EP1584134B1 - Method for reducing common-mode interference currents in an electric drive system, and corresponding electric drive system - Google Patents
Method for reducing common-mode interference currents in an electric drive system, and corresponding electric drive system Download PDFInfo
- Publication number
- EP1584134B1 EP1584134B1 EP04701595.3A EP04701595A EP1584134B1 EP 1584134 B1 EP1584134 B1 EP 1584134B1 EP 04701595 A EP04701595 A EP 04701595A EP 1584134 B1 EP1584134 B1 EP 1584134B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pulse
- pulse converters
- winding
- drive system
- converters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 21
- 238000004804 winding Methods 0.000 claims description 88
- 230000003071 parasitic effect Effects 0.000 claims description 36
- 230000006870 function Effects 0.000 claims description 28
- 230000001360 synchronised effect Effects 0.000 claims description 11
- 230000001419 dependent effect Effects 0.000 claims description 4
- 238000005516 engineering process Methods 0.000 claims description 4
- 230000005284 excitation Effects 0.000 claims description 2
- 238000012545 processing Methods 0.000 claims description 2
- 230000001960 triggered effect Effects 0.000 claims 4
- 239000000243 solution Substances 0.000 description 14
- 230000006698 induction Effects 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 241001199012 Usta Species 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000009131 signaling function Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/08—Arrangements for controlling the speed or torque of a single motor
- H02P6/085—Arrangements for controlling the speed or torque of a single motor in a bridge configuration
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
Definitions
- the invention relates to a method according to the preamble of patent claim 1 and an electric drive system according to the preamble of patent claim 6; It is assumed that an electric drive system with a DC voltage supply device, as for example by the EP 0 334 112 B1 is known.
- pulse converters fed by a DC power supply allow the operation of a rotating field machine, such as a rotary field machine. a synchronous machine, with variable frequency and voltage. Since both the individual winding phases of a rotating field machine as well as the DC voltage supply device have not negligible parasitic Ableitkapazticianen against ground potential ("earth capacitances"), resulting from the switching operations of the semiconductor switches of the pulse converter capacitive Umladeströme, which then in the DC voltage supply device as EMC interference in Form common-mode interference currents. On the one hand, these interference currents can disturb other devices that are galvanically connected to the DC power supply ("line-connected EMC fault"). On the other hand, they additionally lead to a z.T. considerable radiation of radio interference fields and can then also disturb devices that have no galvanic connection to the DC power supply (“RFI EMI interference"). Therefore, strict limits for the permissible common-mode interference currents are generally prescribed.
- High power field machines in particular marine propulsion engines, are, as in the EP 0 334 112 B1 shown often fed via multiple pulse inverters from a common DC power supply.
- the switching operations of the individual pulse inverters are synchronized with each other, ie they take place almost simultaneously.
- the pulse converters are therefore clocked with essentially the same switching frequency. Due to the simultaneity of the switching operations in the individual pulse converters, however, the charging and discharging current pulses of the individual pulse converters caused by the earth capacitances of the winding phases add up and a high common-mode interference current flows in the voltage supply device.
- DE 100 43 934 A1 discloses a control module for a bridge converter for commutating currents for an electric motor.
- the bridge converter has at least three bridge branches supplied by a DC voltage intermediate circuit, each having an upper switch and a lower switch and one tap arranged between the respective upper and lower switch for applying an output voltage to a respective motor winding of the electric motor.
- the control module controls the switches with pulse generator means for forming switching pulses such that in each case at least one bridge branch is inactive, while in each case two further bridge branches are active in pairs and operate essentially in push-pull.
- EP 0 898 359 A2 discloses an inverter having a plurality of inverter bridges whose output voltages are summed via a transformer having a number of primary windings and associated secondary windings corresponding to the number of inverter bridges and a center tap grounded via a ground connection.
- the secondary windings are each divided into a first and second similar sub-secondary winding and the sub-secondary windings are among themselves and connected to the center tap, the common mode voltages induced in the sub-secondary windings cancel each other out.
- the present invention seeks to reduce the common-mode interference currents without the use of additional inductance-related components and to save the costs associated with the use of additional inductances costs and expenses for space, weight, installation and wiring.
- the common mode interference currents generated by the two pulse converters are oppositely directed against one another via the parasitic capacitances of the windings and thus largely cancel one another, in particular in the DC voltage supply device.
- the relevant for the drive function of the induction machine output voltages of the pulse converter i. the differential voltages between the output terminals of each inverter, unchanged.
- the reduction of the common mode interference currents takes place solely by appropriate control of the pulse converter.
- Special components, such as Additional inductances are not needed.
- savings in costs and expenses for space requirements, weight, installation and wiring are achieved compared to a use of additional inductances.
- the solution according to the invention and its embodiments are equally suitable for single-phase induction machines via single-phase converters, as well as for machines with polyphase, e.g. Three-phase winding systems and power supply via multi-phase inverters.
- the common-mode interference currents generated by the two pulse converters fed from the same DC voltage supply device cancel each other out particularly well if they have approximately the same time course and amplitude when the direction is opposite to one another.
- this can be achieved by each of the two pulse converters are controlled by the control device such that the instantaneous values the output voltages of each two pulse inverters are at least approximately equal.
- the pairs of pulse converters preferably according to this criterion, i. they e.g. identical or close to each other lying fundamental phase positions of the output voltages. In induction machines having a high number of winding phases, e.g. are used in propeller drives in submarines, these conditions are given.
- control or modulation of the pulse converter advantageously both with online-working modulation method (eg sine-delta modulation, space vector modulation, etc.) as well as offline working modulation method. e.g. offline calculated pulse patterns, can be done.
- online-working modulation method eg sine-delta modulation, space vector modulation, etc.
- offline working modulation method e.g. offline calculated pulse patterns
- a particularly simple, clear and advantageous embodiment of the solution according to the invention results when used a modulation by means of a triangular auxiliary function in the sense of a sine-wave modulation, wherein the triangular auxiliary function of one of the two pulse inverters in relation to the triangular auxiliary function of the other of the two pulse inverters is inverted.
- the use of this modulation is particularly advantageous because it can be done in a particularly advantageous embodiment using a programmable hardware device, in particular LCA; or if this is not possible or not desired, can be realized in an advantageous manner with conventional hardware in analog and / or digital technology.
- a good synchronization of the drive pulses of the two each fed from a common DC power supply pulse converter can be ensured by a common control device is provided for each two pulse converters.
- the DC voltage supply device and / or belonging to the DC voltage supply device current and voltage-carrying electrical conductors and / or to the DC voltage supply device belonging DC voltage sources has a large spatial extent and / or distribution and thus allows the power supply spatially remote drive components with low common-mode parasitic currents.
- the electric drive system according to the invention can be used in a particularly advantageous manner in an electrical vehicle electrical system, in particular an electrical DC on-board electrical system on ships, in particular on submarines, since there are particularly high demands on the common mode interference currents in such on-board networks.
- the electric drive system according to the invention can be designed with one or more electric induction machines, which are designed as synchronous machines with electrical or permanent magnetic excitation or as asynchronous machines.
- FIG. 5 shows a winding section 31 of a rotary field machine 3, which is fed via a pulse converter 1 from a DC voltage supply means 4.
- the voltage supply device 4 includes the DC voltage source 40 and the current and voltage-carrying conductors 41 with positive potential UDC + and 42 with negative potential UDC-, via which the supply of electrical energy to the pulse converter 1 takes place.
- the single-phase pulse converter 1 in FIG. 5 has two half-bridges W1a and W1b, each with two switches S1a, S1a 'and S1b, S1b'.
- the switches S1a, S1a 'and S1b, S1b' are driven so that a desired voltage U1 is established at the output terminals 1a and 1b of the pulse converter 1 and thus at the winding strand 31 of the rotary field machine 3 connected thereto.
- the pulse converter output voltage U1 thereby arises as the differential voltage of the output potentials U1a and U1b of the two half bridges W1a and W1b.
- the parasitic capacitance of the winding strand 31 with respect to ground potential is shown for simplicity by the capacitor Cp31.
- the capacitor Cp4 represents, in a simplified manner, the parasitic capacitance of the DC voltage supply device 4 against ground potential.
- the voltage Uc31 denotes the voltage drop across the parasitic capacitance Cp31 of the winding strand 31 with respect to ground potential.
- FIG. 6 are for the in FIG. 5 shown circuit shows the timing of the relevant pulse converter output voltages.
- the actuation of the switches S1a, S1a 'and S1b, S1b' takes place in an exemplary manner with the aid of a triangular auxiliary function U ⁇ 1 in the sense of the known sine-triangle modulation.
- a triangular auxiliary function U ⁇ 1 is compared with a control voltage Ust1 and -Ust1 determining the pulse converter output in order to determine therefrom the switching times for the switches S1a, S1a 'and S1b, S1b'.
- FIG. 5 and FIG. 6 Furthermore, it can be seen from the time characteristic of the voltage Uc31 over the parasitic capacitance Cp31 that this voltage Uc31 changes periodically as a function of the output potentials U1a and U1b. For example, in the time intervals ta, the entire winding strand 31 is at negative potential UDC- of the DC voltage supply device and in the time intervals tb is at positive potential UDC + of the DC voltage supply device. This is associated with a periodic, dependent on the time course of the voltage Uc31 reloading the earth capacitance Cp31 with corresponding charging or recharging Icm1.
- FIG. 1 shows a simplified representation of an electric induction machine 3 with two phase windings 31, 32, which are fed via a respective single-phase pulse converter 1, 2 from a common DC voltage supply means 4. Both pulse converters 1, 2 are operated with the same modulation and generate at their output terminals 1a, 1b and 2a, 2b at least approximately the same output voltages U1 and U2.
- the pulse inverters 1 and 2 each have the same basic circuit, that of the pulse converter 1 of FIG. 5 equivalent.
- Each of the pulse converters 1, 2 points in this case, according to the pulse converter 1 of FIG. 5 , two half bridges W1a, W1b or W2a, W2b each with two switches (S1a, S1a 'and S1b, S1b' or S2a, S2a 'and S2b, S2b').
- the pulse inverters 1, 2 are clocked with substantially the same switching frequency, so that the switching operations in the pulse converters 1, 2 take place almost simultaneously.
- the further description of the circuit and function of the pulse converter 2 is to the description of pulse converter 1 of FIG. 5 referenced; the reference numbers are adapted functionally and meaningfully.
- the pulse converter 1 generates-as already described-due to its switching operations and the associated changes in its output potentials U1a, U1b at the earth capacitance Cp31 of the winding section 31 fed by it, a voltage drop Uc31 and thus a common-mode interference current Icm1 in the DC voltage supply device 4.
- the pulse converter 2 causes a voltage drop Uc32 at the earth capacitance Cp32 of the winding section 32 fed by it, and thus a common mode interference current Icm2 in the DC voltage supply device 4
- the two pulse converters 1, 2 are driven by drive devices 51, 52 in such a way that both pulse converters 1, 2 have their outputs 1a, 1b and 2a, respectively, to reduce the total common-mode interference current Icmg active in the DC voltage supply device 4 2b, the potentials U1a, U1b or U2a, U2b which are decisive for the formation of the common mode currents Icm1, Icm2, are connected at least approximately simultaneously to the winding phases 31, 32 of the induction machine 3 such that the voltage potentials Uc31, Uc32 are applied via the parasitic Capacities Cp31, Cp32 of the winding strands 31, 32 are directed opposite to earth potential and thus cancel the common mode interference currents Icm1 and Icm2 against each other.
- the two drive devices 51, 52 are connected to one another in a suitable manner by signal technology, in particular synchronized with one another.
- a common control device 5 can be provided instead of the synchronized drive devices 51, 52.
- FIG. 2 shows on the basis of time diagrams an example of the course of the pulse inverter output potentials U1a, U1b or U2a, U2b and the resulting pulse converter output voltages U1, U2 and the voltages Uc31, Uc32 on the parasitic capacitances Cp31, Cp32.
- the entire winding strand 31 is thus at negative potential UDC- of the DC voltage supply device 4, d, h.
- the entire winding strand 31 is at positive potential UDC + of the DC voltage supply device 4, d, h.
- the voltage changes over the parasitic capacitances Cp31 and Cp32 run in opposite directions to each other, as in FIG. 2 can be seen on the basis of the time profiles of the voltages Uc31 and Uc32 and is also clear from the sum of the two voltages Uc31 + Uc32, which is zero at all times.
- the activation of the pulse converters 1, 2 can, as already in connection with the explanations to FIG. 5 and 6 represented, for example, with the aid of a triangle auxiliary function U ⁇ in the sense of the known sine-wave modulation done.
- U ⁇ 1 U ⁇
- U ⁇ 2 -U ⁇
- FIG. 3 shows a simplified representation of two winding systems 33, 34 of a rotary electric machine 3, which are fed via a respective three-phase pulse converter 1, 2 from a common DC voltage supply means 4.
- the three phases are marked with the letters a, b, and c.
- the DC voltage supply device 4 in turn comprises a DC voltage source 40 and current and voltage-carrying conductors 41, 42, as already explained in the explanations FIG. 1 and 5 are described.
- Cp4 again denotes the parasitic capacitance of the DC voltage supply device against ground potential.
- the pulse converters 1 and 2 each have three half-bridges W1a, W1b, W1c or W2a, W2b, W2c, each with two switches (S1a, S1a ', S1b, S1b', S1c, S1c 'and
- the two winding systems 33, 34 of the rotary field machine 3 according to the invention are arranged offset by 180 ° to each other electrically. With the same winding sense of the motor windings, this can be done by suitable interconnection of the winding starts or winding ends of the winding strands 33a, 33b, 33c and 34a, 34b, 34c. For clarity, in FIG. 3 the winding starts with the same winding direction as usual marked by a dot ⁇ .
- the pulse converter 1 Due to its switching operations and the associated changes in its output potentials U1a, U1b, U1c, the pulse converter 1 generates a voltage drop Uc33 at the earth capacitance Cp33 of the winding system 33 fed by it and thus a common mode interference current Icm1. Accordingly causes the pulse converter 2 due to its switching operations and the associated changes in its output potentials U2a, U2b, U2c at the earth capacitance Cp34 of the winding strand 34 fed by it, a voltage drop Uc34 and so that a common-mode interference current Icm2.
- the parasitic capacitances Cp33 and Cp34 of the winding systems 33, 34 are at least approximately equal, so that at equal voltages Uc33 and Uc34 and the two common-mode interference currents Icm1 and Icm2 are equal.
- the two pulse converters 1, 2 are controlled by the drive devices 51, 52 or by the control device 5 in such a way that at their outputs 1 a, 1 b, 1 c or 2 a, 2 b, 2 c for the formation of the common mode currents Icm1 , Icm2 relevant potentials U1a, U1b, U1c or U2a, U2b, U2c at least approximately simultaneously connected to the winding systems 33, 34, that the voltage potentials Uc33, Uc34 over the parasitic capacitances Cp33, Cp34 of the winding systems 33, 34 to ground potential to each other are directed opposite and thus cancel the common mode interference currents ICm1 and Icm2 against each other.
- FIG. 4 shows in this regard on the basis of time diagrams an example of the course of the inverter output potentials U1a, U1b, U1c or U2a, U2b, U2c and the voltages Uc33, Uc34 on the parasitic capacitances Cp33, Cp34. Due to the opposite control of the half bridges W1a, W1b and W1c of the converter 1 to the half bridges W2a, W2b and W2c of the converter 2, the voltage changes Uc33, Uc34 over the parasitic capacitances Cp33 and Cp34 in opposite directions to each other, as in FIG. 4 can be seen on the basis of the temporal courses.
- the formation of the switching times for controlling the pulse converter takes place in the in FIG. 3 and 4 illustrated embodiment again in an exemplary manner with the aid of a triangle auxiliary function U ⁇ in the sense of the known sine-wave modulation.
- the determination of the switching times for the pulse converter 2 takes place according to the same principle in the control device 52.
- the drive devices 51, 52 must be synchronized with each other so that in the respective half-bridges (W1a, W2b or W1b, W2a in the case of single-phase converters or W1a, W2a, W1b, W2b, W1c, W2b in the case of three-phase converters ) can give the same switching times.
- W1a, W2b or W1b, W2a in the case of single-phase converters or W1a, W2a, W1b, W2b, W1c, W2b in the case of three-phase converters
- this is done by the triangular auxiliary function U ⁇ itself.
- control device (5) or the drive devices (51, 52) are advantageously realized in at least one programmable hardware component, in particular LCA, and / or by software in a digital signal processing with at least one digital processor and / or executed as conventional hardware in analog and / or digital technology.
- the three-phase machine 3 is fed by more than two pulse converters 1, 2 from a common DC voltage supply 4, two of these pulse converters are each operated with the drive method according to the invention, so that the respective common mode signals generated by the two pulse converters each Cancel disturbing currents against each other.
- Such rotary field machines which are designed in particular as synchronous machines which are excited in particular as rotor-side synchronous machines, can be designed for high drive power owing to the individual feeding of their winding strands or by using a plurality of multiphase winding systems, in particular e.g. for propulsion propulsion of a ship, in particular a submarine, is needed.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
- Inverter Devices (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Description
Verfahren zur Verringerung von Common-Mode-Störströmen in einem elektrischen Antriebssystem sowie entsprechendes elektrisches Antriebssystem.Method for reducing common-mode parasitic currents in an electric drive system and corresponding electric drive system.
Die Erfindung bezieht sich auf ein Verfahren gemäß Oberbegriff des Patentanspruchs 1 bzw. ein elektrisches Antriebssystem gemäß Oberbegriff des Patentanspruchs 6; dabei wird von einem elektrischen Antriebssystem mit einer DC-Spannungsversorgungseinrichtung ausgegangen, wie es z.B. durch die
Dem Stand der Technik entsprechend, ermöglichen von einer DC-Spannungsversorgungseinrichtung gespeiste Pulsumrichter den Betrieb einer Drehfeldmaschine, wie z.B. einer Synchronmaschine, mit variabler Frequenz und Spannung. Da sowohl die einzelnen Wicklungsstränge einer Drehfeldmaschine wie auch die DC-Spannungsversorgungseinrichtung nicht zu vernachlässigende parasitäre Ableitkapazitäten gegen Erdpotential ("Erdkapazitäten") aufweisen, entstehen durch die Schaltvorgänge der Halbleiterschalter der Pulsumrichter kapazitive Umladeströme, die dann in der DC-Spannungsversorgungseinrichtung als EMV-Störungen in Form von Common-Mode-Störströmen wirksam werden. Diese Störströme können zum einen andere Geräte stören, die mit der DC-Spannungsversorgungseinrichtung galvanisch verbunden sind ("Leitungsgebundene EMV-Störung"). Zum anderen führen sie zusätzlich noch zu einer z.T. erheblichen Abstrahlung von Funk-Störfeldern und können dann auch Geräte stören, die keine galvanische Verbindung zur DC-Spannungsversorgungseinrichtung haben ("Funk-EMV-Störung"). Daher sind im Allgemeinen strenge Grenzwerte für die zulässigen Common-Mode-Störströme vorgeschrieben.In accordance with the state of the art, pulse converters fed by a DC power supply allow the operation of a rotating field machine, such as a rotary field machine. a synchronous machine, with variable frequency and voltage. Since both the individual winding phases of a rotating field machine as well as the DC voltage supply device have not negligible parasitic Ableitkapazitäten against ground potential ("earth capacitances"), resulting from the switching operations of the semiconductor switches of the pulse converter capacitive Umladeströme, which then in the DC voltage supply device as EMC interference in Form common-mode interference currents. On the one hand, these interference currents can disturb other devices that are galvanically connected to the DC power supply ("line-connected EMC fault"). On the other hand, they additionally lead to a z.T. considerable radiation of radio interference fields and can then also disturb devices that have no galvanic connection to the DC power supply ("RFI EMI interference"). Therefore, strict limits for the permissible common-mode interference currents are generally prescribed.
Besonders strenge Grenzwerte gelten dabei bei solchen Anlagen und Systemen, bei denen einerseits große räumliche Ausdehnungen der DC-Spannungsversorgungseinrichtung, große räumliche Ausdehnung des galvanisch damit verbunden Leitungsnetzes und hohe elektrische Leistungen zusammentreffen mit andererseits engen räumlichen Verhältnissen, kleinen möglichen Abständen zu potentiell störgefährdeten Geräten mit anwendungsbedingt hoher elektrischer und elektromagnetischer Empfindlichkeit. Solche Randbedingungen treten z.B. bei Schiffen mit einer elektrischen Propulsions-Antriebsanlage auf, insbesondere bei U-Booten.Particularly strict limits apply in such systems and systems, where on the one hand large spatial dimensions of the DC power supply device, large spatial Extension of the galvanically connected line network and high electrical power coincide on the other hand with tight spatial conditions, small possible distances to potentially interference-prone devices with application-related high electrical and electromagnetic sensitivity. Such boundary conditions occur, for example, in ships with an electric propulsion propulsion system, especially in submarines.
Drehfeldmaschinen großer Leistung, insbesondere Schiffsantriebsmotoren, werden, wie in der
Zur Verringerung der durch die Pulsumrichterspeisung hervorgerufenen Common-Mode-Ströme und der daraus resultierenden Störungen sind verschiedene Verfahren bekannt. Sie zielen darauf ab, die für die Common-Mode-Störströme wirksamen Impedanzen zu vergrößern, indem diesem Ziel entsprechend geeignete, zusätzliche Induktivitäten an geeigneter Stelle eingefügt werden. So ist durch die
In Anbetracht dieses Standes der Technik liegt der vorliegende Erfindung die Aufgabe zugrunde, ohne Verwendung zusätzlicher induktivitätsbehafteter Bauteile die Common-Mode-Störströme zu verringern und die mit der Verwendung von Zusatzinduktivitäten verbunden Kosten und Aufwendungen für Platzbedarf, Gewicht, Montage und Verdrahtung einzusparen.In view of this prior art, the present invention seeks to reduce the common-mode interference currents without the use of additional inductance-related components and to save the costs associated with the use of additional inductances costs and expenses for space, weight, installation and wiring.
Die Lösung dieser Aufgabe gelingt ausgehend von einem Verfahren gemäß Oberbegriff des Patentanspruchs 1 bzw. einem elektrischen Antriebssystem gemäß Oberbegriff des Patentanspruchs 5 durch die jeweils kennzeichnende Lehre. Vorteilhafte Ausgestaltungen des Verfahrens gemäß Patentanspruch 1 sind Gegenstand der Unteransprüche 2 bis 4; vorteilhafte Ausgestaltungen des elektrischen Antriebssystems gemäß Patentanspruch 5 sind Gegenstand der Unteransprüche 7 bis 14.The solution of this object is achieved starting from a method according to the preamble of
Durch das erfindungsgemäße Verfahren bzw. das erfindungsgemäße elektrische Antriebssystem wird erreicht, dass die von den beiden Pulsumrichtern erzeugten Common-Mode-Störströme über die parasitären Kapazitäten der Wicklungen gegen Erdpotential einander entgegengesetzt gerichtet sind und sich damit insbesondere in der DC-Spannungsversorgungseinrichtung weitgehend gegeneinander aufheben.By means of the method according to the invention or the electrical drive system according to the invention, it is achieved that the common mode interference currents generated by the two pulse converters are oppositely directed against one another via the parasitic capacitances of the windings and thus largely cancel one another, in particular in the DC voltage supply device.
Durch die erfindungsgemäße Lösung bleiben die für die Antriebsfunktion der Drehfeldmaschine maßgeblichen Ausgangsspannungen der Pulsumrichter, d.h. die Differenzspannungen zwischen den Ausgangsklemmen bei jedem Umrichter, unverändert. Die Verringerung der Common-Mode-Störströme erfolgt allein durch entsprechende Ansteuerung der Pulsumrichter. Spezielle Bauteile, wie z.B. Zusatzinduktivitäten, werden nicht benötigt. Damit werden gegenüber einer Verwendung von Zusatzinduktivitäten Einsparungen bei Kosten und Aufwendungen für Platzbedarf, Gewicht, Montage und Verdrahtung erreicht.By the solution according to the invention, the relevant for the drive function of the induction machine output voltages of the pulse converter, i. the differential voltages between the output terminals of each inverter, unchanged. The reduction of the common mode interference currents takes place solely by appropriate control of the pulse converter. Special components, such as Additional inductances are not needed. Thus, savings in costs and expenses for space requirements, weight, installation and wiring are achieved compared to a use of additional inductances.
Die erfindungsgemäße Lösung und deren Ausgestaltungen sind gleichermaßen geeignet für Drehfeldmaschinen mit Einzelstrangspeisung über einphasige Umrichter, wie auch für Maschinen mit mehrphasigen, z.B. dreiphasigen Wicklungssystemen und Speisung über mehrphasige Umrichter.The solution according to the invention and its embodiments are equally suitable for single-phase induction machines via single-phase converters, as well as for machines with polyphase, e.g. Three-phase winding systems and power supply via multi-phase inverters.
Die von den je zwei, aus der selben DC-Spannungsversorgungseinrichtung gespeisten Pulsumrichtern erzeugten Common-Mode-Störströme heben sich dann besonders gut auf, wenn sie bei einander entgegengesetzter Richtung annähernd gleichen zeitlichen Verlauf und Amplitude aufweisen. Im Fall einer Drehfeldmaschine mit mehreren, im Sinne einer Einzelstrangspeisung von je einem einphasigen Pulsumrichter gespeisten Wicklungssträngen und unter der Annahme gleich großer parasitären Wicklungskapazitäten der einzelnen Wicklungsstränge kann dies dadurch erreicht werden, dass die je zwei Pulsumrichter durch die Steuervorrichtung derart angesteuert werden, dass die Momentanwerte der Ausgangsspannungen der je zwei Pulsumrichter zumindest annähernd gleich sind. Im Fall einer Drehfeldmaschine mit mehreren, von je einem mehrphasigen Pulsumrichter gespeisten Wicklungssystemen kann dies dadurch erreicht werden, dass die von den je zwei Pulsumrichtern gespeisten Wicklungssysteme zumindest annähernd um 180° elektrisch gegeneinander versetzt in der Drehfeldmaschine angeordnet werden und die je zwei Pulsumrichter durch die Steuervorrichtung derart angesteuert werden, dass die Momentanwerte der Ausgangsspannungen der je zwei Pulsumrichter zueinander invers sind.The common-mode interference currents generated by the two pulse converters fed from the same DC voltage supply device cancel each other out particularly well if they have approximately the same time course and amplitude when the direction is opposite to one another. In the case of a three-phase machine with several, in the sense of a single-strand feeding of a single-phase pulse inverter supplied winding strands and assuming the same size parasitic winding capacitances of the individual winding strands, this can be achieved by each of the two pulse converters are controlled by the control device such that the instantaneous values the output voltages of each two pulse inverters are at least approximately equal. In the case of a three-phase machine with several winding systems fed by a multi-phase pulse converter, this can be achieved by arranging the winding systems fed by the two pulse converters at least approximately 180 ° offset from one another in the induction machine and the two pulse converters each by the control device so be controlled so that the instantaneous values of the output voltages of each two pulse inverters are inverse to each other.
Treten Unterschiede in den Momentanwerten der Aussteuerung und damit Unterschiede in den Schaltzeitpunkten und den Ausgangsspannungen der beiden Pulsumrichter auf, wie das z.B. bei unterschiedlichen Grundschwingungsphasenlagen in den verschiedenen Wicklungssträngen einer Drehfeldmaschinen der Fall ist, verbleiben Reste im resultierenden Common-Mode-Störstrom. Es ist deshalb besonders vorteilhaft, die Pulsumrichterpaare vorzugsweise nach diesem Kriterium zusammenzustellen, d.h. sie z.B. gleichen oder nahe beieinander liegenden Grundschwingungsphasenlagen der Ausgangsspannungen zuzuordnen. Bei Drehfeldmaschinen mit einer hohen Anzahl von Wicklungssträngen bzw. -phasen, wie sie z.B. bei Propellerantrieben in U-Booten eingesetzt werden, sind diese Verhältnisse gegeben.If there are differences in the momentary values of the modulation and thus differences in the switching times and the output voltages of the two pulse converters, as the e.g. is the case at different fundamental phase shifts in the different phase windings of a rotating field machines, residues remain in the resulting common mode noise. It is therefore particularly advantageous to arrange the pairs of pulse converters preferably according to this criterion, i. they e.g. identical or close to each other lying fundamental phase positions of the output voltages. In induction machines having a high number of winding phases, e.g. are used in propeller drives in submarines, these conditions are given.
Messungen an einem der erfindungsgemäßen Lösung entsprechend ausgeführtem Antriebssystem mit Einzelstrangspeisung der Maschinenwicklungen über Pulsumrichter haben gezeigt, dass sich die Common-Mode-Störströme durch die erfindungsgemäße Ausführung des Antriebs, speziell der erfindungsgemäßen Ansteuerung der Pulsumrichter, um mehr als den Faktor 10, d.h. um mehr als 20 dB reduzieren lassen.Measurements on a drive system according to the invention in accordance with the drive system with single-strand feeding of the machine windings via pulse converters have shown that the common-mode interference currents are exceeded by more than a factor of 10 by the design of the drive according to the invention, in particular the control of the pulse converters according to the invention. reduce by more than 20 dB.
Hinsichtlich der Erzeugung der Ansteuerimpulse ergeben sich für eine Realisierung der erfindungsgemäßen Lösung keine Einschränkungen, so dass die Ansteuerung bzw. Modulation der Pulsumrichter in vorteilhafter Weise sowohl mit online-arbeitenden Modulationsverfahren (z.B. Sinus-Dreieck-Modulation, Raumzeigermodulation usw.) als auch mit offline arbeitenden Modulationsverfahren. z.B. offline-berechneten Pulsmustern, erfolgen kann.With regard to the generation of the drive pulses resulting in a realization of the solution according to the invention no restrictions, so that the control or modulation of the pulse converter advantageously both with online-working modulation method (eg sine-delta modulation, space vector modulation, etc.) as well as offline working modulation method. e.g. offline calculated pulse patterns, can be done.
Eine besonders einfache, anschauliche und vorteilhafte Ausgestaltung der erfindungsgemäßen Lösung ergibt sich bei Verwendung einer Modulation mit Hilfe einer Dreieck-Hilfsfunktion im Sinne einer Sinus-Dreieck-Modulation, wobei die Dreieck-Hilfsfunktion des einen der je zwei Pulsumrichter gegenüber der Dreieck-Hilfsfunktion des anderen der je zwei Pulsumrichter invertiert ist. Die Verwendung dieser Modulation ist insbesondere deshalb vorteilhaft, weil sie in besonders vorteilhafter Ausgestaltung mit Hilfe eines programmierbaren Hardwarebaustein, insbesondere LCA, erfolgen kann; oder wenn dies nicht möglich ist oder nicht gewünscht wird, in vorteilhafter Weise auch mit herkömmlicher Hardware in Analog- und/oder Digitaltechnik realisiert werden kann.A particularly simple, clear and advantageous embodiment of the solution according to the invention results when used a modulation by means of a triangular auxiliary function in the sense of a sine-wave modulation, wherein the triangular auxiliary function of one of the two pulse inverters in relation to the triangular auxiliary function of the other of the two pulse inverters is inverted. The use of this modulation is particularly advantageous because it can be done in a particularly advantageous embodiment using a programmable hardware device, in particular LCA; or if this is not possible or not desired, can be realized in an advantageous manner with conventional hardware in analog and / or digital technology.
Eine gute Synchronisation der Ansteuerimpulse der je zwei aus einer gemeinsamen DC-Spannungsversorgungseinrichtung gespeisten Pulsumrichter kann dadurch gewährleistet werden, dassieine gemeinsame Steuervorrichtung für die jeweils je zwei Pulsumrichter vorgesehen ist.A good synchronization of the drive pulses of the two each fed from a common DC power supply pulse converter can be ensured by a common control device is provided for each two pulse converters.
Ist es aus baulichen oder anderen Gründen nicht möglich, dass beide aus einer gemeinsamen DC-Spannungsversorgungseinrichtung gespeisten Pulsumrichter ihre Ansteuerimpulse aus einer gemeinsamen Steuervorrichtung erhalten, so ergibt sich eine weitere vorteilhafte Ausgestaltung der Erfindung dadurch, dass mehrere, insbesondere zwei, gerätetechnisch und/oder funktionell getrennte und in geeigneter Weise signaltechnisch miteinander verknüpfte, insbesondere miteinander synchronisierte, Ansteuervorrichtungen für die jeweils je zwei Pulsumrichter vorgesehen sind.Is it not possible for structural or other reasons that both fed from a common DC power supply pulse converters receive their drive pulses from a common control device, the result is a further advantageous embodiment of the invention in that several, especially two, device technology and / or functional separate and appropriately signal-technically linked together, in particular synchronized with each other, driving devices are provided for each of two pulse converters.
In einer vorteilhaften Ausgestaltung des erfindungsgemäßen elektrischen Antriebssystems weist die DC-Spannungsversorgungseinrichtung und/oder zu der DC-Spannungsversorgungseinrichtung gehörende strom- und spannungsführende elektrische Leiter und/oder zu der DC-Spannungsversorgungseinrichtung gehörende DC-Spannungsquellen eine große räumliche Ausdehnung und/oder Verteilung auf und ermöglicht damit die Speisung räumlich entfernter Antriebskomponenten bei gleichzeitig geringen Common-Mode-Störströmen.In an advantageous embodiment of the electric drive system according to the invention, the DC voltage supply device and / or belonging to the DC voltage supply device current and voltage-carrying electrical conductors and / or to the DC voltage supply device belonging DC voltage sources has a large spatial extent and / or distribution and thus allows the power supply spatially remote drive components with low common-mode parasitic currents.
Das erfindungsgemäße elektrische Antriebssystem kann in besonders vorteilhafter Weise in einem elektrischen Bordnetz, insbesondere einem elektrischen DC-Bordnetz auf Schiffen, insbesondere auf U-Booten verwendet werden, da bei solchen Bordnetzen besonders hohe Anforderungen an die Common-Mode-Störströme bestehen.The electric drive system according to the invention can be used in a particularly advantageous manner in an electrical vehicle electrical system, in particular an electrical DC on-board electrical system on ships, in particular on submarines, since there are particularly high demands on the common mode interference currents in such on-board networks.
Das erfindungsgemäße elektrische Antriebssystem kann mit einer oder mehreren elektrischen Drehfeldmaschinen ausgeführt sein, die als Synchronmaschinen mit elektrischer oder permanentmagnetischer Erregung oder als Asynchronmaschinen ausgeführt sind.The electric drive system according to the invention can be designed with one or more electric induction machines, which are designed as synchronous machines with electrical or permanent magnetic excitation or as asynchronous machines.
Die Erfindung, sowie weitere vorteilhafte Ausgestaltungen der Erfindung gemäß Merkmalen der Unteransprüche, werden im Folgenden anhand von Ausführungsbeispielen in den
- FIG 1
- eine vereinfachte Darstellung einer Schaltung zur Speisung von zwei Wicklungssträngen einer Drehfeldmaschine über zwei einphasige Pulsumrichter aus einer gemeinsamen DC-Spannungsversorgungseinrichtung;
- FIG 2
- mit Bezug auf
FIG 1 Zeitdiagramme des Verlaufs der Pulsumrichter-Ausgangsspannungen, wobei entsprechend der erfindungsgemäßen Lösung beide Umrichter so angesteuert werden, dass sich die von beiden Umrichtern erzeugten Common-Mode-Störströme über die parasitären Kapazitäten des Wicklungsstränge gegenüber Erdpotential gegeneinander aufheben; - FIG 3
- eine vereinfachte Darstellung einer Schaltung zur Speisung von zwei dreisträngigen Wicklungssystemen einer Drehfeldmaschine über zwei dreiphasige Pulsumrichter aus einer gemeinsamen DC-Spannungsversorgungseinrichtung ;
- FIG 4
- mit Bezug auf
FIG 3 Zeitdiagramme des Verlaufs der Pulsumrichter-Ausgangsspannungen, wobei entsprechend der erfindungsgemäßen Lösung beide Umrichter so angesteuert werden, dass sich die von beiden Umrichtern erzeugten Common-Mode-Störströme über die parasitären Kapazitäten der Wicklungssysteme gegenüber Erdpotential gegeneinander aufheben; - FIG 5
- eine vereinfachte Darstellung einer Schaltung zur Speisung eines Wicklungsstranges einer Drehfeldmaschine über einen einphasigen Pulsumrichter aus einer DC-Spannungsversorgungseinrichtung;
- FIG 6
- mit Bezug auf
FIG 5 Zeitdiagramme des Verlaufs der Umrichter-Ausgangsspannungen, die für die Entstehung des Common-Mode-Störstromes über die parasitären Kapazität des Wicklungsstranges gegenüber Erdpotential maßgeblich sind.
- FIG. 1
- a simplified representation of a circuit for feeding two winding phases of a rotating field machine via two single-phase pulse converter from a common DC voltage supply device;
- FIG. 2
- regarding
FIG. 1 Time diagrams of the course of the pulse converter output voltages, according to the solution according to the invention, both converters are controlled so that the common mode interference currents generated by both converters cancel each other over the parasitic capacitances of the winding strands against ground potential; - FIG. 3
- a simplified representation of a circuit for feeding two three-phase winding systems of a rotating field machine via two three-phase pulse converter from a common DC voltage supply device;
- FIG. 4
- regarding
FIG. 3 Time diagrams of the course of the pulse converter output voltages, according to the solution according to the invention, both inverters are driven so that the common mode interference currents generated by both converters cancel each other over the parasitic capacitances of the winding systems against ground potential; - FIG. 5
- a simplified representation of a circuit for feeding a winding strand of a rotating field machine via a single-phase pulse converter from a DC voltage supply device;
- FIG. 6
- regarding
FIG. 5 Timing diagrams of the course of the inverter output voltages, which are decisive for the generation of the common-mode interference current via the parasitic capacitance of the winding branch with respect to ground potential.
Anhand
Der einphasige Pulsumrichter 1 in
In
Wie aus
Anhand
Wie
Der Pulsumrichter 1 erzeugt -wie bereits beschrieben- auf Grund seiner Schalthandlungen und der damit verbundenen Änderungen seiner Ausgangspotentiale U1a, U1b an der Erdkapazität Cp31 des von ihm gespeisten Wicklungsstrangs 31 einen Spannungsabfall Uc31 und damit einen Common-Mode-Störstrom Icm1 in der DC-Spannungsversorgungseinrichtung 4. Entsprechend verursacht der Pulsumrichter 2 aufgrund seiner Schalthandlungen und der damit verbundenen Änderungen seiner Ausgangspotentiale U2a, U2b an der Erdkapazität Cp32 des von ihm gespeisten Wicklungsstrangs 32 einen Spannungsabfall Uc32 und damit einen Common-Mode-Störstrom Icm2 in der DC-Spannungsversorgungseinrichtung 4. In der DC-Spannungsversorgungseinrichtung 4 wird somit ein Gesamt-Common-Mode-Störstrom Icmg wirksam, der sich aus der Summe der Common-Mode-Störströme Icm1 und Icm2 der beiden einzelnen Pulsumrichter 1 und 2 ergibt: Icmg = Icm1 + Icm2.The
Bei symmetrischem Aufbau der Drehfeldmaschine 3 sind auch die parasitären Wicklungskapazitäten Cp31, Cp32 der Wicklungsstränge 31, 32 zumindest annähernd gleich groß, so dass bei gleich großen Spannungen Uc31 und Uc32 auch die beiden Common-Mode-Störströme Icm1 und Icm2 gleich groß sind. Erfindungsgemäß werden zur Verringerung des in der DC-Spannungsversorgungseinrichtung 4 wirksamen Gesamt-Common-Mode-Störstroms Icmg die beiden Pulsumrichter 1, 2 durch Ansteuervorrichtungen 51,52 derart angesteuert, dass bei beiden Pulsumrichtern 1, 2 an ihren Ausgängen 1a, 1b bzw. 2a, 2b die für die Entstehung der Common-Mode-Strömen Icm1, Icm2 maßgeblichen Potentiale U1a, U1b bzw. U2a, U2b zumindest annähernd gleichzeitig so auf die Wicklungsstränge 31, 32 der Drehfeldmaschine 3 geschaltet werden, dass die Spannungspotentiale Uc31, Uc32 über den parasitären Kapazitäten Cp31, Cp32 der Wicklungsstränge 31, 32 gegenüber Erdpotential entgegengesetzt gerichtet sind und sich somit die Common-Mode-Störströme Icm1 und Icm2 gegeneinander aufheben. Die beiden Ansteuervorrichtungen 51, 52 sind hierzu in geeigneter Weise signaltechnisch miteinander verknüpft, insbesondere miteinander synchronisiert.In a symmetrical structure of the
Falls es räumliche, funktionale oder gerätetechnische Gegebenheiten erlauben, kann anstatt der miteinander synchronisierten Ansteuervorrichtungen 51, 52 eine gemeinsame Steuervorrichtung 5 vorgesehen werden.If spatial, functional or technical equipment conditions permit, a common control device 5 can be provided instead of the
Unter den Voraussetzungen zeitgleicher Umschaltvorgänge in den Umrichter-Halbbrücken W1a, W2b bzw. W1b, W2a sowie gleich großer Kapazitäten Cp31 und Cp32 haben die über Erdpotential fließenden Common-Mode-Ströme Icm1 und Icm2 somit zwar den gleichen Betrag, sind aber entgegengesetzt gerichtet, d.h. es gilt Icm1 = -Icm2. In der Summe heben sich damit beide Ströme Icm1 und Icm2 gegenseitig auf, d.h. in der DC-Spannungsversorgungseinrichtung 4 wird somit auch kein aus den Schaltvorgängen der Pulsumrichter 1, 2 herrührender Common-Mode-Störstrom Icmg mehr wirksam.Under the conditions of simultaneous switching operations in the converter half-bridges W1a, W2b or W1b, W2a and equally large capacitances Cp31 and Cp32, the common-mode currents Icm1 and Icm2 flowing through ground potential thus have the same magnitude, but are oppositely directed, i. Icm1 = -Icm2. In sum, both currents Icm1 and Icm2 cancel each other out, i.e., they are canceled. In the DC voltage supply device 4, therefore, no common-mode interference current Icmg originating from the switching operations of the
Von besonderer Bedeutung für das Verhalten der elektrischen Drehfeldmaschine 3 ist, dass durch die erfindungsgemäße Lösung die an den Wicklungssträngen 31, 32 anliegenden Umrichter-Ausgangsspannungen U1, U2 der beiden Pulsumrichter 1,2 nicht verändert werden und weiterhin den gleichen zeitlichen Verlauf haben, so dass sich für die Funktion des Antriebs keinerlei Änderung ergibt.Of particular importance for the behavior of the
Die Ansteuerung der Pulsumrichter 1, 2 kann, wie bereits in Zusammenhang mit den Erläuterungen zu
Anhand
S2a,S2a'; S2b,S2b'; S2c, S2c'). An den Ausgangsklemmen 1a, 1b, 1c bzw. 2a, 2b, 2c der Umrichter 1 bzw. 2 sind die beiden Wicklungssysteme 33 bzw. 34 der Drehfeldmaschine 3 angeschlossen. Die parasitären Kapazitäten der Wicklungsstränge gegen Erdpotential sind in vereinfachender Weise in Form von parasitären Kapazitäten Cp33, Cp34 der Wicklungssysteme 33, 34 gegen Erdpotential dargestellt. Die über der parasitären Kapazität Cp33 abfallende Spannung trägt die Bezeichnung Uc33; die Spannung über der Kapazität Cp34 trägt die Bezeichnung Uc34.S2a, S2a '; S2b S2b '; S2c, S2c '). At the
Die beiden Wicklungssysteme 33, 34 der Drehfeldmaschine 3 sind erfindungsgemäß um 180° elektrisch versetzt zueinander angeordnet. Bei gleichem Wickelsinn der Motorwicklungen kann dies durch geeignete Zusammenschaltung der Wicklungsanfänge bzw. Wicklungsenden der Wicklungsstränge 33a, 33b, 33c bzw. 34a, 34b, 34c geschehen. Zur Verdeutlichung sind in
Die zur Ansteuerung der Pulsumrichter erforderliche Steuervorrichtung bzw. Ansteuervorrichtungen tragen die Bezeichnungen 5 bzw. 51, 52. Aus Gründen einer hohen Anschaulichkeit der erfindungsgemäßen Lösung wird dabei im ausgeführten Beispiel wiederum ein Ansteuerverfahren unter Nutzung von Dreieck-Hilfsfunktionen im Sinne der bekannten Sinus-Dreieckmodulation verwendet.For reasons of high clarity of the solution according to the invention, a driving method using triangular auxiliary functions in the sense of the known sine-wave modulation is again used in the example shown here for the purpose of controlling the pulse converter ,
Der Pulsumrichter 1 erzeugt auf Grund seiner Schalthandlungen und der damit verbundenen Änderungen seiner Ausgangspotentiale U1a, U1b, U1c an der Erdkapazität Cp33 des von ihm gespeisten Wicklungssystems 33 einen Spannungsabfall Uc33 und damit einen Common-Mode-Störstrom Icm1. Entsprechend verursacht der Pulsumrichter 2 aufgrund seiner Schalthandlungen und der damit verbundenen Änderungen seiner Ausgangspotentiale U2a, U2b, U2c an der Erdkapazität Cp34 des von ihm gespeisten Wicklungsstrangs 34 einen Spannungsabfall Uc34 und damit einen Common-Mode-Störstrom Icm2. In der DC-Spannungsversorgungseinrichtung 4 wird somit ein Gesamt-Common-Mode-Störstrom Icmg wirksam, der sich aus der Summe der Common-Mode-Störströme Icm1 und Icm2 der beiden einzelnen Pulsumrichter 1 und 2 ergibt: Icmg = Icm1 + Icm2. Bei symmetrischem Aufbau der Drehfeldmaschine 3 sind auch die parasitären Kapazitäten Cp33 und Cp34 der Wicklungssysteme 33, 34 zumindest annähernd gleich groß, so dass bei gleich großen Spannungen Uc33 und Uc34 auch die beiden Common-Mode-Störströme Icm1 und Icm2 gleich groß sind.Due to its switching operations and the associated changes in its output potentials U1a, U1b, U1c, the
Erfindungsgemäß werden die beiden Pulsumrichter 1,2 durch die Ansteuervorrichtungen 51, 52 bzw. durch die Steuervorrichtung 5 derart angesteuert, dass an ihren Ausgängen 1a, 1b, 1c bzw. 2a, 2b, 2c die für die Entstehung der Common-Mode-Ströme Icm1, Icm2 maßgeblichen Potentiale U1a, U1b, U1c bzw. U2a, U2b, U2c zumindest annähernd gleichzeitig so auf die Wicklungssysteme 33, 34 geschaltet werden, dass die Spannungspotentiale Uc33, Uc34 über den parasitären Kapazitäten Cp33, Cp34 der Wicklungssysteme 33, 34 gegenüber Erdpotential zueinander entgegengesetzt gerichtet sind und sich somit die Common-Mode-Störströme ICm1 und Icm2 gegeneinander aufheben.According to the invention, the two
Dies gelingt im dargestellten Ausführungsbeispiel dadurch, dass sich durch gegensinnige Ansteuerung der Halbbrücken W1a, W1b und W1c des Umrichters 1 zu den Halbbrücken W2a, W2b und W2c des Umrichters 2 die Ausgangspotentiale U1a, U2a bzw. U1b, U2b bzw. U1c, U2c W2b gegensinnig zueinander ändern.This is achieved in the illustrated embodiment in that by opposing driving of the half bridges W1a, W1b and W1c of the
Die Bildung der Schaltzeitpunkte zur Ansteuerung der Pulsumrichter erfolgt in dem in
Repräsentativ für die resultierenden Umrichter-Ausgangsspannungen sind in
Durch die Anwendung der erfindungsgemäßen Lösung in Antriebssystemen mit von mehrphasigen Pulsuzmrichtern gespeisten mehrphasigen Wicklungssystemen ergibt sich somit keinerlei Änderung für die Funktion des Antriebs.
Wie bereits erwähnt, müssen die bei de Ansteuervorrichtungen 51, 52 miteinander synchronisiert werden, damit sich in den betreffenden Halbbrücken (W1a, W2b bzw. W1b, W2a bei einphasigen Umrichtern bzw. W1a, W2a; W1b, W2b; W1c, W2b bei dreiphasigen Umrichtern) gleiche Schalt zeitpunkte ergeben können. Bei der in beispielhafter Weise beschriebenen Verwendung einer Dreieck-Hilfsfunktion UΔ im Sinne der bekannten Sinus-Dreieck-Modulation geschieht das durch die Dreieck-Hilfsfunktion UΔ selbst.
Zur Ansteuerung der Halbbrücken (W1 a, W2b bzw. W1b, W2a bei einphasigen Umrichtern bzw. W1a, W2 a; W1b, W2b; W1c, W2b bei dreiphasigen Umrichtern) können allerdings auch andere online- oder offline-Modulationsverfahren verwendet werden; in diesem Fall ist die Synchronisierung in anderer, geeigneter Weise zu realisieren.
Die signaltechnischen Funktionen der Steuervorrichtung (5) bzw. der Ansteuervorrichtungen (51, 52) sind vorteilhafterweise in zumindest einem programmierbaren Hardwarebaustein, insbesondere LCA, und/oder mittels Software in einer digitalen Signalverarbeitung mit mindestens einem digitalen Prozessor realisiert und/oder als herkömmliche Hardware in Analog- und/oder Digitaltechnik ausgeführt.The application of the solution according to the invention in drive systems with multi-phase pulse systems fed by multiphase pulsing converters thus does not result in any change in the function of the drive.
As already mentioned, the
However, other online or offline modulation methods can also be used for driving the half-bridges (W1a, W2b or W1b, W2a for single-phase converters or W1a, W2a, W1b, W2b, W1c, W2b for three-phase converters); in this case, the synchronization is to be realized in another suitable way.
The signaling functions of the control device (5) or the drive devices (51, 52) are advantageously realized in at least one programmable hardware component, in particular LCA, and / or by software in a digital signal processing with at least one digital processor and / or executed as conventional hardware in analog and / or digital technology.
Wird die Drehfeldmaschine 3 von mehr als zwei Pulsumrichtern 1, 2 von einer gemeinsamen DC-Spannungsversorgung 4 gespeist, so werden jeweils je zwei dieser Pulsumrichter mit dem erfindungsgemäßen Ansteuerverfahren betrieben, so dass sich die jeweiligen, von den je zwei Pulsumrichtern erzeugten Common-Mode-Störströme gegeneinander aufheben.If the three-
Treten Unterschiede in den Momentanwerten der Steuerspannungen Ust1, Ust2 der beiden Pulsumrichter 1, 2 auf, wie das z.B. bei unterschiedlichen Grundschwingungsphasenlagen von Drehstrommaschinen sein kann, verbleiben Reste im resultierenden Common-Mode-Störstrom Icmg. Besonders vorteilhaft ist die erfindungsgemäße Lösung deshalb dann einsetzbar, wenn jeweils ein Paar von Pulsumrichtern 1, 2 gleiche oder nahezu gleiche (bzw. inverse) Ausgangsspannungen erzeugen und damit Wicklungsstränge 31, 32 oder mehrphasige Wicklungssysteme 33, 34 mit gleicher (bzw. inverser) Grundschwingungsphasenlage gespeist werden.If there are differences in the instantaneous values of the control voltages Ust1, Ust2 of the two
Derartige, insbesondere als rotorseitig permanentmagnetisch erregte Synchronmaschinen ausgebildete Drehfeldmaschinen können aufgrund der Einzelspeisung ihrer Wicklungsstränge bzw. durch Verwendung mehrerer mehrphasiger Wicklungssysteme für hohe Antriebsleistungen ausgelegt werden, wie sie insbesondere z.B. für den Propulsionsantrieb eines Schiffes, inbesondere eines U-Bootes, benötigt wird.Such rotary field machines, which are designed in particular as synchronous machines which are excited in particular as rotor-side synchronous machines, can be designed for high drive power owing to the individual feeding of their winding strands or by using a plurality of multiphase winding systems, in particular e.g. for propulsion propulsion of a ship, in particular a submarine, is needed.
Claims (14)
- Method for reducing common-mode interference currents in an electric drive system, having at least two pulse converters (1, 2) that are fed by a common DC power supply device (4) for feeding an electric polyphase machine (3) having at least two winding phases (31, 32) or at least two winding systems (33, 34), wherein at least two of the pulse converters (1, 2) in each case are respectively triggered by a control device (5) such that the potentials (U1a, U1b, U1c or U2a, U2b, U2c) that are decisive for the generation of common-mode currents (Icm1, Icm2) are applied in an at least approximately simultaneous manner to the winding phases (31, 32) affected by parasitic capacitances (Cp31, Cp32) or the winding systems (33, 34) of the polyphase machine (3) which are affected by parasitic capacitances (Cp33, Cp34), at the outputs (1a, 1b, 1c or 2a, 2b, 2c) of both pulse converters (1, 2), such that the voltage potentials (Uc31, Uc32 or Uc33, Uc34) are inverted relative to each other above the parasitic capacitances (Cp31, Cp32) of the winding phases (31, 32) or above the parasitic capacitances (Cp33, Cp34) of the winding systems (33, 34) in relation to the earth potential,
characterised in that the triggering for each two pulse converters (1, 2) is realised by a modulation procedure with the help of triangular auxiliary functions, wherein the triangular auxiliary function (UΔ1) of one of each two pulse converters (1) is inverted compared to the triangular auxiliary function (UΔ2) of the other of each two pulse converters (2). - Method according to claim 1 for operating a polyphase machine (3) having a plurality of winding phases (31, 32) fed in terms of a single-winding power supply by one single-phase pulse converter (1, 2) in each case,
characterised in that each two pulse converters (1, 2) are triggered by the control device (5), such that the instantaneous values of the output voltages (Ul, U2) of each two pulse converters (1, 2) are at least approximately equal. - Method according to claim 1 for operating a polyphase machine (3) having a plurality of multiphase winding systems (33, 34) fed by one multiphase pulse converter (1 or 2) each, characterised in that the winding systems (33 or 34) fed by each two pulse converters (1, 2) are arranged in the polyphase machine (3) so as to be electrically offset from one another by at least approximately 180° and each two pulse converters (1, 2) are triggered by the control device (5), such that the instantaneous values of the output voltages (U1ba, U1cb, U1ac) or (U2ba, U2cb, U2ac) of each two pulse converters (1, 2) are inverse to one another.
- Method according to at least one of the preceding claims, characterised in that the triggering for each two pulse converters (1, 2) takes place with the aid of modulation procedures or pulse patterns working online and/or offline.
- Electric drive system having at least two pulse converters (1, 2) fed from a common DC voltage supply device (4) for feeding an electric polyphase machine (3) having at least two winding phases (31, 32) or at least two winding systems (33, 34), in particular for the performance of the method according to one of claims 1 to 4,
wherein at least in each case each two of the pulse converters (1, 2) have a switching dependency dependent on a control device (5), such that the potentials (U1a, U1b, U1c or U2a, U2b, U2c) that are decisive for the generation of common-mode currents (Icm1, Icm2) are applied in an at least approximately simultaneous manner to the winding phases (31, 32) affected by parasitic capacitances (Cp31, Cp32) or the winding systems (33, 34) of the polyphase machine (3) which are affected by parasitic capacitances (Cp33, Cp34), at the outputs (1a, 1b, 1c or 2a, 2b, 2c) of both pulse converters (1, 2), such that the voltage potentials (Uc31, Uc32 or Uc33, Uc34) are inverted relative to each other above the parasitic capacitances (Cp31, Cp32) of the winding phases (31, 32) or above the parasitic capacitances (Cp33, Cp34) of the winding systems (33, 34) in relation to the earth potential,
characterised in that each two pulse converters (1, 2) can be triggered by a modulation procedure with the help of triangular auxiliary functions, wherein the triangular auxiliary function (UΔ1) of one of each two pulse converters (1) is inverted compared to the triangular auxiliary function (UΔ2) of the other of each two pulse converters (2). - Electric drive system according to claim 5, wherein the at least one polyphase machine (3) has a plurality of winding phases (31, 32) fed in terms of a single-winding power supply by a single-phase pulse converter (1, 2) in each case, characterised in that each two pulse converters (1, 2) have a switching dependency thanks to the control device (5), such that the instantaneous values of the output voltages (Ul, U2) of each two pulse converters (1, 2) are at least approximately equal.
- Electric drive system according to claim 5, wherein the at least one polyphase machine (3) has a plurality of multiphase winding systems (33, 34) fed by one multiphase pulse converter (1 or 2) each,
characterised in that the winding systems (33 or 34) fed by each two pulse converters (1, 2) are arranged in the polyphase machine (3) so as to be electrically offset from one another by at least approximately 180° and each two pulse converters (1, 2) have a switching dependency thanks to the control device (5), such that the instantaneous values of the output voltages (U1ba, U1cb, U1ac) or (U2ba, U2cb, U2ac) of each two pulse converters (1, 2) are inverse to one another. - Electric drive system (19) according to at least one of claims 5 to 7,
characterised in that a common control device (5) is provided for each two pulse converters (1, 2) in each case. - Electric drive system according to at least one of claims 5 to 7,
characterised in that a plurality of, in particular two, trigger devices (51, 52) which are linked to one another, in particular synchronised with one another in a device-related and/or functionally separate and suitably signal-related manner, are provided for each two pulse converters (1, 2) in each case. - Electric drive system according to at least one of claims 5 to 9,
characterised in that signal-related functions of the control device (5) or of the triggering devices (51, 52) are realised in at least one programmable hardware module, in particular LCA, and/or by means of software in digital signal processing with at least one digital processor and/or are executed with conventional hardware in analogue and/or digital technologies. - Electric drive system according to at least one of claims 5 to 10,
characterised in that one or more of the electric polyphase machines (3) is embodied as a synchronous machine with electric or permanent-magnetic excitation. - Electric drive system according to at least one of claims 5 to 10,
characterised in that one or more of the electric polyphase machines (3) is embodied as an asynchronous machine. - Electric drive system according to at least one of claims 5 to 12,
characterised in that one or more of the electric polyphase machines (3) is a propulsion drive of a ship, in particular a submarine. - Use of the electric drive system according to at least one of claims 5 to 13 in an electric on-board power supply system, in particular an electric DC on-board power supply system on ships, in particular on submarines.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10301275 | 2003-01-15 | ||
DE10301275.3A DE10301275B4 (en) | 2003-01-15 | 2003-01-15 | Method for reducing common-mode parasitic currents in an electric drive system and corresponding electric drive system |
PCT/EP2004/000166 WO2004064240A1 (en) | 2003-01-15 | 2004-01-13 | Method for reducing common-mode interference currents in an electric drive system, and corresponding electric drive system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1584134A1 EP1584134A1 (en) | 2005-10-12 |
EP1584134B1 true EP1584134B1 (en) | 2017-03-22 |
Family
ID=32667604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04701595.3A Expired - Lifetime EP1584134B1 (en) | 2003-01-15 | 2004-01-13 | Method for reducing common-mode interference currents in an electric drive system, and corresponding electric drive system |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP1584134B1 (en) |
KR (1) | KR101144364B1 (en) |
CN (1) | CN100397773C (en) |
BR (1) | BRPI0406791A (en) |
DE (1) | DE10301275B4 (en) |
ES (1) | ES2629016T3 (en) |
PT (1) | PT1584134T (en) |
WO (1) | WO2004064240A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006007610A1 (en) | 2006-02-14 | 2007-08-16 | Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Coburg | Drive device for an adjusting device for adjusting a vehicle part and method for operating a drive device |
US7928592B2 (en) * | 2008-06-30 | 2011-04-19 | General Electric Company | Wind turbine with parallel converters utilizing a plurality of isolated generator windings |
DE102009007626B4 (en) | 2009-02-05 | 2015-06-18 | Siteco Beleuchtungstechnik Gmbh | Luminaire for reducing the effects of light back reflection |
EP2927044B1 (en) * | 2014-03-31 | 2017-02-22 | Siemens Aktiengesellschaft | Method for operating parallel auxiliary converters in a railway vehicle |
KR102587874B1 (en) * | 2015-02-05 | 2023-10-11 | 오티스 엘리베이터 컴파니 | Drives and controls for six-phase electrical machines with negligible common-mode voltages |
DE102016116069A1 (en) * | 2016-08-29 | 2018-03-01 | Volkswagen Aktiengesellschaft | Device for reducing high-frequency interference currents and vehicle |
DE102016224916A1 (en) * | 2016-12-14 | 2018-06-14 | Bayerische Motoren Werke Aktiengesellschaft | Rotor and rotor circuit for an electric motor |
DE102019115516A1 (en) * | 2019-06-07 | 2020-12-10 | Webasto SE | Process for reducing common-mode interference from ohmic loads with capacitive coating controlled by high-voltage components |
DE102021211779A1 (en) | 2021-10-19 | 2023-04-20 | Baumüller Nürnberg GmbH | Process for operating a plant |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3637479A1 (en) * | 1986-11-04 | 1988-05-05 | Bosch Gmbh Robert | Servodrive having an AC machine |
EP0334112B1 (en) * | 1988-03-21 | 1995-01-18 | Siemens Aktiengesellschaft | Pulse converter driven induction machine |
CN1069343A (en) * | 1991-08-08 | 1993-02-24 | 陈飞 | The detection method of convection current and device thereof |
DE19736613A1 (en) | 1997-08-22 | 1999-02-25 | Asea Brown Boveri | Inverter |
DE10040851A1 (en) * | 2000-08-21 | 2002-03-07 | Siemens Ag | Electrical machine with insulated machine housing |
DE10043934A1 (en) * | 2000-09-06 | 2002-03-14 | Gebhardt Ventilatoren | Control module for static frequency changer or converter bridge for commutation of electric motor currents has pulse source providing switching pulses for series switches in each converter path dependent on rotor position |
DE10059332A1 (en) * | 2000-11-29 | 2002-06-13 | Siemens Ag | Attenuation of resonance peaks in an electric motor operated on a converter with a voltage intermediate circuit by means of a transformer-coupled damping resistor and corresponding electric motor |
-
2003
- 2003-01-15 DE DE10301275.3A patent/DE10301275B4/en not_active Expired - Fee Related
-
2004
- 2004-01-13 EP EP04701595.3A patent/EP1584134B1/en not_active Expired - Lifetime
- 2004-01-13 PT PT47015953T patent/PT1584134T/en unknown
- 2004-01-13 CN CNB2004800023065A patent/CN100397773C/en not_active Expired - Fee Related
- 2004-01-13 KR KR1020057013181A patent/KR101144364B1/en active IP Right Grant
- 2004-01-13 ES ES04701595.3T patent/ES2629016T3/en not_active Expired - Lifetime
- 2004-01-13 WO PCT/EP2004/000166 patent/WO2004064240A1/en active Search and Examination
- 2004-01-13 BR BR0406791-6A patent/BRPI0406791A/en not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
PT1584134T (en) | 2017-05-30 |
CN100397773C (en) | 2008-06-25 |
BRPI0406791A (en) | 2006-01-17 |
EP1584134A1 (en) | 2005-10-12 |
DE10301275B4 (en) | 2016-06-16 |
CN1739233A (en) | 2006-02-22 |
DE10301275A1 (en) | 2004-08-05 |
KR101144364B1 (en) | 2012-05-11 |
WO2004064240A9 (en) | 2005-08-04 |
ES2629016T3 (en) | 2017-08-07 |
WO2004064240A1 (en) | 2004-07-29 |
KR20050097945A (en) | 2005-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3433126B1 (en) | Method for operating an electrical network | |
DE102008014898A1 (en) | Method for controlling a multiphase power converter with distributed energy stores at low output frequencies | |
DE1488096B2 (en) | Inverter circuit | |
DE102019106485B4 (en) | Weissach rectifier arrangement | |
DE102008034109A1 (en) | Circuit for simulating an electrical load | |
EP2191560A2 (en) | Multiphase dc-dc converter | |
DE102005015658A1 (en) | Switching device for linking different electrical voltage levels in a motor vehicle | |
EP2377234A1 (en) | Transformerless inverter having a dc/dc converter | |
EP1584134B1 (en) | Method for reducing common-mode interference currents in an electric drive system, and corresponding electric drive system | |
EP2730021A2 (en) | Method for actuating a multi-phase machine | |
DE10301272A1 (en) | Electric machine for propulsion propulsion of a submarine with a permanent magnet excited synchronous machine | |
EP3602762B1 (en) | Inverter | |
EP2449664B1 (en) | Dc/dc converter comprising auxiliary converter for ground current compensation | |
EP1442512A2 (en) | Voltage converter | |
EP2664049B1 (en) | Assembly for feeding electrical energy into an energy supply network | |
EP3036811B1 (en) | Method and device for operating an inverter in an inverter-based power distribution system and power distribution system with multiple inverter-based energy transfer units | |
DE102020106624A1 (en) | Control circuit for an electric motor and method for controlling an electric motor | |
DE3035305C2 (en) | Inverter circuit for a three-phase synchronous motor | |
EP3531547B1 (en) | Operating circuit for coupling of a synchronous machine with a voltage network and method for the operation of same | |
EP2660964A1 (en) | Electricity supply assembly with a first and a second power supply device, where the second power supply device is connected to the first power supply device | |
DE102022000459A1 (en) | Method for operating a drive system and drive system for carrying out the method | |
DE102010054005A1 (en) | Electrical device e.g. frequency converter for switching power supply, has common-mode rejection choke to avoid saturation of magnetically effective core when pulse duration in starting phase is larger than that in steady operation phase | |
EP2713494A1 (en) | Energy feed device for feeding electrical energy generated from kinetic energy into an alternating current distributor network | |
EP3393028B1 (en) | Wind turbine with converter system for reducing em radiation | |
DE10320521B4 (en) | Electrical control device for controls and method for controlling controls |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050714 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20110427 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20161011 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502004015488 Country of ref document: DE Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 878650 Country of ref document: AT Kind code of ref document: T Effective date: 20170415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502004015488 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Ref document number: 1584134 Country of ref document: PT Date of ref document: 20170530 Kind code of ref document: T Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20170519 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2629016 Country of ref document: ES Kind code of ref document: T3 Effective date: 20170807 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170622 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG, CH Ref country code: CH Ref legal event code: PCOW Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE) |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20170401463 Country of ref document: GR Effective date: 20171023 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502004015488 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
26N | No opposition filed |
Effective date: 20180102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180113 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180114 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180131 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180802 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181015 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180113 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 878650 Country of ref document: AT Kind code of ref document: T Effective date: 20180113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180113 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20190102 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20190108 Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20040113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200113 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502004015488 Country of ref document: DE Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20210120 Year of fee payment: 18 Ref country code: IT Payment date: 20210125 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20210319 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20210423 Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200113 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004015488 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220113 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20230227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220114 |