EP1606510A1 - Electromagnet for an electromagnetic valve - Google Patents

Electromagnet for an electromagnetic valve

Info

Publication number
EP1606510A1
EP1606510A1 EP03782089A EP03782089A EP1606510A1 EP 1606510 A1 EP1606510 A1 EP 1606510A1 EP 03782089 A EP03782089 A EP 03782089A EP 03782089 A EP03782089 A EP 03782089A EP 1606510 A1 EP1606510 A1 EP 1606510A1
Authority
EP
European Patent Office
Prior art keywords
coil
electromagnet
coil winding
magnet
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03782089A
Other languages
German (de)
French (fr)
Other versions
EP1606510B1 (en
Inventor
Wilfried Ihl
Peter Sprafke
Uwe Schmidt
Hubert Greif
Timo Haegele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1606510A1 publication Critical patent/EP1606510A1/en
Application granted granted Critical
Publication of EP1606510B1 publication Critical patent/EP1606510B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1638Armatures not entering the winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/005Arrangement of electrical wires and connections, e.g. wire harness, sockets, plugs; Arrangement of electronic control circuits in or on fuel injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/023Injectors structurally combined with fuel-injection pumps characterised by the pump drive mechanical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/20Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift
    • F02M61/205Means specially adapted for varying the spring tension or assisting the spring force to close the injection-valve, e.g. with damping of valve lift
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/04Arrangements of electric connections to coils, e.g. leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F2007/062Details of terminals or connectors for electromagnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/327Encapsulating or impregnating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures

Definitions

  • the invention relates to an electromagnet, in particular for a solenoid valve, according to the preamble of claim 1.
  • Such an electromagnet is known from the literature, for example Diesel engine management, Vieweg publishing house, 2nd edition 1998, page 246, picture 14.
  • This electromagnet has a magnet coil with a hollow cylindrical coil winding and a coil carrier connected to it.
  • the coil carrier is also hollow cylindrical and has in its
  • Outer jacket has a U-shaped recess, viewed in cross section, in which the coil winding is received.
  • the coil carrier is thus arranged both in the radial direction and in the axial direction between the magnet coil and the magnet armature of the electromagnet, so that there is a relatively large distance between the magnet armature and the magnet coil. This leads to relatively large leakage losses and consequently to a slow build-up of force in the magnetic circuit of the electromagnet. The dynamics of the electromagnet are therefore not optimal.
  • this design of the coil carrier requires a relatively large amount of space, so that the electromagnet is large overall.
  • the known electromagnet with the solenoid coil is part of a solenoid valve of a fuel injection device of an internal combustion engine, through which the fuel injection is controlled.
  • the solenoid valve has to switch very quickly, which however, as stated above, is made more difficult by the formation of the coil carrier.
  • the most compact possible design of the solenoid valve is sought, which is also made more difficult by the design of the coil carrier.
  • the electromagnet according to the invention with the features according to claim 1 has the advantage that a small distance between the magnet coil and the magnet armature can be achieved by the disc-shaped design of the coil carrier, whereby the dynamics of the electromagnet is improved and its size is reduced.
  • the embodiment according to claim 2 enables a simple connection of the coil winding to the coil carrier.
  • the design according to claims 3 and 4 enables easy contacting of the coil winding.
  • FIG. 1 shows a detail of a fuel injection device for an internal combustion engine with a solenoid valve
  • FIG. 2 shows an electromagnet of the solenoid valve in an enlarged view
  • FIG. 3 shows a coil winding and a coil carrier of the electromagnet according to FIG. 2.
  • Fuel injection device for an internal combustion engine for example, a motor vehicle shown.
  • the internal combustion engine is preferably a self-igniting internal combustion engine and has one or more cylinders.
  • the fuel injection device can be designed, for example, as a pump-nozzle unit, which in each case has a high-pressure fuel pump 10 and a fuel injection valve 12 for each cylinder of the internal combustion engine, which have a common one
  • At least one solenoid valve 56, 60 for controlling the fuel injection is arranged on the pump-nozzle unit.
  • the fuel injection device can also be designed as a pump-line-nozzle unit, in which a high-pressure fuel pump and a fuel injection valve are also provided for each cylinder of the internal combustion engine, but are arranged separately from one another and are connected to one another via a hydraulic line. At the high pressure fuel pump or at
  • the fuel injection valve of the pump-line-nozzle unit has a solenoid valve for controlling the fuel injection.
  • the fuel injection device can also be designed as a common rail system, in which a
  • High-pressure fuel pump Fuel is pumped into a memory that is attached to the cylinders of the
  • the fuel injection device can also be designed as a fuel injection pump, through which fuel is conveyed under high pressure and to which fuel injection valves arranged on the cylinders of the internal combustion engine are connected, whereby at the
  • Fuel injection pump to control the solenoid valve High pressure generation and thus the fuel injection is arranged.
  • the high-pressure fuel pump 10 has a pump piston 20 which is tightly guided in a cylinder bore 18 of a pump body 16 and delimits a pump working space 22 in the cylinder bore 18.
  • the pump piston 20 is by a cam 24 of a camshaft
  • Internal combustion engine is driven at least indirectly, for example via a rocker arm, against the force of a return spring 26 in one stroke movement.
  • fuel is supplied to the pump working chamber 22 from a fuel reservoir 28, for example by means of a feed pump 29.
  • the fuel injection valve 12 has a valve body 30 which is connected to the pump body 16 and which can be constructed in several parts and in which an injection valve member 34 is guided in a bore 32 in a longitudinally displaceable manner.
  • An intermediate body 36 is arranged between the valve body 30 and the pump body 16.
  • Valve body 30 has at least one, preferably a plurality of injection openings 38 on its end region facing the combustion chamber of the cylinder of the internal combustion engine.
  • the injection valve member 34 has, for example, an approximately conical sealing surface 40 on its end region facing the combustion chamber, which cooperates with a valve seat 41 formed in the valve body 30 in its end region facing the combustion chamber, from or after which the injection openings 32 lead away.
  • annular space 42 between the injection valve member 34 and the bore 32 towards the valve seat 41, which in its End region facing away from valve seat 41 passes through a radial widening of bore 32 into a pressure space 44 surrounding injection valve member 34.
  • the injection valve member 34 has a pressure shoulder 46 directed towards the valve seat 41 at the level of the pressure chamber 44 due to a change in cross section.
  • a prestressed closing spring 48 engages, by means of which the injection valve member 34 is pressed toward the valve seat 41.
  • the closing spring 48 is in a spring chamber 49 in
  • Valve body 30 or arranged in the intermediate body 36, which connects to the bore 50.
  • a spring 50 with a smaller diameter adjoins the spring chamber 49 at its end facing away from the pressure chamber 44.
  • a control piston 51 is tightly guided in the bore 50 and delimits a control pressure chamber 52 in the bore 50.
  • the control piston 51 is supported on the injection valve member 34 and, depending on the pressure prevailing in the control pressure chamber 52, generates a force supporting the closing spring 48 in the closing direction on the injection valve member 34.
  • a channel leads from the pump working chamber 22 through the pump body 16, the intermediate body 36 and the valve body 30 54 into the pressure chamber 44 of the fuel injection valve 12. From the channel 54, a connection 55 leads to the feed pump 29 and to the fuel tank 28.
  • the connection 55 is controlled by a first solenoid valve 56, which is designed as a 2/2-way valve.
  • the solenoid valve 56 is controlled by an electronic control device 57 and is explained in more detail below.
  • a further channel 58 leads from the channel 54 into the control pressure chamber 52 and the control pressure chamber 52 has a connection 59 with a relief area, for example a return to the fuel reservoir 28.
  • the connection 59 of the control pressure chamber 52 to the relief area is controlled by a second solenoid valve 60, which is also by the control device 57 is controlled.
  • the pressure build-up in the pump work chamber 22 of the high-pressure fuel pump 10 is controlled by the first solenoid valve 56 and the pressure in the control pressure chamber 52 and thereby the opening of the fuel injection valve 12 is controlled by the second solenoid valve 60.
  • the second solenoid valve 60 and the control pressure chamber 52 can also be omitted, the opening of the fuel injection valve 12 being determined only by the closing spring 48. If the pressure prevailing in the pressure space 44 via the pressure shoulder 46 a greater force on the
  • Injection valve member 34 generates as the closing spring 48 and the pressure prevailing in the control pressure chamber 52, the injection valve member 34 moves in the opening direction 35 and releases the injection openings 38.
  • the solenoid valve has an electromagnet 62 with a magnet coil 64 and a magnet armature 66.
  • a valve member 68 is connected to the magnet armature 66, through which the connection to be controlled can be opened and closed.
  • the magnet coil 64 has a hollow cylindrical coil winding 70 which is connected to a coil carrier 72 arranged next to the latter in the axial direction.
  • the coil carrier 72 is arranged on the side of the coil winding 70 facing away from the magnet armature 66.
  • the coil carrier 72 is designed in the form of a flat disk and is preferably made of plastic, in particular of thermoplastic.
  • the coil winding 70 is connected to the end face of the coil carrier 72 facing this.
  • Coil winding 70 with the coil carrier 72 can be done by a positive connection, for example a toothing, or by gluing.
  • a particularly advantageous connection of the coil winding 70 to the coil carrier 72 is possible if the coil winding 70 consists of baked enamel wire, which melts when heated. After making the coil winding 70 is heated by generating a high current flow through it, so that the baked enamel wire melts, the coil winding 70 being simultaneously pressed in the axial direction with the coil carrier 72.
  • the plastic of the coil carrier 72 also melts and connects to the molten baked enamel of the coil winding 70 and after the subsequent cooling, the connection between the coil winding 70 and the coil carrier 72 is established.
  • the axial compression of the coil winding 70 also compresses it and it can be shaped in such a way that it has the required dimensions in length, diameter and thickness.
  • two tubular projections 74 are formed, into each of which one end 71 of the wire of the coil winding 70 is guided.
  • the lugs 74 are arranged approximately diametrically opposite one another.
  • a contact pin 76 is inserted into each of the lugs 74, for example pressed in, which is electrically connected to the respective end 71 of the coil winding 70, for example welded or soldered.
  • the magnet coil 64 is inserted into a magnet pot 78 and is fixed in it by pouring in a liquid casting compound 79, for example a thin liquid epoxy resin, which subsequently hardens.
  • the contact pins 76 protrude from the potting compound and the magnet pot 78.
  • the magnet armature 66 When the magnet coil 64 is not energized, the magnet armature 66 is held in a starting position by a spring. When the armature 66 moves, the valve member 68 is also moved between a position in which it opens the respective connection and a position in which it closes the respective connection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

The electromagnet comprises a magnet coil (64) and a magnet armature (66), and the magnet coil (64) has a coil support (72) and a hollow cylindrical coil winding (70) connected thereto. The coil support (72) is provided in the form of a disc arranged in an axial direction next to the coil winding (70).

Description

ELEKTROMAGNET FÜR EIN MAGNETVENTIL ELECTROMAGNET FOR A SOLENOID VALVE
Stand der TechniState of the art
Die Erfindung geht aus von einem Elektromagneten, insbesondere für ein Magnetventil, nach der Gattung des Anspruchs 1.The invention relates to an electromagnet, in particular for a solenoid valve, according to the preamble of claim 1.
Ein solcher Elektromagnet ist aus der Literatur, beispielsweise Dieselmotor-Management, Verlag Vieweg, 2.Auflage 1998, Seite 246, Bild 14, bekannt. Dieser Elektromagnet weist eine Magnetspule mit einer hohlzylinderförmigen Spulenwicklung und einen mit dieser verbundenen Spulenträger auf. Der Spulenträger ist ebenfalls hohlzylinderförmig ausgebildet und weist in seinemSuch an electromagnet is known from the literature, for example Diesel engine management, Vieweg publishing house, 2nd edition 1998, page 246, picture 14. This electromagnet has a magnet coil with a hollow cylindrical coil winding and a coil carrier connected to it. The coil carrier is also hollow cylindrical and has in its
Aussenmantel eine im Querschnitt betrachtet u-förmige Vertiefung auf, in der die Spulenwicklung aufgenommen ist. Der Spulenträger ist somit sowohl in radialer Richtung als auch in axialer Richtung zwischen der Magnetspule und dem Magnetanker des Elektromagneten angeordnet, so dass sich ein relativ großer Abstand zwischen dem Magnetanker und der Magnetspule ergibt. Dies führt zu relativ großen Streuverlusten und infolge dessen zu einem langsamen Kraftaufbau im Magnetkreis des Elektromagneten. Die Dynamik des Elektromagneten ist somit nicht optimal. Darüberhinaus erfordert diese Ausbildung des Spulenträgers einen relativ großen Bauraum, so dass der Elektromagnet insgesamt groß baut. Der bekannte Elektromagnet mit der Magnetspule ist Bestandteil eines Magnetventils einer Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine, durch das die Kraftstoffeinspritzung gesteuert wird. Um vor allem die Schadstoffemissionen der Brennkraftmaschine zu verringern muss das Magnetventil sehr schnell schalten, was jedoch wie vorstehend angegeben durch die Ausbildung des Spulenträgers erschwert wird. Ausserdem wird eine möglichst kompakte Bauform des Magnetventils angestrebt, was ebenfalls durch die Ausbildung des Spulenträgers erschwert wird.Outer jacket has a U-shaped recess, viewed in cross section, in which the coil winding is received. The coil carrier is thus arranged both in the radial direction and in the axial direction between the magnet coil and the magnet armature of the electromagnet, so that there is a relatively large distance between the magnet armature and the magnet coil. This leads to relatively large leakage losses and consequently to a slow build-up of force in the magnetic circuit of the electromagnet. The dynamics of the electromagnet are therefore not optimal. In addition, this design of the coil carrier requires a relatively large amount of space, so that the electromagnet is large overall. The known electromagnet with the solenoid coil is part of a solenoid valve of a fuel injection device of an internal combustion engine, through which the fuel injection is controlled. In order to reduce the pollutant emissions of the internal combustion engine, the solenoid valve has to switch very quickly, which however, as stated above, is made more difficult by the formation of the coil carrier. In addition, the most compact possible design of the solenoid valve is sought, which is also made more difficult by the design of the coil carrier.
Vorteile der ErfindungAdvantages of the invention
Der erfindungsgemäße Elektromagnet mit den Merkmalen gemäß Anspruch 1 hat demgegenüber den Vorteil, dass durch die scheibenförmige Ausbildung des Spulenträgers ein geringer Abstand zwischen der Magnetspule und dem Magnetanker erreicht werden kann, wodurch die Dynamik des Elektromangeten verbessert und dessen Baugrösse verringert ist.The electromagnet according to the invention with the features according to claim 1 has the advantage that a small distance between the magnet coil and the magnet armature can be achieved by the disc-shaped design of the coil carrier, whereby the dynamics of the electromagnet is improved and its size is reduced.
In den abhängigen Ansprüchen sind vorteilhafte Ausgestaltungen und Weiterbildungen des erfindungsgemäßen Elektromagneten angegeben. Die Ausbildung gemäß Anspruch 2 ermöglicht eine einfache Verbindung der Spulenwicklung mit dem Spulenträger. Die Ausbildung gemäß Anspruch 3 und 4 ermöglicht eine einfache Kontaktierung der Spulenwicklung.Advantageous refinements and developments of the electromagnet according to the invention are specified in the dependent claims. The embodiment according to claim 2 enables a simple connection of the coil winding to the coil carrier. The design according to claims 3 and 4 enables easy contacting of the coil winding.
Zeichnungdrawing
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 ausschnittsweise eine Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine mit einem Magnetventil, Figur 2 in vergrößerter Darstellung einen Elektromagneten des Magnetventils und Figur 3 eine Spulenwicklung und einen Spulenträger des Elektromagneten gemäß Figur 2.An embodiment of the invention is shown in the drawing and explained in more detail in the following description. 1 shows a detail of a fuel injection device for an internal combustion engine with a solenoid valve, FIG. 2 shows an electromagnet of the solenoid valve in an enlarged view, and FIG. 3 shows a coil winding and a coil carrier of the electromagnet according to FIG. 2.
Beschreibung des Ausführungsbeispiels In Figur 1 ist schematisch eineDescription of the embodiment In Figure 1 is a schematic
Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine beispielsweise eines Kraftfahrzeugs dargestellt. Die Brennkraftmaschine ist vorzugsweise eine selbstzündende Brennkraftmaschine und weist einen oder mehrere Zylinder auf. Die Kraftstoffeinspritzeinrichtung kann beispielsweise wie in Figur 1 dargestellt als Pumpe-Düse-Einheit ausgebildet sein, die jeweils eine Kraftstoffhochdruckpumpe 10 und ein Kraftstoffeinspritzventil 12 für jeden Zylinder der Brennkraftmaschine aufweist, die eine gemeinsameFuel injection device for an internal combustion engine, for example, a motor vehicle shown. The internal combustion engine is preferably a self-igniting internal combustion engine and has one or more cylinders. As shown in FIG. 1, the fuel injection device can be designed, for example, as a pump-nozzle unit, which in each case has a high-pressure fuel pump 10 and a fuel injection valve 12 for each cylinder of the internal combustion engine, which have a common one
Baueinheit bilden. An der Pumpe-Düse-Einheit ist wenigstens ein Magnetventil 56,60 zur Steuerung der Kraftstoffeinspritzung angeordnet. Alternativ kann die Kraftstoffeinspritzeinrichtung auch als Pumpe-Leitung-Düse- Einheit ausgebildet sein, bei der ebenfalls für jeden Zylinder der Brennkraftmaschine jeweils eine Kraftstoffhochdruckpumpe und ein Kraftstoffeinspritzventil vorhanden sind, die jedoch getrennt voneinander angeordnet sind und über eine hydraulische Leitung miteinander verbunden sind. An der Kraftstoffhochdruckpumpe oder amForm unit. At least one solenoid valve 56, 60 for controlling the fuel injection is arranged on the pump-nozzle unit. Alternatively, the fuel injection device can also be designed as a pump-line-nozzle unit, in which a high-pressure fuel pump and a fuel injection valve are also provided for each cylinder of the internal combustion engine, but are arranged separately from one another and are connected to one another via a hydraulic line. At the high pressure fuel pump or at
Kraftstoffeinspritzventil der Pumpe-Leitung-Düse-Einheit ist ein Magnetventil zur Steuerung der Kraftstoffeinspritzung angeordnet. Ausserdem kann die Kraftstoffeinspritzeinrichtung auch als Common-Rail-System ausgebildet sein, bei dem durch eineThe fuel injection valve of the pump-line-nozzle unit has a solenoid valve for controlling the fuel injection. In addition, the fuel injection device can also be designed as a common rail system, in which a
Kraftstoffhochdruckpumpe Kraftstoff in einen Speicher gefördert wird, mit dem an den Zylindern derHigh-pressure fuel pump Fuel is pumped into a memory that is attached to the cylinders of the
Brennkraftmaschine angeordnete Injektoren verbunden sind, an denen jeweils ein Magnetventil zur Steuerung der Kraftsoffeinspritzung angeordnet ist. Weiterhin kann die Kraftstoffeinspritzeinrichtung auch als Kraftstoffeinspritzpumpe ausgebildet sein, durch die Kraftstoff unter Hochdruck gefördert wird und mit der an den Zylindern der Brennkraftmaschine angeordnete Kraftstoffeinspritzventile verbunden sind, wobei an derInternal combustion engine-arranged injectors are connected, on each of which a solenoid valve for controlling the fuel injection is arranged. Furthermore, the fuel injection device can also be designed as a fuel injection pump, through which fuel is conveyed under high pressure and to which fuel injection valves arranged on the cylinders of the internal combustion engine are connected, whereby at the
Kraftstoffeinspritzpumpe ein Magnetventil zur Steuerung der Hochdruckerzeugung und damit der Kraftstoffeinspritzung angeordnet ist.Fuel injection pump to control the solenoid valve High pressure generation and thus the fuel injection is arranged.
Nachfolgend wird die Erfindung für die Anwendung bei einer Pumpe-Düse-Einheit erläutert, wobei diese jedoch auch auf die vorstehend genannten anderen Ausführungen von Kraftstoffeinspritzeinrichtungen übertragbar ist. Die Kraftstoffhochdruckpumpe 10 weist einen in einer Zylinderbohrung 18 eines Pumpenkörpers 16 dicht geführten Pumpenkolben 20 auf, der in der Zylinderbohrung 18 einen Pumpenarbeitsraum 22 begrenzt. Der Pumpenkolben 20 wird durch einen Nocken 24 einer Nockenwelle derThe invention for use in a pump-nozzle unit is explained below, although this can also be applied to the other embodiments of fuel injection devices mentioned above. The high-pressure fuel pump 10 has a pump piston 20 which is tightly guided in a cylinder bore 18 of a pump body 16 and delimits a pump working space 22 in the cylinder bore 18. The pump piston 20 is by a cam 24 of a camshaft
Brennkraftmaschine zumindest mittelbar, beispielsweise über einen Kipphebel, gegen die Kraft einer Rückstellfeder 26 in einer Hubbewegung angetrieben. Dem Pumpenarbeitsraum 22 wird beim Saughub des Pumpenkolbens 20 Kraftstoff aus einem Kraftstoffvorratsbehälter 28 beispielsweise mittels einer Förderpumpe 29 zugeführt.Internal combustion engine is driven at least indirectly, for example via a rocker arm, against the force of a return spring 26 in one stroke movement. During the suction stroke of the pump piston 20, fuel is supplied to the pump working chamber 22 from a fuel reservoir 28, for example by means of a feed pump 29.
Das Kraftstoffeinspritzventil 12 weist einen mit dem Pumpenkörper 16 verbundenen Ventilkörper 30 auf, der mehrteilig ausgebildet sein kann, und in dem in einer Bohrung 32 ein Einspritzventilglied 34 längsverschiebbar dicht geführt ist. Zwischen dem Ventilkörper 30 und dem Pumpenkörper 16 ist ein Zwischenkörper 36 angeordnet. DerThe fuel injection valve 12 has a valve body 30 which is connected to the pump body 16 and which can be constructed in several parts and in which an injection valve member 34 is guided in a bore 32 in a longitudinally displaceable manner. An intermediate body 36 is arranged between the valve body 30 and the pump body 16. The
Ventilkörper 30 weist an seinem dem Brennraum des Zylinders der Brennkraftmaschine zugewandten Endbereich wenigstens eine, vorzugsweise mehrere Einspritzöffnungen 38 auf. Das Einspritzventilglied 34 weist an seinem dem Brennraum zugewandten Endbereich eine beispielsweise etwa kegelförmige Dichtfläche 40 auf, die mit einem im Ventilkörper 30 in dessen dem Brennraum zugewandtem Endbereich ausgebildeten Ventilsitz 41 zusammenwirkt, von dem oder nach dem die Einspritzöffnungen 32 abführen. Im Ventilkörper 30 ist zwischen dem Einspritzventilglied 34 und der Bohrung 32 zum Ventilsitz 41 hin ein Ringraum 42 vorhanden, der in seinem dem Ventilsitz 41 abgewandten Endbereich durch eine radiale Erweiterung der Bohrung 32 in einen das Einspritzventilglied 34 umgebenden Druckraum 44 übergeht. Das Einspritzventilglied 34 weist in Höhe des Druckraums 44 durch eine Querschnittsänderung eine zum Ventilsitz 41 hin gerichtete Druckschulter 46 auf. Am dem Brennraum abgewandten Ende des Einspritzventilglieds 34 greift eine vorgespannte Schließfeder 48 an, durch die das Einspritzventilglied 34 zum Ventilsitz 41 hin gedrückt wird. Die Schließfeder 48 ist in einem Federraum 49 imValve body 30 has at least one, preferably a plurality of injection openings 38 on its end region facing the combustion chamber of the cylinder of the internal combustion engine. The injection valve member 34 has, for example, an approximately conical sealing surface 40 on its end region facing the combustion chamber, which cooperates with a valve seat 41 formed in the valve body 30 in its end region facing the combustion chamber, from or after which the injection openings 32 lead away. In the valve body 30 there is an annular space 42 between the injection valve member 34 and the bore 32 towards the valve seat 41, which in its End region facing away from valve seat 41 passes through a radial widening of bore 32 into a pressure space 44 surrounding injection valve member 34. The injection valve member 34 has a pressure shoulder 46 directed towards the valve seat 41 at the level of the pressure chamber 44 due to a change in cross section. At the end of the injection valve member 34 facing away from the combustion chamber, a prestressed closing spring 48 engages, by means of which the injection valve member 34 is pressed toward the valve seat 41. The closing spring 48 is in a spring chamber 49 in
Ventilkörper 30 oder im Zwischenkörper 36 angeordnet, die sich an die Bohrung 50 anschließt.Valve body 30 or arranged in the intermediate body 36, which connects to the bore 50.
An den Federraum 49 schließt sich an dessen dem Druckraum 44 abgewandtem Ende eine Bohrung 50 mit kleinerem Durchmesser an. In der Bohrung 50 ist ein Steuerkolben 51 dicht geführt, der in der Bohrung 50 einen Steuerdruckraum 52 begrenzt. Der Steuerkolben 51 stützt sich am Einspritzventilglied 34 ab und erzeugt abhängig von dem im Steuerdruckraum 52 herrschenden Druck eine die Schließfeder 48 unterstützende Kraft in Schließrichtung auf das Einspritzventilglied 34. Vom Pumpenarbeitsraum 22 führt durch den Pumpenkörper 16, den Zwischenkörper 36 und den Ventilkörper 30 ein Kanal 54 in den Druckraum 44 des Kraftstoffeinspritzventils 12. Vom Kanal 54 führt eine Verbindung 55 zur Förderpumpe 29 und zum Kraftstoff orratsbehälter 28 ab. Die Verbindung 55 wird durch ein erstes Magnetventil 56 gesteuert, das als 2/2- Wegeventil ausgebildet ist. Das Magnetventil 56 wird von einer elektronischen Steuereinrichtung 57 angesteuert und wird nachfolgend noch näher erläutert. Vom Kanal 54 führt ein weiterer Kanal 58 in den Steuerdruckraum 52 ab und der Steuerdruckraum 52 weist eine Verbindung 59 mit einem Entlastungsbereich, beispielsweise einem Rücklauf in den Kraftstoffvorratsbehälter 28 auf. Die Verbindung 59 des Steuerdruckraums 52 mit dem Entlastungsbereich wird durch ein zweites Magnetventil 60 gesteuert, das ebenfalls durch die Steuereinrichtung 57 angesteuert wird. Durch das erste Magnetventil 56 wird der Druckaufbau im Pumpenarbeitsraum 22 der Kraftstoffhochdruckpumpe 10 gesteuert und durch das zweite Magnetventil 60 wird der Druck im Steuerdruckraum 52 und dadurch die Öffnung des Kraftstoffeinspritzventils 12 gesteuert. Das zweite Magnetventil 60 und der Steuerdruckraum 52 können auch entfallen, wobei die Öffnung des Kraftstoffeinspritzventils 12 nur durch die Schließfeder 48 bestimmt wird. Wenn der im Druckraum 44 herrschende Druck über die Druckschulter 46 eine größere Kraft auf dasA spring 50 with a smaller diameter adjoins the spring chamber 49 at its end facing away from the pressure chamber 44. A control piston 51 is tightly guided in the bore 50 and delimits a control pressure chamber 52 in the bore 50. The control piston 51 is supported on the injection valve member 34 and, depending on the pressure prevailing in the control pressure chamber 52, generates a force supporting the closing spring 48 in the closing direction on the injection valve member 34. A channel leads from the pump working chamber 22 through the pump body 16, the intermediate body 36 and the valve body 30 54 into the pressure chamber 44 of the fuel injection valve 12. From the channel 54, a connection 55 leads to the feed pump 29 and to the fuel tank 28. The connection 55 is controlled by a first solenoid valve 56, which is designed as a 2/2-way valve. The solenoid valve 56 is controlled by an electronic control device 57 and is explained in more detail below. A further channel 58 leads from the channel 54 into the control pressure chamber 52 and the control pressure chamber 52 has a connection 59 with a relief area, for example a return to the fuel reservoir 28. The connection 59 of the control pressure chamber 52 to the relief area is controlled by a second solenoid valve 60, which is also by the control device 57 is controlled. The pressure build-up in the pump work chamber 22 of the high-pressure fuel pump 10 is controlled by the first solenoid valve 56 and the pressure in the control pressure chamber 52 and thereby the opening of the fuel injection valve 12 is controlled by the second solenoid valve 60. The second solenoid valve 60 and the control pressure chamber 52 can also be omitted, the opening of the fuel injection valve 12 being determined only by the closing spring 48. If the pressure prevailing in the pressure space 44 via the pressure shoulder 46 a greater force on the
Einspritzventilglied 34 erzeugt als die Schließfeder 48 und der im Steuerdruckraum 52 herrschende Druck, so bewegt sich das Einspritzventilglied 34 in Öffnungsrichtung 35 und gibt die Einspritzöffnungen 38 frei.Injection valve member 34 generates as the closing spring 48 and the pressure prevailing in the control pressure chamber 52, the injection valve member 34 moves in the opening direction 35 and releases the injection openings 38.
In Figur 2 ist eines der Magnetventile 56,60 vergrößert dargestellt. Das Magnetventil weist einen Elektromagneten 62 mit einer Magnetspule 64 und einem Magnetanker 66 auf. Mit dem Magnetanker 66 ist ein Ventilglied 68 verbunden, durch das die zu steuernde Verbindung geöffnet und geschlossen werden kann. Die Magnetspule 64 weist eine hohlzylinderförmige Spulenwicklung 70 auf, die mit einem in axialer Richtung neben dieser angeordneten Spulenträger 72 verbunden ist. Der Spulenträger 72 ist auf der dem Magnetanker 66 abgewandten Seite der Spulenwicklung 70 angeordnet. Der Spulenträger 72 ist in Form einer flachen Scheibe ausgebildet und besteht vorzugsweise aus Kunststoff, insbesondere aus thermoplastischem Kunststoff. Die Spulenwicklung 70 ist mit der dieser zugewandten Stirnseite des Spulenträgers 72 verbunden. Die Verbindung derIn Figure 2, one of the solenoid valves 56, 60 is shown enlarged. The solenoid valve has an electromagnet 62 with a magnet coil 64 and a magnet armature 66. A valve member 68 is connected to the magnet armature 66, through which the connection to be controlled can be opened and closed. The magnet coil 64 has a hollow cylindrical coil winding 70 which is connected to a coil carrier 72 arranged next to the latter in the axial direction. The coil carrier 72 is arranged on the side of the coil winding 70 facing away from the magnet armature 66. The coil carrier 72 is designed in the form of a flat disk and is preferably made of plastic, in particular of thermoplastic. The coil winding 70 is connected to the end face of the coil carrier 72 facing this. The connection of the
Spulenwicklung 70 mit dem Spulenträger 72 kann durch eine formschlüssige Verbindung, beispielsweise eine Verzahnung, oder durch Verkleben erfolgen. Eine besonders vorteilhafte Verbindung der Spulenwicklung 70 mit dem Spulenträger 72 ist möglich, wenn die Spulenwicklung 70 aus Backlackdraht besteht, der bei Erwärmung schmilzt. Nach der Herstellung der Spulenwicklung 70 wird diese erwärmt, indem durch diese ein hoher Strofluss erzeugt wird, so dass der Backlackdraht schmilzt, wobei die Spulenwicklung 70 zugleich in axialer Richtung mit dem Spulenträger 72 verpresst wird. Hierbei schmilzt auch der Kunststoff des Spulenträgers 72 und verbindet sich mit dem geschmolzenen Backlack der Spulenwicklung 70 und nach der nachfolgenden Abkühlung ist die Verbindung zwischen Spulenwicklung 70 und Spulenträger 72 hergestellt. Durch das axiale Zusammenpressen der Spulenwicklung 70 wird diese ausserdem verdichtet und diese kann gezielt derart geformt werden, dass sie die erforderlichen Abmessungen in Länge, Durchmesser und Dicke aufweist.Coil winding 70 with the coil carrier 72 can be done by a positive connection, for example a toothing, or by gluing. A particularly advantageous connection of the coil winding 70 to the coil carrier 72 is possible if the coil winding 70 consists of baked enamel wire, which melts when heated. After making the coil winding 70 is heated by generating a high current flow through it, so that the baked enamel wire melts, the coil winding 70 being simultaneously pressed in the axial direction with the coil carrier 72. Here, the plastic of the coil carrier 72 also melts and connects to the molten baked enamel of the coil winding 70 and after the subsequent cooling, the connection between the coil winding 70 and the coil carrier 72 is established. The axial compression of the coil winding 70 also compresses it and it can be shaped in such a way that it has the required dimensions in length, diameter and thickness.
Am Spulenträger 72 sind auf dessen der Spulenwicklung 70 abgewandter Seite zwei rohrförmige Ansätze 74 angeformt, in die jeweils ein Ende 71 des Drahts der Spulenwicklung 70 geführt ist. Die Ansätze 74 sind einander etwa diametral gegenüberliegend angeordnet. In die Ansätze 74 ist jeweils ein Kontaktstift 76 eingesetzt, beispielsweise eingepresst, der mit dem jeweiligen Ende 71 der Spulenwicklung 70 elektrisch verbunden ist, beispielsweise verschweißt oder verlötet. Die Magnetspule 64 ist in einen Magnettopf 78 eingesetzt und wird in diesem durch Einfüllen einer flüssigen Vergussmasse 79, beispielsweise einem dünnflüssigen Epoxidharz, die nachfolgend erhärtet, fixiert. Die Kontaktstifte 76 ragen dabei aus der Vergussmasse und dem Magnettopf 78 heraus. In radialer und axialer Richtung ist zwischen der Magnetspule 64 und dem Magnetanker 66 nur ein geringer Abstand entsprechend der Dicke der Vergussmasse 79 vorhanden. Hierdurch werden die Streuverluste des Magnetkreises des Elektromagneten 62 gering gehalten. Die Masse des Elektromagneten kann dadurch gering gehalten werden, wodurch wiederum die Dynamik des Elektromagneten 62 verbessert wird, das heisst, dass der Magnetanker 66 eine geringe Trägheit aufweist und entsprechend schnell bewegt werden kann. Bei einem Stromfluss durch die Magnetspule 64 entsteht eine magnetische Kraft, durch die der Magnetanker 66 in axialer Richtung zur Magnetspule 64 hingezogen oder von dieser weggedrückt wird, je nach Polarität. Bei nicht bestromter Magnetspule 64 wird der Magnetanker 66 durch eine Feder in einer Ausgangsstellung gehalten. Bei der Bewegung des Magnetankers 66 wird das Ventilglied 68 mitbewegt zwischen einer Stellung, in der es die jeweilige Verbindung öffnet, und einer Stellung, in der es die jeweilige Verbindung schließt. On the side of the coil carrier 72 facing away from the coil winding 70, two tubular projections 74 are formed, into each of which one end 71 of the wire of the coil winding 70 is guided. The lugs 74 are arranged approximately diametrically opposite one another. A contact pin 76 is inserted into each of the lugs 74, for example pressed in, which is electrically connected to the respective end 71 of the coil winding 70, for example welded or soldered. The magnet coil 64 is inserted into a magnet pot 78 and is fixed in it by pouring in a liquid casting compound 79, for example a thin liquid epoxy resin, which subsequently hardens. The contact pins 76 protrude from the potting compound and the magnet pot 78. In the radial and axial direction, there is only a small distance between the magnet coil 64 and the magnet armature 66 corresponding to the thickness of the sealing compound 79. As a result, the leakage losses of the magnetic circuit of the electromagnet 62 are kept low. The mass of the electromagnet can thereby be kept low, which in turn improves the dynamics of the electromagnet 62, that is to say that the magnet armature 66 has a low inertia and moves correspondingly quickly can be. When a current flows through the magnet coil 64, a magnetic force arises, by means of which the magnet armature 66 is pulled towards the magnet coil 64 in the axial direction or pressed away from it, depending on the polarity. When the magnet coil 64 is not energized, the magnet armature 66 is held in a starting position by a spring. When the armature 66 moves, the valve member 68 is also moved between a position in which it opens the respective connection and a position in which it closes the respective connection.

Claims

Ansprüche Expectations
1. Elektromagnet, insbesondere für ein Magnetventil mit einer Magnetspule (64) und einem Magnetanker (66) , wobei die Magnetspule (64) einen Spulenträger (72) und eine mit diesem verbundene hohlzylinderförmige Spulenwicklung (70) aufweist, dadurch gekennzeichnet, dass der Spulenträger (72) als eine in axialer Richtung neben der Spulenwicklung (70) angeordnete Scheibe ausgebildet ist.1. Electromagnet, in particular for a solenoid valve with a magnet coil (64) and a magnet armature (66), the magnet coil (64) having a coil carrier (72) and a hollow cylindrical coil winding (70) connected thereto, characterized in that the coil carrier (72) is designed as a disk arranged in the axial direction next to the coil winding (70).
2. Elektromagnet nach Anspruch 1, dadurch gekennzeichnet, dass der Spulenträger (72) auf der dem Magnetanker (66) abgewandten Seite der Spulenwicklung (72) angeordnet ist.2. Electromagnet according to claim 1, characterized in that the coil carrier (72) on the magnet armature (66) facing away from the coil winding (72) is arranged.
3. Elektromagnet nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Spulenwicklung (70) aus Backlackdraht besteht, dass der Spulenträger (72) aus Kunststoff besteht und dass die Spulenwicklung (70) mit dem Spulenträger (72) durch Verschmelzen des Spulenträgers (72) mit dem Backlackdraht verbunden ist.3. Electromagnet according to claim 1 or 2, characterized in that the coil winding (70) consists of baked enamel wire, that the coil carrier (72) consists of plastic and that the coil winding (70) with the coil carrier (72) by fusing the coil carrier (72 ) is connected to the baked enamel wire.
4. Elektromagnet nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass am Spulenträger (72) auf dessen der Spulenwicklung (70) abgewandter Seite wenigstens ein rohrförmiger Ansatz (74) angeformt ist, in dem wenigstens ein Ende (71) der Spulenwicklung (70) angeordnet ist.4. Electromagnet according to one of claims 1 to 3, characterized in that at least one tubular extension (74) is formed on the coil carrier (72) on its side facing away from the coil winding (70), in which at least one end (71) of the coil winding ( 70) is arranged.
5. Elektromagnet nach Anspruch 4, dadurch gekennzeichnet, dass in den wenigstens einen rohrförmigen Ansatz (74) ein Kontaktstift (76) eingesetzt ist, der mit dem Ende (71) der Spulenwicklung (70) elektrisch verbunden ist. 5. Electromagnet according to claim 4, characterized in that in the at least one tubular extension (74) a contact pin (76) is inserted, which is electrically connected to the end (71) of the coil winding (70).
EP03782089A 2003-03-17 2003-10-28 Electromagnet for an electromagnetic valve Expired - Lifetime EP1606510B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE2003111523 DE10311523A1 (en) 2003-03-17 2003-03-17 Electromagnet, especially for a solenoid valve
DE10311523 2003-03-17
PCT/DE2003/003577 WO2004083625A1 (en) 2003-03-17 2003-10-28 Electromagnet for an electromagnetic valve

Publications (2)

Publication Number Publication Date
EP1606510A1 true EP1606510A1 (en) 2005-12-21
EP1606510B1 EP1606510B1 (en) 2010-03-03

Family

ID=32920830

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03782089A Expired - Lifetime EP1606510B1 (en) 2003-03-17 2003-10-28 Electromagnet for an electromagnetic valve

Country Status (4)

Country Link
EP (1) EP1606510B1 (en)
JP (1) JP4511950B2 (en)
DE (2) DE10311523A1 (en)
WO (1) WO2004083625A1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117704U (en) * 1984-07-05 1986-02-01 愛三工業株式会社 electromagnet
CH677153A5 (en) * 1989-02-13 1991-04-15 Landis & Gyr Betriebs Ag Power supply for electricity meter components
JP3329455B2 (en) * 1991-01-15 2002-09-30 アルフレッド・テヴェス・ゲーエムベーハー Electro-hydraulic pressure control device
JPH0854080A (en) * 1994-08-09 1996-02-27 Nisshinbo Ind Inc Pressure control device integral with electronic control device
DE4431044A1 (en) * 1994-09-01 1996-03-07 Bosch Gmbh Robert Gas distributor device for fuel injection systems
AT404206B (en) * 1996-11-20 1998-09-25 Harman Int Ind METHOD FOR PRODUCING COILS
GB0001766D0 (en) * 2000-01-27 2000-03-15 Delphi Tech Inc Fuel injector
DE10026564C1 (en) * 2000-05-30 2001-11-29 Daimler Chrysler Ag Valve control unit
DE10051433A1 (en) * 2000-10-17 2002-05-02 Conti Temic Microelectronic Solenoid for electronic valve controller e.g. for vehicle braking system, has three or more connections for two or more windings
EP1217272B1 (en) * 2000-12-19 2005-01-12 Fluid Automation Systems S.A. Electromagnetic valve
DE10202324A1 (en) * 2002-01-23 2003-07-31 Bosch Gmbh Robert Solenoid valve and process for its manufacture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004083625A1 *

Also Published As

Publication number Publication date
JP2006514207A (en) 2006-04-27
DE50312487D1 (en) 2010-04-15
WO2004083625A1 (en) 2004-09-30
JP4511950B2 (en) 2010-07-28
EP1606510B1 (en) 2010-03-03
DE10311523A1 (en) 2004-09-30

Similar Documents

Publication Publication Date Title
EP1477666B1 (en) Supply pump, in particular high pressure fuel pump for internal combustion engines
DE102007002758A1 (en) fuel injector
EP2092187B1 (en) Injector for injecting fuel
WO2009068414A1 (en) Ball-valve operated fuel injector
EP1561026A1 (en) Fuel metering unit for the fuel injection system of a combustion engine
DE19949814A1 (en) Pressure regulating valve for a storage fuel injection system for internal combustion engines
DE102008040680A1 (en) Fuel injector
WO2008049671A1 (en) Fuel injector
EP1321663A2 (en) Fuel injection device for an internal combustion engine
EP1327065B1 (en) Electromagnetic valve-actuated control module for controlling fluid in injection systems
DE102012220027A1 (en) Switching valve for common-rail fuel injector for injecting diesel into combustion chamber of internal combustion engine, has control space filled with fuel via hole, and closing element closing hole in position for pressure relief of space
WO2002095215A1 (en) Fuel injection valve
WO2008083882A1 (en) Injector for injecting fuel
DE10160264A1 (en) Fuel injection device for internal combustion engine has smaller cross-section of connection to relief chamber exposed with increased injection valve element opening displacement
EP1606510B1 (en) Electromagnet for an electromagnetic valve
DE10155412A1 (en) Fuel injection device for an internal combustion engine
EP1980742B1 (en) Fuel injector with integrated pressure intensifier
EP1961953A1 (en) Multiway valve
WO2004070194A1 (en) Fuel injection device for an internal combustion engine
EP1392963B1 (en) Fuel injection valve
EP1831538B1 (en) Fuel-injection unit for an internal combustion engine
DE102008001601A1 (en) Fuel injector and manufacturing process
WO2000017511A1 (en) Fuel injection device for internal combustion engines
DE102020209574A1 (en) Electromagnetically actuated inlet valve and high-pressure pump with inlet valve
DE10155674A1 (en) Fuel injection device for an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051017

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50312487

Country of ref document: DE

Date of ref document: 20100415

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20101206

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101028

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131217

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20141021

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141027

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50312487

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151028

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151102