EP1614295A1 - Convertisseur et procede de conversion de signaux numeriques recus sous forme modulee et multiplexee - Google Patents

Convertisseur et procede de conversion de signaux numeriques recus sous forme modulee et multiplexee

Info

Publication number
EP1614295A1
EP1614295A1 EP04727910A EP04727910A EP1614295A1 EP 1614295 A1 EP1614295 A1 EP 1614295A1 EP 04727910 A EP04727910 A EP 04727910A EP 04727910 A EP04727910 A EP 04727910A EP 1614295 A1 EP1614295 A1 EP 1614295A1
Authority
EP
European Patent Office
Prior art keywords
signals
converter
sub
received
remultiplexed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04727910A
Other languages
German (de)
English (en)
Inventor
Raoul Monnier
Philippe Leyendecker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THOMSON LICENSING
Original Assignee
Thomson Licensing SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Licensing SAS filed Critical Thomson Licensing SAS
Publication of EP1614295A1 publication Critical patent/EP1614295A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/434Disassembling of a multiplex stream, e.g. demultiplexing audio and video streams, extraction of additional data from a video stream; Remultiplexing of multiplex streams; Extraction or processing of SI; Disassembling of packetised elementary stream
    • H04N21/4344Remultiplexing of multiplex streams, e.g. by modifying time stamps or remapping the packet identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/44Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/14Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/434Disassembling of a multiplex stream, e.g. demultiplexing audio and video streams, extraction of additional data from a video stream; Remultiplexing of multiplex streams; Extraction or processing of SI; Disassembling of packetised elementary stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/53Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers
    • H04H20/61Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers for local area broadcast, e.g. instore broadcast
    • H04H20/63Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers for local area broadcast, e.g. instore broadcast to plural spots in a confined site, e.g. MATV [Master Antenna Television]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • H04H40/90Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for satellite broadcast receiving

Definitions

  • the present invention relates to a converter and to a method for converting digital signals received in modulated and multiplexed form, in particular satellite signals.
  • Digital signals received from satellites are generally processed on reception by a reduced noise power supply, designated by LNB (for “Low Noise Block converter” or “Low Noise Blockdown amplifier”) or by LNC (for “Low Noise Converter ”).
  • LNB Low Noise Block converter
  • LNC Low Noise Converter
  • This block located at the focal point of a satellite receiving antenna, is intended to convert the received signals by frequency reduction and to amplify them, before sending them to other systems.
  • digital video signals are conventionally sent then to an antenna input of a set-top box receiver or STB (for "Set Top Box”), where they are subject to a frequency selection by tuning (or "tuning") ).
  • LNBs convert part of the signals received into Ku band (and potentially, Ka or C band) into the L band (950 MHz - 2150 MHz).
  • this technique has drawbacks when several digital decoders (STBs) or other television reception systems are used in a house or a building served by the satellite antenna equipped with this type of LNB. Indeed: - a classic LNB can only convert one of the four Band / Polarization combinations associated with a program that one wishes to receive; if two or more STBs must simultaneously receive programs transmitted on different combinations, then more sophisticated LNBs must be used, with a system of distributors / switches, and with cabling which quickly becomes complex when the number of STBs increases; - the signal transmitted by the LNB is located in a frequency band which is not always well supported (significant attenuation) by the distribution network of conventional TV signals (cable or wireless) present in houses or apartments; we must therefore either provide a satellite signal distribution network different from the cable / wireless signal network, or install better quality cables allowing all these signals to pass simultaneously.
  • STBs digital decoders
  • US patent ⁇ 5,528,633 describes the combination of a radio frequency band tuner stage (also called a tuner) with a phase quadrature frequency conversion-down stage
  • Downconverter quadrature in a single device.
  • This device acts as an amplitude modulation tuner for transforming radio frequencies into a baseband, and is intended in particular to receive radio frequency signals from an LNB and convert them into signals in a desired digital format.
  • the description specifies in particular that the digital data signals derived from any of the amplitude modulation formats can be supplied directly to a digital device as an output (col. 7, lines 41-44).
  • This technique can be used to facilitate the adaptation of signals at the output of LNB, but it does not solve the difficulties linked to the presence of several STBs.
  • WO-01/56297 relates to a home video distribution and storage system. It enables simultaneous wireless distribution of signals carrying satellite and Internet services to several televisions in a house.
  • a master set-top box or STB (for “Set Top Box”) connected to external antennas provided with LNBs is provided for transmitting radio signals to TV receivers.
  • the master STB includes from upstream to downstream a radio frequency (“RF") switch box, TV tuners, demodulators and demultiplexers for MPEG 2 (for "Moving Picture Experts Group”) or IP (for "Internet Protocol”) program streams "). It also includes a multiplexer of these streams for access to home TV receivers, via local antennas and slave STBs, as well as a converter to a wireless protocol, such as for example IEEE 802.11 or Hiperlan2.
  • RF radio frequency
  • the present invention provides a converter of digital satellite signals received in modulated and multiplexed form, which makes it possible to take into account several receivers simultaneously, in a manner which can be reliable and particularly economical.
  • the signal converter of the invention can also be used for digital signals received over the air.
  • the converter of the invention can also, in preferred embodiments, solve the problems of frequency acceptance downstream in a conventional TV signal distribution network.
  • the invention also relates to a method for converting digital signals received, having the aforementioned advantages.
  • the expression “converter” and “conversion” is understood here to mean broadly the transformation of digital signals from a first form into a second distinct form.
  • the subject of the invention is a converter of digital signals received in modulated and multiplexed form, comprising means for selecting at least a part of these signals by adjusting at least a determined frequency and for demodulating these parts. , capable of producing at least one demodulated sub-signal.
  • the converter also includes:
  • the converter comprises a box containing all of the above means, as well as means for lowering the frequency of the digital signals received, upstream of the selection means.
  • the converter unexpectedly integrates in the same housing intended for a lowering of frequency of signals, demultiplexing and remultiplexing means, which make it possible to select the desired programs, to combine them, and to produce at output, streams which not only condense the desired information but transmit it in a desired form, which can be adapted to a downstream network.
  • the converter of the invention contrasts with existing systems, in which the frequency lowering functions are dissociated from the tuning, demodulation and demultiplexing functions.
  • the first are integrated into LNBs while the second are implemented in an STB.
  • the seconds are incorporated in terminals capable of directly processing the modulated and multiplexed signals received from LNBs.
  • the converter of the invention goes against conventional wisdom, according to which the functions of frequency reduction are implemented in devices external to the houses and exposed to the bad weather, while the functions of tuning, demodulation and demultiplexing are grouped in more sophisticated devices in signal processing and used indoors, such as STBs.
  • the invention is particularly advantageous in that it can considerably reduce the cabling required and avoid requiring RF transmissions internally, and is therefore capable of significantly reducing costs.
  • the selection and demodulation means are advantageously capable of carrying out “adjustment at at least one determined frequency” thanks to the presence of one or more tuners.
  • they comprise a tuner which makes it possible to successively select desired frequencies.
  • they include several tuners in parallel, coupled with overhead sampling and digital signal processing for channel selection downstream. This last realization can allow in particular to receive several channels located at different frequencies in a given frequency band and to extract these channels in parallel.
  • the protocol used for the remultiplexed flows is advantageously a communication protocol to a digital network.
  • this preferred form amounts to repatriating into this LNB part of the functionalities usually found in an STB, so as to broadcast at the output of this LNB a digital signal in a standard used for example in the PC world.
  • IP Internet terminals
  • ADSL Analog Subscriber one
  • the communication protocol is chosen from the Ethernet standards, IEEE1394 (for "I ⁇ stitute of Electrical and Electronic Engineers"), IEEE802.11a, Hiperlan2 and a communication protocol by carrier current online.
  • a first version for which a cable is required to transmit the data we can notably rely on the Ethernet standard (10, 100 or 1000 base T, for example) or on a carrier current standard (Powerli ⁇ e) to constitute the network.
  • IEEE802.11a or IEEE802.11e standards are good candidates.
  • IP for “Internet Protocol”.
  • Other similar standards can, of course, be used.
  • IEEE802.11a / IP in the "wireless" version is Hiperlan2 / 1EEE1394.
  • the converter is intended to convert signals digital transmitted by satellite.
  • the converter is then preferably integrated into an LNB.
  • signals transmitted by hertzian way being able in particular to include a local multipoint telecommunication system or STML (in English: LMDS, for “Local Multipoint Distribution System”) or a hertzian system of distribution multipoint or SDM (in English: MMDS, for “Microwave Multipoint Distribution System”).
  • the converter is capable of processing both LMDS / MMDS satellite and radio signals.
  • the converter comprises means for receiving other digital signals received in modulated and multiplexed form and chosen from signals transmitted by cable and signals transmitted by terrestrial way in the VHF / UHF band, the means of selection, demultiplexing, remultiplexing and transformation being intended to be applied also to these other signals.
  • the converter is thus able to receive at least one other type of digital signal not requiring frequency reduction, and to apply to them the selection operations by frequency adjustment, demodulation, demultiplexing, remultiplexing and transformation, as for the associated signals.
  • a frequency reduction in particular satellite and / or radio LMDS and / or MMDS.
  • the converter is then provided with at least two inputs associated respectively with the two types of signals (respectively associated and not associated with a lowering of frequency).
  • UHF VHF UHF / VHF band
  • DVB-T Digital Video Broadcasting - Terrestrial
  • the selection and demodulation means are provided for selecting and demodulating digital transmission channels so as to produce the sub-signals.
  • These channels are typically selected from the set of channels available on a set of polarization and band combinations.
  • an LNB of the “Quattro” type is advantageously used for this purpose, which is designed to provide the four conventional polarization / band combinations (vertical or horizontal polarization, high or low band).
  • the demultiplexing means are preferably provided for extracting audiovisual programs, constituting at least some of the portions.
  • the remultiplexing means are then advantageously capable of remultiplexing these portions into MPEG transport trains constituting the remultiplexed flows.
  • the number of transport trains thus created depends on the number of different programs that are simultaneously viewed or recorded. If this number is small enough (typically less than 8), a single multiplex may suffice.
  • This remultiplexing operation can be accompanied by a modification of the transport packets: it may indeed be desirable to modify for example the value of certain fields of identification of packets (“PIDs” for “Packets Identifiers”) or that of certain clock reference fields (“PCRs” for “Program Clock References”).
  • the converter also comprises means for extracting transmission information received from the recipient receivers, and the transformation means are capable of determining the transmission criteria based on this transmission information.
  • the converter is thus able to adapt the nature of the output signals according to the types of the receiving devices or of the network to which they belong.
  • the converter also comprises means for extracting extraction information received from the destination receivers, and the transformation means are capable of determining the sub-signals and the portions as a function of this information. extraction. In this way, the converter is able to adapt to the demands of the receivers, and in particular to transmit the desired programs to them.
  • coming from the receivers means not only messages sent directly by these receivers, but also messages transmitted by one or more entities of a local network to which these receivers are linked.
  • the information indicated above is not obtained from information communicated by the destination receivers, but is either predetermined, either set by an operator independent of the receivers and their local home network.
  • the converter also comprises means for modulating return signals from the destination receivers. It can thus, in particular, simplify the feedback of information in the case of a satellite return channel (bidirectional LNB).
  • An advantage significant of such an embodiment is that it authorizes identical destination receivers (in particular STBs), whether a return path to an operator is provided or not. Modulation functions usually designed to be integrated in receivers with return path to operator are in fact incorporated in the converter. It is sufficient that the receivers are provided with local interactivity capacities, that is to say have an uplink communication channel towards the converter.
  • the converter is able to modulate the return signals according to at least two distinct types of modulation.
  • Such a versatile converter is capable of adapting to several return transmission channels, for example the satellite and the radio channel, depending on the mode of use which is made of them.
  • the invention also relates to a method for converting digital signals received in modulated and multiplexed form, in which a frequency reduction of the received signals is carried out, at least part of these signals are selected by adjustment to at least one determined frequency and these parts are demodulated so as to produce at least one demodulated sub-signal.
  • This conversion process includes steps of:
  • This conversion process is preferably implemented by means of a converter according to any one of the embodiments of the invention.
  • FIG. 1 is a block diagram of a set of transmitting signals to a transmission network, transforming the signals received by a converter according to the invention and transmitting flows from the converter to receivers a local network;
  • FIG. 2 shows schematically in the form of functional blocks the converter of Figure 1;
  • FIG. 3 shows a first application of the converter of Figures 1 and 2, to an LNB associated with a cable network;
  • FIG. 4 shows a second application of the converter of Figures 1 and 2, to an LNB associated with a wireless network
  • FIG. 5 shows a third application of the converter of Figures 1 and 2, to three LNBs associated jointly with a cable network;
  • FIG. 6 schematically illustrates the integration of the converter of Figures 1 and 2 in an LNB, for example for one of the embodiments of Figures 3 to 5;
  • FIG 7 shows in the form of functional blocks a
  • modules represented are functional units, which may or may not correspond to physically distinguishable units.
  • these modules or some of them can be grouped in a single component, or constitute functionalities of the same software.
  • some modules may possibly be composed of separate physical entities.
  • a transmitter 2 ( Figure 1) sends by general broadcast (called “broadcasting") broadcast signals 11 in modulated and multiplexed form to receivers R1, R2 ... Rn, via a transmission network 5 which is for example a network satellite or cable.
  • the broadcast signals 11 are received by a signal converter 1 associated with a local network 6, connecting the receivers R1-Rn.
  • This converter 1 has the function of transforming the signals 11 so as to produce flows 15 adapted to the local network 6 and to the receivers R1-Rn, as a function in particular of control information 16 transmitted by these receivers or by entities of the local network 6.
  • the receivers R1-Rn are capable of communicating to the transmitter 2 of the return signals via the converter 1 - or to another system, such as for example a service operator. These return signals are sent as uplink communication signals 17 to converter 1, then transformed by converter 1 into modulated return signals 18, which are then relayed to transmitter 2.
  • the converter 1 comprises a frequency lowering module 41 and a tuning and demodulation selection module 21 applied to the signals 11 received, intended to produce sub-signals 12, for example extracted from channels of 'emission determined.
  • the converter 1 also includes a demultiplexing module 22 capable of extracting portions 13 of these sub-signals 12, typically consisting of audiovisual programs.
  • a remultiplexing module 23 has the function of multiplexing these portions 13 into one or more remultiplexed streams 14, which may consist of one or more MPEG transport trains.
  • a transformation module 24 is responsible for modifying these remultiplexed flows 14 in accordance with determined criteria for transmission to the receivers R1-Rn, for example according to a communication protocol adapted to the local network 6. The adapted flows 15 thus produced at the output of the module 24 are sent to the R1 -Rn receptors.
  • the converter 1 also has a determination module
  • control parameters provided for extracting from the control information 16 communicated by the local network 6 (in particular by the receivers R1-Rn), control parameters intended to govern the functions implemented in the converter 1: protocol to be implemented vis-à-vis the local network 6, types of sub-signals and portions to be extracted, etc.
  • a modulation module 27 present in the converter 1 also processes the uplink communication signals 17, so as to produce the modulated return signals 18.
  • a frequency elevation module 42 prepares these signals before transmission.
  • a control unit 26 oversees the operation of all the modules of the converter 1.
  • the converter 1 being integrated in an LNB.
  • the converter 1 can be considered either as constituting the LNB itself, or appearing as a box containing the functional modules described above and incorporated into the LNB.
  • a satellite antenna 50A provided with an LNB with converter 1A is connected to a wired local network 6A based on the Ethernet 100 Base T standard (hereinafter “100BT” for simplify) and having a pivot station 7A ("100BT hub").
  • This station serves various receiving devices R1A, R2A ... R7A such as STBs, television, PC, printer and ADSL modem.
  • the converter 1A of the LNB, wired to the pivot station 7A, is capable of transforming the satellite signals 11 received by directly producing the adapted flows 15 according to the Ethernet standard 100BT.
  • a satellite antenna 50B provided with an LNB with converter 1B is provided for transmitting to a wireless local area network 6B based on the IEEE802.11a standard.
  • This station serves various receiving devices R1B, R2B ... R6B such as STBs, PC, printer and ADSL modem.
  • the converter 1 B of the LNB is capable of transforming the satellite signals 11 received by directly producing the adapted flows 15 according to the IEEE802.11a standard.
  • three satellite antennas 50C, 50C and SOC are connected to a wired local network 6C based on the Ethernet standard 100BT and having a pivot station 7C.
  • This station serves various R1C, R2C ... R6C receiving devices such as STBs, television, PC and printer.
  • Each of the converters 1C, 1C and 1C ", wired to the pivot station 7C is capable of transforming the satellite signals 11 received by directly producing the adapted flows 15 according to the Ethernet 100BT standard.
  • the taking into account of several antennas thus makes it possible to support multiple packages for the 6C network
  • the described embodiment allows a simplification of the installation, by eliminating the signal distribution and switching accessories necessary in a conventional installation.
  • An LNB 51 containing the converter 1 (FIG. 6) comprises, within the converter 1, a module 31 for separating combinations of the signals 11 received.
  • This separation module 31 is capable of providing, for example, the four polarization / band combinations, the LNB being of the Quattro type, and of transmitting them to the selection and demodulation module 21. It is also provided for carrying out a frequency reduction and amplification of the received signals.
  • the selection and demodulation module 21 consists of a multichannel tuner / demodulator, which makes it possible to select and demodulate m determined digital satellite channels from among all the channels available on the four polarization / combinations bandaged.
  • a demultiplexing and remultiplexing unit 28 which groups the demultiplexing 22 and demultiplexing modules 23, extracts from the m demodulated channels the programs that the viewer (s) wish (s) to watch or record, and remultiplex these channels, for example into p MPEG transport trains (the “multiplexes”).
  • a network interface 29 of the converter 1, including the transformation 24 and determination 25 control parameter modules, is responsible for encapsulating these p multiplexes in transmission frames of the chosen communication protocol (for example IP and Ethernet 100BT or IEEE802 .11a).
  • This network interface 29 also extracts control information 16 received from the various devices present on the network 6, that which is necessary to determine the requesting devices, as well as the channels and programs which must be demodulated. This information is used to fill in the recipient fields of the transmission frames and to control by means of the control unit 26 via a control bus, the tuner / demodulator 21 and the multiplexer / demultiplexer (unit 28).
  • the network interface 29 has the additional function of recovering the data to be transmitted (uplink communication signals 17) and of transmitting them to the modulation module 27.
  • the converter 1 also comprises a transposition and amplification module 32, provided for processing the modulated return signals 18 transmitted by the modulation module 27, before their return sending by satellite.
  • a suitable STB 60 (FIG. 7) corresponding to the LNB 51 comprises a network interface 62 intended to receive the adapted flows 15 coming from the converter 1, that is to say responding to a communication protocol on the local network (for example Ethernet 100BT or IEEE802.11a).
  • the STB 60 also includes a set 61 of conventional functions including a demultiplexer module 63, an audio / video decoder 64, an external interface 65 for television and a processor 66 controlling these various entities via a control bus.
  • the STB 60 is therefore identical to a conventional satellite STB with the exception of its front end for satellite reception (tuner and demodulator), replaced here by the network interface 62 making it possible to receive the data present on the network used.
  • the interface 62 and the processor 66 are adapted to transmit to the LNB 51 presence information, as well as possibly data relating to the identity of the communication protocol used.
  • the STB 60 sends this information on request from converter 1 (this request can in particular be triggered by an operator during an initialization or update phase, or be triggered periodically automatically) .
  • the STB 60 is designed to trigger the sending of this information on each connection to a network, and to send an end of presence signal on each disconnection.
  • no satellite return channel is provided, so that the LNB does not include modules 27 and 32.
  • LNB 51 and STB 60 are detailed below for LNB 51 and STB 60 (suffix "D"). To simplify the presentation, the parts of LNB 51 D and STB 60D relating to the satellite return channel are not shown or expanded in the comments.
  • the LNB 51 D ( Figure 8) includes within the 1 D converter the separation module 31 D delivering the four polarization / band combinations (LNB Quattro), in the form of four BIS signals (for "Intermediate Satellite Band”; in English IF for "Interm ⁇ diate Frequencies") in the frequency band 950 MHz - 2150 MHz.
  • the selection and demodulation module 21 (referenced 21 D) comprises a switching matrix 33, which makes it possible to orient any of these four signals towards a set of m tuners T1, T2 ... Tm and respectively associated demodulators DMD1, DMD2 ... DMDm.
  • Ti tuners are known tuners, delivering an analog signal which is then sampled and converted to digital by the first stages of the DMDi demodulators.
  • these m isolated Ti tuners are replaced by a digital tuner, which samples the BIS signals very early and digitally performs all the filtering and transposition operations to supply the m signals to be demodulated.
  • the demultiplexing and remultiplexing unit 28 (referenced
  • the m demodulation and demultiplexing operations are those commonly found in satellite STBs.
  • the function of m DMDi demodulators and DMXi demultiplexers is to process the signals according to the transmission standard used (for example DVB-S in Europe - for “Digital Video Broadcasting - Satellite” and DSS in the USA - for “Digital Satellite System”) and to restore the data corresponding to the programs that viewers connected to the local network 6 wish to watch or record.
  • the remultiplexing unit 23D makes it possible to remultiplex the m programs restored in p streams (for example transport trains or “Transport Streams” for the MPEG standard), which can optionally consist of a single stream, and present them to the 29D network interface.
  • p streams for example transport trains or “Transport Streams” for the MPEG standard
  • This network interface 29D successively comprises in the transmission chain:
  • a device 34 for managing a high-level protocol such as, for example, IP
  • an interface 35 for controlling access to the medium known as a MAC interface (for "Medium Access Control"), responsible for managing access to the transmission medium; this interface, which depends on the medium, is different for the wired version and the wireless version;
  • a physical interface 36 provided for physically processing the signals present on the transmission medium and the nature of which depends on this medium; - and optionally in the case of a wireless link (for example with the IEEE802.11a protocol), a radio interface 37 responsible for operations associated with radio broadcasts (transposition, filtering, power control, gain control, etc.) .
  • a processor 38 provided with its RAM memory (for “Ra ⁇ dom
  • the detailed STB, referenced 60D differs from conventional satellite STBs by its network interface 62D, which replaces the front end for satellite reception (tuner and demodulator).
  • This network interface 62D successively comprises in the transmission chain: optionally, in the case where the local network 6 is of the wireless type, a radio interface 67; a physical interface 68, physically processing the signals present on the interface; this interface 68 depends on the transmission medium used and is different for the wired version and the wireless version; - a MAC 69 interface, providing an access layer to the transmission medium; this interface 69 also depends on the transmission medium;
  • a layer 70 of high level protocol for example IP.
  • the converter 1 is capable of processing radio signals (in particular MMDS / LMDS), instead of or in addition to satellite signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Radio Relay Systems (AREA)
  • Superheterodyne Receivers (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Small-Scale Networks (AREA)
  • Communication Control (AREA)

Abstract

La présente invention concerne un convertisseur (1) et un procédé de conversion de signaux numériques (11) reçus sous forme modulée et multiplexée. Le convertisseur comprend dans un même boîtier, des moyens (41) d'abaissement de fréquence des signaux reçus, de sélection (21) d'au moins une partie des signaux par réglage à au moins une fréquence déterminée et de démodulation de ces parties, produisant au moins un sous-signal démodulé (12), de démultiplexage (22) de ces sous-signaux, extrayant des portions (13), de remultiplexage (23) de ces portions extraites en au moins un flux remultiplexé (14), et de transformation (24) modifiant ces flux remultiplexés conformément à au moins un protocole de communication. Application à des LNBs.

Description

Convertisseur et procédé de conversion de signaux numériques reçus sous forme modulée et multiplexée
La présente invention se rapporte à un convertisseur et à un procédé de conversion de signaux numériques reçus sous forme modulée et multiplexée, en particulier de signaux satellites.
Les signaux numériques reçus en provenance de satellites sont généralement traités à la réception par un bloc d'alimentation à bruit réduit, désigné par LNB (pour « Low Noise Block converter » ou « Low Noise Blockdown amplifier ») ou par LNC (pour « Low Noise Converter »). Ce bloc, situé au foyer d'une antenne satellite réceptrice, est prévu pour convertir par abaissement de fréquence les signaux reçus et pour les amplifier, avant de les envoyer vers d'autres systèmes. Ainsi, des signaux vidéo numériques sont classiquement envoyés ensuite vers une entrée antenne d'un boîtier récepteur décodeur ou STB (pour « Set Top Box »), où ils font l'objet d'une sélection de fréquences par syntonisation (ou « tuning »). Typiquement, les LNBs convertissent en bande L (950 MHz - 2150 MHz) une partie des signaux reçus en bande Ku (et potentiellement, en bande Ka ou C).
Cette technique présente cependant des inconvénients lorsque plusieurs décodeurs numériques (STBs) ou autres systèmes de réception de télévision sont utilisés dans une maison ou un immeuble desservi par l'antenne satellite équipé de ce type de LNB. En effet : - un LNB classique ne sait convertir qu'une seule des quatre combinaisons Bande/Polarisation associée à un programme que l'on souhaite recevoir ; si deux STBs ou plus doivent recevoir simultanément des programmes transmis sur des combinaisons différentes, il faut alors faire appel à des LNBs plus sophistiqués, à un système de répartiteurs / commutateurs, et à un câblage qui devient vite complexe lorsque le nombre de STBs augmente ; - le signal transmis par le LNB se situe dans une bande de fréquences qui n'est pas toujours bien supportée (atténuation importante) par le réseau de distribution des signaux TV classique (câble ou hertzien) présent dans les maisons ou appartements ; on doit donc soit prévoir un réseau de distribution du signal satellite différent du réseau du signal câble/hertzien, soit installer des câbles de meilleure qualité permettant de passer simultanément tous ces signaux.
Le brevet US~5.528.633 décrit la combinaison d'un étage syntoniseur (aussi appelé tuner) à bande de fréquence radio, avec un étage de conversion-abaissement de fréquence en quadrature de phase
(« quadrature downconverter ») dans un unique appareil. Cet appareil fait office de tuner à modulation d'amplitude pour transformation de fréquences radio en une bande de base, et est prévu notamment pour recevoir des signaux à fréquences radio d'un LNB et les convertir en des signaux en un format numérique souhaité. Le descriptif précise notamment que les signaux de données numériques dérivés de n'importe lequel des formats de modulation d'amplitude peuvent être fournis directement à un dispositif numérique en sortie (col. 7, lignes 41-44).
Cette technique peut être utilisée pour faciliter l'adaptation de signaux en sortie de LNB, mais elle ne résout pas les difficultés liées à la présence de plusieurs STBs.
Le document WO-01/56297 concerne un système de distribution et de stockage domestique de vidéo. Il rend possible la distribution simultanée sans fil de signaux porteurs de services satellites et Internet vers plusieurs téléviseurs d'une maison.
A cet effet, un boîtier décodeur ou STB (pour « Set Top Box ») maître connecté à des antennes externes pourvues de LNBs est prévu pour émettre des signaux radio vers des récepteurs TV. La STB maîtresse comprend d'amont en aval un boîtier de commutation en radiofréquences («. RF »), des syntoniseurs TV, des démodulateurs et des démultiplexeurs de flux de programmes MPEG 2 (pour « Moving Picture Experts Group ») ou IP (pour « Internet Protocol »). Elle comprend aussi un multiplexeur de ces flux pour accès aux récepteurs TV de la maison, via des antennes locales et des STBs esclaves, ainsi qu'un convertisseur à un protocole sans fil, tel que par exemple IEEE 802.11 ou Hiperlan2.
Un inconvénient des techniques divulguées dans ce document est qu'elles contraignent à mettre en place un système de transmission RF à l'intérieur de la maison. De plus, les câblages entre les LNBs et la STB maîtresse sont sources de coûts additionnels.
La présente invention propose un convertisseur de signaux numériques satellites reçus sous forme modulée et multiplexée, qui rend possible une prise en compte simultanée de plusieurs récepteurs, d'une manière pouvant être fiable et particulièrement économique.
Le convertisseur de signaux de l'invention est de plus utilisable pour des signaux numériques reçus par voie hertzienne.
Le convertisseur de l'invention peut également, dans des modes de réalisation préférés, résoudre les problèmes d'acceptation de fréquence en aval dans un réseau de distribution de signaux TV classiques.
L'invention est aussi relative à un procédé de conversion de signaux numériques reçus, ayant les avantages précités.
Par « convertisseur » et « conversion », on vise ici de manière large la transformation de signaux numériques d'une première forme en une seconde forme distincte. A cet effet, l'invention a pour objet un convertisseur de signaux numériques reçus sous forme modulée et multiplexée, comprenant des moyens de sélection d'au moins une partie de ces signaux par réglage à au moins une fréquence déterminée et de démodulation de ces parties, aptes à produire au moins un sous-signal démodulé.
Le convertisseur comprend aussi :
- des moyens de démultiplexage de sous-signaux, prévus pour extraire des portions de ces sous-signaux ; - des moyens de remultiplexage des portions extraites en au moins un flux remultiplexé ;
- et des moyens de transformation de ce flux remultiplexé, prévus pour modifier ce flux remultiplexé conformément à des critères déterminés de transmission vers des récepteurs destinataires, ces moyens de transformation étant prévus pour modifier ce flux remultiplexé de façon à le rendre conforme à au moins un protocole de communication.
Selon l'invention, le convertisseur comprend un boîtier contenant l'ensemble des moyens ci-dessus, ainsi que des moyens d'abaissement de fréquence des signaux numériques reçus, en amont des moyens de sélection.
Ainsi, le convertisseur intègre de manière inattendue dans un même boîtier prévu pour un abaissement de fréquence de signaux, des moyens de démultiplexage et de remultiplexage, qui permettent de sélectionner les programmes souhaités, de les recombiner, et de produire en sortie, des flux qui non seulement condensent les informations souhaitées mais les transmettent sous une forme voulue, pouvant être adaptée à un réseau aval. Le convertisseur de l'invention contraste avec les systèmes existants, dans lesquels les fonctions d'abaissement de fréquence sont dissociées des fonctions de syntonisation, de démodulation et de démultiplexage. Notamment, dans le document WO-01/56297, les premières sont intégrées dans des LNBs tandis que les secondes sont mises en œuvre dans une STB. Dans d'autres techniques connues, les secondes sont incorporées dans des terminaux aptes à traiter directement les signaux modulés et multiplexes, reçus en provenance de LNBs.
Le convertisseur de l'invention va à encontre des idées reçues, selon lesquelles les fonctionnalités d'abaissement de fréquence sont mises en œuvre dans des dispositifs extérieurs aux habitations et exposés aux intempéries, tandis que les fonctionnalités de syntonisation, démodulation et démultiplexage sont regroupées dans des appareils plus sophistiqués dans le traitement des signaux et utilisés en intérieur, tels que des STBs.
L'invention est particulièrement intéressante, en ce qu'elle peut permettre de réduire considérablement les câblages nécessaires et éviter de requérir des transmissions RF en interne, et est donc susceptible de réduire sensiblement les coûts.
Les moyens de sélection et de démodulation sont avantageusement capables d'effectuer le « réglage à au moins une fréquence déterminée » grâce à la présence d'un ou plusieurs syntoniseurs. Ainsi, selon une première forme de réalisation de ces moyens, ils comprennent un syntoniseur qui permet de sélectionner successivement des fréquences souhaitées. Dans une deuxième forme de réalisation, ils comprennent plusieurs syntoniseurs en parallèle, couplés à un échantillonnage en tête et à un traitement numérique de signal pour sélection de canal en aval. Cette dernière réalisation peut permettre notamment de recevoir plusieurs canaux situés à des fréquences différentes dans une bande de fréquences donnée et d'extraire ces canaux en parallèle.
Plusieurs convertisseurs peuvent être combinés de façon à rendre disponibles aux récepteurs des signaux en provenance de plusieurs sources distinctes. Pour ce faire, on recueille avantageusement dans un système central de distribution les flux remultiplexés issus des différents convertisseurs et rendus compatibles par des critères de transmission similaires. Ce système central fait alors office de relais vis-à-vis des récepteurs destinataires.
De plus, le déploiement des systèmes peut se décliner de différentes façons, notamment :
- à l'intérieur d'une maison individuelle, - à l'intérieur d'un immeuble,
- ou au sein d'un groupe de maisons individuelles ou d'immeubles.
Le protocole utilisé pour les flux remultiplexés (ou au moins un des protocoles utilisés) est avantageusement un protocole de communication vers un réseau numérique. Dans le cas où le convertisseur est incorporé dans un LNB, cette forme préférée revient à rapatrier dans ce LNB une partie des fonctionnalités se trouvant habituellement dans une STB, de façon de diffuser en sortie de ce LNB un signal numérique dans un standard utilisé par exemple dans le monde du PC.
Ces modes de réalisation sont particulièrement judicieux au regard des nouvelles technologies, dont le marché est fortement tiré par les applications liées au monde de l'ordinateur personnel ou PC (pour « Personal Computer »), une convergence entre ce monde et celui de la télévision étant en cours d'émergence. On peut en effet proposer de la sorte au sein d'une maison ou d'un immeuble, une distribution du signal TV sous une forme identique à celle utilisée pour la transmission de données entre PCs.
Un tel mode de distribution permet également de recevoir plus facilement par satellite d'autres types de services que la vidéo (tels que des données spécifiques ou Internet). Il autorise ainsi une extension aux bouquets satellite des offres disponibles sur des terminaux Internet (terminaux « IP »), qui sont aujourd'hui aptes à recevoir la TV numérique via ADSL (pour « Asymmetric Digital Subscriber une »).
Préférentiellement, le protocole de communication est choisi parmi les normes Ethernet, IEEE1394 (pour « Iπstitute of Electrical and Electronic Engineers »), IEEE802.11a, Hiperlan2 et un protocole de communication par courant porteur en ligne.
En fait, trois variantes au moins portant sur ce protocole sont envisageables : une première version pour laquelle un câble est nécessaire pour transmettre les données ; une deuxième version "sans fil" ; et une troisième version exploitant un réseau d'alimentation électrique. Pour la première, on peut notamment s'appuyer sur la norme Ethernet (10, 100 ou 1000 base T, par exemple) ou sur une norme de courants porteurs (Powerliπe) pour constituer le réseau. Pour la deuxième, les normes IEEE802.11a ou IEEE802.11e sont de bons candidats. Le protocole haut niveau envisageable est IP (pour « Internet Protocol »). D'autres normes similaires peuvent, bien entendu, être utilisées. Par exemple, une autre solution que IEEE802.11a/IP dans la version "sans fil" est Hiperlan2/1EEE1394.
Dans une forme de réalisation préférée relative à la communication amont, le convertisseur est destiné à convertir des signaux numériques transmis par satellite. Le convertisseur est alors préférentiellement intégré dans un LNB.
Dans une autre forme de réalisation, il est destiné à convertir des signaux transmis par voie hertzienne, pouvant notamment inclure un système de télécommunication multipoint local ou STML (en anglais : LMDS, pour « Local Multipoint Distribution System ») ou un système hertzien de distribution multipoint ou SDM (en anglais : MMDS, pour « Microwave Multipoint Distribution System »).
Dans une forme avantageuse, le convertisseur est apte à traiter à la fois des signaux satellites et hertziens LMDS/MMDS.
De plus, selon des réalisations intéressantes, le convertisseur comprend des moyens de réception d'autres signaux numériques reçus sous forme modulée et multiplexée et choisi parmi des signaux transmis par câble et des signaux transmis par voie terrestre dans la bande des ondes métriques et décimétriques, les moyens de sélection, de démultiplexage, de remultiplexage et de transformation étant destinés à être appliqués aussi à ces autres signaux.
Le convertisseur est ainsi apte à recevoir au moins un autre type de signaux numériques ne requérant pas d'abaissement de fréquence, et à leur appliquer les opérations de sélection par réglage en fréquence, démodulation, démultiplexage, remultiplexage et transformation, comme pour les signaux associés à un abaissement de fréquence (en particulier satellite et/ou hertzien LMDS et/ou MMDS). Le convertisseur est alors muni d'au moins deux entrées associées respectivement aux deux types de signaux (respectivement associés et non associés à un abaissement de fréquence).
Avantageusement, il est ainsi prévu pour :
- une réception terrestre numérique dans la bande des ondes décimétriques/métriques (notées en anglais « UHF VHF » pour « Ultra-High Frequencies » et « Very High Frequencies »), par exemple conforme à la norme DVB-T (pour « Digital Video Broadcasting - Terrestrial ») ;
- et/ou une réception câble, en plus d'une réception satellite et/ou hertzienne LMDS et/ou MMDS.
Avantageusement, les moyens de sélection et de démodulation sont prévus pour sélectionner et démoduler des canaux numériques d'émission de façon à produire les sous-signaux. Ces canaux sont typiquement sélectionnés parmi l'ensemble des canaux disponibles sur un ensemble de combinaisons de polarisation et de bande. Pour des signaux satellites, on utilise avantageusement à cet effet un LNB de type « Quattro », qui est prévu pour fournir les quatre combinaisons classiques polarisation/bande (polarisation verticale ou horizontale, bande haute ou basse).
Les moyens de démultiplexage sont préférentiellement prévus pour extraire des programmes audiovisuels, constituant au moins certaines des portions. Les moyens de remultiplexage sont alors avantageusement capables de remultiplexer ces portions en des trains transport MPEG constituant les flux remultiplexés. Le nombre des trains transport ainsi créés dépend du nombre de programmes différents qui sont simultanément regardés ou enregistrés. Si ce nombre est assez faible (typiquement inférieur à 8), un seul multiplex peut suffire. Cette opération de remultiplexage peut s'accompagner d'une modification des paquets transport : il peut en effet être souhaitable de modifier par exemple la valeur de certains champs d'identification de paquets (« PIDs » pour « Packets Identifiers ») ou celle de certains champs de référence d'horloge (« PCRs » pour « Program Clock Références »).
Préférentiellement, le convertisseur comprend aussi des moyens d'extraction d'informations de transmission reçues en provenance des récepteurs destinataires, et les moyens de transformation sont capables de déterminer les critères de transmission en fonction de ces informations de transmission. Le convertisseur est ainsi capable d'adapter la nature des signaux de sortie en fonction des types des appareils récepteurs ou du réseau auquel ils appartiennent.
De plus, préférentiellement, le convertisseur comprend aussi des moyens d'extraction d'informations d'extraction reçues en provenance des récepteurs destinataires, et les moyens de transformation sont capables de déterminer les sous-signaux et les portions en fonction de ces informations d'extraction. De cette manière, le convertisseur est capable de s'adapter aux demandes des récepteurs, et en particulier de leur transmettre les programmes voulus.
Par l'expression « en provenance des récepteurs », on entend non seulement des messages envoyés directement par ces récepteurs, mais aussi des messages transmis par une ou plusieurs entités d'un réseau local auquel sont liés ces récepteurs.
Dans des variantes de réalisation, les informations indiquées ci- dessus (critères de transmission, sous-signaux et portions de sous-signaux) ou certaines d'entre elles ne sont pas obtenues à partir de renseignements communiqués par les récepteurs destinataires, mais sont soit prédéterminées, soit fixées par un opérateur indépendant des récepteurs et de leur réseau local d'appartenance.
Selon une réalisation particulièrement avantageuse, le convertisseur comprend aussi des moyens de modulation de signaux de retour en provenance des récepteurs destinataires. II peut ainsi, notamment, simplifier la remontée d'informations dans le cas d'une voie de retour satellite (LNB bidirectionnel). Un avantage significatif d'une telle réalisation est qu'elle autorise des récepteurs destinataires identiques (en particulier des STBs), qu'une voie de retour vers un opérateur soit prévue ou non. Des fonctions de modulation habituellement prévues pour être intégrées dans les récepteurs avec voie de retour vers opérateur sont en effet incorporées dans le convertisseur. Il suffit que les récepteurs soient pourvus de capacités d'interactivité locale, c'est-à- dire disposent d'une voie de communication montante vers le convertisseur.
Dans un mode de réalisation avantageux avec une telle modulation centralisée, le convertisseur est apte à moduler les signaux retour selon au moins deux types de modulation distincts. Un tel convertisseur, polyvalent, est apte à s'adapter à plusieurs voies de transmission retour, par exemple le satellite et la voie hertzienne, selon le mode d'utilisation qui en est fait.
L'invention concerne également un procédé de conversion de signaux numériques reçus sous forme modulée et multiplexée, dans lequel on procède à un abaissement de fréquence des signaux reçus, on sélectionne par réglage à au moins une fréquence déterminée au moins une partie de ces signaux et on démodule ces parties de façon à produire au moins un sous-signal démodulé.
Ce procédé de conversion comprend des étapes de :
- démultiplexage des sous-signaux, de façon à extraire des portions de ces sous-signaux, - remultiplexage des portions extraites en au moins un flux remultiplexé,
- et transformation de ce flux remultiplexé conformément à des critères déterminés de transmission vers des récepteurs destinataires, de façon à rendre ce flux remultiplexé conforme à au moins un protocole de communication. Selon l'invention, l'ensemble des étapes d'abaissement de fréquence, de réglage en fréquence, de démodulation, de démultiplexage, de remultiplexage et de transformation sont effectuées au moyen d'un même appareil.
Ce procédé de conversion est préférentiellement mis en œuvre au moyen d'un convertisseur conforme à l'une quelconque des formes de réalisation de l'invention.
L'invention sera mieux comprise et illustrée au moyen des exemples suivants de réalisation et de mise en œuvre, nullement limitatifs, en référence aux figures annexées sur lesquelles :
- la Figure 1 est un schéma de principe d'un ensemble d'émission de signaux vers un réseau de- transmission, de transformation des signaux reçus par un convertisseur selon l'invention et de transmission des flux issus du convertisseur vers des récepteurs d'un réseau local ;
- la Figure 2 schématise sous forme de blocs fonctionnels le convertisseur de la Figure 1 ; - la Figure 3 représente une première application du convertisseur des Figures 1 et 2, à un LNB associé à un réseau câblé ;
- la Figure 4 représente une deuxième application du convertisseur des Figures 1 et 2, à un LNB associé à un réseau sans fil ;
- la Figure 5 représente une troisième application du convertisseur des Figures 1 et 2, à trois LNBs associés conjointement à un réseau câblé ;
- la Figure 6 illustre schématiquement l'intégration du convertisseur des Figures 1 et 2 dans un LNB, par exemple pour l'un des modes de réalisation des Figures 3 à 5 ; - la Figure 7 représente sous forme de blocs fonctionnels une
STB d'un des récepteurs des Figures 1 à 6 ; - la Figure 8 détaille une implêmentation du LNB de la Figure 6 ;
- et la Figure 9 détaille une implêmentation de la STB de la Figure 7.
Sur les figures et dans les explications qui suivent, les modules représentés sont des unités fonctionnelles, qui peuvent ou non correspondre à des unités physiquement distinguables. Par exemple, ces modules ou certains d'entre eux peuvent être regroupés dans un unique composant, ou constituer des fonctionnalités d'un même logiciel. A contrario, certains modules peuvent éventuellement être composés d'entités physiques séparées.
De plus, des éléments identiques ou similaires sont désignés par les mêmes références, auxquelles peuvent être adjoints des suffixes alphabétiques.
Un émetteur 2 (Figure 1) envoie par diffusion générale (appelée « broadcasting ») des signaux de diffusion 11 sous forme modulée et multiplexée vers des récepteurs R1 , R2... Rn, via un réseau de transmission 5 qui est par exemple un réseau satellite ou câblé. Les signaux de diffusion 11 sont reçus par un convertisseur 1 de signaux associé à un réseau local 6, reliant les récepteurs R1-Rn. Ce convertisseur 1 a pour fonction de transformer les signaux 11 de façon à produire des flux 15 adaptés au réseau local 6 et aux récepteurs R1-Rn, en fonction notamment d'informations de contrôle 16 transmises par ces récepteurs ou par des entités du réseau local 6.
De plus, dans la réalisation représentée, les récepteurs R1-Rn sont aptes à communiquer vers l'émetteur 2 des signaux retour par le biais du convertisseur 1 - ou vers un autre système, tel que par exemple un opérateur de services. Ces signaux retour sont envoyés sous forme de signaux de communication montante 17 au convertisseur 1 , puis transformés par le convertisseur 1 en des signaux retour modulés 18, qui sont ensuite relayés vers l'émetteur 2.
Plus précisément (Figure 2), le convertisseur 1 comprend un module d'abaissement de fréquence 41 et un module de sélection par tuning et de démodulation 21 appliqué aux signaux 11 reçus, prévu pour produire des sous-signaux 12 par exemple extraits de canaux d'émission déterminés. Le convertisseur 1 comprend aussi un module de démultiplexage 22 apte à extraire des portions 13 de ces sous-signaux 12, consistant typiquement en des programmes audiovisuels. Un module de remultiplexage 23 a pour fonction de multiplexer ces portions 13 en un ou plusieurs flux remultiplexés 14, pouvant consister en un ou plusieurs trains transport MPEG. Un module de transformation 24 est chargé de modifier ces flux remultiplexés 14 conformément à des critères déterminés de transmission vers les récepteurs R1-Rn, par exemple selon un protocole de communication adapté au réseau local 6. Les flux adaptés 15 ainsi produits en sortie du module de transformation 24 sont envoyés vers les récepteurs R1 -Rn.
Le convertisseur 1 dispose en outre d'un module de détermination
25 de paramètres de commande, prévu pour extraire à partir des informations de contrôle 16 communiquées par le réseau local 6 (en particulier par les récepteurs R1-Rn), des paramètres de commande destinés à régir les fonctions mises en œuvre dans le convertisseur 1 : protocole à mettre en œuvre vis-à-vis du réseau local 6, types de sous- signaux et de portions à extraire, etc.
Un module de modulation 27 présent dans le convertisseur 1 traite par ailleurs les signaux de communication montante 17, de façon à produire les signaux retour modulés 18. Un module d'élévation de fréquence 42 prépare ces signaux avant transmission. De plus, une unité de contrôle 26 chapeaute le fonctionnement de l'ensemble des modules du convertisseur 1.
Des modes de réalisation et implémentations particulières vont maintenant être exposées de manière plus détaillée, dans le cas de transmissions satellite, le convertisseur 1 étant intégré dans un LNB.
Dans les exemples décrits, le convertisseur 1 peut être considéré soit comme constituant le LNB lui-même, soit se présentant comme un boîtier contenant les modules fonctionnels décrits plus haut et incorporé dans le LNB.
Dans une première application (référencée « A », Figure 3), une antenne satellite 50A pourvue d'un LNB avec convertisseur 1A est reliée à un réseau local câblé 6A reposant sur la norme Ethernet 100 Base T (ci- après « 100BT » pour simplifier) et disposant d'une station pivot 7A (« 100BT hub »). Cette station dessert divers appareils récepteurs R1A, R2A... R7A tels que STBs, téléviseur, PC, imprimante et modem ADSL. Le convertisseur 1A du LNB, câblé à la station pivot 7A, est capable de transformer les signaux satellite 11 reçus en produisant directement les flux adaptés 15 selon la norme Ethernet 100BT.
Dans une deuxième application (référencée « B », Figure 4), une antenne satellite 50B pourvue d'un LNB avec convertisseur 1B est prévue pour émettre vers un réseau local sans fil 6B reposant sur la norme IEEE802.11a. Cette station dessert divers appareils récepteurs R1B, R2B... R6B tels que STBs, PC, imprimante et modem ADSL. Le convertisseur 1 B du LNB est capable de transformer les signaux satellite 11 reçus en produisant directement les flux adaptés 15 selon la norme IEEE802.11a. Dans une troisième application (référencée « C », Figure 5), trois antennes satellite 50C, 50C et SOC" pourvues respectivement de LNBs avec convertisseurs 1C, 1C et 1C", sont reliées à un réseau local câblé 6C reposant sur la norme Ethernet 100BT et disposant d'une station pivot 7C. Cette station dessert divers appareils récepteurs R1C, R2C... R6C tels que STBs, téléviseur, PC et imprimante. Chacun des convertisseurs 1C, 1C et 1C", câblé à la station pivot 7C, est capable de transformer les signaux satellite 11 reçus en produisant directement les flux adaptés 15 selon la norme Ethernet 100BT. La prise en compte de plusieurs antennes permet ainsi de supporter des bouquets multiples pour le réseau 6C. De plus, la réalisation décrite autorise une simplification de l'installation, en éliminant les accessoires de distribution et de commutation des signaux nécessaires dans une installation classique.
La réalisation d'un LNB et d'une STB adaptés au convertisseur 1 est développée ci-après. Un LNB 51 contenant le convertisseur 1 (Figure 6) comprend au sein du convertisseur 1 , un module de séparation 31 de combinaisons des signaux 11 reçus. Ce module de séparation 31 est capable de fournir par exemple les quatre combinaisons polarisation/bande, le LNB étant de type Quattro, et de les transmettre au module de sélection et de démodulation 21. Il est également prévu pour procéder à un abaissement de fréquence et à une amplification des signaux reçus.
A l'intérieur du convertisseur 1 , le module de sélection et de démodulation 21 est constitué d'un tuner/démodulateur multicanaux, qui permet de sélectionner et démoduler m canaux numériques satellite déterminés parmi l'ensemble des canaux disponibles sur les quatre combinaisons polarisation/bande. De plus, une unité de démultiplexage et de remultiplexage 28 qui regroupe les modules de démultiplexage 22 et de démultiplexage 23, extrait des m canaux démodulés les programmes que le(s) téléspectateur(s) désire(nt) regarder ou enregistrer, et remultiplexe ces canaux, par exemple en p trains transport MPEG (les « multiplex »).
Une interface réseau 29 du convertisseur 1, englobant les modules de transformation 24 et de détermination 25 de paramètres de commande, est chargée d'encapsuler ces p multiplex dans des trames de transmission du protocole de communication choisi (par exemple IP et Ethernet 100BT ou IEEE802.11a). Cette interface réseau 29 extrait également des informations de contrôle 16 reçues des différents appareils présents sur le réseau 6, celles qui sont nécessaires pour déterminer les appareils demandeurs, ainsi que les canaux et programmes qui doivent être démodulés. Ces informations sont utilisées pour renseigner les champs destinataires des trames de transmission et pour commander au moyen de l'unité de contrôle 26 via un bus de contrôle, le tuner/démodulateur 21 et le multiplexeur/démultiplexeur (unité 28). L'interface réseau 29 a pour fonction additionnelle de récupérer les données à émettre (signaux de communication montante 17) et de les transmettre au module de modulation 27.
Le convertisseur 1 comprend aussi un module de transposition et d'amplification 32, prévu pour traiter les signaux retour modulés 18 transmis par le module de modulation 27, avant leur envoi en retour par satellite.
Une STB 60 appropriée (Figure 7) correspondant au LNB 51 comprend une interface réseau 62 destinée à recevoir les flux adaptés 15 en provenance du convertisseur 1 , c'est-à-dire répondant à un protocole de communication sur réseau local (par exemple Ethernet 100BT ou IEEE802.11a). La STB 60 comprend également un ensemble 61 de fonctions classiques incluant un module démultiplexeur 63, un décodeur audio/vidéo 64, une interface externe 65 pour téléviseur et un processeur 66 contrôlant ces différentes entités via un bus de contrôle. La STB 60 est donc identique à une STB satellite classique à l'exception de sa partie frontale de réception satellite (tuner et démodulateur), remplacée ici par l'interface réseau 62 permettant de recevoir les données présentes sur le réseau utilisé.
Selon des réalisations particulières de la STB 60, l'interface 62 et le processeur 66 sont adaptés à transmettre vers le LNB 51 des informations de présence, ainsi qu'éventuellement des données relatives à l'identité du protocole de communication exploité. Ainsi, dans un premier exemple, la STB 60 envoie ces informations sur requête du convertisseur 1 (cette requête pouvant notamment être déclenchée par un opérateur lors d'une phase d'initialisation ou de mise à jour, ou être déclenchée périodiquement de manière automatique). Dans un deuxième exemple, la STB 60 est prévue pour déclencher l'envoi de ces informations à chaque connexion à un réseau, et pour envoyer un signal de fin de présence à chaque déconnexion.
Dans des variantes de réalisation, il n'est pas prévu de voie de retour satellite, de telle sorte que le LNB ne comprend pas les modules 27 et 32.
Des modes d'implémentation particuliers sont détaillés ci -dessous pour le LNB 51 et la STB 60 (suffixe « D »). Pour simplifier la présentation, les parties du LNB 51 D et de la STB 60D relatives à la voie de retour satellite ne sont pas représentées ni développées dans les commentaires.
Le LNB 51 D (Figure 8) comprend au sein du convertisseur 1 D le module de séparation 31 D délivrant les quatre combinaisons polarisation/bande (LNB Quattro), sous forme de quatre signaux BIS (pour « Bande Intermédiaire Satellite » ; en anglais IF pour « Intermβdiate Frequencies ») dans la bande de fréquence 950 MHz - 2150 MHz.
Le module de sélection et de démodulation 21 (référencé 21 D) comprend une matrice de commutation 33, qui permet d'orienter n'importe lequel de ces quatre signaux vers un ensemble de m tuners T1 , T2... Tm et démodulateurs respectivement associés DMD1 , DMD2... DMDm. Les tuners Ti sont des tuners connus, délivrant un signal analogique qui est ensuite échantillonné et converti en numérique par les premiers étages des démodulateurs DMDi. Dans une variante de réalisation, ces m tuners Ti isolés sont remplacés par un tuner numérique, qui échantillonne très tôt les signaux BIS et effectue numériquement toutes les opérations de filtrage et de transposition pour fournir les m signaux à démoduler.
L'unité de démultiplexage et de remultiplexage 28 (référencée
28D) reçoit les m sous-signaux démodulés en provenance des démodulateurs DMD1-DMDm respectivement dans m démultiplexeurs DMX1, DMX2... DMXm (qui forment l'unité de démultiplexage 22D). Les m opérations de démodulation et de démultiplexage sont celles que l'on trouve communément dans des STBs satellites. La fonction des m démodulateurs DMDi et démultiplexeurs DMXi est de traiter les signaux selon la norme de transmission utilisée (par exemple DVB-S en Europe - pour « Digital Video Broadcasting - Satellite » et DSS aux USA - pour « Digital Satellite System ») et de restituer les données correspondant aux programmes que des téléspectateurs connectés au réseau local 6 désirent regarder ou enregistrer.
Dans l'unité de démultiplexage et de remultiplexage 28D, l'unité de remultiplexage 23D permet de remultiplexer les m programmes restitués en p flux (par exemple des trains transport ou « Transport Streams » pour la norme MPEG), qui peuvent éventuellement être constitués d'un unique flux, et de les présenter à l'interface réseau 29D.
Cette interface réseau 29D comprend successivement dans la chaîne de transmission :
- un dispositif de gestion 34 d'un protocole de haut niveau, tel que par exemple IP ;
- une interface 35 de contrôle d'accès au support, dite interface MAC (pour « Médium Access Control »), chargée de gérer l'accès au support de transmission ; cette interface, qui dépend du support, est différente pour la version câblée et la version sans fil ;
- une interface physique 36, prévue pour traiter physiquement les signaux présents sur le support de transmission et dont la nature dépend de ce support ; - et optionnellement dans le cas d'une liaison sans fil (par exemple avec le protocole IEEE802.11a), une interface radio 37 chargée des opérations associées aux émissions radio (transposition, filtrage, contrôle de puissance, contrôle de gain...).
Un processeur 38 muni de sa mémoire RAM (pour « Raπdom
Access Memory ») référencée 39 et de sa mémoire ROM (pour « Read Only Memory ») ou flash, référencée 40, contrôle l'ensemble des fonctionnalités du LNB 51 D, et prend en charge les parties logicielles de ces fonctionnalités.
La STB détaillée, référencée 60D (Figure 9), diffère des STBs satellites classiques par son interface réseau 62D, qui remplace la partie frontale de réception satellite (tuner et démodulateur). Cette interface réseau 62D comprend successivement dans la chaîne de transmission : - optionnellement, dans le cas où le réseau local 6 est du type sans fil, une interface radio 67 ; - une interface physique 68, traitant physiquement les signaux présents sur l'interface ; cette interface 68 dépend du support de transmission utilisé et est différente pour la version câblée et la version sans fil ; - une interface MAC 69, procurant une couche d'accès au support de transmission ; cette interface 69 dépend également du support de transmission ;
- et une couche 70 de protocole de haut niveau, par exemple IP.
Selon des variantes de réalisation, le convertisseur 1 est capable de traiter des signaux hertziens (notamment MMDS/LMDS), au lieu de signaux satellites ou en plus de ces derniers.

Claims

REVENDICATIONS
1. Convertisseur (1) de signaux numériques (11) reçus sous forme modulée et multiplexée, comprenant des moyens (21) de sélection
(T1-Tn) d'au moins une partie desdits signaux (11) par réglage à au moins une fréquence déterminée et de démodulation (DMD1 -DMDn) desdites parties, aptes à produire au moins un sous-signal démodulé (12),
ledit convertisseur (1 ) comprenant aussi :
- des moyens de démultiplexage (22, DMX1-DMXn) desdits sous-signaux (12), prévus pour extraire des portions (13) desdits sous- signaux (12) ;
- des moyens de remultiplexage (23) desdites portions (13) extraites en au moins un flux remultiplexé (14) ;
- et des moyens de transformation (24) dudit flux remultiplexé (14), prévus pour modifier ledit flux remultiplexé (14) conformément à des critères déterminés de transmission vers des récepteurs destinataires (R1 - Rn), lesdits moyens de transformation (24) étant prévus pour modifier ledit flux remultiplexé de façon à le rendre conforme à au moins un protocole de communication,
caractérisé en ce que ledit convertisseur (1) comprend un boîtier contenant l'ensemble desdits moyens (21-24), ainsi que des moyens d'abaissement de fréquence (41 ) des signaux numériques reçus, en amont desdits moyens de sélection (21 ).
2. Convertisseur (1) selon la revendication 1 , caractérisé en ce qu'il est destiné à convertir des signaux numériques (11 ) transmis par satellite.
3. Convertisseur (1) selon l'une des revendications 1 ou 2, caractérisé en ce qu'il est destiné à convertir des signaux numériques transmis par voie hertzienne, conformément à une technique de communication choisie parmi un système de télécommunication multipoint local et un système de distribution multipoint.
4. Convertisseur (1) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'au moins un desdits protocoles de communication est un protocole de communication vers un réseau numérique, préférentiellement choisi parmi les normes Ethernet, IEEE1394, IEEE802.11a, Hiperlan2 et un protocole de communication par courant porteur en ligne.
5. Convertisseur (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que les moyens de sélection et de démodulation (21) sont prévus pour sélectionner et démoduler des canaux numériques d'émission de façon à produire lesdits sous-signaux (12).
6. Convertisseur (1 ) selon l'une quelconque des revendications précédentes, caractérisé en ce que les moyens de démultiplexage (22) sont prévus pour extraire des programmes audiovisuels constituant au moins certaines desdites portions (13).
7. Convertisseur (1) selon la revendication 6, caractérisé en ce que les moyens de remultiplexage (23) sont capables de remultiplexer lesdites portions (13) en des trains transport MPEG constituant lesdits flux remultiplexés (14).
8. Convertisseur (1) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend aussi des moyens d'extraction (25) d'informations de transmission (16) reçues en provenance des récepteurs destinataires (R1-Rn), et en ce que les moyens de transformation (24) sont capables de déterminer les critères de transmission en fonction desdites informations de transmission.
9. Convertisseur (1) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend aussi des moyens d'extraction (25) d'informations d'extraction (16) reçues en provenance des récepteurs destinataires (R1-Rn), et en ce que les moyens de transformation (24) sont capables de déterminer lesdits sous-signaux (12) et lesdites portions (13) en fonction desdites informations d'extraction.
10. Convertisseur (1) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend aussi des moyens de modulation (27) de signaux (17) de retour en provenance des récepteurs destinataires (R1 -Rn).
11. Convertisseur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend des moyens de réception d'autres signaux numériques reçus sous forme modulée et multiplexée et choisi parmi des signaux transmis par câble et des signaux transmis par voie terrestre dans la bande des ondes métriques et décimétriques, lesdits moyens de sélection (21), de démultiplexage (22), de remultiplexage (23) et de transformation (24) étant destinés à être appliqués aussi aux dits autres signaux.
12. Procédé de conversion de signaux numériques (11 ) reçus sous forme modulée et multiplexée, dans lequel on procède à un abaissement de fréquence desdits signaux reçus (11), on sélectionne par réglage à au moins une fréquence déterminée au moins une partie desdits signaux (11 ) et on démodule lesdites parties de façon à produire au moins un sous-signal démodulé (12), ledit procédé comprenant des étapes de :
- démultiplexage desdits sous-signaux (12), de façon à extraire des portions (13) desdits sous-signaux (12),
- remultiplexage desdites portions (13) extraites en au moins un flux remultiplexé (14),
- et transformation dudit flux remultiplexé (14) conformément à des critères déterminés de transmission vers des récepteurs destinataires (R1-Rn), de façon à rendre ledit flux remultiplexé (14) conforme à au moins un protocole de communication,
caractérisé en ce que l'ensemble desdites étapes d'abaissement de fréquence, de réglage en fréquence, de démodulation, de démultiplexage, de remultiplexage et de transformation sont effectuées au moyen d'un même appareil (1, 51),
ledit procédé de conversion étant préférentiellement mis en œuvre au moyen d'un convertisseur (1) conforme à l'une quelconque des revendications 1 à 11.
EP04727910A 2003-04-17 2004-04-16 Convertisseur et procede de conversion de signaux numeriques recus sous forme modulee et multiplexee Withdrawn EP1614295A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0304801A FR2854015A1 (fr) 2003-04-17 2003-04-17 Convertisseur et procede de conversion de signaux numeriques recus sous forme modulee et multiplexee
PCT/EP2004/050537 WO2004093455A1 (fr) 2003-04-17 2004-04-16 Convertisseur et procede de conversion de signaux numeriques recus sous forme modulee et multiplexee

Publications (1)

Publication Number Publication Date
EP1614295A1 true EP1614295A1 (fr) 2006-01-11

Family

ID=33041930

Family Applications (2)

Application Number Title Priority Date Filing Date
EP04727910A Withdrawn EP1614295A1 (fr) 2003-04-17 2004-04-16 Convertisseur et procede de conversion de signaux numeriques recus sous forme modulee et multiplexee
EP04741460A Withdrawn EP1614296A1 (fr) 2003-04-17 2004-04-16 Convertisseur et proc d de conversion de signaux n um riques re us sous forme modul e et multip lex e

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP04741460A Withdrawn EP1614296A1 (fr) 2003-04-17 2004-04-16 Convertisseur et proc d de conversion de signaux n um riques re us sous forme modul e et multip lex e

Country Status (8)

Country Link
US (1) US20060262222A1 (fr)
EP (2) EP1614295A1 (fr)
JP (2) JP2006523978A (fr)
KR (2) KR20060004672A (fr)
CN (2) CN1771733A (fr)
FR (1) FR2854015A1 (fr)
MX (2) MXPA05010965A (fr)
WO (2) WO2004093454A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8352979B2 (en) * 2005-04-22 2013-01-08 At&T Intellectual Property I, L.P. Methods and apparatus to broadcast advanced television system committee video in switched digital video systems
CN101754024B (zh) * 2009-12-16 2012-01-11 中兴通讯股份有限公司 一种复用装置及复用方法
GB201008478D0 (en) * 2010-05-21 2010-07-07 Invacom Ltd System for transmission and receipt of broadcast digital data
US9131265B2 (en) * 2011-05-19 2015-09-08 Maxlinear, Inc. Method and system for providing satellite television service to a premises
EP2525572A1 (fr) * 2011-05-19 2012-11-21 Maxlinear, Inc. Système et procédé dans un récepteur large bande pour réception et traitement efficaces de signaux
US20150033268A1 (en) * 2011-09-28 2015-01-29 Transcity Group Pty Ltd Content management systems, methods, apparatus and user interfaces
US8725104B2 (en) 2011-12-12 2014-05-13 Maxlinear, Inc. Method and apparatus for an energy-efficient receiver
US9203535B2 (en) 2011-12-12 2015-12-01 Maxlinear, Inc. Configurable, highly-integrated satellite receiver
US8897157B2 (en) 2011-12-16 2014-11-25 Maxlinear, Inc. Method and apparatus for providing conditional access based on channel characteristics
US8929278B2 (en) 2012-02-06 2015-01-06 Maxlinear, Inc. Method and apparatus for content protection and billing for mobile delivery of satellite content
US10681412B2 (en) * 2012-04-05 2020-06-09 Maxlinear, Inc. Method and system for full spectrum capture sample rate adaptation
US9008571B2 (en) 2012-08-22 2015-04-14 Maxlinear, Inc. Method and system for a single frequency network for broadcasting to mobile devices
US9026118B2 (en) 2012-08-17 2015-05-05 Maxlinear, Inc. Multi-standard coverage map generation
US9306684B2 (en) 2012-08-22 2016-04-05 Maxlinear, Inc. Method and system for caching content for mobile distribution
GB2507519A (en) * 2012-11-01 2014-05-07 Ahmed Tajelsir Mahjoub Wireless low noise block down converter (LNB)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4787028A (en) * 1985-09-03 1988-11-22 Ncr Corporation Multicommunication protocol controller
WO2001056297A1 (fr) * 2000-01-27 2001-08-02 Atheros Communications, Inc. Système de stockage et de distribution de vidéo domestique
GB0026208D0 (en) * 2000-10-26 2000-12-13 Koninkl Philips Electronics Nv A decoder supporting multiple inputs
JP2004514382A (ja) * 2000-11-17 2004-05-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 第一ネットワーク及び第二ネットワークを含有する無線システム
US6704372B2 (en) * 2001-09-18 2004-03-09 Broadlogic Network Technologies Inc. Digital implementation of multi-channel demodulators

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004093455A1 *

Also Published As

Publication number Publication date
MXPA05010965A (es) 2005-11-25
JP2006523978A (ja) 2006-10-19
WO2004093455A1 (fr) 2004-10-28
KR20060004671A (ko) 2006-01-12
KR20060004672A (ko) 2006-01-12
CN1771732A (zh) 2006-05-10
MXPA05010963A (es) 2005-11-25
WO2004093454A1 (fr) 2004-10-28
EP1614296A1 (fr) 2006-01-11
US20060262222A1 (en) 2006-11-23
JP2006523977A (ja) 2006-10-19
CN1771733A (zh) 2006-05-10
FR2854015A1 (fr) 2004-10-22

Similar Documents

Publication Publication Date Title
CA2761347C (fr) Delivrance de signal par satellite
US7130576B1 (en) Signal selector and combiner for broadband content distribution
US7522875B1 (en) Signal selector and combiner system for broadband content distribution
US6104908A (en) System for and method of combining signals of combining signals of diverse modulation formats for distribution in multiple dwelling units
US20070273792A1 (en) Converter and Method for Converting Digital Signals Received in the Form of Modulated and Multiplex Signals
US7010265B2 (en) Satellite receiving system with transmodulating outdoor unit
WO2004093455A1 (fr) Convertisseur et procede de conversion de signaux numeriques recus sous forme modulee et multiplexee
US20060095939A1 (en) Method and apparatus for the separation of data from digital broadcast signals for distribution via a computer network to clients
US20130332967A1 (en) Combined terrestrial and satellite content for a seamless user experience
US20080046947A1 (en) Digital Media Server for Multiple Digital Tv Appliances Utilizing Native Signals Carried on Coaxial Home Wiring Networks
US7477871B1 (en) Signal selector and combiner system for broadband content distribution
JP5676530B2 (ja) 複数のチャネルを受信するためのシステム及び方法
US20030189666A1 (en) Multi-channel digital video broadcast to composite analog video converter
JP2006520161A (ja) 信号を分配する装置及び方法
KR20100043890A (ko) 디지털 방송 시스템의 디스크램블링 방법 및 장치
EP1186170A1 (fr) Installation de communication pour une reception collective d'informations
KR100488675B1 (ko) 신규한 디지털 위성방송 수신 방법 및 시스템
Dosch et al. HD‐SAT: Digital HDTV‐broadcasting by satellite and cable networks with commonality for terrestrial broadcasting
FR2857189A1 (fr) Transcodeur pour tete de reseau cable
FR2947684A1 (fr) Recepteur de signaux par satellite
FR2860677A1 (fr) Procede de controle d'un parc de decodeurs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050901

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON LICENSING

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091103