EP1593090B1 - Multivariate, predictive regulation of a direct reduction process - Google Patents

Multivariate, predictive regulation of a direct reduction process Download PDF

Info

Publication number
EP1593090B1
EP1593090B1 EP04709993A EP04709993A EP1593090B1 EP 1593090 B1 EP1593090 B1 EP 1593090B1 EP 04709993 A EP04709993 A EP 04709993A EP 04709993 A EP04709993 A EP 04709993A EP 1593090 B1 EP1593090 B1 EP 1593090B1
Authority
EP
European Patent Office
Prior art keywords
product
produced
property
value
prognosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04709993A
Other languages
German (de)
French (fr)
Other versions
EP1593090A2 (en
Inventor
Franz GÖRNER
Bernhard Lang
Stephen Craig Montague
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1593090A2 publication Critical patent/EP1593090A2/en
Application granted granted Critical
Publication of EP1593090B1 publication Critical patent/EP1593090B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/20Arrangements of devices for charging
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/02Making spongy iron or liquid steel, by direct processes in shaft furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/26Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2300/00Process aspects
    • C21B2300/04Modeling of the process, e.g. for control purposes; CII

Definitions

  • the shaft furnace is operated continuously by continuously adding raw material in the form of iron ore pellets from above and continuously removing the sponge iron from below.
  • the object of the invention is to predict a property of a product to be produced, in particular of sponge iron produced by direct reduction.
  • the inventions are based on the general idea, when predicting a value of a property to be predicted with the aid of a neural network, to take into account the product history by incorporating values into the prognosis which have the property to be predicted for already manufactured products. Such values can be taken into account when determining an input quantity of the neural network. Alternatively or additionally, however, it is also possible, when determining the same input variable or another input variable of the neural network, to take into account the difference between a value of the property measured at a specific time and a value of the property predicted for this time.
  • a prognosis of a value of a property of a product to be produced in the present and / or future with the help of a neural network, especially in the future can be predicted.
  • a value of the property either completely or with the aid of random samples, is measured in each case for several products produced at different times in the past.
  • the value of the property of the product to be produced in the present and / or future is predicted in a prediction from the values of the property measured for the times in the past. It is, so to speak a forecast in the impure, in which essentially only the values of the property measured for the times in the past are included.
  • the prediction can preferably be carried out with the aid of a recursive filter.
  • the recursive filter can be realized relatively simply by performing a linear extrapolation. More accurate predictions are possible by using a second neural network, in particular a recurrent neural network, as the recursive filter. For this, an additional mathematical description of the cause-and-effect relationship between process parameters and the property is expedient.
  • a comparison between a value of the property measured for a time in the past and a value of the property predicted for this time can also be taken into account when determining an input quantity for the neural network.
  • a prognosis is made of a value of a property of a product to be produced in the present and / or future with the aid of a neural network, especially in the future.
  • a value of the property is measured at a product manufactured at a certain time.
  • a value of the property in the product produced at that time is predicted with the prognosis. This requires the forecast for the past with random or meaningful values be initialized from an even later past. Then, the difference between the measured and the predicted value of the property of the product at that time is formed. This difference then goes into the determination of an input quantity for an input neuron of the neural network.
  • the value of the property of the product to be produced in the present and / or future is predicted in the prognosis.
  • parameters in the production process of the product to be produced are preferably changed until the value predicted in the prognosis of the property of the product to be produced at least approximately corresponds to a nominal value of the property of the product to be produced.
  • the described method is generally suitable for all possible products, it is particularly relevant for those products whose properties can not be measured during their production or shortly thereafter, but only with a time delay of possibly several hours.
  • the process can be used particularly advantageously in continuous production processes.
  • parameters in the production process of the product to be produced should also be taken into account by influencing or representing input variables of neuronal network input neurons.
  • Such parameters are in particular process temperatures, gas compositions of used process gases and / or properties of raw materials.
  • the invention further relates to an arrangement adapted to carry out one of the aforementioned methods.
  • Such an arrangement can be realized, for example, by appropriately programming and setting up a computer or a computer system.
  • the arrangement may also include a direct reduction plant, in particular with a shaft furnace.
  • a program product for a data processing system which contains code sections with which one of the described methods can be executed on the data processing system, can be implemented by suitable implementation of the method in a programming language and translation in code executable by the data processing system.
  • the code sections are stored for this purpose.
  • the program is understood as a tradable product under a program product. It can be in any form, such as on paper, a computer-readable medium or distributed over a network.
  • FIG. 1 A shaft furnace 1 with a feed 2 for supplying iron ore pellets, which accumulate in the interior of the shaft furnace 1 on one or more piles 3, can be seen.
  • the shaft furnace 1 further has means 4 for supplying reaction gases, in particular hydrogen and carbon monoxide, and means 5 for discharging reaction gases, in particular carbon dioxide and water.
  • the iron ore In the interior of the shaft furnace 1, the iron ore is reduced under high temperatures and under the action of the process gases in a direct reduction to sponge iron, which is removed at the lower end of the furnace via a removal device 6 and transported by a conveyor belt 7.
  • samples of cooled products are taken and examined in the laboratory for the properties metallization or carbon content.
  • the time difference from completion of the development process to the evaluated sample is about 5 to 9 hours in the metallization and about 3.5 to 7.5 hours in the enrichment with carbon.
  • the time difference from completion of the development process to the evaluated sample is about 5 to 9 hours in the metallization and about 3.5 to 7.5 hours in the enrichment with carbon.
  • the metallization is completed as a sub-process of the manufacturing process, such as in the middle of the shaft furnace 1.
  • the product still remains for about 3 hours for cooling in the shaft furnace 1 until it leaves it at its removal device 6.
  • the sub-process enrichment with carbon is completed after about three quarters of the time, ie after about 4.5 hours.
  • the predicted value W v 0 in the prediction is now taken into account when determining an input variable for an input neuron of a neural network.
  • FIG. 3 also takes into account the difference between a value W -1 measured in the past for a time t -1 and a value W P, -1 predicted for this time with the actual prognosis P in a second prediction V '.
  • the value W V ' 0 of a second prediction now becomes an input value for a second input neuron neural network.
  • the modeling advantageously involves about 100 measured and calculated input variables.
  • neural network it has proven to be particularly advantageous to use an ensemble of neural networks and to evaluate its median.
  • a combination of feed-forward networks with recursive filters is also advantageous.
  • Preferred training methods for the neural network include the use of digital filters for the training data, automatic outlier removal, bagging, compliance with monotonic constraints on relevant control variables, and target sizes.
  • the input variables of the neural network are preferably modeled analytically from the named process parameters. This is done, for example, by the integration of quantities, the quantitative description of chemical conversion including the reaction kinetics with the help of differential equations and a calculation of which piece of material where in the shaft furnace, with the aid of the product output per hour.
  • a user interface can be programmed in Visual Basic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Feedback Control In General (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

A property is measured for each of several products to be made at different points in time and from these measurements, the value of the product property is postulated. This is taken into consideration by determining a value for an input neurone of a neural network. Using the neural network, the property of the product to be manufactured is predicted. Independent claims are included for the following ; (1) plant; and (2) computer program product.

Description

Die Direktreduktion von Eisenerz zu dem Produkt Eisenschwamm in Form von DRI (Direct Reduced Iron) oder HBI (Hot Briquetted Iron) findet unter Verwendung von erhitzten Prozessgasen vorzugsweise in einem Schachtofen statt. Vereinfacht gesprochen ereignen sich dabei chemische Reaktionen, die Eisenerz (Fe2O3) und Erdgas (CH4) in Eisen Fe, Kohlendioxid CO2 und Wasser H2O umwandeln.The direct reduction of iron ore to the product sponge iron in the form of DRI (Direct Reduced Iron) or HBI (Hot Briquetted Iron) takes place using heated process gases, preferably in a shaft furnace. In simple terms, chemical reactions that convert iron ore (Fe 2 O 3 ) and natural gas (CH 4 ) into iron Fe, carbon dioxide CO 2, and water H 2 O occur.

Der Schachtofen wird kontinuierlich betrieben, indem laufend von oben Rohmaterial in Form von Eisenerz-Pellets hinzu gegeben wird und ebenso kontinuierlich unten der Eisenschwamm entnommen wird.The shaft furnace is operated continuously by continuously adding raw material in the form of iron ore pellets from above and continuously removing the sponge iron from below.

Verfahren zur Herstellung von Eisenschwamm sind beispielsweise aus US 4,093,455 , US 4,178,151 , US 4,234,169 und WO 02/097138 A1 bekannt. Weitere Veröffentlichungen hierzu sind Thompson, M.: "Control Innovations in MIDREX Plants: An Introduction" in "Direct from MIDREX", 1st Quarter 2001, S. 3-4, 2001 und Görner, F., Bacon, F.: "Development of Process Automation for the MIDREX Process" in "Direct from MIDREX", 1st Quarter 2002, S. 3-5, 2002 .For example, processes for making sponge iron are known U.S. 4,093,455 . US 4,178,151 . US 4,234,169 and WO 02/097138 A1 known. Other publications are Thompson, M .: "Control Innovations in MIDREX Plants: An Introduction" in "Direct from MIDREX", 1st Quarter 2001, pp. 3-4, 2001 and Görner, F., Bacon, F .: "Development of Process Automation for the MIDREX Process" in "Direct from MIDREX", 1st Quarter 2002, p. 3-5, 2002 ,

Bei der Herstellung von Eisenschwamm ist es wünschenswert, ein Produkt mit möglichst konstanten, genau spezifizierten Eigenschaften herzustellen. Hierzu ist es bekannt, alle Einflussfaktoren für das herzustellende Produkt Eisenschwamm möglichst konstant zu halten und somit den Prozess an einem bekannten Arbeitspunkt zu betreiben. Allerdings ist beispielsweise bereits die Annahme eines völlig homogenen Eisenerzes als Rohmaterial in der Praxis oft nicht erfüllt.In the production of sponge iron, it is desirable to produce a product having as constant as possible, precisely specified properties. For this purpose, it is known to keep all influencing factors for the product to be produced sponge iron as constant as possible and thus to operate the process at a known operating point. However, for example, the assumption of a completely homogeneous iron ore as a raw material in practice is often not fulfilled.

Davon ausgehend liegt der Erfindung die Aufgabe zugrunde, eine Eigenschaft eines herzustellenden Produktes zu prognostizieren, insbesondere von durch Direktreduktion hergestelltem Eisenschwamm.Based on this, the object of the invention is to predict a property of a product to be produced, in particular of sponge iron produced by direct reduction.

Diese Aufgabe wird durch die in den unabhängigen Ansprüchen angegebenen Erfindungen gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen.This object is achieved by the inventions specified in the independent claims. Advantageous embodiments emerge from the subclaims.

Den Erfindungen liegt der allgemeine Gedanke zugrunde, bei der Prognose eines Wertes einer zu prognostizierenden Eigenschaft mit Hilfe eines neuronalen Netzes die Produkthistorie zu berücksichtigen, indem Werte in die Prognose Eingang finden, die die zu prognostizierende Eigenschaft bei bereits hergestellten Produkten aufweist. Solche Werte können bei der Bestimmung einer Eingangsgröße des neuronalen Netzes berücksichtigt werden. Alternativ oder ergänzend ist es aber auch möglich, bei der Bestimmung derselben Eingangsgröße oder einer anderen Eingangsgröße des neuronalen Netzes die Differenz zwischen einem zu einem bestimmten Zeitpunkt gemessenen Wert der Eigenschaft und einem für diesen Zeitpunkt prognostizierten Wert der Eigenschaft zu berücksichtigen.The inventions are based on the general idea, when predicting a value of a property to be predicted with the aid of a neural network, to take into account the product history by incorporating values into the prognosis which have the property to be predicted for already manufactured products. Such values can be taken into account when determining an input quantity of the neural network. Alternatively or additionally, however, it is also possible, when determining the same input variable or another input variable of the neural network, to take into account the difference between a value of the property measured at a specific time and a value of the property predicted for this time.

Dementsprechend erfolgt in einem Verfahren, insbesondere einem Herstellungsverfahren, eine Prognose eines, insbesondere erst in Zukunft messbaren, Wertes einer Eigenschaft eines in der Gegenwart und/oder Zukunft herzustellenden Produktes mit Hilfe eines neuronalen Netzes. Dabei wird ein Wert der Eigenschaft, sei es vollständig oder mit Hilfe von Stichproben, jeweils für mehrere, zu unterschiedlichen Zeitpunkten in der Vergangenheit hergestellte Produkte gemessen. Danach wird aus den für die Zeitpunkte in der Vergangenheit gemessenen Werten der Eigenschaft der Wert der Eigenschaft des in der Gegenwart und/oder Zukunft herzustellenden Produkts in einer Vorprognose prognostiziert. Es handelt sich dabei sozusagen um eine Prognose ins Unreine, bei der im Wesentlichen nur die für die Zeitpunkte in der Vergangenheit gemessenen Werte der Eigenschaft eingehen.Accordingly, in a method, in particular a production method, a prognosis of a value of a property of a product to be produced in the present and / or future with the help of a neural network, especially in the future, can be predicted. In this case, a value of the property, either completely or with the aid of random samples, is measured in each case for several products produced at different times in the past. Thereafter, the value of the property of the product to be produced in the present and / or future is predicted in a prediction from the values of the property measured for the times in the past. It is, so to speak a forecast in the impure, in which essentially only the values of the property measured for the times in the past are included.

Dieser in der Vorprognose prognostizierte Wert wird bei der Bestimmung einer Eingangsgröße für ein Eingangsneuron des neuronalen Netzes berücksichtigt. Mit Hilfe des neuronalen Netzes wird schließlich der Wert der Eigenschaft des in der Gegenwart und/oder Zukunft herzustellenden Produktes in der eigentlichen Prognose prognostiziert.This value predicted in the prediction is taken into account when determining an input variable for an input neuron of the neural network. Finally, with the help of the neural network, the value of the property of the product to be produced in the present and / or future is predicted in the actual prognosis.

Die Vorprognose lässt sich vorzugsweise mit Hilfe eines rekursiven Filters vornehmen. Das rekursive Filter kann relativ einfach dadurch realisiert werden, dass man eine lineare Hochrechnung vornimmt. Genauere Prognosen sind möglich, indem als rekursives Filter ein zweites neuronales Netz eingesetzt wird, insbesondere ein rekurrentes neuronales Netz. Dafür ist eine zusätzliche mathematische Beschreibung des Ursache-Wirkungszusammenhanges zwischen Prozessparametern und der Eigenschaft zweckmäßig.The prediction can preferably be carried out with the aid of a recursive filter. The recursive filter can be realized relatively simply by performing a linear extrapolation. More accurate predictions are possible by using a second neural network, in particular a recurrent neural network, as the recursive filter. For this, an additional mathematical description of the cause-and-effect relationship between process parameters and the property is expedient.

Zur Bestimmung einer Eingangsgröße des neuronalen Netzes kann aber auch ein Vergleich zwischen einem für einen Zeitpunkt in der Vergangenheit gemessenen Wert der Eigenschaft und einem für diesen Zeitpunkt prognostizierten Wert der Eigenschaft bei der Bestimmung einer Eingangsgröße für das neuronale Netz berücksichtigt werden.In order to determine an input quantity of the neural network, however, a comparison between a value of the property measured for a time in the past and a value of the property predicted for this time can also be taken into account when determining an input quantity for the neural network.

Dementsprechend wird eine Prognose eines, insbesondere erst in der Zukunft messbaren, Wertes einer Eigenschaft eines in der Gegenwart und/oder Zukunft herzustellenden Produktes mit Hilfe eines neuronalen Netzes vorgenommen. Dazu wird ein Wert der Eigenschaft bei einem zu einem bestimmten Zeitpunkt hergestellten Produkt gemessen. Weiterhin wird ein Wert der Eigenschaft bei dem zu diesem Zeitpunkt hergestellten Produkt mit der Prognose prognostiziert. Dazu muss die Prognose für die Vergangenheit mit zufällig oder sinnvoll gewählten Werten aus einer noch weiter zurückliegenden Vergangenheit initialisiert werden. Dann wird die Differenz zwischen dem gemessenen und dem prognostizierten Wert der Eigenschaft des Produkts zu diesem Zeitpunkt gebildet. Diese Differenz geht dann in die Bestimmung einer Eingangsgröße für ein Eingangsneuron des neuronalen Netzes ein. Mit Hilfe des neuronalen Netzes wird schließlich der Wert der Eigenschaft des in der Gegenwart und/oder Zukunft herzustellenden Produktes in der Prognose prognostiziert.Accordingly, a prognosis is made of a value of a property of a product to be produced in the present and / or future with the aid of a neural network, especially in the future. For this purpose, a value of the property is measured at a product manufactured at a certain time. Furthermore, a value of the property in the product produced at that time is predicted with the prognosis. This requires the forecast for the past with random or meaningful values be initialized from an even later past. Then, the difference between the measured and the predicted value of the property of the product at that time is formed. This difference then goes into the determination of an input quantity for an input neuron of the neural network. Finally, with the help of the neural network, the value of the property of the product to be produced in the present and / or future is predicted in the prognosis.

Ziel einer guten Prognose ist es, den Herstellungsprozess des Produktes intelligent zu steuern. Im Verfahren oder durch das Verfahren werden deshalb vorzugsweise Parameter im Herstellungsprozess des herzustellenden Produktes geändert, bis der in der Prognose prognostizierte Wert der Eigenschaft des herzustellenden Produkts zumindest in etwa einem Sollwert der Eigenschaft des herzustellenden Produkts entspricht.The goal of a good prognosis is to intelligently control the manufacturing process of the product. In the method or by the method, therefore, parameters in the production process of the product to be produced are preferably changed until the value predicted in the prognosis of the property of the product to be produced at least approximately corresponds to a nominal value of the property of the product to be produced.

Das beschriebene Verfahren eignet sich zwar generell für alle möglichen Produkte, insbesondere ist es aber für solche Produkte relevant, deren Eigenschaften nicht schon bei ihrer Herstellung oder kurz danach gemessen werden können, sondern erst mit einer Zeitverzögerung von unter Umständen mehreren Stunden. Besonders vorteilhaft lässt sich das Verfahren bei kontinuierlichen Produktionsprozessen einsetzen.Although the described method is generally suitable for all possible products, it is particularly relevant for those products whose properties can not be measured during their production or shortly thereafter, but only with a time delay of possibly several hours. The process can be used particularly advantageously in continuous production processes.

Das beschriebene Prognoseverfahren ist insbesondere für die Prognose von Eigenschaften von im Direktreduktionsverfahren hergestellten Eisenschwamm geeignet. Dementsprechend kann die Eigenschaft aus einer oder mehreren der im Folgenden genannten Größen bestehen:

  • Der Metallisierungsgrad, das heißt das Verhältnis zwischen dem absoluten Eisengehalt im Eisenerz und dem freigesetzten Eisen (Fe),
  • der Gewichtsanteil des Eisenschwamms, der als metallisches Eisen (Fe) vorliegt,
  • der Kohlenstoffgehalt im Eisenschwamm.
The forecasting method described is particularly suitable for the prognosis of properties of sponge iron produced in the direct reduction process. Accordingly, the property may consist of one or more of the following quantities:
  • The degree of metallization, ie the ratio between the absolute iron content in iron ore and the released iron (Fe),
  • the proportion by weight of the sponge iron, which is present as metallic iron (Fe),
  • the carbon content in the sponge iron.

Selbstverständlich liegt im Rahmen der Erfindung, mit Hilfe des Prognoseverfahrens nicht nur eine Eigenschaft, sondern mehrere Eigenschaften des herzustellenden Produktes zu prognostizieren.Of course, within the scope of the invention, with the aid of the prognosis method, not only one property but several properties of the product to be produced are to be predicted.

Bei der Prognose mit Hilfe des neuronalen Netzes sollten neben der Historie der bereits hergestellten Produkte auch weitere Parameter im Herstellungsprozess des herzustellenden Produktes berücksichtigt werden, indem sie Eingangsgrößen von Eingangsneuronen des neuronalen Netzes beeinflussen bzw. darstellen. Solche Parameter sind insbesondere Prozesstemperaturen, Gaszusammensetzungen verwendeter Prozessgase und/oder Eigenschaften von Rohmaterialien.In the prognosis with the aid of the neural network, in addition to the history of the products already produced, further parameters in the production process of the product to be produced should also be taken into account by influencing or representing input variables of neuronal network input neurons. Such parameters are in particular process temperatures, gas compositions of used process gases and / or properties of raw materials.

Die Erfindung betrifft weiterhin eine Anordnung, die eingerichtet ist, eines der vorstehend genannten Verfahren auszuführen. Eine solche Anordnung lässt sich zum Beispiel durch entsprechendes Programmieren und Einrichten eines Computers oder einer Rechenanlage realisieren. Zu der Anordnung kann auch eine Direktreduktionsanlage gehören, insbesondere mit einem Schachtofen.The invention further relates to an arrangement adapted to carry out one of the aforementioned methods. Such an arrangement can be realized, for example, by appropriately programming and setting up a computer or a computer system. The arrangement may also include a direct reduction plant, in particular with a shaft furnace.

Ein Programmprodukt für eine Datenverarbeitungsanlage, das Codeabschnitte enthält, mit denen eines der geschilderten Verfahren auf der Datenverarbeitungsanlage ausgeführt werden kann, lässt sich durch geeignete Implementierung des Verfahrens in einer Programmiersprache und Übersetzung in von der Datenverarbeitungsanlage ausführbaren Code ausführen. Die Codeabschnitte werden dazu gespeichert. Dabei wird unter einem Programmprodukt das Programm als handelbares Produkt verstanden. Es kann in beliebiger Form vorliegen, so zum Beispiel auf Papier, einem computerlesbaren Datenträger oder über ein Netz verteilt.A program product for a data processing system, which contains code sections with which one of the described methods can be executed on the data processing system, can be implemented by suitable implementation of the method in a programming language and translation in code executable by the data processing system. The code sections are stored for this purpose. In this case, the program is understood as a tradable product under a program product. It can be in any form, such as on paper, a computer-readable medium or distributed over a network.

Weitere wesentliche Vorteile und Merkmale der Erfindung ergeben sich aus der Beschreibung eines Ausführungsbeispiels anhand der Zeichnung. Dabei zeigt:

Figur 1
einen Schachtofen zur Herstellung von Eisenschwamm;
Figur 2
eine Vorprognose eines Wertes einer Eigenschaft eines herzustellenden Produktes aufgrund von Werten der Eigenschaften bei bereits hergestellten Produkten.
Figur 3
eine Vörprognose eines Wertes einer Eigenschaft eines herzustellenden Produktes aufgrund eines gemessenen Wertes der Eigenschaft bei einem bereits hergestellten Produkt und eines prognostizierten Wertes der Eigenschaft bei diesem bereits hergestellten Produkt.
Further essential advantages and features of the invention will become apparent from the description of an embodiment with reference to the drawing. Showing:
FIG. 1
a shaft furnace for producing sponge iron;
FIG. 2
a prediction of a value of a property of a product to be manufactured based on values of the properties of already manufactured products.
FIG. 3
a prediction of a value of a property of a product to be produced based on a measured value of the property of an already manufactured product and a predicted value of the property of that already manufactured product.

In Figur 1 erkennt man einen Schachtofen 1 mit einer Zufuhr 2 zum Zuführen von Eisenerz-Pellets, die sich im Inneren des Schachtofens 1 auf einem oder mehreren Haufen 3 häufen. Der Schachtofen 1 verfügt weiterhin über Mittel 4 zum Zuführen von Reaktionsgasen, insbesondere Wasserstoff und Kohlenmonoxid, und Mittel 5 zum Abführen von Reaktionsgasen, insbesondere Kohlendioxid und Wasser.In FIG. 1 A shaft furnace 1 with a feed 2 for supplying iron ore pellets, which accumulate in the interior of the shaft furnace 1 on one or more piles 3, can be seen. The shaft furnace 1 further has means 4 for supplying reaction gases, in particular hydrogen and carbon monoxide, and means 5 for discharging reaction gases, in particular carbon dioxide and water.

Im Inneren des Schachtofens 1 wird das Eisenerz unter hohen Temperaturen und unter Einwirkung der Prozessgase in einer Direktreduktion zu Eisenschwamm reduziert, der am unteren Ende des Ofens über eine Entnahmevorrichtung 6 entnommen und über ein Förderband 7 abtransportiert wird.In the interior of the shaft furnace 1, the iron ore is reduced under high temperatures and under the action of the process gases in a direct reduction to sponge iron, which is removed at the lower end of the furnace via a removal device 6 and transported by a conveyor belt 7.

In regelmäßigen Abständen, beispielsweise alle zwei bis vier Stunden, werden von abgekühlten Produkten Stichproben entnommen und im Labor auf die Eigenschaften Metallisierung bzw. Kohlenstoffgehalt untersucht. Die Zeitdifferenz vom Abschluss des Entstehungsprozesses bis zur ausgewerteten Probe beträgt ca. 5 bis 9 Stunden bei der Metallisierung und ca. 3,5 bis 7,5 Stunden bei der Anreicherung mit Kohlenstoff. Dies liegt daran, dass die Metallisierung als Teilprozess des Herstellungsprozesses, etwa in der Mitte des Schachtofens 1 abgeschlossen ist. Das hergestellte Produkt verbleibt aber noch für weitere, etwa 3 Stunden zur Abkühlung im Schachtofen 1, bis es diesen an seiner Entnahmevorrichtung 6 verlässt. Der Teilprozess Anreicherung mit Kohlenstoff ist etwa nach drei Vierteln der Zeit, d.h. nach etwa 4,5 Stunden, abgeschlossen. Außerdem werden im Labor etwa 2 Stunden für die Messung des Wertes der Metallisierung und die Messung des Wertes der Anreicherung mit Kohlenstoff benötigt. Unter der Voraussetzung, dass die Messung etwa alle 4 Stunden vorgenommen wird, ergibt sich also eine Totzeit von 5 bis 9 bzw. 3,5 bis 7,5 Stunden.At regular intervals, for example every two to four hours, samples of cooled products are taken and examined in the laboratory for the properties metallization or carbon content. The time difference from completion of the development process to the evaluated sample is about 5 to 9 hours in the metallization and about 3.5 to 7.5 hours in the enrichment with carbon. This is because the metallization is completed as a sub-process of the manufacturing process, such as in the middle of the shaft furnace 1. The product still remains for about 3 hours for cooling in the shaft furnace 1 until it leaves it at its removal device 6. The sub-process enrichment with carbon is completed after about three quarters of the time, ie after about 4.5 hours. In addition, it takes about 2 hours in the laboratory to measure the value of the metallization and to measure the value of carbon enrichment. Assuming that the measurement is made approximately every 4 hours, so there is a dead time of 5 to 9 or 3.5 to 7.5 hours.

Damit ließen sich unter der Voraussetzung, dass alle Einflussfaktoren konstant geblieben sind, Regeleingriffe am laufenden Prozess durchführen. Für die vorausgegangenen 3,5 bis 9 Stunden des Prozesses besteht allerdings keine Eingriffsmöglichkeit mehr. In der Praxis ist es darüber hinaus aus verschiedenen Gründen nicht möglich, alle Einflussfaktoren konstant zu halten.With this, assuming that all influencing factors have remained constant, it was possible to carry out control interventions in the current process. For the preceding 3.5 to 9 hours of the process, however, there is no longer an opportunity to intervene. In addition, for various reasons, it is not possible in practice to keep all influencing factors constant.

In Figur 2 erkennt man, dass der zum Zeitpunkt t-3 vorliegende Wert W-3 einer Eigenschaft, also beispielsweise der Metallisierung oder des Kohlenstoffgehalts, des Produktes erst zum Zeitpunkt t-3 + 5 Stunden gemessen werden kann. Gleiches gilt sinngemäß für den Wert W-2 der Eigenschaft des Produkts zum Zeitpunkt t-2 und den Wert W-1 des Produktes zum Zeitpunkt t-1, die ebenfalls erst 5 Stunden nach der Herstellung gemessen werden können.In FIG. 2 it is seen that at time t -3 present value W -3 a property, that is, for example, the metallization or the carbon content, of the product until the time t -3 + 5 can be measured. The same applies mutatis mutandis to the value W -2 of the property of the product at time t -2 and the value W -1 of the product at time t -1 , which can also be measured only 5 hours after manufacture.

Aus den gemessenen Werten W-3, W-2 und W-1, die beispielsweise eine Metallisierung von 94,1%, 94,2% und 94,3% angeben, wird nun in einer Vorprognose V der Wert WV P,0 der Eigenschaft des herzustellenden Produktes im aktuellen Zeitpunkt t0 prognostiziert. Im in Figur 2 dargestellten Ausführungsbeispiel geschieht dies einfach durch lineare Hochrechnung, was durch die gestrichelte Linie angedeutet ist. Hier können allerdings auch kompliziertere Algorithmen zum Einsatz kommen.From the measured values W -3 , W -2 and W -1 , which indicate, for example, a metallization of 94.1%, 94.2% and 94.3%, the value W V P, 0 is now in a prediction V the property of the product to be produced at the current time t 0 predicts. Im in FIG. 2 shown Embodiment, this is done simply by linear extrapolation, which is indicated by the dashed line. However, even more complicated algorithms can be used here.

Der in der Vorprognose prognostizierte Wert Wv 0 wird nun bei der Bestimmung einer Eingangsgröße für ein Eingangsneuron eines neuronalen Netzes berücksichtigt.The predicted value W v 0 in the prediction is now taken into account when determining an input variable for an input neuron of a neural network.

Darüber hinaus wird, wie in Figur 3 dargestellt, auch noch die Differenz eines für einen Zeitpunkt t-1 in der Vergangenheit gemessenen Wertes W-1 und eines für diesen Zeitpunkt mit der Eigentlichen Prognose P prognostizierten Wertes WP,-1 in einer zweiten Vorprognose V' berücksichtigt.In addition, as in FIG. 3 also takes into account the difference between a value W -1 measured in the past for a time t -1 and a value W P, -1 predicted for this time with the actual prognosis P in a second prediction V '.

Dies geschieht mit Hilfe der Formel: W V 0 = W - 1 + α W P - 1 - W - 1 ;

Figure imgb0001
Mit α = {0; 1}, beispielsweise α = 0,25.This is done with the help of the formula: W V 0 = W - 1 + α W P - 1 - W - 1 ;
Figure imgb0001
With α = {0; 1}, for example α = 0.25.

Dieser unter Berücksichtigung der Differenz zwischen dem gemessenen Wert W-1 und dem mit der Prognose prognostizierten Wert WP -1 der Eigenschaft des Produkts zum Zeitpunkt t-1 gebildete Wert WV' 0 einer zweiten Vorprognose wird nun als Eingangsgröße für ein zweites Eingangsneuron des neuronalen Netzes herangezogen.Taking into account the difference between the measured value W -1 and the predicted value W P -1 of the property of the product at time t -1 , the value W V ' 0 of a second prediction now becomes an input value for a second input neuron neural network.

Die Eingangsgrößen weiterer Eingangsneuronen des neuronalen Netzes werden durch weitere Prozessparameter gebildet bzw. unter Berücksichtigung weiterer Prozessparameter berechnet. Solche Prozessparameter sind:

  • Die Gaszusammensetzung aller Prozessgase (trocken und nass), die in der Direktreduktionsanlage zum Einsatz kommen,
  • quantitative und zeitliche Aussagen bei Gasen zu Durchflüssen (beispielsweise Tonnen pro Stunde) und Temperaturen,
  • alle Temperaturmessungen im und am Schachtofen,
  • Eigenschaften, die das Rohmaterial beschreiben (Porosität, chemische Zusammensetzung, Größe und Form der.Pellets, Dichte, Temperatur),
  • Eigenschaften, die das hergestellte oder herzustellende Produkt beschreiben (Dichte, chemische Zusammensetzung, Kohlenstoffgehalt, Eisengehalt, Gehalt des metallischen Eisens, Metallisierungsgrad),
  • Massenflüsse des Rohmaterials und des Endproduktes sowie
  • Luft (Temperatur und Feuchtigkeit über der Zeit).
The input variables of further input neurons of the neural network are formed by further process parameters or calculated taking into account further process parameters. Such process parameters are:
  • The gas composition of all process gases (dry and wet) used in the direct reduction plant
  • quantitative and temporal statements for gases at flow rates (eg tonnes per hour) and temperatures,
  • all temperature measurements in and at the shaft furnace,
  • Properties describing the raw material (porosity, chemical composition, size and shape of pellets, density, temperature),
  • Characteristics describing the product produced or to be produced (density, chemical composition, carbon content, iron content, content of metallic iron, degree of metallization),
  • Mass flows of the raw material and the final product as well
  • Air (temperature and humidity over time).

In die Modellbildung gehen vorteilhaft etwa 100 gemessene und berechnete Eingangsgrößen ein.The modeling advantageously involves about 100 measured and calculated input variables.

Beim neuronalen Netz hat es sich als besonders vorteilhaft erwiesen, ein Ensemble von neuronalen Netzen zu verwenden und dessen Median auszuwerten. Auch eine Kombination von Feed-Forward-Netzen mit rekursiven Filtern ist vorteilhaft.In the neural network, it has proven to be particularly advantageous to use an ensemble of neural networks and to evaluate its median. A combination of feed-forward networks with recursive filters is also advantageous.

An bevorzugten Trainingsverfahren für das neuronale Netz sind folgende zu nennen: Der Einsatz von digitalen Filtern für die Trainingsdaten, eine automatische Ausreißerentfernung, Bagging, das Einhalten von Randbedingungen für die Monotonie bezüglich relevanter Steuergrößen und der Zielgrößen.Preferred training methods for the neural network include the use of digital filters for the training data, automatic outlier removal, bagging, compliance with monotonic constraints on relevant control variables, and target sizes.

Die Eingangsgrößen des neuronalen Netzes werden vorzugsweise aus den genannten Prozessparametern analytisch modelliert. Dies geschieht beispielsweise durch die Integration von Größen, die quantitative Beschreibung chemischer Umwandlung einschließlich der Reaktionskinetik mit Hilfe von Differenzialgleichungen und einer Berechnung, wann welches Materialstück wo im Schachtofen ist, mit Hilfe des Produktausstoßes pro Stunde.The input variables of the neural network are preferably modeled analytically from the named process parameters. This is done, for example, by the integration of quantities, the quantitative description of chemical conversion including the reaction kinetics with the help of differential equations and a calculation of which piece of material where in the shaft furnace, with the aid of the product output per hour.

Zur Ausführung werden vorteilhaft verschiedene, miteinander verknüpfte Software-Programme in Fortran, C, C++ und MATLAB verwendet. Ein User-Interface lässt sich in Visual-Basic programmieren.For execution, it is advantageous to use various interlinked software programs in Fortran, C, C ++ and MATLAB. A user interface can be programmed in Visual Basic.

Durch die Erfindung ergeben sich folgende Vorteile:

  • Die Abweichung von vorgegebenen Sollwerten kann reduziert werden. In der Praxis ergibt sich eine Reduzierung der Standardabweichung um ca. 40% bei der Metallisierung und ca. 30% beim Kohlenstoffgehalt.
  • Geringere Abweichungen erlauben einen Betrieb des Schachtofens näher am Optimum, was dem Durchsatz und der Qualität zugute kommt.
  • Es wird eine Produktionssteigerung von ca. 1% erzielt.
  • Durch die konstantere und höhere Materialgüte können die Abnehmer des Eisenschwamms, nämlich Betreiber von Elektrolichtbogenöfen, ihre Öfen optimierter betreiben. Dieser Vorteil wirkt sich noch stärker aus, als die Vorteile beim Betreiben der Direktreduktionsanlage, so dass sich für das hergestellte Produkt entsprechend höhere Preise erzielen lassen.
  • Die Berechnung der Materialeigenschaften kann Laborproben ersetzen.
  • Die Berechnungen können jederzeit durchgeführt werden könnten. Das heißt, es können zum Beispiel alle 0,1 Sekunden aktuelle Werte berechnet, statt alle zwei bis vier Stunden im Labor analysiert werden.
  • Da maßgebliche chemische Reaktionen bereits in der ersten Hälfte bzw. dem ersten Drittel des Prozesses von ca. 6 Stunden abgeschlossen sind, können die Materialeigenschaften bereits ermittelt werden, bevor der Eisenschwamm dem Schachtofen entnommen wird. Damit verkürzen sich die Reaktionszeiten für eine Regelung der Materialeigenschaften von 3,5 bis 9 Stunden auf die Berechnungsdauer für die Modelle, die unter 0,1 Sekunden liegt.
The invention provides the following advantages:
  • The deviation from specified target values can be reduced. In practice, the standard deviation is reduced by about 40% for metallization and about 30% for carbon content.
  • Lower deviations allow operation of the shaft furnace closer to optimum, which benefits throughput and quality.
  • A production increase of approx. 1% is achieved.
  • Due to the more constant and higher material quality, the customers of the sponge iron, namely operators of electric arc furnaces, operate their ovens optimized. This advantage has an even greater effect than the advantages of operating the direct reduction plant, so that correspondingly higher prices can be achieved for the manufactured product.
  • The calculation of the material properties can replace laboratory samples.
  • The calculations could be done anytime. This means that, for example, current values can be calculated every 0.1 seconds, instead of being analyzed every two to four hours in the laboratory.
  • Since decisive chemical reactions have already been completed in the first half or the first third of the process of about 6 hours, the material properties can already be determined before the sponge iron is removed from the shaft furnace. This shortens the reaction times for material properties control from 3.5 to 9 hours to the calculation time for the models, which is less than 0.1 seconds.

Claims (12)

  1. Computer-aided method, in particular a production method, for predicting, with the aid of a neuronal network, a value of a property of a product to be produced,
    - wherein measurement values of the property of products produced at different times are measured,
    - wherein a preliminary value of the property of the product to be produced is predicted from the measurement values in a preliminary prognosis,
    - wherein the preliminary value is taken into account when determining an input variable for a first input neuron of the neuronal network,
    - wherein a reference value of the property of a produced product is measured,
    - wherein an estimated value of the property of the produced product is predicted by means of the prognosis,
    - wherein the difference is formed between the reference value and the estimated value of the property of the product,
    - wherein a value calculated from this difference is used as the input variable for a second input neuron of the neuronal network,
    - wherein the value of the property of the product to be produced is predicted in the prognosis with the aid of the neuronal network.
  2. Method according to claim 1, wherein the preliminary prognosis is undertaken with the aid of a recursive filter.
  3. Method according to claim 2, wherein the recursive filter is and/or includes a linear projection.
  4. Method according to claim 2, wherein the recursive filter is and/or includes a second neuronal network, in particular a recurrent neuronal network.
  5. Method according to one of the preceding claims, wherein parameters in the production process of the product to be produced are changed, until the value of the property of the product to be produced predicted in the prognosis corresponds at least approximately to a setpoint value of the property of the product to be produced.
  6. Method according to one of the preceding claims, wherein the product to be produced is produced with the aid of a direct reduction.
  7. Method according to one of the preceding claims, wherein the product to be produced is and/or contains iron sponge.
  8. Method according to one of the preceding claims, wherein the property is the metallic iron content of the product to be produced.
  9. Method according to one of the preceding claims, wherein the property is the carbon content of the product to be produced.
  10. Method according to one of the preceding claims, wherein further parameters in the production process of the product to be produced are taken into account during the prognosis with the aid of the neuronal network, in particular process temperatures, gas compositions of process gases used, properties of raw materials and/or parameters determined through analytical computations of chemical conversions and reaction kinetics.
  11. Arrangement, which is set up to execute a method according to at least one of the preceding claims.
  12. Programme product, which when loaded onto and executed on a data processing system starts up a method according to one of claims 1 to 10 or a device according to claim 11.
EP04709993A 2003-02-13 2004-02-11 Multivariate, predictive regulation of a direct reduction process Expired - Lifetime EP1593090B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10306024 2003-02-13
DE10306024A DE10306024B3 (en) 2003-02-13 2003-02-13 Control of e.g. direct reduction process using neural network takes property measurements and employs neural network to predict property of manufactured product
PCT/EP2004/001275 WO2004072309A2 (en) 2003-02-13 2004-02-11 Multivariate, predictive regulation of a direct reduction process

Publications (2)

Publication Number Publication Date
EP1593090A2 EP1593090A2 (en) 2005-11-09
EP1593090B1 true EP1593090B1 (en) 2009-05-20

Family

ID=32087389

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04709993A Expired - Lifetime EP1593090B1 (en) 2003-02-13 2004-02-11 Multivariate, predictive regulation of a direct reduction process

Country Status (7)

Country Link
US (1) US7634451B2 (en)
EP (1) EP1593090B1 (en)
AT (1) ATE431952T1 (en)
DE (2) DE10306024B3 (en)
MX (1) MXPA05008624A (en)
RU (1) RU2346327C2 (en)
WO (1) WO2004072309A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2503948C2 (en) * 2008-02-14 2014-01-10 Орион Диагностика Ой Method to predict future characteristic

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093455A (en) * 1975-06-05 1978-06-06 Midrex Corporation Compacted, passivated metallized iron product
US4178151A (en) * 1978-03-02 1979-12-11 Midrex Corporation Apparatus for monitoring the feeding of particulate materials to a packed bed furnace
US4234169A (en) * 1979-09-24 1980-11-18 Midrex Corporation Apparatus for the direct reduction of iron and production of fuel gas using gas from coal
US5825646A (en) * 1993-03-02 1998-10-20 Pavilion Technologies, Inc. Method and apparatus for determining the sensitivity of inputs to a neural network on output parameters
US5408424A (en) * 1993-05-28 1995-04-18 Lo; James T. Optimal filtering by recurrent neural networks
US5796920A (en) * 1994-08-19 1998-08-18 Harris Corporation Multiprocessor system and method for identification and adaptive control of dynamic systems
EP0907117A1 (en) 1997-09-05 1999-04-07 Communauté Européenne (CE) Nonlinear neural predictive control system
DE19748310C1 (en) 1997-10-31 1998-12-17 Siemens Ag Controlling formation of foam slag in an electric arc furnace
RU2261918C2 (en) * 2001-02-12 2005-10-10 Мидрекс Текнолоджиз, Инк. Highly productive method and a device for direct reduction of iron

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DUHOUX M. ET AL: "Improved Long-Term Temperature Prediction by Chaining of Neural Networks", INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 1 February 2001 (2001-02-01), SINGAPORE, SG, pages 1 - 10, XP002352477 *

Also Published As

Publication number Publication date
MXPA05008624A (en) 2005-11-04
WO2004072309A2 (en) 2004-08-26
US7634451B2 (en) 2009-12-15
RU2005128510A (en) 2006-06-10
ATE431952T1 (en) 2009-06-15
RU2346327C2 (en) 2009-02-10
DE10306024B3 (en) 2004-05-06
DE502004009504D1 (en) 2009-07-02
EP1593090A2 (en) 2005-11-09
WO2004072309A3 (en) 2004-12-29
US20060149694A1 (en) 2006-07-06

Similar Documents

Publication Publication Date Title
EP2742158B1 (en) Method for operating a continuous annealing line for the processing of a rolled good
DE19881711C5 (en) Method and device for controlling a metallurgical plant
DE112014005434T5 (en) Smart decision method and apparatus and endpoint prediction for a PS copper converter blow process
DE102011102034A1 (en) Online adjustment of a process-analytical model with effective process operation
CN111191822A (en) Steel parameter prediction method and terminal equipment
DE19637917C2 (en) Method and device for designing or controlling the process flow of a plant in the raw materials industry
DE102010048409A1 (en) Method and device for optimizing a production process
EP3147729A2 (en) Method and device for adaptive and optimising process management, use of the method
DE102016100811A1 (en) Method and determination of the structural components in an annealing line
WO1998015882A1 (en) A process and device for identification or pre-calculation of parameters of a time-variant industrial process
EP1890207A1 (en) Method of generating a process model
DE102020206114A1 (en) System and method for controlling a production plant consisting of several plant parts, in particular a production plant for the production of industrial goods such as metallic semi-finished products
EP1593090B1 (en) Multivariate, predictive regulation of a direct reduction process
DE102012216514B4 (en) Statistical quality assurance procedure for steel products within a steel class
EP3642372B1 (en) Method for operating an annealing surface
EP2577829A1 (en) Method and system for adapting a production flow schedule for a production process
EP0572848B1 (en) Method of determination of the end-point during oxygen steelmaking in a converter
DE19641432C2 (en) Method and device for the pre-calculation of previously unknown parameters of an industrial process
EP1014239B1 (en) Method for calculating a reduction plan
DE19912221B4 (en) Computer system for designing a plant of the basic industry, in particular a rolling mill
EP1106713B1 (en) Method for determining the pickling time of a scaled metal strip
DE19643884A1 (en) Production process setting
DE102019204422A1 (en) Prediction of the combustion dynamics of a gas turbine
EP1593010A2 (en) Mathematical model for a metallurgical engineering system and method for optimizing the operation of a metallurgical engineering system using said model
EP2120118A1 (en) Method for operating a technical procedural facility

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050718

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): AT DE FI IT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LANG, BERNHARD

Inventor name: GOERNER, FRANZ

Inventor name: MONTAGUE, STEPHEN, CRAIG

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LANG, BERNHARD

Inventor name: MONTAGUE, STEPHEN, CRAIG

Inventor name: GOERNER, FRANZ

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LANG, BERNHARD

Inventor name: GOERNER, FRANZ

Inventor name: MONTAGUE, STEPHEN, CRAIG

17Q First examination report despatched

Effective date: 20051118

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FI IT

REF Corresponds to:

Ref document number: 502004009504

Country of ref document: DE

Date of ref document: 20090702

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120222

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120420

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20130213

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20130108

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004009504

Country of ref document: DE

Effective date: 20130903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130903

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 431952

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140211