EP1607607A1 - Signal treatment method for an ionic current in Diesel engines - Google Patents

Signal treatment method for an ionic current in Diesel engines Download PDF

Info

Publication number
EP1607607A1
EP1607607A1 EP05012638A EP05012638A EP1607607A1 EP 1607607 A1 EP1607607 A1 EP 1607607A1 EP 05012638 A EP05012638 A EP 05012638A EP 05012638 A EP05012638 A EP 05012638A EP 1607607 A1 EP1607607 A1 EP 1607607A1
Authority
EP
European Patent Office
Prior art keywords
ion current
signal
glow
evaluation method
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05012638A
Other languages
German (de)
French (fr)
Inventor
Patrick Dr. Attard
Rüdiger Dr. Herweg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP1607607A1 publication Critical patent/EP1607607A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • F02P19/028Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs the glow plug being combined with or used as a sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/281Interface circuits between sensors and control unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • F02D2041/288Interface circuits comprising means for signal processing for performing a transformation into the frequency domain, e.g. Fourier transformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/021Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using an ionic current sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • F02P2017/125Measuring ionisation of combustion gas, e.g. by using ignition circuits

Definitions

  • the invention relates to a signal evaluation method for Ionenstrommesoitch in the diesel engine according to the preamble of Patent claim 1.
  • EP 1 329 630 A2 an annealing and Ion current measuring device for a diesel engine described in annealing operation an annealing voltage and in measuring operation a measuring voltage is applied to a glow plug. In measuring mode an ion current is measured over the Combustion conditions in the cylinders of the diesel engine can be determined.
  • soot deposits on or on the glow plug with a integrated ion current sensor hereafter also called annealing and Ion current measuring plug is called, it can be a Deterioration of the measuring signal and thus problems with the signal evaluation come.
  • the soot deposits consist of Carbon molecules, which are also in the combustion chamber and on the Lower the glow plug. Because carbon is a good electrical Head is, the output signal is partially shorted.
  • the soot particles can through a sufficiently high temperature be burned off. As the heating element usually turns on the top of the glow plug is located, which can be for the Short circuit responsible soot particles by one Annealing process of the glow plug is not always completely burned become.
  • the object of the invention is to provide a signal evaluation method for Specify ion current measurements in the diesel engine, which also Good with a sooty glow and ion current meter Delivers results.
  • the invention solves this problem by providing a Signal evaluation method for ion current measurements with the Features of claim 1.
  • the filtering is done in an advantageous manner through the sooting of the glow and ion current meter filtered out signal offset. This allows the measured ion current signals even with a sooted annealing and ion current measuring plug for determining the Combustion conditions in combustion chambers of cylinders Diesel engines are evaluated.
  • the Transfer function by comparing a first Output signal of the ion current measurement, which with a not sooty glow and ion current meter is measured, with a second output signal of the ion current measurement, with a sooty glow and ion current meter is measured, determined.
  • the transfer function is for example in Frequency range by dividing the first output signal determined by the second output signal.
  • Signal evaluation method is the currently measured Ion current signal by means of a Fourier transformation in the Frequency domain transformed, there with the determined Transfer function multiplied and then back in the time range transformed back.
  • a sooty incandescent and ionic current ores through an evaluation the amplitude of the currently measured ion current signal detected when a signal offset a predetermined threshold exceeds.
  • a measured ion current is averaged in step 100, and an evaluation of the amplitude is used to check in step 200 whether an incandescent and ionic current measuring candle GK used for the ion current measurement is fouled or not. If a signal offset exceeds, for example, a predetermined threshold value, then a sooty glow and ion current measuring plug GK is closed and the measured ion current with soot I mR is filtered in step 300 with a transfer function and output for further evaluation to determine the combustion conditions in combustion chambers of a diesel engine. If it is determined that the glow and ion current measuring plug is not sooty, then the measured ion current without soot I oR is output for further evaluation for determining the combustion conditions in combustion chambers of a diesel engine.
  • the transfer function is determined by comparing a first output signal I oR of the ion current measurement measured with a non-sooted glow and ionic current measuring plug GK with a second output signal I mR of the ionic current measurement measured with a sooted glow and ionic current measuring plug GK.
  • the transfer function is determined, for example, by a division of the first output signal I oR by the second output signal I mR in the frequency domain and represents the soot characteristic of the glow and ion current measuring plug GK in the frequency domain.
  • the signal offset caused by the fouling of the glow and ion current measuring plug can be filtered out so that the ion current signals I mR which are measured with the sooted glow and ion current measuring plug GK can also be evaluated.
  • the currently measured ion current signal I S is transformed into the frequency domain by means of a Fourier transformation, where it is multiplied by the ascertained transfer function and then transformed back into the time domain.
  • the ion current measuring circuit comprises a meae resistor R M , which is connected in series with the glow and ion current measuring plug GK and is supplied with a DC voltage V S.
  • the glow and ion current measuring plug GK is replaced by the equivalent circuit shown representing an ionic current resistance R IC , a soot resistance R S and a capacitance C P , wherein the ionic current resistance R IC and the soot resistance R S are variable resistances.
  • the soot resistance R S varies with pressure, while the ionic current resistance R IC itself changes with the type of flame within the combustion chamber and with the proximity of the flame to the glow and ionic current sense plug GK.
  • the capacitance C P is very small because of the large distance between the glow plug tip and the cylinder head and can be neglected at the low measurement frequencies.
  • FIG. 3 shows a measurement of the ion current I mR with a sooted glow and ion current measuring plug GK and the associated pressure curve within the combustion chamber of a cylinder.
  • I mR ion current measuring plug
  • GK sooted glow and ion current measuring plug
  • carbon black consists of carbon particles
  • the density of the carbon particles increases with increasing ambient pressure, and as the density increases, so does the conductivity of the carbon black particles, such as in a carbon microphone.
  • the initial part of the current curve therefore correlates with the pressure curve in the combustion chamber of the associated cylinder.
  • FIG. 4 shows a first standardized current signal I OR , which is recorded with an incandescent and ionic current measuring plug GK without soot deposits, and a filtered current signal I mR , which is recorded with an annealing and ionic current measuring plug GK with soot deposits.
  • I OR standardized current signal
  • I mR filtered current signal
  • the described transfer function is used and the soot characteristic of the incandescent and ionic current spark plug GK is removed from the ion current signal I mR .
  • the resulting filtered ion current signal I mR shows a good correlation with the ion current signal I oR without soot

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Testing Of Engines (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

The signal evaluation method has the actual output signal (Is) of the ion current measurement filtered via a transmission function corresponding to the soiling characteristic of the glow and ion current measuring plugs, upon detection of an excessively soiled plug.

Description

Die Erfindung betrifft ein Signalauswerteverfahren für Ionenstrommesoungen im Dieselmotor nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a signal evaluation method for Ionenstrommesoungen in the diesel engine according to the preamble of Patent claim 1.

In der EP 1 329 630 A2 wird eine Glüh- und Ionenstrommessvorrichtung für einen Dieselmotor beschrieben, bei der im Glühbetrieb eine Glühspannung und im Messbetrieb ein Messspannung an einer Glühkerze anliegt. Im Messbetrieb wird ein Ionenstrom gemessen, über den Verbrennungsverhältnisse in den Zylindern des Dieselmotors ermittelt werden können.In EP 1 329 630 A2 an annealing and Ion current measuring device for a diesel engine described in annealing operation an annealing voltage and in measuring operation a measuring voltage is applied to a glow plug. In measuring mode an ion current is measured over the Combustion conditions in the cylinders of the diesel engine can be determined.

Durch Rußablagerungen auf oder an der Glühkerze mit einem integrierten Ionenstromsensor, die nachfolgend auch als Glüh-und Ionenstrommesskerze bezeichnet wird, kann es zu einer Verschlechterung des Messsignals und damit zu Problemen bei der Signalauswertung kommen. Die Rußablagerungen bestehen aus Kohlenstoffmolekühlen, die sich auch im Brennraum und auf der Glühkerze absetzen. Da Kohlenstoff ein guter elektrischer Leiter ist, wird das Ausgabesignal teilweise kurzgeschlossen. Die Rußpartikel können durch eine genügend große Temperatur abgebrannt werden. Da sich das Heizelement in der Regel an der Spitze der Glühkerze befindet, können die für den Kurzschluss verantwortlichen Rußpartikel durch einen Glühvorgang der Glühkerze nicht immer vollständig verbrannt werden.By soot deposits on or on the glow plug with a integrated ion current sensor, hereafter also called annealing and Ion current measuring plug is called, it can be a Deterioration of the measuring signal and thus problems with the signal evaluation come. The soot deposits consist of Carbon molecules, which are also in the combustion chamber and on the Lower the glow plug. Because carbon is a good electrical Head is, the output signal is partially shorted. The soot particles can through a sufficiently high temperature be burned off. As the heating element usually turns on the top of the glow plug is located, which can be for the Short circuit responsible soot particles by one Annealing process of the glow plug is not always completely burned become.

Aufgabe der Erfindung ist es, ein Signalauswerteverfahren für Ionenstrommessungen im Dieselmotor anzugeben, welches auch bei einer verrußten Glüh- und Ionenstrommesskerze gute Ergebnisse liefert.The object of the invention is to provide a signal evaluation method for Specify ion current measurements in the diesel engine, which also Good with a sooty glow and ion current meter Delivers results.

Die Erfindung löst diese Aufgabe durch Bereitstellung eines Signalauswerteverfahren für Ionenstrommessungen mit den Merkmalen des Patentanspruchs 1.The invention solves this problem by providing a Signal evaluation method for ion current measurements with the Features of claim 1.

Vorteilhafte Ausführungsformen und Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen angegeben.Advantageous embodiments and further developments of Invention are given in the dependent claims.

Erfindungsgemäß wird ein aktuelles Ausgabesignal einer Ionenstrommessung mit einer Übertragungsfunktion einer Rußcharakteristik der Glüh- und Ionenstrommesakerze gefiltert, wenn eine verrußte Glüh- und Ionenstromkerze erkannt wird. Durch die Filterung wird in vorteilhafter Weise ein durch die Verrußung der Glüh- und Ionenstrommesskerze verursachter Signaloffset herausgefiltert. Dadurch können die gemessenen Ionenstromsignale auch bei einer verrußten Glüh- und Ionenstrommesskerze zur Ermittlung der Verbrennungsverhältnisse in Brennräumen von Zylindern eines Dieselmotors ausgewertet werden.According to the invention, a current output signal of a Ion current measurement with a transfer function of a Soot characteristic of the incandescent and ionic current candles filtered when a sooty glow and ion current candle is recognized. The filtering is done in an advantageous manner through the sooting of the glow and ion current meter filtered out signal offset. This allows the measured ion current signals even with a sooted annealing and ion current measuring plug for determining the Combustion conditions in combustion chambers of cylinders Diesel engines are evaluated.

In Ausgestaltung des Signalauswerteverfahrens wird die Übertragungsfunktion durch einen Vergleich eines ersten Ausgabesignals der Ionenstrommessung, das mit einer nicht verrußten Glüh- und Ionenstrommesskerze gemessen wird, mit einem zweiten Ausgabesignal der Ionenstrommessung, das mit einer verrußten Glüh- und Ionenstrommesskerze gemessen wird, ermittelt.In an embodiment of the signal evaluation method, the Transfer function by comparing a first Output signal of the ion current measurement, which with a not sooty glow and ion current meter is measured, with a second output signal of the ion current measurement, with a sooty glow and ion current meter is measured, determined.

Die Übertragungsfunktion wird beispielsweise im Frequenzbereich durch eine Division des ersten Ausgabesignals durch das zweite Ausgabesignal bestimmt.The transfer function is for example in Frequency range by dividing the first output signal determined by the second output signal.

In weiterer Ausgestaltung des erfindungsgemäßen Signalauswerteverfahrens wird das aktuell gemessene Ionenstromsignal mittels einer Fouriertransformation in den Frequenzbereich transformiert, dort mit der ermittelten Übertragungsfunktion multipliziert und anschließend wieder in den Zeitbereich zurück transformiert.In a further embodiment of the invention Signal evaluation method is the currently measured Ion current signal by means of a Fourier transformation in the Frequency domain transformed, there with the determined Transfer function multiplied and then back in the time range transformed back.

In Ausgestaltung des Signalauswerteverfahrens wird eine verrußte Glüh- und Ionenstrommesekerze durch eine Auswertung der Amplitude des aktuell gemessenen Ionenstromsignals erkannt, wenn ein Signaloffset einen vorgegebenen Schwellwert übersteigt.In an embodiment of the signal evaluation method, a sooty incandescent and ionic current ores through an evaluation the amplitude of the currently measured ion current signal detected when a signal offset a predetermined threshold exceeds.

Eine vorteilhafte Ausführungsform der Erfindung ist in den Zeichnungen dargestellt und wird nachfolgend beschrieben.An advantageous embodiment of the invention is in the Drawings are shown and described below.

Dabei zeigen:

Fig. 1
ein Flussdiagramm für einen Teil eines Signalauswerteverfahrens
Fig. 2
ein Ersatzschaltbild einer Glüh- und Ionenstrommesskerze,
Fig. 3
eine schematische Darstellung von Signalverläufen einer Ionenstrommessung mit entsprechendem Druckverlauf, und
Fig. 4
eine schematische Darstellung von Signalverläufen einer Ionenstrommessung mit Filterung.
Showing:
Fig. 1
a flow chart for a part of a signal evaluation method
Fig. 2
an equivalent circuit diagram of an incandescent and ionic current measuring plug,
Fig. 3
a schematic representation of signal waveforms of an ion current measurement with a corresponding pressure curve, and
Fig. 4
a schematic representation of signal waveforms of an ion current measurement with filtering.

Wie aus Fig. 1 ersichtlich ist, wird ein gemessener Ionenstrom im Schritt 100 gemittelt und durch eine Auswertung der Amplitude wird im Schritt 200 überprüft, ob eine für die Ionenstrommessung benutzte Glüh- und Ionenstrommesskerze GK verrußt ist oder nicht. Übersteigt ein Signaloffset beispielsweise einen vorgegebenen Schwellwert, dann wird auf eine verrußte Glüh- und Ionenstrommesskerze GK geschlossen und der gemessene Ionenstrom mit Ruß ImR wird im Schritt 300 mit einer Übertragungsfunktion gefiltert und zur weiteren Auswertung zur Ermittlung der Verbrennungsverhältnisse in Brennräumen eines Dieselmotors ausgegeben. Wird festgestellt, dass die Glüh- und Ionenstrommesskerze nicht verrußt ist, dann wird der gemessene Ionenstrom ohne Ruß IoR zur weiteren Auswertung zur Ermittlung der Verbrennungsverhältnisse in Brennräumen eines Dieselmotors ausgegeben.As can be seen from FIG. 1, a measured ion current is averaged in step 100, and an evaluation of the amplitude is used to check in step 200 whether an incandescent and ionic current measuring candle GK used for the ion current measurement is fouled or not. If a signal offset exceeds, for example, a predetermined threshold value, then a sooty glow and ion current measuring plug GK is closed and the measured ion current with soot I mR is filtered in step 300 with a transfer function and output for further evaluation to determine the combustion conditions in combustion chambers of a diesel engine. If it is determined that the glow and ion current measuring plug is not sooty, then the measured ion current without soot I oR is output for further evaluation for determining the combustion conditions in combustion chambers of a diesel engine.

Die Übertragungsfunktion wird durch einen Vergleich eines ersten Ausgabesignals IoR der Ionenstrommessung, das mit einer nicht verrußten Glüh- und Ionenstrommesskerze GK gemessen wird, mit einem zweiten Ausgabesignal ImR der Ionenstrommessung ermittelt, das mit einer verrußten Glüh- und Ionenstrommesskerze GK gemessen wird. Die Übertragungsfunktion wird beispielsweise durch eine Division des ersten Ausgabesignals IoR durch das zweite Ausgabesignal ImR im Frequenzbereich bestimmt und repräsentiert die Rußcharakteristik der Glüh- und Ionenstrommesskerze GK im Frequenzbereich. Mit Hilfe dieser Übertragungsfunktion kann der durch die Verrußung der Glüh- und Ionenstrommesskerze verursachte Signaloffset herausgefiltert werden, so dass auch die Ionenstromsignale ImR, die mit der verrußten Glüh- und Ionenstrommesskerze GK gemessen werden, ausgewertet werden können.The transfer function is determined by comparing a first output signal I oR of the ion current measurement measured with a non-sooted glow and ionic current measuring plug GK with a second output signal I mR of the ionic current measurement measured with a sooted glow and ionic current measuring plug GK. The transfer function is determined, for example, by a division of the first output signal I oR by the second output signal I mR in the frequency domain and represents the soot characteristic of the glow and ion current measuring plug GK in the frequency domain. With the aid of this transfer function, the signal offset caused by the fouling of the glow and ion current measuring plug can be filtered out so that the ion current signals I mR which are measured with the sooted glow and ion current measuring plug GK can also be evaluated.

Zur Aufbereitung wird das aktuell gemessene Ionenstromsignal IS mittels einer Fouriertransformation in den Frequenzbereich transformiert, dort mit der ermittelten Übertragungsfunktion multipliziert und anschließend wieder in den Zeitbereich zurück transformiert.For preparation, the currently measured ion current signal I S is transformed into the frequency domain by means of a Fourier transformation, where it is multiplied by the ascertained transfer function and then transformed back into the time domain.

Wie aus Fig. 2 ersichtlich ist, umfasst die Schaltung zur Ionenstrommessung einen Meaawiderstand RM, der in Reihe mit der Glüh- und Ionenstrommesskerze GK geschaltet ist und mit einer Gleichspannung VS versorgt wird, Die Glüh- und Ionenstrommesskerze GK wird durch die dargestellte Ersatzschaltung repräsentiert, die einen Ionenstromwiderstand RIC, einen Rußwiderstand RS und eine Kapazität CP umfasst, wobei der Ionenstromwiderstand RIC und der Rußwiderstand RS variable Widerstände sind. Der Rußwiderstand RS verändert sich mit dem Druck, während der Ionenstromwiderstand RIC sich mit dem Flammentyp innerhalb des Brennraums und mit der Nähe der Flamme zur Glüh- und Ionenstrommesskerze GK selbst verändert. Die Kapazität CP ist wegen des großen Abstandes zwischen der Glühkerzenspitze und dem Zylinderkopf sehr klein und kann bei den niedrigen Messfrequenzen vernachlässigt werden.As can be seen from FIG. 2, the ion current measuring circuit comprises a meae resistor R M , which is connected in series with the glow and ion current measuring plug GK and is supplied with a DC voltage V S. The glow and ion current measuring plug GK is replaced by the equivalent circuit shown representing an ionic current resistance R IC , a soot resistance R S and a capacitance C P , wherein the ionic current resistance R IC and the soot resistance R S are variable resistances. The soot resistance R S varies with pressure, while the ionic current resistance R IC itself changes with the type of flame within the combustion chamber and with the proximity of the flame to the glow and ionic current sense plug GK. The capacitance C P is very small because of the large distance between the glow plug tip and the cylinder head and can be neglected at the low measurement frequencies.

Fig. 3 zeigt eine Messung des Ionenstroms ImR mit einer verrußten Glüh- und Ionenstrommesskerze GK und den dazugehörenden Druckverlauf innerhalb der Brennkammer eines zylinders. Im dargestellten Meesbeiepiel wurden 127 Perioden gemessen und gemittelt. Ein Offset ist aus der Fig. 3 deutlich ersichtlich und erklärt die Auswirkungen des Rußbelags auf den Ionenstrom. Diese Vorgänge können durch die in Fig. 2 dargestellte Ersatzschaltung modelliert werden. Wie aus Fig. 3 ersichtlich ist, steigt die Signalamplitude des Ionenstrams ImR im Bereich eines Kurbelwellenwinkels von 0° an, nimmt im Bereich von 10° etwas ab und steigt dann wieder an. Da Ruß aus Kohlenstoffpartikeln besteht, nimmt die Dichte der Kohlenstoffpartikel mit steigendem Umgebungsdruck zu und mit der Zunahme der Dichte nimmt auch die Leitfähigkeit der Rußpartikel, wie beispielsweise auch bei einem Kohlenstoffmikrophon zu. Der Anfangsteil der Stromkurve korreliert daher mit der Druckkurve im Brennraum des zugehörigen Zylinders.3 shows a measurement of the ion current I mR with a sooted glow and ion current measuring plug GK and the associated pressure curve within the combustion chamber of a cylinder. In the illustrated Meesbeiepiel 127 periods were measured and averaged. An offset is clearly evident from FIG. 3 and explains the effects of the soot lining on the ion current. These operations can be modeled by the equivalent circuit shown in FIG. As can be seen from FIG. 3, the signal amplitude of the ion beam I mR increases in the range of a crankshaft angle of 0 °, decreases somewhat in the region of 10 ° and then increases again. Since carbon black consists of carbon particles, the density of the carbon particles increases with increasing ambient pressure, and as the density increases, so does the conductivity of the carbon black particles, such as in a carbon microphone. The initial part of the current curve therefore correlates with the pressure curve in the combustion chamber of the associated cylinder.

Fig. 4 zeigt ein erstes normiertes Stromsignal IOR, welches mit einer Glüh- und Ionenstrommesskerze GK ohne Rußablagerungen aufgenommen ist und ein gefiltertes Stromsignal ImR, welches mit einer Glüh- und Ionenstrommesskerze GK mit Rußablagerungen aufgenommen ist. Zur Filterung des Stromeignals ImR wird die beschriebene Übertragungsfunktion angewendet und die Rußcharakteristik der Glüh- und Ionenstrommesekerze GK aus dem Ionenstromeignal ImR entfernt. Wie aus Fig. 4 ersichtlich ist, zeigt das resultierende gefilterte Ionenstromsignal ImR ein gute Korrelation mit dem Ionenstromsignal IoR ohne Ruß,4 shows a first standardized current signal I OR , which is recorded with an incandescent and ionic current measuring plug GK without soot deposits, and a filtered current signal I mR , which is recorded with an annealing and ionic current measuring plug GK with soot deposits. For filtering the current signal I mR , the described transfer function is used and the soot characteristic of the incandescent and ionic current spark plug GK is removed from the ion current signal I mR . As can be seen from FIG. 4, the resulting filtered ion current signal I mR shows a good correlation with the ion current signal I oR without soot,

Claims (5)

Signalauswerteverfahren für eine Ionenstrommessung in einem Dieselmotor mit einer Glüh- und Ionenstrommesskerze (GK),
dadurch gekennzeichnet, dass ein aktuelles Ausgabesignal (IS) der Ionenstrommessung mit einer Übertragungsfunktion einer Rußcharakteristik der Glüh- und Ionenstrommesskerze (GK) gefiltert wird, falls eine verrußte Glüh- und Ionenstromkerze (GK) erkannt wird.
Signal evaluation method for an ion current measurement in a diesel engine with an annealing and ion current measuring plug (GK),
characterized in that a current output signal (I S ) of the ion current measurement with a transfer function of a soot characteristic of the glow and Ionenstrommessfinder (GK) is filtered if a sooty glow and ion current candle (GK) is detected.
Signalauswerteverfahren nach Anspruch 1,
dadurch gekennzeichnet, dass die Übertragungsfunktion durch einen Vergleich eines ersten Ausgabesignals (IoR) der Ionenstrommessung, das mit einer nicht verrußten Glüh- und Ionenstrommesskerze (GK) gemessen wird, mit einem zweiten Ausgabesignal (ImR) der Ionenstrommessung ermittelt wird, das mit einer verrußten Glüh- und Ionenstrommesskerze (GK) gemessen wird.
Signal evaluation method according to claim 1,
characterized in that the transfer function is determined by a comparison of a first output signal (I oR ) of the ion current measurement, which is measured with a non-sooted glow and ion current measuring plug (GK), with a second output signal (I mR ) of the ion current measurement sooty glow and ion current meter (GK) is measured.
Signalauswerteverfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass die Übertragungsfunktion durch eine Division im Frequenzbereich des ersten Ausgabesignals (IoR) durch das zweite Ausgabesignal (ImR) bestimmt wird.
Signal evaluation method according to claim 1 or 2,
characterized in that the transfer function is determined by a division in the frequency domain of the first output signal (I oR ) by the second output signal (I mR ).
Signalauswerteverfahren nach Anspruch 3,
dadurch gekennzeichnet, dass das aktuell gemessene Ionenstromsignal (IS) mittels einer Fouriertransformation in den Frequenzbereich transformiert, dort mit der ermittelten Übertragungsfunktion multipliziert und anschließend wieder in den Zeitbereich zurück transformiert wird.
Signal evaluation method according to claim 3,
characterized in that the currently measured ion current signal (I S ) is transformed into the frequency domain by means of a Fourier transformation, where it is multiplied by the determined transfer function and subsequently transformed back into the time domain.
Signalauswerteverfahren nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, dass eine verrußte Glüh- und Ionenstrommesskerze (GK) durch eine Amplitudenauswertung des aktuell gemessenen Ionenstromsignals (IS) erkannt wird, wenn ein Signaloffset einen vorgegebenen Schwellwert übersteigt.
Signal evaluation method according to one of claims 1 to 4,
characterized in that a sooty Glüh- and Ionenstrommesskerze (GK) is detected by an amplitude evaluation of the currently measured ion current signal (I S ) when a signal offset exceeds a predetermined threshold.
EP05012638A 2004-06-16 2005-06-13 Signal treatment method for an ionic current in Diesel engines Withdrawn EP1607607A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200410029006 DE102004029006B3 (en) 2004-06-16 2004-06-16 Signal evaluation method for ion current measurement in diesel engine uses filtering via transmission function for effective ion current measurement upon soiling of glow and ion current measuring plug
DE102004029006 2004-06-16

Publications (1)

Publication Number Publication Date
EP1607607A1 true EP1607607A1 (en) 2005-12-21

Family

ID=34258813

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05012638A Withdrawn EP1607607A1 (en) 2004-06-16 2005-06-13 Signal treatment method for an ionic current in Diesel engines

Country Status (2)

Country Link
EP (1) EP1607607A1 (en)
DE (1) DE102004029006B3 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999061771A1 (en) * 1998-05-26 1999-12-02 Mecel Ab System and method for controlling fuel injection in combustion engines
DE19924680A1 (en) * 1999-05-29 2000-12-07 Daimler Chrysler Ag Ion current evaluation for controlling/regulating internal combustion engine involves deriving mathematical-physical parameter function with ion current signal physical characteristics
EP1132596A2 (en) * 2000-03-10 2001-09-12 Delphi Technologies, Inc. System and method for monitoring combustion in an internal combustion engine
US6328016B1 (en) * 1999-09-20 2001-12-11 Mitsubishi Denki Kabushiki Kaisha Knock suppression control apparatus for internal combustion engine
DE10028884A1 (en) * 2000-06-10 2001-12-13 Volkswagen Ag Combustion monitoring system for vehicle diesel engines uses ion current correction model corrects for contamination
US20020069696A1 (en) * 1999-09-27 2002-06-13 Yasuyoshi Hatazawa Misfire detecting apparatus for internal combustion engine
EP1329630A2 (en) 2001-12-18 2003-07-23 Beru AG Glow and ion current measuring device for a Diesel engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999061771A1 (en) * 1998-05-26 1999-12-02 Mecel Ab System and method for controlling fuel injection in combustion engines
DE19924680A1 (en) * 1999-05-29 2000-12-07 Daimler Chrysler Ag Ion current evaluation for controlling/regulating internal combustion engine involves deriving mathematical-physical parameter function with ion current signal physical characteristics
US6328016B1 (en) * 1999-09-20 2001-12-11 Mitsubishi Denki Kabushiki Kaisha Knock suppression control apparatus for internal combustion engine
US20020069696A1 (en) * 1999-09-27 2002-06-13 Yasuyoshi Hatazawa Misfire detecting apparatus for internal combustion engine
EP1132596A2 (en) * 2000-03-10 2001-09-12 Delphi Technologies, Inc. System and method for monitoring combustion in an internal combustion engine
DE10028884A1 (en) * 2000-06-10 2001-12-13 Volkswagen Ag Combustion monitoring system for vehicle diesel engines uses ion current correction model corrects for contamination
EP1329630A2 (en) 2001-12-18 2003-07-23 Beru AG Glow and ion current measuring device for a Diesel engine

Also Published As

Publication number Publication date
DE102004029006B3 (en) 2005-04-07

Similar Documents

Publication Publication Date Title
DE102007014761B4 (en) Method for operating a collecting particle sensor and device for carrying out the method
DE3341880C2 (en)
DE102010006708B4 (en) Diagnostic procedure of a soot sensor
DE102009033232A1 (en) Method for the on-vehicle functional diagnosis of a soot sensor and / or for the detection of further constituents in the soot in a motor vehicle
DE19605803A1 (en) Circuit arrangement for ion current measurement
DE102009049669A1 (en) Method for condition evaluation of a soot sensor in a motor vehicle
DE4139325C1 (en) Function monitoring soot filter in exhaust pipe of IC engine
EP3391024B1 (en) Electrostatic soot sensor
DE4242124C2 (en) Misfire detector system for internal combustion engines
DE102012201594A1 (en) Method for signal conditioning for a collecting particle sensor
DE102014220398A1 (en) Method for checking the function of a sensor for the detection of particles
DE10229848B4 (en) Combustion status determination system for internal combustion engines
DE4409749A1 (en) Method for detecting knocking combustion in an internal combustion engine with a high-voltage transistor coil ignition device
DE102004029006B3 (en) Signal evaluation method for ion current measurement in diesel engine uses filtering via transmission function for effective ion current measurement upon soiling of glow and ion current measuring plug
DE19963225B4 (en) Method for monitoring the combustion process in a diesel engine and corresponding measuring system
DE102009046315A1 (en) Method for operating particle sensor for on-board diagnostics of diesel internal combustion engine, involves directly heating soot particles with heating element, and determining change in conductivity of soot particles or sooth path
DE102012001044A1 (en) Method for determining operability of resistive soot sensor for monitoring particulate filter in motor car, involves outputting notification if change in signal falls below threshold value, where notification indicates malfunction of sensor
DE19838223C2 (en) Method for determining the ion content after a combustion process in a self-igniting internal combustion engine
DE102010029066A1 (en) Method for monitoring resistive particle sensor on shunt circuit of internal combustion engine, involves stopping time modification at shunt circuit when time modification of measurement signal falls below or above preset tolerance range
DE102007045080A1 (en) Method and apparatus for determining a dynamic property of an exhaust gas sensor
WO2017029074A1 (en) Method for function monitoring of an electrostatic soot sensor
DE102009021932A1 (en) Method and device for detecting pre-ignition of a spark-ignited internal combustion engine with one or more cylinders
DE102013206092A1 (en) Method for evaluating the measured values of a soot sensor
DE102008001579A1 (en) Method and device for diagnosing the dynamics of a broadband lambda probe
DE10230786A1 (en) Process and device to detect a failure especially an ignition failure in a combustion engine has detector of temperature or pressure change located in exhaust pipe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20060620

AKX Designation fees paid

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLERCHRYSLER AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLER AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080103