EP1605138B1 - Gekühlte Rotorschaufel mit Prallkühlung im Bereich der Eintrittskante - Google Patents

Gekühlte Rotorschaufel mit Prallkühlung im Bereich der Eintrittskante Download PDF

Info

Publication number
EP1605138B1
EP1605138B1 EP05253261A EP05253261A EP1605138B1 EP 1605138 B1 EP1605138 B1 EP 1605138B1 EP 05253261 A EP05253261 A EP 05253261A EP 05253261 A EP05253261 A EP 05253261A EP 1605138 B1 EP1605138 B1 EP 1605138B1
Authority
EP
European Patent Office
Prior art keywords
rib
crossover
leading edge
oblong
radial passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05253261A
Other languages
English (en)
French (fr)
Other versions
EP1605138A3 (de
EP1605138A2 (de
Inventor
Jeffrey R. Levine
Edward Pietraszkiewicz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of EP1605138A2 publication Critical patent/EP1605138A2/de
Publication of EP1605138A3 publication Critical patent/EP1605138A3/de
Application granted granted Critical
Publication of EP1605138B1 publication Critical patent/EP1605138B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling

Definitions

  • This invention applies to gas turbine rotor blades in general, and to cooled gas turbine rotor blades in particular.
  • Turbine sections within an axial flow turbine engine include rotor assemblies that include a rotating disc and a number of rotor blades circumferentially disposed around the disk.
  • Rotor blades include an airfoil portion for positioning within the gas path through the engine. Because the temperature within the gas path very often negatively affects the durability of the airfoil, it is known to cool an airfoil by passing cooling air through the airfoil. The cooled air helps decrease the temperature of the airfoil material and thereby increase its durability.
  • Prior art cooled rotor blades very often utilize internal passage configurations that include a first radial passage extending contiguous with the leading edge, a second radial passage, and a rib disposed between and separating the passages.
  • a plurality of crossover apertures is disposed within the rib, typically oriented perpendicular to the airfoil wall along the leading edge.
  • a pressure difference across the rib causes a portion of the cooling air traveling within the second radial passage to pass through the crossover apertures and impinge on the leading edge wall.
  • Prior art leading edge impingement configurations typically employed circular crossover apertures uniformly spaced along the rib.
  • the cooling air impinging from each circular crossover aperture creates a region of relatively high heat transfer, albeit a small one.
  • the circular crossover apertures create a line of discrete regions of high heat transfer separated by larger areas of relatively low heat transfer. The variations in heat transfer make the leading edge increase the possibility of undesirable fatigue, distress, oxidation, etc. within the leading edge wall.
  • EP-A-1 088 964 over which claim 1 is characterised, describes a coolable gas turbine engine airfoil.
  • EP-A-1 022 434 , EP-A1-1496 203 and EP-A2-1 035 302 also describe hollow airfoils having internal cooling structures with oblong crossover apertures.
  • a rotor blade having a hollow airfoil and a root.
  • the hollow airfoil has a cavity defined by a suction side wall, a pressure side wall, a leading edge, a trailing edge, a base, and a tip.
  • An internal passage configuration is disposed within the cavity.
  • the configuration includes a first radial passage, a second radial passage contiguous with the leading edge, and a rib disposed between and separating the first radial passage and second radial passage.
  • a plurality of crossover apertures are disposed within the rib. A portion of the plurality of crossover apertures are oblong having a length extending through the rib, and a height and a width.
  • each oblong aperture is greater than the width:
  • the root includes a conduit that is operable to permit airflow through the root and into the first passage.
  • the rib is separated from the leading edge by a distance "L”, and the oblong crossover apertures have a hydraulic diameter "D", and the ratio of L/D is in the range of 2.8 to 3.0.
  • the oblong crossover apertures are aligned heightwise along the rib.
  • One of the advantages of the present rotor blade is that airflow pressure losses within the airfoil are decreased relative to prior art airfoils having impingement cooling of which we are aware.
  • a rotor blade assembly 10 for a gas turbine engine having a disk 12 and a plurality of rotor blades 14.
  • the disk 12 includes a plurality of recesses 16 circumferentially disposed around the disk 12 and a rotational centerline 18 about which the disk 12 may rotate.
  • Each blade 14 includes a root 20, an airfoil 22, a platform 24, and a radial centerline 25.
  • the root 20 includes a geometry (e.g., a fir tree configuration) that mates with that of one of the recesses 16 within the disk 12.
  • the root 20 further includes conduits 26 through which cooling air may enter the root 20 and pass through into the airfoil 22.
  • the airfoil 22 includes a base 28, a tip 30, a leading edge 32, a trailing edge 34, a pressure side wall 36 (see FIG. 1 ), and a suction side wall 38 (see FIG. 1 ), and an internal passage configuration 40.
  • FIG. 2 diagrammatically illustrates an airfoil 22 sectioned between the leading edge 32 and the trailing edge 34.
  • the pressure side wall 36 and the suction side wall 38 extend between the base 28 and the tip 30 and meet at the leading edge 32 and the trailing edge 34.
  • the internal passage configuration includes a first conduit 42, a second conduit 44, and a third conduit 46 extending through the root 20 into the airfoil 22. Fewer or more conduits may be used alternatively.
  • the first conduit 42 is in fluid communication with a first radial passage 48.
  • a second radial passage 50 is disposed forward of the first radial passage 48, contiguous with the leading edge 32, and is connected to the first radial passage 48 by a plurality of crossover apertures 52.
  • the crossover apertures 52 are disposed in a rib 53 that extends between and separates the first radial passage 48 and the second radial passage 50.
  • the second radial passage 50 is connected to the exterior of the airfoil 22 by a plurality of cooling apertures 54 disposed along the leading edge 32.
  • the second radial passage 50 comprises one or more cavities. In other embodiments, the second radial passage 50 may be in direct fluid communication with the first conduit 42. At the outer radial end of the first radial passage 48 (i.e., the end of the first radial passage 48 opposite the first conduit 42), the first radial passage 48 is connected to an axially extending passage 56 that extends to the trailing edge 34 of the airfoil 22, adjacent the tip 30 of the airfoil 22.
  • a portion of the crossover apertures 52 disposed in the rib 53 are oblong, each having a length 70, width 72, and height 74. In a preferred embodiment, substantially all of the crossover apertures 52 are oblong.
  • the length 70 of each crossover aperture 52 extends through the rib 53.
  • the height 74 and width 72 are substantially perpendicular to each other and to the length 70.
  • the height 74 of each oblong crossover aperture 52 is greater than the width 72. In a preferred embodiment, the height 74 is approximately twice the width 72 in magnitude.
  • the oblong crossover apertures 52 are aligned heightwise along the rib 53, such that the heights 74 of the oblong crossover apertures 52 are substantially collinear. In the embodiment shown in FIGS. 3 and 4, the oblong crossover apertures 52 are shown as having a constant width 72 and circular ends. The oblong crossover apertures 52 are not limited to this embodiment.
  • the rib 53 is separated from the interior surface of the leading edge wall 78 by a distance "L".
  • the oblong crossover apertures 52 may be described as having a hydraulic diameter "D".
  • the separation of the rib 53 from the leading edge wall 78, an the size of the oblong crossover apertures 53 are such that the ratio of L/D is on average in the approximate range of 2.8 to 3.0. It is our experience that an LED in this approximate range provides desirable impingement cooling.
  • the first radial passage 48 includes a plurality of trip strips 58 attached to the interior surface of one or both of the pressure side wall 36 and the suction side wall 38.
  • the trip strips 58 are disposed within the passage 48 at an angle ⁇ that is skewed relative to the cooling airflow direction 60 within passage 48; i.e., at an angle between perpendicular and parallel to the airflow direction 60.
  • the trip strips 58 are oriented at angle of approximately 45° to the cooling airflow direction 60.
  • the orientation of each trip strip 58 within the passage 48 is such that the trip strip 58 converges toward the rib 53 containing the crossover apertures 52, when viewed in the airflow direction 60.
  • Each of the trip strips 58 has an end disposed adjacent the rib 53 (i.e., a "rib end"). At least a portion of the trip strips 58 have a rib end radially located between a pair of crossover apertures 52, preferably approximately midway between the pair of crossover apertures 52.
  • the second conduit 44 is in fluid communication with a serpentine passage 64 disposed immediately aft of the first and second radial passages 50, 48, in the mid-body region of the airfoil 22.
  • the serpentine passage 64 has an odd number of radial segments 66, which number is greater than one; e.g., 3, 5, etc.
  • the odd number of radial segments 66 ensures that the last radial segment in the serpentine 64 ends adjacent the axially extending passage 56.
  • Passage configurations other than the aforesaid serpentine passage 64 may be used within the mid-body region alternatively.
  • the third conduit 46 is in fluid communication with one or more passages 68 disposed between the serpentine passage 64 and the trailing edge 34 of the airfoil 22.
  • the rotor blade airfoil 22 is disposed within the core gas path of the turbine engine.
  • the airfoil 22 is subject to high temperature core gas passing by the airfoil 22. Cooling air, that is substantially lower in temperature than the core gas, is fed into the airfoil 22 through the conduits 42, 44, 46 disposed in the root 20.
  • Cooling air traveling through the first conduit 42 passes directly into the first radial passage 48, and subsequently into the axially extending passage 56 adjacent the tip 30 of the airfoil 22.
  • a portion of the cooling air traveling within the first radial passage 48 encounters the trip strips 58 disposed within the passage 48.
  • the trip strips 58 converging toward the rib 53 direct the portion of cooling airflow toward the rib 53.
  • the position of the trip strips 58 relative to the crossover apertures 52 are such that the portion of cooling airflow directed toward the rib 53 is also directed toward the crossover apertures 52.
  • the portion of cooling airflow travels through the crossover apertures 52 and into the second radial passage 50.
  • the cooling air subsequently exits the second radial passage 50 via the cooling apertures 52 disposed in the leading edge 32 and impinges on the interior surface of the leading edge wall.
  • prior art circular crossover apertures typically create a line of discrete regions of high heat transfer separated by larger areas of relatively low heat transfer.
  • the oblong crossover apertures 52 of the present invention provide a more uniform radial heat transfer profile along the leading edge 32 that the aforesaid prior art.
  • the regions of desirable relatively high heat transfer are larger, and the regions of undesirable relatively low heat transfer are smaller.
  • the heat transfer within the regions of relatively low heat transfer appears to be increased by cooling air showering radially outward from the oblong crossover apertures 52.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (4)

  1. Rotorblatt (14), aufweisend:
    ein hohles Strömungsprofil (22) mit einem Hohlraum, das durch eine sogseitige Wand (38), eine druckseitige Wand (36), eine Vorderkante (32), eine Hinterkante (34), eine Basis (28) und eine Spitze (30) definiert ist;
    eine in dem Hohlraum angeordnete interne Passagenkonfiguration (40), die eine erste radiale Passage (48), eine zweite radiale Passage (50), die mit der Vorderkante (32) zusammenhängend ausgebildet ist, eine Rippe (53), die zwischen der ersten radialen Passage (48) und der zweiten radialen Passage (50) angeordnet ist und diese trennt, sowie eine Mehrzahl von in der Rippe (53) angeordneten Überleitöffnungen (52), wobei ein Teil der Mehrzahl der Überleitöffnungen (52) länglich ausgebildet ist und diese eine sich durch die Rippe (53) hindurch erstreckende Länge (70), eine Höhe (74) und eine Breite (72) aufweisen, und wobei die Höhe (74) jeder länglichen Überleitöffnung (52) größer ist als die Breite (72);
    eine Wurzel mit einem Kanal (42), der im Betrieb einen Luftstrom durch die Wurzel sowie in die erste radiale Passage (48) hinein zulässt;
    dadurch gekennzeichnet, dass die Rippe (53) von der Vorderkante (32) durch eine Distanz "L" getrennt ist und die länglichen Überleitöffnungen (52) einen hydraulischen Durchmesser "D" aufweisen und das Verhältnis UD im Bereich von 2,8 bis 3,0 liegt.
  2. Rotorblatt nach Anspruch 1,
    wobei im Wesentlichen alle der Überleitöffnungen (52) länglich ausgebildet sind.
  3. Rotorblatt nach Anspruch 2,
    wobei die Höhe (74) jeder Überleitöffnung (52) in etwa das Doppelte der Größe der Breite (72) dieser Überleitöffnung (52) beträgt.
  4. Rotorblatt nach einem der vorausgehenden Ansprüche,
    wobei die länglichen Überleitöffnungen (52) in der Höhe entlang der Rippe (53) ausgerichtet sind.
EP05253261A 2004-05-27 2005-05-27 Gekühlte Rotorschaufel mit Prallkühlung im Bereich der Eintrittskante Active EP1605138B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/855,076 US20050265840A1 (en) 2004-05-27 2004-05-27 Cooled rotor blade with leading edge impingement cooling
US855076 2004-05-27

Publications (3)

Publication Number Publication Date
EP1605138A2 EP1605138A2 (de) 2005-12-14
EP1605138A3 EP1605138A3 (de) 2007-10-03
EP1605138B1 true EP1605138B1 (de) 2010-06-30

Family

ID=34941473

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05253261A Active EP1605138B1 (de) 2004-05-27 2005-05-27 Gekühlte Rotorschaufel mit Prallkühlung im Bereich der Eintrittskante

Country Status (4)

Country Link
US (1) US20050265840A1 (de)
EP (1) EP1605138B1 (de)
JP (1) JP2005337257A (de)
DE (1) DE602005022018D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3976930B1 (de) * 2019-05-30 2023-12-20 Solar Turbines Incorporated Turbinenschaufel mit serpentinenkanälen

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7217094B2 (en) * 2004-10-18 2007-05-15 United Technologies Corporation Airfoil with large fillet and micro-circuit cooling
FR2918105B1 (fr) * 2007-06-27 2013-12-27 Snecma Aube refroidie de turbomachine comprenant des trous de refroidissement a distance d'impact variable.
US8840370B2 (en) 2011-11-04 2014-09-23 General Electric Company Bucket assembly for turbine system
JP2013100765A (ja) * 2011-11-08 2013-05-23 Ihi Corp インピンジ冷却機構、タービン翼及び燃焼器
US9151173B2 (en) * 2011-12-15 2015-10-06 General Electric Company Use of multi-faceted impingement openings for increasing heat transfer characteristics on gas turbine components
CN104204412B (zh) * 2012-03-22 2016-09-28 通用电器技术有限公司 涡轮叶片
US9279331B2 (en) 2012-04-23 2016-03-08 United Technologies Corporation Gas turbine engine airfoil with dirt purge feature and core for making same
JP5567180B1 (ja) * 2013-05-20 2014-08-06 川崎重工業株式会社 タービン翼の冷却構造
US10012090B2 (en) * 2014-07-25 2018-07-03 United Technologies Corporation Airfoil cooling apparatus
EP3218582A1 (de) * 2014-11-11 2017-09-20 Siemens Aktiengesellschaft Turbinenschaufel mit axialspitzenkühlkreislauf
KR101906701B1 (ko) * 2017-01-03 2018-10-10 두산중공업 주식회사 가스터빈 블레이드
US10787932B2 (en) * 2018-07-13 2020-09-29 Honeywell International Inc. Turbine blade with dust tolerant cooling system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3619082A (en) * 1968-07-05 1971-11-09 Gen Motors Corp Turbine blade
US3767322A (en) * 1971-07-30 1973-10-23 Westinghouse Electric Corp Internal cooling for turbine vanes
US5387086A (en) * 1993-07-19 1995-02-07 General Electric Company Gas turbine blade with improved cooling
US5688104A (en) * 1993-11-24 1997-11-18 United Technologies Corporation Airfoil having expanded wall portions to accommodate film cooling holes
KR20000052372A (ko) * 1999-01-25 2000-08-25 제이 엘. 차스킨, 버나드 스나이더, 아더엠. 킹 인접한 냉각 통로를 연결하는 타원형 횡단 개구를 갖는가스 터빈 부품
US6174134B1 (en) * 1999-03-05 2001-01-16 General Electric Company Multiple impingement airfoil cooling
US6290463B1 (en) * 1999-09-30 2001-09-18 General Electric Company Slotted impingement cooling of airfoil leading edge
EP1213442B1 (de) * 2000-12-05 2009-03-11 United Technologies Corporation Rotorschaufel
FR2829174B1 (fr) * 2001-08-28 2006-01-20 Snecma Moteurs Perfectionnement apportes aux circuits de refroidissement pour aube de turbine a gaz
DE10332563A1 (de) * 2003-07-11 2005-01-27 Rolls-Royce Deutschland Ltd & Co Kg Turbinenschaufel mit Prallkühlung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3976930B1 (de) * 2019-05-30 2023-12-20 Solar Turbines Incorporated Turbinenschaufel mit serpentinenkanälen

Also Published As

Publication number Publication date
DE602005022018D1 (de) 2010-08-12
EP1605138A3 (de) 2007-10-03
US20050265840A1 (en) 2005-12-01
EP1605138A2 (de) 2005-12-14
JP2005337257A (ja) 2005-12-08

Similar Documents

Publication Publication Date Title
EP1605138B1 (de) Gekühlte Rotorschaufel mit Prallkühlung im Bereich der Eintrittskante
EP1600605B1 (de) Gekühlte Rotorschaufel
EP1600604B1 (de) Gekühlte Rotorschaufel und Methode zur Kühlung einer Rotorschaufel
US8858175B2 (en) Film hole trench
KR100653816B1 (ko) 가스 터빈 엔진용 중공형 에어포일
EP2434097B1 (de) Turbinenrotorschaufel
EP1607578B1 (de) Gekühlte Rotorschaufel
US6616406B2 (en) Airfoil trailing edge cooling construction
EP1605136B1 (de) Gekühlte Rotorschaufel
US8096771B2 (en) Trailing edge cooling slot configuration for a turbine airfoil
EP2564028B1 (de) Gasturbinenschaufel
US8702391B2 (en) Gas turbine blade
EP3006670B1 (de) Turbinenschaufeln mit angehobenen rippenturbulatorstrukturen
EP1605137A1 (de) Gekühlte Rotorschaufel
US9341069B2 (en) Gas turbine
EP2639405B1 (de) Kühlung für eine Turbinenschaufelspitze
EP3211178B1 (de) Turbinenschaufel
EP1013881B1 (de) Kühlbare Schaufelblätter
US5507621A (en) Cooling air cooled gas turbine aerofoil
US20130236329A1 (en) Rotor blade with one or more side wall cooling circuits
EP0672821B1 (de) Luftgekühlte Gasturbinenschaufel
RU2575842C2 (ru) Лопатка газовой турбины
EP3109404A1 (de) Turbinenanordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20080111

17Q First examination report despatched

Effective date: 20080222

AKX Designation fees paid

Designated state(s): DE GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602005022018

Country of ref document: DE

Date of ref document: 20100812

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005022018

Country of ref document: DE

Effective date: 20110330

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005022018

Country of ref document: DE

Representative=s name: SCHMITT-NILSON SCHRAUD WAIBEL WOHLFROM PATENTA, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005022018

Country of ref document: DE

Representative=s name: SCHMITT-NILSON SCHRAUD WAIBEL WOHLFROM PATENTA, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005022018

Country of ref document: DE

Owner name: UNITED TECHNOLOGIES CORP. (N.D.GES.D. STAATES , US

Free format text: FORMER OWNER: UNITED TECHNOLOGIES CORP., HARTFORD, CONN., US

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190418

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005022018

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230420

Year of fee payment: 19