EP1597456B1 - Rotary piston machine with an oval rotary piston guided in an oval chamber - Google Patents
Rotary piston machine with an oval rotary piston guided in an oval chamber Download PDFInfo
- Publication number
- EP1597456B1 EP1597456B1 EP04714747A EP04714747A EP1597456B1 EP 1597456 B1 EP1597456 B1 EP 1597456B1 EP 04714747 A EP04714747 A EP 04714747A EP 04714747 A EP04714747 A EP 04714747A EP 1597456 B1 EP1597456 B1 EP 1597456B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- rotary piston
- curvature
- chamber
- oval
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000033001 locomotion Effects 0.000 claims description 47
- 238000007789 sealing Methods 0.000 claims description 26
- 238000002485 combustion reaction Methods 0.000 claims description 22
- 238000002347 injection Methods 0.000 claims description 9
- 239000007924 injection Substances 0.000 claims description 9
- 239000000446 fuel Substances 0.000 claims description 5
- 230000000903 blocking effect Effects 0.000 claims description 4
- 230000001105 regulatory effect Effects 0.000 claims description 2
- 230000011664 signaling Effects 0.000 claims description 2
- 230000007423 decrease Effects 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 5
- 230000007704 transition Effects 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 3
- 230000009191 jumping Effects 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
- F01C21/008—Driving elements, brakes, couplings, transmissions specially adapted for rotary or oscillating-piston machines or engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C1/00—Rotary-piston machines or engines
- F01C1/22—Rotary-piston machines or engines of internal-axis type with equidirectional movement of co-operating members at the points of engagement, or with one of the co-operating members being stationary, the inner member having more teeth or tooth- equivalents than the outer member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C1/00—Rotary-piston machines or engines
- F01C1/08—Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C19/00—Sealing arrangements in rotary-piston machines or engines
- F01C19/02—Radially-movable sealings for working fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C19/00—Sealing arrangements in rotary-piston machines or engines
- F01C19/02—Radially-movable sealings for working fluids
- F01C19/025—Radial sealing elements specially adapted for intermeshing engagement type machines or engines, e.g. gear machines or engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
- F01C21/10—Outer members for co-operation with rotary pistons; Casings
- F01C21/104—Stators; Members defining the outer boundaries of the working chamber
- F01C21/106—Stators; Members defining the outer boundaries of the working chamber with a radial surface, e.g. cam rings
Definitions
- An "oval” in mathematics is a non-analytic, closed, flat convex figure composed of circular arcs.
- the circular arcs are continuous and differentiated juxtaposed. In the points where the circular arcs connect, the curve is continuous. There are also the tangents of the two adjoining circular arcs together. The curve is differentiable. In the points where the circular arcs with different radii of curvature join, the second derivative -which determines the curvature-makes a jump.
- the oval consists of alternating circular sections with a first, smaller, and a second, larger radius of curvature. The order of the oval is determined by the number of pairs of circular sections having the first and second radii of curvature.
- a second-order or bi-oval oval is "ellipse-like" with two diametrically opposed circular arcs of smaller diameter joined by two circular arcs of larger diameter.
- the US 3,967,594 A and the US 3 996 901 A show a rotary piston machine with an oval piston in an oval chamber.
- the piston is bi-oval in cross-section.
- This bi-oval piston is movable in a tri-oval chamber.
- complex gears are provided to transmit the rotational movement of the rotary piston on a shaft.
- the DE 199 20 289 C1 also describes a rotary-piston machine in which the cross-section of a prismatic chamber formed in a housing is tri-oval with first and second arcs of alternately a smaller radius of curvature and a larger radius of curvature contiguous and differentiable.
- a rotary piston In the chamber, a rotary piston is guided with bi-oval cross-section.
- the bi-oval cross-section of the rotary piston is formed by alternately first and second circular arcs with the smaller or larger radii of curvature of the tri-oval cross-section of the chamber, which again connect continuously and differentially to each other.
- the bi-oval rotary piston performs in the tri-oval chamber the motion cycles described above with jumping momentary axes of rotation.
- a shaft extends centrally through the tri-oval chamber, ie along the line of intersection of the symmetry planes of the chamber.
- the shaft carries a pinion.
- the rotary piston has an oval opening with an internal toothing.
- the long axis in cross section of the aperture extends along the short axis of the bi-oval cross-section of the rotary piston.
- the pinion meshes constantly with the internal teeth.
- a housing forms a prismatic chamber whose cross-section such an oval odd order, so for example a Oval forms third order.
- the chamber forms cylindrical inner wall sections alternately with the first, small and the second, larger radius of curvature.
- a rotary piston movable which forms an oval in cross-section, whose order is one less than the order of the oval of the chamber.
- the oval used for the rotary piston has a two-fold symmetry, even if it has a higher order, ie it is mirror-symmetrical with respect to two mutually perpendicular axes.
- This rotary piston has two diametrically opposite cylindrical shell sections whose radius of curvature corresponds to the smaller (first) radius of curvature of the oval of the chamber.
- the second, larger radius of curvature of this oval is equal to the second radius of curvature of the oval forming the chamber.
- a certain movement section of the rotary piston is located with a first of these cylindrical shell portions in a complementary cylindrical inner wall portion of the chamber, which has the same smaller radius of curvature.
- With the second, diametrically opposed cylindrical shell portion of the rotary piston slides on the opposite cylindrical inner wall portion of the chamber, which has the larger radius of curvature.
- the rotary piston rotates about a momentary axis of rotation.
- This instantaneous axis of rotation coincides with the cylinder axis of the first cylindrical shell portion.
- This instantaneous axis of rotation therefore has a defined position relative to the rotary piston.
- the instantaneous axis of rotation in this movement section of course also corresponds to the housing-fixed cylinder axis of the cylindrical inner wall section of smaller radius of curvature, in which the rotary piston rotates.
- This rotation continues until the second cylindrical skirt portion of the rotary piston enters a stop position. In this stop position, the second cylindrical shell portion lies in the adjoining the opposite inner wall portion of larger radius of curvature inner wall portion of smaller diameter.
- a further rotation of the rotary piston to the previous current pivot point is not possible.
- the current axis of rotation therefore jumps for the next Movement section in a different position, namely the cylinder axis of the second cylindrical shell portion.
- This new instantaneous axis of rotation is in a defined position relative to the rotary piston. It corresponds in the next movement portion of the cylinder axis of the cylindrical inner wall portion in which now rotates the second cylindrical shell portion of the rotary piston.
- the "first" cylindrical shell portion slides in this movement section again on the opposite inner wall portion with a larger radius of curvature.
- the rotary piston In such a rotary piston machine, the rotary piston always rotates in the same direction of rotation but alternately about different instantaneous axes of rotation, wherein the axes of rotation "jump" after each movement section.
- two such instantaneous axes of rotation are defined, namely by the cylinder axes of the diametrically opposed cylindrical shell sections.
- the instantaneous axis of rotation jumps between the "corners" of the oval, ie the cylinder axes of the inner wall sections with a smaller radius of curvature.
- a rotary piston engine may be used as a two-stroke or four-stroke internal combustion engine or as an external combustion engine, e.g. Steam engine, be trained. But it can also work as an air pressure motor, as a hydraulic motor or as a pump.
- a rotary piston movable In the DE 199 20 289 C1 is in a chamber whose cross-section forms a third-order oval, a rotary piston movable, whose cross-section is a second-order oval.
- To pick up the movement of the rotary piston is a single centrally extending through the chamber output shaft.
- the output shaft protrudes through an oval opening of the rotary piston and carries a pinion.
- the pinion is in mesh with a toothing on the inside of the aperture.
- the order of the oval defining the chamber is one greater than the order of the oval forming the cross section of the rotary piston.
- a bi-oval rotary flask is guided in a tri-oval chamber. In this case, jump the instantaneous axes of rotation of the rotary piston in the stop positions relative to the rotary piston only between two positions, relative to the housing but between at least three positions.
- the rotary piston translates with the small radius portion on the large radius portion of the inner wall of the chamber. This can lead to sealing problems in the sealing between the working chambers of the chamber. Another problem arises from the fact that in each cycle of the rotary piston machine successively more than two working spaces are formed, which wander along the inner wall of the housing.
- a rotary piston machine having a rotary piston in the form of a third order oval (three rounded "corners") in a second order oval shaped chamber (two rounded "corners").
- a recess with a continuous, uniform toothing is provided in one of the flat surfaces.
- the recess has a shape corresponding to the oval of the rotary piston.
- the one shaft serves to transmit the drive force, while the other shaft is provided for regulating the piston movement and for driving an alternator and a radiator fan.
- the invention has for its object to improve the seal between the working chambers of the chamber in a rotary piston machine of the type mentioned.
- the invention is further based on the object to ensure a closed kinematics with clear movement of the rotary piston in a simple manner in the stop positions of the rotary body.
- the invention is for this purpose specifically the task to reduce the number of occurring relative to the housing current axes of rotation.
- the invention is finally based on the object, a rotary piston machine of the type mentioned in such a way that only two alternately increasing and decreasing work spaces occur, which are arranged opposite in fixed angular positions to the housing.
- a rotary piston machine of the type mentioned sensors for signaling the achievement of a stop position by the rotary piston and speed control means with an acted upon by the signals of the sensors control and each controlled by the controller braking device for each of the waves are with which upon reaching a stop position in each case that shaft whose outer toothing unrolled in the previous movement section on the internal teeth of the opening in the region of a larger radius of curvature is temporarily braked, while the other shaft rotated about the axis of the rotary piston in the previous movement section remains unchecked ,
- a triovaler rotary piston rotates in a bi-oval chamber.
- the rotation takes place in each case about one of two instantaneous axes of rotation, which are formed here but of housing-fixed shafts.
- the axes of rotation have gears or external gears. which are in engagement with an internal toothing of a substantially oval opening of the rotary piston.
- One of the shafts in each case sits in a region of the smaller radius of curvature of the oval opening, thus e.g. virtually in a "corner" of the breakthrough forming "arch triangle".
- the other shaft is in engagement with the opposite region of the internal toothing with the larger radius of curvature, so to speak, the opposite side of the arch triangle.
- a stop position In a stop position is located in a rotary piston machine with bi-oval chamber and tri-oval rotary piston of the rotary piston with two adjacent regions with a larger radius of curvature and the intermediate region of smaller radius of curvature at the inner wall of the chamber.
- the other shaft When the rotary piston enters such a stop position, the other shaft is also located in a corner of the arch triangle.
- the further rotation of the rotary piston takes place in the same direction of rotation then around the first-mentioned wave. Again, therefore, the axes of rotation jump when reaching a stop position. But this jumping takes place between two fixed axes, namely between the axes of rotation of the two shafts.
- the rotary piston guided therein has the order 2n + 1.
- the rotary piston with n + 1 "sides” is positively against the inner wall of the chamber, while each n “sides” limit that working chamber, which then has its maximum extent.
- Two work spaces are formed on opposite sides of the housing.
- the kinematics of the rotary piston is not completed in the chamber. Instead of another rotary motion, e.g. occur by the introduction of a pressure medium in the minimized working volume or by igniting a fuel mixture, a transverse force, which leads to jamming of the rotary piston in the chamber.
- speed-regulating means are provided with which when reaching a stop position for that shaft whose outer teeth rolled in the previous movement section with the internal teeth of the opening in the region of a larger radius of curvature, a lower speed can be forced than for the other shaft about the axis of the rotary piston rotated in the previous movement section.
- This forced speed specification only needs to be made for a short time until the rotary piston has unscrewed from the stop position.
- the forced speed specification can take place in that one of two housing-fixed shafts is braked by braking means, which is structurally easy to accomplish.
- a peripheral portion of the rotary piston rotates relatively slowly on a circumferential portion with a large radius of curvature of the inner wall of the chamber. The slow movement reduces the sealing problems.
- a peripheral portion of the large-radius-of-rotation rotary piston slides on just such a peripheral portion of the inner wall. This results in a large sealing surface.
- Fig.1 is designated 10 a housing.
- a chamber 12 is formed in the housing 10.
- the cross section of the chamber 12 forms a second order oval or is "bi-oval".
- the cross-section of the chamber 12 is thus formed by two circular arcs 14 and 16 of relatively small radius of curvature and alternately between two circular arcs 18 and 20 of relatively large radius of curvature. The circular arcs close to each other steadily and differentially.
- a rotary piston 22 is guided.
- the cross-section of the rotary piston 22 forms a third-order oval or is tri-oval. Accordingly, the circumference of the cross-section of three pairs of a circular arc of relatively small radius of curvature 24, 26 and 28 and a circular arc of relatively large radius of curvature 30, 32 and 34 is formed.
- the circular arcs of small and large radius of curvature close to each other alternately and also steadily and differentially.
- the small radii of curvature of the rotary piston 22 are equal to the small radii of curvature of the chamber 12, and also the large radii of curvature of the rotary piston 22 are equal to the large radii of curvature of the chamber 12.
- the cross section of the chamber 12 is similar to an ellipse, even though it is not an ellipse.
- the cross section of the rotary piston 22 is similar to an arch triangle with rounded corners.
- the rotary piston 22 has a central opening 36.
- the cross section of the aperture 36 also forms a third order oval.
- This third order oval is formed by three circular arcs of relatively small radius of curvature 38, 40 and 42 and by three circular arcs 44, 46 and 48 of relatively large radius of curvature.
- the circular arcs 38, 40 and 42 with a small radius of curvature and the circular arcs 44, 46 and 48 of large radius of curvature are adjacent to each other alternately and steadily and differentially, so that an oval is formed similar to an arch triangle with rounded ends.
- the planes of symmetry 50, 52 and 54 of the aperture 36 coincide with the planes of symmetry of the rotary piston 22.
- the opening 36 has an internal toothing 56.
- This internal toothing 56 has three concave-arc toothed racks 58, 60 and 62 substantially along the circular arcs 44, 46 and 48 of large radius of curvature. Between these concave-arcuate toothed racks 58, 60 and 62, convex arcuate (or optionally straight) toothed racks 64, 66 and 68 are provided in the region of the circular arcs of small radius of curvature.
- two parallel shafts 70 and 72 extend with gears 74 and 76, respectively.
- the axes of the shafts 70 and 72 lie in the plane of symmetry 77 of the chamber 12 through the circular arcs 18 and 20.
- the gear of one shaft, in Fig.1 the gear 74 of the shaft 70 sitting in the "corner of the arch triangle", ie in the region of the circular arc 38 of small radius of curvature and is with the internal teeth 56 in a manner to be described in engagement.
- the gear of the other shaft, in Fig.1 the gear 76 of the shaft 72 is, with the opposite concave-arc-shaped rack, in Fig.1 the rack 60, in engagement.
- the rotary piston 22 divides the bi-oval chamber 12 into two working spaces 80 and 82.
- the rotary piston machine is shown schematically as internal combustion engine with internal combustion. Accordingly, for each working space 80 and 82, an inlet valve 84 and 86 and an outlet valve 88 and 90, respectively. Furthermore, closes at each working space 80 and 82 a Combustion chamber 92 and 94 with a spark plug or an injector 96 or 98 at.
- the work spaces 80 and 82 with the valves and spark plugs or injectors are symmetrical to the plane of symmetry passing through the circular arcs 14 and 14 of the small radius of curvature cross section. That's just a schematic illustration.
- pairs of adjoining sealing strips 100A, and 100B, 102A, and 102B are provided on the housing.
- the sealing strips 100A and 100B or 102A and 102B are symmetrical to the plane of symmetry passing through the circular arcs 18 and 20 of the cross section with a large radius of curvature.
- the sealing strip 100A has a concave-cylindrical inner surface whose radius of curvature corresponds to the larger radius of curvature r 2 .
- the sealing strip 100B has a concave-cylindrical inner surface whose radius of curvature corresponds to the smaller radius of curvature r 1 .
- the inner surface of the sealing strip 100A in the region of the radius of curvature r 2 of the rotary piston 22 rests tightly against the surface of the rotary piston 22 complementary thereto.
- a wedge-shaped gap 100C is formed between the sealing strip 100A and the rotary piston 22 and the inner surface of the sealing strip 100A.
- the sealing strip 100B has a concave-cylindrical inner surface whose radius of curvature corresponds to the smaller radius of curvature r 1 .
- the working space 80 increases while the working space 82 decreases.
- the shaft 70 is thereby rotated relatively slowly, while a relatively fast rotation of the shaft 72 results.
- the shaft 72 with the gear 76 is then in the opening 36 in the area corresponding to the arc 40, so to speak in the lower left "corner" of the arch triangle.
- the rotary piston 22 can not now rotate about the axis of the shaft 70 as a current axis of rotation.
- a further rotation e.g. is caused by igniting fuel in the combustion chamber 94 in an internal combustion engine or by introducing a working medium in the working chamber 82, the instantaneous axis of rotation jumps in the axis of the shaft 72.
- the rotary piston continues to rotate counterclockwise, but now about the shaft 72nd
- each movement section extends from one of the described stop positions to the next.
- a workspace eg 80
- the working space 82 increases from zero ( Fig.2 ) to a maximum while the working space 80 decreases again ( Figure 3 ).
- each of the two waves could define an instantaneous axis of rotation with its axis.
- a force is applied to the left on the rotary piston 22 by a working medium introduced into the working space 82, this force could possibly cause a rotation of the rotary piston 22 about a momentary axis of rotation to a translatory movement in the horizontal direction Fig.2 to lead.
- the rotary piston 22 would be wedged in the chamber 12.
- Sensors 140 detect the position of the rotary piston at 22 in chamber 12.
- the sensors signal when the rotary piston has reached a stop position.
- a controller 142 acted upon by the signals from the sensors then controls devices 144 and 146, by means of which rotational speeds of the shaft 70 or the shaft 72 are preset for a short time, depending on which stop position has been reached. He is then given eg the shaft 70 a low speed and the shaft 72 a higher or vice versa.
- the devices 144 and 146 may be braking devices which, in the stop positions, act alternately on the shaft 70 or the shaft 72 for a short time while the respective other shaft remains unbraked.
- the radii of the pitch circles of the gears correspond substantially to the small radii of curvature of the opening 36 forming the second order oval. If the internal teeth 56 were to follow the oval of the aperture 36 throughout, then the gears would each be caught in the end positions of the rotary piston 22. The "corners" of the "Arch Triangle” could not roll over the gears. For this reason, the concave arcuate toothed racks in the region of circular arcs 38, 40, 42 are connected with a small diameter by short straight or convex-arcuate toothed racks 64, 66 and 68, respectively. The convex-arcuate toothed racks 64, 66 and 68 allow further rotation of the internal teeth 56 and thus of the rotary piston 22 over these areas.
- each gear is constantly engaged with one of the concave arcuate racks 64, 66 or 68.
- the short convex-arcuate or straight racks ensure a transition without interruption of the positive connection but also without blocking.
- Figure 4 shows a rotary piston machine with a chamber 104, whose cross section forms a fourth order oval 106
- a Rötationskolben 108 is stirred, the cross section of a fifth order oval 110 forms.
- the rotary piston 108 has an opening 112 whose shape forms a fifth-order oval 114.
- the symmetry axes of rotary piston 108 and aperture 112 coincide.
- the aperture 112 has internal teeth 116.
- the internal teeth 116 engage with two gears 118 and 120.
- the gears 118 and 120 are seated on two shafts 122 and 124 fixed to the housing.
- the rotary piston 108 divides the chamber into two working chambers 130 and 132, one of which increases in rotation of the rotary piston and the other decreases.
- the workflow is similar to the workflow of running Fig.1 to 3 ,
- the rotary piston 108 rotates, for example, about the axis 126 of a shaft 122 to a stop position. Then the instantaneous axis of rotation jumps into the axis 128 of the other shaft 124.
- the rotary piston rotates about this axis further counterclockwise from Figure 4 until the next stop position.
- the sequence of movements between two successive stop positions is a "movement section". In each movement section, the working space 130 increases from zero to a maximum and the working space 132 decreases from a maximum to zero or vice versa.
- the work spaces are always on both sides of the axes 126 and 128 the waves 122 and 124 containing symmetry plane. They do not wander around the chamber.
- FIG. 4A shows a rotary piston machine similar to that of Figure 4 , Corresponding parts bear the same reference numerals as there. Details of the rotary piston machine of 4A are in an enlarged scale in Figure 8 and 8A shown.
- the injection nozzle 150 protrudes into a combustion chamber 152.
- This combustion chamber is dimensioned and designed so that the combustion of the injected fuel takes place substantially only in the combustion chamber.
- the injection can be metered depending on the time or in dependence on the rotation of the rotary piston so that it is adapted to the change in volume of the working space 130 or 132. In the working space then no flame front occurs.
- the propagation of flame fronts in an expanding workspace presents problems with known rotary piston engines.
- the combustion chamber 152 has a spherical-cap-shaped recess of the housing, to which a frustoconical space 156, which tapers towards the working space, adjoins.
- the space 156 is formed in an insert 158, which is screwed into a threaded recess of the wall of the working space 130 or 132.
- the combustor 152 is closed by a grid or net 160.
- the injection nozzle 150 empties into a cone rounded off at the tip, the injection taking place via nozzle openings in the jacket of this cone.
- Figure 5 shows a rotary piston machine in which a rotary piston whose cross section forms a seventh-order oval, is guided in a chamber whose cross section is a sixth order oval. Structure and function are similar to the execution of ovals, except for the orders of the ovals Figure 4 , Corresponding parts are provided with the same reference numerals as in FIG Figure 4 but with the addition "A”.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
- Hydraulic Motors (AREA)
- Reciprocating Pumps (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Pistons, Piston Rings, And Cylinders (AREA)
Description
Die Erfindung betrifft eine Rotationskolbenmaschine, mit einer in einem Gehäuse gebildeten prismatischen Kammer, deren Querschnitt ein Oval aus Kreisbögen von abwechselnd kleinerem und größerem Radius bildet, und einem in der Kammer beweglichen Rotationskolben, dessen Querschnitt ebenfalls ein Oval mit den gleichen abwechselnd kleinerem und größeren Radien bildet, dessen Ordnung von der Ordnung des den Querschnitt der Kammer bildenden Ovals abweicht, wobei der Rotationskolben sich abwechselnd in aufeinanderfolgenden Bewegungsabschnitten um unterschiedliche Drehachsen jeweils von einer Anschlagstellung zur nächsten dreht und bei seiner Drehbewegung in jeder Position an der Innenwandung der Kammer unter Bildung von zwei Arbeitsräumen anliegt, und mit einem mit einer Innenverzahnung versehenen Durchbruch des Rotationskolbens, dessen Innenverzahnung mit einer Außenverzahnung mindestens einer gehäusefest gelagerten Welle für den An- oder Abtrieb der Drehbewegung in Eingriff ist, wobei
- (a) die Ordnung des Ovals der Kammer um eins geringer ist als die Ordnung des Ovals des Rotationskolbens,
- (b) der Durchbruch dem Rotationskolben im wesentlichen mathematisch ähnlich ist, wobei die Symmetrieebenen des Durchbruchs mit denen des Rotationskolbens zusammenfallen, und
- (c) ein Paar mit Außenverzahnung versehene, gehäusefest gelagerte Wellen vorgesehen sind, deren Außenverzahnungen mit der Innenverzahnung des Durchbruchs in Eingriff sind, wobei in jedem Bewegungsabschnitt des Rotationskolbens jeweils ein Bereich eines Abschnitts der Innenverzahnung des Durchbruchs mit kleinerem Krümmungsradius mit der Außenverzahnung einer der Wellen in Eingriff ist, während ein Abschnitt der Innenverzahnung des Durchbruchs mit größerem Krümmungsradius mit der Außenverzahnung der anderen Welle in Eingriff ist und im jeweils folgenden Bewegungsabschnitt jeweils ein Bereich eines Abschnitts der Innenverzahnung mit größerem Krümmungsradius mit der Außenverzahnung der ersteren Welle in Eingriff ist, die im vorangegangenen Bewegungsabschnitt mit einen Bereich eines Abschnitts von kleinerem Krümmungsradius in Eingriff war, während die Außenverzahnung der Welle, die im vorangegangenen Bewegungsabschnitt mit einen Bereich eines Abschnitts der Innenverzahnung des Durchbruchs von größerem Krümmungsradius in Eingriff war, nun mit einem Bereich eines Abschnitts von kleinerem Krümmungsradius in Eingriff ist.
- (a) the order of the oval of the chamber is one less than the order of the oval of the rotary piston,
- (b) the aperture is substantially mathematically similar to the rotary piston, the planes of symmetry of the aperture coinciding with those of the rotary piston, and
- (C) a pair of externally toothed, housing fixedly mounted shafts are provided, the outer teeth are in engagement with the internal teeth of the aperture, wherein in each movement portion of the rotary piston, in each case a portion of a portion of the inner teeth of the smaller radius of curvature of the outer toothing of the waves is engaged, while a portion of the internal teeth of the opening with a larger radius of curvature with the outer teeth of the other shaft is engaged and in the following each movement section, a portion of a portion of the inner toothing with a larger radius of curvature with the outer toothing of the former shaft is engaged in the the previous movement portion with a portion of a portion of smaller radius of curvature was engaged, while the outer teeth of the shaft, in the previous movement portion with a portion of a portion of the internal teeth of the larger radius of curvature breakthrough is now engaged with a portion of a smaller radius of curvature portion.
Ein "Oval" ist in der Mathematik eine nicht-analytische, geschlossene flache konvexe Figur, die aus Kreisbögen zusammengesetzt ist. Die Kreisbögen sind stetig und differenzierbar aneinandergesetzt. In den Punkten, in denen die Kreisbögen aneinander anschließen, ist die Kurve stetig. Es fallen dort auch die Tangenten des der beiden aneinander anschließenden Kreisbögen zusammen. Die Kurve ist differenzierbar. In den Punkten, wo die Kreisbögen mit verschiedenen Krümmungsradien aneinander anschließen, macht die zweite Ableitung -welche die Krümmung bestimmt- einen Sprung. Das Oval besteht alternierend aus Kreisabschnitten mit einem ersten, kleineren, und einem zweiten, größeren Krümmungsradius. Die Ordnung des Ovals ist bestimmt durch die Anzahl der Paare von Kreisabschnitten mit dem ersten und dem zweiten Krümmungsradius. Ein Oval zweiter Ordnung oder Bi-Oval ist "ellipsenähnlich" mit zwei diametral gegenüberliegenden Kreisbögen von kleinerem Durchmesser, die durch zwei Kreisbögen von größerem Durchmesser verbunden sind.An "oval" in mathematics is a non-analytic, closed, flat convex figure composed of circular arcs. The circular arcs are continuous and differentiated juxtaposed. In the points where the circular arcs connect, the curve is continuous. There are also the tangents of the two adjoining circular arcs together. The curve is differentiable. In the points where the circular arcs with different radii of curvature join, the second derivative -which determines the curvature-makes a jump. The oval consists of alternating circular sections with a first, smaller, and a second, larger radius of curvature. The order of the oval is determined by the number of pairs of circular sections having the first and second radii of curvature. A second-order or bi-oval oval is "ellipse-like" with two diametrically opposed circular arcs of smaller diameter joined by two circular arcs of larger diameter.
Rotationskolbenmaschinen der eingangs genannten Art sind bekannt.Rotary piston machines of the type mentioned are known.
Die
Die
Bei den bekannten Rotationskolbenmaschinen bildet ein Gehäuse eine prismatische Kammer, deren Querschnitt ein solches Oval ungerader Ordnung, also beispielsweise ein Oval dritter Ordnung bildet. Die Kammer bildet zylindrische Innenwandabschnitte abwechselnd mit dem ersten, kleinem und dem zweiten, größeren .Krümmungsradius. In einem solchen Oval dritter (fünfter oder siebenter und höherer) Ordnung ist ein Rotationskolben beweglich, der im Querschnitt ein Oval bildet, dessen Ordnung um eins geringer ist als die Ordnung des Ovals der Kammer. Das für den Rotationkolben verwendete Oval hat - auch wenn es eine höhere Ordnung besitzt- eine zweifache Symmetrie, d.h. es ist spiegelsymmetrisch in bezug auf zwei zueinander senkrechte Achsen. Dieser Rotationskolben weist zwei diametral gegenüberliegende zylindrische Mantelabschnitte auf, deren Krümmungsradius dem kleineren (ersten) Krümmungsradius des Ovals der Kammer entspricht. Wenn der Rotationskolben im Querschnitt ein Oval bildet, ist der zweite, größere Krümmungsradius dieses Ovals gleich dem zweiten Krümmungsradius des die Kammer bildenden Ovals. In einem bestimmten Bewegungsabschnitt liegt der Rotationskolben mit einem ersten dieser zylindrischen Mantelabschnitte in einem dazu komplementären zylindrischen Innenwandabschnitt der Kammer, der den gleichen kleineren Krümmungsradius aufweist. Mit dem zweiten, diametral gegenüberliegenden zylindrischen Mantelabschnitt gleitet der Rotationskolben an dem gegenüberliegenden zylindrischen Innenwandabschnitt der Kammer, der den größeren Krümmungsradius besitzt. In der Kammer werden auf diese Weise von dem Rotatioskolben zwei Arbeitsräume gebildet, von denen bei der Drehung des Rotationskolbens der eine sich vergrößert und der andere kleiner wird. Der Rotationskolben dreht sich dabei um eine momentane Drehachse. Diese momentane Drehachse fällt mit der Zylinderachse des ersten zylindrischen Mantelabschnitts zusammen. Diese momentane Drehachse hat daher eine definierte Position relativ zu dem Rotationskolben. Die momentane Drehachse entspricht in diesem Bewegungsabschnitt natürlich auch der gehäusefesten Zylinderachse des zylindrischen Innenwandabschnitts von kleinerem Krümmungsradius, in dem sich der Rotationskolben dreht. Diese Drehung setzt sich fort, bis der zweite zylindrische Mantelabschnitt des Rotationskolbens in eine Anschlagposition gelangt. In dieser Anschlagposition liegt der zweite zylindrische Mantelabschnitt in dem an den gegenüberliegenden Innenwandabschnitt von größerem Krümmungsradius anschließenden Innenwandabschnitt von kleinerem Durchmesser.In the known rotary piston machines, a housing forms a prismatic chamber whose cross-section such an oval odd order, so for example a Oval forms third order. The chamber forms cylindrical inner wall sections alternately with the first, small and the second, larger radius of curvature. In such an oval of third (fifth or seventh and higher) order is a rotary piston movable, which forms an oval in cross-section, whose order is one less than the order of the oval of the chamber. The oval used for the rotary piston has a two-fold symmetry, even if it has a higher order, ie it is mirror-symmetrical with respect to two mutually perpendicular axes. This rotary piston has two diametrically opposite cylindrical shell sections whose radius of curvature corresponds to the smaller (first) radius of curvature of the oval of the chamber. When the rotary piston forms an oval in cross-section, the second, larger radius of curvature of this oval is equal to the second radius of curvature of the oval forming the chamber. In a certain movement section of the rotary piston is located with a first of these cylindrical shell portions in a complementary cylindrical inner wall portion of the chamber, which has the same smaller radius of curvature. With the second, diametrically opposed cylindrical shell portion of the rotary piston slides on the opposite cylindrical inner wall portion of the chamber, which has the larger radius of curvature. In the chamber, two working spaces are formed in this way by the Rotatioskolben, of which one increases during rotation of the rotary piston and the other is smaller. The rotary piston rotates about a momentary axis of rotation. This instantaneous axis of rotation coincides with the cylinder axis of the first cylindrical shell portion. This instantaneous axis of rotation therefore has a defined position relative to the rotary piston. The instantaneous axis of rotation in this movement section of course also corresponds to the housing-fixed cylinder axis of the cylindrical inner wall section of smaller radius of curvature, in which the rotary piston rotates. This rotation continues until the second cylindrical skirt portion of the rotary piston enters a stop position. In this stop position, the second cylindrical shell portion lies in the adjoining the opposite inner wall portion of larger radius of curvature inner wall portion of smaller diameter.
Eine weitere Drehung des Rotationskolbens um den bisherigen momentanen Drehpunkt ist nicht möglich. Die momentane Drehachse springt daher für den nächsten Bewegungsabschnitt in eine andere Position, nämlich die Zylinderachse des zweiten zylindrischen Mantelabschnitts. Auch diese neue momentane Drehachse ist in einer definierten Position relativ zu dem Rotationskolben. Sie entspricht in dem nächsten Bewegungsabschnitt der Zylinderachse des zylindrischen Innenwandabschnitts, in dem sich jetzt der zweite zylindrische Mantelabschnitt des Rotationskolbens dreht. Der "erste" zylindrische Mantelabschnitt gleitet in diesem Bewegungsabschnitt wieder an dem gegenüberliegenden Innenwandabschnitt mit größerem Krümmungsradius.A further rotation of the rotary piston to the previous current pivot point is not possible. The current axis of rotation therefore jumps for the next Movement section in a different position, namely the cylinder axis of the second cylindrical shell portion. This new instantaneous axis of rotation is in a defined position relative to the rotary piston. It corresponds in the next movement portion of the cylinder axis of the cylindrical inner wall portion in which now rotates the second cylindrical shell portion of the rotary piston. The "first" cylindrical shell portion slides in this movement section again on the opposite inner wall portion with a larger radius of curvature.
Bei einer solchen Rotationskolbenmaschine dreht sich der Rotationskolben immer in dem gleichen Drehsinn aber abwechselnd um verschiedene momentane Drehachsen, wobei die Drehachsen nach jedem Bewegungsabschnitt "springen". Bezogen auf den Rotationskolben sind zwei solche momentanen Drehachsen definiert, nämlich durch die Zylinderachsen der diametral einander gegenüberliegenden zylindrischen Mantelabschnitte. Bezogen auf das Gehäuse und die darin gebildete Kammer springt die momentane Drehachse zwischen den "Ecken" des Ovals, also den Zylinderachsen der Innenwandabschnitte mit kleinerem Krümmungsradius.In such a rotary piston machine, the rotary piston always rotates in the same direction of rotation but alternately about different instantaneous axes of rotation, wherein the axes of rotation "jump" after each movement section. Based on the rotary piston two such instantaneous axes of rotation are defined, namely by the cylinder axes of the diametrically opposed cylindrical shell sections. Based on the housing and the chamber formed therein, the instantaneous axis of rotation jumps between the "corners" of the oval, ie the cylinder axes of the inner wall sections with a smaller radius of curvature.
Bei jedem Bewegungsabschnitt wächst das Volumen eines Arbeitsraumes bis zu einem Maximalwert an, während das Volumen des jeweils anderen Arbeitsraumes sich bis zu einem Minimalwert vermindert. Im Idealfall, wenn der Rotationskolben ebenfalls im Querschnitt ein Oval bildet, wächst das Volumen des Arbeitsraumes von praktisch null auf den Maximalwert bzw. vermindert sich auf praktisch null. Eine solche Rotationskolbenmaschine kann als Zweitakt- oder Viertakt-Verbrennungskraftmaschine (mit innerer Verbrennung) oder als Kraftmaschine mit äußerer Verbrennung, z.B. Dampfmaschine, ausgebildet sein. Sie kann aber auch als Luftdruckmotor, als Hydraulikmotor oder als Pumpe arbeiten.In each movement section, the volume of a working space grows up to a maximum value, while the volume of the other working space decreases to a minimum value. Ideally, if the rotary piston also forms an oval in cross section, the volume of the working space increases from practically zero to the maximum value or decreases to virtually zero. Such a rotary piston engine may be used as a two-stroke or four-stroke internal combustion engine or as an external combustion engine, e.g. Steam engine, be trained. But it can also work as an air pressure motor, as a hydraulic motor or as a pump.
Bei der
Bei den bekannten Rotationskolbenmaschinen ist die Ordnung des die Kammer definierenden Ovals jeweils um eins größer als die Ordnung des Ovals, das den Querschnitt des Rotationskolbens bildet. Ein bi-ovaler Rotationskolben ist in einer tri-ovalen Kammer geführt. Dabei springen die momentanen Drehachsen des Rotationskolbens in den Anschlagstellungen relativ zu dem Rotationskolben nur zwischen zwei Positionen, relativ zu dem Gehäuse aber zwischen wenigstens drei Positionen. Der Rotationskolben bewegt sich mit dem Abschnitt von kleinem Radius translatorisch an dem Abschnitt von großem Radius der Innenwand der Kammer entlang. Das kann zu Dichtungsproblemen bei der Abdichtung zwischen den Arbeitsräumen der Kammer führen. Ein weiteres Problem ergibt sich daraus, daß in jedem Arbeitszyklus der Rotationskolbenmaschine nacheinander mehr als zwei Arbeitsräume gebildet werden, die längs der Innenwandung des Gehäuses herumwandern.In the known rotary piston engines, the order of the oval defining the chamber is one greater than the order of the oval forming the cross section of the rotary piston. A bi-oval rotary flask is guided in a tri-oval chamber. In this case, jump the instantaneous axes of rotation of the rotary piston in the stop positions relative to the rotary piston only between two positions, relative to the housing but between at least three positions. The rotary piston translates with the small radius portion on the large radius portion of the inner wall of the chamber. This can lead to sealing problems in the sealing between the working chambers of the chamber. Another problem arises from the fact that in each cycle of the rotary piston machine successively more than two working spaces are formed, which wander along the inner wall of the housing.
Die luxemburgische Patentanmeldung LU 45663 offenbart eine Rotationskolbenmaschine mit einem Rotationskolben in Form eines Ovals dritter Ordnung (drei abgerundete "Ecken") in einer Kammer in Form eines Ovals zweiter Ordnung (zwei abgerundete "Ecken"). In dem Rotationskolben ist in einer der planen Oberflächen eine Ausnehmung mit einer durchgehenden, gleichmäßigen Verzahnung vorgesehen. Die Ausnehmung hat eine dem Oval des Rotationskolbens entsprechende Form. In die Verzahnung der Ausnehmung greifen Außenverzahnungen von zwei gehäusefest gelagerten Wellen ein. Die eine Welle dient zur Übertragung der Antriebskraft, während die andere Welle zum Regulieren der Kolbenbewegung und zum Antrieb einer Lichtmaschine und eines Kühlerlüfters vorgesehen ist.Luxembourg patent application LU 45663 discloses a rotary piston machine having a rotary piston in the form of a third order oval (three rounded "corners") in a second order oval shaped chamber (two rounded "corners"). In the rotary piston, a recess with a continuous, uniform toothing is provided in one of the flat surfaces. The recess has a shape corresponding to the oval of the rotary piston. In the toothing of the recess engage external teeth of two fixed housing fixed waves. The one shaft serves to transmit the drive force, while the other shaft is provided for regulating the piston movement and for driving an alternator and a radiator fan.
Der Erfindung liegt die Aufgabe zugrunde, bei einer Rotationskolbenmaschine der eingangs genannten Art die Abdichtung zwischen den Arbeitsräumen der Kammer zu verbessern.The invention has for its object to improve the seal between the working chambers of the chamber in a rotary piston machine of the type mentioned.
Der Erfindung liegt weiter die Aufgabe zugrunde, in den Anschlagpositionen des Rotationskörpers auf einfache Weise eine abgeschlossene Kinematik mit eindeutiger Bewegung des Rotationskolbens zu gewährleisten.The invention is further based on the object to ensure a closed kinematics with clear movement of the rotary piston in a simple manner in the stop positions of the rotary body.
Der Erfindung liegt hierzu speziell die Aufgabe zugrunde, die Anzahl der bezogen auf das Gehäuse auftretenden momentanen Drehachsen zu verringern.The invention is for this purpose specifically the task to reduce the number of occurring relative to the housing current axes of rotation.
Der Erfindung liegt schließlich die Aufgabe zugrunde, eine Rotationskolbenmaschine der eingangs genannten Art so auszubilden, daß nur zwei sich abwechselnd vergrößernde und verkleinernde Arbeitsräume auftreten, welche gegenüberliegenden in festen Winkellagen zu dem Gehäuse angeordnet sind.The invention is finally based on the object, a rotary piston machine of the type mentioned in such a way that only two alternately increasing and decreasing work spaces occur, which are arranged opposite in fixed angular positions to the housing.
Erfindungsgemäß werden diese Aufgaben dadurch gelöst, daß bei einer Rotationskolbenmaschine der eingangs genannten Art Sensoren zum Signalisieren des Erreichens einer Anschlagposition durch den Rotationskolben und drehzahlregulierende Mittel mit einer von den Signalen der Sensoren beaufschlagten Steuerung und jeweils einer von der Steuerung gesteuerten Bremsvorrichtung für jede der Wellen vorgesehen sind, mit denen bei Erreichen einer Anschlagstellung jeweils diejenige Welle, deren Außenverzahnung im vorangegangenen Bewegungsabschnitt an der Innenverzahnung des Durchbruchs im Bereich eines größeren Krümmungsradius abrollte, vorübergehend abbremsbar ist, während die andere Welle um deren Achse sich der Rotationskolben im vorangegangenen Bewegungsabschnitt drehte, ungebremst bleibt.According to the invention, these objects are achieved in that provided in a rotary piston machine of the type mentioned sensors for signaling the achievement of a stop position by the rotary piston and speed control means with an acted upon by the signals of the sensors control and each controlled by the controller braking device for each of the waves are with which upon reaching a stop position in each case that shaft whose outer toothing unrolled in the previous movement section on the internal teeth of the opening in the region of a larger radius of curvature is temporarily braked, while the other shaft rotated about the axis of the rotary piston in the previous movement section remains unchecked ,
Überraschenderweise erhält man eine eindeutige Führung eines im Querschnitt ovalen Rotationskolbens in einer ovalen Kammer unter Bildung von gegeneinander abgedichteten Arbeitsräumen auch dann, wenn der Rotationskolben im Gegensatz zum Stand der Technik höhere Ordnung des Ovals aufweist als die Kammer, also z.B. ein triovaler Rotationskolben sich in einer bi-ovalen Kammer dreht. Dabei erfolgt die Drehung jeweils um eine von zwei momentanen Drehachsen, die aber hier von gehäusefesten Wellen gebildet sind. Die Drehachsen weisen Zahnräder oder Außenverzahnungen auf. die mit einer Innenverzahnung eines im wesentlichen ovalen Durchbruchs des Rotationskolben in Eingriff sind. Eine der Wellen sitzt jeweils in einem Bereich des kleineren Krümmungsradius des ovalen Durchbruchs, also z.B. quasi in einer "Ecke" des den Durchbruch bildenden "Bogendreiecks". Die andere Welle ist in Eingriff mit dem gegenüberliegenden Bereich der Innenverzahnung mit dem größeren Krümmungsradius, also quasi der gegenüberliegenden Seite des Bogendreiecks.Surprisingly, one obtains a clear guidance of a cross-sectionally oval rotary piston in an oval chamber to form mutually sealed working spaces even if the rotary piston, in contrast to the prior art, has a higher order of the oval than the chamber, e.g. a triovaler rotary piston rotates in a bi-oval chamber. The rotation takes place in each case about one of two instantaneous axes of rotation, which are formed here but of housing-fixed shafts. The axes of rotation have gears or external gears. which are in engagement with an internal toothing of a substantially oval opening of the rotary piston. One of the shafts in each case sits in a region of the smaller radius of curvature of the oval opening, thus e.g. virtually in a "corner" of the breakthrough forming "arch triangle". The other shaft is in engagement with the opposite region of the internal toothing with the larger radius of curvature, so to speak, the opposite side of the arch triangle.
In einer Anschlagstellung liegt bei einer Rotationskolbenmaschie mit bi-ovaler Kammer und tri-ovalem Rotationskolben der Rotationskolben mit zwei benachbarten Bereiche mit größerem Krümmungsradius und dem dazwischenliegenden Bereich von kleinerem Krümmungsradius an der Innenwandung der Kammer an. Wenn der Rotationskolben in eine solche Anschlagstellung gelangt, sitzt auch die andere Welle in einer Ecke des Bogendreiecks. Die weitere Drehung des Rotationskolbens im gleichen Drehsinn erfolgt dann um die ersterwähnte Welle. Auch hier springen somit die Drehachsen bei Erreichen einer Anschlagstellung. Dieses Springen erfolgt aber zwischen zwei gehäusefesten Achsen, nämlich zwischen den Drehachsen der beiden Wellen.In a stop position is located in a rotary piston machine with bi-oval chamber and tri-oval rotary piston of the rotary piston with two adjacent regions with a larger radius of curvature and the intermediate region of smaller radius of curvature at the inner wall of the chamber. When the rotary piston enters such a stop position, the other shaft is also located in a corner of the arch triangle. The further rotation of the rotary piston takes place in the same direction of rotation then around the first-mentioned wave. Again, therefore, the axes of rotation jump when reaching a stop position. But this jumping takes place between two fixed axes, namely between the axes of rotation of the two shafts.
Generell gilt: Bei einer 2n-ovalen Kammer hat der darin geführte Rotationskolben die Ordnung 2n+1. In den Anschlagpositionen liegt dann der Rotationskolben mit n+1 "Seiten" formschlüssig an der Innenwandung der Kammer an, während jeweils n "Seiten" diejenige Arbeitskammer begrenzen, die dann ihre maximale Ausdehnung besitzt. Es werden zwei Arbeitsräume auf gegenüberliegenden Seiten des Gehäuses gebildet.In general, in a 2n-oval chamber, the rotary piston guided therein has the order 2n + 1. In the stop positions then the rotary piston with n + 1 "sides" is positively against the inner wall of the chamber, while each n "sides" limit that working chamber, which then has its maximum extent. Two work spaces are formed on opposite sides of the housing.
In der den Anschlagstellungen ist die Kinematik des Rotationskolbens in der Kammer nicht abgeschlossen. Statt einer weiteren Drehbewegung könnte z.B. durch die Einleitung eines Druckmittels in den im Volumen minimierten Arbeitsraum oder durch Zünden eines Treibstoffgemisches eine Querkraft auftreten, welche zu einem Verklemmen des Rotationskolbens in der Kammer führt. Um dieses Problem zu lösen und eine abgeschlossene Kinematik zu erhalten, sind nach der Erfindung drehzahlregulierende Mittel vorgesehen, mit denen bei Erreichen einer Anschlagstellung für diejenige Welle, deren Außenverzahnung im vorangegangenen Bewegungsabschnitt mit der Innenverzahnung des Durchbruchs im Bereich eines größeren Krümmungsradius abrollte, eine geringere Drehzahl erzwingbar ist als für die andere Welle um deren Achse sich der Rotationskolben im vorangegangenen Bewegungsabschnitt drehte. Das stellt sicher, daß sich der Rotationskolben in der vorgesehenen Weise um die zwangsweise mit geringerer Drehzahl umlaufende Welle weiterdreht. Diese erzwungene Drehzahlvorgabe braucht nur jeweils kurzzeitig zu erfolgen, bis der Rotationskolben sich aus der Anschlagstellung herausgedreht hat. Die erzwungene Drehzahlvorgabe kann dadurch erfolgen, daß durch Bremsmittel jeweils eine von zwei gehäusefesten Wellen abgebremst wird, was konstruktiv einfach zu bewerkstelligen ist.In the stop positions, the kinematics of the rotary piston is not completed in the chamber. Instead of another rotary motion, e.g. occur by the introduction of a pressure medium in the minimized working volume or by igniting a fuel mixture, a transverse force, which leads to jamming of the rotary piston in the chamber. In order to solve this problem and to obtain a completed kinematics, according to the invention speed-regulating means are provided with which when reaching a stop position for that shaft whose outer teeth rolled in the previous movement section with the internal teeth of the opening in the region of a larger radius of curvature, a lower speed can be forced than for the other shaft about the axis of the rotary piston rotated in the previous movement section. This ensures that the rotary piston continues to rotate in the intended manner around the shaft which is forced to rotate at a lower speed. This forced speed specification only needs to be made for a short time until the rotary piston has unscrewed from the stop position. The forced speed specification can take place in that one of two housing-fixed shafts is braked by braking means, which is structurally easy to accomplish.
Auf einer Seite dreht sich ein Umfangsabschnitt des Rotationskolbens relativ langsam an einem Umfangsabschnitt mit großem Krümmungsradius der Innenwand der Kammer ab. Die langsame Bewegung vermindert die Dichtprobleme. Auf der gegenüberliegenden Seite gleitet ein Umfangsabschnitt des Rotationskolbens mit großem Krümmungsradius, auf einem ebensolchen Umfangsabschnitt der Innenwand. Das ergibt eine große Dichtfläche.On one side, a peripheral portion of the rotary piston rotates relatively slowly on a circumferential portion with a large radius of curvature of the inner wall of the chamber. The slow movement reduces the sealing problems. On the opposite side, a peripheral portion of the large-radius-of-rotation rotary piston slides on just such a peripheral portion of the inner wall. This results in a large sealing surface.
Die beiden Wellen drehen sich alternierend mit geringerer und höherer Geschwindigkeit. Durch ein Differential oder einen Freilauf kann eine konstante Drehzahl einer mit den beiden Wellen gekuppelten An- oder Abtriebswelle vorgesehen werden. Ausführungsbeispiele der Erfindung sind nachstehend unter Bezugnahme auf die zugehörigen Zeichnungen näher erläutert.
- Fig.1
- zeigt einen Querschnitt einer Rotationskolbenmaschine mit zwei Wellen, wobei ein Rotationskolben, dessen Querschnitt ein Oval dritter Ordnung bildet, in einer Kammer geführt ist, deren Querschnitt ein Oval zweiter Ordnung ist.
- Fig.2
- ist eine Darstellung ähnlich
Fig.2 und zeigt den Rotationskolben in einer Anschlagstellung. - Fig.3
- ist eine Darstellung ähnlich
Fig.2 und zeigt den Rotationskolben während des nächsten Bewegungsabschnitts. - Fig.4
- zeigt einen Querschnitt einer Rotationskolbenmaschine mit zwei Wellen, wobei ein Rotationskolben, dessen Querschnitt ein Oval fünfter Ordnung bildet, in einer Kammer geführt ist, deren Querschnitt ein Oval vierter Ordnung ist.
- Fig.4A
- zeigt eine Abwandlung der Anordnung nach
Fig.4 . - Fig.5
- zeigt einen Querschnitt einer Rotationskolbenmaschine mit zwei Wellen, wobei ein Rotationskolben, dessen Querschnitt ein Oval siebter Ordnung bildet, in einer Kammer geführt ist, deren Querschnitt ein Oval sechster Ordnung ist.
- Fig.6
- ist eine schematische Darstellung der drehzahlregulierenden Mittel.
- Fig.7A
- ist eine schematische, vergrößerte Darstellung der Dichtung bei einer Rotationskolbenmaschine der in den
Figuren 1 bis 5 dargestellten Art, wobei die Abdichtung zwischen einer Dichtleiste und einem Umfangsabschnitt des Rotationskolbens mit kleinerem Krümmungsradius erfolgt. - Fig.7B
- ist eine schematische, vergrößerte Darstellung der Dichtung bei einer Rotationskolbenmaschine der in den
Figuren 1 bis 5 dargestellten Art, wobei die Abdichtung zwischen einer Dichtleiste und einem Umfangsabschnitt des Rotationskolbens mit größerem Krümmungsradius erfolgt. - Fig.8
- zeigt in vergrößertem Maßstab eine Einzelheit der Rotationskolbenmaschine von
Fig.4A . - Fig.8A
- zeigt die Einzelheit von
Fig.8 in weiter vergrößertem Maßstab.
- Fig.1
- shows a cross section of a rotary piston machine with two shafts, wherein a rotary piston whose cross section forms a third-order oval, is guided in a chamber whose cross section is a second-order oval.
- Fig.2
- is a representation similar
Fig.2 and shows the rotary piston in a stop position. - Figure 3
- is a representation similar
Fig.2 and shows the rotary piston during the next movement section. - Figure 4
- shows a cross section of a rotary piston machine with two shafts, wherein a rotary piston whose cross section forms a fifth-order oval, is guided in a chamber whose cross-section is a fourth-order oval.
- 4A
- shows a modification of the arrangement according to
Figure 4 , - Figure 5
- shows a cross section of a rotary piston machine with two shafts, wherein a rotary piston whose cross section forms a seventh-order oval, is guided in a chamber whose cross section is a sixth order oval.
- Figure 6
- is a schematic representation of the speed-regulating means.
- 7A
- is a schematic, enlarged view of the seal in a rotary piston machine in the
FIGS. 1 to 5 illustrated type, wherein the seal between a sealing strip and a Peripheral portion of the rotary piston with a smaller radius of curvature takes place. - 7B
- is a schematic, enlarged view of the seal in a rotary piston machine in the
FIGS. 1 to 5 illustrated type, wherein the seal between a sealing strip and a peripheral portion of the rotary piston takes place with a larger radius of curvature. - Figure 8
- shows in enlarged scale a detail of the rotary piston machine of
4A , - 8A
- shows the detail of
Figure 8 in a further enlarged scale.
In
In der Kammer 12 ist ein Rotationskolben 22 geführt. Der Querschnitt des Rotationskolbens 22 bildet ein Oval dritter Ordnung oder ist tri-oval. Demnach besteht der Umfang des Querschnitts aus drei Paaren von jeweils einem Kreisbogen von relativ kleinem Krümmungsradius 24, 26 bzw. 28 und einem Kreisbogen von relativ großem Krümmungsradius 30, 32 bzw. 34 gebildet. Die Kreisbögen von kleinem und großem Krümmungsradius schließen sich alternierend und ebenfalls stetig und differenzierbar aneinander an. Die kleinen Krümmungsradien des Rotationskolbens 22 sind gleich den kleinen Krümmungsradien der Kammer 12, und ebenso sind die großen Krümmungsradien des Rotationskolbens 22 gleich den großen Krümmungsradien der Kammer 12. Der Querschnitt der Kammer 12 ähnelt einer Ellipse, obwohl er gerade keine Ellipse ist. Der Querschnitt des Rotationskolbens 22 ähnelt einem Bogendreieck mit abgerundeten Ecken.In the
Der Rotationskolben 22 weist einen zentralen Durchbruch 36 auf. Der Querschnitt des Durchbruchs 36 bildet ebenfalls ein Oval dritter Ordnung. Dieses Oval dritter Ordnung ist von drei Kreisbögen von relativ kleinem Krümmungsradius 38, 40 und 42 und von drei Kreisbögen 44, 46 und 48 von relativ großem Krümmungsradius gebildet. Die Kreisbögen 38, 40 und 42 mit kleinem Krümmungsradius und die Kreisbögen 44, 46 und 48 von großem Krümmungsradius schließen sich alternierend und stetig und differenzierbar aneinander an, so daß ein Oval ähnlich einem Bogendreieck mit abgerundeten Enden gebildet wird. Die Symmetrieebenen 50, 52 und 54 des Durchbruchs 36 fallen mit den Symmetrieebenen des Rotationskolbens 22 zusammen.The
Der Durchbruch 36 weist eine Innenverzahnung 56 auf. Diese Innenverzahnung 56 weist drei konkav-bogenförmige Zahnleisten 58, 60 und 62 im wesentlichen entlang der Kreisbögen 44, 46 bzw.48 von großem Krümmungsradius auf. Zwischen diesen konkav-bogenförmigen Zahnleisten 58, 60 und 62 sind im Bereich der Kreisbögen von kleinem Krümmungsradius konvex bogenförmige (oder ggf. gerade) Zahnleisten 64, 66 und 68 vorgesehen.The
Durch den Durchbruch 36 erstrecken sich zwei parallele Wellen 70 und 72 mit Zahnrädern 74 bzw. 76. Die Achsen der Wellen 70 und 72 liegen in der durch die Kreisbögen 18 und 20 verlaufende Symmetrieebene 77 der Kammer 12. Das Zahnrad der einen Welle, in
Der Rotationskolben 22 unterteilt die bi-ovale Kammer 12 in zwei Arbeitsräume 80 und 82. In
In den Bereichen 18 und 20 der großen Krümmungsradien sind an dem Gehäuse Paare von aneinander angrenzenden Dichtleisten 100A, und 100B bzw. 102A und 102B vorgesehen. Die Dichtleisten 100A und 100B bzw. 102A und 102B sind dabei symmetrisch zu der durch die Kreisbögen 18 und 20 des Querschnitts mit großem Krümmungsradius verlaufenden Symmetrieebene.In
Die beschriebene Anordnung arbeitet wie folgt:
Der Rotationskolben 22 dreht sich entgegen dem Uhrzeigersinn inFig.1 . Dabei dreht sich der Rotationskolben 22 um dieWelle 70 und gleitet mit geringer Geschwindigkeit an der Innenwand derKammer 12 im Bereich des großen Krümmungsradius. DieAchse der Welle 70 geht durch den Krümmungsmittelpunkt des Kreisbogens 24 von kleinem Krümmungsradius.Der Kreisbogen 24tangiert den Kreisbogen 18 des Querschnitts derKammer 12. Der gegenüberliegende,dem Kreisbogen 32 entsprechende Bereich der Mantelfläche des Rotationskolbens 22 mit dem großen Krümmungsradius liegt andem dem Kreisbogen 20 entsprechenden Bereich der Innenwandung derKammer 12 an. Dieser Bereich der Innenwandung hat den gleichen Krümmungsradius wie der anliegende Bereich der Mantelfläche des Rotationskolbens. Es erfolgt also eine formangepaßte, flächige Anlage. Bei der Drehbewegung gleitet dieser Bereich der Mantelfläche des Rotationskolbens an dem entsprechenden Bereich der Innenwandung.
- The
rotary piston 22 rotates counterclockwise in FIGFig.1 , In this case, therotary piston 22 rotates about theshaft 70 and slides at low speed on the inner wall of thechamber 12 in the region of the large radius of curvature. The axis of theshaft 70 passes through the center of curvature of thecircular arc 24 of small radius of curvature. Thecircular arc 24 is tangent to thecircular arc 18 of the cross section of thechamber 12. The opposite, thecircular arc 32 corresponding region of the lateral surface of therotary piston 22 with the large radius of curvature is located on thecircular arc 20 corresponding portion of the inner wall of thechamber 12. This region of the inner wall has the same radius of curvature as the adjacent region of the lateral surface of the rotary piston. So there is a form-adapted, areal plant. During the rotational movement of this region of the lateral surface of the rotary piston slides on the corresponding region of the inner wall.
Dabei vergrößert sich der Arbeitsraum 80, während sich der Arbeitsraum 82 verkleinert. Die Welle 70 wird dabei relativ langsam gedreht, während sich eine relativ schnelle Drehung der Welle 72 ergibt.In this case, the working
Diese Bewegung wird fortgesetzt, bis die in
Diese Position ist in
Bei einer weiteren Drehung, die z.B. durch Zünden von Treibstoff in der Brennkammer 94 bei einer Verbrennungskraftmaschine oder durch Einleiten eines Arbeitsmediums in die Arbeitskammer 82 bewirkt wird, springt die momentane Drehachse in die Achse der Welle 72. Der Rotationskolben dreht sich weiter entgegen dem Uhrzeigersinn, jetzt aber um die Welle 72.In a further rotation, e.g. is caused by igniting fuel in the
Der weitere Bewegungsablauf ist dann bezogen auf die neue momentane Drehachse so, wie es vorstehend unter Bezugnahme auf die Achse der Welle 70 als momentane Drehachse beschrieben wurde.The further course of motion is then based on the new instantaneous axis of rotation as described above with reference to the axis of the
Bei der Drehbewegung des Rotationskolbens 22 treten aufeinanderfolgende Bewegungsabschnitte auf. Jeder Bewegungsabschnitt verläuft von einer der beschriebenen Anschlagstellungen bis zur nächsten. In jedem Bewegungsabschnitt vergrößert sich ein Arbeitsraum, z.B. 80, von null bis zu einem Maximum, während sich der andere Arbeitsraum von dem Maximum bis auf null verkleinert. Im nächsten Bewegungsabschnitt ist es umgekehrt: Der Arbeitsraum 82 vergrößert sich von null (
In der Position von
Wenn diese Gefahr besteht, kann ihr dadurch begegnet werden, daß in der Position von
Das ist in
Die Radien der Teilkreise der Zahnräder entsprechen im wesentlichen den kleinen Krümmungsradien des den Durchbruch 36 bildenden Ovals zweiter Ordnung. Wenn die Innenverzahnung 56 durchgehend dem Oval des Durchbruchs 36 folgen würden, dann würden die Zahnräder jeweils in den Endstellungen des Rotationskolbens 22 gefangen. Die "Ecken" des "Bogendreiecks" könnten nicht über die Zahnräder hinwegrollen. Aus diesem Grunde sind die konkav-bogenförmigen Zahnleisten im Bereich der Kreisbögen 38, 40, 42 mit kleinem Durchmesser durch kurze gerade oder konvex-bogenförmige Zahnleisten 64, 66 bzw. 68 verbunden. Die konvex-bogenförmigen Zahnleisten 64, 66 und 68 ermöglichen ein Weiterrollen der Innenverzahnung 56 und damit des Rotationskolbens 22 über diese Bereiche. Sie sind so bemessen, daß in den Anschlagstellungen jeweils eine der konkav-bogenförmigen Zahnleisten 58, 60 oder 62 mit dem Zahnrad 74 oder 76 in Eingriff kommt unmittelbar nachdem der Eingriff des Zahnrades 74 oder 76 mit der vorangegangene Zahnleiste 62, 58 bzw. 60 gelöst wurde. Auf diese Weise ist jedes Zahnrad ständig mit einem der konkav-bogenförmigen Zahnleisten 64, 66 oder 68 in Eingriff. Die kurzen konvex-bogenförmigen oder geraden Zahnleisten gewährleisten einen Übergang ohne Unterbrechung des Formschlusses aber auch ohne Blockierung.The radii of the pitch circles of the gears correspond substantially to the small radii of curvature of the
Der Rotationskolben 108 unterteilt die Kammer in zwei Arbeitsräume 130 und 132, von denen bei der Drehung des Rotationskolbens jeweils einer sich vergrößert und der andere verkleinert.The
Der Arbeitsablauf ist ähnlich dem Arbeitsablauf der Ausführung von
In
Bei der Rotationskolbenmaschine von
Bei der Ausführung von
Die beschriebene Anordnung der Einspritzdüse in einer Brennkammer, derart daß die Verbrennung im wesentlichen nur in der Brennkammer erfolgt und Flammenfronten in den Arbeitsräumen vermieden werden, ist auch bei anderen Maschinen, z.B. bei Hubkolbenmaschinen, anwendbar.The described arrangement of the injection nozzle in a combustion chamber, such that the combustion takes place substantially only in the combustion chamber and flame fronts in The workrooms are avoided, is also applicable to other machines, such as reciprocating engines.
Claims (4)
- Rotary piston machine having a prismatic chamber (12) in a housing (10), the cross section of the chamber being an oval formed by circular arcs (14, 16; 18, 20) with alternating smaller and larger radius, and a rotary piston (22) movable in the chamber (12), the cross section of the rotary piston being also an oval with the same alternating smaller and larger radii and an order different from the order of the oval defining the cross section of the chamber (22), wherein the rotary piston (22) alternately rotates, in successive intervals of motion, around different axes of rotation from one blocking position to the next one respectively and, during the rotational movement, in any position engages the inner wall of the chamber (12) forming two working chambers (80, 82), and having an aperture (36) of the rotary piston (22) provided with an internal toothing (56), the internal toothing (56) engaging an external toothing (74, 76) of at least one housing-fixed mounted shaft (70, 72) for driving the rotary motion or for being driven thereby, wherein(a) the order of the oval of the chamber (12) is one less than the order of the oval of the rotary piston (22),(b) the aperture (36) is substantially mathematically similar to the rotary piston (22), wherein the planes of symmetry (50, 52, 54) of the aperture (36) coincide with those of the rotary piston (22), and(c) a pair of shafts (70, 72) provided with external toothing (74,76) and mounted housing-fixed is provided, the external toothing (74, 76) engaging the internal toothing (56) of the aperture (36), wherein in any interval of motion of the rotary piston (22) one area of a section (38) of the internal toothing (56) of the aperture (36) with smaller radius of curvature (r1) engages the external toothing (74, 76) of one of the shafts (70, 72) respectively, while a section (46) of the internal toothing (56) of the aperture (36) with larger radius of curvature (r2) engages the external toothing (74, 76) of the other shaft (70, 72), and in the respective following interval of motion an area of a section (44) of the internal toothing (56) with larger radius of curvature (r2) engages the external toothing (74, 76) of the former shaft (70,72), which was in engagement with an area of a section having a smaller radius of curvature (r1) in the preceding interval of motion, while the external toothing (74, 76) of the shaft (70,72), which was engaging an area of a section (46) of the internal toothing (56) of the aperture (36) with larger radius of curvature (r2) in the preceding interval of motion, now is engaging with an area of a section (42) having a smaller radius of curvature (r1),characterised in that(d) sensors (140) for signalling the reaching of a blocking position by the rotary piston, and rotary speed regulating means (142,144,146) having a control (142) to which the signals of the sensors are applied, and a brake device (144, 146) controlled by the control (142) for each of the shafts (70, 72) respectively are provided, by means of which, when a blocking position has been reached, the respective shaft (70 or 72), which external toothing (74 or 76) unrolled on the internal toothing (56) of the aperture (36) in an area with larger radius of curvature in the previous interval of motion, is temporarily braked, while the other shaft (72 or 70), around the axis of which the rotary piston (22) rotated in the previous interval of motion, remains unbraked.
- Rotary piston machine according to claim 1, characterised in that pairs of adjacent arranged sealing ledges (100A, 100B) having concave-cylindrical inner surfaces are provided in the inner wall of the chamber (12) for sealing between the working chambers, wherein the radius of the curvature of one inner surface is equal to the smaller radius of curvature (r1) and the radius of curvature of the other inner surface is equal to the larger radius of curvature (r2) of the lateral surface of the rotary piston (22).
- Rotary piston machine according to claim 2 characterised in that, two pairs of sealing ledges (100A, 100B) are arranged opposite to one another.
- Rotary piston machine according to one of claims 1 to 3 wherein the rotary piston machine is designed as internal combustion engine with internal combustion in at least one working chamber (130, 132) limited by the rotary piston (22) and with fuel injection, characterised in that an injection device (150) is arranged in a separate combustion chamber (152) which is connected with the working chamber (130, 132), the combustion chamber (152) and fuel injection being adapted such that combustion takes place substantially in the combustion chamber (152) only, whereby only combusted, expanding exhaust gas enters the working chamber (130, 132).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10308831 | 2003-02-27 | ||
DE10308831A DE10308831B3 (en) | 2003-02-27 | 2003-02-27 | Rotary piston machine with an oval rotary piston guided in an oval chamber |
PCT/EP2004/001921 WO2004076819A2 (en) | 2003-02-27 | 2004-02-26 | Rotary piston machine with an oval rotary piston guided in an oval chamber |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1597456A2 EP1597456A2 (en) | 2005-11-23 |
EP1597456B1 true EP1597456B1 (en) | 2012-12-19 |
Family
ID=32842028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04714747A Expired - Lifetime EP1597456B1 (en) | 2003-02-27 | 2004-02-26 | Rotary piston machine with an oval rotary piston guided in an oval chamber |
Country Status (8)
Country | Link |
---|---|
US (2) | US7117840B2 (en) |
EP (1) | EP1597456B1 (en) |
JP (1) | JP4461138B2 (en) |
KR (1) | KR101109422B1 (en) |
CA (1) | CA2517318C (en) |
DE (1) | DE10308831B3 (en) |
RU (2) | RU2344296C2 (en) |
WO (1) | WO2004076819A2 (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7059294B2 (en) | 2004-05-27 | 2006-06-13 | Wright Innovations, Llc | Orbital engine |
US8151759B2 (en) | 2006-08-24 | 2012-04-10 | Wright Innovations, Llc | Orbital engine |
HU229595B1 (en) * | 2009-01-05 | 2014-02-28 | Ferenc Bekoe | Energy converter system |
DE102009029950A1 (en) | 2009-06-20 | 2011-08-04 | Alexandrow, Garri, Dr. Ing., 19061 | Fuel rotation motor, particularly for propulsion of motor cars, has stator and rotary piston made of cylindrical wheel segments arranged in pair, which have two different outer contour radiuses |
US8539931B1 (en) | 2009-06-29 | 2013-09-24 | Yousry Kamel Hanna | Rotary internal combustion diesel engine |
CN101639064B (en) * | 2009-08-04 | 2010-09-15 | 王德良 | Conversion device of mechanical motion and fluid motion |
DE202009017322U1 (en) | 2009-12-17 | 2010-11-11 | Bakal, Semen, Dr. | Rotary engine |
DE102009060108A1 (en) | 2009-12-17 | 2011-08-18 | Bakal, Semen, Dr., 10555 | Rotary piston engine i.e. two-stroke engine, for car for transportation of passenger, has channel provided with connecting piece for supplying gases in cabinet to supply air under high pressure, and chamber provided with injection apparatus |
DE102010019555A1 (en) | 2010-05-05 | 2011-11-10 | Garri Alexandrow | Fuel rotary piston engine, particularly for propulsion of motor vehicles, comprises closed cylindrical hollow chamber, which is formed from stator, cladding segments, valve segments with combustion chambers, and sprung front plates |
CN102606307A (en) * | 2012-04-05 | 2012-07-25 | 济南汉菱电气有限公司 | Steady-flow-burning rotor expansion type engine |
WO2014030196A1 (en) * | 2012-08-18 | 2014-02-27 | KISHITAKA Kouhei | Rotary engine |
KR101521601B1 (en) * | 2013-10-07 | 2015-05-20 | (주)에프티이앤이 | Filter including polyvinylidene fluoride nanofiber and its manufacturing method |
DE202014008430U1 (en) | 2014-10-03 | 2014-12-03 | Garri Alexandrow | Fuel rotary engine and engine block |
DE102015003456A1 (en) | 2015-03-17 | 2016-11-24 | Garri Alexandrow | Garri fuel rotary engine and engine block |
WO2017137013A1 (en) * | 2016-02-14 | 2017-08-17 | 北京艾派可科技有限公司 | Relative pressure gas energy storage device and inspection method therefor, storage system and balance detection mechanism |
RU2637301C1 (en) * | 2016-11-29 | 2017-12-01 | Равиль Ахатович Латыпов | Rotary piston machine |
US10287970B1 (en) * | 2017-12-07 | 2019-05-14 | Caterpillar Inc. | Fuel injection system |
CN113669154A (en) * | 2020-09-04 | 2021-11-19 | 陕西新年动力科技集团有限公司 | Rotor engine and method for regulating and controlling operating parameters thereof |
CN114483291A (en) * | 2020-09-04 | 2022-05-13 | 陕西新年动力科技集团有限公司 | Dual-rotor engine and operation parameter regulation method and operation method thereof |
RU2740666C1 (en) * | 2020-09-08 | 2021-01-19 | Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") | Radial seal of rotary machine |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU50599A1 (en) * | 1936-03-19 | 1936-11-30 | В.В. Синеуцкий | Chamber in internal combustion engines |
US3117563A (en) * | 1960-09-28 | 1964-01-14 | Lenard D Wiegert | Rotary combustion engine |
FR1327607A (en) * | 1962-07-03 | 1963-05-17 | Rotary piston machine | |
LU45663A1 (en) * | 1964-03-16 | 1965-03-30 | ||
US3441007A (en) * | 1966-11-10 | 1969-04-29 | Johannes Kwaak | Rotary piston engine |
FR2146526A5 (en) * | 1971-07-16 | 1973-03-02 | Leroy Marcel | |
US3892208A (en) * | 1972-07-05 | 1975-07-01 | Mcculloch Corp | Modified injection spray characteristics for spaced burning loci engines |
CH545413A (en) * | 1972-08-19 | 1973-12-15 | M Guenthard Ernst | Rotary piston internal combustion engine |
US3875905A (en) * | 1973-03-07 | 1975-04-08 | Gaetan Duquette | Rotary engine and drive gearing therefor |
US3884600A (en) * | 1973-11-08 | 1975-05-20 | Gray & Bensley Research Corp | Guidance means for a rotary engine or pump |
US3996901A (en) * | 1974-02-26 | 1976-12-14 | Gale Richard A | Rotary piston mechanism |
US3967594A (en) * | 1975-01-27 | 1976-07-06 | Campbell Donald K | Rotary power unit |
JPS6037289B2 (en) * | 1975-05-22 | 1985-08-26 | ロ−ベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | spark ignition internal combustion engine |
US4141126A (en) * | 1975-05-28 | 1979-02-27 | Fukumatsu Okada | Method of making a rotary engine rotor and bearing structure |
JPS5328810A (en) * | 1976-08-28 | 1978-03-17 | Hachirou Michioka | Rotary piston engines |
DE2715943C2 (en) * | 1977-04-09 | 1986-08-14 | Robert Bosch Gmbh, 7000 Stuttgart | Internal combustion engine with at least one main combustion chamber and an ignition chamber |
DE2853930A1 (en) * | 1978-12-14 | 1980-06-19 | Karl Dipl Ing Otto | Rotary piston unit compressor or engine - has multi-arc contoured piston whose centre moves in same curvature multi-arc housing along two-arc path |
DE2916285C2 (en) * | 1979-04-21 | 1984-02-23 | Robert Bosch Gmbh, 7000 Stuttgart | Process for igniting lean fuel / air mixtures |
GB2123482B (en) * | 1982-05-21 | 1985-06-26 | Dr Andrew Martin Storrar | I c engine combustion chambers |
DE3243404C2 (en) * | 1982-11-24 | 1986-07-24 | Danfoss A/S, Nordborg | Parallel and inner-axis rotary piston machine |
JPS59201922A (en) * | 1983-04-30 | 1984-11-15 | Mazda Motor Corp | Construction of auxiliary combustion chamber of diesel engine |
US5024193A (en) * | 1990-02-06 | 1991-06-18 | Caterpillar Inc. | Fuel combustion system, method, and nozzle member therefor |
SU1751374A1 (en) * | 1990-08-06 | 1992-07-30 | Уральский Автомоторный Завод Производственного Объединения "Зил" | Internal combustion engine |
US5105780A (en) * | 1990-08-08 | 1992-04-21 | Caterpillar Inc. | Ignition assisting device for internal combustion engines |
US5392744A (en) * | 1993-03-12 | 1995-02-28 | Chrysler Corporation | Precombustion chamber for a double overhead camshaft internal combustion engine |
FR2703406B1 (en) * | 1993-04-02 | 1995-05-12 | Cit Alcatel | Volumetric machine with planetary movement. |
JP3073118B2 (en) * | 1993-04-20 | 2000-08-07 | 株式会社日立製作所 | In-cylinder internal combustion engine |
EP0797001A1 (en) * | 1996-03-21 | 1997-09-24 | Unisia Jecs Corporation | Rotary pump |
JPH09256850A (en) * | 1996-03-25 | 1997-09-30 | Isuzu Ceramics Kenkyusho:Kk | Gas engine of divideo combustion chamber type |
DE19920289C1 (en) * | 1999-05-04 | 2000-07-06 | Robert Gugenheimer | Rotary piston internal combustion engine has rotary piston oval in cross-section rotatably located in chamber in housing and having face-side end plates, with oval longitudinal bore corresponding to its cross-sectional contour |
US6539913B1 (en) * | 2002-01-14 | 2003-04-01 | William P. Gardiner | Rotary internal combustion engine |
-
2003
- 2003-02-27 DE DE10308831A patent/DE10308831B3/en not_active Expired - Fee Related
-
2004
- 2004-02-26 CA CA2517318A patent/CA2517318C/en not_active Expired - Fee Related
- 2004-02-26 EP EP04714747A patent/EP1597456B1/en not_active Expired - Lifetime
- 2004-02-26 RU RU2005129640/06A patent/RU2344296C2/en not_active IP Right Cessation
- 2004-02-26 WO PCT/EP2004/001921 patent/WO2004076819A2/en active Application Filing
- 2004-02-26 KR KR1020057016073A patent/KR101109422B1/en not_active IP Right Cessation
- 2004-02-26 JP JP2006501959A patent/JP4461138B2/en not_active Expired - Fee Related
-
2005
- 2005-08-26 US US11/212,496 patent/US7117840B2/en not_active Expired - Fee Related
-
2006
- 2006-10-06 US US11/544,461 patent/US7866296B2/en not_active Expired - Fee Related
-
2008
- 2008-08-13 RU RU2008133156/06A patent/RU2476696C2/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
US20070089701A1 (en) | 2007-04-26 |
RU2344296C2 (en) | 2009-01-20 |
DE10308831B3 (en) | 2004-09-09 |
KR20050116132A (en) | 2005-12-09 |
US20060032475A1 (en) | 2006-02-16 |
RU2476696C2 (en) | 2013-02-27 |
KR101109422B1 (en) | 2012-01-31 |
WO2004076819A2 (en) | 2004-09-10 |
JP2006519330A (en) | 2006-08-24 |
WO2004076819A3 (en) | 2005-01-06 |
RU2005129640A (en) | 2007-04-10 |
JP4461138B2 (en) | 2010-05-12 |
RU2008133156A (en) | 2010-02-20 |
CA2517318C (en) | 2012-05-08 |
US7117840B2 (en) | 2006-10-10 |
CA2517318A1 (en) | 2004-09-10 |
EP1597456A2 (en) | 2005-11-23 |
US7866296B2 (en) | 2011-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1597456B1 (en) | Rotary piston machine with an oval rotary piston guided in an oval chamber | |
DE102009048621B4 (en) | Valve gear for gas exchange valves with clamping of base camshaft and cam carrier in circumferential or rotational direction | |
EP1417396B1 (en) | Rotary piston engine | |
DE2450418A1 (en) | ROTARY LISTON MACHINE | |
DE68920286T2 (en) | MECHANISM FOR FORMING BETWEEN TURNING AND ROTATING MOTION AND COMBUSTION ENGINE WITH SUCH A MECHANISM. | |
DE4218885A1 (en) | CIRCULAR PISTON ENGINE | |
EP0874949B1 (en) | Oscillating piston engine | |
DE1451761B2 (en) | Parallel and inner-axis two-stroke rotary piston machine with comb engagement | |
DE60310965T2 (en) | ROTARY MACHINE WITH CAPSULE SYSTEM | |
DE1451690B2 (en) | Parallel and inner-axis rotary piston machine with meshing engagement | |
DE3335742C2 (en) | In-axis rotary piston internal combustion engine | |
WO1979000157A1 (en) | Rotary pistons machine | |
DE3318519A1 (en) | External axis rotary piston engine with mesh engagement | |
DE1934262C3 (en) | Sealing system for a parallel and internal-axis rotary piston machine | |
EP0316346A1 (en) | Rotating piston machine. | |
DE19537674C1 (en) | Rotary piston machine with disc-shaped main rotor | |
DE3725806A1 (en) | Rotary piston compressor system - has housing with circular interior, and eccentrically located piston | |
WO2013120526A1 (en) | Screw assembly and internal combustion engine having a screw assembly | |
DE2448475A1 (en) | ROTARY LAMP ENGINE | |
DE2739326A1 (en) | Rotary prime mover or processing machine - has pairs of circulating pistons linked to shaft by transmission with elliptical elements | |
DE2514945C3 (en) | Sealing limit for a piston of an oblique-axis rotary piston internal combustion engine | |
DE2343909A1 (en) | Rotary piston engine - has pivoting pistons eccentrically mounted on rotary body, with lever arm cooperating with stationary cam | |
DE2746679A1 (en) | Working chambers of rotary engine - are defined by bore walls shaft, two assemblies comprising rim wall and movable wall pair | |
EP3379027A1 (en) | Combustion engine and method for operating same | |
EP3379026A1 (en) | Combustion engine and method for operating same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050812 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20101028 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: EXCURSION LTD. |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 589531 Country of ref document: AT Kind code of ref document: T Effective date: 20130115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502004013943 Country of ref document: DE Effective date: 20130221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130330 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121219 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121219 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20121219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121219 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130320 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502004013943 Country of ref document: DE Representative=s name: WEISSE, JOERG, DIPL.-PHYS., DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121219 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121219 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121219 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130319 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130419 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121219 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121219 |
|
BERE | Be: lapsed |
Owner name: EXCURSION LTD. Effective date: 20130228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130228 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121219 |
|
26N | No opposition filed |
Effective date: 20130920 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502004013943 Country of ref document: DE Effective date: 20130920 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130228 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130226 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 589531 Country of ref document: AT Kind code of ref document: T Effective date: 20130226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130226 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20040226 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20160226 Year of fee payment: 13 Ref country code: DE Payment date: 20160229 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20160226 Year of fee payment: 13 Ref country code: FR Payment date: 20160226 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20160318 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004013943 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170228 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20171031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170228 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170226 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170226 |