EP1608621A1 - Process for preparing 2,6-divinylpyridine and 2-methyl-6-vinylpyridine from 2,6-lutidine over modified zeolites - Google Patents

Process for preparing 2,6-divinylpyridine and 2-methyl-6-vinylpyridine from 2,6-lutidine over modified zeolites

Info

Publication number
EP1608621A1
EP1608621A1 EP03717530A EP03717530A EP1608621A1 EP 1608621 A1 EP1608621 A1 EP 1608621A1 EP 03717530 A EP03717530 A EP 03717530A EP 03717530 A EP03717530 A EP 03717530A EP 1608621 A1 EP1608621 A1 EP 1608621A1
Authority
EP
European Patent Office
Prior art keywords
lutidine
catalyst
zsm
formaldehyde
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03717530A
Other languages
German (de)
French (fr)
Inventor
Shivanand Janardan Kulkarni
Madhavi Gangapuram
Vijaya Raghavan Kondapuram
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Council of Scientific and Industrial Research CSIR
Original Assignee
Council of Scientific and Industrial Research CSIR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Council of Scientific and Industrial Research CSIR filed Critical Council of Scientific and Industrial Research CSIR
Priority claimed from PCT/IN2003/000111 external-priority patent/WO2004087664A1/en
Publication of EP1608621A1 publication Critical patent/EP1608621A1/en
Withdrawn legal-status Critical Current

Links

Definitions

  • the present invention relates to a process for the preparation of 2,6- divinylpyridine and 2-methyl-6-vinylpyridine over modified zeolite catalysts.
  • it relates to the method for the synthesis of 2,6-divinylpyridine and 2- methyl-6-vinylpyridine from 2,6-lutidine and formaldehyde in vapour phase in an eco- friendly method with high yield and selectivity.
  • This invention provides a non- corrosive, eco-friendly process, where the catalyst can be reused for many times.
  • 2,6- Divinylpyridine is useful starting material in polymer industry. BACKGROUND OF THE INVENTION
  • 2,6-Divinylpyridine is used in the preparation of an aminated ion-exchange resins containing divinyl substituted heterocyclic co-monomers as cross-linkers.
  • 2,6- Divinylpyridine (2,6-DVP) and 2-methyl-6-vinylpyridine (2M6VP) were synthesized by condensation of 2,6-lutidine and formaldehyde using potassium salts as catalysts. This method involves homogeneous conditions alongwith the high temperature and pressure [E.G. Martin, US 2,824,844 (1958); Chem. Abstract.52 (1958) 9482i; J. Michalski, K. Studniarski, Roczniki Chem. 29 (1955) 1141; Chem. Abstract. 51 (1957) 10530c and Chem. Abstract 62 (1965) 1627c].
  • 2,6-DVP and 2M6VP were also prepared by oxidative dehydrogenation of dialkyl heteroaromatics over V 2 O 5 /MgO and MoO 3 /MgO catalysts in the presence of O 2 [I.P. Belomestnykh, N.N. Rozhdestvenskaya, G.V. Isagulyants, Khim. Geterotsikl. Soedian. 6 (1994) 802; Chem. Abstract. 122 (1995) 31287r.].
  • the main object of the invention is to provide a process for the synthesis of 2,6-divinylpyridine and 2-methyl-6-vinylpyridine over modified zeolites in a heterogeneous eco-friendly method.
  • Another object of the invention is to provide a process for the preparation of
  • the present invention relates to develop a process for the preparation of 2,6- divinylpyridine and 2-methyl-6-vinylpyridine from 2,6-lutidine and formaldehyde in vapour phase over zeolite/ molecular sieve catalysts.
  • the catalyst comprises of particularly ZSM-5 (pentasil family) with sodium, potassium, rubidium, cesium, magnesium, calcium, strontium and/or barium, etc cation or their species.
  • the present invention provides a process for the simultaneous production of 2,6-divinylpyridine and 2-methyl-6-vinylpyridine comprising reacting 2,6-lutidine with formaldehyde in a catalytic zone containing a modified zeolite catalyst, the temperature of the catalytic zone being in the range of 200 to 450°C, the reaction being carried out at a weight hourly space velocity in the range of 0.25 to 1.0 h "1 , the molar ratio of 2,6-lutidine to formaldehyde being 1 :1 to 1:4.
  • the modified zeolite catalyst comprises a modified ZSM-5 pentasil type zeolite catalyst, preferably modified by an alkali or alkaline earth metal ion selected from the group consisting of Li + , Na + , K + , Rb + , Cs + , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ .
  • the modified ZSM-5 catalyst is a two cation modified ZSM-5, such as Cs-K-ZSM-5.
  • the weight percent of the alkali or alkaline earth metal ion in ZSM-5 is in the range of 1 wt % to 4 wt %.
  • the ZSM-5 catalyst is modified by potassium ion, the potassium ion source being selected from the group consisting of KO'Bu, KOH, KF, KNO 3 , K 3 PO 4 and KOAc, to improve the yield and selectivity of 2,6-divinylpyridine.
  • the modified zeolite is 3 wt% KZSM-
  • the temperature of the catalytic zone is
  • Another embodiment of the present invention provides a process for the preparation of 2,6-divinylpyridine and 2M6VP form 2,6-lutidine and formaldehyde in the presence of catalyst which comprises ZSM-5 containing one or two elements(s) from alkali and/ or alkaline earth metal ions like Na + , K + , Rb + , Cs + , Mg 2+ , Ca + , Sr 2+ , Ba etc which can be reused for several times.
  • catalyst comprises ZSM-5 containing one or two elements(s) from alkali and/ or alkaline earth metal ions like Na + , K + , Rb + , Cs + , Mg 2+ , Ca + , Sr 2+ , Ba etc which can be reused for several times.
  • the modified HZSM-5 catalyst was used in the development of the process. Each zeolite was pelleted without binder, crashed and sized 18-30 mesh before the impregnation.
  • the ZSM-5 catalyst was modified by using required amount of alkali or alkaline earth cation nitrate by an impregnation method.
  • the required amount of precursor was taken in the form of nitrate or other soluble salts in 30 ml of distilled water.
  • 4.0 g of the meshed catalyst was added to it and kept for soaking for 12 h. Then it was dried at 110°C over night and calcined at 420°C for 4 h before using for the reaction.
  • KO l Bu modified ZSM-5 (30) catalyst In a typical procedure for the synthesis of KO l Bu modified ZSM-5 (30) catalyst is as follows; 7 g of HZSM-5 (30) was taken in 250 ml two-necked round bottom flask. Prior to modification the catalyst was predried in oven at 100°C for 1 h followed by flushing with nitrogen gas to remove water content present in the channels of the catalyst. In another round bottom flask required amount of KO l Bu was dissolved in dry DMSO solvent. This solution was added to HZSM-5 (30) catalyst and kept stirring for 24 h in presence of nitrogen atmosphere. After 24 h stirring the resultant mixture was filtered, dried at 120°C overnight and calcined at 400°C for 4 h.
  • the reactions were carried out in a fixed bed, continuous, down-flow pyrex reactor with internal diameter of 20 mm at atmospheric pressure. All the catalysts were activated by calcination in a flow of air at 420°C for 4 h and brought to the reaction temperature in situ. A mixture of 2,6-lutidine and formaldehyde 37%wt/v was fed from a syringe pump at a rate of 2 ml. h "1 . The effluents from the reactor were cooled and periodically collected with an ice trap. The samples were analyzed by gas chromatography (SCHIMADZU-14B) fixed with an OV-17 (2 mm x 1/8" OD) on chromosorb W-HP column and flame ionization detector.
  • SCHIMADZU-14B gas chromatography
  • the carrier gas was N 2 (100 kPa) and the column temperature programme was 90°C (5 min), 2°C. min "1 , 120°C (10 min), 180°C (injector) and 250°C (detector). Products were confirmed by GC-Ms and NMR techniques. 2,6-DVP and 2M6VP are formed as major products during side-chain alkylation of 2,6-lutidine and formaldehyde with all the catalysts studied here. Other products include 2-methyl-6- ethylpyridine and isomerized product 2,5-divinylpyridine.
  • Example 3 Modified ZSM-5 was used in the following reaction for the preparation of 2,6- divinylpyridine and 2-methyl-6-vinyl ⁇ yridine.
  • the reaction of 2,6-lutidine and formaldehyde was carried out over K-ZSM-5 (30, 3 wt% K) in the reaction temperature range of 250 to 400°C.
  • the catalyst was 4 g with 18-30 mesh size and feed rate 2 ml.h "1 .
  • the molar ratio of 2,6-lutidine: formaldehyde was 1:4.
  • EXAMPLE 11 EXAMPLE 11:
  • the molar ratio of 2,6-lutidine: formaldehyde was varied in the range of 1:1 to 1:5.
  • the catalyst was 4 g with 18-30 mesh size and feed rate 2 ml.h "1 .
  • EXAMPLE 12 The reaction of 2,6-lutidine and formaldehyde was carried out over K-ZSM-5
  • the calcination or activation temperature of the ZSM-5 catalyst was also varied in the temperature range of 420°C to 700°C.
  • the reaction of 2,6-lutidine and formaldehyde was carried out over KZSM-5 (30, 3wt%).
  • the catalyst was 4 g with 18-30 mesh size and feed rate 2 ml.h "1 .
  • EXAMPLE 14 EXAMPLE 14:
  • the weight percent potassium impregnated in the HZSM-5 catalyst was also varied from 1 wt% to 4 wt%.
  • the reaction of 2,6-lutidine and formaldehyde was carried out over K-ZSM-5 (30) at 300°C and 0.5 h "1 W.H.S.V.
  • the molar ratio of 2,6- lutidine: formaldehyde was 1:4.
  • the weight of the catalyst was 4 g with 18-30 mesh size and feed rate 2 ml.h "1 .
  • the potassium precursor in the process of impregnation was also varied.
  • the reaction of 2,6-lutidine and formaldehyde was carried out at 300°C and 0.5 h "1 W.H.S.V.
  • the molar ratio of 2,6-lutidine: formaldehyde was 1:4.
  • the weight of the catalyst was 4 g with 18-30 mesh size and feed rate 2 ml.h "1 .
  • the molar ratio of 2,6- lutidine to formaldehyde was 1:4.
  • the following precursors were studied, KNO 3 , KF, KOAc, K 3 PO 4 and KOH.
  • the conversion of 2,6-lutidine was varied from 51% to 80% with 36 to 56 % of selectivity for 2,6-

Landscapes

  • Pyridine Compounds (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The present invention relates to a process for the preparation of 2,6-divinylpyridine and 2-methyl-6-vinylpyridine over modified zeolite catalysts. In particular, it relates to the method for the synthesis of 2,6-divinylpyridine and 2-methyl-6-vinylpyridine from 2,6-lutidine and formaldehyde in vapour phase in an eco-friendly method with high yield and selectivity. This invention provides a non-corrosive, eco-friendly process, where the catalyst can be reused for many times. 2,6-divinylpyridine is useful starting material in polymer industry.

Description

PROCESS FOR PREPARING 2 , 6 -DIVINYLPYRIDINE AND 2-METHYL-6-VINYLPYRIDINE FROM
2 , 6-LUTIDINE OVER MODIFIED ZEOLITES
FIELD OF INVENTION
The present invention relates to a process for the preparation of 2,6- divinylpyridine and 2-methyl-6-vinylpyridine over modified zeolite catalysts. In particular, it relates to the method for the synthesis of 2,6-divinylpyridine and 2- methyl-6-vinylpyridine from 2,6-lutidine and formaldehyde in vapour phase in an eco- friendly method with high yield and selectivity. This invention provides a non- corrosive, eco-friendly process, where the catalyst can be reused for many times. 2,6- Divinylpyridine is useful starting material in polymer industry. BACKGROUND OF THE INVENTION
2,6-Divinylpyridine is used in the preparation of an aminated ion-exchange resins containing divinyl substituted heterocyclic co-monomers as cross-linkers. 2,6- Divinylpyridine (2,6-DVP) and 2-methyl-6-vinylpyridine (2M6VP) were synthesized by condensation of 2,6-lutidine and formaldehyde using potassium salts as catalysts. This method involves homogeneous conditions alongwith the high temperature and pressure [E.G. Martin, US 2,824,844 (1958); Chem. Abstract.52 (1958) 9482i; J. Michalski, K. Studniarski, Roczniki Chem. 29 (1955) 1141; Chem. Abstract. 51 (1957) 10530c and Chem. Abstract 62 (1965) 1627c].
2,6-DVP and 2M6VP were also prepared by oxidative dehydrogenation of dialkyl heteroaromatics over V2O5/MgO and MoO3/MgO catalysts in the presence of O2 [I.P. Belomestnykh, N.N. Rozhdestvenskaya, G.V. Isagulyants, Khim. Geterotsikl. Soedian. 6 (1994) 802; Chem. Abstract. 122 (1995) 31287r.]. We have reported the synthesis of 2-vinylpyridine and 4-vinylpyridine by side- chain alkylation of (2- and 4-methylpyridines) 2- and 4-picoline over modified basic zeolites. [Appl. Catal. (2003) in press]. OBJECTS OF THE INVENTION
The main object of the invention is to provide a process for the synthesis of 2,6-divinylpyridine and 2-methyl-6-vinylpyridine over modified zeolites in a heterogeneous eco-friendly method.
Another object of the invention is to provide a process for the preparation of
2,6-DVP and 2M6VP in high yield and high selectivity. SUMMARY OF THE INVENTION
The present invention relates to develop a process for the preparation of 2,6- divinylpyridine and 2-methyl-6-vinylpyridine from 2,6-lutidine and formaldehyde in vapour phase over zeolite/ molecular sieve catalysts. The catalyst comprises of particularly ZSM-5 (pentasil family) with sodium, potassium, rubidium, cesium, magnesium, calcium, strontium and/or barium, etc cation or their species.
Accordingly, the present invention provides a process for the simultaneous production of 2,6-divinylpyridine and 2-methyl-6-vinylpyridine comprising reacting 2,6-lutidine with formaldehyde in a catalytic zone containing a modified zeolite catalyst, the temperature of the catalytic zone being in the range of 200 to 450°C, the reaction being carried out at a weight hourly space velocity in the range of 0.25 to 1.0 h"1, the molar ratio of 2,6-lutidine to formaldehyde being 1 :1 to 1:4.
In one embodiment of the invention, the modified zeolite catalyst comprises a modified ZSM-5 pentasil type zeolite catalyst, preferably modified by an alkali or alkaline earth metal ion selected from the group consisting of Li+, Na+, K+, Rb+, Cs+, Mg2+, Ca2+, Sr2+, Ba2+.
In another embodiment of the invention, the modified ZSM-5 catalyst is a two cation modified ZSM-5, such as Cs-K-ZSM-5.
In yet another embodiment of the invention, the weight percent of the alkali or alkaline earth metal ion in ZSM-5 is in the range of 1 wt % to 4 wt %.
In yet another embodiment of the invention, the ZSM-5 catalyst is modified by potassium ion, the potassium ion source being selected from the group consisting of KO'Bu, KOH, KF, KNO3, K3PO4 and KOAc, to improve the yield and selectivity of 2,6-divinylpyridine. In a further embodiment of the invention, the modified zeolite is 3 wt% KZSM-
5, calcined at a temperature in the range of 400°C to 700°C.
In a further embodiment of the invention, the temperature of the catalytic zone is
300°C, the molar ratio of formaldehyde to 2,6-lutidine is 4:1 and the weight hourly space velocity in the process is 0.5 h" . Another embodiment of the present invention provides a process for the preparation of 2,6-divinylpyridine and 2M6VP form 2,6-lutidine and formaldehyde in the presence of catalyst which comprises ZSM-5 containing one or two elements(s) from alkali and/ or alkaline earth metal ions like Na+, K+, Rb+, Cs+, Mg2+, Ca +, Sr2+, Ba etc which can be reused for several times. DETAILED DESCRIPTION OF THE INVENTION
The modified HZSM-5 catalyst was used in the development of the process. Each zeolite was pelleted without binder, crashed and sized 18-30 mesh before the impregnation. The ZSM-5 catalyst was modified by using required amount of alkali or alkaline earth cation nitrate by an impregnation method. In the case of potassium, different precursors like KOlBu, KF, KOAc, K3PO4, KNO3, or KOH were used to modify ZSM-5 (Siθ2/Al2O3= 30) catalyst. The required amount of precursor was taken in the form of nitrate or other soluble salts in 30 ml of distilled water. 4.0 g of the meshed catalyst was added to it and kept for soaking for 12 h. Then it was dried at 110°C over night and calcined at 420°C for 4 h before using for the reaction.
In a typical procedure for the synthesis of KOlBu modified ZSM-5 (30) catalyst is as follows; 7 g of HZSM-5 (30) was taken in 250 ml two-necked round bottom flask. Prior to modification the catalyst was predried in oven at 100°C for 1 h followed by flushing with nitrogen gas to remove water content present in the channels of the catalyst. In another round bottom flask required amount of KOlBu was dissolved in dry DMSO solvent. This solution was added to HZSM-5 (30) catalyst and kept stirring for 24 h in presence of nitrogen atmosphere. After 24 h stirring the resultant mixture was filtered, dried at 120°C overnight and calcined at 400°C for 4 h. the reactions were carried out in a fixed bed, continuous, down-flow pyrex reactor with internal diameter of 20 mm at atmospheric pressure. All the catalysts were activated by calcination in a flow of air at 420°C for 4 h and brought to the reaction temperature in situ. A mixture of 2,6-lutidine and formaldehyde 37%wt/v was fed from a syringe pump at a rate of 2 ml. h"1. The effluents from the reactor were cooled and periodically collected with an ice trap. The samples were analyzed by gas chromatography (SCHIMADZU-14B) fixed with an OV-17 (2 mm x 1/8" OD) on chromosorb W-HP column and flame ionization detector. The carrier gas was N2 (100 kPa) and the column temperature programme was 90°C (5 min), 2°C. min"1, 120°C (10 min), 180°C (injector) and 250°C (detector). Products were confirmed by GC-Ms and NMR techniques. 2,6-DVP and 2M6VP are formed as major products during side-chain alkylation of 2,6-lutidine and formaldehyde with all the catalysts studied here. Other products include 2-methyl-6- ethylpyridine and isomerized product 2,5-divinylpyridine.
The present invention will be explained in more detail by the following examples, which do not limit the scope of the invention in any way. EXAMPLE 1: Synthesis of potassium modified SSM-5.
Four grams of calcined HZSM-5 having SiO2/ Al2O3 molar ratio of 30 was taken in the form of 18-30 mesh size and soaked in 30 ml of the solution of potassium nitrate containing 0.4 g potassium for 12 h. Then it was dried at 110°C overnight and calcined at 420 C for 4 h before using for the reaction. EXAMPLE 2 : Synthesis of cesium modified ZSM-5.
Same procedure as given in Example 1 was used for the preparation of other metal ion ZSM-5 catalyst by using their inorganic salts as precursors. Cesium nitrate was used for Cs-ZSM-5. EXAMPLE 3: Modified ZSM-5 was used in the following reaction for the preparation of 2,6- divinylpyridine and 2-methyl-6-vinylρyridine. Cs-ZSM-5 (SiO2/ A12O3 = 30) (3 wt% Cs) catalyst was packed in a pyrex reactor having and inner diameter of 20 mm with the length of 30-40 cm and the catalytic zone was heated at 300°C. Then the mixture was fed from top of formaldehyde: 2,6-lutidine = 4: 1 molar. The weight hourly space velocity was 0.5 h"1. The liquid product selectivities for 2,6-divinylpyridine (2,6-DVP) and 2-methyl-6-vinylpyridine (2M6VP) were 25.2 and 74.8 % at 37.1 wt% conversion of 2,6-lutidine (at time on stream (TOS) = 6 h) respectively. EXAMPLE 4:
Conversion of 2,6-lutidine and formaldehyde was carried out over K-ZSM-5 (3 wt% K) at 300°C with 0.5 h'1 W.H.S.V. The catalyst was 4 g with 18-30 mesh size and feed rate of 2 ml. h"1. 2,6-Lutidine to formaldehyde molar ratio was 1:4. The liquid product selectivities were 36.1 and 60.0 at 51.5 wt% conversion of 2,6-lutidine at TOS = 6 h. EXAMPLE 5: Reaction of 2,6-lutidine and formaldehyde was carried out over Rb-ZSM-5
(30) at 300°C with 0.5 h"1 W.H.S.V. The catalyst was 4 g with 18-30 mesh size and feed rate of 2 ml. h"1. 2,6-Lutidine to formaldehyde molar ratio was 1:4. The liquid product selectivities of 2,6-divinylpyridine and 2-methyl-6-vinylρyridien were 39.4 and 60.6 wt% at 62.3 wt% conversion of 2,6-lutidine at TOS = 6 h. EXAMPLE 6: Reaction of 2,6-lutidine and formaldehyde was carried out over Na-ZSM-5
(SiO2/ Al2O3 = 30) at 300°C with 0.5 h_1 W.H.S.V. The catalyst was 4 g with 18-30 mesh size and feed rate of 2 ml. h"1. The molar ratio of 2,6-lutidine to formaldehyde 1:4. The liquid product selectivities were 30.4 and 69.6 % for 2,6-DVP and 2M6VP respectively, at 53.3 wt% conversion of 2,6-lutidine. EXAMPLE 7:
Reaction of 2,6-lutidine and formaldehyde was carried out over Sr-ZSM-5 (SiO2/ Al2O3 =30) at 300°C with 0.5 h"1 W.H.S.V. The catalyst was 4 g with 18-30 mesh size and feed rate of 2 ml. h"1. The molar ratio of 2,6-lutidine: formaldehyde was 1:4. The liquid product selectivities were 24.9 and 75.1% of 2,6-DVP and 2M6VP respectively, at 32.5 wt% conversion of 2,6-lutidine at TOS= 6 h. EXAMPLE 8:
Reaction of 2,6-lutidine and formaldehyde was carried out over BaZSM-5 (30) at 300°C with 0.5 h"1 W.H.S.V. The catalyst was 4 g with 18-30 mesh size and feed rate of 2 ml. h"1. The molar ratio of 2,6-lutidine: formaldehyde was 1:4. The liquid product selectivity was >98% of 2,6-DVP at 21.9 % conversion of 2,6-lutidine at TOS= 6 h. EXAMPLE 9:
Reaction of 2,6-lutidine and formaldehyde was carried out over Cs-K-ZSM-5 (SiO2/ Al2O3= 30) at 300°C with 0.5 h_1 W.H.S.V. The catalyst was 4 g with 18-30 mesh size and feed rate of 2 ml. h"1. The molar ratio of 2,6-lutidine; formaldehyde was 1:4. The liquid product selectivities were 31.0 and 67.8 wt% for 2,6-DVP and 2M6VP at 57.8 wt% conversion of 2,6-lutidine respectively, at TOS= 6 h. EXAMPLE 10:
The reaction of 2,6-lutidine and formaldehyde was carried out over K-ZSM-5 (30, 3 wt% K) in the reaction temperature range of 250 to 400°C. The catalyst was 4 g with 18-30 mesh size and feed rate 2 ml.h"1. The molar ratio of 2,6-lutidine: formaldehyde was 1:4. The liquid product selectivities were 32.1 % 2,6-DVP and 67.9% 2M6VP at 16.1 wt% conversion of 2,6-lutidine at 250°C at TOS= 6 h. The liquid product selectivities were 36.1 %2,6-DVP and 60.0% 2M6VP at 51.5 wt% conversion of 2,6-lutidine at 300°C at TOS= 6 h. The liquid product selectivities were 45.0 % 2,6-DVP and 46.8 % 2M6VP at 60.4 wt% conversion of 2,6-lutidine at 350°C at TOS= 6 h. The liquid product selectivities were 29.1 % 2,6-DVP and 54.3 % 2M6VP at 55.3 wt% conversion of 2,6-lutidine at 400°C at TOS= 6 h. EXAMPLE 11:
The reaction of 2,6-lutidine and formaldehyde was carried out over K-ZSM-5 (30, 3 wt% K) at 300°C reaction temperature and W.H.S.V. =0.5 h"1. The molar ratio of 2,6-lutidine: formaldehyde was varied in the range of 1:1 to 1:5. The catalyst was 4 g with 18-30 mesh size and feed rate 2 ml.h"1. The liquid product selectivities were 30.9 % 2,6-DVP and 68.9 % 2M6VP at 39.3 wt% conversion of 2,6-lutidine for the molar ratio of lutidine: formaldehyde =1:1. The liquid product selectivities were 36.1 % 2,6-DVP and 60.0 % 2M6VP at 51.5 wt% conversion of 2,6-lutidine for the molar ratio of lutidine: formaldehyde =1: 4. The liquid product selectivities were 46.7 % 2,6- DVP and 49.1 % 2M6VP at 58.7 wt% conversion of 2,6-lutidine for the molar ratio of lutidine: formaldehyde =1:5. EXAMPLE 12: The reaction of 2,6-lutidine and formaldehyde was carried out over K-ZSM-5
(30, 4 wt% K by ion exchange method) at 300°C reaction temperature and weight hourly space velocity was varied in the range of 0.125 to 0.75 h"1. The catalyst was 4 g with 18-30 mesh size and feed rate 2 ml.h"1. The molar ratio of lutidine: formaldehyde was 1:4. The liquid product selectivities were 74.7 % 2,6-DVP and 23.4 % 2M6VP at 87.2 wt% conversion of 2,6-lutidine at 0.125 h"1 and at TOS = 5 h. The liquid product selectivities were 61.8 % 2,6-DVP and 37.9 % 2M6VP at 74.4 wt% conversion of 2,6- lutidine at TOS = 6 h. EXAMPLE 13:
The calcination or activation temperature of the ZSM-5 catalyst was also varied in the temperature range of 420°C to 700°C. The reaction of 2,6-lutidine and formaldehyde was carried out over KZSM-5 (30, 3wt%). The liquid product selectivities were 36.1 % 2,6-DVP and 60.0 % 2M6VP at 51.5 wt% conversion of 2,6- lutidine at TOS = 6 h and calcination temperature was 420°C, 0.5 h"1 W.H.S.V. The catalyst was 4 g with 18-30 mesh size and feed rate 2 ml.h"1. The liquid product selectivities were 33.5 % 2,6-DVP and 66.2 % 2M6VP at 48.4 wt% conversion of 2,6- lutidine at TOS = 5+6 h. EXAMPLE 14:
The weight percent potassium impregnated in the HZSM-5 catalyst was also varied from 1 wt% to 4 wt%. The reaction of 2,6-lutidine and formaldehyde was carried out over K-ZSM-5 (30) at 300°C and 0.5 h"1 W.H.S.V. The molar ratio of 2,6- lutidine: formaldehyde was 1:4. The weight of the catalyst was 4 g with 18-30 mesh size and feed rate 2 ml.h"1. The liquid product selectivities were 24.3 % 2,6-DVP and 75.7 % 2M6VP at 34.0 wt% conversion of 2,6-lutidine at TOS = 6 h and for 1 wt% KZSM-5. The liquid product selectivities were 61.8 % 2,6-DVP and 37.9 % 2M6VP at 74.4 wt% conversion of 2,6-lutidine at TOS = 6 h for 4 wt% of potassium impregnation, KZSM-5. EXAMPLE 15:
The potassium precursor in the process of impregnation was also varied. The reaction of 2,6-lutidine and formaldehyde was carried out at 300°C and 0.5 h"1 W.H.S.V. The molar ratio of 2,6-lutidine: formaldehyde was 1:4. The weight of the catalyst was 4 g with 18-30 mesh size and feed rate 2 ml.h"1. The molar ratio of 2,6- lutidine to formaldehyde was 1:4. The liquid product selectivities were 49.8 % 2,6- DVP and 50.2 % 2M6VP at 64.7 wt% conversion of 2,6-lutidine at TOS = 6 h for KO*Bu as a precursor. Similarly the following precursors were studied, KNO3, KF, KOAc, K3PO4 and KOH. The conversion of 2,6-lutidine was varied from 51% to 80% with 36 to 56 % of selectivity for 2,6-DVP.

Claims

We claim:
1. A process for the simultaneous production of 2,6-divinylpyridine and 2-methyl- 6-vinylpyridine comprising reacting 2,6-lutidine with formaldehyde in a catalytic zone containing a modified zeolite catalyst, the temperature of the catalytic zone being in the range of 200 to 450°C3 the reaction being carried out at a weight hourly space velocity in the range of 0.25 to 1.0 h"1, the molar ratio of 2,6- lutidine to formaldehyde being 1:1 to 1:4.
2. A process as claimed in claim 1 wherein the modified zeolite catalyst comprises a modified ZSM-5 pentasil type zeolite catalyst.
3. A process as claimed in claim 2 wherein the modified ZSM-5 catalyst is a ZSM- 5 catalyst modified by an alkali or alkaline earth metal ion selected from the group consisting of Li+, Na+, K+, Rb+, Cs+, Mg2+, Ca2+, Sr2+, Ba2+.
4. A process as claimed in claim 2 wherein the modified ZSM-5 catalyst is a two cation modified ZSM-5.
5. A process as claimed in claim 4 wherein the two cation modified ZSM-5 catalyst is Cs-K-ZSM-5.
6. A process as claimed in claim 3 wherein the weight percent of the alkali or alkaline earth metal ion in ZSM-5 is in the range of 1 wt % to 4 wt %.
7. A process as claimed in claim 3 wherein the ZSM-5 catalyst is modified by potassium ion, the potassium ion source being selected from the group consisting of KO'Bu, KOH, KF, KNO3, K3PO4 and KOAc, to improve the yield and selectivity of 2,6-divinylpyridine.
8. A process as claimed in claim 2 wherein the modified zeolite is 3 wt% KZSM-5, calcined at a temperature in the range of 400°C to 700°C.
9. A process as claimed in claim 1 wherein the temperature of the catalytic zone is 300°C.
10. A process as claimed in claim 1 wherein the molar ratio of formaldehyde to 2,6- lutidine is 4:1.
11. A process as claimed in claim 1 wherein the weight hourly space velocity in the process is 0.5 h"1.
EP03717530A 2003-03-31 2003-03-31 Process for preparing 2,6-divinylpyridine and 2-methyl-6-vinylpyridine from 2,6-lutidine over modified zeolites Withdrawn EP1608621A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IN2003/000111 WO2004087664A1 (en) 2003-03-25 2003-03-31 Process for preparing 2,6-divinylpyridine and 2-methyl-6-vinylpyridine from 2,6-lutidine over modified zeolites

Publications (1)

Publication Number Publication Date
EP1608621A1 true EP1608621A1 (en) 2005-12-28

Family

ID=34385759

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03717530A Withdrawn EP1608621A1 (en) 2003-03-31 2003-03-31 Process for preparing 2,6-divinylpyridine and 2-methyl-6-vinylpyridine from 2,6-lutidine over modified zeolites

Country Status (3)

Country Link
EP (1) EP1608621A1 (en)
JP (1) JP4430549B2 (en)
AU (1) AU2003222442A1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004087664A1 *

Also Published As

Publication number Publication date
JP2006522009A (en) 2006-09-28
JP4430549B2 (en) 2010-03-10
AU2003222442A1 (en) 2004-10-25

Similar Documents

Publication Publication Date Title
Koehle et al. Lewis acidic zeolite Beta catalyst for the Meerwein–Ponndorf–Verley reduction of furfural
US11136276B2 (en) Single-stage method of butadiene production
NZ197900A (en) Promoting activity in cation-exchangeable layered clay or aluminosilicate catalyst by addition of strong acid
RU2563649C2 (en) Method of producing zeolite-based catalyst for converting methanol into olefins
US4548913A (en) Catalyst, a process for its preparation and an isomerization process in the presence of this catalyst
CN106607073B (en) Methylbenzene methanol side chain alkylation prepares ethylbenzene phenylethylene catalyst and application thereof
US4395372A (en) Alkylation process
US5969143A (en) Pyridine/picoline production process
US6897320B2 (en) Process for preparing 2,6-divinylpyridine and 2-methyl-6-vinylpyridine from 2,6-lutidine over modified zeolites
US6727365B1 (en) Process for the preparation of vinylpyridine from picoline over modified zeolites
AU641752B2 (en) Metals-containing zeolites, a process for preparing such zeolites and their use in catalytic processes
BG62767B1 (en) Method for the preparation of 3-methylpiperidine and 3-methylpyridine by catalytic recycling of 2-methyl-1.5-diaminopentan
US4454245A (en) Catalyst and process for producing conjugated dienes
US4960894A (en) Preparation of substituted pyridines
Ghiaci et al. Internal versus external surface active sites in ZSM-5 zeolite: Part 1. Fries rearrangement catalyzed by modified and unmodified H3PO4/ZSM-5
EP1608621A1 (en) Process for preparing 2,6-divinylpyridine and 2-methyl-6-vinylpyridine from 2,6-lutidine over modified zeolites
JP4545593B2 (en) Process for producing vinylpyridine from picoline on modified zeolite
US5077438A (en) Process for the preparation of acrolein
US4115463A (en) Production of cycloalkylaromatics
Selvaraj et al. Selective synthesis of octahydroacridines and diannelated pyridines over zinc-containing mesoporous aluminosilicate molecular sieve catalysts
JP6451311B2 (en) Method for producing piperazine and triethylenediamine
Gopal et al. A novel single step synthesis of 2-methyl-6-phenylpyridine from non-heterocyclic compounds over molecular sieve catalystsIICT Communication No. 4649.
US4555584A (en) Process for producing conjugated dienes
Madhavi et al. Side chain alkylation of 2-picoline with formaldehyde over alkali modified zeolites
CA2552158C (en) Catalyst for synthesis of 2- and 4-picolines, process for preparing 2- and 4-picoline and process for preparing the catalyst

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051013

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17Q First examination report despatched

Effective date: 20070328

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20111001