EP1597456B1 - Rotary piston machine with an oval rotary piston guided in an oval chamber - Google Patents

Rotary piston machine with an oval rotary piston guided in an oval chamber Download PDF

Info

Publication number
EP1597456B1
EP1597456B1 EP04714747A EP04714747A EP1597456B1 EP 1597456 B1 EP1597456 B1 EP 1597456B1 EP 04714747 A EP04714747 A EP 04714747A EP 04714747 A EP04714747 A EP 04714747A EP 1597456 B1 EP1597456 B1 EP 1597456B1
Authority
EP
European Patent Office
Prior art keywords
rotary piston
curvature
chamber
oval
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04714747A
Other languages
German (de)
French (fr)
Other versions
EP1597456A2 (en
Inventor
Boris Schapiro
Lev Levitibn
Naum Kruk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Excursion Ltd
Original Assignee
Excursion Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Excursion Ltd filed Critical Excursion Ltd
Publication of EP1597456A2 publication Critical patent/EP1597456A2/en
Application granted granted Critical
Publication of EP1597456B1 publication Critical patent/EP1597456B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/008Driving elements, brakes, couplings, transmissions specially adapted for rotary or oscillating-piston machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/22Rotary-piston machines or engines of internal-axis type with equidirectional movement of co-operating members at the points of engagement, or with one of the co-operating members being stationary, the inner member having more teeth or tooth- equivalents than the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C19/00Sealing arrangements in rotary-piston machines or engines
    • F01C19/02Radially-movable sealings for working fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C19/00Sealing arrangements in rotary-piston machines or engines
    • F01C19/02Radially-movable sealings for working fluids
    • F01C19/025Radial sealing elements specially adapted for intermeshing engagement type machines or engines, e.g. gear machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/106Stators; Members defining the outer boundaries of the working chamber with a radial surface, e.g. cam rings

Definitions

  • An "oval” in mathematics is a non-analytic, closed, flat convex figure composed of circular arcs.
  • the circular arcs are continuous and differentiated juxtaposed. In the points where the circular arcs connect, the curve is continuous. There are also the tangents of the two adjoining circular arcs together. The curve is differentiable. In the points where the circular arcs with different radii of curvature join, the second derivative -which determines the curvature-makes a jump.
  • the oval consists of alternating circular sections with a first, smaller, and a second, larger radius of curvature. The order of the oval is determined by the number of pairs of circular sections having the first and second radii of curvature.
  • a second-order or bi-oval oval is "ellipse-like" with two diametrically opposed circular arcs of smaller diameter joined by two circular arcs of larger diameter.
  • the US 3,967,594 A and the US 3 996 901 A show a rotary piston machine with an oval piston in an oval chamber.
  • the piston is bi-oval in cross-section.
  • This bi-oval piston is movable in a tri-oval chamber.
  • complex gears are provided to transmit the rotational movement of the rotary piston on a shaft.
  • the DE 199 20 289 C1 also describes a rotary-piston machine in which the cross-section of a prismatic chamber formed in a housing is tri-oval with first and second arcs of alternately a smaller radius of curvature and a larger radius of curvature contiguous and differentiable.
  • a rotary piston In the chamber, a rotary piston is guided with bi-oval cross-section.
  • the bi-oval cross-section of the rotary piston is formed by alternately first and second circular arcs with the smaller or larger radii of curvature of the tri-oval cross-section of the chamber, which again connect continuously and differentially to each other.
  • the bi-oval rotary piston performs in the tri-oval chamber the motion cycles described above with jumping momentary axes of rotation.
  • a shaft extends centrally through the tri-oval chamber, ie along the line of intersection of the symmetry planes of the chamber.
  • the shaft carries a pinion.
  • the rotary piston has an oval opening with an internal toothing.
  • the long axis in cross section of the aperture extends along the short axis of the bi-oval cross-section of the rotary piston.
  • the pinion meshes constantly with the internal teeth.
  • a housing forms a prismatic chamber whose cross-section such an oval odd order, so for example a Oval forms third order.
  • the chamber forms cylindrical inner wall sections alternately with the first, small and the second, larger radius of curvature.
  • a rotary piston movable which forms an oval in cross-section, whose order is one less than the order of the oval of the chamber.
  • the oval used for the rotary piston has a two-fold symmetry, even if it has a higher order, ie it is mirror-symmetrical with respect to two mutually perpendicular axes.
  • This rotary piston has two diametrically opposite cylindrical shell sections whose radius of curvature corresponds to the smaller (first) radius of curvature of the oval of the chamber.
  • the second, larger radius of curvature of this oval is equal to the second radius of curvature of the oval forming the chamber.
  • a certain movement section of the rotary piston is located with a first of these cylindrical shell portions in a complementary cylindrical inner wall portion of the chamber, which has the same smaller radius of curvature.
  • With the second, diametrically opposed cylindrical shell portion of the rotary piston slides on the opposite cylindrical inner wall portion of the chamber, which has the larger radius of curvature.
  • the rotary piston rotates about a momentary axis of rotation.
  • This instantaneous axis of rotation coincides with the cylinder axis of the first cylindrical shell portion.
  • This instantaneous axis of rotation therefore has a defined position relative to the rotary piston.
  • the instantaneous axis of rotation in this movement section of course also corresponds to the housing-fixed cylinder axis of the cylindrical inner wall section of smaller radius of curvature, in which the rotary piston rotates.
  • This rotation continues until the second cylindrical skirt portion of the rotary piston enters a stop position. In this stop position, the second cylindrical shell portion lies in the adjoining the opposite inner wall portion of larger radius of curvature inner wall portion of smaller diameter.
  • a further rotation of the rotary piston to the previous current pivot point is not possible.
  • the current axis of rotation therefore jumps for the next Movement section in a different position, namely the cylinder axis of the second cylindrical shell portion.
  • This new instantaneous axis of rotation is in a defined position relative to the rotary piston. It corresponds in the next movement portion of the cylinder axis of the cylindrical inner wall portion in which now rotates the second cylindrical shell portion of the rotary piston.
  • the "first" cylindrical shell portion slides in this movement section again on the opposite inner wall portion with a larger radius of curvature.
  • the rotary piston In such a rotary piston machine, the rotary piston always rotates in the same direction of rotation but alternately about different instantaneous axes of rotation, wherein the axes of rotation "jump" after each movement section.
  • two such instantaneous axes of rotation are defined, namely by the cylinder axes of the diametrically opposed cylindrical shell sections.
  • the instantaneous axis of rotation jumps between the "corners" of the oval, ie the cylinder axes of the inner wall sections with a smaller radius of curvature.
  • a rotary piston engine may be used as a two-stroke or four-stroke internal combustion engine or as an external combustion engine, e.g. Steam engine, be trained. But it can also work as an air pressure motor, as a hydraulic motor or as a pump.
  • a rotary piston movable In the DE 199 20 289 C1 is in a chamber whose cross-section forms a third-order oval, a rotary piston movable, whose cross-section is a second-order oval.
  • To pick up the movement of the rotary piston is a single centrally extending through the chamber output shaft.
  • the output shaft protrudes through an oval opening of the rotary piston and carries a pinion.
  • the pinion is in mesh with a toothing on the inside of the aperture.
  • the order of the oval defining the chamber is one greater than the order of the oval forming the cross section of the rotary piston.
  • a bi-oval rotary flask is guided in a tri-oval chamber. In this case, jump the instantaneous axes of rotation of the rotary piston in the stop positions relative to the rotary piston only between two positions, relative to the housing but between at least three positions.
  • the rotary piston translates with the small radius portion on the large radius portion of the inner wall of the chamber. This can lead to sealing problems in the sealing between the working chambers of the chamber. Another problem arises from the fact that in each cycle of the rotary piston machine successively more than two working spaces are formed, which wander along the inner wall of the housing.
  • a rotary piston machine having a rotary piston in the form of a third order oval (three rounded "corners") in a second order oval shaped chamber (two rounded "corners").
  • a recess with a continuous, uniform toothing is provided in one of the flat surfaces.
  • the recess has a shape corresponding to the oval of the rotary piston.
  • the one shaft serves to transmit the drive force, while the other shaft is provided for regulating the piston movement and for driving an alternator and a radiator fan.
  • the invention has for its object to improve the seal between the working chambers of the chamber in a rotary piston machine of the type mentioned.
  • the invention is further based on the object to ensure a closed kinematics with clear movement of the rotary piston in a simple manner in the stop positions of the rotary body.
  • the invention is for this purpose specifically the task to reduce the number of occurring relative to the housing current axes of rotation.
  • the invention is finally based on the object, a rotary piston machine of the type mentioned in such a way that only two alternately increasing and decreasing work spaces occur, which are arranged opposite in fixed angular positions to the housing.
  • a rotary piston machine of the type mentioned sensors for signaling the achievement of a stop position by the rotary piston and speed control means with an acted upon by the signals of the sensors control and each controlled by the controller braking device for each of the waves are with which upon reaching a stop position in each case that shaft whose outer toothing unrolled in the previous movement section on the internal teeth of the opening in the region of a larger radius of curvature is temporarily braked, while the other shaft rotated about the axis of the rotary piston in the previous movement section remains unchecked ,
  • a triovaler rotary piston rotates in a bi-oval chamber.
  • the rotation takes place in each case about one of two instantaneous axes of rotation, which are formed here but of housing-fixed shafts.
  • the axes of rotation have gears or external gears. which are in engagement with an internal toothing of a substantially oval opening of the rotary piston.
  • One of the shafts in each case sits in a region of the smaller radius of curvature of the oval opening, thus e.g. virtually in a "corner" of the breakthrough forming "arch triangle".
  • the other shaft is in engagement with the opposite region of the internal toothing with the larger radius of curvature, so to speak, the opposite side of the arch triangle.
  • a stop position In a stop position is located in a rotary piston machine with bi-oval chamber and tri-oval rotary piston of the rotary piston with two adjacent regions with a larger radius of curvature and the intermediate region of smaller radius of curvature at the inner wall of the chamber.
  • the other shaft When the rotary piston enters such a stop position, the other shaft is also located in a corner of the arch triangle.
  • the further rotation of the rotary piston takes place in the same direction of rotation then around the first-mentioned wave. Again, therefore, the axes of rotation jump when reaching a stop position. But this jumping takes place between two fixed axes, namely between the axes of rotation of the two shafts.
  • the rotary piston guided therein has the order 2n + 1.
  • the rotary piston with n + 1 "sides” is positively against the inner wall of the chamber, while each n “sides” limit that working chamber, which then has its maximum extent.
  • Two work spaces are formed on opposite sides of the housing.
  • the kinematics of the rotary piston is not completed in the chamber. Instead of another rotary motion, e.g. occur by the introduction of a pressure medium in the minimized working volume or by igniting a fuel mixture, a transverse force, which leads to jamming of the rotary piston in the chamber.
  • speed-regulating means are provided with which when reaching a stop position for that shaft whose outer teeth rolled in the previous movement section with the internal teeth of the opening in the region of a larger radius of curvature, a lower speed can be forced than for the other shaft about the axis of the rotary piston rotated in the previous movement section.
  • This forced speed specification only needs to be made for a short time until the rotary piston has unscrewed from the stop position.
  • the forced speed specification can take place in that one of two housing-fixed shafts is braked by braking means, which is structurally easy to accomplish.
  • a peripheral portion of the rotary piston rotates relatively slowly on a circumferential portion with a large radius of curvature of the inner wall of the chamber. The slow movement reduces the sealing problems.
  • a peripheral portion of the large-radius-of-rotation rotary piston slides on just such a peripheral portion of the inner wall. This results in a large sealing surface.
  • Fig.1 is designated 10 a housing.
  • a chamber 12 is formed in the housing 10.
  • the cross section of the chamber 12 forms a second order oval or is "bi-oval".
  • the cross-section of the chamber 12 is thus formed by two circular arcs 14 and 16 of relatively small radius of curvature and alternately between two circular arcs 18 and 20 of relatively large radius of curvature. The circular arcs close to each other steadily and differentially.
  • a rotary piston 22 is guided.
  • the cross-section of the rotary piston 22 forms a third-order oval or is tri-oval. Accordingly, the circumference of the cross-section of three pairs of a circular arc of relatively small radius of curvature 24, 26 and 28 and a circular arc of relatively large radius of curvature 30, 32 and 34 is formed.
  • the circular arcs of small and large radius of curvature close to each other alternately and also steadily and differentially.
  • the small radii of curvature of the rotary piston 22 are equal to the small radii of curvature of the chamber 12, and also the large radii of curvature of the rotary piston 22 are equal to the large radii of curvature of the chamber 12.
  • the cross section of the chamber 12 is similar to an ellipse, even though it is not an ellipse.
  • the cross section of the rotary piston 22 is similar to an arch triangle with rounded corners.
  • the rotary piston 22 has a central opening 36.
  • the cross section of the aperture 36 also forms a third order oval.
  • This third order oval is formed by three circular arcs of relatively small radius of curvature 38, 40 and 42 and by three circular arcs 44, 46 and 48 of relatively large radius of curvature.
  • the circular arcs 38, 40 and 42 with a small radius of curvature and the circular arcs 44, 46 and 48 of large radius of curvature are adjacent to each other alternately and steadily and differentially, so that an oval is formed similar to an arch triangle with rounded ends.
  • the planes of symmetry 50, 52 and 54 of the aperture 36 coincide with the planes of symmetry of the rotary piston 22.
  • the opening 36 has an internal toothing 56.
  • This internal toothing 56 has three concave-arc toothed racks 58, 60 and 62 substantially along the circular arcs 44, 46 and 48 of large radius of curvature. Between these concave-arcuate toothed racks 58, 60 and 62, convex arcuate (or optionally straight) toothed racks 64, 66 and 68 are provided in the region of the circular arcs of small radius of curvature.
  • two parallel shafts 70 and 72 extend with gears 74 and 76, respectively.
  • the axes of the shafts 70 and 72 lie in the plane of symmetry 77 of the chamber 12 through the circular arcs 18 and 20.
  • the gear of one shaft, in Fig.1 the gear 74 of the shaft 70 sitting in the "corner of the arch triangle", ie in the region of the circular arc 38 of small radius of curvature and is with the internal teeth 56 in a manner to be described in engagement.
  • the gear of the other shaft, in Fig.1 the gear 76 of the shaft 72 is, with the opposite concave-arc-shaped rack, in Fig.1 the rack 60, in engagement.
  • the rotary piston 22 divides the bi-oval chamber 12 into two working spaces 80 and 82.
  • the rotary piston machine is shown schematically as internal combustion engine with internal combustion. Accordingly, for each working space 80 and 82, an inlet valve 84 and 86 and an outlet valve 88 and 90, respectively. Furthermore, closes at each working space 80 and 82 a Combustion chamber 92 and 94 with a spark plug or an injector 96 or 98 at.
  • the work spaces 80 and 82 with the valves and spark plugs or injectors are symmetrical to the plane of symmetry passing through the circular arcs 14 and 14 of the small radius of curvature cross section. That's just a schematic illustration.
  • pairs of adjoining sealing strips 100A, and 100B, 102A, and 102B are provided on the housing.
  • the sealing strips 100A and 100B or 102A and 102B are symmetrical to the plane of symmetry passing through the circular arcs 18 and 20 of the cross section with a large radius of curvature.
  • the sealing strip 100A has a concave-cylindrical inner surface whose radius of curvature corresponds to the larger radius of curvature r 2 .
  • the sealing strip 100B has a concave-cylindrical inner surface whose radius of curvature corresponds to the smaller radius of curvature r 1 .
  • the inner surface of the sealing strip 100A in the region of the radius of curvature r 2 of the rotary piston 22 rests tightly against the surface of the rotary piston 22 complementary thereto.
  • a wedge-shaped gap 100C is formed between the sealing strip 100A and the rotary piston 22 and the inner surface of the sealing strip 100A.
  • the sealing strip 100B has a concave-cylindrical inner surface whose radius of curvature corresponds to the smaller radius of curvature r 1 .
  • the working space 80 increases while the working space 82 decreases.
  • the shaft 70 is thereby rotated relatively slowly, while a relatively fast rotation of the shaft 72 results.
  • the shaft 72 with the gear 76 is then in the opening 36 in the area corresponding to the arc 40, so to speak in the lower left "corner" of the arch triangle.
  • the rotary piston 22 can not now rotate about the axis of the shaft 70 as a current axis of rotation.
  • a further rotation e.g. is caused by igniting fuel in the combustion chamber 94 in an internal combustion engine or by introducing a working medium in the working chamber 82, the instantaneous axis of rotation jumps in the axis of the shaft 72.
  • the rotary piston continues to rotate counterclockwise, but now about the shaft 72nd
  • each movement section extends from one of the described stop positions to the next.
  • a workspace eg 80
  • the working space 82 increases from zero ( Fig.2 ) to a maximum while the working space 80 decreases again ( Figure 3 ).
  • each of the two waves could define an instantaneous axis of rotation with its axis.
  • a force is applied to the left on the rotary piston 22 by a working medium introduced into the working space 82, this force could possibly cause a rotation of the rotary piston 22 about a momentary axis of rotation to a translatory movement in the horizontal direction Fig.2 to lead.
  • the rotary piston 22 would be wedged in the chamber 12.
  • Sensors 140 detect the position of the rotary piston at 22 in chamber 12.
  • the sensors signal when the rotary piston has reached a stop position.
  • a controller 142 acted upon by the signals from the sensors then controls devices 144 and 146, by means of which rotational speeds of the shaft 70 or the shaft 72 are preset for a short time, depending on which stop position has been reached. He is then given eg the shaft 70 a low speed and the shaft 72 a higher or vice versa.
  • the devices 144 and 146 may be braking devices which, in the stop positions, act alternately on the shaft 70 or the shaft 72 for a short time while the respective other shaft remains unbraked.
  • the radii of the pitch circles of the gears correspond substantially to the small radii of curvature of the opening 36 forming the second order oval. If the internal teeth 56 were to follow the oval of the aperture 36 throughout, then the gears would each be caught in the end positions of the rotary piston 22. The "corners" of the "Arch Triangle” could not roll over the gears. For this reason, the concave arcuate toothed racks in the region of circular arcs 38, 40, 42 are connected with a small diameter by short straight or convex-arcuate toothed racks 64, 66 and 68, respectively. The convex-arcuate toothed racks 64, 66 and 68 allow further rotation of the internal teeth 56 and thus of the rotary piston 22 over these areas.
  • each gear is constantly engaged with one of the concave arcuate racks 64, 66 or 68.
  • the short convex-arcuate or straight racks ensure a transition without interruption of the positive connection but also without blocking.
  • Figure 4 shows a rotary piston machine with a chamber 104, whose cross section forms a fourth order oval 106
  • a Rötationskolben 108 is stirred, the cross section of a fifth order oval 110 forms.
  • the rotary piston 108 has an opening 112 whose shape forms a fifth-order oval 114.
  • the symmetry axes of rotary piston 108 and aperture 112 coincide.
  • the aperture 112 has internal teeth 116.
  • the internal teeth 116 engage with two gears 118 and 120.
  • the gears 118 and 120 are seated on two shafts 122 and 124 fixed to the housing.
  • the rotary piston 108 divides the chamber into two working chambers 130 and 132, one of which increases in rotation of the rotary piston and the other decreases.
  • the workflow is similar to the workflow of running Fig.1 to 3 ,
  • the rotary piston 108 rotates, for example, about the axis 126 of a shaft 122 to a stop position. Then the instantaneous axis of rotation jumps into the axis 128 of the other shaft 124.
  • the rotary piston rotates about this axis further counterclockwise from Figure 4 until the next stop position.
  • the sequence of movements between two successive stop positions is a "movement section". In each movement section, the working space 130 increases from zero to a maximum and the working space 132 decreases from a maximum to zero or vice versa.
  • the work spaces are always on both sides of the axes 126 and 128 the waves 122 and 124 containing symmetry plane. They do not wander around the chamber.
  • FIG. 4A shows a rotary piston machine similar to that of Figure 4 , Corresponding parts bear the same reference numerals as there. Details of the rotary piston machine of 4A are in an enlarged scale in Figure 8 and 8A shown.
  • the injection nozzle 150 protrudes into a combustion chamber 152.
  • This combustion chamber is dimensioned and designed so that the combustion of the injected fuel takes place substantially only in the combustion chamber.
  • the injection can be metered depending on the time or in dependence on the rotation of the rotary piston so that it is adapted to the change in volume of the working space 130 or 132. In the working space then no flame front occurs.
  • the propagation of flame fronts in an expanding workspace presents problems with known rotary piston engines.
  • the combustion chamber 152 has a spherical-cap-shaped recess of the housing, to which a frustoconical space 156, which tapers towards the working space, adjoins.
  • the space 156 is formed in an insert 158, which is screwed into a threaded recess of the wall of the working space 130 or 132.
  • the combustor 152 is closed by a grid or net 160.
  • the injection nozzle 150 empties into a cone rounded off at the tip, the injection taking place via nozzle openings in the jacket of this cone.
  • Figure 5 shows a rotary piston machine in which a rotary piston whose cross section forms a seventh-order oval, is guided in a chamber whose cross section is a sixth order oval. Structure and function are similar to the execution of ovals, except for the orders of the ovals Figure 4 , Corresponding parts are provided with the same reference numerals as in FIG Figure 4 but with the addition "A”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Hydraulic Motors (AREA)
  • Reciprocating Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Description

Die Erfindung betrifft eine Rotationskolbenmaschine, mit einer in einem Gehäuse gebildeten prismatischen Kammer, deren Querschnitt ein Oval aus Kreisbögen von abwechselnd kleinerem und größerem Radius bildet, und einem in der Kammer beweglichen Rotationskolben, dessen Querschnitt ebenfalls ein Oval mit den gleichen abwechselnd kleinerem und größeren Radien bildet, dessen Ordnung von der Ordnung des den Querschnitt der Kammer bildenden Ovals abweicht, wobei der Rotationskolben sich abwechselnd in aufeinanderfolgenden Bewegungsabschnitten um unterschiedliche Drehachsen jeweils von einer Anschlagstellung zur nächsten dreht und bei seiner Drehbewegung in jeder Position an der Innenwandung der Kammer unter Bildung von zwei Arbeitsräumen anliegt, und mit einem mit einer Innenverzahnung versehenen Durchbruch des Rotationskolbens, dessen Innenverzahnung mit einer Außenverzahnung mindestens einer gehäusefest gelagerten Welle für den An- oder Abtrieb der Drehbewegung in Eingriff ist, wobei

  • (a) die Ordnung des Ovals der Kammer um eins geringer ist als die Ordnung des Ovals des Rotationskolbens,
  • (b) der Durchbruch dem Rotationskolben im wesentlichen mathematisch ähnlich ist, wobei die Symmetrieebenen des Durchbruchs mit denen des Rotationskolbens zusammenfallen, und
  • (c) ein Paar mit Außenverzahnung versehene, gehäusefest gelagerte Wellen vorgesehen sind, deren Außenverzahnungen mit der Innenverzahnung des Durchbruchs in Eingriff sind, wobei in jedem Bewegungsabschnitt des Rotationskolbens jeweils ein Bereich eines Abschnitts der Innenverzahnung des Durchbruchs mit kleinerem Krümmungsradius mit der Außenverzahnung einer der Wellen in Eingriff ist, während ein Abschnitt der Innenverzahnung des Durchbruchs mit größerem Krümmungsradius mit der Außenverzahnung der anderen Welle in Eingriff ist und im jeweils folgenden Bewegungsabschnitt jeweils ein Bereich eines Abschnitts der Innenverzahnung mit größerem Krümmungsradius mit der Außenverzahnung der ersteren Welle in Eingriff ist, die im vorangegangenen Bewegungsabschnitt mit einen Bereich eines Abschnitts von kleinerem Krümmungsradius in Eingriff war, während die Außenverzahnung der Welle, die im vorangegangenen Bewegungsabschnitt mit einen Bereich eines Abschnitts der Innenverzahnung des Durchbruchs von größerem Krümmungsradius in Eingriff war, nun mit einem Bereich eines Abschnitts von kleinerem Krümmungsradius in Eingriff ist.
The invention relates to a rotary piston machine, comprising a prismatic chamber formed in a housing, whose cross section forms an oval of circular arcs of alternately smaller and larger radius, and a rotary piston movable in the chamber, whose cross section is also an oval with the same alternately smaller and larger radii whose order deviates from the order of the oval forming the cross-section of the chamber, the rotary piston alternately rotating in successive stages of movement about different axes of rotation from one stop position to the next, and rotating in any position on the inner wall of the chamber to form two Working chambers abuts, and provided with an internal toothing breakthrough of the rotary piston, the internal toothing with an external toothing of at least one housing fixedly mounted shaft for the drive or the output of the rotary motion is engaged, in which
  • (a) the order of the oval of the chamber is one less than the order of the oval of the rotary piston,
  • (b) the aperture is substantially mathematically similar to the rotary piston, the planes of symmetry of the aperture coinciding with those of the rotary piston, and
  • (C) a pair of externally toothed, housing fixedly mounted shafts are provided, the outer teeth are in engagement with the internal teeth of the aperture, wherein in each movement portion of the rotary piston, in each case a portion of a portion of the inner teeth of the smaller radius of curvature of the outer toothing of the waves is engaged, while a portion of the internal teeth of the opening with a larger radius of curvature with the outer teeth of the other shaft is engaged and in the following each movement section, a portion of a portion of the inner toothing with a larger radius of curvature with the outer toothing of the former shaft is engaged in the the previous movement portion with a portion of a portion of smaller radius of curvature was engaged, while the outer teeth of the shaft, in the previous movement portion with a portion of a portion of the internal teeth of the larger radius of curvature breakthrough is now engaged with a portion of a smaller radius of curvature portion.

Ein "Oval" ist in der Mathematik eine nicht-analytische, geschlossene flache konvexe Figur, die aus Kreisbögen zusammengesetzt ist. Die Kreisbögen sind stetig und differenzierbar aneinandergesetzt. In den Punkten, in denen die Kreisbögen aneinander anschließen, ist die Kurve stetig. Es fallen dort auch die Tangenten des der beiden aneinander anschließenden Kreisbögen zusammen. Die Kurve ist differenzierbar. In den Punkten, wo die Kreisbögen mit verschiedenen Krümmungsradien aneinander anschließen, macht die zweite Ableitung -welche die Krümmung bestimmt- einen Sprung. Das Oval besteht alternierend aus Kreisabschnitten mit einem ersten, kleineren, und einem zweiten, größeren Krümmungsradius. Die Ordnung des Ovals ist bestimmt durch die Anzahl der Paare von Kreisabschnitten mit dem ersten und dem zweiten Krümmungsradius. Ein Oval zweiter Ordnung oder Bi-Oval ist "ellipsenähnlich" mit zwei diametral gegenüberliegenden Kreisbögen von kleinerem Durchmesser, die durch zwei Kreisbögen von größerem Durchmesser verbunden sind.An "oval" in mathematics is a non-analytic, closed, flat convex figure composed of circular arcs. The circular arcs are continuous and differentiated juxtaposed. In the points where the circular arcs connect, the curve is continuous. There are also the tangents of the two adjoining circular arcs together. The curve is differentiable. In the points where the circular arcs with different radii of curvature join, the second derivative -which determines the curvature-makes a jump. The oval consists of alternating circular sections with a first, smaller, and a second, larger radius of curvature. The order of the oval is determined by the number of pairs of circular sections having the first and second radii of curvature. A second-order or bi-oval oval is "ellipse-like" with two diametrically opposed circular arcs of smaller diameter joined by two circular arcs of larger diameter.

Stand der TechnikState of the art

Rotationskolbenmaschinen der eingangs genannten Art sind bekannt.Rotary piston machines of the type mentioned are known.

Die US 3 967 594 A und die US 3 996 901 A zeigen eine Rotationskolbenmaschine mit einem ovalen Kolben in einer ovalen Kammer. Dabei ist der Kolben im Querschnitt bi-oval. Dieser bi-ovale Kolben ist in einer tri-ovalen Kammer beweglich. Bei diesen bekannten Rotationskolbenmaschinen sind aufwendige Getriebe vorgesehen, um die Drehbewegung des Rotationskolbens auf eine Welle zu übertragen.The US 3,967,594 A and the US 3 996 901 A show a rotary piston machine with an oval piston in an oval chamber. The piston is bi-oval in cross-section. This bi-oval piston is movable in a tri-oval chamber. In these known rotary piston machines complex gears are provided to transmit the rotational movement of the rotary piston on a shaft.

Die DE 199 20 289 C1 beschreibt ebenfalls eine Rotationskolbenmaschine, bei welchem der Querschnitt einer in einem Gehäuse gebildeten prismatischen Kammer tri-oval mit aneinander stetig und differenzierbar anschließenden ersten und zweiten Kreisbögen von abwechselnd einem kleineren Krümmungsradius und einem größeren Krümmungsradius ist. In der Kammer ist ein Rotationskolben mit bi-ovalem Querschnitt geführt. Der bi-ovale Querschnitt des Rotationskolbens ist von abwechselnd ersten und zweiten Kreisbögen mit den kleineren bzw. größeren Krümmungsradien des tri-ovalen Querschnitts der Kammer gebildet, die wieder stetig und differenzierbar aneinander anschließen. Der bi-ovale Rotationskolben führt in der tri-ovalen Kammer die oben beschriebenen Bewegungszyklen mit springenden momentanen Drehachsen aus. Die Bewegung des Rotationskolbens wird dort auf sehr einfache Weise abgegriffen: Eine Welle erstreckt sich zentral durch die tri-ovale Kammer, also entlang der Schnittlinie der Symmetrieebenen der Kammer. Die Welle trägt ein Ritzel. Der Rotationskolben weist einen ovalen Durchbruch mit einer Innenverzahnung auf. Die lange Achse im Querschnitt des Durchbruchs erstreckt sich längs der kurzen Achse des bi-ovalen Querschnitts des Rotationskolbens. Das Ritzel kämmt ständig mit der Innenverzahnung.The DE 199 20 289 C1 also describes a rotary-piston machine in which the cross-section of a prismatic chamber formed in a housing is tri-oval with first and second arcs of alternately a smaller radius of curvature and a larger radius of curvature contiguous and differentiable. In the chamber, a rotary piston is guided with bi-oval cross-section. The bi-oval cross-section of the rotary piston is formed by alternately first and second circular arcs with the smaller or larger radii of curvature of the tri-oval cross-section of the chamber, which again connect continuously and differentially to each other. The bi-oval rotary piston performs in the tri-oval chamber the motion cycles described above with jumping momentary axes of rotation. The movement of the rotary piston is tapped there in a very simple manner: A shaft extends centrally through the tri-oval chamber, ie along the line of intersection of the symmetry planes of the chamber. The shaft carries a pinion. The rotary piston has an oval opening with an internal toothing. The long axis in cross section of the aperture extends along the short axis of the bi-oval cross-section of the rotary piston. The pinion meshes constantly with the internal teeth.

Bei den bekannten Rotationskolbenmaschinen bildet ein Gehäuse eine prismatische Kammer, deren Querschnitt ein solches Oval ungerader Ordnung, also beispielsweise ein Oval dritter Ordnung bildet. Die Kammer bildet zylindrische Innenwandabschnitte abwechselnd mit dem ersten, kleinem und dem zweiten, größeren .Krümmungsradius. In einem solchen Oval dritter (fünfter oder siebenter und höherer) Ordnung ist ein Rotationskolben beweglich, der im Querschnitt ein Oval bildet, dessen Ordnung um eins geringer ist als die Ordnung des Ovals der Kammer. Das für den Rotationkolben verwendete Oval hat - auch wenn es eine höhere Ordnung besitzt- eine zweifache Symmetrie, d.h. es ist spiegelsymmetrisch in bezug auf zwei zueinander senkrechte Achsen. Dieser Rotationskolben weist zwei diametral gegenüberliegende zylindrische Mantelabschnitte auf, deren Krümmungsradius dem kleineren (ersten) Krümmungsradius des Ovals der Kammer entspricht. Wenn der Rotationskolben im Querschnitt ein Oval bildet, ist der zweite, größere Krümmungsradius dieses Ovals gleich dem zweiten Krümmungsradius des die Kammer bildenden Ovals. In einem bestimmten Bewegungsabschnitt liegt der Rotationskolben mit einem ersten dieser zylindrischen Mantelabschnitte in einem dazu komplementären zylindrischen Innenwandabschnitt der Kammer, der den gleichen kleineren Krümmungsradius aufweist. Mit dem zweiten, diametral gegenüberliegenden zylindrischen Mantelabschnitt gleitet der Rotationskolben an dem gegenüberliegenden zylindrischen Innenwandabschnitt der Kammer, der den größeren Krümmungsradius besitzt. In der Kammer werden auf diese Weise von dem Rotatioskolben zwei Arbeitsräume gebildet, von denen bei der Drehung des Rotationskolbens der eine sich vergrößert und der andere kleiner wird. Der Rotationskolben dreht sich dabei um eine momentane Drehachse. Diese momentane Drehachse fällt mit der Zylinderachse des ersten zylindrischen Mantelabschnitts zusammen. Diese momentane Drehachse hat daher eine definierte Position relativ zu dem Rotationskolben. Die momentane Drehachse entspricht in diesem Bewegungsabschnitt natürlich auch der gehäusefesten Zylinderachse des zylindrischen Innenwandabschnitts von kleinerem Krümmungsradius, in dem sich der Rotationskolben dreht. Diese Drehung setzt sich fort, bis der zweite zylindrische Mantelabschnitt des Rotationskolbens in eine Anschlagposition gelangt. In dieser Anschlagposition liegt der zweite zylindrische Mantelabschnitt in dem an den gegenüberliegenden Innenwandabschnitt von größerem Krümmungsradius anschließenden Innenwandabschnitt von kleinerem Durchmesser.In the known rotary piston machines, a housing forms a prismatic chamber whose cross-section such an oval odd order, so for example a Oval forms third order. The chamber forms cylindrical inner wall sections alternately with the first, small and the second, larger radius of curvature. In such an oval of third (fifth or seventh and higher) order is a rotary piston movable, which forms an oval in cross-section, whose order is one less than the order of the oval of the chamber. The oval used for the rotary piston has a two-fold symmetry, even if it has a higher order, ie it is mirror-symmetrical with respect to two mutually perpendicular axes. This rotary piston has two diametrically opposite cylindrical shell sections whose radius of curvature corresponds to the smaller (first) radius of curvature of the oval of the chamber. When the rotary piston forms an oval in cross-section, the second, larger radius of curvature of this oval is equal to the second radius of curvature of the oval forming the chamber. In a certain movement section of the rotary piston is located with a first of these cylindrical shell portions in a complementary cylindrical inner wall portion of the chamber, which has the same smaller radius of curvature. With the second, diametrically opposed cylindrical shell portion of the rotary piston slides on the opposite cylindrical inner wall portion of the chamber, which has the larger radius of curvature. In the chamber, two working spaces are formed in this way by the Rotatioskolben, of which one increases during rotation of the rotary piston and the other is smaller. The rotary piston rotates about a momentary axis of rotation. This instantaneous axis of rotation coincides with the cylinder axis of the first cylindrical shell portion. This instantaneous axis of rotation therefore has a defined position relative to the rotary piston. The instantaneous axis of rotation in this movement section of course also corresponds to the housing-fixed cylinder axis of the cylindrical inner wall section of smaller radius of curvature, in which the rotary piston rotates. This rotation continues until the second cylindrical skirt portion of the rotary piston enters a stop position. In this stop position, the second cylindrical shell portion lies in the adjoining the opposite inner wall portion of larger radius of curvature inner wall portion of smaller diameter.

Eine weitere Drehung des Rotationskolbens um den bisherigen momentanen Drehpunkt ist nicht möglich. Die momentane Drehachse springt daher für den nächsten Bewegungsabschnitt in eine andere Position, nämlich die Zylinderachse des zweiten zylindrischen Mantelabschnitts. Auch diese neue momentane Drehachse ist in einer definierten Position relativ zu dem Rotationskolben. Sie entspricht in dem nächsten Bewegungsabschnitt der Zylinderachse des zylindrischen Innenwandabschnitts, in dem sich jetzt der zweite zylindrische Mantelabschnitt des Rotationskolbens dreht. Der "erste" zylindrische Mantelabschnitt gleitet in diesem Bewegungsabschnitt wieder an dem gegenüberliegenden Innenwandabschnitt mit größerem Krümmungsradius.A further rotation of the rotary piston to the previous current pivot point is not possible. The current axis of rotation therefore jumps for the next Movement section in a different position, namely the cylinder axis of the second cylindrical shell portion. This new instantaneous axis of rotation is in a defined position relative to the rotary piston. It corresponds in the next movement portion of the cylinder axis of the cylindrical inner wall portion in which now rotates the second cylindrical shell portion of the rotary piston. The "first" cylindrical shell portion slides in this movement section again on the opposite inner wall portion with a larger radius of curvature.

Bei einer solchen Rotationskolbenmaschine dreht sich der Rotationskolben immer in dem gleichen Drehsinn aber abwechselnd um verschiedene momentane Drehachsen, wobei die Drehachsen nach jedem Bewegungsabschnitt "springen". Bezogen auf den Rotationskolben sind zwei solche momentanen Drehachsen definiert, nämlich durch die Zylinderachsen der diametral einander gegenüberliegenden zylindrischen Mantelabschnitte. Bezogen auf das Gehäuse und die darin gebildete Kammer springt die momentane Drehachse zwischen den "Ecken" des Ovals, also den Zylinderachsen der Innenwandabschnitte mit kleinerem Krümmungsradius.In such a rotary piston machine, the rotary piston always rotates in the same direction of rotation but alternately about different instantaneous axes of rotation, wherein the axes of rotation "jump" after each movement section. Based on the rotary piston two such instantaneous axes of rotation are defined, namely by the cylinder axes of the diametrically opposed cylindrical shell sections. Based on the housing and the chamber formed therein, the instantaneous axis of rotation jumps between the "corners" of the oval, ie the cylinder axes of the inner wall sections with a smaller radius of curvature.

Bei jedem Bewegungsabschnitt wächst das Volumen eines Arbeitsraumes bis zu einem Maximalwert an, während das Volumen des jeweils anderen Arbeitsraumes sich bis zu einem Minimalwert vermindert. Im Idealfall, wenn der Rotationskolben ebenfalls im Querschnitt ein Oval bildet, wächst das Volumen des Arbeitsraumes von praktisch null auf den Maximalwert bzw. vermindert sich auf praktisch null. Eine solche Rotationskolbenmaschine kann als Zweitakt- oder Viertakt-Verbrennungskraftmaschine (mit innerer Verbrennung) oder als Kraftmaschine mit äußerer Verbrennung, z.B. Dampfmaschine, ausgebildet sein. Sie kann aber auch als Luftdruckmotor, als Hydraulikmotor oder als Pumpe arbeiten.In each movement section, the volume of a working space grows up to a maximum value, while the volume of the other working space decreases to a minimum value. Ideally, if the rotary piston also forms an oval in cross section, the volume of the working space increases from practically zero to the maximum value or decreases to virtually zero. Such a rotary piston engine may be used as a two-stroke or four-stroke internal combustion engine or as an external combustion engine, e.g. Steam engine, be trained. But it can also work as an air pressure motor, as a hydraulic motor or as a pump.

Bei der DE 199 20 289 C1 ist in einer Kammer, deren Querschnitt ein Oval dritter Ordnung bildet, ein Rotationskolben beweglich, dessen Querschnitt ein Oval zweiter Ordnung ist. Zum Abgreifen der Bewegung des Rotationskolbens dient eine einzige sich zentral durch die Kammer erstreckende Abtriebswelle. Die Abtriebswelle ragt durch einen ovalen Durchbruch des Rotationskolbens und trägt ein Ritzel. Das Ritzel ist in Eingriff mit einer Verzahnung auf der Innenseite des Durchbruchs.In the DE 199 20 289 C1 is in a chamber whose cross-section forms a third-order oval, a rotary piston movable, whose cross-section is a second-order oval. To pick up the movement of the rotary piston is a single centrally extending through the chamber output shaft. The output shaft protrudes through an oval opening of the rotary piston and carries a pinion. The pinion is in mesh with a toothing on the inside of the aperture.

Bei den bekannten Rotationskolbenmaschinen ist die Ordnung des die Kammer definierenden Ovals jeweils um eins größer als die Ordnung des Ovals, das den Querschnitt des Rotationskolbens bildet. Ein bi-ovaler Rotationskolben ist in einer tri-ovalen Kammer geführt. Dabei springen die momentanen Drehachsen des Rotationskolbens in den Anschlagstellungen relativ zu dem Rotationskolben nur zwischen zwei Positionen, relativ zu dem Gehäuse aber zwischen wenigstens drei Positionen. Der Rotationskolben bewegt sich mit dem Abschnitt von kleinem Radius translatorisch an dem Abschnitt von großem Radius der Innenwand der Kammer entlang. Das kann zu Dichtungsproblemen bei der Abdichtung zwischen den Arbeitsräumen der Kammer führen. Ein weiteres Problem ergibt sich daraus, daß in jedem Arbeitszyklus der Rotationskolbenmaschine nacheinander mehr als zwei Arbeitsräume gebildet werden, die längs der Innenwandung des Gehäuses herumwandern.In the known rotary piston engines, the order of the oval defining the chamber is one greater than the order of the oval forming the cross section of the rotary piston. A bi-oval rotary flask is guided in a tri-oval chamber. In this case, jump the instantaneous axes of rotation of the rotary piston in the stop positions relative to the rotary piston only between two positions, relative to the housing but between at least three positions. The rotary piston translates with the small radius portion on the large radius portion of the inner wall of the chamber. This can lead to sealing problems in the sealing between the working chambers of the chamber. Another problem arises from the fact that in each cycle of the rotary piston machine successively more than two working spaces are formed, which wander along the inner wall of the housing.

Die luxemburgische Patentanmeldung LU 45663 offenbart eine Rotationskolbenmaschine mit einem Rotationskolben in Form eines Ovals dritter Ordnung (drei abgerundete "Ecken") in einer Kammer in Form eines Ovals zweiter Ordnung (zwei abgerundete "Ecken"). In dem Rotationskolben ist in einer der planen Oberflächen eine Ausnehmung mit einer durchgehenden, gleichmäßigen Verzahnung vorgesehen. Die Ausnehmung hat eine dem Oval des Rotationskolbens entsprechende Form. In die Verzahnung der Ausnehmung greifen Außenverzahnungen von zwei gehäusefest gelagerten Wellen ein. Die eine Welle dient zur Übertragung der Antriebskraft, während die andere Welle zum Regulieren der Kolbenbewegung und zum Antrieb einer Lichtmaschine und eines Kühlerlüfters vorgesehen ist.Luxembourg patent application LU 45663 discloses a rotary piston machine having a rotary piston in the form of a third order oval (three rounded "corners") in a second order oval shaped chamber (two rounded "corners"). In the rotary piston, a recess with a continuous, uniform toothing is provided in one of the flat surfaces. The recess has a shape corresponding to the oval of the rotary piston. In the toothing of the recess engage external teeth of two fixed housing fixed waves. The one shaft serves to transmit the drive force, while the other shaft is provided for regulating the piston movement and for driving an alternator and a radiator fan.

Offenbarung der ErfindungDisclosure of the invention

Der Erfindung liegt die Aufgabe zugrunde, bei einer Rotationskolbenmaschine der eingangs genannten Art die Abdichtung zwischen den Arbeitsräumen der Kammer zu verbessern.The invention has for its object to improve the seal between the working chambers of the chamber in a rotary piston machine of the type mentioned.

Der Erfindung liegt weiter die Aufgabe zugrunde, in den Anschlagpositionen des Rotationskörpers auf einfache Weise eine abgeschlossene Kinematik mit eindeutiger Bewegung des Rotationskolbens zu gewährleisten.The invention is further based on the object to ensure a closed kinematics with clear movement of the rotary piston in a simple manner in the stop positions of the rotary body.

Der Erfindung liegt hierzu speziell die Aufgabe zugrunde, die Anzahl der bezogen auf das Gehäuse auftretenden momentanen Drehachsen zu verringern.The invention is for this purpose specifically the task to reduce the number of occurring relative to the housing current axes of rotation.

Der Erfindung liegt schließlich die Aufgabe zugrunde, eine Rotationskolbenmaschine der eingangs genannten Art so auszubilden, daß nur zwei sich abwechselnd vergrößernde und verkleinernde Arbeitsräume auftreten, welche gegenüberliegenden in festen Winkellagen zu dem Gehäuse angeordnet sind.The invention is finally based on the object, a rotary piston machine of the type mentioned in such a way that only two alternately increasing and decreasing work spaces occur, which are arranged opposite in fixed angular positions to the housing.

Erfindungsgemäß werden diese Aufgaben dadurch gelöst, daß bei einer Rotationskolbenmaschine der eingangs genannten Art Sensoren zum Signalisieren des Erreichens einer Anschlagposition durch den Rotationskolben und drehzahlregulierende Mittel mit einer von den Signalen der Sensoren beaufschlagten Steuerung und jeweils einer von der Steuerung gesteuerten Bremsvorrichtung für jede der Wellen vorgesehen sind, mit denen bei Erreichen einer Anschlagstellung jeweils diejenige Welle, deren Außenverzahnung im vorangegangenen Bewegungsabschnitt an der Innenverzahnung des Durchbruchs im Bereich eines größeren Krümmungsradius abrollte, vorübergehend abbremsbar ist, während die andere Welle um deren Achse sich der Rotationskolben im vorangegangenen Bewegungsabschnitt drehte, ungebremst bleibt.According to the invention, these objects are achieved in that provided in a rotary piston machine of the type mentioned sensors for signaling the achievement of a stop position by the rotary piston and speed control means with an acted upon by the signals of the sensors control and each controlled by the controller braking device for each of the waves are with which upon reaching a stop position in each case that shaft whose outer toothing unrolled in the previous movement section on the internal teeth of the opening in the region of a larger radius of curvature is temporarily braked, while the other shaft rotated about the axis of the rotary piston in the previous movement section remains unchecked ,

Überraschenderweise erhält man eine eindeutige Führung eines im Querschnitt ovalen Rotationskolbens in einer ovalen Kammer unter Bildung von gegeneinander abgedichteten Arbeitsräumen auch dann, wenn der Rotationskolben im Gegensatz zum Stand der Technik höhere Ordnung des Ovals aufweist als die Kammer, also z.B. ein triovaler Rotationskolben sich in einer bi-ovalen Kammer dreht. Dabei erfolgt die Drehung jeweils um eine von zwei momentanen Drehachsen, die aber hier von gehäusefesten Wellen gebildet sind. Die Drehachsen weisen Zahnräder oder Außenverzahnungen auf. die mit einer Innenverzahnung eines im wesentlichen ovalen Durchbruchs des Rotationskolben in Eingriff sind. Eine der Wellen sitzt jeweils in einem Bereich des kleineren Krümmungsradius des ovalen Durchbruchs, also z.B. quasi in einer "Ecke" des den Durchbruch bildenden "Bogendreiecks". Die andere Welle ist in Eingriff mit dem gegenüberliegenden Bereich der Innenverzahnung mit dem größeren Krümmungsradius, also quasi der gegenüberliegenden Seite des Bogendreiecks.Surprisingly, one obtains a clear guidance of a cross-sectionally oval rotary piston in an oval chamber to form mutually sealed working spaces even if the rotary piston, in contrast to the prior art, has a higher order of the oval than the chamber, e.g. a triovaler rotary piston rotates in a bi-oval chamber. The rotation takes place in each case about one of two instantaneous axes of rotation, which are formed here but of housing-fixed shafts. The axes of rotation have gears or external gears. which are in engagement with an internal toothing of a substantially oval opening of the rotary piston. One of the shafts in each case sits in a region of the smaller radius of curvature of the oval opening, thus e.g. virtually in a "corner" of the breakthrough forming "arch triangle". The other shaft is in engagement with the opposite region of the internal toothing with the larger radius of curvature, so to speak, the opposite side of the arch triangle.

In einer Anschlagstellung liegt bei einer Rotationskolbenmaschie mit bi-ovaler Kammer und tri-ovalem Rotationskolben der Rotationskolben mit zwei benachbarten Bereiche mit größerem Krümmungsradius und dem dazwischenliegenden Bereich von kleinerem Krümmungsradius an der Innenwandung der Kammer an. Wenn der Rotationskolben in eine solche Anschlagstellung gelangt, sitzt auch die andere Welle in einer Ecke des Bogendreiecks. Die weitere Drehung des Rotationskolbens im gleichen Drehsinn erfolgt dann um die ersterwähnte Welle. Auch hier springen somit die Drehachsen bei Erreichen einer Anschlagstellung. Dieses Springen erfolgt aber zwischen zwei gehäusefesten Achsen, nämlich zwischen den Drehachsen der beiden Wellen.In a stop position is located in a rotary piston machine with bi-oval chamber and tri-oval rotary piston of the rotary piston with two adjacent regions with a larger radius of curvature and the intermediate region of smaller radius of curvature at the inner wall of the chamber. When the rotary piston enters such a stop position, the other shaft is also located in a corner of the arch triangle. The further rotation of the rotary piston takes place in the same direction of rotation then around the first-mentioned wave. Again, therefore, the axes of rotation jump when reaching a stop position. But this jumping takes place between two fixed axes, namely between the axes of rotation of the two shafts.

Generell gilt: Bei einer 2n-ovalen Kammer hat der darin geführte Rotationskolben die Ordnung 2n+1. In den Anschlagpositionen liegt dann der Rotationskolben mit n+1 "Seiten" formschlüssig an der Innenwandung der Kammer an, während jeweils n "Seiten" diejenige Arbeitskammer begrenzen, die dann ihre maximale Ausdehnung besitzt. Es werden zwei Arbeitsräume auf gegenüberliegenden Seiten des Gehäuses gebildet.In general, in a 2n-oval chamber, the rotary piston guided therein has the order 2n + 1. In the stop positions then the rotary piston with n + 1 "sides" is positively against the inner wall of the chamber, while each n "sides" limit that working chamber, which then has its maximum extent. Two work spaces are formed on opposite sides of the housing.

In der den Anschlagstellungen ist die Kinematik des Rotationskolbens in der Kammer nicht abgeschlossen. Statt einer weiteren Drehbewegung könnte z.B. durch die Einleitung eines Druckmittels in den im Volumen minimierten Arbeitsraum oder durch Zünden eines Treibstoffgemisches eine Querkraft auftreten, welche zu einem Verklemmen des Rotationskolbens in der Kammer führt. Um dieses Problem zu lösen und eine abgeschlossene Kinematik zu erhalten, sind nach der Erfindung drehzahlregulierende Mittel vorgesehen, mit denen bei Erreichen einer Anschlagstellung für diejenige Welle, deren Außenverzahnung im vorangegangenen Bewegungsabschnitt mit der Innenverzahnung des Durchbruchs im Bereich eines größeren Krümmungsradius abrollte, eine geringere Drehzahl erzwingbar ist als für die andere Welle um deren Achse sich der Rotationskolben im vorangegangenen Bewegungsabschnitt drehte. Das stellt sicher, daß sich der Rotationskolben in der vorgesehenen Weise um die zwangsweise mit geringerer Drehzahl umlaufende Welle weiterdreht. Diese erzwungene Drehzahlvorgabe braucht nur jeweils kurzzeitig zu erfolgen, bis der Rotationskolben sich aus der Anschlagstellung herausgedreht hat. Die erzwungene Drehzahlvorgabe kann dadurch erfolgen, daß durch Bremsmittel jeweils eine von zwei gehäusefesten Wellen abgebremst wird, was konstruktiv einfach zu bewerkstelligen ist.In the stop positions, the kinematics of the rotary piston is not completed in the chamber. Instead of another rotary motion, e.g. occur by the introduction of a pressure medium in the minimized working volume or by igniting a fuel mixture, a transverse force, which leads to jamming of the rotary piston in the chamber. In order to solve this problem and to obtain a completed kinematics, according to the invention speed-regulating means are provided with which when reaching a stop position for that shaft whose outer teeth rolled in the previous movement section with the internal teeth of the opening in the region of a larger radius of curvature, a lower speed can be forced than for the other shaft about the axis of the rotary piston rotated in the previous movement section. This ensures that the rotary piston continues to rotate in the intended manner around the shaft which is forced to rotate at a lower speed. This forced speed specification only needs to be made for a short time until the rotary piston has unscrewed from the stop position. The forced speed specification can take place in that one of two housing-fixed shafts is braked by braking means, which is structurally easy to accomplish.

Auf einer Seite dreht sich ein Umfangsabschnitt des Rotationskolbens relativ langsam an einem Umfangsabschnitt mit großem Krümmungsradius der Innenwand der Kammer ab. Die langsame Bewegung vermindert die Dichtprobleme. Auf der gegenüberliegenden Seite gleitet ein Umfangsabschnitt des Rotationskolbens mit großem Krümmungsradius, auf einem ebensolchen Umfangsabschnitt der Innenwand. Das ergibt eine große Dichtfläche.On one side, a peripheral portion of the rotary piston rotates relatively slowly on a circumferential portion with a large radius of curvature of the inner wall of the chamber. The slow movement reduces the sealing problems. On the opposite side, a peripheral portion of the large-radius-of-rotation rotary piston slides on just such a peripheral portion of the inner wall. This results in a large sealing surface.

Die beiden Wellen drehen sich alternierend mit geringerer und höherer Geschwindigkeit. Durch ein Differential oder einen Freilauf kann eine konstante Drehzahl einer mit den beiden Wellen gekuppelten An- oder Abtriebswelle vorgesehen werden. Ausführungsbeispiele der Erfindung sind nachstehend unter Bezugnahme auf die zugehörigen Zeichnungen näher erläutert.

Fig.1
zeigt einen Querschnitt einer Rotationskolbenmaschine mit zwei Wellen, wobei ein Rotationskolben, dessen Querschnitt ein Oval dritter Ordnung bildet, in einer Kammer geführt ist, deren Querschnitt ein Oval zweiter Ordnung ist.
Fig.2
ist eine Darstellung ähnlich Fig.2 und zeigt den Rotationskolben in einer Anschlagstellung.
Fig.3
ist eine Darstellung ähnlich Fig.2 und zeigt den Rotationskolben während des nächsten Bewegungsabschnitts.
Fig.4
zeigt einen Querschnitt einer Rotationskolbenmaschine mit zwei Wellen, wobei ein Rotationskolben, dessen Querschnitt ein Oval fünfter Ordnung bildet, in einer Kammer geführt ist, deren Querschnitt ein Oval vierter Ordnung ist.
Fig.4A
zeigt eine Abwandlung der Anordnung nach Fig.4.
Fig.5
zeigt einen Querschnitt einer Rotationskolbenmaschine mit zwei Wellen, wobei ein Rotationskolben, dessen Querschnitt ein Oval siebter Ordnung bildet, in einer Kammer geführt ist, deren Querschnitt ein Oval sechster Ordnung ist.
Fig.6
ist eine schematische Darstellung der drehzahlregulierenden Mittel.
Fig.7A
ist eine schematische, vergrößerte Darstellung der Dichtung bei einer Rotationskolbenmaschine der in den Figuren 1 bis 5 dargestellten Art, wobei die Abdichtung zwischen einer Dichtleiste und einem Umfangsabschnitt des Rotationskolbens mit kleinerem Krümmungsradius erfolgt.
Fig.7B
ist eine schematische, vergrößerte Darstellung der Dichtung bei einer Rotationskolbenmaschine der in den Figuren 1 bis 5 dargestellten Art, wobei die Abdichtung zwischen einer Dichtleiste und einem Umfangsabschnitt des Rotationskolbens mit größerem Krümmungsradius erfolgt.
Fig.8
zeigt in vergrößertem Maßstab eine Einzelheit der Rotationskolbenmaschine von Fig.4A.
Fig.8A
zeigt die Einzelheit von Fig.8 in weiter vergrößertem Maßstab.
The two shafts rotate alternately at lower and higher speeds. By a differential or a freewheeling constant speed of a coupled with the two shafts input or output shaft can be provided. Embodiments of the invention are explained below with reference to the accompanying drawings.
Fig.1
shows a cross section of a rotary piston machine with two shafts, wherein a rotary piston whose cross section forms a third-order oval, is guided in a chamber whose cross section is a second-order oval.
Fig.2
is a representation similar Fig.2 and shows the rotary piston in a stop position.
Figure 3
is a representation similar Fig.2 and shows the rotary piston during the next movement section.
Figure 4
shows a cross section of a rotary piston machine with two shafts, wherein a rotary piston whose cross section forms a fifth-order oval, is guided in a chamber whose cross-section is a fourth-order oval.
4A
shows a modification of the arrangement according to Figure 4 ,
Figure 5
shows a cross section of a rotary piston machine with two shafts, wherein a rotary piston whose cross section forms a seventh-order oval, is guided in a chamber whose cross section is a sixth order oval.
Figure 6
is a schematic representation of the speed-regulating means.
7A
is a schematic, enlarged view of the seal in a rotary piston machine in the FIGS. 1 to 5 illustrated type, wherein the seal between a sealing strip and a Peripheral portion of the rotary piston with a smaller radius of curvature takes place.
7B
is a schematic, enlarged view of the seal in a rotary piston machine in the FIGS. 1 to 5 illustrated type, wherein the seal between a sealing strip and a peripheral portion of the rotary piston takes place with a larger radius of curvature.
Figure 8
shows in enlarged scale a detail of the rotary piston machine of 4A ,
8A
shows the detail of Figure 8 in a further enlarged scale.

In Fig.1 ist mit 10 ein Gehäuse bezeichnet. In dem Gehäuse 10 ist eine Kammer 12 gebildet. Der Querschnitt der Kammer 12 bildet ein Oval zweiter Ordnung oder ist "bi-oval". Der Querschnitt der Kammer 12 ist demnach von zwei Kreisbögen 14 und 16 von relativ kleinem Krümmungsradius und alternierend dazwischen zwei Kreisbögen 18 und 20 von relativ großem Krümmungsradius gebildet. Die Kreisbögen schließen sich stetig und differenzierbar aneinander an.In Fig.1 is designated 10 a housing. In the housing 10, a chamber 12 is formed. The cross section of the chamber 12 forms a second order oval or is "bi-oval". The cross-section of the chamber 12 is thus formed by two circular arcs 14 and 16 of relatively small radius of curvature and alternately between two circular arcs 18 and 20 of relatively large radius of curvature. The circular arcs close to each other steadily and differentially.

In der Kammer 12 ist ein Rotationskolben 22 geführt. Der Querschnitt des Rotationskolbens 22 bildet ein Oval dritter Ordnung oder ist tri-oval. Demnach besteht der Umfang des Querschnitts aus drei Paaren von jeweils einem Kreisbogen von relativ kleinem Krümmungsradius 24, 26 bzw. 28 und einem Kreisbogen von relativ großem Krümmungsradius 30, 32 bzw. 34 gebildet. Die Kreisbögen von kleinem und großem Krümmungsradius schließen sich alternierend und ebenfalls stetig und differenzierbar aneinander an. Die kleinen Krümmungsradien des Rotationskolbens 22 sind gleich den kleinen Krümmungsradien der Kammer 12, und ebenso sind die großen Krümmungsradien des Rotationskolbens 22 gleich den großen Krümmungsradien der Kammer 12. Der Querschnitt der Kammer 12 ähnelt einer Ellipse, obwohl er gerade keine Ellipse ist. Der Querschnitt des Rotationskolbens 22 ähnelt einem Bogendreieck mit abgerundeten Ecken.In the chamber 12, a rotary piston 22 is guided. The cross-section of the rotary piston 22 forms a third-order oval or is tri-oval. Accordingly, the circumference of the cross-section of three pairs of a circular arc of relatively small radius of curvature 24, 26 and 28 and a circular arc of relatively large radius of curvature 30, 32 and 34 is formed. The circular arcs of small and large radius of curvature close to each other alternately and also steadily and differentially. The small radii of curvature of the rotary piston 22 are equal to the small radii of curvature of the chamber 12, and also the large radii of curvature of the rotary piston 22 are equal to the large radii of curvature of the chamber 12. The cross section of the chamber 12 is similar to an ellipse, even though it is not an ellipse. The cross section of the rotary piston 22 is similar to an arch triangle with rounded corners.

Der Rotationskolben 22 weist einen zentralen Durchbruch 36 auf. Der Querschnitt des Durchbruchs 36 bildet ebenfalls ein Oval dritter Ordnung. Dieses Oval dritter Ordnung ist von drei Kreisbögen von relativ kleinem Krümmungsradius 38, 40 und 42 und von drei Kreisbögen 44, 46 und 48 von relativ großem Krümmungsradius gebildet. Die Kreisbögen 38, 40 und 42 mit kleinem Krümmungsradius und die Kreisbögen 44, 46 und 48 von großem Krümmungsradius schließen sich alternierend und stetig und differenzierbar aneinander an, so daß ein Oval ähnlich einem Bogendreieck mit abgerundeten Enden gebildet wird. Die Symmetrieebenen 50, 52 und 54 des Durchbruchs 36 fallen mit den Symmetrieebenen des Rotationskolbens 22 zusammen.The rotary piston 22 has a central opening 36. The cross section of the aperture 36 also forms a third order oval. This third order oval is formed by three circular arcs of relatively small radius of curvature 38, 40 and 42 and by three circular arcs 44, 46 and 48 of relatively large radius of curvature. The circular arcs 38, 40 and 42 with a small radius of curvature and the circular arcs 44, 46 and 48 of large radius of curvature are adjacent to each other alternately and steadily and differentially, so that an oval is formed similar to an arch triangle with rounded ends. The planes of symmetry 50, 52 and 54 of the aperture 36 coincide with the planes of symmetry of the rotary piston 22.

Der Durchbruch 36 weist eine Innenverzahnung 56 auf. Diese Innenverzahnung 56 weist drei konkav-bogenförmige Zahnleisten 58, 60 und 62 im wesentlichen entlang der Kreisbögen 44, 46 bzw.48 von großem Krümmungsradius auf. Zwischen diesen konkav-bogenförmigen Zahnleisten 58, 60 und 62 sind im Bereich der Kreisbögen von kleinem Krümmungsradius konvex bogenförmige (oder ggf. gerade) Zahnleisten 64, 66 und 68 vorgesehen.The opening 36 has an internal toothing 56. This internal toothing 56 has three concave-arc toothed racks 58, 60 and 62 substantially along the circular arcs 44, 46 and 48 of large radius of curvature. Between these concave-arcuate toothed racks 58, 60 and 62, convex arcuate (or optionally straight) toothed racks 64, 66 and 68 are provided in the region of the circular arcs of small radius of curvature.

Durch den Durchbruch 36 erstrecken sich zwei parallele Wellen 70 und 72 mit Zahnrädern 74 bzw. 76. Die Achsen der Wellen 70 und 72 liegen in der durch die Kreisbögen 18 und 20 verlaufende Symmetrieebene 77 der Kammer 12. Das Zahnrad der einen Welle, in Fig.1 das Zahnrad 74 der Welle 70, sitzt in der "Ecke des Bogendreiecks", d.h. in dem Bereich des Kreisbogens 38 von kleinem Krümmungsradius und ist mit der Innenverzahnung 56 in noch zu beschreibender Weise in Eingriff. Das Zahnrad der anderen Welle, in Fig.1 das Zahnrad 76 der Welle 72, ist mit der gegenüberliegenden konkav-bogenförmigen Zahnleiste, in Fig.1 der Zahnleiste 60, in Eingriff.Through the aperture 36, two parallel shafts 70 and 72 extend with gears 74 and 76, respectively. The axes of the shafts 70 and 72 lie in the plane of symmetry 77 of the chamber 12 through the circular arcs 18 and 20. The gear of one shaft, in Fig.1 the gear 74 of the shaft 70, sitting in the "corner of the arch triangle", ie in the region of the circular arc 38 of small radius of curvature and is with the internal teeth 56 in a manner to be described in engagement. The gear of the other shaft, in Fig.1 the gear 76 of the shaft 72 is, with the opposite concave-arc-shaped rack, in Fig.1 the rack 60, in engagement.

Der Rotationskolben 22 unterteilt die bi-ovale Kammer 12 in zwei Arbeitsräume 80 und 82. In Fig.1 ist die Rotationskolbenmaschine schematisch als Verbrennungskraftmaschine mit innerer Verbrennung dargestellt. Dementsprechend sind für jeden Arbeitsraum 80 und 82 ein Einlaßventil 84 bzw. 86 und ein Auslaßventil 88 bzw. 90 dargestellt. Weiterhin schließt an jeden Arbeitsraum 80 bzw. 82 eine Brennkammer 92 bzw. 94 mit einer Zündkerze oder einer Einspritzdüse 96 bzw. 98 an. Die Arbeitsräume 80 und 82 mit den Ventilen und Zündkerzen oder Einspritzdüsen liegen symmetrisch zu der durch die Kreisbögen 14 und 14 des Querschnitts mit kleinem Krümmungsradius verlaufenden Symmetrieebene. Das ist nur eine schematische Darstellung.The rotary piston 22 divides the bi-oval chamber 12 into two working spaces 80 and 82. In Fig.1 the rotary piston machine is shown schematically as internal combustion engine with internal combustion. Accordingly, for each working space 80 and 82, an inlet valve 84 and 86 and an outlet valve 88 and 90, respectively. Furthermore, closes at each working space 80 and 82 a Combustion chamber 92 and 94 with a spark plug or an injector 96 or 98 at. The work spaces 80 and 82 with the valves and spark plugs or injectors are symmetrical to the plane of symmetry passing through the circular arcs 14 and 14 of the small radius of curvature cross section. That's just a schematic illustration.

In den Bereichen 18 und 20 der großen Krümmungsradien sind an dem Gehäuse Paare von aneinander angrenzenden Dichtleisten 100A, und 100B bzw. 102A und 102B vorgesehen. Die Dichtleisten 100A und 100B bzw. 102A und 102B sind dabei symmetrisch zu der durch die Kreisbögen 18 und 20 des Querschnitts mit großem Krümmungsradius verlaufenden Symmetrieebene.In regions 18 and 20 of the large radii of curvature, pairs of adjoining sealing strips 100A, and 100B, 102A, and 102B are provided on the housing. The sealing strips 100A and 100B or 102A and 102B are symmetrical to the plane of symmetry passing through the circular arcs 18 and 20 of the cross section with a large radius of curvature.

Fig.7A zeigt die Dichtleisten 100A und 100B bei einer Stellung im Bereich des Übergangs von dem kleineren Krümmungsradius r1 der Außenfläche des Rotationskolbens 22 rechts in Fig.7A zu dem Bereich des größeren Krümmungsradius r2 dieser Außenfläche links in Fig.7A. Die Dichtleiste 100A weist eine konkav-zylindrische Innenfläche auf, deren Krümmungsradius dem größeren Krümmungsradius r2 entspricht. Die Dichtleiste 100B weist eine konkav-zylindrische Innenfläche auf, deren Krümmungsradius dem kleineren Krümmungsradius r1 entspricht. Man erkennt, daß die Innenfläche der Dichtleiste 100A sich im Bereich des Krümmungsradius r2 des Rotationskolbens 22 dicht an die dazu komplementäre Oberfläche des Rotationskolbens 22 anlegt. In dem Bereich, in welchem der Krümmungsradius der Oberfläche des Rotationskolbens 22 kleiner ist, nämlich r1 beträgt, bildet sich zwischen der Dichtleiste 100A und dem Rotationskolben 22 und der Innenfläche der Dichtleiste 100A ein keilförmiger Spalt 100C. Die Dichtleiste 100B weist eine konkav-zylindrische Innenfläche auf, deren Krümmungsradius dem kleineren Krümmungsradius r1 entspricht. Man erkennt, daß die Innenfläche der Dichtleiste 100B sich im Bereich des Krfunmungsradius r1 des Rotationskolbens 22 dicht an die dazu komplementäre Oberfläche des Rotationskolbens 22 anlegt. In dem Bereich, in welchem der Krümmungsradius der Oberfläche des Rotationskolbens 22 größer ist, nämlich wieder r2 beträgt, bildet sich rechts in Fig.7A zwischen der Dichtleiste 100B und dem Rotationskolben 22 und der Innenfläche der Dichtleiste 100A ein keilförmiger Spalt 100D. In dem dargestellten Übergangsbereich sind beide Dichtleisten jeweils auf einem Teil der Innenfläche in flächiger Anlage an der Außenfläche des Rotationskolbens, so daß eine Flächendichtung gewährleistet ist. 7A shows the sealing strips 100A and 100B at a position in the region of the transition from the smaller radius of curvature r 1 of the outer surface of the rotary piston 22 right in 7A to the area of the larger radius of curvature r 2 of this outer surface left in 7A , The sealing strip 100A has a concave-cylindrical inner surface whose radius of curvature corresponds to the larger radius of curvature r 2 . The sealing strip 100B has a concave-cylindrical inner surface whose radius of curvature corresponds to the smaller radius of curvature r 1 . It can be seen that the inner surface of the sealing strip 100A in the region of the radius of curvature r 2 of the rotary piston 22 rests tightly against the surface of the rotary piston 22 complementary thereto. In the region in which the radius of curvature of the surface of the rotary piston 22 is smaller, namely r 1 , a wedge-shaped gap 100C is formed between the sealing strip 100A and the rotary piston 22 and the inner surface of the sealing strip 100A. The sealing strip 100B has a concave-cylindrical inner surface whose radius of curvature corresponds to the smaller radius of curvature r 1 . It can be seen that the inner surface of the sealing strip 100B in the region of Krfunmungsradius r 1 of the rotary piston 22 tightly against the complementary surface of the rotary piston 22 applies. In the region in which the radius of curvature of the surface of the rotary piston 22 is greater, namely again r 2 , is formed on the right in 7A between the sealing strip 100B and the rotary piston 22 and the inner surface of the sealing strip 100A a wedge-shaped gap 100D. In the illustrated transition region both sealing strips are each on one Part of the inner surface in planar contact with the outer surface of the rotary piston, so that a surface seal is ensured.

Fig.7B zeigt in ähnlicher Weise die Abdichtung im Bereich des Überganges von dem großen Krümmungsradius r2 zum kleineren Krümmungsradius r1. Wenn das Paar von Dichtleisten 100A und 10B nur an einem Bereich des Rotationskolbens 22 mit großem Krümmungsradius r2 oder nur an einem Bereich mit kleinem Krümmungsradius anliegt, gewährleistet entweder die Dichtleiste 100A oder die Dichtleiste 100B mit jeweils der gesamten Innenfläche eine flächige Anlage und Abdichtung. 7B Similarly, the seal in the region of the transition from the large radius of curvature r 2 to the smaller radius of curvature r 1 . If the pair of sealing strips 100A and 10B abuts only a portion of the rotary piston 22 having a large radius of curvature r 2 or only a portion of a small radius of curvature, either the sealing strip 100A or the sealing strip 100B ensures surface contact and sealing with the entire inner surface, respectively.

Die beschriebene Anordnung arbeitet wie folgt:

  • Der Rotationskolben 22 dreht sich entgegen dem Uhrzeigersinn in Fig.1. Dabei dreht sich der Rotationskolben 22 um die Welle 70 und gleitet mit geringer Geschwindigkeit an der Innenwand der Kammer 12 im Bereich des großen Krümmungsradius. Die Achse der Welle 70 geht durch den Krümmungsmittelpunkt des Kreisbogens 24 von kleinem Krümmungsradius. Der Kreisbogen 24 tangiert den Kreisbogen 18 des Querschnitts der Kammer 12. Der gegenüberliegende, dem Kreisbogen 32 entsprechende Bereich der Mantelfläche des Rotationskolbens 22 mit dem großen Krümmungsradius liegt an dem dem Kreisbogen 20 entsprechenden Bereich der Innenwandung der Kammer 12 an. Dieser Bereich der Innenwandung hat den gleichen Krümmungsradius wie der anliegende Bereich der Mantelfläche des Rotationskolbens. Es erfolgt also eine formangepaßte, flächige Anlage. Bei der Drehbewegung gleitet dieser Bereich der Mantelfläche des Rotationskolbens an dem entsprechenden Bereich der Innenwandung.
The described arrangement works as follows:
  • The rotary piston 22 rotates counterclockwise in FIG Fig.1 , In this case, the rotary piston 22 rotates about the shaft 70 and slides at low speed on the inner wall of the chamber 12 in the region of the large radius of curvature. The axis of the shaft 70 passes through the center of curvature of the circular arc 24 of small radius of curvature. The circular arc 24 is tangent to the circular arc 18 of the cross section of the chamber 12. The opposite, the circular arc 32 corresponding region of the lateral surface of the rotary piston 22 with the large radius of curvature is located on the circular arc 20 corresponding portion of the inner wall of the chamber 12. This region of the inner wall has the same radius of curvature as the adjacent region of the lateral surface of the rotary piston. So there is a form-adapted, areal plant. During the rotational movement of this region of the lateral surface of the rotary piston slides on the corresponding region of the inner wall.

Dabei vergrößert sich der Arbeitsraum 80, während sich der Arbeitsraum 82 verkleinert. Die Welle 70 wird dabei relativ langsam gedreht, während sich eine relativ schnelle Drehung der Welle 72 ergibt.In this case, the working space 80 increases while the working space 82 decreases. The shaft 70 is thereby rotated relatively slowly, while a relatively fast rotation of the shaft 72 results.

Diese Bewegung wird fortgesetzt, bis die in Fig.2 rechte Anschlagstellung erreicht wird. Dann liegt der dem Kreisbogen 28 entsprechende Bereich der Mantelfläche des Rotationskolbens in dem Bereich der Innenwandung der Kammer 12, der dem Kreisbogen 16 entspricht. Beide Bereiche haben den gleichen, nämlich den kleinen Krümmungsradius. Die den Kreisbögen 32 und 34 mit dem großen Krümmungsradius entsprechenden Bereiche der Mantelfläche des Rotationskolbens liegen an den Bereichen der Innenwandung der Kammer 12 an, die den Kreisbögen 18 bzw. 20 des Querschnitts entsprechen. Die Krümmungsradien sind wieder gleich. Das Volumen der Arbeitskammer 82 ist damit abgesehen von der Brennkammer 94 auf null vermindert, während die Arbeiskammer 82 ihr maximales Volumen hat. Die Welle 72 mit dem Zahnrad 76 liegt dann in dem Durchbruch 36 in dem Bereich, der dem Kreisbogen 40 entspricht, also gewissermaßen in der linken unteren "Ecke" des Bogendreiecks. Der Rotationskolben 22 kann sich jetzt nicht weiter um die Achse der Welle 70 als momentane Drehachse drehen.This movement will continue until the in Fig.2 right stop position is reached. Then, the area corresponding to the circular arc 28 of the lateral surface of the rotary piston in the region of the inner wall of the chamber 12, which corresponds to the circular arc 16. Both areas have the same, namely the small one Radius of curvature. The circular arcs 32 and 34 with the large radius of curvature corresponding areas of the lateral surface of the rotary piston are applied to the areas of the inner wall of the chamber 12, which correspond to the circular arcs 18 and 20 of the cross section. The radii of curvature are the same again. The volume of the working chamber 82 is thus reduced to zero apart from the combustion chamber 94, while the work chamber 82 has its maximum volume. The shaft 72 with the gear 76 is then in the opening 36 in the area corresponding to the arc 40, so to speak in the lower left "corner" of the arch triangle. The rotary piston 22 can not now rotate about the axis of the shaft 70 as a current axis of rotation.

Diese Position ist in Fig.2 dargestellt.This position is in Fig.2 shown.

Bei einer weiteren Drehung, die z.B. durch Zünden von Treibstoff in der Brennkammer 94 bei einer Verbrennungskraftmaschine oder durch Einleiten eines Arbeitsmediums in die Arbeitskammer 82 bewirkt wird, springt die momentane Drehachse in die Achse der Welle 72. Der Rotationskolben dreht sich weiter entgegen dem Uhrzeigersinn, jetzt aber um die Welle 72.In a further rotation, e.g. is caused by igniting fuel in the combustion chamber 94 in an internal combustion engine or by introducing a working medium in the working chamber 82, the instantaneous axis of rotation jumps in the axis of the shaft 72. The rotary piston continues to rotate counterclockwise, but now about the shaft 72nd

Der weitere Bewegungsablauf ist dann bezogen auf die neue momentane Drehachse so, wie es vorstehend unter Bezugnahme auf die Achse der Welle 70 als momentane Drehachse beschrieben wurde.The further course of motion is then based on the new instantaneous axis of rotation as described above with reference to the axis of the shaft 70 as the instantaneous axis of rotation.

Bei der Drehbewegung des Rotationskolbens 22 treten aufeinanderfolgende Bewegungsabschnitte auf. Jeder Bewegungsabschnitt verläuft von einer der beschriebenen Anschlagstellungen bis zur nächsten. In jedem Bewegungsabschnitt vergrößert sich ein Arbeitsraum, z.B. 80, von null bis zu einem Maximum, während sich der andere Arbeitsraum von dem Maximum bis auf null verkleinert. Im nächsten Bewegungsabschnitt ist es umgekehrt: Der Arbeitsraum 82 vergrößert sich von null (Fig.2) bis zu einem Maximum, während der Arbeitsraum 80 sich wieder verkleinert (Fig.3).During the rotary movement of the rotary piston 22, successive movement sections occur. Each movement section extends from one of the described stop positions to the next. In each movement section, a workspace, eg 80, increases from zero to a maximum, while the other workspace decreases from the maximum to zero. In the next movement section, it is the other way round: the working space 82 increases from zero ( Fig.2 ) to a maximum while the working space 80 decreases again ( Figure 3 ).

In der Position von Fig.2 ist die Kinematik nicht eindeutig. Jede der beiden Wellen könnte mit ihrer Achse eine momentane Drehachse festlegen. Wenn dann z.B. durch ein in den Arbeitsraum 82 eingeleitetes Arbeitsmedium eine Kraft nach links auf den Rotationskolben 22 ausgeübt wird, könnte diese Kraft u.U statt zu einer Drehung des Rotationskolbens 22 um eine momentane Drehachse zu einer translatorischen Bewegung in horizontaler Richtung in Fig.2 führen. Dadurch würde der Rotationskolben 22 in der Kammer 12 verkeilt.In the position of Fig.2 the kinematics is not unique. Each of the two waves could define an instantaneous axis of rotation with its axis. For example, if a force is applied to the left on the rotary piston 22 by a working medium introduced into the working space 82, this force could possibly cause a rotation of the rotary piston 22 about a momentary axis of rotation to a translatory movement in the horizontal direction Fig.2 to lead. As a result, the rotary piston 22 would be wedged in the chamber 12.

Wenn diese Gefahr besteht, kann ihr dadurch begegnet werden, daß in der Position von Fig.2 durch drehzahlregulierende Mittel kurzzeitig eine geringere Drehzahl der Welle 72 erzwungen wird als die Drehzahl der Welle 70. Dann wird der Rotationskolben 22 gezwungen, sich um diese Welle 72 zu drehen, während die andere Welle 70 ein Abwälzen der konkav-bogenförmigen Zahnleiste 62 an dem Zahnrad 74 gestattet.If this danger exists, it can be countered by being in the position of Fig.2 By speed-regulating means a lower speed of the shaft 72 is forced for a short time than the rotational speed of the shaft 70. Then, the rotary piston 22 is forced to rotate about this shaft 72, while the other shaft 70, a rolling of the concave-arc toothed rack 62 on the gear 74 allowed.

Das ist in Fig.6 schematisch dargestellt. Sensoren 140 erfassen die Position des Rotationskolbens in 22 in der Kammer 12. Die Sensoren signalisieren, wenn der Rotationskolben eine Anschlagposition erreicht hat. Eine von den Signalen der Sensoren beaufschlagte Steuerung 142steuert dann Einrichtungen 144 und 146 an, durch welche alternierend, je nachdem welche Anschlagposition erreicht wurde, kurzzeitig Drehzahlen der Welle 70 bzw. der Welle 72 vorgegeben werden. Er wird dann z.B. der Welle 70 eine geringe Drehzahl vorgegeben und der Welle 72 eine höhere oder umgekehrt. Im einfachsten Fall können die Einrichtungen 144 und 146 Bremsvorrichtung sein, die in den Anschlagpositionen alternierend kurzzeitig auf die Welle 70 oder die Welle 72 wirken, während die jeweils andere Welle ungebremst bleibt.Is in Figure 6 shown schematically. Sensors 140 detect the position of the rotary piston at 22 in chamber 12. The sensors signal when the rotary piston has reached a stop position. A controller 142 acted upon by the signals from the sensors then controls devices 144 and 146, by means of which rotational speeds of the shaft 70 or the shaft 72 are preset for a short time, depending on which stop position has been reached. He is then given eg the shaft 70 a low speed and the shaft 72 a higher or vice versa. In the simplest case, the devices 144 and 146 may be braking devices which, in the stop positions, act alternately on the shaft 70 or the shaft 72 for a short time while the respective other shaft remains unbraked.

Die Radien der Teilkreise der Zahnräder entsprechen im wesentlichen den kleinen Krümmungsradien des den Durchbruch 36 bildenden Ovals zweiter Ordnung. Wenn die Innenverzahnung 56 durchgehend dem Oval des Durchbruchs 36 folgen würden, dann würden die Zahnräder jeweils in den Endstellungen des Rotationskolbens 22 gefangen. Die "Ecken" des "Bogendreiecks" könnten nicht über die Zahnräder hinwegrollen. Aus diesem Grunde sind die konkav-bogenförmigen Zahnleisten im Bereich der Kreisbögen 38, 40, 42 mit kleinem Durchmesser durch kurze gerade oder konvex-bogenförmige Zahnleisten 64, 66 bzw. 68 verbunden. Die konvex-bogenförmigen Zahnleisten 64, 66 und 68 ermöglichen ein Weiterrollen der Innenverzahnung 56 und damit des Rotationskolbens 22 über diese Bereiche. Sie sind so bemessen, daß in den Anschlagstellungen jeweils eine der konkav-bogenförmigen Zahnleisten 58, 60 oder 62 mit dem Zahnrad 74 oder 76 in Eingriff kommt unmittelbar nachdem der Eingriff des Zahnrades 74 oder 76 mit der vorangegangene Zahnleiste 62, 58 bzw. 60 gelöst wurde. Auf diese Weise ist jedes Zahnrad ständig mit einem der konkav-bogenförmigen Zahnleisten 64, 66 oder 68 in Eingriff. Die kurzen konvex-bogenförmigen oder geraden Zahnleisten gewährleisten einen Übergang ohne Unterbrechung des Formschlusses aber auch ohne Blockierung.The radii of the pitch circles of the gears correspond substantially to the small radii of curvature of the opening 36 forming the second order oval. If the internal teeth 56 were to follow the oval of the aperture 36 throughout, then the gears would each be caught in the end positions of the rotary piston 22. The "corners" of the "Arch Triangle" could not roll over the gears. For this reason, the concave arcuate toothed racks in the region of circular arcs 38, 40, 42 are connected with a small diameter by short straight or convex-arcuate toothed racks 64, 66 and 68, respectively. The convex-arcuate toothed racks 64, 66 and 68 allow further rotation of the internal teeth 56 and thus of the rotary piston 22 over these areas. They are dimensioned so that in the stop positions each one of the concave-arched toothed racks 58, 60 or 62 with the gear 74 or 76 engages immediately after the engagement of the gear 74 or 76 with the previous rack 62, 58 and 60 solved has been. In this way, each gear is constantly engaged with one of the concave arcuate racks 64, 66 or 68. The short convex-arcuate or straight racks ensure a transition without interruption of the positive connection but also without blocking.

Fig.4 zeigt eine Rotationskolbenmaschine mit einer Kammer 104, deren Querschnitt ein Oval 106 vierter Ordnung bildet In der Kammer 104 ist ein Rötationskolben 108 gerührt, dessen Querschnitt ein Oval fünfter Ordnung 110 bildet. Auch hier weist der Rotationskolben 108 einen Durchbruch 112 dessen Form ein Oval fünfter Ordnung 114 bildet. Die Symmetrieachsen von Rotationskolben 108 und Durchbruch 112 fallen zusammen. Der Durchbruch 112 weist eine Innenverzahnung 116 auf Die Innenverzahnung 116 ist mit zwei Zahnrädern 118 und 120 in Eingriff. Die Zahnräder 118 und 120 sitzen auf zwei gehäusefesten Wellen 122 bzw. 124. Die Achsen 126 und 128 der Wellen 122 bzw. 124 liegen in einer Symmetrieebene der Kammer 104. Figure 4 shows a rotary piston machine with a chamber 104, whose cross section forms a fourth order oval 106 In the chamber 104, a Rötationskolben 108 is stirred, the cross section of a fifth order oval 110 forms. Again, the rotary piston 108 has an opening 112 whose shape forms a fifth-order oval 114. The symmetry axes of rotary piston 108 and aperture 112 coincide. The aperture 112 has internal teeth 116. The internal teeth 116 engage with two gears 118 and 120. The gears 118 and 120 are seated on two shafts 122 and 124 fixed to the housing. The shafts 126 and 128 of the shafts 122 and 124, respectively, lie in a plane of symmetry of the chamber 104.

Der Rotationskolben 108 unterteilt die Kammer in zwei Arbeitsräume 130 und 132, von denen bei der Drehung des Rotationskolbens jeweils einer sich vergrößert und der andere verkleinert.The rotary piston 108 divides the chamber into two working chambers 130 and 132, one of which increases in rotation of the rotary piston and the other decreases.

Der Arbeitsablauf ist ähnlich dem Arbeitsablauf der Ausführung von Fig.1 bis 3. Der Rotationskolben 108 dreht sich z.B. um die Achse 126 einer Welle 122 bis zu einer Anschlagposition. Dann springt die momentane Drehachse in die Achse 128 der anderen Welle 124. Der Rotationskolben dreht sich um diese Achse weiter entgegen dem Uhrzeigersinn von Fig.4 bis zu der nächsten Anschlagposition. Der Bewegungsablauf zwischen zwei aufeinanderfolgenden Anschlagpositionen ist ein "Bewegungsabschnitt". In jedem Bewegungsabschnitt vergrößert sich der Arbeitsraum 130 von null bis zu einem Maximum und verkleinert sich der Arbeitsraum 132 von einem Maximum auf null oder umgekehrt. Die Arbeitsräume liegen stets zu beiden Seiten der die Achsen 126 und 128 der Wellen 122 und 124 enthaltenden Symmetrieebene. Sie wandern nicht etwa um die Kammer herum.The workflow is similar to the workflow of running Fig.1 to 3 , The rotary piston 108 rotates, for example, about the axis 126 of a shaft 122 to a stop position. Then the instantaneous axis of rotation jumps into the axis 128 of the other shaft 124. The rotary piston rotates about this axis further counterclockwise from Figure 4 until the next stop position. The sequence of movements between two successive stop positions is a "movement section". In each movement section, the working space 130 increases from zero to a maximum and the working space 132 decreases from a maximum to zero or vice versa. The work spaces are always on both sides of the axes 126 and 128 the waves 122 and 124 containing symmetry plane. They do not wander around the chamber.

In Fig.4 sind für jeden Arbeitsraum (schematisch) Ventile und Zündkerzen oder Einspritzdüsen dargestellt.In Figure 4 For each workspace (schematic) valves and spark plugs or injectors are shown.

Fig.4A zeigt eine Rotationskolbenmaschine ähnlich der von Fig.4. Entsprechende Teile tragen die gleichen Bezugszeichen wie dort. Einzelheiten der Rotationskolbenmaschine von Fig.4A sind in vergrößertem Maßstab in Fig.8 und 8A dargestellt. 4A shows a rotary piston machine similar to that of Figure 4 , Corresponding parts bear the same reference numerals as there. Details of the rotary piston machine of 4A are in an enlarged scale in Figure 8 and 8A shown.

Bei der Rotationskolbenmaschine von Fig.4A ist mit 150 eine Einspritzdüse bezeichnet. Die Einspritzdüse 150 ragt in eine Brennkammer 152. Diese Brennkammer ist so bemessen und ausgebildet, daß die Verbrennung des eingespritzten Treibstoffs im wesentlichen nur in der Brennkammer erfolgt. In den sich erweiternden Arbeitsraum treten dann nur die expandierenden Verbrennungsgase ein. Dabei kann die Einspritzung zeitabhängig oder in Abhängigkeit von der Rotation des Rotationskolbens so dosiert sein, daß sie an die Volumenänderung des Arbeitsraumes 130 oder 132 angepaßt ist. In dem Arbeitsraum tritt dann keine Flammenfront auf. Die Ausbreitung von Flammenfronten in einem sich ausdehnenden Arbeitsraum bringt bei bekannten Rotationskolbenmaschinen Probleme mit sich.In the rotary piston machine of 4A is designated with 150 an injection nozzle. The injection nozzle 150 protrudes into a combustion chamber 152. This combustion chamber is dimensioned and designed so that the combustion of the injected fuel takes place substantially only in the combustion chamber. In the expanding workspace then only the expanding combustion gases enter. In this case, the injection can be metered depending on the time or in dependence on the rotation of the rotary piston so that it is adapted to the change in volume of the working space 130 or 132. In the working space then no flame front occurs. The propagation of flame fronts in an expanding workspace presents problems with known rotary piston engines.

Bei der Ausführung von Fig.8 und 8A weist die Brennkammer 152 eine kugelkalottenförmigen Ausnehmung des Gehäuses auf, an welche sich ein kegelstumpfförmiger, sich zu dem Arbeitsraum hin verjüngender Raum 156 anschließt. Der Raum 156 ist in einem Einsatz 158 gebildet, der in eine mit Gewinde versehene Ausnehmung der Wandung des Arbeitsraumes 130 oder 132 eingeschraubt ist. Die Brennkammer 152 ist durch ein Gitter oder Netz 160 abgeschlossen. Die Einspritzdüse 150 läuft in einen an der Spitze abgerundeten Kegel aus, wobei die Einspritzung über Düsenöffnungen im Mantel dieses Kegels erfolgt.In the execution of Figure 8 and 8A The combustion chamber 152 has a spherical-cap-shaped recess of the housing, to which a frustoconical space 156, which tapers towards the working space, adjoins. The space 156 is formed in an insert 158, which is screwed into a threaded recess of the wall of the working space 130 or 132. The combustor 152 is closed by a grid or net 160. The injection nozzle 150 empties into a cone rounded off at the tip, the injection taking place via nozzle openings in the jacket of this cone.

Die beschriebene Anordnung der Einspritzdüse in einer Brennkammer, derart daß die Verbrennung im wesentlichen nur in der Brennkammer erfolgt und Flammenfronten in den Arbeitsräumen vermieden werden, ist auch bei anderen Maschinen, z.B. bei Hubkolbenmaschinen, anwendbar.The described arrangement of the injection nozzle in a combustion chamber, such that the combustion takes place substantially only in the combustion chamber and flame fronts in The workrooms are avoided, is also applicable to other machines, such as reciprocating engines.

Fig.5 zeigt eine Rotationskolbenmaschine, bei welcher ein Rotationskolben, dessen Querschnitt ein Oval siebter Ordnung bildet, in einer Kammer geführt ist, deren Querschnitt ein Oval sechster Ordnung ist. Aufbau und Funktion sind abgesehen von den Ordnungen der Ovale ähnlich wie die der Ausführung von Fig.4. Entsprechende Teile sind mit den gleichen Bezugszeichen versehen wie in Fig.4 jedoch mit dem Zusatz "A". Figure 5 shows a rotary piston machine in which a rotary piston whose cross section forms a seventh-order oval, is guided in a chamber whose cross section is a sixth order oval. Structure and function are similar to the execution of ovals, except for the orders of the ovals Figure 4 , Corresponding parts are provided with the same reference numerals as in FIG Figure 4 but with the addition "A".

Claims (4)

  1. Rotary piston machine having a prismatic chamber (12) in a housing (10), the cross section of the chamber being an oval formed by circular arcs (14, 16; 18, 20) with alternating smaller and larger radius, and a rotary piston (22) movable in the chamber (12), the cross section of the rotary piston being also an oval with the same alternating smaller and larger radii and an order different from the order of the oval defining the cross section of the chamber (22), wherein the rotary piston (22) alternately rotates, in successive intervals of motion, around different axes of rotation from one blocking position to the next one respectively and, during the rotational movement, in any position engages the inner wall of the chamber (12) forming two working chambers (80, 82), and having an aperture (36) of the rotary piston (22) provided with an internal toothing (56), the internal toothing (56) engaging an external toothing (74, 76) of at least one housing-fixed mounted shaft (70, 72) for driving the rotary motion or for being driven thereby, wherein
    (a) the order of the oval of the chamber (12) is one less than the order of the oval of the rotary piston (22),
    (b) the aperture (36) is substantially mathematically similar to the rotary piston (22), wherein the planes of symmetry (50, 52, 54) of the aperture (36) coincide with those of the rotary piston (22), and
    (c) a pair of shafts (70, 72) provided with external toothing (74,76) and mounted housing-fixed is provided, the external toothing (74, 76) engaging the internal toothing (56) of the aperture (36), wherein in any interval of motion of the rotary piston (22) one area of a section (38) of the internal toothing (56) of the aperture (36) with smaller radius of curvature (r1) engages the external toothing (74, 76) of one of the shafts (70, 72) respectively, while a section (46) of the internal toothing (56) of the aperture (36) with larger radius of curvature (r2) engages the external toothing (74, 76) of the other shaft (70, 72), and in the respective following interval of motion an area of a section (44) of the internal toothing (56) with larger radius of curvature (r2) engages the external toothing (74, 76) of the former shaft (70,72), which was in engagement with an area of a section having a smaller radius of curvature (r1) in the preceding interval of motion, while the external toothing (74, 76) of the shaft (70,72), which was engaging an area of a section (46) of the internal toothing (56) of the aperture (36) with larger radius of curvature (r2) in the preceding interval of motion, now is engaging with an area of a section (42) having a smaller radius of curvature (r1),
    characterised in that
    (d) sensors (140) for signalling the reaching of a blocking position by the rotary piston, and rotary speed regulating means (142,144,146) having a control (142) to which the signals of the sensors are applied, and a brake device (144, 146) controlled by the control (142) for each of the shafts (70, 72) respectively are provided, by means of which, when a blocking position has been reached, the respective shaft (70 or 72), which external toothing (74 or 76) unrolled on the internal toothing (56) of the aperture (36) in an area with larger radius of curvature in the previous interval of motion, is temporarily braked, while the other shaft (72 or 70), around the axis of which the rotary piston (22) rotated in the previous interval of motion, remains unbraked.
  2. Rotary piston machine according to claim 1, characterised in that pairs of adjacent arranged sealing ledges (100A, 100B) having concave-cylindrical inner surfaces are provided in the inner wall of the chamber (12) for sealing between the working chambers, wherein the radius of the curvature of one inner surface is equal to the smaller radius of curvature (r1) and the radius of curvature of the other inner surface is equal to the larger radius of curvature (r2) of the lateral surface of the rotary piston (22).
  3. Rotary piston machine according to claim 2 characterised in that, two pairs of sealing ledges (100A, 100B) are arranged opposite to one another.
  4. Rotary piston machine according to one of claims 1 to 3 wherein the rotary piston machine is designed as internal combustion engine with internal combustion in at least one working chamber (130, 132) limited by the rotary piston (22) and with fuel injection, characterised in that an injection device (150) is arranged in a separate combustion chamber (152) which is connected with the working chamber (130, 132), the combustion chamber (152) and fuel injection being adapted such that combustion takes place substantially in the combustion chamber (152) only, whereby only combusted, expanding exhaust gas enters the working chamber (130, 132).
EP04714747A 2003-02-27 2004-02-26 Rotary piston machine with an oval rotary piston guided in an oval chamber Expired - Lifetime EP1597456B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10308831 2003-02-27
DE10308831A DE10308831B3 (en) 2003-02-27 2003-02-27 Rotary piston machine with an oval rotary piston guided in an oval chamber
PCT/EP2004/001921 WO2004076819A2 (en) 2003-02-27 2004-02-26 Rotary piston machine with an oval rotary piston guided in an oval chamber

Publications (2)

Publication Number Publication Date
EP1597456A2 EP1597456A2 (en) 2005-11-23
EP1597456B1 true EP1597456B1 (en) 2012-12-19

Family

ID=32842028

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04714747A Expired - Lifetime EP1597456B1 (en) 2003-02-27 2004-02-26 Rotary piston machine with an oval rotary piston guided in an oval chamber

Country Status (8)

Country Link
US (2) US7117840B2 (en)
EP (1) EP1597456B1 (en)
JP (1) JP4461138B2 (en)
KR (1) KR101109422B1 (en)
CA (1) CA2517318C (en)
DE (1) DE10308831B3 (en)
RU (2) RU2344296C2 (en)
WO (1) WO2004076819A2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7059294B2 (en) 2004-05-27 2006-06-13 Wright Innovations, Llc Orbital engine
US8151759B2 (en) 2006-08-24 2012-04-10 Wright Innovations, Llc Orbital engine
HU229595B1 (en) * 2009-01-05 2014-02-28 Ferenc Bekoe Energy converter system
DE102009029950A1 (en) 2009-06-20 2011-08-04 Alexandrow, Garri, Dr. Ing., 19061 Fuel rotation motor, particularly for propulsion of motor cars, has stator and rotary piston made of cylindrical wheel segments arranged in pair, which have two different outer contour radiuses
US8539931B1 (en) 2009-06-29 2013-09-24 Yousry Kamel Hanna Rotary internal combustion diesel engine
CN101639064B (en) * 2009-08-04 2010-09-15 王德良 Conversion device of mechanical motion and fluid motion
DE202009017322U1 (en) 2009-12-17 2010-11-11 Bakal, Semen, Dr. Rotary engine
DE102009060108A1 (en) 2009-12-17 2011-08-18 Bakal, Semen, Dr., 10555 Rotary piston engine i.e. two-stroke engine, for car for transportation of passenger, has channel provided with connecting piece for supplying gases in cabinet to supply air under high pressure, and chamber provided with injection apparatus
DE102010019555A1 (en) 2010-05-05 2011-11-10 Garri Alexandrow Fuel rotary piston engine, particularly for propulsion of motor vehicles, comprises closed cylindrical hollow chamber, which is formed from stator, cladding segments, valve segments with combustion chambers, and sprung front plates
CN102606307A (en) * 2012-04-05 2012-07-25 济南汉菱电气有限公司 Steady-flow-burning rotor expansion type engine
WO2014030196A1 (en) * 2012-08-18 2014-02-27 KISHITAKA Kouhei Rotary engine
KR101521601B1 (en) * 2013-10-07 2015-05-20 (주)에프티이앤이 Filter including polyvinylidene fluoride nanofiber and its manufacturing method
DE202014008430U1 (en) 2014-10-03 2014-12-03 Garri Alexandrow Fuel rotary engine and engine block
DE102015003456A1 (en) 2015-03-17 2016-11-24 Garri Alexandrow Garri fuel rotary engine and engine block
WO2017137013A1 (en) * 2016-02-14 2017-08-17 北京艾派可科技有限公司 Relative pressure gas energy storage device and inspection method therefor, storage system and balance detection mechanism
RU2637301C1 (en) * 2016-11-29 2017-12-01 Равиль Ахатович Латыпов Rotary piston machine
US10287970B1 (en) * 2017-12-07 2019-05-14 Caterpillar Inc. Fuel injection system
CN113669154A (en) * 2020-09-04 2021-11-19 陕西新年动力科技集团有限公司 Rotor engine and method for regulating and controlling operating parameters thereof
CN114483291A (en) * 2020-09-04 2022-05-13 陕西新年动力科技集团有限公司 Dual-rotor engine and operation parameter regulation method and operation method thereof
RU2740666C1 (en) * 2020-09-08 2021-01-19 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Radial seal of rotary machine

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU50599A1 (en) * 1936-03-19 1936-11-30 В.В. Синеуцкий Chamber in internal combustion engines
US3117563A (en) * 1960-09-28 1964-01-14 Lenard D Wiegert Rotary combustion engine
FR1327607A (en) * 1962-07-03 1963-05-17 Rotary piston machine
LU45663A1 (en) * 1964-03-16 1965-03-30
US3441007A (en) * 1966-11-10 1969-04-29 Johannes Kwaak Rotary piston engine
FR2146526A5 (en) * 1971-07-16 1973-03-02 Leroy Marcel
US3892208A (en) * 1972-07-05 1975-07-01 Mcculloch Corp Modified injection spray characteristics for spaced burning loci engines
CH545413A (en) * 1972-08-19 1973-12-15 M Guenthard Ernst Rotary piston internal combustion engine
US3875905A (en) * 1973-03-07 1975-04-08 Gaetan Duquette Rotary engine and drive gearing therefor
US3884600A (en) * 1973-11-08 1975-05-20 Gray & Bensley Research Corp Guidance means for a rotary engine or pump
US3996901A (en) * 1974-02-26 1976-12-14 Gale Richard A Rotary piston mechanism
US3967594A (en) * 1975-01-27 1976-07-06 Campbell Donald K Rotary power unit
JPS6037289B2 (en) * 1975-05-22 1985-08-26 ロ−ベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング spark ignition internal combustion engine
US4141126A (en) * 1975-05-28 1979-02-27 Fukumatsu Okada Method of making a rotary engine rotor and bearing structure
JPS5328810A (en) * 1976-08-28 1978-03-17 Hachirou Michioka Rotary piston engines
DE2715943C2 (en) * 1977-04-09 1986-08-14 Robert Bosch Gmbh, 7000 Stuttgart Internal combustion engine with at least one main combustion chamber and an ignition chamber
DE2853930A1 (en) * 1978-12-14 1980-06-19 Karl Dipl Ing Otto Rotary piston unit compressor or engine - has multi-arc contoured piston whose centre moves in same curvature multi-arc housing along two-arc path
DE2916285C2 (en) * 1979-04-21 1984-02-23 Robert Bosch Gmbh, 7000 Stuttgart Process for igniting lean fuel / air mixtures
GB2123482B (en) * 1982-05-21 1985-06-26 Dr Andrew Martin Storrar I c engine combustion chambers
DE3243404C2 (en) * 1982-11-24 1986-07-24 Danfoss A/S, Nordborg Parallel and inner-axis rotary piston machine
JPS59201922A (en) * 1983-04-30 1984-11-15 Mazda Motor Corp Construction of auxiliary combustion chamber of diesel engine
US5024193A (en) * 1990-02-06 1991-06-18 Caterpillar Inc. Fuel combustion system, method, and nozzle member therefor
SU1751374A1 (en) * 1990-08-06 1992-07-30 Уральский Автомоторный Завод Производственного Объединения "Зил" Internal combustion engine
US5105780A (en) * 1990-08-08 1992-04-21 Caterpillar Inc. Ignition assisting device for internal combustion engines
US5392744A (en) * 1993-03-12 1995-02-28 Chrysler Corporation Precombustion chamber for a double overhead camshaft internal combustion engine
FR2703406B1 (en) * 1993-04-02 1995-05-12 Cit Alcatel Volumetric machine with planetary movement.
JP3073118B2 (en) * 1993-04-20 2000-08-07 株式会社日立製作所 In-cylinder internal combustion engine
EP0797001A1 (en) * 1996-03-21 1997-09-24 Unisia Jecs Corporation Rotary pump
JPH09256850A (en) * 1996-03-25 1997-09-30 Isuzu Ceramics Kenkyusho:Kk Gas engine of divideo combustion chamber type
DE19920289C1 (en) * 1999-05-04 2000-07-06 Robert Gugenheimer Rotary piston internal combustion engine has rotary piston oval in cross-section rotatably located in chamber in housing and having face-side end plates, with oval longitudinal bore corresponding to its cross-sectional contour
US6539913B1 (en) * 2002-01-14 2003-04-01 William P. Gardiner Rotary internal combustion engine

Also Published As

Publication number Publication date
US20070089701A1 (en) 2007-04-26
RU2344296C2 (en) 2009-01-20
DE10308831B3 (en) 2004-09-09
KR20050116132A (en) 2005-12-09
US20060032475A1 (en) 2006-02-16
RU2476696C2 (en) 2013-02-27
KR101109422B1 (en) 2012-01-31
WO2004076819A2 (en) 2004-09-10
JP2006519330A (en) 2006-08-24
WO2004076819A3 (en) 2005-01-06
RU2005129640A (en) 2007-04-10
JP4461138B2 (en) 2010-05-12
RU2008133156A (en) 2010-02-20
CA2517318C (en) 2012-05-08
US7117840B2 (en) 2006-10-10
CA2517318A1 (en) 2004-09-10
EP1597456A2 (en) 2005-11-23
US7866296B2 (en) 2011-01-11

Similar Documents

Publication Publication Date Title
EP1597456B1 (en) Rotary piston machine with an oval rotary piston guided in an oval chamber
DE102009048621B4 (en) Valve gear for gas exchange valves with clamping of base camshaft and cam carrier in circumferential or rotational direction
EP1417396B1 (en) Rotary piston engine
DE2450418A1 (en) ROTARY LISTON MACHINE
DE68920286T2 (en) MECHANISM FOR FORMING BETWEEN TURNING AND ROTATING MOTION AND COMBUSTION ENGINE WITH SUCH A MECHANISM.
DE4218885A1 (en) CIRCULAR PISTON ENGINE
EP0874949B1 (en) Oscillating piston engine
DE1451761B2 (en) Parallel and inner-axis two-stroke rotary piston machine with comb engagement
DE60310965T2 (en) ROTARY MACHINE WITH CAPSULE SYSTEM
DE1451690B2 (en) Parallel and inner-axis rotary piston machine with meshing engagement
DE3335742C2 (en) In-axis rotary piston internal combustion engine
WO1979000157A1 (en) Rotary pistons machine
DE3318519A1 (en) External axis rotary piston engine with mesh engagement
DE1934262C3 (en) Sealing system for a parallel and internal-axis rotary piston machine
EP0316346A1 (en) Rotating piston machine.
DE19537674C1 (en) Rotary piston machine with disc-shaped main rotor
DE3725806A1 (en) Rotary piston compressor system - has housing with circular interior, and eccentrically located piston
WO2013120526A1 (en) Screw assembly and internal combustion engine having a screw assembly
DE2448475A1 (en) ROTARY LAMP ENGINE
DE2739326A1 (en) Rotary prime mover or processing machine - has pairs of circulating pistons linked to shaft by transmission with elliptical elements
DE2514945C3 (en) Sealing limit for a piston of an oblique-axis rotary piston internal combustion engine
DE2343909A1 (en) Rotary piston engine - has pivoting pistons eccentrically mounted on rotary body, with lever arm cooperating with stationary cam
DE2746679A1 (en) Working chambers of rotary engine - are defined by bore walls shaft, two assemblies comprising rim wall and movable wall pair
EP3379027A1 (en) Combustion engine and method for operating same
EP3379026A1 (en) Combustion engine and method for operating same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050812

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20101028

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EXCURSION LTD.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 589531

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004013943

Country of ref document: DE

Effective date: 20130221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130330

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20121219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004013943

Country of ref document: DE

Representative=s name: WEISSE, JOERG, DIPL.-PHYS., DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130319

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130419

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

BERE Be: lapsed

Owner name: EXCURSION LTD.

Effective date: 20130228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

26N No opposition filed

Effective date: 20130920

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004013943

Country of ref document: DE

Effective date: 20130920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130226

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 589531

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130226

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20040226

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160226

Year of fee payment: 13

Ref country code: DE

Payment date: 20160229

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160226

Year of fee payment: 13

Ref country code: FR

Payment date: 20160226

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160318

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004013943

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170226

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170226