EP1583970B1 - Elisa method for the detection of guanylate binding protein 1 (gbp-1) - Google Patents
Elisa method for the detection of guanylate binding protein 1 (gbp-1) Download PDFInfo
- Publication number
- EP1583970B1 EP1583970B1 EP03795945A EP03795945A EP1583970B1 EP 1583970 B1 EP1583970 B1 EP 1583970B1 EP 03795945 A EP03795945 A EP 03795945A EP 03795945 A EP03795945 A EP 03795945A EP 1583970 B1 EP1583970 B1 EP 1583970B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gbp
- receptor
- protein
- fragment
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 102100035688 Guanylate-binding protein 1 Human genes 0.000 title claims abstract description 169
- 101710110781 Guanylate-binding protein 1 Proteins 0.000 title claims abstract description 169
- 238000000034 method Methods 0.000 title claims abstract description 62
- 238000001514 detection method Methods 0.000 title claims description 20
- 101100067996 Mus musculus Gbp1 gene Proteins 0.000 title description 2
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 57
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 54
- 239000012634 fragment Substances 0.000 claims abstract description 38
- 210000001124 body fluid Anatomy 0.000 claims abstract description 11
- 239000010839 body fluid Substances 0.000 claims abstract description 11
- 238000004113 cell culture Methods 0.000 claims abstract description 10
- 238000011002 quantification Methods 0.000 claims abstract description 3
- 238000002965 ELISA Methods 0.000 claims description 46
- 239000011324 bead Substances 0.000 claims description 19
- 208000027866 inflammatory disease Diseases 0.000 claims description 13
- 239000012228 culture supernatant Substances 0.000 claims description 12
- 238000001262 western blot Methods 0.000 claims description 11
- 230000027455 binding Effects 0.000 claims description 9
- 230000009870 specific binding Effects 0.000 claims description 9
- 230000011664 signaling Effects 0.000 claims description 8
- 108091023037 Aptamer Proteins 0.000 claims description 5
- 102000004190 Enzymes Human genes 0.000 claims description 4
- 108090000790 Enzymes Proteins 0.000 claims description 4
- 238000002372 labelling Methods 0.000 claims description 4
- 239000004816 latex Substances 0.000 claims description 4
- 229920000126 latex Polymers 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 239000012528 membrane Substances 0.000 claims description 4
- 239000004793 Polystyrene Substances 0.000 claims description 3
- 229920002684 Sepharose Polymers 0.000 claims description 3
- 238000003776 cleavage reaction Methods 0.000 claims description 3
- 229920002223 polystyrene Polymers 0.000 claims description 3
- 230000007017 scission Effects 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 229920002554 vinyl polymer Polymers 0.000 claims description 3
- 239000000020 Nitrocellulose Substances 0.000 claims description 2
- 238000001502 gel electrophoresis Methods 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 238000000338 in vitro Methods 0.000 claims description 2
- 229920001220 nitrocellulos Polymers 0.000 claims description 2
- 230000001376 precipitating effect Effects 0.000 claims 1
- 235000018102 proteins Nutrition 0.000 description 41
- 239000000523 sample Substances 0.000 description 33
- 210000002889 endothelial cell Anatomy 0.000 description 31
- 230000002757 inflammatory effect Effects 0.000 description 26
- 102000004127 Cytokines Human genes 0.000 description 22
- 108090000695 Cytokines Proteins 0.000 description 22
- 230000014509 gene expression Effects 0.000 description 20
- 210000002966 serum Anatomy 0.000 description 19
- 239000013598 vector Substances 0.000 description 17
- 238000003556 assay Methods 0.000 description 16
- 108010074328 Interferon-gamma Proteins 0.000 description 15
- 210000004027 cell Anatomy 0.000 description 15
- 210000001519 tissue Anatomy 0.000 description 15
- 230000004913 activation Effects 0.000 description 13
- 238000001994 activation Methods 0.000 description 13
- 102100028541 Guanylate-binding protein 2 Human genes 0.000 description 12
- 101710110789 Guanylate-binding protein 2 Proteins 0.000 description 12
- 102100037850 Interferon gamma Human genes 0.000 description 12
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 11
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 10
- 206010003246 arthritis Diseases 0.000 description 8
- 241000283973 Oryctolagus cuniculus Species 0.000 description 7
- 238000011534 incubation Methods 0.000 description 7
- 210000002381 plasma Anatomy 0.000 description 7
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 6
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 6
- 201000009906 Meningitis Diseases 0.000 description 6
- 229920001213 Polysorbate 20 Polymers 0.000 description 6
- 238000001793 Wilcoxon signed-rank test Methods 0.000 description 6
- 230000004663 cell proliferation Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000010790 dilution Methods 0.000 description 6
- 239000012895 dilution Substances 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 239000003446 ligand Substances 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 6
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 6
- 230000035755 proliferation Effects 0.000 description 6
- 102000006992 Interferon-alpha Human genes 0.000 description 5
- 108010047761 Interferon-alpha Proteins 0.000 description 5
- 241000700159 Rattus Species 0.000 description 5
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 5
- 150000001413 amino acids Chemical group 0.000 description 5
- 230000002491 angiogenic effect Effects 0.000 description 5
- 210000004899 c-terminal region Anatomy 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 5
- 238000001114 immunoprecipitation Methods 0.000 description 5
- 239000013612 plasmid Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 229920000936 Agarose Polymers 0.000 description 4
- 201000000297 Erysipelas Diseases 0.000 description 4
- 241000282414 Homo sapiens Species 0.000 description 4
- 102100024616 Platelet endothelial cell adhesion molecule Human genes 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000001028 anti-proliverative effect Effects 0.000 description 4
- 239000000427 antigen Substances 0.000 description 4
- 108091007433 antigens Proteins 0.000 description 4
- 102000036639 antigens Human genes 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 239000003102 growth factor Substances 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 230000004054 inflammatory process Effects 0.000 description 4
- 239000003147 molecular marker Substances 0.000 description 4
- OHDXDNUPVVYWOV-UHFFFAOYSA-N n-methyl-1-(2-naphthalen-1-ylsulfanylphenyl)methanamine Chemical compound CNCC1=CC=CC=C1SC1=CC=CC2=CC=CC=C12 OHDXDNUPVVYWOV-UHFFFAOYSA-N 0.000 description 4
- 238000003752 polymerase chain reaction Methods 0.000 description 4
- 102000004196 processed proteins & peptides Human genes 0.000 description 4
- 108090000765 processed proteins & peptides Proteins 0.000 description 4
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 3
- XZKIHKMTEMTJQX-UHFFFAOYSA-N 4-Nitrophenyl Phosphate Chemical compound OP(O)(=O)OC1=CC=C([N+]([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-N 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 206010015866 Extravasation Diseases 0.000 description 3
- 206010061218 Inflammation Diseases 0.000 description 3
- 208000007766 Kaposi sarcoma Diseases 0.000 description 3
- 201000004681 Psoriasis Diseases 0.000 description 3
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 230000000692 anti-sense effect Effects 0.000 description 3
- 230000006907 apoptotic process Effects 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 210000003038 endothelium Anatomy 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 230000036251 extravasation Effects 0.000 description 3
- 230000036074 healthy skin Effects 0.000 description 3
- 230000028709 inflammatory response Effects 0.000 description 3
- 210000000265 leukocyte Anatomy 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 210000001616 monocyte Anatomy 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 208000017520 skin disease Diseases 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 210000003556 vascular endothelial cell Anatomy 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- 102000007469 Actins Human genes 0.000 description 2
- 108010085238 Actins Proteins 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 241001136792 Alle Species 0.000 description 2
- 102100021943 C-C motif chemokine 2 Human genes 0.000 description 2
- 101710155857 C-C motif chemokine 2 Proteins 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 2
- 102000006573 Chemokine CXCL12 Human genes 0.000 description 2
- 108010008951 Chemokine CXCL12 Proteins 0.000 description 2
- 108090000331 Firefly luciferases Proteins 0.000 description 2
- 206010020751 Hypersensitivity Diseases 0.000 description 2
- 102000008070 Interferon-gamma Human genes 0.000 description 2
- 108010050904 Interferons Proteins 0.000 description 2
- 102000014150 Interferons Human genes 0.000 description 2
- 108090000978 Interleukin-4 Proteins 0.000 description 2
- 108090001005 Interleukin-6 Proteins 0.000 description 2
- 108010063738 Interleukins Proteins 0.000 description 2
- 102000015696 Interleukins Human genes 0.000 description 2
- 239000012741 Laemmli sample buffer Substances 0.000 description 2
- 102000000380 Matrix Metalloproteinase 1 Human genes 0.000 description 2
- 108010016113 Matrix Metalloproteinase 1 Proteins 0.000 description 2
- 206010027202 Meningitis bacterial Diseases 0.000 description 2
- 102000004140 Oncostatin M Human genes 0.000 description 2
- 108090000630 Oncostatin M Proteins 0.000 description 2
- 108010059712 Pronase Proteins 0.000 description 2
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000007815 allergy Effects 0.000 description 2
- 208000034615 apoptosis-related disease Diseases 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 201000009904 bacterial meningitis Diseases 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000006143 cell culture medium Substances 0.000 description 2
- 230000004709 cell invasion Effects 0.000 description 2
- 230000012292 cell migration Effects 0.000 description 2
- 125000003636 chemical group Chemical group 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 239000003184 complementary RNA Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 230000006759 inflammatory activation Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 229940079322 interferon Drugs 0.000 description 2
- 229960003130 interferon gamma Drugs 0.000 description 2
- 230000009545 invasion Effects 0.000 description 2
- 230000023404 leukocyte cell-cell adhesion Effects 0.000 description 2
- 201000001441 melanoma Diseases 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 238000005453 pelletization Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000011533 pre-incubation Methods 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 229950010131 puromycin Drugs 0.000 description 2
- 230000001177 retroviral effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 102000003390 tumor necrosis factor Human genes 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- 208000030507 AIDS Diseases 0.000 description 1
- 108020005544 Antisense RNA Proteins 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 108090000317 Chymotrypsin Proteins 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 201000004624 Dermatitis Diseases 0.000 description 1
- 102100021238 Dynamin-2 Human genes 0.000 description 1
- 240000003517 Elaeocarpus dentatus Species 0.000 description 1
- 108090000386 Fibroblast Growth Factor 1 Proteins 0.000 description 1
- 102100031706 Fibroblast growth factor 1 Human genes 0.000 description 1
- 101150092780 GSP1 gene Proteins 0.000 description 1
- 102000013446 GTP Phosphohydrolases Human genes 0.000 description 1
- 108091006109 GTPases Proteins 0.000 description 1
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 1
- 102100022624 Glucoamylase Human genes 0.000 description 1
- 101000817607 Homo sapiens Dynamin-2 Proteins 0.000 description 1
- 101001001336 Homo sapiens Guanylate-binding protein 1 Proteins 0.000 description 1
- 241001135569 Human adenovirus 5 Species 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 108010000684 Matrix Metalloproteinases Proteins 0.000 description 1
- 102000002274 Matrix Metalloproteinases Human genes 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 108700020962 Peroxidase Proteins 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 101100519432 Rattus norvegicus Pdzd2 gene Proteins 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 241001331447 Santia Species 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 108090001109 Thermolysin Proteins 0.000 description 1
- 101710120037 Toxin CcdB Proteins 0.000 description 1
- 108010046334 Urease Proteins 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 210000004381 amniotic fluid Anatomy 0.000 description 1
- 230000001772 anti-angiogenic effect Effects 0.000 description 1
- 238000011122 anti-angiogenic therapy Methods 0.000 description 1
- 210000000628 antibody-producing cell Anatomy 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 238000011511 automated evaluation Methods 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 230000020411 cell activation Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000012412 chemical coupling Methods 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- 229960002376 chymotrypsin Drugs 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 150000001945 cysteines Chemical class 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 102000053633 human GBP1 Human genes 0.000 description 1
- 210000004408 hybridoma Anatomy 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 238000003125 immunofluorescent labeling Methods 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 210000004969 inflammatory cell Anatomy 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 210000001985 kidney epithelial cell Anatomy 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 238000003670 luciferase enzyme activity assay Methods 0.000 description 1
- 210000004880 lymph fluid Anatomy 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000005906 menstruation Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004089 microcirculation Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000035407 negative regulation of cell proliferation Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035778 pathophysiological process Effects 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- 210000003800 pharynx Anatomy 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000004983 pleiotropic effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000001044 red dye Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000003118 sandwich ELISA Methods 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 210000001179 synovial fluid Anatomy 0.000 description 1
- 210000001138 tear Anatomy 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/573—Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/90—Enzymes; Proenzymes
- G01N2333/914—Hydrolases (3)
Definitions
- the present invention relates to methods of identifying and / or quantifying GBP-1 or fragments of this protein in the culture supernatant of a tissue sample, a sample of body fluid or a sample of cell culture supernatant.
- the endothelium is a key organ in numerous physiological and pathophysiological processes such as cell-directed immune response, menstruation, wound healing, inflammation, allergy, cardiovascular disease and tumor growth. Endothelial pathophysiology is inextricably linked to the activation of endothelial cells.
- Activation of the endothelium is a complex process controlled by a variety of soluble factors that circulate in the blood or are released by neighboring cells ( Fig. 1A ).
- the physiology and morphology of the endothelial cells are adapted to the respective requirements in the tissue.
- the focus is on the control of cell proliferation, apoptosis, invasion, migration and leukocyte adhesion of endothelial cells, which regulate vascular newbend and return vasculature and leukocyte extravasation ( Fig. 1A ).
- Fig. 1B The large number of factors involved suggests that several factors can control the same phenotype and can be grouped into equivalent groups ( FIG. 1B ).
- the angiogenic growth factors activate basic fibroblast growth factor (bFGF) and vascular endothelial cell growth factor (VEGF). endothelial cell proliferation, whereas the inflammatory cytokines interleukin (IL) -1 ⁇ , IL-1 ⁇ , tumor necrosis factor (TNF) - ⁇ and interferon (IFN) - ⁇ inhibit proliferation and increase leukocyte adhesion of endothelial cells.
- bFGF basic fibroblast growth factor
- VEGF vascular endothelial cell growth factor
- IL interleukin
- TNF tumor necrosis factor
- IFN interferon
- cytokine network The development of inflammatory responses and consequent inflammatory diseases is a very complex sequence (cascade) of different and synergistic effects of inflammatory factors such as cytokines, which make it difficult to analyze a defined stage of inflammatory responses and / or to reliably predict their further development , Due to this complexity of the ongoing reactions one speaks in this context of so-called cytokine network.
- GBP-1 cytokine activation in vascular endothelial cells in human tissues
- immunohistochemistry studies were performed to detect GBP-1 using specific monoclonal antibodies.
- histological sections of healthy skin and of skin diseases with an inflammatory component such as psoriasis, drug reaction and Kaposi's sarcoma ( Fig. 2B ).
- focal lesions contain numerous inflammatory cells which release the same inflammatory cytokines, which also lead to increased GBP-1 expression.
- GBP-1 could not be detected in any case.
- individual vessels were clearly positive for GBP-1 ( Fig. 2B , Arrows).
- GBP-1 actually displays inflammatory activation of endothelial cells also in human tissues and can be used as a molecular marker for the detection of this activation in tissues (Lubeseder-Martellato et al., 2002, Guenzi et al., 2001).
- this use as a molecular marker was limited to solid tissue samples because the results described demonstrated that the GBP-1 protein is a cell-acting protein located in the cytoplasm of the cell.
- Corresponding evidence included, for example, the recovery of solid tissue samples from patients. However, removal of solid tissue samples from inflammatory tissue is associated with adverse effects for patients and is difficult.
- GBP-1 actually inhibits angiogenic growth factor-induced cell proliferation ( FIG. 3C , white bars) and, in addition, that inflammatory cytokines are necessary for the proliferation of Endothelial cells can inhibit ( Fig. 3D ).
- the latter is expressed in the fact that in cell cultures expressing antisense -GBP-1 RNA the inhibitory effect of inflammatory cytokines on cell proliferation is markedly reduced ( Fig. 3D , black bars) (see Guenzi et al., 2001).
- GBP-1 inhibits the expression of matrix metalloproteinase-1 and, concomitantly, the invasion of endothelial cells (see Guenzi et al., 2003).
- GBP-1 is a novel molecular marker for inflammatory vascular activation that selectively controls the antiproliferative effect of inflammatory cytokines on endothelial cells.
- GBP-1 is selectively induced by inflammatory cytokines and that this process correlates with an anti-angiogenic effect on the cells in question (Lubeseder-Martellato et al., 2002 and Guenzi et al., 2001). While the induction of GBP-1 over its antiproliferative activity could in principle be exploited for medical purposes in the context of anti-angiogenic therapy, the use of inflammatory cytokines for such purposes is indiscussable due to the pleiotropic and thus adverse effects of these cytokines.
- cytokine network Although there is a need for suitable molecular markers for inflammatory diseases, a variety of cytokines and factors involved in the development and development of inflammatory diseases are described in the prior art as being unsuitable for this purpose because of their instability. In addition, a quantification of individual inflammatory cytokines or factors is not sufficient for a clear finding and therefore requires the determination of a variety of different cytokines and factors that show their respective effect only in a so-called "cytokine network".
- the object of the present invention was thus to provide a method which allows a simple and targeted analysis of the expression of GBP-1. These procedures should provide information about the stage and progression of an inflammatory response in an individual or in an in vitro model without the need for elaborate analysis and quantitation of many different inflammatory factors of the so-called cytokine network.
- fragment of GBP-1 describes fragments of the protein having the biological activity of GBP-1 as described in the prior art as well as in this application.
- the Bagriff fragments of the protein which are formed by cleavage, eg enzymatic cleavage, and are indicative of inflammatory diseases.
- body fluids in connection with the invention encompasses all types of body fluids, possibly diluted or concentrated. Examples are blood / serum, plasma, amniotic fluid, cerebrospinal fluid, cerebrospinal fluid, cerebrospinal fluid, sputum, pharynx and pharyngeal secretions and other mucosal secretions, synovial fluid, ascites, tears, lymph fluid and urine.
- the term "specific binding" describes a specific interaction or interaction between a receptor and a ligand.
- a ligand is GBP-1 or fragments of this protein.
- the specific interaction or interaction can be characterized by a "key-lock" principle.
- the receptor and ligand have structures or motifs that specifically match one another, such as an antigenic determinant (epitope) that interacts with the antigen-binding site of an antibody. Accordingly, specific interaction is in contrast to a more universal, nonspecific interaction. It has been shown that GBP-1 is a marker protein for inflammatory reactions, which surprisingly is secreted by, among others, endothelial cells and monocytes.
- the process according to the invention additionally comprises one or more washing steps before or after each process step. These washing steps serve to minimize unspecific reactions (false positive or false negative detection) and may improve the sensitivity of the process.
- Suitable wash buffers and their composition are known in the art in principle; see eg Harlow and Lane. Preferred are physiological buffer solutions.
- the receptor is immobilized on a surface prior to exposure to GBP-1 or fragments of this protein.
- the receptor is immobilized on a surface after contacting GBP-1 or fragments of this protein.
- Receptors can be immobilized in a variety of ways. The corresponding method depends on various factors, such as the type of receptor or the material of the surface. Immobilization can be covalent or by adsorption. According to a preferred embodiment of the method according to the invention, the receptors are proteins, more preferably antibodies. Also preferred is the use of peptides or organic molecules as receptors. For the immobilization of receptors, which are proteins, methods are described in which they are immobilized directly on a surface by means of passive adsorption.
- a corresponding surface consists of a polymer plastic (eg polystyrene, polyvinyl, latex) and used for this purpose in the form of microtiter plates or multi-well plates, membranes or spherical 'beads' (cross-linked polymers in particle form) ( Lowman, Annu. Rev. Biophys. Biomol. Struct. 26 (1997), 401-24 ).
- a polymer plastic eg polystyrene, polyvinyl, latex
- membranes or spherical 'beads' cross-linked polymers in particle form
- the material of the surface is selected from a group consisting of sepharose, latex, glass, polystyrene, polyvinyl, nitrocellulose and silicon. More preferably, the surface in the method according to the invention is a membrane, a bead, a chip or a plate.
- beads are Sepharose beads or latex beads, to which optionally ligands are bound, which promote immobilization of the receptors to the surface.
- ligands are, for example, protein A or protein G, which promote binding of antibody to a surface via the Fc portion of the antibodies.
- the binding of the receptor to support material can also be achieved by a covalent chemical coupling reaction (eg hydrazide coupling).
- Example 3 describes a corresponding method.
- Another example of the immobilization of the receptors to the surface using ligands is the use of biotin and avidin, or streptavidin.
- chips are silicon plates to which a plurality of different or the same receptors can be immobilized in order. This allows the analysis of a variety of different parameters in a sample or the Analysis of a variety of different samples for one or more parameters, eg identification and / or quantitation of GBP-1 or fragments of this protein in different tissue samples, samples of body fluid or samples of cell culture.
- Examples of said plates are microtiter plates or multi-well plates. These preferably have 6, 12, 24, 48, 96, 128, 356, 1024 or more wells.
- Example 4 describes a method in which 96well plates are used.
- the detection of the specific binding in step (b) comprises a gel electrophoretic separation, optionally additionally a Western blot analysis (see Example 3).
- a gel electrophoretic separation optionally additionally a Western blot analysis (see Example 3).
- Corresponding methods are known to the person skilled in the art, inter alia. from Rehm, loc. cit. known.
- the sample is contacted with a second GBP-1 receptor that binds to an epitope of GBP-1 or a fragment of this protein accessible after binding of the first receptor to GBP-1 or a fragment of this protein.
- This preferred embodiment relates, for example, to methods which make use of the mechanistic principle of the sandwich ELISA.
- This principle is well known to those skilled in the art and is i.a. in Stryer, Biochemistry, Spektrum Akademischer Verlag, 1996. A corresponding method is also described in Example 4 attached.
- the second receptor for GBP-1 or fragments of this protein is labeled in a preferred embodiment of the method of the invention. Methods which allow labeling of a receptor have been described above and can also be used here.
- the label of the second receptor for GBP-1 or a fragment of this protein comprises a signaling system.
- a specific recognition of the label by a further, third receptor which comprises a signaling system.
- An example of such a signaling system is the above-described isotope tag, which signal is the delivery of radioactive radiation.
- a fluorescent label of the corresponding receptor in the label results in a signal-generating system according to the invention, the signal being the emission of a fluorescence signal after appropriate excitation of the dye.
- the signaling system comprises an enzyme which emits a signal.
- enzymes include alkaline phosphatases, peroxidases, ⁇ -galactosidase, glucoamylase, urease, and chloramphenicol acetyltransterase.
- alkaline phosphatases peroxidases
- ⁇ -galactosidase glucoamylase
- urease and chloramphenicol acetyltransterase.
- necessary substrates for the detection by means of enzymatic reactions are known to the person skilled in the art, inter alia from the instruction leaflets commercially available detection kits or from Rehm, loc. cit.
- detection kits often contain antibodies that recognize antibodies of certain species, eg anti-mouse, and to which signaling enzymes are coupled.
- corresponding antibodies represent an example of a third receptor recognizing a particular label of the second receptor, namely its Fc portion.
- the first and the second receptor and the third receptor are selected from the group consisting of antibodies or defined below thereof and aptamers.
- peptides usually refers to amino acid chains of up to 30 amino acids.
- polypeptides refers to peptides that usually comprise more than amino acid chains of 30 amino acids and includes proteins.
- low molecular weight substances or small molecules are meant molecules which are of lower molecular complexity than the macromolecules defined above. In the literature, the term “low molecular weight substances” is not used uniformly. In WO 89/03041 and WO 89/03042 For example, molecules with molecular weights up to 7000 g / mol are described as small molecules.
- Monoclonal antibodies and methods for their production are known in the art. These are based on a method first described by Köhler and Milstein (1975). This is among others in the laboratory manual by Harlow and Lane (Antibodies, A laboratory manual; Cold Spring Harbor Laboratory; (1988); Chapter 6 ) described in detail. By definition are also included bispecific antibodies, synthetic antibodies and fragments of these antibodies. These are the fragments Fab, Fv or scFv and chemically modified derivatives of these antibodies or antibody fragments. Aptamers are known to those skilled in the art in principle from the prior art.
- the method of the invention is an ELISA, EIA, or RIA.
- the method according to the invention is preferably carried out automatically. This is i.a. possible through the use of pipetting robots and for an automated evaluation of optimized operations.
- the invention relates to the use of body fluid or a sample of cell culture supernatant as defined above for the detection of GBP-1 or fragments of this protein, wherein the positive detection is indicative of the presence of an inflammatory disease.
- the other (preferred) embodiments of the use according to the invention correspond to those for the method described above.
- the 237 bp GBP-1 promoter fragment (pro237-GBP-1) was amplified by PCR amplification (PCR 2 Advantage Kit, Clontech) from the construct pro3757-GBP-1 with the oligonucleotides 5'-ATTTG AAGCTT CTGGTTGAG-3 '[insert a HindIII site (underlined)] or 5'-TGGCTTCTAGCACTTCTG-3 'respectively.
- the construct pro3757-GBP-1 contains 3757 bp of the 5'-regulatory sequence upstream of the ATG codon of the GSP-1 gene (gi: 4503938, NM_002053) in the vector pT-Adv (Clontech).
- the 237 bp fragment was ligated in antisense orientation with the vector pT-Adv, cut with HindIII and subcloned into the pGL3-Basic vector (Promega). All constructs were purified with the Endofree Maxi Kit (Qiagen) and sequenced for verification.
- Example 2 Establishment of a suitable cell line
- HEK 293 T cells human embryonic kidney epithelial cell line transformed with human adenovirus type 5 (Ad 5) DNA (ATCC CRL 1573), which are additionally transformed with SV40 T antigen) were plated with 3x10 5 cells / well (6-multiwell plate , Corning) seeded 24 hours before transfection. A total of 0.8 ⁇ g of plasmid was used per well of the 6-well plate, with the test plasmid pro237-GBP-1 in the ratio 1: 5 with the selection plasmid pBABE-Puro (P. Monini, Laboratory of Virology, Instituto Superiore di Santia, Rome, Italy) was used.
- the test plasmid pro237-GBP-1 contains the 237 bp promoter fragment coupled to the indicator gene firefly luciferase, the selection plasmid pBABE-Puro the resistance gene puromycin, and is subsequently selected.
- the transfection of the cells was carried out analogously to the manufacturer's instructions with Effectene (Qiagen) and, after 24 h, selection was started with 0.7 ⁇ g / ml puromycin (Sigma). On day 8-10, growth of single clones was observed, which were subsequently trypsinized with cloning rings and transferred to single wells of a 96-well plate (Falcon).
- the clones were further passaged and assayed for reporter gene activity in the luciferase assay.
- the clones were stimulated with inflammatory cytokines IFN- ⁇ , IL-1 ⁇ and TNF- ⁇ , and buffer for 5 h and harvested in 1x "passive lysis buffer" (Promega).
- the lysates were examined for firefly-luciferase activity and correspondingly stable clones were established.
- Freshly prepared cell lysates were pre-purified by incubation with 2 ⁇ l of non-GBP-1 rabbit preimmune serum and 25 ⁇ l of protein A / G agarose beads for at least 3 h at 4 ° C on a paddle plate. After pelletizing the beads, the supernatant was incubated with 25 ⁇ l of protein A / G agarose beads and 1 ⁇ l of rabbit polyclonal serum against GBP-1 overnight at 4 ° C on a shaking platform. The beads were washed four to five times in PBS. Subsequently, the beads were resuspended in 30 ⁇ l Laemmli sample buffer (2X) and boiled for 5 min.
- 2X Laemmli sample buffer
- the samples were separated on SDS-PAGE (10%) and analyzed in Western blot or autoradiography.
- 10 ml of culture medium were placed on ice, centrifuged at 1000 rpm for 5 min, filtered through a filter with a pore size of 45 ⁇ m and in some cases a pro-nase inhibitor cocktail (0.02%) pancreatic extract, 5 ⁇ g / ml pronase, 0.5 ⁇ g / ml thermolysin, 3 ⁇ g / ml chymotrypsin and 0.33 ⁇ m / ml papin).
- the prepurification was carried out by incubation with 10 ⁇ l of rabbit serum and 120 ⁇ l of protein A / G agarose beads for more than 3 h at 4 ° C on a shaking platform. After pelletizing the beads, the supernatant was incubated with 120 ⁇ l of protein A / G agarose beads and 6 ⁇ l of rabbit polyclonal serum against GBP-1 overnight at 4 ° C on a shaking platform. The beads were washed four to five times in PBS. Subsequently, the beads were resuspended in 60 ⁇ l PBS + 60 ⁇ l Laemmli sample buffer (2X) and boiled for 5 min. Typically, 15 ⁇ l of each sample was separated on SDS-PAGE (10%) and analyzed in a Western blot. An example of the result of detection of GBP-1 by immunoprecipitation from culture medium is in FIG. 4B shown.
- 96-well ELISA plates (Nunc-Immuno Plates) were coated with 100 ⁇ l / well anti-GBP-1 hybridoma supernatant (diluted 1: 5 with PBS) or with purified receptor in the concentration of 1-5 ⁇ g / ml (Incubation for 16 h at 4 ° C). The plates were washed with PBS-T and blocked with PBS-TB for at least 30 minutes at room temperature. The wells were aspirated and incubated as doublets for 2 h at room temperature with 100 ⁇ l of the standard (GBP-1-His diluted in cell culture medium containing 5% FBS), the same concentration of BSA as control or with 100 ⁇ l of a sample in appropriate dilution (diluted in PBS).
- the wells were washed four times with PBS-T and incubated with 100 ⁇ l of a polyclonal antibody to GBP-1 diluted 1: 500 in PBS-TB for 2 h at room temperature. Subsequently, the wells were washed four times with PBS-T and incubated with 100 ⁇ l of an alkaline phosphatase conjugated to an anti-rabbit antibody (Zymed, Berlin, Germany) diluted 1: 500 in PBS-TB for 1 h Room temperature incubated. Subsequently, the wells were washed four times with PBS-T and incubated with 100 ⁇ l of p-nitrophenyl phosphate (Zymed).
- the absorption was measured at 405 nm in a microplate reader. (BioRad).
- the concentration of GBP-1 in the sample was calculated using the standard curve.
- the method demonstrated a linearity of 0.1 to 100 ng / ml of GBP-1 / well.
- the variability of the results in different assays was between 2.3 and 6%.
- An example of the result of detection of GBP-1 in culture supernatant by ELISA is in FIG. 4A shown.
- the sensitivity of the ELISA was determined from a dilution series of GBP-1-His (a GBP-1 protein purified from bacteria and provided with 6 histidine residues at the carboxy-terminus for purification) in PBS.
- the sensitivity of the ELISA was defined as the lowest concentration of GBP-1-His for which the associated reading differed significantly, that is, by at least two standard deviations, from the reading used in the batch without GBP-1-His (plus two standard deviations ).
- the sensitivity of the ELISA described here was determined to be 12.3 ng / ml.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Cell Biology (AREA)
- Analytical Chemistry (AREA)
- Biotechnology (AREA)
- Pathology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft Verfahren zur Identifizierung und/oder Quantifizierung von GBP-1 oder von Fragmenten dieses Proteins im Kulturüberstand einer Gewebeprobe, einer Probe von Körperflüssigkeit oder einer Probe eines Zellkulturüberstandes.The present invention relates to methods of identifying and / or quantifying GBP-1 or fragments of this protein in the culture supernatant of a tissue sample, a sample of body fluid or a sample of cell culture supernatant.
Das Endothel ist ein Schlüsselorgan bei zahlreichen physiologischen und pathophysiologischen Prozessen wie Zell-gesteuerter Immunantwort, Menstruation, Wundheilung, Entzündung, Allergie, Herz-Kreislauferkrankung und Tumorwachstum. Die Pathofunktion des Endothels ist untrennbar mit der Aktivierung von Endothelzellen verbunden.The endothelium is a key organ in numerous physiological and pathophysiological processes such as cell-directed immune response, menstruation, wound healing, inflammation, allergy, cardiovascular disease and tumor growth. Endothelial pathophysiology is inextricably linked to the activation of endothelial cells.
Die Aktivierung des Endothels ist ein komplexer Vorgang, der durch eine Vielzahl verschiedener löslicher Faktoren gesteuert wird, die im Blut zirkulieren oder von benachbarten Zellen freigesetzt werden (
Die Vielzahl der beteiligten Faktoren legt nahe, dass mehrere Faktoren den selben Phänotyp steuern und zu wirkungsgleichen Gruppen zusammengefaßt werden können (
Derzeit gibt es keine geeigneten Methoden, mit denen bestimmt werden kann, wo und wann die verschiedenen Faktoren in entzündlichen Geweben auf die Endothelzellen wirken. Daher ist über die räumliche und zeitliche Verteilung der verschiedenen Aktivierungszustände von Endothelzellen im Rahmen entzündlicher Erkrankungen nur sehr wenig bekannt.Currently, there are no suitable methods for determining where and when the various factors in inflammatory tissues act on the endothelial cells. Therefore, little is known about the spatial and temporal distribution of the various activation states of endothelial cells in the context of inflammatory diseases.
Die Entwicklung von Entzündungsreaktionen und sich daraus ergebender entzündlicher Erkrankungen ist eine sehr komplexe Abfolge (Kaskade) von unterschiedlichen und synergistischen Wirkungen von inflammatorischen Faktoren wie Zytokinen, die eine Analyse eines definierten Stadiums einer Entzündungsreaktionen und/oder eine verlässliche Voraussage über deren weitere Entwicklung schwer möglich machen. Aufgrund dieser Komplexheit der ablaufenden Reaktionen spricht man in diesem Zusammenhang auch von sogenannten Zytokinnetzwerk.The development of inflammatory responses and consequent inflammatory diseases is a very complex sequence (cascade) of different and synergistic effects of inflammatory factors such as cytokines, which make it difficult to analyze a defined stage of inflammatory responses and / or to reliably predict their further development , Due to this complexity of the ongoing reactions one speaks in this context of so-called cytokine network.
Erste Arbeiten, einen molekularen Marker zu identifizieren, der eine Aktivierung von Endothelzellen durch die oben genannten inflammatorischen Zytokine im Gewebe anzeigt, führten zu vergleichenden Untersuchungen zur Genexpression in kultivierten Endothelzellen in Gegenwart unterschiedlicher Aktivierungsbedingungen. Mit diesem Ansatz konnte ein Gen isoliert werden, dessen Expression in Endothelzellen selektiv durch inflammatorische Zytokine induziert wird (
Um zu bestimmen, ob GBP-1 wie in kultivierten Zellen auch bei Gefäßendothelzellen in humanen Geweben eine Aktivierung durch inflammatorische Zytokine anzeigt, wurden immunhistochemische Untersuchungen zum Nachweis von GBP-1 mittels spezifischer monoklonaler Antikörper durchgeführt. Dazu wurden histologische Schnitte gesunder Haut und von Hauterkrankungen mit einer entzündlichen Komponente, wie zum Beispiel Psoriasis, Arzneimittelgegenreaktion und Kaposi-Sarkom untersucht (
Die Induktion der GBP-1-Expression durch inflammatorische Zytokine geht in Endothelzellen mit einer Hemmung der Zellproliferation einher. Daher wurde untersucht, ob GBP-1 die durch inflammatorische Zytokine induzierte Proliferationshemmung vermittelt. Dazu wurden Endothelzellen mit retroviralen Vektoren transduziert, welche die konstitutive Expression von GBP-1 (GBP-1-Vektor) oder einer antisense-GBP-1-RNA (AS-Vektor) bewirken (
Darüber hinaus hemmt GBP-1 die Expression von Matrix-Metalloproteinase-1 und damit einhergehend die Invasion von Endothelzellen (siehe Guenzi et al., 2003).Induction of inflammatory cytokine GBP-1 expression is associated with inhibition of cell proliferation in endothelial cells. Therefore, it was investigated whether GBP-1 mediates inflammatory cytokine-induced proliferation inhibition. For this endothelial cells were transduced with retroviral vectors, which cause the constitutive expression of GBP-1 (GBP-1 vector) or an antisense -GBP-1 RNA (AS vector) (
In addition, GBP-1 inhibits the expression of matrix metalloproteinase-1 and, concomitantly, the invasion of endothelial cells (see Guenzi et al., 2003).
Weiterführende Untersuchungen zur Struktur-/Funktionsbeziehung von GBP-1 zeigten, dass interessanterweise die Adhäsionsfähigkeit von Endothelzellen für Leukozyten, die ebenfalls durch inflammatorische Zytokine induziert wird, durch GBP-1 nicht beeinflusst wird (Guenzi et al. 2001). GBP-1 ist somit ein neuer, molekularer Marker für eine entzündliche Gefäßaktivierung, der selektiv die antiproliferative Wirkung inflammatorischer Zytokine auf Endothelzellen steuert.Further studies on the structural / functional relationship of GBP-1 showed that intriguingly, the adhesion of endothelial cells to leukocytes, which is also induced by inflammatory cytokines, is not affected by GBP-1 (Guenzi et al., 2001). Thus, GBP-1 is a novel molecular marker for inflammatory vascular activation that selectively controls the antiproliferative effect of inflammatory cytokines on endothelial cells.
Bislang konnte gezeigt werden, dass GBP-1 selektiv durch inflammatorische Zytokine induziert wird und dass dieser Prozeß mit einer anti-angiogenen Wirkung auf die betreffenden Zellen korreliert (Lubeseder-Martellato et al., 2002 und Guenzi et al., 2001). Während man sich die Induktion von GBP-1 über dessen antiproliferative Wirkung im Prinzip für medizinische Zwecke im Rahmen einer anti-angiogenen Therapie zu Nutze machen könnte, ist der Einsatz inflammatorischer Zytokine für derartige Zwecke aufgrund der pleiotropen und damit auch nachteiligen Effekte dieser Zytokine indiskutabel.So far it has been shown that GBP-1 is selectively induced by inflammatory cytokines and that this process correlates with an anti-angiogenic effect on the cells in question (Lubeseder-Martellato et al., 2002 and Guenzi et al., 2001). While the induction of GBP-1 over its antiproliferative activity could in principle be exploited for medical purposes in the context of anti-angiogenic therapy, the use of inflammatory cytokines for such purposes is indiscussable due to the pleiotropic and thus adverse effects of these cytokines.
Obwohl ein Bedarf an geeigneten molekularen Markern für inflammotorische Erkrankungen besteht, sind eine Vielzahl von Zytokinen und Faktoren, die an der Entstehung und Entwicklung von inflammatorischen Erkrankungen beteiligt sind, im Stand der Technik aufgrund Ihrer Instabilität als für diesen Zweck ungeeignet beschrieben. Darüber hinaus ist eine Quantifizierung einzelner inflammatorischer Zytokine oder Faktoren nicht ausreichend für einen eindeutigen Befund und erfordert deshalb die Bestimmung einer Vielzahl unterschiedlicher Zytokine und Faktoren, die nur in einem sogenannten "Zytokinnetzwerk" ihre jeweilige Wirkung zeigen.Although there is a need for suitable molecular markers for inflammatory diseases, a variety of cytokines and factors involved in the development and development of inflammatory diseases are described in the prior art as being unsuitable for this purpose because of their instability. In addition, a quantification of individual inflammatory cytokines or factors is not sufficient for a clear finding and therefore requires the determination of a variety of different cytokines and factors that show their respective effect only in a so-called "cytokine network".
Aufgabe der vorliegenden Erfindung war somit Verfahren bereitzustellen, welches eine einfache und gezielte Analyse der Expression von GBP-1 ermöglicht. Diese Verfahren sollte Aussagen über das Stadiums und Fortschreiten einer Entzündungsreaktion in einem Individuum oder in einem in vitro Modell ermöglicht ohne dass eine aufwendige Analyse und Quantifizierung von vielen verschiedenen inflammatorischen Faktoren des sogenannten Zytokinnetzwerks notwendig ist.The object of the present invention was thus to provide a method which allows a simple and targeted analysis of the expression of GBP-1. These procedures should provide information about the stage and progression of an inflammatory response in an individual or in an in vitro model without the need for elaborate analysis and quantitation of many different inflammatory factors of the so-called cytokine network.
Diese Aufgabe wird durch die Bereitstellung der in den Ansprüchen gekennzeichneten Ausführungsformen gelöst.This object is achieved by providing the embodiments characterized in the claims.
Folglich betrifft die vorliegende Erfindung ein in den Ansprüchen definiertes in vitro Verfahren zur Identifizierung und/oder Quantifizierung von GBP-1 oder von Fragmenten dieses Proteins im Kulturüberstand einer Gewebeprobe, einer Probe von Körperflüssigkeit oder einer Probe eines Zellkulturüberstandes, wobei das Verfahren die folgenden Schritte umfasst:
- (a) In Kontakt bringen der Probe mit einem ersten Rezeptor, der GBP-1 spezifisch bindet; und
- (b) Nachweis einer spezifischen Bindung des Rezeptors mit GBP-1 oder einem Fragmente dieses Proteins.
- (a) contacting the sample with a first receptor that specifically binds GBP-1; and
- (b) Detecting specific binding of the receptor with GBP-1 or a fragment of this protein.
Der Begriff Fragment von GBP-1 beschreibt Fragmente des Proteins, welche die biologische Aktivität von GBP-1 besitzen wie im Stand der Technik wie auch in dieser Anmeldung beschrieben. Erfindungsgemäß der Bagriff Fragmente des Proteins, die durch Spaltung, z.B. enzymatische Spaltung, entstehen und indikativ für inflammatorische Erkrankungen sind.
Der Begriff Körperflüssigkeiten umfasst im Zusammenhang mit der Erfindung alle Arten von Körperflüssigkeiten, ggf. verdünnt oder aufkonzentriert. Beispiele sind Blut/Serum, Plasma, Fruchtwasser, Hirn-Rückenmarkflüssigkeit, Liquor, Zerebrospinalflüssigkeit, Sputum, Rachen und Schlund-Sekrete und andere Schleimhautsekrete, Synovialflüssigkeit, Ascites, Tränenflüssigkeit, Lymphflüssigkeit und Urin.
Der Begriff der "spezifische Bindung" beschreibt erfindungsgemäß eine spezifische Interaktion oder Wechselwirkung zwischen einem Rezeptor und einem Liganden. Ein solche Ligand ist GBP-1 oder Fragmente dieses Proteins. Die spezifische Interaktion oder Wechselwirkung kann mit einem "Schlüssel-Schloß-Prinzip" charakterisiert werden. Der Rezeptor und der Ligand besitzen Strukturen oder Motive, die spezifisch zueinander passen, wie z.B. eine antigene Determinante (Epitop), die mit der Antigen-Bindungstelle eines Antikörpers wechselwirkt. Entsprechend steht spezifische Interaktion im Gegensatz zu einer universelleren, unspezifischen Wechselwirkung.
Es wurde gezeigt, dass GBP-1 ein Markerprotein für Entzündungsreaktionen ist, dass überraschenderweise u.a. von endothelialen Zellen und Monozyten sezemiert wird. Durch diesen überraschenden Befund wird es möglich GBP-1 im Kulturüberstand von Gewebeproben, Proben von Körperflüssigkeit oder Proben von Zellkulturüberständen zu analysieren und eine Aussage über das Stadium einer entzündlichen Erkrankung zu treffen. Sezerniertes GBP-1 kann mit dem erfindungsgemäßen Verfahren einfach und schnell nachgewiesen werden und dient somit als krankheitsassoziierter diagnostischer Parameter.
Der Nachweis einer entzündlichen Aktivierung von Endothelzellen und Monozyten in der Körperflüssigkeit von Patienten mit dem erfindungsgemäßen Verfahren ist auf Grundlage des überraschenden Befundes von besonderer Bedeutung bei Entzündungserkrankungen, bakteriellen und viralen Infektionserkrankungen (AIDS, Menigitis), Allergien, Transplantationsreaktionen, Herz-Kreislauf- und Tumorerkrankungen usw. Darüber hinaus sind diese von Bedeutung für die Bestimmung der Ansprechreaktion bei Patienten unter der Behandlung mit inflammatorischen Zytokinen (z.B. Interferon-α); siehe
Der Nachweis, bzw. die quantifizierte Menge von GBP-1 in einer Probe einer Körperflüssigkeit eines Patienten ermöglicht Rückschlüsse auf den Aktivierungsgrad von Endothelzellen und Monozyten und damit eine Aussage über das Krankheitsbild des Patienten.
Verfahren zur Gewinnung von den genannten Proben sind dem Fachmann bekannt. Optional umfasst das erfindungsgemäße Verfahren darüber hinaus einen oder mehrere Waschschritte vor oder nach jedem Verfahrensschritt. Diese Waschschritte dienen der Minimierung von unspezifischen Reaktionen (falsch positiver oder falsch negativer Nachweis) und können die Sensitivität des Verfahrens verbessern. Geeignete Waschpuffer und deren Zusammensetzung sind dem Fachmann im Prinzip bekannt; siehe z.B. Harlow und Lane. Bevorzugt sind physiologische Pufferlösungen.The term fragment of GBP-1 describes fragments of the protein having the biological activity of GBP-1 as described in the prior art as well as in this application. According to the invention, the Bagriff fragments of the protein which are formed by cleavage, eg enzymatic cleavage, and are indicative of inflammatory diseases.
The term body fluids in connection with the invention encompasses all types of body fluids, possibly diluted or concentrated. Examples are blood / serum, plasma, amniotic fluid, cerebrospinal fluid, cerebrospinal fluid, cerebrospinal fluid, sputum, pharynx and pharyngeal secretions and other mucosal secretions, synovial fluid, ascites, tears, lymph fluid and urine.
The term "specific binding" according to the invention describes a specific interaction or interaction between a receptor and a ligand. Such a ligand is GBP-1 or fragments of this protein. The specific interaction or interaction can be characterized by a "key-lock" principle. The receptor and ligand have structures or motifs that specifically match one another, such as an antigenic determinant (epitope) that interacts with the antigen-binding site of an antibody. Accordingly, specific interaction is in contrast to a more universal, nonspecific interaction.
It has been shown that GBP-1 is a marker protein for inflammatory reactions, which surprisingly is secreted by, among others, endothelial cells and monocytes. This surprising finding makes it possible to analyze GBP-1 in culture supernatant of tissue samples, samples of body fluid or samples of cell culture supernatants and to make a statement about the stage of an inflammatory disease. Secreted GBP-1 can be detected easily and quickly with the method according to the invention and thus serves as a disease-associated diagnostic parameter.
The detection of inflammatory activation of endothelial cells and monocytes in the body fluid of patients with the method according to the invention is on the basis of the surprising finding of particular importance in inflammatory diseases, bacterial and viral infectious diseases (AIDS, Menigitis), allergies, transplantation reactions, cardiovascular and tumor diseases etc. In addition, these are of importance for determining the response in patients receiving treatment with inflammatory cytokines (eg interferon-α); please refer
The detection, or the quantified amount of GBP-1 in a sample of a body fluid of a patient allows conclusions about the degree of activation of endothelial cells and monocytes and thus a statement about the clinical picture of the patient.
Methods for obtaining said samples are known to those skilled in the art. Optionally, the process according to the invention additionally comprises one or more washing steps before or after each process step. These washing steps serve to minimize unspecific reactions (false positive or false negative detection) and may improve the sensitivity of the process. Suitable wash buffers and their composition are known in the art in principle; see eg Harlow and Lane. Preferred are physiological buffer solutions.
Eine bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens umfasst darüber hinaus den Schritt (a') oder (a") vor dem in Kontakt bringen mit dem ersten Rezeptor:
- (a') Markieren der in der Probe enthaltenen Proteine; oder
- (a") Markieren des ersten Rezeptors.
Des weiteren ist es möglich Proteine physiologisch zu markieren, d.h. durch den metabolischen Einbau von markierten Molekülen. Zu diesem Zweck werden Zellen beispielsweise mit radioaktiv markierten Metaboliten inkubiert. Proteine, die während dieser Inkubationszeit aus der Biosynthese dieser Zellen hervorgehen und in welche die markierten Metaboliten eingebaut wurden, sind makiert. Dieses Verfahren ist z.B. geeignet, um von antikörperproduzierenden Zellen sezernierte Antikörper zu markieren.A preferred embodiment of the method of the invention further comprises step (a ') or (a ") prior to contacting the first receptor:
- (a ') labeling the proteins contained in the sample; or
- (a ") marking the first receptor.
Furthermore, it is possible to mark proteins physiologically, ie by the metabolic incorporation of labeled molecules. For this purpose, cells are incubated, for example, with radioactively labeled metabolites. Proteins resulting from the biosynthesis of these cells during this incubation period and into which the labeled metabolites have been incorporated are labeled. This method is useful, for example, to label antibodies secreted by antibody-producing cells.
In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird der Rezeptor vor dem in Kontakt bringen mit GBP-1 oder von Fragmenten dieses Proteins auf einer Oberfläche immobilisiert.
Entsprechend einer alternativen Ausführungsform des erfindungsgemäßen Verfahrens wird der Rezeptor nach dem in Kontakt bringen mit GBP-1 oder von Fragmenten dieses Proteins auf einer Oberfläche immobilisiert.In another preferred embodiment of the method of the invention, the receptor is immobilized on a surface prior to exposure to GBP-1 or fragments of this protein.
According to an alternative embodiment of the method according to the invention, the receptor is immobilized on a surface after contacting GBP-1 or fragments of this protein.
Rezeptoren können auf vielfältige Weise immobilisiert werden. Das entsprechende Verfahren hängt von verschiedenen Faktoren ab, wie z.B. von der Art des Rezeptors oder dem Material der Oberfläche. Eine Immobilisierung kann kovalent oder durch Adsorption erfolgen. Entsprechend einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens sind die Rezeptoren Proteine, besonders bevorzugt Antikörper. Ebenso bevorzugt ist auch die Verwendung von Peptiden oder organischen Molekülen als Rezeptoren.
Für die Immobilisierung von Rezeptoren, die Proteine sind, werden Verfahren beschrieben, bei welchen diese direkt auf einer Oberfläche mittels passiver Adsorption immobilisiert werden. Üblicherweise besteht eine entsprechende Oberfläche aus einem polymeren Kunststoff (z.B. Polystyrol, Polyvinyl, Latex) und z.B. in Form von Mikrotiterplatten oder Multi-well-Platten, Membranen oder sphärischen 'Beads' (quervernetzten Polymeren in Partikelform) für diesen Zweck verwendet (
For the immobilization of receptors, which are proteins, methods are described in which they are immobilized directly on a surface by means of passive adsorption. Usually, a corresponding surface consists of a polymer plastic (eg polystyrene, polyvinyl, latex) and used for this purpose in the form of microtiter plates or multi-well plates, membranes or spherical 'beads' (cross-linked polymers in particle form) (
In einer weiter bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist das Material der Oberfläche ausgewählt aus einer Gruppe bestehend aus Sepharose, Latex, Glass, Polystyrol, Polyvinyl, Nitrocellulose und Silicium.
Weiter bevorzugt ist die Oberfläche in dem erfindungsgemäßen Verfahrens eine Membran, ein Kügelchen, ein Chip oder eine Platte.
Beispiele für Kügelchen sind Sepharose-beads oder Latex-beads, an die optional Liganden gebunden sind, die eine Immobilisierung der Rezeptoren an die Oberfläche begünstigen. Solche Liganden sind beispielsweise Protein-A oder Protein-G, die eine Bindung von Antikörper an eine Oberfläche über den Fc-Teil der Antikörper begünstigen. Die Bindung des Rezeptors an Trägermaterial kann auch durch eine kovalente chemische Kopplungsreaktion (z.B. Hydrazid-Kopplung) erreicht werden. Beispiel 3 beschreibt ein entsprechendes Verfahren. Ein anderes Beispiel für die Immobilisierung der Rezeptoren an die Oberfläche unter Verwendung von Liganden ist die Verwendung von Biotin und Avidin, bzw. Streptavidin.
Beispiele für Chips sind Siliziumplatten, auf die eine Vielzahl von verschiedenen oder gleichen Rezeptoren geordnet imobilisiert werden kann. Dies ermöglicht die Analyse einer Vielzahl von unterschiedlichen Parametern in einer Probe oder die Analyse einer Vielzahl von unterschiedlichen Proben auf einen oder mehrere Parameter hin, z.B. Identifizierung und/oder Quantifizierung von GBP-1 oder von Fragmenten dieses Proteins in unterschiedlichen Gewebeproben, Proben von Körperflüssigkeit oder Proben von Zellkulturüberstanden.
Beispiele für die genannten Platten sind Mikrotiterplatten oder Multi-well-Platten. Diese besitzen vorzugsweise 6, 12, 24, 48, 96, 128, 356, 1024 oder mehr Vertiefungen. In Beispiel 4 ist ein Verfahren beschrieben, in dem 96well-Platten verwendet werden.In a further preferred embodiment of the method according to the invention, the material of the surface is selected from a group consisting of sepharose, latex, glass, polystyrene, polyvinyl, nitrocellulose and silicon.
More preferably, the surface in the method according to the invention is a membrane, a bead, a chip or a plate.
Examples of beads are Sepharose beads or latex beads, to which optionally ligands are bound, which promote immobilization of the receptors to the surface. Such ligands are, for example, protein A or protein G, which promote binding of antibody to a surface via the Fc portion of the antibodies. The binding of the receptor to support material can also be achieved by a covalent chemical coupling reaction (eg hydrazide coupling). Example 3 describes a corresponding method. Another example of the immobilization of the receptors to the surface using ligands is the use of biotin and avidin, or streptavidin.
Examples of chips are silicon plates to which a plurality of different or the same receptors can be imobilized in order. This allows the analysis of a variety of different parameters in a sample or the Analysis of a variety of different samples for one or more parameters, eg identification and / or quantitation of GBP-1 or fragments of this protein in different tissue samples, samples of body fluid or samples of cell culture.
Examples of said plates are microtiter plates or multi-well plates. These preferably have 6, 12, 24, 48, 96, 128, 356, 1024 or more wells. Example 4 describes a method in which 96well plates are used.
Entsprechend einer weiter bevorzugten Ausführungsform des Verfahrens umfasst dieses darüber hinaus den Schritt (a"') vor dem Schritt des Nachweises einer spezifischen Bindung:
- (a"') präzzipitieren der Kügelchen mit den daran gebundenen Komplexen aus erstem Rezeptor und GBP-1 oder eines Fragmentes dieses Proteins Kügelchen können aus einer Probe z.B. gravimetrisch präzipitiert werden. Dies kann beispielsweise durch Zentrifugation beschleunigt werden. Entsprechende Verfahren sind dem Fachmann u.a. aus Rehm, Der Experimentator: Proteinbiochemie/Proteomics, Spektrum Akademischer Verlag, 2002 bekannt. Des weiteren wird eine entsprechende Präzipitation in
Beispiel 3 beschrieben.
- (a "') Precipitate the beads with the complexes bound from the first receptor and GBP-1 or a fragment of this protein Beads can be gravimetrically precipitated from a sample, for example, by centrifugation accelerated Rehm, The Experimenter: Protein Biochemistry / Proteomics, Spektrum Akademischer Verlag, 2002. Furthermore, a corresponding precipitation in Example 3 is described.
In einer weiter bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens umfasst der Nachweis der spezifischen Bindung in Schritt (b) eine gelelektrophoretische Auftrennung, optional darüber hinaus eine Western-Blot-Analyse (siehe Beispiel 3). Entsprechende Verfahren sind dem Fachmann u.a. aus Rehm, loc. cit. bekannt.In a further preferred embodiment of the method according to the invention, the detection of the specific binding in step (b) comprises a gel electrophoretic separation, optionally additionally a Western blot analysis (see Example 3). Corresponding methods are known to the person skilled in the art, inter alia. from Rehm, loc. cit. known.
In einer weiter bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird zum Nachweis einer spezifischen Bindung von GBP-1 oder eines Fragmentes dieses Proteins an den ersten Rezeptor in Schritt (a) die Probe mit einem zweiten Rezeptor für GBP-1 in Kontakt gebracht, der an ein Epitop von GBP-1 oder eines Fragmentes dieses Proteins bindet, das nach Bindung des ersten Rezeptors an GBP-1 oder eines Fragmentes dieses Proteins zugänglich ist.In a further preferred embodiment of the method of the invention, to detect specific binding of GBP-1 or a fragment of this protein to the first receptor in step (a), the sample is contacted with a second GBP-1 receptor that binds to an epitope of GBP-1 or a fragment of this protein accessible after binding of the first receptor to GBP-1 or a fragment of this protein.
Diese bevorzugt Ausführungsform betrifft beispielsweise Verfahren, die sich das mechanistische Prinzip des Sandwich-ELISA's zu Nutze machen. Dieses Prinzip ist dem Fachmann allgemein bekannt und wird u.a. in Stryer, Biochemie, Spektrum Akademischer Verlag, 1996 beschrieben. Ein entsprechendes Verfahren ist darüber hinaus im beigefügten Beispiel 4 beschrieben.This preferred embodiment relates, for example, to methods which make use of the mechanistic principle of the sandwich ELISA. This principle is well known to those skilled in the art and is i.a. in Stryer, Biochemistry, Spektrum Akademischer Verlag, 1996. A corresponding method is also described in Example 4 attached.
Weiter ist der zweite Rezeptor für GBP-1 oder Fragmente dieses Proteins in einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens markiert. Verfahren, die eine Markierung eines Rezeptors ermöglichen, wurden oben beschrieben und können auch hier eingesetzt werden.
Darüber hinaus ist bevorzugt, dass die Markierung des zweiten Rezeptors für GBP-1 oder eines Fragmentes dieses Proteins ein signalgebendes System umfasst. Ebenso bevorzugt ist eine spezifische Erkennung der Markierung durch einen weiteren, dritten Rezeptor, der ein signalgebendes System umfasst.
Ein Beispiele für ein solches signalgebendes System ist die oben beschriebene Isotopenmarkierung, wobei das Signal die Abgabe von radioaktiver Strahlung ist. Ebenso resultiert eine Fluoreszenzmarkierung des entsprechenden Rezeptors in der Markierung mit einem signalgebenden System im Sinne der Erfindung, wobei das Signal die Emission eines Fluoreszenzsignals nach entsprechender Anregung des Farbstoffes ist.
Weiter bevorzugt umfasst das signalgebende System erfindungsgemäß ein Enzym, das ein Signal abgibt. Beispiele für solche Enzyme umfassen alkalische Phosphatasen, Peroxidasen, β-Galaktosidase, Glucoamylase, Urease und Chloramphenikol-Azetyltransterase. Entsprechende Beispiele und der Einsatz notwendiger Substrate für den Nachweis mit Hilfe von enzymatischen Reaktionen sind dem Fachmann bekannt, u.a. aus den Beipackzetteln kommerzielle erhältlichen Nachweiskits oder aus Rehm, loc. cit. Solche kommerzielle erhältlichen Nachweiskits enthalten oft Antikörper, die Antikörper bestimmter Spezies erkennen, z.B. anti-Maus, und an die signalgebende Enzyme gekoppelt sind. Somit stellen entsprechende Antikörper ein Beispiel für einen dritten Rezeptor dar, die eine bestimmte Markierung des zweiten Rezeptors, nämlich dessen Fc-Teil erkennen.Further, the second receptor for GBP-1 or fragments of this protein is labeled in a preferred embodiment of the method of the invention. Methods which allow labeling of a receptor have been described above and can also be used here.
In addition, it is preferred that the label of the second receptor for GBP-1 or a fragment of this protein comprises a signaling system. Likewise preferred is a specific recognition of the label by a further, third receptor, which comprises a signaling system.
An example of such a signaling system is the above-described isotope tag, which signal is the delivery of radioactive radiation. Likewise, a fluorescent label of the corresponding receptor in the label results in a signal-generating system according to the invention, the signal being the emission of a fluorescence signal after appropriate excitation of the dye.
More preferably, the signaling system according to the invention comprises an enzyme which emits a signal. Examples of such enzymes include alkaline phosphatases, peroxidases, β-galactosidase, glucoamylase, urease, and chloramphenicol acetyltransterase. Corresponding examples and the use of necessary substrates for the detection by means of enzymatic reactions are known to the person skilled in the art, inter alia from the instruction leaflets commercially available detection kits or from Rehm, loc. cit. Such commercially available detection kits often contain antibodies that recognize antibodies of certain species, eg anti-mouse, and to which signaling enzymes are coupled. Thus, corresponding antibodies represent an example of a third receptor recognizing a particular label of the second receptor, namely its Fc portion.
Erfindungsgemäß ist der erste und der zweite Rezeptor und der dritte Rezeptor ausgewählt aus der Gruppe bestehend aus Antikörpern oder unten definierten davon und Aptameren.
Der Begriff Peptide bezeichnet üblicherweise Aminosäureketten mit bis zu 30 Aminosäuren. Der Begriff Polypeptide bezeichnet Peptide, die üblicherweise mehr als Aminosäureketten 30 Aminosäuren umfassen und schließt Proteine ein.
Unter dem Begriff "niedermolekulare Substanzen" oder kleine Moleküle werden Moleküle verstanden, die von geringerer molekularer Komplexität sind, als die oben definierten Makromoleküle. In der Literatur wird der Begriff "niedermolekulare Substanzen" nicht einheitlich verwendet. In
Der Begriff "Antikörper" umfasst erfindungsgemäß polyklonale Sera, wie auch monolonale Antikörper.
Monoklonale Antikörper und Verfahren zu deren Herstellung sind dem Fachmann bekannt. Diese basieren auf einer zuerst von Köhler und Milstein (1975) beschriebenen Methode. Diese ist u.a. in dem Laborhandbuch
Aptamere sind dem Fachmann dem Fachmann im Prinzip aus dem Stand der Technik bekannt.
Vorzugsweise ist das erfindungsgemäße Verfahren ein ELISA, EIA, oder RIA.According to the invention, the first and the second receptor and the third receptor are selected from the group consisting of antibodies or defined below thereof and aptamers.
The term peptides usually refers to amino acid chains of up to 30 amino acids. The term polypeptides refers to peptides that usually comprise more than amino acid chains of 30 amino acids and includes proteins.
By the term "low molecular weight substances" or small molecules are meant molecules which are of lower molecular complexity than the macromolecules defined above. In the literature, the term "low molecular weight substances" is not used uniformly. In
The term "antibody" according to the invention comprises polyclonal sera, as well as monoclonal antibodies.
Monoclonal antibodies and methods for their production are known in the art. These are based on a method first described by Köhler and Milstein (1975). This is among others in the laboratory manual
Aptamers are known to those skilled in the art in principle from the prior art.
Preferably, the method of the invention is an ELISA, EIA, or RIA.
Entsprechende Verfahren sind dem Fachmann im Prinzip bekannt aus Harlow und Lane, loc. cit. und Rehm, loc. cit.Corresponding methods are known in the art in principle from Harlow and Lane, loc. cit. and Rehm, loc. cit.
Das erfindungsgemäße Verfahren wird vorzugsweise automatisiert ausgeführt. Dies ist u.a. möglich durch die Verwendung von Pipetierrobotem und für eine automatisierte Auswertung optimierter Arbeitsgänge.The method according to the invention is preferably carried out automatically. This is i.a. possible through the use of pipetting robots and for an automated evaluation of optimized operations.
Ferner betrifft die Erfindung die Verwendung von Körperflüssigkeit oder einer Probe eines Zellkulturüberstandes, wie vorstehend definiert, zum Nachweis von GBP-1 oder von Fragmenten dieses Proteins, wobei der positive Nachweis indikativ ist für das Vorhandensein einer inflammatorischen Erkrankung.
Die weiteren (bevorzugten) Ausführungsformen der erfindungsgemäßen Verwendung entsprechen den für das oben beschriebene Verfahren.Further, the invention relates to the use of body fluid or a sample of cell culture supernatant as defined above for the detection of GBP-1 or fragments of this protein, wherein the positive detection is indicative of the presence of an inflammatory disease.
The other (preferred) embodiments of the use according to the invention correspond to those for the method described above.
Die Figuren zeigen:
-
Fig. 1 : Komplexität und Redundanz entzündlicher Endothelzellaktivierung.- (A) Die Aktivierung des Endothels bei entzündlichen Prozessen wird durch eine Vielzahl verschiedener löslicher Faktoren aus dem Blut und von benachbarten Zellen gesteuert. Dabei stehen im Rahmen der Neu- und Rückbildung von Gefäßen, sowie der Extravasation von Leukozyten die Steuerung von Zellproliferation, Apoptose, Invasion, Migration und Adhäsionsfähigkeit für Leukozyten im Vordergrund.
- (B) Die Vielzahl der beteiligten Faktoren legt nahe, dass mehrere Faktoren ein- und dieselbe Aktivierung beeinflussen und zu wirkungsgleichen Gruppen zusammengefasst werden können. Gegenwärtig kann nicht bestimmt werden, wann und wo die verschiedenen Faktoren auf die einzelnen Endothelzellen einwirken. Darüber hinaus sind die Beziehungen der meisten Aktivierungsarten zueinander weitgehend unbekannt. Es ist zu bestimmen, ob alle Aktivierungen gleichzeitig in einer Zelle auftreten können (I) oder aufgrund zellbiologischer Restriktionen zeitlich, beziehungsweise räumlich separiert sein müssen (II).
-
Fig.2 : Expression von GBP-1 in kultivierten Endothelzellen und in entzündlichen Erkrankungen der Haut.- (A) Western Blot-Analyse der GBP-1 Expression in Endothelzellen, die mit den aufgeführten Faktoren für 24 h stimuliert worden waren. Folgende Konzentrationen wurden eingesetzt: IFN-γ (100 U/ml), IL-1α (5 ng/ml), IL-1β (200 U/ml), TNF-α (300 U/ml), IL-4 (10 U/ml), IL-6 (50 U/ml), IL-10 (50 ng/ml), IL-18 (100 ng/ml), Oncostatin M (10 ng/ml), MCP-1 (50 ng/ml), PF4 (25 ng/ml), SDF-1α (200 ng/ml), bFGF (10 ng/ml), VEGF (10 ng/ml), Ang-2 (800 ng/ml) und PDGF B/B (100 ng/ml). Der gleichzeitige Nachweis des Zytoskelettproteins Aktin zeigt, dass gleiche Proteinmengen aufgetragen wurden.
- (B) Induktion der GBP-1-Expression in vaskulären Endothelzellen bei Hauterkrankungen mit einer inflammatorischen Komponente. Indirekte Immunfluoreszenzfärbung von GBP-1 (grün) und dem Endothelzell-assoziierten Antigen CD31 (rot) in Gewebeschnitten von gesunder Haut, Kaposi-Sarkom, entzündlicher Arzneimittelgegenreaktion der Haut und Psoriasis. Die Überlagerung der Bilder zeigt eine Ko-Expression (gelb) von GBP-1 und CD31 (weiße Pfeile). (Modifiziert nach (Lubeseder-Martellato, Guenzi et al. 2002))
-
Fig.3 : GBP-1 vermittelt die antiproliferative Wirkung inflammatorischer Zytokine in Endothelzellen.- (A) Schematische Darstellung des retroviralen Expressionsvektors pBabePuro (Kontrollvektor, K-Vektor) in den die cDNA von GBP-1 in beiden Orientierungen für die konstitutive Expression von GBP-1 (GBP-1-Vektor) und für die Expression einer GBP-1-antisense-RNA (AS-Vektor) eingesetzt wurde.
- (B) GBP-1-Expression in K-, GBP-1-, und AS-Vektor transduzierten Endothelzellen, die entweder unbehandelt waren oder über einen Zeitraum von 24 h mit 20 U/ml IL-1β stimuliert wurden. Der Nachweis der GBP-1-Expression erfolgte mittels WesternBlot-Analyse mit einem polyklonalen anti-GBP-1-Antikörper. Die gleichzeitige Färbung mit Aktin zeigt, dass gleiche Proteinmengen aufgetragen wurden.
- (C) Proliferationsexperimente mit K-Vektor- und GBP-1-Vektor-transduzierten Endothelzellen in Anwesenheit steigender Konzentrationen angiogener Wachstumsfaktoren (bFGF und VEGF in Kombination).
- (D) Proliferationsexperimente von K-Vektor- und AS-Vektor-transduzierten Endothelzellen in Anwesenheit angiogener Wachstumsfaktoren und aufsteigender Konzentrationen von IL-1β. (Modifiziert nach (Guenzi, Topolt et al. 2001))
-
Fig. 4 : Nachweis von GBP-1 Protein in Kulturmedium von IFN-γ stimulierten HUVEC durch ELISA und Immunopräzipitation
HUVEC wurden Stimuliert mit 100 U/ml IFN-γ (IFN-γ) oder unbehandelt gelassen (Medium). Nach 24 h Kultur wurde das Kulturmedium durch ELISA (A) oder Immunopräzipitation (B) analysiert.- (A) Eine Verdünnungsserie mit rekombiantem aufgereinigtem GBP-1 wurde als Standard verwendet (weiße Säulen). Die Menge von sekretiertem GBP-1 Protein wurde im ELISA bestimmt (graue Säulen). Die Absorption wurde bei 405 nm bestimmt.
- (B) Westernblot-Analyse von immunopräzipitierten menschlichem GBP-1 Protein mit monoklonalem anti GBP-1 Antikörper (Klon 1B1) aus dem selben Kulturüberstand wie in (A).
-
Fig. 5 : Messung von zirkulierendem GBP-1 im Plasma von IFN-α behandelten Patienten
Bei Melanom-Patienten, diefür 9 bzw. 28 Tage mit IFN-α behandelt wurden, wurde die Konzentration von zirkulierendem GBP-1 im Plasma mittels ELISA bestimmt. Dargestellt ist der Anstieg der GBP-1Konzetration von Tag 9 zum Tag 28 bei drei Pateinten. ELISA-Mikrotiterplatten wurden mit einem monoklonalen Ratten anti-GBP-1 Antikörper, Klon 1B1, für 16 h bei 4°C beschichtet. Anschließend wurden die Platten mit PBS-T (0,1% Tween 20 in PBS) und für 30 min wurden bei Raumtemperatur (RT) freie Bindungsstellen mit PBS-T/BSA 2 % (PBS-TB) abgesättigt. Nach dem absaugen des PBS-TB erfolgte Inkubation (2 h)mit je 100 µl verschiedener Plasma Proben (1:2) bei RT. Als Standard wurde gereinigtes GBP-1-His Protein, verdünnt in Zellkulturmedium (EMB-0,5% FCS) benutzt. Als Negativkontrolle diente BSA. Die Proben wurden 4x mit PBS-T gewaschen,je 100 µl polyklonaler Kaninchen anti-GBP-1 Antikörper (1:500) zugegeben und für 2 h bei RT inkubiert. Nach viermaligen Waschen mit PBS-T erfolgte eine Inkubation (1 h,RT)mit je 100 µl AP-konjugiertem anti-Kaninchen Antikörper (1:500 verdünnt in PBS-TB). Nach vier weiteren Waschschritten wurde der GBP-1 Protein/Antikörper-Komplexdurch Inkubation mit 100 µl p-Nitrophenyl Phosphat visualisiert. Die Absorption wurde bei 405 nm im Mikroplatten-Reader gemessen. Die Konzentrationsbestimmung erfolgte anhand einer Standardkurve für die steigende Konzentrationen von gereinigtem GBP-1-His verwendet wurden. Sie Linearität der Messung ist für einen 0,1Bereich von bis 100 ng/ml gegeben. -
Fig. 6 : Die Sekretion von GBP-1 Protein aus IFN-γ behandelt HUVEC ist nicht zunehmende Zellmembranpermeabilität oder Apoptose zurückzuführen
Färbung von HUVEC mit dem nicht membrangängigen Farbstoff ,,Dead-Red" (Molekular Probes).
HUVEC wurden über Nacht in 0,5 % FBS-haltigen EBM-Medium kultiviert und mit 100 U/ml Interferon-γ (IFN-γ, Roche) stimuliert. Kontrollzellen (Medium) wurden unbehandelt belassen. 24 h nach der Stimulierung wurden die Zellen mit Dead-Red Farbstoff angefärbt. Zellen, die eine veränderte Membranpermeabilität aufweisen (schwarze Balken), sind als Prozentsatz der Gesamtzahl (weiße Balken) angegeben. -
Fig. 7 . Der ELISA reagiert spezifisch mit GBP-1 und nicht mit den heterologen Proteinen BSA und eGFP- (A) Die Spezifität des GBP-1-ELISA wurde in mehreren Kontrollexperimenten bestimmt. Zunächst wurde mit dem ELISA eine Verdünnungsreihe von gereinigtem GBP-1-His (ein GBP-1-Protein, das aus Bakterien gereinigt wurde und zum Zwecke der Aufreinigung mit 6 Histidinresten am Carboxyterminus versehen ist) in PBS in den angegebenen Konzentrationen erzeugt und im ELISA gemessen. Hierbei wurde ein konzentrationsabhängiger Anstieg der Absorption bei 405 nm (A405) beobachtet (schwarze Balken). Wenn anstelle des anti-GBP-1-Kaninchenserums (wird als zweiter Antikörper zum Nachweis des gebundenen GBP-1 eingesetzt) ein Präimmunserum des Kaninchens verwendet wurde, wurden keine Signale erhalten (weiße Balken). Beim Zusatz aufsteigender Konzentrationen heterologer Proteine [BSA (graue Balken), His-eGFP (gestreifte Balken)] wurden mit dem GBP-1-spezifischen ELISA ebenfalls keine Signale beobachtet.
- (B) Der GBP-1-ELISA zeigt eine geringe Reaktivität mit dem GBP-1-homologen GBP-2.
Mit dem GBP-1-ELISA wurden Lösungen untersucht, die aufsteigende Mengen an GBP-1-His (schwarze Balken), His-GBP-1 (weiße Balken, ein GBP-1-Protein, das aus Bakterien gereinigt wurde und zum Zwecke der Aufreinigung mit 6 Histidinresten am Aminoterminus versehen ist) und His-GBP-2 [graue Balken, einem zu GBP-1 homologen Protein (Homologie auf Aminosäureebene 76 %, auf Nukleinsäureebene 82 %) mit 6 Histidinresten am Aminoterminus] enthielten. Der Vergleich der Steigungen der Messwerte für GBP-1-His (schwarze Balken), His-GBP-1 (weiße Balken) und His-GBP-2 (graue Balken) zeigte, dass die Reaktivität dieses ELISA mit GBP-2 im Vergleich zur Reaktivität mit GBP-1 verringert ist und das die Histidinreste am Amino- oder Carboxyterminus die Reaktivität von rekombinantem GBP-1 nicht beeinflussen.
Zusätzlich wurden immunchemische Blockierungsversuche durchgeführt, um die Spezifität der Bindung von gereinigtem GBP-1-His and die mit Ratten-anti-GBP-1-Antikörpern beschichtete ELISA-Platte zu bestimmen. Hierzu wurde GBP-1-His in verschiedenen Verdünnungen mit (schwarz-weiße Balken) oder ohne (schwarze Balken) Ratten-anti-GBP-1-Antikörper inkubiert und nachfolgend auf die Platte gegeben. In den Ansätzen, in denen GBP-1-His nicht mit Antikörpern vorinkubiert wurde, wurde eine konzentrationsabhängige Erhöhung der Signalstärke beobachtet (schwarze Balken). Wohingegen, durch Vorinkubation mit anti-GBP-1-Antikörpern (schwarz-weiße Balken) die Bindung von GBP-1 an die Plattenoberfläche blockiert werden konnte. In einem vergleichbar durchgeführten Ansatz konnte auch die Bindung von His-GBP-2 durch Vorinkubation mit dem Ratten-anti-GBP-1-Antikörper blockiert werden (grau-weiße Balken). -
Fig. 8 : Bestimmung des linearen Nachweisbereichs des ELISA- (A) Gepoolte Seren gesunder Personen wurden 1:2 (Quadrate), 1:4 (Kreise), 1:8 (Dreiecke) und 1:16 (Rauten) in PBS/2% BSA verdünnt. In die unterschiedlichen Verdünnungen wurden jeweils aufsteigende Konzentrationen von GBP-1-His zugegeben. Nachfolgend wurden alle Proben mit dem GBP-1-ELISA vermessen. Es zeigte sich, dass bei jeder der unterschiedlichen Serumverdünnungen die Nachweissignale (A405) mit der GBP-1-Konzentration zunahmen.
- (B)
Zwischen 0 und 200 ng/ml wurde bei den in (A) beschriebenen Ansatz eine lineare Zunahme des Signals beobachtet.
-
Fig.9 : Bei Patienten mit Entzündungserkrankungen sind erhöhte GBP-1 Konzentrationen im Serum nachweisbar
Die GBP-1 Konzentration wurde mittels ELISA in gesunden Kontrollpersonen (n = 20) und in Seren von Patienten mit verschiedenen Entzündungserkrankungen (n = 10) gemessen: Systemischer Lupus Erythematosus (SLE) (n = 5) und Arthritis (n = 5), diese Erkrankungen sind generalisierte Entzündungen, und in Patienten mit Erysipel (n=8), eine örtlich begrenzte Entzündung der Haut.
Die GBP-1 Serumkonzentrationen wurden bestimmt, wobei die Serum-Proben 1:2 verdünnt wurden. Die Konzentration von GBP-1 in den Proben wurde mit Hilfe einer Standardkurve berechnet. Da das ELISA-Verfahren auch GBP-2 erkennt und möglicherweise auch GBP-2 im Serum vorhanden ist, wurden die ermittelte Konzentrationen in relativen Einheiten angegeben.
Die GBP-1 Serumkonzentrationen waren deutlich erhöht bei den Patienten mit SLE (Median: 46,1 relative Einheiten) und Arthritis (Median: 58,2 relative Einheiten) aber nicht in Patienten mit Erysipel (Median: 8,6 relative Einheiten) im Vergleich zu den Kontrollpersonen (Median: 13,3 relative Einheiten). Die Unterschiede der GBP-1 Konzentrationen bei Patienten mit SLE und Arthritis und der GBP-1 Konzentration in gesunden Kontrollpersonen sind statistisch signifikant (Wilcoxon-Test p < 0,01 für SLE und Arthritis). -
Fig.10 : Bei Patienten mit bakterieller Meningitis sind erhöhte GBP-1-Konzentrationen im Liquor nachweisbar
In einem Blindversuch wurde mittels ELISA die GBP-1 Konzentration in 17 Liquor-Proben nachgewiesen (Figur 10 ). Nach Entblindung des Versuches zeigte sich, dass bei Patienten mit bakterieller (Pneumokokkus, Staphylokokkus aureus, Pseudomonas aeruginosa) Meningitis (n = 8) im Vergleich zu gesunden Kontrollpersonen (n = 9) signifikant erhöhte (Wilcoxon-Test p<0,03) GBP-1 Konzentrationen im Liquoren nachweisbar waren (Kontrollpersonen = 36,6 relative Einheiten und bakterieller Meningitis = 105,8 relative Einheiten). Die GBP-1 Liquorkonzentrationen wurden bestimmt wie beschrieben. Die Liquor-Proben wurden 1:2 in PBS verdünnt. Die Konzentration von GBP-1 in der Probe wurde mit Hilfe einer Standardkurve berechnet. Da das ELISA-Verfahren auch GBP-2 erkennt und möglicherweise auch GBP-2 im Liquor vorhanden ist, wurden die ermittelte Konzentrationen in relativen Einheiten angegeben.
Die GBP-1 Konzentration im Liquor gesundern Kontrollpersonen zeigten keinen statisch signifikanten Unterschied (Wilcoxon-Test p>0,05) zu den GBP-1 Konzentrationen im Serum. Dies weist darauf hin, dass GBP-1 nicht im Liquor gesunder Parsonen angereichert ist und dass der Anstieg der GBP-1 Konzentrationen bei Patienten mit Meningitis krankheitsbedingt ist.
-
Fig. 1 : Complexity and redundancy of inflammatory endothelial cell activation.- (A) The activation of the endothelium in inflammatory processes is controlled by a variety of different soluble factors from the blood and from neighboring cells. Within the framework of the new and regression of vessels, as well as the extravasation of leukocytes, the control of cell proliferation, apoptosis, invasion, migration and adhesiveness for leucocytes are in the foreground.
- (B) The multiplicity of factors involved suggests that several factors influence one and the same activation and can be grouped into equivalent groups. At present, it is not possible to determine when and where the various factors affect the individual endothelial cells. Moreover, the relationships of most types of activation are largely unknown. It must be determined whether all activations can occur simultaneously in one cell (I) or have to be temporally or spatially separated due to cell biological restrictions (II).
-
Fig.2 : Expression of GBP-1 in cultured endothelial cells and in inflammatory diseases of the skin.- (A) Western blot analysis of GBP-1 expression in endothelial cells stimulated with the listed factors for 24 h. The following concentrations were used: IFN-γ (100 U / ml), IL-1α (5 ng / ml), IL-1β (200 U / ml), TNF-α (300 U / ml), IL-4 (10 U / ml), IL-6 (50 U / ml), IL-10 (50 ng / ml), IL-18 (100 ng / ml), Oncostatin M (10 ng / ml), MCP-1 (50 ng / ml), PF4 (25 ng / ml), SDF-1α (200 ng / ml), bFGF (10 ng / ml), VEGF (10 ng / ml), Ang-2 (800 ng / ml) and PDGF B / B (100 ng / ml). Simultaneous detection of the cytoskeletal protein actin shows that equal amounts of protein were applied.
- (B) Induction of GBP-1 expression in vascular endothelial cells in skin diseases with an inflammatory component. Indirect immunofluorescence staining of GBP-1 (green) and the endothelial cell-associated antigen CD31 (red) in tissue sections of healthy skin, Kaposi's sarcoma, inflammatory drug-reaction of the skin and psoriasis. The overlay of the images shows a co-expression (yellow) of GBP-1 and CD31 (white arrows). (Modified by (Lubeseder-Martellato, Guenzi et al., 2002))
-
Figure 3 : GBP-1 mediates the antiproliferative effect of inflammatory cytokines in endothelial cells.- (A) Schematic representation of the retroviral expression vector pBabePuro (control vector, K vector) into which the GBP-1 cDNA in both orientations for the constitutive expression of GBP-1 (GBP-1 vector) and for the expression of a GBP-1 - antisense RNA (AS vector) was used.
- (B) GBP-1 expression in K, GBP-1, and AS vector-transduced endothelial cells either untreated or stimulated with 20 U / ml IL-1β over a period of 24 h. The detection of GBP-1 expression was by Western blot analysis with a polyclonal anti-GBP-1 antibody. The simultaneous staining with actin shows that equal amounts of protein were applied.
- (C) Proliferation experiments with K vector and GBP-1 vector transduced endothelial cells in the presence of increasing concentrations of angiogenic growth factors (bFGF and VEGF in combination).
- (D) Proliferation experiments of K vector and AS vector transduced endothelial cells in the presence of angiogenic growth factors and increasing concentrations of IL-1β. (Modified according to (Guenzi, Topolt et al., 2001))
-
Fig. 4 : Detection of GBP-1 protein in culture medium of IFN-γ stimulated HUVEC by ELISA and immunoprecipitation
HUVEC were stimulated with 100 U / ml IFN-γ (IFN-γ) or left untreated (medium). After 24 hours of culture, the culture medium was analyzed by ELISA (A) or immunoprecipitation (B).- (A) A serial dilution with recombined purified GBP-1 was used as standard (white columns). The amount of secreted GBP-1 protein was determined by ELISA (gray columns). The absorbance was determined at 405 nm.
- (B) Western blot analysis of immunoprecipitated human GBP-1 protein with monoclonal anti-GBP-1 antibody (clone 1B1) from the same culture supernatant as in (A).
-
Fig. 5 : Measurement of circulating GBP-1 in the plasma of IFN-α treated patients
In melanoma patients treated with IFN-α for 9 and 28 days, respectively, the concentration of circulating GBP-1 in the plasma was determined by ELISA. Shown is the increase in the GBP-1 concentration fromday 9 to day 28 with three godfathers. ELISA microtiter plates were coated with a monoclonal rat anti-GBP-1 antibody, clone 1B1, for 16 h at 4 ° C. Subsequently, the plates were saturated with PBS-T (0.1% Tween 20 in PBS) and for 30 min at room temperature (RT) free binding sites were saturated with PBS-T /BSA 2% (PBS-TB). After aspirating the PBS-TB, incubation was carried out (2 h) with 100 μl of different plasma samples (1: 2) at RT. As a standard, purified GBP-1-His protein diluted in cell culture medium (EMB-0.5% FCS) was used. The negative control was BSA. The samples were washed 4x with PBS-T, 100 μl polyclonal rabbit anti-GBP-1 antibody (1: 500) added and incubated for 2 h at RT. After washing four times with PBS-T, incubation was carried out (1 h, RT) with 100 μl of AP-conjugated anti-rabbit antibody (diluted 1: 500 in PBS-TB). After four more washes, the GBP-1 protein / antibody complex was visualized by incubation with 100 μl of p-nitrophenyl phosphate. The absorbance was measured at 405 nm in the microplate reader. Concentration was determined using a standard curve for which increasing concentrations of purified GBP-1-His were used. Linearity of measurement is given for a range of 0.1 to 100 ng / ml. -
Fig. 6 : The secretion of GBP-1 protein from IFN-γ treated HUVEC is attributed to non-increasing cell membrane permeability or apoptosis
Staining of HUVEC with the non-membrane-permeable dye "dead-red" (molecular probes).
HUVEC were cultured overnight in 0.5% FBS-containing EBM medium and stimulated with 100 U / ml interferon-γ (IFN-γ, Roche). Control cells (medium) were left untreated. 24 hours after stimulation, the cells were stained with Dead-Red dye. Cells exhibiting altered membrane permeability (black bars) are reported as a percentage of the total (white bars). -
Fig. 7 , The ELISA reacts specifically with GBP-1 and not with the heterologous proteins BSA and eGFP- (A) The specificity of the GBP-1 ELISA was determined in several control experiments. First, ELISA was used to generate a dilution series of purified GBP-1-His (a GBP-1 protein purified from bacteria and provided with 6 histidine residues at the carboxy-terminus for purification) in PBS in the concentrations indicated and in ELISA measured. A concentration-dependent increase in absorbance at 405 nm (A 405 ) was observed (black bars). When a rabbit preimmune serum was used instead of the anti-GBP-1 rabbit serum (used as the second antibody to detect the bound GBP-1) no signals were obtained (white bars). With the addition of ascending concentrations of heterologous proteins [BSA (gray bars), His-eGFP (striped bars)], no signals were also observed with the GBP-1 specific ELISA.
- (B) The GBP-1 ELISA shows low reactivity with the GBP-1 homologous GBP-2.
The GBP-1 ELISA was used to investigate solutions using ascending amounts of GBP-1-His (black bars), His-GBP-1 (white bars, a GBP-1 protein purified from bacteria and for the purpose of Purification with 6 histidine residues at the amino-terminus) and His-GBP-2 [gray bars, a GBP-1 homologous protein (homology at 76% amino acid level, 82% at nucleic acid level) with 6 histidine residues at the amino terminus]. Comparing the slopes of the measured values for GBP-1-His (black bars), His-GBP-1 (white bars) and His-GBP-2 (gray bars) showed that the reactivity of this ELISA with GBP-2 was lower than that of Reactivity with GBP-1 is reduced and that the histidine residues at the amino or carboxy-terminus do not affect the reactivity of recombinant GBP-1.
In addition, immunochemical blocking assays were performed to determine the specificity of binding of purified GBP-1-His and the rat anti-GBP-1 antibody coated ELISA plate. For this purpose, GBP-1-His was incubated at various dilutions with (black-white bars) or without (black bars) rat anti-GBP-1 antibodies and subsequently added to the plate. In the approaches in which GBP-1-His was not pre-incubated with antibodies, a concentration-dependent increase in signal strength was observed (black bars). Whereas, by pre-incubation with anti-GBP-1 antibodies (black and white bars), the binding of GBP-1 to the plate surface could be blocked. In a similar approach, the binding of His-GBP-2 could also be blocked by preincubation with the rat anti-GBP-1 antibody (gray-white bars). -
Fig. 8 : Determination of the linear detection range of the ELISA- (A) Pooled serums of healthy individuals were diluted 1: 2 (squares), 1: 4 (circles), 1: 8 (triangles), and 1:16 (diamonds) in PBS / 2% BSA. In each case, increasing concentrations of GBP-1-His were added to the different dilutions. Subsequently, all samples were measured with the GBP-1 ELISA. It was found that at each of the different serum dilutions, the detection signals (A405) increased with the GBP-1 concentration.
- (B) Between 0 and 200 ng / ml, a linear increase in signal was observed in the approach described in (A).
-
Figure 9 : Increased GBP-1 levels in serum are detectable in patients with inflammatory disease
The GBP-1 concentration was measured by ELISA in healthy controls (n = 20) and in sera from patients with various inflammatory diseases (n = 10): systemic lupus erythematosus (SLE) (n = 5) and arthritis (n = 5), These diseases are generalized inflammation, and in patients with erysipelas (n = 8), a localized inflammation of the skin.
The GBP-1 serum concentrations were determined with the serum samples diluted 1: 2. The concentration of GBP-1 in the samples was calculated using a standard curve. Since the ELISA method also recognizes GBP-2 and possibly also GBP-2 is present in the serum, the determined concentrations were expressed in relative units.
The GBP-1 serum concentrations were significantly increased in the patients with SLE (median: 46.1 relative units) and arthritis (median: 58.2 relative units) but not in patients with erysipelas (median: 8.6 relative units) in comparison to the controls (median: 13.3 relative units). The differences in GBP-1 concentrations in patients with SLE and arthritis and GBP-1 concentration in healthy controls are statistically significant (Wilcoxon test p <0.01 for SLE and arthritis). -
Figure 10 : Patients with bacterial meningitis have increased levels of GBP-1 in cerebrospinal fluid
In a blind test, the GBP-1 concentration in 17 CSF samples was detected by ELISA (FIG. 10 ). After unblinding the trial, it was shown that in patients with bacterial (pneumococcus, Staphylococcus aureus, Pseudomonas aeruginosa) meningitis (n = 8) significantly increased compared to healthy controls (n = 9) (Wilcoxon test p <0.03) GBP -1 concentrations in the CSF were detectable (controls = 36.6 relative units and bacterial meningitis = 105.8 relative units). The GBP-1 CSF concentrations were determined as described. The CSF samples were diluted 1: 2 in PBS. The concentration of GBP-1 in the sample was calculated using a standard curve. As the ELISA procedure also recognizes GBP-2 and possibly also GBP-2 is present in the CSF, the determined concentrations were expressed in relative units.
The GBP-1 concentration in cerebrospinal fluid controls showed no statistically significant difference (Wilcoxon test p> 0.05) to the GBP-1 serum concentrations. This indicates that GBP-1 is not enriched in the CSF of healthy parsons and that the increase in GBP-1 concentrations in patients with meningitis is due to disease.
Die Beispiele erläutern die Erfindung.The examples illustrate the invention.
Das 237 bp GBP-1 Promotorfragment (pro237-GBP-1) wurde mittels PCR-Amplifikation (PCR 2 Advantage Kit, Clontech) von dem Konstrukt pro3757-GBP-1 mit den Oligonukleotiden 5'-ATTTGAAGCTTCTGGTTGAG-3' [einfügen einer HindIII-Schnittstelle (unterstrichen)] bzw. 5'-TGGCTTCTAGCACTTCTG-3' generiert. Das Konstrukt pro3757-GBP-1 enthält 3757 bp der 5'-regulatorischen Sequenz aufwärts des ATG-Kodons des GSP-1 Gens (gi:4503938, NM_002053) im Vektor pT-Adv (Clontech). Das 237 bp Fragment wurde in Antisense-Orientierung mit dem Vektor pT-Adv ligiert, mit HindIII geschnitten und in den pGL3-Basic Vektor (Promega) subkloniert. Alle Konstrukte wurden mit dem Endofree Maxi Kit (Qiagen) aufgereinigt und zur Verifizierung sequenziert.The 237 bp GBP-1 promoter fragment (pro237-GBP-1) was amplified by PCR amplification (
HEK 293 T-Zellen (humane embryonische epitheliale Nierenzellinie mit humanen Adenovirus Typ 5 (Ad 5) DNA transformiert (ATCC CRL 1573), welche zusätzlich mit SV40 T Antigen transformiert sind) wurden mit 3x105 Zellen/Well (6-Multi-Well Platte, Corning) 24 h vor der Transfektion ausgesät. Pro Well der 6-Well Platte wurden gesamt 0,8 µg Plasmid verwendet, wobei das Testplasmid pro237-GBP-1 im Verhältnis 1:5 mit dem Selektionsplasmid pBABE-Puro (P. Monini, Laboratory of Virology, Instituto Superiore di Santiä, Rome, Italien) eingesetzt wurde. Das Testplasmid pro237-GBP-1 enthält das 237 bp Promotorfragment gekoppelt an das Indikatorgen firefly-Luziferase, das Selektionsplasmid pBABE-Puro das Resistenzgen Puromycin, worauf anschließend selektioniert wird. Die Transfektion der Zellen wurde analog Vorschrift des Herstellers mit Effectene (Qiagen) durchgeführt und nach 24 h die Selektion mit 0,7 µg/ml Puromycin (Sigma) begonnen. Bei Tag 8-10 konnte das Wachstum von Einzelklonen beobachtet werden, die anschließend mit Klonierringen trypsiniert und in Einzelwells einer 96-well Platte (Falcon) überführt wurden. Bei entsprechender Konfluenz wurden die Klone weiter passagiert und auf ihre Reportergen-aktivität im Luziferaseassay untersucht. Die Klone wurden mit inflammatorischen Zytokinen IFN-γ, IL-1β und TNF-α, sowie Buffer für 5 h stimuliert und in 1x "passive lysis buffer" (Promega) abgeerntet. Die Lysate wurden auf firefly-Luziferase-Aktivität untersucht und entsprechend stabile Klone etabliert.HEK 293 T cells (human embryonic kidney epithelial cell line transformed with human adenovirus type 5 (Ad 5) DNA (ATCC CRL 1573), which are additionally transformed with SV40 T antigen) were plated with 3x10 5 cells / well (6-multiwell plate , Corning) seeded 24 hours before transfection. A total of 0.8 μg of plasmid was used per well of the 6-well plate, with the test plasmid pro237-GBP-1 in the ratio 1: 5 with the selection plasmid pBABE-Puro (P. Monini, Laboratory of Virology, Instituto Superiore di Santia, Rome, Italy) was used. The test plasmid pro237-GBP-1 contains the 237 bp promoter fragment coupled to the indicator gene firefly luciferase, the selection plasmid pBABE-Puro the resistance gene puromycin, and is subsequently selected. The transfection of the cells was carried out analogously to the manufacturer's instructions with Effectene (Qiagen) and, after 24 h, selection was started with 0.7 μg / ml puromycin (Sigma). On day 8-10, growth of single clones was observed, which were subsequently trypsinized with cloning rings and transferred to single wells of a 96-well plate (Falcon). At appropriate confluence, the clones were further passaged and assayed for reporter gene activity in the luciferase assay. The clones were stimulated with inflammatory cytokines IFN-γ, IL-1β and TNF-α, and buffer for 5 h and harvested in 1x "passive lysis buffer" (Promega). The lysates were examined for firefly-luciferase activity and correspondingly stable clones were established.
Frisch hergestellte Zelllysate wurden vorgereinigt durch Inkubation mit 2 µl nicht mit GBP-1 reagierendem Präimmunserum von Kaninchen und 25 µl Protein A/G Agarosebeads für mindestens 3 h bei 4°C auf einer Schüttelplättform. Nach dem Pelletieren der Beads wurde der Überstand mit 25 µl Protein A/G Agarosebeads und 1 µl von polyklonalem Kaninchenserum gegen GBP-1 über Nacht bei 4°C auf einer Schüttelplattform inkubiert. Die Beads wurden vier bis fünf mal in PBS gewaschen. Anschließend wurden die Beads in 30 µl Laemmli-Probenpuffer (2X) resuspendiert und für 5 min gekocht. Die Proben wurden in einer SDS-PAGE (10%) aufgetrennt und in einem Westernblot oder in einer Autoradiographie analysiert. Für die Immunopräzipitation von GBP-1 oder MMP-1 aus Zellkulturüberständen wurden 10 ml Kulturmedium auf Eis gestellt, 5 min zentrifugiert bei 1000 rpm, filtriert durch einen Filter mit einer Porengröße von 45 µm und in einigen Fällen ein Proeinaseninhibitor-Cocktail (0,02 mg/ml Pankreasextrakt, 5 µg/ml Pronase, 0,5 µg/ml Thermolysin, 3 µg/ml Chymotrypsin und 0,33 jm/ml Papin) zugegeben. Die Vorreinigung wurde ausgeführt durch Inkubation mit 10 µl Kaninchenserum und 120 µl Protein A/G Agarosebeads für mehr als 3 h bei 4°C auf einer Schüttelplattform. Nach dem Pelletieren der Beads wurde der Überstand mit 120 µl Protein A/G Agarosebeads und 6 µl von polyklonalem Kaninchenserum gegen GBP-1 über Nacht bei 4°C auf einer Schüttelplattform inkubiert. Die Beads wurden vier bis fünf mal in PBS gewaschen. Anschließend wurden die Beads in 60 µl PBS + 60 µl Laemmli-Probenpuffer (2X) resuspendiert und für 5 min gekocht. Üblicherweise wurden 15 µl jeder Probe in einer SDS-PAGE (10%) aufgetrennt und in einem Westernblot analysiert.
Ein Beispiel für das Ergebnis eines Nachweises von GBP-1 durch Immunopräzipitation aus Kulturmedium ist in
An example of the result of detection of GBP-1 by immunoprecipitation from culture medium is in
Für den entwickelten GBP-1 ELISA wurden folgende Puffer verwendet:
0, 1 % Tween 20 (PBS-T) und PBS enthaltend 0, 1PBS enthaltend % Tween 20 und 2% BSA (PBS-TB).
- PBS containing 0.1% Tween 20 (PBS-T) and PBS containing 0.1
20 and 2% BSA (PBS-TB).% Tween
96-well-ELISA-Platen (Nunc-Immuno Plates) wurden beschichtet mit 100 µl/well anti-GBP-1 Hybridomaüberstand (im Verhältnis 1:5 mit PBS verdünnt) oder mit gereinigtem Rezeptor in der Konzentration von 1-5 µg/ml (Inkubation für 16 h bei 4°C). Die Platten wurden mit PBS-T gewaschen und geblockt mit PBS-TB für mindestens 30 min bei Raumtemperatur. Die wells wurden abgesaugt und als Dubletten für 2 h bei Raumtemperatur inkubiert mit 100 µl des Standards (GBP-1-His, verdünnt in Zellkulturmedium enthaltend 5% FBS), der gleichen Konzentration von BSA als Kontrolle oder mit 100 µl einer Probe in geeigneter Verdünnung (verdünnt in PBS). Die wells wurden vier mal mit PBS-T gewaschen und mit 100 µl eines polyklonalen Antikörpers gegen GBP-1, verdünnt in 1:500 in PBS-TB für 2 h bei Raumtemperatur inkubiert. Anschließend wurden die wells wurden vier mal mit PBS-T gewaschen und mit 100 µl einer alkalinen Phosphatase, die an einen anti-Kaninchen Antikörper konjugiert ist (Zymed, Berlin, Germany), verdünnt 1:500 in PBS-TB, für 1 h bei Raumtemperatur inkubiert. Anschließend wurden die wells wurden vier mal mit PBS-T gewaschen und mit 100 µl von p-Nitrophenyl Phosphat (Zymed) inkubiert. Die Absorption wurde bei 405 nm in einem "microplate reader" (BioRad) bestimmt. Die Konzentration von GBP-1 in der Probe wurde mit Hilfe der Standardkurve berechnet. Das Verfahren zeigte eine Linearität von 0,1 bis 100 ng/ml von GBP-1/well. Die Variabilität der Ergebnisse in unterschiedlichen Assays lag zwischen 2,3 und 6%.
Ein Beispiel für das Ergebnis eines Nachweises von GBP-1 in Kulturüberstand durch ELISA ist in
An example of the result of detection of GBP-1 in culture supernatant by ELISA is in
Die Sensitivität des ELISAs wurde anhand einer Verdünnungsreihe von GBP-1-His (ein GBP-1-Protein, das aus Bakterien gereinigt wurde und zum Zwecke der Aufreinigung mit 6 Histidinresten am Carboxyterminus versehen ist) in PBS bestimmt.
Die Sensitivität des ELISA wurde festgelegt als die niedrigste Konzentration an GBP-1-His, bei der der zugehörige Messwert sich signifikant, das heißt um mindestens zwei Standardabweichungen, von dem Messwert unterschied, der beim Ansatz ohne GBP-1-His (plus zwei Standardabweichungen) erhalten wurde. Hierbei wurde die Sensitivität des hier beschriebenen ELISA mit 12,3 ng/ml bestimmt.The sensitivity of the ELISA was determined from a dilution series of GBP-1-His (a GBP-1 protein purified from bacteria and provided with 6 histidine residues at the carboxy-terminus for purification) in PBS.
The sensitivity of the ELISA was defined as the lowest concentration of GBP-1-His for which the associated reading differed significantly, that is, by at least two standard deviations, from the reading used in the batch without GBP-1-His (plus two standard deviations ). The sensitivity of the ELISA described here was determined to be 12.3 ng / ml.
Die Reproduzierbarkeit der Ergebnisse innerhalb eines Versuchs wurde durch dreifach Messungen bestimmt. Dabei wurde die Variabilität auf folgende Weise berechnet:
Es wurden durch Zugabe von GBP-1-His in Serum (1:2 in PBS verdünnt) eines gesunden Probanden drei Testlösungen mit unterschiedlichen GBP-1-His Konzentrationen (400 ng/ml, 180 ng/ml, 40 ng/ml) erzeugt. Mit jeder Lösung wurde die Intra-Assay-Variabilität bestimmt:
- GBP-1-His 400 ng/ml; Intra-assay Variabilität = 2,7 %
- GBP-1-His 180 ng/ml; Intra-assay Variabilität = 2,8 %
- GBP-1-His 40 ng/ml; Intra-assay Variabilität = 2,0 %
- GBP-1-His 400 ng / ml; Intra-assay variability = 2.7%
- GBP-1-His 180 ng / ml; Intra-assay variability = 2.8%
- GBP-1-His 40 ng / ml; Intra-assay variability = 2.0%
Zur Bestimmung der Inter-Assay-Variabilität wurde die Reproduzierbarkeit des ELISA in verschiedenen Versuchen bestimmt. Hierzu wurde jede der oben beschriebenen Lösungen sechsmal gemessen. Die inter-Assay-Variabilität wurde wie oben beschrieben berechnet.
GBP-1-His 400 ng/ml; Inter-assay Variabilität = 4,4 %
GBP-1-His 180 ng/ml; Inter-assay Variabilität = 2,8%
GBP-1-His 40 ng/ml; Inter-assay Variabilität = 3,0%To determine the inter-assay variability, the reproducibility of the ELISA was determined in various experiments. For this purpose, each of the solutions described above was measured six times. The inter-assay variability was calculated as described above.
GBP-1-His 400 ng / ml; Inter-assay variability = 4.4%
GBP-1-His 180 ng / ml; Inter-assay variability = 2.8%
GBP-1-His 40 ng / ml; Inter-assay variability = 3.0%
-
Carmeliet. and Jain: Nature 407(6801): 249-57 (2000 Carmeliet. and Jain: Nature 407 (6801): 249-57 (2000 -
Folkman: Nat Med 1(1): 27-31 (1995 Folkman: Nat Med 1 (1): 27-31 (1995 -
Guenzi, Töpolt, Cornali, Lubeseder-Martellato, Jörg, Matzen, Zietz, Kremmer, Nappi, Schwemmle, Hohenadl, Barillari, Tschachler, Monini, Ensoli, and Stürzl: (2001) EMBO J 20(20): 5568-77 Guenzi, Topolt, Cornali, Lubeseder-Martellato, Jorg, Matzen, Zietz, Kremmer, Nappi, Schwemmle, Hohenadl, Barillari, Tschachler, Monini, Ensoli, and Stürzl: (2001) EMBO J 20 (20): 5568-77 -
Guenzi E, Töpolt K, Lubeseder-Martellato C, Jörg A, Naschberger E, Benelli R, Albini A, Stürzl M: (2003) The guanylate binding protein-1 GTPase controls the invasive and angiogenic capability of endothelial cells through inhibition of MMP-1 expression. EMBO J. 22(15):3772-82Guenzi E, Töpolt K, Lubeseder-Martellato C, Jörg A, Naschberger E, Benelli R, Albini A, Stürzl M: (2003) The guanylate binding protein-1 GTPase controls the invasive and angiogenic capability of endothelial cells through inhibition of MMP 1 expression. EMBO J. 22 (15): 3772-82 -
Harlow und Lane, "Antibodies, a laboratory manual", CSH Press 1988, Cold Spring HarborHarlow and Lane, "Antibodies, a laboratory manual", CSH Press, 1988, Cold Spring Harbor -
Töpolt, Guenzi, Lubeseder-Martellato, Jörg, Naschberger, Stürzl: Proceedings of the 22nd Meeting of the European Society of Microcirculation (2002 Töpolt, Guenzi, Lubeseder-Martellato, Jörg, Naschberger, Stürzl: Proceedings of the 22nd Meeting of the European Society of Microcirculation (2002 -
Lubeseder-Martellato, Guenzi, Jörg, Töpolt, Naschberger, Kremmer, Zietz, Tschachler, Hutzler, Schwemmle, Matzen, Grimm, Ensoli and Stürzl: Am J Pathol 161(5): 1749-59 (2002 Lubeseder-Martellato, Guenzi, Joerg, Topolt, Naschberger, Kremmer, Zietz, Tschachler, Hutzler, Schwemmle, Matzen, Grimm, Ensoli and Stürzl: Am J Pathol 161 (5): 1749-59 (2002 -
Prakash, Praefcke, Renault, Wittinghofer and Herrmann: Nature 403(6769): 567-71 (2000 Prakash, Praefcke, Renault, Wittinghofer and Herrmann: Nature 403 (6769): 567-71 (2000
Claims (14)
- In vitro method for identification and/or quantification of guanylate binding protein-1 (GBP-1) or of fragments of this protein in the culture supernatant of a tissue sample, a sample of a body fluid or a sample of a cell culture supernatant, wherein the method comprises the following steps:(a) contacting the sample with a first receptor which specifically binds GBP-1, wherein the first receptor is an antibody, a Fab, Fv or scFv fragment of an antibody or an aptamer, and(b) detecting a specific binding of the receptor with GBP-1 or the fragment of this protein, wherein the fragment results from cleavage and is indicative of inflammatory diseases.
- The method according to claim 1, furthermore comprising step (a') or (a") prior to contacting with the first receptor:(a') labelling the proteins contained in the sample; or(a") labelling the first receptor.
- The method according to claim 1 or 2, wherein the receptor is immobilised on a surface prior to contacting with GBP-1 or fragments of this protein.
- The method according to claim 1 or 2, wherein the receptor is immobilised on a surface after contacting with GBP-1 or fragments of this protein.
- The method according to any one of claims 3 or 4, wherein the material of the surface is selected from a group consisting of Sepharose, latex, glass, polystyrene, polyvinyl, nitrocellulose and silicon.
- The method according to any one of claims 3 to 5, wherein the surface is a membrane, a bead, a chip or a plate.
- The method according to claim 6, furthermore comprising the step (a"') prior to the step of detecting a specific binding:(a"') precipitating the beads with the complexes which are bound thereto of the first receptor and GBP-1 or a fragment of this protein.
- The method according to claim 7, wherein the detection of the specific binding in step (b) comprises a gel electrophoretic separation, optionally, furthermore, a Western blot analysis.
- The method according to any one of claims 1 to 8, wherein for the detection of a specific binding of GBP-1 or a fragment of this protein with the first receptor in step (a), the sample is contacted with a second receptor for GBP-1, which binds to an epitope of GBP-1 or a fragment of this protein, which is accessible after the binding of the first receptor to GBP-1 or a fragment of this protein, and wherein the second receptor is an antibody, a Fab, Fv or scFv fragment of an antibody or an aptamer.
- The method according to claim 9, wherein the second receptor for GBP-1 or fragments of this protein is labelled.
- The method according to claim 10, wherein the label of the second receptor for GBP-1 or a fragment of this protein comprises a signalling system or is specifically recognised by a further, third receptor comprising a signalling system, wherein the third receptor is an antibody, a Fab, Fv or scFv fragment of an antibody or an aptamer.
- The method according to claim 11, wherein the signalling system comprises an enzyme emitting the signal.
- The method according to any one of claims 1 to 12, wherein the method is an ELISA, an EIA or an RIA.
- The method according to any one of claims 1 to 13, wherein the method is carried out in an automated way.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10260265 | 2002-12-20 | ||
DE10260265A DE10260265A1 (en) | 2002-12-20 | 2002-12-20 | ELISA method for the detection of guanylate binding protein-1 (GBP-1) |
PCT/EP2003/014678 WO2004057339A1 (en) | 2002-12-20 | 2003-12-19 | Elisa method for the detection of guanylate binding protein 1 (gbp-1) |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1583970A1 EP1583970A1 (en) | 2005-10-12 |
EP1583970B1 true EP1583970B1 (en) | 2012-08-15 |
Family
ID=32404123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03795945A Expired - Lifetime EP1583970B1 (en) | 2002-12-20 | 2003-12-19 | Elisa method for the detection of guanylate binding protein 1 (gbp-1) |
Country Status (8)
Country | Link |
---|---|
US (1) | US7498144B2 (en) |
EP (1) | EP1583970B1 (en) |
JP (1) | JP4619129B2 (en) |
AU (1) | AU2003298224A1 (en) |
CA (1) | CA2511485C (en) |
DE (1) | DE10260265A1 (en) |
DK (1) | DK1583970T3 (en) |
WO (1) | WO2004057339A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL2016967B1 (en) | 2016-06-15 | 2017-12-21 | Iq Products B V | Markers and their ratio to determine the risk for early-onset preeclampsia. |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000014385A (en) * | 1998-07-06 | 2000-01-18 | Sumitomo Electric Ind Ltd | Dna coding for fibronectin gene expression-controlling protein |
DE69935862T2 (en) * | 1998-08-26 | 2008-01-10 | Stürzl, Michael, Prof. Dr. rer. nat. | GUANYLATE BINDING PROTEIN (GBP-1) AS INHIBITOR OF CELL PROLIFERATION |
JP3537331B2 (en) * | 1998-11-17 | 2004-06-14 | 積水化学工業株式会社 | Type IV collagen immunoassay and reagents |
JP2000221190A (en) * | 1999-02-01 | 2000-08-11 | Eiken Chem Co Ltd | Method for stabilizing protein in urine, stabilizer, and immunological assay using the same |
-
2002
- 2002-12-20 DE DE10260265A patent/DE10260265A1/en not_active Withdrawn
-
2003
- 2003-12-19 JP JP2004561403A patent/JP4619129B2/en not_active Expired - Fee Related
- 2003-12-19 AU AU2003298224A patent/AU2003298224A1/en not_active Abandoned
- 2003-12-19 EP EP03795945A patent/EP1583970B1/en not_active Expired - Lifetime
- 2003-12-19 CA CA2511485A patent/CA2511485C/en not_active Expired - Fee Related
- 2003-12-19 DK DK03795945.9T patent/DK1583970T3/en active
- 2003-12-19 US US10/537,607 patent/US7498144B2/en not_active Expired - Fee Related
- 2003-12-19 WO PCT/EP2003/014678 patent/WO2004057339A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
DE10260265A1 (en) | 2004-07-01 |
DK1583970T3 (en) | 2012-11-26 |
CA2511485A1 (en) | 2004-07-08 |
JP4619129B2 (en) | 2011-01-26 |
EP1583970A1 (en) | 2005-10-12 |
JP2006510890A (en) | 2006-03-30 |
CA2511485C (en) | 2012-01-24 |
US7498144B2 (en) | 2009-03-03 |
WO2004057339A1 (en) | 2004-07-08 |
US20060154316A1 (en) | 2006-07-13 |
AU2003298224A1 (en) | 2004-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60200615T2 (en) | PROCESS AND MEANS FOR THE DIFFERENTIAL DIAGNOSIS OF THE DESIGN OF THE ALZHEIMER TYPE | |
DE60108256T2 (en) | ALLERGEN-MICRO ARRAY TEST | |
DE69907156T2 (en) | CANCER TREATMENT | |
DE69930666T2 (en) | CANCER DETECTION PROCEDURES AND REAGENTS | |
DE69729204T2 (en) | DIAGNOSIS OF CHRONIC TIRED SYNDROME | |
US11280783B2 (en) | Devices and methods related to airway inflammation | |
EP1182258B1 (en) | Mutants of the factor VII activating protease and methods for their detection | |
EP1583970B1 (en) | Elisa method for the detection of guanylate binding protein 1 (gbp-1) | |
EP2986985B1 (en) | Automatable method for the identification, quantification and discrimination of specific signals in relation to non-specific signals in detection methods by means of a detector | |
EP2210097A1 (en) | Method for the in vitro diagnosis and/or in-vitro therapy monitoring of infections | |
DE10101792B4 (en) | Procedure for the detection of pancreatic carcinoma or chronic pancreatitis and use of antibodies | |
EP1393076B1 (en) | Method for predicting the risk of transplant rejection and immunological testkit | |
WO2011009435A1 (en) | Method, particularly enzyme-linked immunosorbent assay (elisa), for in vitro detection of amyloid beta autoantibodies, microtiter plate, and test kit | |
DE102006056337A1 (en) | In vitro diagnostic and early diagnosis of neurodegenerative diseases | |
EP1780287A1 (en) | In vitro method for diagnosing neurodegenerative diseases | |
EP3128325B1 (en) | Method for determining a concentration of epithelial cells in a blood sample or aspirate sample | |
EP0431567B1 (en) | Method for the detection of small cell bronchial carcinoma | |
EP1562046A1 (en) | Method of diagnosing sepsis by detecting selectively the concentration of superoxide dismutase 1 (SOD-1) in samples | |
DE102020209412B4 (en) | Means and methods for enriching or depleting and detecting coronaviruses | |
DE102005056839A1 (en) | Assay for diagnosis of sepsis or generalized acute inflammation comprises determining the transthyretin content of a sample from a patient and comparing it with a control group | |
DE102007022669A1 (en) | Use of CRMP1 as a marker for chronic psychiatric disorders | |
DE102005042132A1 (en) | Method for diagnosis, assessment and monitoring of sepsis or generalized inflammation, comprises measuring content of immunoglobulin M in a patient sample | |
AT404993B (en) | METHOD FOR DETERMINING A PROTEIN WITH A MUTATION | |
DE102021116416A1 (en) | PROCEDURE FOR DIAGNOSIS OF COVID-19 DISEASE | |
DE102005042100A1 (en) | Method for diagnosis, assessment and monitoring of sepsis or generalized inflammation, comprises measuring content of haptoglobin-related protein in a patient sample |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050719 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20070716 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES F |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 571098 Country of ref document: AT Kind code of ref document: T Effective date: 20120815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 50314460 Country of ref document: DE Effective date: 20121011 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: VOSSIUS AND PARTNER, CH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: VOSSIUS AND PARTNER, CH |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121217 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121116 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121126 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20130516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121115 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121231 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 50314460 Country of ref document: DE Effective date: 20130516 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20031219 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20151229 Year of fee payment: 13 Ref country code: CH Payment date: 20151229 Year of fee payment: 13 Ref country code: DK Payment date: 20151221 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20151223 Year of fee payment: 13 Ref country code: FR Payment date: 20151221 Year of fee payment: 13 Ref country code: BE Payment date: 20151217 Year of fee payment: 13 Ref country code: NL Payment date: 20151217 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20151230 Year of fee payment: 13 Ref country code: DE Payment date: 20160128 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNG, DE Free format text: FORMER OWNER: HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT (GMBH), DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161231 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50314460 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20161231 Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20170101 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 571098 Country of ref document: AT Kind code of ref document: T Effective date: 20161219 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20161219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170101 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161219 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161231 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170102 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161231 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161219 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161231 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20161231 |