorteile und Merkmale der vorliegenden Erfindung werden aus der nachfolgenden detaillierten Beschreibung bevorzugter Ausführungsformen der Erfindung in Verbindung mit der Zeichnung offensichtlich.These and other objects, advantages and features of the present invention will become more apparent from the following detailed description of preferred embodiments of the invention taken in conjunction with the accompanying drawings.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Es zeigen:

Fig. 1
eine erste Ausführungsform einer erfindungsgemässen Umrichterschaltung und
Fig. 2
eine zweite Ausführungsform der erfindungsgemässen Umrichterschaltung.
Show it:
Fig. 1
a first embodiment of an inventive converter circuit and
Fig. 2
A second embodiment of the inventive converter circuit.

Die in der Zeichnung verwendeten Bezugszeichen und deren Bedeutung sind in der Bezugszeichenliste zusammengefasst aufgelistet. Grundsätzlich sind in den Figuren gleiche Teile mit gleichen Bezugszeichen versehen. Die beschriebenen Ausführungsformen stehen beispielhaft für den Erfindungsgegenstand und haben keine beschränkende Wirkung.The reference numerals used in the drawings and their meaning are listed in the list of reference numerals. Basically, the same parts are provided with the same reference numerals in the figures. The described embodiments are exemplary of the subject invention and have no limiting effect.

Wege zur Ausführung der ErfindungWays to carry out the invention

In Fig. 1 ist eine erste Ausführungsform der erfindungsgemässen Umrichterschaltung gezeigt. Die Umrichterschaltung gemäss Fig. 1 umfasst einen durch zwei in Serie geschaltete Kondensatoren gebildeten Gleichspannungskreis 1, wobei der Gleichspannungskreis 1 einen ersten Hauptanschluss 2 und einen zweiten Hauptanschluss 3 und einen durch die zwei benachbarten und miteinander verbundenen Kondensatoren gebildeten Teilanschluss 4 aufweist. Ferner ist bei der erfindungsgemässen Umrichterschaltung nach Fig. 1 ein erstes Stromanstiegsbegrenzungsnetzwerk 5 vorgesehen, wobei gemäss Fig. 1 eine Induktivität 6 und ein Widerstand 7 des ersten Stromanstiegsbegrenzungsnetzwerks 5 mit dem ersten Hauptanschluss 2 verbunden ist, eine Kapazität 8 des ersten Stromanstiegsbegrenzungsnetzwerks 5 mit dem Widerstand 7 und mit dem Teilanschluss 4 verbunden ist und eine Diode 9 des ersten Stromanstiegsbegrenzungsnetzwerks 5 mit dem Verbindungspunkt des Widerstands 7 mit der Kapazität 8 verbunden ist. Weiterhin ist gemäss Fig. 1 ein zweites Stromanstiegsbegrenzungsnetzwerk 10 vorgesehen, wobei eine Induktivität 11 und ein Widerstand 12 des zweiten Stromanstiegsbegrenzungsnetzwerks 10 mit dem zweiten Hauptanschluss 3 verbunden ist, eine Kapazität 13 des zweiten Stromanstiegsbegrenzungsnetzwerks 10 mit dem Widerstand 12 und mit dem Teilanschluss 4 verbunden ist und eine Diode 14 des zweiten Stromanstiegsbegrenzungsnetzwerks 10 mit dem Verbindungspunkt des Widerstands 12 mit der Kapazität 13 verbunden ist. Darüber hinaus weist die erfindungsgemässe Umrichterschaltung einen ersten, zweiten, dritten, vierten, fünften und sechsten ansteuerbaren bidirektionalen Leistungshalbleiterschalter S1, S2, S3, S4, S5, S6 auf. Der fünfte und sechste Leistungshalbleiterschalter S5 und S6 bildet eine aktive Klemmschaltgruppe. Vorzugsweise ist der erste, zweite, dritte, vierte, fünfte und sechste ansteuerbare bidirektionale Leistungshalbleiterschalter S1, S2, S3, S4, S5, S6 jeweils durch einen integrierten Thyristor mit kommutierter Ansteuerelektrode und durch eine zu dem Thyristor antiparallel geschaltete Diode gebildet.In Fig. 1 a first embodiment of the inventive converter circuit is shown. The converter circuit according to Fig. 1 comprises a DC voltage circuit 1 formed by two capacitors connected in series, the DC voltage circuit 1 having a first main terminal 2 and a second main terminal 3 and a partial terminal 4 formed by the two adjacent and interconnected capacitors. Furthermore, in the inventive converter circuit according to Fig. 1 a first current increase limiting network 5 is provided, according to Fig. 1 an inductor 6 and a resistor 7 of the first current increase limiting network 5 is connected to the first main terminal 2, a capacitor 8 of the first current increase limiting network 5 is connected to the resistor 7 and to the partial terminal 4, and a diode 9 of the first current increase limiting network 5 is connected to the connection point of the resistor 7 is connected to the capacity 8. Furthermore, according to Fig. 1 a second current increase limiting network 10 is provided, wherein an inductor 11 and a resistor 12 of the second current increase limiting network 10 is connected to the second main terminal 3, a capacitor 13 of the second current increase limiting network 10 is connected to the resistor 12 and to the partial terminal 4 and a diode 14 of the second Current increase limiting network 10 is connected to the connection point of the resistor 12 to the capacitor 13. In addition, the converter circuit according to the invention has a first, second, third, fourth, fifth and sixth controllable bidirectional power semiconductor switches S1, S2, S3, S4, S5, S6. The fifth and sixth power semiconductor switches S5 and S6 form an active clamp switching group. Preferably, the first, second, third, fourth, fifth and sixth controllable bidirectional power semiconductor switches S1, S2, S3, S4, S5, S6 are each formed by an integrated thyristor with commutated drive electrode and by a diode connected in anti-parallel to the thyristor.

Gemäss Fig. 1 sind der erste, zweite, dritte und vierte Leistungshalbleiterschalter S1, S2, S3, S4 in Serie geschaltet und der erste Leistungshalbleiterschalter S1 ist mit der Induktivität 6 des ersten Stromanstiegsbegrenzungsnetzwerks 5 und der vierte Leistungshalbleiterschalter S4 mit der Induktivität 11 des zweiten Stromanstiegsbegrenzungsnetzwerks 10 verbunden. Desweiteren ist der fünfte und sechste Leistungshalbleiterschalter S5, S6 in Serie geschaltet, der Verbindungspunkt des fünften Leistungshalbleiterschalters S5 mit dem sechsten Leistungshalbleiterschalter S6 mit dem Teilanschluss 4 verbunden, der fünfte Leistungshalbleiterschalter S6 mit dem Verbindungspunkt des ersten Leistungshalbleiterschalters S1 mit dem zweiten Leistungshalbleiterschalter S2 verbunden und der sechste Leistungshalbleiterschalter S6 mit dem Verbindungspunkt des dritten Leistungshalbleiterschalters S3 mit dem vierten Leistungshalbleiterschalter S4 verbunden. Erfindungsgemäss ein erstes Spannungsanstiegsbegrenzungsnetzwerk 15 parallel zur Serienschaltung des ersten und zweiten Leistungshalbleiterschalters S1, S2 geschaltet und mit der Diode 9 des ersten Stromanstiegsbegrenzungsnetzwerks 5 verbunden. Ferner ist ein zweites Spannungsanstiegsbegrenzungsnetzwerk 16 parallel zur Serienschaltung des dritten und vierten Leistungshalbleiterschalters S3, S4 geschaltet und mit der Diode 14 des zweiten Stromanstiegsbegrenzungsnetzwerks 10 verbunden.According to Fig. 1 the first, second, third and fourth power semiconductor switches S1, S2, S3, S4 are connected in series and the first power semiconductor switch S1 is connected to the inductance 6 of the first current increase limiting network 5 and the fourth power semiconductor switch S4 to the inductance 11 of the second current increase limiting network 10. Further, the fifth and sixth power semiconductor switches S5, S6 are connected in series, the connection point of the fifth power semiconductor switch S5 is connected to the sixth power semiconductor switch S6 to the sub-terminal 4, the fifth power semiconductor switch S6 is connected to the connection point of the first power semiconductor switch S1 to the second power semiconductor switch S2, and sixth power semiconductor switch S6 connected to the connection point of the third power semiconductor switch S3 to the fourth power semiconductor switch S4. According to the invention, a first voltage increase limiting network 15 is connected in parallel to the series connection of the first and second power semiconductor switches S1, S2 and connected to the diode 9 of the first current increase limiting network 5. Further, a second voltage increase limiting network 16 is connected in parallel with the series circuit of the third and fourth power semiconductor switches S3, S4 and connected to the diode 14 of the second current increase limiting network 10.

Die beiden Spannungsanstiegsbegrenzungsnetzwerke 15, 16 bewirken beim Abschaltvorgang des ersten beziehungsweise zweiten, dritten, vierten, fünften und sechsten Leistungshalbleiterschalters S1, S2, S3, S4, S5 und S6, dass je einen Stromanteil in die Kapazitäten 19 und 20 der beiden Spannungsanstiegsbegrenzungsnetzwerke 15, 16 getrieben werden, so dass der Spannungsanstieg am ersten beziehungsweise zweiten, dritten, vierten, fünften und sechsten Leistungshalbleiterschalters S1, S2, S3, S4, S5 und S6 begrenzt wird. Die Begrenzung des Spannungsanstiegs führt vorteilhaft zu einer signifikanten Verringerung der Abschaltverluste sowie zu einer signifikanten Erhöhung des maximal abschaltbaren Stromes an den jeweiligen Leistungshalbleiterschaltern S1, S2, S3, S4, S5, S6 wodurch diese weitestgehend vor einer Beschädigung oder Zerstörung geschützt werden können.The two Spannungsanstiegsbegrenzungs networks 15, 16 cause at the shutdown of the first and second, third, fourth, fifth and sixth power semiconductor switch S1, S2, S3, S4, S5 and S6, that each a share of electricity in the capacitances 19 and 20 of the two Spannungsanstiegsbegrenzungsnetzwerke 15, 16th are driven, so that the voltage increase at the first and second, third, fourth, fifth and sixth power semiconductor switches S1, S2, S3, S4, S5 and S6 is limited. The limitation of the voltage rise advantageously leads to a significant reduction in the turn-off losses and to a significant increase in the maximum turn-off current at the respective power semiconductor switches S1, S2, S3, S4, S5, S6, whereby they can be largely protected against damage or destruction.

Gemäss Fig. 1 ist das erste und zweite Spannungsanstiegsbegrenzungsnetzwerk 15, 16 vorzugsweise jeweils durch eine Serieschaltung einer Diode 17, 18, einer Kapazität 19, 20 und einem Widerstand 21, 22 gebildet. Die Diode 9 des ersten Stromanstiegsbegrenzungsnetzwerks 5 ist nach Fig. 1 mit dem Verbindungspunkt der Diode 17 mit der Kapazität 19 des ersten Spannungsanstiegsbegrenzungsnetzwerks 15 verbunden. Insbesondere ist die Diode 17 des ersten Spannungsanstiegsbegrenzungsnetzwerks 15 mit dem Verbindungspunkt des ersten Leistungshalbleiterschalters S1 mit der Induktivität 6 des ersten Stromanstiegsbegrenzungsnetzwerks 5 verbunden. Weiterhin ist die Diode 14 des zweiten Stromanstiegsbegrenzungsnetzwerks 10 gemäss Fig. 1 mit dem Verbindungspunkt der Diode 18 mit der Kapazität 20 des zweiten Spannungsanstiegsbegrenzungsnetzwerks 16 verbunden. Insbesondere ist die Diode 18 des zweiten Spannungsanstiegsbegrenzungsnetzwerks 16 mit dem Verbindungspunkt des vierten Leistungshalbleiterschalters S4 mit der Induktivität 11 des zweiten Stromanstiegsbegrenzungsnetzwerks 10 verbunden.According to Fig. 1 For example, the first and second voltage increase limiting network 15, 16 are preferably each formed by a series connection of a diode 17, 18, a capacitor 19, 20 and a resistor 21, 22. The diode 9 of the first current increase limiting network 5 is after Fig. 1 is connected to the connection point of the diode 17 with the capacitance 19 of the first voltage increase limiting network 15. In particular, the diode 17 of the first voltage increase limiting network 15 is connected to the connection point of the first power semiconductor switch S1 to the inductance 6 of the first current increase limiting network 5. Furthermore, the diode 14 of the second current increase limiting network 10 is according to Fig. 1 is connected to the connection point of the diode 18 with the capacitance 20 of the second voltage increase limiting network 16. In particular, the diode 18 of the second voltage increase limiting network 16 is connected to the connection point of the fourth power semiconductor switch S4 with the inductance 11 of the second current increase limiting network 10.

Gemäss Fig. 1 weist die erfindungsgemässe Umrichterschaltung ein ansteuerbares Kurzschlusselement 23 auf, welches mit dem Teilanschluss 4 und mit dem Verbindungspunkt des zweiten mit dem dritten Leistungshalbleiterschalter S2, S3 verbunden ist. Das ansteuerbare Kurzschlusselement 23 lässt sich somit sehr einfach in den bestehenden Verbund der Leistungshalbleiterschalter S1, S2, S3, S4, S5, S6 der Umrichterschaltung integrieren, so dass vorteilhaft Platz gespart werden kann. Das ansteuerbare Kurzschlusselement 23 dient bei einem Kurzschluss in einem oder mehreren der Leistungshalbleiterschalter S1, S2, S3, S4, S5, S6 dazu, dass ein durch den Kurzschluss bedingter Kurzschlussstrom aus den Kondensatoren des Gleichspannungskreises 1 nur sehr kurz über den oder die kurzschlussbehafteten Leistungshalbleiterschalter S1, S2, S3, S4, S5, S6 und dann über das Kurzschlusselement 23 zum Teilanschluss 4 gelenkt wird, damit das oder die kurzschlussbehafteten Leistungshalbleiterschalter S1, S2, S3, S4, S5, S6 nicht weiter beschädigt, belastet oder zerstört werden. Das ansteuerbare Kurzschlusselement 23 gemäss Fig. 1 dient zudem bei einem Kurzschluss an einer oder mehreren Phasen eines an die Umrichterschaltung angeschlossenen elektrischen Wechselspannungsnetzes dazu, dass ein durch den Kurzschluss bedingter Kurzschlussstrom aus den Phasen nicht oder nur mit einer kleinen Amplitude über die Leistungshalbleiterschalter S1, S2, S3, S4, S5, S6, insbesondere über die Dioden der die Leistungshalbleiterschalter S1, S2, S3, S4, S5, S6 fliesst, damit die Leistungshalbleiterschalter S1, S2, S3, S4, S5, S6 nicht weiter oder überhaupt nicht beschädigt, belastet oder zerstört werden. Ein solcher Kurzschlussstrom bzw. Fehlerstrom wird in diesem Fall über das Kurzschlusselement 17 zum Teilanschluss 4 gelenkt. Das Kurzschlusselement 23 wird dann angesteuert, wenn mittels einer Detektionseinrichtung ein Kurzschlussstrom detektiert wird.According to Fig. 1 For example, the converter circuit according to the invention has a controllable short-circuit element 23, which is connected to the partial connection 4 and to the connection point of the second to the third power semiconductor switch S2, S3. The controllable short-circuit element 23 can thus be very easily integrated into the existing network of power semiconductor switches S1, S2, S3, S4, S5, S6 of the converter circuit, so that space can advantageously be saved. The controllable short-circuit element 23 is used in the event of a short circuit in one or more of the power semiconductor switches S1, S2, S3, S4, S5, S6 to cause a short-circuit current resulting from the short-circuit from the capacitors of the DC voltage circuit 1 is only very briefly over the short-circuited power semiconductor switch S1, S2, S3, S4, S5, S6 and then directed via the short-circuit element 23 to the partial connection 4, so that or the short-circuited power semiconductor switches S1, S2, S3, S4, S5 , S6 should not be further damaged, loaded or destroyed. The controllable short-circuit element 23 according to Fig. 1 Moreover, in the event of a short circuit at one or more phases of an electrical alternating voltage network connected to the converter circuit, a short circuit current from the phases caused by the short circuit is not or only with a small amplitude via the power semiconductor switches S1, S2, S3, S4, S5, S6 , in particular via the diodes of the power semiconductor switches S1, S2, S3, S4, S5, S6 flows, so that the power semiconductor switches S1, S2, S3, S4, S5, S6 no longer or not at all damaged, loaded or destroyed. Such a short-circuit current or fault current is directed in this case via the short-circuit element 17 to the partial connection 4. The short-circuit element 23 is then activated when a short-circuit current is detected by means of a detection device.

In Fig. 2 ist eine zweite Ausführungsform der erfindungsgemässen Umrichterschaltung gezeigt. Die zweite Ausführungsform gemäss Fig. 2 unterscheidet sich von der vorstehend detailliert beschriebenen ersten Ausführungsform gemäss Fig. 1 darin, dass ein ansteuerbares Kurzschlusselement vorgesehen ist, welches über eine Induktivität 24 mit dem Verbindungspunkt des zweiten mit dem dritten Leistungshalbleiterschalter S2, S3 verbunden ist, wobei eine Serienschaltung eines Widerstands 25 mit einer Kapazität 26 parallel zu dem ansteuerbaren Kurzschlusselement 23 geschaltet ist. Die Induktivität 24 und Serienschaltung des Widerstands 25 mit der Kapazität 26 sind optional. Die vorstehend beschriebene Verschaltung der Induktivität 24, des Widerstands 25 und der Kapazität 26 stellt beim Einschalten des Kurzschlusselementes 23 eine Stromanstiegsbegrenzungseinrichtung, d.h. der Stromanstieg beim Einschalten wird begrenzt, sowie beim Abschalten des Kurzschlusselementes 23 eine Spannungsanstiegsbegrenzungseinrichtung, d.h. der Spannungsanstieg beim Abschalten wird begrenzt, dar. Dieses ansteuerbare Kurzschlusselement 23 gemäss Fig. 2 dient bei einem Kurzschluss an einer oder mehreren Phasen eines an die Umrichterschaltung angeschlossenen elektrischen Wechselspannungsnetzes dazu, dass ein durch den Kurzschluss bedingter Kurzschlussstrom aus den Phasen nicht oder nur mit einer kleinen Amplitude über die Leistungshalbleiterschalter S1, S2, S3, S4, S5, S6, insbesondere über die Dioden der die Leistungshalbleiterschalter S1, S2, S3, S4, S5, S6 fliesst, damit die Leistungshalbleiterschalter S1, S2, S3, S4, S5, S6 nicht weiter oder überhaupt nicht beschädigt, belastet oder zerstört werden. Das Kurzschlusselement 23 wird dann angesteuert, wenn mittels einer Detektionseinrichtung ein Kurzschlussstrom detektiert wird, wobei das ansteuerbare Kurzschlusselement 23 dann die jeweils mit dem Kurzschlusselement 23 verbundene Phasen kurzschliesst.In Fig. 2 a second embodiment of the inventive converter circuit is shown. The second embodiment according to Fig. 2 differs from the first embodiment described in detail above Fig. 1 in that a controllable short-circuit element is provided, which is connected via an inductor 24 to the connection point of the second to the third power semiconductor switch S2, S3, wherein a series circuit of a resistor 25 with a capacitor 26 is connected in parallel to the drivable short-circuit element 23. The inductance 24 and series connection of the resistor 25 with the capacitance 26 are optional. The above-described interconnection of the inductor 24, the resistor 25 and the capacitor 26 provides when turning on the short-circuit element 23 a current increase limiting device, ie the current increase at power is limited, and when switching off the short-circuit element 23, a voltage increase limiting device, ie the voltage increase during shutdown is limited, is This controllable short-circuit element 23 according to Fig. 2 is used in the event of a short circuit at one or more phases of an electrical alternating voltage network connected to the converter circuit that a short circuit current caused by the short circuit from the phases is not or only with a small amplitude via the power semiconductor switches S1, S2, S3, S4, S5, S6, in particular via the diodes of the power semiconductor switches S1, S2, S3, S4, S5, S6 flows, so that the power semiconductor switches S1, S2, S3, S4, S5, S6 not further damaged or not at all, loaded or destroyed. The short-circuit element 23 is then activated when a short-circuit current is detected by means of a detection device, wherein the activatable short-circuit element 23 then short-circuits the phases connected to the short-circuit element 23.

Das Kurzschlusselement 23 nach Fig. 1 und Fig. 2 ist mit Vorteil aus zwei antiparallel geschalteten ansteuerbaren Leistungshalbleitern mit jeweiliger Druckkontaktierung, wie beispielsweise Scheibenthyristoren oder GTOs, gebildet. Der jeweilige ansteuerbare Leistungshalbleiterschalter des ansteuerbaren Kurzschlusselementes 23 kann aber auch durch einen integrierten Thyristor mit kommutierter Ansteuerelektrode oder durch einen Triac gebildet sein.The short-circuit element 23 after Fig. 1 and Fig. 2 is formed with advantage of two antiparallel connected controllable power semiconductors with respective pressure contact, such as disc thyristors or GTOs. The respective controllable power semiconductor switch of the activatable short-circuit element 23 can also be formed by an integrated thyristor with commutated drive electrode or by a triac.

Gemäss Fig. 1 und Fig. 2 ist parallel zur Serienschaltung des fünften und sechsten Leistungshalbleiterschalters S5, S6 ein Symmetrierungswiderstand 27 geschaltet. Der Symmetrierungswiderstand 27 dient mit Vorteil dazu, beispielsweise bei einem Abschaltvorgang sämtlicher Leistungshalbleiterschalter S1, S2, S3, S4, S5, S6 eine nahezu symmetrische Spannungsverteilung über den Leistungshalbleiterschalter S1, S2, S3, S4, S5, S6 zu erzielen und somit einzelne Leistungshalbleiterschalter S1, S2, S3, S4, S5, S6 vor zu grossen Spannungen zu schützen.According to Fig. 1 and Fig. 2 is connected in parallel with the series connection of the fifth and sixth power semiconductor switch S5, S6 a balancing resistor 27. The Symmetrierungswiderstand 27 is advantageously used, for example, in a shutdown of all power semiconductor switches S1, S2, S3, S4, S5, S6 to achieve a nearly symmetrical voltage distribution across the power semiconductor switch S1, S2, S3, S4, S5, S6 and thus individual power semiconductor switch S1 , S2, S3, S4, S5, S6 to protect against excessive voltages.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
GleichspannungskreisDC circuit
22
erster Hauptanschlussfirst main line
33
zweiter Hauptanschlusssecond main connection
44
Teilanschlusspart connection
55
erstes Stromanstiegsbegrenzungsnetzwerkfirst power rise limit network
66
Induktivität des ersten StromanstiegsbegrenzungsnetzwerksInductance of the first current rise limit network
77
Widerstand des ersten StromanstiegsbegrenzungsnetzwerksResistance of the first current rise limit network
88th
Kapazität des ersten StromanstiegsbegrenzungsnetzwerksCapacity of the first river-access-limiting network
99
Diode des ersten StromanstiegsbegrenzungsnetzwerksDiode of the first current rise limit network
1010
zweites Stromanstiegsbegrenzungsnetzwerksecond electricity increase limit network
1111
Induktivität des zweiten StromanstiegsbegrenzungsnetzwerksInductance of the second current rise limit network
1212
Widerstand des zweiten StromanstiegsbegrenzungsnetzwerksResistor of the second current rise limit network
1313
Kapazität des zweiten StromanstiegsbegrenzungsnetzwerksCapacity of the second current increase limiting network
1414
Diode des zweiten StromanstiegsbegrenzungsnetzwerksDiode of the second current rise limit network
1515
erstes Spannungsanstiegsbegrenzungsnetzwerkfirst voltage increase limiting network
1616
zweites Spannungsanstiegsbegrenzungsnetzwerksecond voltage increase limiting network
1717
Diode des ersten SpannungsanstiegsbegrenzungsnetzwerksDiode of the first voltage rise limiting network
1818
Diode des zweiten SpannungsanstiegsbegrenzungsnetzwerksDiode of the second voltage increase limiting network
1919
Kapazität des ersten SpannungsanstiegsbegrenzungsnetzwerksCapacity of the first voltage rise limiting network
2020
Kapazität des zweiten SpannungsanstiegsbegrenzungsnetzwerksCapacity of the second voltage increase limiting network
2121
Widerstand des ersten SpannungsanstiegsbegrenzungsnetzwerksResistance of the first voltage rise limiting network
2222
Widerstand des zweiten SpannungsanstiegsbegrenzungsnetzwerksResistance of the second voltage increase limiting network
2323
KurzschlusselementShort-circuit element
2424
Induktivitätinductance
2525
Widerstandresistance
2626
Kapazitätcapacity
2727
SymmetrierungswiderstandSymmeterisation resistance
S1S1
erste Leistungshalbleiterschalterfirst power semiconductor switch
S2S2
zweiter Leistungshalbleiterschaltersecond power semiconductor switch
S3S3
dritter Leistungshalbleiterschalterthird power semiconductor switch
S4S4
vierter Leistungshalbleiterschalterfourth power semiconductor switch
S5S5
fünfter Leistungshalbleiterschalterfifth power semiconductor switch
S6S6
sechster Leistungshalbleiterschaltersixth power semiconductor switch

Claims (9)

  1. Converter circuit having a DC voltage circuit (1) which is formed by two capacitors which are connected in series, the DC voltage circuit (1) comprising a first main connection (2) and a second main connection (3) and a partial connection (4) which is formed by the two adjacent capacitors which are connected to one another, having a first current rise limiting network (5), an inductance (6) and a resistor (7) of the first current rise limiting network (5) being connected to the first main connection (2), a capacitance (8) of the first current rise limiting network (5) being connected to the resistor (7) and to the partial connection (4), and a diode (9) of the first current rise limiting network (5) being connected to the junction point between the resistor (7) and the capacitance (8),
    having a second current rise limiting network (10), an inductance (11) and a resistor (12) of the second current rise limiting network (10) being connected to the second main connection (3), a capacitance (13) of the second current rise limiting network (10) being connected to the resistor (12) and to the partial connection (4), and a diode (14) of the second current rise limiting network (10) being connected to the junction point between the resistor (12) and the capacitance (13), having a first, a second, a third, a fourth, a fifth and a sixth drivable bidirectional power semiconductor switch (S1, S2, S3, S4, S5, S6), the first, second, third and fourth power semiconductor switches (S1, S2, S3, S4) being connected in series, and the first power semiconductor switch (S1) being connected to the inductance (6) of the first current rise limiting network (5), and the fourth power semiconductor switch (S4) being connected to the inductance (11) of the second current rise limiting network (10), and a first voltage rise limiting network (15) being connected in parallel with the series circuit comprising the first and second power semiconductor switches (S1, S2) and being connected to the diode (9) of the first current rise limiting network (5), and a second voltage rise limiting network (16) being connected in parallel with the series circuit comprising the third and fourth power semiconductor switches (S3, S4) and being connected to the diode (14) of the second current rise limiting network (10),
    characterized in that
    the fifth and sixth power semiconductor switches (S5, S6) are connected in series, the junction point between the fifth power semiconductor switch (S5) and the sixth power semiconductor switch (S6) is connected to the partial connection (4), the fifth power semiconductor switch (S5) is connected to the junction point between the first power semiconductor switch (S1) and the second power semiconductor switch (S2), and the sixth power semiconductor switch (S6) is connected to the junction point between the third power semiconductor switch (S3) and the fourth power semiconductor switch (S4) in order to protect against damage and destruction.
  2. Converter circuit according to Claim 1, characterized in that the first and second voltage rise limiting networks (15, 16) are each formed by a series circuit comprising a diode (17, 18), a capacitance (19, 20) and a resistor (21, 22).
  3. Converter circuit according to Claim 2, characterized in that the diode (9) of the first current rise limiting network (5) is connected to the junction point between the diode (17) and the capacitance (19) of the first voltage rise limiting network (15), and
    in that the diode (14) of the second current rise limiting network (10) is connected to the junction point between the diode (18) and the capacitance (20) of the second voltage rise limiting network (16).
  4. Converter circuit according to one of the preceding claims, characterized in that the first, second, third, fourth, fifth and sixth drivable bidirectional power semiconductor switches (S1, S2, S3, S4, S5, S6) are each formed by an integrated thyristor with a commutated drive electrode and by a diode which is connected back-to-back in parallel with the thyristor.
  5. Converter circuit according to one of Claims 1 to 4, characterized in that a drivable short-circuiting element (23) is connected to the partial connection (4) and to the junction point between the second and third power semiconductor switches (S2, S3).
  6. Converter circuit according to one of Claims 1 to 4, characterized in that provision is made of a drivable short-circuiting element (23) which is connected, via an inductance (24), to the junction point between the second and third power semiconductor switches (S2, S3), and in that a series circuit comprising a resistor (25) and a capacitance (26) is connected in parallel with the drivable short-circuiting element (23).
  7. Converter circuit according to Claim 5 or 6, characterized in that the drivable short-circuiting element (23) is formed from two drivable power semiconductor switches which are connected back-to-back in parallel and each have pressure contact.
  8. Converter circuit according to Claim 7, characterized in that the respective drivable power semiconductor switch of the drivable short-circuiting element (23) is formed by an integrated thyristor with a commutated drive electrode.
  9. Converter circuit according to one of the preceding claims, characterized in that a balancing resistor (27) is connected in parallel with the series circuit comprising the fifth and sixth power semiconductor switches (S5, S6).
EP05405380A 2004-07-20 2005-06-13 Converter circuit with voltage rise rate limitation Not-in-force EP1619785B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004034947A DE102004034947A1 (en) 2004-07-20 2004-07-20 Voltage rise limited converter circuit

Publications (3)

Publication Number Publication Date
EP1619785A2 EP1619785A2 (en) 2006-01-25
EP1619785A3 EP1619785A3 (en) 2008-02-20
EP1619785B1 true EP1619785B1 (en) 2008-10-29

Family

ID=35149626

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05405380A Not-in-force EP1619785B1 (en) 2004-07-20 2005-06-13 Converter circuit with voltage rise rate limitation

Country Status (3)

Country Link
EP (1) EP1619785B1 (en)
AT (1) ATE413012T1 (en)
DE (2) DE102004034947A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013008079A2 (en) * 2010-10-05 2016-06-14 Abb Technology Ag converter circuit
CN105099151A (en) * 2014-04-18 2015-11-25 台达电子企业管理(上海)有限公司 Converter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4670828A (en) * 1986-02-25 1987-06-02 Sundstrand Corporation Bi-directional switch for neutral point clamped PWM inverter
FI880817A (en) * 1987-07-17 1989-01-18 Siemens Ag ANORDNING FOER KOPPLING MED LAOG FOERLUST AV ETT HALVLEDARKOPPLINGSELEMENT I EN TREPUNKTVAEXELRIKTARE.
DE3743436C1 (en) * 1987-12-21 1989-05-11 Siemens Ag Switch-relieved, low-loss three-point inverter
JP3173068B2 (en) * 1991-10-22 2001-06-04 株式会社日立製作所 Power converter
EP1047180A3 (en) * 1999-04-20 2001-04-11 ABBPATENT GmbH ARCP three-point power converter or multi-point power converter

Also Published As

Publication number Publication date
DE502005005782D1 (en) 2008-12-11
EP1619785A2 (en) 2006-01-25
EP1619785A3 (en) 2008-02-20
ATE413012T1 (en) 2008-11-15
DE102004034947A1 (en) 2006-03-16

Similar Documents

Publication Publication Date Title
EP2100368B1 (en) Semiconductor protective elements for controlling short-circuits at the dc end of voltage source converters
DE10005449B4 (en) Overvoltage protection device for a matrix converter
EP1980013B1 (en) Switchgear cell and converter circuit for switching a large number of voltage levels
EP2338214B1 (en) Device having an inverter
DE10323220B4 (en) Short circuit for a partial converter
EP3211784B1 (en) Double submodule for a modular multilevel converter and modular multilevel converter comprising same
EP3255773B1 (en) Low loss double submodule for a modular multi-level converter and modular multi-level converter having same
EP1673849A1 (en) Converter circuit for connecting a plurality of switching voltage levels
EP1815586B1 (en) Converter circuit for switching a number of switching voltage levels
EP2328264B1 (en) Cycloconverter and system with such a cycloconverter
EP3556000A1 (en) Module for modular multi-level inverter comprising a short-circuiter and capacitor current limiting
DE10333798B4 (en) Method for short-circuiting a defective partial converter
EP1619783B1 (en) Converter with limited voltage rise
EP2625777B1 (en) Converter circuit
EP1453192B1 (en) Inverter circuit with short cicuit protection
WO2005008874A1 (en) Rectifier circuit
WO2013064310A1 (en) Inverter circuit and method for operating such an inverter circuit
EP1619785B1 (en) Converter circuit with voltage rise rate limitation
DE102004034948A1 (en) Voltage changer, e.g. for switching three voltage levels in a power semiconductor, has capacitors wired in series to form a direct current voltage circuit and networks for limiting current build-up
WO2007051321A2 (en) Voltage changer circuit for switching a multitude of turn-on voltage levels
EP3652849B1 (en) Coupling between circuits in drive networks
DE2831495A1 (en) Overcurrent protection circuit for static inverter - has diode shunting transistor in series with input smoothing capacitor
WO2004105225A2 (en) Converter circuit
EP3236572A1 (en) Power electronic switching cell and converter circuit with such switching cells
DE102004034945A1 (en) Frequency converter for limiting voltage rises has a direct current voltage circuit formed by two capacitors connected in series

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20080313

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005005782

Country of ref document: DE

Date of ref document: 20081211

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
LTIE Lt: invalidation of european patent or patent extension

Effective date: 20081029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090129

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090228

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081029

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081029

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090330

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081029

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081029

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081029

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081029

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090129

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081029

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081029

26N No opposition filed

Effective date: 20090730

BERE Be: lapsed

Owner name: ABB SCHWEIZ A.G.

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081029

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140618

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20140611

Year of fee payment: 10

Ref country code: DE

Payment date: 20140619

Year of fee payment: 10

Ref country code: IT

Payment date: 20140620

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140619

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005005782

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150613

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150613

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150613

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150613

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630