EP1605440B1 - Method for signal source separation from a mixture signal - Google Patents

Method for signal source separation from a mixture signal Download PDF

Info

Publication number
EP1605440B1
EP1605440B1 EP20050291254 EP05291254A EP1605440B1 EP 1605440 B1 EP1605440 B1 EP 1605440B1 EP 20050291254 EP20050291254 EP 20050291254 EP 05291254 A EP05291254 A EP 05291254A EP 1605440 B1 EP1605440 B1 EP 1605440B1
Authority
EP
European Patent Office
Prior art keywords
signal
cov
sources
separation
covariance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP20050291254
Other languages
German (de)
French (fr)
Other versions
EP1605440A1 (en
Inventor
Laurent Benaroya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Audionamix SA
Original Assignee
Audionamix SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audionamix SA filed Critical Audionamix SA
Publication of EP1605440A1 publication Critical patent/EP1605440A1/en
Application granted granted Critical
Publication of EP1605440B1 publication Critical patent/EP1605440B1/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0272Voice signal separating

Definitions

  • the present invention relates to a method for determining the separation signals respectively relating to sound sources from a signal from the mixture of these signals.
  • the field of the present invention is that of the digital processing of signals relating to sound sources, also called simply sound, audio or audio signals.
  • the processing performed on the sound signals is not in the time domain but in the frequency domain.
  • a short-term Fourier transform which is a linear transform associating with a signal in the sampled time domain ⁇ x (t 1 ), ..., x (t N ) ⁇ a two-dimensional time-frequency signal noted here x (t k , f), where t k is a frame index of the sampled digital signal and f is a generally discrete frequency index.
  • the signal x (t k , f) is therefore a signal of the frequency domain and is in the form of frames indexed at t k .
  • s 1 (t, f) follows a Gaussian law centered and of variance ⁇ i 2 f ( f )
  • ⁇ 1 2 (f) and ⁇ 2 2 (f) which ultimately represent, as is known, their energy distributions as a function of frequency. If we consider that the signals in the frequency domain relating to these two sources s 1 ( t, f ) and s 2 ( t , f ) are gaussian random variables, non-stationary, ⁇ 1 2 (f) and ⁇ 2 2 (f) represent their variance, respectively.
  • the Wiener filter In the context of the separation of sound signals, the Wiener filter has the following main disadvantages. It operates identically on all the frames of the mixing sound signal and therefore does not take changes in the sound energy content from one frame to another. In the end, it is not an adaptive filter. Another disadvantage lies in the fact that it only takes into account a characteristic spectral form by sound source even though the sound sources have a great spectral variety in terms of timbre, pitch, intensity, etc.
  • the sound signal of each source s i (t) is characterized by a set of K i spectral shapes ⁇ k i 2 (f), k i ⁇ [1, ..., K i ].
  • K i spectral shapes ⁇ k i 2 (f), k i ⁇ [1, ..., K i ].
  • N sources their mixture is characterized by a set of K 1 x K 2 x ... x K N N N-tuples of characteristic spectral forms ( ⁇ k 1 2 (f), ..., ⁇ k NOT 2 (F)).
  • the method consists in first choosing the N-tuple of spectral shapes that best corresponds to the sound signal of the mixture.
  • it can consist in maximizing the probability of correspondence between the spectrogram of the mixture
  • it consists of filtering the mixture by conventional Wiener filtering using the N-tuple of spectral shapes thus selected.
  • this method is adaptive since the choice of the parameters of the filter depends on the frame index t k considered.
  • the main disadvantage of this method lies in its algorithmic complexity. Indeed, if K characteristic spectral forms by source i and N sources i are considered in the mixture, K N N-tuples of characteristic spectral forms must be tested for each frame so that the complexity is in O (K n x T) if T is the number of frames of the mix signal to be analyzed. This disadvantage of complexity can make this method unacceptable, especially when the number of characteristic spectral forms per source is relatively large.
  • the sound signal of each source s i (t) is characterized by a set of K i characteristic spectral forms ⁇ k i 2 (f) but which are there grouped in a dictionary of spectral forms.
  • a first method for estimating the sound signals from sources 1 to N is to implement Wiener time-frequency filtering, which is nevertheless adaptive since it depends on the frame index t.
  • This second method by the use of a dictionary of characteristic spectral shapes has the advantage over the previous method of reducing the algorithmic complexity. Indeed, for n sources each having K spectral forms, the algorithmic complexity is in O (nx K x T) where T is the number of frames to be analyzed, therefore lower than that of the previous method which was in O (K n x T).
  • the human auditory system is indeed very sensitive to phase coherences in the audio signals, in particular inter-frame coherences for fixed f (coherent phase between s ( t k +1 , f ) and s ( t k , f )) and the phase coherences for the same frame but for different values of the frequency f (phase of s ( t k , f ) for different values of f).
  • phase coherence effects are notably very sensitive on harmonic sounds, such as of a musical instrument, or voiced sounds, while they are less important on white, pink, and so on. or the sounds of percussion instruments.
  • the purpose of the present is to propose a method of separating the signals relating to sound sources from a signal resulting from mixing these signals which does not exhibit the phase inconsistencies of the methods mentioned above.
  • This method also applies to non-sound signals such as any digital signals from the sampling of a transducer for transforming a physical quantity into an electrical signal.
  • the present invention provides means for connecting adjacent frames.
  • each elementary sound source is determined in a recursive and iterative manner.
  • FIG. 1 a system for separating sound signals from sound sources according to an embodiment of the present invention which comprises these connecting means between adjacent frames.
  • This system essentially consists of an estimation unit 10 which, on the basis of a signal of frequency domain mixing noted x (t k , f) obtained for example by a short-term Fourier transform of the signal x (t) in the sampled time domain, delivers an estimation signal represented by the random variable S e (t k , f) of which each component s i e (t k , f) is the estimated signal for a source of the index mixture i.
  • S e t k f s 1 e t k f ⁇ s NOT e t k f
  • the estimation unit 10 is such that the expectation of the signal at its output is conditioned by the signals x (t k , f) which are actually observed.
  • S e t k f E S t k f
  • the estimation unit 10 is for example a Wiener filter (see the different forms of this type of filter given in the preamble of the present description), a unit operating by a time-frequency thresholding method, or by a method said Ephraim and Malah, etc.
  • the system for separating sound signals from sound sources represented in Fig. 1 further comprises an update unit 20 and a prediction unit 30. It is these units 20 and 30 which constitute the inter-frame link means which are mentioned above.
  • the prediction unit 30 is provided to deliver a prediction signal considered as a corresponding random variable S p (t k , f)
  • the updating unit 20 on the basis of the prediction signal S p (t k , f) delivered by the prediction unit 30 and the estimation signal S e (t k , f) delivered by the estimation unit 10 delivers, as for it, the separation signal whose random variable is noted S tot (t k , f).
  • the predicted signal for the present frame is based on the separation signal for the previous frame.
  • the updating unit 20 it is intended to determine the separation signal S tot (t k , f) by summing the estimation signal S e (t k , f) in a weighted manner and the predicted signal S p (t k , f).
  • the estimated signal S e (t k , f) is weighted by a matrix coefficient ⁇ (tk, f) while the predicted signal is weighted by a coefficient I- ⁇ (tk, f) , I being the unit matrix.
  • step E10 the updating of the covariance of the predicted signal represented, it is recalled, by the random variable S p (t k + 1 , f) is carried out.
  • the module of the function H (f) is indeed equal to 1.
  • Cov tot (t k-1 , f) is a quantity that was calculated at the previous iteration (see step E30 below).
  • step E20 the optimal coefficient matrix ⁇ (t k , f) is determined.
  • ⁇ t k f Cov e t k f + Cov p t k f - 1 ⁇ Cov p t k f
  • the covariance of the predicted separation signal Cov p (t k , f) is given by the calculation performed in step E10.
  • the covariance of the estimation signal Cov e (t k , f) it is determined by the characteristic spectral forms ⁇ k i 2 (f) and amplitude factors a k i (t k ) sources or elementary sources considered.
  • the estimation signal S e (t, f) of the mixture of the set of elementary sources is a Gaussian random variable of variance Cov e (t, f):
  • step E30 for covariance related calculations, the next frame is considered and the process is resumed in step E10.
  • step E40 the expectation of the predicted signal is determined.
  • S 0 p (t k , f) which is given by the following relation as a function of the expectation of the separation signal S 0 early (t k-1 , f) determined at the previous frame:
  • S 0 p t k f H f ⁇ S 0 early ⁇ t k - 1 f
  • the expectation of the separation signal S 0 early (t k , f) is the output signal of the system. Its components are the signals of separation of each of the sources or elementary sources considered.
  • step E60 the expectation of the separation signal of the frame Tr, S o early ( t k , f ) is shifted by one frame to obtain the expectation of the separation signal of the frame t k -1 and this latter expectation is used during step E40.
  • step E50 After the steps E50 and E60, the next frame is considered and the process is resumed in step E40 for the steps related to the expectation calculations.
  • the steps E10 and E40 are implemented by the prediction unit 30 while the steps E20, E30 and E50 are implemented by the update unit 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Quality & Reliability (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Circuit For Audible Band Transducer (AREA)

Description

La présente invention concerne un procédé de détermination des signaux de séparation respectivement relatifs à des sources sonores à partir d'un signal issu du mélange de ces signaux.The present invention relates to a method for determining the separation signals respectively relating to sound sources from a signal from the mixture of these signals.

Le domaine de la présente invention est celui du traitement numérique de signaux relatifs à des sources sonores, dits aussi plus simplement signaux de son, audiophoniques ou audio. Dans ce domaine particulier, les traitements effectués sur les signaux de son le sont non pas dans le domaine temporel mais dans le domaine fréquentiel. Aussi, utilise-t-on fréquemment au préalable à tout traitement une transformée de Fourier à court terme qui est une transformée linéaire associant à un signal dans le domaine temporel échantillonné {x(t1), ...,x(tN)} un signal bidimensionnel temps fréquence noté ici x(tk,f), où tk est un indice de trame du signal numérique échantillonné et f est un indice, généralement discret, de fréquence. Le signal x(tk,f) est donc un signal du domaine fréquentiel et il se présente sous forme de trames indicées en tk.The field of the present invention is that of the digital processing of signals relating to sound sources, also called simply sound, audio or audio signals. In this particular field, the processing performed on the sound signals is not in the time domain but in the frequency domain. Also, we use frequently before any processing a short-term Fourier transform which is a linear transform associating with a signal in the sampled time domain {x (t 1 ), ..., x (t N ) } a two-dimensional time-frequency signal noted here x (t k , f), where t k is a frame index of the sampled digital signal and f is a generally discrete frequency index. The signal x (t k , f) is therefore a signal of the frequency domain and is in the form of frames indexed at t k .

Dans la présente description, toutes les grandeurs dont il s'agit sont décrites au moyen de variables aléatoires gaussiennes multidimensionnelles. Le mélange observé à l'instant t s'exprime sous la forme : S obs t f = S t f + b t f

Figure imgb0001
où b(t) est un bruit blanc gaussien de variance σ2 b et S(t,f) est le vecteur dont chaque composante est associée à une source : S t f = s 1 t f s N t f
Figure imgb0002
In the present description, all the quantities in question are described by means of multidimensional Gaussian random variables. The mixture observed at time t is expressed in the form: S Obs t f = S t f + b t f
Figure imgb0001
where b (t) is a gaussian white noise of variance σ 2 b and S (t, f) is the vector of which each component is associated with a source: S t f = s 1 t f s NOT t f
Figure imgb0002

Pour chaque fréquence f et pour chaque source i, s1(t,f) suit une loi gaussienne centrée et de variance σ i 2 f

Figure imgb0003
(f)For each frequency f and for each source i, s 1 (t, f) follows a Gaussian law centered and of variance σ i 2 f
Figure imgb0003
( f )

Pour désigner les variables sous forme de vecteur ou de matrice, des lettres en majuscule sont utilisées.To designate variables as a vector or matrix, uppercase letters are used.

Par ailleurs encore, dans la présente demande la notion de signal se confond souvent à celle de la variable aléatoire qui la représente.Moreover, in the present application, the notion of signal is often confused with that of the random variable which represents it.

En ce qui concerne la séparation de signaux audio, on connaît un procédé qui est basé sur un filtre, dit filtre de Wiener, qui en définitive effectue une estimée du signal de séparation W (t,f) sous l'hypothèse de la stationnarité globale des signaux de mélange. Si l'on appelle x(tk,f) la variable aléatoire qui décrit le signal du domaine fréquentiel issu du mélange des signaux des sources, et qui est appliqué à l'entrée du filtre, l'espérance de la variable aléatoire décrivant le signal de sortie du filtre est conditionnée aux signaux x(tk,f). On peut donc écrire : S ^ W t k f = E S t k f | x t k f

Figure imgb0004
With regard to the separation of audio signals, a method is known which is based on a filter, called a Wiener filter, which ultimately performs a estimation of the separation signal Ŝ W ( t, f ) under the assumption of the overall stationarity of the mixing signals. If we call x (t k , f) the random variable which describes the signal of the frequency domain resulting from the mixing of the signals of the sources, and which is applied to the input of the filter, the expectation of the random variable describing the output signal of the filter is conditioned to the signals x (t k , f). We can write: S ^ W t k f = E S t k f | x t k f
Figure imgb0004

Dans le cas du filtre de Wiener, chaque composante du vecteur W (tk ,f) peut être obtenue par la relation suivante : S ^ W t f = S ^ W , 1 t f S ^ W , N t f avec s ^ W , i t f = e i f j e j f + σ b 2 x t f

Figure imgb0005
où ei(f) est la fraction d'énergie de la source i contenue a priori dans le signal de mélange, à la fréquence d'indice f, N étant le nombre totale de sources et x(tk ,f) étant le signal de mélange.In the case of the Wiener filter, each component of the vector Ŝ W ( t k , f ) can be obtained by the following relation: S ^ W t f = S ^ W , 1 t f S ^ W , NOT t f with s ^ W , i t f = e i f Σ j e j f + σ b 2 x t f
Figure imgb0005
where e i (f) is the energy fraction of the source i contained a priori in the mixing signal, at the index frequency f, where N is the total number of sources and x ( t k , f ) is the mixing signal.

On considère, à titre illustratif uniquement, le cas particulier de deux sources délivrant des signaux respectivement notés dans le domaine temporel, s1(t) et s2(t). Au départ, l'on dispose d'un signal de son, noté dans le domaine temporel x(t) représentatif du mélange de ces signaux de son : x t = s 1 t + s 2 t .

Figure imgb0006
It is considered, by way of illustration only, the particular case of two sources delivering signals respectively noted in the time domain, s 1 (t) and s 2 (t). Initially, we have a sound signal, noted in the time domain x (t) representative of the mixture of these sound signals: x t = s 1 t + s 2 t .
Figure imgb0006

Dans une phase préalable d'apprentissage, on a évalué les deux sources sonores et on a plus exactement estimé leurs formes spectrales caractéristiques respectives σ 1 2

Figure imgb0007
(f) et σ 2 2
Figure imgb0008
(f), qui représentent, en définitive comme il est connu, leurs répartitions énergétiques en fonction de la fréquence. Si l'on considère que les signaux dans le domaine fréquentiel relatifs à ces deux sources s 1(t,f) et s 2(t,f) sont des variables aléatoires gaussiennes, non stationnaires, σ 1 2
Figure imgb0009
(f) et σ 2 2
Figure imgb0010
(f) représentent respectivement leur variance. Le filtre de Wiener délivre une estimation du signal de son de chaque source et, ce dans le domaine fréquentiel, en accord avec les relations suivantes : s ^ W , 1 t f = σ 1 2 f σ 1 2 f + σ 2 2 x t f
Figure imgb0011
s ^ W , 2 t f = σ 2 2 f σ 1 2 f + σ 2 2 x t f
Figure imgb0012
qui peuvent s'écrire sous forme matricielle de la manière suivante : S t k f = P . x t k f
Figure imgb0013
In a preliminary learning phase, the two sound sources were evaluated and their respective characteristic spectral shapes were more accurately estimated. σ 1 2
Figure imgb0007
(f) and σ 2 2
Figure imgb0008
(f), which ultimately represent, as is known, their energy distributions as a function of frequency. If we consider that the signals in the frequency domain relating to these two sources s 1 ( t, f ) and s 2 ( t , f ) are gaussian random variables, non-stationary, σ 1 2
Figure imgb0009
(f) and σ 2 2
Figure imgb0010
(f) represent their variance, respectively. The Wiener filter delivers an estimate of the sound signal from each source and, in the frequency domain, according to the following relationships: s ^ W , 1 t f = σ 1 2 f σ 1 2 f + σ 2 2 x t f
Figure imgb0011
s ^ W , 2 t f = σ 2 2 f σ 1 2 f + σ 2 2 x t f
Figure imgb0012
which can be written in matrix form as follows: S t k f = P . x t k f
Figure imgb0013

Où P est une matrice qui décrit les coefficients de pondération et qui est donnée ci-dessous pour N sources : P = σ 1 2 f i = 1 N σ i 2 f σ N 2 f i = 1 N σ i 2 f

Figure imgb0014
Where P is a matrix that describes the weights and is given below for N sources: P = σ 1 2 f Σ i = 1 NOT σ i 2 f ... σ NOT 2 f Σ i = 1 NOT σ i 2 f
Figure imgb0014

Dans le cadre de la séparation de signaux de sons, le filtre de Wiener présente les principaux inconvénients suivants. Il opère de manière identique sur toutes les trames du signal de son de mélange et il ne tient donc pas des changements du contenu énergétique sonore d'une trame à l'autre. En définitive, il n'est pas un filtre adaptatif. Un autre inconvénient réside dans le fait qu'il ne prend en compte qu'une forme spectrale caractéristique par source sonore alors même que les sources sonores présentent une grande variété spectrale en terme de timbre, de hauteur, d'intensité, etc.In the context of the separation of sound signals, the Wiener filter has the following main disadvantages. It operates identically on all the frames of the mixing sound signal and therefore does not take changes in the sound energy content from one frame to another. In the end, it is not an adaptive filter. Another disadvantage lies in the fact that it only takes into account a characteristic spectral form by sound source even though the sound sources have a great spectral variety in terms of timbre, pitch, intensity, etc.

Des améliorations du filtre de Wiener ont été proposées pour tenir compte de ces inconvénients et ont abouti à notamment deux méthodes qui sont essentiellement basées sur l'utilisation de formes spectrales multiples pour décrire chacune des sources impliquées.Improvements to the Wiener filter have been proposed to take these disadvantages into account and have resulted in two methods which are essentially based on the use of multiple spectral forms to describe each of the sources involved.

La première de ces méthodes a été introduite dans le cadre de la reconnaissance de parole et a été ensuite utilisée en audio. Selon cette méthode, le signal de son de chaque source si(t) est caractérisé par un ensemble de Ki formes spectrales σ k i 2

Figure imgb0015
(f), ki ∈ [1,...,Ki]. Si l'on considère N sources, leur mélange est caractérisé par un ensemble de K1 x K2 x ... x KN N-uplets de formes spectrales caractéristiques ( σ k 1 2
Figure imgb0016
(f) ,..., σ k N 2
Figure imgb0017
(f)). Pour chaque trame d'indice tk, la méthode consiste à d'abord choisir le N-uplet de formes spectrales qui correspond le mieux au signal de son du mélange. Par exemple, elle peut consister à maximaliser la probabilité de correspondance entre le spectrogramme du mélange |x(tk ,f)|2 et la variance résultant du couple de formes spectrales. Ensuite, elle consiste à filtrer par un filtrage de Wiener classique le mélange en utilisant le N-uplet de formes spectrales ainsi sélectionné. On peut constater que cette méthode est adaptative puisque le choix des paramètres du filtre dépend de l'indice de trame tk considéré.The first of these methods was introduced as part of speech recognition and was then used in audio. According to this method, the sound signal of each source s i (t) is characterized by a set of K i spectral shapes σ k i 2
Figure imgb0015
(f), k i ∈ [1, ..., K i ]. If we consider N sources, their mixture is characterized by a set of K 1 x K 2 x ... x K N N-tuples of characteristic spectral forms ( σ k 1 2
Figure imgb0016
(f), ..., σ k NOT 2
Figure imgb0017
(F)). For each frame of index t k , the method consists in first choosing the N-tuple of spectral shapes that best corresponds to the sound signal of the mixture. For example, it can consist in maximizing the probability of correspondence between the spectrogram of the mixture | x ( t k , f ) | 2 and the resulting variance of the pair of spectral shapes. Next, it consists of filtering the mixture by conventional Wiener filtering using the N-tuple of spectral shapes thus selected. We can note that this method is adaptive since the choice of the parameters of the filter depends on the frame index t k considered.

Le principal inconvénient de cette méthode réside dans sa complexité algorithmique. En effet, si K formes spectrales caractéristiques par source i et N sources i sont considérées dans le mélange, KN N-uplets de formes spectrales caractéristiques doivent être testés pour chaque trame si bien que la complexité est en O(Kn x T) si T est le nombre de trames du signal mélange à analyser. Cet inconvénient de complexité peut rendre cette méthode rédhibitoire, notamment lorsque le nombre de formes spectrales caractéristiques par source est relativement important.The main disadvantage of this method lies in its algorithmic complexity. Indeed, if K characteristic spectral forms by source i and N sources i are considered in the mixture, K N N-tuples of characteristic spectral forms must be tested for each frame so that the complexity is in O (K n x T) if T is the number of frames of the mix signal to be analyzed. This disadvantage of complexity can make this method unacceptable, especially when the number of characteristic spectral forms per source is relatively large.

Une autre méthode a également été proposée pour rendre adaptatif le procédé de séparation. Comme précédemment, le signal de son de chaque source si(t) est caractérisé par un ensemble de Ki formes spectrales caractéristiques σ k i 2

Figure imgb0018
(f) mais qui sont là regroupées dans un dictionnaire de formes spectrales. Ainsi, le spectrogramme du mélange |x(tk ,f)|2 est décomposé sur l'union des dictionnaires en présence et il est donc possible d'écrire : x t k f 2 k 1 = 1 K 1 a k 1 t k σ k 1 2 f + + k 2 = 1 K N a k N t k σ k N 2 f
Figure imgb0019
où les coefficients aki (t), sont nommés "facteurs d'amplitude", sont les inconnues à résoudre.Another method has also been proposed to make the separation process adaptive. As before, the sound signal of each source s i (t) is characterized by a set of K i characteristic spectral forms σ k i 2
Figure imgb0018
(f) but which are there grouped in a dictionary of spectral forms. Thus, the spectrogram of the mixture | x ( t k , f ) | 2 is decomposed on the union of the dictionaries in presence and it is thus possible to write: x t k f 2 Σ k 1 = 1 K 1 at k 1 t k σ k 1 2 f + ... + Σ k 2 = 1 K NOT at k NOT t k σ k NOT 2 f
Figure imgb0019
where the coefficients a k i (t), are called "amplitude factors", are the unknowns to solve.

On notera que l'équation ci-dessus peut s'interpréter comme s'il y avait K1 +...+ KN sources élémentaires stationnaires qui sont caractérisées chacune par une forme spectrale σ k i 2

Figure imgb0020
(f) et qui se mélangent entre elles avec des facteurs d'amplitude respectifs aki (t) fonction du temps. On notera que chaque facteur d'amplitude aki (t) d'une source élémentaire est caractéristique de l'enveloppe de cette source. Il est donc un nombre positif.Note that the equation above can be interpreted as if there were K 1 + ... + K N stationary stationary sources which are each characterized by a spectral form σ k i 2
Figure imgb0020
(f) and which mix with each other with respective amplitude factors a k i (t) function of time. Note that each amplitude factor has k i (t) an elemental source is characteristic of the envelope of this source. It is therefore a positive number.

L'équation ci-dessus peut se réécrire de la manière suivante : x t k f 2 i = 1 K 1 e i t k f avec e i t k f = k = 1 K i a k t k σ k , i 2 f

Figure imgb0021
   ei(tk,f) représente la fraction d'énergie de la source i contenue dans le mélange à analyser.The equation above can be rewritten as follows: x t k f 2 Σ i = 1 K 1 e i t k f with e i t k f = Σ k = 1 K i at k t k σ k , i 2 f
Figure imgb0021
e i (t k , f) represents the fraction of energy of the source i contained in the mixture to be analyzed.

Une première méthode pour estimer les signaux de son des sources 1 à N est de mettre en oeuvre un filtrage de Wiener temps fréquence classique, néanmoins adaptatif dès lors qu'il dépend de l'indice de trame t. Ce filtre est appelé filtre de Wiener généralisé. On a donc pour la source i, l'estimée i,Wg (tk ,f) : s ^ i , W s t k f = e i t k f i = 1 N e i t k f x t k f

Figure imgb0022
A first method for estimating the sound signals from sources 1 to N is to implement Wiener time-frequency filtering, which is nevertheless adaptive since it depends on the frame index t. This filter is called a generalized Wiener filter. So for the source i, the estimate ŝ i, W boy Wut ( t k , f ): s ^ i , W s t k f = e i t k f Σ i = 1 NOT e i t k f x t k f
Figure imgb0022

Une autre méthode, dite de resynthèse, considère l'amplitude du signal de son de chaque source i comme étant égale à e i t k f

Figure imgb0023
et sa phase comme étant estimée par celle du mélange. Il est donc possible d'écrire pour la source i : s ˜ i t k f = e i t k f . sign x ˜ t k f
Figure imgb0024
sign x = x x
Figure imgb0025
correspond à la phase de x.Another method, called resynthesis, considers the amplitude of the sound signal of each source i to be equal to e i t k f
Figure imgb0023
and its phase as estimated by that of the mixture. It is therefore possible to write for the source i: s ~ i t k f = e i t k f . sign x ~ t k f
Figure imgb0024
or sign x = x x
Figure imgb0025
corresponds to the phase of x.

Cette seconde méthode par l'utilisation de dictionnaire de formes spectrales caractéristique présente l'avantage par rapport à la précédente méthode de diminuer la complexité algorithmique. En effet, pour n sources possédant chacune K formes spectrales, la complexité algorithmique est en O(n x K x T) où T est le nombre de trames à analyser, donc inférieure à celle de la méthode précédente qui était en O(Kn x T).This second method by the use of a dictionary of characteristic spectral shapes has the advantage over the previous method of reducing the algorithmic complexity. Indeed, for n sources each having K spectral forms, the algorithmic complexity is in O (nx K x T) where T is the number of frames to be analyzed, therefore lower than that of the previous method which was in O (K n x T).

Les trois méthodes qui viennent d'être présentées présentent néanmoins l'inconvénient majeur que la phase de chacune des sources impliquées (ou des sources élémentaires impliquées selon la méthode utilisée) est rigoureusement égale à la phase du mélange. Or, en général, les sources qui s'additionnent n'ont pas toutes la même phase si bien que, dans les méthodes présentées ci-dessus, lors de la séparation, il y a destruction de la structure de phase des sources, ce qui peut entraîner des effets gênants pour l'écoute des signaux de son des sources recouvrées. Le système auditif humain est en effet très sensible aux cohérences de phase dans les signaux audio, notamment les cohérences inter-trames pour f fixée (phase cohérente entre s(t k+1,f) et s(tk ,f)) et les cohérences de phase pour une même trame mais pour différentes valeurs de la fréquence f (phase de s(tk ,f)pour différentes valeurs de f). Ces effets de cohérence de phase sont notamment très sensibles sur les sons harmoniques, comme les sons d'un instrument de musique, ou encore les sons voisés, alors qu'ils sont moins importants sur les bruits blancs, roses, etc. ou encore les sons d'instrument de percussion.The three methods that have just been presented nevertheless have the major disadvantage that the phase of each of the sources involved (or elementary sources involved according to the method used) is strictly equal to the mixing phase. However, in general, the sources that add up do not all have the same phase so that, in the methods presented above, during the separation, there is destruction of the phase structure of the sources, which can cause annoying effects for listening to sound signals from recovered sources. The human auditory system is indeed very sensitive to phase coherences in the audio signals, in particular inter-frame coherences for fixed f (coherent phase between s ( t k +1 , f ) and s ( t k , f )) and the phase coherences for the same frame but for different values of the frequency f (phase of s ( t k , f ) for different values of f). These phase coherence effects are notably very sensitive on harmonic sounds, such as of a musical instrument, or voiced sounds, while they are less important on white, pink, and so on. or the sounds of percussion instruments.

La publication intitulée « Blind source separation using temporal predictability » de STONE J.V et la publication intitulée « An online algorithm for blind source extraction based on non-linear prediction approach » de MANDIC D.P et AL décrivent des procédés de détermination des signaux de séparation relatifs à des sources sonores à partir d'un signal issu du mélange de ces signaux.The STONE JV publication "Blind source separation using temporal predictability" and MANDIC DP and AL's publication "An online algorithm for blind source extraction based on non-linear prediction approach" describe methods for determining separation signals relative to sound sources from a signal from the mixing of these signals.

La thèse intitulée « Séparation de plusieurs sources sonores avec un seul microphone » de Elie Laurent BENAROYA décrit l'étude de la séparation de sources sonores avec un seul capteur à partir d'une extension du filtrage de Wiener à des modèles de mélange de Gaussiennes pour les sources ainsi qu'à partir d'une décomposition non négative du spectre du mélange sur un dictionnaire de forme spectrale caractéristique des sources.The thesis entitled "Separation of several sound sources with a single microphone" by Elie Laurent BENAROYA describes the study of the separation of sound sources with a single sensor from an extension of the Wiener filtering to Gaussian mixing models for the sources as well as from a non-negative decomposition of the spectrum of the mixture on a dictionary of spectral form characteristic of the sources.

Le but de la présente est de proposer une méthode de séparation des signaux relatifs à des sources sonores à partir d'un signal issu de mélange de ces signaux qui ne présente pas les incohérences de phase des méthodes citées ci-dessus.The purpose of the present is to propose a method of separating the signals relating to sound sources from a signal resulting from mixing these signals which does not exhibit the phase inconsistencies of the methods mentioned above.

Pour ce faire, un procédé de détermination des signaux de séparation respectivement relatifs à des sources sonores à partir d'un signal issu du mélange de ces signaux est défini dans la revendication 1, lesdits signaux se présentant sous forme de trames successives, ledit procédé incluant pour chacune desdites sources :

  • une étape de détermination d'un signal d'estimée ;
  • une étape de prédiction (E40) d'un signal prédit pour la trame présente basée sur le signal de séparation pour la trame précédente ; et
  • une étape de détermination du signal de séparation (E50) pour la trame présente sur la base dudit signal prédit et dudit signal d'estimée, caractérisé en ce que ladite étape de détermination du signal de séparation consiste à sommer de manière pondérée le signal d'estimée et le signal prédit, le signal d'estimée étant pondéré par un premier coefficient matriciel déterminé de manière à minimiser la covariance du signal de séparation,
et en ce que la valeur dudit premier coefficient matriciel est calculée au moyen de la relation suivante de la covariance du signal prédit Covp(tk,f) et de la somme de la covariance du signal prédit Covp(tk,f) et de la covariance du signal d'estimée Cove (tk,f), soit : α t k f = Cov e t k f + Cov p t k f - 1 Cov p t k f
Figure imgb0026
To do this, a method for determining the separation signals respectively relating to sound sources from a signal derived from the mixing of these signals is defined in claim 1, said signals being in the form of successive frames, said method including for each of said sources:
  • a step of determining an estimate signal;
  • a prediction step (E40) of a predicted signal for the present frame based on the separation signal for the previous frame; and
  • a step of determining the separation signal (E50) for the frame present on the basis of said predicted signal and said estimation signal, characterized in that said step of determining the separation signal comprises summing in a weighted manner the signal of estimated and the signal predicted, the estimated signal being weighted by a first matrix coefficient determined so as to minimize the covariance of the separation signal,
and in that the value of said first matrix coefficient is calculated by means of the following covariance relation of the predicted Cov p (t k , f) signal and the sum of the covariance of the predicted signal Cov p (t k , f) and the covariance of the estimation signal Cov e (t k , f), that is: α t k f = Cov e t k f + Cov p t k f - 1 Cov p t k f
Figure imgb0026

Ce procédé s'applique également à des signaux non sonores tels que tous signaux numériques issus de l'échantillonnage d'un transducteur permettant la transformation d'une grandeur physique en un signal électrique.This method also applies to non-sound signals such as any digital signals from the sampling of a transducer for transforming a physical quantity into an electrical signal.

A cet effet, l'invention a pour objet un procédé de détermination des signaux de séparation respectivement relatifs à des sources non sonores à partir d'un signal issu du mélange de ces signaux tel que défini dans la revendication 2 lesdits signaux se présentant sous forme de trames successives, ledit procédé incluant pour chacune desdites sources:

  • une étape de détermination d'un signal d'estimée ;
  • une étape de prédiction (E40) d'un signal prédit pour la trame présente basée sur le signal de séparation pour la trame précédente ;et
  • une étape de détermination du signal de séparation (E50) pour la trame présente sur la base dudit signal prédit et dudit signal d'estimée, caractérisé en ce que ladite étape de détermination du signal de séparation consiste à sommer de manière pondérée le signal d'estimée et le signal prédit, le signal d'estimée étant pondéré par un premier coefficient matriciel déterminé de manière à minimiser la covariance du signal de séparation,
la valeur dudit premier coefficient matriciel est calculée au moyen de la relation suivante de la covariance du signal prédit Covp(tk,f) et de la somme de la covariance du signal prédit Covp(tk,f) et de la covariance du signal d'estimée Cove(tk,f), soit : α t k f = Cov e t k f + Cov p t k f - 1 Cov p t k f
Figure imgb0027
For this purpose, the subject of the invention is a method for determining separation signals respectively relating to non-sonic sources from a signal resulting from the mixing of these signals as defined in claim 2, said signals being in the form of successive frames, said method including for each of said sources:
  • a step of determining an estimate signal;
  • a prediction step (E40) of a predicted signal for the present frame based on the separation signal for the previous frame, and
  • a step of determining the separation signal (E50) for the frame present on the basis of said predicted signal and said estimation signal, characterized in that said step of determining the separation signal comprises summing in a weighted manner the signal of estimated and the signal predicted, the estimated signal being weighted by a first matrix coefficient determined so as to minimize the covariance of the separation signal,
the value of said first matrix coefficient is calculated using the following covariance covariance cov covence ratio p (t k , f) and the covariance sum of the Cov p (t k , f) predicted signal and the covariance the estimation signal Cov e (t k , f), that is: α t k f = Cov e t k f + Cov p t k f - 1 Cov p t k f
Figure imgb0027

Les caractéristiques de l'invention mentionnées ci-dessus, ainsi que d'autres, apparaîtront plus clairement à la lecture de la description suivante d'un exemple de réalisation, ladite description étant faite en relation avec les dessins joints, parmi lesquels :

  • La Fig. 1 est un schéma synoptique d'un système de séparation des signaux relatifs à des sources sonores à partir d'un signal issu de mélange de ces signaux selon la présente invention, et
  • La Fig. 2 est un diagramme montrant les différentes étapes mises en oeuvre par un procédé de séparation de signaux selon la présente invention.
The characteristics of the invention mentioned above, as well as others, will appear more clearly on reading the following description of an exemplary embodiment, said description being given in relation to the attached drawings, among which:
  • The Fig. 1 is a block diagram of a system for separating signals relating to sound sources from a signal derived from mixing these signals according to the present invention, and
  • The Fig. 2 is a diagram showing the different steps implemented by a signal separation method according to the present invention.

Dans la suite de la description, on considérera des sources sonores qui sont en elles-mêmes élémentaires, c'est-à-dire qui sont caractérisées chacune par une forme spectrale caractéristique donnée. Mais, on considèrera également des sources sonores dont la caractéristique de forme spectrale est une caractéristique parmi plusieurs caractéristiques de forme spectrale possibles, par exemple appartenant à un dictionnaire de formes spectrales caractéristiques (voir le préambule de la présente description). Comme on le mentionnait dans le préambule de la description, on peut alors considérer une source sonore comme étant une combinaison pondérée d'une pluralité de sources sonores élémentaires dont chacune présente une caractéristique de forme spectrale donnée (par exemple issue d'un dictionnaire ou déterminée).In the remainder of the description, we will consider sound sources which are in themselves elementary, that is to say which are each characterized by a given characteristic spectral shape. However, sound sources whose spectral shape characteristic is a characteristic among several possible spectral shape characteristics, for example belonging to a dictionary of characteristic spectral shapes (see the preamble of the present description), will also be considered. As mentioned in the preamble of the description, it is then possible to consider a sound source as being a weighted combination of a plurality of elementary sound sources each of which has a given spectral shape characteristic (for example derived from a dictionary or determined ).

De manière à résoudre le problème des incohérences de phase des méthodes de l'état de la technique mentionnées en préambule de la description, la présente invention prévoit des moyens de lien entre trames adjacentes. En d'autres termes, chaque source sonore élémentaire est déterminée d'une manière récursive et itérative.In order to solve the problem of phase inconsistencies of the methods of the state of the art mentioned in the preamble of the description, the present invention provides means for connecting adjacent frames. In other words, each elementary sound source is determined in a recursive and iterative manner.

On a représenté à la Fig. 1, un système de séparation de signaux de sons issus de sources sonores selon un mode de réalisation de la présente invention qui comporte ces moyens de liens entre trames adjacentes. Ce système est essentiellement constitué d'une unité d'estimation 10 qui, sur la base d'un signal de mélange du domaine fréquentiel notée noté x(tk,f) obtenu par exemple par une transformée de Fourier à court terme du signal x(t) dans le domaine temporel échantillonné, délivre un signal d'estimée représentée par la variable aléatoire Se(tk,f) dont chaque composante s i e

Figure imgb0028
(tk,f) est le signal d'estimée pour une source du mélange d'indice i. Si l'on dispose de N sources élémentaires, le signal de d'estimée est représenté par un vecteur dont chaque composante est relative à une source : S e t k f = s 1 e t k f s N e t k f
Figure imgb0029
We have shown Fig. 1 , a system for separating sound signals from sound sources according to an embodiment of the present invention which comprises these connecting means between adjacent frames. This system essentially consists of an estimation unit 10 which, on the basis of a signal of frequency domain mixing noted x (t k , f) obtained for example by a short-term Fourier transform of the signal x (t) in the sampled time domain, delivers an estimation signal represented by the random variable S e (t k , f) of which each component s i e
Figure imgb0028
(t k , f) is the estimated signal for a source of the index mixture i. If we have N elementary sources, the estimated signal is represented by a vector of which each component is relative to a source: S e t k f = s 1 e t k f s NOT e t k f
Figure imgb0029

L'unité d'estimation 10 est telle que l'espérance du signal en sa sortie est conditionnée aux signaux x(tk,f) qui sont réellement observés. On peut donc écrire : S e t k f = E S t k f | x t k f

Figure imgb0030
The estimation unit 10 is such that the expectation of the signal at its output is conditioned by the signals x (t k , f) which are actually observed. We can write: S e t k f = E S t k f | x t k f
Figure imgb0030

L'unité d'estimation 10 est par exemple un filtre de Wiener (voir les différentes formes de ce type de filtre données dans le préambule de la présente description), une unité fonctionnant par une méthode de seuillage temps-fréquence, ou par une méthode dite Ephraïm et Malah, etc. Par exemple, dans le cas d'un filtre de Wiener, chaque composante du vecteur Se(tk,f) peut être obtenu par la relation suivante : S e t k f = S ^ 1 , W g t k f S ^ N , W t k f avec s ^ i , W g t k f = e i t k f i = 1 N e i t k f x t k f

Figure imgb0031
où ei(tk,f) est la fraction d'énergie de la source i contenue dans le signal de mélange, dans la trame d'indice tk et de fréquence d'indice f, N étant le nombre totale de sources et x̃(tk,f) étant le signal de mélange.The estimation unit 10 is for example a Wiener filter (see the different forms of this type of filter given in the preamble of the present description), a unit operating by a time-frequency thresholding method, or by a method said Ephraim and Malah, etc. For example, in the case of a Wiener filter, each component of the vector S e (t k , f) can be obtained by the following relation: S e t k f = S ^ 1 , W boy Wut t k f S ^ NOT , W t k f with s ^ i , W boy Wut t k f = e i t k f Σ i = 1 NOT e i t k f x t k f
Figure imgb0031
where e i (t k , f) is the energy fraction of the source i contained in the mixing signal, in the frame of index t k and frequency of index f, where N is the total number of sources and x (t k , f) being the mixing signal.

On rappelle ici que pour une source élémentaire i, on peut écrire : e i t k f = k i = 1 K i a k i t k σ k i 2 f

Figure imgb0032
où Ki représente le nombre de sources élémentaires considérés pour la source i, aki (tk) représente le facteur d'amplitude de la source élémentaire d'indice ki et σ k i 2
Figure imgb0033
(f) la variance de cette source élémentaire d'indice ki.We recall here that for an elementary source i, we can write: e i t k f = Σ k i = 1 K i at k i t k σ k i 2 f
Figure imgb0032
where K i represents the number of elementary sources considered for the source i, a k i (t k ) represents the amplitude factor of the elementary source of index k i and σ k i 2
Figure imgb0033
(f) the variance of this elementary source of index k i .

Le système de séparation de signaux de sons de sources sonores représenté à la Fig. 1 comporte encore une unité de mise à jour 20 et une unité de prédiction 30. Ce sont ces unités 20 et 30 qui constituent les moyens de lien inter-trame qui sont mentionnés ci-dessus.The system for separating sound signals from sound sources represented in Fig. 1 further comprises an update unit 20 and a prediction unit 30. It is these units 20 and 30 which constitute the inter-frame link means which are mentioned above.

L'unité de prédiction 30 est prévue pour délivrer un signal de prédiction considéré comme une variable aléatoire correspondante Sp(tk,f)The prediction unit 30 is provided to deliver a prediction signal considered as a corresponding random variable S p (t k , f)

On rappelle ici que si l'on dispose de N sources élémentaires, le signal de prédiction est un vecteur dont chaque composante est relative à une source : S p t k f = s 1 p t k f s N p t k f

Figure imgb0034
We recall here that if we have N elementary sources, the prediction signal is a vector whose each component is relative to a source: S p t k f = s 1 p t k f s NOT p t k f
Figure imgb0034

Comme on peut le constater sur la Fig. 1, l'unité de mise à jour 20, sur la base du signal de prédiction Sp(tk,f) délivré par l'unité de prédiction 30 et du signal d'estimée Se(tk,f) délivré par l'unité d'estimation 10 délivre, quant à elle, le signal de séparation dont la variable aléatoire est notée Stot(tk,f).As can be seen from the Fig. 1 the updating unit 20, on the basis of the prediction signal S p (t k , f) delivered by the prediction unit 30 and the estimation signal S e (t k , f) delivered by the estimation unit 10 delivers, as for it, the separation signal whose random variable is noted S tot (t k , f).

Si l'on dispose de N sources élémentaires, le signal de séparation est représenté par un vecteurs dont chaque composante est relative à une source : S tot t k f = s 1 tot t k f s N tot t k f

Figure imgb0035
If we have N elementary sources, the separation signal is represented by a vector whose each component is relative to a source: S early t k f = s 1 early t k f s NOT early t k f
Figure imgb0035

Concernant l'unité de prédiction 30, dans le cas le plus simple elle peut revenir à introduire un terme de décalage entre deux trames successives, par son unité 32, et l'on peut donc écrire : S p t k f = H f S tot t k - 1 f

Figure imgb0036
Concerning the prediction unit 30, in the simplest case it can return to introduce an offset term between two successive frames, by its unit 32, and one can write: S p t k f = H f S early t k - 1 f
Figure imgb0036

Le signal prédit pour la trame présente est basé sur le signal de séparation pour la trame précédente.The predicted signal for the present frame is based on the separation signal for the previous frame.

L'espérance du signal de prédiction est donnée par la relation suivante : S ^ p t k f = H f S ^ tot t k - 1 f

Figure imgb0037
où H(f) est un terme qui, dans le domaine fréquentiel, est représentatif du décalage entre deux trames successives et qui, du fait que les signaux considérés sont des signaux stationnaires, peut s'écrire : H f = exp 2 πi f . M T
Figure imgb0038
où T est la longueur d'une trame, M le décalage considéré, et i le nombre complexe tel que i2 = -1. Généralement, le décalage M entre trame est inférieur à la longueur T d'une trame et, même, il est souvent moitié de la longueur d'une trame : M = T / 2
Figure imgb0039
The expectation of the prediction signal is given by the following relation: S ^ p t k f = H f S ^ early t k - 1 f
Figure imgb0037
where H (f) is a term which, in the frequency domain, is representative of the offset between two successive frames and which, because the signals considered are stationary signals, can be written as: H f = exp 2 πi f . M T
Figure imgb0038
where T is the length of a frame, M is the shift considered, and i is the complex number such that i 2 = -1. Generally, the M difference between the frame is less than the length T of a frame and, even, it is often half the length of a frame: M = T / 2
Figure imgb0039

Quant à l'unité de mise à jour 20, elle est prévue pour déterminer le signal de séparation Stot(tk,f) en sommant de manière pondérée le signal d'estimée Se(tk,f) et le signal prédit Sp(tk,f). Dans le mode de réalisation représenté, le signal d'estimée Se(tk,f) est pondéré par un coefficient matriciel α(tk,f) alors que le signal prédit est pondéré par un coefficient I-α(tk,f), I étant la matrice unité.As for the updating unit 20, it is intended to determine the separation signal S tot (t k , f) by summing the estimation signal S e (t k , f) in a weighted manner and the predicted signal S p (t k , f). In the embodiment shown, the estimated signal S e (t k , f) is weighted by a matrix coefficient α (tk, f) while the predicted signal is weighted by a coefficient I-α (tk, f) , I being the unit matrix.

Par exemple, ceci est réalisé en additionnant, dans un additionneur 21, au signal prédit Sp(tk,f) un signal d'erreur calculé comme la différence entre le signal prédit Sp(tk,f) et le signal d'estimée Se(tk,f), ledit signal d'erreur étant pondéré par un coefficient α(tk,f), la pondération étant effectuée par une unité de pondération 23. On peut donc écrire la relation : S tot t k f = S p t k f + α t k f . S e t k f - S p t k f

Figure imgb0040
For example, this is done by adding, in an adder 21, to the predicted signal S p (t k , f) an error signal calculated as the difference between the predicted signal S p (t k , f) and the signal d estimated S e (t k , f), said error signal being weighted by a coefficient α (tk, f), the weighting being performed by a weighting unit 23. It is therefore possible to write the relation: S early t k f = S p t k f + α t k f . S e t k f - S p t k f
Figure imgb0040

Le système de séparation représenté à la Fig. 1 est prévu pour déterminer la matrice de coefficients optimale α(tk,f) permettant de minimiser la variance de l'estimation du signal de séparation Stot(tk,f). On peut montrer que cette valeur optimale du facteur de pondération est donnée par la relation suivante de la covariance du signal prédit Covp(tk,f) et de la somme de la covariance du signal prédit Covp(tk,f) et de la covariance du signal d'estimée Cove(tk,f), soit : α t k f = Cov e t k f + Cov p t k f - 1 Cov p t k f

Figure imgb0041
The separation system shown in Fig. 1 is provided for determining the optimal coefficient matrix α (tk, f) for minimizing the variance of the estimate of the separation signal S tot (t k , f). It can be shown that this optimum value of the weighting factor is given by the following covariance ratio of the predicted Cov p signal (t k , f) and the sum of covariance of the predicted Cov p signal (t k , f) and the covariance of the estimation signal Cov e (t k , f), that is: α t k f = Cov e t k f + Cov p t k f - 1 Cov p t k f
Figure imgb0041

La valeur du coefficient de pondération α(tk,f) étant connue, il est possible de déterminer l'espérance du signal de séparation S 0 tot

Figure imgb0042
(tk,f) qui constitue alors la sortie de l'unité de mise à jour 20 : S 0 tot t k f = S 0 p t k f + α t k f . S 0 e t k f - S 0 p t k f
Figure imgb0043
Since the value of the weighting coefficient α (t k , f) is known, it is possible to determine the expectation of the separation signal. S 0 early
Figure imgb0042
(t k , f) which then constitutes the output of the update unit 20: S 0 early t k f = S 0 p t k f + α t k f . S 0 e t k f - S 0 p t k f
Figure imgb0043

On va donc procéder conformément au diagramme de la Fig. 2. Dans ce diagramme, on peut constater qu'il présente deux branches I et II : la première I regroupe les étapes E10, E20 et E30 et correspond aux calculs des covariances des différentes variables aléatoires aboutissant essentiellement au calcul de la matrice de coefficients optimale α(tk,f) alors que la seconde II qui regroupe les étapes E40 et E50 correspond aux calculs des espérances de ces variables aléatoires aboutissant au calcul de l'espérance du signal de séparation en fonction du signal d'estimation délivré par l'unité d'estimation 10.We will proceed according to the diagram of the Fig. 2 . In this diagram, it can be seen that it has two branches I and II: the first I groups steps E10, E20 and E30 and corresponds to the covariance calculations. different random variables leading essentially to the calculation of the optimal coefficient matrix α (t k , f) while the second II which groups together the steps E40 and E50 corresponds to the calculations of the expectations of these random variables leading to the calculation of the expectation of the separation signal according to the estimation signal delivered by the estimation unit 10.

Plus précisément, à l'étape E10, est effectuée la mise à jour de la covariance du signal prédit représentée, on le rappelle, par la variable aléatoire Sp(tk+1,f)More precisely, in step E10, the updating of the covariance of the predicted signal represented, it is recalled, by the random variable S p (t k + 1 , f) is carried out.

Du fait de l'unité 32 qui lie entre elles deux trames successives, on peut montrer facilement que la covariance du signal prédit est donnée par la relation suivante : Cov p t k f = Cov tot t k - 1 f + var b p t k f

Figure imgb0044
avec var b p t k f
Figure imgb0045
variance du bruit de prédiction.Due to the unit 32 which links two successive frames together, it can easily be shown that the covariance of the predicted signal is given by the following relation: Cov p t k f = Cov early t k - 1 f + var b p t k f
Figure imgb0044
with var b p t k f
Figure imgb0045
variance of the prediction noise.

Le module de la fonction H(f) est en effet égal à 1.The module of the function H (f) is indeed equal to 1.

La variance du bruit de prédiction var(bp(tk,f)) dépend des sources ou sous-sources considérées et de la fréquence f. Elle ne dépend pas de la trame considérée, si bien qu'elle peut également s'écrire : var b p t k f = var b p f

Figure imgb0046
The variance of the prediction noise var (b p (t k , f)) depends on the sources or sub-sources considered and on the frequency f. It does not depend on the frame considered, so it can also be written: var b p t k f = var b p f
Figure imgb0046

Cette variance est avantageusement estimée dans une phase d'apprentissage. En définitive, on a : Cov p t k f = Cov tot t k - 1 f + var b p f

Figure imgb0047
This variance is advantageously estimated in a learning phase. In the end, we have: Cov p t k f = Cov early t k - 1 f + var b p f
Figure imgb0047

Covtot(tk-1,f) est une grandeur qui a été calculée à l'itération précédente (voir étape E30 ci-dessous).Cov tot (t k-1 , f) is a quantity that was calculated at the previous iteration (see step E30 below).

A l'étape E20, on détermine la matrice de coefficients α(tk,f) optimale. Pour ce faire, on utilise l'expression ci-dessus : α t k f = Cov e t k f + Cov p t k f - 1 Cov p t k f

Figure imgb0048
In step E20, the optimal coefficient matrix α (t k , f) is determined. To do this, we use the expression above: α t k f = Cov e t k f + Cov p t k f - 1 Cov p t k f
Figure imgb0048

La covariance du signal de séparation prédit Covp(tk,f) est donnée par le calcul effectué à l'étape E10. Quant à la covariance du signal d'estimée Cove(tk,f), elle est déterminée par les formes spectrales caractéristiques σ k i 2

Figure imgb0049
(f) et les facteurs d'amplitude aki (tk) des sources ou sources élémentaires considérées.The covariance of the predicted separation signal Cov p (t k , f) is given by the calculation performed in step E10. As for the covariance of the estimation signal Cov e (t k , f), it is determined by the characteristic spectral forms σ k i 2
Figure imgb0049
(f) and amplitude factors a k i (t k ) sources or elementary sources considered.

On rappelle que l'équation du mélange est la suivante : x t f = j s j t f + b t f

Figure imgb0050
b(t,f) représente l'expression d'un bruit blanc gaussien stationnaire de variance σ b 2
Figure imgb0051
Quant aux sources élémentaires si (t,f), elles sont considérées a priori comme des sources gaussiennes non stationnaires de variance ai(t,f) σ i 2
Figure imgb0052
(f) mais comme stationnaires conditionnellement à ai(t).We recall that the equation of the mixture is as follows: x t f = Σ j s j t f + b t f
Figure imgb0050
where b ( t , f ) represents the expression of a stationary Gaussian white noise of variance σ b 2
Figure imgb0051
As for the elementary sources s i ( t, f ), they are considered a priori as non-stationary Gaussian sources of variance a i (t, f) σ i 2
Figure imgb0052
(f) but as conditionally stationary at a i (t).

Le signal d'estimé Se(t,f) du mélange de l'ensemble des sources élémentaires est une variable aléatoire gaussienne de variance Cove(t,f):The estimation signal S e (t, f) of the mixture of the set of elementary sources is a Gaussian random variable of variance Cov e (t, f):

On a pu montrer que cette covariance du signal d'estimée Cove(tk,f) pouvait s'exprimer de la manière suivante : Cov e t k f = a 1 t k σ 1 2 f 0 0 0 0 0 0 a N t k σ N 2 f - 1 j = 1 N a j t k σ j 2 f + σ b 2 a 1 t k σ 1 2 f a N t k σ N 2 f a 1 t k σ 1 2 f a N t k σ N 2 f

Figure imgb0053
expression dans laquelle :

  • aj(tk,f) est le facteur d'amplitude de la source ou de la source élémentaire d'indice j, pour la trame d'indice tk et pour la fréquence d'indice f,
  • σj(f) est la forme spectrale caractéristique de la source ou de la source élémentaire d'indice j et pour la fréquence f,
  • σb est la variance d'un bruit blanc gaussien, et
  • N est le nombre total de sources élémentaires considérées.
It has been shown that this covariance of the estimation signal Cov e (t k , f) could be expressed as follows: Cov e t k f = at 1 t k σ 1 2 f 0 0 0 0 0 0 at NOT t k σ NOT 2 f - 1 Σ j = 1 NOT at j t k σ j 2 f + σ b 2 at 1 t k σ 1 2 f at NOT t k σ NOT 2 f at 1 t k σ 1 2 f at NOT t k σ NOT 2 f
Figure imgb0053
expression in which:
  • a j (t k , f) is the amplitude factor of the source or elementary source of index j, for the frame of index t k and for the frequency of index f,
  • σ j (f) is the spectral form characteristic of the source or the elementary source of index j and for the frequency f,
  • σ b is the variance of a white Gaussian noise, and
  • N is the total number of elementary sources considered.

A l'étape E30, la matrice de covariance du signal de séparation est remise à jour en utilisant l'expression suivante : Cov tot t k f = I - α t k f . Cov p t k f

Figure imgb0054
expression dans laquelle :

  • I est la matrice identité,
  • α (tk,f) est la matrice de coefficients telle que déterminée à l'étape E20 ci-dessus,
  • Covp(tk,f) est la covariance du signal de séparation prédit telle que calculée à l'étape E10.
In step E30, the covariance matrix of the separation signal is updated using the following expression: Cov early t k f = I - α t k f . Cov p t k f
Figure imgb0054
expression in which:
  • I is the identity matrix,
  • α (t k , f) is the coefficient matrix as determined in step E20 above,
  • Cov p (t k , f) is the covariance of the predicted separation signal as calculated in step E10.

Après l'étape E30, pour ce qui concerne les calculs liés aux covariances, la trame suivante est considérée et le processus est repris à l'étape E10.After step E30, for covariance related calculations, the next frame is considered and the process is resumed in step E10.

On considère maintenant les étapes E40 et E50 liées aux calculs des espérances. A l'étape E40, on détermine l'espérance du signal prédit S 0 p

Figure imgb0055
(tk,f) laquelle est donnée par la relation suivante en fonction de l'espérance du signal de séparation S 0 tot
Figure imgb0056
(tk-1,f) déterminée à la trame précédente : S 0 p t k f = H f S 0 tot t k - 1 f
Figure imgb0057
We now consider the steps E40 and E50 related to the calculations of the expectations. In step E40, the expectation of the predicted signal is determined. S 0 p
Figure imgb0055
(t k , f) which is given by the following relation as a function of the expectation of the separation signal S 0 early
Figure imgb0056
(t k-1 , f) determined at the previous frame: S 0 p t k f = H f S 0 early t k - 1 f
Figure imgb0057

A l'étape E50, l'espérance du signal de séparation est calculée au moyen de l'expression suivante : S 0 tot t k f = S 0 p t k f + α t k f . S 0 e t k f - S 0 p t k f

Figure imgb0058
expression dans laquelle :

  • S 0 p
    Figure imgb0059
    (tk,f) est l'espérance du signal de séparation prédit déterminé à l'étape E10 ci-dessus,
  • S 0 e
    Figure imgb0060
    (tk,f) est l'espérance du signal d'estimée telle qu'il apparaît à la sortie du l'unité d'estimation 10, et
  • α(tk,f) est la matrice de coefficients telle que déterminée à l'étape E20 ci-dessus.
In step E50, the expectation of the separation signal is calculated by means of the following expression: S 0 early t k f = S 0 p t k f + α t k f . S 0 e t k f - S 0 p t k f
Figure imgb0058
expression in which:
  • S 0 p
    Figure imgb0059
    (t k , f) is the expectation of the predicted separation signal determined in step E10 above,
  • S 0 e
    Figure imgb0060
    (t k , f) is the expectation of the estimate signal as it appears at the output of the estimation unit 10, and
  • α (t k , f) is the coefficient matrix as determined in step E20 above.

L'espérance du signal de séparation S 0 tot

Figure imgb0061
(tk,f) est le signal de sortie du système. Ses composantes sont les signaux de séparation de chacune des sources ou des sources élémentaires considérées.The expectation of the separation signal S 0 early
Figure imgb0061
(t k , f) is the output signal of the system. Its components are the signals of separation of each of the sources or elementary sources considered.

A l'étape E60, l'espérance du signal de séparation de la trame Tr , S o tot

Figure imgb0062
(tk,f) est décalée d'une trame pour obtenir l'espérance du signal de séparation de la trame t k-1 et cette dernière espérance est utilisée au cours de l'étape E40.In step E60, the expectation of the separation signal of the frame Tr, S o early
Figure imgb0062
( t k , f ) is shifted by one frame to obtain the expectation of the separation signal of the frame t k -1 and this latter expectation is used during step E40.

Après les étapes E50 et E60, la trame suivante est considérée et le processus est repris à l'étape E40 pour ce qui concerne les étapes liées aux calculs des espérances.After the steps E50 and E60, the next frame is considered and the process is resumed in step E40 for the steps related to the expectation calculations.

Les étapes E10 et E40 sont mises en oeuvre par l'unité de prédiction 30 alors que les étapes E20, E30 et E50 sont mises en oeuvre par l'unité de mise à jour 20.The steps E10 and E40 are implemented by the prediction unit 30 while the steps E20, E30 and E50 are implemented by the update unit 20.

On notera qu'à l'initialisation du procédé, l'espérance et la covariance de la variable aléatoire représentant le signal de séparation sont mise à zéro puis les étapes E10 et E40 sont mises en oeuvre.It will be noted that at the initialization of the method, the expectation and the covariance of the random variable representing the separation signal are set to zero and then the steps E10 and E40 are implemented.

Claims (7)

  1. Process of determination of the separation signals relative respectively to sound sources from a signal coming from a mix of these signals. The signals are represented as consecutive frames, the aforesaid process including for each of the aforesaid sources:
    • a step of determination of the estimated signal of the sources
    • a step of prediction (E40) of predicted signal for the current frame based on the separation signal for the previous frame; and,
    • a step of determination of the separation signal (E50) for the previous frame on the basis of the predicted signal and the estimated signal, characterized by the fact that the step of determination of the separation signal consists in summing in a pondered way the estimated signal and the predicted signal, the estimated signal being pondered by a first coefficient matrix α(tk,f) ant the predicted signal being pondered by a second coefficient matrix equal to the unit matrix minus the first matrix coefficient, the first coefficient matrix being determined by means of the following relation of the covariance of the predicted signal Cov p (tk , f) and of the sum of the covariance of the predicted signal Cov p(tk , f) and of the covariance of the estimated signal Cov e (tk , f) namely: α t k f = Cov e t k f + Cov p t k f - 1 Cov p t k f
    Figure imgb0072
  2. Process of determination of the separation signals respectively relative to non-sound sources from a signal coming from the mix of these signals, these signals showing as consecutive frames, the aforesaid process including for each of the aforesaid sources:
    • a step of determination of the estimated signal of the sources
    • a step of prediction (E40) of predicted signal for the current frame based on the separation signal for the previous frame; and,
    • a step of determination of the separation signal (E50) for the previous frame on the basis of the predicted signal and the estimated signal, characterized by the fact that the step of determination of the separation signal consists in summing in a pondered way the estimated signal and the predicted signal, the estimated signal being pondered by a first coefficient matrix α(tk, f) ant the predicted signal being pondered by a second coefficient matrix equal to the unit matrix minus the first matrix coefficient, the first coefficient matrix being determined by means of the following relation of the covariance of the predicted signal Cov p (tk , f) and of the sum of the covariance of the predicted signal Cov p (tk , f) and of the covariance of the estimated signal Cov e (tk, f) namely: α t k f = Cov e t k f + Cov p t k f - 1 Cov p t k f
    Figure imgb0073
  3. Process of separation according to claim 1 or claim 2, characterized by the fact that the covariance of the predicted signal Cov p (tk , f) is determined as a function of the covariance of the separation signal Covtot (tk-1 , f) for the previous frame by means of the following relation: Cov p t k f = Cov tot t k - 1 f + var b p t k f
    Figure imgb0074

    var (bp (tk, f)) being the variance of the prediction noise that depends on the considered sources or sub-sources.
  4. Process of separation according to claim 3, characterized by the fact that the aforesaid variance of the prediction noise var (bp (tk, f)) is estimated in a learning phase.
  5. Process of separation according to any of the claims 1 to 4, characterized by the fact that the aforesaid covariance of the estimated signal Cove(tk, f) is determined by means of the following relation: Cov e t k f = a 1 t k σ 1 2 f 0 0 0 0 0 0 a N t k σ N 2 f 1 j = 1 N a j t k σ j 2 f + σ b 2 ) a 1 t k σ 1 2 f a N t k σ N 2 f a 1 t k σ 1 2 f a N t k σ N 2 f
    Figure imgb0075

    expression in which:
    aj (tk, f) is the amplitude factor of the source or of the elementary source indexed by j for the frame indexed by tk and for the frequency indexed by f,
    • σ j (f) is the spectral shape that characterizes the source of the elementary source indexed by j and for the frequency f,
    • σ b is the variance of a Gaussian white noise, and
    N is the total number of considered sources or elementary sources.
  6. Process of separation according to any of the claims 1 to 5, characterized by the fact that the covariance matrix of the separation signal is updated by using the following expression: Cov tot t k f = I - α t k f Cov p t k f
    Figure imgb0076

    Expression in which :
    • I is the identity matrix
    • α(tk,f) is the matrix of the first weighting coefficient; and
    • Cov p (tk, f) is the covariance of the predicted signal.
  7. Process of separation according to any of the claims 1 to 6, characterized by the fact that it contains one determination step of the input signal Se (tk, f), each component s ^ i e t k f
    Figure imgb0077
    corresponding to the estimated of an elementary source i of the aforesaid signal Se (tk, f), being obtained from the following formulas: s ^ i e t k f = e i t k f j = 1 N e j t k f x t k f
    Figure imgb0078
    e i t k f = k i = 1 K i a k i t k σ k i 2 f
    Figure imgb0079

    In which:
    ei (tk, f) is the energy fraction of the source i contained in the signal coming from the mix of signals, in the frame indexed by tk and of frequency indexed by f, N being the total number of sources;
    x(tk, f) is the signal of the mix of signals;
    Ki is the number of elementary sources considered for the source i;
    aki (tk ) is the amplitude factor of the elementary source indexed by ki and,
    σ k i 2 f
    Figure imgb0080
    is the variance of the elementary source indexed by ki .
EP20050291254 2004-06-11 2005-06-10 Method for signal source separation from a mixture signal Ceased EP1605440B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0406365A FR2871593B1 (en) 2004-06-11 2004-06-11 METHOD FOR DETERMINING SEPARATION SIGNALS RESPECTIVELY RELATING TO SOUND SOURCES FROM A SIGNAL FROM THE MIXTURE OF THESE SIGNALS
FR0406365 2004-06-11

Publications (2)

Publication Number Publication Date
EP1605440A1 EP1605440A1 (en) 2005-12-14
EP1605440B1 true EP1605440B1 (en) 2010-11-24

Family

ID=34942399

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20050291254 Ceased EP1605440B1 (en) 2004-06-11 2005-06-10 Method for signal source separation from a mixture signal

Country Status (3)

Country Link
EP (1) EP1605440B1 (en)
DE (1) DE602005024890D1 (en)
FR (1) FR2871593B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3879854A1 (en) 2020-03-11 2021-09-15 Sonova AG Hearing device component, hearing device, computer-readable medium and method for processing an audio-signal for a hearing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112863537B (en) * 2021-01-04 2024-06-04 北京小米松果电子有限公司 Audio signal processing method, device and storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3879854A1 (en) 2020-03-11 2021-09-15 Sonova AG Hearing device component, hearing device, computer-readable medium and method for processing an audio-signal for a hearing device

Also Published As

Publication number Publication date
DE602005024890D1 (en) 2011-01-05
FR2871593A1 (en) 2005-12-16
EP1605440A1 (en) 2005-12-14
FR2871593B1 (en) 2007-02-09

Similar Documents

Publication Publication Date Title
EP2002428B1 (en) Method for trained discrimination and attenuation of echoes of a digital signal in a decoder and corresponding device
EP2309499B1 (en) Method for optimised filtering of non-stationary interference captured by a multi-microphone audio device, in particular a hands-free telephone device for an automobile.
EP2419900B1 (en) Method and device for the objective evaluation of the voice quality of a speech signal taking into account the classification of the background noise contained in the signal
EP0594480B1 (en) Speech detection method
EP3238210B1 (en) Method for processing and analysing a signal, and device implementing said method
EP1730729A1 (en) Improved voice signal conversion method and system
EP2772916B1 (en) Method for suppressing noise in an audio signal by an algorithm with variable spectral gain with dynamically adaptive strength
FR2522179A1 (en) METHOD AND APPARATUS FOR RECOGNIZING WORDS FOR RECOGNIZING PARTICULAR PHONEMES OF THE VOICE SIGNAL WHATEVER THE PERSON WHO SPEAKS
EP1730728A1 (en) Method and system for the quick conversion of a voice signal
EP3040989B1 (en) Improved method of separation and computer program product
EP1606792B1 (en) Method for analyzing fundamental frequency information and voice conversion method and system implementing said analysis method
EP1849157B1 (en) Method of measuring annoyance caused by noise in an audio signal
EP1410240B1 (en) Method and circuit for real time frequency analysis of a non-stationary signal
EP1605440B1 (en) Method for signal source separation from a mixture signal
Emiya Transcription automatique de la musique de piano
WO1990011494A1 (en) Process and device for real-time spectral analysis of complex unsteady signals
KR20060029663A (en) Music summarization apparatus and method using multi-level vector quantization
EP3155609B1 (en) Frequency analysis by phase demodulation of an acoustic signal
EP2901447B1 (en) Method and device for separating signals by minimum variance spatial filtering under linear constraint
EP0821345B1 (en) Method to determine the fundamental frequency of a speech signal
EP1192619B1 (en) Audio coding and decoding by interpolation
EP1194923B1 (en) Methods and device for audio analysis and synthesis
Vial Phase retrieval and audio signal reconstruction with non-quadratic cost functions
EP1192618B1 (en) Audio coding with adaptive liftering
FR2980620A1 (en) Method for processing decoded audio frequency signal, e.g. coded voice signal including music, involves performing spectral attenuation of residue, and combining residue and attenuated signal from spectrum of tonal components

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20060509

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1084228

Country of ref document: HK

17Q First examination report despatched

Effective date: 20060718

AKX Designation fees paid

Designated state(s): DE ES GB IT PL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AUDIONAMIX SA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602005024890

Country of ref document: DE

Date of ref document: 20110105

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101124

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110825

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005024890

Country of ref document: DE

Effective date: 20110825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101124

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1084228

Country of ref document: HK

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180604

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190506

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005024890

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200610