EP1590243A1 - Dispositif de pilotage de l'attitude d'un satellite par actionneurs gyroscopiques - Google Patents

Dispositif de pilotage de l'attitude d'un satellite par actionneurs gyroscopiques

Info

Publication number
EP1590243A1
EP1590243A1 EP04708380A EP04708380A EP1590243A1 EP 1590243 A1 EP1590243 A1 EP 1590243A1 EP 04708380 A EP04708380 A EP 04708380A EP 04708380 A EP04708380 A EP 04708380A EP 1590243 A1 EP1590243 A1 EP 1590243A1
Authority
EP
European Patent Office
Prior art keywords
attitude
platform
motor
satellite
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04708380A
Other languages
German (de)
English (en)
Inventor
Céline Eads Astrium sas BEUGNON
Ange Eads Astrium sas DEFENDINI
Mehdi Eads Astrium sas GHEZAL
Julien Eads Astrium sas MORAND
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space SAS
Original Assignee
EADS Astrium SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EADS Astrium SAS filed Critical EADS Astrium SAS
Publication of EP1590243A1 publication Critical patent/EP1590243A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/28Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect
    • B64G1/286Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect using control momentum gyroscopes (CMGs)

Definitions

  • the present invention relates to devices for controlling the attitude of satellites by exchanging kinetic moments provided by a cluster of kinetic moment generating members, including at least one actuator with a rotary element, mounted on the platform of the satellite.
  • control devices of which at least one of the bodies for creating a kinetic moment is constituted by a gyrodyne or gyroscopic actuator, often designated by the acronym CMG (Control Moment Gyro).
  • the gyroscopic actuators comprise a wheel or spinning top driven in rotation, generally at constant speed, which rotates around an axis on a support, called cardan, orientable around at least one axis orthogonal to the axis of rotation of the top. Examples of gyrodynes are given in document EP-A-1002716 and FR 02 03569 to which reference may be made.
  • a cluster of at least three gyrodynes as indicated in the document EP 1002716 already mentioned, the application PCT / FR 02/02181 or the article by A.
  • Defendini et al "lo cost CMG-based AOCS design "(ESA SP-425, Feb. 2000) to which we can refer, or two gyrodynes having cardan shafts whose axes of rotation are parallel and a reaction wheel whose axis has a fixed orientation relative to the body of the satellite and whose speed is adjustable.
  • the invention is applicable to all devices which include at least one gyroscopic actuator capable of generating a torque of the platform of the satellite by angular displacements of the gimbal around its axis, so as to cause the router to precess.
  • gyroscopic actuators Devices for piloting satellites are already known using gyroscopic actuators. Unlike the motor of a reaction wheel, that of a gyroscopic actuator is not controlled directly by the torque control provided by the computer for the satellite orbit attitude control system. In fact, the torque supplied by a gyroscopic actuator is the vector product of the angular momentum of the router by the speed of rotation of the gimbal around its axis. The use of a cluster of gyroscopic actuators on a satellite consequently requires a conversion of the torque commands to be applied to the satellites into speed controls of the universal joint motor.
  • control device very much depend on the choice of the type of electric drive motor for the gimbal, allowing the axis of rotation of the router to be oriented.
  • electric drive motor for the gimbal, allowing the axis of rotation of the router to be oriented.
  • motors stepper and torque motors.
  • Torque motors use a speed or position control, in a closed local loop, to control the speed of rotation of the gimbal.
  • the closed loop comprises an angular sensor, generally optical or inductive, making it possible to achieve a high resolution and a very good pointing position.
  • the space-qualified torque motors have a maximum torque of a few Newton meters, sufficient for small actuators, providing a torque not exceeding approximately 50 Nm.
  • the torque motors complicate the constitution of the actuator by the need for a sensor and control electronics, which must ensure the servo-control of the gimbal, the autopilot of the motor phases and the feedback of the measurement system.
  • these drawbacks are penalizing in power, mass and size.
  • the stepping motors currently used by gyroscopic actuators are designed to take only configurations in which the magnetic poles of the rotor align with the coils of the stator. The passage from one position to another is controlled by modification of the electrical states of the different phases of the motor, generally two-phase but which can be three-phase.
  • Stepper motors have the advantage of simple control electronics, since a device for measuring the position or speed of the gimbal is not necessary; the piloting is done in open loop.
  • the pointing accuracy of the router axis is limited to the angular pitch between poles of the motor, often 18 mrad on the actuators used in satellites. If one seeks to improve the definition by using a reducer, one comes up in particular with the problem of games during the reversal of the direction of rotation, of the weight and of holding during launching.
  • the present invention aims to provide a device for controlling the attitude of a satellite by exchanging kinetic moments, using organs for creating a kinetic moment, including at least one gyroscopic actuator, making it possible to maintain the simplicity of control inherent in stepper motor, while achieving the high precision required for certain satellites, which until now required a torque motor.
  • the invention proposes in particular a device for controlling satellite attitude by exchanging kinetic moments, comprising a cluster of several kinetic moment generation members including at least one gyroscopic actuator having a wheel or spinning top rotating on a axis carried by a universal joint orientable on the satellite platform by a stepping motor (on the platform 7) around at least one axis orthogonal to the axis of rotation of the router and having a system for controlling the attitude of the platform and orbit in an absolute reference (known as SCAO or, in English, AOCS), provided with sensors for orienting the platform, characterized in that the control system d attitude and orbit comprises a computer provided for developing a digital orientation instruction for the gimbal of said gyroscopic actuator from the difference between an attitude instruction for the platform and the current attitude, and in that l actuator or calculated it tor is provided with means for converting the digital orientation setpoint into analog values of currents applied to the different phases of the stepping motor, with a resolution such that the motor can be brought and maintained in intermediate
  • the holding currents and I supplied to the two phases are:.
  • I 0 a motor setpoint current
  • p the number of motor poles (number of steps divided by A, for a two-phase motor)
  • the position setpoint issued of the SCAO calculator.
  • the local control of the currents I] and I 2 can be achieved by using read only memory tables (PROM) giving the cosines and sines.
  • the currents and I 2 can be generated by linear gain amplifiers controlled by analog values supplied by conversion of values supplied by at least one table in cosine and sine memory.
  • Figure 1 is a block diagram showing the implementation of the invention with a cluster of four gyroscopic actuators
  • FIG. 2 is a block diagram of the functions of an attitude control device usable with the configuration of Figure 1;
  • FIG. 3 is a diagram showing another possible configuration.
  • the device shown diagrammatically in FIG. 1 comprises four gyroscopic actuators in a configuration which is that given in the document
  • EP-A- 1 002716 to which reference may be made (associated with a control system which is not that according to the invention) or in the article by A. Deferdini et al. “Low cost CMG-based AOCS design” (ESA SP-425, February 2000) already mentioned.
  • FIG. 1 shows a cluster of four identical gyroscopic actuators 10, each having a router 12 mounted on a gimbal 14 so as to be able to rotate on the gimbal around an axis 16.
  • a motor not shown keeps the router in rotation, generally at constant speed.
  • Each gimbal is mounted on the platform of the satellite, represented schematically at 25 in FIG. 3, so as to be able to rotate around an axis 18 orthogonal to the axis 16.
  • the axes 18 have different orientations. In the case shown, they occupy the edges of a regular pyramid with vertex 20.
  • Each of the universal joints 14 is provided with a motor 22, only one of which is shown, making it possible to rotate it around the respective axis 18.
  • the gimbal 14 is generally devoid of an angular sensor.
  • Each motor 22 is of the stepping type and comprises a stator 23 and a rotor 24.
  • the gimbal 14 will be provided with a low resolution angular encoder. But it will not be used for slaving and will only aim to give an approximate indication to initialize the device.
  • an attitude control system Maintaining the satellite in a set attitude in an inertial frame is ensured by an attitude control system. It comprises a member 26 for calculating and controlling the motors 22 which receives orientation (and possibly angular speed) instructions from the satellite, supplied by a transceiver 28 for connection with the ground and signals 30 coming from non-sensor represented, such as gyrometers, star sensors, terrestrial horizon sensors, etc. ... The member 26 controls the power circuits 32 supplying the motors 22.
  • the member 26 comprises the means and the peripherals necessary to constitute the control loop shown diagrammatically in FIG. 2, which can be viewed as comprising on the one hand a sub-assembly 40 involving the cluster of actuators 10 provided with electronics. analog control and secondly a sub-assembly 41 implementing the digital computer 26 of the SCAO. In fig. 2, the frames correspond to the different functions.
  • the SCAO receives a correction command as input.
  • This command is produced, for example, in a subtractor 44 from an attitude setpoint ⁇ and / or speed v of the platform, supplied for example by remote control from the ground, and from current values resulting from the dynamics. Satellite, shown diagrammatically at 46.
  • These current values of attitude and speed can be supplied by sensors 48 such as gyrometers or star sensors.
  • the functions performed by the sub-assembly 41 include attitude control 50 from the error signal supplied by the subtractor 44.
  • the output signal from the attitude control module 50 is representative of the torque to be supplied.
  • the local guide module 52 calculates, from the value of the torque, the speeds to be given to the universal joints 14 of the different wheels 12, possibly taking into account the selection instructions for the wheels 12 aimed at choosing the three most advantageous wheels 12.
  • the speed signal supplied at 54 is integrated at 56 to provide, on the SCAO bus 58, new cardan reference positions.
  • the sub-assembly 40 comprises a module 60 which develops optimized controls of the currents to be applied to the different phases of the cardan motors.
  • this module 60 generally includes a PROM ROM 62 of digital-analog converters and linear amplifiers with controlled gain.
  • the different currents supplied at 64 are applied to the motors 22 and, due to the dynamics of the gyroscopic actuators 10 shown diagrammatically by the frame 66, cause internal exchanges of angular momentum with the platform of the satellite.
  • the dynamics of the satellite shown diagrammatically by the frame 46, causes a reorientation of the satellite body, which is detected by the sensors 48.
  • the intensity control of the phase currents of the motors 22 is thus looped back to the speed measurement of the platform such as in FIG. 3 of the satellite (supplied by the sensors), which provides a directional pointing instruction. 14 by conservation of the angular momentum.
  • the loopback is thus carried out through a simple update of the universal joint position setpoint 14, supplied by the SCAO on its bus 58, which does not add any complexity to the electronics of the cluster.
  • Each gimbal 14 is controlled by simple processing of the instructions provided by the SCAO.
  • the cluster of internal angular momentum creation organs is of a type which is in particular usable on microsatellites.
  • These members include a kinetic wheel or reaction wheel 64 with variable speed of rotation around the yaw axis z and two gyroscopic actuators 68 whose axes of rotation of the universal joints are parallel to each other and to the yaw axis z and of which the axes of rotation of the routers can thus be oriented in the plane defined by the roll x and pitch y axes.
  • the kinetic wheel 64 is placed so that its axis z is parallel to the direction of the axis of rotation of the gimbals of the gyroscopic actuators 68.
  • the control of the kinetic wheel 64 is carried out in a conventional manner and the invention is only implemented on actuators 68.

Abstract

Le dispositif de pilotage d'attitude de satellite par échange de moments cinétiques, comprend une grappe ayant au moins un actionneur gyroscopique (10) ayant une toupie (12) tournant sur un axe (16) porté par un cardan (14) orientable sur la plate-forme du satellite par un moteur pas à pas (22),et un système de commande d'attitude de la plate-forme et d'orbite dans un repère absolu, muni de capteurs d'orientation de la plate-forme. Le système de commande comporte un calculateur (26) prévu pour élaborer une consigne numérique d'orientation du cardan (14) à partir de l'écart entre une consigne d'attitude de la plate-forme et de l'attitude courante. L'actionneur ou le calculateur (26) est muni de moyens de conversion de la consigne numérique d'orientation en valeurs analogiques de courants appliqués aux différentes phases du moteur (22) pas à pas, avec une résolution telle que le moteur puisse être amené et maintenu dans des orientations intermédiaires entre celles qui correspondent à l'alignement mutuel des pôles du stator (23) et du rotor (24).

Description

DISPOSITIF DE PILOTAGE DE L'ATTITUDE D'UN SATELLITE PAR ACTIONNEURS GYROSCOPIQUES
La présente invention concerne les dispositifs de pilotage d'attitude de satellites par échange de moments cinétiques fournis par une grappe d'organes de génération de moments cinétiques, parmi lesquels au moins un actionneur à élément rotatif, montés sur la plate-forme du satellite.
Elle concerne plus particulièrement les dispositifs de pilotage dont au moins un des organes de création d'un moment cinétique est constitué par un gyrodyne ou actionneur gyroscopique, souvent désigné par le sigle CMG (Control Moment Gyro).
Les actionneurs gyroscopiques comportent une roue ou toupie entraînée en rotation, généralement à vitesse constante, qui tourne autour d'un axe sur un support, appelé cardan, orientable autour d'au moins d'un axe orthogonal à l'axe de rotation de la toupie. Des exemples de gyrodynes sont donnés dans le document EP-A- 1002716 et FR 02 03569 auxquels on pourra se reporter.
Pour permettre de réorienter un trièdre de référence lié à la plate-forme du satellite dans toutes les attitudes, il est nécessaire d'utiliser au moins trois éléments de création de moments cinétiques. On peut par exemple utiliser une grappe d'au moins trois gyrodynes, comme indiqué dans le document EP 1002716 déjà mentionné, la demande PCT/FR 02/02181 ou l'article de A. Defendini et al « lo cost CMG-based AOCS design » (ESA SP-425, Fev. 2000) auxquels on pourra se reporter, ou deux gyrodynes ayant des cardans dont les axes de rotation sont parallèles et une roue de réaction dont l'axe a une orientation fixe par rapport au corps du satellite et dont la vitesse est réglable. L'invention est applicable à tous les dispositifs qui comportent au moins un actionneur gyroscopique capable de générer un couple de rotation de la plate-forme du satellite par déplacements angulaires du cardan autour de son axe, de façon à faire précessionner la toupie.
On connaît déjà des dispositifs de pilotage de satellites utilisant des actionneurs gyroscopiques. Contrairement au moteur d'une roue de réaction, celui d'un actionneur gyroscopique ne se pilote pas directement par la commande de couple fournie par le calculateur du système de contrôle d'attitude en orbite du satellite. En effet le couple fourni par un actionneur gyroscopique est le produit vectoriel du moment cinétique de la toupie par la vitesse de rotation du cardan autour de son axe. L'utilisation d'une grappe d' actionneurs gyroscopiques sur un satellite nécessite en conséquence une conversion des commandes de couple à appliquer aux satellites en commandes de vitesse du moteur des cardans.
Les caractéristiques globales du dispositif de pilotage dépendent beaucoup du choix du type de moteur électrique d'entraînement du cardan, permettant d'orienter l'axe de rotation de la toupie. On utilise essentiellement deux types de moteurs, les moteurs pas à pas et les moteurs couples.
Les moteurs couples utilisent un asservissement en vitesse ou en position, en boucle locale fermée, pour commander la vitesse de rotation du cardan. La boucle fermée comporte un capteur angulaire, généralement optique ou inductif, permettant d'atteindre une résolution élevée et une très bonne position de pointage. Les moteurs couples qualifiés pour l'espace ont un couple maximum de quelques Newton-mètres, suffisants pour les actionneurs de petite taille, fournissant un couple ne dépassant pas 50 Nm environ.
En contrepartie, les moteurs couples compliquent la constitution de l'actionneur par la nécessité d'un capteur et d'une électronique de commande, qui doit assurer l'asservissement d'orientation du cardan, l'autopilotage des phases du moteur et le rebouclage du système de mesure. Notamment sur des satellites de petites tailles, utilisés souvent en nombre, ces inconvénients sont pénalisants en puissance, en masse et en encombrement. Les moteurs pas à pas utilisés à l'heure actuelle par les actionneurs gyroscopiques sont prévus pour ne prendre que des configurations dans lesquelles les pôles magnétiques du rotor s'alignent avec les bobines du stator. Le passage d'une position à une autre est commandé par modification des états électriques des différentes phases du moteur, généralement biphasé mais pouvant être triphasé. Les moteurs pas à pas ont l'avantage d'une électronique de pilotage simple, puisqu'un dispositif de mesure de position ou de vitesse du cardan n'est pas nécessaire ; le pilotage se fait en boucle ouverte. En contre partie, la précision de pointage de l'axe de la toupie est limitée au pas angulaire entre pôles du moteur, souvent de 18 mrad sur les actionneurs utilisés dans les satellites. Si on cherche à améliorer la définition en utilisant un réducteur, on se heurte notamment au problème des jeux lors de l'inversion du sens de rotation, du poids et de tenue lors du lancement. En conséquence, l'utilisation de moteurs pas à pas n'est pas satisfaisante sur les satellites qui exigent une attitude très stable, typiquement inférieure à 100 micro radian par seconde, ce qui correspond habituellement à 1 mrad de précision sur le pointage de l'axe de la toupie, pour des satellites de quelques centaines de kilogrammes. C'est notamment le cas des missions d'observation de la terre à haute résolution à l'aide de satellites de relativement petite taille en orbite basse ou moyenne.
La présente invention vise à fournir un dispositif de pilotage d'attitude d'un satellite par échange de moments cinétiques, utilisant des organes de création d'un moment cinétique, dont au moins un actionneur gyroscopique, permettant de conserver la simplicité de commande inhérente au moteur pas à pas, tout en permettant d'arriver à la précision élevée requise pour certains satellites, qui jusqu'à présent exigeait un moteur couple.
Dans ce but, l'invention propose notamment un dispositif de pilotage d'attitude de satellite par échange de moments cinétiques, comprenant une grappe de plusieurs organes de génération de moment cinétique parmi lesquels au moins un actionneur gyroscopique ayant une roue ou toupie tournant sur un axe porté par un cardan orientable sur la plate-forme du satellite par un moteur pas à pas (sur la plate-forme...) autour d'au moins un axe orthogonal à l'axe de rotation de la toupie et ayant un système de commande d'attitude de la plate-forme et d'orbite dans un repère absolu (dit SCAO ou, en anglais, AOCS) , muni de capteurs d'orientation de la plate-forme, caractérisé en ce que le système de commande d'attitude et d'orbite comporte un calculateur prévu pour élaborer une consigne numérique d'orientation du cardan dudit actionneur gyroscopique à partir de l'écart entre une consigne d'attitude de la plateforme et de l'attitude courante, et en ce que l'actionneur ou le calculateur est muni de moyens de conversion de la consigne numérique d'orientation en valeurs analogiques de courants appliqués aux différentes phases du moteur pas à pas, avec une résolution telle que le moteur puisse être amené et maintenu dans des orientations intermédiaires entre celles qui correspondent à l'alignement mutuel des pôles du stator et du rotor.
Dans le cas d'un moteur biphasé, les courants de maintien et I fournis aux deux phases sont :.
- I2 = I0.sin(p.θ) où I0 est un courant de consigne moteur, p le nombre de pôles du moteur (nombre de pas divisé par A, pour un moteur biphasé) et θ la consigne de position issue du calculateur du SCAO. Par exemple, la commande locale des courants I] et I2 peut être réalisée en utilisant des tables à mémoire morte (PROM) donnant les cosinus et sinus. Les courants et I2 peuvent être générés par des amplificateurs linéaires à gain commandé par des valeurs analogiques fournies par conversion de valeurs fournies par au moins une table en mémoire morte de cosinus et sinus. On peut ainsi arriver à des performances de pointage fin très améliorées, limitées uniquement par la résolution des calculs avec une électronique locale de contrôle d' actionneur qui reste très simple par rapport au pilotage classique utilisant un moteur couple rebouclé sur un codeur angulaire (l'électronique pouvant être analogique et la boucle locale étant supprimée) et un mécanisme simplifié (pas de codeur angulaire, moteur pas-à-pas plus simple qu'un moteur couple, exigence de raideur en torsion relâchée). Ces résultats sont atteints avec une interface SCAO qui reste classique.
Les caractéristiques ci-dessus ainsi que d'autres apparaîtront mieux à la lecture de la description qui suit de modes particuliers de réalisation de l'invention, donnés à titre d'exemple non limitatif. La description se réfère aux dessins qui l'accompagnent, dans lesquels :
La figure 1 est un schéma de principe montrant la mise en œuvre de l'invention avec une grappe de quatre actionneurs gyroscopiques ;
La figure 2 est un synoptique des fonctions d'un dispositif de commande d'attitude utilisable avec la configuration de la figure 1 ; et
La figure 3 est un schéma montrant une autre configuration possible. Le dispositif schématisé en figure 1 comporte quatre actionneurs gyroscopiques dans une configuration qui est celle donnée dans le document
EP-A- 1 002716, auquel on pourra se reporter (associé à un système de commande qui n'est pas celui suivant l'invention) ou dans l'article de A. Deferdini et al. « Low cost CMG-based AOCS design » (ESA SP-425, Février 2000) déjà mentionné.
La figure 1 montre une grappe de quatre actionneurs gyroscopiques 10 identiques, ayant chacun une toupie 12 montée sur un cardan 14 de façon à pouvoir tourner sur le cardan autour d'un axe 16. Un moteur non représenté maintient la toupie en rotation, généralement à vitesse constante. Chaque cardan est monté sur la plate- forme du satellite, représentée schématiquement en 25 sur la figure 3, de façon à pouvoir tourner autour d'un axe 18 orthogonal à l'axe 16. Les axes 18 ont des orientations différentes. Dans le cas représenté, ils occupent les arêtes d'une pyramide régulière de sommet 20.
Chacun des cardans 14 est muni d'un moteur 22, dont un seul est représenté, permettant de le faire tourner autour de l'axe 18 respectif. Le cardan 14 est en général démuni de capteur angulaire. Chaque moteur 22 est du type pas à pas et comprend un stator 23 et un rotor 24. Dans certains cas, on munira le cardan 14 d'un codeur angulaire à faible résolution. Mais il ne sera pas utilisé pour l'asservissement et n'aura pour but que de donner une indication approximative pour initialiser le dispositif.
Le maintien du satellite dans une attitude de consigne dans un repère inertiel est assuré par un système de commande d'attitude. Il comporte un organe 26 de calcul et de commande des moteurs 22 qui reçoit des consignes d'orientation (et éventuellement de vitesse angulaire) du satellite, fournies par un émetteur-récepteur 28 de liaison avec le sol et des signaux 30 provenant de capteurs non représentés, tels que gyromètres, capteurs d'étoile, capteurs d'horizon terrestre, etc. ... L'organe 26 commande des circuits de puissance 32 alimentant les moteurs 22.
L'organe 26 comporte les moyens et les périphériques nécessaires pour constituer la boucle de commande schématisée en figure 2, qui peut être regardée comme comportant d'une part un sous-ensemble 40 faisant intervenir la grappe d'actionneurs 10 munie d'une électronique de commande analogique et d'autre part un sous-ensemble 41 mettant en œuvre le calculateur numérique 26 du SCAO. Sur la fig. 2, les cadres correspondent aux différentes fonctions.
Le SCAO reçoit en entrée une commande de correction. Cette commande est élaborée par exemple dans un soustracteur 44 à partir d'une consigne d'attitude θ et/ou de vitesse v de la plate-forme, fournie par exemple par télécommande à partir du sol, et de valeurs courantes résultant de la dynamique satellite, schématisée en 46. Ces valeurs courantes d'attitude et de vitesse peuvent être fournies par des capteurs 48 tels que des gyromètres ou des capteurs d'étoiles.
Les fonctions remplies par le sous-ensemble 41 comportent le contrôle d'attitude 50 à partir du signal d'erreur fourni par le soustracteur 44. Le signal de sortie du module de contrôle d'attitude 50 est représentatif du couple à fournir. Le module de guidage local 52 calcule, à partir de la valeur du couple, les vitesses à donner aux cardans 14 des différentes roues 12, en tenant éventuellement compte de consignes de sélection des roues 12 visant à choisir les trois roues 12 les plus avantageuses. Le signal de vitesse fourni en 54 est intégré en 56 pour fournir, sur le bus 58 du SCAO, de nouvelles positions cardan de consigne.
Le sous-ensemble 40 comporte un module 60 qui élabore des commandes optimisées des courants à appliquer aux différentes phases des moteurs de cardan. Pour cela, ce module 60 comporte généralement une mémoire morte PROM 62 des convertisseurs numérique-analogique et des amplificateurs linéaires à gain commandé. Les différents courants fournis en 64 sont appliqués aux moteurs 22 et, du fait de la dynamique des actionneurs gyroscopiques 10 schématisée par le cadre 66, provoquent des échanges internes de moment cinétique avec la plate-forme du satellite. La dynamique du satellite, schématisée par le cadre 46, provoque une réorientation du corps de satellite, qui est décelée par les capteurs 48.
La commande d'intensité des courants des phases des moteurs 22 est ainsi rebouclée sur la mesure de vitesse de la plate-forme telle que 25 sur la figure 3 du satellite (fournie par les capteurs), ce qui fournit une consigne de pointage des cardans 14 par conservation du moment cinétique. Le rebouclage s'effectue ainsi au travers d'une simple mise à jour de la consigne de position des cardans 14, fournie par le SCAO sur son bus 58, ce qui n'ajoute aucune complexité à l'électronique de la grappe d'actionneurs 10. Chaque cardan 14 est piloté par simple traitement des consignes fournies par le SCAO.
Il n'y a pas de boucle destinée à asservir la vitesse des cardans 14 à une valeur de consigne fournie par le calculateur et en conséquence pas besoin de capteurs de vitesse ou de position angulaire des cardans.
Dans la variante de réalisation montrée en figure 3, la grappe d'organes de création de moment cinétique interne est d'un type qui est notamment utilisable sur des microsatellites. Ces organes comprennent une roue cinétique ou roue de réaction 64 à vitesse de rotation variable autour de l'axe de lacet z et deux actionneurs gyroscopiques 68 dont les axes de rotation des cardans sont parallèles entre eux et à l'axe z de lacet et dont les axes de rotation des toupies sont ainsi orientables dans le plan défini par les axes de roulis x et de tangage y.
La roue cinétique 64 est placée pour que son axe z soit parallèle à la direction de l'axe de rotation des cardans des actionneurs gyroscopiques 68. Dans un tel cas, la commande de la roue cinétique 64 est effectuée de façon classique et l'invention n'est mise en œuvre que sur les actionneurs 68.

Claims

Revendications
1. Dispositif de pilotage d'attitude de satellite par échange de moments cinétiques, comprenant une grappe (40) de plusieurs organes de génération de moment cinétique parmi lesquels au moins un actionneur gyroscopique (10) ayant une toupie (12) tournant sur un axe (16) porté par un cardan (14) orientable sur la plate-forme du satellite par un moteur pas à pas (22) autour d'au moins un axe (18) orthogonal à l'axe (16) de rotation de la toupie (12) et ayant un système de commande d'attitude de la plate-forme et d'orbite dans un repère absolu, muni de capteurs (48) d'orientation de la plate-forme, caractérisé en ce que : le système de commande d'attitude et d'orbite comporte un calculateur (26) prévu pour élaborer une consigne numérique (58) d'orientation du cardan (14) dudit actionneur gyroscopique (10) à partir de l'écart (44) entre une consigne d'attitude (28) de la plate-forme et de l'attitude courante (30) et le dit actionneur (10) ou le calculateur (26) est muni de moyens (60) de conversion de la consigne numérique (58) d'orientation en valeurs analogiques de courants (64) appliqués aux différentes phases du moteur pas à pas (22), avec une résolution telle que le moteur (22) puisse être amené et maintenu dans des orientations intermédiaires entre celles qui correspondent à l'alignement mutuel des pôles du stator (23) et du rotor (24).
2. Dispositif suivant la revendication 1, caractérisé en ce que, dans le cas d'un moteur (22) biphasé, les courants de maintien Iχ et I2 fournis aux deux phases sont = I0.sin(p.θ) où I0 est un courant de consigne moteur, p le nombre de pôles du moteur (22) et θ la consigne de position issue du calculateur (26, 41) du système de commande d'attitude et d'orbite.
3. Dispositif suivant la revendication 2, caractérisé en ce que les courants
Il et I2 sont générés par des amplificateurs linéaires (60) à gain commandé par des valeurs analogiques fournies par conversion de valeurs fournies par au moins une table en mémoire morte (62) de cosinus et sinus.
4. Dispositif suivant la revendication 1, 2 ou 3, caractérisé en ce que la grappe comporte uniquement des actionneurs gyroscopiques (10).
EP04708380A 2003-02-07 2004-02-05 Dispositif de pilotage de l'attitude d'un satellite par actionneurs gyroscopiques Withdrawn EP1590243A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0301472A FR2850948B1 (fr) 2003-02-07 2003-02-07 Dispositif de pilotage de l'attitude d'un satellite par actionneurs gyroscopiques
FR0301472 2003-02-07
PCT/FR2004/000264 WO2004071869A1 (fr) 2003-02-07 2004-02-05 Dispositif de pilotage de l’attitude d’un satellite par actionneurs gyroscopiques

Publications (1)

Publication Number Publication Date
EP1590243A1 true EP1590243A1 (fr) 2005-11-02

Family

ID=32731871

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04708380A Withdrawn EP1590243A1 (fr) 2003-02-07 2004-02-05 Dispositif de pilotage de l'attitude d'un satellite par actionneurs gyroscopiques

Country Status (3)

Country Link
EP (1) EP1590243A1 (fr)
FR (1) FR2850948B1 (fr)
WO (1) WO2004071869A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7364120B2 (en) * 2004-08-26 2008-04-29 Honeywell International, Inc. Quantized control-moment gyroscope array
CN100441483C (zh) * 2006-12-14 2008-12-10 北京航空航天大学 一种集成化磁悬浮控制力矩陀螺控制平台
RU2013112756A (ru) * 2013-03-22 2014-09-27 Вячеслав Павлович Гажур Опорная гироскопическая система
CN105511481B (zh) * 2014-11-26 2017-04-26 航天恒星科技有限公司 一种星载定轨优化方法
IT201900023280A1 (it) * 2019-12-06 2021-06-06 Eni Spa Generatore di energia

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2530440A2 (fr) 1982-07-22 1984-01-27 Duret Fils Ets M Element de garniture resistant a la laceration pour siege ou analogue et son procede de fabrication
FR2786283B1 (fr) 1998-11-19 2001-01-26 Matra Marconi Space France Procede et dispositif de pilotage de l'attitude d'un satellite
FR2826470B1 (fr) 2001-06-26 2003-09-19 Astrium Sas Procede et dispositif de pilotage de l'attitude et de guidage d'un satellite par grappe de gyrodynes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004071869A1 *

Also Published As

Publication number Publication date
WO2004071869B1 (fr) 2005-01-06
WO2004071869A1 (fr) 2004-08-26
FR2850948A1 (fr) 2004-08-13
FR2850948B1 (fr) 2006-01-06

Similar Documents

Publication Publication Date Title
EP1002716B1 (fr) Procédé et dispositif de pilotage de l'attitude d'un satellite
EP0435708B1 (fr) Procédé de contrôle d'attitude en roulis et en lacet d'un satellite
Leve et al. Spacecraft momentum control systems
EP3381813B1 (fr) Satellite comportant des moyens de propulsion electriques portes par des moyens de deplacement et des moyens de propulsion electriques additionnels d'orientation fixe
EP1680648B1 (fr) Controle d'attitude de satellites en particulier agiles a nombre reduit de gyrodynes
FR2694821A1 (fr) Système de commande du lacet, à trois axes et à couples de perturbation compensés.
EP0849170A1 (fr) Procédé et système de réduction de perturbations mécaniques dans volants d'inertie à stockage d'énergie
US20120199697A1 (en) Attitude control system for small satellites
CN109823571A (zh) 一种遥感微纳卫星的多阶段姿态控制方法
Starin et al. Attitude determination and control systems
EP0754143A1 (fr) Satellite artificiel muni de generateurs de moments magnetiques et aerodynamiques et procede de commande d'un tel satellite
EP3144228A1 (fr) Actionneur gyroscopique a double guidage cardan, element de suspension et element de butee
EP0209429A1 (fr) Procédé et dispositif d'injection de satellite sur orbite géostationnaire avec stabilisation suivant les trois axes
Tyc et al. Gyrowheel™-An Innovative New Actuator/Sensor for 3-axis Spacecraft Attitude Control
WO2004071869A1 (fr) Dispositif de pilotage de l’attitude d’un satellite par actionneurs gyroscopiques
US9180983B2 (en) Actuator with transfer of angular momentum for the attitude control of a spacecraft
EP2552782B1 (fr) Procédé de commande d'un système de contrôle d'attitude et système de contrôle d'attitude d'un véhicule spatial
US11161630B2 (en) Free-floating spherical gimbal
FR2804765A1 (fr) Systeme de moment a commande de lacet
EP0796786A1 (fr) Procédé et dispositif pour la manoeuvre rapide d'une charge utile embarquée sur une plate-forme spatiale
EP1569847A1 (fr) Procede de pilotage solaire de vehicule spatial
FR2809502A1 (fr) Procede de commande d'attitude d'un satellite en orbite terrestre basse
Steyn Variable speed scissored pair dual gimbal Control Moment Gyro for nano-satellites
Clark et al. A control moment gyro for dynamic attitude control of small satellites
Hsieh et al. Attitude Determination and Control System With Variable-Speed Single-Gimbal Control Moment Gyroscopes for Nanosatellites

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050705

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EADS ASTRIUM SAS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070829

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090430