EP1576146A2 - Therapeutic polypeptides, nucleic acids encoding same, and methods of use - Google Patents

Therapeutic polypeptides, nucleic acids encoding same, and methods of use

Info

Publication number
EP1576146A2
EP1576146A2 EP03817177A EP03817177A EP1576146A2 EP 1576146 A2 EP1576146 A2 EP 1576146A2 EP 03817177 A EP03817177 A EP 03817177A EP 03817177 A EP03817177 A EP 03817177A EP 1576146 A2 EP1576146 A2 EP 1576146A2
Authority
EP
European Patent Office
Prior art keywords
novx
polypeptide
nucleic acid
cell
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03817177A
Other languages
German (de)
French (fr)
Inventor
John P. Ii Alsobrook
Enrique Alvarez
David W. Anderson
Ferenc L. Boldog
Stacie J. Casman
Elina Catterton
Andrei Chapoval
Julie R. Crabtree-Bokor
Shlomit R. Edinger
Karen Ellerman
Seth Ettenberg
Esha A. Gangolli
Valerie L. Gerlach
Linda Gorman
Erik Gunther
Xiaojia Guo
Vladimir Y. Gusev
John L. Herrmann
Weizhen Ji
Ramesh Kekuda
Li Li
Xiaohong Liu
John R. Macdougall
Timothy Maclachlan
Uriel M. Malyankar
Amanda J. Mezick
Isabelle Millet
Vishnu S. Mishra
Muralidhara Padigaru
Meera Patturajan
Carol E. A. Pena
John A. Peyman
Debasish Raha
Luca Rastelli
Daniel K. Rieger
Mark E. Rothenberg
Paul Sciore
Suresh G. Shenoy
Richard A. Shimkets
Glennda Smithson
Kimberly A. Spytek
David J. Stone
Corine A.M. Vernet
Edward Z. Voss
Mei Zhong
Haihong Zhong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CuraGen Corp
Original Assignee
CuraGen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CuraGen Corp filed Critical CuraGen Corp
Publication of EP1576146A2 publication Critical patent/EP1576146A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals

Definitions

  • the present invention relates to novel polypeptides, and the nucleic acids encoding them, having properties related to stimulation of biochemical or physiological responses in a cell, a tissue, an organ or an organism. More particularly, the novel polypeptides are gene products of novel genes, or are specified biologically active fragments or derivatives thereof. Methods of use encompass diagnostic and prognostic assay procedures as well as methods of treating diverse pathological conditions.
  • Eukaryotic cells are characterized by biochemical and physiological processes which under normal conditions are extremely highly balanced to achieve the preservation and propagation of the cells.
  • the regulation of the biochemical and physiological processes involves intricate signaling pathways.
  • signaling pathways involve extracellular signaling proteins, cellular receptors that bind the signaling proteins, and signal transducing components located within the cells.
  • Signaling proteins may be classified as endocrine effectors, paracrine effectors or autocrine effectors.
  • Endocrine effectors are signaling molecules secreted by a given organ into the circulatory system, which are then transported to a distant target organ or tissue.
  • the target cells include the receptors for the endocrine effector, and when the endocrine effector binds, a signaling cascade is induced.
  • Paracrine effectors involve secreting cells and receptor cells in close proximity to each other, for example two different classes of cells in the same tissue or organ. One class of cells secretes the paracrine effector, which then reaches the second class of cells, for example by diffusion through the extracellular fluid.
  • the second class of cells contains the receptors for the paracrine effector; binding of the effector results in induction of the signaling cascade that elicits the corresponding biochemical or physiological effect.
  • Autocrine effectors are highly analogous to paracrine effectors, except that the same cell type that secretes the autocrine effector also contains the receptor. Thus the autocrine effector binds to receptors on the same cell, or on identical neighboring cells. The binding process then elicits the characteristic biochemical or physiological effect.
  • Signaling processes may elicit a variety of effects on cells and tissues including by way of nonlimiting example induction of cell or tissue proliferation, suppression of growth or proliferation, induction of differentiation or maturation of a cell or tissue, and suppression of differentiation or maturation of a cell or tissue.
  • pathological conditions involve dysregulation of expression of important effector proteins.
  • the dysregulation is manifested as diminished or suppressed level of synthesis and secretion of protein effectors.
  • the dysregulation is manifested as increased or up-regulated level of synthesis and secretion of protein effectors.
  • a subject maybe suspected of suffering from a condition brought on by altered or mis-regulated levels of a protein effector of interest. Therefore there is a need to assay for the level of the protein effector of interest in a biological sample from such a subject, and to compare the level with that characteristic of a nonpathological condition. There also is a need to provide the protein effector as a product of manufacture.
  • Administration of the effector to a subject in need thereof is useful in treatment of the pathological condition. Accordingly, there is a need for a method of treatment of a pathological condition brought on by a diminished or suppressed levels of the protein effector of interest. In addition, there is a need for a method of treatment of a pathological condition brought on by a increased or up-regulated levels of the protein effector of interest.
  • Antibodies are multichain proteins that bind specifically to a given antigen, and bind poorly, or not at all, to substances deemed not to be cognate antigens.
  • Antibodies are comprised of two short chains termed light chains and two long chains termed heavy chains. These chains are constituted of immunoglobulin domains, of which generally there are two classes: one variable domain per chain, one constant domain in light chains, and three or more constant domains in heavy chains.
  • the antigen-specific portion of the immunoglobulin molecules resides in the variable domains; the variable domains of one light chain and one heavy chain associate with each other to generate the antigen-binding moiety.
  • Antibodies that bind immunospecifically to a cognate or target antigen bind with high affinities. Accordingly, they are useful in assaying specifically for the presence of the antigen in a sample. In addition, they have the potential of inactivating the activity of the antigen.
  • the invention is based in part upon the discovery of isolated polypeptides including amino acid sequences selected from mature forms of the amino acid sequences selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606.
  • novel nucleic acids and polypeptides are referred to herein as NOV1 a, NOVlb,
  • nucleic acids and polypeptides as well as derivatives, homologs, analogs and fragments thereof, will hereinafter be collectively designated as "NOVX" nucleic acid or polypeptide sequences.
  • the invention also is based in part upon variants of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606, wherein any amino acid in the mature form is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed.
  • the invention includes the amino acid sequences selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606.
  • the invention also comprises variants of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606 wherein any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed.
  • the invention also involves fragments of any of the mature forms of the amino acid sequences selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606, or any other amino acid sequence selected from this group.
  • the invention also comprises fragments from these groups in which up to 15% of the residues are changed.
  • the invention encompasses polypeptides that are naturally occurring allelic variants of the sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606.
  • allelic variants include amino acid sequences that are the translations of nucleic acid sequences differing by a single nucleotide from nucleic acid sequences selected from the group consisting of SEQ ID NOS: 2n-l, wherein n is an integer between 1 and 606.
  • the variant polypeptide where any amino acid changed in the chosen sequence is changed to provide a conservative substitution.
  • the invention comprises a pharmaceutical composition involving a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606 and a pharmaceutically acceptable carrier.
  • the invention involves a kit, including, in one or more containers, this pharmaceutical composition.
  • the invention includes the use of a therapeutic in the manufacture of a medicament for treating a syndrome associated with a human disease, the disease being selected from a pathology associated with a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606 wherein said therapeutic is the polypeptide selected from this group.
  • the invention comprises a method for determining the presence or amount of a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606 in a sample, the method involving providing the sample; introducing the sample to an antibody that binds immunospecifically to the polypeptide; and determining the presence or amount of antibody bound to the polypeptide, thereby determining the presence or amount of polypeptide in the sample.
  • the invention includes a method for determining the presence of or predisposition to a disease associated with altered levels of a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606 in a first mammalian subject, the method involving measuring the level of expression of the polypeptide in a sample from the first mammalian subject; and comparing the amount of the polypeptide in this sample to the amount of the polypeptide present in a control sample from a second mammalian subject known not to have, or not to be predisposed to, the disease, wherein an alteration in the expression level of the polypeptide in the first subject as compared to the control sample indicates the presence of or predisposition to the disease.
  • the invention involves a method of identifying an agent that binds to a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606, the method including introducing the polypeptide to the agent; and determining whether the agent binds to the polypeptide.
  • the agent could be a cellular receptor or a downstream effector.
  • the invention involves a method for identifying a potential therapeutic agent for use in treatment of a pathology, wherein the pathology is related to aberrant expression or aberrant physiological interactions of a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606, the method including providing a cell expressing the polypeptide of the invention and having a property or function ascribable to the polypeptide; contacting the cell with a composition comprising a candidate substance; and determining whether the substance alters the property or function ascribable to the polypeptide; whereby, if an alteration observed in the presence of the substance is not observed when the cell is contacted with a composition devoid of the substance, the substance is identified as a potential therapeutic agent.
  • the invention involves a method for screening for a modulator of activity or of latency or predisposition to a pathology associated with a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606, the method including administering a test compound to a test animal at increased risk for a pathology associated with the polypeptide of the invention, wherein the test animal recombinantly expresses the polypeptide of the invention; measuring the activity of the polypeptide in the test animal after administering the test compound; and comparing the activity of the protein in the test animal with the activity of the polypeptide in a control animal not administered the polypeptide, wherein a change in the activity of the polypeptide in the test animal relative to the control animal indicates the test compound is a modulator of latency of, or predisposition to, a pathology associated with the polypeptide of the invention.
  • the recombinant test animal could express a test protein transgene or express the transgene under the control of a promoter at an increased level relative to a wild-type test animal
  • the promoter may or may not b the native gene promoter of the transgene.
  • the invention involves a method for modulating the activity of a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606, the method including introducing a cell sample expressing the polypeptide with a compound that binds to the polypeptide in an amount sufficient to modulate the activity of the polypeptide.
  • the invention involves a method of treating or preventing a pathology associated with a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606, the method including administering the polypeptide to a subject in which such treatment or prevention is desired in an amount sufficient to treat or prevent the pathology in the subject.
  • the subject could be human.
  • the invention involves a method of treating a pathological state in a mammal, the method including administering to the mammal a polypeptide in an amount that is sufficient to alleviate the pathological state, wherein the polypeptide is a polypeptide having an amino acid sequence at least 95% identical to a polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606 or a biologically active fragment thereof.
  • the invention involves an isolated nucleic acid molecule comprising a nucleic acid sequence encoding a polypeptide having an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 606; a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606 wherein any amino acid in the mature form of the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed; the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606; a variant of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606, in which any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid
  • the invention comprises an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 606, wherein the nucleic acid molecule comprises the nucleotide sequence of a naturally occurring allelic nucleic acid variant.
  • the invention involves an isolated nucleic acid molecule including a nucleic acid sequence encoding a polypeptide having an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 606 that encodes a variant polypeptide, wherein the variant polypeptide has the polypeptide sequence of a naturally occurring polypeptide variant.
  • the invention comprises an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 606, wherein the nucleic acid molecule differs by a single nucleotide from a nucleic acid sequence selected from the group consisting of SEQ ID NOS: 2n-l, wherein n is an integer between 1 and 606.
  • the invention includes an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 606, wherein the nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of the nucleotide sequence selected from the group consisting of SEQ ID NO:2n-l, wherein n is an integer between 1 and 606; a nucleotide sequence wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO:2n-l, wherein n is an integer between 1 and 606 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed; a nucleic acid fragment of the sequence selected from the group consisting of SEQ ID NO:2n-
  • the invention includes an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 606, wherein the nucleic acid molecule hybridizes under stringent conditions to the nucleotide sequence selected from the group consisting of SEQ ID NO:2n-l, wherein n is an integer between 1 and 606, or a complement of the nucleotide sequence.
  • the invention includes an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 606, wherein the nucleic acid molecule has a nucleotide sequence in which any nucleotide specified in the coding sequence of the chosen nucleotide sequence is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides in the chosen coding sequence are so changed, an isolated second polynucleotide that is a complement of the first polynucleotide, or a fragment of any of them.
  • the invention includes a vector involving the nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature fo ⁇ n of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 606.
  • This vector can have a promoter operably linked to the nucleic acid molecule.
  • This vector can be located within a cell.
  • the invention involves a method for determining the presence or amount of a nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 606 in a sample, the method including providing the sample; introducing the sample to a probe that binds to the nucleic acid molecule; and determining the presence or amount of the probe bound to the nucleic acid molecule, thereby determining the presence or amount of the nucleic acid molecule in the sample.
  • the presence or amount of the nucleic acid molecule is used as a marker for cell or tissue type.
  • the cell type can be cancerous.
  • the invention involves a method for determining the presence of or predisposition for a disease associated with altered levels of a nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 606 in a first mammalian subject, the method including measuring the amount of the nucleic acid in a sample from the first mammalian subject; and comparing the amount of the nucleic acid in the sample of step (a) to the amount of the nucleic acid present in a control sample from a second mammalian subject known not to have or not be predisposed to, the disease; wherein an alteration in the level of the nucleic acid in the first subject as compared to the control sample indicates the presence of or predisposition to the disease.
  • the invention further provides an antibody that binds immunospecifically to a NOVX polypeptide.
  • the NOVX antibody may be monoclonal, humanized, or a fully human antibody.
  • the antibody has a dissociation constant for the binding of the NOVX polypeptide to the antibody less than 1 x 10 "9 M. More preferably, the NOVX antibody neutralizes the activity of the NOVX polypeptide.
  • the invention provides for the use of a therapeutic in the manufacture of a medicament for treating a syndrome associated with a human disease, associated with a NOVX polypeptide.
  • a therapeutic is a NOVX antibody.
  • the invention provides a method of treating or preventing a NOVX- associated disorder, a method of treating a pathological state in a mammal, and a method of treating or preventing a pathology associated with a polypeptide by administering a NOVX antibody to a subject in an amount sufficient to treat or prevent the disorder.
  • the present invention provides novel nucleotides and polypeptides encoded thereby. Included in the invention are the novel nucleic acid sequences, their encoded polypeptides, antibodies, and other related compounds.
  • the sequences are collectively referred to herein as “NOVX nucleic acids” or “NOVX polynucleotides” and the corresponding encoded polypeptides are referred to as “NOVX polypeptides” or “NOVX proteins.” Unless indicated otherwise, “NOVX” is meant to refer to any of the novel sequences disclosed herein. Table A provides a summary of the NOVX nucleic acids and their encoded polypeptides.
  • Table A indicates the homology of NOVX polypeptides to known protein families.
  • nucleic acids and polypeptides, antibodies and related compounds according to the invention corresponding to a NOVX as identified in column 1 of Table A will be useful in therapeutic and diagnostic applications implicated in, for example, pathologies and disorders associated with the known protein families identified in column 5 of Table A.
  • Pathologies, diseases, disorders and condition and the like that are associated with NOVX sequences include, but are not limited to: e.g., cardiomyopathy, atherosclerosis, hypertension, congenital heart defects, aortic stenosis, atrial septal defect (ASD), vascular calcification, fibrosis, atrioventricular (A-V) canal defect, ductus arteriosus, pulmonary stenosis, subaortic stenosis, ventricular septal defect (VSD), valve diseases, tuberous sclerosis, scleroderma, obesity, metabolic disturbances associated with obesity, transplantation, osteoarthritis, rheumatoid arthritis, osteochondrodysplasia, adrenoleukodystrophy, congenital adrenal hyperplasia, prostate cancer, diabetes, metabolic disorders, neoplasm; adenocarcinoma, lymphoma, uterus cancer, fertility, glomerulonephritis, hemophilia,
  • NOVX nucleic acids and their encoded polypeptides are useful in a variety of applications and contexts.
  • the various NOVX nucleic acids and polypeptides according to the invention are useful as novel members of the protein families according to the presence of domains and sequence relatedness to previously described proteins. Additionally, NOVX nucleic acids and polypeptides can also be used to identify proteins that are members of the family to which the NOVX polypeptides belong.
  • NOVX polypeptides of the present invention show homology to, and contain domains that are characteristic of, other members of such protein families. Details of the sequence relatedness and domain analysis for each NOVX are presented in Example A.
  • the NOVX nucleic acids and polypeptides can also be used to screen for molecules, which inhibit or enhance NOVX activity or function.
  • the nucleic acids and polypeptides according to the invention may be used as targets for the identification of small molecules that modulate or inhibit diseases associated with the protein families listed in Table A.
  • NOVX nucleic acids and polypeptides are also useful for detecting specific cell types. Details of the expression analysis for each NOVX are presented in Example C. Accordingly, the NOVX nucleic acids, polypeptides, antibodies and related compounds according to the invention will have diagnostic and therapeutic applications in the detection of a variety of diseases with differential expression in normal vs. diseased tissues, e.g. detection of a variety of cancers. Additional utilities for NOVX nucleic acids and polypeptides according to the invention are disclosed herein.
  • NOVX nucleic acids and their encoded polypeptides are useful in a variety of applications and contexts.
  • the various NOVX nucleic acids and polypeptides according to the invention are useful as novel members of the protein families according to the presence of domains and sequence relatedness to previously described proteins. Additionally, NOVX nucleic acids and polypeptides can also be used to identify proteins that are members of the family to which the NOVX polypeptides belong.
  • the NOVX genes and their corresponding encoded proteins are useful for preventing, treating or ameliorating medical conditions, e.g., by protein or gene therapy.
  • Pathological conditions can be diagnosed by determining the amount of the new protein in a sample or by determining the presence of mutations in the new genes.
  • Specific uses are described for each of the NOVX genes, based on the tissues in which they are most highly expressed. Uses include developing products for the diagnosis or treatment of a variety of diseases and disorders.
  • the NOVX nucleic acids and proteins of the invention are useful in potential diagnostic and therapeutic applications and as a research tool. These include serving as a specific or selective nucleic acid or protein diagnostic and/or prognostic marker, wherein the presence or amount of the nucleic acid or the protein are to be assessed, as well as potential therapeutic applications such as the following: (i) a protein therapeutic, (ii) a small molecule drug target, (iii) an antibody target (therapeutic, diagnostic, drug targeting/cytotoxic antibody), (iv) a nucleic acid useful in gene therapy (gene delivery/gene ablation), and (v) a composition promoting tissue regeneration in vitro and in vivo (vi) a biological defense weapon.
  • the invention includes an isolated polypeptide comprising an amino acid sequence selected from the group consistmg of: (a) a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 606; (b) a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 606, wherein any amino acid in the mature form is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed; (c) an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 606; (d) a variant of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606 wherein any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residue
  • the invention includes an isolated nucleic acid molecule comprising a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of: (a) a mature form of the amino acid sequence given SEQ ID NO: 2n, wherein n is an integer between 1 and 606; (b) a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 606 wherein any amino acid in the mature form of the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed; (c) the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 606; (d) a variant of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 606, in which any amino acid specified in the chosen sequence is changed to
  • the invention includes an isolated nucleic acid molecule, wherein said nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of: (a) the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-l, wherein n is an integer between 1 and 606; (b) a nucleotide sequence wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-l, wherein n is an integer between 1 and 606 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed; (c) a nucleic acid fragment of the sequence selected from the group consisting of SEQ ID NO: 2n-l, wherein n is an integer between 1 and 606; and (d) a nucleic acid fragment wherein one or more nucleotides in the nucleotide sequence selected
  • nucleic acid molecules that encode NOVX polypeptides or biologically active portions thereof. Also mcluded in the invention are nucleic acid fragments sufficient for use as hybridization probes to identify NOVX-encoding nucleic acids (e.g., NOVX mRNAs) and fragments for use as PCR primers for the amplification and/or mutation of NOVX nucleic acid molecules.
  • nucleic acid molecule is intended to include DNA molecules (e.g., cDNA or genomic DNA), RNA molecules (e.g., mRNA), analogs of the DNA or RNA generated using nucleotide analogs, and derivatives, fragments and homologs thereof.
  • the nucleic acid molecule may be single-stranded or double-stranded, but preferably is comprised double-stranded DNA.
  • a NOVX nucleic acid can encode a mature NOVX polypeptide.
  • a "mature" form of a polypeptide or protein disclosed in the present invention is the product of a naturally occurring polypeptide or precursor form or proprotein.
  • the naturally occurring polypeptide, precursor or proprotein includes, by way of nonlimiting example, the full-length gene product encoded by the corresponding gene. Alternatively, it may be defined as the polypeptide, precursor or proprotein encoded by an ORF described herein.
  • the product "mature" form arises, by way of nonlimiting example, as a result of one or more naturally occurring processing steps that may take place within the cell (e.g., host cell) in which the gene product arises-
  • processing steps leading to a "mature" form of a polypeptide or protein include the cleavage of the N-terminal methionine residue encoded by the initiation codon of an ORF, or the proteolytic cleavage of a signal peptide or leader sequence.
  • a mature form arising from a precursor polypeptide or protein having residues 1 to N, in which an N-terminal signal sequence from residue 1 to residue M is cleaved, would have the residues from residue M+l to residue N remaining.
  • a "mature" form of a polypeptide or protein may arise from a step of post-translational modification other than a proteolytic cleavage event. Such additional processes include, by way of non-limiting example, glycosylation, myristylation or phosphorylation.
  • a mature polypeptide or protein may result from the operation of only one of these processes, or a combination of any of them.
  • probe refers to nucleic acid sequences of variable length, preferably between at least about 10 nucleotides (nt), about 100 nt, or as many as approximately, e.g., 6,000 nt, depending upon the specific use. Probes are used in the detection of identical, similar, or complementary nucleic acid sequences. Longer length probes are generally obtained from a natural or recombinant source, are highly specific, and much slower to hybridize than shorter-length oligomer probes. Probes may be single- stranded or double-stranded and designed to have specificity in PCR, membrane-based hybridization technologies, or ELISA-like technologies.
  • isolated nucleic acid molecule is a nucleic acid that is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid.
  • an “isolated” nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5 1 - and 3'-termini of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived.
  • the isolated NOVX nucleic acid molecules can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell/tissue from which the nucleic acid is derived (e.g., brain, heart, liver, spleen, etc.).
  • an "isolated" nucleic acid molecule such as a cDNA molecule, can be substantially free of other cellular material, or culture medium, or of chemical precursors or other chemicals.
  • a nucleic acid molecule of the invention e.g., a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:2 «-l, wherein n is an integer between 1 and 606, or a complement of this nucleotide sequence, can be isolated using standard molecular biology techniques and the sequence information provided herein.
  • NOVX molecules can be isolated using standard hybridization and cloning techniques (e.g., as described in Sambrook, et al., (eds.), MOLECULAR CLONING: A LABORATORY MANUAL 2 nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989; and Ausubel, et al., (eds.), CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, NY, 1993.)
  • a nucleic acid of the invention can be amplified using cDNA, mRNA or alternatively, genomic DNA, as a template with appropriate oligonucleotide primers according to standard PCR amplification techniques.
  • the nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis.
  • oligonucleotides corresponding to NOVX nucleotide sequences can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.
  • oligonucleotide refers to a series of linked nucleotide residues.
  • a short oligonucleotide sequence may be based on, or designed from, a genomic or cDNA sequence and is used to amplify, confirm, or reveal the presence of an identical, similar or complementary DNA or RNA in a particular cell or tissue.
  • Oligonucleotides comprise a nucleic acid sequence having about 10 nt, 50 nt, or 100 nt in length, preferably about 15 nt to 30 nt in length.
  • an oligonucleotide comprising a nucleic acid molecule less than 100 nt in length would further comprise at least 6 contiguous nucleotides of SEQ ID NO:2 «-l, wherein n is an integer between 1 and 606, or a complement thereof. Oligonucleotides may be chemically synthesized and may also be used as probes.
  • an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule that is a complement of the nucleotide sequence shown in SEQ ID NO:2/z-l, wherein n is an integer between 1 and 606, or a portion of this nucleotide sequence (e.g., a fragment that can be used as a probe or primer or a fragment encoding a biologically-active portion of a NOVX polypeptide).
  • a nucleic acid molecule that is complementary to the nucleotide sequence of SEQ ID NO:2w-l, wherein n is an integer between 1 and 606, is one that is sufficiently complementary to the nucleotide sequence of SEQ ID NO:2 «-l, wherein n is an integer between 1 and 606, that it can hydrogen bond with few or no mismatches to the nucleotide sequence shown in SEQ ID NO:2 «-l, wherein n is an integer between 1 and 606, thereby forming a stable duplex.
  • binding means the physical or chemical interaction between two polypeptides or compounds or associated polypeptides or compounds or combinations thereof. Binding includes ionic, non-ionic, van der Waals, hydrophobic interactions, and the like.
  • a physical interaction can be either direct or indirect. Indirect interactions may be through or due to the effects of another polypeptide or compound. Direct binding refers to interactions that do not take place through, or due to, the effect of another polypeptide or compound, but instead are without other substantial chemical intermediates.
  • a “fragment” provided herein is defined as a sequence of at least 6 (contiguous) nucleic acids or at least 4 (contiguous) amino acids, a length sufficient to allow for specific hybridization in the case of nucleic acids or for specific recognition of an epitope in the case of amino acids, and is at most some portion less than a full length sequence.
  • Fragments may be derived from any contiguous portion of a nucleic acid or amino acid sequence of choice.
  • a full-length NOVX clone is identified as containing an ATG translation start codon and an in-frame stop codon. Any disclosed NOVX nucleotide sequence lacking an ATG start codon therefore encodes a truncated C-terminal fragment of the respective
  • NOVX polypeptide and requires that the co ⁇ esponding full-length cDNA extend in the 5' direction of the disclosed sequence.
  • Any disclosed NOVX nucleotide sequence lacking an in-frame stop codon similarly encodes a truncated N-terminal fragment of the respective NOVX polypeptide, and requires that the co ⁇ esponding full-length cDNA extend in the 3' direction of the disclosed sequence.
  • a “derivative” is a nucleic acid sequence or amino acid sequence formed from the native compounds either directly, by modification or partial substitution.
  • An “analog” is a nucleic acid sequence or amino acid sequence that has a structure similar to, but not identical to, the native compound, e.g. they differs from it in respect to certain components or side chains. Analogs may be synthetic or derived from a different evolutionary origin and may have a similar or opposite metabolic activity compared to wild type.
  • a “homolog” is a nucleic acid sequence or amino acid sequence of a particular gene that is derived from different species.
  • Derivatives and analogs may be full length or other than full length.
  • Derivatives or analogs of the nucleic acids or proteins of the invention include, but are not limited to, molecules comprising regions that are substantially homologous to the nucleic acids or proteins of the invention, in various embodiments, by at least about 70%, 80%, or 95% identity (with a preferred identity of 80-95%) over a nucleic acid or amino acid sequence of identical size or when compared to an aligned sequence in which the alignment is done by a computer homology program known in the art, or whose encoding nucleic acid is capable of hybridizing to the complement of a sequence encoding the proteins under stringent, moderately stringent, or low stringent conditions. See e.g. Ausubel, et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, NY, 1993, and below.
  • a “homologous nucleic acid sequence” or “homologous amino acid sequence,” or variations thereof, refer to sequences characterized by a homology at the nucleotide level or amino acid level as discussed above.
  • Homologous nucleotide sequences include those sequences coding for isoforms of NOVX polypeptides. Isoforms can be expressed in different tissues of the same organism as a result of, for example, alternative splicing of RNA. Alternatively, isofoims can be encoded by different genes.
  • homologous nucleotide sequences include nucleotide sequences encoding for a NOVX polypeptide of species other than humans, including, but not limited to: vertebrates, and thus can include, e.g., frog, mouse, rat, rabbit, dog, cat cow, horse, and other organisms.
  • Homologous nucleotide sequences also include, but are not limited to, naturally occurring allelic variations and mutations of the nucleotide sequences set forth herein.
  • a homologous nucleotide sequence does not, however, include the exact nucleotide sequence encoding human NOVX protein.
  • Homologous nucleic acid sequences include those nucleic acid sequences that encode conservative amino acid substitutions (see below) in SEQ ID
  • NO:2 «-l, wherein n is an integer between 1 and 606, as well as a polypeptide possessing NOVX biological activity.
  • n is an integer between 1 and 606, as well as a polypeptide possessing NOVX biological activity.
  • Various biological activities of the NOVX proteins are described below.
  • a NOVX polypeptide is encoded by the open reading frame ("ORF") of a NOVX nucleic acid.
  • An ORF corresponds to a nucleotide sequence that could potentially be translated into a polypeptide.
  • a stretch of nucleic acids comprising an ORF is uninterrupted by a stop codon.
  • An ORF that represents the coding sequence for a full protein begins with an ATG "start” codon and terminates with one of the three “stop” codons, namely, TAA, TAG, or TGA.
  • an ORF may be any part of a coding sequence, with or without a start codon, a stop codon, or both.
  • a minimum size requirement is often set, e.g., a stretch of DNA that would encode a protein of 50 amino acids or more.
  • the nucleotide sequences determined from the cloning of the human NOVX genes allows for the generation of probes and primers designed for use in identifying and/or cloning NOVX homologues in other cell types, e.g. from other tissues, as well as NOVX homologues from other vertebrates.
  • the probe/primer typically comprises substantially purified oligonucleotide.
  • the oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 25, 50, 100, 150, 200, 250, 300, 350 or 400 consecutive sense strand nucleotide sequence of SEQ ID NO:2n-l, wherein n is an integer between 1 and 606; or an anti-sense strand nucleotide sequence of SEQ ID NO:2n-l, wherein n is an integer between 1 and 606; or of a naturally occurring mutant of SEQ ID NO:2 «-l, wherein n is an integer between 1 and 606.
  • Probes based on the human NOVX nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous proteins, hi various embodiments, the probe has a detectable label attached, e.g. the label can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor.
  • the probes can be used as a part of a diagnostic test kit for identifying cells or tissues which mis-express a NOVX protein, such as by measuring a level of a NOVX-encoding nucleic acid in a sample of cells from a subject e.g., detecting NOVX mRNA levels or determining whether a genomic NOVX gene has been mutated or deleted.
  • a polypeptide having a biologically-active portion of a NOVX polypeptide refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of a polypeptide of the invention, including mature forms, as measured in a particular biological assay, with or without dose dependency.
  • a nucleic acid fragment encoding a "biologically-active portion of NOVX” can be prepared by isolating a portion of SEQ ID NO:2 «-l, wherein n is an integer between 1 and 606, that encodes a polypeptide having a NOVX biological activity (the biological activities of the NOVX proteins are described below), expressing the encoded portion of NOVX protein (e.g. , by recombinant expression in vitro) and assessing the activity of the encoded portion of NOVX.
  • a variant sequence can include a single nucleotide polymorphism (SNP).
  • SNP can, in some instances, be referred to as a "cSNP" to denote that the nucleotide sequence containing the SNP originates as a cDNA.
  • a SNP can arise in several ways. For example, a SNP maybe due to a substitution of one nucleotide for another at the polymorphic site. Such a substitution can be either a transition or a transversion.
  • a SNP can also arise from a deletion of a nucleotide or an insertion of a nucleotide, relative to a reference allele.
  • the polymorphic site is a site at which one allele bears a gap with respect to a particular nucleotide in another allele.
  • SNPs occurring within genes may result in an alteration of the amino acid encoded by the gene at the position of the SNP.
  • Intragenic SNPs may also be silent, when a codon including a SNP encodes the same amino acid as a result of the redundancy of the genetic code.
  • SNPs occurring outside the region of a gene, or in an intron within a gene do not result in changes in any amino acid sequence of a protein but may result in altered regulation of the expression pattern. Examples include alteration in temporal expression, physiological response regulation, cell type expression regulation, intensity of expression, and stability of transcribed message.
  • SeqCalling assemblies produced by the exon linking process were selected and extended using the following criteria. Genomic clones having regions with 98% identity to all or part of the initial or extended sequence were identified by BLASTN searches using the relevant sequence to query human genomic databases. The genomic clones that resulted were selected for further analysis because this identity indicates that these clones contain the genomic locus for these SeqCalling assemblies. These sequences were analyzed for putative coding regions as well as for similarity to the known DNA and protein sequences. Programs used for these analyses include Grail, Genscan, BLAST, HMMER, FASTA, Hybrid and other relevant programs.
  • SeqCalling assemblies map to those regions.
  • SeqCalling sequences may have overlapped with regions defined by homology or exon prediction. They may also be included because the location of the fragment was in the vicinity of genomic regions identified by similarity or exon prediction that had been included in the original predicted sequence. The sequence so identified was manually assembled and then may have been extended using one or more additional sequences taken from CuraGen Corporation's human SeqCalling database. SeqCalling fragments suitable for inclusion were identified by the CuraToolsTM program SeqExtend or by identifying SeqCalling fragments mapping to the appropriate regions of the genomic clones analyzed.
  • the invention further encompasses nucleic acid molecules that differ from the nucleotide sequences of SEQ ID NO:2 «-l, wherein n is an integer between 1 and 606, due to degeneracy of the genetic code and thus encode the same NOVX proteins as that encoded by the nucleotide sequences of SEQ ID NO:27z-l, wherein n is an integer between 1 and 606.
  • an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence of SEQ ID NO:2 «, wherein n is an integer between 1 and 606.
  • n is an integer between 1 and 606
  • DNA sequence polymo ⁇ hisms that lead to changes in the amino acid sequences of the NOVX polypeptides may exist within a population (e.g., the human population).
  • Such genetic polymo ⁇ hism in the NOVX genes may exist among individuals within a population due to natural allelic variation.
  • the terms "gene” and “recombinant gene” refer to nucleic acid molecules comprising an open reading frame (ORF) encoding a NOVX protein, preferably a vertebrate NOVX protein.
  • Such natural allelic variations can typically result in 1-5% variance in the nucleotide sequence of the NOVX genes. Any and all such nucleotide variations and resulting amino acid polymo ⁇ hisms in the NOVX polypeptides, which are the result of natural allelic variation and that do not alter the functional activity of the NOVX polypeptides, are intended to be within the scope of the invention.
  • nucleic acid molecules encoding NOVX proteins from other species and thus that have a nucleotide sequence that differs from a human SEQ ID NO:2/z-l, wherein n is an integer between 1 and 606, are intended to be within the scope of the invention.
  • Nucleic acid molecules corresponding to natural allelic variants and homologues of the NOVX cDNAs of the invention can be isolated based on their homology to the human NOVX nucleic acids disclosed herein using the human cDNAs, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions.
  • an isolated nucleic acid molecule of the invention is at least 6 nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:2 «-l, wherein n is an integer between 1 and 606.
  • the nucleic acid is at least 10, 25, 50, 100, 250, 500, 750, 1000, 1500, or 2000 or more nucleotides in length.
  • an isolated nucleic acid molecule of the invention hybridizes to the coding region.
  • hybridizes under stringent conditions is intended to describe conditions for hybridization and washing under which nucleotide sequences at least about 65% homologous to each other typically remain hybridized to each other.
  • Homologs i.e., nucleic acids encoding NOVX proteins derived from species other than human
  • other related sequences e.g., paralogs
  • stringent hybridization conditions refers to conditions under which a probe, primer or oligonucleotide will hybridize to its target sequence, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures than shorter sequences. Generally, stringent conditions are selected to be about 5 °C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength, pH and nucleic acid concentration) at which 50% of the probes complementary to the target sequence hybridize to the target sequence at equilibrium. Since the target sequences are generally present at excess, at Tm, 50% of the probes are occupied at equilibrium.
  • Tm thermal melting point
  • stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30 °C for short probes, primers or oligonucleotides (e.g., 10 nt • to 50 nt) and at least about 60 °C for longer probes, primers and oligonucleotides.
  • Stringent conditions may also be achieved with the addition of destabilizing agents, such as formamide.
  • Stringent conditions are known to those skilled in the art and can be found in Ausubel, et al, (eds.), CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6.
  • the conditions are such that sequences at least about 65%, 70%, 75%, 85%, 90%, 95%, 98%, or 99% homologous to each other typically remain hybridized to each other.
  • a non-limiting example of stringent hybridization conditions are hybridization in a high salt buffer comprising 6X SSC, 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 0.02%) PVP, 0.02% Ficoll, 0.02% BSA, and 500 mg/ml denatured salmon sperm DNA at 65°C, followed by one or more washes in 0.2X SSC, 0.01% BSA at 50°C.
  • a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein).
  • a nucleic acid sequence that is hybridizable to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:2 «-l , wherein n is an integer between 1 and 606, or fragments, analogs or derivatives thereof, under conditions of moderate stringency is provided.
  • moderate stringency hybridization conditions are hybridization in 6X SSC, 5X Reinhardt's solution, 0.5% SDS and 100 mg/ml denatured salmon sperm DNA at 55 °C, followed by one or more washes in IX SSC, 0.1 % SDS at 37 °C.
  • Other conditions of moderate stringency that may be used are well-known within the art.
  • low stringency hybridization conditions are hybridization in 35% formamide, 5X SSC, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 mg/ml denatured salmon sperm DNA, 10% (wt/vol) dextran sulfate at 40°C, followed by one or more washes in 2X SSC, 25 mM Tris-HCl (pH 7.4), 5 mM EDTA, and 0.1% SDS at 50°C.
  • Other conditions of low stringency that may be used are well known in the art (e.g., as employed for cross-species hybridizations).
  • nucleotide sequences of SEQ ID NO:2 «-l wherein n is an integer between 1 and 606, thereby leading to changes in the amino acid sequences of the encoded NOVX protein, without altering the functional ability of that NOVX protein.
  • nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in the sequence of SEQ ID NO:2?z, wherein n is an integer between 1 and 606.
  • non-essential amino acid residue is a residue that can be altered from the wild-type sequences of the NOVX proteins without altering their biological activity, whereas an "essential" amino acid residue is required for such biological activity.
  • amino acid residues that are conserved among the NOVX proteins of the invention are predicted to be particularly non-amenable to alteration. Amino acids for which conservative substitutions can be made are well-known within the art.
  • nucleic acid molecules encoding NOVX proteins that contain changes in amino acid residues that are not essential for activity.
  • NOVX proteins differ in amino acid sequence from SEQ ID NO:2 «-l, wherein n is an integer between 1 and 606, yet retain biological activity.
  • the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 40% homologous to the amino acid sequences of SEQ ID NO:2 «, wherein n is an integer between 1 and 606.
  • the protein encoded by the nucleic acid molecule is at least about 60% homologous to SEQ ID NO:2/z, wherein n is an integer between 1 and 606; more preferably at least about 70% homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 606; still more preferably at least about 80% homologous to SEQ ID NO:2«, wherein n is an integer between 1 and 606; even more preferably at least about 90% homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 606; and most preferably at least about 95% homologous to SEQ ID NO:2«, wherein n is an integer between 1 and 606.
  • An isolated nucleic acid molecule encoding a NOVX protein homologous to the protein of SEQ ID NO:2 «, wherein n is an integer between 1 and 606, can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of SEQ ID NO:2»-l, wherein n is an integer between 1 and 606, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein.
  • Mutations can be introduced any one of SEQ ID NO:2 «-l, wherein n is an integer between 1 and 606, by standard techniques, such as site-directed mutagenesis and
  • conservative amino acid substitutions are made at one or more predicted, non-essential amino acid residues.
  • a "conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined within the art.
  • amino acids with basic side chains e.g., lysine, arginine, histidine
  • acidic side chains e.g., aspartic acid, glutamic acid
  • uncharged polar side chains e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine
  • nonpolar side chains e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan
  • beta-branched side chains e.g., threonine, valine, isoleucine
  • aromatic side chains e.g., tyrosine, phenylalanine, tryptophan, histidine
  • a predicted non-essential amino acid residue in the NOVX protein is replaced with another amino acid residue from the same side chain family.
  • mutations can be introduced randomly along all or part of a NOVX coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for NOVX biological activity to identify mutants that retain activity.
  • mutagenesis of a nucleic acid of SEQ ID NO:2H-1, wherein n is an integer between 1 and 606 the encoded protein can be expressed by any recombinant technology known in the art and the activity of the protein can be determined.
  • amino acid families may also be determined based on side chain interactions.
  • Substituted amino acids may be fully conserved "strong” residues or fully conserved “weak” residues.
  • the "strong” group of conserved amino acid residues may be any one of the following groups: STA, NEQK, NHQK, NDEQ, QHRK, MILV, MILF, HY, FYW, wherein the single letter amino acid codes are grouped by those amino acids that maybe substituted for each other.
  • the "weak" group of conserved residues may be any one of the following: CSA, ATV, SAG, STNK, STPA, SGND, SNDEQK, NDEQHK, NEQHR , HFY, wherein the letters within each group represent the single letter amino acid code.
  • a mutant NOVX protein can be assayed for (i) the ability to form proteimprotein interactions with other NOVX proteins, other cell-surface proteins, or biologically-active portions thereof, (ii) complex formation between a mutant NOVX protein and a NOVX ligand; or (iii) the ability of a mutant NOVX protein to bind to an intracellular target protein or biologically-active portion thereof; (e.g. avidin proteins).
  • a mutant NOVX protein can be assayed for the ability to regulate a specific biological function (e.g., regulation of insulin release).
  • NOVX gene expression can be attenuated by RNA interference.
  • RNA interference One approach well-known in the art is short interfering RNA (siRNA) mediated gene silencing where expression products of a NOVX gene are targeted by specific double stranded NOVX derived siRNA nucleotide sequences that are complementary to at least a 19-25 nt long segment of the NOVX gene transcript, including the 5' untranslated (UT) region, the ORF, or the 3' UT region.
  • siRNA short interfering RNA
  • Targeted genes can be a NOVX gene, or an upstream or downstream modulator of the NOVX gene.
  • upstream or downstream modulators of a NOVX gene include, e.g., a transcription factor that binds the NOVX gene promoter, a kinase or phosphatase that interacts with a NOVX polypeptide, and polypeptides involved in a NOVX regulatory pathway.
  • NOVX gene expression is silenced using short interfering RNA.
  • a NOVX polynucleotide according to the invention includes a siRNA polynucleotide.
  • a NOVX siRNA can be obtained using a NOVX polynucleotide sequence, for example, by processing the NOVX ribopolynucleotide sequence in a cell-free system, such as but not limited to a Drosophila extract, or by transcription of recombinant double stranded NOVX RNA or by chemical synthesis of nucleotide sequences homologous to a NOVX sequence.
  • RNA synthesis provides about 1 milligram of siRNA, which is sufficient for 1000 transfection experiments using a 24- well tissue culture plate format.
  • siRNA duplexes composed of a 21-nt sense strand and a 21-nt antisense strand, paired in a manner to have a 2-nt 3' overhang.
  • the sequence of the 2-nt 3' overhang makes an additional small contribution to the specificity of siRNA target recognition.
  • the contribution to specificity is localized to the unpaired nucleotide adjacent to the first paired bases.
  • the nucleotides in the 3' overhang are ribonucleotides.
  • the nucleotides in the 3' overhang are deoxyribonucleotides.
  • a contemplated recombinant expression vector of the invention comprises a NOVX DNA molecule cloned into an expression vector comprising operatively-linked regulatory sequences flanking the NOVX sequence in a manner that allows for expression (by transcription of the DNA molecule) of both strands.
  • An RNA molecule that is antisense to NOVX mRNA is transcribed by a first promoter (e.g., a promoter sequence 3' of the cloned DNA) and an RNA molecule that is the sense strand for the NOVX mRNA is transcribed by a second promoter (e.g., a promoter sequence 5' of the cloned DNA).
  • the sense and antisense strands may hybridize in vivo to generate siRNA constructs for silencing of the NOVX gene.
  • two constructs can be utilized to create the sense and anti-sense strands of a siRNA construct.
  • cloned DNA can encode a construct having secondary structure, wherein a single transcript has both the sense and complementary antisense sequences from the target gene or genes.
  • a hai ⁇ in RNAi product is homologous to all or a portion of the target gene.
  • a hai ⁇ in RNAi product is a siRNA.
  • the regulatory sequences flanking the NOVX sequence may be identical or may be different, such that their expression may be modulated independently, or in a temporal or spatial manner.
  • siRNAs are transcribed intracellularly by cloning the NOVX gene templates into a vector containing, e.g., a RNA pol III transcription unit from the smaller nuclear RNA (snRNA) U6 or the human RNase P RNA HI .
  • a vector system is the GeneSuppressorTM RNA Interference kit (commercially available from Imgenex).
  • the U6 and HI promoters are members of the type III class of Pol III promoters.
  • the +1 nucleotide of the U6-like promoters is always guanosine, whereas the +1 for HI promoters is adenosine.
  • the termination signal for these promoters is defined by five consecutive thymidines.
  • the transcript is typically cleaved after the second uridine. Cleavage at this position generates a 3' UU overhang in the expressed siRNA, which is similar to the 3' overhangs of synthetic siRNAs. Any sequence less than 400 nucleotides in length can be transcribed by these promoter, therefore they are ideally suited for the expression of around 21-nucleotide siRNAs in, e.g., an approximately 50-nucleotide RNA stem-loop transcript.
  • siRNA vector appears to have an advantage over synthetic siRNAs where long term knock-down of expression is desired.
  • Cells transfected with a siRNA expression vector would experience steady, long-term mRNA inhibition, hi contrast, cells transfected with exogenous synthetic siRNAs typically recover from mRNA suppression within seven days or ten rounds of cell division.
  • the long-term gene silencing ability of siRNA expression vectors may provide for applications in gene therapy.
  • siRNAs are chopped from longer dsRNA by an ATP-dependent ribonuclease called DICER.
  • DICER is a member of the RNase III family of double-stranded RNA-specific endonucleases. The siRNAs assemble with cellular proteins into an endonuclease complex.
  • siRNP siRNAs/protein complex
  • RISC RNA-induced silencing complex
  • RISC uses the sequence encoded by the antisense siRNA strand to find and destroy mRNAs of complementary sequence. The siRNA thus acts as a guide, restricting the ribonuclease to cleave only mRNAs complementary to one of the two siRNA strands.
  • a NOVX mRNA region to be targeted by siRNA is generally selected from a desired NOVX sequence beginning 50 tolOO nt downstream of the start codon.
  • 5* or 3' UTRs and regions nearby the start codon can be used but are generally avoided, as these may be richer in regulatory protein binding sites.
  • UTR-binding proteins and/or translation initiation complexes may interfere with binding of the siRNP or RISC endonuclease complex.
  • An initial BLAST homology search for the selected siRNA sequence is done against an available nucleotide sequence library to ensure that only one gene is targeted. Specificity of target recognition by siRNA duplexes indicate that a single point mutation located in the paired region of an siRNA duplex is sufficient to abolish target mRNA degradation.
  • a complete NOVX siRNA experiment includes the proper negative control.
  • a negative control siRNA generally has the same nucleotide composition as the NOVX siRNA but lack significant sequence homology to the genome. Typically, one would scramble the nucleotide sequence of the NOVX siRNA and do a homology search to make sure it lacks homology to any other gene.
  • Two independent NOVX siRNA duplexes can be used to knock-down a target NOVX gene. This helps to control for specificity of the silencing effect.
  • expression of two independent genes can be simultaneously knocked down by using equal concentrations of different NOVX siRNA duplexes, e.g., a NOVX siRNA and an siRNA for a regulator of a NOVX gene or polypeptide.
  • NOVX siRNA duplexes e.g., a NOVX siRNA and an siRNA for a regulator of a NOVX gene or polypeptide.
  • Availability of siRNA-associating proteins is believed to be more limiting than target mRNA accessibility.
  • a targeted NOVX region is typically a sequence of two adenines (AA) and two thymidines (TT) divided by a spacer region of nineteen (N19) residues (e.g., AA(N19)TT).
  • a desirable spacer region has a G/C-content of approximately 30% to 70%, and more preferably of about 50%. If the sequence AA(N19)TT is not present in the target sequence, an alternative target region would be AA(N21).
  • the sequence of the NOVX sense siRNA corresponds to (N19)TT or N21, respectively. In the latter case, conversion of the 3' end of the sense siRNA to TT can be performed if such a sequence does not naturally occur in the NOVX polynucleotide.
  • the rationale for this sequence conversion is to generate a symmetric duplex with respect to the sequence composition of the sense and antisense 3' overhangs.
  • Symmetric 3' overhangs may help to ensure that the si MPs are formed with approximately equal ratios of sense and antisense target RNA-cleaving siRNPs. See, e.g., Elbashir, Lendeckel and Tuschl (2001). Genes & Dev. 15: 188-200, inco ⁇ orated by reference herein in its entirely.
  • the modification of the overhang of the sense sequence of the siRNA duplex is not expected to affect targeted mRNA recognition, as the antisense siRNA strand guides target recognition.
  • the NOVX target mRNA does not contain a suitable AA(N21) sequence
  • the sequence of the sense strand and antisense strand may still be synthesized as 5' (N19)TT, as it is believed that the sequence of the 3'-most nucleotide of the antisense siRNA does not contribute to specificity.
  • the secondary structure of the target m NA does not appear to have a strong effect on silencing. See, Harborth, et al. (2001) J. Cell Science 114: 4557-4565, inco ⁇ orated by reference in its entirety.
  • Transfection of NOVX siRNA duplexes can be achieved using standard nucleic acid transfection methods, for example, OLIGOFECTAMINE Reagent (commercially available from Invitrogen).
  • An assay for NOVX gene silencing is generally performed approximately 2 days after transfection. No NOVX gene silencing has been observed in the absence of transfection reagent, allowing for a comparative analysis of the wild-type and silenced NOVX phenotypes.
  • approximately 0.84 ⁇ g of the siRNA duplex is generally sufficient. Cells are typically seeded the previous day, and are transfected at about 50% confluence.
  • the choice of cell culture media and conditions are routine to those of skill in the art, and will vary with the choice of cell type.
  • the efficiency of transfection may depend on the cell type, but also on the passage number and the confluency of the cells.
  • the time and the manner of formation of siRNA-liposome complexes are also critical. Low transfection efficiencies are the most frequent cause of unsuccessful NOVX silencing.
  • the efficiency of transfection needs to be carefully examined for each new cell line to be used.
  • Preferred cell are derived from a mammal, more preferably from a rodent such as a rat or mouse, and most preferably from a human. Where used for therapeutic treatment, the cells are preferentially autologous, although non-autologous cell sources are also contemplated as within the scope of the present invention.
  • transfection of 0.84 ⁇ g single-stranded sense NOVX siRNA will have no effect on NOVX silencing, and 0.84 ⁇ g antisense siRNA has a weak silencing effect when compared to 0.84 ⁇ g of duplex siRNAs.
  • Control experiments again allow for a comparative analysis of the wild-type and silenced NOVX phenotypes.
  • targeting of common proteins is typically performed, for example targeting of lamin A/C or transfection of a CMV-driven EGFP-expression plasmid (e.g. commercially available from Clontech).
  • a determination of the fraction of lamin A/C knockdown in cells is determined the next day by such techniques as immunofluorescence, Western blot, Northern blot or other similar assays for protein expression or gene expression.
  • Lamin A/C monoclonal antibodies may be obtained from Santa Cruz Biotechnology.
  • a knock-down phenotype may become apparent after 1 to 3 days, or even later.
  • depletion of the NOVX polynucleotide may be observed by immunofluorescence or Western blotting.
  • NOVX polynucleotide If the NOVX polynucleotide is still abundant after 3 days, cells need to be split and transferred to a fresh 24-well plate for re-transfection. If no knock-down of the targeted protein is observed, it may be desirable to analyze whether the target mRNA (NOVX or a NOVX upstream or downstream gene) was effectively destroyed by the transfected siRNA duplex. Two days after transfection, total RNA is prepared, reverse transcribed using a target-specific primer, and PCR-amplified with a primer pair covering at least one exon-exon junction in order to control for amplification of pre-mRNAs. RT/PCR of a non-targeted mRNA is also needed as control.
  • target mRNA NOVX or a NOVX upstream or downstream gene
  • Effective depletion of the mRNA yet undetectable reduction of target protein may indicate that a large reservoir of stable NOVX protein may exist in the cell. Multiple transfection in sufficiently long intervals may be necessary until the target protein is finally depleted to a point where a phenotype may become apparent. If multiple transfection steps are required, cells are split 2 to 3 days after transfection. The cells may be transfected immediately after splitting.
  • An inventive therapeutic method of the invention contemplates administering a NOVX siRNA construct as therapy to compensate for increased or abe ⁇ ant NOVX expression or activity.
  • the NOVX ribopolynucleotide is obtained and processed into siRNA fragments, or a NOVX siRNA is synthesized, as described above.
  • the NOVX siRNA is administered to cells or tissues using known nucleic acid transfection techniques, as described above.
  • a NOVX siRNA specific for a NOVX gene will decrease or knockdown NOVX transcription products, which will lead to reduced NOVX polypeptide production, resulting in reduced NOVX polypeptide activity in the cells or tissues.
  • the present invention also encompasses a method of treating a disease or condition associated with the presence of a NOVX protein in an individual comprising administering to the individual an RNAi construct that targets the mRNA of the protein (the mRNA that encodes the protein) for degradation.
  • a specific RNAi construct includes a siRNA or a double stranded gene transcript that is processed into siRNAs. Upon treatment, the target protein is not produced or is not produced to the extent it would be in the absence of the treatment.
  • a control sample of cells or tissues from healthy individuals provides a reference standard for determining NOVX expression levels. Expression levels are detected using the assays described, e.g., RT-PCR, Northern blotting, Western blotting, ELISA, and the like.
  • a subject sample of cells or tissues is taken from a mammal, preferably a human subject, suffering from a disease state.
  • the NOVX ribopolynucleotide is used to produce siRNA constructs, that are specific for the NOVX gene product.
  • NOVX siRNA' s are treated by administering NOVX siRNA' s to the cells or tissues by methods described for the transfection of nucleic acids into a cell or tissue, and a change in NOVX polypeptide or polynucleotide expression is observed in the subject sample relative to the control sample, using the assays described.
  • This NOVX gene knockdown approach provides a rapid method for determination of a NOVX minus (NOVX " ) phenotype in the treated subject sample.
  • NOVX " phenotype observed in the treated subject sample thus serves as a marker for monitoring the course of a disease state during treatment.
  • a NOVX siRNA is used in therapy.
  • Methods for the generation and use of a NOVX siRNA are known to those skilled in the art. Example techniques are provided below.
  • Sense RNA (ssRNA) and antisense RNA (asRNA) of NOVX are produced using known methods such as transcription in RNA expression vectors.
  • the sense and antisense RNA are about 500 bases in length each.
  • the produced ssRNA and asRNA (0.5 ⁇ M) in 10 mM Tris-HCl (pH 7.5) with 20 mM NaCl were heated to 95° C for 1 min then cooled and annealed at room temperature for 12 to 16 h.
  • the RNAs are precipitated and resuspended in lysis buffer (below).
  • RNAs are electrophoresed in a 2% agarose gel in TBE buffer and stained with ethidium bromide. See, e.g., Sambrook et al., Molecular Cloning. Cold Spring Harbor Laboratory Press, Plainview, N.Y. (1989).
  • Untreated rabbit reticulocyte lysate (Ambion) are assembled according to the manufacturer's directions. dsRNA is incubated in the lysate at 30° C for 10 min prior to the addition of mRNAs. Then NOVX mRNAs are added and the incubation continued for an additional 60 min. The molar ratio of double stranded RNA and mRNA is about 200: 1. The NOVX mRNA is radiolabeled (using known techniques) and its stability is monitored by gel electrophoresis.
  • the double stranded RNA is internally radiolabeled with a 3 P-ATP. Reactions are stopped by the addition of 2 X proteinase K buffer and deproteinized as described previously (Tuschl et al., Genes Dev., 13:3191-3197 (1999)). Products are analyzed by electrophoresis in 15% or 18% polyacrylamide sequencing gels using appropriate RNA standards. By monitoring the gels for radioactivity, the natural production of 10 to 25 nt RNAs from the double stranded RNA can be determined.
  • the band of double stranded RNA about 21-23 bps, is eluded.
  • the efficacy of these 21-23 mers for suppressing NOVX transcription is assayed in vitro using the same rabbit reticulocyte assay described above using 50 nanomolar of double stranded 21-23 mer for each assay.
  • the sequence of these 21-23 mers is then determined using standard nucleic acid sequencing techniques.
  • RNAs are chemically synthesized using Expedite RNA phosphoramidites and thymidine phosphoramidite (Proligo, Germany). Synthetic oligonucleotides are deprotected and gel-purified (Elbashir, Lendeckel, & Tuschl, Genes & Dev. 15, 188-200 (2001)), followed by Sep-Pak C18 cartridge (Waters, Milford, Mass., USA) purification (Tuschl, et al., Biochemistry, 32:11658-11668 (1993)).
  • RNAs (20 ⁇ M) single strands are incubated in annealing buffer (100 mM potassium acetate, 30 mM HEPES-KOH at pH 7.4, 2 mM magnesium acetate) for 1 min at 90° C followed by 1 h at 37° C.
  • annealing buffer 100 mM potassium acetate, 30 mM HEPES-KOH at pH 7.4, 2 mM magnesium acetate
  • a cell culture known in the art to regularly express NOVX is propagated using standard conditions. 24 hours before transfection, at approx. 80% confluency, the cells are trypsinized and diluted 1 :5 with fresh medium without antibiotics (1-3 X 105 cells/ml) and transferred to 24-well plates (500 ml/well). Transfection is performed using a commercially available lipofection kit and NOVX expression is monitored using standard techniques with positive and negative control. A positive control is cells that naturally express NOVX while a negative control is cells that do not express NOVX. Base-paired 21 and 22 nt siRNAs with overhanging 3' ends mediate efficient sequence-specific mRNA degradation in lysates and in cell culture. Different concentrations of siRNAs are used.
  • siRNAs are effective at concentrations that are several orders of magnitude below the concentrations applied in conventional antisense or ribozyme gene targeting experiments.
  • the above method provides a way both for the deduction of NOVX siRNA sequence and the use of such siRNA for in vitro suppression.
  • In vivo suppression may be performed using the same siRNA using well known in vivo transfection or gene therapy transfection techniques.
  • Another aspect of the invention pertains to isolated antisense nucleic acid molecules that are hybridizable to or complementary to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:27?-l, wherein n is an integer between 1 and 606, or fragments, analogs or derivatives thereof.
  • An "antisense" nucleic acid comprises a nucleotide sequence that is complementary to a "sense" nucleic acid encoding a protein (e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence).
  • antisense nucleic acid molecules comprise a sequence complementary to at least about 10, 25, 50, 100, 250 or 500 nucleotides or an entire NOVX coding strand, or to only a portion thereof.
  • Nucleic acid molecules encoding fragments, homologs, derivatives and analogs of a NOVX protein of SEQ ID NO:27z, wherein n is an integer between 1 and 606, or antisense nucleic acids complementary to a NOVX nucleic acid sequence of SEQ ID NO:2 ⁇ z-l, wherein n is an integer between 1 and 606, are additionally provided.
  • an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence encoding a NOVX protein.
  • coding region refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues.
  • the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence encoding the NOVX protein.
  • noncoding region refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (i.e., also referred to as 5' and 3' untranslated regions).
  • antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing.
  • the antisense nucleic acid molecule can be complementary to the entire coding region of NOVX mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of NOVX mRNA.
  • the antisense oligonucleotide can be complementary to the region su ⁇ ounding the translation start site of NOVX mRNA.
  • An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length.
  • An antisense nucleic acid of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art.
  • an antisense nucleic acid e.g., an antisense oligonucleotide
  • an antisense nucleic acid can be chemically synthesized using naturally-occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids (e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used).
  • modified nucleotides that can be used to generate the antisense nucleic acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-carboxymethylaminomethyl-2-thiouridine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 5-methoxyuracil, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, 2-thiouracil, 4-thiouracil
  • the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).
  • the antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a NOVX protein to thereby inhibit expression of the protein (e.g., by inhibiting transcription and/or translation).
  • the hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix.
  • An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site.
  • antisense nucleic acid molecules can be modified to target selected cells and then administered systemically.
  • antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface (e.g., by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens).
  • the antisense nucleic acid molecules can also be delivered to cells using the vectors described herein.
  • vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are prefe ⁇ ed.
  • the antisense nucleic acid molecule of the invention is an ⁇ -anomeric nucleic acid molecule.
  • An ⁇ -anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual ⁇ -units, the strands run parallel to each other. See, e.g., Gaultier, et al., 1987. Nucl. Acids Res. 15: 6625-6641.
  • the antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (See, e.g., Inoue, et al. 1987. Nucl. Acids Res.
  • RNA-DNA analogue See, e.g., Inoue, et al, 1987. FEBS Lett. 215: 327-330.
  • Ribozymes and PNA Moieties See, e.g., Inoue, et al, 1987. FEBS Lett. 215: 327-330.
  • Nucleic acid modifications include, by way of non-limiting example, modified bases, and nucleic acids whose sugar phosphate backbones are modified or derivatized. These modifications are carried out at least in part to enhance the chemical stability of the modified nucleic acid, such that they may be used, for example, as antisense binding nucleic acids in therapeutic applications in a subject.
  • an antisense nucleic acid of the invention is a ribozyme.
  • Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region.
  • ribozymes e.g., hammerhead ribozymes as described in Haselhoff and Gerlach 1988. Nature 334: 585-591
  • a ribozyme having specificity for a NOVX-encoding nucleic acid can be designed based upon the nucleotide sequence of a NOVX cDNA disclosed herein (i.e., SEQ ID NO:2/z-l, wherein n is an integer between 1 and 606).
  • a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a NOVX-encoding mRNA. See, e.g., U.S. Patent 4,987,071 to Cech, et al. and U.S. Patent 5,116,742 to Cech, et al.
  • NOVX mRNA can also be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al, (1993) Science 261:1411-1418.
  • NOVX gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the NOVX nucleic acid (e.g., the NOVX promoter and/or enhancers) to form triple helical structures that prevent transcription of the NOVX gene in target cells.
  • nucleotide sequences complementary to the regulatory region of the NOVX nucleic acid e.g., the NOVX promoter and/or enhancers
  • the NOVX nucleic acids can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g. , the stability, hybridization, or solubility of the molecule.
  • the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids. See, e.g., Hyrup, et al, 1996. Bioorg Med Chem 4: 5-23.
  • peptide nucleic acids refer to nucleic acid mimics (e.g., DNA mimics) in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleotide bases are retained.
  • the neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength.
  • the synthesis of PNA oligomer can be performed using standard solid phase peptide synthesis protocols as described in Hyrup, et al, 1996. supra; Perry-O'Keefe, et al, 1996. Proc. Natl. Acad. Sci. USA 93: 14670-14675.
  • PNAs of NOVX can be used in therapeutic and diagnostic applications.
  • PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation a ⁇ est or inhibiting replication.
  • PNAs of NOVX can also be used, for example, in the analysis of single base pair mutations in a gene (e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., Si nucleases (See, Hyrup, et al, 1996. supra); or as probes or primers for DNA sequence and hybridization (See, Hyrup, et al, 1996, supra; Perry-O'Keefe, et al, 1996. supra).
  • PNAs of NOVX can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art.
  • PNA-DNA chimeras of NOVX can be generated that may combine the advantageous properties of PNA and DNA.
  • Such chimeras allow DNA recognition enzymes (e.g., RNase H and DNA polymerases) to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity.
  • PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleotide bases, and orientation (see, Hyrup, et al., 1996. supra).
  • the synthesis of PNA-DNA chimeras can be performed as described in Hyrup, et al, 1996. supra and Finn, et al, 1996. Nucl Acids Res 24: 3357-3363.
  • a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry, and modified nucleoside analogs, e.g., 5'-(4-methoxytrityl)amino-5'-deoxy-thymidine phosphoramidite, can be used between the PNA and the 5' end of DNA. See, e.g., Mag, et al, 1989. Nucl Acid Res 17: 5973-5988. PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment. See, e.g., Finn, et al, 1996. supra.
  • chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment. See, e.g., Petersen, et al, 1975. Bioorg. Med. Chem. Lett. 5: 1119-11124.
  • the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger, et al, 1989. Proc. Natl. Acad. Sci. U.S.A. 86: 6553-6556; Lemaitre, et al, 1987. Proc. Natl. Acad. Sci. 84: 648-652; PCT Publication No. WO88/09810) or the blood-brain barrier (see, e.g., PCT Publication No. WO 89/10134).
  • other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger, et al, 1989. Proc. Natl. Acad. Sci. U.S.A. 86: 6553-6556; Lemai
  • oligonucleotides can be modified with hybridization triggered cleavage agents (see, e.g., Krol, et al, 1988. BioTechniques 6:958-976) or intercalating agents (see, e.g.,
  • the oligonucleotide may be conjugated to another molecule, e.g., a peptide, a hybridization triggered cross-linking agent, a transport agent, a hybridization-triggered cleavage agent, and the like.
  • a polypeptide according to the invention includes a polypeptide including the amino acid sequence of NOVX polypeptides whose sequences are provided in any one of SEQ ID NO:2/z, wherein n is an integer between 1 and 606.
  • the invention also includes a mutant or variant protein any of whose residues may be changed from the corresponding residues shown in any one of SEQ ID NO:277, wherein n is an integer between 1 and 606, while still encoding a protein that maintains its NOVX activities and physiological functions, or a functional fragment thereof.
  • a NOVX variant that preserves NOVX-like function includes any variant in which residues at a particular position in the sequence have been substituted by other amino acids, and further include the possibility of inserting an additional residue or residues between two residues of the parent protein as well as the possibility of deleting one or more residues from the parent sequence.
  • Any amino acid substitution, insertion, or deletion is encompassed by the invention. In favorable circumstances, the substitution is a conservative substitution as defined above.
  • One aspect of the invention pertains to isolated NOVX proteins, and biologically-active portions thereof, or derivatives, fragments, analogs or homologs thereof. Also provided are polypeptide fragments suitable for use as immunogens to raise anti-NOVX antibodies.
  • native NOVX proteins can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques.
  • NOVX proteins are produced by recombinant DNA techniques.
  • a NOVX protein or polypeptide can be synthesized chemically using standard peptide synthesis techniques.
  • an “isolated” or “purified” polypeptide or protein or biologically-active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the NOVX protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized.
  • the language “substantially free of cellular material” includes preparations of NOVX proteins in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly-produced.
  • the language "substantially free of cellular material” includes preparations of NOVX proteins having less than about 30% (by dry weight) of non-NOVX proteins (also referred to herein as a "contaminating protein"), more preferably less than about 20% of non-NOVX proteins, still more preferably less than about 10% of non-NOVX proteins, and most preferably less than about 5% of non-NOVX proteins.
  • non-NOVX proteins also referred to herein as a "contaminating protein”
  • the NOVX protein or biologically-active portion thereof is recombinantly-produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the NOVX protein preparation.
  • the language “substantially free of chemical precursors or other chemicals” includes preparations of NOVX proteins in which the protein is separated from chemical precursors or other chemicals that are involved in the synthesis of the protein.
  • the language “substantially free of chemical precursors or other chemicals” includes preparations of NOVX proteins having less than about 30% (by dry weight) of chemical precursors or non-NOVX chemicals, more preferably less than about 20% chemical precursors or non-NOVX chemicals, still more preferably less than about 10% chemical precursors or non-NOVX chemicals, and most preferably less than about 5% chemical precursors or non-NOVX chemicals.
  • Biologically-active portions of NOVX proteins include peptides comprising amino acid sequences sufficiently homologous to or derived from the amino acid sequences of the NOVX proteins (e.g., the amino acid sequence of SEQ ID NO:27J, wherein n is an integer between 1 and 606) that include fewer amino acids than the full-length NOVX proteins, and exhibit at least one activity of a NOVX protein.
  • biologically-active portions comprise a domain or motif with at least one activity of the NOVX protein.
  • a biologically-active portion of a NOVX protein can be a polypeptide which is, for example, 10, 25, 50, 100 or more amino acid residues in length.
  • NOVX protein has an amino acid sequence of SEQ ID NO: 1
  • the NOVX protein is substantially homologous to SEQ ID NO:27z, wherein n is an integer between 1 and 606, and retains the functional activity of the protein of SEQ ID NO:27z, wherein n is an integer between 1 and 606, yet differs in amino acid sequence due to natural allelic variation or mutagenesis, as described in detail, below.
  • the NOVX protein is a protein that comprises an amino acid sequence at least about 45% homologous to the amino acid sequence of SEQ ID NO:2 «, wherein n is an integer between 1 and 606, and retains the functional activity of the NOVX proteins of SEQ ID NO:2?z, wherein n is an integer between 1 and 606. Determining Homology Between Two or More Sequences
  • the sequences are aligned for optimal comparison pu ⁇ oses (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino or nucleic acid sequence).
  • the amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared.
  • a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are homologous at that position (i.e., as used herein amino acid or nucleic acid "homology” is equivalent to amino acid or nucleic acid "identity").
  • the nucleic acid sequence homology maybe determined as the degree of identity between two sequences.
  • the homology may be determined using computer programs known in the art, such as GAP software provided in the GCG program package. See, Needleman and Wunsch, 1970. J Mol Biol 48: 443-453.
  • GAP software with the following settings for nucleic acid sequence comparison: GAP creation penalty of 5.0 and GAP extension penalty of 0.3
  • the coding region of the analogous nucleic acid sequences referred to above exhibits a degree of identity preferably of at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99%, with the CDS (encoding) part of the DNA sequence of SEQ ID NO:2n-l, wherein n is an integer between 1 and 606.
  • sequence identity refers to the degree to which two polynucleotide or polypeptide sequences are identical on a residue-by-residue basis over a particular region of comparison.
  • percentage of sequence identity is calculated by comparing two optimally aligned sequences over that region of comparison, determining the number of positions at which the identical nucleic acid base (e.g., A, T, C, G, U, or I, in the case of nucleic acids) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the region of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity.
  • substantially identical denotes a characteristic of a polynucleotide sequence, wherein the polynucleotide comprises a sequence that has at least 80 percent sequence identity, preferably at least 85 percent identity and often 90 to 95 percent sequence identity, more usually at least 99 percent sequence identity as compared to a reference sequence over a comparison region.
  • NOVX chimeric or fusion proteins As used herein, a NOVX "chimeric protein” or “fusion protein” comprises a NOVX polypeptide operatively-linked to a non-NOVX polypeptide.
  • An "NOVX polypeptide” refers to a polypeptide having an amino acid sequence co ⁇ esponding to a NOVX protein of SEQ ID NO:27z, wherein n is an integer between 1 and 606, whereas a "non-NOVX polypeptide” refers to a polypeptide having an amino acid sequence corresponding to a protein that is not substantially homologous to the NOVX protein, e.g., a protein that is different from the NOVX protein and that is derived from the same or a different organism.
  • a NOVX fusion protein comprises at least one biologically-active portion of a NOVX protein.
  • a NOVX fusion protein comprises at least two biologically-active portions of a NOVX protein.
  • a NOVX fusion protein comprises at least three biologically-active portions of a NOVX protein.
  • the term "operatively-linked" is intended to indicate that the NOVX polypeptide and the non-NOVX polypeptide are fused in-frame with one another.
  • the non-NOVX polypeptide can be fused to the N-terminus or C-terminus of the NOVX polypeptide.
  • the fusion protein is a GST-NO VX fusion protein in which the
  • NOVX sequences are fused to the C-terminus of the GST (glutathione S-transferase) sequences.
  • GST glutthione S-transferase
  • Such fusion proteins can facilitate the purification of recombinant NOVX polypeptides.
  • the fusion protein is a NOVX protein containing a heterologous signal sequence at its N-terminus.
  • NOVX a heterologous signal sequence at its N-terminus.
  • expression and/or secretion of NOVX can be increased through use of a heterologous signal sequence.
  • the fusion protein is a NOVX-immunoglobulin fusion protein in which the NOVX sequences are fused to sequences derived from a member of the immunoglobulin protein family.
  • the NOVX-immunoglobulin fusion proteins of the invention can be inco ⁇ orated into pharmaceutical compositions and administered to a subject to inhibit an interaction between a NOVX ligand and a NOVX protein on the surface of a cell, to thereby suppress NOVX-mediated signal transduction in vivo.
  • the NOVX-immunoglobulin fusion proteins can be used to affect the bioavailability of a NOVX cognate ligand.
  • NOVX-immunoglobulin fusion proteins of the invention can be used as immunogens to produce anti-NOVX antibodies in a subject, to purify NOVX ligands, and in screening assays to identify molecules that inhibit the interaction of NOVX with a NOVX ligand.
  • a NOVX chimeric or fusion protein of the invention can be produced by standard recombinant DNA techniques.
  • DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, e.g., by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation.
  • the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers.
  • PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, e.g., Ausubel, et al. (eds.) CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, 1992).
  • anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence
  • expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide).
  • a NOVX-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the NOVX protein.
  • the invention also pertains to variants of the NOVX proteins that function as either NOVX agonists (i.e., mimetics) or as NOVX antagonists.
  • Variants of the NOVX protein can be generated by mutagenesis (e.g., discrete point mutation or trancation of the NOVX protein).
  • An agonist of the NOVX protein can retain substantially the same, or a subset of, the biological activities of the naturally occurring form of the NOVX protein.
  • An antagonist of the NOVX protein can inhibit one or more of the activities of the naturally occurring form of the NOVX protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade which includes the NOVX protein.
  • treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein has fewer side effects in a subject relative to treatment with the naturally occurring form of the NOVX proteins.
  • Variants of the NOVX proteins that function as either NOVX agonists (i.e., mimetics) or as NOVX antagonists can be identified by screening combinatorial libraries of mutants (e.g., truncation mutants) of the NOVX proteins for NOVX protein agonist or antagonist activity.
  • a variegated library of NOVX variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library.
  • a variegated library of NOVX variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential NOVX sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of NOVX sequences therein.
  • a degenerate set of potential NOVX sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of NOVX sequences therein.
  • methods which can be used to produce libraries of potential NOVX variants from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector.
  • degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential NOVX sequences.
  • Methods for synthesizing degenerate oligonucleotides are well-known within the art. See, e.g., Narang, 1983. Tetrahedron 39: 3; Itakura, et al, 1984. Annu. Rev. Biochem. 53: 323; Itakura, et al, 1984. SczeTzce 198: 1056; Ike, et al, 1983. Nucl. Acids Res. 11: 477.
  • libraries of fragments of the NOVX protein coding sequences can be used to generate a variegated population of NOVX fragments for screening and subsequent selection of variants of a NOVX protein.
  • a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of a NOVX coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double-stranded DNA that can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with Si nuclease, and ligating the resulting fragment library into an expression vector.
  • expression libraries can be derived which encodes N-terminal and internal fragments of various sizes of the NOVX proteins.
  • Recursive ensemble mutagenesis (REM), a new technique that enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify NOVX variants. See, e.g., Arkin and Yourvan, 1992. Proc. Natl Acad. Sci. USA 89: 7811-7815; Delgrave, et al, 1993. Protein Engineering 6:327-331.
  • Anti-NOVX Antibodies Included in the invention are antibodies to NOVX proteins, or fragments of NOVX proteins.
  • antibody refers to immunoglobulin molecules and immunologically active portions of immunoglobulin (Ig) molecules, i.e., molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen.
  • immunoglobulin (Ig) molecules i.e., molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen.
  • Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, F ab , F ab ' and F( a )2 fragments, and an F ab expression library.
  • antibody molecules obtained from humans relates to any of the classes IgG, IgM, IgA, IgE and IgD, which differ from one another by the nature of the heavy chain present in the molecule. Certain classes have subclasses as well, such as IgGi, IgG 2 , and others. Furthermore, in humans, the light chain may be a kappa chain or a lambda chain. Reference herein to antibodies includes a reference to all such classes, subclasses and types of human antibody species.
  • An isolated protein of the invention intended to serve as an antigen, or a portion or fragment thereof, can be used as an immunogen to generate antibodies that immunospecifically bind the antigen, using standard techniques for polyclonal and monoclonal antibody preparation.
  • the full-length protein can be used or, alternatively, the invention provides antigenic peptide fragments of the antigen for use as immunogens.
  • An antigenic peptide fragment comprises at least 6 amino acid residues of the amino acid sequence of the full length protein, such as an amino acid sequence of SEQ ID NO:27z, wherein n is an integer between 1 and 606, and encompasses an epitope thereof such that an antibody raised against the peptide forms a specific immune complex with the full length protein or with any fragment that contains the epitope.
  • the antigenic peptide comprises at least 10 amino acid residues, or at least 15 amino acid residues, or at least 20 amino acid residues, or at least 30 amino acid residues.
  • Prefe ⁇ ed epitopes encompassed by the antigenic peptide are regions of the protein that are located on its surface; commonly these are hydrophilic regions.
  • At least one epitope encompassed by the antigenic peptide is a region of NOVX that is located on the surface of the protein, e.g., a hydrophilic region.
  • a hydrophobicity analysis of the human NOVX protein sequence will indicate which regions of a NOVX polypeptide are particularly hydrophilic and, therefore, are likely to encode surface residues useful for targeting antibody production.
  • hydropathy plots showing regions of hydrophilicity and hydrophobicity may be generated by any method well known in the art, including, for example, the Kyte Doolittle or the Hopp Woods methods, either with or without Fourier transformation. See, e.g., Hopp and Woods, 1981, Proc. Nat.
  • epitope includes any protein determinant capable of specific binding to an immunoglobulin or T-cell receptor.
  • Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three dimensional structural characteristics, as well as specific charge characteristics.
  • a NOVX polypeptide or a fragment thereof comprises at least one antigenic epitope.
  • An anti-NOVX antibody of the present invention is said to specifically bind to antigen NOVX when the equilibrium binding constant (K D ) is ⁇ 1 ⁇ M, preferably ⁇ 100 nM, more preferably ⁇ 10 nM, and most preferably ⁇ 100 pM to about 1 pM, as measured by assays including radioligand binding assays or similar assays known to skilled artisans.
  • K D equilibrium binding constant
  • a protein of the invention, or a derivative, fragment, analog, homolog or ortholog thereof, may be utilized as an immunogen in the generation of antibodies that immunospecifically bind these protein components.
  • Antibodies A Laboratory Manual, Hariow E, and Lane D, 1988, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, inco ⁇ orated herein by reference). Some of these antibodies are discussed below.
  • polyclonal Antibodies For the production of polyclonal antibodies, various suitable host animals (e.g., rabbit, goat, mouse or other mammal) may be immunized by one or more injections with the native protein, a synthetic variant thereof, or a derivative of the foregoing.
  • An appropriate immunogenic preparation can contain, for example, the naturally occurring immunogenic protein, a chemically synthesized polypeptide representing the immunogenic protein, or a recombinantly expressed immunogenic protein.
  • the protein may be conjugated to a second protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor.
  • the preparation can further include an adjuvant.
  • adjuvants used to increase the immunological response include, but are not limited to, Freund's (complete and incomplete), mineral gels (e.g., aluminum hydroxide), surface active substances (e.g., lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, etc.), adjuvants usable in humans such as Bacille Calmette-Guerin and Corynebacterium parvum, or similar immunostimulatory agents.
  • Additional examples of adjuvants which can be employed include MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).
  • the polyclonal antibody molecules directed against the immunogenic protein can be isolated from the mammal (e.g. , from the blood) and further purified by well known techniques, such as affinity chromatography using protein A or protein G, which provide primarily the IgG fraction of immune serum. Subsequently, or alternatively, the specific antigen which is the target of the immunoglobulin sought, or an epitope thereof, may be immobilized on a column to purify the immune specific antibody by immunoaffinity chromatography. Purification of immunoglobulins is discussed, for example, by D.
  • MAb monoclonal antibody
  • CDRs complementarity determining regions
  • Monoclonal antibodies can be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975).
  • a hybridoma method a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent.
  • the lymphocytes can be immunized in vitro.
  • the immunizing agent will typically include the protein antigen, a fragment thereof or a fusion protein thereof.
  • peripheral blood lymphocytes are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired.
  • the lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal -Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103).
  • Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin.
  • rat or mouse myeloma cell lines are employed.
  • the hybridoma cells can be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells.
  • a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells.
  • the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (“HAT medium”), which substances prevent the growth of HGPRT-deficient cells.
  • Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, California and the American Type Culture Collection, Manassas, Virginia. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133:3001 (1984); Brodeur et al., Monoclonal -Antibody Production Techniques and Applications, Marcel Dekker, Inc., New York, (1987) pp. 51-63).
  • the culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the antigen.
  • the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA).
  • RIA radioimmunoassay
  • ELISA enzyme-linked immunoabsorbent assay
  • the binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107:220 (1980). It is an objective, especially important in therapeutic applications of monoclonal antibodies, to identify antibodies having a high degree of specificity and a high binding affinity for the target antigen.
  • the clones can be subcloned by limiting dilution procedures and grown by standard methods (Goding, 1986). Suitable culture media for this pu ⁇ ose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells can be grown in vivo as ascites in a mammal.
  • the monoclonal antibodies secreted by the subclones can be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.
  • the monoclonal antibodies can also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567.
  • DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies).
  • the hybridoma cells of the invention serve as a preferred source of such DNA.
  • the DNA can be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells.
  • host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells.
  • the DNA also can be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences (U.S. Patent No. 4,816,567; Morrison, Nature 368, 812-13 (1994)) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide.
  • non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.
  • the antibodies directed against the protein antigens of the invention can further comprise humanized antibodies or human antibodies. These antibodies are suitable for administration to humans without engendering an immune response by the human against the administered immunoglobulin.
  • Humanized forms of antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab') 2 or other antigen-binding subsequences of antibodies) that are principally comprised of the sequence of a human immunoglobulin, and contain minimal sequence derived from a non-human immunoglobulin.
  • Humanization can be performed following the method of Winter and co-workers (Jones et al., Nature, 321 :522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. (See also U.S. Patent No. 5,225,539.) In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies can also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences.
  • the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework regions are those of a human immunoglobulin consensus sequence.
  • the humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., 1986; Riechmann et al., 1988; and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)).
  • Fc immunoglobulin constant region
  • Fully human antibodies essentially relate to antibody molecules in which the entire sequence of both the light chain and the heavy chain, including the CDRs, arise from human genes. Such antibodies are termed "human antibodies", or “fully human antibodies” herein.
  • Human monoclonal antibodies can be prepared by the trioma technique; the human B-cell hybridoma technique (see Kozbor, et al., 1983 Immunol Today 4: 72) and the EBV hybridoma technique to produce human monoclonal antibodies (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96).
  • Human monoclonal antibodies may be utilized in the practice of the present invention and may be produced by using human hybridomas (see Cote, et al., 1983. Proc Natl Acad Sci USA 80: 2026-2030) or by transforming human B-cells with Epstein Barr Virus in vitro (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, hie, pp. 77-96).
  • human antibodies can also be produced using additional techniques, including phage display libraries (Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)).
  • human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Patent Nos.
  • Human antibodies may additionally be produced using transgenic nonhuman animals which are modified so as to produce fully human antibodies rather than the animal's endogenous antibodies in response to challenge by an antigen.
  • transgenic nonhuman animals which are modified so as to produce fully human antibodies rather than the animal's endogenous antibodies in response to challenge by an antigen.
  • the endogenous genes encoding the heavy and light immunoglobulin chains in the nonhuman host have been incapacitated, and active loci encoding human heavy and light chain immunoglobulins are inserted into the host's genome.
  • the human genes are inco ⁇ orated, for example, using yeast artificial chromosomes containing the requisite human DNA segments. An animal which provides all the desired modifications is then obtained as progeny by crossbreeding intermediate transgenic animals containing fewer than the full complement of the modifications.
  • the prefe ⁇ ed embodiment of such a nonhuman animal is a mouse, and is termed the XenomouseTM as disclosed in PCT publications WO 96/33735 and WO 96/34096.
  • This animal produces B cells which secrete fully human immunoglobulins.
  • the antibodies can be obtained directly from the animal after immunization with an immunogen of interest, as, for example, a preparation of a polyclonal antibody, or alternatively from immortalized B cells derived from the animal, such as hybridomas producing monoclonal antibodies.
  • the genes encoding the immunoglobulins with human variable regions can be recovered and expressed to obtain the antibodies directly, or can be further modified to obtain analogs of antibodies such as, for example, single chain Fv molecules.
  • U.S. Patent No. 5,939,598 An example of a method of producing a nonhuman host, exemplified as a mouse, lacking expression of an endogenous immunoglobulin heavy chain is disclosed in U.S. Patent No. 5,939,598. It can be obtained by a method including deleting the J segment genes from at least one endogenous heavy chain locus in an embryonic stem cell to prevent rearrangement of the locus and to prevent formation of a transcript of a rearranged immunoglobulin heavy chain locus, the deletion being effected by a targeting vector containing a gene encoding a selectable marker; and producing from the embryonic stem cell a transgenic mouse whose somatic and germ cells contain the gene encoding the selectable marker.
  • a method for producing an antibody of interest such as a human antibody, is disclosed in U.S. Patent No. 5,916,771. It includes introducing an expression vector that contains a nucleotide sequence encoding a heavy chain into one mammalian host cell in culture, introducing an expression vector containing a nucleotide sequence encoding a light chain into another mammalian host cell, and fusing the two cells to form a hybrid cell.
  • the hybrid cell expresses an antibody containing the heavy chain and the light chain.
  • techniques can be adapted for the production of single-chain antibodies specific to an antigenic protein of the invention (see e.g., U.S. Patent No. 4,946,778).
  • methods can be adapted for the construction of F ab expression libraries (see e.g., Huse, et al., 1989 Science 246: 1275-1281) to allow rapid and effective identification of monoclonal F ab fragments with the desired specificity for a protein or derivatives, fragments, analogs or homologs thereof.
  • Antibody fragments that contain the idiotypes to a protein antigen may be produced by techniques known in the art including, but not limited to: (i) an F( a v)2 fragment produced by pepsin digestion of an antibody molecule; (ii) an F ab fragment generated by reducing the disulfide bridges of an F(a - )2 fragment; (iii) an F a b fragment generated by the treatment of the antibody molecule with papain and a reducing agent and (iv) F v fragments.
  • Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens.
  • one of the binding specificities is for an antigenic protein of the invention.
  • the second binding target is any other antigen, and advantageously is a cell-surface protein or receptor or receptor subunit.
  • bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities (Milstein and Cuello, Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture often different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published 13 May 1993, and in Traunecker et al., EMBO J., 10:3655-3659 (1991).
  • -Antibody variable domains with the desired binding specificities can be fused to immunoglobulin constant domain sequences.
  • the fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is prefe ⁇ ed to have the first heavy-chain constant region (CHI) containing the site necessary for light-chain binding present in at least one of the fusions.
  • CHI first heavy-chain constant region
  • the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture.
  • the preferred interface comprises at least a part of the CH3 region of an antibody constant domain.
  • one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan).
  • Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.
  • Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab') 2 bispecific antibodies). Techniques for generating bispecific antibodies from antibody fragments have been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab') 2 fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives.
  • TAB thionitrobenzoate
  • One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody.
  • the bispecific antibodies produced can be used as agents for the selective immobilization of enzymes. Additionally, Fab' fragments can be directly recovered from E. coli and chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med. 175:217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab') 2 molecule. Each Fab' fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lyric activity of human cytotoxic lymphocytes against human breast tumor targets.
  • bispecific antibodies have been produced using leucine zippers.
  • the leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion.
  • the antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers.
  • the fragments comprise a heavy-chain variable domain (V H ) connected to a light-chain variable domain (V L ) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V H and V L domains of one fragment are forced to pair with the complementary V L and V H domains of another fragment, thereby forming two antigen-binding sites.
  • V H and V L domains of one fragment are forced to pair with the complementary V L and V H domains of another fragment, thereby forming two antigen-binding sites.
  • sFv single-chain Fv
  • Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See, Gruber et al., J. Immunol. 152:5368 (1994). Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., J. Immunol. 147:60 (1991).
  • bispecific antibodies can bind to two different epitopes, at least one of which originates in the protein antigen of the invention.
  • an anti-antigenic arm of an immunoglobulin molecule can be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD2, CD3, CD28, or B7), or Fc receptors for IgG (Fc ⁇ R), such as Fc ⁇ RI (CD64), Fc ⁇ RII (CD32) and Fc ⁇ RIII (CDI 6) so as to focus cellular defense mechanisms to the cell expressing the particular antigen.
  • Bispecific antibodies can also be used to direct cytotoxic agents to cells which express a particular antigen.
  • antibodies possess an antigen-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE, DPT A, DOT A, or TETA.
  • a cytotoxic agent or a radionuclide chelator such as EOTUBE, DPT A, DOT A, or TETA.
  • Another bispecific antibody of interest binds the protein antigen described herein and further binds tissue factor (TF).
  • Heteroconjugate antibodies are also within the scope of the present invention.
  • Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360; WO 92/200373; EP 03089). It is contemplated that the antibodies can be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins can be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this pu ⁇ ose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Patent No. 4,676,980. Effector Function Engineering
  • cysteine residue(s) can be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region.
  • the homodimeric antibody thus generated can have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med., 176: 1191-1195 (1992) and Shopes, J. Immunol., 148: 2918-2922 (1992).
  • Homodimeric antibodies with enhanced anti-tumor activity can also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research, 53: 2560-2565 (1993).
  • an antibody can be engineered that has dual Fc regions and can thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design, 3: 219-230 (1989).
  • the invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).
  • a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).
  • Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes.
  • radionuclides are available for the production of radioconjugated antibodies. Examples include 212 Bi, 131 1, 131 In, 90 Y, and 186 Re. Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis--
  • a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987).
  • Carbon-14-labeled l-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.
  • the antibody in another embodiment, can be conjugated to a "receptor" (such streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand” (e.g., avidin) that is in turn conjugated to a cytotoxic agent.
  • a "receptor” such streptavidin
  • a "ligand” e.g., avidin
  • the antibodies disclosed herein can also be formulated as immunoliposomes.
  • Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA, 82: 3688 (1985); Hwang et al., Proc. Natl Acad. Sci. USA, 77: 4030 (1980); and U.S. Pat. Nos. 4,485,045 and 4,544,545. Liposomes with enhanced circulation time are disclosed in U.S. Patent No. 5,013,556.
  • Particularly useful liposomes can be generated by the reverse-phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol, and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter.
  • Fab' fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin et al .,_J. Biol. Chem., 257: 286-288 (1982) via a disulfide-interchange reaction.
  • a chemotherapeutic agent such as Doxorubicin
  • methods for the screening of antibodies that possess the desired specificity include, but are not limited to, enzyme linked immunosorbent assay (ELISA) and other immunologically mediated techniques known within the art.
  • ELISA enzyme linked immunosorbent assay
  • selection of antibodies that are specific to a particular domain of an NOVX protein is facilitated by generation of hybridomas that bind to the fragment of an NOVX protein possessing such a domain.
  • antibodies that are specific for a desired domain within an NOVX protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.
  • Antibodies directed against a NOVX protein of the invention may be used in methods known within the art relating to the localization and/or quantitation of a NOVX protein (e.g., for use in measuring levels of the NOVX protein within appropriate physiological samples, for use in diagnostic methods, for use in imaging the protein, and the like).
  • antibodies specific to a NOVX protein, or derivative, fragment, analog or homolog thereof, that contain the antibody derived antigen binding domain are utilized as pharmacologically active compounds (referred to hereinafter as "Therapeutics").
  • An antibody specific for a NOVX protein of the invention can be used to isolate a NOVX polypeptide by standard techniques, such as immunoaffinity, chromatography or immunoprecipitation.
  • An antibody to a NOVX polypeptide can facilitate the purification of a natural NOVX antigen from cells, or of a recombinantly produced NOVX antigen expressed in host cells.
  • an anti-NOVX antibody can be used to detect the antigenic NOVX protein (e.g., in a cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of expression of the antigenic NOVX protein.
  • Antibodies directed against a NOVX protein can be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling (i. e., physically linking) the antibody to a detectable substance.
  • detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials.
  • suitable enzymes include horseradish peroxidase, alkaline phosphatase, ⁇ -galactosidase, or acetylcholinesterase;
  • suitable prosthetic group complexes include streptavidin biotin and avidin/biotin;
  • suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin;
  • an example of a luminescent material includes luminol;
  • bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include I, I, S or H.
  • Antibodies of the invention may be used as therapeutic agents. Such agents will generally be employed to treat or prevent a disease or pathology in a subject.
  • An antibody preparation preferably one having high specificity and high affinity for its target antigen, is administered to the subject and will generally have an effect due to its binding with the target.
  • Such an effect may be one of two kinds, depending on the specific nature of the interaction between the given antibody molecule and the target antigen in question, h the first instance, administration of the antibody may abrogate or inhibit the binding of the target with an endogenous ligand to which it naturally binds. In this case, the antibody binds to the target and masks a binding site of the naturally occurring ligand, wherein the ligand serves as an effector molecule.
  • the receptor mediates a signal transduction pathway for which ligand is responsible.
  • the effect may be one in which the antibody elicits a physiological result by virtue of binding to an effector binding site on the target molecule.
  • the target a receptor having an endogenous ligand which may be absent or defective in the disease or pathology, binds the antibody as a surrogate effector ligand, initiating a receptor-based signal transduction event by the receptor.
  • a therapeutically effective amount of an antibody of the invention relates generally to the amount needed to achieve a therapeutic objective. As noted above, this may be a binding interaction between the antibody and its target antigen that, in certain cases, interferes with the functioning of the target, and in other cases, promotes a physiological response.
  • the amount required to be administered will furthermore depend on the binding affinity of the antibody for its specific antigen, and will also depend on the rate at which an administered antibody is depleted from the free volume other subject to which it is administered.
  • Common ranges for therapeutically effective dosing of an antibody or antibody fragment of the invention may be, by way of nonlimiting example, from about 0.1 mg/kg body weight to about 50 mg/kg body weight. Common dosing frequencies may range, for example, from twice daily to once a week.
  • Antibodies specifically binding a protein of the invention, as well as other molecules identified by the screening assays disclosed herein, can be administered for the treatment of various disorders in the form of pharmaceutical compositions.
  • Principles and considerations involved in preparing such compositions, as well as guidance in the choice of components are provided, for example, in Remington : The Science And Practice Of Pharmacy 19th ed. (Alfonso R. Gennaro, et al., editors) Mack Pub. Co., Easton, Pa. : 1995; Drug Abso ⁇ tion Enhancement : Concepts, Possibilities, Limitations, And Trends, Harwood Academic Publishers, Langhorne, Pa., 1994; and Peptide And Protein Drug Delivery (Advances hi Parenteral Sciences, Vol. 4), 1991, M. Dekker, New York.
  • the antigenic protein is intracellular and whole antibodies are used as inhibitors, internalizing antibodies are preferred.
  • liposomes can also be used to deliver the antibody, or an antibody fragment, into cells.
  • the smallest inhibitory fragment that specifically binds to the binding domain of the target protein is prefe ⁇ ed.
  • peptide molecules can be designed that retain the ability to bind the target protein sequence.
  • Such peptides can be synthesized chemically and/or produced by recombinant DNA technology. See, e.g., Marasco et al., Proc. Natl. Acad. Sci. USA, 90: 7889-7893 (1993).
  • the formulation herein can also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other.
  • the composition can comprise an agent that enhances its function, such as, for example, a cytotoxic agent, cytokine, chemotherapeutic agent, or growth-inhibitory agent.
  • cytotoxic agent such as, for example, a cytotoxic agent, cytokine, chemotherapeutic agent, or growth-inhibitory agent.
  • Such molecules are suitably present in combination in amounts that are effective for the purpose intended.
  • the active ingredients can also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methyhnethacrylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles, and nanocapsules) or in macroemulsions.
  • colloidal drug delivery systems for example, liposomes, albumin microspheres, microemulsions, nano-particles, and nanocapsules
  • macroemulsions for example, liposomes, albumin microspheres, microemulsions, nano-particles, and nanocapsules
  • the formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.
  • sustained-release preparations can be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No.
  • copolymers of L-glutamic acid and ⁇ ethyl-L-glutamate non-degradable ethylene-vinyl acetate
  • degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT TM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate)
  • poly-D-(-)-3-hydroxybutyric acid While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods.
  • An agent for detecting an analyte protein is an antibody capable of binding to an analyte protein, preferably an antibody with a detectable label.
  • -Antibodies can be polyclonal, or more preferably, monoclonal.
  • An intact antibody, or a fragment thereof e.g., Fa b or F( a b) 2
  • the term "labeled", with regard to the probe or antibody is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled.
  • biological sample is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. Included within the usage of the term "biological sample”, therefore, is blood and a fraction or component of blood including blood serum, blood plasma, or lymph. That is, the detection method of the invention can be used to detect an analyte mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo.
  • in vitro techniques for detection of an analyte mRNA include Northern hybridizations and in situ hybridizations.
  • In vitro techniques for detection of an analyte protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations, and immunofluorescence.
  • In vitro techniques for detection of an analyte genomic DNA include Southern hybridizations. Procedures for conducting immunoassays are described, for example in "ELISA: Theory and Practice: Methods in Molecular Biology", Vol.42, J. R. Crowther (Ed.) Human Press, Totowa, NJ, 1995; "Immunoassay”, E. Diamandis and T. Christopoulus, Academic Press, Inc., San Diego, CA, 1996; and "Practice and Theory of Enzyme Immunoassays", P. Tijssen, Elsevier
  • analyte protein in vivo techniques for detection of an analyte protein include introducing into a subject a labeled anti-an analyte protein antibody.
  • the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.
  • vectors preferably expression vectors, containing a nucleic acid encoding a NOVX protein, or derivatives, fragments, analogs or homologs thereof.
  • vector refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
  • plasmid refers to a circular double stranded DNA loop into which additional DNA segments can be ligated.
  • viral vector is another type of vector, wherein additional DNA segments can be ligated into the viral genome.
  • vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors).
  • Other vectors e.g., non-episomal mammalian vectors
  • certain vectors are capable of directing the expression of genes to which they are operatively-linked. Such vectors are referred to herein as "expression vectors”.
  • expression vectors of utility in recombinant DNA techniques are often in the form of plasmids.
  • plasmid and "vector” can be used interchangeably as the plasmid is the most commonly used form of vector.
  • the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retrovirases, adenovirases and adeno-associated viruses), which serve equivalent functions.
  • viral vectors e.g., replication defective retrovirases, adenovirases and adeno-associated viruses
  • the recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, that is operatively-linked to the nucleic acid sequence to be expressed.
  • "operably-linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner that allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell).
  • regulatory sequence is intended to includes promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990). Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc.
  • the expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., NOVX proteins, mutant forms of NOVX proteins, fusion proteins, etc.).
  • the recombinant expression vectors of the invention can be designed for expression of NOVX proteins in prokaryotic or eukaryotic cells.
  • NOVX proteins can be expressed in bacterial cells such as Escherichia coli, insect cells (using baculovirus expression vectors) yeast cells or mammalian cells.
  • telomeres Suitable host cells are discussed further in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990).
  • the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.
  • Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein.
  • Such fusion vectors typically serve three pu ⁇ oses: (i) to increase expression of recombinant protein; (ii) to increase the solubility of the recombinant protein; and (iii) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification.
  • a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein.
  • enzymes, and their cognate recognition sequences include Factor Xa, thrombin and enterokinase.
  • Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson, 1988.
  • GST glutathione S-transferase
  • E. coli expression vectors examples include pTrc (-Amrann et al, (1988) Gene 69:301-315) and pET lid (Studier et al, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 60-89).
  • One strategy to maximize recombinant protein expression in E. coli is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein. See, e.g., Gottesman, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 119-128.
  • Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in E. coli (see, e.g., Wada, et al, 1992. Nucl. Acids Res.20: 2111-2118).
  • the NOVX expression vector is a yeast expression vector.
  • yeast expression vectors for expression in yeast Saccharomyces cerivisae include pYepSecl (Baldari, et al, 1987. EMBOJ. 6: 229-234), pMFa (Kurjan and Herskowitz, 1982. Cell 30: 933-943), pJRY88 (Schultz et al, 1987. Gene 54: 113-123), pYES2 (Invitrogen Co ⁇ oration, San Diego, Calif), and picZ (InVitrogen Co ⁇ , San Diego, Calif).
  • NOVX can be expressed in insect cells using baculoviras expression vectors.
  • Baculoviras vectors available for expression of proteins in cultured insect cells include the pAc series (Smith, et al, 1983. Mol. Cell. Biol. 3: 2156-2165) and the pVL series (Lucklow and Summers, 1989. Virology 170: 31-39).
  • a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, 1987. Nature 329: 840) and pMT2PC (Kaufman, et al, 1987.
  • the expression vector's control functions are often provided by viral regulatory elements.
  • promoters are derived from polyoma, adenovirus 2, cytomegalovirus, and simian viras 40.
  • suitable expression systems for both prokaryotic and eukaryotic cells see, e.g., Chapters 16 and 17 of Sambrook, et al, MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.
  • the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid).
  • tissue-specific regulatory elements are known in the art.
  • suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert, et al, 1987. Genes Dev. 1: 268-277), lymphoid-specific promoters (Calame and Eaton, 1988. Adv. Immunol. 43:
  • promoters of T cell receptors Winoto and Baltimore, 1989. EMBO J. 8: 729-733 and immunoglobulins (Banerji, et al, 1983. Cell 33: 729-740; Queen and Baltimore, 1983. Cell 33: 741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle, 1989. Proc. Natl. Acad. Sci. USA 86: 5473-5477), pancreas-specific promoters (Edlund, et al, 1985. Science 230: 912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Pat.
  • mammary gland-specific promoters e.g., milk whey promoter; U.S. Pat.
  • the invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively-linked to a regulatory sequence in a manner that allows for expression (by transcription of the DNA molecule) of an RNA molecule that is antisense to NOVX mRNA.
  • Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen that direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen that direct constitutive, tissue specific or cell type specific expression of antisense RNA.
  • the antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced.
  • a high efficiency regulatory region the activity of which can be determined by the cell type into which the vector is introduced.
  • host cell and "recombinant host cell” are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.
  • a host cell can be any prokaryotic or eukaryotic cell.
  • NOVX protein can be expressed in bacterial cells such as E. coli, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art.
  • Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques.
  • transformation and transfection are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation.
  • Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989), and other laboratory manuals.
  • MOLECULAR CLONING A LABORATORY MANUAL. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989
  • a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest.
  • selectable markers include those that confer resistance to drags, such as G418, hygromycin and methotrexate.
  • Nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding NOVX or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have inco ⁇ orated the selectable marker gene will survive, while the other cells die).
  • a host cell of the invention such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) NOVX protein.
  • the invention further provides methods for producing NOVX protein using the host cells of the invention.
  • the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding NOVX protein has been introduced) in a suitable medium such that NOVX protein is produced.
  • the method further comprises isolating NOVX protein from the medium or the host cell.
  • the host cells of the invention can also be used to produce non-human transgenic animals.
  • a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which NOVX protein-coding sequences have been introduced.
  • Such host cells can then be used to create non-human transgenic animals in which exogenous NOVX sequences have been introduced into their genome or homologous recombinant animals in which endogenous NOVX sequences have been altered.
  • Such animals are useful for studying the function and/or activity of NOVX protein and for identifying and/or evaluating modulators of NOVX protein activity.
  • a "transgenic animal” is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene.
  • Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, etc.
  • a transgene is exogenous DNA that is integrated into the genome of a cell from which a transgenic animal develops and that remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal.
  • a "homologous recombinant animal” is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous NOVX gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.
  • a transgenic animal of the invention can be created by introducing NOVX-encoding nucleic acid into the male pronuclei of a fertilized oocyte (e.g., by microinjection, retro viral infection) and allowing the oocyte to develop in a pseudopregnant female foster animal.
  • the human NOVX cDNA sequences i.e., any one of SEQ ID NO:2 «-l, wherein n is an integer between 1 and 606, can be introduced as a transgene into the genome of a non-human animal.
  • a non-human homologue of the human NOVX gene such as a mouse NOVX gene
  • a non-human homologue of the human NOVX gene can be isolated based on hybridization to the human NOVX cDNA (described further supra) and used as a transgene.
  • ⁇ ntronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene.
  • a tissue-specific regulatory sequence(s) can be operably-linked to the NOVX transgene to direct expression of NOVX protein to particular cells.
  • transgenic founder animal can be identified based upon the presence of the NOVX transgene in its genome and/or expression of NOVX mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene-encoding NOVX protein can further be bred to other transgenic animals carrying other transgenes.
  • a vector which contains at least a portion of a NOVX gene into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the NOVX gene.
  • the NOVX gene can be a human gene (e.g., the cDNA of any one of SEQ ID NO:272-l, wherein n is an integer between 1 and 606), but more preferably, is a non-human homologue of a human NOVX gene.
  • a mouse homologue of human NOVX gene of SEQ ID NO:272-l can be used to construct a homologous recombination vector suitable for altering an endogenous NOVX gene in the mouse genome.
  • the vector is designed such that, upon homologous recombination, the endogenous NOVX gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a "knock out" vector).
  • the vector can be designed such that, upon homologous recombination, the endogenous NOVX gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous NOVX protein).
  • the altered portion of the NOVX gene is flanked at its 5'- and 3 '-termini by additional nucleic acid of the NOVX gene to allow for homologous recombination to occur between the exogenous NOVX gene carried by the vector and an endogenous NOVX gene in an embryonic stem cell.
  • flanking NOVX nucleic acid is of sufficient length for successful homologous recombination with the endogenous gene.
  • flanking DNA both at the 5'- and 3 '-termini
  • the vector is ten introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced NOVX gene has homologously-recombined with the endogenous NOVX gene are selected. See, e.g., Li, et al, 1992. Cell 69: 915.
  • the selected cells are then injected into a blastocyst of an animal (e.g., a mouse) to form aggregation chimeras.
  • an animal e.g., a mouse
  • a chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term.
  • Progeny harboring the homologously-recombined DNA in their germ cells can be used to breed animals in which all cells of the animal contain the homologously-recombined DNA by germline transmission of the transgene.
  • transgenic non-humans animals can be produced that contain selected systems that allow for regulated expression of the transgene.
  • a system is the cre/loxP recombinase system of bacteriophage PI.
  • cre/loxP recombinase system See, e.g., Lakso, et al, 1992.
  • a recombinase system is the FLP recombinase system of Saccharomyces cerevisiae. See, O'Gorman, et al, 1991. Science 251:1351-1355. If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein are required.
  • Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.
  • Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut, et al, 1997. Nature 385: 810-813.
  • a cell e.g., a somatic cell
  • the quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated.
  • the reconstructed oocyte is then cultured such that it develops to morula or blastocyte and then transfe ⁇ ed to pseudopregnant female foster animal.
  • the offspring borne of this female foster animal will be a clone of the animal from which the cell (e.g., the somatic cell) is isolated.
  • compositions suitable for administration can be inco ⁇ orated into pharmaceutical compositions suitable for administration.
  • compositions typically comprise the nucleic acid molecule, protein, or antibody and a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable carrier is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and abso ⁇ tion delaying agents, and the like, compatible with pharmaceutical administration.
  • Suitable carriers are described in the most recent edition of Remington's Pharmaceutical Sciences, a standard reference text in the field, which is inco ⁇ orated herein by reference.
  • Preferred examples of such carriers or diluents include, but are not limited to, water, saline, finger's solutions, dextrose solution, and 5% human serum albumin. Liposomes and non-aqueous vehicles such as fixed oils may also be used.
  • the use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be inco ⁇ orated into the compositions.
  • a pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration.
  • routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (i.e., topical), transmucosal, and rectal administration.
  • Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid (EDTA); buffers such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose.
  • the pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide.
  • compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion.
  • suitable carriers include physiological saline, bacteriostatic water, Cremophor EL (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringeability exists.
  • the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof.
  • the proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
  • Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like.
  • isotonic agents for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition.
  • Prolonged abso ⁇ tion of the injectable compositions can be brought about by including in the composition an agent which delays abso ⁇ tion, for example, aluminum monostearate and gelatin.
  • Sterile injectable solutions can be prepared by inco ⁇ orating the active compound (e.g., a NOVX protein or anti-NOVX antibody) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization.
  • the active compound e.g., a NOVX protein or anti-NOVX antibody
  • dispersions are prepared by inco ⁇ orating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above.
  • methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
  • Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the pu ⁇ ose of oral therapeutic administration, the active compound can be inco ⁇ orated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition.
  • the tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
  • a suitable propellant e.g., a gas such as carbon dioxide, or a nebulizer.
  • Systemic administration can also be by transmucosal or transdermal means.
  • penetrants appropriate to the barrier to be permeated are used in the formulation.
  • penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives.
  • Transmucosal administration can be accomplished through the use of nasal sprays or suppositories.
  • the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.
  • the compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.
  • suppositories e.g., with conventional suppository bases such as cocoa butter and other glycerides
  • retention enemas for rectal delivery.
  • the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems.
  • a controlled release formulation including implants and microencapsulated delivery systems.
  • Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art.
  • the materials can also be obtained commercially from Alza Co ⁇ oration and Nova Pharmaceuticals, Inc.
  • Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers.
  • Dosage unit form refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
  • the specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.
  • the nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors.
  • Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (see, e.g., U.S. Patent No. 5,328,470) or by stereotactic injection (see, e.g., Chen, et al, 1994. Proc. Natl. Acad. Sci. USA 91: 3054-3057).
  • the pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded.
  • the pharmaceutical preparation can include one or more cells that produce the gene delivery system.
  • compositions can be included in a container, pack, or dispenser together with instructions for administration.
  • the isolated nucleic acid molecules of the invention can be used to express NOVX protein (e.g. , via a recombinant expression vector in a host cell in gene therapy applications), to detect NOVX mRNA (e.g., in a biological sample) or a genetic lesion in a NOVX gene, and to modulate NOVX activity, as described further, below.
  • the NOVX proteins can be used to screen drugs or compounds that modulate the NOVX protein activity or expression as well as to treat disorders characterized by insufficient or excessive production of NOVX protein or production of NOVX protein forms that have decreased or aberrant activity compared to NOVX wild-type protein (e.g.; diabetes (regulates insulin release); obesity (binds and transport lipids); metabolic disturbances associated with obesity, the metabolic syndrome X as well as anorexia and wasting disorders associated with chronic diseases and various cancers, and infectious disease(possesses anti-microbial activity) and the various dyshpidemias.
  • the anti-NOVX antibodies of the invention can be used to detect and isolate NOVX proteins and modulate NOVX activity.
  • the invention can be used in methods to influence appetite, abso ⁇ tion of nutrients and the disposition of metabolic substrates in both a positive and negative fashion.
  • the invention further pertains to novel agents identified by the screening assays described herein and uses thereof for treatments as described, supra. Screening Assays
  • the invention provides a method (also referred to herein as a "screening assay") for identifying modulators, i.e., candidate or test compounds or agents (e.g., peptides, peptidomimetics, small molecules or other drugs) that bind to NOVX proteins or have a stimulatory or inhibitory effect on, e.g., NOVX protein expression or NOVX protein activity.
  • modulators i.e., candidate or test compounds or agents (e.g., peptides, peptidomimetics, small molecules or other drugs) that bind to NOVX proteins or have a stimulatory or inhibitory effect on, e.g., NOVX protein expression or NOVX protein activity.
  • modulators i.e., candidate or test compounds or agents (e.g., peptides, peptidomimetics, small molecules or other drugs) that bind to NOVX proteins or have a stimulatory or inhibitory effect on, e.g., NOVX protein expression or NOV
  • the invention provides assays for screening candidate or test compounds which bind to or modulate the activity of the membrane-bound form of a NOVX protein or polypeptide or biologically-active portion thereof.
  • the test compounds of the invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the "one-bead one-compound” library method; and synthetic library methods using affinity chromatography selection.
  • the biological library approach is limited to peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds. See, e.g., Lam, 1997. Anticancer Drug Design 12: 145.
  • a "small molecule” as used herein, is meant to refer to a composition that has a molecular weight of less than about 5 kD and most preferably less than about 4 kD.
  • Small molecules can be, e.g., nucleic acids, peptides, polypeptides, peptidomimetics, carbohydrates, lipids or other organic or inorganic molecules.
  • Libraries of chemical and/or biological mixtures, such as fungal, bacterial, or algal extracts, are known in the art and can be screened with any of the assays of the invention. Examples of methods for the synthesis of molecular libraries can be found in the art, for example in: DeWitt, et al, 1993. Proc. Natl. Acad. Sci. U.S.A.
  • an assay is a cell-based assay in which a cell which expresses a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface is contacted with a test compound and the ability of the test compound to bind to a NOVX protein determined.
  • the cell for example, can of mammalian origin or a yeast cell.
  • Determining the ability of the test compound to bind to the NOVX protein can be accomplished, for example, by coupling the test compound with a radioisotope or enzymatic label such that binding of the test compound to the NOVX protein or biologically-active portion thereof can be determined by detecting the labeled compound in a complex.
  • test compounds can be labeled with 125 I, 35 S, 14 C, or 3 H, either directly or indirectly, and the radioisotope detected by direct counting of radioemission or by scintillation counting.
  • test compounds can be enzymatically-labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product.
  • the assay comprises contacting a cell which expresses a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface with a known compound which binds NOVX to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a NOVX protein, wherein determining the ability of the test compound to interact with a NOVX protein comprises determining the ability of the test compound to preferentially bind to NOVX protein or a biologically-active portion thereof as compared to the known compound.
  • an assay is a cell-based assay comprising contacting a cell expressing a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the NOVX protein or biologically-active portion thereof. Determining the ability of the test compound to modulate the activity of NOVX or a biologically-active portion thereof can be accomplished, for example, by determining the ability of the NOVX protein to bind to or interact with a NOVX target molecule.
  • a "target molecule” is a molecule with which a NOVX protein binds or interacts in nature, for example, a molecule on the surface of a cell which expresses a NOVX interacting protein, a molecule on the surface of a second cell, a molecule in the extracellular milieu, a molecule associated with the internal surface of a cell membrane or a cytoplasmic molecule.
  • a NOVX target molecule can be a non-NOVX molecule or a NOVX protein or polypeptide of the invention, h one embodiment, a NOVX target molecule is a component of a signal transduction pathway that facilitates transduction of an extracellular signal (e.g.
  • the target for example, can be a second intercellular protein that has catalytic activity or a protein that facilitates the association of downstream signaling molecules with NOVX.
  • Determining the ability of the NOVX protein to bind to or interact with a NOVX target molecule can be accomplished by one of the methods described above for determining direct binding. In one embodiment, determining the ability of the NOVX protein to bind to or interact with a NOVX target molecule can be accomplished by determining the activity of the target molecule. For example, the activity of the target molecule can be determined by detecting induction of a cellular second messenger of the target (i.e.
  • a reporter gene comprising a NOVX-responsive regulatory element operatively linked to a nucleic acid encoding a detectable marker, e.g., luciferase
  • a cellular response for example, cell survival, cellular differentiation, or cell proliferation.
  • an assay of the invention is a cell-free assay comprising contacting a NOVX protein or biologically-active portion thereof with a test compound and determining the ability of the test compound to bind to the NOVX protein or biologically-active portion thereof. Binding of the test compound to the NOVX protein can be determined either directly or indirectly as described above.
  • the assay comprises contacting the NOVX protein or biologically-active portion thereof with a known compound which binds NOVX to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a NOVX protein, wherein determining the ability of the test compound to interact with a NOVX protein comprises determining the ability of the test compound to preferentially bind to NOVX or biologically-active portion thereof as compared to the known compound.
  • an assay is a cell-free assay comprising contacting NOVX protein or biologically-active portion thereof with a test compound and determining the ability of the test compound to modulate (e.g.
  • Determining the ability of the test compound to modulate the activity of NOVX can be accomplished, for example, by determining the ability of the NOVX protein to bind to a NOVX target molecule by one of the methods described above for determining direct binding. In an alternative embodiment, determining the ability of the test compound to modulate the activity of NOVX protein can be accomplished by determining the ability of the NOVX protein further modulate a NOVX target molecule. For example, the catalytic/enzymatic activity of the target molecule on an appropriate substrate can be determined as described, supra.
  • the cell-free assay comprises contacting the NOVX protein or biologically-active portion thereof with a known compound which binds NOVX protein to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a NOVX protein, wherein determining the ability of the test compound to interact with a NOVX protein comprises determining the ability of the NOVX protein to preferentially bind to or modulate the activity of a NOVX target molecule.
  • the cell-free assays of the invention are amenable to use of both the soluble form or the membrane-bound form of NOVX protein, hi the case of cell-free assays comprising the membrane-bound form of NOVX protein, it may be desirable to utilize a solubilizing agent such that the membrane-bound form of NOVX protein is maintained in solution.
  • solubilizing agents include non-ionic detergents such as n-octylglucoside, n-dodecylglucoside, n-dodecylmaltoside, octanoyl-N-methylglucamide, decanoyl-N-methylglucamide, Triton ® ,X-100, Triton ® X-l 14, Thesit ® ,
  • Isotridecypoly(ethylene glycol ether) n N-dodecyl ⁇ N,N-dimethyl-3-ammonio-l-propane sulfonate, 3-(3-cholamidopropyl) dimethylamminiol-1 -propane sulfonate (CHAPS), or 3-(3-cholamidopropyl)dimethylamminiol-2-hydroxy-l -propane sulfonate (CHAPSO).
  • binding of a test compound to NOVX protein, or interaction of NOVX protein with a target molecule in the presence and absence of a candidate compound can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and micro-centrifuge tubes.
  • a fusion protein can be provided that adds a domain that allows one or both of the proteins to be bound to a matrix.
  • GST-NO VX fusion proteins or GST-target fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, MO) or glutathione derivatized microtiter plates, that are then combined with the test compound or the test compound and either the non-adsorbed target protein or NOVX protein, and the mixture is incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components, the matrix immobilized in the case of beads, complex determined either directly or indirectly, for example, as described, supra. Alternatively, the complexes can be dissociated from the matrix, and the level of NOVX protein binding or activity determined using standard techniques.
  • NOVX protein or its target molecule can be immobilized utilizing conjugation of biotin and sfreptavidin.
  • Biotinylated NOVX protein or target molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques well-known within the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, 111.), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical).
  • antibodies reactive with NOVX protein or target molecules can be derivatized to the wells of the plate, and unbound target or NOVX protein trapped in the wells by antibody conjugation.
  • Methods for detecting such complexes include immunodetection of complexes using antibodies reactive with the NOVX protein or target molecule, as well as enzyme-linked assays that rely on detecting an enzymatic activity associated with the NOVX protein or target molecule.
  • modulators of NOVX protein expression are identified in a method wherein a cell is contacted with a candidate compound and the expression of NOVX mRNA or protein in the cell is determined. The level of expression of NOVX mRNA or protein in the presence of the candidate compound is compared to the level of expression of NOVX mRNA or protein in the absence of the candidate compound. The candidate compound can then be identified as a modulator of NOVX mRNA or protein expression based upon this comparison. For example, when expression of NOVX mRNA or protein is greater (z.e., statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of NOVX mRNA or protein expression.
  • the candidate compound when expression of NOVX m-RNA or protein is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of NOVX mRNA or protein expression.
  • the level of NOVX mRNA or protein expression in the cells can be determined by methods described herein for detecting NOVX mRNA or protein.
  • the NOVX proteins can be used as "bait proteins" in a two-hybrid assay or three hybrid assay (see, e.g., U.S. Patent No. 5,283,317; Zervos, et al, 1993. Cell 72: 223-232; Madura, et al, 1993. J. Biol. Chem. 268:
  • NOVX-binding proteins or "NOVX-bp"
  • NOVX-binding proteins are also involved in the propagation of signals by the NOVX proteins as, for example, upstream or downstream elements of the NOVX pathway.
  • the two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains.
  • the assay utilizes two different DNA constructs.
  • the gene that codes for NOVX is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g. , GAL-4).
  • a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein (“prey" or "sample”) is fused to a gene that codes for the activation domain of the known transcription factor.
  • the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) that is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene that encodes the protein which interacts with NOVX.
  • a reporter gene e.g., LacZ
  • Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene that encodes the protein which interacts with NOVX.
  • the invention further pertains to novel agents identified by the aforementioned screening assays and uses thereof for treatments as described herein. Detection Assays
  • cDNA sequences identified herein can be used in numerous ways as polynucleotide reagents.
  • these sequences can be used to: (i) map their respective genes on a chromosome; and, thus, locate gene regions associated with genetic disease; (ii) identify an individual from a minute biological sample (tissue typing); and (iii) aid in forensic identification of a biological sample.
  • Chromosome Mapping Once the sequence (or a portion of the sequence) of a gene has been isolated, this sequence can be used to map the location of the gene on a chromosome. This process is called chromosome mapping. Accordingly, portions or fragments of the NOVX sequences of SEQ ID NO:2?z-l , wherein n is an integer between 1 and 606, or fragments or derivatives thereof, can be used to map the location of the NOVX genes, respectively, on a chromosome. The mapping of the NOVX sequences to chromosomes is an important first step in co ⁇ elating these sequences with genes associated with disease.
  • NOVX genes can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp in length) from the NOVX sequences. Computer analysis of the NOVX, sequences can be used to rapidly select primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers can then be used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene co ⁇ esponding to the NOVX sequences will yield an amplified fragment.
  • Somatic cell hybrids are prepared by fusing somatic cells from different mammals (e.g., human and mouse cells). As hybrids of human and mouse cells grow and divide, they gradually lose human chromosomes in random order, but retain the mouse chromosomes. By using media in which mouse cells cannot grow, because they lack a particular enzyme, but in which human cells can, the one human chromosome that contains the gene encoding the needed enzyme will be retained. By using various media, panels of hybrid cell lines can be established. Each cell line in a panel contains either a single human chromosome or a small number of human chromosomes, and a full set of mouse chromosomes, allowing easy mapping of individual genes to specific human chromosomes.
  • mammals e.g., human and mouse cells.
  • Somatic cell hybrids containing only fragments of human chromosomes can also be produced by using human chromosomes with translocations and deletions.
  • PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular sequence to a particular chromosome. Three or more sequences can be assigned per day using a single thermal cycler. Using the NOVX sequences to design oligonucleotide primers, sub-localization can be achieved with panels of fragments from specific chromosomes.
  • Fluorescence in situ hybridization (FISH) of a DNA sequence to a metaphase chromosomal spread can further be used to provide a precise chromosomal location in one step.
  • Chromosome spreads can be made using cells whose division has been blocked in metaphase by a chemical like colcemid that disrupts the mitotic spindle.
  • the chromosomes can be treated briefly with trypsin, and then stained with Giemsa. A pattern of light and dark bands develops on each chromosome, so that the chromosomes can be identified individually.
  • the FISH technique can be used with a DNA sequence as short as 500 or 600 bases.
  • clones larger than 1,000 bases have a higher likelihood of binding to a unique chromosomal location with sufficient signal intensity for simple detection.
  • 1,000 bases, and more preferably 2,000 bases will suffice to get good results at a reasonable amount of time.
  • Reagents for chromosome mapping can be used individually to mark a single chromosome or a single site on that chromosome, or panels of reagents can be used for marking multiple sites and/or multiple chromosomes. Reagents co ⁇ esponding to noncoding regions of the genes actually are preferred for mapping pu ⁇ oses. Coding sequences are more likely to be conserved within gene families, thus increasing the chance of cross hybridizations during chromosomal mapping.
  • differences in the DNA sequences between individuals affected and unaffected with a disease associated with the NOVX gene can be determined. If a mutation is observed in some or all of the affected individuals but not in any unaffected individuals, then the mutation is likely to be the causative agent of the particular disease. Comparison of affected and unaffected individuals generally involves first looking for structural alterations in the chromosomes, such as deletions or translocations that are visible from chromosome spreads or detectable using PCR based on that DNA sequence. Ultimately, complete sequencing of genes from several individuals can be performed to confirm the presence of a mutation and to distinguish mutations from polymo ⁇ hisms.
  • the NOVX sequences of the invention can also be used to identify individuals from minute biological samples.
  • an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identification.
  • the sequences of the invention are useful as additional DNA markers for RFLP ("restriction fragment length polymo ⁇ hisms," described in U.S. Patent No. 5,272,057).
  • the sequences of the invention can be used to provide an alternative technique that determines the actual base-by-base DNA sequence of selected portions of an individual's genome.
  • the NOVX sequences described herein can be used to prepare two PCR primers from the 5'- and 3'-termini of the sequences.
  • primers can then be used to amplify an individual's DNA and subsequently sequence it.
  • Panels of co ⁇ esponding DNA sequences from individuals, prepared in this manner, can provide unique individual identifications, as each individual will have a unique set of such DNA sequences due to allelic differences.
  • the sequences of the invention can be used to obtain such identification sequences from individuals and from tissue.
  • the NOVX sequences of the invention uniquely represent portions of the human genome. Allelic variation occurs to some degree in the coding regions of these sequences, and to a greater degree in the noncoding regions. It is estimated that allelic variation between individual humans occurs with a frequency of about once per each 500 bases.
  • allelic variation is due to single nucleotide polymo ⁇ hisms (SNPs), which include restriction fragment length polymo ⁇ hisms (RFLPs).
  • SNPs single nucleotide polymo ⁇ hisms
  • RFLPs restriction fragment length polymo ⁇ hisms
  • Each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for identification pu ⁇ oses. Because greater numbers of polymo ⁇ hisms occur in the noncoding regions, fewer sequences are necessary to differentiate individuals.
  • the noncoding sequences can comfortably provide positive individual identification with a panel of perhaps 10 to 1,000 primers that each yield a noncoding amplified sequence of 100 bases. If coding sequences, such as those of SEQ ID NO:2?z-l, wherein n is an integer between 1 and 606, are used, a more appropriate number of primers for positive individual identification would be 500-2,000.
  • the invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, pharmacogenomics, and monitoring clinical trials are used for prognostic (predictive) p poses to thereby treat an individual prophylactically. Accordingly, one aspect of the invention relates to diagnostic assays for determining
  • NOVX protein and/or nucleic acid expression as well as NOVX activity in the context of a biological sample (e.g., blood, serum, cells, tissue) to thereby determine whether an individual is afflicted with a disease or disorder, or is at risk of developing a disorder, associated with aberrant NOVX expression or activity.
  • the disorders include metabolic disorders, diabetes, obesity, infectious disease, anorexia, cancer-associated cachexia, cancer, neurodegenerative disorders, Alzheimer's Disease, Parkinson's Disorder, immune disorders, and hematopoietic disorders, and the various dyshpidemias, metabolic disturbances associated with obesity, the metabolic syndrome X and wasting disorders associated with chronic diseases and various cancers.
  • the invention also provides for prognostic (or predictive) assays for determining whether an individual is at risk of developing a disorder associated with NOVX protein, nucleic acid expression or activity. For example, mutations in a NOVX gene can be assayed in a biological sample. Such assays can be used for prognostic or predictive pu ⁇ ose to thereby prophylactically treat an individual prior to the onset of a disorder characterized by or associated with NOVX protein, nucleic acid expression, or biological activity.
  • -Another aspect of the invention provides methods for determining NOVX protein, nucleic acid expression or activity in an individual to thereby select appropriate therapeutic or prophylactic agents for that individual (refe ⁇ ed to herein as "pharmacogenomics").
  • Pharmacogenomics allows for the selection of agents (e.g., drugs) for therapeutic or prophylactic treatment of an individual based on the genotype of the individual (e.g., the genotype of the individual examined to determine the ability of the individual to respond to a particular agent.)
  • Yet another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of NOVX in clinical trials.
  • An exemplary method for detecting the presence or absence of NOVX in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting NOVX protein or nucleic acid (e.g., mRNA, genomic DNA) that encodes NOVX protein such that the presence of NOVX is detected in the biological sample.
  • a compound or an agent capable of detecting NOVX protein or nucleic acid e.g., mRNA, genomic DNA
  • An agent for detecting NOVX mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to NOVX mRNA or genomic DNA.
  • the nucleic acid probe can be, for example, a full-length NOVX nucleic acid, such as the nucleic acid of SEQ ID NO:272-l, wherein n is an integer between 1 and 606, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to NOVX mRNA or genomic DNA.
  • n is an integer between 1 and 606, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to NOVX mRNA or genomic DNA.
  • Other suitable probes for use in the diagnostic assays of the invention are described herein.
  • An agent for detecting NOVX protein is an antibody capable of binding to NOVX protein, preferably an antibody with a detectable label.
  • Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab') 2 ) can be used.
  • the term "labeled", with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled.
  • Examples of indirect labeling include detection of a primary antibody using a fluorescently-labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently-labeled streptavidin.
  • biological sample is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. That is, the detection method of the invention can be used to detect NOVX mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo.
  • in vitro techniques for detection of NOVX mRNA include Northern hybridizations and in situ hybridizations.
  • In vitro techniques for detection of NOVX protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations, and immunofluorescence.
  • In vitro techniques for detection of NOVX genomic DNA include Southern hybridizations.
  • in vivo techniques for detection of NOVX protein include introducing into a subject a labeled anti-NOVX antibody.
  • the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.
  • the biological sample contains protein molecules from the test subject.
  • the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject.
  • a preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject.
  • the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting NOVX protein, mRNA, or genomic DNA, such that the presence of NOVX protein, mRNA or genomic DNA is detected in the biological sample, and comparing the presence of NOVX protein, mRNA or genomic DNA in the control sample with the presence of NOVX protein, mRNA or genomic DNA in the test sample.
  • a compound or agent capable of detecting NOVX protein, mRNA, or genomic DNA, such that the presence of NOVX protein, mRNA or genomic DNA is detected in the biological sample, and comparing the presence of NOVX protein, mRNA or genomic DNA in the control sample with the presence of NOVX protein, mRNA or genomic DNA in the test sample.
  • the kit can comprise: a labeled compound or agent capable of detecting NOVX protein or mRNA in a biological sample; means for determining the amount of NOVX in the sample; and means for comparing the amount of NOVX in the sample with a standard.
  • the compound or agent can be packaged in a suitable container.
  • the kit can further comprise instructions for using the kit to detect NOVX protein or nucleic acid.
  • the diagnostic methods described herein can furthermore be utilized to identify subjects having or at risk of developing a disease or disorder associated with abe ⁇ ant NOVX expression or activity.
  • the assays described herein such as the preceding diagnostic assays or the following assays, can be utilized to identify a subject having or at risk of developing a disorder associated with NOVX protein, nucleic acid expression or activity.
  • the prognostic assays can be utilized to identify a subject having or at risk for developing a disease or disorder.
  • the invention provides a method for identifying a disease or disorder associated with abe ⁇ ant NOVX expression or activity in which a test sample is obtained from a subject and NOVX protein or nucleic acid (e.g., mRNA, genomic DNA) is detected, wherein the presence of NOVX protein or nucleic acid is diagnostic for a subject having or at risk of developing a disease or disorder associated with aberrant NOVX expression or activity.
  • a test sample refers to a biological sample obtained from a subject of interest.
  • a test sample can be a biological fluid (e.g., serum), cell sample, or tissue.
  • the prognostic assays described herein can be used to determine whether a subject can be administered an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) to treat a disease or disorder associated with aberrant NOVX expression or activity.
  • an agent e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate
  • agent e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate
  • the invention provides methods for determining whether a subject can be effectively treated with an agent for a disorder associated with aberrant NOVX expression or activity in which a test sample is obtained and NOVX protein or nucleic acid is detected (e.g., wherein the presence of NOVX protein or nucleic acid is diagnostic for a subject that can be administered the agent to treat a disorder associated with aberrant NOVX expression or activity).
  • the methods of the invention can also be used to detect genetic lesions in a NOVX gene, thereby determining if a subject with the lesioned gene is at risk for a disorder characterized by aberrant cell proliferation and/or differentiation.
  • the methods include detecting, in a sample of cells from the subject, the presence or absence of a genetic lesion characterized by at least one of an alteration affecting the integrity of a gene encoding a NOVX-protein, or the misexpression of the NOVX gene.
  • such genetic lesions can be detected by ascertaining the existence of at least one of: (i) a deletion of one or more nucleotides from a NOVX gene; (ii) an addition of one or more nucleotides to a NOVX gene; (iii) a substitution of one or more nucleotides of a NOVX gene, (iv) a chromosomal rearrangement of a NOVX gene; (v) an alteration in the level of a messenger RNA transcript of a NOVX gene, (vi) abe ⁇ ant modification of a
  • NOVX gene such as of the methylation pattern of the genomic DNA, (vii) the presence of a non- wild-type splicing pattern of a messenger RNA transcript of a NOVX gene, (viii) a non- wild-type level of a NOVX protein, (ix) allelic loss of a NOVX gene, and (x) inappropriate post-translational modification of a NOVX protein.
  • assay techniques known in the art which can be used for detecting lesions in a NOVX gene.
  • a prefe ⁇ ed biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject.
  • any biological sample containing nucleated cells maybe used, including, for example, buccal mucosal cells.
  • detection of the lesion involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g., U.S. Patent Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran, et al, 1988. Science 241: 1077-1080; and Nakazawa, et al, 1994. Proc. Natl. Acad. Sci.
  • PCR polymerase chain reaction
  • LCR ligation chain reaction
  • This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers that specifically hybridize to a NOVX gene under conditions such that hybridization and amplification of the NOVX gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.
  • nucleic acid e.g., genomic, mRNA or both
  • Alternative amplification methods include: self sustained sequence replication (see, Guatelli, et al, 1990. Proc. Natl. Acad. Sci. USA 87: 1874-1878), transcriptional amplification system (see, Kwoh, et al, 1989. Proc. Natl. Acad. Sci. USA 86: 1173-1177); Q ⁇ Replicase (see, Lizardi, et al, 1988. BioTechnology 6: 1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.
  • mutations in a NOVX gene from a sample cell can be identified by alterations in restriction enzyme cleavage patterns.
  • sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicates mutations in the sample DNA.
  • sequence specific ribozymes see, e.g., U.S. Patent No. 5,493,531 can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.
  • genetic mutations in NOVX can be identified by hybridizing a sample and control nucleic acids, e.g., DNA or RNA, to high-density arrays containing hundreds or thousands of oligonucleotides probes. See, e.g., Cronin, et al, 1996. Human Mutation 7: 244-255; Kozal, et al, 1996. Nat. Med. 2: 753-759.
  • genetic mutations in ⁇ OVX can be identified in two dimensional arrays containing light-generated D ⁇ A probes as described in Cronin, et al, supra.
  • a first hybridization array of probes can be used to scan through long stretches of D ⁇ A in a sample and control to identify base changes between the sequences by making linear a ⁇ ays of sequential overlapping probes. This step allows the identification of point mutations.
  • a second hybridization a ⁇ ay that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all variants or mutations detected.
  • Each mutation a ⁇ ay is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene.
  • any of a variety of sequencing reactions known in the art can be used to directly sequence the ⁇ OVX gene and detect mutations by comparing the sequence of the sample ⁇ OVX with the co ⁇ esponding wild-type (control) sequence.
  • Examples of sequencing reactions include those based on techniques developed by Maxim and Gilbert, 1977. Proc. Natl. Acad. Sci. USA 74: 560 or Sanger, 1977. Proc. Natl. Acad. Sci. USA 74: 5463. It is also contemplated that any of a variety of automated sequencing procedures can be utilized when performing the diagnostic assays (see, e.g., ⁇ aeve, et al, 1995.
  • Biotechniques 19: 448 including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101; Cohen, et al, 1996. Adv. Chromatography 36: 127-162; and Griffin, et al, 1993. Appl. Biochem. Biotechnol. 38: 147-159).
  • RNA/RNA or RNA/DNA heteroduplexes Other methods for detecting mutations in the NOVX gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes. See, e.g., Myers, et al, 1985. Science 230: 1242.
  • the art technique of "mismatch cleavage" starts by providing heteroduplexes of formed by hybridizing (labeled) RNA or DNA containing the wild-type NOVX sequence with potentially mutant RNA or DNA obtained from a tissue sample.
  • the double-stranded duplexes are treated with an agent that cleaves single-stranded regions of the duplex such as which will exist due to basepair mismatches between the control and sample strands.
  • RNA/DNA duplexes can be treated with RNase and DNA DNA hybrids treated with Si nuclease to enzymatically digesting the mismatched regions.
  • either DNA DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine the site of mutation. See, e.g., Cotton, et al, 1988. Proc. Natl. Acad. Sci. USA 85: 4397; Saleeba, et al, 1992. Methods Enzymol. 217: 286-295.
  • control DNA or RNA can be labeled for detection.
  • the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called "DNA mismatch repair" enzymes) in defined systems for detecting and mapping point mutations in NOVX cDNAs obtained from samples of cells.
  • DNA mismatch repair enzymes
  • the mutY enzyme of E. coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches. See, e.g., Hsu, et al, 1994. Carcinogenesis 15: 1657-1662.
  • a probe based on a NOVX sequence e.g., a wild-type NOVX sequence
  • a cDNA or other DNA product from a test cell(s).
  • the duplex is treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like. See, e.g., U.S. Patent No. 5,459,039.
  • alterations in electrophoretic mobility will be used to identify mutations in NOVX genes.
  • single strand conformation polymo ⁇ hism may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids. See, e.g., Orita, et al, 1989. Proc. Natl. Acad. Sci. USA: 86: 2766; Cotton, 1993. Mutat. Res. 285: 125-144; Hayashi, 1992. Genet. Anal. Tech. Appl. 9: 73-79. Single-stranded DNA fragments of sample and control NOVX nucleic acids will be denatured and allowed to renature.
  • the secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change.
  • the DNA fragments may be labeled or detected with labeled probes.
  • the sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence.
  • the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility. See, e.g., Keen, et al, 1991. Trends Genet. 1: 5.
  • the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGG ⁇ ).
  • DGG ⁇ denaturing gradient gel electrophoresis
  • DNA will be modified to insure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR.
  • a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA. See, e.g., Rosenbaum and Reissner, 198 '. Biophys.
  • oligonucleotide primers may be prepared in which the known mutation is placed centrally and then hybridized to target DNA under conditions that permit hybridization only if a perfect match is found. See, e.g., Saiki, et al, 1986. Nature 324: 163; Saiki, et al, 1989. Proc. Natl. Acad. Sci. USA 86: 6230.
  • Such allele specific oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.
  • Oligonucleotides used as primers for specific amplification may carry the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization; see, e.g., Gibbs, et al, 1989. Nucl. Acids Res. 17: 2437-2448) or at the extreme 3'-terminus of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (see, e.g., Prossner, 1993. Tibtech. 11: 238).
  • amplification may also be performed using Taq ligase for amplification. See, e.g., Barany, 1991. Proc. Natl. Acad. Sci. USA 88: 189. In such cases, ligation will occur only if there is a perfect match at the 3'-terminus of the 5' sequence, making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.
  • the methods described herein may be performed, for example, by utilizing pre-packaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which may be conveniently used, e.g. , in clinical settings to diagnose patients exhibiting symptoms or family history of a disease or illness involving a NOVX gene.
  • any cell type or tissue preferably peripheral blood leukocytes, in which NOVX is expressed may be utilized in the prognostic assays described herein.
  • any biological sample containing nucleated cells may be used, including, for example, buccal mucosal cells.
  • Agents, or modulators that have a stimulatory or inhibitory effect on NOVX activity can be administered to individuals to treat (prophylactically or therapeutically) disorders.
  • the disorders include but are not limited to, e.g., those diseases, disorders and conditions listed above, and more particularly include those diseases, disorders, or conditions associated with homologs of a NOVX protein, such as those summarized in Table A.
  • the pharmacogenomics i. e. , the study of the relationship between an individual's genotype and that individual's response to a foreign compound or drug
  • the individual maybe considered.
  • the pharmacogenomics of the individual permits the selection of effective agents (e.g., drugs) for prophylactic or therapeutic treatments based on a consideration of the individual's genotype. Such pharmacogenomics can further be used to determine appropriate dosages and therapeutic regimens. Accordingly, the activity of NOVX protein, expression of NOVX nucleic acid, or mutation content of NOVX genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual.
  • Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See e.g., Eichelbaum, 1996. Clin. Exp. Pharmacol. Physiol, 23: 983-985; Linder, 1997. C7/7Z. Chem., 43: 254-266.
  • two types of pharmacogenetic conditions can be differentiated. Genetic conditions transmitted as a single factor altering the way drags act on the body (altered drug action) or genetic conditions transmitted as single factors altering the way the body acts on drags (altered drag metabolism). These pharmacogenetic conditions can occur either as rare defects or as polymo ⁇ hisms.
  • glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common inherited enzymopathy in which the main clinical complication is hemolysis after ingestion of oxidant drags (anti-malarials, sulfonamides, analgesics, nitrofurans) and consumption of fava beans.
  • oxidant drags anti-malarials, sulfonamides, analgesics, nitrofurans
  • the activity of drag metabolizing enzymes is a major determinant of both the intensity and duration of drag action.
  • the gene coding for CYP2D6 is highly polymo ⁇ hic and several mutations have been identified in PM, which all lead to the absence of functional CYP2D6. Poor metabolizers of CYP2D6 and CYP2C19 quite frequently experience exaggerated drug response and side effects when they receive standard doses. If a metabolite is the active therapeutic moiety, PM show no therapeutic response, as demonstrated for the analgesic effect of codeine mediated by its CYP2D6-formed metabolite mo ⁇ hine. At the other extreme are the so called ultra-rapid metabolizers who do not respond to standard doses. Recently, the molecular basis of ultra-rapid metabolism has been identified to be due to CYP2D6 gene amplification.
  • the activity of NOVX protein, expression of NOVX nucleic acid, or mutation content of NOVX genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual, hi addition, pharmacogenetic studies can be used to apply genotyping of polymo ⁇ hic alleles encoding drag-metabolizing enzymes to the identification of an individual's drug responsiveness phenotype. This knowledge, when applied to dosing or drug selection, can avoid adverse reactions or therapeutic failure and thus enhance therapeutic or prophylactic efficiency when treating a subject with a NOVX modulator, such as a modulator identified by one of the exemplary screening assays described herein.
  • a NOVX modulator such as a modulator identified by one of the exemplary screening assays described herein.
  • Monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of NOVX can be applied not only in basic drug screening, but also in clinical trials.
  • agents e.g., drugs, compounds
  • the effectiveness of an agent determined by a screening assay as described herein to increase NOVX gene expression, protein levels, or upregulate NOVX activity can be monitored in clinical trails of subjects exhibiting decreased NOVX gene expression, protein levels, or downregulated NOVX activity.
  • the effectiveness of an agent determined by a screening assay to decrease NOVX gene expression, protein levels, or downregulate NOVX activity can be monitored in clinical trails of subjects exhibiting increased NOVX gene expression, protein levels, or upregulated NOVX activity.
  • the expression or activity of NOVX and, preferably, other genes that have been implicated in, for example, a cellular proliferation or immune disorder can be used as a "read out" or markers of the immune responsiveness of a particular cell.
  • genes including NOVX, that are modulated in cells by treatment with an agent (e.g., compound, drag or small molecule) that modulates NOVX activity (e.g., identified in a screening assay as described herein) can be identified.
  • an agent e.g., compound, drag or small molecule
  • NOVX activity e.g., identified in a screening assay as described herein
  • cells can be isolated and RNA prepared and analyzed for the levels of expression of NOVX and other genes implicated in the disorder.
  • the levels of gene expression can be quantified by Northern blot analysis or RT-PCR, as described herein, or alternatively by measuring the amount of protein produced, by one of the methods as described herein, or by measuring the levels of activity of NOVX or other genes.
  • the gene expression pattern can serve as a marker, indicative of the physiological response of the cells to the agent. Accordingly, this response state may be determined before, and at various points during, treatment of the individual with the agent.
  • the invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e.g., an agonist, antagonist, protein, peptide, peptidomimetic, nucleic acid, small molecule, or other drag candidate identified by the screening assays described herein) comprising the steps of (i) obtaining a pre-administration sample from a subject prior to administration of the agent; (ii) detecting the level of expression of a NOVX protein, mRNA, or genomic DNA in the preadministration sample; (iii) obtaining one or more post-administration samples from the subject; (iv) detecting the level of expression or activity of the NOVX protein, mRNA, or genomic DNA in the post-administration samples; (v) comparing the level of expression or activity of the NOVX protein, mRNA, or genomic DNA in the pre-administration sample with the NOVX protein, mRNA, or genomic DNA in the post administration sample or samples; and (vi) altering the administration of the agent to the subject accordingly.
  • an agent e.g
  • increased administration of the agent may be desirable to increase the expression or activity of NOVX to higher levels than detected, i.e., to increase the effectiveness of the agent.
  • decreased administration of the agent may be desirable to decrease expression or activity of NOVX to lower levels than detected, i.e., to decrease the effectiveness of the agent.
  • the invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated with aberrant NOVX expression or activity.
  • the disorders include but are not limited to, e.g., those diseases, disorders and conditions listed above, and more particularly include those diseases, disorders, or conditions associated with homologs of a NOVX protein, such as those summarized in Table A.
  • Therapeutics that antagonize activity may be administered in a therapeutic or prophylactic manner.
  • Therapeutics that may be utilized include, but are not limited to: (i) an aforementioned peptide, or analogs, derivatives, fragments or homologs thereof; (ii) antibodies to an aforementioned peptide; (iii) nucleic acids encoding an aforementioned peptide; (iv) administration of antisense nucleic acid and nucleic acids that are "dysfunctional" (i.e., due to a heterologous insertion within the coding sequences of coding sequences to an aforementioned peptide) that are utilized to "knockout" endogenous function of an aforementioned peptide by homologous recombination (see, e.g., Capecchi, 1989.
  • modulators i.e., inhibitors, agonists and antagonists, including additional peptide mimetic of the invention or antibodies specific to a peptide of the invention
  • modulators i.e., inhibitors, agonists and antagonists, including additional peptide mimetic of the invention or antibodies specific to a peptide of the invention
  • Therapeutics that increase (i.e., are agonists to) activity may be administered in a therapeutic or prophylactic manner.
  • Therapeutics that may be utilized include, but are not limited to, an aforementioned peptide, or analogs, derivatives, fragments or homologs thereof; or an agonist that increases bioavailability.
  • Increased or decreased levels can be readily detected by quantifying peptide and/or RNA, by obtaining a patient tissue sample (e.g., from biopsy tissue) and assaying it in vitro for RNA or peptide levels, structure and/or activity of the expressed peptides (or mRNAs of an aforementioned peptide).
  • tissue sample e.g., from biopsy tissue
  • assaying it in vitro for RNA or peptide levels, structure and/or activity of the expressed peptides (or mRNAs of an aforementioned peptide).
  • Methods that are well-known within the art include, but are not limited to, immunoassays (e.g., by Western blot analysis, immunoprecipitation followed by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, immunocytochemistry, etc.) and or hybridization assays to detect expression of mRNAs (e.g., Northern assays, dot blots, in situ hybridization, and the like).
  • immunoassays e.g., by Western blot analysis, immunoprecipitation followed by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, immunocytochemistry, etc.
  • SDS sodium dodecyl sulfate
  • hybridization assays to detect expression of mRNAs e.g., Northern assays, dot blots, in situ hybridization, and the like.
  • the invention provides a method for preventing, in a subject, a disease or condition associated with an abe ⁇ ant NOVX expression or activity, by administering to the subject an agent that modulates NOVX expression or at least one NOVX activity.
  • Subjects at risk for a disease that is caused or contributed to by abe ⁇ ant NOVX expression or activity can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein.
  • Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the NOVX abe ⁇ ancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression.
  • a NOVX agonist or NOVX antagonist agent can be used for treating the subject.
  • the appropriate agent can be determined based on screening assays described herein. The prophylactic methods of the invention are further discussed in the following subsections.
  • the modulatory method of the invention involves contacting a cell with an agent that modulates one or more of the activities of NOVX protein activity associated with the cell.
  • An agent that modulates NOVX protein activity can be an agent as described herein, such as a nucleic acid or a protein, a naturally-occurring cognate ligand of a NOVX protein, a peptide, a NOVX peptidomimetic, or other small molecule.
  • the agent stimulates one or more NOVX protein activity. Examples of such stimulatory agents include active NOVX protein and a nucleic acid molecule encoding NOVX that has been introduced into the cell.
  • the agent inhibits one or more NOVX protein activity.
  • inhibitory agents include antisense NOVX nucleic acid molecules and anti-NOVX antibodies. These modulatory methods can be performed in vitro (e.g., by culturing the cell with the agent) or, alternatively, in vivo (e.g., by administering the agent to a subject).
  • the invention provides methods of treating an individual afflicted with a disease or disorder characterized by aberrant expression or activity of a NOVX protein or nucleic acid molecule.
  • the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or combination of agents that modulates (e.g., up-regulates or down-regulates) NOVX expression or activity.
  • an agent e.g., an agent identified by a screening assay described herein
  • the method involves administering a NOVX protein or nucleic acid molecule as therapy to compensate for reduced or aberrant NOVX expression or activity.
  • Stimulation of NOVX activity is desirable z ' 72 -situations in which NOVX is abnormally downregulated and/or in which increased NOVX activity is likely to have a beneficial effect.
  • a subject has a disorder characterized by abe ⁇ ant cell proliferation and/or differentiation (e.g., cancer or immune associated disorders).
  • a gestational disease e.g., preclampsia.
  • suitable in vitro or in vivo assays are performed to determine the effect of a specific Therapeutic and whether its administration is indicated for treatment of the affected tissue.
  • in vitro assays may be performed with representative cells of the type(s) involved in the patient's disorder, to determine if a given Therapeutic exerts the desired effect upon the cell type(s).
  • Compounds for use in therapy may be tested in suitable animal model systems including, but not limited to rats, mice, chicken, cows, monkeys, rabbits, and the like, prior to testing in human subjects.
  • suitable animal model systems including, but not limited to rats, mice, chicken, cows, monkeys, rabbits, and the like, prior to testing in human subjects.
  • any of the animal model system known in the art may be used prior to administration to human subjects.
  • the NOVX nucleic acids and proteins of the invention are useful in potential prophylactic and therapeutic applications implicated in a variety of disorders.
  • the disorders include but are not limited to, e.g., those diseases, disorders and conditions listed above, and more particularly include those diseases, disorders, or conditions associated with homologs of a NOVX protein, such as those summarized in Table A.
  • a cDNA encoding the NOVX protein of the invention may be useful in gene therapy, and the protein may be useful when administered to a subject in need thereof.
  • the compositions of the invention will have efficacy for treatment of patients suffering from diseases, disorders, conditions and the like, including but not limited to those listed herein.
  • Both the novel nucleic acid encoding the NOVX protein, and the NOVX protein of the invention, or fragments thereof, may also be useful in diagnostic applications, wherein the presence or amount of the nucleic acid or the protein are to be assessed.
  • a further use could be as an anti-bacterial molecule (i.e., some peptides have been found to possess anti-bacterial properties).
  • These materials are further useful in the generation of antibodies, which immunospecifically-bind to the novel substances of the invention for use in therapeutic or diagnostic methods.
  • the invention will be further described in the following examples, which do not limit the scope of the invention described in the claims.
  • Example A Polynucleotide and Polypeptide Sequences, and Homology Data
  • Example 1 The NO VI clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 1 A.
  • PSG a new signal peptide prediction method
  • N-region length 0; pos.chg 0; neg.chg 0 H-region: length 13; peak value 8.36 PSG score : 3.96
  • GvH von Heijne's method for signal seq. recognition
  • GvH score (threshold: -2.1): 2.40 possible cleavage site: between 18 and 19
  • Gavel prediction of cleavage sites for mitochondrial preseq R-2 motif at 29 ARS
  • NUCDISC discrimination of nuclear localization signals pat4 : none pat7 : none bipartite : none content of basic residues: 9.2% NLS Score: -0.47
  • KDEL ER retention motif in the C-terminus : none
  • SKL peroxisomal targeting signal in the C-terminus: none
  • VAC possible vacuolar targeting motif
  • Actinin-type actin-binding motif type 1 : none type 2 : none MYR: N-myristoylation pattern : none
  • Prenylation motif none memYQRL: transport motif from cell surface to Golgi: none
  • NNCN Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: cytoplasmic Reliability: 76.7
  • COIL Lupas ' s algorithm to detect coiled-coil regions total : 0 residues
  • NOVla protein was found to have homology to the proteins shown in the BLASTP data in Table ID.
  • the NOV2 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 2A.
  • PSG a new signal peptide prediction method N-region: length 5; pos.chg 1; neg.chg 1 H-region: length 30; peak value 9.82 PSG score: 5.42
  • GvH von Heijne's method for signal seg. recognition
  • GvH score (threshold: -2.1): 1.12 possible cleavage site: between 22 and 23
  • Gavel prediction of cleavage sites for mitochondrial preseq R-2 motif at 15 ER
  • NUCDISC discrimination of nuclear localization signals pat4 : none pat7 : none bipartite: none content of basic residues: 7.7% NLS Score: -0.47
  • VAC possible vacuolar targeting motif
  • RNA-binding motif none Actinin-type actin-binding motif: type 1 : none type 2 : none
  • NMYR N-myristoylation pattern : none
  • Prenylation motif none memYQRL: transport motif from cell surface to Golgi: none
  • NNCN Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: cytoplasmic Reliability: 89
  • COIL Lupas's algorithm to detect coiled-coil regions total: 0 residues
  • NOV2a protein was found to have homology to the proteins shown in the BLASTP data in Table 2D.
  • the NOV3 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 3A.
  • NOV3a SEQ ID NO 6
  • NOV3b SEQ ID NO 8
  • NOV3C SEQ ID NO 10
  • NOV3d SEQ ID NO 12
  • NOV3e SEQ ID NO 14
  • NOV3f SEQ ID NO 16
  • NOV3g SEQ ID NO 18
  • NOV3h SEQ ID NO 20
  • PSG a new signal peptide prediction method
  • N-region length 2; pos.chg 0; neg.chg 1 H-region: length 17; peak value 0.00 PSG score: -4.40
  • GvH von Heijne's method for signal seq. recognition
  • GvH score (threshold: -2.1): -0.34 possible cleavage site: between 17 and 18
  • Gavel prediction of cleavage sites for mitochondrial preseq cleavage site motif not found
  • NUCDISC discrimination of nuclear localization signals pat4 : none pat7 : none bipartite : none content of basic residues: 11.9% NLS Score: -0.47
  • VAC possible vacuolar targeting motif
  • Actinin-type actin-binding motif type 1 : none type 2 : none
  • NMYR N-myristoylation pattern : none
  • Prenylation motif none memYQRL: transport motif from cell surface to Golgi: none
  • COIL Lupas ' s algorithm to detect coiled-coil regions total: 0 residues
  • NOV3a protein was found to have homology to the proteins shown in the BLASTP data in Table 3E.
  • the NOV4 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 4A.
  • NOV4b MAGAPPPALLLPCSLISDCCASNQRHSVGVGPSELVKKQIELKSRGVKLJMPSKDNSQKTS NOV4C NOV4d NOV4e NOV4f NOV4g NOV4h NOV4i NOV4J NOV4 NOV41 NOV4m NOV4n NOV4o
  • NOV4a NOV4b FAAWSDHRPVCRARMCDAHLRGPSGIITSPNFPIQYDNNAHCVWIITALNPSKVIKLAFE NOV4C NOV4d NOV4e NOV4f NOV4g NOV4h NOV4i NOV4J NO 4k NO 1 NOV4m NOV4n NOV4o
  • NOV4a GQNCTFQLHGPNGTVESPGFPYGYPNYAN NOV4b TLKFECQPAFELVGQKAITCQK--r ⁇ QWSAKKPGCVFSCFFNFTSPSGVVLSPNYPEDYGNH NOV4C NOV4d NOV4e -GQNCTFQLHGPNGTVESPGFPYGYPNYAN NOV4f NOV4g NOV4h NOV4i NOV4k NOV41 NOV4m NOV4n NOV4o
  • NOV4a LSLRLISDYAVSAQGFHATYEVLPSHTCGNPGRLPNGIQQGSTFNLGDKVRYSCNLGFFL NOV4b HVARLEFQTDHSTGKRGFNITFTTFRHNECPDPGVPVNGKRFGDSLQLGSSISFLCDEGF NOV4C NOV4d NOV4e LSLRLISDYAVSAQGFHATYEVLPSHTCGNPGRLPNGIQQGSTFNLGDKVRYSCNLGFFL NOV4f NOV4g NOV4h NOV4i NOV4J NOV4k NOV41 NOV4m NOV4n NOV4o
  • NOV4a EG-HAVLTCHAGSENSATWDFPLPSCR.
  • ADACGGTLRGQSGIISSPHFPSEYHNNADCTWT NOV4b LGTQGSETITCVLKEGSWW-NSAVLRCEAPCGGHLTSPSGTILSPGWPGFYKDALSCAWV NOV4C NOV4d NOV4e
  • NOV4b IEAQPGYPIKITFDRFKTEVNYDTLEVRDGRTYSAPLIGVYHGTQVPQFLISTSNYLYLL
  • N0V4a NNQWSAKKPGCVCSCFFNFTSPSGWLSPNYPEDYGNHLHCVWLILARPESRIHLAFNDI NOV4b AFELSEGDVLKVYDGNNNSARLLGVFSHSEMMGVTLNSTSSSLWLDFITDAENTSKGFEL NO 4C N---.QWSAKKPGCVFSCFFNFTSPSGWLSPNYP ⁇ DYGNHLHCVWLILARPESRIHLAFNDI NOV4d NNQWSAKKPGCVFSCFFNFTSPSGWLSPNYPEDYGNHLHCVWLILARPESRIHLAFNDI NOV4e NNQWSAK PGCVCSCFFNFTSPSGWLSPNYP ⁇ DYGNHLHCVWLILARPESRIHLAFNDI NOV4f NNQWSAKKPGCVCSCFFNFTSPSGWLSPNYP ⁇ DYGNHLHCVWLILARPESRIHLAFNDI NOV4g N0V4O

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Disclosed herein are nucleic acid sequences that encode novel polypeptides. Also disclosed are polypeptides encoded by these nucleic acid sequences, and antibodies that immunospecifically bind the polypeptide, as well as derivatives, variants, mutants, or fragments of the novel polypeptide, polynucleotide, or antibody specific to the polypeptide. Vectors, host cells, antibodies and recombinant methods for producing the polypeptides and polynucleotides, as well as methods for using same are also included. The invention further discloses therapeutic, diagnostic and research methods for diagnosis, treatment, and prevention of disorders involving any one of these novel human nucleic acids and proteins.

Description

THERAPEUTIC POLYPEPTIDES, NUCLEIC ACIDS ENCODING SAME, AND METHODS OF USE
FIELD OF THE INVENTION
The present invention relates to novel polypeptides, and the nucleic acids encoding them, having properties related to stimulation of biochemical or physiological responses in a cell, a tissue, an organ or an organism. More particularly, the novel polypeptides are gene products of novel genes, or are specified biologically active fragments or derivatives thereof. Methods of use encompass diagnostic and prognostic assay procedures as well as methods of treating diverse pathological conditions.
[THIS PAGE LEFT INTENTIONALLY BLANK]
[THIS PAGE LEFT INTENTIONALLY BLANK]
BACKGROUND OF THE INVENTION
Eukaryotic cells are characterized by biochemical and physiological processes which under normal conditions are exquisitely balanced to achieve the preservation and propagation of the cells. When such cells are components of multicellular organisms such as vertebrates, or more particularly organisms such as mammals, the regulation of the biochemical and physiological processes involves intricate signaling pathways. Frequently, such signaling pathways involve extracellular signaling proteins, cellular receptors that bind the signaling proteins, and signal transducing components located within the cells. Signaling proteins may be classified as endocrine effectors, paracrine effectors or autocrine effectors. Endocrine effectors are signaling molecules secreted by a given organ into the circulatory system, which are then transported to a distant target organ or tissue. The target cells include the receptors for the endocrine effector, and when the endocrine effector binds, a signaling cascade is induced. Paracrine effectors involve secreting cells and receptor cells in close proximity to each other, for example two different classes of cells in the same tissue or organ. One class of cells secretes the paracrine effector, which then reaches the second class of cells, for example by diffusion through the extracellular fluid. The second class of cells contains the receptors for the paracrine effector; binding of the effector results in induction of the signaling cascade that elicits the corresponding biochemical or physiological effect. Autocrine effectors are highly analogous to paracrine effectors, except that the same cell type that secretes the autocrine effector also contains the receptor. Thus the autocrine effector binds to receptors on the same cell, or on identical neighboring cells. The binding process then elicits the characteristic biochemical or physiological effect.
Signaling processes may elicit a variety of effects on cells and tissues including by way of nonlimiting example induction of cell or tissue proliferation, suppression of growth or proliferation, induction of differentiation or maturation of a cell or tissue, and suppression of differentiation or maturation of a cell or tissue.
Many pathological conditions involve dysregulation of expression of important effector proteins. In certain classes of pathologies the dysregulation is manifested as diminished or suppressed level of synthesis and secretion of protein effectors. In other classes of pathologies the dysregulation is manifested as increased or up-regulated level of synthesis and secretion of protein effectors. In a clinical setting a subject maybe suspected of suffering from a condition brought on by altered or mis-regulated levels of a protein effector of interest. Therefore there is a need to assay for the level of the protein effector of interest in a biological sample from such a subject, and to compare the level with that characteristic of a nonpathological condition. There also is a need to provide the protein effector as a product of manufacture. Administration of the effector to a subject in need thereof is useful in treatment of the pathological condition. Accordingly, there is a need for a method of treatment of a pathological condition brought on by a diminished or suppressed levels of the protein effector of interest. In addition, there is a need for a method of treatment of a pathological condition brought on by a increased or up-regulated levels of the protein effector of interest.
Antibodies are multichain proteins that bind specifically to a given antigen, and bind poorly, or not at all, to substances deemed not to be cognate antigens. Antibodies are comprised of two short chains termed light chains and two long chains termed heavy chains. These chains are constituted of immunoglobulin domains, of which generally there are two classes: one variable domain per chain, one constant domain in light chains, and three or more constant domains in heavy chains. The antigen-specific portion of the immunoglobulin molecules resides in the variable domains; the variable domains of one light chain and one heavy chain associate with each other to generate the antigen-binding moiety. Antibodies that bind immunospecifically to a cognate or target antigen bind with high affinities. Accordingly, they are useful in assaying specifically for the presence of the antigen in a sample. In addition, they have the potential of inactivating the activity of the antigen.
Therefore there is a need to assay for the level of a protein effector of interest in a biological sample from such a subject, and to compare this level with that characteristic of a nonpathological condition. In particular, there is a need for such an assay based on the use of an antibody that binds immunospecifically to the antigen. There further is a need to inhibit the activity of the protein effector in cases where a pathological condition arises from elevated or excessive levels of the effector based on the use of an antibody that binds immunospecifically to the effector. Thus, there is a need for the antibody as a product of manufacture. There further is a need for a method of treatment of a pathological condition brought on by an elevated or excessive level of the protein effector of interest based on administering the antibody to the subject. SUMMARY OF THE INVENTION
The invention is based in part upon the discovery of isolated polypeptides including amino acid sequences selected from mature forms of the amino acid sequences selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606. The novel nucleic acids and polypeptides are referred to herein as NOV1 a, NOVlb,
NONlc, ΝOVld, ΝOV2a, NOV2b, NON2c, ΝOV2d, NOV3a, NOV3b, etc. These nucleic acids and polypeptides, as well as derivatives, homologs, analogs and fragments thereof, will hereinafter be collectively designated as "NOVX" nucleic acid or polypeptide sequences. The invention also is based in part upon variants of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606, wherein any amino acid in the mature form is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed. In another embodiment, the invention includes the amino acid sequences selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606. In another embodiment, the invention also comprises variants of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606 wherein any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed. The invention also involves fragments of any of the mature forms of the amino acid sequences selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606, or any other amino acid sequence selected from this group. The invention also comprises fragments from these groups in which up to 15% of the residues are changed. In another embodiment, the invention encompasses polypeptides that are naturally occurring allelic variants of the sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606. These allelic variants include amino acid sequences that are the translations of nucleic acid sequences differing by a single nucleotide from nucleic acid sequences selected from the group consisting of SEQ ID NOS: 2n-l, wherein n is an integer between 1 and 606. The variant polypeptide where any amino acid changed in the chosen sequence is changed to provide a conservative substitution. In another embodiment, the invention comprises a pharmaceutical composition involving a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606 and a pharmaceutically acceptable carrier. In another embodiment, the invention involves a kit, including, in one or more containers, this pharmaceutical composition.
In another embodiment, the invention includes the use of a therapeutic in the manufacture of a medicament for treating a syndrome associated with a human disease, the disease being selected from a pathology associated with a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606 wherein said therapeutic is the polypeptide selected from this group. In another embodiment, the invention comprises a method for determining the presence or amount of a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606 in a sample, the method involving providing the sample; introducing the sample to an antibody that binds immunospecifically to the polypeptide; and determining the presence or amount of antibody bound to the polypeptide, thereby determining the presence or amount of polypeptide in the sample.
In another embodiment, the invention includes a method for determining the presence of or predisposition to a disease associated with altered levels of a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606 in a first mammalian subject, the method involving measuring the level of expression of the polypeptide in a sample from the first mammalian subject; and comparing the amount of the polypeptide in this sample to the amount of the polypeptide present in a control sample from a second mammalian subject known not to have, or not to be predisposed to, the disease, wherein an alteration in the expression level of the polypeptide in the first subject as compared to the control sample indicates the presence of or predisposition to the disease.
In another embodiment, the invention involves a method of identifying an agent that binds to a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606, the method including introducing the polypeptide to the agent; and determining whether the agent binds to the polypeptide. The agent could be a cellular receptor or a downstream effector.
In another embodiment, the invention involves a method for identifying a potential therapeutic agent for use in treatment of a pathology, wherein the pathology is related to aberrant expression or aberrant physiological interactions of a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606, the method including providing a cell expressing the polypeptide of the invention and having a property or function ascribable to the polypeptide; contacting the cell with a composition comprising a candidate substance; and determining whether the substance alters the property or function ascribable to the polypeptide; whereby, if an alteration observed in the presence of the substance is not observed when the cell is contacted with a composition devoid of the substance, the substance is identified as a potential therapeutic agent. In another embodiment, the invention involves a method for screening for a modulator of activity or of latency or predisposition to a pathology associated with a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606, the method including administering a test compound to a test animal at increased risk for a pathology associated with the polypeptide of the invention, wherein the test animal recombinantly expresses the polypeptide of the invention; measuring the activity of the polypeptide in the test animal after administering the test compound; and comparing the activity of the protein in the test animal with the activity of the polypeptide in a control animal not administered the polypeptide, wherein a change in the activity of the polypeptide in the test animal relative to the control animal indicates the test compound is a modulator of latency of, or predisposition to, a pathology associated with the polypeptide of the invention. The recombinant test animal could express a test protein transgene or express the transgene under the control of a promoter at an increased level relative to a wild-type test animal The promoter may or may not b the native gene promoter of the transgene. In another embodiment, the invention involves a method for modulating the activity of a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606, the method including introducing a cell sample expressing the polypeptide with a compound that binds to the polypeptide in an amount sufficient to modulate the activity of the polypeptide. In another embodiment, the invention involves a method of treating or preventing a pathology associated with a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606, the method including administering the polypeptide to a subject in which such treatment or prevention is desired in an amount sufficient to treat or prevent the pathology in the subject. The subject could be human.
In another embodiment, the invention involves a method of treating a pathological state in a mammal, the method including administering to the mammal a polypeptide in an amount that is sufficient to alleviate the pathological state, wherein the polypeptide is a polypeptide having an amino acid sequence at least 95% identical to a polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606 or a biologically active fragment thereof.
In another embodiment, the invention involves an isolated nucleic acid molecule comprising a nucleic acid sequence encoding a polypeptide having an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 606; a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606 wherein any amino acid in the mature form of the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed; the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606; a variant of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606, in which any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed; a nucleic acid fragment encoding at least a portion of a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606 or any variant of the polypeptide wherein any amino acid of the chosen sequence is changed to a different amino acid, provided that no more than 10% of the amino acid residues in the sequence are so changed; and the complement of any of the nucleic acid molecules.
In another embodiment, the invention comprises an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 606, wherein the nucleic acid molecule comprises the nucleotide sequence of a naturally occurring allelic nucleic acid variant.
In another embodiment, the invention involves an isolated nucleic acid molecule including a nucleic acid sequence encoding a polypeptide having an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 606 that encodes a variant polypeptide, wherein the variant polypeptide has the polypeptide sequence of a naturally occurring polypeptide variant. In another embodiment, the invention comprises an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 606, wherein the nucleic acid molecule differs by a single nucleotide from a nucleic acid sequence selected from the group consisting of SEQ ID NOS: 2n-l, wherein n is an integer between 1 and 606.
In another embodiment, the invention includes an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 606, wherein the nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of the nucleotide sequence selected from the group consisting of SEQ ID NO:2n-l, wherein n is an integer between 1 and 606; a nucleotide sequence wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO:2n-l, wherein n is an integer between 1 and 606 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed; a nucleic acid fragment of the sequence selected from the group consisting of SEQ ID NO:2n-l, wherein n is an integer between 1 and 606; and a nucleic acid fragment wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO:2n-l, wherein n is an integer between 1 and 606 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed. In another embodiment, the invention includes an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 606, wherein the nucleic acid molecule hybridizes under stringent conditions to the nucleotide sequence selected from the group consisting of SEQ ID NO:2n-l, wherein n is an integer between 1 and 606, or a complement of the nucleotide sequence. In another embodiment, the invention includes an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 606, wherein the nucleic acid molecule has a nucleotide sequence in which any nucleotide specified in the coding sequence of the chosen nucleotide sequence is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides in the chosen coding sequence are so changed, an isolated second polynucleotide that is a complement of the first polynucleotide, or a fragment of any of them.
In another embodiment, the invention includes a vector involving the nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature foπn of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 606. This vector can have a promoter operably linked to the nucleic acid molecule. This vector can be located within a cell.
In another embodiment, the invention involves a method for determining the presence or amount of a nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 606 in a sample, the method including providing the sample; introducing the sample to a probe that binds to the nucleic acid molecule; and determining the presence or amount of the probe bound to the nucleic acid molecule, thereby determining the presence or amount of the nucleic acid molecule in the sample. The presence or amount of the nucleic acid molecule is used as a marker for cell or tissue type. The cell type can be cancerous.
In another embodiment, the invention involves a method for determining the presence of or predisposition for a disease associated with altered levels of a nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 606 in a first mammalian subject, the method including measuring the amount of the nucleic acid in a sample from the first mammalian subject; and comparing the amount of the nucleic acid in the sample of step (a) to the amount of the nucleic acid present in a control sample from a second mammalian subject known not to have or not be predisposed to, the disease; wherein an alteration in the level of the nucleic acid in the first subject as compared to the control sample indicates the presence of or predisposition to the disease.
The invention further provides an antibody that binds immunospecifically to a NOVX polypeptide. The NOVX antibody may be monoclonal, humanized, or a fully human antibody. Preferably, the antibody has a dissociation constant for the binding of the NOVX polypeptide to the antibody less than 1 x 10"9 M. More preferably, the NOVX antibody neutralizes the activity of the NOVX polypeptide.
In a further aspect, the invention provides for the use of a therapeutic in the manufacture of a medicament for treating a syndrome associated with a human disease, associated with a NOVX polypeptide. Preferably the therapeutic is a NOVX antibody.
In yet a further aspect, the invention provides a method of treating or preventing a NOVX- associated disorder, a method of treating a pathological state in a mammal, and a method of treating or preventing a pathology associated with a polypeptide by administering a NOVX antibody to a subject in an amount sufficient to treat or prevent the disorder.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be limiting.
Other features and advantages of the invention will be apparent from the following detailed description and claims.
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides novel nucleotides and polypeptides encoded thereby. Included in the invention are the novel nucleic acid sequences, their encoded polypeptides, antibodies, and other related compounds. The sequences are collectively referred to herein as "NOVX nucleic acids" or "NOVX polynucleotides" and the corresponding encoded polypeptides are referred to as "NOVX polypeptides" or "NOVX proteins." Unless indicated otherwise, "NOVX" is meant to refer to any of the novel sequences disclosed herein. Table A provides a summary of the NOVX nucleic acids and their encoded polypeptides.
TABLE A. Sequences and Corresponding SEQ ID Numbers
Table A indicates the homology of NOVX polypeptides to known protein families. Thus, the nucleic acids and polypeptides, antibodies and related compounds according to the invention corresponding to a NOVX as identified in column 1 of Table A will be useful in therapeutic and diagnostic applications implicated in, for example, pathologies and disorders associated with the known protein families identified in column 5 of Table A.
Pathologies, diseases, disorders and condition and the like that are associated with NOVX sequences include, but are not limited to: e.g., cardiomyopathy, atherosclerosis, hypertension, congenital heart defects, aortic stenosis, atrial septal defect (ASD), vascular calcification, fibrosis, atrioventricular (A-V) canal defect, ductus arteriosus, pulmonary stenosis, subaortic stenosis, ventricular septal defect (VSD), valve diseases, tuberous sclerosis, scleroderma, obesity, metabolic disturbances associated with obesity, transplantation, osteoarthritis, rheumatoid arthritis, osteochondrodysplasia, adrenoleukodystrophy, congenital adrenal hyperplasia, prostate cancer, diabetes, metabolic disorders, neoplasm; adenocarcinoma, lymphoma, uterus cancer, fertility, glomerulonephritis, hemophilia, hypercoagulation, idiopathic thrombocytopenic purpura, immunodeficiencies, psoriasis, skin disorders, graft versus host disease, AIDS, bronchial asthma, lupus, Crohn's disease; inflammatory bowel disease, ulcerative colitis, multiple sclerosis, treatment of Albright Hereditary Ostoeodystrophy, infectious disease, anorexia, cancer-associated cachexia, cancer, neurodegenerative disorders, Alzheimer's Disease, Parkinson's Disorder, immune disorders, hematopoietic disorders, and the various dyslipidemias, schizophrenia, depression, asthma, emphysema, allergies, the metabolic syndrome X and wasting disorders associated with chronic diseases and various cancers, as well as conditions such as transplantation, neuroprotection, fertility, or regeneration (in vitro and in vivo).
NOVX nucleic acids and their encoded polypeptides are useful in a variety of applications and contexts. The various NOVX nucleic acids and polypeptides according to the invention are useful as novel members of the protein families according to the presence of domains and sequence relatedness to previously described proteins. Additionally, NOVX nucleic acids and polypeptides can also be used to identify proteins that are members of the family to which the NOVX polypeptides belong.
Consistent with other known members of the family of proteins, identified in column 5 of Table A, the NOVX polypeptides of the present invention show homology to, and contain domains that are characteristic of, other members of such protein families. Details of the sequence relatedness and domain analysis for each NOVX are presented in Example A.
The NOVX nucleic acids and polypeptides can also be used to screen for molecules, which inhibit or enhance NOVX activity or function. Specifically, the nucleic acids and polypeptides according to the invention may be used as targets for the identification of small molecules that modulate or inhibit diseases associated with the protein families listed in Table A.
The NOVX nucleic acids and polypeptides are also useful for detecting specific cell types. Details of the expression analysis for each NOVX are presented in Example C. Accordingly, the NOVX nucleic acids, polypeptides, antibodies and related compounds according to the invention will have diagnostic and therapeutic applications in the detection of a variety of diseases with differential expression in normal vs. diseased tissues, e.g. detection of a variety of cancers. Additional utilities for NOVX nucleic acids and polypeptides according to the invention are disclosed herein.
NOVX clones
NOVX nucleic acids and their encoded polypeptides are useful in a variety of applications and contexts. The various NOVX nucleic acids and polypeptides according to the invention are useful as novel members of the protein families according to the presence of domains and sequence relatedness to previously described proteins. Additionally, NOVX nucleic acids and polypeptides can also be used to identify proteins that are members of the family to which the NOVX polypeptides belong.
The NOVX genes and their corresponding encoded proteins are useful for preventing, treating or ameliorating medical conditions, e.g., by protein or gene therapy. Pathological conditions can be diagnosed by determining the amount of the new protein in a sample or by determining the presence of mutations in the new genes. Specific uses are described for each of the NOVX genes, based on the tissues in which they are most highly expressed. Uses include developing products for the diagnosis or treatment of a variety of diseases and disorders.
The NOVX nucleic acids and proteins of the invention are useful in potential diagnostic and therapeutic applications and as a research tool. These include serving as a specific or selective nucleic acid or protein diagnostic and/or prognostic marker, wherein the presence or amount of the nucleic acid or the protein are to be assessed, as well as potential therapeutic applications such as the following: (i) a protein therapeutic, (ii) a small molecule drug target, (iii) an antibody target (therapeutic, diagnostic, drug targeting/cytotoxic antibody), (iv) a nucleic acid useful in gene therapy (gene delivery/gene ablation), and (v) a composition promoting tissue regeneration in vitro and in vivo (vi) a biological defense weapon.
In one specific embodiment, the invention includes an isolated polypeptide comprising an amino acid sequence selected from the group consistmg of: (a) a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 606; (b) a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 606, wherein any amino acid in the mature form is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed; (c) an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 606; (d) a variant of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606 wherein any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed; and (e) a fragment of any of (a) through (d). In another specific embodiment, the invention includes an isolated nucleic acid molecule comprising a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of: (a) a mature form of the amino acid sequence given SEQ ID NO: 2n, wherein n is an integer between 1 and 606; (b) a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 606 wherein any amino acid in the mature form of the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed; (c) the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 606; (d) a variant of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 606, in which any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed; (e) a nucleic acid fragment encoding at least a portion of a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 606 or any variant of said polypeptide wherein any amino acid of the chosen sequence is changed to a different amino acid, provided that no more than 10% of the amino acid residues in the sequence are so changed; and (f) the complement of any of said nucleic acid molecules. In yet another specific embodiment, the invention includes an isolated nucleic acid molecule, wherein said nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of: (a) the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-l, wherein n is an integer between 1 and 606; (b) a nucleotide sequence wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-l, wherein n is an integer between 1 and 606 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed; (c) a nucleic acid fragment of the sequence selected from the group consisting of SEQ ID NO: 2n-l, wherein n is an integer between 1 and 606; and (d) a nucleic acid fragment wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-l, wherein n is an integer between 1 and 606 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed. NOVX Nucleic Acids and Polypeptides
One aspect of the invention pertains to isolated nucleic acid molecules that encode NOVX polypeptides or biologically active portions thereof. Also mcluded in the invention are nucleic acid fragments sufficient for use as hybridization probes to identify NOVX-encoding nucleic acids (e.g., NOVX mRNAs) and fragments for use as PCR primers for the amplification and/or mutation of NOVX nucleic acid molecules. As used herein, the term "nucleic acid molecule" is intended to include DNA molecules (e.g., cDNA or genomic DNA), RNA molecules (e.g., mRNA), analogs of the DNA or RNA generated using nucleotide analogs, and derivatives, fragments and homologs thereof. The nucleic acid molecule may be single-stranded or double-stranded, but preferably is comprised double-stranded DNA.
A NOVX nucleic acid can encode a mature NOVX polypeptide. As used herein, a "mature" form of a polypeptide or protein disclosed in the present invention is the product of a naturally occurring polypeptide or precursor form or proprotein. The naturally occurring polypeptide, precursor or proprotein includes, by way of nonlimiting example, the full-length gene product encoded by the corresponding gene. Alternatively, it may be defined as the polypeptide, precursor or proprotein encoded by an ORF described herein. The product "mature" form arises, by way of nonlimiting example, as a result of one or more naturally occurring processing steps that may take place within the cell (e.g., host cell) in which the gene product arises- Examples of such processing steps leading to a "mature" form of a polypeptide or protein include the cleavage of the N-terminal methionine residue encoded by the initiation codon of an ORF, or the proteolytic cleavage of a signal peptide or leader sequence. Thus a mature form arising from a precursor polypeptide or protein that has residues 1 to N, where residue 1 is the N-terminal methionine, would have residues 2 through N remaining after removal of the N-terminal methionine. Alternatively, a mature form arising from a precursor polypeptide or protein having residues 1 to N, in which an N-terminal signal sequence from residue 1 to residue M is cleaved, would have the residues from residue M+l to residue N remaining. Further as used herein, a "mature" form of a polypeptide or protein may arise from a step of post-translational modification other than a proteolytic cleavage event. Such additional processes include, by way of non-limiting example, glycosylation, myristylation or phosphorylation. In general, a mature polypeptide or protein may result from the operation of only one of these processes, or a combination of any of them. The term "probe", as utilized herein, refers to nucleic acid sequences of variable length, preferably between at least about 10 nucleotides (nt), about 100 nt, or as many as approximately, e.g., 6,000 nt, depending upon the specific use. Probes are used in the detection of identical, similar, or complementary nucleic acid sequences. Longer length probes are generally obtained from a natural or recombinant source, are highly specific, and much slower to hybridize than shorter-length oligomer probes. Probes may be single- stranded or double-stranded and designed to have specificity in PCR, membrane-based hybridization technologies, or ELISA-like technologies.
The term "isolated" nucleic acid molecule, as used herein, is a nucleic acid that is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 51- and 3'-termini of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated NOVX nucleic acid molecules can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell/tissue from which the nucleic acid is derived (e.g., brain, heart, liver, spleen, etc.). Moreover, an "isolated" nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium, or of chemical precursors or other chemicals. A nucleic acid molecule of the invention, e.g., a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:2«-l, wherein n is an integer between 1 and 606, or a complement of this nucleotide sequence, can be isolated using standard molecular biology techniques and the sequence information provided herein. Using all or a portion of the nucleic acid sequence of SEQ ID NO:2?z-l, wherein n is an integer between 1 and 606, as a hybridization probe, NOVX molecules can be isolated using standard hybridization and cloning techniques (e.g., as described in Sambrook, et al., (eds.), MOLECULAR CLONING: A LABORATORY MANUAL 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989; and Ausubel, et al., (eds.), CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, NY, 1993.)
A nucleic acid of the invention can be amplified using cDNA, mRNA or alternatively, genomic DNA, as a template with appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to NOVX nucleotide sequences can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.
As used herein, the term "oligonucleotide" refers to a series of linked nucleotide residues. A short oligonucleotide sequence may be based on, or designed from, a genomic or cDNA sequence and is used to amplify, confirm, or reveal the presence of an identical, similar or complementary DNA or RNA in a particular cell or tissue. Oligonucleotides comprise a nucleic acid sequence having about 10 nt, 50 nt, or 100 nt in length, preferably about 15 nt to 30 nt in length. In one embodiment of the invention, an oligonucleotide comprising a nucleic acid molecule less than 100 nt in length would further comprise at least 6 contiguous nucleotides of SEQ ID NO:2«-l, wherein n is an integer between 1 and 606, or a complement thereof. Oligonucleotides may be chemically synthesized and may also be used as probes.
In another embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule that is a complement of the nucleotide sequence shown in SEQ ID NO:2/z-l, wherein n is an integer between 1 and 606, or a portion of this nucleotide sequence (e.g., a fragment that can be used as a probe or primer or a fragment encoding a biologically-active portion of a NOVX polypeptide). A nucleic acid molecule that is complementary to the nucleotide sequence of SEQ ID NO:2w-l, wherein n is an integer between 1 and 606, is one that is sufficiently complementary to the nucleotide sequence of SEQ ID NO:2«-l, wherein n is an integer between 1 and 606, that it can hydrogen bond with few or no mismatches to the nucleotide sequence shown in SEQ ID NO:2«-l, wherein n is an integer between 1 and 606, thereby forming a stable duplex.
As used herein, the term "complementary" refers to Watson-Crick or Hoogsteen base pairing between nucleotides units of a nucleic acid molecule, and the term "binding" means the physical or chemical interaction between two polypeptides or compounds or associated polypeptides or compounds or combinations thereof. Binding includes ionic, non-ionic, van der Waals, hydrophobic interactions, and the like. A physical interaction can be either direct or indirect. Indirect interactions may be through or due to the effects of another polypeptide or compound. Direct binding refers to interactions that do not take place through, or due to, the effect of another polypeptide or compound, but instead are without other substantial chemical intermediates.
A "fragment" provided herein is defined as a sequence of at least 6 (contiguous) nucleic acids or at least 4 (contiguous) amino acids, a length sufficient to allow for specific hybridization in the case of nucleic acids or for specific recognition of an epitope in the case of amino acids, and is at most some portion less than a full length sequence.
Fragments may be derived from any contiguous portion of a nucleic acid or amino acid sequence of choice.
A full-length NOVX clone is identified as containing an ATG translation start codon and an in-frame stop codon. Any disclosed NOVX nucleotide sequence lacking an ATG start codon therefore encodes a truncated C-terminal fragment of the respective
NOVX polypeptide, and requires that the coπesponding full-length cDNA extend in the 5' direction of the disclosed sequence. Any disclosed NOVX nucleotide sequence lacking an in-frame stop codon similarly encodes a truncated N-terminal fragment of the respective NOVX polypeptide, and requires that the coπesponding full-length cDNA extend in the 3' direction of the disclosed sequence.
A "derivative" is a nucleic acid sequence or amino acid sequence formed from the native compounds either directly, by modification or partial substitution. An "analog" is a nucleic acid sequence or amino acid sequence that has a structure similar to, but not identical to, the native compound, e.g. they differs from it in respect to certain components or side chains. Analogs may be synthetic or derived from a different evolutionary origin and may have a similar or opposite metabolic activity compared to wild type. A "homolog" is a nucleic acid sequence or amino acid sequence of a particular gene that is derived from different species. „„,, „
WO 03/102155
Derivatives and analogs may be full length or other than full length. Derivatives or analogs of the nucleic acids or proteins of the invention include, but are not limited to, molecules comprising regions that are substantially homologous to the nucleic acids or proteins of the invention, in various embodiments, by at least about 70%, 80%, or 95% identity (with a preferred identity of 80-95%) over a nucleic acid or amino acid sequence of identical size or when compared to an aligned sequence in which the alignment is done by a computer homology program known in the art, or whose encoding nucleic acid is capable of hybridizing to the complement of a sequence encoding the proteins under stringent, moderately stringent, or low stringent conditions. See e.g. Ausubel, et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, NY, 1993, and below.
A "homologous nucleic acid sequence" or "homologous amino acid sequence," or variations thereof, refer to sequences characterized by a homology at the nucleotide level or amino acid level as discussed above. Homologous nucleotide sequences include those sequences coding for isoforms of NOVX polypeptides. Isoforms can be expressed in different tissues of the same organism as a result of, for example, alternative splicing of RNA. Alternatively, isofoims can be encoded by different genes. In the invention, homologous nucleotide sequences include nucleotide sequences encoding for a NOVX polypeptide of species other than humans, including, but not limited to: vertebrates, and thus can include, e.g., frog, mouse, rat, rabbit, dog, cat cow, horse, and other organisms. Homologous nucleotide sequences also include, but are not limited to, naturally occurring allelic variations and mutations of the nucleotide sequences set forth herein. A homologous nucleotide sequence does not, however, include the exact nucleotide sequence encoding human NOVX protein. Homologous nucleic acid sequences include those nucleic acid sequences that encode conservative amino acid substitutions (see below) in SEQ ID
NO:2«-l, wherein n is an integer between 1 and 606, as well as a polypeptide possessing NOVX biological activity. Various biological activities of the NOVX proteins are described below.
A NOVX polypeptide is encoded by the open reading frame ("ORF") of a NOVX nucleic acid. An ORF corresponds to a nucleotide sequence that could potentially be translated into a polypeptide. A stretch of nucleic acids comprising an ORF is uninterrupted by a stop codon. An ORF that represents the coding sequence for a full protein begins with an ATG "start" codon and terminates with one of the three "stop" codons, namely, TAA, TAG, or TGA. For the purposes of this invention, an ORF may be any part of a coding sequence, with or without a start codon, a stop codon, or both. For an ORF to be considered as a good candidate for coding for a bonafide cellular protein, a minimum size requirement is often set, e.g., a stretch of DNA that would encode a protein of 50 amino acids or more. The nucleotide sequences determined from the cloning of the human NOVX genes allows for the generation of probes and primers designed for use in identifying and/or cloning NOVX homologues in other cell types, e.g. from other tissues, as well as NOVX homologues from other vertebrates. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 25, 50, 100, 150, 200, 250, 300, 350 or 400 consecutive sense strand nucleotide sequence of SEQ ID NO:2n-l, wherein n is an integer between 1 and 606; or an anti-sense strand nucleotide sequence of SEQ ID NO:2n-l, wherein n is an integer between 1 and 606; or of a naturally occurring mutant of SEQ ID NO:2«-l, wherein n is an integer between 1 and 606. Probes based on the human NOVX nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous proteins, hi various embodiments, the probe has a detectable label attached, e.g. the label can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as a part of a diagnostic test kit for identifying cells or tissues which mis-express a NOVX protein, such as by measuring a level of a NOVX-encoding nucleic acid in a sample of cells from a subject e.g., detecting NOVX mRNA levels or determining whether a genomic NOVX gene has been mutated or deleted.
"A polypeptide having a biologically-active portion of a NOVX polypeptide" refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of a polypeptide of the invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. A nucleic acid fragment encoding a "biologically-active portion of NOVX" can be prepared by isolating a portion of SEQ ID NO:2«-l, wherein n is an integer between 1 and 606, that encodes a polypeptide having a NOVX biological activity (the biological activities of the NOVX proteins are described below), expressing the encoded portion of NOVX protein (e.g. , by recombinant expression in vitro) and assessing the activity of the encoded portion of NOVX. NOVX Single Nucleotide Polymorphisms
Variant sequences are also included in this application. A variant sequence can include a single nucleotide polymorphism (SNP). A SNP can, in some instances, be referred to as a "cSNP" to denote that the nucleotide sequence containing the SNP originates as a cDNA. A SNP can arise in several ways. For example, a SNP maybe due to a substitution of one nucleotide for another at the polymorphic site. Such a substitution can be either a transition or a transversion. A SNP can also arise from a deletion of a nucleotide or an insertion of a nucleotide, relative to a reference allele. In this case, the polymorphic site is a site at which one allele bears a gap with respect to a particular nucleotide in another allele. SNPs occurring within genes may result in an alteration of the amino acid encoded by the gene at the position of the SNP. Intragenic SNPs may also be silent, when a codon including a SNP encodes the same amino acid as a result of the redundancy of the genetic code. SNPs occurring outside the region of a gene, or in an intron within a gene, do not result in changes in any amino acid sequence of a protein but may result in altered regulation of the expression pattern. Examples include alteration in temporal expression, physiological response regulation, cell type expression regulation, intensity of expression, and stability of transcribed message.
SeqCalling assemblies produced by the exon linking process were selected and extended using the following criteria. Genomic clones having regions with 98% identity to all or part of the initial or extended sequence were identified by BLASTN searches using the relevant sequence to query human genomic databases. The genomic clones that resulted were selected for further analysis because this identity indicates that these clones contain the genomic locus for these SeqCalling assemblies. These sequences were analyzed for putative coding regions as well as for similarity to the known DNA and protein sequences. Programs used for these analyses include Grail, Genscan, BLAST, HMMER, FASTA, Hybrid and other relevant programs.
Some additional genomic regions may have also been identified because selected SeqCalling assemblies map to those regions. Such SeqCalling sequences may have overlapped with regions defined by homology or exon prediction. They may also be included because the location of the fragment was in the vicinity of genomic regions identified by similarity or exon prediction that had been included in the original predicted sequence. The sequence so identified was manually assembled and then may have been extended using one or more additional sequences taken from CuraGen Corporation's human SeqCalling database. SeqCalling fragments suitable for inclusion were identified by the CuraTools™ program SeqExtend or by identifying SeqCalling fragments mapping to the appropriate regions of the genomic clones analyzed.
The regions defined by the procedures described above were then manually integrated and corrected for apparent inconsistencies that may have arisen, for example, from miscalled bases in the original fragments or from discrepancies between predicted exon junctions, EST locations and regions of sequence similarity, to derive the final sequence disclosed herein. When necessary, the process to identify and analyze SeqCalling assemblies and genomic clones was reiterated to derive the full length sequence (Alderborn et al., Determination of Single Nucleotide Polymoφhisms by Real-time Pyrophosphate DNA Sequencing. Genome Research. 10 (8) 1249-1265, 2000).
Variants are reported individually but any combination of all or a select subset of variants are also included as contemplated NOVX embodiments of the invention.
NOVX Nucleic Acid and Polypeptide Variants
The invention further encompasses nucleic acid molecules that differ from the nucleotide sequences of SEQ ID NO:2«-l, wherein n is an integer between 1 and 606, due to degeneracy of the genetic code and thus encode the same NOVX proteins as that encoded by the nucleotide sequences of SEQ ID NO:27z-l, wherein n is an integer between 1 and 606. In another embodiment, an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence of SEQ ID NO:2«, wherein n is an integer between 1 and 606.
In addition to the human NOVX nucleotide sequences of SEQ ID NO:2«-l, wherein n is an integer between 1 and 606, it will be appreciated by those skilled in the art that DNA sequence polymoφhisms that lead to changes in the amino acid sequences of the NOVX polypeptides may exist within a population (e.g., the human population). Such genetic polymoφhism in the NOVX genes may exist among individuals within a population due to natural allelic variation. As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules comprising an open reading frame (ORF) encoding a NOVX protein, preferably a vertebrate NOVX protein. Such natural allelic variations can typically result in 1-5% variance in the nucleotide sequence of the NOVX genes. Any and all such nucleotide variations and resulting amino acid polymoφhisms in the NOVX polypeptides, which are the result of natural allelic variation and that do not alter the functional activity of the NOVX polypeptides, are intended to be within the scope of the invention.
Moreover, nucleic acid molecules encoding NOVX proteins from other species, and thus that have a nucleotide sequence that differs from a human SEQ ID NO:2/z-l, wherein n is an integer between 1 and 606, are intended to be within the scope of the invention. Nucleic acid molecules corresponding to natural allelic variants and homologues of the NOVX cDNAs of the invention can be isolated based on their homology to the human NOVX nucleic acids disclosed herein using the human cDNAs, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions.
Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 6 nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:2«-l, wherein n is an integer between 1 and 606. In another embodiment, the nucleic acid is at least 10, 25, 50, 100, 250, 500, 750, 1000, 1500, or 2000 or more nucleotides in length. In yet another embodiment, an isolated nucleic acid molecule of the invention hybridizes to the coding region. As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences at least about 65% homologous to each other typically remain hybridized to each other. Homologs (i.e., nucleic acids encoding NOVX proteins derived from species other than human) or other related sequences (e.g., paralogs) can be obtained by low, moderate or high stringency hybridization with all or a portion of the particular human sequence as a probe using methods well known in the art for nucleic acid hybridization and cloning.
As used herein, the phrase "stringent hybridization conditions" refers to conditions under which a probe, primer or oligonucleotide will hybridize to its target sequence, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures than shorter sequences. Generally, stringent conditions are selected to be about 5 °C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength, pH and nucleic acid concentration) at which 50% of the probes complementary to the target sequence hybridize to the target sequence at equilibrium. Since the target sequences are generally present at excess, at Tm, 50% of the probes are occupied at equilibrium. Typically, stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30 °C for short probes, primers or oligonucleotides (e.g., 10 nt • to 50 nt) and at least about 60 °C for longer probes, primers and oligonucleotides. Stringent conditions may also be achieved with the addition of destabilizing agents, such as formamide.
Stringent conditions are known to those skilled in the art and can be found in Ausubel, et al, (eds.), CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. Preferably, the conditions are such that sequences at least about 65%, 70%, 75%, 85%, 90%, 95%, 98%, or 99% homologous to each other typically remain hybridized to each other. A non-limiting example of stringent hybridization conditions are hybridization in a high salt buffer comprising 6X SSC, 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 0.02%) PVP, 0.02% Ficoll, 0.02% BSA, and 500 mg/ml denatured salmon sperm DNA at 65°C, followed by one or more washes in 0.2X SSC, 0.01% BSA at 50°C. An isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence of SEQ ID NO:27?-l, wherein n is an integer between 1 and 606, corresponds to a naturally-occurring nucleic acid molecule. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein).
In a second embodiment, a nucleic acid sequence that is hybridizable to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:2«-l , wherein n is an integer between 1 and 606, or fragments, analogs or derivatives thereof, under conditions of moderate stringency is provided. A non-limiting example of moderate stringency hybridization conditions are hybridization in 6X SSC, 5X Reinhardt's solution, 0.5% SDS and 100 mg/ml denatured salmon sperm DNA at 55 °C, followed by one or more washes in IX SSC, 0.1 % SDS at 37 °C. Other conditions of moderate stringency that may be used are well-known within the art. See, e.g., Ausubel, et al. (eds.), 1993, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, NY, and Krieger, 1990; GENE TRANSFER AND EXPRESSION, A LABORATORY MANUAL, Stockton Press, NY.
In a third embodiment, a nucleic acid that is hybridizable to the nucleic acid molecule comprising the nucleotide sequences of SEQ ID NO:2«-l , wherein n is an integer between 1 and 606, or fragments, analogs or derivatives thereof, under conditions of low stringency, is provided. A non-limiting example of low stringency hybridization conditions are hybridization in 35% formamide, 5X SSC, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 mg/ml denatured salmon sperm DNA, 10% (wt/vol) dextran sulfate at 40°C, followed by one or more washes in 2X SSC, 25 mM Tris-HCl (pH 7.4), 5 mM EDTA, and 0.1% SDS at 50°C. Other conditions of low stringency that may be used are well known in the art (e.g., as employed for cross-species hybridizations). See, e.g., Ausubel, et al. (eds.), 1993, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, NY, and Kriegler, 1990, GENE TRANSFER AND EXPRESSION, A LABORATORY MANUAL, Stockton Press, NY; Shilo and Weinberg, 1981. Proc Natl Acad Sci USA 78: 6789-6792.
Conservative Mutations
In addition to naturally-occurring allelic variants of NOVX sequences that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation into the nucleotide sequences of SEQ ID NO:2«-l, wherein n is an integer between 1 and 606, thereby leading to changes in the amino acid sequences of the encoded NOVX protein, without altering the functional ability of that NOVX protein. For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in the sequence of SEQ ID NO:2?z, wherein n is an integer between 1 and 606. A "non-essential" amino acid residue is a residue that can be altered from the wild-type sequences of the NOVX proteins without altering their biological activity, whereas an "essential" amino acid residue is required for such biological activity. For example, amino acid residues that are conserved among the NOVX proteins of the invention are predicted to be particularly non-amenable to alteration. Amino acids for which conservative substitutions can be made are well-known within the art.
-Another aspect of the invention pertains to nucleic acid molecules encoding NOVX proteins that contain changes in amino acid residues that are not essential for activity. Such NOVX proteins differ in amino acid sequence from SEQ ID NO:2«-l, wherein n is an integer between 1 and 606, yet retain biological activity. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 40% homologous to the amino acid sequences of SEQ ID NO:2«, wherein n is an integer between 1 and 606. Preferably, the protein encoded by the nucleic acid molecule is at least about 60% homologous to SEQ ID NO:2/z, wherein n is an integer between 1 and 606; more preferably at least about 70% homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 606; still more preferably at least about 80% homologous to SEQ ID NO:2«, wherein n is an integer between 1 and 606; even more preferably at least about 90% homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 606; and most preferably at least about 95% homologous to SEQ ID NO:2«, wherein n is an integer between 1 and 606.
An isolated nucleic acid molecule encoding a NOVX protein homologous to the protein of SEQ ID NO:2«, wherein n is an integer between 1 and 606, can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of SEQ ID NO:2»-l, wherein n is an integer between 1 and 606, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein.
Mutations can be introduced any one of SEQ ID NO:2«-l, wherein n is an integer between 1 and 606, by standard techniques, such as site-directed mutagenesis and
PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted, non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined within the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted non-essential amino acid residue in the NOVX protein is replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of a NOVX coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for NOVX biological activity to identify mutants that retain activity. Following mutagenesis of a nucleic acid of SEQ ID NO:2H-1, wherein n is an integer between 1 and 606, the encoded protein can be expressed by any recombinant technology known in the art and the activity of the protein can be determined.
The relatedness of amino acid families may also be determined based on side chain interactions. Substituted amino acids may be fully conserved "strong" residues or fully conserved "weak" residues. The "strong" group of conserved amino acid residues may be any one of the following groups: STA, NEQK, NHQK, NDEQ, QHRK, MILV, MILF, HY, FYW, wherein the single letter amino acid codes are grouped by those amino acids that maybe substituted for each other. Likewise, the "weak" group of conserved residues may be any one of the following: CSA, ATV, SAG, STNK, STPA, SGND, SNDEQK, NDEQHK, NEQHR , HFY, wherein the letters within each group represent the single letter amino acid code.
In one embodiment, a mutant NOVX protein can be assayed for (i) the ability to form proteimprotein interactions with other NOVX proteins, other cell-surface proteins, or biologically-active portions thereof, (ii) complex formation between a mutant NOVX protein and a NOVX ligand; or (iii) the ability of a mutant NOVX protein to bind to an intracellular target protein or biologically-active portion thereof; (e.g. avidin proteins).
In yet another embodiment, a mutant NOVX protein can be assayed for the ability to regulate a specific biological function (e.g., regulation of insulin release).
Interfering RNA
In one aspect of the invention, NOVX gene expression can be attenuated by RNA interference. One approach well-known in the art is short interfering RNA (siRNA) mediated gene silencing where expression products of a NOVX gene are targeted by specific double stranded NOVX derived siRNA nucleotide sequences that are complementary to at least a 19-25 nt long segment of the NOVX gene transcript, including the 5' untranslated (UT) region, the ORF, or the 3' UT region. See, e.g., PCT applications WO00/44895, WO99/32619, WO01/75164, WO01/92513, WO 01/29058, WO01/89304, WO02/16620, and WO02/29858, each incoφorated by reference herein in their entirety. Targeted genes can be a NOVX gene, or an upstream or downstream modulator of the NOVX gene. Nonlimiting examples of upstream or downstream modulators of a NOVX gene include, e.g., a transcription factor that binds the NOVX gene promoter, a kinase or phosphatase that interacts with a NOVX polypeptide, and polypeptides involved in a NOVX regulatory pathway. According to the methods of the present invention, NOVX gene expression is silenced using short interfering RNA. A NOVX polynucleotide according to the invention includes a siRNA polynucleotide. Such a NOVX siRNA can be obtained using a NOVX polynucleotide sequence, for example, by processing the NOVX ribopolynucleotide sequence in a cell-free system, such as but not limited to a Drosophila extract, or by transcription of recombinant double stranded NOVX RNA or by chemical synthesis of nucleotide sequences homologous to a NOVX sequence. See, e.g., Tuschl, Zamore, Lehmann, Bartel and Shaφ (1999), Genes & Dev. 13: 3191-3197, incoφorated herein by reference in its entirety. When synthesized, a typical 0.2 micromolar-scale RNA synthesis provides about 1 milligram of siRNA, which is sufficient for 1000 transfection experiments using a 24- well tissue culture plate format.
The most efficient silencing is generally observed with siRNA duplexes composed of a 21-nt sense strand and a 21-nt antisense strand, paired in a manner to have a 2-nt 3' overhang. The sequence of the 2-nt 3' overhang makes an additional small contribution to the specificity of siRNA target recognition. The contribution to specificity is localized to the unpaired nucleotide adjacent to the first paired bases. In one embodiment, the nucleotides in the 3' overhang are ribonucleotides. In an alternative embodiment, the nucleotides in the 3' overhang are deoxyribonucleotides. Using 2'-deoxyribonucleotides in the 3' overhangs is as efficient as using ribonucleotides, but deoxyribonucleotides are often cheaper to synthesize and are most likely more nuclease resistant.
A contemplated recombinant expression vector of the invention comprises a NOVX DNA molecule cloned into an expression vector comprising operatively-linked regulatory sequences flanking the NOVX sequence in a manner that allows for expression (by transcription of the DNA molecule) of both strands. An RNA molecule that is antisense to NOVX mRNA is transcribed by a first promoter (e.g., a promoter sequence 3' of the cloned DNA) and an RNA molecule that is the sense strand for the NOVX mRNA is transcribed by a second promoter (e.g., a promoter sequence 5' of the cloned DNA). The sense and antisense strands may hybridize in vivo to generate siRNA constructs for silencing of the NOVX gene. Alternatively, two constructs can be utilized to create the sense and anti-sense strands of a siRNA construct. Finally, cloned DNA can encode a construct having secondary structure, wherein a single transcript has both the sense and complementary antisense sequences from the target gene or genes. In an example of this embodiment, a haiφin RNAi product is homologous to all or a portion of the target gene. In another example, a haiφin RNAi product is a siRNA. The regulatory sequences flanking the NOVX sequence may be identical or may be different, such that their expression may be modulated independently, or in a temporal or spatial manner.
In a specific embodiment, siRNAs are transcribed intracellularly by cloning the NOVX gene templates into a vector containing, e.g., a RNA pol III transcription unit from the smaller nuclear RNA (snRNA) U6 or the human RNase P RNA HI . One example of a vector system is the GeneSuppressor™ RNA Interference kit (commercially available from Imgenex). The U6 and HI promoters are members of the type III class of Pol III promoters. The +1 nucleotide of the U6-like promoters is always guanosine, whereas the +1 for HI promoters is adenosine. The termination signal for these promoters is defined by five consecutive thymidines. The transcript is typically cleaved after the second uridine. Cleavage at this position generates a 3' UU overhang in the expressed siRNA, which is similar to the 3' overhangs of synthetic siRNAs. Any sequence less than 400 nucleotides in length can be transcribed by these promoter, therefore they are ideally suited for the expression of around 21-nucleotide siRNAs in, e.g., an approximately 50-nucleotide RNA stem-loop transcript.
A siRNA vector appears to have an advantage over synthetic siRNAs where long term knock-down of expression is desired. Cells transfected with a siRNA expression vector would experience steady, long-term mRNA inhibition, hi contrast, cells transfected with exogenous synthetic siRNAs typically recover from mRNA suppression within seven days or ten rounds of cell division. The long-term gene silencing ability of siRNA expression vectors may provide for applications in gene therapy.
In general, siRNAs are chopped from longer dsRNA by an ATP-dependent ribonuclease called DICER. DICER is a member of the RNase III family of double-stranded RNA-specific endonucleases. The siRNAs assemble with cellular proteins into an endonuclease complex. In vitro studies in Drosophila suggest that the siRNAs/protein complex (siRNP) is then transfeπed to a second enzyme complex, called an RNA-induced silencing complex (RISC), which contains an endoribonuclease that is distinct from DICER. RISC uses the sequence encoded by the antisense siRNA strand to find and destroy mRNAs of complementary sequence. The siRNA thus acts as a guide, restricting the ribonuclease to cleave only mRNAs complementary to one of the two siRNA strands.
A NOVX mRNA region to be targeted by siRNA is generally selected from a desired NOVX sequence beginning 50 tolOO nt downstream of the start codon. Alternatively, 5* or 3' UTRs and regions nearby the start codon can be used but are generally avoided, as these may be richer in regulatory protein binding sites. UTR-binding proteins and/or translation initiation complexes may interfere with binding of the siRNP or RISC endonuclease complex. An initial BLAST homology search for the selected siRNA sequence is done against an available nucleotide sequence library to ensure that only one gene is targeted. Specificity of target recognition by siRNA duplexes indicate that a single point mutation located in the paired region of an siRNA duplex is sufficient to abolish target mRNA degradation. See, Elbashir et al. 2001 EMBO J. 20(23):6877-88. Hence, consideration should be taken to accommodate SNPs, polymoφhisms, allelic variants or species-specific variations when targeting a desired gene. In one embodiment, a complete NOVX siRNA experiment includes the proper negative control. A negative control siRNA generally has the same nucleotide composition as the NOVX siRNA but lack significant sequence homology to the genome. Typically, one would scramble the nucleotide sequence of the NOVX siRNA and do a homology search to make sure it lacks homology to any other gene.
Two independent NOVX siRNA duplexes can be used to knock-down a target NOVX gene. This helps to control for specificity of the silencing effect. In addition, expression of two independent genes can be simultaneously knocked down by using equal concentrations of different NOVX siRNA duplexes, e.g., a NOVX siRNA and an siRNA for a regulator of a NOVX gene or polypeptide. Availability of siRNA-associating proteins is believed to be more limiting than target mRNA accessibility.
A targeted NOVX region is typically a sequence of two adenines (AA) and two thymidines (TT) divided by a spacer region of nineteen (N19) residues (e.g., AA(N19)TT). A desirable spacer region has a G/C-content of approximately 30% to 70%, and more preferably of about 50%. If the sequence AA(N19)TT is not present in the target sequence, an alternative target region would be AA(N21). The sequence of the NOVX sense siRNA corresponds to (N19)TT or N21, respectively. In the latter case, conversion of the 3' end of the sense siRNA to TT can be performed if such a sequence does not naturally occur in the NOVX polynucleotide. The rationale for this sequence conversion is to generate a symmetric duplex with respect to the sequence composition of the sense and antisense 3' overhangs. Symmetric 3' overhangs may help to ensure that the si MPs are formed with approximately equal ratios of sense and antisense target RNA-cleaving siRNPs. See, e.g., Elbashir, Lendeckel and Tuschl (2001). Genes & Dev. 15: 188-200, incoφorated by reference herein in its entirely. The modification of the overhang of the sense sequence of the siRNA duplex is not expected to affect targeted mRNA recognition, as the antisense siRNA strand guides target recognition.
Alternatively, if the NOVX target mRNA does not contain a suitable AA(N21) sequence, one may search for the sequence NA(N21). Further, the sequence of the sense strand and antisense strand may still be synthesized as 5' (N19)TT, as it is believed that the sequence of the 3'-most nucleotide of the antisense siRNA does not contribute to specificity. Unlike antisense or ribozyme technology, the secondary structure of the target m NA does not appear to have a strong effect on silencing. See, Harborth, et al. (2001) J. Cell Science 114: 4557-4565, incoφorated by reference in its entirety. Transfection of NOVX siRNA duplexes can be achieved using standard nucleic acid transfection methods, for example, OLIGOFECTAMINE Reagent (commercially available from Invitrogen). An assay for NOVX gene silencing is generally performed approximately 2 days after transfection. No NOVX gene silencing has been observed in the absence of transfection reagent, allowing for a comparative analysis of the wild-type and silenced NOVX phenotypes. In a specific embodiment, for one well of a 24-well plate, approximately 0.84 μg of the siRNA duplex is generally sufficient. Cells are typically seeded the previous day, and are transfected at about 50% confluence. The choice of cell culture media and conditions are routine to those of skill in the art, and will vary with the choice of cell type. The efficiency of transfection may depend on the cell type, but also on the passage number and the confluency of the cells. The time and the manner of formation of siRNA-liposome complexes (e.g. inversion versus vortexing) are also critical. Low transfection efficiencies are the most frequent cause of unsuccessful NOVX silencing. The efficiency of transfection needs to be carefully examined for each new cell line to be used. Preferred cell are derived from a mammal, more preferably from a rodent such as a rat or mouse, and most preferably from a human. Where used for therapeutic treatment, the cells are preferentially autologous, although non-autologous cell sources are also contemplated as within the scope of the present invention.
For a control experiment, transfection of 0.84 μg single-stranded sense NOVX siRNA will have no effect on NOVX silencing, and 0.84 μg antisense siRNA has a weak silencing effect when compared to 0.84 μg of duplex siRNAs. Control experiments again allow for a comparative analysis of the wild-type and silenced NOVX phenotypes. To control for transfection efficiency, targeting of common proteins is typically performed, for example targeting of lamin A/C or transfection of a CMV-driven EGFP-expression plasmid (e.g. commercially available from Clontech). In the above example, a determination of the fraction of lamin A/C knockdown in cells is determined the next day by such techniques as immunofluorescence, Western blot, Northern blot or other similar assays for protein expression or gene expression. Lamin A/C monoclonal antibodies may be obtained from Santa Cruz Biotechnology. Depending on the abundance and the half life (or turnover) of the targeted NOVX polynucleotide in a cell, a knock-down phenotype may become apparent after 1 to 3 days, or even later. In cases where no NOVX knock-down phenotype is observed, depletion of the NOVX polynucleotide may be observed by immunofluorescence or Western blotting. If the NOVX polynucleotide is still abundant after 3 days, cells need to be split and transferred to a fresh 24-well plate for re-transfection. If no knock-down of the targeted protein is observed, it may be desirable to analyze whether the target mRNA (NOVX or a NOVX upstream or downstream gene) was effectively destroyed by the transfected siRNA duplex. Two days after transfection, total RNA is prepared, reverse transcribed using a target-specific primer, and PCR-amplified with a primer pair covering at least one exon-exon junction in order to control for amplification of pre-mRNAs. RT/PCR of a non-targeted mRNA is also needed as control. Effective depletion of the mRNA yet undetectable reduction of target protein may indicate that a large reservoir of stable NOVX protein may exist in the cell. Multiple transfection in sufficiently long intervals may be necessary until the target protein is finally depleted to a point where a phenotype may become apparent. If multiple transfection steps are required, cells are split 2 to 3 days after transfection. The cells may be transfected immediately after splitting.
An inventive therapeutic method of the invention contemplates administering a NOVX siRNA construct as therapy to compensate for increased or abeπant NOVX expression or activity. The NOVX ribopolynucleotide is obtained and processed into siRNA fragments, or a NOVX siRNA is synthesized, as described above. The NOVX siRNA is administered to cells or tissues using known nucleic acid transfection techniques, as described above. A NOVX siRNA specific for a NOVX gene will decrease or knockdown NOVX transcription products, which will lead to reduced NOVX polypeptide production, resulting in reduced NOVX polypeptide activity in the cells or tissues.
The present invention also encompasses a method of treating a disease or condition associated with the presence of a NOVX protein in an individual comprising administering to the individual an RNAi construct that targets the mRNA of the protein (the mRNA that encodes the protein) for degradation. A specific RNAi construct includes a siRNA or a double stranded gene transcript that is processed into siRNAs. Upon treatment, the target protein is not produced or is not produced to the extent it would be in the absence of the treatment.
Where the NOVX gene function is not correlated with a known phenotype, a control sample of cells or tissues from healthy individuals provides a reference standard for determining NOVX expression levels. Expression levels are detected using the assays described, e.g., RT-PCR, Northern blotting, Western blotting, ELISA, and the like. A subject sample of cells or tissues is taken from a mammal, preferably a human subject, suffering from a disease state. The NOVX ribopolynucleotide is used to produce siRNA constructs, that are specific for the NOVX gene product. These cells or tissues are treated by administering NOVX siRNA' s to the cells or tissues by methods described for the transfection of nucleic acids into a cell or tissue, and a change in NOVX polypeptide or polynucleotide expression is observed in the subject sample relative to the control sample, using the assays described. This NOVX gene knockdown approach provides a rapid method for determination of a NOVX minus (NOVX") phenotype in the treated subject sample. The NOVX" phenotype observed in the treated subject sample thus serves as a marker for monitoring the course of a disease state during treatment.
In specific embodiments, a NOVX siRNA is used in therapy. Methods for the generation and use of a NOVX siRNA are known to those skilled in the art. Example techniques are provided below.
Production of RNAs
Sense RNA (ssRNA) and antisense RNA (asRNA) of NOVX are produced using known methods such as transcription in RNA expression vectors. In the initial experiments, the sense and antisense RNA are about 500 bases in length each. The produced ssRNA and asRNA (0.5 μM) in 10 mM Tris-HCl (pH 7.5) with 20 mM NaCl were heated to 95° C for 1 min then cooled and annealed at room temperature for 12 to 16 h. The RNAs are precipitated and resuspended in lysis buffer (below). To monitor annealing, RNAs are electrophoresed in a 2% agarose gel in TBE buffer and stained with ethidium bromide. See, e.g., Sambrook et al., Molecular Cloning. Cold Spring Harbor Laboratory Press, Plainview, N.Y. (1989).
Lysate Preparation
Untreated rabbit reticulocyte lysate (Ambion) are assembled according to the manufacturer's directions. dsRNA is incubated in the lysate at 30° C for 10 min prior to the addition of mRNAs. Then NOVX mRNAs are added and the incubation continued for an additional 60 min. The molar ratio of double stranded RNA and mRNA is about 200: 1. The NOVX mRNA is radiolabeled (using known techniques) and its stability is monitored by gel electrophoresis.
In a parallel experiment made with the same conditions, the double stranded RNA is internally radiolabeled with a 3 P-ATP. Reactions are stopped by the addition of 2 X proteinase K buffer and deproteinized as described previously (Tuschl et al., Genes Dev., 13:3191-3197 (1999)). Products are analyzed by electrophoresis in 15% or 18% polyacrylamide sequencing gels using appropriate RNA standards. By monitoring the gels for radioactivity, the natural production of 10 to 25 nt RNAs from the double stranded RNA can be determined.
The band of double stranded RNA, about 21-23 bps, is eluded. The efficacy of these 21-23 mers for suppressing NOVX transcription is assayed in vitro using the same rabbit reticulocyte assay described above using 50 nanomolar of double stranded 21-23 mer for each assay. The sequence of these 21-23 mers is then determined using standard nucleic acid sequencing techniques.
RNA Preparation
21 nt RNAs, based on the sequence determined above, are chemically synthesized using Expedite RNA phosphoramidites and thymidine phosphoramidite (Proligo, Germany). Synthetic oligonucleotides are deprotected and gel-purified (Elbashir, Lendeckel, & Tuschl, Genes & Dev. 15, 188-200 (2001)), followed by Sep-Pak C18 cartridge (Waters, Milford, Mass., USA) purification (Tuschl, et al., Biochemistry, 32:11658-11668 (1993)). These RNAs (20 μM) single strands are incubated in annealing buffer (100 mM potassium acetate, 30 mM HEPES-KOH at pH 7.4, 2 mM magnesium acetate) for 1 min at 90° C followed by 1 h at 37° C.
Cell Culture
A cell culture known in the art to regularly express NOVX is propagated using standard conditions. 24 hours before transfection, at approx. 80% confluency, the cells are trypsinized and diluted 1 :5 with fresh medium without antibiotics (1-3 X 105 cells/ml) and transferred to 24-well plates (500 ml/well). Transfection is performed using a commercially available lipofection kit and NOVX expression is monitored using standard techniques with positive and negative control. A positive control is cells that naturally express NOVX while a negative control is cells that do not express NOVX. Base-paired 21 and 22 nt siRNAs with overhanging 3' ends mediate efficient sequence-specific mRNA degradation in lysates and in cell culture. Different concentrations of siRNAs are used. An efficient concentration for suppression in vitro in mammalian culture is between 25 nM to 100 nM final concentration. This indicates that siRNAs are effective at concentrations that are several orders of magnitude below the concentrations applied in conventional antisense or ribozyme gene targeting experiments. The above method provides a way both for the deduction of NOVX siRNA sequence and the use of such siRNA for in vitro suppression. In vivo suppression may be performed using the same siRNA using well known in vivo transfection or gene therapy transfection techniques. Antisense Nucleic Acids
Another aspect of the invention pertains to isolated antisense nucleic acid molecules that are hybridizable to or complementary to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:27?-l, wherein n is an integer between 1 and 606, or fragments, analogs or derivatives thereof. An "antisense" nucleic acid comprises a nucleotide sequence that is complementary to a "sense" nucleic acid encoding a protein (e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence). In specific aspects, antisense nucleic acid molecules are provided that comprise a sequence complementary to at least about 10, 25, 50, 100, 250 or 500 nucleotides or an entire NOVX coding strand, or to only a portion thereof. Nucleic acid molecules encoding fragments, homologs, derivatives and analogs of a NOVX protein of SEQ ID NO:27z, wherein n is an integer between 1 and 606, or antisense nucleic acids complementary to a NOVX nucleic acid sequence of SEQ ID NO:2τz-l, wherein n is an integer between 1 and 606, are additionally provided.
In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence encoding a NOVX protein. The term "coding region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues. In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence encoding the NOVX protein. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (i.e., also referred to as 5' and 3' untranslated regions).
Given the coding strand sequences encoding the NOVX protein disclosed herein, antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of NOVX mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of NOVX mRNA. For example, the antisense oligonucleotide can be complementary to the region suπounding the translation start site of NOVX mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally-occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids (e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used).
Examples of modified nucleotides that can be used to generate the antisense nucleic acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-carboxymethylaminomethyl-2-thiouridine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 5-methoxyuracil, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, 2-thiouracil, 4-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).
The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a NOVX protein to thereby inhibit expression of the protein (e.g., by inhibiting transcription and/or translation). The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface (e.g., by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens). The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient nucleic acid molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are prefeπed.
In yet another embodiment, the antisense nucleic acid molecule of the invention is an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other. See, e.g., Gaultier, et al., 1987. Nucl. Acids Res. 15: 6625-6641. The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (See, e.g., Inoue, et al. 1987. Nucl. Acids Res. 15: 6131-6148) or a chimeric RNA-DNA analogue (See, e.g., Inoue, et al, 1987. FEBS Lett. 215: 327-330. Ribozymes and PNA Moieties
Nucleic acid modifications include, by way of non-limiting example, modified bases, and nucleic acids whose sugar phosphate backbones are modified or derivatized. These modifications are carried out at least in part to enhance the chemical stability of the modified nucleic acid, such that they may be used, for example, as antisense binding nucleic acids in therapeutic applications in a subject.
In one embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes as described in Haselhoff and Gerlach 1988. Nature 334: 585-591) can be used to catalytically cleave NOVX mRNA transcripts to thereby inhibit translation of NOVX mRNA. A ribozyme having specificity for a NOVX-encoding nucleic acid can be designed based upon the nucleotide sequence of a NOVX cDNA disclosed herein (i.e., SEQ ID NO:2/z-l, wherein n is an integer between 1 and 606). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a NOVX-encoding mRNA. See, e.g., U.S. Patent 4,987,071 to Cech, et al. and U.S. Patent 5,116,742 to Cech, et al. NOVX mRNA can also be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al, (1993) Science 261:1411-1418.
Alternatively, NOVX gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the NOVX nucleic acid (e.g., the NOVX promoter and/or enhancers) to form triple helical structures that prevent transcription of the NOVX gene in target cells. See, e.g., Helene, 1991. Anticancer Drug Des. 6: 569-84; Helene, et al 1992. Ann. N.Y. Acad. Sci. 660: 27-36; Maher, 1992. Bioassays 14: 807-15.
In various embodiments, the NOVX nucleic acids can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g. , the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids. See, e.g., Hyrup, et al, 1996. Bioorg Med Chem 4: 5-23. As used herein, the terms "peptide nucleic acids" or "PNAs" refer to nucleic acid mimics (e.g., DNA mimics) in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleotide bases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomer can be performed using standard solid phase peptide synthesis protocols as described in Hyrup, et al, 1996. supra; Perry-O'Keefe, et al, 1996. Proc. Natl. Acad. Sci. USA 93: 14670-14675.
PNAs of NOVX can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation aπest or inhibiting replication. PNAs of NOVX can also be used, for example, in the analysis of single base pair mutations in a gene (e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., Si nucleases (See, Hyrup, et al, 1996. supra); or as probes or primers for DNA sequence and hybridization (See, Hyrup, et al, 1996, supra; Perry-O'Keefe, et al, 1996. supra).
In another embodiment, PNAs of NOVX can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras of NOVX can be generated that may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes (e.g., RNase H and DNA polymerases) to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleotide bases, and orientation (see, Hyrup, et al., 1996. supra). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup, et al, 1996. supra and Finn, et al, 1996. Nucl Acids Res 24: 3357-3363. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry, and modified nucleoside analogs, e.g., 5'-(4-methoxytrityl)amino-5'-deoxy-thymidine phosphoramidite, can be used between the PNA and the 5' end of DNA. See, e.g., Mag, et al, 1989. Nucl Acid Res 17: 5973-5988. PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment. See, e.g., Finn, et al, 1996. supra. Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment. See, e.g., Petersen, et al, 1975. Bioorg. Med. Chem. Lett. 5: 1119-11124.
In other embodiments, the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger, et al, 1989. Proc. Natl. Acad. Sci. U.S.A. 86: 6553-6556; Lemaitre, et al, 1987. Proc. Natl. Acad. Sci. 84: 648-652; PCT Publication No. WO88/09810) or the blood-brain barrier (see, e.g., PCT Publication No. WO 89/10134). In addition, oligonucleotides can be modified with hybridization triggered cleavage agents (see, e.g., Krol, et al, 1988. BioTechniques 6:958-976) or intercalating agents (see, e.g.,
Zon, 1988. Pharm. Res. 5: 539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, a hybridization triggered cross-linking agent, a transport agent, a hybridization-triggered cleavage agent, and the like.
NOVX Polypeptides A polypeptide according to the invention includes a polypeptide including the amino acid sequence of NOVX polypeptides whose sequences are provided in any one of SEQ ID NO:2/z, wherein n is an integer between 1 and 606. The invention also includes a mutant or variant protein any of whose residues may be changed from the corresponding residues shown in any one of SEQ ID NO:277, wherein n is an integer between 1 and 606, while still encoding a protein that maintains its NOVX activities and physiological functions, or a functional fragment thereof.
In general, a NOVX variant that preserves NOVX-like function includes any variant in which residues at a particular position in the sequence have been substituted by other amino acids, and further include the possibility of inserting an additional residue or residues between two residues of the parent protein as well as the possibility of deleting one or more residues from the parent sequence. Any amino acid substitution, insertion, or deletion is encompassed by the invention. In favorable circumstances, the substitution is a conservative substitution as defined above.
One aspect of the invention pertains to isolated NOVX proteins, and biologically-active portions thereof, or derivatives, fragments, analogs or homologs thereof. Also provided are polypeptide fragments suitable for use as immunogens to raise anti-NOVX antibodies. In one embodiment, native NOVX proteins can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques. In another embodiment, NOVX proteins are produced by recombinant DNA techniques. Alternative to recombinant expression, a NOVX protein or polypeptide can be synthesized chemically using standard peptide synthesis techniques. An "isolated" or "purified" polypeptide or protein or biologically-active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the NOVX protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. The language "substantially free of cellular material" includes preparations of NOVX proteins in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly-produced. In one embodiment, the language "substantially free of cellular material" includes preparations of NOVX proteins having less than about 30% (by dry weight) of non-NOVX proteins (also referred to herein as a "contaminating protein"), more preferably less than about 20% of non-NOVX proteins, still more preferably less than about 10% of non-NOVX proteins, and most preferably less than about 5% of non-NOVX proteins. When the NOVX protein or biologically-active portion thereof is recombinantly-produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the NOVX protein preparation. The language "substantially free of chemical precursors or other chemicals" includes preparations of NOVX proteins in which the protein is separated from chemical precursors or other chemicals that are involved in the synthesis of the protein. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of NOVX proteins having less than about 30% (by dry weight) of chemical precursors or non-NOVX chemicals, more preferably less than about 20% chemical precursors or non-NOVX chemicals, still more preferably less than about 10% chemical precursors or non-NOVX chemicals, and most preferably less than about 5% chemical precursors or non-NOVX chemicals.
Biologically-active portions of NOVX proteins include peptides comprising amino acid sequences sufficiently homologous to or derived from the amino acid sequences of the NOVX proteins (e.g., the amino acid sequence of SEQ ID NO:27J, wherein n is an integer between 1 and 606) that include fewer amino acids than the full-length NOVX proteins, and exhibit at least one activity of a NOVX protein. Typically, biologically-active portions comprise a domain or motif with at least one activity of the NOVX protein. A biologically-active portion of a NOVX protein can be a polypeptide which is, for example, 10, 25, 50, 100 or more amino acid residues in length.
Moreover, other biologically-active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the functional activities of a native NOVX protein. In an embodiment, the NOVX protein has an amino acid sequence of SEQ ID
NO:2?z, wherein n is an integer between 1 and 606. In other embodiments, the NOVX protein is substantially homologous to SEQ ID NO:27z, wherein n is an integer between 1 and 606, and retains the functional activity of the protein of SEQ ID NO:27z, wherein n is an integer between 1 and 606, yet differs in amino acid sequence due to natural allelic variation or mutagenesis, as described in detail, below. Accordingly, in another embodiment, the NOVX protein is a protein that comprises an amino acid sequence at least about 45% homologous to the amino acid sequence of SEQ ID NO:2«, wherein n is an integer between 1 and 606, and retains the functional activity of the NOVX proteins of SEQ ID NO:2?z, wherein n is an integer between 1 and 606. Determining Homology Between Two or More Sequences
To determine the percent homology of two amino acid sequences or of two nucleic acids, the sequences are aligned for optimal comparison puφoses (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino or nucleic acid sequence). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are homologous at that position (i.e., as used herein amino acid or nucleic acid "homology" is equivalent to amino acid or nucleic acid "identity").
The nucleic acid sequence homology maybe determined as the degree of identity between two sequences. The homology may be determined using computer programs known in the art, such as GAP software provided in the GCG program package. See, Needleman and Wunsch, 1970. J Mol Biol 48: 443-453. Using GCG GAP software with the following settings for nucleic acid sequence comparison: GAP creation penalty of 5.0 and GAP extension penalty of 0.3, the coding region of the analogous nucleic acid sequences referred to above exhibits a degree of identity preferably of at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99%, with the CDS (encoding) part of the DNA sequence of SEQ ID NO:2n-l, wherein n is an integer between 1 and 606.
The term "sequence identity" refers to the degree to which two polynucleotide or polypeptide sequences are identical on a residue-by-residue basis over a particular region of comparison. The term "percentage of sequence identity" is calculated by comparing two optimally aligned sequences over that region of comparison, determining the number of positions at which the identical nucleic acid base (e.g., A, T, C, G, U, or I, in the case of nucleic acids) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the region of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity. The term "substantial identity" as used herein denotes a characteristic of a polynucleotide sequence, wherein the polynucleotide comprises a sequence that has at least 80 percent sequence identity, preferably at least 85 percent identity and often 90 to 95 percent sequence identity, more usually at least 99 percent sequence identity as compared to a reference sequence over a comparison region. Chimeric and Fusion Proteins
The invention also provides NOVX chimeric or fusion proteins. As used herein, a NOVX "chimeric protein" or "fusion protein" comprises a NOVX polypeptide operatively-linked to a non-NOVX polypeptide. An "NOVX polypeptide" refers to a polypeptide having an amino acid sequence coπesponding to a NOVX protein of SEQ ID NO:27z, wherein n is an integer between 1 and 606, whereas a "non-NOVX polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein that is not substantially homologous to the NOVX protein, e.g., a protein that is different from the NOVX protein and that is derived from the same or a different organism. Within a NOVX fusion protein the NOVX polypeptide can coπespond to all or a portion of a NOVX protein. In one embodiment, a NOVX fusion protein comprises at least one biologically-active portion of a NOVX protein. In another embodiment, a NOVX fusion protein comprises at least two biologically-active portions of a NOVX protein. In yet another embodiment, a NOVX fusion protein comprises at least three biologically-active portions of a NOVX protein. Within the fusion protein, the term "operatively-linked" is intended to indicate that the NOVX polypeptide and the non-NOVX polypeptide are fused in-frame with one another. The non-NOVX polypeptide can be fused to the N-terminus or C-terminus of the NOVX polypeptide. In one embodiment, the fusion protein is a GST-NO VX fusion protein in which the
NOVX sequences are fused to the C-terminus of the GST (glutathione S-transferase) sequences. Such fusion proteins can facilitate the purification of recombinant NOVX polypeptides.
In another embodiment, the fusion protein is a NOVX protein containing a heterologous signal sequence at its N-terminus. In certain host cells (e.g., mammalian host cells), expression and/or secretion of NOVX can be increased through use of a heterologous signal sequence.
In yet another embodiment, the fusion protein is a NOVX-immunoglobulin fusion protein in which the NOVX sequences are fused to sequences derived from a member of the immunoglobulin protein family. The NOVX-immunoglobulin fusion proteins of the invention can be incoφorated into pharmaceutical compositions and administered to a subject to inhibit an interaction between a NOVX ligand and a NOVX protein on the surface of a cell, to thereby suppress NOVX-mediated signal transduction in vivo. The NOVX-immunoglobulin fusion proteins can be used to affect the bioavailability of a NOVX cognate ligand. Inhibition of the NOVX ligand/NOVX interaction may be useful therapeutically for both the treatment of proliferative and differentiative disorders, as well as modulating (e.g. promoting or inhibiting) cell survival. Moreover, the NOVX-immunoglobulin fusion proteins of the invention can be used as immunogens to produce anti-NOVX antibodies in a subject, to purify NOVX ligands, and in screening assays to identify molecules that inhibit the interaction of NOVX with a NOVX ligand. A NOVX chimeric or fusion protein of the invention can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, e.g., by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, e.g., Ausubel, et al. (eds.) CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A NOVX-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the NOVX protein.
NOVX Agonists and Antagonists
The invention also pertains to variants of the NOVX proteins that function as either NOVX agonists (i.e., mimetics) or as NOVX antagonists. Variants of the NOVX protein can be generated by mutagenesis (e.g., discrete point mutation or trancation of the NOVX protein). An agonist of the NOVX protein can retain substantially the same, or a subset of, the biological activities of the naturally occurring form of the NOVX protein. An antagonist of the NOVX protein can inhibit one or more of the activities of the naturally occurring form of the NOVX protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade which includes the NOVX protein. Thus, specific biological effects can be elicited by treatment with a variant of limited function. In one embodiment, treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein has fewer side effects in a subject relative to treatment with the naturally occurring form of the NOVX proteins.
Variants of the NOVX proteins that function as either NOVX agonists (i.e., mimetics) or as NOVX antagonists can be identified by screening combinatorial libraries of mutants (e.g., truncation mutants) of the NOVX proteins for NOVX protein agonist or antagonist activity. In one embodiment, a variegated library of NOVX variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of NOVX variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential NOVX sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of NOVX sequences therein. There are a variety of methods which can be used to produce libraries of potential NOVX variants from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential NOVX sequences. Methods for synthesizing degenerate oligonucleotides are well-known within the art. See, e.g., Narang, 1983. Tetrahedron 39: 3; Itakura, et al, 1984. Annu. Rev. Biochem. 53: 323; Itakura, et al, 1984. SczeTzce 198: 1056; Ike, et al, 1983. Nucl. Acids Res. 11: 477.
Polypeptide Libraries
In addition, libraries of fragments of the NOVX protein coding sequences can be used to generate a variegated population of NOVX fragments for screening and subsequent selection of variants of a NOVX protein. In one embodiment, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of a NOVX coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double-stranded DNA that can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with Si nuclease, and ligating the resulting fragment library into an expression vector. By this method, expression libraries can be derived which encodes N-terminal and internal fragments of various sizes of the NOVX proteins.
Various techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of NOVX proteins. The most widely used techniques, which are amenable to high throughput analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a new technique that enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify NOVX variants. See, e.g., Arkin and Yourvan, 1992. Proc. Natl Acad. Sci. USA 89: 7811-7815; Delgrave, et al, 1993. Protein Engineering 6:327-331.
Anti-NOVX Antibodies Included in the invention are antibodies to NOVX proteins, or fragments of NOVX proteins. The term "antibody" as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin (Ig) molecules, i.e., molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen. Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, Fab, Fab' and F(a )2 fragments, and an Fab expression library. In general, antibody molecules obtained from humans relates to any of the classes IgG, IgM, IgA, IgE and IgD, which differ from one another by the nature of the heavy chain present in the molecule. Certain classes have subclasses as well, such as IgGi, IgG2, and others. Furthermore, in humans, the light chain may be a kappa chain or a lambda chain. Reference herein to antibodies includes a reference to all such classes, subclasses and types of human antibody species.
An isolated protein of the invention intended to serve as an antigen, or a portion or fragment thereof, can be used as an immunogen to generate antibodies that immunospecifically bind the antigen, using standard techniques for polyclonal and monoclonal antibody preparation. The full-length protein can be used or, alternatively, the invention provides antigenic peptide fragments of the antigen for use as immunogens. An antigenic peptide fragment comprises at least 6 amino acid residues of the amino acid sequence of the full length protein, such as an amino acid sequence of SEQ ID NO:27z, wherein n is an integer between 1 and 606, and encompasses an epitope thereof such that an antibody raised against the peptide forms a specific immune complex with the full length protein or with any fragment that contains the epitope. Preferably, the antigenic peptide comprises at least 10 amino acid residues, or at least 15 amino acid residues, or at least 20 amino acid residues, or at least 30 amino acid residues. Prefeπed epitopes encompassed by the antigenic peptide are regions of the protein that are located on its surface; commonly these are hydrophilic regions.
In certain embodiments of the invention, at least one epitope encompassed by the antigenic peptide is a region of NOVX that is located on the surface of the protein, e.g., a hydrophilic region. A hydrophobicity analysis of the human NOVX protein sequence will indicate which regions of a NOVX polypeptide are particularly hydrophilic and, therefore, are likely to encode surface residues useful for targeting antibody production. As a means for targeting antibody production, hydropathy plots showing regions of hydrophilicity and hydrophobicity may be generated by any method well known in the art, including, for example, the Kyte Doolittle or the Hopp Woods methods, either with or without Fourier transformation. See, e.g., Hopp and Woods, 1981, Proc. Nat. Acad. Sci. USA 78: 3824-3828; Kyte and Doolittle 1982, J. Mol Biol 157: 105-142, each incoφorated herein by reference in their entirety. Antibodies that are specific for one or more domains within an antigenic protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.
The term "epitope" includes any protein determinant capable of specific binding to an immunoglobulin or T-cell receptor. Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three dimensional structural characteristics, as well as specific charge characteristics. A NOVX polypeptide or a fragment thereof comprises at least one antigenic epitope. An anti-NOVX antibody of the present invention is said to specifically bind to antigen NOVX when the equilibrium binding constant (KD) is <1 μM, preferably < 100 nM, more preferably < 10 nM, and most preferably < 100 pM to about 1 pM, as measured by assays including radioligand binding assays or similar assays known to skilled artisans. A protein of the invention, or a derivative, fragment, analog, homolog or ortholog thereof, may be utilized as an immunogen in the generation of antibodies that immunospecifically bind these protein components.
Various procedures known within the art may be used for the production of polyclonal or monoclonal antibodies directed against a protein of the invention, or against derivatives, fragments, analogs homologs or orthologs thereof (see, for example,
Antibodies: A Laboratory Manual, Hariow E, and Lane D, 1988, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, incoφorated herein by reference). Some of these antibodies are discussed below.
Polyclonal Antibodies For the production of polyclonal antibodies, various suitable host animals (e.g., rabbit, goat, mouse or other mammal) may be immunized by one or more injections with the native protein, a synthetic variant thereof, or a derivative of the foregoing. An appropriate immunogenic preparation can contain, for example, the naturally occurring immunogenic protein, a chemically synthesized polypeptide representing the immunogenic protein, or a recombinantly expressed immunogenic protein. Furthermore, the protein may be conjugated to a second protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. The preparation can further include an adjuvant. Various adjuvants used to increase the immunological response include, but are not limited to, Freund's (complete and incomplete), mineral gels (e.g., aluminum hydroxide), surface active substances (e.g., lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, etc.), adjuvants usable in humans such as Bacille Calmette-Guerin and Corynebacterium parvum, or similar immunostimulatory agents. Additional examples of adjuvants which can be employed include MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).
The polyclonal antibody molecules directed against the immunogenic protein can be isolated from the mammal (e.g. , from the blood) and further purified by well known techniques, such as affinity chromatography using protein A or protein G, which provide primarily the IgG fraction of immune serum. Subsequently, or alternatively, the specific antigen which is the target of the immunoglobulin sought, or an epitope thereof, may be immobilized on a column to purify the immune specific antibody by immunoaffinity chromatography. Purification of immunoglobulins is discussed, for example, by D.
Wilkinson (The Scientist, published by The Scientist, Inc., Philadelphia PA, Vol. 14, No. 8 (April 17, 2000), pp. 25-28).
Monoclonal Antibodies
The term "monoclonal antibody" (MAb) or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules that contain only one molecular species of antibody molecule consisting of a unique light chain gene product and a unique heavy chain gene product, hi particular, the complementarity determining regions (CDRs) of the monoclonal antibody are identical in all the molecules of the population. MAbs thus contain an antigen binding site capable of immunoreacting with a particular epitope of the antigen characterized by a unique binding affinity for it.
Monoclonal antibodies can be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes can be immunized in vitro.
The immunizing agent will typically include the protein antigen, a fragment thereof or a fusion protein thereof. Generally, either peripheral blood lymphocytes are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal -Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells can be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.
Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, California and the American Type Culture Collection, Manassas, Virginia. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133:3001 (1984); Brodeur et al., Monoclonal -Antibody Production Techniques and Applications, Marcel Dekker, Inc., New York, (1987) pp. 51-63).
The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107:220 (1980). It is an objective, especially important in therapeutic applications of monoclonal antibodies, to identify antibodies having a high degree of specificity and a high binding affinity for the target antigen.
After the desired hybridoma cells are identified, the clones can be subcloned by limiting dilution procedures and grown by standard methods (Goding, 1986). Suitable culture media for this puφose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells can be grown in vivo as ascites in a mammal.
The monoclonal antibodies secreted by the subclones can be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.
The monoclonal antibodies can also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA can be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also can be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences (U.S. Patent No. 4,816,567; Morrison, Nature 368, 812-13 (1994)) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.
Humanized Antibodies The antibodies directed against the protein antigens of the invention can further comprise humanized antibodies or human antibodies. These antibodies are suitable for administration to humans without engendering an immune response by the human against the administered immunoglobulin. Humanized forms of antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigen-binding subsequences of antibodies) that are principally comprised of the sequence of a human immunoglobulin, and contain minimal sequence derived from a non-human immunoglobulin. Humanization can be performed following the method of Winter and co-workers (Jones et al., Nature, 321 :522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. (See also U.S. Patent No. 5,225,539.) In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies can also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., 1986; Riechmann et al., 1988; and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)).
Human Antibodies Fully human antibodies essentially relate to antibody molecules in which the entire sequence of both the light chain and the heavy chain, including the CDRs, arise from human genes. Such antibodies are termed "human antibodies", or "fully human antibodies" herein. Human monoclonal antibodies can be prepared by the trioma technique; the human B-cell hybridoma technique (see Kozbor, et al., 1983 Immunol Today 4: 72) and the EBV hybridoma technique to produce human monoclonal antibodies (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96). Human monoclonal antibodies may be utilized in the practice of the present invention and may be produced by using human hybridomas (see Cote, et al., 1983. Proc Natl Acad Sci USA 80: 2026-2030) or by transforming human B-cells with Epstein Barr Virus in vitro (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, hie, pp. 77-96).
In addition, human antibodies can also be produced using additional techniques, including phage display libraries (Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in Marks et al. (Bio/Technology 10, 779-783 (1992)); Lonberg et al. (Nature 368 856-859 (1994)); Morrison ( Nature 368, 812-13 (1994)); Fishwild et al,( Nature Biotechnology 14, 845-51 (1996)); Neuberger (Nature Biotechnology 14, 826 (1996)); and Lonberg and Huszar (Intern. Rev. Immunol. 13 65-93 (1995)).
Human antibodies may additionally be produced using transgenic nonhuman animals which are modified so as to produce fully human antibodies rather than the animal's endogenous antibodies in response to challenge by an antigen. (See PCT publication WO94/02602). The endogenous genes encoding the heavy and light immunoglobulin chains in the nonhuman host have been incapacitated, and active loci encoding human heavy and light chain immunoglobulins are inserted into the host's genome. The human genes are incoφorated, for example, using yeast artificial chromosomes containing the requisite human DNA segments. An animal which provides all the desired modifications is then obtained as progeny by crossbreeding intermediate transgenic animals containing fewer than the full complement of the modifications. The prefeπed embodiment of such a nonhuman animal is a mouse, and is termed the Xenomouse™ as disclosed in PCT publications WO 96/33735 and WO 96/34096. This animal produces B cells which secrete fully human immunoglobulins. The antibodies can be obtained directly from the animal after immunization with an immunogen of interest, as, for example, a preparation of a polyclonal antibody, or alternatively from immortalized B cells derived from the animal, such as hybridomas producing monoclonal antibodies. Additionally, the genes encoding the immunoglobulins with human variable regions can be recovered and expressed to obtain the antibodies directly, or can be further modified to obtain analogs of antibodies such as, for example, single chain Fv molecules.
An example of a method of producing a nonhuman host, exemplified as a mouse, lacking expression of an endogenous immunoglobulin heavy chain is disclosed in U.S. Patent No. 5,939,598. It can be obtained by a method including deleting the J segment genes from at least one endogenous heavy chain locus in an embryonic stem cell to prevent rearrangement of the locus and to prevent formation of a transcript of a rearranged immunoglobulin heavy chain locus, the deletion being effected by a targeting vector containing a gene encoding a selectable marker; and producing from the embryonic stem cell a transgenic mouse whose somatic and germ cells contain the gene encoding the selectable marker.
A method for producing an antibody of interest, such as a human antibody, is disclosed in U.S. Patent No. 5,916,771. It includes introducing an expression vector that contains a nucleotide sequence encoding a heavy chain into one mammalian host cell in culture, introducing an expression vector containing a nucleotide sequence encoding a light chain into another mammalian host cell, and fusing the two cells to form a hybrid cell. The hybrid cell expresses an antibody containing the heavy chain and the light chain. h a further improvement on this procedure, a method for identifying a clinically relevant epitope on an immunogen, and a correlative method for selecting an antibody that binds immunospecifically to the relevant epitope with high affinity, are disclosed in PCT publication WO 99/53049.
Fab Fragments and Single Chain Antibodies
According to the invention, techniques can be adapted for the production of single-chain antibodies specific to an antigenic protein of the invention (see e.g., U.S. Patent No. 4,946,778). In addition, methods can be adapted for the construction of Fab expression libraries (see e.g., Huse, et al., 1989 Science 246: 1275-1281) to allow rapid and effective identification of monoclonal Fab fragments with the desired specificity for a protein or derivatives, fragments, analogs or homologs thereof. Antibody fragments that contain the idiotypes to a protein antigen may be produced by techniques known in the art including, but not limited to: (i) an F(av)2 fragment produced by pepsin digestion of an antibody molecule; (ii) an Fab fragment generated by reducing the disulfide bridges of an F(a -)2 fragment; (iii) an Fab fragment generated by the treatment of the antibody molecule with papain and a reducing agent and (iv) Fv fragments.
Bispecific Antibodies
Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for an antigenic protein of the invention. The second binding target is any other antigen, and advantageously is a cell-surface protein or receptor or receptor subunit.
Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities (Milstein and Cuello, Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture often different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published 13 May 1993, and in Traunecker et al., EMBO J., 10:3655-3659 (1991).
-Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is prefeπed to have the first heavy-chain constant region (CHI) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).
According to another approach described in WO 96/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 region of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.
Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab')2 bispecific antibodies). Techniques for generating bispecific antibodies from antibody fragments have been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab')2 fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes. Additionally, Fab' fragments can be directly recovered from E. coli and chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med. 175:217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab')2 molecule. Each Fab' fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lyric activity of human cytotoxic lymphocytes against human breast tumor targets.
Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol. 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the VH and VL domains of one fragment are forced to pair with the complementary VL and VH domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See, Gruber et al., J. Immunol. 152:5368 (1994). Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., J. Immunol. 147:60 (1991).
Exemplary bispecific antibodies can bind to two different epitopes, at least one of which originates in the protein antigen of the invention. Alternatively, an anti-antigenic arm of an immunoglobulin molecule can be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD2, CD3, CD28, or B7), or Fc receptors for IgG (FcγR), such as FcγRI (CD64), FcγRII (CD32) and FcγRIII (CDI 6) so as to focus cellular defense mechanisms to the cell expressing the particular antigen. Bispecific antibodies can also be used to direct cytotoxic agents to cells which express a particular antigen. These antibodies possess an antigen-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE, DPT A, DOT A, or TETA. Another bispecific antibody of interest binds the protein antigen described herein and further binds tissue factor (TF).
Heteroconjugate Antibodies Heteroconjugate antibodies are also within the scope of the present invention.
Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360; WO 92/200373; EP 03089). It is contemplated that the antibodies can be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins can be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this puφose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Patent No. 4,676,980. Effector Function Engineering
It can be desirable to modify the antibody of the invention with respect to effector function, so as to enhance, e.g., the effectiveness of the antibody in treating cancer. For example, cysteine residue(s) can be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated can have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med., 176: 1191-1195 (1992) and Shopes, J. Immunol., 148: 2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity can also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research, 53: 2560-2565 (1993). Alternatively, an antibody can be engineered that has dual Fc regions and can thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design, 3: 219-230 (1989).
Immunoconjugates
The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).
Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include 212Bi, 1311, 131In, 90Y, and 186Re. Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as l,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987). Carbon-14-labeled l-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026. In another embodiment, the antibody can be conjugated to a "receptor" (such streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g., avidin) that is in turn conjugated to a cytotoxic agent.
Immunoliposomes
The antibodies disclosed herein can also be formulated as immunoliposomes. Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA, 82: 3688 (1985); Hwang et al., Proc. Natl Acad. Sci. USA, 77: 4030 (1980); and U.S. Pat. Nos. 4,485,045 and 4,544,545. Liposomes with enhanced circulation time are disclosed in U.S. Patent No. 5,013,556.
Particularly useful liposomes can be generated by the reverse-phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol, and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter. Fab' fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin et al .,_J. Biol. Chem., 257: 286-288 (1982) via a disulfide-interchange reaction. A chemotherapeutic agent (such as Doxorubicin) is optionally contained within the liposome. See Gabizon et al, J. National Cancer hist., 81(19): 1484 (1989). Diagnostic Applications of Antibodies Directed Against the Proteins of the
Invention
In one embodiment, methods for the screening of antibodies that possess the desired specificity include, but are not limited to, enzyme linked immunosorbent assay (ELISA) and other immunologically mediated techniques known within the art. In a specific embodiment, selection of antibodies that are specific to a particular domain of an NOVX protein is facilitated by generation of hybridomas that bind to the fragment of an NOVX protein possessing such a domain. Thus, antibodies that are specific for a desired domain within an NOVX protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein. Antibodies directed against a NOVX protein of the invention may be used in methods known within the art relating to the localization and/or quantitation of a NOVX protein (e.g., for use in measuring levels of the NOVX protein within appropriate physiological samples, for use in diagnostic methods, for use in imaging the protein, and the like). In a given embodiment, antibodies specific to a NOVX protein, or derivative, fragment, analog or homolog thereof, that contain the antibody derived antigen binding domain, are utilized as pharmacologically active compounds (referred to hereinafter as "Therapeutics"). An antibody specific for a NOVX protein of the invention (e.g., a monoclonal antibody or a polyclonal antibody) can be used to isolate a NOVX polypeptide by standard techniques, such as immunoaffinity, chromatography or immunoprecipitation. An antibody to a NOVX polypeptide can facilitate the purification of a natural NOVX antigen from cells, or of a recombinantly produced NOVX antigen expressed in host cells. Moreover, such an anti-NOVX antibody can be used to detect the antigenic NOVX protein (e.g., in a cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of expression of the antigenic NOVX protein. Antibodies directed against a NOVX protein can be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling (i. e., physically linking) the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include I, I, S or H.
Antibody Therapeutics
Antibodies of the invention, including polyclonal, monoclonal, humanized and fully human antibodies, may used as therapeutic agents. Such agents will generally be employed to treat or prevent a disease or pathology in a subject. An antibody preparation, preferably one having high specificity and high affinity for its target antigen, is administered to the subject and will generally have an effect due to its binding with the target. Such an effect may be one of two kinds, depending on the specific nature of the interaction between the given antibody molecule and the target antigen in question, h the first instance, administration of the antibody may abrogate or inhibit the binding of the target with an endogenous ligand to which it naturally binds. In this case, the antibody binds to the target and masks a binding site of the naturally occurring ligand, wherein the ligand serves as an effector molecule. Thus the receptor mediates a signal transduction pathway for which ligand is responsible.
Alternatively, the effect may be one in which the antibody elicits a physiological result by virtue of binding to an effector binding site on the target molecule. In this case the target, a receptor having an endogenous ligand which may be absent or defective in the disease or pathology, binds the antibody as a surrogate effector ligand, initiating a receptor-based signal transduction event by the receptor.
A therapeutically effective amount of an antibody of the invention relates generally to the amount needed to achieve a therapeutic objective. As noted above, this may be a binding interaction between the antibody and its target antigen that, in certain cases, interferes with the functioning of the target, and in other cases, promotes a physiological response. The amount required to be administered will furthermore depend on the binding affinity of the antibody for its specific antigen, and will also depend on the rate at which an administered antibody is depleted from the free volume other subject to which it is administered. Common ranges for therapeutically effective dosing of an antibody or antibody fragment of the invention may be, by way of nonlimiting example, from about 0.1 mg/kg body weight to about 50 mg/kg body weight. Common dosing frequencies may range, for example, from twice daily to once a week.
Pharmaceutical Compositions of Antibodies
Antibodies specifically binding a protein of the invention, as well as other molecules identified by the screening assays disclosed herein, can be administered for the treatment of various disorders in the form of pharmaceutical compositions. Principles and considerations involved in preparing such compositions, as well as guidance in the choice of components are provided, for example, in Remington : The Science And Practice Of Pharmacy 19th ed. (Alfonso R. Gennaro, et al., editors) Mack Pub. Co., Easton, Pa. : 1995; Drug Absoφtion Enhancement : Concepts, Possibilities, Limitations, And Trends, Harwood Academic Publishers, Langhorne, Pa., 1994; and Peptide And Protein Drug Delivery (Advances hi Parenteral Sciences, Vol. 4), 1991, M. Dekker, New York.
If the antigenic protein is intracellular and whole antibodies are used as inhibitors, internalizing antibodies are preferred. However, liposomes can also be used to deliver the antibody, or an antibody fragment, into cells. Where antibody fragments are used, the smallest inhibitory fragment that specifically binds to the binding domain of the target protein is prefeπed. For example, based upon the variable-region sequences of an antibody, peptide molecules can be designed that retain the ability to bind the target protein sequence. Such peptides can be synthesized chemically and/or produced by recombinant DNA technology. See, e.g., Marasco et al., Proc. Natl. Acad. Sci. USA, 90: 7889-7893 (1993). The formulation herein can also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. Alternatively, or in addition, the composition can comprise an agent that enhances its function, such as, for example, a cytotoxic agent, cytokine, chemotherapeutic agent, or growth-inhibitory agent. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.
The active ingredients can also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methyhnethacrylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles, and nanocapsules) or in macroemulsions. The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.
Sustained-release preparations can be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and γ ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT ™ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. ELISA Assay
An agent for detecting an analyte protein is an antibody capable of binding to an analyte protein, preferably an antibody with a detectable label. -Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab)2) can be used. The term "labeled", with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently-labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently-labeled streptavidin. The term "biological sample" is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. Included within the usage of the term "biological sample", therefore, is blood and a fraction or component of blood including blood serum, blood plasma, or lymph. That is, the detection method of the invention can be used to detect an analyte mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo. For example, in vitro techniques for detection of an analyte mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detection of an analyte protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations, and immunofluorescence. In vitro techniques for detection of an analyte genomic DNA include Southern hybridizations. Procedures for conducting immunoassays are described, for example in "ELISA: Theory and Practice: Methods in Molecular Biology", Vol.42, J. R. Crowther (Ed.) Human Press, Totowa, NJ, 1995; "Immunoassay", E. Diamandis and T. Christopoulus, Academic Press, Inc., San Diego, CA, 1996; and "Practice and Theory of Enzyme Immunoassays", P. Tijssen, Elsevier
Science Publishers, Amsterdam, 1985. Furthermore, in vivo techniques for detection of an analyte protein include introducing into a subject a labeled anti-an analyte protein antibody. For.example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques. NOVX Recombinant Expression Vectors and Host Cells
Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding a NOVX protein, or derivatives, fragments, analogs or homologs thereof. As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively-linked. Such vectors are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retrovirases, adenovirases and adeno-associated viruses), which serve equivalent functions.
The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, that is operatively-linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, "operably-linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner that allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell).
The term "regulatory sequence" is intended to includes promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990). Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., NOVX proteins, mutant forms of NOVX proteins, fusion proteins, etc.). The recombinant expression vectors of the invention can be designed for expression of NOVX proteins in prokaryotic or eukaryotic cells. For example, NOVX proteins can be expressed in bacterial cells such as Escherichia coli, insect cells (using baculovirus expression vectors) yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990). Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.
Expression of proteins in prokaryotes is most often carried out in Escherichia coli with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion vectors typically serve three puφoses: (i) to increase expression of recombinant protein; (ii) to increase the solubility of the recombinant protein; and (iii) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson, 1988. Geτ?e 67: 31 -40), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, N.J.) that fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.
Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (-Amrann et al, (1988) Gene 69:301-315) and pET lid (Studier et al, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 60-89).
One strategy to maximize recombinant protein expression in E. coli is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein. See, e.g., Gottesman, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 119-128. Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in E. coli (see, e.g., Wada, et al, 1992. Nucl. Acids Res.20: 2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques. In another embodiment, the NOVX expression vector is a yeast expression vector. Examples of vectors for expression in yeast Saccharomyces cerivisae include pYepSecl (Baldari, et al, 1987. EMBOJ. 6: 229-234), pMFa (Kurjan and Herskowitz, 1982. Cell 30: 933-943), pJRY88 (Schultz et al, 1987. Gene 54: 113-123), pYES2 (Invitrogen Coφoration, San Diego, Calif), and picZ (InVitrogen Coφ, San Diego, Calif).
Alternatively, NOVX can be expressed in insect cells using baculoviras expression vectors. Baculoviras vectors available for expression of proteins in cultured insect cells (e.g., SF9 cells) include the pAc series (Smith, et al, 1983. Mol. Cell. Biol. 3: 2156-2165) and the pVL series (Lucklow and Summers, 1989. Virology 170: 31-39). In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, 1987. Nature 329: 840) and pMT2PC (Kaufman, et al, 1987. EMBOJ. 6: 187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, adenovirus 2, cytomegalovirus, and simian viras 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see, e.g., Chapters 16 and 17 of Sambrook, et al, MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989. In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert, et al, 1987. Genes Dev. 1: 268-277), lymphoid-specific promoters (Calame and Eaton, 1988. Adv. Immunol. 43:
235-275), in particular promoters of T cell receptors (Winoto and Baltimore, 1989. EMBO J. 8: 729-733) and immunoglobulins (Banerji, et al, 1983. Cell 33: 729-740; Queen and Baltimore, 1983. Cell 33: 741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle, 1989. Proc. Natl. Acad. Sci. USA 86: 5473-5477), pancreas-specific promoters (Edlund, et al, 1985. Science 230: 912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Pat. No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, e.g., the murine hox promoters (Kessel and Grass, 1990. Science 249: 374-379) and the α-fetoprotein promoter (Campes and Tilghman, 1989. Genes Dev. 3: 537-546).
The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively-linked to a regulatory sequence in a manner that allows for expression (by transcription of the DNA molecule) of an RNA molecule that is antisense to NOVX mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen that direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen that direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see, e.g., Weintraub, et al., "Antisense RNA as a molecular tool for genetic analysis," Reviews-Trends in Genetics, Vol. 1(1) 1986.
Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.
A host cell can be any prokaryotic or eukaryotic cell. For example, NOVX protein can be expressed in bacterial cells such as E. coli, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art. Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989), and other laboratory manuals. For stable transfection of mammalian cells, it is known that, depending upon the
' expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Various selectable markers include those that confer resistance to drags, such as G418, hygromycin and methotrexate. Nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding NOVX or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incoφorated the selectable marker gene will survive, while the other cells die).
A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) NOVX protein. Accordingly, the invention further provides methods for producing NOVX protein using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding NOVX protein has been introduced) in a suitable medium such that NOVX protein is produced. In another embodiment, the method further comprises isolating NOVX protein from the medium or the host cell.
Transgenic NOVX Animals
The host cells of the invention can also be used to produce non-human transgenic animals. For example, in one embodiment, a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which NOVX protein-coding sequences have been introduced. Such host cells can then be used to create non-human transgenic animals in which exogenous NOVX sequences have been introduced into their genome or homologous recombinant animals in which endogenous NOVX sequences have been altered. Such animals are useful for studying the function and/or activity of NOVX protein and for identifying and/or evaluating modulators of NOVX protein activity. As used herein, a "transgenic animal" is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, etc. A transgene is exogenous DNA that is integrated into the genome of a cell from which a transgenic animal develops and that remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal. As used herein, a "homologous recombinant animal" is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous NOVX gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.
A transgenic animal of the invention can be created by introducing NOVX-encoding nucleic acid into the male pronuclei of a fertilized oocyte (e.g., by microinjection, retro viral infection) and allowing the oocyte to develop in a pseudopregnant female foster animal. The human NOVX cDNA sequences, i.e., any one of SEQ ID NO:2«-l, wherein n is an integer between 1 and 606, can be introduced as a transgene into the genome of a non-human animal. Alternatively, a non-human homologue of the human NOVX gene, such as a mouse NOVX gene, can be isolated based on hybridization to the human NOVX cDNA (described further supra) and used as a transgene. ϊntronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene. A tissue-specific regulatory sequence(s) can be operably-linked to the NOVX transgene to direct expression of NOVX protein to particular cells. Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Patent Nos.4,736,866; 4,870,009; and 4,873,191; and Hogan, 1986. In: MANIPULATING THE MOUSE EMBRYO, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the NOVX transgene in its genome and/or expression of NOVX mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene-encoding NOVX protein can further be bred to other transgenic animals carrying other transgenes.
To create a homologous recombinant animal, a vector is prepared which contains at least a portion of a NOVX gene into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the NOVX gene. The NOVX gene can be a human gene (e.g., the cDNA of any one of SEQ ID NO:272-l, wherein n is an integer between 1 and 606), but more preferably, is a non-human homologue of a human NOVX gene. For example, a mouse homologue of human NOVX gene of SEQ ID NO:272-l, wherein n is an integer between 1 and 606, can be used to construct a homologous recombination vector suitable for altering an endogenous NOVX gene in the mouse genome. In one embodiment, the vector is designed such that, upon homologous recombination, the endogenous NOVX gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a "knock out" vector). Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous NOVX gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous NOVX protein). In the homologous recombination vector, the altered portion of the NOVX gene is flanked at its 5'- and 3 '-termini by additional nucleic acid of the NOVX gene to allow for homologous recombination to occur between the exogenous NOVX gene carried by the vector and an endogenous NOVX gene in an embryonic stem cell. The additional flanking NOVX nucleic acid is of sufficient length for successful homologous recombination with the endogenous gene. Typically, several kilobases of flanking DNA (both at the 5'- and 3 '-termini) are included in the vector. See, e.g., Thomas, et al, 1987. Cell 51 : 503 for a description of homologous recombination vectors. The vector is ten introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced NOVX gene has homologously-recombined with the endogenous NOVX gene are selected. See, e.g., Li, et al, 1992. Cell 69: 915. The selected cells are then injected into a blastocyst of an animal (e.g., a mouse) to form aggregation chimeras. See, e.g., Bradley, 1987. In: TERATOCARCINOMAS AND EMBRYONIC STEM CELLS: A PRACTICAL APPROACH, Robertson, ed. IRL, Oxford, pp. 113-152. A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term. Progeny harboring the homologously-recombined DNA in their germ cells can be used to breed animals in which all cells of the animal contain the homologously-recombined DNA by germline transmission of the transgene. Methods for constructing homologous recombination vectors and homologous recombinant animals are described further in Bradley, 1991. Curr. Opin. Biotechnol. 2: 823-829; PCT International Publication Nos.: WO 90/11354; WO 91/01140; WO 92/0968; and WO 93/04169. h another embodiment, transgenic non-humans animals can be produced that contain selected systems that allow for regulated expression of the transgene. One example of such a system is the cre/loxP recombinase system of bacteriophage PI. For a description of the cre/loxP recombinase system, See, e.g., Lakso, et al, 1992. Proc. Natl. Acad. Sci. USA 89: 6232-6236. Another example of a recombinase system is the FLP recombinase system of Saccharomyces cerevisiae. See, O'Gorman, et al, 1991. Science 251:1351-1355. If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein are required. Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.
Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut, et al, 1997. Nature 385: 810-813. In brief, a cell (e.g., a somatic cell) from the transgenic animal can be isolated and induced to exit the growth cycle and enter Go phase. The quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated. The reconstructed oocyte is then cultured such that it develops to morula or blastocyte and then transfeπed to pseudopregnant female foster animal. The offspring borne of this female foster animal will be a clone of the animal from which the cell (e.g., the somatic cell) is isolated.
Pharmaceutical Compositions
The NOVX nucleic acid molecules, NOVX proteins, and anti-NOVX antibodies (also refeπed to herein as "active compounds") of the invention, and derivatives, fragments, analogs and homologs thereof, can be incoφorated into pharmaceutical compositions suitable for administration. Such compositions typically comprise the nucleic acid molecule, protein, or antibody and a pharmaceutically acceptable carrier. As used herein, "pharmaceutically acceptable carrier" is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absoφtion delaying agents, and the like, compatible with pharmaceutical administration. Suitable carriers are described in the most recent edition of Remington's Pharmaceutical Sciences, a standard reference text in the field, which is incoφorated herein by reference. Preferred examples of such carriers or diluents include, but are not limited to, water, saline, finger's solutions, dextrose solution, and 5% human serum albumin. Liposomes and non-aqueous vehicles such as fixed oils may also be used. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incoφorated into the compositions.
A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (i.e., topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid (EDTA); buffers such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose. The pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic. Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringeability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. Prolonged absoφtion of the injectable compositions can be brought about by including in the composition an agent which delays absoφtion, for example, aluminum monostearate and gelatin.
Sterile injectable solutions can be prepared by incoφorating the active compound (e.g., a NOVX protein or anti-NOVX antibody) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incoφorating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof. Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the puφose of oral therapeutic administration, the active compound can be incoφorated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring. For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.
Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.
The compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.
In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Coφoration and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Patent No. 4,522,811. It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals. The nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors. Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (see, e.g., U.S. Patent No. 5,328,470) or by stereotactic injection (see, e.g., Chen, et al, 1994. Proc. Natl. Acad. Sci. USA 91: 3054-3057). The pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, e.g., retro viral vectors, the pharmaceutical preparation can include one or more cells that produce the gene delivery system.
The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.
Screening and Detection Methods
The isolated nucleic acid molecules of the invention can be used to express NOVX protein (e.g. , via a recombinant expression vector in a host cell in gene therapy applications), to detect NOVX mRNA (e.g., in a biological sample) or a genetic lesion in a NOVX gene, and to modulate NOVX activity, as described further, below. In addition, the NOVX proteins can be used to screen drugs or compounds that modulate the NOVX protein activity or expression as well as to treat disorders characterized by insufficient or excessive production of NOVX protein or production of NOVX protein forms that have decreased or aberrant activity compared to NOVX wild-type protein (e.g.; diabetes (regulates insulin release); obesity (binds and transport lipids); metabolic disturbances associated with obesity, the metabolic syndrome X as well as anorexia and wasting disorders associated with chronic diseases and various cancers, and infectious disease(possesses anti-microbial activity) and the various dyshpidemias. In addition, the anti-NOVX antibodies of the invention can be used to detect and isolate NOVX proteins and modulate NOVX activity. In yet a further aspect, the invention can be used in methods to influence appetite, absoφtion of nutrients and the disposition of metabolic substrates in both a positive and negative fashion. The invention further pertains to novel agents identified by the screening assays described herein and uses thereof for treatments as described, supra. Screening Assays
The invention provides a method (also referred to herein as a "screening assay") for identifying modulators, i.e., candidate or test compounds or agents (e.g., peptides, peptidomimetics, small molecules or other drugs) that bind to NOVX proteins or have a stimulatory or inhibitory effect on, e.g., NOVX protein expression or NOVX protein activity. The invention also includes compounds identified in the screening assays described herein.
In one embodiment, the invention provides assays for screening candidate or test compounds which bind to or modulate the activity of the membrane-bound form of a NOVX protein or polypeptide or biologically-active portion thereof. The test compounds of the invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the "one-bead one-compound" library method; and synthetic library methods using affinity chromatography selection. The biological library approach is limited to peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds. See, e.g., Lam, 1997. Anticancer Drug Design 12: 145.
A "small molecule" as used herein, is meant to refer to a composition that has a molecular weight of less than about 5 kD and most preferably less than about 4 kD. Small molecules can be, e.g., nucleic acids, peptides, polypeptides, peptidomimetics, carbohydrates, lipids or other organic or inorganic molecules. Libraries of chemical and/or biological mixtures, such as fungal, bacterial, or algal extracts, are known in the art and can be screened with any of the assays of the invention. Examples of methods for the synthesis of molecular libraries can be found in the art, for example in: DeWitt, et al, 1993. Proc. Natl. Acad. Sci. U.S.A. 90: 6909; Erb, et al, 1994. Proc. Natl. Acad. Sci. U.S.A. 91: 11422; Zuckermann, et al, 1994. J. Med. Chem. 37: 2678; Cho, et al, 1993. Science 261: 1303; Carrell, et al, 1994. Angew. Chem. Int. Ed. Engl 33: 2059; Carell, et al, 1994. Angew. Chem. Int. Ed. Engl 33: 2061; and Gallop, et al, 1994. J. Med. Chem. 37: 1233.
Libraries of compounds maybe presented in solution (e.g., Houghten, 1992. Biotechniques 13: 412-421), or on beads (Lam, 1991. Nature 354: 82-84), on chips (Fodor, 1993. Nature 364: 555-556), bacteria (Ladner, U.S. Patent No. 5,223,409), spores (Ladner, U.S. Patent 5,233,409), plasmids (Cull, et al, 1992. Proc. Natl Acad. Sci. USA 89: 1865-1869) or on phage (Scott and Smith, 1990. Science 249: 386-390; Devlin, 1990. Science 249: 404-406; Cwirla, et al, 1990. Proc. Natl. Acad. Sci. U.S.A. 87: 6378-6382; Felici, 1991. J. Mol. Biol. 222: 301-310; Ladner, U.S. Patent No. 5,233,409.). In one embodiment, an assay is a cell-based assay in which a cell which expresses a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface is contacted with a test compound and the ability of the test compound to bind to a NOVX protein determined. The cell, for example, can of mammalian origin or a yeast cell. Determining the ability of the test compound to bind to the NOVX protein can be accomplished, for example, by coupling the test compound with a radioisotope or enzymatic label such that binding of the test compound to the NOVX protein or biologically-active portion thereof can be determined by detecting the labeled compound in a complex. For example, test compounds can be labeled with 125I, 35S, 14C, or 3H, either directly or indirectly, and the radioisotope detected by direct counting of radioemission or by scintillation counting. Alternatively, test compounds can be enzymatically-labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product. In one embodiment, the assay comprises contacting a cell which expresses a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface with a known compound which binds NOVX to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a NOVX protein, wherein determining the ability of the test compound to interact with a NOVX protein comprises determining the ability of the test compound to preferentially bind to NOVX protein or a biologically-active portion thereof as compared to the known compound.
In another embodiment, an assay is a cell-based assay comprising contacting a cell expressing a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the NOVX protein or biologically-active portion thereof. Determining the ability of the test compound to modulate the activity of NOVX or a biologically-active portion thereof can be accomplished, for example, by determining the ability of the NOVX protein to bind to or interact with a NOVX target molecule. As used herein, a "target molecule" is a molecule with which a NOVX protein binds or interacts in nature, for example, a molecule on the surface of a cell which expresses a NOVX interacting protein, a molecule on the surface of a second cell, a molecule in the extracellular milieu, a molecule associated with the internal surface of a cell membrane or a cytoplasmic molecule. A NOVX target molecule can be a non-NOVX molecule or a NOVX protein or polypeptide of the invention, h one embodiment, a NOVX target molecule is a component of a signal transduction pathway that facilitates transduction of an extracellular signal (e.g. a signal generated by binding of a compound to a membrane-bound NOVX molecule) through the cell membrane and into the cell. The target, for example, can be a second intercellular protein that has catalytic activity or a protein that facilitates the association of downstream signaling molecules with NOVX.
Determining the ability of the NOVX protein to bind to or interact with a NOVX target molecule can be accomplished by one of the methods described above for determining direct binding. In one embodiment, determining the ability of the NOVX protein to bind to or interact with a NOVX target molecule can be accomplished by determining the activity of the target molecule. For example, the activity of the target molecule can be determined by detecting induction of a cellular second messenger of the target (i.e. intracellular Ca2+, diacylglycerol, IP3, etc.), detecting catalytic/enzymatic activity of the target an appropriate substrate, detecting the induction of a reporter gene (comprising a NOVX-responsive regulatory element operatively linked to a nucleic acid encoding a detectable marker, e.g., luciferase), or detecting a cellular response, for example, cell survival, cellular differentiation, or cell proliferation.
In yet another embodiment, an assay of the invention is a cell-free assay comprising contacting a NOVX protein or biologically-active portion thereof with a test compound and determining the ability of the test compound to bind to the NOVX protein or biologically-active portion thereof. Binding of the test compound to the NOVX protein can be determined either directly or indirectly as described above. In one such embodiment, the assay comprises contacting the NOVX protein or biologically-active portion thereof with a known compound which binds NOVX to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a NOVX protein, wherein determining the ability of the test compound to interact with a NOVX protein comprises determining the ability of the test compound to preferentially bind to NOVX or biologically-active portion thereof as compared to the known compound. In still another embodiment, an assay is a cell-free assay comprising contacting NOVX protein or biologically-active portion thereof with a test compound and determining the ability of the test compound to modulate (e.g. stimulate or inhibit) the activity of the NOVX protein or biologically-active portion thereof. Determining the ability of the test compound to modulate the activity of NOVX can be accomplished, for example, by determining the ability of the NOVX protein to bind to a NOVX target molecule by one of the methods described above for determining direct binding. In an alternative embodiment, determining the ability of the test compound to modulate the activity of NOVX protein can be accomplished by determining the ability of the NOVX protein further modulate a NOVX target molecule. For example, the catalytic/enzymatic activity of the target molecule on an appropriate substrate can be determined as described, supra.
In yet another embodiment, the cell-free assay comprises contacting the NOVX protein or biologically-active portion thereof with a known compound which binds NOVX protein to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a NOVX protein, wherein determining the ability of the test compound to interact with a NOVX protein comprises determining the ability of the NOVX protein to preferentially bind to or modulate the activity of a NOVX target molecule.
The cell-free assays of the invention are amenable to use of both the soluble form or the membrane-bound form of NOVX protein, hi the case of cell-free assays comprising the membrane-bound form of NOVX protein, it may be desirable to utilize a solubilizing agent such that the membrane-bound form of NOVX protein is maintained in solution. Examples of such solubilizing agents include non-ionic detergents such as n-octylglucoside, n-dodecylglucoside, n-dodecylmaltoside, octanoyl-N-methylglucamide, decanoyl-N-methylglucamide, Triton®,X-100, Triton® X-l 14, Thesit®,
Isotridecypoly(ethylene glycol ether)n, N-dodecyl~N,N-dimethyl-3-ammonio-l-propane sulfonate, 3-(3-cholamidopropyl) dimethylamminiol-1 -propane sulfonate (CHAPS), or 3-(3-cholamidopropyl)dimethylamminiol-2-hydroxy-l -propane sulfonate (CHAPSO).
In more than one embodiment of the above assay methods of the invention, it may be desirable to immobilize either NOVX protein or its target molecule to facilitate separation of complexed from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay. Binding of a test compound to NOVX protein, or interaction of NOVX protein with a target molecule in the presence and absence of a candidate compound, can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and micro-centrifuge tubes. In one embodiment, a fusion protein can be provided that adds a domain that allows one or both of the proteins to be bound to a matrix. For example, GST-NO VX fusion proteins or GST-target fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, MO) or glutathione derivatized microtiter plates, that are then combined with the test compound or the test compound and either the non-adsorbed target protein or NOVX protein, and the mixture is incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components, the matrix immobilized in the case of beads, complex determined either directly or indirectly, for example, as described, supra. Alternatively, the complexes can be dissociated from the matrix, and the level of NOVX protein binding or activity determined using standard techniques.
Other techniques for immobilizing proteins on matrices can also be used in the screening assays of the invention. For example, either the NOVX protein or its target molecule can be immobilized utilizing conjugation of biotin and sfreptavidin. Biotinylated NOVX protein or target molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques well-known within the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, 111.), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). Alternatively, antibodies reactive with NOVX protein or target molecules, but which do not interfere with binding of the NOVX protein to its target molecule, can be derivatized to the wells of the plate, and unbound target or NOVX protein trapped in the wells by antibody conjugation. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the NOVX protein or target molecule, as well as enzyme-linked assays that rely on detecting an enzymatic activity associated with the NOVX protein or target molecule.
In another embodiment, modulators of NOVX protein expression are identified in a method wherein a cell is contacted with a candidate compound and the expression of NOVX mRNA or protein in the cell is determined. The level of expression of NOVX mRNA or protein in the presence of the candidate compound is compared to the level of expression of NOVX mRNA or protein in the absence of the candidate compound. The candidate compound can then be identified as a modulator of NOVX mRNA or protein expression based upon this comparison. For example, when expression of NOVX mRNA or protein is greater (z.e., statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of NOVX mRNA or protein expression. Alternatively, when expression of NOVX m-RNA or protein is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of NOVX mRNA or protein expression. The level of NOVX mRNA or protein expression in the cells can be determined by methods described herein for detecting NOVX mRNA or protein.
In yet another aspect of the invention, the NOVX proteins can be used as "bait proteins" in a two-hybrid assay or three hybrid assay (see, e.g., U.S. Patent No. 5,283,317; Zervos, et al, 1993. Cell 72: 223-232; Madura, et al, 1993. J. Biol. Chem. 268:
12046-12054; Bartel, et al, 1993. Biotechniques 14: 920-924; Iwabuchi, et al, 1993. Oncogene 8: 1693-1696; and Brent WO 94/10300), to identify other proteins that bind to or interact with NOVX ("NOVX-binding proteins" or "NOVX-bp") and modulate NOVX activity. Such NOVX-binding proteins are also involved in the propagation of signals by the NOVX proteins as, for example, upstream or downstream elements of the NOVX pathway.
The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for NOVX is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g. , GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein ("prey" or "sample") is fused to a gene that codes for the activation domain of the known transcription factor. If the "bait" and the "prey" proteins are able to interact, in vivo, forming a NOVX-dependent complex, the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) that is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene that encodes the protein which interacts with NOVX. The invention further pertains to novel agents identified by the aforementioned screening assays and uses thereof for treatments as described herein. Detection Assays
Portions or fragments of the cDNA sequences identified herein (and the corresponding complete gene sequences) can be used in numerous ways as polynucleotide reagents. By way of example, and not of limitation, these sequences can be used to: (i) map their respective genes on a chromosome; and, thus, locate gene regions associated with genetic disease; (ii) identify an individual from a minute biological sample (tissue typing); and (iii) aid in forensic identification of a biological sample. Some of these applications are described in the subsections, below.
Chromosome Mapping Once the sequence (or a portion of the sequence) of a gene has been isolated, this sequence can be used to map the location of the gene on a chromosome. This process is called chromosome mapping. Accordingly, portions or fragments of the NOVX sequences of SEQ ID NO:2?z-l , wherein n is an integer between 1 and 606, or fragments or derivatives thereof, can be used to map the location of the NOVX genes, respectively, on a chromosome. The mapping of the NOVX sequences to chromosomes is an important first step in coπelating these sequences with genes associated with disease.
Briefly, NOVX genes can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp in length) from the NOVX sequences. Computer analysis of the NOVX, sequences can be used to rapidly select primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers can then be used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene coπesponding to the NOVX sequences will yield an amplified fragment.
Somatic cell hybrids are prepared by fusing somatic cells from different mammals (e.g., human and mouse cells). As hybrids of human and mouse cells grow and divide, they gradually lose human chromosomes in random order, but retain the mouse chromosomes. By using media in which mouse cells cannot grow, because they lack a particular enzyme, but in which human cells can, the one human chromosome that contains the gene encoding the needed enzyme will be retained. By using various media, panels of hybrid cell lines can be established. Each cell line in a panel contains either a single human chromosome or a small number of human chromosomes, and a full set of mouse chromosomes, allowing easy mapping of individual genes to specific human chromosomes. See, e.g., D'Eustachio, et al, 1983. Science 220: 919-924. Somatic cell hybrids containing only fragments of human chromosomes can also be produced by using human chromosomes with translocations and deletions.
PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular sequence to a particular chromosome. Three or more sequences can be assigned per day using a single thermal cycler. Using the NOVX sequences to design oligonucleotide primers, sub-localization can be achieved with panels of fragments from specific chromosomes.
Fluorescence in situ hybridization (FISH) of a DNA sequence to a metaphase chromosomal spread can further be used to provide a precise chromosomal location in one step. Chromosome spreads can be made using cells whose division has been blocked in metaphase by a chemical like colcemid that disrupts the mitotic spindle. The chromosomes can be treated briefly with trypsin, and then stained with Giemsa. A pattern of light and dark bands develops on each chromosome, so that the chromosomes can be identified individually. The FISH technique can be used with a DNA sequence as short as 500 or 600 bases. However, clones larger than 1,000 bases have a higher likelihood of binding to a unique chromosomal location with sufficient signal intensity for simple detection. Preferably 1,000 bases, and more preferably 2,000 bases, will suffice to get good results at a reasonable amount of time. For a review of this technique, see, Verma, et al, HUMAN CHROMOSOMES: A MANUAL OF BASIC TECHNIQUES (Pergamon Press, New York 1988). Reagents for chromosome mapping can be used individually to mark a single chromosome or a single site on that chromosome, or panels of reagents can be used for marking multiple sites and/or multiple chromosomes. Reagents coπesponding to noncoding regions of the genes actually are preferred for mapping puφoses. Coding sequences are more likely to be conserved within gene families, thus increasing the chance of cross hybridizations during chromosomal mapping.
Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found, e.g., in McKusick, MENDELIAN INHERITANCE IN MAN, available on-line through Johns Hopkins University Welch Medical Library). The relationship between genes and disease, mapped to the same chromosomal region, can then be identified through linkage analysis (co-inheritance of physically adjacent genes), described in, e.g., Egeland, et al, 1987. Nature, 325: 783-787.
Moreover, differences in the DNA sequences between individuals affected and unaffected with a disease associated with the NOVX gene, can be determined. If a mutation is observed in some or all of the affected individuals but not in any unaffected individuals, then the mutation is likely to be the causative agent of the particular disease. Comparison of affected and unaffected individuals generally involves first looking for structural alterations in the chromosomes, such as deletions or translocations that are visible from chromosome spreads or detectable using PCR based on that DNA sequence. Ultimately, complete sequencing of genes from several individuals can be performed to confirm the presence of a mutation and to distinguish mutations from polymoφhisms.
Tissue Typing
The NOVX sequences of the invention can also be used to identify individuals from minute biological samples. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identification. The sequences of the invention are useful as additional DNA markers for RFLP ("restriction fragment length polymoφhisms," described in U.S. Patent No. 5,272,057). Furthermore, the sequences of the invention can be used to provide an alternative technique that determines the actual base-by-base DNA sequence of selected portions of an individual's genome. Thus, the NOVX sequences described herein can be used to prepare two PCR primers from the 5'- and 3'-termini of the sequences. These primers can then be used to amplify an individual's DNA and subsequently sequence it. Panels of coπesponding DNA sequences from individuals, prepared in this manner, can provide unique individual identifications, as each individual will have a unique set of such DNA sequences due to allelic differences. The sequences of the invention can be used to obtain such identification sequences from individuals and from tissue. The NOVX sequences of the invention uniquely represent portions of the human genome. Allelic variation occurs to some degree in the coding regions of these sequences, and to a greater degree in the noncoding regions. It is estimated that allelic variation between individual humans occurs with a frequency of about once per each 500 bases. Much of the allelic variation is due to single nucleotide polymoφhisms (SNPs), which include restriction fragment length polymoφhisms (RFLPs). Each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for identification puφoses. Because greater numbers of polymoφhisms occur in the noncoding regions, fewer sequences are necessary to differentiate individuals. The noncoding sequences can comfortably provide positive individual identification with a panel of perhaps 10 to 1,000 primers that each yield a noncoding amplified sequence of 100 bases. If coding sequences, such as those of SEQ ID NO:2?z-l, wherein n is an integer between 1 and 606, are used, a more appropriate number of primers for positive individual identification would be 500-2,000.
Predictive Medicine
The invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, pharmacogenomics, and monitoring clinical trials are used for prognostic (predictive) p poses to thereby treat an individual prophylactically. Accordingly, one aspect of the invention relates to diagnostic assays for determining
NOVX protein and/or nucleic acid expression as well as NOVX activity, in the context of a biological sample (e.g., blood, serum, cells, tissue) to thereby determine whether an individual is afflicted with a disease or disorder, or is at risk of developing a disorder, associated with aberrant NOVX expression or activity. The disorders include metabolic disorders, diabetes, obesity, infectious disease, anorexia, cancer-associated cachexia, cancer, neurodegenerative disorders, Alzheimer's Disease, Parkinson's Disorder, immune disorders, and hematopoietic disorders, and the various dyshpidemias, metabolic disturbances associated with obesity, the metabolic syndrome X and wasting disorders associated with chronic diseases and various cancers. The invention also provides for prognostic (or predictive) assays for determining whether an individual is at risk of developing a disorder associated with NOVX protein, nucleic acid expression or activity. For example, mutations in a NOVX gene can be assayed in a biological sample. Such assays can be used for prognostic or predictive puφose to thereby prophylactically treat an individual prior to the onset of a disorder characterized by or associated with NOVX protein, nucleic acid expression, or biological activity.
-Another aspect of the invention provides methods for determining NOVX protein, nucleic acid expression or activity in an individual to thereby select appropriate therapeutic or prophylactic agents for that individual (refeπed to herein as "pharmacogenomics"). Pharmacogenomics allows for the selection of agents (e.g., drugs) for therapeutic or prophylactic treatment of an individual based on the genotype of the individual (e.g., the genotype of the individual examined to determine the ability of the individual to respond to a particular agent.) Yet another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of NOVX in clinical trials.
These and other agents are described in further detail in the following sections.
Diagnostic Assays An exemplary method for detecting the presence or absence of NOVX in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting NOVX protein or nucleic acid (e.g., mRNA, genomic DNA) that encodes NOVX protein such that the presence of NOVX is detected in the biological sample. An agent for detecting NOVX mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to NOVX mRNA or genomic DNA. The nucleic acid probe can be, for example, a full-length NOVX nucleic acid, such as the nucleic acid of SEQ ID NO:272-l, wherein n is an integer between 1 and 606, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to NOVX mRNA or genomic DNA. Other suitable probes for use in the diagnostic assays of the invention are described herein.
An agent for detecting NOVX protein is an antibody capable of binding to NOVX protein, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab')2) can be used. The term "labeled", with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently-labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently-labeled streptavidin. The term "biological sample" is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. That is, the detection method of the invention can be used to detect NOVX mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo. For example, in vitro techniques for detection of NOVX mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detection of NOVX protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations, and immunofluorescence. In vitro techniques for detection of NOVX genomic DNA include Southern hybridizations. Furthermore, in vivo techniques for detection of NOVX protein include introducing into a subject a labeled anti-NOVX antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques. In one embodiment, the biological sample contains protein molecules from the test subject. Alternatively, the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject. A preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject.
In another embodiment, the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting NOVX protein, mRNA, or genomic DNA, such that the presence of NOVX protein, mRNA or genomic DNA is detected in the biological sample, and comparing the presence of NOVX protein, mRNA or genomic DNA in the control sample with the presence of NOVX protein, mRNA or genomic DNA in the test sample. The invention also encompasses kits for detecting the presence of NOVX in a biological sample. For example, the kit can comprise: a labeled compound or agent capable of detecting NOVX protein or mRNA in a biological sample; means for determining the amount of NOVX in the sample; and means for comparing the amount of NOVX in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect NOVX protein or nucleic acid.
Prognostic Assays
The diagnostic methods described herein can furthermore be utilized to identify subjects having or at risk of developing a disease or disorder associated with abeπant NOVX expression or activity. For example, the assays described herein, such as the preceding diagnostic assays or the following assays, can be utilized to identify a subject having or at risk of developing a disorder associated with NOVX protein, nucleic acid expression or activity. Alternatively, the prognostic assays can be utilized to identify a subject having or at risk for developing a disease or disorder. Thus, the invention provides a method for identifying a disease or disorder associated with abeπant NOVX expression or activity in which a test sample is obtained from a subject and NOVX protein or nucleic acid (e.g., mRNA, genomic DNA) is detected, wherein the presence of NOVX protein or nucleic acid is diagnostic for a subject having or at risk of developing a disease or disorder associated with aberrant NOVX expression or activity. As used herein, a "test sample" refers to a biological sample obtained from a subject of interest. For example, a test sample can be a biological fluid (e.g., serum), cell sample, or tissue.
Furthermore, the prognostic assays described herein can be used to determine whether a subject can be administered an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) to treat a disease or disorder associated with aberrant NOVX expression or activity. For example, such methods can be used to determine whether a subject can be effectively treated with an agent for a disorder. Thus, the invention provides methods for determining whether a subject can be effectively treated with an agent for a disorder associated with aberrant NOVX expression or activity in which a test sample is obtained and NOVX protein or nucleic acid is detected (e.g., wherein the presence of NOVX protein or nucleic acid is diagnostic for a subject that can be administered the agent to treat a disorder associated with aberrant NOVX expression or activity). The methods of the invention can also be used to detect genetic lesions in a NOVX gene, thereby determining if a subject with the lesioned gene is at risk for a disorder characterized by aberrant cell proliferation and/or differentiation. In various embodiments, the methods include detecting, in a sample of cells from the subject, the presence or absence of a genetic lesion characterized by at least one of an alteration affecting the integrity of a gene encoding a NOVX-protein, or the misexpression of the NOVX gene. For example, such genetic lesions can be detected by ascertaining the existence of at least one of: (i) a deletion of one or more nucleotides from a NOVX gene; (ii) an addition of one or more nucleotides to a NOVX gene; (iii) a substitution of one or more nucleotides of a NOVX gene, (iv) a chromosomal rearrangement of a NOVX gene; (v) an alteration in the level of a messenger RNA transcript of a NOVX gene, (vi) abeπant modification of a
NOVX gene, such as of the methylation pattern of the genomic DNA, (vii) the presence of a non- wild-type splicing pattern of a messenger RNA transcript of a NOVX gene, (viii) a non- wild-type level of a NOVX protein, (ix) allelic loss of a NOVX gene, and (x) inappropriate post-translational modification of a NOVX protein. As described herein, there are a large number of assay techniques known in the art which can be used for detecting lesions in a NOVX gene. A prefeπed biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject. However, any biological sample containing nucleated cells maybe used, including, for example, buccal mucosal cells. In certain embodiments, detection of the lesion involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g., U.S. Patent Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran, et al, 1988. Science 241: 1077-1080; and Nakazawa, et al, 1994. Proc. Natl. Acad. Sci. USA 91: 360-364), the latter of which can be particularly useful for detecting point mutations in the NOVX-gene (see, Abravaya, et al, 1995. Nucl. Acids Res. 23: 675-682). This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers that specifically hybridize to a NOVX gene under conditions such that hybridization and amplification of the NOVX gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.
Alternative amplification methods include: self sustained sequence replication (see, Guatelli, et al, 1990. Proc. Natl. Acad. Sci. USA 87: 1874-1878), transcriptional amplification system (see, Kwoh, et al, 1989. Proc. Natl. Acad. Sci. USA 86: 1173-1177); Qβ Replicase (see, Lizardi, et al, 1988. BioTechnology 6: 1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.
In an alternative embodiment, mutations in a NOVX gene from a sample cell can be identified by alterations in restriction enzyme cleavage patterns. For example, sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicates mutations in the sample DNA. Moreover, the use of sequence specific ribozymes (see, e.g., U.S. Patent No. 5,493,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.
In other embodiments, genetic mutations in NOVX can be identified by hybridizing a sample and control nucleic acids, e.g., DNA or RNA, to high-density arrays containing hundreds or thousands of oligonucleotides probes. See, e.g., Cronin, et al, 1996. Human Mutation 7: 244-255; Kozal, et al, 1996. Nat. Med. 2: 753-759. For example, genetic mutations in ΝOVX can be identified in two dimensional arrays containing light-generated DΝA probes as described in Cronin, et al, supra. Briefly, a first hybridization array of probes can be used to scan through long stretches of DΝA in a sample and control to identify base changes between the sequences by making linear aπays of sequential overlapping probes. This step allows the identification of point mutations. This is followed by a second hybridization aπay that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all variants or mutations detected. Each mutation aπay is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene.
In yet another embodiment, any of a variety of sequencing reactions known in the art can be used to directly sequence the ΝOVX gene and detect mutations by comparing the sequence of the sample ΝOVX with the coπesponding wild-type (control) sequence. Examples of sequencing reactions include those based on techniques developed by Maxim and Gilbert, 1977. Proc. Natl. Acad. Sci. USA 74: 560 or Sanger, 1977. Proc. Natl. Acad. Sci. USA 74: 5463. It is also contemplated that any of a variety of automated sequencing procedures can be utilized when performing the diagnostic assays (see, e.g., Νaeve, et al, 1995. Biotechniques 19: 448), including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101; Cohen, et al, 1996. Adv. Chromatography 36: 127-162; and Griffin, et al, 1993. Appl. Biochem. Biotechnol. 38: 147-159).
Other methods for detecting mutations in the NOVX gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes. See, e.g., Myers, et al, 1985. Science 230: 1242. In general, the art technique of "mismatch cleavage" starts by providing heteroduplexes of formed by hybridizing (labeled) RNA or DNA containing the wild-type NOVX sequence with potentially mutant RNA or DNA obtained from a tissue sample. The double-stranded duplexes are treated with an agent that cleaves single-stranded regions of the duplex such as which will exist due to basepair mismatches between the control and sample strands. For instance, RNA/DNA duplexes can be treated with RNase and DNA DNA hybrids treated with Si nuclease to enzymatically digesting the mismatched regions. In other embodiments, either DNA DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine the site of mutation. See, e.g., Cotton, et al, 1988. Proc. Natl. Acad. Sci. USA 85: 4397; Saleeba, et al, 1992. Methods Enzymol. 217: 286-295. In an embodiment, the control DNA or RNA can be labeled for detection. In still another embodiment, the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called "DNA mismatch repair" enzymes) in defined systems for detecting and mapping point mutations in NOVX cDNAs obtained from samples of cells. For example, the mutY enzyme of E. coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches. See, e.g., Hsu, et al, 1994. Carcinogenesis 15: 1657-1662. According to an exemplary embodiment, a probe based on a NOVX sequence, e.g., a wild-type NOVX sequence, is hybridized to a cDNA or other DNA product from a test cell(s). The duplex is treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like. See, e.g., U.S. Patent No. 5,459,039.
In other embodiments, alterations in electrophoretic mobility will be used to identify mutations in NOVX genes. For example, single strand conformation polymoφhism (SSCP) may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids. See, e.g., Orita, et al, 1989. Proc. Natl. Acad. Sci. USA: 86: 2766; Cotton, 1993. Mutat. Res. 285: 125-144; Hayashi, 1992. Genet. Anal. Tech. Appl. 9: 73-79. Single-stranded DNA fragments of sample and control NOVX nucleic acids will be denatured and allowed to renature. The secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change. The DNA fragments may be labeled or detected with labeled probes. The sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In one embodiment, the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility. See, e.g., Keen, et al, 1991. Trends Genet. 1: 5. In yet another embodiment, the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGΕ). See, e.g., Myers, et al, 1985. Nature 313: 495. When DGGΕ is used as the method of analysis, DNA will be modified to insure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR. In a further embodiment, a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA. See, e.g., Rosenbaum and Reissner, 198 '. Biophys. Chem. 265: 12753. Examples of other techniques for detecting point mutations include, but are not limited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension. For example, oligonucleotide primers may be prepared in which the known mutation is placed centrally and then hybridized to target DNA under conditions that permit hybridization only if a perfect match is found. See, e.g., Saiki, et al, 1986. Nature 324: 163; Saiki, et al, 1989. Proc. Natl. Acad. Sci. USA 86: 6230. Such allele specific oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.
Alternatively, allele specific amplification technology that depends on selective PCR amplification may be used in conjunction with the instant invention. Oligonucleotides used as primers for specific amplification may carry the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization; see, e.g., Gibbs, et al, 1989. Nucl. Acids Res. 17: 2437-2448) or at the extreme 3'-terminus of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (see, e.g., Prossner, 1993. Tibtech. 11: 238). In addition it maybe desirable to introduce a novel restriction site in the region of the mutation to create cleavage-based detection. See, e.g., Gasparini, et al, 1992. Mol. Cell Probes 6: 1. It is anticipated that in certain embodiments amplification may also be performed using Taq ligase for amplification. See, e.g., Barany, 1991. Proc. Natl. Acad. Sci. USA 88: 189. In such cases, ligation will occur only if there is a perfect match at the 3'-terminus of the 5' sequence, making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.
The methods described herein may be performed, for example, by utilizing pre-packaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which may be conveniently used, e.g. , in clinical settings to diagnose patients exhibiting symptoms or family history of a disease or illness involving a NOVX gene.
Furthermore, any cell type or tissue, preferably peripheral blood leukocytes, in which NOVX is expressed may be utilized in the prognostic assays described herein. However, any biological sample containing nucleated cells may be used, including, for example, buccal mucosal cells.
Pharmacogenomics
Agents, or modulators that have a stimulatory or inhibitory effect on NOVX activity (e.g., NOVX gene expression), as identified by a screening assay described herein can be administered to individuals to treat (prophylactically or therapeutically) disorders. The disorders include but are not limited to, e.g., those diseases, disorders and conditions listed above, and more particularly include those diseases, disorders, or conditions associated with homologs of a NOVX protein, such as those summarized in Table A. In conjunction with such treatment, the pharmacogenomics (i. e. , the study of the relationship between an individual's genotype and that individual's response to a foreign compound or drug) of the individual maybe considered. Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug. Thus, the pharmacogenomics of the individual permits the selection of effective agents (e.g., drugs) for prophylactic or therapeutic treatments based on a consideration of the individual's genotype. Such pharmacogenomics can further be used to determine appropriate dosages and therapeutic regimens. Accordingly, the activity of NOVX protein, expression of NOVX nucleic acid, or mutation content of NOVX genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual.
Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See e.g., Eichelbaum, 1996. Clin. Exp. Pharmacol. Physiol, 23: 983-985; Linder, 1997. C7/7Z. Chem., 43: 254-266. In general, two types of pharmacogenetic conditions can be differentiated. Genetic conditions transmitted as a single factor altering the way drags act on the body (altered drug action) or genetic conditions transmitted as single factors altering the way the body acts on drags (altered drag metabolism). These pharmacogenetic conditions can occur either as rare defects or as polymoφhisms. For example, glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common inherited enzymopathy in which the main clinical complication is hemolysis after ingestion of oxidant drags (anti-malarials, sulfonamides, analgesics, nitrofurans) and consumption of fava beans. As an illustrative embodiment, the activity of drag metabolizing enzymes is a major determinant of both the intensity and duration of drag action. The discovery of genetic polymoφhisms of drag metabolizing enzymes (e.g., N-acetyltransferase 2 (NAT 2) and cytochrome pregnancy zone protein precursor enzymes CYP2D6 and CYP2C19) has provided an explanation as to why some patients do not obtain the expected drug effects or show exaggerated drug response and serious toxicity after taking the standard and safe dose of a drug. These polymoφhisms are expressed in two phenotypes in the population, the extensive metabolizer (EM) and poor metabolizer (PM). The prevalence of PM is different among different populations. For example, the gene coding for CYP2D6 is highly polymoφhic and several mutations have been identified in PM, which all lead to the absence of functional CYP2D6. Poor metabolizers of CYP2D6 and CYP2C19 quite frequently experience exaggerated drug response and side effects when they receive standard doses. If a metabolite is the active therapeutic moiety, PM show no therapeutic response, as demonstrated for the analgesic effect of codeine mediated by its CYP2D6-formed metabolite moφhine. At the other extreme are the so called ultra-rapid metabolizers who do not respond to standard doses. Recently, the molecular basis of ultra-rapid metabolism has been identified to be due to CYP2D6 gene amplification.
Thus, the activity of NOVX protein, expression of NOVX nucleic acid, or mutation content of NOVX genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual, hi addition, pharmacogenetic studies can be used to apply genotyping of polymoφhic alleles encoding drag-metabolizing enzymes to the identification of an individual's drug responsiveness phenotype. This knowledge, when applied to dosing or drug selection, can avoid adverse reactions or therapeutic failure and thus enhance therapeutic or prophylactic efficiency when treating a subject with a NOVX modulator, such as a modulator identified by one of the exemplary screening assays described herein.
Monitoring of Effects During Clinical Trials
Monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of NOVX (e.g., the ability to modulate aberrant cell proliferation and/or differentiation) can be applied not only in basic drug screening, but also in clinical trials. For example, the effectiveness of an agent determined by a screening assay as described herein to increase NOVX gene expression, protein levels, or upregulate NOVX activity, can be monitored in clinical trails of subjects exhibiting decreased NOVX gene expression, protein levels, or downregulated NOVX activity. Alternatively, the effectiveness of an agent determined by a screening assay to decrease NOVX gene expression, protein levels, or downregulate NOVX activity, can be monitored in clinical trails of subjects exhibiting increased NOVX gene expression, protein levels, or upregulated NOVX activity. In such clinical trials, the expression or activity of NOVX and, preferably, other genes that have been implicated in, for example, a cellular proliferation or immune disorder can be used as a "read out" or markers of the immune responsiveness of a particular cell.
By way of example, and not of limitation, genes, including NOVX, that are modulated in cells by treatment with an agent (e.g., compound, drag or small molecule) that modulates NOVX activity (e.g., identified in a screening assay as described herein) can be identified. Thus, to study the effect of agents on cellular proliferation disorders, for example, in a clinical trial, cells can be isolated and RNA prepared and analyzed for the levels of expression of NOVX and other genes implicated in the disorder. The levels of gene expression (i.e., a gene expression pattern) can be quantified by Northern blot analysis or RT-PCR, as described herein, or alternatively by measuring the amount of protein produced, by one of the methods as described herein, or by measuring the levels of activity of NOVX or other genes. In this manner, the gene expression pattern can serve as a marker, indicative of the physiological response of the cells to the agent. Accordingly, this response state may be determined before, and at various points during, treatment of the individual with the agent.
In one embodiment, the invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e.g., an agonist, antagonist, protein, peptide, peptidomimetic, nucleic acid, small molecule, or other drag candidate identified by the screening assays described herein) comprising the steps of (i) obtaining a pre-administration sample from a subject prior to administration of the agent; (ii) detecting the level of expression of a NOVX protein, mRNA, or genomic DNA in the preadministration sample; (iii) obtaining one or more post-administration samples from the subject; (iv) detecting the level of expression or activity of the NOVX protein, mRNA, or genomic DNA in the post-administration samples; (v) comparing the level of expression or activity of the NOVX protein, mRNA, or genomic DNA in the pre-administration sample with the NOVX protein, mRNA, or genomic DNA in the post administration sample or samples; and (vi) altering the administration of the agent to the subject accordingly. For example, increased administration of the agent may be desirable to increase the expression or activity of NOVX to higher levels than detected, i.e., to increase the effectiveness of the agent. Alternatively, decreased administration of the agent may be desirable to decrease expression or activity of NOVX to lower levels than detected, i.e., to decrease the effectiveness of the agent.
Methods of Treatment The invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated with aberrant NOVX expression or activity. The disorders include but are not limited to, e.g., those diseases, disorders and conditions listed above, and more particularly include those diseases, disorders, or conditions associated with homologs of a NOVX protein, such as those summarized in Table A.
These methods of treatment will be discussed more fully, below.
Diseases and Disorders
Diseases and disorders that are characterized by increased (relative to a subject not suffering from the disease or disorder) levels or biological activity may be treated with Therapeutics that antagonize (i.e., reduce or inhibit) activity. Therapeutics that antagonize activity may be administered in a therapeutic or prophylactic manner. Therapeutics that may be utilized include, but are not limited to: (i) an aforementioned peptide, or analogs, derivatives, fragments or homologs thereof; (ii) antibodies to an aforementioned peptide; (iii) nucleic acids encoding an aforementioned peptide; (iv) administration of antisense nucleic acid and nucleic acids that are "dysfunctional" (i.e., due to a heterologous insertion within the coding sequences of coding sequences to an aforementioned peptide) that are utilized to "knockout" endogenous function of an aforementioned peptide by homologous recombination (see, e.g., Capecchi, 1989. Science 244: 1288-1292); or (v) modulators ( i.e., inhibitors, agonists and antagonists, including additional peptide mimetic of the invention or antibodies specific to a peptide of the invention) that alter the interaction between an aforementioned peptide and its binding partner.
Diseases and disorders that are characterized by decreased (relative to a subject not suffering from the disease or disorder) levels or biological activity may be treated with Therapeutics that increase (i.e., are agonists to) activity. Therapeutics that upregulate activity may be administered in a therapeutic or prophylactic manner. Therapeutics that may be utilized include, but are not limited to, an aforementioned peptide, or analogs, derivatives, fragments or homologs thereof; or an agonist that increases bioavailability. Increased or decreased levels can be readily detected by quantifying peptide and/or RNA, by obtaining a patient tissue sample (e.g., from biopsy tissue) and assaying it in vitro for RNA or peptide levels, structure and/or activity of the expressed peptides (or mRNAs of an aforementioned peptide). Methods that are well-known within the art include, but are not limited to, immunoassays (e.g., by Western blot analysis, immunoprecipitation followed by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, immunocytochemistry, etc.) and or hybridization assays to detect expression of mRNAs (e.g., Northern assays, dot blots, in situ hybridization, and the like).
Prophylactic Methods In one aspect, the invention provides a method for preventing, in a subject, a disease or condition associated with an abeπant NOVX expression or activity, by administering to the subject an agent that modulates NOVX expression or at least one NOVX activity. Subjects at risk for a disease that is caused or contributed to by abeπant NOVX expression or activity can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein. Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the NOVX abeπancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression. Depending upon the type of NOVX aberrancy, for example, a NOVX agonist or NOVX antagonist agent can be used for treating the subject. The appropriate agent can be determined based on screening assays described herein. The prophylactic methods of the invention are further discussed in the following subsections.
Therapeutic Methods
Another aspect of the invention pertains to methods of modulating NOVX expression or activity for therapeutic puφoses. The modulatory method of the invention involves contacting a cell with an agent that modulates one or more of the activities of NOVX protein activity associated with the cell. An agent that modulates NOVX protein activity can be an agent as described herein, such as a nucleic acid or a protein, a naturally-occurring cognate ligand of a NOVX protein, a peptide, a NOVX peptidomimetic, or other small molecule. In one embodiment, the agent stimulates one or more NOVX protein activity. Examples of such stimulatory agents include active NOVX protein and a nucleic acid molecule encoding NOVX that has been introduced into the cell. In another embodiment, the agent inhibits one or more NOVX protein activity. Examples of such inhibitory agents include antisense NOVX nucleic acid molecules and anti-NOVX antibodies. These modulatory methods can be performed in vitro (e.g., by culturing the cell with the agent) or, alternatively, in vivo (e.g., by administering the agent to a subject). As such, the invention provides methods of treating an individual afflicted with a disease or disorder characterized by aberrant expression or activity of a NOVX protein or nucleic acid molecule. In one embodiment, the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or combination of agents that modulates (e.g., up-regulates or down-regulates) NOVX expression or activity. In another embodiment, the method involves administering a NOVX protein or nucleic acid molecule as therapy to compensate for reduced or aberrant NOVX expression or activity.
Stimulation of NOVX activity is desirable z'72 -situations in which NOVX is abnormally downregulated and/or in which increased NOVX activity is likely to have a beneficial effect. One example of such a situation is where a subject has a disorder characterized by abeπant cell proliferation and/or differentiation (e.g., cancer or immune associated disorders). Another example of such a situation is where the subject has a gestational disease (e.g., preclampsia).
Determination of the Biological Effect of the Therapeutic
In various embodiments of the invention, suitable in vitro or in vivo assays are performed to determine the effect of a specific Therapeutic and whether its administration is indicated for treatment of the affected tissue.
In various specific embodiments, in vitro assays may be performed with representative cells of the type(s) involved in the patient's disorder, to determine if a given Therapeutic exerts the desired effect upon the cell type(s). Compounds for use in therapy may be tested in suitable animal model systems including, but not limited to rats, mice, chicken, cows, monkeys, rabbits, and the like, prior to testing in human subjects. Similarly, for in vivo testing, any of the animal model system known in the art may be used prior to administration to human subjects.
Prophylactic and Therapeutic Uses of the Compositions of the Invention
The NOVX nucleic acids and proteins of the invention are useful in potential prophylactic and therapeutic applications implicated in a variety of disorders. The disorders include but are not limited to, e.g., those diseases, disorders and conditions listed above, and more particularly include those diseases, disorders, or conditions associated with homologs of a NOVX protein, such as those summarized in Table A.
As an example, a cDNA encoding the NOVX protein of the invention may be useful in gene therapy, and the protein may be useful when administered to a subject in need thereof. By way of non-limiting example, the compositions of the invention will have efficacy for treatment of patients suffering from diseases, disorders, conditions and the like, including but not limited to those listed herein.
Both the novel nucleic acid encoding the NOVX protein, and the NOVX protein of the invention, or fragments thereof, may also be useful in diagnostic applications, wherein the presence or amount of the nucleic acid or the protein are to be assessed. A further use could be as an anti-bacterial molecule (i.e., some peptides have been found to possess anti-bacterial properties). These materials are further useful in the generation of antibodies, which immunospecifically-bind to the novel substances of the invention for use in therapeutic or diagnostic methods. The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims.
EXAMPLES
Example A: Polynucleotide and Polypeptide Sequences, and Homology Data
Example 1. The NO VI clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 1 A.
Further analysis of the NOVla protein yielded the following properties shown in Table IB.
Table IB. Protein Sequence Properties NOVla
SignalP analysis: Cleavage site between residues 19 and 20
PSORT II analysis:
PSG: a new signal peptide prediction method
N-region: length 0; pos.chg 0; neg.chg 0 H-region: length 13; peak value 8.36 PSG score : 3.96
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): 2.40 possible cleavage site: between 18 and 19
>>> Seems to have a cleavable signal peptide (1 to 18)
ALOM: Klein et al ' s method for TM region allocation Init position for calculation: 19
Tentative number of TMS(s) for the threshold 0.5: 0 number of TMS(s) .. fixed PERIPHERAL Likelihood = 2.17 (at 60) ALOM score: 2.17 (number of TMSs: 0)
MTOP : Prediction of membrane topology (Hartmann et al . ) Center position for calculation: 9 Charge difference: 1.0 C( 2.0) - N( 1.0) C > N: C-terminal side will be inside
>>>Caution: Inconsistent top result with signal peptide MITDISC: discrimination of mitochondrial targeting seq R content: 2 Hyd Moment (75): 2.90 Hyd Moment (95): 1.31 G content: 2 D/E content: 1 S/T content: 3 Score: -4.22
Gavel : prediction of cleavage sites for mitochondrial preseq R-2 motif at 29 ARS | GA
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite : none content of basic residues: 9.2% NLS Score: -0.47
KDEL: ER retention motif in the C-terminus : none
ER Membrane Retention Signals: none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif: type 1 : none type 2 : none MYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail : none
Dileucine motif in the tail : none checking 63 PROSITE DNA binding motifs : none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: cytoplasmic Reliability: 76.7
COIL: Lupas ' s algorithm to detect coiled-coil regions total : 0 residues
Final Results (k = 9/23) :
33.3 %: extracellular, including cell wall
33.3 %: mitochondrial
22.2 %: vacuolar
11.1 % : endoplasmic reticulum
>> prediction for CG191083-01 is exc (k=9)
A search of the NOVla protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table IC.
In a BLAST search of public sequence databases, the NOVla protein was found to have homology to the proteins shown in the BLASTP data in Table ID.
PFam analysis predicts that the NOVla protein contains the domains shown in the Table IE.
Example 2.
The NOV2 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 2A.
Further analysis of the NOV2a protein yielded the following properties shown in Table 2B.
Table 2B. Protein Sequence Properties NOV2a
SignalP analysis: Cleavage site between residues 30 and 31
PSORT π analysis:
PSG: a new signal peptide prediction method N-region: length 5; pos.chg 1; neg.chg 1 H-region: length 30; peak value 9.82 PSG score: 5.42
GvH: von Heijne's method for signal seg. recognition GvH score (threshold: -2.1): 1.12 possible cleavage site: between 22 and 23
>>> Seems to have a cleavable signal peptide (1 to 22)
ALOM: Klein et al ' s method for TM region allocation
Init position for calculation: 23
Tentative number of TMS(s) for the threshold 0.5: 2
Number of TMS(s) for threshold 0.5: 1
INTEGRAL Likelihood =-13.27 Transmembrane 1100 -1116
PERIPHERAL Likelihood = 0.95 (at 943)
ALOM score: -13.27 (number of TMSs : 1)
MTOP: Prediction of membrane topology (Hartmann et al . ) Center position for calculation: 11 Charge difference: -2.0 C(-1.0) - N( 1.0) N >= C: N-terminal side will be inside
>>> membrane topology: type la (cytoplasmic tail 1117 to 1147)
MITDISC: discrimination of mitochondrial targeting seg R content: 1 Hyd Moment (75): 10.10 Hyd Moment (95): 5.95 G content: 4 D/E content : 2 S/T content : 2 Score: -6.90
Gavel : prediction of cleavage sites for mitochondrial preseq R-2 motif at 15 ER | GA
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite: none content of basic residues: 7.7% NLS Score: -0.47
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals:
XXRR-like motif in the N-terminus: GPER none
SKL: peroxisomal targeting signal in the C-terminus : none
PTS2 : 2nd peroxisomal targeting signal : none
VAC: possible vacuolar targeting motif: none
RNA-binding motif: none Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif: none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail: 1128
Dileucine motif in the tail: none checking 63 PROSITE DNA binding motifs : none checking 71 PROSITE ribosomal protein motifs : none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: cytoplasmic Reliability: 89
COIL: Lupas's algorithm to detect coiled-coil regions total: 0 residues
Final Results (k = 9/23) :
55.6 %: endoplasmic reticulum
22.2 % : Golgi
11.1 % : plasma membrane
11.1 % : extracellular, including cell wall
>> prediction for CG191745-01 is end (k=9)
A search of the NOV2a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 2C.
In a BLAST search of public sequence databases, the NOV2a protein was found to have homology to the proteins shown in the BLASTP data in Table 2D.
PFam analysis predicts that the NOV2a protein contains the domains shown in the Table
2E.
Example 3.
The NOV3 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 3A.
GTCAGCCTGTGTGCCAACCACGATGCAAACATGGTGAATGTATCGGGCCAAACAAGTGCAAGTGTCAT CCTGGTTATGCTGGAAAAACCTGTAATCAAGATCTAAATGAGTGTGGCCTGAAGCCCCGGCCCTGTAA GCACAGGTGCATGAACACTTACGGCAGCTACAAGTGCTACTGTCTCAACGGATATATGCTCATGCCGG ATGGTTCCTGCTCAAGTGCCCTGACCTGCTCCATGGCAAACTGTCAGTATGGCTGTGATGTTGTTAAA GGACAAATACGGTGCCAGTGCCCATCCCCTGGCCTGCAGCTGGCTCCTGATGGGAGGACCTGTGTAGA TGTTGATGAATGTGCTACAGGAAGAGCCTCCTGCCCTAGATTTAGGCAATGTGTCAACACTTTTGGGA GCTACATCTGCAAGTGTCATAAAGGCTTCGATCTCATGTATATTGGAGGCAAATATCAATGTCATGAC ATAGACGAATGCTCACTTGGTCAGTATCAGTGCAGCAGCTTTGCTCGATGTTATAACATACGTGGGTC CTACAAGTGCAAATGTAAAGAAGGATACCAGGGTGATGGACTGACTTGTGTGTATATCCCAAAAGTTA TGATTGAACCTTCAGGTCCAATTCATGTACCAAAGGGAAATGGTACCATTTTAAAGGGTGACACAGGA AATAATAATTGGATTCCTGATGTTGGAAGTACTTGGTGGCCTCCGAAGACACCATATATTCCTCCTAT CATTACCAACAGGCCTACTTCTAAGCCAACAACAAGACCTACACCAAAGCCAACACCAATTCCTACTC CACCACCACCACCACCCCTGCCAACAGAGCTCAGAACACCTCTACCACCTACAACCCCAGAAAGGCCA ACCACCGGACTGACAACTATAGCACCAGCTGCCAGTACACCTCCAGGAGGGATTACAGTTGACAACAG GGTACAGACAGACCCTCAGAAACCCAGAGGAGATGTGTTCAGTGTTCTGGTACACAGTTGTAATTTTG ACCATGGACTTTGTGGATGGATCAGGGAGAAAGACAATGACTTGCACTGGGAACCAATCAGGGACCCA GCAGGTGGACAATATCTGACAGTGTCGGCAGCCAAAGCCCCAGGGGGAAAAGCTGCACGCTTGGTGCT ACCTCTCGGCCGCCTCATGCATTCAGGGGACCTGTGCCTGTCATTCAGGCACAAGGTGACGGGGCTGC ACTCTGGCACACTCCAGGTGTTTGTGAGAAAACACGGTGCCCACGGAGCAGCCCTGTGGGGAAGAAAT GGTGGCCATGGCTGGAGGCAAACACAGATCACCTTGCGAGGGGCTGACATCAAGAGCGTCGTCTTCAA AGGTGAAAAAAGGCGTGGTCACACTGGGGAGATTGGATTAGATGATGTGAGCTTGAAAAAAGGCCACT GCTCTGAAGAACGCTAACAACTCCAGAACTAACAATGAACTCCTAA
NOV3i, SNPl 3377609 of SEQ ID NO: 22 536 aa MW at 58650.8kD CG50253-01, Protein Sequence SNP Change: no change
MDFLLALVLVSSLYLQAAAEFDGR PRQIVSSIGLCRYGGRIDCCWG ARQS GQCQPVCQPRCKHGE CIGPNKCKCHPGYAGKTCNQDLNECGLKPRPCKΗRC NTYGSYKCYCLNGY LMPDGSCSSALTCSMA NCQYGCDWKGQIRCQCPSPGLQLAPDGRTCVDVDECATGRASCPRFRQCVNTFGSYICKCHKGFDLM YIGGKYQCHDIDECSLGQYQCSSFARCYNIRGSYKCKCKEGYQGDGLTCVYIPKVMIEPSGPIHVPKG NGTILKGDTGNNN IPDVGST WPPKTPYIPPIITNRPTSKPTTRPTPKPTPIPTPPPPPPLPTELRT PLPPTTPERPTTGLTTIAPAASTPPGGITVDNRVQTDPQKPRGDVFSVLVHSCNFDHGLCG IREKDN DLHWEPIRDPAGGQYLTVS-AAAPGGKAARLVLPLGRLJHSGDLCLSFRHKVTGLHSGTLQVFVRKHG AHGAAL GRNGGHG RQTQITLRGADIKSWFKGEKRRGHTGEIGLDDVSLKKGHCSEER
NOV3J, SNP13373929 of SEQ ID NO: 23 1882 bp CG50253-01, DNA Sequence ORF Start: ATG at 243 ORF Stop: TAA at 1851
SNP Pos: 226 SNP Change: A to G
GGACACTGACATGGACTGAAGGAGTAGAAAAGAAGGGAGCGGGAGGGGGCTCCGGGCGCCGCGCAGCA
GACCTACTCCGGCCGCGCGCCTCGCCGCTGTCCTCCGGGAGCGGCAGCAGTAGCCCGGGCGGCGAGGG
CTGGGGGTTCCTCGAGACTCTCAGAGGGGCGCCTCCCATCGGCGCCCACCACCCCAACCTGTTCCTCG
CGCGCCACTGCGCTGCGCCCCGGGACCCGCTGCCCAACATGGATTTTCTCCTGGCGCTGGTGCTGGTA
TCCTCGCTCTACCTGCAGGCGGCCGCCGAGTTCGACGGGAGGTGGCCCAGGCAAATAGTGTCATCGAT TGGCCTATGTCGTTATGGTGGGAGGATTGACTGCTGCTGGGGCTGGGCTCGCCAGTCTTGGGGACAGT GTCAGCCTGTGTGCCAACCACGATGCAAACATGGTGAATGTATCGGGCCAAACAAGTGCAAGTGTCAT CCTGGTTATGCTGGAAAAACCTGTAATCAAGATCTAAATGAGTGTGGCCTGAAGCCCCGGCCCTGTAA GCACAGGTGCATGAACACTTACGGCAGCTACAAGTGCTACTGTCTCAACGGATATATGCTCATGCCGG ATGGTTCCTGCTCAAGTGCCCTGACCTGCTCCATGGCAAACTGTCAGTATGGCTGTGATGTTGTTAAA GGACAAATACGGTGCCAGTGCCCATCCCCTGGCCTGCAGCTGGCTCCTGATGGGAGGACCTGTGTAGA TGTTGATGAATGTGCTACAGGAAGAGCCTCCTGCCCTAGATTTAGGCAATGTGTCAACACTTTTGGGA GCTACATCTGCAAGTGTCATAAAGGCTTCGATCTCATGTATATTGGAGGCAAATATCAATGTCATGAC ATAGACGAATGCTCACTTGGTCAGTATCAGTGCAGCAGCTTTGCTCGATGTTATAACATACGTGGGTC CTACAAGTGCAAATGTAAAGAAGGATACCAGGGTGATGGACTGACTTGTGTGTATATCCCAAAAGTTA TGATTGAACCTTCAGGTCCAATTCATGTACCAAAGGGAAATGGTACCATTTTAAAGGGTGACACAGGA AATAATAATTGGATTCCTGATGTTGGAAGTACTTGGTGGCCTCCGAAGACACCATATATTCCTCCTAT CATTACCAACAGGCCTACTTCTAAGCCAACAACAAGACCTACACCAAAGCCAACACCAATTCCTACTC CACCACCACCACCACCCCTGCCAACAGAGCTCAGAACACCTCTACCACCTACAACCCCAGAAAGGCCA ACCACCGGACTGACAACTATAGCACCAGCTGCCAGTACACCTCCAGGAGGGATTACAGTTGACAACAG GGTACAGACAGACCCTCAGAAACCCAGAGGAGATGTGTTCAGTGTTCTGGTACACAGTTGTAATTTTG ACCATGGACTTTGTGGATGGATCAGGGAGAAAGACAATGACTTGCACTGGGAACCAATCAGGGACCCA GCAGGTGGACAATATCTGACAGTGTCGGCAGCCAAAGCCCCAGGGGGAAAAGCTGCACGCTTGGTGCT ACCTCTCGGCCGCCTCATGCATTCAGGGGACCTGTGCCTGTCATTCAGGCACAAGGTGACGGGGCTGC ACTCTGGCACACTCCAGGTGTTTGTGAGAAAACACGGTGCCCACGGAGCAGCCCTGTGGGGAAGAAAT GGTGGCCATGGCTGGAGGCAAACACAGATCACCTTGCGAGGGGCTGACATCAAGAGCGTCGTCTTCAA AGGTGAAAAAAGGCGTGGTCACACTGGGGAGATTGGATTAGATGATGTGAGCTTGAAAAAAGGCCACT GCTCTGAAGAACGCTAACAACTCCAGAACTAACAATGAACTCCTAA
NOV3J, SNP13373929 of SEQ ID NO: 24 536 aa MW at 58650.8kD CG50253-01, Protein Sequence SNP Change: no change
MDFLLALVLVSSLYLQAAAEFDGR PRQIVSSIGLCRYGGRIDCC G ARQSWGQCQPVCQPRCKHGE CIGPNKCKCHPGYAGKTCNQDLNECGLKPRPCKHRCMNTYGSYKCYCLNGYML PDGSCSSALTCSMA NCQYGCDWKGQIRCQCPSPGLQLAPDGRTCVDVDECATGRASCPRFRQCVNTFGSYICKCHKGFDLM YIGGKYQCHDIDECSLGQYQCSSFARCYNIRGSYKCKCKEGYQGDGLTCVYIPKVMIEPSGPIHVP G NGTILKGDTGrørø IPDVGST PPKTPYIPPIITNRPTSKPTTRPTPKPTPIPTPPPPPPLPTELRT PLPPTTPERPTTGLTTIAPAASTPPGGITVDNRVQTDPQKPRGDVFSVLVHSCNFDHGLCGWIREKDN DLHWEPIRDPAGGQYLTVSAAKAPGGKAARLVLPLGRLMHSGDLCLSFRHKVTGLHSGTLQVFVRKHG AHGAAL GRNGGHGWRQTQITLRGADIKSWFKGEKRRGHTGEIGLDDVSLKKGHCSEΞR
NOV3k, SNP13380272 of SEQ ID NO: 25 1882 bp CG50253-01, DNA Sequence ORF Start: ATG at 243 ORF Stop: TAA at 1851
SNP Pos: 719 SNP Change: G to C
GGACACTGACATGGACTGAAGGAGTAGAAAAGAAGGGAGCGGGAGGGGGCTCCGGGCGCCGCGCAGCA
GACCTACTCCGGCCGCGCGCCTCGCCGCTGTCCTCCGGGAGCGGCAGCAGTAGCCCGGGCGGCGAGGG
CTGGGGGTTCCTCGAGACTCTCAGAGGGGCGCCTCCCATCGGCGCCCACCACCCCAACCTGTTCCTCG
CGCGCCACTGCGCTGCGCCCCAGGACCCGCTGCCCAACATGGATTTTCTCCTGGCGCTGGTGCTGGTA
TCCTCGCTCTACCTGCAGGCGGCCGCCGAGTTCGACGGGAGGTGGCCCAGGCAAATAGTGTCATCGAT TGGCCTATGTCGTTATGGTGGGAGGATTGACTGCTGCTGGGGCTGGGCTCGCCAGTCTTGGGGACAGT GTCAGCCTGTGTGCCAACCACGATGCAAACATGGTGAATGTATCGGGCCAAACAAGTGCAAGTGTCAT CCTGGTTATGCTGGAAAAACCTGTAATCAAGATCTAAATGAGTGTGGCCTGAAGCCCCGGCCCTGTAA GCACAGGTGCATGAACACTTACGGCAGCTACAAGTGCTACTGTCTCAACGGATATATGCTCATGCCGG ATGGTTCCTGCTCAAGTGCCCTGACCTGCTCCATGGCAAACTGTCAGTATGGCTGTGATGTTGTTAAA GGACAAATACGGTGCCAGTGCCCATCCCCTGGCCTGCACCTGGCTCCTGATGGGAGGACCTGTGTAGA TGTTGATGAATGTGCTACAGGAAGAGCCTCCTGCCCTAGATTTAGGCAATGTGTCAACACTTTTGGGA GCTACATCTGCAAGTGTCATAAAGGCTTCGATCTCATGTATATTGGAGGCAAATATCAATGTCATGAC ATAGACGAATGCTCACTTGGTCAGTATCAGTGCAGCAGCTTTGCTCGATGTTATAACATACGTGGGTC CTACAAGTGCAAATGTAAAGAAGGATACCAGGGTGATGGACTGACTTGTGTGTATATCCCAAAAGTTA TGATTGAACCTTCAGGTCCAATTCATGTACCAAAGGGAAATGGTACCATTTTAAAGGGTGACACAGGA AATAATAATTGGATTCCTGATGTTGGAAGTACTTGGTGGCCTCCGAAGACACCATATATTCCTCCTAT CATTACCAACAGGCCTACTTCTAAGCCAACAACAAGACCTACACCAAAGCCAACACCAATTCCTACTC CACCACCACCACCACCCCTGCCAACAGAGCTCAGAACACCTCTACCACCTACAACCCCAGAAAGGCCA ACCACCGGACTGACAACTATAGCACCAGCTGCCAGTACACCTCCAGGAGGGATTACAGTTGACAACAG GGTACAGACAGACCCTCAGAAACCCAGAGGAGATGTGTTCAGTGTTCTGGTACACAGTTGTAATTTTG ACCATGGACTTTGTGGATGGATCAGGGAGAAAGACAATGACTTGCACTGGGAACCAATCAGGGACCCA GCAGGTGGACAATATCTGACAGTGTCGGCAGCCAAAGCCCCAGGGGGAAAAGCTGCACGCTTGGTGCT ACCTCTCGGCCGCCTCATGCATTCAGGGGACCTGTGCCTGTCATTCAGGCACAAGGTGACGGGGCTGC ACTCTGGCACACTCCAGGTGTTTGTGAGAAAACACGGTGCCCACGGAGCAGCCCTGTGGGGAAGAAAT GGTGGCCATGGCTGGAGGCAAACACAGATCACCTTGCGAGGGGCTGACATCAAGAGCGTCGTCTTCAA AGGTGAAAAAAGGCGTGGTCACACTGGGGAGATTGGATTAGATGATGTGAGCTTGAAAAAAGGCCACT GCTCTGAAGAACGCTAACAACTCCAGAACTAACAATGAACTCCTAA
NOV3k, SNP13380272 of SEQ ID NO: 26 536 aa MW at 58659.8kD CG50253-01, Protein Sequence SNP Pos: 159 SNP Change: Gin to His
MDFLLALVLVSSLYLQAAAEFDGR PRQIVSSIGLCRYGGRIDCC GWARQSWGQCQPVCQPRCKHGE CIGPNKCKCHPGYAGKTCNQDLNECGLKPRPCKHRCMNTYGSYKCYCLNGYMLMPDGSCSSALTCSMA NCQYGCDWKGQIRCQCPSPGLHLAPDGRTCVDVDECATGRASCPRFRQCVNTFGSYICKCHKGFDLM YIGG YQCHDIDECSLGQYQCSSFARCYNIRGSYKCKCKEGYQGDGLTCVYIPKVMIEPSGPIHVPKG NGTILKGDTGN1ΪN IPDVGST PPKTPYIPPIITNRPTSKPTTRPTPKPTPIPTPPPPPPLPTELRT PLPPTTPERPTTGLTTIAPAASTPPGGITVDNRVQTDPQKPRGDVFSVLVHSCNFDHGLCG IREKDN DLHWEPIRDPAGGQYLTVSAAKAPGGKAARLVLPLGRLMHSGDLCLSFRHKVTGLHSGTLQVFVRKHG IAHGAAL GRNGGHG RQTQITLRGADIKSWF GEKRRGHTGEIGLDDVSLKKGHCSEER
JNOV31, SNP13379745 of SEQ ID NO: 27 1882 bp
CG50253-01 , DNA Sequence |ORF Start: ATG at 243 ORF Stop: TAA at 1851
SNP Pos: 750 ]SNP Changej G to A_
GGACACTGACATGGACTGAAGGAGTAGAAAAGAAGGGAGCGGGAGGGGGCTCCGGGCGCCGCGCAGCA
GACCTACTCCGGCCGCGCGCCTCGCCGCTGTCCTCCGGGAGCGGCAGCAGTAGCCCGGGCGGCGAGGG
CTGGGGGTTCCTCGAGACTCTCAGAGGGGCGCCTCCCATCGGCGCCCACCACCCCAACCTGTTCCTCG
CGCGCCACTGCGCTGCGCCCCAGGACCCGCTGCCCAACATGGATTTTCTCCTGGCGCTGGTGCTGGTA
TCCTCGCTCTACCTGCAGGCGGCCGCCGAGTTCGACGGGAGGTGGCCCAGGCAAATAGTGTCATCGAT TGGCCTATGTCGTTATGGTGGGAGGATTGACTGCTGCTGGGGCTGGGCTCGCCAGTCTTGGGGACAGT GTCAGCCTGTGTGCCAACCACGATGCAAACATGGTGAATGTATCGGGCCAAACAAGTGCAAGTGTCAT CCTGGTTATGCTGGAAAAACCTGTAATCAAGATCTAAATGAGTGTGGCCTGAAGCCCCGGCCCTGTAA GCACAGGTGCATGAACACTTACGGCAGCTACAAGTGCTACTGTCTCAACGGATATATGCTCATGCCGG ATGGTTCCTGCTCAAGTGCCCTGACCTGCTCCATGGCAAACTGTCAGTATGGCTGTGATGTTGTTAAA GGACAAATACGGTGCCAGTGCCCATCCCCTGGCCTGCAGCTGGCTCCTGATGGGAGGACCTGTGTAGA TATTGATGAATGTGCTACAGGAAGAGCCTCCTGCCCTAGATTTAOGCAATGTGTCAACACTTTTGGGA GCTACATCTGCAAGTGTCATAAAGGCTTCGATCTCATGTATATTGGAGGCAAATATCAATGTCATGAC ATAGACGAATGCTCACTTGGTCAGTATCAGTGCAGCAGCTTTGCTCGATGTTATAACATACGTGGGTC CTACAAGTGCAAATGTAAAGAAGGATACCAGGGTGATGGACTGACTTGTGTGTATATCCCAAAAGTTA TGATTGAACCTTCAGGTCCAATTCATGTACCAAAGGGAAATGGTACCATTTTAAAGGGTGACACAGGA AATAATAATTGGATTCCTGATGTTGGAAGTACTTGGTGGCCTCCGAAGACACCATATATTCCTCCTAT CATTACCAACAGGCCTACTTCTAAGCCAACAACAAGACCTACACCAAAGCCAACACCAATTCCTACTC CACCACCACCACCACCCCTGCCAACAGAGCTCAGAACACCTCTACCACCTACAACCCCAGAAAGGCCA ACCACCGGACTGACAACTATAGCACCAGCTGCCAGTACACCTCCAGGAGGGATTACAGTTGACAACAG GGTACAGACAGACCCTCAGAAACCCAGAGGAGATGTGTTCAGTGTTCTGGTACACAGTTGTAATTTTG ACCATGGACTTTGTGGATGGATCAGGGAGAAAGACAATGACTTGCACTGGGAACCAATCAGGGACCCA GCAGGTGGACAATATCTGACAGTGTCGGCAGCCAAAGCCCCAGGGGGAAAAGCTGCACGCTTGGTGCT ACCTCTCGGCCGCCTCATGCATTCAGGGGACCTGTGCCTGTCATTCAGGCACAAGGTGACGGGGCTGC ACTCTGGCACACTCCAGGTGTTTGTGAGAAAACACGGTGCCCACGGAGCAGCCCTGTGGGGAAGAAAT GGTGGCCATGGCTGGAGGCAAACACAGATCACCTTGCGAGGGGCTGACATCAAGAGCGTCGTCTTCAA AGGTGAAAAAAGGCGTGGTCACACTGGGGAGATTGGATTAGATGATGTGAGCTTGAAAAAAGGCCACT GCTCTGAAGAACGCTAACAACTCCAGAACTAACAATGAACTCCTAA
NOV31, SNP13379745 of SEQ ID NO: 28|536 aa MW at 58664.8kD CG50253-01, Protein Sequence SNP Pos: 170 SNP Change: Val to He DFLLALVLVSSLYLQAAAEFDGRWPRQIVSSIGLCRYGGRIDCC GWARQSWGQCQPVCQPRCKHGE CIGPNKCKCHPGYAGKTCNQDLNECGLKPRPCKHRCMNTYGSYKCYCLNGYML PDGSCSSALTCSMA CQYGCDWKGQIRCQCPSPGLQLAPDGRTCVDIDECATGRASCPRFRQCVNTFGSYICKCHKGFDLM YIGGKYQCHDIDECSLGQYQCSSFARCYNIRGSYKCKCKEGYQGDGLTCVYIPKVMIEPSGPIHVPKG NGTILKGDTGNNN IPDVGST WPPKTPYIPPIITNRPTSKPTTRPTPKPTPIPTPPPPPPLPTELRT PLPPTTPERPTTGLTTIAPAASTPPGGITVDNRVQTDPQKPRGDVFSVLVHSCNFDHGLCG IREKDN DLHWEPIRDPAGGQYLTVSAAKAPGGKAARLVLPLGRL HSGDLCLSFRHKVTGLHSGTLQVFVRKHG AHGAALWGRNGGHGWRQTQITLRGADIKSWFKGEKRRGHTGEIGLDDVSLKKGHCSEER
NOV3m, SNP13373930 of SEQ IDNO: 29 1882 bp
CG50253-01, DNA Sequence ORF Start: ATG at 243JORF Stop: TAA at 1851
SNP Pos: 942 SNP Change: Ato G
GGACACTGACATGGACTGAAGGAGTAGAAAAGAAGGGAGCGGGAGGGGGCTCCGGGCGCCGCGCAGCA
GACCTACTCCGGCCGCGCGCCTCGCCGCTGTCCTCCGGGAGCGGCAGCAGTAGCCCGGGCGGCGAGGG
CTGGGGGTTCCTCGAGACTCTCAGAGGGGCGCCTCCCATCGGCGCCCACCACCCCAACCTGTTCCTCG
CGCGCCACTGCGCTGCGCCCCAGGACCCGCTGCCCAACATGGATTTTCTCCTGGCGCTGGTGCTGGTA
TCCTCGCTCTACCTGCAGGCGGCCGCCGAGTTCGACGGGAGGTGGCCCAGGCAAATAGTGTCATCGAT TGGCCTATGTCGTTATGGTGGGAGGATTGACTGCTGCTGGGGCTGGGCTCGCCAGTCTTGGGGACAGT GTCAGCCTGTGTGCCAACCACGATGCAAACATGGTGAATGTATCGGGCCAAACAAGTGCAAGTGTCAT CCTGGTTATGCTGGAAAAACCTGTAATCAAGATCTAAATGAGTGTGGCCTGAAGCCCCGGCCCTGTAA GCACAGGTGCATGAACACTTACGGCAGCTACAAGTGCTACTGTCTCAACGGATATATGCTCATGCCGG ATGGTTCCTGCTCAAGTGCCCTGACCTGCTCCATGGCAAACTGTCAGTATGGCTGTGATGTTGTTAAA GGACAAATACGGTGCCAGTGCCCATCCCCTGGCCTGCAGCTGGCTCCTGATGGGAGGACCTGTGTAGA TGTTGATGAATGTGCTACAGGAAGAGCCTCCTGCCCTAGATTTAGGCAATGTGTCAACACTTTTGGGA GCTACATCTGCAAGTGTCATAAAGGCTTCGATCTCATGTATATTGGAGGCAAATATCAATGTCATGAC ATAGACGAATGCTCACTTGGTCAGTATCAGTGCAGCAGCTTTGCTCGATGTTATAACGTACGTGGGTC CTACAAGTGCAAATGTAAAGAAGGATACCAGGGTGATGGACTGACTTGTGTGTATATCCCAAAAGTTA TGATTGAACCTTCAGGTCCAATTCATGTACCAAAGGGAAATGGTACCATTTTAAAGGGTGACACAGGA AATAATAATTGGATTCCTGATGTTGGAAGTACTTGGTGGCCTCCGAAGACACCATATATTCCTCCTAT CATTACCAACAGGCCTACTTCTAAGCCAACAACAAGACCTACACCAAAGCCAACACCAATTCCTACTC CACCACCACCACCACCCCTGCCAACAGAGCTCAGAACACCTCTACCACCTACAACCCCAGAAAGGCCA ACCACCGGACTGACAACTATAGCACCAGCTGCCAGTACACCTCCAGGAGGGATTACAGTTGACAACAG GGTACAGACAGACCCTCAGAAACCCAGAGGAGATGTGTTCAGTGTTCTGGTACACAGTTGTAATTTTG ACCATGGACTTTGTGGATGGATCAGGGAGAAAGACAATGACTTGCACTGGGAACCAATCAGGGACCCA GCAGGTGGACAATATCTGACAGTGTCGGCAGCCAAAGCCCCAGGGGGAAAAGCTGCACGCTTGGTGCT ACCTCTCGGCCGCCTCATGCATTCAGGGGACCTGTGCCTGTCATTCAGGCACAAGGTGACGGGGCTGC ACTCTGGCACACTCCAGGTGTTTGTGAGAAAACACGGTGCCCACGGAGCAGCCCTGTGGGGAAGAAAT GGTGGCCATGGCTGGAGGCAAACACAGATCACCTTGCGAGGGGCTGACATCAAGAGCGTCGTCTTCAA AGGTGAAAAAAGGCGTGGTCACACTGGGGAGATTGGATTAGATGATGTGAGCTTGAAAAAAGGCCACT GCTCTGAAGAACGCTAACAACTCCAGAACTAACAATGAACTCCTAA
NOV3m, SNP13373930 of [SEQ ID NO: 3θ|536 aa JMW at 58636.8kD
CG5Q253"01,-Prθtein Sequence 1SNP Pos: J34 "I -.11 lSNP Change: He to Val
MDFLLALVLVSSLYLQAAAEFDGRWPRQIVSSIGLCRYGGRIDCCWGWARQSWGQCQPVCQPRCKHGE CIGPNKCKCHPGYAGKTCNQDLNECGLKPRPCKHRCMNTYGSYKCYCLNGYMLMPDGSCSSALTCSMA NCQYGCDWKGQIRCQCPSPGLQLAPDGRTCVDVDECATGRASCPRFRQCVNTFGSYICKCHKGFDL YIGGKYQCHDIDECSLGQYQCSSFARCYNVRGSYKCKCKEGYQGDGLTCVYIPKVMIEPSGPIHVPKG NGTILKGDTGNNNWIPDVGSTW PPKTPYIPPIITNRPTS PTTRPTPKPTPIPTPPPPPPLPTELRT PLPPTTPERPTTGLTTIAPAASTPPGGITVDNRVQTDPQKPRGDVFSVLVHSCNFDHGLCGWIREKDN DLH EPIRDPAGGQYLTVSAAKAPGGKAARLVLPLGRLMHSGDLCLSFRHKVTGLHSGTLQVFVRKHG AHGAAL GRNGGHGWRQTQITLRGADIKSWFKGE-KRRGHTGEIGLDDVSLKKGHCSEER
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 3B.
Table 3B. Comparison of the NOV3 protein sequences.
NOV3a MDFLLALVLVSSLYLQAAAEFDG-RWPRQIVSSIGLCRYGGRIDCCWGWARQSWGQC
NOV3b TGSMDFLLALVLVSSLYLQAAAEFDG-R PRQIVSSIGLCRYGGRIDCCWG ARQSWGQC
NOV3C TGSMDFLLALVLVSSLYLQAAAEFDG-R PRQIVSSIGLCRYGGRIDCCWGWARQSWGQC
NOV3d TGSMDFLLALVLVSSLYLQAAAEFDG-RWPRQIVSSIGLCRYGGRIDCCWGWARQSWGQC
NOV3e TGSEFDG-RWPRQIVSSIGLCRYGGRIDCCWGWARQSWGQC
NOV3f TGSMDFLLALVLVSSLYLQAAAEFDGSRWPRQIVSSIGLCRYGGRIDCCWGWARQSWGQC
NOV3g TGSC
NOV3h TGSC
NOV3a QP VCQPRCKHGΞCIGPNKCKCHPGYAGKTCNQDLNECGLKPRP
NOV3b QPFYVLRQRIARIRCQLKAVCQPRCKHGECIGPNKCKCHPGYAGKTCNQDLNECGLKPRP
NOV3C QP VCQPRCKHGECIGPNKCKCHPGYAGKTCNQDLNECGLKPRP
NOV3d QPFYVLRQRIARIRCQLKAVCQPRCKHGECIGPNKCKCHPGYAGKTCNQDLNECGLKPRP
NOV3e QP VCQPRCKHGECIGPNKCKCHPGYAGKTCNQDLNECGLKPRP
N0V3f QP VCQPRCKHGΞCIGPNKCKCHPGYAGKTCNQDLNECGLKPRP
NOV3g QP VCQPRCKHGECIGPNKCKCHPGYAGKTCNQDLNECGLKPRP
N0V3h QP VCQPRCKHGECIGPNKCKCHPGYAGKTCNQDLNECGLKPRP
N0V3a CKHRCMNTYGSY CYCLNGY LMPDGSCSSALTCSMANCQYGCDWKGQIRCQCPSPGLQ
NOV3b CKHRCMNTYGSYKCYCLNGYML PDGSCSSALTCSMANCQYGCDWKGQIRCQCPSPGLQ
NOV3c CKHRCMNTYGSY CYCLNGYMLMPDGSCSSALTCSMANCQYGCDVVKGQIRCQCPSPGLH
NOV3d CK-HRC-NTYGSYKCYCLNGYMLMPDGSCSSALTCSiy-ANCQYGCDVVKGQIRCQCPSPGLH
NOV3e CKHRC NTYGSYKCYCLNGYMLMPDGSCSSALTCSMANCQYGCDVVKGQIRCQCPSPGLH
NOV3f CKHRCMNTYGSYKCYCLNGYMLMPDGSCSSALTCSMANCQYGCDWKGQIRCQCPSPGLH NOV3g CKHRCMNTYGSYKCYCLNGYML PDGSCSSALTCS ANCQYGCDVVKGQIRCQCPSPGLQ NOV3h C-- RCiMNTYGSYKCYCLNGYMLMPDGSCSSALTCS ANCQYGCDVVKGQIRCQCPSPGLH
NOV3a LAPDGRTCVDVDECATGRASCPRFRQCVNTFGSYICKCHKGFDLMYIGGKYQCHDIDECS NOV3b LAPDGRTCVDVDECATGRASCPRFRQCVNTFGSYICKCH GFDLJMYIGGKYQCHDIDΞCS NOV3c LAPDGRTCVDVDECATGRASCPRFRQCVNTFGSYICKCHKGFDLMYIGGKYQCHDIDECS NOV3d LAPDGRTCVDVDECATGRASCPRFRQCVNTFGSYICKCHKGFDLMYIGGKYQCHDIDECS NOV3e LAPDGRTCVDVDECATGRASCPRFRQCVNTFGSYICKCH GFDL YIGGKYQCHDIDECS NOV3f LAPDGRTCVDVDECATGRASCPRFRQCVNTFGSYICKCH GFDLMYIGGKYQCHDIDECS NO 3g LAPDGRTCVDVDΞCATGRASCPRFRQCVNTFGSYICKCHKGFDLMYIGGKYQCHDIDECS NOV3h LAPDGRTCVDVDECATGRASCPRFRQCVNTFGSYICKCHKGFDLMYIGGKYQCHDIDECS
NOV3a LGQYQCSSFARCYNIRGSYKCKCKEGYQGDGLTCVYIPKVMIEPSGPIHVP GNGTILKG NO 3b LGQYQCSSFARCYNVRGSYKCKCKEGYQGDGLTCVYIPKVMIEPSGPIHVPKGNGTILKG NO 3c LGQYQCSSFARCYNVRGSYKC CKEGYQGDGLTCVYIPKVMIEPSGPIHVPKGNGTILKG NOV3d LGQYQCSSFARCYNVRGSYKCKC EGYQGDGLTCVYIPKVMIEPSGPIHVPKGNGTILKG NO 3e LGQYQCSSFARCYNVRGSYKCKCKEGYQGDGLTCVYIPKVMIEPSGPIHVPKGNGTILKG NOV3f LGQYQCSSFARCYNVRGSYKCKCKEGYQGDGLTCVYIP VMIEPSGPIHVPKGNGTILKG NOV3g LGQYQCSSFARCYNVRGSYKCKCKEGYQGDGLTCVDG NO 3 LGQYQCSSFARCYNVRGSYKCKCKEGYQGDGLTCVDG
NO 3a DTGNNNWIPDVGSTWWPPKTPYIPPIITNRPTS PTTRPTPKPTPIPTPPPPPPLPTELR NO 3b DTGNNNWIPDVGSTWWPPKTPYIPPIITNRPTSKPTTRPTPKPTPIPTPPPPPPLPTELR NOV3c DTGNNNWIPDVGSTWWPPKTPYIPPIITNRPTSKPTTRPTPKPTPIPTPPPPPPLPTELR NO 3d DTGN-NNWIPDVGSTWWPPKTPYIPPIITNRPTSKPTTRPTPKPTPIPTPPPPPPLPTELR NOV3e DTGNNNWIPDVGSTWWPPKTPYIPPIITNRPTSKPTTRPTPKPTPIPTPPPPPPLPTELR NOV3f DTGNNNWIPDVGSTWWPPKTPYIPPIITNRPTS PTTRPTPKPTPIPTPPPPPPLPTELR NOV3g NOV3
NOV3a TPLPPTTPERPTTGLTTIAPAASTPPGGITVDNRVQTDPQKPRGDVFS NO 3b TPLPPTTPERPTTGLTTIAPAASTPPGGITVDNRVQTDPQKPRGDVFIPRQPSNDLFEIF NOV3c TPLPPTTPERPTTGLTTIAPAASTPPGGITVDNRVQTDPQKPRGDVFS NOV3d TPLPPTTPERPTTGLTTIAPAASTPPGGITVDNRVQTDPQKPRGDVFIPRQPSNDLFEIF NOV3e TPLPPTTPERPTTGLTTIAPAASTPPGGITVDNRVQTDPQKPRGDVFIPRQPSNDLFEIF NOV3f TPLPPTTPERPTTGLTTIAPAASTPPGGITVDNRVQTDPQKPRGDVFIPRQPSNDLFEIF NOV3g NOV3h
NOV3a VLVHSCNFDHGLCGWIRΞKDNDLHWEPIRDPAGGQYLTVSAAK NOV3b EIERGVSADDEAKDDPGVLVHSCNFDHGLCGWIRE DNDLHWΞPIRDPAGGQYLTVSAAK NOV3c VLVHSCNFDHGLCGWIREKDNDLHWEPIRDPAGGQYLTVSAAK NO 3d EIERGVSADDEAKDDPGVLVHSCNFDHGLCGWIRΞKDNDLHWEPIRDPAGGQYLTVSAAK NOV3e EIERGVSADDEAKDDPGVLVHSCNFDHGLCGWIREKDNDLHWEPIRDPAGGQYLTVSAAK NOV3f EIERGVSADDEAKDDPGVLVHSCNFDHGLCGWIREKDNDLHWEPIRDPAGGQYLTVSAAK NOV3g NOV3h
NOV3a APGGK-A-?^LVLPLGRL-fflSGDLCLSF-RH VTGLHSGTLQVFVRKHGAHGAALWGRNGGHG NOV3b APGG AARLVLPLGRLMHSGDLCLSFRHKVTGLHSGTLQVFVRKHGAHGAALWGRNGGHG NOV3c APGGKAARLVLPLGRLMHSGDLCLSFRHKVTGLHSGTLQVFVRKHGAHGAALWGRNGGHG NOV3d APGGKAARLVLPLGRL HSGDLCLSFRHKVTGLHSGTLQVFVRKHGAHGAALWGRNGGHG NOV3e APGGKAARLVLPLGRL-^-IHSGDLCLSFRH-K-VTGLHSGTLQVFVRKHGAHGAALWGRNGGHG NO 3f APGGK-AARLVLPLGRLMHSGDLCLSFRH VTGLHSGTLQVFVRKHGAHGAALWGRNGGHG NOV3g NOV3h
NOV3a WRQTQITLRGADIKSWFKGEKRRGHTGEIGLDDVSLK GHCSΞER NOV3b WRQTQITLRGADI SWFKGEKRRGHTGEIGLDDVSLKKGHCSEERVDG NOV3c WRQTQITLRGADIKSWF GEKRRGHTGEIGLDDVSLKKGHCSEERVDG NOV3d WRQTQITLRGADIKSWF GEKRRGHTGEIGLDDVSLK GHCSEERVDG NOV3e WRQTQITLRGADIKSWFKGΞKRRGHTGEIGLDDVSLKKGHCSEERVDG NOV3f WRQTQITLRGADIKS FKGEKRRGHTGEIGLDDVSLKKGHCSEERVDG NOV3g NOV3h
NOV3a (SEQ ID NO 6) NOV3b (SEQ ID NO 8) NOV3C (SEQ ID NO 10) NOV3d (SEQ ID NO 12) NOV3e (SEQ ID NO 14) NOV3f (SEQ ID NO 16) NOV3g (SEQ ID NO 18) NOV3h (SEQ ID NO 20)
Further analysis of the NOV3 a protein yielded the following properties shown in Table 3C.
Table 3C. Protein Sequence Properties NOV3a
SignalP analysis: Cleavage site between residues 20 and 21
PSORT π analysis:
PSG: a new signal peptide prediction method
N-region: length 2; pos.chg 0; neg.chg 1 H-region: length 17; peak value 0.00 PSG score: -4.40
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -0.34 possible cleavage site: between 17 and 18
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al's method for TM region allocation Init position for calculation: 1
Tentative number of TMS (s) for the threshold 0.5: Number of TMS(s) for threshold 0.5: 1 INTEGRAL Likelihood = -4.19 Transmembrane 3 19 PERIPHERAL Likelihood = 5.67 (at 439) ALOM score: -4.19 (number of TMSs : 1)
MTOP: Prediction of membrane topology (Hartmann et al.) Center position for calculation: 10 Charge difference: 0.0 C( 0.0) - N( 0.0) N >= C: N-terminal side will be inside
>>> membrane topology: type 2 (cytoplasmic tail 1 to 3)
MITDISC: discrimination of mitochondrial targeting seq R content: 0 Hyd Moment (75): 4.41 Hyd Moment (95) : 7.23 G content: 0 D/E content: S/T content .- Score: -6.55
Gavel : prediction of cleavage sites for mitochondrial preseq cleavage site motif not found
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite : none content of basic residues: 11.9% NLS Score: -0.47
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals: none
SKL: peroxisomal targeting signal in the C-terminus : none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail: none
Dileucine motif in the tail : none checking 63 PROSITE DNA binding motifs : none checking 71 PROSITE ribosomal protein motifs : none checking 33 PROSITE prokaryotic DNA binding motifs : none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: nuclear Reliability: 89
COIL: Lupas ' s algorithm to detect coiled-coil regions total: 0 residues
Final Results (k = 9/23) : 43.5 % : nuclear
26.1 mitochondrial
8.7 % : cytoplasmic
4 .3 % : plasma membrane
4.3 % : vesicles of secretory system
4 . 3 % : extracellular, including cell wall
4.3 % : endoplas ic reticulum
4 .3 % : peroxisomal
>> prediction for CG50253-01 is nuc (k=23)
A search of the NOV3a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 3D.
In a BLAST search of public sequence databases, the NOV3a protein was found to have homology to the proteins shown in the BLASTP data in Table 3E.
PFam analysis predicts that the NOV3a protein contains the domains shown in the Table 3F.
Example 4.
The NOV4 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 4A.
N
GKWSLGDSTPTCRIISCGELPIPPNGHRIGTLSVYGATAIFSCNSGYTLVGSRVRECMANGLWSGSE
V
RCLAGHCGTPEPIVNGHINGENYSYRGSVVYQCNAGFRLIGMSVRICQQDHHWSGKTPFCVPITCGH
P
GNPVNGLTQGNQFNL-t-TOVVKFVCNPGYMAEGAARSQCLASGQWSDMLPTCRIINCTDPGHQENSVRQ
V
HASGPHRFSFGTTVSYRCNHGFYLLGTPVLSCQGDGTWDRPRPQCLLVSCGHPGSPPHSQ SGDSYT
V
GAWRYSCIGKRTLVGNSTRMCGLDGHWTGSLPHCSGTSVGVCGDPGIP HGIRLGDSFDPGTVMRF
S
CEAGHVLRGSSERTCQANGSWSGSQPECGVISCGNPGTPSNARWFSDGLVFSSSIVYECREGYYAT
G
LLSRHCSVNGTWTGSDPECLVINCGDPGIPANGLRLGNDFRYNKTVTYQCVPGY-MMESHRVSVLSCT
K
DRTWNGTKPVCKAL CKPPPLIPNGK-WGSDFMWGSSVTYACLEGYQLSLPAVFTCEGNGSWTGELP
Q
CFPVFCGDPGVPSRGRREDRGFSYRSSVSFSCHPPLVLVGSPRRFCQSDGTWSGTQPSCIDPTLTTC
A
DPGVPQFGIQNNSQGYQVGSTVLFRCQKGYLLQGSTTRTCLPNLTWSGTPPDCVPHHCRQPETPTHA
N
VGALDLPS GYTLITPARRASPSRVAPSTAPARRMAAGQASRPSAWRSGPVGDPSTLPGSHRSPKP
NOV4p, SNP13382457 of SEQ ID NO: 61 10136 bp CG50377-01, DNA Sequence ORF Start: ATG at 1 ORF Stop: TGA at 9313
SNP Pos: 3120 SNP Change: G to A
ATGGCGGGCGCCCCTCCCCCCGCCTTGCTGCTGCCTTGCAGTTTGATCTCAGACTGCTGTGCTAGCAA TCAGCGACACTCCGTGGGCGTAGGACCCTCCGAGCTAGTCAAGAAGCAAATTGAGTTGAAGTCTCGAG GTGTGAAGCTGATGCCCAGCAAAGACAACAGCCAGAAGACGTCTGTGTTAACTCAGGTTGGTGTGTCC CAAGGACATAATATGTGTCCAGACCCTGGCATACCCGAAAGGGGCAAAAGACTAGGCTCGGATTTCAG GTTAGGATCCAGCGTCCAGTTCACCTGCAACGAGGGCTATGACCTGCAAGGGTCCAAGCGGATCACCT GTATGAAAGTGAGCGACATGTTTGCGGCCTGGAGCGACCACAGGCCAGTCTGCCGAGCCCGCATGTGT GATGCCCACCTTCGAGGCCCCTCGGGCATCATCACCTCCCCCAATTTCCCCATTCAGTATGACAACAA TGCACACTGTGTGTGGATCATCACAGCACTCAACCCCTCCAAGGTGATCAAGCTCGCCTTTGAGGAGT TTGATTTGGAGAGGGGCTATGACACCCTGACGGTCGGTGATGGTGGTCAGGATGGGGACCAGAAGACA GTTCTCTACATGTCTCAAAATGCCTGCAGTGACAGCCCTCACACCCCAGGCTCTCGCATCCCAGAGAG CATGTCTGGGGACATCTGGAGGCAGAAATGGACTGTACTTGAGATCTGTCGTGACATTAGCAGTTCAG ATGCAAGGTCAGGTTCAGTGAGGAAGTCTCCAAAGACTTCTAATGCTGTGGAACTTGTTGCTCCTGGG ACAGAGATCGAGCAGGGCAGTTGCGGTGACCCTGGCATACCTGCATATGGCCGGAGGGAAGGCTCCCG GTTTCACCACGGTGACACACTCAAGTTTGAGTGCCAGCCCGCCTTTGAGCTGGTGGGACAGAAGGCAA TCACATGCCAAAAGAATAACCAATGGTCGGCTAAGAAGCCAGGCTGCGTGTTCTCCTGCTTCTTCAAC TTCACCAGCCCGTCTGGGGTTGTCCTGTCTCCCAACTACCCAGAGGACTATGGCAACCACCTCCACTG TGTCTGGCTCATCCTGGCCAGGCCTGAGAGCCGCATCCACCTGGCCTTCAACGACATTGACGTGGAGC CTCAGTTTGATTTCCTGGTCATCAAGGATGGGGCCACCGCCGAGGCGCCCGTCCTGGGCACCTTCTCA GGAAACCAGCTTCCCTCCTCCATCACAAGCAGTGGCCACGTGGCCCGTCTCGAGTTCCAGACTGACCA CTCCACAGGGAAGAGGGGCTTCAACATCACTTTTACCACCTTCCGACACAACGAGTGCCCGGATCCTG GCGTTCCAGTAAATGGCAAACGGTTTGGGGACAGCCTCCAGCTGGGCAGCTCCATCTCCTTCCTCTGT GATGAAGGCTTCCTTGGGACTCAGGGCTCAGAGACCATCACCTGCGTCCTGAAGGAGGGCAGCGTGGT CTGGAACAGCGCTGTGCTGCGGTGTGAAGCTCCCTGTGGTGGTCACCTGACTTCGCCCAGCGGCACCA TCCTCTCTCCGGGCTGGCCTGGCTTCTACAAGGATGCCTTGAGCTGTGCCTGGGTGATTGAGGCCCAG CCAGGCTACCCCATCAAAATCACCTTCGACAGATTCAAAACCGAGGTCAACTATGACACCCTGGAAGT ACGCGATGGGCGGACTTACTCAGCGCCCTTGATCGGGGTTTACCACGGGACCCAGGTTCCCCAGTTCC TCATCAGCACCAGCAACTACCTCTACCTCCTCTTCTCTACCGACAAGAGTCACTCGGACATCGGCTTC CAGCTCCGCTATGAGACTATAACACTGCAGTCAGACCACTGTCTGGATCCAGGAATCCCAGTAAATGG ACAGCGTCATGGGAATGACTTCTACGTGGGCGCGCTGGTGACCTTCAGCTGTGACTCGGGCTACACAT TAAGTGACGGGGAGCCTCTGGAGTGTGAGCCCAACTTCCAGTGGAGCCGGGCCCTGCCCAGTTGTGAA GCTCTCTGTGGTGGCTTCATTCAAGGCTCCAGTGGGACCATCTTGTCGCCAGGGTTCCCTGACTTCTA^ CCCCAACAACTTGAACTGCACCTGGATTATCGAAACATCTCATGGCAAGGGTGTGTTCTTCACTTTCC ACACCTTCCACCTGGAAAGTGGCCATGACTACCTCCTCATCACTGAGAACGGCAGCTTCACCCAGCCC CTGAGGCAGCTAACTGGATCTCGGCTGCCAGCTCCCATCAGCGCTGGGCTCTATGGCAACTTCACTGC CCAGGTCCGCTTCATCTCTGATTTCTCCATGTCATATGAAGGATTCAACATCACCTTCTCAGAGTACG ACTTGGAGCCCTGTGAGGAGCCCGAGGTCCCAGCCTACAGCATCCGGAAGGGCTTGCAGTTTGGCGTG GGCGACACCTTGACCTTCTCCTGCTTCCCCGGGTACCGTCTGGAGGGCACCGCCCGCATCACGTGCCT GGGGGGCAGACGGCGCCTGTGGAGCTCGCCTCTGCCAAGGTGTGTTGCTGAGTGTGGGAATTCAGTCA CAGGCACTCAGGGTACTTTGCTGTCCCCCAACTTTCCTGTGAACTACAATAACAATCATGAATGCATC TACTCCATCCAGACCCAGCCAGGGAAGGGAATTCAGCTGAAAGCCAGGGCATTCGAACTCTCCGAAGG AGATGTCCTCAAGGTTTATGATGGCAACAACAACTCCGCCCGTTTGCTGGGAGTTTTTAGCCATTCTG AGATGATGGGGGTGACTTTGAACAGCACATCCAGCAGTCTGTGGCTTGATTTCATCACTGATGCTGAA AACACCAGCAAGGGCTTTGAACTGCACTTTTCCAGCTTTGAACTCATCAAATGTGAGGACCCAGGAAC CCCCAAGTTTGGCTACAAGGTTCATGATGAAGGTCATTTTGCAGGGAGCTCCGTGTCCTTCAGCTGTG ACCCTGGATACAGCCTGCGGGGTAGTGAGGAGCTGCTGTGTCTGAGTGGAGAGCGCCGGACCTGGGAC CGGCCTCTGCCCACCTGTGTCGCCGAGTGTGGAGGGACAGTGAGAGGAGAGGTGTCGGGACAGGTGCT GTCACCCGGGTATCCAGCTCCCTATGAACACAATCTCAACTGCATCTGGACCATCGAAGCAGAGGCCG GCTGCACCATTGGGCTACACTTCCTGGTGTTTGACACAGAGGAGGTTCACGACGTGCTGCGCATCTGG GATGGGCCTGTGGAGAGCGGGGTTCTGCTGAAGGAGCTGAGTGGCCCGGCCCTGCCCAAGGACCTGCA
TAGCACCTTCAACTCGGTCGTCCTGCAGTTCAGCACTGACTTCTTCACCAGCAAGCAGGGCTTTGCC
A
TTCAATTTTCAGTGTCCACAGCAACGTCCTGCAATGACCCTGGGATCCCGCAGAATGGGAGTCGGAG
T
GGTGACAGTTGGGAAGCCGGCGACTCCACAGTGTTCCAGTGTGACCCTGGCTACGCGCTGCAGGGAA
G
TGCAGAGATCAGCTGTGTGAAGATCGAGAACAGGTTCTTCTGGCAGCCCAGCCCGCCAACATGCATC
G
CTCCCTGCGGGGGAGACCTGACAGGACCATCTGGAGTCATCCTCTCACCAAATTACCCAGAACCCTA
C
CCGCCAGGCAAGGAGTGTGACTGGAAAGTGACCGTCTCACCAGACTACGTCATCGCCCTGGTATTTA
A
CATCTTTAACCTGGAGCCTGGCTATGACTTCCTCCATATCTACGACGGACGGGACTCTCTCAGCCCT
C
TCATAGGAAGCTTCTATGGCTCCCAGCTCCCAGGCCGCATTGAAAGCAGCAGCAACAGCCTCTTCCT
C
GCCTTCCGCAGCGATGCATCTGTGAGCAATGCTGGCTTCGTCATTGACTATACAGAAAACCCGCGGG
A
GTCATGTTTTGATCCTGGTTCCATCAAGAACGGCACACGGGTGGGGTCCGACCTGAAGCTGGGCTCC
T
CCGTCACCTACTACTGCCACGGGGGCTACGAAGTTGAGGGCACCTCGACCCTGAGCTGCATCCTGGG
G
CCTGATGGGAAGCCCGTGTGGAACAATCCCCGGCCAGTCTGCACAGCCCCCTGTGGGGGACAGTATG
T
GGGTTCGGACGGAGTGGTCTTGTCCCCCAACTACCCCCAGAACTACACCAGTGGACAGATCTGCTTG
T
ATTTTGTTACTGTGCCCAAGGACTATGTGGTGTTTGGCCAGTTCGCCTTCTTTCACACGGCCCTCAA
C
GACGTGGTGGAGGTTCACGACGGCCACAGCCAGCACTCGCGGCTCCTCAGCTCCCTCTCGGGCTCCC
A
TACAGGAGAATCACTGCCCTTGGCCACCTCCAATCAAGTTCTCATTAAGTTCAGCGCCAAAGGCCTC
G
CACCAGCCAGAGGCTTCCACTTTGTCTACCAAGCGGTTCCTCGAACCAGCGCCACGCAGTGCAGCTC
T
GTGCCGGAACCCCGCTATGGCAAGAGGCTGGGCAGTGACTTCTCGGTGGGGGCCATCGTCCGCTTCG
A
ATGCAACTCCGGCTATGCCCTGCAGGGGTCGCCAGAGATCGAGTGCCTCCCTGTGCCTGGGGCCTTG
G
CCCAATGGAATGTCTCAGCGCCCACGTGTGTGGTGCCGTGTGGAGGCAACCTCACAGAGCGCAGGGG
C
ACCATCCTGTCCCCTGGCTTCCCAGAGCCGTACCTCAACAGCCTCAACTGTGTGTGGAAGATCGTGG
T
CCCCGAAGGCGCTGGCATCCAGATCCAAGTTGTCAGTTTTGTGACAGAGCAGAACTGGGACTCGCTG
G
AAGTATTTGATGGTGCAGATAACACTGTAACCATGCTGGGGAGTTTCTCAGGAACAACCGTGCCTGC CTCTTCCGTTGTCAAAAAGGCTACCTGCTTCAGGGCTCCACCACCAGGACCTGCCTCCCAAACCTGA
C
CTGGAGTGGAACCCCACCTGACTGTGTCCCCCACCACTGCAGGCAGCCAGAGACGCCAACGCATGCC
A
ACGTCGGGGCCCTGGATTTGCCCTCCATGGGCTACACGCTCATTACTCCTGCCAGGAGGGCTTCTCC
C
TCAAGGGTGGCTCCGAGCACCGCACCTGCAAGGCGGATGGCAGCTGGACAGGCAAGCCGCCCATCTG
C
CTGGAGGTCCGGCCCAGTGGGAGACCCATCAACACTGCCCGGGAGCCACCGCTCACCCAAGCCTTGA
T
TCCTGGGGATGTTTTTGCCAAGAATTCCCTGTGGAAAGGGGCCTATGAATACCAGGGGAAGAAGCAG
CAGCCATGCTCAGAGTGACTGGCTTCCAAGTTGCCAACAGCAAGGTCAATGCCACCATGATCGACCA
AGTGGCGTGGAGCTGCACTTGGCTGGAACTTACAAGAAAGAAGATTTTCATCTCCTACTCCAGGTGT
CCAGATTACAGGGCCTGTGGAGATCTTTATGAATAAGTTCAAAGATGATCACTGGGCTTTAGATGGC
ATGTCTCGTCAGAGTCCTCCGGAGCCACCTTCATCTACCAAGGCTCTGTCAAGGGCCAAGGCTTTGG σ
CAGTTCGGCTTTCAAAGACTGGACCTCAGGCTGCTGGAGTCAGACCCCGAGTCCATTGGCCGCCACT
T
TGCTTCCAACAGCAGCTCAGTGGCAGCCGCGATCCTGGTGCCTTTCATCGCCCTCATTATTGCGGGC
TCGTGCTCTATCTCTACAAGCACAGGAGAAGACCCAAAGTTCCTTTCAATGGCTATGCTGGCCACGA jAACACCAATGTTCGGGCCACATTTGAGAACCCAATGTACGACCGCAACATCCAGCCCACAGACATCA
GGCCAGCGAGGCGGAGTTCACAGTCAGCACAGTGTGCACAGCAGTATAGCCACCCGGCCTGGCCGCT
TTTTTGCTAGGTTGAACTGGTACTCCAGCAGCCGCCGAAGCTGGACTGTACTGCTGCCATCTCAGCT
ACTGCAACCTCCCTGCCTGATTCCCCTGCCTCAGCCTGCCGAGTGCCTGCGATTGCAGGCGCGCACC
G CCAC
NOV4p, SNP13382457 of SEQ ID NO: 62 3104 aa MW at 336746.3kD CG50377-01, Protein Sequence SNP Pos: 1040 SNP Change: Glyto Gly
MAGAPPPALLLPCSLISDCCASNQRHSVGVGPSELVKKQIELKSRGVKL PSKDNSQKTSVLTQVGVS QGHNMCPDPGIPERGKRLGSDFRLGSSVQFTCNEGYDLQGSKRITCMKVSDMFAAWSDHRPVCRARMC DAHLRGPSGIITSPNFPIQYDNNAHCVWIITALNPSKVIKLAFEEFDLERGYDTLTVGDGGQDGDQKT VLYMSQNACSDSPHTPGSRIPESMSGDIWRQKWTVLEICRDISSSDARSGSVRKSPKTSNAVΈLVAPG TEIEQGSCGDPGIPAYGRREGSRFHHGDTLKFECQPAFELVGQKAITCQKNNQWSAKKPGCVFSCFFN FTSPSGVVLSPNYPEDYGNHLHCVWLILARPESRIHLAFNDIDVEPQFDFLVIKDGATAEAPVLGTFS GNQLPSSITSSGHVARLEFQTDHSTGKRGFNITFTTFRHNECPDPGVPVNGKRFGDSLQLGSSISFLC DEGFLGTQGSETITCVLKEGSWWNSAVLRCEAPCGGHLTSPSGTILSPG PGFYKDALSCAWVIEAQ PGYPIKITFDRFKTEVNYDTLEVRDGRTYSAPLIGVYHGTQVPQFLISTSNYLYLLFSTDKSHSDIGF QLRYΞTITLQSDHCLDPGIPVNGQRHGNDFYVGALVTFSCDSGYTLSDGEPLECEPNFQWSRALPSCE ALCGGFIQGSSGTILSPGFPDFYPNNLNCTWIIETSHGKGVFFTFHTFHLESGHDYLLITENGSFTQP LRQLTGSRLPAPISAGLYGNFTAQVRFISDFS SYEGFNITFSEYDLEPCEEPEVPAYSIRKGLQFGV GDTLTFSCFPGYRLEGTARITCLGGRRRLWSSPLPRCVAECGNSVTGTQGTLLSPNFPVNYNNNHECI YSIQTQPGKGIQLKS-RAFELSEGDVLKVYDGNNNSARLLGVFSHSEMMGVTLNSTSSSLWLDFITDAE NTSKGFELHFSSFELIKCEDPGTPKFGYKVHDEGHFAGSSVSFSCDPGYSLRGSEELLCLSGERRTWD RPLPTCVAECGGTVRGEVSGQVLSPGYPAPYEHNLNCIWTIEAEAGCTIGLHFLVFDTEEVHDVLRIW DGPVESGVLLKELSGPALPKDLHSTFNSWLQFSTDFFTSKQGFAIQFSVSTATSCNDPGIPQNGSRS GDSWEAGDSTVFQCDPGYALQGSAEISCVKIENRFFWQPSPPTCIAPCGGDLTGPSGVILSPNYPEPY PPGKECDWKVTVSPDYVIALVFNIFNLEPGYDFLHIYDGRDSLSPLIGSFYGSQLPGRIΞSSSNSLFL AFRSDASVSNAGFVIDYTENPRESCFDPGSIKNGTRVGSDLKLGSSVTYYCHGGYEVEGTSTLSCILG PDGKPVWNNPRPVCTAPCGGQYVGSDGWLSPNYPQNYTSGQICLYFVTVPKDYWFGQFAFFHTALN DWEVHDGHSQHSRLLSSLSGSHTGESLPLATSNQVLIKFSAKGLAPARGFHFVYQAVPRTSATQCSS VPEPRYGKRLGSDFSVGAIVRFECNSGYALQGSPEIECLPVPGALAQWNVSAPTCVVPCGGNLTERRG TILSPGFPEPYLNSLNCVWKIWPEGAGIQIQWSFVTEQNWDSLEVFDGADNTVTMLGSFSGTTVPA LLNSTSNQLYLHFYSDISVSAAGFHLEYKTVGLSSCPEPAVPSNGVKTGERYLVNDWSFQCEPGYAL QGHAHISCMPGTVRRWNYPPPLCIAQCGGTVΞE EGVILSPGFPGNYPSN DCSWKIALPVGFGAHIQ FLNFSTEPNHDYIEI-RNGPYETSRMMGRFSGSΞLPSSLLSTSHETTVYFHSDHSQNRPGFKLEYQAYE LQECPDPEPFANGIVRGAGYKIVGQSVTFECLPGYQLTGHPVLTCQHGTNRNWDHPLPKCEVPCGGNIT SSNGTVYSPGFPSPYSSSQDCVWLITVPIGHGVRLNLSLLQTEPSGDFITIWDGPQQTAPRLGVFTRS MAKKTVQSSSNQVLLKFHRDAATGGIFAIAFSAYPLTKCPPPTILPNAEWTENEEFNIGDIVRYRCL PGFTLVGNEILTCKLGTYLQFEGPPPICEVHCPTNELLTDSTGVILSQSYPGSYPQFQTCSWLVRVEP DYNISLTVEYFLSEKQYDEFEIFDGPSGQSPLLKALSGNYSAPLIVTSSSNSVYLRWSSDHAYNRKGF KIRYSAPYCSLPRAPLHGFILGQTSTQPGGSIHFGCNAGYRLVGHSMAICTRHPQGYHLWSEAIPLCQ ALSCGLPEAPKNGMVFGKEYTVGTKAVYSCSEGYHLQAGAEATAECLDTGLWSNRNVPPQCVPVTCPD VSSISVEHGRWRLIFΞTQYQFQAQLMLICDPGYYYTGQRVIRCQANGKWSLGDSTPTCRIISCGELPI PPNGHRIGTLSVYGATAIFSCNSGYTLVGSRVRECMANGLWSGSΞVRCLAGHCGTPEPIVNGHINGEN YSYRGSWYQCNAGFRLIGMSVRICQQDHHWSGKTPFCVPITCGHPGNPVNGLTQGNQFNLNDWKFV CNPGYMAEGAARSQC SGQWSDMLPTCRIINCTDPGHQENSVRQVHASGPHRFSFGTTVS RCNHGF YLLGTPVLSCQGDGTWDRPRPQCLLVSCGHPGSPPHSQ SGDSYTVGAWRYSCIGKRTLVGNSTRMC GLDGHWTGSLPHCSGTSVGVCGDPGIPAHGIRLGDSFDPGTVMRFSCEAGHVLRGSSERTCQANGSWS GSQPECGVISCGNPGTPSNARWFSDGLVFSSSIVYECREGYYATGLLSRHCSVNGTWTGSDPECLVI NCGDPGIPANGLRLG--S-OFRYNKTVTYQCVPGYM ΞSHRVSVLSCTKDRTVJNGTKPVCKALMCKPPPLI PNGKWGSDFMWGSSVTYACLEGYQLSLPAVFTCEGNGSWTGELPQCFPVFCGDPGVPSRGRREDRGF SYRSSVSFSCHPPLVLVGSPRRFCQSDGTWSGTQPSCIDPTLTTCADPGVPQFGIQNNSQGYQVGSTV LFRCQKGYLLQGSTTRTCLPNLTWSGTPPDCVPHHCRQPETPTHANVGALDLPSMGYTLITPARRASP SRVAPSTAPARRMAAGQASRPSAWRSGPVGDPSTLPGSHRSPKP
NOV4q,SNPl3382458 of SEQ ID NO: 63 10136 bp CG50377-01, DNA Sequence ORF Start: ATG at 1 ORF Stop: TGA at 9313
SNP Pos: 4429 |SNP Change: A to G
ATGGCGGGCGCCCCTCCCCCCGCCTTGCTGCTGCCTTGCAGTTTGATCTCAGACTGCTGTGCTAGCAA TCAGCGACACTCCGTGGGCGTAGGACCCTCCGAGCTAGTCAAGAAGCAAATTGAGTTGAAGTCTCGAG GTGTGAAGCTGATGCCCAGCAAAGACAACAGCCAGAAGACGTCTGTGTTAACTCAGGTTGGTGTGTCC CAAGGACATAATATGTGTCCAGACCCTGGCATACCCGAAAGGGGCAAAAGACTAGGCTCGGATTTCAG GTTAGGATCCAGCGTCCAGTTCACCTGCAACGAGGGCTATGACCTGCAAGGGTCCAAGCGGATCACCT GTATGAAAGTGAGCGACATGTTTGCGGCCTGGAGCGACCACAGGCCAGTCTGCCGAGCCCGCATGTGT GATGCCCACCTTCGAGGCCCCTCGGGCATCATCACCTCCCCCAATTTCCCCATTCAGTATGACAACAA TGCACACTGTGTGTGGATCATCACAGCACTCAACCCCTCCAAGGTGATCAAGCTCGCCTTTGAGGAGT TTGATTTGGAGAGGGGCTATGACACCCTGACGGTCGGTGATGGTGGTCAGGATGGGGACCAGAAGACA GTTCTCTACATGTCTCAAAATGCCTGCAGTGACAGCCCTCACACCCCAGGCTCTCGCATCCCAGAGAG CATGTCTGGGGACATCTGGAGGCAGAAATGGACTGTACTTGAGATCTGTCGTGACATTAGCAGTTCAG ATGCAAGGTCAGGTTCAGTGAGGAAGTCTCCAAAGACTTCTAATGCTGTGGAACTTGTTGCTCCTGGG ACAGAGATCGAGCAGGGCAGTTGCGGTGACCCTGGCATACCTGCATATGGCCGGAGGGAAGGCTCCCG GTTTCACCACGGTGACACACTCAAGTTTGAGTGCCAGCCCGCCTTTGAGCTGGTGGGACAGAAGGCAA TCACATGCCAAAAGAATAACCAATGGTCGGCTAAGAAGCCAGGCTGCGTGTTCTCCTGCTTCTTCAAC TTCACCAGCCCGTCTGGGGTTGTCCTGTCTCCCAACTACCCAGAGGACTATGGCAACCACCTCCACTG TGTCTGGCTCATCCTGGCCAGGCCTGAGAGCCGCATCCACCTGGCCTTCAACGACATTGACGTGGAGC CTCAGTTTGATTTCCTGGTCATCAAGGATGGGGCCACCGCCGAGGCGCCCGTCCTGGGCACCTTCTCA GGAAACCAGCTTCCCTCCTCCATCACAAGCAGTGGCCACGTGGCCCGTCTCGAGTTCCAGACTGACCA CTCCACAGGGAAGAGGGGCTTCAACATCACTTTTACCACCTTCCGACACAACGAGTGCCCGGATCCTG GCGTTCCAGTAAATGGCAAACGGTTTGGGGACAGCCTCCAGCTGGGCAGCTCCATCTCCTTCCTCTGT GATGAAGGCTTCCTTGGGACTCAGGGCTCAGAGACCATCACCTGCGTCCTGAAGGAGGGCAGCGTGG CTGGAACAGCGCTGTGCTGCGGTGTGAAGCTCCCTGTGGTGGTCACCTGACTTCGCCCAGCGGCACCA TCCTCTCTCCGGGCTGGCCTGGCTTCTACAAGGATGCCTTGAGCTGTGCCTGGGTGATTGAGGCCCAG CCAGGCTACCCCATCAAAATCACCTTCGACAGATTCAAAACCGAGGTCAACTATGACACCCTGGAAGT ACGCGATGGGCGGACTTACTCAGCGCCCTTGATCGGGGTTTACCACGGGACCCAGGTTCCCCAGTTCC TCATCAGCACCAGCAACTACCTCTACCTCCTCTTCTCTACCGACAAGAGTCACTCGGACATCGGCTTC CAGCTCCGCTATGAGACTATAACACTGCAGTCAGACCACTGTCTGGATCCAGGAATCCCAGTAAATGG ACAGCGTCATGGGAATGACTTCTACGTGGGCGCGCTGGTGACCTTCAGCTGTGACTCGGGCTACACAT TAAGTGACGGGGAGCCTCTGGAGTGTGAGCCCAACTTCCAGTGGAGCCGGGCCCTGCCCAGTTGTGA GCTCTCTGTGGTGGCTTCATTCAAGGCTCCAGTGGGACCATCTTGTCGCCAGGGTTCCCTGACTTCTA CCCCAACAACTTGAACTGCACCTGGATTATCGAAACATCTCATGGCAAGGGTGTGTTCTTCACTTTCC ACACCTTCCACCTGGAAAGTGGCCATGACTACCTCCTCATCACTGAGAACGGCAGCTTCACCCAGCCC CTGAGGCAGCTAACTGGATCTCGGCTGCCAGCTCCCATCAGCGCTGGGCTCTATGGCAACTTCACTGC CCAGGTCCGCTTCATCTCTGATTTCTCCATGTCATATGAAGGATTCAACATCACCTTCTCAGAGTACG ACTTGGAGCCCTGTGAGGAGCCCGAGGTCCCAGCCTACAGCATCCGGAAGGGCTTGCAGTTTGGCGTG GGCGACACCTTGACCTTCTCCTGCTTCCCCGGGTACCGTCTGGAGGGCACCGCCCGCATCACGTGCCT GGGGGGCAGACGGCGCCTGTGGAGCTCGCCTCTGCCAAGGTGTGTTGCTGAGTGTGGGAATTCAGTCA CAGGCACTCAGGGTACTTTGCTGTCCCCCAACTTTCCTGTGAACTACAATAACAATCATGAATGCATC TACTCCATCCAGACCCAGCCAGGGAAGGGAATTCAGCTGAAAGCCAGGGCATTCGAACTCTCCGAAGG AGATGTCCTCAAGGTTTATGATGGCAACAACAACTCCGCCCGTTTGCTGGGAGTTTTTAGCCATTCTG AGATGATGGGGGTGACTTTGAACAGCACATCCAGCAGTCTGTGGCTTGATTTCATCACTGATGCTGAA AACACCAGCAAGGGCTTTGAACTGCACTTTTCCAGCTTTGAACTCATCAAATGTGAGGACCCAGGAAC CCCCAAGTTTGGCTACAAGGTTCATGATGAAGGTCATTTTGCAGGGAGCTCCGTGTCCTTCAGCTGTG ACCCTGGATACAGCCTGCGGGGTAGTGAGGAGCTGCTGTGTCTGAGTGGAGAGCGCCGGACCTGGGAC CGGCCTCTGCCCACCTGTGTCGCCGAGTGTGGAGGGACAGTGAGAGGAGAGGTGTCGGGGCAGGTGCT GTCACCCGGGTATCCAGCTCCCTATGAACACAATCTCAACTGCATCTGGACCATCGAAGCAGAGGCCG GCTGCACCATTGGGCTACACTTCCTGGTGTTTGACACAGAGGAGGTTCACGACGTGCTGCGCATCTGG GATGGGCCTGTGGAGAGCGGGGTTCTGCTGAAGGAGCTGAGTGGCCCGGCCCTGCCCAAGGACCTGCA
TAGCACCTTCAACTCGGTCGTCCTGCAGTTCAGCACTGACTTCTTCACCAGCAAGCAGGGCTTTGCC
A
TTCAATTTTCAGTGTCCACAGCAACGTCCTGCAATGACCCTGGGATCCCGCAGAATGGGAGTCGGAG
T
GGTGACAGTTGGGAAGCCGGCGACTCCACAGTGTTCCAGTGTGACCCTGGCTACGCGCTGCAGGGAA
G
TGCAGAGATCAGCTGTGTGAAGATCGAGAACAGGTTCTTCTGGCAGCCCAGCCCGCCAACATGCATC
G
CTCCCTGCGGGGGAGACCTGACAGGACCATCTGGAGTCATCCTCTCACCAAATTACCCAGAACCCTA
C
CCGCCAGGCAAGGAGTGTGACTGGAAAGTGACCGTCTCACCAGACTACGTCATCGCCCTGGTATTTA
A
CATCTTTAACCTGGAGCCTGGCTATGACTTCCTCCATATCTACGACGGACGGGACTCTCTCAGCCCT
C
TCATAGGAAGCTTCTATGGCTCCCAGCTCCCAGGCCGCATTGAAAGCAGCAGCAACAGCCTCTTCCT
C
GCCTTCCGCAGCGATGCATCTGTGAGCAATGCTGGCTTCGTCATTGACTATACAGAAAACCCGCGGG
A
GTCATGTTTTGATCCTGGTTCCATCAAGAACGGCACACGGGTGGGGTCCGACCTGAAGCTGGGCTCC
T
CCGTCACCTACTACTGCCACGGGGGCTACGAAGTTGAGGGCACCTCGACCCTGAGCTGCATCCTGGG
G
CCTGATGGGAAGCCCGTGTGGAACAATCCCCGGCCAGTCTGCACAGCCCCCTGTGGGGGACAGTATG
T
GGGTTCGGACGGAGTGGTCTTGTCCCCCAACTACCCCCAGAACTACACCAGTGGACAGATCTGCTTG
T
ATTTTGTTACTGTGCCCAAGGACTATGTGGTGTTTGGCCAGTTCGCCTTCTTTCACACGGCCCTCAA
C
GACGTGGTGGAGGTTCACGACGGCCACAGCCAGCACTCGCGGCTCCTCAGCTCCCTCTCGGGCTCCC
A
TACAGGAGAATCACTGCCCTTGGCCACCTCCAATCAAGTTCTCATTAAGTTCAGCGCCAAAGGCCTC
G
CACCAGCCGGAGGCTTCCACTTTGTCTACCAAGCGGTTCCTCGAACCAGCGCCACGCAGTGCAGCTC
T
GTGCCGGAACCCCGCTATGGCAAGAGGCTGGGCAGTGACTTCTCGGTGGGGGCCATCGTCCGCTTCG
A
ATGCAACTCCGGCTATGCCCTGCAGGGGTCGCCAGAGATCGAGTGCCTCCCTGTGCCTGGGGCCTTG
G
CCCAATGGAATGTCTCAGCGCCCACGTGTGTGGTGCCGTGTGGAGGCAACCTCACAGAGCGCAGGGG
C
ACCATCCTGTCCCCTGGCTTCCCAGAGCCGTACCTCAACAGCCTCAACTGTGTGTGGAAGATCGTGG
T
CCCCGAAGGCGCTGGCATCCAGATCCAAGTTGTCAGTTTTGTGACAGAGCAGAACTGGGACTCGCTG CGGACCCTGGTGTGCCACAGTTTGGGATACAGAACAATTCTCAGGGCTACCAGGTTGGAAGCACAGT
C
CTCTTCCGTTGTCAAAAAGGCTACCTGCTTCAGGGCTCCACCACCAGGACCTGCCTCCCAAACCTGA
C
CTGGAGTGGAACCCCACCTGACTGTGTCCCCCACCACTGCAGGCAGCCAGAGACGCCAACGCATGCC
A
ACGTCGGGGCCCTGGATTTGCCCTCCATGGGCTACACGCTCATTACTCCTGCCAGGAGGGCTTCTCC
C
TCAAGGGTGGCTCCGAGCACCGCACCTGCAAGGCGGATGGCAGCTGGACAGGCAAGCCGCCCATCTG
C
CTGGAGGTCCGGCCCAGTGGGAGACCCATCAACACTGCCCGGGAGCCACCGCTCACCCAAGCCTTGA
T
TCCTGGGGATGTTTTTGCCAAGAATTCCCTGTGGAAAGGGGCCTATGAATACCAGGGGAAGAAGCAG
CAGCCATGCTCAGAGTGACTGGCTTCCAAGTTGCCAACAGCAAGGTCAATGCCACCATGATCGACCA
AGTGGCGTGGAGCTGCACTTGGCTGGAACTTACAAGAAAGAAGATTTTCATCTCCTACTCCAGGTGT
CCAGATTACAGGGCCTGTGGAGATCTTTATGAATAAGTTCAAAGATGATCACTGGGCTTTAGATGGC
ATGTCTCGTCAGAGTCCTCCGGAGCCACCTTCATCTACCAAGGCTCTGTCAAGGGCCAAGGCTTTGG
CAGTTCGGCTTTCAAAGACTGGACCTCAGGCTGCTGGAGTCAGACCCCGAGTCCATTGGCCGCCACT
TGCTTCCAACAGCAGCTCAGTGGCAGCCGCGATCCTGGTGCCTTTCATCGCCCTCATTATTGCGGGC
TCGTGCTCTATCTCTACAAGCACAGGAGAAGACCCAAAGTTCCTTTCAATGGCTATGCTGGCCACGA
AACACCAATGTTCGGGCCACATTTGAGAACCCAATGTACGACCGCAACATCCAGCCCACAGACATCA
'GGCCAGCGAGGCGGAGTTCACAGTCAGCACAGTGTGCACAGCAGTATAGCCACCCGGCCTGGCCGCT
TTTTTGCTAGGTTGAACTGGTACTCCAGCAGCCGCCGAAGCTGGACTGTACTGCTGCCATCTCAGCT jACTGCAACCTCCCTGCCTGATTCCCCTGCCTCAGCCTGCCGAGTGCCTGCGATTGCAGGCGCGCACC
G CCAC
NOV4q, SNP13382458 of SEQ ID NO: 643104 aa [MW at 336647.2kD
CG50377-01, Protein Sequence JSNP Pos: 1477 SNP Change: Arg to Gly
MAGAPPPALLLPCSLISDCCASNQRHSVGVGPSELVKKQIELKSRGVKL PSKDNSQKTSVLTQVGVS QGHNMCPDPGIPERGKRLGSDFRLGSSVQFTCNEGYDLQGSKRITCMKVSD FAAWSDHRPVCRARMC DAHLRGPSGIITSPNFPIQYDNNAHCVWIITALNPSKVIKLAFEEFDLERGYDTLTVGDGGQDGDQKT VLYMSQNACSDSPHTPGSRIPESMSGDIWRQKWTVLEICRDISSSDARSGSVRKSPKTSNAVELVAPG TEIEQGSCGDPGIPAYGRREGSRFHHGDTLKFECQPAFELVGQKAITCQKNNQWSAKKPGCVFSCFFN FTSPSGWLSPNYPEDYGNHLHCVWLILARPESRIHLAFNDIDVEPQFDFLVIKDGATAEAPVLGTFS GNQLPSSITSSGHVARLEFQTDHSTGKRGFNITFTTFRHNECPDPGVPVNGKRFGDSLQLGSSISFLC DEGFLGTQGSETITCVLKEGSWWNSAVLRCEAPCGGHLTSPSGTILSPGWPGFYKDALSCAWVIEAQ PGYPIKITFDRFKTEVNYDTLEVRDGRTYSAPLIGVYHGTQVPQFLISTSNYLYLLFSTDKSHSDIGF QLRYETITLQSDHCLDPGIPVNGQRHGNDFYVGALVTFSCDSGYTLSDGEPLECEPNFQWSRALPSCE ALCGGFIQGSSGTILSPGFPDFYPNNLNCTWIIETSHGKGVFFTFHTFHLESGHDYLLITENGSFTQP LRQLTGSRLPAPISAGLYGNFTAQVRFISDFSMSYEGFNITFSEYDLEPCEEPEVPAYSIRKGLQFGV GDTLTFSCFPGYRLEGTARITCLGGRRRLWSSPLPRCVAECGNSVTGTQGTLLSPNFPVNYNNNHECI YSIQTQPGKGIQLKA-AFELSEGDVLKVYDGNNNSARLLGVFSHSEMMGVTLNSTSSSLWLDFITDAE NTSKGFELHFSSFELIKCEDPGTPKFGYKVHDEGHFAGSSVSFSCDPGYSLRGSEELLCLSGERRTWD RPLPTCVAECGGTVRGEVSGQVLSPGYPAPYEHNLNCIWTIEAEAGCTIGLHFLVFDTEEVHDVLRI DGPVESGVLLKELSGPALPKDLHSTFNSWLQFSTDFFTSKQGFAIQFSVSTATSCNDPGIPQNGSRS GDSWEAGDSTVFQCDPGYALQGSAEISCVKIENRFFWQPSPPTCIAPCGGDLTGPSGVILSPNYPEPY PPGKECDWKVTVSPDYVIALVFNIFNLEPGYDFLHIYDGRDSLSPLIGSFYGSQLPGRIESSSNSLFL AFRSDASVSNAGFVIDYTENPRESCFDPGSIKNGTRVGSDLKLGSSVTYYCHGGYEVEGTSTLSCILG PDGI-PVW---røPRPVCTAPCGGQYVGSDGVVLSP-->-ΥPQNYTSGQICLYFVTVPKDYVVFGQFAFFHTALN DWEVHDGHSQHSRLLSSLSGSHTGESLPLATSNQVLIKFSAKGLAPAGGFHFVYQAVPRTSATQCSS VPEPRYGKRLGSDFSVGAIVRFECNSGYALQGSPEIECLPVPGALAQWNVSAPTCWPCGGNLTERRG TILSPGFPEPYLNSLNCVWKIVVPEGAGIQIQVVSFVTEQNWDSLEVFDGADNTVTMLGSFSGTTVPA LLNSTSNQLYLHFYSDISVSAAGFHLEYKTVGLSSCPEPAVPSNGVKTGERYLVNDWSFQCEPGYAL QGH-AHISCMPGTVRRWNYPPPLCIAQCGGTVEEMEGVILSPGFPGNYPSNMDCSWKIALPVGFGAHIQ FLNFSTEPNHDYIEIRNGPYETSRM GRFSGSELPSSLLSTSHETTVYFHSDHSQNRPGFKLEYQAYE LQECPDPEPFANGIVRGAGYNVGQSVTFECLPGYQLTGHPVLTCQHGTNRNWDHPLPKCEVPCGGNIT SSNGTVYSPGFPSPYSSSQDCVWLITVPIGHGVRLNLSLLQTEPSGDFITIWDGPQQTAPRLGVFTRS MAKKTVQSSSNQVLLKFHRDAATGGIFAIAFSAYPLTKCPPPTILPNAEVVTENEEFNIGDIVRYRCL PGFTLVGNEILTCKLGTYLQFEGPPPICEVHCPTNELLTDSTGVILSQSYPGSYPQFQTCSWLVRVEP DYNISLTVEYFLSEKQYDEFEIFDGPSGQSPLLKALSGNYSAPLIVTSSSNSVYLRWSSDHAYNRKGF KIRYSAPYCSLPRAPLHGFILGQTSTQPGGSIHFGCNAGYRLVGHS AICTRHPQGYHLWSΞAIPLCQ ALSCGLPEAPKNGlYrVFGKEYTVGT---^VYSCSEGYHLQAGAEATAECLDTGLWSNRNVPPQCVPVTCPD VSSISVEHGRWRLIFETQYQFQAQLMLICDPGYYYTGQRVIRCQANGKWSLGDSTPTCRIISCGELPI PPNGHRIGTLSVYGATAIFSCNSGYTLVGSRVRECMANGLWSGSEVRCLAGHCGTPEPIVNGHINGEN YSYRGSWYQCNAGFRLIGiSVRICQQDHHWSGKTPFCVPITCGHPGNPVNGLTQGNQFNLNDWKFV CNPGYJMAEGAARSQCLASGQWSDMLPTCRIINCTDPGHQENSVRQVHASGPHRFSFGTTVSYRCNHGF YLLGTPVLSCQGDGTWDRPRPQCLLVSCGHPGSPPHSQMSGDSYTVGAWRYSCIGKRTLVGNSTRMC GLDGHWTGSLPHCSGTSVGVCGDPGIPAHGIRLGDSFDPGTVMRFSCEAGHVLRGSSERTCQANGSWS GSQPECGVISCGNPGTPSNARWFSDGLVFSSSIVYECREGYYATGLLSRHCSVNGTWTGSDPECLVI NCGDPGIPANGLRLGNDFRYNKTVTYQCVPGYM ESHRVSVLSCTKDRTWNGTKPVCKAL CKPPPLI PNGKWGSDFMWGSSVTYACLEGYQLSLPAVFTCEGNGSWTGELPQCFPVFCGDPGVPSRGRREDRGF SYRSSVSFSCHPPLVLVGSPRRFCQSDGTWSGTQPSCIDPTLTTCADPGVPQFGIQNNSQGYQVGSTV LFRCQKGYLLQGSTTRTCLPNLTWSGTPPDCVPHHCRQPETPTHANVGALDLPS GYTLITPARRASP SRVAPSTAPARRMAAGQASRPSAWRSGPVGDPSTLPGSHRSPKP
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 4B.
Table 4B. Comparison of the NOV4 protein sequences.
NO 4a NOV4b MAGAPPPALLLPCSLISDCCASNQRHSVGVGPSELVKKQIELKSRGVKLJMPSKDNSQKTS NOV4C NOV4d NOV4e NOV4f NOV4g NOV4h NOV4i NOV4J NOV4 NOV41 NOV4m NOV4n NOV4o
NOV4a NOV4b VLTQVGVSQG----I-NMCPDPGIPERGKRLGSDFRLGSSVQFTCNEGYDLQGSKRITC KVSD NOV4C NOV4d NOV4e NOV4f NOV4g NOV4h NOV4i NOV4k NO 41 NOV4m NOV4n NOV4o
NOV4a NOV4b FAAWSDHRPVCRARMCDAHLRGPSGIITSPNFPIQYDNNAHCVWIITALNPSKVIKLAFE NOV4C NOV4d NOV4e NOV4f NOV4g NOV4h NOV4i NOV4J NO 4k NO 1 NOV4m NOV4n NOV4o
NOV4a NOV4b EFDLERGYDTLTVGDGGQDGDQKTVLYMSQNACSDSPHTPGSRIPESMSGDIWRQKWTVL NO 4C NOV4d NOV4e NOV4f NOV4g NOV4h NOV4i NOV4k NOV41 NOV4m NOV4n NOV4o
NOV a NOV4b EICRDISSSDARSGSVRKSPKTSNAVELVAPGTEIEQGSCGDPGIPAYGRREGSRFHHGD NO 4C NO 4d NO 4e NOV4f NOV4g NOV4h NO 4i NOV4k NO 41 NOV4m NOV4n NOV4o
NOV4a GQNCTFQLHGPNGTVESPGFPYGYPNYAN NOV4b TLKFECQPAFELVGQKAITCQK--røQWSAKKPGCVFSCFFNFTSPSGVVLSPNYPEDYGNH NOV4C NOV4d NOV4e -GQNCTFQLHGPNGTVESPGFPYGYPNYAN NOV4f NOV4g NOV4h NOV4i NOV4k NOV41 NOV4m NOV4n NOV4o
NOV4a CTWTITAEEQHRIQLVFQSFALEΞDFDVLSVFDGPPQPENLRTRLTGFQLPATIVSAATT NOV4b LHCVWLILARPESRIHLAFNDIDVEPQFDFLVIKDGATAEAPVLGTFSGNQLPSSITSSG NOV4C NOV4d NOV4e CTWTITAEEQHRIQLVFQSFALEEDFDVLSVFDGPPQPENLRTRLTGFQLPATIVSAATT NOV4f NOV4g NOV4h NOV4i NOV4J NO 4k NOV41 NOV4m NOV4n NOV4o
NOV4a LSLRLISDYAVSAQGFHATYEVLPSHTCGNPGRLPNGIQQGSTFNLGDKVRYSCNLGFFL NOV4b HVARLEFQTDHSTGKRGFNITFTTFRHNECPDPGVPVNGKRFGDSLQLGSSISFLCDEGF NOV4C NOV4d NOV4e LSLRLISDYAVSAQGFHATYEVLPSHTCGNPGRLPNGIQQGSTFNLGDKVRYSCNLGFFL NOV4f NOV4g NOV4h NOV4i NOV4J NOV4k NOV41 NOV4m NOV4n NOV4o
NOV4a EG-HAVLTCHAGSENSATWDFPLPSCR.ADDACGGTLRGQSGIISSPHFPSEYHNNADCTWT NOV4b LGTQGSETITCVLKEGSWW-NSAVLRCEAPCGGHLTSPSGTILSPGWPGFYKDALSCAWV NOV4C NOV4d NOV4e EGHAVLTCHAGSENSATWDFPLPSCRADDACGGTLRGQSGIISSPHFPSEYHNNADCTWT NOV4f NOV4g N0V4h NOV4i NOV4J
NOV4k
NOV41
NOV4m
NOV4n
NOV4o
NOV4a ILAELGDTIALVFIDFQLEDGYDFLEVTGTEGSSLWFTGASLPAPVISSKNWLRLHFTSD
NOV4b IEAQPGYPIKITFDRFKTEVNYDTLEVRDGRTYSAPLIGVYHGTQVPQFLISTSNYLYLL
N0V4C MAGAPPPALLLPCSLISDCCAS
NOV4d MAGAPPPALLLPCSLISDCCAS
N0V4e ILAELGDTIALVFIDFQLEDGYDFLEVTGTEGSSLWFTGASLPAPVISSKNWLRLHFTSD
NOV4f
NOV4g
NOV4h
NOV4i
NOV4k
NOV41
NOV4m
NOV4n
NOV4o
NOV4a GNHRQRGFSAQYQVKKQIELKSRGVKLMPSKDNSQKTSWTQVGVSQGHNMCPDPGIPER
N0V4b FSTDKSHSDIGFQLRYETITLQSDHCLDPGIPVNGQRHGNDFYVGALVTFSCDSGYTLSD
NOV4c NQRHSVGVGPSELVKKQIELKSRGVKLMPSKDNSQKTSVLTQVGVSQGHNMCPDPGIPER
NOV4d NQRHSVGVGPSELVKKQIELKSRGVKLMPSKDNSQKTSVLTQVGVSQGHNMCPDPGIPER
NOV4e GNHRQRGFSAQYQVKKQIELKSRGVKLMPSKDNSQKTSWTQVGVSQGHNMCPDPGIPER
NOV4f MPSKDNSQKTSWTQVGVSQGHNMCPDPGIPER
NOV4g
NOV4h
NOV4i
NOV4k
NOV41
NOV4m
NOV4n
NOV4o
N0V4a GKRLGSDFRLGSSVQFTCNEGYDLQGSKRITCMKVSDMFAAWSDHRPVCRARMCDAHLRG
NOV4b GEPLECEPNFQWSRALPSCEALCGGFIQGSSGTILSPGFPDFYPNNLNCTWIIETSHGKG
NOV4C GKRLGSDFRLGSSVQFTCNEGYDLQGSKRITCMKVSDMFAAWSDHRPVCRARMCDAHLRG
NOV4d GKRLGSDFRLGSSVQFTCNEGYDLQGSKRITCMKVSDMFAAWSDHRPVCRARMCDAHLRG
NOV4e GKRLGSDFRLGSSVQFTCNEGYDLQGSKRITCMKVSDMFAAWSDHRPVCRARMCDAHLRG
NOV4f GKRLGSDFRLGSSVQFTCNEGYDLQGSKRITCMKVSDMFAAWSDHRPVCRARMCDAHLRG
NOV4g
NOV4h
NOV4i
NOV4k
NOV41
NOV4m
NOV4n
N0V4O NOV4a PSGIITSPNFPIQYDNNAHCVWIITALNPSKVIKLAFEEFDLERGYDTLTVGDGGQDGDQ
NOV4b VFFTFHTFHLESGHDYLLITENGSFTQPLRQLTGSRLPAPISAGLYGNFTAQVRFISDFS
NOV4C PSGIITSPNFPIQYDNNAHCVWIITALNPSKVIKLAFEEFDLΞRGYDTLTVGDGGQDGDQ
NOV4d PSGIITSPNFPIQYDNNAHCVWIITALNPSKVIKLAFEΞFDLERGYDTLTVGDGGQDGDQ
NOV4e PSGIITSPNFPIQYDNNAHCVWIITALNPSKVIKLAFEEFDLΞRGYDTLTVGDGGQDGDQ
NOV4f PSGIITSPNFPIQYDNNAHCVWIITALNPSKVIKLAFEEFDLERGYDTLTVGDGGQDGDQ
NOV4g
NOV4h
NOV4i
NOV4k
NOV41
NOV4
NOV4n
N0V4O
NOV4a KTVLYMLTGTSVPDLIVSTNHQMWLLFQTDG SG
NOV4b MSYEGFNITFSEYDLEPCEEPEVPAYSIRKGLQFGVGDTLTFSCFPGYRLEGTARITCLG
NOV4C KTVLYMSQNACSDSPHTPGSRIPESMSGDIWRQKWTVLEICRDISSSDARSGSVRKSPKT
NOV4d KTVLYMSQNACSDSPHTPGSRIPESMSGDIWRQKWTVLEICRDISSSDARSGSVRKSPKT
NOV4e KTVLYMLTGTSVPDLIVSTNHQMWLLFQTDG S
NOV4f KTVLYMLTGTSVPDLIVSTNHQMWLLFQTDG S
NOV4g
NOV4h
NOV4i
NOV4J
NOV4k
NOV41
NOV4
NOV4n
NOV4o
NOV4a -SSLGFKASYEEIEQGSCGDPGIPAYGRREGSRFRHGDTLKFECQPAFELVGQKAITCQK
NOV4b GRRRLWSSPLPRCVAECGNSVTGTQGTLLSPNFPVNYNNNHECIYSIQTQPGKGIQLKAR
NOV4C SNAVELVAPGTEIEQGSCGDPGIPAYGRREGSRFHHGDTLKFECQPAFELVGQKAITCQK
NOV4d SNAVELVAPGTEIEQGSCGDPGIPAYGRREGSRFHHGDTLKFECQPAFELVGQKAITCQK
NOV4e GSSLGFKASYEΞIEQGSCGDPGIPAYGRREGSRFRHGDTLKFECQPAFELVGQKAITCQK
NOV4f GSSLGFKASYEEIEQGSCGDPGIPAYGRREGSRFRHGDTLKFECQPAFELVGQKAITCQK
NOV4g
NOV4h
NOV4i
NOV4J
NOV4k
N0V41
NOV4m
NOV4n
NOV4o
N0V4a NNQWSAKKPGCVCSCFFNFTSPSGWLSPNYPEDYGNHLHCVWLILARPESRIHLAFNDI NOV4b AFELSEGDVLKVYDGNNNSARLLGVFSHSEMMGVTLNSTSSSLWLDFITDAENTSKGFEL NO 4C N---.QWSAKKPGCVFSCFFNFTSPSGWLSPNYPΞDYGNHLHCVWLILARPESRIHLAFNDI NOV4d NNQWSAKKPGCVFSCFFNFTSPSGWLSPNYPEDYGNHLHCVWLILARPESRIHLAFNDI NOV4e NNQWSAK PGCVCSCFFNFTSPSGWLSPNYPΞDYGNHLHCVWLILARPESRIHLAFNDI NOV4f NNQWSAKKPGCVCSCFFNFTSPSGWLSPNYPΞDYGNHLHCVWLILARPESRIHLAFNDI NOV4g N0V4O
NOV4a DTLEVRDGRTYSAPLIGVYHGTQVPQFLISTSNYLYLLFSTDKSHSDIGFQLRYEAITLQ <
NOV4b ATSCNDPGIPQNGSRSGDSWEAGDSTVFQCDPGYALQGSAEISCVKIENRFFWQPSPPTC
NOV4C DTLEVRDGRTYSAPLIGVYHGTQVPQFLISTSNYLYLLFSTDKSHSDIGFQLRYETITLQ
NOV4d DTLEVRDGRTYSAPLIGVYHGTQVPQFLISTSNYLYLLFSTDKSHSDIGFQLRYETITLQ
NOV4e DTLEWDGRTYSAPLIGVYHGTQVPQFLISTSNYI--YLLFSTDKSHSDIGFQLRYEAITLQ
NOV4f DTLEVRDGRTYSAPLIGVYHGTQVPQFLISTSNYLYLLFSTDKSHSDIGFQLRYEAITLQ
NOV4g
NOV4h
NOV4i
NOV4k
NOV41
NOV4m
NOV4n
N0V4O
NOV4a SDHCLDPGIPVNGQRHGNDFYVGALVTFSCDSGYTLSDGEPLECEPNFQWSRALPSCEAL
NOV4b IAPCGGDLTGPSGVILSPNYPEPYPPGKECDWKVTVSPDYVIALVFNIFNLEPGYDFLHI
NOV4C SDHCLDPGIPVNGQRHGNDFYVGALVTFSCDSGYTLSDGEPLECEPNFQWSRALPSCEAL
NOV4d SDHCLDPGIPVNGQRHGNDFYVGALVTFSCDSGYTLSDGEPLECEPNFQWSRALPSCEAL
NOV4e SDHCLDPGIPVNGQRHGNDFYVGALVTFSCDSGYTLSDGEPLECEPNFQWSRALPSCEAL
NOV4f SDHCLDPGIPVNGQRHGNDFYVGALVTFSCDSGYTLSDGEPLECEPNFQWSRALPSCEAL
NOV4g
NOV4h
NOV4i
NOV4k
NOV41
NOV4m
NOV4n
NOV4o
NOV a CGGFIQGSSGTILSPGFPDFYPNNLNCTWIIETSBGKGVFFTFHTFHLESGHDYLLITEN
NOV4b YDGRDSLSPLIGSFYGSQLPGRIESSSNSLFLAFRSDASVSNAGFVIDYTENPRESCFDP
NOV4C CGGFIQGSSGTILSPGFPDFYPNNLNCTWIIETSHGKGVFFTFHTFHLESGHDYLLITEN
NOV4d CGGFIQGSSGTILSPGPPDFYPNNLNCTWIIETSHGKGVFFTFHTFHLESGHDYLLITEN
NOV4e CGGFIQGSSGTILSPGFPDFYPNNLNCTWIIETSHGKGVFFTFHTFHLESGHDYLLITEN
NOV4f CGGFIQGSSGTILSPGFPDFYPNNLNCTWIIETSHGKGVFFTFHTFHLESGHDYLLITEN
NOV4g
NOV4h
NOV4i
NOV4k
NOV41
NOV4m
NOV4n
N0V4O
NOV4a GSFTQPLRQLTGSRLPAPISAGLYGNFTAQVRFISDFSMSYEGFNITFSEYDLEPCEEPE
NOV4b GSIK-NGTRVGSDLKLGSSVTYYCHGGYEVEGTSTLSCILGPDGKPVWN-NPRPVCTAPCGG
N0V4C GSFTQPLRQLTGSRLPAPISAGLYGNFTAQVRFISDFSMSYEGFNITFSEYDLEPCEEPΞ
N0V4d GSFTQPLRQLTGSRLPAPISAGLYGNFTAQVRFISDFSMSYEGFNITFSEYDLEPCEEPE
NOV4e GSFTQPLRQLTGSRLPAPISAGLYGNFTAQVRFISDFSMSYEGFNITFSBYDLEPCEEPE N0V4f GSFTQPLRQLTGSRLPAPISAGLYGNFTAQVRFISDFSMSYEGFNITFSEYDLEPCEEPE
N0V4g
NOV4h
N0V4i
N0V4k
N0V41
NOV4m
NOV4n
N0V4o
N0V4a VPAYSIRKGLQFGVGDTLTFSCFPGYRLEGTARITCLGGRRRLWSSPLPRCVAECGNSVT
NOV4b QYVGSDGWLSPNYPQNYTSGQICLYFVTVPKDYWFGQFAFFHTALNDWEVHDGHSQH
NOV4C VPAYSIRKGLQFGVGDTLTFSCFPGYRLEGTARITCLGGRRRLWSSPLPRCVAECGNSVT
NOV4d VPAYSIRKGLQFGVGDTLTFSCFPGYRLEGTARITCLGGRRRLWSSPLPRCVAECGNSVT
N0V4e VPAYSIRKGLQFGVGDTLTFSCFPGYRLEGTARITCLGGRRRLWSSPLPRCVAECGNSVT
NOV4f VPAYSIRKGLQFGVGDTLTFSCFPGYRLEGTARITCLGGRRRLWSSPLPRCVAECGNSVT
NOV4g
NOV4h
NOV4i
N0V4k
NOV41
NOV4
NOV4n
NOV4o
NOV4a GTQGTLLSPNFPVNYl----røHECIYSIQTQPGKGIQLKA--lAFELSEGDVLKVYDGNNNSARL
NOV4b SRLLSSLSGSHTGESLPLATSNQVLIKFSAKGLAPARGFHFVYQAVPRTSATQCSSVPEP
NOV4c GTQGTLLSPNFPVNYNNNHECIYSIQTQPGKGIQL-f-CA-^FELSEGDVLKVYDGNNNSARL
NOV4d GTQGTLLSPNFPVNYNNNHECIYSIQTQPGKGIQLKARAFELSEGDVLKVYDGNNNSARL
NOV4e GTQGTLLSPNFPV]-TYN---mHECIYSIQTQPGKGIQLKARAFELSEGDVLKVYDGNNNSA^
N0V4f GTQGTLLSPNFPWYNN-trøECIYSIQTQPGKGIQLKARAFELSEGDVLKVYDGNNNSARL
NOV4g
N0V4h
NOV4i
NOV4k
NOV41
NOV4m
N0V4n
NOV4o
NOV4a LGVFSHSEMMGVTLNSTSSSLWLDFITDAENTSKGFELHFSSFELIKCEDPGTPKFGYKV
NOV4b RYGKRLGSDFSVGAIVRFECNSGYALQGSPEIECLPVPGALAQWNVSAPTCWPCGGNLT
NOV4C LGVFSHSEMMGVTLNSTSSSLWLDFITDAENTSKGFELHFSSFELIKCEDPGTPKFGYKV
NOV4d LGVFSHSEMMGVTLNSTSSSLWLDFITDAENTSKGFELHFSSFELIKCEDPGTPKFGYKV
NOV4e LGVFSHSEMMGVTLNSTSSSLWLDFITDAΞNTSKGFELHFSSFELIKCEDPGTPKFGYKV
NOV4f LGVFSHSEMMGVTLNSTSSSLWLDFITDAENTSKGFELHFSSFELIKCEDPGTPKFGYKV
NOV4g
NOV4h
NOV4i
NOV4k
NOV41 NOV4m
NOV4n
NOV4o
NOV4a HDEGHFAGSSVSFSCDPGYSLRGSEΞLLCLSGERRTWDRPLPTCVAECGGTVRGEVSGQV
NOV4b ERRGTILSPGFPEPYLNSLNCVWKIWPEGAGIQIQWSFVTEQNWDSLEVFDGADNTVT
NOV4C HDEGHFAGSSVSFSCDPGYSLRGSEELLCLSGERRTWDRPLPTCVAECGGTVRGEVSGQV
NOV4d HDEGHFAGSSVSFSCDPGYSLRGSEELLCLSGERRTWDRPLPTCVAECGGTVRGEVSGQV
NOV4e HDEGHFAGSSVSFSCDPGYSLRGSEELLCLSGERRTWDRPLPTCVAECGGTVRGEVSGQV
NOV4f HDEGHFAGSSVSFSCDPGYSLRGSEΞLLCLSGERRTWDRPLPTCVAECGGTVRGEVSGQV
NOV4g
NOV4h
NOV4i
NOV4j
NOV4k
NOV41
NOV4
NOV4n
N0V4O
NOV4a LSPGYPAPYEHNLNCIWTIEAEAGCTIGLHFLVFDTEEVHDVLRIWDGPVESGVLLKELS
NOV4b MLGSFSGTTVPALLNSTSNQLYLHFYSDISVSAAGFHLEYKTVGLSSCPEPAVPSNGVKT
NOV4c LSPGYPAPYEHNLNCIWTIEAEAGCTIGLHFLVFDTEEVHDVLRIWDGPVESGVLLKELS
NOV4d LSPGYPAPYEHNLNCIWTIEAEAGCTIGLHFLVFDTEEVHDVLRIWDGPVESGVLLKELS
NOV4e LSPGYPAPYEHNLNCIWTIEAEAGCTIGLHFLVFDTEEVHDVLRIWDGPVESGVLLKELS
NOV4f LSPGYPAPYEHNLNCIWTIEAEAGCTIGLHFLVFDTEEVHDVLRIWDGPVESGVLLKELS
NOV4g
NOV4h
NOV4i
NOV4k
NOV41
NOV4m
NOV4n
NOV4o
NOV4a GPALPKDLHSTFNSWLQFSTDFFTSKQGFAIQFSGSTATSCNDPGIPQNGSRSGDSWEA
NOV4b GERYLVNDWSFQCEPGYALQGHAHISCMPGTVRRWNYPPPLCIAQCGGTVEEMEGVILS
NOV4c GPALPKDLHSTFNSWLQFSTDFFTSKQGFAIQFSVSTATSCNDPGIPQNGSRSGDSWEA
NOV4d GPALPKDLHSTFNSWLQFSTDFFTSKQGFAIQFSVSTATSCNDPGIPQNGSRSGDSWEA
NOV4e GPALPKDLHSTFNSWLQFSTDFFTSKQGFAIQFSGSTATSCNDPGIPQNGSRSGDSWEA
NOV4f GPALPKDLHSTFNSWLQFSTDFFTSKQGFAIQFSGSTATSCNDPGIPQNGSRSGDSWEA
NOV4g
NOV4h
NOV4i
NOV4J
NOV4k
NOV41
NOV4m
NOV4n
NOV4o
NOV4a GDSTVFQCDPGYALQGSAEISCVKIENRFFWQPSPPTCIAPCGGDLTGPSGVILSPNYPE NOV4b PGFPGNYPSNMDCSWKIALPVGFGAHIQFLNFSTEPNHDYIEIRNGPYETSRMMGRFSGS NOV4c GDSTVFQCDPGYALQGSAEISCVKIENRFFWQPSPPTCIAPCGGDLTGPSGVILSPNYPE NOV4d GDSTVFQCDPGYALQGSAEISCVKIENRFFWQPSPPTCIAPCGGDLTGPSGVILSPNYPE
NOV4e GDSTVFQCDPGYALQGSAEISCVKIENRFFWQPSPPTCIAPCGGDLTGPSGVILSPNYPE
NOV4f GDSTVFQCDPGYALQGSAΞISCVKIENRFFWQPSPPTCIAPCGGDLTGPSGVILSPNYPE
NOV4g
NOV4h
NOV4i
N0V4J
NOV4k
NOV41
NOV4TTI
NOV4n
NOV4o
NOV4a PYPPGKECDWKVTVSPDYVIALVLFPSFNLEPGYDFLHIYDGRDSLSPLIGSFYGSQLPG
NOV4b ELPSSLLSTSHETTVYFHSDHSQNRPGFKLEYQAYELQECPDPEPFANGIVRGAGYNVGQ
NOV4C PYPPGKECDWKVTVSPDYVIALVFN-IFNLEPGYDFLHIYDGRDSLSPLIGSFYGSQLPG
NOV4d PYPPGKECDWKVTVSPDYVIALVFN-IFNLEPGYDFLHIYDGRDSLSPLIGSFYGSQLPG
NOV4e PYPPGKECDWKVTVSPDYVIALVLFPSFNLEPGYDFLHIYDGRDSLSPLIGSFYGSQLPG
NOV4f PYPPGKECDWKVTVSPDYVIALVLFPSFNLEPGYDFLHIYDGRDSLSPLIGSFYGSQLPG
NOV4g
NOV4h
NOV4i
NOV4k
NOV41
NOV4m
NOV4n
NOV4o
NOV4a RIESSSNSLFLAFRSDASVSNAGFVIDFPENPRESCFDPGSIKNGTRVGSDLKLGSSVTY
NOV4b SVTFECLPGYQLTGHPVLTCQHGTNRNWDHPLPKCEVPCGGNITSSNGTVYSPGFPSPYS
NOV4C RIESSSNSLFLAFRSDASVSNAGFVIDYTENPRESCFDPGSIKNGTRVGSDLKLGSSVTY
NOV4d RIESSSNSLFLAFRSDASVSNAGFVIDYTENPRESCFDPGSIKNGTRVGSDLKLGSSVTY
NOV4e RIESSSNSLFLAFRSDASVSNAGFVIDFPENPRESCFDPGSIKNGTRVGSDLKLGSSVTY
NOV4f RIESSSNSLFLAFRSDASVSNAGFVIDFPENPRESCFDPGSIKNGTRVGSDLKLGSSVTY
NOV4g
NOV4h
NOV4i
NOV4J KLSCFDPGSIKNGTRVGSDLKLGSSVTY
NOV4k
NOV41
NOV4m
NOV4n
N0V4O
NOV4a YCHGGYEVEGTSTLSCILGPDGKPVWNNPRPVCTAPCGGQYVGSDGWLSPNYPQNYTSG
NOV4b SSQDCVWLITVPIGHGVRLNLSLLQTEPSGDFITIWDGPQQTAPRLGVFTRSMAKKTVQS
NOV4C YCHGGYEVEGTSTLSCILGPDGKPVWNNPRPVCTAPCGGQYVGSDGWLSPNYPQNYTSG
NOV4d YCHGGYEVEGTSTLSCILGPDGKPVWNNPRPVCTAPCGGQYVGSDGWLSPNYPQNYTSG
NOV4e YCHGGYEVEGTSTLSCILGPDGKPVWNNPRPVCTAPCGGQYVGSDGWLSPNYPQNYTSG
NOV4f YCHGGYEVEGTSTLSCILGPDGKPVWNNPRPVCTAPCGGQYVGSDGWLSPNYPQNYTSG
NOV4g
NOV4h
NOV4i
NOV4J YCHGGYEVEGTSTLSCILGPDGKPVWNNPRPVCTAPCGGQYVGSDGWLSPNYPQNYTSG NOV4k
NOV41
NOV4m
NOV4n
NOV4o
NOV4a QICLYFVTVPKDYGWFGQFAFFHTALNDWEVHDGHSQHSRLLSSLSGSHTG-ESLPLA
NOV4b SSNQVLLKFHRDAATGGIFAIAFSAYPLTKCPPPTILPNAEWTENEEFNIGD-IVRYRC
NOV4c QICLYFVTVPKDY-WFGQFAFFHTALNDWEVHDGHSQHSRLLSSLSGSHTG-ESLPLA
NOV4d QICLYFVTVPKDY-WFGQFAFFHTALNDWEVHDGHSQHSRLLSSLSGSHTG-ESLPLA
NOV4e QICLYFVTVPKDYGWFGQFAFFHTALNDWEVHDGHSQHSRLLSSLSGSHTG-ESLPLA
NOV4f QICLYFVTVPKDYGWFGQFAFFHTALNDWEVHDGHSQHSRLLSSLSGSHTGGESLPLA
N0V4g
NOV4h
NOV4i
NOV4J QICLYFVTVPKDY-WFGQFAFFHTALNDWEVHDGHSQHSRLLSSLSGSHTG-ESLPLA
NOV4k
N0V41
NOV4m
NOV4n
NOV4o
NOV4a TSNQVLIKFSAKGLAPARGFHFVYQAVPRTSATQCSSVPEPRYGKRLGSDFSVGAIVRFE
NOV4b LPGFTLVGNEILTCKLGTYLQFEGPPPICEVHCPTNELLTDSTGVILSQSYPGSYPQFQT
NOV4C TSNQVLIKFSAKGLAPARGFHFVYQAVPRTSATQCSSVPEPRYGKRLGSDFSVGAIVRFE
NOV4d TSNQVLIKFSAKGLAPARGFHFVYQAVPRTSATQCSSVPEPRYGKRLGSDFSVGAIVRFE
NOV4e TSNQVLIKFSAKGLAPARGFHFVYQAVPRTSATQCSSVPEPRYGKRLGSDFSVGAIVRFE
NOV4f TSNQVLIKFSAKGLAPARGFHFVYQAVPRTSATQCSSVPEPRYGKRLGSDFSVGAIVRFE
NOV4g
NOV4h
N0V4i
NOV4J TSNQVLIKFSAKGLAPARGFHFVYQAVPRTSATQCSSVPEPRYGKRLGSDFSVGAIVRFE
NOV4k
NOV41
NOV4m
N0V4n
NOV4o
N0V4a CNSGYALQGSPEIECLPVPGALAQWNVSAPTCWPCGGNLTΞRRGTILSPGFPEPYLNSL
N0V4b CSWLVRVEPDYNISLTVEYFLSEKQYDEFEIFDGPSGQSPLLKALSGNYSAPLIVTSSSN
NOV4c CNSGYALQGSPEIECLPVPGALAQWNVSAPTCWPCGGNLTERRGTILSPGFPEPYLNSL
NOV4d CNSGYALQGSPEIECLPVPGALAQWNVSAPTCWPCGGNLTERRGTILSPGFPEPYLNSL
NOV4e CNSGYALQGSPEIECLPVPGALAQWNVSAPTCWPCGGNLTERRGTILSPGFPEPYLNSL
N0V4f CNSGYALQGSPEIECLPVPGALAQWNVSAPTCWPCGGNLTERRGTILSPGFPEPYLNSL
NOV4g
N0V4h
N0V4i
N0V4J CNSGYALQGSPEIECLPVPGALAQWNVSAPTCWPCGGNLTERRGTILSPGFPEPYLNSL
N0V4k
N0V41
NOV4m
N0V4n
N0V4O
N0V4a NCVWKIWPΞGAGIQIQWSFVTEQNWDSLEVFDGADNTVTMLGSFSGTTVPALLNSTSN N0V4b SVYLRWSSDHAYNRKGFKIRYSAPYCSLPRAPLHGFILGQTSTQPGGSIHFGCNAGYRLV
NOV4c NCVWKIWPEGAGIQIQWSFVTEQNWDSLEVFDGADNTVTMLGSFSGTTVPALLNSTSN
N0V4d NCVWKIVVPEGAGIQIQVVSFVTEQNWDSLEVFDGADNTVTMLGSFSGTTVPALLNSTSN
NOV4e NCVWKIWPEGAGIQIQWSFVTEQNWDSLEVFDGADNTVTMLGSFSGTTVPALLNSTSN
NOV4f NCVWKIWPEGAGIQIQWSFVTEQNWDSLEVFDGADNTVTMLGSFSGTTVPALLNSTSN
NOV4g
NOV4h
NOV4i
NOV4j NCVWKIWPEGAGIQIQWSFVTEQl-WDSLEVFDGADNTVTMLGSFSGTTVPALLNSTSN
NOV4k
NOV41
NOV4m
NOV4n
N0V4O
NOV4a QLYLHFYSDISVSAAGFHLEYKTVGLSSCPEPAVPSNGVKTGERYLVNDWSFQCEPGYA
NOV4b GHSMAICTRHPQGYHLWSEAIPLCQALSCGLPEAPKNGMVFGKΞYTVGTKAVYSCSEGYH
NOV4C QLYLHFYSDISVSAAGFHLEYKTVGLSSCPEPAVPSNGVKTGERYLVNDWSFQCEPGYA
NOV4d QLYLHFYSDISVSAAGFHLEYKTVGLSSCPEPAVPSNGVKTGERYLVNDWSFQCEPGYA
NOV4e QLYLHFYSDISVSAAGFHLEYKTVGLSSCPEPAVPSNGVKTGERYLVNDWSFQCEPGYA
NOV4f QLYLHFYSDISVSAAGFHLEYKTVGLSSCPEPAVPSNGVKTGERYLVNDWSFQCEPGYA
NOV4g
NOV4Ϊ1
N0V4i
NOV4J QLYLHFYSDISVSAAGFHLEYKTVGLSSCPEPAVPSNGVKTGΞRYLVNDWSFQCEPGYA
N0V4k
NOV41
NOV4m
NOV4n MAICTRHPQGYHLWSEAIPLCQALSCGLPEAPKNGMVFGKEYTVGTKAVYSCSEGYH
NOV4o MAICTRHPQGYHLWSEAIPLCQALSCGLPEAPKNGMVFGKEYTVGTKAVYSCSEGYH
NOV4a LQGHAHISCMPGTVRRWNYPPPLCIAQCGGTVEEMEGVILSPGFPGNYPSNMDCSWKIAL
NOV4b LQAGAEATAECLDTGLWSNRNVPPQCVPVTCPDVSSISVEHGRWRLIFETQYQFQAQLML
NOV4c LQGHAHISCMPGTVRRWNYPPPLCIAQCGGTVEEMEGVILSPGFPGNYPSNMDCSWKIAL
N0V4d LQGH-AHISCMPGTVRRWNYPPPLCIAQCGGTVEEMEGVILSPGFPGNYPSNMDCSWKIAL
NOV4e LQGHAHISCMPGTVRRWNYPPPLCIAQCGGTVEEMEGVILSPGFPGNYPSNMDCSWKIAL
NOV4f LQGHAHISCMPGTVRRWNYPPPLCIAQCGGTVEEMEGVILSPGFPGNYPSNMDCSWKIAL
NOV4g
N0V4h
NOV4i
NOV4J LQGHAHISCMPGTVRRWNYPPPLCIAQCGGTVEEMEGVILSPGFPGNYPSNMDCSWKIAL
NOV4k
NOV41
N0V4m
NOV4n LQAGAEATAECLDTGLWSNRNVPPQCVPVTCPDVSSISVEHGRWRLIFETQYQFQAQLML
N0V4O LQAGAEATAECLDTGLWSNRNVPPQCVPVTCPDVSSISVEHGRWRLIFETQYQFQAQLML
N0V4a PVGFGAHIQFLNFSTEPNHDYIEIRNGP YETSRMMGRFSGΞELPSSL
NOV4b ICDPGYYYTGQRVIRCQANGKWSLGDSTPTCRIISCGELPIPPNGHRIGTLSVYGATAIF
NOV4c PVGFGAHIQFLNFSTEPNHDYIEIRNGP YETSRMMGRFSGSELPSSL
NOV4d PVGFGAHIQFLNFSTEPNHDYIEIRNGP YETSRMMGRFSGSELPSSL
NOV4e PVGFGAHIQFLNFSTEPNHDYIEIRNGP YETSRMMGRFSGSELPSSL
NOV4f PVGFGAHIQFLNFSTEPNHDYIEIRNGP YETSRMMGRFSGSELPSSL
NOV4g
N0V4ll N0V4i
N0V4j PVGFGAHIQFLNFSTEPNHDYIEIRNGP YETSRMMGRFSGSELPSSL
N0V4k
N0V41
NOV4m
N0V4n ICDPGYYYTGQRVIRCQANGKWSLGDSTPTCRIISCGΞLPIPPNGHRIGTLSVYGATAIF
N0V4O ICDPGYYYTGQRVIRCQANGKWSLGDSTPTCRIISCGELPIPPNGHRIGTLSVYGATAIF
N0V4a LSTSHETTVYFHSDHSQNRPGFKLEYQAYΞLQECPDPEPFANGIVRGAGYNVGQSVTFEC
N0V4b SCNSGYTLVGSRVRECMANGLWSGSEVRCLAGHCGTPEPIVNGHINGENYSYRGSWYQC
N0V4C LSTSHETTVYFHSDHSQNRPGFKLEYQAYELQΞCPDPEPFANGIVRGAGYNVGQSVTFEC
NOV4d LSTSHETTVYFHSDHSQNRPGFKLEYQAYΞLQECPDPEPFANGIVRGAGYNVGQSVTFEC
NOV4e LSTSHETTVYFHSDHSQNRPGFKLΞYQAYΞLQΞCPDPEPFANGIVRGAGYNVGQSVTFEC
NOV4f LSTSHETTVYFHSDHSQNRPGFKLEYQAYELQECPDPEPFANGIVRGAGYNVGQSVTFΞC
NOV4g KLECPDPEPFANGIVRGAGYNVGQSVTFEC
NOV4h KLECPDPEPFANGIVRGAGYNVGQSVTFEC
NOV4i KLECPDPEPFANGIVRGAGYNVGQSVTFEC
NOV4J LSTSHETTVYFHSDHSQNRPGFKLEYQAYELQECPDPEPFANGIVRGAGYNVGQSVTFEC
NOV4k
NOV41
NOV4m
NOV4n SCNSGYTLVGSRVRECMANGLWSGSEVRCLAGHCGTPEPIVNGHINGENYSYRGSWYQC
NOV4o SCNSGYTLVGSRVRECMANGLWSGSEVRCLAGHCGTPEPIVNGHINGENYSYRGSWYQC
NOV4a LPGYQLTGHPVLTCQHGTNRN WDHPLPKCEVPCGGNITSSNGTVYSPGFP
NOV4b NAGFRLXGMSVRICQQDHHWSGKTPFCVPITCGHPGNPVNGLTQGNQFNLNDWKFVCNP
NOV4c LPGYQLTGHPVLTCQHGTNRN WDHPLPKCEVPCGGNITSSNGTVYSPGFP
NOV4d LPGYQLTGHPVLTCQHGTNRN WDHPLPKCEVPCGGNITSSNGTVYSPGFP
NOV4e LPGYQLTGHPVLTCQHGTNRN WDHPLPKCEVPCGGNITSSNGTVYSPGFP
NOV4f LPGYQLTGHPVLTCQHGTNRN WDHPLPKCEVPCGGNITSSNGTVYSPGFP
NOV4g LPGYQLTGHPVLTCQHGTNRN WDHSLPKCEVPCGGNITSSNGTVYSPGFP
NOV4h LPGYQLTGHPVLTCQHGTNRN WDHPLPKCEVPCGGNITSSNGTVYSPGFP
NOV4i LPGYQLTGHPVLTCQHGTNRN WDHPLPKCEVPCGGNITSSNGTVYSPGFP
NOV4j LPGYQLTGHPVLTCQHGTNRN WDHPLPKCEVPCGGNITSSNGTVYSPGFP
NOV4k
NOV41
NOV4m
NOV4n NAGFRLIGMSVRICQQDHHWSGKTPFCVPITCGHPGNPVNGLTQGNQFNLNDWKFVCNP
NOV4o NAGFRLIGMSVRICQQDHHWSGKTPFCVPITCGHPGNPVNGLTQGNQFNLNDWKFVCNP
NOV4a SPYSSSQDCVWLITVPIGHGVRLNLSLLQTEPSGDFITIWDGPQQTAPRLGVFTRSMAKK
NOV4b GYMAEGAARSQCLASGQWSDMLPTCRIINCTDPGHQENSVRQVHASGPHRFSFGTTVSYR
NOV4C SPYSSSQDCVWLITVPIGHGVRLNLSLLQTEPSGDFITIWDGPQQTAPRLGVFTRSMAKK
NOV4d SPYSSSQDCVWLITVPIGHGVRLNLSLLQTEPSGDFITIWDGPQQTAPRLGVFTRSMAKK
NOV4e SPYSSSQDCVWLITVPIGHGVRLNLSLLQTEPSGDFITIWDGPQQTAPRLGVFTRSMAKK
NOV4f SPYSSSQDCVWLITVPIGHGVRLNLSLLQTΞPSGDFITIWDGPQQTAPRLGVFTRSMAKK
NOV4g SPYSSSQDCVWLITVPIGHGVRLNLSLLQTEPSGDFITIWDGPQQTAPRLGVFTRSMAKK
NOV4h SPYSSSQDCVWLITVPIGHGVRLNLSLLQTEPSGDFITIWDGPQQTAPRLGVFTRSMAKK
N0V4i SPYSSΞQDCVWLITVPIGHGVRLNLSLLQTEPSGDFITIWDGPQQTAPRLGVFTRSMAKK
NOV4J SPYSSSQDCVWLITVPIGHGVRLNLSLLQTEPSGDFITIWDGPQQTAPRLGVFTRSMAKK
N0V4k
'NOV41 AEGAARSQCLASGQWSDMLPTCRIINCTDPGHQENSVRQVHASGPHRFSFGTTVSYR
NOV4tn MGYTLIYS
N0V4n GYMAΞGAARSQCLASGQWSDMLPTCRIINCTDPGHQENSVRQVHASGPHRFSFGTTVSYR
N0V4O GYMAEGAARSQCLASGQWSDMLPTCRIINCTDPGHQENSVRQVHASGPHRFSFGTTVSYR NOV4a TVQSSSNQVLLKFHRDAATGGIFAIAFSAYPLTKCPPPTILPNAEWTENEEFNIGDIVR
NOV4b C--NHGFYLLGTPVLSCQGDGTWDRPRPQCLLVSCGHPGSPPHSQMSGDS- -YTVGAWR
NOV4c TVQSSSNQVLLKFHRDAATGGIFAIAFSAYPLTKCPPPTILPNAEWTENEEFNIGDIVR
NOV4d TVQSSSNQVLLKFHRDAATGGIFAIAFSAYPLTKCPPPTILPNAEWTENEEFNIGDIVR
NOV4e TVQSSSNQVLLKFHRDAATGGIFAIAFSAYPLTKCPPPTILPNAEWTENEEFNIGDIVR
NOV4f TVQSSSNQVLLKFHRDAATGGIFAIAFSAYPLTKCPPPTILPNAEWTENΞEFNIGDIVR
NOV4g TVQSSSNQVLLKFHRDAATGGIFAIAFSAYPLTKCPPPTILPNAEWTENEΞFNIGDIVR
NOV4h TVQSSSNQVLLKFHRDAATGGIFAIAFSAYPLTKCPPPTILPNAEWTENΞEFNIGDIVR
NOV4i TVQSSSNQVLLKFHRDAATGGIFAIAFSAYPLTKCPPPTILPNAEWTENEEFNIGDIVR
NOV4 TVQSSSNQVLLKFHRDAATGGIFAIAFSAYPLTKCPPPTILPNAEWTENEEFNIGDIVR
NOV4k
NOV41 C--NHGFYLLGTPVLSCQGDGTDRPRPQCLLVSCGHPGSPPHSQMSGDS--YTVGAWR
NOV4m C-QEGFSLKGGSEHRTCKADGSWTGKPPICLEVR PSGRPINTAREPP LT
NOV4n CX- TASTSWATPVLSCQGDGTWDRPRPQCLLVSCGHPGSPPHSQMSGDS--YTVGAWR
NOV4o C--NHGFYLLGTPVLSCQGDGTWDRPRPQCLLVSCGHPGSPPHSQMSGDS- -YTVGAWR
NOV4a YRCLPGFTLVGNEILTCKLGTYLQFEGPPPICEVHCPTNELLTDSTGVILSQSYPGSYPQ
NOV4b YSCIGKRTLVGNSTRMCGLDGHWTGSLPHCSGTSVGVCGDPGIPAHGIRLGDSFDPGTVM
NOV4C YRCLPGFTLVGNEILTCKLGTYLQFEGPPPICEVHCPTNELLTDSTGVILSQSYPGSYPQ
NOV4d YRCLPGFTLVGNEILTCKLGTYLQFEGPPPICEVHCPTNELLTDSTGVILSQSYPGSYPQ
NOV4e YRCLPGFTLVGNEILTCKLGTYLQFEGPPPICEVHCPTNΞLLTDSTGVILSQSYPGSYPQ
NOV4f YRCLPGFTLVGNEILTCKLGTYLQFEGPPPICΞVHCPTNELLTDSTGVILSQSYPGSYPQ
NOV4g YRCLPGFTLVGNEILTCKLGTYLQFEGPPPICΞVHCPTNELLTDSTGVILSQSYPGSYPQ
NOV4h YRCLPGFTLVGNEILTCKLGTYLQFΞGPPPICEVHCPTNELLTDSTGVILSQSYPGSYPQ
NOV4i YRCLPGFTLVGNEILTCKLGTYLQFEGPPPICEVHCPTNELLTDSTGVILSQSYPGSYPQ
NOV4J YRCLPGFTLVGNEILTCKLGTYLQFΞGPPPICEVHCPTNELLTDSTGVILSQSYPGSYPQ
NOV4k
NOV41 YSCIGKRTLVGNSTRMCGLDGHWTGSLPHCSGTSVGVCGDPGIPAHGIRLGDSFDPGTVM
NOV4m QALIPGDVFAKNSLWKGAYEYQGKKQ-PAMLRVTGFQVANSKVNATMIDHSG-VELHLAG
NOV4n YSCIGKRTLVGNSTRMCGLDGHWTGSLPHCSGTSVGVCGDPGIPAHGIRLGDSFDPGTVM
N0V4O YSCIGKRTLVGNSTRMCGLDGHWTGSLPHCSGTSVGVCGDPGIPAHGIRLGDSFDPGTVM
NOV4a FQTCSWLVRVEPDYNISLTVEYFLSΞKQYDEFEIFDGPSGQSPLLKALSGNYSAPLIVTS
NOV4b RFSCEAGHVLRGSSERTCQANGSWSGSQPECGVISCGNPG-- -TPSNARWFSDG
NOV4C FQTCSWLVRVEPDYNISLTVEYFLSEKQYDEFEIFDGPSGQSPLLKALSGNYSAPLIVTS
NOV4d FQTCSWLVRVEPDYNISLTVEYFLSEKQYDEFEIFDGPSGQSPLLKALSGNYSAPLIVTS
NOV4e FQTCSWLVRVEPDYNISLTVEYFLSEKQYDEFEIFDGPSGQSPLLKALSGNYSAPLIVTS
NOV4f FQTCSWLVRVEPDYNISLTVEYFLSEKQYDEFΞIFDGPSGQSPLLKALSGNYSAPLIVTS
NOV4g FQTCSWLVRVBPDYNISLTVEYFLSEKQYDEFEIFDGPSGQSPLLKALSGNYSAPLIVTS
NOV4h FQTCSWLVRVEPDYNISLTVEYFLSΞKQYDEFEIFDGPSGQSPLLKALSGNYSAPLIVTS
NOV4i FQTCSWLVRVEPDYNISLTVEYFLSΞKQYDEFEIFDGPSGQSPLLKALSGNYSAPLIVTS
NOV4 FQTCSWLVRVEPDYNISLTVEYFLSEKQYDEFEIFDGPSGQSPLLKALSGNYSAPLIVTS
NOV4k
NOV 1 RFSCEAGHVLRGSSERTCQANGSWSGSQPECGVISCGNPG TPSNARWFSDG
NOV4m TYKKEDFHLLLQVYQITGPVEIFMN-KFKDDHWALDGHVS SANSPPPLTPRS
NOV4n RFSCEAGHVLRGSSERTCQANGSWSGSQPECGVISCGNPG TPSNARWFSDG
N0V4O RFSCEAGHVLRGSSERTCQANGSWSGSQPECGVISCGNPG TPSNARWFSDG
NOV4a SSNSVYLRWSSDHAYNRKGFKIRYSAPYCSLPRAPLHGFILGQTSTQPGGSIHFGCNAGY
NOV4b LVFSSSIVYECREGYYATGLLSRHCSVNGTWTGS D
NOV4C SSNSVYLRWSSDHAYNRKGFKIRYSAPYCSLPRAPLHGFILGQTSTQPGGSIHFGCNAGY
NOV4d SSNSVYLRWSSDHAYNRKGFKIRYSALSCGLP
NOV4e SSNSVYLRWSSDHAYNRKGFKIRYSALSCGLPEAPKNGMVFGKEYTVGTKAMYSCSEGYH
NOV4f SSNSVYLRWSSDHAYNRKGFKIRYSAPYCSLPRAPLHGFILGQTSTQPGGSIHFGCNAGY NOV4g SSNSVYLRWSSDHAYNRKGFKIRYSAPYCSLPRAPLHGFILGQTSTQPGGSIHFGCNAGY NOV4h SSNSVYLRWSSDHAYNRKGFKIRYSAPYCSLPRAPLHGFILGQTSTQPGGSIHFGCNAGY NOV4i SSNSVYLRWSSDHAYNRKGFKIRYSA NOV4J SSNSVYLRWSSDHAYNRKGFKIRYVD NOV4k NOV41 LVFSSSIVYECREGYYATGLLSRHCSVNGTWTGS- NOV4m LAGKRRTKGCANP NOV4n LVFSSSIVYECREGYYATGLLSRHCSVNGTWTGS- -D- N0V4O LVFSSSIVYECREGYYATGLLSRHCSVNGTWTGS- -D-
NOV4 RLVGHSMAICTRHPQGYH- NOV4b NOV4C RLVGHSMAICTRHPQGYH- NOV4d NOV4e LQAGAEATAECLDTGLWSNRNVPPQCVPVTCPDVSSISVEHGRWRLIFETQYQFQAQLML NOV4f RLVGHSMAICTRHPQGYHLWSEAIPLCQALSCGLPEAP NOV4g RLVGHSMAICTRHPQGYH NOV4h RLVGHSMAICTRHPQGYH N0V i LS NOV4J NOV4k NOV41 NOV4m NOV4n N0V4o
N0V4a NOV4b NOV4c NOV4d NOV4e ICDPGYYYTGQRVIRCQANGKWSLGDSTPTCRIISCGELPIPPNGHRIGTLSVYGATAIF NOV4f KNGMVFGKEYTVGTKAMYSCSEGY
NOV4g
N0V4h
N0V4i
N0V4k
NOV41
N0V4m
NOV4n
N0V4O
N0V4a
N0V4b
NOV4C
NOV4d
NOV4e SCNSGYTLVGSRVRECMANGLWSGSEVRCLAGHCGTPEPIVNGHINGENYSYRGSWYQC
NOV4f HLQAGAEATAECLDTGLWSNRNVPPQCVPVTCPDVSSISVEHGRWRLIFETQYQFQAQLM
NOV4g
N0V4h
NOV4i
N0V4
NOV4k
NOV41
NOV4m N0V4n
N0V4O
NOV4a
NOV4b
NOV4c
NOV4d
N0V4e NAGFRLIGMSVRICQQDHHWSGKTPFCVPITCGHPGNPVNGLTQGNQFNLNDWKFVCNP
N0V4f LICDPGYYYTGQRVIRCQANGKWSLGDSTPTCRIISCGELPIPPNGHRIGTLSVYGATAI
NOV4g
NOV4h
NOV4i
N0V4k
NOV41
NOV4m
NOV4n
N0V4O
NOV4a
NOV4b
NOV4C
NOV4d
NOV4e GYMAΞGAARSQCLASGQWSDMLPTCRIINCTDPGHQENSVRQVHASGPHRFSFGTTVSYR
NOV4f FSCNSGYTLVGSRVRECMANGLWSGSEVRCLAGHCGTPEPIVNGHINGENYSYRGSWYQ
NOV4g
NOV4h
NOV4i
NOV4J
N0V4k
NOV41
NOV4m
NOV4n
N0V4o
NOV4a
N0V4b
NOV4C
NOV4d
NOV4e CNHGFYLLGTPVLSCQGDGTWDRPRPQCLLVSCGHPGSPPHSQMSGDSYTVGAWRYSCI NOV4f CNAGFRLIGMSVRICQQDHHWSGKTPFCVLVSCGHPGSPPHSQMSGDSYTVGAWRYSCI N0V4g NOV4h NOV4i NOV4k NOV41 NOV4m NOV4n NOV4o
NOV4a NOV4b NOV4C N0V4d NOV4e GKRTLVGNSTRMCGLDGHWTGSLPHCSGTSVGVCGDPGIPAHGIRLGDSFDPGTVMRFSC NOV4f GKRTLVGNSTRMCGLDGHWTGSLPHCSGTSVGVCGDPGIPAHGIRLGDSFDPGTVMRFSC NOV4g NOV4h NOV4i NOV4k NOV41 NOV4m NOV4n NOV4o
NOV4a NOV4b NOV4C NOV4d N0V4e EAGHVLRGSSΞRTCQANGSWSGSQPECGVISCGNPGTPSNARWFSDGLVFSSSIVYECR NOV4f EAGHVLRGSSERTCQANGSWSGSQPECGVISCGNPGTPSNARWFSDGLVFSSSIVYECR NOV4g NOV4h NOV4i NOV4J NOV4k N0V 1 NOV4m NOV4n NOV4o
NOV4a LWSEAIPLCQALSCGLPEAPKNGMVFGKEYTVGTKAMYSCSΞG NOV4b PECLVINCGDPGIPANGLRLGNDFRYNKTVTYQCVPG NOV4C LWSEAIPLCQALSCGLPEAPKNGMVFGKEYTVGTKAMYSCSEG NOV4d EAPKNGMVFGKEYTVGTKAMYSCSEG NOV4e EGYYATGLLSRHCSVNGTWTGSDPECLVINCGDPGIPANGLRLGNDFRYNKTVTYQCVPG NOV4f EGYYATGLLSRHCSVNGTWTGSDPΞCLVINCGDPGIPANGLRLGNDFRYNKTVTYQCVPG NOV4g LWSEAIPLCQALSCGLPEAPKNGMVFGKEYTVGTKAMYSCSEG NOV4h LWSEAIPLCQALSCGLPEAPKNGMVFGKEYTVGTKAVYSCSEG NOV4i CGLPEAPKNGMVFGKEYTVGTKAMYSCSEG NO 4k NOV41 -PECLVINCGDPGIPANGLRLGNDFRYNKTVTYQCVPG NOV4m NOV4n -PECLVINCGDPGIPANGLRLGNDFRYNKTVTYQCVPG NOV40 -PECLVINCGDPGIPANGLRLGNDFRYNKTVTYQCVPG
NO 4a YHLQAGAEATAECLDTGLWSNRNVPPQCVP VTCPDVSSISVEHGRWRLIFE NOV4b YMMESHRVSVLSCTKDRTWNGTKPVCKALMCK PPPLI--- PNGKWG NOV4C YHLQAGAEATAECLDTGLWSNRNVPPQCVRESSGNGGGSVTCPDVSSISVEHGRWRLIFE NOV4d YHLQAGAEATAECLDTGLWSNRNVPPQCVP VTCPDVSSISVEHGRWRLIFE NO 4e YMMESHRVSVLSCTKDRTWNGTKPVCKALMCK PPPLIP NGKWG NOV4f YMMESHRVSVLSCTKDRTWNGTKPVCKALMCK PPPLIP NGKWG NOV4g YHLQAGAEATAECLDTGLWSNRNVPPQCVP VTCPDVSSISVEHGRWRLIFE NOV4h YHLQAGAEATAECLDTGLWSNRNVPPQCVP VTCPDVSSISVEHGRWRLIFE NOV4i YHLQAGAEATABCLDTGLWSNRNVPPQCVP VTCPDVSSISVEHGRWRPIFE NOV4k N0V41 YMMESHRVSVLSCTKDRTWNGTKPVCKALMCK- -PPPLI- -PNGKWG
NOV4m
NOV4n YMMESHRVSVLSCTKDRTWNGTKPVCKALMCK- -PPPLI PNGKWG
NOV4o YMMESHRVSVLSCTKDRTWNGTKPVCKALMCK- -PPPLI PNGKWG
NOV a TQYQFQAQLMLICDPGYYYTGQRVIRCQANGKWSLGDSTPTCRIISCGELPIPPNGHRIG NOV4b SDFMWGSSVTYACLEGYQLSLPAVFTCEGNGSWTG--ELPQCFPVFCGDPGVPSRGRRED NOV4C TQYQFQAQLMLICDPGYYYTGQRVIRCQANGKWSLGDSTPTCRIISCGELPIPPNGHRIG NOV4d TQYQFQAQLMLICDPGYYYTGQRVIRCQANGKWSLGDSTPTCRIISCGELPIPPNGHRIG NOV4e SDFMWGSSVTYACLEGYQLSLPAVFTCEGNGSWTG--ELPQCFPVFCGDPGVPSRGRRED NOV4f SDFMWGSSVTYACLEGYQLSLPAVFTCEGNGSWTG--ELPQCFPVFCGDPGVPSRGRRED NOV4g TQYQFQAQLMLICDPGYYYTGQRVIRCQANGKWSLGDSTPTCRIISCGELPIPPNGHRIG NOV4h TQYQFQAQLMLICDPGYYYTGQRVIRCQANGKWSLGDSTPTCRIISCGELPIPPNGHRIG NOV4i TQYQFQAQLMLICDPGYYYTGQRVIRCQANGKWSLGDSTPTCRIISCGELPIPPNGHRIG N0 4J NOV4k NOV41 SDFMWGSSVTYACLEGYQLSLPAVFTCEGNGSWTG--ELPQCFPVFCGDPGVPSRGRRED N0V4τn NOV4n SDFMWGSSVTYACLEGYQLSLPAVFTCEGNGSWTG--ELPQCFPVFCGDPGVPSRGRRED NOV4o SDFMWGSSVTYACLEGYQLSLPAVFTCEGNGSWTG--ELPQCFPVFCGDPGVPSRGRRED
NOV4a TLSVYGATAIFSCNSGYTLVGSRVRECMANGLWSGS N0V4b RGFSYRSSVSFSCHPPLVLVGSPRRFCQSDGTWSGTQP S NOV4c TLSVYGATAIFSCNSGYTLVGSRVRECMANGLWSGSEVRCLATQTKLHSIFYKLLFDVLS NOV4d TLSVYGATAIFSCNSGYTLVGSRVRECMANGLWSGS NOV4e RGFSYRSSVSFSCHPPLVLVGSPRRFCQSDGTWΞGTQP S NOV4f RGFSYRSSVSFSCHPPLVLVGSPRRFCQSDGTWSGTQP S NOV4g TLSVYGATAIFSCNSGYTLVGSRVRECMANGLWSGS NOV4h TLSVYGATAIFSCNSGYTLVGSRVRECMANGLWSGS N0V i TLSVYGATAIFSCNSGYTLVGSRVRECMANGLWSGS NOV4k KSSVSFSCHPPLVLVGSPRRFCQSDGTWSGTQP- NOV41 RGFSYRSSVSFSCHPPLVLVGSPRRFCQSDGTWSGTQP- NOV4m NOV4n RGFSYRSSVSFSCHPPLVLVGSPRRFCQSDGTWSGTQP- NOV4o RGFSYRSSVSFSCHPPLVLVGSPRRFCQSDGTWSGTQP-
NOV a -EVRCLAGHCGTPEPIVNGHINGENYSYRGSWYQCNAGFRLIGMSVRICQQDHHWSGKT NOV4b CIDPTLTTCADPGVPQFGIQNNSQGYQVGSTVLFRCQKGYLLQGSTTRTCLPNLTWSGTP NO 4C SPSLTKAGHCGTPEPIVNGHINGENYSYRGSWYQCNAGFRLIGMSVRICQQDHHWSGKT NOV4d -EVRCLAGHCGTPEPIVNGHINGENYSYRGSWYQCNAGFRLIGMSVRICQQDHHWSGKT NOV4e CIDPTLTTCADPGVPQFGIQNNSQGYQVGSTVLFRCQKGYLLQGSTTRTCLPNLTWSGTP NOV4f CIDPTLTTCADPGVPQFGIQNNSQGYQVGSTVLFRCQKGYLLQGSTTRTCLPNLTWSGTP NOV4g -EVRCLAGHCGTPEPIVNGHINGENYSYRGSWYQCNAGFRLIGMSVRICQQDHHWSGKT NOV4h -EVRCLAGHCGTPEPIVNGHINGENYSYRGS YQCNAGFR IGMSVRICQQDHHWSGKT NOV4i -EVRCLAGHCGTPEPIVNGHINGENYSYRGSWYQCNAGFRLIGMSVRICQQDHHWSGKT NO 4k CIDPTLTTCADPGVPQFGIQNNSQGYQVGSTVLFRCQKGYLLQGSTTRTCLPNLTWSGTP NOV 1 CIDPTLTTCADPGVPQFGIQNNSQGYQVGSTVLFRCQKGYLLQGSTTRTCLPNLTWSGTP NOV4m NOV4n CIDPTLTTCADPGVPQFGIQNNSQGYQVGSTVLFRCQKGYLLQGSTTRTCLPNLTWSGTP N0V4O CIDPTLTTCADPGVPQFGIQNNSQGYQVGSTVLFRCQKGYLLQGSTTRTCLPNLTWSGTP
NOV a PFCVPITCGHPGNPVNGLTQGNQFNLNDWKFVCNPGYMAEG--AARSQCLASGQWSDML NO 4b PDCVPHHCRQPETPTHANVGALDLPSMGYTLITPARRASPSR--VAPSTAPARRMAAGQA NOV4C PFCVHVKQQLLLLLLLLCDDD DDE
NOV4d PFCQLPVDTQATLSTASLRVTS-LTSTMWSSLFATLGIWLRG--LLGPNAWPAGNGVTCC
NOV4e PDCVPHHCRQPETPTHANVGALDLPSMGYTLIYSCQEGFSLKGGSEHRTCKADGSWTGKP
N0V4f PDCVPHHCRQPETPTHANVGALDLPSMGYTLIYSCQEGFSLKGGSEHRTCKADGSWTGKP
NOV4g PFCVPITCGHPGNPVNGLTQGNQFNLNDWKFVCNPGYMAEG--AARSQCLASGQWSDML
NOV4h PFCVPITCGHPGNPVNGLTQGNQFNLNDWKFVCNPGYMAEG--AARSQCLASGQWSDML
NOV4i PFCVPITCGHPGNPVNGLTQGNQFNLNDWKFVCNPGYMAEG--AARSQCLASGQWSDML
NOV4k PDCVP
NOV41 PDCVPHHCRQPΞTPTHANVGALDLPSMGYTLIYSCQEGFSLKGGSEHRTCKADGSWTGKP
NOV4m
NOV4n PDCVPHHCRQPETPTHANVGALDLPSMGYTLITPARRASPSR--VAPSTAPARRMAAGQA
NOV4o PDCVPHHCRQPETPTHANVGALDLPSMGYTLITPARRASPSR--VAPSTAPARRMAAGQA
NOV4a PTCRIINCTDPGHQENSVRQVHASGPHRFSFGTTVSYRCNHGFYLLGTPVLSCQGDGTWD
NOV4b SRPSAWR-SGPVGDPSTLPGSHRSPKP
NOV4C -DDGSGAITCGHPGNPVNGLTQGNQFNLNDWKFVCNPGYMAEGAARSQCLASGQWSDML
NOV4d PPAESSTVQILDTKKIVFVRSTPAARTGSASAPLCLTGATTASTSWAPQCSAAREMAHGT
NOV4e PICLEVRPNGRPINTAREPPLTQALIPGDVFAKNSLWKGAYEYQGKKQPAMLRVTGFQVA
NOV4f PICLEVRPNGRPINTAREPPLTQALIPGDVFAKNSLWKGAYEYQGKKQPAMLRVTGFQVA
N0V4g PTCRIINCTDPGHQENSVRQVHASGPHRFSFGTTVSYRCNHGFYLLGTPVLSCQGDGTWD
NOV4h PTCRIINCTDPGHQENSVRQVHASGPHRFSFGTTVSYRCNHGFYLLGTPVLSCQGDGTWD
NOV4i PTCRIINCTDPGHQENSVRQVHASGPHRFSFGTTVSYRCNHGFYLLGTPVLSCQGDGTWD
NOV4J
NOV4k
NOV41 PICLEVRPSGRPINIAREPPLTQALIPGDVFAKNSLWKG
NOV4m
NOV4n SRPSAWQRSGPVGDPSTLPGSHRSPKP
NOV4o SRPSAWR-SGPVGDPSTLPGSHRSPKP
NOV4a RPRPQCLLVSCGHPGSPPHSQMSGDSYTVGAWRYSCIGKRTLVGNSTRMCGLDGHWTGS
N0V4b
NOV4C PTCRIINCTDPGHQENSVRQVHASGPHRFSFGTTVSYRCNHGFYLLGTPVLSCQGDGTWD
NOV4d VPAPSVSVSSGVLWPSGLPASLPDVWRQLYCGSSGAVQLHRQAYSGGKQHPHVWAGWTLD
NOV4e NSK-VNATMIDHSGVELHLAGTYKKEDFHLLLQVYQITGPVEIFMNKFKDDHWALDGHVSS
NOV4f NSKVNATMIDHSGVELHLAGTYKKEDFHLLLQVYQITGPVEIFMNKFKDDHWALDGHVSS
NOV4g RPRPQCLCKVD
NOV4h RPRPQCLCKVD
N0V4i RPRPQCLCKVD
NOV4J
NOV4k
NOV41
NOV4m
N0V4n
N0V4O
NOV4a LPHCSGTSVGVCGDPGIPAHGIRLGDSFDPGTVMRFSCEAGHVLRGSSERTCQANGSWSG
N0V4b
NOV4C RPRPQCLCK
NOV4d WLPPSLLRNQRGSLR
NOV4e ESSGATFIYQGSVKGQGFGQFGFQRLDLRLLESDPESIGRHFASNSSSVAAAILVPFIAL
NOV4f ESSGATFIYQGSVKGQGFGQFGFQRLDLRLLESDPESIGRHFASNSSSVAAAILVPFIAL
NOV4g
N0V4h
NOV4i N0V4J N0 4k N0V41 N0V4ra N0V4n N0V4o
NOV4a SQPECGVISCGNPGTPSNARWFSDGLVFSSSIVYECREGYYATGLLSRHCSVNGTWTGS NOV4b N0V4C N0V4d N0 4e IIAGFVLYLYKHRRRPKVPFNGYAGHENTNVRATFENPMYDRNIQPTDIMASEAEFTVST NOV4f IIAGFVLYLY--- RRRPKVPPNGYAGHENTNVRATFENPMYDRNIQPTDIMASEAEFTVST NOV4g NOV4h N0V4i NOV4J N0V4k NOV41 N0V4m NOV4n NOV4o
N0V4a DPECLVINCGDPGIPANGLRLGNDPRYNKTVTYQCVPGYMMESHRVΞVLSCTKDRTWNGT NOV4b N0V4C NOV4d N0V4e VCTAV- NOV4f VCTAV- NOV4g NOV4h N0V4i NOV4k N0V41 NOV4m NOV4n NOV4o
NOV4a KPVCKALMCKPPPLIPNGKWGSDFMWGSSVTYACLEGYQLSLPAVFTCEGNGSWTGELP NOV4b NOV4C N0V4d NOV4e N0V4f NOV4g N0V4h N0V4i N0V4J N0V4k N0V41 NOV4m N0V4n N0V4o NOV4a QCFPVFCGDPGVPSRGRREDRGFSYRSSVSFSCHPPLVLVGSPRRFCQSDGTWSGTQPSC NOV4b NOV4c NOV4d NOV4e NOV4f NOV4g NOV4h NOV4i NOV4k NOV41 NOV4m NOV4n NOV4o
NOV4a IDPTLTTCADPGVPQFGIQNNSQGYQVGSTVLFRCQKGYLLQGSTTRTCLPNLTWSGTPPl NOV4b NOV4c NOV4d NOV4e NOV4f NOV4g NOV4h NOV4i NOV4j NOV4k NOV41 NOV4m NOV4n NOV4o
NOV4a DCVPHHCRQPETPTHANVGALDLPSMGYTLIYSCQEGFSLKGGSEHRTCKADGSWTGKPPj NOV4b NOV4C NOV4d NOV4e NOV4f NOV4g NOV4h NOV4i NOV4k NOV41 NOV4m NOV4n NOV4o
NOV4a ICLEVRPNGRPINTAREPPLTQALIPGDVFAKNSLWKGAYEYQGKKQPAMLRVTGFQVA NOV4b NOV4C NOV4d NOV4e NOV4f NOV4g NOV4h
NOV4i
NOV4J
NOV4k
N0V41
NOV4m
NOV4n
NOV4o
NOV4a SK-VNATMIDHSGVELHLAGTYKKEDFHLLLQVYQITGPVEIFMNKFKDDHWALDGHVSSE
NOV4b
NOV4C
N0V4d
N0V4e
NOV4f
NOV4g
N0V4h
N0V4i
N0V4k
NOV41
NOV4m
NOV4n
N0V4O
NOV4a SSGATFIYQGSVKGQGFGQFGFQRLDLRLLESDPESIGRHFASNSSSVAAAILVPFIALI
NOV4b
NOV4C
NOV4d
NOV4e
NOV4f
NOV4g
NOV4h
NOV4i
NOV4k
NOV41
NOV4m
NOV4n
NOV4o
NOV4a IAGFVLYLYKHRRRPKVPFNGYAGHENTNVRATFENPMYDRNIQPTDIMASEAEFTVSTV
NOV4b
NOV4C
NOV4d
NOV4e
NOV4f
NOV4g
NOV4h
NOV4i
NOV4k
NOV41
NOV4m
NOV4n N0V4o
N0V4a CTAV iMC/V *±D
NOV4c
N0V4d
N0V4e
NOV4f
NOV4g
N0V4h
N0V4i
NOV4J
N0V4k
N0V41
NOV4m
NOV4n
N0V4O
NOV4a < SEQ ID NO 32)
NOV4b SEQ ID NO 34)
NOV4C SEQ ID NO 36)
NOV4d SEQ ID NO 38)
NOV4e SEQ ID NO 40)
N0V4f SEQ ID NO 42)
N0V4g rSEQ ID NO 44)
NOV4h SEQ ID NO 46)
NOV4i -SEQ ID NO 48)
NOV4k (SEQ ID NO 52)
NOV41 (SEQ ID NO 54)
NOV4m (SEQ ID NO . 56)
NOV4n (SEQ ID NO 58)
NOV4o (SEQ ID NO 60)
Further analysis of the NOV4a protein yielded the following properties shown in Table 4C.
Table 4C. Protein Sequence Properties NOV4a
SignalP analysis: No Known Signal Sequence Predicted
PSORT H analysis:
PSG: a new signal peptide prediction method
N-region: length 0; pos.chg 0; neg.chg 0 H-region: length 15; peak value 1.77 PSG score: -2.63
GvH: von Heijne's method for signal seg. recognition GvH score (threshold: -2.1): -8.90 possible cleavage site: between 50 and 51
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al ' s method for TM region allocation Init position for calculation: 1
Tentative number of TMS(s) for the threshold 0.5: Number of TMS(s) for threshold 0.5: 1 INTEGRAL Likelihood =-11.52 Transmembrane 3472 -3488 PERIPHERAL Likelihood = 0.79 (at 1806) ALOM score: -11.52 (number of TMSs : 1)
MTOP : Prediction of membrane topology (Hartmann et al . ) Center position for calculation: 3479 Charge difference: 7.0 C( 5.5) - N(-1.5) C > N: C-terminal side will be inside
>>> Single TMS is located near the C-terminus
>>> membrane topology: type Nt (cytoplasmic tail 1 to 3471)
MITDISC: discrimination of mitochondrial targeting seg R content: 0 Hyd Moment(75): 6.28 Hyd Moment (95): 5.99 G content: 3 D/E content : 1 S/T content : 2 Score: -5.81
Gavel: prediction of cleavage sites for mitochondrial preseq cleavage site motif not found
NUCDISC: discrimination of nuclear localization signals pat4: KHRR (3) at 3492 pat4: HRRR (3) at 3493 pat4: RRRP (4) at 3494 pat4: RRPK (4) at 3495 pat7: PERGKRL (4) at 327 pat7: PSRGRRE (4) at 3135 bipartite: none content of basic residues: 6.9% NLS Score: 1.09
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals : none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS : 2nd peroxisomal targeting signal : none
VAC: possible vacuolar targeting motif: found ILPN at 2237
RNA-binding motif: none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : GQNCTF
Prenylation motif: none memYQRL: transport motif from cell surface to Golgi: none Tyrosines in the tail : too long tail
Dile cine motif in the tail : found
LL at 474
LL at 818
LL at 956
LL at 1087
LL at 1141
LL at 1228
LL at 1316
LL at 1664
LL at 1854
LL at 2027
LL at 2164
LL at 2207
LL at 2298
LL at 2361
LL at 2807
LL at 2829
LL at 2988
LL at 3222
LL at 3390
LL at 3391 checking 63 PROSITE DNA binding motifs : none checking 71 PROSITE riboso al protein motifs : none checking 33 PROSITE prokaryotic DNA binding motifs : none
NNCN : Reinhardt ' s method for Cytoplasmic/Nuclear discrimination Prediction: cytoplasmic Reliability : 70 . 6
COIL .- Lupas ' s algorithm to detect coiled-coil regions total : 0 residues
Final Results (k = 9/23 ) :
34.8 %: nuclear
26.1 %: cytoplasmic
8.7 %: Golgi
8.7 % : mitochondrial
8.7 %: endoplasmic reticulum
4.3 % : vacuolar
4.3 %: vesicles of secretory system
4.3 %: peroxisomal
» prediction for CG50377-04 is nuc (k=23 )
A search of the NOV4a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 4D.
In a BLAST search of public sequence databases, the NOV4a protein was found to have homology to the proteins shown in the BLASTP data in Table 4E.
PFam analysis predicts that the NOV4a protein contains the domains shown in the Table 4F.
Example 5.
The N0V5 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 5A.
AGAACCTGTCAGAAGAACAAATCGCGGTCTACAGTGCCCTGATCCAGGACGGGATGAAGGTTATTCT
C
ATTGAGCTGGAGAAAATCGAGGACTACACAGTCATGCCAGAGTCAATTCAGTACATCAAACAGAAGC
-A
TGGTGCCATCCGGTGGCATGGGGACTTCACGGAGCAGTCACAGTGTATGAAGACCAAGTTTTGGAAG
A
CAGTGAGATACCACATGCCGCCCAGAAGGTGTCGGCCGTTTCCTCCGGTCCAGCTGCCGCAGCACAC
A
CCTTGCTACCGCACCGCAGGCCCAGAACTAGGCTCAAGAAGAAAGAAGTGTACTCTCACGACTGGCT
A
AGACTTGCTGGACTGACACCTATGGCTGGAAGATGACTTGTTTTGCTCCATGTCTCCTCAT
NOV5g, CG50389-05 SEQ ID NO: 78 575 aa MW at 65402.8kD Protein Sequence
M SLQ CGLSIALPLSVTADGCKDIFMKNEI SASQPFAFNCTFPPITSGEVSVT YKNSSKIPVSK
I
IQSRIHQDET I F P E GDSGVYQCVIKGRDSCHRIHVNLTVFΞKH CDTSIGGLPNLSDEYKQI
L
HLG-.. DS TCHLHFPKSCV GPI-i Y-1- CNEIKGERFTVLETRLLVSNVSAEDRGNYACQAILTHSG
K
QYEV NGITVSITE-RAGYGGSVPKIIYPKNHSIEVQLGTTLIVDC---WTDTKDNTNLRCWRV--^
D
YYDESKRIREGVET---TVSFREHNLYTVNITFLEVK EDYG PFMCHAGVSTAYIILQ PAPDFRAY I
G
GLI-ALVAVAVSVVYIYNIFKIDIV YRSAFHSTETIVDG---OJYDAYVLYPKPHKESQRHAVDALVLN
I PEVLERQCGYK FIFGRDEFPGQAVA-IWIDENVK CRR IVIVVPESLGFG LKN SEEQIAVYSA
L
IQDGMKVILIE EKIEDYTVMPESIQYIKQKHGAIRWHGDFTEQSQCMKTKFWKTVRYHMPPRRCRP
F
PPVQLPQHTPCYRTAGPELGSRRK CTLTTG
NOV5h, SNP13382464 of SEQ ID NO: 79 1897 bp CG50389-04, DNA Sequence ORF Start: ATG at 51 ORF Stop: TAA at 1785
SNP Pos: 1160 SNP Change: T to C
GAATTCCGCCCGCCCACGGCGGCGGGGAAATACCTAGGCATGGAAGTGGCATGACAGGGCTCGTGTCC
CTGTCATATTTTCCACTCTCCACGAGGTCCTGCGCGCTTCAATCCTGCAGGCAGCCCGGTTTGGGGAT GTGGTCCTTGCTGCTCTGCGGGTTGTCCATCGCCCTTCCACTGTCTGTCACAGCAGATGGATGCAAGG ACATTTTTATGAAAAATGAGATACTTTCAGCAAGCCAGCCTTTTGCTTTTAATTGTACATTCCCTCCC TAACATCTGGGGAAGTCAGTGTAACATGGTATAAAAATTCTAGCAAAATCCCAGTGTCCAAAATCAT ACAGTCTAGAATTCACCAGGACGAGACTTGGATTTTGTTTCTCCCCATGGAATGGGGGGACTCAGGAG TCTACCAATGTGTTATAAAGGGTAGAGACAGCTGTCATAGAATACATGTAAACCTAACTGTTTTTGAA AAACATTGGTGTGACACTTCCATAGGTGGTTTACCAAATTTATCAGATGAGTACAAGCAAATATTACA TCTTGGAAAAGATGATAGTCTCACATGTCATCTGCACTTCCCGAAGAGTTGTGTTTTGGGTCCAATAA AGTGGTATAAAGACTGTAACGAGATTAAAGGGGAGCGGTTCACTGTTTTGGAAACCAGGCTTTTGGTG AGCAATGTCTCGGCAGAGGACAGAGGGAACTACGCGTGTCAAGCCATACTGACACACTCAGGGAAGCA GTACGAGGTTTTAAATGGCATCACTGTGAGCATTAGTACCACTCTGATTGTGGACTGCAATGTAACAG ACACCAAGGATAATACAAATCTACGATGCTGGAGAGTCAATAACACTTTGGTGGATGATTACTATGAT GAATCCAAACGAATCAGAGAAGGGGTGGAAACCCATGTCTCTTTTCGGGAACATAATTTGTACACAGT AAACATCACCTTCTTGGAAGTGAAAATGGAAGATTATGGCCTTCCTTTCATGTGCCACGCTGGAGTGT CAACAGCATACATTATATTACAGCTCCCAGCTCCGGATTTTCGAGCTTACTTGATAGGAGGGCTTATC GCCTTGGTGGCTGTGGCTGTGTCTGTTGTGTACATATACAACATTTTTAAGATCGACATTGTTCTTTG GTACCGAAGTGCCTTCCATTCTACAGAGACCATAGTAGATGGGAAGCTGTATGACGCCTATGTCTTAT ACCCCAAGCCCCACAAGGAAAGCCAGAGGCATGCCGTGGATGCCCTGGTGTTGAATATCCTGCCCGAG GTGTTGGAGAGACAATGTGGATATAAGTTGTTTATATTCGGCAGAGATGAATTCCCTGGACAAGCCGT GGCCAATGTCATCGATGAAAACGTTAAGCTGTGCAGGAGGCTGATTGTCATTGTGGTCCCCGAATCGC TGGGCTTTGGCCTGTTGAAGAACCTGTCAGAAGAACAAATCGCGGTCTACAGTGCCCTGATCCAGGAC GGGATGAAGGTTATTCTCGTTGAGCTGGAGAAAATCGAGGACTACACAGTCATGCCAGAGTCAATTCA GTACATCAAACAGAAGCATGGTGCCATCCGGTGGCATGGGGACTTCACGGAGCAGTCACAGTGTATGA AGACCAAGTTTTGGAAGACAGTGAGATACCACATGCCACCCAGAAGGTGTCGGCCGTTTCCTCCGGTC CAGCTGCTGCAGCACACACCTTGCTGCCGCACCGCAGGCCCAGAACTAGGCTCAAGAAGAAAGAAGTG ; TACTCTCACGACTGGCTAAGACTTGCTGGACTGACACCTATGGCTGGAAGATGACTTGTTTTGCTCCA ; TGTCTCCTCATTCCTACACCTATTTTCTGCTGCAGGATGAGGCTAGGGTTAGCATTCTAGA
NOV5h, SNP13382464 of SEQ ID NO: 80578 aa MW at 65576.2kD
CG50389-04, Protein Sequence }SNP Pos: 370 |SNP Change: Tyr to Tyr
MTG VS SYFPLSTRSCA QSCRQPGLG S LLCGLSIA P SVTADGCKDIFM EI SASQPFAF
NCTFPPITSGEVSVT YK SSKIPVSKIIQSRIHQDETWILFLPME GDSGVYQCVIKGRDSCHRIHV
NL VFEKH CDTSIGGLPNLSDEYKQI HLGKDDSLTCHLHFPKSCV GPIK YKDC EI GERFTVL
ETRLLVS1 SAEDRGNYACQAILTHSGKQYEVI>NGITVSIST^
VDDYYDES RI-REGVETHVSFREHNLYTVNITF EVKMEDYGLPFMCHAGVSTAYIILQLPAPDFRAY
LIGGLIA VAVAVSVVYIYNIFKIDIVL YRSAFHSTETIVDGKLY-DAYV YPKPHKESQRHAVDALV
LNILPEVLERQCGY LFIFGRDEFPGQAVANVIDENVKLCRRLIVIWPESLGFGLLKNLSEEQIAVY
SALIQDGMKVIIiVELE IEDYTVMPESIQYIKQKHGAIR HGDFTEQSQCMKTKF KTVRYHMPPRRC
RPFPPVQLLQHTPCCRTAGPELGSRRKKCTLTTG
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 5B.
Table 5B. Comparison of the NOV5 protein sequences.
NOV5a
NOV5b
NOV5C -GSDGC DIFMK-NE
NOV5d
NOV5e
NOV5f M SLLLCGLS1ALP SVTADGCKDIFMK E
NOV5g M SLQLCGLSIALPLSVTADGC DIF KNEILSASQPFAFNCTFPPITSGEVSVTWYKNS
NOV5a NOV5b NOV5C ILSASQPFAFNCTFPPITSGEVSVT YKNSS IPVSKIIQSRIHQDETWILFLPMEWGDS NOV5d NOV5e NOV5f ILSASQPFAFNCTFPPITSGEVSVT YKNSSKIPVS IIQSRIHQDETWI FLPME GDS NOV5g S IPVSKIIQSRIHQDETWILF PMΞWGDSGVYQCVI GRDSCHRIHVNLTVFEKH CDT
NOV5a TGLVS S NOV5b MGGLRS P NOV5C GVYQCVIKGR-DSCHRIHV-I-.LTVFΞKH CDTSIGGLPNLSDEYKQI H GKDDSLTCHLHF NOV5d MTGLVSLS NOV5e MGGLRSLP NOV5f GVYQCVIKG-RDSCHRIHVNLTVFEKH CDTSIGGLPNLSDEYKQILHLGKDDSLTCHLHF NOV5g SIGGLPNLSDEYKQILHLGKDDSLTCHLHFP SCVLGPI
NO 5a YFPLSTRSCALQ--SCRQPGLGM SLLLCGLSIALPLSVTA-DGCKDIFMKN NOV5b MCYKDCNEIKGERFTVLETRLLVS VSAEDRGNYACQAILTHSGKQYEVLN NO 5C PKSCVLGPIKYKDCNEIKGERFTVLETRLLVS VSAEDRGNYACQAILTHSGKQYEVLN NO 5d YFPLSTRSCALQ--SCRQPGLGM SLLLCGLSIALPLSVTADGCKDIFMKM NOV5e MCYKDCNEIKGERFTVLETRLLVSNVSAEDRGNYACQAILTHSGKQYEVLN NOV5f PKSCVLGPIKYKDCNEIKGERFTVLETRLLVSMVSAEDRGNYACQAILTHSGKQYEVLN NOV5g WYKDCNEIKGERFTVLETRLLVS VSAEDRGNYACQAILTHSGKQYEVLN
NOV5a EILSASQP FAFNCTFPPITSGEVSVTWYK SSKI NOV5b GITVSITERAGYGGSVPKIIYPKNHSIEVQLGTTLIVDCNVTDTKDNTNLRC RVNNTLV N0 5C GITVSIST TLIVDCNVTDTKDNTNLRC RV NTLV NOV5d EILSASQP FAFNCTFPPITSGEVSVTWYKNSSKI NOV5e GITVSITERAGYGGSVPKIIYPK-^raSIEVQLGTTLIVDC- 7TDTKDNTNLRCWRVNNTLV
N0V5f GITVSIST TLIVDCNVTDTKDNTNLRCWRVNNTLV
N0V5g GITVSITERAGYGGSVPKIIYPKIS-ΗSIEVQLGTTLIVDCNVTDTK-DNTNLRCWRVNNTLV
NO 5a PVSKIIQSRIHQ DE T- ILFLPMEWGDSGVYQCVIKGRDSCHRIHVNL NOV5b DDYYDESKRIREGVETHASFREHNLYTVNITFLEVK EDYGLPFVCHAGVSTAYIILQLP NOV5C DDYYDΞSKRIREGVETHVSFREHNLYT ITFLEVKMEDYGLPFMCHAGVSTAYIILQLP NOV5d PVSKIIQSRIHQ DE T- ILFLPMEWGDSGVYQCVIK TVTRLKGSG NOV5e DDYYDES-[-α-IREGVΞTHVSFREH-t-πjYTVNITFLEV-KMEDYGLPFMCHAGVSTAYIILQLP N0V5f DDYYDESKRIREGVETHVSFREH---ΛYTVNITFLEVKMEDYGLPFMCHAGVSTAYIILQLP NOV5g DDYYDESKRIREGVETHVSFREHNLYTVNITFLEVKMEDYGLPFMCHAGVSTAYIILQLP
NOV5a TVFEKHWCDTSIGGLPNLSDEYKQILHLGKDDSLTCHLHFPKSCVLGPIKWYKDCNEIKG NOV5b APDFRAYLIGGLIALVAVAVSWYIYNIFKIDIVLWYRSAFHSTETIVDGKLYDAYVLYP NOV5C APDFRAYLE NOV5d SLFWKPGF NOV5e APDFRAYLIGGLIALVAVAVSWYIYNIFKIDIVLWYRSAFHSTETIVDGKLYDAYVLYP NOV5f APDFRAYLIGGLIALVAVAVSWYIYNIFKIDIVLWYRSAFHSTETIVDGKLYDAYVLYP NO 5g APDFRAYLIGGLIALVAVAVSWYIYNIFKIDIVLWYRSAFHSTETIVDGKLYDAYVLYP
NOV5a ERFTVLETRLLVSNVSAEDRGNYACQAILTHSGKQYEVLNGITVSISTTLIVDCNVTDTK NOV5b KPHKESQRHAVDALVLNILPΞVLERQCGYKLFIFG-I^EFLGQAVANVIDENVKLCRRLIV NOV5C NOV5d NOV5e KPHIVΕSQRI--AVDALVLNILPEVLERQCGYKLFIFGRDΞFPGQAVANVIDENVKLCRRLIV NOV5f KPHKESQR-HAVDALVLNILPEVLERQCGYKLFIFGRDEFPGQAVANVIDENVKLCRRLIV NOV5g KPHKESQRHAVDALVLNILPEVLERQCGYKLFIFGRDEFPGQAVANVIDENVKLCRRLIV
NOV5a DNTNLRC RVNNTLVDDYYDESKRIREGVETHVSFREHNLYTVNITFLEVKMEDYGLPFM NOV5b IWPESLGFGLLKNLSEEQIAVYSALIQDGMKVILIELEKIEDYTVMPESIQYIKQKHGA NOV5c NOV5d N0V5e IVVPESLGFGLLKNLSEEQIAVYSALIQDGMKVILIELEKIEDYTVMPESIQYIKQKHGA N0V5f IWPESLGFGLLKNLSEEQIAVYSALIQDG KVILVELEKIEDYTVMPESIQYIKQKHGA NOV5g IVVPΞSLGFGLLKNLSEEQIAVYSALIQDG KVILIELEKIEDYTVMPΞSIQYIKQKHGA
NOV5a CHAGVSTAYIILQLPAPDFRAYLIGGLIALVAVAVSWYIYNIFKIDIVL YRSAFHSTE NOV5b IRWHGDFTEQSQCMKTKFWKTVRYHMPPRRCRPFPPVQLPQHTPCYRTAGPELGSRRKKC NO 5C NO 5d NO 5e IRWHGDFTEQSQCMKTKFWKTVRYHMPPRRCRPFLRSTCRSTHLCTAPQAQN NO 5f IRWHGDFTEQSQCMKTKFWKTVRYHMPPRRCRPFPPVQLLQHTPCCRTAGPELGSRRKKC NOV5g IRWHGDFTEQSQCMKTKFWKTVRYHMPPRRCRPFPPVQLPQHTPCYRTAGPELGSRRKKC
NOV5a TIVDGKLYDAYVLYPKPHKESQRHAVDALVLNILPEVLERQCGYKLFIFGRDEFPGQAVA
NOV5b TLTTG
NOV5C
NOV5d
NOV5e
NOV5f TLTTG
NOV5g TLTTG
NOV5a NVIDENVKLCRRLIVIVVPESLGFGLLKNLSEEQIAVYSALIQDGMKVILVELEKIEDYT
NOV5b
NOV5C NOV5d
N0V5e
NOV5f
NOV5g
NOV5a VMPESIQYIKQKHGAIRWHGDFTEQSQCMKTKFWKTVRYHMPPRRCRPFPPVQLLQHTPC
NOV5b
NOV5C
N0V5d
NOV5e
NOV5f
NOV5g
NOV5a CRTAGPELGSRRKKCTLTTG
NOV5b
NOV5C
NOV5d
NOV5e
NOVΞf
NOV5g
NOV5a (SEQ ID NO 66) NOV5b (SEQ ID NO 68) NOVSc (SEQ ID NO 70) NOV5d (SEQ ID NO 72) NOV5e (SEQ ID NO 74) NOV5f (SEQ ID NO 76) NOVΞg (SEQ ID NO 78)
Further analysis of the NOV5a protein yielded the following properties shown in Table 5C.
Table 5C. Protein Sequence Properties NOV5a
SignalP analysis: Cleavage site between residues 48 and 49
PSORT II analysis:
PSG: a new signal peptide prediction method
N-region-. length 0; pos.chg 0; neg.chg 0 H-region: length 14; peak value 7.84 PSG score: 3.44
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): 0.58 possible cleavage site: between 40 and 41
>>> Seems to have a cleavable signal peptide (1 to 40)
ALOM: Klein et al ' s method for TM region allocation Init position for calculation: 41
Tentative number of TMS(s) for the threshold 0.5: Number of TMS(s) for threshold 0.5: 1 INTEGRAL Likelihood = -9.39 Transmembrane 342 358 PERIPHERAL Likelihood = 0.58 (at 473) ALOM score: -9.39 (number of TMSs : 1)
MTOP : Prediction of membrane topology (Hartmann et al . ) Center position for calculation: 20
Charge difference: -1.0 C( 1.0) - N( 2.0)
N >= C: N-terminal side will be inside
>>> membrane topology: type la (cytoplasmic tail 359 to 578)
MITDISC: discrimination of mitochondrial targeting seq R content: 2 Hyd Moment (75) : 1.16 Hyd Moment (95) : 1.99 G content: 4 D/E content: 1 S/T content: 11 Score: -2.92
Gavel: prediction of cleavage sites for mitochondrial preseq R-2 motif at 33 CRQ|PG
NUCDISC: discrimination of nuclear localization signals pat4: RR K (5) at 569 pat7: PPRRCRP (4) at 540 pat7: PRRCRPF (5) at 541 bipartite : none content of basic residues: 10.6% NLS Score: 0.62
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals : none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif: none
Actinin-type actin-binding motif : type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail: too long tail
Dileucine motif in the tail: found LL at 464 LL at 552 checking 63 PROSITE DNA binding motifs : none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: cytoplasmic Reliability: 94.1
COIL: Lupas's algorithm to detect coiled-coil regions total : 0 residues
Final Results (k = 9/23)
55.6 % : endoplasmic reticulum
22.2 %: Golgi
11. 1 % : plasma membrane
11.1 % : extracellular, including cell wall
>> prediction for CG50389-04 is end (k=9)
A search of the NOV5a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 5D.
In a BLAST search of public sequence databases, the NOV5a protein was found to have homology to the proteins shown in the BLASTP data in Table 5E.
PFam analysis predicts that the NOV5a protein contains the domains shown in the Table 5F.
Example 6.
The NOV6 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 6A.
Table 6A. NOV6 Sequence Analysis
NOV6a, CG50391-08 SEQ ID NO: 81 2268 bp DNA Sequence ORF Start: ATG at 206 ORF Stop: TGA at 1565 GAAAGTGCAGGATTTGGACTGCTACACGACCGTTGCTCAGCTGTGCCCGTTTGAAAAGCCAGCAACTC ACTGCCCAAGAATCCATTGTCCGGCACACTGCAAAGACGAACCTTCCTACTGGGCTCCGGTGTTTGGA ACCAACATCTATGCAGATACCTCAAGCATCTGCAAGACAGCCGTGCACGCGGGAGTCATCAGCAACGA GAGTGGGGGTGACGTGGACGTGATGCCCGTGGATAAAAAGAAGACCTACGTGGGCTCGCTCAGGAATG GAGTTCAGTCTGAAAGCCTGGGGACTCCTCGGGATGGAAAGGCCTTCCGGATCTTTGCTGTCAGGCAG TGAATTTCCAGCACCAGGGGAGAAGGGGCGTCTTCAGGAGGGCTTCGGGGTTTTGCTTTTATTTTTAT TTTGTCATTGCGGGGTATATGGAGAGTCAGGAAACTTCCTTTGACTGATGTTCAGTGTCCATCACTTT
GTGGCCTGTGGGTGAGGTGACATCTCATCCCCTCACTGAAGCAACAGCATCCCAAGGTGCTCAGCCGG
ACTCCCTGGTGCCTGATCCTGCTGGGGCCCGGGGGTCTCCATCTGGACGTCCTCTCTCCTTTAGAGAT
CTGAGCTGTCTCTTAAAGGGGACAGTTGCCCAAAATGTTCCTTGCTATGTGTTCTTCTGTTGGTGGAG βAAGTTGATTTCAACCTCCCTGCCAAAAGAACAAACCATTTGAAGCTCACAATTGTGAAGCATTCACG
GCGTCGGAAGAGGCCTTTTGAGCAAGCGCCAATGAGTTTCAGGAATGAAGTAGAAGGTAGTTATTTAA
AAATAAAAAACACAGTCCGTCCCTACCAATAGAGGAAAATGGTTTTAATGTTTGCTGGTCAGACAGAC
AAATGGGCTAGAGTAAGAGGGCTGCGGGTATGAGAGACCCCGGCTCCGCCCTGGCACGTGTCCTTGCT
GGCGGCCCGCCACAGGCCCCCTTCAATGGCCGCATTCAGGATGGCTCTATACACAGCAGTGCTGGTTT
ATGTAAAGTTCAGCAGTCACTTCA
NOV6m, SNP13376335 of SEQ ID NO: 106 453 aa MW at 50669.5kD
CG50391-08, Protein Sequence JSNP Pos: 91 ISNP Change: Ala to Val
MSCVLGGVIPLGLLFLVCGSQGYLLPNVTLLEELLSKYQHNESHSRVRRAIPREDKEEILMLHN LRG QVQPQASNMEYMT DDELEKSAVA ASQCIWEHGPTSLLVSIGQNLGAH GRIV VTTNKIGCAVNTC RKMTVWGEVWENAVYFVCNYSPKGN IGEAPYKNGRPCSECPPSYGGSCRNNLCYREETYTPKPETDΞ MNEVETAPIPEENHVWLQPRVMRPTKPKKTSAVNY TQVVRCDTKMKDRCKGSTCNRYQCPAGCLNHK AKIFGSLFYESSSSICRAAIHYGILDD GGLVDITRNGKVPFFVKSERHGVQSLSKYKPSSSFMVSKV KVQDLDCYTTVAQLCPFEKPATHCPRIHCPAHCKDEPSYWAPVFGTNIYADTSSICKTAVHAGVISNE SGGDVDVMPVDKKKTYVGSLRNGVQSESLGTPRDGKAFRIFAVRQ
NOV6n, SNP13376334 of SEQ ID NO: 107 2268 bp
CG50391-08, DNA Sequence lORF Start: ATG at 206 ORF Stop: TGA at 1565
SNP Pos: 798 SNP Change: C to T
CTCTGACTGCTCCTATTGAGCTGTCTGCTCGCTGTGCCCGCTGTGCCTGCTGTGCCCGCGCTGTCGCC
GCTGCTACCGCGTCTACTGGACGCGGGAGACGCCAGCGAGCTGGTGATTGGAGCCCTGCGGAGAGCTC
AAGCGCCCAGCTCTGCCCGAGGAGCCCAGGCTGCCCCGTGAGTCCCATAGTTGCTGCAGGAGTGGAGC
CATGAGCTGCGTCCTGGGTGGTGTCATCCCCTTGGGGCTGCTGTTCCTGGTCTGCGGATCCCAAGGCT ACCTCCTGCCCAACGTCACTCTCTTAGAGGAGCTGCTCAGCAAATACCAGCACAACGAGTCTCACTCC CGGGTCCGCAGAGCCATCCCCAGGGAGGACAAGGAGGAGATCCTCATGCTGCACAACAAGCTTCGGGG CCAGGTGCAGCCTCAGGCCTCCAACATGGAGTACATGACCTGGGATGACGAACTGGAGAAGTCTGCTG CAGCGTGGGCCAGTCAGTGCATCTGGGAGCACGGGCCCACCAGTCTGCTGGTGTCCATCGGGCAGAAC CTGGGCGCTCACTGGGGCAGAATAGTTTGGGTCACCACCAACAAGATCGGTTGTGCTGTGAACACCTG CCGGAAGATGACTGTCTGGGGAGAAGTTTGGGAGAACGCGGTCTACTTTGTCTGCAATTATTCTCCAA AGGGGAACTGGATTGGAGAAGCCCCCTACAAGAATGGCCGGCCCTGCTCTGAGTGCCCACCCAGCTAT GGAGGCAGCTGCAGGAACAACTTGTGTTACCGAGAAGAAACCTACACTCTAAAACCTGAAACGGACGA GATGAATGAGGTGGAAACGGCTCCCATTCCTGAAGAAAACCATGTTTGGCTCCAACCGAGGGTGATGA GACCCACCAAGCCCAAGAAAACCTCTGCGGTCAACTACATGACCCAAGTCGTCAGATGTGACACCAAG ATGAAGGACAGGTGCAAAGGGTCCACGTGTAACAGGTACCAGTGCCCAGCAGGCTGCCTGAACCACAA GGCGAAGATCTTTGGAAGTCTGTTCTATGAAAGCTCGTCTAGCATATGCCGCGCCGCCATCCACTACG GGATCCTGGATGACAAGGGAGGCCTGGTGGATATCACCAGGAACGGGAAGGTCCCCTTCTTCGTGAAG TCTGAGAGACACGGCGTGCAGTCCCTCAGCAAATACAAACCTTCCAGCTCATTCATGGTGTCAAAAGT GAAAGTGCAGGATTTGGACTGCTACACGACCGTTGCTCAGCTGTGCCCGTTTGAAAAGCCAGCAACTC ACTGCCCAAGAATCCATTGTCCGGCACACTGCAAAGACGAACCTTCCTACTGGGCTCCGGTGTTTGGA ACCAACATCTATGCAGATACCTCAAGCATCTGCAAGACAGCCGTGCACGCGGGAGTCATCAGCAACGA GAGTGGGGGTGACGTGGACGTGATGCCCGTGGATAAAAAGAAGACCTACGTGGGCTCGCTCAGGAATG GAGTTCAGTCTGAAAGCCTGGGGACTCCTCGGGATGGAAAGGCCTTCCGGATCTTTGCTGTCAGGCAG TGAATTTCCAGCACCAGGGGAGAAGGGGCGTCTTCAGGAGGGCTTCGGGGTTTTGCTTTTATTTTTAT TTTGTCATTGCGGGGTATATGGAGAGTCAGGAAACTTCCTTTGACTGATGTTCAGTGTCCATCACTTT GTGGCCTGTGGGTGAGGTGACATCTCATCCCCTCACTGAAGCAACAGCATCCCAAGGTGCTCAGCCGG ACTCCCTGGTGCCTGATCCTGCTGGGGCCCGGGGGTCTCCATCTGGACGTCCTCTCTCCTTTAGAGAT CTGAGCTGTCTCTTAAAGGGGACAGTTGCCCAAAATGTTCCTTGCTATGTGTTCTTCTGTTGGTGGAG GAAGTTGATTTCAACCTCCCTGCCAAAAGAACAAACCATTTGAAGCTCACAATTGTGAAGCATTCACG GCGTCGGAAGAGGCCTTTTGAGCAAGCGCCAATGAGTTTCAGGAATGAAGTAGAAGGTAGTTATTTAA
AAATAAAAAACACAGTCCGTCCCTACCAATAGAGGAAAATGGTTTTAATGTTTGCTGGTCAGACAGAC
AAATGGGCTAGAGTAAGAGGGCTGCGGGTATGAGAGACCCCGGCTCCGCCCTGGCACGTGTCCTTGCT GCGGCCCGCCACAGGCCCCCTTCAATGGCCGCATTCAGGATGGCTCTATACACAGCAGTGCTGGTTT
ATGTAAAGTTCAGCAGTCACTTCA
NOV6n, SNP13376334 of SEQ ID NO: 108 453 aa MW at 50657.5kD
CG50391-08, Protein Sequence JgNP Pos: 198^ F JSNP Change: Pro to Leu
MSCVLGGVIPLGLLFLVCGSQGYLLPNVTLLEELLSKYQHNESHSRVRRAIPREDKEEILMLHNKLRG QVQPQASNMEYMT DDELΞKSAAA ASQCIWEHGPTSLLVSIGQNLGAHWGRIV VTTNKIGCAVNTC RKMTVWGEVWENAVYFVCNYSPKG-..TOIGEAPYKNGRPCSECPPSYGGSCRNNLCYREETYTLKPETDE røEVE APIPEE HV LQPRVMRP KPKK S V YM QVVRCD KMKDRCKGSTC RYQCP GC NHK AKIFGSLFYESSSSICRAAIHYGIL-DDKGGLVDITRNGKVPFFV SERHGVQSLSKYKPSSSFMVS V KVQDLDCYTTVAQLCPFEKPATHCPRIHCPAHCKDEPSY APVFGTNIYADTSSICKTAVHAGVISNΞ SGGDVDVMPVDKKKTYVGSLRNGVQSESLGTPRDGKAFRIFAVRQ
NOV6o, SNP13376333 of SEQ ID NO: 109 2268 bp CG50391-08, DNA Sequence ORF Start: ATG at 206 ORF Stop: TGA at 1565
SNP Pos: 816 SNP Change: A to G
CTCTGACTGCTCCTATTGAGCTGTCTGCTCGCTGTGCCCGCTGTGCCTGCTGTGCCCGCGCTGTCGCC
GCTGCTACCGCGTCTACTGGACGCGGGAGACGCCAGCGAGCTGGTGATTGGAGCCCTGCGGAGAGCTC
AAGCGCCCAGCTCTGCCCGAGGAGCCCAGGCTGCCCCGTGAGTCCCATAGTTGCTGCAGGAGTGGAGC
CATGAGCTGCGTCCTGGGTGGTGTCATCCCCTTGGGGCTGCTGTTCCTGGTCTGCGGATCCCAAGGCT ACCTCCTGCCCAACGTCACTCTCTTAGAGGAGCTGCTCAGCAAATACCAGCACAACGAGTCTCACTCC CGGGTCCGCAGAGCCATCCCCAGGGAGGACAAGGAGGAGATCCTCATGCTGCACAACAAGCTTCGGGG CCAGGTGCAGCCTCAGGCCTCCAACATGGAGTACATGACCTGGGATGACGAACTGGAGAAGTCTGCTG CAGCGTGGGCCAGTCAGTGCATCTGGGAGCACGGGCCCACCAGTCTGCTGGTGTCCATCGGGCAGAAC CTGGGCGCTCACTGGGGCAGAATAGTTTGGGTCACCACCAACAAGATCGGTTGTGCTGTGAACACCTG CCGGAAGATGACTGTCTGGGGAGAAGTTTGGGAGAACGCGGTCTACTTTGTCTGCAATTATTCTCCAA AGGGGAACTGGATTGGAGAAGCCCCCTACAAGAATGGCCGGCCCTGCTCTGAGTGCCCACCCAGCTAT GGAGGCAGCTGCAGGAACAACTTGTGTTACCGAGAAGAAACCTACACTCCAAAACCTGAAACGGACGG GATGAATGAGGTGGAAACGGCTCCCATTCCTGAAGAAAACCATGTTTGGCTCCAACCGAGGGTGATGA GACCCACCAAGCCCAAGAAAACCTCTGCGGTCAACTACATGACCCAAGTCGTCAGATGTGACACCAAG ATGAAGGACAGGTGCAAAGGGTCCACGTGTAACAGGTACCAGTGCCCAGCAGGCTGCCTGAACCACAA GGCGAAGATCTTTGGAAGTCTGTTCTATGAAAGCTCGTCTAGCATATGCCGCGCCGCCATCCACTACG GGATCCTGGATGACAAGGGAGGCCTGGTGGATATCACCAGGAACGGGAAGGTCCCCTTCTTCGTGAAG TCTGAGAGACACGGCGTGCAGTCCCTCAGCAAATACAAACCTTCCAGCTCATTCATGGTGTCAAAAGT GAAAGTGCAGGATTTGGACTGCTACACGACCGTTGCTCAGCTGTGCCCGTTTGAAAAGCCAGCAACTC ACTGCCCAAGAATCCATTGTCCGGCACACTGCAAAGACGAACCTTCCTACTGGGCTCCGGTGTTTGGA ACCAACATCTATGCAGATACCTCAAGCATCTGCAAGACAGCCGTGCACGCGGGAGTCATCAGCAACGA GAGTGGGGGTGACGTGGACGTGATGCCCGTGGATAAAAAGAAGACCTACGTGGGCTCGCTCAGGAATG GAGTTCΆGTCTGAAAGCCTGGGGACTCCTCGGGATGGAAΆGGCCTTCCGGATCTTTGCTGTCAGGCAG TGAATTTCCAGCACCAGGGGAGAAGGGGCGTCTTCAGGAGGGCTTCGGGGTTTTGCTTTTATTTTTAT TTTGTCATTGCGGGGTATATGGAGAGTCAGGAAACTTCCTTTGACTGATGTTCAGTGTCCATCACTTT
GTGGCCTGTGGGTGAGGTGACATCTCATCCCCTCACTGAAGCAACAGCATCCCAAGGTGCTCAGCCGG
ACTCCCTGGTGCCTGATCCTGCTGGGGCCCGGGGGTCTCCATCTGGACGTCCTCTCTCCTTTAGAGAT
CTGAGCTGTCTCTTAAAGGGGACAGTTGCCCAAAATGTTCCTTGCTATGTGTTCTTCTGTTGGTGGAG
GAAGTTGATTTCAACCTCCCTGCCAAAAGAACAAACCATTTGAAGCTCACAATTGTGAAGCATTCACG
GCGTCGGAAGAGGCCTTTTGAGCAAGCGCCAATGAGTTTCAGGAATGAAGTAGAAGGTAGTTATTTAA jAAATAAAAAACACAGTCCGTCCCTACCAATAGAGGAAAATGGTTTTAATGTTTGCTGGTCAGACAGAC
IAAATGGGCTAGAGTAAGAGGGCTGCGGGTATGAGAGACCCCGGCTCCGCCCTGGCACGTGTCCTTGCT
GGCGGCCCGCCACAGGCCCCCTTCAATGGCCGCATTCAGGATGGCTCTATACACAGCAGTGCTGGTTT
ATGTAAAGTTCAGCAGTCACTTCA
NOV6o, SNP13376333 of SEQ ID NO: 110 453 aa MW at 50569.4kD
CG50391-08, Protein Sequence JSNP Pos: 204 SNP Change: Glu to Gly
MSCVLGGVIPLGLLFLVCGSQGYLLPNVTLLEELLSKYQHNESHSRVRRAIPREDKEEILMLHNKLRG QVQPQASNMEYMTWDDELE SAAAWASQCI EHGPTSLLVSIGQNLGAHWGRIVWVTTNKIGCAVNTC RKMTV GEVWENAVYFVCNYSPKGN IGEAPYKNGRPCSECPPSYGGSCRNNLCYREETYTPKPETDG MNEVETAPIPEENHV LQPRVMRPTKPKKTSAV-lN-ΥMTQVVRCDTKMKDRCKGSTCNRYQCPAGCLNHK A IFGSLFYESSSSICRAAIHYGILDDKGGLVDITRNGKVPFFVKSERHGVQSLSKYKPSSSFMVSKV VQDLDCYTTVAQLCPFE PATHCPRIHCPAHCKDEPS Y APVFGTNI YADTS S I CKTAVHAGVI SNE SGGDV-DVMPV-DKKKTYVGSLRNGVQSESLGTPRDGKAFRIFAVRQ
NOV6p, SNP13382488 of SEQ ID NO: 111 2268 bp CG50391-08, DNA Sequence ORF Start: ATG at 206 ORF Stop: TGA at 1565
SNP Pos: 1402 SNP Change: C to T
CTCTGACTGCTCCTATTGAGCTGTCTGCTCGCTGTGCCCGCTGTGCCTGCTGTGCCCGCGCTGTCGCC
GCTGCTACCGCGTCTACTGGACGCGGGAGACGCCAGCGAGCTGGTGATTGGAGCCCTGCGGAGAGCTC
AAGCGCCCAGCTCTGCCCGAGGAGCCCAGGCTGCCCCGTGAGTCCCATAGTTGCTGCAGGAGTGGAGC
CATGAGCTGCGTCCTGGGTGGTGTCATCCCCTTGGGGCTGCTGTTCCTGGTCTGCGGATCCCAAGGCT ACCTCCTGCCCAACGTCACTCTCTTAGAGGAGCTGCTCAGCAAATACCAGCACAACGAGTCTCACTCC CGGGTCCGCAGAGCCATCCCCAGGGAGGACAAGGAGGAGATCCTCATGCTGCACAACAAGCTTCGGGG CCAGGTGCAGCCTCAGGCCTCCAACATGGAGTACATGACCTGGGATGACGAACTGGAGAAGTCTGCTG CAGCGTGGGCCAGTCAGTGCATCTGGGAGCACGGGCCCACCAGTCTGCTGGTGTCCATCGGGCAGAAC CTGGGCGCTCACTGGGGCAGAATAGTTTGGGTCACCACCAACAAGATCGGTTGTGCTGTGAACACCTG CCGGAAGATGACTGTCTGGGGAGAAGTTTGGGAGAACGCGGTCTACTTTGTCTGCAATTATTCTCCAA AGGGGAACTGGATTGGAGAAGCCCCCTACAAGAATGGCCGGCCCTGCTCTGAGTGCCCACCCAGCTAT GGAGGCAGCTGCAGGAACAACTTGTGTTACCGAGAAGAAACCTACACTCCAAAACCTGAAACGGACGA GATGAATGAGGTGGAAACGGCTCCCATTCCTGAAGAAAACCATGTTTGGCTCCAACCGAGGGTGATGA GACCCACCAAGCCCAAGAAAACCTCTGCGGTCAACTACATGACCCAAGTCGTCAGATGTGACACCAAG ATGAAGGACAGGTGCAAAGGGTCCACGTGTAACAGGTACCAGTGCCCAGCAGGCTGCCTGAACCACAA GGCGAAGATCTTTGGAAGTCTGTTCTATGAAAGCTCGTCTAGCATATGCCGCGCCGCCATCCACTACG GGATCCTGGATGACAAGGGAGGCCTGGTGGATATCACCAGGAACGGGAAGGTCCCCTTCTTCGTGAAG TCTGAGAGACACGGCGTGCAGTCCCTCAGCAAATACAAACCTTCCAGCTCATTCATGGTGTCAAAAGT GAAAGTGCAGGATTTGGACTGCTACACGACCGTTGCTCAGCTGTGCCCGTTTGAAAAGCCAGCAACTC ACTGCCCAAGAATCCATTGTCCGGCACACTGCAAAGACGAACCTTCCTACTGGGCTCCGGTGTTTGGA ACCAACATCTATGCAGATACCTCAAGCATCTGCAAGACAGCTGTGCACGCGGGAGTCATCAGCAACGA GAGTGGGGGTGACGTGGACGTGATGCCCGTGGATAAAAAGAAGACCTACGTGGGCTCGCTCAGGAATG GAGTTCAGTCTGAAAGCCTGGGGACTCCTCGGGATGGAAAGGCCTTCCGGATCTTTGCTGTCAGGCAG TGAATTTCCAGCACCAGGGGAGAAGGGGCGTCTTCAGGAGGGCTTCGGGGTTTTGCTTTTATTTTTAT TTTGTCATTGCGGGGTATATGGAGAGTCAGGAAACTTCCTTTGACTGATGTTCAGTGTCCATCACTTT
GTGGCCTGTGGGTGAGGTGACATCTCATCCCCTCACTGAAGCAACAGCATCCCAAGGTGCTCAGCCGG
ACTCCCTGGTGCCTGATCCTGCTGGGGCCCGGGGGTCTCCATCTGGACGTCCTCTCTCCTTTAGAGAT
CTGAGCTGTCTCTTAAAGGGGACAGTTGCCCAAAATGTTCCTTGCTATGTGTTCTTCTGTTGGTGGAG
GAAGTTGATTTCAACCTCCCTGCCAAAAGAACAAACCATTTGAAGCTCACAATTGTGAAGCATTCACG
GCGTCGGAAGAGGCCTTTTGAGCAAGCGCCAATGAGTTTCAGGAATGAAGTAGAAGGTAGTTATTTAA iAAATAAAAAACACAGTCCGTCCCTACCAATAGAGGAAAATGGTTTTAATGTTTGCTGGTCAGACAGAC jAAATGGGCTAGAGTAAGAGGGCTGCGGGTATGAGAGACCCCGGCTCCGCCCTGGCACGTGTCCTTGCT
GGCGGCCCGCCACAGGCCCCCTTCAATGGCCGCATTCAGGATGGCTCTATACACAGCAGTGCTGGTTT
ATGTAAAGTTCAGCAGTCACTTCA
NOV6p, SNP13382488 of SEQ ID NO: 112 453 aa MW at 50641.5kD CG50391-08, Protein Sequence SNP Pos: 399 SNP Change: Ala to Ala
MSCVLGGVIPLGLLFLVCGSQGYLLPNVTLLEELLSKYQHNESHSRVRRAIPREDKEEILMLHNKLRG
QVQPQASNMEYMT DDELEKSAAAWASQCI EHGPTSLLVSIGQNLGAH GRIVWVTTNKIGCAVNTC
RKMTV GEV ENAVYFVCNYSPKGNWIGEAPYKNGRPCSECPPSYGGSCRNNLCYREETYTPKPETDE røEVETAPIPEENH LQPRVMRPTKP^TSAV-l-^
AKIFGSLFYESSSSICRAAIHYGILDDKGGLVDITR-NGKVPFFVKSERHGVQSLS YKPSSSF VSKV
KVQDLDCYTTVAQLCPFEKPATHCPRIHCPAHCKDEPSYWAPVFGTNIYADTSSICKTAVHAGVISNE
SGGDVDVMPVDKKKTYVGSLRNGVQSESLGTPRDGKAFRIFAVRQ
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 6B.
NOVδc MSCVLGGVIPLGLLFLVCGS NOVδd NOVδe MSCVLGGVIPLGLLFLVCGS NOVδf MSCVLGGVIPLGLLFLVRGS NOVδg MSCVLGGVIPLGLLFLVRGS NOV6h MSCVLGGVIPLGLLFLVRGS NOV6i YLLPNVTLLEELLSKYQHNESHSRVRRAIPREDKEEIL NOVδj MSCVLGGVIPLGLLFLVCGS NOVδk MSCVLGGVIPLGLLFLVCGSQGYLLPNVTLLEELLSKYQHNESHSRVRRAIPREDKEEIL
NOVδa QGYLLPNVTLLEELLSKYQHNESHSRVRRAIPREDKEEILMLHNKLRGQVQPQAS NOVδb QGYLLPNVTLLEELLSKYQHNESHSRVRRAIPREDKEEILMLHNKLRGQVQPQAS NOVδc QGYLLPNVTLLEELLSKYQHNESHSRVRRAIPREDKEEILMLHNKLRGQVQPQAS NOVδd M NOVδe QGYLLPNVTLLEELLSKYQHNESHSRVRRAIPREDKEEILMLHNKLRGQVQPQASNMEYM NOVδf QGYLLPNVTLLEELLSKYQHNESHSRVRRAIPREDKEEILMLHNKLRGQVQPQASNMEYM NOV6g QGYLLPNVTLLEELLSKYQHNESHSRVRRAIPREDKEEILMLHNKLRGQVQPQAS NOVδh QGYLLPNVTLLEELLSKYQHNESHSRVRRAIPREDKEEILMLHNKLRGQVQPQASNMEYM NOVδi MLHNKLRGQVQPQASNMEYMT DDELEKSAAAASQCI EHGPTGLLVSIGQNLG NOVδj QGYLLPNVTLLEELLSKYQHNESHSRVRRAIPREDKEEILMLHNKLRGQVQPQASNMEYM NOVδk MLHNKLRGQVQPQASNMEYMTWDDELEKSAAA ASQCI EHGPTSLLVSIGQNLG
NOVδa N- -MEYMTWDDELEKSAA NOVδb NMEYMYRSPGFHVQS YDEVKDYTY NOVδc N_ -MEYMTWDDELEKSAA NOVδd TNWGRYRSPGFHVQSWYDEVKDYTY NOVδe TWDDELEKSAAAWASQCIWEHGPTGLLVSIGQNLGAHWGRYRSPGFHVQSWYDEVKDYTY NOVδf TWDDELEKSAAAWASQCIWEHGPTGLLVSIGQNLGAHWGRYRSPGFHVQSWYDEVKDYTY NOVδg N--MEYMTWDDELEKSAA NOVδh TWDDELEKSAAAWASQCIWEHGPTGLLVSIGQNLGAHWGRYRSPGFHVQSWYDEVKDYTY NOVδi AHWGRYRSPGFHVQSWYDEVKDYTY NOVδj TWDDELEKSAAAWASQCIWEHGPTSLLVSIGQNLGAHWGRYRSPGFHVQSWYDEVKDYTY NOVδk AHWGRYRSPGFHVQSWYDEVKDYTY
NOVδa AWASQC IWEHG--PTSLLVSIGQNLGAHWGRIV NOVδb PYPSECNPWCPERCSGPMCTHY TQIVWATTNKIGCAVNTCRKMTVWGEVWENAVYFV NOVδc AWASQC IWEHG--PTSLLVSIGQNLGAHWG NOVδd PYPSECNPWCPERCSGPMCTHY TQIVWATTNKIGCAVNTCRKMTVWGEVWENAVYFV NOVδe PYPSECNPWCPERCSGPMCTHY TQIVWATTNKIGCAVNTCRKMTVWGEVWENAVYFV NOVδf PYPSECNPWCPERCSGPMCTHY TQIVWATTNKIGCAVNTCRKMTVWGEVWENAVYFV NOVδg AWASQC IWEHG--PTSLLVSIGQNLGAHWGRRYRSPGFHVQSWYDEVKD NOVδh PYPSECNPWCPERCSGPMCTHYTQVTQIVWATTNKIGCAVNTCRKMTVWGEVWENAVYFV NOVδi PYPSECNPWCPERCSGPMCTHY TQIVWATTNKIGCAV-NTCRKMTVWGEVWENAVYFV NOVδj PYPSECNPWCPERCSGPMCTHY TQIVWATTNKIGCAVNTCRKMTVWGEVWENAVYFV NOVδk PYPSECNPWCPERCSGPMCTHY TQIVWATTNKIGCAVNTCRKMTVWGEVWENAVYFV
NOVδa WVTTNKIGCAVNTCRKMTVWGEVWENAVYFV
NOVδb CNYSPK
NOVδc
NOVδd CNYSPK
NOVδe CNYSPK
NOVδf CNYSPK
NOVδg YTYPYPSECNPWCPERCSGPMCTHYTQIVWATTNKIGCAVNTCRKMTVWGEVWENAVYFV
NOVδh CNYSPKR
NOVδi CNYSPK NOVδj CNYSPK- NOVδk CNYSPK-
NOV6a CNYSPKGNWIGEAPYKNGRPCSECPPSYGGSCRNNLCYRΞETYTPKPETDEMNEVETAPI
NOVδb GNWIGEAPYKNGRPCSECPPSYGGSCRNNLCYREETYTPKPETDEMNEVETAPI
NOVδc RGNWIGEAPYKNGRPCSECPPSYGGSCRNNLCYREETYTPKPETDEMNEVETAPI
NOVδd GNWIGEAPYKNGRPCSECPPSYGGSCRNNLCYREETYTPKPETDEMNEVETAPI
NOVSe GNWIGEAPYKNGRPCSQCPPSYGGSCRNNLCYREETYTPKPETDEMNEVETAPI
NOVδf GNWIGEAPYKNGRPCSECPPSYGGSCRNNLCYREETYTPKPETDEMNEVETAPI
NOVδg CNYSPKGNWIGEAPYKNGRPCSECPPSYGGSCRNNLCYREETYTPKPETDEMNEVETAPI
NOVδh GNWIGEAPY-KNGRPCSECPPSYGGSCPsπ-JLCYREETYTPKPETDEMNEVETAPI
NOVδi GNWIGEAPYKNGRPCSECPPSYGGSCR-NNLCYREETYTPKPETDEMNEVETAPI
NOVδj GNWIGEAPYKNGRPCSECPPSYGGSCRNNLCYREETYTPKPETDEMNEVETAPI
NOVδk GNWIGEAPYKNGRPCSECPPSYGGSCRNNLCYREETYTPKPETDEMNEVGTAPI
NOVδa PEENHVWLQPRVMRPTKPKKTSAVNYMTQWRCDTKMKDRCKGSTCNRYQCPAGCLNHKA
NOVδb PEENHVWLQPRVMRPTKPKKTSAVNYMTQWRCDTKMKDRCKGSTCNRYQCPAGCLNHKA
NOV6C PEENHVWLQPRVMRPTKPKKTSAVNYMTQWRCDTKMKDRCKGSTCNRYQCPAGCLNHKA
NOVδd PEENHVT^LQPRVMRPTKPKKTSAVNYMTQVVRCDTKMKDRCKGSTCNRYQCPAGCLNHKA
NOV6e PEENHVWLQPRVMRPTKPKKTSSVNYMTQWLCDTKMKDRCKGSTCNRYQCPAGCLNHKA
NOV6f PEENHVWLQPRVMRPTKPKKTSAVNYMTQWRCDTKMKDRCKGSTCNRYQCPAGCLNHKA
NOVδg PEENHVWLQPRVMRPTKPKKTSAVNYMTQVVRCDTKMKDRCKGSTCNRYQCPAGCLNHKA
NOVδh PEENHVWLQPRVMRPTKPKKTSAVNYMTQWRCDTKMKDRCKGSTCNRYQCPAGCLNHKA
NOV6i PEENHVWLQPRVMRPTKPKKTSAVNYMTQWRCDTKMKDRCKGSTCNRYQCPAGCLNHKA
NOVδj PEENHVWLQPRVMRPTKPKKTSAVNYMTQWRCDTKMKDRCKGSTCNRYQCPAGCLNHKA
NOV6k PEENHVWLQPRVMRPTKPKKTSAVNYMTQWRCDTKMKDRCKGSTCNRYQCPAGCLNHKA
NOVδa KIFGSLFYESSSSICRAAIHYGILDDKGGLVDITRNGKVPFFVKSERHGVQSLSKYKPSS
NOVδb KIFGTLFYESSSSICRAAIHYGILDDKGGLVDITRNGKVPFFVKSERHGVQSLSKYKPSS
NOVδc KIFGSLFYESSSSICRAAIHYGILDDKGGLVDITRNGKVPFFVKSERHGVQSL
NOVδd KIFGTLFYESSSSICRAAIHYGILDDKGGLVDITRNGKVPFFVKSERHGVQSLSKYKPSS
NOVδe KIFGTLFYESSSSICRAAIHYGILDDKGGLVDITRNGKVPFFVKSERHGVQSLSKYKPSS
NOVδf KIFGSLFYESSSSICRAAIHYGILDDKGGLVDITRNGKVPFFVKSERHGVQSLSKYKPSS
NOVδg KIFGSLFYESSSSICRAAIHYGILDDKGGLVDITRNGKVPFFVKSERHGVQSLSKYKPSS
NOVδh KIFGSLFYESSSSICRAAIHYGILDDKGGLVDITRNGKVPFFVKSERHGVQSLSKYKPSS
NOVδi KIFGTLFYESSSSICRAAIHYGILDDKGGLVDITRNGKVPFFVKSERHGVQSLSKYKPSS
NOVδj KIFGSLFYESSSSICRAAIHYGILDDKGGLVDITR-NGKVPFFVKSERHGVQSLSKYKPSS
NOVδk KIFGTLFYESSSSICRAAIHYGILDDKGGLVDITRNGKVPFFVKSERHGVQSLSKYKPSS
NOVδa SFMVSKVKVQDLDCYTTVAQLCPFEKPATHCPRIHCPAHCKDEPSYWAPVFGTNIYADTS
NOVδb SFiMVSKVKVQDLDCYTTVAQLCPFEKPATHCPRIHCPAHCKDEPSYWAPVFGTNIYADTS
NOVδc VQDLDCYTTVAQLCPFEKPATHCPRIHCPAHCKDEPSYWAPVFGTNIYADTS
NOVδd SFMVSKVKVQDLDCYTTVAQLCPFEKPATHCPRIHCPAHCKDEPSYWAPVFGTNIYADTS
NOVδe SFMVSKVKVQDLDCYTTVAQLCPFEKPATHCPRIHCPAHCKDEPSYWAPVFGTNIYADTS
NOV6f SFMVSKVKVQDLDCYTTVAQLCPFEKPATHCPRIHCPAHCKDEPSYWAPVFGTNIYADTS
NOVδg SFMVSKVKVQDLDCYTTVAQLCPFEKPATHCPRIHCPAHCKDEPSYWAPVFGTNIYADTS
NOVδh SFMVSKVKVQDLDCYTTVAQLCPFEKPATHCPRIHCPAHCKDEPSYWAPVFGTNIYADTS
NOV6i SFMVSKVKVQDLDCYTTVAQLCPFEKPATHCPRIHCPAHCKDEPSYWAPVFGTNIYADTS
NOV6j SFMVSKVKVQDLDCYTTVAQLCPFEKPATHCPRIHCPAHCKDEPSYWAPVFGTNIYADTS
NOVδk SFMVSKVKVQDLDCYTTVAQLCPFEKPATHCPRIHCPAHCKDEPSYWAPVFGTNIYADTS
NOVδa SICKTAVHAGVISNESGGDVDVMPVDKKKTYVGSLRNGVQSESLGTPRDGKAFRIFAVRQ
NOVδb SICKTAVHAGVISNESGGDVDVMPVDKKKTYVGSLRNGVQSESLGTPRDGKAFRIFAVRQ
NOVδc SICKTAVHAGVISNESGGDVDVMPVDKKKTYVGSLRNGVQSESLGTPRDGKAFRIFAVRQ
NOVδd SICKTAVHAGVISNESGGDVDVMPVDKKKTYVGSLRNGVQSESLGTPRDGKAFRIFAVRQ NOVδe SICKTAVHAGVISNESGGDVDVMPVDKKKTYTCPAAARAL NOVδf SICKTAVHAGVISNESGGDVDVMPVDKKKTYVGSLRNGVQSESLGTPRDGKAFRIFAVRQ NOVδg SICKTAVHAGVISNESGGDVDVMPVDKKKTYVGSLRNGVQSESLGTPRDGKAFRIFAVRQ NOVδh SICKTAVHAGVISNESGGDVDVMPVDKKKTYVGSLRNGVQSESLGTPRDGKAFRIFAVRQ NOVδi SICKTAVHAGVISNESGGDVDVMPVDKKKTYVGSLRNGVQSESLGTPRDGKAFRIFAVRQ NOVδj SICKTAV-- GVISNESGGDVDVMPVDKKKTYVGSLRNGVQSESLGTPRDGKAFRIFAVRQ NOVδk SICKTAVHAGVISNESGGDVDVMPVDKKKTYVGSLRNGVQSESLGTPRDGKAFRIFAVRQ
NOVδa (SEQ ID NO 82) NOVδb (SEQ ID NO 84) NOVδc (SEQ ID NO 86) NOVδd (SEQ ID NO 88) NOVδe (SEQ ID NO 90) NOVδf (SEQ ID NO 92) NOVδg (SEQ ID NO 94) NOVδh (SEQ ID NO 96) NOVδi (SEQ ID NO 98) NOVδj (SEQ ID NO 100) NOVδk (SEQ ID NO 102)
Further analysis of the NOV6a protein yielded the following properties shown in Table 6C.
Table 6C. Protein Sequence Properties NOV6a
SignalP analysis: Cleavage site between residues 23 and 24
PSORT π analysis:
PSG: a new signal peptide prediction method
N-region: length 0; pos.chg 0; neg.chg 0 H-region: length 31; peak value 10.73 PSG score: 6.33
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -0.72 possible cleavage site: between 22 and 23
>>> Seems to have a cleavable signal peptide (1 to 22)
ALOM: Klein et al's method for TM region allocation Init position for calculation: 23
Tentative number of TMS(s) for the threshold 0.5: number of TMS (s) .. fixed PERIPHERAL Likelihood = 7.37 (at 106) ALOM score: 7.37 (number of TMΞs: 0)
MTOP: Prediction of membrane topology (Hartmann et al.) Center position for calculation: 11 Charge difference: -1.0 C ( 0.0) - N( 1.0) N >= C: N-terminal side will be inside
MITDISC: discrimination of mitochondrial targeting seq
R conten : 0 Hyd Moment (75) : 0. 40
Hyd Moment (95) : 3.00 G content: 5
D/E content : 1 S/T content: 3 Score: -7.63 Gavel: prediction of cleavage sites for mitochondrial preseq cleavage site motif not found
NUCDISC: discrimination of nuclear localization signals pat4: KPKK (4) at 230 pat7: PTKPKKT (4) at 228 pat7: PVDKKKT (4) at 417 bipartite : none content of basic residues: 11.9% NLS Score: 0.47
KDEL: ER retention motif in the C-terminus : none
ER Membrane Retention Signals: none
SKL: peroxisomal targeting signal in the C-terminus : none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif: none
Actinin-type actin-binding motif : type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail : none
Dileucine motif in the tail : none checking 63 PROSITE DNA binding motifs : none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: nuclear Reliability: 55.5
COIL: Lupas ' s algorithm to detect coiled-coil regions total : 0 residues
Final Results (k = 9/23) 52.2 %: nuclear 21.7 % : extracellular, including cell wall
17.4 % : mitochondrial
4.3 % : vacuolar
4 .3 % : cytoplasmic
>> prediction for CG50391-08 is nuc (k=23 )
A search of the NOV6a protem against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 6D.
In a BLAST search of public sequence databases, the NOV6a protein was found to have homology to the proteins shown in the BLASTP data in Table 6E.
PFam analysis predicts that the NOV6a protein contains the domains shown in the Table 6F.
Example 7.
The NOV7 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 7A.
TCCACCTTCATCTGGGACAAGACAGATGCGTATGGCCAAAGGGTGTATGGACTCTCAGATGCTGTTG
T
GTCTGTCGGGTTTGAATATGAGACCTGTCCCAGTCTAATTCTCTGGGAGAAAAGGACAGCCCTCCTT
C
AGGGATTCGAGCTGGACCCCTCCAACCTCGGTGGCTGGTCCCTAGACAAACACCACATCCTCAATGT
T
AAAAGTGGAATCCTACACAAAGGCACTGGGGAAAACCAGTTCCTGACCCAGCAGCCTGCCATCATCA
C
CAGCATCATGGGCAATGGTCGCCGCCGGAGCATTTCCTGTCCCAGCTGCAACGGCCTTGCTGAAGGC
A
ACAAGCTGCTGGCCCCAGTGGCTCTGGCTGTTGGAATCGATGGGAGCCTCTATGTGGGTGACTTCAA
T
TACATCCGACGCATCTTTCCCTCTCGAAAT
NOV7ad, SNP13375665 of SEQ ID NO: 172 826 aa MW at 89832.6kD
CG50426-15, Protein Sequence JSNP Pos: 267 SNP Change: Asp to Asn
KNSSIDSGEAEVGRRVTQEVPPGVF RSQIHISQPQFLKFNISLGKDALFGVYIRRGLPPSHAQYDFM ERLDGKEKWSWESPRERRSIQTLVQNEAVFVQYLDVGLWHLAFYNDGKDKEMVSFNTWLDSVQDCP RNCHGNGECVSGVCHCFPGFLGADCAKAACPVLCSGNGQYSKGTCQCYSGWKGAECDVPMNQCIDPSC GGHGSCIDGNCVCSAGYKGEHCEEVDCLDPTCSSHGVCVNGECLCSPGWGGLNCELARVQCPNQCSGH GTYLPDTGLCSCDPNWMGPDCSVEVCSVDCGTHGVCIGGACRCEEGWTGAACDQRVCHPRCIEHGTCK DGKCECREGWNGEHCTIGRQTAGTETDGCPDLCNGNGRCTLGQNSWQCVCQTGWRGPGCNVAMETSCA DNKDNEGDGLVDCLDPDCCLQSACQNSLLCRGSRDPLDIIQQGQTDWPAVKSFYDRIKLLAGKDSTHI IPGENPFNSSLVSLIRGQWTTDGTPLVGVNVSFVKYPKYGYTITRQDGTFDLIANGGASLTLHFERA PFMSQERTVWLPWNSFYAMDTLVMKTEENSIPSCDLSGFVRPDPIIISSPLSTFFSAAPGQNPIVPET QVLHEEIELPGSNVKLRYLSSRTAGYKSLLKITMTQSTVPLNLIRVHLMVAVEGHLFQKSFQASPNLA STFIWDKTDAYGQRVYGLSDAWSVGFEYETCPSLILWEKRTALLQGFELDPSNLGGWSLDKHHILNV KSGILHKGTGENQFLTQQPAIITSIMGNGRRRSISCPSCNGLAEGNKLLAPVALAVGIDGSLYVGDFN YIRRIFPSRN
NOV7ae, SNP13375213 of SEQ ID NO: 173 2478 bp CG50426-15, DNA Sequence ORF Start: at 1 IORF Stop: end of sequence
SNP Pos: 1751 j SNP Change: T to C
AAAAACAGCAGCATAGACAGTGGTGAAGCAGAAGTTGGTCGGCGGGTAACACAAGAAGTCCCACCAG
G
GGTGTTTTGGAGGTCACAAATTCACATCAGTCAGCCCCAGTTCTTAAAGTTCAACATCTCCCTCGGG
A
AGGACGCTCTCTTTGGTGTTTACATAAGAAGAGGACTTCCACCATCTCATGCCCAGTATGACTTCAT
G
GAACGTCTGGACGGGAAGGAGAAGTGGAGTGTGGTTGAGTCTCCCAGGGAACGCCGGAGCATACAGA
C
CTTGGTTCAGAATGAAGCCGTGTTTGTGCAGTACCTGGATGTGGGCCTGTGGCATCTGGCCTTCTAC
A
ATGATGGAAAAGACAAAGAGATGGTTTCCTTCAATACTGTTGTCCTAGATTCAGTGCAGGACTGTCC
A
CGTAACTGCCATGGGAATGGTGAATGTGTGTCCGGGGTGTGTCACTGTTTCCCAGGATTTCTAGGAG
C
AGACTGTGCTAAAGCTGCCTGCCCTGTCCTGTGCAGTGGGAATGGACAATATTCTAAAGGGACGTGC
C
AGTGCTACAGCGGCTGGAAAGGTGCAGAGTGCGACGTGCCCATGAATCAGTGCATCGATCCTTCCTG
C
GGGGGCCACGGCTCCTGCATTGATGGGAACTGTGTCTGCTCTGCTGGCTACAAAGGCGAGCACTGTG
A
GGAAGTTGATTGCTTGGATCCCACCTGCTCCAGCCACGGAGTCTGTGTGAATGGAGAATGCCTGTGC
A
GCCCTGGCTGGGGTGGTCTGAACTGTGAGCTGGCGAGGGTCCAGTGCCCAGACCAGTGCAGTGGGCA
T
GGCACGTACCTGCCTGACACGGGCCTCTGCAGCTGCGATCCCAACTGGATGGGTCCCGACTGCTCTG T
TGAAGTGTGCTCAGTAGACTGTGGCACTCACGGCGTCTGCATCGGGGGAGCCTGCCGCTGTGAAGAG
G
GCTGGACAGGCGCAGCGTGTGACCAGCGCGTGTGCCACCCCCGCTGCATTGAGCACGGGACCTGTAA
A
GATGGCAAATGTGAATGCCGAGAGGGCTGGAATGGTGAACACTGCACCATTGGTAGGCAAACGGCAG
G
CACCGAAACAGATGGCTGCCCTGACTTGTGCAACGGTAACGGGAGATGCACACTGGGTCAGAACAGC
T
GGCAGTGTGTCTGCCAGACCGGCTGGAGAGGGCCCGGATGCAACGTTGCCATGGAAACTTCCTGTGC
T
GATAACAAGGATAATGAGGGAGATGGCCTGGTGGATTGTTTGGACCCTGACTGCTGCCTGCAGTCAG
C
CTGTCAGAACAGCCTGCTCTGCCGGGGGTCCCGGGACCCACTGGACATCATTCAGCAGGGCCAGACG
G
ATTGGCCCGCAGTGAAGTCCTTCTATGACCGTATCAAGCTCTTGGCAGGCAAGGATAGCACCCACAT
C
ATTCCTGGAGAGAACCCTTTCAACAGCAGCTTGGTTTCTCTCATCCGAGGCCAAGTAGTAACTACAG
A
TGGAACTCCCCTGGTCGGTGTGAACGTGTCTTTTGTCAAGTACCCAAAATACGGCTACACCATCACC
C
GCCAGGATGGCACGTTCGACCTGATCGCAAATGGAGGTGCTTCCTTGACTCTACACTTTGAGCGAGC
C
CCGTTCATGAGCCAGGAGCGCACTGTGTGGCTGCCGTGGAACAGCTTTTACGCCATGGACACCCTGG
T
GATGAAGACCGAGGAGAACTCCATCCCCAGCTGTGACCTCAGTGGCTTTGCCCGGCCTGATCCAATC
A
TCATCTCCTCCCCACTGTCCACCTTCTTTAGTGCTGCCCCTGGGCAGAATCCCATCGTGCCTGAGAC
C
CAGGTTCTTCATGAAGAAATCGAGCTCCCTGGTTCCAATGTGAAACTTCGCTATCTGAGCTCTAGAA
C
TGCAGGGTACAAGTCACTGCTGAAGATCACCATGACCCAGTCCACAGTGCCCCTGAACCTCATTAGG
G
TTCACCTGATGGTGGCTGTCGAGGGGCATCTCTTCCAGAAGTCATTCCAGGCTTCTCCCAACCTGGC
C
TCCACCTTCATCTGGGACAAGACAGATGCGTATGGCCAAAGGGTGTATGGACTCTCAGATGCTGTTG
T
GTCTGTCGGGTTTGAATATGAGACCTGTCCCAGTCTAATTCTCTGGGAGAAAAGGACAGCCCTCCTT
C
AGGGATTCGAGCTGGACCCCTCCAACCTCGGTGGCTGGTCCCTAGACAAACACCACATCCTCAATGT
T
AAAAGTGGAATCCTACACAAAGGCACTGGGGAAAACCAGTTCCTGACCCAGCAGCCTGCCATCATCA
C
CAGCATCATGGGCAATGGTCGCCGCCGGAGCATTTCCTGTCCCAGCTGCAACGGCCTTGCTGAAGGC
A
ACAAGCTGCTGGCCCCAGTGGCTCTGGCTGTTGGAATCGATGGGAGCCTCTATGTGGGTGACTTCAA
T
TACATCCGACGCATCTTTCCCTCTCGAAAT
NOV7ae, SNP13375213 of SEQ ID NO: 174 826 aa MW at 89805.5kD
CG50426-15, Protein Sequence gNP Pos: 584 SNP Change: Val to Ala
KNSSIDSGEAEVGRRVTQEVPPGVFWRSQIHISQPQFLKFNISLGKDALFGVYIRRGLPPSHAQYDFM ERLDGKEKWSVVESPRERRSIQTLVQNEAVFVQYLDVGLWHLAFYNDGKDKEMVSFNTVVLDSVQDCP RNCHGNGECVSGVCHCFPGFLGADCAKAACPVLCSGNGQYSKGTCQCYSGWKGAECDVPMNQCIDPSC GGHGSCIDGNCVCSAGYKGEHCEEVDCLDPTCSSHGVCVNGECLCSPGWGGLNCELARVQCPDQCSGH GTYLPDTGLCSCDPNWMGPDCSVEVCSVDCGTHGVCIGGACRCEEGWTGAACDQRVCHPRCIEHGTCK DGKCECREGWNGEHCTIGRQTAGTETDGCPDLCNGNGRCTLGQNSWQCVCQTGWRGPGCNVAMETSCA DNKDNEGDGLVDCLDPDCCLQSACQNSLLCRGSRDPLDIIQQGQTDWPAVKSFYDRIKLLAGKDSTHI IPGENPFNSSLVSLIRGQWTTDGTPLVGVNVSFVKYPKYGYTITRQDGTFDLIANGGASLTLHFERA PFMSQΞRTVWLPWNSFYAMDTLVMKTEENSIPSCDLSGFARPDPIIISSPLSTFFSAAPGQNPIVPET
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 7B.
Table 7B. Comparison of the NOV7 protein sequences.
N0V7a NOV7b NOV7C NOWd NOV7e NOV7f NOWg NOV7h NOV7i NOV7J NOV7k NOV71 NOV7m NOV7ιι N0V7O N0V7p NOV7q MDVKDRRHRSLTRGRCGKECRYTSSSLDSEDCRVPTQKSYSSSETLKAYDHDSRMHYGNR
NOV7r
NOV7S
NOV7t
NOV7U
NOV7V
NOV7W
NOV7X
NOV7y
NOV7z
NOV7aa
NOV7ab
NOV7ac
NOV7a
NOV7b
NOV7C
NOV7d
NOV7e
NOV7f
NOV7g
NOV7h
NOV7i
NOV7J
NOV7k
NOV71
NOV7ra
NOV7n
N0V7O
NOV7p
NOV7g VTDLIHRESDEFPRQGTNFTLAELGICEPSPHRSGYCSDMGILHQGYSLSTGSDADSDTE
NOV7r
NOV7s
NOV7t
NOV7u
NOV7v
NOV7W
NOV7X
NOV7y
NOV7z
NOV7aa
NOV7ab
NOV7ac
NOV7a NOV7b -MDVKDRRHRSLTRGRCGKECRYTSSSLDSEDCRV NOV7c NOV7d NOV7e NOV7f NOV7g NOV7 NOV7i NOV7k NOV71
NOV7m
NOV7n
N0V7O
NOV7p
NOV7q GGMSPEHAIRLWGRGIKSRRSSGLSSRENSALTLTDSDNENKSDDENGRPIPPTSSPSLL
NOV7r
NOV7S
NOV7t
NOV7u
NOV7v
NOV7
NOV7x
NOV7y
NOV7z
NOV7aa
NOV7ab -MDVKERRPYCSLTKSRREKERRYTNSSADNEECR NOV7ac
NOV7a
NOV7b PTQKSYSSSETLKAYDHDSRMHYGNRVTDLIHRESDEFPRQGTNFTLAELGICEPSPHRS
NOV7c
NOV7d
NO 7e
NOV7f
NOV7g
NOV7h
NOV7i
NOV7k
NOV71 -MDVKDRRHRSLTRGRCGKECRYTSSSLDSEDCRVPTQKSYSSSΞTLKAYDHDS
NOV7m
NOV7n
NOV7o
NOV7p
NOV7q PSAQLPSSHNPPPVSCQMPLLDSNTSHQIMDTNPDEEFSPNSYLLRACSGPQQASSSGPP
NOV7r MDVKDRRHRSLTRGRCGKECRYTSSSLDSEDCRVPTQKSYSSSΞTLKAYDHDS
NOV7S MDVKDRRHRSLTRGRCGKECRYTSSSLDSEDCRVPTQKSYSSSETLKAYDHDS
NOV7t
NOV7u MDVKDRRHRSLTRGRCGKECRYTSSSLDSEDCRVPTQKSYSSSETLKAYDHDS
NOV7V
NOV7w
NOV7x
NOV7y
NOV7z
NOV7aa
NOV7ab VPTQKSYSSSETLKAFDHDSSRLLYGNRVKDLVHREADEFTRQSRMHYGNRVTDLIHRES
NOV7ac
NOV7a NOV7b GYCSDMGILHQGYSLSTGSDADSDTEGGMSPEHAIRLWGRGIKSRRSSGLSSRENSALTL NOV7C NOV7d NOV7e NOV7f NOV7g
NOV7h
NOV7i
NOV7J
NOV7k
NOV71 RMHYGNRVTDLIHRESDEFPRQGTNFTLAELGICΞPSPHRSGYCSDMGILHQGYSLSTGS
NOV7m
NOV7n
N0V7O MDVKDRRHRSLTRGRCGKECRYTSSSLDSEDCRVPTQKSYSSSETLKAYDHDSRMH
NOV7p
NOV7q NHHSQSTLRPPLPPPHNHTLSHHHSSANSLNRNSLTNRRSQIHAPAPAPNDLATTPESVQ
NOV7r RMHYGNRVTDLIHRESDEFPRQGTNFTLAELGICEPSPHRSGYCSDMGILHQGYSLSTGS
NOV7S RMHYGNRVTDLIHRESDEFPRQGTNFTLAELGICEPSPHRSGYCSDMGILHQGYSLSTGS
NOV7t
NOV7U RMHYGNRVTDLIHRESDEFPRQGTNFTLAELGICEPSPHRSGYCSDMGILHQGYSLSTGS
NOV7V
NOV7w
NOV7X
NOV7y
NOV72
NOV7aa
NOV7ab DEFPRQGILHQGYSLSTGSDADSDTEGGMSPEHAIRLWGRGIKSRRSSGLSSRENSALTL
NOV7ac
NOV7a MDVKDRRHRSLTRGRCGKECRYTSSSLDSEDCRVPTQKSYSS
NOV7b TDSDNENKSDDENGRPIPPTSSPSLLPSAQLPSSHNPPPVSCQMPLLDSNTSHQIMDTNP
NOV7C
NOV7d
NOV7e
NOV7f
NOV7g
NOV7h
NOV7i
NOV7k
NOV71 DADSDTEGGMSPEHAIRLWGRGIKSRRSSGLSSRENSALTLTDSDNENKSDDENGRPIPP
NOV7m
NOV7n
N0V7O YGNRVTDLIHRESDEFPRQGTNFTLAELGICEPSPHRSGYCSDMGILHQGYSLSTGSDAD
NOV7p
NOV7q LQDSWVLNSNVPLETRHFLFKTSSGSTPLFSSSSPGYPLTSGTVYTPPPRLLPRNTFSRK
NOV7r DADSDTEGGMSPEHAIRLWGRGIKSRRSSGLSSRENSALTLTDSDNENKSDDENGRPIPP
NOV7S DADSDTEGGMSPEHAIRLWGRGIKSRRSSGLSSRENSALTLTDSDNENKSDDENGRPIPP
NOV7t
NOV7U DADSDTEGGMSPEHAIRLWGRGIKSRRSSGLSSRENSALTLTDSDNENKSDDENGRPIPP
NOV7V
NOV7W
NOV7X
NOV7y
NOV7Z
NOV7aa
NOV7ab TDSDNENKSDDENGRPIPRTSSRSLLPFVQLPSSHNPPPVSCQMPLLDSNTSHQIMDTNP
NOV7ac
NOV7a SΞTLKAYDHDSRMHYGNRVTDLIHRESDEFPRQGTNFTLAELGICEPSPHRSGYCSDMGI NOV7b DEEFSPNSYLLRACSGPQQASSSGPP--mHSQSTLRPPLPPPHNHTLSHHHSSANSLNRNS
NOV7C KNSSIDSGEAEVGRRVTQEV
NOV7d TKLKNSSIDSGEAEVGRRVTQEV
NOV7e
NOV7f
NOV7g
NOV7h
NOV7i
NOV7J
NOV7k
NOV71 TSSPSLLPSAQLPSSHNPPPVSCQMPLLDSNTSHQIMDTNPDEEFSPNSYLLRACSGPQQ
NOV7m
NOV7n
N0V7O SDTEGGMSPEHAIRLWGRGIKSRRSSGLSSRENS LTLTDSDNENKSDDENGRPIPPTSS
NOV7p
NOV7q AFKLKKPSKYCSWKCAALSAIAAALLLAILLAYFIVPWSLKNSSIDSGEAEVGRRVTQEV
NOV7r TSSPSLLPSAQLPSSHNPPPVSCQMPLLDSNTSHQIMDTNPDEEFSPNSYLLRACSGPQQ
NOV7S TSSPSLLPSAQLPSSHNPPPVSCQMPLLDSNTSHQIMDTNPDEEFSPNSYLLRACSGPQQ
NOV7t
NOV7U TSS SLLPSAQLPSSHNPPPVSCQMPLLDSNTSHQIMDTNPDEEFSPNSYLLRACSGPQQ
NOV7V
NOV7W
NOV7X
NOV7y
NOV7Z
NOV7aa
NOV7ab DEEFSPNSYLLRACSGPQQASSSGPPNHHSQSTLRPPLPPPHNHTLSHHHSSANSLNRNS
NOV7ac
N0V7a LHQGYSLSTGSDADSDTEGGMSPEHAIRLWGRGIKSRRSSGLSSRENSALTLTDSDNENK
NOV7b LTNRRSQIHAPAPAPNDLATTPESVQLQDSWVLNSNVPLETRHFLFKTSSGSTPLFSSSS
NOV7C PPGVFWRSQIHISQPQFLKFNISLGKDALFGVYIRRGLPPSHAQYDFMERLDGKEKWSW
NOV7d PPGVFWRSQIHISQPQFLKFNISLGKDALFGVYIRRGLPPSHAQYDFMERLDGKEKWSW
NOV7e
NOV7f
NOV7g TKLKNSSIDSGE
NOV7h
NOV7i
NOV7
NOV7k
NOV71 ASSSGPPNHHSQSTLRPPLPPPH-NHTLSHHHSSANSLNRNSLTNRRSQIHAPAPAPNDLA
NOV7m
NOV7n
N0V7O PSLLPSAQLPSSHNPPPVSCQMPLLDSNTSHQIMDTNPDEEFSPNSYLLRACSGPQQASS
NOV7p
NOV7q PPGVFWRSQIHISQPQFLKFNISLGKDALFGVYIRRGLPPSHAQYDFMERLDGKEK SW
NOV7r ASSSGPP--.T---fflSQSTLRPPLPPPHNHTLSHHHSSANSLNRNSLTNRRSQIHAPAPAPNDLA
NOV7S ASSSGPPNIfflSQSTLRPPLPPPHfc-HTLSHHHSSANSLNRNSLTN^
NOV7t
NOV7U ASSSGPPNHHSQSTLRPPLPPPHNHTLSHHHSSANSLNRNSLTNRRSQIHAPAPAPNDLA
NOV7V
NOV7
NOV7X
NOV7y
NOV7Z NOV7aa
NOV7ab LTNRRSQIHAPAPAPNDLATTPESVQLQDSWVLNSNVPLETRHFLFKTSSGSTPLFSSSS
NOV7ac
NOV7a SDDENGRPIPPTSSPSLLPSAQLPSSHNPPPVSCQMPLLDSNTSHQIMDTNPDEEFSPNS
NOV7b PGYPLTSGTVYTPPPRLLPRNTFSRKAFKLKJKPSKYCSWKCAALSAIAAALLLAILLAYF
NOV7C ESPRERRSIQTLVQNEAVFVQYLDVGLWHLAFYNDGKDKΞMVSFNTWLDSVQDCPRNCH
NOV7d ESPRERRSIQTLVQNEAVFVQYLDVGLWHLAFYNDGKDKEMVSFNTVVLDSVQDCPRNCH
NOV7e
NOV7f
NOV7g AΞVGRRVTQEVPPGVFWRSQIHISQPQFLKFNISLGKDALFGVYIRRGLPPSHAQYDFME
NOV7h
NOV7i MDVKDRRHRSLTRGR
NOV7J MDVKDRRHRSLTRGR
NOV7k MDVKDRRHRSLTRGR
NOV71 TTPESVQLQDSWVLNSNVPLETRHFLFKTSSGSTPLFSSSSPGYPLTSGTVYTPPPRLLP
NOV7m KHQHSAISGIMDVKDRRHRSLTRGR
NOV7n KHQHSAISGIMDVKDRRHRSLTRGR
N0V7O SGPPNHHSQSTLRPPLPPPHNHTLSHHHSSANSLNRNSLTNRRSQIHAPAPAPNDLATTP
NOV7p KHQHSAISGIMDVKDRRHRSLTRGR
NOV7q ΞSPRERRSIQTLVQNEAVFVQYLDVGLWHLAFYNDGKDKEMVSFNTWLDSVQDCPRNCH
NOV7r TTPESVQLQDSWVLNSNVPLETRHFLFKTSSGSTPLFSSSSPGYPLTSGTVYTPPPRLLP
NOV7S TTPESVQLQDSWVLNSNVPLETRHFLFKTSSGSTPLFSSSSPGYPLTSGTVYTPPPRLLP
NOV7 KHQHSAISGIMDVKDRRHRSLTRGR
NOV7U TTPESVQLQDSWVLNSNVPLETRHFLFKTSSGSTPLFSSSSPGYPLTSGTVYTPPPRLLP
NOV7v
NOV7w
NOV7x
NOV7y
NOV7z
NOV7aa
NOV7ab PGYPLTSGTVYTPPPRLLPRNTFSRKAFKLKKPSKYCSWKCAALSAIAAALLLAILLAYF
NOV7ac
NOV7a YLLRACSGPQQASSSGPPNHHSQSTLRPPLPPPHNHTLSHHHSSANSLNRNSLTNRRSQI
NOV7b IA-røLLGLNWQLQPADGHTFNNGIRTGLPGNDDVATMPSGGKVPWSLKNSSIDSGEAEVG
NOV7c GNGECVSGVCHCFPGFLGADCAKAACPVLCSGNGQYSKGTCQCYSGWKGAECDVPMNQCI
NOV7d GNGECVSGVCHCFPGFLGADCAKAACPVLCSGNGQYSKGTCQCYSGWKGAECDVPMNQCI
NOV7e TKLKNSSIDSGEAEVG
NOV7f
NOV7g RLDGKEKWSVVESPRERRSIQTLVQNEAVFVQYLDVGLWHLAFYNDG-KDKEMVSFNIVVL
NOV7h
NOV7i CGKECRYTSSSLDSEDCRVPTQKSYSSSETLKAYDHDSRMHYGNRVTDLIHRESDEFPRQ
NOV7J CGKECRYTSSSLDSEDCRVPTQKSYSSSETLKAYDHDSRMHYGNRVTDLIHRESDEFPRQ
NOV7k CGKECRYTSSSLDSEDCRVPTQKSYSSSETLKAYDHDSRMHYGNRVTDLIHRΞSDEFPRQ
NOV71 RNTFSRKAFKLKKPSKYCSWKCAALSAIAAALLLAILLAYFIVPWSLKNSSIDSGEAEVG
NOV7m CGKECRYTSSSLDSEDCRVPTQKSYSSSETLKAYDHDSRMHYGNRVTDLIHRESDEFPRQ
NOV7n CGKECRYTSSSLDSEDCRVPTQKSYSSSETLKAYDHDSRMHYGNRVTDLIHRESDEFPRQ
N0V7O ESVQLQDSWVLNSNVPLETRHFLFKTSSGSTPLFSSSSPGYPLTSGTVYTPPPRLLPRNT
NOV7p CGKECRYTSSSLDSEDCRVPTQKSYSSSETLKAYDHDSRMHYGNRVTDLIHRESDEFPRQ
NOV7q GNGECVSGVCHCFPGFLGADCAKAACPVLCSGNGQYSKGTCQCYSGWKGAECDVPMNQCI
NOV7r -RNTFSRKAFKLKKPSKYCSWKCAALSAIAAALLLAILLAYFIVPWSLKNSSIDSGEAEVG
NOV7S RNTFSRKAFKLKKPSKYCSWKCAALSAIAAALLLAILLAYFIVPWSLKNSSIDSGEAEVG
NOV7t CGKECRYTSSSLDSEDCRVPTQKSYSSSETLKAYDHDSRMHYGNRVTDLIHRESDEFPRQ
NOV7U -RNTFSRKAFKLKKPSKYCSWKCAALSAIAAALLLAILLAYFIVPWSLKNSSIDSGEAEVG NOV7V KNSSIDSGEAEVG
NOV7W
NOV7X
NOV7y
NOV7z
NOV7aa
NOV7ab AAMHLLGLNWQLQPADGHTFNNGIRTGLPGNDDVATMPSGGKVPWSLKNSSIDSGEAEVG
NOV7ac KNSSIDSGEAEVG
NOV7a HAPAPAPNDLATTPESVQLQDSWVLNSNVPLETRHFLFKTSSGSTPLFSSSSPGYPLTSG
NOV7b RRVTQEVPPGVF RSQIHISQPQFLKFNISLGKDALFGVYIRRGLPPSHAQYDFMERLDG
NOV7C DPSCGGHGSCIDGNCVCSAGYKGEHCEΞVDCLDPTCSSHGVCVNGECLCSPGWGGLNCEL
NOV7d DPSCGGHGSCIDGNCVCSAGYKGEHCEEVDCLDPTCSSHGVCVNGECLCSPGWGGLNCEL
NOV7e RRVTQEVPPGVFWRSQIHISQPQFLKFNISLGKDALFGVYIRRGLPPSHAQYDFMERLDG
NOV7f TKLKNSSIDSGEAEVGRRV
NOV7g DSVQDCPRNCHGNGECVSGVCHCFPGFLGADCAKAACPVLCSGNGQYSKGTCQCYSGWKG
NOV7h
NOV7i GTNFTLAELGICEPSPHRSGYCSDMGILHQGYSLSTGSDADSDTEGGMSPEHAIRLWGRG
NOV7J GTNFTLAΞLGICEPSPHRSGYCSDMGILHQGYSLSTGSDADSDTEGGMSPEHAIRLWGRG
NOV7k GTNFTLAELGICEPSPHRSGYCSDMGILHQGYSLSTGSDADSDTEGGMSPEHAIRLWGRG
NOV71 RRVTQEVPPGVFWRSQIHISQPQFLKFNISLGKDALFGVYIRRGLPPSHAQYDFMERLDG
NOV7m GTNFTLAELGICEPSPHRSGYCSDMGILHQGYSLSTGSDADSDTEGGMSPEHAIRLWGRG
NOV7I1 GTNFTLAELGICEPSPHRSGYCSDMGILHQGYSLSTGSDADSDTEGGMSPEHAIRLWGRG
N0V7O FSRKAFKLKKPSKYCSWKCAALSAIAAALLLAILLAYFIVPWSLKNSSIDSGΞAEVGRRV
NOV7p GTNFTLAELGICEPSPHRSGYCSDMGILHQGYSLSTGSDADSDTEGGMSPEHAIRLWGRG
NOV7q DPSCGGHGSCIDGNCVCSAGYKGEHCEEVDCLDPTCSSHGVCVNGECLCSPGWGGLNCEL
NOV7r RRVTQEVPPGVFWRSQIHISQPQFLKFNISLGKDALFGVYIRRGLPPSHAQYDFMERLDG
NOV7S RRVTQEVPPGVFWRSQIHISQPQFLKFNISLGKDALFGVYIRRGLPPSHAQYDFMERLDG
NOV7t GTNFTLAELGICEPSPHRSGYCSDMGILHQGYSLSTGSDADSDTEGGMSPEHAIRLWGRG
NOV7U RRVTQEVPPGVFWRSQIHISQPQFLKFNISLGKDALFGVYIRRGLPPSHAQYDFMERLDG
NOV7V RRVTQEVPPGVFWRSQIHISQPQFLKFNISLGKDALFGVYIRRGLPPSHAQYDFMERLDG
NOV7W
NOV7X
NOV7y
NOV7Z
NOV7aa KNSSIDSGEAEVGRRV
NOV7ab RRVTQEVPPGVFWRSQIHISQPQFLKFNISLGKDALFGVYIRRGLPPSHAQYDFMERLDG
NOV7ac RRVTQEVPPGVFWRSQIHISQPQFLKFNISLGKDALFGVYIRRGLPPSHAQYDFMERLDG
NOV7a TVYTPPPRLLPRNTFSRKAFKLKKPSKYCSWKCAALSAIAAALLLAILLAYFIVPWSLKN
NOV7b -KEKWSVVESPRERRSIQTLVQNEAVFVQYLDVGLWHLAFYNDGKDKEMVSFNTVVLDSVQ
NOV7C ARVQCPDQCSGHGTYLPDTGLCSCDPNWMGPDCSVEVCSVDCGTHGVCIGGACRCEEGWT
NOV7d ARVQCPDQCSGHGTYLPDTGLCSCDPNWMGPDCSVEVCSVDCGTHGVCIGGACRCEEGWT
NOV7e KEKWSWESPRERRSIQTLVQNEAVFVQYLDVGLWHLAFYNDGKDKEMVSFNTVVLDSVQ
NOV7f TQEVPPGVFWRSQIHISQPQFLKFNISLGKDALFGVYIRRGLPPSHAQYDFMERLDGKEK
NOV7g AECDVPMNQCIDPSCGGHGSCIDGNCVCSAGYKGEHCEEVDCLDPTCSSHGVCVNGECLC
NOV7 MLHAANKGRKPSAEAGRPIPPTSSPSLLPSAQLPSSHNPPPVS
NOV7i IKSRRSSGLSSRENSALTLTDSDNENKSDDENGRPIPPTSSPSLLPSAQLPSSHNPPPVS
NOV7 IKSRRSSGLSSRENSALTLTDSDNENKSDDENGRPIPPTSSPSLLPSAQLPSSHNPPPVS
NOV7k IKSRRSSGLSSRENSALTLTDSDNENKSDDENGRPIPPTSSPSLLPSAQLPSSHNPPPVS
NOV71 KEKWSVVESPRERRSIQTLVQNEAVFVQYLDVGLWHI-AFY--STOGKDKEMVSFNTVVLDSVQ
NOV7m IKSRRSSGLSSRENSALTLTDSDNENKSDDENGRPIPPTSSPSLLPSAQLPSSHNPPPVS
NOV7n IKSRRSSGLSSRENSALTLTDSDNENKSDDENGRPIPPTSSPSLLPSAQLPSSHNPPPVS
N0V7O TQEVPPGVFWRSQIHISQPQFLKFNISLGKDALFGVYIRRGLPPSHAQYDFMERLDGKEK
NOV7p IKSRRSSGLSSRENSALTLTDSDNENKSDDENGRPIPPTSSPSLLPSAQLPSSHNPPPVS NOV7q ARVQCPDQCSGHGTYLPDTGLCSCDPNWMGPDCSVEVCSVDCGTHGVCIGGACRCEEGWT
NOV7r -KEKWSVVESPRERRSIQTLVQNEAVFVQYLDVGLWHLAFY-rroGKDKEMVSFNTVVLDSVQ
NOV7s KEKWSWESPRERRSIQTLVQNEAVFVQYLDVGLWHLAFYNDGKDKEMVSFNTWLDSVQ
NOV7t IKSRRSSGLSSRENSALTLTDSDNENKSDDENGRPIPPTSSPSLLPSAQLPSSHNPPPVS
NOV7U IsΕKMSVVESPRERRSIQTLVQNEAVFVQYLDVGLWHLAFYNDGKDKE-viVSFNTVVLDSVQ
NOV7V KEKWSWESPRERRSIQTLVQNEAVFVQYLDVGLWHLAFYNDGKDKEMVSFNTWLDSVQ
NOV7W
NOV7X
NOV7y
NOV7Z N
NOV7aa TQΞVPPGVFWRSQIHISQPQFLKFNISLGKDALFGVYIRRGLPPSHAQYDFMERLDGKEK
NOV7ab KEKWSWESPRERRSIQTLVQNEAVFVQYLDVGLWHLAFYNDGKDKEMVSFNTWLDSVQ
NOV7ac KEKWSVVESPRERRSIQTLVQNEAVFVQYLDVGLWHLAFYNDGKDKEMVSFNTVVLDSVQ
NOV7a SSIDSGEAEVGRRVTQEVPPGVFWRSQIHISQPQFLKFNISLGKDALFGVYIRRGLPPSH
NOV7b DCPRNCHGNGECVSGVCHCFPGFLGADCAKAACPVLCSGNGQYSKGTCQCYSGWKGAECD
NOV7C GAACDQRVCHPRCIEHGTCKDGKCECREGWNGEHCTIGRQTAGTETDGCPDLCNGNGRCT
NOV7d GAACDQRVCHPRCIEHGTCKDGKCECREGWNGEHCTIGRQTAGTETDGCPDLCNGNGRCT
NOV7e DCPRNCHGNGECVSGVCHCFPGFLGADCAKAACPVLCSGNGQYSKGTCQCYSGWKGAECD
NOV7f WSWESPRERRSIQTLVQNEAVFVQYLDVGLWHLAFY-tTOGKDKEMVSFNTWLDSVQDCP
NOV7g SPGWGGLNCELARVQCPDQCSGHGTYLPDTGLCSCDPNWMGPDCSVDGCPDLCNGNGRCT
NOV7h CQMPLLDSNTSHQIMDTNPDEEFSPNSYLLRACSGPQQASSSGPPNHHSQSTLRPPLPPP
NOV7i CQMPLLDSNTSHQIMDTNPDEEFSPNSYLLRACSGPQQASSSGPPNHHSQSTLRPPLPPP
NOV7J CQMPLLDSNTSHQIMDTNPDEEFSPNSYLLRACSGPQQASSSGPPNHHSQSTLRPPLPPP
NOV7k CQMPLLDSNTSHQIMDTNPDEEFSPNSYLLRACSGPQQASSSGPPNHHSQSTLRPPLPPP
NOV71 DCPRNCHGNGECVSGVCHCFPGFLGADCAKAACPVLCSGNGQYSKGTCQCYSGWKGAECD
NOV7m CQMPLLDSNTSHQIMDTNPDEEFSPNSYLLRACSGPQQASSSGPPNHHSQSTLRPPLPPP
NOV7n CQMPLLDSNTSHQIMDTNPDEEFSPNSYLLRACSGPQQASSSGPPNHHSQSTLRPPLPPP
N0V7O WSWESPRERRSIQTLVQNEAVFVQYLDVGLWHLAFYNDGKDKEMVSFNTWLDSVQDCP
NOV7p CQMPLLDSNTSHQIMDTNPDEEFSPNSYLLRACSGPQQASSSGPPNHHSQSTLRPPLPPP
NOV7q GAACDQRVCHPRCIEHGTCKDGKCECREGWNGEHCTIGRQTAGTETDGCPDLCNGNGRCT
NOV7r DCPRNCHGNGECVSGVCHCFPGFLGADCAKAACPVLCSGNGQYSKGTCQCYSGWKGAECD
NOV7s DCPRNCHGNGECVSGVCHCFPGFLGADCAKAACPVLCSGNGQYSKGTCQCYSGWKGAECD
NOV7t CQMPLLDSNTSHQIMDTNPDEEFSPNSYLLRACSGPQQASSSGPPNHHSQSTLRPPLPPP
NOV7U DCPRNCHGNGECVSGVCHCFPGFLGADCAKAACPVLCSGNGQYSKGTCQCYSGWKGAECD
NOV7V DCPRNCHGNGECVSGVCHCFPGFLGADCAKAACPVLCSGNGQYSKGTCQCYSGWKGAECD
NOV7W
NOV7X
NOV7y
NOV7Z SSIDSGEAEVGRRVTQEVPPGVFWRSQIHISQPQFLKFNISLGKDALFGVYIRRGLPPSH
NOV7aa WSWESPRERRSIQTLVQNEAVFVQYLDVGLWHLAFYNDGKDKEMVSFNTWLDSVQDCP
NOV7ab DCPRNCHGNGECVSGVCHCFPGFLGADCAKAACPVLCSGNGQYSKGTCQCYSGWKGAECD
NOV7ac DCPRNCHGNGECVSGVCHCFPGFLGADCAKAACPVLCSGNGQYSKGTCQCYSGWKGAECD
NOV7a AQYDFMERLDGKEKWSWESPRERRSIQTLVQNEAVFVQYLDVGLWHLAFYNDGKDKEMV
NOV7b VPMNQCIDPSCGGHGSCIDGNCVCSAGYKGEHCEΞVDCLDPTCSSHGVCVNGECLCSPGW
NOV7c LGQNSWQCVCQTGWRGPGCNVAMETSCADNKDNEGDGLVDCLDPDCCLQSACQNSLLCRG
NOV7d LGQNSWQCVCQTGWRGPGCNVAMETSCADNKDNEGDGLVDCLDPDCCLQSACQNSLLCRG
NOV7e VPMNQCIDPSCGGHGSCIDGNCVCSAGYKGEHCEEVDCLDPTCSSHGVCVNGECLCSPGW
NOV7f RNCHGNGECVSGVCHCFPGFLG-ADCAKAACPVLCSGNGQYSKGTCQCYSGWKGAECDVPM
NOV7g LGQNSWQCVCQTGWRGPGCNVAMETSCADNKDNEGDGLVDCLDPDCCLQSACQNSLLCRG
NOV7h HNHTLSHHHSSANSLNRNSLTNRRSQIHAPAPAPNDLATTPESVQLQDSWVLNSNVPLET
NOV7i HNHTLSHHHSSANSLNRNSLTNRRSQIHAPAPAPNDLATTPESVQLQDSWVLNSNVPLET
NOV7J -miHTLSHHHSSANSLNRNSLTNRRSQIHAPAPAPNDLATTPESVQLQDSWVLNSNVPLET
NOV7k HNHTLSHHHSSANSLNRNSLTNRRSQIHAPAPAPNDLATTPESVQLQDSWVLNSNVPLET NOV71 VPMNQCIDPSCGGHGSCIDGNCVCSAGYKGEHCEEVDCLDPTCSSHGVCVNGECLCSPGW
NOV7m HNHTLSHHHSSANSLNRNSLT--roRSQI-- PAPAPND-l-ATTPESVQLQDSWVLNSNVPLET
NOV7n H---raTLSHHHSSANSLN----NSLTNRRSQIHAPAPAPNDLATTPESVQLQDSWVLNSNVPLET
NOV7o RNCHGNGECVSGVCHCFPGFLGADCAKAACPVLCSGNGQYSKGTCQCYSGWKGAECDVPM
NOV7p ----π-raTLSHHHSSANSLNRNSLTNRRSQIHAPAPAPNDLATTPESVQLQDSWVLNSNVPLET
NOV7q LGQNSWQCVCQTGWRGPGCNVAMETSCADNKDNEGDGLVDCLDPDCCLQSACQNSLLCRG
NOV7r VPMNQCIDPSCGGHGSCIDGNCVCSAGYKGEHCEEVDCLDPTCSSHGVCVNGECLCSPGW
NOV7S VPMNQCIDPSCGGHGSCIDGNCVCSAGYKGEHCEEVDCLDPTCSSHGVCVNGECLCSPGW
NOV7t HNHTLSHHHSSANSLNKNSLTNRRSQIHAPAPAPNDLATTPESVQLQDSWVLNSNVPLET
NOV7U VPMNQCIDPSCGGHGSCIDGNCVCSAGYKGΞHCEEVDCLDPTCSSHGVCVNGECLCSPGW
NOV7V VPMNQCIDPSCGGHGSCIDGNCVCSAGYKGEHCEEVDCLDPTCSSHGVCVNGECLCSPGW
NOV7W
NOV7X
NOV7y
NOV7z AQYDFMERLDGKEKWSWESPRERRSIQTLVQNEAVFVQYLDVGLWHLAFYNDGKDKEMV
NOV7aa RNCHGNGECVSGVCHCFPGFLGADCAKAACPVLCSGNGQYSKGTCQCYSGWKGAECDVPM
NOV7ab VPMNQCIDPSCGGHGSCIDGNCVCSAGYKGEHCEEVDCLDPTCSSHGVCVNGECLCSPGW
NOV7ac VPMNQCIDPSCGGHGSCIDGNCVCSAGYKGEHCEEVDCLDPTCSSHGVCVNGECLCSPGW
NOV7a SFNTWLDS-VQDCPRNCHGNGECVSGVCHCFPGFLGADCAKAACPVLCSGNGQYSKGTC
NOV7b GGLNCELARVQCPDQCSGHGTYLPDTGLCSCDPNWMGPDCSVEVCSVDCGTHGVCIGGAC
NOV7c SRDPLDIIQQGQTDWPAVKSFYDRIKLLAGKDSTHIIPGENPFNSSLVSLIRGQWTTDG
NOV7d SRDPLDIIQQGQTDWPAVKSFYDRIKLLAGKDSTHIIPGENPFNSSLVSLIRGQWTTDG
NOV7e GGLNCELARVQCPDQCSGHGTYLPDTGLCSCDPNWMGPDCSVEVCSVDCGTHGVCIGGAC
NOV7f NQCIDPSCGGHGSCIDGNCVCSAGYKGEHCEEVDCLDPTCSSHGVCVNGECLCSPGWGGL
NOV7g SRDPLDIIQQGQTDWPAVKSFYDRIKLLAGKDSTHIIPGENPFNSSLVSLIRGQWTTDG
NOV7h RHFLFKTSSGSTPLFSSSSPGYPLTSGTVYTPPPRLLPRNTFSRKAFKLKKPSKYCSWKC
NOV7i RHFLFKTSSGSTPLFSSSSPGYPLTSGTVYTPPPRLLPRNTFSRKAFKLKKPSKYCSWKC
NOV7J RHFLFKTSSGSTPLFSSSSPGYPLTSGTVYTPPPRLLPRNTFSRKAFKLKKPSKYCSWKC
NOV7k RHFLFKTSSGSTPLFSSSSPGYPLTSGTVYTPPPRLLPRNTFSRKAFKLKKPSKYCSWKC
NOV71 GGLNCELARVQCPDQCSGHGTYLPDTGLCSCDPNWMGPDCSVEVCSVDCGTHGVCIGGAC
NOV7m RHFLFKTSSGSTPLFSSSSPGYPLTSGTVYTPPPRLLPRNTFSRKAFKLKKPSKYCSWKC
NOV7n RHFLFKTSSGSTPLFSSSSPGYPLTSGTVYTPPPRLLPRNTFSRKAFKLKKPSKYCSWKC
NOV7o NQCIDPSCGGHGSCIDGNCVCSAGYKGEHCEEVDCLDPTCSSHGVCVNGECLCSPGWGGL
NOV7p RHFLFKTSSGSTPLFSSSSPGYPLTSGTVYTPPPRLLPRNTFSRKAFKLKKPSKYCSWKC
NOV7q SRDPLDIIQQGQTDWPAVKSFYDRIKLLAGKDSTHIIPGENPFNSSLVSLIRGQWTTDG
NOV7r GGLNCELARVQCPDQCSGHGTYLPDTGLCSCDPNWMGPDCSVEVCSVDCGTHGVCIGGAC
NOV7S GGLNCELARVQCPDQCSGHGTYLPDTGLCSCDPNWMGPDCSVEVCSVDCGTHGVCIGGAC
NOV7t RHFLFKTSSGSTPLFSSSSPGYPLTSGTVYTPPPRLLPRNTFSRKAFKLKKPSKYCSWKC
NOV7U GGLNCELARVQCPDQCSGHGTYLPDTGLCSCDPNWMGPDCSVEVCSVDCGTHGVCIGGAC
NOV7V GGLNCELARVQCPDQCSGHGTYLPDTGLCSCDPNWMGPDCSVEVCSVDCGTHGVCIGGAC
NOV7 DTGLCSCDPNWMGPDCSVΞ
NOV7x DRIKLLAGKDSTHIIPGE
NOV7y SAGYKGEHCEEVDCLDPTCS
NOV7z SFNTVVLDDSVQDCPRNCHGNGECVSGVCHCFPGFLGADCAKDLPALTFCKTIINKAAL-
NOV7aa NQCIDPSCGGHGSCIDGNCVCSAGYKGEHCEEVDCLDPTCSSHGVCVNGECLCSPGWGGL
NOV7ab GGLNCELARVQCPDQCSGHGTYLPDTGLCSCDPNWMGPDCSWCSVDCGTHGVCIGGACR
NOV7ac GGLNCELARVQCPDQCSGHGTYLPDTGLCSCDPNWMGPDCSVEVCSVDCGTHGVCIGGAC
NOV7a QCYSGWKGAECDVPMNQCIDPSCGGHGSCIDGNCVCSAGYKGEHCEEVDCLDPTCSSHGV
NOV7b RCEEGWTGAACDQRVCHPRCIEHGTCKDGKCECREGWNGEHCTIDGCPDLCN
NOV7C TPLVGVNVSFVKYPKYGYTITRQDGTFDLIANGGASLTLHFERAPFMSQERTVWLPWNSF
NOV7d TPLVGVNVSFVKYPKYGYTITRQDGTFDLIANGGASLTLHFERAPFMSQΞRTVWLPWNSF
NOV7e RCEEGWTGAACDQRVCHPRCIEHGTCKDGKCECREGWNGEHCTIDGCPDLCNGNGRCTLG
NOV7f NCELARVQCPDQCSGHGTYLPDTGLCSCDPNWMGPDCSVEVCSVDCGTHGVCIGGACRCE N0V7g TPLVGVNVSFVKYPKYGYTITRQDGTFDLIANGGASLTLHFERAPFMSQERTVWLPWNSF
N0V7h AALSAIAAALLLAILLAYFIVPWSLKNSSIDSGEAEVGRRVTQEVPPGVFWRSQIHISQP
N0V7i AALSAIAAALLLAIL
N0V7J AALSAIAAALLLAILLAYFIVPWSLKNSSIDSGEAEVGRRVTQEVPPGVFWRSQIHISQP
N0V7k AALSAIAAALLLAIL
N0V71 RCEEGWTGAACDQRVCHPRCIEHGTCKDGKCECREGWNGEHCTIGRQTAGTETDGCPDLC
N0V7m AALSAIAAALLLAILLAYFIVPWSLKNSSIDSGEAEVGRRVTQEVPPGVFWRSQIHISQP
N0V7n AALSAIAAALLLAIL
N0V7o NCELARVQCPDQCSGHGTYLPDTGLCSCDPNWMGPDCSVEVCSVDCGTHGVCIGGACRCE
N0V7p AALSAIAAALLLAILLAYFIVPWSLKNSSIDSGEAEVGRRVTQEVPPGVFWRSQIHISQP
NOV7q TPLVGV-IWSFV-KYPKYGYTITRQDGTFDLI-ANGGASLTLHFERAPFMSQERTVWLPWNSF
NOV7r RCEEGWTGAACDQRVCHPRCIEHGTCKDGKCECREGWNGEHCTIDGCPDLCN
NOV7S RCEEGWTGAACDQRVCHPRCIEHGTCKDGKCECREGWNGEHCTIGRQTAGTETDGCPDLC
NOV7t AALSAIAAALLLAIL
NOV7u RCEEGWTGAACDQRVCHPRCIEHGTCKDGKCECREGWNGEHCTIGRQTAGTETDGCPDLC
NOV7V RCEEGWTGAACDQRVCHPRCIEHGTCKDGKCECREGWNGEHCTIGRQTAGTETDGCPDLC
NOV7W
NOV7X
NOV7y
NOV7z
NOV7aa NCELARVQCPDQCSGHGTYLPDTGLCSCDPNWMGPDCSVEVCSVDCGTHGVCIGGACRCE
NOV7ab CEEGWTGAACDQRVCHPRCIEHGTCKDGKCECREGWNGEHCTIDGCPDLCNG
NOV7ac RCEEGWTGAACDQRVCHPRCIEHGTCKDGKCECREGWNGEHCTIGRQTAGTETDGCPDLC
N0V7a CVNGECLCSPGWGGLNCELARVQCPDQCSGHGTYLPDTGLCSCDPNWMGPDCSVDGCPDL
N0V7b -GNGRCTLGQNSWQCVCQTGWRGPGCNVAMETSCADNKDNEGDGLVDCLDPDCCLQSACQ
NOV7C YAMDTLVMKTEENSIPSCDLSGFVRPDPIIISSPLSTFFSAAPGQNPIVPETQVLHEEIE
NOV7d YAMDTLVMKTEENSIPSCDLSGFVRPDPIIISSPLSTFFSAAPGQNPIVPETQVLHEEIE
NOV7e QNSWQCVCQTGWRGPGCNVAMETSCADNKDNEGDGLVDCLDPDCCLQSACQNSLLCRGSR
NOV7f EGWTGAACDQRVCHPRCIEHGTCKDGKCECREGWNGEHCTIDGCPDLCNGNGRCTLGQNS
NOV7g YAMDTLVMKTEENSIPSCDLSGFVRPDPIIISSPLSTFFSAAPGQNPIVPETQVLHEEIE
N0V7h QFLKFNISLGKDALFGVYIRRGLPPSHAQYDFMERLDGKEKWSWESPRERRSIQTLVQN
NOV7i
NOV7 j QFLKFNISLGKDALFGVYIRRGLPPSHAQYDFMERLDGKEKWS ESPRERRS IQTLVQN
NOV7k
N0V71 NGNGRCTLGQNS QCVCQTGWRGPGCNVAMETSCADNKDNEGDGLVDCLDPDCCLQSACQ
NOV7m QFLKFNISLGKDALFGVYIRRGLPPSHAQYDFMERLDGKEKWSWESPRERRSIQTLVQN
NOV7I1
N0V7O EGWTGAACDQRVCHPRCIEHGTCKDGKCECREGWNGEHCTIGRQTAGTETDGCPDLCNGN
NOV7p QFLKFNISLGKDALFGVYIRRGLPPSHAQYDFMERLDGKEKWSWESPRERRSIQTLVQN
N0V7q YAMDTLVMKTEENSIPSCDLSGFVRPDPIIISSPLSTFFSAAPGQNPIVPETQVLHEEIE
N0V7r -GNGRCTLGQNSWQCVCQTGWRGPGCNVAMETSCADNKDNEGDGLVDCLDPDCCLQSACQ
NOV7s NGNGRCTLGQNSWQCVCQTGWRGPGCNVAMETSCADNKDNEGDGLVDCLDPDCCLQSACQ
NOV7t
NOV7U NGNGRCTLGQNSWQCVCQTGWRGPGCNVAMETSCADNKDNEGDGLVDCLDPDCCLQSACQ
N0V7V NGNGRCTLGQNSWQCVCQTGWRGPGCNVAMETSCADNKDNEGDGLVDCLDPDCCLQSACQ
NOV7W
NOV7X
NOV7y
NOV7z
NOV7aa EGWTGAACDQRVCHPRCIEHGTCKDGKCECREGWNGEHCTIGRQTAGTΞTDGCPDLCNGN
NOV7ab NGR-CTLGQNSWQCVCQTGWRGPGCNVAMETSCADNKDNEGDGLIDCMDPDCCL
NOV7ac NGNGRCTLGQNSWQCVCQTGWRGPGCNVAMETSCADNKDNEGDGLVDCLDPDCCLQSACQ
NOV7a CNGNGRCTLGQNSWQCVCQTGWRGPGCNVAMETSCADNKDNEGDGLVDCLDPDCCLQSAC N0V7b N
N0V7C L
N0V7d L
N0V7e D
N0V7f W
N0V7g L
N0V7h EAVFVQYLDVGLWHLAFYNDGKDKEMVSFNTVVLDGTI
N0V7i
N0V7j EAVFVQYLDVGLWHLAFYNDGKDKEMVSFNTWLDS
NOV7k
NOV71 N
N0V7m EAVFVQYLDVGLWHLAFY---TOGKDKEMVSFNTVVLDSVQDCPR--.CHGNGECVSGVCHCFPG
NOV7n
N0V7O G
NOV7p EAVFVQYLDVGLWHLAFYNDGKDKEMVSFNTWLDSVQDCPRNCHGNGECVSGVCHCFPG
N0V7q L
N0V7r N
N0V7s N
N0V7t
NOV7U N
NOV7V N
NOV7w
NOV7x
N0V7y
N0V7z
NOV7aa G
NOV7ab Q
N0V7ac N
NOV7a QNSLLCRGSRDPLDIIQQGQTDWPAVKSFYDRIKLLAGKDSTHIIPGENPFNSSLVSLIR
NOV7b --SLLCRGSRDPLDIIQQGQTDWPAVKSFYDRIKLLAGKDSTHIIPGENPFNSSLVSLIR
NOV7c --PGSNVKLRYLSSRTAGYKSLLKITMTQSTVPLNLIRVHLMVAVEGHLFQKSFQASPNL
NOV7d --PGSNVKLRYLSSRTAGYKSLLKITMTQSTVPLNLIRVHLMVAVEGHLFQKSFQASPNL
NOV7e --PLDIIQQGQTDWPAVKSFYDRIKLLAGKDSTHIIPGENPFNSSLVSLIRGQWTTDGT
NOV7f --QCVCQTGWRGPGCNVAMETSCADNKDNEGDGLVDCLDPDCCLQSACQNSLLCRGSRDP
N0V7g --PGSNVKLRYLSSRTAGYKSLLKITMTQSTVPLNLIRVHLMVAVEGHLFQKSFQASPNL
N0V7h
N0V7i
NOV7J
N0V7k
NOV71 --SLLCRGSRDPLDIIQQGQTDWPAVKSFYDRIKLLAGKDSTHIIPGENPFNSSLVSLIR
N0V7m FLGADCAKGMCRHFP
N0V7n
N0V7O --RCTLGQNSWQCVCQTGWRGPGCNVAMETSCADNKDNEGDGLVDCLDPDCCLQSACQNS
NOV7p FLGADCAKAACPVLC
NOV7q --PGSNVKLRYLSSRTAGYKSLLKITMTQSTVPLNLIRVHLMVAVEGHLFQKSFQASPNL
NOV7r --SLLCRGSRDPLDIIQQGQTDWPAVKSFYDRIKLLAGKDSTHIIPGENPFNSSLVSLIR
NOV7S --SLLCRGSRDPLDIIQQGQTDWPAVKSFYDRIKLLAGKDSTHIIPGENPFNSSLVSLIR
NOV7t
NOV7U --SLLCRGSRDPLDIIQQGQTDWPAVKSFYDRIKLLAGKDSTHIIPGENPFNSSLVSLIR
NOV7V --SLLCRGSRDPLDIIQQGQTDWPAVKSFYDRIKLLAGKDSTHIIPGENPFNSSLVSLIR
N0V7W
NOV7x
NOV7y
NOV7Z NOV7aa --RCTLGQNSWQCVCQTGWRGPGCNVAMETSCADNKDNEGDGLVDCLDPDCCLQSACQNS NOV7ab --SSCQNQPYCRGLPDPQDIISQSLQSPSQQAAKSFYDRISFLIGSDSTHVIPGESPFNS NOV7ac --SLLCRGSRDPLDIIQQGQTDWPAVKSFYDRIKLLAGKDSTHIIPGENPFNSSLVSLIR
NOV7a GQWTTDGTPLVGVNVSFVKYPKYGYTITRQDGTFDLIANGGASLTLHFERAPFMSQERT
NOV7b GQVVTTDGTPLVGVNVSFVKYPKYGYTITRQDGTFDLIANGGASLTLHFERAPFMSQΞRT
NOV7C ASTFIWDKTDAYGQRVYGLSDAWSVGFEYETCPSLILWEKRTALLQGFELDPSNLGGWS
NOV7d AYTFIWDKTDAYGQRVYGLSDAWSVGFEYETCPSLILWEKRTALLQGFELDPSNLGGWS
NOV7e PLVGVNVSFVKYPKYGYTITRQDGTFDLIANGGASLTLHFERAPFMSQERTVWLPWNSFY
NOV7f LDIIQQGQTDWPAVKSFYDRIKLLAGKDSTHIIPGENPFNSSLVSLIRGQWTTDGTPLV
NOV7g AYTFIWDKTDAYGQRVYGLSDAWSVGFEYETCPSLILWEKRTALLQGFELDPSNLGGWS
NOV7h
NOV7i
NOV7J
NOV7k
NOV71 GQWTTDGTPLVGVNVSFVKYPKYGYTITRQDGTFDLIANGGASLTLHFERAPFMSQERT
NOV7
NOV7n
N0V7O LLCRGSRDPLDIIQQGQTDWPAVKSFYDRIKLLAGKDSTHIIPGENPFNSSLVSLIRGQV
NOV7p
NOV7q ASTFIWDKTDAYGQRVYGLSDAWSVGFEYETCPSLILWEKRTALLQGFELDPSNLGGWS
NOV7r GQWTTDGTPLVGVNVSFVKYPKYGYTITRQDGTFDLIANGGASLTLHFERAPFMSQERT
NOV7S GQWTTDGTPLVGVNVSFVKYPKYGYTITRQDGTFDLIANGGASLTLHFERAPFMSQERT
NOV7t
NOV7U GQWTTDGTPLVGVNVSFVKYPKYGYTITRQDGTFDLIANGGASLTLHFERAPFMSQERT
NOV7V GQWTTDGTPLVGVNVSFVKYPKYGYTITRQDGTFDLIANGGASLTLHFERAPFMSQERT
NOV7
NOV7X
NOV7y
NOV7Z
NOV7aa LLCRGSRDPLDIIQQGQTDWPAVKSFYDRIKLLAGKDSTHIIPGENPFNSSLVSLIRGQV
NOV7ab LVSLIRGQWTTDGTPLVGVNVSFVKYPKYGYTITRQDGTYSLSRFDLIANGGASLTLHF
NOV7ac GQWTTDGTPLVGVNVSFVKYPKYGYTITRQDGTFDLIANGGASLTLHFERAPFMSQERT
NOV7a VWLPWNSFYAMDTLVMKTEENSIPSCDLSGFVRPDPIIISSPLSTFFSAAPGQNPIVPET
NOV7b VWLPWNSFYAMDTLVMKTEENSIPSCDLSGFVRPDPIIISSPLSTFFSAAPGQNPIVPET
NOV7c LDKHHILNVKSGILHKGTGENQFLTQQPAIITSIMGNGRRRSISCPSCNGLAEGNKLLAP
NOV7d LDKHHILNVKSGILHKGTGENQFLTQQPAIITSIMGNGRRRSISCPSCNGLAEGNKLLAP
NOV7e AMDTLVMKTEENSIPSCDLSGFVRPDP111SSPLSTFFSAAPGQNPIVPETQVLHEEIEL
NOV7f GVNVSFVKYPKYGYTITRQDGTFDLIANGGASLTLHFERAPFMSQΞRTVWLPWNSFYAMD
NOV7g LDKHHILNVKSGILHKGTGENQFLTQQPAIITSIMGNGRRRSISCPSCNGLAEGNKLLAP
NOV7h
NOV7i
NOV7J
NOV7k
NOV71 VWLPWNSFYAMDTLVMKTEENSIPSCDLSGFVRPDPI11SSPLSTFFSAAPGQNPIVPET
NOV7m
NOV7n
N0V7O VTTDGTPLVGVNVSFVKYPKYGYTITRQDGTFDLIANGGASLTLHFERAPFMSQERTVWL
NOV7p
NOV7q LDKHHILNVKSGILHKGTGENQFLTQQPAIITSIMGNGRRRSISCPSCNGLAEGNKLLAP
NOV7r VWLPWNSFYAMDTLVMKTEENSIPSCDLSGFVRPDPIIISSPLSTFFSAAPGQNPIVPET
NOV7S VWLPWNSFYAMDTLVMKTEENSIPSCDLSGFVRPDPIIISSPLSTFFSAAPGQNPIVPET
NOV7t
NOV7u VWLPWNSFYAMDTLVMKTEENSIPSCDLSGFVRPDPIIISSPLSTFFSAAPGQNPIVPET NOV7V VWLPWNSFYAMDTLVMKTEENSIPSCDLSGFVRPDPIIISSPLSTFFSAAPGQNPIVPET
NOV7W
NOV7X
NOV7y
NOV7Z
NOV7aa VTTDGTPLVGVNVSFVKYPKYGYTITRQDGTFDLIANGGASLTLHFERAPFMSQERTVWL
NOV7ab ERAPFMSQERTVWLPWNSFYAMDTLVMKTEENSIPSCDLSGFCRLDPIIISSPLSTFFSA
NOV7ac VWLPWNSFYAMDTLVMKTEENSIPSCDLSGFVRPDPIIISSPLSTFFSAAPGQNPIVPET
NOV7a QVLHEEIELPGSNVKLRYLSSRTAGYKSLLKITMTQSTVPLNLIRVHLMVAVEGHLFQKS
NOV7b QVLHEEIELPGSNVKLRYLSSRTAGYKSLLKITMTQSTVPLNLIRVHLMVAVEGHLFQKS
NOV7C VALAVGIDGSLYVGDFNYIRRIFPSRN
NOV7d VALAVGIDGSLYVGDFNYIRRIFPSRNLEG
NOV7e PGSNVKLRYLSSRTAGYKSLLKITMTQΞTVPLNLIRVHLMVAVEGHLFQKSFQASPNLAY
NOV7f TLVMKTEENSIPSCDLSGFVRPDPIIISSPLSTFFSAAPGQNPIVPETQVLHEEIELPGS
NOV7g VALAVGIDGSLYVGDFNYIRRIFPSRNLEG
NOV7h
NOV7i
NOV7J
NOV7k
NOV71 QVLHEEIELPGSNVKLRYLSSRTAGYKSLLKITMTQSTVPLNLIRVHLMVAVEGHLFQKS
NOV7m
NOV7n
N0V7O PWNSFYAMDTLVMKTEENSIPSCDLSGFVRPDPIIISSPLSTFFSAAPGQNPIVPETQVL
NOV7p
NOV7q VALAVGIDGSLYVGDFNYIRRIFPSRNVTSILELRNKEFKHSNNPAHKYYLAVDPVSGSL
NOV7r QVLHEEIELPGSNVKLRYLSSRTAGYKSLLKITMTQSTVPLNLIRVHLMVAVEGHLFQKS
NOV7S QVLHEEIELPGSNVKLRYLSSRTAGYKSLLKITMTQSTVPLNLIRVHLMVAVEGHLFQKS
NOV7t
NOV7U QVLHEEIELPGSNVKLRYLSSRTAGYKSLLKITMTQSTVPLNLIRVHLMVAVEGHLFQKS
NOV7V QVLHEEIELPGSNVKLRYLSSRTAGYKSLLKITMTQSTVPLNLIRVHLMVAVEGHLFQKS
NOV7
NOV7X
NOV7y
NOV7z
NOV7aa PWNSFYAMDTLVMKTEENSIPSCDLSGFVRPDPIIISSPLSTFFSAAPGQNPIVPETQVL
NOV7ab APGQNPIVPETQVLHEEIELPGSNVKLRYLSSRTAGYKSLLKITMTQSTVPLNLIRVHLM
NOV7ac QVLHEEIELPGSNVKLRYLSSRTAGYKSLLKITMTQSTVPLNLIRVHLMVAVEGHLFQKS
NOV7a FQASPNLASTFIWDKTDAYGQRVYGLSDAWSVGFEYETCPSLILWEKRTALLQGFELDP
NOV7b FQASPNLASTFIWDKTDAYGQRVYGLSDAWSVGFEYETCPSLILWEKRTALLQGFELDP
NOV7C
NOV7d
NOV7e TFIWDKTDAYGQRVYGLSDAWSVGFEYETCPSLILWEKRTALLQGFELDPSNLGGWSLD
NOV7f NVKLRYLSSRTAGYKSLLKITMTQSTVPLNLIRVHLMVAVEGHLFQKSFQASPNLAYTFI
NOV7g
NOV7h
NOV7i
NOV7k
NOV71 FQASPNLASTFIWDKTDAYGQRVYGLSDAWSVGFEYETCPSLILWEKRTALLQGFELDP
NOV7m
N0V7n
N0V7O HEEIELPGSNVKLRYLSSRTAGYKSLLKITMTQSTVPLNLIRVHLMVAVEGHLFQKSFQA
NOV7p ■ NOV7q YVSDTNSRRIYRVKSLSGTKDLAGNSEWAGTGEQCLPFDEARCGDGGKAIDATLMSPRG
NOV7r FQASPNLASTFIWDKTDAYGQRVYGLSDAWSVGFEYETCPSLIL EKRTALLQGFELDP
NOV7S FQASPNLASTFIWDKTDAYGQRVYGLSDAWSVGFEYETCPSLILWΞKRTALLQGFELDP
NOV7t
NOV7U FQASPNLASTFIWDKTDAYGQRVYGLSDAWSVGFEYETCPSLILWEKRTALLQGFELDP
NOV7V FQASPNLAYTFIWDKTDAYGQRVYGLSDAWSVGFEYETCPSLILWEKRTALLQGFELDP
NOV7
NOV7X
NOV7y
NOV7Z
NOV7aa HEEIELPGSNVKLRYLSSRTAGYKSLLKITMTQSTVPLNLIRVHLMVAVEGHLFQKSFQA
NOV7ab VAVEGHLFQKSFQASPNLAYTFIWDKTDAYGQRVYGLSDAVGMFWFQRTALLQGFELDPS
NOV7ac FQASPNLASTFIWDKTDAYGQRVYGLSDAWSVGFEYETCPSLILWEKRTALLQGFΞLDP
NOV7a SNLGGWSLDKHHILNVKSGILHKGTGENQFLTQQPAIITSIMGNGRRRSISCPSCNGLAE
NOV7b SNLGGWSLDKHHILNVKSGILHKGTGENQFLTQQPAIITSIMGNGRRRSISCPSCNGLAE
NOV7C
NOV7d
NOV7 e KHHILNVKSGILHKGTGENQFLTQQPAI ITS IMGNGRRRS I SCPSCNGLAEGNKLLAPVA
NOV7 f WDKTDAYGQRVYGLSDAWSVGFEYETCPSLILWEKRTALLQGFELDPSNLGGWSLDKHH
NOV7g
NOV7h
NOV7i
NOV7J
NOV7k
NOV71 SNLGGWSLDKHHILNVKSGILHKGTGENQFLTQQPAIITSIMGNGRRRSISCPSCNGLAE
NOV7m
NOV7n
NOV7o SPNLASTFIWDKTDAYGQRVYGLSDAWSVGFEYETCPSLILWEKRTALLQGFELDPSNL
NOV7p
NOV7q IAVDKNGLMYFVDATMIRKVDQNGIISTLLGSNDLTAVRPLSCDSSMDVAQVRLEWPTDL
NOV7r SNLGGWSLDKHHILNVKSGILHKGTGENQFLTQQPAIITSIMGNGRRRSISCPSCNGLAE
NOV7S SNLGGWSLDKHHILNVKSGILHKGTGENQFLTQQPAIITSIMGNGRRRSISCPSCNGLAE
NOV7t
NOV7U SNLGGWSLDKHHILNVKSGILHKGTGENQFLTQQPAIITSIMGNGRRRSISCPSCNGLAE
NOV7V SNLGGWSLDKHHILNVKSGILHKGTGENQFLTQQPAIITSIMGNGRRRSISCPSCNGLAE
NOV7w
NOV7X
NOV7y
NOV7Z
NOV7aa SPNLAYTFIWDKTDAYGQRVYGLSDAWSVGFEYETCPSLILWEKRTALLQGFELDPSNL
NOV7ab NLGGWSLDKHHILNVKSGILHKGTGΞNQFLTQQPAIITSIMGNGRRRSISCPSCNGLAEG
NOV7ac SNLGGWSLDKHHILNVKSGILHKGTGENQFLTQQPAIITSIMGNGRRRSISCPSCNGLAE
NOV7a GNKLLAPVALAVGIDGSLYVGDFNYIRRIFPSRNVTSILELRNKEFKHSNNPAHKYYLAV
NOV7b GN-KLLAPVALAVGIDGSLYVGDFNYIRRIFPSRNVTSILELR-NKEFKHSNNPAHKYYLAV
NOV7C
NOV7d
NOV7e LAVGIDGSLYVGDFNYIRRIFPSRNLEG
NOV7f ILNVKSGILHKGTGENQFLTQQPAIITSIMGNGRRRSISCPSCNGLAEGNKLLAPVALAV
NOV7g
NOV7h
NOV7i
NOV7J
NOV7k N0V71 GNKLLAPVALAVGIDGSLYVGDFNYIRRIFPSRNVTS ILELRNKEFKHSNNPAHKYYLAV
N0V7m
N0V7n
N0V7O GGWSLDKHHILNVKSGILHKGTGENQFLTQQPAIITSIMGNGRRRSISCPSCNGLAEGNK
N0V7p '■
N0V7q AVNPMDNSLYVLENNVILRITENHQVSIIAGRPMHCQVPGIDYSLSKLAIHSALESASAI
N0V7 r GN-KLLAPVALAVGIDGSLYVGDFNYIRRIFPSRNVTS ILELRNKEFKHSNNPAHKYYLAV
N0V7 s GNKLLAPVALAVGIDGSLYVGDFNYIRRI FPSRNVTS ILELRNKEFKHSNNPAHKYYLAV
NOV7t
NOV7U GNKLLAPVALAVGIDGSLYVGDFNYIRRIFPSRNVTSILELRNKEFKHSNNPAHKYYLAV
NOV7V GNKLLAPVALAVGIDGSLYVGDFNYIRRIFPSRN
NOV7
NOV7X
NOV7y
NOV7Z
NOV7aa GGWSLDKHHILNVKSGILHKGTGENQFLTQQPAIITSIMGNGRRRSISCPSCNGLAEGNK
NOV7ab NKLLAPVALAVGIDGSLYVGDFNYIRRIFPSRNVTSILELRRNKEFKHSNNPAHKYYLAV
NOV7ac GNKLI--APVALAVGIDGSLYVGDFNYIRRIFPSRNVTSILELRNKEFKHSNNPAHKYYLAV
NOV7a DPVSGSLYVSDTNSRRIYRVKSLSGTKDLAGNSEWAGTGEQCLPFDEARCGDGGKAIDA
NOV7b DPVSGSLYVSDTNSRRIYRVKSLSGTKDLAGNSEWAGTGEQCLPFDEARCGDGGKAIDA
NOV7C
NOV7d
NOV7e
NOV7f GIDGSLYVGDFNYIRRIFPSRNLEG
NOV7g
NOV7h
NOV7i
NOV7J
NOV7k
NOV71 DPVSGSLYVSDTNSRRI RVKSLSGTKDLAGNSEWAGTGEQCLPFDEARCGDGGKAIDA
NOV7m
NOV7n
N0V7O LLAPVALAVGIDGSLYVGDFNYIRRIFPSRNVTSILELRNKEFKHSNNPAHKYYLAVDPV
NOV7p
NOV7q AISHTGVLYITETDEKKINRLRQVTTNGEICLLAGAASDCDCKNDVNCNCYSGDDAYATD
NOV7r DPVSGSLYVSDTNSRRIYRVKSLSGTKDLAGNSEWAGTGEQCLPFDEARCGDGGKAIDA
NOV7 S DPVSGSLYVSDTNSRRI YRVKSLSGTKDLAGNSEWAGTGEQCLPFDEARCGDGGKAIDA
NOV7t
NOV7U DPVSGSLYVSDTNSRRIYRVKSLSGTKDLAGNSEWAGTGEQCLPFDEARCGDGGKAIDA
NOV7V
NOV7
NOV7x
NOV7y
NOV7z
NOV7aa LLAPVALAVGIDGSLYVGDFNYIRRIFPSRN
NOV7ab DPVSGSLYVSDTNSRRIYRVKSLSGTKDLAGNSEWAGTGEQCLPFDEARCGDGGKAIDA
NOV7ac DPVSGSLYVSDTNSRRIYRVKSLSGTKDLAGNSEWAGTGEQCLPFDEARCGDGGKAIDA
NOV7a TLMSPRGIAVDKNGLMYFVDATMIRKVDQNGIISTLLGSNDLTAVRPLSCDSSMDVAQVR
NOV7b TLMSPRGIAVDKNGLMYFVDATMIRKVDQNGIISTLLGSNDLTAVRPLSCDSSMDVAQVR
NOV7C
NOV7d
NOV7e
NOV7f N0V7g
NOV7h
NOV7i
NOV7
NOV7k
NOV71 TLMSPRGIAVDKNGLMYFVDATMIRKVDQNGIISTLLGSNDLTAVRPLSCDSSMDVAQVR
NOV7m
NOV7n
NOV7o SGSLYVSDTNSRRIYRVKSLSGTKDLAGNSEWAGTGEQCLPFDEARCGDGGKAIDATLM
NOV7p
NOV7q AILNSPSSLAVAPDGTIYIADLGNIRIRAVSKNKPVLNAFNQYEAASPGEQELYVFNADG
NOV7r TLMSPRGIAVD-KNGLMYFVDATMIRKVDQNGIISTLLGSNDLTAVRPLSCDSSMDVAQVR
NOV7s TLMSPRGI VDKNGLMYFVDATMIRKVDQNGIISTLLGSNDLTAVRPLSCDSSMDVAQVR
NOV7t
NOV7U TLMSPRGIAVDKNGLMYFVDATMIRKVDQNGIISTLLGSNDLTAVRPLSCDSSMDVAQVR
NOV7V
NOV7W
NOV7x
NOV7y
NOV7z
NOV7aa
NOV7ab TLMSPRGIAVDKNGLMYFVDATMIRKVDQNGIISTLLGSNDLTAVRPLSCDSSMDVAQVR
NOV7ac TLMSPRGIAVDKNGLMYFVDATMIRKVDQNGIISTLLGSNDLTAVRPLSCDSSMDVAQVR
NOV7a LEWPTDLAVNPMDNSLYVLENNVILRITENHQVSIIAGRPMHCQVPGIDYSLSKLAIHSA
NOV7b LEWPTDLAVNPMDNSLYVLENNVILRITENHQVSIIAGRPMHCQVPGIDYSLSKLAIHSA
NOV7C
NOV7d
NOV7e
NOV7f
NOV7g
NOV7h
NOV7i
NOV7J
NOV7k
NOV71 LEWPTDLAVNPMDNSLYVLENNVILRITENHQVSIIAGRPMHCQVPGIDYSLSKLAIHSA
NOV7m
NOV7n
N0V7O SPRGIAVDKNGLMYFVDATMIRKVDQNGIISTLLGSNDLTAVRPLSCDSSMDVAQVRLEW
NOV7p
NOV7q IHQYTVSLVTGEYLYNFTYSTDNDVTELIDNNGNSLKIRRDSSGMPRHLLMPDNQIITLT
NOV7r LEWPTDLAVNPMDNSLYVLENNVILRITENHQVSIIAGRPMHCQVPGIDYSLSKLAIHSA
NOV7s LEWPTDLAVNPMDNSLYVLENNVILRITENHQVSIIAGRPMHCQVPGIDYSLSKLAIHSA
NOV7t
NOV7u LEWPTDLAVNPMDNSLYVLENNVILRITENHQVSIIAGRPMHCQVPGIDYSLSKLAIHSA
NOV7V
NOV7W
NOV7X
NOV7y
NOV7z
NOV7aa
NOV7ab LEWPTDLAVNPMDNSLYVLENNVILRITENHQVS1 AGRPMHCQVPGIDYSLSKLAIHSA
NOV7ac LEWPTDLAVNPMDNSLYVLENNVILRITENHQVSIIAGRPMHCQVPGIDYSLSKLAIHSA
NOV7a LESASAIAISHTGVLYITETDEKKINRLRQVTTNGEICLLAGAASDCDCKNDVNCNCYSG NOV7b LESASAIAISHTGVLYITETDEKKINRLRQVTTNGEICLLAGAASDCDCKNDVNCNCYSG
NOV7C
NOV7d
NOV7e
NOV7f
NOV7g
NOV7h
NOV7Ϊ
NOV7k
NOV71 LESASAIAISHTGVLYITETDEKKINRLRQVTTNGEICLLAGAASDCDCKNDVNCNCYSG
NOV7m
NOV7n
N0V7O PTDLAVNPMDNSLYVLENNVILRITENHQVSIIAGRPMHCQVPGIDYSLSKLAIHSALES
NOV7p
NOV7q VGTNGGLKWSTQNLELGLMTYDGNTGLLATKSDETGWTTFYDYDHEGRLTNVTRPTGW
NOV7r LESASAIAISHTGVLYITETDEKKINRLRQVTTNGEICLLAGAASDCDCKNDVNCNCYSG
NOV7S LESASAIAISHTGVLYITETDEKKINRLRQVTTNGEICLLAGAASDCDCKNDVNCNCYSG
NOV7t
NOV7U LESASAIAISHTGVLYITETDEKKINRLRQVTTNGEICLLAGAASDCDCKNDVNCNCYSG
NOV7V
NOV7W
NOV7X
NOV7y
NOV7z
NOV7aa
NOV7ab LESASAIAISHTGVLYITETDEKKINRLRQVTTNGEICLLAGAASDCDCKNDVNCNCYSG
NOV7ac LESASAIAISHTGVLYITETDEKKINRLRQVTTNGEICLLAGAASDCDCKNDVNCNCYSG
NOV7a DDAYATDAILNSPSSLAVAPDGTIYIADLGNIRIRAVSKNKPVLNAFNQYEAASPGEQEL
NOV7b DDAYATDAILNSPSSLAVAPDGTIYIADLGNIRIRAVSKNKPVLNAFNQYEAASPGEQEL
NOV7C
NOV7d
NOV7e
NOV7f
NOV7g
NOV7h
NOV7i
NOV7J
NOV7k
NOV71 DDAYATDAILNSPSSLAVAPDGTIYIADLGNIRIRAVSKNKPVLNAFNQYEAASPGEQEL
NOV7m
NOV7n
N0V7O ASAIAISHTGVLYITETDEKKINRLRQVTTNGEICLLAGAASDCDCKNDVNCNCYSGDDA
NOV7p
NOV7q TSLHREMEKSITIDIENSNRDDDVTVITNLSSVEASYTWQDQVRNSYQLCNNGTLRVMY
NOV7r DDAYATDAILNSPSSLAVAPDGTIYIADLGNIRIRAVSKNKPVLNAFNQYEAASPGEQEL
NOV7 S DDAYATDAILNSPSSLAVAPDGTI YIADLGNIRIRAVSKNKPVLNAFNQYEAASPGEQEL
NOV7t
NOV7U DDAYATDAILNSPSSLAVAPDGTIYIADLGNIRIRAVSKNKPVLNAFNQYEAASPGEQEL
NOV7V
NOV7
NOV7X
NOV7y
NOV7z NOWaa
NOWab DDAYATDAILNSPSSLAVAPDGTIYIADLGNIRIRAVSKNKPVLNAFNQYEAASPGEQEL
NOWac DDAYATDAILNSPSSLAVAPDGTIYIADLGNIRIRAVSK-NKPVLNAFNQYEAASPGEQEL
NOV7a YVFNADGIHQYTVSLVTGEYLYNFTYSTDNDVTELIDNNGNSLKIRRDSSGMPRHLLMPD
NOV7b YVFNADGIHQYTVSLVTGEYLYNFTYSTDNDVTELIDNNGNSLKIRRDSSGMPRHLLMPD
NOV7c
NOV7d
NOV7e
NOV7f
NOV7g
NOV7h
NOV7i
NOV7J
NOV7k
NOV71 YVFNADGIHQYTVSLVTGΞYLYNFTYSTDNDVTELIDNNGNSLKIRRDSSGMPRHLLMPD
NOV7m
NOV7n
N0V7O YATDAILNSPSSLAVAPDGTIYIADLGNIRIRAVSKNKPVLNAFNQYEAASPGEQELYVF
NOV7p
NOV7q ANGMGISFHSEPHVLAGTITPTIGRCNISLPMENGLNSIEWRLRKEQIKGKVTIFGRKLR
NOV7r YVFNADGIHQYTVSLVTGEYLYNFTYSTDNDVTELIDNNGNSLKIRRDSSGMPRHLLMPD
NOV7s YVFNADGIHQYTVSLVTGEYLYNFTYSTDNDVTELIDNNGNSLKIRRDSSGMPRHLLMPD
NOV7t
NOV7U YVFNADGIHQYTVSLVTGEYLYNFTYSTDNDVTELIDNNGNSLKIRRDSSGMPRHLLMPD
NOV7V
NOV7W
NOV7X
NOV7y
NOV7Z
NOV7aa
NOV7ab YVFNADGIHQYTVSLVTGΞYLYNFTYSTDNDVTELIDNNGNSLKIRRDSSGMPRHLLMPD
NOV7ac YVFNADGIHQYTVSLVTGEYLYNFTYSTDNDVTELIDNNGNSLKIRRDSSGMPRHLLMPD
NOV7a NQIITLTVGTNGGLKWSTQNLELGLMTYDGNTGLLATKSDETGWTTFYDYDHEGRLTNV
NOV7b NQIITLTVGTNGGLKWSTQNLELGLMTYDGNTGLLATKSDETGWTTFYDYDHEGRLTNV
NOV7C
NOV7d
NOV7e '
NOV7f
NOV7g
NOV7h
NOV7i
NOV7J
NOV7k
NOV71 NQ ITLTVGTNGGLKWSTQNLELGLMTYDGNTGLLATKSDETGWTTFYDYDHEGRLTNV
NOV7m
NOV7n
N0V7O NADGIHQYTVSLVTGEYLYNFTYSTDNDVTELIDNNGNSLKIRRDSSGMPRHLLMPDNQI
N0V7p
N0V7q VHGRNLLSIDYDRNIRTEKIYDDHRKFTLRIIYDQVGRPFLWLPSSGLAAVNVSYFFNGR
N0V7r NQIITLTVGTNGGLKWSTQNLELGLMTYDGNTGLLATKSDETGWTTFYDYDHEGRLTNV
NOV7s NQIITLTVGTNGGLKWSTQNLELGLMTYDGNTGLLATKSDETGWTTFYDYDHEGRLTNV
NOV7t
NOV7U NQIITLTVGTNGGLKVVSTQNLELGLMTYDGNTGLLATKSDETGWTTFYDYDHEGRLTNV NOV7q LLAVTMPSVARHSMSTHTSIGYIRNIYNPPESNASVIFDYSDDGRILKTSFLGTGRQVFY
NOV7r GTLRVMYANGMGISFHSEPHVLAGTITPTIGRCNISLPMENGLNSIEWRLRKEQIKGKVT
NOV7s GTLRVMYANGMGISFHSEPHVLAGTITPTIGRCNISLPMENGLNSIEWRLRKEQIKGKVT
NOV7t
NOV7u GTLRVMYANGMGISFHSEPHVLAGTITPTIGRCNISLPMENGLNSIEWRLRKEQIKGKVT
NOV7v
NOV7w
NOV7x
NOV7y
NOV7z
NOV7aa
NOV7ab GTLRVMYANGMGISFHSΞPHVLAGTITPTIGRCNISLPMENGLNSIEWRLRKEQIKGKVT
NOV7ac GTLRVMYANGMGISFHSEPHVLAGTITPTIGRCNISLPMENGLNSIEWRLRKEQIKGKVT
NOV7a IFGR-KLRVHGRNLLSIDYDRNIRTEKIYDDHRKFTLRIIYDQVGRPFLWLPSSGLAAVNV
NOV7b IFGRKLRVHGRNLLSIDYDRNIRTEKIYDDHRKFTLRIIYDQVGRPFLWLPSSGLAAVNV
NOV7C
NOV7d
NOV7e
NOV7f
NOV7g
NOV7
NOV7i
NOV7k
NOV71 IFGRKLRVHGRNLLSIDYDRNIRTEKIYDDHRKFTLRIIYDQVGRPFLWLPSSGLAAVNV
NOV7m
NOV7I1
N0V7O RVMYANGMGISFHSEPHVLAGTITPTIGRCNISLPMENGLNSIEWRLRKEQIKGKVTIFG
NOV7p
NOV7q KYGKLSKLSEIVYDSTAVTFGYDETTGVLKMVNLQSGGFSCTIRYRKIGPLVDKQIYRFS
NOV7r IFGRKLRVHGRNLLSIDYDRNIRTEKIYDDHRKFTLRIIYDQVGRPFLWLPSSGLAAVNV
NOV7S IFGRKLRVHGRNLLSIDYDRNIRTEKIYDDHRKFTLRIIYDQVGRPFLWLPSSGLAAVNV
NOV7t
NOV7U IFGRKLRVHGRNLLSIDYDRNIRTEKIYDDHRKFTLRIIYDQVGRPFLWLPSSGLAAVNV
NOV7V
NOV7W
NOV7X
NOV7y
NOV7z
NOV7aa
NOV7ab IFGRKLEVHGRNLLSIDYDRNIRTEKIYDDHRKFTLRIIYDQVGRPFLWLPSSGLAAVNV
NOV7ac IFGRKLRVHGRNLLSIDYDRNIRTEKIYDDHRKFTLRIIYDQVGRPFLWLPSSGLAAVNV
NOV7a SYFFNGRLAGLQRGAMSERTDIDKQGRIVSRMFADGKVWSYSYLDKSMVLLLQSQRQYIF
NOV7b SYFFNGRLAGLQRGAMSERTDIDKQGRIVSRMFADGKVWSYSYLDKSMVLLLQSQRQYIF
NOV7C
NOV7d
NOV7e
NOV7f
NOV7g
NOV7h
NOV7i
NOV7J
NOV7k NOV7g
NOV7h
NOV7i
NOV7k
NOV71 TGRQVFYKYGKLSKLSEIVYDSTAVTFGYDETTGVLKMVNLQSGGFSCTIRYRKIGPLVD
NOV7m
NOV7n
NOV7o SSDRLLAVTMPSVARHSMSTHTSIGYIRNIYNPPESNASVIFDYSDDGRILKTSFLGTGR
NOV7p
NOV7q YTYDYDGDGQLQSVAVNDRPTWRYSYDLNGNLHLLNPGNSVRLMPLRYDLRDRITRLGDV
NOV7r TGRQVFYKYGKLSKLSEIVYDSTAVTFGYDETTGVLKMVNLQSGGFSCTIRYRKIGPLVD
NOV7s TGRQVFYKYGKLSKLSEIVYDSTAVTFGYDETTGVLKMVNLQSGGFSCTIRYRKIGPLVD
NOV7t
NOV7U TGRQVFYKYGKLSKLSEIVYDSTAVTFGYDETTGVLKMVNLQSGGFSCTIRYRKIGPLVD
NOV7v
NOV7W
NOV7x
NOV7y
NOV7z
NOV7aa
NOV7ab GRQVFYKYGKLSKLSEIVYDSTAVTFGYDETTGVLKMVNLQSGGFSCTIRYRKIGPLVDK
NOV7ac TGRQVFYKYGKLSKLSEIVYDSTAVTFGYDETTGVLKMVNLQSGGFSCTIRYRKIGPLVD
NOV7a KQIYRFSEEGMVNARFDYTYHDNSFRIASIKPVISETPLPVDLYRYDEISGKVEHFGKFG
NOV7b KQIYRFSEEGMVNARFDYTYHDNSFRIASIKPVISETPLPVDLYRYDEISGKVEHFGKFG
NOV7C
NOV7d
NOV7e
NOV7f
NOV7g
NOV7h
NOV7i
NOV7J
NOV7k
NOV71 KQIYRFSEEGMVNARFDYTYHDNSFRIASIKPVISETPLPVDLYRYDEISGKVEHFGKFG
NOV7m
NOV7n
NOV7o QVFYKYGKLSKLSEIVYDSTAVTFGYDETTGVLKMVNLQSGGFSCTIRYRKIGPLVDKQI
NOV7p
NOV7q QYKIDDDGYLCQRGSDIFEYNSKGLLTRAYNKASGWSVQYRYDGVGRRASYKTNLGHHLQ
NOV7r KQIYRFSEΞGMVNARFDYTYHDNSFRIASIKPVISETPLPVDLYRYDEISGKVEHFGKFG
NOV7S KQIYRFSEEGMVNARFDYTYHDNSFRIASIKPVISETPLPVDLYRYDEISGKVEHFGKFG
NOV7t
NOV7U KQIYRFSEEGMVNARFDYTYHDNSFRIASIKPVISETPLPVDLYRYDEISGKVEHFGKFG
NOV7V
NOV7W
NOV7X
NOV7y
NOV7Z
NOV7aa
NOV7ab QIYRFSEΞGMVNARFDYTYHDNSFRIASIKPVISETPLPVDLYRYDEISGKVEHFGKFGV
NOV7ac KQIYRFSΞEGMVNARFDYTYHDNSFRIASIKPVISETPLPVDLYRYDEISGKVEHFGKFG
NOV7a VIYYDINQIITTAVMTLSKHFDTHGRIKEVQYEMFRSLMYWMTVQYDSMGRVIKRELKLG NOV7b VIYYDINQIITTAVMTLSKHFDTHGRIKΞVQYEMFRSLMYWMTVQYDSMGRVIKRELKLG
NOV7C
NOV7d
NOV7e
NOV7f
NOV7g
NOV7h
NOV7i
NOV7k
NOV71 VIYYDINQIITTAVMTLSKHFDTHGRIKEVQYEMFRSLMYWMTVQYDSMGRVIKRELKLG
NOV7m
NOV7n
NOV7o YRFSEEGMVNARFDYTYHDNSFRIASIKPVISETPLPVDLYRYDEISGKVEHFGKFGVIY
NOV7p
NOV7q YFYSDLHNPTRITHVYNHSNSEITSLYYDLQGHLFAMESSSGEEYYVASDNTGTPLAVFS
NOV7r VIYYDINQIITTAVMTLSKHFDTHGRIKEVQYEMFRSLMYWMTVQYDSMGRVIKRELKLG
NOV7S VI YDINQIITTAVMTLSKHFDTHGRIKEVQYEMFRSLMYWMTVQYDSMGRVIKRELKLG
NOV7t
NOV7U VIYYDINQIITTAVMTLSKHFDTHGRIKEVQYEMFRSLMYWMTVQYDSMGRVIKRELKLG
NOV7v
NOV7W
NOV7X
NOV7y
NOV7Z
NOV7aa
NOV7ab IYYDINQIITTAVMTLSKHFDTHGRIKEVQYEMFRSLMYWMTVQYDSMGRVIKRELKLGP
NOV7ac VIYYDINQIITTAVMTLSKHFDTHGRIKEVQYEMFRSLMYWMTVQYDSMGRVIKRELKLG
NOV7a PYANTTKYTYDYDGDGQLQSVAVNDRPTWRYSYDLNGNLHLLNPGNSVRLMPLRYDLRDR
NOV7b PYANTTKYTYDYDGDGQLQSVAVNDRPTWRYSYDLNGNLHLLNPGNSVRLMPLRYDLRDR
NOV7C
NOV7d
NOV7e
NOV7f
NOV7g
NOV7h
NOV7i
NOV7k
NOV71 PYANTTKYTYDYDGDGQLQSVAVNDRPTWRYS DLNGNLHLLNPGNS RLMPLRYDLRDR
NOV7
NOV7-L1
NOV7o YDINQIITTAVMTLSKHFDTHGRIKEVQYEMFRSLMYWMTVQYDSMGRVIKRELKLGPYA
NOV7p
NOV7q INGLMIKQLQYTAYGEIYYDSNPDFQMVIGFHGGLYDPLTKLVHFTQRDYDVLAGRWTSP
NOV7r PYANTTKYTYDYDGDGQLQSVAVNDRPTWRYSYDLNGNLHLLNPGNSVRLMPLRYDLRDR
NOV7s PYANTTKYTYDYDGDGQLQSVAVNDRPT RYSYDLNGNLHLLNPGNSVRLMPLRYDLRDR
NOV7t
NOV7U PYANTTKYTYDYDGDGQLQSVAVNDRPTWRYSYDLNGNLHLLNPGNSVRLMPLRYDLRDR
NOV7v
NOV7w
NOV7X
NOV7y
NOV7Z NOV7aa
NOV7ab YANTTKYTYDYDGDGQLQSVPAVNDRPTWRYSYDLNGNLHLLNPGNSVRLMPLRYDLRDR NOV7ac PYANTTKYTYDYDGDGQLQSVAVNDRPTWRYSYDLNGNLHLLNPGNSVRLMPLRYDLRDR
NOV7a ITRLGDVQYKIDDDGYLCQRGSDIFEYNSKGLLTRAYNKASGWSVQYRYDGVGRRASYKT
NOV7b ITRLGDVQYKIDDDGYLCQRGSDIFEYNSKGLLTRAYNKASGWSVQYRYDGVGRRASYKT
NOV7C
NOV7d
NOV7e
NOV7f
NOV7g
NOV7h
NOV7i
NOV7k
NOV71 ITRLGDVQYKIDDDGYLCQRGSDIFEYNSKGLLTRAYNKASGWSVQYRYDGVGRRASYKT
NOV7m
NOV7n
NOV7o NTTKYTYDYDGDGQLQSVAVNDRPTWRYSYDLNGNLHLLNPGNSVRLMPLRYDLRDRITR
NOV7p
NOV7q DYTM KNVGKEPAPFNLYMFKSNNPLSSELDLKNYVTDVKSWLVMFGFQLSNIIPGFPRA
NOV7r ITRLGDVQYKIDDDGYLCQRGSDIFEYNSKGLLTRAYNKASGWSVQYRYDGVGRRASYKT
NOV7S ITRLGDVQYKIDDDGYLCQRGSDIFEYNSKGLLTRAYNKASGWSVQYRYDGVGRRASYKT
NOV7t
NOV7U ITRLGDVQYKIDDDGYLCQRGSDIFEYNSKGLLTRAYNKASGWSVQYRYDGVGRRASYKT
N0V7v
NOV7
NOV7X
NOV7y
NOV7Z
NOV7aa
NOV7ab ITRLGDVQYKIDDDGYLCQRGSDIFEYNSKGLLTRAYNKASGWSVQYRYDGVGRRASYKT
NOV7ac ITRLGDVQYKIDDDGYLCQRGSDIFEYNSKGLLTRAYNKASGWSVQYRYDGVGRRASYKT
NOV7a NLGHHLQYFYSDLHNPTRITHVYNHSNSEITSLYYDLQGHLFAMESSSGEEYYVASDNTG
NOV7b NLGHHLQYFYSDLHNPTRITHVYNHSNSEITSLYYDLQGHLFAMESSSGEEYYVASDNTG
NOV7C
NOV7d
NOV7e
NOV7f
NOV7g
NOV7h
NOV7i
NOV7k
NOV71 NLGHHLQYFYSDLHNPTRITHVYNHSNSEITSLYYDLQGHLFAMESSSGEEYYVASDNTG
NOV7m
NOV7n
NOV7o LGDVQYKIDDDGYLCQRGSDIFEYNSKGLLTRAYNKASGWSVQYRYDGVGRRASYKTNLG
NOV7p
NOV7q KMYFVPPPYELSESQASENGQLITGVQQTTERHNQAFMALEGQVITKKLHASIREKAGHW
NOV7r NLGHHLQYFYSDLHNPTRITHVYNHSNSEITSLYYDLQGHLFAMESSSGEEYYVASDNTG
NOV7s NLGHHLQYFYSDLHNPTRITHVYNHSNSEITSLYYDLQGHLFAMESSSGEEYYVASDNTG
NOV7t
NOV7U NLGHHLQYFYSDLHNPTRITHVYNHSNSEITSLYYDLQGHLFAMESSSGEEYYVASDNTG NOV7V
NOV7w
NOV7X
NOV7y
NOV7Z
NOV7aa
NOV7ab NLGHHLQYFYSDLHNPTRITHVYNHSNSEITSLYYDLQGHLFAMESSSGEEYYVASDNTG
NOV7ac NLGHHLQYFYSDLHNPTRITHVYNHSNSEITSLYYDLQGHLFAMESSSGEΞYYVASDNTG
NOV7a TPLAVFSINGLMIKQLQYTAYGEIYYDSNPDFQMVIGFHGGLYDPLTKLVHFTQRDYDVL
NOV7b TPLAVFSINGLMIKQLQYTAYGEIYYDSNPDFQMVIGFHGGLYDPLTKLVHFTQRDYDVL
NOV7C
NOV7d
NOV7e
NOV7f
NOV7g
NOV7h
NOV7i
NOV7k
NOV71 TPLAVFSINGLMIKQLQYTAYGEIYYDSNPDFQMVIGFHGGLYDPLTKLVHFTQRDYDVL
NOV7m
NOV7n
NOV7o HHLQYFYSDLHNPTRITHVYNHSNSEITSLYYDLQGHLFAMESSSGEEYYVASDNTGTPL
NOV7p
NOV7q FATTTPIIGKGIMFAIKEGRVTTGVSSIASEDSRKVASVLNNAYYLDKMHYSIEGKDTHY
NOV7r TPLAVFSINGLMIKQLQYTAYGEIYYDSNPDFQMVIGFHGGLYDPLTKLVHFTQRDYDVL
NOV7S TPLAVFSINGLMIKQLQYTAYGEIYYDSNPDFQMVIGFHGGLYDPLTKLVHFTQRDYDVL
NOV7t
NOV7U TPLAVFSINGLMIKQLQYTAYGEIYYDSNPDFQMVIGFHGGLYDPLTKLVHFTQRDYDVL
NOV7v
NOV7
NOV7X
NOV7y
NOV7 z
NOV7aa '
NOV7 ab TPLAVFS INGLMIKQLQYTAYGEI YYDSNPDFQMVIGFHGGLYDPLTKLVHFTQRDYDVL
NOV7ac TPLAVFSINGLMIKQLQYTAYGEIYYDSNPDFQMVIGFHGGLYDPLTKLVHFTQRDYDVL
NOV7a AGRWTSPDYTMWK GKEPAPFNLYMFKSf-NPLSSELDLKNYVTDVKSWLVMFGFQLSNI
NOV7b AGRWTSPDYTMWKNVGKEPAPFNLYMFKSNNPLSSELDLK---TYVTDVKSWLVMFGFQLSNI
NOV7C
NOV7d
NOV7e
NOV7f
NOV7g
NOV7h
NOV7i
NOV7J
NOV7k
NOV71 AGRWTSPDYTMW-KNVGKEPAPFNLYMFKSNNPLSSELDLKNYVTDVKSWLVMFGFQLSNI
NOV7m
NOV7n
NOV7o AVFSINGLMIKQLQYTAYGEIYYDSNPDFQMVIGFHGGLYDPLTKLVHFTQRDYDVLAGR
NOV7p NOV7q FVKIGSADGDLVTLGTTIGRKVLESGVNVTVSQPTLLVNGRTRRFTNIEFQYSTLLLSIR
NOV7r AGRWTSPDYTMWKNVGKEPAPFNLYMFKSNNPLSSELDLKNYVTDVKSWLVMFGFQLSNI
NOV7S AGRWTSPDYTMWKNVGKEPAPFNLYMFKSNNPLSSELDLKNYVTDVKSWLVMFGFQLSNI
NOV7t
NOV7U AGRWTSPDYTMW-KNVGKEPAPFNLYMFKSNNPLSSELDLKNYVTDVKSWLVMFGFQLSNI
NOV7V
NOV7W
NOV7X
NOV7y
NOV7Z
NOV7aa
NOV7ab AGRWTSPDYTMWKNVGKEPAPFNLYMFKSNNPLSSELDLKNYVTDVKSWLVMFGFQLSNI
NOV7ac AGRWTSPDYTMWKNVGKEPAPFNLYMFKSNNPLSSΞLDLKNYVTDVKSWLVMFGFQLSNI
NOV7a PGFP-RAKMYFVPPPYELSESQASENGQLITGVQQTTERHNQAFMALEGQVITKKLHASI
NOV7b IPGFPRAKMYFVPPPYELSESQASENGQLITGVQQTTERHNQAFMALEGQVITKKLHASI
NOV7c
NOV7d
NOV7e
NOV7f
NOV7g
NOV7
NOV7i
NOV7k
NOV71 IPGFP-R-AKMYFVPPPYELSESQASENGQLITGVQQTTERHNQAFMALEGQVITKKLHASI
NOV7m
NOV7n
N0V7O WTSPDYTMW-KKlVGKEPAPFNLYMFKS-^-HPLSSELDLKNYVTDVKSWLVMFGFQLSNIIPG
NOV7p
NOV7q YGLTPDTLDEEKARVLDQARQRALGTAWAKEQQKARDGREGSRLWTEGEKQQLLSTGRVQ
NOV7r IPGFPRAKMYFVPPPYELSESQASΞNGQLITGVQQTTERHNQAFMALEGQVITKKLHASI
NOV7S IPGFPRAKMYFVPPPYELSESQASENGQLITGVQQTTERHNQAFMALEGQVITKKLHASI
NOV7t
NOV7U IPGFPRAKMYFVPPPYELSESQASENGQLITGVQQTTERHNQAFMALEGQVITKKLHASI
NOV7V
NOV7
NOV7x
NOV7y
NOV7Z
NOV7aa
NOV7ab IPGFPRAKMYFVPPPYELSESQASENGQLITGAHQTTERHNQAFMALEGQVITKKLHASI
NOV7ac IPGFPRAKMYFVPPPYELSΞSQASENGQLITGVQQTTER--OTQAFM-ALEGQVITKKLHASI
NOV7a REKAGHWFATTTP11GKGIMFAIKEGRVTTGVSSIASΞDSRKVASVLNNAYYLDKMHYSI
NOV7b REKAGHWFATTTPIIGKGIMFAIKEGRVTTGVSSIASEDSRKVASVLNNAYYLDKMHYSI
NOV7c
NOV7d
NOV7e
NOV7f
NOV7g
NOV7h
NOV7Ϊ
NOV7k NOV71 REKAGHWFATTTPIIGKGIMFAIKEGRVTTGVSSIASEDSRKVASVLNNAYYLDKMHYSI
NOV7m
NOV7n
NOV7o FPRAKMYFVPPPYELSESQASENGQLITGVQQTTERHNQAFMALEGQVITKKLHASIREK
NOV7p
NOV7q GYEGYYVLPVΞQYPELADSSSNIQFLRQNEMGKR
NOV7r REKAGHWFATTTPIIGKGIMFAIKEGRVTTGVSSIASEDSRKVASVLNNAYYLDKMHYSI
NOV7S REKAGHWFATTTPIIGKGIMFAIKEGRVTTGVSSIASEDSRKVASVLNNAYYLDKMHYSI
NOV7t
NOV7U REKAGHWFATTTPIIGKGIMFAIKEGRVTTGVSSIASEDSRKVASVLNNAYYLDKMHYSI
NOV7V
NOV7
NOV7X
NOV7y
NOV7Z
NOV7aa
NOV7ab REKAGHWFATTTPIIGKGIMFAIKEGRVTTGVSSIASEDSRKVASVLNNAYYLDKMHYSI
NOV7ac REKAGHWFATTTPIIGKGIMFAIKEGRVTTGVSSIASEDSRKVASVLNNAYYLDKMHYSI
NOV7a EGKDTHYFVKIGSADGDLVTLGTTIGRKVLESGVNVTVSQPTLLVNGRTRRFTNIEFQYS
NOV7b EGKDTHYFVKIGSADGDLVTLGTTIGRKVLESGVNVTVSQPTLLVNGRTRRFTNIEFQYS
NOV7c
NOV7d
NOV7e
NOV7f
NOV7g
NOV7h
NOV7i
NOV7k
NOV71 EGKDTHYFVKIGSADGDLVTLGTTIGRKVLESGVNVTVSQPTLLVNGRTRRFTNIEFQYS
NOV7m
NOV7n
NOV7o AGHWFATTTPIIGKGIMFAIKEGRVTTGVSSIASEDSRKVASVLNNAYYLDKMHYSIEGK
NOV7p
NOV7q
NOV7r EGKDTHYFVKIGSADGDLVTLGTTIGRKVLESGVNVTVSQPTLLVNGRTRRFTNIEFQYS
NOV7S EGKDTHYFVKIGSADGDLVTLGTTIGRKVLESGVNVTVSQPTLLVNGRTRRFTNIEFQYS
NOV7t
NOV7U EGKDTHYFVKIGSADGDLVTLGTTIGRKVLESGVNVTVSQPTLLVNGRTRRFTNIEFQYS
NOV7V
NOV7W
NOV7X
NOV7y
NOV7Z
NOV7aa
NOV7ab EGKDTHYFVKIGSADGDLA-^LGTTIGRKVLESGV-ISrVTVSQPTLLVNGRTRRFTNIEFQYS
NOV7ac EGKDTHYFVKIGS-ADGDLVTLGTTIGRKVLESGVNVTVSQPTLLVNGRTRRFTNIEFQYS
NOV7a TLLLSIRYGLTPDTLDEEKARVLDQARQRALGTAWAKEQQKARDGREGSRLWTEGEKQQL
NOV7b TLLLSIRYGLTPDTLDEEKARVLDQARQRALGTAWAKEQQKARDGREGSRLWTEGEKQQL
NOV7c
NOV7d
NOV7e
NOV7f NOV7g
NOV7h
NOV7i
NOV7k
NOV71 TLLLSIRYGLTPDTLDEEKARVLDQARQRALGTAWAKEQQKARDGREGSRLWTEGEKQQL
NOV7tn
NOV7n
NOV7o DTHYFVKIGSADGDLVTLGTTIGRKVLESGVNVTVSQPTLLVNGRTRRFTNIEFQYSTLL
NOV7p
NOV7q
NOV7r TLLLSIRYGLTPDTLDEEKARVLDQARQRALGTAWAKEQQKARDGREGSRLWTEGEKQQL
NOV7S TLLLSIRYGLTPDTLDEEKARVLDQARQRALGTAWAKEQQK-ARDGREGSRLWTEGEKQQL
NOV7t
NOV7u LLLSIRYGLTPDTLDEEKΑRVLDQARQRALGTAWAKEQQKARDGRΞGSRLWTEGEKQQL
NOV7V
NOV7W
NOV7X
NOV7y
NOV7Z
NOV7aa :
NOV7ab TLLLSIRYGLTPDTLDEEKARVLDQARQRALGTAWAKEQQKARDGREGSRLWTEGEKQQL
NOV7ac TLLLSIRYGLTPDTLDEEK-ARVLDQARQRALGTAWAKEQQKARDGREGSRLWTEGEKQQL
NOV7a LSTGRVQGYEGYYVLPVEQYPELADSSSNIQFLRQNEMGKR
NOV7b LSTGRVQGYEGYYVLPVEQYPELADSSSNIQFLRQNEMGKR
NOV7C
NOV7d
NOV7e
NOV7f
NOV7g
NOV7h
NOV7i
NOV7J
NOV7k
NOV71 LSTGRVQGYEGYYVLPVEQYPΞLADSSSNIQFLRQNEMGKR
NOV7m
NOV7n
N0V7O LSIRYGLTPDTLDEEKARVLDQARQRALGTAWAKEQQKARDGREGSRLWTEGEKQQLLST
NOV7p
NOV7q
NOV7r LSTGRVQGYEGYYVLPVEQYPELADSSSNIQFLRQNEMGKR
NOV7S LSTGRVQGYEGYYVLPVEQYPELADSSSNIQFLRQNEMGKR
NOV7t '
NOV7U LSTGRVQGYEGYYVLPVEQYPELADSSSNIQFLRQNEMGKR
NOV7V
NOV7W
NOV7X
NOV7y
NOV7Z
NOV7aa
NOV7ab LSTGRVQGYEGYYVLPVEQYPELADSSSNIQFLRQNEMGKR
NOV7ac LSTGRVQGYEGYYVLPVEQYPELADSSSNIQFLRQNEMGKR
NOV7a NOV7b
NOV7C
NOV7d
NOV7e
NOV7f
NOV7g
NOV7h
NOV7i
NOV7J
NOV7k
NOV71
NOV7m
NOV7n
NOV7o GRVQGYEGYYVLPVEQYPELADSSSNIQFLRQNEMGKR
NOV7p
NOV7q
NOV7r
NOV7s
NOV7t
NOV7U
NOV7V
NOV7w
NOV7X
NOV7y
NOV7Z
NOV7aa
NOV7ab
NOV7ac
NOV7a ( SEQ ID NO: 114)
NOV7b ( SEQ ID NO: 116)
NOV7C ( SEQ ID NO: 118)
NOV7d ( SEQ ID NO: 120)
NOV7e ( SEQ ID NO: 122)
NOV7f ( SEQ ID NO: 124)
NOV7g ( SEQ ID NO- 126)
NOV7h ( SEQ ID NO- 128)
NOV7i < SEQ ID NO 130)
NOV7J < SEQ ID NO 132)
NOV7k SEQ ID NO 134)
NOV71 SEQ ID NO 136)
NOV7m SEQ ID NO 138)
NOV7n SEQ ID NO 140)
NOV7o SEQ ID NO 142)
NOV7p SEQ ID NO 144)
NOV7q SEQ ID NO 146)
NOV7r SEQ ID NO 148)
NOV7s SEQ ID NO 150)
NOV7t SEQ ID NO 152)
NOV7 SEQ ID NO 154)
NOV7V SEQ ID NO . 156)
NOV7w SEQ ID NO 158)
NOV7X [SEQ ID NO 160)
NOV7y [SEQ ID NO 162)
NOV7Z SEQ ID NO 164)
Further analysis ofthe NOV7aprotein yielded the followingproperties shown in Table 7C.
Table 7C. Protein Sequence Properties NOV7a
SignalP analysis: No Known Signal Sequence Predicted
PSORT π analysis:
PSG: a new signal peptide prediction method
N-region: length 9; pos.chg 4; neg.chg 2 H-region: length 3; peak value -8.37 PSG score: -12.77
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -14.20 possible cleavage site: between 32 and 33
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al ' s method for TM region allocation
Init position for calculation: 1
Tentative number of TMS(s) for the threshold 0.5: 2
Number of TMS(s) for threshold 0.5: 1
INTEGRAL Likelihood =-11.73 Transmembrane 380 - 396
PERIPHERAL Likelihood = 3.39 (at 982)
ALOM score: -11.73 (number of TMSs: 1)
MTOP: Prediction of membrane topology (Hartmann et al . ) Center position for calculation: 387 Charge difference: -6.0 C( 0.0) - N( 6.0) N >= C: N-terminal side will be inside
»> membrane topology: type 2 (cytoplasmic tail 1 to 380)
MITDISC: discrimination of mitochondrial targeting seq R content: 0 Hyd Moment (75): 3.46 Hyd Moment (95): 5.35 G content: 0 D/E content: 2 S/T content: 0 Score: -7.50
Gavel: prediction of cleavage sites for mitochondrial preseq cleavage site motif not found
NUCDISC: discrimination of nuclear localization signals pat4: RRHR (3) at 6 pat7: PRERRSI (5) at 483 bipartite: RKEQIKGKVTIFGRKLR at 1712 content of basic residues: 9.7% NLS Score : 0.64
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals : KKXX-like motif in the C-terminus: EMGK
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal : none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail : too long tail
Dileucine motif in the tail : found LL at 179 LL at 200 LL at 224 LL at 351 checking 63 PROSITE DNA binding motifs : none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: nuclear Reliability: 70.6
COIL: Lupas ' s algorithm to detect coiled-coil regions total : 0 residues
Final Results (k = 9/23) :
43.5 %: nuclear
21.7 %: mitochondrial
13.0 % : cytoplasmic
8.7 %: Golgi
4.3 %: plasma membrane
4.3 %: extracellular, including cell wall
4.3 % : peroxisomal
>> prediction for CG50426-17 is nuc (k=23) A search of the NOV7a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 7D.
In a BLAST search of public sequence databases, theNOV7a protein was found to have homology to the proteins shown in the BLASTP data in Table 7E.
PFam analysis predicts that the NOV7a protein contains the domains shown in the Table
7F.
Example 8.
The NOV8 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 8A.
PPLISFGVPIPSSALHFGSTVI YSCVGGFFLRGNSTTLCQPDGTWSSPLPECVPVECPQPEΞIPNGI
I
DVQGLAYLSTALYTCKPGFELVGNTTTLCGENGHWLGGKPTCKAIECLKPKEILNGKFSYTDLHYGQ
T VTYSCNRGFRLEGPSALTCLΞTGDWDVDAPSCNAIHCDSPQPIENGFVEGADYSYGAIIIYSCFPGF
Q
VAGHAMQTCEESGWSSSIPTCMPIDCGLPPHIDFGDCTKLKDDQGYFΞQEDDMMEVPYVTPHPPYHL
G
AVAKTWENTKESPATHSSNFLYGTMVSYTCNPGYELLGNPVLICQEDGTWNGSAPSCISIΞCDLPTA
P
ENGFLRFTETSMGSAVQYSCKPGHILAGSDLRLCLENRKWSGASPRCEAISCKKPNPVMNGSIKGSN
Y
TYLSTLYYECDPGYVLNGTERRTCQDDKNWDEDEPICIPVDCSSPPVSANGQVRGDEYTFQKEIEYT
C
NEGFLLEG-ARSRVCLA-NGSWSGATPDCVPVRCATPPQLANGVTEGLDYGFMKEVTFHCHEGYILHGA
P
KLTCQSDGNWDAEIPLCKPVNCGPPEDLAHGFPNGFSFIHGGHIQYQCFPGYKLHGNSSRRCLSNGS
W
SGSSPSCLPCRCSTPVIEYGTVNGTDFDCGKAARIQCFKGFKLLGLSEITCEADGQWSSGFPHCEHT
S
CGSLPMIPNAFISETSSWKENVITYSCRSGYVIQGSSDLICTEKGVWSQPYPVCEPLSCGSPPSVAN
A
VATGEAHTYESEVKLRCLEGYTMDTDTDTFTCQKDGRWFPERISCSPKKCPLPENITHILVHGDDFS
V
NRQVSVSCAEGYTFEGVNISVCQLDGTWEPPFSDESCSPVSCGKPESPEHGFWGSKYTFESTIIYQ
C
ΞPGYELEGNRERVCQENRQWSGGVAICKETRCETPLEFLNGKADIENRTTGPNWYSCNRGYSLEGP
S
EAHCTENGTWSHPVPLCKPNPCPVPFVIPENALLSEKEFYVDQNVSIKCREGFLLQGHGIITCNPDE
T
WTQTSAKCEKISCGPPAHVENAIARGVHYQYGDMITYSCYSGYMLEGFLRSVCLENGTWTSPPICRA
V
CRFPCQNGGICQRPNACSCPEGWMGRLCEEPICILPCLNGGRCVAPYQCDCPPGWTGSRCHTAVCQS
P
CLNGGKCVRPNRCHCLSSWTGHNCSRKRRTGF
NOV8j, SNPl 3380898 of SEQ ID NO: 195 11158 bp CG50646-04, DNA Sequence l-Q ^l^l TQ at Z7 ORF Stop: TAA at 10787
SNP Pos: 1068 SNP Change: G to C
CAATTGGTCTAGGGTCTCCCCCATTGGAATATCCATCAGTGATGAGAAATACAACGTTTGTTGAGTTT
TCTCTAGCATGAGAAGAATTTGCGCGGCTTGCTGGGGTCTGGCGCTCGTTTCGGGCTGGGCGACCTTT
CAGCAGATGTCCCCGTCGCGCAATTTCAGCTTCCGCCTCTTCCCCGAGACCGCGCCCGGGGCCCCCGG GAGTATCCCCGCGCCGCCCGCTCCTGGCGACGAAGCGGCGGGGAGCAGAGTGGAGCGGCTGGGCCAGG CGTTCCGCGTGCGGCTGCTGCGGGAGCTCAGCGAGCGCCTGGAGCTTGTCTTCCTGGTGGATGATTCG TCCAGCGTGGGCGAAGTCAft.CTTCCGCAGCGAGCTCATGTTCGTCCGCAAGCTGCTGTCCGACTTCCC CGTGGTGCCCACGGCCACGCGCGTGGCCATCGTGACCTTCTCGTCCAAGAACTACGTGGTGCCGCGCG TCGATTACATCTCCACCCGCCGCGCGCGCCAGCACAAGTGCGCGCTGCTCCTCCAAGAGATCCCTGCC ATCTCCTACCGAGGTGGCGGCACCTACACCAAGGGCGCCTTCCAGCAAGCCGCGCAAATTCTTCTTCA TGCTAGAGAAAACTCAACAAAAGTTGTATTTCTCATCACTGATGGATATTCCAATGGGGGAGACCCTA GACCAATTGCAGCGTCACTGCGAGATTCAGGAGTGGAGATCTTCACTTTTGGCATATGGCAAGGGAAC ATTCGAGAGCTGAATGACATGGCTTCCACCCCAAAGGAGGAGCACTGTTACCTGCTACACAGTTTTGA AGAATTTGAGGCTTTAGTCGCCCTCTGTCATATGTTATTTGTAGATCTACCTTCTGGGAGTTTTATTC AAGATGATATGGTCCACTGCTCATATCTTTGTGATGAAGGCAAGGACTGCTGTGACCGAATGGGAAGC TGCAAATGTGGGAAACACACAGGCCATTTTGAGTGCATCTGTGAAAAGGGGTATAACGGGAAAGGTCT GCAGTATGACTGCACAGTTTGCCCATCGGGGACATACAAACCTGAAGCCTCACCAGGAGGAATCAGCA GTTGCATTCCATGTCCTGATGAAAATCACACCTCTCCACCTGGAAGCACATCCCCTGAAGACTGTGTC TGCAGAGAGGGATACAGGGCATCTGGCCAGACCTGTGAAGTTGTCCACTGCCCTGCCCTGAAGCCTCC CGAAAATGGTTACTTTATCCAAAACACTTGCAACAACCACTTCAATGCAGCCTGTGGGGTCCGATGTC ACCCTGGATTTGATCTTGTGGGAAGCAGCATCATCTTATGTCTACCCAATGGTTTGTGGTCCGGTTCA GAGAGCTACTGCAGAGTAAGAACATGTCCTCATCTCCGCCAGCCGAAACATGGCCACATCAGCTGTTC TACAAGGGAAATGTTATATAAGACAACATGTTTGGTTGCCTGTGATGAAGGGTACAGGCTAGAAGGCA GTGATAAGCTTACTTGTCAAGGAAACAGCCAGTGGGATGGGCCAGAACCCCGGTGTGTGGAGCGCCAC TGTTCCACCTTTCAGATGCCCAAAGATGTCATCATATCCCCCCACAACTGTGGCAAGCAGCCAGCCAA ATTTGGGACGATCTGCTATGTAAGTTGCCGCCAAGGGTTCATTTTATCTGGAGTCAAAGAAATGCTGA GATGTACCACTTCTGGAAAATGGAATGTCGGAGTTCAGGCAGCTGTGTGTAAAGACGTGGAGGCTCCT CAAATCAACTGTCCTAAGGACATAGAGGCTAAGACTCTGGAACAGCAAGATTCTGCCAATGTTACCTG GCAGATTCCAACAGCTAAAGACAACTCTGGTGAAAAGGTGTCAGTCCACGTTCATCCAGCTTTCACCC CACCTTACCTTTTCCCAATTGGAGATGTTGCTATCGTATACACGGCAACTGACCTATCCGGCAACCAG GCCAGCTGCATTTTCCATATCAAGGTTATTGATGCAGAACCACCTGTCATAGACTGGTGCAGATCTCC ACCTCCCGTCCAGGTCTCGGAGAAGGTACATGCCGCAAGCTGGGATGAGCCTCAGTTCTCAGACAACT CAGGTGCTGAATTGGTCATTACCAGAAGTCATACACAAGGAGACCTTTTCCCTCAAGGGGAGACTATA GTACAGTATACAGCCACTGACCCCTCAGGCAATAACAGGACATGTGATATCCATATTGTCATAAAAGG TTCTCCCTGTGAAATTCCATTCACACCTGTAAATGGGGATTTTATATGCACTCCAGATAATACTGGAG TCAACTGTACATTAACTTGCTTGGAGGGCTATGATTTCACAGAAGGGTCTACTGACAAGTATTATTGT GCTTATGAAGATGGCGTCTGGAAACCAACATATACCACTGAATGGCCAGACTGTGCCAGTAAGCGTTT TGCAAACCACGGGTTCAAGTCCTTTGAGATGTTCTACAAAGCAGCTCGTTGTGATGACACAGATCTGA TGAAGAAGTTTTCTGAAGCATTTGAGACGACCCTGGGAAAAATGGTCCCATCATTTTGTAGTGATGCA GAGGACATTGACTGCAGACTGGAGGAGAACCTGACCAAAAAATATTGCCTAGAATATAATTATGACTA TGAAAATGGCTTTGCAATTGGTCCAGGTGGCTGGGGTGCAGCTAATAGGCTGGATTACTCTTACGATG ACTTCCTGGACACTGTGCAAGAAACAGCCACAAGCATCGGCAATGCCAAGTCCTCACGGATTAAAAGA AGTGCCCCATTATCTGACTATAAAATTAAGTTAATTTTTAACATCACAGCTAGTGTGCCATTACCCGA TGAAAGAAATGATACCCTTGAATGGGAAAATCAGCAACGACTCCTTCAGACATTGGAAACTATCACAA ATAAACTGAAAAGGACTCTCAACAAAGACCCCATGTATTCCTTTCAGCTTGCATCAGAAATACTTATA GCCGACAGCAATTCATTAGAAACAAAAAAGGCTTCCCCCTTCTGCAGACCAGGCTCAGTGCTGAGAGG GCGTATGTGTGTCAATTGCCCTTTGGGAACCTATTATAATCTGGAACATTTCACCTGTGAAAGCTGCC GGATCGGATCCTATCAAGATGAAGAAGGGCAACTTGAGTGCAAGCTTTGCCCCTCTGGGATGTACACG GAATATATCCATTCAAGAAACATCTCTGATTGTAAAGCTCAGTGTAAACAAGGCACCTACTCATACAG TGGACTTGAGACTTGTGAATCGTGTCCACTGGGCACTTATCAGCCAAAATTTGGTTCCCGGAGCTGCC
TCTCGTGTCCAGAAAACACCTCAACTGTGAAAAGAGGAGCCGTGAACATTTCTGCATGTGGAGTTCC
T
TGTCCAGAAGGAAAATTCTCGCGTTCTGGGTTAATGCCCTGTCACCCATGTCCTCGTGACTATTACC
A
ACCTAATGCAGGGAAGGCCTTCTGCCTGGCCTGTCCCTTTTATGGAACTACCCCATTCGCTGGTTCC
A
GATCCATCACAGAATGTTCAAGTTTTAGTTCAACTTTCTCAGCGGCAGAGGAAAGTGTGGTGCCCCC
T
GCCTCTCTTGGACATATTAAAAAGAGGCATGAAATCAGCAGTCAGGCAAGTCATGAATGCTTCTTTA
A
CCCTTGCCACAΛTAGTGGAACCTGCCAGCAACTTGGGCGTGGTTATGTTTGTCTCTGTCCACTTGGA
T
ATACAGGTTTAAAGTGTGAAACAGACATCGATGAGTGCAGCCCACTGCCTTGCCTCAACAATGGAGT
T
TGTAAAGACCTAGTTGGGGAATTCATTTGTGAGTGCCCATCAGGTTACACAGGTAAGCACTGTGAAT
T
GAACATCAATGAATGTCAGTCTAATCCATGTAGAAATCAGGCCACCTGTGTGGATGAATTAAATTCA
T
ACAGTTGTAAATGTCAGCCAGGATTTTCAGGCAAAAGGTGTGAAACAGGTATGTATCAACTCAGTGT
T
ATTAATAACCTTAATAATGCAGTCTGTGAAGACCAGGTTGGGGGATTCTTGTGCAAATGCCCACCTG
G
ATTTTTGGGTACCCGATGTGGAAAGAACGTCGATGAGTGTCTCAGTCAGCCATGCAAAAATGGAGCT
A
CCTGTAAAGACGGTGCCAATAGCTTCAGGTGCCTGTGTGCAGCTGGCTTCACAGGATCACACTGTGA
A
TTGAACATCAATGAATGTCAGTCTAATCCATGTAGAAATCAGGCCACCTGTGTGGATGAATTAAATT
C
ATACAGTTGTAAATGTCAGCCAGGATTTTCAGGCAAAAGGTGTGAAACAGAACAGTCTACAGGCTTT
A
ACCTGGATTTTGAAGTTTCTGGCATCTATGGATATGTCATGCTAGATGGCATGCTCCCATCTCTCCA G
PSEAHCTENGTWSHPVPLCKPNPCPVPFVIPENALLSEKEFYVDQNVSIKCREGFLLQGHGIITCNP
D
ETWTQTSAKCEKISCGPPAHVENAIARGVHYQYGDMITYSCYSGYMLEGFLRSVCLENGTWTSPPIC
R
AVCRFPCQNGGICQRPNACSCPEGWMGRLCEEPICILPCLNGGRCVAPYQCDCPPGWTGSRCHTAVC
Q
SPCLNGGKCVRPNRCHCLSS TGHNCSRKRRTGF
NOV8k, SNP13380899 of SEQ ID NO: 197 11158 bp CG50646-04, DNA Sequence ORF Start: ATG at 77 ORF Stop: TAA at 10787
SNP Pos: 2404 SNP Change: A to G
CAATTGGTCTAGGGTCTCCCCCATTGGAATATCCATCAGTGATGAGAAATACAACGTTTGTTGAGTTT
TCTCTAGCATGAGAAGAATTTGCGCGGCTTGCTGGGGTCTGGCGCTCGTTTCGGGCTGGGCGACCTTT
CAGCAGATGTCCCCGTCGCGCAATTTCAGCTTCCGCCTCTTCCCCGAGACCGCGCCCGGGGCCCCCGG GAGTATCCCCGCGCCGCCCGCTCCTGGCGACGAAGCGGCGGGGAGCAGAGTGGAGCGGCTGGGCCAGG CGTTCCGCGTGCGGCTGCTGCGGGAGCTCAGCGAGCGCCTGGAGCTTGTCTTCCTGGTGGATGATTCG TCCAGCGTGGGCGAAGTCAACTTCCGCAGCGAGCTCATGTTCGTCCGCAAGCTGCTGTCCGACTTCCC CGTGGTGCCCACGGCCACGCGCGTGGCCATCGTGACCTTCTCGTCCAAGAACTACGTGGTGCCGCGCG TCGATTACATCTCCACCCGCCGCGCGCGCCAGCACAAGTGCGCGCTGCTCCTCCAAGAGATCCCTGCC ATCTCCTACCGAGGTGGCGGCACCTACACCAAGGGCGCCTTCCAGCAAGCCGCGCAAATTCTTCTTCA TGCTAGAGAAAACTCAACAAAAGTTGTATTTCTCATCACTGATGOATATTCCAATGGGGOAGACCCTA GACCAATTGCAGCGTCACTGCGAGATTCAGGAGTGGAGATCTTCACTTTTGGCATATGGCAAGGGAAC ATTCGAGAGCTGAATGACATGGCTTCCACCCCAAAGGAGGAGCACTGTTACCTGCTACACAGTTTTGA AGAATTTGAGGCTTTAGTCGCCCTCTGTCATATGTTATTTGTAGATCTACCTTCTGGGAGTTTTATTC AAGATGATATGGTCCACTGCTCATATCTTTGTGATGAAGGCAAGGACTGCTGTGACCGAATGGGAAGC TGCAAATGTGGGAAACACACAGGCCATTTTGAGTGCATCTGTGAAAAGGGGTATAACGGGAAAGGTCT GCAGTATGACTGCACAGTTTGCCCATCGGGGACATACAAACCTGAAGGCTCACCAGGAGGAATCAGCA GTTGCATTCCATGTCCTGATGAAAATCACACCTCTCCACCTGGAAGCACATCCCCTGAAGACTGTGTC TGCAGAGAGGGATACAGGGCATCTGGCCAGACCTGTGAAGTTGTCCACTGCCCTGCCCTGAAGCCTCC CGAAAATGGTTACTTTATCCAAAACACTTGCAACAACCACTTCAATGCAGCCTGTGGGGTCCGATGTC ACCCTGGATTTGATCTTGTGGGAAGCAGCATCATCTTATGTCTACCCAATGGTTTGTGGTCCGGTTCA GAGAGCTACTGCAGAGTAAGAACATGTCCTCATCTCCGCCAGCCGAAACATGGCCACATCAGCTGTTC TACAAGGGAAATGTTATATAAGACAACATGTTTGGTTGCCTGTGATGAAGGGTACAGGCTAGAAGGCA GTGATAAGCTTACTTGTCAAGGAAACAGCCAGTGGGATGGGCCAGAACCCCGGTGTGTGGAGCGCCAC TGTTCCACCTTTCAGATGCCCAAAGATGTCATCATATCCCCCCACAACTGTGGCAAGCAGCCAGCCAA ATTTGGGACGATCTGCTATGTAAGTTGCCGCCAAGGGTTCATTTTATCTGGAGTCAAAGAAATGCTGA GATGTACCACTTCTGGAAAATGGAATGTCGGAGTTCAGGCAGCTGTGTGTAAAGACGTGGAGGCTCCT CAAATCAACTGTCCTAAGGACATAGAGGCTAAGACTCTGGAACAGCAAGATTCTGCCAATGTTACCTG GCAGATTCCAACAGCTAAAGACAACTCTGGTGAAAAGGTGTCAGTCCACGTTCATCCAGCTTTCACCC CACCTTACCTTTTCCCAATTGGAGATGTTGCTATCGTATACACGGCAACTGACCTATCCGGCAACCAG GCCAGCTGCATTTTCCATATCAAGGTTATTGATGCAGAACCACCTGTCATAGACTGGTGCAGATCTCC ACCTCCCGTCCAGGTCTCGGAGAAGGTACATGCCGCAAGCTGGGATGAGCCTCAGTTCTCAGACAACT CAGGTGCTGAATTGGTCATTACCAGAAGTCATACACAAGGAGACCTTTTCCCTCAAGGGGAGACTATA GTACAGTATACAGCCACTGACCCCTCAGGCAATAACAGGACATGTGATATCCATATTGTCATAAAAGG TTCTCCCTGTGAAATTCCATTCACACCTGTAAATGGGGATTTTATATGCACTCCAGATAATACTGGAG TCAACTGTACATTAACTTGCTTGGAGGGCTATGATTTCACAGAAGGGTCTACTGACAAGTATTATTGT GCTTATGAAGATGGCGTCTGGAAGCCAACATATACCACTGAATGGCCAGACTGTGCCAGTAAGCGTTT TGCAAACCACGGGTTCAAGTCCTTTGAGATGTTCTACAAAGCAGCTCGTTGTGATGACACAGATCTGA TGAAGAAGTTTTCTGAAGCATTTGAGACGACCCTGGGAAAAATGGTCCCATCATTTTGTAGTGATGCA GAGGACATTGACTGCAGACTGGAGGAGAACCTGACCAAAAAATATTGCCTAGAATATAATTATGACTA TGAAAATGGCTTTGCAATTGGTCCAGGTGGCTGGGGTGCAGCTAATAGGCTGGATTACTCTTACGATG ACTTCCTGGACACTGTGCAAGAAACAGCCACAAGCATCGGCAATGCCAAGTCCTCACGGATTAAAAGA AGTGCCCCATTATCTGACTATAAAATTAAGTTAATTTTTAACATCACAGCTAGTGTGCCATTACCCGA TGAAAGAAATGATACCCTTGAATGGGAAAATCAGCAACGACTCCTTCAGACATTGGAAACTATCACAA ATAAACTGAAAAGGACTCTCAACAAAGACCCCATGTATTCCTTTCAGCTTGCATCAGAAATACTTATA GCCGACAGCAATTCATTAG.AAACAAAAAAGGCTTCCCCCTTCTGCAGACCAGGCTCAGTGCTGAGAGG GCGTATGTGTGTCAATTGCCCTTTGGGAACCTATTATAATCTGGAACATTTCACCTGTGAAAGCTGCC GGATCGGATCCTATCAAGATGAAGAAGGGCAACTTGAGTGCAAGCTTTGCCCCTCTGGGATGTACACG PCPDENHTSPPGSTSPEDCVCREGYRASGQTCEWHCPALKPPENGYFIQNTCNNHFNAACGVRCHPG
FDLVGSSIILCLPNGLWSGSESYCRVRTCPHLRQPKHGHISCSTREMLYKTTCLVACDEGYRLEGSDK LTCQGNSQWDGPEPRCVERHCSTFQMPKDVIISPHNCGKQPAKFGTICYVSCRQGFILSGVKEMLRCT
TSG---TWVGVQ-AAVC--^VEAPQINCP-roiE-AKTLEQQDSA-WTWQIPTA-^
LFPIGDVAIVYTATDLSGNQASCIFHIK-VIDAEPPVIDWCRSPPPVQVSEKVHAASWDEPQFSDNSGA
ELVITRSHTQGDLFPQGETIVQYTATDPSGNNRTCDIHIVIKGSPCEIPFTPVNGDFICTPDNTGVNC
TLTCLEGYDFTEGSTDKYYCAYEDGVWKPTYTTEWPDCASKRFANHGFKSFEMFYKAARCDDTDLMKK
FSEAFETTLGKMVPSFCSDAEDIDCRLEENLTKKYCLEYNYDYENGFAIGPGGWGAANRLDYSYDDFL
DTVQETATSIGNAKSSRIKRSAPLSDYKIKLIFNITASVPLPDERNDTLEWENQQRLLQTLETITNKL
KRTLNKDPMYSFQLASEILIADSNSLETKKASPFCRPGSVLRGRMCVNCPLGTYYNLEHFTCESCRIG
SYQDEEGQLECKLCPSGMYTEYIHSRNISDCKAQCKQGTYSYSGLETCESCPLGTYQPKFGSRSCLSC
PENTSTVKRGAVNISACGVPCPEGKFSRSGLMPCHPCPRDYYQPNAGKAFCLACPFYGTTPFAGSRSI
TECSSFSSTFSAAEESWPPASLGHIKKRHEISSQASHECFFNPCHNSGTCQQLGRGYVCLCPLGYTG
LKCETDIDECSPLPCLNNGVCKDLVGEFICECPSGYTGKHCELNINECQSNPCRNQATCVDELNSYSC
KCQPGFSGKRCETGMYQLSVINNLNNAVCEDQVGGFLCKCPPGFLGTRCGKNVDECLSQPCKNGATCK
DGANSFRCLCAAGFTGSHCELNINECQSNPCRNQATCVDELNSYSCKCQPGFSGKRCETEQSTGFNLD
FEVSGIYGYVMLDGMLPSLHATCTFWMKSSDDM-S-YGTPISYAVDNGSDNTLLLTDYNGWVLYVNGRE
KITNCPSVNDGRWHHIAITWTSTGGAWRVYINGELSDGGTGLSIGKAIPGGGALVLGQEQDKKGEGFN
PAESFVGSISQLNLWDYVLSPQQVKSLATSCPEELSKGNVLAWPDFLSGIVGKVKIDSKSIFCSDCPR
LGGSVPHLRTASEDLKPGSKVNLFCEPGFQLVGNPVQYCLNQGQWTQPLPHCERIRCGVPPPLENGFH
SADDFYAGSTVTYQCNNGYYLLGDSRMFCTDNGSWNGVSPSCLDVDECAVGSDCSEHASCLNVDGSYI
CSCVPPYTGDGKNCAEPIKCKAPGNPENGHSSGEIYTVGAEVTFSCQEGYQLMGVTKITCLESGEWNH
LIPYCKAVSCGKPAIPENGCIEELAFTFGSKVTYRCNKGYTLAGDKESSCLANSSWSHSPPVCΞPVKC
SSPENINNGKYILSGLTYLSTASYSCDTGYSLQGPSIIECTASGIWDRAPPACHLVFCGEPPAIKDAV
ITGNNFTF-RNTVTYTCKEGYT-^GLDTIECLADGKWSRSDQQCLAVSCDEPPIVDI^^
IAFYYCSDGYSLADNSQLLCNAQGKWVPPEGQDMPRCIAHFCEKPPSVSYSILESVSKAKFAAGSWS
FKCMEGFVLNTSAKIECMRGGQWNPSPMSIQCIPVRCGEPPSIMNGYASGSNYSFGAMVAYSCNKGFY
IKGEKKSTCEATGQWSSPIPTCHPVSCGEPPKVENGFLEHTTGRIFESEVRYQCNPGYKSVGSPVFVC
QANRHWHSESPLMCVPLDCGKPPPIQNGFMKGENFEVGSKVQFFCNΞGYELVGDSSWTCQKSGKWNKK
SNPKCMPAKCPEPPLLENQLVLKELTTEVGWTFSCKEGHVLQGPSVLKCLPSQQWNDSFPVCKIVLC
TPPPLISFGVPIPSSALHFGSTVKYSCVGGFFLRGNSTTLCQPDGTWSSPLPECVPVECPQPEEIPNG
IIDVQGLAYLSTALYTCKPGFELVGNTTTLCGENGHWLGGKPTCKAIECLKPKEILNGKFSYTDLHYG
QTVTYSCNRGFRLEGPSALTCLETGDWDVDAPSCNAIHCDSPQPIENGFVEGADYSYGAIIIYSCFPG
FQVAGHAMQTCEΞSGWSSSIPTCMPIDCGLPPHIDFGDCTKLKDDQGYFEQEDDMMEVPYVTPHPPYH
LGAVAKTWENTKESPATHSSNFLYGTMVSYTCNPGYELLGNPVLICQEDGTWNGSAPSCISIECDLPT
APENGFLRFTETSMGSAVQYSCKPGHILAGSDLRLCLENRKWSGASPRCEAISCKKPNPVMNGSIKGS
NYTYLSTLYYECDPGYVLNGTERRTCQDDKNWDEDEPICIPVDCSSPPVSANGQVRGDEYTFQKEIEY
TCNEGFLLEGARSRVCLANGSWSGATPDCVPVRCATPPQLANGVTEGLDYGFMKEVTFHCHEGYILHG
APKLTCQSDG---TODAEIPLCKPVNCGPPEDLAHGFPNGFSFIHGGHIQYQCFPGYKLHGNSSRRCLSNG
SWSGSSPSCLPCRCSTPVIEYGTVNGTDFDCGK-AARIQCFKGFKLLGLSEITCEADGQWSSGFPHCEH
TSCGSLPMIPNAFISETSSWKENVITYSCRSGYVIQGSSDLICTEKGVWSQPYPVCEPLSCGSPPSVA
NAVATGEAHTYESEVKLRCLEGYTMDTDTDTFTCQKDGRWFPERISCSPKKCPLPENITHILVHGDDF
SVNRQVSVSCAEGYTFEGVNISVCQLDGTWEPPFSDESCSPVSCGKPESPEHGFWGSKYTFESTIIY
QCEPGYELEGNRERVCQENRQWSGGVAICKETRCETPLEFLNGKADIENRTTGPNWYSCNRGYSLEG
PSEAHCTENGTWSHPVPLCKPNPCPVPFVIPENALLSEKEFYVDQNVSIKCREGFLLQGHGIITCNP
D
ETWTQTSAKCEKISCGPPAHVENAIARGVHYQYGDMITYSCYSGYMLEGFLRSVCLENGTWTSPPIC
R
AVCRFPCQNGGICQRPNACSCPEGWMGRLCEEPICILPCLNGGRCVAPYQCDCPPGWTGSRCHTAVC
Q
SPCLNGGKCVRPNRCHCLSSWTGHNCSRKRRTGF
NOV81, SNPl 3374702 of SEQ ID NO: 199 11158 bp CG50646-04, DNA Sequence ORF Start: ATG at 77 ORF Stop: TAA at 10787
SNP Pos: 2457 SNP Change: A to G
CAATTGGTCTAGGGTCTCCCCCATTGGAATATCCATCAGTGATGAGAAATACAACGTTTGTTGAGTTT
TCTCTAGCATGAGAAGAATTTGCGCGGCTTGCTGGGGTCTGGCGCTCGTTTCGGGCTGGGCGACCTTT
CAGCAGATGTCCCCGTCGCGCAATTTCAGCTTCCGCCTCTTCCCCGAGACCGCGCCCGGGGCCCCCGG GAGTATCCCCGCGCCGCCCGCTCCTGGCGACGAAGCGGCGGGGAGCAGAGTGGAGCGGCTGGGCCAGG CGTTCCGCGTGCGGCTGCTGCGGGAGCTCAGCGAGCGCCTGGAGCTTGTCTTCCTGGTGGATGATTCG TCCAGCGTGGGCGAAGTCAACTTCCGCAGCGAGCTCATGTTCGTCCGCAAGCTGCTGTCCGACTTCCC CGTGGTGCCCACGGCCACGCGCGTGGCCATCGTGACCTTCTCGTCCAAGAACTACGTGGTGCCGCGCG TCGATTACATCTCCACCCGCCGCGCGCGCCAGCACAAGTGCGCGCTGCTCCTCCAAGAGATCCCTGCC ATCTCCTACCGAGGTGGCGGCACCTACACCAAGGGCGCCTTCCAGCAAGCCGCGCAAATTCTTCTTCA TGCTAGAGAAAACTCAACAAAAGTTGTATTTCTCATCACTGATGGATATTCCAATGGGGGAGACCCTA GACCAATTGCAGCGTCACTGCGAGATTCAGGAGTGGAGATCTTCACTTTTGGCATATGGCAAGGGAAC ATTCGAGAGCTGAATGACATGGCTTCCACCCCAAAGGAGGAGCACTGTTACCTGCTACACAGTTTTGA AGAATTTGAGGCTTTAGTCGCCCTCTGTCATATGTTATTTGTAGATCTACCTTCTGGGAGTTTTATTC AAGATGATATGGTCCACTGCTCATATCTTTGTGATGAAGGCAAGGACTGCTGTGACCGAATGGGAAGC TGCAAATGTGGGAAACACACAGGCCATTTTGAGTGCATCTGTGAAAAGGGGTATAACGGGAAAGGTCT GCAGTATGACTGCACAGTTTGCCCATCGGGGACATACAAACCTGAAGGCTCACCAGGAGGAATCAGCA GTTGCATTCCATGTCCTGATGAAAATCACACCTCTCCACCTGGAAGCACATCCCCTGAAGACTGTGTC TGCAGAGAGGGATACAGGGCATCTGGCCAGACCTGTGAAGTTGTCCACTGCCCTGCCCTGAAGCCTCC CGAAAATGGTTACTTTATCCAAAACACTTGCAACAACCACTTCAATGCAGCCTGTGGGGTCCGATGTC ACCCTGGATTTGATCTTGTGGGAAGCAGCATCATCTTATGTCTACCCAATGGTTTGTGGTCCGGTTCA GAGAGCTACTGCAGAGTAAGAACATGTCCTCATCTCCGCCAGCCGAAACATGGCCACATCAGCTGTTC TACAAGGGAAATGTTATATAAGACAACATGTTTGGTTGCCTGTGATGAAGGGTACAGGCTAGAAGGCA GTGATAAGCTTACTTGTCAAGGAAACAGCCAGTGGGATGGGCCAGAACCCCGGTGTGTGGAGCGCCAC TGTTCCACCTTTCAGATGCCCAAAGATGTCATCATATCCCCCCACAACTGTGGCAAGCAGCCAGCCAA ATTTGGGACGATCTGCTATGTAAGTTGCCGCCAAGGGTTCATTTTATCTGGAGTCAAAGAAATGCTGA GATGTACCACTTCTGGAAAATGGAATGTCGGAGTTCAGGCAGCTGTGTGTAAAGACGTGGAGGCTCCT CAAATCAACTGTCCTAAGGACATAGAGGCTAAGACTCTGGAACAGCAAGATTCTGCCAATGTTACCTG GCAGATTCCAACAGCTAAAGACAACTCTGGTGAAAAGGTGTCAGTCCACGTTCATCCAGCTTTCACCC CACCTTACCTTTTCCCAATTGGAGATGTTGCTATCGTATACACGGCAACTGACCTATCCGGCAACCAG GCCAGCTGCATTTTCCATATCAAGGTTATTGATGCAGAACCACCTGTCATAGACTGGTGCAGATCTCC ACCTCCCGTCCAGGTCTCGGAGAAGGTACATGCCGCAAGCTGGGATGAGCCTCAGTTCTCAGACAACT CAGGTGCTGAATTGGTCATTACCAGAAGTCATACACAAGGAGACCTTTTCCCTCAAGGGGAGACTATA GTACAGTATACAGCCACTGACCCCTCAGGCAATAACAGGACATGTGATATCCATATTGTCATAAAAGG TTCTCCCTGTGAAATTCCATTCACACCTGTAAATGGGGATTTTATATGCACTCCAGATAATACTGGAG TCAACTGTACATTAACTTGCTTGGAGGGCTATGATTTCACAGAAGGGTCTACTGACAAGTATTATTGT GCTTATGAAGATGGCGTCTGGAAACCAACATATACCACTGAATGGCCAGACTGTGCCAGTAAGCGTTT TGCAAACCGCGGGTTCAAGTCCTTTGAGATGTTCTACAAAGCAGCTCGTTGTGATGACACAGATCTGA TGAAGAAGTTTTCTGAAGCATTTGAGACGACCCTGGGAAAAATGGTCCCATCATTTTGTAGTGATGCA GAGGACATTGACTGCAGACTGGAGGAGAACCTGACCAAAAAATATTGCCTAGAATATAATTATGACTA TGAAAATGGCTTTGCAATTGGTCCAGGTGGCTGGGGTGCAGCTAATAGGCTGGATTACTCTTACGATG ACTTCCTGGACACTGTGCAAGAAACAGCCACAAGCATCGGCAATGCCAAGTCCTCACGGATTAAAAGA AGTGCCCCATTATCTGACTATAAAATTAAGTTAATTTTTAACATCACAGCTAGTGTGCCATTACCCGA TGAAAGAAATGATACCCTTGAATGGGAAAATCAGCAACGACTCCTTCAGACATTGGAAACTATCACAA ATAAACTGAAAAGGACTCTCAACAAAGACCCCATGTATTCCTTTCAGCTTGCATCAGAAATACTTATA GCCGACAGCAATTCATTAGAAACAAAAAAGGCTTCCCCCTTCTGCAGACCAGGCTCAGTGCTGAGAGG GCGTATGTGTGTCAATTGCCCTTTGGGAACCTATTATAATCTGGAACATTTCACCTGTGAAAGCTGCC GGATCGGATCCTATCAAGATGAAGAAGGGCAACTTGAGTGCAAGCTTTGCCCCTCTGGGATGTACACG GAATATATCCATTCAAGAAACATCTCTGATTGTAAAGCTCAGTGTAAACAAGGCACCTACTCATACAG TGGACTTGAGACTTGTGAATCGTGTCCACTGGGCACTTATCAGCCAAAATTTGGTTCCCGGAGCTGCC
TCTCGTGTCCAGAAAACACCTCAACTGTGAAAAGAGGAGCCGTGAACATTTCTGCATGTGGAGTTCC
T
TGTCCAGAAGGAAAATTCTCGCGTTCTGGGTTAATGCCCTGTCACCCATGTCCTCGTGACTATTACC
A
ACCTAATGCAGGGAAGGCCTTCTGCCTGGCCTGTCCCTTTTATGGAACTACCCCATTCGCTGGTTCC
A
GATCCATCACAGAATGTTCAΛGTTTTAGTTCAACTTTCTCAGCGGCAGAGGAAAGTGTGGTGCCCCC
T
GCCTCTCTTGGACATATTAAAAAGAGGCATGAAATCAGCAGTCAGGCAAGTCATGAATGCTTCTTTA
A
CCCTTGCCACAATAGTGGAACCTGCCAGCAACTTGGGCGTGGTTATGTTTGTCTCTGTCCACTTGGA
T
ATACAGGTTTAAAGTGTGAAACAGACATCGATGAGTGCAGCCCACTGCCTTGCCTCAACAATGGAGT
T
TGTAAAGACCTAGTTGGGGAATTCATTTGTGAGTGCCCATCAGGTTACACAGGTAAGCACTGTGAAT GAAAGCTGACATTGAAAACAGGACGACTGGACCCAACGTGGTATATTCCTGCAACAGAGGCTACAGT
C
TTGAAGGGCCATCTGAGGCACACTGCACAGAAAATGGAACCTGGAGCCACCCAGTCCCTCTCTGCAA
A
CCAAATCCATGCCCTGTTCCTTTTGTGATTCCCGAGAATGCTCTGCTGTCTGAAAAGGAGTTTTATG
T
TGATCAGAATGTGTCCATCAAATGTAGGGAAGGTTTTCTGCTGCAGGGCCACGGCATCATTACCTGC
A
ACCCCGACGAGACGTGGACACAGACAAGCGCCAAATGTGAAAAAATCTCATGTGGTCCACCAGCTCA
C
GTAGAAAATGCAATTGCTCGAGGCGTACATTATCAATATGGAGACATGATCACCTACTCATGTTACA
G
TGGATACATGTTGGAGGGTTTCCTGAGGAGTGTTTGTTTAGAAAATGGAACATGGACATCACCTCCT
A
TTTGCAGAGCTGTCTGTCGATTTCCATGTCAGAATGGGGGCATCTGCCAACGCCCAAATGCTTGTTC
C
TGTCCAGAGGGCTGGATGGGGCGCCTCTGTGAAGAACCAATCTGCATTCTTCCCTGTCTGAACGGAG
G
TCGCTGTGTGGCCCCTTACCAGTGTGACTGCCCGCCTGGCTGGACGGGGTCTCGCTGTCATACAGCT
G
TTTGCCAGTCTCCCTGCTTAAATGGTGGAAAATGTGTAAGACCAAACCGATGTCACTGTCTTTCTTC
T
TGGACGGGACATAACTGTTCCAGGAAAAGGAGGACTGGGTTTTAACCACTGCACGACCATCTGGCTC
T
CCCAAAAGCAGGATCATCTCTCCTCGGTAGTGCCTGGGCATCCTGGAACTTATGCAAAGAAAGTCCA
A CATGGTGCTGGGTCTTGTTTAGTAAACTTGTTACTTGGGGTTACTTTTTTTATTTTGTGATATATTT
GTTATTCCTTGTGACATACTTTCTTACATGTTTCCATTTTTAAATATGCCTGTATTTTCTATATAAA lATTATATTAAATAGATGCTGCTCTACCCTCACAAAATGTACATATTCTGCTGTCTATTGGGAAAGTT
CTGGTACACATTTTTATTCAGTTACTTAAAATGATTTTTCCATTAAAGTATATTTTGCTACTAAATA
A AAAAAA
NOV81, SNP13374702 of jSEQ ID NO: 200J3570 aa JMW at 390031.5kD
CG50646-04, Protein Sequence SNP Pos: 794 SNP Change: His to Arg
MRRICAACWGLALVSGWATFQQMSPSRNFSFRLFPETAPGAPGSIPAPPAPGDEAAGSRVERLGQAFR VRLLRELSERLELVFLVDDSSSVGEVNFRSELMFVRKLLSDFPWPTATRVAIVTFSSKNYWPRVDY ISTRRARQHKCALLLQEIPAISYRGGGTYTKGAFQQAAQILLHARENSTKWFLITDGYSNGGDPRPI AASLRDSGVEIFTFGIWQGNIRELNDMASTPKEEHCYLLHSFEEFEALVALCHMLFVDLPSGSFIQDD MVHCSYLCDEG---ODCCDRMGSCKCGKHTGHFECICΞKGYNGKGLQYDCTVCPSGTYKPEGSPGGISSCI PCPDENHTSPPGSTSPEDCVCREGYRASGQTCEWHCPALKPPENGYFIQNTCNNHFNAACGVRCHPG FDLVGSSIILCLPNGLWSGSESYCRVRTCPHLRQPKHGHISCSTREMLYKTTCLVACDEGYRLEGSDK LTCQGNSQWDGPEPRCVERHCSTFQMPKDVIISPHNCGKQPAKFGTICYVSCRQGFILSGVKEMLRCT TSGKW-I-WGVQ-AAVC-KDVΞAPQINCP-KDIEAKTLEQQDSAKIVTWQIPTAKDNSGEKVSVHVHPAFTPPY LFPIGDVAIVYTATDLSGNQASCIFHIKVIDAEPPVIDWCRSPPPVQVSEKVHAASWDEPQFSDNSGA ELVITRSHTQGDLFPQGETIVQYTATDPSGNNRTCDIHIVIKGSPCEIPFTPVNGDFICTPDNTGVNC TLTCLEGYDFTEGSTDKYYCAYEDGVWKPTYTTEWPDCASKRFANRGFKSFEMFYKAARCDDTDLMKK FSΞAFETTLGKMVPSFCSDAEDIDCRLEENLT-KKYCLEYNYDYENGFAIGPGGWGAANRLDYSYDDFL DTVQETATSIGNAKSSRIKRSAPLSDYKIKLIFNITASVPLPDERNDTLEWENQQRLLQTLETITNKL KRTLNKDPMYSFQLASEILIADSNSLETKKASPFCRPGSVLRGRMCVNCPLGTYYNLEHFTCESCRIG SYQDEEGQLECKLCPSGMYTEYIHSRNISDCKAQCKQGTYSYSGLETCESCPLGTYQPKFGSRSCLSC PENTSTVKRGAVNISACGVPCPEGKFSRSGLMPCHPCPRDYYQPNAGKAFCLACPFYGTTPFAGSRSI TECSSFSSTFSAAEESWPPASLGHIKKRHEISSQASHECFFNPCHNSGTCQQLGRGYVCLCPLGYTG LKCETDIDECSPLPCLNNGVCKDLVGEFICECPSGYTGKHCELNINECQSNPCRNQATCVDELNSYSC KCQPGFSGKRCETGMYQLSVINNL---NAVCEDQVGGFLCKCPPGFLGTRCGKNVDECLSQPCKNGATCK DGANSFRCLCAAGFTGSHCELNINECQSNPCRNQATCVDELNSYSCKCQPGFSGKRCETEQSTGFNLD FEVSGIYGYVMLDGMLPSLHALTCTFWMKSSDDMNYGTPISYAVDNGSDNTLLLTDYNGWVLYVNGRE KITNCPSVNDGRWHHIAITWTSTGGAWRVYINGELSDGGTGLSIGKAIPGGGALVLGQEQDKKGEGFN
PAESFVGSISQLNLWDYVLSPQQVKSLATSCPEELSKGNVLAWPDFLSGIVGKVKIDSKSIFCSDCPR
LGGSVPHLRTASEDLKPGSKVNLFCEPGFQLVGNPVQYCLNQGQWTQPLPHCERIRCGVPPPLENGFH
SADDFYAGSTVTYQCNNGYYLLGDSRMFCTDNGSWNGVSPSCLDVDECAVGSDCSEHASCLNVDGSYI
CSCVPPYTGDGKNC-AEPIKCKAPGNPENGHSSGEIYTVGAEVTFSCQEGYQLMGVTKITCLESGEWNH
LIPYCKAVSCGKPAIPENGCIEELAFTFGSKVTYRCNKGYTLAGDKESSCLANSSWSHSPPVCEPVKC
SSPENINNGKYILSGLTYLSTASYSCDTGYSLQGPSIIECTASGIWDRAPPACHLVFCGEPPAIKDAV
ITGNNFTFR---T]-VTYTC.--^GYTLAGLDTIECLA
IAFYYCSDGYSLADNSQLLCNAQGKWVPPEGQDMPRCIAHFCEKPPSVSYSILESVSKAKFAAGSWS
FKCMEGFVLNTSAKIECMRGGQWNPSPMSIQCIPVRCGEPPSIMNGYASGSNYSFGAMVAYSCNKGFY
IKGEKKSTCEATGQWSSPIPTCHPVSCGEPPKVENGFLEHTTGRIFESΞVRYQCNPGYKSVGSPVFVC
QANRHWHSESPLMCVPLDCGKPPPIQNGFMKGENFEVGSKVQFFCNEGYELVGDSSWTCQKSGKWNKK
SNPKCMPAKCPEPPLLENQLVLKELTTEVGWTFSCKEGHVLQGPSVLKCLPSQQWNDSFPVCKIVLC
TPPPLISFGVPIPSSALHFGSTVKYSCVGGFFLRGNSTTLCQPDGTWSSPLPECVPVECPQPEEIPNG
IIDVQGLAYLSTALYTCKPGFELVGNTTTLCGENGHWLGGKPTCKAIECLKPKEILNGKFSYTDLHYG
QTVTYSCNRGFRLEGPSALTCLETGDWDVDAPSCNAIHCDSPQPIENGFVEGADYSYGAIIIYSCFPG
FQVAGHAMQTCEESGWSSSIPTCMPIDCGLPPHIDFGDCTKLKDDQGYFEQEDDMMEVPYVTPHPPYH
LGAVAKTWENTKESPATHSSNFLYGTMVSYTCNPGYELLGNPVLICQEDGTWNGSAPSCISIECDLPT
APENGFLRFTETSMGSAVQYSCKPGHILAGSDLRLCLENRKWSGASPRCEAISCKKPNPVMNGSIKGS
NYTYLSTLYYECDPGYVLNGTERRTCQDDKNWDEDEPICIPVDCSSPPVSANGQVRGDEYTFQKEIEY
TCNEGFLLEGARSRVCLANGSWSGATPDCVPVRCATPPQLANGVTEGLDYGFMKEVTFHCHEGYILHG
APKLTCQSDGNWDAEIPLCKPVNCGPPEDLAHGFPNGFSFIHGGHIQYQCFPGYKLHGNSSRRCLSNG
SWSGSSPSCLPCRCSTPVIEYGTVNGTDFDCGKAARIQCFKGFKLLGLSEITCEADGQWSSGFPHCEH
TSCGSLPMIPNAFISETSSWKENVITYSCRSGYVIQGSSDLICTEKGVWSQPYPVCEPLSCGSPPSVA
NAVATGEAHTYESEVKLRCLEGYTMDTDTDTFTCQKDGRWFPERISCSPKKCPLPENITHILVHGDDF
SVNRQVSVSCAEGYTFEGVNISVCQLDGTWEPPFSDESCSPVSCGKPESPEHGFWGSKYTFESTIIY
QCEPGYELEGNRERVCQENRQWSGGVAICKETRCETPLEFLNGKADIENRTTGPNWYSCNRGYSLEG
PSEAHCTENGTWSHPVPLCKPNPCPVPFVIPENALLSEKEFYVDQNVSIKCREGFLLQGHGIITCNP
D
ETWTQTSAKCEKISCGPPAHVENAI RGVHYQYGDMITYSCYSGYMLEGFLRSVCLENGTWTSPPIC
R
AVCRFPCQNGGICQRPNACSCPEGWMGRLCEEPICILPCLNGGRCVAPYQCDCPPGWTGSRCHTAVC
Q
SPCLNGGKCVRPNRCHCLSSWTGHNCSRKRRTGF
NOV8m, SNP13374257 of SEQ ID NO: 201 11158 bp
CG50646-04, DNA Sequence ORF Start: ATG at 77 ORF Stop: TAA at 10787
SNP Pos: 7217 SNP Change: A to G
CAATTGGTCTAGGGTCTCCCCCATTGGAATATCCATCAGTGATGAGAAATACAACGTTTGTTGAGTTT
TCTCTAGCATGAGAAGAATTTGCGCGGCTTGCTGGGGTCTGGCGCTCGTTTCGGGCTGGGCGACCTTT
CAGCAGATGTCCCCGTCGCGCAATTTCAGCTTCCGCCTCTTCCCCGAGACCGCGCCCGGGGCCCCCGG GAGTATCCCCGCGCCGCCCGCTCCTGGCGACGAAGCGGCGGGGAGCAGAGTGGAGCGGCTGGGCCAGG CGTTCCGCGTGCGGCTGCTGCGGGAGCTCAGCGAGCGCCTGGAGCTTGTCTTCCTGGTGGATGATTCG TCCAGCGTGGGCGAAGTCAACTTCCGCAGCGAGCTCATGTTCGTCCGCAAGCTGCTGTCCGACTTCCC CGTGGTGCCCACGGCCACGCGCGTGGCCATCGTGACCTTCTCGTCCAAGAACTACGTGGTGCCGCGCG TCGATTACATCTCCACCCGCCGCGCGCGCCAGCACAAGTGCGCGCTGCTCCTCCAAGAGATCCCTGCC ATCTCCTACCGAGGTGGCGGCACCTACACCAAGGGCGCCTTCCAGCAAGCCGCGCAAATTCTTCTTCA TGCTAGAGAAAACTCAACAAAAGTTGTATTTCTCATCACTGATGGATATTCCAATGGGGGAGACCCTA GACCAATTGCAGCGTCACTGCGAGATTCAGGAGTGGAGATCTTCACTTTTGGCATATGGCAAGGGAAC ATTCGAGAGCTGAATGACATGGCTTCCACCCCAAAGGAGGAGCACTGTTACCTGCTACACAGTTTTGA AGAATTTGAGGCTTTAGTCGCCCTCTGTCATATGTTATTTGTAGATCTACCTTCTGGGAGTTTTATTC AAGATGATATGGTCCACTGCTCATATCTTTGTGATGAAGGCAAGGACTGCTGTGACCGAATGGGAAGC TGCAAATGTGGGAAACACACAGGCCATTTTGAGTGCATCTGTGAAAAGGGGTATAACGGGAAAGGTCT GCAGTATGACTGCACAGTTTGCCCATCGGGGACATACAAACCTGAAGGCTCACCAGGAGGAATCAGCA GTTGCATTCCATGTCCTGATGAAAATCACACCTCTCCACCTGGAAGCACATCCCCTGAAGACTGTGTC TGCAGAGAGGGATACAGGGCATCTGGCCAGACCTGTGAAGTTGTCCACTGCCCTGCCCTGAAGCCTCC CGAAAATGGTTACTTTATCCAAAACACTTGCAACAACCACTTCAATGCAGCCTGTGGGGTCCGATGTC ACCCTGGATTTGATCTTGTGGGAAGCAGCATCATCTTATGTCTACCCAATGGTTTGTGGTCCGGTTCA GAGAGCTACTGCAGAGTAAGAACATGTCCTCATCTCCGCCAGCCGAAACATGGCCACATCAGCTGTTC TACAAGGGAAATGTTATATAAGACAACATGTTTGGTTGCCTGTGATGAAGGGTACAGGCTAGAAGGCA GTGATAAGCTTACTTGTCAAGGAAACAGCCAGTGGGATGGGCCAGAACCCCGGTGTGTGGAGCGCCAC TGTTCCACCTTTCAGATGCCCAAAGATGTCATCATATCCCCCCACAACTGTGGCAAGCAGCCAGCCAA ATTTGGGACGATCTGCTATGTAAGTTGCCGCCAAGGGTTCATTTTATCTGGAGTCAAAGAAATGCTGA GATGTACCACTTCTGGAAAATGGAATGTCGGAGTTCAGGCAGCTGTGTGTAAAGACGTGGAGGCTCCT CAAATCAACTGTCCTAAGGACATAGAGGCTAAGACTCTGGAACAGCAAGATTCTGCCAATGTTACCTG GCAGATTCCAACAGCTAAAGACAACTCTGGTGAAAAGGTGTCAGTCCACGTTCATCCAGCTTTCACCC CACCTTACCTTTTCCCAATTGGAGATGTTGCTATCGTATACACGGCAACTGACCTATCCGGCAACCAG GCCAGCTGCATTTTCCATATCAAGGTTATTGATGCAGAACCACCTGTCATAGACTGGTGCAGATCTCC ACCTCCCGTCCAGGTCTCGGAGAAGGTACATGCCGCAAGCTGGGATGAGCCTCAGTTCTCAGACAACT CAGGTGCTGAATTGGTCATTACCAGAAGTCATACACAAGGAGACCTTTTCCCTCAAGGGGAGACTATA GTACAGTATACAGCCACTGACCCCTCAGGCAATAACAGGACATGTGATATCCATATTGTCATAAAAGG TTCTCCCTGTGAAATTCCATTCACACCTGTAAATGGGGATTTTATATGCACTCCAGATAATACTGGAG TCAACTGTACATTAACTTGCTTGGAGGGCTATGATTTCACAGAAGGGTCTACTGACAAGTATTATTGT GCTTATGAAGATGGCGTCTGGAAACCAACATATACCACTGAATGGCCAGACTGTGCCAGTAAGCGTTT TGCAAACCACGGGTTCAAGTCCTTTGAGATGTTCTACAAAGCAGCTCGTTGTGATGACACAGATCTGA TGAAGAAGTTTTCTGAAGCATTTGAGACGACCCTGGGAAAAATGGTCCCATCATTTTGTAGTGATGCA GAGGACATTGACTGCAGACTGGAGGAGAACCTGACCAAAAAATATTGCCTAGAATATAATTATGACTA TGAAAATGGCTTTGCAATTGGTCCAGGTGGCTGGGGTGCAGCTAATAGGCTGGATTACTCTTACGATG ACTTCCTGGACACTGTGCAAGAAACAGCCACAAGCATCGGCAATGCCAAGTCCTCACGGATTAAAAGA AGTGCCCCATTATCTGACTATAAAATTAAGTTAATTTTTAACATCACAGCTAGTGTGCCATTACCCGA TGAAAGAAATGATACCCTTGAATGGGAAAATCAGCAACGACTCCTTCAGACATTGGAAACTATCACAA ATAAACTGAAAAGGACTCTCAACAAAGACCCCATGTATTCCTTTCAGCTTGCATCAGAAATACTTATA GCCGACAGCAATTCATTAGAAACAAAAAAGGCTTCCCCCTTCTGCAGACCAGGCTCAGTGCTGAGAGG GCGTATGTGTGTCAATTGCCCTTTGGGAACCTATTATAATCTGGAACATTTCACCTGTGAAAGCTGCC GGATCGGATCCTATCAAGATGAAGAAGGGCAACTTGAGTGCAAGCTTTGCCCCTCTGGGATGTACACG GAATATATCCATTCAAGAAA.CATCTCTGATTGTAAAGCTCAGTGTAAACAAGGCACCTACTCATACAG TGGACTTGAGACTTGTGAATCGTGTCCACTGGGCACTTATCAGCCAAAATTTGGTTCCCGGAGCTGCC
TCTCGTGTCCAGAAAACACCTCAACTGTGAAAAGAGGAGCCGTGAACATTTCTGCATGTGGAGTTCC
T
TGTCCAGAAGGAAAATTCTCGCGTTCTGGGTTAATGCCCTGTCACCCATGTCCTCGTGACTATTACC
A
ACCTAATGCAGGGAAGGCCTTCTGCCTGGCCTGTCCCTTTTATGGAACTACCCCATTCGCTGGTTCC
A
GATCCATCACAGAATGTTCAAGTTTTAGTTCAACTTTCTCAGCGGCAGAGGAAAGTGTGGTGCCCCC
T
GCCTCTCTTGGACATATTAAAAAGAGGCATGAAATCAGCAGTCAGGCAAGTCATGAATGCTTCTTTA
A
CCCTTGCCACAATAGTGGAACCTGCCAGCAACTTGGGCGTGGTTATGTTTGTCTCTGTCCACTTGGA
T
ATACAGGTTTAAAGTGTGAAACAGACATCGATGAGTGCAGCCCACTGCCTTGCCTCAACAATGGAGT
T
TGTAAAGACCTAGTTGGGGAATTCATTTGTGAGTGCCCATCAGGTTACACAGGTAAGCACTGTGAAT
T
GAACATCAATGAATGTCAGTCTAATCCATGTAGAAATCAGGCCACCTGTGTGGATGAATTAAATTCA
T
ACAGTTGTAAATGTCAGCCAGGATTTTCAGGCAAAAGGTGTGAAACAGGTATGTATCAACTCAGTGT
T
ATTAATAACCTTAATAATGCAGTCTGTGAAGACCAGGTTGGGGGATTCTTGTGCAAATGCCCACCTG
G
ATTTTTGGGTACCCGATGTGGAAAGAACGTCGATGAGTGTCTCAGTCAGCCATGCAAAAATGGAGCT
A
CCTGTAAAGACGGTGCCAATAGCTTCAGGTGCCTGTGTGCAGCTGGCTTCACAGGATCACACTGTGA
A
TTGAACATCAATGAATGTCAGTCTAATCCATGTAGAAATCAGGCCACCTGTGTGGATGAATTAAATT
C
ATACAGTTGTAAATGTCAGCCAGGATTTTCAGGCAAAAGGTGTGAAACAGAACAGTCTACAGGCTTT
A
ACCTGGATTTTGAAGTTTCTGGCATCTATGGATATGTCATGCTAGATGGCATGCTCCCATCTCTCCA
T G
TCGCTGTGTGGCCCCTTACCAGTGTGACTGCCCGCCTGGCTGGACGGGGTCTCGCTGTCATACAGCT
G
TTTGCCAGTCTCCCTGCTTAAATGGTGGAAAATGTGTAAGACCAAACCGATGTCACTGTCTTTCTTC
T GGACGGGACATAACTGTTCCAGGAAAAGGAGGACTGGGTTTTAACCACTGCACGACCATCTGGCTC
T
CCCAAAAGCAGGATCATCTCTCCTCGGTAGTGCCTGGGCATCCTGGAACTTATGCAAAGAAAGTCCA
A
CATGGTGCTGGGTCTTGTTTAGTAAACTTGTTACTTGGGGTTACTTTTTTTATTTTGTGATATATTT
T
GTTATTCCTTGTGACATACTTTCTTACATGTTTCCATTTTTAAATATGCCTGTATTTTCTATATAAA
A
ATTATATTAAATAGATGCTGCTCTACCCTCACAAAATGTACATATTCTGCTGTCTATTGGGAAAGTT
C
CTGGTACACATTTTTATTCAGTTACTTAAAATGATTTTTCCATTAAAGTATATTTTGCTACTAAATA
A AAAAAA
NOV8m, SNP13374257 of SEQ ID NO: 2023570 aa MWat389982.5kD
CG50646-04, Protein Sequence |SNP Pos: 2381 SNP Change: Thrto Ala
MRRICAΆCWGLALVSG ATFQQMSPSRNFSFRLFPETAPGAPGSIPAPPAPGDEAAGSRVERLGQAFR
VRLLRELSERLELVFLVDDSSSVGEVNFRSELMFVRM-JLSDFPVVPTATRVAIVTFSS-KNYVVPRVDY
ISTRRARQHKCΑLLLQEIPAISYRGGGTYTKGAFQQAAQILLHARENSTKVVFLITDGYSNGGDPRPI
AASLRDSGVEIFTFGIWQGNIRELNDMASTPKEEHCYLLHSFEEFEALVALCHMLFVDLPSGSFIQDD
MVHCSYLCDEGKDCCDRMGSCKCGKHTGHFECICEKGYNGKGLQYDCTVCPSGTYKPEGSPGGISSCI
PCPDE HTSPPGSTSPEDCVCREGYRASGQTCEWHCPALKPPENGYFIQNTCNNHFNAACGVRCHPG
FDLVGSSIILCLPNGLWSGSESYCRVRTCPHLRQPKHGHISCSTREMLYKTTCLVACDEGYRLEGSDK
LTCQGNSQWDGPEPRCVERHCSTFQMPKDVIISPHNCGKQPAKFGTICYVSCRQGFILSGVKEMLRCT
TSG-KW--WGVQAAVC-KDVEAPQINCP-L-Α}IEAKTLEQQDS-ANVTWQIPTARA
LFPIGDVAIVYTATDLSGNQASCIFHI-KVIDAEPPVIDWCRSPPPVQVSEK-VHAASWDEPQFSDNSGA
ELVITRSHTQGDLFPQGETIVQYTATDPSGNNRTCDIHIVIKGSPCEIPFTPVNGDFICTPDNTGVNC
TLTCLEGYDFTEGSTDKYYCAYΞDGVWKPTYTTEWPDCASKRFANHGFKSFEMFYKAARCDDTDLMKK
FSEAFETTLGKMVPSFCSDAEDIDCRLEENLTKKYCLEYNYDYENGFAIGPGGWGAANRLDYSYDDFL
DTVQETATSIGNAKSSRIKRSAPLSDYKIKLIFNITASVPLPDERNDTLEWENQQRLLQTLETITNKL
KRTLNKDPMYSFQLASEILIADSNSLETKKASPFCRPGSVLRGRMCVNCPLGTYYNLEHFTCESCRIG
SYQDEEGQLECKLCPSGMYTEYIHSRNISDCKAQCKQGTYSYSGLETCESCPLGTYQPKFGSRSCLSC
PENTSTVKRGAVNISACGVPCPEGKFSRSGLMPCHPCPRDYYQPNAGKAFCLACPFYGTTPFAGSRSI
TECSSFSSTFSAAEESWPPASLGHIKKRHEISSQASHECFFNPCHNSGTCQQLGRGYVCLCPLGYTG
LKCETDIDECSPLPCLNNGVCKDLVGEFICECPSGYTGKHCELNINECQSNPCRNQATCVDELNSYSC
KCQPGFSGKRCETGMYQLSVINNLNNAVCEDQVGGFLCKCPPGFLGTRCGKNVDECLSQPCKNGATCK
DGANSFRCLCAAGFTGSHCELNINECQSNPCRNQATCVDELNSYSCKCQPGFΞGKRCETEQSTGFNLD
FEVSGIYGYVMLDGMLPSLHALTCTFWMKSSDDMNYGTPISYAVDNGSDNTLLLTDYNGWVLYVNGRE
KITNCPSVNDGRWHHIAITWTSTGGAWRVYINGELSDGGTGLSIGKAIPGGGALVLGQEQDKKGEGFN
PAESFVGSISQLNLWDYVLSPQQVKSLATSCPEELSKGNVLAWPDFLSGIVGKVKIDSKSIFCSDCPR
LGGSVPHLRTASEDLKPGSKVNLFCEPGFQLVGNPVQYCLNQGQWTQPLPHCERIRCGVPPPLENGFH
SADDFYAGSTVTYQCNNGYYLLGDSRMFCTDNGS NGVSPSCLDVDECAVGSDCSEHASCLNVDGSYI
CSCVPPYTGDGKNCAEPIKCKAPGNPENGHSSGEIYTVGAEVTFSCQEGYQLMGVTKITCLESGEWNH
LIPYCKAVSCGKPAIPENGCIEELAFTFGSKVTYRCNKGYTLAGDKESSCLANSSWSHSPPVCEPVKC
SSPENINNGKYILSGLTYLSTASYSCDTGYSLQGPSIIECTASGIWDRAPPACHLVFCGEPPAIKDAV
ITGNNFTFRNTVTYTCKEGYTLAGLDTIECLADGKWSRSDQQCLAVSCDEPPIVDHASPETAHRLFGD
IAFYYCSDGYSLADNSQLLCNAQGKWPPEGQDMPRCIAHFCEKPPSVSYSILESVSKAKFAAGSWS
FKCMEGFVLNTSAKIECMRGGQWNPSPMSIQCIPVRCGEPPSIMNGYASGSNYSFGAMVAYSCNKGFY
IKGEKKSTCEATGQWSSPIPTCHPVSCGEPPKVENGFLEHTTGRIFESEVRYQCNPGYKSVGSPVFVC
QAN-RHWHSESPLMCVPLDCGKPPPIQNGFMKGENFEVGSKVQFFCNEGYELVGDSSWTCQKSGKWNKK
SNPKCMPAKCPΞPPLLENQLVLKELTTEVGWTFSCKEGHVLQGPSVLKCLPSQQWNDSFPVCKIVLC
APPPLISFGVPIPSSALHFGSTVKYSCVGGFFLRGNSTTLCQPDGTWSSPLPECVPVECPQPEEIPNG
IIDVQGLAYLSTALYTCKPGFELVGNTTTLCGENGHWLGGKPTCKAIECLKPKEILNGKFSYTDLHYG
QTVTYSCNRGFRLEGPSALTCLETGDWDVDAPSCLSTAIHCDSPQPIENGFVEGADYSYGAIIIYSCFPG
FQVAGHAMQTCEESGWSSSIPTCMPIDCGLPPHIDFGDCTKLKDDQGYFEQEDDMMEVPYVTPHPPYH GAGGACATTGACTGCAGACTGGAGGAGAACCTGACCAAAAAATATTGCCTAGAATATAATTATGACTA TGAAAATGGCTTTGCAATTGGTCCAGGTGGCTGGGGTGCAGCTAATAGGCTGGATTACTCTTACGATG ACTTCCTGGACACTGTGCAAGAAACAGCCACAAGCATCGGCAATGCCAAGTCCTCACGGATTAAAAGA JAGTGCCCCATTATCTGACTATAAAATTAAGTTAATTTTTAACATCACAGCTAGTGTGCCATTACCCGA TGAAAGAAATGATACCCTTGAATGGGAAAATCAGCAACGACTCCTTCAGACATTGGAAACTATCACAA ATAAACTGAAAAGGACTCTCAACAAAGACCCCATGTATTCCTTTCAGCTTGCATCAGAAATACTTATA GCCGACAGCAATTCATTAGAAACAAAAAAGGCTTCCCCCTTCTGCAGACCAGGCTCAGTGCTGAGAGG GCGTATGTGTGTCAATTGCCCTTTGGGAACCTATTATAATCTGGAACATTTCACCTGTGAAAGCTGCC GGATCGGATCCTATCAAGATGAAGAAGGGCAACTTGAGTGCAAGCTTTGCCCCTCTGGGATGTACACG GAATATATCCATTCAAGAAACATCTCTGATTGTAAAGCTCAGTGTAAACAAGGCACCTACTCATACAG TGGACTTGAGACTTGTGAATCGTGTCCACTGGGCACTTATCAGCCAAAATTTGGTTCCCGGAGCTGCC
TCTCGTGTCCAGAAAACACCTCAACTGTGAAAAGAGGAGCCGTGAACATTTCTGCATGTGGAGTTCC
T
TGTCCAGAAGGAAAATTCTCGCGTTCTGGGTTAATGCCCTGTCACCCATGTCCTCGTGACTATTACC
A
ACCTAATGCAGGGAAGGCCTTCTGCCTGGCCTGTCCCTTTTATGGAACTACCCCATTCGCTGGTTCC
A
GATCCATCACAGAATGTTCAAGTTTTAGTTCAACTTTCTCAGCGGCAGAGGAAAGTGTGGTGCCCCC
T
GCCTCTCTTGGACATATTAAAAAGAGGCATGAAATCAGCAGTCAGGCAAGTCATGAATGCTTCTTTA
A
CCCTTGCCACAATAGTGGAACCTGCCAGCAACTTGGGCGTGGTTATGTTTGTCTCTGTCCACTTGGA
T
ATACAGGTTTAAAGTGTGAAACAGACATCGATGAGTGCAGCCCACTGCCTTGCCTCAACAATGGAGT
T
TGTAAAGACCTAGTTGGGGAATTCATTTGTGAGTGCCCATCAGGTTACACAGGTAAGCACTGTGAAT
T -
GAACATCAATGAATGTCAGTCTAATCCATGTAGAAATCAGGCCACCTGTGTGGATGAATTAAATTCA
T
ACAGTTGTAAATGTCAGCCAGGATTTTCAGGCAAAAGGTGTGAAACAGGTATGTATCAACTCAGTGT
T
ATTAATAACCTTAATAATGCAGTCTGTGAAGACCAGGTTGGGGGATTCTTGTGCAAATGCCCACCTG
G
ATTTTTGGGTACCCGATGTGGAAAGAACGTCGATGAGTGTCTCAGTCAGCCATGCAAAAATGGAGCT
A
CCTGTAAAGACGGTGCCAATAGCTTCAGGTGCCTGTGTGCAGCTGGCTTCACAGGATCACACTGTGA
A
TTGAACATCAATGAATGTCAGTCTAATCCATGTAGAAATCAGGCCACCTGTGTGGATGAATTAAATT
C
ATACAGTTGTAAATGTCAGCCAGGATTTTCAGGCAAAAGGTGTGAAACAGAACAGTCTACAGGCTTT
A
ACCTGGATTTTGAAGTTTCTGGCATCTATGGATATGTCATGCTAGATGGCATGCTCCCATCTCTCCA
T
GCTCTAACCTGTACCTTCTGGATGAAATCCTCTGACGACATGAACTATGGAACACCAATCTCCTATG
C
AGTTGATAACGGCAGCGACAATACCTTGCTCCTGACTGATTATAACGGGTGGGTTCTTTATGTGAAT
G
GCAGGGAAAAGATAACAAACTGTCCCTCGGTGAATGATGGCAGATGGCATCATATTGCAATCACTTG
G
ACAAGTACTGGTGGAGCCTGGAGGGTCTATATAAATGGGGAATTATCTGACGGTGGTACTGGCCTCT
C
CATTGGCAAAGCCATACCTGGTGGCGGTGCATTAGTTCTTGGGCAAGAGCAAGACAAAAAAGGAGAG
G
GGTTCAACCCGGCTGAGTCTTTTGTGGGCTCCATAAGCCAGCTCAACCTCTGGGACTATGTCCTGTC
T
CCACAGCAGGTGAAGTCACTGGCTACCTCCTGCCCAGAGGAACTCAGTAAAGGAAACGTGTTAGCAT
G
GCCTGATTTCTTGTCAGGAATTGTGGGGAAAGTGAAGATCGATTCTAAGAGCATATTTTGTTCTGAT
T
GCCCACGCTTGGGAGGGTCAGTGCCTCATCTGAGAACTGCATCTGAAGATTTAAAACCAGGTTCCAA
A^6 i-AAAAAA
NOV8n, SNP13382479 of SEQ ID NO: 2043570 aa MW at 390012.5kD
CG50646-04, Protein Sequence isNPPos: 3191 SNP Change: Val to Val RRICAACWGLALVSGWATFQQMSPSRNFSFRLFPETAPGAPGSIPAPPAPGDEAAGSRVERLGQAFR LLRELSERLELVFLVDDSSSVGEWFRSELMFVT.KLLSDFP PTATRVAIVTFSS-KNYWPRVDY ISTRRARQHKCALLLQEIPAISYRGGGTYTKGAFQQAAQILLHARENSTKWFLITDGYSNGGDPRPI AASLRDSGVEIFTFGIWQGNIRELNDMASTPKEEHCYLLHSFEEFEALVALCHMLFVDLPSGSFIQDD MVHCSYLCDEGKDCCDRMGSCKCGKHTGHFECICEKGYNGKGLQYDCTVCPSGTYKPEGSPGGISSCI PCPDENHTSPPGSTSPEDCVCREGYRASGQTCEWHCPALKPPENGYFIQNTCNNHFNAACGVRCHPG FDLVGSSIILCLPNGLWSGSESYCRVRTCPHLRQPKHGHISCSTREMLYKTTCLVACDEGYRLEGSDK LTCQGNSQWDGPEPRCVERHCSTFQMPKDVIISPHNCGKQPAKFGTICYVSCRQGFILSGVKEMLRCT TSGKWNVGVQ-AAVCKDVEAPQINCP-1- IEAKTLEQQDSANVTWQIPTAKDNSGEKVSVHVHPAFTPPY LFPIGDVAIVYTATDLSGNQASCIFHIKVIDAEPPVIDWCRSPPPVQVSEKVHAASWDEPQFSDNSGA ELVITRSHTQGDLFPQGETIVQYTATDPSGNNRTCDIHIVIKGSPCEIPFTPVNGDFICTPDNTGVNC TLTCLEGYDFTEGSTDKYYCAYEDGVWKPTYTTEWPDCASKRFANHGFKSFEMFYKAARCDDTDLMKK FSEAFETTLGKMVPSFCSDAEDIDCRLEENLTKKYCLEYNYDYENGFAIGPGGWGAANRLDYSYDDFL DTVQETATSIGNAKSSRIKRSAPLSDYKIKLIFNITASVPLPDERNDTLEWENQQRLLQTLETITNKL KRTLNKDPMYSFQLASEILIADSNSLETKKASPFCRPGSVLRGRMCVNCPLGTYYNLEHFTCESCRIG SYQDEEGQLECKLCPSGMYTEYIHSRNISDCKAQCKQGTYSYSGLETCΞSCPLGTYQPKFGSRSCLSC PENTSTVKRGAVNISACGVPCPEGKFSRSGLMPCHPCPRDYYQPNAGKAFCLACPFYGTTPFAGSRSI TECSSFSSTFSAAEESWPPASLGHIKKRHEISSQASHECFFNPCHNSGTCQQLGRGYVCLCPLGYTG LKCETDIDECSPLPCLNNGVCKDLVGEFICECPSGYTGKHCELNINECQSNPCRNQATCVDELNSYSC KCQPGFSG-- CETGMYQLSVI---RØL-LNRAAVCEDQVGGFLCKCPPGFLGTRCGKNVDECLSQPCKNGATCK DGANSFRCLCAAGFTGSHCELNINECQSNPCRNQATCVDELNSYSCKCQPGFSGKRCETEQSTGFNLD FEVSGIYGYVMLDGMLPSLHALTCTFWMKSSDDMNYGTPISYAVDNGSDNTLLLTDYNGWVLYVNGRE KITNCPSVNDGRWHHIAITWTSTGGAWRVYINGELSDGGTGLSIGKAIPGGGALVLGQEQDKKGEGFN PAESFVGSISQLN DYVLSPQQVKSLATSCPEELSKGNVLA PDFLSGIVGKVKIDSKSIFCSDCPR LGGSVPHLRTASEDLKPGSKVNLFCEPGFQLVGNPVQYCLNQGQWTQPLPHCERIRCGVPPPLENGFH SADDFYAGSTVTYQCNNGYYLLGDSRMFCTDNGSWNGVSPSCLDVDECAVGSDCSEHASCLNVDGSYI CSCVPPYTGDGKNCAEPIKCKAPGNPENGHSSGEIYTVGAEVTFSCQEGYQLMGVTKITCLESGEW-NH LIPYCKAVSCGKPAIPENGCIEELAFTFGSKVTYRCNKGYTLAGDKESSCLANSSWSHSPPVCEPVKC SSPENINNGKYILSGLTYLSTASYΞCDTGYSLQGPSIIECTASGIWDRAPPACHLVFCGEPPAIKDAV ITGNNFTFRNTVTYTCKEGYTLAGLDTIECLADGKWSRSDQQCLAVSCDEPPIVDHASPETAHRLFGD IAFYYCSDGYSLADNSQLLCNAQGKWVPPΞGQDMPRCIAHFCEKPPSVSYSILESVSKAKFAAGSVVS FKCMEGFVLNTSAKIECMRGGQWNPSPMSIQCIPVRCGEPPSIMNGYASGS--N-YSFGAMVAYSCNKGFY IKGEKKSTCEATGQWSSPIPTCHPVSCGEPPKVENGFLΞHTTGRIFESEVRYQCNPGYKSVGSPVFVC QA--STRHWHSESPLMCVPLDCGKPPPIQNGFMKGENFEVGSKVQFFCNEGYELVGDSSWTCQKSGKWNKK SNPKCMPAKCPEPPLLENQLVLKELTTΞVGWTFSCKEGHVLQGPSVLKCLPSQQWNDSFPVCKIVLC TPPPLISFGVPIPSSALHFGSTVKYSCVGGFFLRGNSTTLCQPDGTWSSPLPECVPVECPQPEEIPNG IIDVQGLAYLSTALYTCKPGFELVGNTTTLCGENGHWLGGKPTCKAIECLKPKEILNGKFSYTDLHYG QTVTYSCNRGFRLEGPSALTCLETGDWDVDAPSCNAIHCDSPQPIENGFVEGADYSYGAIIIYSCFPG FQVAGHAMQTCEESGWSSSIPTCMPIDCGLPPHIDFGDCTKL DDQGYFEQEDDMMEVPYVTPHPPYH LGAVAKTWENTKESPATHSSNFLYGTMVSYTCNPGYELLGNPV ICQEDGTWNGSAPSCISIECDLPT APENGFLRFTETSMGSAVQYSCKPGHILAGSDLRLCLENRKWSGASPRCEAISCKKPNPVMNGSIKGS NYTYLSTLYYECDPGYVLNGTERRTCQDDKNWDEDEPICIPVDCSSPPVSANGQVRGDEYTFQKEIEY TCNEGFLLEGARSRVCLANGSWSGATPDCVPVRCATPPQLANGVTEGLDYGFMKEV FHCHEGYILHG APKLTCQSDGNWDAEIPLCKPV CGPPEDLAHGFPNGFSFIHGGHIQYQCFPGYKLHGNSSRRCLSNG SWSGSSPSCLPCRCSTPVIEYGTVNGTDFDCGKAARIQCFKGFKLLGLSEITCEADGQWSSGFPHCEH TSCGSLPMIPNAFISETSSWKENVITYSCRSGYVIQGSSDLICTEKGVWSQPYPVCEPLSCGSPPSVA NAVATGEAHTYESEVKLRCLEGYTMDTDTDTFTCQKDGRWFPERISCSPKKCPLPENITHILVHGDDF SV-NRQVSVSCAEGYTFEGVNISVCQLDGTWEPPFSDESCSPVSCGKPESPEHGFWGSKYTFESTIIY QCEPGYELEGNRERVCQENRQWSGGVAICKETRCETPLEFLNGKADIENRTTGPNVVYSCNRGYSLEG
PSEAHCTENGTWSHPVPLCKPNPCPVPFVIPENALLSEKEFYVDQNVSIKCREGFLLQGHGIITCNP
D
ETWTQTSAKCEKISCGPPAHVENAIARGVHYQYGDMITYSCYSGYMLEGFLRSVCLENGTWTSPPIC
R
AVCRFPCQNGGICQRPNACSCPEGWMGRLCEEPICILPCLNGGRCVAPYQCDCPPGWTGSRCHTAVC
Q
SPCLNGGKCVRPNRCHCLSS TGHNCSRKRRTGF NOV80, SNP 13382480 of SEQ ID NO: 205 11158 bp CG50646-04, DNA Sequence ORF Start: ATG at 77 ORF Stop: TAA at 10787
SNP Pos: 10749 SNP Change: C to T
CAATTGGTCTAGGGTCTCCCCCATTGGAATATCCATCAGTGATGAGAAATACAACGTTTGTTGAGTTT
TCTCTAGCATGAGAAGAATTTGCGCGGCTTGCTGGGGTCTGGCGCTCGTTTCGGGCTGGGCGACCTTT
CAGCAGATGTCCCCGTCGCGCAATTTCAGCTTCCGCCTCTTCCCCGAGACCGCGCCCGGGGCCCCCGG GAGTATCCCCGCGCCGCCCGCTCCTGGCGACGAAGCGGCGGGGAGCAGAGTGGAGCGGCTGGGCCAGG CGTTCCGCGTGCGGCTGCTGCGGGAGCTCAGCGAGCGCCTGGAGCTTGTCTTCCTGGTGGATGATTCG TCCAGCGTGGGCGAAGTCAACTTCCGCAGCGAGCTCATGTTCGTCCGCAAGCTGCTGTCCGACTTCCC CGTGGTGCCCACGGCCACGCGCGTGGCCATCGTGACCTTCTCGTCCAAGAACTACGTGGTGCCGCGCG TCGATTACATCTCCACCCGCCGCGCGCGCCAGCACAAGTGCGCGCTGCTCCTCCAAGAGATCCCTGCC ATCTCCTACCGAGGTGGCGGCACCTACACCAAGGGCGCCTTCCAGCAAGCCGCGCAAATTCTTCTTCA TGCTAGAGAAAACTCAACAAAAGTTGTATTTCTCATCACTGATGGATATTCCAATGGGGGAGACCCTA GACCAATTGCAGCGTCACTGCGAGATTCAGGAGTGGAGATCTTCACTTTTGGCATATGGCAAGGGAAC ATTCGAGAGCTGAATGACATGGCTTCCACCCCAAAGGAGGAGCACTGTTACCTGCTACACAGTTTTGA AGAATTTGAGGCTTTAGTCGCCCTCTGTCATATGTTATTTGTAGATCTACCTTCTGGGAGTTTTATTC AAGATGATATGGTCCACTGCTCATATCTTTGTGATGAAGGCAAGGACTGCTGTGACCGAATGGGAAGC TGCAAATGTGGGAAACACACAGGCCATTTTGAGTGCATCTGTGAAAAGGGGTATAACGGGAAAGGTCT GCAGTATGACTGCACAGTTTGCCCATCGGGGACATACAAACCTGAAGGCTCACCAGGAGGAATCAGCA GTTGCATTCCATGTCCTGATGAAAATCACACCTCTCCACCTGGAAGCACATCCCCTGAAGACTGTGTC TGCAGAGAGGGATACAGGGCATCTGGCCAGACCTGTGAAGTTGTCCACTGCCCTGCCCTGAAGCCTCC CGAAAATGGTTACTTTATCCAAAACACTTGCAACAACCACTTCAATGCAGCCTGTGGGGTCCGATGTC ACCCTGGATTTGATCTTGTGGGAAGCAGCATCATCTTATGTCTACCCAATGGTTTGTGGTCCGGTTCA GAGAGCTACTGCAGAGTAAGAACATGTCCTCATCTCCGCCAGCCGAAACATGGCCACATCAGCTGTTC TACAAGGGAAATGTTATATAAGACAACATGTTTGGTTGCCTGTGATGAAGGGTACAGGCTAGAAGGCA GTGATAAGCTTACTTGTCAAGGAAACAGCCAGTGGGATGGGCCAGAACCCCGGTGTGTGGAGCGCCAC TGTTCCACCTTTCAGATGCCCAAAGATGTCATCATATCCCCCCACAACTGTGGCAAGCAGCCAGCCAA ATTTGGGACGATCTGCTATGTAAGTTGCCGCCAAGGGTTCATTTTATCTGGAGTCAAAGAAATGCTGA GATGTACCACTTCTGGAAAATGGAATGTCGGAGTTCAGGCAGCTGTGTGTAAAGACGTGGAGGCTCCT CAAATCAACTGTCCTAAGGACATAGAGGCTAAGACTCTGGAACAGCAAGATTCTGCCAATGTTACCTG GCAGATTCCAACAGCTAAAGACAACTCTGGTGAAAAGGTGTCAGTCCACGTTCATCCAGCTTTCACCC CACCTTACCTTTTCCCAATTGGAGATGTTGCTATCGTATACACGGCAACTGACCTATCCGGCAACCAG GCCAGCTGCATTTTCCATATCAAGGTTATTGATGCAGAACCACCTGTCATAGACTGGTGCAGATCTCC ACCTCCCGTCCAGGTCTCGGAGAAGGTACATGCCGCAAGCTGGGATGAGCCTCAGTTCTCAGACAACT CAGGTGCTGAATTGGTCATTACCAGAAGTCATACACAAGGAGACCTTTTCCCTCAAGGGGAGACTATA GTACAGTATACAGCCACTGACCCCTCAGGCAATAACAGGACATGTGATATCCATATTGTCATAAAAGG TTCTCCCTGTGAAATTCCATTCACACCTGTAAATGGGGATTTTATATGCACTCCAGATAATACTGGAG TCAACTGTACATTAACTTGCTTGGAGGGCTATGATTTCACAGAAGGGTCTACTGACAAGTATTATTGT GCTTATGAAGATGGCGTCTGGAAACCAACATATACCACTGAATGGCCAGACTGTGCCAGTAAGCGTTT TGCAAACCACGGGTTCAAGTCCTTTGAGATGTTCTACAAAGCAGCTCGTTGTGATGACACAGATCTGA TGAAGAAGTTTTCTGAAGCATTTGAGACGACCCTGGGAAAAATGGTCCCATCATTTTGTAGTGATGCA GAGGACATTGACTGCAGACTGGAGGAGAACCTGACCAAAAAATATTGCCTAGAATATAATTATGACTA TGAAAATGGCTTTGCAATTGGTCCAGGTGGCTGGGGTGCAGCTAATAGGCTGGATTACTCTTACGATG ACTTCCTGGACACTGTGCAAGAAACAGCCACAAGCATCGGCAATGCCAAGTCCTCACGGATTAAAAGA AGTGCCCCATTATCTGACTATAAAATTAAGTTAATTTTTAACATCACAGCTAGTGTGCCATTACCCGA TGAAAGAAATGATACCCTTGAATGGGAAAATCAGCAACGACTCCTTCAGACATTGGAAACTATCACAA ATAAACTGAAAAGGACTCTCAACAAAGACCCCATGTATTCCTTTCAGCTTGCATCAGAAATACTTATA GCCGACAGCAATTCATTAGAAACAAAAAAGGCTTCCCCCTTCTGCAGACCAGGCTCAGTGCTGAGAGG GCGTATGTGTGTCAATTGCCCTTTGGGAACCTATTATAATCTGGAACATTTCACCTGTGAAAGCTGCC GGATCGGATCCTATCAAGATGAAGAAGGGCAACTTGAGTGCAAGCTTTGCCCCTCTGGGATGTACACG GAATATATCCATTCAAGAAACATCTCTGATTGTAAAGCTCAGTGTAAACAAGGCACCTACTCATACAG "TGGACTTGAGACTTGTGAATCGTGTCCACTGGGCACTTATCAGCCAAAATTTGGTTCCCGGAGCTGCC
TCTCGTGTCCAGAAAACACCTCAACTGTGAAAAGAGGAGCCGTGAACATTTCTGCATGTGGAGTTCC
T
TGTCCAGAAGGAAAATTCTCGCGTTCTGGGTTAATGCCCTGTCACCCATGTCCTCGTGACTATTACC
A
ACCTAATGCAGGGAAGGCCTTCTGCCTGGCCTGTCCCTTTTATGGAACTACCCCATTCGCTGGTTCC
A
GATCCATCACAGAATGTTCAAGTTTTAGTTCAACTTTCTCAGCGGCAGAGGAAAGTGTGGTGCCCCC
Δea C
TTGTGGGAAACCTGAAAGTCCAGAACATGGATTTGTGGTTGGCAGTAAATACACCTTTGAAAGCACA
A
TTATTTATCAGTGTGAGCCTGGCTATGAACTAGAGGGGAACAGGGAACGTGTCTGCCAGGAGAACAG
A
CAGTGGAGTGGAGGGGTGGCAATATGCAAAGAGACCAGGTGTGAAACTCCACTTGAATTTCTCAATG
G
GAAAGCTGACATTGAAAACAGGACGACTGGACCCAACGTGGTATATTCCTGCAACAGAGGCTACAGT
C
TTGAAGGGCCATCTGAGGCACACTGCACAGAAAATGGAACCTGGAGCCACCCAGTCCCTCTCTGCAA
A
CCAAATCCATGCCCTGTTCCTTTTGTGATTCCCGAGAATGCTCTGCTGTCTGAAAAGGAGTTTTATG
T
TGATCAGAATGTGTCCATCAAATGTAGGGAAGGTTTTCTGCTGCAGGGCCACGGCATCATTACCTGC
A
ACCCCGACGAGACGTGGACACAGACAAGCGCCAAATGTGAAAAAATCTCATGTGGTCCACCAGCTCA
C
GTAGAAAATGCAATTGCTCGAGGCGTACATTATCAATATGGAGACATGATCACCTACTCATGTTACA
G
TGGATACATGTTGGAGGGTTTCCTGAGGAGTGTTTGTTTAGAAAATGGAACATGGACATCACCTCCT
A
TTTGCAGAGCTGTCTGTCGATTTCCATGTCAGAATGGGGGCATCTGCCAACGCCCAAATGCTTGTTC
C
TGTCCAGAGGGCTGGATGGGGCGCCTCTGTGAAGAACCAATCTGCATTCTTCCCTGTCTGAACGGAG
G
TCGCTGTGTGGCCCCTTACCAGTGTGACTGCCCGCCTGGCTGGACGGGGTCTCGCTGTCATACAGCT
G
TTTGCCAGTCTCCCTGCTTAAATGGTGGAAAATGTGTAAGACCAAACCGATGTCACTGTCTTTCTTC
T
TGGATGGGACATAACTGTTCCAGGAAAAGGAGGACTGGGTTTTAACCACTGCACGACCATCTGGCTC
T
CCCAAAAGCAGGATCATCTCTCCTCGGTAGTGCCTGGGCATCCTGGAACTTATGCAAAGAAAGTCCA
A CATGGTGCTGGGTCTTGTTTAGTAAACTTGTTACTTGGGGTTACTTTTTTTATTTTGTGATATATTT
T GTTATTCCTTGTGACATACTTTCTTACATGTTTCCATTTTTAAATATGCCTGTATTTTCTATATAAA
A ATTATATTAAATAGATGCTGCTCTACCCTCACAAAATGTACATATTCTGCTGTCTATTGGGAAAGTT
C
CTGGTACACATTTTTATTCAGTTACTTAAAATGATTTTTCCATTAAAGTATATTTTGCTACTAAATA
A AAAAAA
NOV80, SNP13382480 of SEQ ID NO: 206 3570 aa MW at 390042.6kD
CG50646-04, Protein Sequence SNP Pos: 3558 JSNP Change: Thr to Met
MRRICAACWGLALVSGWATFQQMSPSRNFSFRLFPETAPGAPGSIPAPPAPGDEAAGSRVERLGQAFR VRLLRELSERLELVFLVDDSSSVGEVNFRSELMFVRKLLSDFPVVPTATRVAIVTFSS--ajYVVPRVDY IST---IRARQHKCALLLQEIPAISYRGGGTYTKGAFQQAAQILLHARENSTKVVFLITDGYSNGGDPRPI AASLRDSGVEIFTFGI QGNIRELNDMASTPKEEHCYLLHSFEEFEALVALCHMLFVDLPSGSFIQDD MVHCSYLCDEGKDCCDRMGSCKCGKHTGHFECICEKGYNGKGLQYDCTVCPSGTYKPEGSPGGISSCI PCPDElfflTSPPGSTSPEDCVCREGYPASGQTCEVVHCPALKPPENGYFIQNTCNNHFNAACGVRCHPG FDLVGSSIILCLPNGLWSGSΞSYCRVRTCPHLRQPKHGHISCSTREMLYKTTCLVACDEGYRLEGSDK LTCQGNSQWDGPEPRCVERHCSTFQMPKDVIISPHNCGKQPAKFGTICYVSCRQGFILSGVKEMLRCT TSGKW--WGVQAAVC---STIVEAPQINCP-KDIEAKTLEQQDSA-NVTWQIPTAKDNSGEK-VSVHVHPAFTPPY LFPIGDVAIVYTATDLSGNQASCIFHIKV'IDAEPPVIDWCRSPPPVQVSEKV-HAASWDEPQFSDNSGA ELVITRSHTQGDLFPQGETIVQYTATDPSGNNRTCDIHIVIKGSPCEIPFTPVNGDFICTPDNTGVNC TLTCLEGYDFTEGSTDKYYCAYEDGVWKPTYTTEWPDCASKRFA-NHGFKSFΞMFYK-AARCDDTDLMKK FSEAFETTLGKMVPSFCSDAEDIDCRLEENLTKKYCLEYNYDYENGFAIGPGGWGAANRLDYSYDDFL DTVQETATSIGNAKSSRIKRSAPLSDYKIKLIFNITASVPLPDERNDTLEWENQQRLLQTLETITNKL KRTLNKDPMYSFQIiASEILI---^SNSLETKKASPFCRPGSVLRGRMCVNCPLGTYYNLEHFTCESCRIG SYQDEEGQLECKLCPSGMYTEYIHSRNISDCKAQCKQGTYSYSGLETCESCPLGTYQPKFGSRSCLSC PENTSTVKRGAVNISACGVPCPEGKFSRSGLMPCHPCPRDYYQPNAGKAFCLACPFYGTTPFAGSRSI TECSSFSSTFSAAEESWPPASLGHIKKRHEISSQASHECFFNPCHNSGTCQQLGRGYVCLCPLGYTG LKCETDIDECSPLPCLNNGVCKDLVGEFICECPSGYTGKHCELNINECQSNPCRNQATCVDELNSYSC KCQPGFSGKRCETGMYQLSVINNLNNAVCEDQVGGFLCKCPPGFLGTRCGKNVDECLSQPCK-NGATCK DGA-NSFRCLCAAGFTGSHCELNINECQSNPCRNQATCVDΞLNSYSCKCQPGFSGKRCETEQSTGFNLD FEVSGIYGYV-aDGMLPS HALTC FWMKSSDDMNYGTPISYAVDNGSD TLL TD G V YV GRE KITNCPSVNDGRWHHIAIT TSTGGAWRVYINGELSDGGTGLSIGKAIPGGGALVLGQEQDKKGEGFN PAESFVGSISQLNLWDYVLSPQQVKSLATSCPEELSKGNVLAWPDFLSGIVGKVKIDSKSIFCSDCPR LGGSVPHLRTASEDLKPGSKVNLFCEPGFQLVGNPVQYCLNQGQWTQPLPHCERIRCGVPPPLENGFH SADDFYAGSTVTYQCNNGYYLLGDSRMFCTDNGSWNGVSPSCLDVDECAVGSDCSEHASCLNVDGSYI CSCVPPYTGDGKNCAEPIKCKAPGNPENGHSSGEIYTVGAEVTFSCQEGYQLMGVTKITCLESGEWNH LIPYCKAVSCGKPAIPENGCIEELAFTFGSKVTYRCNKGYTLAGDKESSCLANSSWSHSPPVCEPVKC SSPENINNGKYILSGLTYLSTASYSCDTGYSLQGPSIIECTASGIWDRAPPACHLVFCGEPPAIKDAV ITGNNFTFRNTVTYTCKEGYTLAGLDTIECLADGKWSRSDQQCLAVSCDEPPIVDHASPETAHRLFGD IAFYYCSDGYSLADNSQLLCNAQGKWVPPEGQDMPRCIAHFCEKPPSVSYSILESVSKAKFAAGSWS FKCMEGFVLNTSAKIECMRGGQWNPSPMSIQCIPVRCGEPPSIMNGYASGSNYSFGAMVAYSCNKGFY IKGEKKSTCEATGQWSSPIPTCHPVSCGEPPKVENGFLEHTTGRIFESEVRYQCNPGYKSVGSPVF C QANRHWHSESPLMCVPLDCGKPPPIQNGFMKGENFEVGSKVQFFCNEGYELVGDSSWTCQKSGKWNKK SNPKCMPAKCPEPPLLENQLVLKELTTEVGWTFSCKEGHVLQGPSVLKCLPSQQWNDSFPVCKIVLC TPPPLISFGVPIPSSALHFGSTVKYSCVGGFFLRGNSTTLCQPDGTWSSPLPECVPVECPQPEEIPNG IIDVQGLAYLSTALYTCKPGFELVGNTTTLCGENGHWLGGKPTCKAIECLKPKEILNGKFSYTDLHYG QTVTYSCNRGFRLEGPSA-LTCLETGDWDVDAPSCNAIHCDSPQPIENGFVEGADYSYGAIIIYSCFPG FQVAGHAMQTCEESGWSSSIPTCMPIDCGLPPHIDFGDCTKLKDDQGYFEQEDDMMEVPYVTPHPPYH LGAVAKTWENTKESPATHSSNFLYGTMVSYTCNPGYELLGNPVLICQEDGTWNGSAPSCISIECDLPT APENGFLRFTETSMGSAVQYSCKPGHILAGSDLRLCLENRKWSGASPRCEAISCKKPNPVMNGSIKGS NYTYLSTLYYECDPGYVLNGTERRTCQDDK-NWDEDEPICIPVDCSSPPVSANGQVRGDEYTFQKEIEY TCNEGFLLEG-ARSRVCLA-NGSWSGATPDCVPVRCATPPQLANGVTEGLDYGFMKEVTFHCHEGYILHG APKLTCQSDGNWDAEIPLCKPVNCGPPEDLAHGFPNGFSFIHGGHIQYQCFPGYKLHGNSSRRCLSNG SWSGSSPSCLPCRCSTPVIEYGTVNGTDFDCGKAARIQCFKGFKLLGLSEITCEADGQWSSGFPHCEH TSCGSLPMIPNAFISETSSWKENVITYSCRSGYVIQGSSDLICTEKGV SQPYPVCEPLSCGSPPSVA NAVATGEAHTYESEVKLRCLEGYTMDTDTDTFTCQKDGRWFPERISCSPKKCPLPENITHILVHGDDF SVNRQVSVSCAEGYTFEGVNISVCQLDGTWEPPFSDESCSPVSCGKPESPΞHGFWGSKYTFΞSTIIY QCEPGYELEGNRERVCQENRQWSGGVAICKETRCETPLEFLNGKADIENRTTGPNWYSCNRGYSLEG
PSEAHCTENGTWSHPVPLCKPNPCPVPFVIPENALLSEKEFYVDQNVSIKCREGFLLQGHGIITCNP
D
ETWTQTSAKCEKISCGPPAHVENAIARGVHYQYGDMITYSCYSGYMLEGFLRSVCLENGTWTSPPIC
R
AVCRFPCQNGGICQRPNACSCPEGWMGRLCEEPICILPCLNGGRCVAPYQCDCPPGWTGSRCHTAVC
Q
SPCLNGGKCVRPNRCHCLSSW GHNCSRKRRTGF
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 8B.
Table 8B. Comparison of the NOV8 protein sequences.
NOV8a MRRICAACWGLALVSGWATFQQMSPSRNFSFRLFPETAPGAPGSIPAPPAPGDEAAGSRV
NOV8b RPWATFQQMSPSRNFSFRLFPETAPGAPGSIPAPPAPGDEAAGSRV
NOV8C RPWATFQQMSPSRNFSFRLFPETAPGAPGSIPAPPAPGDEAAGSRV
NOV8d RPWATFQQMSPSRNFSFRLFPETAPGAPGSIPAPPAPGDEAAGSRV
NOV8e RPWATFQQMSPSRNFSFRLFPETAPGAPGSIPAPPAPGDEAAGSRV
NOV8f
NOV8g
NOV8 MAGAPPPASLPPCSLISDCCASNQRDSVGVGPSΞPGVGYSLWRRF
NOV8i MRRICAACWGLALVSG ATFQQMSPSRNFSFRLFPETAPGAPGSIPAPPAPGDEAAGSRV
NOV8a ERLGQAFR- -VRLLRELSERLELVFLVDDSSS- NOV8b ERLGQAFRRRVRLLRELSERLELVFLVDDSSS-
4fi NOV8C ERLGQAFRRRVRLLRELSERLELVFLVDDSSS
NOV8d ERLGQAFRRRVRLLRELSERLELVFLVDDSSS
NOV8e ERLGQAFRRRVRLLRELSERLELVFLVDDSSS
NOV8f
NOV8g
NOV8h LSRSEKRNIRVGVTRFSSYTLAGLDTIECLADGKWSRSDQQCLAVSCDEPPIVDHASPET
NOV8i ERLGQAFR--VRLLRELSERLELVFLVDDSSS
NOV8a VGEVNFRSELMFVRKLLSDFPWPTATRVAIV
NOV8b VGEVNFRSELMFVRKLLSDFPWPTATRVAIV
NOV8C VGEVNFRSELMFVRKLLSDFPWPTATRVAIV
NOV8d VGEVNFRSELMFVRKLLSDFPWPTATRVAIV
NOV8e VGEVNFRSELMFVRKLLSDFPWPTATRVAIV
NOV8f
NOV8g
NOV8h AHRLFGDIAFYYCSDGYSLADNSQLLCNAQGKWVPPEGQDMPRCIAHFCEKPPSVSYSIL
NOV8i VGEVNFRSELMFVRKLLSDFPWPTATRVAIV
NOV8a TFSSK YWPRVDYISTRRARQHKCALLLQ
NOV8b TFSSKN YWPRVDYISTRRARQHKCALLLQ
NOV8C TFSSKN YWPRVDYISTRRARQHKCALLLQ
NOV8d TFSSKN YWPRVDYISTRRARQHKCALLLQ
NOVδe TFSSKN YWPRADYISTRRARQHKCALLLQ
NOV8f MSIQCIPVRCGEPPSIMN
NOV8g
NOV8h ESVSKAKFAAGSWSFKCMEGFVLNTSAKIECMRGGQWNPSPMSIQCIPVRCGEPPSIMN
NOV8i TFSSKN YWPRVDYISTRRARQHKCALLLQ
NOV8a EIPAISYRGGGTYTKGAFQQAAQILLHARENSTKWFLITDGYSNGGDPRPIAASLRDSG
NOV8b EIPAISYRGGGTYTKGAFQQAAQILLHARENSTKWFLITDGYSNGGDPRPIAASLRDSG
NOV8C EIPAISYRGGGTYTKGAFQQAAQILLHARENSTKWSLITDGYSNGGDPRPIAASLRDSG
NOV8d EIPAISYRGGGTYIKGAFQQAAQILLHARENSTKWFLITDGYSNGGDPRPIAASLRDSG
NOV8e EIPAISYRGGGTYTKGAFQQAAQILLHARENSAKWFLITDGYSNGGDPRPIAASLRDSG
NOV8f GYASGSNYSFGAMVAYSCNKGFYIKGEKKSTCEATGQWSSPIPTCHPVSCGEPPKVENGF
NOV8g MLSSVIQIALTCFLPV
NOV8h GYASGSNYSFGAMVAYSCNKGFYIKGEKKSTCEATGQWSSPIPTCHPVSCGEPPKVENGF
NOV8i EIPAISYRGGGTYTKGAFQQAAQILLHARENSTKWFLITDGYSNGGDPRPIAASLRDSG
NOV8a VEIFTFGIWQGNIRELNDMASTPKEEHCYLLHSFEEFEALVALCHMLFVDLPSGSFIQDD
NOV8b VEIFTFGIWQGNIRELNDMASTPKEEHCYLLHSFEEFEALAR- -RALHEDLPSGSFIQDD
NOV8c VEIFTFGIWQGNIRELNDMASTPKEEHCYLLHSFEEFEALAR- -RALHEDLPSGSFIQDD
NOV8d VEIFTFGIWQGNIRELNDMASTPKEEHCYLLHSFEEFEALAR- -RALHEDLPSGSFIQDD
NOV8e VEIFTFGIWQGNIRELNDMASTPKEEHCYLLHSFEEFEALAR--RALHEDLPSGSFIQDD
NOV8f LEHTTGRIFESEVRYQCNPGYKSVGSPVFVCQANRHWHSESP-LMCVPLDCGKPPPIQNG
NOV8g AQHTTGRIFESEVRYQCNPGYKSVGSPVFVCQANRHWHSESP-LMCVPLDCGKPPPIQNG
NOV8h LEHTTGRIFESEVRYQCNPGYKSVGSPVFVCQANRHWHSESP-LMCVPLDCGKPPPIQNG
NOV8i VEIFTFGIWQGNIRELNDMASTPKEEHCYLLHSFEEFEALAR- -RALHEDLPSGSFIQDD
NOV8a MVHCSYLCDEGKDCCDRMGSCKCGKHTGHFECICEKGYNGKG LQYDCTVCPSGTYK
NOV8b MVHCSYLCDEGKDCCDRMGSCKCGTHTGHFECICEKGYYGKG LQYECTACPSGTYK
NOV8C MVHCSYLCDEGKDCCDRMGSCKCGTHTDRFECICEKGYYGKG LQYECTACPSGTYK
NOV8d MVHCSYLCDEGKDCCDRMGSCKCGTHTGHFECICEKGYYGKG LQYECTACPSGTYK
NOV8e MVHCSYLCDEGKDCCDRMGSCKCGTHTGHFECICEKGYYGKG LQYECTACPSGTYK
NOV8f FMKGENFEVGSKVQFFCNEGY-ELVGDSSWTCQKSGKWNKKSNPKCMPAKCPEPPLLENQ
NOV8g FMKGENFEVGSKVQFFCNEGY-ELVGDSSWTCQKSGKWNKKSNPKCMPAKCPEPPLLENQ NOV8h FMKGENFEVGSKGQFFCNEGLXSFVGDSSWTCQKSGKWNKKSNPKCMPAKCPEPPLLENQ
NOV8i MVHCSYLCDEGKDCCDRMGSCKCGTHTGHFECICEKGYYGKG LQYECTACPSGTYK
NOV8a PEGSPGGISSCIPCPDENHTSPPGSTSPEDCVCREGYRASGQTCEWHCPALKPPENGYF
NOV8b PEASPGGISSCIPCPDENHTSPPGSTSPEDCVCREGYRASGQTCELVHCPALKPPENGYF
NOV8C PEGSPGGISSCIPCPDENHTSPPGSTSPEDCVCREGYRASGQTCELVHCPALKPPENGYF
NOV8d PEGSPGGISSCIPCPDENHTSPPGSTSPEDCVCREGYRASGQTCELVHCPALKPPENGYF
NOV8e PEGSPGGISSCIPCPDENHTSPPGSTSPEDCVCREGYRASGQTCELVHCPALKPPENGYF
NOV8f LVLKELTTEVGWTFSCKEGHVLQGPSVLKCLPSQQWNDSFPVCKIVLCTPPPLISFGVP
NOV8g LVLKELTTEVGWTFSCKEGHVLQGPSVLKCLPSQQWNDSFPVCKIVLCTPPPLISFGVP
NOV8h LVL---SΕLTTEVGVVTFSCKERHVLQGPSVLKCLPSQQWNDSFPVCKIVLCTPPPLISFGVP
NOV8i PEASPGGISSCIPCPDENHTSPPGSTSPEDCVCREGYRASGQTCELVHCPALKPPENGYF
NOV8a IQNTCNNHFNAACGVRCHPGFDLVGSSIILCLPNGLWSGSESYCRVRTCPHLRQPKHGHI
NOV8b IQNTCNNHFNAACGVRCHPGFDLVGSSIILCLPNGLWSGSESYCRVRTCPHLRQPKHGHI
NOV8C IQNTCNNHFNAACGVRCHPGFDLVGSSIILCLPNGLWSGSESYCRVRTCPHLRQPKHGHI
NOV8d IQNTCN-NHFNAACGVRCHPGFDLVGSSIILCLPNGLWSGSESYCRVRTCPHLRQPKHGHI
NOV8e IQNTCNNHFNAACGVRCHPGFDLVGSSIILCLPNGLWSGSESYCRVRTCPHLRQPKHGHI
NOV8f IP-SSALHFGSTVKYSCVGGFFLRGNSTTLCQPDGTWSSPLPECVPVECPQPEE PNGII
NOV8g IP-SSALHFGSTVKYSCVGGFFLRGNSTTLCQPDGTWSSPLPECVPVECPQPEEIPNG I
NOV8h IP-SSALHFGSTVKYSCVGGFFLRGNSTTLCQPDGTWSSPLPECVPVECPQPEEIPNGII
NOV8i IQNTCNNHFNAACGVRCHPGFDLVGSSIILCLPNGLWSGSESYCRVRTCPHLRQPKHGHI
NOV8a SCSTREMLYKTTCLVACDEGYRLEGSDKLTCQGNSQWDGPEPRCVERHCSTFQMPKDVII
NOV8b SCSTREMLYKTTCLVACDEGYRLEGSDKLTCQGNSQWDGPEPRCVERHCSTFQMPKDVII
NOV8C SCSTREMLYKTTCLVACDEGYRLEGSDKLTCQGNSQWDGPEPRCVERHCSTFQMPKDI11
NOV8d SCSTREMLYKTTCLVACDEGYRLEGSDKLTCQGNSQWDGPEPRCVERHCSTFQMPKDVII
NOV8e SCSTREMLYKTTCLVACDEGYRLEGSDKLTCQGNSQWDGPEPRCVERHCSTFQMPKDIII
NOV8f DVQG--LAYLSTALYTCKPGFELVGNTTTLCGENGHWLGGKP T--CKAIECLKPKEI
NOV8g DVQG--LAYLSTALYTCKPGFELVGNTTTLCGENGHWLGGKP T--CKAIECLKPKEI
NOV8h DVQG- -LAYLSTALYTCKPGFELVGNTTTLCGENGHWLGGKP T--CKAIECLKPKEI
NOV8i SCSTREMLYKTTCLVACDEGYRLEGSDKLTCQGNSQWDGPEPRCVERHCSTFQMPKDVII
NOV8a SPHNCGKQPAKFGTICYVSCRQGFILSGVKEMLRCTTSGKWNVGVQAAVCKDVEAPQINC
NOVδb SPHNCGKQPAKFGTICYVSCRQGFILSGVKEMLRCTTSGKWNVGVQAAVCKDVEAPQINC
NOV8C SPHNCGKQPAKFGTICYVSCRQGFILSGVKEMLRCTTSGKWNVGVQAAVRKDVEAPQINC
NOV8d SPHNCGKQPAKFGTICYVSCRQGFILSGVKEMLRCTTSGKWNVGVQAAVCKDVEAPQINC
NOV8e SPHNCGKQPAKFGTICYVSRRQGFILSGVKEMLRCTTSGKWNVGVQAAVCKDVEAPQINC
NOV8f LNGKFSYTDLHYGQTVTYSCNRGFRLEGS-QCLDLFRDR
NOV8g LNGKFSYTDLHYGQTVTYSCNRGFRLEGS-QCLDLFRDR
NOV8h LNGKFSYTDLHYGQTVTYSCNRGFRLEGP-SALTCLETGDWDVDAPSCNAIHCDSPQPIE
NOV8i SPHNCGKQPAKFGTICYVSCRQGFILSGVKEMLRCTTSGKWNVGVQAAVCKDVEAPQINC
NOV8a PKDIEAKTLEQ
NOV8b PKDIEAKTLEQ
NOV8C PKDIEAKTLEQ
NOVδd PKDIEAKTLEQ
NOV8e PKDIEAKTLEQ
NOV8f
NOV8g
NOVδh NGFVEGADYSYGAIIIYSCFPGFQVAGHAMQTCEESGWSSSIPTCMPIDCGLPPHIDFGD
NOV8i PKDIEAKTLEQ
NOVδa
NOV8b
-dή7 NOV8C NOV8d NOVδe NOVδf NOV8g NOV8h CTKLKDDQGYFEQEDDMMΞVPYVTPHPPYHLGAVAKTWENTKESPATHSSNFLYGTMVSY NOVδi
NOVδa -QDSANVTWQIPTAKDN- -SGEKVSVHVHPAF NOV8b -QDSANVTWQIPTAKDN- -SGEKVSVHVHPAF NOV8C -QDSANVTWQIPTAKDN- -SGEKVSVHVHPAF NOVβd -QDSANVTWQIPTAKDN- -SGEKVSVHVHPAF NOV8e -QDSANVTWQIPTAKDN- -SGEKVSVHVHPAF NOVδf NOV8g NOV8h TCNPGYELLGNPVLICQEDGTWNGSAPSCISIECDLPTAPENGFLRFTETSMGSAVQYSC NOVδi QDSANVTWQIPTAKDN SGEKVSVRVHPAF
NOV8a TPPYLFPIGDVAIVYTATDLSGN- NOV8b TPPYLFPIGDVAIVYTATDLSGN- NOVδc TPPYLFPIGDVAIVYTATDLSGN- NOVδd TPPYLFPIGDVAIVYTATDLSGN- NOVδe TPPYLFPIGDVAIVYTATDLSGN- NOVδf NOVδg NOVδh KPGHILAGSDLRLCLENRKWSGASPRCEAISCKKPNPVMNGSIKGSNYTYLSTLYYECDP NOV8i TPPYLFPIGDVAIVYTATDLSGN
NOV8a -QASCIFHIKVIDAEPPVIDWCRSPPPVQVSEKVHAASWD- NOVδb -QASCIFHIKVIDAEPPVIDWCRSPPPVQVSEKVHAASWD- NOVδc -QASCIFHIKVIDAEPPVIDWCRSPPPVQVSEKVHAASWD- NOVδd -QASCIFHIKVIDAEPPVIDWCRSPPPVQVSEKVHAASWD- NOV8e -QASCIFHIKVIDAEPPVIDWCRSPPPVQVSEKVHAASWD- NOV8f NOVδg NOVδh GYVLNGTERRTCQDDKNWDEDEPICIPVDCSSPPVSANGQVRGDEYTFQKEIEYTCNEGF NOVδi QASCIFHIKVID-AΞPPVIDWCRSPPPVQVSEKVHAASWD
NOVδa NOVδb NOVδc NOVδd NOV8e NOV8f NOV8g NOV8h LLEGARSRVCLANGSWSGATPDCVPVRCATPPQLANGVTEGLDYGFMKEVTFHCHEGYIL NOVδi
NOV8a NOV8b NOV8C NOV8d NOVδe NOVδf NOVδg NOV8h HGAPKLTCQSDGNWDAEIPLCKPVNCGPPEDLAHGFPNGFSFIHGGHIQYQCFPGYKLHG NOV8i
NOV8a NOV8b NOV8C NOV8d NOVδe NOV8f NOV8g NOV8h NSSRRCLSNGSWSGSSPSCLPCRCSTPVIEYGTVNGTDFDCGKAARIQCFKGFKLLGLSE NOVδi
NOV8a NOVβb NOVδc NOV8d NOV8e NOV8f NOV8g NOVδh ITCEADGQWSSGFPHCEHTSCGSLPMIPNAFISETSSWKENVITYSCRSGYVIQGSSDLI NOV8i
NOV8a NOVδb NOV8C NOV8d NOV8e NOV8f NOV8g NOV8h CTEKGVWSQPYPVCEPLSCGSPPSVANAVATGEAHTYESEVKLRCLEGYTMDTDTDTFTC NOVδi
NOV8a NOV8b NOVδc NOV8d NOVδe NOVδf NOV8g NOV8h QKDGRWFPERISCSPKKCPLPENITHILVHGDDFSVNRQVSVSCAEGYTFEGVNISVCQL NOV8i
NOV8a EPQFSDNSGAELVITRSHTQGDLFPQGΞ- -TIVQYTATDPSGN NOV8b EPQFSDNSGAELVITRSHTQGDLFPQGE- -TIVQYTATDPSGN NOVδc ΞPQFSDNSGAELVITRSHTQGDLFPQGE- -TIVQYTATDPSGN NOVδd EPQFSDNSGAELVITRSHTQGDLFPQGE- -TIVQYTATDPSGN NOV8e EPQFSDNSGAELVITRSHTQGELFPQGE- -TIVQYTATDPSGN NOV8f NO 8g NOV8h DGTWEPPFSDESCSPVSCGKPESPEHGFWGSKYTFESTIIYQCEPGYELENLAVNPSGP NOV8i EPQFSDNSGAELVITRSHTQGDLFPQGE TIVQYTATDPSGN
NOVδa -NRTCDIHIVIKGSPCEIPFTP NOV8b -NRTCDIHIVILE
df,9 NOV8c -NRTCDIHIVILE- NOV8d -NRTCDIHIVILE- NOVδe -NRTCDIHIVILE- NOV8f NOV8g NOVδh GLFLVDRTLSCRSELARGPIQTLFAWVSAAEGAEQRILVNRKCCCLIIPLEVLSQRNTRP NOVδi NRICDIHIVMKGSPCEIPFTP
NOVδa VNGDFICTPDNTGVNCTLTCLEGYDFTEGSTDKYYCAYEDGVWKPTYTTEWPDCASKRFA NOV8b NOV8C NOVδd NOV8e NOV8f NOVδg NOV8h CEVSVRPYWGGNRERVCQENRQWSGGVAICKETRCETPLEFLNGKADIENRTTGPNVVYS NOV8i VNGDFICTPDNTGVNCTLTCLEGYDFTEGSTDKYYCAYEDGVWKPTYTTEWPDCAKKRFA
NOV8a NHGFKSFEMFYKAARCDDTDLMKKFSEAFETTLGKMVPSFCSDAEDIDCRLEENLTKKYC
N0V8b
NOV8C
NOV8d
NOV8e
NOVδf
NOV8g
NOV8h CNRGYSLEGPSEAHCTENGTWSHPVPLCKPNPCPVPFVIPENALLSEKEFYVDQNVSIKC
NOV8i NHGFKSFEMFYKAARCDDSDLMKKFSEAFETTLGKMVPSFCSDAEDIDCRLEENLTKKYC
NOV8a LEYNYDYENGFAIGPGGWGAANRLDYSYDDFLDTVQETATSIGNAKSSRIKRSAPLSDYK
NOVδb
NOVβC
NOVβd
NOVδe
NOVδf
NOVδg
NOV8h REGFLLQGHGIITCNPDETWTQTSAKCERRYTQQPKSLNFQLAAYCSIRMFILRGGVQDG
NOV8i LEYNYDYENGFAIGPGGWGAANRLDYSYDDFLDTVQETATSIGNAKSSRIKRSAPLSDYK
NOVδa IKLIFNITASVPLPDERNDTLEWENQQRLLQTLETITNKLKRTLNKDPMYSFQLASEILI
NOVδb
NOVδc
NOVδd
NOV8e
NOV8f
NOV8g
NOVδh QLETAVAGASHREEQKQKREKARWYNGPPGSHMGQAELPPPAKGGGPPCGNFSNSSQGFM
NOV8i IKLIFNITASVPLPDERNDTLEWENQQRLLQTLETITNKLKRTLNKDPMYSFQLASEILI
NOVδa ADSNSLETKKASPFCRPGSVLRGRMCVNCPLGTYYNLEHFTCESCRIGSYQDEEGQLECK
NOV8b
NOV8C
NOVδd
NOV8e
NOVδf
NOVδg NOV8h NRPLISLRWSPWGSMWPWSPQISRLSPSPAGSEESRQAGLVGFPTAQFTCSAKGQLERFV
NOV8i ADSNSLETKKASPFCRPGSVLRGRMCVNCPLGTYYNLEHFTCESCRIGSYQDEEGQLECK
NOV8a LCPSGMYTEYIHSRNISDCKAQCKQGTYSYSGLETCESCPLGTYQPKFGSRSCLSCPENT
NOVδb
NOVδc
NOV8d
NOV8e
NOV8f
NOV8g
NOV8h KRVPDPMPPDWDETPPQQGSRMRPPHNRGHQTPYTRVFLLASGQCPSGTELPEERAGSHL
NOV8i LCPSGMYTEYIHSRNISDCKAQCKQGTYSYSGLETCESCPLGTYQPKFGSRSCLSCPENT
NOVδa STVKRGAVNISACGVPCPEGKFSRSGLMPCHPCPRDYYQPNAGKAFCLACPFYGTTPFAG
NOVδb
NOV8c
NOVδd
NOVδe
NOV8f
NOVδg
NOV8h CCSAASAGKAQ---WAEARIDELKEVGFRKWVIMKFAELKEHVLNQCKDAKNQDKTLQDPLT
NOV8i STVKRGAVNISACGVPCPEGKFSRSGLMPCHPCPRDYYQPNAGKAFCLACPFYGTTPFAG
NOVδa SRSITECSSFSSTFSAAEESWPPASLGHIKKRHEISSQASHECFFNPCHNSGTCQQLGR
NOV8b
NOVδc
NOVδd
NOVδe
NOVδf
NOVδg
NOVδh RITSLERNVNDLMELKNTTRELHNATTKQGQHSSSGNPENPSKILHEKINPKTHNPQVLQ
NOV8i SRSITECSSFSSTFSAAEESWPPASLGHIKKRHEISSQASHECFFNPCHNSGTCQQLGR
NOVδa GYVCLCPLGYTGLKCETDIDECSPLPCLNNGVCKDLVGEFICECPSGYTGKHCELNINEC
NOVδb
NOV8C
NOV8d
NOVδe
NOVβf
NOVδg
NOVδh EISCGPPAHVENAIARGVHYQYGDMITYSCYSGYMLEGFLRSVCLENGTWTSPPICRAVC
NOV6i GYVCLCPLGYTGLKCETDIDECSPLPCLNNGVCKDLVGEFICECPSGYTGKHCELNINEC
NOVδa QSNPCRNQATCVDELNSYSCKCQPGFSGKRCETGMYQLSVINNLNNAVCEDQVGGFLCKC
NOVδb
NOV8C
NOV8d
NOVδe
NOV8f
NOV8g
NOVδh RFPCQNGGICQRPNACSCPEGWMGRLCEEPICILPCLNGGRCVAPYQCDCPPGWTGSRCH
NOVδi QSNPCRNQATCVDELNSYSCKCQPGFSGKRCETGMYQLSVINNLNNAVCEDQVGGFLCKC
NOVδa PPGFLGTRCGKNVDECLSQPCKNGATCKDGANSFRCLCAAGFTGSHCELNINECQSNPCR NOVδb NOVδc
NOVδd
NOV8e
NOV8f
NOVδg
NOVδh TGRPLSWFVFLVAQAHETPEDIEECDLDSEWAK
NOVδi PPGFLGTRCGKNVDECLSQPCKNGATCKDGANSFRCLCAAGFTGSHCELNINECQSNPCR
NOVδa NQATCVDELNSYSCKCQPGFSGKRCETEQSTGFNLDFEVSGIYGYVMLDGMLPSLHALTC
NOVδb
NOVδc
NOVδd
NOVδe
NOV8f
NOVδg
NOVδh
NOVδi NQATCVDELNSYSCKCQPGFSGKRCETΞQSTGFNLDFEVSGIYGYVMLDGMLPSLHALTC
NOVδa TFWMKSSDDMNYGTPISYAVDNGSDNTLLLTDYNGWVLYVNGREKITNCPSVNDGRWHHI
NOVδb
NOVδc
NOV8d
NOV8e
NOVδf
NOVδg
NOV8h
NOVδi TFWMKSSDDMNYGTPISYAVDNGSDNTLLLTDYNGWVLYVNGREKITNCPSVNDGRWHHI
NOV8a AITWTSTGGAWRVYINGELSDGGTGLSIGKAIPGGGALVLGQEQDKKGEGFNPAESFVGS
NOV8b
NOVδc
NOV8d
NOV8e
NOVδf
NOVδg
NOV8h
NOV8i AITWTSTGGAWRVYINGELSDGGTGLSIGKAIPGGGALVLGQEQDKKGEGFNPAESFVGS
NOV8a ISQLNLWDYVLSPQQVKSLATSCPEELSKGNVLAWPDFLSGIVGKVKIDSKSIFCSDCPR
NOVδb
NOVβC
NOV8d
NOVδe
NOVδf
NOV8g
NOV8h
NOVδi ISQLNLWDYVLSPQQVKSLATSCPEELSKGNVLAWPDFLSGIVGKVKIDSKSIFCSDCPR
NOV8a LGGSVPHLRTASEDLKPGSKVNLFCEPGFQLVGNPVQYCLNQGQWTQPLPHCERIRCGVP
NOVδb
NOV8C
NOV8d
NOVδe
NOV8f
NOVδg NOVδh NOVδi LGGSVPHLRTASEDLKPGSKVNLFCEPGFQLVGNPVQYCLNQGQWTQPLPHCERIRCGVP
NOVδa PPLENGFHSADDFYAGSTVTYQCNNGYYLLGDSRMFCTDNGSWNGVSPSCLDVDECAVGS NOV8b NOV8C NOVδd NOVδe NOVβf NOVδg NOV8h NOVδi PPLENGFHSADDFYAGSTVTYQCNNGYYLLGDSRMFCTDNGSWNGVSPSCLDVDECAVGS
NOV8a DCSEHASCLNVDGSYICSCVPPYTGDGKNCAEPIKCKAPGNPENGHSSGEIYTVGAEVTF NOV8b NOVδc NOV8d NOV8e NOVδf NOV8g NOVδh NOVδi DCSEHASCLNVDGSYICSCVPPYTGDGKNCAEPIKCKAPGNPENGHSSGEIYTVGAEVTF
NOV8a SCQEGYQLMGVTKITCLESGEWNHLIPYCKAVSCGKPAIPENGCIEELAFTFGSKVTYRC NOVδb NOVδc NOVδd NOVδe NOVδf NOVβg NOV8h NOVδi SCQEGYQLMGVTKITCLESGEWNHLIPYCKAVSCGKPAIPENGCIEELAFTFGSKVTYRC
NOVδa NKGYTLAGDKESSCLANSSWSHSPPVCEPVKCSSPENINNGKYILSGLTYLSTASYSCDT NOVδb NOVδc NOVδd NOVδe NOVδf NOV8g NOV8h NOVδi NKGYTLAGDKESSCLANSSWSHSPPVCEPVKCSSPENINNGKYILSGLTYLSTASYSCDT
NOV8a GYSLQGPSIIECTASGIWDRAPPACHLVFCGEPPAIKDAVITGNNFTFRNTVTYTCKEGY NOVδb NOVδc NOV8d NOV8e NOVδf NOVδg NOV8h NOV8i GYSLQGPSIIECTASGIWDRAPPACHLVFCGEPPAI--π-)AVITGNNFTFRNTVTYTCKEGY
NOV8a TLAGLDTIECLADGKWSRSDQQCLAVSCDEPPIVDHASPETAHRLFGDIAFYYCSDGYSL NOVδb NOVβC NOV8d NOV8e NOVδf NOVβg NOVδh NOVδi TLAGLDTIECLADGKWSRSDQQCLAVSCDEPPIVDHASPETAHRLFGDIAFYYCSDGYSL
NOVβa ADNSQLLCNAQGKWVPPEGQDMPRCIAHFCEKPPSVSYSILESVSKAKFAAGSWSFKCM NOVδb NOVδc NOVδd NOVδe NOV8f NOVδg NOV8h NOVδi ADNSQLLCNAQGKWVPPEGQDMPRCIAHFCEKPPSVSYSILESVSKAKFAAGSWSFKCM
NOV8a EGFVLNTSAKIECMRGGQWNPSPMSIQCIPVRCGEPPSIMNGYASGSNYSFGAMVAYSCN NOVδb NOVδc NOVδd NOVδe NOVδf NOV8g NOVδh NOVβi EGFVLNTSAKIECMRGGQWNPSPMSIQCIPVRCGEPPSIMNGYASGSNYSFGAMVAYSCN
NOVδa KGFYIKGEKKSTCEATGQWSSPIPTCHPVSCGEPPKVENGFLEHTTGRIFESEVRYQCNP NOVδb NOV8C NOVδd NOVδe NOVδf NOV8g NOVδh NOVβi KGFYIKGEKKSTCEATGQWSSPIPTCHPVSCGEPPKVENGFLEHTTGRIFESEVRYQCNP
NOVδa GYKSVGSPVFVCQANRHWHSESPLMCVPLDCGKPPPIQNGFMKGENFEVGSKVQFFCNEG NOVδb NOV8c NOV8d NOVδe NOV8f NOV8g NOVδh NOVδi GYKSVGSPVFVCQANRHWHSESPLMCVPLDCGKPPPIQNGFMKGENFEVGSKVQFFCNEG
NOVδa YELVGDSSWTCQKSGKWNKKSNPKCMPAKCPEPPLLENQLVLKELTTEVGWTFSCKEGH NOV8b NOV8c NOVδd NOV8e NOVδf NOVδg NOVδh
NOVδi YELVGDSSWTCQKSGKWNKKSNPKCMPAKCPEPPLLENQLVLKELTTEVGWTFSCKEGH
NOVβa VLQGPSVLKCLPSQQWNDSFPVCKIVLCTPPPLISFGVPIPSSALHFGSTVKYSCVGGFF
NOVβb
NOV8C
NOV8d
NOV8e
NOVδf
NOV8g
NOV8h
NOVβi VLQGPSVLKCLPSQQWNDSFPVCKIVLCTPPPLISFGVPIPSSALHFGSTVKYSCVGGFF
NOV8a LRGNSTTLCQPDGTWSSPLPECVPVECPQPEEIPNGIIDVQGLAYLSTALYTCKPGFELV
NOV8b
NOVβC
NOV8d
NOV8e
NOVβf
NOV8g
NOVδh
NOV8i LRGNSTTLCQPDGTWSSPLPECVPVECPQPEEIPNGIIDVQGLAYLSTALYTCKPGFELV
NOV8a GNTTTLCGENGHWLGGKPTCKAIECLKPKEILNGKFSYTDLHYGQTVTYSCNRGFRLEGP
NOVδb
NOV8C
NOV8d
NOVβe
NOV8f
NOVδg
NOVδh
NOV8i GNTTTLCGENGHWLGGKPTCKAIECLKPKEILNGKFSYTDLHYGQTVTYSCNRGFRLEGP
NOV8a SALTCLETGDWDVDAPSCNAIHCDSPQPIENGFVEGADYSYGAIIIYSCFPGFQVAGHAM
NOV8b
NOVδc
NOVδd
NOV8e
NOV8f
NOVβg
NOVδh
NOVδi SALTCLETGDWDVDAPSCNAIHCDSPQPIENGFVEGADYSYGAIIIYSCFPGFQVAGHAM
NOVβa QTCEΞSGWSSSIPTCMPIDCGLPPHIDFGDCTKLKDDQGYFEQEDDMMEVPYVTPHPPYH
NOVβb
NOVβC
NOVβd
NOV8e
NOV8f
NOV8g
NOV8h
NOVβi QTCEESGWSSSIPTCMPIDCGLPPHIDFGDCTKLKDDQGYFEQEDDMMEVPYVTPHPPYH
NOVβa LGAVAKTWENTKESPATHSSNFLYGTMVSYTCNPGYELLGNPVLICQEDGTWNGSAPSCI
NOV8b NOV8C NOVδd NOVδe NOV8f NOVβg NOVδh NOVβi LGAVAKTWENTKESPATHSSNFLYGTMVSYTCNPGYELLGNPVLICQEDGTWNGSAPSCI
NOVβa SIECDLPTAPENGFLRFTETSMGSAVQYSCKPGHILAGSDLRLCLENRKWSGASPRCEAI NOVβb NOVβc NOVβd NOVβe NOVβf NOVβg NOVβh NOV8i SIECDLPTAPENGFLRFTETSMGSAVQYSCKPGHILAGSDLRLCLENRKWSGASPRCEAI
NOVδa SCKKPNPVMNGSIKGSNYTYLSTLYYECDPGYVLNGTERRTCQDDKNWDEDEPICIPVDC NOVδb NOV8C NOVβd NOVβe NOVβf NOVβg NOVβh NOV8i SCKKPNPVMNGSIKGSNYTYLSTLYYECDPGYVLNGTERRTCQDDKNWDEDEPICIPVDC
NOV8a SSPPVSANGQVRGDEYTFQKEIEYTCNEGFLLEGARSRVCLANGSWSGATPDCVPVRCAT NOVδb NOVβC NOVβd NOVβe NOVδf NOVβg NOVβh NOVβi SSPPVSANGQVRGDEYTFQKEIEYTCNEGFLLEGARSRVCLANGSWSGATPDCVPVRCAT
NOVβa PPQLANGVTEGLDYGFMKEVTFHCHEGYILHGAPKLTCQSDGNWDAEIPLCKPVNCGPPE NOVδb NOVδc NOVβd NOVβe NOVβf NOVβg NOVβh NOVβi PPQLANGVTEGLDYGFMKEVTFHCHEGYILHGAPKLTCQSDGNWDAEIPLCKPVNCGPPE
NOVβa DLAHGFPNGFSFIHGGHIQYQCFPGYKLHGNSSRRCLSNGSWSGSSPSCLPCRCSTPVIE NOVβb NOVδc NOVβd NOVβe NOVβf NOVδg NOVδh
; NOVδi DLAHGFPNGFSFIHGGHIQYQCFPGYKLHGNSSRRCLSNGSWSGSSPSCLPCRCSTPVIE
NOVδa YGTVNGTDFDCGKAARIQCFKGFKLLGLSEITCEADGQWSSGFPHCEHTSCGSLPMIPNA NOVδb NOVδc NOVδd NOVδe NOVδf NOVδg NOVδh NOVδi YGTVNGTDFDCGKAARIQCFKGFKLLGLSEITCEADGQWSSGFPHCEHTSCGSLPMIPNA
NOVδa FISETSSWKENVITYSCRSGYVIQGSSDLICTEKGVWSQPYPVCEPLSCGSPPSVANAVA NOVδb NOVδc NOVδd NOVδe NOVδf NOVδg NOVδh NOVδi FISETSSWKENVITYSCRSGYVIQGSSDLICTEKGVWSQPYPVCEPLSCGSPPSVANAVA
NOVδa TGEAHTYESEVKLRCLEGYTMDTDTDTFTCQKDGRWFPERISCSPKKCPLPENITHILVH NOVδb NOVδc NOVδd NOVδe NOVδf NOVδg NOVδh NOVβi TGEAHTYESEVKLRCLEGYTMDTDTDTFTCQKDGRWFPERISCSPKKCPLPENITHILVH
NOVβa GDDFSVNRQVSVSCAEGYTFEGVNISVCQLDGTWEPPFSDESCSPVSCGKPESPEHGFW NOVδb NOVδc NOVβd NOVδe NOVδf NOVδg NOVδh NOVδi GDDFS NRQVSVSCAEGYTFEGVNISVCQLDGTWEPPFSDESCSPVSCGKPESPEHGFW
NOVδa GSKYTFESTIIYQCEPGYELEGNRERVCQENRQWSGGVAICKETRCETPLEFLNGKADIE NOVδb NOVβC NOVβd NOVβe NOVδf NOVδg NOVδh NOVβi GSKYTFESTIIYQCEPGYELEGNRERVCQENRQWSGGVAICKETRCΞTPLEFLNGKADIE
NOVδa NRTTGPNWYSCNRGYSLEGPSEAHCTENGTWSHPVPLCKPNPCPVPFVIPENALLSEKE NOVβb NOVδc NOVδd NOVδe NOVδf NOVδg NOVδh NOVδi NRTTGPNWYSCNRGYSLEGPSEAHCTENGTWSHPVPLCKPNPCPVPFVIPENALLSEKE
NOVδa FYVDQNVSIKCREGFLLQGHGIITCNPDETWTQTSAKCEKISCGPPAHVENAIARGVHYQ NOVδb NOVδc NOVβd NOVβe NOVδf NOVδg NOVβh NOVδi FYVDQNVSIKCREGFLLQGHGIITCNPDETWTQTSAKCEKISCGPPAHVENAIARGVHYQ
NOVβa YGDMITYSCYSGYMLEGFLRSVCLENGTWTSPPICRAVCRFPCQNGGICQRPNACSCPEG NOVβb NOVβC NOVβd NOVδe NOVδf NOVδg NOVδh NOVβi YGDMITYSCYSGYMLEGFLRSVCLENGTWTSPPICRAVCRFPCQNGGICQRPNACSCPEG
NOVβa WMGRLCEEPICILPCLNGGRCVAPYQCDCPPGWTGSRCHTAVCQSPCLNGGKCVRPNRCH NOVδb NOVδc NOVδd NOVβe NOVβf NOVδg NOVδh NOVδi WMGRLCEEPICILPCLNGGRCVAPYQCDCPPGWTGSRCHTAVCQSPCLNGGKCVRPNRCH
NOVδa CLSSWTGHNCSRKRRTGF NOVδb NOVδc NOVδd NOVδe NOVβf NOVβg NOVβh NOVβi CLSSWTGHNCSRKRRTGF
NOVδa (SEQ ID NO 178) NOVδb (SEQ ID NO 180) NOVδc (SEQ ID NO 182) NOVδd (SEQ ID NO 184) NOVδe (SEQ ID NO 186) NOVδf (SEQ ID NO 188) NOVδg (SEQ ID NO 190) NOVβh (SEQ ID NO: 192) NOVβi (SEQ ID NO: 194)
Further analysis of the NOV8a protein yielded the following properties shown in Table 8C.
Table 8C. Protein Sequence Properties NOV8a
SignalP analysis: Cleavage site between residues 17 and 18
PSORT II analysis:
PSG: a new signal peptide prediction method
N-region: length 3; pos.chg 2; neg.chg 0 H-region: length 23; peak value 8.53 PSG score: 4.12
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -2.66 possible cleavage site: between 16 and 17
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al's method for TM region allocation Init position for calculation: 1
Tentative number of TMS(s) for the threshold 0.5: 2 Number of TMS (s) for threshold 0.5: 0 PERIPHERAL Likelihood = 0.58 (at 253) ALOM score: -0.16 (number of TMSs : 0)
MTOP : Prediction of membrane topology (Hartmann et al . ) Center position for calculation: 6 Charge difference: -2.0 C( 1.0) - N( 3.0) N >= C: N-terminal side will be inside
MITDISC: discrimination of mitochondrial targeting seq R content: 4 Hyd Moment (75): 11.27 Hyd Moment (95): 11.90 G content: 2 D/E content: 1 S/T content: 5 Score: 0.60
Gavel: prediction of cleavage sites for mitochondrial preseq R-10 motif at 37 SRN FS
NUCDISC: discrimination of nuclear localization signals pat4: KKRH (3) at 1183 pat4: RKRR (5) at 3564 pat7 : none bipartite: none content of basic residues: 8.0% NLS Score: 0.03
KDEL: ER retention motif in the C-terminus : none
ER Membrane Retention Signals :
XXRR-like motif in the N-terminus: RRIC none
47Q SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal : found RLGGSVPHL at 1632
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail : none
Dileucine motif in the tail: none checking 63 PROSITE DNA binding motifs : none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: nuclear Reliability: 76.7
COIL: Lupas ' s algorithm to detect coiled-coil regions total: 0 residues
Final Results (k = 9/23) :
65.2 %: nuclear
21.7 %: mitochondrial
8.7 % : cytoplasmic
4.3 % : vacuolar
>> prediction for CG50646-04 is nuc (k=23 )
A search of the NOV8a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 8D.
In a BLAST search of public sequence databases, the NOV8a protein was found to have homology to the proteins shown in the BLASTP data in Table 8E.
PFam analysis predicts that the NOV8a protein contains the domains shown in the Table 8F.
Example 9.
The NOV9 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 9A.
48R ATGGGCTGAACTGTGAGCCGGAGCAGCTGCCCATTGACCGCTGCTTACAGGACAATGGGCAGTGCCA
T GCAGACGCCAAATGTGTCGACCTCCACTTCCAGGATACCACTGTTGGGGTGTTCCATCTACGCTCCC c
ACTGGGCCAGTATAAGCTGACCTTTGACAAAGCCAGAGAGGCCTGTGCCAACGAAGCTGCGACCATG
G
C-AACCTACAACCAGCTCTCCTATGCCCAGAAGAGAGAAGAGAAATGAGTATGAAAGACCTGGGCACC
T
ACAAGAAAGAGAGGACACTTTTGTTCACCCAGTGGCTCAATCAACCAGTCAACATCTAATGACCACC
T ACTGTGTGCCAGGCACAGAGGTGCAATAGGCAAAGCCAAGTACCACCTGTGCTCAGCAGGCTGGCTG
G AGACCGGGCGGGTTGCCTACCCCACAGCCTTCGCCT
NOV9d, CG50736-02 SEQ ID NO: 214 244 aa MW at 26106.9kD Protem Sequence
MCWPGRFGPDC PCGCSDHGQCDDGITGSGQCLCETGWTGPSCDTQAVLSAVCTPPCSAHATCKE
T
CECNLDYEGDGITCTWDFCKQDNGGCAKVARCSQKGTKVSCSCQKGYKGDGHSCTEIDPCADGLNG
G
CHEHATCKMTGPGKHKCECKSHYVGDGLNCEPEQ PIDRCLQDNGQCH-ADAKCVD HFQDTTVGVFH
RSPLGQYK-LTFDKAREACANEAAT ATY Q SYAQKREEK
NOV9e, CG50736-03 SEQ ID NO: 215 2512 bp DNA Sequence ORF Start: ATG at 416 ORF Stop: TAA at 2423
ATAGGGCTCGAGCGGCTGCCCGGGCAGGTCTCATGCCTCAGCCTCCGGAGTAGTATTTTTAGTAGAGA
TGGTGTTTACCATGTGGGCCAGGCTGGTCTCGAACTCCTGGCCTCAAGTGATCCACCCGCCTCGGCCT
CCCAGAGTGCTGGGATTACAGGCATGAGCCACTGCACCCAGCCTTGTTTGTATTTTGAATTCCAAATG
GAAATACCTTCATGATCTTCCCACTACTAAAGGTTTAAATCTGGCACTGATACCTCTCCAAGAGGGCT
ATATACTATGCAGTGTTTCCCAGCATGTTTCACAAGAAAATTCTTTTTTGAGGATCATCTCACAGAAC
TTGGGATCTTTGCAACATGTATTGTGAAATCCAGGCCAGAGGAACCCCATGTTCCTTCCACACTGATA
ITTCCACAATGGAGGCAAGAAAGGAGCTAGAGTCACTTCCTCCCTTTTGTCTGAACAGCCTCCACTCTA
TAATCCTGACCACAAAGCTTACTTCCCAGAGTCTGGGTGGGCCGAGAGGTGTGGAAGAGAGAATGGAG GACAGGAGAGCCAAATGGCACATTGCAGCAAAAGACTCCTGCCTCTGGCTGAAACCCTCTGATCTTCT GTTACAGGTTAAAGACTGGGACAAATACGGTTTAATGCCCCAGGTTCTTCGGTACCATGTGGTCGCCT GCCACCAGCTGCTTCTGGAAAACCTGAAATTGATCTCAAATGCTACTTCCCTCCAAGGAGAGCCAATA GTCATCTCCGTCTCTCAGAGCACGGTGTATATAAACAATAAGGCTAAGATCATATCCAGTGATATCAT CAGTACTAATGGGATTGTTCATATCATAGACAAATTGCTATCTCCCAAAAATTTGCTTATCACTCCCA AAGACAACTCTGGAAGAATTCTGCAAAATCTTACGACTTTGGCAACAAACAATGGCTACATCAAATTT AGCAACTTAATACAGGACTCAGGTTTGCTGAGTGTCATCACCGATCCCATCCACACCCCAGTCACTCT CTTCTGGCCCACCGACCAAGCCCTCCATGCCCTACCTGCTGAACAACAGGACTTCCTGTTCAACCAAG ACAACAAGGACAAGCTGAAGGAGTATTTGAAGTTTCATGTGATACGAGATGCCAAGGTTTTAGCTGTG GATCTTCCCACATCCACTGCCTGGAAGACCCTGCAAGGTTCAGAGCTGAGTGTGAAATGTGGAGCTGG CAGGGACATCGGTGACCTCTTTCTGAATGGCCAAACCTGCAGAATTGTGCAGCGCGAGCTCTTGTTTG ACCTGGGTGTGGCCTACGGCATTGACTGTCTGCTGATTGATCCCACCCTGGGGGGCCGCTGTGACACC TTTACTACTTTCGATGCCTCGGGGGAGTGTGGGAGCTGTGTCAATACTCCCAGCTGCCCAAGGTGGAG TAAACCAAAGGGTGTGAAGCAGAAGTGTCTCTACAACCTGCCCTTCAAGAGGAACCTGGAAGGCTGCC GGGAGCGGTGCAGCCTGGTGATACAGATCCCCAGGTGCTGCAAGGGCTACTTCGGGCGAGACTGTCAG GCCTGCCCTGGAGGACCAGTTGCCCCGTGTAATAACCGGGGTGTCTGCCTTGATCAGTACTCGGCCAC CGGAGAGTGTAAATGCAACACCGGCTTCAATGGGACGGCGTGTGAGATGTGCTGGCCGGGGAGATTTG GGCCTGATTGTCTGCCCTGTGGCTGCTCAGACCACGGACAGTGCGATGATGGCATCACGGGCTCCGGG CAGTGCCTCTGTGAAACGGGGTGGACAGGCCCCTCGTGTGACACTCAGGCAGTTTTGTCTGCAGTGTG TACGCCTCCTTGTTCTGCTCATGCCACCTGTAAGGAGAACAACACGTGTGAGTGTAACCTGGATTATG AAGGTGACGGAATCACATGCACAGTTGTGGATTTCTGCAAACAGGACAACGGGGGCTGTGCAAAGGTG GCCAGATGCTCCCAGAAGGGCACGAAGGTCTCCTGCAGCTGCCAGAAGGGATACAAAGGGGACGGGCA CAGCTGCACAGAGATAGACCCCTGTGCAGACGGCCTTAACGGAGGGTGTCACGAGCACGCCACCTGTA AGATGACAGGCCCGGGCAAGCACAAGTGTGAGTGTAAAAGTCACTATGTCGGAGATGGGCTGAACTGT GAGCCGGAGCAGCTGCCCATTGACCGCTGCTTACAGGACAATGGGCAGTGCCATGCAGACGCCAAATG TGTCGACCTCCACTTCCAGGATACCACTGTTGGGGTGTTCCATCTACGCTCCCCACTGGGCCAGTATA AGCTGACCTTTGACAAAGCCAGAGAGGCCTGTGCCAACGAAGCTGCGACCATGGCAACCTACAACCAG
n^
59.4
597
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 9B.
Table 9B. Comparison of the NOV9 protein sequences.
NOV9a
NOV9b
NOV9c
NOV9d
NOV9e
NOV9f
NOV9g
NOV9h
NOV9i
NOV9j
NOV9k MERQETGNSKTRYHATAIVQA -I-roKGLN---slJGTSGDEEQKIIWGD-røRENKGFDGLLDVWN
NOV91
NOV9m
NOV9n
N0V9O
NOV9p
NOV9q
NOV9r
NOV9S
NOV9t
NOV9u
ς9Q NOV9v NOV9 NOV9x NOV9y
NOV9a NOV9b NOV9C NOV9d NOV9e NOV9f NOV9g NOV9 NOV9i NOV9J NOV9k TLNFIHPCFAVCNCVHGVCNSGLDGDGTCECYSAYTGPKCDKLTENFHTSHLTL PVHDS NOV91 NOV9ra NOV9n NOV9o NOV9p NOV9q NOV9r NOV9s NOV9t NOV9U NOV9V NOV9 NOV9x NOV9y
NOV9a NOV9b NOV9C NOV9d NOV9e NOV9f NOV9g NOV9h NOV9i NOV9k KH GSLRHQNMNGTCSSGGGKGDPDVYQNGLIFHGGGTSGGLSSSRNRRSSVKRPEKWKG NOV91 NOV9m NOV9n NOV9o NOV9p NOV9q NOV9r NOV9S NOV9t NOV9u NOV9V NOV9W NOV9-X NOV9y -MMLQHLVIFCLGL
NOV9a NOV9b NOV9C NOV9d NOV9e NOV9f NOV9g NOV9h NOV9i NOV9k DDRDGGGKEGQQRRRADTESSLQRGHIKTPLPHRQGEARITETTGNCVSAGMTGTNANHT NOV91 NOV9m NOV9I1 NOV9o NOV9p NOV9q NOV9r NOV9S NOV9t NOV9U NOV9V NOV9 NOV9X NOV9y WQNFCSPAETTGQARRCDRKSLLTIRTECRSCALNLGVKCPDGYTMITSGSVGVRDCRY
NOV9a
NOV9b
NOV9C
NOV9d
NOV9e
NOV9f
NOV9g
NOV9h
NOV91
NOV9J
NOV9k KVHPTVQSLTEYDSFQTHSTSRLKEFEKQQVKERFSDPPLMQAIKPSHEKYPPYAQRKGT
NOV91
NOV9m
NOV9n
NOV9o
NOV9p
NOV9q
NOV9r
NOV9s
NOV9t
NOV9u
NOV9v
NOV9
NOV9X
NOV9y TFEVRTYSLSLPGCRHICRKDYLQPRCCPGRWGPDCIECPGGAGSPCNGRGSCAEGMEGN
NOV9a NOV9b NOV9C NOV9d NOV9e NOV9f NOV9g NOV9 NOV9i NOV9k SLSPKTQGHGDDEQALLSFLHSITLSLYLYPTTFFHDSPVFIKPGIKTLRLNHFFGSSFP NOV91 NOV9ra NOV9n NOV9o NOV9p NOV9q NOV9r NOV9S NOV9t NOV9U NOV9v NOV9 NOV9x NOV9y GTCSCQEGFGGTACETCADDNLFGPSCSSVCNCVHGVCNSGLDGDGTCECYSAYTGPKCD
NOV9a NOV9b NOV9C NOV9d NOV9e NOV9f NOV9g NOV9 NOV9i NOV9J NOV9k YEGSSVIXXMGIEVWKNWCQNADTLAAAPAPSLNVQPCSAQKIPDVRLPLKMKTNWNANA NOV91 NOV9m NOV9n NOV9o NOV9p N0V9q NOV9r NOV9S NOV9t NOV9U NOV9V NOV9 NOV9X NOV9y KPIPECAALLCPENSRCSPSTEDENKLECKCLPNYRGDGKYCDPINPCLRKICHPHAHC
NOV9a NOV9b NOV9C NOV9d NOV9e
NOV9f
N0V9g
NOV9h
N0V9i
NOV9k FPITEA ANTATPSIHVYEKSATLMLIVRT DQIGTWHAKKATVGMAKCACL TPAKLT;
N0V91
NOV9m
NOV9n
NOV9o
NOV9p
NOV9q
NOV9r
NOV9S
NOV9t
NOV9u
NOV9v
NOV9
NOV9X
NOV9y YLGPNRHSCTCQEGYRGDGQVCLPVDPCQINFGNCPTKSTVCKYDGPGQSHCECKEHYQ
NOV9a NOV9b NOV9C NOV9d NOV9e NOV9f NOV9g NOV91l NOV9i NOV9k LETALQSLQCANMMGLDRCICQKGYVGDGLTCYGNIMERLRELNTEPRGK QGRLTSFIS NOV91 NOV9ra NOV9I1 N0V9O NOV9p NOV9q NOV9r NOV9S NOV9t NOV9U NOV9v NOV9W NOV9X NOV9y FVPGVGCSMTDICKSDNPCHRNANCTTVAPGRTECICQKGYVGDGLTCYGNIMERLRELN
NOV9a N0V9b NOV9C NOV9d NOV9e NOV9f NOV9g NOV9h
NOV9i
NOV9J
NOV9k LLESIQIVSVQLSEFSQREPTCVNTKSIASNLEGPLVPLSNHYPLQVNELLVDNKAAQYF
NOV91
NOV9m
NOV9n
N0V9O
NOV9p
NOV9q
NOV9r
NOV9S
NOV9t
NOV9u
NOV9V
NOV9
NOV9x
NOV9y TEPRGKWQGRLTSFISLLDKAYAWPLSKLGPFTVLLPTDKGLKGFNVNELLVDNKAAQYF
NOV9a NOV9b NOV9C NOV9d NOV9e NOV9f NOV9g NOV9h NOV9i NOV9k V---α-JHIIAGQMNIEYM-NNTDMFYTLTGKSGEIFNSDKDNQI--a-l-αJHGGKKKVKIIQGDIIA NOV91 NOV9m NOV9n NOV9o NOV9p NOV9q NOV9r NOV9S NOV9t NOV9U NOV9v NOV9W NOV9x NOV9y VKLH IAGQ- 1NIEYM N D FYT TGKSGEIFNSDKD QIKLKLHGGKKKVKIIQGDIIA
NOV9a NOV9b NOV9C NOV9d NOV9e NOV9f NOV9g N0V9h NOV9i NOV9J NOV9k SNGLLHILDR-AMDKLEPTF- -ESNNEETNLGHALDEDGVGGPY NOV91 NOV9m NOV9n NOV9o NOV9p NOV9q NOV9r NOV9s NOV9t NOV9u NOV9V NOV9 NOV9x NOV9y SNGLLHILDRAMDKLEHTFESNNEQTIMTMLQPRYSKFRSLLEETNLGHALDEDGVGGPY
NOV9a NOV9b NOV9C NOV9d NOV9e NOV9f NOV9g NOV9h NOV9i NOV9J NOV9k TIFVPNNEALNNMKDGTLDYLLSP- -ELEVATLISTPHIRSMAN NOV91 NOV9m NOV9n NOV9o NOV9p NOV9q NOV9r NOV9S NOV9t NOV9U NOV9v NOV9 NOV9X NOV9y TIFVPNNEALNNMKDGTLDYLLSPEGSRKLLELVRYHIVPFTQLEVATLISTPHIRSMAN
NOV9a NOV9b NOV9c NOV9d NOV9e NOV9f NOV9g NOV9h NOV9i NOV9J NOV9k QLIQFNTTDNGQILANDVAMEΞIEITAKNGRIYTLTGVLIPPSIVPILPHRCDETKREMK NOV91 NOV9m NOV9n NOV9o NOV9p NOV9q NOV9r NOV9S NOV9t NOV9U NOV9v NOV9 NOV9X NOV9y QLIQFNTTDNGQILA-NDVAMEEIEITAKNGRIYTLTGVLIPPSIVPILPHRCDETKREMK
NOV9a NOV9b NOV9C NOV9d NOV9e NOV9f NOV9g NOV9h NOV9--L NOV9k LGTCVSCSLVY SRCPA--ISEPTALFTHRCVYSGRFGSLKSGCARYC- NOV91 NOV9m NOV9n NOV9o NOV9p NOV9q NOV9r NOV9S NOV9t NOV9u NOV9V NOV9w NOV9x NOV9y LGTCVSCSLVY SRCPANSEPTALFTHRCVYSGRFGSLKSGCARYCNATVKIPKCCKGFY!
NOV9a NOV9b NOV9C NOV9d NOV9e NOV9f NOV9g NOV9 NOV9i NOV9k -NATVKCADSLGGNGTCICEEGFQGSQCQFCSDPNKYGPRCNKKCL NOV91 NOV9m NOV9n N0V9O N0V9p NOV9q NOV9r NOV9S NOV9t NOV9u NOV9v NOV9 NOV9X NOV9y GPDCNQCPGGFSNPCSGNGQCADSLGGNGTCICEEGFQGSQCQFCSDPNKYGPRCNKKCL
NOV9a NOV9b NOV9C NOV9d NOV9e NOV9f NOV9g NOV9h NOV9i NOV9k CVHGTCNNRIDSDGACLTGTCRDGSAGRLCDKQTSACGPYVQFCHIHATCEYSNGTASCIl NOV91 NOV9m NOV9n NOV9o NOV9p NOV9q NOV9r NOV9S NOV9t NOV9 NOV9V NOV9 NOV9x NOV9y CVHGTCNNRIDSDGACLTGTCRDGSAGRLCDKQTSACGPYVQFCHIHATCEYSNGTASCI
NOV9a NOV9b NOV9C NOV9d NOV9e NOV9f NOV9g NOV9 NOV9i NOV9J NOV9k CKAGYEGDGTLCSEMDPCTGLTPGGCSRNAECIKTGTGTHTCVCQQGWTGNGRDCSEINN NOV91 NOV9m NOV9n NOV9o NOV9p NOV9q NOV9r NOV9s NOV9t NOV9u NOV9v NOV9W NOV9X NOV9y CKAGYEGDGTLCSEMDPCTGLTPGGCSRNAECIKTGTGTHTCVCQQGWTGNGRDCSEINN
NOV9a
NOV9b
NOV9C
NOV9d
NOV9e
NOV9f
NOV9g
NOV9h
NOV9i
NOV9J
NOV9k CLLPSAGGCHDNASCLYVGPGQNECECKKGFRGNGIDCEPITSCLEQTGKCHPLASCQST!
NOV91
NOV9m
NOV9n
NOV9o
NOV9p
NOV9q
NOV9r
NOV9S
NOV9t
NOV9U
NOV9V
NOV9W
NOV9X
NOV9y CLLPSAGGCHDNASCLYVGPGQNECECKKGFRGNGIDCEPITSCLEQTGKCHPLASCQS
NOV9a NOV9b NOV9C NOV9d NOV9e NOV9f NOV9g NOV9h NOV9i NOV9J NOV9k SSGV SCVCQEGYEGDGFLCYGNAAVELSFLSEAAIFNR INNASLQPTLSATSNLTVLV NOV91 NOV9m NOV9n NOV9o NOV9p NOV9q NOV9r NOV9S NOV9t NOV9U NOV9V NOV9w
NOV9X
NOV9y SSGVWSCVCQEGYEGDGFLCYGNAAVELSFLSEAAIFNRWINNASLQPTLSATSNLTVLV
NOV9a
NOV9b
NOV9C
NOV9d
NOV9e
NOV9f
NOV9g
NOV9h
NOV9--L
NOV9k PSQQATΞDMDQDEKSFWLSQSNIPALIKYHMLLGTYRVADLQTLSSSDMLATSLQGNFLH
NOV91
NOV9ra
NOV9n
NOV9o
NOV9p
NOV9q
NOV9r
NOV9S
NOV9t
NOV9U
NOV9v
NOV9 MDQDEKSF LSQSNIPALIKYHMLLGTYRVADLQTLSSSDMLATSLQGNFLH
NOV9X MDQDEKSFWLSQSNIPALIKYHMLLGTYRVADLQTLSSSDMLATSLQGNFLH
NOV9y PSQQATEDMDQDEKSF LSQSNIPALIKYHMLLGTYRVADLQTLSSSDMLATSLQGNFLH
NOV9a
NOV9b
NOV9C
NOV9d
NOV9e
NOV9f
NOV9g
NOV9h
NOV91
NOV9k LAKVDGNITIEGASIVDGDNAATNGVIHIINKVLVPQRRLTGSLPNLLMRLEQMPDYSIF
NOV91
NOV9m
NOV9n
N0V9O
NOV9p
NOV9q
NOV9r
NOV9S
N0V9t
NOV9
NOV9v
NOV9 LAKVDGNITIΞGASIVDGDNAATNGVIHIINKVLVPQRRLTGSLPNLLMRLEQMPDYSIF
NOV9X LAKVDGNITIEGASIVDGDNAATNGVIHIINKVLVPQRRLTGSLPNLLMRLEQMPDYSIF
NOV9y LAKVDGNITIEGASIVDGDNAATNGVIHIINKVLVPQRRLTGSLPNLLMRLEQMPDYPIF NOV9a
NOV9b
NOV9c
NOV9d
NOV9e
NOV9f
NOV9g
NOV9h
NOV9i
NOV9J
NOV9k RGYI IQYNL-ANAIEAADAYTVFAPNNNAIENYIREK-KVLSLEEDVLRYHVVLEEKLLKsTD
NOV91
NOV9m
NOV9I1
NOV9o
NOV9p
NOV9q
NOV9r
NOV9s
NOV9t
NOV9u
NOV9v
NOV9w RGYIIQY-l-sTL-ANAIEAADAYTVFAPNNNAIENYIREKKV^
NOV9x RGYI IQYNLANAIEAADAYTVFAPNNNAIENYIREK-KVLSLEEDVLRYHVVLEE-KLL---απ-)
NOV9y RGYI IQYNL-ANAIEAADAYTVFAPNNNAIENYIREKKVLSLEEDVLRY tVLEEKLLKND
NOV9a
NOV9b
NOV9c
NOV9d
NOV9e
NOV9f
NOV9g
NOV9h
NOV9i
NOV9 j
NOV9k LHNGMHRETMLGFSYFLSFFLHNDQLYVNEAPINYTNVATDKGVIHGLGKVLEIQKNRCD
NOV91
NOV9m
NOV9n
NOV9o
NOV9p
NOV9q
NOV9r
NOV9S
NOV91
NOV9
NOV9v
NOV9 LHNGMHRETMLGFS YFLS FFLHNDQL YVNE AP INYT-NVATDKGVIHGLGKVLE I QKNRCD
NOV9x LHNGMHRETMLGFSYFLSFFLH-- TOQLYVNEAPINYTNVATDKGVIHGLGKVLEIQKNRCD
NOV9y LHNG- raRETMLGFSYFLSFFL-HNDQLYVNEAPINYTNVATDKGVIHGLG-KVLEIQK-NRCD
NOV9a NOV9b NOV9c
NOV9d
NOV9e
NOV9f
NOV9g
NOV9h
NOV9i
NOV9k NNDTTIIRGRCRTCSSELTCPFGTKSLGNΞKRRCIYTSYFMGRRTLFIGCQPKCVRTVIT
NOV91
NOV9m
NOV9n
NOV9o
NOV9p
NOV9q
NOV9r
NOV9S
NOV9t
NOV9u
NOV9V
NOV9w NNDTTIIRGRCRTCSSELTCPFGTKSLGNEKRRCIYTSYFMGRRTLFIGCQPKCVRTVIT
NOV9x NNDTTIIRGRCRTCSSELTCPFGTKSLGNEKRRCIYTSYFMGRRTLFIGCQPKCVRTVIT
NOV9y NNATTIIRGRCRTCSSELTCPFGTKSLGNEKRRCIYTSYFMGRRTLFIGCQPKCVRTVIT
NOV9a
NOV9b
NOV9C
NOV9d
NOV9e
NOV9f
NOV9g
NOV9h
NOV9i
NOV9j
NOV9k RECCAGFFGPQCQPCPGNAQNVCFGNGICLDGVNGTGVCECGEGFSGTACETCTEGKYGI
NOV91
NOV9m
NOV9n
NOV9o
NOV9p
NOV9q
NOV9r
NOV9S
NOV9t
NOV9U
NOV9v
NOV9W RECCAGFFGPQCQPCPGNAQNVCFGNGICLDGVNGTGVCECGEGFSGTACETCTEGKYGI
NOV9x RECCAGFFGPQCQPCPGNAQNVCFGNGICLDGVNGTGVCECGEGFSGTACETCTEGKYGI
NOV9y RECCAGFFGPQCQPCPGNAQNVCFGNGICLDGVNGTGVCECGEGFSGTACETCTEGKYGI
NOV9a NOV9b NOV9C NOV9d NOV9e NOV9f
NOV9g
NOV9h
NOV9i
NOV9j
NOV9k HCDQACSCVHGRCNQGPLGDGSCDCDVG RGVHCDNATTEDNCNGTCHTSANCLTNSDGT
NOV91
NOV9m
NOV9n
NOV9o
NOV9p
NOV9q
NOV9r
NOV9s
NOV9t
NOV9u
NOV9v
NOV9 HCDQACSCVHGRCNQGPLGDGSCDCDVGWRGVHCDNATTEDNCNGTCHTSANCLTNSDGT
NOV9x HCDQACSCVHGRCNQGPLGDGSCDCDVGWRGVHCDNATTEDNCNGTCHTSANCLTNSDGT
NOV9y HCDQACSCVHGRCNQGPLGDGSCDCDVG RGVHCDNATTEDNCNGTCHTSANCLTNSDGT
NOV9a
NOV9b
NOV9C
NOV9d
NOV9e
NOV9f
NOV9g
NOV9h
NOV9i
NOV9J
NOV9k ASCKCAAGFQGNGTICTAINACEISNGGCSAKADCKRTTPGRRVCTCKAGYTGDGIVCLE
NOV91
NOV9m
NOV9n
N0V9O
NOV9p
NOV9q
NOV9r
NOV9s
NOV9t
NOV9u
NOV9V
NOV9 ASCKCAAGFQGNGTICTAINACEISNGGCSAKADCKRTTPGRRVCTCKAGYTGDGIVCLE
NOV9x ASCKCAAGFQGNGTICTAINACΞISNGGCSAKADCKRTTPGRRVCTCKAGYTGDGIVCLE
NOV9y ASCKCAAGFQGNGTICTAINACEISNGGCSAKADCKRTTPGRRVCTCKAGYTGDGIVCLE
NOV9a NOV9b NOV9C NOV9d NOV9e NOV9f NOV9g NOV9h NOV9i
NOV9k INPCLENHGGCDKNAECTQTGPNQAACNCLPAYTGDGKVCTLINVCLTKNGGCSEFAIC ;
NOV91
NOV9m
N0V9O
NOV9p
NOV9q
NOV9r
NOV9s
NOV9t
NOV9U
NOV9v
NOV9w INPCLENHGGCDKNAECTQTGPNQAACNCLPAYTGDGKVCTLINVCLTKNGGCGEFAICN
NOV9X INPCLENHGGCDKNAECTQTGPNQAACNCLPAYTGDGKVCTLINVCLTKNGGCSEFAICN
NOV9y INPCLENHGGCDKNAECTQTGPNQAACNCLPAYTGDGKVCTLINVCLTKNGGCSEFAICN
NOV9a
NOV9b
NOV9C
NOV9d
NOV9e MEARKELESLPPFCLNSLHSIILTTKLTSQSLGGPRGVEERMEDRRAK HIAAKDS
NOV9f MEARKELESLPPFCLNSLHSIILTTKLTSQSLGGPRGVEERMEDRRAK HIAAKDS
NOV9g
NOV9h MEARKELESLPPFCLNSLHSIILTTKLTSQSLGGPRGVEERMEDRRAKWHIAAKDS
NOV9i MEARKELESLPPFCLNSLHSIILTTKLTSQSLGGPRGVEERMEDRRAKWHIAAKDS
NOV9J
NOV9k HTGQVERTCTCKPNYIGDGFTCRGSIYQELPKNPKTSQYFFQLQEHFVKDLVGPGPFTVF
NOV91
NOV9m
NOV9n
N0V9O
NOV9p
NOV9q
NOV9r
NOV9S
NOV9t
NOV9U
NOV9V
NOV9w HTGQVERTCTCKPNYIGDGFTCRGSIYQELPKNPKTSQYFFQLQEHFVKDLVGPGPFTVF
NOV9x HTGQVERTCTCKPNYIGDGFTCRGSIYQELPKNPKTSQYFFQLQEHFVKDLVGPGPFTVF
NOV9y HTGQVERTCTCKPNYIGDGFTCRGSIYQELPKNPKTSQYFFQLQEHFVKDLVGPGPFTVF
NOV9a MPQVLRYHWACHQLLLENLKLISNATSLQGEPIVISVS
NOV9b
NOV9C
NOV9d
NOV9e CL LKPSDLLLQVKD DKYGLMPQVLRYHWACHQLLLENLKLISNATSLQGEPIVISVS
NOV9f CL LKPSDLLLQVKD DKYGLMPQVLRYHVVACHQLLLENLKLISNATSLQGEPIVISVS
NOV9g
NOV9h CL LKPSDLLLQVKDWDKYGLMPQVLRYHWACHQLLLENLKLISNATSLQGEPIVISVS
NOV9i CL LKPSDLLLQVKD DKYGLMPQVLRYHWACHQLLLENLKLISNATSLQGEPIVISVS
NOV9j VLRYHWACHQLLLENLKLISNATSLQGEPIVISVS
NOV9k APLSAAFDEEARVKDWDKYGLMPQVLRYHVVACHQLLLENLKLISNATSLQGEPIVISVS
NOV9o IKFSNLIQDSGLLSVITDPIHTPVTLF PTDQALHALPAE- -QQDFLFNQDNKDKLKEY
NOV9p IKFSNLIQDSGLLSVITDPIHTPVTLF PTDQALHALPAE- -QQDFLFNQDNKDKLKEY
NOV9q IKFSNLIQDSGLLSVITDPIHTPVTLFWPTDQALHALPAE- -QQDFLFNQDNKDKLKEY
NOV9r IKFSNLIQDSGLLSVITDPIHTPVTLFWPTDQALHALPAE- -QQDFLFNQDNKDKLKEY
NOV9S IKFSNLIQDSGLLSVITDPIHTPVTLFWPTDQALHALPAE- -QQDFLFNQDNKDKLKEY
NOV9t IKFSNLIQDSGLLSVITDPIHTPVTLFWPTDQALHALPAE- -QQDFLFNQDNKDKLKEY
NOV9U IKFSNLIQDSGLLSWTDPIHTPVTLFWPTDQALHALPAE- -QQDFLFNQDNKDKLKEY
NOV9V IKFSNLIQDSGLLSVITDPIHTPVTLFWPTDQALHALPAE- -QQDFLFNQDNKDKLKEY
NOV9W IKFSNLIQDSGLLSVITDPIHTPVTLF PTDQALHALPAE- -QQDFLFNQDNKDKLKEY
NOV9X IKFSNLIQDSGLLSVITDPIHTPVTLFWPTDQALHALPAE- -QQDFLFNQDNKDKLKEY
NOV9y IKFSNLIQDSGLLSVITDPIHTPVTLFWPTDQALHALPAE- -QQDFLFNQDNKDKLKEY
NOV9a LKFHVIRDAKVLAVDLPTSTA KTLQGSELSVKCGAGRDIGDLFLNGQTCRIVQRELLFD
NOV9b LKFHVIRDAKVLAVDLPTSTAWKTLQGSELSVKCGAGRDIGDLFLNGQTCRIVQRELLFD
NOV9C
NOV9d
NOV9e LKFHVIRDAKVLAVDLPTSTA KTLQGSELSVKCGAGRDIGDLFLNGQTCRIVQRELLFD
NOV9f LKFHVIRDAKVLAVDLPTSTA KTLQGSELSVKCGAGRDIGDLFLNGQTCRIVQRELLFD
NOV9g LPTSTA KTLQGSELSVKCGAGRDIGDLFLNGQTCRIVQRELLFD
NOV9h LKFHVIRDAKVLAVDLPTSTA KTLQGSELSVKCGAGRDIGDLFLNGQTCRIVQRELLFD
NOV9i LKFHVIRDAKVLAVDLPTSTA KTLQGSELSVKCGAGRDIGDLFLNGQTCRIVQRELLFD
NOV9J LKFHVIRDAKVLAVDLPTSTA KTLQGSELSVKCGAGRDIGDLFLNGQTCRIVQRELLFD
NOV9k LKFHVIRDAKVLAVDLPTSTA KTLQGSELSVKCGAGRDIGDLFLNGQTYRIVQRELLFD
NOV91 LKFHVIRDAKVLAVDLPTSTAWKTLQGSELSVKCGAGRDIGDLFLNGQTCRIVQRELLFD
NOV9m LKFHVIRDAKVLAVDLPTSTA KTLQGSELSVKCGAGRDIGDLFLNGQTCRIVQRELLFD
NOV9n LKFHVIRDAKVLAVDLPTSTAWKTLQGSELSVKCGAGRDIGDLFLNGQTCRIVQRELLFD
NOV9o LKFHVIRDAKVLAVDLPTSTAWKTLQGSELSVKCGAGRDIGDLFLNGQTCRIVQRELLFD
NOV9p LKFHVIRDAKVLAVDLPTSTA KTLQGSELSVKCGAGRDIGDLFLNGQTCRIVQRELLFD
NOV9q LKFHVIRDAKVLAVDLPTSTAWKTLQGSELSVKCGAGRDIGDLFLNGQTCRIVQRELLFD
NOV9r LKFHVIRDAKVLAVDLPTSTAWKTLQGSELSVKCGAGRDIGDLFLNGQTCRIVQRELLFD
NOV9S LKFHVIRDAKVLAVDLPTSTA KTLQGSELSVKCGAGRDIGDLFLNGQTCRIVQRELLFD
NOV9t LKFHVIRDAKVLAVDLPTSTA KTLQGSELSVKCGAGRDIGDLFLNGQTCRIVQRELLFD
NOV9U LKFHVIRDAKVLAVDLPTSTAWKTLQGSELSVKCGAGRDIGDLFLNGQTCRIVQRELLFD
NOV9V LKFHVIRDAKVLAVDLPTSTA KTLQGSELSVKCGAGRDIGDLFLNGQTCRIVQRELLFD
NOV9 LKFHVIRDAKVLAVDLPTSTA KTLQGSELSVKCGAGRDIGDLFLNGQTCRIVQRELLFD
NOV9X LKFHVIRDAKVLAVDLPTSTA KTLQGSELSVKCGAGRDIGDLFLNGQTCRIVQRELLFD
NOV9y LKFHVIRDAKVLAVDLPTSTAWKTLQGSELSVKCGAGRDIGDLFLNGQTCRIVQRELLFD
NOV9a LGVAYGIDCLLIDPTLGGRCDTFTTFDASGECGSCVNTPSCPR SKPKGVKQKCLYNLPF
NOV9b LGVAYGIDCLLIDPTLGGRCDTFTTFDASGECGSCVNTPSCPR SKPKGVKQKCLYNLPF
NOV9C
NOV9d
NOV9e LGVAYGIDCLLIDPTLGGRCDTFTTFDASGECGSCVNTPSCPR SKPKGVKQKCLYNLPF
NOV9f LGVAYGIDCLLIDPTLGGRCDTFTTFDASGECGSCVNTPSCPR SKPKGVKQKCLYNLPF
NOV9g LGVAYGIDCLLIDPTLGGRCDTFTTFDASGECGSCVNTPSCPRWSKPKGVKQKCLYNLPF
NOV9h LGVAYGIDCLLIDPTLGGRCDTFTTFDASGECGSCVNTPSCPR SKPKGVKQKCLYNLPF
NOV9i LGVAYGIDCLLIDPTLGGRCDTFTTFDASGECGSCVNTPSCPR SKPKGVKQKCLYNLPF
NOV9J LGVAYGIDCLLIDPTLGGRCDTFTTFDASGECGSCVNTPSCPR SKPKGVKQKCLYNLPF
NOV9k LGVAYGIDCLLIDPTLGGRCDTFTTFDASGECGSCVNTPSCPRWSKPKGVKQKCLYNLPF
NOV91 LGVAYGIDCLLIDPTLGGRCDTFTTFDAS GVKQKCLYNLPF
NOV9ra LGVAYGIDCLLIDPTLGGRCDTFTTFDAS GVKQKCLYNLPF
NOV9n LGVAYGIDCLLIDPTLGGRCDTFTTFDASGECGSCVNTPSCPRWSKPKGVKQKCLYNLPF
N0V9O LGVAYGIDCLLIDPTLGGRCDTFTTFDASGECGSCVNTPSCPR SKPKGVKQKCLYNLPF
NOV9p LGVAYGIDCLLIDPTLGGRCDTFTTFDASGECGSCVNTPSCPR SKPKGVKQKCLYNLPF
NOV9q LGVAYGIDCLLIDPTLGGRCDTFTTFDASGECGSCVNTPSCPR SKPKGVKQKCLYNLPF NOV9r LGVAYGIDCLLIDPTLGGRCDTFTTFDASGECGSCVNTPSCPR SKPKGVKQKCLYNLPF
NOV9S LGVAYGIDCLLIDPTLGGRCDTFTTFDASGECGSCVNTPSCPR SKPKGVKQRCLYNLPF
NOV9t LGVACGIDCLLIDPTLGGRCDTFTTFDASGECGSCVNTPSCPR SKPKGVKQKCLYNLPF
NOV9U LGVAYGIDCLLIDPTLGGRCDTFTTFDASGECGSCVNTPSCPR SKPKGVKQKCLYNLPF
NOV9V LGVAYGIDCLLIDPTLGGRCDTFTTFDASGECGSCVNTPSCPRWSKPKGVKQKCLYNLPF
NOV9W LGVAYGIDCLLIDPTLGGRCDTFTTFDASGECGSCVNTPSCPR SKPKGVKQKCLYNLPF
NOV9X LGVAYGIDCLLIDPTLGGRCDTFTTFDASGECGSCVNTPSCPR SKPKGVKQKCLYNLPF
NOV9y LGVAYGIDCLLIDPTLGGRCDTFTTFDASGECGSCVNTPSCPR SKPKGVKQKCLYNLPF
NOV9a KRNLEGCRERCSLVIQIPRCCKGYFGRDCQACPGGPDAPCNNRGVCLDQYSATGECKCNT
NOV9b KRNLEGCRERCSLVIQIPRCCKGYFGRDCQACPGGPDAPCNNRGVCLDQYSATGECKCNT
NOV9c
NOV9d
NOV9e KRNLEGCRERCSLVIQIPRCCKGYFGRDCQACPGGPVAPCNNRGVCLDQYSATGECKCNT
NOV9f KRNLEGCRΞRCSLVIQIPRCCKGYFGRDCQACPGGPDAPCNNRGVCLDQYSATGECKCNT
NOV9g KRNLEGCRERCSLVIQIPRCCKGYFGRDCQACPGGPDAPCNNRGVCLDQYSATGECKCNT
NOV9h KRNLEGCRERCSLVIQIPRCCKGYFGRDCQGE--GASSP LATL KVSALI
NOV9i KRNLEGCRERCSLVIQIP
NOV9J KRNLEGCRERCSLVIQIPRCCKGYFGRDCQACPGGPDAPCNNRGVCLDQYSATGECKCNT
NOV9k KRNLEGCRERCSLVIQIPRCCKGYFGRDCQACPGGPDAPCNNRGVCLDQYSATGECKCNT
NOV91 KRNLEGCRERCSLVIQIPRCCKGYFGRDCQACPGGPDAPCNNRGVCLDQYSATGECKCNT
NOV9m KRNLEGCRERCSLVIQIPRCCKGYFGRDCQACPGGPDAPCNNRGVCLDQYSATGECKCNT
NOV9n KRNLEGCRERCSLVIQIPRCCKGYFGRDCQACPGGPDAPCNNRGVCLDQYSATGECKCNT
N0V9O KRNLEGCRERCSLVIQIPRCCKGYFGRDCQACPGGPDAPCNNRGVCLDLYSATGECKCNT
NOV9p KRNLEGCRERCSLVIQIPRCCKGYFGRDCQACPGGPDAPCNNRGVCLDQYSATGΞCKCNT
NOV9q KRNLEGCRERCSLVIQIPRCCKGYFGRDCQACPGGPDAPCNNRGVCLDQYSATGECKCNT
NOV9r KRNLEGCRERCSLVIQIPRCCKGYFGRDCQACPGGPDAPCNNRGVCLDQYSATGECKCNT
NOV9S KRNLEGCRERCSLVIQIPRCCKGYFGRDCQACPGGPDAPCNNRGVCLDQYSATGECKCNT
NOV9t KRNLEGCRERCSLVIQIPRCCKGYFGRDCQACPGGPDAPCNNRGVCLDQYSATGECKCNT
NOV9U KRNLEGCRERCSLVIQIPRCCKGYFGRDCQACPGGPDAPCNNRGVCLDQYSATGECKCNT
NOV9V KRNLEGCRERCSLVIQIPRCCKGYFGRDCQACPGGPDAPCNNRGVCLDQYSATGΞCKCNT
NOV9W KRNLEGCRERCSLVIQIPRCCKGYFGRDCQPR NSKSVCLDQYSATGECKCNT
NOV9X KRNLEGCRERCSLVIQIPRCCKGYFGRDCQACPGGPDAPCNNRGVCLDQYSATGECKCNT
NOV9y KRNLEGCRERCSLVIQIPRCCKGYFGRDCQACPGGPDAPCNNRGVCLDQYSATGECKCNT
NOV9a GFNGTACEMC PGRFGPDCLPCGCSDHGQCDDGITGSGQCLCETGWTGPSCDTQAVLPAV
NOV9b GFNGTACEMC PGRFGPDCLPCGCSDHGQCDDGITGSGQCLCETG TGPSCDTQAVLPAV
NOV9C MC PGRFGPDCLPCGCSDHGQCDDGITGSGQCLCETG TGPSCDTQAVLSAV
NOV9d MC PGRFGPDCLPCGCSDHGQCDDGITGSGQCLCETG TGPSCDTQAVLSAV
NOV9e GFNGTACEMCWPGRFGPDCLPCGCSDHGQCDDGITGSGQCLCETG TGPSCDTQAVLSAV
NOV9f GFNGTACEMC PGRFGPDCLPCGCSDHGQCDDGITGSGQCLCETG TGPSCDTQAVLSAV
NOV9g GFNGTACEMC PGRFGPDCLPCGCSDHGQCDDGITGSGQCLCETG TGPSCDTQAVLSAV
NOV9h STRPPESVNATPASMGRRVRCAGRGDLGLIVCPVA-A QTTDSAMMA
NOV9i SLP RTRCPV
NOV9J GFNGTACEMCWPGRFGPDCLPCGCSDHGQCDDGITGSGQCLCETGWTGPSCDTQAVLSAV
NOV9k GFNGTACEMCWPGRFGPDCLPCGCSDHGQCDDGITGSGQCLCETGWTGPSCDTQAVLPAV
NOV91 GFNGTACEMC PGRFGPDCLPCGCSDHGQCDDGITGSGQCLCETG TGPSCDTQAVLPAV
NOV9m GFNGTACEMC PGRFGPDCLPCGCSDHGQCDDGITGSGQCLCETG TGPSCDTQAVLPAV
NOV9n GF-NGTACEMCWPGRFGPDCLPCGCSDHGQCNDGITGSGQCLCETG TGPSCDTQAVLPAV
NOV9o GFNGTACEMC PGRFGPDCLPCGCSDHGQCDDGITGSGQCLCETG TGPSCDTQAVLPAV
NOV9p GFNGTACEMCWPGRFGPDCLPCGCSDHGQCDDGITGSGQCLCETGWTGPSCDTQAVLPAV
NOV9q GFNGTACEMC PGRFGPDCLPCGCSDHGQCDDGITGSGQCLCETG TGPSCDTQAVLPAV
NOV9r GFNGTACEMCWPGRFGPDCLPCGCSDHGQCDDGITGSGQCLCETG TGPSCDTQAVLPAV
NOV9S GFNGTACEMC PGRFGPDCLPCGCSDHGQCDDGITGSGQCLCETG TGPSCDTQAVLPAV
NOV9t GFNGTACEMCWPGRFGPDCLPCGCSDHGQCDDGITGSGQCLCETGWTGPSCDTQAVLPAV NOV9u GFNGTACEMC PGRFGPDCLPCGCSDHGQCDDGITGSGQCLCETGWTGPSCDTQAVLPAV
NOV9v GFNGTACEMCWPGRFGPDCLPCGCSDHGQCDDGITGSGQCLCETG TGPSCDTQAVLPAV
NOV9W GFNGTACEMC PGRFGPDCLPCGCSDHGQCDDGITGSGQCLCETGWTGPSCDTQAVLPAV
NOV9X GFNGTACEMC PGRFGPDCLPCGCSDHGQCDDGITGSGQCLCETG TGPSCDTQAVLPAV
NOV9y GFNGTACEMCWPGRFGPDCLPCGCSDHGQCDDGITGSGQCLCETG TGPSCDTQAVLPAV
NOV9a CTPPCSAHATCKENNTCECNLDYEGDGITCTWDFCKQDNGGCAKVARCSQKGTKVSCSC
NOV9b CTPPCSAHATCKENNTCECNLDYEGDGITCTWDFCKQDNGGCAKVARCSQKGTKVSCSC
NOV9C CTPPCSAHATCKENNTCECNLDYEGDGITCTWDFCKQDNGGCAKVARCSQKGTKVSCSC
NOV9d CTPPCSAHATCKENNTCECNLDYEGDGITCTWDFCKQDNGGCAKVARCSQKGTKVSCSC
NOV9e CTPPCSAHATCKENNTCECNLDYEGDGITCTWDFCKQDNGGCAKVARCSQKGTKVSCSC
NOV9f CTPPCSAHATCKENNTCECNLDYEGDGITCTWDFCKQDNGGCAKVARCSQKGTKVSCSC
NOV9g CTPPCSA---IATCKE---TOTCECNLDYEGDGITCTVVDFCKQDNGGCAKVARCSQKGTKVSCSC
NOV9h SRAPGSASVKRG GQAPRVTLRQFCLQCVRLLVLLMPPVRRTTRVSVT
NOV9i
NOV9J CTPPCSAHATCKENNTCECNLDYEGDGITCTWDFCKQDNGGCAKVARCSQKGTKVSCSC
NOV9k CTPPCSA-HATCENNTCECNLDYEGDGITCTVVDFCKQDNGGCAKVARCSQKGTKVSCSC
NOV91 CTPPCSA-HATCKENNTCECNLDYEGDGITCTVVDFCKQDNGGCAKVARCSQKGTKVSCSC
NOV9m CTPPCSAHATCKENNTCECNLDYEGDGITCTWDFCKQDNGGCAKVARCSQKGTKVSCSC
NOV9n CTPPCS-AHATCKENNTCECNLDYEGDGITCTVVDFCKQDNGGCAKVARCSQKGTKVSCSC
N0V9O CTPPCSA--- TC-KENNTCECNLDYEGDGITCTVVDFCKQDNGGCAKVARCSQKGTKVSCSC
NOV9p CTPPCSAHATCKENWTCECNLDYEGDGITCTVVDFCKQDNGGCAKVARCSQKGTKVSCSC
NOV9q CTPPCΞAHATCKENNTCECYLDYEGDGITCTVVDFCKQDNGGCA-KVARCSQKGTKVSCSC
NOV9r CTPPCSAHATCKENNTCECNLDYEGDGITCTVVDFCKQDNGGCAKVARCSQKGTKVSCNC
NOV9S CTPPCSA-HATC-KENNTCECNLDYEGDGITCTVVDFCKQDNGGCAKVARCSQKGTKVSCSC
NOV9t CTPPCSAHATC---SΕNNTCECNLDYEGDGITCTVVDFCKQDNGGCAKVARCSQKGTKVSCSC
NOV9U CTPPCS-AHATCKE-tMTCECNLDYEGDGITCTVVDFCKQDNGGCAKVARCSQKGTKVSCSC
NOV9v CTPPCSAHATCKENNTCECNLDYEGDGITCTVVDFCKQDNGGCAKVARCSQKGTKVSCSC
NOV9 CTPPCSA-- TCENNTCECNLDYEGDGITCTVVDFCKQDNGGCAKVARCSQKGTKVSCSC
NOV9x CTPPCSAHATCKENNTCECNLDYEGDGITCTWDFCKQDNGGCAKVARCSQKGTKVSCSC
NOV9y CTPPCSA-1---ATC-KENNTCECNLDYEGDGITCTVVDFCKQDNGGCAKVARCSQKGTKVSCSC
NOV9a QKGYKGDGHSCTΞIDPCADGLNGGCHEHATCKMTGPGKHKCECKSHYVGDGLNCEPEQLP
NOV9b QKGYKGDGHSCTEIDPCADGLNGGCHEHATCKMTGPGKHKCECKSHYVGDGLNCGPEQLP
NOV9c QKGYKGDGHSCTEIDPCADGLNGGCHEHATCKMTGPGKHKCECKSHYVGDGLNCEPEQLP
NOV9d QKGYKGDGHSCTEIDPCADGLNGGCHEHATCKMTGPGKHKCECKSHYVGDGLNCEPEQLP
NOV9e QKGYKGDGHSCTEIDPCADGLNGGCHEHATCKMTGPGKHKCECKSHYVGDGLNCEPEQLP
NOV9f QKGYKGDGHSCTEIDPCADGLNGGCHEHATCKMTGPGKHKCECKSHYVGDGLNCEPEQLP
NOV9g QKGYKGDGHSCTEIDPCADGLNGGCHEHATCKMTGPGKHKCECKSHYVGDGLNCEPEQLP
NOV9h IMKVT ESHAQL ISANRTTGAVQR PDAPRRAR-RSPAAARRDTKGTGTAAQR
NOV9i
NOV9J QKGYKGDGHSCTEIDPCADGLNGGCHEHATCKMTGPGKHKCECKSHYVGDGLNCEPEQLP
NOV9k QKGYKGDGHSCTEIDPCADGLNGGCHEHATCKMTGPGKHKCECKSHYVGDGLNCEPEQLP
NOV91 QKGYKGDGHSCTEIDPCADGLNGGCHEHATCKMTGPGKHKCECKSHYVGDGLNCEPEQLP
NOV9m QKGYKGDGHSCTEIDPCADGLNGGCHEHATCKMTGPGKHKCECKSHYVGDGLNCEPEQLP
NOV9n QKGYKGDGHSCTEIDPCADGLNGGCHEHATCKMTGPGKHKCECKSHYVGDGLNCEPEQLP
NOV9o QKGYKGDGHSCTEIDPCADGLNGGCHEHATCKMTGPGKHKCECKSHYVGDGLNCEPEQLP
NOV9p QKGYKGDGHSCTEIDPCADGLNGGCHEHATCKMTGPGKHKCECKSHYVGDGLNCEPEQLP
NOV9q QKGYKGDGHSCTEIDPCADGLNGGCHEHATRKMTGPGKHKCECKSHYVGDGLNCEPEQLP
NOV9r QKGYKGDGHSCTEIDPCADGLNGGCHEHATCKMTGPGKHKCECKSHYVGDGLNCEPEQLP
NOV9S QKGYKGDGHSCTEIDPCADGLNGGCHEHATCKMTGPGKHKCECKSHYVGDGLNCEPEQLP
NOV9t QKGYKGDGHSCTEIDPCADGLNGGCHEHATCKMTGPGKHKCECKSHYVGDGLNCEPEQLP
NOV9U QKGYKGDGHSCTEIDPCADGLNGGCHEHATCKMTGPGKHKCECKSHYVGDGLNCEPEQLP
NOV9V QKGYKGDGHSCTEIDPCADGLNGGCHEHATCKMTGPGKHKCECKSHYVGDGLNCEPEQLP
NOV9 QKGYKGDGHSCTEIDPCADGLNGGCHEHATCKMTGPGKHKCECKSHYVGDGLNCEPEQLP NOV9x QKGYKGDGHSCTEIDPCADGLNGGCHEHATCKMTGPGKHKCECKSHYVGDGLNCEPEQLP
NOV9y QKGYKGDGHSCTEIDPCADGLNGGCHΞHATCKMTGPGKHKCECKSHYVGDGLNCEPEQLP
NOV9a IDRCLQDNGQCHADAKCVDLHFQDTTVGVFHLRSPLGQYKLTFDKAREACANEAATMATY
NOV9b IDRCLQDNGQCHADAKCVDLHFQDTTVGVFHLRSPLGQYKLTFDKAREACANEAATMATY
NOV9C IDRCLQDNGQCHADAKCADLHFQDTTVGVFHLRSPLGQYKLTFDKAREACANEAATMATY
NOV9d IDRCLQDNGQCHADAKCVDLHFQDTTVGVFHLRSPLGQYKLTFDKAREACANEAATMATY
NOV9e IDRCLQDNGQCHADAKCVDLHFQDTTVGVFHLRSPLGQYKLTFDKAREACANEAATMATY
NOV9f IDRCLQDNGQCHADAKCVDLHFQDTTVGVFHLRSPLGQYKLTFDKAREACANEAATMATY
NOV9g IDRCLQDNGQC-----ADAKCVDLHFQDTTVGVFHLRSPLGQYKLTFDKAREACANEAATMATY
NOV9h
NOV9i
N0V9j IDRCLQDNGQCHADAKCVDLHFQDTTVGVFHLRSPLGQYKLTFDKAREACANEAATMATY
NOV9k IDRCLQDNGQCHADAKCVDLHFQDTTVGVFHLRSPLGQYKLTFDKAREACANEAATMATY
NOV91 IDRCLQDNGQCHADAKCVDLHFQDTTVGVFHLRSPLGQYKLTFDKAREACANEAATMATY
N0V9m IDRCLQDNGQCHADAKCVDLHFQDTTVGVFHLRSPLGQYKLTFDKAREACANEAATMATY
NOV9n IDRCLQDNGQCHADAKCVDLHFQDTTVGVFHLRSPLGQYKLTFDRAREACANEAATMATY
NOV9o IDRCLQDNGQCHADAKCVDLHFQDTTVGVFHLRSPLGQYKLTFDKAREACANEAATMATY
NOV9p IDRCLQDNGQCHADAKCVDLHFQDTTVGVFHLRSPLGQYKLTFDKAREACANEAATMATY
NOV9q IDRCLQDNGQCHADAKCVDLHFQDTTVGVFHLRSPLGQYKLTFDKAREACANEAATMATY
NOV9r IDRCLQDNGQCHADAKCVDLHFQDTTVGVFHLRSPLGQYKLTFDKAREACANEAATMATY
NOV9s IDRCLQDNGQCHADAKCVDLHFQDTTVGVFHLRSPLGQYKLTFDKAREACANEAATMATY
NOV91 IDRCLQDNGQCHADAKCVDLHFQDTTVGVFHLRSPLGQYKLTFDKAREACANEAATMATY
NOV9u IDRCLQDNGQCHADAKCVDLHFQDTTVGVFHLRSPLGQYKLTFDKAREACANEAATTATY
NOV9V IDRCLQDNGQCHADAKCVDLHFQDTTVGVFHLRSPLGQYKLTFDKAREACANEAATMATY
NOV9w IDRCLQDNGQCHΛDAKCVDLHFQDTTVGVFHLRSPLGQYKLTFDK-AREACANEAATMATY
NOV9X IDRCLQDNGQCHADAKCVDLHFQDTTVGVFHLRSPLGQYKLTFDKAREACANEAATMATY
NOV9y IDRCLQDNGQCHADAKCVDLHFQDTTVGVFHLRSPLGQYKLTFDKAREACANEAATMATY
NOV9a NQLSYAQKAKYHLCSAGWLETGRVAYPTAFASQNCGSGWGIVDYGPRPNKSEMWDVFCY
NOV9b NQLSYAQKAKYHLCSAG LETGRVAYPTAFASQNCGSGWGIVDYGPRPNKSEM DVFCY
NOV9C NQLSYAQKAKYHLCSAGWLETGRVAYPTAFASQNCGSGWGIVDYGPRPNKSEMWDVFCY
NOV9d NQLSYAQKRΞEK
NOV9e NQLSYAQKTWYSFTKE
NOV9f NQLSYAQKTWYSFTKE
NOV9g NQLSYAQKTWYSFTKE
NOV9h
NOV9i
NOV9J NQLSYAQKTWYSFTKE
NOV9k NQLSYAQKAKYHLCSAGWLETGRVAYPTAFASQNCGSGWGIVDYGPRPNKSEMWDVFCY
NOV91 NQLSYAQKAKYHLCSAGWLETGRVAYPTAFASQNCGSGWGIVDYGPRPNKSEMWDVFCY
NOV9ra NQLSYAQKAKYHLCSAGWLETGRVAYPTAFASQNCGSGWGIVDYGPRPNKSEMWDVFCY
NOV9n NQLSYAQKΑKYHLCSAGWLETGRVAYPTAFASQNCGSGWGIVDYGPRPNKSEMWDVFCY
N0V9O NQLSYAQKAKYHLCSAGWLETGRVAYPTAFASQNCGSGWGIVDYGPRPNKSEMWDVFCY
NOV9p NQLSYAQKAKYHLCSAGWLETGRVAYPTAFASQNCGSGWGIVDYGPRPNKSEMWDVFCY
NOV9q NQLSYAQKAKYHLCSAGWLETGRVAYPTAFASQNCGSGWGIVDYGPRPNKSEMWDVFCY
NOV9r NQLSYAQKAKYHLCSAGWLETGRVAYPTAFASQNCGSGWGIVDYGPRPNKSEMWDVFCY
NOV9S NQLSYAQKΑKYHLCSAGWLETGRVAYPTAFASQNCGSSWGIVDYGPRPNKSEMWDVFCY
NOV91 NQLSYAQKAKYHLCSAGWLETGRVAYPTAFASQNCGSGVVGIVDYGPRPNKSEMWDVFCY
NOV91-1 NQLSYAQKAKYHLCSAGWLETGRVAYPTAFASQNCGSGWGIVDYGPRPNKSEMWDVFCY
NOV9V NQLSYAQKAKYHLCSAGWLETGRVAYPTAFASQNCGSGWGIVDYGPRPNKSEMWDVFCY
NOV9 NQLSYAQKAKYHLCSAGWLETGRVAYPTAFASQNCGSGWGIVDYGPRPNKSEMWDVFCY
NOV9X NQLSYAQK-AKYHLCSAGWLETGRVAYPTAFASQNCGSGWGIVDYGPRPNKSEMWDVFCY
NOV9y NQLSYAQKAKYHLCSAGWLETGRVAYPTAFASQNCGSGWGIVDYGPRPNKSEMWDVFCY NOV9a RMKDVNCTCKVGYVGDGFSCSGNLLQVLMSFPSLTNFLTEVLAYSNSSARGRAFLΞHLTD NOV9b Rp NOV9c RMKGS AGLFQQLSSRPCISRTPD NOV9d NOV9e NOV9f NOV9g NOV9h NOV9i NOV9k RMKGS- -AGLFQQLSSRPCISRTPD- NOV91 NOV9m NOV9n NOV9o NOV9p NOV9q NOV9r NOV9s NOV9t NOV9U N0V9V NOV9w RMKDVNCTCKVGYVGDGFSCSGNLLQVLMSFPSLTNFLTEVLAYSNSSARGRAFLEHLTD NOV9x RMKDVNCTCKVGYVGDGFSCSGNLLQVLMSFPSLTNFLTEVLAYSNSSARGRAFLEHLTD NOV9y RMKDVNCTCKVGYVGDGFSCSGNLLQVLMSFPSLTNFLTEVLAYSNSSARGRAFLEHLTD
NOV9a LSIRGTLFVPQNSGLGENETLSGRDIEHHLANVSMFFYNDLVNGTTLQTRVGSKLLITAS
NOV9b
NOV9C
NOV9d
NOV9e
NOV9f
NOV9g
NOV9h
NOV9i
NOV9
NOV9k
NOV91
NOV9ra
NOV9n
NOV9o
NOV9p
NOV9q
NOV9r
NOV9S
NOV9t
N0V9U
NOV9V
NOV9 LSIRGTLFVPQNSGLGENETLSGRDIEHHLANVSMFFYNDLVNGTTLQTRVGSKLLITAS
NOV9X LSIRGTLFVPQNSGLGENETLSGRDIEHHLA-WSMFFY-NDLVNGTTLQTRLGSKLLITAS
NOV9y LSIRGTLFVPQNSGLGENETLSGRDIEHHLANVSMFFYNDLVNGTTLQTRLGSKLLITAS
NOV9a QDPLQPTETRFVDGRAILQWDIFASNGIIHVISRPLKAPPAPVTLTHTGLGAGIFFAIIL NOV9b NOV9C NOV9d
NOV9e
NOV9f
NOV9g
NOV9h
NOV9i
NOV9k
NOV91
NOV9m
NOV9o
NOV9p
NOV9q
NOV9r
NOV9S
NOV9t
NOV9U
NOV9v
NOV9w QDPLQPTETRFVDGRAILQWDIFASNGIIHVISRPLKAPPAPVTLTHTGLGAGIFFAIIL
NOV9X QDPLQPTETRFVDGRAILQWDIFASNGIIHVISRPLKAPPAPVTLTHTGLGAGIFFAIIL
NOV9y QDPLQPTETRFVDGRAILQWDIFASNGIIHVISRPLKAPPAPVTLTHTGLGAGIFFAIIL
NOV9a VTGAVALAAYSYFRINRRTIGFQHFESEEDINVAALGKQQPENISNPLYESTTSAPPEPS
NOV9b
NOV9C
NOV9d
NOV9e
NOV9f
NOV9g
NOV9h
NOV9i
NOV9k
NOV91
NOV9m
NOV9n
NOV9o
NOV9p
NOV9q
NOV9r
NOV9S
NOV9t
NOV9
NOV9v
NOV9w VTGAVALAAYSYFRINRRTIGFQHFESEEDINVAALGKQQPENISNPLYESTTSAPPEPS
NOV9X VTGAVALAAYSYFRINRRTIGFQHFESEEDINVAALGKQQPENISNPLYESTTSAPPEPS
NOV9y VTGAVALAAYSYFRINRRTIGFQHFESEEDINVAALGKQQPENISNPLYESTTSAPPEPS
NOV9a YDPFTDSEERQLEGNDPLRTL
NOV9b
NOV9c
NOV9d
NOV9e
NOV9f NOV9g
NOV9h
NOV9i
NOV9J
NOV9k
NOV91
N0V9m
NOV9n
NOV9o
NOV9p
NOV9q
NOV9r
NOV9s
NOV9t
NOV9u
NOV9V
NOV9w YDPFTDSEERQLEGNDPLRTL
NOV9X YDPFTDSEERQLEGNDPLRTL
NOV9y YDPFTDSEERQLEGNDPLRTL
NOV9a ( SEQ ID NO: 208)
NOV9b ( SEQ ID NO: 210)
NOV9C ( SEQ ID NO: 212)
NOV9d ( SEQ ID NO: 214)
NOV9e < SEQ ID NO- 216)
NOV9f < SEQ ID NO- 218)
NOV9g SEQ ID NO. 220)
NOV9h SEQ ID NO 222)
NOV9i SEQ ID NO 224)
NOV9k SEQ ID NO 228)
NOV91 SEQ ID NO 230)
NOV9ra SEQ ID NO 232)
NOV9n SEQ ID NO 234)
NOV9o SEQ ID NO 236)
NOV9p [SEQ ID NO 238)
NOV9q (SEQ ID NO 240)
NOV9r (SEQ ID NO 242)
NOV9t (SEQ ID NO 246)
NOV9u (SEQ ID NO 248)
NOV9V (SEQ ID NO 250)
NOV9W (SEQ ID NO 252)
NOV9x (SEQ ID NO . 254)
NOV9y (SEQ ID NO . 256)
Further analysis of the NOV9a protein yielded the following properties shown in Table 9C.
Table 9C. Protein Sequence Properties NOV9a
SignalP analysis: Cleavage site between residues 32 and 33
PSORT π analysis:
PSG: a new signal peptide prediction method
N-region: length 6; pos . chg 1; neg. chg H-region: length 11; peak value 3 .91 PSG score : -0 .49
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -5.51 possible cleavage site: between 28 and 29
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al ' s method for TM region allocation Init position for calculation: 1
Tentative number of TMS(s) for the threshold 0.5: 2 Number of TMS(s) for threshold 0.5: 1
INTEGRAL Likelihood = -8.33 Transmembrane 808 - 824 PERIPHERAL Likelihood = 2.97 (at 663) ALOM score: -8.33 (number of TMSs : 1)
MTOP : Prediction of membrane topology (Hartmann et al . ) Center position for calculation: 815 Charge difference: -1.0 C( 1.5) - N( 2.5) N >= C: N-terminal side will be inside
>>> Single TMS is located near the C-terminus
>>> membrane topology: type Nt (cytoplasmic tail 1 to 807)
MITDISC: discrimination of mitochondrial targeting seq R content: 1 Hyd Moment (75) : 5.98 Hyd Momen (95) : 9.18 G content: 0 D/E content : 1 S/T content : 0 Score: -3.74
Gavel : prediction of cleavage sites for mitochondrial preseq R-2 motif at 16 LRY|HV
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite : none content of basic residues: 8.7% NLS Score: -0.47
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals : none
SKL: peroxisomal targeting signal in the C-terminus : none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR : N-myristoylation pattern : none
Prenylation motif : none memYQRL : transport motif from cell surface to Golgi : none
Tyrosines in the tail : too long tail
Dileucine motif in the tail : found LL at 15 LL at 16 LL at 69 LL at 75 LL at 111 LL at 213 LL at 226 LL at 660 checking 63 PROSITE DNA binding motifs : none checking 71 PROSITE ribosomal protein motifs : none checking 33 PROSITE prokaryotic DNA binding motifs : none
NNCN : Reinhardt ' s method for Cytoplasmic/Nuclear discrimination Prediction : nuclear Reliability : 55 . 5
COIL : Lupas ' s algorithm to detect coiled-coil regions total : 0 residues
Final Results (k = 9/23) :
30.4 %: nuclear
21.7 %: cytoplasmic
13.0 %: mitochondrial
13.0 %: Golgi
8.7 %: vesicles of secretory system
8.7 %: endoplasmic reticulum
4.3 %: peroxisomal
>> prediction for CG50736-09 is nuc (k=23)
A search of the NOV9a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 9D.
In a BLAST search of public sequence databases, the NOV9a protein was found to have homology to the proteins shown in the BLASTP data in Table 9E.
PFam analysis predicts that the NOV9a protein contains the domains shown in the Table 9F.
Example 10.
The NOV10 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 10 A. GGCTGAGCGGCGGCGTCCCTGGCCCGGCTCGGCGGAGGGTGGTGTGCAGCGGCGGGGACCTCCCGGAG CCTCCCGAGCCCGGCCTTCTGCCTAACGGCACCGTTACCCTTGGCAACCGTTTCTCCACTGCCCCTTG CCCGCAGTCGGGGCTGGCCCAGTCTTTTCGATTGTGTCCAGAACAATACAGTAACGCCTCTGGTTGGG TGAGTTCAGAGGCTGCCCGCTTCCTGACAGGACACAACTGGTCAGCCTCTGACGCTGGCCGCCCGGCC TGCATTTTCCCCGGCCCGGTCTCCTGGAGACAGGTACCAGCTTACAACGCCGGACAGGATCAGGGTAG CAAATATAGCTTCTATGGAGGAAAGGTCAAAGATGAGTATCTGCGTAGGTCCCCGATCTGTCGCTCTG CTGCCGCCCTGCACACTGACACCAGTGCCCGCAGCTGGTCTGAATTTAGGCTCTTGAGCAATAACAAG ATCACGGGGCTCCGCAATGGCTCCTTCCTGGGACTGTCACTGCTGGAGAAGCTTCTCATGAGAGCACA TTTTTCTGATGAAGATGAAAAGACGGCCTGTCCTTCTCCAGCACCAAGGCTCTGGAGGCTGCATAGCA AGTGCACCCTGAGCATGGCAGGCAATCAGAAGAACCAGGGCGGCAGCAGCTCACAAGAGGCAGCATCT GGCTTGATGCCGAGTCGGCGGCTCCAGCGGGGAGAGGTTGAGGGCCTCTGCACTTGCCTCTGCACGGA CCTGAGGAACAACATCATCAGCACAGTGCAGCCGGGCGCCTTCCTGGGCCTGGGGGAGCTGAAGCGTT TAGATCTCTCCAACAACCGGATTGGCTGTCTCACCTCCGAGACCTTCCAGGGCCTCCCCAGGCTTCTC CGACTAAACATATCTGGAAACATCTTCTCCAGTCTGCAACCTGGGGTCTTTGATGAGCTGCCAGCCCT TAAGGTTGTGGACTTGGGCACCGAGTTCCTGACCTGTGACTGCCACCTGCGCTGGCTGCTGCCCTGGG CCCAGAATCGCTCCCTGCAGCTGTCGGAACACACGCTCTGTGCTTACCCCAGTGCCCTGCATGCTCAT GCCCTGGGCAGCCTCCAGGAGGCCCAGCTCTGCTGCGAGGGGGCCCTGGAGCTGCACACACACCACCT CATCCCGTCCCTACGCCAAGTGGTGTTCCAGGGGGATCGGCTGCCCTTCCAGTGCTCTGCCAGCTACC TGGGCAACGACACCCGCATCCGCTGGTACCACAACCGAGCCCCTGTGGAGGGTGATGAGCAGGCGGGC ATCCTCCTGGCCGAGAGCCTCATCCACGACTGCACCTTCATCACCAGTGAGCTGACGCTGTCTCACAT CGGCGTGTGGGCCTCAGGCGAGTGGGAGTGCACCGTGTCCATGGCCCAAGGCAACGCCAGCAAGAAGG TGGAGATCGTGGTGCTGGAGACCTCTGCCTCCTACTGCCCCGCCGAGCGTGTTGCCAACAACCGCGGG GACTTCAGGTGGCCCCGAACTCTGGCTGGCATCACAGCCTACCAGTCCTGCCTGCAGTATCCCTTCAC CTCAGTGCCCCTGGGCGGGGGTGCCCCGGGCACCCGAGCCTCCCGCCGGTGTGACCGTGCCGGCCGCT GGGAGCCAGGGGACTACTCCCACTGTCTCTACACCAACGACATCACCAGGGTGCTGTACACCTTCGTG CTGATGCCCATCAATGCCTCCAATGCGCTGACCCTGGCTCACCAGCTGCGCGTGTACACAGCCGAGGC CGCTAGCTTTTCAGACATGATGGATGTAGTCTATGTGGCTCAGATGATCCAGAAATTTTTGGGTTATG TCGACCAGATCAAAGAGCTGGTAGAGGTGATGGTGGACATGCCCAGCAACTTGATGCTGGTGGACGAG CACCTGCTGTGGCTGGCCCAGCGCGAGGACAAGGCCTGCAGCCGCATCGTGGGTGCCATAGAGCGCAT TGGGGGGGCCGCCCTCAGCCCCCATGCCCAGCACATCTCAGTGAATGCGAGGAACATGGCATTGGAGG CCTACCTCATCAAGCCGCACAGCTACGTGGGCCTGACCTGCACAGCCTTCCAGAGGAGGGAGGGAGGG GTGCCGGGCACACGGCCAGGAAGCCCTGGCCAGAACCCCCCACCTGAGCCCGAGCCCCCAGCTGACCA GCAGCTCCGCTTCCGCTGCACCACCGGGAGGCCCAATGTTTCTCTGTCGTCCTTCCACATCAAGAACA GCGTGGCCCTGGCCTCCATCCAGCTGCCCCCGAGTCTATTCTCATCCCTTCCGGCTGCCCTGGCTCCC CCGGTGCCCCCAGACTGCACCCTGCAACTGCTCGTCTTCCGAAATGGCCGCCTCTTCCACAGCCACAG CAACACCTCCCGCCCTGGAGCTGCTGGGCCTGGCAAGAGGCGTGGCGTGGCCACCCCCGTCATCTTCG CAGGAACCAGTGGCTGTGGCGTGGGAAACCTGACAGAGCCAGTGGCCGTTTCGCTGCGGCACTGGGCT GAGGGAGCCGAACCTGTGGCCGCTTGGTGGAGCCAGGAGGGGCCCGGGGAGGCTGGGGGCTGGACCTC GGAGGGCTGCCAGCTCCGCTCCAGCCAGCCCAATGTCAGCGCCCTGCACTGCCAGCACTTGGGCAATG TGGCCGTGCTCATGGAGCTGAGCGCCTTTCCCAGGGAGGTGGGGGGCGCCGGGGCAGGGCTGCACCCC GTGGTATACCCCTGCACGGCCTTGCTGCTGCTCTGCCTCTTCGCCACCATCATCACCTACATCCTCAA CCACAGCTCCATCCGTGTGTCCCGGAAAGGCTGGCACATGCTGCTGAACTTGTGCTTCCACATAGCCA TGACCTCTGCTGTCTTTGCGGGGGGCATCACACTCACCAACTACCAGATGGTCTGCCAGGCGGTGGGC ATCACCCTGCACTACTCCTCCCTATCCACGCTGCTCTGGATGGGCGTGAAGGCGCGAGTGCTCCATAA GGAGCTCACCTGGAGGGCACCCCCTCCGCAAGAAGGGGACCCCGCTCTGCCTACTCCCAGTCCTATGC TCCGGTACATACTTTCAATTCCAGCTTTGCAATTGGGGAGGGACTCCAACGCAGGCGTAGGAAACCTC CCAAGGTTCTATTTGATCGCTGGAGGGATTCCACTCATTATCTGTGGCATCACAGCTGCAGTCAACAT
CCACAACTACCGGGACCACAGCCCCTACTGCTGGCTGGTGTGGCGTCCAAGCCTTGGCGCCTTCTAC
A
TCCCTGTGGCTTTGATTCTGCTCATCACCTGGATCTATTTCCTGTGCGCCGGGCTACGCTTACGGGG
T
CCTCTGGCACAGAACCCCAAGGCGGGCAACAGCAGGGCCTCCCTGGAGGCAGGGGAGGAGCTGAGGG
G
TTCCACCAGGCTCAGGGGCAGCGGCCCCCTCCTGAGTGACTCAGGTTCCCTTCTTGCTACTGGGAGC
G
CGCGAGTGGGGACGCCCGGGCCCCCGGAGGATGGTGACAGCCTCTATTCTCCGGGAGTCCAGCTAGG
G
GCGCTGGTGACCACGCACTTCCTGTACTTGGCCATGTGGGCCTGCGGGGCTCTGGCAGTGTCCCAGC
G
CTGGCTGCCCCGGGTGGTGTGCAGCTGCTTGTACGGGGTGGCAGCCTCCGCCCTGGGCCTCTTCGTC TCAG
NOV101, SNP13380040 of SEQ ID NO: 280 1542 aa MW at 164933.2kD
CG50925-01, Protein Sequence |SNP Pos: 722 SNP Change: Val to Met RGAPARLLLPLLP LLLLLAPEARGAPGCPLSIRSCKCSGERPKGLSGGVPGPARRRWCSGGDLPE PPEPGLLPNGTVTLGNRFSTAPCPQSGLAQSFRLCPEQYSNASG VΞSEAARFLTGHN SASDAGRPA CIFPGPVS RQVPAYNAGQDQGSKYSFYGGKVKDEYLRRSPICRSAAALHTDTSARSWSEFRLLSNNK ITGLRNGSFLGLSLLEKLLMRAHFSDEDEKTACPSPAPRLWRLHSKCTLSMAGNQKNQGGSSSQEAAS GL PSRRLQRGEVEGLCTCLCTDLRNNIISTVQPGAFLGLGELKRLDLSNNRIGCLTSETFQGLPRLL RLNISGNIFSSLQPGVFDELPALKWDLGTEFLTCDCHLR LLP AQNRSLQLSEHTLCAYPSALHAH -ALGSLQEAQLCCEGALELHTHHLIPSLRQVVFQGDRLPFQCSASYLG---TOTRIR YHNRAPVEGDEQAG ILLAESLIHDCTFITSELTLSHIGV ASGEWECTVSMAQGNASKKVEIVVLETSASYCPAERVANNRG DFRWPRTLAGITAYQSCLQYPFTSVPLGGGAPGTRASRRCDRAGR EPGDYSHCLYTNDITRVLYTFV LMPINASNALTLAHQLRVYTAEAASFSDMMDVVYVAQMIQKFLGYVDQIK-ELVEVMVDMPSNLMLVDE HLL LAQRED-Es^CSRIVGAIERIGGAALSP-f QHISVNARNMALEAYLIKPHSYVGLTCTAFQRREGG VPGTRPGSPGQNPPPEPEPPADQQLRFRCTTGRPNVSLSSFHIKNSVALASIQLPPSLFSSLPAALAP PVPPDCTLQLLVFRNGRLFHSHSNTSRPGAAGPGKRRGVATPVIFAGTSGCGVGNLTEPVAVSLRH A EGAEPVAAWWSQEGPGEAGG TSEGCQLRSSQPNVSALHCQHLGNVAVLMELSAFPREVGGAGAGLHP VVYPCTALLLLCLFATIITYILNHSSIRVSRKGWH LLNLCFHIAMTSAVFAGGITLTNYQMVCQAVG ITLHYSSLSTLL MGVKARVLHKELTWRAPPPQEGDPALPTPSP-MLRYILSIPALQLGRDSNAGVGNL PRFYLIAGGIPLIICGITAAVNIHNYRDHSPYC LV RPSLGAFYIPVALILLITWIYFLCAGLRLRG PLAQNPKAGNΞRASLEAGEELRGSTRLRGSGPLLSDSGSLLATGSARVGTPGPPEDGDSLYSPGVQLG ALVTTHFLYLAM ACGALAVSQRWLPRWCSCLYGVAASALGLFVFTHHCARRRDVRAS RACCPPAS PAAPHAPPRALPAAAEDGSPVFGEGPPSLKSSPSGSSGHPLALGPCKLTNLQLAQSQVCEAGAAAGGE GEPEPAGTRGNLAHRHPN-NV-HHGRR-AHKSRAKGH-RAGEACGKNRL-l-O jRGGAAGALELLSSESGSLHN SPTDSYLGSSRNSPGAGLQLEGEPMLTPSEGSDTSAAPLSEAGRAGQRRSASRDSLKGGGALEKESHR RSYPLNAASLNGAPKGGKYDDVTLMGAEVASGGCMKTGLWKSETTV
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 10B.
Table 10B. Comparison of the NOV10 protein sequences.
NOVlOa NOVIOb -MRGAPARLLLPLLP LLLLLAPEARGAPGCPLSIRSCKCSGERPKGLSGGVPGPARRRW NOVlOc NOVlOd NOVlOe NOVlOf NOVlOg NOVlOh NOVlOi NOV10J NOVlOk
NOVlOa
NOVlOb CSGGDLPEPPEPGLLPNGTVTLDLRNNIISTVQPGAFLGLGELKRLDLSNNRIGCLTSET
NOVlOc
NOVlOd
NOVlOe
NOVlOf
NOVlOg
NOVlOh
NOVlOi
NOVlOj
NOVlOk
NOVlOa NOVlOb FQGLPRLLRLNISGNIFSSLQPGVFDELPAL WDLGTEFLTCDCHLR LLP AQNRSLQ
NOVlOc
NOVlOd
NOVlOe
NOVlOf
NOVlOg
NOVlOh
NOVlOi
NOVlOj
NOVlOk
NOVlOa
NOVlOb LSEHTLCAYPSALHAHALGSLQEAQLCCEGALELHTHHLIPSLRQWFQGDRLPFQCSAS
NOVlOc
NOVlOd
NOVlOe
NOVlOf
NOVlOg
NOVlOh
NOVlOi
NOVlOj
NOVlOk
NOVlOa
NOVlOb YLGNDTRIR YHNRAPVEGDEQAGILLAESLIHDCTFITSELTLSHIGV ASGE ECTVS
NOVl Oc
NOVlOd
NOVlOe
NOVlOf
NOVlOg
NOVlOh
NOVlOi
NOVlOj
NOVlOk
NOVlOa
NOVl Ob JV-AQGNASKIOtEIVVLETSASYCPAERVA-NNRGDFR PRTLAGITAYQSCLQYPFTSVPLG
NOVlOc
NOVlOd
NOVlOe
NOVlOf
NOVlOg
NOVlOh
NOVlOi
NOVlOj
NOVlOk
NOVlOa
NOVlOb GGAPGT-RASRRCDRAGRWΞSGDYSHCLYTNDITRVLYTFVLMPINASNALTLAHQLRVYT
NOVlOc
NOVlOd
NOVlOe
NOVlOf
NOVlOg
NOVlOh NOVlOi NOVlOj NOVlOk
NOVlOa
NOVlOb -AEAASFSDM DVVYVAQMIQKFLGYVDQI-K-ELVEV-TVD-y[ASNL LVDEHLLWLAQREDKA
NOVlOc
NOVlOd
NOVlOe
NOVlOf
NOVlOg
NOVlOh
NOVlOi
NOVlOj
NOVlOk
NOVlOa
NOVlOb CSRIVGALERIGGAALSPHAQHISVNARNVALEAYLIKPHSYVGLTCTAFQRREGGVPGT
NOVlOc
NOVlOd
NOVlOe
NOVlOf
NOVlOg
NOVlOh
NOVlOi
NOVlOj
NOVlOk
NOVlOa
NOVlOb RPGSPGQNPPPEPEPPADQQLRFRCTTGRPNVSLSSFHIKNSVALASIQLPPSLFSSLPA
NOVlOc
NOVlOd ---TGSAPGCPLSIRSCKC
NOVlOe -MRGAPARLLLPLLP LLL
NOVlOf
NOVlOg
NOVlOh
NOVlOi
NOVlOj
NOVlOk
NOVlOa
NOVlOb ALAPPVPPDCTLQLLVFRNGRLFHSHSNTSRPGAAGPGKRRGVATPVIFAGTSGCGVGNL
NOVlOc
NOVlOd SGERAKGLSGGVPGPARRRWCSGGDLPEPPEPGLLPNGTVTLLLSNNKITGLRNGSFLG
NOVlOe LLAPEARGAPGCPLSIRSCKCSGERPKGLSGGVPGPARRRWCSGGDLPEPPEPGLLPNG
NOVlOf
NOVlOg
NOVlOh
NOVlOi
NOVlOj
NOVlOk
NOVlOa
NOVlOb TEPVAVSLRH AEGAEPVAA SQEGPGEAGG TSEGCQLRSSQPNVSALHCQHLGNVAV
NOVlOc NOVlOd LSLLE LDLRNNIISTVQPGAFLGLGELKRLDLSNNRIGCLTSETFQGLPRLLRLNISGN
NOVlOe TVTLGNRFSTAPCPQSGLAQSFRLCPEQYSNASGWVSSEAARFLTGHNWSASDAGRPACI
NOVlOf
NOVlOg
NOVlOh
NOVlOi
NOVlOj
NOVlOk
NOVlOa MRGAPARLLLPLLP LLLLLAPEARGAPGCPLSIRSCKCSGERPKGLSG
NOVlOb LMELSAFPREVGGAGAGLHPWYPCTALLLLCLFATIITYILNHSSIRVSRKG HMLLNL
NOVlOc
NOVlOd IFSSLQPGVFDELPALKWDLGTEFLTCDCHLR LLPWAQNRSLQLSEHTLCAYPSALHA
NOVlOe FPGPVS RQVPAYNAGQDQGSKYSFYGGKVKDEYLRRSPICRSAAALHTDTSARS SEFR
NOVlOf
NOVlOg
NOVlOh
NOVlOi
NOVlOj
NOVlOk
NOVlOa GVPGPARRRWCSGGDLPEPPEPGLLPNGTVTLGNRFSTAPCPQSGLAQSFRLCPEQYSN
NOVlOb CFHIA-MTSAVFAGGITLTNYQMVCQAVGITLHYSSLSTLL MGVKARVLH-KELTWRAPPP
NOVlOc
NOVlOd QALGSLQEAQLCCEGALELHTHHLIPSLRQWFQGDRLPFQCSASYLGNDTRIR YHDRA
NOVlOe LLSNNKITGLRNGSFLGLSLLEKLLMRAHFSDEDEKTACPSPAPRL RLHSKCTLSMAGN
NOVlOf
NOVlOg
NOVlOh
NOVlOi
NOVlOj
NOVlOk
NOVlOa ASG VSSEAARFLTGHNWSASDAGRPACIFPGPVS RQVPAYNAGQDQGSKYSFYGGKVK NOVlOb QEGDPALPTPSPMLRYILSIPALQLGRDSNAGVGNLPRFYLIAGGIPLIICGITAAVNIH NOVlOc TGSELKRL NOVlOd PVEGDEQAGILLAESLIHDCTFITSELTLSHIGV ASGΞ ECTVSMAQGNASKKVEIWL NOVlOe QKNQGGSSSQEAASGL PSRRLQRGEVEGLCTCLCTDLRNNIISTVQPGAFLGLGELKRL NOVlOf TGSELKRL NOVlOg RLPFQCSASYLGNDTRIR YHNRAPVEGD NOVlOh NOVlOi NOVlOj NOVlOk
NOVlOa DEYLRRSPICRSAAALHTDTSARS SEFRLLSNNKITGLRNGSFLGLSLLEKLLMRAHFS
NOVlOb NYRDHSPYCWLV RPSLGAFYIPVALILLITWIYFLCAGLRLRGPLAQNPKAGNSRASLE
NOVlOc DLSNl^IGCLTSETFQGLPRLLRLNISGNIFSSLQPGVFDELP-AL-K-VVDLGTEFLTCDCH
NOVlOd ETSASYCPAERVANNRGDFRWPRTLAGITAYQSCLQYPFTSVPLGGGAPGTRASRRCDRA
NOVlOe DLS---STNRIGCLTSETFQGLPRLLRLNISGNIFSSLQPGVFDELPALKVVDLGTEFLTCDCH
NOVlOf DLSNNRIGCLTSETFQGLPRLLRLNISGNIFSSLQPGVFDELPALKVVDLGTEFLTCDCH
NOVlOg ΞQAGILLAESLIHDCTFITRWPRTLAGITAYQSCLQYPFTSVPLGGGAPGTRASRRCDRA
NOVlOh f EKLLMRAHFS
NOVlOi RASRRCDRA
NOVlOj ELVEVMVDMP NOVlOk KAGNSRASLE
NOVlOa DEDEKTACPSPAPRLWRLHSKCTLSMAGNQKNQGGSSSQEAASGLMPSRRLQRGEVEGLC
NOVlOb AGEELRGSTRLRGSGPLLSDSGSLLATGSARVGTPGPPEDGDSLYSPGVQLGALVTTHFL
NOVl0c LR LLP AQNRSLQLSEHTLCAYPSALHAQALGSLQEAQLCCELE
NOVlOd GR EPGDYSHCLYTNDITRVLYTFVLMPINASNALTLAHQLRVYTAEAASFSD-MDWYV
NOVlOe LRWLLP AQNRSLQLSEHTLCAYPSALHAHALGSLQEAQLCCEGALELHTHHLIPSLRQV
NOVl0f LRWLLP AQNRSLQLSEHTLCAYPSALHAQALGSLQEAQLCCEGALELHTHHLIPSLRQV
NOVlOg GR EPGDYSHCLYTNDITRVLYTFVLMPINASNALTLAHQLRVYTAEAASFSDM DWYV
NOVlOh DEDEKTACPS
NOV10i GR EPGDYSH
NOVlOj SNLMLVDEH
NOVlOk AGEELRGSTRLR
NOVlOa TCLCTDLRNNIISTVQPGAFLGLGELKRLDLSNNRIGCLTSETFQGLPRLLRLNISGNIF
NOVlOb YLAMWACGALAVSQRWLPRWCSCLYGVAASALGLFVFTHHCARRRDVRAS RACCPPAS
NOVlOc
NOVlOd AQMIQKFLGYVDQI-i-ΕLVEVrWDMASNL LVDEHLLWLAQREDKACSRIVGALERIGGAA
NOVlOe VFQGDRLPFQCSASYLGNDTRIRWY-HNRAPVEGDEQAGILLAESLIHDCTFITSELTLSH
NOVl0f VFQGDRLPFQCSASYLGNDTRIR YHNRAPVEGDEQAGILLAESLIHDCTFITSELTLSH
NOVlOg AQMIQKFLGYVDQIKELVGV VD ASNLMLVDEHLL LAQREDKACSRIVGALERIGGAA
NOVlOh
NOVlOi
NOVlOj
NOVlOk
NOVlOa SSLQPGVFDELPALKWDLGTEFLTCDCHLR LLP AQNRSLQLSEHTLCAYPSALHAHA
NOVlOb PAAPHAPPRALPAAAEDGSPVFGEGPPSLKSSPSGSSGHPLALGPCKLTNLQLAQSQVCE
NOVlOc
NOVlOd LSPHAQHISVNARNVALEAYLIKPHSYVGLTCTAFQRREGGVPGTRPGSPGQNPPPEPEP
NOVlOe IGV ASGE ECTVS- AQGNASKKVEIWLETSASYCPAERVANNRGDFR PRTLAGITAY
NOVlOf IGVWASGE ECTVSiAQGNASKKVEIVVLETSASYCPAERVANNRGDFR PRTLAGITAY
NOVlOg LSPHAQHISVNARNVALEAYLIKPHSYVGLTCTAFQRREGGVPGTRPGSPGQNPPPEPEP
NOVlOh
NOVlOi
NOVlOj
NOVlOk
NOVlOa LGSLQEAQLCCEGALELHTHHLIPSLRQWFQGDRLPFQCSASYLG-NDTRIR YHNRAPV
NOVlOb AGAAAGGEGEPEPAGTRGNLAHRHPNNVHHGRRAHKSRAKGHRAGEACGKNRLKALRGGA
NOVlOc
NOVl0d PADQQLRFRCTTGRPNVSLSSFHIKNSVALASIQLPPSLFSSLPAALAPPVPPDCTLQLL
NOVlOe QSCLQYPFTSVPLGGGAPGTRASRRCDRAGRWEPGDYSHCLYTNDITRVLYTFVLMPINA
NOVl0f QSCLQYPFTSVPLGGGAPGTRASRRCDRAGRWEPGDYSHCLYTNDITRVLYTFVLMPINA
NOVlOg PADQQLRFRCTTGRPNVSLSSFHIKNSVALASIQLPPSLFSSLPAALAPPVPPDCTLQLL
NOVlOh
NOVlOi
NOVlOj
NOVlOk
NOVlOa EGDEQAGILLAESLIHDCTFITSELTLSHIGV ASGE ECTVSMAQGNASKKVEIVVLET
NOVlOb AGALELLSSESGSLHNSPTDSYLGSSRNSPGAGLQLEGEPMLTPSEGSDTSAAPLSEAGR
NOVlOc
NOVlOd VFRNGRLFHSHSNTSRPGAAGPGKRRGVATPVIFAGTSGCGVGNLTEPVAVSLRH AEGA
NOVlOe SN-ALTLAHQLRVYTAE- ASFSDMrøVVYVAQMIQIsTLGYVDQI-ϊsΕ^ NOVlOf SNALTLAHQLRVYTAEAASFSDMMDVVYVAQMIQKFLGYVDQIKELVΞVMVDiMASNLMLV
NOVlOg VFRNGRLFHSHSNASRPGAAGPGKRRGVATPVIFAGTSGCGVGNLTESVAVSLRH AEGA
NOVlOh
NOVlOi
NOVlOj
NOVlOk
NOVlOa SASYCPAERVANNRGDFR PRTLAGITAYQSCLQYPFTSVPLGGGAPGTRASRRCDRAGR NOVlOb AGQRRSASRDSLKGGGALEKESHRRSYPLNAASLNGAPKGGKYDDVTLMGAEVASGGCMK NOVlOc NOVlOd EPVAA SQEGPGEAGGWTSEGCQLRSSQPNVSALHCQHLGNVAVLMΞLSAFPREVGGAG NOVlOe DEHLL LAQREDKACSRIVGAIERIGGAALSPHAQHISVNARNVALEAYLIKPHSYVGLT NOVlOf DEHLL LAQREDKACSRIVGALERIGGAALSPHAQHISVNA-RNVALEAYLIKPHSYVGLT NOVlOg EPVAA SQEGPGEAGG TSEGCQLRSSQPNVSALHCQHLGNVAVLMELS NOVlOh NOVlOi NOVlOj NOVlOk
NOVlOa EPGDYSHCLYTNDITRVLYTFVLMPINASNALTLAHQLRVYTAEAASFSDM DWYVAQ
NOVlOb TGLWKSETTV
NOVlOc
NOVlOd AGLLEG
NOVlOe CTAFQRREGGVPGTRPGSPGQNPPPEPEPPADQQLRFRCTTGRPNVSLSSFHIKNSVALA
NOVlOf CTAFQRREGGVPGTRPGSPGQNPPPEPEPPADQQLRFRCTTGRPNVSLSSFHIKNSVALA
NOVlOg NOVlOh NOVlOi NOVlOj NOVlOk
NOVlOa MIQKFLGYVDQIKELVEVMVDMPSNLMLVDEHLL LAQREDKACSRIVGAIERIGGAALS
NOVlOb
NOVlOc
NOVlOd
NOVlOe SIQLPPSLFSSLPAALAPPVPPDCTLQLLVFRNGRLFHSHSNTSRPGAAGPGKRRGVATP
NOVlOf SIQLPPSLFSSLPAALAPPVPPDCTLQLLVFRNGRLFHSHSNTSRPGAAGPGKRRGVATP
NOVlOg
NOVlOh
NOVlOi
NOVlOj
NOVlOk
NOVlOa PHAQHISVNARNVALEAYLIKPHSYVGLTCTAFQRREGGVPGTRPGSPGQNPPPEPEPPA NOVlOb
NOVlOc
NOVlOd
NOVlOe VIFAGTSGCGVGNLTEPVAVSLRHWAEGAEPVAA WSQEGPGEAGG TSEGCQLRSSQPN
NOVlOf VIFAGTSGCGVGNLTEPVAVSLRH AEGAEPVAA SQEGPGEAGG TSEGCQLRSSQPN
NOVlOg
NOVlOh
NOVlOi
NOVlOj
NOVlOk NOVlOa DQQLRFRCTTGRPNVSLSSFHIKNSVALASIQLPPSLFSSLPAALAPPVPPDCTLQLLVF
NOVlOb
NOVlOc
NOVlOd
NOVlOe VSALHCQHLGNVAVLMELSAFPREVGGAGAGLHPWYPCTALLLLCLFATIITYILNHSS
NOV10f VSALHCQHLGNVAVLMELSLE
NOVlOg
NOVlOh
NOVlOi
NOVlOj
NOVlOk
NOVlOa RNGRLFHSHSNTSRPGAAGPGKRRGVATPVIFAGTSGCGVGNLTEPVAVSLRH AEGAEP
NOVlOb
NOVlOc
NOVlOd
NOVlOe IRVSRKGWHMLLNLCFHIAMTSAVFAGGITLTNYQ VCQAVGITLHYSSLSTLL MGVKA
NOVlOf
NOVlOg
NOVlOh
NOVlOi
NOVlOj
NOVlOk
NOVlOa VAA SQEGPGEAGG TSEGCQLRSSQPNVSALHCQHLGNVAVLMΞLSAFPREVGGAGAG NOVlOb
NOVlOc
NOVlOd
NOVlOe RVLHKELT RAPPPQEGDPALPTPSP LRYILSIPALQLGRDSNAGVGNLPRFYLIAGGI
NOVlOf
NOVlOg
NOVlOh
NOVlOi
NOVlOj
NOVlOk
NOVlOa LHPWYPCTALLLLCLFATIITYILNHSSIRVSRKGWHMLLNLCFHIAMTSAVFAGGITL NOVlOb
NOVlOc
NOVlOd
NOVlOe PLIICGITAAVNIHNYRDHSPYC LV RPSLGAFYIPVALILLIT IYFLCAGLRLRGPL
NOVlOf
NOVlOg
NOVlOh
NOVlOi
NOVlOj
NOVlOk
NOVlOa TNYQMVCQAVGITLHYSSLSTLL MGVK-ARVLHKELT RAPPPQEGDPALPTPSPMLRYI NOVlOb
NOVlOc
NOVlOd
NOVlOe AQNPKAGNSRASLEAGEELRGSTRLRGSGPLLSDSGSLLATGSARVGTPGPPEDGDSLYS
NOVlOf
NOVlOg NOVlOh NOVlOi NOVlOj NOVlOk
NOVlOa LSIPALQLGRDSNAGVGNLPRFYLIAGGIPLIICGITAAVNIHNYRDHSPYC LV RPSL
NOVlOb
NOVlOc
NOVlOd
NOVl0e PGVQLGALVTTHFLYLAMWACGALAVSQRWLPRWCSCLYGVAASALGLFVFTHHCARRR
NOVlOf
NOVlOg
NOVlOh
NOVlOi
NOVlOj
NOVlOk
NOVlOa GAFYIPVALILLITWIYFLCAGLRLRGPLAQNPKAGNSRASLEAGEELRGSTRLRGSGPL
NOVlOb
NOVlOc
NOVlOd
NOVlOe DVRASWRACCPPASPAAPHAPPRALPAAAEDGSPVFGEGPPSLKSSPSGSSGHPLALGPC
NOVlOf
NOVl0g
NOVlOh
NOVlOi
NOVlOj
NOVlOk
NOVlOa LSDSGSLLATGSARVGTPGPPEDGDSLYSPGVQLGALVTTHFLYLAMWACGALAVSQRWL
NOVlOb
NOVlOc
NOVlOd
NOVlOe KliTNLQLAQSQVCEAGAAAGGEGEPEPAGTRGNLAHRHPNNVHHGRRAHKSRAKGHRAGE
NOVlOf
NOVlOg
NOVlOh
NOVlOi
NOVlOj
NOVlOk
NOVlOa PRWCSCLYGVAASALGLFVFTHHCARRRDVRASWRACCPPASPAAPHAPPRALPAAAED NOVlOb NOVlOc NOVlOd NOVlOe ACGKNRLKALRGGAAGALELLSSESGSLHNSPTDSYLGSSRNSPGAGLQLEGEPMLTPSE NOVlOf NOVlOg NOVlOh NOVlOi NOVlOj NOVlOk
NOVlOa GSPVFGEGPPSLKSSPSGSSGHPLALGPCKLTNLQLAQSQVCEAGAAAGGEGEPEPAGTR NOVlOb NOVlOj (SEQ ID NO : 276) NOVlOk (SEQ ID NO : 278 )
Further analysis of the NOVlOa protein yielded the following properties shown in Table IOC.
Table IOC. Protein Sequence Properties NOVlOa
SignalP analysis: Cleavage site between residues 27 and 28
PSORT II analysis:
PSG: a new signal peptide prediction method
N-region : length 7 ; pos . chg 2 ; neg. chg 0 H-region : length 15 ; peak value 9 .66 PSG score : 5 .26
GvH: von Heijne ' s method for signal seq . recognition GvH score (threshold: -2 .1) : 5 .33 possible cleavage site : between 26 and 27
>>> Seems to have a cleavable signal peptide (1 to 26)
ALOM : Klein et al ' s method for TM region allocation Init position for calculation : 27
Tentative number of TMS (s) for the threshold 0 .5 : 5
INTEGRAL Likelihood = -7. .91 Transmembrane 958 - 974
INTEGRAL Likelihood = -1. .22 Transmembrane 988 -1004
INTEGRAL Likelihood = -6, .26 Transmembrane 1093 -1109
INTEGRAL Likelihood = -8. .17 Transmembrane 1136 -1152
INTEGRAL Likelihood = -3. .50 Transmembrane 1252 -1268
PERIPHERAL Likelihood = 1. .11
ALOM score: -8.17 (ntimber of 5)
MTOP : Prediction of membrane topology (Hartmann et al . ) Center position for calculation: 13 Charge difference: -2.0 C ( 1.0) - N( 3.0) N >= C: N-terminal side will be inside
>>> membrane topology: type 3a
MITDISC: discrimination of mitochondrial targeting seq R content: 2 Hyd Moment (75): 12.41 Hyd Moment(95): 9.21 G content: 1 D/E content: 1 S/T content: 0 Score: -2.41
Gavel: prediction of cleavage sites for mitochondrial preseq R-2 motif at 68 RRV|VC
NUCDISC: discrimination of nuclear localization signals pat : none pat7: PGPARRR (3) at 52 pat7: PARRRW (5) at 54 pat7: PGKRRGV (5) at 849 bipartite: none content of basic residues: 9.1% NLS Score : 0 .65
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals :
XXRR-like motif in the N-terminus: RGAP none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif: none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif: none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail: none
Dileucine motif in the tail: none checking 63 PROSITE DNA binding motifs : none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: nuclear Reliability: 55.5
COIL: Lupas ' s algorithm to detect coiled-coil regions total: 0 residues
Final Results (k = 9/23) :
43.5 %: endoplasmic reticulum
34.8 %: nuclear
13 .0 % : mitochondrial
4 .3 % : cytoplasmic
4 .3 % : peroxisomal
>> prediction for CG50925-01 is end (k=23 ) A search of the NOVlOa protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 10D.
In a BLAST search of public sequence databases, the NOVlOa protem was found to have homology to the proteins shown in the BLASTP data in Table 10E.
PFam analysis predicts that the NOVlOa protein contains the domains shown in the Table 10F.
Example 11.
The NOVl 1 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 11 A.
GTGAATGAGGGGGGCAATGTGAACCTGCTTTGCCTGGCCGTGGGGCGGCCAGAGCCCACGGTCACCTG GAGACAGCTCCGAGACGGCTTCACCTCGGAGGGAGAGATCCTGGAGATCTCTGACATCCAGCGGGGCC AGGCCGGGGAGTATGAGTGCGTGACTCACAACGGGGTTAACTCGGCGCCCGACAGCCGCCGCGTGCTG GTCACAGTCAACTATCCTCCGACCATCACGGACGTGACCAGCGCCCGCACCGCGCTGGGCCGGGCCGC CCTCCTGCGCTGCGAAGCCATGGCGGTTCCCCCCGCGGATTTCCAGTGGTATAAGGATGACAGACTGC TGAGCAGCGGCACGGCCGAAGGCCTGAAGGTGCAGATGGAGCGCACCCGCTCGATGCTTCTCTTTGCC AACATGAGCGCCCGGCATTACGGCAACTATACGTGTTGCGCCGCCAACCGACTGGGAGCGTCCAGCGC CTCCATGCGGCTCCTGTGCCCAGGATCCCTGGAGAACTCAGCCCCGAGGCCCCCAGGGCTCCTGGCCC TCCTCTCCGCCCTGGGCTGGCTGTGGTGGAGAATGTAGGCGCAACCCAGTGGAGCTCGCCTCCCCCTG CAGGGGGCCTCAGGCCAAGAGTGAGAGAAAAGGGGGAGCAAGAGCCCTGGGTCTCGTGGGGGCAGAAG
GGCTCTCGGCCACCAAGGAAGAAGAGAAGAGGAGAAAGAGGAGGAGGCAGAGGAAGAAAGATCTTTAG
AGAACCCATCACTGTGAGGGATAACGCAAAATTATGCATCTTTCTAC
NOVl lr, SNP 13376340 of SEQ ID NO: 316 336 aa MW at 36780.5kD
CG51027-06, Protein Sequence SNP Pos: 281 SNP Change: Val to Met
MPPPAPGARLRLLAAAALAGLAVISRGLLSQSLEFNSPADNYTVCEGDNATLSCFIDEHVTRVAWLNR SNILYAGNDRWTSDPRVRLLINTPEEFSILITEVGLGDEGLYTCSFQTRHQPYTTQVYLIVHVPARIV NISSPVMVNEGGNVNLLCLAVGRPEPTVTWRQLRDGFTSEGEILEISDIQRGQAGEYECVTHNGVNSA PDSRRVLVTVNYPPTITDVTSARTALGRAALLRCEAMAVPPADFQWYKDDRLLSSGTAEGLKVQMERT RSMLLFANMSARHYGNYTCCAANRLGASSASMRLLCPGSLENSAPRPPGLLALLSALGWLWWRM
NOVl Is, SNP13376341 of SEQ ID NO: 317 1271 bp CG51027-06, DNA Sequence ORF Start: ATG at 48 ORF Stop: TAG at 1056
SNP Pos: 941 SNP Change: A to G
GCGCAGTGTGCTGGAATTCGCCCTTCCTCCGTGCCGCCTCTGCCGCGATGCCCCCCCCTGCGCCCGG
G
GCCCGGCTCCGGCTTCTCGCCGCCGCCGCCCTGGCCGGCTTGGCCGTCATCAGCCGAGGGCTGCTCT
C
CCAGAGCCTGGAGTTCAACTCTCCTGCCGACAACTACACAGTGTGTGAAGGTGACAACGCCACCCTC
A
GCTGCTTCATCGACGAGCACGTGACCCGCGTGGCCTGGCTGAACCGCTCCAACATCCTGTATGCCGG
C
AATGACCGCTGGACCAGCGACCCGCGGGTGCGGCTGCTCATCAACACCCCCGAGGAGTTCTCCATCC
T
CATCACCGAGGTGGGGCTCGGCGACGAGGGCCTCTACACCTGCTCCTTCCAGACCCGCCACCAGCCG
T
ACACCACTCAGGTCTACCTCATTGTCCACGTCCCTGCCCGCATTGTGAACATCTCGTCGCCTGTGAT
G
GTGAATGAGGGGGGCAATGTGAACCTGCTTTGCCTGGCCGTGGGGCGGCCAGAGCCCACGGTCACCT
G
GAGACAGCTCCGAGACGGCTTCACCTCGGAGGGAGAGATCCTGGAGATCTCTGACATCCAGCGGGGC
C
AGGCCGGGGAGTATGAGTGCGTGACTCACAACGGGGTTAACTCGGCGCCCGACAGCCGCCGCGTGCT
G
GTCACAGTCAACTATCCTCCGACCATCACGGACGTGACCAGCGCCCGCACCGCGCTGGGCCGGGCCG
C
CCTCCTGCGCTGCGAAGCCATGGCGGTTCCCCCCGCGGATTTCCAGTGGTATAAGGATGACAGACTG
C
TGAGCAGCGGCACGGCCGAAGGCCTGAAGGTGCAGATGGAGCGCACCCGCTCGATGCTTCTCTTTGC
C
AACGTGAGCGCCCGGCATTACGGCAACTATACGTGTTGCGCCGCCAACCGACTGGGGGCGTCCAGCG
C
CTCCATGCGGCTCCTGTGCCCAGGATCCCTGGAGAACTCAGCCCCGAGGCCCCCAGGGCTCCTGGCC
C
TCCTCTCCGCCCTGGGCTGGCTGTGGTGGAGAATGTAGGCGCAACCCAGTGGAGCTCGCCTCCCCCT
G
CAGGGGGCCTCAGGCCAAGAGTGAGAGAAAAGGGGGAGCAAGAGCCCTGGGTCTCGTGGGGGCAGAA
G GGCTCTCGGCCACCAAGGAAGAAGAGAAGAGGAGAAAGAGGAGGAGGCAGAGGAAGAAAGATCTTTA AGAACCCATCACTGTGAGGGATAACGCAAAATTATGCATCTTTCTAC
NOVl Is, SNP13376341 of SEQ ID NO: 318 336 aa MW at 36748.4kD CG51027-06, Protein Sequence SNP Pos: 298 SNP Change: Gly to Gly
MPPPAPGARLRLLAAAALAGLAVISRGLLSQSLEFNSPADNYTVCEGDNATLSCFIDEHVTRVAWLNR SNILYAGNDRWTSDPRVRLLINTPEEFSILITEVGLGDEGLYTCSFQTRHQPYTTQVYLIVHVPARIV NISSPVMVNEGGNVNLLCLAVGRPEPTVTWRQLRDGFTSEGEILEISDIQRGQAGEYECVTHNGVNSA PDSRRVLVTVNYPPTITDVTSARTALGRAALLRCEAMAVPPADFQWYKDDRLLSSGTAEGLKVQMERT RSMLLFANVSARHYGNYTCCAANRLGASSASMRLLCPGSLENSAPRPPGLLALLSALGWLWWRM
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 1 IB.
Table 11B. Comparison of the NOV11 protein sequences.
NOVlla MPPPAPGARLRLLAAAALAGLAVISRGLLSQSLEFNSPADNYTVCEGDNATLSCF
NOVllb TKLPTMPPPAPGARLRLLAAAALAGLAVISRGLLSQSLEFNSPADNYTVCEGDNATLSCF
NOVllc TKLLAGLAVISRGLLSQSLEFNSPADNYTVCEGDNATLSCF
NOVlld TKLGDNATLSCF
NOVlle TKLLLSQSLEFNSPADNYTVCEGDNATLSCF
NOVllf LAGLAVISRGLLSQSLEFNSPADNYTVCEGDNATLSCF
NOVllg TSRLAGLAVISRGLLSQSLEFNSPADNYTVCEGDNATLSCF
NOVllh LAGLAVISRGLLSQSLEFNSPADNYTVCΞGDNATLSCF
NOVlli SQSLEFNSPADNYTVCEGDNATLSCF
NOV11j LAGLAVISRGLLSQSLEFNSPADNYTVCEGDNATLSCF
NOVllk LAVISRGLLSQSLEFNSPADNYTVCEGDNATLSCF
NOVlli MPPAAPGARLRLLAAAALAGLAVISRGLLSQRLEFNSPADNYTVCEGDNATLSCF
NOVllm LLSQSLEFNSPADNYTVCEGDNATLSCF
NOVlln MPPPAPGARLRLLAAAALAGLAVISRGLLSQSLEFNSPADNYTVCEGDNATLSCF
NOVllo MPPPAPGARLRLLAAAALAGLAVISRGLLSQSLEFNSPADNYTVCEGDNATLSCF
NOVllp LAGLAVISRGLLSQSLEFNSPADNYTVCEGDNATLSCF
NOVllq MPPPAPGARLRLLAAAALAGLAVISRGLLSQSLEFNSPADNYTVCEGDNATLSCF
NOVlla IDEHVTRVAWLNRSNILYAGNDRWTSDPRVRLLINTPEEFSILITEVGLGDEGLYTCSFQ
NOVllb IDEHVTRVAWLNRSNILYAGNDRWTSDPRVRLLINTPEEFSILITEVGLGDEGLYTCSFQ
NOVllc IDEHVTRVAWLNRSNILYAGNDRWTSDPRVRLLINTPEEFSILITEVGLGDEGLYTCSFQ
NOVlld IDEHVTRVAWLNRSNILYAGNDRWTSDPRVRLLINTPEEFSILITEVGLGDEGLYTCSFQ
NOVlle IDEHVTRVAWLNRSNILYAGNDRWTSDPRVRLLINTPEEFSILITEVGLGDEGLYTCSFQ
NOVllf IDEHVTRVAWLNRSNILYAGNDRWTSDPRVRLLINTPEEFSILITEVGLGDEGLYTCSFQ
NOVllg IDEHVTRVAWLNRSNILYAGNDRWTSDPRVRLLINTPΞEFSILITEVGLGDEGLYTCSFQ
NOVllh IDΞHVTRVAWLNRSNILYAGNDRWTSDPRVRLLINTPEEFSILITΞVGLGDEGLYTCSFQ
NOVlli IDEHVTRVAWLNRSNILYAGNDRWTSDPRVRLLINTPEEFSILITEVGLGDEGLYTCSFQ
NOVl1j IDEHVTRVAWLNRSNILYAGNDRWTSDPRVWLLINTPEEFSILITEVGLGDEGLYTCSFQ
NOVllk IDEHVTRVAWLNRSNILYAGNDRWTSDPRVRLLINTPEEFSILITEVGLGDEGLYTCSFQ
NOVlli MDEHVTRVAWLNRSNILYAGNDRRTRDPRVRLLINTPEEFSILVTEVGLGDEGLYTCSFQ
NOVllm IDEHVTRVAWLNRSNILYAGNDRWTSDPRVRLLINTPEEFSILITEVGLGDEGLYTCSFQ
NOVlln IDEHVTRVAWLNRSNILYAGNDRWTSDPRVRLLINTPEEFSILITEVGLGDEGLYTCSFQ
NOVllo IDEHVTRVAWLNRSNILYAGNDRWTSDPRVRLLINTPEEFSILITEVGLGDEGLYTCSFQ
NOVllp IDEHVTRVAWLNRSNILYAGNDRWTSDPRVRLLINTPEEFSILITEVGLGDEGLYTCSFQ
NOVllq IDEHVTRVAWLNRSNILYAGNDRWTSDPRVRLLINTPEΞFSILITEVGLGDEGLYTCSFQ
NOVlla TRHQPYTTQVYLIVHVPARIVNISSPVMVNEGG.NVNLLCLAVGRPEPTVTWRQLRDGFTS
NOVllb TRHQPYTTQVYLIVHVPARIVNISSPVTVNEGGNVNLLCLAVGRPEPTVTWRQLRDGFTS
NOVllc TRHQPYTTQVYLIVHVPARIVNISSPVTVNEGGNVNLLCLAVGRPEPTVTWRQLRDGFTS
NOVlId TRHQPYTTQVYLIVHVPARIVNISSPVTVNEGGNVNLLCLAVGRPEPTVTWRQLRDGFTS
NOVlle TRHQPYTTQVYLIVHVPARIVNISSPVTVNEGGNVNLLCLAVGRPEPTVTWRQLRDGFTS
NOVllf TRHQPYTTQVYLIVHVPARIVNISSPVTVNEGGNVNLLCLAVGRPEPTVTWRQLRDGFTS NOVllg T-RHQPYTTQVYLIVHVPARIVNISSPVTVNEGGNVNLLCLAVGRPΞPTVTWRQLRDGFTS
NOVllh TRHQPYTTQVYLIVHVPARIVNISSPVTVNEGGNVNLLCLAVGRPEPTVTWRQLRDGFTS
NOVlli TRHQPYTTQVYLIVHVPARIVNISSPVTVNEGGNVNLLCLAVGRPEPTVTWRQLRDGFTS
NOVllj TRHQPYTTQVYLIVHVPARIVNISSPVMVNEGGNVNLLCLAVGRPEPTVTWRQLRDGFTS
NOVllk TRHQPYTTQVYLIVHVPARIVNISSPVTVNEGGNVNLLCLAVGRPEPTVTWRQLRDGFTS
NOVlli TRHQPYTTQVΥLIVHVPARVVNISSPVMVNEGGNVNLLCLAVGRPEPTVTWRQLRDGFTS
NOVllm TRHQPYTTQVYLIVHVPARIVNISSPVTVNEGGNVNLLCLAVGRPEPTVTWRQLRDGFTS
NOVlIn TRHQPYTTQVYLIVHVPARIVNISSPVTVNEGGNVNLLCLAVGRPEPTVTWRQLRDGFTS
NOVllo TRHQPYTTQVYLIVHVPARIVNISSPVTVNEGGNVNLLCLAVGRPEPTVTWRQLRDGFTS
NOVllp TRHQPYTTQVYLIVHVPARIVNISSPVTVNEGGNVNLLCLAVGRPEPTVTWRQLRDGFTS
NOVllq TRHQPYTTQVYLIVHVPARIVNISSPVTVNEGGNVNLLCLAVGRPEPTVTWRQLRDGFTS
NOVlla EGEILEISDIQRGQAGEYECVTHNGVNSAPDSRRVLVTVNYPPTITDVTSARTALGRAAL
NOVllb EGEILEISDIQRGQAGEYECVTHNGVNSAPDSRRVLVTVNYPPTITDVTSARTALGRAAL
NOVllc EGEILEISDIQRGQAGEYECVT-HNGVNSAPDSRRVLVTVNYPPTITDVTSARTALGRAAL
NOVlld EGEILEISDIQRGQAGEYECVTHNGVNSAPDSRRVLVTVNYPPTITDVTSARTALGRAAL
NOVlle EGEILEISDIQRGQAGEYECVTHNGVNSAPDSRRVLVTVNYPPTITDVTSARTALGRAAL
NOVllf EGEILEISDIQRGQAGEYECVTH1-.GVNSAPDSRRVLVTVNYPPTITDVTSARTALGRAAL
NOVllg EGEILEISDIQRGQAGEYECVT--TOGVNSAPDSRRVLVTVNYPPTITDVTSARTALGRAAL
NOVllh EGEILEISDIQRGQAGEYECVTHNGVNSAPDSRRVLVTVNYPPTITDVTSARTALGRTAL
NOVlli EGEILEISDIQRGQAGEYECVTHNGVNSAPDSRRVLVTVNYPPTITDVTSARTALGRAAL
NOVllj EGEILEISDIQRGQAGEYECVTHNGVNSAPDSRRVLVTVNYPPTITDVTSARTALGRAAL
NOVllk EGEILEISDIQRGQAGEYECVTHNGVNSAPDSRRVLVTVNYPPTITDVTSARTALGRAAL
NOVlli EGEILEISDILRGQAGEYECVTHNGVNSAPDSRRVLVTVNYPPTITDVTSARTALGPGRL
NOVllm EGEILEISDIQRGQAGEYECVTHNGVNSAPDSRRVLVTVNYPPTITDVTSARTALGRAAL
NOVlln EGEILEISDIQRGQAGEYECVTHNGVNSAPDSRRVLVTVNYPPTITDVTSARTALGRAAL
NOVllo EGEILEISDIQRGQAGEYECVTHNGVNSAPDSRRVLVTVNYPPTITDVTSARTALGRAAL
NOVllp EGEILEISDIQRGQAGEYECVT-IOTGVNSAPDSRRVLVTVNYPPTITDVTSARTALGRAAL
NOVllq EGEILΞISDIQRGQAGEYECVTHNGVNSAPDSRRVLVTVNYPPTITDVTSARTALGRAAL
NOVlla LRCEAMAVPPADFQWYKDDRLLSSGTAEGLKVQMERTRSMLLFANVSARHYGNYTCCAAN
NOVllb LRCEAMAVPPADFQWYKDDRLLSSGTAEGLKVQTERTRSMLLFANVSARHYGNYTCRAAN
NOVllc LRCEA-VO^VPPADFQWYKDDRLLSSGTAEGLKVQTΞRTRSMLLFANVSARHYGNYTCRAAN
NOVlld LRCEAMAVPPADFQWYKDDRLLSSGTAEGLKVQTERTRSMLLF-ANVSARHYGNYTCRALE
NOVlle LRCEAMAVPPADFQWYKDDRLLSSGTAEGLKVQTERTRSMLLFANVSARHYGNYTCRAAN
NOVllf LRCE-AMAVPPADFQWYKDDRLLSSGTAEGLKVQTERTRSMLLFANVSARHYGNYTCRAAN
NOVllg LRCE-AMAVPPADFQWYKDDRLLSSGTAEGLKVQTERTRSMLLFANVSARHYGNYTCRAAN
NOVllh LRCEAMAVPPADFQWYKDDRLLSSGTAEGLKVQTERTRSMLLFANVSARHYGNYTCRAAN
NOVlli LRCEA-^VPPADFQWYKDDRLLSSGTAEGLKVQTERTRSMLLFANVSA-RHYGNYTCRAAN
NOVllj LRCEAMAVPPADFQWY--- DRLLSSGTAEGLKVQMERTRSMLLFANVSARHYGNYTCRAAN
NOVllk LRCE-AMAVPPADFQWYKDDRLLSSGTAEGLiαtQTERTRSMLLFANVSARHYGNYTCRAAN
NOVl11 LRCEAMAVSPADFQWYKDDRLLSSGTAEGLKVQMERTRSMLLFANMSARHYGNYTCCAAN
NOVllm LRCEAMAVPPADFQWY DDRLLSSGTAEGLKVQTERTRSMLLFANVSARHYGNYTCRAAN
NOVlIn LRCE-AMAVPPADFQWYKDDRLLSSGTAEGLKVQTERTRSMLLFANVSARHYGNYTCRAAN
NOVllo LRCEAMAVPPADFQWYKDDRLLSSGTAEGLKVQTERTRSMLLFANVSARHYGNYTCRAAN
NOVllp LRCEAMAVPPADFQWYKDDRLLSSGTAEGLKVQTERTRSMLLFANVSARHYGNYTCRAAN
NOVllq LRCEAMAVPPADFQWYKDDRLLSSGTAEGLKVQTERTRSMLLFANVSARHYGNYTCRAAN
NOVlla RLGASSASMRLLCPGSLENSAPRPPGLLALLSALGWLWWRM
NOVllb RLGASSASMRLLRPGSLENSAPRPPGLLALLSALGWLWWRMLEG
NOVllc RLGASSASMRLLRPGSLENSAPRPPGLLALLSALGWLWWRMLEG
NOVlld G
NOVlle RLGASSASMRLLRPGSLENSAPRPPGLLALLSALGWLWWRMLEG
NOVllf RLGASSASMRLLRPGSLENSAPRPPGLLALLSALGWLWWRM
NOVllg RLGASSASMRLLRPGSLENSAPRPPGLLALLSALGWLWWRMVDG NOVllh RLGASSASMRLLRPGSLENSAPRPPGLLALLSALGWLWWRM
NOVlli RLGASSASMRLLRPGSLENSAPRPPGLLALLSALGWLWWRM
NOVllj RLGASSASMRLLRPGSLENSAPRPPGLLALLSALGWLWWRM
NOVllk RLGASSASMRLLRPGSLENSAPRPPGLLALLSAL
NOVlli RLGASSASMRLLCPGSLENSAPRPPGPLALLSALGWLWWRM
NOVllm RLGASSASMRLLRPGSLENSAPRPPGLLALLSALGWLWWRM
NOVlln RLGASSASMRLLRPGSLENSAPRPPGLLALLSALGWLWWRM
NOVllo RLGASSASMRLLRPGSLENSAPRPPGLLALLSALGWLWWRM
NOVllp RLGASSASMRLLRPGSLENSAPRPPGLLALLSALGWLWWRMV--
NOVllq RLGASSASMRLLRPGSLENSAPRPPGLLALLSALGWLWWRM
NOVlla (SEQ ID NO- 282)
NOVllb (SEQ ID NO- 284)
NOVllc (SEQ ID NO 286)
NOVlld (SEQ ID NO 288)
NOVlle (SEQ ID NO 290)
NOVllf (SEQ ID NO 292)
NOVllg (SEQ ID NO 294)
NOVllh (SEQ ID NO 296)
NOVlli (SEQ ID NO 298)
NOVllj (SEQ ID NO 300)
NOVllk (SEQ ID NO 302)
NOVlli (SEQ ID NO : 304)
NOVllm (SEQ ID NO 306)
NOVlln (SEQ ID NO : 308)
NOVllo (SEQ ID NO : 310)
NOVllp (SEQ ID NO : 312)
NOVllq (SEQ ID NO : 314)
Further analysis of the NOVl la protein yielded the following properties shown in Table HC.
Table 11C. Protein Sequence Properties NOVlla
SignalP analysis: Cleavage site between residues 28 and 29
PSORT II analysis:
PSG: a new signal peptide prediction method
N-region: length 11; pos.chg 2; neg.chg 0 H-region: length 14; peak value 8.95 PSG score: 4.55
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1) : -2.40 possible cleavage site: between 22 and 23
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al ' s method for TM region allocation Init position for calculation: 1 Tentative number of TMS(s) for the threshold 0. Number of TMS(s) for threshold 0.5: 1 INTEGRAL Likelihood = -2.92 Transmembrane 12 28
PERIPHERAL Likelihood = 2.49 (at 128) ALOM score: -2.92 (number of TMSs : 1) MTOP: Prediction of membrane topology (Hartmann et al . ) Center position for calculation: 19 Charge difference: -4.0 C(-1.0) - N( 3.0) N >= C: N-terminal side will be inside
>>> membrane topology: type 2 (cytoplasmic tail 1 to 12)
MITDISC: discrimination of mitochondrial targeting seq R content: 3 Hyd Moment(75): 1.42 Hyd Moment (95): 2.81 G content: 3 D/E content: 1 S/T content: 3 Score: -3.82
Gavel: prediction of cleavage sites for mitochondrial preseq R-2 motif at 36 SRG[LL
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite: none content of basic residues: 8.6% NLS Score: -0.47
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals: none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal : none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif : type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail : none
Dileucine motif in the tail : none checking 63 PROSITE DNA binding motifs : none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none NNCN: Reinhardt ' s method for Cytoplasmic/Nuclear discrimination
Prediction: cytoplasmic
Reliability: 76.7
COIL: Lupas ' s algorithm to detect coiled-coil regions total: 0 residues
Final Results (k = 9/23) -.
34.8 %: cytoplasmic 30.4 %: mitochondrial 13.0 %: Golgi
8.7 %: endoplasmic reticulum
4.3 %: extracellular, including cell wall
4.3 %: nuclear
4.3 %: vesicles of secretory system
>> prediction for CG51027-06 is cyt (k=23)
A search of the NOVl la protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 1 ID.
In a BLAST search of public sequence databases, the NOVlla protein was found to have homology to the proteins shown in the BLASTP data in Table 1 IE.
PFam analysis predicts that the NOVl la protein contains the domains shown in the Table 11F.
Example 12.
The NOV12 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 12 A.
CAATGGACCAAGGACGGGCTGGCCCTGGGCATGGGCCAGGGCCTCAAAGCCTGGCCACGGTACCGGGT
TGTGGGCTCCGCAGACGCTGGGCAGTACAACCTGGAGATCACAGATGCTGAGCTCTCTGACGACGCCT CTTACGAGTGCCAGGCCACGGAGGCCGCCCTGCGCTCTCGGCGGGCCAAACTCACCGTGCTCATCCCC CCAGAGGACACCAGGATTGACGGAGGCCCTGTGATTCTACTGCAGGCAGGCACCCCCCACAACCTCAC jATGCCGGGCCTTCAATGCGAAGCCTGCTGCCACCATCATCTGGTTCCGGGACGGGACGCAGCAGGAGG GCGCTGTGGCCAGCACGGAATTGCTGAAGGATGGGAAGAGGGAGACCACCGTGAGCCAACTGCTTATT AACCCCACGGACCTGGACATAGGGCGTGTCTTCACTTGCCGAAGCATGAACGAAGCCATCCCTAGTGG CAAGGAGACTTCCATCGAGCTGGATGTGCACCACCCTCCTACAGTGACCCTGTCCATTGAGCCACAGA CGGTGCAGGAGGGTGAGCGTGTTGTCTTTACCTGCCAGGCCACAGCCAACCCGGAGATCTTGGACTAC AGGTGGGCCAAAGGGGGTTTCTTGATTGAAGACGCCCACGAGAGTCGCTATGAGACAAATGTGGATTA TTCCTTTTTCACGGAGCCTGTGTCTTGTGAGGTTCACAACAAAGTGGGAAGCACCAATGTCAGCACTT TAGTAAATGTCCACTTTGCTCCCCGGATTGTAGTTGACCCCAAACCCACAA.CCACAGACATTGGCTCT GATGTGACCCTTACCTGTGTCTGGGTTGGGAATCCCCCCCTCACTCTCACCTGGACCAAAAAGGACTC AAATATGGTCCTGAGTAACAGCAACCAGCTGCTGCTGAAGTCGGTGACTCAGGCAGACGCTGGCACCT ACACCTGCCGGGCCATCGTGCCTCGAATCGGAGTGGCTGAGCGGGAGGTGCCGCTCTATGTGAACGGG CCCCCCATCATCTCCAGTGAGGCAGTGCAGTATGCTGTGAGGGGTGACGGTGGCAAGGTGGAGTGTTT CATTGGGAGCACACCACCCCCAGACCGCATAGCATGGGCCTGGAAGGAGAACTTCTTGGAGGTGGGGA CCCTGGAACGCTATACAGTGGAGAGGACCAACTCAGGCAGTGGGGTGCTATCCACGCTCACCATCAAC AATGTCATGGAGGCCGACTTTCAGACTCACTACAACTGCACCGCCTGGAACAGCTTCGGGCCAGGCAC AGCCATCATCCAGCTGGAAGAGCGAGAGGTGTTACCTGTGGGCATCATAGCTGGGGCCACCATCGGCG CGAGCATCCTGCTCATCTTCTTCTTCATCGCCTTGGTATTCTTCCTCTACCGGCGCCGCAAAGGCAGT CGCAAAGACGTGACCCTGAGGAAGCTGGATATCAAGGTGGAGACAGTGAACCGAGAGCCACTTACGAT GCATTCTGACCGGGAGGATGACACCGCCAGCGTCTCCACAGCAACCCGGGTCATGAAGGCCATCTACT CGTCGTTTATGGATGATGTGGATCTGAAGCAGGACCTGCGCTGCGACACCATCGACACCCGGGAGGAG TATGAGATGAAGGACCCCACCAATGGCTACTACAACGTGCGTGCCCATGAAGACCGCCCGTCTTCCAG GGCAGTGCTCTATGCTGACTACCGTGCCCCTGGCCCTGCCCGCTTCGACGGCCGCCCCTCATCCCGTC TCTCCCACTCCAGCGGCTATGCCCAGCTCAACACCTATAGCCGGGGCCCTGCCTCTGACTATGGCCCT GAGCCCACACCCCCTGGCCCTGCTGCCCCAGCTGGCACTGACACAACCAGCCAGCTGTCCTACGAGAA CTATGAGAAGTTCAACTCCCATCCCTTCCCTGGGGCAGCTGGGTACCCCACCTACCGACTGGGCTACC CCCAGGCCCCACCCTCTGGCCTGGAGCGGACCCCATATGAGGCGTATGACCCCATTGGCAAGTACGCC ACAGCCACTCGATTCTCCTACACCTCCCAGCACTCGGACTACGGCCAGCGATTCCAGCAGCGCATGCA GACTCACGTGTAGGGGCCAG
NOV12s, SNP13379746 of SEQ ID NO: 356 696 aa MW at 76975.3kD CG51373-08, Protein Sequence SNP Pos: 189 SNP Change: Pro to Pro
MGQGLKA PRYRWGSADAGQYN EITDAELSDDASYECQATEAALRSRRAK TVLIPPEDTRIDGGP VI LQAGTPHNLTCRAFNAKPAATIIWFRDGTQQEGAVASTEL KDGKRETTVSQ INPTDLDIGRV FTCRSMNEAIPSG ETSIELDVHHPPTVTLSIEPQTVQEGERWFTCQATANPEILDYRWAKGGFLIE DAHESRYΞTNVDYS FFTEPVS CEVHNKVGSTNVSTLVNVHFAPRI WDPKPTTTDIGSDVTLTCVWVG NPPLTLTWTKKDS---STMVLSNSNQLLLKSVTQA-DAGTYTCRAIVPRIGVAEREVPLYVNGPPIISSEAVQ YAVRGDGGKVECFIGSTPPPDRIA A -^NFLEVGTLERYTVER--ΗSGSGV ST TINNVMEADFQTH YNCTA NSFGPGTAIIQ EEREVLPVGI IAGATIGASILLIFFFIALVFFLYRRRKGSRKDVTLRKLD IKVETVNREPLTJ HSDREDDTASVSTATRVMKAIYSSF DDVD QD RCDTIDTREEYE DPTNGY YNVRAHEDRPSSRAVLYADYRAPGPARFDGRPSSR SHSSGYAQ NTYSRGPASDYGPEPTPPGPAAP AGTDTTSQLSYENYEKFNSHPFPGAAGYPTYRLGYPQAPPSG ERTPYEAYDPIGKYATATRFSYTSQ HSDYGQRFQQRMQTHV
NOV12t, SNP13374859 of SEQ TD NO: 357 (2128 bp CG51373-08, DNA Sequence ORF Start: ATG at 31 ORF Stop: TAG at 2119
SNP Pos: 961 SNP Change: C to T
CAATGGACCAAGGACGGGCTGGCCCTGGGCATGGGCCAGGGCCTCAAAGCCTGGCCACGGTACCGGGT
TGTGGGCTCCGCAGACGCTGGGCAGTACAACCTGGAGATCACAGATGCTGAGCTCTCTGACGACGCCT CTTACGAGTGCCAGGCCACGGAGGCCGCCCTGCGCTCTCGGCGGGCCAAA.CTCACCGTGCTCATCCCC CCAGAGGACACCAGGATTGACGGAGGCCCTGTGATTCTACTGCAGGCAGGCACCCCCCACAACCTCAC ATGCCGGGCCTTCAATGCGAAGCCTGCTGCCACCATCATCTGGTTCCGGGACGGGACGCAGCAGGAGG GCGCTGTGGCCAGCACGGAATTGCTGAAGGATGGGAAGAGGGAGACCACCGTGAGCCAACTGCTTATT AACCCCACGGACCTGGACATAGGGCGTGTCTTCACTTGCCGAAGCATGAACGAAGCCATCCCTAGTGG CAAGGAGACTTCCATCGAGCTGGATGTGCACCACCCTCCTACAGTGACCCTGTCCATTGAGCCACAGA CGGTGCAGGAGGGTGAGCGTGTTGTCTTTACCTGCCAGGCCACAGCCAACCCCGAGATCTTGGACTAC |AGGTGGGCCAAAGGGGGTTTCTTGATTGAAGACGCCCACGAGAGTCGCTATGAGACAAATGTGGATTA TTCCTTTTTCACGGAGCCTGTGTCTTGTGAGGTTCACAACAAAGTGGGAAGCACCAATGTCAGCACTT TAGTAAATGTCCACTTTGCTCCCCGGATTGTAGTTGACCCCAAACCCACAACCACAGACATTGGCTCT GATGTGACCCTTACCTGTGTCTGGGTTGGGAATCCCCCCCTCACTCTCACCTGGACCAAAAAGGACTC AAATATGGTCCTGAGTAACAGCAACCAGCTGCTGCTGAAGTCGGTGACTCAGGCAGACGCTGGCACCT ACACCTGCTGGGCCATCGTGCCTCGAATCGGAGTGGCTGAGCGGGAGGTGCCGCTCTATGTGAACGGG CCCCCCATCATCTCCAGTGAGGCAGTGCAGTATGCTGTGAGGGGTGACGGTGGCAAGGTGGAGTGTTT CATTGGGAGCACACCACCCCCAGACCGCATAGCATGGGCCTGGAAGGAGAACTTCTTGGAGGTGGGGA CCCTGGAACGCTATACAGTGGAGAGGACCAACTCAGGCAGTGGGGTGCTATCCACGCTCACCATCAAC AATGTCATGGAGGCCGACTTTCAGACTCACTACAACTGCACCGCCTGGAACAGCTTCGGGCCAGGCAC AGCCATCATCCAGCTGGAAGAGCGAGAGGTGTTACCTGTGGGCATCATAGCTGGGGCCACCATCGGCG CGAGCATCCTGCTCATCTTCTTCTTCATCGCCTTGGTATTCTTCCTCTACCGGCGCCGCAAAGGCAGT CGCAAAGACGTGACCCTGAGGAAGCTGGATATCAAGGTGGAGACAGTGAACCGAGAGCCACTTACGAT GCATTCTGACCGGGAGGATGACACCGCCAGCGTCTCCACAGCAACCCGGGTCATGAAGGCCATCTACT CGTCGTTTATGGATGATGTGGATCTGAAGCAGGACCTGCGCTGCGACACCATCGACACCCGGGAGGAG TATGAGATGAAGGACCCCACCAATGGCTACTACAACGTGCGTGCCCATGAAGACCGCCCGTCTTCCAG GGCAGTGCTCTATGCTGACTACCGTGCCCCTGGCCCTGCCCGCTTCGACGGCCGCCCCTCATCCCGTC TCTCCCACTCCAGCGGCTATGCCCAGCTCAACACCTATAGCCGGGGCCCTGCCTCTGACTATGGCCCT GAGCCCACACCCCCTGGCCCTGCTGCCCCAGCTGGCACTGACACAACCAGCCAGCTGTCCTACGAGAA CTATGAGAAGTTCAACTCCCATCCCTTCCCTGGGGCAGCTGGGTACCCCACCTACCGACTGGGCTACC CCCAGGCCCCACCCTCTGGCCTGGAGCGGACCCCATATGAGGCGTATGACCCCATTGGCAAGTACGCC ACAGCCACTCGATTCTCCTACACCTCCCAGCACTCGGACTACGGCCAGCGATTCCAGCAGCGCATGCA GACTCACGTGTAGGGGCCAG
NOV12t, SNP 13374859 of SEQ ID NO: 358 696 aa MW at 77005.3kD CG51373-08, Protein Sequence SNP Pos: 311 SNP Change: Arg to Trp
MGQG KA PRYRVVGSADAGQYNLEITDAE SDDASYECQATΞAALRSRRAKLTV IPPEDTRIDGGP VILLQAGTPHNLTCRAFNAKPAATII FRDGTQQEGAVASTE LKDGKRETTVSQLLINPTDLDIGRV FTCRSMNEAIPSGKETSIELDVHHPPTVT SIEPQTVQEGERVVFTCQATANPEILDYR AKGGFLIE DAHESRYETNi YSFFTEPVSCEVHN-.WGSTNVST VNVHFAPRIVVDP PTTTDIGSDVTLTCVWVG NPP TLTWTKKDSNMVLSNSNQLLLKSVTQADAGTYTCWAIVPRIGVAEREVPLYVNGPPIISSEAVQ YAVRGDGG---WECFIGSTPPPDRIAWAWKENFLEVGTLERYTVERTNSGSGVLSTLTINNVMEADFQTH YNCTAWNSFGPGTAIIQLEEREV PVGIIAGATIGASILLIFFFIAVFFLYRRRKGSRKDVT RKLD IKVETVNREPLTMHSDREDDTASVSTATRVMKAIYSSFMDDVD KQD1-RCDTIDTREEYEMKDPTNGY YNVRAHEDRPSSRAVYADYRAPGPARFDGRPSSRLSHSSGYAQ NTYSRGPASDYGPEPTPPGPAAP AGTDTTSQLSYENYEKFNSHPFPGAAGYPTYRLGYPQAPPSG ERTPYEAYDPIGKYATATRFSYTSQ HSDYGQRFQQRMQTHV
NOV12u, SNP13374858 of SEQ ID NO: 359 2128 bp CG51373-08, DNA Sequence ORF Start: ATG at 31 ORF Stop: TAG at 2119
SNP Pos: 1340 SNP Change: T to C
CAATGGACCAAGGACGGGCTGGCCCTGGGCATGGGCCAGGGCCTCAAAGCCTGGCCACGGTACCGGGT
TGTGGGCTCCGCAGACGCTGGGCAGTACAACCTGGAGATCACAGATGCTGAGCTCTCTGACGACGCCT CTTACGAGTGCCAGGCCACGGAGGCCGCCCTGCGCTCTCGGCGGGCCAAACTCACCGTGCTCATCCCC CCAGAGGACACCAGGATTGACGGAGGCCCTGTGATTCTACTGCAGGCAGGCACCCCCCACAACCTCAC ATGCCGGGCCTTCAATGCGAAGCCTGCTGCCACCATCATCTGGTTCCGGGACGGGACGCAGCAGGAGG GCGCTGTGGCCAGCACGGAATTGCTGAAGGATGGGAAGAGGGAGACCACCGTGAGCCAACTGCTTATT AACCCCACGGACCTGGACATAGGGCGTGTCTTCACTTGCCGAAGCATGAACGAAGCCATCCCTAGTGG CAAGGAGACTTCCATCGAGCTGGATGTGCACCACCCTCCTACAGTGACCCTGTCCATTGAGCCACAGA CGGTGCAGGAGGGTGAGCGTGTTGTCTTTACCTGCCAGGCCACAGCCAACCCCGAGATCTTGGACTAC AGGTGGGCCAAAGGGGGTTTCTTGATTGAAGACGCCCACGAGAGTCGCTATGAGACAAATGTGGATTA TTCCTTTTTCACGGAGCCTGTGTCTTGTGAGGTTCACAACAAAGTGGGAAGCACCAATGTCAGCACTT TAGTAAATGTCCACTTTGCTCCCCGGATTGTAGTTGACCCCAAACCCACAACCACAGACATTGGCTCT GATGTGACCCTTACCTGTGTCTGGGTTGGGAATCCCCCCCTCACTCTCACCTGGACCAAAAAGGACTC AAATATGGTCCTGAGTAACAGCAACCAGCTGCTGCTGAAGTCGGTGACTCAGGCAGACGCTGGCACCT ACACCTGCCGGGCCATCGTGCCTCGAATCGGAGTGGCTGAGCGGGAGGTGCCGCTCTATGTGAACGGG CCCCCCATCATCTCCAGTGAGGCAGTGCAGTATGCTGTGAGGGGTGACGGTGGCAAGGTGGAGTGTTT CATTGGGAGCACACCACCCCCAGACCGCATAGCATGGGCCTGGAAGGAGAACTTCTTGGAGGTGGGGA CCCTGGAACGCTATACAGTGGAGAGGACCAACTCAGGCAGTGGGGTGCTATCCACGCTCACCATCAAC AATGTCATGGAGGCCGACTTTCAGACTCACTACAACTGCACCGCCTGGAACAGCTTCGGGCCAGGCAC AGCCATCATCCAGCTGGAAGAGCGAGAGGTGTTACCTGTGGGCATCACAGCTGGGGCCACCATCGGCG CGAGCATCCTGCTCATCTTCTTCTTCATCGCCTTGGTATTCTTCCTCTACCGGCGCCGCAAAGGCAGT CGCAAAGACGTGACCCTGAGGAAGCTGGATATCAAGGTGGAGACAGTGAACCGAGAGCCACTTACGAT GCATTCTGACCGGGAGGATGACACCGCCAGCGTCTCCACAGCAACCCGGGTCATGAAGGCCATCTACT CGTCGTTTATGGATGATGTGGATCTGAAGCAGGACCTGCGCTGCGACACCATCGACACCCGGGAGGAG TATGAGATGAAGGACCCCACCAATGGCTACTACAACGTGCGTGCCCATGAAGACCGCCCGTCTTCCAG GGCAGTGCTCTATGCTGACTACCGTGCCCCTGGCCCTGCCCGCTTCGACGGCCGCCCCTCATCCCGTC TCTCCCACTCCAGCGGCTATGCCCAGCTCAACACCTATAGCCGGGGCCCTGCCTCTGACTATGGCCCT GAGCCCACACCCCCTGGCCCTGCTGCCCCAGCTGGCACTGACACAACCAGCCAGCTGTCCTACGAGAA CTATGAGAAGTTCAACTCCCATCCCTTCCCTGGGGCAGCTGGGTACCCCACCTACCGACTGGGCTACC CCCAGGCCCCACCCTCTGGCCTGGAGCGGACCCCATATGAGGCGTATGACCCCATTGGCAAGTACGCC ACAGCCACTCGATTCTCCTACACCTCCCAGCACTCGGACTACGGCCAGCGATTCCAGCAGCGCATGCA GACTCACGTGTAGGGGCCAG
NOV12u, SNP13374858 of SEQ ID NO: 360 696 aa MW at 76963.2kD CG51373-08, Protein Sequence SNP Pos: 437 SNP Change: He to Thr
MGQGLKA PRYRWGS-ADAGQYN EITDAELSDDASYECQATEAALRSRRAKIiTVLIPPEDTRIDGGP VIL QAGTPHNLTCRAFNAKPAAT1IWFRDGTQQEGAVASTEL KDGKRETTVSQLLINPTDLDIGRV FTCRSiMNEAIPSGKETSIELDVHHPPTV SIEPQTVQEGERVVFTCQATANPEILDYR A GGF IE DAHESRYETNVDYSFFTEPVSCEVΗNKVGSTNVSTLVNVHFAPRIVVDPKPTTTDIGSDVTLTCVWVG NPPLTLT TK-KDSNMVLSNSNQ L KSVTQADAGTYTCRAIVPRIGVAEREVPLYVNGPPIISSEAVQ YAVRGDGG---θECFIGSTPPPDRIAWAWKENFLEVGTLERY VERTNSGSGV STLTINNVMEADFQTH YNCTA NSFGPGTAIIQ EEREVLPVGITAGATIGASI IFFFIALVFF YRRRKGSRKDVT RK D IKVETVNREPLTMHSDREDDTASVSTATRV KAIYSSFMDDVDLKQD RCDTIDTREEYE KDPTNGY YNVRAHEDRPSSRAV YADYRAPGPARFDGRPSSR SHSSGYAQLNTYSRGPASDYGPEPTPPGPAAP AGTDTTSQLSYENYEKFNSHPFPGAAGYPTYRLGYPQAPPSG ERTPYEAYDPIGKYATATRFSYTSQ HSDYGQRFQQR QTHV
|NOV12v, SNP13374856 of SEQ ID NO: 361 2128 bp
CG51373-08, DNA Sequence ORF Start: ATG at 31 ORF Stop: TAG at 2119
SNP Pos: 1418 ]SNP Change:_G to A
CAATGGACCAAGGACGGGCTGGCCCTGGGCATGGGCCAGGGCCTCAAAGCCTGGCCACGGTACCGGGT
TGTGGGCTCCGCAGACGCTGGGCAGTACAACCTGGAGATCACAGATGCTGAGCTCTCTGACGACGCCT CTTACGAGTGCCAGGCCACGGAGGCCGCCCTGCGCTCTCGGCGGGCCAAACTCACCGTGCTCATCCCC CCAGAGGACACCAGGATTGACGGAGGCCCTGTGATTCTACTGCAGGCAGGCACCCCCCACAACCTCAC ATGCCGGGCCTTCAATGCGAAGCCTGCTGCCACCATCATCTGGTTCCGGGACGGGACGCAGCAGGAGG GCGCTGTGGCCAGCACGGAATTGCTGAAGGATGGGAAGAGGGAGACCACCGTGAGCCAACTGCTTATT AACCCCACGGACCTGGACATAGGGCGTGTCTTCACTTGCCGAAGCATGAACGAAGCCATCCCTAGTGG CAAGGAGACTTCCATCGAGCTGGATGTGCACCACCCTCCTACAGTGACCCTGTCCATTGAGCCACAGA CGGTGCAGGAGGGTGAGCGTGTTGTCTTTACCTGCCAGGCCACAGCCAACCCCGAGATCTTGGACTAC AGGTGGGCCAAAGGGGGTTTCTTGATTGAAGACGCCCACGAGAGTCGCTATGAGACAAATGTGGATTA TTCCTTTTTCACGGAGCCTGTGTCTTGTGAGGTTCACAACAAAGTGGGAAGCACCAATGTCAGCACTT TAGTAAATGTCCACTTTGCTCCCCGGATTGTAGTTGACCCCAAACCCACAACCACAGACATTGGCTCT GATGTGACCCTTACCTGTGTCTGGGTTGGGAATCCCCCCCTCACTCTCACCTGGACCAAAAAGGACTC AAATATGGTCCTGAGTAACAGCAACCAGCTGCTGCTGAAGTCGGTGACTCAGGCAGACGCTGGCACCT ACACCTGCCGGGCCATCGTGCCTCGAATCGGAGTGGCTGAGCGGGAGGTGCCGCTCTATGTGAACGGG CCCCCCATCATCTCCAGTGAGGCAGTGCAGTATGCTGTGAGGGGTGACGGTGGCAAGGTGGAGTGTTT CATTGGGAGCACACCACCCCCAGACCGCATAGCATGGGCCTGGAAGGAGAACTTCTTGGAGGTGGGGA CCCTGGAACGCTATACAGTGGAGAGGACCAACTCAGGCAGTGGGGTGCTATCCACGCTCACCATCAAC AATGTCATGGAGGCCGACTTTCAGACTCACTACAACTGCACCGCCTGGAACAGCTTCGGGCCAGGCAC AGCCATCATCCAGCTGGAAGAGCGAGAGGTGTTACCTGTGGGCATCATAGCTGGGGCCACCATCGGCG CGAGCATCCTGCTCATCTTCTTCTTCATCGCCTTGGTATTCTTCCTCTACCGGCGCCACAAAGGCAGT CGCAAAGACGTGACCCTGAGGAAGCTGGATATCAAGGTGGAGACAGTGAACCGAGAGCCACTTACGAT GCATTCTGACCGGGAGGATGACACCGCCAGCGTCTCCACAGCAACCCGGGTCATGAAGGCCATCTACT CGTCGTTTATGGATGATGTGGATCTGAAGCAGGACCTGCGCTGCGACACCATCGACACCCGGGAGGAG TATGAGATGAAGGACCCCACCAATGGCTACTACAACGTGCGTGCCCATGAAGACCGCCCGTCTTCCAG GGCAGTGCTCTATGCTGACTACCGTGCCCCTGGCCCTGCCCGCTTCGACGGCCGCCCCTCATCCCGTC TCTCCCACTCCAGCGGCTATGCCCAGCTCAACACCTATAGCCGGGGCCCTGCCTCTGACTATGGCCCT GAGCCCACACCCCCTGGCCCTGCTGCCCCAGCTGGCACTGACACAACCAGCCAGCTGTCCTACGAGAA CTATGAGAAGTTCAACTCCCATCCCTTCCCTGGGGCAGCTGGGTACCCCACCTACCGACTGGGCTACC CCCAGGCCCCACCCTCTGGCCTGGAGCGGACCCCATATGAGGCGTATGACCCCATTGGCAAGTACGCC ACAGCCACTCGATTCTCCTACACCTCCCAGCACTCGGACTACGGCCAGCGATTCCAGCAGCGCATGCA GACTCACGTGTAGGGGCCAG
NOV12v, SNP13374856 of SEQ ID NO: 362 696 aa MW at 76956.2kD CG51373-08, Protein Sequence SNP Pos: 463 SNP Change: Arg to His
MGQGLKA PRYRWGSADAGQYN EITDAELSDDASYECQATEAALRSRRAK TV IPPEDTRIDGGP VI LQAGTPHNLTCRAFNAKPAATIIWFRDGTQQEGAVASTE LKDGKRETTVSQ INPTD DIGRV FTCRS NEAIPSGKETSIE DVHHPPTVTLSIEPQTVQEGERVVFTCQATANPEILDYRWAKGGFLIE DAHESRYETNVDYSFFTEPVSCEVHNKVGSTNVSTLV.NVHFAPRIVVDPKPTTTDIGSDVTLTCV VG NPP TLTWTKKDSNMVLSNSNQLLLKSVTQA.DAGTYTCRAIVPRIGVAEREVPLYVNGPPIISSEAVQ YAVRGDGG VECFIGSTPPPDRIA AWKENFLEVGTLERYTVERTNSGSGVLST TINNVMEADFQTH YNCTAWNSFGPGTAIIQ EEREVLPVGIIAGATIGASI IFFFIA VFFLYRRHKGSRKDVTLRK D I VETVNREP TMHSDREDDTASVSTATRVMKAIYSSF-DDVDLKQDLRCDTIDTRΞEYE KDPTNGY Y-NVRAHEDRPSSRAV YADYRAPGPARFDGRPSSRLSHSSGYAQLNTYSRGPASDYGPEPTPPGPAAP AGTDTTSQLSYENYEKFNSHPFPGAAGYPTYR GYPQAPPSGLERTPYEAYDPIGKYATATRFSYTSQ HSDYGQRFQQRMQTHV
NOV12w, SNP13374855 of SEQ ID NO: 363 2128 bp CG51373-08, DNA Sequence ORF Start: ATG at 31 ORF Stop: TAG at 2119
SNP Pos: 1421 SNP Change: A to G
CAATGGACCAAGGACGGGCTGGCCCTGGGCATGGGCCAGGGCCTCAAAGCCTGGCCACGGTACCGGG
NOV12w, SNP13374855 of SEQ ID NO: 364 696 aa MW at 77003.3kD CG51373-08, Protein Sequence SNP Pos: 464 SNP Change: Lys to Arg
MGQG KAWPRYRWGSADAGQYNLEITDAE SDDASYECQATEAALRSRRAKLTVLIPPEDTRIDGGP
VIL QAGTPHNLTCRAFNAKPAATIIWFRDGTQQEGAVASTE LKDGKRETTVSQ INPTDLDIGRV
FTCRS-MNEAIPSGKETSIELDVHHPPTVTLSIEPQTVQEGERWFTCQATANPEILDYR AKGGFLIE
DAHESRYETNVDYSFFTEPVSCEVHN-EWGSΩWST V VHFAPRIVVDPKPTTTDIGSDVTLTCVW
NPP T T T--- ωSNMV SNSNQ LLKSVTQA-DAGTYTCRAIVPRIGVAEREVPLYVNGPPIISSEAVQ
YAVRGDGGKVECFIGSTPPPDRIA A KENFLEVGTLERYTVERTNSGSGVLSTLTINNVMEADFQTH
YNCTAWNSFGPGTAIIQLEEREVLPVGIIAGATIGASILLIFFFIALVFF YRRRRGSRKDVTLRKLD
IKVETVNREPLTMHSDREDDTASVSTATRVMKAIYSSFMDDVDLKQDLRCDTIDTREEYEMKDP NGY
YNVRAHEDRPSSRAV YADYRAPGPARFDGRPSSRLSHSSGYAQLNTYSRGPASDYGPEPTPPGPAAP
AGTDTTSQLSYENYEKFNSHPFPGAAGYPTYRLGYPQAPPSGLERTPYEAYDPIGKYATATRFSYTSQ
HSDYGQRFQQRMQTHV
NOV12x, SNP13374854 of SEQ ID NO: 365 2128 bp CG51373-08, DNA Sequence ORF Start: ATG at 31 ORF Stop: TAG at 2119
SNP Pos: 1426 SNP Change: A to T
CAATGGACCAAGGACGGGCTGGCCCTGGGCATGGGCCAGGGCCTCAAAGCCTGGCCACGGTACCGGGT
TGTGGGCTCCGCAGACGCTGGGCAGTACAACCTGGAGATCACAGATGCTGAGCTCTCTGACGACGCCT CTTACGAGTGCCAGGCCACGGAGGCCGCCCTGCGCTCTCGGCGGGCCAAACTCACCGTGCTCATCCCC CCAGAGGACACCAGGATTGACGGAGGCCCTGTGATTCTACTGCAGGCAGGCACCCCCCACAACCTCAC ATGCCGGGCCTTCAATGCGAAGCCTGCTGCCACCATCATCTGGTTCCGGGACGGGACGCAGCAGGAGG GCGCTGTGGCCAGCACGGAATTGCTGAAGGATGGGAAGAGGGAGACCACCGTGAGCCAACTGCTTATT AACCCCACGGACCTGGACATAGGGCGTGTCTTCACTTGCCGAAGCATGAACGAAGCCATCCCTAGTGG CAAGGAGACTTCCATCGAGCTGGATGTGCACCACCCTCCTACAGTGACCCTGTCCATTGAGCCACAGA CGGTGCAGGAGGGTGAGCGTGTTGTCTTTACCTGCCAGGCCACAGCCAACCCCGAGATCTTGGACTAC AGGTGGGCCAAAGGGGGTTTCTTGATTGAAGACGCCCACGAGAGTCGCTATGAGACAAATGTGGATTA TTCCTTTTTCACGGAGCCTGTGTCTTGTGAGGTTCACAACAAAGTGGGAAGCACCAATGTCAGCACTT TAGTAAATGTCCACTTTGCTCCCCGGATTGTAGTTGACCCCAAACCCACAACCACAGACATTGGCTCT GATGTGACCCTTACCTGTGTCTGGGTTGGGAATCCCCCCCTCACTCTCACCTGGACCAAAAAGGACTC AAATATGGTCCTGAGTAACAGCAACCAGCTGCTGCTGAAGTCGGTGACTCAGGCAGACGCTGGCACCT ACACCTGCCGGGCCATCGTGCCTCGAATCGGAGTGGCTGAGCGGGAGGTGCCGCTCTATGTGAACGGG CCCCCCATCATCTCCAGTGAGGCAGTGCAGTATGCTGTGAGGGGTGACGGTGGCAAGGTGGAGTGTTT CATTGGGAGCACACCACCCCCAGACCGCATAGCATGGGCCTGGAAGGAGAACTTCTTGGAGGTGGGGA CCCTGGAACGCTATACAGTGGAGAGGACCAACTCAGGCAGTGGGGTGCTATCCACGCTCACCATCAAC AATGTCATGGAGGCCGACTTTCAGACTCACTACAACTGCACCGCCTGGAACAGCTTCGGGCCAGGCAC AGCCATCATCCAGCTGGAAGAGCGAGAGGTGTTACCTGTGGGCATCATAGCTGGGGCCACCATCGGCG CGAGCATCCTGCTCATCTTCTTCTTCATCGCCTTGGTATTCTTCCTCTACCGGCGCCGCAAAGGCTGT CGCAAAGACGTGACCCTGAGGAAGCTGGATATCAAGGTGGAGACAGTGAACCGAGAGCCACTTACGAT GCATTCTGACCGGGAGGATGACACCGCCAGCGTCTCCACAGCAACCCGGGTCATGAAGGCCATCTACT CGTCGTTTATGGATGATGTGGATCTGAAGCAGGACCTGCGCTGCGACACCATCGACACCCGGGAGGAG TATGAGATGAAGGACCCCACCAATGGCTACTACAACGTGCGTGCCCATGAAGACCGCCCGTCTTCCAG GGCAGTGCTCTATGCTGACTACCGTGCCCCTGGCCCTGCCCGCTTCGACGGCCGCCCCTCATCCCGTC TCTCCCACTCCAGCGGCTATGCCCAGCTCAACACCTATAGCCGGGGCCCTGCCTCTGACTATGGCCCT GAGCCCACACCCCCTGGCCCTGCTGCCCCAGCTGGCACTGACACAACCAGCCAGCTGTCCTACGAGAA CTATGAGAAGTTCAACTCCCATCCCTTCCCTGGGGCAGCTGGGTACCCCACCTACCGACTGGGCTACC CCCAGGCCCCACCCTCTGGCCTGGAGCGGACCCCATATGAGGCGTATGACCCCATTGGCAAGTACGCC ACAGCCACTCGATTCTCCTACACCTCCCAGCACTCGGACTACGGCCAGCGATTCCAGCAGCGCATGCA GACTCACGTGTAGGGGCCAG jNOV12x, SNP13374854 of SEQ ID NO: 366 696 aa MW at 76991.4 D
CG51373-08, Protein Sequence |SNP Pos: 466 SNP Change: Ser to Cys
MGQGLKA PRYRWGSADAGQYNLEITDAE SDDASYECQATEAALRSRRAKLTVLIPPEDTRIDGGP VI LQAGTPHN TCRAFNAKPAATII FRDGTQQEGAVASTE KDGKRETTVSQLLINPTD DIGRV FTCRS-vrøEAIPSGKETSIELDVHHPPTV SIEPQTVQEGERVVFTCQATANPEILDYR AKGGFLIE DAHESRYETNVDYSFFTEPVSCEV-ffl-T-..s^GST---WST VNVHFAPRIVVDPKPTTTDIGSDVTLTCVWVG NPP T TWT--rs^DSNMV SNSNQ LLKS VTQADAGTYTCRAI VPRIGVAERE VPLYVNGPP IIS SE AVQ YAVRGDGGKVECFIGSTPPPDRIAWAWKENFLEVGTLERYTVERTNSGSGV STLTINNVMEADFQTH YNCTA NSFGPGTAIIQ EEREVLPVGIIAGATIGASI LIFFFIALVFFLYRRRKGCRKDVT R LD IKVETVNREP TMHSDREDDTASVSTATRVMKA.IYSSFMDDVDLKQDLRCDTIDTREEYEMKDPTNGY YNVRAHEDRPSSRAV YADYRAPGPARFDGRPSSR SHSSGYAQLNTYSRGPASDYGPEPTPPGPAAP AGTDTTSQ SYENYE FNSHPFPGAAGYPTYRLGYPQAPPSGLERTPYEAYDPIGKYATATRFSYTSQ tfSDYGQRFQQRMQTHV
NOV12y, SNP13374853 of SEQ ID NO: 367 2128 bp CG51373-08, DNA Sequence ORF Start: ATG at 31 ORF Stop: TAG at 2119
SNP Pos: 1436 SNP Change: A to G
CAATGGACCAAGGACGGGCTGGCCCTGGGCATGGGCCAGGGCCTCAAAGCCTGGCCACGGTACCGGGT
TGTGGGCTCCGCAGACGCTGGGCAGTACAACCTGGAGATCACAGATGCTGAGCTCTCTGACGACGCCT CTTACGAGTGCCAGGCCACGGAGGCCGCCCTGCGCTCTCGGCGGGCCAAACTCACCGTGCTCATCCCC CCAGAGGACACCAGGATTGACGGAGGCCCTGTGATTCTACTGCAGGCAGGCACCCCCCACAACCTCAC ATGCCGGGCCTTCAATGCGAAGCCTGCTGCCACCATCATCTGGTTCCGGGACGGGACGCAGCAGGAGG GCGCTGTGGCCAGCACGGAATTGCTGAAGGATGGGAAGAGGGAGACCACCGTGAGCCAACTGCTTATT AACCCCACGGACCTGGACATAGGGCGTGTCTTCACTTGCCGAAGCATGAACGAAGCCATCCCTAGTGG CAAGGAGACTTCCATCGAGCTGGATGTGCACCACCCTCCTACAGTGACCCTGTCCATTGAGCCACAGA CGGTGCAGGAGGGTGAGCGTGTTGTCTTTACCTGCCAGGCCACAGCCAACCCCGAGATCTTGGACTAC AGGTGGGCCAAAGGGGGTTTCTTGATTGAAGACGCCCACGAGAGTCGCTATGAGACAAATGTGGATTA TTCCTTTTTCACGGAGCCTGTGTCTTGTGAGGTTCACAACAAAGTGGGAAGCACCAATGTCAGCACTT TAGTAAATGTCCACTTTGCTCCCCGGATTGTAGTTGACCCCAAACCCACAACCACAGACATTGGCTCT GATGTGACCCTTACCTGTGTCTGGGTTGGGAATCCCCCCCTCACTCTCACCTGGACCAAAAAGGACTC AAATATGGTCCTGAGTAACAGCAACCAGCTGCTGCTGAAGTCGGTGACTCAGGCAGACGCTGGCACCT ACACCTGCCGGGCCATCGTGCCTCGAATCGGAGTGGCTGAGCGGGAGGTGCCGCTCTATGTGAACGGG CCCCCCATCATCTCCAGTGAGGCAGTGCAGTATGCTGTGAGGGGTGACGGTGGCAAGGTGGAGTGTTT CATTGGGAGCACACCACCCCCAGACCGCATAGCATGGGCCTGGAAGGAGAACTTCTTGGAGGTGGGGA CCCTGGAACGCTATACAGTGGAGAGGACCAACTCAGGCAGTGGGGTGCTATCCACGCTCACCATCAAC AATGTCATGGAGGCCGACTTTCAGACTCACTACAACTGCACCGCCTGGAACAGCTTCGGGCCAGGCAC AGCCATCATCCAGCTGGAAGAGCGAGAGGTGTTACCTGTGGGCATCATAGCTGGGGCCACCATCGGCG CGAGCATCCTGCTCATCTTCTTCTTCATCGCCTTGGTATTCTTCCTCTACCGGCGCCGCAAAGGCAGT CGCAAAGGCGTGACCCTGAGGAAGCTGGATATCAAGGTGGAGACAGTGAACCGAGAGCCACTTACGAT GCATTCTGACCGGGAGGATGACACCGCCAGCGTCTCCACAGCAACCCGGGTCATGAAGGCCATCTACT CGTCGTTTATGGATGATGTGGATCTGAAGCAGGACCTGCGCTGCGACACCATCGACACCCGGGAGGAG TATGAGATGAAGGACCCCACCAATGGCTACTACAACGTGCGTGCCCATGAAGACCGCCCGTCTTCCAG GGCAGTGCTCTATGCTGACTACCGTGCCCCTGGCCCTGCCCGCTTCGACGGCCGCCCCTCATCCCGTC TCTCCCACTCCAGCGGCTATGCCCAGCTCAACACCTATAGCCGGGGCCCTGCCTCTGACTATGGCCCT GAGCCCACACCCCCTGGCCCTGCTGCCCCAGCTGGCACTGACACAACCAGCCAGCTGTCCTACGAGAA CTATGAGAAGTTCAACTCCCATCCCTTCCCTGGGGCAGCTGGGTACCCCACCTACCGACTGGGCTACC CCCAGGCCCCACCCTCTGGCCTGGAGCGGACCCCATATGAGGCGTATGACCCCATTGGCAAGTACGCC ACAGCCACTCGATTCTCCTACACCTCCCAGCACTCGGACTACGGCCAGCGATTCCAGCAGCGCATGCA GACTCACGTGTAGGGGCCAG
|NOV12y, SNP13374853 of fSEQ JD NO: 368J696_aa MW at 76917.3kD
CG51373-08, Protein Sequence |SNP Pos: 469 SNP Change: Asp to Gly GQGLKA PRYRVVGSADAGQYNLEITDAE SDDASYECQATEAARSRRALTV IPPEDTRIDGGP VI LQAGTPHNLTCRAFNAKPAATII FRDGTQQEGAVASTELL DGKRETTVSQL INPTDLDIGRV FTCRSIrøEAIPSGKETSIELDVHHPPTVTLSIEPQTVQEGERVVFTCQATANPEI DYRWAKGGF IE DAHESRYETNVDYSFFTEPVSCEVHNKVGST tST VNVHFAPRIVVDPKPTTTDIGSDVTIiTCVWVG NPPLTLT TK DSNMV SNSNQLL KSVTQADAGTYTCRAIVPRIGVAEREVP YVNGPPIISSEAVQ YAVRGDGGKVECFIGSTPPPDRIAWAWKENFLEVGTLERYTVERTNSGSGV1,STLTIN-NVMEA-DFQTH YNCTAWNSFGPGTAIIQLEEREV PVGIIAGATIGASI IFFFIALVFFLYRRRKGSRKGVT RKLD IKVETVNREPLTiy-HSDREDDTASVSTATRV --s^IYSSF DDVDLKQDLRCDTIDTREEYEMKDPTNGY YNVRAHEDRPSSRAVLYADYRAPGPARFDGRPSSRLSHSSGYAQ NTYSRGPASDYGPEPTPPGPAAP AGTDTTSQLSYENYEKFNSHPFPGAAGYPTYRLGYPQAPPSG ERTPYEAYDPIGKYATATRFSYTSQ HSDYGQRFQQRMQTHV
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 12B. Table 12B. Comparison of the NOV12 protein sequences.
NOV12a
NOV12b
NOV12C
NOV12d
NOV12e
NOV12f
NOV12g MH T EV NHGPFPLNLSSIAYNHGTVFGHWKN---rVTRETLVKVKDAEDQLGARVGYIELD
NOV12h -HLT EVLNHGPFPLNLSSIAYNHGTVFGH KNNVTRETLVKVKDAEDQLGARVGYIELD
NOV12i
NOV12J
NOV12k
NOV121
NOV12m
NOV12n
N0V12O
NOV12p
NOV12q
NOVl2a -M S LV ILTLSDTFSQGTQTRFSQEPADQTWAGQ NOV12b NOV12C NOV12d NOV12e TKLMLS LVWILTLSDTFSQGTQTRFSQEPADQTWAGQ NOVl2f TKLM SL V ILTLSDTFSQGTQTRFSQEPADQTWAGQ NOV12g NSGKETFLVNEEATGETSGDNWHSRNLSQTIFITRKR EGTQTRFSQEPADQTWAGQ NOV12h NSG-EsΕTFLVNEEATGETSGDNVVHS-RNLSQTIFITRKR EGTQTRFSQEPADQTVVAGQ NOVl2i NOV12J NOV12k NOV121 NOV12m -RFSQEP-ADQTWAGQ NOV12n N0V12O -MLS V ILT SDTFSQGTQTRFSQEPADQTWAGQ NOV12p - LSLLV ILTLSDTFSQGTQTRFSQEPADQTWAGQ NOVl2q QGTQTRFSQEPADQTWAGQ
NOV1 a RAVLPCV LNYSGIVQWTKDGLALGMGQG KA PRYRWGSA-DAGQYNLEITDAELSDDA NOVl2b MGQALKAWPRYRWGSADAGQYN EITDAELSDDA NOVl2c GQGLKA PRYRWGSADAGQYN EITDAELSDDA NOVl2d GSMGQGLKAWPRYRWGSADAGQYNIiEITDAELSDDA NOVl2e RAVLPCVLLNYSGIVQ TKDGLA GMGQG A PRYRVVGSADAGQYNLEITDAELSDDA NOVl2f RAV PCV NYSGIVQWTKDGLALGMGQGLKA PRYRVVGSADAGQYNLEITDAELSDDA NOV12g RAVLPCVL NYSGIVQ TKDGL-ALGMGQALKAWPRYRVVGSADAGQYNLEITDAE SDDA NOV12 RAV PCVLLNYSGIVQWTKDGLALG GQALKA PRYRWGSADAGQYNLEITDAE SDDA NOV12i MGQ-ALKAWPRYR GS DAGQYNLEITDAELSDDA NOVl2j MGQALKAWPRYRWGSADAGQYN EITDAELSDDA NOVl2k MGQALKA PRYRWGSADAGQYN EITDAELSDDA NOVl21 GQA KAWPRYRWGSADAGQYNLEITDAELSDDA NOVl2m ----AVLPCVX. NYSGIVQWTRDG ALGMGQA KAWPRYRVVGSA-DAGQYN EITDAE SDDA NOVl2n MGQGLKAWPRYRWGSADAGQYNLEITDAELSDDA N0V12O --^VLPCVLLNYSGIVQ TKDGLALGMGQGLKAWPRYRVVGSADAGQYNLEITDAΞLSDDA NOV12p -RAVLPCVLLNYSGIVQWTKDGI-ALGMGQGLKAWPRYRVVGSADAGQYNLEITDAELSDDA NOV12q -RAVLPCVLLNYSGIVQ TKDGLALGMGQGLKA PRYRVVGSADAGQYNLEITDAELSDDA NOV12a SYECQATEAALRSRRAKLTVLIPPEDTRIDGGPVILLQAGTPHNLTCRAFNAKPAATIIW
NOV12b SYECQATEAALRSRRAKLTVLIPPEDTRIDGGPVILLQAGTPHNLTCRAFNA PAATII
NOV12C SYECQATEAALRSRRAKLTVLIPPEDTRIDGGPVILLQAGTPHNLTCRAFNA PAATII
NOV12d SYECQATEAALRSRRAKLTVLIPPEDTRIDGGPVILLQAGTPHNLTCRAFNAKPAATII
NOV12e SYECQATEAALRSRRAKLTVLIPPEDTRIDGGPVILLQAGTPHNLTCRAFNAKPAATII
NOV12f SYECQATEAALRSRRAKLTVLIPPEDTRIDGGPVILLQAGTPHNLTCRAFNAKPAATIIW
NOV12g SYECQATEAALRSRRAKLTVLIPPEDTRIDGGPVILLQAGTPHNLTCRAFNAKPAATII
NOV12 SYECQATEAALRSRRAKLTVLIPPEDTRIDGGPVILLQAGTPHNLTCRAFNAKPAATII
NOV12i SYECQATEAALRSRRAKLTVLIPPEDTRIDGGPVILLQAGTPHNLTCRAFNAKPAATII
NOV12J SYECQATEAALRSRRAKLTVLIPPEDTRIDGGPVILLQAGTPHNLTCRAFNAKPAATII
NOV12k SYECQATEAALRSRRAKLTVLIPPEDTRIDGGPVILLQAGTPHNLTCRAFNAKPAATII
NOV121 SYECQATEAALRSRRAKLTVLIPPEDTRIDGGPVILLQAGTPHNLTCRAFNAKPAATII
NOV12m SYECQATEAALRSRRAKLTVLIPPEDTRIDGGPVILLQAGTPHNLTCRAFNAKPAATII
NOV12n SYECQATEAALRSRRAKLTVLIPPEDTRIDGGPVILLQAGTPHNLTCRAFNAKPAATII
N0V12O SYECQATEAALRSRRAKLTVLIPPEDTRIDGGPVILLQAGTPHNLTCRAFNAKPAATII
NOV12p SYECQATEAALRSRRAKLTVLIPPEDTRIDGGPVILLQAGTPHNLTCRAFNAKPAATII
NOV12q SYECQATEAALRSRRAKLTVLIPPEDTRIDGGPVILLQAGTPHNLTCRAFNAKPAATII
NOV12a FRDGTQQEGAVASTELLKDGKRETTVSQLLINPTDLDIGRVFTCRS NEAIPSGKETSIE
NOV12b FRDGTQQEGAVASTELLKDGKRETTVSQLLINPTDLDIGRVFTCRSiNEAIPSGKETSIE
NOV12C FRDGTQQEGAVASTELLKDGKRΞTTVSQLLINPTDLDIGRVFTCRSMNEAIPSGKETSIE
NOV12d FRDGTQQEGAVASTΞLLKDGKRETTVSQLLINPTDLDIGRVFTCRS NEAIPSGKETSIE
NOV12e FRDGTQQEGAVASTELL DGKRETTVSQLLINPTDLDIGRVFTCRSMNEAIPSG ETSIE
NOV12f FRDGTQQEGAVASTELLroGKRETTVSQLLINPTDLDIGRVFTCRSM EAIPSGKETSIE
NOV12g FRDGTQQEGAVASTELLKDGKRETTVSQLLINPTDLDIGRVFTCRSMNEAIPSGKETSIE
NOV12h FRDGTQQEGAVASTΞLLKDGKRETTVSQLLINPTDLDIGRVFTCRSMNEAIPSGKETSIE
NOV12i F-RDGTQQEGAVASTELLKDGKRETTVSQLLINPTDLDIGRVFTCRSMNEAIPSGKETSIE
NOV12J FRDGTQQEGAVASTELLKDGKRETTVSQLLINPTDLDIGRVFTCRSJMNEAIPSGKETSIE
NOV12k FRDGTQQEGAVASTΞLLKDGKRETTVSQLLINPTDLDIGRVFTCRS-yi-NEAIPSGKETSIE
NOV121 FRDGTQQEGAVASTΞLLKDGKRETTVSQLLINPTDLDIGRVFTCRS NEAIPSGKETSIE
NOV12m FRDGTQQEGAVASTELLKDGKRETTVSQLLINPTDLDIGRVFTCRS NEAIPSGKETSIE
NOV12n FRDGTQQEGAVASTELLKDGKRETTVSQLLINPTDLDIGRVFTCRSMNEAIPSGKETSIE
N0V12O FRDGTQQEGAVASTELLKDGKRETTVSQLLINPTDLDIGRVFTCRSMNEAIPSGKETSIE
NOV12p FRDGTQQEGAVASTELLKDGKRETTVSQLLINPTDLDIGRVFTCRSMNEAIPSGKETSIE
NOV12q FRDGTQQEGAVASTELLKDGKRETTVSQLLINPTDLDIGRVFTCRSMNEAIPSGKETSIE
NOV12a LDVIfflPPTVTLSIEPQTVQEGERVVFTCQATANPEILGYR AKGGFLIEDAHESRYETNV
NOV12b LDVHHPPTVTLSIEPQTVQEGERWFTCQATANPEILGYR AKGGFLIEDAHESRYETNV
NOV12C LDVHHPPTVTLSIEPQTVQEGERWFTCQATANPEILDYRWAKGGFLIEDAHΞSRYETNV
NOV12d LDVHHPPTVTLSIEPQTVQEGERWFTCQATANPEILDYRWAKGGFLIEDAHESRYETNV
NOV12e LDVHHPPTVTLSIEPQTVQEGERWFTCQATANPEILGYRWAKGGFLIEDAHESRYETNV
NOV12f LDVHHPPTVTLSIEPQTVQEGERWFTCQATANPEILGYR AKGGFLIEDAHESRYETNV
NOV12g LDVHRE AGGSSLEQGGGRRGVFEKHTLSLR-NTN
NOV12h LDVHHPPTVTLSIEPQTVQEGERWFTCQATANPEILGYR AKGGFLIEDAHESRYETNV
NOV12i LDVHHPPTVTLSIEPQTVQEGERWFTCQATANPEILGYR AKGGFLIEDAHESRYETNV
NOV12j LDVHRE AGGSSLEQGGGRRGVFEKHTLSLR-NTN
NOV12k LDVHRE AGGSSLEQGGGRRGVFEKHTLSLRNTN
NOV121 LDVHRE AGGSSLEQGGGRRGVFEKHTLSLRNTN
NOV12m LDVHHPPTVTLSIEPQTVQEGERWFTCQATANPEILGYR AKGGFLIEDAHESRYETNV
NOV12n LDVHHPPTVTLSIEPQTVQEGERWFTCQATANPEILDYR AKGGFLIEDAHESRYETNV
N0V12O LDVHHPPTVTLSIEPQTVQEGERWFTCQATANPEILGYR AKGGFLIEDAHESRYETNV
NOV12p LDVHHPPTVTLSIEPQTVQEGERWFTCQATANPEILGYRWAKGGFLIEDAHESRYETNV
NOV12q LDV-I-fflPPTVTLSIEPQTVQEGERVVFTCQATANPEILGYRAKGGFLIEDAHESRYETNV
NOV12a DYSFFTEPVSCEV-l--raKVGST---WSTLV-l!^ FAPRIVVDP-røTTTDIGSDVTLTCVWVGNPP NOV12b DYSFFTEPVSCEVHNKVGSTNVSTLVNVHFAPRIVVDPKPTTTDIGSDVTLTCVWVGEIP
NOV12C DYSFFTEPVSCEVHNKVGSTNVSTLVNVHFAPRIWDP PTTTDIGSDVTLTCV VGNPP
NOV12d DYSFFTEPVSCEVHN---WGSTNVSTLVNVHFAPRIVVDPKPTTTDIGSDVTLTCV VGNPP
NOV12e DYSFFTEPVSCEVHNKVGSTNVSTLVNVHFAPRIVVDPKPTTTDIGSDVTLTCV VGNPP
NOV12f DYSFFTEPVSCEVHNVGSTNVSTLVNVHFAPRIVVDPKPTTTDIGSDVTLTCVWVGNPP
NOV12g
NOV12 DYSFFTEPVSCEVHNKVGSTNVSTLVNVHFAPRIVVDPKPTTTDIGSDVTLTCVWVGNPP
NOV12i DYSFFTEPVSCEVHNKVGST-tWSTLVNVHFAPRIVVDPKPTTTDIGSDVTLTCVWVGNPP
NOV12J
NOV12k
NOV121
NOVl2m DYSFFTEPVSCEVHNKVGSTNVSTLVNVHFAPRIWDPKPTTTDIGSDVTLTCV VGNPP
NOV12n DYSFFTEPVSCEVHNKVGSTNVSTLVNVHFAPRIVVDPKPTTTDIGSDVTLTCV VGNPP
N0V12O DYSFFTEPVSCEVHNKVGSTNVSTLVNVHFAPRIVVDPKPTTTDIGSDVTLTCV VGNPP
NOV12p DYSFFTEPVSCEVHNKVGSTNVSTLVNVHFAPRIWDPKPTTTDIGSDVTLTCVWVGNPP
NOV12q DYSFFTEPVSCEVHNKVGSTNVSTLVNVHFAPRIVVDPKPTTTDIGSDVTLTCV VGNPP
NOV12a LTLT TKKD SNMVLSNSNQLLLKSVTQADAGTYTCRAIVPRIG
NOV12b PSLSPGPKRTQILGP LLGSPPEAALSAQVLSNSNQLLLKSVTQADAGTYTCRAIVPRIG
NOV12C LTLTWTKKD SNMVLSNSNQLLLKSVTQADAGTYTCRAIVPRIG
NOV12d LTLTWTKKD SNMVLSNSNQLLLKSVTQADAGTYTCRAIVPRIG
NOV12e LTLTWTKKD SNMVLSNSNQLLLKSVTQADAGTYTCRAIVPRIG
NOV12f LTLTWTKKDSN- GPRPPGSPPEAALSAQVLSNSNQLLLKSVTQADAGTYTCRAIVPRIG
NOV12g
NOV12h LTLTWTKKD SNMVLSNSNQLLLKSVTQADAGTYTCRAIVPRIG
NOV12i LTLTWTKK DSNMVLSNSNQLLLKSVTQADAGTYTCRAIVPRIG
NOV12J
NOV12k
NOV121
NOV12m LTLTWTKKD SNMVLSNSNQLLLKSVTQADAGTYTCRAIVPRIG
NOV12n LTLTWTKKD SN VLSNSNQLLLKSVTQADAGTYTCRAIVPRIG
N0V12O LTLTWTKKDSN-MGPRPPGSPPEAALSAQVLSNSNQLLLKSVTQADAGTYTCRAIVPRIG
NOV12p LTLTWTKKD SNMVLSNSNQLLLKSVTQADAGTYTCRAIVPRIG
NOV12q LTLTWTKKDSN-MGPRPPGSPPEAALSAQVLSNSNQLLLKSVTQADAGTYTCRAIVPRIG
NOV12a VAEREVPLYVNGPPIISSEAVQYAVRGDGGKVECFIGSTPPPDRIAWAWKENFLEVGTLE
NOV12b VAEREVPLYVNGPPIISSEAVQYAVRGDGGKVECFIGSTPPPDRIAWAWKENFLEVGTLE
NOV12C VAEREVPLYVNGPPIISSEAVQYAVRGDGGKVECFIGSTPPPDRIAWAWKENFLEVGTLE
NOV12d VAEREVPLYVNGPPIISSEAVQYAVRGDGGKVECFIGSTPPPDRIAWAWKENFLEVGTLE
NOV12e VAEREVPLYVNGPPIISSEAVQYAVRGDGGKVECFIGSTPPPDRIAWAWKENFLEVGTLE
NOV12f VAEREVPLYVNGPPIISSEAVQYAVRGDGGKVECFIGSTPPPDRIAWAWKENFLEVGTLE
NOV12g
NOV12h VAEREVPLYVNGPPIISSEAVQYAVRGDGGKVECFIGSTPPPDRIAWAWKENFLEVGTLE
NOV12i VAEREVPLYVNGPPIISSEAVQYAVRGDGGKVECFIGSTPPPDRIAWAWKENFLEVGTLE
NOV12J
NOV12k
NOV121
NOV12m VAEREVPLYVNGPPIISSEAVQYAVRGDGGKVECFIGSTPPPDRIAWAWKENFLEVGTLE
NOV12n VAEREVPLYVNGPPIISSEAVQYAVRGDGGKVECFIGSTPPPDRIAWAWKENFLEVGTLE
N0V12O VAEREVPLYVNGPPIISSΞAVQYAVRGDGGKVΞCFIGSTPPPDRIAWAWKENFLEVGTLE
NOV12p VAΞREVPLYVNGPPIISSEAVQYAVRGDGGKVECFIGSTPPPDRIAWAWKENFLEVGTLE
NOV12q VAEREVPLYVNGPPIISSEAVQYAVRGDGGKVECFIGSTPPPDRIAWAWKENFLEVGTLE
NOV12a RYTVERTNSGSGVLSTLTINNVMEADFQT----I-YNCTAWNSFGPGTAIIQLEEREVLPVGIIA NOV12b RYTVERTNSGSGVLSTLTINNVMEADFQTHYNCTAWNSFGPGTAIIQLEEREVLPVGIIA NOV12C RYTVERTNSGΞGVLSTLTINNVMEADFQTHYNCTAWNSFGPGTAIIQLEEREVLPVGIIA
NOV12d RYTVERTNSGSGVLSTLTINNVMEADFQTHYNCTAWNSFGPGTAIIQLEEREVLPVGIIA
NOV12e RYTVERTNSGSGVLSTLTINNVME-ADFQTHYNCTAWNSFGPGTAIIQLEEREVLPVGIIA
NOV12f RYTVERTNSGSGVLSTLTINNVMEADFQTHYNCTAWNSFGPGTAIIQLEEREVLPVGIIA
NOV12g
NOV12h RYTVERTNSGSGVLSTLTINNVMEADFQTHYNCTAWNSFGPGTAIIQLEEREVLPVGIIA
NOV12i RYTVERTNSGSGVLSTLTINNVMEADFQTHYNCTAWNSFGPGTAIIQLEEREVLPVGIIA
NOV12J
NOV12k
NOV121
NOV12m RYTVERTNSGSGVLSTLTINNVMEADFQTHYNCTAWNSFGPGTAIIQLEER
NOV12n RYTVERTNSGSGVLSTLTIOT-sTVMEADFQTHYNCTAWNSFGPGTAIIQLEEREVLPVGIIA
N0V12O RYTVERTNSGSGVLSTLTINNVMEADFQTHYNCTAWNSFGPGTAIIQLEEREVLPVGIIA
NOV12p RYTVERTNSGSGVLSTLTINNVMEADFQTHYNCTAWNSFGPGTAIIQLEEREVLPVGIIA
NOV12q RYTVERTNSGSGVLSTLTINNVMEADFQTHYNCTAWNSFGPGTAIIQLEEREVLPVGIIA
NOV12a GATIGASILLIFFFIALVFFLYRRRKGSRKDVTLRKLDIKVETVNREPLTMHSDREDDTA
NOV12b GATIGASILLIFFFIALVFFLYRRRKGSRKDVTLR-KLDIKVETVNREPLTMHSDREDDTA
NOV12C GATIGASILLIFFFIALVFFLYRRRKGSRKDVTLR-KLDIKVETVNREPLTMHSDREDDTA
NOV12d GATIGASILLIFFFIALVFFLYRRRKGSRKDVTLRKLDIKVETVNREPLTMHSDREDDTA
NOV12e GATIGASILLIFFFIALVFFLYRRRKGSRKDVTLRKLDIKVETVNREPLTMHSDREDDTA
NOV12f GATIGASILLIFFFIALVFFLYRRRKGSRKDVTLRKLDIKVETVNREPLT-MHSDREDDTA
NOV12g
NOV12h GATIGASILLIFFFIALVFFLYRRRKGSRKDVTLRIs DIK-VETV-NREPLTiMHSDREDDTA
NOV12i GATIGASILLIFFFIALVFFLYRRRKGSRKDVTLRKLDIKVETVNREPLTMHSDREDDTA
NOV12J
NOV12k
NOV121
NOV12m
NOV12n GATIGASILLIFFFIALVFFLYRRRKGSRKDVTLRKLDIKVETVNREPLT HSDREDDTA
N0V12O GATIGASILLIFFFIALVFFLYRRRKGSRKDVTLRKLDIKVETV-NREPLTMHSDREDDTA
NOV12p GATIGASILLIFFFIALVFFLYRRRKGSRKDVTLRKLDIKVETVNREPLT-HSDREDDTA
NOV12q GATIGASILLIFFFIALVFFLYRRRKGSRKDVTLRKLDIKVETVNREPLTMHSDREDDTA
NOV12a SVSTATRVMKAIYSSFKDDVDLKQDLRCDTIDTREEYE KDPTNGYYNVRAHEDRPSSRA
NOV12b SVSTATRVM-l-^IYSSFKDDVDLKQDLRCDTIDTREEYEMKDPTNGYYNVRAHEDRPSSRA
NOV12C SVSTATRVMKAIYSSFMDDVDLKQDLRCDTIDTREEYEM-iπjPTNGYYNVRAHEDRPSSRA
NOV12d SVSTATRVMKAIYSSF DDVDLKQDLRCDTIDTREEYEMKDPTNGYYNVRAHEDRPSSRA
NOV12e SVSTATRVMKAIYSSF---ΦDVDLKQDLRCDTIDTREEYEMKDPTNGYYNVRAHEDRPSSRA
NOV12f SVSTATRV -l-^IYSSF-raJDVDLKQDLRCDTIDTREEYEMK-DPTNGYYNVRAHEDRPSSRA
NOV12g
NOV12h SVSTATRVMKAIYSSFKDDVDLKQDLRCDTIDTREEYE KDPTNGYYNVRAHEDRPSSRA
NOV12i SVSTATRVMKAIYSSF-raDDVDLKQDLRCDTIDTREEYE ---T)PTNGYY---WRAHEDRPSSRA
NOV12k
NOV121
NOV12m
NOV12n SVSTATRVM---^IYSSF DDVDLKQDLRCDTIDTREEYEMKDPTNGYYNVRAHEDRPSSRA
NOV12O SVSTATRVMKAIYSSFKDDVDLKQDLRCDTIDTREEYEMKDPTNGYYNVRAHEDRPSSRA
NOV12p SVSTATRVMKAIYSSFKDDVDLKQDLRCDTIDTREEYEMKDPTNGYYNVRAHEDRPSSRA
NOV12q SVSTATRV KAIYSSF-TODVDLKQDLRCDTIDTREEYEMK-DPTNGYYNVRAHEDRPSSRA
NOV12a VLYADYRAPGPARFDGRPSSRLSHSSGYAQLNTYSRGPASDYGPEPTPPGPAAPAGTDTT NOV12b VLYADYRAPGPARFDGRPSSRLSHSSGYAQLNTYSRGPASDYGPEPTPPGPAAPAGTDTT NOV12C VLYADYRAPGPARFDGRPSSRLSHSSGYAQLNTYSRGPASDYGPEPTPPGPAAPAGTDTT NOV12d VLYADYRAPGPARFDGRPSSRLSHSSGYAQLNTYSRGPASDYGPEPTPPGPAAPAGTDTT
NOV12e VLYADYRAPGPARFDGRPSSRLSHSSGYAQLNTYSRGPASDYGPEPTPPGPAAPAGTDTT
NOV12f VLYADYRAPGPARFDGRPSSRLSHSSGYAQLNTYSRGPASDYGPEPTPPGPAAPAGTDTT
NOV12g
NOV12h VLYADYRAPGPARFDGRPSSRLSHSSGYAQLNTYSRGPASDYGPEPTPPGPAAPAGTDTT
NOV12i VLYADYRAPGPARFDGRPSSRLSHSSGYAQLNTYSRGPASDYGPEPTPPGPAAPAGTDTT
NOV12k
NOV121
NOV12m
NOV12n VLYADYRAPGPARFDGRPSSRLSHSSGYAQLNTYSRGPASDYGPEPTPPGPAAPAGTDTT
N0V12O VLYADYRAPGPARFDGRPSSRLSHSSGYAQLNTYSRGPASDYGPEPTPPGPAAPAGTDTT
NOV12p VLYADYRAPGPARFDGRPSSRLSHSSGYAQLNTYSRGPASDYGPEPTPPGPAAPAGTDTT
NOV12q VLYADYRAPGPARFDGRPSSRLSHSSGYAQLNTYSRGPASDYGPEPTPPGPA&PAGTDTT
NOV12a SQLSYENYEKFNSHPFPGAAGYPTYRLGYPQAPPSGLERTPYEAYDPIGKYATATRFSYT
NOV12b SQLSYENYEKFNSHPFPGAAGYPTYRLGYPQAPPSGLERTPYEAYDPIGKYATATRFSYT
NOV12C SQLSYENYEKFNSHPFPGAAGYPTYRLGYPQAPPSGLERTPYEAYDPIGKYATATRFSYT
NOV12d SQLSYENYEKFNSHPFPGAAGYPTYRLGYPQAPPSGLERTPYEAYDPIGKYATATRFSYT
NOV12e SQLSYENYEKFNSHPFPGAAGYPTYRLGYPQAPPSGLERTPYEAYDPIGKYATATRFSYT
NOV12f SQLSYENYEKFNSHPFPGAAGYPTYRLGYPQAPPSGLERTPYEAYDPIGKYATATRFSYT
NOV12g
NOV12h SQLSYENYEKFNSHPFPGAAGYPTYRLGYPQAPPSGLERTPYEAYDPIGKYATATRFSYT
NOV12i SQLSYENYEKFNSHPFPGAAGYPTYRLGYPQAPPSGLERTPYEAYDPIGKYATATRFSYT
NOV12J
NOV12k
NOV121
NOV12m
NOV12n SQLSYENYEKFNSHPFPGAAGYPTYRLGYPQAPPSGLERTPYEAYDPIGKYATATRFSYT
N0V12O SQLSYENYEKFNSHPFPGAAGYPTYRLGYPQAPPSGLERTPYEAYDPIGKYATATRFSYT
NOV12p SQLSYENYEKFNSHPFPGAAGYPTYRLGYPQAPPSGLERTPYEAYDPIGKYATATRFSYT
NOV12q SQLSYENYEKFNSHPFPGAAGYPTYRLGYPQAPPSGLERTPYEAYDPIGKYATATRFSYT
NOV12a SQHSDYGQRFQQRMQTHV
NOVl2b SQHSDYGQRFQQRMQTHV
NOV12C SQHSDYGQRFQQRMQTHV
NOVl2d SQHSDYGQRFQQRMQTHVLE-
NOV12e SQHSDYGQRFQQRMQTHWDG
NOV12f SQHSDYGQRFQQRMQTHWD-
NOV12g
NOV12h SQHSDYGQRFQQRMQTHV
NOV12i SQHSDYGQRFQQRMQTHV
NOV12J
NOV12k
NOV121
NOV12m
NOV12n SQHSDYGQRFQQRMQTHV
N0V12O SQHSDYGQRFQQRMQTHV
NOV12p SQHSDYGQRFQQRMQTHV
NOV12q SQHSDYGQRFQQRMQTHV
NOV12a (SEQ ID NO 320)
NOV12b .(SEQ ID NO 322)
NOV12C (SEQ ID NO 324)
NOV12d (SEQ ID NO 326) NOVl2e (SEQ ID NO- 328)
NOV12f (SEQ ID NO 330)
NOVl2g (SEQ ID NO 332)
NOV12h (SEQ ID NO 334)
NOVl2i (SEQ ID NO 336)
NOVl2j (SEQ ID NO 338)
NOV12k (SEQ ID NO 340)
NOVl21 (SEQ ID NO 342)
NOVl2m (SEQ ID NO 344)
NOVl2 (SEQ ID NO 346)
NOVl2o (SEQ ID NO 348)
NOV12p (SEQ ID NO 350)
NOVl2q (SEQ ID NO 352)
Further analysis of the NOVl 2a protein yielded the following properties shown in Table 12C.
Table 12C. Protein Sequence Properties NOV12a
SignalP analysis: Cleavage site between residues 17 and 18
PSORT II analysis:
PSG: a new signal peptide prediction method
N- region: length 0; pos.chg 0; neg.chg 0 H-region: length 12; peak value 10.45 PSG score: 6.05
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2-1) : 0.73 possible cleavage site: between 16 and 17
>>> Seems to have a cleavable signal peptide (1 to 16)
ALOM-. Klein et al's method for TM region allocation Init position for calculation: 17 Tentative number of TMS(s) for the threshold 0. Number of TMS(s) for threshold 0.5: 1 INTEGRAL Likelihood =-12.26 Transmembrane 503 519
PERIPHERAL Likelihood = 3.61 (at 38) ALOM score: -12.26 (number of TMSs: 1)
MTOP : Prediction of membrane topology (Hartmann et al . ) Center position for calculation: 8 Charge difference: -2.0 C(-1.0) - N( 1.0) N >= C: N-terminal side will be inside
>>> membrane topology: type la (cytoplasmic tail 520 to 757)
MITDISC: discrimination of mitochondrial targeting seq R content: 1 Hyd Moment (75): 1.68 Hyd Moment (95): 2.60 G content: 1 D/E content: 2 S/T content: 8 Score: -5.22
Gavel : prediction of cleavage sites for mitochondrial preseq R-2 motif at 32 TRFJSQ NUCDISC: discrimination of nuclear localization signals pat4: RRRK (5) at 522 pat7 : none bipartite : none content of basic residues: 9.6% NLS Score: -0.16
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals : none
SKL: peroxisomal targeting signal in the C-terminus : none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail: too long tail
Dileucine motif in the tail : none checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: cytoplasmic Reliability: 70.6
COIL: Lupas ' s algorithm to detect coiled-coil regions total: 0 residues
Final Results (k = 9/23) :
44.4 %: endoplasmic reticulum
22.2 %: Golgi
22.2 %: extracellular, including cell wall
11.1 %: plasma membrane >> prediction for CG51373 -11 is end (k=9)
A search of the NOV12a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 12D.
In a BLAST search of public sequence databases, the NOVl 2a protein was found to have homology to the proteins shown in the BLASTP data in Table 12E.
PFam analysis predicts that the NOVl 2a protein contains the domains shown in the Table 12F.
Example 13.
The NOVl 3 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 13 A.
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 13B.
Table 13B. Comparison of the NOV13 protein sequences.
NOV13a MGVEDSQRRDPGRGLASCTCCPLTPGK-AGP TFTLLCGLLAATLIQATLSPTAVLILGP
NOV13b MAGPWTFTPLCGLLAATLIQATLSPTAVLILGP
NOV13C MAGP TFTLLCGLLAATLIQATLSPTAVLILGP
NOV13d MAGP TFTLLCGLLAATLIQATLSPTAVLILGP
NOV13e -TGSTMAGP TFTLLCGLLAATLIQATLSPTAVLILGP
NOV13f TGSPTAVLILGP
NOV13g MAGP TFTLLCGLLAATLIQATLSPTAVLILGP NOV13h MAGPWTFTLLCGLLAATLIQATLSPTAVLILGP
NOV13 i MAGPWTFTLLCGLLAATLIQATLSPTAVLILGP
NOV13 j MAGP TFTLLCGLLAATLIQATLSPTAVLILGP
NOV13k PTAVLILGP
NOV131 MAGP TFTLLCGLLAATLIQATLSPTAVLILGP
NOV13a KVI--^KLTQELKDHNATSILQQLPLLSA REKPAGGIPVLGSLVNTVLKHII - -WLKVIT
NOV13b KVI-i^KLTQELKD----π-JATSILQQLPLLSA REKPAGGIPVLGSLVNTVLKHVI - -WLKVIT
NOV13C -WLKVIT
NOV13d KVI-.-ΕSLTQEL-roirøATSILQQLPLLSA REKPAGGIPVLGSLVNTVLKHITPSRLKVIT
NOV13e ---WIK-EKLTQELKDH ATSILQQLPLLSAMREKPAGGIPVLGSLVNTVLKHVI - -WLKVIT
NOV13f - VIKE.--s^TQEL---α-)----π-IATSILQQLPLLSAMREKPAGGIPVLGSLVNTVL-KHVI- -WLKVIT
NOV13g VIK-E-l-siTQEL-roHNATSILQQLPLLSA REKPAGGIPVLGSLVNTVLKHII - -WLKVIT
NOV13Ϊ1 KVIKEKLTQELKDH ATSILQQLPLLSAMREKPAGGIPVLGSLVNTVLKHII- -WLKVIT
NOV13 i KVIKEK TQELKDHNATSILQQLPLLSAMREKPAGGIPVLGSLVNTVLKHVI - -WLKVIT
NOV13J -IWI -EK TQELKDHNATSILQQLPLLSA- REKPAGGIPVLGSLVNTVLKHI I - -WLKVIT
NOV13k KVIKEKLTQELKDH ATSILQQLPLLSA REKPAGGIPVLGSLV TVLKHII- -WLKVIT
NOV131 KVIKEKLTQELK.DHNATSILQQLPLLSAMREKPAGGIPVLGSLVNTVLKHVI- -WLKVIT
NOV13a -A ILQLQVKPSA DQELLVKIPLD VAGFNTPLVKTIVEFHMTTEAQATIRMDTSASGPT
NOV13b ANILQLQVKPS-ANDQELLVKIPLDMVAGFNT
NOV13C ANILQLQVKPSANDQELLVKIPLDMVAGFNTPLVKTIVEFHMTTEAQATIRMDTSASGPT
NOV13d A--.ILQLQVKPSANDQELLVKIPLDMVAGFNTPLVKTIVEFHMTTEAQATIRMDTSASGPT
NOV13e A- ILQLQVKPSAM-DQELLVKIPLDMVAGFNTPLVKTIVEFHMTTEAQATIRi -DTSASGPT
NOVl 3 f ANILQLQVKPSANDQELLVKIPLDMVAGFNTPLVKTIVEFHMTTEAQATIR DTS ASGPT
NOV13g ANILQLQVKPSAN-DQELLVKIPLDMVAGFNTPLVKTIVEFHMTTEAQATIRMDTSASGPT
NOV13.il ANILQLQVKPSANDQELLVKIPLDMVAGFNTPLVKTIVEFH TTEAQATIRMDTSASGPT
NOV13 i A-NILQLQVKPSA-NDQELLVKIPLDMVAGFNTPLVKTIVEFH TTEAQATIRMDTSASGPT
NOV13J -ANILQLQVKPSAN-DQELLVKIPLDMVAGFNTPLVKTIVEFHMTTEAQATIRMDTSASGPT
NOV13k ANILQLQVKPSA DQELLVKIPLDMVAGFNTPLVKTIVEFH TTEAQATIRMDTSASGPT
NOV131 A-NILQLQVKPSANDQELLVKIPLDMVAGFNTPLVKTIVEFHMTTEAQATIRMDTSASGPT
NOV13a RLVLSDCATSHGSLRIQLLHKLSFLVNALAKQVi NLLVPSLPNLVKNQLCPVIEASFNGM
NOV13b LSFLVN-ALAKQViMNLLVPSLPNLVKNQLCPVIEASFNGM
NOV13C RLVLSDCATSHGSLRIQLLHKLSFLVNALAKQVMNLLVPSLPNLVKN
NOV13d RLVLSDCATSHGSLRIQLLHKLSFLVNALAKQVMNLLVPSLPNLVKNQLCPVIEASFNGM
NOV13e RLVLSDCATSHGSLRIQLLHKLSFLVNALAKQVMNLLVPSLPNLVKNQLCPVIEASFNGM
NOV13 f RLVLSDCATSHGSLRIQLLH---S-LSFLVN-ALAKQWINLLVPSLPNLV-KNQLCPVIEASFNGM
NOV13g RLVLSDCATSHGSLRIQLLHKLSFLV ALAKQVMNLLVPSLPNLVKNQLCPVIEASFNGM
NOV13h RLVLSDCATSHGSLRIQLLHKLSFLWALAKQV NLLVPSLPNLVKNQLCPVIEASFNGM
NOV13 i RLVLSDCATSHGSLRIQLLHKLSFLVNALAKQViMNLLVPSLPNLVKNQLCPVIEASFNGM
NOV13J RLVLSDCATSHGSLRIQLLHKLSFLVN-ALAKQVi NLLVPSLPNLVKNQLCPVIEASFHGM
NOV13k RLVLSDCATSHGSLRIQLLHK-LSFLVN-ALAKQV- NLLVPSLPNLVKNQLCPVIEASFNGM
NOV131 RLVLSDCATSHGSLRIQLLH-KLSFLW-ALAKQVi imLVPSL
NOV13a Y-ADLLQLVKVPISLSIDRLEFDLLYPAIKGDTIQLYLGAKLLDS GKVTK F-NNSAASLT
NOV13b YA-DLLQLVKVPISLSIDRLEFDLLYPAIKGDTIQLYLGAKLLDSQGKVTK FNNSAASLT
NOV13C QLVKVPISLSIDRLEFDLLYPAIKGDTIQLYLGAKLLDSQGKVTKWF NSAASLT
NOV13d YADLLQLVKGRCSALSPTFSFTTELASRP G KVTKWFN SAASLT
NOV13e YADLLQLVKVPISLSIDRLEFDLLYPAIKGDTIQLYLGAKLLDSQGKVTK FNNSAASLT
NOV13f YADLLQLVKVPISLSIDRLEFDLLYPAIKGDTIQLYLGAKLLDSQGKVTK-WFNNSAASLT
NOV13g YADLLQLVKGRCSALSPTFSFTTELASRP G KVTKWFNNSAASLT
NOV13 YADLLQLVKVPISLSIDRLEFDLLYPAIKGDTIQLYLGA-KLLDSQGKVTKWFNNSAASLT
NOV13 i Y-ADLLQLVKVPISLSIDRLEFDLLYPAIKGDTIQLYLGAIs iLDSQGKVT-KWFNNSAASLT
NOVl 3 j YADLLQLVKVP I SLS IDRLEFDLLYPAI KGDTIQLYLGAKLLDSQGKVTKWFNNS AASLT NOV13k YADLLQLVKVPISLSIDRLEFDLLYPAIKGDTIQLYLGAKLLDSQGKVTKWFNNSAASLT
NOV131 YADLLQLVKVPISLSIDRLEFDLLYPAIKGDTIQLYLGAKLLDSQGKVTKWFNNSAASLT
NOV13a MPTLDNIPFSLIVS QDWKAAVAAVLSPEEFMVLLDSVLPESAHRLKSSIGL
NOV13b MPTLDNIPFSLIVS QDWKAAVAAVLSPEEFMVLLDSVLPESAHRLKSSIGL
NOV13C MPTLDNIPFSLIVS QDWKAAVAAVLSPEEFMVLLDSVLPESAHRLKSSIGL
NOV13d MPTLDNIPFSLIVS QDWKAAVAAVLSPEEFMVLLDSWNLSTRQRIG
NOV13e MPTLDNIPFSLIVS QDWKAAVAAVLSPEEFMVLLDSWNLSTRQRIG
NOV13f MPTLDNIPFSLIVS QDWKAAVAAVLSPEEFMVLLDSWNLSTRQRIG
NOV13g MPTLDNIPFSLIVS QDWKAAVAAVLSPEEFMVLLDSWNLSTRQRIG
NOV13h MPTLDNIPFSLIVSHPFSLIVSQDWKAAVAAVLSPEEFMVLLDSVLPESAHRLKΞSIGL
NOV13i MPTLDNIPFSLIVS QDWKAAVAAVLSPEEFMVLLDSWNLSTRQRIG
NOV13j MPTLDNIPFSLVS QDWKAAVAAVLSPEEFMVLLDSVLPESAHRLKSSIGL
NOV13k MPTLDNIPFSLIVS QDWKAAVAAVLSPEEFMVLLDSVLPESAHRLKSSIGL
NOV131 MPTLDNIPFSLIVS QDWKAAVAAVLSPEEFMVLLDSVLPES-AHRLKSSIGL
NOV13a INEKAADKLGSTQIVKILTQDTPEFFIDQGHAKVAQLIVLEVFPSSEALRPLFTLGIEAS
NOV13b INEK-z^ADKLGSTQIVKILTQDTPEFFIDQGHAKVAQLIVLEVFPSSEALRPLFTLGIEAS
NOV13C INEKAADKLGSTQIVKILTQDTPEFFIDQGHAKVAQLIVLEVFPSSEALRPLFTLGIEAS
NOV13d P P RP
NOV13e P P RP
NOV13f P P RP
NOV13g P P RP
NOVl3h INEK EAS
NOV13i P P RP
NOV13J INEKAADKLGSTQIVKILTQDTPEFFIDQGHAKVAQLIVLEVFPSSEALRPLFTLGIEAS
NOV13k INEKAADKLGPTQIVKILTQDTPEFFIDQGHAKVAQLIVLEVFPSSEALRPLFTLGIEAS
NOV131 INEKAADKLGSTQIVKILTQDTPEFFIDQGHAKVAQLIVLEVFPSSEALRPLFTLGIEAS
NOV13a SEAQFYTKGDQLILNLNNISSDRIQLMNSGIGWFQCPFSLSQPDVLKNIITEIIHSILLP
NOV13b SEAQFYTKGDQLILNLNNISSDRIQLMNSGIGWFQ PDVLKNIITEIIHSILLP
NOV13C SEAQFYTKGDQLILNLNNISSDRIQLMNSGIGWFQ PDVLKNIITEIIHSILLP
NOV13d HHRNFLNTGCP
NOV13e HHRNFLNTGCPLEG
NOV13f HHRNFLNTGCPLE
NOVl3g HHRNFLNTGCP
NOV13h SEAQFYTKGDQLILNLNNISSDRIQLMNSGIGWFQ PDVLKNIITEIIHSILLP
NOV13i HHRNFLNTGCP
NOV13j SEAQFYTKGDQLILNLNNISSDRIQLMNSGIGWFQ PDVLKNIITEIIHSILLP
NOV13k SEAQFYTKGDQLILNLNNISSDRIQLMNSGIGWFQ PDVLKNIITEIIHSILLP
NOV131 SEAQFYTKGDQLILNLNNISSDRIQLMNSGIGWFQ PDVLKNIITEIIHSILLP
NOV13a NQNGKLRSGVPVSLVKALGFEAAESSLTKDALVLTPASLWKPSSPVSQ
NOV13b NQNGKLRSGVPVSLVKALGFEAAESSLSKDALVLTPASLWKPTSPVSQ
NOV13C NQNGKLRSGVPVSLVKALGFEAAESSLSKDALVLTPASLWKPTSPVSQ
NOV13d
NOV13e
NOV13f
NOV13g
NOV13h NQNGKLRSGVPVSLVKALGFEAAESSLTKDALVLTPASLWKPSSPVSQ
NOV13i
NOV13j NQNG--aRSGVPVSLV---0LGFEAAESSLTKDALVLTPASLWKPSSPVSQ
NOV13k NQNGKLRSGVPVSLVKA-LGFEAAESSLTKDALVLTPASLWKPSSPVSQ
NOV131 NQNGKLRSGVPVSLVKALGFEAAESSLSKDALVLTPASLWKPTSPVSQ NOVl3a (SEQ ID NO 370)
NOV13b (SEQ ID NO 372)
NOVl3c (SEQ ID NO 374)
NOVl3d (SEQ ID NO 376)
NOV13e (SEQ ID NO 378)
NOV13f (SEQ ID NO 380)
NOVl3g (SEQ ID NO 382)
NOVl3h (SEQ ID NO 384)
NOV13i (SEQ ID NO 386)
NOV13J (SEQ ID NO 388)
NOVl3k (SEQ ID NO 390)
NOVl31 (SEQ ID NO . 392)
Further analysis ofthe NOVl3a protein yielded the following properties shown in Table 13C.
Table 13C. Protein Sequence Properties NOV13a
SignalP analysis: Cleavage site betweenresidues 52 and 53
PSORT π analysis:
PSG: a new signal peptide prediction method
N-region: length 10; pos.chg 2; neg.chg 3 H-region: length 2; peak value 0.00 PSG score: -4.40
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): 1.17 possible cleavage site: between 48 and 49
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al ' s method for TM region allocation Init position for calculation: 1
Tentative number of TMS(s) for the threshold 0.5: 2 Number of TMS(s) for threshold 0.5: 1
INTEGRAL Likelihood = -2.71 Transmembrane 34 - 50 PERIPHERAL Likelihood = 1.16 (at 200) ALOM score: -2.71 (number of TMSs: 1)
MTOP: Prediction of membrane topology (Hartmann et al.) Center position for calculation: 41 Charge difference: -0.5 C( 1.5) - N( 2.0) N >= C: N-terminal side will be inside
>>> membrane topology: type 2 (cytoplasmic tail 1 to 34)
MITDISC: discrimination of mitochondrial targeting seq R content: 0 Hyd Moment(75): 8.50 Hyd Moment (95): 5.94 G content: 1 D/E content: 2 S/T content: 0 Score: -7.21
Gavel : prediction of cleavage sites for mitochondrial preseq cleavage site motif not found NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite: none content of basic residues: 8.3% NLS Score: -0.47
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals: none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern -. MGVEDSQ
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail : none
Dileucine motif in the tail : none checking 63 PROSITE DNA binding motifs : none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: cytoplasmic Reliability: 76.7
COIL: Lupas ' s algorithm to detect coiled-coil regions total: 0 residues
Final Results (k = 9/23)
30.4 % : mitochondrial 26.1 % : cytoplasmic 17.4 %: Golgi
8.7 %: endoplasmic reticulum
4.3 % : vacuolar 4 . 3 % : extracellular, including cell wall
4 . 3 % : nuclear
4.3 %: vesicles of secretory system
» prediction for CG51622-04 is mit (k=23)
A search of the NOV13a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 13D.
In a BLAST search of public sequence databases, the NOV13a protein was found to have homology to the proteins shown in the BLASTP data in Table 13E.
PFam analysis predicts that the NOVl 3a protein contains the domains shown in the Table 13F.
Table 13F. Domain Analysis of NOV13a
Identities/ Pfam Domain NOV13a Match Region | Similarities ( Expect Value for the Matched Region
Example 14.
The NOVl 4 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 14A.
APRLSRPITLDVLYAPRNLRLTYLLESHGGQLALVLCTVDSRPPAQLALSHAGRLLASSTAA.SVPNT
L
RLELRGPQPRDEGFYSCSARSPLGQANTSLELRLEGVRVILAPEAAVPEGAPITVTCADPAAHAPTL
Y
T YHNGR LQEGPAASLSFLVATRAHAGAYSCQAQDAQGTRSSRPAALQVLYAPQDTVLSSFRDSRA
R
SMAVIQCTVDSEPPAELALSHDGKVLATSSGVHSLASGTGHVQVARNALRLQVQDVPAGDDTYVCTA
Q
NLLGSISTIGRLQVEGARWAEPGLDVPEGAALNLSCRLLGGPGPVGNSTFA F NDRRLHAEPVPT
L
AFT-l-rVARAQAGMYHCLAELPTGAAASAPVMLRVLYPPKTPT- MVFVEPEGGLRGILDCRVDSEPLAS
L
TLHLGSRLVASSQPQGAPAEPHIHVLASPNALRVDIEALRPSDQGEYICSASNVLGSASTSTYFGVR
A
LHRLHQFQQLLWVLGLLVGLLLLLLGLGACYTWRRRRVCKQSMGENSVEMAFQKETTQLIDPDAATC
E
TSTCAPPLG
NOV14h, SNP13382490 of SEQ ED NO: 411 5103 bp CG51821-01, DNA Sequence ORF Start: ATG at 1 ORF Stop: TGA at 5101
SNP Pos: 4056 SNP Change: C to T
ATGGGCTTCTTGCCCAAGCTTCTCCTCCTGGCCTCAGCCGTTCTTCCCCCAGGCCAGGCCTCATGGGG CGTCTCCAGTCCCCAGGACGTGCAGGGTGTGAAGGGGTCTTGCCTGCTTATCCCCTGCATCTTCAGCT TCCCTGCCGACGTGGAGGTGCCCGACGGCATCACGGCCATCTGGTACTACGACTACTCGGGCCAGCGG CAGGTGGTGAGCCACTCGGCGGACCCCAAGCTGGTGGAGGCCCGCTTCCGCGGCCGCACCGAGTTCAT GGGGAACCCCGAGCACAGGGTGTGCAACCTGCTGCTGAAGGACCTGCAGCCCGAGGACTCTGGTTCCT ACAACTTCCGCTTCGAGATCAGTGAGGTCAACCGCTGGTCAGATGTGAAAGGCACCTTGGTCACAGTA ACAGGTGATCCCAGGGTGCCCACCATTGCCTCCCCGGTGGAGCTTCTCGAGGGCACAGAGGTGGACTT CAACTGCTCCACTCCCTACGTATGCCTGCAGGAGCAGGTCAGACTGCAGTGGCAAGGCCAGGACCCTG CTCGCTCTGTCACCTTCAACAGCCAGAAGTTTGAGCCCACCGGCGTCGGCCACCTGGAGACCCTCCAC ATGGCCATGTCCTGGCAGGACCACGGCCGGATCCTGCGCTGCCAGCTCTCCGTGGCCAATCACAGGGC TCAGAGCGAGATTCACCTCCAAGTGAAGTGTGCCCCCAAGGGTGTGAAGATCCTCCTCAGCCCCTCGG GGAGGAACATCCTTCCAGGTGAGCTGGTCACACTCACCTGCCAGGTGAACAGCAGCTACCCTGCAGTC AGTTCCATTAAGTGGCTCAAGGATGGGGTACGCCTCCAAACCAAGACTGGTGTGCTGCACCTGCCCCA GGCAGCCTGGAGCGATGCTGGCGTCTACACCTGCCAAGCTGAGAACGGCGTGGGCTCTTTGGTCTCAC CCCCCATCAGCCTCCACATCTTCGTGGCTGAGGTCCAGGTGAGCCCAGCAGGTCCCATCCTGGAGAAC CAGACAGTGACACTAGTCTGCAACACACCCAATGAGGCACCCAGTGATCTCCGCTACAGCTGGTACAA GAACCATGTCCTGCTGGAGGATGCCCACTCCCATACCCTCCGGCTGCACTTGGCCACTAGGGCTGATA CTGGCTTCTACTTCTGTGAGGTGCAGAACGTCCATGGCAGCGAGCGCTCGGGCCCTGTCAGCGTGGTA GTCACAGACCCGCCTCTCACTCCAGTCCTGACAGCCTTCCTGGAGACCCAGGCGGGACTTGTGGGCAT CCTTCACTGCTCTGTGGTCAGTGAGCCCCTGGCCACACTGGTGCTGTCACATGGGGGTCATATCCTGG CCTCCACCTCCGGGGACAGTGATCACAGCCCACGCTTCAGTGGTACCTCTGGTCCCAACTCCCTGCGC CTGGAGATCCGAGACCTGGAGGAAACTGACAGTGGGGAGTACAAGTGCTCAGCCACCAACTCCCTTGG AAATGCAACCTCCACCCTGGACTTCCATGCCAATGTCGCCCGTCTCCTCATCAGCCCGGCAGCCGAGG TGGTGGAAGGACAGGCAGTGACACTGAGCTGCAGAAGCGGCCTAAGCCCCACACCTGATGCCCGCTTC TCCTGGTACCTGAATGGAGCCCTGCTTCACGAGGGTCCCGGCAGCAGCCTCCTGCTCCCCGCGGCCTC CAGCACTGACGCCGGCTCATACCACTGCCGGGCCCGGGACGGCCACAGTGCCAGTGGCCCCTCTTCGC CAGCTGTTCTCACTGTGCTCTGTGAGCAGCCACCACGACAACCAACATTCACCACCAGGCTGGACCTT GATGCCGCTGGGGCCGGGGCTGGACGGCGAGGCCTCCTTTTGTGCCGTGTGGACAGCGACCCCCCCGC CAGGCTGCAGCTGCTCCACAAGGACCGTGTTGTGGCCACTTCCCTGCCATCAGGGGGTGGCTGCAGCA CCTGTGGGGGCTGTTCCCCACGCATGAAGGTCACCAAAGCCCCCAACTTGCTGCGTGTGGAGATTCAC AACCCTTTGCTGGAAGAGGAGGGCTTGTACCTCTGTGAGGCCAGCAATGCCCTGGGCAACGCCTCCAC CTCAGCCACCTTCAATGGCCAGGCCACTGTCCTGGCCATTGCACCATCACACACACTTCAGGAGGGCA CAGAAGCCAACTTGACTTGCAACGTGAGCCGGGAAGCTGCTGGCAGCCCTGCTAACTTCTCCTGGTTC CGAAATGGGGTGCTGTGGGCCCAGGGTCCCCTGGAGACCGTGACACTGCTGCCCGTGGCCAGAACTGA TGCTGCCCTTTACGCCTGCCGCATCCTGACTGAGGCTGGTGCCCAGCTCTCCACTCCCGTGCTCCTGA GTGTACTCTATCCCCCGGACCGTCCAAAGCTGTCAGCCCTCCTAGACATGGGCCAGGGCCACATGGCT CTGTTCATCTGCACTGTGGACAGCCGCCCCCTGGCCTTGCTGGCCTTGTTCCATGGGGAGCACCTCCT GGCCACCAGCCTGGGTCCCCAGGTCCCATCCCATGGTCGGTTCCAGGCTAAAGCTGAGGCCAACTCCC TGAAGTTAGAGGTCCGAGAACTGGGCCTTGGGGACTCTGGCAGCTACCGCTGTGAGGCCACAAATGTT CTTGGATCATCCAACACCTCACTCTTCTTCCAGGTCCGAGGTGCCTGGGTCCAGGTGTCACCATCACC: TGAGCTCCAAGAGGGCCAGGCTGTGGTCCTGAGCTGCCAGGTACACACAGGAGTCCCAGAGGGGACCT CATATCGTTGGTATCGGGATGGCCAGCCCCTCCAGGAGTCGACCTCGGCCACGCTCCGCTTTGCAGCC ATAACTTTGACACAAGCTGGGGCCTATCATTGCCAAGCCCAGGCCCCAGGCTCAGCCACCACGAGCCT AGCTGCACCCATCAGCCTCCACGTGTCCTGTAAGGATGCCCCACGCCACGTCACACTCACTACCCTGA TGGACACAGGCCCTGGACGACTGGGCCTCCTCCTGTGCCGTGTGGACAGTGACCCTCCGGCCCAGCTG CGGCTGCTCCACGGGGATCGCCTTGTGGCCTCCACCCTACAAGGTGTGGGGGGACCCGAAGGCAGCTC TCCCAGGCTGCATGTGGCTGTGGCCCCCAACACACTGCGTCTGGAGATCCACGGGGCTATGCTGGAGG ATGAGGGTGTCTATATCTGTGAGGCCTCCAACACCCTGGGCCAGGCCTCGGCCTCAGCTGACTTCGAC GCTCAAAGCTGTGAATGTGCAGGTGTGGCCCGGGGCTACCGTGCGGGAGGGGCAGCTGGTGAACCTGA
CCTGCCTTGTGTGGACCACTCACCCGGCCCAGCTCACCTACACATGGTACCAGGATGGGCAGCAGCG
C
CTGGATGCCCACTCCATCCCCCTGCCCAACGTCACAGTCAGGGATGCCACCTCCTACCGCTGCGGTG
T
GGGCCCCCCTGGTCGGGCACCCCGCCTCTCCAGACCTATCACCTTGGACGTCCTCACGCGCCCCGCA
A
CCTGCGCCTGACCTACCTCCTGGAGAGCCATGGCGGGCAGCTGGCCCTGGTACTGTGCACTGTGGAC
A
GCCGCCCGCCCGCCCAGCTGGCCCTCAGCCACGCCGGTCGCCTCTTGGCCTCCTCGACAGCAGCCTC
T
GTCCCCAACACCCTGCGCCTGGAGCTGCGAGGGCCACAGCCCAGGGATGAGGGTTTCTACAGCTGCT
C
TGCCCGCAGCCCTCTGGGCCAGGCCAACACGTCCCTGGAGCTGCGGCTGGAGGTGCGGGTGATCCTG
G
CTCCGGAGGCTGCCGTGCCTGAAGGTGCCCCCATCACAGTGACCTGTGCGGACCCTGCTGCCCACGC
A
CCCACACTCTATACTTGGTACCACAACGGTCGTTGGCTGCAGGAGGGTCCAGCTGCCTCACTCTCAT
T
CCTGGTGGCCACGCGGGCTCATGCAGGCGCCTACTCTTGCCAGGCCCAGGATGCCCAGGGCACCCGC
A
GCTCCCGTCCTGCTGCCCTGCAAGTCCTCTGTGCCCCTCAGGATGCTGTCCTGTCCTCCTTCCGGGA
C
TCCAGGGCCAGATCCATGGCTGTGATACAGTGCACTGTGGACAGTGAGCCACCTGCTGAGCTGGCCC
T
ATCTCATGATGGCAAGGTGCTGGCCACGAGCAGCGGGGTCCACAGCTTGGCATCAGGGACAGGCCAT
G
TCCAGGTGGCCCGAAACGCCCTACGGCTGCAGGTGCAAGATGTGCCTGCAGGTGATGACACCTATGT
T
TGCACAGCCCAAAACTTGCTGGGCTCAATCAGCACCATCGGGCGGTTGCAGGTAGAAGGTGAGTGGC
G
CGTGGTGGCAGAGCCTGGCCTGGACGTGCCTGAGGGCGCTGCCCTGAACCTCAGCTGCCGCCTCCTG
G
GTGGCCCTGGGCCTGTGGGCAACTCCACCTTTGCATGGTTCTGGAATGACCGGCGGCTGCACGCGGA
G
CCTGTGCCCACTCTCGCCTTCACCCACGTGGCTCGTGCTCAAGCTGGGATGTACCACTGCCTGGCTG
A
GCTCCCCACTGGGGCTGCTGCCTCTGCTCCAGTCATGCTCCGTGTGCTCTACCCTCCCAAGACGCCC
A
CCATGATGGTCTTCGTGGAGCCTGAGGGTGGCCTCCGGGGCATCCTGGATTGCCGAGTGGACAGCGA
G
CCGCTCGCCAGCCTGACTCTCCACCTTGGCAGTCGACTGGTGGCCTCCAGTCAGCCCCAGGGTGCTC
C
TGCAGAGCCACACATCCATGTCCTGGCTTCCCCCAATGCCCTGAGGGTGGACATCGAGGCGCTGAGG
C
CCAGCGACCAAGGGGAATACATCTGTTCTGCCTCAAATGTCCTGGGCCCTGCCTCTACCTCCACCTA
C
TTTGGGGTCAGAGCCCTGCACCGCCTGCATCAGTTCCAGCAGCTGCTCTGGGTCCTGGGACTGCTGG
T
GGGCCTCCTGCTCCTGCTGTTGGGCCTGGGGGCCTGCTACACCTGGAGAAGGAGGCGTGTTTGTAAG
C TCCTGGTACCTGAATGGAGCCCTGCTTCACGAGGGTCCCGGCAGCAGCCTCCTGCTCCCCGCGGCCTC CAGCACTGACGCCGGCTCATACCACTGCCGGGCCCGGGACGGCCACAGTGCCAGTGGCCCCTCTTCGC CAGCTGTTCTCACTGTGCTCTGTGAGCAGCCACCACGACAACCAACATTCACCACCAGGCTGGACCTT GATGCCGCTGGGGCCGGGGCTGGACGGCGAGGCCTCCTTTTGTGCCGTGTGGACAGCGACCCCCCCGC CAGGCTGCAGCTGCTCCACAAGGACCGTGTTGTGGCCACTTCCCTGCCATCAGGGGGTGGCTGCAGCA CCTGTGGGGGCTGTTCCCCACGCATGAAGGTCACCAAAGCCCCCAACTTGCTGCGTGTGGAGATTCAC AACCCTTTGCTGGAAGAGGAGGGCTTGTACCTCTGTGAGGCCAGCAATGCCCTGGGCAACGCCTCCAC CTCAGCCACCTTCAATGGCCAGGCCACTGTCCTGGCCATTGCACCATCACACACACTTCAGGAGGGCA CAGAAGCCAACTTGACTTGCAACGTGAGCCGGGAAGCTGCTGGCAGCCCTGCTAACTTCTCCTGGTTC CGAAATGGGGTGCTGTGGGCCCAGGGTCCCCTGGAGACCGTGACACTGCTGCCCGTGGCCAGAACTGA TGCTGCCCTTTACGCCTGCCGCATCCTGACTGAGGCTGGTGCCCAGCTCTCCACTCCCGTGCTCCTGA GTGTACTCTATCCCCCGGACCGTCCAAAGCTGTCAGCCCTCCTAGACATGGGCCAGGGCCACATGGCT CTGTTCATCTGCACTGTGGACAGCCGCCCCCTGGCCTTGCTGGCCTTGTTCCATGGGGAGCACCTCCT GGCCACCAGCCTGGGTCCCCAGGTCCCATCCCATGGTCGGTTCCAGGCTAAAGCTGAGGCCAACTCCC TGAAGTTAGAGGTCCGAGAACTGGGCCTTGGGGACTCTGGCAGCTACCGCTGTGAGGCCACAAATGTT CTTGGATCATCCAACACCTCACTCTTCTTCCAGGTCCGAGGTGCCTGGGTCCAGGTGTCACCATCACC TGAGCTCCAAGAGGGCCAGGCTGTGGTCCTGAGCTGCCAGGTACACACAGGAGTCCCAGAGGGGACCT CATATCGTTGGTATCGGGATGGCCAGCCCCTCCAGGAGTCGACCTCGGCCACGCTCCGCTTTGCAGCC ATAACTTTGACACAAGCTGGGGCCTATCATTGCCAAGCCCAGGCCCCAGGCTCAGCCACCACGAGCCT AGCTGCACCCATCAGCCTCCACGTGTCCTGTAAGGATGCCCCACGCCACGTCACACTCACTACCCTGA TGGACACAGGCCCTGGACGACTGGGCCTCCTCCTGTGCCGTGTGGACAGTGACCCTCCGGCCCAGCTG CGGCTGCTCCACGGGGATCGCCTTGTGGCCTCCACCCTACAAGGTGTGGGGGGACCCGAAGGCAGCTC TCCCAGGCTGCATGTGGCTGTGGCCCCCAACACACTGCGTCTGGAGATCCACGGGGCTATGCTGGAGG ATGAGGGTGTCTATATCTGTGAGGCCTCCAACACCCTGGGCCAGGCCTCGGCCTCAGCTGACTTCGAC GCTCAAAGCTGTGAATGTGCAGGTGTGGCCCGGGGCTACCGTGCGGGAGGGGCAGCTGGTGAACCTGA
CCTGCCTTGTGTGGACCACTCACCCGGCCCAGCTCACCTACACATGGTACCAGGATGGGCAGCAGCG
C
CTGGATGCCCACTCCATCCCCCTGCCCAACGTCACAGTCAGGGATGCCACCTCCTACCGCTGCGGTG
T
GGGCCCCCCTGGTCGGGCACCCCGCCTCTCCAGACCTATCACCTTGGACGTCCTCACGCGCCCCGCA
A
CCTGCGCCTGACCTACCTCCTGGAGAGCCATGGCGGGCAGCTGGCCCTGGTACTGTGCACTGTGGAC
A
GCCGCCCGCCCGCCCAGCTGGCCCTCAGCCACGCCGGTCGCCTCTTGGCCTCCTCGACAGCAGCCTC
T
GTCCCCAACACCCTGCGCCTGGAGCTGCGAGGGCCACAGCCCAGGGATGAGGGTTTCTACAGCTGCT
C
TGCCCGCAGCCCTCTGGGCCAGGCCAACACGTCCCTGGAGCTGCGGCTGGAGGTGCGGGTGATCCTG
G
CTCCGGAGGCTGCCGTGCCTGAAGGTGCCCCCATCACAGTGACCTGTGCGGACCCTGCTGCCCACGC
A
CCCACACTCTATACTTGGTACCACAACGGTCGTTGGCTGCAGGAGGGTCCAGCTGCCTCACTCTCAT
T
CCTGGTGGCCACGCGGGCTCATGCAGGCGCCTACTCTTGCCAGGCCCAGGATGCCCAGGGCACCCGC
A
GCTCCCGTCCTGCTGCCCTGCAAGTCCTCTGTGCCCCTCAGGACGCTGTCCTGTCCTCCTTCCGGGA
C
TCCAGGGCCAGATCCATGGCTGTGATACAGTGCACTGTGGACAGTGAGCCACCTGCTGAGCTGGCCC
T
ATCTCATGATGGCAAGGTGCTGGCCACGAGCAGCGGGGTCCACAGCTTGGCATCAGGGACAGGCCAT
G
TCCAGGTGGCCCGAAACGCCCTACGGCTACAGGTGCAAGATGTGCCTGCAGGTGATGACACCTATGT
T
TGCACAGCCCAAAACTTGCTGGGCTCAATCAGCACCATCGGGCGGTTGCAGGTAGAAGGTGAGTGGC
G
CGTGGTGGCAGAGCCTGGCCTGGACGTGCCTGAGGGCGCTGCCCTGAACCTCAGCTGCCGCCTCCTG
G
GTGGCCCTGGGCCTGTGGGCAACTCCACCTTTGCATGGTTCTGGAATGACCGGCGGCTGCACGCGGA
G
CCTGTGCCCACTCTCGCCTTCACCCACGTGGCTCGTGCTCAAGCTGGGATGTACCACTGCCTGGCTG GCTCCCCACTGGGGCTGCTGCCTCTGCTCCAGTCATGCTCCGTGTGCTCTACCCTCCCAAGACGCCC
A
CCATGATGGTCTTCGTGGAGCCTGAGGGTGGCCTCCGGGGCATCCTGGATTGCCGAGTGGACAGCGA
G
CCGCTCGCCAGCCTGACTCTCCACCTTGGCAGTCGACTGGTGGCCTCCAGTCAGCCCCAGGGTGCTC
C
TGCAGAGCCACACATCCATGTCCTGGCTTCCCCCAATGCCCTGAGGGTGGACATCGAGGCGCTGAGG
C
CCAGCGACCAAGGGGAATACATCTGTTCTGCCTCAAATGTCCTGGGCCCTGCCTCTACCTCCACCTA
C
TTTGGGGTCAGAGCCCTGCACCGCCTGCATCAGTTCCAGCAGCTGCTCTGGGTCCTGGGACTGCTGG
T
GGGCCTCCTGCTCCTGCTGTTGGGCCTGGGGGCCTGCTACACCTGGAGAAGGAGGCGTGTTTGTAAG
C
AGAGCATGGGCGAGAATCCAGGGCGGGCATCGTCTTTCCATTTACTGCCTCTAGCTGGGTCTTCAAG
G
TGA
NOV14i, SNP13382489 of SEQ ID NO: 414 1700 aa MW at 180833. OkD
CG51821-01, Protein Sequence |SNP Pos: 1415 [SNP Change: Leu to Leu
MGFLPKLLLLASAVLPPGQAS GVSSPQDVQGVKGSCLLIPCIFSFPADVEVPDGITAI YYDYSGQR QWSHSADPKLVEARFRGRTEFMGNPEHRVCNLLLKDLQPEDSGSYNFRFEISEVNR SDVKGTLVTV TGDPRVPTIASPVELLEGTEVDFNCSTPYVCLQEQVRLQWQGQDPARSVTFNSQKFEPTGVGHLETLH M-AMS QDHGRILRCQLSVANHRAQSEIHLQVKCAPKGVKILLSPSGRNILPGELVTLTCQVNSSYPAV SSIKWLKDGVRLQTKTGVLHLPQAA SDAGVYTCQAENGVGSLVSPPISLHIFVAEVQVSPAGPILEN QTVTLVCNTPNEAPSDLRYS YKNHVLLEDAHSHTLRLHLATRADTGFYFCEVQNVHGSERSGPVSW VTDPPLTPVLTAFLETQAGLVGILHCSWSEPLATLVLSHGGHILASTSGDSDHSPRFSGTSGPNSLR LEIRDLEETDSGEYKCSATNSLGNATSTLDFHANVARLLISPAAEWEGQAVTLSCRSGLSPTPDARF S YLNGALLHEGPGSSLLLPAASSTDAGSYHCRARDGHSASGPSSPAVLTVLCEQPPRQPTFTTRLDL DAAGAGAGRRGLLLCRVDSDPPARLQLLH-raDRVVATSLPSGGGCSTCGGCSPRMKVTKAPNLLRVEIH NPLLEEEGLYLCEASNALGNASTSATFNGQATVLAIAPSHTLQEGTEANLTCNVSREAAGSPANFS F RNGVLWAQGPLETVTLLPVARTDAALYACRILTEAGAQLSTPVLLSVLYPPDRPKLSALLDMGQGHiiA LFICTVDSRPLALLALFHGEHLLATSLGPQVPSHGRFQAKAEANSLKLEVRELGLGDSGSYRCEATNV LGSSNTSLFFQVRGAWVQVSPSPELQEGQAWLSCQVHTGVPEGTSYR YRDGQPLQESTSATLRFAA ITLTQAGAYHCQAQAPGSATTSLAAPISLHVSCKDAPRHVTLTTLMDTGPGRLGLLLCRVDSDPPAQL RLLHGDRLVASTLQGVGGPEGSSPRLHVAVAPNTLRLEIHGAMLEDEGVYICEASNTLGQASASADFD AQSCΞCAGVARGYRAGGAAGEPDLPCVDHSPGPAHLHMVPG AAAPGCPLHPPAQRHSQGCHLLPLRC GPP SGTPPLQTYHLGRPHAPRNLRLTYLLESHGGQLALVLCTVDSRPPAQLALSHAGRLLASSTAAS VPNTLRLELRGPQPRDEGFYSCSARSPLGQANTSLELRLEVRVILAPEAAVPEGAPITVTCADPAAHA PTLYTWYHNGR LQEGPAASLSFLVATRAHAGAYSCQAQDAQGTRSSRPAALQVLCAPQDAVLSSFRD SRARSMAVIQCTVDSEPPAELALSHDGKVLATSSGVHSLASGTGHVQVARNALRLQVQDVPAGDDTYV CTAQNLLGSISTIGRLQVEGEWRWAEPGLDVPEGAALNLSCRLLGGPGPVGNSTFA F NDRRLHAE PVPTLAFTHVARAQAGMYHCLAELPTGAAASAPVMLRVLYPPKTPTMMVFVEPEGGLRGILDCRVDSE PLASLTLHLGSRLVASSQPQGAPAEPHIHVLASPNALRVDIEALRPSDQGEYICSASNVLGPASTSTY FGVRALHRLHQFQQLL VLGLLVGLLLLLLGLGACYT RRRRVCKQSMGENPGRASSFHLLPLAGSSR
NOV14J, SNP13377616 of SEQ ID NO: 415 5103 bp CG51821-01, DNA Sequence ORF Start: ATG at 1 ORF Stop: TGA at 5101
SNP Pos: 4768 SNP Change: C to T
ATGGGCTTCTTGCCCAAGCTTCTCCTCCTGGCCTCAGCCGTTCTTCCCCCAGGCCAGGCCTCATGGGG CGTCTCCAGTCCCCAGGACGTGCAGGGTGTGAAGGGGTCTTGCCTGCTTATCCCCTGCATCTTCAGCT TCCCTGCCGACGTGGAGGTGCCCGACGGCATCACGGCCATCTGGTACTACGACTACTCGGGCCAGCGG CAGGTGGTGAGCCACTCGGCGGACCCCAAGCTGGTGGAGGCCCGCTTCCGCGGCCGCACCGAGTTCAT GGGGAACCCCGAGCACAGGGTGTGCAACCTGCTGCTGAAGGACCTGCAGCCCGAGGACTCTGGTTCCT ACAACTTCCGCTTCGAGATCAGTGAGGTCAACCGCTGGTCAGATGTGAAAGGCACCTTGGTCACAGTA ACAGGTGATCCCAGGGTGCCCACCATTGCCTCCCCGGTGGAGCTTCTCGAGGGCACAGAGGTGGACTT CAACTGCTCCACTCCCTACGTATGCCTGCAGGAGCAGGTCAGACTGCAGTGGCAAGGCCAGGACCCTG CTCGCTCTGTCACCTTCAACAGCCAGAAGTTTGAGCCCACCGGCGTCGGCCACCTGGAGACCCTCCAC ATGGCCATGTCCTGGCAGGACCACGGCCGGATCCTGCGCTGCCAGCTCTCCGTGGCCAATCACAGGGC TCAGAGCGAGATTCACCTCCAAGTGAAGTGTGCCCCCAAGGGTGTGAAGATCCTCCTCAGCCCCTCGG GGAGGAACATCCTTCCAGGTGAGCTGGTCACACTCACCTGCCAGGTGAACAGCAGCTACCCTGCAGTC AGTTCCATTAAGTGGCTCAAGGATGGGGTACGCCTCCAAACCAAGACTGGTGTGCTGCACCTGCCCCA GGCAGCCTGGAGCGATGCTGGCGTCTACACCTGCCAAGCTGAGAACGGCGTGGGCTCTTTGGTCTCAC CCCCCATCAGCCTCCACATCTTCGTGGCTGAGGTCCAGGTGAGCCCAGCAGGTCCCATCCTGGAGAAC CAGACAGTGACACTAGTCTGCAACACACCCAATGAGGCACCCAGTGATCTCCGCTACAGCTGGTACAA GAACCATGTCCTGCTGGAGGATGCCCACTCCCATACCCTCCGGCTGCACTTGGCCACTAGGGCTGATA CTGGCTTCTACTTCTGTGAGGTGCAGAACGTCCATGGCAGCGAGCGCTCGGGCCCTGTCAGCGTGGTA GTCACAGACCCGCCTCTCACTCCAGTCCTGACAGCCTTCCTGGAGACCCAGGCGGGACTTGTGGGCAT CCTTCACTGCTCTGTGGTCAGTGAGCCCCTGGCCACACTGGTGCTGTCACATGGGGGTCATATCCTGG CCTCCACCTCCGGGGACAGTGATCACAGCCCACGCTTCAGTGGTACCTCTGGTCCCAACTCCCTGCGC CTGGAGATCCGAGACCTGGAGGAAACTGACAGTGGGGAGTACAAGTGCTCAGCCACCAACTCCCTTGG AAATGCAACCTCCACCCTGGACTTCCATGCCAATGTCGCCCGTCTCCTCATCAGCCCGGCAGCCGAGG TGGTGGAAGGACAGGCAGTGACACTGAGCTGCAGAAGCGGCCTAAGCCCCACACCTGATGCCCGCTTC TCCTGGTACCTGAATGGAGCCCTGCTTCACGAGGGTCCCGGCAGCAGCCTCCTGCTCCCCGCGGCCTC CAGCACTGACGCCGGCTCATACCACTGCCGGGCCCGGGACGGCCACAGTGCCAGTGGCCCCTCTTCGC CAGCTGTTCTCACTGTGCTCTGTGAGCAGCCACCACGACAACCAACATTCACCACCAGGCTGGACCTT GATGCCGCTGGGGCCGGGGCTGGACGGCGAGGCCTCCTTTTGTGCCGTGTGGACAGCGACCCCCCCGC CAGGCTGCAGCTGCTCCACAAGGACCGTGTTGTGGCCACTTCCCTGCCATCAGGGGGTGGCTGCAGCA CCTGTGGGGGCTGTTCCCCACGCATGAAGGTCACCAAAGCCCCCAACTTGCTGCGTGTGGAGATTCAC AACCCTTTGCTGGAAGAGGAGGGCTTGTACCTCTGTGAGGCCAGCAATGCCCTGGGCAACGCCTCCAC CTCAGCCACCTTCAATGGCCAGGCCACTGTCCTGGCCATTGCACCATCACACACACTTCAGGAGGGCA CAGAAGCCAACTTGACTTGCAACGTGAGCCGGGAAGCTGCTGGCAGCCCTGCTAACTTCTCCTGGTTC CGAAATGGGGTGCTGTGGGCCCAGGGTCCCCTGGAGACCGTGACACTGCTGCCCGTGGCCAGAACTGA TGCTGCCCTTTACGCCTGCCGCATCCTGACTGAGGCTGGTGCCCAGCTCTCCACTCCCGTGCTCCTGA GTGTACTCTATCCCCCGGACCGTCCAAAGCTGTCAGCCCTCCTAGACATGGGCCAGGGCCACATGGCT CTGTTCATCTGCACTGTGGACAGCCGCCCCCTGGCCTTGCTGGCCTTGTTCCATGGGGAGCACCTCCT GGCCACCAGCCTGGGTCCCCAGGTCCCATCCCATGGTCGGTTCCAGGCTAAAGCTGAGGCCAACTCCC TGAAGTTAGAGGTCCGAGAACTGGGCCTTGGGGACTCTGGCAGCTACCGCTGTGAGGCCACAAATGTT CTTGGATCATCCAACACCTCACTCTTCTTCCAGGTCCGAGGTGCCTGGGTCCAGGTGTCACCATCACC TGAGCTCCAAGAGGGCCAGGCTGTGGTCCTGAGCTGCCAGGTACACACAGGAGTCCCAGAGGGGACCT CATATCGTTGGTATCGGGATGGCCAGCCCCTCCAGGAGTCGACCTCGGCCACGCTCCGCTTTGCAGCC ATAACTTTGACACAAGCTGGGGCCTATCATTGCCAAGCCCAGGCCCCAGGCTCAGCCACCACGAGCCT AGCTGCACCCATCAGCCTCCACGTGTCCTGTAAGGATGCCCCACGCCACGTCACACTCACTACCCTGA TGGACACAGGCCCTGGACGACTGGGCCTCCTCCTGTGCCGTGTGGACAGTGACCCTCCGGCCCAGCTG CGGCTGCTCCACGGGGATCGCCTTGTGGCCTCCACCCTACAAGGTGTGGGGGGACCCGAAGGCAGCTC TCCCAGGCTGCATGTGGCTGTGGCCCCCAACACACTGCGTCTGGAGATCCACGGGGCTATGCTGGAGG ATGAGGGTGTCTATATCTGTGAGGCCTCCAACACCCTGGGCCAGGCCTCGGCCTCAGCTGACTTCGAC GCTCAAAGCTGTGAATGTGCAGGTGTGGCCCGGGGCTACCGTGCGGGAGGGGCAGCTGGTGAACCTGA
CCTGCCTTGTGTGGACCACTCACCCGGCCCAGCTCACCTACACATGGTACCAGGATGGGCAGCAGCG
C
CTGGATGCCCACTCCATCCCCCTGCCCAACGTCACAGTCAGGGATGCCACCTCCTACCGCTGCGGTG
T
GGGCCCCCCTGGTCGGGCACCCCGCCTCTCCAGACCTATCACCTTGGACGTCCTCACGCGCCCCGCA
A
CCTGCGCCTGACCTACCTCCTGGAGAGCCATGGCGGGCAGCTGGCCCTGGTACTGTGCACTGTGGAC
A
GCCGCCCGCCCGCCCAGCTGGCCCTCAGCCACGCCGGTCGCCTCTTGGCCTCCTCGACAGCAGCCTC
T
GTCCCCAACACCCTGCGCCTGGAGCTGCGAGGGCCACAGCCCAGGGATGAGGGTTTCTACAGCTGCT
C
TGCCCGCAGCCCTCTGGGCCAGGCCAACACGTCCCTGGAGCTGCGGCTGGAGGTGCGGGTGATCCTG
G
CTCCGGAGGCTGCCGTGCCTGAAGGTGCCCCCATCACAGTGACCTGTGCGGACCCTGCTGCCCACGC
A
CCCACACTCTATACTTGGTACCACAACGGTCGTTGGCTGCAGGAGGGTCCAGCTGCCTCACTCTCAT
T
CCTGGTGGCCACGCGGGCTCATGCAGGCGCCTACTCTTGCCAGGCCCAGGATGCCCAGGGCACCCGC
A GCTCCCGTCCTGCTGCCCTGCAAGTCCTCTGTGCCCCTCAGGACGCTGTCCTGTCCTCCTTCCGGGA
C
TCCAGGGCCAGATCCATGGCTGTGATACAGTGCACTGTGGACAGTGAGCCACCTGCTGAGCTGGCCC
T
ATCTCATGATGGCAAGGTGCTGGCCACGAGCAGCGGGGTCCACAGCTTGGCATCAGGGACAGGCCAT
G
TCCAGGTGGCCCGAAACGCCCTACGGCTGCAGGTGCAAGATGTGCCTGCAGGTGATGACACCTATGT
T
TGCACAGCCCAAAACTTGCTGGGCTCAATCAGCACCATCGGGCGGTTGCAGGTAGAAGGTGAGTGGC
G
CGTGGTGGCAGAGCCTGGCCTGGACGTGCCTGAGGGCGCTGCCCTGAACCTCAGCTGCCGCCTCCTG
G
GTGGCCCTGGGCCTGTGGGCAACTCCACCTTTGCATGGTTCTGGAATGACCGGCGGCTGCACGCGGA
G
CCTGTGCCCACTCTCGCCTTCACCCACGTGGCTCGTGCTCAAGCTGGGATGTACCACTGCCTGGCTG
A
GCTCCCCACTGGGGCTGCTGCCTCTGCTCCAGTCATGCTCCGTGTGCTCTACCCTCCCAAGACGCCC
A
CCATGATGGTCTTCGTGGAGCCTGAGGGTGGCCTCCGGGGCATCCTGGATTGCCGAGTGGACAGCGA
G
CCGCTCGCCAGCCTGACTCTCCACCTTGGCAGTCGACTGGTGGCCTCCAGTCAGCCCCAGGGTGCTC
C
TGCAGAGTCACACATCCATGTCCTGGCTTCCCCCAATGCCCTGAGGGTGGACATCGAGGCGCTGAGG
C
CCAGCGACCAAGGGGAATACATCTGTTCTGCCTCAAATGTCCTGGGCCCTGCCTCTACCTCCACCTA
C
TTTGGGGTCAGAGCCCTGCACCGCCTGCATCAGTTCCAGCAGCTGCTCTGGGTCCTGGGACTGCTGG
T
GGGCCTCCTGCTCCTGCTGTTGGGCCTGGGGGCCTGCTACACCTGGAGAAGGAGGCGTGTTTGTAAG
C
AGAGCATGGGCGAGAATCCAGGGCGGGCATCGTCTTTCCATTTACTGCCTCTAGCTGGGTCTTCAAG
G
TGA
NOV14J, SNP13377616 of SEQ ID NO: 416 1700 aa MW at 180822.9kD
CG51821-01, Protein Sequence JSNP Pos: 1590 SNP Change: Pro to Ser
MGFLPKLLLLASAVLPPGQAS GVSSPQDVQGVKGSCLLIPCIFSFPADVEVPDGITAI YYDYSGQR QWSHSADPKLVEARFRGRTEFMGNPEHRVCNLLLKDLQPEDSGSYNFRFEISEVNR SDVKGTLVTV TGDPRVPTIASPVELLEGTEVDFNCSTPYVCLQEQVRLQ QGQDPARSVTFNSQKFEPTGVGHLETLH -AMS QDHGRILRCQLSVANHRAQSEIHLQVKCAPKGVKILLSPSGRNILPGELVTLTCQVNSSYPAV SSIK LKDGVRLQTKTGVLHLPQAA SDAGVYTCQAENGVGSLVSPPISLHIFVAEVQVSPAGPILEN QTVTLVCNTPNEAPSDLRYS YKNHVLLEDAHSHTLRLHLATRADTGFYFCEVQNVHGSERSGPVSW VTDPPLTPVLTAFLETQAGLVGILHCSWSEPLATLVLSHGGHILASTSGDSDHSPRFSGTSGPNSLR LEIRDLEETDSGEYKCSATNSLGNATSTLDFHANVARL ISPAAEWEGQAVTLSCRSGLSPTPDARF S YLNGALLHEGPGSSLLLPAASSTDAGSYHCRARDGHSASGPSSPAVLTVLCEQPPRQPTFTTRLDL DAAGAGAGRRGLLLCRVDSDPPARLQLLHKDRWATSLPSGGGCSTCGGCSPR KVTKAPNLLRVEIH NPLLEEEGLYLCEASNALGNASTSATFNGQATVLAIAPSHTLQEGTEANLTCNVSREAAGSPANFS F RNGVLWAQGPLETVTLLPVARTDAALYACRILTEAGAQLSTPVLLSVLYPPDRPKLSALLDMGQGHMA LFICTVDSRPLALL-ALFHGEHLLATSLGPQVPSHGRFQAKAEANSLKLEVRELGLGDSGSYRCEATNV LGSSNTSLFFQVRGA VQVSPSPELQEGQAWLSCQVHTGVPEGTSYR YRDGQPLQESTSATLRFAA ITLTQAGAYHCQAQAPGSATTSLAAPISL /SCKDAPRHVTLTTL DTGPGRLGLLLCRVDSDPPAQL RLLHGDRLVASTLQGVGGPEGSSPRLHVAVAPNTLRLEIHGAMLEDEGVYICEASNTLGQASASADFD AQSCECAGVARGYRAGGAAGEPDLPCVDHSPGPAHLHMVPGWAAAPGCPLHPPAQRHSQGCHLLPLRC GPP SGTPPLQTYHLGRPHAPRNLRLTYLLESHGGQL-ALVLCTVDSRPPAQLALSHAGRLLASSTAAS VPNTLRLELRGPQPRDEGFYSCSARSPLGQANTSLELRLEVRVILAPEAAVPEGAPITVTCADPAAHA PTLYT YHNGR LQEGPAASLSFLVATRAHAGAYSCQAQDAQGTRSSRPAALQVLCAPQDAVLSSFRD S-RARSMAVIQCTVDSEPPAELALSHDGKVLATSSGVHSLAΞGTGHVQVARNALRLQVQDVPAGDDTYV CTAQNLLGSISTIGRLQVEGE RWAEPGLDVPEGAALNLSCRLLGGPGPVGNSTFA F NDRRLHAE PVPTLAFTHVARAQAGMYHCLAELPTGAAASAPVMLRVLYPPKTPT -MVFVΞPEGGLRGILDCRVDSE PLASLTLHLGSRLVASSQPQGAPAESHIHVLASPNALRVDIEALRPSDQGEYICSASNVLGPASTSTY FGVRALHRLHQFQQLL VLGLLVGLLLLLLGLGACYT RRRRVCKQSMGENPGRASSFHLLPLAGSSR
NOV14k, SNP13377617 of SEQ ID NO: 417 5103 bp
CG51821-01, DNA Sequence ORF Start: ATG at 1 ORF Stop: TGA at 5101
SNP Pos: 4881 SNP Change: C to T
ATGGGCTTCTTGCCCAAGCTTCTCCTCCTGGCCTCAGCCGTTCTTCCCCCAGGCCAGGCCTCATGGGG CGTCTCCAGTCCCCAGGACGTGCAGGGTGTGAAGGGGTCTTGCCTGCTTATCCCCTGCATCTTCAGCT TCCCTGCCGACGTGGAGGTGCCCGACGGCATCACGGCCATCTGGTACTACGACTACTCGGGCCAGCGG CAGGTGGTGAGCCACTCGGCGGACCCCAAGCTGGTGGAGGCCCGCTTCCGCGGCCGCACCGAGTTCAT GGGGAACCCCGAGCACAGGGTGTGCAACCTGCTGCTGAAGGACCTGCAGCCCGAGGACTCTGGTTCCT ACAACTTCCGCTTCGAGATCAGTGAGGTCAACCGCTGGTCAGATGTGAAAGGCACCTTGGTCACAGTA ACAGGTGATCCCAGGGTGCCCACCATTGCCTCCCCGGTGGAGCTTCTCGAGGGCACAGAGGTGGACTT CAACTGCTCCACTCCCTACGTATGCCTGCAGGAGCAGGTCAGACTGCAGTGGCAAGGCCAGGACCCTG CTCGCTCTGTCACCTTCAACAGCCAGAAGTTTGAGCCCACCGGCGTCGGCCACCTGGAGACCCTCCAC ATGGCCATGTCCTGGCAGGACCACGGCCGGATCCTGCGCTGCCAGCTCTCCGTGGCCAATCACAGGGC TCAGAGCGAGATTCACCTCCAAGTGAAGTGTGCCCCCAAGGGTGTGAAGATCCTCCTCAGCCCCTCGG GGAGGAACATCCTTCCAGGTGAGCTGGTCACACTCACCTGCCAGGTGAACAGCAGCTACCCTGCAGTC AGTTCCATTAAGTGGCTCAAGGATGGGGTACGCCTCCAAACCAAGACTGGTGTGCTGCACCTGCCCCA GGCAGCCTGGAGCGATGCTGGCGTCTACACCTGCCAAGCTGAGAACGGCGTGGGCTCTTTGGTCTCAC CCCCCATCAGCCTCCACATCTTCGTGGCTGAGGTCCAGGTGAGCCCAGCAGGTCCCATCCTGGAGAAC CAGACAGTGACACTAGTCTGCAACACACCCAATGAGGCACCCAGTGATCTCCGCTACAGCTGGTACAA GAACCATGTCCTGCTGGAGGATGCCCACTCCCATACCCTCCGGCTGCACTTGGCCACTAGGGCTGATA CTGGCTTCTACTTCTGTGAGGTGCAGAACGTCCATGGCAGCGAGCGCTCGGGCCCTGTCAGCGTGGTA GTCACAGACCCGCCTCTCACTCCAGTCCTGACAGCCTTCCTGGAGACCCAGGCGGGACTTGTGGGCAT CCTTCACTGCTCTGTGGTCAGTGAGCCCCTGGCCACACTGGTGCTGTCACATGGGGGTCATATCCTGG CCTCCACCTCCGGGGACAGTGATCACAGCCCACGCTTCAGTGGTACCTCTGGTCCCAACTCCCTGCGC CTGGAGATCCGAGACCTGGAGGAAACTGACAGTGGGGAGTACAAGTGCTCAGCCACCAACTCCCTTGG AAATGCAACCTCCACCCTGGACTTCCATGCCAATGTCGCCCGTCTCCTCATCAGCCCGGCAGCCGAGG TGGTGGAAGGACAGGCAGTGACACTGAGCTGCAGAAGCGGCCTAAGCCCCACACCTGATGCCCGCTTC TCCTGGTACCTGAATGGAGCCCTGCTTCACGAGGGTCCCGGCAGCAGCCTCCTGCTCCCCGCGGCCTC CAGCACTGACGCCGGCTCATACCACTGCCGGGCCCGGGACGGCCACAGTGCCAGTGGCCCCTCTTCGC CAGCTGTTCTCACTGTGCTCTGTGAGCAGCCACCACGACAACCAACATTCACCACCAGGCTGGACCTT GATGCCGCTGGGGCCGGGGCTGGACGGCGAGGCCTCCTTTTGTGCCGTGTGGACAGCGACCCCCCCGC CAGGCTGCAGCTGCTCCACAAGGACCGTGTTGTGGCCACTTCCCTGCCATCAGGGGGTGGCTGCAGCA CCTGTGGGGGCTGTTCCCCACGCATGAAGGTCACCAAAGCCCCCAACTTGCTGCGTGTGGAGATTCAC AACCCTTTGCTGGAAGAGGAGGGCTTGTACCTCTGTGAGGCCAGCAATGCCCTGGGCAACGCCTCCAC CTCAGCCACCTTCAATGGCCAGGCCACTGTCCTGGCCATTGCACCATCACACACACTTCAGGAGGGCA CAGAAGCCAACTTGACTTGCAACGTGAGCCGGGAAGCTGCTGGCAGCCCTGCTAACTTCTCCTGGTTC CGAAATGGGGTGCTGTGGGCCCAGGGTCCCCTGGAGACCGTGACACTGCTGCCCGTGGCCAGAACTGA TGCTGCCCTTTACGCCTGCCGCATCCTGACTGAGGCTGGTGCCCAGCTCTCCACTCCCGTGCTCCTGA GTGTACTCTATCCCCCGGACCGTCCAAAGCTGTCAGCCCTCCTAGACATGGGCCAGGGCCACATGGCT CTGTTCATCTGCACTGTGGACAGCCGCCCCCTGGCCTTGCTGGCCTTGTTCCATGGGGAGCACCTCCT GGCCACCAGCCTGGGTCCCCAGGTCCCATCCCATGGTCGGTTCCAGGCTAAAGCTGAGGCCAACTCCC TGAAGTTAGAGGTCCGAGAACTGGGCCTTGGGGACTCTGGCAGCTACCGCTGTGAGGCCACAAATGTT CTTGGATCATCCAACACCTCACTCTTCTTCCAGGTCCGAGGTGCCTGGGTCCAGGTGTCACCATCACC TGAGCTCCAAGAGGGCCAGGCTGTGGTCCTGAGCTGCCAGGTACACACAGGAGTCCCAGAGGGGACCT CATATCGTTGGTATCGGGATGGCCAGCCCCTCCAGGAGTCGACCTCGGCCACGCTCCGCTTTGCAGCC ATAACTTTGACACAAGCTGGGGCCTATCATTGCCAAGCCCAGGCCCCAGGCTCAGCCACCACGAGCCT AGCTGCACCCATCAGCCTCCACGTGTCCTGTAAGGATGCCCCACGCCACGTCACACTCACTACCCTGA TGGACACAGGCCCTGGACGACTGGGCCTCCTCCTGTGCCGTGTGGACAGTGACCCTCCGGCCCAGCTG CGGCTGCTCCACGGGGATCGCCTTGTGGCCTCCACCCTACAAGGTGTGGGGGGACCCGAAGGCAGCTC TCCCAGGCTGCATGTGGCTGTGGCCCCCAACACACTGCGTCTGGAGATCCACGGGGCTATGCTGGAGG ATGAGGGTGTCTATATCTGTGAGGCCTCCAACACCCTGGGCCAGGCCTCGGCCTCAGCTGACTTCGAC GCTCAAAGCTGTGAATGTGCAGGTGTGGCCCGGGGCTACCGTGCGGGAGGGGCAGCTGGTGAACCTGA
CCTGCCTTGTGTGGACCACTCACCCGGCCCAGCTCACCTACACATGGTACCAGGATGGGCAGCAGCG
C
CTGGATGCCCACTCCATCCCCCTGCCCAACGTCACAGTCAGGGATGCCACCTCCTACCGCTGCGGTG
T
GGGCCCCCCTGGTCGGGCACCCCGCCTCTCCAGACCTATCACCTTGGACGTCCTCACGCGCCCCGCA DAAGAGAGRRGLLLCRVDSDPPARLQLLHKDRWATSLPSGGGCSTCGGCSPRMKVTKAPNLLRVEIH NPLLEΞEGLYLCEASNALGNASTSATFNGQATVLAIAPSHTLQEGTEANLTCNVSREAAGSPANFSWF RNGVLWAQGPLETVTLLPVARTDAALYACRILTEAGAQLSTPVLLSVLYPPDRPKLSALLDMGQGHMA LFICTVDSRPLALLALFHGEHLLATSLGPQVPSHGRFQAKAEANSLKLEVRELGLGDSGSYRCEATNV LGSSNTSLFFQVRGA VQVSPSPELQEGQAWLSCQVHTGVPEGTSYR YRDGQPLQESTSATLRFAA ITLTQAGAYHCQAQAPGSATTSLAAPISLHVSCKDAPRHVTLTTLMDTGPGRLGLLLCRVDSDPPAQL RLLHGDRLVASTLQGVGGPEGSSPRLHVAVAPNTLRLEIHGAMLEDEGVYICEASNTLGQASASADFD AQSCECAGVARGYRAGGAAGEPDLPCVDHSPGPAHLHMVPGWAAAPGCPLHPPAQRHSQGCHLLPLRC GPP SGTPPLQTYHLGRPHAPRNLRLTYLLESHGGQLALVLCTVDSRPPAQLALSHAGRLLASSTAAS VPNTLRLELRGPQPRDEGFYSCSARSPLGQANTSLELRLEVRVILAPEAAVPEGAPITVTCADPAAHA PTLYT YHNGR LQEGPAASLSFLVATRAHAGAYSCQAQDAQGTRSSRPAALQVLCAPQDAVLSSFRD SRARSiMAVIQCTVDSEPPAELALSHDGKVLATSSGVHSLASGTGHVQVARNALRLQVQDVPAGDDTYV CTAQNLLGSISTIGRLQVEGE RWAEPGLDVPEGAALNLSCRLLGGPGPVGNSTFAWF NDRRLHAE PVPTLAFTHV-ARAQAGMYHCL-ΕLPTGAAASAPVMLRVLYPPKTPTMMVFVEPEGGLRGILDCRVDSE PLASLTLHLGSRLVASSQPQGAPAEPHIHVLASPNALRVDIEALRPSDQGEYICSASNVLGPASTSTY FGVRALHRLHQFQQLL VLGLLVGLLLLLLGLGACYT RRRRVCKQSMGENPGRASSFHLLPLAGSSR
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 14B.
Table 14B. Comparison of the NOV14 protein sequences.
NOV14a MGFLPKLLLLASAVLPPGQAS GVSSPQDVQGVKGSCLLIPCIFSFPADVEVPDGITAI
NOV14b RSSWGVSSPQDVQGVKGSCLLIPCIFSFPADVEVPDGITAIW
NOV14C RSSWGVSSPQDVQGVKGSCLLIPCIFSFPADVEVPDGITAI
NOV14d RSSWGVSSPQDVQGVKGSCLLIPCIFSFPADVEVPDGITAIW
NOV14e SWGVSSPQDVQGVKGSCLLIPCIFSFPADVEVPDGITAIW
NOV14f S GVSSPQDVQGVKGSCLLIPCIFSFPADVEVPDGITAI
NOV14g MGFLPKLLLLAS-FFPAGQAS GVSSPQDVQGVKGSCLLIPCIFSFPADVEVPDGITAIW
NOV14a YYDYSGQRQWSHSADPKLVEARFRGRTEFMGNPEHRVCNLLLKDLQPEDSGSYNFRFEI
NOV14b YYDYSGQRQWSHSADPKLVEARFRGRTEFMGNPEHRVCNLLLKDLQPEDSGSYNFRFΞI
NOV14C YYDYSGQRQWSHSADPKLVEARFRGRTEFMGNPEHRVCNLLLKDLQPEDSGSYNFRFEI
NOV14d YYDYSGQRQWSHSVDPKLVEARFRGRTEFMGNPEHRVCNLLLKDLQPEDSGSYNFRFΞI
NOV14e YYDYSGQRQWSHS-ADPKLVEARFRGRTEFMGNPEHRVCNLLL DLQPEDSGSYNFRFEI
NOV14f YYDYSGQRQWSHSVDPKLVEARFRGRTEFMGNPEHRVCNLLL DLQPEDSGSYNFRFEI
NOV14g YYDYSGQRQWSHSADPKLVEARFRGRTEFMGNPEHRVCNLLLKDLQPEDSGSYNFRFEI
NOV14a SEVNR SDVKGTLVTVTGDPRVPTIASPVELLEGTEVDFNCSTPYVCLQEQVRLQ QGQD
NOV14b SEVNRWSDVKGTLVTVTEEPRVPTIASPVELLEGTEVDFNCSTPYVCLQEQVRLQ QGQD
NOV14C SEVNRWSDVKGTLVTVTEEPRVPTIASPVELLEGTEVDFNCSTPYVCLQEQVRLQWQGQD
NOV14d SEVNRWSDVKGTLVTVTEEPRVPTIASPVELLEGTEVDFNCSTPYVCLQΞQVRLQ QGQD
NOV14e SEVNRWSDVKGTLVTVTEEPRVPTIASPVELLEGTEVDFNCSTPYVCLQEQVRLQ QGQD
NOV14f SEVNR SDVKGTLVTVTEEPRVPTIASPVELLEGTEVDFNCSTPYVCLQEQVRLQ QGQD
NOV14g SEVNR SDVKGTLVTVTEEPRVPTIASPVELLEGTEVDFNCSTPYVCLQEQVRLQ QGQD
NOV14a PARSVTFNSQKFEPTGVGHLETLHMAMS QDHGRILRCQLSVANHRAQSEIHLQVKCAPK
NOVl4b PARSVTFNSQKFEPTGVGHLETLHMAMS QDHGRILRCQLSVANHRAQSEIHLQVKYAPR
NOV14C P-ARSVTFNSQKFEPTGVGHLETLHMAMS QDHGRILRCQLSMANHRAQSEIHLQVKYAPR
NOV14d PARSVTFNSQKFEPTGVGHLETLH AMS QDHGRILRCQLS ANHRAQSEIHLQVKYAPK
NOV14e PARSVTFNSQKFEPTGVGHLETLHMAMSWQDHGRILRCQLSVANHRAQSEIHLQV YAPR
NOV14f PARSVTFNSQKFEPTGVGHLETLHiAMS QDHGRILRCQLS-MANHRAQSEIHLQVKYAPK
NOV14g PARSVTFNSQKFEPTGVGHLETL-f---MAMS QDHGRILRCQLSVANH-l-cAQSEIHLQV---CfAPK
NOV14a GVKILLSPSGRNILPGELVTLTCQVNSSYPAVSSIKWLKDGVRLQTKTGVLHLPQAA SD
NOV14b GVKILLSPSGRNILPVD
NOV14C GVKILLSPSGRNILPVD
NOV14d GVKILLSPSGRNILPVD N0V14e GVKILLSPSGRNILP
NOV14f GVKILLSPSGRNILP
N0V14g GVKILLSPSGRNILPGELVTLTCQVNSSYPAVSSIK LKDGVRLQTKTGVLHLPQAA SD
N0V14a AGVYTCQAENGVGSLVSPPISLHIFVAEVQVSPAGPILENQTVTLVCNTPNEAPSDLRYS
NOV14b
N0V14c
NOV14d
NOV14e
NOV14f
NOV14g AGVYTCQAENGVGSLVSPPISLHIFMAEVQVSPAGPILENQTVTLVCNTPNEAPSDLRYS
N0V14a YKN-HVLLEDAHSHTLRLHLATRADTGFYFCEVQNVHGSERSGPVSVWTDPPLTPVLTA
NOV14b
NOV14C
NOV14d
NOV14e
N0V14f
NOV14g YKNHVLLEDAHSHTLRLHLATRADTGFYFCEVQNVHGSERSGPVSVVVNHPPLTPVLTA
NOV14a FLETQAGLVGILHCSWSEPLATLVLSHGGHILASTSGDSDHSPRFSGTSGPNSLRLEIR
NOV14b
NOV14C
NOV14d
N0V14e
NOV14f
NOV14g FLETQAGLVGILHCSWSEPLATLVLSHGGHILASTSGDSDHSPRFSGTSGPNSLRLEIR
NOV14a DLEETDSGEYKCSATNSLGNATSTLDFHANVARLLISPAAEWEGQAVTLSCRSGLSPTP
NOV14b
NOV14C
NOV14d
N0V14e
N0V14f
NOV14g DLEETDSGEYKCSATNSLGNATSTLDFHANAARLLISPAAEWEGQAVTLSCRSGLSPTP
NOV14a DARFS YLNGALLHEGPGSSLLLPAASSTDAGSYHCRARDGHSASGPSSPAVLTVLCEQP
NOV14b
NOV14C
NOV14d
NOV14e
NOV14f
NOV14g DARFS YLNGALLHEGPGSSLLLPAASSTDAGSYHCRARDGHSASGPSSPAVLTVLY- -P
N0V14a PRQPTFTTRLDLDAAGAGAGRRGLLLCRVDSDPPARLQLLHKDRWATSLPSGGGCSTCG
NOV14b
NOV14C
NOV14d
N0V14e
N0V14f
NOV14g PRQPTFTTRLDLDAAGAGAGRRGLLLCRVDSDPPARLQLLHKDRWATSLPSGGGCSTCG
NOV14a GCSPRMKVTKAPNLLRVEIHNPLLEΞEGLYLCEASNALGNASTSATFNGQATVLAIAPSH
NOV14b
NOV14C NOV14d
NOV14e
NOV14f
NOV14g GCSPRMKVTKAPNLLRVEIHNPLLEEEGLYLCEASNALGNASTSATFNGQATVLAIAPΞH
NOV14a TLQEGTEANLTCNVSREAAGSPANFS FRNGVLWAQGPLETVTLLPVARTDAALYACRIL
NOV14b
N0V14C
NOV14d
NOV14e
N0V14f
NOV14g TLQEGTEANLTCNVSREAAGSPANFS FRNGVL AQGPLETVTLLPVARTDAALYACRIL
NOV14a TEAGAQLSTPVLLSVLYPPDRP-tπiSALLDMGQGH ALFICTVDSRPLALLALFHGEHLLA
NOV14b
N0V14C
NOV14d
NOV14e
NOV14f
NOV14g TEAGAQLSTPVLLSVLYPPDRPLSALLD GQGHMALFICTVDSRPLALLALFHGEHLLA
NOV14a TSLGPQVPSHGRFQ-AKAEANSLKLEVRELGLGDSGSYRCEATNVLGSSNTSLFFQVRGA
NOV14b
NOV14C
NOV14d
NOV14e
NOV14f
NOV14g TSLGPQVPSHGRFQ-A-AEANSLKLEVRELGLGDSGSYRCEATNVLGSSNTSLFFQVRGAW
NOV14a VQVSPSPELQEGQAWLSCQVHTGVPEGTSYRWYRDGQPLQESTSATLRFAAITLTQAGA
NOV14b
NOV14c
NOV14d
NOV14e
NOV14f
NOV14g VQVSPSPELQEGQAWLSCQVHTGVPEGTSYR YRDGQPLQESTSATLRFAAITLTQAGA
N0V14a YHCQAQAPGSATTSLAAPISLHVSCKDAPRHVTLTTLMDTGPGRLGLLLCRVDSDPPAQL
NOV14b
N0V14C
N0V14d
NOV14e
NOV14f
NOV14g YHCQAQAPGSATTSLAAPISLHVSY--APRHVTLTTLMDTGPGRLGLLLCRVDSDPPAQL
N0V14a RLLHGDRLVASTLQGVGGPEGSSPRLHVAVAPNTLRLEIHGAMLEDEGVYICEASNTLGQ
NOV14b
NOV14C
NOV14d
NOV14e
NOV14f
NOV14g RLLHGDRLVASTLQGVGGPEGSSPRLHVAVAPNTLRLEIHGAMLEDEGVYICEASNTLGQ
NOV14a ASASADFDAQSCECAGVARGYRAGGAAGEPDLPCVDHSPGPAHLHMVPGWAAAPGCPLHP
N0V14b NOV14C
NOV14d
NOV14e
NOV14f
NOV14g ASASADFDAQAVNVQVWPGATVREGQLVN--LTCLVWTTHPAQLTYTWYQDGQQRLDAHS
NOV14a PAQRHSQGCHLLPLRCG--PP SGTPPLQTYHLGRPHAPRNLRLTYLLESHGGQLA VLC
N0V14b
NOV14C
NOV14d
NOV14e
NOV14f
NOV14g IPLPNVTVRDATSYRCGVGPPGRAPRLSRPITLDVLYAPRNLRLTYLLESHGGQLALVLC
NOV14a TVDSRPPAQLALSHAGRLLASSTAASVPNTLRLELRGPQPRDEGFYSCSARSPLGQANTS
NOV14b
NOV14C
NOV14d
NOV14e
NOV14f
NOV14g TVDSRPPAQLALSHAGRLI.-ASSTAASVPNTLRLELRGPQPRDEGFYSCSARSPLGQANTS
NOV14a LELRLE-VRVILAPEAAVPEGAPITVTCADPAAHAPTLYT YHNGR LQEGPAASLSFLV
NOV14b
NOV14C
NOV14d
NOV14e
NOV14f
NOV14g LELRLEGVRVILAPEAAVPEGAPITVTCADPAAHAPTLYT YHNGR LQEGPAASLSFLV
NOV14a ATRAHAGAYSCQAQDAQGTRSSRPAALQVLCAPQDAVLSSFRDSRARS AVIQCTVDSEP
NOV14b
NOV14C
NOV14d
NOV14e
NOV14f
NOV14g ATRAHAGAYSCQAQDAQGTRSSRPAALQVLYAPQDTVLSSFRDSRARS AVIQCTVDSEP
NOV14a PAELALSHDGKVLATSSGVHSLASGTGHVQVARNALRLQVQDVPAGDDTYVCTAQNLLGS
NOV14b
NOV14C
NOV14d
NOV14e
NOV14f
NOV14g PAELALSHDGKVLATSSGVHSLASGTGHVQVARNALRLQVQDVPAGDDTYVCTAQNLLGS
NOV14a ISTIGRLQVEGE RWAEPGLDVPEGAALNLSCRLLGGPGPVGNSTFA FWNDRRLHAEP
NOV14b
NOV14C
NOV14d
NOV14e
NOV14f
NOV14g ISTIGRLQVEGAR-WAEPGLDVPEGAALNLSCRLLGGPGPVGNSTFA F NDRRLHAEP
NOV14a VPTLAFTHVARAQAGMYHCLAELPTGAAASAPVMLRVLYPPKTPTM-MVFVEPEGGLRGIL NOV14b -"
NOV14C
NOV14d
N0V14e
NOV14f
NOV14g VPTLAFT---W-ARAQAGMYHCLAELPTGAAASAPVMLRVLYPPKTPTMMVFVEPEGGLRGIL
N0V14a DCRVDSEPLASLTLHLGSRLVASSQPQGAPAEPHIHVLASPNALRVDIEALRPSDQGEYI
NOV14b
NOV14C
NOV14d
NOV14e
NOV14f
N0V14g DCRVDSEPLASLTLHLGSRLVASSQPQGAPAEPHIHVLASPNALRVDIEALRPSDQGEYI
NOV14a CSASNVLGPASTSTYFGVRALHRLHQFQQLLWVLGLLVGLLLLLLGLGACYT RRRRVCK
NOV14b
NOV14C
NOV14d
NOV14e
NOV14f
NOV14g CSASNVLGSASTSTYFGVRALHRLHQFQQLL VLGLLVGLLLLLLGLGACYTWRRRRVCK
NOV14a QSMGENP- -GRASSFHLLPLAGSSR- NOV14b
NOV14C
NOV14d
NOV14e
N0V14f
NOV14g QSMGENSVEMAFQKETTQLIDPDAATCETSTCAPPLG
NOVl a (SEQ ID NO 398)
NOV14b (SEQ ID NO 400)
NOVl4C (SEQ ID NO 402)
NOVl4d (SEQ ID NO 404)
NOV14e (SEQ ID NO 406)
NOV14f (SEQ ID NO 408)
NOV14g (SEQ ID NO 410)
Further analysis of the NOVl 4a protein yielded the following properties shown in Table 14C.
Table 14C. Protein Sequence Properties NOV14a
SignalP analysis: Cleavage site between residues 21 and 22
PSORT II analysis:
PSG: a new signal peptide prediction method
N-region: length 6; pos.chg 1; neg.chg 0 H-region: length 22; peak value 9.20 PSG score: 4.80
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): 2.74 possible cleavage site: between 20 and 21 >>> Seems to have a cleavable signal peptide (1 to 20)
ALOM: Klein et al ' s method for TM region allocation Init position for calculation: 21
Tentative number of TMS(s) for the threshold 0.5: 3 Number of TMS(s) for threshold 0.5: 1
INTEGRAL Likelihood =-11.25 Transmembrane 1647 -1663 PERIPHERAL Likelihood = 0.69 (at 36) ALOM score: -11.25 (number of TMSs : 1)
MTOP: Prediction of membrane topology (Hartmann et al . ) Center position for calculation: 10 Charge difference: -2.0 C ( 0.0) - N( 2.0) N >= C: N-terminal side will be inside
>>> membrane topology: type la (cytoplasmic tail 1664 to 1700)
MITDISC: discrimination of mitochondrial targeting seq R content: 0 Hyd Moment (75): 6.81 Hyd Moment (95): 7.54 G content: 3 D/E content: 1 S/T content: 4 Score: -4.95
Gavel: prediction of cleavage sites for mitochondrial preseq cleavage site motif not found
NUCDISC: discrimination of nuclear localization signals pat4: RRRR (5) at 1671 pat7 : none bipartite: none content of basic residues: 7.3% NLS Score: -0.16
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals : none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif: none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none Tyrosines in the tail: 1667
Dileucine motif in the tail: found LL at 1692 checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: cytoplasmic Reliability: 55.5
COIL: Lupas ' s algorithm to detect coiled-coil regions total: 0 residues
Final Results (k = 9/23) :
33.3 %: endoplasmic reticulum
22.2 %: Golgi
22 .2 % : extracellular, including cell wall
11. 1 % : plasma membrane
11.1 % : vesicles of secretory system
>> prediction for CG51821-01 is end (k=9)
A search of the NOV14a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 14D.
In a BLAST search of public sequence databases, the NOVl 4a protein was found to have homology to the proteins shown in the BLASTP data in Table 14E.
PFam analysis predicts that the NOVl 4a protein contains the domains shown in the Table 14F.
Example 15.
The NOVl5 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 15A.
CTTCTAAAAGACCAAGGTTGGCGTTTTAGCTCTATTAATTTTACTTCGTCTTGGCCAGAATTCACAAT
GACAACAGTGACAGTGACCACAGAAATTCCCCCAAGGGATAAGATGGAAGATAATTCTGCCTTGTATG AGTCTACGTCCGCTCACATTATTGAAGAAACCGAGTATGTGAAAAAGATTCGAACTACTCTGCAAAAG ATCAGGACCCAGATGTTTAAAGATGAAATGAGACATGACAGTACAAATCACAAACTAGATGCAAAGCT GCAAGCCTCCAGAGAAGCAGGAGCAGCAGCTCTGAGAAACGTGGCCCAGAGATTATTTGAAAACTACC AAACGCAATCTGAAGAAGTGAGAAAGAAGCAGGAGGACAGTAAACAATTACTCCAGGTTAACAAGCTT GAAAAAGAACAGAAATTGAAACAACATGTTGAAAATCTGAATCAAGTTGCTGAAAAACTTGAAGAAAA ACACAGTCAAATTACAGAATTGGAGAACCTTGTACAGAGAATGGAAAAGGAAAAGAGAACACTACTAG AAAGAAAACTGTCTTTGGAAAACAAGCTACTGCAACTCAAATCCAGTGCTACATATGGAAAAAGTTGC CAGGATCTTCAGAGGGAGATTTCCATTCTCCAGGAGCAGATCTCTCATCTGCAGTTTGTGATTCACTC CCAACATCAGAACCTGCGCAGTGTCATCCAGGAGATGGAAGGATTAAAAAATAATTTAAAAGAACAAG ACAAAAGAATTGAAAATCTCAGAGAAAAGGTTAACATACTTGAAGCCCAGAATAAAGAACTAAAAACC CAGGTAGCACTTTCATCTGAAACTCCTAGGACAAAGGTATCTAAGGCTGTCTCTACAAGTGAATTGAA GACCGAAGGTGTTTCCCCTTATTTAATGTTGATTAGGTTACGGAAATGAACTGGCTGGATGAAGATCT GATTTAGAAAGACTGCGTGAGTCTTATTTATTCTCTGAAACACAGCCCAAGTTTCATGTTAAAATGGC
AAAATGCCATTATTTAAATGGAACTTATTACATACCAATGGCTTTGCAAGAAGATGACATTTCAGAAA
ATCAAACAAATCTATATTTAATGGATGGACTCTTCAAAACTTACCAAATAGTTGAAGAAACCAGGTGC
CTTCTCATGATGGAAGACAGATTCTGCTTTAAATTAAAAAAAAAAAAATCTGAATCTTGTTTTCAGAT
TTTTTTTTCTACTGG
NOV15f, SNP13382486 of SEQ ID NO: 430| 288 aa MW at 33599.1kD
CG51992-05, Protein Sequence jSNP Pos: 56 |SNP Change: lie to Met
MTTVTVTTEIPPRD-ra-4EDNSALYESTSAHIIEETEYVKKIRTTLQKIRTQMF-TOEl^DST--fflKLDA LQASREAGAAA-LR-I-TVAQRLFEK-ΥQTQSEEWKKQEDSKQLLQ
KHSQITELEN VQRMEKEKRTLLERKLS ENKL QLKSSATYGKSCQDLQREISILQEQISHLQFVIH SQHQNLRSVIQEMEG ---αsT LKEQD-EsΕ.IΞN REKV ILEAQNKE KTQV-ALSSETPRTKVS KTEGVSPY ML IRLRK
NOV15g, SNP13382487 of SEQ ID NO: 431 1511 bp CG51992-05, DNA Sequence ORF Start: ATG at 339 ORF Stop: TGA at 1203
SNP Pos: 1360 SNP Change: A to G
AGAGAAGGAGCTAAGAAGCCTGTGGCTACTGAGAAGAGGCCAGCTAAGTGATGCTGGCATGTAGGAAG
CAGGCACACTACTTGTGGATGGGGAGCATGGTGACTGGAGAGACCAGTGAGGGCAATTTGCATCCTTT
GAGGGCAATTTGGTCTCCAAAGAACAGAGTGATCTGGAGGGAGTGACAGCCAAGAGTCAGCCAGAGCA CTCAGCCATCCCAGGAATCAGAGAAATCCAGGGAAGCCAGTCTTAATATGATGGAAACATCTCTGAA
CTTCTAAAAGACCAAGGTTGGCGTTTTAGCTCTATTAATTTTACTTCGTCTTGGCCAGAATTCACAAT
GACAACAGTGACAGTGACCACAGAAATTCCCCCAAGGGATAAGATGGAAGATAATTCTGCCTTGTATG AGTCTACGTCCGCTCACATTATTGAAGAAACCGAGTATGTGAAAAAGATTCGAACTACTCTGCAAAAG ATCAGGACCCAGATGTTTAAAGATGAAATAAGACATGACAGTACAAATCACAAACTAGATGCAAAGCT GCAAGCCTCCAGAGAAGCAGGAGCAGCAGCTCTGAGAAACGTGGCCCAGAGATTATTTGAAAACTACC AAACGCAATCTGAAGAAGTGAGAAAGAAGCAGGAGGACAGTAAACAATTACTCCAGGTTAACAAGCTT GAAAAAGAACAGAAATTGAAACAACATGTTGAAAATCTGAATCAAGTTGCTGAAAAACTTGAAGAAAA ACACAGTCAAATTACAGAATTGGAGAACCTTGTACAGAGAATGGAAAAGGAAAAGAGAACACTACTAG AAAGAAAACTGTCTTTGGAAAACAAGCTACTGCAACTCAAATCCAGTGCTACATATGGAAAAAGTTGC CAGGATCTTCAGAGGGAGATTTCCATTCTCCAGGAGCAGATCTCTCATCTGCAGTTTGTGATTCACTC CCAACATCAGAACCTGCGCAGTGTCATCCAGGAGATGGAAGGATTAAAAAATAATTTAAAAGAACAAG ACAAAAGAATTGAAAATCTCAGAGAAAAGGTTAACATACTTGAAGCCCAGAATAAAGAACTAAAAACC CAGGTAGCACTTTCATCTGAAACTCCTAGGACAAAGGTATCTAAGGCTGTCTCTACAAGTGAATTGAA GACCGAAGGTGTTTCCCCTTATTTAATGTTGATTAGGTTACGGAAATGAACTGGCTGGATGAAGATCT GATTTAGAAAGACTGCGTGAGTCTTATTTATTCTCTGAAACACAGCCCAAGTTTCATGTTAAAATGGC
AAAATGCCATTATTTAAATGGAACTTATTACATACCAATGGCTTTGCAAGAAGATGACATTTCAGAAG
ATCAAACAAATCTATATTTAATGGATGGACTCTTCAAAACTTACCAAATAGTTGAAGAAACCAGGTGC
CTTCTCATGATGGAAGACAGATTCTGCTTTAAATTAAAAAAAAAAAAATCTGAATCTTGTTTTCAGAT
TTTTTTTTCTACTGG
NOV15g, SNP13382487 of SEQ ID NO: 432)288 aa l-MW at 33581.0kD CG51992-05, Protein Sequence SNP Change: no change
MTTVTVTTEIPPRD-..s^EDNSALYESTSAHIIEETEYVIs^IRTTLQKIRTQMFKDEI---mDST]m--- DAK QASREAGAAA RWAQRLFENYQTQSEEWKKQEDSKQ LQVNK^ KHSQITE ENLVQRMEKEKRTLLERKLS EN LQLKSSATYGKSCQDLQREISILQEQISHLQFVIH
SQHQN RSVIQEMEGL-K-NNLKEQD---S IEN RE---OOT
KTEGVSPYLMLIRLRK
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 15B.
Further analysis of the NOVl 5a protein yielded the following properties shown in Table 15C.
Table 15C. Protein Sequence Properties NOV15a
SignalP analysis: No Known Signal Sequence Predicted PSORT II analysis:
PSG: a new signal peptide prediction method
N-region: length 9; pos.chg 0; neg.chg 1 H-region: length 3; peak value 0.00 PSG score: -4.40
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -11.91 possible cleavage site: between 49 and 50
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al's method for TM region allocation Init position for calculation: 1
Tentative number of TMS(s) for the threshold 0.5: 0 number of TMS(s) .. fixed PERIPHERAL Likelihood = 9.07 (at 189) ALOM score: 9.07 (number of TMSs : 0)
MITDISC: discrimination of mitochondrial targeting seq R content: 1 Hyd Moment (75): 1.56 Hyd Moment (95): 1.30 G content: 0 D/E content: 2 S/T content: 5 Score: -5.82
Gavel: prediction of cleavage sites for mitochondrial preseq cleavage site motif not found
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite: none content of basic residues: 17.4% NLS Score: -0.47
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals : none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif: type 1 : none ty e 2 none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL : transport motif from cell surface to Golgi: none
Tyroεines in the tail : none
Dileucine motif in the tail : none checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN- Reinhardt's method for Cytoplasmic/Nuclear discrimination
Prediction: nuclear
Reliability: 94.1
COIL Lupas ' s algorithm to detect coiled-coil regions
76 A 0.56
77 A 0.56
78 A 0.56
79 L 0.56
80 R 0.56
81 N 0.59
82 V 0.67
83 A 0.67
84 Q 0.67
85 R 0.67
86 L 0.67
87 F 0.67
88 E 0.67
89 N 0.67
90 Y 0.67
91 Q 0.67
92 T 0.67
93 Q 0.80
94 S 0.80
95 E 0.80
96 E 0.80
97 V 0.80
98 R 0.80
99 K 0.81
100 K 0.81
101 Q 0.81
102 E 0.81
103 D 0.81
104 S 0.81
105 K 0.81
106 Q 0.81
107 L 0.86
108 L 0.98
109 Q 0.98
110 V 0.98
111 N 0.98
112 K 0.98
113 L 0.98 114 E 0.98
115 K 0.98
116 E 0.99
117 Q 0.99
118 K 0.99
119 L 0.99
120 K 0.99
121 Q 0.99
122 H 0.99
123 V 0.99
124 E 1.00
125 N 1.00
126 L 1.00
127 N 1.00
128 Q 1.00
129 V 1.00
130 A 1.00
131 E 1.00
132 K 1.00
133 L 1.00
134 E 1.00
135 E 1.00
136 K 1.00
137 H 1.00
138 S 1.00
139 Q 1.00
140 I 1.00
141 T 1.00
142 E 1.00
143 L 1.00
144 E 1.00
145 N 1.00
146 L 1.00
147 V 1.00
148 Q 1.00
149 R 1.00
150 M 1.00
151 E 1.00
152 K 1.00
153 E 1.00
154 K 1.00
155 R 1.00
156 T 1.00
157 L 1.00
158 L 1.00
159 E 1.00
160 R 1.00
161 K 1.00
162 L 1.00
163 S 1.00
164 L 1.00
165 E 1.00
166 N 1.00
167 K 1.00
168 L 1.00 169 L 1.00
170 Q 1. 00
171 L 1. 00
172 K 1. 00
173 S 1. 00
174 S 1. 00
175 A 1. 00
176 T 0. 99
177 Y 0. 88
178 G 0. 83
179 K 0. 83
180 S 0. 83
181 C 0. 83
182 Q 0. 83
183 D 0. 83
184 L 0. 83
185 Q 0. ,83
186 R 0. .83
187 E 0. ,83
188 I 0. ,83
189 S 0. .83
190 I 0. .83
191 L 0. .83
192 Q 0. .83
193 E 0. .83
194 Q 0. .83
195 I 0. .83
196 s 0, .83
197 H 0. .83
198 L 0. .83
199 Q 0. .83
200 F 0 .62
201 V 0 .62
202 I 0 .87
203 H 0 .87
204 S 0 .99
205 Q 0 .99
206 H 1 .00
207 Q 1 .00
208 N 1 .00
209 L 1 .00
210 R 1 .00
211 S 1 .00
212 V 1 .00
213 I 1 .00
214 Q 1 .00
215 E 1 .00
216 M 1 .00
217 E 1 .00
218 G 1 .00
219 L 1 .00
220 K 1 .00
221 N 1 .00
222 N 1 .00
223 L 1 .00 224 K 1.00
225 E 1.00
226 Q 1.00
227 D 1.00
228 K 1.00
229 R 1.00
230 I 1.00
231 E 1.00
232 N 1.00
233 L 1.00
234 R 1.00
235 E 1.00
236 K 1.00
237 V 1.00
238 N 1.00
239 I 1.00
240 L 1.00
241 E 1.00
242 A 1.00
243 Q 1.00
244 N 1.00
245 K 1.00
246 E 1.00
247 L 1.00
248 K 1.00
249 T 1.00
250 Q 1.00
251 V 1.00
252 A 1.00
253 L 1.00
254 S 1.00
255 S 1.00
256 E 1.00
257 T 1.00 total: 182 residues
esilit :s (k = 9/23) :
69 6 %: nuclear
13 0 %: cytoplasmic
8 7 %: peroxisomal
4 3 %: cytoskeletal
4 3 %: mitochondrial
>> prediction for CG51992 -05 is nuc (k=23 )
A search of the NOV15a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 15D.
Table 15D. Geneseq Results for NOV15a
Geneseq Protein/Organism/Length [Patent NOVJ5a Identities/ . Expect Identifier ' Value
In a BLAST search of public sequence databases, the NOV15a protein was found to have homology to the proteins shown in the BLASTP data in Table 15E.
PFam analysis predicts that the NOVl 5 a protein contains the domains shown in the Table 15F.
Table 15F. Domain Analysis of NOV15a
Identities/
Pfam Domain NOV15a Match Region Similarities Expect Value for the Matched Region
Example 16.
The NOVl 6 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 16 A.
ACCTCAGCAACTATGGCCTCCTGCCCAGACTCTGATAATAGCTGGGTGCTTGCTGGCTCCGAGAGCCT GCCAGTGGAGACACTGGGCCCGGCATCCAGGATGGACCCAGAATCTGAGAGAGCCCTGCAGGCCCCTC ACAGCCCCTCCAAGACAGATGGGAAAGAATTAGCTGGGACCATGGATGGAGAAGGGACGCTCTTCCAG ACTGAAAGCCCTCAGTCTGGCAGCATTCTAACAGAGGAGACTGAGGTCAAGGGCACCCTGGAAGGTGA TGTTTGTGGTGTGGAGCCTCCTGGCCCAGGAGGCACAGTAGTCCAGGGAGACCTGCAGGAGACCACCG TGGTGACAGGCCTGGGACCAGACACACAGGACCTGGAAGGCCAGAGCCCTCCACAGAGCCTGCCTTCA ACCCCCAAAGCAGCTTGGATCAGGGAGGAGGGCCGCTGCTCCAGCAGTGACGATGACACCGACGTGGA CATGGAGGGTCTGCGGAGACGGCGGGGCCGGGAGGCCGGCCCACCTCAGCCCATGGTGCCCCTGGCTG TGGAGAACCAGGCTGGGGGTGAGGGTGCAGGCGGGGAGCTGGGCATCTCCCTCAACATGTGCCTCCTT GGGGCCCTGGTTCTGCTTGGCCTGGGGGTCCTCCTCTTCTCAGGTGGCCTCTCAGAGTCTGAGACTGG GCCCATGGAGGAAGTGGAGCGGCAGGTCCTCCCAGACCCCGAGGTGCTGGAAGCTGTGGGGGACAGGC AGGATGGGCTAAGGGAACAGCTGCAGGCCCCAGTGCCTCCTGACAGTGTCCCCAGCCTGCAAAACATG GGTCTTCTGCTGGACAAGCTGGCCAAGGAGAACCAGGACATCCGGCTGCTGCAGGCCCAGCTGCAGGC CC-AAAAGGAAGAGCTTCAGAGCCTGATGCACCAGCCCAAAGGGCTAGAGGAGGAGAATGCCCAGCTCC GGGGGGCTCTGCAGCAGGGCGAAGCCTTCCAGCGGGCTCTGGAGTCAGAGCTGCAGCAGCTGCGGGCC CGGCTCCAGGGGCTGGAGGCCGACTGTGTCCGGGGCCCAGATGGGGTGTGCCTCAGTGGGGATAGAGG CCCACAGGGTGACAAGGCCATCAGGGAGCAAGGCCCCAGGGAGCAGGAGCCAGAACTCAGCTTCCTGA AGCAGAAGGAACAGCTGGAGGCTGAGGCACAGGCATTAAGGCAAGAGTTAGAGAGGCAGCGACGGCTG CTGGGGTCTGTACAGCAGGATCTGGAGAGGAGCTTGCAGGATGCCAGCCGCGGGGACCCAGCTCATGC TGGCTTGGCTGAGCTGGGCCACAGATTGGCCCAGAAACTGCAGGGCCTGGAGAACTGGGGCCAGGACC CTGGGGTCTCTGCCAATGCCTCAAAGGCCTGGCACCAGAAGTCCCACTTCCAGAATTCTAGGGAGTGG AGTGGAAAGGAAAAGTGGTGGGATGGGCAGAGAGACCGGAAGGCTGAGCACTGGAAACATAAGAAGGA AGAATCTGGCCGGGAAAGGAAGAAGAACTGGGGAGGTCAGGAGGACAGGGAGCCAGCAGGAAGGTGGA AGGAGGGCAGGCCAAGGGTGGAGGAGTCGGGGAGCAAGAAGGAGGGCAAGCGACAGGGCCCGAAGGAA CCCCCAAGGAAAAGTGGTAGCTTCCACTCCTCTGGAGAAAAGCAGAAGCAACCTCGGTGGAGGGAAGG GACTAAGGACAGCCATGACCCCCTGCCATCCTGGGCAGAGCTGTTGAGGCCCAAGTACCGGGCACCCC AGGGCTGCTCAGGTGTGGACGAGTGTGCCCGGCAGGAGGGCTTGACTTTCTTTGGCACAGAGCTAGCC CCAGTGCGGCAACAGGAGCTGGCCTCTCTGCTAAGAACATACTTGGCACGGCTGCCCTGGGCTGGGCA GCTGACCAAGGAGCTACCCCTCTCACCTGCTTTCTTTGGTGAGGATGGCATCTTCCGTCATGACCGCC TCCGCTTCCGGGATTTTGTGGATGCCCTGGAGGACAGCTTGGAGGAGGTGGCTGTGCAACAGACAGGT GATGATGATGAAGTAGATGACTTTGAGGACTTCATCTTCAGCCACTTCTTTGGAGACAAAGCACTGAA GAAGAGGCCTCTTCCTCCCCACAGGTCAGGGAAGAAGGACAAGCACTCACAGAGCCCAAGAGCTGCGG GGCCCAGGGAGGGGCACAGCCATAGCCACCACCACCACCACCGGGGCTGACACCCTGCCCCACAGGGA ATGGCCTTGGCCTGGCCCAGCCCAAGATCCCAGCGTTATCCAACTCCTGGAGGGTGGACTCTGTCCTG GCTTGTTTGGTGTCCTCAGATAT
NOV16g, SNP13374628 of SEQ ID NO: 446 737 aa MW at 81340.4kD CG52171-04, Protein Sequence SNP Pos: 98 SNP Change: Asp to Gly
MASCPDSDNSWVLAGSESLPVETLGPASRMDPESERALQAPHSPSKTDGKELAGTMDGEGTLFQTESP QSGSILTEETEVKGTLEGDVCGVEPPGPGGTWQGDLQETTWTGLGPDTQDLEGQSPPQSLPSTPKA A IREEGRCSSSDDDTDVDMEGLRRRRGREAGPPQPMVPLAVENQAGGEGAGGELGISLNMCLLGALV LLGLGVLLFSGGLSESETGPMEEVERQVLPDPEVLEAVGDRQDGLREQLQAPVPPDSVPSLQNMGLLL DKLAKENQDIRLLQAQLQAQKEELQSLMHQPKGLEEENAQLRGALQQGEAFQRALESELQQLRARLQG LEADCVRGPDGVCLSGDRGPQGDKAIREQGPREQEPELSFLKQKEQLEAEAQALRQELERQRRLLGSV QQDLERSLQDASRGDPAHAGLAELGHRLAQ -LQGLEN GQDPGVS..NASKAWHQKSHFQNSREWSGKE KW DGQRDRKAEHWKHKKEESGRERKKNWGGQEDREPAGR KEGRPRVEESGSKKEGKRQGPKEPPRK SGSFHSSGEKQKQPRWREGTKDSHDPLPS AELLRPKYRAPQGCSGVDECARQEGLTFFGTELAPVRQ QELASLLRTYLARLP AGQLTKELPLSPAFFGEDGIFRHDRLRFRDFVDALEDSLEEVAVQQTGDDDE VDDFEDFIFSHFFGDK-ALKKRPLPPHRSGK-1-ωKHSQSPRAAGPREGHSHSHHHHHRG
NOV16h, SNP 13377329 of SEQ ID NO: 447 2403 bp CG52171-04, DNA Sequence ORF Start: ATG at 81JORF Stop: TGA at 2292 SNP Pos: 1150 SNP Change: A to G
GGCACGAGAAGTTAAGCTGAAGACCGAAGCAAGAGCTGGTTCAGGTGGCAGCCACAGCAGCCTCAGGG
ACCTCAGCAACTATGGCCTCCTGCCCAGACTCTGATAATAGCTGGGTGCTTGCTGGCTCCGAGAGCCT
GCCAGTGGAGACACTGGGCCCGGCATCCAGGATGGACCCAGAATCTGAGAGAGCCCTGCAGGCCCCTC ACAGCCCCTCCAAGACAGATGGGAAAGAATTAGCTGGGACCATGGATGGAGAAGGGACGCTCTTCCAG ACTGAAAGCCCTCAGTCTGGCAGCATTCTAACAGAGGAGACTGAGGTCAAGGGCACCCTGGAAGGTGA TGTTTGTGGTGTGGAGCCTCCTGGCCCAGGAGACACAGTAGTCCAGGGAGACCTGCAGGAGACCACCG TGGTGACAGGCCTGGGACCAGACACACAGGACCTGGAAGGCCAGAGCCCTCCACAGAGCCTGCCTTCA ACCCCCAAAGCAGCTTGGATCAGGGAGGAGGGCCGCTGCTCCAGCAGTGACGATGACACCGACGTGGA CATGGAGGGTCTGCGGAGACGGCGGGGCCGGGAGGCCGGCCCACCTCAGCCCATGGTGCCCCTGGCTG TGGAGAACCAGGCTGGGGGTGAGGGTGCAGGCGGGGAGCTGGGCATCTCCCTCAACATGTGCCTCCTT GGGGCCCTGGTTCTGCTTGGCCTGGGGGTCCTCCTCTTCTCAGGTGGCCTCTCAGAGTCTGAGACTGG GCCCATGGAGGAAGTGGAGCGGCAGGTCCTCCCAGACCCCGAGGTGCTGGAAGCTGTGGGGGACAGGC AGGATGGGCTAAGGGAACAGCTGCAGGCCCCAGTGCCTCCTGACAGTGTCCCCAGCCTGCAAAACATG GGTCTTCTGCTGGACAAGCTGGCCAAGGAGAACCAGGACATCCGGCTGCTGCAGGCCCAGCTGCAGGC CCAAAAGGAAGAGCTTCAGAGCCTGATGCACCAGCCCAAAGGGCTAGAGGAGGAGAATGCCCAGCTCC GGGGGGCTCTGCAGCAGGGCGAAGCCTTCCAGCGGGCTCTGGAGTCAGAGCTGCAGCAGCTGCGGGCC CGGCTCCAGGGGCTGGAGGCCGACTGTGTCCGGGGCCCAGATGGGGTGTGCCTCAGTGGGGGTAGAGG CCCACAGGGTGACAAGGCCATCAGGGAGCAAGGCCCCAGGGAGCAGGAGCCAGAACTCAGCTTCCTGA AGCAGAAGGAACAGCTGGAGGCTGAGGCACAGGCATTAAGGCAAGAGTTAGAGAGGCAGCGACGGCTG CTGGGGTCTGTACAGCAGGATCTGGAGAGGAGCTTGCAGGATGCCAGCCGCGGGGACCCAGCTCATGC TGGCTTGGCTGAGCTGGGCCACAGATTGGCCCAGAAACTGCAGGGCCTGGAGAACTGGGGCCAGGACC CTGGGGTCTCTGCCAATGCCTCAAAGGCCTGGCACCAGAAGTCCCACTTCCAGAATTCTAGGGAGTGG AGTGGAAAGGAAAAGTGGTGGGATGGGCAGAGAGACCGGAAGGCTGAGCACTGGAAACATAAGAAGGA AGAATCTGGCCGGGAAAGGAAGAAGAACTGGGGAGGTCAGGAGGACAGGGAGCCAGCAGGAAGGTGGA AGGAGGGCAGGCCAAGGGTGGAGGAGTCGGGGAGCAAGAAGGAGGGCAAGCGACAGGGCCCGAAGGAA CCCCCAAGGAAAAGTGGTAGCTTCCACTCCTCTGGAGAAAAGCAGAAGCAACCTCGGTGGAGGGAAGG GACTAAGGACAGCCATGACCCCCTGCCATCCTGGGCAGAGCTGTTGAGGCCCAAGTACCGGGCACCCC AGGGCTGCTCAGGTGTGGACGAGTGTGCCCGGCAGGAGGGCTTGACTTTCTTTGGCACAGAGCTAGCC CCAGTGCGGCAACAGGAGCTGGCCTCTCTGCTAAGAACATACTTGGCACGGCTGCCCTGGGCTGGGCA GCTGACCAAGGAGCTACCCCTCTCACCTGCTTTCTTTGGTGAGGATGGCATCTTCCGTCATGACCGCC TCCGCTTCCGGGATTTTGTGGATGCCCTGGAGGACAGCTTGGAGGAGGTGGCTGTGCAACAGACAGGT GATGATGATGAAGTAGATGACTTTGAGGACTTCATCTTCAGCCACTTCTTTGGAGACAAAGCACTGAA GAAGAGGCCTCTTCCTCCCCACAGGTCAGGGAAGAAGGACAAGCACTCACAGAGCCCAAGAGCTGCGG GGCCCAGGGAGGGGCACAGCCATAGCCACCACCACCACCACCGGGGCTGACACCCTGCCCCACAGGGA ATGGCCTTGGCCTGGCCCAGCCCAAGATCCCAGCGTTATCCAACTCCTGGAGGGTGGACTCTGTCCTG
GCTTGTTTGGTGTCCTCAGATAT
NOV16h, SNP 13377329 of SEQ ID NO: 448 737 aa MW at 81340.4kD CG52171-04, Protein Sequence SNP Pos: 357 SNP Change: Asp to Gly
-MASCPDSDNSWVLAGSESLPVETLGPASRMDPESERALQAPHSPSKTDGKELAGT-MDGEGTLFQTESP QQDLERSLQDASRGDPAHAGLAELGHRLAQKLQGLENWGQDPGVSANASKA HQKSHFQNSREWSGKΞ
K DGQRDR---s EH KHKKEESGRERKKN GGQEDREPAGRWKEGRPRVEESGSK -EGKRQGP E
SGSFHSSGEKQKQPR REGTKDSHDPLPS AELLRPKYRAPQGCSGVDECARQEGLTFFGTELVPVRQ
QELASLLRTYLARLP AGQLTKELPLSPAFFGEDGIFRHDRLRFRDFVDALEDSLEEVAVQQTGDDDE iVDDFEDFIFSHFFGD-K-ALKKRPLPPHRSGKKDKHSQSPRAAGPREGHSHSHHHHHRG
NOV16J, SNP13374626 of SEQ ID NO: 451 2403 bp
CG52171 -04, DNA Sequence ORF Start: ATG at 8l|θRF Stop: TGA at 2292
SNP Pos: 1918 SNP Change: A to G
GGCACGAGAAGTTAAGCTGAAGACCGAAGCAAGAGCTGGTTCAGGTGGCAGCCACAGCAGCCTCAGGG
ACCTCAGCAACTATGGCCTCCTGCCCAGACTCTGATAATAGCTGGGTGCTTGCTGGCTCCGAGAGCCT
GCCAGTGGAGACACTGGGCCCGGCATCCAGGATGGACCCAGAATCTGAGAGAGCCCTGCAGGCCCCTC ACAGCCCCTCCAAGACAGATGGGAAAGAATTAGCTGGGACCATGGATGGAGAAGGGACGCTCTTCCAG ACTGAAAGCCCTCAGTCTGGCAGCATTCTAACAGAGGAGACTGAGGTCAAGGGCACCCTGGAAGGTGA TGTTTGTGGTGTGGAGCCTCCTGGCCCAGGAGACACAGTAGTCCAGGGAGACCTGCAGGAGACCACCG TGGTGACAGGCCTGGGACCAGACACACAGGACCTGGAAGGCCAGAGCCCTCCACAGAGCCTGCCTTCA ACCCCCAAAGCAGCTTGGATCAGGGAGGAGGGCCGCTGCTCCAGCAGTGACGATGACACCGACGTGGA CATGGAGGGTCTGCGGAGACGGCGGGGCCGGGAGGCCGGCCCACCTCAGCCCATGGTGCCCCTGGCTG TGGAGAACCAGGCTGGGGGTGAGGGTGCAGGCGGGGAGCTGGGCATCTCCCTCAACATGTGCCTCCTT GGGGCCCTGGTTCTGCTTGGCCTGGGGGTCCTCCTCTTCTCAGGTGGCCTCTCAGAGTCTGAGACTGG GCCCATGGAGGAAGTGGAGCGGCAGGTCCTCCCAGACCCCGAGGTGCTGGAAGCTGTGGGGGACAGGC AGGATGGGCTAAGGGAACAGCTGCAGGCCCCAGTGCCTCCTGACAGTGTCCCCAGCCTGCAAAACATG GGTCTTCTGCTGGACAAGCTGGCCAAGGAGAACCAGGACATCCGGCTGCTGCAGGCCCAGCTGCAGGC CCAAAAGGAAGAGCTTCAGAGCCTGATGCACCAGCCCAAAGGGCTAGAGGAGGAGAATGCCCAGCTCC GGGGGGCTCTGCAGCAGGGCGAAGCCTTCCAGCGGGCTCTGGAGTCAGAGCTGCAGCAGCTGCGGGCC CGGCTCCAGGGGCTGGAGGCCGACTGTGTCCGGGGCCCAGATGGGGTGTGCCTCAGTGGGGATAGAGG CCCACAGGGTGACAAGGCCATCAGGGAGCAAGGCCCCAGGGAGCAGGAGCCAGAACTCAGCTTCCTGA AGCAGAAGGAACAGCTGGAGGCTGAGGCACAGGCATTAAGGCAAGAGTTAGAGAGGCAGCGACGGCTG CTGGGGTCTGTACAGCAGGATCTGGAGAGGAGCTTGCAGGATGCCAGCCGCGGGGACCCAGCTCATGC TGGCTTGGCTGAGCTGGGCCACAGATTGGCCCAGAAACTGCAGGGCCTGGAGAACTGGGGCCAGGACC CTGGGGTCTCTGCCAATGCCTCAAAGGCCTGGCACCAGAAGTCCCACTTCCAGAATTCTAGGGAGTGG AGTGGAAAGGAAAAGTGGTGGGATGGGCAGAGAGACCGGAAGGCTGAGCACTGGAAACATAΛGAAGGA AGAATCTGGCCGGGAAAGGAAGAAGAACTGGGGAGGTCAGGAGGACAGGGAGCCAGCAGGAAGGTGGA AGGAGGGCAGGCCAAGGGTGGAGGAGTCGGGGAGCAAGAAGGAGGGCAAGCGACAGGGCCCGAAGGAA CCCCCAAGGAAAAGTGGTAGCTTCCACTCCTCTGGAGAAAAGCAGAAGCAACCTCGGTGGAGGGAAGG GACTAAGGACAGCCATGACCCCCTGCCATCCTGGGCAGAGCTGTTGAGGCCCAAGTACCGGGCACCCC AGGGCTGCTCAGGTGTGGACGAGTGTGCCCGGCAGGAGGGCTTGACTTTCTTTGGCACAGAGCTAGCC CCAGTGCGGCAACGGGAGCTGGCCTCTCTGCTAAGAACATACTTGGCACGGCTGCCCTGGGCTGGGCA GCTGACCAAGGAGCTACCCCTCTCACCTGCTTTCTTTGGTGAGGATGGCATCTTCCGTCATGACCGCC TCCGCTTCCGGGATTTTGTGGATGCCCTGGAGGACAGCTTGGAGGAGGTGGCTGTGCAACAGACAGGT GATGATGATGAAGTAGATGACTTTGAGGACTTCATCTTCAGCCACTTCTTTGGAGACAAAGCACTGAA GAAGAGGCCTCTTCCTCCCCACAGGTCAGGGAAGAAGGACAAGCACTCACAGAGCCCAAGAGCTGCGG GGCCCAGGGAGGGGCACAGCCATAGCCACCACCACCACCACCGGGGCTGACACCCTGCCCCACAGGGA
ATGGCCTTGGCCTGGCCCAGCCCAAGATCCCAGCGTTATCCAACTCCTGGAGGGTGGACTCTGTCCTG
^TTGTTTCGTGTCCTCAGAT^
NOV16J, SNP13374626 of SEQ ID NO: 452)737 aa MW at 81426.5kD
CG52171-04, Protein Sequence SNP Pos: 613 SNP Change: Gin to Arg
MASCPDSDNSWVLAGSESLPVETLGPASRMDPESERALQAPHSPSKTDGKELAGTMDGEGTLFQTESP
QSGSILTEETEVKGTLEGDVCGVEPPGPGDTWQGDLQETTWTGLGPDTQDLEGQSPPQSLPSTPKA
AWIREEGRCSSSDDDTDVDMEGLRRRRGREAGPPQPMVPLAVENQAGGEGAGGELGISLNMCLLGALV
LLGLGVLLFSGGLSESETGPMEEVERQVLPDPEVLEAVGDRQDGLREQLQAPVPPDSVPSLQNMGLLL
DKLAKENQDIRLLQAQLQAQKEELQSLMHQPKGLEEENAQLRGALQQGEAFQRALESELQQLRARLQG
LEADCVRGPDGVCLSGDRGPQGDKAIREQGPREQEPELSFLKQKEQLEAEAQALRQELERQRRLLGSV
QQDLERSLQDASRGDPAHAGLAELGHRLAQKLQGLEN GQDPGVSANASKAWHQKSHFQNSRE SGKE
KWWDGQ-RDRKAEHWKH--- ffiESGRERKK-traGGQEDREPAGR KEGRPRVEESGSKKEGKR
SGSFHSSGEKQKQPRWREGTKDSHDPLPS AELLRPKYRAPQGCSGVDECARQEGLTFFGTELAPVRQ
RELASLLRTYLARLP AGQLTKELPLSPAFFGEDGIFRHDRLRFRDFVDALEDSLΞEVAVQQTGDDDE
VDDFEDFIFSHFFGDK-T -jK-l- iPLPPHRSG-Ki isΗSQSP-RAAGPREGHSHSHH^^ NOV16k, SNP13374625 of SEQ ID NO: 453 2403 bp CG52171-04, DNA Sequence ORF Start: ATG at 81 ORF Stop: TGA at 2292
SNP Pos: 1951 SNP Change: C to T
GGCACGAGAAGTTAAGCTGAAGACCGAAGCAAGAGCTGGTTCAGGTGGCAGCCACAGCAGCCTCAGG Li
ACCTCAGCAACTATGGCCTCCTGCCCAGACTCTGATAATAGCTGGGTGCTTGCTGGCTCCGAGAGCCT GCCAGTGGAGACACTGGGCCCGGCATCCAGGATGGACCCAGAATCTGAGAGAGCCCTGCAGGCCCCTC ACAGCCCCTCCAAGACAGATGGGAAAGAATTAGCTGGGACCATGGATGGAGAAGGGACGCTCTTCCAG ACTGAAAGCCCTCAGTCTGGCAGCATTCTAACAGAGGAGACTGAGGTCAAGGGCACCCTGGAAGGTGA TGTTTGTGGTGTGGAGCCTCCTGGCCCAGGAGACACAGTAGTCCAGGGAGACCTGCAGGAGACCACCG TGGTGACAGGCCTGGGACCAGACACACAGGACCTGGAAGGCCAGAGCCCTCCACAGAGCCTGCCTTCA ACCCCCAAAGCAGCTTGGATCAGGGAGGAGGGCCGCTGCTCCAGCAGTGACGATGACACCGACGTGGA CATGGAGGGTCTGCGGAGACGGCGGGGCCGGGAGGCCGGCCCACCTCAGCCCATGGTGCCCCTGGCTG TGGAGAACCAGGCTGGGGGTGAGGGTGCAGGCGGGGAGCTGGGCATCTCCCTCAACATGTGCCTCCTT GGGGCCCTGGTTCTGCTTGGCCTGGGGGTCCTCCTCTTCTCAGGTGGCCTCTCAGAGTCTGAGACTGG GCCCATGGAGGAAGTGGAGCGGCAGGTCCTCCCAGACCCCGAGGTGCTGGAAGCTGTGGGGGACAGGC AGGATGGGCTAAGGGAACAGCTGCAGGCCCCAGTGCCTCCTGACAGTGTCCCCAGCCTGCAAAACATG GGTCTTCTGCTGGACAAGCTGGCCAAGGAGAACCAGGACATCCGGCTGCTGCAGGCCCAGCTGCAGGC CCAAAAGGAAGAGCTTCAGAGCCTGATGCACCAGCCCAAAGGGCTAGAGGAGGAGAATGCCCAGCTCC GGGGGGCTCTGCAGCAGGGCGAAGCCTTCCAGCGGGCTCTGGAGTCAGAGCTGCAGCAGCTGCGGGCC CGGCTCCAGGGGCTGGAGGCCGACTGTGTCCGGGGCCCAGATGGGGTGTGCCTCAGTGGGGATAGAGG CCCACAGGGTGACAAGGCCATCAGGGAGCAAGGCCCCAGGGAGCAGGAGCCAGAACTCAGCTTCCTGA AGCAGAAGGAACAGCTGGAGGCTGAGGCACAGGCATTAAGGCAAGAGTTAGAGAGGCAGCGACGGCTG CTGGGGTCTGTACAGCAGGATCTGGAGAGGAGCTTGCAGGATGCCAGCCGCGGGGACCCAGCTCATGC TGGCTTGGCTGAGCTGGGCCACAGATTGGCCCAGAAACTGCAGGGCCTGGAGAACTGGGGCCAGGACC CTGGGGTCTCTGCCAATGCCTCAAAGGCCTGGCACCAGAAGTCCCACTTCCAGAATTCTAGGGAGTGG AGTGGAAAGGAAAAGTGGTGGGATGGGCAGAGAGACCGGAAGGCTGAGCACTGGAAACATAAGAAGGA AGAATCTGGCCGGGAAAGGAAGAAGAACTGGGGAGGTCAGGAGGACAGGGAGCCAGCAGGAAGGTGGA AGGAGGGCAGGCCAAGGGTGGAGGAGTCGGGGAGCAAGAAGGAGGGCAAGCGACAGGGCCCGAAGGAA CCCCCAAGGAAAAGTGGTAGCTTCCACTCCTCTGGAGAAAAGCAGAAGCAACCTCGGTGGAGGGAAGG GACTAAGGACAGCCATGACCCCCTGCCATCCTGGGCAGAGCTGTTGAGGCCCAAGTACCGGGCACCCC AGGGCTGCTCAGGTGTGGACGAGTGTGCCCGGCAGGAGGGCTTGACTTTCTTTGGCACAGAGCTAGCC CCAGTGCGGCAACAGGAGCTGGCCTCTCTGCTAAGAACATACTTGGTACGGCTGCCCTGGGCTGGGCA GCTGACCAAGGAGCTACCCCTCTCACCTGCTTTCTTTGGTGAGGATGGCATCTTCCGTCATGACCGCC TCCGCTTCCGGGATTTTGTGGATGCCCTGGAGGACAGCTTGGAGGAGGTGGCTGTGCAACAGACAGGT GATGATGATGAAGTAGATGACTTTGAGGACTTCATCTTCAGCCACTTCTTTGGAGACAAAGCACTGAA GAAGAGGCCTCTTCCTCCCCACAGGTCAGGGAΛGAAGGACAAGCACTCACAGAGCCCAAGAGCTGCGG GGCCCAGGGAGGGGCACAGCCATAGCCACCACCACCACCACCGGGGCTGACACCCTGCCCCACAGGGA ATGGCCTTGGCCTGGCCCAGCCCAAGATCCCAGCGTTATCCAACTCCTGGAGGGTGGACTCTGTCCTG GCTTGTTTGGTGTCCTCAGATAT
QSGSILTEETEVKGTLEGDVCGVEPPGPGDTWQGDLQETTWTGLGPDTQDLEGQSPPQSLPSTPKA AWIREEGRCSSSDDDTDVDMEGLRRRRGREAGPPQPMVPLAVENQAGGEGAGGELGISLNMCLLGALV LLGLGVLLFSGGLSESETGPMEEVERQVLPDPEVLEAVGDRQDGLREQLQAPVPPDSVPSLQNMGLLL DKLAKENQDIRLLQAQLQAQKEELQSLMHQPKGLEEENAQLRGALQQGEAFQRALESELQQLRARLQG LEADCVRGPDGVCLSGDRGPQGDKAIREQGPREQEPELSFLKQKEQLEAEAQALRQELERQRRLLGSV QQDLERSLQDASRGDPAHAGLAELGHRLAQKLQGLEN GQDPGVSANASKAWHQKSHFQNSREWSGKE K WDGQRDRK-AEH KHKKEESGRERKKN GGQEDREPAGR KEGRPRVEESGSKKEGKRQGPKEPPRK SGSFHSSGEKQKQPR REGTKDSHDPLPS AELLRPKYRAPQGCSGVDECARQEGLTFFGTELAPVRQ QELASLLRTYLARLP AGQLTKELPLSPAFFGEDGIFRHDRLRFRDFVDALEDSLEEVAVQQTGDDDE VYDFEDFIFSHFFGDKALKKRPLPPHRSGKKDKHSQSPRAAGPREGHSHSHHHHHRG
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 16B.
Table 16B. Comparison of the NOV16 protein sequences.
NOV16a MASCPDSDNS VLAGSESLPVETLGPASRMDPESERALQAPHSPSKTDGKELAGTMDGEG
NOV16b
NOV16C MASCPDSDNSWVLAGSESLPVETLGPASRMDPESERALQAPHSPSKTDGKELAGTMDGEG
NOV16d MASCPDSDNS VLAGSESLPVETLGPASRMDPESERALQAPHSPSKTDGKELAGTMDGEG
NOV16e
NOV16f MASCPDSDNS VLAGSESLPVETLGPASRMDPESERALQAPHSPSKTDGKELAGTMDGEG
NOV16a TLFQTESPQSGSILTEETEVKGTLEGDVCGVEPPGPGDTWQGDLQETTWTGLGPDTQD
NOV16b
NOV16C TLFQTESPQSGSILTEETEVKGTLEGDVCGVEPPGPGDTWQGDLQETTWTGLGPDTQD
NOV16d TLFQTESPQSGSILTEETEVKGTLEGDVCGVEPPGPGDTWQGDLQETTWTGLGPDTQD
NOV16e
NOV16f TLFQTESPQSGSILTEETEVKGTLEGDVCGVEPPGPGDTWQGDLQETTWTGLGPDTQD
NOV16a LEGQSPPQSLPSTPKAA IREEGRCSSSDDDTDVDMEGLRRRRGREAGPPQPMVPLAVEN
NOV16b
NOV16C LEGQSPPQSLPSTPKAA IREEGRCSSSDDDTDVDMEGLRRRRGREAGPPQPMVPLAVEN
NOV16d LEGQSPPQSLPSTPKAA IREEGRCSSSDDDTDVDMEGLRRRRGREAGPPQPMVPLAVEN
NOVlδe
NOV16f LEGQSPPQSLPSTPKAA IREEGRCSSSDDDTDVDMEGLRRRRGREAGPPQPMVPLAVEN
NOV16a QAGGEGAGGELGISLNMCLLGALVLLGLGVLLFSGGLSESETGPMΞEVERQVLPDPEVLE
NOVl6b MCLLGALVLLGLGVLLFSGGLSESETGPMEEVERQVLPDPEVLE
NOV16C QAGGEGAGGELGISLNMCLLGALGLLGLGVLLFSGGLSESETGPMEEVERQVLPDPEVLE
NOV16d QAGGEGAGGELGISLNMCLLGALGLLGLGVLLFSGGLSESETGPMEEVERQVLPDPEVLE
NOV16e ESETGPMEEVERQVLPDPEVLE
NOV16f QAGGEGAGGELGISLNMCLLGALVLLGLGVLLFSGGLSESETGPMEEVERQVLPDPEVLE
NOV16a AVGDRQDGLREQLQAPVPPDSVPSLQNMGLLLDKLAKENQDIRLLQAQLQAQKEELQSLM
NOVl6b AVGDRQDGLREQLQAPVPPDSVPSLQNMGLLLDKLAKENQDIRLLQAQLQAQKEELQSLM
NOV16C AVGDRQDGLREQLQAPVPPDSVPSLQNMGLLLDKI-AKENQDIRLLQAQLQAQKEELQSLM
NOVl6d AVGDRQDGLREQLQAPVPPDSVPSLQNMGLLLDKLAKENQDIRLLQAQLQAQKEELQSLM
NOV16e AVGDRQDGLREQLQAPVPPDSVPSLQNMGLLLDKLAKENQDIRLLQAQLQAQKEELQSLM
NOVl6f AVGDRQDGLREQLQAPVPPDSVPSLQNMGLLLDKLAKENQDIRLLQAQLQAQKEELQSLM
NOVlδa HQPKGLEEENAQLRGALQQGEAFQRALESELQQLRARLQGLEADCVRGPDGVCLSGDRGP NOVl6b ^ HQPKGLEEENAQLRGALQQGEAFQRALESELQQLRARLQGLEADCVRGPDGVCLSGGRGP
NOV16C ' HQPKGLEEENAQLRGALQQGEAFQRALESELQQLRARLQGLEADCVRGPD
NOVl6d HQPKGLEEENAQLRGALQQGEAFQRALESELQQLRARLQGLEADCVRGPDGVCLSGGRGP
NOV16e HQPKGLEEENAQLRGALQQGEAFQRALESELQQLRARLQGLEADCVRGPDGVCLSGDRGP
NOV16f HQPKGLEEENAQLRGALQQGEAFQRALESELQQLRARLQGLEADCVRGPDGVCLSGDRGP NOVl6a QGDKAIREQOPREQEPELSFLKQKEQLEAEAQALRQELERQRRLLGΞVQQDLERSLQDAS NOVl6b QGDKAIREQGPREQEPELSFLKQKEQLEAEAQALRQELERQRRLLGSVQQDLERSLQDAS NOVl6c NOV16d QGDKAIREQGPREQEPELΞFLKQKEQLEAEAQALRQELERQRRLLGSVQQDLERSLQDAS NOV16e QGDKAIREQGPREQEPELSFLKQKEQLEAEAQALRQELERQRRLLGSVQQDLERSLQDAS NOVl6f QGDKAIREQGPREQEPELSFLNQKEQLEAEAQALRQELERQRRLLGSVQQDLERSLQDAS
NOV16a RGDPAHAGLAELGHRLAQKLQGLEN GQDPGVSANASKAWHQKSHFQNSREWSGKEK D NOVl6b RGDPAHAGLAELGHRLAQKLQGLEN GQDPGVSANASKA HQKSHFQNSRE SGKEKWWD NOV16C NOVl6d RGDPA-HAGL-AELGHRLAQKLQGLENWGQDPGVS-ANASKAWHQKSHFQNSREWSGKEK D NOVl6e RGDPAHAGLAELGHRLAQKLQGLENWGQDPGVSANASKA HQKSHFQNSRE SGKEK D NOVl6f RGDP-AHAGL-AELGHRLAQKLQGLENWGQDPGVSANASKAWHQKSHFQNSREWSGKEK WD
NOVl6a GQRDRK--AEH KHK-^ESGRERKK--WGGQEDREPAGRW---sΕGRPRVEESGSKKEGKRQGPKE NOVl6b GQRDRK-.AEH KHK-1-sΕESGRERIsslT GGQEDREPAGRWIsΕGRPRVEESGSKKEGKRQGP--^ NOVl6c NOVl6d GQRDRKAEHWKHKKEESGRERKKΪrøGGQEDREPAGRWKEGRPRVEESGSKKEGKRQGPKE NOVl6e GQRDRKAEHW-KHK-KEESGRERKK-røGGQEDREPAGRW-KEGRPRVEESGSK^ NOVl6f GQRDR---s^^HWKHKKEESGRERKKNWGGQEDREPAGRWKEGRPRVEESGSKKEGKRQAPKE
NOVl6a PPRKSGSFHSSGEKQKQPR REGTKDSHDPLPS AELLRPKYRAPQGCSGVDECARQEGL NOVl6b PPRKSGSFHSSGEKQKQPRWREGTKGSHDPLPSWAELLRPKYRAPQGCSGVDECARQEGL NOVl6C NOV16d PPRKSGSFHSSGEKQKQPRWREGTKGSHDPLPS AELLRPKYRAPQGCSGVDECARQEGL NOVl6e PPRKSGSFHSSGEKQKQPRWREGTKDSHDPLPSWAELLRPKYRAPQGCSGVDECARQEGL NOVl6f PPRKSGSFHSSGEKQKQPR REGTKDSHDPLPSWAELLRPKYRAPQGCSGVDECARQEGL
NOVl6a TFFGTELAPVRQQELASLLRTYLARLPWAGQLTKELPLSPAFFGEDGIFRHDRLRFRDFV NOVl6b TFFGTELAPVRQQELASLLRTYLARLP AGQLTKELPLSPAFFGEDGIFRHDRLRFRDFV NOVl6c GDGIFRHDRLRFRDFV NOV16d TFFGTELAPVRQQELASLLRTYLARLPWAGQLTKELPLSPAFFGEDGIFRHDRLRFRDFV NOVl6e TFFGTELAPVRQQELASLLRTYLARLP AGQLTKELPLSPAFFGEDGIFRHDRLRFRDFV NOVl6f TFFGTELAPVRQQELASLLRTYLARLP AGQLTKELPLSPAFFGEDGIFRHDRLRFRDFV
NOVl6a D-ALEDSLEEVAVQQTGDDDEVDDFEDFIFSHFFGDKM-jK-KRPLPPHRSGKKDKHSQSPRA NOVl6b DALEDSLEEVAVQQTGDDDEVDDFEDFIFSHFFGDKALKKR SGKKDKHSQSPRA NOVl6c DALEDSLEEVAVQQTGDDDEVDDFEDFIFSHFFGDKALKKR SGKKDKHSQSPRA NOVl6d DALEDSLEEVLEFSGR NOVl6e DALEDSLEEVAVQQTGDDDEVDDFEDFIFSHFFGDKALKKR SGKKDKHSQSPRA NOVl6f DALEDSLEEVAVQQTGDDDEVDDFEDFIFSHFFGDKALKKR SGKKDKHSQSPRA
NOVl6a AGPREGHSHSHHHHHRG NOVl6b AGPREGHSHSHHHHHRG NOVl6c AGPREGHSHSHHHHHRG NOVl6d NOVl6e AGPREGHSHSHHHHHRG NOVl6f AGPREGHSHSHHHHRG-
NOVl6a (SEQ ID NO 434) NOVl6b (SEQ ID NO 436) NOVl6c (SEQ ID NO 438) NOVl6d (SEQ ID NO 440) NOVl6e (SEQ ID NO 442) NOV16f (SEQ ID NO : 444 )
Further analysis of the NOVl 6a protein yielded the following properties shown in Table 16C.
Table 16C. Protein Sequence Properties NOVl 6a
SignalP analysis: No Known Signal Sequence Predicted
PSORT II analysis:
PSG: a new signal peptide prediction method
N-region: length 8; pos.chg 0; neg.chg 2 H-region: length 8; peak value 0.00 PSG score: -4.40
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -7.85 possible cleavage site: between 23 and 24
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al's method for TM region allocation Init position for calculation: 1
Tentative number of TMS (s) for the threshold 0.5: 1 Number of TMS(s) for threshold 0.5: 1
INTEGRAL Likelihood =-10.46 Transmembrane 197 - 213 PERIPHERAL Likelihood = 9.34 (at 12) ALOM score: -10.46 (number of TMSs : 1)
MTOP : Prediction of membrane topology (Hartmann et al . ) Center position for calculation: 204 Charge difference: -1.0 C(-4.0) - N(-3.0) N >= C: N-terminal side will be inside
>>> membrane topology: type 2 (cytoplasmic tail 1 to 197)
MITDISC: discrimination of mitochondrial targeting seq R content: 0 Hyd Moment (75): 2.09 Hyd Moment (95): 1.02 G content: 0 D/E content: 2 S/T content: 2 Score: -7.60
Gavel: prediction of cleavage sites for mitochondrial preseq cleavage site motif not found
NUCDISC: discrimination of nuclear localization signals pat4: RRRR (5) at 160 pat4: KHKK (3) at 491 pat4: KKRP (4) at 699 pat7 : none bipartite : none content of basic residues: 12.9% NLS Score: 0.28
KDEL: ER retention motif in the C-terminus: none ER Membrane Retention Signals : none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail : too long tail
Dileucine motif in the tail: none checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: nuclear Reliability: 89
COIL: Lupas ' s algorithm to detect coiled-coil regions
263 S 0.81
264 L 0.87
265 Q 0.96
266 N 0.97
267 M 0.98
268 G 0.99
269 L 1.00
270 L 1.00
271 L 1.00
272 D 1.00
273 K 1.00
274 L 1.00
275 A 1.00
276 K 1.00
277 E 1.00
278 N 1.00
279 Q 1.00
280 D 1.00
281 I 1.00
282 R 1.00 283 L 1.00
284 L 1. 00
285 Q 1. 00
286 A 1. 00
287 Q 1. 00
288 L 1. 00
289 Q 1. 00
290 A 1. 00
291 Q 1. 00
292 K 1. 00
293 E 1. 00
294 E 1. 00
295 L 1. 00
296 Q 1. 00
297 S 1. 00
298 L 1. ,00
299 M 1. 00
300 H 1. ,00
301 Q 1. ,00
303 K 0. .71
304 G 0. .71
305 L 0. .87
306 E 0. ,87
307 E 0. .87
308 E 0. .87
309 N 0. .87
310 A 0. .87
311 Q 0. .87
312 L 0 .87
313 R 0, .87
314 G 0 .87
315 A 0 .90
316 L 0 .94
317 Q 0 .94
318 Q 0 .94
319 G 0 .94
320 E 0 .94
321 A 0 .94
322 F 0 .94
323 Q 0 .94
324 R 0 .94
325 A 0 .94
326 L 0 .94
327 E 0 .94
328 S 0 .94
329 E 0 .94
330 L 0 .94
331 Q 0 .94
332 Q 0 .94
333 L 0 .94
334 R 0 .94
335 A 0 .94
336 R 0 .94
337 L 0 .94
338 Q 0 .94 339 G 0.94
340 L 0.94
341 E 0.94
342 A 0.94
343 D 0.94
344 C 0.79
376 E 0.95
377 L 1.00
378 S 1.00
379 F 1.00
380 L 1.00
381 K 1.00
382 Q 1.00
383 K 1.00
384 E 1.00
385 Q 1.00
386 L 1.00
387 E 1.00
388 A 1.00
389 E 1.00
390 A 1.00
391 Q 1.00
392 A 1.00
393 L 1.00
394 R 1.00
395 Q 1.00
396 E 1.00
397 L 1.00
398 E 1.00
399 R 1.00
400 Q 1.00
401 R 1.00
402 R 1.00
403 L 1.00
404 L 1.00
405 G 1.00
406 S 1.00
407 V 1.00
408 Q 1.00
409 Q 1.00
410 D 1.00
411 L 1.00
412 E 1.00
413 R 1.00
414 S 0.99
415 L 0.94
416 Q 0.94
417 D 0.92
418 A 0.92
419 S 0.78
420 R 0.78
421 G 0.54 total: 127 residues Final Results (k = 9/23) :
39.1 %: nuclear
26.1 %: mitochondrial
8.7 %: cytoplasmic
8.7 %: Golgi
4.3 %: plasma membrane
4.3 %: vesicles of secretory system
4.3 %: extracellular, including cell wall
4.3 %: peroxisomal
>> prediction for CG52171-04 is nuc (k=23)
A search of the NOVl 6a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 16D.
In a BLAST search of public sequence databases, the NOVl 6a protein was found to have homology to the proteins shown in the BLASTP data in Table 16E.
PFam analysis predicts that the NOVl 6a protein contains the domains shown in the Table 16F.
Table 16F. Domain Analysis of NOVl 6a
Identities/
Pfam Domain NOVl 6a Match Region Similarities Expect Value for the Matched Region
Example 17.
The NOVl 7 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 17 A.
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 17B.
Table 17B. Comparison of the NOV17 protein sequences.
NOV17a MERL GLFQRAQQLSPRSSQTVYQRVEGPRKGHLEEEEEDGEEGAETLAHFCPMELRGPE
NOV17b MERLWGLFQRAQQLSPRSSQTVYQRVEGPRKGHLEEEEEDGEEGAETLAHFCPMELRGPE
NOV17C MHYYRYSNAKVSC YKYLIiFSY IIF LA G WFLGVGLWA S
NOV17d iHYYRYSNAKVSC YKYLLFSYNIIF LA G WFLGVGLWAWS
NOV17e MERLWGLFQRAQQLSPRSSQTVYQRVEGPRKGHLEEEEEDGEEGAETLAHFCPMELRGPE
NOV17f MERLWGLFQRAQQLSPRSSQTVYQRVEGPRKGHLEEEEEDGEEGAETLAHFCPMELRGPE
NOV17a PLGSRPRQPNLIPWAAAGRRAAPYLVLTALLIFTGAFLLGYVAFRG-SCQA CGDSVL
NOV17b PLGSRPRQPNLIPWAAAGRRAAPYLVLTALLIFTGAFLLGYVAFRG-SCQA CGDSVL
NOV17C EKGVLSDLTKVT--RMHGIDPWLVLMVGWMFTLGFAGCVGALRENICLLNFFCGTIVL
NOV17d EKGVLSDLTKVT- -RMHGIDPWLVLMVGWMFTLGFAGCVGALRENICLLNFFCGTIVL NOVl 7 e PLGSRPRQPNLIPWAAAGRRAAPYLVLTALLIFTGAFLLGYVAFRG-SCQA CGDSVL NOVl 7 f PLGSRPRQP-NLIPWAAAGRRAAPYLVLTALLIFTGAFLLGYVAFRG-SCQA CGDSVL
NOVl7a WSEDVNYEPDLDFHQGRLYWSDLQAMFLQFLGEGRLEDTIRQTSLRERVAGSAG AALT NOVl7b WSEDVNYEPDLDFHQGRLYWSDLQAMFLQFLGEGRLEDTIRQTSLRERVAGSAG AAAD NOVl7c IFFLELAVA-VLAFLF--QDW- -VRDRFREFF ESNIK--SYRDDIDLQNLIDSLQ NOVl7d IFFLELAVA-VLAFLF--QDW--VRDRFREFF ESNIK--SYRDDIDLQNLIDSLQ NOV17e WSEDVNYEPDLDFHQGRLYWSDLQAMFLQFLGEGRLEDTIRQTSLRERVAGSAGMAALT NOVl7f WSΞDVNYEPDLDFHQGRLYWSDLQAMFLQFLGEGRLEDTIRQTSLRERVAGSAG AALT
NOVl7a QDIRAALSRQKLDHVWTDTHYVGLQFPDPAHPNTLHWVDEAGKVGEQLPLEDPDVYCPYS NOV17b SGHSRGLSRQKLDHVWTDTHYVGLQFPDPAHPNTLHWVDEAGKVGEQLPLEDPDVYCPYS NOVl7C KANQCCGAYGPED--WDLNVYFNCSGASYSREKCGVPFSCCVPDPVQKW NTQCGYD NOV17d KANQCCGAYGPED--WDLNVYFNCSGASYSREKCGVPFSCCVPDPAQKW NTQCGYD NOV17e QDIRAALSRQKLDHVWTDTHYVGLQFPDPAHPNTLHWVDEAGKVGEQLPLEDPDVYCPYS NOVl7f QDIRAALSCQKLDHVWTDTHYVGLQFPDPAHPNTLHWVDEAGKVGEQLPLEDPDVYCPYS
NOVl7a AIGNVTGELVYAHYGRPEDLQDLRARGVDPVGRLLLVRVGVISFAQKVTNAQDFGAQGVL NOV17b AIGNVTGELVYAHYGRPEDLQDLRARGVDPVGRLLLVRVGVISFAQKVTNAQDFGAQGVL NOVl7c VRIQLKSKWDESIFTKGC-IQALESW--LP--RNIYIVAGV- -FIA-ISLLQIFG NOVl7d VRIQLKSKWDESIFTKGC-IQALESW--LP--RNIYIVAGV- -FIA-ISLLQIFG NOVl7e AIGNVTGELVYAHYGRPEDLQDLR-ARGVDPVGRLLLVRVGVISFAQKVTNAQDFGAQGVL NOVl7f AIGNVTGELVYAHYGRPEDLQDLRARGVDPVGRLLLVRVGVISFAQKVTNAQDFGAQGVL
NOVl7a IYPEPADFSQDPPKPSLSSQQAVYGHVHLGTGDPYTPGFPSFNQTQFPPVASSGLPSIPA NOV17b IYPΞPADFSQDPPKPSLSSQQAVYGHVHLGTGDPYTPGFPSFNQTQFPPVASSGLPSIPR NOVl7C IFLARTLIS-D--IEAVK--A GH-HF NOVl7d IFLARTLIS-D--IEAVK--A GH-HF NOVl7e IYPEPADFSQDPPKPSLSSQQAVYGHVHLGTGDPYTPGFPSFNQTQFPPVASSGLPSIPA NOVl7f IYPEPADFSQDPPKPSLSSQQAVYGHVHLGTGDPYTPGFPSFNQTQFPPVASSGLPSIPA
NOVl7a QPISADIASRLLDHLRLLRSNSSGTPGATSSTGFQESRFRRQLALLTWTLQGAANALSGD NOVl7b R ALWSLKKKKGP G PRLRLWNNHRTSTPINNIFGC NOVl7C NOVl7d NOVl7e QPIS-ADIASRLLR-KLKGPVAPQEWQGSLLGSPYHLGPGPRLRLVVNNHRTSTPINNIFGC NOVl7f QPISADIASRLLRKLKGPVAPQEWQGSLLGSPYHLGPGPRLRLWNNHRTSTPINNIFGC
NOVl7a VWNIDNNF NOVl7b lEGRSEPDHYWIGAQRDAWGPGAAKSAVGTAILLELVRTFSS VSNGFRPRRSLLFISW NOVl7c NOVl7d NOVl7e IEGRSEPDHYWIGAQRDAWGPGAAKSAVGTAILLΞLVRTFSSMVSNGFRPRRSLLFISW NOVl7f IEGRSEPDHYWIGAQRDAWGPGAAKSAVGTAILLELVRTFSSMVSNGFRPRRSLLFISW
NOVl7a NOVl7b DGGDFGSVGSTEWXRGLPQRAAPQSRSVREPGQRSEGG- NOVl7C NOV17d NOVl7e DGGDFGSVGSTEWLEGYLSVLHLKAWYVSLDNAVLGDDKFHAKTSPLLTSLIESVLKQV NOVl7f DGGDFGSVGSTEWLEGYLSVLHLKAWYVSLDNAVLGDDKFHAKTSPLLTSLIESVLKQV
NOVl7a NOVl7b NOVl7c NOV17d
NOV17e DSPNHSGQTLYEQWFTNPSWDAEVIRPLP DSSAYSFTAFVGVPAVΞFSFMEDDQAYPF
NOV17f DSPNHSGQTLYEQWFTNPSWDAEVIRPLPMDSSAYSFTAFVGVPAVEFSFMEDDQAYPF
NOVl7a
NOV17b
NOV17C
NOV17d
NOV17e LHTKEDTYENLHKVLQGRLPAVAQAVAQLAGQLLIRLSHDRLLPLDFGRYGDWLRHIGN
NOV17f LHTKEDTYENLHKVLQGRLPAVAQAVAQPAGQLLIRLSHDRLLPLDFGRYGDWLRHIGN
NOV17a
NOV17b
NOV17C
NOV17d
NOV17e LNEFΞGDLKARGLTLQWVYSARGDYIRAAEKLRQEIYSSEERDERLTRMYNVRIMRVEFY
NOV17f LNEFSGDL-K-ARGLTLQWVYSARGDYIRAAEKLRQEIYSSEERDERLTRMYNVRIMRVEFY
NOV17a
NOV17b
NOV17C
NOV17d
NOV17e FLSQYVSPADSPFRHIFMGRGDHTLGALLDHLRLLRSNSSGTPGATSSTGFQESRFRRQL
NOV17f FLSQYVSPADSPFRHIFMGRGDHTLGALLDHLRLLRSNSSGTPGATSSTGFQESRFRRQL
NOV17a
NOV17b
NOV17C
NOV17d
NOV17e ALLTWTLQGAANALSGDVWNIDNNF
NOVl7f ALLTWTLQGAANALSGDVWNIDNNF
NOVl7a (SEQ ID NO 458)
NOVl7b (SEQ ID NO 460)
NOVl7c (SEQ ID NO 462)
NOVl7d (SEQ ID NO 464)
NOVl7e (SEQ ID NO 466)
NOVl7f (SEQ ID NO 468)
Further analysis of the NOVl 7a protein yielded the followmg properties shown in Table
17C.
Table 17C. Protein Sequence Properties NOVl 7a
SignalP analysis: No Known Signal Sequence Predicted
PSORT H analysis:
PSG: a new signal peptide prediction method
N-region: length 10; pos.chg 2; neg.chg 1 H-region: length 6; peak value -7.91 PSG score: -12.31
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -6.46 possible cleavage site: between 16 and 17 >>> Seems to have no N-terminal signal peptide
ALOM: Klein et al ' s method for TM region allocation
Init position for calculation: 1
Tentative number of TMS(s) for the threshold 0.5: 1
Number of TMS(s) for threshold 0.5: 1
INTEGRAL Likelihood = -5.68 Transmembrane 86 - 102
PERIPHERAL Likelihood = 1.54 (at 264)
ALOM score: -5.68 (number of TMSs: 1)
MTOP: Prediction of membrane topology (Hartmann et al.) Center position for calculation: 93 Charge difference: -3.0 C( 0.0) - N( 3.0) N >= C: N-terminal side will be inside
>>> membrane topology: type 2 (cytoplasmic tail 1 to 86)
MITDISC: discrimination of mitochondrial targeting seq R content: 4 Hyd Moment (75): 8.36 Hyd Moment (95): 11.20 G content: 1 D/E content: 2 S/T content: 4 Score: -1.76
Gavel: prediction of cleavage sites for mitochondrial preseq R-2 motif at 35 QRV|EG
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite : none content of basic residues: 8.0% NLS Score: -0.47
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals :
XXRR-like motif in the N-terminus: ERLW none
SKL: peroxisomal targeting signal in the C-terminus : none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail : too long tail
Dileucine motif in the tail: none checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: cytoplasmic Reliability: 89
COIL: Lupas ' s algorithm to detect coiled-coil regions total: 0 residues
Final Results (k = 9/23) :
47.8 %: mitochondrial 26.1 %: cytoplasmic
8.7 %: Golgi
4.3 % : vacuolar
4.3 %: vesicles of secretory system
4.3 %: nuclear
4 .3 % : endoplasmic reticulum
>> prediction for CG52534-06 is mit (k=23 )
A search of the NOVl 7a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 17D.
In a BLAST search of public sequence databases, the NOV17a protein was found to have homology to the proteins shown in the BLASTP data in Table 17E.
PFam analysis predicts that the NOVl 7a protein contains the domains shown in the Table 17F.
Example 18.
The NOVl 8 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 18 A.
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 18B.
Table 18B. Comparison of the NO 18 protein sequences. NOVlβa MSELVRTTSQSSERGNDQESSQPVGSVIVQEPTEEKRQEEEPPTDNQGPDMEAFQQELAL
NOVlβb MSELVR-ARSQSSERGNDQESSQPVGSVIVQEPTEEKRQEEEPPTDNQGPDMEAFQQELAL
NOVlβC WLRITCFQHFSEIKSGHNTLPDIRTISRLILY
NOVlβa LKIEDEPGDGPDVREGIMPTFDLTKVLEAGDAQP
NOVlβb LKIEDEPGDGPDVREGIMPTFDLTKVLEAGDAQP
NOVlβC LKQSQ
NOVlβa (SEQ ID NO 470) NOVlβb (SEQ ID NO 472) NOVlβC (SEQ ID NO 474)
Further analysis of the NOVl 8a protein yielded the following properties shown in Table 18C.
Table 18C. Protein Sequence Properties NOV18a
SignalP analysis: No Known Signal Sequence Predicted
PSORT II analysis:
PSG: a new signal peptide prediction method
N-region: length 6; pos.chg 1; neg.chg 1 H-region: length 6; peak value -10.69 PSG score: -15.09
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -14.03 possible cleavage site: between 14 and 15
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al ' s method for TM region allocation Init position for calculation: 1
Tentative number of TMS (s) for the threshold 0.5: 0 number of TMS (s) .. fixed PERIPHERAL Likelihood = 10.87 (at 76) ALOM score: 10.87 (number of TMSs : 0)
MITDISC: discrimination of mitochondrial targeting seq R content: 1 Hyd Moment (75) : 5.19 Hyd Moment (95): 12.09 G content: 0 D/E content: 2 S/T content: 6 Score: -3.75
Gavel : prediction of cleavage sites for mitochondrial preseq cleavage site motif not found
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite : none content of basic residues: 7.4% NLS Score: -0.47
KDEL: ER retention motif in the C-terminus: none ER Membrane Retention Signals : none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif: type 1 : none type : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail: none
Dileucine motif in the tail : none checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: nuclear Reliability: 94.1
COIL: Lupas ' s algorithm to detect coiled-coil regions total: 0 residues
Final Results (k = 9/23) :
78.3 %: nuclear
21. 7 % : mitochondrial
>> prediction for CG52979-03 is nuc (k=23 )
A search of the NOVl 8a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 18D.
Table 18D. Geneseq Results for NOVl 8a
NOV18a Identities/
Geneseq Protein/Organism Length [Patent Residues/ Similarities for Expect Identifier #, Date] Match the Matched Value
Residues Region
In a BLAST search of public sequence databases, the NOVl 8a protein was found to have homology to the proteins shown in the BLASTP data in Table 18E.
PFam analysis predicts that the NOVl 8a protein contains the domains shown in the Table 18F.
Table 18F. Domain Analysis of NOV18a
Pfam Domain NOVl 8a Match Region Expect Value Similarities for the Matched Region ;
Example 19.
The NOV19 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 19 A.
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 19B.
Table 19B. Comparison of the NOV19 protein sequences.
NOV19a MSELVRTRSQSSERGNDQESSQPVGSVIVQEPTEEKRQEEEPPTDNQGIAPSGEIENQAV
NOV19b MSELVRARSQSSERGNDQESSQPVGSVIVQEPTEEKRQEEEPPTDNQGIAPSGEIENQAV
NOV19C MSEHVRTTSQSSERGNDQESSQPVGSVIVQEPTEEKRQEEEPPTDNQGIAPSGEIENEGA
NOV19d MIEHVRTISQSSERGNDQESSHPVGSVIVQEPTEEKRQEEEPPTDNQGIAPSGEIENEGA
NOV19e MSEHVRTRSQSSERGNDQESSQPVGSVIVQEPTEEKRQEEEPPTDNQGIAPSGEIENEGA
NOV19f MSEHVRTRSQSSERGNDQESSQPVGSVIVQEPTEEKRQEEEPPTDNQGIAPSGEIENEGA
NOV19g MSEHVRTTSQSSERGNDQESSQPWSVIVQEPTEEKRQEEEPPTDNQGIAPSGEIENEGA
NOVl9a PAFQGPDMEAFQQELALLKIEDEPGDGPDVREGIMPTFDLTKVLEAGDAQP
NOVl9b PAFQGPDMEAFQQELALLKIEDEPGDGPDVREGIMPTFDLTKVLEAGDAQP
NOVl9C PAVQGPDMEAFQQELALLKIEDEPGDGPDVREGIMPTFDLTKVLEAGDAQP
NOVl9d PAVQGPDMEAFQQELALLKIEDEPGDGPDVREGIMPTFDLTRVLEAGDAQP
NOVl9e PAVQGPDMEAFQQELALLKIEDEPGDGPDVREGIMPTFDLTKVLEAGDAQP
NOV19f PAVQGPDMEAFQQELALLKIEDEPGDGPDVREGIMPTFDLTKVLEAGDAQP
NOV19g PAVQGPDMEAFQQELALLKIEDEPGDGPDVREGIMPTFDLTKVLEAGDAQP NOVl9a (SEQ ID NO 476)
NOVl9b (SEQ ID NO 478)
NOVl9c (SEQ ID NO 480)
NOV19d (SEQ ID NO 482)
NOVl9e (SEQ ID NO 484)
NOVl9f (SEQ ID NO 486)
NOV19g (SEQ ID NO 488)
Further analysis ofthe NOVl9a protein yielded the following properties shown in Table 19C.
Table 19C. Protein Sequence Properties NOV19a
SignalP analysis: No Known Signal Sequence Predicted
PSORT π analysis:
PSG: a new signal peptide prediction method
N-region: length 8; pos.chg 2; neg.chg 1 H-region: length 4; peak value -13.93 PSG score: -18.33
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -15.73 possible cleavage site: between 14 and 15
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al ' s method for TM region allocation Init position for calculation: 1
Tentative number of TMS(s) for the threshold 0.5: 0 number of TMS(s) .. fixed PERIPHERAL Likelihood = 10.87 (at 93) ALOM score: 10.87 (number of TMSs : 0)
MITDISC: discrimination of mitochondrial targeting seq R content: 2 Hyd Moment (75): 8.54 Hyd Moment (95) : 6.16 G content: 0 D/E content: 2 S/T content: 5 Score: -3.37
Gavel : prediction of cleavage sites for mitochondrial preseq cleavage site motif not found
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite: none content of basic residues: 7.2% NLS Score: -0.47
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals: none
SKL: peroxisomal targeting signal in the C-terminus: none PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif: none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail : none
Dileucine motif in the tail : none checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: nuclear Reliability: 89
COIL: Lupas ' s algorithm to detect coiled-coil regions total: 0 residues
Final Results (k = 9/23) :
69.6 %: nuclear 26.1 %: mitochondrial 4.3 %: cytoplasmic
>> prediction for CG52988-02 is nuc (k=23)
A search of the NOVl 9a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 19D.
In a BLAST search of public sequence databases, the NOV19a protein was found to have homology to the proteins shown in the BLASTP data in Table 19E.
PFam analysis predicts that the NOVl 9a protein contains the domains shown in the Table 19F.
Table 19F. Domain Analysis of NOV19a
Identities/
Pfam Domain NOV19a Match Region Similarities Expect Value for the Matched Region
Example 20.
The NOV20 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 20 A.
C
AGATAGGAGATACCTTTTTCGAGCCTATATCGTGGCACCTGGCTACCAAAGTACTGGGAATACTCTG
C
TGTGGCCTATTTTTTGGCATTGTTGGACTGAAGATTTTCTTCTCCAAATTCCAGTGTAAGCGAGAGA
G
AGAAGCATGGGCCGGTGCCTTATTCATGGTTCCAGCAGGGACAGGATCAGAGATGCTCCCACATCCA
G
CTGCTTCTCTTCTTCTAGTCCTAGCCTCCAGGGGCCCAGGCCCAAAAAAGGAAAATCCAGGCGGAAC
T
GGACTGGAGAAGAAAGCACGGACAGGCAGAATTGAGAGACGCCCGGAAACACGCAGTGGAGGTGACT
C
TGGATCCAGAGACGGCTCACCCGAAGCTCTGCGTTTCCTCGAGGGC
NOV20f, CG53449-06 SEQ ID NO: 500 347 aa MW at 38208.5kD Protein Sequence
MAL LSLVLSLLKLGSGQ QVFGPDKPVQALVGEDAAFSCFLSPKTNAEAMEVRFFRGQFSSVVHLY
R
DGi QPF QMPQYQGRTKLV-KDSIAEGRISLRLENITVLDAGLYGCRISSQSYYQKAIWELQVSALG
S
VPLISITGYVDRDIQLLCQSSG FPRPTAKWKGPQGQDLSTDSRTNRDMHGLFDVEISLTVQENAGS
I
SCSMRHAHLSREVESRVQIGDTFFEPIS HLATKVLGILCCGLFFGIVGLKIFFSKFQCKREREA A
G
ALFJ VPAGTGSEMLPHPAASLLLVLASRGPGPKKENPGGTGLEKKARTGRIERRPETRSGGDSGSRD
G
SPEALRF
NOV20g, SNP13382434 of SEQ ID NO: 501 1969 bp
CG53449-03, DNA Sequence ORF Start: ATG at 95 ORF Stop: TAG at 1595
SNP Pos: 396 SNP Change: T to C
AGCATTAGGCCAGTTCTCCTCTTCTCTCTAATCCATCCGTCACCTCTCCTGTCATCCGTTTCCATGCC
GTGAGGTCCATTCACAGAACACATCCATGGCTCTCATGCTCAGTTTGGTTCTGAGTCTCCTCAAGCTG
GGATCAGGGCAGTGGCAGGTGTTTGGGCCAGACAAGCCTGTCCAGGCCTTGGTGGGGGAGGACGCAGC ATTCTCCTGTTTCCTGTCTCCTAAGACCAATGCAGAGGCCATGGAAGTGCGGTTCTTCAGGGGCCAGT TCTCTAGCGTGGTCCACCTCTACAGGGACGGGAAGGACCAGCCATTTATGCAGATGCCACAGTATCAA GGCAGGACAAAACTGGTGAAGGATTCTATTGCGGAGGGGCGCATCTCTCTGAGGCCGGAAAACATTAC TGTGTTGGATGCTGGCCTCTATGGGTGCAGGATTAGTTCCCAGTCTTACTACCAGAAGGCCATCTGGG AGCTACAGGTGTCAGCACTGGGCTCAGTTCCTCTCATTTCCATCACGGGATATGTTGATAGAGACATC CAGCTACTCTGTCAGTCCTCGGGCTGGTTCCCCCGGCCCACAGCGAAGTGGAAAGGTCCACAAGGACA GGATTTGTCCACAGACTCCAGGACAAACAGAGACATGCATGGCCTGTTTGATGTGGAGATCTCTCTGA CCGTCCAAGAGAACGCCGGGAGCATATCCTGTTCCATGCGGCATGCTCATCTGAGCCGAGAGGTGGAA TCCAGGGTACAGATAGGAGATACCTTTTTCGAGCCTATATCGTGGCACCTGGCTACCAAAGTACTGGG AATACTCTGCTGTGGCCTATTTTTTGGCATTGTTGGACTGAAGATTTTCTTCTCCAAATTCCAGTGGA AAATCCAGGCGGAACTGGACTGGAGAAGAAAGCACGGACAGGCAGAATTGAGAGACGCCCGGAAACAC GCAGTGGAGGTGACTCTGGATCCAGAGACGGCTCACCCGAAGCTCTGCGTTTCTGATCTGAAAACTGT AACCCATAGAAAAGCTCCCCAGGAGGTGCCTCACTCTGAGAAGAGATTTACAAGGAAGAGTGTGGTGG CTTCTCAGAGTTTCCAAGCAGGGAAACATTACTGGGAGGTGGACGGAGGACACAATAAAAGGTGGCGC GTGGGAGTGTGCCGGGATGATGTGGACAGGAGGAAGGAGTACGTGACTTTGTCTCCCGATCATGGGTA CTGGGTCCTCAGACTGAATGGAGAACATTTGTATTTCACATTAAATCCCCGTTTTATCAGCGTCTTCC CCAGGACCCCACCTACAAAAATAGGGGTCTTCCTGGACTATGAGTGTGGGACCATCTCCTTCTTCAAC ATAAATGACCAGTCCCTTATTTATACCCTGACATGTCGGTTTGAAGGCTTATTGAGGCCCTACATTGA GTATCCGTCCTATAATGAGCAAAATGGAACTCCCATAGTCATCTGCCCAGTCACCCAGGAATCAGAGA AAGAGGCCTCTTGGCAAAGGGCCTCTGCAATCCCAGAGACAAGCAACAGTGAATCCTCCTCACAGGCA ACCACGCCCTTCCTCCCCAGGGGTGAAATGTAGGATGAATCACATCCCACATTCTTCTTTAGGGATAT TAAGGTCTCTCTCCCAGATCCAAAGTCCCGCAGCAGCCGGCCAAGGTGGCTTCCAGATGAAGGGGGAC TGGCCTGTCCACATGGGAGTCAGGTGTCATGGCTGCCCTGAGCTGGGAGGGAAGAAGGCTGACATTAC ATTTAGTTTGCTCTCACTCCATCTGGCTAAGTGATCTTGAAATACCACCTCTCAGGTGAAGAACCGTC AGGAATTCCCATCTCACAGGCTGTGGTGTAGATTAAGTAGACAAGGAATGTGAATAATGCTTAGATCT TATTGATGACAGAGTGTATCCTAATGGTTTGTTCATTATATTACACTTTCAGTAAAAAAAAAAAA NOV20g, SNP13382434 of SEQ ID NO: 502 500 aa MW at 56731. lkD CG53449-03, Protein Sequence SNP Pos: 101 SNP Change: Leu to Pro
MALMLSLVLSLLKLGSGQWQVFGPDKPVQALVGEDAAFSCFLSPKT-ISTAEAMEVRFFRGQFSSVVHLYR DGKDQPFMQMPQYQGRTKLVKDSIAEGRISLRPENITVLDAGLYGCRISSQSYYQKAI ELQVSALGS VPLISITGYVDRDIQLLCQSSG FPRPTA KGPQGQDLSTDSRT-NRDMHGLFDVEISLTVQENAGSI SCSMRHAHLSREVESRVQIGDTFFEPIS HLATKVLGILCCGLFFGIVGLKIFFSKFQ IQAELDWR RKHGQAEL---ω-AR]t-a VΕVTLDPETAHPKLCVSDLKTVTHRKAPQEVPHSEKRFTRKSVVASQSFQAGK HY EVDGGHN-OR RVGVCRDDVDRRK-EYVTLSPDHGYWVLRLNGEHLYFTLNPRFISVFPRTPPTKIG VFLDYECGTISFFNI DQSLIYTLTCRFEGLLRPYIEYPΞYNEQNGTPIVICPVTQESEKEAS QRAS AIPETSNSESSSQATTPFLPRGEM
NOV20h, SNP13382441 of SEQ ID NO: 503 1969 bp CG53449-03, DNA Sequence ORF Start: ATG at 95 ORF Stop: TAG at 1595
SNP Pos: 1549 SNP Change: A to G
AGCATTAGGCCAGTTCTCCTCTTCTCTCTAATCCATCCGTCACCTCTCCTGTCATCCGTTTCCATGCC
GTGAGGTCCATTCACAGAACACATCCATGGCTCTCATGCTCAGTTTGGTTCTGAGTCTCCTCAAGCTG
GGATCAGGGCAGTGGCAGGTGTTTGGGCCAGACAAGCCTGTCCAGGCCTTGGTGGGGGAGGACGCAGC ATTCTCCTGTTTCCTGTCTCCTAAGACCAATGCAGAGGCCATGGAAGTGCGGTTCTTCAGGGGCCAGT TCTCTAGCGTGGTCCACCTCTACAGGGACGGGAAGGACCAGCCATTTATGCAGATGCCACAGTATCAA GGCAGGACAAAACTGGTGAAGGATTCTATTGCGGAGGGGCGCATCTCTCTGAGGCTGGAAAACATTAC TGTGTTGGATGCTGGCCTCTATGGGTGCAGGATTAGTTCCCAGTCTTACTACCAGAAGGCCATCTGGG AGCTACAGGTGTCAGCACTGGGCTCAGTTCCTCTCATTTCCATCACGGGATATGTTGATAGAGACATC CAGCTACTCTGTCAGTCCTCGGGCTGGTTCCCCCGGCCCACAGCGAAGTGGAAAGGTCCACAAGGACA GGATTTGTCCACAGACTCCAGGACAAACAGAGACATGCATGGCCTGTTTGATGTGGAGATCTCTCTGA CCGTCCAAGAGAACGCCGGGAGCATATCCTGTTCCATGCGGCATGCTCATCTGAGCCGAGAGGTGGAA TCCAGGGTACAGATAGGAGATACCTTTTTCGAGCCTATATCGTGGCACCTGGCTACCAAAGTACTGGG AATACTCTGCTGTGGCCTATTTTTTGGCATTGTTGGACTGAAGATTTTCTTCTCCAAATTCCAGTGGA AAATCCAGGCGGAACTGGACTGGAGAAGAAAGCACGGACAGGCAGAATTGAGAGACGCCCGGAAACAC GCAGTGGAGGTGACTCTGGATCCAGAGACGGCTCACCCGAAGCTCTGCGTTTCTGATCTGAAAACTGT AACCCATAGAAAAGCTCCCCAGGAGGTGCCTCACTCTGAGAAGAGATTTACAAGGAAGAGTGTGGTGG CTTCTCAGAGTTTCCAAGCAGGGAAACATTACTGGGAGGTGGACGGAGGACACAATAAAAGGTGGCGC GTGGGAGTGTGCCGGGATGATGTGGACAGGAGGAAGGAGTACGTGACTTTGTCTCCCGATCATGGGTA CTGGGTCCTCAGACTGAATGGAGAACATTTGTATTTCACATTAAATCCCCGTTTTATCAGCGTCTTCC CCAGGACCCCACCTACAAAAATAGGGGTCTTCCTGGACTATGAGTGTGGGACCATCTCCTTCTTCAAC ATAAATGACCAGTCCCTTATTTATACCCTGACATGTCGGTTTGAAGGCTTATTGAGGCCCTACATTGA GTATCCGTCCTATAATGAGCAAAATGGAACTCCCATAGTCATCTGCCCAGTCACCCAGGAATCAGAGA AAGAGGCCTCTTGGCAAAGGGCCTCTGCAATCCCAGAGACAAGCAACAGTGAGTCCTCCTCACAGGCA ACCACGCCCTTCCTCCCCAGGGGTGAAATGTAGGATGAATCACATCCCACATTCTTCTTTAGGGATAT
TAAGGTCTCTCTCCCAGATCCAAAGTCCCGCAGCAGCCGGCCAAGGTGGCTTCCAGATGAAGGGGGAC
TGGCCTGTCCACATGGGAGTCAGGTGTCATGGCTGCCCTGAGCTGGGAGGGAAGAAGGCTGACATTAC
ATTTAGTTTGCTCTCACTCCATCTGGCTAAGTGATCTTGAAATACCACCTCTCAGGTGAAGAACCGTC
AGGAATTCCCATCTCACAGGCTGTGGTGTAGATTAAGTAGACAAGGAATGTGAATAATGCTTAGATCT
TATTGATGACAGAGTGTATCCTAATGGTTTGTTCATTATATTACACTTTCAGTAAAAAAAAAAAA
NOV20h, SNP13382441 of SEQ ID NO: 504 500 aa MW at 56747.1kD
CG53449-03, Protein Sequence |SNP Pos: 485 SNP Change: Glu to Glu
MALMLSLVLSLLKLGSGQ QVFGPDKPVQALVGEDAAFSCFLSP TNAEAMEVRFFRGQFSSWHLYR DGKDQPF QMPQYQGRTKLV DSIAEGRISLRLENITVLDAGLYGCRISSQSYYQKAI ELQVSALGS VPLISITGYVDRDIQLLCQSSG FPRPTAKWKGPQGQDLSTDSRTNRDMHGLFDVEISLTVQENAGSI SCS RHAHLSREVESRVQIGDTFFEPISWHLATKVLGILCCGLFFGIVGLKIFFSKFQ KIQAELDWR R-- GQ.AEL-RDARKHAVEVTLDPETAHPKLCVSDLKTVTHRKAPQEVPHSEKRFTRKSVVASQSFQAGK HY EVDGGHNKR RVGVCRDDVDRRKEYVTLSPDHGYWVLRLNGEHLYFTLNPRFISVFPRTPPTKIG VFLDYECGTISFFNINDQSLIYTLTCRFEGLLRPYIEYPSYNΞQNGTPIVICPVTQESEKEAS QRAS AIPETSNSESSSQATTPFLPRGEM
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 20B.
Table 20B. Comparison of the NO 20 protein sequences. NOV20a MALMLSLVLSLL LGSGQWQVFGPDKPVQALVGEDAAFSCFLSPKTNAEAMEVRFFRGQF NOV20b MALMLSLVLSLLKLGSGQ QVFGPDKPVQALVGEDAAFSCFLSPKTNAEAMEVRFFRGQF NOV20c --MNPVPQMEMQKSPMFCVAHSGSCRPELFLFGHLGS SPSLQRVLMIYLLYVFPQ NOV20d - -MNPVPQMEMQKSPMFCVAHSGSCRPELFLFGHLGS SPSLQRVLMIYLLYVFPQ NOV20e Q QVFGPDKPVQALVGΞDAAFSCFLSPKTNAEAMEVRFFRGQF NOV20f MALMLSLVLSLLKLGSGQ QVFGPDKPVQALVGEDAAFSCFLSPKTNAEAMEVRFFRGQF
NOV20a SSWHLYRDGKDQPFMQMPQYQGRTKLV DSIAEGRIS NOV20b SSWHLYRDGKDQPFMQMPQYQGRTKLVKDSIAEGRIS NOV20C GSGRCLGQTSLSRPW GRTQHSPVSCLLKPM NOV20d GSGRCLGQTSLSRPWWGRTQHSPVSCLLKPMQRPWKCGSSGASSLAWSTSTGTGRTSHLC NOV20e SSWHLYRDGKDQPFMQMPQYQGRTKLVKDSIAEGRIS NOV20f SSWHLYRDGKDQPFMQMPQYQGRTKLVKDSIAEGRIS
NOV20a -LRLENITVLDAGLYGCRISSQSYYQKAI ELQVSALGSV NOV20b -LRLENITVLDAGLYGCRISSQSYYQKAI ELQVSALGSV NOV20C NOV20d RCHSIKAGQNCEGFYCGGAHLSRLENITVLDAGLYGCRISSQSYYQKAI ELQVSALGSV NOV20e LRLENITVLDAGLYGCRISSQSYYQKAI ELQVSALGSV NOV20f LRLENITVLDAGLYGCRISSQSYYQKAIWELQVSALGSV
NOV20a PLISITGYVDRDIQLLCQSSG FPRPTAKWKGPQGQDLSTDSRTNRDMHGLFDVEISLTV NOV20b PLISITGYVDRDIQLLCQSSG FPRPTAKWKGPQGQDLSTDSRTNRDMHGLFDVEISLTV NOV20C NOV20d PLISITGYVDRDIQLLCQSSG FPRPVQGAS WFVPCTLLCPPLNILFLFQGKS NOV20e PLISITGYVDRDIQLLCQSSG FPRPTAKWKGPQGQDLSTDSRTNRDMHGLFDVEISLTV NOV20f PLISITGYVDRDIQLLCQSSG FPRPTAKWKGPQGQDLSTDSRTNRDMHGLFDVEISLTV
NOV2Oa QENAGSISCSMRHAHLSREVESRVQIGDTFFEPIS HLATKVLGILCCGLFFGIVGLKIF
NOV20b QENAGSISCSMRHAHLSREVESRVQIGDTFFEPIS HLATKVLGILCCGLFFGIVGLKIF
NOV20C
NOV2Od RRN VSMC ^LSLPH-WLPGPSLIHSLSL TTLAAGWTGSTD RRKHGQAELRDARKHAV
NOV20e QENAGSISCSMRHAHLSREVESRVQIGDTFFEPI
NOV20f QENAGSISCSMRHAHLSREVESRVQIGDTFFΞPIS HLATKVLGILCCGLFFGIVGLKIF
NOV2Oa FSKFQCKRERE A AGALFMVPAGTGSEM
NOV2Ob FSKFQ KIQAELD RRKHGQAELRD-ARKHAVEVTLDPETAHPKLCVSDLKTVTHRKAPQE
NOV20C
NOV2Od EVTLDPETAHP KLCVSDLKTVTHRKAPQE
NOV20e
NOV20 f FSKFQCKRERE AWAGALFMVPAGTGSEM
NOV2 Oa LPHP AASLLLVLASRGPGPKKENPGGTGLEKKARTGRIERRPETRSGGDSGSRDGSP
NOV2 Ob VPHSΞKRFTRKSVVASQSFQAGKHYWEVDGGHNKRWRVGVCRDDVDRRKEYVTLSPDHGY
NOV20C
NOV2 Od VPHSEKRFTRKSWASQSFQAGKHYWEVDGGHNKRWRVGVCRDDVDRRKEYVTLSPDHGY
NOV20e
NOV20f LPHP AASLLLVLASRGPGPKKENPGGTGLEKKARTGRIERRPΞTRSGGDSGSRDGSP
NOV20a EALRF
NOV20b WVLRLNGEHLYFTLNPRFISVFPRTPPTKIGVFLDYECGTISFFNINDQSLIYTLTCRFE
NOV20C
NOV20d WVL-RLNGEHLYFTLNPRFISVFPRTPPTKIGVFLDYECGTISFFNINDQSLIYTLTCRFE
NOV20e
NOV20f EALRF NOV20a NOV20b GLLRPYIEYPSYNEQNGTPIVICPVTQESEKEASWQRASAIPETSNSESSSQATTPFLPR
NOV20C NOV20d GLLRPYIEYPSYNEQNGTPIVICPVTQESEKEASWQRASAIPETSNSEVLLTGNHALPPQ
NOV20e NOV20f
NOV20a
NOV20b GEM
NOV20C
NOV20d G--
NOV20e
NOV20f
NOV20a (SEQ ID NO: 490)
NOV20b (SEQ ID NO 492)
NOV20C (SEQ ID NO 494)
NOV20d (SEQ ID NO 496)
NOV20e (SEQ ID NO 498)
NOV20f (SEQ ID NO 500)
Further analysis of the NOV20a protein yielded the followmg properties shown in Table 20C.
Table 20C. Protein Sequence Properties NO 20a
SignalP analysis: Cleavage site between residues 18 and 19
PSORT π analysis:
PSG: a new signal peptide prediction method
N-region: length 0; pos.chg 0; neg.chg 0 H-region: length 12; peak value 10.45 PSG score: 6.05
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -0.59 possible cleavage site: between 17 and 18
>>> Seems to have a cleavable signal peptide (1 to 17)
ALOM: Klein et al's method for TM region allocation Init position for calculation: 18
Tentative number of TMS(s) for the threshold 0.5: Number of TMS(s) for threshold 0.5: 1 INTEGRAL Likelihood = -7.06 Transmembrane 242 258
PERIPHERAL Likelihood = 2.17 (at 126)
ALOM score: -7.06 (number of TMSs: 1)
MTOP: Prediction of membrane topology (Hartmann et al.) Center position for calculation: 8 Charge difference: 0.0 C( 1.0) - N( 1.0) N >= C: N-terminal side will be inside
>>> membrane topology: type la (cytoplasmic tail 259 to 347) MITDISC: discrimination of mitochondrial targeting seq R content: 0 Hyd Moment (75): 1.22 Hyd Moment (95): 2.65 G content: 3 D/E content: 1 S/T content: 3 Score: -6.60
Gavel: prediction of cleavage sites for mitochondrial preseq cleavage site motif not found
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite : none content of basic residues: 11.8% NLS Score: -0.47
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals : none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal : none
VAC: possible vacuolar targeting motif: none
RNA-binding motif: none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif: none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail : too long tail
Dileucine motif in the tail: found LL at 293 checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: cytoplasmic Reliability: 76.7
COIL: Lupas 's algorithm to detect coiled-coil regions total: 0 residues Final Results (k = 9/23 ) :
44.4 % : endoplasmic reticulum
22 .2 % : Golgi
22 .2 % : extracellular, including cell wall
11. 1 % : plasma membrane
>> prediction for CG53449-04 is end (k=9)
A search of the NOV20a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 20D.
In a BLAST search of public sequence databases, the NOV20a protein was found to have homology to the proteins shown in the BLASTP data in Table 20E.
Table 20E. Public BLASTP Results for NOV20a
NOV20a Identities/
Protein Residues/ Similarities for Expect
Accession Protein/Organism/Length
Match the Matched Value
Number Residues Portion
PFam analysis predicts that the NOV20a protein contains the domains shown in the Table 20F.
Table 20F. Domain Analysis of NOV20a
Identities/
Pfam Domain NOV20a Match Region Similarities Expect Value for the Matched Region
Example 21.
The NOV21 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 21 A.
CGGTACTTGCACTGCACCTTCACCCTGGAGCGTGTCAGCCCCAGCACTAGTGACCTGGCCTGCAAGC
T
GTGGGTGTGGCAGGTGGAGGGCGACGGGCAGAGCTTCAGCATCAACTTCAACATCACCAAGGACACA
A
GGTTTGCTGAGCTGCTGGCTCTGGAGAGTGAAGCGGGGGTCCCAGCCCTGGTGGGCCCCAGTGCCTT
C
AAGATCCCCTTCCTCATTCGGCAGAAGATAATTTCCAGCCTGGACCCACCCTGTAGGCGGGGTGCCG
A
CTGGCGGACTCTGGCCCAGAAACTCCACCTGGACAGCCATCTCAGCTTCTTTGCCTCCAAGCCCAGC
C
CCACAGCCATGATCCTCAACCTGTGGGAGGCGCGGCACTTCCCCAACGGCAACCTCAGCCAGCTGGC
T
GCAGCAGTGGCTGGACTGGGCCAGCCAGACGCTGGCCTCTTCACAGTGTCGGAGGCTGAGTGCTGAG
G
CCGGCCAGGCCCGACACCTACACTCTCACCAGCTTTGGCACCCACCAAGGACAGGCAGAAGCCGGAC
A
GGGGCCCTTCCCCACACCGGGGAGA
NOV2H, SNP13382444 of | ISEQ ,- -. ID NO: --- 522 i1t898 aa MW at 98934.8kD
CG53908-01, Protein Sequence jSNP Pos: 112 SNP Change: Gin to End
-MAVRPGLWPALLGIVLAA LRGSGAQQSATVANPVPGANPDLLPHFLVΞPEDVYIVKNKPVLLVCKAV PATQIFFKCNGE VRQVDHVIERSTDGSSGEPTMEVRINVSRQVEKVFGLEEY CQCVAWSSSGTTKS QKAYIRIARLRKNFEQEPLAKEVSLEQGIVLPCRPPEGIPPAEVE LRNEDLVDPSLDPNVYITREHS LVVRQARLADTANYTCVAIOSTIVARRRSASAAVIVYVNGGWST TE SVCSASCGRG QKRSRSCTNPA PLNGGAFCEGQNVHDRTVSSLLVSVDGS SP SK SACGLDCTH RSRECSDPAPRNGGEECQGTDLD TRNCTSDLCVHSASGPEDVALYVGLIAVAVCLVLLLLVLILVYCRKKEGLDSDVADSSILTSGFQPVS IKPS ADNPHLLTIQPDLSTTTTYQGSLCPRQDGPSPKFQLTNGHLLSPLGGGRHTLHHSSPTSEAEE FVSRLSTQNYFRSLPRGTSNMTYGTFNFLGGRLMIPNTGISLLIPPDAIPRGKIYEIYLTLHKPEDVR LPLAGCQTLLSPIVSCGPPGVLLTRPVILAMDHCGEPSPDS SLRLK QSCEGS EQDVLHLGEEAPS HLYYCQLEASACYVFTEQLGRFALVGEALSVAAAKRLKLLLFAPVACTSLEYNIRVYCLHDTHDALKE WQLEKQLGGQLIQEPRVLHFKDSYHNLRLSIHDVPSSL KSKLLVSYQEIPFYHI NGTQRYLHCTF TLERVSPSTSDLACKL V QVEGDGQSFSINFNIT DTRFAELLALESEAGVPALVGPSAFKIPFLIR QKIISSLDPPCRRGADWRTLAQKLHLDSHLSFFASKPSPTAMILNL EARHFPNGNLSQLAAA.VAGLG QPDAGLFTVSEAEC
NOV21J, SNP13375491 of SEQ ID NO: 523 2881 bp
CG53908-01, DNA Sequence ORF Start: ATG at 87 ORF Stop: TGA at 2784
SNP Pos: 1139 SNP Change: A to G lAGCTGGGGCTCCGGGCTGAGGCGCTAAAGCCGCCCTCCCGCCCGCGGGGCCCCGCGCCCGGCCCGCCC
GCCTGCCCGCCCGCGGCCATGGCCGTCCGGCCCGGCCTGTGGCCAGCGCTCCTGGGCATAGTCCTCGC
CGCTTGGCTCCGCGGCTCGGGTGCCCAGCAGAGTGCCACCGTGGCCAACCCAGTGCCTGGTGCCAACC CGGACCTGCTTCCCCACTTCCTGGTGGAGCCCGAGGATGTGTACATCGTCAAGAACAAGCCAGTGCTG CTTGTGTGCAAGGCCGTGCCCGCCACGCAGATCTTCTTCAAGTGCAACGGGGAGTGGGTGCGCCAGGT GGACCACGTGATCGAGCGCAGCACAGACGGGAGCAGTGGTGAGCCGACCATGGAGGTCCGCATTAATG TCTCAAGGCAGCAGGTCGAGAAGGTGTTCGGGCTGGAGGAATACTGGTGCCAGTGCGTGGCATGGAGC TCCTCGGGCACCACCAAGAGTCAGAAGGCCTACATCCGCATAGCCAGATTGCGCAAGAACTTCGAGCA GGAGCCGCTGGCCAAGGAGGTGTCCCTGGAGCAGGGCATCGTGCTGCCCTGCCGTCCACCGGAGGGCA TCCCTCCAGCCGAGGTGGAGTGGCTCCGGAACGAGGACCTGGTGGACCCGTCCCTGGACCCCAATGTA TACATCACGCGGGAGCACAGCCTGGTGGTGCGACAGGCCCGCCTTGCTGACACGGCCAACTACACCTG CGTGGCCAAGAACATCGTGGCACGTCGCCGCAGCGCCTCCGCTGCTGTCATCGTCTACGTGAACGGTG GGTGGTCGACGTGGACCGAGTGGTCCGTCTGCAGCGCCAGCTGTGGGCGCGGCTGGCAGAAACGGAGC CGGAGCTGCACCAACCCGGCGCCTCTCAACGGGGGCGCTTTCTGTGAGGGGCAGAATGTCCATGACCG CACCGTCTCCTCTCTGCTTGTCTCTGTGGACGGCAGCTGGAGCCCGTGGAGCAAGTGGTCGGCCTGTG GGCTGGACTGCACCCACTGGCGGAGCCGTGAGTGCTCTGACCCAGCACCCCGCAACGGAGGGGAGGAG TGCCAGGGCACTGACCTGGACACCCGCAACTGTACCAGTGACCTCTGTGTGCACAGTGCTTCTGGCCC TGAGGACGTGGCCCTCTATGTGGGCCTCATCGCCGTGGCCGTCTGCCTGGTCCTGCTGCTGCTTGTCC TCATCCTCGTTTATTGCCGGAAGAAGGAGGGGCTGGACTCAGATGTGGCTGACTCGTCCATTCTCACC TCAGGCTTCCAGCCCGTCAGCATCAAGCCCAGCAAAGCAGACAACCCCCATCTGCTCACCATCCAGCC GGACCTCAGCACCACCACCACCTACCAGGGCAGTCTCTGTCCCCGGCAGGATGGGCCCAGCCCCAAGT TCCAGCTCACCAATGGGCACCTGCTCAGCCCCCTGGGTGGCGGCCGCCACACACTGCACCACAGCTCT CCCACCTCTGAGGCCGAGGAGTTCGTCTCCCGCCTCTCCACCCAGAACTACTTCCGCTCCCTGCCCCG AGGCACCAGCAACATGACCTATGGGACCTTCAACTTCCTCGGGGGCCGGCTGATGATCCCTAATACAG GTATCAGCCTCCTCATCCCCCCAGATGCCATACCCCGAGGGAAGATCTATGAGATCTACCTCACGCTG CACAAGCCGGAAGACGTGAGGTTGCCCCTAGCTGGCTGTCAGACCCTGCTGAGTCCCATCGTTAGCTG TGGACCCCCTGGCGTCCTGCTCACCCGGCCAGTCATCCTGGCTATGGACCACTGTGGGGAGCCCAGCC CTGACAGCTGGAGCCTGCGCCTCAAAAAGCAGTCGTGCGAGGGCAGCTGGGAGCAGGATGTGCTGCAC CTGGGCGAGGAGGCGCCCTCCCACCTCTACTACTGCCAGCTGGAGGCCAGTGCCTGCTACGTCTTCAC CGAGCAGCTGGGCCGCTTTGCCCTGGTGGGAGAGGCCCTCAGCGTGGCTGCCGCCAAGCGCCTCAAGC TGCTTCTGTTTGCGCCGGTGGCCTGCACCTCCCTCGAGTACAACATCCGGGTCTACTGCCTGCATGAC ACCCACGATGCACTCAAGGAGGTGGTGCAGCTGGAGAAGCAGCTGGGGGGACAGCTGATCCAGGAGCC ACGGGTCCTGCACTTCAAGGACAGTTACCACAACCTGCGCCTATCCATCCACGATGTGCCCAGCTCCC TGTGGAAGAGTAAGCTCCTTGTCAGCTACCAGGAGATCCCCTTTTATCACATCTGGAATGGCACGCAG CGGTACTTGCACTGCACCTTCACCCTGGAGCGTGTCAGCCCCAGCACTAGTGACCTGGCCTGCAAGCT GTGGGTGTGGCAGGTGGAGGGCGACGGGCAGAGCTTCAGCATCAACTTCAACATCACCAAGGACACAA GGTTTGCTGAGCTGCTGGCTCTGGAGAGTGAAGCGGGGGTCCCAGCCCTGGTGGGCCCCAGTGCCTTC AAGATCCCCTTCCTCATTCGGCAGAAGATAATTTCCAGCCTGGACCCACCCTGTAGGCGGGGTGCCGA CTGGCGGACTCTGGCCCAGAAACTCCACCTGGACAGCCATCTCAGCTTCTTTGCCTCCAAGCCCAGCC CCACAGCCATGATCCTCAACCTGTGGGAGGCGCGGCACTTCCCCAACGGCAACCTCAGCCAGCTGGCT GCAGCAGTGGCTGGACTGGGCCAGCCAGACGCTGGCCTCTTCACAGTGTCGGAGGCTGAGTGCTGAGG CCGGCCAGGCCCGACACCTACACTCTCACCAGCTTTGGCACCCACCAAGGACAGGCAGAAGCCGGACA
GGGGCCCTTCCCCACACCGGGGAGA
NOV21J, SNP13375491 of _ SEQ ID NO: 524 899 aa MW at 99063. OkD
CG53908-01, Protein Sequence JSNP Pos: 351 SNP Change: Val to Val
MAVRPGL PALLGIVLAAWLRGSGAQQSATVANPVPGANPDLLPHFLVEPEDVYIVKNKPVLLVCKAV PATQIFFKCNGEl^n-TlQVDHVIERSTDGSSGEPTMEVRINVSRQQVEKVFGLEEY CQCVAWSSSGTTK SQKAYIRIARLRKNFEQEPLA EVSLEQGIVLPCRPPEGIPPAEVEWLRNEDLVDPSLDPNVYITREH SLVVRQARLADTANYTCVAKNIVARRRSASAAVIVYVNGG ST TEWSVCSASCGRG QKRSRSCTNP APLNGGAFCEGQNVHDRTVSSLLVSVDGSWSPWS SACGLDCTH RSRECSDPAPRNGGEECQGTDL DTRNCTSDLCVHSASGPEDVALYVGLIAVAVCLVLLLLVLILVYCRKKEGLDSDVADSSILTSGFQPV SIKPSKADNPHLLTIQPDLSTTTTYQGSLCPRQDGPSPKFQLTNGHLLSPLGGGRHTLHHSSPTSEAE EFVSRLSTQNYFRSLPRGTSNMTYGTFNFLGGRLMIPNTGISLLIPPDAIPRGKIYEIYLTLHKPEDV RLPLAGCQTLLSPIVSCGPPGVLLTRPVILAMDHCGEPSPDS SLRLKKQSCEGSWEQDVLHLGEEAP SHLYYCQLEASACYVFTEQLGRFALVGEALSVAAA.KRLKLLLFAPVACTSLEYNIRVYCLHDTHDALK EWQLEKQLGGQLIQEPRVLHFKDSYHNLRLSIHDVPSSL KSKLLVSYQEIPFYHI NGTQRYLHCT FTLERVSPSTSDLACKL VWQVEGDGQSFSINFNITKDTRFAELLALESEAGVPALVGPSAFKIPFLI RQKIISSLDPPCRRGAD RTLAQKLHLDSHLSFFASKPSPTAMILNL EARHFPNGNLSQLAAAVAGL GQPDAGLFTVSEAΞC
NOV21k, SNP13375492 of SEQ ID NO: 525 2881 bp CG53908-01, DNA Sequence ORF Start: ATG at 87JORF Stop: TGA at 2784
SNP Pos: 1225 SNP Change: T to C
AGCTGGGGCTCCGGGCTGAGGCGCTAAAGCCGCCCTCCCGCCCGCGGGGCCCCGCGCCCGGCCCGCCC
GCCTGCCCGCCCGCGGCCATGGCCGTCCGGCCCGGCCTGTGGCCAGCGCTCCTGGGCATAGTCCTCGC
CGCTTGGCTCCGCGGCTCGGGTGCCCAGCAGAGTGCCACCGTGGCCAACCCAGTGCCTGGTGCCAACC CGGACCTGCTTCCCCACTTCCTGGTGGAGCCCGAGGATGTGTACATCGTCAAGAACAAGCCAGTGCTG CTTGTGTGCAAGGCCGTGCCCGCCACGCAGATCTTCTTCAAGTGCAACGGGGAGTGGGTGCGCCAGGT GGACCACGTGATCGAGCGCAGCACAGACGGGAGCAGTGGTGAGCCGACCATGGAGGTCCGCATTAATG TCTCAAGGCAGCAGGTCGAGAAGGTGTTCGGGCTGGAGGAATACTGGTGCCAGTGCGTGGCATGGAGC TCCTCGGGCACCACCAAGAGTCAGAAGGCCTACATCCGCATAGCCAGATTGCGCAAGAACTTCGAGCA GGAGCCGCTGGCCAAGGAGGTGTCCCTGGAGCAGGGCATCGTGCTGCCCTGCCGTCCACCGGAGGGCA TCCCTCCAGCCGAGGTGGAGTGGCTCCGGAACGAGGACCTGGTGGACCCGTCCCTGGACCCCAATGTA TACATCACGCGGGAGCACAGCCTGGTGGTGCGACAGGCCCGCCTTGCTGACACGGCCAACTACACCTG CGTGGCCAAGAACATCGTGGCACGTCGCCGCAGCGCCTCCGCTGCTGTCATCGTCTACGTGAACGGTG GGTGGTCGACGTGGACCGAGTGGTCCGTCTGCAGCGCCAGCTGTGGGCGCGGCTGGCAGAAACGGAGC CGGAGCTGCACCAACCCGGCGCCTCTCAACGGGGGCGCTTTCTGTGAGGGGCAGAATGTCCATGACCG CACCGTCTCCTCTCTGCTTGTCTCTGTGGACGGCAGCTGGAGCCCGTGGAGCAAGTGGTCGGCCTGTG GGCTGGACTGCACCCACTGGCGGAGCCGTGAGTGCTCTGACCCAGCACCCCGCAACGGAGGGGAGGAG CGTGGCCAAGAACATCGTGGCACGTCGCCGCAGCGCCTCCGCTGCTGTCATCGTCTACGTGAACGGTG GGTGGTCGACGTGGACCGAGTGGTCCGTCTGCAGCGCCAGCTGTGGGCGCGGCTGGCAGAAACGGAGC CGGAGCTGCACCAACCCGGCGCCTCTCAACGGGGGCGCTTTCTGTGAGGGGCAGAATGTCCATGACCG CACCGTCTCCTCTCTGCTTGTCTCTGTGGACGGCAGCTGGAGCCCGTGGAGCAAGTGGTCGGCCTGTG GGCTGGACTGCACCCACTGGCGGAGCCGTGAGTGCTCTGACCCAGCACCCCGCAACGGAGGGGAGGAG TGCCAGGGCACTGACCTGGACACCCGCAACTGTACCAGTGACCTCTGTGTACACAGTGCTTCTGGCCC TGAGGACGTGGCCCTCTATGTGGGCCTCATCGCCGTGGCCGTCTGCCTGGTCCTGCTGCTGCTTGTCC TCATCCTCGTTTATTGCCGGAAGAAGGAGGGGCTGGACTCAGATGTGGCTGACTCGTCCATTCTCACC TCAGGCTTCCAGCCCGTCAGCATCAAGCCCAGCAAAGCAGACAACCCCCATCTGCTCACCATCCAGCC GGACCTCAGCACCACCACCACCTACCAGGGCAGTCTCTGTCCCCGGCAGGATGGGCCCAGCCCCAAGT TCCAGCTCACCAATGGGCACCTGCTCAGCCCCCTGGGTGGCGGCCGCCACACACTGCACCACAGCTCT CCCACCTCTGAGGCCGAGGAGTTCGTCTCCCGCCTCTCCACCCAGAACTACTTCCGCTCCCTGCCCCG AGGCACCAGCAACATGACCTATGGGACCTTCAACTTCCTCGGGGGCCGGCTGATGATCCCTAATACAG GTATCAGCCTCCTCATCCCCCCAGATGTCATACCCCGAGGGAAGATCTATGAGATCTACCTCACGCTG CACAAGCCGGAAGACGTGAGGTTGCCCCTAGCTGGCTGTCAGACCCTGCTGAGTCCCATCGTTAGCTG TGGACCCCCTGGCGTCCTGCTCACCCGGCCAGTCATCCTGGCTATGGACCACTGTGGGGAGCCCAGCC CTGACAGCTGGAGCCTGCGCCTCAAAAAGCAGTCGTGCGAGGGCAGCTGGGAGCAGGATGTGCTGCAC CTGGGCGAGGAGGCGCCCTCCCACCTCTACTACTGCCAGCTGGAGGCCAGTGCCTGCTACGTCTTCAC CGAGCAGCTGGGCCGCTTTGCCCTGGTGGGAGAGGCCCTCAGCGTGGCTGCCGCCAAGCGCCTCAAGC TGCTTCTGTTTGCGCCGGTGGCCTGCACCTCCCTCGAGTACAACATCCGGGTCTACTGCCTGCATGAC ACCCACGATGCACTCAAGGAGGTGGTGCAGCTGGAGAAGCAGCTGGGGGGACAGCTGATCCAGGAGCC ACGGGTCCTGCACTTCAAGGACAGTTACCACAACCTGCGCCTATCCATCCACGATGTGCCCAGCTCCC TGTGGAAGAGTAAGCTCCTTGTCAGCTACCAGGAGATCCCCTTTTATCACATCTGGAATGGCACGCAG CGGTACTTGCACTGCACCTTCACCCTGGAGCGTGTCAGCCCCAGCACTAGTGACCTGGCCTGCAAGCT GTGGGTGTGGCAGGTGGAGGGCGACGGGCAGAGCTTCAGCATCAACTTCAACATCACCAAGGACACAA GGTTTGCTGAGCTGCTGGCTCTGGAGAGTGAAGCGGGGGTCCCAGCCCTGGTGGGCCCCAGTGCCTTC AAGATCCCCTTCCTCATTCGGCAGAAGATAATTTCCAGCCTGGACCCACCCTGTAGGCGGGGTGCCGA CTGGCGGACTCTGGCCCAGAAACTCCACCTGGACAGCCATCTCAGCTTCTTTGCCTCCAAGCCCAGCC CCACAGCCATGATCCTCAACCTGTGGGAGGCGCGGCACTTCCCCAACGGCAACCTCAGCCAGCTGGCT GCAGCAGTGGCTGGACTGGGCCAGCCAGACGCTGGCCTCTTCACAGTGTCGGAGGCTGAGTGCTGAGG CCGGCCAGGCCCGACACCTACACTCTCACCAGCTTTGGCACCCACCAAGGACAGGCAGAAGCCGGACA
GGGGCCCTTCCCCACACCGGGGAGA
NOV211, SNP13375493 of SEQ ID NO: 528 899 aa MW at 99091. OkD CG53908-01, Protein Sequence SNP Pos: 525 SNP Change: Ala to Val
MAVRPGL PALLGIVLAA LRGSGAQQSATVANPVPGANPDLLPHFLVΞPEDVYIVKNKPVLLVCKAV PATQIFFKCNGEWVRQVDHVIERSTDGSSGEPTMEVRINVSRQQVEKVFGLEEY CQCVAWSSSGTTK SQKAYIRIARLRKNFEQEPLAKEVSLEQGIVLPCRPPEGIPPAEVEWLRNEDLVDPSLDPNVYITREH SLVVRQARLADTANYTCVAKNIVARRRSASAAVIVYVNGG ST TEWSVCSASCGRGWQKRSRSCTNP APLNGGAFCEGQNV----TORTVSSLLVSVDGSWSP S WSACGLDCTH RSRECSDPAPRNGGEECQGTDL DTRNCTSDLCVHSASGPEDVALYVGLIAVAVCLVLLLLVLILVYCRKKEGLDSDVADSSILTSGFQPV SIKPSKADNPHLLTIQPDLSTTTTYQGSLCPRQDGPSPKFQLTNGHLLSPLGGGRHTLHHSSPTSEAE EFVSRLSTQNYFRSLPRGTSNMTYGTFNFLGGRLMIPNTGISLLIPPDVIPRGKIYEIYLTLHKPEDV RLPLAGCQTLLSPIVSCGPPGVLLTRPVILAMDHCGEPSPDSWSLRLKKQSCEGS EQDVLHLGEEAP SHLYYCQLEASACYVFTΞQLGRFALVGEALSVAAAKRLKLLLFAPVACTSLEYNIRVYCLHDTHDALK EVVQLEKQLGGQLIQEPRVLHF-raDSYHNLRLSIHDVPSSLWKSKLLVSYQEIPFYHIWNGTQRYLHCT FTLERVSPSTSDLAC--a VWQVEGDGQSFSINFNITKDTRFAΞLLALESEAGVPALVGPSAFKIPFLI RQKIISSLDPPCRRGAD RTLAQ-KLHLDSHLSFFASKPSPTAMILNLWEARHFPNGNLSQLAAAVAGL GQPDAGLFTVSEAEC
NOV21m, SNP13375135 of SEQ ID NO: 529 2881 bp CG53908-01, DNA Sequence ORF Start: ATG at 87 ORF Stop: TGA at 2784
SNP Pos: 1855 SNP Change: G to A
AGCTGGGGCTCCGGGCTGAGGCGCTAAAGCCGCCCTCCCGCCCGCGGGGCCCCGCGCCCGGCCCGCC GCCTGCCCGCCCGCGGCCATGGCCGTCCGGCCCGGCCTGTGGCCAGCGCTCCTGGGCATAGTCCTCGC CGCTTGGCTCCGCGGCTCGGGTGCCCAGCAGAGTGCCACCGTGGCCAACCCAGTGCCTGGTGCCAACC CGGACCTGCTTCCCCACTTCCTGGTGGAGCCCGAGGATGTGTACATCGTCAAGAACAAGCCAGTGCTG CTTGTGTGCAAGGCCGTGCCCGCCACGCAGATCTTCTTCAAGTGCAACGGGGAGTGGGTGCGCCAGGT GGACCACGTGATCGAGCGCAGCACAGACGGGAGCAGTGGTGAGCCGACCATGGAGGTCCGCATTAATG TCTCAAGGCAGCAGGTCGAGAAGGTGTTCGGGCTGGAGGAATACTGGTGCCAGTGCGTGGCATGGAGC TCCTCGGGCACCACCAAGAGTCAGAAGGCCTACATCCGCATAGCCAGATTGCGCAAGAACTTCGAGCA GGAGCCGCTGGCCAAGGAGGTGTCCCTGGAGCAGGGCATCGTGCTGCCCTGCCGTCCACCGGAGGGCA TCCCTCCAGCCGAGGTGGAGTGGCTCCGGAACGAGGACCTGGTGGACCCGTCCCTGGACCCCAATGTA TACATCACGCGGGAGCACAGCCTGGTGGTGCGACAGGCCCGCCTTGCTGACACGGCCAACTACACCTG CGTGGCCAAGAACATCGTGGCACGTCGCCGCAGCGCCTCCGCTGCTGTCATCGTCTACGTGAACGGTG GGTGGTCGACGTGGACCGAGTGGTCCGTCTGCAGCGCCAGCTGTGGGCGCGGCTGGCAGAAACGGAGC CGGAGCTGCACCAACCCGGCGCCTCTCAACGGGGGCGCTTTCTGTGAGGGGCAGAATGTCCATGACCG CACCGTCTCCTCTCTGCTTGTCTCTGTGGACGGCAGCTGGAGCCCGTGGAGCAAGTGGTCGGCCTGTG GGCTGGACTGCACCCACTGGCGGAGCCGTGAGTGCTCTGACCCAGCACCCCGCAACGGAGGGGAGGAG TGCCAGGGCACTGACCTGGACACCCGCAACTGTACCAGTGACCTCTGTGTACACAGTGCTTCTGGCCC TGAGGACGTGGCCCTCTATGTGGGCCTCATCGCCGTGGCCGTCTGCCTGGTCCTGCTGCTGCTTGTCC TCATCCTCGTTTATTGCCGGAAGAAGGAGGGGCTGGACTCAGATGTGGCTGACTCGTCCATTCTCACC TCAGGCTTCCAGCCCGTCAGCATCAAGCCCAGCAAAGCAGACAACCCCCATCTGCTCACCATCCAGCC GGACCTCAGCACCACCACCACCTACCAGGGCAGTCTCTGTCCCCGGCAGGATGGGCCCAGCCCCAAGT TCCAGCTCACCAATGGGCACCTGCTCAGCCCCCTGGGTGGCGGCCGCCACACACTGCACCACAGCTCT CCCACCTCTGAGGCCGAGGAGTTCGTCTCCCGCCTCTCCACCCAGAACTACTTCCGCTCCCTGCCCCG AGGCACCAGCAACATGACCTATGGGACCTTCAACTTCCTCGGGGGCCGGCTGATGATCCCTAATACAG GTATCAGCCTCCTCATCCCCCCAGATGCCATACCCCGAGGGAAGATCTATGAGATCTACCTCACGCTG CACAAGCCGGAAGACGTGAGGTTGCCCCTAGCTGGCTGTCAGACCCTGCTGAGTCCCATCGTTAGCTG TGGACCCCCTGGCGTCCTGCTCACCCGGCCAGTCATCCTGGCTATGGACCACTGTGGGGAGCCCAGCC CTGACAGCTGGAGCCTGCACCTCAAAAAGCAGTCGTGCGAGGGCAGCTGGGAGCAGGATGTGCTGCAC CTGGGCGAGGAGGCGCCCTCCCACCTCTACTACTGCCAGCTGGAGGCCAGTGCCTGCTACGTCTTCAC CGAGCAGCTGGGCCGCTTTGCCCTGGTGGGAGAGGCCCTCAGCGTGGCTGCCGCCAAGCGCCTCAAGC TGCTTCTGTTTGCGCCGGTGGCCTGCACCTCCCTCGAGTACAACATCCGGGTCTACTGCCTGCATGAC ACCCACGATGCACTCAAGGAGGTGGTGCAGCTGGAGAAGCAGCTGGGGGGACAGCTGATCCAGGAGCC ACGGGTCCTGCACTTCAAGGACAGTTACCACAACCTGCGCCTATCCATCCACGATGTGCCCAGCTCCC TGTGGAAGAGTAAGCTCCTTGTCAGCTACCAGGAGATCCCCTTTTATCACATCTGGAATGGCACGCAG CGGTACTTGCACTGCACCTTCACCCTGGAGCGTGTCAGCCCCAGCACTAGTGACCTGGCCTGCAAGCT GTGGGTGTGGCAGGTGGAGGGCGACGGGCAGAGCTTCAGCATCAACTTCAACATCACCAAGGACACAA GGTTTGCTGAGCTGCTGGCTCTGGAGAGTGAAGCGGGGGTCCCAGCCCTGGTGGGCCCCAGTGCCTTC AAGATCCCCTTCCTCATTCGGCAGAAGATAATTTCCAGCCTGGACCCACCCTGTAGGCGGGGTGCCGA CTGGCGGACTCTGGCCCAGAAACTCCACCTGGACAGCCATCTCAGCTTCTTTGCCTCCAAGCCCAGCC CCACAGCCATGATCCTCAACCTGTGGGAGGCGCGGCACTTCCCCAACGGCAACCTCAGCCAGCTGGCT GCAGCAGTGGCTGGACTGGGCCAGCCAGACGCTGGCCTCTTCACAGTGTCGGAGGCTGAGTGCTGAGG CCGGCCAGGCCCGACACCTACACTCTCACCAGCTTTGGCACCCACCAAGGACAGGCAGAAGCCGGACA GGGGCCCTTCCCCACACCGGGGAGA
NOV21m, SNP13375135 of SEQ ID NO: 530 899 aa MW at 99043.9kD CG53908-01, Protein Sequence SNP Pos: 590 SNP Change: Arg to His
MAVRPGLWPALLGIVLAA LRGSGAQQSATVANPVPGANPDLLPHFLVEPEDVYIVKN PVLLVCKAV PATQIFFKCNGE VRQVDHVIERSTDGSSGEPTMEVRINVSRQQVEKVFGLEEY CQCVA SSSGTTK SQ--^YIRIARLR---^FEQEPLAKEVSLEQGIVLPCRPPEGIPPAEVE LRNEDLVDPSLDPNVYITREH SLVVRQ-ARLADTANYTCVA NIVARRRSASAAVIVYVNGG ST TEWSVCSASCGRG Q RSRSCTNP APLNGGAFCEGQNVHDRTVSSLLVSVDGS SP SKWSACGLDCTHWRSRECSDPAPRNGGEECQGTDL DTRNCTSDLCVHSASGPEDVALYVGLIAVAVCLVLLLLVLILVYCRKKEGLDSDVADSSILTSGFQPV SIKPSKADNPHLLTIQPDLSTTTTYQGSLCPRQDGPSP FQLTNGHLLSPLGGGRHTLHHSSPTSEAE EFVSRLSTQNYFRSLPRGTSNMTYGTFNFLGGRLMIPNTGISLLIPPDAIPRGKIYEIYLTLHKPEDV RLPLAGCQTLLSPIVSCGPPGVLLTRPVILAMDHCGEPSPDS SLHLKKQSCEGSWEQDVLHLGEEAP SHLYYCQLEASACYVFTEQLGRFALVGEALSVAAAKRL LLLFAPVACTSLEYNIRVYCLHDTHDALK EWQLEKQLGGQLIQEPRVLHFKDSYHNLRLSIHDVPSSLWKSKLLVSYQEIPFYHIWNGTQRYLHCT FTLERVSPSTSDLACKLWV QVEGDGQSFSINFNITKDTRFAELLALESEAGVPALVGPSAFKIPFLI RQKIISSLDPPCRRGAD RTLAQKLHLDSHLSFFASKPSPTAMILNL EARHFPNGNLSQLAAAVAGL GQPDAGLFTVSEAEC
NOV21n, SNP13375136 of SEQ ID NO: 531 2881 bp
CG53908-01, DNA Sequence lθRF Start: ATG at 87 ORF Stop: TGA at 2784
SNP Pos: 1965 SNP Change: G to A
AGCTGGGGCTCCGGGCTGAGGCGCTAAAGCCGCCCTCCCGCCCGCGGGGCCCCGCGCCCGGCCCGCCC
GCCTGCCCGCCCGCGGCCATGGCCGTCCGGCCCGGCCTGTGGCCAGCGCTCCTGGGCATAGTCCTCGC
CGCTTGGCTCCGCGGCTCGGGTGCCCAGCAGAGTGCCACCGTGGCCAACCCAGTGCCTGGTGCCAACC CGGACCTGCTTCCCCACTTCCTGGTGGAGCCCGAGGATGTGTACATCGTCAAGAACAAGCCAGTGCTG CTTGTGTGCAAGGCCGTGCCCGCCACGCAGATCTTCTTCAAGTGCAACGGGGAGTGGGTGCGCCAGGT GGACCACGTGATCGAGCGCAGCACAGACGGGAGCAGTGGTGAGCCGACCATGGAGGTCCGCATTAATG TCTCAAGGCAGCAGGTCGAGAAGGTGTTCGGGCTGGAGGAATACTGGTGCCAGTGCGTGGCATGGAGC TCCTCGGGCACCACCAAGAGTCAGAAGGCCTACATCCGCATAGCCAGATTGCGCAAGAACTTCGAGCA GGAGCCGCTGGCCAAGGAGGTGTCCCTGGAGCAGGGCATCGTGCTGCCCTGCCGTCCACCGGAGGGCA TCCCTCCAGCCGAGGTGGAGTGGCTCCGGAACGAGGACCTGGTGGACCCGTCCCTGGACCCCAATGTA TACATCACGCGGGAGCACAGCCTGGTGGTGCGACAGGCCCGCCTTGCTGACACGGCCAACTACACCTG CGTGGCCAAGAACATCGTGGCACGTCGCCGCAGCGCCTCCGCTGCTGTCATCGTCTACGTGAACGGTG GGTGGTCGACGTGGACCGAGTGGTCCGTCTGCAGCGCCAGCTGTGGGCGCGGCTGGCAGAAACGGAGC CGGAGCTGCACCAACCCGGCGCCTCTCAACGGGGGCGCTTTCTGTGAGGGGCAGAATGTCCATGACCG CACCGTCTCCTCTCTGCTTGTCTCTGTGGACGGCAGCTGGAGCCCGTGGAGCAAGTGGTCGGCCTGTG GGCTGGACTGCACCCACTGGCGGAGCCGTGAGTGCTCTGACCCAGCACCCCGCAACGGAGGGGAGGAG TGCCAGGGCACTGACCTGGACACCCGCAACTGTACCAGTGACCTCTGTGTACACAGTGCTTCTGGCCC TGAGGACGTGGCCCTCTATGTGGGCCTCATCGCCGTGGCCGTCTGCCTGGTCCTGCTGCTGCTTGTCC TCATCCTCGTTTATTGCCGGAAGAAGGAGGGGCTGGACTCAGATGTGGCTGACTCGTCCATTCTCACC TCAGGCTTCCAGCCCGTCAGCATCAAGCCCAGCAAAGCAGACAACCCCCATCTGCTCACCATCCAGCC GGACCTCAGCACCACCACCACCTACCAGGGCAGTCTCTGTCCCCGGCAGGATGGGCCCAGCCCCAAGT TCCAGCTCACCAATGGGCACCTGCTCAGCCCCCTGGGTGGCGGCCGCCACACACTGCACCACAGCTCT CCCACCTCTGAGGCCGAGGAGTTCGTCTCCCGCCTCTCCACCCAGAACTACTTCCGCTCCCTGCCCCG AGGCACCAGCAACATGACCTATGGGACCTTCAACTTCCTCGGGGGCCGGCTGATGATCCCTAATACAG GTATCAGCCTCCTCATCCCCCCAGATGCCATACCCCGAGGGAAGATCTATGAGATCTACCTCACGCTG CACAAGCCGGAAGACGTGAGGTTGCCCCTAGCTGGCTGTCAGACCCTGCTGAGTCCCATCGTTAGCTG TGGACCCCCTGGCGTCCTGCTCACCCGGCCAGTCATCCTGGCTATGGACCACTGTGGGGAGCCCAGCC CTGACAGCTGGAGCCTGCGCCTCAAAAAGCAGTCGTGCGAGGGCAGCTGGGAGCAGGATGTGCTGCAC CTGGGCGAGGAGGCGCCCTCCCACCTCTACTACTGCCAGCTGGAGGCCAGTGCCTGCTACATCTTCAC CGAGCAGCTGGGCCGCTTTGCCCTGGTGGGAGAGGCCCTCAGCGTGGCTGCCGCCAAGCGCCTCAAGC TGCTTCTGTTTGCGCCGGTGGCCTGCACCTCCCTCGAGTACAACATCCGGGTCTACTGCCTGCATGAC ACCCACGATGCACTCAAGGAGGTGGTGCAGCTGGAGAAGCAGCTGGGGGGACAGCTGATCCAGGAGCC ACGGGTCCTGCACTTCAAGGACAGTTACCACAACCTGCGCCTATCCATCCACGATGTGCCCAGCTCCC TGTGGAAGAGTAAGCTCCTTGTCAGCTACCAGGAGATCCCCTTTTATCACATCTGGAATGGCACGCAG CGGTACTTGCACTGCACCTTCACCCTGGAGCGTGTCAGCCCCAGCACTAGTGACCTGGCCTGCAAGCT GTGGGTGTGGCAGGTGGAGGGCGACGGGCAGAGCTTCAGCATCAACTTCAACATCACCAAGGACACAA GGTTTGCTGAGCTGCTGGCTCTGGAGAGTGAAGCGGGGGTCCCAGCCCTGGTGGGCCCCAGTGCCTTC AAGATCCCCTTCCTCATTCGGCAGAAGATAATTTCCAGCCTGGACCCACCCTGTAGGCGGGGTGCCGA CTGGCGGACTCTGGCCCAGAAACTCCACCTGGACAGCCATCTCAGCTTCTTTGCCTCCAAGCCCAGCC CCACAGCCATGATCCTCAACCTGTGGGAGGCGCGGCACTTCCCCAACGGCAACCTCAGCCAGCTGGCT GCAGCAGTGGCTGGACTGGGCCAGCCAGACGCTGGCCTCTTCACAGTGTCGGAGGCTGAGTGCTGAGG CCGGCCAGGCCCGACACCTACACTCTCACCAGCTTTGGCACCCACCAAGGACAGGCAGAAGCCGGACA
GGGGCCCTTCCCCACACCGGGGAGA
NOV21n, SNP13375136 of SEQ ID NO: 532 899 aa MW at 99077.0kD CG53908-01, Protein Sequence SNP Pos: 627 SNP Change: Val to lie
MAVRPGL PALLGIVLAAWLRGSGAQQSATVANPVPGANPDLLPHFLVEPEDVYIVKNKPVLLVCKAV PATQIFFKCNGE VRQVDHVIERSTDGSSGEPTMEVRINVSRQQVEKVFGLEEY CQCVAWSSSGTTK SQKAYIRIARLR NFEQEPLAKEVSLEQGIVLPCRPPEGIPPAEVE LRNEDLVDPSLDPNVYITREH SLVVRQ-ARLADTANYTCVAKNIVARRRSASAAVIVYVNGG STWTE SVCSASCGRGWQKRSRSCTNP APLNGGAFCEGQNVHDRTVSSLLVSVDGSWSP SK SACGLDCTH RSRECSDPAPRNGGEECQGTDL DTRNCTSDLCVHSASGPEDVALYVGLIAVAVCLVLLLLVLILVYCRKKEGLDSDVADSSILTSGFQPV SIKPSKADNPHLLTIQPDLSTTTTYQGSLCPRQDGPSPKFQLTNGHLLSPLGGGRHTLHHSSPTSEAE EFVSRLSTQNYFRSLPRGTSNMTYGTFNFLGGRLMIPNTGISLLIPPDAIPRGKIYEIYLTLHKPEDV RLPLAGCQTLLSPIVSCGPPGVLLTRPVILAMDHCGEPSPDS SLRLKKQSCEGS EQDVLHLGEEAP SHLYYCQLEASACYIFTEQLGRFALVGEALSVAAAKRLKLLLFAPVACTSLEYNIRVYCLHDTHDALK EVVQLEKQLGGQLIQEPRVLHF-raDSYHNLRLSIHDVPSSL KSKLLVSYQEIPFYHIWNGTQRYLHCT FTLERVSPSTSDLACIOJ VWQVEGDGQSFSINFNITKDTRFAELLALESEAGVPALVGPSAFKIPFLI RQKIISSLDPPCRRGAD RTLAQKLHLDSHLSFFASKPSPTAMILNL EARHFPNGNLSQLAAAVAGL GQPDAGLFTVSEAEC
NOV21o, SNP13375137 of SEQ ID NO: 533 2881 bp CG53908-01, DNA Sequence ORF Start: ATG at 87 ORF Stop: TGA at 2784
SNP Pos: 2025 SNP Change: G to A
AGCTGGGGCTCCGGGCTGAGGCGCTAAAGCCGCCCTCCCGCCCGCGGGGCCCCGCGCCCGGCCCGCCC
GCCTGCCCGCCCGCGGCCATGGCCGTCCGGCCCGGCCTGTGGCCAGCGCTCCTGGGCATAGTCCTCGC
CGCTTGGCTCCGCGGCTCGGGTGCCCAGCAGAGTGCCACCGTGGCCAACCCAGTGCCTGGTGCCAACC CGGACCTGCTTCCCCACTTCCTGGTGGAGCCCGAGGATGTGTACATCGTCAAGAACAAGCCAGTGCTG CTTGTGTGCAAGGCCGTGCCCGCCACGCAGATCTTCTTCAAGTGCAACGGGGAGTGGGTGCGCCAGGT GGACCACGTGATCGAGCGCAGCACAGACGGGAGCAGTGGTGAGCCGACCATGGAGGTCCGCATTAATG TCTCAAGGCAGCAGGTCGAGAAGGTGTTCGGGCTGGAGGAATACTGGTGCCAGTGCGTGGCATGGAGC TCCTCGGGCACCACCAAGAGTCAGAAGGCCTACATCCGCATAGCCAGATTGCGCAAGAACTTCGAGCA GGAGCCGCTGGCCAAGGAGGTGTCCCTGGAGCAGGGCATCGTGCTGCCCTGCCGTCCACCGGAGGGCA TCCCTCCAGCCGAGGTGGAGTGGCTCCGGAACGAGGACCTGGTGGACCCGTCCCTGGACCCCAATGTA TACATCACGCGGGAGCACAGCCTGGTGGTGCGACAGGCCCGCCTTGCTGACACGGCCAACTACACCTG CGTGGCCAAGAACATCGTGGCACGTCGCCGCAGCGCCTCCGCTGCTGTCATCGTCTACGTGAACGGTG GGTGGTCGACGTGGACCGAGTGGTCCGTCTGCAGCGCCAGCTGTGGGCGCGGCTGGCAGAAACGGAGC CGGAGCTGCACCAACCCGGCGCCTCTCAACGGGGGCGCTTTCTGTGAGGGGCAGAATGTCCATGACCG CACCGTCTCCTCTCTGCTTGTCTCTGTGGACGGCAGCTGGAGCCCGTGGAGCAAGTGGTCGGCCTGTG GGCTGGACTGCACCCACTGGCGGAGCCGTGAGTGCTCTGACCCAGCACCCCGCAACGGAGGGGAGGAG TGCCAGGGCACTGACCTGGACACCCGCAACTGTACCAGTGACCTCTGTGTACACAGTGCTTCTGGCCC TGAGGACGTGGCCCTCTATGTGGGCCTCATCGCCGTGGCCGTCTGCCTGGTCCTGCTGCTGCTTGTCC TCATCCTCGTTTATTGCCGGAAGAAGGAGGGGCTGGACTCAGATGTGGCTGACTCGTCCATTCTCACC TCAGGCTTCCAGCCCGTCAGCATCAAGCCCAGCAAAGCAGACAACCCCCATCTGCTCACCATCCAGCC GGACCTCAGCACCACCACCACCTACCAGGGCAGTCTCTGTCCCCGGCAGGATGGGCCCAGCCCCAAGT TCCAGCTCACCAATGGGCACCTGCTCAGCCCCCTGGGTGGCGGCCGCCACACACTGCACCACAGCTCT CCCACCTCTGAGGCCGAGGAGTTCGTCTCCCGCCTCTCCACCCAGAACTACTTCCGCTCCCTGCCCCG AGGCACCAGCAACATGACCTATGGGACCTTCAACTTCCTCGGGGGCCGGCTGATGATCCCTAATACAG GTATCAGCCTCCTCATCCCCCCAGATGCCATACCCCGAGGGAAGATCTATGAGATCTACCTCACGCTG CACAAGCCGGAAGACGTGAGGTTGCCCCTAGCTGGCTGTCAGACCCTGCTGAGTCCCATCGTTAGCTG TGGACCCCCTGGCGTCCTGCTCACCCGGCCAGTCATCCTGGCTATGGACCACTGTGGGGAGCCCAGCC CTGACAGCTGGAGCCTGCGCCTCAAAAAGCAGTCGTGCGAGGGCAGCTGGGAGCAGGATGTGCTGCAC CTGGGCGAGGAGGCGCCCTCCCACCTCTACTACTGCCAGCTGGAGGCCAGTGCCTGCTACGTCTTCAC CGAGCAGCTGGGCCGCTTTGCCCTGGTGGGAGAGGCCCTCAGCGTGGCTGCCACCAAGCGCCTCAAGC TGCTTCTGTTTGCGCCGGTGGCCTGCACCTCCCTCGAGTACAACATCCGGGTCTACTGCCTGCATGAC ACCCACGATGCACTCAAGGAGGTGGTGCAGCTGGAGAAGCAGCTGGGGGGACAGCTGATCCAGGAGCC ACGGGTCCTGCACTTCAAGGACAGTTACCACAACCTGCGCCTATCCATCCACGATGTGCCCAGCTCCC TGTGGAAGAGTAAGCTCCTTGTCAGCTACCAGGAGATCCCCTTTTATCACATCTGGAATGGCACGCAG CGGTACTTGCACTGCACCTTCACCCTGGAGCGTGTCAGCCCCAGCACTAGTGACCTGGCCTGCAAGCT GTGGGTGTGGCAGGTGGAGGGCGACGGGCAGAGCTTCAGCATCAACTTCAACATCACCAAGGACACAA GGTTTGCTGAGCTGCTGGCTCTGGAGAGTGAAGCGGGGGTCCCAGCCCTGGTGGGCCCCAGTGCCTTC AAGATCCCCTTCCTCATTCGGCAGAAGATAATTTCCAGCCTGGACCCACCCTGTAGGCGGGGTGCCGA CTGGCGGACTCTGGCCCAGAAACTCCACCTGGACAGCCATCTCAGCTTCTTTGCCTCCAAGCCCAGCC CCACAGCCATGATCCTCAACCTGTGGGAGGCGCGGCACTTCCCCAACGGCAACCTCAGCCAGCTGGCT GCAGCAGTGGCTGGACTGGGCCAGCCAGACGCTGGCCTCTTCACAGTGTCGGAGGCTGAGTGCTGAGG CCGGCCAGGCCCGACACCTACACTCTCACCAGCTTTGGCACCCACCAAGGACAGGCAGAAGCCGGACA
GGGGCCCTTCCCCACACCGGGGAGA
NOV21o, SNP13375137 of SEQ ID NO: 534 899 aa MW at 99093.0kD
CG53908-01, Protein Sequence SNP Pos: 647 SNP Change: Ala to Thr
MAVRPGL PALLGIVLAAWLRGSGAQQSATVANPVPGANPDLLPHFLVEPEDVYIVKNKPVLLVCKAV PATQIFFKCNGE VRQVDHVIERSTDGSSGEPTMEVRINVSRQQVEKVFGLEEY CQCVA SSSGTTK SQKAYIRIARLRKNFEQEPLAKEVSLEQGIVLPCRPPEGIPPAEVEWLRNEDLVDPSLDPNVYITREH SLVVRQ-ARLADTANYTCVAKNIVARRRSASAAVIVYVNGG STWTE SVCSASCGRG QKRSRSCTNP APLNGGAFCEGQNVHDRTVSSLLVSVDGS SP SK SACGLDCTH RSRECSDPAPRNGGEECQGTDL DTRNCTSDLCVHSASGPEDVALYVGLIAVAVCLVLLLLVLILVYCRK EGLDSDVADSSILTSGFQPV SIKPSKADNPHLLTIQPDLSTTTTYQGSLCPRQDGPSPKFQLTNGHLLSPLGGGRHTLHHSSPTSEAE EFVSRLSTQNYFRSLPRGTSNMTYGTFNFLGGRLMIPNTGISLLIPPDAIPRGKIYEIYLTLHKPEDV RLPLAGCQTLLSPIVSCGPPGVLLTRPVILAMDHCGEPSPDSWSLRLKKQSCEGS EQDVLHLGEEAP SHLYYCQLEASACYVFTEQLGRFALVGEALSVAATKRLKLLLFAPVACTSLEYNIRVYCLHDTHDALK EWQLEKQLGGQLIQEPRVLHFKDSYHNLRLSIHDVPSSL KS LLVSYQEIPFYHI NGTQRYLHCT FTLERVSPSTSDLACKLWVWQVEGDGQSFSINFNITKDTRFAELLALESEAGVPALVGPSAFKIPFLI RQKIISSLDPPCRRGAD RTLAQKLHLDSHLSFFASKPSPTAMILNL EARHFPNGNLSQLAAAVAGL GQPDAGLFTVSEAEC
NOV21p, SNP13375138 of SEQ ID NO: 535 2881 bp
CG53908-01 , DNA Sequence JORF Start: ATG at 87 ORF Stop: TGA at 2784
SNP Pos: 2038 SNP Change: A to G
AGCTGGGGCTCCGGGCTGAGGCGCTAAAGCCGCCCTCCCGCCCGCGGGGCCCCGCGCCCGGCCCGCCC
GCCTGCCCGCCCGCGGCCATGGCCGTCCGGCCCGGCCTGTGGCCAGCGCTCCTGGGCATAGTCCTCGC
CGCTTGGCTCCGCGGCTCGGGTGCCCAGCAGAGTGCCACCGTGGCCAACCCAGTGCCTGGTGCCAACC CGGACCTGCTTCCCCACTTCCTGGTGGAGCCCGAGGATGTGTACATCGTCAAGAACAAGCCAGTGCTG CTTGTGTGCAAGGCCGTGCCCGCCACGCAGATCTTCTTCAAGTGCAACGGGGAGTGGGTGCGCCAGGT GGACCACGTGATCGAGCGCAGCACAGACGGGAGCAGTGGTGAGCCGACCATGGAGGTCCGCATTAATG TCTCAAGGCAGCAGGTCGAGAAGGTGTTCGGGCTGGAGGAATACTGGTGCCAGTGCGTGGCATGGAGC TCCTCGGGCACCACCAAGAGTCAGAAGGCCTACATCCGCATAGCCAGATTGCGCAAGAACTTCGAGCA GGAGCCGCTGGCCAAGGAGGTGTCCCTGGAGCAGGGCATCGTGCTGCCCTGCCGTCCACCGGAGGGCA TCCCTCCAGCCGAGGTGGAGTGGCTCCGGAACGAGGACCTGGTGGACCCGTCCCTGGACCCCAATGTA TACATCACGCGGGAGCACAGCCTGGTGGTGCGACAGGCCCGCCTTGCTGACACGGCCAACTACACCTG CGTGGCCAAGAACATCGTGGCACGTCGCCGCAGCGCCTCCGCTGCTGTCATCGTCTACGTGAACGGTG GGTGGTCGACGTGGACCGAGTGGTCCGTCTGCAGCGCCAGCTGTGGGCGCGGCTGGCAGAAACGGAGC CGGAGCTGCACCAACCCGGCGCCTCTCAACGGGGGCGCTTTCTGTGAGGGGCAGAATGTCCATGACCG CACCGTCTCCTCTCTGCTTGTCTCTGTGGACGGCAGCTGGAGCCCGTGGAGCAAGTGGTCGGCCTGTG GGCTGGACTGCACCCACTGGCGGAGCCGTGAGTGCTCTGACCCAGCACCCCGCAACGGAGGGGAGGAG TGCCAGGGCACTGACCTGGACACCCGCAACTGTACCAGTGACCTCTGTGTACACAGTGCTTCTGGCCC TGAGGACGTGGCCCTCTATGTGGGCCTCATCGCCGTGGCCGTCTGCCTGGTCCTGCTGCTGCTTGTCC TCATCCTCGTTTATTGCCGGAAGAAGGAGGGGCTGGACTCAGATGTGGCTGACTCGTCCATTCTCACC TCAGGCTTCCAGCCCGTCAGCATCAAGCCCAGCAAAGCAGACAACCCCCATCTGCTCACCATCCAGCC GGACCTCAGCACCACCACCACCTACCAGGGCAGTCTCTGTCCCCGGCAGGATGGGCCCAGCCCCAAGT TCCAGCTCACCAATGGGCACCTGCTCAGCCCCCTGGGTGGCGGCCGCCACACACTGCACCACAGCTCT CCCACCTCTGAGGCCGAGGAGTTCGTCTCCCGCCTCTCCACCCAGAACTACTTCCGCTCCCTGCCCCG AGGCACCAGCAACATGACCTATGGGACCTTCAACTTCCTCGGGGGCCGGCTGATGATCCCTAATACAG GTATCAGCCTCCTCATCCCCCCAGATGCCATACCCCGAGGGAAGATCTATGAGATCTACCTCACGCTG CACAAGCCGGAAGACGTGAGGTTGCCCCTAGCTGGCTGTCAGACCCTGCTGAGTCCCATCGTTAGCTG TGGACCCCCTGGCGTCCTGCTCACCCGGCCAGTCATCCTGGCTATGGACCACTGTGGGGAGCCCAGCC CTGACAGCTGGAGCCTGCGCCTCAAAAAGCAGTCGTGCGAGGGCAGCTGGGAGCAGGATGTGCTGCAC CTGGGCGAGGAGGCGCCCTCCCACCTCTACTACTGCCAGCTGGAGGCCAGTGCCTGCTACGTCTTCAC CGAGCAGCTGGGCCGCTTTGCCCTGGTGGGAGAGGCCCTCAGCGTGGCTGCCGCCAAGCGCCTCAGGC TGCTTCTGTTTGCGCCGGTGGCCTGCACCTCCCTCGAGTACAACATCCGGGTCTACTGCCTGCATGAC ACCCACGATGCACTCAAGGAGGTGGTGCAGCTGGAGAAGCAGCTGGGGGGACAGCTGATCCAGGAGCC ACGGGTCCTGCACTTCAAGGACAGTTACCACAACCTGCGCCTATCCATCCACGATGTGCCCAGCTCCC TGTGGAAGAGTAAGCTCCTTGTCAGCTACCAGGAGATCCCCTTTTATCACATCTGGAATGGCACGCAG CGGTACTTGCACTGCACCTTCACCCTGGAGCGTGTCAGCCCCAGCACTAGTGACCTGGCCTGCAAGCT GTGGGTGTGGCAGGTGGAGGGCGACGGGCAGAGCTTCAGCATCAACTTCAACATCACCAAGGACACAA GGTTTGCTGAGCTGCTGGCTCTGGAGAGTGAAGCGGGGGTCCCAGCCCTGGTGGGCCCCAGTGCCTTC AAGATCCCCTTCCTCATTCGGCAGAAGATAATTTCCAGCCTGGACCCACCCTGTAGGCGGGGTGCCGA CTGGCGGACTCTGGCCCAGAAACTCCACCTGGACAGCCATCTCAGCTTCTTTGCCTCCAAGCCCAGCC CCACAGCCATGATCCTCAACCTGTGGGAGGCGCGGCACTTCCCCAACGGCAACCTCAGCCAGCTGGCT GCAGCAGTGGCTGGACTGGGCCAGCCAGACGCTGGCCTCTTCACAGTGTCGGAGGCTGAGTGCTGAGG CCGGCCAGGCCCGACACCTACACTCTCACCAGCTTTGGCACCCACCAAGGACAGGCAGAAGCCGGACA
GGGGCCCTTCCCCACACCGGGGAGA
NOV21p, SNP13375138 of SEQ ID NO: 536 899 aa MW at 99091. O D
CG53908-01, Protein Sequence SNP Pos: 651 SNP Change: Lys to Arg
MAVRPGLWPALLGIVLAAWLRGSGAQQSATVANPVPGANPDLLPHFLVEPEDVYIVKNKPVLLVCKAV PATQIFFKCNGE VRQVDHVIERSTDGSSGEPTMEVRINVSRQQVEKVFGLEE CQCVA SSSGTTK SQKAYIRIARLRKNFEQEPLAKEVSLEQGIVLPCRPPEGIPPAEVE LRNEDLVDPSLDPNVYITREH SLVVRQARL.ADTANYTCVA-- iV-ARRRSASAAVIVYVT-ΪGG ST TE SVCSASCGRG QKRSRSCTN-^ APLNGGAFCEGQNVHDRTVSSLLVSVDGS SP SK SACGLDCTH RSRECSDPAPRNGGEECQGTDL DTRNCTSDLCVHSASGPEDVALYVGLIAVAVCLVLLLLVLILVYCRKKEGLDSDVADSSILTSGFQPV SIKPSKADNPHLLTIQPDLSTTTTYQGSLCPRQDGPSPKFQLTNGHLLSPLGGGRHTLHHSSPTSEAE ΞFVSRLSTQNYFRSLPRGTSNMTYGTFNFLGGRLMIPNTGISLLIPPDAIPRGKIYEIYLTLHKPEDV RLPLAGCQTLLSPIVSCGPPGVLLTRPVILAMDHCGEPSPDS SLRLKKQSCEGS EQDVLHLGEEAP SHLYYCQLEASACYVFTEQLGRFALVGEALSVAAAKRLRLLLFAPVACTSLEYNIRVYCLHDTHDALK EWQLEKQLGGQLIQEPRVLHFKDSYHNLRLSIHDVPSSL KSKLLVSYQEIPFYHIWNGTQRYLHCT FTLERVSPSTSDLACKL V QVEGDGQSFSINFNITKDTRFAELLALESEAGVPALVGPSAFKIPFLI RQKIISSLDPPCRRGAD RTLAQKLHLDSHLSFFASKPSPTAMILNL EA-RHFPNGNLSQLAAAVAGL GQPDAGLFTVSEAEC
NOV21q, SNP13375494 of SEQ ID NO: 537 2881 bp CG53908-01, DNA Sequence ORF Start: ATG at 87 ORF Stop: TGA at 2784
SNP Pos: 2130 SNP Change: G to C
AGCTGGGGCTCCGGGCTGAGGCGCTAAAGCCGCCCTCCCGCCCGCGGGGCCCCGCGCCCGGCCCGCCC
GCCTGCCCGCCCGCGGCCATGGCCGTCCGGCCCGGCCTGTGGCCAGCGCTCCTGGGCATAGTCCTCGC
CGCTTGGCTCCGCGGCTCGGGTGCCCAGCAGAGTGCCACCGTGGCCAACCCAGTGCCTGGTGCCAACC CGGACCTGCTTCCCCACTTCCTGGTGGAGCCCGAGGATGTGTACATCGTCAAGAACAAGCCAGTGCTG CTTGTGTGCAAGGCCGTGCCCGCCACGCAGATCTTCTTCAAGTGCAACGGGGAGTGGGTGCGCCAGGT GGACCACGTGATCGAGCGCAGCACAGACGGGAGCAGTGGTGAGCCGACCATGGAGGTCCGCATTAATG TCTCAAGGCAGCAGGTCGAGAAGGTGTTCGGGCTGGAGGAATACTGGTGCCAGTGCGTGGCATGGAGC TCCTCGGGCACCACCAAGAGTCAGAAGGCCTACATCCGCATAGCCAGATTGCGCAAGAACTTCGAGCA GGAGCCGCTGGCCAAGGAGGTGTCCCTGGAGCAGGGCATCGTGCTGCCCTGCCGTCCACCGGAGGGCA TCCCTCCAGCCGAGGTGGAGTGGCTCCGGAACGAGGACCTGGTGGACCCGTCCCTGGACCCCAATGTA TACATCACGCGGGAGCACAGCCTGGTGGTGCGACAGGCCCGCCTTGCTGACACGGCCAACTACACCTG CGTGGCCAAGAACATCGTGGCACGTCGCCGCAGCGCCTCCGCTGCTGTCATCGTCTACGTGAACGGTG GGTGGTCGACGTGGACCGAGTGGTCCGTCTGCAGCGCCAGCTGTGGGCGCGGCTGGCAGAAACGGAGC CGGAGCTGCACCAACCCGGCGCCTCTCAACGGGGGCGCTTTCTGTGAGGGGCAGAATGTCCATGACCG CACCGTCTCCTCTCTGCTTGTCTCTGTGGACGGCAGCTGGAGCCCGTGGAGCAAGTGGTCGGCCTGTG GGCTGGACTGCACCCACTGGCGGAGCCGTGAGTGCTCTGACCCAGCACCCCGCAACGGAGGGGAGGAG TGCCAGGGCACTGACCTGGACACCCGCAACTGTACCAGTGACCTCTGTGTACACAGTGCTTCTGGCCC TGAGGACGTGGCCCTCTATGTGGGCCTCATCGCCGTGGCCGTCTGCCTGGTCCTGCTGCTGCTTGTCC TCATCCTCGTTTATTGCCGGAAGAAGGAGGGGCTGGACTCAGATGTGGCTGACTCGTCCATTCTCACC TCAGGCTTCCAGCCCGTCAGCATCAAGCCCAGCAAAGCAGACAACCCCCATCTGCTCACCATCCAGCC GGACCTCAGCACCACCACCACCTACCAGGGCAGTCTCTGTCCCCGGCAGGATGGGCCCAGCCCCAAGT TCCAGCTCACCAATGGGCACCTGCTCAGCCCCCTGGGTGGCGGCCGCCACACACTGCACCACAGCTCT CCCACCTCTGAGGCCGAGGAGTTCGTCTCCCGCCTCTCCACCCAGAACTACTTCCGCTCCCTGCCCCG AGGCACCAGCAACATGACCTATGGGACCTTCAACTTCCTCGGGGGCCGGCTGATGATCCCTAATACAG GTATCAGCCTCCTCATCCCCCCAGATGCCATACCCCGAGGGAAGATCTATGAGATCTACCTCACGCTG CACAAGCCGGAAGACGTGAGGTTGCCCCTAGCTGGCTGTCAGACCCTGCTGAGTCCCATCGTTAGCTG TGGACCCCCTGGCGTCCTGCTCACCCGGCCAGTCATCCTGGCTATGGACCACTGTGGGGAGCCCAGCC CTGACAGCTGGAGCCTGCGCCTCAAAAAGCAGTCGTGCGAGGGCAGCTGGGAGCAGGATGTGCTGCAC CTGGGCGAGGAGGCGCCCTCCCACCTCTACTACTGCCAGCTGGAGGCCAGTGCCTGCTACGTCTTCAC CGAGCAGCTGGGCCGCTTTGCCCTGGTGGGAGAGGCCCTCAGCGTGGCTGCCGCCAAGCGCCTCAAGC TGCTTCTGTTTGCGCCGGTGGCCTGCACCTCCCTCGAGTACAACATCCGGGTCTACTGCCTGCATGAC ACCCACGATGCACTCAAGGAGCTGGTGCAGCTGGAGAAGCAGCTGGGGGGACAGCTGATCCAGGAGCC ACGGGTCCTGCACTTCAAGGACAGTTACCACAACCTGCGCCTATCCATCCACGATGTGCCCAGCTCCC TGTGGAAGAGTAAGCTCCTTGTCAGCTACCAGGAGATCCCCTTTTATCACATCTGGAATGGCACGCAG CGGTACTTGCACTGCACCTTCACCCTGGAGCGTGTCAGCCCCAGCACTAGTGACCTGGCCTGCAAGCT GTGGGTGTGGCAGGTGGAGGGCGACGGGCAGAGCTTCAGCATCAACTTCAACATCACCAAGGACACAA GGTTTGCTGAGCTGCTGGCTCTGGAGAGTGAAGCGGGGGTCCCAGCCCTGGTGGGCCCCAGTGCCTTC AAGATCCCCTTCCTCATTCGGCAGAAGATAATTTCCAGCCTGGACCCACCCTGTAGGCGGGGTGCCGA CTGGCGGACTCTGGCCCAGAAACTCCACCTGGACAGCCATCTCAGCTTCTTTGCCTCCAAGCCCAGCC CCACAGCCATGATCCTCAACCTGTGGGAGGCGCGGCACTTCCCCAACGGCAACCTCAGCCAGCTGGCT GCAGCAGTGGCTGGACTGGGCCAGCCAGACGCTGGCCTCTTCACAGTGTCGGAGGCTGAGTGCTGAGG CCGGCCAGGCCCGACACCTACACTCTCACCAGCTTTGGCACCCACCAAGGACAGGCAGAAGCCGGACA
GGGGCCCTTCCCCACACCGGGGAGA
NOV21q, SNP13375494 of SEQ ID NO: 538 899 aa MW at 99077.0kD
CG53908-01 , Protein Sequence |SNP Pos: 682 JSNP Change: Val to Leu
MAVRPGL PALLGIVLAAWLRGSGAQQSATVANPVPGANPDLLPHFLVEPEDVYIVKNKPVLLVCKAV PATQIFFKCNGE VRQVDHVIERSTDGSSGEPTMEVRINVSRQQVEKVFGLEEYWCQCVA SSSGTTK SQKAYIRIARLRKNFEQEPLAKEVSLEQGIVLPCRPPEGIPPAEVE LRNEDLVDPSLDPNVYITREH SLVVRQARLADTANYTCVAKNIVARRRSASAAVIVYVNGG ST TE SVCSASCGRGWQKRSRSCTNP APLNGGAFCEGQNVHDRTVSSLLVSVDGSWSP SK SACGLDCTH RSRECSDPAPRNGGEECQGTDL DTRNCTSDLCVHSASGPEDVALYVGLIAVAVCLVLLLLVLILVYCRKKEGLDSDVADSSILTSGFQPV SIKPSKADNPHLLTIQPDLSTTTTYQGSLCPRQDGPSPKFQLTNGHLLSPLGGGRHTLHHSSPTSEAΞ EFVSRLSTQNYFRSLPRGTSNMTYGTFNFLGGRLMIPNTGISLLIPPDAIPRGKIYEIYLTLHKPEDV RLPLAGCQTLLSPIVSCGPPGVLLTRPVILAMDHCGEPSPDS SLRLKKQSCEGS EQDVLHLGEEAP SHLYYCQLEASACYVFTEQLGRFALVGEALSVAAA RLKLLLFAPVACTSLEYNIRVYCLHDTHDALK ELVQLEKQLGGQLIQEPRVLHFKDSYHNLRLSIHDVPSSL KSKLLVSYQEIPFYHI NGTQRYLHCT FTLERVSPSTSDLACKL V QVEGDGQSFSINFNITKDTRFAELLALESEAGVPALVGPSAFKIPFLI RQKIISSLDPPCRRGAD RTLAQKLHLDSHLSFFASKPSPTAMILNL EARHFPNGNLSQLAAAVAGL GQPDAGLFTVSEAEC
NOV21r, SNP13375495 of SEQ ID NO: 539 |2881~bp~ CG53908-01, DNA Sequence ORF Start: ATG at 87 ORF Stop: TGA at 2784
SNP Pos: 2305 SNP Change: G to A
AGCTGGGGCTCCGGGCTGAGGCGCTAAAGCCGCCCTCCCGCCCGCGGGGCCCCGCGCCCGGCCCGCCC
GCCTGCCCGCCCGCGGCCATGGCCGTCCGGCCCGGCCTGTGGCCAGCGCTCCTGGGCATAGTCCTCGC
CGCTTGGCTCCGCGGCTCGGGTGCCCAGCAGAGTGCCACCGTGGCCAACCCAGTGCCTGGTGCCAACC CGGACCTGCTTCCCCACTTCCTGGTGGAGCCCGAGGATGTGTACATCGTCAAGAACAAGCCAGTGCTG CTTGTGTGCAAGGCCGTGCCCGCCACGCAGATCTTCTTCAAGTGCAACGGGGAGTGGGTGCGCCAGGT GGACCACGTGATCGAGCGCAGCACAGACGGGAGCAGTGGTGAGCCGACCATGGAGGTCCGCATTAATG TCTCAAGGCAGCAGGTCGAGAAGGTGTTCGGGCTGGAGGAATACTGGTGCCAGTGCGTGGCATGGAGC TCCTCGGGCACCACCAAGAGTCAGAAGGCCTACATCCGCATAGCCAGATTGCGCAAGAACTTCGAGCA GGAGCCGCTGGCCAAGGAGGTGTCCCTGGAGCAGGGCATCGTGCTGCCCTGCCGTCCACCGGAGGGCA TCCCTCCAGCCGAGGTGGAGTGGCTCCGGAACGAGGACCTGGTGGACCCGTCCCTGGACCCCAATGTA TACATCACGCGGGAGCACAGCCTGGTGGTGCGACAGGCCCGCCTTGCTGACACGGCCAACTACACCTG CGTGGCCAAGAACATCGTGGCACGTCGCCGCAGCGCCTCCGCTGCTGTCATCGTCTACGTGAACGGTG GGTGGTCGACGTGGACCGAGTGGTCCGTCTGCAGCGCCAGCTGTGGGCGCGGCTGGCAGAAACGGAGC CGGAGCTGCACCAACCCGGCGCCTCTCAACGGGGGCGCTTTCTGTGAGGGGCAGAATGTCCATGACCG CACCGTCTCCTCTCTGCTTGTCTCTGTGGACGGCAGCTGGAGCCCGTGGAGCAAGTGGTCGGCCTGTG GGCTGGACTGCACCCACTGGCGGAGCCGTGAGTGCTCTGACCCAGCACCCCGCAACGGAGGGGAGGAG TGCCAGGGCACTGACCTGGACACCCGCAACTGTACCAGTGACCTCTGTGTACACAGTGCTTCTGGCCC GGTGGTCGACGTGGACCGAGTGGTCCGTCTGCAGCGCCAGCTGTGGGCGCGGCTGGCAGAAACGGAGC CGGAGCTGCACCAACCCGGCGCCTCTCAACGGGGGCGCTTTCTGTGAGGGGCAGAATGTCCATGACCG CACCGTCTCCTCTCTGCTTGTCTCTGTGGACGGCAGCTGGAGCCCGTGGAGCAAGTGGTCGGCCTGTG GGCTGGACTGCACCCACTGGCGGAGCCGTGAGTGCTCTGACCCAGCACCCCGCAACGGAGGGGAGGAG TGCCAGGGCACTGACCTGGACACCCGCAACTGTACCAGTGACCTCTGTGTACACAGTGCTTCTGGCCC TGAGGACGTGGCCCTCTATGTGGGCCTCATCGCCGTGGCCGTCTGCCTGGTCCTGCTGCTGCTTGTCC TCATCCTCGTTTATTGCCGGAAGAAGGAGGGGCTGGACTCAGATGTGGCTGACTCGTCCATTCTCACC TCAGGCTTCCAGCCCGTCAGCATCAAGCCCAGCAAAGCAGACAACCCCCATCTGCTCACCATCCAGCC GGACCTCAGCACCACCACCACCTACCAGGGCAGTCTCTGTCCCCGGCAGGATGGGCCCAGCCCCAAGT TCCAGCTCACCAATGGGCACCTGCTCAGCCCCCTGGGTGGCGGCCGCCACACACTGCACCACAGCTCT CCCACCTCTGAGGCCGAGGAGTTCGTCTCCCGCCTCTCCACCCAGAACTACTTCCGCTCCCTGCCCCG AGGCACCAGCAACATGACCTATGGGACCTTCAACTTCCTCGGGGGCCGGCTGATGATCCCTAATACAG GTATCAGCCTCCTCATCCCCCCAGATGCCATACCCCGAGGGAAGATCTATGAGATCTACCTCACGCTG CACAAGCCGGAAGACGTGAGGTTGCCCCTAGCTGGCTGTCAGACCCTGCTGAGTCCCATCGTTAGCTG TGGACCCCCTGGCGTCCTGCTCACCCGGCCAGTCATCCTGGCTATGGACCACTGTGGGGAGCCCAGCC CTGACAGCTGGAGCCTGCGCCTCAAAAA.GCAGTCGTGCGAGGGCAGCTGGGAGCAGGATGTGCTGCAC CTGGGCGAGGAGGCGCCCTCCCACCTCTACTACTGCCAGCTGGAGGCCAGTGCCTGCTACGTCTTCAC CGAGCAGCTGGGCCGCTTTGCCCTGGTGGGAGAGGCCCTCAGCGTGGCTGCCGCCAAGCGCCTCAAGC TGCTTCTGTTTGCGCCGGTGGCCTGCACCTCCCTCGAGTACAACATCCGGGTCTACTGCCTGCATGAC ACCCACGATGCACTCAAGGAGGTGGTGCAGCTGGAGAAGCAGCTGGGGGGACAGCTGATCCAGGAGCC ACGGGTCCTGCACTTCAAGGACAGTTACCACAACCTGCGCCTATCCATCCACGATGTGCCCAGCTCCC TGTGGAAGAGTAAGCTCCTTGTCAGCTACCAGGAGATCCCCTTTTATCACATCTGGAATGGCACGCAG CGGTACTTGCACCGCACCTTCACCCTGGAGCGTGTCAGCCCCAGCACTAGTGACCTGGCCTGCAAGCT GTGGGTGTGGCAGGTGGAGGGCGACGGGCAGAGCTTCAGCATCAACTTCAACATCACCAAGGACACAA GGTTTGCTGAGCTGCTGGCTCTGGAGAGTGAAGCGGGGGTCCCAGCCCTGGTGGGCCCCAGTGCCTTC AAGATCCCCTTCCTCATTCGGCAGAAGATAATTTCCAGCCTGGACCCACCCTGTAGGCGGGGTGCCGA CTGGCGGACTCTGGCCCAGAAACTCCACCTGGACAGCCATCTCAGCTTCTTTGCCTCCAAGCCCAGCC CCACAGCCATGATCCTCAACCTGTGGGAGGCGCGGCACTTCCCCAACGGCAACCTCAGCCAGCTGGCT GCAGCAGTGGCTGGACTGGGCCAGCCAGACGCTGGCCTCTTCACAGTGTCGGAGGCTGAGTGCTGAGG CCGGCCAGGCCCGACACCTACACTCTCACCAGCTTTGGCACCCACCAAGGACAGGCAGAAGCCGGACA
GGGGCCCTTCCCCACACCGGGGAGA
NOV21s, SNP13375140 of SEQ ID NO: 542 899 aa MW at 99116.0kD CG53908-01, Protem Sequence SNP Pos: 747 SNP Change: Cys to Arg
MAVRPGL PALLGIVLAA LRGSGAQQSATVANPVPGANPDLLPHFLVEPEDVYIV NKPVLLVCKAV PATQIFFKCNGE VRQVDHVIERSTDGSSGEPTMEVRINVSRQQVEKVFGLEEY CQCVA SSSGTTK SQKAYIRIARLRKNFEQEPLAKEVSLEQGIVLPCRPPEGIPPAEVEWLRNEDLVDPSLDPNVYITREH SLVVRQARLADTANYTCVAKNIVARRRSASAAVIVYVNGG ST TEWSVCSASCGRGWQKRSRSCTNP APLNGGAFCEGQNVHDRTVSSLLVSVDGS SPWSK SACGLDCTHWRSRECSDPAPRNGGEΞCQGTDL DTRNCTSDLCVHSASGPEDVALYVGLIAVAVCLVLLLLVLILVYCRKKEGLDSDVADSSILTSGFQPV SIKPSKADNPHLLTIQPDLSTTTTYQGSLCPRQDGPSPKFQLTNGHLLSPLGGGRHTLHHSSPTSEAΞ EFVSRLSTQNYFRSLPRGTSNMTYGTFNFLGGRLMIPNTGISLLIPPDAIPRGKIYEIYLTLHKPEDV RLPLAGCQTLLSPIVSCGPPGVLLTRPVILAMDHCGEPSPDS SLRLKKQSCEGS EQDVLHLGEEAP SHLYYCQLEASACYVFTEQLGRFALVGEALSVAAAKRLKLLLFAPVACTSLEYNIRVYCLHDTHDALK EWQLEKQLGGQLIQEPRVLHF DSYHNLRLSIHDVPSSLWKSKLLVSYQEIPFYHI NGTQRYLHRT FTLERVSPSTSDLACKL V QVEGDGQSFSINFNITKDTRFAELLALESEAGVPALVGPSAFKIPFLI RQKIISSLDPPCRRGADWRTLAQKLHLDSHLSFFASKPSPTAMILNL EARHFPNGNLSQLAAAVAGL GQPDAGLFTVSEAEC
NOV21t, SNP13375139 of SEQ ID NO: 543 2881 bp CG53908-01, DNA Sequence ORF Start: ATG at 87 ORF Stop: TGA at 2784
SNP Pos: 2404 SNP Change: A to G jAGCTGGGGCTCCGGGCTGAGGCGCTAAAGCCGCCCTCCCGCCCGCGGGGCCCCGCGCCCGGCCCGCCC
IGCCTGCCCGCCCGCGGCCATGGCCGTCCGGCCCGGCCTGTGGCCAGCGCTCCTGGGCATAGTCCTCGC
CGCTTGGCTCCGCGGCTCGGGTGCCCAGCAGAGTGCCACCGTGGCCAACCCAGTGCCTGGTGCCAACC CGGACCTGCTTCCCCACTTCCTGGTGGAGCCCGAGGATGTGTACATCGTCAAGAACAAGCCAGTGCTG CTTGTGTGCAAGGCCGTGCCCGCCACGCAGATCTTCTTCAAGTGCAACGGGGAGTGGGTGCGCCAGGT GGACCACGTGATCGAGCGCAGCACAGACGGGAGCAGTGGTGAGCCGACCATGGAGGTCCGCATTAATG TCTCAAGGCAGCAGGTCGAGAAGGTGTTCGGGCTGGAGGAATACTGGTGCCAGTGCGTGGCATGGAGC TCCTCGGGCACCACCAAGAGTCAGAAGGCCTACATCCGCATAGCCAGATTGCGCAAGAACTTCGAGCA GGAGCCGCTGGCCAAGGAGGTGTCCCTGGAGCAGGGCATCGTGCTGCCCTGCCGTCCACCGGAGGGCA TCCCTCCAGCCGAGGTGGAGTGGCTCCGGAACGAGGACCTGGTGGACCCGTCCCTGGACCCCAATGTA TACATCACGCGGGAGCACAGCCTGGTGGTGCGACAGGCCCGCCTTGCTGACACGGCCAACTACACCTG CGTGGCCAAGAACATCGTGGCACGTCGCCGCAGCGCCTCCGCTGCTGTCATCGTCTACGTGAACGGTG GGTGGTCGACGTGGACCGAGTGGTCCGTCTGCAGCGCCAGCTGTGGGCGCGGCTGGCAGAAACGGAGC CGGAGCTGCACCAACCCGGCGCCTCTCAACGGGGGCGCTTTCTGTGAGGGGCAGAATGTCCATGACCG CACCGTCTCCTCTCTGCTTGTCTCTGTGGACGGCAGCTGGAGCCCGTGGAGCAAGTGGTCGGCCTGTG GGCTGGACTGCACCCACTGGCGGAGCCGTGAGTGCTCTGACCCAGCACCCCGCAACGGAGGGGAGGAG TGCCAGGGCACTGACCTGGACACCCGCAACTGTACCAGTGACCTCTGTGTACACAGTGCTTCTGGCCC TGAGGACGTGGCCCTCTATGTGGGCCTCATCGCCGTGGCCGTCTGCCTGGTCCTGCTGCTGCTTGTCC TCATCCTCGTTTATTGCCGGAAGAAGGAGGGGCTGGACTCAGATGTGGCTGACTCGTCCATTCTCACC TCAGGCTTCCAGCCCGTCAGCATCAAGCCCAGCAAAGCAGACAACCCCCATCTGCTCACCATCCAGCC GGACCTCAGCACCACCACCACCTACCAGGGCAGTCTCTGTCCCCGGCAGGATGGGCCCAGCCCCAAGT TCCAGCTCACCAATGGGCACCTGCTCAGCCCCCTGGGTGGCGGCCGCCACACACTGCACCACAGCTCT CCCACCTCTGAGGCCGAGGAGTTCGTCTCCCGCCTCTCCACCCAGAACTACTTCCGCTCCCTGCCCCG AGGCACCAGCAACATGACCTATGGGACCTTCAACTTCCTCGGGGGCCGGCTGATGATCCCTAATACAG GTATCAGCCTCCTCATCCCCCCAGATGCCATACCCCGAGGGAAGATCTATGAGATCTACCTCACGCTG CACAAGCCGGAAGACGTGAGGTTGCCCCTAGCTGGCTGTCAGACCCTGCTGAGTCCCATCGTTAGCTG TGGACCCCCTGGCGTCCTGCTCACCCGGCCAGTCATCCTGGCTATGGACCACTGTGGGGAGCCCAGCC CTGACAGCTGGAGCCTGCGCCTCAAAAAGCAGTCGTGCGAGGGCAGCTGGGAGCAGGATGTGCTGCAC CTGGGCGAGGAGGCGCCCTCCCACCTCTACTACTGCCAGCTGGAGGCCAGTGCCTGCTACGTCTTCAC CGAGCAGCTGGGCCGCTTTGCCCTGGTGGGAGAGGCCCTCAGCGTGGCTGCCGCCAAGCGCCTCAAGC TGCTTCTGTTTGCGCCGGTGGCCTGCACCTCCCTCGAGTACAACATCCGGGTCTACTGCCTGCATGAC ACCCACGATGCACTCAAGGAGGTGGTGCAGCTGGAGAAGCAGCTGGGGGGACAGCTGATCCAGGAGCC ACGGGTCCTGCACTTCAAGGACAGTTACCACAACCTGCGCCTATCCATCCACGATGTGCCCAGCTCCC TGTGGAAGAGTAAGCTCCTTGTCAGCTACCAGGAGATCCCCTTTTATCACATCTGGAATGGCACGCAG CGGTACTTGCACTGCACCTTCACCCTGGAGCGTGTCAGCCCCAGCACTAGTGACCTGGCCTGCAAGCT GTGGGTGTGGCAGGTGGAGGGCGGCGGGCAGAGCTTCAGCATCAACTTCAACATCACCAAGGACACAA GGTTTGCTGAGCTGCTGGCTCTGGAGAGTGAAGCGGGGGTCCCAGCCCTGGTGGGCCCCAGTGCCTTC AAGATCCCCTTCCTCATTCGGCAGAAGATAATTTCCAGCCTGGACCCACCCTGTAGGCGGGGTGCCGA CTGGCGGACTCTGGCCCAGAAACTCCACCTGGACAGCCATCTCAGCTTCTTTGCCTCCAAGCCCAGCC CCACAGCCATGATCCTCAACCTGTGGGAGGCGCGGCACTTCCCCAACGGCAACCTCAGCCAGCTGGCT GCAGCAGTGGCTGGACTGGGCCAGCCAGACGCTGGCCTCTTCACAGTGTCGGAGGCTGAGTGCTGAGG CCGGCCAGGCCCGACACCTACACTCTCACCAGCTTTGGCACCCACCAAGGACAGGCAGAAGCCGGACA
GGGGCCCTTCCCCACACCGGGGAGA
NOV21t, SNP13375139 of SEQ ID NO: 544 899 aa MW at 99005.0kD CG53908-01, Protein Sequence SNP Pos: 773 SNP Change: Asp to Gly
MAVRPGL PALLGIVLAAWLRGSGAQQSATVANPVPGANPDLLPHFLVEPEDVYIVKNKPVLLVCKAV PATQIFFKCNGE VRQVDHVIERSTDGSSGEPTMEVRINVSRQQVEKVFGLEEYWCQCVAWSSSGTTK SQIs^YIRIARLRKNFEQEPLAKEVSLEQGIVLPCRPPEGIPPAEVE LRNEDLVDPSLDPNVYITREH SLVVRQARLADTAt-TYTCVA-railVARRRSASAAVIVYVNGG STWTE SVCSASCGRG QKRSRSCTNP APLNGGAFCEGQNVHDRTVSSLLVSVDGS SP SKWSACGLDCTH RSRECSDPAPRNGGEECQGTDL DTRNCTSDLCVHSASGPEDVALYVGLIAVAVCLVLLLLVLILVYCR KEGLDSDVADSSILTSGFQPV SIKPSKADNPHLLTIQPDLSTTTTYQGSLCPRQDGPSPKFQLTNGHLLSPLGGGRHTLHHSSPTSEAE EFVSRLSTQNYFRSLPRGTSNMTYGTFNFLGGRLMIPNTGISLLIPPDAIPRGKIYEIYLTLHKPEDV RLPLAGCQTLLSPIVSCGPPGVLLTRPVILAMDHCGEPSPDSWSLRLKKQSCEGSWEQDVLHLGEEAP SHLYYCQLEASACYVFTEQLGRFALVGEALSVAAAKRLKLLLFAPVACTSLEYNIRVYCLHDTHDALK EVVQLEKQLGGQLIQEPRVLHFKDSYHNLRLSIHDVPSSL KSKLLVSYQEIPFYHI NGTQRYLHCT FTLERVSPSTSDLACKL V QVEGGGQSFSINFNITKDTRFAELLALESEAGVPALVGPSAFKIPFLI RQKIISSLDPPCRRGADWRTLAQKLHLDSHLSFFASKPSPTAMILNL EARHFPNGNLSQLAAAVAGL GQPDAGLFTVSEAEC
NOV21u, SNP13375496 of SEQ ID NO: 545 2881 bp
CG53908-01, DNA Sequence JORF Start: ATG at 87JORF Stop: TGA at 2784
SNP Pos: 2676 [SNP Change: T to
AGCTGGGGCTCCGGGCTGAGGCGCTAAAGCCGCCCTCCCGCCCGCGGGGCCCCGCGCCCGGCCCGCCC GCCTGCCCGCCCGCGGCCATGGCCGTCCGGCCCGGCCTGTGGCCAGCGCTCCTGGGCATAGTCCTCGC
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 2 IB. Table 21B. Comparison of the NOV21 protein sequences.
NOV2la MAVRPGL PALLGIVLAAWLRGSGAQQSATVANPVPGANPDLLPHFLVEPEDVYIVKNKP
NOV2lb QQSATVANPVPGANPDLLPHFLVEPEDVYIVKNKP
NOV2lc TGSQQSATVANPVPGANPDLLPHFLVEPEDVYIVKNKP
NOV2Id QQSATVANPVPGANPDLLPHFLVEPEDVYIVKNKP
NOV2le MAVRPGL PALLGIVLAAWLRGSGAQQSATVANPVPGANPDLLPHFLVEPEDVYIVKNKP
NOV2If QQSATVANPVPGANPDLLPHFLVEPEDVYIVKNKP
NOV2lg ALLGIVLAAWLRGSGAQQSATVANPVPGANPDLLPHFLVEPEDVYIVKNKP
N0V2lh QQSATVANPVPGANPDLLPHFLVEPEDVYIVKNKP
NOV2la VLLVCKAVPATQIFFKCNGE VRQVDHVIERSTDGSSGEPTMEVRINVSRQQVEKVFGLE
NOV2lb VLLVCKAVPATQIFFKCNGE VRQVDHVIERSTDGSSGEPTMEVRINVSRQQVEKVFGLE
NOV2lc VLLVCKAVPATQIFFKCNGEWVRQVDHVIERSTDGSSGLPTMEVRINVSRQQVEKVFGLE
NOV2Id VLLVCKAVPATQIFFKCNGEWVRQVDHVIERSTDGSSGEPTMEVRINVSRQQVEKVFGLE
NOV2le VLLVCKAVPATQIFFKCNGE VRQVDHVIERSTDGSSGLPTMEVRINVSRQQVEKVFGLE
NOV2If VLLVCKAVPATQIFFKCNGE VRQVDHVIERSTDGSSGLPTMEVRINVSRQQVEKVFGLE
NOV2lg VLLVCKAVPATQIFFKCNGEWVRQVDHVIERSTDGSSGLPTMEVRINVSRQQVEKVFGLE
NOV2lh VLLVC-KAVPATQIFFKCNGEWVRQVDHVIERSTDGSSGLPTMEVRINVSRQQVEKVFGLE
NOV2la EY CQCVA SSSGTTKSQKAYIRIARLRKNFEQEPLAKEVSLEQGIVLPCRPPEGIPPAE
NOV2lb EYWCQCVA SSSGTTKSQKAYIRIARLRKNFEQEPLAKEVSLEQGIVLPCRPPEGIPPAE
NOV2lc EY CQCVA SSSGTTKSQKAYIRIAYLRKNFEQEPLAKEVSLEQGIVLPCRPPEGIPPAE
NOV2Id EY CQCVA SSSGTTKSQKAYIRIARLRKNFEQEPLAKEVSLEQGIVLPCRPPEGIPPAE
NOV2le EY CQCVA SSSGTTKSQKAYIRIARLRKNFEQEPLAKEVSLEQGIVLPCRPPEGIPPAE
NOV2If EY CQCVAWSSSGTTKSQKAYIRIAYLRKNFEQEPLAKEVSLEQGIVLPCRPPEGIPPAE
NOV2lg EYWCQCVAWSSSGTTKSQKAYIRIAYLRK-NFEQEPLAKEVSLEQGIVLPCRPPEGIPPAE
NOV2lh EYWCQCVA SSSGTTKSQKAYIRIAYLRKNFEQEPLAKEVSLEQGIVLPCRPPEGIPPAE
NOV2la VEWL-- EDLVDPSLDPNVYITREHSLVVRQARLADTANYTCVAKNIVARRRSASAAVIVY
NOV2lb VEWLRNEDLVDPSLDPNVYITREHSLVWQAR-L-ADTANYTCVAKNIVARRRSASAAVIVY
NOV2lc VEWLRNEDLVOPSLDPNVYITREHSLVVRQARLADTANYTCVAKNIVARRRSASAAVIVY
NOV2Id VE LRNEDLVDPSLDPNVYITREHSLWRQARLADTANYTCVAKNIVARRRSASAAVIVY
NOV2le VE L---INEDLVDPSLDPNVΥITREHSLVVRQARLADTANYTCVAKNIVARRRSASAAVIVY
NOV21f VE L-RNEDLVDPSLDPNVYITREHSLVVRQARLADTANYTCVAKNIVARRRSASAAVIVY
NOV2 lg VE LRNEDLVDPSLDPNVYITREHSLWRQARLADTANYTCVAKNIVARRRSASAAVIVY
NOV2lh VE LRNEDLVDPSLDP-K1VYITREHSLVVRQ-ARLADTANYTCVAKNIVARRRSASAAVIVY
NOV2la VNGG ST TE SVCSASCGRGWQKRSRSCTNPAPLNGGAFCEGQNVHDRTVSSLLVSVDG
N0V2lb VNGG STWTE SVCSASCGRGWQKRSRSCTNPAPLNGGAFCEGQNVHDRTVSSLLVSVDG
NOV21C VNGGWST TEWSVCSASCGRG QKRSRSCTNPAPLNGGAFCEGQNVQK-TACATLCPVDG
NOV21d VDG
NOV2le VNGGWSTWTE SVCSASCGRG QKRSRSCTNPAPLNGGAFCEGQ-NVQKTACATLCPVDG
NOV21f VNGG ST TE SVCSASCGRG QKRSRSCTNPAPLNGGAFCEGQNVQK-TACATLCPVDG
NOV21g VDG
NOV21h VDG
NOV2la S SP SKWSACGLDCTH RSRECSDPAPRNGGEECQGTDLDTRNCTSDLCVHSASGPEDV
NOV2lb SWSP SK SACGLDCTH RSRECSDPAPRNGGEECQGTDLDTRNCTSDLCVHSASG
NOV2lC S SPWSKWSACGLDCTH RSRECSDPAPRNGGEECQGTDLDTRNCTSDLCVHSASGEFG-
NOV2Id S SP SKWSACGLDCTH RSRECSDPAPRNGGEECQGTDLDTRNCTSDLCVHSASGPEDV
NOV21e SWSPWSK SACGLDCTH RSRECSDPAPRNGGEECQGTDLDTRNCTSDLCVHSASGPEDV
NOV2If SWSP SKWSACGLDCTH RSRECSDPAPRNGGEECQGTDLDTRNCTSDLCVHSASG
NOV2lg SWSP SKWSACGLDCTHWRSRECSDPAPRNGGEECQGTDLDTRNCTSDLCVHTASGPEDV
NOV21h S SPWSKWSACGLGCTH RSRECSDPAPRNGGEECQGTDLDTRNCTSDLCVHTASGPEDV NOV2la ALYVGLIAVAVCLVLLLLVLILVYCRKKEGLDSDVADSSILTSGFQPVSIKPSKADNPHL
NOV21b
NOV2lc
NOV21d ALYVGLIAVAVCLVLLLLVLILVYCRKKEGLDSDVADSSILTSGFQPVSIKPSKADN
NOV21e ALYVGLIAVAVCLVLLLLVLILVYCRKKEGLDSDVADSSILTSGFQPVSIKPSKADNPHL
NOV2If
NOV21g ALYVGLIAVAVCLVLLLLVLILVYCRKKEGLDSDVADSSILTSGFQPVSIKPSKADNPHL
NOV2lh ALYVGLIAVAVCLVLLLLVLILVYCRKKEGLDSDVADSSILTSGFQPVSIKPSKADNPHL
NOV2la LTIQPDLS-TTTTYQGSLCPRQDGPSPKFQLTNGHLLSPLGGGRHTLHHSSPTSEAEEFV
NOV2lb
NOV21C
NOV21d
NOV21e LTIQPDLSTTTTTYQGSLCPRQDGPSPKFQLTNGHLLSPLGGGRHTLHHSSPTSEAEEFV
NOV21f
NOV21g LTIQPDLSTTTTTYQGSLCPRQDGPSPKFQLTNGHLLSPLGGGRHTLHHSSPTSEAEΞFV
NOV21h LTIQPDLSTTTTTYQGSLCPRQDGPSPKFQLTNGHLLSPLGGGRHTLHHSSPTSEAEEFV
NOV21a SRLSTQNYFRSLPRGTSNMTYGTFNFLGGRLMIPNTGISLLIPPDAIPRGKIYEIYLTLH
NOV21b
NOV21C
NOV21d
NOV21e SRLSTQNYFRSLPRGTSNMTYGTFNFLGGRLMIPNTGISLLIPPDAIPRGKIYEIYLTLH
NOV21f
NOV21g SRLSTQNYFRSLPRGTSNMTYGTFNFLGGRLMIPNTGISLLIPPDAIPRGKIYEIYLTLH
NOV21h SRLSTQNYFRSLPRGTSNMTYGTFNFLGGRLMIPNTGISLLIPPDAIPRGKIYEIYLTLH
NOV21a KPEDVRLPLAGCQTLLSPIVSCGPPGVLLTRPVILAMDHCGEPSPDS SLRLKKQSCEGS
NOV2lb
NOV21C
NOV21d
NOV21e KPEDVRLPLAGCQTLLSPIVSCGPPGVLLTRPVILAMDHCGEPSPDSWSLRLKKQSCEGS
NOV21f
NOV21g KPEDVRLPLAGCQTLLSPIVSCGPPGVLLTRPVILAMDHCGEPSPDS SLRLKKQSCEGS
NOV21h KPEDVRLPLAGCQTLLSPIVSCGPPGVLLTRPVILAMDHCGEPSPDS SLRLKKQSCEGS
NOV2la EQDVLHLGΞEAPSHLYYCQLEASACYVFTEQLGRFALVGEALSVAAAKRLKLLLFAPVA
NOV21b
NOV21C
NOV21d
NOV2le ED-VLHLGEEAPSHLYYCQLEASACYVFTEQLGRFALVGEALSVAAAKRLKLLLFAPVA
NOV21f
NOV2lg WED-VLHLGEEAPSHLYYCQLEASACYVFTEQLGRFALVGEALSVAAAKRLKLLLFAPVA
NOV2lh WED-VLHLGEEAPSHLYYCQLEASACYVFTEQLGRFALVGEALSVAAAKRLKLLLFAPVA
NOV2la CTSLEYNIRVYCLHDTHDALKEVVQLEKQLGGQLIQEPRVLHFKDSYHNLRLSIHDVPSS
NOV21b
NOV21C
NOV21d
NOV2le CTSLEYNIRVYCL-f-TOTiroAL-KEVVQLEKQLGGQLIQEPRVLHFKDSYHNLRLSI-fflDVPSS
NOV21f
NOV2lg CTSLEYNIRVYCLHDTHDALKEVVQLEKQLGGQLIQEPRVLHFKDSYHNLRLSIHDVPSS
NOV2lh CTSLEYNIRVYCLHDTHDALKEWQLEKQLGGQLIQEPRVLHFKDSYHNLRLSIHDVPSS
NOV21a LWKSKLLVSYQEIPFYHIWNGTQRYLHCTFTLERVSPSTSDLACKLWVWQVEGDGQSFSI NOV21b
NOV21C
NOV21d
NOV2le LWKSKLLVSYQEIPFYHIWNGTQRYLHCTFTLERVSPSTSDLACKLWVWQVΞGDGQSFSI
NOV21f
NOV2lg LWKSKLLVSYQEIPFYHIWNGTQRYLHCTFTLERVSPSTSDLACKLWVWQVEGDGQSFSI
NOV2lh LWKSKLLVSYQEIPFYHIWNGTQRYLHCTFTLERVSPSTSDLACKLWVWQVEGDGQSFSI
NOV21a NFNITKDTRFAELLALESEAGVPALVGPSAFKIPFLIRQKIISSLDPPCRRGADWRTLAQ
NOV21b
NOV21C
NOV21d
NOV21e NFNITKDTRFAELLALESEAGVPALVGPSAFKIPFLIRQKIISSLDPPCRRGADWRTLAQ
NOV21f
NOV2lg NFNITKDTRFAELLALESEAGVPALVGPSAFKIPFLIRQKIISSLDPPCRRGADWRTLAQ
NOV2lh NFNITKDTRFAELLALESEAGVPALVGPSAFKIPFLIRQKIISSLDPPCRRGADWRTLAQ
NOV2la KLHLDSHLSFFASKPSPTAMILNLWEARHFPNGNLSQLAAAVAGLGQPDAGLFTVSEAEC
NOV21b
NOV21C
NOV21d
NOV2le KLHLDSHLSFFASKPSPTAMILNLWEARHFPNGNLSQLAAAVAGLGQPDAGLFTVSEAEC
NOV21f
NOV2lg KLHLDSHLSFFASKPSPTAMILNLWEARHFPNGNLSQLAAAVAGLGQPDAGLFTVSEAEC
NOV2lh KLHLDSHLSFFASKPSPTAMILNLWEARHFPNGNLSQLAAAVAGLGQPDAGLFTVSEAEC
NOV21a (SEQ ID NO 506)
NOV21b (SEQ ID NO 508)
NOV21C (SEQ ID NO 510)
NOV21d (SEQ ID NO 512)
NOV2le (SEQ ID NO 514)
NOV21f (SEQ ID NO 516)
NOV2lg (SEQ ID NO 518)
NOV21h (SEQ ID NO 520)
Further analysis of the NOV21a protein yielded the following properties shown in Table 21C.
Table 21 C. Protein Sequence Properties NOV21a
SignalP analysis: Cleavage site between residues 26 and 27
PSORT II analysis:
PSG : a new signal peptide prediction method
N-region: length 4 ; pos . chg 1; neg . chg 0 H-region : length 16 ; peak value 9.57 PSG score : 5. 17
GvH: von Heijne ' s method for signal seq. recognition GvH score (threshold: -2 .1) : 1.79 possible cleavage site : between 25 and 26
>» Seems to have a cleavable signal peptide (1 to 25)
ALOM : Klein et al ' s method for TM region allocation Init position for calculation : 26 Tentative number of TMS(s) for the threshold 0.5: 1
Number of TMS(s) for threshold 0.5: 1
INTEGRAL Likelihood =-19.00 Transmembrane 367 - 383
PERIPHERAL Likelihood = 0.85 (at 61)
ALOM score: -19.00 (number of TMSs: 1)
MTOP: Prediction of membrane topology (Hartmann et al.) Center position for calculation: 12 Charge difference: -1.0 C( 1.0) - N( 2.0) N >= C: N-terminal side will be inside
>>> membrane topology: type la (cytoplasmic tail 384 to 899)
MITDISC: discrimination of mitochondrial targeting seq R content: 2 Hyd Moment (75): 9.35 Hyd Moment (95): 6.17 G content: 5 D/E content: 1 S/T content: 3 Score: -4.19
Gavel: prediction of cleavage sites for mitochondrial preseq R-2 motif at 31 LRG|SG
NUCDISC: discrimination of nuclear localization signals pat : none pat7 : none bipartite: none content of basic residues: 9.2% NLS Score: -0.47
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals:
XXRR-like motif in the N-terminus : AVRP none
SKL: peroxisomal targeting signal in the C-terminus: none
PTΞ2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail: too long tail Dileucine motif in the tail: found LL at 420 LL at 455 LL at 519 LL at 554 LL at 567 LL at 652 LL at 653 LL at 725 checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: cytoplasmic Reliability: 70.6
COIL: Lupas ' s algorithm to detect coiled-coil regions total: 0 residues
Final Results (k = 9/23) :
44.4 %: endoplasmic reticulum
22.2 %: Golgi
11.1 %: plasma membrane
11.1 %: vesicles of secretory system
11.1 %: extracellular, including cell wall
>> prediction for CG53908-01 is end (k=9)
A search of the NOV2 la protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 2 ID.
In a BLAST search of public sequence databases, the NOV2 la protein was found to have homology to the proteins shown in the BLASTP data in Table 2 IE.
PFam analysis predicts that the NOV21a protem contains the domains shown in the Table 21F.
Example 22.
The NOV22 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 22A.
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 22B.
Table 22B. Comparison of the NOV22 protein sequences. N0V22a MAILPLLLCLLPLAPASSPPQSATPSPCPRRCRCQTQSLPLSVLCPGAGLLFVPPSLDRR
N0V22b MAILPLLLCLLPLAPASSPPQSATPSPCPRRCRCQTQSLPLSVLCPGAGLLFVPPSLDRR
NOV22a AAE RLADNFIASVRRRDLA-NMTG LH SLSRNTIRHVAAGAFADLRALRALH DGNRLT
NOV22b AAELRLADNFIASVRRRDLA MTG HLS SR TIRHVAAGAFADLRALRA HLDGNR T
NOV22a SLGEGQLRGLV RH ILSNNQLAA AAGALDDCAETLEDLDLSYNNLEQLP EA GRLG
NOV22b SLGEGQ RG VT-.LRHLILSNNQLAALAAGALDDCAET EDLDLSYNN EQLP EALGRLG
NOV22a NVNT G DHNL ASVPAGAFSR HK ARLDMTSNR TTIPPDPLFSRLP ARPRGSPAS
NOV22b --- π-ITLGLD------NLLASVPAGAFSR HKLARIjDMTSNRLTTIPPDP FSRLPLLARPRGSPAS
NOV22a -ALVLAFGGNPLHCNCELVWLRRL-AREDDLEACASPPALGGRYFWAVGEEEFVCEPPWTH
NOV22b ALVLAFGGNPLHCNCELVWLRRLAREDDLEACASPPALGGRYFWAVGEEEFVCEPPWTH
N0V22a RSPPLAVPAGRPAALRCRAVGDPEPRVRWVSPQGRLLGNSSRARAFPNGTLELLVTEPGD
NOV22b RSPPLAVPAGRPAALRCRAVGDPEPRVRWVSPQGRLLGNSSRARAFPNGTLELLVTEPGD
NOV22a GGIFTCIAANAAGEATAAVELTVGPPPPPQLANSTSCDPPRDGDPDALTPPSAASASAKV
NOV22b GGIFTCIAANAAGEATAAVE TVGPPPPPQLANSTSCDPPRDGDPDALTPPSAASASAKV
NOV22a ADTGPPTDRGVQVTEHGATAALVQWPDQRPIPGIRMYQIQYNSSADDILVYRMIPAESRS
NOV22b ADTGPPTDRGVQVTEHGATAALVQWPDQRPIPGIRMYQIQYNSSADDILVYRMIPAESRS
NOV22a FLLTD ASGRTYDLCVLAVYEDSATGLTATRPVGCARFSTEPALRPCGAPHAPFLGGTMI
NOV22b F TDLASGRTYDLCVLAVYEDSATGLTATRPVGCARFSTΞPA RPCGAPHAPF GGT I
NOV22a IA GGVIVASV-LVFIFVLLMRYKVHGGQPPGKAKIPAPVSSVCSQTNGALGPTPTPAPPA
NOV22b IALGGVIVASVLVFIFVLLMRYKVHGGQPPGKAKIPAPVSSVCSQTNGALGPTPTPAPPA
NOV22a PEPAA RAHTWQLDCEP GPGHEPVGP
NOV22b PEPAALRAHTWQLDCEPWGPGHEPVGP
NOV22a (SEQ ID NO: 548) NOV22b (SEQ ID NO: 550)
Further analysis of the NOV22a protein yielded the following properties shown in Table
22C.
Table 22C. Protein Sequence Properties NOV22a
SignalP analysis: Cleavage site between residues 17 and 18
PSORT H analysis:
PSG: a new signal peptide prediction method
N-region: length 0; pos.chg 0; neg.chg 0 H-region: length 29; peak value 9.99 PSG score: 5.59
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): 4.65 possible cleavage site: between 16 and 17
>>> Seems to have a cleavable signal peptide (1 to 16)
ALOM : Klein et al ' s method for TM region allocation Init position for calculation: 17
Tentative number of TMS(s) for the threshold 0.5: 2
Number of TMS (s) for threshold 0.5: 1
INTEGRAL Likelihood =-12.79 Transmembrane 543 - 559
PERIPHERAL Likelihood = 2.44 (at 363)
ALOM score: -12.79 (number of TMSs : 1)
MTOP: Prediction of membrane topology (Hartmann et al.) Center position for calculation: 8 Charge difference: 2.0 C( 3.0) - N( 1.0) C > N: C-terminal side will be inside
>>>Caution: Inconsistent mtop result with signal peptide
>>> membrane topology: type la (cytoplasmic tail 560 to 628)
MITDISC: discrimination of mitochondrial targeting seq R content: 3 Hyd Moment (75): 2.94 Hyd Moment (95): 1.64 G content: 2 D/E content: 1 S/T content: 9 Score: -1.46
Gavel : prediction of cleavage sites for mitochondrial preseq R-2 motif at 43 CRC|QT
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7: PCPRRCR (3) at 27 pat7: PRRCRCQ (5) at 29 bipartite: none content of basic residues: 8.4% NLS Score: 0.22
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals : none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail : too long tail Dileucine motif in the tail: none checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: nuclear Reliability: 55.5
COIL: Lupas ' s algorithm to detect coiled-coil regions total : 0 residues
Final Results (k = 9/23)
44.4 %: extracellular, including cell wall
22.2 %: Golgi
22 .2 % : endoplasmic reticulum
11. 1 % : plasma membrane
>> prediction for CG53944-02 is exc (k=9)
A search of the NOV22a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 22D.
In a BLAST search of public sequence databases, the NOV22a protein was found to have homology to the proteins shown in the BLASTP data in Table 22E.
PFam analysis predicts that the NOV22a protein contains the domains shown in the Table 22F.
i 310..368 15/62 (24%) 1.2e-05 44/62 (71%)
&3 425..505 18/84 (21%) 7.1e-05 55/84 (65%)
Example 23.
The NOV23 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 23 A.
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 23B.
Table 23B. Comparison of the NO 23 protein sequences.
NOV23 a -MDSLVTANTKFCFDLFQEIGKDDRHKNIFFSPLSLSAALGMVRLGARSDSAHQIDEVLH
NOV23b -J DSLVTANT FCFDLFQEIGKDDRHKNIFFSPLSLSAALGMVRLGARSDSAHQIDEVLH
NOV23C T- ωSLVTANT-KFCFDLFQEIGKDDRH NIFFSPLSLSAALGMVRLG-ARSDSAHQIDEVLH
NOV23d -MDSLVTANTKFCFDLFQEIGKDDRHKNIFFSPLSLSAALGMVRLGAISDSAHHIDEVR-
NOV23e -MDSLVTANTKFCFDLFQEIGKDDRH NIFFSPLSLSAALGMVRLGARSDSAHQIDEVR-
NOV23 a FDEFSQ-lffiSKΞPDPCLKSNKQKVLADSSLEGQ-KKTTEPLDQQAGSLNNESGLVSCYFGQL
NOV23b FNEFSQNES EP AGSLNNESGLVSCYFGQL
NOV23 c FNEFSQNES-l-sΕPDPCLKSNKQKVLADSSLEGQKKTTEPLDQQAGSLNNESGLVSCYFGQL N0V23d -VHYSQNESKEPDPCLKSNKQKVLADSSLEGQKKTTEPLDQQAGSLNNGSGLVSCYFGQL
N0V23e SLNNESGLVSCYFGQL
N0V23 LSKLDRIKTDYTLSIANRLYGEQEFPICQEYLDGVIQFYHTTIESVDFQKNPE SRQEIN
N0V23b LSKLDRIKTDYTLSI-ANRLYGEQEFPICQEYLDGVIQFYHTTIESVDFQKNPEKSRQEIN
N0V23C LSKLDRIKTDYTLSIANRLYGGQEFPICQEYLDGVIQFYHTTIESVDFQKNPEKSRQEIN
NOV23d LSKLDRIKTDYTLSIADRLYGEREFPICQEYLDGVIQFYHTTIESVDFQKNPEKSRQEIN
NOV23e LSKLDRIKTDYTLSIANRLYGESSLGDKSETLS QKKKKKIIYTNAFDTIHTQDI
NOV23a F VECQSQGKIKELFSKDAINAΞTVLVLVNAVYFKAKWETYFDHENTVDAPFCLNANENK
NOV23b F VECQSQGKIKDLFS DAINAETVLVLVNAVYFKAK ETYFDHENTVDAPFCLNQNENK
NOV23c F VECQSQGKIKELFSKDAINAETVLVLVNAVYFKAK ETYFDHENTVDAPFCLNANENK
NOV23d FWVECQSQGKI-KELFSKDAINAETVLVLVNAVYFKAK ETYFDHENTVDAPFCLNANENK
NOV23e L DLF--LGKIKELFS DAINAETVLVLVNAVYF AK ETYFDHENTVDAPFCLNQNENK
NOV23a SVKM MQKGLYRIGFIEEVKAQILEMRYT G LSMFVLLPSHS-KDNLKGLEELERKITYE
NOV23b SVK TQKGLYRIGFIEEVKAQILEMRYTKGKLSMFVLLPSHSKDNLKGLEELERKITYE
NOV23C SV---MMTQKGLYRIGFIEEVKAQILEMRYTKGKLSMFVLLPSHSKDNLKGLEELERKITYE
NOV23d SVKM-MTQKGLYRIGFIEEV AQILEMRYTKGKLSMFVLLPSHSKDNLKGLEELERKITYE
NOV23e SVKMMTQKGLYRIGFIEEVKAQILEMRYTKGKLSMFVLLPSHSKDNLKG ITYE
NOV23a K VA SSSENMSEESWLSFPRFTLEDSYDLNSILQDMGITDIFDETRADLTGISPSPNL
NOV23b K VA SSSENMSEESVVLSFPRFTLEDSYDLNSILQDMGITDIFDETRADLTGISPSPNL
NOV23C K VAWSSSENMSEESVVLSFPRFTLEDSYDLNSILQD GITDIFDΞTRADLTGISPSPNL
NOV23d KMVA SSSENMSEESWLSFPRFTLEDSYDLNSILQDMGITDIFDETRADLTGISPSPNL
NOV23e KMVA SSSENMSEESVVLSFPRFTLEDSYDLNSILQDMGITDIFDET-RADLTGISPSPNL
NOV23a YLSKIIHKTFVEVDENGTQAAAATGAWSERSLRSWVEFNANHPFLFFIRHNKTQTILFY
NOV23b YLSKIIHKTFVEVDENGTQAAAATGAWSERSLRSWVEFNANHPFLFFIRHNKTQTILFY
NOV23C YLSKIIHKTFVEVDENGTQAAAATGAWSERSLRS VEFNANHPFLFFIRHNKTQTILFY
NOV23d YLSKIIHKTFVEVDENGTQAAAATGAWSERSLRS VEFNANHPFLFFIRHNKTQTILFY
NOV23e YLSKIIHKTFVEVDENGTQAAAATGAWSERSLRSWVEFNANHPFLFFIRHNKTQTILFY
NOV23a GRVCSP NOV23b GRVCSP NOV23C GRVCSP NOV23d GRVCSP NOV23e GRVCSP
NOV23 (SEQ ID NO 552)
NOV23b (SEQ ID NO 554)
NOV23C (SEQ ID NO 556)
NOV23d (SEQ ID NO 558)
NOV23e (SEQ ID NO 5S0)
Further analysis of the NO V23a protein yielded the following properties shown in Table 23C.
Table 23C. Protein Sequence Properties NOV23a
SignalP analysis: No Known Signal Sequence Predicted
PSORT π analysis:
PSG: a new signal peptide prediction method
-N-region: length 10; pos.chg 1; neg.chg 1 H-region: length 3; peak value -2.92 PSG score : - 7 .33
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -2.16 possible cleavage site: between 40 and 41
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al's method for TM region allocation Init position for calculation: 1
Tentative number of TMS(s) for the threshold 0.5: 1 Number of TMS(s) for threshold 0.5: 0 PERIPHERAL Likelihood = 3.07 (at 197) ALOM score: 0.42 (number of TMSs: 0)
MITDISC: discrimination of mitochondrial targeting seq R content: 0 Hyd Moment (75) : 7.00 Hyd Moment (95): 3.76 G content: 0 D/E content: 2 S/T content: 3 Score: -6.29
Gavel: prediction of cleavage sites for mitochondrial preseq cleavage site motif not found
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite : none content of basic residues: 10.8% NLS Score: -0.47
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals : none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif: none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif: none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail : none Dileucine motif in the tail: none checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: cytoplasmic Reliability: 70.6
COIL: Lupas' s algorithm to detect coiled-coil regions total: 0 residues
Final Results (k = 9/23) :
47.8 %: mitochondrial
30.4 %: cytoplasmic
17.4 %: nuclear
4.3 % : vacuolar
>> prediction for CG54308-04 is mit (k=23)
A search of the NOV23a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 23D.
Homo sapiens, 365 aa. 1..365 332/425 (77%) [WO200257452-A2, 25-JUL-2002]
In a BLAST search of public sequence databases, the NOV23a protein was found to have homology to the proteins shown in the BLASTP data in Table 23E.
PFam analysis predicts that the NOV23a protein contains the domains shown in the Table
23F.
Table 23F. Domain Analysis of NOV23a
Identities/
Pfam Domain NOV23a Match Region Similarities Expect Value for the Matched Region serpin 1..425 161/441 (37%) 1.9e-147 350/441 (79%)
Example 24.
The NOV24 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 24A.
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 24B.
Table 24B. Comparison of the NO 24 protein sequences.
NOV24a MSPFGSL.AKLLGPSQIA CITTLCCFPERYAGRDHNSCKLSQRGFLNFMNTVLVAFT-KN
NOV24 b MS PFGSLAKLLGPS Q I AW C I TTCAVFQRGYAGRDHNS CKLS QRGFLNFMNTVL VAFTKN
NOV24a QKGSGALDCMMKKLDFNCDGQLDFQDFLSLTDGVAVACPDSFIPAGHAHERI
NOV24b QKGSGALDCMMKKLDFNCDGQLDFQDFLSLTDGVAVACPDSFIPAGHAHERI
NOV24a (SEQ ID NO: 562)
NOV24b (SEQ ID NO : 564)
Further analysis of the NOV24a protein yielded the following properties shown in Table 24C.
Table 24C. Protein Sequence Properties NOV24a
SignalP analysis: Cleavage site between residues 33 and 34
PSORT II analysis:
PSG: a new signal peptide prediction method
N- region: length 9; pos.chg 1; neg.chg 0 H-region: length 19; peak value 9.43 PSG score: 5.03
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -5.43 possible cleavage site: between 28 and 29
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al ' s method for TM region allocation Init position for calculation: 1
Tentative number of TMS(s) for the threshold 0.5: 0 number of TMS(s) .. fixed PERIPHERAL Likelihood = 3.18 (at 87) ALOM score: 3.18 (number of TMSs: 0)
MTOP: Prediction of membrane topology (Hartmann et al.) Center position for calculation: 6 Charge difference: 0.0 C( 1.0) - N( 1.0) N >= C: N-terminal side will be inside
MITDISC: discrimination of mitochondrial targeting seq R content: 0 Hyd Moment (75): 0.38 Hyd Moment (95): 3.15 G content: 2 D/E content: 1 S/T content: 5 Score: -5.58
Gavel : prediction of cleavage sites for mitochondrial preseq cleavage site motif not found
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite : none content of basic residues: 8.9% NLS Score: -0.47
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals : none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif: none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif: none memYQRL: transport motif from cell surface to Golgi: none Tyrosines in the tail : none
Dileucine motif in the tail: none checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: cytoplasmic Reliability: 89
COIL: Lupas ' s algorithm to detect coiled-coil regions total: 0 residues
Final Results (k = 9/23) :
43.5 %: cytoplasmic
21.7 %: mitochondrial
21.7 %: nuclear
4.3 %: extracellular, including cell wall
4.3 % : vacuolar
4.3 % : endoplasmic reticulum
>> prediction for CG54764-02 is cyt (k=23)
A search of the NOV24a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 24D.
In a BLAST search of public sequence databases, the NOV24a protein was found to have homology to the proteins shown in the BLASTP data in Table 24E.
PFam analysis predicts that the NOV24a protein contains the domains shown in the Table 24F.
Example 25.
The NOV25 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 25 A.
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 25B.
Table 25B. Comparison of the NOV25 protein sequences.
NOV25a
NOV25b MKL IHLFYSSLLACISLHSQTPVLSSRGSCDSLCNCEEKDGTMLINCEAKGIKMVSEIS
NOV25C
NOV25d
NOV25e
NOV25f -RGTKWACNCDLLQLKT LENMPPQSIIGDWCNSPPFFKGSILS
NOV25g -RGTK ACNCDLLQLKT LENMPPQSIIGDWCNSPPFFKGSILS
NOV25h
NOV25i
NOV25k
NOV251
NOV25m
NOV25n
NOV250
NOV25p
NOV25q
NOV25r
NOV25S
NOV25a MKL IHLFYSSLLACISLHS
NOV25b VPPSRPFQLSLLNNGLT LHTNDFSGLTNAISIHLGFNNIADIEIGAFNGLGLLKQLHIN
NOV25C
NOV25d
NOV25e
NOV25f RL..-αESICPTPPVYEEHEDPSGSLHL-AATSSINDSRMST---rTSILKLPTKAPGLIPYITK
NOV25g RLKKESICPTPPVYEEHEDPSGSLHLAATSSINDSRMSTKTTSILKLPTKAPGLIPYITK
NOV25h
NOV25i NOV25k MKLWIHLFYSSLLACISLHS
NOV251
NOV25m
NOV25n MKLWIHLFYSSLLACISLHS
NOV25o DSLFYSSLLACISLHS
NOV25p
NOV25q
NOV25r
NOV25s MKLWIHLFYSSLLACISLHS
NOV25a QTPVLSSRGSCDSLCNCEEKDGTMLINCEAKGIKMVSEISVPPSRPFQLSLLNNGLTMLH
NOV25b HNSLEILKEDTFHGLENLEFLQ-ADNNFITVIEPSAFS-.-α-jNRLKVLILNDNAIESLPPNIF
NOV25c MLINCEAKGIKMVSEISVPPSRPFQLSLLNNGLTMLH
NOV25d
NOV25e TSRTMLINCEAKGIKMVSEISVPPSRPFQLSLLNNGLTMLH
NOV25f PSTQLPGPYCPIPCNCKVLSPSGLLIHCQERNIESLSDLRPPPQNPRKLILAGNIIHSLM
NOV25g PSTQLPGPYCPIPCNCKVLSPSGLLIHCQERNIESLSDLRPPPQNPRKLILAGNIIHSLM
NOV25h RGTTMLINCEAKGIKMVSEISVPPSRPFQLSLLNNGLTMLH
NOV25i MLINCEAKGIKMVSEISVPPSRPFQLSLLNNGLTMLH
NOV25j MLINCEAKGIKMVSEISVPPSRPFQLSLLNNGLTMLH
NOV25k QTPVLSSRGSCDSLCNCEEKDGTMLINCEAKGIKMVSEISVPPSRPFQLSLLNNGLTMLH
NOV251 MLINCEAKGIKMVSEISVPPSRPFQLSLLNNGLTMLH
NOV25m MLINCEAKGIKMVSEISVPPSRPFQLSLLNNGLTMLH
NOV25n QTPVLSSRGSCDSLCNCEEKDGTMLINCEAKGIKMVSEISVPPSRPFQLSLLNNGLTMLH
N0V25O QTPVLSSRGSCDSLCNCEE---STDGTMLINCEAKGIKMVSEISVLPSRPFQLSLLNNGLTMLH
NOV25p QTPVLSSRGSCDSLCNCEEKDGTMLINCEAKGIKMVSEISVPPSRPFQLSLLNNGLTMLH
NOV25q QTPVLSSRGSCDSLCNCEE-i-α)GTMLINCEAKGIKMVSEISVPPSRPFQLSLLNNGLTMLH
NOV25r QTPVLSSRGSCDSLCNCEEKDGTMLINCEAKGIKMVSEISVPPSRPFQLSLLNNGLTMLH
NOV25Ξ QTPVLSSRGSCDSLCNCEEKDGTMLINCEAKGIKMVSEISVPPSRPFQLSLLNNGLTMLH
NOV25a TNDFSGLTNAISIHLGFNNIADIEIGAFNGLGLLKQLHINHNSLEILKEDTFHGLENLEF
NOV25b RFVPLTHLDLRGNQLQTLPYVGFLEHIGRILDLQLEDNKWACNCDLLQLKTWLENMPPQS
NOV25C TNDFSGLTNAISIHLGFNNIADIEIGAFNGLGLLKQLHINHNSLEILKEDTFHGLENLEF
NOV25d
NOV25e TNDFSGLTNAISIHLGFNNIADIEIGAFNGLGLLKQLHINHNSLEILKEDTFHGLENLEF
NOV25f KSDLVEYFTLEMLHLGNNRIEVLEEGSF-røLTRLQ-K-LYLNGNHLTKLSKGMFLGLHNLEY
NOV25g KSDLVEYFTLEMLHLGNNRIEVLEEGSF-røLTRLQKLYLNGNHLTKLSKGMFLGLHNLEY
NOV25h TNDFSGLTNAISIHLGFNNIADIEIGAFNGLGLLKQLHINHNSLEILKEDTFHGLENLEF
NOV25i TNDFSGLTNAISIHLGFNNIADIEIGAFNGLGLLKQLHINHNSLEILKEDTFHGLENLEF
NOV25J TNDFSGLTNAISIHLGFNNI-ADIEIGAFNGLGLLKQLHINHNSLEILKEDTFHGLENLEF
NOV25k TNDFSGLTNAISIHLGFNNIADIEIGAFNGLGLLKQLHINHNSLEILKEDTFHGLENLEF
NOV251 TNDFSGLTNAISIHLGFNNIADIEIGAFNGLGLLKQLHINHNSLEILKEDTFHGLENLEF
NOV25m TNDFSGLTNAISIHLGFNNIADIEIGAFNGLGLLKQLHINHNSLEILKEDTFHGLENLEF
NOV25n T---TOFSGLTNAISIHLGFNNIADIEIGAFNGLGLLKQLHINHNSLEILKEDTFHGLENLEF
N0V25O TNDFSGLTNAISIHLGFNNIADIEIGAFNGLGLLKQLHINHNSLEILKEDTFHGLENLEF
NOV25p TNDFSGLTNAISIHLGFNNIADIEIGAFNGLGLLKQLHINHNSLEILKEDTFHGLENLEF
NOV25q TNDFSGLTNAISIHLGFNNIADIEIGAFNGLGLLKQLHINHNSLEILKEDTFHGLENLEF
NOV25r TNDFSGLTNAISIHLGFNNIADIEIGAFNGLGLLKQLHINHNSLEILKEDTFHGLENLEF
NOV25S TNDFSGLTNAISIHLGFNNIADIEIGAFNGLGLLKQLHINHNSLEILKEDTFHGLENLEF
NOV25a LQADNNFITVIEPSAFSKLNRLKVLILNDNAIESLPPNIFRFVPLTHLDLRGNQLQTLPY NOV25b IIGDWCNSPPFFKGSILSRLKKESICPTPPVYEEHEDPSGSLHLAATSSINDSRMSTKT NOV25C LQADNNFITVIEPSAFSKLNRLKVLILNDNAIESLPPNIFRFVPLTHLDLRGNQLQTLPY NOV25d NOV25e LQ-ADNNFITVIEPSAFSKLNRLKVLILNDNAIESLPPNIFRFVPLTHLDLRGNQLQTLPY
NOV25f LYLEYNAIKEILPGTFNPMPKLKVLYLNNNLLQVLPPHIFSGVPLTKVNLKTNQFTHLPV
NOV25g LYLEYNAIKEILPGTFNPMPKLKVLYLNNNLLQVLPPHIFSGVPLTKVNLKTNQFTHLPV NOV25h ' LQADNNFITVIEPSAFSKLNRLKVLILNDNAIESLPPNIFRFVPLTHLDLRGNQLQTLPY
NOV25i LQ-ADNNFITVIEPSAFSKLNRLKVLILNDNAIESLPPNIFRFVPLTHLDLRGNQLQTLPY
NOV25J LQADNNFITVIEPSAFSKLNRLKVLILNDNAIESLPPNIFRFVPLTHLDLRGNQLQTLPY
NOV25k LQADNNFITVIEPSAFSKLNRLKVLILNDNAIESLPPNIFRFVPLTHLDLRGNQLQTLPY
NOV251 LQADNNFITVIEPSAFSKLNRLKVLILNDNAIESLPPNIFRFVPLTHLDLRGNQLQTLPY
NOV25m LQA-DNMFITVIEPSAFSKLNRLKVLILNDNAIESLPPNIFRFVPLTHLDLRGNQLQTLPY
NOV25n LQ-ADNNFITVIEPSAFSKL---mLKVLILNDNAIESLPPNIFRFVPLTHLDLRGNQLQTLPY
N0V25O LQADNNFITVIEPSAFSKLNRLKVLILNDNAIESLPPNIFRFVPLTHLDLRGNQLQTLPY
NOV25p LQADNNFITVIEPSAFSKLNRLKVLILNDNAIESLPPNIFRFVPLTHLDLRGNQLQTLPY
NOV25q LQADNNFITVIEPSAFSKLNRLKVLILNDNAIESLPPNIFRFVPLTHLDLRGNQLQTLPY
NOV25r LQADNNFITVIEPSAFSKLNRLKVLILNDNAIESLPPNIFRFVPLTHLDLRGNQLQTLPY
NOV25S LQADNNFITVIEPSAFSKLNRLKVLILNDNAIESLPPNIFRFVPLTHLDLRGNQLQTLPY
NOV25a VGFLEHIGRILDLQLEDNKWACNCDLLQLKTWLENMPPQSIIGDWCNSPPFFKGSILSR
NOV25b TSILKLPTKAPQIDLΞDNPWDCSCDLVGLQQWIQKLSKNTVTDDILCTSPGHLDKKELKA
NOV25C VGFLEHIGRILDLQLEDNKWACNCDLLQLKTWLENMPPQSIIGDWCNSPPFFKGSILSR
NOV25d RGTPWDCSCDLVGLQQWIQKLSKNTVTDDILCTSPGHLDKKELKA
NOV25e VGFLEHIGRILDLQLEDNKWACNCDLLQLKTWLENMPPQSIIGDWCNSPPFFKGSILSR
NOV25f SNILDDLDLLTQIDLEDNPWDCSCDLVGLQQWIQKLSKNTVTDDILCTSPGHLDKKELKA
NOV25g SNILDDLDLLTQIDLEDNPWDCSCDLVGLQQWIQKLSKNTVTDDILCTSPGHLDKKELKA
NOV25h VGFLEHIGRILDLQLEDNKWACNCDLLQLKTWLENMPPQSIIGDWCNSPPFFKGSILSR
NOV25i VGFLEHIGRILDLQLEDNKWACNCDLLQLKTWLENMPPQSIIGDWCNSPPFFKGSILSR
NOV25J VGFLEHIGRILDLQLEDNKWACNCDLLQLKTWLENMPPQSIIGDWCNSPPFFKGSILSR
NOV25k VGFLEHIGRILDLQLEDNKWACNCDLLQLKTWLENMPPQSIIGDWCNSPPFFKGSILSR
NOV251 VGFLEHIGRILDLQLEDNKWACNCDLLQLKTWLENMPPQSIIGDWCNSPPFFKGSILSR
NOV25m VGFLEHIGRILDLQLEDNKWACNCDLLQLKTWLENMPPQSIIGDWCNSPPFFKGSILSR
NOV25n VGFLEHIGRILDLQLEDNKWACNCDLLQLKTWLENMPPQSIIGDWCNSPPFFKGSILSR
N0V25O VGFLEHIGRILDLQLEDNKWACNCDLLQLKTWLENMPPQSIIGDWCNSPPFFKGSILSR
NOV25p VGFLEHIGRILDLQLEDNKWACNCDLLQLKTWLENMPPQSIIGDVVCNSPPFFKGSILSR
NOV25q VGFLEHIGRILDLQLEDNKWACNCDLLQLKTWLENMPPQSIIGDWCNSPPFFKGSILSR
NOV25r VGFLEHIGRILDLQLEDNKWACNCDLLQLKTWLENMPPQSIIGDWCNSPPFFKGSILSR
NOV25S VGFLEHIGRILDLQLEDNKWACNCDLLQLKTWLENMPPQSIIGDWCNSPPFFKGSILSR
NOV25a LKKESICPTPPVYEEHEDPSGSLHLAATSSINDSRMSTKTTSILKLPTKAPGLIPYITKP
NOV25b LNSEILCPGLVNNPSMPTQTSYLMVTTPATTTNTADTILRSLTDAVPLSVLILGLLIMFI
NOV25C LKKESICPTPPVYEEHEDPSGSLHLAATSSINDSRMSTKTTSILKLPTKAPGLIPYITKP
NOV25d LNSEILCPGLVNNPSMPTQTSYLMVTTPATTTNTADTILRSLTDAVPLSVLILGLLIMFI
NOV25e LKKESICPTPPVYEEHEDPSGSLHLAATSSINDSRMSTKTTSILKLPTKAPGLIPYITKP
NOV25f LNSEILCPGLVNNPSMPTQTSYLMVTTPATTTNTADTILRSLTDAVPLSVLILGLLIMFI
NOV25g LNSEILCPGLVNNPSMPTQTSYLMVTTPATTTNTADTILRSLTDAVPLSVLILGLLIMFI
NOV25h LKKESICPTPPVYEEHEDPSGSLHLAATSSINDSRMSTKTTSILKLPTKAPGLIPYITKP
NOV25i LKKESICPTPPVYEEHEDPSGSLHLAATSSINDSRMSTKTTSILKLPTKAPGLIPYITKP
NOV25J LKKESICPTPPVYEEHEDPSGSLHLAATSSINDSRISTKTTSILKLPTKAPGLIPYITKP
NOV25k LK-i-sΕSICPTPPVYΞEHEDPSGSLHL-AΑTSSINDSRMSTKTTSILKLPTKΑPGLIPYITKP
NOV251 LKKESICPTPPVYEEHEDPSGSLHLAATSSINDSRMSTKTTSILKLPTKAPGLIPYITKP
NOV25m LKKESICPTPPVYEEHEDPSGSLHLAATSSINDSRMSTKTTSILKLPTKAPGLIPYITKP
NOV25n LKKESICPTPPVYEEHEDPSGSLHLAATSSINDSRMSTKTTSILKLPTKAPGLIPYITKP
N0V25O LKKESICPTPPVYEEHEDPSGSLHLAATSSINDSRMSTKTTSILKLPTKAPGLIPYITKP
NOV25p LKKESICPTPPVYEEHEDPSGSLHLAATSSINDSRMSTKTTSILKLPTKAPGLIPYITKP
NOV25q LKKESICPTPPVYEEHEDPSGSLHLAATSSINDSRMSTKTTSILKLPTKAPGLIPYITKP
NOV25r LKKESICPTPPVYEEHEDPSGSLHLAATSSINDSRMSTKTTSILKLPTKAPGLIPYITKP
NOV25S LKKESICPTPPVYEEHEDPSGSLHLAATSSINDSRMSTKTTSILKLPTKAPGLIPYITKP NOV25a STQLPGPYCPIPCNCKVLSPSGLLIHCQERN IESLSDLRPPPQNPRKLILA
NOV25b TIVFCAAGIVVLVLHRRRRYKKKQVDEQMRDNSPVHLQYSMYGHKTTHHTTERPSASLYE
NOV25C STQLPGPYCPIPCNCKVLSPSGLLIHCQERN IESLSDLRPPPQNPRKLILA
NOV25d TIVFCAAGIWLVLHRRRRYKKKQVDEQMRDNSPVHLQYSMYGHKTTHHTTERPSASLYE
NOV25e STQLPGPYCPIPCNCKVLSPSGLLIHCQERN IESLSDLRPPPQNPRKLILA
NOV25f TIVFCAAGIWLVLHRRRRYKKKQVDEQMRDNSPVHLQYSMYGHKTTHHTTERPSASLYE
NOV25g TIVFCAAGIWLVLHRRRRYKKKQVDEQMRDNSPVHLQYSMYGHKTTHHTTERPSASLYE
NOV25 STQLPGPYCPIPCNCKVLSPSGLLIHCQERN IESLSDLRPPPQNPRKLILA
NOV25i STQLPGPYCPIPCNCKVLSPSGLLIHCQERN IESLSDLRPPPQNPRKLILA
NOV25j STQLPGPYCPIPCNCKVLSPSGLLIHCQERN IESLSDLRPPPQNPRKLILA
NOV25k STQLPGPYCPIPCNCKVLSPSGLLIHCQERN IESLSDLRPPPQNPRKLILA
NOV251 STQLPGPYCPIPCNCKVLSPSGLLIHCQERN IESLSDLRPPPQNPRKLILA
NOV25m STQLPGPYCPIPCNCKVLSPSGLLIHCQERN IESLSDLRPPPQNPRKLILA
NOV25n STQLPGPYCPIPCNCKVLSPSGLLIHCQERN IESLSDLRPPPQNPRKLILA
NOV25o STQLPGPYCPIPCNCKVLSPSGLLIHCQERN IESLSDLRPPPQNPRKLILA
NOV25p STQLPGPYCPIPCNCKVLSPSGLLIHCQERN IESLSDLRPPPQNPRKLILA
NOV25q STQLPGPYCPIPCNCKVLSPSGLLIHCQERN IESLSDLRPPPQNPRKLILA
NOV25r STQLPGPYCPIPCNCKVLSPSGLLIHCQERN IESLSDLRPPPQNPRKLILA
NOV25S STQLPGPYCPIPCNCKVLSPSGLLIHCQER IESLSDLRPPPQNPRKLILA
NOV25a GNIIHSLMK
NOV25b QHMVSPMVHVYR
NOV25c GNIIHSLMKSDLVEYFTLEMLHLGNNRIEVLEEGSFMNLTRLQKLYLNGNHLT-KLSKGMF
NOV25d QHMVSPMVHVYR
NOV25e GNIIHSLMKS
NOV25f QHMVSPMVHVYR
NOV25g QHMVSPMVHVYR
NOV25h GNIIHSLMKSDLVEYFTLEMLHLGNNRIEVLEEGSFTNLTRLQKLYLNGNHLTKLSKGMF
NOV25i GNIIHSLMKS
NOV25 GNIIHSLMKS
NOV25k GNIIHSLMKSDLVEYFTLEMLHLGNNRIEVLEEGSFMNLTRLQKLYLNGNHLTKLSKGMF
NOV251 GNIIHSLMKS
NOV25m GNIIHSLMKS
NOV25n GNIIHSLMKS
N0V25O GNIIHSLMKS
NOV25p GNIIHSLMKS
NOV25q GNIIHSLMKS
NOV25r GNIIHSLMKS
NOV25S GNIIHSLMKS
NOV25a
NOV25b
NOV25c LGLHNLEYLYLEYNAIKEILPGTFNPMPKLKVLYLNNNLLQVLPPHIFSGVPLTKVNLKT
NOV25d
NOV25e
NOV25f
NOV25g
NOV25h LGLHNLEYLYLEYNAIKEILPGTFNPMPKLKVLYLNNNLLQVLPPHIFSGVPLTKVNLKT
NOV25i
NOV25J
NOV25k LGLHNLEYLYLEYNAI---s3ILPGTFNPMPKL--- tLYLNNNLLQVLPPHIFSGVPLTKVNLKT
NOV251
NOV25m
NOV25n N0V25O NOV25p NOV25q NOV25r NOV25S
NOV25a
NOV25b
NOV25C NQFTHLPVSNILDDLDLLTQIDLEDNPWDCSCDLVGLQQWIQKLSKNTVTDDILCTSPGH
NOV25d
NOV25e
NOV25f +
NOV25g
NOV25h NQFTHLPVSNILDDLDLLTQIDLEDNPWDCSCDLVGLQQWIQKLSKNTVTDDILCTSPGH
NOV25i
NOV25k NQFTHLPVSNILDDLDLLTQIDLEDNPWDCSCDLVGLQQWIQKLSKNTVTDDILCTSPGH
NOV251
NOV25m
NOV25n
NOV25o
NOV25p
NOV25q
NOV25r
NOV25S
NOV25a
NOV25b
NOV25c LDK--K-ELK-ALNSEILCPGLV1INPSMPTQTSYLMVTTPATTTNTADTILRSLTDAVPLSVLI
NOV25d
NOV25e
NOV25f
NOV25g
NOV25h LDKKELKALNSEILCPGLVNNPSMPTQTSYLMVTTPATTTNTADTILRSLTDAVPLSVLI
NOV25i
NOV25J
NOV25k LDKKELKALNSEILCPGLVNNPSMPTQTSYLMVTTPATTTNTADTILRSLTDAVPLSVLI
NOV251
NOV25m
NOV25n
N0V25O
NOV25p
NOV25q
NOV25r
NOV25S
NOV25a
NOV25b
NOV25C LGLLIMFITIVFCAAGIWLVLHRRRRYKKKQVDEQMR-DNSPVHLQYSMYGHKTTHHTTE
NOV25d
NOV25e
NOV25f
NOV25g
NOV25h LGLLIMFITIVFCAAGIWLVLHRRRRYKKKQVDEQMRDNSPVHLQYSMYGHKTTHHTTE NOV25i NOV25e TNQFTHLPVSNILDDLDLLTQIDLEDNPWDCSCDLVGLQQWIQKLSKNTVTDDILCTSPG NOV25f ERELQQLGITEYLRKNIAQLQPDMEAHYPGAHEELKLMETLMYSRPR NOV25g ERELQQLGITEYLRKNIAQLQPDMEAHYPGAHEELKLMETLMYSRPR NOV25h ERELQQLGITEYLRKNIAQLQPDMEAHYPGAHEELKLMETLMYSRPR NOV25i TNQFTHLPVSNILDDLDLLTQIDLΞDNPWDCSCDLVGLQQWIQKLSKNTVTDDILCTSPG NOV25J TNQFTHLPVSNILDDLDLLTQIDLEDNPWDCSCDLVGLQQWIQKLSKNTVTDDILCTSPG NOV25k ERELQQLGITEYLRKNIAQLQPDMEAHYPGAHEELKLMETLMYSRPR NOV251 TNQFTHLPVSNILDDLDLLTQIDLEDNPWDCSCDLVGLQQWIQKLSKNTVTDDILCTSPG NOV25m TNQFTHLPVSNILDDLDLLTQIDLEDNPWDCSCDLVGLQQWIQKLSKNTVTDDILCTSPG NOV25n TNQFTHLPVSNILDDLDLLTQIDLEDNPWDCSCDLVGLQQWIQKLSKNTVTDDILCTSPG N0V25O TNQFTHLPVSNILDDLDLLTQIDLEDNPWDCSCDLVGLQQWIQKLSKNTVTDDILCTSPG NOV25p TNQFTHLPVSNILDDLDLLTQIDLEDNPWDCSCDLVGLQQWIQKLSKNTVTDDILCTSPG NOV25q TNQFTHLPVSNILDDLDLLTQIDLEDNPWDCSCDLVGLQQWIQKLSKNTVTDDILCTSPG NOV25r TNQFTHLPVSNILDDLDLLTQIDLEDNP DCSCDLVGLQQWIQKLSKNTVTDDILCTSPG NOV25S TNQFTHLPVSNILDDLDLLTQIDLEDNP DCSCDLVGLQQWIQKLSKNTVTDDILCTSPG
NOV25a KVLVEQTKNEYFELKANLHAEPDYLEVLEQQT NOV25b KVLVEQTKNEYFELKANLHAEPDYLEVLEQQT NOV25C KVLVEQTKNEYFELKANLHAEPDYLEVLEQQT NOV25d KVLVEQTKNEYFELKANLHAEPDYLEVLEQQTLEA NOV25e HLDKKELKALNSEILCPGLVNNPSMPTQTSYLMVTVDG NOV25f KVLVEQTKNEYFELKANLHAEPDYLEVLEQQTLEA NOV25g KVLVEQTKNEYFELKANLHAEPDYLEVLEQQTLEA NOV25h KVLVEQTKNEYFELKANLHAEPDYLEVLEQQTLEAKGEFQH NOV25i HLDKKELKALNSEILCPGLVNNPSMPTQTSYLMVT NOV25J HLDKKELKALNSEILCPGLVNNPSMPTQTSYLMVTTPATTTNTADTILR NOV 5k KVLVEQTKNEYFELKANLHAEPDYLEVLEQQT NOV251 HLDKKELKALNSΞILCPGLVNNPSMPTQTSYLMVT NOV 5m HLDKKELKALNSEILCPGLVNNPSMPTQTSYLMVT NOV25n HLDKKELKALNSEILCPGLVNNPSMPTQTSYLMVTTPATTTNTADTILRSLTDAVPLSVL N0V25O HLDKKELKALNSEILCPGLVNNPSMPTQTSYLMVTTPATTTNTADTILRSLTDAVPLSVL NOV25p HLDKKELKALNSEILCPGLVNNPSMPTQTSYLMVTTPATTTNTADTILRS NOV25q HLDKKELKALNSΞILCPGLVNNPSMPTQTSYLMVTTPATTTNTADTILRS NOV25r HLDKKELKALNSEILCPGLVNNPSMPTQTSYLMVTTPATTTNTADTILRSLTDAVPLSVL NOV 5S HLDKKELKALNSEILCPGLVNNPSMPTQTSYLMVTTPATTTNTADTILRSLTDAVPLSVL
NOV25a NOV25b NOV 5C NOV25d NOV25e NOV25f NOV25g NOV25h NOV25i NOV25J NOV25k NOV251 NOV25m NOV25n ILGLLIMFITIVFCAAGIWLVLHRRRRYKKKQVDEQMRDNSPVHLQYSMYGHKTTHHTT N0V25O ILGLLIMFITIVFCAAGIWLVLHRRRRYKKKQVDEQMRDNSPVHLQYSMYGHKTTHHTT NOV25p NOV25q NOV25r ILGLLIMFITIVFCAAGIWLVLHRRRRYKKKQVDEQMRDNSPVHLQYSMYGHKTTHHTT NOV25S ILGLLIMFITIVFCAAGIWLVLHRRRRYKKKQVDEQMRDNSPVHLQYSMYGHKTTHHTT N0V25a
NOV25b
NOV25C
N0V25d
N0V25e
N0V25f
NOV25g
NOV25h
NOV25i <
NOV25k
NOV251
NOV25m
NOV25I1 ERPSASLYEQHMVSPMVHVYRSPSFGPKHLEEEEERNEKEGSDAKHLQRSLLEQENHSPL
N0V25O ERPSASLYEQHMVSPMVHVYRSPSFGPKHLEEEEERNEKEGSDAKHLQRSLLEQENHSPL
NOV25p
NOV25q
NOV25r ERPSASLYEQHMVSPMVHVYRSPSFGPKHLEEEEERNEKEGSDAKHLQRSLLEQENHSPL
NOV25S ERPSASLYEQHMVSPMVHVYRSPSFGPKHLEEEEERNEKEGSDAKHLQRSLLEQENHSPL
NOV25a
NOV25b
NOV25C
N0V25d
NOV25e
NOV25f
NOV25g
NOV25h
NOV25i
NOV25j
NOV25k
NOV251
NOV25m
NOV25n TGSNMKYKTTNQSTEFLSFQDASSLYRNILEKERELQQLGITEYLRKNIAQLQPDMEAHY
N0V25O TGSNMKYKTTNQSTEFLSFQDASSLYRNILEKERELQQLGITEYLRK-NIAQLQPDMEAHY
NOV25p
NOV25q
NOV25r TGSNMKYKTTNQSTEFLSFQDASSLYRNILEKERELQQLGITEYLRKNIAQLQPDMEAHY
NOV25S TGSNMKYKTTNQSTEFLSFQDASSLYRNILEKERELQQLGITEYLRKNIAQLQPDMEAHY
NOV25a
NOV25b
NOV25C
NOV25d
NOV25e
NOV25f
NOV25g
NOV25h
NOV25i
NOV25J
NOV25k
NOV251
NOV25m
NOV25ll PGAHEELKLMETLMYSRPRKVLVEQTKNEYFELKANLHAEPDYLEVLEQQT N0V25O PGΆHEE K MET YSRPR V VEQTK EYFELKΆNLHAEPDYLEVLEQQT
1MVJV-ώ -D£J
N0V25q -
N0V25r PGAHEELKLMETLMYSRPRKVLVEQTKNEYFELKANLHAEPDYLEVLEQQT
N0V25S PGAHEELIΛMETLMYSRPRKVLVEQTKNEYFELKANLHAEPDYLEVLEQQT
N0V25a (SEQ ID NO 566)
N0V25b (SEQ ID NO- 568)
N0V25C (SEQ ID NO 570)
NOV25d (SEQ ID NO 572)
NOV25e (SEQ ID NO 574)
NOV25f (SEQ ID NO 576)
NOV25g (SEQ ID NO 578)
NOV25h (SEQ ID NO 580)
NOV25i (SEQ ID NO 582)
NOV25J (SEQ ID NO 584)
N0V25k (SEQ ID NO 586)
NOV251 (SEQ ID NO 588)
NOV25m (SEQ ID NO 590)
NOV25n (SEQ ID NO : 592)
N0V25O (SEQ ID NO : 594)
NOV25p (SEQ ID NO : 596)
NOV25q (SEQ ID NO : 598)
NOV25r (SEQ ID NO : 600)
NOV25S (SEQ ID NO : 602)
Further analysis of the NOV25a protein yielded the following properties shown in Table 25C.
Table 25C. Protein Sequence Properties NOV25a
SignalP analysis: Cleavage site between residues 21 and 22
PSORT π analysis:
PSG: a new signal peptide prediction method
N-region: length 2; pos.chg 1; neg.chg 0 H-region: length 25; peak value 8.53 PSG score: 4.13
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -3.75 possible cleavage site: between 15 and 16
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al ' s method for TM region allocation Init position for calculation: 1
Tentative number of TMS (s) for the threshold 0.5: number of TMS(s) .. fixed PERIPHERAL Likelihood = 1.48 (at 3) ALOM score: 1.48 (number of TMSs : 0)
MTOP: Prediction of membrane topology (Hartmann et al.) Center position for calculation: 6 Charge difference: -2.0 C( 0.5) - N( 2.5) N >= C: N-terminal side will be inside MITDISC: discrimination of mitochondrial targeting seq R content: 1 Hyd Moment (75): 5.82 Hyd Moment (95): 9.48 G content: 1 D/E content: 1 S/T content: 8 Score: -1.79
Gavel: prediction of cleavage sites for mitochondrial preseq R-2 motif at 38 SRG|SC
NUCDISC: discrimination of nuclear localization signals pat4: RPRK (4) at 496 pat7 : none bipartite : none content of basic residues: 9.2% NLS Score: -0.22
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals : none
SKL: peroxisomal targeting signal in the C-terminus : none
PTS2 : 2nd peroxisomal targeting signal : none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR-. N-myristoylation pattern : none
Prenylation motif: none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail: none
Dileucine motif in the tail: none checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: nuclear Reliability: 94.1
COIL: Lupas ' s algorithm to detect coiled-coil regions 386 K 0.97 387 H 0.98
388 L 0. 98
389 E 0. 98
390 E 0. 98
391 E 0. ,98
392 E 0. .98
393 E 0. .98
394 R 0. ,98
395 N 0. ,98
396 E 0. .98
397 K 0. .98
398 E 0. .98
399 G 0. .98
400 S 0. .98
401 D 0. .98
402 A 0. .98
403 K 0. .98
404 H 0, .98
405 L 0. .98
406 Q 0. .98
407 R 0 .98
408 S 0 .98
409 L 0 .98
410 L 0 .98
411 E 0 .98
412 Q 0 .98
413 E 0 .98
414 N 0 .98
415 H 0 .98
416 S 0 .83 total : 31 residues
Final Results (k = 9/23) :
52 .2 % : nuclear
26.1 %: extracellular, including cell wall
21.7 %: mitochondrial
>> prediction for CG55033-04 is nuc (k=23)
A search of the NOV25a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 25D.
In a BLAST search of public sequence databases, the NOV25a protein was found to have homology to the proteins shown in the BLASTP data in Table 25E.
PFam analysis predicts that the NOV25a protein contains the domains shown in the Table
25F.
Example 26.
The NOV26 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 26A.
T HLQNSFNISEH NINEHTGSISSELES KVN NIFL GAAGRKNLQDFAACGIDRMDYDSYLAQTG
K
SPAGVN LSFAYD EAKA SLPPGNLRNSLKRDAQTIKTIHQQRV PIEQSLST YQSVKILQRTGN
G
LLERVTRTLAS DFAQNFITNNTSSVIIEETKKYGRTIIGYFEHY Q IEFSISEKVASCKPVATA
D
TAVDVFLCSYIIDPLNLFWFGIGKATVF PALIFAV-KLAKYYRR-yi-DSEDVYDDVETIPM-KNMENGN
N
GYHKDHVYGIHN VMTS P S QH
NOV26f, SNP13382440 of SEQ ID NO: 613 3766 bp
CG55117-04, DNA Sequence |θRF Start: ATG at 10JORF Stop: TGA at 2605
SNP Pos: 3274 SNP Change: C to A
TTGCTAGCTATGGCCCTCGTACTCGGCTCCCTGTTGCTGCTGGGGCTGTGCGGGAACTCCTTTTCAGG
AGGGCAGCCTTCATCCACAGATGCTCCTAAGGCTTGGAATTATGAATTGCCTGCAACAAATTATGAGA CCCAAGACTCCCATAAAGCTGGACCCATTGGCATTCTCTTTGAACTAGTGCATATCTTTCTCTATGTG GTACAGCCGCGTGATTTCCCAGAAGATACTTTGAGAAAATTCTTACAGAAGGCATATGAATCCAAAAT TGATTATGACAAGCCAGAAACTGTAATCTTAGGTCTAAAGATTGTCTACTATGAAGCAGGGATTATTC TATGCTGTGTCCTGGGGCTGCTGTTTATTATTCTGATGCCTCTGGTGGGGTATTTCTTTTGTATGTGT CGTTGCTGTAACAAATGTGGTGGAGAAATGCACCAGCGACAGAAGGAAAATGGGCCCTTCCTGAGGAA ATGCTTTGCAATCTCCCTGTTGGTGATTTGTATAATAATAAGCATTGGCATCTTCTATGGTTTTGTGG CAAATCACCAGGTAAGAACCCGGATCAAAAGGAGTCGGAAACTGGCAGATAGCAATTTCAAGGACTTG CGAACTCTCTTGAATGAAACTCCAGAGCAAATCAAATATATATTGGCCCAGTACAACACTACCAAGGA CAAGGCGTTCACAGATCTGAACAGTATCAATTCAGTGCTAGGAGGCGGAATTCTTGACCGACTGAGAC CCAACATCATCCCTGTTCTTGATGAGATTAAGTCCATGGCAACAGCGATCAAGGAGACCAAAGAGGCG TTGGAGAACATGAACAGCACCTTGAAGAGCTTGCACCAACAAAGTACACAGCTTAGCAGCAGTCTGAC CAGCGTGAAAACTAGCCTGCGGTCATCTCTCAATGACCCTCTGTGCTTGGTGCATCCATCAAGTGAAA CCTGCAACAGCATCAGATTGTCTCTAAGCCAGCTGAATAGCAACCCTGAACTGAGGCAGCTTCCACCC GTGGATGCAGAACTTGACAACGTTAATAACGTTCTTAGGACAGATTTGGATGGCCTGGTCCAACAGGG CTATCAATCCCTTAATGATATACCTGACAGAGTACAACGCCAAACCACGACTGTCGTAGCAGGTATCA AAAGGGTCTTGAATTCCATTGGTTCAGATATCGACAATGTAACTCAGCGTCTTCCTATTCAGGATATA CTCTCAGCATTCTCTGTTTATGTTAATAACACTGAAAGTTACATCCACAGAAATTTACCTACATTGGA AGAGTATGATTCATACTGGTGGCTGGGTGGCCTGGTCATCTGCTCTCTGCTGACCCTCATCGTGATTT TTTACTACCTGGGCTTACTGTGTGGCGTGTGCGGCTATGACAGGCATGCCACCCCGACCACCCGAGGC TGTGTCTCCAACACCGGAGGCGTCTTCCTCATGGTTGGAGTTGGATTAAGTTTCCTCTTTTGCTGGAT ATTGATGATCATTGTGGTTCTTACCTTTGTCTTTGGTGCAAATGTGGAAAAACTGATCTGTGAACCTT ACACGAGCAAGGAATTATTCCGGGTTTTGGATACACCCTACTTACTAAATGAAGACTGGGAATACTAT CTCTCTGGGAAGCTATTTAATAAATCAAAAATGAAGCTCACTTTTGAACAAGTTTACAGTGACTGCAA AAAAAATAGAGGCACTTACGGCACTCTTCACCTGCAGAACAGCTTCAATATCAGTGAACATCTCAACA TTAATGAGCATACTGGAAGCATAAGCAGTGAATTGGAAAGTCTGAAGGTAAATCTTAATATCTTTCTG TTGGGTGCAGCAGGAAGAAAAAACCTTCAGGATTTTGCTGCTTGTGGAATAGACAGAATGAATTATGA CAGCTACTTGGCTCAGACTGGTAAATCCCCCGCAGGAGTGAATCTTTTATCATTTGCATATGATCTAG AAGCAAAAGCAAACAGTTTGCCCCCAGGAAATTTGAGGAACTCCCTGAAAAGAGATGCACAAACTATT AAAACAATTCACCAGCAACGAGTCCTTCCTATAGAACAATCACTGAGCACTCTATACCAAAGCGTCAA GATACTTCAACGCACAGGGAATGGATTGTTGGAGAGAGTAACTAGGATTCTAGCTTCTCTGGATTTTG CTCAGAACTTCATCACAAACAATACTTCCTCTGTTATTATTGAGGAAACTAAGAAGTATGGGAGAACA ATAATAGGATATTTTGAACATTATCTGCAGTGGATCGAGTTCTCTATCAGTGAGAAAGTGGCATCGTG CAAACCTGTGGCCACCGCTCTAGATACTGCTGTTGATGTCTTTCTGTGTAGCTACATTATCGACCCCT TGAATTTGTTTTGGTTTGGCATAGGAAAAGCTACTGTATTTTTACTTCCGGCTCTAATTTTTGCGGTA AAACTGGCTAAGTACTATCGTCGAATGGATTCGGAGGACGTGTACGATGATGTTGAAACTATACCCAT GAAAAATATGGAAAATGGTAATAATGGTTATCATAAAGATCATGTATATGGTATTCACAATCCTGTTA TGACAAGCCCATCACAACATTGATAGCTGATGTTGAAACTGCTTGAGCATCAGGATACTCAAAGTGGA AAGGATCACAGATTTTTGGTAGTTTCTGGGTCTACAAGGACTTTCCAAATCCAGGAGCAACGCCAGTG GCAACGTAGTGACTCAGGCGGGCACCAAGGCAACGGCACCATTGGTCTCTGGGTAGTGCTTTAAGAAT GAACACAATCACGTTATAGTCCATGGTCCATCACTATTCAAGGATGACTCCCTCCCTTCCTGTCTATT TTTGTTTTTTACTTTTTTACACTGAGTTTCTATTTAGACACTACAACATATGGGGTGTTTGTTCCCAT TGGATGCATTTCTATCAAAACTCTATCAAATGTGATGGCTAGATTCTAACATATTGCCATGTGTGGAG TGTGCTGAACACACACCAGTTTACAGGAAAGATGCATTTTGTGTACAGTAAACGGTGTATATACCTTT TGTTACCACAGAGTTTTTTAAACAAATGAGTATTATAGGACTTTCTTCTAAATGAGCTAAATAAGTCA CCATTGACTTCTTGGTGCTGTTGAAAATAATCCATTTTCACTAAAAGTGTGTGAAACCTACAGCATAT
TCTTCACGCAGAGATTTTCATCTATTATACTTTATCAAAGATTGGCCATGTTCCACTTGGAAATGGCA
TGCAAAAGCAATCATAGAGAAACCTGCGTAACTCCATCTGACAAATTCAAAAGAGAGAOAGAGATCTT
GAGAGAGAAATGCTGTTCGTTCAAAAGTGGAGTTGTTTTAACAGATGCCAATTACGGTGTACAGTTT
ACAGAGTTTTCTGTTGCATTAGGATAAACATTAATTGGAGTGCAGCTAACATGAGTATCATCAGACT
A GTATCAAGTGTTCTAAAATGAAATATGAGAAGATCCTGTCACAATTCTTAGATCTGGTGTCCAGCAT
G GATGAAACCTTTGAGTTTGGTCCCTAAATTTGCATGAAAGCACAAGGTAAATATTCATTTGCTTCAG
AGTTTCATGTTGGATCTGTCATTATCAAAAGTGATCAGCAATGAAGAACTGGTCGGACAAAATTTAA
GTTGATGTAATGGAATTCCAGATGTAGGCATTCCCCCCAGGTCTTTTCATGTGCAGATTGCAGTTCT
ATTCATTTGAATAAAAAGGAACTTGG
NOV26f, SNP13382440 of SEQ ID NO: 614 865 aa MW at 97200.8kD CG55117-04, Protein Sequence
MALVLGSLLLLGLCGNSFSGGQPSSTDAPKAW YE PATNYETQDSHKAGPIGILFE VHIFLYWQP
RDFPEDT RKF QKAYESKIDYDKPETVI GLKIVYYEAGIILCCVLGLLFIILMP VGYFFCMCRCC
NKCGGEl-ffiQRQKENGPFLRKCFAISL VICIIISIGIFYGFVA-I-ΪHQVRTRIKRSRKLADSNFKD RTL NETPEQIKYI AQYNTTKDKAFTDLNSINSVLGGGI DRLRPNIIPVLDEIKSMATAI-KETKEA- EN
MNST KSLHQQSTQLSSSLTSVKTS RSS NDPLC VHPSSETCNSIR S SQLNSNPELRQLPPVDA
E DJ-WN---WLRTD DG VQQGYQS ---TOIPDRVQRQTTTVVAGIKRV NSIGSDIDNVTQRLPIQDILSA
FSVYVN TESYIHRNLPTLEEYDSY GG VICSLLTLIVIFYYLGLLCGVCGYDRHATPTTRGCVS
NTGGVFLMVGVGLSFLFCWIL IIVVLTFVFG-ANVEKLICEPYTSKE FRVLDTPY NED EYYLSG ϊO--JFNKSK-MK TFEQVYSDCKK----mGTYGT H QNSFNISEHLNINEHTGSISSE ESLKV^
AGRKN QDF--yYCGID-RrøYDSYLAQTGKSPA
HQQRV PIEQS ST YQSVKI QRTGNGL ERVTRI AS DFAQNFITNNTSSVIIEETKKYGRTIIG
YFEHYLQ IEFSISEKVASCKPVATALDTAVDVFLCSYIIDPLN F FGIGKATVF PA IFAVKIiA
KYYRRMDSEDVYDDVETIPMKNMENGNNGYHKDHVYGIHNPVMTSPSQH
NOV26g, SNP13382439 of KEQ ID NO: 615 13766 bp CG55117-04, DNA Sequence ORF Start: ATG at 10 ORF Stop: TGA at 2605
SNP Pos: 3685 SNP Change: G to A
TTGCTAGCTATGGCCCTCGTACTCGGCTCCCTGTTGCTGCTGGGGCTGTGCGGGAACTCCTTTTCAGG
AGGGCAGCCTTCATCCACAGATGCTCCTAAGGCTTGGAATTATGAATTGCCTGCAACAAATTATGAGA CCCAAGACTCCCATAAAGCTGGACCCATTGGCATTCTCTTTGAACTAGTGCATATCTTTCTCTATGTG GTACAGCCGCGTGATTTCCCAGAAGATACTTTGAGAAAATTCTTACAGAAGGCATATGAATCCAAAAT TGATTATGACAAGCCAGAAACTGTAATCTTAGGTCTAAAGATTGTCTACTATGAAGCAGGGATTATTC TATGCTGTGTCCTGGGGCTGCTGTTTATTATTCTGATGCCTCTGGTGGGGTATTTCTTTTGTATGTGT CGTTGCTGTAACAAATGTGGTGGAGAAATGCACCAGCGACAGAAGGAAAATGGGCCCTTCCTGAGGAA ATGCTTTGCAATCTCCCTGTTGGTGATTTGTATAATAATAAGCATTGGCATCTTCTATGGTTTTGTGG CAAATCACCAGGTAAGAACCCGGATCAAAAGGAGTCGGAAACTGGCAGATAGCAATTTCAAGGACTTG CGAACTCTCTTGAATGAAACTCCAGAGCAAATCAAATATATATTGGCCCAGTACAACACTACCAAGGA CAAGGCGTTCACAGATCTGAACAGTATCAATTCAGTGCTAGGAGGCGGAATTCTTGACCGACTGAGAC CCAACATCATCCCTGTTCTTGATGAGATTAAGTCCATGGCAACAGCGATCAAGGAGACCAAAGAGGCG TTGGAGAACATGAACAGCACCTTGAAGAGCTTGCACCAACAAAGTACACAGCTTAGCAGCAGTCTGAC CAGCGTGAAAACTAGCCTGCGGTCATCTCTCAATGACCCTCTGTGCTTGGTGCATCCATCAAGTGAAA CCTGCAACAGCATCAGATTGTCTCTAAGCCAGCTGAATAGCAACCCTGAACTGAGGCAGCTTCCACCC GTGGATGCAGAACTTGACAACGTTAATAACGTTCTTAGGACAGATTTGGATGGCCTGGTCCAACAGGG CTATCAATCCCTTAATGATATACCTGACAGAGTACAACGCCAAACCACGACTGTCGTAGCAGGTATCA AAAGGGTCTTGAATTCCATTGGTTCAGATATCGACAATGTAACTCAGCGTCTTCCTATTCAGGATATA CTCTCAGCATTCTCTGTTTATGTTAATAACACTGAAAGTTACATCCACAGAAATTTACCTACATTGGA AGAGTATGATTCATACTGGTGGCTGGGTGGCCTGGTCATCTGCTCTCTGCTGACCCTCATCGTGATTT TTTACTACCTGGGCTTACTGTGTGGCGTGTGCGGCTATGACAGGCATGCCACCCCGACCACCCGAGGC TGTGTCTCCAACACCGGAGGCGTCTTCCTCATGGTTGGAGTTGGATTAAGTTTCCTCTTTTGCTGGAT ATTGATGATCATTGTGGTTCTTACCTTTGTCTTTGGTGCAAATGTGGAAAAACTGATCTGTGAACCTT ACACGAGCAAGGAATTATTCCGGGTTTTGGATACACCCTACTTACTAAATGAAGACTGGGAATACTAT CTCTCTGGGAAGCTATTTAATAAATCAAAAATGAAGCTCACTTTTGAACAAGTTTACAGTGACTGCAA AAAAAATAGAGGCACTTACGGCACTCTTCACCTGCAGAACAGCTTCAATATCAGTGAACATCTCAACA TTAATGAGCATACTGGAAGCATAAGCAGTGAATTGGAAAGTCTGAAGGTAAATCTTAATATCTTTCTG TTGGGTGCAGCAGGAAGAAAAAACCTTCAGGATTTTGCTGCTTGTGGAATAGACAGAATGAATTATGA CAGCTACTTGGCTCAGACTGGTAAATCCCCCGCAGGAGTGAATCTTTTATCATTTGCATATGATCTAG AAGCAAAAGCAAACAGTTTGCCCCCAGGAAATTTGAGGAACTCCCTGAAAAGAGATGCACAAACTATT AAAACAATTCACCAGCAACGAGTCCTTCCTATAGAACAATCACTGAGCACTCTATACCAAAGCGTCAA GATACTTCAACGCACAGGGAATGGATTGTTGGAGAGAGTAACTAGGATTCTAGCTTCTCTGGATTTTG CTCAGAACTTCATCACAAACAATACTTCCTCTGTTATTATTGAGGAAACTAAGAAGTATGGGAGAACA ATAATAGGATATTTTGAACATTATCTGCAGTGGATCGAGTTCTCTATCAGTGAGAAAGTGGCATCGTG CAAACCTGTGGCCACCGCTCTAGATACTGCTGTTGATGTCTTTCTGTGTAGCTACATTATCGACCCCT TGAATTTGTTTTGGTTTGGCATAGGAAAAGCTACTGTATTTTTACTTCCGGCTCTAATTTTTGCGGTA AAACTGGCTAAGTACTATCGTCGAATGGATTCGGAGGACGTGTACGATGATGTTGAAACTATACCCAT GAAAAATATGGAAAATGGTAATAATGGTTATCATAAAGATCATGTATATGGTATTCACAATCCTGTTA TGACAAGCCCATCACAACATTGATAGCTGATGTTGAAACTGCTTGAGCATCAGGATACTCAAAGTGGA AAGGATCACAGATTTTTGGTAGTTTCTGGGTCTACAAGGACTTTCCAAATCCAGGAGCAACGCCAGTG
GCAACGTAGTGACTCAGGCGGGCACCAAGGCAACGGCACCATTGGTCTCTGGGTAGTGCTTTAAGAAT
GAACACAATCACGTTATAGTCCATGGTCCATCACTATTCAAGGATGACTCCCTCCCTTCCTGTCTATT
TTTGTTTTTTACTTTTTTACACTGAGTTTCTATTTAGACACTACAACATATGGGGTGTTTGTTCCCAT
TGGATGCATTTCTATCAAAACTCTATCAAATGTGATGGCTAGATTCTAACATATTGCCATGTGTGGAG
TGTGCTGAACACACACCAGTTTACAGGAAAGATGCATTTTGTGTACAGTAAACGGTGTATATACCTTT
TGTTACCACAGAGTTTTTTAAACAAATGAGTATTATAGGACTTTCTTCTAAATGAGCTAAATAAGTCA
CCATTGACTTCTTGGTGCTGTTGAAAATAATCCATTTTCACTAAAAGTGTGTGAAACCTACAGCATAT
TCTTCACGCAGAGATTTTCATCTATTATACTTTATCAAAGATTGGCCATGTTCCACTTGGAAATGGCA
TGCAAAAGCCATCATAGAGAAACCTGCGTAACTCCATCTGACAAATTCAAAAGAGAGAGAGAGATCTT
GAGAGAGAAATGCTGTTCGTTCAAAAGTGGAGTTGTTTTAACAGATGCCAATTACGGTGTACAGTTT
A ACAGAGTTTTCTGTTGCATTAGGATAAACATTAATTGGAGTGCAGCTAACATGAGTATCATCAGACT
A GTATCAAGTGTTCTAAAATGAAATATGAGAAGATCCTGTCACAATTCTTAGATCTGGTGTCCAGCAT
G GATGAAACCTTTGAGTTTGGTCCCTAAATTTGCATGAAAGCACAAGGTAAATATTCATTTGCTTCAG
G
AGTTTCATGTTGGATCTGTCATTATCAAAAGTGATCAGCAATGAAGAACTGGTCGGACAAAATTTAA
C GTTGATGTAATGAAATTCCAGATGTAGGCATTCCCCCCAGGTCTTTTCATGTGCAGATTGCAGTTCT
G ATTCATTTGAATAAAAAGGAACTTGG
NOV26g, SNP13382439 of SEQ ID NO: 616 865 aa MW at 97200.8kD CG55117-04, Protein Sequence SNP Change: no change A VLGSLLLLGLCGNSFSGGQPSSTDAPKA NYELPATNYETQDSHKAGPIGILFELVHIFLYVVQP
RDFPEDT RKFLQKAYESKIDYDKPETVILGLKIVYYEAGIILCCVLGL FII MPLVGYFFCMCRCC
NKCGGE--fflQRQKENGPF RKCFAISL VICIIIS
LNΞTPEQIKYILAQYNTT---OD--^FTDLNSINSVLGGGILDRLRPNIIPVLDEIKSMATAIKETKEA EN
MNSTLKSLHQQSTQLSSS TSVKTS RSS NDPLCLVHPSSETCNSIRLSLSQ NSNPELRQLPPVDA
ELDNVNNVLRTDLDGLVQQGYQS NDIPDRVQRQTTTVVAGIKRVLNSIGSDIDNVTQRLPIQDI SA
FSVYVNNTESYIHRNLPTLEEYDSY W GGLVICSLLTLIVIFYYLGLLCGVCGYDRHATPTTRGCVS
NTGGVFL1-WGVG SFLFC ILMIIVV TFVFGANVEK ICEPYTSKE FRVLDTPYL NED EYY SG
---^FNKSKM-Ea-JTFEQVYSDCK ----TOGTYGTLHLQNSFNISE-ELNINEHTGSISSELESLKV^
AGRK-N QDFAACGIDR-MNYDSYLAQTGKSPAGV-I^
HQQRV PIEQS STLYQSVKILQRTGNG ERVTRILASLDFAQNFITNNTSSVIIEETK YGRTIIG
YFEHY Q IEFSISEKVASCKPVATALDTAVDVF CSYIIDPLN F FGIGKATVFL PA IFAVKLA
KYYRRJ^SEDVYDDVETIPMKNMENGNNGYHKDHVYGIHNPVMTSPSQH
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 26B.
Table 26B. Comparison of the NOV26 protein sequences. N0V26a l -ALVLGSLLLLG CGNSFSGGQPSSTDAPKA NYELPATNYETQDSHKAGPIGILFELVH
NOV26b A V GSL L GLCGNSFSGGQPSSTDAPKAWNYE PATNYETQDSHKAGPIGILFE VH
NOV26C
NOV26d
NOV26e GGQPSSTDAPKA NYE PATNYETQDSHKAGP
NOV26a IF YWQPRDFPEDTLRKFLQ AYESKIDYDKPETVILGLKIVYYEAGI ILCCVLGLLFI
NOV26b IFLYWQPRDFPEDTLRKFLQKAYESKIDYDKPETVI GLKIVYYEAGII CCVLGL FI
NOV26C
NOV26d
NOV26e IGILFELVHIFLY QPRDFPEDTLRKFLQKAYESKIDYDKIVYYEAGI ILCCVLGLLFI
NOV26a IL PLVGYFFCMCRCC KCGGEiMHQRQ-KENGPFLRKCFAISLLVICIIISIGIFYGFVA
NOV26b ILMPLVGYFFC CRCCNKCGGE HQRQKENGPFLRKCFAISLLVICIIISIGIFYGFVA
NOV26C
NOV26d
NOV26e ILMPLVGYFFCMCRCCNKCGGEMHQRQKENGPFLRKCFAISLLVICIIISIGIFYGFVAN
NOV26a HQVRTRIKRSRKLADSNFKDLRTLLNETPEQIKYILAQYNTTKDKAFTDLNS INSVLGGG
NOV26b HQVRTRI---OlSR---Q-J-ADSNFKDLRTLLNETPEQIKYILAQYNTTKDKAFTDLNSINSVLGGG
NOV26C
NOV26d
NOV26e HQVTITRIKRSRKLA-DSNFKDLRTLLNETPEQIKYILAQYNTTKDKAFTDLNSINSVLGGG
NOV26a ILDRLRPNIIPVLDEIKSMATAIKETKEALENMNSTLKSLHQQSTQLSSSLTSVKTSLRS
N0V26b ILDRLRPNIIPVLDEIKSMATAIKETKEALENMNSTLKSLHQQSTQLSSSLTSVKTSLRS
NOV26C
NOV26d
NOV26e ILDRLRPNIIPVLDEIKSMATAIKETKEALENMNSTLKSLHQQSTQLSSSLTSVKTSLRS
NOV26a SLNDPLCLVHPSSETCNSIRLSLSQLNSNPELRQLPPVD-AELDITVNNVLRTDLDGLVQQG
NOV26b SL---TOPLCLVHPSSETCNSIRLSLSQLNSNPELRQLPPVDAELD-[S-Λfi^^
NOV26C
NOV26d
NOV26e SLNDPLCLVHPSSETCNSIRLSLSQLNSNPELRQLPPVDAELDNVNNVLRTDLDGLVQQG
NOV26a YQSLNDIPDRVQRQTTTVVAGIKRVLNSIGSDID- /TQRLPIQDILSAFSVYVN TESYI
NOV26b YQSLNDIPDRVQRQTTTWAGIKRVLNSIGSDIDNVTQRLPIQDILSAFSVYVNTESYI
NOV26C
NOV26d
NOV26e YQSLNDIPDRVQRQTTTVVAGIKRVLNSIGSDID VTQRLPIQDILSAFSVYVNNTESYI
NOV26a HRNLPTLEEYDSY WLGGLVICSLLTLIVIFYYLGLLCGVCGYDRHATPTTRGCVSNTGG
NOV26b HRNLPTLEEYDSY WLGGLVICSLLTLIVIFYYLGLLCGVCGYDRHATPTTRGCVSNTGG
NOV26C
NOV26d
N0V26e HR-NLPTLEΞYDSY WLGGLVICSLLTLIVIFYYLGLLCGVCGYDRHATPTTRGCVSNTGG
NOV26a VFL-WGVGLSFLFCWILMII LTFVFG-ANVE-l-αjICEPYTSK-ELFRVLDTPYLLNEDWEY
NOV26b VFL)V--VGVGLSFLFC ILMIIVV TFVFG-AI^rVEKLICEPYTSKELFRVLDTPYLLNED EY
NOV26C QVRTRIKRSR LADSNF
NOV26d CEPYTSKELFRVLDTPYLLNED EY
N0V26e VFL-WGVGLSFLFCWILMIIVVLTFVFG-AWEKLICEPYTSKELFRVLDTPYLLNEDWEY
NOV26a YLSGKLFNKSKMKLTFEQVYSDCKK-NRGTYGTLHLQNSFNISEHLNINEHTGSISSELES NOV26b YLSGKLFNKSKMKLTFEQVYSDCKKNRGTYGTLHLQNSFNISEHLNINEHTGSISSELES NOV26c KDLRTLLNETPEQI-KYILAQYNTTKDKAFTDLNSINSVLGGGILDRLRPNIIPVLDEIKS NOV26d YLSGKLFNKSKMKLTFEQVYSDCKKNRGTYGTLHLQNSFNISEHLNINEHTGSISSELES NOV26e YLSGKLFNKSKMILTFEQVYSDCKKNRGTYGTLHLQNSFNISEHLNINEHTGSISSELES
NOV26a LKVNLNIFLLGAAGRKNLQDFAACGIDRiM^^ NOV26b LKVNLNIFLLGAAGRKNLQDFAACGIDR-M YDSYLAQTGKSPAGV LLSFAYDLEAKANS NOV26C MATAIKET-KEALENMNSTLKSLHQQSTQLSSSLTSVKTSLRSSLNDPLCLVHPSSETCNS NOV26d LKVNLNIFLLG-AAGR-røLQDFAACGIDRMNYDSYLAQTGKSPAGVNLLSFAYDLEAKANS NOV26e L--WNLNIFLLGAAGR-NLQDFAACGIDRMDYDSY]-^QTGKSPAGWLLSFAYDLEAKANS
NOV26a LPPGNLRNSLKRDAQTIKTIHQQRVLPIEQSLSTLYQSVKILQRTGNGLLERVTRILASL NOV26b LPPGNLRNSLKRDAQTI TIHQQRVLPIEQSLSTLYQSVKILQRTGNGLLERVTRILASL NOV26C IRLSLSQLNSNPELRQLPPVD-AELDNVNNVLRTDLDGLVQQGYQSLNDIPDRVQRQTTTV NOV26d LPPGNLRNSLKRDAQTIKTIHQQRVLPIEQSLSTLYQSVKILQRTGNGLLERVTRILASL NO 26e LPPGNL-RNSLKRDAQTIKTIHQQRVLPIEQSLSTLYQSVKILQRTGNGLLΞRVTRTLASL
NOV26a DFAQNFITN TSSVIIEΞTKKYG-RTIIGYFEHYLQ IEFSISEKVASCKPVATALDTAV NOV26b DFAQNFITMNTSSVIIEETK---CYG-RTIIGYFEHYLQ IEFSISEKVASCKPVATALDTAV NOV26C VAGIKRVLNSIGSDIDNVTQRLPIQDILSAFSVYV NTESYIHRNLPTLEEYDSY NOV26d DFAQNFIT-NTSSVIIEETKKYG-RTIIGYFEHYLQWIEFSISEKVASCKP NOV26e DFAQNFIT TSSVIIEETKKYG-RTIIGYFEHYLQ IEFSISEKVASCKPVATALDTAV
NOV26a DVFLCSYIIDPLNLF FGIGKATVFLLPALIFAVKLAKYYRRMDSEDVYDDVETIPMKNM NOV26b DVFLCSYIIDPLNLFWFGIGKATVFLLPALIFAVKLAKYYRR DSEDVYDDVETIPMKNM NOV26C NOV26d NOV26e DVFLCSYIIDPLNLF FGIGKATVFLLPALIFAVKL-AKYYRRiyiDSEDVYDDVETIP K-NM
NOV26a ENG NGYHKDHVYGIHNPVMTSPSQH
NOV26b ENGNNGYHKDHVYGIHNPVMTSPSQH
NOV26C
NOV26d
NOV26e ENGNNGYHKDHVYGIHNPVMTSPSQH
NOV26a (SEQ ID NO 604)
NOV26b (SEQ ID NO 606)
NOV26C (SEQ ID NO 608)
NOV26d (SEQ ID NO 610)
NOV26e (SEQ ID NO 612)
Further analysis of the NOV26a protein yielded the following properties shown in Table 26C.
Table 26C. Protein Sequence Properties NOV26a
SignalP analysis: Cleavage site between residues 20 and 21
PSORT II analysis:
PSG: a new signal peptide prediction method
N-region: length 0; pos.chg 0; neg.chg 0 H-region: length 26; peak value 9.51 PSG score: 5.11
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): 2.78 possible cleavage site: between 19 and 20
>>> Seems to have a cleavable signal peptide (1 to 19)
ALOM: Klein et al's method for TM region allocation Init position for calculation: 20 Tentative number of TMS(s) for the threshold 0.5:
INTEGRAL Likelihood = -3.08 Transmembrane 50 - 66
INTEGRAL Likelihood =-13.69 Transmembrane 109 - 125
INTEGRAL Likelihood =-12.90 Transmembrane 158 - 174
INTEGRAL Likelihood = -8.55 Transmembrane 435 - 451
INTEGRAL Likelihood =-13.06 Transmembrane 491 - 507
INTEGRAL Likelihood = -3.13 Transmembrane 797 - 813
PERIPHERAL Likelihood = 0.90 (at 772)
ALOM score: -13.69 (number of TMSs : 6)
MTOP : Prediction of membrane topology (Hartmann et al . ) Center position for calculation: 9 Charge difference: -2.0 C(-1.0) - N( 1.0) N >= C: N-terminal side will be inside
>>> membrane topology: type 3a
MITDISC: discrimination of mitochondrial targeting seq R content: 0 Hyd Moment (75) : 0.43 Hyd Moment (95) : 2.59 G content: 5 D/E content: 1 S/T content: 6 Score: -6.77
Gavel: prediction of cleavage sites for mitochondrial preseq cleavage site motif not found
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite: none content of basic residues: 9.5% NLS Score: -0.47
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals: none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif: none
Actinin-type actin-binding motif: type 1: none type 2 : none NMYR: N-myristoylation pattern : none
Prenyla ion motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail: none
Dileucine motif in the tail: none checking 63 PROSITE DNA binding motifs: Leucine zipper pattern (PS00029) : *** found *** LPPVDAELDNV.NNVLRTDLDGL at 335 none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: cytoplasmic Reliability: 76.7
COIL: Lupas ' s algorithm to detect coiled-coil regions
251 V 0. 95
252 L 0. 99
253 D 0. 99
254 E 0. ,99
255 I 0. 99
256 K 0. ,99
257 s 0. ,99
258 M 0. .99
259 A 0. ,99
260 T 0. .99
261 A 0. .99
262 I 0. .99
263 K 0. .99
264 E 0. .99
265 T 0. .99
266 K 0. .99
267 E 0. .99
268 A 0. .99
269 L 0. .99
270 E 0. .99
271 N 0. .99
272 M 0. .99
273 N 0, .99
274 S 0. .99
275 T 0. .99
276 L 0 .99
277 K 0. .99
278 S 0 .99
279 L 0 .99
280 H 0 .98
281 Q 0 .98 282 Q 0.97
283 S 0.90
284 T 0.90
285 Q 0.90
286 L 0.90
287 S 0.90
288 S 0.90
289 s 0.89
290 L 0.89
291 T 0.67
292 S 0.51
293 V 0.51
294 K 0.51 total : 44 residues
Final Results (k = 9/23) :
77.8 % : endoplasmic reticulum 22.2 %: mitochondrial
>> prediction for CG55117-04 is end (k=9)
A search of the NOV26a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 26D.
aa. [WO200299047-A2, 12-DEC- 2002]
AAU79943 Human AC 133 antigen-like protein 1..865 865/865 (100%,) 0.0 NOV5 - Homo sapiens, 865 aa. 1..865 865/865 (100%) [WO200229038-A2, ll-APR-2002]
In a BLAST search of public sequence databases, the NOV26a protein was found to have homology to the proteins shown in the BLASTP data in Table 26E.
PFam analysis predicts that the NOV26a protein contains the domains shown in the Table 26F.
Table 26F. Domain Analysis of NOV26a
Identities/
Pfam Domain NOV26a Match Region Similarities j Expect Value for the Matched Region
Example 27.
The NOV27 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 27A.
Table 27A. NO 27 Sequence Analysis
NOV27a, CG55193-04 SEQ ID NO: 617 1336 bp DNA Sequence ORF Start: ATG at 1 ORF Stop: TGA at 1327
ATGGGTCTGGCCATGGAGCACGGAGGGTCCTACGCTCGGGCGGGGGGCAGCTCTCGGGGCTGCTGGTA TTACCTGCGCTACTTCTTCCTCTTCGTCTCCCTCATCCAATTCCTCATCATCCTGGGGCTCGTGCTCT TCATGGTCTATGGCAACGTGCACGTGAGCACAGAGTCCAACCTGCAGGCCACCGAGCGCCGAGCCGAG GGCCTATACAGTCAGCTCCTAGGGCTCACGGCCTCCCAGTCCAACTTGACCAAGGAGCTCAACTTCAC CACCCGCGCCAAGGATGCCATCATGCAGATGTGGCTGAATGCTCGCCGCGACCTGGACCGCATCAATG CCAGCTTCCGCCAGTGCCAGGGTGACCGGGTAATCTACACGAACAATCAGAGGTACATGGCTGCCATC ATCTTGAGTGAGAAGCAATGCAGAGATCAATTCAAGGACATGAACAAGAGCTGCGATGCCTTGCTCTT CATGCTGAATCAGAAGGTGAAGACGCTGGAGGTGGAGATAGCCAAGGAGAAGACCATTTGCACTAAGG ATAAGGAAAGCGTGCTGCTGAACAAACGCGTGGCGGAGGAACAGCTGGTTGAATGCGTGAAAACCCGG GAGCTGCAGCACCAAGAGCGCCAGCTGGCCAAGGAGCAACTGCAAAAGGTGCAAGCCCTCTGCCTGCC CCTGGACAAGGACAAGTTTGAGATGGACCTTCGTAACCTGTGGAGGGACTCCATTATCCCACGCAGCC TGGACAACCTGGGTTACAACCTCTACCATCCCCTGGGCTCGGAATTGGCCTCCATCCGCAGAGCCTGC GACCACATGCCCAGCCTCATGAGCTCCAAGGTGGAAGGTCAGTGCCGGAGCCTCCGGGCGGATATCGA ACGCGTGGCCCGCGAGAACTCAGACCTCCAACGCCAGAAGCTGGAAGCCCAGCAGGGCCTGCGGGCCA GTCAGGAGGCGAAACAGAAGGTGGAGAAGGAGGCTCAGGCCCGGGAGGCCAAGCTCCAAGCTGAATGC TCCCGGCAGACCCAGCTAGCGCTGGAGGAGAAGGCGGTGCTGCGGAAGGAACGAGACAACCTGGCCAA GGAGCTGGAAGAGAAGAAGAGGGAGGCGGAGCAGCTCAGGATGGAGCTGGCCATCAGAAACTCAGCCC TGGACACCTGCATCAAGACCAAGTCGCAGCCGATGATGCCAGTGTCAAGGCCCATGGGCCCTGTCCCC AACCCCCAGCCCATCGACCCAGCTAGCCTGGAGGAGTTCAAGAGGAAGATCCTGGAGTCCCAGAGGCC CCCTGCAGGCATCCCTGTAGCCCCATCCAGTGGCTGAGGAGGCT
NOV27a, CG55193-04 SEQ ID NO: 618 442 aa MW at 50568.7kD Protein Sequence
MGLAMEHGGSYARAGGSSRGCWYYLRYFFLFVSLIQFLIILGLVLFMVYGNVHVSTESNLQATERRAE GLYSQLLGLTASQSNLTKELNFTTRAKDAIMQM LNARRDLDRINASFRQCQGDRVIYTNNQRYMAAI ILSEKQCRDQFKDMNKSCDALLFMLNQKVKTLEVEIAKEKTICTKDKESVLLNKRVAEEQLVECVKTR ELQHQERQLAKEQLQKVQALCLPLDKDKFEMDLRNL RDSIIPRSLDNLGYNLYHPLGSELASIRRAC DHMPSLMSSKVEGQCRSLRADIERVARENSDLQRQKLEAQQGLRASQEAKQKVEKEAQAREAKLQAEC SRQTQLALEEKAVLRKERDNLAKELEEKKREAEQLRMELAIRNSALDTCIKTKSQPMMPVSRPMGPVP NPQPIDPASLEEFKRKILESQRPPAGIPVAPSSG
NOV27b, 214575880 ggQjP NO.: 619 jl 188 p DNA Sequence ORF Start: at 1 ORF Stop: end of sequence
GGATCCAACGTGCACGTGAGCACAGAGTCCAACCTGCAGGCCACCGAGCACCGAGCCGAGGGCCTATA CAGTCAGCTCCTAGGGCTCACGGCCTCCCAGTCCAACTTGACCAAGGAGCTCAACTTCACCACCCGCG CCAAGGATGCCATCATGCAGATGTGGCTGAATGCTCGCCGCGACCTGGACCGCATCAATGCCAGCTTC CGCCAGTGCCAGGGTGACCGGGTCATCTACACGAACAATCAGAGGTACATGGCTGCCATCATCTTGAG TGAGAAGCAATGCAGAGATCAATTCAAGGACATGAACAAGAGCTGCGATGCCTTGCTCTTCATGCTGA ATCAGAAGGTGAAGACGCTGGAGGTGGAGATAGCCAAGGAGAAGACCATTTGCACTAAGGATAAGGAA AGCGTGCTGCTGAACAAACGCGTGGCGGAGGAACAGCTGGTTGAATGCGTGAAAACCCGGGAGCTGCA GCACCAAGAGCGCCAGCTGGTCAAGGAGCAACTGCAAAAGGTGCAAGCCCTCTGCCTGCCCCTGGACA AGGACAAGTTTGAGATGGACCTTCGTAACCTGTGGAGGGACTCCATTATCCCACGCAGCCTGGACAAC CTGGGTTACAACCTCTACCATCCCCTGGGCTCGGAATTGGCCTCCATCCGCAGAGCCTGCGACCACAT GCCCAGCCTCATGAGCTCCAAGGTGGAGGAGCTGGCCCGGAGCCTCCGGGCGGATATCGAACGCGTGG TCCGCGAGAACTCAGACCTCCAACGCCAGAAGCTGGAAGCCCAGCAGGGCCTGCGGGCCAGTCAGGAG GCGAAACAGAAGGTGGAGAAGGAGGCTCAGGCCCGGGAGGCCAAGCTCCAAGCTGAATGCTCCCGGCA GACCCAGCTAGCGCTGGAGGAGAAGGCGGTGCTGCGGAGGGAACGAGACAACCTGGCCAAGGAGCTGG AAGAGAAGAAGAGGGAGGCGGAGCAGCTCAGGATGGAGCTGGCCATCAGAAACTCAGCCCTGGACACC TGCATCAAGACCAAGTCGCAGCCGATGATGCCAGTGTCAAGGCCCATGGGCCCTGTCCCCAACCCCCA GCCCATCGACCCAGCTAGCCTGGAGGAGTTCAAGAGGAAGATCC^ GCATCCCTGTAGCCCCATCCAGTGGCCTCGAG
NOV27b, 214575880 SEQ ID NO: 620 396 aa MW at 45387.5kD Protein Sequence
GSNVHVSTESNLQATEHRAEGLYSQLLGLTASQSNLTKELNFTTRAKDAIMQM LNARRDLDRINASF RQCQGDRVIYT-røIQRYM-AAIILSEKQCRDQFKDMNKSCD-ALLFMLNQKVKTLEVEI-AKEKTICT--- )K-E SVLLN-l^VAEEQLVΕCVKTRELQHQERQLVKEQLQKVQALCLPLDKDKFEMDLRNLWRDSIIPRSLDN LGYNLYHPLGSELASIRRACDHMPSLMSSKVEELARSLRADIERWRENSDLQRQKLEAQQGLRASQE AKQKVEKEAQAREAKLQAECSRQTQLALEEKAVLRRERDNLAKELEEKKREAEQLRMELAIRNSALDT CIKTKSQPMMPVSRPMGPVPNPQPIDPASLEEFKRKILESQRPPAGIPVAPSSGLE
NOV27c, 214458684 SEQ ID NO: 621 1410 bp DNA Sequence ORF Start: at 1 ORE Stop: end of sequence
GAGATTCCCCCCCCTCGGGTCTCTTGGGCCTGTCCATGCGCCCCCCCCTCCGTGCTCCATGGCCAGAC CCATGGATCCATGGGTCTGGCCATGGAGCACGGAGGGTCCTACGCTCGGGCGGGGGGCAGCTCTCGGG GCTGCTGGTATTACCTGCGCTACTTCTTCCTCTTCGTCTCCCTCATCCAATTCCTCATCATCCTGGGG CTCGTGCTCTTCATGGTCTATGGCAACGTGCACGTGAGCACAGAGTCCAACCTGCAGGCCACCGAGCG CCGAGCCGAGGGCCTATACAGTCAGCTCCTAGGGCTCACGGCCTCCCAGTCCAACTTGACCAAGGAGC TCAACTTCACCACCCGCGCCAAGGATGCCATCATGCAGATGTGGCTGAATGCTCGCCGCGACCTGGAC CGCATCAATGCCAGCTTCCGCCAGTGCCAGGGTGACCGGGTCATCTACACGAACAATCAGAGGTACAT GGCTGCCATCATCTTGAGTGAGAAGCAATGCAGAGATCAATTCAAGGACATGAACAAGAGCTGCGATG CCTTGCTCTTCATGCTGAATCAGAAGGTGAAGACGCTGGAGGTGGAGATAGCCAAGGAGAAGACCATT TGCACTAAGGATAAGGAAAGCGTGCTGCTGAACAAACGCGTGGCGGAGGAACAGCTGGTTGAATGCGT GAAAACCCGGGAGCTGCAGCACCAAGAGCGCCAGCTGGCCAAGGAGCAACTGCAAAAGGTGCAAGCCC TCTGCCTGCCCCTGGACAAGGACAAGTTTGAGATGGACCTTCGTAACCTGTGGAGGGACTCCATTATC CCACGCAGCCTGGACAACCTGGGTTACAACCTCTACCATCCCCTGGGCTCGGAATTGGCCTCCATCCG CAGAGCCTGCGACCACATGCCCAGCCTCATGAGCTCCAAGGTGGAGGAGCTGGCCCGGAGCCTCCGGG CGGATATCGAACGCGTGGCCCGCGAGAACTCAGACCTCCAACGCCAGAAGCTGGAAGCCCAGCAGGGC CTGCGGGCCAGTCAGGAGGCGAAACAGAAGGTGGAGAAGGAGGCTCAGGCCCGGGAGGCCAAGCTCCA AGCTGAATGCTCCCGGCAGACCCAGCTAGCGCTGGAGGAGAAGGCGGTGCTGCGGAAGGAACGAGACA ACCTGGCCAAGGAGCTGGAAGAGAAGAAGAGGGAGGCGGAGCAGCTCAGGATGGAGCTGGCCATCAGA AACTCAGCCCTGGACACCTGCATCAAGACCAAGTCGCAGCCGATGATGCCAGTGTCAAGGCCCATGGG CCCTGTCCCCAACCCCCAGCCCATCGACCCAGCTAGCCTGGAGGAGTTCAAGAGGAAGATCCTGGAGT CCCAGAGGCCCCCTGCAGGCATCCCTGTAGCCCCATCCAGTGGCCTCGAG
NOV27c, 214458684 iSEQ ID NO: 622 |470 aa MW at 53542.0 D
Protein Sequence
EIPPPRVSWACPCAPPSVLHGQTHGSMGLAMEHGGSYARAGGSSRGC YYLRYFFLFVSLIQFLIILG LVLFMVYGNVHVSTESNLQATERRAEGLYSQLLGLTASQSNLTKELNFTTRAKDAIMQM LNARRDLD RINASFRQCQGDRVIYTN-NQRYMAAIILSEKQCRDQFKDMNKSCDALLFMLNQKVKTLEVEIAKEKTI CTKDKESVLLN-KRVAEEQLVECVKTRELQHQERQLAKEQLQKVQALCLPLDKDKFEMDLRNL RDS I I PRSLDNLGYNLYHPLGSELASIRRACDHMPSLMSSKVEELARSLRADIERVARENSDLQRQKLEAQQG LRASQEAKQKVE--ffiAQAREAKLQAECSRQTQLALEEKAVLRKERDNLAKELEEKKREAEQLRMELAIR NSALDTCIKTKSQPMMPVSRPMGPVPNPQPIDPASLEEFKRKILESQRPPAGIPVAPSSGLE
NOV27d, 214458688 SEQ ID NO: 623 1404 bp DNA Sequence ORF Start: at 1 ORF Stop: end of sequence
TTCGCCCTTGGATCCATGGGTCTGGCCATGGAGCACGGAGGGTCCTACGCTCGGGCGGGGGGCAGCTC TCGGGGCTGCTGGTATTACCTGCGCTACTTCTTCCTCTTCGTCTCCCTCATCCAATTCCTCATCATCC TGGGGCTCGTGCTCTTCATGGTCTATGGCAACGTGCACGTGAGCACAGAGTCCAACCTGCAGGCCACC GAGCGCCGAGCCGAGGGCCTATACAGTCAGCTCCTAGGGCTCACGGCCTCCCAGTCCAACTTGACCAA GGAGCTCAACTTCACCACCCGCGCCAAGGATGCCATCATGCAGATGTGGCTGAATGCTCGCCGCGACC TGGACCGCATCAATGCCAGCTTCCGCCAGTGCCAGGGTGACCGGGTCATCTACACGAACAATCAGAGG TACATGGCTGCCATCATCTTGAGTGAGAAGCAATGCAGAGATCAATTCAAGGACATGAACAAGAGCTG CGATGCCTTGCTCTTCATGCTGAATCAGAAGGTGAAGACGCTGGAGGTGGAGATAGCCAAGGAGAAGA CCATTTGCACTAAGGATAAGGAAAGCGTGCTGCTGAACAAACGCGTGGCGGAGGAACAGCTGGTTGAA TGCGTGAAAACCCGGGAGCTGCGGCACCAAGAGCGCCAGCTGGCCAAGGAGCAACTGCAAAAGGTGCA AGCCCTCTGCCTGCCCCTGGACAAGGACAAGTTTGAGATGGACCTTCGTAACCTGTGGAGGGACTCCA TTATCCCACGCAGCCTGGACAACCTGGGTTACAACCTCTACCATCCCCTGGGCTCGGAATTGGCCTCC ATCCGCAGAGCCTGCGACCACATGCCCAGCCTCATGAGCTCCAAGGTGGAGGAGCTGGCCCGGAGCCT CCGGGCGGATATCGAACGCGTGGCCCGCGAGAACTCAGACCTCCAACGCCAGAAGCTGGAAGCCCAGC AGGGCCTGCGGGCCAGTCAGGAGGCGAAACAGAAGGTGGAGAAGGAGGCTCAGGCCCGGGAGGCCAAG CTCCAAGCTGAATGCTCCCGGCAGACCCAGCTAGCGCTGGAGGAGAAGGCGGTGCTGCGGAAGGAACG AGACAACCTGGCCAAGGAGCTGGAAGAGAAGAAGAGGGAGGCGGAGCAGCTCAGGATGGAGCTGGCCA TCAGAAACTCAGCCCTGGACACCTGCATCAAGACCAAGTCGCAGCCGATGATGCCAGTGTCAAGGCCC ATGGGCCCTGTCCCCAACCCCCAGCCCATCGACCCAGCTAGCCTGGAGGAGTTCAAGAGGAAGATCCT GGAGTCCCAGAGGCCCCCTGCAGGCATCCCTGTAGCCCCATCCAGTGGCCTCGAGGCCACTGGATGGG GCTACAGGGATGCCTCCGTGCTCCATGGCCAGACCCATGGATCC
NOV27d, 214458688 SEQ DD NO: 624 468 aa MW at 53321.6kD Protein Sequence
FALGSMGLAMEHGGSYARAGGSSRGC YYLRYFFLFVSLIQFLIILGLVLFMVYGNVHVSTESNLQAT ERRAEGLYSQLLGLTASQSNLTKELNFTTRAKDAIMQMWLNARRDLDRINASFRQCQGDRVIYTNNQR YMAAIILSEKQCRDQFKD--røKSCDALLFMLNQKVKTLEVEIAKEKTICTKDKESVLLNKRVAEEQLVE CVKTRELRHQERQLAKEQLQKVQALCLPLDKDKFEMDLR-NLWRDSIIPRSLDNLGYNLYHPLGSELAS IRRACDHMPSLMSSKVEELARSLRADIERVARENSDLQRQKLEAQQGLRASQEAKQKVEKEAQAREAK LQAECSRQTQL-ALEEKAVLR---α3-RDNLAIΕLEEK-KREAEQLRMELAIRNSALDTCIKTKSQPMMPVSRP MGPVPNPQPIDPASLEEFKRKILESQRPPAGIPVAPSSGLEATG GYRDASVLHGQTHGS
NOV27e, CG55193-01 SEQ ID NO: 625 1366 bp DNA Sequence ORF Start: ATG at 1 ORF Stop: TGA at 1327
ATGGGTCTGGCCATGGAGCACGGAGGGTCCTACGCTCGGGCGGGGGGCAGCTCTCGGGGCTGCTGGTA TTACCTGCGCTACTTCTTCCTCTTCGTCTCCCTCATCCAATTCCTCATCATCCTGGGGCTCGTGCTCT TCATGGTCTATGGCAACGTGCACGTGAGCACAGAGTCCAACCTGCAGGCCACCGAGCGCCGAGCCGAG GGCCTATACAGTCAGCTCCTAGGGCTCACGGCCTCCCAGTCCAACTTGACCAAGGAGCTCAACTTCAC CACCCGCGCCAAGGATGCCATCATGCAGATGTGGCTGAATGCTCGCCGCGACCTGGACCGCATCAATG CCAGCTTCCGCCAGTGCCAGGGTGACCGGGTAATCTACACGAACAATCAGAGGTACATGGCTGCCATC ATCTTGAGTGAGAAGCAATGCAGAGATCAATTCAAGGACATGAACAAGAGCTGCGATGCCTTGCTCTT CATGCTGAATCAGAAGGTGAAGACGCTGGAGGTGGAGATAGCCAAGGAGAAGACCATTTGCACTAAGG ATAAGGAAAGCGTGCTGCTGAACAAACGCGTGGCGGAGGAACAGCTGGTTGAATGCGTGAAAACCCGG GAGCTGCAGCACCAAGAGCGCCAGCTGGCCAAGGAGCAACTGCAAAAGGTGCAAGCCCTCTGCCTGCC CCTGGACAAGGACAAGTTTGAGATGGACCTTCGTAACCTGTGGAGGGACTCCATTATCCCACGCAGCC TGGACAACCTGGGTTACAACCTCTACCATCCCCTGGGCTCGGAATTGGCCTCCATCCGCAGAGCCTGC GACCACATGCCCAGCCTCATGAGCTCCAAGGTGGAAGGTCAGTGCCGGAGCCTCCGGGCGGATATCGA ACGCGTGGCCCGCGAGAACTCAGACCTCCAACGCCAGAAGCTGGAAGCCCAGCAGGGCCTGCGGGCCA GTCAGGAGGCGAAACAGAAGGTGGAGAAGGAGGCTCAGGCCCGGGAGGCCAAGCTCCAAGCTGAATGC TCCCGGCAGACCCAGCTAGCGCTGGAGGAGAAGGCGGTGCTGCGGAAGGAACGAGACAACCTGGCCAA GGAGCTGGAAGAGAAGAAGAGGGAGGCGGAGCAGCTCAGGATGGAGCTGGCCATCAGAAACTCAGCCC TGGACACCTGCATCAAGACCAAGTCGCAGCCGATGATGCCAGTGTCAAGGCCCATGGGCCCTGTCCCC AACCCCCAGCCCATCGACCCAGCTAGCCTGGAGGAGTTCAAGAGGAAGATCCTGGAGTCCCAGAGGCC CCCTGCAGGCATCCCTGTAGCCCCATCCAGTGGCTGAGGAGGCTCCGGCACTGACCTAAGGGCGAATC CCAGCA
NOV27e, CG55193-01 SEQ ID NO: 626 442 aa MW at 50568.7kD Protein Sequence
MGLAMEHGGSYARAGGSSRGC YYLRYFFLFVSLIQFLIILGLVLFMVYGNVHVSTESNLQATERRAE GLYSQLLGLTASQSNLTKELNFTTRAKDAIMQMWLNARRDLDRINASFRQCQGDRVIYTNNQRYMAAI ILSEKQCRDQFKDMNKSCDA-LLFMLNQKVKTLEVEIAKEKTICTKDKESVLLNKRVAEEQLVECVKTR ELQHQERQLAKEQLQKVQALCLPLDKDKFEMDLRNL RDS I IPRSLDNLGYNLYHPLGSELAS IRRAC DHMPSLMSS----VEGQCRSLRADIERVARENSDLQRQK EAQQGL---^SQEAKQKVEKEAQAREAKLQAEC SRQTQLALEEKAVLRKERDNLAKELEEKKREAEQLRMELAIRNSALDTCIKTKSQPMMPVSRPMGPVP iNPQPIDPASLEEFKRKILESQRPPAGIPVAPSSG
NOV27f, CG55193-02 SEQ ID NO: 627 1367 bp DNA Sequence ORF Start: ATG^t 1 |ORF Stop: TGA at 1327
ATGGGTCTGGCCATGGAGCACGGAGGGTCCTACGCTCGGGCGGGGGGCAGCTCTCGGGGCTGCTGGTA TTACCTGCGCTACTTCTTCCTCTTCGTCTCCCTCATCCAATTCCTCATCATCCTGGGGCTCGTGCTCT TCATGGTCTATGGCAACGTGCACGTGAGCACAGAGTCCAACCTGCAGGCCACCGAGCGCCGAGCCGAG GGCCTATACAGTCAGCTCCTAGGGCTCACGGCCTCCCAGTCCAACTTGACCAAGGAGCTCAACTTCAC CACCCGCGCCAAGGATGCCATCATGCAGATGTGGCTGAATGCTCGCCGCGACCTGGACCGCATCAATG CCAGCTTCCGCCAGTGCCAGGGTGACCGGGTAATCTACACGAACAATCAGAGGTACATGGCTGCCATC ATCTTGAGTGAGAAGCAATGCAGAGATCAATTCAAGGACATGAACAAGAGCTGCGATGCCTTGCTCTT CATGCTGAATCAGAAGGTGAAGACGCTGGAGGTGGAGATAGCCAAGGAGAAGACCATTTGCACTAAGG ATAAGGAAAGCGTGCTGCTGAACAAACGCGTGGCGGAGGAACAGCTGGTTGAATGCGTGAAAACCCGG GAGCTGCAGCACCAAGAGCGCCAGCTGGCCAAGGAGCAACTGCAAAAGGTGCAAGCCCTCTGCCTGCC CCTGGACAAGGACAAGTTTGAGATGGACCTTCGTAACCTGTGGAGGGACTCCATTATCCCACGCAGCC TGGACAACCTGGGTTACAACCTCTACCATCCCCTGGGCTCGGAATTGGCCTCCATCCGCAGAGCCTGC GACCACATGCCCAGCCTCATGAGCTCCAAGGTGGAAGGTCAGTGCCGGAGCCTCCGGGCGGATATCGA ACGCGTGGCCCGCGAGAACTCAGACCTCCAACGCCAGAAGCTGGAAGCCCAGCAGGGCCTGCGGGCCA GTCAGGAGGCGAAACAGAAGGTGGAGAAGGAGGCTCAGGCCCGGGAGGCCAAGCTCCAAGCTGAATGC TCCCGGCAGACCCAGCTAGCGCTGGAGGAGAAGGCGGTGCTGCGGAAGGAACGAGACAACCTGGCCAA GGAGCTGGAAGAGAAGAAGAGGGAGGCGGAGCAGCTCAGGATGGAGCTGGCCATCAGAAACTCAGCCC TGGACACCTGCATCAAGACCAAGTCGCAGCCGATGATGCCAGTGTCAAGGCCCATGGGCCCTGTCCCC AACCCCCAGCCCATCGACCCAGCTAGCCTGGAGGAGTTCAAGAGGAAGATCCTGGAGTCCCAGAGGCC CCCTGCAGGCATCCCTGTAGCCCCATCCAGTGGCTGAGGAGGCTCCGGCACTGACCTAAGGGCGAATC CCAGCAA
NO V27f, CG55193-02 SEQ ID NO: 628 442 aa MW at 50568.7kD Protein Sequence
MGLAMEHGGSYARAGGSSRGCWYYLRYFFLFVSLIQFLIILGLVLFMVYGNVHVSTESNLQATERRAE GLYSQLLGLTASQSNLTKELNFTTRAKDAIMQM LNARRDLDRINASFRQCQGDRVIYTNNQRYMAAI ILSEKQCRDQFi -MNKSCDALLFMLNQKVKTLEVEIAKEKTICTKDKESVLLNKRVAEEQLVECVKTR ELQHQERQLAKEQLQKVQALCLPLDKDKFEMDLRNL RDSIIPRSLDNLGYNLYHPLGSELASIRRAC DHMPSLMSSKVEGQCRSLRADIERVARENSDLQRQKLEAQQGLRASQEAKQKVEKEAQAREAKLQAEC SRQTQ ALEEKAVLRKERDNLAKELEEKKREAEQLRMELAIRNSALDTCIKTKSQPMMPVSRPMGPVP NPQPIDPASLEEFKRKILESQRPPAGIPVAPSSG
NOV27g, CG55193-03 SEQ ID NO: 629 1367 bp
DNA Sequence ORF Stop: TGA at 1327
ATGGGTCTGGCCATGGAGCACGGAGGGTCCTACGCTCGGGCGGGGGGCAGCTCTCGGGGCTGCTGGTA TTACCTGCGCTACTTCTTCCTCTTCGTCTCCCTCATCCAATTCCTCATCATCCTGGGGCTCGTGCTCT TCATGGTCTATGGCAACGTGCACGTGAGCACAGAGTCCAACCTGCAGGCCACCGAGCGCCGAGCCGAG GGCCTATACAGTCAGCTCCTAGGGCTCACGGCCTCCCAGTCCAACTTGACCAAGGAGCTCAACTTCAC CACCCGCGCCAAGGATGCCATCATGCAGATGTGGCTGAATGCTCGCCGCGACCTGGACCGCATCAATG CCAGCTTCCGCCAGTGCCAGGGTGACCGGGTAATCTACACGAACAATCAGAGGTACATGGCTGCCATC ATCTTGAGTGAGAAGCAATGCAGAGATCAATTCAAGGACATGAACAAGAGCTGCGATGCCTTGCTCTT CATGCTGAATCAGAAGGTGAAGACGCTGGAGGTGGAGATAGCCAAGGAGAAGACCATTTGCACTAAGG ATAAGGAAAGCGTGCTGCTGAACAAACGCGTGGCGGAGGAACAGCTGGTTGAATGCGTGAAAACCCGG GAGCTGCAGCACCAAGAGCGCCAGCTGGCCAAGGAGCAACTGCAAAAGGTGCAAGCCCTCTGCCTGCC CCTGGACAAGGACAAGTTTGAGATGGACCTTCGTAACCTGTGGAGGGACTCCATTATCCCACGCAGCC TGGACAACCTGGGTTACAACCTCTACCATCCCCTGGGCTCGGAATTGGCCTCCATCCGCAGAGCCTGC GACCACATGCCCAGCCTCATGAGCTCCAAGGTGGAAGGTCAGTGCCGGAGCCTCCGGGCGGATATCGA ACGCGTGGCCCGCGAGAACTCAGACCTCCAACGCCAGAAGCTGGAAGCCCAGCAGGGCCTGCGGGCCA GTCAGGAGGCGAAACAGAAGGTGGAGAAGGAGGCTCAGGCCCGGGAGGCCAAGCTCCAAGCTGAATGC TCCCGGCAGACCCAGCTAGCGCTGGAGGAGAAGGCGGTGCTGCGGAAGGAACGAGACAACCTGGCCAA GGAGCTGGAAGAGAAGAAGAGGGAGGCGGAGCAGCTCAGGATGGAGCTGGCCATCAGAAACTCAGCCC TGGACACCTGCATCAAGACCAAGTCGCAGCCGATGATGCCAGTGTCAAGGCCCATGGGCCCTGTCCCC AACCCCCAGCCCATCGACCCAGCTAGCCTGGAGGAGTTCAAGAGGAAGATCCTGGAGTCCCAGAGGCC CCCTGCAGGCATCCCTGTAGCCCCATCCAGTGGCTGAGGAGGCTCCGGCACTGACCTAAGGGCGAATC CCAGCAA
NOV27g, CG55193-03 SEQ ID NO: 630 442 aa MW at 50568.7kD Protein Sequence
MGLAMEHGGSYARAGGSSRGC YYLRYFFLFVSLIQFLIILGLVLFMVYGNVHVSTESNLQATERRAE GLYSQLLGLTASQSNLTKELNFTTRAKDAIMQMWLNARRDLDRINASFRQCQGDRVIYTNNQRYMAAI ILSEKQCRDQFraDMNKSCDALLF- CLNQKVKTLEVEIAKEKTICTKD---α3SVLLNKRVAEEQLVECVKTR ELQHQERQLA-KEQLQKVQ-ALCLPLDK-DKFEMDLRNL RDSIIPRSLDNLGYNLYHPLGSΞLASIRRAC DHMPSLMSS-K-VEGQCRSLRADIERVARENSDLQRQ---01EAQQGLRASQEAKQKVEKEAQAREAKLQAEC SRQTQL-ALEEKAVLRKE-RDNLAKELEEKKREAEQLRMELAIRNSALDTCIKTKSQPMMPVSRPMGPVP NPQPIDPASLEEFKRKILESQRPPAGIPVAPSSG NOV27h, CG55193-05 SEQ ID NO: 631 1188 bp
DNA Sequence JORF Start: at 7 IORF Stop: at 1183
GGATCCAACGTGCACGTGAGCACAGAGTCCAACCTGCAGGCCACCGAGCACCGAGCCGAGGGCCTATA
CAGTCAGCTCCTAGGGCTCACGGCCTCCCAGTCCAACTTGACCAAGGAGCTCAACTTCACCACCCGCG CCAAGGATGCCATCATGCAGATGTGGCTGAATGCTCGCCGCGACCTGGACCGCATCAATGCCAGCTTC CGCCAGTGCCAGGGTGACCGGGTCATCTACACGAACAATCAGAGGTACATGGCTGCCATCATCTTGAG TGAGAAGCAATGCAGAGATCAATTCAAGGACATGAACAAGAGCTGCGATGCCTTGCTCTTCATGCTGA ATCAGAAGGTGAAGACGCTGGAGGTGGAGATAGCCAAGGAGAAGACCATTTGCACTAAGGATAAGGAA AGCGTGCTGCTGAACAAACGCGTGGCGGAGGAACAGCTGGTTGAATGCGTGAAAACCCGGGAGCTGCA GCACCAAGAGCGCCAGCTGGTCAAGGAGCAACTGCAAAAGGTGCAAGCCCTCTGCCTGCCCCTGGACA AGGACAAGTTTGAGATGGACCTTCGTAACCTGTGGAGGGACTCCATTATCCCACGCAGCCTGGACAAC CTGGGTTACAACCTCTACCATCCCCTGGGCTCGGAATTGGCCTCCATCCGCAGAGCCTGCGACCACAT GCCCAGCCTCATGAGCTCCAAGGTGGAGGAGCTGGCCCGGAGCCTCCGGGCGGATATCGAACGCGTGG TCCGCGAGAACTCAGACCTCCAACGCCAGAAGCTGGAAGCCCAGCAGGGCCTGCGGGCCAGTCAGGAG GCGAAACAGAAGGTGGAGAAGGAGGCTCAGGCCCGGGAGGCCAAGCTCCAAGCTGAATGCTCCCGGCA GACCCAGCTAGCGCTGGAGGAGAAGGCGGTGCTGCGGAGGGAACGAGACAACCTGGCCAAGGAGCTGG AAGAGAAGAAGAGGGAGGCGGAGCAGCTCAGGATGGAGCTGGCCATCAGAAACTCAGCCCTGGACACC TGCATCAAGACCAAGTCGCAGCCGATGATGCCAGTGTCAAGGCCCATGGGCCCTGTCCCCAACCCCCA GCCCATCGACCCAGCTAGCCTGGAGGAGTTCAAGAGGAAGATCCTGGAGTCCCAGAGGCCCCCTGCAG GCATCCCTGTAGCCCCATCCAGTGGCCTCGAG
NOV27h, CG55193-05 SEQ ID NO: 632 392 aa MW at 45001. lkD Protein Sequence
NVHVSTESNLQATEHRAEGLYSQLLGLTASQSNLTKELNFTTRAKDAIMQM LNARRDLDRINASFRQ CQGDRVIYT---røQRYMAAIILSEKQCRDQFKDMNKSCDALLFMLNQKVKTLEVEIAKEKTICTKDKESV LLNKRVAEEQLVECVKTRELQHQERQLVKEQLQKVQALCLPLDKDKFEMDLRNLWRDSIIPRSLDNLG YNLYHPLGSELASIRRACDHMPSLMSSKVEELARSLRADIERWRENSDLQRQKLEAQQGLRASQEAK QKVEKEAQAREAKLQAECSRQTQLALEEKAVLRRERDNLAKELEEKKREAEQLRMELAIRNSALDTCI KTKSQPMMPVSRPMGPVPNPQPIDPASLEEFKRKILESQRPPAGIPVAPSSG
NOV27i, CG55193-06 SEQ ID NO: 633 1188 bp
DNA Sequence ORF Start: at 7 ORF Stop: at 1183
GGATCCAACGTGCACGTGAGCACAGAGTCCAACCTGCAGGCCACCGAGCGCCGAGCCGAGGGCCTATA
CAGTCAGCTCCTAGGGCTCACGGCCTCCCAGTCCAACTTGACCAAGGAGCTCAACTTCACCACCCGCG CCAAGGATGCCATCATGCAGATGTGGCTGAATGCTCGCCGCGACCTGGACCGCATCAATGCCAGCTTC CGCCAGTGCCAGGGTGACCGGGTCATCTACACGAACAATCAGAGGTACATGGCTGCCATCATCTTGAG TGAGAAGCAATGCAGAGATCAATTCAAGGACATGAACAAGAGCTGCGATGCCTTGCTCTTCATGCTGA ATCAGAAGGTGAAGACGCTGGAGGTGGAGATAGCCAAGGAGAAGACCATTTGCACTAAGGATAAGGAA AGCGTGCTGCTGAACAAACGCGTGGCGGAGGAACAGCTGGTTGAATGCGTGAAAACCCGGGAGCTGCA GCACCAAGAGCGCCAGCTGGCCAAGGAGCAACTGCAAAAGGTGCAAGCCCTCTGCCTGCCCCTGGACA AGGACAAGTTTGAGATGGACCTTCGTAACCTGTGGAGGGACTCCATTATCCCACGCAGCCTGGACAAC CTGGGTTACAACCTCTACCATCCCCTGGGCTCGGAATTGGCCTCCATCCGCAGAGCCTGCGACCACAT GCCCAGCCTCATGAGCTCCAAGGTGGAGGAGCTGGCCCGGAGCCTCCGGGCGGATATCGAACGCGTGG CCCGCGAGAACTCAGACCTCCAACGCCAGAAGCTGGAAGCCCAGCAGGGCCTGCGGGCCAGTCAGGAG GCGAAACAGAAGGTGGAGAAGGAGGCTCAGGCCCGGGAGGCCAAGCTCCAAGCTGAATGCTCCCGGCA GACCCAGCTAGCGCTGGAGGAGAAGGCGGTGCTGCGGAAGGAACGAGACAACCTGGCCAAGGAGCTGG AAGAGAAGAAGAGGGAGGCGGAGCAGCTCAGGATGGAGCTGGCCATCAGAAACTCAGCCCTGGACACC TGCATCAAGACCAAGTCGCAGCCGATGATGCCAGTGTCAAGGCCCATGGGCCCTGTCCCCAACCCCCA GCCCATCGACCCAGCTAGCCTGGAGGAGTTCAAGAGGAAGATCCTGGAGTCCCAGAGGCCCCCTGCAG GCATCCCTGTAGCCCCATCCAGTGGCCTCGAG
NOV27i, CG55193-06 SEQ ID NO: 634 392 aa MW at 44936.0kD
Protein Sequence j
NVHVSTESNLQATERRAEGLYSQLLGLTASQSNLTKELNFTTRAKDAIMQM LNARRDLDRINASFRQ
CQGDRVIYTNNQRYMAAIILSEKQCRDQF---0-)MNKSCD-ALLFMLNQKVCT
LLNKRVAEEQLVECVKTRELQHQERQLAKEQLQKVQALCLPLDKDKFEMDL-RNL RDSIIPRSLDNLG
Y1^YHPLGSELASIRRACD--MPSLMSSKVEELARSLRADIERVARENSDLQRQKLEAQQGLRASQEAK
QKVEKEAQAREAKLQAECSRQTQLALEEKAVLRKERDNLAKELEEIOαiEAEQLRMELAIRNSALDTCI
KTKSQPMMPVSRPMGPVPNPQPIDPASLEEFKRKILESQRPPAGIPyAP NOV27J, CG55193-07 SEQ ID NO: 635 1410 bp DNA Sequence ORF Start: ATG at 79 ORF Stop: at 1405
GAGATTCCCCCCCCTCGGGTCTCTTGGGCCTGTCCATGCGCCCCCCCCTCCGTGCTCCATGGCCAGAC
CCATGGATCCATGGGTCTGGCCATGGAGCACGGAGGGTCCTACGCTCGGGCGGGGGGCAGCTCTCGGG
GCTGCTGGTATTACCTGCGCTACTTCTTCCTCTTCGTCTCCCTCATCCAATTCCTCATCATCCTGGGG CTCGTGCTCTTCATGGTCTATGGCAACGTGCACGTGAGCACAGAGTCCAACCTGCAGGCCACCGAGCG CCGAGCCGAGGGCCTATACAGTCAGCTCCTAGGGCTCACGGCCTCCCAGTCCAACTTGACCAAGGAGC TCAACTTCACCACCCGCGCCAAGGATGCCATCATGCAGATGTGGCTGAATGCTCGCCGCGACCTGGAC CGCATCAATGCCAGCTTCCGCCAGTGCCAGGGTGACCGGGTCATCTACACGAACAATCAGAGGTACAT GGCTGCCATCATCTTGAGTGAGAAGCAATGCAGAGATCAATTCAAGGACATGAACAAGAGCTGCGATG CCTTGCTCTTCATGCTGAATCAGAAGGTGAAGACGCTGGAGGTGGAGATAGCCAAGGAGAAGACCATT TGCACTAAGGATAAGGAAAGCGTGCTGCTGAACAAACGCGTGGCGGAGGAACAGCTGGTTGAATGCGT GAAAACCCGGGAGCTGCAGCACCAAGAGCGCCAGCTGGCCAAGGAGCAACTGCAAAAGGTGCAAGCCC TCTGCCTGCCCCTGGACAAGGACAAGTTTGAGATGGACCTTCGTAACCTGTGGAGGGACTCCATTATC CCACGCAGCCTGGACAACCTGGGTTACAACCTCTACCATCCCCTGGGCTCGGAATTGGCCTCCATCCG CAGAGCCTGCGACCACATGCCCAGCCTCATGAGCTCCAAGGTGGAGGAGCTGGCCCGGAGCCTCCGGG CGGATATCGAACGCGTGGCCCGCGAGAACTCAGACCTCCAACGCCAGAAGCTGGAAGCCCAGCAGGGC CTGCGGGCCAGTCAGGAGGCGAAACAGAAGGTGGAGAAGGAGGCTCAGGCCCGGGAGGCCAAGCTCCA AGCTGAATGCTCCCGGCAGACCCAGCTAGCGCTGGAGGAGAAGGCGGTGCTGCGGAAGGAACGAGACA ACCTGGCCAAGGAGCTGGAAGAGAAGAAGAGGGAGGCGGAGCAGCTCAGGATGGAGCTGGCCATCAGA AACTCAGCCCTGGACACCTGCATCAAGACCAAGTCGCAGCCGATGATGCCAGTGTCAAGGCCCATGGG CCCTGTCCCCAACCCCCAGCCCATCGACCCAGCTAGCCTGGAGGAGTTCAAGAGGAAGATCCTGGAGT CCCAGAGGCCCCCTGCAGGCATCCCTGTAGCCCCATCCAGTGGCCTCGAG
NOV27j, CG55193-07 SEQ ID NO: 636 442 aa MW at 50593.7kD Protein Sequence
MGLAMEHGGSYA.RAGGSSRGCWYYLRYFFLFVSLIQFLIILGLVLFMVYGNVHVSTESNLQATERRAE GLYSQLLGLTASQSNLT-.-NΕLNFTTR-AKDAIMQM LNARRDLDRINASFRQCQGDRVIYTNNQRYMAAI ILSEKQC-RDQFKDMNKSCDALLFMLNQKVKTLEVEIAKEKTICTKDKESVLLNKRVAEΞQLVECVKTR ELQHQERQLAKEQLQKVQALCLPLDKDKFEMDLRNL RDS I IPRSLDNLGYNLYHPLGSELAS IRRAC DHMPSLMSSKVEELARSLR-ADIERVARENSDLQRQ-I--LEAQQGLRASQEAKQKVEKEAQAREAKLQAEC SRQTQLALEEKAVLR---03RDNLAKELEEKKREAEQLRMELAIRNSALDTCIKTKSQPMMPVSRPMGPVP NPQPIDPASLEEFKRKILESQRPPAGIPVAPSSG
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 27B.
Table 27B. Comparison of the NOV27 protein sequences.
NOV27a MGLAMEHGGSYARAGGSSRGC YYLRYFFLFVSL
NOV27b
NOV27C EIPPPRVS ACPCAPPSVLHGQTHGSMGLAMEHGGSYARAGGSSRGC YYLRYFFLFVSL
NOV27d FALGSMGLAMEHGGSYARAGGSSRGC YYLRYFFLFVSL
NOV27e MGLAMEHGGSYARAGGSSRGCWYYLRYFFLFVSL
NOV27f MGLAMEHGGSYARAGGSSRGC YYLRYFFLFVSL
NOV27g MGLAMEHGGSYARAGGSSRGC YYLRYFFLFVSL
NOV27h
NOV27i
NOV27J MGLAMEHGGSYARAGGSSRGCWYYLRYFFLFVSL
NOV27a IQFLIILGLVLFMVYGNVHVSTESNLQATERRAEGLYSQLLGLTASQSNLTKΞLNFTTRA
NOV27b GSNVHVSTESNLQATEHRAEGLYSQLLGLTASQSNLTKELNFTTRA
NOV27c IQFLIILGLVLFMVYGNVHVSTESNLQATERRAEGLYSQLLGLTASQSNLTKELNFTTRA
NOV27d IQFLIILGLVLFMVYGNVHVSTESNLQATERRAEGLYSQLLGLTASQSNLTKELNFTTRA
NOV27e IQFLIILGLVLF-MVYGNVEIVSTESNLQATERRAEGLYSQLLGLTASQSNLTKELNFTTRA
NOV27f IQFLIILGLVLFMVYGNV-E-πtSTESNLQATERRAEGLYSQLLGLTASQSNLTKELNFTTRA
NOV27g IQFLIILGLVLFMVYGNVHVSTESNLQATERRAEGLYSQLLGLTASQSNLTKELNFTTRA
NOV27h NVHVSTESNLQATEHRAEGLYSQLLGLTASQSNLTKELNFTTRA NOV27i NVHVSTESNLQATERRAEGLYSQLLGLTASQSNLTKELNFTTRA NOV27J IQFLIILGLVLFMVYGNVHVSTESNLQATERRAEGLYSQLLGLTASQSNLTKELNFTTRA
NOV27a KDAIMQM LNARRDLDRINASFRQCQGDRVIYT-N-NQRYMAAIILSEKQCRDQFKDMNKSC NOV27b KDAIMQM LNARRDLDRINASFRQCQGDRVIYTNNQRYMAAIILSEKQCRDQFKDMNKSC NOV27C ---OJAIMQMWLNA-RRDLDRINASFRQCQGDRVIYTN-NQRYMAAIILSEKQCRDQFKDMNKSC NOV27d KDAIMQM LNARRDLDRINASFRQCQGDRVIYTNNQRYMAAIILSEKQCRDQFKDMNKSC NOV27e KDAIMQM LNARRDLDRINASFRQCQGDRVIYTNNQRYMAAIILSEKQCRDQFKDMNKSC NOV27f KDAIMQM LNARRDLDRINASFRQCQGDRVIYTNNQRYMAAIILSEKQCRDQFKDMNKSC NOV27g KDAIMQM LN-ARRDLDRINASFRQCQGDRVIYT---WQRYMAAIILSEKQCRDQFKDMNKSC NOV27h KDAIMQM LNARRDLDRINASFRQCQGDRVIYTNNQRYMAAIILSEKQCRDQFKDMNKSC NOV27i KDAIMQMWLN-ARRDLDRINASFRQCQGDRVIYTN-NQRYMAAIILSEKQCRDQFKDMNKSC NOV27J KDAIMQMWLNARRDLDRINASFRQCQGDRVIYTNNQRYMAAIILSEKQCRDQFKDMNKSC
NOV 7a DALLFMLNQKVKTLEVEIAKEKTICTKDK-ESVLLNKRVAEEQLVECVKTRΞLQHQERQLA NOV27b DALLFMLNQKVKTLEVEIAKEKTICTKDKESVLLNKRVAEEQLVΞCVKTRELQHQERQLV NOV27C DALLFMLNQKVKTLEVEIAKEKTICTKDKESVLLNKRVAEEQLVECVKTRELQHQERQLA NOV27d DALLFMLNQKVKTLEVEIAKEKTICTKDKESVLLNKRVAEEQLVECVKTRELRHQERQLA NOV27e DALLFMLNQKVKTLEVEIAKEKTICTKDKESVLLNKRVAEEQLVECVKTRELQHQERQLA NOV27f DALLFMLNQKVKTLΞVEIAKEKTICTKDKESVLLNKRVAEEQLVECVKTRELQHQERQLA NOV27g DALLFMLNQKVKTLEVEIAKEKTICTKDKESVLLNKRVAEEQLVECVKTRELQHQERQLA NOV27h DALLFMLNQKVKTLEVEIAKEKTICTKDKESVLLNKRVAEEQLVECVKTRELQHQERQLV NOV27i DALLFMLNQKVKTLEVEIAKEKTICTKDKESVLLNKRVAEEQLVECVKTRELQHQERQLA NOV27J DALLFMLNQKVKTLEVEIAKEKTICTKDKESVLLNKRVAEEQLVECVKTRELQHQERQLA
NOV27a KEQLQKVQALCLPLDKDKFEMDLRNL RDSIIPRSLDNLGYNLYHPLGSELASIRRACDH NOV27b KEQLQKVQALCLPLDKDKFEMDLRNL RDSIIPRSLDNLGYNLYHPLGSELASIRRACDH NOV27C KEQLQKVQALCLPLDKDKFEMDLRNL RDSIIPRSLDNLGYNLYHPLGSELASIRRACDH NOV27d KEQLQKVQALCLPLDKDKFEMDLRNLWRDSIIPRSLDNLGYNLYHPLGSELASIRRACDH NOV27e KEQLQKVQALCLPLDKDKFEMDLRNLWRDSIIPRSLDNLGYNLYHPLGSELASIRRACDH NOV27f KEQLQKVQALCLPLDKDKFEMDLRNLWRDSIIPRSLDNLGYNLYHPLGSELASIRRACDH NOV27g KEQLQKVQALCLPLDKDKFEMDLRNLWRDSIIPRSLDNLGYNLYHPLGSELASIRRACDH NOV27h KEQLQKVQALCLPLDKDKFEMDLRNLWRDSIIPRSLDNLGYNLYHPLGSELASIRRACDH NOV27i KEQLQKVQALCLPLDKDKFEMDLRNLWRDSIIPRSLDNLGYNLYHPLGSELASIRRACDH NOV27J KEQLQKVQALCLPLDKDKFEMDLRNLWRDSIIPRSLDNLGYNLYHPLGSELASIRRACDH
NOV27a MPSLMSSKVEGQCRSLRADIERVARENSDLQRQKLEAQQGLRASQEAKQKVEKEAQAREA NOV27b MPSLMSSKVEELARSLRADIERWRENSDLQRQKLEAQQGLRASQEAKQKVEKEAQAREA NOV27C MPSLMSSKVEELARSLRADIERVARENSDLQRQKLEAQQGLRASQEAKQKVEKEAQAREA NOV27d MPSLMSSKVEELARSLRADIERVARENSDLQRQKLEAQQGLRASQEAKQKVEKEAQAREA NOV27e MPSLMSSKVEGQCRSLRADIERVARENSDLQRQKLEAQQGLRASQEAKQKVEKEAQAREA NOV27f MPSLMSSKVEGQCRSLRADIERVARENSDLQRQKLEAQQGLRASQEAKQKVEKEAQAREA NOV27g MPSLMSSKVEGQCRSLRADIERVARENSDLQRQKLEAQQGLRASQEAKQKVEKEAQAREA NOV27h MPSLMSS---WEEL-ARSLR-ADIERVVRENSDLQRQKLEAQQGLRASQEAKQKVEKEAQAREA NOV27i MPSLMSS--WEELARSLRADIERVARENSDLQRQKLEAQQGLRASQEAKQK-VEKEAQAREA NOV27J MPSLMSSKVEEL-ARSLRADIERVARENSDLQRQKLEAQQGLRASQEAKQKVEKEAQAREA
NOV27a ---01QAECSRQTQLALEEKAVLR---Ε-RDNLAKELEEKKREAEQLRMELAIRNSALDTCIKTKS NOV27b ---α1Q-AECSRQTQLALEE---^VLRRERDNL-AKELEEKKREAEQLRMELAIRNSALDTCIKTKS NOV27C KLQAECSRQTQLALΞΞKAVLRKERDNLAiσ^LEEKKREAEQLRMELAIR-NSALDTCIKTKS NOV27d KLQAECSRQTQLALEEKAVLRKE-RDNLA-l-sΕLEEKKREAEQLRMELAIRNSALDTCIKTKS NOV27e KLQAECSRQTQLALEEKAVLRKERDNLAKELEEKKREAEQLRMELAIRNSALDTCIKTKS NOV27f KLQ--^CSRQTQLALEE---CAVLRKERDNL-A^ NOV27g KLQ-AECSRQTQLALEEKAVLR-KERDNLAKELEEK-l-αi-E-A-EQLRMΞ--^ NOV27h KLQAECSRQTQLALEEKAVLRRERDNLAKELEEKKREAEQLRMΞLAIRNSALDTCIKTKS
NOV27a QPMMPVSRPMGPVPNPQPIDPASLEEFKRKILESQRPPAGIPVAPSSG- - - NOV27b QPMMPVSRPMGPVPNPQPIDPASLΞEFKRKILESQRPPAGIPVAPSSGLE- NOV27c QPMMPVSRPMGPVPNPQPIDPASLEΞFKRKILESQRPPAGIPVAPSSGLE
NOV27d QPMMPVSRPMGPVPNPQPIDPASLEEFKRKILESQRPPAGIPVAPSSGLEATGWGYRDAS
NOV27e QPMMPVSRPMGPVPNPQPIDPASLEEFKRKILESQRPPAGIPVAPSSG
NOV27f QPMMPVSRPMGPVPNPQPIDPASLΞEFKRKILESQRPPAGIPVAPSSG
NOV27g QPMMPVSRPMGPVPNPQPIDPASLEEFKRKILESQRPPAGIPVAPSSG
NOV27h QPMMPVSRPMGPVPNPQPIDPASLEEFKRKILESQRPPAGIPVAPSSG
NOV27i QPMMPVSRPMGPVPNPQPIDPASLΞEFKRKILESQRPPAGIPVAPSSG
NOV27j QPMMPVSRPMGPVPNPQPIDPASLEEFKRKILESQRPPAGIPVAPSSG
NOV27a
NOV27b
NOV27C
NOV27d VLHGQTHGS
NOV27e
NOV27f
NOV27g
NOV27h
NOV27i
NOV27J
NOV27a (SEQ ID NO 618) NOV27b (SEQ ID NO 620) NOV27C (SEQ ID NO 622) NOV27d (SEQ ID NO 624) NOV27e (SEQ ID NO 626) NOV27f (SEQ ID NO 628) NOV27g (SEQ ID NO 630) NOV27h (SEQ ID NO 632) NOV27i (SEQ ID NO 634) NOV27J (SEQ ID NO 636)
Further analysis of the NOV27a protein yielded the following properties shown in Table
27C.
Table 27C. Protein SequenceProperties NOV27a
SignalP analysis: Cleavage site between residues 51 and 52
PSORT π analysis:
PSG: a new signal peptide prediction method
N-region: length 6; pos.chg 0; neg.chg 1 H-region: length 6; peak value 0.00 PSG score: -4.40
GvH: von Heijne's method for signal seg. recognition GvH score (threshold: -2.1): -1.10 possible cleavage site: between 50 and 51
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al's method for TM region allocation Init position for calculation: 1 Tentative number of TMS(s) for the threshold 0. Number of TMS(s) for threshold 0.5: l INTEGRAL Likelihood =-11.41 Transmembrane 29 - 45 PERIPHERAL Likelihood = 7.85 (at 156) ALOM score: -11.41 (number of TMSs: 1) MTOP: Prediction of membrane topology (Hartmann et al.) Center position for calculation: 36 Charge difference: -2.5 C( 0.5) - N( 3.0) N >= C: N-terminal side will be inside
>>> membrane topology: type 2 (cytoplasmic tail 1 to 29)
MITDISC: discrimination of mitochondrial targeting seq R content: 3 Hyd Moment (75): 5.06 Hyd Moment (95): 6.63 G content: 8 D/E content: 2 S/T content: 6 Score: -6.39
Gavel: prediction of cleavage sites for mitochondrial preseq R-2 motif at 36 LRY | FF
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite: RKERDNLAKELEEKKRE at 355 content of basic residues: 15.6% NLS Score: 0.02
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals: none
SKL: peroxisomal targeting signal in the C-terminus : none
PTS2 : 2nd peroxisomal targeting signal : none
VAC: possible vacuolar targeting motif: none
RNA-binding motif: none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail : 10, 22,23 , 26
Dileucine motif in the tail : none checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: nuclear Reliability: 89
COIL: Lupas ' s algorithm to detect coiled-coil regions 278 M 0.60
279 S 0.85
280 S 0.96
281 K 0.96
282 V 0.96
283 E 0.98
284 G 0.98
285 Q 0.99
286 C 0.99
287 R 0.99
288 S 0.99
289 L 0.99
290 R 0.99
291 A 0.99
292 D 0.99
293 I 0.99
294 E 0.99
295 R 0.99
296 V 0.99
297 A 0.99
298 R 0.99
299 E 0.99
300 N 0.99
301 S 0.99
302 D 1.00
303 L 1.00
304 Q 1.00
305 R 1.00
306 Q 1.00
307 K 1.00
308 L 1.00
309 E 1.00
310 A 1.00
311 Q 1.00
312 Q 1.00
313 G 1.00
314 L 1.00
315 R 1.00
316 A 1.00
317 S 1.00
318 Q 1.00
319 E 1.00
320 A 1.00
321 K 1.00
322 Q 1.00
323 K 1.00
324 V 1.00
325 E 1.00
326 K 1.00
327 E 1.00
328 A 1.00
329 Q 1.00
330 A 0.99
331 R 0.96
332 E 0.96
333 A 0.96
334 K 0.96
335 L 0.96
336 Q 0.96
337 A 0.87 338 E 0.72
339 C 0.71
340 Ξ 0.75
341 R 0.92
342 Q 0.92
343 T 0.93
344 Q 0.99
345 L 1.00
346 A 1.00
347 L 1.00
348 E 1.00
349 E 1.00
350 K 1.00
351 A 1.00
352 V 1.00
353 L 1.00
354 R 1.00
355 K 1.00
356 E 1.00
357 R 1.00
358 D 1.00
359 N 1.00
360 L 1.00
361 A 1.00
362 K 1.00
363 E 1.00
364 L 1.00
365 E 1.00
366 E 1.00
367 K 1.00
368 K 1.00
369 R 1.00
370 E 1.00
371 A 1.00
372 E 1.00
373 Q 1.00
374 L 1.00
375 R 1.00
376 M 1.00
377 E 1.00
378 L 1.00
379 A 1.00
380 I 1.00
381 R 0.97
382 N 0.97
383 S 0.97
384 A 0.97
385 L 0.97
386 D 0.97
387 T 0.91
388 C 0.64
389 I 0.64
390 K 0.64 total : 113 residues
Final Results (k = 9/23) :
39.1 %: nuclear 26.1 % : mitochondrial
17.4 % : cytoplasmic
4 .3 % : extracellular, including cell wall
4.3 % : Golgi
4.3 % : plasma membrane
4 .3 % : peroxisomal
>> prediction for CG55193 -04 is nuc (k=23 )
A search of the NOV27a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 27D.
In a BLAST search of public sequence databases, the NOV27a protein was found to have homology to the proteins shown in the BLASTP data in Table 27E.
PFam analysis predicts that the NOV27a protein contains the domains shown in the Table
27F.
Table 27F. Domain Analysis of NOV27a
Identities/
Pfam Domain NOV27a Match Region Similarities j Expect Value for the Matched Region
Example 28.
The NOV28 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 28A.
Table 28A. NOV28 Sequence Analysis
NOV28a, CG55256-07 SEQ ID NO: 637 4294 bp DNA Sequence ORF Start: ATG at 103 ORF Stop: TGA at 2818
GCAGCGGCAACCCCGGCGCCGCGGCAAGGACTCGGAGGGCTGAGACGCGGCGGCGGCGGCGCGGGGAG
CGCGGGGCGCGGCGGCCGGAGCCCCGGGCCCGCCATGGGCCTCCCCGAGCCGGGCCCTCTCCGGCTTC
TGGCGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCGGCTCCAGCATCTTGCGGCGGCAGCGGCT GATCCGCTGCTCGGCGGCCAAGGGCCGGCCAAGGAGTGCGAAAAGGACCAATTCCAGTGCCGGAACGA GCGCTGCATCCCCTCTGTGTGGAGATGCGACGAGGACGATGACTGCTTAGACCACAGCGACGAGGACG ACTGCCCCAAGAAGACCTGTGCAGACAGTGACTTCACCTGTGACAACGGCCACTGCATCCACGAACGG TGGAAGTGTGACGGCGAGGAGGAGTGTCCTGATGGCTCCGATGAGTCCGAGGCCACTTGCACACTGGG CACCTGCCGTGGGGACGAGTTCCAGTGTGGGGATGGGACATGTGTCCTTGCAATCAAGCACTGCAACC AGGAGCAGGACTGTCCAGATGGGAGTGATGAAGCTGGCTGCCTACAGGAGTCACCCTGTGAGGGTCCC CGCAGATTTCAGTGTAAGAGTGGCAAGCGCGTGGACGGCGGGAAAGTGTGTGATGTGCAGAGGGACTG CCGGGACTGGTCGGATGAGCTTCTGAAAGTGTGGTGCGGTGCCTGTCTACGCCCACTGGCTGGACTCA GTCTCCTACCATCCCCCTCCTGGTATCTAGGCTCAAGGCCCTCCAGTGCCCCCTGCCCTGACACTTTC TGCTCTGACCCTCTCTTTGGATTCATGTGCCGTCCTATGGCTTCACATGGGGCTTTTCGCCCCCAGGC TGGCCTGGAAATCTCCATCCTGGCTGAGAACCTCAACAACCCACATGACATTGTCATCTTCCATGAGC TGAAGCAGCCAAGAGCTCCAGATGCCTGTGAGCTGAGTGTCCAGCCTAATGGAGGCTGTGAATACCTG TGCCTTCCTGCTCCTCAGATCTCCAGCCACTCTCCCAAGTACACATGTGCCTGTCCTGACACAATGTG GCTGGGTCCAGACATGAAGAGGTGCTACCGAGCACCTCAATCTACCTCAACTACGACGTTAGCTTCTA CCATGACGAGGACAGTACCTGCCACCACAAGAGCCCCCGGGACCACCGTCCACAGATCCACCTACCAG lAACCACAGCACAGAGACACCAAGCCTGACAGCTGCAGTCCCAAGCTCAGTTAGTGTCCCCAGGGTTCC CAGCATCAGCCCGTCTACCCTAAGACCTGCAACCAGCAACCACTCCCAGCACTATGCAAATGAAGACA GTAAGCTCGAG
NOV28c, 272511714 SEQ ID NO: 642 661 aa MW at 73025.5kD Protein Sequence
GS-AADPLLGGQGPA-K-DCEi QFQC---lNERCIPSV RCDEDDDCLDHSDEDDCP---αCTCA-DSDFTCDNGHC
IHERWKCDGEEECPDGSDESEATCTKQVCPAEKLSCGPTSHKCVPAS RCDGEKDCEGG-ADEAGCATS
LGTCRGDEFQCGDGTCVLAIKHCNQEQDCPDGSDEAGCLQGLNECLH NGGCSHICADLKIGFECTCP
AGFQLLDQKTCGDIDEC-K-DPDACSQICVNYKGYFKCECYPGYE DLLTKN'CKΑAAGKSPSLIFTNRHE
WRIDLM---α YSRLIPMLKNW.ALDVEVATNRIYWCD^
EGLAVDWVHKHIYWTDSGNKTISVATVDGGRRRTLFSRNLSEP-RAIAVDPLRGFMYWSDWGDQAKIEK
SGLNGVDRQTLVSDNIEWPNGITLDLLSQRLY VDSKLHQLSSIDFSGGNRKTLISSTDFLSHPFGIA
VFEDKVF TDLENEAI FS ANRLNGLE I S IL AENLNNPHD I VI FHELKQPRAPDACELS VQPNGGCE YL
CLPAPQISSHSPKYTCACPDT LGPDMKRCYRAPQSTSTTTLASTMTRTVPATTRAPGTTVHRSTYQ
NHSTETPSLTAAVPSSVSVPRVPSISPSTLRPATSNHSQHYANEDSKLΞ
NOV28d, CG55256-01 SEQ ID NO: 643 [2537 bp DNA Sequence ORF Start: ATG at 30 ORF Stop: TGA at 2505
TGTTTTTTTTCTTCAGTACTTTAAATGTCATGCCACTCTCCTGGCCTGTAAGCTTTCCACAGAGAAGC
CTGCTGCCAGACCCATTGGAGCTTCTTTGTGTGTTATTTGTTTCTTTTTTCTTGCTGCTTTTACAGCT CCAGCATCTTGCGGCGGCAGCGGCTGATCCGCTGCTCGGCGGCCAAGGGCCGGCCAAGGATTGCGAAA AGGACCAATTCCAGTGCCGGAACGAGCGCTGCATCCCCTCTGTGTGGAGATGCGACGAGGACGATGAC TGCTTAGACCACAGCGACGAGGACGACTGCCCTGCAGCCAAGAAGACACCTGTGAGAAGTGACTTCAC CTGTGACAACGGCCACTGCATCCACGAACGGTGGAAGTGTGACGGCGAGGAGGAGTGTCCTGATGGCT CCGATGAGTCCGAGGCCACTTGCACCAAGCAGGTGTGTCCTGCAGAGAAGCTGAGCTGTGGACCCACT AGCCACAAGTGTGTACCTGCCTCGTGGCGCTGCGACGGGGAGAAGGACTGCGAGGGTGGAGCGGATGA GGCCGGCTGTGCTACCTCACTGGGCACCTGCCGTGGGGACGAGTTCCAGTGTGGGGATGGGACATGTG TCCTTGCAATCAAGCACTGCAACCAGGAGCAGGACTGTCCAGATGGGAGTGATGAAGCTGGCTGCCTA CAGGGGCTGAACGAGTGTCTGCACAACAATGGCGGCTGCTCACACATCTGCACTGACCTCAAGATTGG CTTTGAATGCACGTGCCCAGCAGGCTTCCAGCTCCTGGACCAGAAGACCTGTGGCGCTGGCAAGAGCC CATCCCTAATCTTCACCAACCGGCACGAGGTGCGGAGGATCGACCTGGTGAAGCGGAACTATTCACGC CTCATCCCCATGCTCAAGAATGTCGTGGCACTAGATGTGGAAGTTGCCACCAATCGCATCTACTGGTG TGACCTCTCCTACCGTAAGATCTATAGCGCCTACATGGACAAGGCCAGTGACCCGAAAGAGCAGGAGG TCCTCATTGACGAGCAGTTGCACTCTCCAGAGGGCCTGGCAGTGGACTGGGTCCACAAGCACATCTAC TGGACTGACTCGGGCAATAAGACCATCTCAGTGGCCACAGTTGATGGTGGCCGCCGACGCACTCTCTT CAGCCGTAACCTCAGTGAACCCCGGGCCATCGCTGTTGACCCCCTGCGAGGGTTCATGTATTGGTCTG ACTGGGGGGACCAGGCCAAGATTGAGAAATCTGGGCTCAACGGTGTGGACCGGCAAACACTGGTGTCA GACAATATTGAATGGCCCAACGGAATCACCTTGGATCTGCTGAGCCAGCGCTTGTACTGGGTAGACTC CAAGCTACACCAACTGTCCAGCATTGACTTCAGTGGAGGCAACAGAAAGACGCTGATCTCCTCCACTG ACTTCCTGAGCCACCCTTTTGGGATAGCTGTGTTTGAGGACAAGGTGTTCTGGACAGACCTGGAGAAC GAGGCCATTTTCAGTGCAAATCGGCTCAATGGCCTGGAAATCTCCATCCTGGCTGAGAACCTGAACAA CCCACATGACATTGTCATCTTCCATGAGCTGAAGCAGCCAAGAGCTCCAGATGCCTGTGAGCTGAGTG TCCAGCCTAATGGAGGCTGTGAATACCTGTGCCTTCCTGCTCCTCAGATCTCCAGCCACTCTCCCAAG TACACATGTGCCTGTCCTGACACAATGTGGCTGGGTCCAGACATGAAGAGGTGCTACCGAGCACCTCA ATCTACCTCAACTACGACGTTAGCTTCTACCATGACGAGGACAGTACCTGCCACCACAAGAGCCCCCG GGACCACCGTCCACAGATCCACCTACCAGAACCACAGCACAGAGACACCAAGCCTGACAGCTGCAGTC CCAAGCTCAGTTAGTGTCCCCAGGGCTCCCAGCATCAGCCCGTCTACCCTAAGCCCTGCAACCAGCAA CCACTCCCAGCACGCAAATGAAGACAGTAAGATGGGCTCAACAGTCACTGCCGCTGTTATCGGGATCA TCGTGCCCATAGCAAATGAAGACAGTAAGATGGGCTCAACAGTCACTGCCGCTGTTATCGGGATCATC GTGCCCATAGGTGATAGCCCTCCTGTGCATGAGTGGATACCTGATCTGGAGAAACTGGAAGCGGAAGA ACACCAAAAGCATGAATTTGACAACCCAGTCTACAGGAAAACAACAGAAGAAGAAGACGAAGATGAGC TCCATATAGGGAGAACTGCTCAGATTGGCCATGTCTATCCTGCAGCAATCAGCAGCTTTGATCGCCCA CTGTGGGCAGAGCCCTGTCTTGGGGAGACCAGAGAACCAGAAGACCCAGCCCCTGCCCTGAAGGAGCT TTTTGTCTTGCCGGGGGAACCAAGGTCACAGCTGCACCAACTCCCGAAGAACCCTCTTTCCGAGCTGC CTGTCGTCAAATCCAAGCAGCGAGTGGCATTAAGCCTTGAAGATGATGGACTACCCTGAGGATGGGAT CACCCCCTTCGTGCCTCATGG
NOV28d, CG55256-01 SEQ ID NO: 644 825 aa ΪMW at 90830.8kD Protein Sequence
MPLSWPVSFPQRSLLPDPLELLCVLFVSFFLLLLQLQHLAAAAADPLLGGQGPAKDCEKDQFQCRNER
CIPSVWRCDEDDDCLDHSDEDDCPAAKKTPVRSDFTCDNGHCIHER KCDGEEECPDGSDESEATCTK
QVCPAEKLSCGPTSHKCVPAS RCDGEKDCEGGADEAGCATSLGTCRGDEFQCGDGTCVLAIKHCNQE
QDCPDGSDEAGCLQGLNECLHNNGGCSHICTDLKIGFECTCPAGFQLLDQKTCGAGKSPSLIFTNRHE RIDLVKR-I-TYSRLIPMLKNW-ALDVEVAT^
EGLAVD VHKHIY TDSGNKTISVATVDGGRRRTLFSRNLSEPRAIAVDPLRGFMY SDWGDQAKIEK
SGLNGVDRQTLVSDNIE PNGITLDLLSQRLY VDSKLHQLSSIDFSGGNRKTLISSTDFLSHPFGIA
VFEDKVF TDLENΞAIFSANRLNGLEISILAENLNNPHDIVIFHEL QPRAPDACELSVQPNGGCEYL
CLPAPQISSHSP---CfTCACPDTMWLGPDMKRCYRAPQSTSTTTLASTMTRTVPATTRAPGTTVHRSTYQ
-^STETPSLT-AAVPSSVSVP-RAPSISPSTLSPATSNHSQH-A EDS-^GSTVTAAVIGIIVPIANEDSK GSTVTAAVIGIIVPIGDSPPVHE IPDLEKLEAEEHQKHEFDNPVYRKTTEEEDEDELHIGRTAQIG
HVYPAAISSFDRPL AEPCLGETREPEDPAPALKELFVLPGEPRSQLHQLP NPLSELPWKSKQRVA
LSLEDDGLP
NOV28e, CG55256-02 SEQ ID NO: 645 J3039 bp DNA Sequence ORF Start: ATG at 1 |ORF Stop: TGA at 3037
ATGGGCCTCCCCGAGCCGGGCCCTCTCCGGCTTCTGGCGCTGCTGCTGCTGCTGCTGCTGCTGCTGCT GCTGCGGCTCCAGCATCTTGCGGCGGCAGCGGCTGATCCGCTGCTCGGCGGCCAAGGGCCGGCCAAGG AGTGCGAAAAGGACCAATTCCAGTGCCGGAACGAGCGCTGCATCCCCTCTGTGTGGAGATGCGACGAG GACGATGACTGCTTAGACCACAGCGACGAGGACGACTGCCCCAAGAAGACCTGTGCAGACAGTGACTT CACCTGTGACAACGGCCACTGCATCCACGAACGGTGGAAGTGTGACGGCGAGGAGGAGTGTCCTGATG GCTCCGATGAGTCCGAGGCCACTTGCACCAAGCAGGTGTGTCCTGCAGAGAAGCTGAGCTGTGGACCC ACCAGCCACAAGTGTGTACCTGCCTCGTGGCGCTGCGACGGGGAGAAGGACTGCGAGGGTGGAGCGGA TGAGGCCGGCTGTGCTACCTTGTGCGCCCCGCACGAGTTCCAGTGCGGCAACCGCTCGTGCCTGGCCG CCGTGTTCGTGTGCGACGGCGATGACGACTGTGGTGACGGCAGCGATGAGCGCGGCTGTGCAGACCCG GCCTGCGGGCCCCGCGAGTTCCGCTGCGGCGGCGATGGCGGCGGCGCCTGCATCCCGGAGCGCTGGGT CTGCGACCGCCAGTTTGACTGCGAGGACCGCTCGGACGAGGCAGCCGAGCTCTGCGGCCGCCCGGGCC CCGGGGCCACGTCCGCGCCCGCCGCCTGCGCCACCGTCTCCCAGTTCGCCTGCCGCAGCGGCGAGTGC GTGCACCTGGGCTGGCGCTGCGACGGCGACCGCGACTGCAAAGACAAATCGGACGAGGCCGACTGCCC ACTGGGCACCTGCCGTGGGGACGAGTTCCAGTGTGGGGATGGGACATGTGTCCTTGCAATCAAGCACT GCAACCAGGAGCAGGACTGTCCAGATGGGAGTGATGAAGCTGGCTGCCTACAGGAGTCACCCTGTGAG GGTCCCCGCAGATTTCAGTGTAAGAGTGGCAAGCGCGTGGACGGCGGGAAAGTGTGTGATGTGCAGAG GGACTGCCGGGACTGGTCGGATGAGCTTCTGAAAGTGTGGTGCGTCTCCTACCATCCCCCTCCTGGGC TGAACGAGTGTCTGCACAACAATGGCGGCTGCTCACACATCTGCACTGACCTCAAGATTGGCTTTGAA TGCACGTGCCCAGCAGGCTTCCAGCTCCTGGACCAGAAGACCTGTGGCGACATTGATGAGTGCAAGGA CCCAGATGCCTGCAGCCAGATCTGTGTCAATTACAAGGGCTATTTTAAGTGTGAGTGCTACCCTGGCT ACGAGATGGACCTACTGACCAAGAACTGCAAGGCTGCTGCTGGAAAGAGCCCATCCCTAATCTTCACC AACCGGCACGAGGTGCGGAGGATCGACCTGGTGAAGCGGAACTATTCACGCCTCATCCCCATGCTCAA GAATGTCGTGGCACTAGATGTGGAAGTTGCCACCAATCGCATCTACTGGTGTGACCTCTCCTACCGTA AGATCTATAGCGCCTACATGGACAAGGCCAGTGACCCGAAAGAGCAGGAGGTCCTCATTGACGAGCAG TTGCACTCTCCAGAGGGCCTGGCAGTGGACTGGGTCCACAAGCACATCTACTGGACTGACTCGGGCAA TAAGACCATCTCAGTGGCCACAGTTGATGGTGGCCGCCGACGCACTCTCTTCAGCCGTAACCTCAGTG AACCCCGGGCCATCGCTGTTGACCCCCTGCGAGGGTTCATGTATTGGTCTGACTGGGGGGACCAGGCC AAGATTGAGAAATCTGGGCTCAACGGTGTGGACCGGCAAACACTGGTGTCAGACAATATTGAATGGCC CAACGGAATCACCCTGGATCTGCTGAGCCAGCGCTTGTACTGGGTAGACTCCAAGCTACACCAACTGT CCAGCATTGACTTCAGTGGAGGCAACAGAAAGACGCTGATCTCCTCCACTGACTTCCTGAGCCACCCT TTTGGGATAGCTGTGTTTGAGGACAAGGTGTTCTGGACAGACCTGGAGAACGAGGCCATTTTCAGTGC AAATCGGCTCAATGGCCTGGAAATCTCCATCCTGGCTGAGAACCTCAACAACCCACATGACATTGTCA TCTTCCATGAGCTGAAGCAGCCAAGAGCTCCAGATGCCTGTGAGCTGAGTGTCCAGCCTAATGGAGGC TGTGAATACCTGTGCCTTCCTGCTCCTCAGATCTCCAGCCACTCTCCCAAGTACACATGTGCCTGTCC TGACACAATGTGGCTGGGTCCAGACATGAAGAGGTGCTACCGAGCACCTCAATCTACCTCAACTACGA CGTTAGCTTCTACCATGACGAGGACAGTACCTGCCACCACAAGAGCCCCCGGGACCACCGTCCACAGA TCCACCTACCAGAACCACAGCACAGAGACACCAAGCCTGACAGCTGCAGTCCCAAGCTCAGTTAGTGT CCCCAGGGCTCCCAGCATCAGCCCGTCTACCCTAAGCCCTGCAACCAGCAACCACTCCCAGCACTATG CAAΆTGAΆGACAGTAAGATGGGCTCAACAGTCACTG GTGATAGCCCTCCTGTGCATGAGTGGATACCTGATCTGGAGAAACTGGAAGCGGAAGAACACCAAAAG CATGAATTTTGACAACCCAGTCTACAGGAAAACAACAGAAGAAGAAGATGAAGATGAGCTCCATATAG GGAGAACTGCTCAGATTGGCCATGTCTATCCTGCAGCAATCAGCAGCTTTGATCGCCCACTGTGGGCA GAGCCCTGTCTTGGGGAGACCAGAGAACCGGAAGACCCAGCCCCTGCCCTCAAGGAGCTTTTTGTCTT GCCGGGGGAACCAAGGTCACAGCTGCACCAACTCCCGAAGAACCCTCTTTCCGAGCTGCCTGTCGTCA AATCCAAGCGAGTGGCATTAAGCCTTGAAGATGATGGACTACCCTGA
NOV28e, CG55256-02 SEQ ID NO: 6461012 aa MWat 111334.6kD Protein Sequence
MGLPEPGPLRLLALLLLLLLLLLLRLQHLAAAAADPLLGGQGPAKECEKDQFQCRNERCIPSVWRCDE
DDDCLDHSDEDDCPKKTCADSDFTCDNGHCIHERWKCDGEEECPDGSDESEATCTKQVCPAEKLSCGP
TSHKCVPAS RCDGEKDCEGGADEAGCATLCAPHEFQCGNRSCLAAVFVCDGDDDCGDGSDERGCADP
ACGPREFRCGGDGGGACIPER VCDRQFDCEDRSDEAAELCGRPGPGATSAPAACATVSQFACRSGEC
VHLG RCDGDRDCKDKSDEADCPLGTCRGDEFQCGDGTCVLAIKHCNQEQDCPDGSDEAGCLQESPCE
GPRRFQCKSG----RVDGGKVCDVQRDCRD SDELLK-VWCVSYHPPPGLNECLI--N GGCSHICTDLKIGFE
CTCPAGFQLLDQKTCGDIDECKDPDACSQICVNYKGYFKCECYPGYEMDLLT-K-NCKAAAGKSPSLIFT
ITOHEVRRIDLVKRNYSRLIPMLK-IrVV-ALDVEVATlrølYWCDLSYRKIYSAY DKASDP-KEQEVLIDEQ
LHSPEGLAVD VHKHIY TDSGNKTISVATVDGGRRRTLFSRNLSEPRAIAVDPLRGFMY SDWGDQA
KIEKSGLNGVDRQTLVSDNIEWPNGITLDLLSQRLY VDSKLHQLSSIDFSGGNRKTLISSTDFLSHP
FGIAVFEDKVF TDLENEAIFSA RLNGLEISILAENL NPHDIVIFHELKQPRAPDACELSVQPNGG
CEYLCLPAPQISSHSPKYTCACPDTMWLGPD KRCYRAPQSTSTTTLAST TRTVPATTRAPGTTVHR
STYQ HSTETPSLTAAVPSSVSVPRAPSISPSTLSPATSNHSQHYANEDS MGSTVTAAVIGIIVPIV
VIALLCMSGYLIWRlrøKRKNTKSi-NFDNPVYRKTTEEEDEDEL
EPCLGETREPEDPAPALKELFVLPGEPRSQLHQLPKNPLSELPWKSKRVALSLEDDGLP
NOV28f, CG55256-03 SEQ ID NO: 647 2537 bp DNA Sequence ORF Start: ATG at 1 ORF Stop: TGA at 2086
ATGGGCCTCCCCGAGCCGGGCCCTCTCCGGCTTCTGGCGCTGCTGCTGCTGCTGCTGCTGCTGCTGCT GCTGCGGCTCCAGCATCTTGCGGCGGCAGCGGCTGATCCGCTGCTCGGCGGCCAAGGGCCGGCCAAGG ATTGCGAAAAGGACCAATTCCAGTGCCGGAACGAGCGCTGCATCCCCTCTGTGTGGAGATGCGACGAG GACGATGACTGCTTAGACCACAGCGACGAGGACGACTGCCCCAAGAAGACCTGTGCAGACAGTGACTT CACCTGTGACAACGGCCACTGCATCCACGAACGGTGGAAGTGTGACGGCGAGGAGGAGTGTCCTGATG GCTCCGATGAGTCCGAGGCCACTTGCACCAAGCAGGTGTGTCCTGCAGAGAAGCTGAGCTGTGGACCC ACCAGCCACAAGTGTGTACCTGCCTCGTGGCGCTGCGACGGGGAGAAGGACTGCGAGGGTGGAGCGGA TGAGGCCGGCTGTGCTACCTCACTGGGCACCTGCCGTGGGGACGAGTTCCAGTGTGGGGATGGGACAT GTGTCCTTGCAATCAAGCACTGCAACCAGGAGCAGGACTGTCCAGATGGGAGTGATGAAGCTGGCTGC CTACAGGGGCTGAACGAGTGTCTGCACAACAATGGCGGCTGCTCACACATCTGCACTGACCTCAAGAT TGGCTTTGAATGCACGTGCCCAGCAGGCTTCCAGCTCCTGGACCAGAAGACCTGTGGCGACATTGATG AGTGCAAGGACCCAGATGCCTGCAGCCAGATCTGTGTCAATTACAAGGGCTATTTTAAGTGTGAGTGC TACCCTGGCTACGAGATGGACCTACTGACCAAGAACTGCAAGGCTGCTGCTGGAAAGAGCCCATCCCT AATCTTCACCAACCGGCACGAGGTGCGGAGGATCGACCTGGTGAAGCGGAACTATTCACGCCTCATCC CCATGCTCAAGAATGTCGTGGCACTAGATGTGGAAGTTGCCACCAATCGCATCTACTGGTGTGACCTC TCCTACCGTAAGATCTATAGCGCCTACATGGACAAGGCCAGTGACCCGAAAGAGCAGGAGGTCCTCAT TGACGAGCAGTTGCACTCTCCAGAGGGCCTGGCAGTGGACTGGGTCCACAAGCACATCTACTGGACTG ACTCGGGCAATAAGAACATCTCTGGTGGCCGCCGACGCACTCTCTTCAGCCGTAACCTCAGTGAACCC CGGGCCATCGCTGTTGACCCCCTGCGAGGGTTCATGTATTGGTCTGACTGGGGGGACCAGGCCAAGAT TGAGAAATCTGGGCTCAACGGTGTGGACCGGCAAACACTGGTGTCAGACAATATTGAATGGCCCAACG GAATCACCCTGGATCTGCTGAGCCAGCGCTTGTACTGGGTAGACTCCAAGCTACACCAACTGTCCAGC ATTGACTTCAGTGGAGGCAACAGAAAGACGCTGATCTCCTCCACTGACTTCCTGAGCCACCCTTTTGG GATAGCTGTGTTTGAGGACAAGGTGTTCTGGACAGACCTGGAGAACGAGGCCATTTTCAGTGCAAATC GGCTCAATGGCCTGGAAATCTCCATCCTGGCTGAGAACCTCAACAACCCACATGACATTGTCATCTTC CATGAGCTGAAGCAGCCAAGAGCTCCAGATGCCTGTGAGCTGAGTGTCCAGCCTAATGGAGGCTGTGA ATACCTGTGCCTTCCTGCTCCTCAGATCTCCAGCCACTCTCCCAAGTACACATGTGCCTGTCCTGACA CAATGTGGCTGGGTCCAGACATGAAGAGGTGCTACCGAGATGCAAATGAAGACAGTAAGATGGGCTCA ACAGTCACTGCCGCTGTTATCGGGATCATCGTGCCCATAGTGGTGATAGCCCTCCTGTGCATGAGTGG ATACCTGATCTGGAGAAACTGGAAGCGGAAGAACACCAAAAGCATGAATTTTGACAACCCAGTCTACA GGAAAACAACAGAAGAAGAAGATGAAGATGAGCTCCATATAGGGAGAACTGCTCAGATTGGCCATGTC TATCCTGCACGAGTGGCATTAAGCCTTGAAGATGATGGACTACCCTGAGGATGGGATCACCCCCTTCG TGCCTCATGGAATTCAGTCCCATGCACTACACTCCGGATGGTGTATGACTGGATGAATGGGTTTCTAT ATATGGGTCTGTGTGAGTGTATGTGTGTGTGTGATTTTTTTTTTTAAATTTATGTTGCGGAAAGGTAA CCACAAAGTTATGATGAACTGCAAACATCCAAAGGATGTGAGAGTTTTTCTATGTATAATGTTTTATA
CACTTTTTAACTGGTTGCACTACCCATGAGGAATTCGTGGAATGGCTACTGCTGACTAACATGATGCA
CATAACCAAATGGGGGCCAATGGCACAGTACCTTACTCATCATTTAAAAACTATATTTACAGAAGATG
TTTGGTTGCTGGGGGGCTTTTTTAGGTTTTGGGCATTTGTTTTTTGTAAATAAGATGATTATGCTTTG
TGGCTATCCATCAACATAAGT
NOV28f, CG55256-03 SEQ ID NO: 648 695 aa MW at 77399.4kD Protein Sequence
MGLPEPGPLRLLALLLLLLLLLLLRLQHLAAAAADPLLGGQGPA DCEKDQFQCR ERCIPSV RCDE
DDDCLDHSDEDDCPKKTCADSDFTCDNGHCIHER KCDGEEECPDGSDESEATCTKQVCPAEKLSCGP
TSHKCVPAS RCDGEKDCEGG-ADEAGCATSLGTCRGDEFQCGDGTCVLAIKHCNQEQDCPDGSDEAGC
LQGLNECLI---NNGGCSHICTDLKIGFECTCPAGFQLLDQKTCGDIDECKDPDACSQICVNYKGYFKCEC
YPGYEMDLLT-£-NCK--A-AΑGKSPSLIFT---roHEWRIDLVKrø
SYRKIYSAY DKASDPKEQEVLIDEQLHSPEGLAVD VHKHIY TDSGNKNISGGRRRTLFSRNLSEP
RAIAVDPLRGFMYWSD GDQAKIEKSGLNGVDRQTLVSDNIEWPNGITLDLLSQRLY V-DSKLHQLSS
IDFSGGNRKTLISSTDFLSHPFGIAVFEDKVF TDLENEAIFSANRLNGLEISILAENLNNPHDIVIF
HELKQPRAPDACELSVQPNGGCEYLCLPAPQISSHSPKYTCACPDTM LGPDMKRCYRDANEDSK GS
TVTAAVIGIIVPIVVIALLCMSGYLIWR-N KRK TKSMNFDNPVYRKTTEEEDEDELHIGRTAQIGHV
YPARVALSLEDDGLP
NOV28g, CG55256-04 SEQ ID NO: 649 2474 bp
DNA Sequence iORF Start: ATG at 30 ORF Stop: TGA at 2442
TGTTTTTTTTCTTCAGTACTTTAAATGTCATGCCACTCTCCTGGCCTGTAAGCTTTCCACAGAGAAGC
CTGCTGCCAGACCCATTGGAGCTTCTTTGTGTGTTATTTGTTTCTTTTTTCTTGCTGCTTTTACAGCT CCAGCATCTTGCGGCGGCAGCGGCTGATCCGCTGCTCGGCGGCCAAGGGCCGGCCAAGGATTGCGAAA AGGACCAATTCCAGTGCCGGAACGAGCGCTGCATCCCCTCTGTGTGGAGATGCGACGAGGACGATGAC TGCTTAGACCACAGCGACGAGGACGACTGCCCTGCAGCCAAGAAGACACCTGTGAGAAGTGACTTCAC CTGTGACAACGGCCACTGCATCCACGAACGGTGGAAGTGTGACGGCGAGGAGGAGTGTCCTGATGGCT CCGATGAGTCCGAGGCCACTTGCACCAAGCAGGTGTGTCCTGCAGAGAAGCTGAGCTGTGGACCCACT AGCCACAAGTGTGTACCTGCCTCGTGGCGCTGCGACGGGGAGAAGGACTGCGAGGGTGGAGCGGATGA GGCCGGCTGTGCTACCTCACTGGGCACCTGCCGTGGGGACGAGTTCCAGTGTGGGGATGGGACATGTG TCCTTGCAATCAAGCACTGCAACCAGGAGCAGGACTGTCCAGATGGGAGTGATGAAGCTGGCTGCCTA CAGGGGCTGAACGAGTGTCTGCACAACAATGGCGGCTGCTCACACATCTGCACTGACCTCAAGATTGG CTTTGAATGCACGTGCCCAGCAGGCTTCCAGCTCCTGGACCAGAAGACCTGTGGCGCTGGCAAGAGCC CATCCCTAATCTTCACCAACCGGCACGAGGTGCGGAGGATCGACCTGGTGAAGCGGAACTATTCACGC CTCATCCCCATGCTCAAGAATGTCGTGGCACTAGATGTGGAAGTTGCCACCAATCGCATCTACTGGTG TGACCTCTCCTACCGTAAGATCTATAGCGCCTACATGGACAAGGCCAGTGACCCGAAAGAGCAGGAGG TCCTCATTGACGAGCAGTTGCACTCTCCAGAGGGCCTGGCAGTGGACTGGGTCCACAAGCACATCTAC TGGACTGACTCGGGCAATAAGACCATCTCAGTGGCCACAGTTGATGGTGGCCGCCGACGCACTCTCTT CAGCCGTAACCTCAGTGAACCCCGGGCCATCGCTGTTGACCCCCTGCGAGGGTTCATGTATTGGTCTG ACTGGGGGGACCAGGCCAAGATTGAGAAATCTGGGCTCAACGGTGTGGACCGGCAAACACTGGTGTCA GACAATATTGAATGGCCCAACGGAATCACCTTGGATCTGCTGAGCCAGCGCTTGTACTGGGTAGACTC CAAGCTACACCAACTGTCCAGCATTGACTTCAGTGGAGGCAACAGAAAGACGCTGATCTCCTCCACTG ACTTCCTGAGCCACCCTTTTGGGATAGCTGTGTTTGAGGACAAGGTGTTCTGGACAGACCTGGAGAAC GAGGCCATTTTCAGTGCAAATCGGCTCAATGGCCTGGAAATCTCCATCCTGGCTGAGAACCTGAACAA CCCACATGACATTGTCATCTTCCATGAGCTGAAGCAGCCAAGAGCTCCAGATGCCTGTGAGCTGAGTG TCCAGCCTAATGGAGGCTGTGAATACCTGTGCCTTCCTGCTCCTCAGATCTCCAGCCACTCTCCCAAG TACACATGTGCCTGTCCTGACACAATGTGGCTGGGTCCAGACATGAAGAGGTGCTACCGAGCACCTCA ATCTACCTCAACTACGACGTTAGCTTCTACCATGACGAGGACAGTACCTGCCACCACAAGAGCCCCCG GGACCACCGTCCACAGATCCACCTACCAGAACCACAGCACAGAGACACCAAGCCTGACAGCTGCAGTC CCAAGCTCAGTTAGTGTCCCCAGGGCTCCCAGCATCAGCCCGTCTACCCTAAGCCCTGCAACCAGCAA CCACTCCCAGCACTATGCAAATGAAGACAGTAAGATGGGCTCAACAGTCACTGCCGCTGTTATCGGGA TCATCGTGCCCATAGTGGTGATAGCCCTCCTGTGCATGAGTGGATACCTGATCTGGAGAAACTGGAAG CGGAAGAACACCAAAAGCATGAATTTTGACAACCCAGTCTACAGGAAAACAACAGAAGAAGAAGACGA AGATGAGCTCCATATAGGGAGAACTGCTCAGATTGGCCATGTCTATCCTGCAGCAATCAGCAGCTTTG ATCGCCCACTGTGGGCAGAGCCCTGTCTTGGGGAGACCAGAGAACCGGAAGACCCAGCCCCTGCCCTC AAGGAGCTTTTTGTCTTGCCGGGGGAACCAAGGTCACAGCTGCACCAACTCCCGAAGAACCCTCTTTC CGAGCTGCCTGTCGTCAAATCCAAGCGAGTGGCATTAAGCCTTGAAGATGATGGACTACCCTGAGGAT GGGATCACCCCCTTCGTGCCTCATGG
NOV28g, CG55256-04 jSEQ ID NO: 650 |804 aa |MW at 88873.0kD Protein Sequence
MPLSWPVSFPQRSLLPDPLELLCVLFVSFFLLLLQLQHL-A-AAAADPLLGGQGPAKDCEKDQFQCR-NER CIPSVWRCDEDDDCLDHSDEDDCPAAKKTPVRSDFTCDNGHCIHER KCDGEEECPDGSDESEATCTK QVCPAEKLSCGPTSHKCVPAS RCDGEKDCEGGADEAGCATSLGTCRGDEFQCGDGTCVLAIKHCNQE QDCPDGSDEAGCLQGLNECLHNNGGCSHICTDLKIGFECTCPAGFQLLDQKTCGAGKSPSLIFT-NRHE VRRIDLVK-R YSRLIP LK-NΛA-'ALDVEVATNRIY CDLSYRKIYSAYi DKASDPKEQEVLIDEQLHSP EGLAVD VHKHIY TDSGNKTISVATVDGGRRRTLFSRNLSEPRAIAVDPLRGFMYWSD GDQAKIEK SGLNGVDRQTLVSDNIE PNGITLDLLSQRLY VDS LHQLSSIDFSGGNRKTLISSTDFLSHPFGIA VFEDKVF TDLENEAIFSANRLNGLEISILAENLNNPHDIVIFHELKQPRAPDACELSVQPNGGCEYL CLPAPQISSHSPKYTCACPDTM LGPDMKRCYRAPQSTSTTTLASTMTRTVPATTRAPGTTVHRSTYQ ---raSTETPSLTAAVPSSVSVPRAPSISPSTLSPATSNHSQHY -NEDSK GSTVTAAVIGIIVPIVVIAL LCMSGYLI RN IO-l---αjTKS-MNFDNPVYRKTTEEEDEDELHIGRTAQIGHVYPAAISSFDRPL AEPCL GETREPEDPAPALKELFVLPGEPRSQLHQLP NPLSELPWKSKRVALSLEDDGLP
NOV28h, CG55256-05 SEQ ID NO: 651 4150 bp
DNA Sequence ORF Start: ATG at 103 ORF Stop: TGA at 2674
GCAGCGGCAACCCCGGCGCCGCGGCAAGGACTCGGAGGGCTGAGACGCGGCGGCGGCGGCGCGGGGAG
CGCGGGGCGCGGCGGCCGGAGCCCCGGGCCCGCCATGGGCCTCCCCGAGCCGGGCCCTCTCCGGCTTC
TGGCGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCGGCTCCAGCATCTTGCGGCGGCAGCGGCT GATCCGCTGCTCGGCGGCCAAGGGCCGGCCAAGGAGTGCGAAAAGGACCAATTCCAGTGCCGGAACGA GCGCTGCATCCCCTCTGTGTGGAGATGCGACGAGGACGATGACTGCTTAGACCACAGCGACOAGGACG ACTGCCCCAAGAAGACCTGTGCAGACAGTGACTTCACCTGTGACAACGGCCACTGCATCCACGAACGG TGGAAGTGTGACGGCGAGGAGGAGTGTCCTGATGGCTCCGATGAGTCCGAGGCCACTTGCACACTGGG CACCTGCCGTGGGGACGAGTTCCAGTGTGGGGATGGGACATGTGTCCTTGCAATCAAGCACTGCAACC AGGAGCAGGACTGTCCAGATGGGAGTGATGAAGCTGGCTGCCTACAGGAGTCACCCTGTGAGGGTCCC CGCAGATTTCAGTGTAAGAGTGGCAAGCGCGTGGACGGCGGGAAAGTGTGTGATGTGCAGAGGGACTG CCGGGACTGGTCGGATGAGCTTCTGAAAGTGTGGTGCGGTGCCTGTCTACGCCCACTGGCTGGACTCA GTCTCCTACCATCCCCCTCCTGGAGCCCATGTCCCTCCCCAGGGCTGAACGAGTGTCTGCACAACAAT GGCGGCTGCTCACACATCTGCACTGACCTCAAGATTGGCTTTGAATGCACGTGCCCAGCAGGCTTCCA GCTCCTGGACCAGAAGACCTGTGGCGACATTGATGAGTGCAAGGACCCAGATGCCTGCAGCCAGATCT GTGTCAATTACAAGGGCTATTTTAAGTGTGAGTGCTACCCTGGCTACGAGATGGACCTACTGACCAAG AACTGCAAGGCTGCTGCTGGCAAGAGCCCATCCCTAATCTTCACCAACCGGCACGAGGTGCGGAGGAT CGACCTGGTGAAGCGGAACTATTCACGCCTCATCCCCATGCTCAAGAATGTCGTGGCACTAGATGTGG AAGTTGCCACCAATCGCATCTACTGGTGTGACCTCTCCTACCGTAAGATCTATAGCGCCTACATGGAC AAGGCCAGTGACCCGAAAGAGCAGGAGGTCCTCATTGACGAGCAGTTGCACTCTCCAGAGGGCCTGGC AGTGGACTGGGTCCACAAGCACATCTACTGGACTGACTCGGGCAATAAGACCATCTCAGTGGCCACAG TTGATGGTGGCCGCCGACGCACTCTCTTCAGCCGTAACCTCAGTGAACCCCGGGCCATCGCTGTTGAC CCCCTGCGAGGGTTCATGTATTGGTCTGACTGGGGGGACCAGGCCAAGATTGAGAAATCTGGGCTCAA CGGTGTGGACCGGCAAACACTGGTGTCAGACAATATTGAATGGCCCAACGGAATCACCCTGGATCTGC TGAGCCAGCGCTTGTACTGGGTAGACTCCAAGCTACACCAACTGTCCAGCATTGACTTCAGTGGAGGC AACAGAAAGACGCTGATCTCCTCCACTGACTTCCTGAGCCACCCTTTTGGGATAGCTGTGTTTGAGGA CAAGGTGTTCTGGACAGACCTGGAGAACGAGGCCATTTTCAGTGCAAATCGGCTCAATGGCCTGGAAA TCTCCATCCTGGCTGAGAACCTCAACAACCCACATGACATTGTCATCTTCCATGAGCTGAAGCAGCCA AGAGCTCCAGATGCCTGTGAGCTGAGTGTCCAGCCTAATGGAGGCTGTGAATACCTGTGCCTTCCTGC TCCTCAGATCTCCAGCCACTCTCCCAAGTACACATGTGCCTGTCCTGACACAATGTGGCTGGGTCCAG ACATGAAGAGGTGCTACCGAGCACCTCAATCTACCTCAACTACGACGTTAGCTTCTACCATGACGAGG ACAGTACCTGCCACCACAAGAGCCCCCGGGACCACCGTCCACAGATCCACCTACCAGAACCACAGCAC AGAGACACCAAGCCTGACAGCTGCAGTCCCAAGCTCAGTTAGTGTCCCCAGGGCTCCCAGCATCAGCC CGTCTACCCTAAGCCCTGCAACCAGCAACCACTCCCAGCACTATGCAAATGAAGACAGTAAGATGGGC TCAACAGTCACTGCCGCTGTTATCGGGATCATCGTGCCCATAGTGGTGATAGCCCTCCTGTGCATGAG TGGATACCTGATCTGGAGAAACTGGAAGCGGAAGAACACCAAAAGCATGAATTTTGACAACCCAGTCT ACAGGAAAACAACAGAAGAAGAAGATGAAGATGAGCTCCATATAGGGAGAACTGCTCAGATTGGCCAT GTCTATCCTGCAGCAATCAGCAGCTTTGATCGCCCACTGTGGGCAGAGCCCTGTCTTGGGGAGACCAG AGAACCGGAAGACCCAGCCCCTGCCCTCAAGGAGCTTTTTGTCTTGCCGGGGGAACCAAGGTCACAGC TGCACCAACTCCCGAAGAACCCTCTTTCCGAGCTGCCTGTCGTCAAATCCAAGCGAGTGGCATTAAGC CTTGAAGATGATGGACTACCCTGAGGATGGGATCACCCCCTTCGTGCCTCATGGAATTCAGTCCCATG CACTACACTCTGGATGGTGTATGACTGGATGAATGGGTTTCTATATATGGGTCTGTGTGAGTGTATGT GTGTGTGTGATTTTTTTTTTAAATTTATGTTGCGGAAAGGTAACCACAAAGTTATGATGAACTGCAAA CATCCAAAGGATGTGAGAGTTTTTCTATGTATAATGTTTTATACACTTTTTAACTGGTTGCACTACCC ATGAGGAATTCGTGGAATGGCTACTGCTGACTAACATGATGCACATAACCAAATGGGGGCCAATGGCA CAGTACCTTACTCATCATTTAAAAACTATATTTACAGAAGATGTTTGGTTGCTGGGGGGGCTTTTTTG
GGTTTTGGGGCATTTGTTTTTTGTAAATAAGATGATTATGCTTTGTGGCTATCCATCAACATAAGTAA
AAAAAAAAAAAAAACACTTCAACTCCCTCCCCCATTTAGATTATTTATTAACATATTTTAAAAATCAG
ATGAGTTCTATAAATAATTTAGAGAAGTGAGAGTATTTATTTTTGGCATGTTTGGCCCACCACACAGA
CTCTGTGTGTGTATGTGTGTGTTTATATGTGTATGTGTGTGACAGGAAAATCTGTAGAGAAGAGGCAC
ATCTATGGCTACTGTTCAAATACATAAAGATAAATTTATTTTCACACAGTCCACAAGGGGTATATCTT
GTAGTTTTCAGAAAAGCCTTTGGAAATCTGGATCAGGAAATAGATACCATGGTTTGTGCAATTATGTA^
GTAAAAAAGGCAAATCTTTTCACCTCTGGCTATTCCTGAGACCCCAGGAAGTCAGGAAAAGCCTTTCA
GCTCACCCATGGCTGCTGTGACTCCTACCAGGGCTTTCTTGGCTTTGGCGAAGGTCAGTGTACAGACA!
TTCCATGGTACCAGAGTGCTCAGAAAGTCAAGATAGGATATGCCTCACCCTCAGCTACTCCTTGTTTT lAAAGTTCAGCTCTTTGAGTAACTTCTTCAATTTCTTTCAGGACACTTGGGTTGAATTCAGTAAGTTTC
CTCTGAAGCACCCTGAAGGGTGCCATCCTTACAGAGCTAAGTGGAGACGTTTCCAGATCAGCCCAAGT
TTACTATAGAGACTGGCCCAGGCACTGAATGTCTAGGACATGCTGTGGATGAAGATAAAGATGGTGGAl
ATAGGTTTTATCACATCTCTTATTTCTCTTTTCCCCTTACTCTCTACCATTTCCTTTATGTGGGGAAA
CATTTTAAGGTAATAAATAGGTTACTTACCATCATATGTTCATATAGATGAAACTAATTTTTGGCTTA
AGTCAGAACAACTGGCCCCCAATTGAAGTCATATTTGTGGGGGGAAATGGCATACGCAATATTATATT
ATATTGGATATTTATGTTCACACAGGAATTTGGTTTACTGCTTTGTAAATAAAAGGGAAAACTCCGGG!
TA
NOV28h, CG55256-05 SEQ ID NO: 652 857 aa MW at 95006.1kD Protein Sequence
MGLPEPGPLRLLALLLLLLLLLLLRLQHLAAAAADPLLGGQGPAKECEKDQFQCR ERCIPSV RCDE
DDDCLDHSDEDDCPKKTCADSDFTCDNGHCIHER CDGEEECPDGSDESEATCTLGTCRGDEFQCGD
GTCVLAIKHCNQEQDCPDGSDEAGCLQESPCΞGPRRFQC-.-^G--- RVDGGKVCDVQRDCRDWSDELLKV
CGACLRPLAGLSLLPSPS SPCPSPGL ECLHN GGCSHICTDLKIGFECTCPAGFQLLDQKTCGDID
EC-l- PDACSQICViraCGYFKCECYPGYEMDLLTKNC--- AA^
PMLKlTVV-ALDVEVATN-RIY CDLSYRKIYSAYMDKASDPIΕQEVLIDEQLHSPEGLAVD VHKHIY T
DSGNKTISVATVDGGRRRTLFSRNLSEPRAIAVDPLRGFMY SD GDQAKIEKSGLNGVDRQTLVSDN
IE PNGITLDLLSQRLYWVDSKLHQLSSIDFSGGNRKTLISSTDFLSHPFGIAVFEDKVF TDLENEA
I FS ANRLNGLE I S ILAENL NPHD I VIFHELKQPRAPDACELS VQPNGGCE YLCLPAPQ I S SHS PKYT
CACPDTMWLGPDMKRCYRAPQSTSTTTLAST TRTVPATTRAPGTTVHRSTYQNHSTETPSLTAAVPS
SVSVPRAPSISPSTLSPATS-^raSQHY-AMEDSK GSTVT-AAVIGIIVPIVVIALLCMSGYLI -RlsWKRK
NTKS-MNFDNPVYRKTTEEEDEDELHIGRTAQIGHVYPAAISSFDRPL AEPCLGETREPEDPAPALKE
LFVLPGEPRSQLHQLPK PLSELPWKSKRVALSLEDDGLP
NOV28i, CG55256-06 SEQ ID NO: 653 4180 bp
DNA Sequence 0RF Start: ATG at 163 ORF Stop: TGA at 2704
ATGGCCTCCCCGAACGTATGGGCCTCCCCGAGCGTATGGGCCTCCCCGAGCGTATGGGCCTCCCCGAG
CGTATGGGCCTCACCCGAGCGTATGGGCCTCCCCGAGCGTATGGGCCTCCCCGAGCGTATGGGCCTCC
CCGAGCGTATGGGCCTCCCCGAGCGTATGGGCCTCCCCGAGCCGGGCCCTCTCCGGCTTCTGGCGCTG
CTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCAGCTCCAGCATCTTGCGGCGGCAGCGGCTGATCCGCT GCTCGGCGGCCAAGGGCCGGCCAAGGATTGCGAAAAGGACCAATTCCAGTGCCGGAACGAGCGCTGCA TCCCCTCTGTGTGGAGATGCGACGAGGACGATGACTGCTTAGACCACAGCGACGAGGACGACTGCCCC AAGAAGACCTGTGCAGACAGTGACTTCACCTGTGACAACGGCCACTGCATCCACGAACGGTGGAAGTG TGACGGCGAGGAGGAGTGTCCTGATGGCTCCGATGAGTCCGAGGCCACTTGCACCAAGCAGGTGTGTC CTGCAGAGAAGCTGAGCTGTGGACCCACCAGCCACAAGTGTGTACCTGCCTCGTGGCGCTGCGACGGG GAGAAGGACTGCGAGGGTGGAGCGGATGAGGCCGGCTGTGCTACCTCACTGGGCACCTGCCGTGGGGA CGAGTTCCAGTGTGGGGATGGGACATGTGTCCTTGCAATCAAGCACTGCAACCAGGAGCAGGACTGTC CAGATGGGAGTGATGAAGCTGGCTGCCTACAGGTTCCGCCAACATTCCTGGGAAACAGGAGGAGGCCC AGGGGGCTGAACGAGTGTCTGCACAACAATGGCGGCTGCTCACACATCTGCACTGACCTCAAGATTGG CTTTGAATGCACGTGCCCAGCAGGCTTCCAGCTCCTGGACCAGAAGACCTGTGGCGACATTGATGAGT GCAAGGACCCAGATGCCTGCAGCCAGATCTGTGTCAATTACAAGGGCTATTTTAAGTGTGAGTGCTAC CCTGGCTACGAGATGGACCTACTGACCAAGAACTGCAAGGCTGCTGCTGGAAAGAGCCCATCCCTAAT CTTCACCAACCGGCACGAGGTGCGGAGGATCGACCTGGTGAAGCGGAACTATTCACGCCTCATCCCCA TGCTCAAGAATGTCGTGGCACTAGATGTGGAAGTTGCCACCAATCGCATCTACTGGTGTGACCTCTCC TACCGTAAGATCTATAGCGCCTACATGGACAAGGCCAGTGACCCGAAAGAGCAGGAGGTCCTCATTGA CGAGCAGTTGCACTCTCCAGAGGGCCTGGCAGTGGACTGGGTCCACAAGCACATCTACTGGACTGACT CGGGCAATAAGACCATCTCAGTGGCCACAGTTGATGGTGGCCGCCGACGCACTCTCTTCAGCCGTAAC CTCAGTGAACCCCGGGCCATCGCTGTTGACCCCCTGCGAGGGTTCATGTATTGGTCTGACTGGGGGGA CCAGGCCAAGATTGAGAAATCTGGGCTCAACGGTGTGGACCGGCAAACACTGGTGTCAGACAATATTG AATGGCCCAACGGAATCACCCTGGATCTGCTGAGCCAGCGCTTGTACTGGGTAGACTCCAAGCTACAC CAACTGTCCAGCATTGACTTCAGTGGAGGCAACAGAAAGACGCTGATCTCCTCCACTGACTTCCTGAG CCACCCTTTTGGGATAGCTGTGTTTGAGGACAAGGTGTTCTGGACAGACCTGGAGAACGAGGCCATTT TCAGTGCAAATCGGCTCAATGGCCTGGAAATCTCCATCCTGGCTGAGAACCTCAACAACCCACATGAC ATTGTCATCTTCCATGAGCTGAAGCAGCCAAGAGCTCCAGATGCCTGTGAGCTGAGTGTCCAGCCTAA TGGAGGCTGTGAATACCTGTGCCTTCCTGCTCCTCAGATCTCCAGCCACTCTCCCAAGTACACATGTG CCTGTCCTGACACAATGTGGCTGGGTCCAGACATGAAGAGGTGCTACCGAGCACCTCAATCTACCTCA ACTACGACGTTAGCTTCTACCATGACGAGGACAGTACCTGCCACCACAAGAGCCCCCGGGACCACCGT CCACAGATCCACCTACCAGAACCACAGCACAGAGACACCAAGCCTGACAGCTGCAGTCCCAAGCTCAG TTAGTGTCCCCAGGGCTCCCAGCATCAGCCCGTCTACCCTAAGCCCTGCAACCAGCAACCACTCCCAG CACTATGCAAATGAAGACAGTAAGATGGGCTCAACAGTCACTGCCGCTGTTATCGGGATCATCGTGCC CATAGTGGTGATAGCCCTCCTGTGCATGAGTGGATACCTGATCTGGAGAAACTGGAAGCGGAAGAACA CCAAAAGCATGAATTTTGACAACCCAGTCTACAGGAAAACAACAGAAGAAGAAGATGAAGATGAGCTC CATATAGGGAGAACTGCTCAGATTGGCCATGTCTATCCTGCAGCAATCAGCAGCTTTGATCGCCCACT GTGGGCAGAGCCCTGTCTTGGGGAGACCAGAGAACCGGAAGACCCAGCCCCTGCCCTCAAGGAGCTTT TTGTCTTGCCGGGGGAACCAAGGTCACAGCTGCACCAACTCCCGAAGAACCCTCTTTCCGAGCTGCCT GTCGTCAAATCCAAGCGAGTGGCATTAAGCCTTGAAGATGATGGACTACCCTGAGGATGGGATCACCC
CCTTCGTGCCTCATGGAATTCAGTCCCATGCACTACACTCTGGATGGTGTATGACTGGATGAATGGGT
TTCTATATATGGGTCTGTGTGAGTGTATGTGTGTGTGTGATTTTTTTTTTAAATTTATGTTGCGGAAAi
GGTAACCACAAAGTTATGATGAACTGCAAACATCCAAAGGATGTGAGAGTTTTTCTATGTATAATGTT
TTATACACTTTTTAACTGGTTGCACTACCCATGAGGAATTCGTGGAATGGCTACTGCTGACTAACATGi lATGCACATAACCAAATGGGGGCCAATGGCACAGTACCTTACTCATCATTTAAAAACTATATTTACAGA
AGATGTTTGGTTGCTGGGGGGGCTTTTTTGGGTTTTGGGGCATTTGTTTTTTGTAAATAAGATGATTA:
TGCTTTGTGGCTATCCATCAACATAAGTAAAAAAAAAAAAAAAACACTTCAACTCCCTCCCCCATTTA
GATTATTTATTAACATATTTTAAAAATCAGATGAGTTCTATAAATAATTTAGAGAAGTGAGAGTATTT
ATTTTTGGCATGTTTGGCCCACCACACAGACTCTGTGTGTGTATGTGTGTGTTTATATGTGTATGTGT
GTGACAGGAAAATCTGTAGAGAAGAGGCACATCTATGGCTACTGTTCAAATACATAAAGATAAATTTA!
TTTTCACACAGTCCACAAGGGGTATATCTTGTAGTTTTCAGAAAAGCCTTTGGAAATCTGGATCAGGAj
AATAGATACCATGGTTTGTGCAATTATGTAGTAAAAAAGGCAAATCTTTTCACCTCTGGCTATTCCTG
AGACCCCAGGAAGTCAGGAAAAGCCTTTCAGCTCACCCATGGCTGCTGTGACTCCTACCAGGGCTTTC
TTGGCTTTGGCGAAGGTCAGTGTACAGACATTCCATGGTACCAGAGTGCTCAGAAAGTCAAGATAGGA! jTATGCCTCACCCTCAGCTACTCCTTGTTTTAAAGTTCAGCTCTTTGAGTAACTTCTTCAATTTCTTTC
AGGACACTTGGGTTGAATTCAGTAAGTTTCCTCTGAAGCACCCTGAAGGGTGCCATCCTTACAGAGCT
AAGTGGAGACGTTTCCAGATCAGCCCAAGTTTACTATAGAGACTGGCCCAGGCACTGAATGTCTAGG
CATGCTGTGGATGAAGATAAAGATGGTGGAATAGGTTTTATCACATCTCTTATTTCTCTTTTCCCCTT
ACTCTCTACCATTTCCTTTATGTGGGGAAACATTTTAAGGTAATAAATAGGTTACTTACCATCATATG
TTCATATAGATGAAACTAATTTTTGGCTTAAGTCAGAACAACTGGCCCCCAATTGAAGTCATATTTGT
GGGGGGAAATGGCATACGCAATATTATATTATATTGGATATTTATGTTCACACAGGAATTTGGTTTAC
TGCTTTGTAAATAAAAGGGAAAACTCCGGGTA
NOV28i, CG55256-06 SEQ ID NO: 654 847 aa MW at 93663.5kD Protein Sequence
MGLPEPGPLRLLALLLLLLLLLLLQLQHLAAAAADPLLGGQGPAKDCEKDQFQCRNERCIPSV RCDE
DDDCLDHSDEDDCPKKTC-ADSDFTCDNGHCIHERWKCDGEEECPDGSDESEATCTKQVCPAEKLSCGP
TSHKCVPAS RCDGEKDCEGGADEAGCATSLGTCRGDEFQCGDGTCVLAIKHCNQEQDCPDGSDEAGC
LQVPPTFLGNRRRPRGLNECLHNNGGCSHICTDLKIGFECTCPAGFQLLDQKTCGDIDECKDPDACSQ
ICVmKGYFKCECYPGYEMDLLTKNCK-AAAGKSPSLIFTNRHEWR
VEVATNRIY CDLSYRKIYSAYMDKASDPKEQEVLIDEQLHSPEGLAVDWVHKHIY TDSGNKTISVA
TVDGGRRRTLFSRNLSEPRAIAVDPLRGFMY SD GDQAKIEKSGLNGVDRQTLVSDNIEWPNGITLD
LLSQRLY VDSKLHQLSSIDFSGG RKTLISSTDFLSHPFGIAVFEDKVFWTDLENEAIFSANRLNGL
EISILAENLMNPHDIVIFHELKQPRAPDACELSVQP---TGGCEYLCLPAPQISSHSPKYTCACPDT LG
PDMKRCYRAPQSTSTTTLAST TRTVPATTRAPGTTVHRSTYQNHSTETPSLTAAVPSSVSVPRAPSI
SPSTLSPATSNHSQHYANEDSKMGSTVTAAVIGIIVPIVVIALLCMSGYLI -RlTO-^-- TKS-^
VYRKTTEEEDEDELHIGRTAQIGHVYPAAISSFDRPL AEPCLGETREPEDPAPALKELFVLPGEPRS
QLHQLPKNPLSELPWKSKRVALSLEDDGLP
NOV28J, CG55256-08 SEQ ID NO: 655 2656 bp
DNA Sequence ORF Start: ATG at 103 ORF Stop: TGA at 2428
GCAGCGGCAACCCCGGCGCCGCGGCAAGGACTCGGAGGGCTGAGACGCGGCGGCGGCGGCGCGGGGAG CGCGGGGCGCGGCGGCCGGAGCCCCGGGCCCGCCATGGGCCTCCCCGAGCCGGGCCCTCTCCGGCTTC TGGCGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCGGCTCCAGCATCTTGCGGCGGCAGCGGCT GATCCGCTGCTCGGCGGCCAAGGGCCGGCCAAGGAGTGCGAAAAGGACCAATTCCAGTGCCGGAACGA GCGCTGCATCCCCTCTGTGTGGAGATGCGACGAGGACGATGACTGCTTAGACCACAGCGACGAGGACG lACTGCCCCAAGAAGACCTGTGCAGACAGTGACTTCACCTGTGACAACGGCCACTGCATCCACGAACGG TGGAAGTGTGACGGCGAGGAGGAGTGTCCTGATGGCTCCGATGAGTCCGAGGCCACTTGCACCAAGCA GGTGTGTCCTGCAGAGAAGCTGAGCTGTGGACCCACCAGCCACAAGTGTGTACCTGCCTCGTGGCGCT GCGACGGGGAGAAGGACTGCGAGGGTGGAGCGGATGAGGCCGGCTGTGCTACCTCACTGGGCACCTGC CGTGGGGACGAGTTCCAGTGTGGGGATGGGACATGTGTCCTTGCAATCAAGCACTGCAACCAGGAGCA GGACTGTCCAGATGGGAGTGATGAAGCTGGCTGCCTACAGGGGCTGAACGAGTGTCTGCACAACAATG GCGGCTGCTCACACATCTGCACTGACCTCAAGATTGGCTTTGAATGCACGTGCCCAGCAGGCTTCCAG CTCCTGGACCAGAAGACCTGTGGCGACATTGATGAGTGCAAGGACCCAGATGCCTGCAGCCAGATCTG TGTCAATTACAAGGGCTATTTTAAGTGTGAGTGCTACCCTGGCTACGAGATGGACCTACTGACCAAGA ACTGCAAGGCTGCTGCTGGCAAGAGCCCATCCCTAATCTTCACCAACCGGCACGAGGTGCGGAGGATC GACCTGGTGAAGCGGAACTATTCACGCCTCATCCCCATGCTCAAGAATGTCGTGGCACTAGATGTGGA AGTTGCCACCAATCGCATCTACTGGTGTGACCTCTCCTACCGTAAGATCTATAGCGCCTACATGGACA AGGCCAGTGACCCGAAAGAGCAGGAGGTCCTCATTGACGAGCAGTTGCACTCTCCAGAGGGCCTGGCA GTGGACTGGGTCCACAAGCACATCTACTGGACTGACTCGGGCAATAAGACCATCTCAGTGGCCACAGT TGATGGTGGCCGCCGACGCACTCTCTTCAGCCGTAACCTCAGTGAACCCCGGGCCATCGCTGTTGGCC CCCTGCGAGGGTTCATGTATTGGTCTGACTGGGGGGACCAGGCCAAGATTGAGAAATCTGGGCTCAAC GGTGTGGACCGGCAAACACTGGTGTTAGACAATATTGAATGGCCCAACGGAATCACCCTGGATCTGCT GAGCCAGCGCTTGTACTGGGTAGACTCCAAGCTACACCAACTGTCCAGCATTGACTTCAGTGGAGGCA ACAGAAAGACGCTGATCTCCTCCACTGACTTCCTGAGCCACCCTTTTGGGATAGCTGTGTTTGAGGAC AAGGTGTTCTGGACAGACCTGGAGAACGAGGCCATTTTCAGTGCAAATCGGCTCAATGGCCTGGAAAT CTCCATCCTGGCTGAGAACCTCAACAACCCACATGACATTGTCATCTTCCATGAGCTGAAGCAGCCAA GAGCTCCAGATGCCTGTGAGCTGAGTGTCCAGCCTAATGGAGGCTGTGAATACCTGTGCCTTCCTGCT CCTCAGATCTCCAGCCACTCTCCCAAGTACACATGTGCCTGTCCTGACACAATGTGGCTGGGCCCAGA CATGAAGAGGTGCTACCGAGCACCTCAATCTACCTCAACTACGACGTTAGCTTCTACCATGACGAGGA CAGTACCTGCCACCACAAGAGCCCCCGGGACCACCGTCCACAGATCCACCTACCAGAACCACAGCACA GAGACACCAAGCCTGACAGCTGCAGTCCCAAGCTCAGTTAGTGTCCCCAGGGCTCCCAGCATCAGCCC GTCTACCCTAAGCCCTGCAACCAGCAACCACTCCCAGCACTATGCAAATGAAGACAGTAAGATGGGCT CAACAGTCACTGCCGCTGTTATCGGGATCATCGTGCCCATAGTGGTGATAGCCCTCCTGTGCATGAGT GGATACCTGATCTGGAGAAACTGGAAGCGGAAGAACACCAAAAGCATGAATTTTGACAACCCAGTCTA CAGGAAAACAACAGAAGAAGAAGACGAAGATGAGCTCCATATAGGGAGAACTGCTCAGATTGGCCATG TCTATCCTGCACGAGTGGCATTAAGCCTTGAAGATGATGGACTACCCTGAGGATGGGATCACCCCCTT
CGTGCCTCATGGAATTCAGTCCCATGCACTACACTCTGGAGGGTGTATGACTGGATGAATGGGTTTCT lATATATGGGTCTGTGTGAGTGTATGTGTGTGTGTGATTTTTTTTTTAAATTTATGTTGCGGAAAGGTA;
ACCACAAAGTTATGATGAACTGCAAACATCCAAAGGATGTGAGAGTTTTTCTATGTATAATGTTTTAT
ACAC
NOV28J, CG55256-08 SEQ ID NO: 656 775 aa MW at 85584.3kD Protein Sequence
MGLPEPGPLRLLALLLLLLLLLLLRLQHLAAAAADPLLGGQGPAKECEKDQFQC-RNERCIPSVWRCDE DDDCLDHSDEDDCPKKTCADSDFTCDNGHCIHERWKCDGEEECPDGSDESEATCTKQVCPAEKLSCGP TSHKCVPASWRCDGEKDCEGGADEAGCATSLGTCRGDEFQCGDGTCVLAIKHCNQEQDCPDGSDEAGC LQGLNECLH-NNGGCSHICTDLKIGFECTCPAGFQLLDQKTCGDIDECKDPDACSQICVNYKGYFKCEC: YPGYEJMDLLTKNCKAAAGKS PS LI FTNRHEVRRIDLVKRNYSRL I PMLKNWALDVE VATNRI YWCDL SYRKIYSAYMDKASDPKEQEVLIDEQLHSPEGLAVD VHKHIY TDSGNKTISVATVDGGRRRTLFSR NLSEP-RAIAVGPLRGFMY SDWGDQAKIEKSGLNGVDRQTLVLDNIEWPNGITLDLLSQRLY VDSKL HQLSSIDFSGGNR TLISSTDFLSHPFGIAVFEDKVFWTDLENEAIFSANRLNGLEISILAENLN PH DIVIFHELKQPRAPDACELSVQPNGGCEYLCLPAPQISSHSPKYTCACPDTMWLGPDMKRCYRAPQST STTTLAST TRTVPATTRAPGTTVHRSTYQNHSTETPSLTAAVPSSVSVPRAPS ISPSTLSPATS HS QHYA-NEDS--^GSTVTAAVIGIIVPIVVIALLCMSGYLI -RNW-KRKNTKS- NFDNPVYRKTTEEEDEDE LHIGRTAQIGHVYPARVALSLEDDGLP
NOV28k, CG55256-09 SEQ ID NO: 657 2623jp_ DNA Sequence ORF Start: ATG at 103 ORF Stop: TGA at 2605
GCAGCGGCAACCCCGGCGCCGCGGCAAGGACTCGGAGGGCTGAGACGCGGCGGCGGCGGCGCGGGGAG
CGCGGGGCGCGGCGGCCGGAGCCCCGGGCCCGCCATGGGCCTCCCCGAGCCGGGCCCTCTCCGGCTTC
TGGCGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCGGCTCCAGCATCTTGCGGCGGCAGCGGCT GATCCGCTGCTCGGCGGCCAAGGGCCGGCCAAGGATTGCGAAAAGGACCAATTCCAGTGCCGGAACGA iGCGCTGCATCCCCTCTGTGTGGAGATGCGACGAGGACGATGACTGCTTAGACCACAGCGACGAGGACG lACTGCCCCAAGAAGACCTGTGCAGACAGTGACTTCACCTGTGACAACGGCCACTGCATCCACGAACGG TGGAAGTGTGACGGCGAGGAGGAGTGTCCTGATGGCTCCGATGAGTCCGAGGCCACTTGCACCAAGCA GGTGTGTCCTGCAGAGAAGCTGAGCTGTGGACCCACCAGCCACAAGTGTGTACCTGCCTCGTGGCGCT GCGACGGGGAGAAGGACTGCGAGGGTGGAGCGGATGAGGCCGGCTGTGCTACCTCACTGGGCACCTGC CGTGGGGACGAGTTCCAGTGTGGGGATGGGACATGTGTCCTTGCAATCAAGCACTGCAACCAGGAGCA GGACTGTCCAGATGGGAGTGATGAAGCTGGCTGCCTACAGGGGCTGAACGAGTGTCTGCACAACAATG GCGGCTGCTCACACATCTGCACTGACCTCAAGATTGGCTTTGAATGCACGTGCCCAGCAGGCTTCCAG CTCCTGGACCAGAAGACCTGTGGCGACATTGATGAGTGCAAGGACCCAGATGCCTGCAGCCAGATCTG TGTCAATTACAAGGGCTATTTTAAGTGTGAGTGCTACCCTGGCTACGAGATGGACCTACTGACCAAGA ACTGCAAGGCTGCTGCTGGCAAGAGCCCATCCCTAATCTTCACCAACCGGCACGAGGTGCGGAGGATC GACCTGGTGAAGCGGAACTATTCACGCCTCATCCCCATGCTCAAGAATGTCGTGGCACTAGATGTGGA AGTTGCCACCAATCGCATCTACTGGTGTGACCTCTCCTACCGTAAGATCTATAGCGCCTACATGGACA AGGCCAGTGACCCGAAAGAGCAGGAGGTCCTCATTGACGAGCAGTTGCACTCTCCAGAGGGCCTGGCA GTGGACTGGGTCCACAAGCACATCTACTGGACTGACTCGGGCAATAAGACCATCTCAGTGGCCACAGT TGATGGTGGCCGCCGACGCACTCTCTTCAGCCGTAACCTCAGTGAACCCCGGGCCATCGCTGTTGACC CCCTGCGAGGGTTCATGTATTGGTCTGACTGGGGGGACCAGGCCAAGATTGAGAAATCTGGGCTCAAC GGTGTGGACCGGCAAACACTGGTGTCAGACAATATTGAATGGCCCAACGGAATCACCCTGGATCTGCT GAGCCAGCGCTTGTACTGGGTAGACTCCAAGCTACACCAACTGTCCAGCATTGACTTCAGTGGAGGCA ACAGAAAGACGCTGATCTCCTCCACTGACTTCCTGAGCCACCCTTTTGGGATAGCTGTGTTTGAGGAC AAGGTGTTCTGGACAGACCTGGAGAACGAGGCCATTTTCAGTGCAAATCGGCTCAATGGCCTGGAAAT CTCCATCCTGGCTGAGAACCTCAACAACCCACATGACATTGTCATCTTCCATGAGCTGAAGCAGCCAA GAGCTCCAGATGCCTGTGAGCTGAGTGTCCAGCCTAATGGAGGCTGTGAATACCTGTGCCTTCCTGCT CCTCAGATCTCCAGCCACTCTCCCAAGTACACATGTGCCTGTCCTGACACAATGTGGCTGGGTCCAGA CATGAAGAGGTGCTACCGAGCACCTCAATCTACCTCAACTACGACGTTAGCTTCTACCATGACGAGGA CAGTACCTGCCACCACAAGAGCCCCCGGGACCACCGTCCACAGATCCACCTACCAGAACCACAGCACA GAGACACCAAGCCTGACAGCTGCAGTCCCAAGCTCAGTTAGTGTCCCCAGGGCTCCCAGCATCAGCCC GTCTACCCTAAGCCCTGCAACCAGCAACCACTCCCAGCACTATGCAAATGAAGACAGTAAGATGGGCT CAACAGTCACTGCCGCTGTTATCGGGATCATCGTGCCCATAGTGGTGATAGCCCTCCTGTGCATGAGT GGATACCTGATCTGGAGAAACTGGAAGCGGAAGAACACCAAAAGCATGAATTTTGCCAACCCAGTCTA CAGGAAAACAACAGAAGAAGAAGACGAAGATGAGCTCCATATAGGGAGAACTGCTCAGATTGGCCATG TCTATCCTGCAGCAATCAGCAGCTTTGATCGCCCACTGTGGGCAGAGCCCTGTCTTGGGGAGACCAGA GAACCGGAAGACCCAGCCCCTGCCCTCAAGGAGCTTTTTGTCTTGCCGGGGGAACCAAGGTCACAGCT GCACCAACTCCCGAAGAACCCTCTTTCCGAGCTGCCTGTCGTCAAATCCAAGCGAGTGGCATTAAGCC TTGAAGATGATGGACTACCCTGAGGATGGGATCACCCCC
NOV28k, CG55256-09 SEQ ID NO: 658 834 aa MW at 92099.7kD Protein Sequence GLPEPGPLRLLALLLLLLLLLLLRLQHLAAAAADPLLGGQGPAKDCEKDQFQCRNERCIPSVWRCDE
DDDCLDHSDEDDCPKKTCADSDFTCDNGHCIHER KCDGEEECPDGSDESEATCTKQVCPAEKLSCGP
TSHKCVPAS RCDGEKDCEGGADEAGCATSLGTCRGDEFQCGDGTCVLAIKHCNQEQDCPDGSDEAGC
LQGLNECLHNNGGCSHICTDLKIGFECTCPAGFQLLDQKTCGDIDECKDPDACSQICV YKGYFKCEC
YPGYEMDLLTϊCNC:--^_AAσKSPSLIFTNRHEWRIDLVK-RNYSRLIPM
SYRKIYSAYMDKASDPKEQEVLIDEQLHSPEGLAVD VHKHIYWTDSGNKTISVATVDGGRRRTLFSR
NLSEP-RAIAVDPLRGFMYWSD GDQAKIEKSGLNGVDRQTLVSDNIE PNGITLDLLSQRLYWVDSKL
HQLSSIDFSGGNRKTLISSTDFLSHPFGIAVFEDKVFWTDLENEAIFSANRLNGLEISILAENLN PH
DIVIFHELKQPRAPDACΞLSVQPNGGCEYLCLPAPQISSHSPKYTCACPDTM LGPDMKRCYRAPQST
STTTLASTMTRTVPATTRAPGTTVHRSTYQNHSTETPSLTAAVPSSVSVPRAPSISPSTLSPATSNHS
QHYANEDS-mGSTVTAAVIGIIVPIVVIALLCMSGYLIWRNWKRKNTKSMNFANPVYRKTTEEEDEDE
LHIGRTAQIGHVYPAAISSFDRPL AEPCLGETREPEDPAPALKELFVLPGEPRSQLHQLPKNPLSEL
PWKSKRVALSLEDDGLP
NOV281, CG55256-ll SEQ ID NO: 659 4607 bp DNA Sequence ORF Start: ATG at 237 ORF Stop: TGA at 3126 jGCTGGCGGCGGCCGCCCAGGGCCGGGGCCGCGCGCCCAGCCTGAGCCCGCCCCGCCGCCGAGCGTCAC
CGAACCTGCTTGAAATGCAGCCGAGGAGCCGGGGCGGGCGGCAGCGGCGGCGGCGGCGGCGGCGGGGG
CAGCGGCAACCCCGGCGCCGCGGCAAGGACTCGGAGGGCTGAGACGCGGCGGCGGCGGCGCGGGGAGC
GCGGGGCGCGGCGGCCGGAGCCCGGGCCCGCCATGGGCCTCCCCGAGCCGGGCCCTCTCCGGCTTCTG
GCGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCGGCTCCAGCATCTTGCGGCGGCAGCGGCTGA TCCGCTGCTCGGCGGCCAAGGGCCGGCCA^ GCTGCATCCCCTCTGTGTGGAGATGCGACGAGGACGATGACTGCTTAGACCACAGCGACGAGGACGAC TGCCCCAAGAAGACCTGTGCAGACAGTGACTTCACCTGTGACAACGGCCACTGCATCCACGAACGGTG GAAGTGTGACGGCGAGGAGGAGTGTCCTGATGGCTCCGATGAGTCCGAGGCCACTTGCACCAAGCAGG TGTGTCCTGCAGAGAAGCTGAGCTGTGGACCCACCAGCCACAAGTGTGTACCTGCCTCGTGGCGCTGC GACGGGGAGAAGGACTGCGAGGGTGGAGCGGATGAGGCCGGCTGTGCTACCTTGTGCGCCCCGCACGA GTTCCAGTGCGGCAACCGCTCGTGCCTGGCCGCCGTGTTCGTGTGCGACGGCGATGACGACTGTGGTG ACGGCAGCGATGAGCGCGGCTGTGCAGACCCGGCCTGCGGGCCCCGCGAGTTCCGCTGCGGCGGCGAT GGCGGCGGCGCCTGCATCCCGGAGCGCTGGGTCTGCGACCGCCAGTTTGACTGCGAGGACCGCTCGGA CGAGGCAGCCGAGCTCTGCGGCCGCCCGGGCCCCGGGGCCACGTCCGCGCCCGCCGCCTGCGCCACCG TCTCCCAGTTCGCCTGCCGCAGCGGCGAGTGCGTGCACCTGGGCTGGCGCTGCGACGGCGACCGCGAC TGCAAAGACAAATCGGACGAGGCCGACTGCCCACTGGGCACCTGCCGTGGGGACGAGTTCCAGTGTGG GGATGGGACATGTGTCCTTGCAATCAAGCACTGCAACCAGGAGCAGGACTGTCCAGATGGGAGTGATG AAGCTGGCTGCCTACAGGGGCTGAACGAGTGTCTGCACAACAATGGCGGCTGCTCACACATCTGCACT GACCTCAAGATTGGCTTTGAATGCACGTGCCCAGCAGGCTTCCAGCTCCTGGACCAGAAGACCTGTGG CGACATTGATGAGTGCAAGGACCCAGATGCCTGCAGCCAGATCTGTGTCAATTACAAGGGCTATTTTA AGTGTGAGTGCTACCCTGGCTACGAGATGGACCTACTGACCAAGAACTGCAAGGCTGCTGGTGGAAAG AGCCCATCCCTAATCTTCACCAACCGGTACGAGGTGCGGAGGATCGACCTGGTGAAGCGGAACTATTC ACGCCTCATCCCCATGCTCAAGAATGTCGTGGCACTAGATGTGGAAGTTGCCACCAATCGCATCTACT GGTGTGACCTCTCCTACCGTAAGATCTATAGCGCCTACATGGACAAGGCCAGTGACCCGAAAGAGCAG GAGGTCCTCATTGACGAGCAGTTGCACTCTCCAGAGGGCCTGGCAGTGGACTGGGTCCACAAGCACAT CTACTGGACTGACTCGGGCAATAAGACCATCTCAGTGGCCACAGTTGATGGTGGCCGCCGACGCACTC TCTTCAGCCGTAACCTCAGTGAACCCCGGGCCATCGCTGTTGACCCCCTGCGAGGGTTCATGTATTGG TCTGACTGGGGGGACCAGGCCAAGATTGAGAAATCTGGGCTCAACGGTGTGGACCGGCAAACACTGGT GTCAGACAATATTGAATGGCCCAACGGAATCACCCTGGATCTGCTGAGCCAGCGCTTGTACTGGGTAG ACTCCAAGCTACACCAACTGTCCAGCATTGACTTCAGTGGAGGCAACAGAAAGACGCTGATCTCCTCC ACTGACTTCCTGAGCCACCCTTTTGGGATAGCTGTGTTTGAGGACAAGGTGTTCTGGACAGACCTGGA GAACGAGGCCATTTTCAGTGCAAATCGGCTCAATGGCCTGGAAATCTCCATCCTGGCTGAGAACCTCA ACAACCCACATGACATTGTCATCTTCCATGAGCTGAAGCAGCCAAGAGCTCCAGATGCCTGTGAGCTG AGTGTCCAGCCTAATGGAGGCTGTGAATACCTGTGCCTTCCTGCTCCTCAGATCTCCAGCCACTCTCC CAAGTACACATGTGCCTGTCCTGACACAATGTGGCTGGGTCCAGACATGAAGAGGTGCTACCGAGCAC CTCAATCTACCTCAACTACGACGTTAGCTTCTACCATGACGAGGACAGTACCTGCCACCACAAGAGCC CCCGGGACCACCGTCCACAGATCCACCTACCAGAACCACAGCACAGAGACACCAAGCCTGACAGCTGC AGTCCCAAGCTCAGTTAGTGTCCCCAGGGCTCCCAGCATCAGCCCGTCTACCCTAAGCCCTGCAACCA GCAACCACTCCCAGCACTATGCAAATGAAGACAGTAAGATGGGCTCAACAGTCACTGCCGCTGTTATC GGGATCATCGTGCCCATAGTGGTGATAGCCCTCCTGTGCATGAGTGGATACCTGATCTGGAGAAACTG GAAGCGGAAGAACACCAAAAGCATGAATTTTGACAACCCAGTCTACAGGAAAACAACAGAAGAAGAAG ATGAAGATGAGCTCCATATAGGGAGAACTGCTCAGATTGGCCATGTCTATCCTGCAGCAATCAGCAGC TTTGATCGCCCACTGTGGGCAGAGCCCTGTCTTGGGGAGACCAGAGAACCGGAAGACCCAGCCCCTGC CCTCAAGGAGCTTTTTGTCTTGCCGGGGGAACCAAGGTCACAGCTGCACCAACTCCCGAAGAACCCTC TTTCCGAGCTGCCTGTCGTCAAATCCAAGCGAGTGGCATTAAGCCTTGAAGATGATGGACTACCCTGA GGATGGGATCACCCCCTTCGTGCCTCATGGAATTCAGTCCCATGCACTACACTCTGGATGGTGTATGA CTGGATGAATGGGTTTCTATATATGGGTCTGTGTGAGTGTATGTGTGTGTGTGATTTTTTTTTTAAAT TTATGTTGCGGj^
CTATGTATAATGTTTTATACACTTTTTAACTGGTTGCACTACCCATGAGGAATTCGTGGAATGGCTAC TGCTGACTAACATGATGCACATAACCAAATGGGGGCCAATGGCACAGTACCTTACTCATCATTTAAAA ACTATATTTACAGAAGATGTTTGGTTGCTGGGGGGGCTTTTTTGGGTTTTGGGGCATTTGTTTTTTGT AAATAAGATGATTATGCTTTGTGGCTATCCATCAACATAAGTAAAAAAAAAAAAAAAACACTTCAACT CCCTCCCCCATTTAGATTATTTATTAACATATTTTAAAAATCAGATGAGTTCTATAAATAATTTAGAG AAGTGAGAGTATTTATTTTTGGCATGTTTGGCCCACCACACAGACTCTGTGTGTGTATGTGTGTGTTT ATATGTGTATGTGTGTGACAGGAAAATCTGTAGAGAAGAGGCACATCTATGGCTACTGTTCAAATACA TAAAGATAAATTTATTTTCACACAGTCCACAAGGGGTATATCTTGTAGTTTTCAGAAAAGCCTTTGGA AATCTGGATCAGGAAATAGATACCATGGTTTGTGCAATTATGTAGTAAAAAAGGCAAATCTTTTCACC TCTGGCTATTCCTGAGACCCCAGGAAGTCAGGAAAAGCCTTTCAGCTCACCCATGGCTGCTGTGACTC CTACCAGGGCTTTCTTGGCTTTGGCGAAGGTCAGTGTACAGACATTCCATGGTACCAGAGTGCTCAGA AAGTCAAGATAGGATATGCCTCACCCTCAGCTACTCCTTGTTTTAAAGTTCAGCTCTTTGAGTAACTT CTTCAATTTCTTTCAGGACACTTGGGTTGAATTCAGTAAGTTTCCTCTGAAGCACCCTGAAGGGTGCC ATCCTTACAGAGCTAAGTGGAGACGTTTCCAGATCAGCCCAAGTTTACTATAGAGACTGGCCCAGGCA CTGAATGTCTAGGACATGCTGTGGATGAAGATAAAGATGGTGGAATAGGTTTTATCACATCTCTTATT TCTCTTTTCCCCTTACTCTCTACCATTTCCTTTATGTGGGGAAACATTTTAAGGTAATAAATAGGTTA CTTACCATC-ΑTATGTO GAAGTCATATTTGTGGGGGGAAATGGCATACGCAATATTATATTATATTGGATATTTATGTTCACACA
GGAATTTGGTTTACTGCTTTGTAAATAAAAGGGAAAACTCCGGGTATATGT
NOV281, CG55256-l l SEQ ID NO: 660 963 aa MW at 105714.3kD Protein Sequence GLPEPGPLRLLALLLLLLLLLLLRLQHLAAAAADPLLGGQGPAKΞCEKDQFQC-RNERCIPSVWRCDE
DDDCLDHSDEDDCPKKTCADSDFTCDNGHCIHERWKCDGEEECPDGSDESEATCTKQVCPAEKLSCGP
;TSHKCVPAS RCDGEKDCEGGADEAGCATLCAPHEFQCGNRSCLAAVFVCDGDDDCGDGSDERGCADP
ACGPREFRCGGDGGGACIPERWVCDRQFDCEDRSDEAAELCGRPGPGATSAPAACATVSQFACRSGEC
VHLGWRCDGDRDCKDKSDEADCPLGTCRGDEFQCGDGTCVLAIKHCNQEQDCPDGSDEAGCLQGLNEC
LHN GGCSHICTDLKIGFECTCPAGFQLLDQKTCGDIDECKDPDACSQICVNYKGYFKCECYPGYE D
LLT--αTCKAAGGKSPSLIFTNRYEWRIDLV---3-JJYSRLIP
AYMD---s^SDPKEQEVLIDEQLHSPEGLAVD VH-imiY TDSGNKTISVATVDGGRRRTLFSRNLSEPRA
IAVDPLRGFMY SD GDQAKIEKSGLNGVDRQTLVSDNIE PNGITLDLLSQRLY VDSKLHQLSSID
FSGG--V11SKTLISSTDFLSHPFGIAVFEDKVFWTDLENEAIFSA- RLNGLEISILAENLN PHDIVIFHE
LKQPRAPDACELSVQPNGGCEYLCLPAPQISSHSPKYTCACPDT- LGPDMKRCYRAPQSTSTTTLAS
T TRTVPATTRAPGTTVHRSTYQNHSTETPSLTAAVPSSVSVPRAPSISPSTLSPATSNHSQHYA ED
SKMGS V AAVIGIIVPIVVIA LCMSGYLIWR-Im---^^-KNTKS-^-α^rFD PVYRKTTEEEDEDELHIGR A
QIGHVYPAAISSFDRPL AEPCLGETREPEDPAPALIO---;LFVLPGEPRSQLHQLPiasfPLSELPVVKSKR
VALSLEDDGLP
NOV28m, SNP13382497 of SEQ ID NO: 661 4294 bp
CG55256-07, DNA Sequence ORF Start: ATG at 103 ORF Stop: TGA at 2818
SNP Pos: 2550 SNP Change: T to C
GCAGCGGCAACCCCGGCGCCGCGGCAAGGACTCGGAGGGCTGAGACGCGGCGGCGGCGGCGCGGGGAG
CGCGGGGCGCGGCGGCCGGAGCCCCGGGCCCGCCATGGGCCTCCCCGAGCCGGGCCCTCTCCGGCTTC
TGGCGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCGGCTCCAGCATCTTGCGGCGGCAGCGGCT GATCCGCTGCTCGGCGGCCAAGGGCCGGCCAAGGAGTGCGAAAAGGACCAATTCCAGTGCCGGAACGA GCGCTGCATCCCCTCTGTGTGGAGATGCGACGAGGACGATGACTGCTTAGACCACAGCGACGAGGACG ACTGCCCCAAGAAGACCTGTGCAGACAGTGACTTCACCTGTGACAACGGCCACTGCATCCACGAACGG TGGAAGTGTGACGGCGAGGAGGAGTGTCCTGATGGCTCCGATGAGTCCGAGGCCACTTGCACACTGGG CACCTGCCGTGGGGACGAGTTCCAGTGTGGGGATGGGACATGTGTCCTTGCAATCAAGCACTGCAACC AGGAGCAGGACTGTCCAGATGGGAGTGATGAAGCTGGCTGCCTACAGGAGTCACCCTGTGAGGGTCCC CGCAGATTTCAGTGTAAGAGTGGCAAGCGCGTGGACGGCGGGAAAGTGTGTGATGTGCAGAGGGACTG CCGGGACTGGTCGGATGAGCTTCTGAAAGTGTGGTGCGGTGCCTGTCTACGCCCACTGGCTGGACTCA GTCTCCTACCATCCCCCTCCTGGTATCTAGGCTCAAGGCCCTCCAGTGCCCCCTGCCCTGACACTTTC TGCTCTGACCCTCTCTTTGGATTCATGTGCCGTCCTATGGCTTCACATGGGGCTTTTCGCCCCCAGGC CTCTGGTCTACATCTCTACAAAGTGCTAAGAGCTTGTCCATCCCAGAGGAGGCTGAACGAGTGTCTGC ACAACAATGGCGGCTGCTCACACATCTGCACTGACCTCAAGATTGGCTTTGAATGCACGTGCCCAGCA GGCTTCCAGCTCCTGGACCAGAAGACCTGTGGCGACATTGATGAGTGCAAGGACCCAGATGCCTGCAG CCAGATCTGTGTCAATTACAAGGGCTATTTTAAGTGTGAGTGCTACCCTGGCTACGAGATGGACCTAC TGACCAAGAACTGCCAAGCTGCTGCTGGAAAGAGCCCATCCCTAATCTTCACCAACCGGTACGAGGTG CGGAGGATCGACCTGGTGAAGCGGAACTATTCACGCCTCATCCCCATGCTCAAGAATGTCGTGGCACT AGATGTGGAAGTTGCCACCAATCGCATCTACTGGTGTGACCTCTCCTACCGTAAGATCTATAGCGCCT ACATGGACAAGGCCAGTGACCCGAAAGAGCAGGAGGTCCTCATTGACGAGCAGTTGCACTCTCCAGAG GGCCTGGCAGTGGACTGGGTCCACAAGCACATCTACTGGACTGACTCGGGCAATAAGACCATCTCAGT GGCCACAGTTGATGGTGGCCGCCGACGCACTCTCTTCAGCCGTAACCTCAGTGAACCCCGGGCCATCG CTGTTGACCCCCTGCGAGGGTTCATGTATTGGTCTGACTGGGGGGACCAGGCCAAGATTGAGAAATCT GGGCTCAACGGTGTGGACCGGCAAACACTGGTGTCAGACAATATTGAATGGCCCAACGGAATCACCCT GGATCTGCTGAGCCAGCGCTTGTACTGGGTAGACTCCAAGCTACACCAACTGTCCAGCATTGACTTCA GTGGAGGCAACAGAAAGACGCTGATCTCCTCCACTGACTTCCTGAGCCACCCTTTTGGGATAGCTGTG TTTGAGGACAAGGTGTTCTGGACAGACCTGGAGAACGAGGCCATTTTCAGTGCAAATCGGCTCAATGG CCTGGAAATCTCCATCCTGGCTGAGAACCTCAACAACCCACATGAOATTGTCATCTTCCATGAGCTGA AGCAGCCAAGAGCTCCAGATGCCTGTGAGCTGAGTGTCCAGCCTAATGGAGGCTGTGAATACCTGTGC CTTCCTGCTCCTCAGATCTCCAGCCACTCTCCCAAGTACACATGTGCCTGTCCTGACACAATGTGGCT GGGTCCAGACATGAAGAGGTGCTACCGAGCACCTCAATCTACCTCAACTACGACGTTAGCTTCTACCA TGACGAGGACAGTACCTGCCACCACAAGAGCCCCCGGGACCACCGTCCACAGATCCACCTACCAGAAC CACAGCACAGAGACACCAAGCCTGACAGCTGCAGTCCCAAGCTCAGTTAGTGTCCCCAGGGCTCCCAG CATCAGCCCGTCTACCCTAAGCCCTGCAACCAGCAACCACTCCCAGCACTATGCAAATGAAGACAGTA AGATGGGCTCAACAGTCACTGCCGCTGTTATCGGGATCATCGTGCCCATAGTGGTGATAGCCCTCCTG TGCATGAGTGGATACCTGATCTGGAGAAACTGGAAGCGGAAGAACACCAAAAGCATGAATTTTGACAA CCCAGTCTACAGGAAAACAACAGAAGAAGAAGACGAAGATGAGCTCCATATAGGGAGAACTGCTCAGA TTGGCCATGTCTATCCTGCAGCAATCAGCAGCTTTGATCGCCCACTGTGGGCAGAGCCCTGTCTTGGG GAGACCAGAGAACCGGAAGACCCAGCCCCTGCCCTCAAGGAGCTTTTTGTCTTGCCGGGGGAACCAAG GTCACAGCTGCACCAACTCCCGAAGAACCCTCTTTCCGAGCTGCCTGTCGTCAAATCCAAGCGAGTGG CATTAAGCCTTGAAGATGATGGACTACCCTGAGGATGGGATCACCCCCTTCGTGCCTCATGGAATTCA GTCCCATGCACTACACTCTGGATGGTGTATGACTGGATGAATGGGTTTCTATATATGGGTCTGTGTGA
GTGTATGTGTGTGTGTGATTTTTTTTTTAAATTTATGTTGCGGAAAGGTAACCACAAAGTTATGATGA
ACTGCAAACATCCAAAGGATGTGAGAGTTTTTCTATGTATAATGTTTTATACACTTTTTAACTGGTTG
CACTACCCATGAGGAATTCGTGGAATGGCTACTGCTGACTAACATGATGCACATAACCAAATGGGGGC
CAATGGCACAGTACCTTACTCATCATTTAAAAACTATATTTACAGAAGATGTTTGGTTGCTGGGGGGG
CTTTTTTGGGTTTTGGGGCATTTGTTTTTTGTAAATAAGATGATTATGCTTTGTGGCTATCCATCAAC lATAAGTAAAAAAAAAAAAAAAACACTTCAACTCCCTCCCCCATTTAGATTATTTATTAACATATTTTA
AAAATCAGATGAGTTCTATAAATAATTTAGAGAAGTGAGAGTATTTATTTTTGGCATGTTTGGCCCAC
CACACAGACTCTGTGTGTGTATGTGTGTGTTTATATGTGTATGTGTGTGACAGGAAAATCTGTAGAGA
AGAGGCACATCTATGGCTACTGTTCAAATACATAAAGATAAATTTATTTTCACACAGTCCACAAGGGG:
TATATCTTGTAGTTTTCAGAAAAGCCTTTGGAAATCTGGATCAGGAAATAGATACCATGGTTTGTGCA
ATTATGTAGTAAAAAAGGCAAATCTTTTCACCTCTGGCTATTCCTGAGACCCCAGGAAGTCAGGAAAA jGCCTTTCAGCTCACCCATGGCTGCTGTGACTCCTACCAGGGCTTTCTTGGCTTTGGCGAAGGTCAGTG
TACAGACATTCCATGGTACCAGAGTGCTCAGAAAGTCAAGATAGGATATGCCTCACCCTCAGCTACTC
CTTGTTTTAAAGTTCAGCTCTTTGAGTAACTTCTTCAATTTCTTTCAGGACACTTGGGTTGAATTCAG
TAAGTTTCCTCTGAAGCACCCTGAAGGGTGCCATCCTTACAGAGCTAAGTGGAGACGTTTCCAGATCA
GCCCAAGTTTACTATAGAGACTGGCCCAGGCACTGAATGTCTAGGACATGCTGTGGATGAAGATAAAG
ATGGTGGAATAGGTTTTATCACATCTCTTATTTCTCTTTTCCCCTTACTCTCTACCATTTCCTTTATGj
TGGGGAAACATTTTAAGGTAATAAATAGGTTACTTACCATCATATGTTCATATAGATGAAACTAATTTl
TTGGCTTAAGTCAGAACAACTGGCCCCCAATTGAAGTCATATTTGTGGGGGGAAATGGCATACGCAAT;
ATTATATTATATTGGATATTTATGTTCACACAGGAATTTGGTTTACTGCTTTGTAAATAAAAGGGAAA lACTCCGGGTA
NOV28m, SNP13382497 of SEQ ID NO: 662 905 aa MW at 100461.4kD CG55256-07, Protein Sequence SNP Pos: 816 |SNP Change: Asp to Asp
MGLPEPGPLRLLALLLLLLLLLLLRLQHLAAAAADPLLGGQGPAKECEKDQFQCRNERCIPSV RCDE
DDDCLDHSDEDDCPKKTCADSDFTCDNGHCIHERW CDGEEECPDGSDESEATCTLGTCRGDEFQCGD
GTCVLAIKHCNQEQDCPDGSDEAGCLQESPCEGPRRFQCKSGKRVDGGKVCDVQ-RDCRDWSDELLKVW
CGACLRPLAGLSLLPSPS YLGSRPSSAPCPDTFCSDPLFGFMCRPMASHGAFRPQASGLHLYKVLRA
CPSQRRLNECLH NGGCSHICTDLKIGFECTCPAGFQLLDQKTCGDIDECKDPDACSQICVNYKGYFK
CECYPGYEMDLLT---^CQAAAGKSPSLIFTNRYEVRRIDLVK-RNYSRLIPMLKNVVALDVEVATNRIY
CDLSYRKIYSAYMDKASDPKEQEVLIDEQLHSPEGLAVD VHKHIYWTDSGNKTISVATVDGGRRRTL
FSRNLSEPRAIAVDPLRGF Y SD GDQAKIEKSGLNGVDRQTLVSDNIE PNGITLDLLSQRLYWVD
SKLHQLSSIDFSGGNRKTLISSTDFLSHPFGIAVFEDKVF TDLENEAIFSANRLNGLEISILAENLN
NPHDIVIFHELKQPRAPDACELSVQPNGGCEYLCLPAPQISSHSPKYTCACPDTMWLGPDMKRCYRAP
QSTSTTTLASTMTRTVPATTRAPGTTVHRSTYQNHSTETPSLTAAVPSSVSVPRAPSISPSTLSPATS
--ffiSQHYA EDS--^GSTVTAAVIGIIVPIVVIALLC SGYLIWRl^---αλ-røTKS-^
EDELHIGRTAQIGHVYPAAISSFDRPL AEPCLGETREPEDPAPALKELFVLPGEPRSQLHQLPKNPL
SELPWKSKRVALSLEDDGLP
NOV28n, SNP13382498 of SEQ ID NO: 663 4294 bp CG55256-07, DNA Sequence ORF Start: ATG at ORF Stop: TGA at 2818 103
SNP Pos: 2783 SNP Change: G to A
GCAGCGGCAACCCCGGCGCCGCGGCAAGGACTCGGAGGGCTGAGACGCGGCGGCGGCGGCGCGGGGAG! CGCGGGGCGCGGCGGCCGGAGCCCCGGGCCCGCCATGGGCCTCCCCGAGCCGGGCCCTCTCCGGCTTC
TGGCGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCGGCTCCAGCATCTTGCGGCGGCAGCGGCT GATCCGCTGCTCGGCGGCCAAGGGCCGGCCAAGGAGTGCGAAAAGGACCAATTCCAGTGCCGGAACGA GCGCTGCATCCCCTCTGTGTGGAGATGCGACGAGGACGATGACTGCTTAGACCACAGCGACGAGGACG ACTGCCCCAAGAAGACCTGTGCAGACAGTGACTTCACCTGTGACAACGGCCACTGCATCCACGAACGG TGGAAGTGTGACGGCGAGGAGGAGTGTCCTGATGGCTCCGATGAGTCCGAGGCCACTTGCACACTGGG CACCTGCCGTGGGGACGAGTTCCAGTGTGGGGATGGGACATGTGTCCTTGCAATCAAGCACTGCAACC AGGAGCAGGACTGTCCAGATGGGAGTGATGAAGCTGGCTGCCTACAGGAGTCACCCTGTGAGGGTCCC CGCAGATTTCAGTGTAAGAGTGGCAAGCGCGTGGACGGCGGGAAAGTGTGTGATGTGCAGAGGGACTG CCGGGACTGGTCGGATGAGCTTCTGAAAGTGTGGTGCGGTGCCTGTCTACGCCCACTGGCTGGACTCA GTCTCCTACCATCCCCCTCCTGGTATCTAGGCTCAAGGCCCTCCAGTGCCCCCTGCCCTGACACTTTC TGCTCTGACCCTCTCTTTGGATTCATGTGCCGTCCTATGGCTTCACATGGGGCTTTTCGCCCCCAGGC CTCTGGTCTACATCTCTACAAAGTGCTAAGAGCTTGTCCATCCCAGAGGAGGCTGAACGAGTGTCTGC ACAACAATGGCGGCTGCTCACACATCTGCACTGACCTCAAGATTGGCTTTGAATGCACGTGCCCAGCA: GGCTTCCAGCTCCTGGACCAGAAGACCTGTGGCGACATTGATGAGTGCAAGGACCCAGATGCCTGCAG CCAGATCTGTGTCAATTACAAGGGCTATTTTAAGTGTGAGTGCTACCCTGGCTACGAGATGGACCTAC TGACCAAGAACTGCCAAGCTGCTGCTGGAAAGAGCCCATCCCTAATCTTCACCAACCGGTACGAGGTG CGGAGGATCGACCTGGTGAAGCGGAACTATTCACGCCTCATCCCCATGCTCAAGAATGTCGTGGCACT AGATGTGGAAGTTGCCACCAATCGCATCTACTGGTGTGACCTCTCCTACCGTAAGATCTATAGCGCCT ACATGGACAAGGCCAGTGACCCGAAAGAGCAGGAGGTCCTCATTGACGAGCAGTTGCACTCTCCAGAG GGCCTGGCAGTGGACTGGGTCCACAAGCACATCTACTGGACTGACTCGGGCAATAAGACCATCTCAGT GGCCACAGTTGATGGTGGCCGCCGACGCACTCTCTTCAGCCGTAACCTCAGTGAACCCCGGGCCATCG CTGTTGACCCCCTGCGAGGGTTCATGTATTGGTCTGACTGGGGGGACCAGGCCAAGATTGAGAAATCT GGGCTCAACGGTGTGGACCGGCAAACACTGGTGTCAGACAATATTGAATGGCCCAACGGAATCACCCT GGATCTGCTGAGCCAGCGCTTGTACTGGGTAGACTCCAAGCTACACCAACTGTCCAGCATTGACTTCA GTGGAGGCAACAGAAAGACGCTGATCTCCTCCACTGACTTCCTGAGCCACCCTTTTGGGATAGCTGTG TTTGAGGACAAGGTGTTCTGGACAGACCTGGAGAACGAGGCCATTTTCAGTGCAAATCGGCTCAATGG CCTGGAAATCTCCATCCTGGCTGAGAACCTCAACAACCCACATGACATTGTCATCTTCCATGAGCTGA GCAGCCAAGAGCTCCAGATGCCTGTGAGCTGAGTGTCCAGCCTAATGGAGGCTGTGAATACCTGTGC CTTCCTGCTCCTCAGATCTCCAGCCACTCTCCCAAGTACACATGTGCCTGTCCTGACACAATGTGGCT GGGTCCAGACATGAAGAGGTGCTACCGAGCACCTCAATCTACCTCAACTACGACGTTAGCTTCTACCA; TGACGAGGACAGTACCTGCCACCACAAGAGCCCCCGGGACCACCGTCCACAGATCCACCTACCAGAΆC CACAGCACAGAGACACCAAGCCTGACAGCTGCAGTCCCAAGCTCAGTTAGTGTCCCCAGGGCTCCCAG CATCAGCCCGTCTACCCTAAGCCCTGCAACCAGCAACCACTCCCAGCACTATGCAAATGAAGACAGTA AGATGGGCTCAACAGTCACTGCCGCTGTTATCGGGATCATCGTGCCCATAGTGGTGATAGCCCTCCTG TGCATGAGTGGATACCTGATCTGGAGAAACTGGAAGCGGAAGAACACCAAAAGCATGAATTTTGACAA CCCAGTCTACAGGAAAACAACAGAAGAAGAAGATGAAGATGAGCTCCATATAGGGAGAACTGCTCAGA TTGGCCATGTCTATCCTGCAGCAATCAGCAGCTTTGATCGCCCACTGTGGGCAGAGCCCTGTCTTGGG GAGACCAGAGAACCGGAAGACCCAGCCCCTGCCCTCAAGGAGCTTTTTGTCTTGCCGGGGGAACCAAG GTCACAGCTGCACCAACTCCCGAAGAACCCTCTTTCCGAGCTGCCTGTCGTCAAATCCAAGCAAGTGG: CATTAAGCCTTGAAGATGATGGACTACCCTGAGGATGGGATCACCCCCTTCGTGCCTCATGGAATTCA GTCCCATGCACTACACTCTGGATGGTGTATGACTGGATGAATGGGTTTCTATATATGGGTCTGTGTGA GTGTATGTGTGTGTGTGATTTTTTTTTTAAATTTATGTTGCGGAAAGGTAACCACAAAGTTATGATGA ACTGCAAACATCCAAAGGATGTGAGAGTTTTTCTATGTATAATGTTTTATACACTTTTTAACTGGTTG CACTACCCATGAGGAATTCGTGGAATGGCTACTGCTGACTAACATGATGCACATAACCAAATGGGGGC CAATGGCACAGTACCTTACTCATCATTTAAAAACTATATTTACAGAAGATGTTTGGTTGCTGGGGGGG CTTTTTTGGGTTTTGGGGCATTTGTTTTTTGTAAATAAGATGATTATGCTTTGTGGCTATCCATCAAC ATAAGTAAAAAAAAAAAAAAAACACTTCAACTCCCTCCCCCATTTAGATTATTTATTAACATATTTTAI
AAAATCAGATGAGTTCTATAAATAATTTAGAGAAGTGAGAGTATTTATTTTTGGCATGTTTGGCCCAC
CACACAGACTCTGTGTGTGTATGTGTGTGTTTATATGTGTATGTGTGTGACAGGAAAATCTGTAGAGA
AGAGGCACATCTATGGCTACTGTTCAAATACATAAAGATAAATTTATTTTCACACAGTCCACAAGGGG
TATATCTTGTAGTTTTCAGAAAAGCCTTTGGAAATCTGGATCAGGAAATAGATACCATGGTTTGTGCA iATTATGTAGTAAAAAAGGCAAATCTTTTCACCTCTGGCTATTCCTGAGACCCCAGGAAGTCAGGAAAA
GCCTTTCAGCTCACCCATGGCTGCTGTGACTCCTACCAGGGCTTTCTTGGCTTTGGCGAAGGTCAGTG
TACAGACATTCCATGGTACCAGAGTGCTCAGAAAGTCAAGATAGGATATGCCTCACCCTCAGCTACTC
CTTGTTTTAAAGTTCAGCTCTTTGAGTAACTTCTTCAATTTCTTTCAGGACACTTGGGTTGAATTCAG
TAAGTTTCCTCTGAAGCACCCTGAAGGGTGCCATCCTTACAGAGCTAAGTGGAGACGTTTCCAGATCA! iGCCCAAGTTTACTATAGAGACTGGCCCAGGCACTGAATGTCTAGGACATGCTGTGGATGAAGATAAAG
ATGGTGGAATAGGTTTTATCACATCTCTTATTTCTCTTTTCCCCTTACTCTCTACCATTTCCTTTATG: TGGGGAAACATTTTAAGGTAATAAATAGGTTACTTACCATCATATGTTCATATAGATGAAACTAATTT iTTGGCTTAAGTCAGAACAACTGGCCCCCAATTGAAGTCATATTTGTGGGGGGAAATGGCATACGCAAT jATTATATTATATTGGATATTTATGTTCACACAGGAATTTGGTTTACTGCTTTGTAAATAAAAGGGAAAj
ACTCCGGGTA
NOV28n, SNP13382498 of SEQ ID NO: 664 905 aa MW at 100433.3kD
CG55256-07, Protein Sequence SNP Pos: 894 SNP Change: Arg to Gin
MGLPEPGPLRLL-A LLLLLLLLLLRLQHLAAAAADPLLGGQGPAKECEKDQFQCR-NERCIPSV RCDE
DDDCLDHSDEDDCPKKTCADSDFTCDNGHCIHER KCDGEEECPDGSDESEATCTLGTCRGDEFQCGD
GTCVLAI-i CNQEQDCPDGSDEAGCLQESPCEGPRRFQCKSGKRVDGGKVCDVQRDCRD SDELLKV
CGACLRPLAGLSLLPSPSWYLGSRPSSAPCPDTFCSDPLFGFMCRPMASHGAFRPQASGLHLYKVLRA
CPSQRRLNECLH NGGCSHICTDLKIGFECTCPAGFQLLDQKTCGDIDECKDPDACSQICVNYKGYFK
CECYPGYEiy--DLLT-- CQ-AAAGKSPSLIFTNRYEVRRIDLVK--OTYSRLIPMLiavTVVALDVEVATNRI
CDLSYRKIYSAYMDKASDPKEQEVLIDEQLHSPEGLAVDWVHKHIYWTDSGNKTISVATVDGGRRRTL
FSRNLSEPRAIAVDPLRGFMYWSDWGDQAKIEKSGLNGVDRQTLVSDNIΞWPNGITLDLLSQRLYWVD
S-KLHQLSSIDFSGGNRKTLISSTDFLSHPFGIAVFEDKVFWTDLENEAIFSANRLNGLEISILAENLN
NPI-I-DIVIFHELKQPRAPDACELSVQPNGGCEYLCLPAPQISSHSPKYTCACPDTM LGPD -KRCYRAP
QSTSTTTLASTMTRTVPATTRAPGTTVHRSTYQNHSTETPSLTAAVPSSVSVPRAPSISPSTLSPATS
NHSQHYA-NEDSKMGSTVT-AAVIGIIVPIVVIALLCMSGYLIWR-- WKRKNTKSi^Ω.FDNPVYRKTTEEED
EDELHIGRTAQIGHVYPAAISSFDRPL AEPCLGETREPEDPAPALKELFVLPGEPRSQLHQLPKNPL
SELPWKSKQVALSLEDDGLP
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 28B.
Table 28B. Comparison of the NOV28 protein sequences.
NOV28a MGLPΞPGPLRLLALLLLLLLLLLLRLQHLAAAAADPLLGGQGPAKECEKD
NOV28b AADPLLGGQGPAKDCEKD
NOV28c GSAADPLLGGQGPAKDCEKD
NOV28d MPLSWPVSFPQRSLLPDPLELLCVLFVSFFLLLLQLQHLAAAAADPLLGGQGPAKDCEKD
NOV28e GLPE PGPLRLLALLLLLLLLLLLRLQHLAAAAADPLLGGQGPAKECEKD
NOV28f MGLPE PGPLRLLALLLLLLLLLLLRLQHLAAAAADPLLGGQGPAKDCEKD
NOV28g MPLSWPVSFPQRSLLPDPLELLCVLFVSFFLLLLQLQHLAAAAADPLLGGQGPAKDCEKD
NOV28h MGLPEPGPLRLL-ALLLLLLLLLLLRLQffljAAAAADPLLGGQGPAKECEKD
NOV28i MGLPE PGPLRLLALLLLLLLLLLLQLQHLAAAAADPLLGGQGPAKDCEKD
NOV28j MGLPE PGPLRLLALLLLLLLLLLLRLQHLAAAAADPLLGGQGPAKECEKD
NOV28k MGLPE PGPLRLLALLLLLLLLLLLRLQHLAAAAADPLLGGQGPAKDCEKD
NOV281 MGLPE PGPLRLLALLLLLLLLLLLRLQHLAAAAADPLLGGQGPAKECEKD
NOV28a QFQCRNERCIPSV RCDEDDDCLDHSDEDDCP--KKTCADSDFTCDNGHCIHERWKCDGE
NOV28b QFQCRNERCIPSVWRCDEDDDCLDHSDEDDCP- -KKTCADSDFTCDNGHCIHERWKCDGE
NOV28c QFQCRNERCIPSVWRCDEDDDCLDHSDEDDCP- -KKTCADSDFTCDNGHCIHERWKCDGE
NOV28d QFQCRNERCIPSVWRCDEDDDCLDHSDEDDCPAAKKTPVRSDFTCDNGHCIHERWKCDGE
NOV28e QFQCRNERCIPSVWRCDEDDDCLDHSDEDDCP--KKTCADSDFTCDNGHCIHERWKCDGE
NOV28f QFQCRNERCIPSVWRCDEDDDCLDHSDEDDCP--KKTCADSDFTCDNGHCIHERWKCDGE
NOV28g QFQCRNERCIPSVWRCDEDDDCLDHSDEDDCPAAKKTPVRSDFTCDNGHCIHERWKCDGE
NOV28h QFQCRNERCIPSVWRCDEDDDCLDHSDEDDCP--KKTCADSDFTCDNGHCIHERWKCDGE
NOV28i QFQCRNERCIPSVWRCDEDDDCLDHSDEDDCP--KKTCADSDFTCDNGHCIHERWKCDGE
NOV28j QFQCRNERCIPSVWRCDEDDDCLDHSDEDDCP--KKTCADSDFTCDNGHCIHERWKCDGE
NOV28k QFQCRNERCIPSVWRCDEDDDCLDHSDEDDCP--KKTCADSDFTCDNGHCIHERWKCDGE
NOV281 QFQCRNERCIPSVWRCDEDDDCLDHSDEDDCP--KKTCADSDFTCDNGHCIHERWKCDGE
NOV28a EECPDGSDESEATCTLGTCRGDEFQC--GDGTCVLAIKHCNQEQDCPDGSDEAGCLQE--
NOV28b EECPDGSDESEATCTKQVC
NOV28c EECPDGSDESEATCTKQVCPAEKLSCGPTSHKCVPASWRCDGEKDCEGGADEAGCATS- -
NOV28d EECPDGSDESEATCTKQVCPAEKLSCGPTSHKCVPASWRCDGEKDCEGGADEAGCATS--
NOV28e EECPDGSDESEATCTKQVCPAEKLSCGPTSHKCVPASWRCDGEKDCEGGADEAGCATLCA
NOV28f EECPDGSDESEATCTKQVCPAEKLSCGPTSHKCVPASWRCDGEKDCEGGADEAGCATS-- NOV28g EECPDGSDESEATCTKQVCPAEKLSCGPTSHKCVPASWRCDGEKDCEGGADEAGCATS--
NOV28h EECPDGSDESEATCTLGTCRGDEFQC- -GDGTCVLAIKHCNQEQDCPDGSDEAGCLQE--
NOV28i EECPDGSDESEATCTKQVCPAEKLSCGPTSHKCVPASWRCDGEKDCEGGADEAGCATS--
NOV28j EECPDGSDESEATCTKQVCPAEKLSCGPTSHKCVPASWRCDGEKDCEGGADEAGCATS--
NOV28k EECPDGSDESEATCTKQVCPAEKLSCGPTSHKCVPASWRCDGEKDCEGGADEAGCATS- -
NOV281 EECPDGSDESEATCTKQVCPAEKLSCGPTSHKCVPASWRCDGEKDCEGGADEAGCATLCA
NOV28a
NOV28b
NOV28C
NOV28d
NOV28e PHEFQCGNRSCLAAVFVCDGDDDCGDGSDERGCADPACGPREFRCGGDGGGACIPERWVC
NOV28f
NOV28g
NOV28h
NOV28i
NOV281 PHEFQCGNRSCLAAVFVCDGDDDCGDGSDERGCADPACGPREFRCGGDGGGACIPERWVC
NOV28a
NOV28b
NOV28C
NOV28d
NOV28e DRQFDCEDRSDEAAELCGRPGPGATSAPAACATVSQFACRSGECVHLGWRCDGDRDCKDK
NOV28f
NOV28g
NOV28h
NOV28i
NOV28J
NOV28k
NOV281 DRQFDCEDRSDEAAELCGRPGPGATSAPAACATVSQFACRSGECVHLGWRCDGDRDCKDK
NOV28a -SPCEGPRRFQCKSGKRVDGGKVCDVQRDCRDWSDELLKVWCGACLRPLAGLSL NOV28b NOV28C LGTCRGDEFQCGDGTCVLAIKHCNQEQDCPDGSDEAGCLQG NOV28d LGTCRGDEFQCGDGTCVLAIKHCNQEQDCPDGSDEAGCLQG NOV28e SDEADCPLGTCRGDEFQCGDGTCVLAIKHCNQEQDCPDGSDEAGCLQESPCEGPRRFQCK NOV28f LGTCRGDEFQCGDGTCVLAIKHCNQEQDCPDGSDEAGCLQG NOV28g LGTCRGDEFQCGDGTCVLAIKHCNQEQDCPDGSDEAGCLQG NOV28h SPCEGPRRFQCKSGKRVDGGKVCDVQRDCRDWSDELLKVWCGACLRPLAGLSL NOV28i LGTCRGDEFQCGDGTCVLAIKHCNQEQDCPDGSDEAGCLQVPPTFLGNRRRPR NOV28J LGTCRGDEFQCGDGTCVLAIKHCNQEQDCPDGSDEAGCLQG NOV28k LGTCRGDEFQCGDGTCVLAIKHCNQEQDCPDGSDEAGCLQG NOV281 SDEADCPLGTCRGDEFQCGDGTCVLAIKHCNQEQDCPDGSDEAGCLQG
NOV28a LPSPSWYLGSRPSSAPCPDTFCSDPLFGFMCRPMASHGAFRPQASGLHLYKVLRACPSQR
NOV28b
NOV28C
NOV28d
NOV28e SGKRVDGGKVCDVQRDCRDWSDELLKVWCVSYHPPPG-
NOV28f
NOV28g
NOV28h LPSPSWSPCP- -SP- -G--
NOV28i G
NOV28J
NOV28k
NOV281
NOV28a RLNECLHNNGGCSHICTDLKIGFECTCPAGFQLLDQKTCGDIDECKDPDACSQICVNYKG NOV28b
NOV28c -LNECLHNNGGCSHICADLKIGFECTCPAGFQLLDQKTCGDIDECKDPDACSQICV YKG
NOV28d -LNECLHNNGGCSHICTDLKIGFECTCPAGFQLLDQKTCG
NOV28e -LNECL----l-mTGGCSHICTDLKIGFΞCTCPAGFQLLDQKTCGDIDECKDPDACSQICVNYKG
NOV28f -LNECLHNNGGCSHICTDLKIGFECTCPAGFQLLDQKTCGDIDECKDPDACSQICV YKG
NOV28g -LNECLHNNGGCSHICTDLKIGFECTCPAGFQLLDQKTCG
NOV28 -LNECLHN-NGGCSHICTDLKIGFECTCPAGFQLLDQKTCGDIDECKDPDACSQICVNYKG
NOV28i -LNECLHNNGGCSHICTDLKIGFECTCPAGFQLLDQKTCGDIDECKDPDACSQICVNYKG
NOV28J -LNECLHNNGGCSHICTDLKIGFECTCPAGFQLLDQKTCGDIDECKDPDACSQICV YKG
NOV28k -LNECL-HNNGGCSHICTDLKIGFECTCPAGFQLLDQKTCGDIDECKDPDACSQICVNYKG
NOV281 -LNECLH NGGCSHICTDLKIGFECTCPAGFQLLDQKTCGDIDECKDPDACSQICVNYKG
NOV28a YFKCECYPGYEMDLLTKNCQ-AAAGKSPSLIFTNRYEVRRIDLVKRNYSRLIPMLKNVVAL
NOV28b
NOV28C YFKCECYPGYEMDLLTKNCKAAAGKSPSLIFT-- HE RIDLM---α-N^
NOV28d AGKSPSLIFTmiHEVRRIDLVIRNYSRLIPMLK-NVVAL
NOV28e YFKCECYPGYΞMDLLT-- CKAAAGKSPSLIFTNRHEVRRIDLVK-RNYSRLIPMLKNVVA
NOV28f YFKCECYPGYEMDLLT-ra^CKAAAGKSPSLIFTNRHEVRRIDLVK-RNYSRLIPMLK-NVVAL
NOV28g AGKSPSLIFTNRHEVRRIDLVKRNYSRLIPMLKNWAL
NOV28h YFKCECYPGYEMDLLT-i CKAAAGKSPSLIFTNRHEVRRIDLVKRNYSRLIPMLK-NVVAL
NOV28i YFKCECYPGYErøLLT-K- CK-AAAGKSPSLIFT-^^
NOV28j YFKCECYPGYEMDLLT-i CKAAAGKSPSLIFTN-RHEVRRIDLV----RNYSRLIPMLK-NVVAL
NOV28k YFKCECYPGYEMDLLTKNCKAAAGKSPSLIFTNRHEVRRIDLVKRNYSRLIPMLKNWAL
NOV281 YFKCECYPGYEMDLLTKNCKAAGGKSPSLIFTNRYEVRRIDLVKR-NYSRLIPMLKNVVAL
NOV28a DVEVATNRIYWCDLSYRKIYSAYMDKASDPKEQEVLIDEQLHSPEGLAVDWVH HIYWTD NOV28b P--AEK- NOV28C DVEVATNRIYWCDLSYRKIYSAYMDKASDPKEQEVLIDEQLHSPEGLAVDWVHKHIYWTD NOV28d DVEVATNRIYWCDLSYRKIYΞAYMDKASDPKEQEVLIDEQLHSPEGLAVDWVH HIYWTD NOV28e DVEVATNRIYWCDLSYRKIYSAYMDKASDPKEQEVLIDEQLHSPEGLAVDWVHKHIYWTD NOV28f DVEVATNRIYWCDLSYRKIYSAYMDKASDPKEQΞVLIDEQLHSPEGLAVDWVHKHIYWTD NOV28g DVEVATNRIYWCDLSYRKIYSAYMDKASDPKEQEVLIDEQLHSPΞGLAVDWVHKHIYWTD NOV28h DVEVATNRIYWCDLSYRKIYSAYMDKASDPKEQEVLIDEQLHSPEGLAVDWVHKHIYWTD NOV28i DVEVATNRIYWCDLSYRKIYSAYMDKASDPKEQEVLIDEQLHSPEGLAVDWVHKHIYWTD NOV28J DVEVATNRIYWCDLSYRKIYSAYMDKASDPKEQEVLIDEQLHSPEGLAVDWVHKHIYWTD NOV28k DVEVATNRIYWCDLSYRKIYSAYMDKASDPKEQEVLIDEQLHSPEGLAVDWVHKHIYWTD NOV281 DVEVATNRIYWCDLSYRKIYSAYMDKASDPKEQEVLIDEQLHSPEGLAVDWVHKHIYWTD
NOV28a SGNKTISVATVDGGRRRTLFSRNLSEPRAIAVDPLRGFMYWSDWGDQAKIEKSGLNGVDR NOV28b NOV28C SGNKTISVATVDGGRRRTLFSRNLSEPRAIAVDPLRGFMYWSDWGDQAKIEKSGLNGVDR NOV28d SGNKTISVATVDGGRRRTLFSRNLSEPRAIAVDPLRGFMYWSDWGDQAKIEKSGLNGVDR NOV28e SGNKTISVATVDGGRRRTLFSRNLSEPRAIAVDPLRGFMYWSDWGDQAKIEKSGLNGVDR NOV28f SGN KNISGGRRRTLFSRNLSΞPRAIAVDPLRGFMYWSDWGDQAKIEKSGLNGVDR NOV28g SGNKTISVATVDGGRRRTLFSRNLSEPRAIAVDPLRGFMYWSDWGDQAKIEKSGLNGVDR NOV28 SGNKTISVATVDGGRRRTLFSRNLSEPRAIAVDPLRGFMYWSDWGDQAKIEKSGLNGVDR NOV28i SGNKTISVATVDGGRRRTLFSRNLSEPRAIAVDPLRGFMYWSDWGDQAKIEKSGLNGVDR NOV28J SGNKTISVATVDGGRRRTLFSRNLSEPRAIAVGPLRGFMYWSDWGDQAKIEKSGLNGVDR NOV28k SGNKTISVATVDGGRRRTLFSRNLSEPRAIAVDPLRGFMYWSDWGDQAKIEKSGLNGVDR NOV281 SGNKTISVATVDGGRRRTLFSRNLSEPRAIAVDPLRGFMYWSDWGDQAKIEKSGLNGVDR
NOV28a QTLVSDNIEWPNGITLDLLSQRLY VDSKLHQLSSIDFSGGNRKTLISSTDFLSHPFGIA NOV28b NOV28C QTLVSDNIΞWPNGITLDLLSQRLYVDSKLHQLSSIDFSGGNRKTLISSTDFLSHPFGIA NOV28d QTLVSDNIEWPNGITLDLLSQRLY VDSKLHQLSSIDFSGGNRKTLISSTDFLSHPFGIA NOV28e QTLVSDNIEWPNGITLDLLSQRLY VDSKLHQLSSIDFSGGNRKTLISSTDFLSHPFGIA NOV28f QTLVSDNIEWPNGITLDLLSQRLYVDSKLHQLSSIDFSGGNRKTLISSTDFLSHPFGIA NOV28g QTLVSDNIEWPNGITLDLLSQRLYWVDSKLHQLSSIDFSGGNRKTLISSTDFLSHPFGIA NOV28h QTLVSDNIEWPNGITLDLLSQRLYVDSKLHQLSSIDFSGGNRKTLISSTDFLSHPFGIA NOV28i QTLVSDNIEWPNGITLDLLSQRLYWVDSKLHQLSSIDFSGGNRKTLISSTDFLSHPFGIA NOV28J QTLVLDNIEWPNGITLDLLSQRLYWVDSKLHQLSSIDFSGGNRKTLISSTDFLSHPFGIA NOV28k QTLVSDNIEWPNGITLDLLSQRLYWVDSKLHQLSSIDFSGGNRKTLISSTDFLSHPFGIA NOV281 QTLVSDNIEWPNGITLDLLSQRLYWVDSKLHQLSSIDFSGGNRKTLISSTDFLSHPFGIA
NOV28a VFEDKVFWTDLENEAIFSANRLNGLEISILAENLNNPHDIVIFHELKQPRAPDACELSVQ NOV28b NOV28C VFEDKVFWTDLENEAIFSANRLNGLEISILAENLNNPHDIVIFHELKQPRAPDACELSVQ NOV28d VFEDKVFWTDLENEAIFS NRLNGLEISILAENLNNPHDIVIFHELKQPRAPDACELSVQ NO 28e VFEDKVFWTDLENEAIFSANRLNGLEISILAENLNNPHDIVIFHELKQPRAPDACELSVQ NOV28f VFEDKVFWTDLENEAIFSANRLNGLEISILAENLNNPHDIVIFHELKQPRAPDACELSVQ NOV28g VFEDKVFWTDLENEAIFSANRLNGLEISILAENLNNPHDIVIFHELKQPRAPDACELSVQ NOV28h VFEDKVFWTDLENEAIFSANRLNGLEISILAENLNNPHDIVIFHELKQPRAPDACELSVQ NOV28i VFEDKV'FWTDLENEAIFSA-mLNGLEISILAENLNNPHDIVIFHELKQPRAPDACELSVQ NOV28J VFEDKVFWTDLENEAIFSANRLNGLEISILAENLNNPH IVIFHELKQPRAPDACELSVQ NOV28k VFEDKVFWTDLENEAIFSANRLNGLEISILAENLNNPHDIVIFHELKQPRAPDACELSVQ NOV281 VFEDKVFWTDLENEAIFSANRLNGLEISILAENLNNPHDIVIFHELKQPRAPDACELSVQ
NOV28a PNGGCEYLCLPAPQISSHSPKYTCACPDTMWLGPDMKRCYRAP NOV28b LGPDMKRCYRAP NOV28C PNGGCEYLCLPAPQISSHSPKYTCACPDTMWLGPDMKRCYRAP NOV28d PNGGCEYLCLPAPQISSHSPKYTCACPDTMWLGPDMKRCYRAP NOV28e PNGGCEYLCLPAPQISSHSPKYTCACPDTMWLGPDMKRCYRAPQSTSTTTLASTMTRTVP NOV28f PNGGCEYLCLPAPQISSHSPKYTCACPDTMWLGPDMKRCYRD NOV28g PNGGCEYLCLPAPQISSHSPKYTCACPDTMWLGPDMKRCYRAP NOV28h PNGGCEYLCLPAPQISSHSPKYTCACPDTMWLGPDMKRCYRAP NOV28i PNGGCEYLCLPAPQISSHSPKYTCACPDTMWLGPDMKRCYRAP NOV28J PNGGCEYLCLPAPQISSHSPKYTCACPDTMWLGPDMKRCYRAPQSTSTTTLASTMTRTVP NO 28k PNGGCEYLCLPAPQISSHSPKYTCACPDTMWLGPDMKRCYRAP NOV281 PNGGCEYLCLPAPQISSHSPKYTCACPDTMWLGPDMKRCYRAPQSTSTTTLASTMTRTVP
NOV28a NOV28b NOV28c NOV28d NOV28e ATTRAPGTTVHRSTYQNHSTETPSLTAAVPSSVSVPRAPSISPSTLSPATSNHSQHYANE NOV28f auE NOV28g NOV28h NOV28i NOV28J ATTRAPGTTVHRSTYQNHSTETPSLTAAVPSSVSVPRAPSISPSTLSPATSNHSQHYANE NOV28k NOV281 ATTRAPGTTVHRSTYQNHSTETPSLTAAVPSSVSVPRAPSISPSTLSPATSNHSQHYANE
NOV28a -QSTSTTTLASTMTRTVPATTRAPGTTVHRSTYQNHSTETPSLTAAVPSSVSVPRAPSIS NOV28b -QSTSTTTLASTMTRTVPATTRAPGTTVHRSTYQNHSTETPSLTAAVPSSVSVPRAPSIS NOV28C -QSTSTTTLASTMTRTVPATTRAPGTTVHRSTYQNHSTETPSLTAAVPSSVSVPRVPSIS NOV28d -QSTSTTTLASTMTRTVPATTRAPGTTVHRSTYQNHSTETPSLTAAVPSSVSVPRAPSIS NOV28e DS-..VMGSTVTAAVIGIIVPIVVIALLCMSGYLIWRNWKRKN-TKS-NFDNPVYRKTTEEED NOV28f DS--MGSTVTAAVIGIIVPIVVIALLCMSGYLIWR-NWKRKN-TKSMNFDNPVYRKTTEEED NOV28g -QSTSTTTLASTMTRTVPATTRAPGTTVHRSTYQNHSTETPSLTAAVPSSVSVPRAPSIS NOV28h -QSTSTTTLASTMTRTVPATTRAPGTTVHRSTYQNHSTETPSLTAAVPSSVSVPRAPSIS NOV28i -QSTSTTTLASTMTRTVPATTRAPGTTVHRSTYQNHSTETPSLTAAVPSSVSVPRAPSIS NOV28J DS--MGSTVTAAVIGIIVPIVVIALLCMSGYLIWRNWKRKN-TKSMNFDNPVYRKTTEEED NOV28k -QSTSTTTLASTMTRTVPATTRAPGTTVHRSTYQNHSTETPSLTAAVPSSVSVPRAPSIS NOV281 DSKMGSTVTAAVIGIIVPIVVIALLCMSGYLIW-RNWIOΛKN-TKSMNFDNPVYRKTTEEED
NOV28a PSTLSPATSNHSQHYA-NEDSKMGSTVTAAVIGIIVPIWIALLCMSGYLIWRNWK
NOV28b PSTLSPATSNHSQHYANEDSKMGSTVTAAVIGIIVPIWIALLCMSGYLIWRNWK
NOV28C P
NOV28d PSTLSPATSNHSQHAN-EDSKMGSTVTAAVIGIIVPIANEDSKMGSTVTAAVIGIIVPIG NOV28e E- NOV28f E-
NOV28g PSTLSPATSNHSQHYANEDSKMGSTVTAAVIGIIVPIV VIALLCMSG
NOV28h PSTLSPATSNHSQHYANEDSK-MGSTVTAAVIGIIVPIWIALLCMSGYLIWRNWK
NOV28i P
NOV28j E
NOV28k P
NOV281 E
NOV28a RKNTKSMNFDNPVYRKTTEEEDEDELHIGRTAQIGHVYPAAISS NOV28b RKNTKSMNFDNPVYRKTTEEEDEDELHIGRTAQIGHVYPAAISS NOV28C STLRPATSNHSQHYAN NOV28d DSPPVHEWIPDLEKLEAEEHQKHEFDNPVYRKTTEEEDEDELHIGRTAQIGHVYPAAISS NOV28e DELHIGRTAQIGHVYPAAISS NOV28f DELHIGRTAQIGHVYP NOV28g YLIWRNWKRKNTKSMNFDNPVYRKTTEEEDEDELHIGRTAQIGHVYPAAISS NOV28h RKNTKSMNFDNPVYRKTTEEEDEDELHIGRTAQIGHVYPAAISS NOV28i STLSPATSNHSQHYAN NOV28J DELHIGRTAQIGHVYP NOV28k STLSPATSNHSQHYAN NOV281 DELHIGRTAQIGHVYPAAISS
NOV28a FDRPLWAEPCLGETREPEDPAPALKELFVLPGEPRSQLHQLPKNPLSELPWKSK-RVAL NOV28b FDRPLWAEPCLGETREPEDPAPALKELFVLPGEPRSQLHQLPKNPLSELPWKSK-RVAL NOV28C NOV28d FDRPLWAEPCLGETREPEDPAPALKELFVLPGEPRSQLHQLPKNPLSELPWKSKQRVAL NOV28e FDRPLWAEPCLGETREPEDPAPALKELFVLPGEPRSQLHQLPKNPLSELPWKSK-RVAL NOV28f A-RVAL NOV28g FDRPLWAEPCLGETREPEDPAPALKELFVLPGEPRSQLHQLPKNPLSELPWKSK-RVAL NOV28h FDRPLWAEPCLGETREPEDPAPALKELFVLPGEPRSQLHQLPKNPLSELPWKSK-RVAL NOV28i NOV28J -A-RVAL NOV28k NOV281 FDRPLWAEPCLGETREPEDPAPALKELFVLPGEPRSQLHQLPKNPLSELPWKSK-RVAL
NOV28a SLEDDGLP-
NOV28b SLEDDGLP-
NOV28C --EDSKLE-
NOV28d SLEDDGLP-
NOV28e SLEDDGLP- NOV28f SLEDDGLP-
NOV28g SLΞDDGLP- NOV28h SLEDDGLP-
NOV28i --EDSKMGSTVTAAVIGIIVPIVVIALLCMSGYLIWRNWKRKNTKSMNFDNPVYRKTTEE
NOV28J SLEDDGLP
NOV28k - -EDSKMGSTVTAAVIGIIVPIVVIALLCMSGYLIW-RNWKRKNTKSMNFANPVYRKTTEE
NOV281 SLEDDGLP
NOV28a NOV28b NOV28C NOV 8d NOV28e NOV28f NOV28g NOV28h
NOV28i EDEDELHIGRTAQIGHVYPAAISSFDRPLWAEPCLGETREPEDPAPALKELFVLPGEPRS
NOV28J
NOV28k EDEDELHIGRTAQIGHVYPAAISSFDRPLWAEPCLGETREPEDPAPALKELFVLPGEPRS
NOV281 NOV28a NOV28b NOV28C NOV28d
NOV28e NOV28f
NOV28g
NOV28h NOV28i QLHQLPKNPLSELPWKSKRVALSLEDDGLP
NOV28J
NOV28k QLHQLPKNPLSELPWKSKRVALSLEDDGLP
NOV281 NOV28a (SEQ ID NO 638)
NOV28b (SEQ ID NO 640)
NOV28C (SEQ ID NO 642)
NOV28d (SEQ ID NO 644)
NOV28e (SEQ ID NO 646)
NOV28f (SEQ ID NO 648)
NOV28g (SEQ ID NO 650)
NOV28h (SEQ ID NO 652)
NOV28i (SEQ ID NO 654)
NOV28J (SEQ ID NO 656)
NOV28k (SEQ ID NO 658)
NOV281 (SEQ ID NO 660)
Further analysis of the NOV28a protein yielded the following properties shown in Table 28C.
Table 28C. Protein Sequence Properties NOV28a
SignalP analysis: Cleavage site between residues 33 and 34
PSORT π analysis:
PSG: a new signal peptide prediction method
N-region : length 10 ; pos . chg 1 ; neg . chg 1 H-region : length 14 ; peak value 11.70 PSG score : 7 .30
GvH: von Heijne ' s method for signal seq. recognition GvH score (threshold: -2 . 1) : 4 .70 possible cleavage site : between 26 and 27
>>> Seems to have a cleavable signal peptide (1 to 26)
ALOM: Klein et al ' s method for TM region allocation
Init position for calculation: 27
Tentative number of TMS(s) for the threshold 0.5:
Number of TMS(s) for threshold 0.5: 1
INTEGRAL Likelihood =-13.80 Transmembrane 768 - 784
PERIPHERAL Likelihood = 2.81 (at 203)
ALOM score: -13.80 (number of TMSs: 1)
MTOP: Prediction of membrane topology (Hartmann et al.) Center position for calculation: 13 Charge difference: -0.5 C( 0.5) - N( 1.0) N >= C: N-terminal side will be inside >>> membrane topology: type la (cytoplasmic tail 785 to 905)
MITDISC: discrimination of mitochondrial targeting seq R content: 2 Hyd Moment (75) : 5.68 Hyd Moment (95): 4.45 G content: 2 D/E content: 2 S/T content: 0 Score: -6.43
Gavel: prediction of cleavage sites for mitochondrial preseq R-2 motif at 35 LRL|QH
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7: PWKSKR (3) at 888 bipartite : none content of basic residues: 10.3% NLS Score: -0.22
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals : none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif: none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail: too long tail
Dileucine motif in the tail: none checking 63 PROSITE DNA binding motifs : none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: nuclear ""
Reliability: 89
COIL: Lupas ' s algorithm to detect coiled-coil regions total : 0 residues Final Results (k = 9/23) :
44.4 %: extracellular, including cell wall
22.2 %: Golgi
22.2 %: endoplasmic reticulum
11.1 %: plasma membrane
>> prediction for CG55256-07 is exc (k=9)
A search of the NOV28a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 28D.
In a BLAST search of public sequence databases, the NOV28a protein was found to have homology to the proteins shown in the BLASTP data in Table 28E.
PFam analysis predicts that the NOV28a protein contains the domains shown in the Table 28F.
Example 29.
The NOV29 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 29 A.
ATTTCGGTACCTGACTTCCATCCCAGACAGCATCCCGCCCAATGTGGAACGCATCAATTTAGGGTACA ACAGCTTGGTTAGATTGATGGAAACAGATTTTTCTGGCCTGACCAAACTGGAGTTACTCATGCTTCAC AGCAATGGCATTCACACAATCCCTGACAAGACCTTCTCAGATTTGCAGGCCTTGCAGGTGAGACTGAT GGTCTTAAAAATGAGCTATAATAAAGTCCGAAAACTTCAGAAAGATACTTTTTATGGCCTCAGGAGCT TGACACGATTGCACATGGACCACAACAATATTGAGTTTATAAACCCAGAGGTTTTTTATGGGCTCAAC TTTCTCCGCCTGGTGCACTTGGAAGGAAATCAGCTCACTAAGCTCCACCCAGATACATTTGTCTCTTT GAGCTACCTCCAGATATTTAAAATCTCTTTCATTAAGTTCCTATACTTGTCTGATAACTTCCTGACCT CCCTCCCTCAAGAGATGGTCTCCTATATGCCTGACCTAGACAGCCTTTACCTGCATGGAAACCCATGG ACCTGTGATTGCCATTTAAAGTGGTTGTCTGACTGGATACAGGAGAAGCCAGGTATCTATATTGTNTT ACCAGATGTAATAAAATGCAAAAAAGATAGAAGTCCCTCTAGTGCTCAGCAGTGTCCACTTTGCATGA ACCCTAGGACTTCTAAAGGCAAGCCGTTAGCTATGGTCTCAGCTGCAGCTTTCCAGTGTGCCAAGCCA ACCATTGACTCATCCCTGAAATCAAAGAGCCTGACTATTCTGGAAGACAGTAGTTCTGCTTTCATCTC TCCCCAAGGTTTCATGGCACCCTTTGGCTCCCTCACTTTGAATATGACAGATCAGTCTGGAAATGAAG CTAACATGGTCTGCAGTATTCAAAAGCCCTCAAGGACATCACCCATTGCATTCACTGAAGAAAATGAC TACATCGTGCTAAATACTTCATTTTCAACATTTTTGGTGTGCAACATAGATTACGGTCACATTCAGCC AGTGTGGCAAATTTTGGCTTTGTACAGTGATTCTCCTCTGATACTAGAAAGGAGCCACTTGCTTAGTG AAACACCGCAGCTCTATTACAAATATAAACAGGTGGCTCCTAAGCCTGAAGACATTTTTACCAACATA GAGGCAGATCTCAGAGCAGATCCCTCTTGGTTAATGCAAGACCAAATTTCCTTGCAGCTGAACAGAAC TGCCACCACATTCAGTACATTACAGATCCAGTACTCCAGTGATGCTCAAATCACTTTACCAAGAGCAG AGATGAGGCCAGTGAAACACAAATGGACTATGATTTCAAGGGATAACAATACTAAGCTGGAACATACT GTCTTGGTAGGTGGAACCGTTGGCCTGAACTGCCCAGGCCAAGGAGACCCCACCCCACACGTGGATTG GCTTCTAGCTGATGGAAGTAAAGTGAGAGCCCCTTATGTCAGTGAGGATGGACGGATCCTAATAGACA AAAGTGGAAAATTGGAACTCCAGATGGCTGATAGTTTTGACACAGGCGTATATCACTGTATAAGCAGC AATTATGATGATGCAGATATTCTCACCTATAGGATAACTGTGGTAGAACCTTTGGTCGAAGCCTATCA GGAA ATGGGATTCATCACACAGTTTTCATTGGTGAAACACTTGATCTTCCATGCCATTCTACTGGTA TCCCAGATGCCTCTATTAGCTGGGTTATTCCAGGAAACAATGTGCTCTATCAGTCATCAAGAGACAAG AAAGTTCTAAACAATGGCACATTAAGAATATTACAGGTCACCCCGAAAGACCAAGGTTATTATCGCTG TGTGGCAGCCAACCCATCAGGGGTTGATTTTTTGATTTTCCAAGTTTCAGTCAAGATGAAAGGACAAA GGCCCTTGGAGCATGATGGAGAAACAGAGGGATCTGGACTTGATGAGTCCAATCCTATTGCTCATCTT AAGGAGCCACCAGGTGCACAACTCCGTACATCTGCTCTGATGGAGGCTGAGGTTGGAAAACACACCTC AAGCACAAGTAAGAGGCACAACTATCGGGAATTAACACTCCAGCGACGTGGAGATTCAACACATCGAC GTTTTAGGGAGAATAGGAGGCATTTCCCTCCCTCTGCTAGGAGAATTGACCCACAACATTGGGCGGCA CTGTTGGAGAAAGCTAAAAAGAATGCTATGCCAGACAAGCGAGAAAATACCACAGTGAGCCCACCCCC AGTGGTCACCCAACTCCCAAACATACCTGGTGAAGAAGACGATTCCTCAGGCATGCTCGCTCTACATG AGGAATTTATGGTCCCGGCCACTAAAGCTTTGAACCTTCCAGCAAGGACAGTGACTGCTGACTCCAGA ACAATATCTGATAGTCCTATGACAAACATAAATTATGGCACAGAATTCTCTCCTGTTGTGAATTCACA AATACTACCACCTGAAGAACCCACAGATTTCAAACTGTCTACTGCTATTAAAACTACAGCCATGTCAA AGAATATAAACCCAACCATGTCAAGCCAAATACAAGGCACAACCAATCAACATTCATCCACTGTCTTT CCACTGCTACTTGGAGCAACTGAATTTCAGGACTCTGACCAGATGGGAAGAGGAAGAGAGCATTTCCA AAGTAGACCCCCAATAACAGTAAGGACTATGATCAAAGATGTCAATGTCAAAATGCTTAGTAGCACCA CCAACAAACTATTATTAGAGTCAGTAAATACCACAAATAGTCATCAGACATCTGTAAGAGAAGTGAGT GAACCCAGGCACAATCACTTCTATTCTCACACTACTCAAATACTTAGCACCTCCACGTTCCCTTCAGA TCCACACACAGCTGCTCATTCTCAGTTTCCGATCCCTAGAAATAGTACAGTTAACATCCCGCTGTTCA GACGCTTTGGGAGGCAGAGGAAAATTGGCGGAAGGGGGCGGATTATCAGCCCATATAGAACTCCAGTT CTGCGACGGCATAGATACAGCATTTTCAGGTCAACAACCAGAGGTTCTTCTGAAAAAAGCACTACTGC ATTCTCAGCCACAGTGCTCAATGTGACATGTCTGTCCTGTCTTCCCAGGGAGAGGCTCACCACTGCCA CAGCAGCATTGTCTTTTCCAAGTGCTGCTCCCATCACCTTCCCCAAAGCTGACATTGCTAGAGTCCCA
TCAGAAGAGTCTACAACTCTAGTCCAGAATCCACTATTACTACTTGAGAACAAACCCAGTGTAGAGAA AACAACACCCACAATAAAATATTTCAGGACTGAAATTTCCCAAGTGACTCCAACTGGTGCAGTCATGA CATATGCTCCAACATCCATACCCATGGAAAAAACTCACAAAGTAAACGCCAGTTACCCACGTGTGTCT AGCACCAATGAAGCTAAAAGAGATTCAGTGATTACATCGTCACTTTCAGGTGCTATCACCAAGCCACC AATGACTATTATAGCCATTACAAGGTTTTCAAGAAGGAAAATTCCCTGGCAACAGAACTTTGTAAATA ACCATAACCCAAAAGGCAGATTAAGGAATCAACATAAAGTTAGTTTACAAAAAAGCACAGCTGTGATG CTTCCTAAAACATCTCCTGCTTTACCACAGAGACAAAGTCTCCCCTCGCACCACACTACGACCAAAAC ACACAATCCTGGAAGTCTTCCAACAAAGAAGGAGCTTCCCTTCCCACCCCTTAACCCTATGCTTCCTA GTATTATAAGCAAAGACTCAAGTACAAAAAGCATCATATCAACGCAAACAGCAATACCAGCAACAACT CCTACCTTCCCTGCATCTGTCATCACTTATGAAACCCAAACAGAGAGATCTAGAGCACAAACAATACA AAGAGAACAGGAGCCTCAAAAGAAGAACAGGACTGACCCAAACATCTCTCCAGACCAGAGTTCTGGCT TCACTACACCCACTGCTATGACACCTCCTGTTCTAACCACAGCCGAAACTTCAGTCAAGCCCAGTGTC TCTGCATTCACTCATTCCCCACCAGAAAACACAACTGGGATTTCAAGCACAATCAGTTTTCATTCAAG AACTCTTAATCTGACAGATGTGATTGAAGAACTAGCCCAAGCAAGTACTCAGACTTTGAAGAGCACAA TTGCTTCTGAAACAACTTTGTCCAGCAAATCACACCAGAGTACCACAACTAGGAAAGCAATCATTAGA CACTCAACCATACCACCATTCTTGAGCAGCAGTGCTACTCTAATGCCAGTTCCCATCTCCCCTCCCTT TACTCAGAGAGCAGTTACTGACAACGTGGCGACTCCCATTTCCGGGCTTATGACAAATACAGTGGTCA AGCTGCACGAATCCTCAAGGCACAATGCTAAACCACAGCAATTAGTAGCAGAGGTTGCAACATCCCCC AAGGTTCACCCAAATGCCAAGTTCACAATTGGAACCACTCACTTCATCTACTCTAATCTGTTACATTC TACTCCCATGCCAGCACTAACAACAGTTAAATCACAGAATTCTAAATTAACTCCATCTCCCTGGGCAG AAAACCAATTTTGGCACAAACCATACTCAGAAATTGCTGAAAAAGGCAAAAAGCCAGAAGTAAGCATG TTGGCTACTACAGGCCTGTCCGAGGCCACCACTCTTGTTTCAGATTGGGATGGACAGAAGAACACAAA GAAGAGTGACTTTGATAAGAAACCAGTTCAAGAAGCAACAACTTCCAAACTCCTTCCCTTTGACTCTT TGTCTAGGTATATATTTGAAAAGCCCAGGATAGTTGGAGGAAAAGCTGCAAGTTTTACTATTCCAGCT AACTCAGATGCCTTTCTTCCCTGTGAAGCTGTTGGAAATCCCCTGCCCACCATTCATTGGACCAGAGT CCCATCAGGTATGTCAGGACTTGATTTATCTAAGAGGAAACAGAATAGCAGGGTCCAGGTTCTCCCCA ATGGTACCCTGTCCATCCAGAGGGTGGAAATTCAGGACCGCGGACAGTACTTGTGTTCCGCATCCAAT CTGTTTGGCACAGACCACCTTCATGTCACCTTGTCTGTGGTTTCCTATCCTCCCAGGATCCTGGAGAG ACGTACCAAAGAGATCACAGTTCATTCCGGAAGCACTGTGGAACTGAAGTGCAGAGCAGAAGGTAGGC CAAGCCCTACAGTTACCTGGATTCTTGCAAACCAAACAGTTGTCTCAGAATCATCCCAGGGAAGTAGG CAGGCTGTGGTGACGGTTGACGGAACATTGGTCCTCCACAATCTCAGTATTTATGACCGTGGCTTTTA CAAATGTGTGGCCAGCAACCCAGGTGGCCAGGATTCACTGCTGGTTAAAATACAAGTCATTGCAGCAC CACCTGTTATTCTAGAGCAAAGGAGGCAAGTCATTGTAGGCACTTGGGGTGAAAGTTTAAAACTGCCC TGTACTGCAAAAGGAACTCCTCAGCCCAGCGTTTACTGGGTCCTCTCTGATGGCACTGAAGTGAAACC ATTACAGTTTACCAATTCCAAGTTGTTCTTATTTTCAAATGGGACTTTGTATATAAGAAACCTAGCCT CTTCAGACAGGGGCACTTATGAATGCATTGCTACCAGTTCCACTGGTTCGGAGCGAAGAGTAGTAATG CTTACAATGGAAGAGCGAGTGACCAGCCCCAGGATAGAAGCTGCATCCCAGAAAAGGACTGAAGTGAA TTTTGGGGACAAATTACTACTGAACTGCTCAGCCACTGGGGAGCCCAAACCCCAAATAATGTGGAGGT TACCATCCAAGGCTGTGGTCGACCAGCAGCATAGGGTGGGCAGCTGGATCCACGTCTACCCTAATGGA TCCCTGTTTATTGGATCAGTAACAGAAAAAGACAGTGGTGTCTACTTGTGTGTGGCAAGAAACAAAAT GGGGGATGATCTGATACTGATGCATGTTAGCCTAAGACTGAAACCTGCCAAAATTGACCACAAGCAGT ATTTTAGAAAGCAAGTGCTCCATGGGAAAGATTTCCAAGTAGATTGCAAAGCTTCCGGCTCCCCAGTG CCAGAGATATCTTGGAGTTTGCCTGATGGAACCATGATCAACAATGCAATGCAAGCCGATGACAGTGG CCACAGGACTAGGAGATATACCCTTTTCAACAATGGAACTTTATACTTCAACAAAGTTGGGGTAGCGG AGGAAGGAGATTATACTTGCTATGCCCAGAACACCCTAGGGAAAGATGAAATGAAGGTCCACTTAACA GTTATAACAGCTGCTCCCCGGATAAGGCAGAGTAACAAAACCAACAAGAGAATCAAAGCTGGAGACAC AGCTGTCCTTGACTGTGAGGTCACTGGGGATCCCAAACCAAAAATATTTTGGTTGCTGCCTTCCAATG ACATGATTTCCTTCTCCATTGATAGGTACACATTTCATGCCAATGGGTCTTTGACCATCAACAAAGTG AAACTGCTCGATTCTGGAGAGTACGTATGTGTAGCCCGAAATCCCAGTGGGGATGACACCAAAATGTA
CAAACTGGATGTGGTCTCTAAACCTCCATTAATCAATGGTCTGTATACAAACAGAACTGTTATTAAAG CCACAGCTGTGAGACATTCCAAAAAACACTTTGACTGCAGAGCTGAAGGGACACCATCTCCTGAAGTC ATGTGGATCATGCCAGACAATATTTTCCTCACAGCCCCATACTATGGAAGCAGAATCACAGTCCATAA AAATGGAACCTTGGAAATTAGGAATGTGAGGCTTTCAGATTCAGCCGACTTTATCTGTGTGGCCCGAA ATGAAGGTGGAGAGAGCGTGTTGGTAGTACAGTTAGAAGTACTGGAAATGCTGAGAAGACCGACATTT AGAAATCCATTTAATGAAAAAATAGTTGCCCAGCTGGGAAAGTCCACAGCATTGAATTGCTCTGTTGA TGGTAACCCACCACCTGAAATAATCTGGATTTTACCAAATGGCACACGATTTTCCAATGGACCACAAA GTTATCAGTATCTGATAGCAAGCAATGGTTCTTTTATCATTTCTAAAACAACTCGGGAGGATGCAGGA AAATATCGCTGTGCAGCTAGGAATAAAGTTGGCTATATTGAGAAATTAGTCATATTAGAAATTGGCCA GAAGCCAGTTATTCTTACCTATGCACCAGGGACAGTAAAAGGCATCAGTGGAGAATCTCTATCACTGC ATTGTGTGTCTGATGGAATCCCTAAGCCAAATATCAAATGGACTATGCCAAGTGGTTATGTAGTAGAC AGGCCTCAAATTAATGGGAAATACATATTGCATGACAATGGCACCTTAGTCATTAAAGAAGCAACAGC TTATGACAGAGGAAACTATATCTGTAAGGCTCAAAATAGTGTTGGTCATACACTGATTACTGTTCCAG TAATGATTGTAGCCTACCCTCCCCGAATTACAAATCGTCCACCCAGGAGTATTGTCACCAGGACAGGG GCAGCCTTTCAGCTCCACTGTGTGGCCTTGGGAGTTCCCAAGCCAGAAATCACATGGGAGATGCCTGA CCACTCCCTTCTCTCAACGGCAAGTAAAGAGAGGACACATGGAAGTGAGCAGCTTCACTTACAAGGTA CCCTAGTCATTCAGAATCCCCAAACCTCCGATTCTGGGATATACAAATGCACAGCAAAGAACCCACTT GGTAGTGATTATGCAGCAACGTATATTCAAGTAATCTGACATGAAATAATAAAGTC
NOV29a, CG55776-01 SEQ ID NO: 666 2617 aa MW at 290200.2kD Protein Sequence
MKVKGRGITCLLVSFAVIC VATPGGKACPRRCACYMPTEVHCTFRY TSIPDSIPPNVE INLGYNS LVRLMETDFSG TKLELLM HSNGIHTIPDKTFSDLQALQVRLMVLK SYNKVRKLQKDTFYGLRSLT NOV29e, 248057927 SEQ ID NO: 673 771 bp DNA Sequence ORF Start: at 1 JORF Stop: end of sequence
AAGCTTGCCTGTCCTCGCCGCTGTGCCTGTTATATGCCTACGGAGGTACACTGCACATTTCGGTACCT GACTTCCATCCCAGACAGCATCCCGCCCAATGTGGAACGCATCAATTTAGGATACAACAGCTTGGTTA GATTGATGGAAACAGATTTTTCTGGCCTGACCAAACTGGAGTTACTCATGCTTCACAGCAATGGCATT CACACAATCCCTGACAAGACCTTCTCAGATTTGCAGGCCTTGCAGGTCTTAAAAATGAGCTATAACAA AGTCCGAAAACTTCAGAAAGATACTTTTTATGGCCTCAGGAGCTTGACACGATTGCACATGGACCACA ACAATATTGAGTTTATAAACCCAGAGGTTTTTTATGGGCTCAACTTTCTCCGCCTGGTGCACTTGGAA GGAAATCAGCTCACTAAGCTCCACCCAGATACATTTGTCTCTTTGAGCTACCTCCAGATATTTAAAAT CTCTTTCATTAAGTTCCTATACTTGTCTGATAACTTCCTGACCTCCCTCCCTCAAGAGATGGTCTCCT ATATGCCTGACCTAGACAGCCTTTACCTGCATGGAAACCCATGGACCTGTGATTGCCATTTAAAGTGG TTGTCTGACTGGATACAGGAGAAGCCAGATGTAATAAAATGCAAAAAAGATAGAAGTCCCTCTAGTGC TCAGCAGTGTCCACTTTGCATGAACCCTAGGACTTCTAAAGGCAAGCCGTTAGCTATGGTCTCAGCTG CAGCTTTCCAGTGTGCCCTCGAG
NOV29e, 248057927 SEQ ID NO: 674 257 aa MW at 29661.2kD Protein Sequence
-K-LACPRRCACYMPTEVHCTFRY TSIPDSIPP--WERINLGYNSLVR METDFSG TKLELLMLHSNGI HTIPDKTFSD QALQV KMSYNKVRKLQ-TO^
GNQ TK HPDTFVSLSYLQIFKISFIKFLY SDNF TS PQEMVSYMPD DS YLHGNP TCDCHLKW LSDWIQEKPDVIKCKKDRSPSSAQQCP CM PRTSKGKPLAMVSAAAFQCALE
NOV29f, 249239821 SEQ ID NO: 675 771 bp DNA Sequence ORF Start: at 1 \ ORF Stop: end of sequence
AAGCTTGCCTGTCCTCGCCGCTGTGCCTGTTATATGCCTACGGAGGTACACTGCACATTTCGGTACCT GACTTCCATCCCAGACAGCATCCCGCCCAATGTGGAACGCATCAATTTAGGATACAACAGCTTGGTTA GATTGATGGAAACAGATTTTTCTGGCCTGACCAAACTGGAGTTACTCATGCTTCACAGCAATGGCATT CACACAATCCCTGACAAGACCTTCTCAGATTTGCAGGCCTTGCAGGTCTTAAAAATGAGCTATAACAA AGTCCGAAAACTTCAGAAAGATACTTTTTATGGCCTCAGGAGCTTGACACGATTGCACATGGACCACA ACAATATTGAGTTTATAAACCCAGAGGTTTTTGATGGGCTCAACTTTCTCCGCCTGGTGCACTTGGAA GGAAATCAGCTCACTAAGCTCCACCCAGATACATTTGTCTCTTTGAGCTACCTCCAGATATTTAAAAT CTCTTTCATTAAGTTCCTATACTTGTCTGATAACTTCCTGACCTCCCTCCCTCAAGAGATGGTCTCCT ATATGCCTGACCTAGACAGCCTTTACCTGCATGGAAACCCATGGACCTGTGATTGCCATTTAAAGTGG TTGTCTGACTGGATACAGGAGAAGCCAGATGTAATAAAATGCAAAAAAGATAGAAGTCCCTCTAGTGC TCCGCAGTGTCCACTTTGCATGAACCCTAGGACTTCTAAAGGCAAGCCGTTAGCTATGGTCTCAGCTG CAGCTTTCCAGTGTGCCCTCGAG
NOV29f, 249239821 SEQ ID NO: 676 257 aa MW at 29582.1kD Protein Sequence
KLACPRRCACYMPTEVHCTFRY TSIPDSIPPNVERIN GYNSLVR METDFSGLTKLE MLHSNGI HTIPDKTFSDLQ-A QV ---T iSYNKVR--- QKDTFYGLRS TR HMDH)Sπ-IIEFINPEVFDGLNFLR VH E GNQLTKLHPDTFVS SYLQIFKISFIKFLY SDNF TSLPQEi> VSYMPDLDSLY HGNPWTCDCHLKW LSD IQEKPDVIKC KDRSPSSAPQCPLC NPRTSKGKP AMVSAAAFQCALE
NOV29g, 248057920 SEQ ID NO: 677 771 bp DNA Sequence ORF Start: at 1 ORF Stop: end of sequence
AAGCTTGCCTGTCCTCGCCGCTGTGCCTGTTATATGCCTACGGAGGTACACTGCACATTTCGGTACCT GACTTCCATCCCAGACAGCATCCCGCCCAATGTGGAACGCATCAATTTAGGATACAACAGCTTGGTTA GATTGATGGAAACAGATTTTTCTGGCCTGACCAAACTGGAGTTACTCATGCTTCACAGCAATGGCATT CACACAATCCCTGACAAGACCTTCTCAGATTTGCAGGCCTTGCAGGTCTTAAAAATGAGCTATAACAA AGTCCGAAAACTTCAGAAAGATACTTTTTATGGCCTCAGGAGCTTGACACGATTGCACATGGACCACA ACAATATTGAGTTTATAAACCCAGAGGTTTTTGATGGGCTCAACTTTCTCCGCCTGGTGCACTTGGAA GGAAATCAGCTCACTAAGCTCCACCCAGATACATTTGTCTCTTTGAGCTACCTCCAGATATTTAAAAT CTCTTTCATTAAGTTCCTATACTTGTCTGATAACTTCCTGACCTCCCTCCCTCAAGAGATGGTCTCCT ATATGCCTGACCTAGACAGCCTTTACCTGCATGGAAACCCATGGACCTGTGATTGCCATTTAAAGTGG TTGTTTGACTGGATACAGGAGAAGCCAGATGTAATAAAATGCAAAAAAGATAGAAGTCCCTCTAGTGC TCAGCAGTGTCCACTTTGCATGAACCCTAGGACTTCTAAAGGCAAGCCGTTAGCTATGGTCTCAGCTG CAGCTTTCCAGTGTGCCCTCGAG NOV29g, 248057920 SEQ ID NO: 678 257 aa MW at 29673.2kD Protein Sequence
KIiACPRRCACYMPTEVHCTFRY TSIPDSIPP VERINLGYNS VRL-yiETDFSG TK ELLM HSNGI HTIPDKTFSDLQ-ALQVLKMSYN -VR--πJQ--roTFYGLRSLTRLH DHNNIEFINPEVFDGLNFLRLVHLE GNQLTKLHPDTFVS SYLQIFKISFIKF YLSDNF TSLPQEMVSYMPDLDS YLHGNPWTCDCH K-W LFD IQEKPDVI KCKKDRS PS S AQQCP CMNPRTS KGKPLA-MVS AAAFQCALΞ
NOV29h, 247679541 SEQ ID NO: 679 2059 bp DNA Sequence ORF Start: at 2 ORF Stop: end of sequence
AGGCTCCGCGGCCGCCCCCTTCACCCTCGAGGGGGACAAATTACTACTGAACTGCTCAGCCACTGGGG AGCCCAAACCCCAAATAATGTGGAGGTTACCATCCAAGGCTGTGGTCGACCAGCAGCATAGAGTGGGC AGCTGGATCCACGTCTACCCTAATGGATCCCTGTTTATTGGATCAGTAACAGAAAAAGACAGTGGTGT CTACTTGTGTGTGGCAAGAAACAAAATGGGGGATGATCTGATACTGATGCATGTTAGCCTAAGACTGA AACCTGCCAAAATTGACCACAAGCAGTATTTTAGAAAGCAAGTGCTCCATGGGAAAGATTTCCAAGTA GATTGCAAAGCTTCCGGCTCCCCAGTGCCAGAGATATCTTGGAGTTTGCCTGATGGAACCATGATCAA CAATGCAATGCAAGCCGATGACAGTGGCCACAGGACTAGGAGATATACCCTTTTCAACAATGGAACTT TATACTTCAACAAAGTTGGGGTAGCGGAGGAAGGAGATTATACTTGCTATGCCCAGAACACCCTAGGG AAAGATGAAATGAAGGTCCACTTAACAGTTATAACAGCTGCTCCCCGGATAAGGCAGAGTAACAAAAC CAACAAGAGAATCAAAGCTGGAGACACAGCTGTCCTTGACTGTGAGGTCACTGGGGATCCCAAACCAA AAATATTTTGGTTGCTGCCTTCCAATGACATGATTTCCTTCTCCATTGATAGGTACACATTTCATGCC AATGGGTCTTTGACCATCAACAAAGTGAAACTGCTCGATTCTGGAGAGTACGTATGTGTAGCCCGAAA TCCCAGTGGGGATGACACCAAAATGTACAAACTGGATGTGGTCTCTAAACCTCCATTAATCAATGGTC TGTATACAAATAGAACTGTTATTAAAGCCACAGCTGTGAGACATTCCAAAAAACACTTTGACTGCAGA GCTGAAGGGACACCATCTCCTGAAGTCATGTGGATCATGCCAGACAATATTTTCCTCACAGCCCCATA CTATGGAAGCAGAATCACAGTCCATAAAAATGGAACCTTGGAAATTAGGAATGTGAGGCTTTCAGATT CAGCCGACTTTATCTGTGTGGCCCGAAATGAAGGTGGAGAGAGCGTGTTGGTAGTACAGTTAGAAGTA CTGGAAATGCTGAGAAGACCGACATTTAGAAATCCATTTAATGAAAAAATAGTTGCCCAGCTGGGAAA GTCCACAGCATTGAATTGCTCTGTTGATGGTAACCCACCACCTGAAATAATCTGGATTTTACCAAATG GCACACGATTTTCCAATGGACCACAAAGTTATCAGTATCTGATAGCAAGCAATGGTTCTTTTATCATT TCTAAAACAACTCGGGAGGATGCAGGAAAATATCGCTGTGCAGCTAGGAATAAAGTTGGCTATATTGA GAAATTAGTCATATTAGAAATTGGCCAGAAGCCAGTTATTCTTACCTATGCACCAGGGACAGTAAAAG GCATCAGTGGAGAATCTCTATCACTGCATTGTGTGTCTGATGGAATCCCTAAGCCAAATATCAAATGG ACTATGCCAAGTGGTTATGTAGTAGACAGGCCTCAAATTAATGGGAAATACATATTGCATGACAATGG CACCTTAOTCATTAAAGAAGCAACAGCTTATGACAGAGGAAACTATATCTGTAAGGCTCAAAATAGTG TTGGTCATACACTGATTACTGTTCCAGTAATGATTGTAGCCTACCCTCCCCGAATTACAAATCGTCCA CCCAGGAGTATTGTCACCAGGACAGGGGCAGCCTTTCAGCTCCACTGTGTGGCCTTGGGAGTTCCCAA GCCAGAAATCACGTGGGAGATGCCTGACCACTCCCTTCTCTCAACGGCAAGTAAAGAGAGGACACATG GAAGTGAGCAGCTTCACTTACAAGGTACCCTAGTCATTCAGAATCCCCAAACCTCCGATTCTGGGATA TACAAATGCACAGCAAAGAACCCACTTGGTAGTGATTATGCAGCAACGTATATTCAAGTAATCCTCGA GGGCAAGGGTGGGCGCGCC
NOV29h, 247679541 SEO ID NO: 680 !686 aa JMW at 75732. lkD
Protein Sequence
GSAAAPFTLEGDKL LNCSATGEPKPQIM RLPS--^VVDQQHRVGS I----IVYPNGSLFIGSVTEKDSGV
YLCVA-I-INK- GDD ILMHVSLR KPAKIDHKQYFRKQV HGKDFQVDC-KASGSPVPEISWSLPDGTMIN
N-AMQ-ADDSGHRTRRYTLF---røGTLYFN-^GVAEEGDYTCYAQNT G---ODEMKVH TVITAAPRIRQSNKT
N!^I---^GDTAVLDCEVTGDPKPKIFWLLPSNDMIS^
PSGDDTKMYKLDVVSKPP INGLYTNRTVI ATAVRHSKKHFDCRAEGTPSPEVM IMPDNIFLTAPY
YGSRITVHKNGTLEIRNVRLSDSADFICVAR EGGESVLWQLEVLEM RRPTFRNPFNEKIVAQLGK
STALNCSVDGNPPPEII ILPNGTRFSNGPQSYQY IASNGSFIISKTTREDAGKYRCAARNKVGYIE
K VILEIGQKPVI TYAPGTVKGISGESLS HCVSDGIPKPNIKWTMPSGYWDRPQINGKYILHDNG
T VIKEATAYDRGNYICKAQNSVGHT ITVPVMIVAYPPRITNRPPRSIVTRTGAAFQLHCVALGVPK
PEITWEMPDHSL STASKΞRTHGSEQ HLQGTLVIQNPQTSDSGIYKCTAKNP GSDYAATYIQVILE
GKGGRA
NOV29i, 249116954 SEQ ID NO: 681 2011 bp DNA Sequence ORF Start: at 2 j ORF Stop: end of sequence
AGGCTCCGCGGCCGCCCCCTTCACCCTCGAGGGGGACAAATTACTACTGAACTGCTCAGCCACTGGGG AGCCCAAACCCCAAATAATGTGGAGGTTACCATCCAAGGCTGTGGTCGACCAGCAGCATAGAGTGGGC AGCTGGATCCACGTCTACCCTAATGGATCCCTGTTTATTGGATCAGTAACAGAAAAAGACAGTGGTGT CTACTTGTGTGTGGCAAGAAACAAAATGGGGGATGATCTGATACTGATGCATGTTAGCCTAAGACTGA AACCTGCCAAAATTGACCACAAGCAGTATTTTAGAAAGCAAGTGCTCCATGGGAAAGATTTCCAAGTA GATTGCAAAGCTTCCGGCTCCCCAGTGCCAGAGATATCTTGGAGTTTGCCTGATGGAACCATGATCAA CAATGCAATGCAAGCCGATGACAGTGGCCACAGGACTAGGAGATATACCCTTTTCAACAATGGAACTT TATACTTCAACAAAGTTGGGGTAGCGGAGGAAGGAGATTATACTTGCTATGCCCAGAACACCCTAGGG AAAGATGAAATGAAGGTCCACTTAACAGTTATAACAGCTGCTCCCCGGATAAGGCAGAGTAACAAAAC CAACAAGAGAATCAAAGCTGGAGACACAGCTGTCCTTGACTGTGAGGTCACTGGGGATCCCAAACCAA AAATATTTTGGTTGCTGCCTTCCAATGACATGATTTCCTTCTCCATTGATAGGTACACATTTCATGCC AATGGGTCTTTGACCATCAACAAAGTGAAACTGCTCGATTCTGGAGAGTACGTATGTGTAGCCCGAAA TCCCAGTGGGGATGACACCAAAATGTACAAACTGGATGTGGTCTCTAAACCTCCATTAATCAATGGTC TGTATACAAATAGAACTGTTATTAAAGCCACAGCTGTGAGACATTCCAAAAAACACTTTGACTGCAGA GCTGAAGGGACACCATCTCCTGAAGTCATGTGGATCATGCCAGACAATATTTTCCTCACAGCCCCATA CTATGGAAGCAGAATCACAGTCCATAAAAATGGAACCTTGGAAATTAGGAATGTGAGGCTTTCAGATT CAGCCGACTTTATCTGTGTGGCCCGAAATGAAGGTGGAGAGAGCGTGTTGGTAGTACAGTTAGAAGTA CTGGAAATGCTGAGAAGACCGACATTTAGAAATCCATTTAATGAAAAAATAGTTGCCCAGCTGGGAAA GTCCACAGCATTGAATTGCTCTGTTGATGGTAACCCACCACCTGAAATAATCTGGATTTTACCAAATG GCACACGATTTTCCAATGGACCACAAAGTTATCAGTATCTGATAGCAAGCAATGGTTCTTTTATCATT TCTAAAACAACTCGGGAGGATGCAGGAAAATATCGCTGTGCAGCTAGGAATAAAGTTGGCTATATTGA GAAATTAGTCATATTAGAAATTGGCCAGAAGCCAGTTATTCTTACCTATGCACCAGGGACAGTAAAAG GCATCAGTGGAGAATCTCTATCACTGCATTGTGTGTCTGATGGAATCCCTAAGCCAAATATCAAATGG ACTATGCCAAGTGGTTATGTAGTAGACAGGCCTCAAATTAATGGGAAATACATATTGCATGACAATGG CACCTTAGTCATTAAAGAAGCAACAGCTTATGACAGAGGAAACTATATCTGTAAGGCTCAAAATAGTG TTGGTCATACACTGATTACTGTTCCAGTAATGATTGTAGCCTACCCTCCCCGAATTACAAATCGTCCA CCCAGGAGTATTGTCACCAGGACAGGGGCAGCCTTTCAGCTCCACTGTGTGGCCTTGGGAGTTCCCAA GCCAGAAATCACGTGGGAGATGCCTGACCACTCCCTTCTCTCAACGGCAAGTAAAGAGAGGACACATG GAAGTGAGCAGCTTCACTTACAAGGTACCCTAGTCATTCAGAATCCCCAAACCTCCGATTCTGGGATA TACAAATGCACAGCACTCGAGGGCAAGGGTGGGCGCGCC
NOV29i, 249116954 SEQ ID NO: 682 670 aa MW at 73997. lkD Protein Sequence
GS-AAAPFT EGD--πJ LNCSATGEPKPQIMWRLPSKAVVDQQHRVGS IHVYPNGSLFIGSVTEIvT)SGV
YLCVA---^ MGDD I MI--VS R KPAKIDHKQYFRKQVLHG--- FQVDCKASGSPVPEIS S PDGTMIN
N-AMQ-ADDSGHRTRRYTLFNNGTLYFNKVGVAEEGDYTCYAQNT G--- EMKVHLTVITAAPRIRQSNKT
NKRIKAGDTAVLDCEVTGDPKPKIFWLLPS---TO ISFSIDRYTFHM^
PSGDDTKMY-ra-jDVVSKPP INGLYTNRTVIKATAVRHSKKHFDCRAEGTPSPEVM I PDNIFLTAPY
YGSRITVHKNGT EIR VRLSDS-ADFICVARNEGGESVLVVQ EVLEM RRPTFRNPFNEKIVAQ GK
STALNCSVDGNPPPEII ILPNGTRFSNGPQSYQY IASNGSFIISKTTREDAGKYRCAAR KVGYIE
KLVI EIGQKPVI TYAPGTVKGISGES S HCVSDGIPKPNIKWTMPSGYWDRPQINGKYILHDNG
TLVIK-EATAYDRGNYICKAQNSVGHTLITVPVMIVAYPPRITNRPPRSIVTRTGAAFQLHCVALGVPK
PEIT E PDHSL STASKERTHGSEQLH QGT VIQNPQTSDSGIYKCTALEGKGGRA
NOV29J, 248210155 SEQ ID NO: 683 1420 bp DNA Sequence ORF Start: at 2 |ORF Stop: end of sequence
CACCCTCGAGGGGGACAAATTACTACTGAACTGCTCAGCCACTGGGGAGCCCAAACCCCAAATAATGT GGAGGTTACCATCCAAGGCTGTGGTCGACCAGCAGCATAGGTACACATTTCATGCCAATGGGTCTTTG ACCATCAACAAAGTGAAACTGCTCGATTCTGGAGAGTACGTATGTGTAGCCCGAAATCCCAGTGGGGA TGACACCAAAATGTACAAACTGGATGTGGTCTCTAAACCTCCATTAATCAATGGTCTGTATACAAATA GAACTGTTATTAAAGCCACAGCTGTGAGACATTCCAAAAAACACTTTGACTGCAGAGCTGAAGGGACA CCATCTCCTGAAGTCATGTGGATCATGCCAGACAATATTTTCCTCACAGCCCCATACTATGGAAGCAG AATCACAGTCCATAAAAATGGAACCTTGGAAATTAGGAATGTGAGGCTTTCAGATTCAGCCGACTTTA TCTGTGTGGCCCGAAATGAAGGTGGAGAGAGCGTGTTGGTAGTACAGTTAGAAGTACTGGAAATGCTG AGAAGACCGACATTTAGAAATCCATTTAATGAAAAAATAGTTGCCCAGCTGGGAAAGTCCACAGCATT GAATTGCTCTGTTGATGGTAACCCACCACCTGAAATAATCTGGATTTTACCAAATGGCACACGATTTT CCAATGGACCACAAAGTTATCAGTATCTGATAGCAAGCAATGGTTCTTTTATCATTTCTAAAACAACT CGGGAGGATGCAGGAAAAAATCGCTGTGCAGCTAGGAATAAAGTTGGCTATATTGAGAAATTAGTCAT ATTAGAAATTGGCCAGAAGCCAGTTATTCTTACCTATGCACCAGGGACAGTAAAAGGCATCAGTGGAG AATCTCTATCACTGCATTGTGTGTCTGATGGAATCCCTAAGCCAAATATCAAATGGACTATGCCAAGT GGTTATGTAGTAGACAGGCCTCAAATTAATGGGAAATACATATTGCATGACAATGGCACCTTAGTCAT TAAAGAAGCAACAGCTTATGACAGAGGAAACTATATCTGTAAGGCTCAAAATAGTGTTGGTCATACAC TGATTACTGTTCCAGTAATGATTGTAGCCTACCCTCCCCGAATTACAAATCGTCCACCCAGGAGTATT GTCACCAGGACAGGGGCAGCCTTTCAGCTCCACTGTGTGGCCTTGGGAGTTCCCAAGCCAGAAATCAC GTGGGAGATGCCTGACCACTCCCTTCTCTCAACGGCAAGTAAAGAGAGGACACATGGAAGTGAGCAGC TTCACTTACAAGGTACCCTAGTCATTCAGAATCCCCAAACCTCCGATTCTGGGATATACAAATGCACA GCAAAGAACCCACTTGGTAGTGATTATGCAGCAACGTATATTCAAGTAATCCTCGAGGGC
NOV29J, 248210155 SEQ ID NO: 684 473 aa MW at 52119.3kD Protein Sequence
TLEGDKLL NCSATGEPKPQIMWR PSKAVVDQQHRYTFHANGSLTINKV -LLDSGEYVCVAR PSGD DTKMYK DVVSKPPLINGLYTNRTVIKATAVRHSKKHFDCRAEGTPSPEVM IMPDNIF TAPYYGSR ITVHKNGTLEIR- VRLSDSADFICVA-RNEGGESVLVVQ EV EMLRRPTFR PFNEKIVAQLGKSTAL NCSVDGNPPPEI IWILPNGTRFSNGPQSYQYLIASNGSFI ISKTTREDAGKNRCAARNKVGYIEKLVI LEIGQKPVI TYAPGTVKGISGES S HCVSDGIPKPNIKWTMPSGYWDRPQINGKYILHDNGTLVI KEATAYDRGNYICKAQNSVGHT ITVPV IVAYPPRIT RPPRSIVTRTGAAFQLHCVA GVPKPEIT WEMPDHSL STAS-KERTHGSEQ H QGT VIQNPQTSDSGIYKCTAKNPLGSDYAATYIQVILEG
NOV29k, 248213764 SEQ ID NO: 685 1372 bp DNA Sequence ORF Start: at 2 ORF Stop: end of sequence
CACCCTCGAGGGGGACAAATTACTACTGAACTGCTCAGCCACTGGGGAGCCCAAACCCCAAATAATGT GGAGGTTACCATCCAAGGCTGTGGTCGACCAGCAGCATAGGTACACATTTCATGCCAATGGGTCTTTG ACCATCAACAAAGTGAAACTGCTCGATTCTGGAGAGTACGTATGTGTAGCCCGAAATCCCAGTGGGGA TGACACCAAAATGTACAAACTGGATGTGGTCTCTAAACCTCCATTAATCAATGGTCTGTATACAAACA GAACTGTTATTAAAGCCACAGCTGTGAGACATTCCAAAAAACACTTTGACTGCAGAGCTGAAGGGACA CCATCTCCTGAAGTCATGTGGATCATGCCAGACAATATTTTCCTCACAGCCCCATACTATGGAAGCAG AATCACAGTCCATAAAAATGGAACCTTGGAAATTAGGAATGTGAGGCTTTCAGATTCAGCCGACTTTA TCTGTGTGGCCCGAAATGAAGGTGGAGAGAGCGTGTTGGTAGTACAGTTAGAAGTACTGGAAATGCTG AGAAGACCGACATTTAGAAATCCATTTAATGAAAAAATAGTTGCCCAGCTGGGAAAGTCCACAGCATT GAATTGCTCTGTTGATGGTAACCCACCACCTGAAATAATCTGGATTTTACCAAATGGCACACGATTTT CCAATGGACCACAAAGTTATCAGTATCTGATAGCAAGCAATGGTTCTTTTATCATTTCTAAAACAACT CGGGAGGATGCAGGAAAATATCGCTGTGCAGCTAGGAATAAAGTTGGCTATATTGAGAAATTAGTCAT ATTAGAAATTGGCCAGAAGCCAGTTATTCTTACCTATGCACCAGGGACAGTAAAAGGCATCAGTGGAG AATCTCTATCACTGCATTGTGTGTCTGATGGAATCCCTAAGCCAAATATCAAATGGACTATGCCAAGT GGTTATGTAGTAGACAGGCCTCAAATTAATGGGAAATACATATTGCATGACAATGGCACCTTAGTCAT TAAAGAAGCAACAGCTTATGACAGAGGAAACTATATCTGTAAGGCTCAAAATAGTGTTGGTCATACAC TGATTACTGTTCCAGTAATGATTGTAGCCTACCCTCCCCGAATTACAAATCGTCCACCCAGGAGTATT GTCACCAGGACAGGGGCAGCCTTTCAGCTCCACTGTGTGGCCTTGGGAGTTCCCAAGCCAGAAATCAC ATGGGAGATGCCTGACCACTCCCTTCTCTCAACGGCAAGTAAAGAGAGGACACATCGAAGTGAGCAGC TTCACTTACAAGGTACCCTAGTCATTCAGAATCCCCAAACCTCCGATTCTGGGATATACAAATGCACA GCACTCGAGGGC
NOV29k, 248213764 SEQ ID NO: 686 457 aa MW at 50532.6kD Protein Sequence
TLEGDK LLNCSATGEPKPQIM RLPSKAVVTDQQHRYTFHANGS TINKVKLLDSGEYVCVARNPSGD DTKMY-iaDVVSK PLINGLYTlTOTVIKATAVRHSKKHFDC-----AEGTPSPEVM IMPDNIFLTAPYYGSR;
ITVHKNGTLEI-------TVRLSDSADFICVAI^EGGESV VVQLEVLEMLRRPTFR PFNE IVAQ GKSTAL
NCSVDGNPPPEII ILPNGTRFSNGPQSYQYLIASNGSFIISKTTREDAG YRCAARNKVGYIEKLVI LEIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNI WTMPSGYWDRPQINGKYILHDNGTL I -l^ATAYDRGNYICKAQNSVGHTLITVPVMIVAYPPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEIT EMPDHS STASKERTHRSEQLHLQGTLVIQNPQTSDSGIYKCTALEG
NOV291, 248213768 SEQ ID NO: 687 1383 bp DNA Sequence ORF Start: at 2 ORF Stop: at 1382
CACCCTCGAGGGGGACAAATTACTACTGAACTGCTCAGCCACTGGGGAGCCCAAACCCCAAATAATGT GGAGGTTACCATCCAAGGCTGTGGTCGACCAGCAGCATAGGTACACATTTCATGCCAATGGGTCTTTG ACCATCAACAAAGTGAAACTGCTCGATTCTGGAGAGTACGTATGTGTAGCCCGAAATCCCAGTGGGGA TGACACCAAAATGTACAAACTGGATGTGGTCTCTAAACCTCCATTAATCAATGGTCTGTATACAAATA GAACTGTTATTAAAGCCACAGCTGTGAGACATTCCAAAAAACACTTTGACTGCAGAGCTGAAGGGACA CCATCTCCTGAAGTCATGTGGATCATGCCAGACAATATTTTCCTCACAGCCCCATACTATGGAAGCAG AATCACAGTCCATAAAAATGGAACCTTGGAAATTAGGAATGTGAGGCTTTCAGATTCAGCCGACTTTA TCTGTGTGGCCCGAAATGAAGGTGGAGAGAGCGTGTTGGTAGTACAGTTAGAAGTACTGGAAATGCTG AGAAGACCGACATTTAGAAATCCATTTAATGAAAAAATAGTTGCCCAGCTGGGAAAGTCCACAGCATT GAATTGCTCTGTTGATGGTAACCCACCACCGGAAATAATCTGGATTTTACCAAATGGCACACGATTTT CCAATGGACCACAAAGTTATCAGTATCTGATAGCAAGCAATGGTTCTTTTATCATTTCTAAAACAACT CGGGAGGATGCAGGAAAATATCGCTGTGCAGCTAGGAATAAAGTTGGCTATATTGAGAAATTAGTCAT ATTAGAAATTGGCCAGAAGCCAGTTATTCTTACCTATGCACCAGGGACAGTAAAAGGCATCAGTGGAG AATCTCTATCACTGCATTGTGTGTCTGATGGAATCCCTAAGCCAAATATCAAATGGACTATGCCAAGT GGTTATGTAGTAGACAGGCCTCAAATTAATGGGAAATACATATTGCATGACAATGGCACCTTAGTCAT TAAAGAAGCAACAGCTTATGACAGAGGAAACTATATCTGTAAGGCTCAAAATAGTGTTGGTCATACAC TGATTACTGTTCCAGTAATGATTGTAGCCTACCCTCCCCGAATTACAAATCGTCCACCCAGGAGTATT GTCACCAGGACAGGGGCAGCCTTTCAGCTCCACTGTGTGGCCTTGGGAGTTCCCAAGCCAGAAATCAC GTGGGAGATGCCTGACCACTCCCTTCTCTCAACGGCAAGTAAAGAGAGGACACATGGAAGTGAGCAGC TTCACTTACAAGGTACCCTAGTCATTCAGAATCCCCAAACCTCCGATTCTGGGATATACAAATGCACA GCACTCGAGGGCAAGGGCGAATC
NOV291, 248213768 SEQ ID NO: 688 460 aa MW at 50747.8kD Protein Sequence
T EGDK L NCSATGEPKPQIM RLPSKAVVϋQQHRYTFi GSLTINKV-KLLDSGEYVCVAR-NPSGD
DTK YKLDVVSKPPLINGLYTNRTVIKATAV-I^S-K-i FDCR-AEGTPSPEVM IMPDNIFLTAPYYGSR
ITVHK GT EIRNV-f^SDSADFICVAi EGGESVLVVQLEVLEM RR
NCSVDGNPPPEIIWILPNGTRFSNGPQSYQY IASNGSFIISKTTREDAG---CYRCAARNKVGYIE VI EIGQKPVI TYAPGTVKGISGESLS HCVSDGIPKPNIKWTMPSGYWDRPQINGKYILHDNGTLVI
K-EATAYDRGlSlΥICKΑQNSVGHT ITVPVMIVAYPPRITNRPPRSIVTRTGAAFQ HCVA GVPKPEIT EMPDHSLLSTAS ERTHGSEQ H QGTLVIQNPQTSDSGIYKCTA EGKGE
NOV29m, 248213772 SEQ ID NO: 689 1372 bp DNA Sequence ORF Start: at 2 ORF Stop: end of sequence
CACCCTCGAGGGGGACAAATTACTACTGAACTGCTCAGCCACTGGGGAGCCCAAACCCCAAATAATGT GGAGGTTACCATCCAAGGCTGTGGTCGACCAGCAGCATAGGTACACATTTCATGCCAATGGGTCGTTG ACCATCAACAAAGTGAAACTGCTCGATTCTGGAGAGTACGTATGTGTAGCCCGAAATCCCAGTGGGGA TGACACCAAAATGTACAAACTGGATGTGGTCTCTAAACCTCCATTAATCAATGGTCTGTATACAAACA GAACTGTTATTAAAGCCACAGCTGTGAGACATTCCAAAAAACACTTTGACTGCAGAGCTGAAGGGACA CCATCTCCTGAAGTCATGTGGATCATGCCAGACAATATTTTCCTCACAGCCCCATACTATGGAAGCAG AATCACAGTCCATAAAAATGGAACCTTGGAAATTAGGAATGTGAGGCTTTCAGATTCAGCCGACTTTA TCTGTGTGGCCCGAAATGAAGGTGGAGAGAGCGTGTTGGTAGTACAGTTAGAAGTACTGGAAATGCTG AGAAGACCGACATTTAGAAATCCATTTAATGAAAAAATAGTTGCCCAGCTGGGAAAGTCCACAGCATT GAATTGCTCTGTTGATGGTAACCCACCACCGGAAATAATCTGGATTTTACCAAATGGCACACGATTTT CCAATGGACCACAAAGTTATCAGTATCTGATAGCAAGCAATGGTTCTTTTATCATTTCTAAAACAACT CGGGAGGATGCAGGAAAATATCGCTGTGCAGCTAGGAATAAAGTTGGCTATATTGAGAAATTAGTCAT ATTAGAAATTGGCCAGAAGCCAGTTATTCTTACCTATGCACCAGGGACAGTAAAAGGCATCAGTGGAG AATCTCTATCACTGCATTGTGTGTCTGATGGAATCCCTAAGCCAAATATCAAATGGACTATGCCAAGT GGTTATGTAGTAGACAGGCCTCAAATTAATGGGAAATACATATTGCATGACAATGGCACCTTAGTCAT TAAAGAAGCAACAGCTTATGACAGAGGAAACTATATCTGTAAGGCTCAAAATAGTGTTGGTCATACAC TGATTACTGTTCCAGTAATGATTGTAGCCTACCCTCCCCGAATTACAAATCGTCCACCCAGGAGTATT GTCACCAGGACAGGGGCAGCCTTTCAGCTCCACTGTGTGGCCTTGGGAGTTCCCAAGCCAGAAATCAC GTGGGAGATGCCTGACCACTCCCTTCTCTCAACGGCAAGTAAAGAGAGGACACATGGAAGTGAGCAGC TTCACTTACAAGGTACCCTAGTCATTCAGAATCCCCAAACCTCCGATTCTGGGATATACAAATGCACA GCACTCGAGGGC
NOV29m, 248213772 SEQ ID NO: 690 457 aa MW at 50433.5kD Protein Sequence
TLEGD--^ LNCSATGEP PQIMWR PSKAVVDQQHRYTFHANGSLTINKVK LDSGEYVCVARNPSGD
DT-1-MYKLDVVSKPP INGLYTNRTVIKATAVRHSKKHFDCRAEGTPSPEVM IMPDNIFLTAPYYGSR
ITVHKNGTLEIR-r-WRLSDSADFICVAR-NEGGESV^^
NCSVDGNPPPEII I PNGTRFS---IGPQSYQYLIASNGSFIISKTTREDAG-EαfRCAARNKVGYIEKLVI
LEIGQKPVILTYAPGTV GISGES SLHCVSDGIPKPNIKWTMPSGYWDRPQINGKYILHDMGTLVI
K-EATAY-DRGNYICKAQNSVGHT ITVPVMIVAYPPRITNRPPRSIVTRTGAAFQ HCVALGVPKPΞI
WEMPDHSLLSTASKERTHGSEQ HLQGT VIQNPQTSDSGIYKCTA EG
NOV29n, 248586774 SEQ D NO: 691 Jl4Jθjjp DNA Sequence ORF Start: at 2 JORF Stop: end of sequence CACCCTCGAGGGGGACAAATTACTACTGAACTGCTCAGCCACTGGGGAGCCCAAACCCCAAATAATGT GGAGGTTACCATCCAAGGCTGTGGTCGACCAGCAGCATAGGTACACATTTCATGCCAATGGGTCTTTG ACCATCAACAAAGTGAAACTGCTCGATTCTGGAGAGTACGTATGTGTAGCCCGAAATCCCAGTGGGGA TGACACCAAAATGTACAAACTGGATGTGGTCTCTAAACCTCCATTAATCAATGGTCTGTATACAAATA GAACTGTTATTAAAGCCACAGCTGTGAGACATTCCAAAAAACACTTTGACTGCAGAGCTGAAGGGACA CCATCTCCTGAAGTCATGTGGATCATGCCAGACAATATTTTCCTCACAGCCCCATACTATGGAAGCAG AATCACAGTCCATAAAAATGGAACCTTGGAAATTAGGAATGTGAGGCTTTCAGATTCAGCCGACTTTA TCTGTGTGGCCCGAAATGAAGGTGGAGAGAGCGTGTTGGTAGTACAGTTAGAAGTACTGGAAATGCTG AGAAGACCGACATTTAGAAATCCATTTAATGAAAAAATAGTTGCCCAGCTGGGAAAGTCCACAGCATT GAATTGCTCTGTTGATGGTAACCCACCACCTGAAATAATCTGGATTTTACCAAATGGCACACGATTTT CCAATGGACCACAAAGTTATCAGTATCTGATAGCAAGCAATGGTTCTTTTATCATTTCTAAAACAACT CGGGAGGATGCAGGAAAATATCGCTGTGCAGCTAGGAATAAAGTTGGCTATATTGAGAAATTAGTCAT ATTAGAAATTGGCCAGAAGCCAGTTATTCTTACCTATGCACCAGGGACAGTAAAAGGCATCAGTGGAG AATCTCTATCACTGCATTGTGTGTCTGATGGAATCCCTAAGCCAAATATCAAATGGACTATGCCAAGT GGTTATGTAGTAGACAGGCCTCAAATTAATGGGAAATACATATTGCATGACAATGGCACCTTAGTCAT TAAAGAAGCAACAGCTTATGACAGAGGAAACTATATCTGTAAGGCTCAAAATAGTGTTGGTCATACAC TGATTACTGTTCCAGTAATGATTGTAGCCTACCCTCCCCGAATTACAAATCGTCCACCCAGGAGTATT GTCACCAGGACAGGGGCAGCCTTTCAGCTCCACTGTGTGGCCTTGGGAGTTCCCAAGCCAGAAATCAC GTGGGAGATGCCTGACCACTCCCTTCTCTCAACGGCAAGTAAAGAGAGGACACATGGAAGTGAGCAGC TTCACTTACAAGGTACCCTAGTCATTCAGAATCCCCAAACCTCCGATTCTGGGATATACAAATGCACA GCAAAGAACCCACTTGGTAGTGATTATGCAGCAACGTATATTCAAGTAATCCTCGAGGGC
NOV29n, 248586774 SEQ ID NO: 692 473 aa MW at 52168.4kD Protein Sequence
TLEGD-l- i LNCSATGEPKPQIM R PSKAVVDQQHRYTFHANGS TINKVK LDSGEYVCVARNPSGD
DTKtrø LD SKPPLING YTΪ-RTVIKATAV-^
ITVHra-IGT EIR-NVRLSDSADFICVAR-ireGGESV VVQLEV EMLRRPTFRNPFNEKIVAQLGKSTAL
NCSVDGNPPPEII ILPNGTRFSNGPQSYQYLIASNGSFIISKTTREDAGKYRCAARNKVGYIEKLVI
LEIGQKPVILTYAPGTV GISGES SLHCVSDGIPKPNIKWTMPSGYWDRPQINGKYILHDNGT VI
KEATAYDRGNYICKAQNSVGHTLITVPVMIVAYPPRITNRPPRSIVTRTGAAFQLHCVA GVPKPEIT ΞMPDHSL STASKERTHGSEQLHLQGTLVIQNPQTSDSGIYKCTAKNPLGSDYAATYIQVI EG
NOV29o, 248586793 SEQ ID NO: 693 1420 bp DNA Sequence ORF Start: at 2 ORF Stop: end of sequence
CACCCTCGAGGGGGACAAATTACTACTGAACTGCTCAGCCACTGGGGAGCCCAAACCCCAAATAATGT GGAGGTTACCATCCAAGGCTGTGGTCGACCAGCAGCATAGGTACACATTTCATGCCAATGGGTCGTTG ACCATCAACAAAGTGAAACTGCTCGATTCTGGAGAGTACGTATGTGTAGCCCGAAATCCCAGTGGGGA TGACACCAAAATGTACAAACTGGATGTGGTCTCTAAACCTCCATTAATCAATGGTCTGTATACAAACA GAACTGTTATTAAAGCCACAGCTATGAGACATTCCAAAAAACACTTTGACTGCAGAGCTGAAGGGACA CCATCTCCTGAAGTCATGTGGATCATGCCAGACAATATTTTCCTCACAGCCCCATACTATGGAAGCAG AATCACAGTCCATAAAAATGGAACCTTGGAAATTAGGAATGTGAGGCTTTCAGATTCAGCCGACTTTA TCTGTGTGGCCCGAAATGAAGGTGGAGAGAGCGTGTTGGTAGTACAGTTAGAAGTACTGGAAATGCTG AGAAGACCGACATTTAGAAATCCATTTAATGAAAAAATAGTTGCCCAGCTGGGAAAGTCCACAGCATT GAATTGCTCTGTTGATGGTAACCCACCACCGGAAATAATCTGGATTTTACCAAATGGCACACGATTTT CCAATGGACCACAAAGTTATCAGTATCTGATAGCAAGCAATGGTTCTTTTATCATTTCTAAAACAACT CGGGAGGATGCAGGAAAATATCGCTGTGCAGCTAGGAATAAAGTTGGCTATATTGAGAAATTAGTCAT ATTAGAAATTGGCCAGAAGCCAGTTATTCTTACCTATGCACCAGGGACAGTAAAAGGCATCAGTGGAG AATCTCTATCACTGCATTGTGTGTCTGATGGAATCCCTAAGCCAAATATCAAATGGACTATGCCAAGT GGTTATGTAGTAGACAGGCCTCAAATTAATGGGAAATACATATTGCATGACAATGGCACCTTAGTCAT TAAAGAAGCAACAGCTTATGACAGAGGAAACTATATCTGTAAGGCTCAAAATAGTGTTGGTCATACAC TGATTACTGTTCCAGTAATGATTGTAGCCTACCCTCCCCGAATTACAAATCGTCCACCCAGGAGTATT GTCACCAGGACAGGGGCAGCCTTTCAGCTCCACTGTGTGGCCTTGGGAGTTCCCAAGCCAGAAATCAC GTGGGAGATGCCTGACCACTCCCTTCTCTCAACGGCAAGTAAAGAGAGGACACATGGAAGTGAGCAGC TTCACTTACAAGGTACCCTAGTCATTCAGAATCCCCAAACCTCCGATTCTGGGATATACAAATGCACA σCAAAGAACCCACTTGGTAGTGATTATGCAGCAACGTATATTCAAGTAATCCTCGAGGGC
NOV29o, 248586793 SEQ ID NO: 694 473 aa MW at 52200.5kD Protein Sequence
TLEGDKL NCSATGEPKPQIM RLPSKAVVDQQHRYTFHA-NGSLTINKVKL DSGEYVCVARNPSGD DTKyiYK-LDVVSKPP ING YT- RTVIKATAMRHS--- -HFDC-RAΞGTPSPEVM IMPDNIFLTAPYYGSR ITVHKNGTLEI----NVR SDSADFICVARNEGGESV VVQ ΞV-LEMLRRPTFRNPFNEKIVAQ G STA NCSVDGNPPPEIIWILPNGTRFSNGPQSYQYLIASNGSFIISKTTREDAGKYRCAAR KVGYIEKLVI EIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNIK TMPSGYWDRPQINGKYI HDNGT VI KEATAYDRGNYICKAQNSVGHTLITVPVMIVAYPPRITNRPPRSIVTRTGAAFQ HCVALGVPKPEIT EMPDHS LSTASKERTHGSEQ H QGTLVIQNPQTSDSGIYKCTAKMPLGSDYAATYIQVILEG
NOV29p, 248586820 SEQ ID NO: 695 1420 bp DNA Sequence ORF Start: at 2 JORF Stop: end of sequence
CACCCTCGAGGGGGACAAATTACTACTGAACTGCTCAGCCACTGGGGAGCCCAAACCCCAAATAATGT GGAGGTTACAATCCAAGGCTGTGGTCGACCAGCAGCATAGGTACACATTTCATGCCAATGGGTCGTTG ACCATCAACAAAGTGAAACTGCTCGATTCTGGAGAGTACGTATGTGTAGCCCGAAATCCCAGTGGGGA TGACACCAAAATGTACAAACTGGATGTGGTATCTAAACCTCCATTAATCAATGGTCTGTATACAAACA GAACTGTTATTAAAGCCACAGCTGTGAGACATTCCAAAAAACACTTTGACTGCAGAGCTGAAGGGACA CCATCTCCTGAAGTCATGTGGATCATGCCAGACAATATTTTCCTCACAGCCCCATACTATGGAAGCAG AATCACAGTCCATAAAAATGGAACCTTGGAAATTAGGAATGTGAGGCTTTCAGATTCAGCCGACTTTA TCTGTGTGGCCCGAAATGAAGGTGGAGAGAGCGTGTTGGTAGTACAGTTAGAAGTACTGGAAATGCTG AGAAGACCGGCATTTAGAAATCCATTTAATGAAAAAATAGTTGCCCAGCTGGGAAAGTCCACAGCATT GAATTGCTCTGTTGATGGTAACCCACCACCGGAAATAATCTGGATTTTACCAAATGGCACACGATTTT CCAATGGACCACAAAGTTATCAGTATCTGATAGCAAGCAATGGTTCTTTTATCATTTCTAAAACAACT CGGGAGGATGCAGGAAAATATCGCTGTGCAGCTAGGAATAAAGTTGGCTATATTGAGAAATTAGTCAT ATTAGAAATTGGCCAGAAGCCAGTTATTCTTACCTATGCACCAGGGACAGTAAAAGGCATCAGTGGAG AATCTCTATCACTGCATTGTGTGTCTGATGGAATCCCTAAGCCAAATATCAAATGGACTATGCCAAGT GGTTATGTAGTAGACAGGCCTCAAATTAATGGGAAATACATATTGCATGACAATGGCACCTTAGTCAT TAAAGAAGCAACAGCTTATGACAGAGGAAACTATATCTGTAAGGCTCAAAATAGTGTTGGTCATACAC TGATTACTGTTCCAGTAATGATTGTAGCCTACCCTCCCCGAATTACAAATCGTCCACCCAGGAGTATT GTCACCAGGACAGGGGCAGCCTTTCAGCTCCACTGTGTGGCCTTGGGAGTTCCCAAGCCAGAAATCAC GTGGGAGATGCCTGACCACTCCCTTCTCTCAACGGCAAGTAAAGAGAGGACACATGGAAGTGAGCAGC TTCACTTACAAGGTACCCTAGTCATTCAGAATCCCCAAACCTCCGATTCTGGGATATACAAATGCACA GCAAAGAACCCACTTGGTAGTGATTATGCAGCAACGTATATTCAAGTAATCCTCGAGGGC
NOV29p, 248586820 SEQ ID NO: 696 473 aa MW at 52169.4kD Protein Sequence
T EGD---O LLNCSATGEPKPQIM RLQSKAVVDQQHRYTFH-ANGSLTINKVKL DSGEYVCVARNPSGD DTKMYKlDVVSKPPLINGLYTNRTVIKATAVRHSKIΗFDCRAEGTPSPEVMWIMPDNIF TAPYYGSR ITVHKNGTLEIRNVRLSDSADFICVA---^EGGESVLVVQLEV EM RRPAFRNPFNEKIVAQLGKSTAL NCS VDGMPPPE I IWILPNGTRFSNGPQS YQY I ASNGS F 11 S KTTREDAGKYRCAAR KVGYI EKLVI LEIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNIK TMPSGYWDRPQINGKYI HDMGT VI K-EATAYDRGNYICKAQNSVGHTLITVPVMIVAYPPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEIT E PDHSLLSTASKERTHGSEQ HLQGT VIQNPQTSDSGIYKCTAKNPLGSDYAATYIQVILEG
NOV29q, 248586824 SEQ ID NO: 697 1420 bp DNA Sequence ORF Start: at 2 ORF Stop: end of sequence
CACCCTCGAGGGGGACAAATTACTACTGAACTGCTCAGCCACTGGGGAGCCCAAACACCAAATAATGT GGAGGTTACCATCCAAGGCTGTGGTCGACCAGCAGCATAGGTACACATTTCATGCCAATGGGTCTTTG ACCATCAACAAAGTGAAACTGCTCGATTCTGGAGAGTACGTATGTGTAGCCCGAAATCCCAGTGGGGA TGACACCAAAATGTACAAACTGGATGTGGTCTCTAAACCTCCATTAATCAATGGTCTGTATACAAATA GAACTGTTATTAAAGCCACAGCTGTGAGACATTCCAAAAAACACTTTGACTGCAGAGCTGAAGGGACA CCATCTCCTGAAGTCATGTGGATCATGCCAGACAATATTTTCCTCACAGCCCCATACTATGGAAGCAG AATCACAGTCCATAAAAATGGAACCTTGGAAATTAGGAATGTGAGGCTTTCAGATTCAGCCGACTTTA TCTGTGTGGCCCGAAATGAAGGTGGAGAGAGCGTGTTGGTAGTACAGTTAGAAGTACTGGAAATGCTG AGAAGACCGACATTTAGAAATCCATTTAATGAAAAAATAGTTGCCCAGCTGGGAAAGTCCACAGCATT GAATTGCTCTGTTGATGGTAACCCACCACCTGAAATAATCTGGATTTTACCAAATGGCACACGATTTT CCAATGGACCACAAAGTTATCAGTATCTGATAGCAAGCAATGGTTCTTTTATCATTTCTAAAACAACT CGGGAGGATGCAGGAAAATATCGCTGTGCAGCTAGGAATAAAGTTGGCTATATTGAGAAATTAGTAAT ATTAGAAATTGGCCAGAAGCCAGTTATTCTTACCTATGCACCAGGGACAGTAAAAGGCATCAGTGGAG AATCTCTATCACTGCATTGTGTGTCTGATGGAATCCCTAAGCCAAATATCAAATGGACTATGCCAAGT GGTTATGTAGTAGACAGGCCTCAAATTAATGGGAAATACATATTGCATGACAATGGCACCTTAGTCAT TAAAGAAGCAACAGCTTATGACAGAGGAAACTATATATGTAAGGCTCAAAATAGTGTTGGTCATACAC TGATTACTGTTCCAGTAATGATTGTAGCCTACCCTCCCCGAATTACAAATCGTCCACCCAGGAGTATT GTCACC^ ATACAACAGCTTGGTTAGATTGATGGAAACAGATTTTTCTGGCCTGACCAAACTGGAGTTACTCATGC TTCACAGCAATGGCATTCACACAATCCCTGACAAGACCTTCTCAGATTTGCAGGCCTTGCAGGTCTTA AAAATGAGCTATAACAAAGTCCGAAAACTTCAGAAAGATACTTTTTATGGCCTCAGGAGCTTGACACG ATTGCACATGGACCACAACAATATTGAGTTTATAAACCCAGAGGTTTTTTATGGGCTCAACTTTCTCC IGCCTGGTGCACTTGGAAGGAAATCAGCTCACTAAGCTCCACCCAGATACATTTGTCTCTTTGAGCTAC CTCCAGATATTTAAAATCTCTTTCATTAAGTTCCTATACTTGTCTGATAACTTCCTGACCTCCCTCCC TCAAGAGATGGTCTCCTATATGCCTCTCGAGGGC
NOV29t, 248210551 SEQ ID NO: 704 215 aa MW at 24618.6kD Protein Sequence
TLEMKVKGRGITC LVSFAVIC VATPGGKACPRRCACYMPTEVHCTFRY TSIPDSIPP VERI-HLG YNSLVRLMETDFSGLTK- E LM HSNGIHTIPDKTFSDLQ-ALQVL-ra iSYNKVRKLQKDTFYGLRSLTR LH DHNNIEFINPEVFYG NF R VHLEGNQLTKLHPDTFVS SYLQIFKISFIKF Y SDNF TSLP QEMVSYMPLEG
NOV29u, 248210824 SEQ ID NO: 705 646 bp DNA Sequence ORF Start: at 2 ORF Stop: end of sequence
CACCCTCGAGATGAAGGTAAAAGGCAGAGGAATCACCTGCTTGCTGGTCTCCTTTGCTGTGATCTGCC TGGTCGCCACCCCTGGGGGCAAGGCCTGTCCTCGCCGCTGTGCCTGTTATATGCCTACGGAGGTACAC TGCACATTTCGGTACCTGACTTCCATCCCAGACAGCATCCCGCCCAATGTGGAACGCATCAATTTAGG ATACAACAGCTTGGTTAGATTGATGGAAACAGATTTTTCTGGCCTGACCAAACTGGAGTTACTCATGC TTCACAGCAATGGCATTCACACAATCCCTGACAAGACCTTCTCAGATTTGCAGGCCTTGCAGGTCTTA AAAATGAGCTATAACAAAGTCCGAAAACTTCAGAAAGATACTTTTTATGGCCTCAGGAGCTTGACACG ATTGCACATGGACCACAACAATATTGAGTTTATAAACCCAGAGGTTTTTTATGGGCTCAACTTTCTCC GCCTGGTGCACTTGGAAGGAAATCAGCTCACTAAGCTCCACCCAGATACATTTGTCTCTTTGAGCTAC CTCCAGATATTTAAAATCTCTTTCATTAAGTTCCTATACTTGTCTGATAACTTCCTGACCTCCCTCCC TCAAGAGATGGTCTCCTATATGCCTCTCGAGGGC
NOV29u, 248210824 SEQ ID NO: 706 215 aa MW at 24618.6kD Protein Sequence
TLEMKVKGRGITC LVSFAVICLVATPGGKACPRRCACYMPTEVHCTFRYLTSIPDSIPPNVERINLG YNS VRLMETDFSG T---^ELLMLHSNGIHTIPDKTFSDLQA QVLKMSYNK-VRK QKDTFYGLRS TR LHMDI----N1.IEFINPEVFYGLNF RLVHLEGNQLTK HPDTFVSLSY QIFKISFIKFLYLSDNF TSLP QEMVSYMPLEG
NOV29v, 248679541 SEQ ID NO: 707 646 bp DNA Sequence ORF Start: at 2 ORF Stop: end of sequence
CACCCTCGAGATGAAGGTAAAAGGCAGAGGAATCACCTGCTTGCTGGTCTCCTTTGCTGTGATCTGCC TGGTCGCCACCCCTGGGGGCAAGGCCTGTCCTCGCCGCTGTGCCTGTTATATGCCTACGGAGGTACAC TGCACATTTCGGTACCTGACTTCCATCCCAGACAGCATCCCGCCCAATGTGGAACGCATCAATTTAGG ATACAACAGCTTGGTTAGATTGATGGAAACAGATTTTTCTGGCCTGACCAAACTGGAGTTACTCATGC TTCACAGCAATGGCATTCACACAATCCCTGACAAGACCTTCTCAGATTTGCAGGCCTTGCAGGTCTTA AAAATGAGCTATAACAAAGTCCGAAAACTTCAGAAAGATACTTTTTATGGCCTCAGGAGCTTGACACG ATTGCACATGGACCACAACAATATTGAGTTTATAAACCCAGAGGTTTTTTATGGGCTCAACTTTCTCC GCCTGGTGCACTTGGAAGGAAATCAGCTCACTAAGCTCCACCCAGATACATTTGTCTCTTTGAGCTAC CTCCAGATATTTAAAATCTCTTTCATTAAGTTCCTATACTTGTCTGATAACTTCCTGACCTCCCTCCC TCAAGAGATGGTCTCCTATATGCCTCTCGAGGGC
NOV29v, 248679541 SEQ ID NO: 708 215 aa MW at 24618.6kD Protein Sequence
TLEMKVKGRGITCLLVS FAVI CLVATPGGKACPRRCACY-MPTEVHCTFRYLTS I PDS I PPNVERINLG YNSLVRLMETDFSGLTKLELLMLHSNGIHTIPDKTFSDLQALQVLKMSY I-VRKLQKDTFYGLRSLTR LHMD------NNIEFINPEVFYGLNFLRLVI--I,EGNQLT-----LHPDTFVSLSYLQIFKISFIKFLYLSDNFLTSLP
QEMVSYMPLEG
NOV29w, 247679454 |SEQ ID NO: 709 j2011 bp DNA Sequence ORF Start: at 2 JORF Stop: end of sequence
AGGCTCCGCGGCCGCCCCCTTCACCCTCGAGGGGGACAAATTACTACTGAACTGCTCAGCCACTGGGG AGCCCAAACCCCAAATAATGTGGAGGTTACCATCCAAGGCTGTGGTCGACCAGCAGCATAGAGTGGGC AGCTGGATCCACGTCTACCCTAATGGATCCCTGTTTATTGGATCAGTAACAGAAAAAGACAGTGGTGT CTACTTGTGTGTGGCAAGAAACAAAATGGGGGATGATCTGATACTGATGCATGTTAGCCTAAGACTGA AACCTGCCAAAATTGACCACAAGCAGTATTTTAGAAAGCAAGTGCTCCATGGGAAAGATTTCCAAGTA GATTGCAAAGCTTCCGGCTCCCCAGTGCCAGAGATATCTTGGAGTTTGCCTGATGGAACCATGATCAA CAATGCAATGCAAGCCGATGACAGTGGCCACAGGACTAGGAGATATACCCTTTTCAACAATGGAACTT TATACTTCAACAAAGTTGGGGTAGCGGAGGAAGGAGATTATACTTGCTATGCCCAGAACACCCTAGGG AAAGATGAAATGAAGGTCCACTTAACAGTTATAACAGCTGCTCCCCGGATAAGGCAGAGTAACAAAAC CAACAAGAGAATCAAAGCTGGAGACACAGCTGTCCTTGACTGTGAGGTCACTGGGGATCCCAAACCAA AAATATTTTGGTTGCTGCCTTCCAATGACATGATTTCCTTCTCCATTGATAGGTACACATTTCATGCC AATGGGTCTTTGACCATCAACAAAGTGAAACTGCTCGATTCTGGAGAGTACGTATGTGTAGCCCGAAA TCCCAGTGGGGATGACACCAAAATGTACAAACTGGATGTGGTCTCTAAACCTCCATTAATCAATGGTC TGTATACAAATAGAACTGTTATTAAAGCCACAGCTGTGAGACATTCCAAAAAACACTTTGACTGCAGA GCTGAAGGGACACCATCTCCTGAAGTCATGTGGATCATGCCAGACAATATTTTCCTCACAGCCCCATA CTATGGAAGCAGAATCACAGTCCATAAAAATGGAACCTTGGAAATTAGGTATGTGAGGCTTTCAGATT CAGCCGACTTTATCTGTGTGGCCCGAAATGAAGGTGGAGAGAGCGTGTTGGTAGTACAGTTAGAAGTA CTGGAAATGCTGAGAAGACCGACATTTAGAAATCCATTTAATGAAAAAATAGTTGCCCAGCTGGGAAA GTCCACAGCATTGAATTGCTCTGTTGATGGTAACCCACCACCTGAAATAATCTGGATTTTACCAAATG GCACACGATTTTCCAATGGACCACAAAGTTATCAGTATCTGATAGCAAGCAATGGTTCTTTTATCATT TCTAAAACAACTCGGGAGGATGCAGGAAAATATCGCTGTGCAGCTAGGAATAAAGTTGGCTATATTGA GAAATTAGTCATATTAGAAATTGGCCAGAAGCCAGTTATTCTTACCTATGCACCAGGGACAGTAAAAG GCATCAGTGGAGAATCTCTATCACTGCATTGTGTGTCTGATGGAATCCCTAAGCCAAATATCAAATGG ACTATGCCAAGTGGTTATGTAGTAGACAGGCCTCAAATTAATGGGAAATACATATTGCATGACAATGG CACCTTAGTCATTAAAGAAGCAACAGCTTATGACAGAGGAAACTATATCTGTAAGGCTCAAAATAGTG TTGGTCATACACTGATTACTGTTCCAGTAATGATTGTAGCCTACCCTCCCCGAATTACAAATCGTCCA CCCAGGAGTATTGTCACCAGGACAGGGGCAGCCTTTCAGCTCCACTGTGTGGCCTTGGGAGTTCCCAA GCCAGAAATCACGTGGGAGATGCCTGACCACTCCCTTCTCTCAACGGCAAGTAAAGAGAGGACACATG GAAGTGAGCAGCTTCACTTACAAGGTACCCTAGTCATTCAGAATCCCCAAACCTCCGATTCTGGGATA TACAAATGCACAGCACTCGAGGGCAAGGGTGGGCGCGCC
NOV29w, 247679454 SEQ ID NO: 710 670 aa MW at 74046.2kD Protein Sequence
GSAAAPFTLEGD -LLLNCSATGEPKPQIM RLPS---^VVDQQHRVGS IHVYPNGSLFIGSVTEKDSGV
YLCVAR- KMGDDLILMHVSLRLKPAKIDHKQYFRKQVLHGKDFQVDCKASGSPVPEIS SLPDGTMIN
N-AMQADDSGHRTRRYTLF-N GTLYFNKVGVAEEGDYTCYAQNTLGKDEMKVHLTVITAAPRIRQSNKT
NKRI--^GDTAVLDCEVTGDPKPKIF LLPSNDMISFSIDRYTFi GSLTINKV--- iLDSGEYVCVA-R
PSGDDT-imY--πJDVVSKPPLINGLYTNRTVIKATAVRHSiαΗFDC----AEGTPSPEVM IMPDN
YGSRITVHKNGTLEIRYVRLSDSADFICVAR-NEGGESVLWQLEVLEMLRRPTFR PFNEKIVAQLGK
STALNCSVDGNPPPEIIWILPNGTRFSNGPQSYQYLIASNGSFIISKTTREDAGKYRCAARNKVGYIE
KLVILEIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNIKWTMPSGYVVDRPQING YILHDNG
TLVIKEATAYDRG YICKAQNSVGHTLITVPVMIVAYPPRITNRPPRSIVTRTGAAFQLHCVALGVPK
PEITWEMPDHSLLSTASKERTHGSEQLHLQGTLVIQNPQTSDSGIYKCTALEGKGGRA
NOV29x, 314361407 SEQ ID NO: 711 2902 bp
DNA Sequence ORF Start: at 2 ORF Stop: end of sequence
CACCCTCGAGAACTCAGATGCCTTTCTTCCCTGTGAAGCTGTTGGAAATCCCCTGCCCACCATTCATT GGACCAGAGTCCCATCAGGACTTGATTTATCTAAGAGGAAACAGAATAGCAGGGTCCAGGTTCTCCCC AATGGTACCCTGTCCATCCAGAGGGTGGAAATTCAGGACCGCGGACAGTACTTGTGTTCCGCATCCAA TCTGTTTGGCACAGACCACCTTCATGTCACCTTGTCTGTGGTTTCCTATCCTCCCAGGATCCTGGAGA GACGTACCAAAGAGATCACAGTTCATTCCGGAAGCACTGTGGAACTGAAGTGCAGAGCAGAAGGTAGG CCAAGCCCTACAGTTACCTGGATTCTTGCAAACCAAACAGTTGTCTCAGAATCATCCCAGGGAAGTAG GCAGGCTGTGGTGACGGTTGACGGAACATTGGTCCTCCACAATCTCAGTATTTATGACCGTGGCTTTT ACAAATGTGTGGCCAGCAACCCAGGTGGCCAGGATTCACTGCTGGTTAAAATACAAGTCATTGCAGCA CCACCTGTTATTCTAGAGCAAAGGAGGCAAGTCATTGTAGGCACTTGGGGTGAAAGTTTAAAACTGCC CTGTACTGCAAAAGGAACTCCTCAGCCCAGCGTTTACTGGGTCCTCTCTGATGGCACTGAAGTGAAAC CATTACAGTTTACCAATTCCAAGTTGTTCTTATTTTCAAATGGGACTTTGTATATAAGAAACCTAGCC TCTTCAGACAGGGGCACTTATGAATGCATTGCTACCAGTTCCACTGGTTCGGAGCGAAGAGTAGTAAT GCTTACAATGGAAGAGCGAGTGACCAGCCCCAGGATAGAAGCTGCATCCCAGAAAAGGACTGAAGTGA ATTTTGGGGACAAATTACTACTGAACTGCTCAGCCACTGGGGAGCCCAAACCCCAAATAATGTGGAGG TTACCATCCAAGGCTGTGGTCGACCAGCAGCATAGAGTGGGCAGCTGGATCCACGTCTACCCTAATGG ATCCCTC^ TGGGGGATGATCTGATACTGATGCATGTTAGCCTAAGACTGAAACCTGCCAAAATTGACCACAAGCAG TATTTTAGAAAGCAAGTGCTCCATGGGAAAGATTTCCAAGTAGATTGCAAAGCTTCCGGCTCCCCAGT GCCAGAGATATCTTGGAGTTTGCCTGATGGAACCATGATCAACAATGCAATGCAAGCCGATGACAGTG GCCACAGGACTAGGAGATATACCCTTTTCAACAATGGAACTTTATACTTCAACAAAGTTGGGGTAGCG GAGGAAGGAGATTATACTTGCTATGCCCAGAACACCCTAGGGAAAGATGAAATGAAGGTCCACTTAAC AGTTATAACAGCTGCTCCCCGGATAAGGCAGAGTAACAAAACCAACAAGAGAATCAAAGCTGGAGACA CAGCTGTCCTTGACTGTGAGGTCACTGGGGATCCCAAACCAAAAATATTTTGGTTGCTGCCTTCCAAT GACATGATTTCCTTCTCCATTGATAGGTACACATTTCATGCCAATGGGTCTTTGACCATCAACAAAGT GAAACTGCTCGATTCTGGAGAGTACGTATGTGTAGCCCGAAATCCCAGTGGGGATGACACCAAAATGT ACAAACTGGATGTGGTCTCTAAACCTCCATTAATCAATGGTCTGTATACAAATAGAACTGTTATTAAA GCCACAGCTGTGAGACATTCCAAAAAACACTTTGACTGCAGAGCTGAAGGGACACCATCTCCTGAAGT CATGTGGATCATGCCAGACAATATTTTCCTCACAGCCCCATACTATGGAAGCAGAATCACAGTCCATA AAAATGGAACCTTGGAAATTAGGAATGTGAGGCTTTCAGATTCAGCCGACTTTATCTGTGTGGCCCGA AATGAAGGTGGAGAGAGCGTGTTGGTAGTACAGTTAGAAGTACTGGAAATGCTGAGAAGACCGACATT TAGAAATCCATTTAATGAAAAAATAGTTGCCCAGCTGGGAAAGTCCACAGCATTGAATTGCTCTGTTG ATGGTAACCCACCACCTGAAATAATCTGGATTTTACCAAATGGCACACGATTTTCCAATGGACCACAA AGTTATCAGTATCTGATAGCAAGCAATGGTTCTTTTATCATTTCTAAAACAACTCGGGAGGATGCAGG AAAATATCGCTGTGCAGCTAGGAATAAAGTTGGCTATATTGAGAAATTAGTCATATTAGAAATTGGCC AGAAGCCAGTTATTCTTACCTATGCACCAGGGACAGTAAAAGGCATCAGTGGAGAATCTCTATCACTG CATTGTGTGTCTGATGGAATCCCTAAGCCAAATATCAAATGGACTATGCCAAGTGGTTATGTAGTAGA CAGGCCTCAAATTAATGGGAAATACATATTGCATGACAATGGCACCTTAGTCATTAAAGAAGCAACAG CTTATGACAGAGGAAACTATATCTGTAAGGCTCAAAATAGTGTTGGTCATACACTGATTACTGTTCCA GTAATGATTGTAGCCTACCCTCCCCGAATTACAAATCGTCCACCCAGGAGTATTGTCACCAGGACAGG GGCAGCCTTTCAGCTCCACTGTGTGGCCTTGGGAGTTCCCAAGCCAGAAATCACGTGGGAGATGCCTG ACCACTCCCTTCTCTCAACGGCAAGTAAAGAGAGGACACATGGAAGTGAGCAGCTTCACTTACAAGGT ACCCTAGTCATTCAGAATCCCCAAACCTCCGATTCTGGGATATACAAATGCACAGCAAAGAACCCACT TGGTAGTGATTATGCAGCAACGTATATTCAAGTAATCCTCGAGGGC
NOV29x, 314361407 SEQ ID NO: 712 967 aa MW at l06911.3kD Protein Sequence
TLENSDAFLPCEAVGNPLPTIH TRVPSGLDLSKRKQNSRVQVLPNGTLSIQRVEIQDRGQYLCSASN LFGTDHL-t-IVTLSVVSYPPRILERRTIΕITVHSGSTVELKCRAEGRPSPTVT IL-ANQTVVSESSQGSR QAWTVDGTLVLHNLSIYDRGFYKCVASNPGGQDSLLVKIQVIAAPPVILEQRRQVIVGT GESLKLP CTAKGTPQPSVY VLSDGTEVKPLQFT SKLFLFSNGTLYIR LASSDRGTYECIATSSTGSERRWM LTMEERVTSPRIEAASQ---OITEVNFGDKLLLNCSATGEPKPQIM RLPSKAVVDQQHRVGS IHVYPNG SLFIGSVTEKDSGVYLCVARNKMGDDLIL- iHVSLRLKPAKIDHKQYFRKQVLHGKDFQVDCKASGSPV PEIS SLPDGTMI1TOAMQADDSGHRTRRYTLFN--- GTLYFNKVGVAEEGDYTCYAQNTLGKDEM---WHLT VITAAPRIRQSNKTNKRIKAGDTAVLDCEVTGDPKPKIF LLPSNDMISFSIDRYTFHANGSLTINKV KLLDSGEYVCV-A-E PSGDDTIMYKLDVVSKPPLINGLYT--^TVI--^TAVRHSKKHFDCRAEGTPSPEV M IMPDNIFLTAPYYGSRITVHK-NGTLEIR VRLSDSADFICVA-RNEGGESVLWQLEVLEMLRRPTF RNPFNEKIVAQLGKSTALNCSVDGNPPPEII ILPNGTRFSNGPQSYQYLIASNGSFIISKTTREDAG KYRCAAR KVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNIK TMPSGYWD RPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVMIVAYPPRITNRPPRSIVTRTG AAFQLHCVALGVP PEIT EMPDHSLLSTASKERTHGSEQLHLQGTLVIQNPQTSDSGIYKCTAKNPL GSDYAATYIQVILEG
NOV29y, 317803448 SEQ ID NO: 713 2902 bp
DNA Sequence |ORF Start: at 2 |θRF Stop: end of sequence
CACCAGATCTAACTCAGATGCCTTTCTTCCCTGTGAAGCTGTTGGAAATCCCCTGCCCACCATTCATT GGACCAGAGTCCCATCAGGACTTGATTTATCTAAGAGGAAACAGAATAGCAGGGTCCAGGTTCTCCCC AATGGTACCCTGTCCATCCAGAGGGTGGAAATTCAGGACCGCGGACAGTACTTGTGTTCCGCATCCAA TCTGTTTGGCACAGACCACCTTCATGTCACCTTGTCTGTGGTTTCCTATCCTCCCAGGATCCTGGAGA GACGTACCAAAGAGATCACAGTTCATTCCGGAAGCACTGTGGAACTGAAGTGCAGAGCAGAAGGTAGG CCAAGCCCTACAGTTACCTGGATTCTTGCAAACCAAACAGTTGTCTCAGAATCATCCCAGGGAAGTAG GCAGGCTGTGGTGACGGTTGACGGAACATTGGTCCTCCACAATCTCAGTATTTATGACCGTGGCTTTT ACAAATGTGTGGCCAGCAACCCAGGTGGCCAGGATTCACTGCTGGTTAAAATACAAGTCATTGCAGCA CCACCTGTTATTCTAGAGCAAAGGAGGCAAGTCATTGTAGGCACTTGGGGTGAAAGTTTAAAACTGCC CTGTACTGCAAAAGGAACTCCTCAGCCCAGCGTTTACTGGGTCCTCTCTGATGGCACTGAAGTGAAAC CATTACAGTTTACCAATTCCAAGTTGTTCTTATTTTCAAATGGGACTTTGTATATAAGAAACCTAGCC TCTTCAGACAGGGGCACTTATGAATGCATTGCTACCAGTTCCACTGGTTCGGAGCGAAGAGTAGTAAT GCTTACAATGGAAGAGCGAGTGACCAGCCCCAGGATAGAAGCTGCATCCCAGAAAAGGACTGAAGTGA ATTTTGGGGACAAATTACTACTGAACTGCTCAGCCACTGGGGAGCCCAAACCCCAAATAATGTGGAGG TTACCATCCAAGGCTGTGGTCGACCAGCAGCATAGAGTGGGCAGCTGGATCCACGTCTACCCTAATGG ATCCCTGTTTATTGGATCAGTAACAGAAAAAGACAGTGGTGTCTACTTGTGTGTGGCAAGAAACAAAA TGGGGGATGATCTGATACTGATGCATGTTAGCCTAAGACTGAAACCTGCCAAAATTGACCACAAGCAG TATTTTAGAAAGCAAGTGCTCCATGGGAAAGATTTCCAAGTAGATTGCAAAGCTTCCGGCTCCCCAGT GCCAGAGATATCTTGGAGTTTGCCTGATGGAACCATGATCAACAATGCAATGCAAGCCGATGACAGTG GCCACAGGACTAGGAGATATACCCTTTTCAACAATGGAACTTTATACTTCAACAAAGTTGGGGTAGCG GAGGAAGGAGATTATACTTGCTATGCCCAGAACACCCTAGGGAAAGATGAAATGAAGGTCCACTTAAC AGTTATAACAGCTGCTCCCCGGATAAGGCAGAGTAACAAAACCAACAAGAGAATCAAAGCTGGAGACA CAGCTGTCCTTGACTGTGAGGTCACTGGGGATCCCAAACCAAAAATATTTTGGTTGCTGCCTTCCAAT GACATGATTTCCTTCTCCATTGATAGGTACACATTTCATGCCAATGGGTCTTTGACCATCAACAAAGT GAAACTGCTCGATTCTGGAGAGTACGTATGTGTAGCCCGAAATCCCAGTGGGGATGACACCAAAATGT ACAAACTGGATGTGGTCTCTAAACCTCCATTAATCAATGGTCTGTATACAAATAGAACTGTTATTAAA GCCACAGCTGTGAGACATTCCAAAAAACACTTTGACTGCAGAGCTGAAGGGACACCATCTCCTGAAGT CATGTGGATCATGCCAGACAATATTTTCCTCACAGCCCCATACTATGGAAGCAGAATCACAGTCCATA AAAATGGAACCTTGGAAATTAGGAATGTGAGGCTTTCAGATTCAGCCGACTTTATCTGTGTGGCCCGA AATGAAGGTGGAGAGAGCGTGTTGGTAGTACAGTTAGAAGTACTGGAAATGCTGAGAAGACCGACATT TAGAAATCCATTTAATGAAAAAATAGTTGCCCAGCTGGGAAAGTCCACAGCATTGAATTGCTCTGTTG ATGGTAACCCACCACCTGAAATAATCTGGATTTTACCAAATGGCACACGATTTTCCAATGGACCACAA AGTTATCAGTATCTGATAGCAAGCAATGGTTCTTTTATCATTTCTAAAACAACTCGGGAGGATGCAGG AAAATATCGCTGTGCAGCTAGGAATAAAGTTGGCTATATTGAGAAATTAGTCATATTAGAAATTGGCC AGAAGCCAGTTATTCTTACCTATGCACCAGGGACAGTAAAAGGCATCAGTGGAGAATCTCTATCACTG CATTGTGTGTCTGATGGAATCCCTAAGCCAAATATCAAATGGACTATGCCAAGTGGTTATGTAGTAGA CAGGCCTCAAATTAATGGGAAATACATATTGCATGACAATGGCACCTTAGTCATTAAAGAAGCAACAG CTTATGACAGAGGAAACTATATCTGTAAGGCTCAAAATAGTGTTGGTCATACACTGATTACTGTTCCA GTAATGATTGTAGCCTACCCTCCCCGAATTACAAATCGTCCACCCAGGAGTATTGTCACCAGGACAGG GGCAGCCTTTCAGCTCCACTGTGTGGCCTTGGGAGTTCCCAAGCCAGAAATCACGTGGGAGATGCCTG ACCACTCCCTTCTCTCAACGGCAAGTAAAGAGAGGACACATGGAAGTGAGCAGCTTCACTTACAAGGT ACCCTAGTCATTCAGAATCCCCAAACCTCCGATTCTGGGATATACAAATGCACAGCAAAGAACCCACT TGGTAGTGATTATGCAGCAACGTATATTCAAGTAATCCTCGAGGGC
NOV29y, 317803448 SEQ ID NO: 714 967 aa MW at 106912.3kD Protein Sequence
TRSNSDAFLPCEAVGNPLPTIHWTRVPSGLDLSKRKQNSRVQVLP-NGTLSIQRVEIQDRGQYLCSASN LFGTDHLHVTLSWSYPPRILERRTKEITVHSGSTVELKCRAEGRPSPTVT ILANQTWSESSQGSR QAWTVDGTLVLH LSIYDRGFYKCVASNPGGQDSLLVKIQVIAAPPVILEQRRQVIVGT GESLKLP CTAKGTPQPSVY VLSDGTEVKPLQFTNSKLFLFSNGTLYIRNLASSDRGTYECIATSSTGSERRWM LTMEERVTSPRIE-AASQ-- TEVNFGDKLLLNCSATGEPKPQIM RLPSKAVVDQQHRVGSWIHVYPNG SLFIGSVTEKDSGVYLCVARNKMGDDLILMHVSLRLKPAKIDHKQYFRKQVLHGKDFQVDCKASGSPV PEIS SLPDGTMIlrøAMQADDSGHRTRRYTLFlrøGTLYFN-l-CVGV-AEEGDYTCYAQNTLGKDEMKVHLT VITAAPRIRQSNK-TNIOIIKAGDTAVLDCEVTGDPKPKIFWLLPSNDMISFSIDRYTFH-ANGSLTINKV KLLDSGEYVCVARNPSGDDTKMYKLDVVSKPPLINGLYTNRTVIKATAVRHSKKHFDCRAEGTPSPEV MWIMPDNIFLTAPYYGSRITVHKNGTLEIRNVRLSDS-ADFICVARNEGGESVLWQLEVLEMLRRPTF RNPFNEKIVAQLGKSTALNCSVDGNPPPEII ILPNGTRFSNGPQSYQYLIASNGSFIISKTTREDAG KYRCAAPJ-vTKVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNIKWTMPSGYVVD RPQING YILHDNGTLVI---XΕATAYDRGNYICKAQNSVGHTLITVPVMIVAYPPRITNRPPRSIVTRTG AAFQLHCVALGVPKPEIT EMPDHSLLSTASKERTHGSEQLHLQGTLVIQNPQTSDSGIYKCTAKNPL GSDY ATYIQVILEG
NOV29z, CG55776-02 SEQ ID NO: 715 7831 bp
DNA Sequence ORF Start: ATG at 6 ORF Stop: TGA at 7812
TCAGGATGAAGGTAAAAGGCAGAGGAATCACCTGCTTGCTGGTCTCCTTTGCTGTGATCTGCCTGGTC
GCCACCCCTGGGGGCAAGGCCTGTCCTCGCCGCTGTGCCTGTTATATGCCTACGGAGGTACACTGCAC ATTTCGGTACCTGACTTCCATCCCAGACAGCATCCCGCCCAATGTGGAACGCATCAATTTAGGGTACA ACAGCTTGGTTAGATTGATGGAAACAGATTTTTCTGGCCTGACCAAACTGGAGTTACTCATGCTTCAC AGCAATGGCATTCACACAATCCCTGACAAGACCTTCTCAGATTTGCAGGCCTTGCAGGTGAGACTGAT GGTCTTAAAAATGAGCTATAATAAAGTCCGAAAACTTCAGAAAGATACTTTTTATGGCCTCAGGAGCT TGACACGATTGCACATGGACCACAACAATATTGAGTTTATAAACCCAGAGGTTTTTTATGGGCTCAAC TTTCTCCGCCTGGTGCACTTGGAAGGAAATCAGCTCACTAAGCTCCACCCAGATACATTTGTCTCTTT GAGCTACCTCCAGATATTTAAAATCTCTTTCATTAAGTTCCTATACTTGTCTGATAACTTCCTGACCT CCCTCCCTCAAGAGATGGTCTCCTATATGCCTGACCTAGACAGCCTTTACCTGCATGGAAACCCATGG ACCTGTGATTGCCATTTAAAGTGGTTGTCTGACTGGATACAGGAGAAGCCAGGTATCTATATTGTTTT ACCAGATGTAATAAAATGCAAAAAAGATAGAAGTCCCTCTAGTGCTCAGCAGTGTCCACTTTGCATGA ACCCTAGGACTTCTAAAGGCAAGCCGTTAGCTATGGTCTCAGCTGCAGCTTTCCAGTGTGCCAAGCCA ACCATTGACTCATCCCTGAAATCAAAGAGCCTGACTATTCTGGAAGACAGTAGTTCTGCTTTCATCTC TCCCCAAGGTTTCATGGCACCCTTTGGCTCCCTCACTTTGAATATGACAGATCAGTCTGGAAATGAAG CTAACATGGTCTGCAGTATTCAAAAGCCCTCAAGGACATCACCCATTGCATTCACTGAAGAAAATGAC TACATCGTGCTAAATACTTCATTTTCAACATTTTTGGTGTGCAACATAGATTACGGTCACATTCAGCC AGTGTGGCAAATTTTGGCTTTGTACAGTGATTCTCCTCTGATACTAGAAAGGAGCCACTTGCTTAGTG AAACACCGCAGCTCTATTACAAATATAAACAGGTGGCTCCTAAGCCTGAAGACATTTTTACCAACATA GAGGCAGATCTCAGAGCAGATCCCTCTTGGTTAATGCAAGACCAAATTTCCTTGCAGCTGAACAGAAC TGCCACCACATTCAGTACATTACAGATCCAGTACTCCAGTGATGCTCAAATCACTTTACCAAGAGCAG AGATGAGGCCAGTGAAACACAAATGGACTATGATTTCAAGGGATAACAATACTAAGCTGGAACATACT GTCTTGGTAGGTGGAACCGTTGGCCTGAACTGCCCAGGCCAAGGAGACCCCACCCCACACGTGGATTG GCTTCTAGCTGATGGAAGTAAAGTGAGAGCCCCTTATGTCAGTGAGGATGGACGGATCCTAATAGACA AAAGTGGAAAATTGGAACTCCAGATGGCTGATAGTTTTGACACAGGCGTATATCACTGTATAAGCAGC AATTATGATGATGCAGATATTCTCACCTATAGGATAACTGTGGTAGAACCTTTGGTCGAAGCCTATCA GGAAAATGGGATTCATCACACAGTTTTCATTGGTGAAACACTTGATCTTCCATGCCATTCTACTGGTA TCCCAGATGCCTCTATTAGCTGGGTTATTCCAGGAAACAATGTGCTCTATCAGTCATCAAGAGACAAG AAAGTTCTAAACAATGGCACATTAAGAATATTACAGGTCACCCCGAAAGACCAAGGTTATTATCGCTG TGTGGCAGCCAACCCATCAGGGGTTGATTTTTTGATTTTCCAAGTTTCAGTCAAGATGAAAGGACAAA GGCCCTTGGAGCATGATGGAGAAACAGAGGGATCTGGACTTGATGAGTCCAATCCTATTGCTCATCTT AAGGAGCCACCAGGTGCACAACTCCGTACATCTGCTCTGATGGAGGCTGAGGTTGGAAAACACACCTC AAGCACAAGTAAGAGGCACAACTATCGGGAATTAACACTCCAGCGACGTGGAGATTCAACACATCGAC GTTTTAGGGAGAATAGGAGGCATTTCCCTCCCTCTGCTAGGAGAATTGACCCACAACATTGGGCGGCA CTGTTGGAGAAAGCTAAAAAGAATGCTATGCCAGACAAGCGAGAAAATACCACAGTGAGCCCACCCCC AGTGGTCACCCAACTCCCAAACATACCTGGTGAAGAAGACGATTCCTCAGGCATGCTCGCTCTACATG AGGAATTTATGGTCCCGGCCACTAAAGCTTTGAACCTTCCAGCAAGGACAGTGACTGCTGACTCCAGA ACAATATCTGATAGTCCTATGACAAACATAAATTATGGCACAGAATTCTCTCCTGTTGTGAATTCACA AATACTACCACCTGAAGAACCCACAGATTTCAAACTGTCTACTGCTATTAAAACTACAGCCATGTCAA AGAATATAAACCCAACCATGTCAAGCCAAATACAAGGCACAACCAATCAACATTCATCCACTGTCTTT CCACTGCTACTTGGAGCAACTGAATTTCAGGACTCTGACCAGATGGGAAGAGGAAGAGAGCATTTCCA AAGTAGACCCCCAATAACAGTAAGGACTATGATCAAAGATGTCAATGTCAAAATGCTTAGTAGCACCA CCAACAAACTATTATTAGAGTCAGTAAATACCACAAATAGTCATCAGACATCTGTAAGAGAAGTGAGT GAACCCAGGCACAATCACTTCTATTCTCACACTACTCAAATACTTAGCACCTCCACGTTCCCTTCAGA TCCACACACAGCTGCTCATTCTCAGTTTCCGATCCCTAGAAATAGTACAGTTAACATCCCGCTGTTCA GACGCTTTGGGAGGCAGAGGAAAATTGGCGGAAGGGGGCGGATTATCAGCCCATATAGAACTCCAGTT CTGCGACGGCATAGATACAGCATTTTCAGGTCAACAACCAGAGGTTCTTCTGAAAAAAGCACTACTGC ATTCTCAGCCACAGTGCTCAATGTGACATGTCTGTCCTGTCTTCCCAGGGAGAGGCTCACCACTGCCA CAGCAGCATTGTCTTTTCCAAGTGCTGCTCCCATCACCTTCCCCAAAGCTGACATTGCTAGAGTCCCA
TCAGAAGAGTCTACAACTCTAGTCCAGAATCCACTATTACTACTTGAGAACAAACCCAGTGTAGAGAA AACAACACCCACAATAAAATATTTCAGGACTGAAATTTCCCAAGTGACTCCAACTGGTGCAGTCATGA CATATGCTCCAACATCCATACCCATGGAAAAAACTCACAAAGTAAACGCCAGTTACCCACGTGTGTCT AGCACCAATGAAGCTAAAAGAGATTCAGTGATTACATCGTCACTTTCAGGTGCTATCACCAAGCCACC AATGACTATTATAGCCATTACAAGGTTTTCAAGAAGGAAAATTCCCTGGCAACAGAACTTTGTAAATA ACCATAACCCAAAAGGCAGATTAAGGAATCAACATAAAGTTAGTTTACAAAAAAGCACAGCTGTGATG CTTCCTAAAACATCTCCTGCTTTACCACAGAGACAAAGTCTCCCCTCGCACCACACTACGACCAAAAC ACACAATCCTGGAAGTCTTCCAACAAAGAAGGAGCTTCCCTTCCCACCCCTTAACCCTATGCTTCCTA GTATTATAAGCAAAGACTCAAGTACAAAAAGCATCATATCAACGCAAACAGCAATACCAGCAACAACT CCTACCTTCCCTGCATCTGTCATCACTTATGAAACCCAAACAGAGAGATCTAGAGCACAAACAATACA AAGAGAACAGGAGCCTCAAAAGAAGAACAGGACTGACCCAAACATCTCTCCAGACCAGAGTTCTGGCT TCACTACACCCACTGCTATGACACCTCCTGTTCTAACCACAGCCGAAACTTCAGTCAAGCCCAGTGTC TCTGCATTCACTCATTCCCCACCAGAAAACACAACTGGGATTTCAAGCACAATCAGTTTTCATTCAAG AACTCTTAATCTGACAGATGTGATTGAAGAACTAGCCCAAGCAAGTACTCAGACTTTGAAGAGCACAA TTGCTTCTGAAACAACTTTGTCCAGCAAATCACACCAGAGTACCACAACTAGGAAAGCAATCATTAGA CACTCAACCATACCACCATTCTTGAGCAGCAGTGCTACTCTAATGCCAGTTCCCATCTCCCCTCCCTT TACTCAGAGAGCAGTTACTGACAACGTGGCGACTCCCATTTCCGGGCTTATGACAAATACAGTGGTCA AGCTGCACGAATCCTCAAGGCACAATGCTAAACCACAGCAATTAGTAGCAGAGGTTGCAACATCCCCC AAGGTTCACCCAAATGCCAACT DASIS VIPG---røVLYQSSRDKK-VLNNGTLRILQVTP DQGYYRCVAA PSGVDFLIFQVSVKMKGQRP
LEHDGETEGSGLDESNPIAHLKEPPGAQLRTSALMEAEVGKHTSSTSKRH YRELTLQRRGDSTHRRF
RENRRHFPPSARRIDPQH AALLEKAION-AMPD-^
FMVPATALNLPARTVTADSRTISDSPMTNINYGTEFSPVVNSQILPPEEPTDFKLSTAI TTAMSKN
INPTMSSQIQGTTNQHSSTVFPLLLGATEFQDSDQMGRGREHFQSRPPITVRTMIKDV VKMLSSTTN
KLLLESVNTTNSHQTSVREVSEPRHNHFYSHTTQILSTSTFPSDPHTAAHSQFPIPR STV IPLFRR
FGRQRKIGGRGRIISPYRTPVLRRHRYSIFRSTTRGSSEKSTTAFSATVLNVTCLSCLPRERLTTATA
ALSFPSAAPITFPKA-DIARVPSEESTTLVQNPLLLLENKPSVEKTTPTIKYFRTEISQVTPTGAVMTY
APTSIPMEKTHKVNASYPRVSSTNEAKRDSVITSSLSGAITKPPMTIIAITRFSRRKIPWQQNFVNNH
NPKGRLRNQHKVSLQKSTAVMLPKTSPALPQRQSLPSHHTTTKTHNPGSLPTKKELPFPPLNPMLPSI
ISKDSSTKSIISTQTAIPATTPTFPASVITYETQTERSRAQTIQREQEPQKK RTDPNISPDQSSGFT
TPT-AMTPPVLTTAETSVKPSVSAFTHSPPENTTGISSTISFHSRTLNLTDVIEELAQASTQTLKSTIA
SETTLSSKSHQSTTTRKAIIRHSTIPPFLSSSATLMPVPISPPFTQRAVTDNVATPISGLMTNTWKL
HESSRHNAKPQQLVAEVATSPKVHPNAKFTIGTTHFIYSNLLHSTPMPALTTVKSQNSKLTPSPWAEN
QFWHKPYSEIAEKGKKPEVSMLATTGLSEATTLVSD DGQKNTKKSDFDKKPVQEATTSKLLPFDSLS
RYIFEKPRIVGGKAASFTIPANSDAFLPCEAVGNPLPTIHWTRVPSGMSGLDLSKRKQNSRVQVLPNG
TLSIQRVEIQDRGQYLCSASNLFGTDHLHVTLSWSYPPRILERRT EITVHSGSTVELKCRAEGRPS
PTVT ILANQTWSESSQGSRQAWTVDGTLVLH LSIYDRGFYKCVASNPGGQDSLLVKIQVIAAPP
VILEQRRQVIVGT GESLKLPCTAKGTPQPSVY VLSDGTEVKPLQFTNSKLFLFSNGTLYIRNLASS
DRGTYECIATSSTGSERRWMLTMEERVTSPRIEAASQKRTEVNFGDKLLLNCSATGEP PQIM RLP
SKAVVDQQHRVGSWIHVYPNGSLFIGSVTEK-DSGVYLCVA NKMGDDLILMHVSLRLKPAKIDHKQYF
RKQVLHGKDFQVDCKASGSPVPEIS SLPDGTMINNAMQADDSGHRTRRYTLF--STOGTLYFNKVGVAEE
GDYTCYAQNTLGKDEMKVHLTVITAAPRIRQSNKTNKRIKAGDTAVLDREVTGDPKPKIF LLPSNGS
LTINKVKLLDSGEYVCVARNPSGDDTKMYKLDVVSKPPLINGLYTNRTVIKATAVT SKKHF
TPSPEVM IMPDNIFLTAPYYGSRITVHK GTLEIRNVRLSDSADFICVAR EGGESVLVVQLEVLEM
LRRPTFR PFNEKIVAQLGKSTALNCSVDGNPPPEIIWILPNGTRFSNGPQSYQYLIASNGSFIISKT
TREDAGKYRCAAR KVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNIKWTMP
SGYWDRPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVMIVAYPPRITNRPPRS
IVTRTGAAFQLHCVALGVPKPEIT EMPDHSLLSTASKERTHGSEQLHLQGTLVIQNPQTSDSGIYKC
TAKNPLGSDYAATYIQVI
NOV29aa, CG55776-03 SEQ ID NO: 717 8270 bp
DNA Sequence j 0RF Start: ATG at 6 ORF Stop: TGA at 7779
TCAGGATGAAGGTAAAAGGCAGAGGAATCACCTGCTTGCTGGTCTCCTTTGCTGTGATCTGCCTGGTC
GCCACCCCTGGGGGCAAGGCCTGTCCTCGCCGCTGTGCCTGTTATATGCCTACGGAGGTACACTGCAC
ATTTCGGTACCTGACTTCCATCCCAGACAGCATCCCGCCCAATGTGGAACGCATCAATTTAGGGTACA
ACAGCTTGGTTAGATTGATGGAAACAGATTTTTCTGGCCTGACCAAACTGGAGTTACTCATGCTTCAC
AGCAATGGCATTCACACAATCCCTGACAAGACCTTCTCAGATTTGCAGGCCTTGCAGGTGAGACTGAT
GGTCTTAAAAATGAGCTATAATAAAGTCCGAAAACTTCAGAAAGATACTTTTTATGGCCTCAGGAGCT
TGACACGATTGCACATGGACCACAACAATATTGAGTTTATAAACCCAGAGGTTTTTTATGGGCTCAAC
TTTCTCCGCCTGGTGCACTTGGAAGGAAATCAGCTCACTAAGCTCCACCCAGATACATTTGTCTCTTT
GAGCTACCTCCAGATATTTAAAATCTCTTTCATTAAGTTCCTATACTTGTCTGATAACTTCCTGACCT
CCCTCCCTCAAGAGATGGTCTCCTATATGCCTGACCTAGACAGCCTTTACCTGCATGGAAACCCATGG
ACCTGTGATTGCCATTTAAAGTGGTTGTCTGACTGGATACAGGAGAAGCCAGGTATCTATATTGTNTT
ACCAGATGTAATAAAATGCAAAAAAGATAGAAGTCCCTCTAGTGCTCAGCAGTGTCCACTTTGCATGA
ACCCTAGGACTTCTAAAGGCAAGCCGTTAGCTATGGTCTCAGCTGCAGCTTTCCAGTGTGCCAAGCCA
ACCATTGACTCATCCCTGAAATCAAAGAGCCTGACTATTCTGGAAGACAGTAGTTCTGCTTTCATCTC
TCCCCAAGGTTTCATGGCACCCTTTGGCTCCCTCACTTTGAATATGACAGATCAGTCTGGAAATGAAG
CTAACATGGTCTGCAGTATTCAAAAGCCCTCAAGGACATCACCCATTGCATTCACTGAAGAAAATGAC
TACATCGTGCTAAATACTTCATTTTCAACATTTTTGGTGTGCAACATAGATTACGGTCACATTCAGCC
AGTGTGGCAAATTTTGGCTTTGTACAGTGATTCTCCTCTGATACTAGAAAGGAGCCACTTGCTTAGTG
AAACACCGCAGCTCTATTACAAATATAAACAGGTGGCTCCTAAGCCTGAAGACATTTTTACCAACATA
GAGGCAGATCTCAGAGCAGATCCCTCTTGGTTAATGCAAGACCAAATTTCCTTGCAGCTGAACAGAAC
TGCCACCACATTCAGTACATTACAGATCCAGTACTCCAGTGATGCTCAAATCACTTTACCAAGAGCAG
AGATGAGGCCAGTGAAACACAAATGGACTATGATTTCAAGGGATAACAATACTAAGCTGGAACATACT
GTCTTGGTAGGTGGAACCGTTGGCCTGAACTGCCCAGGCCAAGGAGACCCCACCCCACACGTGGATTG
GCTTCTAGCTGATGGAAGTAAAGTGAGAGCCCCTTATGTCAGTGAGGATGGACGGATCCTAATAGACA
AAAGTGGAAAATTGGAACTCCAGATGGCTGATAGTTTTGACACAGGCGTATATCACTGTATAAGCAGC
AATTATGATGATGCAGATATTCTCACCTATAGGATAACTGTGGTAGAACCTTTGGTCGAAGCCTATCA GGAAAATGGGATTC TCCCAGATGCCTCTATTAGCTGGGTTATTCCAGGAAACAATGTGCTCTATCAGTCATCAAGAGACAAG AAAGTTCTAAACAATGGCACATTAAGAATATTACAGGTCACCCCGAAAGACCAAGGTTATTATCGCTG TGTGGCAGCCAACCCATCAGGGGTTGATTTTTTGATTTTCCAAGTTTCAGTCAAGATGAAAGGACAAA GGCCCTTGGAGCATGATGGAGAAACAGAGGGATCTGGACTTGATGAGTCCAATCCTATTGCTCATCTT AAGGAGCCACCAGGTGCACAACTCCGTACATCTGCTCTGATGGAGGCTGAGGTTGGAAAACACACCTC AAGCACAAGTAAGAGGCACAACTATCGGGAATTAACACTCCAGCGACGTGGAGATTCAACACATCGAC GTTTTAGGGAGAATAGGAGGCATTTCCCTCCCTCTGCTAGGAGAATTGACCCACAACATTGGGCGGCA CTGTTGGAGAAAGCTAAAAAGAATGCTATGCCAGACAAGCGAGAAAATACCACAGTGAGCCCACCCCC AGTGGTCACCCAACTCCCAAACATACCTGGTGAAGAAGACGATTCCTCAGGCATGCTCGCTCTACATG AGGAATTTATGGTCCCGGCCACTAAAGCTTTGAACCTTCCAGCAAGGACAGTGACTGCTGACTCCAGA ACAATATCTGATAGTCCTATGACAAACATAAATTATGGCACAGAATTCTCTCCTGTTGTGAATTCACA AATACTACCACCTGAAGAACCCACAGATTTCAAACTGTCTACTGCTATTAAAACTACAGCCATGTCAA AGAATATAAACCCAACCATGTCAAGCCAAATACAAGGCACAACCAATCAACATTCATCCACTGTCTTT CCACTGCTACTTGGAGCAACTGAATTTCAGGACTCTGACCAGATGGGAAGAGGAAGAGAGCATTTCCA AAGTAGACCCCCAATAACAGTAAGGACTATGATCAAAGATGTCAATGTCAAAATGCTTAGTAGCACCA CCAACAAACTATTATTAGAGTCAGTAAATACCACAAATAGTCATCAGACATCTGTAAGAGAAGTGAGT GAACCCAGGCACAATCACTTCTATTCTCACACTACTCAAATACTTAGCACCTCCACGTTCCCTTCAGA TCCACACACAGCTGCTCATTCTCAGTTTCCGATCCCTAGAAATAGTACAGTTAACATCCCGCTGTTCA GACGCTTTGGGAGGCAGAGGAAAATTGGCGGAAGGGGGCGGATTATCAGCCCATATAGAACTCCAGTT CTGCGACGGCATAGATACAGCATTTTCAGGTCAACAACCAGAGGTTCTTCTGAAAAAAGCACTACTGC ATTCTCAGCCACAGTGCTCAATGTGACATGTCTGTCCTGTCTTCCCAGGGAGAGGCTCACCACTGCCA CAGCAGCATTGTCTTTTCCAAGTGCTGCTCCCATCACCTTCCCCAAAGCTGACATTGCTAGAGTCCCA
TCAGAAGAGTCTACAACTCTAGTCCAGAATCCACTATTACTACTTGAGAACAAACCCAGTGTAGAGAA AACAACACCCACAATAAAATATTTCAGGACTGAAATTTCCCAAGTGACTCCAACTGGTGCAGTCATGA CATATGCTCCAACATCCATACCCATGGAAAAAACTCACAAAGTAAACGCCAGTTACCCACGTGTGTCT AGCACCAATGAAGCTAAAAGAGATTCAGTGATTACATCGTCACTTTCAGGTGCTATCACCAAGCCACC AATGACTATTATAGCCATTACAAGGTTTTCAAGAAGGAAAATTCCCTGGCAACAGAACTTTGTAAATA ACCATAACCCAAAAGGCAGATTAAGGAATCAACATAAAGTTAGTTTACAAAAAAGCACAGCTGTGATG CTTCCTAAAACATCTCCTGCTTTACCACAGAGACAAAGTCTCCCCTCGCACCACACTACGACCAAAAC ACACAATCCTGGAAGTCTTCCAACAAAGAAGGAGCTTCCCTTCCCACCCCTTAACCCTATGCTTCCTA GTATTATAAGCAAAGACTCAAGTACAAAAAGCATCATATCAACGCAAACAGCAATACCAGCAACAACT CCTACCTTCCCTGCATCTGTCATCACTTATGAAACCCAAACAGAGAGATCTAGAGCACAAACAATACA AAGAGAACAGGAGCCTCAAAAGAAGAACAGGACTGACCCAAACATCTCTCCAGACCAGAGTTCTGGCT TCACTACACCCACTGCTATGACACCTCCTGTTCTAACCACAGCCGAAACTTCAGTCAAGCCCAGTGTC TCTGCATTCACTCATTCCCCACCAGAAAACACAACTGGGATTTCAAGCACAATCAGTTTTCATTCAAG AACTCTTAATCTGACAGATGTGATTGAAGAACTAGCCCAAGCAAGTACTCAGACTTTGAAGAGCACAA TTGCTTCTGAAACAACTTTGTCCAGCAAATCACACCAGAGTACCACAACTAGGAAAGCAATCATTAGA CACTCAACCATACCACCATTCTTGAGCAGCAGTGCTACTCTAATGCCAGTTCCCATCTCCCCTCCCTT TACTCAGAGAGCAGTTACTGACAACGTGGCGACTCCCATTTCCGGGCTTATGACAAATACAGTGGTCA AGCTGCACGAATCCTCAAGGCACAATGCTAAACCACAGCAATTAGTAGCAGAGGTTGCAACATCCCCC AAGGTTCACCCAAATGCCAAGTTCACAATTGGAACCACTCACTTCATCTACTCTAATCTGTTACATTC TACTCCCATGCCAGCACTAACAACAGTTAAATCACAGAATTCTAAATTAACTCCATCTCCCTGGGCAG AAAACCAATTTTGGCACAAACCATACTCAGAAATTGCTGAAAAAGGCAAAAAGCCAGAAGTAAGCATG TTGGCTACTACAGGCCTGTCCGAGGCCACCACTCTTGTTTCAGATTGGGATGGACAGAAGAACACAAA GAAGAGTGACTTTGATAAGAAACCAGTTCAAGAAGCAACAACTTCCAAACTCCTTCCCTTTGACTCTT TGTCTAGGTATATATTTGAAAAGCCCAGGATAGTTGGAGGAAAAGCTGCAAGTTTTACTATTCCAGCT AACTCAGATGCCTTTCTTCCCTGTGAAGCTGTTGGAAATCCCCTGCCCACCATTCATTGGACCAGAGT CCCATCAGGTATGTCAGGACTTGATTTATCTAAGAGGAAACAGAATAGCAGGGTCCAGGTTCTCCCCA ATGGTACCCTGTCCATCCAGAGGGTGGAAATTCAGGACCGCGGACAGTACTTGTGTTCCGCATCCAAT CTGTTTGGCACAGACCACCTTCATGTCACCTTGTCTGTGGTTTCCTATCCTCCCAGGATCCTGGAGAG ACGTACCAAAGAGATCACAGTTCATTCCGGAAGCACTGTGGAACTGAAGTGCAGAGCAGAAGGTAGGC CAAGCCCTACAGTTACCTGGATTCTTGCAAACCAAACAGTTGTCTCAGAATCATCCCAGGGAAGTAGG CAGGCTGTGGTGACGGTTGACGGAACATTGGTCCTCCACAATCTCAGTATTTATGACCGTGGCTTTTA CAAATGTGTGGCCAGCAACCCAGGTGGCCAGGATTCACTGCTGGTTAAAATACAAGTCATTGCAGCAC CACCTGTTATTCTAGAGCAAAGGAGGCAAGTCATTGTAGGCACTTGGGGTGAAAGTTTAAAACTGCCC TGTACTGCAAAAGGAACTCCTCAGCCCAGCGTTTACTGGGTCCTCTCTGATGGCACTGAAGTGAAACC ATTACAGTTTACCAATTCCAAGTTGTTCTTATTTTCAAATGGGACTTTGTATATAAGAAACCTAGCCT CTTCAGACAGGGGCACTTATGAATGCATTGCTACCAGTTCCACTGGTTCGGAGCGAAGAGTAGTAATG CTTACAATGGAAGAGCGAGTGACCAGCCCCAGGATAGAAGCTGCATCCCAGAAAAGGACTGAAGTGAA TTTTGGGGACAAAT^^^ TACCATCCAAGGCTGTGGTCGACCAGCAGCATAGAGTGGGCAGCTGGATCCACGTCTACCCTAATGGA TCCCTGTTTATTGGATCAGTAACAGAAAAAGACAGTGGTGTCTACTTGTGTGTGGCAAGAAACAAAAT GGGGGATGATCTGATACTGATGCATGTTAGCCTAGAACTGAAACCTGCCAAAATTGACCACAAGCAGT ATTTTAGAAAGCAAGTGCTCCATGGGAAAGATTTCCAAGTAGATTGCAAAGCTTCCGGCTCCCCAGTG CCAGAGATATCTTGGAGTTTGCCTGATGGAACCATGATCAACAATGCAATGCAAGCCGATGACAGTGG CCACAGGACTAGGAGATATACCCTTTTCAACAATGGAACTTTATACTTCAACAAAGTTGGGGTAGCGG AGGAAGGAGATTATACTTGCTATGCCCAGAACACCCTAGGGAAAGATGAAATGAAGGTCCACTTAACA GTTATAACAGCTGCTCCCCGGATAAGGCAGAGTAACAAAACCAACAAGAGAATCAAAGCTGGAGACAC AGCTGTCCTTGACTGTGAGGTCATTCATGCCAATGGGTCTTTGACCATCAACAAAGTGAAACTGCTCG ATTCTGGAGAGTACGTATGTGTAGCCCGAAATCCCAGTGGGGATGACACCAAAATGTACAAACTGGAT GTGGTCTCTAAACCTCCATTAATCAATGGTCTGTATACAAATAGAACTGTTATTAAAGCCACAGCTGT
GAGACATTCCAAAAAACACTTTGACTGCAGAGCTGAAGGGACACCATCTCCTGAAGTCATGTGGATCA TGCCAGACAATATTTTCCTCACAGCCCCATACTATGGAAGCAGAATCACAGTCCATAAAAATGGAACC TTGGAAATTAGGAATGTGAGGCTTTCAGATTCAGCCGACTTTATCTGTGTGGCCCGAAATGAAGGTGG AGAGAGCGTGTTGGTAGTACAGTTAGAAGTACTGGAAATGCTGAGAAGACCGACATTTAGAAATCCAT TTAATGAAAAAATAGTTGCCCAGCTGGGAAAGTCCACAGCATTGAATTGCTCTGTTGATGGTAACCCA CCACCTGAAATAATCTGGATTTTACCAAATGGCACACGATTTTCCAATGGACCACAAAGTTATCAGTA TCTGATAGCAAGCAATGGTTCTTTTATCATTTCTAAAACAACTCGGGAGGATGCAGGAAAATATCGCT GTGCAGCTAGGAATAAAGTTGGCTATATTGAGAAATTAGTCATATTAGAAATTGGCCAGAAGCCAGTT ATTCTTACCTATGCACCAGGGACAGTAAAAGGCATCAGTGGAGAATCTCTATCACTGCATTGTGTGTC TGATGGAATCCCTAAGCCAAATATCAAATGGACTATGCCAAGTGGTTATGTAGTAGACAGGCCTCAAA TTAATGGGAAATACATATTGCATGACAATGGCACCTTAGTCATTAAAGAAGCAACAGCTTATGACAGA GGAAACTATATCTGTAAGGCTCAAAATAGTGTTGGTCATACACTGATTACTGTTCCAGTAATGATTGT AGCCTACCCTCCCCGAATTACAAATCGTCCACCCAGGAGTATTGTCACCAGGACAGGGGCAGCCTTTC AGCTCCACTGTGTGGCCTTGGGAGTTCCCAAGCCAGAAATCACGTGGGAGATGCCTGACCACTCCCTT CTCTCAACGGCAAGTAAAGAGAGGACACATGGAAGTGAGCAGCTTCACTTACAAGGTACCCTAGTCAT TCAGAATCCCCAAACCTCCGATTCTGGGATATACAAATGCACAGCAAAGAACCCACTTGGTAGTGATT ATGCAGCAACGTATATTCAAGTAATCTGACATGAAATAATAAAGTCAACAACATCTGGGCAGAATTTA
TTTTTTGGAAGAAGTTTAATCAAAGGCAGCCATAGGCATGTAAATGAATTTGAATACATTTACAGTAT
TAAATTTACAATGAACATGCAAAATAAAAGGACTTGTAAATAAATGCATTATGAACTGATGATACTGA:
TTTATTTAATGGATCTCAAAACAAACTTTTAACTTAAGGCACTTTTATTTTGCCAACAAATAACAATAi
AACAAACATTGAAACGGTTCACTATAAAATAACAAATGGCTAATGTACCTGAATTTTTCAGTAAAAAA!
ATGAACTTCTAATACCAGTTGCCTAGTGTCCACCTCCTATCAATGTTACAAGCATGGCACTCAGAACA!
GAGACAATGGAAAATATTAAATCTGCAATCTTTATGATGTAAATTTACCATCCTGATGTATAAATATT
TTGTGGTTTATAAATTTTTTTGCTAAAACCTACAGAAAAAAA
NOV29aa, CG55776-03 SEQ ID NO: 718 2591 aa MW at 2871 14.6kD Protein Sequence
MKVKGRGITCLLVSFAVICLVATPGGKACPRRCACYMPTEVHCTFRYLTSIPDSIPPNVERINLGYNS
LVRLMETDFSGLTKLELLMLHSNGIHTIPDKTFSDLQ-ALQVTiLMVLKMSY KVRKLQKDTFYGLRSLT
RLHMDI-ffi!NIEFINPEVFYGLNFLRLVHLEGNQLTKLHPDTFVSLSYLQIFKISFIKFLYLSDNFLTSL
PQEMVSYMPDLDSLYLHGNPWTCDCHLK LSDWIQEKPGIYIVLPDVIKCKKDRSPSSAQQCPLCMNP
RTSKGKPLAMVSAAAFQCAKPTIDSSLKSKSLTILEDSSSAFISPQGFMAPFGSLTLNMTDQSGNEA
MVCSIQKPSRTSPIAFTEENDYIVLNTSFSTFLVCNIDYGHIQPV QILALYSDSPLILERSHLLSET
PQLYYKYKQVAPKPEDIFTNIEADLR-ADPS LMQDQISLQLNRTATTFSTLQIQYSSDAQITLPRAEM
RPVKHKWTMIS-RD---røTKLEHTVLVGGTVGLNCPGQGDPTPHVD LL-ADGSKVRAPYVSΞ^
GKLELQMADSFDTGVYHCISSNYDDADILTYRITWEPLVEAYQENGIHHTVFIGETLDLPCHSTGIP
DASISWVIPGN-WLYQSSRDKKVLNNGTLRILQVOT
LEHDGETEGSGLDESNPIAHLKEPPGAQLRTSALMEAEVGKHTSSTSKRHNYRELTLQRRGDSTHRRF
RENRRHFPPS-ARRIDPQ--™AALLE--^.--ααTA^
F-v-VPATKALNLPARTVTADSRTISDSPMTNINYGTEFSPVVNSQILPPEEPTDFΪXiSTAIKTTAMS
INPTMSSQIQGTTNQHSSTVFPLLLGATEFQDSDQMGRGREHFQSRPPITVRTMIKDVNVKMLSSTTN
-iπiLLESV-IOTTNSHQTSVREVSEPRH-lrøFYSOT^
FGRQRKIGGRGRIISPYRTPVLRRHRYSIFRSTTRGSSEKSTTAFSATVL VTCLSCLPRERLTTATA
-ALSFPSAAPITFPKADIARVPSEESTTLVQNPLLLLENKPSVEKTTPTIKYFRTEISQVTPTGAVMTY
-APTSIPMEKTHK-VNASYPRVSSTNE-A RDSVITSSLSGAITKPPMTIIAITRFSRRKIPWQQNFVNNH
NPKGRLR QHKVSLQKSTAVMLP-.-CTSPALPQRQSLPSHHTTTKTI-MPGSLPT-K ELPFPPLNPMLPSI
ISKDSST SIISTQTAIPATTPTFPASVITYETQTERSRAQTIQREQEPQK NRTDPNISPDQSSGFT
TPTAMTPPVLTTAETSVKPSVSAFTHSPPENTTGISSTISFHSRTLNLTDVIEELAQASTQTLKSTIA
SETTLSSKSHQSTTTRKAIIRH^ HESS-RH AKPQQLVAEVATSP--- VHP---.AKFTIGTTHFIYSNLLHSTPMPALTTVKSQNSKLTPSP AEN
QFWHKPYSEI-AEKGKKPEVSMLATTGLSEATTLVSD DGQKNTKKSDFDKKPVQEATTSKLLPFDSLS
RYIFEKPRIVGGKAASFTIPANSDAFLPCEAVGNPLPTIH TRVPSGMSGLDLSKRKQNSRVQVLPNG
TLSIQRVEIQDRGQYLCSASNLFGTDHLHVTLSWSYPPRILERRTKEITVHSGSTVELKCRAEGRPS
PTVTWILANQTWSESSQGSRQAWTVDGTLVLHNLSIYDRGFYKCVASNPGGQDSLLVKIQVIAAPP
VILEQRRQVIVGT GESL---OJPCTA GTPQPSVYWVLSDGTEVKPLQFTNSKLFLFSNGTLYIRNLASS
DRGTYECIATSSTGSERRWMLTMEERVTSPRIEAASQKRTEVNFGDKLLLNCSATGEPKPQIM RLP
S---^VVDQQHRVGS IHVYPNGSLFIGSVTEKDSGVYLCVAR KMGDDLILMHVSLELKPAKIDHKQYF
RKQVLHGroFQVDCKASGSPVPEISWSLPDGTMIJm-AMQADDSGIffi^
GDYTCYAQNTLG---03EMKVHLTVITAAPRIRQSNKTN---aiIKAGDTAVLDCEVIHANGSLTINKVKLLDS
GEYVCV-ARNPSGDDT MYKLDVVSKPPLINGLYT---TOTVIKATAVRHSKKHFDCRAEGTPSPEVMWIMP
DNIFLTAPYYGSRITVHKNGTLEIRNVRLSDSADFICVARNEGGESVLWQLEVLEMLRRPTFR PFN
EKIVAQLGKSTALNCSVDGNPPPEII ILPNGTRFSNGPQSYQYLIASNGSFIISKTTREDAGKYRCA
AR KVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNIK TMPSGYVVDRPQIN
GKΥILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVMIVAYPPRITNRPPRSIVTRTGAAFQL
HCVALGVPKPEIT EMPDHSLLSTASKERTHGSEQLHLQGTLVIQNPQTSDSGIYKCTA NPLGSDYA
ATYIQVI
NOV29ab, CG55776-04 JSEQ ID NO: 719 771 bp
DNA Sequence ORF Start: at 7 ORF Stop: at 766 lAAGCTTGCCTGTCCTCGCCGCTGTGCCTGTTATATGCCTACGGAGGTACACTGCACATTTCGGTACCT
GACTTCCATCCCAGACAGCATCCCGCCCAATGTGGAACGCATCAATTTAGGATACAACAGCTTGGTTA GATTGATGGAAACAGATTTTTCTGGCCTGACCAAACTGGAGTTACTCATGCTTCACAGCAATGGCATT CACACAATCCCTGACAAGACCTTCTCAGATTTGCAGGCCTTGCAGGTCTTAAAAATGAGCTATAACAA AGTCCGAAAACTTCAGAAAGATACTTTTTATGGCCTCAGGAGCTTGACACGATTGCACATGGACCACA ACAATATTGAGTTTATAAACCCAGAGGTTTTTGATGGGCTCAACTTTCTCCGCCTGGTGCACTTGGAA GGAAATCAGCTCACTAAGCTCCACCCAGATACATTTGTCTCTTTGAGCTACCTCCAGATATTTAAAAT CTCTTTCATTAAGTTCCTATACTTGTCTGATAACTTCCTGACCTCCCTCCCTCAAGAGATGGTCTCCT ATATGCCTGACCTAGACAGCCTTTACCTGCATGGAAACCCATGGACCTGTGATTGCCATTTAAAGTGG TTGTCTGACTGGATACAGGAGAAGCCAGATGTAATAAAATGCAAAAAAGATAGAAGTCCCTCTAGTGC TCAGCAGTGTCCACTTTGCATGAACCCTAGGACTTCTAAAGGCAAGCCGTTAGCTATGGTCTCAGCTG CAGCTTTCCAGTGTGCCCTCGAG
NOV29ab, CG55776-04 SEQ ID NO: 720 253 aa MW at 29129.5kD
Protein Sequence 1
ACPRRCACYMPTEVHCTFRYLTSIPDSIPPNVERINLGYNSLVRLMETDFSGLTKLELLMLHSNGIHT IPDKTFSDLQALQVL--^SY KVR---OιQKDTFYGLRSLTRLHMDHIMIEFINPEVFDGLNFLRLVHLEGN QLTKLHPDTFVSLSYLQIFKISFIKFLYLSDNFLTSLPQEMVSYMPDLDSLYLHGNP TCDCHLK LS DWIQEKPDVIKCKKDRSPSSAQQCPLCM PRTSKGKPL-AMVSAAAFQCA
NOV29ac, CG55776-05 SEQ ID NO: 721 2011 bp DNA Sequence ORF Start: at 32 ORF Stop: at 1988
AGGCTCCGCGGCCGCCCCCTTCACCCTCGAGGGGGACAAATTACTACTGAACTGCTCAGCCACTGGGG
AGCCCAAACCCCAAATAATGTGGAGGTTACCATCCAAGGCTGTGGTCGACCAGCAGCATAGAGTGGGC AGCTGGATCCACGTCTACCCTAATGGATCCCTGTTTATTGGATCAGTAACAGAAAAAGACAGTGGTGT CTACTTGTGTGTGGCAAGAAACAAAATGGGGGATGATCTGATACTGATGCATGTTAGCCTAAGACTGA AACCTGCCAAAATTGACCACAAGCAGTATTTTAGAAAGCAAGTGCTCCATGGGAAAGATTTCCAAGTA GATTGCAAAGCTTCCGGCTCCCCAGTGCCAGAGATATCTTGGAGTTTGCCTGATGGAACCATGATCAA CAATGCAATGCAAGCCGATGACAGTGGCCACAGGACTAGGAGATATACCCTTTTCAACAATGGAACTT TATACTTCAACAAAGTTGGGGTAGCGGAGGAAGGAGATTATACTTGCTATGCCCAGAACACCCTAGGG AAAGATGAAATGAAGGTCCACTTAACAGTTATAACAGCTGCTCCCCGGATAAGGCAGAGTAACAAAAC CAACAAGAGAATCAAAGCTGGAGACACAGCTGTCCTTGACTGTGAGGTCACTGGGGATCCCAAACCAA AAATATTTTGGTTGCTGCCTTCCAATGACATGATTTCCTTCTCCATTGATAGGTACACATTTCATGCC AATGGGTCTTTGACCATCAACAAAGTGAAACTGCTCGATTCTGGAGAGTACGTATGTGTAGCCCGAAA TCCCAGTGGGGATGACACCAAAATGTACAAACTGGATGTGGTCTCTAAACCTCCATTAATCAATGGTC TGTATACAAACAGAACTGTTATTAAAGCCACAGCTGTGAGACATTCCAAAAAACACTTTGACTGCAGA GCTGAAGGGACACCATCTCCTGAAGTCATGTGGATCATGCCAGACAATATTTTCCTCACAGCCCCATA CTATGGAAGCAGAATCACAGTCCATAAAAATGGAACCTTGGAAATTAGGAATGTGAGGCTTTCAGATT CAGCCGACTTTATCTGTGTGGCCCGAAATGAAGGTGGAGAGAGCGTGTTGGTAGTACAGTTAGAAGTA CTGGAAATGCTGAGAAGACCGACATTTAGj^TCCATTTAATGAAAAAATAGTTGCCCAGCTGGGAAA GTCCACAGCATTGAATTGCTCTGTTGATGGTAACCCACCACCTGAAATAATCTGGATTTTACCAAATG GCACACGATTTTCCAATGGACCACAAAGTTATCAGTATCTGATAGCAAGCAATGGTTCTTTTATCATT TCTAAAACAACTCGGGAGGATGCAGGAAAATATCGCTGTGCAGCTAGGAATAAAGTTGGCTATATTGA jGAAATTAGTCATATTAGAAATTGGCCAGAAGCCAGTTATTCTTACCTATGCACCAGGGACAGTAAAAG GCATCAGTGGAGAATCTCTATCACTGCATTGTGTGTCTGATGGAATCCCTAAGCCAAATATCAAATGG ACTATGCCAAGTGGTTATGTAGTAGACAGGCCTCAAATTAATGGGAAATACATATTGCATGACAATGG CACCTTAGTCATTAAAGAAGCAACAGCTTATGACAGAGGAAACTATATCTGTAAGGCTCAAAATAGTG TTGGTCATACACTGATTACTGTTCCAGTAATGATTGTAGCCTACCCTCCCCGAATTACAAATCGTCCA CCCAGGAGTATTGTCACCAGGACAGGGGCAGCCTTTCAGCTCCACTGTGTGGCCTTGGGAGTTCCCAA GCCAGAAATCACATGGGAGATGCCTGACCACTCCCTTCTCTCAACGGCAAGTAAAGAGAGGACACATG GAAGTGAGCAGCTTCACTTACAAGGTACCCTAGTCATTCAGAATCCCCAAACCTCCGATTCTGGGATA TACAAATGCACAGCACTCGAGGGCAAGGGTGGGCGCGCC
NOV29ac, CG55776-05 SEQ ID NO: 722 652 aa MW at 72283.3kD Protein Sequence
GDKLLLNCSATGEPKPQIM RLPSKAVVDQQHRVGS IHVYPNGSLFIGSVTEKDSGVYLCVARNKMG
DDLILMHVSLRLKPAKIDHKQYFRKQVLHG-l- FQVDCKASGSPVPEIS SLPDGTMINNA-MQADDSGH
RTRRYTLFrø.GTLYFN-1-WGVAEEGDYTCYAQNTLG- -DEMKVHLTVITAAPRIRQSNKTNKRIKAGDTA
VLDCEOTGDPKPKIFWLLPS-t-TOMISFSIDRYTFHMTGSLTIN
LDVVSKPPLINGLYTNRTVIIv^TAVRHSKKHFDC-RAEGTPSPEVMWIMPDNIFLTAPYYGSRITVHK
GTLEIR-IWRLSDSADFICVARNEGGESVLVVQLEVLEMLRRPTFRNPFNEKIVAQLGKSTALNCSVDG
NPPPEII ILPNGTRFSNGPQSYQYLIASNGSFIISKTTREDAGKYRCAARNKVGYIEKLVILEIGQK
PVILTYAPGTVKGISGESLSLHCVSDGIPKPNIK TMPSGYWDRPQINGKYILHDNGTLVIKEATAY
DRG YICKAQNSVGHTLITVPVMIVAYPPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDH
SLLSTASKERTHGSEQLHLQGTLVIQNPQTSDSGIYKCTA
NOV29ad, CG55776-06 SEQ ID NO: 723 1975 bp DNA Sequence ORF Start: at 11 ORF Stop: at 1967
CACCAGATCTGGGGACAAATTACTACTGAACTGCTCAGCCACTGGGGAGCCCAAACCCCAAATAATGT
GGAGGTTACCATCCAAGGCTGTGGTCGACCAGCAGCATAGAGTGGGCAGCTGGATCCACGTCTACCCT AATGGATCCCTGTTTATTGGATCAGTAACAGAAAAAGACAGTGGTGTCTACTTGTGTGTGGCAAGAAA CAAAATGGGGGATGATCTGATACTGATGCATGTTAGCCTAAGACTGAAACCTGCCAAAATTGACCACA AGCAGTATTTTAGAAAGCAAGTGCTCCATGGGAAAGATTTCCAAGTAGATTGCAAAGCTTCCGGCTCC CCAGTGCCAGAGATATCTTGGAGTTTGCCTGATGGAACCATGATCAACAATGCAATGCAAGCCGATGA CAGTGGCCACAGGACTAGGAGATATACCCTTTTCAACAATGGAACTTTATACTTCAACAAAGTTGGGG TAGCGGAGGAAGGAGATTATACTTGCTATGCCCAGAACACCCTAGGGAAAGATGAAATGAAGGTCCAC TTAACAGTTATAACAGCTGCTCCCCGGATAAGGCAGAGTAACAAAACCAACAAGAGAATCAAAGCTGG AGACACAGCTGTCCTTGACTGTGAGGTCACTGGGGATCCCAAACCAAAAATATTTTGGTTGCTGCCTT CCAATGACATGATTTCCTTCTCCATTGATAGGTACACATTTCATGCCAATGGGTCTTTGACCATCAAC AAAGTGAAACTGCTCGATTCTGGAGAGTACGTATGTGTAGCCCGAAATCCCAGTGGGGATGACACCAA AATGTACAAACTGGATGTGGTCTCTAAACCTCCATTAATCAATGGTCTGTATACAAACAGAACTGTTA TTAAAGCCACAGCTGTGAGACATTCCAAAAAACACTTTGACTGCAGAGCTGAAGGGACACCATCTCCT GAAGTCATGTGGATCATGCCAGACAATATTTTCCTCACAGCCCCATACTATGGAAGCAGAATCACAGT CCATAAAAATGGAACCTTGGAAATTAGGAATGTGAGGCTTTCAGATTCAGCCGACTTTATCTGTGTGG CCCGAAATGAAGGTGGAGAGAGCGTGTTGGTAGTACAGTTAGAAGTACTGGAAATGCTGAGAAGACCG ACATTTAGAAATCCATTTAATGAAAAAATAGTTGCCCAGCTGGGAAAGTCCACAGCATTGAATTGCTC TGTTGATGGTAACCCACCACCTGAAATAATCTGGATTTTACCAAATGGCACACGATTTTCCAATGGAC CACAAAGTTATCAGTATCTGATAGCAAGCAATGGTTCTTTTATCATTTCTAAAACAACTCGGGAGGAT GCAGGAAAATATCGCTGTGCAGCTAGGAATAAAGTTGGCTATATTGAGAAATTAGTCATATTAGAAAT TGGCCAGAAGCCAGTTATTCTTACCTATGCACCAGGGACAGTAAAAGGCATCAGTGGAGAATCTCTAT CACTGCATTGTGTGTCTGATGGAATCCCTAAGCCAAATATCAAATGGACTATGCCAAGTGGTTATGTA GTAGACAGGCCTCAAATTAATGGGAAATACATATTGCATGACAATGGCACCTTAGTCATTAAAGAAGC AACAGCTTATGACAGAGGAAACTATATCTGTAAGGCTCAAAATAGTGTTGGTCATACACTGATTACTG TTCCAGTAATGATTGTAGCCTACCCTCCCCGAATTACAAATCGTCCACCCAGGAGTATTGTCACCAGG ACAGGGGCAGCCTTTCAGCTCCACTGTGTGGCCTTGGGAGTTCCCAAGCCAGAAATCACATGGGAGAT GCCTGACCACTCCCTTCTCTCAACGGCAAGTAAAGAGAGGACACATGGAAGTGAGCAGCTTCACTTAC AAGGTACCCTAGTCATTCAGAATCCCCAAACCTCCGATTCTGGGATATACAAATGCACAGCAGAATTC GGC
|NOV29ad, CG55776-06 JSEQ ID NO: 724 652 aa MW at 72283.3kD Protein Sequence
GD--- LLLNCSATGEPKPQIM RLPS---O^VVDQQHRVGS IHVYPNGSLFIGSVTEKDSGVYLCVARNKMG DDLILMHVSLRLK-PAKIDHKQYFRKQVLHG-KDFQVDCKASGSPVPEISWSLPDGTMINN-AMQADDSGH RTRRYTLF---WGTLYFNKVGVAEEGDYTCYAQNTLGKDEM---CVHLTVITAAPRIRQSNKTNKRIKAGDTA VLDCEVTGDPKPKI FWLLPSNDMI SFS IDRYTFHANGSLTINKVKLLDSGEYVCVAR PSGDDTKMYK LDVVSKPPL NGLYTI-IRTVI-KATAVRHSKKHFDCPJ^GTPSPEVMWIMPDNIFLTAPYYGSRITVHKN GTLEI-RNVRLSDSADFICVARNEGGESVLWQLEVLEMLRRPTFRNPFNEKIVAQLGKSTALNCSVDG NPPPEII ILPNGTRFSNGPQSYQYLIASNGSFIISKTTREDAGKYRCAARNKVGYIEKLVILEIGQK PVILTYAPGTVKGISGESLSLHCVSDGIPKPNIK TMPSGYWDRPQINGKYILHDNGTLVIKEATAY DRGNYICKAQNSVGHTLITVPVMIVAYPPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEIT EMPDH SLLSTASKERTHGSEQLHLQGTLVIQNPQTSDSGIYKCTA
NOV29ae, CG55776-07 SEQ ID NO: 725 2902 bp
DNA Sequence ORF Start: at 11 ORF Stop: at 2894
CACCCTCGAGAACTCAGATGCCTTTCTTCCCTGTGAAGCTGTTGGAAATCCCCTGCCCACCATTCATT
GGACCAGAGTCCCATCAGGACTTGATTTATCTAAGAGGAΆΆCAGAATAGCAGGGTCCAGGTTCTCCCC AATGGTACCCTGTCCATCCAGAGGGTGGAAATTCAGGACCGCGGACAGTACTTGTGTTCCGCATCCAA TCTGTTTGGCACAGACCACCTTCATGTCACCTTGTCTGTGGTTTCCTATCCTCCCAGGATCCTGGAGA GACGTACCAAAGAGATCACAGTTCATTCCGGAAGCACTGTGGAACTGAAGTGCAGAGCAGAAGGTAGG CCAAGCCCTACAGTTACCTGGATTCTTGCAAACCAAACAGTTGTCTCAGAATCATCCCAGGGAAGTAG GCAGGCTGTGGTGACGGTTGACGGAACATTGGTCCTCCACAATCTCAGTATTTATGACCGTGGCTTTT ACAAATGTGTGGCCAGCAACCCAGGTGGCCAGGATTCACTGCTGGTTAAAATACAAGTCATTGCAGCA CCACCTGTTATTCTAGAGCAAAGGAGGCAAGTCATTGTAGGCACTTGGGGTGAAAGTTTAAAACTGCC CTGTACTGCAAAAGGAACTCCTCAGCCCAGCGTTTACTGGGTCCTCTCTGATGGCACTGAAGTGAAAC CATTACAGTTTACCAATTCCAAGTTGTTCTTATTTTCAAATGGGACTTTGTATATAAGAAACCTAGCC TCTTCAGACAGGGGCACTTATGAATGCATTGCTACCAGTTCCACTGGTTCGGAGCGAAGAGTAGTAAT GCTTACAATGGAAGAGCGAGTGACCAGCCCCAGGATAGAAGCTGCATCCCAGAAAAGGACTGAAGTGA ATTTTGGGGACAAATTACTACTGAACTGCTCAGCCACTGGGGAGCCCAAACCCCAAATAATGTGGAGG TTACCATCCAAGGCTGTGGTCGACCAGCAGCATAGAGTGGGCAGCTGGATCCACGTCTACCCTAATGG ATCCCTGTTTATTGGATCAGTAACAGAAAAAGACAGTGGTGTCTACTTGTGTGTGGCAAGAAACAAAA TGGGGGATGATCTGATACTGATGCATGTTAGCCTAAGACTGAAACCTGCCAAAATTGACCACAAGCAG TATTTTAGAAAGCAAGTGCTCCATGGGAAAGATTTCCAAGTAGATTGCAAAGCTTCCGGCTCCCCAGT GCCAGAGATATCTTGGAGTTTGCCTGATGGAACCATGATCAACAATGCAATGCAAGCCGATGACAGTG GCCACAGGACTAGGAGATATACCCTTTTCAACAATGGAACTTTATACTTCAACAAAGTTGGGGTAGCG GAGGAAGGAGATTATACTTGCTATGCCCAGAACACCCTAGGGAAAGATGAAATGAAGGTCCACTTAAC AGTTATAACAGCTGCTCCCCGGATAAGGCAGAGTAACAAAACCAACAAGAGAATCAAAGCTGGAGACA CAGCTGTCCTTGACTGTGAGGTCACTGGGGATCCCAAACCAAAAATATTTTGGTTGCTGCCTTCCAAT GACATGATTTCCTTCTCCATTGATAGGTACACATTTCATGCCAATGGGTCTTTGACCATCAACAAAGT GAAACTGCTCGATTCTGGAGAGTACGTATGTGTAGCCCGAAATCCCAGTGGGGATGACACCAAAATGT ACAAACTGGATGTGGTCTCTAAACCTCCATTAATCAATGGTCTGTATACAAATAGAACTGTTATTAAA GCCACAGCTGTGAGACATTCCAAAAAACACTTTGACTGCAGAGCTGAAGGGACACCATCTCCTGAAGT CATGTGGATCATGCCAGACAATATTTTCCTCACAGCCCCATACTATGGAAGCAGAATCACAGTCCATA AAAATGGAACCTTGGAAATTAGGAATGTGAGGCTTTCAGATTCAGCCGACTTTATCTGTGTGGCCCGA AATGAAGGTGGAGAGAGCGTGTTGGTAGTACAGTTAGAAGTACTGGAAATGCTGAGAAGACCGACATT TAGAAATCCATTTAATGAAAAAATAGTTGCCCAGCTGGGAAAGTCCACAGCATTGAATTGCTCTGTTG ATGGTAACCCACCACCTGAAATAATCTGGATTTTACCAAATGGCACACGATTTTCCAATGGACCACAA AGTTATCAGTATCTGATAGCAΆGCAATGGTTCTTTTATCATTTCTAAAACAACTCGGGAGGATGCAGG AAAATATCGCTGTGCAGCTAGGAATAAAGTTGGCTATATTGAGAAATTAGTCATATTAGAAATTGGCC AGAAGCCAGTTATTCTTACCTATGCACCAGGGACAGTAAAAGGCATCAGTGGAGAATCTCTATCACTG CATTGTGTGTCTGATGGAATCCCTAAGCCAAATATCAΆATGGACTATGCCAAGTGGTTATGTAGTAGA CAGGCCTCAAATTAATGGGAAATACATATTGCATGACAATGGCACCTTAGTCATTAAAGAAGCAACAG CTTATGACAGAGGAAACTATATCTGTAAGGCTCAAAATAGTGTTGGTCATACACTGATTACTGTTCCA GTAATGATTGTAGCCTACCCTCCCCGAATTACAAATCGTCCACCCAGGAGTATTGTCACCAGGACAGG GGCAGCCTTTCAGCTCCACTGTGTGGCCTTGGGAGTTCCCAAGCCAGAAATCACGTGGGAGATGCCTG CCACTCCCTTCTCTCAACGGCAAGTAAAGAGAGGACACATGGAAGTGAGCAGCTTCACTTACAAGGT ACCCTAGTCATTCAGAATCCCCAAACCTCCGATTCTGGGATATACAAATGCACAGCAAAGAACCCACT TGGTAGTGATTATGCAGCAACGTATATTCAAGTAATCCTCGAGGGC
NOV29ae, CG55776-07 iSEQIDNO:726961 aa MW at 106268.6kD Protem Sequence TGGTAGTGATTATGCAGCAACGTATATTCAAGTAATCCTCGAGGGC
NOV29af, CG55776-08 SEQ ID NO: 728 961 aa MW at 106268.6kD Protein Sequence
NSDAFLPCEAVGNPLPTIH TRVPSGLDLSKRKQNSRVQVLPNGTLSIQRVEIQDRGQYLCSASNLFG
TDHLHVTLSVVSYPPRILERRTKEITVHSGSTVELKCRAEGRPSPTVT ILA.NQTVVSESSQGSRQAV
VTVDGTLVLHNLSIYDRGFYKCVASNPGGQDSLLVKIQVIAAPPVILEQRRQVIVGT GESLKLPCTA
KGTPQPSVY VLSDGTEVKPLQFTNSKLFLFSNGTLYIRNLASSDRGTYΞCIATSSTGSERRWMLTM
EERVTSPRIEAASQKRTEVNFGDKLLLNCSATGEPKPQIM RLPSKAWDQQHRVGS IHVYPNGSLF
IGSVTΞKDSGVYLCVARNKMGDDLILMHVSLRLKPAKIDHKQYFRKQVLHGKDFQVDCKASGSPVPEI
SWSLPDGTMINN-AMQADDSGHRTRRYTLF-røGTLYFNKVGV.^
AAPRIRQSNKTNKRIKAGDTAVLDCEVTGDPKPKIF LLPSNDMISFSIDRYTFHANGSLTINKVKLL
DSGEYVCVARNPSGDDTKMYKLDWSKPPLINGLYTNRTVIKATAVRHSKKHFDCRAEGTPSPEVM I
MPDNIFLTAPYYGSRITVHKHGTLEIRNVRLSDSADFICVARNEGGESVLWQLEVLEMLRRPTFRNP
FNEKIVAQLGKSTALNCSVDGNPPPEII ILPNGTRFSNGPQSYQYLIASNGSFIISKTTREDAGKYR
C-AARNKVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNIK TMPSGYVVDRPQ
INGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVMIVAYPPRITNRPPRSIVTRTGAAF
QLHCVALGVPKPEITWEMPDHSLLSTASKERTHGSEQLHLQGTLVIQNPQTSDSGIYKCTAKNPLGSD
YAATYIQVI
NOV29ag, CG55776-09 SEQ ID NO: 729 778 bp DNA Sequence ORF Start: at 11
CACCGGATCCGCCTGTCCTCGCCGCTGTGCCTGTTATATGCCTACGGAGGTACACTGCACATTTCGGT
ACCTGACTTCCATCCCAGACAGCATCCCGCCCAATGTGGAACGCATCAATTTAGGATACAACAGCTTG GTTAGATTGATGGAAACAGATTTTTCTGGCCTGACCAAACTGGAGTTACTCATGCTTCACAGCAATGG CATTCACACAATCCCTGACAAGACCTTCTCAGATTTGCAGGCCTTGCAGGTCTTAAAAATGAGCTATA ACAAAGTCCGAAAACTTCAGAAAGATACTTTTTATGGCCTCAGGAGCTTGACACGATTGCACATGGAC CACAACAATATTGAGTTTATAAACCCAGAGGTTTTTGATGGGCTCAACTTTCTCCGCCTGGTGCACTT GGAAGGAAATCAGCTCACTAAGCTCCACCCAGATACATTTGTCTCTTTGAGCTACCTCCAGATATTTA AAATCTCTTTCATTAAGTTCCTATACTTGTCTGATAACTTCCTGACCTCCCTCCCTCAAGAGATGGTC TCCTATATGCCTGACCTAGACAGCCTTTACCTGCATGGAAACCCATGGACCTGTGATTGCCATTTAAA GTGGTTGTCTGACTGGATACAGGAGAAGCCAGATGTAATAΆAATGCAAAAAAGATAGAAGTCCCTCTA GTGCTCAGCAGTGTCCACTTTGCATGAACCCTAGGACTTCTAAAGGCAAGCCGTTAGCTATGGTCTCA GCTGCAGCTTTCCAGTGTGCCCTCGAGGGC
NOV29ag, CG55776-09 SEQ ID NO: 730 253 aa MW at 29129.5kD Protein Sequence
ACPRRCACYMPTEVHCTFRYLTSIPDSIPPNVERINLGYNSLVRLMETDFSGLTKLELLMLHSNGIHT IPDKTFSDLQALQVLKMSYNKVRKLQKDTFYGLRSLTRLHMDHNNIEFINPEVFDGLNFLRLVHLEGN QLTKLHPDTFVSLSYLQIFKISFIKFLYLSDNFLTSLPQEMVSYMPDLDSLYLHGNP TCDCHLK LS D IQEKPDVIKCKKDRSPSSAQQCPLCMNPRTSKGKPLA VSAAAFQCA
NOV29ah, SNP 13376522 of SEQ ID NO: 731 7876 bp CG55776-01, DNA Sequence ORF Start: ATG at 6 ORF Stop: TGA at 7857
SNP Pos: 87 SNP Change: G to A
TCAGGATGAAGGTAAAAGGCAGAGGAATCACCTGCTTGCTGGTCTCCTTTGCTGTGATCTGCCTGGTC
GCCACCCCTGGGGGCAAGACCTGTCCTCGCCGCTGTGCCTGTTATATGCCTACGGAGGTACACTGCAC ATTTCGGTACCTGACTTCCATCCCAGACAGCATCCCGCCCAATGTGGAACGCATCAATTTAGGGTACA ACAGCTTGGTTAGATTGATGGAAACAGATTTTTCTGGCCTGACCAAACTGGAGTTACTCATGCTTCAC AGCAATGGCATTCACACAATCCCTGACAAGACCTTCTCAGATTTGCAGGCCTTGCAGGTGAGACTGAT GGTCTTAAAAATGAGCTATAATAAAGTCCGAAAACTTCAGAAAGATACTTTTTATGGCCTCAGGAGCT TGACACGATTGCACATGGACCACAACAATATTGAGTTTATAAACCCAGAGGTTTTTTATGGGCTCAAC TTTCTCCGCCTGGTGCACTTGGAAGGAAATCAGCTCACTAAGCTCCACCCAGATACATTTGTCTCTTT GAGCTACCTCCAGATATTTAAAATCTCTTTCATTAAGTTCCTATACTTGTCTGATAACTTCCTGACCT CCCTCCCTCAAGAGATGGTCTCCTATATGCCTGACCTAGACAGCCTTTACCTGCATGGAAACCCATGG ACCTGTGATTGCCATTTAAAGTGGTTGTCTGACTGGATACAGGAGAAGCCAGGTATCTATATTGTNTT ACCAGATGTAATAAAATGCAAAAAAGATAGAAGTCCCTCTAGTGCTCAGCAGTGTCCACTTTGCATGA ACCCTAGGACTTCTAAAGGCAAGCCGTTAGCTATGGTCTCAGCTGCAGCTTTCCAGTGTGCCAAGCCA ACCATTGACTCATCCCTGAAATCAAAGAGCCTGACTATTCTGGAAGACAGTAGTTCTGCTTTCATCTC TCCCCAAGGTTTCATGGCACCCTTTGGCTCCCTCACTTTGAATATGACAGATCAGTCTGGAAATGAAG CTAACATGGTCTGCAGTATTCAAAAGCCCTCAAGGACATCACCCATTGCATTCACTGAAGAAAATGAC TACATCGTGCTAAATACTTCATTTTCAACATTTTTGGTGTGCAACATAGATTACGGTCACATTCAGCC AGTGTGGCAAATTTTGGCTTTGTACAGTGATTCTCCTCTGATACTAGAAAGGAGCCACTTGCTTAGTG AAACACCGCAGCTCTATTACAAATATAAACAGGTGGCTCCTAAGCCTGAAGACATTTTTACCAACATA GAGGCAGATCTCAGAGCAGATCCCTCTTGGTTAATGCAAGACCAAATTTCCTTGCAGCTGAACAGAAC TGCCACCACATTCAGTACATTACAGATCCAGTACTCCAGTGATGCTCAAATCACTTTACCAAGAGCAG AGATGAGGCCAGTGAAACACAAATGGACTATGATTTCAAGGGATAACAATACTAAGCTGGAACATACT GTCTTGGTAGGTGGAACCGTTGGCCTGAACTGCCCAGGCCAAGGAGACCCCACCCCACACGTGGATTG GCTTCTAGCTGATGGAAGTAAAGTGAGAGCCCCTTATGTCAGTGAGGATGGACGGATCCTAATAGACA AAAGTGGAAAATTGGAACTCCAGATGGCTGATAGTTTTGACACAGGCGTATATCACTGTATAAGCAGC AATTATGATGATGCAGATATTCTCACCTATAGGATAACTGTGGTAGAACCTTTGGTCGAAGCCTATCA GGAAAATGGGATTCATCACACAGTTTTCATTGGTGAAACACTTGATCTTCCATGCCATTCTACTGGTA TCCCAGATGCCTCTATTAGCTGGGTTATTCCAGGAAACAATGTGCTCTATCAGTCATCAAGAGACAAG AAAGTTCTAAACAATGGCACATTAAGAATATTACAGGTCACCCCGAAAGACCAAGGTTATTATCGCTG TGTGGCAGCCAACCCATCAGGGGTTGATTTTTTGATTTTCCAAGTTTCAGTCAAGATGAAAGGACAAA GGCCCTTGGAGCATGATGGAGAAACAGAGGGATCTGGACTTGATGAGTCCAATCCTATTGCTCATCTT AAGGAGCCACCAGGTGCACAACTCCGTACATCTGCTCTGATGGAGGCTGAGGTTGGAAAACACACCTC AAGCACAAGTAAGAGGCACAACTATCGGGAATTAACACTCCAGCGACGTGGAGATTCAACACATCGAC GTTTTAGGGAGAATAGGAGGCATTTCCCTCCCTCTGCTAGGAGAATTGACCCACAACATTGGGCGGCA CTGTTGGAGAAAGCTAAAAAGAATGCTATGCCAGACAAGCGAGAAAATACCACAGTGAGCCCACCCCC AGTGGTCACCCAACTCCCAAACATACCTGGTGAAGAAGACGATTCCTCAGGCATGCTCGCTCTACATG AGGAATTTATGGTCCCGGCCACTAAAGCTTTGAACCTTCCAGCAAGGACAGTGACTGCTGACTCCAGA ACAATATCTGATAGTCCTATGACAAACATAAATTATGGCACAGAATTCTCTCCTGTTGTGAATTCACA AATACTACCACCTGAAGAACCCACAGATTTCAAACTGTCTACTGCTATTAAAACTACAGCCATGTCAA AGAATATAAACCCAACCATGTCAAGCCAAATACAAGGCACAACCAATCAACATTCATCCACTGTCTTT CCACTGCTACTTGGAGCAACTGAATTTCAGGACTCTGACCAGATGGGAAGAGGAAGAGAGCATTTCCA AAGTAGACCCCCAATAACAGTAAGGACTATGATCAAAGATGTCAATGTCAAAATGCTTAGTAGCACCA CCAACAAACTATTATTAGAGTCAGTAAATACCACAAATAGTCATCAGACATCTGTAAGAGAAGTGAGT GAACCCAGGCACAATCACTTCTATTCTCACACTACTCAAATACTTAGCACCTCCACGTTCCCTTCAGA TCCACACACAGCTGCTCATTCTCAGTTTCCGATCCCTAGAAATAGTACAGTTAACATCCCGCTGTTCA GACGCTTTGGGAGGCAGAGGAAAATTGGCGGAAGGGGGCGGATTATCAGCCCATATAGAACTCCAGTT CTGCGACGGCATAGATACAGCATTTTCAGGTCAACAACCAGAGGTTCTTCTGAAAAAAGCACTACTGC ATTCTCAGCCACAGTGCTCAATGTGACATGTCTGTCCTGTCTTCCCAGGGAGAGGCTCACCACTGCCA CAGCAGCATTGTCTTTTCCAAGTGCTGCTCCCATCACCTTCCCCAAAGCTGACATTGCTAGAGTCCCA
TCAGAAGAGTCTACAACTCTAGTCCAGAATCCACTATTACTACTTGAGAACAAACCCAGTGTAGAGAA AACAACACCCACAATAAAATATTTCAGGACTGAAATTTCCCAAGTGACTCCAACTGGTGCAGTCATGA CATATGCTCCAACATCCATACCCATGGAAAAAACTCACAAAGTAAACGCCAGTTACCCACGTGTGTCT AGCACCAATGAAGCTAAAAGAGATTCAGTGATTACATCGTCACTTTCAGGTGCTATCACCAAGCCACC AATGACTATTATAGCCATTACAAGGTTTTCAAGAAGGAAAATTCCCTGGCAACAGAACTTTGTAAATA ACCATAACCCAAAAGGCAGATTAAGGAATCAACATAAAGTTAGTTTACAAAAAAGCACAGCTGTGATG CTTCCTAAAACATCTCCTGCTTTACCACAGAGACAAAGTCTCCCCTCGCACCACACTACGACCAAAAC ACACAATCCTGGAAGTCTTCCAACAAAGAAGGAGCTTCCCTTCCCACCCCTTAACCCTATGCTTCCTA GTATTATAAGCAAAGACTCAAGTACAAAAAGCATCATATCAACGCAAACAGCAATACCAGCAACAACT CCTACCTTCCCTGCATCTGTCATCACTTATGAAACCCAAACAGAGAGATCTAGAGCACAAACAATACA AAGAGAACAGGAGCCTCAAAAGAAGAACAGGACTGACCCAAACATCTCTCCAGACCAGAGTTCTGGCT TCACTACACCCACTGCTATGACACCTCCTGTTCTAACCACAGCCGAAACTTCAGTCAAGCCCAGTGTC TCTGCATTCACTCATTCCCCACCAGAAAACACAACTGGGATTTCAAGCACAATCAGTTTTCATTCAAG AACTCTTAATCTGACAGATGTGATTGAAGAACTAGCCCAAGCAAGTACTCAGACTTTGAAGAGCACAA TTGCTTCTGAAACAACTTTGTCCAGCAAATCACACCAGAGTACCACAACTAGGAAAGCAATCATTAGA CACTCAACCATACCACCATTCTTGAGCAGCAGTGCTACTCTAATGCCAGTTCCCATCTCCCCTCCCTT TACTCAGAGAGCAGTTACTGACAACGTGGCGACTCCCATTTCCGGGCTTATGACAAATACAGTGGTCA AGCTGCACGAATCCTCAAGGCACAATGCTAAACCACAGCAATTAGTAGCAGAGGTTGCAACATCCCCC AAGGTTCACCCAAATGCCAAGTTCACAATTGGAACCACTCACTTCATCTACTCTAATCTGTTACATTC TACTCCCATGCCAGCACTAACAACAGTTAAATCACAGAATTCTAAATTAACTCCATCTCCCTGGGCAG AAAACCAATTTTGGCACAAACCATACTCAGAAATTGCTGAAAAAGGCAAAAAGCCAGAAGTAAGCATG TTGGCTACTACAGGCCTGTCCGAGGCCACCACTCTTGTTTCAGATTGGGATGGACAGAAGAACACAAA GAAGAGTGACTTTGATAAGAAACCAGTTCAAGAAGCAACAACTTCCAAACTCCTTCCCTTTGACTCTT TGTCTAGGTATATATTTGAAAAGCCCAGGATAGTTGGAGGAAAAGCTGCAAGTTTTACTATTCCAGCT AACTCAGATGCCTTTCTjrCCCT CCCATCAGGTATGTCAGGACTTGATTTATCTAAGAGGAAACAOAATAGCAGGGTCCAGGTTCTCCCCA ATGGTACCCTGTCCATCCAGAGGGTGGAAATTCAGGACCGCGGACAGTACTTGTGTTCCGCATCCAAT CTGTTTGGCACAGACCACCTTCATGTCACCTTGTCTGTGGTTTCCTATCCTCCCAGGATCCTGGAGAG ACGTACCAAAGAGATCACAGTTCATTCCGGAAGCACTGTGGAACTGAAGTGCAGAGCAGAAGGTAGGC CAAGCCCTACAGTTACCTGGATTCTTGCAAACCAAACAGTTGTCTCAGAATCATCCCAGGGAAGTAGG CAGGCTGTGGTGACGGTTGACGGAACATTGGTCCTCCACAATCTCAGTATTTATGACCGTGGCTTTTA CAAATGTGTGGCCAGCAACCCAGGTGGCCAGGATTCACTGCTGGTTAAAATACAAGTCATTGCAGCAC CACCTGTTATTCTAGAGCAAAGGAGGCAAGTCATTGTAGGCACTTGGGGTGAAAGTTTAAAACTGCCC TGTACTGCAAAAGGAACTCCTCAGCCCAGCGTTTACTGGGTCCTCTCTGATGGCACTGAAGTGAAACC ATTACAGTTTACCAATTCCAAGTTGTTCTTATTTTCAAATGGGACTTTGTATATAAGAAACCTAGCCT CTTCAGACAGGGGCACTTATGAATGCATTGCTACCAGTTCCACTGGTTCGGAGCGAAGAGTAGTAATG CTTACAATGGAAGAGCGAGTGACCAGCCCCAGGATAGAAGCTGCATCCCAGAAAAGGACTGAAGTGAA TTTTGGGGACAAATTACTACTGAACTGCTCAGCCACTGGGGAGCCCAAACCCCAAATAATGTGGAGGT TACCATCCAAGGCTGTGGTCGACCAGCAGCATAGGGTGGGCAGCTGGATCCACGTCTACCCTAATGGA TCCCTGTTTATTGGATCAGTAACAGAAAAAGACAGTGGTGTCTACTTGTGTGTGGCAAGAAACAAAAT GGGGGATGATCTGATACTGATGCATGTTAGCCTAAGACTGAAACCTGCCAAAATTGACCACAAGCAGT ATTTTAGAAAGCAAGTGCTCCATGGGAAAGATTTCCAAGTAGATTGCAAAGCTTCCGGCTCCCCAGTG CCAGAGATATCTTGGAGTTTGCCTGATGGAACCATGATCAACAATGCAATGCAAGCCGATGACAGTGG CCACAGGACTAGGAGATATACCCTTTTCAACAATGGAACTTTATACTTCAACAAAGTTGGGGTAGCGG AGGAAGGAGATTATACTTGCTATGCCCAGAACACCCTAGGGAAAGATGAAATGAAGGTCCACTTAACA GTTATAACAGCTGCTCCCCGGATAAGGCAGAGTAACAAAACCAACAAGAGAATCAAAGCTGGAGACAC AGCTGTCCTTGACTGTGAGGTCACTGGGGATCCCAAACCAAAAATATTTTGGTTGCTGCCTTCCAATG ACATGATTTCCTTCTCCATTGATAGGTACACATTTCATGCCAATGGGTCTTTGACCATCAACAAAGTG AAACTGCTCGATTCTGGAGAGTACGTATGTGTAGCCCGAAATCCCAGTGGGGATGACACCAAAATGTA
CAAACTGGATGTGGTCTCTAAACCTCCATTAATCAATGGTCTGTATACAAACAGAACTGTTATTAAAG CCACAGCTGTGAGACATTCCAAAAAACACTTTGACTGCAGAGCTGAAGGGACACCATCTCCTGAAGTC ATGTGGATCATGCCAGACAATATTTTCCTCACAGCCCCATACTATGGAAGCAGAATCACAGTCCATAA AAATGGAACCTTGGAAATTAGGAATGTGAGGCTTTCAGATTCAGCCGACTTTATCTGTGTGGCCCGAA ATGAAGGTGGAGAGAGCGTGTTGGTAGTACAGTTAGAAGTACTGGAAATGCTGAGAAGACCGACATTT AGAAATCCATTTAATGAAAAAATAGTTGCCCAGCTGGGAAAGTCCACAGCATTGAATTGCTCTGTTGA TGGTAACCCACCACCTGAAATAATCTGGATTTTACCAAATGGCACACGATTTTCCAATGGACCACAAA GTTATCAGTATCTGATAGCAAGCAATGGTTCTTTTATCATTTCTAAAACAACTCGGGAGGATGCAGGA AAATATCGCTGTGCAGCTAGGAATAAAGTTGGCTATATTGAGAAATTAGTCATATTAGAAATTGGCCA GAAGCCAGTTATTCTTACCTATGCACCAGGGACAGTAAAAGGCATCAGTGGAGAATCTCTATCACTGC ATTGTGTGTCTGATGGAATCCCTAAGCCAAATATCAAATGGACTATGCCAAGTGGTTATGTAGTAGAC AGGCCTCAAATTAATGGGAAATACATATTGCATGACAATGGCACCTTAGTCATTAAAGAAGCAACAGC TTATGACAGAGGAAACTATATCTGTAAGGCTCAAAATAGTGTTGGTCATACACTGATTACTGTTCCAG TAATGATTGTAGCCTACCCTCCCCGAATTACAAATCGTCCACCCAGGAGTATTGTCACCAGGACAGGG GCAGCCTTTCAGCTCCACTGTGTGGCCTTGGGAGTTCCCAAGCCAGAAATCACATGGGAGATGCCTGA CCACTCCCTTCTCTCAACGGCAAGTAAAGAGAGGACACATGGAAGTGAGCAGCTTCACTTACAAGGTA CCCTAGTCATTCAGAATCCCCAAACCTCCGATTCTGGGATATACAAATGCACAGCAAAGAACCCACTT GGTAGTGATTATGCAGCAACGTATATTCAAGTAATCTGACATGAAATAATAAAGTC
NOV29ah, SNP13376522 of SEQ ID NO: 732 2617 aa MW at 290230.2kD
CG55776-01, Protein Sequence |SNP Pos: 28 fSNP Change: Ala to Thr
MKVKGRGITCLLVSFAVICLVATPGGKTCPRRCACYMPTEVHCTFRYLTSIPDSIPPNVERINLGYNS
LVRLMΞTDFSGLTKLELLMLHSNGIHTIPDKTFSDLQ-ALQVRLMVLWyiSYNIO-^KLQKDTFYGLRSLT
RLH-ym-fflSINIEFINPEVFYGLNFLRLVHLEGNQLTKLHPDTFVSLSYLQIFKISFIKFLYLSDMFLTSL
PQEMVSYMPDLDSLYLHGNP TCDCHLKWLSD IQEI PGIYIVLPDVIKCKKDRSPSSAQQCPLCMNP
RTSKGKPLAMVSAAAFQCAKPTIDSSLKSKSLTILEDSSSAFISPQGFMAPFGSLTLNMTDQSGNE-AN
MVCSIQKPSRTSPIAFTEENDYIVLNTSFSTFLVCNIDYGHIQPV QILALYSDSPLILERSHLLSET
PQLYYKYKQVAPKPEDIFTNIEADLRADPS LMQDQISLQLNRTATTFSTLQIQYSSDAQITLPRAEM
RPVKHKWTMISRDimTKLEHTVLVGGTVGLNCPGQGDPTPHVD LLADGSKVRAPYVSEDGRILIDKS
GKLELQMADSFDTGVYHCISS---.YDD-ADILTYRITWEPLVEAYQENGIHHTVFIGETLDLPCHSTGIP
DASISl«VIPGK--^VLYQSSRDKKVL]-WGTLRILQVTP--π)QGYYRCVAANPSGVDFLIFQ
LEHDGETEGSGLDESNPIAHLKEPPGAQLRTSALMEAEVGKHTSSTSKRHNYRELTLQRRGDSTHRRF
RENRRHFPPSARRIDPQH AALLEKAK-KNAMPDKRENTTVSPPPVVTQLPNIPGEEDDSSGMLALHEE
FMVPATKALNLPARTVTADSRTISDSPMTNINYGTEFSPVVNSQILPPEEPTDF-KLSTAIKTTAMSKN
INPTMSSQIQGTTNQHSSTVFPLLLGATEFQDSDQMGRGREHFQSRPPITVRTMIKDVNVKMLSSTTN
--- LLLESVNTTNSHQTSVREVSEPP ffl-JHFYSHTTQILSTSTFPSDPHTAAHSQFPIPRNSTVNIPLFRR FGRQRKIGGRGRIISPYRTPVLRRHRYSIFRSTTRGSSEKSTTAFSATVLNVTCLSCLPRERLTTATA ALSFPSAAPITFPKADI RVPSEESTTLVQNPLLLLENKPSVEKTTPTIKYFRTEISQVTPTGAVMTY APTSIPMEKTHKVNASYPRVSSTNEAKRDSVITSSLSGAITKPPMTIIAITRFSRRKIP QQNFVNNH NPKGRLRNQHKVSLQKSTAVMLPKTSPALPQRQSLPSHHTTTKTHNPGSLPTKKELPFPPLNPMLPSI ISKDSSTKSIISTQTAIPATTPTFPASVITYETQTERSRAQTIQREQEPQKKNRTDPNISPDQSSGFT TPTAMTPPVLTTAETSVKPSVSAFTHSPPENTTGISSTISFHSRTLNLTDVIEELAQASTQTLKSTIA SETTLSSKSHQSTTTRKAIIRHSTIPPFLSSSATLMPVPISPPFTQRAVTDNVATPISGLMTNTVVKL HESSRHNAKPQQLVAEVATSPKVHPNAKFTIGTTHFIYSNLLHSTPMPALTTVKSQNSKLTPSPWAEN QF HKPYSEIAEKGKKPEVSMLATTGLSEATTLVSD DGQKNTKKSDFDKKPVQEATTSKLLPFDSLS RYIFEKPRIVGGKAASFTIPANSDAFLPCEAVGMPLPTIHWTRVPSGMSGLDLSKRKQNSRVQVLPNG TLSIQRVEIQDRGQYLCSASNLFGTDHLHVTLSWSYPPRILERRTKEITVHSGSTVELKCRAEGRPS PTVT ILANQTWSESSQGSRQAWTVDGTLVLHNLSIYDRGFYKCVASNPGGQDSLLVKIQVIAAPP VILEQRRQVIVGT GESLKLPCTAKGTPQPSVYWVLSDGTEVKPLQFTNSKLFLFSNGTLYIR LASS DRGTYECIATSSTGSERRWMLTMEERVTSPRIEAASQKRTEVNFGDKLLLNCSATGEPKPQIM RLP SKAVVDQQHRVGS IHVYPNGSLFIGSVTE-EODSGVYLCVA-- KMGDDLILMHVSLRLKPAKIDHKQYF RKQVLHGKDFQVDCKASGSPVPEIS SLPDGTMI---n.AMQADDSGHRTRRYTLFNNGTLYFNKVGVAEE GDYTCYAQNTLGKDEMKVHLTVITAAPRIRQSNKTNKRIKAGDTAVLDCEVTGDPKPKIF LLPSNDM ISFSIDRYTFH-ANGSLTINKVKLLDSGEYVCVA--^PSGDDTKMYKLDVVSKPPLINGLYTNRTVIKAT AVRHSKKHFDC-R-AEGTPSPEVM IMPDNIFLTAPYYGSRITVHKNGTLEIRNVRLSDSADFICVARNE GGESVLWQLEVLEMLRRPTFRNPFNEKIVAQLGKSTALNCSVDGNPPPEIIWILPNGTRFSNGPQSY QYLIASNGSFIISKTTREDAGKYRCAARNKVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHC VSDGIPKPNIKWTMPSGYWDRPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVM IVAYPPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHSLLSTASKERTHGSEQLHLQGTL VIQNPQTSDSGIYKCTAKNPLGSDYAATYIQVI
NOV29ai, SNP13377624 of SEQ ID NO: 733 7876 bp CG55776-01, DNA Sequence ORF Start: ATG at 6 ORF Stop: TGA at 7857
SNP Pos: 113 SNP Change: T to C
TCAGGATGAAGGTAAAAGGCAGAGGAATCACCTGCTTGCTGGTCTCCTTTGCTGTGATCTGCCTGGTC
GCCACCCCTGGGGGCAAGGCCTGTCCTCGCCGCTGTGCCTGTTACATGCCTACGGAGGTACACTGCAC ATTTCGGTACCTGACTTCCATCCCAGACAGCATCCCGCCCAATGTGGAACGCATCAATTTAGGGTACA ACAGCTTGGTTAGATTGATGGAAACAGATTTTTCTGGCCTGACCAAACTGGAGTTACTCATGCTTCAC AGCAATGGCATTCACACAATCCCTGACAAGACCTTCTCAGATTTGCAGGCCTTGCAGGTGAGACTGAT GGTCTTAAAAATGAGCTATAATAAAGTCCGAAAACTTCAGAAAGATACTTTTTATGGCCTCAGGAGCT TGACACGATTGCACATGGACCACAACAATATTGAGTTTATAAACCCAGAGGTTTTTTATGGGCTCAAC TTTCTCCGCCTGGTGCACTTGGAAGGAAATCAGCTCACTAAGCTCCACCCAGATACATTTGTCTCTTT GAGCTACCTCCAGATATTTAAAATCTCTTTCATTAAGTTCCTATACTTGTCTGATAACTTCCTGACCT CCCTCCCTCAAGAGATGGTCTCCTATATGCCTGACCTAGACAGCCTTTACCTGCATGGAAACCCATGG ACCTGTGATTGCCATTTAAAGTGGTTGTCTGACTGGATACAGGAGAAGCCAGGTATCTATATTGTNTT ACCAGATGTAATAAAATGCAAAAAAGATAGAAGTCCCTCTAGTGCTCAGCAGTGTCCACTTTGCATGA ACCCTAGGACTTCTAAAGGCAAGCCGTTAGCTATGGTCTCAGCTGCAGCTTTCCAGTGTGCCAAGCCA ACCATTGACTCATCCCTGAAATCAAAGAGCCTGACTATTCTGGAAGACAGTAGTTCTGCTTTCATCTC TCCCCAAGGTTTCATGGCACCCTTTGGCTCCCTCACTTTGAATATGACAGATCAGTCTGGAAATGAAG CTAACATGGTCTGCAGTATTCAAAAGCCCTCAAGGACATCACCCATTGCATTCACTGAAGAAAATGAC TACATCGTGCTAAATACTTCATTTTCAACATTTTTGGTGTGCAACATAGATTACGGTCACATTCAGCC AGTGTGGCAAATTTTGGCTTTGTACAGTGATTCTCCTCTGATACTAGAAAGGAGCCACTTGCTTAGTG AAACACCGCAGCTCTATTACAAATATAAACAGGTGGCTCCTAAGCCTGAAGACATTTTTACCAACATA GAGGCAGATCTCAGAGCAGATCCCTCTTGGTTAATGCAAGACCAAATTTCCTTGCAGCTGAACAGAAC TGCCACCACATTCAGTACATTACAGATCCAGTACTCCAGTGATGCTCAAATCACTTTACCAAGAGCAG AGATGAGGCCAGTGAAACACAAATGGACTATGATTTCAAGGGATAACAATACTAAGCTGGAACATACT GTCTTGGTAGGTGGAACCGTTGGCCTGAACTGCCCAGGCCAAGGAGACCCCACCCCACACGTGGATTG GCTTCTAGCTGATGGAAGTAAAGTGAGAGCCCCTTATGTCAGTGAGGATGGACGGATCCTAATAGACA AAAGTGGAAAATTGGAACTCCAGATGGCTGATAGTTTTGACACAGGCGTATATCACTGTATAAGCAGC AATTATGATGATGCAGATATTCTCACCTATAGGATAACTGTGGTAGAACCTTTGGTCGAAGCCTATCA GGAAAATGGGATTCATCACACAGTTTTCATTGGTGAAACACTTGATCTTCCATGCCATTCTACTGGTA TCCCAGATGCCTCTATTAGCTGGGTTATTCCAGGAAACAATGTGCTCTATCAGTCATCAAGAGACAAG AAAGTTCTAAACAATGGCACATTAAGAATATTACAGGTCACCCCGAAAGACCAAGGTTATTATCGCTG TGTGGCAGCCAACCCATCAGGGGTTGATTTTTTGATTTTCCAAGTTTCAGTCAAGATGAAAGGACAAA GGCCCTTGGAGCATGATGGAGAAACAGAGGGATCTGGACTTGATGAGTCCAATCCTATTGCTCATCTT AAGGAGCCACCAGGTGCACAACTCCGTACATCTGCTCTGATGGAGGCTGAGGTTGGAAAACACACCTC AAGCACAAGTAAGAGGCACAACTATCGGGAATTAACACTCCAGCGACGTGGAGATTCAACACATCGAC GTTTTAGGGAGAATAGGAGGCATTTCCCTCCCTCTGCTAGGAGAATTGACCCACAACATTGGGCGGCA CTGTTGGAGAAAGCTAAAAAGAATGCTATGCCAGACAAGCGAGAAAATACCACAGTGAGCCCACCCCC AGTGGTCACCCAACTCCCAAACATACCTGGTGAAGAAGACGATTCCTCAGGCATGCTCGCTCTACATG AGGAATTTATGGTCCCGGCCACTAAAGCTTTGAACCTTCCAGCAAGGACAGTGACTGCTGACTCCAGA ACAATATCTGATAGTCCTATGACAAACATAAATTATGGCACAGAATTCTCTCCTGTTGTGAATTCACA AATACTACCACCTGAAGAACCCACAGATTTCAAACTGTCTACTGCTATTAAAACTACAGCCATGTCAA AGAATATAAACCCAACCATGTCAAGCCAAATACAAGGCACAACCAATCAACATTCATCCACTGTCTTT CCACTGCTACTTGGAGCAACTGAATTTCAGGACTCTGACCAGATGGGAAGAGGAAGAGAGCATTTCCA AAGTAGACCCCCAATAACAGTAAGGACTATGATCAAAGATGTCAATGTCAAAATGCTTAGTAGCACCA CCAACAAACTATTATTAGAGTCAGTAAATACCACAAATAGTCATCAGACATCTGTAAGAGAAGTGAGT GAACCCAGGCACAATCACTTCTATTCTCACACTACTCAAATACTTAGCACCTCCACGTTCCCTTCAGA TCCACACACAGCTGCTCATTCTCAGTTTCCGATCCCTAGAAATAGTACAGTTAACATCCCGCTGTTCA GACGCTTTGGGAGGCAGAGGAAAATTGGCGGAAGGGGGCGGATTATCAGCCCATATAGAACTCCAGTT CTGCGACGGCATAGATACAGCATTTTCAGGTCAACAACCAGAGGTTCTTCTGAAAAAAGCACTACTGC ATTCTCAGCCACAGTGCTCAATGTGACATGTCTGTCCTGTCTTCCCAGGGAGAGGCTCACCACTGCCA CAGCAGCATTGTCTTTTCCAAGTGCTGCTCCCATCACCTTCCCCAAAGCTGACATTGCTAGAGTCCCA
TCAGAAGAGTCTACAACTCTAGTCCAGAATCCACTATTACTACTTGAGAACAAACCCAGTGTAGAGAA AACAACACCCACAATAAAATATTTCAGGACTGAAATTTCCCAAGTGACTCCAACTGGTGCAGTCATGA CATATGCTCCAACATCCATACCCATGGAAAAAACTCACAAAGTAAACGCCAGTTACCCACGTGTGTCT AGCACCAATGAAGCTAAAAGAGATTCAGTGATTACATCGTCACTTTCAGGTGCTATCACCAAGCCACC AATGACTATTATAGCCATTACAAGGTTTTCAAGAAGGAAAATTCCCTGGCAACAGAACTTTGTAAATA ACCATAACCCAAAAGGCAGATTAAGGAATCAACATAAAGTTAGTTTACAAAAAAGCACAGCTGTGATG CTTCCTAAAACATCTCCTGCTTTACCACAGAGACAAAGTCTCCCCTCGCACCACACTACGACCAAAAC ACACAATCCTGGAAGTCTTCCAACAAAGAAGGAGCTTCCCTTCCCACCCCTTAACCCTATGCTTCCTA GTATTATAAGCAAAGACTCAAGTACAAAAAGCATCATATCAACGCAAACAGCAATACCAGCAACAACT CCTACCTTCCCTGCATCTGTCATCACTTATGAAACCCAAACAGAGAGATCTAGAGCACAAACAATACA AAGAGAACAGGAGCCTCAAAAGAAGAACAGGACTGACCCAAACATCTCTCCAGACCAGAGTTCTGGCT TCACTACACCCACTGCTATGACACCTCCTGTTCTAACCACAGCCGAAACTTCAGTCAAGCCCAGTGTC TCTGCATTCACTCATTCCCCACCAGAAAACACAACTGGGATTTCAAGCACAATCAGTTTTCATTCAAG AACTCTTAATCTGACAGATGTGATTGAAGAACTAGCCCAAGCAAGTACTCAGACTTTGAAGAGCACAA TTGCTTCTGAAACAACTTTGTCCAGCAAATCACACCAGAGTACCACAACTAGGAAAGCAATCATTAGA CACTCAACCATACCACCATTCTTGAGCAGCAGTGCTACTCTAATGCCAGTTCCCATCTCCCCTCCCTT TACTCAGAGAGCAGTTACTGACAACGTGGCGACTCCCATTTCCGGGCTTATGACAAATACAGTGGTCA AGCTGCACGAATCCTCAAGGCACAATGCTAAACCACAGCAATTAGTAGCAGAGGTTGCAACATCCCCC AAGGTTCACCCAAATGCCAAGTTCACAATTGGAACCACTCACTTCATCTACTCTAATCTGTTACATTC TACTCCCATGCCAGCACTAACAACAGTTAAATCACAGAATTCTAAATTAACTCCATCTCCCTGGGCAG AAAACCAATTTTGGCACAAACCATACTCAGAAATTGCTGAAAAAGGCAAAAAGCCAGAAGTAAGCATG TTGGCTACTACAGGCCTGTCCGAGGCCACCACTCTTGTTTCAGATTGGGATGGACAGAAGAACACAAA GAAGAGTGACTTTGATAAGAAACCAGTTCAAGAAGCAACAACTTCCAAACTCCTTCCCTTTGACTCTT TGTCTAGGTATATATTTGAAAAGCCCAGGATAGTTGGAGGAAAAGCTGCAAGTTTTACTATTCCAGCT AACTCAGATGCCTTTCTTCCCTGTGAAGCTGTTGGAAATCCCCTGCCCACCATTCATTGGACCAGAGT CCCATCAGGTATGTCAGGACTTGATTTATCTAAGAGGAAACAGAATAGCAGGGTCCAGGTTCTCCCCA ATGGTACCCTGTCCATCCAGAGGGTGGAAATTCAGGACCGCGGACAGTACTTGTGTTCCGCATCCAAT CTGTTTGGCACAGACCACCTTCATGTCACCTTGTCTGTGGTTTCCTATCCTCCCAGGATCCTGGAGAG ACGTACCAAAGAGATCACAGTTCATTCCGGAAGCACTGTGGAACTGAAGTGCAGAGCAGAAGGTAGGC CAAGCCCTACAGTTACCTGGATTCTTGCAAACCAAACAGTTGTCTCAGAATCATCCCAGGGAAGTAGG CAGGCTGTGGTGACGGTTGACGGAACATTGGTCCTCCACAATCTCAGTATTTATGACCGTGGCTTTTA CAAATGTGTGGCCAGCAACCCAGGTGGCCAGGATTCACTGCTGGTTAAAATACAAGTCATTGCAGCAC CACCTGTTATTCTAGAGCAAAGGAGGCAAGTCATTGTAGGCACTTGGGGTGAAAGTTTAAAACTGCCC TGTACTGCAAAAGGAACTCCTCAGCCCAGCGTTTACTGGGTCCTCTCTGATGGCACTGAAGTGAAACC ATTACAGTTTACCAATTCCAAGTTGTTCTTATTTTCAAATGGGACTTTGTATATAAGAAACCTAGCCT CTTCAGACAGGGGCACTTATGAATGCATTGCTACCAGTTCCACTGGTTCGGAGCGAAGAGTAGTAATG CTTACAATGGAAGAGCGAGTGACCAGCCCCAGGATAGAAGCTGCATCCCAGAAAAGGACTGAAGTGAA TTTTGGGGACAAATTACTACTGAACTGCTCAGCCACTGGGGAGCCCAAACCCCAAATAATGTGGAGGT TACCATCCAAGGCTGTGGTCGACCAGCAGCATAGGGTGGGCAGCTGGATCCACGTCTACCCTAATGGA TCCCTGTTTATTGGATCAGTAACAGAAAAAGACAGTGGTGTCTACTTGTGTGTGGCAAGAAACAAAAT GGGGGATGATCTGATACTGATGCATGTTAGCCTAAGACTGAAACCTGCCAAAATTGACCACAAGCAGT ATTTTAGAAAGCAAGTGCTCCATGGGAAAGATTTCCAAGTAGATTGCAAAGCTTCCGGCTCCCCAGTG CCAGAGATATCTTGGAGTTTGCCTGATGGAACCATGATCAACAATGCAATGCAAGCCGATGACAGTGG CCACAGGACTAGGAGATATACCCTTTTCAACAATGGAACTTTATACTTCAACAAAGTTGGGGTAGCGG AGGAAGGAGATTATACTTGCTATGCCCAGAACACCCTAGGGAAAGATGAAATGAAGGTCCACTTAACA GTTATAACAGCTGCTCCCCGGATAAGGCAGAGTAACAAAACCAACAAGAGAATCAAAGCTGGAGACAC AGCTGTCCTTGACTGTGAGGTCACTGGGGATCCCAAACCAAAAATATTTTGGTTGCTGCCTTCCAATG ACATGATTTCCTTCTCCATTGATAGGTACACATTTCATGCCAATGGGTCTTTGACCATCAACAAAGTG AAACTGCTCGATTCTGGAGAGTACGTATGTGTAGCCCGAAATCCCAGTGGGGATGACACCAAAATGTA
CAAACTGGATGTGGTCTCTAAACCTCCATTAATCAATGGTCTGTATACAAACAGAACTGTTATTAAAG CCACAGCTGTGAGACATTCCAAAAAACACTTTGACTGCAGAGCTGAAGGGACACCATCTCCTGAAGTC ATGTGGATCATGCCAGACAATATTTTCCTCACAGCCCCATACTATGGAAGCAGAATCACAGTCCATAA AAATGGAACCTTGGAAATTAGGAATGTGAGGCTTTCAGATTCAGCCGACTTTATCTGTGTGGCCCGAA ATGAAGGTGGAGAGAGCGTGTTGGTAGTACAGTTAGAAGTACTGGAAATGCTGAGAAGACCGACATTT AGAAATCCATTTAATGAAAAAATAGTTGCCCAGCTGGGAAAGTCCACAGCATTGAATTGCTCTGTTGA TGGTAACCCACCACCTGAAATAATCTGGATTTTACCAAATGGCACACGATTTTCCAATGGACCACAAA GTTATCAGTATCTGATAGCAAGCAATGGTTCTTTTATCATTTCTAAAACAACTCGGGAGGATGCAGGA AAATATCGCTGTGCAGCTAGGAATAAAGTTGGCTATATTGAGAAATTAGTCATATTAGAAATTGGCCA GAAGCCAGTTATTCTTACCTATGCACCAGGGACAGTAAAAGGCATCAGTGGAGAATCTCTATCACTGC ATTGTGTGTCTGATGGAATCCCTAAGCCAAATATCAAATGGACTATGCCAAGTGGTTATGTAGTAGAC AGGCCTCAAATTAATGGGAAATACATATTGCATGACAATGGCACCTTAGTCATTAAAGAAGCAACAGC TTATGACAGAGGAAACTATATCTGTAAGGCTCAAAATAGTGTTGGTCATACACTGATTACTGTTCCAG TAATGATTGTAGCCTACCCTCCCCGAATTACAAATCGTCCACCCAGGAGTATTGTCACCAGGACAGGG GCAGCCTTTCAGCTCCACTGTGTGGCCTTGGGAGTTCCCAAGCCAGAAATCACATGGGAGATGCCTGA CCACTCCCTTCTCTCAACGGCAAGTAAAGAGAGGACACATGGAAGTGAGCAGCTTCACTTACAAGGTA CCCTAGTCATTCAGAATCCCCAAACCTCCGATTCTGGGATATACAAATGCACAGCAAAGAACCCACTT GGTAGTGATTATGCAGCAACGTATATTCAAGTAATCTGACATGAAATAATAAAGTC
|NOV29ai, SNP13377624 of |SEQ ID NO: 734J2617 aa JMW at 290200.2-kD
CG55776-01, Protein Sequence SNP Pos: 36 SNP Change: Tyr to Tyr
MKVKGRGITCLLVSFAVICLVATPGGKACPRRCACYMPTEVHCTFRYLTSIPDSIPPNVERINLGYNS
LVRLMETDFSGLTK-LELLMLHSNGIHTIPDKTFSDLQ-ALQVRL--WLKMSYNK-VRK-LQ--- TFYGLRSLT
RLHMDH-NNIEFINPEVFYGLNFLRLVHLEGNQLTKLHPDTFVSLSYLQIFKISFIKFLYLSDNFLTSL
PQEMVSYMPDLDSLYLHGNP TCDCHLKWLSD IQEKPGIYIVLPDVIKCKKDRSPSSAQQCPLCMNP
RTSKGKPLAMVSAAAFQCAKPTIDSSLKSKSLTILEDSSSAFISPQGFMAPFGSLTLNMTDQSGNEAN
MVCSIQKPSRTSPIAFTEENDYIVLNTSFSTFLVCNIDYGHIQPVWQILALYSDSPLILERSHLLSET
PQLYYKYKQVAPKPEDIFTNIEADLRADPS LMQDQISLQLNRTATTFSTLQIQYSSDAQITLPRAEM
RPVKHKWTMISRD---sraTKLEHTVLVGGTVGLNCPGQGDPTPHVDWLLADGSKVRAPYVSEDGRILIDKS
GKLELQMADSFDTGVYHCISSNYDDADILTYRITWEPLVEAYQENGIHHTVFIGETLDLPCHSTGIP
DASIS VIPGlrøVLYQSS-RDKKVLNNGTLRILQVTPKDQGYYRCVAANPSGVDFLIFQVSVKMKGQRP
LEHDGETEGSGLDESNPIAHLKEPPGAQLRTSALMEAEVGKHTSSTSKRHNYRELTLQRRGDSTHRRF
RENRRHFPPSARRIDPQH AALLEKAKKAMPDKRENTTVSPPPWTQLPNIPGEEDDSSGMLALHEE
FMVPATK--ALNLP-ARTVTADSRTISDSPMTNINYGTEFSPVWSQILPPEEPTDF-^
INPTMSSQIQGTTNQHSSTVFPLLLGATEFQDSDQMGRGREHFQSRPPITVRTMI-raDVNVKMLSSTTN
KLLLESVNTTNSHQTSVREVSEPRHNHFYSHTTQILSTSTFPSDPHTAAHSQFPIPRNSTVNIPLFRR
FGRQRKIGGRGRIISPYRTPVLRRHRYSIFRSTTRGSSEKSTTAFSATVLNVTCLSCLPRERLTTATA
ALSFPSAAPITFPKADIARVPSEESTTLVQNPLLLLENKPSVEKTTPTIKYFRTEISQVTPTGAVMTY
APTSIPMEKTHKVNASYPRVSSTNEAKRDSVITSSLSGAITKPPMTIIAITRFSRRKIP QQNFV-NNH
NPKGRLRNQHKVSLQKSTAV LPKTSPALPQRQSLPSHHTTTKTHNPGSLPTKKELPFPPLNPMLPSI
ISKDSSTKSIISTQTAIPATTPTFPASVITYETQTERSRAQTIQREQEPQKKNRTDPNISPDQSSGFT
TPTAMTPPVLTTAETSVKPSVSAFTHSPPENTTGISSTISFHSRTLNLTDVIEELAQASTQTLKSTIA
SETTLSSKSHQSTTTRKAIIRHSTIPPFLSSSATLMPVPISPPFTQRAVTDNVATPISGLMTNTWKL
HESSRHNAKPQQLVAEVATSPKVHPNAKFTIGTTHFIYSNLLHSTPMPALTTVKSQNSKLTPSP AEN
QF HKPYSEIAEKGKKPEVSMLATTGLSEATTLVSD DGQKNTKKSDFDKKPVQEATTSKLLPFDSLS
RYIFEKPRIVGGKAASFTIPANSDAFLPCEAVGNPLPTIHWTRVPSGMSGLDLSKRKQNSRVQVLPNG
TLSIQRVΕIQDRGQYLCSAS---Ω-JFGTDHLITVTLSVVSYPPRILERRT---α3ITVHSGSTVELKCRAEGRPS
PTVTWILANQTWSESSQGSRQAWTVDGTLVLHNLSIYDRGFYKCVASNPGGQDSLLVKIQVIAAPP
VILEQRRQVIVGT GESL-l-s%PCTAKGTPQPSVY VLSDGTEVKPLQFTNS---α-JFLFSNGTLYIRNLASS
DRGTYECIATSSTGSERRVVMLTMEERVTSPRIEAASQKRTEVNFGDKLLLNCSATGEPKPQIM RLP
S-KAVVDQQHRVGS IH-VYPNGSLFIGSVTEKDSGVYLCVARNKMGDDLILMHVSLRLKPAKIDHKQYF
RKQVLHGKDFQVDCKASGSPVPEIS SLPDGTMINNAMQADDSGHRTRRYTLFNNGTLYFNKVGVAEE
GDYTCYAQNTLG--- EMKVHLTVITAAPRIRQSNKTNKRIKAGDTAVLDCEVTGDPKPKIFWLLPSNDM
ISFSIDRYTFJ---^GSLTIHKVI-LLDSGEYVCVA-CT AVRHSK-KHFDC-R-AEGTPSPEVM IMPDNIFLTAPYYGSRITVH-KNGTLEIRNVRLSDSADFICVARME GGESVLWQLEVLEMLRRPTFRNPFNEKIVAQLGKSTALNCSVDGNPPPEII ILPNGTRFSNGPQSY QYLIASNGSFIISKTTREDAGKYRCAARNKVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHC VSDGIPKPNIKWTMPSGYWDRPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVM IVAYPPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHSLLSTASKERTHGSEQLHLQGTL VIQNPQTSDSGIYKCTAKNPLGSDYAATYIQVI
NOV29aj, SNP13377625 of SEQ ID NO: 735 7876 bp CG55776-01, DNA Sequence ORF Start: ATG at 6 ORF SjoprTGA at 7857 _. — -— ^SNP Change: A to" G iTCAGGATGAAGGTAAAAGGCAGAGGAATCACCTGCTTGCTGGTCTCCTTTGCTGTGATCTGCCTGGTC
GCCACCCCTGGGGGCAAGGCCTGTCCTCGCCGCTGTGCCTGTTATATGCCTACGGAGGTACACTGCAC ATTTCGGTACCTGACTTCCATCCCGGACAGCATCCCGCCCAATGTGGAACGCATCAATTTAGGGTACA ACAGCTTGGTTAGATTGATGGAAACAGATTTTTCTGGCCTGACCAAACTGGAGTTACTCATGCTTCAC AGCAATGGCATTCACACAATCCCTGACAAGACCTTCTCAGATTTGCAGGCCTTGCAGGTGAGACTGAT GGTCTTAAAAATGAGCTATAATAAAGTCCGAAAACTTCAGAAAGATACTTTTTATGGCCTCAGGAGCT TGACACGATTGCACATGGACCACAACAATATTGAGTTTATAAACCCAGAGGTTTTTTATGGGCTCAAC TTTCTCCGCCTGGTGCACTTGGAAGGAAATCAGCTCACTAAGCTCCACCCAGATACATTTGTCTCTTT GAGCTACCTCCAGATATTTAAAATCTCTTTCATTAAGTTCCTATACTTGTCTGATAACTTCCTGACCT CCCTCCCTCAAGAGATGGTCTCCTATATGCCTGACCTAGACAGCCTTTACCTGCATGGAAACCCATGG ACCTGTGATTGCCATTTAAAGTGGTTGTCTGACTGGATACAGGAGAAGCCAGGTATCTATATTGTNTT ACCAGATGTAATAAAATGCAAAAAAGATAGAAGTCCCTCTAGTGCTCAGCAGTGTCCACTTTGCATGA ACCCTAGGACTTCTAAAGGCAAGCCGTTAGCTATGGTCTCAGCTGCAGCTTTCCAGTGTGCCAAGCCA ACCATTGACTCATCCCTGAAATCAAAGAGCCTGACTATTCTGGAAOACAGTAGTTCTGCTTTCATCTC TCCCCAAGGTTTCATGGCACCCTTTGGCTCCCTCACTTTGAATATGACAGATCAGTCTGGAAATGAAG CTAACATGGTCTGCAGTATTCAAAAGCCCTCAAGGACATCACCCATTGCATTCACTGAAGAAAATGAC TACATCGTGCTAAATACTTCATTTTCAACATTTTTGGTGTGCAACATAGATTACGGTCACATTCAGCC AGTGTGGCAAATTTTGGCTTTGTACAGTGATTCTCCTCTGATACTAGAAAGGAGCCACTTGCTTAGTG AAACACCGCAGCTCTATTACAAATATAAACAGGTGGCTCCTAAGCCTGAAGACATTTTTACCAACATA GAGGCAGATCTCAGAGCAGATCCCTCTTGGTTAATGCAAGACCAAATTTCCTTGCAGCTGAACAGAAC TGCCACCACATTCAGTACATTACAGATCCAGTACTCCAGTGATGCTCAAATCACTTTACCAAGAGCAG AGATGAGGCCAGTGAAACACAAATGGACTATGATTTCAAGGGATAACAATACTAAGCTGGAACATACT GTCTTGGTAGGTGGAACCGTTGGCCTGAACTGCCCAGGCCAAGGAGACCCCACCCCACACGTGGATTG GCTTCTAGCTGATGGAAGTAAAGTGAGAGCCCCTTATGTCAGTGAGGATGGACGGATCCTAATAGACA AAAGTGGAAAATTGGAACTCCAGATGGCTGATAGTTTTGACACAGGCGTATATCACTGTATAAGCAGC AATTATGATGATGCAGATATTCTCACCTATAGGATAACTGTGGTAGAACCTTTGGTCGAAGCCTATCA GGAAAATGGGATTCATCACACAGTTTTCATTGGTGAAACACTTGATCTTCCATGCCATTCTACTGGTA TCCCAGATGCCTCTATTAGCTGGGTTATTCCAGGAAACAATGTGCTCTATCAGTCATCAAGAGACAAG AAAGTTCTAAACAATGGCACATTAAGAATATTACAGGTCACCCCGAAAGACCAAGGTTATTATCGCTG TGTGGCAGCCAACCCATCAGGGGTTGATTTTTTGATTTTCCAAGTTTCAGTCAAGATGAAAGGACAAA; GGCCCTTGGAGCATGATGGAGAAACAGAGGGATCTGGACTTGATGAGTCCAATCCTATTGCTCATCTT AAGGAGCCACCAGGTGCACAACTCCGTACATCTGCTCTGATGGAGGCTGAGGTTGGAAAACACACCTC AAGCACAAGTAAGAGGCACAACTATCGGGAATTAACACTCCAGCGACGTGGAGATTCAACACATCGAC GTTTTAGGGAGAATAGGAGGCATTTCCCTCCCTCTGCTAGGAGAATTGACCCACAACATTGGGCGGCA CTGTTGGAGAAAGCTAAAAAGAATGCTATGCCAGACAAGCGAGAAAATACCACAGTGAGCCCACCCCC AGTGGTCACCCAACTCCCAAACATACCTGGTGAAGAAGACGATTCCTCAGGCATGCTCGCTCTACATG AGGAATTTATGGTCCCGGCCACTAAAGCTTTGAACCTTCCAGCAAGGACAGTGACTGCTGACTCCAGA ACAATATCTGATAGTCCTATGACAAACATAAATTATGGCACAGAATTCTCTCCTGTTGTGAATTCACA1 AATACTACCACCTGAAGAACCCACAGATTTCAAACTGTCTACTGCTATTAAAACTACAGCCATGTCAA AGAATATAAACCCAACCATGTCAAGCCAAATACAAGGCACAACCAATCAACATTCATCCACTGTCTTT CCACTGCTACTTGGAGCAACTGAATTTCAGGACTCTGACCAGATGGGAAGAGGAAGAGAGCATTTCCA AAGTAGACCCCCAATAACAGTAAGGACTATGATCAAAGATGTCAATGTCAAAATGCTTAGTAGCACCA: CCAACAAACTATTATTAGAGTCAGTAAATACCACAAATAGTCATCAGACATCTGTAAGAGAAGTGAGT GAACCCAGGCACAATCACTTCTATTCTCACACTACTCAAATACTTAGCACCTCCACGTTCCCTTCAGA TCCACACACAGCTGCTCATTCTCAGTTTCCGATCCCTAGAAATAGTACAGTTAACATCCCGCTGTTCA GACGCTTTGGGAGGCAGAGGAAAATTGGCGGAAGGGGGCGGATTATCAGCCCATATAGAACTCCAGTT CTGCGACGGCATAGATACAGCATTTTCAGGTCAACAACCAGAGGTTCTTCTGAAAAAAGCACTACTGC ATTCTCAGCCACAGTGCTCAATGTGACATGTCTGTCCTGTCTTCCCAGGGAGAGGCTCACCACTGCCA CAGCAGCATTGTCTTTTCCAAGTGCTGCTCCCATCACCTTCCCCAAAGCTGACATTGCTAGAGTCCCA TCAGAAGAGTCTACAACTCTAGTCCAGAATCCACTATTACTACTTGAGAACAAACCCAGTGTAGAGAA AACAACACCCACAATAAAATATTTCAGGACTGAAATTTCCCAAGTGACTCCAACTGGTGCAGTCATGA CATATGCTCCAACATCCATACCCATGGAAAAAACTCACAAAGTAAACGCCAGTTACCCACGTGTGTCT AGCACCAATGAAGCTAAAAGAGATTCAGTGATTACATCGTCACTTTCAGGTGCTATCACCAAGCCACC AATGACTATTATAGCCATTACAAGGTTTTCAAGAAGGAAAATTCCCTGGCAACAGAACTTTGTAAATA ACCATAACCCAAAAGGCAGATTAAGGAATCAACATAAAGTTAGTTTACAAAAAAGCACAGCTGTGATG CTTCCTAAAACATCTCCTGCTTTACCACAGAGACAAAGTCTCCCCTCGCACCACACTACGACCAAAAC ACACAATCCTGGAAGTCTTCCAACAAAGAAGGAGCTTCCCTTCCCACCCCTTAACCCTATGCTTCCTA GTATTATAAGCAAAGACTCAAGTACAAAAAGCATCATATCAACGCAAACAGCAATACCAGCAACAACT CCTACCTTCCCTGCATCTGTCATCACTTATGAAACCCAAACAGAGAGATCTAGAGCACAAACAATACA AAGAGAACAGGAGCCTCAAAAGAAGAACAGGACTGACCCAAACATCTCTCCAGACCAGAGTTCTGGCT TCACTACACCCACTGCTATGACACCTCCTGTTCTAACCACAGCCGAAACTTCAGTCAAGCCCAGTGTC TCTGCATTCACTCATTCCCCACCAGAAAACACAACTGGGATTTCAAGCACAATCAGTTTTCATTCAAG AACTCTTAATCTGACAGATGTGATTGAAGAACTAGCCCAAGCAAGTACTCAGACTTTGAAGAGCACAA TTGCTTCTGAAACAACTTTGTCCAGCAAATCACACCAGAGTACCACAACTAGGAAAGCAATCATTAGA CACTCAACCATACCACCATTCTTGAGCAGCAGTGCTACTCTAATGCCAGTTCCCATCTCCCCTCCCTT TACTCAGAGAGCAGTTACTGACAACGTGGCGACTCCCATTTCCGGGCTTATGACAAATACAGTGGTCA AGCTGCACGAATCCTCAAGGCACAATGCTAAACCACAGCAATTAGTAGCAGAGGTTGCAACATCCCCC AAGGTTCACCCAAATGCCAAGTTCACAATTGGAACCACTCACTTCATCTACTCTAATCTGTTACATTC TACTCCCATGCCAGCACTAACAACAGTTAAATCACAGAATTCTAAATTAACTCCATCTCCCTGGGCAG AAAACCAATTTTGGCACAAACCATACTCAGAAATTGCTGAAAAAGGCAAAAAGCCAGAAGTAAGCATG TTGGCTACTACAGGCCTGTCCGAGGCCACCACTCTTGTTTCAGATTGGGATGGACAGAAGAACACAAA GAAGAGTGACTTTGATAAGAAACCAGTTCAAGAAGCAACAACTTCCAAACTCCTTCCCTTTGACTCTT TGTCTAGGTATATATTTGAAAAGCCCAGGATAGTTGGAGGAAAAGCTGCAAGTTTTACTATTCCAGCT AACTCAGATGCCTTTCTTCCCTGTGAAGCTGTTGGAAATCCCCTGCCCACCATTCATTGGACCAGAGT CCCATCAGGTATGTCAGGACTTGATTTATCTAAGAGGAAACAGAATAGCAGGGTCCAGGTTCTCCCCA ATGGTACCCTGTCCATCCAGAGGGTGGAAATTCAGGACCGCGGACAGTACTTGTGTTCCGCATCCAAT CTGTTTGGCACAGACCACCTTCATGTCACCTTGTCTGTGGTTTCCTATCCTCCCAGGATCCTGGAGAG ACGTACCAAAGAGATCACAGTTCATTCCGGAAGCACTGTGGAACTGAAGTGCAGAGCAGAAGGTAGGC CAAGCCCTACAGTTACCTGGATTCTTGCAAACCAAACAGTTGTCTCAGAATCATCCCAGGGAAGTAGG CAGGCTGTGGTGACGGTTGACGGAACATTGGTCCTCCACAATCTCAGTATTTATGACCGTGGCTTTTA CAAATGTGTGGCCAGCAACCCAGGTGGCCAGGATTCACTGCTGGTTAAAATACAAGTCATTGCAGCAC CACCTGTTATTCTAGAGCAAAGGAGGCAAGTCATTGTAGGCACTTGGGGTGAAAGTTTAAAACTGCCC TGTACTGCAAAAGGAACTCCTCAGCCCAGCGTTTACTGGGTCCTCTCTGATGGCACTGAAGTGAAACC ATTACAGTTTACCAATTCCAAGTTGTTCTTATTTTCAAATGGGACTTTGTATATAAGAAACCTAGCCT CTTCAGACAGGGGCACTTATGAATGCATTGCTACCAGTTCCACTGGTTCGGAGCGAAGAGTAGTAATG CTTACAATGGAAGAGCGAGTGACCAGCCCCAGGATAGAAGCTGCATCCCAGAAAAGGACTGAAGTGAA TTTTGGGGACAAATTACTACTGAACTGCTCAGCCACTGGGGAGCCCAAACCCCAAATAATGTGGAGGT TACCATCCAAGGCTGTGGTCGACCAGCAGCATAGGGTGGGCAGCTGGATCCACGTCTACCCTAATGGA TCCCTGTTTATTGGATCAGTAACAGAAAAAGACAGTGGTGTCTACTTGTGTGTGGCAAGAAACAAAAT GGGGGATGATCTGATACTGATGCATGTTAGCCTAAGACTGAAACCTGCCAAAATTGACCACAAGCAGT ATTTTAGAAAGCAAGTGCTCCATGGGAAAGATTTCCAAGTAGATTGCAAAGCTTCCGGCTCCCCAGTG CCAGAGATATCTTGGAGTTTGCCTGATGGAACCATGATCAACAATGCAATGCAAGCCGATGACAGTGG CCACAGGACTAGGAGATATACCCTTTTCAACAATGGAACTTTATACTTCAACAAAGTTGGGGTAGCGG AGGAAGGAGATTATACTTGCTATGCCCAGAACACCCTAGGGAAAGATGAAATGAAGGTCCACTTAACA GTTATAACAGCTGCTCCCCGGATAAGGCAGAGTAACAAAACCAACAAGAGAATCAAAGCTGGAGACAC AGCTGTCCTTGACTGTGAGGTCACTGGGGATCCCAAACCAAAAATATTTTGGTTGCTGCCTTCCAATG ACATGATTTCCTTCTCCATTGATAGGTACACATTTCATGCCAATGGGTCTTTGACCATCAACAAAGTG AAACTGCTCGATTCTGGAGAGTACGTATGTGTAGCCCGAAATCCCAGTGGGGATGACACCAAAATGTA
CAAACTGGATGTGGTCTCTAAACCTCCATTAATCAATGGTCTGTATACAAACAGAACTGTTATTAAAG CCACAGCTGTGAGACATTCCAAAAAACACTTTGACTGCAGAGCTGAAGGGACACCATCTCCTGAAGTC ATGTGGATCATGCCAGACAATATTTTCCTCACAGCCCCATACTATGGAAGCAGAATCACAGTCCATAA AAATGGAACCTTGGAAATTAGGAATGTGAGGCTTTCAGATTCAGCCGACTTTATCTGTGTGGCCCGAA ATGAAGGTGGAGAGAGCGTGTTGGTAGTACAGTTAGAAGTACTGGAAATGCTGAGAAGACCGACATTT AGAAATCCATTTAATGAAAAAATAGTTGCCCAGCTGGGAAAGTCCACAGCATTGAATTGCTCTGTTGA TGGTAACCCACCACCTGAAATAATCTGGATTTTACCAAATGGCACACGATTTTCCAATGGACCACAAA GTTATCAGTATCTGATAGCAAGCAATGGTTCTTTTATCATTTCTAAAACAACTCGGGAGGATGCAGGA AAATATCGCTGTGCAGCTAGGAATAAAGTTGGCTATATTGAGAAATTAGTCATATTAGAAATTGGCCA GAAGCCAGTTATTCTTACCTATGCACCAGGGACAGTAAAAGGCATCAGTGGAGAATCTCTATCACTGC ATTGTGTGTCTGATC^ AGGCCTCAAATTAATGGGAAATACATATTGCATGACAATGGCACCTTAGTCATTAAAGAAGCAACAGC TTATGACAGAGGAAACTATATCTGTAAGGCTCAAAATAGTGTTGGTCATACACTGATTACTGTTCCAG TAATGATTGTAGCCTACCCTCCCCGAATTACAAATCGTCCACCCAGGAGTATTGTCACCAGGACAGGG GCAGCCTTTCAGCTCCACTGTGTGGCCTTGGGAGTTCCCAAGCCAGAAATCACATGGGAGATGCCTGA CCACTCCCTTCTCTCAACGGCAAGTAAAGAGAGGACACATGGAAGTGAGCAGCTTCACTTACAAGGTA CCCTAGTCATTCAGAATCCCCAAACCTCCGATTCTGGGATATACAAATGCACAGCAAAGAACCCACTT GGTAGTGATTATGCAGCAACGTATATTCAAGTAATCTGACATGAAATAATAAAGTC
NOV29aj, SNP13377625 of SEQ ID NO: 736 2617 aa MW at 290200.2kD
CG55776-01, Protein Sequence |SNP Pos: 52 SNP Change: Pro to Pro
MKVKGRGITCLLVSFAVICLVATPGGKACPRRCACYMPTEVHCTFRYLTSIPDSIPPNVERINLGYNS LVRLMETDFSGLT-KLELLMLHSNGIHTIPDKTFSDLQ-ALQVRLMVLKMSYNKVRKLQKDTFYGLRSLT RLHMDHlrølEFINPEVFYGL-MFLRLVHLEGNQLTKLHPDTFVSLSYLQIFKISFIKFLYLSDNFLTSL PQEMVSYMPDLDSLYLHGNP TCDCHLKWLSDWIQEKPGIYIVLPDVIKCKKDRSPSSAQQCPLCM P RTSKGKPLAMVSAAAFQCAKPTIDSSLKSKSLTILEDSSSAFISPQGFMAPFGSLTLNMTDQSGNEAN MVCSIQKPSRTSPIAFTEENDYIVLNTSFSTFLVCNIDYGHIQPV QILALYSDSPLILERSHLLSET PQLYYKYKQVAPKPEDIFTNIEADLRADPS LMQDQISLQLNRTATTFSTLQIQYSSDAQITLPRAEM RPV-- KWTMISRD--røTKLEHTVLVGGTVGLNCPGQGDPTPHVD LL-ADGSKVRAPYVSEDGRILIDKS GKLELQMADSFDTGVYHCISSNYDDADILTYRITWEPLVEAYQENGIHHTVFIGETLDLPCHSTGIP DASIS VIPGN-^IVLYQSSRDKKVLNNGTLRILQVTPKDQGYYRCVAANPSGVDFLIFQVSVKMKGQRP LEHDGETEGSGLDESNPIAHLKEPPGAQLRTSALMEAEVGKHTSSTSKRHNYRELTLQRRGDSTHRRF RENRRHFPPSARRIDPQ------WAALLEK-AKKNAMPDKRENTTVSPPPVVTQLPNIPGEEDDSSGMLALHEE
F-VPATKALNLPARTVTADSRTISDSPMTNINYGTEFSPWNSQILPPEEPTDFKLSTAIKTTAMSKN
INPTMSSQIQGTTNQHSSTVFPLLLGATEFQDSDQMGRGREHFQSRPPITVRTMIKDVNVKMLSSTTN
KLLLESVNTTNSHQTSVREVSEPRHNHFYSHTTQILSTSTFPSDPHTAAHSQFPIPRNSTVNIPLFRR
FGRQRKIGGRGRIISPYRTPVLRRHRYSIFRSTTRGSSEKSTTAFSATVLNVTCLSCLPRERLTTATA
ALSFPSAAPITFPKADIARVPSEESTTLVQNPLLLLENKPSVEKTTPTIKYFRTEISQVTPTGAVMTY
APTSIPMEKTHKVNASYPRVSSTNEAKRDSVITSSLSGAITKPPMTIIAITRFSRRKIP QQNFVNNH
NPKGRLRNQHKVSLQKSTAVMLPKTSPALPQRQSLPSHHTTTKTHNPGSLPTKKELPFPPLNPMLPSI
IS---T)SSTKSIISTQTAIPATTPTFPASVITYETQTERS---^QTIQREQEPQ---αNRTDPNISPDQSSGFT
TPTAMTPPVLTTAETSVKPSVSAFTHSPPENTTGISSTISFHSRTLNLTDVIEELAQASTQTLKSTIA
SETTLSSKSHQSTTTRKAIIRHSTIPPFLSSSATLMPVPISPPFTQRAVTDNVATPISGLMTNTWKL
HESSRHNAKPQQLVAEVATSPKVHPNAKFTIGTTHFIYSNLLHSTPMPALTTVKSQNSKLTPSPWAEN
QFWHKPYSEIAEKGKKPEVSMLATTGLSEATTLVSD DGQKNTKKSDFDKKPVQEATTSKLLPFDSLS
RYIFEKPRIVGGKAASFTIPANSDAFLPCEAVGNPLPTIH TRVPSGMSGLDLSKRKQNSRVQVLPNG
TLSIQRVEIQDRGQYLCSASNLFGTDHLHVTLSWSYPPRILERRTKEITVHSGSTVELKCRAEGRPS
PTVTWILANQTWSESSQGSRQAVVTVDGTLVLHNLSIYDRGFYKCVASNPGGQDSLLVKIQVIAAPP
VILEQRRQVIVGT GESL-KLPCTAKGTPQPSVY VLSDGTEVKPLQFTNSKLFLFSNGTLYIRNLASS
DRGTYECIATSSTGSERRWMLTMEERVTSPRIΞAASQKRTEVNFGDKLLLNCSATGEPKPQIM RLP
SKAVVDQQHRVGSWIHVYPNGSLFIGSVTEKDSGVYLCVA-RNKMGDDLILMHVSLRLKPAKIDHKQYF
RKQVLHGKDFQVDCKASGSPVPEIS SLPDGTMINNAMQADDSGHRTRRYTLFNNGTLYFNKVGVAEE
GDYTCYAQNTLGKDEMKVHLTVITAAPRIRQSNKTNKRIKAGDTAVLDCEVTGDPKPKIF LLPSNDM
ISFSIDRYTFHANGSLTINKV-t-α-jLDSGEYVCV-ARNPSGDDTKMYKLDVVSKPPLINGLYTNRTVIK^
AVRHSKKHFDCR-AEGTPSPEVMWIMPDNIFLTAPYYGSRITVHKNGTLEIR-^IVRLSDSADFICVARNE
GGESVLWQLEVLEMLRRPTFRNPFNEKIVAQLGKSTALNCSVDGNPPPEII ILPNGTRFSNGPQSY
QYLIASNGSFIISKTTREDAGKYRCAARNKVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHC
VSDGIPKPNIK TMPSGYWDRPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVM
IVAYPPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEIT EMPDHSLLSTASKERTHGSEQLHLQGTL
VIQNPQTSDSGIYKCTAKNPLGSDYAATYIQVI
NOV29ak, SNP13376523 of SEQ ID NO: 737 7876 bp CG55776-01, DNA Sequence ORF Start: ATG at 6 ORF Stop: TGA at 7857
SNP Pos: 187 SNP Change: G to A
TCAGGATGAAGGTAAAAGGCAGAGGAATCACCTGCTTGCTGGTCTCCTTTGCTGTGATCTGCCTGGTC
GCCACCCCTGGGGGCAAGGCCTGTCCTCGCCGCTGTGCCTGTTATATGCCTACGGAGGTACACTGCAC ATTTCGGTACCTGACTTCCATCCCAGACAGCATCCCGCCCAATGTGGAACACATCAATTTAGGGTACA ACAGCTTGGTTAGATTGATGGAAACAGATTTTTCTGGCCTGACCAAACTGGAGTTACTCATGCTTCAC AGCAATGGCATTCACACAATCCCTGACAAGACCTTCTCAGATTTGCAGGCCTTGCAGGTGAGACTGAT GGTCTTAAAAATGAGCTATAATAAAGTCCGAAAACTTCAGAAAGATACTTTTTATGGCCTCAGGAGCT TGACACGATTGCACATGGACCACAACAATATTGAGTTTATAAACCCAGAGGTTTTTTATGGGCTCAAC TTTCTCCGCCTGGTGCACTTGGAAGGAAATCAGCTCACTAAGCTCCACCCAGATACATTTGTCTCTTT GAGCTACCTCCAGATATTTAAAATCTCTTTCATTAAGTTCCTATACTTGTCTGATAACTTCCTGACCT CCCTCCCTCAAGAGATGGTCTCCTATATGCCTGACCTAGACAGCCTTTACCTGCATGGAAACCCATGG ACCTGTGATTGCCATTTAAAGTGGTTGTCTGACTGGATACAGGAGAAGCCAGGTATCTATATTGTNTT ACCAGATGTAATAAAATGCAAAAAAGATAGAAGTCCCTCTAGTGCTCAGCAGTGTCCACTTTGCATGA ACCCTAGGACTTCTAAAGGCAAGCCGTTAGCTATGGTCTCAGCTGCAGCTTTCCAGTGTGCCAAGCCA ACCATTGACTCATCCCTGAAATCAAAGAGCCTGACTATTCTGGAAGACAGTAGTTCTGCTTTCATCTC TCCCCAAGGTTTCATGGCACCCTTTGGCTCCCTCACTTTGAATATGACAGATCAGTCTGGAAATGAAG CTAACATGGTCTGCAGTATTCAAAAGCCCTCAAGGACATCACCCATTGCATTCACTGAAGAAAATGAC TACATCGTGCTAAATACTTCATTTTCAACATTTTTGGTGTGCAACATAGATTACGGTCACATTCAGCC AGTGTGGCAAATTTTGGCTTTGTACAGTGATTCTCCTCTGATACTAGAAAGGAGCCACTTGCTTAGTG AAACACCGCAGCTCTATTACAAATATAAACAGGTGGCTCCTAAGCCTGAAGACATTTTTACCAACATA GAGGCAGATCTCAGAGCAGATCCCTCTTGGTTAATGCAAGACCAAATTTCCTTGCAGCTGAACAGAAC TGCCACCACATTCAGTACATTACAGATCCAGTACTCCAGTGATGCTCAAATCACTTTACCAAGAGCAG AGATGAGGCCAGTGAAACACAAATGGACTATGATTTCAAGGGATAACAATACTAAGCTGGAACATACT GTCTTGGTAGGTGGAACCGTTGGCCTGAACTGCCCAGGCCAAGGAGACCCCACCCCACACGTGGATTG GCTTCTAGCTGATGGAAGTAAAGTGAGAGCCCCTTATGTCAGTGAGGATGGACGGATCCTAATAGACA AAAGTGGAAAATTGGAACTCCAGATGGCTGATAGTTTTGACACAGGCGTATATCACTGTATAAGCAGC AATTATGATGATGCAGATATTCTCACCTATAGGATAACTGTGGTAGAACCTTTGGTCGAAGCCTATCA GGAAAATGGGATTCATCACACAGTTTTCATTGGTGAAACACTTGATCTTCCATGCCATTCTACTGGTA TCCCAGATGCCTCTATTAGCTGGGTTATTCCAGGAAACAATGTGCTCTATCAGTCATCAAGAGACAAG AAAGTTCTAAACAATGGCACATTAAGAATATTACAGGTCACCCCGAAAGACCAAGGTTATTATCGCTG TGTGGCAGCCAACCCATCAGGGGTTGATTTTTTGATTTTCCAAGTTTCAGTCAAGATGAAAGGACAAA GGCCCTTGGAGCATGATGGAGAAACAGAGGGATCTGGACTTGATGAGTCCAATCCTATTGCTCATCTT AAGGAGCCACCAGGTGCACAACTCCGTACATCTGCTCTGATGGAGGCTGAGGTTGGAAAACACACCTC AAGCACAAGTAAGAGGCACAACTATCGGGAATTAACACTCCAGCGACGTGGAGATTCAACACATCGAC GTTTTAGGGAGAATAGGAGGCATTTCCCTCCCTCTGCTAGGAGAATTGACCCACAACATTGGGCGGCA CTGTTGGAGAAAGCTAAAAAGAATGCTATGCCAGACAAGCGAGAAAATACCACAGTGAGCCCACCCCC AGTGGTCACCCAACTCCCAAACATACCTGGTGAAGAAGACGATTCCTCAGGCATGCTCGCTCTACATG AGGAATTTATGGTCCCGGCCACTAAAGCTTTGAACCTTCCAGCAAGGACAGTGACTGCTGACTCCAGA ACAATATCTGATAGTCCTATGACAAACATAAATTATGGCACAGAATTCTCTCCTGTTGTGAATTCACA AATACTACCACCTGAAGAACCCACAGATTTCAAACTGTCTACTGCTATTAAAACTACAGCCATGTCAA AGAATATAAACCCAACCATGTCAAGCCAAATACAAGGCACAACCAATCAACATTCATCCACTGTCTTT CCACTGCTACTTGGAGCAACTGAATTTCAGGACTCTGACCAGATGGGAAGAGGAAGAGAGCATTTCCA AAGTAGACCCCCAATAACAGTAAGGACTATGATCAAAGATGTCAATGTCAAAATGCTTAGTAGCACCA CCAACAAACTATTATTAGAGTCAGTAAATACCACAAATAGTCATCAGACATCTGTAAGAGAAGTGAGT GAACCCAGGCACAATCACTTCTATTCTCACACTACTCAAATACTTAGCACCTCCACGTTCCCTTCAGA TCCACACACAGCTGCTCATTCTCAGTTTCCGATCCCTAGAAATAGTACAGTTAACATCCCGCTGTTCA GACGCTTTGGGAGGCAGAGGAAAATTGGCGGAAGGGGGCGGATTATCAGCCCATATAGAACTCCAGTT CTGCGACGGCATAGATACAGCATTTTCAGGTCAACAACCAGAGGTTCTTCTGAAAAAAGCACTACTGC ATTCTCAGCCACAGTGCTCAATGTGACATGTCTGTCCTGTCTTCCCAGGGAGAGGCTCACCACTGCCA CAGCAGCATTGTCTTTTCCAAGTGCTGCTCCCATCACCTTCCCCAAAGCTGACATTGCTAGAGTCCCA
TCAGAAGAGTCTACAACTCTAGTCCAGAATCCACTATTACTACTTGAGAACAAACCCAGTGTAGAGAA AACAACACCCACAATAAAATATTTCAGGACTGAAATTTCCCAAGTGACTCCAACTGGTGCAGTCATGA CATATGCTCCAACATCCATACCCATGGAAAAAACTCACAAAGTAAACGCCAGTTACCCACGTGTGTCT AGCACCAATGAAGCTAAAAGAGATTCAGTGATTACATCGTCACTTTCAGGTGCTATCACCAAGCCACC AATGACTATTATAGCCATTACAAGGTTTTCAAGAAGGAAAATTCCCTGGCAACAGAACTTTGTAAATA ACCATAACCCAAAAGGCAGATTAAGGAATCAACATAAAGTTAGTTTACAAAAAAGCACAGCTGTGATG CTTCCTAAAACATCTCCTGCTTTACCACAGAGACAAAGTCTCCCCTCGCACCACACTACGACCAAAAC ACACAATCCTGGAAGTCTTCCAACAAAGAAGGAGCTTCCCTTCCCACCCCTTAACCCTATGCTTCCTA GTATTATAAGCAAAGACTCAAGTACAAAAAGCATCATATCAACGCAAACAGCAATACCAGCAACAACT CCTACCTTCCCTGCATCTGTCATCACTTATGAAACCCAAACAGAGAGATCTAGAGCACAAACAATACA AAGAGAACAGGAGCCTCAAAAGAAGAACAGGACTGACCCAAACATCTCTCCAGACCAGAGTTCTGGCT TCACTACACCCACTGCTATGACACCTCCTGTTCTAACCACAGCCGAAACTTCAGTCAAGCCCAGTGTC TCTGCATTCACTCATTCCCCACCAGAAAACACAACTGGGATTTCAAGCACAATCAGTTTTCATTCAAG AACTCTTAATCTGACAGATGTGATTGAAGAACTAGCCCAAGCAAGTACTCAGACTTTGAAGAGCACAA TTGCTTCTGAAACAACTTTGTCCAGCAAATCACACCAGAGTACCACAACTAGGAAAGCAATCATTAGA CACTCAACCATACCACCATTCTTGAGCAGCAGTGCTACTCTAATGCCAGTTCCCATCTCCCCTCCCTT TACTCAGAGAGCAGTTACTGACAACGTGGCGACTCCCATTTCCGGGCTTATGACAAATACAGTGGTCA AGCTGCACGAATCCTCAAGGCACAATGCTAAACCACAGCAATTAGTAGCAGAGGTTGCAACATCCCCC AAGGTTCACCCAAATGCCAAGTTCACAATTGGAACCACTCACTTCATCTACTCTAATCTGTTACATTC TACTCCCATGCCAGCACTAACAACAGTTAAATCACAGAATTCTAAATTAACTCCATCTCCCTGGGCAG AAAACCAATTTTGGCACAAACCATACTCAGAAATTGCTGAAAAAGGCAAAAAGCCAGAAGTAAGCATG TTGGCTACTACAGGCCTGTCCGAGGCCACCACTCTTGTTTCAGATTGGGATGGACAGAAGAACACAAA GAAGAGTGACTTTGATAAGAAACCAGTTCAAGAAGCAACAACTTCCAAACTCCTTCCCTTTGACTCTT TGTCTAGGTATATATTTGAAAAGCCCAGGATAGTTGGAGGAAAAGCTGCAAGTTTTACTATTCCAGCT AACTCAGATGCCTTTCTTCCCTGTGAAGCTGTTGGAAATCCCCTGCCCACCATTCATTGGACCAGAGT CCCATCAGGTATGTCAGGACTTGATTTATCTAAGAGGAAACAGAATAGCAGGGTCCAGGTTCTCCCCA ATGGTACCCTGTCCATCCAGAGGGTGGAAATTCAGGACCGCGGACAGTACTTGTGTTCCGCATCCAAT CTGTTTGGCACAGACCACCTTCATGTCACCTTGTCTGTGGTTTCCTATCCTCCCAGGATCCTGGAGAG ACGTACCAAAGAGATCACAGTTCATTCCGGAAGCACTGTGGAACTGAAGTGCAGAGCAGAAGGTAGGC CAAGCCCTACAGTTACCTGGATTCTTGCAAACCAAACAGTTGTCTCAGAATCATCCCAGGGAAGTAGG CAGGCTGTGGTGACGGTTGACGGAACATTGGTCCTCCACAATCTCAGTATTTATGACCGTGGCTTTTA CAAATGTGTGGCCAGCAACCCAGGTGGCCAGGATTCACTGCTGGTTAAAATACAAGTCATTGCAGCAC CACCTGTTATTCTAGAGCAAAGGAGGCAAGTCATTGTAGGCACTTGGGGTGAAAGTTTAAAACTGCCC TGTACTGCAAAAGGAACTCCTCAGCCCAGCGTTTACTGGGTCCTCTCTGATGGCACTGAAGTGAAACC ATTACAGTTTACCAATTCCAAGTTGTTCTTATTTTCAAATGGGACTTTGTATATAAGAAACCTAGCCT CTTCAGACAGGGGCACTTATGAATGCATTGCTACCAGTTCCACTGGTTCGGAGCGAAGAGTAGTAATG CTTACAATGGAAGAGCGAGTGACCAGCCCCAGGATAGAAGCTGCATCCCAGAAAAGGACTGAAGTGAA TTTTGGGGACAAATTACTACTGAACTGCTCAGCCACTGGGGAGCCCAAACCCCAAATAATGTGGAGGT TACCATCCAAGGCTGTGGTCGACCAGCAGCATAGGGTGGGCAGCTGGATCCACGTCTACCCTAATGGA TCCCTGTTTATTGGATCAGTAACAGAAAAAGACAGTGGTGTCTACTTGTGTGTGGCAAGAAACAAAAT GGGGGATGATCTGATACTGATGCATGTTAGCCTAAGACTGAAACCTGCCAAAATTGACCACAAGCAGT ATTTTAGAAAGCAAGTGCTCCATGGGAAAGATTTCCAAGTAGATTGCAAAGCTTCCGGCTCCCCAGTG CCAGAGATATCTTGGAGTTTGCCTGATGGAACCATGATCAACAATGCAATGCAAGCCGATGACAGTGG CCACAGGACTAGGAGATATACCCTTTTCAACAATGGAACTTTATACTTCAACAAAGTTGGGGTAGCGG AGGAAGGAGATTATACTTGCTATGCCCAGAACACCCTAGGGAAAGATGAAATGAAGGTCCACTTAACA GTTATAACAGCTGCTCCCCGGATAAGGCAGAGTAACAAAACCAACAAGAGAATCAAAGCTGGAGACAC AGCTGTCCTTGACTGTGAGGTCACTGGGGATCCCAAACCAAAAATATTTTGGTTGCTGCCTTCCAATG ACATGATTTCCTTCTCCATTGATAGGTACACATTTCATGCCAATGGGTCTTTGACCATCAACAAAGTG AAACTGCTCGATTCTGGAGAGTACGTATGTGTAGCCCGAAATCCCAGTGGGGATGACACCAAAATGTA
CAAACTGGATGTGGTCTCTAAACCTCCATTAATCAATGGTCTGTATACAAACAGAACTGTTATTAAAG CCACAGCTGTGAGACATTCCAAAAAACACTTTGACTGCAGAGCTGAAGGGACACCATCTCCTGAAGTC ATGTGGATCATGCCAGACAATATTTTCCTCACAGCCCCATACTATGGAAGCAGAATCACAGTCCATAA AAATGGAACCTTGGAAATTAGGAATGTGAGGCTTTCAGATTCAGCCGACTTTATCTGTGTGGCCCGAA ATGAAGGTGGAGAGAGCGTGTTGGTAGTACAGTTAGAAGTACTGGAAATGCTGAGAAGACCGACATTT AGAAATCCATTTAATGAAAAAATAGTTGCCCAGCTGGGAAAGTCCACAGCATTGAATTGCTCTGTTGA TGGTAACCCACCACCTGAAATAATCTGGATTTTACCAAATGGCACACGATTTTCCAATGGACCACAAA GTTATCAGTATCTGATAGCAAGCAATGGTTCTTTTATCATTTCTAAAACAACTCGGGAGGATGCAGGA AAATATCGCTGTGCAGCTAGGAATAAAGTTGGCTATATTGAGAAATTAGTCATATTAGAAATTGGCCA GAAGCCAGTTATTCTTACCTATGCACCAGGGACAGTAAAAGGCATCAGTGGAGAATCTCTATCACTGC ATTGTGTGTCTGATGGAATCCCTAAGCCAAATATCAAATGGACTATGCCAAGTGGTTATGTAGTAGAC AGGCCTCAAATTAATGGGAAATACATATTGCATGACAATGGCACCTTAGTCATTAAAGAAGCAACAGC TTATGACAGAGGAAACTATATCTGTAAGGCTCAAAATAGTGTTGGTCATACACTGATTACTGTTCCAG TAATGATTGTAGCCTACCCTCCCCGAATTACAAATCGTCCACCCAGGAGTATTGTCACCAGGACAGGG GCAGCCTTTCAGCTCCACTGTGTGGCCTTGGGAGTTCCCAAGCCAGAAATCACATGGGAGATGCCTGA CCACTCCCTTCTCTCAACGGCAAGTAAAGAGAGGACACATGGAAGTGAGCAGCTTCACTTACAAGGTA CCCTAGTCATTCAGAATCCCCAAACCTCCGATTCTGGGATATACAAATGCACAGCAAAGAACCCACTT GGTAGTGATTATGCAGCAACGTATATTCAAGTAATCTGACATGAAATAATAAAGTC
NOV29ak, SNP13376523 of SEQ ID NO: 738 2617 aa MW at 290181. lkD
CG55776-01, Protein Sequence JSNP Pos: 61 SNP Change: Arg to His
MKVKGRGITCLLVSFAVICLVATPGGKACPRRCACYMPTEVHCTFRYLTSIPDSIPPNVEHINLGYNS
LWLMETDFSGLT---αJELLMLHSNGIHTIPDKTFSDLQALQWL- LrøSYN
RL-----MDH---TOIEFINPEVFYGLNFLRLVHLEGNQLTKLHPDTFVSLSYLQIFKISFIKFLYLSDNFLTSL
PQEMVSYMPDLDSLYLHGNP TCDCHL-CTLSDWIQEKPGIYIVLPDVIKCKKDRSPSSAQQCPLCMNP
RTSKGKPLAMVSAAAFQCAKPTIDSSLKSKSLTILEDSSSAFISPQGFMAPFGSLTLNMTDQSGNEAN
MVCSIQKPSRTSPIAFTEENDYIVLNTSFSTFLVCNIDYGHIQPV QILALYSDSPLILERSHLLSET
PQLYYKYKQVAPKPEDIFTNIEADLRADPSWLMQDQISLQLNRTATTFSTLQIQYSSDAQITLPRAEM RPV-KHK TMISRDNNTKLEHTVLVGGTVGLNCPGQGDPTPHVD LL-ADGS-KV-RAPYVSED
GKLELQMADSFDTGVYHCISSNYDDADILTYRITWEPLVEAYQENGIHHTVFIGETLDLPCHSTGIP
DASISWVIPGNNVLYQSSRDKKVLNNGTLRILQVTPKDQGYYRCVAANPSGVDFLIFQVSVKMKGQRP
LEHDGETEGSGLDESNPIAHLKEPPGAQLRTSALMEAEVGKHTSSTSKRHNYRELTLQRRGDSTHRRF
RENRRHFPPSARRIDPQH AALLEKAKKNAMPDKRENTTVSPPPWTQLPNIPGEEDDSSGMLALHEΞ
F^- PA KA LPARTVTADSRTISDSPMTNINYGTEFSPVVNSQILPPEEPTDFKLSTA KTTA SKN
INPTMSSQIQGTTNQHSSTVFPLLLGATEFQDSDQMGRGREHFQSRPPITVRTMI-iπ)V---TVKMLSSTTN
KLLLESVNTTNSHQTSVREVSEPRHNHFYSHTTQILSTSTFPSDPHTAAHSQFPIPRNSTVNIPLFRR
FGRQRKIGGRGRIISPYRTPVLRRHRYSIFRSTTRGSSEKSTTAFSATVLNVTCLSCLPRERLTTATA
ALSFPSAAPITFPKADI-ARVPSEESTTLVQNPLLLLENKPSVEKTTPTIKYFRTEISQVTPTGAVMTY
APTSIPMEKTHKVNASYPRVSSTNEAKRDSVITSSLSGAITKPPMTIIAITRFSRRKIP QQNFVNNH
NPKGRLRNQHKVSLQKSTAVMLPKTSPALPQRQSLPSHHTTTKTHNPGSLPTKKELPFPPLNPMLPSI
ISKDSSTKSIISTQTAIPATTPTFPASVITYΞTQTERSRAQTIQREQEPQKKNRTDPNISPDQSSGFT
TPTAMTPPVLTTAETSVKPSVSAFTHSPPENTTGISSTISFHSRTLNLTDVIEELAQASTQTLKSTIA
SETTLSSKSHQSTTTRKAIIRHSTIPPFLSSSATLMPVPISPPFTQRAVTD---WATPISGLMTNTVVKL
HESSRHNAKPQQLVAEVATSPKVHPNAKFTIGTTHFIYSNLLHSTPMPALTTVKSQNSKLTPSP AEN
QFWHKPYSEIAEKGKKPEVSMLATTGLSEATTLVSDWDGQKNTKKSDFDKKPVQEATTSKLLPFDSLS
RYIFEKPRIVGGKAASFTIPANSDAFLPCEAVGNPLPTIH TRVPSGMSGLDLSKRKQNSRVQVLPNG
TLSIQRVΕIQDRGQYLCSASl^FGTDHLHVTLSVVSYPPRILERRTKEITVHSGSTVELKCRAEGRPS
PTVTWILA-NQTWSESSQGSRQAWTVDGTLVLHNLSIYDRGFYKCVASNPGGQDSLLVKIQVIAAPP
VILEQRRQVIVGTWGESLKLPCTAKGTPQPSVYWVLSDGTEVKPLQFTNSKLFLFSNGTLYIRNLASS
DRGTYECIATSSTGSERRWMLTMEERVTSPRIEAASQKRTEVNFGDKLLLNCSATGEPKPQIM RLP
SKAVVDQQHRVGS IHVYPNGSLFIGSVTE---X.SGVYLCVARNKMGDDLILMHVSLRLKPAKIDHKQYF
RKQVLHGKDFQVDCKASGSPVPEISWSLPDGTMI---TM-AMQADDSGHRTRRYTLFffl-JGTLYFNKVGVAEE
GDYTCYAQNTLG---T)EMKVHLTVITAAPRIRQSNKTNKRIKAGDTAVLDCEVTGDPKPKIF LLPSNDM
ISFSIDRYTFHANGSLTINKVKLLDSGEYVCVA-i-U-JPSGDDTKMYKLDVVSKPPLINGLYTNRTVIKAT
AVRHSKKHFDCR-AEGTPSPEVMWIMPDNIFLTAPYYGSRITVHKNGTLEIRNVRLSDSADFICVARNE
GGESVLWQLEVLEMLRRPTFRNPFNEKIVAQLGKSTALNCSVDGNPPPEIIWILPNGTRFSNGPQSY
QYLIASNGSFIISKTTREDAGKYRCAARNKVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHC
VSDGIPKPNIKWTMPSGYWDRPQINGKYILHDNGTLVIKEATAYDRG YICKAQNSVGHTLITVPVM
IVAYPPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHSLLSTASKERTHGSEQLHLQGTL
VIQNPQTSDSGIYKCTAKNPLGSDYAATYIQVI
NOV29al, SNP13376524 of SEQ ID NO: 739 7876 bp CG55776-01, DNA Sequence ORF Start: ATG at 6 ORF Stop: TGA at 7857
SNP Pos: 251 SNP Change: Ato T
TCAGGATGAAGGTAAAAGGCAGAGGAATCACCTGCTTGCTGGTCTCCTTTGCTGTGATCTGCCTGGTC
IT
GCCACCCCTGGGGGCAAGGCCTGTCCTCGCCGCTGTGCCTGTTATATGCCTACGGAGGTACACTGCAC
ATTTCGGTACCTGACTTCCATCCCAGACAGCATCCCGCCCAATGTGGAACGCATCAATTTAGGGTACA
ACAGCTTGGTTAGATTGATGGAAACAGATTTTTCTGGCCTGACCAATCTGGAGTTACTCATGCTTCAC
AGCAATGGCATTCACACAATCCCTGACAAGACCTTCTCAGATTTGCAGGCCTTGCAGGTGAGACTGAT
GGTCTTAAAAATGAGCTATAATAAAGTCCGAAAACTTCAGAAAGATACTTTTTATGGCCTCAGGAGCT
TGACACGATTGCACATGGACCACAACAATATTGAGTTTATAAACCCAGAGGTTTTTTATGGGCTCAAC
TTTCTCCGCCTGGTGCACTTGGAAGGAAATCAGCTCACTAAGCTCCACCCAGATACATTTGTCTCTTT
GAGCTACCTCCAGATATTTAAAATCTCTTTCATTAAGTTCCTATACTTGTCTGATAACTTCCTGACCT
CCCTCCCTCAAGAGATGGTCTCCTATATGCCTGACCTAGACAGCCTTTACCTGCATGGAAACCCATGG
ACCTGTGATTGCCATTTAAAGTGGTTGTCTGACTGGATACAGGAGAAGCCAGGTATCTATATTGTNTT
ACCAGATGTAATAAAATGCAAAAAAGATAGAAGTCCCTCTAGTGCTCAGCAGTGTCCACTTTGCATGA
ACCCTAGGACTTCTAAAGGCAAGCCGTTAGCTATGGTCTCAGCTGCAGCTTTCCAGTGTGCCAAGCCA
ACCATTGACTCATCCCTGAAATCAAAGAGCCTGACTATTCTGGAAGACAGTAGTTCTGCTTTCATCTC
TCCCCAAGGTTTCATGGCACCCTTTGGCTCCCTCACTTTGAATATGACAGATCAGTCTGGAAATGAAG
CTAACATGGTCTGCAGTATTCAAAAGCCCTCAAGGACATCACCCATTGCATTCACTGAAGAAAATGAC
TACATCGTGCTAAATACTTCATTTTCAACATTTTTGGTGTGCAACATAGATTACGGTCACATTCAGCC
AGTGTGGCAAATTTTGGCTTTGTACAGTGATTCTCCTCTGATACTAGAAAGGAGCCACTTGCTTAGTG
AAACACCGCAGCTCTATTACAAATATAAACAGGTGGCTCCTAAGCCTGAAGACATTTTTACCAACATA
GAGGCAGATCTCAGAGCAGATCCCTCTTGGTTAATGCAAGACCAAATTTCCTTGCAGCTGAACAGAAC
TGCCACCACATTCAGTACATTACAGATCCAGTACTCCAGTGATGCTCAAATCACTTTACCAAGAGCAG
AGATGAGGCCAGTGAAACACAAATGGACTATGATTTCAAGGGATAACAATACTAAGCTGGAACATACT
GTCTTGGTAGGTGGAACCGTTGGCCTGAACTGCCCAGGCCAAGGAGACCCCACCCCACACGTGGATTG
GCTTCTAGCTGATGGAAGTAAAGTGAGAGCCCCTTATGTCAGTGAGGATGGACGGATCCTAATAGACA
AAAGTGGAAAATTGGAACTCCAGATGGCTGATAGTTTTGACACAGGCGTATATCACTGTATAAGCAGC
AATTATGATGATGCAGATATTCTCACCTATAGGATAACTGTGGTAGAACCTTTGGTCGAAGCCTATCA
GGAAAATGGGATTCATCACACAGTTTTCATTGGTGAAACACTTGATCTTCCATGCCATTCTACTGGTA
TCCCAGATGCCTCTATTAGCTGGGTTATTCCAGGAAACAATGTGCTCTATCAGTCATCAAGAGACAAG
AAAGTTCTAAACAATGGCACATTAAGAATATTACAGGTCACCCCGAAAGACCAAGGTTATTATCGCTG
TGTGGCAGCCAACCCATCAGGGGTTGATTTTTTGATTTTCCAAGTTTCAGTCAAGATGAAAGGACAAA
GGCCCTTGGAGCATGATGGAGAAACAGAGGGATCTGGACTTGATGAGTCCAATCCTATTGCTCATCTT
AAGGAGCCACCAGGTGCACAACTCCGTACATCTGCTCTGATGGAGGCTGAGGTTGGAAAACACACCTC
AAGCACAAGTAAGAGGCACAACTATCGGGAATTAACACTCCAGCGACGTGGAGATTCAACACATCGAC:
GTTTTAGGGAGAATAGGAGGCATTTCCCTCCCTCTGCTAGGAGAATTGACCCACAACATTGGGCGGCA
CTGTTGGAGAAAGCTAAAAAGAATGCTATGCCAGACAAGCGAGAAAATACCACAGTGAGCCCACCCCC
AGTGGTCACCCAACTCCCAAACATACCTGGTGAAGAAGACGATTCCTCAGGCATGCTCGCTCTACATG1
AGGAATTTATGGTCCCGGCCACTAAAGCTTTGAACCTTCCAGCAAGGACAGTGACTGCTGACTCCAGAI
ACAATATCTGATAGTCCTATGACAAACATAAATTATGGCACAGAATTCTCTCCTGTTGTGAATTCACAI
AATACTACCACCTGAAGAACCCACAGATTTCAAACTGTCTACTGCTATTAAAACTACAGCCATGTCAA
AGAATATAAACCCAACCATGTCAAGCCAAATACAAGGCACAACCAATCAACATTCATCCACTGTCTTT
CCACTGCTACTTGGAGCAACTGAATTTCAGGACTCTGACCAGATGGGAAGAGGAAGAGAGCATTTCCAJ
AAGTAGACCCCCAATAACAGTAAGGACTATGATCAAAGATGTCAATGTCAAAATGCTTAGTAGCACCA;
CCAACAAACTATTATTAGAGTCAGTAAATACCACAAATAGTCATCAGACATCTGTAAGAGAAGTGAGT; GAACCCAGGCACAATCACTTCTATTCTCACACTACTCAAATACTTAGCACCTCCACGTTCCCTTCAGA: TCCACACACAGCTGCTCATTCTCAGTTTCCGATCCCTAGAAATAGTACAGTTAACATCCCGCTGTTCAI GACGCTTTGGGAGGCAGAGGAAAATTGGCGGAAGGGGGCGGATTATCAGCCCATATAGAACTCCAGTT CTGCGACGGCATAGATACAGCATTTTCAGGTCAACAACCAGAGGTTCTTCTGAAAAAAGCACTACTGC ATTCTCAGCCACAGTGCTCAATGTGACATGTCTGTCCTGTCTTCCCAGGGAGAGGCTCACCACTGCCA CAGCAGCATTGTCTTTTCCAAGTGCTGCTCCCATCACCTTCCCCAAAGCTGACATTGCTAGAGTCCCA
TCAGAAGAGTCTACAACTCTAGTCCAGAATCCACTATTACTACTTGAGAACAAACCCAGTGTAGAGAA AACAACACCCACAATAΆAATATTTCAGGACTGAAATTTCCCAAGTGACTCCAACTGGTGCAGTCATGA CATATGCTCCAACATCCATACCCATGGAAAAAACTCACAAAGTAAACGCCAGTTACCCACGTGTGTCT AGCACCAATGAAGCTAAAAGAGATTCAGTGATTACATCGTCACTTTCAGGTGCTATCACCAAGCCACC AATGACTATTATAGCCATTACAAGGTTTTCAAGAAGGAAAATTCCCTGGCAACAGAACTTTGTAAATA ACCATAACCCAAAΆGGCAGATTAAGGAATCAACATAAAGTTAGTTTACAAAAAAGCACAGCTGTGATG CTTCCTAAAACATCTCCTGCTTTACCACAGAGACAAAGTCTCCCCTCGCACCACACTACGACCAAAAC ACACAATCCTGGAAGTCTTCCAACAAAGAAGGAGCTTCCCTTCCCACCCCTTAACCCTATGCTTCCTA GTATTATAAGCAAAGACTCAAGTACAAAAAGCATCATATCAACGCAAACAGCAATACCAGCAACAACT CCTACCTTCCCTGCATCTGTCATCACTTATGAAACCCAAACAGAGAGATCTAGAGCACAAACAATACA AAGAGAACAGGAGCCTC TCACTACACCCACTGCTATGACACCTCCTGTTCTAACCACAGCCGAAACTTCAGTCAAGCCCAGTGTC TCTGCATTCACTCATTCCCCACCAGAAAACACAACTGGGATTTCAAGCACAATCAGTTTTCATTCAAG AACTCTTAATCTGACAGATGTGATTGAAGAACTAGCCCAAGCAAGTACTCAGACTTTGAAGAGCACAA TTGCTTCTGAAACAACTTTGTCCAGCAAATCACACCAGAGTACCACAACTAGGAAAGCAATCATTAGA CACTCAACCATACCACCATTCTTGAGCAGCAGTGCTACTCTAATGCCAGTTCCCATCTCCCCTCCCTT TACTCAGAGAGCAGTTACTGACAACGTGGCGACTCCCATTTCCGGGCTTATGACAAATACAGTGGTCA AGCTGCACGAATCCTCAAGGCACAATGCTAAACCACAGCAATTAGTAGCAGAGGTTGCAACATCCCCC AAGGTTCACCCAAATGCCAAGTTCACAATTGGAACCACTCACTTCATCTACTCTAATCTGTTACATTC TACTCCCATGCCAGCACTAACAACAGTTAAATCACAGAATTCTAAATTAACTCCATCTCCCTGGGCAG AAAACCAATTTTGGCACAAACCATACTCAGAAATTGCTGAAAAAGGCAAAAAGCCAGAAGTAAGCATG TTGGCTACTACAGGCCTGTCCGAGGCCACCACTCTTGTTTCAGATTGGGATGGACAGAAGAACACAAA GAAGAGTGACTTTGATAAGAAACCAGTTCAAGAAGCAACAACTTCCAAACTCCTTCCCTTTGACTCTT TGTCTAGGTATATATTTGAAAAGCCCAGGATAGTTGGAGGAAAAGCTGCAAGTTTTACTATTCCAGCT AACTCAGATGCCTTTCTTCCCTGTGAAGCTGTTGGAAATCCCCTGCCCACCATTCATTGGACCAGAGT CCCATCAGGTATGTCAGGACTTGATTTATCTAAGAGGAAACAGAATAGCAGGGTCCAGGTTCTCCCCA ATGGTACCCTGTCCATCCAGAGGGTGGAAATTCAGGACCGCGGACAGTACTTGTGTTCCGCATCCAAT CTGTTTGGCACAGACCACCTTCATGTCACCTTGTCTGTGGTTTCCTATCCTCCCAGGATCCTGGAGAG ACGTACCAAAGAGATCACAGTTCATTCCGGAAGCACTGTGGAACTGAAGTGCAGAGCAGAAGGTAGGC CAAGCCCTACAGTTACCTGGATTCTTGCAAACCAAACAGTTGTCTCAGAATCATCCCAGGGAAGTAGG CAGGCTGTGGTGACGGTTGACGGAACATTGGTCCTCCACAATCTCAGTATTTATGACCGTGGCTTTTA CAAATGTGTGGCCAGCAACCCAGGTGGCCAGGATTCACTGCTGGTTAAAATACAAGTCATTGCAGCAC CACCTGTTATTCTAGAGCAAAGGAGGCAAGTCATTGTAGGCACTTGGGGTGAAAGTTTAAAACTGCCC TGTACTGCAAAAGGAACTCCTCAGCCCAGCGTTTACTGGGTCCTCTCTGATGGCACTGAAGTGAAACC ATTACAGTTTACCAATTCCAAGTTGTTCTTATTTTCAAATGGGACTTTGTATATAAGAAACCTAGCCT CTTCAGACAGGGGCACTTATGAATGCATTGCTACCAGTTCCACTGGTTCGGAGCGAAGAGTAGTAATG CTTACAATGGAAGAGCGAGTGACCAGCCCCAGGATAGAAGCTGCATCCCAGAAAAGGACTGAAGTGAA TTTTGGGGACAAATTACTACTGAACTGCTCAGCCACTGGGGAGCCCAAACCCCAAATAATGTGGAGGT TACCATCCAAGGCTGTGGTCGACCAGCAGCATAGGGTGGGCAGCTGGATCCACGTCTACCCTAATGGA TCCCTGTTTATTGGATCAGTAACAGAAAAAGACAGTGGTGTCTACTTGTGTGTGGCAAGAAACAAAAT GGGGGATGATCTGATACTGATGCATGTTAGCCTAAGACTGAAACCTGCCAAAATTGACCACAAGCAGT ATTTTAGAAAGCAAGTGCTCCATGGGAAAGATTTCCAAGTAGATTGCAAAGCTTCCGGCTCCCCAGTG CCAGAGATATCTTGGAGTTTGCCTGATGGAACCATGATCAACAATGCAATGCAAGCCGATGACAGTGG CCACAGGACTAGGAGATATACCCTTTTCAACAATGGAACTTTATACTTCAACAAAGTTGGGGTAGCGG AGGAAGGAGATTATACTTGCTATGCCCAGAACACCCTAGGGAAAGATGAAATGAAGGTCCACTTAACA GTTATAACAGCTGCTCCCCGGATAAGGCAGAGTAACAAAACCAACAAGAGAATCAAAGCTGGAGACAC AGCTGTCCTTGACTGTGAGGTCACTGGGGATCCCAAACCAAAAATATTTTGGTTGCTGCCTTCCAATG ACATGATTTCCTTCTCCATTGATAGGTACACATTTCATGCCAATGGGTCTTTGACCATCAACAAAGTG AAACTGCTCGATTCTGGAGAGTACGTATGTGTAGCCCGAAATCCCAGTGGGGATGACACCAAAATGTA
CAAACTGGATGTGGTCTCTAAACCTCCATTAATCAATGGTCTGTATACAAACAGAACTGTTATTAAAG CCACAGCTGTGAGACATTCCAAAAAACACTTTGACTGCAGAGCTGAAGGGACACCATCTCCTGAAGTC ATGTGGATCATGCCAGACAATATTTTCCTCACAGCCCCATACTATGGAAGCAGAATCACAGTCCATAA AAATGGAACCTTGGAAATTAGGAATGTGAGGCTTTCAGATTCAGCCGACTTTATCTGTGTGGCCCGAA ATGAAGGTGGAGAGAGCGTGTTGGTAGTACAGTTAGAAGTACTGGAAATGCTGAGAAGACCGACATTT AGAAATCCATTTAATGAAAAAATAGTTGCCCAGCTGGGAAAGTCCACAGCATTGAATTGCTCTGTTGA TGGTAACCCACCACCTGAAATAATCTGGATTTTACCAAATGGCACACGATTTTCCAATGGACCACAAA GTTATCAGTATCTGATAGCAAGCAATGGTTCTTTTATCATTTCTAAAACAACTCGGGAGGATGCAGGA AAATATCGCTGTGCAGCTAGGAATAAAGTTGGCTATATTGAGAAATTAGTCATATTAGAAATTGGCCA GAAGCCAGTTATTCTTACCTATGCACCAGGGACAGTAAAAGGCATCAGTGGAGAATCTCTATCACTGC ATTGTGTGTCTGATGGAATCCCTAAGCCAAATATCAAATGGACTATGCCAAGTGGTTATGTAGTAGAC AGGCCTCAAATTAATGGGAAATACATATTGCATGACAATGGCACCTTAGTCATTAAAGAAGCAACAGC TTATGACAGAGGAAACTATATCTGTAAGGCTCAAAATAGTGTTGGTCATACACTGATTACTGTTCCAG TAATGATTGTAGCCTACCCTCCCCGAATTACAAATCGTCCACCCAGGAGTATTGTCACCAGGACAGGG GCAGCCTTTCAGCTCCACTGTGTGGCCTTGGGAGTTCCCAAGCCAGAAATCACATGGGAGATGCCTGA CCACTCCCTTCTCTCAACGGCAAGTAAAGAGAGGACACATGGAAGTGAGCAGCTTCACTTACAAGGTA CCCTAGTCATTCAGAATCCCCAAACCTCCGATTCTGGGATATACAAATGCACAGCAAAGAACCCACTT GGTAGTGATTATGCAGCAACGTATATTCAAGTAATCTGACATGAAATAATAAAGTC
NOV29al, SNP13376524 of SEQ ID NO: 740 2617 aa M at 290186.1kD CG55776-01, Protein Sequence SNP Pos: 82 SNP Change: Lys to Asn jMKVKGRGITCLLVSFAVICLVATPGG-KACPRRCACYMPTEVHCTFRYLTSIPDSIPPNVERINLGYlTS LVRLMETDFSGLTNLELLMLHSNGIHTIPDKTFSDLQALQVRLMVLKMSYNKVRKLQKDTFYGLRSLT
RLHMDHNNIEFINPΞVFYGLNFLRLVHLEGNQLTKLHPDTFVSLSYLQIFKISFIKFLYLSDNFLTSL
PQEMVSYMPDLDSLYLHGNPWTCDCHLKWLSDWIQEKPGIYIVLPDVIKCKKDRSPSSAQQCPLCMNP
RTSKGKPLAMVSAAAFQCAKPTIDSSLKSKSLTILEDSSSAFISPQGFMAPFGSLTLNMTDQSGNEAN
MVCSIQKPSRTSPIAFTEENDYIVLNTSFSTFLVCNIDYGHIQPV QILALYSDSPLILERSHLLSET
PQLYYKYKQVAPKPEDIFTNIEADLRADPS LMQDQISLQLNRTATTFSTLQIQYSSDAQITLPRAEM
RPVKHK- TMISRD---TNTKLEHTVLVGGTVGLNCPGQGDPTPHVD LL-? DGSKV-^
GKLΞLQMADSFDTGVYHCISSNYDDADILTYRITWEPLVEAYQENGIHHTVFIGETLDLPCHSTGIP
DASIS IPGN-r-WLYQSSRDKKVLlsπ-TGTLRILQV^
LEHDGETEGSGLDESNPIAHLKEPPGAQLRTSALMEAEVGKHTSSTSKRHNYRELTLQRRGDSTHRRF
RE--^RHFPPSARRIDPQH AALLEKAKKNAMPDKRENTTVSPPPVVTQLPNIPGEEDDSSGMLALHEE
FMVPATIALNLPARTVTADSRTISDSPMTNINYGTEFSPVVNSQILPPEEPTDFKLSTAIKTTAMSKN
INPTMSSQIQGTTNQHSSTVFPLLLGATEFQDSDQMGRGREHFQSRPPITVRTMI---vT>V VKMLSSTTN
KLLLESVNTTNSHQTSVREVSEPRHl-raFYSHTTQILSTSTFPSDPHTAAHSQFPIPRNSTVNIPLFRR
FGRQRKIGGRGRIISPYRTPVLRRHRYSIFRSTTRGSSEKSTTAFSATVLNVTCLSCLPRERLTTATA
ALSFPSAAPITFPKADIARVPSEESTTLVQNPLLLLENKPSVEKTTPTIKYFRTEISQVTPTGAVMTY
APTSIPMEKTHKVNASYPRVSSTNEAKRDSVITSSLSGAITKPPMTIIAITRFSRRKIP QQNFVNNH
NPKGRLR-I-.QHKVSLQKSTAVMLPKTSPALPQRQSLPSHHTTTKTHNPGSLPTKKELPFPPLNPMLPSI
ISKDSSTKSIISTQTAIPATTPTFPASVITYETQTERSRAQTIQREQEPQKKNRTDPNISPDQSSGFT
TPTAMTPPVLTTAETSVKPSVSAFTHSPPENTTGISSTISFHSRTLNLTDVIEELAQASTQTLKSTIA
SETTLSSKSHQSTTTRKAIIRHSTIPPFLSSSATLMPVPISPPFTQRAVTDNVATPISGLMTNTWKL
HESSRHNAKPQQLVAEVATSPKVHPNAKFTIGTTHFIYSNLLHSTPMPALTTVKSQNSKLTPSP AElvT
QFWHKPYSEIAEKGKKPEVSMLATTGLSEATTLVSD DGQKNTKKSDFDKKPVQEATTSKLLPFDSLS
RYIFEKPRIVGGKAASFTIPANSDAFLPCEAVGNPLPTIH TRVPSGMSGLDLSKRKQNSRVQVLPNG
TLSIQRVEIQDRGQYLCSASNLFGTDHLHVTLSWSYPPRILERRTKEITVHSGSTVELKCRAEGRPS
PTVT ILANQTWSESSQGSRQAWTVDGTLVLHNLSIYDRGFYKCVASNPGGQDSLLVKIQVIAAPP
VILEQRRQVIVGT GESLra- PCTAKGTPQPSVYWVLSDGTEVKPLQFTNSKLFLFSNGTLYIRNLASS
DRGTYECIATSSTGSERRWMLTMEERVTSPRIEAASQKRTEVNFGDKLLLNCSATGEPKPQIM RLP
SKAWDQQHRVGSWIHVYPNGSLFIGSVTEKDSGVYLCVARNKMGDDLILMHVSLRLKPAKIDHKQYF
RKQVLHGKDFQVDCKASGSPVPEIS SLPDGTMI---TOAMQADDSGHRTRRYTLFN-1-.GTLYFNKVGVAEE
GDYTCYAQNTLGKDEMKVHLTVITAAPRIRQSNKTNKRIKAGDTAVLDCEVTGDPKPKIFWLLPSNDM
ISFSIDRYTFH-ANGSLTIN-KVKLLDSGEYVCVARNPSGDDTKMYKLDVVSKPPLINGLYTNRTVIKAT
AVRHSKKHFDCR-AEGTPSPEVM IMPDNIFLTAPYYGSRITVH-- GTLEIRNVRLSDS-ADFICVARNE
GGESVLWQLEVLEMLRRPTFRNPFNEKIVAQLGKSTALNCSVDGNPPPEII ILPNGTRFSNGPQSY
QYLIASNGSFIISKTTREDAGKYRCAARNKVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHC
VSDGIPKPNI---σ.TMPSGYVVDRPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVM
IVAYPPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHSLLSTASKERTHGSEQLHLQGTL
VIQNPQTSDSGIYKCTAKNPLGSDYAATYIQVI-
NOV29am, SNP 13376525 of SEQ ID NO: 741 7876 bp CG55776-01, DNA Sequence ORF Start: ATG at 6 ORF Stop: TGA at .7857
SNP Pos: 493 SNP Change: A to G
TCAGGATGAAGGTAAAAGGCAGAGGAATCACCTGCTTGCTGGTCTCCTTTGCTGTGATCTGCCTGGTC
GCCACCCCTGGGGGCAAGGCCTGTCCTCGCCGCTGTGCCTGTTATATGCCTACGGAGGTACACTGCAC: ATTTCGGTACCTGACTTCCATCCCAGACAGCATCCCGCCCAATGTGGAACGCATCAATTTAGGGTACA ACAGCTTGGTTAGATTGATGGAAACAGATTTTTCTGGCCTGACCAAACTGGAGTTACTCATGCTTCAC GCAATGGCATTCACACAATCCCTGACAAGACCTTCTCAGATTTGCAGGCCTTGCAGGTGAGACTGAT GGTCTTAAAAATGAGCTATAATAAAGTCCGAAAACTTCAGAAAGATACTTTTTATGGCCTCAGGAGCT TGACACGATTGCACATGGACCACAACAATATTGAGTTTATAAACCCAGAGGTTTTTTATGGGCTCAAC TTTCTCCGCCTGGTGCGCTTGGAAGGAAATCAGCTCACTAAGCTCCACCCAGATACATTTGTCTCTTT: GAGCTACCTCCAGATATTTAAAATCTCTTTCATTAAGTTCCTATACTTGTCTGATAACTTCCTGACCT CCCTCCCTCAAGAGATGGTCTCCTATATGCCTGACCTAGACAGCCTTTACCTGCATGGAAACCCATGG1 ACCTGTGATTGCCATTTAAAGTGGTTGTCTGACTGGATACAGGAGAAGCCAGGTATCTATATTGTNTT: ACCAGATGTAATAAAATGCAAAAAAGATAGAAGTCCCTCTAGTGCTCAGCAGTGTCCACTTTGCATGA CCCTAGGACTTCTAAAGGCAAGCCGTTAGCTATGGTCTCAGCTGCAGCTTTCCAGTGTGCCAAGCCA ACCATTGACTCATCCCTGAAATCAAAGAGCCTGACTATTCTGGAAGACAGTAGTTCTGCTTTCATCTC TCCCCAAGGTTTCATGGCACCCTTTGGCTCCCTCACTTTGAATATGACAGATCAGTCTGGAAATGAAG CTAACATGGTCTGCAGTATTCAAAAGCCCTCAAGGACATCACCCATTGCATTCACTGAAGAAAATGAC TACATCGTGCTAAATACTTCATTTTCAACATTTTTGGTGTGCAACATAGATTACGGTCACATTCAGCC AGTGTGGCAAATTTTGGCTTTGTACAGTGATTCTCCTCTGATACTAGAAAGGAGCCACTTGCTTAGTG; AAACACCGCAGCTCTATTACAAATATAAACAGGTGGCTCCTAAGCCTGAAGACATTTTTACCAACATA GAGGCAGATCTCAGAGCAGATCCCTCTTGGTTAATGCAAGACCAAATTTCCTTGCAGCTGAACAGAAC TGCCACCACATTCAGTACATTACAGATCCAGTACTCCAGTGATGCTCAAATCACTTTACCAAGAGCAG AGATGAGGCCAGTGAAACACAAATGGACTATGATTTCAAGGGATAACAATACTAAGCTGGAACATACT GTCTTGGTAGGTGGAACCGTTGGCCTGAACTGCCCAGGCCAAGGAGACCCCACCCCACACGTGGATTG GCTTCTAGCTGATGGAAGTAAAGTGAGAGCCCCTTATGTCAGTGAGGATGGACGGATCCTAATAGACA !AAAGTGGAAAATTGGAACTCCAGATGGCTGATAGTTTTGACACAGGCGTATATCACTGTATAAGCAGC AATTATGATGATGCAGATATTCTCACCTATAGGATAACTGTGGTAGAACCTTTGGTCGAAGCCTATCA GGAAAATGGGATTCATCACACAGTTTTCATTGGTGAAACACTTGATCTTCCATGCCATTCTACTGGTA TCCCAGATGCCTCTATTAGCTGGGTTATTCCAGGAAACAATGTGCTCTATCAGTCATCAAGAGACAAG AAAGTTCTAAACAATGGCACATTAAGAATATTACAGGTCACCCCGAAAGACCAAGGTTATTATCGCTG TGTGGCAGCCAACCCATCAGGGGTTGATTTTTTGATTTTCCAAGTTTCAGTCAAGATGAAAGGACAAA GGCCCTTGGAGCATGATGGAGAAACAGAGGGATCTGGACTTGATGAGTCCAATCCTATTGCTCATCTT AAGGAGCCACCAGGTGCACAACTCCGTACATCTGCTCTGATGGAGGCTGAGGTTGGAAAACACACCTC AAGCACAAGTAAGAGGCACAACTATCGGGAATTAACACTCCAGCGACGTGGAGATTCAACACATCGAC GTTTTAGGGAGAATAGGAGGCATTTCCCTCCCTCTGCTAGGAGAATTGACCCACAACATTGGGCGGCA CTGTTGGAGAAAGCTAAAAAGAATGCTATGCCAGACAAGCGAGAAAATACCACAGTGAGCCCACCCCC AGTGGTCACCCAACTCCCAAACATACCTGGTGAAGAAGACGATTCCTCAGGCATGCTCGCTCTACATG AGGAATTTATGGTCCCGGCCACTAAAGCTTTGAACCTTCCAGCAAGGACAGTGACTGCTGACTCCAGA ACAATATCTGATAGTCCTATGACAAACATAAATTATGGCACAGAATTCTCTCCTGTTGTGAATTCACA AATACTACCACCTGAAGAACCCACAGATTTCAAACTGTCTACTGCTATTAAAACTACAGCCATGTCAA AGAATATAAACCCAACCATGTCAAGCCAAATACAAGGCACAACCAATCAACATTCATCCACTGTCTTT CCACTGCTACTTGGAGCAACTGAATTTCAGGACTCTGACCAGATGGGAAGAGGAAGAGAGCATTTCCA AAGTAGACCCCCAATAACAGTAAGGACTATGATCAAAGATGTCAATGTCAAAATGCTTAGTAGCACCA CCAACAAACTATTATTAGAGTCAGTAAATACCACAAATAGTCATCAGACATCTGTAAGAGAAGTGAGT GAACCCAGGCACAATCACTTCTATTCTCACACTACTCAAATACTTAGCACCTCCACGTTCCCTTCAGA TCCACACACAGCTGCTCATTCTCAGTTTCCGATCCCTAGAAATAGTACAGTTAACATCCCGCTGTTCA GACGCTTTGGGAGGCAGAGGAAAATTGGCGGAAGGGGGCGGATTATCAGCCCATATAGAACTCCAGTT CTGCGACGGCATAGATACAGCATTTTCAGGTCAACAACCAGAGGTTCTTCTGAAAAAAGCACTACTGC ATTCTCAGCCACAGTGCTCAATGTGACATGTCTGTCCTGTCTTCCCAGGGAGAGGCTCACCACTGCCA CAGCAGCATTGTCTTTTCCAAGTGCTGCTCCCATCACCTTCCCCAAAGCTGACATTGCTAGAGTCCCA
TCAGAAGAGTCTACAACTCTAGTCCAGAATCCACTATTACTACTTGAGAACAAACCCAGTGTAGAGAA AACAACACCCACAATAAAATATTTCAGGACTGAAATTTCCCAAGTGACTCCAACTGGTGCAGTCATGA CATATGCTCCAACATCCATACCCATGGAAAAAACTCACAAAGTAAACGCCAGTTACCCACGTGTGTCT AGCACCAATGAAGCTAAAAGAGATTCAGTGATTACATCGTCACTTTCAGGTGCTATCACCAAGCCACC AATGACTATTATAGCCATTACAAGGTTTTCAAGAAGGAAAATTCCCTGGCAACAGAACTTTGTAAATA ACCATAACCCAAAAGGCAGATTAAGGAATCAACATAAAGTTAGTTTACAAAAAAGCACAGCTGTGATG CTTCCTAAAACATCTCCTGCTTTACCACAGAGACAAAGTCTCCCCTCGCACCACACTACGACCAAAAC ACACAATCCTGGAAGTCTTCCAACAAAGAAGGAGCTTCCCTTCCCACCCCTTAACCCTATGCTTCCTA GTATTATAAGCAAAGACTCAAGTACAAAAAGCATCATATCAACGCAAACAGCAATACCAGCAACAACT CCTACCTTCCCTGCATCTGTCATCACTTATGAAACCCAAACAGAGAGATCTAGAGCACAAACAATACA AAGAGAACAGGAGCCTCAAAAGAAGAACAGGACTGACCCAAACATCTCTCCAGACCAGAGTTCTGGCT TCACTACACCCACTGCTATGACACCTCCTGTTCTAACCACAGCCGAAACTTCAGTCAAGCCCAGTGTC TCTGCATTCACTCATTCCCCACCAGAAAACACAACTGGGATTTCAAGCACAATCAGTTTTCATTCAAG AACTCTTAATCTGACAGATGTGATTGAAGAACTAGCCCAAGCAAGTACTCAGACTTTGAAGAGCACAA TTGCTTCTGAAACAACTTTGTCCAGCAAATCACACCAGAGTACCACAACTAGGAAAGCAATCATTAGA CACTCAACCATACCACCATTCTTGAGCAGCAGTGCTACTCTAATGCCAGTTCCCATCTCCCCTCCCTT TACTCAGAGAGCAGTTACTGACAACGTGGCGACTCCCATTTCCGGGCTTATGACAAATACAGTGGTCA AGCTGCACGAATCCTCAAGGCACAATGCTAAACCACAGCAATTAGTAGCAGAGGTTGCAACATCCCCC AAGGTTCACCCAAATGCCAAGTTCACAATTGGAACCACTCACTTCATCTACTCTAATCTGTTACATTC TACTCCCATGCCAGCACTAACAACAGTTAAATCACAGAATTCTAAATTAACTCCATCTCCCTGGGCAG AAAACCAATTTTGGCACAAACCATACTCAGAAATTGCTGAAAAAGGCAAAAAGCCAGAAGTAAGCATG TTGGCTACTACAGGCCTGTCCGAGGCCACCACTCTTGTTTCAGATTGGGATGGACAGAAGAACACAAA GAAGAGTGACTTTGATAAGAAACCAGTTCAAGAAGCAACAACTTCCAAACTCCTTCCCTTTGACTCTT TGTCTAGGTATATATTTGAAAAGCCCAGGATAGTTGGAGGAAAAGCTGCAAGTTTTACTATTCCAGCT AACTCAGATGCCTTTCTTCCCTGTGAAGCTGTTGGAAATCCCCTGCCCACCATTCATTGGACCAGAGT CCCATCAGGTATGTCAGGACTTGATTTATCTAAGAGGAAACAGAATAGCAGGGTCCAGGTTCTCCCCA ATGGTACCCTGTCCATCCAGAGGGTGGAAATTCAGGACCGCGGACAGTACTTGTGTTCCGCATCCAAT CTGTTTGGCACAGACCACCTTCATGTCACCTTGTCTGTGGTTTCCTATCCTCCCAGGATCCTGGAGAG ACGTACCAAAGAGATCACAGTTCATTCCGGAAGCACTGTGGAACTGAAGTGCAGAGCAGAAGGTAGGC CAAGCCCTACAGTTACCTGGATTCTTGCAAACCAAACAGTTGTCTCAGAATCATCCCAGGGAAGTAGG CAGGCTGTGGTGACGGTTGACGGAACATTGGTCCTCCACAATCTCAGTATTTATGACCGTGGCTTTTA CAAATGTGTGGCCAGCAACCCAGGTGGCCAGGATTCACTGCTGGTTAAAATACAAGTCATTGCAGCAC CACCTGTTATTCTAGAGCAAAGGAGGCAAGTCATTGTAGGCACTTGGGGTGAAAGTTTAAAACTGCCC TGTACTGCAAAAGGAACTCCTCAGCCCAGCGTTTACTGGGTCCTCTCTGATGGCACTGAAGTGAAACC ATTACAGTTTACCAATTCCAAGTTGTTCTTATTTTCAAATGGGACTTTGTATATAAGAAACCTAGCCT CTTCAGACAGGGGCACTTATGAATGCATTGCTACCAGTTCCACTGGTTCGGAGCGAAGAGTAGTAATG CTTACAATGGAAGAGCGAGTGACCAGCCCCAGGATAGAAGCTGCATCCCAGAAAAGGACTGAAGTGAA TTTTGGGGACAAATTACTACTGAACTGCTCAGCCACTGGGGAGCCCAAACCCCAAATAATGTGGAGGT TACCATCCAAGGCTGTGGTCGACCAGCAGCATAGGGTGGGCAGCTGGATCCACGTCTACCCTAATGGA TCCCTGTTTATTGGATCAGTAACAGAAAAAGACAGTGGTGTCTACTTGTGTGTGGCAAGAAACAAAAT GGGGGATGATCTGATACTGATGCATGTTAGCCTAAGACTGAAACCTGCCAAAATTGACCACAAGCAGT ATTTTAGAAAGCAAGTGCTCCATGGGAAAGATTTCCAAGTAGATTGCAAAGCTTCCGGCTCCCCAGTG CCAGAGATATCTTGGAGTTTGCCTGATGGAACCATGATCAACAATGCAATGCAAGCCGATGACAGTGG CCACAGGACTAGGAGATATACCCTTTTCAACAATGGAACTTTATACTTCAACAAAGTTGGGGTAGCGG AGGAAGGAGATTATACTTGCTATGCCCAGAACACCCTAGGGAAAGATGAAATGAAGGTCCACTTAACA GTTATAACAGCTGCTCCCCGGATAAGGCAGAGTAACAAAACCAACAAGAGAATCAAAGCTGGAGACAC AGCTGTCCTTGACTGTGAGGTCACTGGGGATCCCAAACCAAAAATATTTTGGTTGCTGCCTTCCAATG ACATGATTTCCTTCTCCATTGATAGGTACACATTTCATGCCAATGGGTCTTTGACCATCAACAAAGTG AAACTGCTCGATTCTGGAGAGTACGTATGTGTAGCCCGAAATCCCAGTGGGGATGACACCAAAATGTA
CAAACTGGATGTGGTCTCTAAACCTCCATTAATCAATGGTCTGTATACAAACAGAACTGTTATTAAAG CCACAGCTGTGAGACATTCCAAAAAACACTTTGACTGCAGAGCTGAAGGGACACCATCTCCTGAAGTC ATGTGGATCATGCCAGACAATATTTTCCTCACAGCCCCATACTATGGAAGCAGAATCACAGTCCATAA AAATGGAACCTTGGAAATTAGGAATGTGAGGCTTTCAGATTCAGCCGACTTTATCTGTGTGGCCCGAA ATGAAGGTGGAGAGAGCGTGTTGGTAGTACAGTTAGAAGTACTGGAAATGCTGAGAAGACCGACATTT AGAAATCCATTTAATGAAAAAATAGTTGCCCAGCTGGGAAAGTCCACAGCATTGAATTGCTCTGTTGA TGGTAACCCACCACCTGAAATAATCTGGATTTTACCAAATGGCACACGATTTTCCAATGGACCACAAA GTTATCAGTATCTGATAGCAAGCAATGGTTCTTTTATCATTTCTAAAACAACTCGGGAGGATGCAGGA AAATATCGCTGTGCAGCTAGGAATAAAGTTGGCTATATTGAGAAATTAGTCATATTAGAAATTGGCCA GAAGCCAGTTATTCTTACCTATGCACCAGGGACAGTAAAAGGCATCAGTGGAGAATCTCTATCACTGC ATTGTGTGTCTGATGGAATCCCTAAGCCAAATATCAAATGGACTATGCCAAGTGGTTATGTAGTAGAC AGGCCTCAAATTAATGGGAAATACATATTGCATGACAATGGCACCTTAGTCATTAAAGAAGCAACAGC TTATGACAGAGGAAACTATATCTGTAAGGCTCAAAATAGTGTTGGTCATACACTGATTACTGTTCCAG TAATGATTGTAGCCTACCCTCCCCGAATTACAAATCGTCCACCCAGGAGTATTGTCACCAGGACAGGG GCAGCCTTTCAGCTCCACTGTGTGGCCTTGGGAGTTCCCAAGCCAGAAATCACATGGGAGATGCCTGA CCACTCCCTTCTCTCAACGGCAAGTAAAGAGAGGACACATGGAAGTGAGCAGCTTCACTTACAAGGTA CCCTAGTCATTCAGAATCCCCAAACCTCCGATTCTGGGATATACAAATGCACAGCAAAGAACCCACTT GGTAGTGATTATGCAGCAACGTATATTCAAGTAATCTGACATGAAATAATAAAGTC
NOV29am, SNP13376525 of SEQ ID NO: 742 2617 aa MW at 290219.2kD
CG55776-01, Protein Sequence SNP Pos: 163 SNP Change: His to Arg
MKVKGRGITCLLVSFAVICLVATPGGKACPRRCACYMPTEVHCTFRYLTSIPDSIPPNVERINLGYNS LVRLMETDFSGLTKLELLMLHSNGIHTIPDKTFSDLQ-ALQVRLMVLKMSYNKVRKLQKDTFYGLRSLT RLHMDHNNIEFINPEVFYGLNFLRLVRLEGNQLTKLHPDTFVSLSYLQIFKISFIKFLYLSDNFLTSL PQEMVSYMPDLDSLYLHGNPWTCDCHLKWLSD IQEKPGIYIVLPDVIKCKKDRSPSSAQQCPLCMNP RTSKG-røL-A--WSAAAFQCAKPTIDSSLKSKSLTILEDSSSAFISPQGFMAPFGSLTLNMTDQSGNEAN MVCSIQKPSRTSPIAFTEENDYIVLNTSFSTFLVCNIDYGHIQPV QILALYSDSPLILERSHLLSET PQLYYKYKQVAPKPEDIFTNIEADLRADPS LMQDQISLQLNRTATTFSTLQIQYSSDAQITLPRAEM RPVKHKWTMISRDNNTKLEHTVLVGGTVGLNCPGQGDPTPHVD LLADGSKVRAPYVSEDGRILIDKS GKLELQ-MADSFDTGVΥHCISSNYDDADILTYRITVVEPLVEAYQENGIHHTVFIGETLDLPCHSTGIP DASISWVIPGNNVLYQSSRDKIWLNNGTLRILQVTPKDQGYYRCV-AANPSGVDFLIFQVSVKMKGQRP LEHDGETEGSGLDESNPIAHLKEPPGAQLRTSALMEAEVGKHTSSTSKRHNYRELTLQRRGDSTHRRF RENRRHFPPSARRIDPQH AALLEKAKKNAMPDKRENTTVSPPPWTQLPNIPGEEDDSSGMLALHEE FMVPATK-ALNLP-ARTVTADSRTISDSPMTNINYGTEFSPVVNSQILPPEEPTDFKLSTAIKTTAMSKN INPTMSSQIQGTTNQHSSTVFPLLLGATΞFQDSDQMGRGREHFQSRPPITVRTMIKDVNVKMLSSTTN KLLLESVNTTNSHQTSVREVSEPRHNHFYSHTTQILSTSTFPSDPHTAAHSQFPIPRNSTVNIPLFRR FGRQRKIGGRGRIISPYRTPVLRRHRYSIFRSTTRGSSEKSTTAFSATVLNVTCLSCLPRERLTTATA ALSFPSAAPITFPKADIARVPSEESTTLVQNPLLLLEHKPSVEKTTPTIKYFRTEISQVTPTGAVMTY APTSIPMEKTHKVNASYPRVSSTNEAKRDSVITSSLSGAITKPPMTIIAITRFSRRKIP QQNFVNNH NPKGRLRNQHKVSLQKSTAVMLPKTSPALPQRQSLPSHHTTTKTHNPGSLPTKKELPFPPLNPMLPSI ISKDSSTKSIISTQTAIPATTPTFPASVITYETQTERSRAQTIQREQEPQKKNRTDPNISPDQSSGFT TPTAMTPPVLTTAETSVKPSVSAFTHSPPENTTGISSTISFHSRTLNLTDVIEELAQASTQTLKSTIA SETTLSSKSHQSTTTRKAIIRHSTIPPFLSSSATLMPVPISPPFTQRAVTDNVATPISGLMTNTWKL HESS-RHNAKPQQLVAEVATSPKVHPNAKFTIGTTHFIYSNLLHSTPMPALTTVKSQNSKLTPSPWAEN QFWHKPYSEIAEKGKKPEVSMLATTGLSEATTLVSD DGQKNTKKSDFDKKPVQEATTSKLLPFDSLS RYIFEKPRIVGGKAASFTIPANSDAFLPCEAVGNPLPTIHWTRVPSGMSGLDLSKRKQNSRVQVLPNG TLSIQRVEIQDRGQYLCSASNLFGTDHLHVTLSWSYPPRILERRTKEITVHSGSTVELKCRAEGRPS PTVT ILANQTWSESSQGSRQAWTVDGTLVLHNLSIYDRGFYKCVASNPGGQDSLLVKIQVIAAPP VILEQRRQVIVGTWGESLKLPCTAKGTPQPSVY VLSDGTEVKPLQFTNSKLFLFSNGTLYIRNLASS DRGTYECIATSSTGSERRWMLTMΞERVTSPRIEAASQKRTEVNFGDKLLLNCSATGEPKPQIM RLP SKAVVDQQHRVGS IHVYPNGSLFIGSVTEKDSGVYLCVARNKMGDDLILMHVSLRLKPAKIDHKQYF RKQVLHGKDFQVDCKASGSPVPEISWSLPDGTMINNAMQADDSGHRTRRYTLFNNGTLYFNKVGVAEE GDYTCYAQNTLG-l-aDEMKVHLTVITAAPRIRQSNKTNKRIKAGDTAVLDCEVTGDPKPKIF LLPSNDM ISFSIDRYTFHANGSLTINKVKLLDSGEYVCVARNPSGDDT-- YKLDVVSKPPLINGLYTNRTVIKAT AVRHS-KKHFDCRAEGTPSPEVM IMPDNIFLTAPYYGSRITVHK-NGTLEIR---TVRLSDSADFICVA-RNE GGESVLWQLEVLEMLRRPTFRNPFNEKIVAQLGKSTALNCSVDGNPPPEII ILPNGTRFSNGPQSY QYLIASNGSFIISKTTREDAGKYRCAARNKVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHC VSDGIPKPNIK TMPSGYVVDRPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVM IVAYPPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEIT EMPDHSLLSTASKERTHGSEQLHLQGTL VIQNPQTSDSGIYKCTAKNPLGSDYAATYIQVI
NOV29an, SNP13376526 of SEQ ID NO: 743 7876 bp CG55776-01, DNA Sequence ORF Start: ATG at 6JORF Stop: TGA at 7857
SNP Pos: 547 SNP Change: G to A
TCAGGATGAAGGTAAAAGGCAGAGGAATCACCTGCTTGCTGGTCTCCTTTGCTGTGATCTGCCTGGTC
GCCACCCCTGGGGGCAAGGCCTGTCCTCGCCGCTGTGCCTGTTATATGCCTACGGAGGTACACTGCAC ATTTCGGTACCTGACTTCCATCCCAGACAGCATCCCGCCCAATGTGGAACGCATCAATTTAGGGTACA ACAGCTTGGTTAGATTGATGGAAACAGATTTTTCTGGCCTGACCAAACTGGAGTTACTCATGCTTCAC AGCAATGGCATTCACACAATCCCTGACAAGACCTTCTCAGATTTGCAGGCCTTGCAGGTGAGACTGAT GGTCTTAAAAATGAGCTATAATAAAGTCCGAAAACTTCAGAAAGATACTTTTTATGGCCTCAGGAGCT TGACACGATTGCACATGGACCACAACAATATTGAGTTTATAAACCCAGAGGTTTTTTATGGGCTCAAC TTTCTCCGCCTGGTGCACTTGGAAGGAAATCAGCTCACTAAGCTCCACCCAGATACATTTGTCTCTTT GAACTACCTCCAGATATTTAAAATCTCTTTCATTAAGTTCCTATACTTGTCTGATAACTTCCTGACCT CCCTCCCTCAAGAGATGGTCTCCTATATGCCTGACCTAGACAGCCTTTACCTGCATGGAAACCCATGG ACCTGTGATTGCCATTTAAAGTGGTTGTCTGACTGGATACAGGAGAAGCCAGGTATCTATATTGTNTT ACCAGATGTAATAAAATGCAAAAAAGATAGAAGTCCCTCTAGTGCTCAGCAGTGTCCACTTTGCATGA ACCCTAGGACTTCTAAAGGCAAGCCGTTAGCTATGGTCTCAGCTGCAGCTTTCCAGTGTGCCAAGCCA ACCATTGACTCATCCCTGAAATCAAAGAGCCTGACTATTCTGGAAGACAGTAGTTCTGCTTTCATCTC TCCCCAAGGTTTCATGGCACCCTTTGGCTCCCTCACTTTGAATATGACAGATCAGTCTGGAAATGAAG CTAACATGGTCTGCAGTATTCAAAAGCCCTCAAGGACATCACCCATTGCATTCACTGAAGAAAATGAC TACATCGTGCTAAATACTTCATTTTCAACATTTTTGGTGTGCAACATAGATTACGGTCACATTCAGCC AGTGTGGCAAATTTTGGCTTTGTACAGTGATTCTCCTCTGATACTAGAAAGGAGCCACTTGCTTAGTG AAACACCGCAGCTCTATTACAAATATAAACAGGTGGCTCCTAAGCCTGAAGACATTTTTACCAACATA GAGGCAGATCTCAGAGCAGATCCCTCTTGGTTAATGCAAGACCAAATTTCCTTGCAGCTGAACAGAAC TGCCACCACATTCAGTACATTACAGATCCAGTACTCCAGTGATGCTCAAATCACTTTACCAAGAGCAG AGATGAGGCCAGTGAAACACAAATGGACTATGATTTCAAGGGATAACAATACTAAGCTGGAACATACT GTCTTGGTAGGTGGAACCGTTGGCCTGAACTGCCCAGGCCAAGGAGACCCCACCCCACACGTGGATTG GCTTCTAGCTGATGGAAGTAAAGTGAGAGCCCCTTATGTCAGTGAGGATGGACGGATCCTAATAGACA AAAGTGGAAAATTGGAACTCCAGATGGCTGATAGTTTTGACACAGGCGTATATCACTGTATAAGCAGC AATTATGATGATGCAGATATTCTCACCTATAGGATAACTGTGGTAGAACCTTTGGTCGAAGCCTATCA GGAAAATGGGATTCATCACACAGTTTTCATTGGTGAAACACTTGATCTTCCATGCCATTCTACTGGTA TCCCAGATGCCTCTATTAGCTGGGTTATTCCAGGAAACAATGTGCTCTATCAGTCATCAAGAGACAAG AAAGTTCTAAACAATGGCACATTAAGAATATTACAGGTCACCCCGAAAGACCAAGGTTATTATCGCTG TGTGGCAGCCAACCCATCAGGGGTTGATTTTTTGATTTTCCAAGTTTCAGTCAAGATGAAAGGACAAA GGCCCTTGGAGCATGATGGAGAAACAGAGGGATCTGGACTTGATGAGTCCAATCCTATTGCTCATCTT AAGGAGCCACCAGGTGCACAACTCCGTACATCTGCTCTGATGGAGGCTGAGGTTGGAAAACACACCTC AAGCACAAGTAAGAGGCACAACTATCGGGAATTAACACTCCAGCGACGTGGAGATTCAACACATCGAC GTTTTAGGGAGAATAGGAGGCATTTCCCTCCCTCTGCTAGGAGAATTGACCCACAACATTGGGCGGCA CTGTTGGAGAAAGCTAAA-AAGAATGCTATGCCAGACAAGCGAGAAAATACCACAGTGAGCCCACCCCC AGTGGTCACCCAACTCCCAAACATACCTGGTGAAGAAGACGATTCCTCAGGCATGCTCGCTCTACATG AGGAATTTATGGTCCCGGCCACTAAAGCTTTGAACCTTCCAGCAAGGACAGTGACTGCTGACTCCAGA ACAATATCTGATAGTCCTATGACAAACATAAATTATGGCACAGAATTCTCTCCTGTTGTGAATTCACA AATACTACCACCTGAAGAACCCACAGATTTCAAACTGTCTACTGCTATTAAAACTACAGCCATGTCAA AGAATATAAACCCAACCATGTCAAGCCAAATACAAGGCACAACCAATCAACATTCATCCACTGTCTTT CCACTGCTACTTGGAGCAACTGAATTTCAGGACTCTGACCAOATGGGAAGAGGAAGAGAGCATTTCCA AAGTAGACCCCCAATAACAGTAAGGACTATGATCAAAGATGTCAATGTCAAAATGCTTAGTAGCACCA CCAACAAACTATTATTAGAGTCAGTAAATACCACAAATAGTCATCAGACATCTGTAAGAGAAGTGAGT GAACCCAGGCACAATCACTTCTATTCTCACACTACTCAAATACTTAGCACCTCCACGTTCCCTTCAGA TCCACACACAGCTGCTCATTCTCAGTTTCCGATCCCTAGAAATAGTACAGTTAACATCCCGCTGTTCA GACGCTTTGGGAGGCAGAGGAAAATTGGCGGAAGGGGGCGGATTATCAGCCCATATAGAACTCCAGTT CTGCGACGGCATAGATACAGCATTTTCAGGTCAACAACCAGAGGTTCTTCTGAAAAAAGCACTACTGC ATTCTCAGCCACAGTGCTCAATGTGACATGTCTGTCCTGTCTTCCCAGGGAGAGGCTCACCACTGCCA CAGCAGCATTGTCTTTTCCAAGTGCTGCTCCCATCACCTTCCCCAAAGCTGACATTGCTAGAGTCCCA
TCAGAAGAGTCTACAACTCTAGTCCAGAATCCACTATTACTACTTGAGAACAAACCCAGTGTAGAGAA AACAACACCCACAATAAAATATTTCAGGACTGAAATTTCCCAAGTGACTCCAACTGGTGCAGTCATGA CATATGCTCCAACATCCATACCCATGGAAAAAACTCACAAAGTAAACGCCAGTTACCCACGTGTGTCT AGCACCAATGAAGCTAAAAGAGATTCAGTGATTACATCGTCACTTTCAGGTGCTATCACCAAGCCACC AATGACTATTATAGCCATTACAAGGTTTTCAAGAAGGAAAATTCCCTGGCAACAGAACTTTGTAAATA ACCATAACCCAAAAGGCAGATTAAGGAATCAACATAAAGTTAGTTTACAAAAAAGCACAGCTGTGATG CTTCCTAAAACATCTCCTGCTTTACCACAGAGACAAAGTCTCCCCTCGCACCACACTACGACCAAAAC ACACAATCCTGGAAGTCTTCCAACAAAGAAGGAGCTTCCCTTCCCACCCCTTAACCCTATGCTTCCTA GTATTATAAGCAAAGACTCAAGTACAAAAAGCATCATATCAACGCAAACAGCAATACCAGCAACAACT CCTACCTTCCCTGCATCTGTCATCACTTATGAAACCCAAACAGAGAGATCTAGAGCACAAACAATACA AAGAGAACAGGAGCCTCAAAAGAAGAACAGGACTGACCCAAACATCTCTCCAGACCAGAGTTCTGGCT TCACTACACCCACTGCTATGACACCTCCTGTTCTAACCACAGCCGAAACTTCAGTCAAGCCCAGTGTC TCTGCATTCACTCATTCCCCACCAGAAAACACAACTGGGATTTCAAGCACAATCAGTTTTCATTCAAG AACTCTTAATCTGACAGATGTGATTGAAGAACTAGCCCAAGCAAGTACTCAGACTTTGAAGAGCACAA TTGCTTCTGAAACAACTTTGTCCAGCAAATCACACCAGAGTACCACAACTAGGAAAGCAATCATTAGA CACTCAACCATACCACCATTCTTGAGCAGCAGTGCTACTCTAATGCCAGTTCCCATCTCCCCTCCCTT TACTCAGAGAGCAGTTACTGACAACGTGGCGACTCCCATTTCCGGGCTTATGACAAATACAGTGGTCA AGCTGCACGAATCCTCAAGGCACAATGCTAAACCACAGCAATTAGTAGCAGAGGTTGCAACATCCCCC AAGGTTCACCCAAATGCCAAGTTCACAATTGGAACCACTCACTTCATCTACTCTAATCTGTTACATTC TACTCCCATGCCAGCACTAACAACAGTTAAATCACAGAATTCTAAATTAACTCCATCTCCCTGGGCAG AAAACCAATTTTGGCACAAACCATACTCAGAAATTGCTGAAAAAGGCAAAAAGCCAGAAGTAAGCATG TTGGCTACTACAGGCCTGTCCGAGGCCACCACTCTTGTTTCAGATTGGGATGGACAGAAGAACACAAA GAAGAGTGACTTTGATAAGAAACCAGTTCAAGAAGCAACAACTTCCAAACTCCTTCCCTTTGACTCTT TGTCTAGGTATATATTTGAAAAGCCCAGGATAGTTGGAGGAAAAGCTGCAAGTTTTACTATTCCAGCT AACTCAGATGCCTTTCTTCCCTGTGAAGCTGTTGGAAATCCCCTGCCCACCATTCATTGGACCAGAGT CCCATCAGGTATGTCAGGACTTGATTTATCTAAGAGGAAACAGAATAGCAGGGTCCAGGTTCTCCCCA ATGGTACCCTGTCCATCCAGAGGGTGGAAATTCAGGACCGCGGACAGTACTTGTGTTCCGCATCCAAT CTGTTTGGCACAGACCACCTTCATGTCACCTTGTCTGTGGTTTCCTATCCTCCCAGGATCCTGGAGAG ACGTACCAAAGAGATCACAGTTCATTCCGGAAGCACTGTGGAACTGAAGTGCAGAGCAGAAGGTAGGC CAAGCCCTACAGTTACCTGGATTCTTGCAAACCAAACAGTTGTCTCAGAATCATCCCAGGGAAGTAGG CAGGCTGTGGTGACGGTTGACGGAACATTGGTCCTCCACAATCTCAGTATTTATGACCGTGGCTTTTA CAAATGTGTGGCCAGCAACCCAGGTGGCCAGGATTCACTGCTGGTTAAAATACAAGTCATTGCAGCAC CACCTGTTATTCTAGAGCAAAGGAGGCAAGTCATTGTAGGCACTTGGGGTGAAAGTTTAAAACTGCCC TGTACTGCAAAAGGAACTCCTCAGCCCAGCGTTTACTGGGTCCTCTCTGATGGCACTGAAGTGAAACC ATTACAGTTTACCAATTCCAAGTTGTTCTTATTTTCAAATGGGACTTTGTATATAAGAAACCTAGCCT CTTCAGACAGGGGCACTTATGAATGCATTGCTACCAGTTCCACTGGTTCGGAGCGAAGAGTAGTAATG CTTACAATGGAAGAGCGAGTGACCAGCCCCAGGATAGAAGCTGCATCCCAGAAAAGGACTGAAGTGAA TTTTGGGGACAAATTACTACTGAACTGCTCAGCCACTGGGGAGCCCAAACCCCAAATAATGTGGAGGT TACCATCCAAGGCTGTGGTCGACCAGCAGCATAGGGTGGGCAGCTGGATCCACGTCTACCCTAATGGA TCCCTGTTTATTGGATCAGTAACAGAAAAAGACAGTGGTGTCTACTTGTGTGTGGCAAGAAACAAAAT GGGGGATGATCTGATACTGATGCATGTTAGCCTAAGACTGAAACCTGCCAAAATTGACCACAAGCAGT ATTTTAGAAAGCAAGTGCTCCATGGGAAAGATTTCCAAGTAGATTGCAAAGCTTCCGGCTCCCCAGTG CCAGAGATATCTTGGAGTTTGCCTGATGGAACCATGATCAACAATGCAATGCAAGCCGATGACAGTGG CCACAGGACTAGGAGATATACCCTTTTCAACAATGGAACTTTATACTTCAACAAAGTTGGGGTAGCGG AGGAAGGAGATTATACTTGCTATGCCCAGAACACCCTAGGGAAAGATGAAATGAAGGTCCACTTAACA GTTATAACAGCTGCTCCCCGGATAAGGCAGAGTAACAAAACCAACAAGAGAATCAAAGCTGGAGACAC AGCTGTCCTTGACTGTGAGGTCΑCTGGGGATCCCA-AACCAAAAATATTTTGGTTGCTGCCTTCC-AA ACATGATTTCCTTCTCCATTGATAGGTACACATTTCATGCCAATGGGTCTTTGACCATCAACAAAGTG AAACTGCTCGATTCTGGAGAGTACGTATGTGTAGCCCGAAATCCCAGTGGGGATGACACCAAAATGTA
CAAACTGGATGTGGTCTCTAAACCTCCATTAATCAATGGTCTGTATACAAACAGAACTGTTATTAAAG CCACAGCTGTGAGACATTCCAAAAAACACTTTGACTGCAGAGCTGAAGGGACACCATCTCCTGAAGTC ATGTGGATCATGCCAGACAATATTTTCCTCACAGCCCCATACTATGGAAGCAGAATCACAGTCCATAA AAATGGAACCTTGGAAATTAGGAATGTGAGGCTTTCAGATTCAGCCGACTTTATCTGTGTGGCCCGAA ATGAAGGTGGAGAGAGCGTGTTGGTAGTACAGTTAGAAGTACTGGAAATGCTGAGAAGACCGACATTT AGAAATCCATTTAATGAAAAAATAGTTGCCCAGCTGGGAAAGTCCACAGCATTGAATTGCTCTGTTGA TGGTAACCCACCACCTGAAATAATCTGGATTTTACCAAATGGCACACGATTTTCCAATGGACCACAAA GTTATCAGTATCTGATAGCAAGCAATGGTTCTTTTATCATTTCTAAAACAACTCGGGAGGATGCAGGA AAATATCGCTGTGCAGCTAGGAATAAAGTTGGCTATATTGAGAAATTAGTCATATTAGAAATTGGCCA GAAGCCAGTTATTCTTACCTATGCACCAGGGACAGTAAAAGGCATCAGTGGAGAATCTCTATCACTGC ATTGTGTGTCTGATGGAATCCCTAAGCCAAATATCAAATGGACTATGCCAAGTGGTTATGTAGTAGAC AGGCCTCAAATTAATGGGAAATACATATTGCATGACAATGGCACCTTAGTCATTAAAGAAGCAACAGC TTATGACAGAGGAAACTATATCTGTAAGGCTCAAAATAGTGTTGGTCATACACTGATTACTGTTCCAG TAATGATTGTAGCCTACCCTCCCCGAATTACAAATCGTCCACCCAGGAGTATTGTCACCAGGACAGGG GCAGCCTTTCAGCTCCACTGTGTGGCCTTGGGAGTTCCCAAGCCAGAAATCACATGGGAGATGCCTGA CCACTCCCTTCTCTCAACGGCAAGTAAAGAGAGGACACATGGAAGTGAGCAGCTTCACTTACAAGGTA CCCTAGTCATTCAGAATCCCCAAACCTCCGATTCTGGGATATACAAATGCACAGCAAAGAACCCACTT GGTAGTGATTATGCAGCAACGTATATTCAAGTAATCTGACATGAAATAATAAAGTC
NOV29an, SNP13376526 of JSEQ ID NO: 74412617 aa MW at 290227.2kD
CG55776-01, Protein Sequence SNP Pos: 181 SNP Change: Ser to Asn
MKVKGRGITCLLVSFAVICLVATPGGKACPRRCACYMPTEVHCTFRYLTSIPDSIPPNVERINLGYNS
LVRLMETDFSGLTKLELLMLHSNGIHTIPDKTFSDLQALQVRLMVLKMSYNKVRKLQKDTFYGLRSLT
RLHMDI--W---JIEFINPEVFYGLNFLRLVHLEGNQLTKLHPDTFVSLNYLQIFKISFIKFLYLSDNFLTSL
PQEMVSYMPDLDSLYLHGNP TCDCHLKWLSDWIQEKPGIYIVLPDVIKCKKDRSPSSAQQCPLCMNP
RTSKGKPLAMVSAAAFQCAKPTIDSSLKSKSLTILEDSSSAFISPQGFMAPFGSLTLNMTDQSGNEAN
MVCSIQKPSRTSPIAFTEENDYIVLNTSFSTFLVCNIDYGHIQPV QILALYSDSPLILERSHLLSET
PQLYYKYKQVAPKPEDIFTNIEADLRADPSWLMQDQISLQLNRTATTFSTLQIQYSSDAQITLPRAEM
RPV-mKWTMIS---^---røTIOιEHTVLVGGTVGLNCPGQGDPTPHVDWLL-ADGSKV-RAPYV
GKLELQMADSFDTGVYHCISSNYDDADILTYRITWEPLVEAYQENGIHHTVFIGETLDLPCHSTGIP
DASIS VIPG-I-^η-rVLYQSSRDKKVLNNGTLRILQVTPKDQGYYRCVAANPSGVDFLIFQVSVKMKGQRP
LEHDGETΞGSGLDESNPIAHL---ΕPPGAQLRTSALMEAEVGKHTSSTSKRHNYRELTLQRRGDSTHRRF
RENRRHFPPS-ARRIDPQH AALLEKAKKNAMPDKRENTTVSPPPVVTQLPNIPGEEDDSSGMLALHEE
FMVPATKALNLPARTVTADSRTISDSPMTNINYGTEFSPW SQILPPEEPTDFKLSTAIKTTAMSKN
INPTMSSQIQGTTNQHSSTVFPLLLGATEFQDSDQMGRGREHFQSRPPITVRTMIKDVNVKMLSSTTN
-KLLLESVNTTNSHQTSVREVSEPRHNHFYSHTTQILSTSTFPSDPHTAAHSQFPIPRNSTVNIPLFRR
FGRQRKIGGRGRIISPYRTPVLRRHRYSIFRSTTRGSSEKSTTAFSATVLNVTCLSCLPRERLTTATA
ALSFPSAAPITFPKADIARVPSEESTTLVQNPLLLLENKPSVEKTTPTIKYFRTEISQVTPTGAVMTY
APTSIPMEKTHKVNASYPRVSSTNEAKRDSVITSSLSGAITKPPMTIIAITRFSRRKIP QQNFVNNH
NPKGRLRNQHKVSLQKSTAVMLPKTSPALPQRQSLPSHHTTTKTHNPGSLPTKKELPFPPLNPMLPSI
ISKDSSTKSIISTQTAIPATTPTFPASVITYETQTERSRAQTIQREQEPQKKNRTDPNISPDQSSGFT
TPTAMTPPVLTTAETSVKPSVSAFTHSPPENTTGISSTISFHSRTLNLTDVIEELAQASTQTLKSTIA
SETTLSSKSHQSTTTRKAIIRHSTIPPFLSSSATLMPVPISPPFTQRAVTDNVATPISGLMTNTWKL
HESSRHNAKPQQLVAEVATSPKVHPNAKFTIGTTHFIYSNLLHSTPMPALTTVKSQNSKLTPSP AEN
QFWHKPYSEIAEKGKKPEVSMLATTGLSEATTLVSDWDGQKNTKKSDFDKKPVQEATTSKLLPFDSLS
RYIFEKPRIVGGKAASFTIPANSDAFLPCEAVGNPLPTIHWTRVPSGMSGLDLSKRKQNSRVQVLPNG
TLSIQRVEIQDRGQYLCSAS-m-jFGTDHLHVTLSVVSYPPRILERRT---ΕITVHSGSTVELKCRAEGRPS
PTVTWILANQTVVSESSQGSRQAVVTVDGTLVLHNLSIYDRGFYKCVASNPGGQDSLLVKIQVIAAPP
VILEQRRQVIVGTWGESLKLPCTAKGTPQPSVY VLSDGTEVKPLQFTNSKLFLFSNGTLYIRNLASS
DRGTYECIATSSTGSERRWMLTMEERVTSPRIEAASQKRTEVNFGDKLLLNCSATGEPKPQIM RLP
SKAVVDQQHRVGSWII-l-VYPNGSLFIGSVTE-KDSGVYLCVArø
RKQVLHGKDFQVDCKASGSPVPEISWSLPDGTMI1M-AMQADDSGHRTRRYTLF1-INGTLYFNKVGVAEE
GDYTCYAQNTLGKDΞMKVHLTVITAAPRIRQSNKTN---OIIKAGDTAVLDCEVTGDP-KPKIFWLLPSNDM
ISFSIDRYTFHANGSLTINKVKLLDSGEYVCVARNPSGDDTKMYK-LDVVSKPPLINGLYTNRTVI---^
AVRHS-K-KHFDCR-AEGTPSPEVM IMPDNIFLTAPYYGSRITVHKNGTLEI-R1WRLSDS-ADFICVAR-NE
GGESVLWQLEVLEMLRRPTFRNPFNEKIVAQLGKSTALNCSVDGNPPPEII ILPNGTRFSNGPQSY
QYLIASNGSFIISKTTREDAGKYRCAARNKVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHC
VSDGIPKPNIK TMPSGYVVDRPQINGKYILHDNGTLVI-KEATAYDRGMYICKAQNSVGHTLITVPVM IVAYPPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHSLLSTAS-KERTHGSEQLHLQGTL VIQNPQTSDSGIYKCTAKNPLGSDYAATYIQVI
NOV29ao, SNP13377626 of SEQ ID NO: 745 7876 bp
CG55776-01, DNA Sequence iORF Start: ATG at 6 ORF Stop: TGA at 7857
SNP Pos: 4405 SNP Change: C to T
TCAGGATGAAGGTAAAAGGCAGAGGAATCACCTGCTTGCTGGTCTCCTTTGCTGTGATCTGCCTGGTC
GCCACCCCTGGGGGCAAGGCCTGTCCTCGCCGCTGTGCCTGTTATATGCCTACGGAGGTACACTGCAC ATTTCGGTACCTGACTTCCATCCCAGACAGCATCCCGCCCAATGTGGAACGCATCAATTTAGGGTACA ACAGCTTGGTTAGATTGATGGAAACAGATTTTTCTGGCCTGACCAAACTGGAGTTACTCATGCTTCAC AGCAATGGCATTCACACAATCCCTGACAAGACCTTCTCAGATTTGCAGGCCTTGCAGGTGAGACTGAT GGTCTTAAAAATGAGCTATAATAAAGTCCGAAAACTTCAGAAAGATACTTTTTATGGCCTCAGGAGCT TGACACGATTGCACATGGACCACAACAATATTGAGTTTATAAACCCAGAGGTTTTTTATGGGCTCAAC TTTCTCCGCCTGGTGCACTTGGAAGGAAATCAGCTCACTAAGCTCCACCCAGATACATTTGTCTCTTT GAGCTACCTCCAGATATTTAAAATCTCTTTCATTAAGTTCCTATACTTGTCTGATAACTTCCTGACCT CCCTCCCTCAAGAGATGGTCTCCTATATGCCTGACCTAGACAGCCTTTACCTGCATGGAAACCCATGG ACCTGTGATTGCCATTTAAAGTGGTTGTCTGACTGGATACAGGAGAAGCCAGGTATCTATATTGTNTT ACCAGATGTAATAAAATGCAAAAAAGATAGAAGTCCCTCTAGTGCTCAGCAGTGTCCACTTTGCATGA ACCCTAGGACTTCTAAAGGCAAGCCGTTAGCTATGGTCTCAGCTGCAGCTTTCCAGTGTGCCAAGCCA ACCATTGACTCATCCCTGAAATCAAAGAGCCTGACTATTCTGGAAGACAGTAGTTCTGCTTTCATCTC TCCCCAAGGTTTCATGGCACCCTTTGGCTCCCTCACTTTGAATATGACAGATCAGTCTGGAAATGAAG CTAACATGGTCTGCAGTATTCAAAAGCCCTCAAGGACATCACCCATTGCATTCACTGAAGAAAATGAC TACATCGTGCTAAATACTTCATTTTCAACATTTTTGGTGTGCAACATAGATTACGGTCACATTCAGCC AGTGTGGCAAATTTTGGCTTTGTACAGTGATTCTCCTCTGATACTAGAAAGGAGCCACTTGCTTAGTG AAACACCGCAGCTCTATTACAAATATAAACAGGTGGCTCCTAAGCCTGAAGACATTTTTACCAACATA GAGGCAGATCTCAGAGCAGATCCCTCTTGGTTAATGCAAGACCAAATTTCCTTGCAGCTGAACAGAAC TGCCACCACATTCAGTACATTACAGATCCAGTACTCCAGTGATGCTCAAATCACTTTACCAAGAGCAG AGATGAGGCCAGTGAAACACAAATGGACTATGATTTCAAGGGATAACAATACTAAGCTGGAACATACT GTCTTGGTAGGTGGAACCGTTGGCCTGAACTGCCCAGGCCAAGGAGACCCCACCCCACACGTGGATTG GCTTCTAGCTGATGGAAGTAAAGTGAGAGCCCCTTATGTCAGTGAGGATGGACGGATCCTAATAGACA AAAGTGGAAAATTGGAACTCCAGATGGCTGATAGTTTTGACACAGGCGTATATCACTGTATAAGCAGC AATTATGATGATGCAGATATTCTCACCTATAGGATAACTGTGGTAGAACCTTTGGTCGAAGCCTATCA GGAAAATGGGATTCATCACACAGTTTTCATTGGTGAAACACTTGATCTTCCATGCCATTCTACTGGTA TCCCAGATGCCTCTATTAGCTGGGTTATTCCAGGAAACAATGTGCTCTATCAGTCATCAAGAGACAAG AAAGTTCTAAACAATGGCACATTAAGAATATTACAGGTCACCCCGAAAGACCAAGGTTATTATCGCTG TGTGGCAGCCAACCCATCAGGGGTTGATTTTTTGATTTTCCAAGTTTCAGTCAAGATGAAAGGACAAA GGCCCTTGGAGCATGATGGAGAAACAGAGGGATCTGGACTTGATGAGTCCAATCCTATTGCTCATCTT AAGGAGCCACCAGGTGCACAACTCCGTACATCTGCTCTGATGGAGGCTGAGGTTGGAAAACACACCTC AAGCACAAGTAAGAGGCACAACTATCGGGAATTAACACTCCAGCGACGTGGAGATTCAACACATCGAC GTTTTAGGGAGAATAGGAGGCATTTCCCTCCCTCTGCTAGGAGAATTGACCCACAACATTGGGCGGCA CTGTTGGAGAAAGCTAAAAAGAATGCTATGCCAGACAAGCGAGAAAATACCACAGTGAGCCCACCCCC AGTGGTCACCCAACTCCCAAACATACCTGGTGAAGAAGACGATTCCTCAGGCATGCTCGCTCTACATG AGGAATTTATGGTCCCGGCCACTAAAGCTTTGAACCTTCCAGCAAGGACAGTGACTGCTGACTCCAGA ACAATATCTGATAGTCCTATGACAAACATAAATTATGGCACAGAATTCTCTCCTGTTGTGAATTCACA AATACTACCACCTGAAGAACCCACAGATTTCAAACTGTCTACTGCTATTAAAACTACAGCCATGTCAA AGAATATAAACCCAACCATGTCAAGCCAAATACAAGGCACAACCAATCAACATTCATCCACTGTCTTT CCACTGCTACTTGGAGCAACTGAATTTCAGGACTCTGACCAGATGGGAAGAGGAAGAGAGCATTTCCA AAGTAGACCCCCAATAACAGTAAGGACTATGATCAAAGATGTCAATGTCAAAATGCTTAGTAGCACCA CCAACAAACTATTATTAGAGTCAGTAAATACCACAAATAGTCATCAGACATCTGTAAGAGAAGTGAGT GAACCCAGGCACAATCACTTCTATTCTCACACTACTCAAATACTTAGCACCTCCACGTTCCCTTCAGA TCCACACACAGCTGCTCATTCTCAGTTTCCGATCCCTAGAAATAGTACAGTTAACATCCCGCTGTTCA GACGCTTTGGGAGGCAGAGGAAAATTGGCGGAAGGGGGCGGATTATCAGCCCATATAGAACTCCAGTT CTGCGACGGCATAGATACAGCATTTTCAGGTCAACAACCAGAGGTTCTTCTGAAAAAAGCACTACTGC ATTCTCAGCCACAGTGCTCAATGTGACATGTCTGTCCTGTCTTCCCAGGGAGAGGCTCACCACTGCCA CAGCAGCATTGTCTTTTCCAAGTGCTGCTCCCATCACCTTCCCCAAAGCTGACATTGCTAGAGTCCCA
TCAGAAGAGTCTACAACTCTAGTCCAGAATCCACTATTACTACTTGAGAACAAACCCAGTGTAGAGAA AACAACACCCACAATAAAATATTTCAGGACTGAAATTTCCCAAGTGACTCCAACTGGTGCAGTCATGA CATATGCTCCAACATCCATACCCATGGAAAAAACTCACAAAGTAAACGCCAGTTACCCACGTGTGTCT AGCACCAATGAAGCTAAAAGAGM AATGACTATTATAGCCATTACAAGGTTTTCAAGAAGGAAAATTCCCTGGCAACAGAACTTTGTAAATA ACCATAACCCAAAAGGCAGATTAAGGAATCAACATAAAGTTAGTTTACAAAAAAGCACAGCTGTGATG CTTCCTAAAACATCTCCTGCTTTACCACAGAGACAAAGTCTCCCCTCGCACCACACTACGACCAAAAC ACACAATCCTGGAAGTCTTCCAACAAAGAAGGAGCTTCCCTTCCCACCCCTTAACCCTATGCTTCCTA GTATTATAAGCAAAGACTCAAGTACAAAAAGCATCATATCAACGCAAACAGCAATACCAGCAACAACT CCTACCTTCCCTGCATCTGTCATCACTTATGAAACCCAAACAGAGAGATCTAGAGCACAAACAATACA AAGAGAACAGGAGCCTCAAAAGAAGAACAGGACTGACCCAAACATCTCTCCAGACCAGAGTTCTGGCT TCACTACACCCACTGCTATGACACCTCCTGTTCTAACCACAGCCGAAACTTCAGTCAAGCCCAGTGTC TCTGCATTCACTCATTCCCCACCAGAAAACACAACTGGGATTTCAAGCACAATCAGTTTTCATTCAAG AACTCTTAATCTGACAGATGTGATTGAAGAACTAGCCCAAGCAAGTACTCAGACTTTGAAGAGCACAA TTGCTTCTGAAACAACTTTGTCCAGCAAATCACACCAGAGTACCACAACTAGGAAAGCAATCATTAGA CACTCAACCATACCACCATTCTTGAGCAGCAGTGCTACTCTAATGCCAGTTCTCATCTCCCCTCCCTT TACTCAGAGAGCAGTTACTGACAACGTGGCGACTCCCATTTCCGGGCTTATGACAAATACAGTGGTCA AGCTGCACGAATCCTCAAGGCACAATGCTAAACCACAGCAATTAGTAGCAGAGGTTGCAACATCCCCC AAGGTTCACCCAAATGCCAAGTTCACAATTGGAACCACTCACTTCATCTACTCTAATCTGTTACATTC TACTCCCATGCCAGCACTAACAACAGTTAAATCACAGAATTCTAAATTAACTCCATCTCCCTGGGCAG AAAACCAATTTTGGCACAAACCATACTCAGAAATTGCTGAAAAAGGCAAAAAGCCAGAAGTAAGCATG TTGGCTACTACAGGCCTGTCCGAGGCCACCACTCTTGTTTCAGATTGGGATGGACAGAAGAACACAAA GAAGAGTGACTTTGATAAGAAACCAGTTCAAGAAGCAACAACTTCCAAACTCCTTCCCTTTGACTCTT TGTCTAGGTATATATTTGAAAAGCCCAGGATAGTTGGAGGAAAAGCTGCAAGTTTTACTATTCCAGCT AACTCAGATGCCTTTCTTCCCTGTGAAGCTGTTGGAAATCCCCTGCCCACCATTCATTGGACCAGAGT CCCATCAGGTATGTCAGGACTTGATTTATCTAAGAGGAAACAGAATAGCAGGGTCCAGGTTCTCCCCA ATGGTACCCTGTCCATCCAGAGGGTGGAAATTCAGGACCGCGGACAGTACTTGTGTTCCGCATCCAAT CTGTTTGGCACAGACCACCTTCATGTCACCTTGTCTGTGGTTTCCTATCCTCCCAGGATCCTGGAGAG ACGTACCAAAGAGATCACAGTTCATTCCGGAAGCACTGTGGAACTGAAGTGCAGAGCAGAAGGTAGGC CAAGCCCTACAGTTACCTGGATTCTTGCAAACCAAACAGTTGTCTCAGAATCATCCCAGGGAAGTAGG CAGGCTGTGGTGACGGTTGACGGAACATTGGTCCTCCACAATCTCAGTATTTATGACCGTGGCTTTTA CAAATGTGTGGCCAGCAACCCAGGTGGCCAGGATTCACTGCTGGTTAAAATACAAGTCATTGCAGCAC CACCTGTTATTCTAGAGCAAAGGAGGCAAGTCATTGTAGGCACTTGGGGTGAAAGTTTAAAACTGCCC TGTACTGCAAAAGGAACTCCTCAGCCCAGCGTTTACTGGGTCCTCTCTGATGGCACTGAAGTGAAACC ATTACAGTTTACCAATTCCAAGTTGTTCTTATTTTCAAATGGGACTTTGTATATAAGAAACCTAGCCT CTTCAGACAGGGGCACTTATGAATGCATTGCTACCAGTTCCACTGGTTCGGAGCGAAGAGTAGTAATG CTTACAATGGAAGAGCGAGTGACCAGCCCCAGGATAGAAGCTGCATCCCAGAAAAGGACTGAAGTGAA TTTTGGGGACAAATTACTACTGAACTGCTCAGCCACTGGGGAGCCCAAACCCCAAATAATGTGGAGGT TACCATCCAAGGCTGTGGTCGACCAGCAGCATAGGGTGGGCAGCTGGATCCACGTCTACCCTAATGGA TCCCTGTTTATTGGATCAGTAACAGAAAAAGACAGTGGTGTCTACTTGTGTGTGGCAAGAAACAAAAT GGGGGATGATCTGATACTGATGCATGTTAGCCTAAGACTGAAACCTGCCAAAATTGACCACAAGCAGT ATTTTAGAAAGCAAGTGCTCCATGGGAAAGATTTCCAAGTAGATTGCAAAGCTTCCGGCTCCCCAGTG CCAGAGATATCTTGGAGTTTGCCTGATGGAACCATGATCAACAATGCAATGCAAGCCGATGACAGTGG CCACAGGACTAGGAGATATACCCTTTTCAACAATGGAACTTTATACTTCAACAAAGTTGGGGTAGCGG AGGAAGGAGATTATACTTGCTATGCCCAGAACACCCTAGGGAAAGATGAAATGAAGGTCCACTTAACA GTTATAACAGCTGCTCCCCGGATAAGGCAGAGTAACAAAACCAACAAGAGAATCAAAGCTGGAGACAC AGCTGTCCTTGACTGTGAGGTCACTGGGGATCCCAAACCAAAAATATTTTGGTTGCTGCCTTCCAATG ACATGATTTCCTTCTCCATTGATAGGTACACATTTCATGCCAATGGGTCTTTGACCATCAACAAAGTG AAACTGCTCGATTCTGGAGAGTACGTATGTGTAGCCCGAAATCCCAGTGGGGATGACACCAAAATGTA
CAAACTGGATGTGGTCTCTAAACCTCCATTAATCAATGGTCTGTATACAAACAGAACTGTTATTAAAG CCACAGCTGTGAGACATTCCAAAAAACACTTTGACTGCAGAGCTGAAGGGACACCATCTCCTGAAGTC ATGTGGATCATGCCAGACAATATTTTCCTCACAGCCCCATACTATGGAAGCAGAATCACAGTCCATAA AAATGGAACCTTGGAAATTAGGAATGTGAGGCTTTCAGATTCAGCCGACTTTATCTGTGTGGCCCGAA ATGAAGGTGGAGAGAGCGTGTTGGTAGTACAGTTAGAAGTACTGGAAATGCTGAGAAGACCGACATTT AGAAATCCATTTAATGAAAAAATAGTTGCCCAGCTGGGAAAGTCCACAGCATTGAATTGCTCTGTTGA TGGTAACCCACCACCTGAAATAATCTGGATTTTACCAAATGGCACACGATTTTCCAATGGACCACAAA GTTATCAGTATCTGATAGCAAGCAATGGTTCTTTTATCATTTCTAAAACAACTCGGGAGGATGCAGGA AAATATCGCTGTGCAGCTAGGAATAAAGTTGGCTATATTGAGAAATTAGTCATATTAGAAATTGGCCA GAAGCCAGTTATTCTTACCTATGCACCAGGGACAGTAAAAGGCATCAGTGGAGAATCTCTATCACTGC ATTGTGTGTCTGATGGAATCCCTAAGCCAAATATCAAATGGACTATGCCAAGTGGTTATGTAGTAGAC AGGCCTCAAATTAATGGGAAATACATATTGCATGACAATGGCACCTTAGTCATTAAAGAAGCAACAGC TTATGACAGAGGAAACTATATCTGTAAGGCTCAAAATAGTGTTGGTCATACACTGATTACTGTTCCAG TAATGATTGTAGCCTACCCTCCCCGAATTACAAATCGTCCACCCAGGAGTATTGTCACCAGGACAGGG GCAGCCTTTCAGCTC^ CCACTCCCTTCTCTCAACGGCAAGTAAAGAGAGGACACATGGAAGTGAGCAGCTTCACTTACAAGGTA CCCTAGTCATTCAGAATCCCCAAACCTCCGATTCTGGGATATACAAATGCACAGCAAAGAACCCACTT GGTAGTGATTATGCAGCAACGTATATTCAAGTAATCTGACATGAAATAATAAAGTC
NOV29ao, SNP13377626 of SEQ D NO: 746 2617 aa MW at 290216.2kD CG55776-01, Protein Sequence SNP Pos: 1467 SNP Change: Pro to Leu
MKVKGRGITCLLVSFAVICLVATPGGKACPRRCACYMPTEVHCTFRYLTSIPDSIPPNVERINLGYNS LVRLMETDFSGLTKLELLMLHSNGIHTIPDKTFSDLQ.ALQVRLMVL----MSYN^-7RKLQKDTFYGLRSLT RLHMDHNNIEFINPEVFYGLNFLRLVHLEGNQLTKLHPDTFVSLSYLQIFKISFIKFLYLSDNFLTSL PQEMVSYMPDLDSLYLHGNP TCDCHLKWLSD IQEKPGIYIVLPDVIKCKKDRSPSSAQQCPLCMNP RTSKGKPLAMVSAAAFQCAKPTIDSSLKSKSLTILEDSSSAFISPQGFMAPFGSLTLWMTDQSGNEAN MVCSIQKPSRTSPIAFTEENDYIVLNTSFSTFLVCNIDYGHIQPV QILALYSDSPLILERSHLLSET PQLYYKYKQVAPKPEDIFTNIEADLRADPSWLMQDQISLQLNRTATTFSTLQIQYSSDAQITLPRAEM RPV-- K TMIS-l-^---røT---%EHTVLVGGTVGLNCPGQGDPTPHVDWLLADGS-KV-RAPYVSEDGRILIDK^ GKLELQMADSFDTGVYHCISSNYDDADILTYRITWEPLVEAYQENGIHHTVFIGETLDLPCHSTGIP DASISVWIPG-IrøVLYQSSRDKKVLNNGTLRILQVTPKDQGYYRCVAANPSGVDFLIFQVSVKMKGQRP LΞHDGETEGSGLDESNPI-AHLKEPPGAQLRTSALMEAEVGKHTSSTS---O.HNYRELTLQRRGDSTHRRF RENRRHFPPSARRIDPQH AALLE-KAKKNAMPDKRENTTVSPPPVVTQLPNIPGEEDDSSGMLALHEE FMVPATKALNLPARTVTADSRTISDSPMTNINYGTEFSPVVNSQILPPEEPTDFKLSTAIKTTAMSKN INPTMSSQIQGTTNQHSSTVFPLLLGATEFQDSDQMGRGREHFQSRPPITVRTMIKDVNVKMLSSTTN KLLLESVNTTNSHQTSVREVSEPRHNHFYSHTTQILSTSTFPSDPHTAAHSQFPIPRNSTVNIPLFRR FGRQRKIGGRGRIISPYRTPVLRRHRYSIFRSTTRGSSEKSTTAFSATVLNVTCLSCLPRERLTTATA ALSFPSAAPITFPKADIARVPSEESTTLVQNPLLLLENKPSVEKTTPTIKYFRTEISQVTPTGAVMTY APTSIPMEKTHKVNASYPRVSSTNEAKRDSVITSSLSGAITKPPMTIIAITRFSRRKIP QQNFVNNH NPKGRLRNQHKVSLQKSTAVMLPKTSPALPQRQSLPSHHTTTKTHNPGSLPTKKELPFPPLNPMLPSI ISKDSSTKSIISTQTAIPATTPTFPASVITYETQTERSRAQTIQREQEPQKKNRTDPNISPDQSSGFT TPT-AMTPPVLTTAETSVKPSVSAFTHSPPENTTGISSTISFHSRTLNLTDVIEELAQASTQTLKSTIA SETTLSSKSHQSTTTRKAIIRHSTIPPFLSSSATLMPVLISPPFTQRAVTDNVATPISGLMTNTVVKL HESSRHNAKPQQLVAEVATSPKVHPNAKFTIGTTHFIYSNLLHSTPMPALTTVKSQNSKLTPSPWAEN QFWHKPYSEIAEKGKKPEVSMLATTGLSEATTLVSD DGQKNTKKSDFDKKPVQEATTSKLLPFDSLS RYIFEKPRIVGGKAASFTIPANSDAFLPCEAVGNPLPTIHWTRVPSGMSGLDLSKRKQNSRVQVLPNG TLSIQRVEIQDRGQYLCSASNLFGTDHLHVTLSWSYPPRILΞRRTKEITVHSGSTVELKCRAEGRPS PTVTWILANQTWSESSQGSRQAWTVDGTLVLHNLSIYDRGFYKCVASNPGGQDSLLVKIQVIAAPP VILEQRRQVIVGT GESLKLPCTAKGTPQPSVY VLSDGTEVKPLQFTNSKLFLFSNGTLYIRNLASS DRGTYECIATSSTGSERRWMLTMEERVTSPRIEAASQKRTEVNFGDKLLLNCSATGEPKPQIM RLP SKAVVDQQHRVGS IHVYPNGSLFIGSVTEKDSGVY'LCVA---^KMGDDLILMHVSLRLKPAKIDHKQYF RKQVLHGKDFQVDCKASGSPVPEIS SLPDGTMINNAMQADDSGHRTRRYTLF-N-NGTLYFNKVGV-AEE GDYTCYAQNTLGKDEMKVHLTVITAAPRIRQSNKTNKRIKAGDTAVLDCEVTGDPKPKIFWLLPSNDM ISFSIDRYTFHA-NGSLTINKVKLLDSGEYVCVA-RNPSGDDTKMYKLDVVSKPPLINGLYTNRTVIKAT AVRHSIKHFDCRAEGTPSPEVMWIMPDNIFLTAPYYGSRITVH---αTGTLEIRNVRLSDSADFICVARNE GGESVLWQLEVLEMLRRPTFRNPFNEKIVAQLGKSTALNCSVDGNPPPEIIWILPNGTRFSNGPQSY QYLIASNGSFIISKTTREDAGKYRCAAR KVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHC VSDGIPKPNIKWTMPSGYWDRPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVM IVAYPPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHSLLSTASKERTHGSEQLHLQGTL VIQNPQTSDSGIYKCTAKNPLGSDYAATYIQVI
NOV29ap, SNP 13377641 of SEQ ID NO: 747 7876 bp CG55776-01, DNA Sequence ORF Start: ATG at 6 ORF Stop: TGA at 7857
SNP Pos: 6716 SNP Change: C to T
TCAGGATGAAGGTAAAAGGCAGAGGAATCACCTGCTTGCTGGTCTCCTTTGCTGTGATCTGCCTGGTC
GCCACCCCTGGGGGCAAGGCCTGTCCTCGCCGCTGTGCCTGTTATATGCCTACGGAGGTACACTGCAC ATTTCGGTACCTGACTTCCATCCCAGACAGCATCCCGCCCAATGTGGAACGCATCAATTTAGGGTACA ACAGCTTGGTTAGATTGATGGAAACAGATTTTTCTGGCCTGACCAAACTGGAGTTACTCATGCTTCAC AGCAATGGCATTCACACAATCCCTGACAAGACCTTCTCAGATTTGCAGGCCTTGCAGGTGAGACTGAT GGTCTTAAAAATGAGCTATAATAAAGTCCGAAAACTTCAGAAAGATACTTTTTATGGCCTCAGGAGCT TGACACGATTGCACATGGACCACAACAATATTGAGTTTATAAACCCAGAGGTTTTTTATGGGCTCAAC TTTCTCCGCCTGGTGCACTTGGAAGGAAATCAGCTCACTAAGCTCCACCCAGATACATTTGTCTCTTT GAGCTACCTCCAGATATTTAAAATCTCTTTCATTAAGTTCCTATACTTGTCTGATAACTTCCTGACCT CCCTCCCTCAAGAGATGGTCTCCTATATGCCTGACCTAGACAGCCTTTACCTGCATGGAAACCCATGG ACCTGTGATTGCCATTTAAAGTGGTTGTCTGACTGGATACAGGAGAAGCCAGGTATCTATATTGTNTT ACCAGATGTAATAAAATGCAAAAAAGATAGAAGTCCCTCTAGTGCTCAGCAGTGTCCACTTTGCATGA ACCCTAGGACTTCTAAAGGCAAGCCGTTAGCTATGGTCTCAGCTGCAGCTTTCCAGTGTGCCAAGCCA ACCATTGACTCATCCCTGAAATCAAAGAGCCTGACTATTCTGGAAGACAGTAGTTCTGCTTTCATCTC TCCCCAAGGTTTCATGGCACCCTTTGGCTCCCTCACTTTGAATATGACAGATCAGTCTGGAAATGAAG CTAACATGGTCTGCAGTATTCAAAAGCCCTCAAGGACATCACCCATTGCATTCACTGAAGAAAATGAC TACATCGTGCTAAATACTTCATTTTCAACATTTTTGGTGTGCAACATAGATTACGGTCACATTCAGCC AGTGTGGCAAATTTTGGCTTTGTACAGTGATTCTCCTCTGATACTAGAAAGGAGCCACTTGCTTAGTG AAACACCGCAGCTCTATTACAAATATAAACAGGTGGCTCCTAAGCCTGAAGACATTTTTACCAACATA GAGGCAGATCTCAGAGCAGATCCCTCTTGGTTAATGCAAGACCAAATTTCCTTGCAGCTGAACAGAAC TGCCACCACATTCAGTACATTACAGATCCAGTACTCCAGTGATGCTCAAATCACTTTACCAAGAGCAG AGATGAGGCCAGTGAAACACAAATGGACTATGATTTCAAGGGATAACAATACTAAGCTGGAACATACT GTCTTGGTAGGTGGAACCGTTGGCCTGAACTGCCCAGGCCAAGGAGACCCCACCCCACACGTGGATTG GCTTCTAGCTGATGGAAGTAAAGTGAGAGCCCCTTATGTCAGTGAGGATGGACGGATCCTAATAGACA AAAGTGGAAAATTGGAACTCCAGATGGCTGATAGTTTTGACACAGGCGTATATCACTGTATAAGCAGC AATTATGATGATGCAGATATTCTCACCTATAGGATAACTGTGGTAGAACCTTTGGTCGAAGCCTATCA GGAAAATGGGATTCATCACACAGTTTTCATTGGTGAAACACTTGATCTTCCATGCCATTCTACTGGTA TCCCAGATGCCTCTATTAGCTGGGTTATTCCAGGAAACAATGTGCTCTATCAGTCATCAAGAGACAAG AAAGTTCTAAACAATGGCACATTAAGAATATTACAGGTCACCCCGAAAGACCAAGGTTATTATCGCTG TGTGGCAGCCAACCCATCAGGGGTTGATTTTTTGATTTTCCAAGTTTCAGTCAAGATGAAAGGACAAA GGCCCTTGGAGCATGATGGAGAAACAGAGGGATCTGGACTTGATGAGTCCAATCCTATTGCTCATCTT AAGGAGCCACCAGGTGCACAACTCCGTACATCTGCTCTGATGGAGGCTGAGGTTGGAAAACACACCTC AAGCACAAGTAAGAGGCACAACTATCGGGAATTAACACTCCAGCGACGTGGAGATTCAACACATCGAC GTTTTAGGGAGAATAGGAGGCATTTCCCTCCCTCTGCTAGGAGAATTGACCCACAACATTGGGCGGCA CTGTTGGAGAAAGCTAAAAAGAATGCTATGCCAGACAAGCGAGAAAATACCACAGTGAGCCCACCCCC AGTGGTCACCCAACTCCCAAACATACCTGGTGAAGAAGACGATTCCTCAGGCATGCTCGCTCTACATG AGGAATTTATGGTCCCGGCCACTAAAGCTTTGAACCTTCCAGCAAGGACAGTGACTGCTGACTCCAGA ACAATATCTGATAGTCCTATGACAAACATAAATTATGGCACAGAATTCTCTCCTGTTGTGAATTCACA AATACTACCACCTGAAGAACCCACAGATTTCAAACTGTCTACTGCTATTAAAACTACAGCCATGTCAA AGAATATAAACCCAACCATGTCAAGCCAAATACAAGGCACAACCAATCAACATTCATCCACTGTCTTT CCACTGCTACTTGGAGCAACTGAATTTCAGGACTCTGACCAGATGGGAAGAGGAAGAGAGCATTTCCA AAGTAGACCCCCAATAACAGTAAGGACTATGATCAAAGATGTCAATGTCAAAATGCTTAGTAGCACCA CCAACAAACTATTATTAGAGTCAGTAAATACCACAAATAGTCATCAGACATCTGTAAGAGAAGTGAGT GAACCCAGGCACAATCACTTCTATTCTCACACTACTCAAATACTTAGCACCTCCACGTTCCCTTCAGA TCCACACACAGCTGCTCATTCTCAGTTTCCGATCCCTAGAAATAGTACAGTTAACATCCCGCTGTTCA GACGCTTTGGGAGGCAGAGGAAAATTGGCGGAAGGGGGCGGATTATCAGCCCATATAGAACTCCAGTT CTGCGACGGCATAGATACAGCATTTTCAGGTCAACAACCAGAGGTTCTTCTGAAAAAAGCACTACTGC ATTCTCAGCCACAGTGCTCAATGTGACATGTCTGTCCTGTCTTCCCAGGGAGAGGCTCACCACTGCCA CAGCAGCATTGTCTTTTCCAAGTGCTGCTCCCATCACCTTCCCCAAAGCTGACATTGCTAGAGTCCCA
TCAGAAGAGTCTACAACTCTAGTCCAGAATCCACTATTACTACTTGAGAACAAACCCAGTGTAGAGAA AACAACACCCACAATAAAATATTTCAGGACTGAAATTTCCCAAGTGACTCCAACTGGTGCAGTCATGA CATATGCTCCAACATCCATACCCATGGAAAAAACTCACAAAGTAAACGCCAGTTACCCACGTGTGTCT AGCACCAATGAAGCTAAAAGAGATTCAGTGATTACATCGTCACTTTCAGGTGCTATCACCAAGCCACC AATGACTATTATAGCCATTACAAGGTTTTCAAGAAGGAAAATTCCCTGGCAACAGAACTTTGTAAATA ACCATAACCCAAAAGGCAGATTAAGGAATCAACATAAAGTTAGTTTACAAAAAAGCACAGCTGTGATG CTTCCTAAAACATCTCCTGCTTTACCACAGAGACAAAGTCTCCCCTCGCACCACACTACGACCAAAAC ACACAATCCTGGAAGTCTTCCAACAAAGAAGGAGCTTCCCTTCCCACCCCTTAACCCTATGCTTCCTA GTATTATAAGCAAAGACTCAAGTACAAAAAGCATCATATCAACGCAAACAGCAATACCAGCAACAACT CCTACCTTCCCTGCATCTGTCATCACTTATGAAACCCAAACAGAGAGATCTAGAGCACAAACAATACA AAGAGAACAGGAGCCTCAAAAGAAGAACAGGACTGACCCAAACATCTCTCCAGACCAGAGTTCTGGCT TCACTACACCCACTGCTATGACACCTCCTGTTCTAACCACAGCCGAAACTTCAGTCAAGCCCAGTGTC TCTGCATTCACTCATTCCCCACCAGAAAACACAACTGGGATTTCAAGCACAATCAGTTTTCATTCAAG AACTCTTAATCTGACAGATGTGATTGAAGAACTAGCCCAAGCAAGTACTCAGACTTTGAAGAGCACAA TTGCTTCTGAAACAACTTTGTCCAGCAAATCACACCAGAGTACCACAACTAGGAAAGCAATCATTAGA CACTCAACCATACCACCATTCTTGAGCAGCAGTGCTACTCTAATGCCAGTTCCCATCTCCCCTCCCTT TACTCAGAGAGCAGTTACTGACAACGTGGCGACTCCCATTTCCGGGCTTATGACAAATACAGTGGTCA AGCTGCACGAATCCTCAAGGCACAATGCTAAACCACAGCAATTAGTAGCAGAGGTTGCAACATCCCCC AAGGTTCACCCAAATGCCAAGTTCACAATTGGAACCACTCACTTCATCTACTCTAATCTGTTACATTC TACTCCCATGCCAGCACTAACAACAGTTAAATCACAGAATTCTAAATTAACTCCATCTCCCTGGGCAG AAAACCAATTTTGGCACAAACCATACTCAGAAATTGCTGAAAAAGGCAAAAAGCCAGAAGTAAGCATG TTGGCTACTACAGGCCTGTCCGAGGCCACCACTCTTGTTTCAGATTGGGATGGACAGAAGAACACAAA GAAGAGTGACTTTGATAAGAAACCAGTTCAAGAAGCAACAACTTCCAAACTCCTTCCCTTTGACTCTT TGTCTAGGTATATATTTGAAAAGCCCAGGATAGTTGGAGGAAAAGCTGCAAGTTTTACTATTCCAGCT AACTCAGATGCCTTTCTTCCCTGTGAAGCTGTTGGAAATCCCCTGCCCACCATTCATTGGACCAGAGT CCCATCAGGTATGTCAGGACTTGATTTATCTAAGAGGAAACAGAATAGCAGGGTCCAGGTTCTCCCCA ATGGTACCCTGTCCATCCAGAGGGTGGAAATTCAGGACCGCGGACAGTACTTGTGTTCCGCATCCAAT CTGTTTGGCACAGACCACCTTCATGTCACCTTGTCTGTGGTTTCCTATCCTCCCAGGATCCTGGAGAG ACGTACCAAAGAGATCACAGTTCATTCCGGAAGCACTGTGGAACTGAAGTGCAGAGCAGAAGGTAGGC CAAGCCCTACAGTTACCTGGATTCTTGCAAACCAAACAGTTGTCTCAGAATCATCCCAGGGAAGTAGG CAGGCTGTGGTGACGGTTGACGGAACATTGGTCCTCCACAATCTCAGTATTTATGACCGTGGCTTTTA CAAATGTGTGGCCAGCAACCCAGGTGGCCAGGATTCACTGCTGGTTAAAATACAAGTCATTGCAGCAC CACCTGTTATTCTAGAGCAAAGGAGGCAAGTCATTGTAGGCACTTGGGGTGAAAGTTTAAAACTGCCC TGTACTGCAAAAGGAACTCCTCAGCCCAGCGTTTACTGGGTCCTCTCTGATGGCACTGAAGTGAAACC ATTACAGTTTACCAATTCCAAGTTGTTCTTATTTTCAAATGGGACTTTGTATATAAGAAACCTAGCCT CTTCAGACAGGGGCACTTATGAATGCATTGCTACCAGTTCCACTGGTTCGGAGCGAAGAGTAGTAATG CTTACAATGGAAGAGCGAGTGACCAGCCCCAGGATAGAAGCTGCATCCCAGAAAAGGACTGAAGTGAA TTTTGGGGACAAATTACTACTGAACTGCTCAGCCACTGGGGAGCCCAAACCCCAAATAATGTGGAGGT TACCATCCAAGGCTGTGGTCGACCAGCAGCATAGGGTGGGCAGCTGGATCCACGTCTACCCTAATGGA TCCCTGTTTATTGGATCAGTAACAGAAAAAGACAGTGGTGTCTACTTGTGTGTGGCAAGAAACAAAAT GGGGGATGATCTGATACTGATGCATGTTAGCCTAAGACTGAAACCTGCCAAAATTGACCACAAGCAGT ATTTTAGAAAGCAAGTGCTCCATGGGAAAGATTTCCAAGTAGATTGCAAAGCTTCCGGCTCCCCAGTG CCAGAGATATCTTGGAGTTTGCCTGATGGAACCATGATCAACAATGCAATGCAAGCCGATGACAGTGG CCACAGGACTAGGAGATATACCCTTTTCAACAATGGAACTTTATACTTCAACAAAGTTGGGGTAGCGG AGGAAGGAGATTATACTTGCTATGCCCAGAACACCCTAGGGAAAGATGAAATGAAGGTCCACTTAACA GTTATAACAGCTGCTCCCCGGATAAGGCAGAGTAACAAAACCAACAAGAGAATCAAAGCTGGAGACAC AGCTGTCCTTGACTGTGAGGTCACTGGGGATCCCAAACCAAAAATATTTTGGTTGCTGCCTTCCAATG ACATGATTTCCTTCTCCATTGATAGGTACACATTTCATGCCAATGGGTCTTTGACCATCAACAAAGTG AAACTGCTCOATTCTGGAGAGTACGTATGTGTAGCCCGAAATCCCAGTGGGGATGACACCAAAATGTA
CAAACTGGATGTGGTCTCTAAACCTCCATTAATCAATGGTCTGTATACAAATAGAACTGTTATTAAAG CCACAGCTGTGAGACATTCCAAAAAACACTTTGACTGCAGAGCTGAAGGGACACCATCTCCTGAAGTC ATGTGGATCATGCCAGACAATATTTTCCTCACAGCCCCATACTATGGAAGCAGAATCACAGTCCATAA AAATGGAACCTTGGAAATTAGGAATGTGAGGCTTTCAGATTCAGCCGACTTTATCTGTGTGGCCCGAA ATGAAGGTGGAGAGAGCGTGTTGGTAGTACAGTTAGAAGTACTGGAAATGCTGAGAAGACCGACATTT AGAAATCCATTTAATGAAAAAATAGTTGCCCAGCTGGGAAAGTCCACAGCATTGAATTGCTCTGTTGA TGGTAACCCACCACCTGAAATAATCTGGATTTTACCAAATGGCACACGATTTTCCAATGGACCACAAA GTTATCAGTATCTGATAGCAAGCAATGGTTCTTTTATCATTTCTAAAACAACTCGGGAGGATGCAGGA AAATATCGCTGTGCAGCTAGGAATAAAGTTGGCTATATTGAGAAATTAGTCATATTAGAAATTGGCCA GAAGCCAGTTATTCTTACCTATGCACCAGGGACAGTAAAAGGCATCAGTGGAGAATCTCTATCACTGC ATTGTGTGTCTGATGGAATCCCTAAGCCAAATATCAAATGGACTATGCCAAGTGGTTATGTAGTAGAC AGGCCTCAAATTAATGGGAAATACATATTGCATGACAATGGCACCTTAGTCATTAAAGAAGCAACAGC TTATGACAGAGGAAACTATATCTGTAAGGCTCAAAATAGTGTTGGTCATACACTGATTACTGTTCCAG TAATGATTGTAGCCTACCCTCCCCGAATTACAAATCGTCCACCCAGGAGTATTGTCACCAGGACAGGG GCAGCCTTTCAGCTCCACTGTGTGGCCTTGGGAGTTCCCAAGCCAGAAATCACATGGGAGATGCCTGA CCACTCCCTTCTCTCAACGGCAAGTAAAGAGAGGACACATGGAAGTGAGCAGCTTCACTTACAAGGTA CCCTAGTCATTCAGAATCCCCAAACCTCCGATTCTGGGATATACAAATGCACAGCAAAGAACCCACTT GGTAGTGATTATGCAGCAACGTATATTCAAGTAATCTGACATGAAATAATAAAGTC
NOV29ap, SNP13377641 of SEQ ID NO: 748 2617 aa MW at 290200.2kD
CG55776-01, Protein Sequence SNP Pos: 2237 j I SNP Change: Asn to Asn
MKVKGRGITCLLVSFAVICLVATPGGKACPRRCACYMPTEVHCTFRYLTSIPDSIPPNVERINLGYNS
LVRLMETDFSGLTKLELLMLHSNGIHTIPDKTFSDLQALQVRLMVLKMSYNKVRKLQKDTFYGLRSLT
RLHMDHNNIEFINPEVFYGLNFLRLVHLEGNQLTKLHPDTFVSLSYLQIFKISFIKFLYLSDNFLTSL
PQEMVSYMPDLDSLYLHGNP TCDCHLK LSD IQEKPGIYIVLPDVIKCKKDRSPSSAQQCPLCMNP
RTSKGKPLAMVSAAAFQCAKPTIDSSLKSKSLTILEDSSSAFISPQGFMAPFGSLTLNMTDQSGNEAN
MVCSIQKPSRTSPIAFTEENDYIVLNTSFSTFLVCNIDYGHIQPVWQILALYSDSPLILERSHLLSET
PQLYYKYKQVAPKPEDIFTNIEADLRADPS LMQDQISLQLNRTATTFSTLQIQYSSDAQITLPRAEM
RPVKH--OTTMISRD.-S-OTKLEHTVLVGGWGLNCPGQGDPTPHVDW
GKLELQMADSFDTGVYHCISSNYDDADILTYRITWEPLVEAYQENGIHHTVFIGETLDLPCHSTGIP
DASISWIPGN-IS-VLYQSS-røKKVL-røGTLRILQVTP-ro^
LEHDGETEGSGLDESNPIAHLKEPPGAQLRTSALMEAEVG^ RENRRHFPPSARRIDPQHWAALLEKAKKNAMPDKRENTTVSPPPWTQLPNIPGEEDDSSGMLALHEE FMVPATK-ALNLP-ARTVTADSRTISDSPMTNINYGTEFSPVVNSQILPPEEPTDFKLSTAIKTTAMSKN INPTMSSQIQGTTNQHSSTVFPLLLGATEFQDSDQMGRGREHFQSRPPITVRTMIKDVNVKMLSSTTN ---OjLLESVNTTNSHQTSVREVSEPRHiraFYSHTTQILSTSTFPSDPHTAAHSQFPIPRNSTVl- IPLFRR FGRQRKIGGRGRIISPYRTPVLRRHRYSIFRSTTRGSSEKSTTAFSATVLNVTCLSCLPRERLTTATA ALSFPSAAPITFPKADIARVPSEESTTLVQNPLLLLENKPSVEKTTPTIKYFRTEISQVTPTGAVMTY APTS I PMEKTHKVNAS YPRVS S TNE AKRDS VITS SLS GAITKP PMT 11 AITRF SRRKI PWQQNF VNNH NPKGRLRNQHKVSLQKSTAVMLPKTSPALPQRQSLPSHHTTTKTHNPGSLPTKKELPFPPLNPMLPSI ISKDSSTKSIISTQTAIPATTPTFPASVITYETQTERSRAQTIQREQEPQKKNRTDPNISPDQSSGFT TPTA-MTPPVLTTAETSVKPSVSAFTHSPPENTTGISSTISFHSRTLNLTDVIEELAQASTQTLKSTIA SETTLSSKSHQSTTTRKAIIRHSTIPPFLSSSATLMPVPISPPFTQRAVTDNVATPISGLMTNTWKL HESSRHNAKPQQLVAEVATSPKVHPNAKFTIGTTHFIYSNLLHSTPMPALTTVKSQNSKLTPSPWAEN QF HKPYSEIAEKGKKPEVSMLATTGLSEATTLVSDWDGQK-NTKKSDFDKKPVQEATTSKLLPFDSLS RYIFEKPRIVGGKAASFTIPANSDAFLPCEAVGNPLPTIHWTRVPSGMSGLDLSKRKQNSRVQVLPNG TLSIQRVEIQDRGQYLCSASNLFGTDHLHVTLSWSYPPRILERRTKEITVHSGSTVELKCRAEGRPS PTVT ILANQTWSESSQGSRQAWTVDGTLVLHNLSIYDRGFYKCVASNPGGQDSLLVKIQVIAAPP VILEQRRQVIVGT GESLKLPCTAKGTPQPSVY VLSDGTEVKPLQFTNSKLFLFSNGTLYIRNLASS DRGTYECIATSSTGSERRVVMLTMEERVTSPRIEAASQK-RTEVNFGDKLLLNCSATGEPKPQIM RLP SIAVVDQQ--roVGS IHVYPNGSLFIGSVTEKDSGVYLCVARNKMGDDLILMHVSLRLKPAKIDHKQYF RKQVLHGKDFQVDCKASGSPVPEISWSLPDGTMINNAMQADDSGHRTRRYTLFNNGTLYFNKVGVAEE GDYTCYAQNTLG-l- DEMKVHLTVITAAPRIRQSNKTNKRIKΑGDTAVLDCEVTGDPKPKIFWLLPSNDM ISFSIDRYTFH-ANGSLTINΪO/KLLDSGEYVCVARNPSGDDT-KMYKLDVVSKPPLINGLYTireTVIKAT AVRHSKKHFDCRAEGTPSPEVM IMPDNIFLTAPYYGSRITVHKNGTLEIRNVRLSDSADFICVARNE GGESVLWQLEVLEMLRRPTFRNPFNEKIVAQLGKSTALNCSVDGNPPPEIIWILPNGTRFSNGPQSY QYLIASNGSFIISKTTREDAGKYRCAARNKVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHC VSDGIPKPNIK TMPSGYWDRPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVM IVAYPPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHSLLSTASKERTHGSEQLHLQGTL VIQNPQTSDSGIYKCTAKNPLGSDYAATYIQVI
NOV29aq, SNP 13377640 of SEQ ID NO: 749 7876 bp CG55776-01, DNA Sequence ORF Start: ATG at 6 ORF Stop: TGA at 7857
SNP Pos: 7218 SNP Change: T to C
TCAGGATGAAGGTAAAAGGCAGAGGAATCACCTGCTTGCTGGTCTCCTTTGCTGTGATCTGCCTGGTC
GCCACCCCTGGGGGCAAGGCCTGTCCTCGCCGCTGTGCCTGTTATATGCCTACGGAGGTACACTGCAC ATTTCGGTACCTGACTTCCATCCCAGACAGCATCCCGCCCAATGTGGAACGCATCAATTTAGGGTACA ACAGCTTGGTTAGATTGATGGAAACAGATTTTTCTGGCCTGACCAAACTGGAGTTACTCATGCTTCACi AGCAATGGCATTCACACAATCCCTGACAAGACCTTCTCAGATTTGCAGGCCTTGCAGGTGAGACTGAT GGTCTTAAAAATGAGCTATAATAAAGTCCGAAAACTTCAGAAAGATACTTTTTATGGCCTCAGGAGCT TGACACGATTGCACATGGACCACAACAATATTGAGTTTATAAACCCAGAGGTTTTTTATGGGCTCAAC TTTCTCCGCCTGGTGCACTTGGAAGGAAATCAGCTCACTAAGCTCCACCCAGATACATTTGTCTCTTT GAGCTACCTCCAGATATTTAAAATCTCTTTCATTAAGTTCCTATACTTGTCTGATAACTTCCTGACCT CCCTCCCTCAAGAGATGGTCTCCTATATGCCTGACCTAGACAGCCTTTACCTGCATGGAAACCCATGG ACCTGTGATTGCCATTTAAAGTGGTTGTCTGACTGGATACAGGAGAAGCCAGGTATCTATATTGTNTT ACCAGATGTAATAAAATGCAAAAAAGATAGAAGTCCCTCTAGTGCTCAGCAGTGTCCACTTTGCATGA ACCCTAGGACTTCTAAAGGCAAGCCGTTAGCTATGGTCTCAGCTGCAGCTTTCCAGTGTGCCAAGCCA; ACCATTGACTCATCCCTGAAATCAAAGAGCCTGACTATTCTGGAAGACAGTAGTTCTGCTTTCATCTC TCCCCAAGGTTTCATGGCACCCTTTGGCTCCCTCACTTTGAATATGACAGATCAGTCTGGAAATGAAG CTAACATGGTCTGCAGTATTCAAAAGCCCTCAAGGACATCACCCATTGCATTCACTGAAGAAAATGAC TACATCGTGCTAAATACTTCATTTTCAACATTTTTGGTGTGCAACATAGATTACGGTCACATTCAGCC AGTGTGGCAAATTTTGGCTTTGTACAGTGATTCTCCTCTGATACTAGAAAGGAGCCACTTGCTTAGTG AAACACCGCAGCTCTATTACAAATATAAACAGGTGGCTCCTAAGCCTGAAGACATTTTTACCAACATA GAGGCAGATCTCAGAGCAGATCCCTCTTGGTTAATGCAAGACCAAATTTCCTTGCAGCTGAACAGAAC TGCCACCACATTCAGTACATTACAGATCCAGTACTCCAGTGATGCTCAAATCACTTTACCAAGAGCAG AGATGAGGCCAGTGAAACACAAATGGACTATGATTTCAAGGGATAACAATACTAAGCTGGAACATACT GTCTTGGTAGGTGGAACCGTTGGCCTGAACTGCCCAGGCCAAGGAGACCCCACCCCACACGTGGATTG GCTTCTAGCTGATGGAAGTAAAGTGAGAGCCCCTTATGTCAGTGAGGATGGACGGATCCTAATAGACA AAAGTGGAAAATTGGAACTCCAGATGGCTGATAGTTTTGACACAGGCGTATATCACTGTATAAGCAGC AATTATGATGATGCAGATATTCTCACCTATAGGATAACTGTGGTAGAACCTTTGGTCGAAGCCTATCA GGAAAATGGGATTCATCACACAGTTTTCATTGGTGAAACACTTGATCTTCCATGCCATTCTACTGGTA TCCCAGATGCCTCTATTAGCTGGGTTATTCCAGGAAACAATGTGCTCTATCAGTCATCAAGAGACAAG AAAGTTCTAAACAATGGCACATTAAGAATATTACAGGTCACCCCGAAAGACCAAGGTTATTATCGCTG TGTGGCAGCCAACCCATCAGGGGTTGATTTTTTGATTTTCCAAGTTTCAGTCAAGATGAAAGGACAAA GGCCCTTGGAGCATGATGGAGAAACAGAGGGATCTGGACTTGATGAGTCCAATCCTATTGCTCATCTT AAGGAGCCACCAGGTGCACAACTCCGTACATCTGCTCTGATGGAGGCTGAGGTTGGAAAACACACCTC AAGCACAAGTAAGAGGCACAACTATCGGGAATTAACACTCCAGCGACGTGGAGATTCAACACATCGAC GTTTTAGGGAGAATAGGAGGCATTTCCCTCCCTCTGCTAGGAGAATTGACCCACAACATTGGGCGGCA CTGTTGGAGAAAGCTAAAAAGAATGCTATGCCAGACAAGCGAGAAAATACCACAGTGAGCCCACCCCC AGTGGTCACCCAACTCCCAAACATACCTGGTGAAGAAGACGATTCCTCAGGCATGCTCGCTCTACATG AGGAATTTATGGTCCCGGCCACTAAAGCTTTGAACCTTCCAGCAAGGACAGTGACTGCTGACTCCAGA ACAATATCTGATAGTCCTATGACAAACATAAATTATGGCACAGAATTCTCTCCTGTTGTGAATTCACA AATACTACCACCTGAAGAACCCACAGATTTCAAACTGTCTACTGCTATTAAAACTACAGCCATGTCAA AGAATATAAACCCAACCATGTCAAGCCAAATACAAGGCACAACCAATCAACATTCATCCACTGTCTTT CCACTGCTACTTGGAGCAACTGAATTTCAGGACTCTGACCAGATGGGAAGAGGAAGAGAGCATTTCCA AAGTAGACCCCCAATAACAGTAAGGACTATGATCAAAGATGTCAATGTCAAAATGCTTAGTAGCACCA CCAACAAACTATTATTAGAGTCAGTAAATACCACAAATAGTCATCAGACATCTGTAAGAGAAGTGAGT GAACCCAGGCACAATCACTTCTATTCTCACACTACTCAAATACTTAGCACCTCCACGTTCCCTTCAGA TCCACACACAGCTGCTCATTCTCAGTTTCCGATCCCTAGAAATAGTACAGTTAACATCCCGCTGTTCA GACGCTTTGGGAGGCAGAGGAAAATTGGCGGAAGGGGGCGGATTATCAGCCCATATAGAACTCCAGTT CTGCGACGGCATAGATACAGCATTTTCAGGTCAACAACCAGAGGTTCTTCTGAAAAAAGCACTACTGC ATTCTCAGCCACAGTGCTCAATGTGACATGTCTGTCCTGTCTTCCCAGGGAGAGGCTCACCACTGCCA CAGCAGCATTGTCTTTTCCAAGTGCTGCTCCCATCACCTTCCCCAAAGCTGACATTGCTAGAGTCCCA
TCAGAAGAGTCTACAACTCTAGTCCAGAATCCACTATTACTACTTGAGAACAAACCCAGTGTAGAGAA AACAACACCCACAATAAAATATTTCAGGACTGAAATTTCCCAAGTGACTCCAACTGGTGCAGTCATGA CATATGCTCCAACATCCATACCCATGGAAAAAACTCACAAAGTAAACGCCAGTTACCCACGTGTGTCT AGCACCAATGAAGCTAAAAGAGATTCAGTGATTACATCGTCACTTTCAGGTGCTATCACCAAGCCACC AATGACTATTATAGCCATTACAAGGTTTTCAAGAAGGAAAATTCCCTGGCAACAGAACTTTGTAAATA ACCATAACCCAAAAGGCAGATTAAGGAATCAACATAAAGTTAGTTTACAAAAAAGCACAGCTGTGATG CTTCCTAAAACATCTCCTGCTTTACCACAGAGACAAAGTCTCCCCTCGCACCACACTACGACCAAAAC ACACAATCCTGGAAGTCTTCCAACAAAGAAGGAGCTTCCCTTCCCACCCCTTAACCCTATGCTTCCTA GTATTATAAGCAAAGACTCAAGTACAAAAAGCATCATATCAACσCAAACAGCAATACCAGCAACAACT CCTACCTTCCCTGCATCTGTCATCACTTATGAAACCCAAACAGAGAGATCTAGAGCACAAACAATACA AAGAGAACAGGAGCCTCAAAAGAAGAACAGGACTGACCCAAACATCTCTCCAGACCAgAGTTC TCACTACACCCACTGCTATGACACCTCCTGTTCTAACCACAGCCGAAACTTCAGTCAAGCCCAGTGTC TCTGCATTCACTCATTCCCCACCAGAAAACACAACTGGGATTTCAAGCACAATCAGTTTTCATTCAAG AACTCTTAATCTGACAGATGTGATTGAAGAACTAGCCCAAGCAAGTACTCAGACTTTGAAGAGCACAA TTGCTTCTGAAACAACTTTGTCCAGCAAATCACACCAGAGTACCACAACTAGGAAAGCAATCATTAGA CACTCAACCATACCACCATTCTTGAGCAGCAGTGCTACTCTAATGCCAGTTCCCATCTCCCCTCCCTT TACTCAGAGAGCAGTTACTGACAACGTGGCGACTCCCATTTCCGGGCTTATGACAAATACAGTGGTCA AGCTGCACGAATCCTCAAGGCACAATGCTAAACCACAGCAATTAGTAGCAGAGGTTGCAACATCCCCC AAGGTTCACCCAAATGCCAAGTTCACAATTGGAACCACTCACTTCATCTACTCTAATCTGTTACATTC TACTCCCATGCCAGCACTAACAACAGTTAAATCACAGAATTCTAAATTAACTCCATCTCCCTGGGCAG AAAACCAATTTTGGCACAAACCATACTCAGAAATTGCTGAAAAAGGCAAAAAGCCAGAAGTAAGCATG TTGGCTACTACAGGCCTGTCCGAGGCCACCACTCTTGTTTCAGATTGGGATGGACAGAAGAACACAAA GAAGAGTGACTTTGATAAGAAACCAGTTCAAGAAGCAACAACTTCCAAACTCCTTCCCTTTGACTCTT TGTCTAGGTATATATTTGAAAAGCCCAGGATAGTTGGAGGAAAAGCTGCAAGTTTTACTATTCCAGCT AACTCAGATGCCTTTCTTCCCTGTGAAGCTGTTGGAAATCCCCTGCCCACCATTCATTGGACCAGAGT CCCATCAGGTATGTCAGGACTTGATTTATCTAAGAGGAAACAGAATAGCAGGGTCCAGGTTCTCCCCA ATGGTACCCTGTCCATCCAGAGGGTGGAAATTCAGGACCGCGGACAGTACTTGTGTTCCGCATCCAAT CTGTTTGGCACAGACCACCTTCATGTCACCTTGTCTGTGGTTTCCTATCCTCCCAGGATCCTGGAGAG ACGTACCAAAGAGATCACAGTTCATTCCGGAAGCACTGTGGAACTGAAGTGCAGAGCAGAAGGTAGGC CAAGCCCTACAGTTACCTGGATTCTTGCAAACCAAACAGTTGTCTCAGAATCATCCCAGGGAAGTAGG CAGGCTGTGGTGACGGTTGACGGAACATTGGTCCTCCACAATCTCAGTATTTATGACCGTGGCTTTTA CAAATGTGTGGCCAGCAACCCAGGTGGCCAGGATTCACTGCTGGTTAAAATACAAGTCATTGCAGCAC CACCTGTTATTCTAGAGCAAAGGAGGCAAGTCATTGTAGGCACTTGGGGTGAAAGTTTAAAACTGCCC TGTACTGCAAAAGGAACTCCTCAGCCCAGCGTTTACTGGGTCCTCTCTGATGGCACTGAAGTGAAACC ATTACAGTTTACCAATTCCAAGTTGTTCTTATTTTCAAATGGGACTTTGTATATAAGAAACCTAGCCT CTTCAGACAGGGGCACTTATGAATGCATTGCTACCAGTTCCACTGGTTCGGAGCGAAGAGTAGTAATG CTTACAATGGAAGAGCGAGTGACCAGCCCCAGGATAGAAGCTGCATCCCAGAAAAGGACTGAAGTGAA TTTTGGGGACAAATTACTACTGAACTGCTCAGCCACTGGGGAGCCCAAACCCCAAATAATGTGGAGGT TACCATCCAAGGCTGTGGTCGACCAGCAGCATAGGGTGGGCAGCTGGATCCACGTCTACCCTAATGGA TCCCTGTTTATTGGATCAGTAACAGAAAAAGACAGTGGTGTCTACTTGTGTGTGGCAAGAAACAAAAT GGGGGATGATCTGATACTGATGCATGTTAGCCTAAGACTGAAACCTGCCAAAATTGACCACAAGCAGT ATTTTAGAAAGCAAGTGCTCCATGGGAAAGATTTCCAAGTAGATTGCAAAGCTTCCGGCTCCCCAGTG CCAGAGATATCTTGGAGTTTGCCTGATGGAACCATGATCAACAATGCAATGCAAGCCGATGACAGTGG CCACAGGACTAGGAGATATACCCTTTTCAACAATGGAACTTTATACTTCAACAAAGTTGGGGTAGCGG AGGAAGGAGATTATACTTGCTATGCCCAGAACACCCTAGGGAAAGATGAAATGAAGGTCCACTTAACA GTTATAACAGCTGCTCCCCGGATAAGGCAGAGTAACAAAACCAACAAGAGAATCAAAGCTGGAGACAC AGCTGTCCTTGACTGTGAGGTCACTGGGGATCCCAAACCAAAAATATTTTGGTTGCTGCCTTCCAATG ACATGATTTCCTTCTCCATTGATAGGTACACATTTCATGCCAATGGGTCTTTGACCATCAACAAAGTG AAACTGCTCGATTCTGGAGAGTACGTATGTGTAGCCCGAAATCCCAGTGGGGATGACACCAAAATGTA
CAAACTGGATGTGGTCTCTAAACCTCCATTAATCAATGGTCTGTATACAAACAGAACTGTTATTAAAG CCACAGCTGTGAGACATTCCAAAAAACACTTTGACTGCAGAGCTGAAGGGACACCATCTCCTGAAGTC ATGTGGATCATGCCAGACAATATTTTCCTCACAGCCCCATACTATGGAAGCAGAATCACAGTCCATAA AAATGGAACCTTGGAAATTAGGAATGTGAGGCTTTCAGATTCAGCCGACTTTATCTGTGTGGCCCGAA ATGAAGGTGGAGAGAGCGTGTTGGTAGTACAGTTAGAAGTACTGGAAATGCTGAGAAGACCGACATTT AGAAATCCATTTAATGAAAAAATAGTTGCCCAGCTGGGAAAGTCCACAGCATTGAATTGCTCTGTTGA TGGTAACCCACCACCTGAAATAATCTGGATTTTACCAAATGGCACACGATTTTCCAATGGACCACAAA GTTATCAGTATCTGATAGCAAGCAATGGTTCTTTTATCATTTCTAAAACAACTCGGGAGGATGCAGGA AAATATCGCCGTGCAGCTAGGAATAAAGTTGGCTATATTGAGAAATTAGTCATATTAGAAATTGGCCA GAAGCCAGTTATTCTTACCTATGCACCAGGGACAGTAAAAGGCATCAGTGGAGAATCTCTATCACTGC ATTGTGTGTCTGATGGAATCCCTAAGCCAAATATCAAATGGACTATGCCAAGTGGTTATGTAGTAGAC AGGCCTCAAATTAATGGGAAATACATATTGCATGACAATGGCACCTTAGTCATTAAAGAAGCAACAGC TTATGACAGAGGAAACTATATCTGTAAGGCTCAAAATAGTGTTGGTCATACACTGATTACTGTTCCAG TAATGATTGTAGCCTACCCTCCCCGAATTACAAATCGTCCACCCAGGAGTATTGTCACCAGGACAGGG GCAGCCTTTCAGCTCCACTGTGTGGCCTTGGGAGTTCCCAAGCCAGAAATCACATGGGAGATGCCTGA CCACTCCCTTCTCTCAACGGCAAGTAAAGAGAGGACACATGGAAGTGAGCAGCTTCACTTACAAGGTA CCCTAGTCATTCAGAATCCCCAAACCTCCGATTCTGGGATATACAAATGCACAGCAAAGAACCCACTT GGTAGTGATTATGCAGCAACGTATATTCAAGTAATCTGACATGAAATAATAAAGTC
NOV29aq, SNP13377640 of SEQ ID NO: 750 2617 aa MW at 290253.2kD CG55776-01, Protein Sequence SNP Pos: 2405 SNP Change: Cys to Arg
MKVKGRGITCLLVSFAVICLVATPGGKACPRRCACYMPTEVHCTFRYLTSIPDSIPPNVERINLGYNS LVRLMETDFSGLT---OJELLMLHSNGIHTIPDKTFSDLQALQVRLMVLKMSYNKVRKLQKDTFYGLRSLT RLHMDHNNIEFINPEVFYGLNFLRLVHLEGNQLTKLHPDTFVSLSYLQIFKISFIKFLYLSDNFLTSL PQEMVSYMPDLDSLYLHGNPWTCDCHLKWLSDWIQEKPGIYIVLPDVIKCKKDRSPSSAQQCPLCMNP RTSKGKPLAMVSAAAFQCAKPTIDSSLKSKSLTILEDSSSAFISPQGFMAPFGSLTLNMTDQSGNEAN MVCSIQKPSRTSPIAFTEENDYIVLNTSFSTFLVCNIDYGHIQPVWQILALYSDSPLILERSHLLSET PQLYYKYKQVAPKPEDIFTNIEADLRADPS LMQDQISLQLNRTATTFSTLQIQYSSDAQITLPRAEM RPV-i KWTMISRD-tWT-KLEHTVLVGGTVGLNCPGQGDPTPHVD LLADGSKVRAPYVSEDGRILIDKS GKLELQMADSFDTGVYHCISSNYDDADILTYRITWEPLVEAYQENGIHHTVFIGETLDLPCHSTGIP DASIS VIPGNNVLYQSSRDKKVLNNGTLRILQVTPKDQGYYRCVAANPSGVDFLIFQVSVKMKGQRP LEHDGETEGSGLDESNPIAHLKEPPGAQLRTSALMEAEVGKHTSSTSKRHNYRELTLQRRGDSTHRRF RENRRHFPPSARRIDPQH AALLEKAKKNAMPDKRENTTVSPPPVVTQLPNIPGEEDDSSGMLALHEE FMVPATALNLPARTVTADSRTISDSPMTNINYGTEFSPVVNSQILPPEEPTDFKLSTAIKTTAMSKN INPTMSSQIQGTTNQHSSTVFPLLLGATEFQDSDQMGRGREHFQSRPPITVRTMIKDVNVKMLSSTTN KLLLESVNTTNSHQTSVREVSEPRHNHFYSHTTQILSTSTFPSDPHTAAHSQFPIPRNSTVNIPLFRR FGRQRKIGGRGRIISPYRTPVLRRHRYSIFRSTTRGSSEKSTTAFSATVLNVTCLSCLPRERLTTATA ALSFPSAAPITFPKADIARVPSEESTTLVQNPLLLLENKPSVEKTTPTIKYFRTEISQVTPTGAVMTY APTSIPMEKTHKVNASYPRVSSTNEAKRDSVITSSLSGAITKPPMTIIAITRFSRRKIP QQNFVNNH NPKGRLRNQHKVSLQKSTAVMLPKTSPALPQRQSLPSHHTTTKTHNPGSLPTKKELPFPPLNPMLPSI ISKDSSTKSIISTQTAIPATTPTFPASVITYETQTERSRAQTIQREQEPQKKNRTDPNISPDQSSGFT TPTAMTPPVLTTAETSVKPSVSAFTHSPPENTTGISSTISFHSRTLNLTDVIEELAQASTQTLKSTIA SETTLSSKSHQSTTTRKAIIRHSTIPPFLSSSATLMPVPISPPFTQRAVTDNVATPISGLMTNTWKL HESS---IHNAKPQQLVAEVATSPKVHPNAKFTIGTTHFIYSNLLHSTPMPALTTVKSQNSKLTPSPWAEN QFWHKPYSEIAEKGKKPEVSMLATTGLSEATTLVSDWDGQKNTKKSDFDKKPVQEATTSKLLPFDSLS RYIFEKPRIVGGKAASFTIPANSDAFLPCEAVGNPLPTIH TRVPSGMSGLDLSKRKQNSRVQVLPNG TLSIQRVEIQDRGQYLCSASNLFGTDHLHVTLSWSYPPRILERRTKEITVHSGSTVELKCRAEGRPS PTVT ILANQTWSESSQGSRQAWTVDGTLVLHNLSIYDRGFYKCVASNPGGQDSLLVKIQVIAAPP VILEQRRQVIVGT GESL-KLPCTAKGTPQPSVY VLSDGTEVKPLQFTNSKLFLFSNGTLYIRNLASS DRGTYECIATSSTGSERRVVMLTMΞERVTSPRIEAASQKRTEVNFGDKLLLNCSATGEPKPQIM RLP SKAVVDQQHRVGS IHVYPNGSLFIGSV E-1- SGVYLCVA-RNKMGDDLILMHVSLRLKPAKIDHKQYF RKQVLHGKDFQVDCKASGSPVPEIS SLPDGTMI1INAMQADDSGHRTRRYTLFNNGTLYFNKVGVAEE GDYTCYAQNTLGKDEMKVHLTVITAAPRIRQSNKTNKRIKAGDTAVLDCEVTGDPKPKIFWLLPSNDM ISFSIDRYTFHANGSLTINKVKLLDSGEYVCVARNPSGDDTKMYKLDVVSKPPLINGLYTNRTVIKAT AVRHS-KKHFDC-R-AEGTPSPEVM IMPDNIFLTAPYYGSRITVHKNGTLEIRNVRLSDSADFICVARNE GGESVLWQLEVLEMLRRPTFRNPFNEKIVAQLGKSTALNCSVDGNPPPEII ILPNGTRFSNGPQSY QYLIASNGSFIISKTTREDAGKYRRAARNKVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHC VSDGIPKPNIK TMPSGYWDRPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVM IVAYPPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHSLLSTASKERTHGSEQLHLQGTL VIQNPQTSDSGIYKCTAKNPLGSDYAATYIQVI
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 29B.
Table 29B. Comparison of the NO 29 protein sequences.
N0V29a MKVKGRGITCLLVSFAVICLVATPGGKACPRRCACYMPTEVHCTFRYLTSIPDSIPPNVE
NOV29b
NOV29C
NOV29d
N0V29e
N0V29f
NOV29g
NOV29h
NOV29i
N0V291
N0V29m
NOV29n
N0V29O NOV29p
NOV29q
NOV29r
NOV29S
NOV29t
NOV29U
NOV29V
NOV29W
NOV29X
NOV29y
NOV29z MKVKGRGITCLLVSFAVICLVATPGGKACPRRCACYMPTEVHCTFRYLTSIPDSIPPNVE NOV29aa MKVKGRGITCLLVSFAVICLVATPGGKACPRRCACYMPTEVHCTFRYLTSIPDSIPPNVE
NOV29ab
NOV29ac .-
NOV29ad
NOV29ae
NOV29af
NOV29ag
NOV29a RINLGYNSLVRLMETDFSGLTKLELLMLHSNGIHTIPDKTFSDLQALQVRLMVLKMSYNK
NOV29b '
NOV29C
NOV29d
NOV29e
NOV29f
NOV29g
NOV29h
NOV29i
NOV29J
NOV29k
NOV291
NOV29m
NOV29n
N0V29O
NOV29p
NOV29q
NOV29r
NOV29S
NOV29t
NOV29U
NOV29V
NOV29w
NOV29X
NOV29y
NOV29z RINLGYNSLVRLMETDFSGLTKLELLMLHSNGIHTIPDKTFSDLQALQVRLMVLKMSYNK NOV29aa RINLGYNSLVRLMETDFSGLTKLELLMLHSNGIHTIPDKTFSDLQALQVRLMVLKMSYNK
NOV29ab
NOV29ac
NOV29ad
NOV29ae
NOV29af
NOV29ag
NOV29a VRKLQKDTFYGLRSLTRLHMDHNNIEFINPEVFYGLNFLRLVHLEGNQLTKLHPDTFVSL
NOV29b
NOV29C
NOV29d
NOV29e
NOV29f
NOV29g NOV29h
NOV29i
NOV29J
NOV29k
NOV291
NOV29m
NOV29n
N0V29O
NOV29p
NOV29q
NOV29r
NOV29S
NOV29t
NOV29U
NOV29V
NOV29W
NOV29X
NOV29y
NOV29Z VR-KLQKDTFYGLRSLTRL----π^ røIEFINPEVFYGLNFLRLVHEGNQLTK^
NOV29aa VRKLQKDTFYGLRSLTRLHMDHNNIEFINPEVFYGLNFLRLVHLEGNQLTKLHPDTFVSL
NOV29ab
NOV29ac
NOV29ad
NOV29ae
NOV29af
NOV29ag
NOV29a SYLQIFKISFIKFLYLSDNFLTSLPQEMVSYMPDLDSLYLHGNP TCDCHLK LSD IQE
NOV29b
NOV29C
NOV29d
NOV29e
NOV29f
NOV29g
NOV29h
NOV291
NOV29J
NOV29k
NOV291
NOV29m
NOV29n
N0V29O
NOV29p
NOV29q
NOV29r
NOV29S
NOV29t
NOV29U
NOV29V
NOV29
NOV29X
NOV29y
NOV29Z SYLQIFKISFIKFLYLSDNFLTSLPQEMVSYMPDLDSLYLHGNPWTCDCHLK LSD IQE NOV29aa SYLQIFKISFIKFLYLSDNFLTSLPQEMVSYMPDLDSLYLHGNP TCDCHLK LSDWIQE
NOV29ab
NOV29ac
NOV29ad
NOV29ae
NOV29af
NOV29ag NOV29a KPGIYIVLPDVIKCKKDRSPSSAQQCPLCMNPRTSKGKPLAMVSAAAFQCAKPTIDSSLK
NOV29b
NOV29C
NOV29d
NOV29e
NOV29f
NOV29g
NOV29h
NOV29i
NOV291
NOV29m
NOV29n
N0V29O
NOV29p
NOV29q
NOV29r
NOV29S
NOV29t
NOV29U
NOV29V
NOV29W
NOV29X
NOV29y
NOV29z KPGIYIVLPDVIKCKKDRSPSSAQQCPLCMNPRTSKGKPLAMVSAAAFQCAKPTIDSSLK
NOV29aa KPGIYIVLPDVIKCKKDRSPSSAQQCPLCMNPRTSKGKPLAMVSAAAFQCAKPTIDSSLK
NOV29ab
NOV29ac
NOV29ad
NOV29ae
NOV29af
NOV29ag
NOV29a SKSLTILEDSSSAFISPQGFMAPFGSLTLNMTDQSGNEANMVCSIQKPSRTSPIAFTEEN
NOV29b
NOV29c
NOV29d
NOV29e
NOV29f
NOV29g
NOV29h
NOV29i
NOV291
NOV29m
NOV29n
NOV29o
NOV29p
NOV29q
NOV29r
NOV29S
NOV29t
NOV29U
NOV29V
NOV29
NOV29x
NOV29y NOV29Z SKSLTILEDSSSAFISPQGF-^PFGSLTLNMTDQSGNE-ANMVCSIQKPSRTSPIAFTEEN NOV29aa SKSLTILEDSSSAFISPQGFMAPFGSLTLNMTDQSGNEANMVCSIQKPSRTSPIAFTEEN
NOV29ab
NOV29ac
NOV29ad
NOV29ae
NOV29af
NOV29ag
NOV29a DYIVLNTSFSTFLVCNIDYGHIQPV QILALYSDSPLILERSHLLSETPQLYYKYKQVAP
NOV29b
NOV29c
NOV29d
NOV29e
NOV29f
NOV29g
NOV29h
NOV29i T
NOV291
NOV29m
NOV29n
N0V29O
NOV29p
NOV29q
NOV29r
NOV29S
NOV29t
NOV29U
NOV29V
NOV29W
NOV29X
NOV29y
NOV29Z DYIVLNTSFSTFLVCNIDYGHIQPVWQILALYSDSPLILERSHLLSETPQLYYKYKQVAP NOV29aa DYIVLNTSFSTFLVCNIDYGHIQPVWQILALYSDSPLILERSHLLSETPQLYYKYKQVAP
NOV29ab
NOV29ac
NOV29ad
NOV29ae
NOV29af
NOV29ag
NOV29a KPEDIFTNIEADLRADPSWLMQDQISLQLNRTATTFSTLQIQYSSDAQITLPRAEMRPVK
NOV29b
NOV29C
NOV29d
NOV29e
NOV29f
NOV29g
NOV29h
NOV29i
NOV29J
NOV29k
NOV291
NOV29m
NOV29n
N0V29O
NOV29p
NOV29q NOV29r
NOV29S
NOV29t
NOV29U
NOV29v
NOV29W
NOV29X
NOV29y
NOV29z KPEDIFTNIEADLRADPSWLMQDQISLQLNRTATTFSTLQIQYSSDAQITLPRAEMRPVK NOV29aa KPEDIFTNIEADLR-ADPS LMQDQISLQLNRTATTFSTLQIQYSSDAQITLPRAEMRPVK
NOV29ab
NOV29ac
NOV29ad
NOV29ae
NOV29af
NOV29ag
NOV29a HK TMISRD-I-røTI EHTVLVGGTVGLNCPGQGDPTP----rv LL-ADGSKVRAPYVSEDGRIL
NOV29b
NOV29C
NOV29d
NOV29e
NOV29f
NOV29g
NOV29h
NOV29i
NOV291
NOV29m
NOV29n
N0V29O
NOV29p
NOV29q
NOV29r
NOV29s
NOV29t
NOV29U
NOV29V
NOV29W
NOV29X
NOV29y
NOV29z HK TMISRD-.røTra-jEHTVLVGGTVGLNCPGQGDPTPHVD LL-ADGSKVRAPYVSEDGRIL
NOV29aa H-l-OTTMISRD-tINT--- EHTVLVGGTVGLNCPGQGDPTPHVDWLL-ADGSKVRA
NOV29ab
NOV29ac
NOV29ad
NOV29ae
NOV29af
NOV29ag
NOV29a IDKSGKLELQMADSFDTGVYHCISS-NYDD-ADILTYRITWEPLVEAYQENGIHHTVFIGE
NOV29b
NOV29c
NOV29d
NOV29e
NOV29f
NOV29g
NOV29h
NOV29i NOV29J
NOV29k
NOV291
NOV29m
NOV29n
NOV29o
NOV29p
NOV29q
NOV29r
NOV29S
NOV291
NOV29u
NOV29v
NOV29
NOV29x
NOV29y
NOV29z IDKSGKLELQMADSFDTGVYHCISSNYDDADILTYRITWEPLVEAYQENGIHHTVFIGE NOV29aa IDKSGKLELQMADSFDTGVYHCISSNYDDADILTYRITWEPLVEAYQENGIHHTVFIGE
NOV29ab
NOV29ac
NOV29ad
NOV29ae
NOV29af
NOV29ag
NOV29a TLDLPCHSTGIPDASISWVIPGNNVLYQSSRDKKVLNNGTLRILQVTPKDQGYYRCVAAN
NOV29b
NOV29C
NOV29d
NOV29e
NOV29f
NOV29g
NOV29h
NOV291
NOV29J
NOV29k
NOV291
NOV29m
NOV29n
NOV29o
NOV29p
NOV29q
NOV29r
NOV29S
NOV29t
NOV29U
NOV29V
NOV29W
NOV29X
NOV29y
NOV29z TLDLPCHSTGIPDASIS VIPG---røVLYQSS---^KKVLNNGTLRILQVTPKDQGYYRCVAAN NOV29aa TLDLPCHSTGIPDASIS VIPGNNVLYQSSRDK--WLNMGTLRILQVTPKDQGYYRCVAAN
NOV29ab
NOV29ac
NOV29ad
NOV29ae
NOV29af
NOV29ag
NOV29a PSGVDFLIFQVSVKMKGQRPLEHDGETEGSGLDESNPIAHLKEPPGAQLRTSALMEAEVG NOV29b
NOV29C
NOV29d
NOV29e
NOV29f
NOV29g
NOV29
NOV29i
NOV29J
NOV29k
NOV291
NOV29m
NOV29n
NOV29o
NOV29p
NOV29q
NOV29r
NOV29S
NOV29t
NOV29u
NOV29V
NOV29W
NOV29x
NOV29y
NOV29 z PSGVDFLIFQVSVKMKGQRPLEHDGETEGSGLDESNPIAHLKEPPGAQLRTSALMEAEVG
NOV29aa PSGVDFLIFQVSVKMKGQRPLEHDGETEGSGLDESNPIAHLKEPPGAQLRTSALMEAEVG
NOV29ab
NOV29ac
NOV29ad
NOV29ae
NOV29af
NOV29ag
NOV29a -^TSSTSKRH--- YRELTLQRRGDSTHRRFRENRRHFPPSARRIDPQHWAALLEKAKK1-JAMP
NOV29b
NOV29C
NOV29d
NOV29e
NOV29f
NOV29g
NO V29h
NOV29i
NOV291
NOV29m
NOV29n
NOV290
NOV29p
NOV29q
NOV29r
NOV29S
NOV29t
NOV29U
NOV29V
NOV29w
NOV29X
NOV29y
NOV29 z KHTSSTSK-RHNYRELTLQRRGDST-1-mRFRENRRHFPPSARRIDPQHWAALLEK-AKKN-A^ NOV29aa -- TSSTSKRHNYRELTLQRRGDSTHRRFRENRRHFPPSARRIDPQH AALLEKAKKNAMP NOV29ab NOV29ac NOV29ad NOV29ae NOV29af NOV29 g
NOV29a DKRENTTVSPPPWTQLPNIPGEEDDSSGMLALHEEFMVPATKALNLPARTVTADSRTIS
NOV29b
NOV29c
NOV29d
NOV29e
NOV29f
NOV29g
NOV29h
NOV29i
NOV291
NOV29m
NOV29n
NOV29o
NOV29p
NOV29q
NOV29r
NOV29s
NOV29t
NOV29U
NOV29V
NOV29W
NOV29X
NOV29y
NOV29z D--^ENTTVSPPPVVTQLPNIPGEEDDSSGMLALHEEFMVPATKALNLPARTVTADSRTIS NOV29aa DKRENTTVSPPPWTQLPNIPGEEDDSSGMLALHEEFMVPATKALNLPARTVTADSRTIS
NOV29ab
NOV29ac
NOV29ad
NOV29ae
NOV29af
NOV29ag r
NOV29a DSPMTNINYGTEFSPWNSQILPPEEPTDFKLSTAIKTTAMSKNINPTMSSQIQGTTNQH
NOV29b
NOV29C
NOV29d
NOV29e
NOV29f
NOV29g
NOV29h
NOV29i
NOV29J
NOV29k
NOV291
NOV29m
NOV29n
NOV290
NOV29p
NOV29q
NOV29r
NOV29S NOV29t
NOV29U
NOV29V
NOV29
NOV29x
NOV29y
NOV29Z DSPMTNINYGTEFSPWNSQILPPEEPTDFKLSTAIKTTAMSKNINPTMSSQIQGTTNQH NOV29aa DSPMTNINYGTEFSPWNSQILPPEEPTDFKLSTAIKTTAMSKNINPTMSSQIQGTTNQH
NOV29ab
NOV29ac
NOV29ad
NOV29ae
NOV29af
NOV29ag
NOV29a SSTVFPLLLGATEFQDSDQMGRGREHFQSRPPITVRTMIKDVNVKMLSSTTNKLLLESVN
NOV29b
NOV29C
NOV29d
NOV29e
NOV29f
NOV29g
NOV29h
NOV29i
NOV29J
NOV29k
NOV291
NOV29m
NOV29n
NOV290
NOV29p
NOV29q - '
NOV29r
NOV29S
NOV29t
NOV29U
NOV29V
NOV29w
NOV29x
NOV29y
NOV29z SSTVFPLLLGATEFQDSDQMGRGREHFQSRPPITVRTMIKDVNV-KMLSSTTNKLLLESVN
NOV29aa SSTVFPLLLGATEFQDSDQMGRGREHFQSRPPITVRTMIKDVNVKMLSSTTNKLLLESVN
NOV29ab
NOV29ac
NOV29ad
NOV29ae
NOV29af
NOV29ag
NOV29a TTNSHQTSVREVSEPRHNHFYSHTTQILSTSTFPSDPHTAAHSQFPIP-RNSTVNIPLFRR
NOV29b
NOV29C
NOV29d
NOV29e
NOV29f
NOV29g
NOV29h
NOV29i NOV291
NOV29m
NOV29o
NOV29p
NOV29q
NOV29r
NOV29s
NOV29t
NOV29u
NOV29v
NOV29w
NOV29X
NOV29y
NOV29Z TTNSHQTSVREVSEPRHNHFYSHTTQILSTSTFPSDPHTAAHSQFPIPRNSTVNIPLFRR NOV29aa TTNSHQTSVREVSEPRHNHFYSHTTQILSTSTFPSDPHTAAHSQFPIPRNSTV IPLFRR
NOV29ab
NOV29ac
NOV29ad
NOV29ae
NOV29af
NOV29ag
NOV29a FGRQRKIGGRGRIISPYRTPVLRRHRYSIFRSTTRGSSEKSTTAFSATVLNVTCLSCLPR
NOV29b
NOV29C
NOV29d
NOV29e
NOV29f
NOV29g
NOV29h
NOV29i
NOV291
NOV29m
NOV29n
N0V29O
NOV29p
NOV29q
NOV29r
NOV29S
NOV29t
NOV29U
NOV29v
NOV29W
NOV29x
NOV29y
NOV29Z FGRQRKIGGRGRIISPYRTPVLRRHRYSIFRSTTRGSSEKSTTAFSATVLNVTCLSCLPR NOV29aa FGRQRKIGGRGRIISPYRTPVLRRHRYSIFRSTTRGSSEKSTTAFSATVLNVTCLSCLPR
NOV29ab
NOV29ac
NOV29ad
NOV29ae
NOV29af
NOV29ag
NOV29a ERLTTATAALSFPSAAPITFPKADIARVPSEESTTLVQNPLLLLENKPSVEKTTPTIKYF
NOV29b
NOV29C NOV29d
NOV29e
NOV29f
NOV29g
NOV29h
NOV29i
NOV29J
NOV29k
NOV291
NOV29m
NOV29n
N0V29O
NOV29p
NOV29q
NOV29r
NOV29S
NOV29t
NOV29U
NOV29V
NOV29W
NOV29X
NOV29y
NOV29z ERLTTATAALSFPSAAPITFPKADIARVPSEESTTLVQNPLLLLENKPSVEKTTPTIKYF NOV29aa ERLTTATAALSFPSAAPITFPKADIARVPSEESTTLVQNPLLLLENKPSVEKTTPTIKYF
NOV29ab
NOV29ac
NOV29ad
NOV29ae
NOV29af
NOV29ag
NOV29a RTEISQVTPTGAVMTYAPTSIPMEKTHKVNASYPRVSSTNEAKRDSVITSSLSGAITKPP
NOV29b
NOV29C
NOV29d
NOV29e
NOV29f
NOV29g
NOV29h
NOV29Ϊ
NOV29J
NOV29k
NOV291
NOV29m
NOV29n
N0V29O
NOV29p
NOV29q
NOV29r
NOV29S
NOV29t
NOV29U
NOV29V
NOV29w
NOV29X
NOV29y
NOV29z RTEISQVTPTGAVMTYAPTSIPMEKTHKVNASYPRVSSTNEAKRDSVITSSLSGAITKPP
NOV29aa RTEISQVTPTGAVMTYAPTSIPMEKTHKVNASYPRVSSTNEAKRDSVITSSLSGAITKPP
NOV29ab
NOV29ac N0V29ad
N0V29ae
NOV29af
NOV29ag
NOV29a MTIIAITRFSRRKIP QQNFVNNHNPKGRLRNQHKVSLQKSTAVMLPKTSPALPQRQSLP
NOV29b
NOV29C
NOV29d
NOV29e
NOV29f
NOV29g
NOV29h
NOV29i
NOV291
NOV29m
NOV29n
N0V29O
NOV29p
NOV29q
NOV29r
NOV29S
NOV29t
NOV29U
N0V29V
NOV29
NOV29X
NOV29y
NOV29z MTIIAITRFSRRKIP QQNFVNNHNPKGRLRNQHKVSLQKSTAVMLPKTSPALPQRQSLP
NOV29aa MTIIAITRFSRRKIPWQQNFVNNHNPKGRLRNQHKVSLQKSTAVMLPKTSPALPQRQSLP
NOV29ab
NOV29ac
NOV29ad
NOV29ae
NOV29af
NOV29ag
NOV29a SHHTTTKTHNPGSLPTKKELPFPPLNPMLPSIISKDSSTKS11STQTAIPATTPTFPASV
NOV29b
NOV29C
NOV29d
NOV29e
NOV29f
NOV29g
NOV29h
NOV29i
NOV291
NOV29m
NOV29n
N0V29O
NOV29p
NOV29q
NOV29r
NOV29S
NOV29t
NOV29u NOV29V
NOV29W
NOV29X
NOV29y
NOV29Z SHHTTTKTHNPGSLPTKKELPFPPLNPMLPSIISKDSSTKSIISTQTAIPATTPTFPASV
NOV29aa SHHTTTKTHNPGSLPTKKELPFPPLNPMLPSIISKDSSTKSIISTQTAIPATTPTFPASV
NOV29ab
NOV29ac
NOV29ad
NOV29ae
NOV29af
NOV29ag
NOV29a ITYETQTERSRAQTIQREQEPQKKNRTDPNISPDQSSGFTTPTAMTPPVLTTAETSVKPS
NOV29b
NOV29C
NOV29d
NOV29e
NOV29f
NOV29g
NOV29---1
NOV29i
NOV29J
NOV29k
NOV291
NOV29m
NOV29n
N0V29O
NOV29p
NOV29q
NOV29r
NOV29S
NOV29t
NOV29U
NOV29V
NOV29W
NOV29x
NOV29y
NOV29z ITYETQTERSRAQTIQREQEPQKKNRTDPNISPDQSSGFTTPTAMTPPVLTTAETSVKPS
NOV29aa ITYETQTERSRAQTIQREQEPQKKNRTDPNISPDQSSGFTTPTAMTPPVLTTAETSVKPS
NOV29ab
NOV29ac NOV29ad NOV29ae NOV29af NOV29ag
NOV29a VSAFTHSPPENTTGISSTISFHSRTLNLTDVIEELAQASTQTLKSTIASETTLSSKSHQS NOV29b NOV29C NOV29d NOV29e NOV29f NOV29g NOV29 NOV2 i NOV29j NOV29k NOV291 NOV29m NOV29n
NOV29o
NOV29p
NOV29q
NOV29r
NOV29S
NOV29t
NOV29U
NOV29V
NOV29W
NOV29X
NOV29y
NOV29Z VSAFTHSPPENTTGISSTISFHSRTLNLTDVIEELAQASTQTLKSTIASETTLSSKSHQS NOV29aa VSAFTHSPPENTTGISSTISFHSRTLNLTDVIΞELAQASTQTLKSTIASETTLSSKSHQS
NOV29ab
NOV29ac
NOV29ad
NOV29ae
NOV29af
NOV29ag
NOV29a TTTRKAIIRHSTIPPFLSSSATLMPVPISPPFTQRAVTDNVATPISGLMTNTWKLHESS
NOV29b
NOV29C
NOV29d
NOV29e
NOV29f
NOV29g
NOV29h
NOV29i
NOV291
NOV29m
NOV29n
NOV29o
NOV29p
NOV29q
NOV29r
NOV29S
NOV29t
NOV29U
NOV29V
NOV29W
NOV29X
NOV29y
NOV29Z TTTRKAIIRHSTIPPFLSSSATLMPVPISPPFTQRAVTDNVATPISGLMTNTWKLHESS NOV29aa TTTR-1-A.II-RHSTIPPFLSSSATLMPVPISPPFTQRAVTDNVATPISGLMTNTVVKLHESS
NOV29ab
NOV29ac
NOV29ad
NOV29ae
NOV29af
NOV29ag
NOV29a RHNAKPQQLVAEVATSPKVHPNAKFTIGTTHFIYSNLLHSTPMPALTTVKSQNSKLTPSP
NOV29b
NOV29C
NOV29d
NOV29e NOV29f
NOV29g
NOV29h
NOV29i
NOV29J
NOV29k
NOV291
NOV29m
NOV29n
N0V29O
NOV29p
NOV29q
NOV29r
NOV29s
NOV29t
NOV29U
NOV29V
NOV29
NOV29X
NOV29y
NOV29z RHNAKPQQLVAEVATSPKVHPNAKFTIGTTHFIYSNLLHSTPMPALTTVKSQNSKLTPSP NOV29aa RHNAKPQQLVAEVATSPKVHPNAKFTIGTTHFIYSNLLHSTPMPALTTVKSQNSKLTPSP
NOV29ab
NOV29ac
NOV29ad
NOV29ae
NOV29af
NOV29ag
NOV29a AENQFWHKPYSEIAEKGKKPEVSMLATTGLSEATTLVSDWDGQKNTKKSDFDKKPVQEA
NOV29b
NOV29C
NOV29d
NOV29e
NOV29f
NOV29g
NOV29h
NOV29i
NOV29J
NOV29k
NOV291
NOV29m
NOV29n
NOV29o
NOV29p
NOV29q
NOV29r
NOV29s
NOV29t
NOV29U
NOV29V
NOV29
NOV29x
NOV29y
NOV29z AENQF HKPYSEIAEKGKKPEVSMLATTGLSEATTLVSD DGQKNTKKSDFDKKPVQEA NOV29aa W-AENQF HKPYSEI-AEKGKKPEVSMLATTGLSEATTLVSDWDGQKNT-KKSDFDKKPVQEA
NOV29ab .
NOV29ac
NOV29ad
NOV29ae NOV29af
NOV29ag
NOV29a TTSKLLPFDSLSRYIFEKPRIVGGKAASFTIPANSDAFLPCEAVGNPLPTIHWTRVPSGM
NOV29b
NOV29C
NOV29d
NOV29e
NOV29f
NOV29g
NOV29
NOV29i
NOV29J
NOV29k
NOV291
NOV29m
NOV29n
N0V29O
NOV29p
NOV29q
NOV29r
NOV29S
NOV29t
NOV29U
NOV29V
NOV29W
NOV29X TLENSDAFLPCΞAVGNPLPTIH TRVPS--
NOV29y TRSNSDAFLPCEAVGNPLPTIH TRVPS--
NOV29Z TTSKLLPFDSLSRYIFEKPRIVGGKAASFTIPANSDAFLPCΞAVGNPLPTIHWTRVPSGM
NOV29aa TTSKLLPFDSLSRYIFEKPRIVGGKAASFTIPANSDAFLPCEAVGNPLPTIH TRVPSGM
NOV29ab
NOV29ac
NOV29ad
NOV29ae NSDAFLPCEAVGNPLPTIHWTRVPS- -
NOV29af NSDAFLPCEAVGNPLPTIHWTRVPS--
NOV29ag
NOV29a SGLDLSKRKQNSRVQVLPNGTLSIQRVEIQDRGQYLCSASNLFGTDHLHVTLSWSYPPR
NOV29b
NOV29C
NOV29d
NOV29e
NOV29f
NOV29g
NOV29Ϊ1
NOV29i
NOV291
NOV29m
NOV29n •
NOV29o
NOV29p
NOV29q
NOV29r
NOV29S
NOV29t
NOV29U
NOV29V
NOV29W NOV29X -GLDLSKRKQNSRVQVLPNGTLSIQRVEIQDRGQYLCSASNLFGTDHLHVTLSWSYPPR
NOV29y -GLDLSKRKQNSRVQVLPNGTLSIQRVEIQDRGQYLCSASNLFGTDHLHVTLSWSYPPR
NOV29Z SGLDLSKRKQNSRVQVLPNGTLSIQRVEIQDRGQYLCSASNLFGTDHLHVTLSWSYPPR
NOV29aa SGLDLSKRKQNSRVQVLPNGTLSIQRVEIQDRGQYLCSASNLFGTDHLHVTLSWSYPPR
NOV29ab
NOV29ac
NOV29ad
NOV29ae -GLDLSKRKQNSRVQVLPNGTLSIQRVEIQDRGQYLCSASNLFGTDHLHVTLSWSYPPR
NOV29af -GLDLSKRKQNSRVQVLPNGTLSIQRVEIQDRGQYLCSASNLFGTDHLHVTLSWSYPPR
NOV29ag
NOV29a ILERRTKEITVHSGSTVELKCRAEGRPSPTVTWILANQTWSESSQGSRQAWTVDGTLV
NOV29b
NOV29C
NOV29d
NOV29e
NOV29f
NOV29g
NOV29h
NOV29i
NOV29J
NOV29k
NOV291
NOV29m
NOV29n
N0V29O
NOV29p
NOV29q
NOV29r
NOV29S
NOV29t
NOV29U
NOV29V
NOV29W
NOV29x ILERRTKEITVHSGSTVELKCRAEGRPSPTVTWILANQTWSESSQGSRQAWTVDGTLV
NOV29y ILERRTKEITVHSGSTVELKCRAEGRPSPTVTWILANQTWSESSQGSRQAWTVDGTLV
NOV29z ILERRTKEITVHSGSTVELKCRAEGRPSPTVTWILANQTWSESSQGSRQAWTVDGTLV
NOV29aa ILERRTKEITVHSGSTVELKCRAEGRPSPTVTWILANQTWSESSQGSRQAWTVDGTLV
NOV29ab
NOV29ac
NOV29ad
NOV29ae ILERRTKEITVHSGSTVELKCRAEGRPSPTVTWILANQTWSESSQGSRQAWTVDGTLV
NOV29af ILERRTKEITVHSGSTVELKCRAEGRPSPTVTWILANQTWSESSQGSRQAWTVDGTLV
NOV29ag
NOV29a LHNLSIYDRGFYKCVASNPGGQDSLLVKIQVIAAPPVILEQRRQVIVGTWGESLKLPCTA
NOV29b
NOV29C
NOV29d
NOV29e
NOV29f
NOV29g
NOV29h ;
NOV29i
NOV291
NOV29m
NOV29n
NOV29o NOV29p
NOV29q
NOV29r
NOV29S
NOV29t
NOV29U
NOV29V
NOV29
NOV29x LHNLSIYDRGFYKCVASNPGGQDSLLVKIQVIAAPPVILEQRRQVIVGTWGESLKLPCTA NOV29y LHNLSIYDRGFYKCVASNPGGQDSLLVKIQVIAAPPVILEQRRQVIVGTWGESLKLPCTA NOV29Z LHNLSI DRGFYKCVASNPGGQDSLLVKIQVIAAPPVILEQRRQVIVGTWGESLKLPCTA NOV29aa LHNLSIYDRGFYKCVASNPGGQDSLLVKIQVIAAPPVILEQRRQVIVGTWGESLKLPCTA
NOV29ab
NOV29ac
NOV29ad
NOV29ae LHNLSIYDRGFYKCVASNPGGQDSLLVKIQVIAAPPVILEQRRQVIVGTWGESLKLPCTA NOV29af LHNLSIYDRGFYKCVASNPGGQDSLLVKIQVIAAPPVILEQRRQVIVGTWGESLKLPCTA NOV29ag
NOV29a KGTPQPSVYWVLSDGTEVKPLQFTNSKLFLFSNGTLYIRNLASSDRGTYECIATSSTGSE
NOV29b
NOV29C
NOV29d
NOV29e
NOV29f
NOV29g
NOV29h
NOV29i
NOV29j
NOV29k
NOV291
NOV29m
NOV29n
NOV29o
NOV29p
NOV29q
NOV29r
NOV29S
NOV29t
NOV29U
NOV29v
NOV29
NOV29X KGTPQPSVYWVLSDGTEVKPLQFTNSKLFLFSNGTLYIRNLASSDRGTYECIATSSTGSE
NOV29y KGTPQPSVYWVLSDGTEVKPLQFTNSKLFLFSNGTLYIRNLASSDRGTYECIATSSTGSE
NOV29Z KGTPQPSVYWVLSDGTEVKPLQFTNSKLFLFSNGTLYIRNLASSDRGTYECIATSSTGSE
NOV29aa KGTPQPSVYWVLSDGTEVKPLQFTNSKLFLFSNGTLYIRNLASSDRGTYECIATSSTGSE
NOV29ab
NOV29ac
NOV29ad
NOV29ae KGTPQPSVYWVLSDGTEVKPLQFTNSKLFLFSNGTLYIRNLASSDRGTYECIATSSTGSE
NOV29af KGTPQPSVYWVLSDGTEVKPLQFTNSKLFLFSNGTLYIRNLASSDRGTYECIATSSTGSE
NOV29ag
NOV29a RRWMLTMEERVTSPRIEAASQKRTEVNFGDKLLLNCSATGEPKPQIMWRLPSKAWDQQ
NOV29b
NOV29c GSAAAPFTLEGDKLLLNCSATGEPKPQIMWRLPSKAWDQQ
NOV29d
NOV29e
NOV29f
NOV29g -NOV29h -GSAAAPFTLEGDKLLLNCSATGEPKPQIMWRLPSKAWDQQ
NOV29i -GSAAAPFTLEGDKLLLNCSATGEPKPQIMWRLPSKAWDQQ
NOV29J
NOV29k
NOV291
NOV29m
NOV29n
N0V29O
NOV29p
NOV29q
NOV29r
NOV29Ξ
NOV29
NO 29U
NOV29
NOV29W GSAAAPFTLEGDKLLLNCSATGEPKPQIMWRLPSKAWDQQ
NOV29X RRWMLTMEERVTSPRIEAASQKRTEVNFGDKLLLNCSATGEPKPQIMWRLPSKAWDQQ
NOV29y RRWMLTMEERVTSPRIEAASQKRTEVNFGDKLLLNCSATGEPKPQIMWRLPSKAWDQQ
NOV29Z RRWMLTMEERVTSPRIEAASQKRTEVNFGDKLLLNCSATGEPKPQIMWRLPSKAWDQQ
NOV29aa RRWMLTMEERVTSPRIEAASQKRTEVNFGDKLLLNCSATGEPKPQIMWRLPSKAWDQQ
NOV29ab
NOV29ac GDKLLLNCSATGEPKPQIMWRLPSKAWDQQ
NOV29ad GDKLLLNCSATGEPKPQIMWRLPSKAWDQQ
NO 29ae RRVVMLT EERVTSPRIE-AASQ---OITEVNFGDKLLLNCSATGEPKPQIMWRLPSKAVVDQQ
NOV29af RRWMLTMEERVTSPRIEAASQKRTEVNFGDKLLLNCSATGEPKPQIMWRLPSKAWDQQ
NOV29ag
NOV29a HRVGSWIHVYPNGSLFIGSVTEKDSGVYLCVARNKMGDDLILMHVSLRLKPAKIDHKQYF NOV29b NOV29C HRVGSWI----TVYPNGSLFIGSVTE-roSGVYLCVARNKMGDDLILMHVSLRLKPAKIDHKQYF NOV29d NOV29e NOV29f NOV29g NOV29h HRVGSWIHVYPNGSLFIGSVTEKDSGVYLCVARNKMGDDLILMHVSLRLKPAKIDHKQYF NOV29i HRVGSWIHVYPNGSLFIGSVTEKDSGVYLCVARNKMGDDLILMHVSLRLKPAKIDHKQYF NOV29j NOV29k NOV291 NOV29m NOV29n NOV29o NOV29p NOV29q NOV29r NOV29S NOV29t NOV29u NOV29v NOV29 HRVGSWIHVYPNGSLFIGSVTEKDSGVYLCVARNKMGDDLILMHVSLRLKPAKIDHKQYF NOV29x HRVGSWIHVYPNGSLFIGSVTEKDSGVYLCVARNKMGDDLILMHVSLRLKPAKIDHKQYF NOV29y HRVGSWI-ffVYPNGSLFIGSVTEKDSGVYLCVARNKMGDDLILMHVSLRLKPAKIDHKQYF NOV29Z HRVGSWIH-VYPNGSLFIGSVTEKDSGVYLCVARNKMGDDLILMHVSLRLKPAKIDHKQYF NOV29aa HRVGSWIHVYPNGSLFIGSVTEKDSGVYLCVARNKMGDDLILMHVSLELKPAKIDHKQYF NOV29ab NOV29ac HRVGSWIHVYPNGSLFIGSVTEKDSGVYLCVARNKMGDDLILMHVSLRLKPAKIDHKQYF NOV29ad HRVGSWIHVYPNGSLFIGSVTEKDSGVYLCVARNKMGDDLILMHVSLRLKPAKIDHKQYF NOV29ae HRVGSWIHVYPNGSLFIGSVTEKDSGVYLCVARNKMGDDLILMHVSLRLKPAKIDHKQYF NOV29af HRVGSWIHVYPNGSLFIGSVTEKDSGVYLCVARNKMGDDLILMHVSLRLKPAKIDHKQYF NOV29ag NOV29a RKQVLHGKDFQVDCKASGSPVPEISWSLPDGTMINNAMQADDSGHRTRRYTLFNNGTLYF
NOV29b
NOV29C RKQVLHGKDFQVDCKASGSPVPEISWSLPDGTMINNAMQADDSGHRTRRYTLFNNGTLYF
NOV29d
NOV29e
NOV29f
NOV29g
NOV29h RKQVLHGKDFQVDCKASGSPVPEISWSLPDGTMINNAMQADDSGHRTRRYTLFNNGTLYF
NOV29i RKQVLHGKDFQVDCKASGSPVPEISWSLPDGTMINNAMQADDSGHRTRRYTLFNNGTLYF
NOV29J
NOV29k
NOV291
NOV29m
NOV29n
N0V29O
NOV29p
NOV29q
NOV29r
NOV29S
NOV29t
NOV29U
NOV29V
NOV29W RKQVLHGKDFQVDCKASGSPVPEISWSLPDGTMINNAMQADDSGHRTRRYTLFNNGTLYF
NOV29X RKQVLHGKDFQVDCKASGSPVPEISWSLPDGTMINNAMQADDSGHRTRRYTLFNNGTLYF
NOV29y RKQVLHGKDFQVDCKASGSPVPEISWSLPDGTMINNAMQADDSGHRTRRYTLFNNGTLYF
NOV29Z RKQVLHGKDFQVDCKASGSPVPEISWSLPDGTMINNAMQADDSGHRTRRYTLFNNGTLYF
NOV29aa RKQVLHGKDFQVDCKASGSPVPEISWSLPDGTMINNAMQADDSGHRTRRYTLFNNGTLYF
NOV29ab
NOV29ac RKQVLHGKDFQVDCKASGSPVPEISWSLPDGTMINNAMQADDSGHRTRRYTLFNNGTLYF
NOV29ad RKQVLHGKDFQVDCKASGSPVPEISWSLPDGTMINNAMQADDSGHRTRRYTLFNNGTLYF
NOV29ae RKQVLHGKDFQVDCKASGSPVPEISWSLPDGTMINNAMQADDSGHRTRRYTLFNNGTLYF
NOV29af RKQVLHGKDFQVDCKASGSPVPEISWSLPDGTMINNAMQADDSGHRTRRYTLFNNGTLYF
NOV29ag
NOV29a NKVGVAEEGDYTCYAQNTLGKDEMKVHLTVITAAPRIRQSNKTNKRIKAGDTAVLDCEVT
NOV29b
NOV29C NKVGVAEEGDYTCYAQNTLGKDEMKVHLTVITAAPRIRQSNKTNKRIKAGDTAVLDCEVT
NOV29d
NOV29e
NOV29f
NOV29g
NOV29h NKVGVAEEGDYTCYAQNTLGKDEMKVHLTVITAAPRIRQSNKTNKRIKAGDTAVLDCΞVT
NOV29i NKVGVAEEGDYTCYAQNTLGKDΞMKVHLTVITAAPRIRQSNKTNKRIKAGDTAVLDCEVT
NOV29J TLEGDKLLLNCSAT
NOV29k TLEGDKLLLNCSAT
NOV291 TLEGDKLLLNCSAT
NOV29m TLEGDKLLLNCSAT
NOV29n TLEGDKLLLNCSAT
NOV29o TLEGDKLLLNCSAT
NOV29p TLEGDKLLLNCSAT
NOV29q TLEGDKLLLNCSAT
NOV29r APRPP
NOV29S TLEMKVKGRGITCL
NOV29t TLEMKVKGRGITCL
NOV29U TLEMKVKGRGITCL
NOV 9 TLEMKVKGRGITCL
NOV29W NKVGVAEEGDYTCYAQNTLGKDEMKVHLTVITAAPRIRQSNKTNKRIKAGDTAVLDCEVT
NOV29x NKVGVAEEGDYTCYAQNTLG---α)EMKVHLTVITAAPRIRQSNKTNKRIKAGDTAVLDCΞVT
NOV29y NKVGVAEEGDYTCYAQNTLGKDEMKVHLTVITAAPRIRQSNKTNKRIKAGDTAVLDCEVT NOV29z NKVGVAEEGDYTCYAQNTLGKDEMKVHLTVITAAPRIRQSNKTNKRIKAGDTAVLDREVT NOV29aa NKVGVAEEGDYTCYAQNTLGKDEMKVHLTVITAAPRIRQSNKTNKRIKAGDTAVLDCEVI
NOV29ab
NOV29ac NKVGVAEEGDYTCYAQNTLGKDEMKVHLTVITAAPRIRQSNKTNKRIKAGDTAVLDCEVT NOV29ad NKVGVAEEGDYTCYAQNTLGKDEMKVHLTVITAAPRIRQSNKTNKRIKAGDTAVLDCEVT NOV29ae NKVGVAEEGDYTCYAQNTLGKDEMKVHLTVITAAPRIRQSNKTNKRIKAGDTAVLDCEVT NOV29af NKVGVAEEGDYTCYAQNTLGKDEMKVHLTVITAAPRIRQSNKTNKRIKAGDTAVLDCEVT NOV29ag
NOV29a GDPKPKIFWLLPSNDMISFSIDRYTFHANGSLTINKVKLLDSGEYVCVARNPSGDDTKMY
NOV29b TLENVERINLGYNSLVR
NOV29C GDPKPKIFWLLPSNDMISFSIDRYTFH-ANGSLTINKVKLLDSGEYVCVARNPSGDDTKMY
NOV29d KLACPRRCACYMPTEVHCTFRYLTSIPDSIPPNVERINLGYNSLVR
NOV29e KLACPRRCACYMPTEVHCTFRYLTSIPDSIPPNVERINLGYNSLVR
NOV29f KLACPRRCACYMPTΞVHCTFRYLTSIPDSIPPNVERINLGYNSLVR
NOV29g KLACPRRCACYMPTEVHCTFRYLTSIPDSIPPNVERINLGYNSLVR
NOV29h GDPKPKIFWLLPSNDMISFSIDRYTFHANGSLTINKVKLLDSGEYVCVAR-NPSGDDTKMY NOV291 GDPKPKIFWLLPSNDMISFSIDRYTFH-ANGSLTINKVKLDSGEYVCV-ARNPSGDDTKMY NOV29j GEPKPQIMWRLPS-KAWDQQHRYTFHANGSLTINKVKLLDSGEYVCVARNPSGDDTKMY NOV29k GEPKPQIMWRLPS-KAVVDQQHRYTFHANGSLTINKVKLLDSGEYVCVARNPSGDDTKMY NOV291 GEPKPQIMWRLPS-KAWDQQHRYTFHANGSLTINKVKLLDSGEYVCVARNPSGDDTKMY NOV29m GEPKPQIMWRLPS-KAVVDQQHRYTFHANGSLTINKVKLLDSGEYVCVARNPSGDDTKMY NOV29n GEPKPQIMWRLPS-KAVVDQQHRYTF-E-I-ANGSLTINKVKLLDSGEYVCVA-RNPSGDDTKMY N0V29O GΞPKPQIMWRLPS-KAWDQQHRYTFHANGSLTINKVKLLDSGEYVCVA-RNPSGDDTKMY NOV29p GEPKPQIMWRLQS -KAVVDQQHRYTFH-ANGSLTINKVKLLDSGEYVCV-ARNPSGDDTKMY NOV29q GEPKHQIMWRLPS-KAVVDQQHRYTFIIANGSLTINKVKLLDSGΞYVCVARNPSGDDTKMY NOV29r PSPSSVLAAVPVICTLECPRRCACYMPTEVHCTFRYLTSIPDSIPPNVERINLGYNSLVR NOV29s LVSFAVICLVATPGGKACPRRCACYMPTEVHCTFRYLTSIPDSIPPNVERINLGYNSLVR NOV29t LVSFAVICLVATPGGKACPRRCACYMPTEVHCTFRYLTSIPDSIPPNVERINLGYNSLVR NOV29u LVSFAVICLVATPGGKACPRRCACYMPTEVHCTFRYLTSIPDSIPPNVERINLGYNSLVR NOV29v LVSFAVICLVATPGGKACPRRCACYMPTEVHCTFRYLTSIPDSIPPNVERINLGYNSLVR NOV29W GDPKPKIFWLLPSNDMISFSIDRYTFHANGSLTINKVKLLDSGEYVCVARNPSGDDTKMY NOV29x GDPKPKIFWLLPSNDMISFSIDRYTFHANGSLTINKVKLLDSGEYVCVARNPSGDDTKMY NOV29y GDPKPKIFWLLPSNDMISFSIDRYTFHANGSLTINKVKLLDSGEYVCVARNPSGDDTKMY
NOV29z GDPKPKIFWLLPS NGSLTINKVKLLDSGEYVCVARNPSGDDTKMY
NOV29aa HANGSLTINKVKLLDSGEYVCVARNPSGDDTKMY
NOV29ab ACPRRCACYMPTEVHCTFRYLTSIPDSIPPNVERINLGYNSLVR
NOV29ac GDPKPKIFWLLPSNDMISFSIDRYTFHANGSLTINKVKLLDSGEYVCVARNPSGDDTKMY NOV29ad GDPKPKIFWLLPSNDMISFSIDRYTFHANGSLTINKVKLLDSGEYVCVARNPSGDDTKMY NOV29ae GDPKPKIFWLLPSNDMISFSIDRYTFHANGSLTINKVKLLDSGEYVCVARNPSGDDTKMY NOV29af GDPKPKIFWLLPSNDMISFSIDRYTFHANGSLTINKVKLLDSGEYVCVARNPSGDDTKMY NOV29ag ACPRRCACYMPTEVHCTFRYLTSIPDSIPPNVERINLGYNSLVR
NOV29a KLDWSKPPLINGLYTNRTVIKATAVRHSKKHFDCRAEGTPSPEVMWIMPDNIFLTAPYY
NOV29b LMETDFSGLTKLELLMLHSNGIHTIPDKTFSDLQALQVLKMSYNKVRKLQKDTFYGLRSL
NOV29c KLDWSKPPLINGLYTNRTVIKATAVRHSKKHFDCRAEGTPSPEVMWIMPDNIFLTAPYY
NOV29d LMETDFSGLT-iaELLMLHSNGIHTIPDKTFSDLQ-ALQVL--- ISYNKVRKLQKDTFYGLRSL
NOV29e LMETDFSGLTKLELLMLHSNGIHTIPDKTFSDLQALQVLKMSYNKVRKLQKDTFYGLRSL
NOV29f LMETDFSGLTIOJELLMLHSNGIHTIPDKTFSDLQALQVL-ra SYN-KVR---α-JQKDTFYGLRSL
NOV29g LMETDFSGLTKLELLMLHSNGIHTIPDKTFSDLQALQVLKMSYNKVRKLQKDTFYGLRSL
NOV29h KLDWSKPPLINGLYTNRTVIKATAVRHSKKHFDCRAEGTPSPEVMWIMPDNIFLTAPYY
NOV29i KLDWΞKPPLINGLYTNRTVIKATAVRHSKKHFDCRAEGTPSPEVMWIMPDNIFLTAPYY
NOV29j KLDWSKPPLINGLYTNRTVIKATAVRHSKKHFDCRAEGTPSPEVMWIMPDNIFLTAPYY
NOV29k KLDWSKPPLINGLYTNRTVIKATAVRHSKKHFDCRAEGTPSPEVMWIMPDNIFLTAPYY
NOV291 -KLDVVSKPPLINGLYTNRTVIKATAVRHSKKHFDCRAEGTPSPEVMWIMPDNIFLTAPYY
NOV29m KLDWSKPPLINGLYTNRTVIKATAVRHSKKHFDCRAEGTPSPEVMWIMPDNIFLTAPYY
NOV2911 ---α,DVVSKPPLINGLYT--S-IlTVI-KΑTAV--^S--- ΗFDC-R-AEGTPSPEVMWIMPD
NOV29o KLDVVSKPPLINGLYTNRTVIKATAMRHSKKHFDCRAEGTPSPEVMWIMPDNIFLTAPYY
NOV29p KLDWSKPPLINGLYTNRTVIKATAVRHSKKHFDCRAEGTPSPEVMWIMPDNIFLTAPYY
NOV29q KLDWSKPPLINGLYTNRTVIKATAVRHSKKHFDCRAEGTPSPEVMWIMPDNIFLTAPYY NOV29r LMETDFSGLTKLELLMLHSNGIHTIPDKTFSDLQALQVLKMS NKVRKLQKDTFYGLRSL NOV29S LMETDFSGLTKLELLMLHSNGIHTIPDKTFSDLQALQVLKMSYNKVRKLQKDTFYGLRSL NOV291 LMETDFSGLTKLELLMLHSNGIHTIPDKTFSDLQALQVLKMSYNKVRKLQKDTFYGLRSL NOV29u LMETDFSGLTKLELLMLHSNGIHTIPDKTFSDLQALQVLKMSYNKVRKLQKDTFYGLRSL NOV29v LMETDFSGLTiα-iELLMLHSNGIHTIPDKTFSDLQ-ALQVL-1-MSYN-KVRKLQKDTFYGLRSL NOV29w KLDVVSKPPLINGLYTNRTVIKATAVRHSKKHFDCRAEGTPSPEVMWIMPDNIFLTAPYY NOV29x KLDWSKPPLINGLYTNRTVIKATAVRHSKKHFDCRAEGTPSPEVMWIMPDNIFLTAPYY NOV29y KLDWSKPPLINGLYTNRTVIKATAVRHSKKHFDCRAEGTPSPEVMWIMPDNIFLTAPYY NOV29z 10-jDVVSKPPLINGLYT-tmTVIKATAVRHSKKHFDCRAEGTPSPEVMWIMPDNIFLTAPYY NOV29aa KDVVSKPPLINGLYTNRTVIKATAVRHSK-l-sΗFDCRAEGTPSPEVMWIMPDNIFLTAPYY NOV29ab LMETDFSGLTKLELLMLHSNGIHTIPDKTFSDLQ-ALQVLKMSYNKVRKLQKDTFYGLRSL NOV29ac K-LDVVSKPPLINGLYTNRTVIKATAVRHSK-KHFDCRAEGTPSPEVMWIMPDNIFLTAPYY NOV29ad KLDWSKPPLINGLYTNRTVIKATAVRHSKKHFDCRAEGTPSPEVMWIMPDNIFLTAPYY NOV29ae KLDWSKPPLINGLYTNRTVIKATAVRHSKKHFDCRAEGTPSPEVMWIMPDNIFLTAPYY NOV29af KLDWSKPPLINGLYTNRTVIKATAVRHSKKHFDCRAEGTPSPEVMWIMPDNIFLTAPYY NOV29ag LMETDFSGLT-KLELLMLHSNGIHTIPDKTFSDLQ-ALQVL---^SYNKVRKLQKDTFYGLRSL
NOV29a GSRITVHKNGTLEIRNVRLSDS-ADFICVARNEGGESVLWQLEVLEMLRRPTFRNPFNEK NOV29b TRLHMD-HNN--IEFINPEVFDGLNFLRLVHLEGNQLTKLHPDTFVSLSYLQIFKISFIKF NOV29c GSRITVHKNGTLEIRNVRLSDSADFICVARNEGGESVLVVQLEVLEMLRRPTFRNPFNEK NOV29d TRLHMDHNN- -IEFINPEVFYGLNFLRLVHLEGNQLTKLHPDTFVSLSYLQIFKISFIKF NOV29e TRLHMDHNN- -IEFINPEVFYGLNFLRLVHLEGNQLTKLHPDTFVSLSYLQIFKISFIKF NOV29f TRLHMDHNN- -IEFINPEVFDGLNFLRLVHLEGNQLTKLHPDTFVSLSYLQIFKISFIKF NOV29g TRLHMDHNN- -IEFINPEVFDGLNFLRLVHLEGNQLTKLHPDTFVSLSYLQIFKISFIKF NOV29h GSRITVHKNGTLEIRNVRLSDSADFICVARNEGGESVLWQLEVLEMLRRPTFRNPFNEK NOV29i GSRITVHNGTLEI-RNVRLSDSADFICVARNEGGESVLVVQLEVLEMLRRPTFRNPFNEK NOV29j GSRITVHKNGTLΞIRNVRLSDSADFICVARNEGGESVLVVQLEVLEMLRRPTFRNPFNΞK NOV29k GSRITVHKNGTLEI-------TVRLSDSADFICVARNEGGESVLVVQLEVLEMLRRPTFRNPFNEK
NOV291 GSRITVHKNGTLEIRNVRLSDSADFICVARNEGGESVLWQLEVLEMLRRPTFRNPFNEK NOV29m GSRITVHKNGTLEIRNVRLSDSADFICVARNEGGESVLVVQLEVLEMLRRPTFRNPFNEK NOV29n GSRITVHKNGTLEIRNVRLSDSADFICVARNEGGESVLWQLEVLEMLRRPTFRNPFNEK NOV29o GSRITVΗ---OJGTLEIR-^-ΛπiLSDSADFICVARNEGGESVLVVQLEVLEMLRRPTFRNPFNEK NOV29p GSRITVHKNGTLEIRNVRLSDSADFICVARNEGGESVLWQLEVLEMLRRPAFRNPFNEK NOV29q GSRITVHKNGTLEIRNVRLSDSADFICVARNEGGESVLVVQLEVLEMLRRPTFRNPFNEK NOV29r TRLHMDHNN- -IEFINPEVFDGLNFLRLVHLEGNQLTKLHPDTFVSLSYLQIFKISFIKF NOV29s TRLHMDHNN--IEFINPEVFYGLNFLRLVHLEGNQLTKLHPDTFVSLSYLQIFKISFIKF NOV29t TRLHMDHNN--IEFINPEVFYGLNFLRLVHLEGNQLTKLHPDTFVSLSYLQIFKISFIKF NOV29u TRLHMDHNN- -IEFINPEVFYGLNFLRLVHLEGNQLTKLHPDTFVSLSYLQIFKISFIKF NOV29v TRLHMDHNN- -IEFINPEVFYGLNFLRLVHLEGNQLTKLHPDTFVSLSYLQIFKISFIKF NOV29w GSRITVHKNGTLEIRYVRLSDS-ADFICVARNEGGESVLWQLEVLEMLRRPTFRNPFNEK NOV29x GSRITVHKNGTLEIRNVRLSDSADFICVARNEGGESVLWQLEVLEMLRRPTFRNPFNEK NOV29y GSRITVHKNGTLEI---i--S!ΛπiLSDSADFICVA-RNEGGESVLVVQLEVLEMLRRPTFRNPFNEK NOV29z GSRITVHKNGTLEIRNVRLSDSADFICVARNEGGESVLWQLEVLEMLRRPTFRNPFNEK NOV29aa GSRITVH-KNGTLEI----NVRLSDSADFICVARNEGGESVLVVQLEVLEMLRRPTFRNPFNEK
NOV29ab TRLHMDHNN- -IEFINPEVFDGLNFLRLVHLEGNQLTKLHPDTFVSLSYLQIFKISFIKF NOV29ac GSRITVHKNGTLEIRNVRLSDSADFICVARNEGGESVLVVQLEVLEMLRRPTFRNPFNEK NOV29ad GSRITVHKNGTLEIRNVRLSDSADFICVARNEGGESVLVVQLEVLEMLRRPTFRNPFNEK NOV29ae GSRITVHKNGTLEIRNVRLSDSADFICVARNEGGESVLWQLEVLEMLRRPTFRNPFNEK NOV29af GSRITVHKNGTLEIRNVRLSDSADFICVARNEGGESVLVVQLEVLEMLRRPTFRNPFNEK N0V29ag TRLHMDHNN- -IEFINPEVFDGLNFLRLVHLEGNQLTKLHPDTFVSLSYLQIFKISFIKF
NOV29a IVAQLGKSTALNCSVDGNPPPEIIWILPNGTRFSNGPQSYQYLIASNGSFIISKTTREDA
NOV29b LYLSDNFLTSLPQEMVSYMP LEG
NOV29c IVAQLGKSTALNCSVDGNPPPE11WILPNGTRFSNGPQSYQYLIASNGSF11SKTTREDA
NOV29d LYLSDNFLTSLPQEMVSYMPDLDSLYLHGNPWTCDCHLKWLSDWIQEKPDVIKCKKDRSP
NOV29e LYLSDNFLTSLPQEMVSYMPDLDSLYLHGNPWTCDCHLKWLSDWIQEKPDVIKCKKDRSP
NOV29f LYLSDNFLTSLPQEMVSYMPDLDSLYLHGNPWTCDCHLKWLSDWIQEKPDVIKCKKDRSP
NOV29g LYLSDNFLTSLPQEMVSYMPDLDSLYLHGNPWTCDCHLKWLFDWIQEKPDVIKCKKDRSP
NOV29h IVAQLGKSTALNCSVDGNPPPEIIWILPNGTRFSNGPQSYQYLIASNGSFIISKTTREDA
NOV29i IVAQLGKSTALNCSVDGNPPPEIIWILPNGTRFSNGPQSYQYLIASNGSFIISKTTREDA NOV29J IVAQLGKSTALNCSVDGNPPPΞII ILPNGTRFSNGPQSYQYLIASNGSFIISKTTRΞDA N0V29k IVAQLGKSTALNCSVDGNPPPEIIWILPNGTRFSNGPQSYQYLIASNGSFIISKTTREDA N0V291 IVAQLGKSTALNCSVDGNPPPEIIWILPNGTRFSNGPQSYQYLIASNGSFIISKTTREDA N0V29m IVAQLGKSTALNCSVDGNPPPEIIWILPNGTRFSNGPQSYQYLIASNGSFIISKTTREDA N0V29n IVAQLGKSTALNCSVDGNPPPEIIWILPNGTRFSNGPQSYQYLIASNGSFIISKTTREDA N0V29O IVAQLGKSTALNCSVDGNPPPEIIWILPNGTRFSNGPQSYQYLIASNGSFIISKTTREDA NOV29p IVAQLGKSTALNCSVDGNPPPEIIWILPNGTRFSNGPQSYQYLIASNGSFIISKTTREDA NOV29q IVAQLGKSTALNCSVDGNPPPEIIWILPNGTRFSNGPQSYQYLIASNGSFIISKTTREDA
NOV29r LYLSDNFLTSLPQEMVSYMP LEGKGGRA
NOV29s LYLSDNFLTSLPQEMVSYMP LEG
NOV29t LYLSDNFLTSLPQEMVSYMP LEG
NOV29u LYLSDNFLTSLPQEMVSYMP LEG
NOV29V LYLSDNFLTSLPQEMVSYMP LEG
NOV29W IVAQLGKSTALNCSVDGNPPPEIIWILPNGTRFSNGPQSYQYLIASNGSFIISKTTREDA NOV29X IVAQLGKSTALNCSVDGNPPPEIIWILPNGTRFSNGPQSYQYLIASNGSFIISKTTREDA NOV29y IVAQLGKSTALNCSVDGNPPPEIIWILPNGTRFSNGPQSYQYLIASNGSFIISKTTREDA N0V29Z IVAQLGKSTALNCSVDGNPPPEIIWILPNGTRFSNGPQSYQYLIASNGSFIISKTTREDA NOV29aa IVAQLGKSTALNCSVDGNPPPEIIWILPNGTRFSNGPQSYQYLIASNGSFIISKTTREDA NOV29ab LYLSDNFLTSLPQEMVSYMPDLDSLYLHGNPWTCDCHLKWLSDWIQEKPDVIKCKKDRSP N0V29ac IVAQLGKSTALNCSVDGNPPPEIIWILPNGTRFSNGPQSYQYLIASNGSFIISKTTREDA NOV29ad IVAQLGKSTALNCSVDGNPPPEIIWILPNGTRFSNGPQSYQYLIASNGSFIISKTTREDA NOV29ae IVAQLGKSTALNCSVDGNPPPEIIWILPNGTRFSNGPQSYQYLIASNGSFIISKTTREDA NOV29af IVAQLGKSTALNCSVDGNPPPEIIWILPNGTRFSNGPQSYQYLIASNGSFIISKTTREDA NOV29ag LYLSDNFLTSLPQEMVSYMPDLDSLYLHGNPWTCDCHLKWLSDWIQEKPDVIKCKKDRSP
N0V29a GKYRCAARNKVGYIEKLVILEIGQKPVILTYAPGTVKGISGΞSLSLHCVSDGIPKPNIKW
NOV29b
NOV29c GKYRCAARNKVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNIKW
NOV29d SSAQQCPLCMNPRTSKGKPLAMVSAAAFQCALE
NOV29e SSAQQCPLCMNPRTSKGKPLAMVSAAAFQCALE
NOV29f SSAPQCPLCMNPRTSKGKPLAMVSAAAFQCALE
NOV29g SSAQQCPLCMNPRTSKGKPLAMVSAAAFQCALE
NOV29h GKYRCAARN--WGYIEIOJVILEIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNIKW NOV29i GKYR(--yyRNKVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNIKW NOV29j GK-NRCAARNKVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNIKW NOV29k GKYRCAARNKVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNIKW NOV291 GKYRCAARNKVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNIKW NOV29m GKYRCAARNKVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNIKW NOV29n GKYRCAARNKVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNIKW NOV29θ GKYRCAARNKVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNIKW NOV29p GKYRCAARNKVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNIKW NOV29q GKYRCAARNKVGYIEKLVILΞIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNIKW
NOV29r
NOV29Ξ
NOV29t
NOV29U
NOV29v
NOV29w GKYRCAARNKVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNIKW NOV29x GKYRCAARNKVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNIKW NOV29y GKYRCAARNKVGYIEKLVILΞIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNIKW NOV29Z GKYRCAARNKVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNIKW NOV29aa GKYRCAARNKVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNIKW
NOV29ab SSAQQCPLCMNPRTSKGKPLAMVSAAAFQCA
NOV29ac GKYRCAARNKVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNIKW NOV29ad GKYRCAARNKVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNIKW NOV29ae GKYRCAARNKVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNIKW NOV29af GKYRCAA--^KVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNIKW NOV29ag SSAQQCPLCMNPRTSKGKPLAMVSAAAFQCA
NOV29a TMPSGYWDRPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVMIVAY NOV29b
NOV29C TMPSGYWDRPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVMIVAY
NOV29d
NOV29e
NOV29f
NOV29g
NOV29h TMPSGYWDRPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVMIVAY
NOV291 TMPSGYWDRPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVMIVAY
NOV29j TMPSGYWDRPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVMIVAY
NOV29k TMPSGYWDRPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVMIVAY
NOV291 TMPSGYWDRPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVMIVAY
NOV29m TMPSGYWDRPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVMIVAY
NOV29n TMPSGYWDRPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVMIVAY
NOV29o TMPSGYWDRPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVMIVAY
NOV29p TMPSGYWDRPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVMIVAY
NOV29q TMPSGYWDRPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVMIVAY
NOV29r
NOV29S
NOV29t
NOV29U
NOV29V
NOV29w TMPSGYWDRPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVMIVAY
NOV29x TMPSGYWDRPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVMIVAY
NOV29y TMPSGYWDRPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVMIVAY
NOV29z TMPSGYWDRPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVMIVAY
NOV29aa TMPSGYWDRPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVMIVAY
NOV29ab
NOV29ac TMPSGYWDRPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVMIVAY
NOV29ad TMPSGYWDRPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVMIVAY
NOV29ae TMPSGYWDRPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVMIVAY
NOV29af TMPSGYWDRPQINGKYILHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVMIVAY
NOV29ag
NOV29a PPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHSLLSTASKERTHGSEQLHL
NOV29b
NOV29C PPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHSLLSTASKERTHGSEQLHL
NOV29d
NOV29e
NOV29f
NOV29g
NOV29h PPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHSLLSTASKERTHGSEQLHL
NOV29i PPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHSLLSTASKERTHGSEQLHL
NOV29J PPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHSLLSTASKERTHGSEQLHL
NOV29k PPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHSLLSTASKERTHRSEQLHL
NOV291 PPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHSLLSTASKERTHGSEQLHL
NOV29m PPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHSLLSTASKERTHGSEQLHL
NOV29n PPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHSLLSTASKERTHGSEQLHL
N0V29O PPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHSLLSTASKERTHGSEQLHL
NOV29p PPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHSLLSTASKERTHGSEQLHL
NOV29q PPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMSDHSLLSTASKERTHGSEQLHL
NOV29r
NOV29S
NOV29t
NOV29U
NOV29V
NOV29 PPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHSLLSTASKERTHGSEQLHL
NOV29x PPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHSLLSTASKERTHGSEQLHL
NOV29y PPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHSLLSTASKERTHGSEQLHL
NOV29z PPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHSLLSTASKERTHGSEQLHL
NOV29aa PPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHSLLSTASKERTHGSEQLHL NOV29ab
NOV29ac PPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHSLLSTASKERTHGSEQLHL
NOV29ad PPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHSLLSTASKERTHGSEQLHL
NOV29ae PPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHSLLSTASKERTHGSEQLHL
NOV29af PPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHSLLSTASKERTHGSEQLHL
NOV29ag
NOV29a QGTLVIQNPQTSDSGIYKCTAKNPLGSDYAATYIQVI
NOV29b
NOV29c QGTLVIQNPQTSDSGIYKCTALE GKGGRA
NOV29d
NOV29e
NOV29f
NOV29g
NOV29h QGTLVIQNPQTSDSGIYKCTAKNPLGSDYAATYIQVILEGKGGRA
NOV29i QGTLVIQNPQTSDSGIYKCTALE GKGGRA
NOV29j QGTLVIQNPQTSDSGIYKCTAKNPLGSDYAATYIQVILEG
NOV29k QGTLVIQNPQTSDSGIYKCTALEG
NOV291 QGTLVIQNPQTSDSGIYKCTALEGKGE
NOV29m QGTLVIQNPQTSDSGIYKCTALEG
NOV29n QGTLVIQNPQTSDSGIYKCTAKNPLGSDYAATYIQVILEG
NOV29θ QGTLVIQNPQTSDSGIYKCTAKNPLGSDYAATYIQVILEG
NOV29p QGTLVIQNPQTSDSGIYKCTAKNPLGSDYAATYIQVILEG
NOV29q QGTLVIQNPQTSDSGIYKCTAKNPLGSDYAATYIQVILΞG
NOV29r
NOV29S
NOV29t
NOV29U
NOV29V
NOV29w QGTLVIQNPQTSDSGIYKCTALE GKGGRA
NOV29x QGTLVIQNPQTSDSGIYKCTAKNPLGSDYAATYIQVILEG
NOV29y QGTLVIQNPQTSDSGIYKCTAKNPLGSDYAATYIQVILEG
NOV29z QGTLVIQNPQTSDSGIYKCTAKNPLGSDYAATYIQVI
NOV29aa QGTLVIQNPQTSDSGIYKCTAKNPLGSDYAATYIQVI
NOV29ab
NOV29ac QGTLVIQNPQTSDSGIYKCTA
NOV29ad QGTLVIQNPQTSDSGIYKCTA
NOV29ae QGTLVIQNPQTSDSGIYKCTAKNPLGSDYAATYIQVI
NOV29af QGTLVIQNPQTSDSGIYKCTAKNPLGSDYAATYIQVI
NOV29ag
NOV29a (SEQ ID NO 666)
NOV29b (SEQ ID NO 668)
NOV29C (SEQ ID NO 670)
NOV29d (SEQ ID NO 672)
NOV29e (SEQ ID NO 674)
NOV29f (SEQ ID NO 676)
NOV29g (SEQ ID NO 678)
NOV29h (SEQ ID NO 680)
NOV29i (SEQ ID NO 682)
NOV291 (SEQ ID NO 688)
NOV29m (SEQ ID NO 690)
N0V29O (SEQ ID NO 694)
NOV29p (SEQ ID -NO 696)
NOV29q (SEQ ID NO 698)
NOV29r (SEQ ID NO 700)
NOV29S (SEQ ID NO 702) NOV29t (SEQ ID NO: 704)
NOV29u (SEQ ID NO: 706)
NOV29 (SEQ ID NO: 708)
NOV29W (SEQ ID NO: 710)
NOV29x (SEQ ID NO: 712)
NOV29y (SEQ ID NO: 714)
NOV29Z (SEQ ID NO: 716)
NOV29aa (SEQ ID NO 718)
NOV29ab (SEQ ID NO 720)
NOV29ac (SEQ ID NO 722)
NOV29ad (SEQ ID NO 724)
NOV29ae (SEQ ID NO 72g)
NOV29af (SEQ ID NO 728)
NOV29ag (SEQ ID NO 730)
Further analysis ofthe NOV29aprotein yieldedthe followingproperties shown in Table 29C.
Table 29C. Protein Sequence Properties NOV29a
SignalP analysis: Cleavage site between residues 29 and 30
PSORT II analysis:
PSG: a new signal peptide prediction method
N-region: length 6; pos.chg 3; neg.chg 0 H-region: length 20; peak value 10.48 PSG score: 6.08
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -1.23 possible cleavage site: between 28 and 29
>>> Seems to have a cleavable signal peptide (1 to 28)
ALOM: Klein et al ' s method for TM region allocation Init position for calculation: 29
Tentative number of TMS(s) for the threshold 0.5: Number of TMS (s) for threshold 0.5: 0 PERIPHERAL Likelihood = 1.91 (at 1062) ALOM score: 0.37 (number of TMSs: 0)
MTOP : Prediction of membrane topology (Hartmann et al . ) Center position for calculation: 14 Charge difference: -2.0 C( 2.0) - N( 4.0) N >= C: N-terminal side will be inside
MITDISC: discrimination of mitochondrial targeting seq R content: 3 Hyd Moment (75): 5.15 Hyd Moment (95): 8.32 G content: 4 D/E content: 1 S/T content: 4 Score: -2.83
Gavel : prediction of cleavage sites for mitochondrial preseq R-2 motif at 5g FRY|LT
NUCDISC: discrimination of nuclear localization signals pat4: RRHR (3) at 1043 pat7: PVLRRHR (3) at 1040 pat7: PQKKNRT (4) at 1341 bipartite: RRIDPQHWAALLEKAKK at 760 content of basic residues: 11.1% NLS Score: 0.81
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals: none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: found ILPN at 23gg
RNA-binding motif : none
Actinin-type actin-binding motif : type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail : none
Dileucine motif in the tail : none checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: nuclear Reliability: 89
COIL: Lupas ' s algorithm to detect coiled-coil regions total : 0 residues
Final Results (k = 9/23) :
73.9 % : nuclear 8.7 % : mitochondrial
8.7 %: extracellular, including cell wall 4.3 % : cytoplasmic 4.3 %: vacuolar
>> prediction for CG55776-01 is nuc (k=23) A search of the NOV29a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 29D.
In a BLAST search of public sequence databases, the NOV29a protein was found to have homology to the proteins shown in the BLASTP data in Table 29E.
PFam analysis predicts that the NOV29a protein contains the domains shown in the Table 29F.
Example 30.
The NOV30 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 30 A.
Table 30A. NOV30 Sequence Analysis
NOV30a, CG55784-03 [SEQ ID NO: 751 3772 bp
DNA Sequence ORF Start: ATG at 251 ORF Stop: TAA at 2549
CTTCTCCGAGTGGGGACATTGCTGACAATCCCGGCTTCCCGAGGCGGCTAAGAACAGGCAGTTTGTGT
CGGCTGGCTGCAGATACCCAGAGGCACAAAGAGACCGAAGCCACCCGGAGGGACCCACGGACGGACAG
ATGGTAGGCGCGAACCCGAGAGGACCGGCGGAGGCTGAGCACCGAGAGCCGCCAAGGAAGAGAAACTAi
ACCACAGCCAAGTTACCCCGCCGGCTTTCCTTCGCTGCGCTAAGGAATGAAACCCTTCCAGCTCGATC
TGCTCTTCGTCTGCTTCTTCCTCTTCAGTCAAGAGCTGGGCCTCCAGAAGAGAGGATGCTGTCTGGTG CTGGGCTACATGGCCAAGGACAAGTTTCGGAGAATGAATGAAGGCCAAGTCTATTCCTTCAGCCAGCA GCCCCAGGACCAGGTGGTGGTGTCGGGACAGCCAGTGACGCTACTTTGCGCCATCCCCGAATACGATG GCTTCGTTCTGTGGATCAAGGACGGCTTGGCTCTGGGTGTGGGCAGGGACCTCTCAAGTTACCCACAG TACCTGGTGGTAGGGAACCACCTGTCAGGGGAGCACCACCTGAAGATCCTGAGGGCAGAGCTGCAAGA CGATGCGGTGTACGAGTGCCAGGCCATCCAGGCCGCCATCCGCTCCCGCCCCGCACGCCTCACAGTCC TGGTGCCGCCTGATGACCCCGTCATCCTGGGGGGCCCTGTGATCAGCCTGCGTGCGGGGGACCCTCTC AACCTCACCTGCCACGCAGACAATGCCAAGCCTGCAGCCTCCATCATCTGGTTGCGAAAGGGAGAGGT CATCAATGGGGCCACCTACTCCAAGACCCTGCTTCGGGACGGCAAGCGGGAGAGCATCGTCAGCACCC TCTTCATCTCCCCTGGTGACGTGGAGAATGGCCAGAGCATCGTGTGTCGTGCCACCAACAAAGCCATC CCCGGAGGAAAGGAGACGTCGGTCACCATTGACATCCAGCACCCTCCACTGGTCAACCTCTCGGTGGA GCCACAGCCAGTGCTGGAGGACAACGTCGTCACTTTCCACTGCTCTGCAAAGGCCAACCCAGCTGTCA CCCAGTACAGGTGGGCCAAGCGGGGCCAGATCATCAAGGAGGCATCTGGAGAGGTGTACAGGACCACA GTGGACTACACGTACTTCTCAGAGCCCGTCTCCTGTGAGGTGACCAACGCCCTGGGCAGCACCAACCT CAGCCGCACGGTTGACGTCTACTTTGGGCCCCGGATGACCACAGAACCCCAATCCTTGCTCGTGGATC TGGGCTCTGATGCCATCTTCAGCTGCGCCTGGACCGGCAACCCATCCCTGACCATCGTCTGGATGAAG CGGGGCTCCGGAGTGGTCCTGAGCAATGAGAAGACCCTGACCCTCAAATCCGTGCGCCAGGAGGACGC GGGCAAGTACGTGTGCCGGGCTGTGGTGCCCCGTGTGGGAGCCGGGGAGAGAGAGGTGACCCTGACCG TCAATGGACCCCCCATCATCTCCAGCACCCAGACCCAGCACGCCCTCCACGGCGAGAAGGGCCAGATC AAGTGCTTCATCCGGAGCACGCCGCCGCCGGACCGCATCGCCTGGTCCTGGAAGGAGAACGTTCTGGA GTCGGGCACATCGGGGCGCTATACGGTGGAGACCATCAGCACCGAGGAGGGCGTCATCTCCACCCTGA CCATCAGCAACATCGTGCGGGCCGACTTCCAGACCATCTACAACTGCACGGCCTGGAACAGCTTCGGC TCCGACACTGAGATCATCCGGCTCAAGGAGCAAGAGTCTGTGCCGATGGCCGTCATCATTGGGGTGGC CGTAGGAGCTGGTGTGGCCTTCCTCGTCCTTATGGCAACCATCGTGGCGTTCTGCTGTGCCCGTTCCC AGAGAAATCTCAAAGGTGTTGTGTCAGCCAAAAATGATATCCGAGTGGAAATTGTCCACAAGGAACCA GCCTCTGGTCGGGAGGGTGAGGAGCACTCCACCATCAAGCAGCTGATGATGGACCGGGGTGAATTCCA GCAAGACTCAGTCCTGAAACAGCTGGAGGTCCTCAAAGAAGAGGAGAAAGAGTTTCAGAACCTGAAGG ACCCCACCAATGGCTACTACAGCGTCAACACCTTCAAAGAGCACCACTCAACCCCGACCATCTCCCTC TCCAGCTGCCAGCCCGACCTGCGTCCTGCGGGTAAGCAGCGTGTGCCCACAGGCATGTCCTTCACCAA CATCTACAGCACCCTGAGCGGCCAGGGCCGCCTCTACGACTACGGGCAGCGGTTTGTGCTGGGCATGG GCAGCTCGTCCATCGAGCTTTGTGAGCGGGAGTTCCAGAGAGGCTCCCTCAGCGACAGCAGCTCCTTC CTGGACACGCAGTGTGACAGCAGCGTCAGCAGCAGCGGCAAGCAGGATGGCTATGTGCAGTTCGACAA GGCCAGCAAGGCTTCTGCTTCCTCCTCCCACCACTCCCAGTCCTCGTCCCAGAACTCTGACCCCAGTC GACCCCTGCAGCGGCGGATGCAGACTCACGTCTAAGGATCACACACCGCGGGTGGGGACGGGCCAGGG AAGAGGTCAGGGCACGTTCTGGTTGTCCAGGGACGAGGGGTACTTTGCAGAGGACACCAGAATTGGCC ACTTCCAGGACAGCCTCCCAGCGCCTCTGCCACTGCCTTCCTTCGAAGCTCTGATCAAGCACAAATCT GGGTCCCCAGGTGCTGTGTGCCAGAGGTGGGCGGGTGGGGAGACAGACAGAGGCTGCGGCTGAGTGCG CTGTGCTTAGTGCTGGACACCCGTGTCCCCGGCCCTTTCCTGGAGGCCCCTCTACCACCTGCTCTGCC CACAGGCACAAGTGGCAGCTATAACTCTGCTTTCATGAAACTGCGGTCCACTCTCTGGTCTCTCTGTG GGCTCTACCCCTCACTGACCACAAGCTCTACCTACCCCTGTGCCTGTGCTCCCATACAGCCCTGGGGA GAAGGGGATGACGTCTTCCCAGCACTGAGCTGCCCCAGAAACCCCGGCTCCCCACTGCTGCTCATAGC CCATACCCTGGAGGTTGACAAGCCAGAAATGGCCTTGGCTAAAGGAGCCTCTCTCTCACCAGGCTGGC CGGGAGCCCACCCCCAATTTGTTTGGTGTTTTGTGTCCATACTCTTGCAGTTCTGTCCTTGGACTTGA TGCCGCTGAACTCTGCGGTGGGACCGGTCCCGTCAGAGCCTGGTGTACTGGGGGGAGGGAGGGAGGAG;
GGAGCCTGTGCTGACGGAGCACCTCGCCGGGTGTGCCCCTCCTGGGCTGTGTGACCCCAGCCTCCCCA!
CCCACCTCCTGCTTTGTGTACTCCTCCCCTCCCCCTCAGCACAATCGGAGTTCATATAAGAAGTGCGG
GAGCTTCTCTGGTCAGGGTTCTCTGAACACTTATGGAGAGAGTGCTTCCTGGGAAGTGTGGCGTTTGA!
AGGGGCTGGAGGGCAGGTCTTTAAGATGGCGAGACTGCCCTTCTCAGCTGATAAACACAAGAACGGCG
ATCCTGTCTTCAGTAAGGCTCCACGAGAAGAGAGGAAGTATATCTACACCTCAACCCTCCTAGTCACC
ACCTGAAATAAATGTTAGGGACACTACTCCAACATGTTTGTTCTGTTCTTTTGTTCCTACAAAGCCAC
AGGAAGAACCCAAGAGCTCATAGAATGCGTTGGGAACCCAAGGTTCTCTGCCCTCCTTTGATTCAATC
ATCCTAGACAATAAAGGCAGTTGATAGCTCTG
NOV30a, CG55784-03 SEQ ID NO: 752 766 aa MW at 84135.5kD Protein Sequence
MKPFQLD LPVCFFLFSQELGLQKRGCCLV GYMAKD FRR NEGQVYSFSQQPQDQVVVSGQPVTL CAIPEYDGFV I-KDGLALGVGRDLSSYPQYLWGNH SGEHH KILRAELQDDAVYECQAIQAAIRS RPARLTV VPPDDPVI GGPVISLRAGDP LTCHADNAKPAASII LR GEVINGATYSKT RDGK RESIVSTLFISPGDVENGQSIVCRATNKAIPGGKETSVTIDIQHPPLVNLSVEPQPVLEDNWTFHCS AIA-NPAVTQYR AKRGQIIKEASGEVYRTTVDYTYFSEPVSCEVTNALGSTNLSRTVDVYFGPRMTTE PQS VDLGSDAIFSCAWTGNPSLTIVWMKRGSGW SNEKT TLKSVRQEDAGKYVCRAWPRVGAG EREVTLTV GPPIISSTQTQHA HGEKGQIKCFIRSTPPPDRIAWS KENVLESGTSGRYTVETISTE EGVISTLTISNIVR-ADFQTIYNCTAWNSFGSDTEIIRLKEQESVPJAVIIGVAVGAGVAF V ATIV AFCCARSQR LKGWSAKNDIRVEIVHKEPASGREGEEHSTIKQL iMDRGEFQQDSVLKQ EVLKEEE KEFQNLKDPTNGYYSVNTFKEHHSTPTIS SSCQPDLRPAGKQRVPTGMSFTNIYSTLSGQGRLYDYG QRFVLGMGSSSIELCEREFQRGSLSDSSSFLDTQCDSSVSSSGKQDGYVQFDKASKASASSSHHSQSS SQNSDPSRPLQRRMQTHV
NOV30b, CG55784-01 SEQ ID NO: 753 1806 bp DNA Sequence ORE Start: at 1 ORF Stop: TAA at 1645
AACAAAGCCATCCCCGGAGGAAAGGAGACGTCGGTCACCATTGACATCCAGCACCCTCCACTGGTCAA CCTCTCGGTGGAGCCACAGCCAGTGCTGGAGGACAACGTCGTCACTTTCCACTGCTCTGCAAAGGCCA ACCCAGCTGTCACCCAGTACAGGTGGGCCAAGCGGGGCCAGATCATCAAGGAGGCATCTGGAGAGGTG TACAGGACCACAGTGGACTACACGTACTTCTCAGAGCCCGTCTCCTGTGAGGTGACCAAAGCCCTGGG CAGCACCAACCTCAGCCGCACGGTTGACGTCTACTTTGGGCCCCGGATGACCACAGAACCCCAATCCT TGCTCGTGGATCTGGGCTCTGATGCCATCTTAAGCTGCGCCTGGACCGGCAACCCATCCCTGACCATC GTCTGGATGAAGCGGGGCTCCGGAGTGGTCCTGAGCAATGAGAAGACCCTGACCCTCAAATCCGTGCG CCAGGAGGACGCGGGCAAGTACGTGTGCCGGGCTGTGGTGCCCCGTGTGGGAGCCGGGGAGAGAGAGG TGACCCTGACCGTCAATGGACCCCCCATCATCTCCAGCACCCAGACCCAGCACGCCCTCCACGGCGAG AAGGGCCAGATCAAGTGCTTCATCCGGAGCACGCCGCCGCCGGACCGCATCGCCTGGTCCTGGAAGGA GAACGTTCTGGAGTCGGGCACATCGGGGCGCTATACGGTGGAGACCATCAGCACCGAGGAGGGCGTCA TCTCCACCCTGACCATCAGCAACATCGTGCGGGCCGACTTCCAGACCATCTACAACTGCACGGCCTGG AACAGCTTCGGCTCCGACACTGAGATCATCCGGCTCAAGGAGCAAGGTTCGGAAATGAAGTCGGGAGC CGGGCTGGAAGCAGAGTCTGTGCCGATGGCCGTCATCATTGGGGTGGCCGTAGGAGCTGGTGTGGCCT TCCTCGTCCTTATGGCAACCATCGTGGCGTTCTGCTGTGCCCGTTCCCAGAGAAATCTCAAAGGTGTT GTGTCAGCCAAAAATGATATCCGAGTGGAAATTGTCCACAAGGAACCAGCCTCTGGTCGGGAGGGTGA GGAGCACTCCACCATCAAGCAGCTGATGATGGACCGGGGTGAATTCCAGCAAGACTCAGTCCTGAAAC AGCTGGAGGTCCTCAAAGAAGAGGAGAAAGAGTTTCAGAACCTGAAGGACCCCACCAATGGCTACTAC AGCGTCAACACCTTCAAAGAGCACCACTCAACCCCGACCATCTCCCTCTCCAGCTGCCAGCCCGACCT GCGTCCTGCGGGCAAGCAGCGTGTGCCCACAGGCATGTCCTTCACCAACATCTACAGCACCCTGAGCG GCCAGGGCCGCCTCTACGACTACGGGCAGCGGTTTGTGCTGGGCATGGGCAGCTCGTCCATCGAGCTT TGTGAGCGGGAGTTCCAGAGAGGCTCCCTCAGCGACAGCAGCTCCTTCCTGGACACGCAGTGTGACAG CAGCGTCAGCAGCAGCGGCAAGCAGGATGGCTATGTGCAGTTCGACAAGGCCAGCAAGGCTTCTGCTT CCTCCTCCCACCACTCCCAGTCCTCGTCCCAGAACTCTGACCCCAGTCGACCCCTGCAGCGGCGGATG CAGACTCACGTCTAAGGATCACACACCGCGGGTGGGGACGGGCCAGGGAAGAGGTCAGGGCACGTTCT
GGTTGTCCAGGGACTGTGGGGTACTTTACAGAGGACACCAGAATGGCCCACTTCCAGGACAGCCTCCC
AGCGCCTCTGCCACTGCCTTCCTTCGAAGCTCTGATCA
NOV30b, CG55784-01 SEQ ID NO: 754 548 aa MW at 59933.8kD Protein Sequence
NKAIPGGK-ETSVTIDIQHPP VNLSVEPQPV ED-NVVTFHCSAKANPAVTQYR A-KRGQIIKEASGEV YRTTVDYTYFSEPVSCEVTK-ALGSTNLSRTVDVYFGPRMTTEPQSL VD GSDAI SCA TGNPS TI VWMKRGSGWLSNEKTLT KSVRQEDAGKYVCRAWPRVGAGEREVTLTVNGPPIISSTQTQHALHGE KGQIKCFIRSTPPPDRIA SWKENVLESGTSGRYTVETISTEEGVIST TISNIVRADFQTIYNCTAW NSFGSDTEIIRLKEQGSEMKSGAGLEAESVP-AVIIGVAVGAGVAF VLMATIVAFCCARSQR LKGV VSAKNDIRVEIVHKEPASGREGEEHSTIKQ MMDRGEFQQDSVLKQLEVLKEEEKEFQNLKDPTNGYY SVNTFKEHHSTPTISLSSCQPD RPAGKQRVPTGMSFTNIYSTLSGQGRLYDYGQRFVLGMGSSSIEL CEREFQRGS SDSSSFLDTQCDSSVSSSGKQDGYVQFDKASKASASSSHHSQSSSQNSDPSRPLQRRM QTHV
NOV30c, 312000579 SEQ ID NO: 755 1630 bp DNA Sequence ORF Start: at 2 ORF Stop: end of sequence
CACCGGATCCACCAACAAAGCCATCCCCGGAGGAAAGGAGACGTCGGTCACCATTGACATCCAGCACC CTCCACTGGTCAACCTCTCGGTGGAGCCACAGCCAGTGCTGGAGGACAACGTCGTCACTTTCCACTGC TCTGCAAAGGCCAACCCAGCTGTCACCCAGTACAGGTGGGCCAAGCGGGGCCAGATCATCAAGGAGGC ATCTGGAGAGGTGTACAGGACCACAGTGGACTACACGTACTTCTCAGAGCCCGTCTCCTGTGAGGTGA CCAACGCCCTGGGCAGCACCAACCTCAGCCGCACGGTTGACGTCTACTTTGGGCCCCGGATGACCACA GAACCCCAATCCTTGCTCGTGGATCTGGGCTCTGATGCCATCTTCAGCTGCGCCTGGACCGGCAACCC ATCCCTGACCATCGTCTGGATGAAGCGGGGCTCCGGAGTGGTCCTGAGCAATGAGAAGACCCTGACCC TCAAATCCGTGCGCCAGGAGGACGCGGGCAAGTACGTGTGCCGGGCTGTGGTGCCCCGTGTGGGAGCC GGGGAGAGAGAGGTGACCCTGACCGTCAATGGACCCCCCATCATCTCCAGCACCCAGACCCAGCACGC CCTCCACGGCGAGAAGGGCCAGATCAAGTGCTTCATCCGGAGCACGCCGCCGCCGGACCGCATCGCCT GGTCCTGGAAGGAGAACGTTCTGGAGTCGGGCACATCGGGGCGCTATACGGTGGAGACCATCAGCACC GAGGAGGGCGTCATCTCCACCCTGACCATCAGCAACATCGTGCGGGCCGACTTCCAGACCATCTACAA CTGCACGGCCTGGAACAGCTTCGGCTCCGACACTGAGATCATCCGGCTCAAGGAGCAAGAGTCTGTGC CGATGGCCGTCATCATTGGGGTGGCCGTAGGAGCTGGTGTGGCCTTCCTCGTCCTTATGGCAACCATC GTGGCGTTCTGCTGTGCCCGTTCCCAGAGAAATCTCAAAGGTGTTGTGTCAGCCAAAAATGATATCCG AGTGGAAATTGTCCACAAGGAACCAGCCTCTGGTCGGGAGGGTGAGGAGCACTCCACCATCAAGCAGC TGATGATGGACCGGGGTGAATTCCAGCAAGACTCAGTCCTGAAACAGCTGGAGGTCCTCAAAGAAGAG GAGAAAGAGTTTCAGAACCTGAAGGACCCCACCAATGGCTACTACAGCGTCAACACCTTCAAAGAGCA CCACTCAACCCCGACCATCTCCCTCTCCAGCTGCCAGCCCGACCTGCGTCCTGCGGGTAAGCAGCGTG TGCCCACAGGCATGTCCTTCACCAACATCTACAGCACCCTGAGCGGCCAGGGCCGCCTCTACGACTAC GGGCAGCGGTTTGTGCTGGGCATGGGCAGCTCGTCCATCGAGCTTTGTGAGCGGGAGTTCCAGAGAGG CTCCCTCAGCGACAGCAGCTCCTTCCTGGACACGCAGTGTGACAGCAGCGTCAGCAGCAGCGGCAAGC AGGATGGCTATGTGCAGTTCGACAAGGCCAGCAAGGCTTCTGCTTCCTCCTCCCACCACTCCCAGTCC TCGTCCCAGAACTCTGACCCCAGTCGACCCCTGCAGCGGCGGATGCAGACTCACGTCCCCGGGGGC
NOV30c, 312000579 SEQ ID NO: 756 543 aa MW at 59393. lkD Protein Sequence
TGSTNKAIPGGKETSVTIDIQHPPLVN SVEPQPV EDNVVTFHCSAKANPAVTQYR AKRGQIIKEA SGEVYRTTVDYTYFSEPVSCEVTNA GSTNLSRTVDVYFGPRMTTEPQSL VD GSDAIFSCAWTGNP S TIV MKRGSGVV SNEKT-T KSVRQEDAGKYVCRAVVPRVGAGEREVTLTVNGPPIISSTQTQHA LHGEKGQIKCFIRSTPPPDRIAWS KE V ESGTSGRYTVETISTEEGVISTLTISNIVRADFQTIYN CTA NSFGSDTEIIRLK-EQESVPr VIIGVAVGAGVAFLVLMATIVAFCCARSQRNLKGVVSAKNDIR VEIVHKEPASGREGEEHSTIKQ MMDRGEFQQDSVLKQLEV KEEEKEFQN KDPTNGYYSV TFKEH HSTPTIS SSCQPDLRPAGKQRVPTGMSFTNIYSTLSGQGR YDYGQRFV GMGSSSIELCEREFQRG S SDSSSFLDTQCDSSVSSSGKQDGYVQFDKASKASASSSHHSQSSSQNSDPSRPLQRR QTHVPGG
NOV30d, 311333341 SEQ ID NO: 757 1036 bp
DNA Sequence ORF Start: at 2 JORF Stop: end ofsequence
CACCGGATCCACCAACAAAGCCATCCCCGGAGGAAAGGAGACGTCGGTCACCATTGACATCCAGCACC CTCCACTGGTCAACCTCTCGGTGGAGCCACAGCCAGTGCTGGAGGACAACGTCGTCACTTTCCACTGC TCTGCAAAGGCCAACCCAGCTGTCACCCAGTACAGGTGGGCCAAGCGGGGCCAGATCATCAAGGAGGC ATCTGGAGAGGTGTACAGGACCACAGTGGACTACACGTACTTCTCAGAGCCCGTCTCCTGTGAGGTGA CCAACGCCCTGGGCAGCACCAACCTCAGCCGCACGGTTGACGTCTACTTTGGGCCCCGGATGACCACA GAACCCCAATCCTTGCTCGTGGATCTGGGCTCTGATGCCATCTTCAGCTGCGCCTGGACCGGCAACCC ATCCCTGACCATCGTCTGGATGAAGCGGGGCTCCGGAGTGGTCCTGAGCAATGAGAAGACCCTGACCC TCAAATCCGTGCGCCAGGAGGACGCGGGCAAGTACGTGTGCCGGGCTGTGGTGCCCCGTGTGGGAGCC GGGGAGAGAGAGGTGACCCTGACCGTCAATGGACCCCCCATCATCTCCAGCACCCAGACCCAGCACGC CCTCCACGGCGAGAAGGGCCAGATCAAGTGCTTCATCCGGAGCACGCCGCCGCCGGACCGCATCGCCT GGTCCTGGAAGGAGAACGTTCTGGAGTCGGGCACATCGGGGCGCTATACGGTGGAGACCATCAGCACC GAGGAGGGCGTCATCTCCACCCTGACCATCAGCAACATCGTGCGGGCCGACTTCCAGACCATCTACAA CTGCΆCGGCCTGGAACAGCTTCGG_CTOCGA^^ CGATGGCCGTCATCATTGGGGTGGCCGTAGGAGCTGGTGTGGCCTTCCTCGTCCTTATGGCAACCATC iGTGGCGTTCTGCTGTGCCCGTTCCCAGAGAAATCTCAAAGGTGTTGTGTCAGCCAAAAATGATATCCG AGTGGAACCCGGGGGC
NOV30d, 311333341 SEQ ID NO: 758 345 aa MW at 37329.1kD Protein Sequence
TGSTN---^IPGG-ETSVTIDIQHPPLV LSVEPQPV ED---rVVTFHCSAK-A--.PAVTQYR AKRGQIIKEA SGEVYRTTVDYTYFSEPVSCEVTNALGSTNLSRTVDVYFGPRMTTEPQSLLVD GSDAIFSCAWTGNP S TIV MKRGSGVVLSNEKTLTLKSVRQEDAGKYVCRAVVPRVGAGEREVTLTVNGPPIISSTQTQHA LHGEKGQIKCFIRSTPPPDRIAWS KENVLESGTSGRYTVETISTEEGVISTLTISNIVRADFQTIYN CTA NSFGSDTEIIRLKEQESVPMAVIIGVAVGAGVAFLVLMATIVAFCCARSQR LKGVVSAK DIR VΞPGG
NOV30e, 311333338 SEQ ID NO: 759 1072 bp DNA Sequence ORF Start: at 2 ORF Stop: end of sequence
CACCGGATCCACCAACAAAGCCATCCCCGGAGGAAAGGAGACGTCGGTCACCATTGACATCCAGCACC CTCCACTGGTCAACCTCTCGGTGGAGCCACAGCCAGTGCTGGAGGACAACGTCGTCACTTTCCACTGC TCTGCAAAGGCCAACCCAGCTGTCACCCAGTACAGGTGGGCCAAGCGGGGCCAGATCATCAAGGAGGC ATCTGGAGAGGTGTACAGGACCACAGTGGACTACACGTACTTCTCAGAGCCCGTCTCCTGTGAGGTGA CCAACGCCCTGGGCAGCACCAACCTCAGCCGCACGGTTGACGTCTACTTTGGGCCCCGGATGACCACA GAACCCCAATCCTTGCTCGTGGATCTGGGCTCTGATGCCATCTTCAGCTGCGCCTGGACCGGCAACCC ATCCCTGACCATCGTCTGGATGAAGCGGGGCTCCGGAGTGGTCCTGAGCAATGAGAAGACCCTGACCC TCAAATCCGTGCGCCAGGAGGACGCGGGCAAGTACGTGTGCCGGGCTGTGGTGCCCCGTGTGGGAGCC GGGGAGAGAGAGGTGACCCTGACCGTCAATGGACCCCCCATCATCTCCAGCACCCAGACCCAGCACGC CCTCCACGGCGAGAAGGGCCAGATCAAGTGCTTCATCCGGAGCACGCCGCCGCCGGACCGCATCGCCT GGTCCTGGAAGGAGAACGTTCTGGAGTCGGGCACATCGGGGCGCTATACGGTGGAGACCATCAGCACC GAGGAGGGCGTCATCTCCACCCTGACCATCAGCAACATCGTGCGGGCCGACTTCCAGACCATCTACAA CTGCACGGCCTGGAACAGCTTCGGCTCCGACACTGAGATCATCCGGCTCAAGGAGCAAGGTTCGGAAA TGAAGTCGGGAGCCGGGCTGGAAGCAGAGTCTGTGCCGATGGCCGTCATCATTGGGGTGGCCGTAGGA GCTGGTGTGGCCTTCCTCGTCCTTATGGCAACCATCGTGGCGTTCTGCTGTGCCCGTTCCCAGAGAAA TCTCAAAGGTGTTGTGTCAGCCAAAAATGATATCCGAGTGGAACCCGGGGGC
NOV30e, 311333338 SEQ ID NO: 760 357 aa MW at 38447.3kD Protein Sequence
TGSTNKAIPGGKETSVTIDIQHPP- VNLSVEPQPV ED-IsrVVTFHCSAKA-l- PAVTQYR AKRGQIIKEA SGEVYRTTVDYTYFSEPVSCEVTNALGSTNLSRTVDVYFGPRMTTEPQS--- LVDLGSDAIFSCAWTGNP SLTIVWMKRGSGW SNEKTLTLKSVRQEDAGKYVCRAWPRVGAGEREVTLTVNGPPIISSTQTQHA HGEKGQIKCFIRSTPPPDRIAWSWKENV ESGTSGRYTVETISTEEGVIST TISNIVRADFQTIYN CTA NSFGSDTEIIRLK-EQGSEMKSGAGLEAESVPMAVIIGVAVGAGVAF VLMATIVAFCCARSQRN KGWSAK DIRVEPGG
NOV30f, 311346885 SEQ ID NO: 761 616 bp DNA Sequence ORF Start: at 2 ORF Stop: end of sequence
CACCGGATCCGAAATTGTCCACAAGGAACCAGCCTCTGGTCGGGAGGGTGAGGAGCACTCCACCATCA AGCAGCTGATGATGGACCGGGGTGAATTCCAGCAAGACTCAGTCCTGAAACAGCTGGAGGTCCTCAAA GAAGAGGAGAAAGAGTTTCAGAACCTGAAGGACCCCACCAATGGCTACTACAGCGTCAACACCTTCAA AGAGCACCACTCAACCCCGACCATCTCCCTCTCCAGCTGCCAGCCCGACCTGCGTCCTGCGGGCAAGC AGCGTGTGCCCACAGGCATGTCCTTCACCAACATCTACAGCACCCTGAGCGGCCAGGGCCGCCTCTAC GACTACGGGCAGCGGTTTGTGCTGGGCATGGGCAGCTCGTCCATCGAGCTTTGTGAGCGGGAGTTCCA GAGAGGCTCCCTCAGCGACAGCAGCTCCTTCCTGGACACGCAGTGTGACAGCAGCGTCAGCAGCAGCG GCAAGCAGGATGGCTATGTGCAGTTCGACAAGGCCAGCAAGGCTTCTGCTTCCTCCTCCCACCACTCC CAGTCCTCGTCCCAGAACTCTGACCCCAGTCGACCCCTGCAGCGGCGGATGCAGACTCACGTCCCCGG GGGC
NOV30f, 311346885 SEQ ED NO: 762 205 aa MW at 22667.6kD Protein Sequence
TGSEIVHKEPASGREGEEHSTIKQ M DRGEFQQDSVLKQLEVLKEEEKEFQNLKDPTNGYYSVNTFK EHHSTPTISLSSCQPD RPAGKQRVPTGMSFT---JIYSTLSGQGRLYDYGQRFVLGMGSSSIELCEREFQ RGS SDS S S FLDTQCDS S VSS SGKQ-DGYVQFDKAS AS AS S SHHSQS S SQNSDPSRP QRRMQTHVPG G NKAIPGGKETSVTIDIQHPPLV1.LSVEPQPVLEDNVVTFHCSAKA-NPAVTQYR AKRGQIIKEASGEV YRTTVDYTYFSEPVSCEVTNALGSTNLSRTVDVYFGPRMTTEPQSLLVD GSDAIFSCA TGNPS TI V KRGSGWLSNEKTLTLKSVRQEDAGKYVCRAWPRVGAGEREVT TV GPPIISSTQTQHA HGE KGQIKCFIRSTPPPDRIA SWKE VLESGTSGRYTVETISTEEGVIST TISNIVRADFQTIY CTA NSFGSDTEIIRI--KEQGSEMKSGAGL
NOV30i, SNP13376439 of SEQ ID NO: 767 1806 bp CG55784-01, DNA Sequence ORF Start: at 1 ORF Stop: TAA at 1645
SNP Pos: 1305 SNP Change: C to T
AACAAAGCCATCCCCGGAGGAAAGGAGACGTCGGTCACCATTGACATCCAGCACCCTCCACTGGTCAA CCTCTCGGTGGAGCCACAGCCAGTGCTGGAGGACAACGTCGTCACTTTCCACTGCTCTGCAAAGGCCA ACCCAGCTGTCACCCAGTACAGGTGGGCCAAGCGGGGCCAGATCATCAAGGAGGCATCTGGAGAGGTG TACAGGACCACAGTGGACTACACGTACTTCTCAGAGCCCGTCTCCTGTGAGGTGACCAAAGCCCTGGG CAGCACCAACCTCAGCCGCACGGTTGACGTCTACTTTGGGCCCCGGATGACCACAGAACCCCAATCCT TGCTCGTGGATCTGGGCTCTGATGCCATCTTAAGCTGCGCCTGGACCGGCAACCCATCCCTGACCATC GTCTGGATGAAGCGGGGCTCCGGAGTGGTCCTGAGCAATGAGAAGACCCTGACCCTCAAATCCGTGCG CCAGGAGGACGCGGGCAAGTACGTGTGCCGGGCTGTGGTGCCCCGTGTGGGAGCCGGGGAGAGAGAGG TGACCCTGACCGTCAATGGACCCCCCATCATCTCCAGCACCCAGACCCAGCACGCCCTCCACGGCGAG AAGGGCCAGATCAAGTGCTTCATCCGGAGCACGCCGCCGCCGGACCGCATCGCCTGGTCCTGGAAGGA GAACGTTCTGGAGTCGGGCACATCGGGGCGCTATACGGTGGAGACCATCAGCACCGAGGAGGGCGTCA TCTCCACCCTGACCATCAGCAACATCGTGCGGGCCGACTTCCAGACCATCTACAACTGCACGGCCTGG AACAGCTTCGGCTCCGACACTGAGATCATCCGGCTCAAGGAGCAAGGTTCGGAAATGAAGTCGGGAGC CGGGCTGGAAGCAGAGTCTGTGCCGATGGCCGTCATCATTGGGGTGGCCGTAGGAGCTGGTGTGGCCT TCCTCGTCCTTATGGCAACCATCGTGGCGTTCTGCTGTGCCCGTTCCCAGAGAAATCTCAAAGGTGTT GTGTCAGCCAAAAATGATATCCGAGTGGAAATTGTCCACAAGGAACCAGCCTCTGGTCGGGAGGGTGA GGAGCACTCCACCATCAAGCAGCTGATGATGGACCGGGGTGAATTCCAGCAAGACTCAGTCCTGAAAC AGCTGGAGGTCCTCAAAGAAGAGGAGAAAGAGTTTCAGAACCTGAAGGACCCCACCAATGGCTACTAC AGCGTCAACACCTTCAAAGAGCACCACTCAACCCCGACCATCTCCCTCTCCAGCTGCCAGCCCGACCT GCGTCCTGCGGGTAAGCAGCGTGTGCCCACAGGCATGTCCTTCACCAACATCTACAGCACCCTGAGCG GCCAGGGCCGCCTCTACGACTACGGGCAGCGGTTTGTGCTGGGCATGGGCAGCTCGTCCATCGAGCTT TGTGAGCGGGAGTTCCAGAGAGGCTCCCTCAGCGACAGCAGCTCCTTCCTGGACACGCAGTGTGACAG CAGCGTCAGCAGCAGCGGCAAGCAGGATGGCTATGTGCAGTTCGACAAGGCCAGCAAGGCTTCTGCTT CCTCCTCCCACCACTCCCAGTCCTCGTCCCAGAACTCTGACCCCAGTCGACCCCTGCAGCGGCGGATG CAGACTCACGTCTAAGGATCACACACCGCGGGTGGGGACGGGCCAGGGAAGAGGTCAGGGCACGTTCT
GGTTGTCCAGGGACTGTGGGGTACTTTACAGAGGACACCAGAATGGCCCACTTCCAGGACAGCCTCCC
AGCGCCTCTGCCACTGCCTTCCTTCGAAGCTCTGATCA
NOV30i, SNP13376439 of SEQ ID NO: 768 548 aa MW at 59933.8kD CG55784-01, Protein Sequence SNP Pos: 435 SNP Change: Gly to Gly
NKAIPGGKETSVTIDIQHPPLVNLSVEPQPVLED---WVTFHCSAKA PAVTQYR AKRGQIIKEASGEV YRTTVDYTYFSEPVSCEVTKALGSTN SRTVDVYFGPRMTTEPQSLLVDLGSDAILSCA TGNPSLTI V MKRGSGVVLSNEKTLTLKSVRQEDAGKYVCRAVVPRVGAGEREVT TVNGPPIISSTQTQHALHGE KGQIKCFIRSTPPPDRIA SWKENV ESGTSGRYTVETISTEEGVISTLTISNIVRADFQTIYNCTA NSFGSDTEIIRL-^QGSEMKSGAGLEAESVPi AVIIGVAVGAGVAF VLMATIVAFCCARSQRN KGV VSAK-lffilRVEIVHKEPASGREGEEHSTIKQLMMDRGEFQQDSV KQLEVLKEEEKEFQ LKDPTNGYY SVNTFKEHHSTPTISLSSCQPD RPAGKQRVPTG SFTNIYSTLSGQGRLYDYGQRFVLGMGSSSIEL CEREFQRGS SDSSSFLDTQCDSSVSSSGKQDGYVQFDKASKASASSSHHSQSSSQNSDPSRPLQRRM QTHV
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 3 OB.
Table 30B. Comparison of the NOV30 protein sequences.
NOV3Oa MKPFQLD LFVCFFLFSQELGLQKRGCC V GYMAKDKFRRiNEGQVYSFSQQPQDQVVV
NOV30b
NOV30c
NOV30d NOV30e
NOV30f
NOV30g
NOV30h
NOV3Oa SGQPVTLLCAIPEYDGFV I---sT)G------A GVG-RD SSYPQYLVVGiraLSGEIfflLKI RAELQ
NOV30b
NOV30C
NOV30d
NOV30e
NOV30f
NOV30g
NOV30h
NOV3Oa DDAVYECQAIQAAIRSRPARLTVLVPPDDPVILGGPVISLRAGDPLNLTCHADNAKPAAS
NOV30b
NOV30C
NOV30d
NOV30e
NOV30f
NOV30g
NOV30h
NOV3 Oa IIWLRKGEVINGATYSKTLLRDGKRESIVSTLFISPGDVΕNGQSIVCRATNKAIPGGKET
NOV3Ob NKAIPGGKET
NOV3Oc TGSTNKAIPGGKET
NOV3Od TGSTNKAIPGGKET
NOV3Oe TGSTNKAIPGGKET
NOV30f TGSEIVHKEPA
NOV3Og TGSTNKAIPGGKET
NOV30h NKAIPGGKET
NOV3Oa SVTIDIQHPPLVNLSVEPQPVLEDNVVTFHCSAKANPAVTQYR AKRGQIIKEASGEVYR
NOV3Ob SVTIDIQHPPLVN SVEPQPVLEDNWTFHCSAKANPAVTQYR AKRGQIIKEASGEVYR
NOV3 Oc SVTIDIQHPP VNLSVEPQPV EDNWTFHCSAKANPAVTQYRWAKRGQIIKEASGEVYR
NOV3 Od SVTIDIQHPPLVN SVEPQPVLEDNVVTFHCSAKANPAVTQYR AKRGQIIKEASGEVYR
NOV3Oe SVTIDIQHPPLVNLSVEPQPVLEDNVVTFHCS-AK-ANPAVTQYR AKRGQIIKEASGEVYR
NOV30f SGREGEEHSTIKQLMMDRGEFQQDSV KQ EVLKEEEKEFQN KDPTNGYYSVNTFKEHH
NOV3Og SVTIDIQHPPLVNLSVEPQPV ED-NVVTFHCSAKANPAVTQYR AKRGQIIKEASGEVYR
NOV3Oh SVTIDIQHPP VN SVEPQPVLEDNWTFHCSAKANPAVTQYR AKRGQIIKEASGEVYR
NOV30a TTVDYTYFSEPVSCEVTNALGSTNLSRTVDVYFGPR TTEPQSLLVDLGSDAIFSCAWTG
NOV3Ob TTVDYTYFSEPVSCEVTKALGSTNLSRTVDVYFGPR TTEPQSLLVDLGSDAI SCA TG
NOV3Oc TTVDYTYFSEPVSCEVTNALGSTNLSRTVDVYFGPRMTTEPQSLLVD GSDAIFSCAWTG
NOV3Od TTVDYTYFSEPVSCEVTNALGSTNLSRTVDVYFGPRMTTEPQS LVDLGSDAIFSCAWTG
NOV3Oe TTVDYTYFSEPVSCEVTN-ALGSTNLSRTVDVYFGPRMTTEPQSLLVDLGSDAIFSCA TG
NOV30f STPTISLSSCQPDLRPAGKQRVPTG SFT-NIYSTLSGQGR LYDYGQRFVLGMGSS-
NOV3Og TTVDYTYFSEPVSCEVTNALGSTNLSRTVDVYFGPR TTEPQSLLVDLGSDAIFSCA TG
NOV3Oh TTVDYTYFSEPVSCEVTNALGSTNLSRTVDVYFGPRMTTEPQSLLVDLGSDAIFSCA TG
NOV30a NPS TIV MKRGSGWLSNEKTLT KSVRQEDAGKYVCRAWPRVGAGEREVTLTVNGPP
NOV3Ob NPSLTIVWM---O.GSGVVLSNEKT T KSVRQEDAGKYVC-RAVVPRVGAGEREVTLTVNGPP
NOV30c NPSLTIV MKRGSGWLSNEKTLTLKSVRQEDAGKYVCRAWPRVGAGEREVT TVNGPP
NOV3Od NPSLTIVWMKRGSGWLSNEKTLTLKSVRQEDAGKYVCRAWPRVGAGEREVTLTVNGPP
NOV30e NPSLTIV MKRGSGVVLSNEKTLTLKSVRQEDAGKYVCRAVVPRVGAGEREVTLTVNGPP
NOV30f SIELCEREFQRGS SDSSSFLDTQCDSSVSSSGKQDGYVQFDKASKASASSSHHSQ-
NOV30g NPSLTIVWMKRGSGWLSNEKTLTLKSVRQEDAGKYVCRAWPRVGAGEREVTLTVNGPP
NOV3Oh NPSLTIVWMKRGSGWLSNEKTLTLKSVRQEDAGKYVCRAWPRVGAGEREVTLTVNGPP
NOV3Oa IISSTQTQHALHGEKGQIKCFIRSTPPPDRIAWS KENVLESGTSGRYTVETISTEEGVI N0V3Ob IISSTQTQHALHGEKGQIKCFIRSTPPPDRIA S KENVLESGTSGRYTVETISTEEGVI
NOV30C IISSTQTQHALHGEKGQIKCFIRSTPPPDRIAWSWKENVLESGTSGRYTVETISTEEGVI
NOV3Od IISSTQTQH-ALHGEKGQIKCFIRSTPPPDRIAWS K-E-^IVLESGTSGRYTVETISTEEGVI
NOV3Oe IISSTQTQHALHGEKGQIKCFIRSTPPPDRIA S KENVLESGTSGRYTVETISTEEGVI
NOV3Of -S-SSQNSDPΞRPLQRRMQTHVPGG
NOV3Og IISSTQTQHALHGEKGQIKCFIRSTPPPDRIA S KENVLESGTSGRYTVETISTEEGVI
NOV30h IISSTQTQHALHGEKGQIKCFIRSTPPPDRIAWS KENVLESGTSGRYTVETISTEEGVI
NOV3Oa STLTISNIVRADFQTIYNCTAWNSFGSDTEIIRLKEQ ESVPMAVIIGV
NOV3 Ob STLTISNIVRADFQTIYNCTA NSFGSDTEIIRLKEQGSEMKSGAGLEAESVPMAVIIGV
NOV3 Oc STLTISNIVRADFQTIYNCTA NSFGSDTEIIRLKEQ ESVPMAVIIGV
NOV3 Od STLTISNIVRADFQTIYNCTA NSFGSDTEIIRLKEQ ESVPMAVIIGV
NOV3Oe STLTISNIVRADFQTIYNCTAWNSFGSDTEIIRLKEQGSEMKSGAGLEAESVPMAVIIGV
NOV3Of
NOV3 Og STLTISNIVRADFQTIYNCTAWNSFGSDTEIIRLKEQGSEMKSGAGLEAESVPiAVIIGV
NOV3Oh STLTISNIVRADFQTIYNCTA NSFGSDTEIIRLKEQG SEM
NOV3Oa AVGAGVAFLVLMATIVAFCCARSQRNLKGWSAKNDIRVEIVHKEPASGREGEEHSTIKQ
NOV3Ob AVGAGVAFLVLMATIVAFCCARSQRNLKGWSAKNDIRVEIVHKEPASGREGEEHSTIKQ
NOV3Oc AVGAGVAFLVLMATIVAFCCARSQRNLKGVVSAKNDIRVEIVHKEPASGRΞGEEHSTIKQ
NOV3Od AVGAGVAFLVLMATIVAFCCARSQRNLKGWSAKNDIRVEPGG
NOV3Oe AVGAGVAFLVLMATIVAFCCARSQRNLKGWSAKNDIRVEPGG
NOV30f
NOV3Og AVGAGVAFLV-LMATIVAFCCARSQRNLKGVVSAKNDIRVEIVHKEPASGREGEEHSTIKQ
NOV30h KSGAGL
NOV3 Oa LMMDRGEFQQDSVLKQLEVLKEEEKEFQNLKDPTNGYYSVNTFKEHHSTPTISLSSCQPD
NOV3Ob LMMDRGEFQQDSVLKQLEVLKEEEKEFQNLKDPTNGYYSVNTFKEHHSTPTISLSSCQPD
NOV30C LMMDRGEFQQDSVLKQLEVLKEEEKEFQNLKDPTNGYYSVNTFKEHHSTPTISLSSCQPD
NOV30d
NOV3 Oe
NOV30f
NOV3 Og LMMDRGEFQQDSVLKQLEVLKEEEKEFQNLKDPTNGYYSVNTFKEHHSTPTISLSSCQPD
NOV30h
NOV30a LRPAGKQRVPTGMSFTNIYSTLSGQGRLYDYGQRFVLGMGSSSIELCEREFQRGSLSDSS
NOV30b LRPAGKQRVPTGMSFTNIYSTLSGQGR YDYGQRFVLGMGSSSIELCEREFQRGSLSDSS
NOV30C LRPAGKQRVPTGMSFTNIYSTLSGQGRLYDYGQRFVLGMGSSSIELCEREFQRGSLSDSS
NOV30d
NOV30e
NOV30f
NOV30g LRPAGKQRVPTGMSFTNIYSTLSGQGRLYDYGQRFVLGMGSSSIELCEREFQRGSLSDSS
NOV30h
NOV3 Oa SFLDTQCDSSVSSSGKQDGYVQFDKASKASASSSHHSQSSSQNSDPSRPLQRRMQTHV--
NOV3 Ob SFLDTQCDSSVSSSGKQDGYVQFDKASKASASSSHHSQSSSQNSDPSRPLQRRMQTHV--
NOV3Oc SFLDTQCDSSVSSSGKQDGYVQFDKASKASASSSHHSQSSSQNSDPSRPLQRRMQTHVPG
NOV30d
NOV30e
NOV30f
NOV3 Og SFLDTQCDSSVSSSGKQDGYVQFDKASKASASSSHHSQSSSQNSDPSRPLQRRMQTHVPG
NOV30h
NOV30a -
NOV3Ob -
NOV30C G
NOV30d -
NOV3 Oe -
NOV30f -
NOV30g G NOV3Oh -
NOV30a (SEQ ID NO 752)
NOV3Ob (SEQ ID NO 754)
NOV30C (SEQ ID NO 756)
NOV30d (SEQ ID NO 758)
NOV30e (SEQ ID NO 760)
NOV30f (SEQ ID NO 762)
NOV3Og (SEQ ID NO 764)
NOV3Oh (SEQ ID NO 766)
Further analysis of the NOV30a protein yielded the following properties shown in Table 30C.
Table 30C. Protein Sequence Properties NOV30a
SignalP analysis: Cleavage site between residues 24 and 25
PSORT π analysis:
PSG : a new signal peptide prediction method
N- region: length 7 ; pos . chg 1; neg. chg 1 H-region : length 11; peak value 13 . 09 PSG score : 8 .69
GvH: von Heijne ' s method for signal seq. recognition GvH score (threshold : -2 .1) : -3 .29 possible cleavage site : between 17 and 18
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al's method for TM region allocation
Init position for calculation: 1
Tentative number of TMS (s) for the threshold 0.5:
Number of TMS(s) for threshold 0.5: 1
INTEGRAL Likelihood =-10.40 Transmembrane 524 540
PERIPHERAL Likelihood = 1.54 (at 65)
ALOM score: -10.40 (number of TMSs: 1)
MTOP: Prediction of membrane topology (Hartmann et al.) Center position for calculation: 531 Charge difference: 5.0 C( 3.0) - N(-2.0) C > N: C-terminal side will be inside
>>>Caution: Inconsistent mtop result with signal peptide
>>> membrane topology: type lb (cytoplasmic tail 524 to 766)
MITDISC: discrimination of mitochondrial targeting seq R content: 0 Hyd Moment (75): 8.25 Hyd Moment (95): 6.93 G content: 0 D/E content: 2 S/T content: 1 Score: -6.35
Gavel : prediction of cleavage sites for mitochondrial preseq cleavage site motif not found
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite: KRGCCLVLGYMAKDKFR at 24 content of basic residues: 10.2% NLS Score: 0.02
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals : none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail : too long tail
Dileucine motif in the tail : none checking 63 PROSITE DNA binding motifs : Leucine zipper pattern (PS00029) : *** found *** LLFVCFFLFSQELGLQKRGCCL at 8 none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: cytoplasmic Reliability: 55.5
COIL: Lupas ' s algorithm to detect coiled-coil regions total: 0 residues
Final Results (k = 9/23) :
39.1 %: nuclear
21.7 %: cytoplasmic
17.4 % : mitochondrial
8.7 %: vesicles of secretory system
4.3 % : vacuolar
4.3 %: peroxisomal
4.3 % : endoplasmic reticulum
>> prediction for CG55784-03 is nuc (k=23) A search of the NOV30a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 30D.
In a BLAST search of public sequence databases, the NOV30a protein was found to have homology to the proteins shown in the BLASTP data in Table 30E.
PFam analysis predicts that the NOV30a protein contains the domains shown in the Table 30F.
Example 31.
The NOV31 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 3 IA.
Table 31 A. NO 31 Sequence Analysis
NOV31a, CG55790-02 SEQ ID NO: 769 8250 bp DNA Sequence ORF Start: ATG at 4 ! ORF Stop: TAG at 1423
ACCATGCGGCTGGGCAGTCCTGGACTGCTCTTCCTGCTCTTCAGCAGCCTTCGAGCTGATACTCAGGA
GAAGGAAGTCAGAGCGATGGTAGGCAGCGACGTGGAGCTCAGCTGCGCTTGCCCTGAAGGAAGCCGTT TTGATTTAAATGATGTTTACGTATATTGGCAAACCAGTGAGTCGAAAACCGTGGTGACCTACCACATC CCACAGAACAGCTCCTTGGAAAACGTGGACAGCCGCTACCGGAACCGAGCCCTGATGTCACCGGCCGG CATGCTGCGGGGCGACTTCTCCCTGCGCTTGTTCAACGTCACCCCCCAGGACGAGCAGAAGTTTCACT GCCTGGTGTTGAGCCAATCCCTGGGATTCCAGGAGGTTTTGAGCGTTGAGGTTACACTGCATGTGGCA GCAAACTTCAGCGTGCCCGTCGTCAGCGCCCCCCACAGCCCCTCCCAGGATGAGCTCACCTTCACGTG TACATCCATAAACGGCTACCCCAGGCCCAACGTGTACTGGATCAATAAGACGGACAACAGCCTGCTGG ACCAGGCTCTGCAGAATGACACCGTCTTCTTGAACATGCGGGGCTTGTATGACGTGGTCAGCGTGCTG AGGATCGCACGGACCCCCAGCGTGAACATTGGCTGCTGCATAGAGAACGTGCTTCTGCAGCAGAACCT GACTGTCGGCAGCCAGACAGGAAATGACATCGGAGAGAGAGACAAGATCACAGAGAATCCAGTCAGTA CCGGCGAGAAAAACGCGGCCACGTGGAGCATCCTGGCTGTCCTGTGCCTGCTTGTGGTCGTGGCGGTG GCCATAGGCTGGGTGTGCAGGGACCGATGCCTCCAACACAGCTATGCAGGTGCCTGGGCTGTGAGTCC GGAGACAGAGCTCACTGGTGAGTTTGCCGTGGGAAGCAGCAGGTTCTGGGGGGCCCAGGGGAGGCTTG GCTGCCAGCTGTCTTTCAGAGTTTCAAAAAACTTTCAAAAGGCAAAAGTCCCTTGCCTTGAACAACTG TTGTTCCTGGAGACGCAGCGAAGCCCTCGATGGTGCGCATGGCATTTCCTGCAGCCTCCCCTTGGCAT GGGATGGCATCCTGGTGTGCACTTTGTCACACTGCGATGGGATTTTCCCAACATGCACAGAAGCAGAG AGACGAGTGCTAGACCCCCGCGCTCCCCAGTGCCCAGCCCCGACCAGGGTGTCCAGGGCGGGTCCAGG CACCGGCGCCCAGCCCCCATGGGGTGTCCGGAGTGGGTCCAGGCACCGGCGCCCAGCCCCCGTGGGGT GTCCAGGGCGGGTCCAGGCACCGGCGCCCAGCCCCTGTGGGGTGTCCGGAGTGGGTCCGGGCACCGCC AGCTTCTCTCTGTGGCAGCCACTCCTGCAGCTCTCGTTTGCCCCTCAGTTCCAGGAGCAACATAGATG TGGATTCCTGTCCAATTTGGGAAAAATGTCCACACACGGTCACCCACCTGGCAGGTGCCTCTGGCTGC AAGGGGCGCTGGGCTTCGCAGGCAGGCCAGCCGGGCTCCCCGCCATGGGCCAGGATCCCCTCCGAGCC CTGTTTGCCGCCCAGGAGAAGGGGTTCCCCGGGGACAGTGGGCTCAGGGTGTGCGCAGCCACCATGCT GTGGTGTCACCTGTGGACCCAGGCGAGCTGATGGCCGACCGCAGAAACGCACTTCCAAGGCCAGGTCG GCCCATCCAGATGATGCAGGAACACAGCTTGCTAAAAACACGGCCGGCCTGTTCCCGTCGGAGCCAGT CGAAGTTCCCTGAACAGGCCGCTGTTTCCGAAGCTTTAAACCCTGTGTTTCCACCAAGCTGAGTCCTG AGAAAACCGACGTCTGCCTGCAGAAGGGAAAGGGGTGCTTCATGTTCCTCTCTCTCCTTCATCTCCCT TCCAAGGCCACGTTTGACCGGAGCTCACCGCCCAGAGCGTGGACAGGGCTTCCGTGAGACGCCACCGT GAGAGGCCAGGTGGCAGCTTGAGCATGGACTCCCAGACTGCAGGGGAGCACTTGGGGCAGCCCCCAGA AGGACCACTGCTGGATCCCAGGGAGAACCTGCTGGCGTTGGCTGTGATCCTGGAATGAGGCCCTTTCA AAAGCGTCATCCACACCAAAGGCAAATGTCCCCAAGTGAGTGGGCTCCCCGCTGTCACTGCCAGTCAC CCACAGGAAGGGACTGGTGATGGGCTGTCTCTACCCGGAGCGTGCGGGATTCAGCACCAGGCTCTTCC CAGTACCCCAGACCCACTGTGGGTCTTCCCGTGGGATGCGGGATCCTGAGACCGAAGGGTGTTTGGTT TAAAAAGAAGACTGGGCGTCCGCTCTTCCAGGACGGCCTCTGTGCTGCTGGGGTCACGCGAGGCTGTT TGCAGGGGACACGGTCACAGGAGCTCTTCTGCCCTGAACGCTCCCAACCTGCCTCCCGCCCGGAAGCC ACAGGACCCACTCATGTGTGTGCCCACAAGTGTAGTTAGCCGTCCACACCGAGGAGCCCCCGGAAGTC CCCACTGGGCTTCAGTGTCCTCTGCCACATTCCCTGGGAGGAACAATGTCCCTCGGCTGTTCCGGTGA AAAGTTGAGCCACCTTTGGAAGACGCACGGGTGGAGTTTGCCAGAAGAAAGGCTGTGCCAGGGCCGTG TTTGGCTACAGGGGCTGCCGGGGCTCTTGGCTCTGCAGCGAGAAAGACACAGCCCAGCAGGGCTGGAG ACGCCCATGTCCAGCAGGCGCAGGCCTGGCAACACGGTCCCCAGAGTCCTGAGCAGCAGTTAGGTGCA TGGAGAGGGTATCACCTGGTGGCCACAGTCCCCCTTCTCACCTCAGCAATGATCCCCAAAGTGAGAGG TGGCTCCCCCGGCCCCCACCACCCTCAGCAGCCCCACCCCACTCAACCCTGAGGGTCCCCAGGGTCCT GATGAAGACCTCCGACCCCAGCGCCAGGCTCCTCGGAGCCCAACAGTCCCAAGGGGGCAGGAGACGGG GTGGTCCAGTGCTGAGGGGTACAGCCCTGGGCCCTGACCAGCCCCGGCACCTGCCATGCTGGTTCCCG GAATGAATCAGCTGCTGACTGTCTCCAGAAGGGCTGGAAAGGATGCTGCCAGGTGACCCGAGGTGCAC TCGCCCCAGGGAGATGGAGTAGACAGCCTGGCCTGGCCCTCGGGACACATTGTCTGCCCCGGGGCTAT GGGCAAATGCCCCTCCTTCTTACTTCCCAGAATCCCCTGACATTCCCAGGGTCAGCCAGGACCTGTTA CAGCCCTGGTCACTTGGAACTGACAGCTGTGTGAGGCCTGCACTTCTCAGACCCAGACTTAGAACAAA
AGGAGGAGTGAGGACTCAAGGCTACAATGAGGTTCCAGTACTTGTTACAAGAAATTGGTTTTCTGCAA AAAAAGTCCCTACCTGAGCCTTTAGGTGAATGTGGGATCCACTCCCGCTTTTAACATGAAAGCATTAG AAGATGTGTGGTGTTTATAAAAGAACAGTTGTCATCACCGGGCATTGATTGGCAGGGACAAGGAGCTG CTTGGGTGTGGAAAGTTGGGGCGTTGGAAAGTGGGCTGTGGTGCCCATTTGCAGTGACTGTGAAGTGA CTCCAGGACGGACCTGCGGGGGCACCCAGAGGTCCTAAGCCCCAGGACTGAGGGTCGTGCATCACCAC TCGGGTGTCCCGGGAGGTGCCCTGGGCCCGGGGACCTCACAGGCAGGACGGCGACACTAATGCAGGGA GAGGGAGTCTGGCCCCAGCTTTTCCTATCAGAGGCGATTTTCCTTCACCAGGGGATGGGCAGGAAAGA GGCAGGGGCCCCAGAAGCTTCTGTCCCTCATGCCTGAGGGCACGGGGGACACTTGGAGGCTGCTGTCA CCACTGTGCGTCCAAGGCCATGCTCTCTGCGGGTCAGTGCCTGAGTCTCGCCTCCCTGCTGGTCCCTG AAGCCCCCTCAGAAGCCCTGCCTGTCACGTCGGCATTTGTGAGACCTACCCTGTAACGCCTGCCCCTC TCAGCCCAACATCAGCTTCCTCTTTCTCCCTTGCTGTAGACAGGCTGGATTCCAGTGTTGGGACAGCC ATCTCCAGAAACCTGACTTAAGAGAGTAAGATGCAAATCGTGCCTGTATCCAGTGGCTTTGGTGGGTG CAGGGAGTCTTGGGCACAGCCAGCTCAGCTGTCTGTGGTATGAGCAGGAACAGGTGCCACTCCTGCTC AGGGGACCCTGCCCTACACCAGGCTGTTCCGTCCCCCTGGAGGACATGGGGCCAGGTCTGGAGGCATT TTGGGTTGTCACAGCTGGGGGCTGTTCCTCGGCTTCAGCGGGTGGAAGCCTCAGATGCTGTTCAACAT CTTCTGGACACGGGAGGCCCCGACAGAGAGAAGCGTCCACCCGCAAGTCCACAGTCTGAGGTCTCCCC TCAGAGACCCTGCCCTGCACACCCACCTCCAGCCAAAGGTCCTGCCTGCCCCAGGGCTCAGGGGAACC TTGCCGGTCTGTGGAACAGGAGAGGGGACTCTCGCCAGCTGCACCACCCTGCACGTAGTAGGTGTGCG GTAAACATCCACCAGGGAGGCTCCAGTCAAGGCTGGCAGATGGGGCGGTCCATCCCTAGGGCAGGTGA CAGAAGGGAAAAGGCTGCCTGCTGGCCCCCGAGCCAGGTAGCACATGCTTGTGCCTCAGTTTCCCCTC CTGTAAAGTGAGGCGCTGGATCCAGGTTCTGTCTACTGGGCTCTGCAGCTTGGACGCTCCTAAGACCA AGCGACCCACCCTGGGGAGGGCAGCTATGGCTTTGGAATAGCTGTCCAGGCCCGGGTGCCTCCAAGAC GGCCACCACACCCTGCCTGTGCTGCAGGGGTGCAGGGGTAAGGGGCAAGACTCCAGAGGCCTCCTCTC TGCATCTCCTTGTCTTCAGTGGCCGGAGGTGAGGCCTGAGCTCAGGGGAGGGGCTTCTGCCACGAACC CTATGGCGGGGCACAGCACACTTTTCCCAGGGAGGACCCCTGGGCCCCCTGCATTATCCCCAGCGGAG TGTGGGGTCACCTTCCAAGAGCGACATTGAGAAGCTCCAGCTCTAGGAGTGTGCAGACTCTTAACCAG GCAGGCCCAGGCCCTGGGGCACACAAAGGCGGGG^ TGGACTGTCCTACCCTCCTCCCTTCTACCTCCCCACTGTCTTCCCTCTCCACTGTCACCACTGCCTCC
CTCTTCCACTGTCCTCCATGCACTGCCCTCCCTCCACCTTCCCCCACCCCCACCACTCCCCATGCTGT
CCCCAGGCTCCCCCCGCTCTCCCCCCTCCCCACTGTCCCCCTCCCCATGCTGTACCCAGCTCACCCCG
CTCTCCCCTCTCCCCACTGTCCCCCCTCCCACTCCCCATGCTGTCCCCAGCTCACCCTACATGGACTT
GGCGATGTCCTTCCATGGCTCACCGGTCTGAATTTCCATGATGAGCCGGGCCTGCAGCTTTGCTCCCC
TATCCCTGCCCAGGCTGCAGCTGTCCATGCAGGGAGCGAGCTCCAGCACCTGCGGAGTCCTTCCGTGG:
GGGCCTCTCCGTGCCACAGCAGCCAGGGACCTCAGGTGCCTGTGCATGACACCACCGCCCATCCTCAT
CCTGAGCCAGCCTCTCAGGATCAGGACTTGGTTTGGCGGCGTTAACCTTAGAGCCTGCAAGGGGCTTC
CTCCTGGTGGGTCTGGCCGTAGCCTGGGGAGGCCACAGCTCCAGGCCACTCCAGACCTCCCTTCCTCT
GGGCCTTCCATGTGGTGGCAACCACCGCAGCTGTAAGGGAGGGAAAATGGAGCGTTTGTTCTCGGGCT
GGGCTGGGGTCTGGGGGAAGCCATGGGCGTGAAGACTGGAGTATTATTTGATGGAGAAGCGGCCACTC
CTGGAGACCGGCGGCAAACACAGAAGCACAGCGTGGAAGGTGCTGGTGTCAGCCCACACGGGTGATGG
GGTCAGACTCAGGAGTCACACTCAGGAGTCACCAGGCTCAAAGGGCCCAGGCACCGCAAGTCCTGCTC
AGCCCCAGACACAATGCATTCCTGTTGCCCTCGCCCTCAGCCAGGCCCCACGCAGGCCAGGGAGCACT
GGCAAAGCTTGGCAACCCTCTGGGGGCCAGCCTTCATCCAGGCCGAAGGTGGTCAGTGGCCCACCATG
GCCCAGGTAGAAAACTCACGGATTAAGATTTCATGCCCGACTCCAAAGGCAAGAGACTTTATTATTTT
ATTTTTTTTGAGCCAGAGTATCGCTCTGTCACCTAGGCTGGAGTGCAATCTCTGCTCATTGCAACATC
TGCCTCCCGAACTCAAGCAATTCTGCCTCAGCCTCCCAAGTAGCTGGGATTACAGGTGTGCGCCACCA
TGCCCAGGTAATTGTATTTTTAGTAGAGACAGGGTTTCACCATGTTGGTCAGGCTGGTTTCAAACTCC jTGACCTCAAATGATCTGCCCACCTCGACCTCCCAAAGTGCTGGGATTACAGGTGCGAGCCACCGCACC
TGGCTACCAGACACTTCAGAGTTACAGGTTAGTTTTTCTTTTTCTTTTATTTTTTTTTTTTTGGCGGA
GGTGCAGGGGGAGTTAAACAAACAAACAAAATAAACAGGCCGGGTGCGGTGGCTCATGCCTGTAATCC
CAGCACTTTAGGAGGCCTAGGTGGGTGGATCACGAGATCAGGGGTTCAAGACCAGCCTGGCCGAGATG
GTAAAACCCCGTCTCCACTAAAAATACAAAAATTGGCCAGGCACGGTGGCTCACACCTGTAATCCCAG
TACTTTGGGAGGCTGAGGTGGGCAGATCACCTGAGGTCAGGAGTTCAAGACCAACCTGACCAACATGG
AGAAACCCCATCTCTACTAAAAATACAAAATTAGCCAGGTGTGGTGGTGCATGCCTGTAATTCCAGCT
ACTCGGGAGGCTGAGGCAGGAGAATTGCTTGAACCCAGGAGGCAGAGGTTGCAGTGGGCCAAGATGGC
GCCATTGCACTCCAGCCTGGGAACAAGAGCGAAACTCTGACTAAAAAAGAAAGAAAGAAAGAAAAAAA
TTAGTTGGGCACGGTGGCAGGCGCCTGTAATCCCAGGTACTCAGGAGGCTGAGGCAGGAGAATTGCTT
GAACCCGGGAGGCAGAGGTCGCAGTGAGCCGAGATTGCACCACTGCCCTCCAGCCTGGGTGACAGAGC lAAGACTCCGTCTCAAAAAAAAAAAAAAAAAAAATTGGATACATTGTAATACCTCAAATACTTGTAAGT
GAAGCACCCCAGTTCCCATAGAGCTGCCGCACTCAGAGGCTTCTGTAACCTGCCTGCTCCCAGCATTC
TATTTAGGGTCTGGTATGTCCAGAATTTGCAGACACAGCAATTCCTGCAGCAGCAGTGCACCATGTGG
AAGGGGCCCCATGACCAGCCCACTGTGAGCTCACACGTGATGACTGAGGCTTCTTCACACAGCAGGGC
TCTGGGTGTGATACCCAGGGCACACGCGTTTGCACAGGCACAGGCCACACAAGTTCTCACATGCTCAG
CCCCATAAGCCGTGCTGGACAGGCATGGCCATTTACACCCAGGATCCTGCTGAGAACAGCAACCAACT
CACCACCCTCGCATCATGATCCTTGCCACACAGGGGCTCTGGTGGCTTTGGTGGCCTGGGCTGTGGCT
CTGCTGCCAGCCACCTTGAGTGAAGATCCGGGTTCTCTGGGTGCTACTCAGCTGCTATGTGGGGAGCT
GGCCCCTGGGGTGATGAGGGCCCTTCCCAACCCGCCCTCAGCCCTTGGACAGCCAGGATCACCCGGGG
CTGTCTGCATACAGACTTCTCAGGGGAGTTCTCAGCTTGGACCCTTATCTCCCCAGAATCCTGGAACC
TGCTCCTTCTGCTCTCGTGACTGACTGTGTTCTCTATGCAACTTCCAATAAAACCTCTTCATTTGAA
GGAAAAAAGTCTGCATTATCTGTTTAGGAAGGGAGAGAGTTCATATTGCAATCTTTTTTTTTTTAATA
AAAATAATCTCAGCCTGGGCAACATGGTGAGACCCCATCTCTGTAAAACATTTTTAAAAAATTAGCCG
GGTATGGTGGCGCACACTTGTAGTCCCAGCTACTCAGGAGGCTGAAGCGGGAGGATCCATTGAACCTG
AGAAGTCGAAGCTGCAGTGAGCTGTGATTGTGCCACTGTACTCCAGCCTGGACAACAGAGTGAGACGC
CGTCTCAAATAAATAAATACAT
NOV31a, CG55790-02 SEQ ID NO: 770 473 aa MW at 51924.6kD Protein Sequence
MRLGSPG LFL FSSLR-ADTQE---ΕVRAMVGSDVELSCACPEGSRFDL DVYVY QTSESKTVVTyHIP
QNSS ENVDSRYRN-E--A MSPAGM
NFSVPVVSAPHSPSQDELTFTCTSINGYPRPNVYWINKTDNS LDQALQNDTVF MRGLYDVVSV R
I-ARTPSVNIGCCIEli!Λπ-JLQQiπJTVGSQTG---roiGERDKITENPVSTGE-KN-AAT SI AV C LV^
IG VCRDRCLQHSYAGAWAVSPETELTGEFAVGSSRFWGAQGR GCQLSFRVS NFQKAKVPC EQLL
FLETQRSPRWCA HFLQPPLGMG HPGVHFVTLR DFP MHRSRETSARPPRSPVPSPDQGVQGGSRH
RRPAPMGCPE VQAPAPSPRGVSRAGPGTGAQP GVRSGSGHRQLLSVAATPAALVCPSVPGAT
NOV3 lb, 258668431 SEQ ID NO: 771 1393 bp
DNA Sequence ORF Start: at 2 }ORF Stop: end of sequence
CACCAGATCTCTTCGAGCTGATACTCAGGAGAAGGAAGTCAGAGCGATGGTAGGCAGCGACGTGGAGC TCAGCTGCGCTTGCCCTGAAGGAAGCCGTTTTGATTTAAATGATGTTTACGTATATTGGCAAACCAGT GAGTCGAAAACCGTGGTGACCTACCACATCCCACAGAACAGCTCCTTGGAAAACGTGGACAGCCGCTA CCGGAACCGAGCCCTGATGTCACCGGCCGGCATGCTGCGGGGCGACTTCTCCCTGCGCTTGTTCAACG TCACCCCCCAGGACGAGCAGAAGTTTCACTGCCTGGTGTTGAGCCAATCCCTGGGATTCCAGGAGGTT TTGAGCATTGAGGTTACACTGCATGTGGCAGCAAACTTCAGCGTGCCCGTCGTCAGCGCCCCCCACAG CCCCTCCCAGGATGAGCTCACCTTCACGTGTACATCCATAAACGGCTACCCCAGGCCCAACGTGTACT GGATCAATAAGACGGACAACAGCCTGCTGGACCAGGCTCTGCAGAATGACACCGTCTTCTTGAACATG CGGGGCTTGTATGACGTGGTCAGCGTGCTGAGGATCGCACGGACCCCCAGCGTGAACATTGGCTGCTG CATAGAGAACGTGCTTCTGCAGCAGAACCTGACTGTCGGCAGCCAGACAGGAAATGACATCGGAGAGA GAGACAAGATCACAGAGAATCCAGTCAGTACCGGCGAGAAAAACGCGGCCACGTGGAGCATCCTGGCT GTCCTGTGCCTGCTTGTGGTCGTGGCGGTGGCCATAGGCTGGGTGTGCAGGGACCGATGCCTCCAACA CAGCTATGCAGGTGCCTGGGCTGTGAGTCCGGAGACAGAGCTCACTGGTGAGTTTGCCGTGGGAAGCA GCAGGTTCTGGGGGGCCCAGGGGAGGCTTGGCTGCCAGCTGTCTTTCAGAGTTTCAAAAAACTTTCAA AAGGCAAAAGTCCCTTGCCTTGAACAACTGTTGTTCCTGGAGACGCAGCGAAGCCCTCGATGGTGCGC ATGGCATTTCCTGCAGCCTCCCCTTGGCATGGGATGGCATCCTGGTGTGCACTTTGTCACACTGCGAT GGGATTTTCCCAACATGCACAGAAGCAGAGAGACGAGTGCTAGACCCCCGCGCTCCCCAGTGCCCAGC CCCAACCAGGGTGTCCAGGGCGGGTCCAGGCACCGGCGCCCAGCCCCCATGGGGTGTCCGGAGTGGGT CCAGGCACCGGCGCCCAGCCCCCGTGGGGTGTCCAGGGCGGGTCCAGGCACCGGCGCCCAGCCCCTGT GGGGTGTCCGGAGCGGGTCCGGGCACCGCCAGCTTCTCTCTGTGGCAGCCACTCCTGCAGCTCTCGTT TGCCCCTCAGTTCCAGGAGCAACACTCGAGGGC
NOV3 lb, 258668431 SEQ ID NO: 772 464 aa MW at 50961.4kD Protein Sequence
TRS R---\DTQEKEVT--A-WGSDVELSCACPEGSRFDLNDVYV^^
RNRALMSPAGMLRGDFS R FNVTPQDEQKFHC VLSQS GFQEVLSIEVTLHVAANFSVPWSAPHS
PSQDE TFTCTS INGYPRPNVYWINKTDNSL DQALQNDTVFLNMRGLYDWSV RIARTPSV IGCC
IENV-LLQQN TVGSQTGNDIGERDKITENPVSTGEKNAAT SILAV C LVWAVAIGWVCRDRCLQH
SYAGAWAVSPETELTGEFAVGSSRF GAQGR GCQLSFRVS--- NFQKAKVPCLEQLLF ETQRSPRWCA HFIiQPP G GWHPGVHFVTLR DFPN HRSRETS-ARPPRSPVPSPNQGVQGGSRHRRPAP GCPEWV
QAPAPSPRGVSRAGPGTGAQPL GVRSGSGHRQ SVAATPAALVCPSVPGATLEG
NOV3 lc, 309303509 SEQ ID NO: 773 1393 bp
DNA Sequence iORF Start: at 2 ORF Stop: end of sequence
CACCAGATCTCTTCGAGCTGATACTCAGGAGAAGGAAGTCAGAGCGATGGTAGGCAGCGACGTGGAGC TCAGCTGCGCTTGCCCTGAAGGAAGCCGTTTTGATTTAAATGATGTTTACGTATATTGGCAAACCAGT GAGTCGAAAACCGTGGTGACCTACCACATCCCACAGAACAGCTCCTTGGAAAACGTGGACAGCCGCTA CCGGAACCGAGCCCTGATGTCACCGGCCGGCATGCTGCGGGGCGACTTCTCCCTGCGCTTGTTCAACG TCACCCCCCAGGACGAGCAGAAGTTTCACTGCCTGGTGTTGAGCCAATCCCTGGGATTCCAGGAGGTT TTGAGCATTGAGGTTACACTGCATGTGGCAGCAAACTTCAGCGTGCCCGTCGTCAGCGCCCCCCACAG CCCCTCCCAGGATGAGCTCACCTTCACGTGTACATCCATAAACGGCTACCCCAGGCCCAACGTGTACT GGATCAATAAGACGGACAACAGCCTGCTGGACCAGGCTCTGCAGAATGACACCGTCTTCTTGAACATG CGGGGCTTGTATGACGTGGTCAGCGTGCTGAGGATCGCACGGACCCCCAGCGTGAACATTGGCTGCTG CATAGAGAACGTGCTTCTGCAGCAGAACCTGACTGTCGGCAGCCAGACAGGAAATGACATCGGAGAGA GAGACAAGATCACAGAGAATCCAGTCAGTACCGGCGAGAAAAACGCGGCCACGTGGAGCATCCTGGCT GTCCTGTGCCTGCTTGTGGTCGTGGCGGTGGCCATAGGCTGGGTGTGCAGGGACCGATGCCTCCAACA CAGCTATGCAGGTGCCTGGGCTGTGAGTCCGGAGACAGAGCTCACTGGTGAGTTTGCCGTGGGAAGCA GCAGGTTCTGGGGGGCCCAGGGGAGGCTTGGCTGCCAGCTGTCTTTCAGAGTTTCAAAAAACTTTCAA AAGGCAAAAGTCCCTTGCCTTGAACAACTGTTGTTCCTGGAGACGCAGCGAAGCCCTCGATGGTGCGC ATGGCATTTCCTGCAGCCTCCCCTTGGCATGGGATGGCATCCTGGTGTGCACTTTGTCACACTGCGAT GGGATTTTCCCAACATGCACAGAAGCAGAGAGACGAGTGCTAGACCCCCGCGCTCCCCAGTGCCCAGC CCCGACCAGGGTGTCCAGGGCGGGTCCAGGCACCGGCGCCCAGCCCCCATGGGGTGTCCGGAGTGGGT CCAGGCACCGGCGCCCAGCCCCCGTGGGGTGTCCAGGGCGGGTCCAGGCACCGGCGCCCAGCCCCTGT GGGGTGTCCGGAGCGGGTCCGGGCACCGCCAGCTTCTCTCTGTGGCAGCCACTCCTGCAGCTCTCGTT TGCCCCTCAGTTCCAGGAGCAACACTCGAGGGC
NOV31c, 309303509 SEQ ID NO: 774 464 aa MW at 50962.4kD Protein Sequence
TRSLRADTQEKEVR-A1WGSDVE SCACPEGSRFDL---TOVYV^
-RNRALMSPAGMLRGDFSLRLF---WTPQDEQKFHCLV SQSLGFQEVIJSIEVTLHVAANFSVPVVSAPHS
PSQDE TFTCTSINGYPRP--s-VYWINKTDHSL DQALQNDTVFLtmRGLYDVVSVLRIARTPSV-ISriGCC IENVL QQN TVGSQTG---roiGERDKITENPVSTGE--^AAT SI AVLCLLVVVAVAIG VCRDRCLQH SYAGA AVSPETE TGEFAVGSSRF GAQGRLGCQLSFRVSKNFQKAKVPC EQLLFLETQRSPRWCA WHF QPP GMG HPGVHFVTLR DFPNMHRSRETSARPPRSPVPSPDQGVQGGSRHRRPAPMGCPEWV QAPAPSPRGVSRAGPGTGAQPLWGVRSGSGHRQLLSVAATPAALVCPSVPGATLEG
NOV31d, 315925314 SEQ ID NO: 775 871 bp DNA Sequence ORF Start: at 2 |θRF Stop: end of sequence
CACCGGATCCGATACTCAGGAGAAGGAAGTCAGAGCGATGGTAGGCAGCGACGTGGAGCTCAGCTGCG CTTGCCCTGAAGGAAGCCGTTTTGATTTAAATGATGTTTACGTATATTGGCAAACCAGTGAGTCGAAA ACCGTGGTGACCTACCACATCCCACAGAACAGCTCCTTGGAAAACGTGGACAGCCGCTACCGGAACCG AGCCCTGATGTCACCGGCCGGCATGCTGCGGGGCGACTTCTCCCTGCGCTTGTTCAACGTCACCCCCC AGGACGAGCAGAAGTTTCACTGCCTGGTGTTGAGCCAATCCCTGGGATTCCAGGAGGTTTTGAGCGTT GAGGTTACACTGCATGTGGCGGCAAACTTCAGCGTGCCCGTCGTCAGCGCCCCCCACAGCCCCTCCCA GGATGAGCTCACCTTCACGTGTACATCCATAAACGGCTACCCCAGGCCCAACGTGTACTGGATCAATA AGACGGACAACAGCCTGCTGGACCAGGCTCTGCAGAATGACACCGTCTTCTTGAACATGCGGGGCTTG TATGACGTGGTCAGCGTGCTGAGGATCGCACGGACCCCCAGCGTGAACATTGGCTGCTGCATAGAGAA CGTGCTTCTGCAGCAGAACCTGACTGTCGGCAGCCAGACAGGAAATGACATCGGAGAGAGAGACAAGA TCACAGAGAATCCAGTCAGTACCGGCGAGAAAAACGCGGCCACGTGGAGCATCCTGGCTGTCCTGTGC CTGCTTGTGGTCGTGGCGGTGGCCATAGGCTGGGTGTGCAGGGACCGATGCCTCCAACACAGCTATGC AGGTGCCTGGGCTGTGAGTCCGGAGACAGAGCTCACTGGTCACCTGCTCGAGGGC
NOV31d, 315925314 SEQ ID NO: 776 290 aa MW at 31946.7kD Protein Sequence
TGSDTQE---ΕV-RAMVGSDVE SCACPEGSRFDLNDVYVY QTSESKTVVTYHIPQNSSLENVDSRYRNR ALMSPAGMLRGDFSLRLF VTPQDEQKFHC VLSQSLGFQEVLSVEVTLHVAANFSVPVVSAPHSPSQ DELTFTCTSINGYPRPNVYWINKTDNSLLDQALQNDTVF NMRG YDVVSVLRIARTPSV IGCCIEN VLLQQNLTVGSQTGNDIGERDKITENPVSTGEKNAAT SILAVLCLLVWAVAIGWVCRDRC QHSYA GAWAVS PETELTGHLLEG
NOV31e, 315970230 SEQ ID NO: 777 928 bp
DNA Sequence ORF Start: at 2 i ORF Stop: end of sequence
CACCGGATCCACCATGCGGCTGGGCAGTCCTGGACTGCTCTTCCTGCTCTTCAGCAGCCTTCGAGCTG ATACTCAGGAGAAGGAAGTCAGAGCGATGGTAGGCAGCGACGTGGAGCTCAGCTGCGCTTGCCCTGAA GGAAGCCGTTTTGATTTAAATGATGTTTACGTATATTGGCAAACCAGTGAGTCGAAAACCGTGGTGAC CTACCACATCCCACAGAACAGCTCCTTGGAAAACGTGGACAGCCGCTACCGGAACCGAGCCCTGATGT CACCGGCCGGCATGCTGCGGGGCGACTTCTCCCTGCGCTTGTTCAACGTCACCCCCCAGGACGAGCAG AAGTTTCACTGCCTGGTGTTGAGCCAATCCCTGGGATTCCAGGAGGTTTTGAGCGTTGAGGTTACACT GCATGTGGCGGCAAACTTCAGCGTGCCCGTCGTCAGCGCCCCCCACAGCCCCTCCCAGGATGAGCTCA CCTTCACGTGTACATCCATAAACGGCTACCCCAGGCCCAACGTGTACCGGATCAATAAGACGGACAAC AGCCTGCTGGACCAGGCTCTGCAGAATGACACCGTCTTCTTGAACATGCGGGGCTTGTATGACGTGGT CAGCGTGCTGAGGATCGCACGGACCCCCAGCGTGAACATTGGCTGCTGCATAGAGAACGTGCTTCTGC AGCAGAACCTGACTGTCGGCAGCCAGACAGGAAATGACATCGGAGAGAGAGACAAGATCACAGAGAAT CCAGTCAGTACCGGCGAGAAAAACGCGGCCACGTGGAGCATCCTGGCTGTCCTGTGCCTGCTTGTGGT CGTGGCGGTGGCCATAGGCTGGGTGTGCAGGGACCGATGCCTCCAACACAGCTATGCAGGTGCCTGGG CTGTGAGTCCGGAGACAGAGCTCACTGGTCACCTGCTCGAGGGC
NOV31e, 315970230 SEQ ID NO: 778 309 aa MW at 33978. lkD Protein Sequence
TGST RLGSPGL FLLFSS RADTQEKEVRAMVGSDVELSCACPEGSRFDLNDVYVY QTSESKTVVT YHIPQNSSLENVDSRYRNR-ALMSPAGMLRGDFS R F-- -VTPQDEQKFHC VLSQSLGFQEVLSVEVTL I---VAANFSVPVVSAPHSPSQDE TFTCTSINGYPRP---WYRINKTDNSLLDQA Q^roTVFLNMRGLYDVV SVLRI-ARTPSV IGCCIE--WL QQN TVGSQTG)--roiGERDKITENPVSTGE---α-I-AATWSI AVLCLLVV VAVAIGWVCRDRCLQHSYAGA AVSPETELTGHLLEG
NOV3 If, CG55790-01 [SEQ ID NO: 779 912 bp
DNA Sequence |QRF Start: ATG at 4 |ORF Stop: TAA at glO
ACCATGCGGCTGGGCAGTCCTGGACTGCTCTTCCTGCTCTTCAGCAGCCTTCGAGCTGATACTCAGGA
GAAGGAAGTCAGAGCGATGGTAGGCAGCGACGTGGAGCTCAGCTGCGCTTGCCCTGAAGGAAGCCGTT
TTGATTTAAATGATCT Protein Sequence
DTQEKEV-R-AMVGSDVELSCACPEGSRFDLl-roVYVYWQTSESKTVVTYHIPQNSSLENVDSRYRNRALM SPAGMLRGDFSLRLF VTPQDEQKFHCLVLSQSLGFQEVLSVEVTLHVAANFSVPWSAPHSPSQDEL TFTCTSINGYPRP1-TVYWINKTDNSLLDQALQNDTVFLNMRGLYDVVSVLRIARTPSVNIGCCIENVLL QQNLTVGSQTGNDIGERDKITENPVSTGEKN
NOV31i, CG55790-05 SEQ ID NO: 785 1393 bp DNA Sequence ORF Start: at 11 ORF Stop: at 1385
CACCAGATCTCTTCGAGCTGATACTCAGGAGAAGGAAGTCAGAGCGATGGTAGGCAGCGACGTGGAGC
TCAGCTGCGCTTGCCCTGAAGGAAGCCGTTTTGATTTAAATGATGTTTACGTATATTGGCAAACCAGT GAGTCGAAAACCGTGGTGACCTACCACATCCCACAGAACAGCTCCTTGGAAAACGTGGACAGCCGCTA CCGGAACCGAGCCCTGATGTCACCGGCCGGCATGCTGCGGGGCGACTTCTCCCTGCGCTTGTTCAACG TCACCCCCCAGGACGAGCAGAAGTTTCACTGCCTGGTGTTGAGCCAATCCCTGGGATTCCAGGAGGTT TTGAGCATTGAGGTTACACTGCATGTGGCAGCAAACTTCAGCGTGCCCGTCGTCAGCGCCCCCCACAG CCCCTCCCAGGATGAGCTCACCTTCACGTGTACATCCATAAACGGCTACCCCAGGCCCAACGTGTACT GGATCAATAAGACGGACAACAGCCTGCTGGACCAGGCTCTGCAGAATGACACCGTCTTCTTGAACATG CGGGGCTTGTATGACGTGGTCAGCGTGCTGAGGATCGCACGGACCCCCAGCGTGAACATTGGCTGCTG CATAGAGAACGTGCTTCTGCAGCAGAACCTGACTGTCGGCAGCCAGACAGGAAATGACATCGGAGAGA GAGACAAGATCACAGAGAATCCAGTCAGTACCGGCGAGAAAAACGCGGCCACGTGGAGCATCCTGGCT GTCCTGTGCCTGCTTGTGGTCGTGGCGGTGGCCATAGGCTGGGTGTGCAGGGACCGATGCCTCCAACA CAGCTATGCAGGTGCCTGGGCTGTGAGTCCGGAGACAGAGCTCACTGGTGAGTTTGCCGTGGGAAGCA GCAGGTTCTGGGGGGCCCAGGGGAGGCTTGGCTGCCAGCTGTCTTTCAGAGTTTCAAAAAACTTTCAA AAGGCAAAAGTCCCTTGCCTTGAACAACTGTTGTTCCTGGAGACGCAGCGAAGCCCTCGATGGTGCGC ATGGCATTTCCTGCAGCCTCCCCTTGGCATGGGATGGCATCCTGGTGTGCACTTTGTCACACTGCGAT GGGATTTTCCCAACATGCACAGAAGCAGAGAGACGAGTGCTAGACCCCCGCGCTCCCCAGTGCCCAGC CCCAACCAGGGTGTCCAGGGCGGGTCCAGGCACCGGCGCCCAGCCCCCATGGGGTGTCCGGAGTGGGT CCAGGCACCGGCGCCCAGCCCCCGTGGGGTGTCCAGGGCGGGTCCAGGCACCGGCGCCCAGCCCCTGT GGGGTGTCCGGAGCGGGTCCGGGCACCGCCAGCTTCTCTCTGTGGCAGCCACTCCTGCAGCTCTCGTT TGCCCCTCAGTTCCAGGAGCAACACTCGAGGGC
NOV31i,CG55790-05 SEQ IDNO: 786 458 aa MWat 50317.7kD Protein Sequence
LRADTQE--O--.V-R-AJWGSDVELSCACPEGSRFDLNDVYVYWQ
ALMSPAGMLRGDFSLRLF---TVTPQDEQKFHCLVLSQSLGFQEVLSIEVTLHVAANFSVPVVSAPHSPSQ
DELTFTCTSINGYPRPNVYWINKTDNSLLDQALQNDTVFLNMRGLYDWSVLRIARTPSVNIGCCIEN
VLLQQNLTVGSQTGNDIGERDKITENPVSTGEK AATWSILAVLCLLVWAVAIG VCRDRCLQHSYA
GAWAVSPETELTGEFAVGSSRFWGAQGRLGCQLSFRVSKNFQKAKVPCLEQLLFLETQRSPRWCAWHF
LQPPLGMGWHPGVHFVTLRWDFP-NMHRSRETSARPPRSPVPSPNQGVQGGSRHRRPAP GCPEWVQAP
APSPRGVSRAGPGTGAQPLWGVRSGSGHRQLLSVAATPAALVCPSVPGAT
NOV31j, CG55790-06 SEQ ID NO: 787 928 bp DNA Sequence (ORF Start: ATG at 14 ! ORF Stop: at 920
CACCGGATCCACCATGCGGCTGGGCAGTCCTGGACTGCTCTTCCTGCTCTTCAGCAGCCTTCGAGCTG
ATACTCAGGAGAAGGAAGTCAGAGCGATGGTAGGCAGCGACGTGGAGCTCAGCTGCGCTTGCCCTGAA GGAAGCCGTTTTGATTTAAATGATGTTTACGTATATTGGCAAACCAGTGAGTCGAAAACCGTGGTGAC CTACCACATCCCACAGAACAGCTCCTTGGAAAACGTGGACAGCCGCTACCGGAACCGAGCCCTGATGT CACCGGCCGGCATGCTGCGGGGCGACTTCTCCCTGCGCTTGTTCAACGTCACCCCCCAGGACGAGCAG AAGTTTCACTGCCTGGTGTTGAGCCAATCCCTGGGATTCCAGGAGGTTTTGAGCATTGAGGTTACACT GCATGTGGCGGCAAACTTCAGCGTGCCCGTCGTCAGCGCCCCCCACAGCCCCTCCCAGGATGAGCTCA CCTTCACGTGTACATCCATAAACGGCTACCCCAGGCCCAACGTGTACTGGATCAATAAGACGGACAAC AGCCTGCTGGACCAGGCTCTGCAGAATGACACCGTCTTCTTGAACATGCGGGGCTTGTATGACGTGGT CAGCGTGCTGAGGATCGCACGGACCCCCAGCGTGAACATTGGCTGCTGCATAGAGAACGTGCTTCTGC AGCAGAACCTGACTGTCGGCAGCCAGACAGGAAATGACATCGGAGAGAGAGACAAGATCACAGAGAAT CCAGTCAGTACCGGCGAGAAAAACGCGGCCACGTGGAGCATCCTGGCTGTCCTGTGCCTGCTTGTGGT CGTGGCGGTGGCCATAGGCTGGGTGTGCAGGGACCGATGCCTCCAACACAGCTATGCAGGTGCCTGGG CTGTGAGTCCGGAGACAGAGCTCACTGGTCACCTGCTCGAGGGC
NOV31j, CG55790-06 SEQ ID NO: 788 302 aa !MW at 33376.5kD Protein Sequence MRLGSPGLLFLLFSSLR-ADTQEK-EVR-A1-4VGSDVΕLSCACPEGSRFDLNDVYVYWQTSESKTVVTYHIP QNSSLE---Ti SRY---^RALMSPAGMLRGDFSLRLFNVTPQDEQKFHCLVLSQSLGFQEVLSIEVTLHVAA NFS VP WSAPHS PSQDELTFTCTS INGYPRPNVYWINKTDNSLLDQALQNDTVFLNMRGLYDWS VLR IARTPSVNIGCCIENVLLQQNLTVGSQTG-tTOIGERDKITENPVSTGEKNAATWSILAVLCLLVVVAVA IGWVCRDRCLQHSYAGAWAVSPETELTGHL
NOV31k, CG55790-07 SEQ ID NO: 789 871 bp DNA Sequence ORF Start: at 11 ORF Stop: at 863
CACCGGATCCGATACTCAGGAGAAGGAAGTCAGAGCGATGGTAGGCAGCGACGTGGAGCTCAGCTGCG
CTTGCCCTGAAGGAAGCCGTTTTGATTTAAATGATGTTTACGTATATTGGCAAACCAGTGAGTCGAAA ACCGTGGTGACCTACCACATCCCACAGAACAGCTCCTTGGAAAACGTGGACAGCCGCTACCGGAACCG AGCCCTGATGTCACCGGCCGGCATGCTGCGGGGCGACTTCTCCCTGCGCTTGTTCAACGTCACCCCCC AGGACGAGCAGAAGTTTCACTGCCTGGTGTTGAGCCAATCCCTGGGATTCCAGGAGGTTTTGAGCGTT GAGGTTACACTGCATGTGGCGGCAAACTTCAGCGTGCCCGTCGTCAGCGCCCCCCACAGCCCCTCCCA GGATGAGCTCACCTTCACGTGTACATCCATAAACGGCTACCCCAGGCCCAACGTGTACTGGATCAATA AGACGGACAACAGCCTGCTGGACCAGGCTCTGCAGAATGACACCGTCTTCTTGAACATGCGGGGCTTG TATGACGTGGTCAGCGTGCTGAGGATCGCACGGACCCCCAGCGTGAACATTGGCTGCTGCATAGAGAA CGTGCTTCTGCAGCAGAACCTGACTGTCGGCAGCCAGACAGGAAATGACATCGGAGAGAGAGACAAGA TCACAGAGAATCCAGTCAGTACCGGCGAGAAAAACGCGGCCACGTGGAGCATCCTGGCTGTCCTGTGC CTGCTTGTGGTCGTGGCGGTGGCCATAGGCTGGGTGTGCAGGGACCGATGCCTCCAACACAGCTATGC AGGTGCCTGGGCTGTGAGTCCGGAGACAGAGCTCACTGGTCACCTGCTCGAGGGC
NOV31k, CG55790-07 SEQ ED NO: 790 284 aa MW at 31402. lkD Protein Sequence
DTQEKEVR-Al-WGSDVELSCACPEGSRFDLra-)VYVYWQTSESKTWTYHIPQNSSLΞ--^
SPAG LRGDFSLRLFNVTPQDEQKFHCLVLSQSLGFQEVLSVEVTLHVAANFSVPWSAPHSPSQDEL
TFTCTSINGYPRPNVYWINKTDNSLLDQALQNDTVFLNMRGLYDWSVLRIARTPSVNIGCCIENVLL
QQNLTVGSQTGNDIGERDKITENPVSTGEKNAATWSILAVLCLLVWAVAIGWVCRDRCLQHSYAGAW
AVSPETELTGHL
NOV311, SNP13374852 of SEQ ID NO: 791 912 bp
CG55790-01, DNA Sequence iORF Start: ATG at 4 ORF Stop: TAA at 910
SNP Pos: 296 SNP Change: T to C
ACCATGCGGCTGGGCAGTCCTGGACTGCTCTTCCTGCTCTTCAGCAGCCTTCGAGCTGATACTCAGGA
GAAGGAAGTCAGAGCGATGGTAGGCAGCGACGTGGAGCTCAGCTGCGCTTGCCCTGAAGGAAGCCGTT TTGATTTAAATGATGTTTACGTATATTGGCAAACCAGTGAGTCGAAAACCGTGGTGACCTACCACATC CCACAGAACAGCTCCTTGGAAAACGTGGACAGCCGCTACCGGAACCGAGCCCTGATGTCACCGGCCGG CATGCTGCGGGGCGACTTCTCCCCGCGCTTGTTCAACGTCACCCCCCAGGACGAGCAGAAGTTTCACT GCCTGGTGTTGAGCCAATCCCTGGGATTCCAGGAGGTTTTGAGCGTTGAGGTTACACTGCATGTGGCA GCAAACTTCAGCGTGCCCGTCGTCAGCGCCCCCCACAGCCCCTCCCAGGATGAGCTCACCTTCACGTG TACATCCATAAACGGCTACCCCAGGCCCAACGTGTACTGGATCAATAAGACGGACAACAGCCTGCTGG ACCAGGCTCTGCAGAATGACACCGTCTTCTTGAACATGCGGGGCTTGTATGACGTGGTCAGCGTGCTG AGGATCGCACGGACCCCCAGCGTGAACATTGGCTGCTGCATAGAGAACGTGCTTCTGCAGCAGAACCT GACTGTCGGCAGCCAGACAGGAAATGACATCGGAGAGAGAGACAAGATCACAGAGAATCCAGTCAGTA CCGGCGAGAAAAACGCGGCCACGTGGAGCATCCTGGCTGTCCTGTGCCTGCTTGTGGTCGTGGCGGTG GCCATAGGCTGGGTGTGCAGGGACCGATGCCTCCAACACAGCTATGCAGGTGCCTGGGCTGTGAGTCC GGAGACAGAGCTCACTGGTCACCTGTAA
NOV311, SNP13374852 of SEQ ID NO: 792 302 aa MW at 33346.5kD
CG55790-01, Protein Sequence }sNP Pos: 98 | fS-NP Change: Leu to Pro
MRLGSPGLLFLLFSSLRADTQE---ΕVRAIWGSDVELSCACPEGSRFDL-troVYVYWQTSESKTVVTYHIP QNSSLE-JTVDSRYRNR-ALMSPAG LRGDFSPRLFNVTPQDEQKFHCLVLSQSLGFQEVLSVEVTLHVAA NFSVPWSAPHSPSQDELTFTCTSINGYPRPNVYWINKTDNSLLDQALQNDTVFLNMRGLYDWSVLR I-ARTPSVNIGCCIENVLLQQNLTVGSQTGNDIGERDKITENPVSTGE NAATWSILAVLCLLVVVAVA IGWVCRDRCLQHSYAGAWAVSPETELTGHL
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 3 IB. Table 31B. Comparison of the NOV31 protein sequences.
NOV3la MRLGSPGLLFLLFSSLRADTQEKEVR-AMVGSDVELSCACPEGSRFDLNDVYVYWQT
NOV3lb TRSLRADTQE---VΕVRAMVGSDVELSCACPEGSRFDLNDVYVYWQT
NOV3lc TRSLRADTQEKEVRAMVGSDVELSCACPEGSRFDLNDVYVYWQT
NOV3Id TGSDTQEKEVRAMVGSDVELΞCACPEGSRFDLNDVYVYWQT
NOV3le TGSTMRLGSPGLLFLLFSSLRADTQEKEVRAMVGSDVELSCACPEGSRFDLNDVYVYWQT
NOV31f MRLGSPGLLFLLFSSLRADTQEKEVRA VGSDVELSCACPEGSRFDLNDVYVYWQT
NOV3lg -MRLGSPGLLFLLFSSLRADTQEKEVRAMVGSDVELSCACPΞGSRFDLNDVYVYWQT
NOV3lh DTQEKEVRAMVGSDVELSCACPEGSRFDLNDVYVYWQT
NOV3li LRADTQEKEVRAMVGSDVELSCACPEGSRFDLNDVYVYWQT
NOV31j MRLGSPGLLFLLFSSLRADTQEKEVRAMVGSDVELSCACPEGSRFDLNDVYVYWQT
NOV3Ik DTQEKEVRAMVGSDVELSCACPEGSRFDLNDVYVYWQT
NOV3la SESKTWTYHIPQNSSLENVDSRYRNRALMSPAGMLRGDFSLRLFNVTPQDEQKFHCLVL
NOV3lb SESKTVVTYHIPQNSSLENVDSRYRNRALMSPAGMLRGDFSLRLFNVTPQDEQKFHCLVL
NOV3lc SESKTWTYHIPQNSSLENVDSRYRNRAL SPAG LRGDFSLRLFNVTPQDEQKFHCLVL
NOV3Id SESKTVVTYHIPQNSSLENVDSRYRNRALMSPAGMLRGDFSLRLFNVTPQDEQ FHCLVL
NOV3le SESKTVVTYHIPQNSSLE---OVDSRYRNRALMSPAGMLRGDFSLRLFNVTPQDEQKFHCLVL
NOV3If SESKTWTYHIPQNSSLENVDSRYRNRALMSPAGMLRGDFSLRLFNVTPQDEQKFHCLVL
NOV3lg SES TWTYHIPQNSSLENVDSRYRNRALMSPAGMLRGDFSLRLFNVTPQDEQKFHCLVL
NOV3lh SESKTWTYHIPQNSSLENVDSRY-RNRAL SPAGMLRGDFSLRLFNVTPQDEQKFHCLVL
NOV3li SESKTWTYHIPQNSSLENVDSRYRNRALMSPAGMLRGDFSLRLFNVTPQDEQKFHCLVL
NOV31j SESKTWTYHIPQNSSLENVDSRYRNRALMSPAG LRGDFSLRLFNVTPQDEQKFHCLVL
NOV3Ik SESKTVVTYHIPQNSSLENVDSRYRNRAL SPAG-LRGDFSLRLFNVTPQDEQKFHCLVL
NOV3la SQSLGFQEVLSVEVTLHVAANFSVPWSAPHSPSQDELTFTCTSINGYPRPNVYWINKTD
NOV3lb SQSLGFQEVLSIEVTLHVAANFSVPWSAPHSPSQDELTFTCTSINGYPRPNVYWINKTD
NOV3 lc SQSLGFQEVLSIEVTLHVAANFSVPWSAPHSPSQDELTFTCTSINGYPRPNVYWINKTD
NOV3Id SQSLGFQEVLSVEVTLHVAANFSVPWSAPHSPSQDELTFTCTSINGYPRPNVYWINKTD
NOV3le SQSLGFQEVLSVEVTLHVAANFSVPWSAPHSPSQDELTFTCTSINGYPRPNVYRINKTD
NOV3If SQSLGFQEVLSVEVTLHVAANFSVPWSAPHSPSQDELTFTCTSINGYPRPNVYWINKTD
NOV3lg SQSLGFQEVLSVEVTLHVAANFSVPWSAPHSPSQDELTFTCTSINGYPRPNVYWINKTD
NOV3lh SQSLGFQEVLSVEVTLHVAANFSVPWSAPHSPSQDELTFTCTSINGYPRPNVYWINKTD
NOV3li SQSLGFQEVLSIEVTLHVAANFSVPWSAPHSPSQDELTFTCTSINGYPRPNVYWINKTD
NOV31j SQSLGFQEVLSIEVTLHVAANFSVPWSAPHSPSQDELTFTCTSINGYPRPNVYWINKTD
NOV3Ik SQSLGFQEVLSVEVTLHVAANFSVPWSAPHSPSQDELTFTCTSINGYPRPNVYWINKTD
NOV3la NSLLDQ-ALQ-troTVFLNMRGLYDVVSVLRIARTPSVNIGCCIE-.-WLLQQNLTVGSQTG-1-IDI
NOV3lb NSLLDQALQNDTVFLNMRGLYDVVSVLRIARTPSVNIGCCIENVLLQQNLTVGSQTGNDI
NOV3lc NSLLDQALQNDTVFLNMRGLYDWSVLRIARTPSVNIGCCIENVLLQQNLTVGSQTGNDI
NOV3Id NSLLDQALQNDTVFLNMRGLYDWSVLRIARTPSVNIGCCIENVLLQQNLTVGSQTGNDI
NOV3le NSLLDQALQNDTVFLNMRGLYDWSVLRIARTPSVNIGCCIENVLLQQNLTVGSQTGNDI
NOV3If NSLLDQALQNDTVFLNMRGLYDWSVLRIARTPSVNIGCCIENVLLQQNLTVGSQTGNDI
NOV3lg NSLLDQALQNDTVFLNMRGLYDWSVLRIARTPSVNIGCCIENVLLQQNLTVGSQTGNDI
NOV3lh NSLLDQALQNDTVFLNMRGLYDWSVLRIARTPSVNIGCCIENVLLQQNLTVGSQTGNDI
NOV3li NSLLDQALQNDTVFLNMRGLYDWSVLRIARTPSVNIGCCIENVLLQQNLTVGSQTGNDI
NOV31j NSLLDQALQNDTVFLNMRGLYDWSVLRIARTPSVNIGCCIENVLLQQNLTVGSQTGNDI
NOV3Ik NSLLDQALQNDTVFLNMRGLYDWSVLRIARTPSVNIGCCIENVLLQQNLTVGSQTGNDI
NOV3la GERDKITENPVSTGEKNAATWSILAVLCLLVWAVAIGWVCRDRCLQHSYAGAWAVSPET
NOV3lb GERDKITENPVSTGEKNAATWSILAVLCLLVWAVAIGWVCRDRCLQHSYAGAWAVSPET
NOV3lc GERDKITENPVSTGEKNAATWSILAVLCLLVWAVAIGWVCRDRCLQHSYAGAWAVSPET
NOV3Id GERDKITENPVSTGEKNAATWSILAVLCLLVWAVAIGWVCRDRCLQHSYAGAWAVSPET
NOV3le GERDKITENPVSTGEKNAATWSILAVLCLLVWAVAIGWVCRDRCLQHSYAGAWAVSPET
NOV31f GERDKITENPVSTGEKNAATWSILAVLCLLVWAVAIGWVCRDRCLQHSYAGAWAVSPET
NOV3lg GERDKITENPVSTGEKNAATWSILAVLCLLVWAVAIGWVCRDRCLQHSYAGAWAVSPET
NOV31h GERDKITENPVSTGEKN
NOV3li GERDKITENPVSTGEKNAATWSILAVLCLLVWAVAIGWVCRDRCLQHSYAGAWAVSPET
NOV31j GERDKITENPVSTGEKNAATWSILAVLCLLVWAVAIGWVCRDRCLQHSYAGAWAVSPET NOV3Ik GERDKITENPVSTGEKNAATWSILAVLCLLVWAVAIGWVCRDRCLQHSYAGAWAVSPET
NOV31a ELTGEFAVGSSRFWGAQGRLGCQLSFRVSKNFQKAKVPCLEQLLFLETQRSPRWCAWHFL
NOV31b ELTGEFAVGSSRFWGAQGRLGCQLSFRVSKNFQKAKVPCLEQLLFLETQRSPRWCAWHFL
NOV31C ELTGEFAVGSSRFWGAQGRLGCQLSFRVSKNFQKAKVPCLEQLLFLETQRSPRWCAWHFL
NOV3Id ELTGHLLEG
NOV3le ELTGHLLEG
NOV31f ELTGHL '
NOV31g ELTGHL
NOV31h
NOV31i ELTGEFAVGSSRF GAQGRLGCQLSFRVSKNFQKAKVPCLEQLLFLETQRSPRWCAWHFL
NOV31j ELTGHL
NOV3Ik ELTGHL
NOV31a QPPLGMGWHPGVHFVTLRWDFPNMHRSRETSARPPRSPVPSPDQGVQGGSRHRRPAPMGC
NOV31b QPPLGMGWHPGVHFVTLRWDFPNMHRSRETSARPPRSPVPSPNQGVQGGSRHRRPAPMGC
NOV31C QPPLGMGWHPGVHFVTLRWDFPN HRSRETSARPPRSPVPSPDQGVQGGSRHRRPAPMGC
NOV31d
NOV31e
NOV31f
NOV31g
NOV31h
NOV31i QPPLGMGWHPGVHFVTLRWDFPN HRSRETSARPPRSPVPSPNQGVQGGSRHRRPAPMGC
NOV31J
NOV31k
NOV3la PEWVQAPAPSPRGVSRAGPGTGAQPLWGVRSGSGHRQLLSVAATPAALVCPSVPGAT
NOV3lb PEWVQAPAPSPRGVSRAGPGTGAQPLWGVRSGSGHRQLLSVAATPAALVCPSVPGATLEG
NOV3lc PEWVQAPAPSPRGVSRAGPGTGAQPLWGVRSGSGHRQLLSVAATPAALVCPSVPGATLEG
NOV31d
NOV31e
NOV31f
NOV31g
NOV3lh
NOV3li PEWVQAPAPSPRGVSRAGPGTGAQPLWGVRSGSGHRQLLSVAATPAALVCPSVPGAT
NOV31J
NOV31k
NOV31a ( SEQ ID NO 770 )
NOV3 lb (SEQ ID NO 772 )
NOV31C (SEQ ID NO 774 )
NOV31d (SEQ ID NO 776 )
NOV31e (SEQ ID NO 778 )
NOV31f (SEQ ID NO 780 )
NOV31g (SEQ ID NO 782 )
NOV31h (SEQ ID NO 784 )
Further analysis of the NOV3 la protein yielded the following properties shown in Table 31C.
PSG: a new signal peptide prediction method
N-region: length 2; pos . chg 1; neg.chg 0 H-region: length 14; peak value 10.56 PSG score : 6.16
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): 1.98 possible cleavage site: between 20 and 21
>>> Seems to have a cleavable signal peptide (1 to 20)
ALOM: Klein et al ' s method for TM region allocation Init position for calculation: 21
Tentative number of TMS(s) for the threshold 0.5: 2 Number of TMS(s) for threshold 0.5: 1
INTEGRAL Likelihood =-13.27 Transmembrane 258 - 274 PERIPHERAL Likelihood = 2.97 (at 127) ALOM score: -13.27 (number of TMSs : 1)
MTOP: Prediction of membrane topology (Hartmann et al.) Center position for calculation: 10 Charge difference: -2.0 C( 0.0) - N( 2.0) N >= C : N-terminal side will be inside
>>> membrane topology: type la (cytoplasmic tail 275 to 473)
MITDISC: discrimination of mitochondrial targeting seq R content: 2 Hyd Moment (75): 5.99 Hyd Moment (95): 8.79 G content: 2 D/E content: 1 S/T content: 3 Score: -2.92
Gavel: prediction of cleavage sites for mitochondrial preseq R-2 motif at 27 LRA|DT
NUCDISC: discrimination of nuclear localization signals pat4: RHRR (3) at 407 pat7 : none bipartite: none content of basic residues: 8.9% NLS Score: -0.29
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals:
XXRR-like motif in the N-terminus: RLGS none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif: type 1 : none type 2 : none NMYR: N-myristoylation pattern : none
Prenylation motif: none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail : too long tail
Dileucine motif in the tail: found LL at 339
LL at 454 checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: cytoplasmic Reliability: 76.7
COIL: Lupas ' s algorithm to detect coiled-coil regions total: 0 residues
Final Results (k = 9/23)
55.6 %: endoplasmic reticulum
22.2 %: Golgi
11.1 % : plasma membrane
11. 1 % : extracellular, including cell wall
>> prediction for CG55790-02 is end (k=9)
A search of the NOV3 la protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 3 ID.
In a BLAST search of public sequence databases, the NOV3 la protein was found to have homology to the proteins shown in the BLASTP data in Table 3 IE.
PFam analysis predicts that the NO V3 la protein contains the domains shown in the Table 3 IF.
Example 32.
The NOV32 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 32A.
Table 32A. NOV32 Sequence Analysis
NOV32a, CG55906-04 SEQ ID NO: 793 4U9 bp DNA Sequence IORF Start: ATG at 1 ORF Stop: TAG at 4117
ATGTCTGCTCCAGACGAAGGGAGACGGGATCCCCCCAAACCGAAGGGCAAGACCCTGGGCAGCTTCTT TGGGTCCCTGCCTGGCTTCAGCTCTGCCCGGAACCTGGTGGCCAACGCACATAGCTCGGCGAGAGCCC GGCCGGCCGCTGACCCCACAGGAGCGCCTGCTGCCGAGGCTGCCCAACCACAGGCTCAGGTGGCTGCC CACCCAGAGCAGACGGCCCCATGGACGGAGAAGGAGCTGCAACCTTCGGAAAAGCAGATGGTGTCCGG GGCCAAAGACCTGGTGTGTTCCAAGATGTCCAGGGCCAAGGATGCCGTGTCCTCCGGGGTGGCCAGCG TGGTGGACGTGGCTAAGGGAGTGGTCCAGGGAGGCCTGGACACCACTCGGTCTGCACTTACGGGCACC AAGGAGGTGGTGTCCAGCGGGGTCACAGGGGCCATGGACATGGCTAAGGGGGCCGTCCAAGGGGGTCT GGACACCTCGAAGGCTGTCCTCACCGGCACCAAGGACACGGTGTCCACTGGGCTCACGGGGGCAGTGA ATGTGGCCAAAGGGACCGTACAGGCCGGTGTGGACACCACCAAGACTGTGCTGACCGGCACCAAAGAC ACAGTGACTACTGGGGTCATGGGGGCAGTGAACTTGGCCAAAGGGACTGTCCAGACTGGCGTGGAAAC CTCCAAGGCTGTGCTGACCGGCACCAAAGATGCTGTGTCCACTGGGCTCACAGGGGCAGTGAATGTGG CCAGAGGAAGCATTCAGACCGGTGTGGACACCAGTAAGACTGTCCTAACAGGTACCAAGGACACCGTC TGTAGTGGGGTGACTGGTGCCATGAATGTGGCCAAAGGAACCATCCAGACCGGCGTGGACACCAGTAA GACTGTCCTAACAGGTACCAAGGACACCGTCTGTAGTGGGGTGACTGGTGCCATGAATGTGGCCAAAG GAACCATCCAGACCGGCGTGGACACCAGTAAGACTGTCCTAACAGGTACCAAGGACACCGTCTGTAGT GGGGTGACTGGTGCCATGAATGTGGCCAAAGGAACCATCCAGACCGGCGTGGACACCACCAAGACTGT CCTAACTGGCACCAAGAACACTGTCTGCAGTGGGGTGACCGGTGCCGTGAACTTGGCCAAAGAGGCCA TCCAGGGGGGCCTGGATACCACCAAGTCTATGGTCATGGGTACGAAAGACACGATGTCCACTGGGCTC ACAGGGGCAGCGAATGTGGCCAAGGGGGCCATGCAAACTGGGCTGAACACAACCCAAAATATCGCAAC AGGTACAAAGGACACCGTCTGCAGTGGGGTGACTGGTGCCATGAATTTGGCCAGAGGAACCATCCAGA CAGGCGTGGACACCACCAAGATCGTTCTAACTGGTACCAAGGACACTGTCTGCAGTGGGGTCACCGGT GCTGCGAATGTGGCCAAAGGGGCCGTCCAGGGCGGCCTGGACACTACAAAGTCTGTCCTGACTGGCAC TAAAGATGCTGTGTCCACTGGGCTCACAGGGGCTGTGAACGTGGCCAAAGGGACCGTCCAGACCGGCG TAGACACCACCAAGACTGTCCTAACCGGCACCAAGGACACCGTCTGCAGTGGGGTGACCAGTGCTGTG AACGTGGCCAAAGGGGCCGTCCAGGGGGGCCTGGACACCACCAAGTCTGTGGTCATAGGTACAAAAGA CACGATGTCCACTGGGCTCACGGGGGCAGCGAATGTGGCCAAGGGGGCTGTCCAGACAGGTGTAGACA CAGCCAAGACCGTGCTGACCGGCACCAAGGACACAGTGACTACTGGGCTCGTGGGGGCAGTGAATGTC GCCAAAGGGACCGTCCAGACAGGCATGGACACCACCAAAACTGTCCTAACCGGTACCAAGGACACCAT CTACAGTGGGGTCACCAGTGCCGTGAACGTGGCCAAGGGGGCTGTGCAAACTGGGCTGAAAACGACCC AAAATATCGCGACAGGTACAAAGAACACCTTTGGCAGTGGGGTGACCAGTGCTGTGAATGTGGCCAAA GGGGCTGCCCAGACAGGTGTAGACACGGCCAAGACCGTGCTGACCGGCACCAAGGACACAGTCACTAC TGGGCTCATGGGGGCAGTGAATGTCGCCAAAGGGACTGTCCAGACCAGTGTGGACACCACCAAGACTG TCCTAACTGGTACCAAGGACACCGTCTGCAGTGGGGTGACCGGTGCTGCGAATGTGGCCAAAGGGGCC ATCCAAGGGGGCCTGGACACTACAAAGTCTGTCCTGACTGGCACTAAAGATGCTGTGTCCACTGGGCT CACAGGGGCTGTGAAGTTGGCCAAAGGGACTGTCCAGACCGGCATGGACACCACCAAGACTGTGTTAA CTGGTACCAAGGATGCTGTGTGCAGTGGGGTGACCGGTGCTGCGAATGTGGCCAAGGGGGCCGTCCAG ATGGGTGTAGACACGGCCAAGACCGTGCTGACCGGTACCAAGGACACTGTCTGCAGTGGGGTCACCGG TGCTGCGAACGTGGCCAAGGGTGCTGTGCAAACTGGGCTGAAAACGACCCAAAATATCGCAACAGGTA CAAAGAACACCCTTGGCAGTGGGGTGACCGGTGCTGCGAAAGTGGCCAAAGGGGCCGTCCAGGGGGGC CTGGACACTACAAAGTCTGTCCTGACTGGCACTAAAGATGCCGTGTCCACTGGGCTCACAGGGGCTGT GAACTTGGCCAAAGGGACTGTCCAGACCGGCGTGGACACCAGCAAGACTGTCCTGACCGGTACCAAGG ACACCGTCTGCAGTGGAGTCACTGGTGCCGTAAATGTGGCCAAAGGGACCGTCCAGACAGGTGTGGAC ACAGCCAAGACGGTGCTGAGTGGCGCTAAGGATGCAGTGACTACTGGAGTCACGGGGGCAGTGAATGT GGCCAAAGGAACCGTGCAGACCGGCGTGGACGCCTCCAAGGCTGTGCTTATGGGTACCAAGGACACTG TCTTCAGTGGGGTTACCGGTGCCATGAGCATGGCCAAAGGGGCCGTCCAGGGGGGCCTGGACACCACC AAGACAGTGCTGACCGGAACCAAAGACGCAGTGTCCGCTGGGCTCATGGGGTCAGGGAACGTGGCGAC AGGGGCCACCCACACTGGCCTCAGCACCTTCCAGAACTGGTTACCTAGTACCCCCGCCACCTCCTGGG GTGGACTCACCAGTTCCAGGACCACAGACAATGGTGGGGAGCAGACTGCCCTGAGCCCCCAAGAGGCC CCGTTCTCTGGCATCTCCACGCCCCCGGATGTGCTCAGTGTAGGCCCGGAGCCTGCCTGGGAAGCCGC
AGCCACTACCAAGGGCCTTGCGACTGACGTGGCGACGTTCACCCAAGGGGCCGCCCCAGGCAGGGAGG ACACGGGGCTTTTGGCCACCACACACGGCCCCGAAGAAGCCCCACGCTTGGCAATGCTGCAGAATGAG TTGGAGGGGCTGGGGGACATCTTCCACCCCATGAATGCGGAGGAGCAAGCTCAGCTGGCTGCCTCCCA GCCTGGGCCAAAGGTGCTGTCGGCGGAACAGGGGAGCTACTTCGTTCGTTTAGGTGACCTGGGTCCCA GCTTCCGCCAGCGGGCATTTGAACACGCGGTGAGCCACCTGCAGCACGGCCAGTTCCAAGCCAGGGAC ACTCTGGCCCAGCTCCAGGACTGCTTCAGGCTGATTGAAAAGGCCCAGCAGGCTCCAGAAGGGCAGCC ACGTCTGGACCAGGGCTCAGGTGCCAGTGCGGAGGACGCTGCTGTCCAGGAGGAGCGGGATGCCGGGG TTCTGTCCAGGGTCTGCGGCCTTCTCCGGCAGCTGCACACGGCCTACAGTGGCCTGGTCTCCAGCCTC CAGGGCCTGCCCGCCGAGCTCCAGCAGCCAGTGGGGCGGGCGCGGCACAGCCTCTGTGAGCTCTATGG CATCGTGGCCTCAGCTGGCTCTGTAGAGGAGCTGCCCGCAGAGCGGCTGGTGCAGAGCCGCGAGGGTG TGCACCAGGCTTGGCAGGGGTTAGAGCAGCTGCTGGAGGGCCTACAGCACAATCCCCCGCTCAGCTGG CTGGTAGGGCCCTTCGCCTTGCCCGCTGGCGGGCAGTAG
NOV32a, CG55906-04 SEQ ID NO: 794 1372 aa MW at 136019.4kD Protein Sequence
MSAPDEGRRDPPKPKGKTLGSFFGSLPGFSSARNLVANAHSSARARPAADPTGAPAAEAAQPQAQVAA
HPEQTAP TEKELQPSEKQMVSGAKDLVCSK-MSRAKDAVSSGVASVVDVAKGVVQGGLDTTRSALTGT
KEWSSGVTGAMD- KGAVQGGLDTS---α VLTGT---ΦTVSTGLTC
TVTTGVMGAVNLAKGTVQTGVETSKAVLTGTi AVSTGLTGAVNV-ARGSIQTGVDTSKTVLTGTKDTV
CSGVTG-AM--S-VAKGTIQTGVDTSKTVLTGT-I-XTJTVCSGVTG-A -NV-AKGTIQTGVDTSKTVLTGTKD
GVTGAMNVAKGTIQTGVDTTKTVLTGTKNTVCSGVTGAVNLA-l-αΞAIQGGLDTTKSriV GTKDTMSTGL
TGAA-I-W-AKGAMQTGLNTTQNIATGT-OTTVCSGVTGAMNLARGTIQTGVDTTKIVLTGT DTVCSGVTG
-A-ANVAKGAVQGGLDTTKSVLTGT--- AVSTGLTGAVNVAKGTVQTGVDTTKTVLTGTKDTVCSGVTSAV
NVAKGAVQGGLDTTKSVVIGT---ODTMSTGLTG-AANVAKGAVQTGVDTAKTVLTGTi TVTTGLVGAVNV
AKGTVQTGMDTTKTVLTGTKDTIYSGVTSAVNVAKGAVQTGLKTTQNIATGT---OVTTFGSGVTSAVNVAK
G-AAQTGVDTAKTVLTGTIODTVTTGL GAVNVAKGTVQTSVDTTKTVLTGTKDTVCSGVTGAANVAKGA
IQGGLDTTKSVLTGTKDAVSTGLTGAVKLA GTVQTGMDTTKTVLTGTKDAVCSGVTGAANVAKGAVQ
MGVDTAKTVLTGT DTVCSGVTGAANVAKGAVQTGLKTTQNIATGTKNTLGSGVTGAAKVAKGAVQGG
LDTTKSVLTGTKDAVSTGLTGAVNLAKGTVQTGVDTSKTVLTGT-l- TVCSGVTGAVNVAKGTVQTGVD
T-AKTVLSGAKDAVTTGVTGAVNVAKGTVQTGVDASKAVLMGTKDTVFSGVTGAMSMAKGAVQGGLDTT
KTVLTGTKDAVSAGLMGSGNVATGATHTGLSTFQNWLPSTPATS GGLTSSRTTDNGGEQTALSPQEA
PFSGISTPPDVLSVGPEPA EAAATTKGLATDVATFTQGAAPGREDTGLLATTHGPEEAPRLAMLQNE
LEGLGD I FHPMNAEEQAQLAAS QPGPKVLS AEQGS YF VRLGDLGPS FRQRAFEHAVSHLQHGQFQARD
TLAQLQDCFRLIEKAQQAPEGQPRLDQGSGASAEDAAVQEERDAGVLSRVCGLLRQLHTAYSGLVSSL
QGLPAELQQPVGRARHSLCΞLYGIVASAGSVEELPAERLVQSREGVHQA QGLEQLLEGLQHNPPLS
LVGPFALPAGGQ
NOV32b, CG55906-05 SEQ ID NO: 795 6600 bp DNA Sequence ORF Start: ATG at 23 ORF Stop: TAG at 4337
TCCAGCTTCTCACGTTCTCACTATGTCTGCTCCAGACGAAGGGAGACGGGATCCCCCCAAACCGAAGG
GCAAGACCCTGGGCAGCTTCTTTGGGTCCCTGCCTGGCTTCAACTCTGCCCGGAACCTGGTGGCCAAC GCACATAGCTCGGCGAGAGCCCGGCCGGCCGCTGACCCCACAGGAGCGCCTGCTGCCGAGGCTGCCCA ACCACAGGCTCAGGTGGCTGCCCACCCAGAGCAGACGGCCCCATGGACGGAGAAGGAGCTGCAACCTT CGGAAAAGCAGATGGTGTCCGGGGCCAAAGACCTGGTGTGTTCCAAGATGTCCAGGGCCAAGGATGCC GTGTCCTCCGGGGTGGCCAGCGTGGTGGACGTGGCTAAGGGAGTGGTCCAGGGAGGCCTGGACACCAC TCGGTCTGCACTTACGGGCACCAAGGAGGCGGTGTCCAGCGGGGTCACAGGGGCCATGGACATGGCTA AGGGGGCCGTCCAAGGGGGTCTGGACACCTCGAAGGCTGTCCTCACCGGCACCAAGGACACGGTGTCC ACTGGGCTCACGGGGGCAGTGAATGTGGCCAAAGGGACCGTACAGGCCGGTGTGGACACCACCAAGAC TGTGCTGACCGGCACCAAAGACACAGTGACTACTGGGGTCATGGGGGCAGTGAACTTGGCCAAAGGGA CTGTCCAGACTGGCGTGGAAACCTCCAAGGCTGTGCTGACCGGCACCAAAGATGCTGTGTCCACTGGG CTCACAGGGGCAGTGAATGTGGCCAGAGGAAGCATTCAGACCGGTGTGGACACCAGTAAGACTGTCCT AACAGGTACCAAGGACACCGTCTGTAGTGGGGTGACCAGTGCCATGAATGTGGCCAAAGGAACCATCC AGACCGGCGTGGACACCAGTAAGACTGTCCTAACAGGTACCAAGGACACCGTCTGTAGTGGGGTGACT GGTGCCATGAATGTGGCCAAAGGAACCATCCAGACCGGCGTGGACACCAGTAAGACTGTCCTAACAGG TACCAAGGACACCGTCTGTAGTGGGGTGACTGGTGCCATGAATGTGGCCAAAGGAACCATCCAGACCG GCGTGGACACCACCAAGACTGTCCTAACTGGCACCAAGAACACTGTCTGCAGTGGGGTGACCGGTGCC GTGAACTTGGCCAAAGAGGCCATCCAGGGGGGCCTGGATACCACCAAGTCTATGGTCATGGGTACGAA AGACACGATGTCCACTGGGCTCACGGGGGCAGCGAATGTGGCCAAGGGGGCCATGCAAACTGGGCTGA ACACAACCCAAAATATCGCAACAGGTACAAAGGACACCGTCTGCAGTGGGGTGACTGGTGCCATGAAT TTGGCCAGAGGAACCATCCAGACAGGCGTGGACACCACCAAGATCGTTCTAACTGGTACCAAGGACAC TGTCTGCAGTGGGGTCACCGGTGCTGCGAATGTGGCCAAAGGGGCCGTCCAGGGGGGCCTGGACACTA CAAAGTCTGTCCTGACTGGCACTAAAGATGCTGTGTCCACTGGGCTCACAGGGGCTGTGAACGTGGCC AAAGGGACCGTCCAGACCGGCGTAGACACCACCAAGACTGTCCTAACCGGCACCAAGGACACCGTCTG CAGTGGGGTGACCAGTGCTGTGAACGTGGCCAAAGGGGCCGTCCAGGGGGGCCTGGACACCACCAAGT CTGTGGTCATAGGTACAAAAGACACGATGTCCACTGGGCTCACGGGGGCAGCGAATGTGGCCAAGGGG GCTGTCCAGACAGGTGTAGACACAGCCAAGACCGTGCTGACCGGCACCAAGGACACAGTGACTACTGG GCTCGTGGGGGCAGTGAATGTCGCCAAAGGGACCGTCCAGACAGGCATGGACACCACCAAAACTGTCC TAACCGGTACCAAGGACACCATCTACAGTGGGGTCACCAGTGCCGTGAACGTGGCCAAGGGGGCTGTG CAAACTGGGCTGAAAACGACCCAAAATATCGCGACAGGTACAAAGAACACCTTTGGCAGTGGGGTGAC CGGTGCTGTGAATGTGGCCAAAGGGGCCGTCCAGACAGGTGTAGACACAGCC AGACCGTGCTGACCG GCACCAAGGACACAGTCACTACTGGGCTCATGGGGGCAGTGAATGTCGCCAAAGGGACTGTCCAGACC AGTGTGGACACCACCAAGACTGTCCTAACTGGTACCAAGGACACCGTCTGCAGTGGGGTGACCGGTGC TGCGAATGTGGCCAAGGGGGCCGTCCAGACGGGTGTAGACACGGCCAAGACCGTGCTGACCGGTACCA AGGACACTGTCTGCAGTGGGGTCACCGGTGCTGTGAACGTGGCCAAGGGTGCTGTGCAAACTGGGCTG AAAACGACCCAAAATATCGCAACAGGTACAAAGAACACCCTTGGCAGTGGGGTGACCGGTGCTGCGAA TGTGGCCAAAGGGGCCGTCCAGGGGGGCCTGGACACTACAAAGTCTGTCCTGACTGGCACTAAAGATG CTGTGTCCACTGGGCTCACAGGGGCTGTGAACTTGGCCAAAGGGACTGTCCAGACCGGCATGGACACC ACCAAGACTGTGTTAACTGGTACCAAGGATGCTGTGTGCAGTGGGGTGACCGGTGCTGCGAATGTGGC CAAGGGGGCCGTCCAGACGGGTGTAGACACGGCCAAGACCGTGCTGACCGGCACCAAGGACACAGTCA CTACTGGGCTCATGGGGGCAGTGAATGTCGCCAAAGGGACCGTCCAGACCAGTGTGGACACCACCAAG ACTGTCCTAACTGGTACCAAGGACACCGTCTGCAGTGGGGTGACCGGTGCTGCGAATGTGGCCAAGGG GGCCGTCCAGGGGGGCCTGGACACTACAAAGTCTGTCCTGACTGGCACTAAAGACACCGTATCCACTG GGCTCACAGGGGCTGTGAACTTGGCCAAAGGGACTGTCCAGACCGGCGTGGACACCAGCAAGACTGTC CTGACCGGTACCAAGGACACCGTCTGCAGTGGAGTCACTGGTGCCGTAAATGTGGCCAAAGGCACCGT CCAGACAGGTGTGGACACAGCCAAGACGGTGCTGAGTGGCGCTAAGGATGCAGTGACTACTGGAGTCA CGGGGGCAGTGAATGTGGCCAAAGGAACCGTGCAGACCGGCGTGGACGCCTCCAAGGCTGTGCTTATG GGTACCAAGGACACTGTCTTCAGTGGGGTTACCGGTGCCATGAGCATGGCCAAAGGGGCCGTCCAGGG GGGCCTGGACACCACCAAGACAGTGCTGACCGGAACCAAAGACGCAGTGTCCGCTGGGCTCATGGGGT
CAGGGAACGTGGCGACAGGGGCCACCCACACTGGCCTCAGCACCTTCCAGAACTGGTTACCTAGTACC CCCGCCACCTCCTGGGGTGGACTCACCAGTTCCAGGACCACAGACAATGGTGGGGAGCAGACTGCCCT GAGCCCCCAAGAGGCCCCGTTCTCTGGCATCTCCACGCCCCCGGATGTGCTCAGTGTAGGCCCGGAGC CTGCCTGGGAAGCCGCAGCCACTACCAAGGGCCTTGCGACTGACGTGGCGACGTTCACCCAAGGGGCC GCCCCAGGCAGGGAGGACACGGGGCTTTTGACCACCACACACGGCCCCGAAGAAGCCCCACGCTTGGC AATGCTGCAGAATGAGTTGGAGGGGCTGGGGGACATCTTCCACCCCATGAATGCGGAGGAGCAAGCTC AGCTGGCTGCCTCCCAGCCCGGGCCAAAGGTGCTGTCGGCGGAACAGGGGAGCTACTTCGTTCGTTTA GGTGACCTGGGTCCCAGCTTCCGCCAGCGGGCATTTGAACACGCGGTGAGCCACCTGCAGCACGGCCA GTTCCAAGCCAGGGACACTCTGGCCCAGCTCCAGGACTGCTTCAGGCTGATTGAAAAGGCCCAGCAGG CTCCAGAAGGGCAGCCACGTCTGGACCAGGGCTCAGGTGCCAGTGCGGAGGACGCTGCTGTCCAGGAG GAGCGGGATGCCGGGGTTCTGTCCAGGGTCTGCGGCCTTCTCCGGCAGCTGCACACGGCCTACAGTGG CCTGGTCTCCAGCCTCCAGGGCCTGCCCGCCGAGCTCCAGCAGCCAGTGGGGCGGGCGCGGCACAGCC TCTGTGAGCTCTATGGCATCGTGGCCTCAGCTGGCTCTGTAGAGGAGCTGCCCGCAGAGCGGCTGGTG CAGAGCCGCGAGGGTGTGCACCAGGCTTGGCAGGGGTTAGAGCAGCTGCTGGAGGGCCTACAGCACAA TCCCCCGCTCAGCTGGCTGGTAGGGCCCTTCGCCTTGCCCGCTGGCGGGCAGTAGCTGTAGGAGCCTG CAGGCCCGGCGCGGGGTCGCCCTGCTCTGTCCAGGGAGGAGCTGCCTCAGAACTTTCTCCCCGCCCCC AAACCTGGATCGGTTCCCTAAAGCCCTAGACCTTTGGGGCTGCAGCTGGCTGAGCGCCGAGGGGCTGC GGAGGCAGTGACCTTCTTAACTGAGCCACCCCACGCCCTGCTCCGGGCCTGCCTGCATCTCCCACCTC CTCCCCAGCGCTGCCTGCCCCTCTCGGAGCCTGGGGTCACTCAGACCACCAGCCAAGAGCCTTCCCTT GAAGTCCCCAAGCAAGCACTGCAATTAGGAAAGAGAAAAAGCAGCGTGCCCAGCCTGGAAGGGCATCT GTTTGCCCCGCTAGCAACCCTTTTATATCTAGCAGGGCTCTTCCAGTCCTGCAGCACGGGCCCCCAGC TATCAGCGGTGCAGGCAGTGCTGTGGCATCCCAGGCTCCGGGCAGCTCCGTTCTCATGCTGAAAGTGG GTCTCCGGCCTTAGCACACACACCTTGAGGGTCTTAAGAACCACATTCCCTCATAGTAGAAAGTACTA GAAAAAGCGACACTGCCATCATCATCCCAAGGCAGGCTGCTACTGCCTTTGCTGACCCCCGGGGTGGC CTCACGGTGGGGACAAAGCTGCCAGGAGCCACAGCAGCCACAGCTGGGGCTTTGCACCAGCCTGGCTT
GAGACTGAGCAGTTTGCAGGGGGTGGGGGGTGCAAAAAACAAGCAAACAGGCTGCTGCTGCCTCCAGC
TGCCCACCACAGGCCTGCCCCAGGCACCTGGGGCTCTGAGGCCCCTGGGGAGGCTGGGCCCAGCAGCT
GCCCCTGGAGAACACAGACAAAGGACTTCCCCGCAGGGAACTGTGCCCTATGGAGGGATCAGACAGGG
CTGGGAACAGCCACAGAGGCTGCGTGCCTATGGCACAGCCCTTCCTCCGCCGCACACTCCCCCTGGGT
CCTCAGGCCCACCCAAGCGCCGGGCTGCAGAGGAAGCGGGGCTGGGGAGGCTGCAGGCATCAGAGACAi
CTGGTGGTGGCGGACCCGGCCGCCGGGCCCCGTGCTCTCAGGCTAGCCCAGGTCGTGGAGGCTGGCAG
GCTCAGGTCGGGTGTGAGACGTGCCGTGGCTGCGCTCAGTCCAGCGGGGAGGAGCCGTTCAGCCCGGC
CTCCCCAGGAAGCCATATCCCCACTCACCCGGTAAGAGAACCTTGTCGTCCCCTTTCCATGCTCTCCT jAGGACACGAGCCCAGGAACCCCAGACCCAGGGGGAGGAAGGGTGGAGGGGCCCCAGGGGTCACCATGT
GCACCAGGGGCCGTGAGGGGCCGGGGCATTCAGCTCAGCTCTGAACCGGGGAAGCTGGCACGGCAAGG
ACTGCCTCAGGTGACGGGCCGTGAGAGGGGACGGGTCAGGAGCCTTCCCAAGCCTTCTCCTCAGCCCG;
ACACCCATGGCCATCGGAGGCTAGGATGCCAGACACAGCCATTTGCAGAAATCAGGCACAGTGACTGC
AGCTCACGTCCAGCCAACCAAGCATGGGGCCGCAGCTCAGGAAGTCCCTTCCCGCCACACCACAGCCT:
AATTCTTACTGGGACGGAGGCAACTCGGCTACGCTGGGCAGGACGACAAACACGAGACGCCACTGTGG
AATGAGCAACTTCGGAGCACGGGGTGACTTGCTTGGGACCGTGCCCACGTGACAGCCCCTTATGCAGA
GGAGGAAAGAGAAGCCCCGAGTGGGAGGGGAACCTGTCCAAAGTCACACGGTGTGTGGGTGACACAGC
TGGGGTGAGTCGAGGCTGGCCCCTGAGGCCCATGCTCCCTGAACGCTGGAGACCACTGTCGGCTAGCA
GCGGCTCTCAGGGAAGGCCTGGTCTCCACCCTCCCAGCCTAGCCTCGCGGACCCTCGTCCTCCCCACA
TCGGACCTGCTCACCTGCCTGGACCCTGGGCTGCCAGATGCAGGAAGCATCAAACCCCCCAGCCTCGT
GGGTGCGGGGCAGGGCGCAGGCAGCACAGCTTAGATGCCCTGGTTTGTCCCTCTTGTCTCCTGGGAAG
AGCTTGCTCCCGCCCAGCTCTCCTGCCACTGGCCTTTCAGGGTTGGGCTGGGCCCAGAGTGCCTTTTA!
GTCGCTTCTCACGGTGGCCTGATGGCTCAACCCAGTCCCAAACGGGCCCAGTGACACTGCCGACTGCG!
CCCCAGCTCAGGCCCCCACTGCACCAGCAATGCTAGAAAACCAAGCCAATAAAAGTGATTTCTTTTTT
CATT
NOV32b, CG55906-05 SEQ ID NO: 796 1438 aa MW at 142443.5kD Protein Sequence
-MSAPDEGRRDPPKP GKTLGSFFGSLPGFNSARNLVANAHSSARARPAADPTGAPAAEAAQPQAQVAA
HPEQTAPWTE-raLQPSEKQ-^SGAKDLVCS- ^
KEAVSSGVTGAMDi AKGAVQGGLDTS AVLTGTI )TVSTGLTGAVNVAKGTVQAGVDTTKTVLTGTKD
TVTTGVMGAVNLAKGTVQTGVETS---^VLTGTKDAVSTGLTGAVT-W-ARGSIQTGVDTSKTVLTGT DTV
CSGWSA NVAKGTIQTGVDTSKTVLTGTrø^
GVTGAMNVAKGTIQTGVDTTKTVLTGT--^TVCSGVTGAVNLAKEAIQGGLDTTKSifVMGTKDT STGL
TG-AANVAJ GA QTGLNTTQNIATGT--- TVCSGVTGAi i-NL-ARGTIQTGVDTTKIVLTσTKDTVCSGVTG
-AANVAKGAVQGGLDTTKSVLTGTKDAVSTGLTGAVNVAKGTVQTGVDTTKTVLTGTKDTVCSGVTSAV
NVAKGAVQGGLDTT SVVIGTIT)TMSTGLTG-AA-NVAKGAVQTGVDTAKTVLTGT---vT-)TVTTGLVGAVNV
AKGTVQTGMDTTKTVLTGT--πDTIYSGVTSAVNVAKGAVQTGLKTTQNIATGT NTFGSGVTGAVNVAK
GAVQTGVDTAKTVLTGT---αDTVTTGLMGAV---TVAKGTVQTSVDTTKTVLTGTKDTVCSGVTGAANVAKGA
VQTGVOTAXTVLTGTKDTVCSGVTGAVNVAKGAVQTGLKTTQNIATGTKNTLGSGVTGAANVAKGAVQ
GGLDTTKSVLTGTKDAVSTGLTGAVNLAKGTVQTG DTTKTVLTGTKDAVCSGVTGAANVAKGAVQTG
VDTAKTVLTGTKDTVTTGLMGAVNVAKGTVQTSVDTTKTVLTGTKBTVCSGVTG-AANVAKGAVQGGLD
TTKSVLTGTKDTVSTGLTGAVNIj-AKGTVQTGVDTSKTVLTGT-raDTVCSGVTGAVNVAKGTVQTGVDTA
KTVLSGAKDAVTTGVTGAVNVA GTVQTGVDASKAVL GTi TVFSGVTGAMSMAKGAVQGGLDTTKT
VLTGT--- AVSAGLMGSGNVATGATHTGLSTFQN LPSTPATS GGLTSSRTTDNGGEQTALSPQEAPF
SGISTPPDVLSVGPEPAWEAAATTKGLATDVATFTQGAAPGREDTGLLTTTHGPEEAPRLAMLQNELE
GLGDIFHP NAEEOAQLAASQPGPKVLSAEQGSYFVRLGDLGPSFRQRAFEHAVSHLQHGQFQARDTL
AQLQDCFRLIEKAQQAPEGQPRLDQGSGASAEDAAVQEERDAGVLSRVCGLLRQLHTAYSGLVSSLQG
LPAELQQPVGRARHSLCELYGIVASAGSVEELPAERLVQSREGVHQAWQGLEQLLEGLQHNPPLSWLV
GPFALPAGGQ
NOV32c, CG55906-01 SEQ ID NO: 797 3839 bp DNA Sequence ORF Start: ATG at 131 ORF Stop: TAG at 3806
GTGAGGCCAGGCCTGCAGGTGGGTGTCGGGCTGCTCAGGCTTTCAGTGGGGAGTGGGTGTGGGATGGG
AGGCTAGGGAACCCCCATTCACGCACCTTCTCTGCCCCCTTCCAGCTTCTCACGTTCTCACTATGTCT
GCTCCAGACGAAGGGAGACGGGATCCCCCCAAACCGAAGGGCAAGCCCCCCGCCCCCATGCAGACCCT GGGCAGCTTCTTTGGGTCCCTGCCTGGCTTCAGCTCTGCCCGGAACCTGGTGGCCAACGCACATAGCT CGGTCGGGGCCAAAGACCTGGTGTGTTCCAAGATGTCCAGGGCCAAGGATGCCGTGTCCTCCGGGGTG GCCAGCGTGGTGGACGTGGCTAAGGGAGTGGTCCAGGGAGGCCTGGACACCACTCGGTCTGCACTTAC GGGCACCAAGGAGGTGGTGTCCAGCGGGGTCAC^ EEQAQLAASQPGPKVLSAEQGSYFVRLGDLGPSFRQRAFEHAVSHLQHGQFQARDTLAQLQDCFRLIE KAQQAPEGQPRLDQGSGASAEDAAVQEERDAGVLSRVCGLLRQLHTAYSGLVSSLQGLPAELQQPVGR ARHSLCELYGIVASAGSVEELPAERLVQSREGVHQAWQGLEQLLEGLQHNPPLSWLVGPFALPAGGQL E
NOV32e, CG55906-02 SEQ ID NO: 801 810 bp DNA Sequence ORF Start: ATG at 123 ORF Stop: TAG at 792
AGGCCTGCAGGTGGGTGTCGGGCTGCTCAGGCTTTCAGTGGGGAGTGGGTGTGGGATGGGAGGCTAGG
GAACCCCCATTCACGCACCTTCTCTGCCCCCTTCCAGCTTCTCACGTTCTCACTATGTCTGCTCCAGA
CGAAGGGAGACGGGATCCCCCCAAACCGAAGGGCAAGACCCTGGGCAGCTTCTTTGGGTCCCTGCCTG GCTTCAACTCTGCCCGGAACCTGGTGGCCAACGCACATAGCTCGGCGAGAGCCCGGCCGGCCGCTGAC CCCACAGGAGCGCCTGCTGCCGAGGCTGCCCAACCACAGGCTCAGGTGGCTGCCCACCCAGAGCAGAC GGCCCCATGGACGGAGAAGGAGCTGCAACCTTCGGAAAAGATTGAAAAGGCCCAGCAGGCTCCAGAAG GGCAGCCACGTCTGGACCAGGGCTCAGGTGCCAGTGCGGAGGACGCTGCTGTCCAGGAGGAGCGGGAT GCCGGGGTTCTGTCCAGGGTCTGCGGCCTTCTCCGGCAGCTGCACACGGCCTACAGTGGCCTGGTCTC CAGCCTCCGGGGCCTGCCCGCCGAGCTCCAGCAGCCAGTGGGGCGGGCGCGGCACAGCCTCTGTGAGC TCTATGGCATCGTGGCCTCAGCTGGCTCTGTAGAGGAGCTGCCCGCAGAGCGGCTGGTGCAGAGCCGC GAGGGTGTGCACCAGGCTTGGCAGGGGTTAGAGCAGCTGCTGGAGGGCCTACAGCACAATCCCCCGCT CAGCTGGCTGGTAGGGCCCTTCGCCTTGCCCGCTGGCGGGCAGTAGCTGTAGGAGCCTGCAG
NOV32e, CG55906-02 SEQ ID NO: 802 223 aa MW at 23486.9kD Protein Sequence
MSAPDEGRRDPPKPKGKTLGSFFGSLPGFNSARNLVANAHSSARARPAADPTGAPAAEAAQPQAQVAA HPEQTAP TEKELQPSEKIEKAQQAPEGQPRLDQGSGASAEDAAVQEERDAGVLSRVCGLLRQLHTAY SGLVSSLRGLPAELQQPVGRARHSLCELYGIVASAGSVEELPAERLVQSREGVHQA QGLEQLLEGLQ HNPPLSWLVGPFALPAGGQ
NOV32f, 230272941 SEQ ID NO: 803 714 bp DNA Sequence ORF Start: at 2 ORF Stop: TGA at 692
GGCGCGCCCACCCTTCACCACCATGTCTGCTCCAGACGAAGGGAGACGGGATCCCCCCAAACCGAAGG GCAAGACCCTGGGCAGCTTCTTTGGGTCCCTGCCTGGCTTCAGCTCTGCCCGGAACCTGGTGGCCAAC GCACATAGCTCGGCGAGAGCCCGGCCGGCCGCTGACCCCACAGGAGCGCCTGCTGCCGAGGCTGCCCA ACCACAGGCTCAGGTGGCTGCCCACCCAGAGCAGACGGCCCCATGGACGGAGAAGGAGCTGCAACCTT CGGAAAAGATTGAAAAGGCCCAGCAGGCTCCAGAAGGGCAGCCACGTCTGGACCAGGGCTCAGGTGCC AGTGCGGAGGACGCTGCTGTCCAGGAGGAGCGGGATGCCGGGGTTCTGTCCAGGGTCTGCGGCCTTCT CCGGCAGCTGCACACGGCCTACAGTGGCCTGGTCTCCAGCCTCCAGGGCCTGCCCGCCGAGCTCCAGC AGCCAGTGGGGCGGGCGCGGCACAGCCTCTGTGAGCTCTATGGCATCGTGGCCTCAGCTGGCTCTGTA GAGGAGCTGCCCGCAGAGCGGCTGGTGCAGAGCCGCGAGGGTGTGCACCAGGCTTGGCAGGGGTTAGA GCAGCTGCTGGAGGGCCTACAGCACAATCCCCCGCTCAGCTGGCTGGTAGGGCCCTTCGCCTTGCCCG CTGGCGGGCAGTGAAGGGGGCGGCCGCGGAGCCT
NOV32f, 230272941 SEQ ID NO: 804 230 aa MW at 24202.7kD Protein Sequence
ARPPFTT SAPDEGRRDPPKPKGKTLGSFFGSLPGFSSARNLVANAHSSARARPAADPTGAPAAEAAQ PQAQVAAHPEQTAP TEKELQPSEKIEKAQQAPEGQPRLDQGSGASAEDAAVQEERDAGVLSRVCGLL RQLHTAYSGLVSSLQGLPAELQQPVGRARHSLCELYGIVASAGSVEELPAERLVQSREGVHQA QGLE QLLEGLQHNPPLSWLVGPFALPAGGQ
NOV32g, CG55906-03 ~|SEQ ID NO: 805 J714 bp DNA Sequence ORF Start: ATG at 23 ORF Stop: TGA at 692
GGCGCGCCCACCCTTCACCACCATGTCTGCTCCAGACGAAGGGAGACGGGATCCCCCCAAACCGAAGG
GCAAGACCCTGGGCAGCTTCTTTGGGTCCCTGCCTGGCTTCAGCTCTGCCCGGAACCTGGTGGCCAAC GCACATAGCTCGGCGAGAGCCCGGCCGGCCGCTGACCCCACAGGAGCGCCTGCTGCCGAGGCTGCCCA ACCACAGGCTCAGGTGGCTGCCCACCCAGAGCAGACGGCCCCATGGACGGAGAAGGAGCTGCAACCTT CGGAAAAGATTGAAAAGGCCCAGCAGGCTCCAGAAGGGCAGCCACGTCTGGACCAGGGCTCAGGTGCC AGTGCGGAGGACGCTGCTGTCCAGGAGGAGCGGGATGCCGGGGTTCTGTCCAGGGTCTGCGGCCTTCT CCGGCAGCTGCACACGGCCTACAGTGGCCTGGTCTCCAGCCTCCAGGGCCTGCCCGCCGAGCTCCAGC AGCCAGTGGGGCGGGCGCGGCACAGCCTCTGTGAGCTCTATGGCATCGTGGCCTCAGCTGGCTCTGTA GAGGAGCTGCCCGCAGAGCGGCTGGTGCAGAGCCGCGAGGGTGTGCACCAGGCTTGGCAGGGGTTAGA GCAGCTGCTGGAGGGCCTACAGCACAATCCCCCGCTCAGCTGGCTGGTAGGGCCCTTCGCCTTGCCCG CTGGCGGGCAGTGAAGGGGGCGGCCGCGGAGCCT
NOV32g, CG55906-03 SEQ ID NO: 806 223 aa MW at 23431.8kD Protein Sequence
MSAPDEGRRDPPKPKGKTLGSFFGSLPGFSSARNLVANAHSSARARPAADPTGAPAAEAAQPQAQVAA HPEQTAP TEKELQPSEKIEKAQQAPEGQPRLDQGSGASAEDAAVQEERDAGVLSRVCGLLRQLHTAY SGLVSSLQGLPAELQQPVGRARHSLCELYGIVASAGSVEELPAERLVQSREGVHQA QGLEQLLEGLQ HNPPLS LVGPFALPAGGQ
NOV32h, SNP13382505 of SEQ ID NO: 807 3839 bp
CG55906-01, DNA Sequence JORF Start: ATG at 13lfθRF Stop: TAG at 3806
J SNP Pos: 3393 SNP Change: C to T
GTGAGGCCAGGCCTGCAGGTGGGTGTCGGGCTGCTCAGGCTTTCAGTGGGGAGTGGGTGTGGGATGGG iAGGCTAGGGAACCCCCATTCACGCACCTTCTCTGCCCCCTTCCAGCTTCTCACGTTCTCACTATGTCT
GCTCCAGACGAAGGGAGACGGGATCCCCCCAAACCGAAGGGCAAGCCCCCCGCCCCCATGCAGACCCT GGGCAGCTTCTTTGGGTCCCTGCCTGGCTTCAGCTCTGCCCGGAACCTGGTGGCCAACGCACATAGCT CGGTCGGGGCCAAAGACCTGGTGTGTTCCAAGATGTCCAGGGCCAAGGATGCCGTGTCCTCCGGGGTG GCCAGCGTGGTGGACGTGGCTAAGGGAGTGGTCCAGGGAGGCCTGGACACCACTCGGTCTGCACTTAC GGGCACCAAGGAGGTGGTGTCCAGCGGGGTCACAGGGGCCATGGACATGGCTAAGGGGGCCGTCCAAG GGGGTCTGGACACCTCGAAGGCTGTCCTCACCGGCACCAAGGACACGGTGTCCACTGGGCTCACGGGG GCAGTGAATGTGGCCAAAGGGACCGTACAGGCCGGTGTGGACACCACCAAGACTGTGCTGACCGGCAC CAAAGACACAGTGACTACTGGGGTCATGGGGGCAGTGAACTTGGCCAAAGGGACTGTCCAGACTGGCG TGGAAACCTCCAAGGCTGTGCTGACCGGCACCAAAGATGCTGTGTCCACTGGGCTCACAGGGGCAGTG AATGTGGCCAGAGGAAGCATTCAGACCGGTGTGGACACCAGTAAGACTGTCCTAACAGGTACCAAGGA CACCGTCTGTAGTGGGGTGACTGGTGCCATGAATGTGGCCAAAGGAACCATCCAGACCGGCGTGGACA CCAGTAAGACTGTCCTAACAGGTACCAAGGACACCGTCTGTAGTGGGGTGACTGGTGCCATGAATGTG GCCAAAGGAACCATCCAGACCGGCGTGGACACCAGTAAGACTGTCCTAACAGGTACCAAGGACACCGT CTGTAGTGGGGTGACTGGTGCCATGAATGTGGCCAAAGGAACCATCCAGACCGGCGTGGACACCACCA AGACTGTCCTAACTGGCACCAAGAACACTGTCTGCAGTGGGGTGACCGGTGCCGTGAACTTGGCCAAA GAGGCCATCCAGGGGGGCCTGGATACCACCAAGTCTATGGTCATGGGTACGAAAGACACGATGTCCAC TGGGCTCACAGGGGCAGCGAATGTGGCCAAGGGGGCCATGCAAACTGGGCTGAACACAACCCAAAATA TCGCAACAGGTACAAAGGACACCGTCTGCAGTGGGGTGACTGGTGCCATGAATTTGGCCAGAGGAACC ATCCAGACAGGCGTGGACACCACCAAGATCGTTCTAACTGGTACCAAGGACACTGTCTGCAGTGGGGT CACCGGTGCTGCGAATGTGGCCAAAGGGGCCGTCCAGGGCGGCCTGGACACTACAAAGTCTGTCCTGA CTGGCACTAAAGATGCTGTGTCCACTGGGCTCACAGGGGCTGTGAACGTGGCCAAAGGGACCGTCCAG ACCGGCGTAGACACCACCAAGACTGTCCTAACCGGCACCAAGGACACCGTCTGCAGTGGGGTGACCAG TGCTGTGAACGTGGCCAAAGGGGCCGTCCAGGGGGGCCTGGACACCACCAAGTCTGTGGTCATAGGTA CAAAAGACACGATGTCCACTGGGCTCACGGGGGCAGCGAATGTGGCCAAGGGGGCTGTCCAGACAGGT GTAGACACAGCCAAGACCGTGCTGACCGGCACCAAGGACACAGTGACTACTGGGCTCGTGGGGGCAGT GAATGTCGCCAAAGGGACCGTCCAGACAGGCATGGACACCACCAAAACTGTCCTAACCGGTACCAAGG ACACCATCTACAGTGGGGTCACCAGTGCCGTGAACGTGGCCAAGGGGGCTGTGCAAACTGGGCTGAAA ACGACCCAAAATATCGCGACAGGTACAAAGAACACCTTTGGCAGTGGGGTGACCAGTGCTGTGAATGT GGCCAAAGGGGCTGCCCAGACAGGTGTAGACACGGCCAAGACCGTGCTGACCGGCACCAAGGACACAG TCACTACTGGGCTCATGGGGGCAGTGAATGTCGCCAAAGGGACTGTCCAGACCAGTGTGGACACCACC AAGACTGTCCTAACTGGTACCAAGGACACCGTCTGCAGTGGGGTGACCGGTGCTGCGAATGTGGCCAA AGGGGCCATCCAAGGGGGCCTGGACACTACAAAGTCTGTCCTGACTGGCACTAAAGATGCTGTGTCCA CTGGGCTCACAGGGGCTGTGAAGTTGGCCAAAGGGACTGTCCAGACCGGCATGGACACCACCAAGACT GTGTTAACTGGTACCAAGGATGCTGTGTGCAGTGGGGTGACCGGTGCTGCGAATGTGGCCAAGGGGGC CGTCCAGATGGGTGTAGACACGGCCAAGACCGTGCTGACCGGTACCAAGGACACTGTCTGCAGTGGGG TCACCGGTGCTGCGAACGTGGCCAAGGGTGCTGTGCAAACTGGGCTGAAAACGACCCAAAATATCGCA ACAGGTACAAAGAACACCCTTGGCAGTGGGGTGACCGGTGCTGCGAAAGTGGCCAAAGGGGCCGTCCA GGGGGGCCTGGACACTACAAAGTCTGTCCTGACTGGCACTAAAGATGCCGTGTCCACTGGGCTCACAG GGGCTGTGAACTTGGCCAAAGGGACTGTCCAGACCGGCGTGGACACCAGCAAGACTGTCCTGACCGGT ACCAAGGACACCGTCTGCAGTGGAGTCACTGGTGCCGTAAATGTGGCCAAAGGGACCGTCCAGACAGG TGTGGACACAGCCAAGACGGTGCTGAGTGGCGCTAAGGATGCAGTGACTACTGGAGTCACGGGGGCAG TGAATGTGGCCAAAGGAACCGTGCAGACCGGCGTGGACGCCTCCAAGGCTGTGCTTATGGGTACCAAG GACACTGTCTTCAGTGGGGTTACCGGTGCCATGAGCATGGCCAAAGGGGCCGTCCAGGGGGGCCTGGA CACCACCAAGACAGTGCTGACCGGAACCAAAGACGCAGTGTCCGCTGGGCTCATGGGGTCAGGGAACG TGGCGACAGGGGCCACCCACACTGGCCTC^ TCCTGGGGTGGACTCACCAGTTCCAGGACCACAGCTCAGCTGGCTGCCTCCCAGCCTGGGCCAAAGGT GCTGTCGGCGGAACAGGGGAGCTACTTCGTTCGTTTAGGTGACCTGGGTCCCAGCTTCCGCCAGCGGG
CATTTGAACACGCGGTGAGCCACCTGCAGCACGGCCAGTTCCAAGCCAGGGACACTCTGGTCCAGCTC CAGGACTGCTTCAGGCTGATTGAAAAGGCCCAGCAGGCTCCAGAAGGGCAGCCACGTCTGGACCAGGG CTCAGGTGCCAGTGCGGAGGACGCTGCTGTCCAGGAGAGGGTCTGCGGCCTTCTCCGGCAGCTGCACA CGGCCTACAGTGGCCTGGTCTCCAGCCTCCAGGGCCTGCCCGCCGAGCTCCAGCAGCCAGTGGGGCGG GCGCGGCACAGCCTCTGTGAGCTCTATGGCATCGTGGCCTCAGCTGGCTCTGTAGAGGAGCTGCCCGC AGAGCGGCTGGTGCAGAGCCGCGAGGGTGTGCACCAGGCTTGGCAGGGGTTAGAGCAGCTGCTGGAGG GCCTACAGCACAATCCCCCGCTCAGCTGGCTGGTAGGGCCCTTCGCCTTGCCCGCTGGCGGGCAGTAG CTGTAGGAGCCTGCAGGCCCGGCGCGGGGTC
NOV32h, SNP 13382505 of SEQ ID NO: 808 1225 aa MW at 120859.1kD
CG55906-01, Protein Sequence JSNP Pos: 1088 SNP Change: Ala to Val
MSAPDEGRRDPPKPKGKPPAP QTLGSFFGSLPGFSSAR-I-IjV-ANAHSSVGAIDLVCSKMSRAK-DAVSS
GVASVVDVAKGVVQGGLDTTRSALTGTKEVVSSGVTGAMDMAKGAVQGGLDTS AVLTGTKDTVSTGL
TGAVNVAKGTVQAGVDTTKTVLTGTKDTVTTGVMGAVNLAKGTVQTGVETSKAVLTGTKDAVSTGLTG
AV VARGSIQTGVDTSKTVLTGT-i TVCSGVTG-AMNVAKGTIQTGVDTSKTVLTGTKDTVCSGVTGAM
NVAKGTIQTGVDTSKTVLTGTKDTVCSGVTG-A ---WAKGTIQTGVDTTKTVLTGTKNTVCSGVTGAVNL
A-K-EAIQGGLDTTKS-v-VMGTKDTMSTGLTGAANVAKGAM^
GTIQTGVDTTKIVLTGTKDTVCSGVTGAANVAKGAVQGGLDTTKSVLTGTKDAVSTGLTGAVNVAKGT
VQTGVDTTKTVLTGTKDTVCSGVTSAVNVA GAVQGGLDTTKSVVIGT--^T STGLTGAANVAKGAVQ
TGVDTAKTVLTGT--- TVTTGLVGAVNVAKGTVQTGJ>ωTTKTVLTGTKDTIYSGVTSAVNVA GAVQTG
LKTTQNIATGTKNTFGSGVTSAVNVAKGAAQTGVDTAKTVLTGTKDTVTTGLMGAVNVA GTVQTSVD
TTKTVLTGTiωTVCSGVTGAANVAKGAIQGGLDTTKSVLTGT-KDAVSTGLTGAVKLAkGTVQTGMDTT
KTVLTGTKDAVCSGVTGAANVAKGAVQ-MGVDTAKTVLTGTKDTVCSGVTGAANVAKGAVQTGLKTTQN
IATGT---aϊTLGSGVTGAAIWAKGAVQGGLDTTKSVLTGTKDAVSTGLTGAVNLAKGTVQTGVDTSKTVL
TGTKDTVCSGVTGAV---W-AKGTVQTGVDTAKTVLSGAi AVTTGVTGAVNVAKGTVQTGVDASKAVLMG
TKDTVFSGVTGAMSMAKGAVQGGLDTTKTVLTGTKDAVSAGLMGSGNVATGATHTGLSTFQNWLPSTP
ATS GGLTSSRTTAQLAASQPGPKVLSAEQGSYFVRLGDLGPSFRQRAFEHAVSHLQHGQFQARDTLV
QLQDCFRLIEKAQQAPEGQPRLDQGSGASAEDAAVQERVCGLLRQLHTAYSGLVSSLQGLPAELQQPV
GRARHSLCELYGIVASAGSVEELPAERLVQSREGVHQA QGLEQLLEGLQHNPPLS LVGPFALPAGG
Q
NOV32i, SNP13382504 of SEQ ID NO: 809 3839 bp CG55906-01, DNA Sequence ORF Start: ATG at 131 ORE Stop: TAG at 3806
SNP Pos: 3409 SNP Change: C to T
GTGAGGCCAGGCCTGCAGGTGGGTGTCGGGCTGCTCAGGCTTTCAGTGGGGAGTGGGTGTGGGATGGG
AGGCTAGGGAACCCCCATTCACGCACCTTCTCTGCCCCCTTCCAGCTTCTCACGTTCTCACTATGTCT
GCTCCAGACGAAGGGAGACGGGATCCCCCCAAACCGAAGGGCAAGCCCCCCGCCCCCATGCAGACCCT GGGCAGCTTCTTTGGGTCCCTGCCTGGCTTCAGCTCTGCCCGGAACCTGGTGGCCAACGCACATAGCT CGGTCGGGGCCAAAGACCTGGTGTGTTCCAAGATGTCCAGGGCCAAGGATGCCGTGTCCTCCGGGGTG GCCAGCGTGGTGGACGTGGCTAAGGGAGTGGTCCAGGGAGGCCTGGACACCACTCGGTCTGCACTTAC GGGCACCAAGGAGGTGGTGTCCAGCGGGGTCACAGGGGCCATGGACATGGCTAAGGGGGCCGTCCAAG GGGGTCTGGACACCTCGAAGGCTGTCCTCACCGGCACCAAGGACACGGTGTCCACTGGGCTCACGGGG GCAGTGAATGTGGCCAAAGGGACCGTACAGGCCGGTGTGGACACCACCAAGACTGTGCTGACCGGCAC CAAAGACACAGTGACTACTGGGGTCATGGGGGCAGTGAACTTGGCCAAAGGGACTGTCCAGACTGGCG TGGAAACCTCCAAGGCTGTGCTGACCGGCACCAAAGATGCTGTGTCCACTGGGCTCACAGGGGCAGTG AATGTGGCCAGAGGAAGCATTCAGACCGGTGTGGACACCAGTAAGACTGTCCTAACAGGTACCAAGGA CACCGTCTGTAGTGGGGTGACTGGTGCCATGAATGTGGCCAAAGGAACCATCCAGACCGGCGTGGACA CCAGTAAGACTGTCCTAACAGGTACCAAGGACACCGTCTGTAGTGGGGTGACTGGTGCCATGAATGTG GCCAAAGGAACCATCCAGACCGGCGTGGACACCAGTAAGACTGTCCTAACAGGTACCAAGGACACCGT CTGTAGTGGGGTGACTGGTGCCATGAATGTGGCCAAAGGAACCATCCAGACCGGCGTGGACACCACCA AGACTGTCCTAACTGGCACCAAGAACACTGTCTGCAGTGGGGTGACCGGTGCCGTGAACTTGGCCAAA GAGGCCATCCAGGGGGGCCTGGATACCACCAAGTCTATGGTCATGGGTACGAAAGACACGATGTCCAC TGGGCTCACAGGGGCAGCGAATGTGGCCAAGGGGGCCATGCAAACTGGGCTGAACACAACCCAAAATA TCGCAACAGGTACAAAGGACACCGTCTGCAGTGGGGTGACTGGTGCCATGAATTTGGCCAGAGGAACC ATCCAGACAGGCGTGGACACCACCAAGATCGTTCTAACTGGTACCAAGGACACTGTCTGCAGTGGGGT CACCGGTGCTGCGAATGTGGCCAAAGGGGCCGTCCAGGGCGGCCTGGACACTACAAAGTCTGTCCTGA CTGGCACTAAAGATGCTGTGTCCACTGGGCTCACAGGGGCTGTGAACGTGGCCAAAGGGACCGTCCAG ACCGGCGTAGACACCACCAAGACTGTCCTAACCGGCACCAAGGACACCGTCTGCAGTGGGGTGACCAG TGCTGTGAACGTGGCCAAAGGGGCCGTCCAGGGGGGCCTGGACACCACCAAGTCTGTGGTCATAGGTA CAAAAGACACGATGTCCACTGGGCTCACGGGGGCAGCGAATGTGGCCAAGGGGGCTGTCCAGACAGGT GTAGACACAGCCAAGACCGTGCTGACCGGCACCAAGGACACAGTGACTACTGGGCTCGTGGGGGCAGT GAATGTCGCCAAAGGGACCGTCCAGACAGGCATGGACACCACCAAAACTGTCCTAACCGGTACCAAGG ACACCATCTACAGTGGGGTCACCAGTGCCGTGAACGTGGCCAAGGGGGCTGTGCAAACTGGGCTGAAA ACGACCCAAAATATCGCGACAGGTACAAAGAACACCTTTGGCAGTGGGGTGACCAGTGCTGTGAATGT iGGCCAAAGGGGCTGCCCAGACAGGTGTAGACACGGCCAAGACCGTGCTGACCGGCACCAAGGACACAG TCACTACTGGGCTCATGGGGGCAGTGAATGTCGCCAAAGGGACTGTCCAGACCAGTGTGGACACCACC AAGACTGTCCTAACTGGTACCAAGGACACCGTCTGCAGTGGGGTGACCGGTGCTGCGAATGTGGCCAA AGGGGCCATCCAAGGGGGCCTGGACACTACAAAGTCTGTCCTGACTGGCACTAAAGATGCTGTGTCCA CTGGGCTCACAGGGGCTGTGAAGTTGGCCAAAGGGACTGTCCAGACCGGCATGGACACCACCAAGACT GTGTTAACTGGTACCAAGGATGCTGTGTGCAGTGGGGTGACCGGTGCTGCGAATGTGGCCAAGGGGGC CGTCCAGATGGGTGTAGACACGGCCAAGACCGTGCTGACCGGTACCAAGGACACTGTCTGCAGTGGGG TCACCGGTGCTGCGAACGTGGCCAAGGGTGCTGTGCAAACTGGGCTGAAAACGACCCAAAATATCGCA ACAGGTACAAAGAACACCCTTGGCAGTGGGGTGACCGGTGCTGCGAAAGTGGCCAAAGGGGCCGTCCA GGGGGGCCTGGACACTACAAAGTCTGTCCTGACTGGCACTAAAGATGCCGTGTCCACTGGGCTCACAG GGGCTGTGAACTTGGCCAAAGGGACTGTCCAGACCGGCGTGGACACCAGCAAGACTGTCCTGACCGGT ACCAAGGACACCGTCTGCAGTGGAGTCACTGGTGCCGTAAATGTGGCCAAAGGGACCGTCCAGACAGG TGTGGACACAGCCAAGACGGTGCTGAGTGGCGCTAAGGATGCAGTGACTACTGGAGTCACGGGGGCAG TGAATGTGGCCAAAGGAACCGTGCAGACCGGCGTGGACGCCTCCAAGGCTGTGCTTATGGGTACCAAG GACACTGTCTTCAGTGGGGTTACCGGTGCCATGAGCATGGCCAAAGGGGCCGTCCAGGGGGGCCTGGA CACCACCAAGACAGTGCTGACCGGAACCAAAGACGCAGTGTCCGCTGGGCTCATGGGGTCAGGGAACG TGGCGACAGGGGCCACCCACACTGGCCTCAGCACCTTCCAGAACTGGTTACCTAGTACCCCCGCCACC TCCTGGGGTGGACTCACCAGTTCCAGGACCACAGCTCAGCTGGCTGCCTCCCAGCCTGGGCCAAAGGT GCTGTCGGCGGAACAGGGGAGCTACTTCGTTCGTTTAGGTGACCTGGGTCCCAGCTTCCGCCAGCGGG
CATTTGAACACGCGGTGAGCCACCTGCAGCACGGCCAGTTCCAAGCCAGGGACACTCTGGCCCAGCTC CAGGACTGTTTCAGGCTGATTGAAAAGGCCCAGCAGGCTCCAGAAGGGCAGCCACGTCTGGACCAGGG CTCAGGTGCCAGTGCGGAGGACGCTGCTGTCCAGGAGAGGGTCTGCGGCCTTCTCCGGCAGCTGCACA CGGCCTACAGTGGCCTGGTCTCCAGCCTCCAGGGCCTGCCCGCCGAGCTCCAGCAGCCAGTGGGGCGG GCGCGGCACAGCCTCTGTGAGCTCTATGGCATCGTGGCCTCAGCTGGCTCTGTAGAGGAGCTGCCCGC AGAGCGGCTGGTGCAGAGCCGCGAGGGTGTGCACCAGGCTTGGCAGGGGTTAGAGCAGCTGCTGGAGG GCCTACAGCACAATCCCCCGCTCAGCTGGCTGGTAGGGCCCTTCGCCTTGCCCGCTGGCGGGCAGTAG CTGTAGGAGCCTGCAGGCCCGGCGCGGGGTC
NOV32i, SNP13382504 of SEQ ID NO: 810 1225 aa MW at 120831. lkD
CG55906-01, Protein Sequence SNP Pos: 1093 SNP Change: Cys to Cys
MSAPDEGRRDPPKPKGKPPAPMQTLGSFFGSLPGFSSARNLVANAHSSVGAKDLVCSKMSRAKDAVSS
GVASWDVAKGWQGGLDTTRSALTGTKEWSSGVTGA DMAKGAVQGGLDTSKAVLTGTKDTVSTGL
TGAV---WAKGTVQAGVDTTKTVLTGT--- TVTTGVMGAVNLAKGTVQTGVETSKAVLTGTKDAVSTGLTG
AVW-ARGSIQTGVDTSKTVLTGT-TOTVCSGVTG-A -IWAKGTIQ
NV-AKGTIQTGVDTSKTVLTGT--- -)TVCSGVTGA NVA GTIQTGVDTT TVLTGTKNTVCSGVTGAVNL
A-1-SΕAIQGGLDTTKSMVMGTKDTMSTGLTG-AA--WAKGAMQTGLNTTQNIATGTKDTVCSGVTGAMNLAR
GTIQTGVDTTKIVLTGTKDTVCSGVTG-AANVA GAVQGGLDTTKSVLTGTKDAVSTGLTGAVNVAKGT
VQTGVDTTKTVLTGTKDTVCSGVTSAVNVAKGAVQGGLDTT SWIGTKDT STGLTGAANVAKGAVQ
TGVDTAKTVLTGT DTVTTGLVGAV---VWA GTVQTGMDTTKTVLTGTKDTIYSGVTSAVNVAKGAVQTG
LKTTQNIATGT-rasTTFGSGVTSAV-NVAKGAAQTGVOTAKTVLTGTKDTVTTGLMGAVNVAKGTVQTSVD
TTKTVLTGT-KDTVCSGVTGAA--SrVAKGAIQGGLDTTKSVLTGT--π)AVSTGLTGAVKLAKGTVQTG DTT
KTVLTGTKDAVCSGVTGAANVAKGAVQMGVDTAKTVLTGTKDTVCSGVTGAANVAKGAVQTGLKTTQN
IATGTKNTLGSGVTGAAKVAKGAVQGGLDTTKSVLTGTKDAVSTGLTGAVNLAKGTVQTGVDTSKTVL
TGTKDTVCSGVTGAVNVAKGTVQTGVDTAKTVLSGAKDAVTTGVTGAVNVA GTVQTGVDASKAVLMG
T--- TVFSGVTG-AMSiMAKGAVQGGLDTTKTVLTGT--- AVSAGLMGSGNVATGATHTGLSTFQN LPSTP
ATSWGGLTSSRTTAQLAASQPGPKVLSAEQGSYFVRLGDLGPSFRQRAFEHAVSHLQHGQFQARDTLA
QLQDCFRLIEKAQQAPEGQPRLDQGSGASAEDAAVQERVCGLLRQLHTAYSGLVSSLQGLPAELQQPV
GRARHSLCELYGIVASAGSVEELPAERLVQSREGVHQAWQGLEQLLEGLQHNPPLS LVGPFALPAGG
Q
NOV32J, SNP13376440 of SEQ ID NO: 811 3839 bp
CG55906-01, DNA Sequence |ORF Start: ATG a J3J.JORF StoP: TAg at 3806 pNP Pos: 3681 _ | SNP Change: T to C
GTGAGGCCAGGCCTGCAGGTGGGTGTCGGGCTGCTCAGGCTTTCAGTGGGGAGTGGGTGTGGGATGGG
AGGCTAGGGAACCCCCATTCACGCACCTTCTCTGCCCCCTTCCAGCTTCTCACGTTCTCACTATGTCT
GCTCCAGACGAAGGGAGACGGGATCCCCCCAAACCGAAGGGCAAGCCCCCCGCCCCCATGCAGACCCT GGGCAGCTTCTTTGGGTCCCTGCCTGGCTTCAGCTCTGCCCGGAACCTGGTGGCCAACGCACATAGCT CGGTCGGGGCCAAAGACCTGGTGTGTTCCAAGATGTCCAGGGCCAAGGATGCCGTGTCCTCCGGGGTG GCCAGCGTGGTGGACGTGGCTAAGGGAGTGGTCCAGGGAGGCCTGGACACCACTCGGTCTGCACTTAC GGGCACCAAGGAGGTGGTGTCCAGCGGGGTCACAGGGGCCATGGACATGGCTAAGGGGGCCGTCCAAG GGGGTCTGGACACCTCGAAGGCTGTCCTCACCGGCACCAAGGACACGGTGTCCACTGGGCTCACGGGG GCAGTGAATGTGGCCAAAGGGACCGTACAGGCCGGTGTGGACACCACCAAGACTGTGCTGACCGGCAC CAAAGACACAGTGACTACTGGGGTCATGGGGGCAGTGAACTTGGCCAAAGGGACTGTCCAGACTGGCG TGGAAACCTCCAAGGCTGTGCTGACCGGCACCAAAGATGCTGTGTCCACTGGGCTCACAGGGGCAGTG AATGTGGCCAGAGGAAGCATTCAGACCGGTGTGGACACCAGTAAGACTGTCCTAACAGGTACCAAGGA CACCGTCTGTAGTGGGGTGACTGGTGCCATGAATGTGGCCAAAGGAACCATCCAGACCGGCGTGGACA CCAGTAAGACTGTCCTAACAGGTACCAAGGACACCGTCTGTAGTGGGGTGACTGGTGCCATGAATGTG GCCAAAGGAACCATCCAGACCGGCGTGGACACCAGTAAGACTGTCCTAACAGGTACCAAGGACACCGT CTGTAGTGGGGTGACTGGTGCCATGAATGTGGCCAAAGGAACCATCCAGACCGGCGTGGACACCACCA AGACTGTCCTAACTGGCACCAAGAACACTGTCTGCAGTGGGGTGACCGGTGCCGTGAACTTGGCCAAA GAGGCCATCCAGGGGGGCCTGGATACCACCAAGTCTATGGTCATGGGTACGAAAGACACGATGTCCAC TGGGCTCACAGGGGCAGCGAATGTGGCCAAGGGGGCCATGCAAACTGGGCTGAACACAACCCAAAATA TCGCAACAGGTACAAAGGACACCGTCTGCAGTGGGGTGACTGGTGCCATGAATTTGGCCAGAGGAACC ATCCAGACAGGCGTGGACACCACCAAGATCGTTCTAACTGGTACCAAGGACACTGTCTGCAGTGGGGT CACCGGTGCTGCGAATGTGGCCAAAGGGGCCGTCCAGGGCGGCCTGGACACTACAAAGTCTGTCCTGA CTGGCACTAAAGATGCTGTGTCCACTGGGCTCACAGGGGCTGTGAACGTGGCCAAAGGGACCGTCCAG ACCGGCGTAGACACCACCAAGACTGTCCTAACCGGCACCAAGGACACCGTCTGCAGTGGGGTGACCAG TGCTGTGAACGTGGCCAAAGGGGCCGTCCAGGGGGGCCTGGACACCACCAAGTCTGTGGTCATAGGTA CAAAAGACACGATGTCCACTGGGCTCACGGGGGCAGCGAATGTGGCCAAGGGGGCTGTCCAGACAGGT GTAGACACAGCCAAGACCGTGCTGACCGGCACCAAGGACACAGTGACTACTGGGCTCGTGGGGGCAGT GAATGTCGCCAAAGGGACCGTCCAGACAGGCATGGACACCACCAAAACTGTCCTAACCGGTACCAAGG ACACCATCTACAGTGGGGTCACCAGTGCCGTGAACGTGGCCAAGGGGGCTGTGCAAACTGGGCTGAAA ACGACCCAAAATATCGCGACAGGTACAAAGAACACCTTTGGCAGTGGGGTGACCAGTGCTGTGAATGT GGCCAAAGGGGCTGCCCAGACAGGTGTAGACACGGCCAAGACCGTGCTGACCGGCACCAAGGACACAG TCACTACTGGGCTCATGGGGGCAGTGAATGTCGCCAAAGGGACTGTCCAGACCAGTGTGGACACCACC AAGACTGTCCTAACTGGTACCAAGGACACCGTCTGCAGTGGGGTGACCGGTGCTGCGAATGTGGCCAA AGGGGCCATCCAAGGGGGCCTGGACACTACAAAGTCTGTCCTGACTGGCACTAAAGATGCTGTGTCCA CTGGGCTCACAGGGGCTGTGAAGTTGGCCAAAGGGACTGTCCAGACCGGCATGGACACCACCAAGACT GTGTTAACTGGTACCAAGGATGCTGTGTGCAGTGGGGTGACCGGTGCTGCGAATGTGGCCAAGGGGGC CGTCCAGATGGGTGTAGACACGGCCAAGACCGTGCTGACCGGTACCAAGGACACTGTCTGCAGTGGGG TCACCGGTGCTGCGAACGTGGCCAAGGGTGCTGTGCAAACTGGGCTGAAAACGACCCAAAATATCGCA ACAGGTACAAAGAACACCCTTGGCAGTGGGGTGACCGGTGCTGCGAAAGTGGCCAAAGGGGCCGTCCA GGGGGGCCTGGACACTACAAAGTCTGTCCTGACTGGCACTAAAGATGCCGTGTCCACTGGGCTCACAG GGGCTGTGAACTTGGCCAAAGGGACTGTCCAGACCGGCGTGGACACCAGCAAGACTGTCCTGACCGGT ACCAAGGACACCGTCTGCAGTGGAGTCACTGGTGCCGTAAATGTGGCCAAAGGGACCGTCCAGACAGG TGTGGACACAGCCAAGACGGTGCTGAGTGGCGCTAAGGATGCAGTGACTACTGGAGTCACGGGGGCAG TGAATGTGGCCAAAGGAACCGTGCAGACCGGCGTGGACGCCTCCAAGGCTGTGCTTATGGGTACCAAG GACACTGTCTTCAGTGGGGTTACCGGTGCCATGAGCATGGCCAAAGGGGCCGTCCAGGGGGGCCTGGA CACCACCAAGACAGTGCTGACCGGAACCAAAGACGCAGTGTCCGCTGGGCTCATGGGGTCAGGGAACG TGGCGACAGGGGCCACCCACACTGGCCTCAGCACCTTCCAGAACTGGTTACCTAGTACCCCCGCCACC TCCTGGGGTGGACTCACCAGTTCCAGGACCACAGCTCAGCTGGCTGCCTCCCAGCCTGGGCCAAAGGT GCTGTCGGCGGAACAGGGGAGCTACTTCGTTCGTTTAGGTGACCTGGGTCCCAGCTTCCGCCAGCGGG
CATTTGAACACGCGGTGAGCCACCTGCAGCACGGCCAGTTCCAAGCCAGGGACACTCTGGCCCAGCTC CAGGACTGCTTCAGGCTGATTGAAAAGGCCCAGCAGGCTCCAGAAGGGCAGCCACGTCTGGACCAGGG CTCAGGTGCCAGTGCGGAGGACGCTGCTGTCCAGGAGAGGGTCTGCGGCCTTCTCCGGCAGCTGCACA CGGCCTACAGTGGCCTGGTCTCCAGCCTCCAGGGCCTGCCCGCCGAGCTCCAGCAGCCAGTGGGGCGG GCGCGGCACAGCCTCTGTGAGCTCTATGGCATCGTGGCCTCAGCTGGCTCTGTAGAGGAGCTGCCCGC AGAGCGGCCGGTGCAGAGCCGCGAGGGTGTGCACCAGGCTTGGCAGGGGTTAGAGCAGCTGCTGGAGG GCCTACAGCACAATCCCCCGCTCAGCTGGCTGGTAGGGCCCTTCGCCTTGCCCGCTGGCGGGCAGTAG CTGTAGGAGCCTGCAGGCCCGGCGCGGGGTC jSEQ ID NO: 812|1225 aa JMW t 120815.0-kD
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 32B.
Table 32B. Comparison of the NOV32 protein sequences.
NOV32a
NOV32b MSAPDEGRRDPPKPKGKTLGSFFGSLPGFNSA-RNLVANAHSSARARPAADPTGAPAAEAA
NOV32C
NOV32d
NOV32e
NOV32 f
NOV32g
NOV32a
NOV32b QPQAQVAAHPEQTAPWTE---NΕLQPSEKQ- VSGAKDLVCSKMSRAKDAVSSGVASVVDVAKG
NOV32C
NOV32d
NOV32e
NOV32f
NOV32g
NOV32a
NOV32b WQGGLDTTRSALTGTKEAVSSGVTGAMDMAKGAVQGGLDTSKAVLTGTKDTVSTGLTGA
NOV32C
NOV32d
NOV32e
NOV32f
NOV32g
NOV32a
NOV32b VNVAKGTVQAGVDTTKTVLTGT---ODTVTTGVMGAVNLAKGTVQTGVETSKAVLTGTKDAVS
NOV32C
NOV32d
NOV32e
NOV32 f
NOV32g NOV32a
NOV32b TGLTGAV---WARGSIQTGVDTSKTVLTGTKDTVCSGVTSAMNVAKGTIQTGVDTSKTVLTG
NOV32C
NOV32d
NOV32e
NOV32f
NOV32g
NOV32a
NOV32b T--π TVCSGVTGA-M--WAKGTIQTGVDTSKTVLTGTKDTVCSGVTGAMNVAKGTIQTGVDTT
NOV32C
NOV32d
NOV32e
NOV32 f
NOV32g
NOV32a
NOV32b KTVLTGT-- TVCSGVTGAVNLAKEAIQGGLDTTKSMVMGT-l- TMSTGLTGAANVAKGAMQ
NOV32C
NOV32d
NOV32e
NOV32f
NOV32g
NOV32a ;
NOV32b TGLNTTQNIATGT---αDTVCSGVTGAMNLARGTIQTGVDTTKIVLTGTKDTVCSGVTGAANV
NOV32C
NOV32d
NOV32e
NOV32f
NOV32g
NOV32a
NOV32b AKGAVQGGLDTTKSVLTGT DAVSTGLTGAVNVAKGTVQTGVDTTKTVLTGTKDTVCSGV
NOV32C
NOV32d
NOV32e
NOV32 f
NOV32g
NOV32a
NOV32b TSAVNVAKGAVQGGLDTTKSVVIGT---ODTMSTGLTG-AANVAKGAVQTGVDTAKTVLTGTKD
NOV32C
NOV32d
NOV32e
NOV32 f
NOV32g
NOV32a
NOV32b TVTTGLVGAV---W-AKGTVQTGΪ DTTKTVLTGTKDTI YSGVTSAVNVAKGAVQTGLKTTQNI
NOV32C
NOV32d
NOV32e
NOV32f
NOV32g
NOV32a MSAPDEGRRDPPKPKGK TLG
NOV32b ATGT-i TFGSGVTGAVNVAKGAVQTGVDTA TVLTGTKDTVTTGLMGAVNV AKG
NOV32C MSAPDEGRRDPPKPKGKPPAPMQTLG NOV32d RSIMSAPDEGRRDPPKPKGK- -TLG NOV32e MSAPDEGRRDPPKPKGK- -TLG NOV3 f -ARPPFTTMSAPDEGRRDPPKPKGK- -TLG NOV32g MSAPDEGRRDPPKPKGK- -TLG
NOV32a SFFGSLPGFSSARNLVANAHSS ARARPAADPTGAPAAEAAQPQAQVAAH NOV32b TVQTSVDTTKTVLTGTKDTVCS GVTGAANVAKGAVQTGVDTAKTVLTGT NOV32C SFFGSLPGFSSARNLVANAHSSVGAKDLVCSKMSRAKDAVSSGVASWDVAKGWQGGLD NOV32d SFFGSLPGFSSARNLVANAHSS ARARPAADPTGAPAAEAAQPQAQVAAH NOV32e SFFGSLPGFNSARNLVANAHSS ARARPAADPTGAPAAEAAQPQAQVAAH NOV32f SFFGSLPGFSSARNLVANAHSS ARARPAADPTGAPAAEAAQPQAQVAAH NOV32g SFFGSLPGFSSARNLVANAHSS ARARPAADPTGAPAAEAAQPQAQVAAH
NOV3 a PEQTAP TEKELQPSEKQ MVSGAKDLVCSKMSRAKDAVSSGVASWDVAKGV NOV32b KDTVCSGVTGAVNVAKG AVQTGLKTTQNIATGTKNTLGSGVTGAANVAKGA NOV32C TTRSALTGTKEVVSSGVTGAIDMAKGAVQGGLDTSKAVLTGTKDTVSTGLTGAVNVAKGT NOV32d PEQTAP TEKELQPSEK MVSGAKDLVCSK-MSRA DAVSSGVASWDVATGV NOV32e PEQTAP TEKELQPSE NOV32f PEQTAPWTEKELQPSE NOV32g PEQTAPWTEKELQPSE
NOV32a VQGGLDTTRSALTGTKEWSSGVTGA-MDMAKGAVQGGLDTSKAVLTGTKDTVSTGLTGAV
NOV32b VQGGLDTTKSVLTGTKDAVSTGLTGAVNLAKGTVQTG DTTKTVLTGTKDAVCSGVTGAA
NOV32C VQAGVDTTKTVLTGTKDTVTTGVMGAVNLAKGTVQTGVETSKAVLTGTKDAVSTGLTGAV
NOV32d VQGGLDTTRSALTGTKEAVSSGFTGAMDMAKGAVQGGLDTSKAVLTGTKDTVSTGLTGAV
NOV32e
NOV32f
NOV32g
NOV32a NVAKGTVQAGVDTTKTVLTGTKDTVTTGVMGAVNLAKGTVQTGVETSKAVLTGTKDAVST
NOV32b ---WAKGAVQTGVDTAKTVLTGTKDTVTTGLMGAVNVAKGTVQTSVDTTKTVLTGTKDTVCS
NOV32C NVARGSIQTGVDTSKTVLTGTKDTVCSGVTGAMNVAKGTIQTGVDTSKTVLTGTKDTVCS
NOV32d NVAKGTVQAGVDTTKTVLTGTKDTVTTGVMGAVNLAKGTVQTGVETSKAVLTGTKDAVST
NOV32e
NOV32f
NOV32g
NOV32a GLTGAVNV-ARGSIQTGVDTSKTVLTGTKDTVCSGVTGAMNVAKGTIQTGVDTSKTVLTGT
NOV32b GVTGAANVAKGAVQGGLDTTKSVLTGTKDTVSTGLTGAVNLAKGTVQTGVDTSKTVLTGT
NOV32C GVTG-A-yi--t-WAKGTIQTGVDTSKTVLTGTKDTVCSGVTGAMNVAKGTIQTGVDTTKTVLTGT
NOV32d GLTGAVNVARGSIQTGVDTSKTVLTGTKDTVCSGVTSAMNVAKGTIQTGVDTSKTVLTGT
NOV32e
NOV32f
NOV32g
NOV32a -mTVCSGVTGAM-[-WAKGTIQTGVDTSKTVLTGTKDTVCSGVTGAMNVAKGTIQTGVDTTK
NOV32b KDTVCSGVT
NOV32C KNTVCSGVTGAVNLAKEAIQGGLDTTKSMVMGTKDTMSTGLTGAANVAKGAMQTGLNTTQ
NOV32d KDTVCSGVT
NOV32e
NOV32f
NOV32g
NOV32a TVLTGT--a.TVCSGVTGAVNLAKEAIQGGLDTTKSMVMGTKDTMSTGLTGAANVAKGAMQT
NOV32b
NOV32C NIATGTKDTVCSGVTGAMNLARGTIQTGVDTTKIVLTGTKDTVCSGVTGAANVAKGAVQG
NOV32d
NOV32e
NOV32f
NOV32g NOV32a GLNTTQNIATGTKDTVCSGVTGAMNLARGTIQTGVDTTKIVLTGTKDTVCSGVTGAANVA
NOV32b
NOV32c G LDTTKSVLTG
NOV32d
NOV32e
NOV32f
NOV32g
NOV32a KGAVQGGLDTTKSVLTGTKDAVSTGLTGAVNVAKGTVQTGVDTTKTVLTGTKDTVCSGVT
NOV32b
NOV32C
NOV32d
NOV32e
NOV32f
NOV32g
NOV32a SAVNVAKGAVQGGLDTTKSWIGTKDTMSTGLTGAANVAKGAVQTGVDTAKTVLTGTKDT
NOV32b
NOV32C TKDA
NOV32d
NOV32e
NOV32f
NOV32g
NOV32a VTTGLVGAVNVAKGTVQTGMDTTKTVLTGTKDTIYSGVTSAVNVAKGAVQTGLKTTQNIA
NOV32b
NOV32c VSTGLTGAVNVAKGTVQTGVDTTKTVLTGTKDTVCSGVTSAVNVAKGAVQGGLDTTKSW
NOV32d
NOV32e
NOV32f
NOV32g
NOV32a TGTKNTFGSGVTSAVNVAKGAAQTGVDTAKTVLTGTKDTVTTGLMGAVNVAKGTVQTSVD
NOV32b
NOV32c IGTKDTMSTGLTGAANVAKGAVQTGVDTAKTVLTGTKDTVTTGLVGAVNVAKGTVQTGMD
NOV32d
NOV32e
NOV32f
NOV32g
NOV32a TTKTVLTGTKDTVCSGVTGAANVAKGAIQGGLDTTKSVLTGTKDAVSTGLTGAVKLAKGT
NOV32b
NOV32C TTKTVLTGTKDTIYSGVTSAVNVAKGAVQTGLKTTQNIATGTKNTFGSGVTSAVNVAKGA
NOV32d
NOV32e
NOV32f
NOV32g
NOV32 a VQTGMDTTKTVLTGT-KDAVCSGVTGAANVAKGAVQMGVDTAKTVLTGTKDTVCSGVTGAA
NOV32b
NOV32 C AQTGVDTAKTVLTGT---03TVTTGLMGAVNVAKGTVQTSVDTTKTVLTGTKDTVCSGVTGAA
NOV32d
NOV32e
NOV32 f
NOV32g
NOV32 a NVAKGAVQTGL--- rTQNIATGT-- TLGSGVTGAAKVAKGAVQGGLDTTKSVLTGTKDAVST
NOV32b
NOV32 C NV-AKGAIQGGLDTTKSVlTGT-roAVSTGLTGAV-i-ai-AKGTVQTGMDTTKTVLTGT-KDAVCS NOV32d
NOV32e
NOV32f
NOV32g
NOV32a GLTGAVNLAKGTVQTGVDTSKTVLTGTKDTVCSGVTGAVNVAKGTVQTGVDTAKTVLSGA
NOV32b GAVNVAKGTVQTGVDTAKTVLSGA
NOV32c GVTGAANVAKGAVQMGVDTAKTVLTGTKDTVCSGVTGAANVAKGAVQTGLKTTQNIATGT
NOV32d GAVNVAKGTVQTGVDTAKTVLSGA
NOV32e
NOV32f
NOV32g
NOV32a --- AVTTGVTGAVNVAKGTVQTGVDASKAVLMGTKDTVFSGVTGAMSMAKGAVQGGLDTTK
NOV32b KDAVTTGVTGAVNVAKGTVQTGVDASKAVLMGTKDTVFSGVTGAMSMAKGAVQGGLDTTK
NOV32c KNTLGSGVTGAAKVAKGAVQGGLDTTKSVLTGTKDAVSTGLTGAVNLAKGTVQTGVDTSK
NOV32d KDAVTTGVTGAVNVAKGTVQTGVDASKAVLMGTKDTVFSGVTGAMSMAKGAVQGGLDTTK
NOV32e
NOV32f
N0V32g
NOV32a TVLTGTKDAVSAGLMGSGNVATGATHTGLSTFQNWLPSTPATSWGGLTSSRTTDNGGEQT
NOV32b TVLTGTKDAVSAGLMGSGNVATGATHTGLSTFQNWLPSTPATSWGGLTSSRTTDNGGEQT
NOV32C TVLTGTKDTVCSGVTGAV-NVAKGTVQTGVDTAKTVLSGAiωAVTTGVTGAVNVAKGTVQT
NOV32d TVLTGTKDAVSAGLMGSGNVATGATHTGLSTFQNWLPSTPATSWGGLTSSRTTDNGGEQT
NOV32e
NOV32f
NOV32g
NOV32a ALSPQEAPFSGISTPPDVLSVGPEPAWEAAATTKGLATDVATFTQGAAPGREDTGL-LAT
NOV32b ALSPQEAPFSGISTPPDVLSVGPEPAWEAAATTKGLATDVATFTQGAAPGREDTGL-LTT
NOV32C GVDASKAVLMGTKDTVFSGVTGAMSMAKGAVQGGLDTTKTVLTGTKDAVSAGLMGSGNVA
NOV32d ALSPQEAPFSGISTPPDVLSVGPEPAWEAAATTKGLATDVATFTQGAAPGREDTGL-LTT
NOV32e
NOV32f
NOV32g
NOV32a THGPΞEAPRLAMLQNELEGLGDIFHPMNAEEQAQLAASQPGPKVLSAEQGSYFVRLGDLG
NOV32b THGPEEAPRLAMLQNELEGLGDIFHPMNAEEQAQLAASQPGPKVLSAEQGSYFVRLGDLG
NOV32c TGATHTGLSTFQNWLPSTPATSWGGLTSSRTTAQLAASQPGPKVLSAEQGSYFVRLGDLG
NOV32d THGPEEAPRLAMLQNELEGLGDIFHPMNAEEQAQLAASQPGPKVLSAEQGSYFVRLGDLG
NOV32e
NOV32f
NOV32g
NOV32a PSFRQRAFEHAVSHLQHGQFQARDTLAQLQDCFRLIEKAQQAPEGQPRLDQGSGASAEDA
NOV32b PSFRQRAFEHAVSHLQHGQFQARDTLAQLQDCFRLIEKAQQAPEGQPRLDQGSGASAEDA
NOV32C PSFRQRAFEHAVSHLQHGQFQARDTLAQLQDCFRLIEKAQQAPEGQPRLDQGSGASAEDA
NOV32d PSFRQRAFEHAVSHLQHGQFQARDTLAQLQDCFRLIEKAQQAPEGQPRLDQGSGASAEDA
NOV32e KIEKAQQAPEGQPRLDQGSGASAEDA
NOV32f KIEKAQQAPEGQPRLDQGSGASAEDA
NOV32g KIEKAQQAPEGQPRLDQGSGASAEDA
NOV32a AVQEERDAGVLSRVCGLLRQLHTAYSGLVSSLQGLPAELQQPVGRARHSLCELYGIVASA
NOV32b AVQEERDAGVLSRVCGLLRQLHTAYSGLVSSLQGLPAELQQPVGRARHSLCELYGIVASA
NOV32C AVQER VCGLLRQLHTAYSGLVSSLQGLPAELQQPVGRARHSLCELYGIVASA
NOV32d AVQEERDAGVLSRVCGLLRQLHTAYSGLVSSLQGLPAELQQPVGRARHSLCELYGIVASA
NOV32e AVQEERDAGVLSRVCGLLRQLHTAYSGLVSSLRGLPAELQQPVGRARHSLCELYGIVASA
NOV32f AVQEERDAGVLSRVCGLLRQLHTAYSGLVSSLQGLPAELQQPVGRARHSLCELYGIVASA
NOV32g AVQEERDAGVLSRVCGLLRQLHTAYSGLVSSLQGLPAELQQPVGRARHSLCELYGIVASA NOV32a GSVEELPAERLVQSREGVHQAWQGLEQLLEGLQHNPPLSWLVGPFALPAGGQ-- NOV32b GSVEELPAERLVQSREGVHQAWQGLEQLLEGLQHNPPLSWLVGPFALPAGGQ-- NOV32C GSVEELPAERLVQSREGVHQAWQGLEQLLEGLQHNPPLSWLVGPFALPAGGQ- - NOV32d GSVEELPAERLVQSREGVHQAWQGLEQLLEGLQHNPPLSWLVGPFALPAGGQLE NOV32e GSVEELPAERLVQSREGVHQAWQGLEQLLEGLQHNPPLSWLVGPFALPAGGQ-- NOV32f GSVEELPAERLVQSREGVHQAWQGLEQLLEGLQHNPPLS LVGPFALPAGGQ- - NOV32g GSVEELPAERLVQSREGVHQAWQGLEQLLEGLQHNPPLS LVGPFALPAGGQ- -
NOV32a (SEQ ID NO 794) NOV32b (SEQ ID NO 796) NOV32C (SEQ ID NO 798) NOV32d (SEQ ID NO 800) NOV32e (SEQ ID NO 802) NOV32f (SEQ ID NO 804) NOV32g (SEQ ID NO 806)
Further analysis ofthe NOV32aprotein yielded the following properties shown in Table 32C.
Table 32C. Protein Sequence Properties NOV32a
SignalP analysis: No Known Signal Sequence Predicted
PSORT π analysis:
PSG: a new signal peptide prediction method
N-region: length 10; pos.chg 2; neg.chg 3 H-region: length 2; peak value 0.00 PSG score: -4.40
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -4.76 possible cleavage site: between 32 and 33
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al ' s method for TM region allocation Init position for calculation: 1
Tentative number of TMS(s) for the threshold 0.5: 0 number of TMS(s) .. fixed PERIPHERAL Likelihood = 1.43 (at 106) ALOM score: 1.43 (number of TMSs : 0)
MITDISC: discrimination of mitochondrial targeting seq R content: 0 Hyd Moment (75): 6.59 Hyd Moment (95): 5.57 G content: 0 D/E content: 2 S/T content: 1 Score: -6.74
Gavel: prediction of cleavage sites for mitochondrial preseq cleavage site motif not found
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite: none content of basic residues : 8.6% NLS Score: -0.47 KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals: none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif: none
Actinin-type actin-binding motif : type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif: none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail : none
Dileucine motif in the tail: none checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding moti s: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: cytoplasmic Reliability: 94.1
COIL: Lupas ' s algorithm to detect coiled-coil regions total : 0 residues
Final Results (k = 9/23) :
56.5 %: cytoplasmic
26.1 %: nuclear
13.0 % : mitochondrial
4.3 %: vesicles of secretory system
>> prediction for CG55906-04 is cyt (k=23)
A search of the NOV32a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 32D.
In a BLAST search of public sequence databases, the NOV32a protein was found to have homology to the proteins shown in the BLASTP data in Table 32E.
PFam analysis predicts that the NOV32a protein contains the domains shown in the Table 32F.
Example 33.
The NOV33 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 33 A. Table 33A. NO 33 Sequence Analysis
NOV33a, CG55908-01 SEQ ID NO: 813 840 bp DNA Sequence ORF Start: at 2 ORF Stop: TAA at 836
GGCCTCCGGGATTTGCTACCTTTTTGGCTCCCTGCTCGTCGAACTGCTCTTCTCACGGGCTGTCGCCT CAATCTGGACGTGATGGGTGCCTTGCGCAAGGAGGGCGAGCCAGGCAGCCTCTTCGGCTTCTCTGTG GCCCTGCACCGGCAGTTGCAGCCCCGACCCCAGAGCTGGCTGCTGGTGGGTGCTCCCCAGGCCCTGGC CTTCCTGGGCAGCAGGCGAATCGCACTGGAGGCCTCTTCGCTTGCCCGTTGAGCCTGGAGGAGACTG ACTGCTACAGAGTGGACATCGACCAGGGAGCTGATATGCAAAAGGAAAGCAAGGAGAACCAGTGGTTG GGAGTCAGTGTTCGGAGCCAGGGGCCTGGGGGCAAGATTGTTGACTGCGCCCGGGGCACGGCCAACTG TGTGGTGTTCAGCTGCCCACTCTACAGCTTTGACCGCGCGGCTGTGCTGCATGTCTGGGGCCGTCTCT GGAACAGCACCTTTCTGGAGGAGTACTCAGCTGTGAAGTCCCTGGAAGTGATTGTCCGGGCCAACATC ACAGTGAAGTCCTCCATAAAGAACTTGATGCTCCGAGATGCCTCCACAGTGATCCCAGTGATGGTATA CTTGGACCCCATGGCTGTGGTGGCAGAAGGAGTGCCCTGGTGGGTCATCCTCCTGGCTGTACTGGCTG GGCTGCTGGTGCTAGCACTGCTGGTGCTGCTCCTGTGGAAGTGTGGCTTCTTCCATCGGAGCAGCCAG AGCTCATCTTTTCCCACCAACTATCACCGGGCCTGTCTGGCTGTGCAGCCTTCAGCCATGGAAGTTGG GGGTCCAGGGACTGTGGGGTAACT
NOV33a, CG55908-01 SEQ ID NO: 814 278 aa MW at 30129.7kD Protein Sequence
ASGICYLFGS VELLFSRAVAFNLDVMGALRKEGEPGS F6FSVALHRQLQPRPQS LLVGAPQALA: LPGQQANRTGGLFACP S EETDCYRVDIDQGADMQKESKENQW GVSVRSQGPGGKIVDCARGTANC WFS CP YS FDRAAVLHVWGRLWN STFLEE YS AVKSLE VI VRANITVKS S I KN MLRDASTVI VMVY LDP- AVVAEGVP VILLAV AGLLVLA LVIiLL KCGFFHRSSQSSSFPTNYHRACLAVQPSAMEVG GPGTVG
NOV33b, 253116407 |SEQ ID NO: 815 |780 bp DNA Sequence ORF Start: at 1 ORF Stop: end of sequence
GGATCCTTCAATCTGGACGTGATGGGTGCCTTGCGCAAGGAGGGCGAGCCAGGCAGCCTCTTCGGCTT CTCTGTGGCCCTGCACCGGCAGTTGCAGCCCCGACCCCAGAGCTGGCTGCTGGTGGGTGCTCCCCAGG CCCTGGCTCTTCCTGGGCAGCAGGCGAATCGCACTGGAGGCCTCTTCGCTTGCCCGTTGAGCCTGGAG GAGACTGACTGCTACAGAGTGGACATCGACCAGGGAGCTGATATGCAAAAGGAAAGCAAGGAGAACCA GTGGTTGGGAGTCAGTGTTCGGAGCCAGGGGCCTGGGGGCAAGATTGTTGACTGCGCCCGGGGCACGG CCAACTGTGTGGTGTTCAGCTGCCCACTCTACAGCTTTGACCGCGCGGCTGTGCTGCATGTCTGGGGC CGTCTCTGGAACAGCACCTTTCTGGAGGAGTACTCAGCTGTGAAGTCCCTGGAAGTGATTGTCCGGGC CAACATCACAGTGAAGTCCTCCATAAAGAACTTGATGCTCCGAGATGCCTCCACAGTGATCCCAGTGA TGGTATACTTGGACCCCATGGCTGTGGTGGCAGAAGGAGTGCCCTGGTGGGTCATCCTCCTGGCTGTA CTGGCTGGGCTGCTGGTGCTAGCACTGCTGGTGCTGCTCCTGTGGAAGTGTGGCTTCTTCCATCGGAG CAGCCAGAGCTCATCTTTTCCCACCAACTATCACCGGGCCTGTCTGGCTGTGCAGCCTTCAGCCATGG AAGTTGGGGGTCCAGGGACTGTGGGGCTCGAG
NOV33b, 253116407 SEQ ID NO: 816 260 aa MW at 28204.4kD Protein Sequence
GSFNLDVMGALRKEGEPGS FGFSVALHRQLQPRPQS L VGAPQALALPGQQANRTGG FACPLSLE ETDCYRVDIDQGADMQKESKENQ GVSVRSQGPGGKIVDC-?-RGTANCVVFSCPLYSFDRAAVLHV G RL STFLEEYSAVKSLEVIVR-AWITVKSSIKNLMLRDASTVIPVMVYLDPMAVVAEGVP WVILLAV LAGLLVL ALLV LL KCGFFHRS S QS S S FPTNYHRACLAVQPS ME VGGPGTVGLE
NOV33c, 253116412 SEQ ID NO: 817 567 bp DNA Sequence ORF Start: at 1 PRF Stop: end of sequence
GGATCCTTCAATCTGGACGTGATGGGTGCCTTGCGCAAGGAGGGCGAGCCAGGCAGCCTCTTCGGCTT CTCTGTGGCCCTGCACCGGCAGTTGCAGCCCCGACCCCAGAGCTGGCTGCTGGTGGGTGCTCCCCAGG CCCTGGCTCTTCCTGGGCAGCAGGCGAATCGCACTGGAGGCCTCTTCGCTTGCCCGTTGAGCCTGGAG GAGACTGACTGCTACAGAGTGGACATCGACCAGGGAGCTGATATGCAAAAGGAAAGCAAGGAGAACCA GTGGTTGGGAGTCAGTGTTCGGAGCCAGGGGCCTGGGGGCAAGATTGTTGACTGCGCCCGGGGCACGG CCAACTGTGTGGTGTTCAGCTGCCCACTCTACAGCTTTGACCGCGCGGCTGTGCTGCATGTCTGGGGC CGTCTCTGGAACAGCACCTTTCTGGAGGAGTACTCAGCTGTGAAGTCCCTGGAAGTGATTGTCCGGGC CAACATCACAGTGAAGTCCTCCATAAAGAACTTGATGCTCCGAGATGCCTCCACAGTGATCCCAGTGA TGGTATACTTGGACCCCCTCGAG NOV33c, 253116412 SEQ ID NO: 818 189 aa MW at 20685.5kD Protein Sequence
GSFN DVMGA RKEGEPGS FGFSVA HRQLQPRPQSWL VGAPQALA PGQQANRTGGLFACPLS-iE ETDCYRVDIDQG-ADMQIΕS-KΕNQ GVSVRSQGPGGKIVDC-ARGT-ANCVVFSCPLYSFDR-AAV /WG RL STFLEEYSAVKSLEVIVRANITVKSSI -N MLRDAS VIPVMVYLDPLE
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 33B.
Table 33B. Comparison of the NOV33 protein sequences.
NOV33a ASGICY FGSLLVE LFSRAVAFNLDVMGALRKEGEPGSLFGFSV-ALHRQLQPRPQS L
NOV33b GSFNLDVMG-ALRKEGEPGSLFGFSV-ALHRQLQPRPQSWLL
NOV33c GSF LDVMGALRKEGEPGS FGFSVA HRQLQPRPQS L
NOV33 a VGAPQALA PGQQANRTGGLFACPLSLEETDC YRVDIDQGADMQKESKENQ GVS VRSQ
NOV33b VGAPQAL-ALPGQQANRTGGLFACPLSLEETDCYRVDIDQGADMQKESKENQWLGVSVRSQ
NOV33 C VGAPQA ALPGQQANRTGG FACPLSLEETDCYRVDIDQGAD QKES ENQW GVSVRSQ
NOV33a GPGGKIVDCARGTANCWFSCPLYSFDRAAVLHVWGRLWNSTFLEEYSAVKSLEVIVRAN
NOV33b GPGGKIVDCARGTA-NCWFSCP YSFDRAAV HV GR WNSTFLEEYSAVKSLEVIVRAN
NOV33 c GPGGKIVDCARGTANCVVFSCPLYSFD-R-AAV HVWGRLWNSTFLEEYSAVKSLEVIVRAN
NOV33 a ITVKS S IK LMLRDASTVIPVMVY DPiMAVVAEGVP WVIL AVLAGLLV ALLVLLLWK
NOV33b ITVKSSIKNLMLRDASTVIPVMVY DPMAVVAEGVP WVILLAVLAGLLVLALLV LLWK
NOV33 c ITVKSS I-KNLML-RDASTVIPVMVYLDPLE
NOV33a CGFFHRSSQSSSFPTNYHRACLAVQPSAMEVGGPGTVG- -
NOV33b CGFFHRSSQSSSFPTNYHRACLAVQPSA EVGGPGTVGLE
NOV33C
NOV33a (SEQ ID NO 814) NOV33b (SEQ ID NO 816) NOV33C (SEQ ID NO 818)
Further analysis of the NOV33a protein yielded the following properties shown in Table 33C.
Table 33C. Protein Sequence Properties NOV33a
SignalP analysis: Cleavage site between residues 23 and 24
PSORT H analysis:
PSG: a new signal peptide prediction method
N-region: length 0; pos.chg 0; neg.chg 0 H-region: length 13; peak value 8.16 PSG score: 3.76
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1) : -0.41 possible cleavage site: between 22 and 23
>» Seems to have a cleavable signal peptide (1 to 22)
ALOM: Klein et al's method for TM region allocation Init position for calculation: 23 Tentative number of TMS(s) for the threshold 0.5: 2
Number of TMS(s) for threshold 0.5: 1
INTEGRAL Likelihood =-15.81 Transmembrane 219 - 235
PERIPHERAL Likelihood = 2.65 (at 136)
ALOM score: -15.81 (number of TMSs : 1)
MTOP: Prediction of membrane topology (Hartmann et al.) Center position for calculation: 11 Charge difference: -2.0 C(-1.0) - N( 1.0) N >= C: N-terminal side will be inside
>>> membrane topology: type la (cytoplasmic tail 236 to 278)
MITDISC: discrimination of mitochondrial targeting seq R content: 1 Hyd Moment (75): 2.41 Hyd Moment (95) : 4.01 G content: 2 D/E content : 2 S/T content : 3 Score: -6.94
Gavel : prediction of cleavage sites for mitochondrial preseq cleavage site motif not found
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite: none content of basic residues: 7.9% NLS Score: -0.47
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals : none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal : none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail: 256
Dileucine motif in the tail: found LL at 236 checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: cytoplasmic Reliability: 94.1
COIL: Lupas ' s algorithm to detect coiled-coil regions total : 0 residues
Final Results (k = 9/23) :
44.4 %: endoplasmic reticulum
22.2 %: Golgi
11. 1 % : plasma membrane
11. 1 % : vesicles of secretory system
11. 1 % : extracellular, including cell wall
>> prediction for CG55908-01 is end (k=9)
A search of the NOV33a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 33D.
In a BLAST search of public sequence databases, the NOV33a protein was found to have homology to the proteins shown in the BLASTP data in Table 33E.
PFam analysis predicts that the NOV33a protein contains the domains shown in the Table 33F.
Table 33F. Domain Analysis of NOV33a
Identities/
Pfam Domain NOV33a Match Region Similarities Expect Value for the Matched Region
Example 34.
The NOV34 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 34A.
CCGTGAATGCCAGCGTGGGGACCGGCGCCTGTGCGGGCCCCGCCTCCCTGAGCCACATGCAGCTCCAC CACCTCGACCCCAAGACTTTCAAGTGCCCACCCACAGAGCTGTCCTGGTTCCAGACGGTGGGGGAGTC GGCACTGAGCGTAGAGCCCTTCTCCTACCAAGGGGAGCCTCACATTGTGCTGGCACAGCCCTTCGCCG GCCGCTGCCTGATTCTCTCCTGGGACTACAGCCTGCAGCGCTTCCGGCCCGAGGAAGAGCTGCCCACA GCGGCCTCCGTGGTGTCCTGCAAGCCACTGGTGCTGGGCCCGAGCCTCTTCGTGCTGGCTGCCCGCCT GTGGGGGGGCTCACAGCTGTGGGCCCGGCCCAGTCCCGGCCTGCGCCTGGCCCCAACGCAGACCCTGG CCCCGCGGCGGCTGCTGCGGCCCAATGACGCCGAGCTCCTGTGGCTGGAAGGGCAACCCTGCTTCGTG GTGGCCGATGCCTCCAAGGCGGGCAGCACCACGCTGCTGTGCCGCGACGGGCCCGGCTTTTACCCGCA CCAGAGCCTGCACGCCTGGCACCGGGACACGGACGCTGAGGCCCTGGAGCTGGACGGCCGGCCCCACC TGCTGCTGGCCTCGGCTTCCCAGCGGCCCGTGCTCTTCCACTGGACCGGTGGCCGCTTCGAGAGACGC ACGGACATCCCCGAGGCCGAGGATGTCTATGCCACACGCCACTTCCAGGCTGGTGGGGACGTGTTCCT GTGCCTCACACGCTACATTGGGGACTCCATGGTGATGCGCTGGGACGGCTCCATGTTTCGTCTGCTGC AGCAACTTCCCTCGCGCGGTGCCCACGTCTTCCAGCCACTGCTCATCGCCAGGGACCAGTTGGCCATC CTAGGCAGCGACTTCGCCTTCAGCCAGGTCCTCCGCCTTGAGCCTGACAAGGGGCTCCTGGAGCCACT GCAGGAGCTGGGGCCTCCGGCCCTGGTGGCCCCCCGTGCCTTTGCCCACATCACTATGGCCGGCAGAC GCTTCCTCTTTGCTGCTTGCTTTAAGGGCCCCACACAGATCTACCAGCATCACGAGATCGACCTCAGT GCCTGAGACCACCAACGGGACTCTGGGCATGGCTGGGGCCCCTGGACGGCCCCTTGGCTGGCTCCTGG
CCCTACTTGGGGTGATGGTCCGCCTGTGAGCTGCTGACCGTGGGCCACGTTCATCAGCCACACGTCTA
GGCCTTAAGCCCACTTCTTAAAGGATCTGCACCCATGGGGGGACATAGAGGGTCCCAGCCTACTGGAC
CTCCCGAGCTGCCCTTCAGGTCTAAAGCAACATCTGGACATCTCGGCTGGGGCAGATTCCCCATCAAA
GGCAACCTGGGGGGTGCAGGCTGGTGCACTGCATGGAGTCGAGGTGGAGGTCACGTGCAGAGCTCCAT
GAGGTCCCGGAGCCCCCCTCTCAACCCGCTCCTACCCCGCTGGTCCCTCTGAAAGCACCGAGGGGTTG lATGGCATTCCTTTCCCATTCTAAACTCCACGCAGCCAATCGCTTTCCTGGAGGAGCGCCAACCTCG
NOV34a, CG56077-06 SEQ ID NO: 820 545 aa MWat60447.7kD Protein Sequence
SRDFGSSQLLLYYIGFLCLFSSLFLLERPPKGKCPLRCSCSKDSALCEGSPDLPVSFSPTLLSLSLVRI TGVTQLKAGSFLRIPSLHLLLFTSNSFSVIEDDAFAGLSHLQYLFIEDNEIGSISKNALRGLRSLTHL; SLANNHLETLPRFLFRGLDTLTHVDLRGNPFQCDCRVLWLLQWMPTVNASVGTGACAGPASLSHMQLH HLDPKTFKCPPTELSWFQTVGESALSVEPFSYQGEPHIVLAQPFAGRCLILSWDYSLQRFRPEEELPT AASVVSCKPLVLGPSLFVLAARL GGSQL ARPSPGLRLAPTQTLAPRRLLRPNDAELL LEGQPCFV VADASKAGSTTLLCRDGPGFYPHQSLHAHRDTDAEALELDGRPHLLLASASQRPVLFH TGGRFERR TDIPEAEDVYATRHFQAGGDVFLCLTRYIGDSMVMRDGSMFRLLQQLPSRGAHVFQPLLIARDQLAI LGSDFAFSQVLRLΞPDKGLLEPLQELGPPALVAPRAFAHITMAGRRFLFAACFKGPTQIYQHHEIDLS
A
NOV34b, CG56077-01 SEQ ID NO: 821 1859 bp
DNA Sequence iORF Start: ATG at 101 ORF Stop: TGA at 1760
GTAACTCCTCTTCATCCACTGGGGAGGAAGGTGAGGCAGGCGGGCCCAATTCATTCGCCTCCGGTACT
TGCAAGCCTCGCTCAGTCTTAAGCAAGAGGGGATGGATTCGCCCGCAGCACTGAGAATCCAGGGGCAG
GCGGGATGGCGTTCAGGCGCTGTTGCTAGAAATCTCTGTCTTTACTCTGTTTTGGTCATTACGGAGGG AAGACAGCCCCCAAAGGGAAAGTGTCCCCTGCGCTGCTCCTGCTCTAAAGACAGCGCCCTGTGTGAGG GCTCCCCGGACCTGCCCGTCAGCTTCTCTCCGACCCTGCTGTCACTCTCACTCGTCAGGACGGGAGTC ACCCAGCTGAAGGCCGGCAGCTTCCTGAGAATTCCGTCTCTGCACCTGCTCCTCTTCACCTCCAACTC CTTCTCCGTGATTGAGGACGATGCATTTGCGGGCCTGTCCCACCTGCAGTACCTCTTCATCGAGGACA ATGAGATTGGCTCCATCTCTAAGAATGCCCTCAGAGGACTTCGCTCGCTTACACACCTAAGCCTGGCC AATAACCATCTGGAGACCCTCCCCAGATTCCTGTTCCGAGGCCTGGACACCCTTACTCATGTGGACCT CCGCGGGAACCCGTTCCAGTGTGACTGCCGCGTCCTCTGGCTCCTGCAGTGGATGCCCACCGTGAATG CCAGCGTGGGGACCGGCGCCTGTGCGGGCCCCGCCTCCCTGAGCCACATGCAGCTCCACCACCTCGAC CCCAAGACTTTCAAGTGCAGAGCCATAGAGCTGTCCTGGTTCCAGACGGTGGGGGAGTCGGCACTGAG CGTAGAGCCCTTCTCCTACCAAGGGGAGCCTCACATTGTGCTGGCACAGCCCTTCGCCGGCCGCTGCC TGATTCTCTCCTGGGACTACAGCCTGCAGCGCTTCCGGCCCGAGGAAGAGCTGCCCGCGGCCTCCGTG GTGTCCTGCAAGCCACTGGTGCTGGGCCCGAGCCTCTTCGTGCTGGCTGCCCGCCTGTGGGGGGGCTC ACAGCTGTGGGCCCGGCCCAGTCCCGGCCTGCGCCTGGCCCCAACGCAGACCCTGGCCCCGCGGCGGC TGCTGCGGCCCAATGACGCCGAGCTCCTGTGGCTGGAAGGGCAACCCTGCTTCGTGGTGGCCGATGCC TCCAAGGCGGGCAGCACCACGCTGCTGTGCCGCGACGGGCCCGGCTTTTACCCGCACCAGAGCCTGCA CGCCTGGCACCGGGACACGGACGCTGAGGCCCTGGAGCTGGACGGCCGGCCCCACCTGCTGCTGGCCT CGGCTTCCCAGCGGCCCGTGCTCTTCCACTGGACCGGTGGCCGCTTCGAGAGACGCACAGACATCCCG AGGGCCGAGGATGTCTATGCCACACGCCACTTCCAGGCTGGTGGGGACGTGTTCCTGTGCCTCACACG CTACATTGGGGACTC CGCGCGGTGCCCACGTCTTCCAGCCACTGCTCATCGCCAGGGACCAGCTGGCCATCCTAGGCAGCGAC TTCGCCTTCAGCCAGGTCCTCCGCCTTGAGCCTGACAAGGGGCTCCTGGAGCCACTGCAGGAGCTGGG GCCTCCGGCCCTGGTGGCCCCCCGTGCCTTTGCCCACATCACTATGGCCGGCAGACGCTTCCTCTTTG CTGCTTGCTTTAAGGGCCCCACACAGATCTACCAGCATCACGAGATCGACCTCAGTGCCTGAGACCAC
CAACGGGACTCTGGGCATGGCTGGGGCCCCTGGACGGCCCCTTGGCTGGCTCCTGGCCCTACTTGGGG
TGATGGCCCGCCTGTGAGCTGCT
NOV34b, CG56077-01 SEQ ID NO: 822 553 aa MW at 61118.5kD Protein Sequence
MDSPAALRIQGQAG RSGAVARNLCLYSVLVITEGRQPPKGKCPLRCSCSKDSALCEGSPDLPVSFSP TLLSLSLVRTGVTQLKAGSFLRIPSLHLLLFTSNSFSVIEDDAFAGLSHLQYLFIEDNEIGSISKNAL RGLRSLTHLSLANNHLETLPRFLFRGLDTLTHVDLRGNPFQCDCRVLWLLQ MPTVNASVGTGACAGP ASLSHMQLHHLDPKTFKCRAIELS FQTVGESALSVEPFSYQGEPHIVLAQPFAGRCLILSWDYSLQR FRPEEELPAASWSCKPLVLGPSLFVLAARL GGSQL ARPSPGLRLAPTQTLAPRRLLRPNDAELL LEGQPCFWADASKAGSTTLLCRDGPGFYPHQSLHA HRDTDAEALELDGRPHLLLASASQRPVLFH TGGRFERRTDIPRAEDVYATRHFQAGGDVFLCLTRYIGDSMVMR DGSMFRLLQQLPSRGAHVFQPLL IARDQLAILGSDFAFSQVLRLEPDKGLLEPLQELGPPALVAPRAFAHITMAGRRFLFAACFKGPTQIY QHHEIDLSA
NOV34c, CG56077-02 SEQ ID NO: 823 1482 bp DNA Sequence ORF Start: at 1 ORF Stop: TGA at 1480
TCCCGAGACTTTGGAAGTTCTCAGCTATTACTTTATTACATAGGATTTCTGTGTCTTTTCTCATCTCT TTTCCTTTTGGAAATTGGAAGACCCCCAAAGGGAAAGTGTCCCCTGCGCTGCTCCTGCTCTAAAGACA GCGCCCTGTGTGAGGGCTCCCCGGACCTGCCCGTCAGCTTCTCTCCGACCCTGCTGTCACTGACTGCC CACATCCCCAGCTCACTCGTCAGGACGGGAGTCACCCAGCTGAAGGCCGGCAGCTTCCTGAGAATTCC GTCTCTGCACCTGCTGCTCTTCACCTCCAACTCCTTCTCCGTGATTGAGGACGATGCATTTGCGGGCC TGTCCCACCTGCAGTACCTGTTCATCGAGGACAATGAGATTGGCTCCATCTCTAAGAATGCCCTCAGA GGACTTCGCTCGCTTACACACCTGAGCCTGGCCAATAACCATCTGGAGACCCTCCCCAGATTCCTGTT CCGAGGCCTGGACACCCTTACTCATGTGGACCTCCGCGGGAACCCGTTCCAGTGTGACTGCCGCGTCC TCTGGCTCCTGCAGTGGATGCCCACCGTGAATGCCAGCGTGGGGACCGGCGCCTGTGCGGGCCCCGCC TCCCTGAGCCACATGCAGCTCCACCACCTCGACCCCAAGACTTTCAAGTGCACAGCGGCCTCCGTGGT GTCCTGCAAGCCACTGGTGCTGGGCCCGAGCCTCTTCGTGCTGGCTGCCCGCCTGTGGGGGGGCTCAC AGCTGTGGGCCCGGCCCAGTCCCGGCCTGCGCCTGGCCCCAACGCAGACCCTGGCCCCGCGGCGGCTG CTGCGGCCCAATGACGCCGAGCTCCTGTGGCTGGAAGGGCAACCCTGCTTCGTGGTGGCCGATGCCTC CAAGGCGGGCAGCACCACGTGCAGCGCTTCCGGCCCGAGGAAGAGCTGCCCGAGCCTGCACGCCTGGC ACCGGGACACGGACGCTGAGGCCCTGGAGCTGGACGGCCGGCCCCACCTGCTGCTGGCCTCGGCTTCC CAGCGGCCCGTGCTCTTCCACTGGACCGGTGGCCGCTTCGAGAGACGCACGGACATCCCCGAGGCCGA GGATGTCTATGCCACACGCCACTTCCAGGCTGGTGGGGACGTGTTCCTGTGCCTCACACGCTACATTG GGGACTCCATGGTCATGCGCTGGGACGGCTCCATGTTTCGTCTGCTGCAGCAACTTCCCTCGCGCGGT GCCCACGTCTTCCAGCCACTGCTCATCGCCAGGGACCAATTGGCCATCCTAGGCAGCGACTTCGCCTT CAGCCAGGTCCTCCGCCTTGAGCCTGACAAGGGGCTCCTGGAGCCACTGCAGGAGCTGGGGCCTCTGG CCCTGGTGGCCCCCCGTGCCTTTGCCCACATCACTATGGCCGGCAGACGCTTCCTCTTTGCTGCTTGC TTTAAGGGCCCCACACAGATCTACCAGCATCACGAGATCGACCTCAGTGCCTGA
NOV34c, CG56077-02 SEQ ID NO: 824 493 aa MW at 54197.8kD Protein Sequence
SRDFGSSQLLLYYIGFLCLFSSLFLLEIGRPPKGKCPLRCSCSKDSALCEGSPDLPVSFSPTLLSLTA HIPSSLVRTGVTQLKAGSFLRIPSLHLLLFTSNSFSVIEDDAFAGLSHLQYLFIEDNEIGSISKNALR GLRSLTHLSLANNHLETLPRFLFRGLDTLTHVDLRGNPFQCDCRVL LLQ MPTVNASVGTGACAGPA SLSHMQLHHLDPKTFKCTAASWSCKPLVLGPSLFVLAARL GGSQL ARPSPGLRLAPTQTLAPRRL LRPNDAELL LEGQPCFVVADASKAGSTTCSASGPRKSCPSL--- HRDTDAEALELDGRPHLLLASAS QRPVLFH TGGRFERRTDIPEAEDVYATRHFQAGGDVFLCLTRYIGDSMVMRWDGSMFRLLQQLPSRG AHVFQPLLIARDQLAILGSDFAFSQVLRLEPDKGLLEPLQELGPLALVAPRAFAHITMAGRRFLFAAC FKGPTQIYQHHEIDLSA
NOV34d, CG56077-03 SEQ ID NO: 825 741 bp DNA Sequence ORF Start: at 1 IORF Stop: end of sequence
ACGGAGGGAAGACAGCCCCCAAAGGGAAAGTGTCCCCTGCGCTGCTCCTGCTCTAAAGACAGCGCCCT GTGTGAGGGCTCCCCGGACCTGCCCGTCAGCTTCTCTCCGACCCTGCTGTCACTCTCACTCGTCAGGA CGGGAGTCACCCAGCTGAAGGCCGGCAGCTTCCTGAGAATTCCGTCTCTGCACCTGCTCCTCTTCACC TCCAACTCCTTCTCCGTGATTGAGGACGATGCATTTGCGGGCCTGTCCCACCTGCAGTACCTCTTCAT CGAGGACAATGAGATTGGCTCCATCTCTAAGAATGCCCTCAGAGGACTTCGCTCGCTTACACACCTAA GCCTGGCCAATAACCATCTGGAGACCCTCCCCAGATTCCTGTTCCGAGGCCTGGACACCCTTACTCAC GTGGACCTCCGCGGGAACCCGTTCCAGTGTGACTGCCGCGTCCTCTGGCTCCTGCAGTGGATGCCCAC CGTGAATGCCAGCGTGGGGACCGGCGCCTGTGCGGGCCCCGCCTCCCTGAGCCACATGCAGCTCCACC ACCTCGACCCCAAGACTTTCAAGTGCAGAGCCATAGAGCTGTCCTGGTTCCAGACGGTGGGGGAGTCG GCACTGAGCGTAGAGCCCTTCTCCTACCAAGGGGAGCCTCACATTGTGCTGGCACAGCCCTTCGCCGG CCGCTGCCTGATTCTCTCCTGGGACTACAGCCTGCAGCGCTTCCGGCCCGAGGAAGAGCTG
NOV34d, CG56077-03 SEQ ID NO: 826 247 aa MW at 27380.0kD Protein Sequence
TEGRQPPKGKCPLRCSCSKDSALCEGSPDLPVSFSPTLLSLSLVRTGVTQLKAGSFLRIPSLHLLLFT SNSFSVIEDDAFAGLSHLQYLFIEDNEIGSISKNALRGLRSLTHLSLANNHLETLPRFLFRGLDTLTH VDLRGNPFQCDCRVLWLLQ MPTVNASVGTGACAGPASLSHMQLHHLDPKTFKCRAIELS FQTVGES ALSVEPFSYQGEPHIVLAQPFAGRCLILS DYSLQRFRPEEEL
NOV34e, CG56077-04 SEQ ID NO: 827 |741 b DNA Sequence O" ORFT? S 0+ta.,r.-+t.: at 1 jORF Stop: end of sequence
ACGGAGGGAAGACAGCCCCCAAAGGGAAAGTGTCCCCTGCGCTGCTCCTGCTCTAAAGACAGCGCCCT GTGTGAGGGCTCCCCGGACCTGCCCGTCAGCTTCTCTCCGACCCTGCTGTCACTCTCACTCGTCAGGA CGGGAGTCACCCAGCTGAAGGCCGGCAGCTTCCTGAGAATTCCGTCTCTGCACCTGCTCCTCTTCACC TCCAACTCCTTCTCCGTGATTGAGGACGATGCATTTGCGGGCCTGTCCCACCTGCAGTACCTCTTCAT CGAGGACAATGAGATTGGCTCCATCTCTAAGAATGCCCTCAGAGGACTTCGCTCGCTTACACACCTAA GCCTGGCCAATAACCATCTGGAGACCCTCCCCAGATTCCTGTTCCGAGGCCTGGACACCCTTACTCAC GTGGACCTCCGCGGGAACCCGTTCCAGTGTGACTGCCGCGTCCTCTGGCTCCTGCAGTGGATGCCCAC CGTGAATGCCAGCGTGGGGACCGGCGCCTGTGCGGGCCCCGCCTCCCTGAGCCACATGCAGCTCCACC ACCTCGACCCCAAGACTTTCAAGTGCAGAGCCATAGAGCTGTCCTGGTTCCAGACGGTGGGGGAGTCG GCACTGAGCGTAGAGCCCTTCTCCTACCAAGGGGAGCCTCACATTGTGCTGGCACAGCCCTTCGCCGG CCGCTGCCTGATTCTCTCCTGGGACTACAGCCTGCAGCGCTTCCGGCCCGAGGAAGAGCTG
NOV34e, CG56077-04 SEQ ID NO: 828 247 aa MW at 27380.0kD Protein Sequence
TEGRQPPKGKCPLRCSCSKDSALCEGSPDLPVSFSPTLLSLSLVRTGVTQLKAGSFLRIPSLHLLLFT SNSFSVIEDDAFAGLSHLQYLFIEDNEIGSISKNALRGLRSLTHLSLANNHLETLPRFLFRGLDTLTH VDLRGNPFQCDCRVLWLLQ MPTVNASVGTGACAGPASLSHMQLHHLDPKTFKCRAIELSWFQTVGES ALSVEPFSYQGEPHIVLAQPFAGRCLILS DYSLQRFRPEEEL
NOV34f, CG56077-05 SEQ ID NO: 829 |741 bp DNA Sequence ORF Start: at 1 jORF Stop: end of sequence
ACGGAGGGAAGACAGCCCCCAAAGGGAAAGTGTCCCCTGCGCTGCTCCTGCTCTAAAGACAGCGCCCT GTGTGAGGGCTCCCCGGACCTGCCCGTCAGCTTCTCTCCGACCCTGCTGTCACTCTCACTCGTCAGGA CGGGAGTCACCCAGCTGAAGGCCGGCAGCTTCCTGAGAATTCCGTCTCTGCACCTGCTCCTCTTCACC TCCAACTCCTTCTCCGTGATTGAGGACGATGCATTTGCGGGCCTGTCCCACCTGCAGTACCTCTTCAT CGAGGACAATGAGATTGGCTCCATCTCTAAGAATGCCCTCAGAGGACTTCGCTCGCTTACACACCTAA GCCTGGCCAATAACCATCTGGAGACCCTCCCCAGATTCCTGTTCCGAGGCCTGGACACCCTTACTCAC GTGGACCTCCGCGGGAACCCGTTCCAGTGTGACTGCCGCGTCCTCTGGCTCCTGCAGTGGATGCCCAC CGTGAATGCCAGCGTGGGGACCGGCGCCTGTGCGGGCCCCGCCTCCCTGAGCCACATGCAGCTCCACC ACCTCGACCCCAAGACTTTCAAGTGCAGAGCCATAGAGCTGTCCTGGTTCCAGACGGTGGGGGAGTCG GCACTGAGCGTAGAGCCCTTCTCCTACCAAGGGGAGCCTCACATTGTGCTGGCACAGCCCTTCGCCGG CCGCTGCCTGATTCTCTCCTGGGACTACAGCCTGCAGCGCTTCCGGCCCGAGGAAGAGCTG
NOV34f, CG56077-05 SEQ ID NO: 830 247 aa MW at 27380.0kD Protein Sequence
TEGRQPPKGKCPLRCSCSKDSALCEGSPDLPVSFSPTLLSLSLVRTGVTQLKAGSFLRIPSLHLLLFT SNSFSVIEDDAFAGLSHLQYLFIEDNEIGSIS---OVT-ALRGLRSLTHLSLANNHLETLPRFLFRGLDTLTH VDLRGNPFQCDCRVL LLQ MPTVNASVGTGACAGPASLSHMQLHHLDPKTFKCRAIELS FQTVGES ALSVEPFSYQGEPHIVLAQPFAGRCLILS DYSLQRFRPEEEL
NOV34g, SNP 13374715 of SEQ ID NO: 831 2106 bp CG56077-06, DNA Sequence ORF Start: at 1 ORF Stop: TGA at 1636 SNP Pos: 1263 SNP Change: C to T
TCCCGAGACTTTGGAAGTTCTCAGCTATTACTTTATTACATAGGATTTCTGTGTCTTTTCTCATCTCT TTTCCTTTTGGAAAGACCCCCAAAGGGAAAGTGTCCCCTGCGCTGCTCCTGCTCTAAAGACAGCGCCC TGTGTGAGGGCTCCCCGGACCTGCCCGTCAGCTTCTCTCCGACCCTGCTGTCACTGTCACTCGTCAGG ACGGGAGTCACCCAGCTGAAGGCCGGCAGCTTCCTGAGAATTCCGTCTCTGCACCTGCTGCTCTTCAC CTCCAACTCCTTCTCCGTGATTGAGGACGATGCATTTGCGGGCCTGTCCCACCTGCAGTACCTGTTCA TCGAGGACAATGAGATTGGCTCCATCTCTAAGAATGCCCTCAGAGGACTTCGCTCGCTTACACACCTG AGCCTGGCCAATAACCATCTGGAGACCCTCCCCAGATTCCTGTTCCGAGGCCTGGACACCCTTACTCA TGTGGACCTCCGCGGGAACCCGTTCCAGTGTGACTGCCGCGTCCTCTGGCTCCTGCAGTGGATGCCCA CCGTGAATGCCAGCGTGGGGACCGGCGCCTGTGCGGGCCCCGCCTCCCTGAGCCACATGCAGCTCCAC CACCTCGACCCCAAGACTTTCAAGTGCCCACCCACAGAGCTGTCCTGGTTCCAGACGGTGGGGGAGTC GGCACTGAGCGTAGAGCCCTTCTCCTACCAAGGGGAGCCTCACATTGTGCTGGCACAGCCCTTCGCCG GCCGCTGCCTGATTCTCTCCTGGGACTACAGCCTGCAGCGCTTCCGGCCCGAGGAAGAGCTGCCCACA GCGGCCTCCGTGGTGTCCTGCAAGCCACTGGTGCTGGGCCCGAGCCTCTTCGTGCTGGCTGCCCGCCT GTGGGGGGGCTCACAGCTGTGGGCCCGGCCCAGTCCCGGCCTGCGCCTGGCCCCAACGCAGACCCTGG CCCCGCGGCGGCTGCTGCGGCCCAATGACGCCGAGCTCCTGTGGCTGGAAGGGCAACCCTGCTTCGTG GTGGCCGATGCCTCCAAGGCGGGCAGCACCACGCTGCTGTGCCGCGACGGGCCCGGCTTTTACCCGCA CCAGAGCCTGCACGCCTGGCACCGGGACACGGACGCTGAGGCCCTGGAGCTGGACGGCCGGCCCCACC TGCTGCTGGCCTCGGCTTCCCAGCGGCCCGTGCTCTTCCACTGGACCGGTGGCCGCTTCGAGAGACGC ACGGACATCCCCGAGGCCGAGGATGTCTATGCCACACGTCACTTCCAGGCTGGTGGGGACGTGTTCCT GTGCCTCACACGCTACATTGGGGACTCCATGGTGATGCGCTGGGACGGCTCCATGTTTCGTCTGCTGC AGCAACTTCCCTCGCGCGGTGCCCACGTCTTCCAGCCACTGCTCATCGCCAGGGACCAGTTGGCCATC CTAGGCAGCGACTTCGCCTTCAGCCAGGTCCTCCGCCTTGAGCCTGACAAGGGGCTCCTGGAGCCACT GCAGGAGCTGGGGCCTCCGGCCCTGGTGGCCCCCCGTGCCTTTGCCCACATCACTATGGCCGGCAGAC GCTTCCTCTTTGCTGCTTGCTTTAAGGGCCCCACACAGATCTACCAGCATCACGAGATCGACCTCAGT GCCTGAGACCACCAACGGGACTCTGGGCATGGCTGGGGCCCCTGGACGGCCCCTTGGCTGGCTCCTGG
CCCTACTTGGGGTGATGGTCCGCCTGTGAGCTGCTGACCGTGGGCCACGTTCATCAGCCACACGTCTA;
GGCCTTAAGCCCACTTCTTAAAGGATCTGCACCCATGGGGGGACATAGAGGGTCCCAGCCTACTGGAC
CTCCCGAGCTGCCCTTCAGGTCTAAAGCAACATCTGGACATCTCGGCTGGGGCAGATTCCCCATCAAA
GGCAACCTGGGGGGTGCAGGCTGGTGCACTGCATGGAGTCGAGGTGGAGGTCACGTGCAGAGCTCCAT
GAGGTCCCGGAGCCCCCCTCTCAACCCGCTCCTACCCCGCTGGTCCCTCTGAAAGCACCGAGGGGTTG
ATGGCATTCCTTTCCCATTCTAAACTCCACGCAGCCAATCGCTTTCCTGGAGGAGCGCCAACCTCG
NOV34g, SNP 13374715 of JSEQ ID NO: 832J545Ja MW at 60447.7kD
CG56077-06, Protein Sequence |SNP Pos: 421 SNP Change: Arg to Arg
SRDFGSSQLLLYYIGFLCLFSSLFLLERPPKGKCPLRCSCSKDSALCEGSPDLPVSFSPTLLSLSLVR TGVTQLKAGSFLRIPSLHLLLFTSNSFSVIEDDAFAGLSHLQYLFIEDNEIGSISKNALRGLRSLTHL SLANNHLETLPRFLFRGLDTLTHVDLRGNPFQCDCRVL LLQ MPTVNASVGTGACAGPASLSHMQLH HLDPKTFKCPPTELS FQTVGESALSVEPFSYQGEPHIVLAQPFAGRCLILS DYSLQRFRPEEELPT AASWSCKPLVLGPSLFVLAARL GGSQL ARPSPGLRLAPTQTLAPRRLLRPNDAELLWLEGQPCFV VADASKAGSTTLLCRDGPGFYPHQSLHAWHRDTDAEALELDGRPHLLLASASQRPVLFH TGGRFERR TDIPEAEDVYATRHFQAGGDVFLCLTRYIGDSMVMR DGSMFRLLQQLPSRGAHVFQPLLIARDQLAI LGSDFAFSQVLRLEPDKGLLEPLQELGPPALVAPRAFAHITMAGRRFLFAACFKGPTQIYQHHEIDLS A
NOV34h, SNP13374714 of SEQ E) NO: 833 2106 bp CG56077-06, DNA Sequence ORF Start: at 1 l O^RF Stop: TGA at 1636
SNP Pos: 1402 SNP Change: C to T
TCCCGAGACTTTGGAAGTTCTCAGCTATTACTTTATTACATAGGATTTCTGTGTCTTTTCTCATCTCT TTTCCTTTTGGAAAGACCCCCAAAGGGAAAGTGTCCCCTGCGCTGCTCCTGCTCTAAAGACAGCGCCC TGTGTGAGGGCTCCCCGGACCTGCCCGTCAGCTTCTCTCCGACCCTGCTGTCACTGTCACTCGTCAGG ACGGGAGTCACCCAGCTGAAGGCCGGCAGCTTCCTGAGAATTCCGTCTCTGCACCTGCTGCTCTTCAC CTCCAACTCCTTCTCCGTGATTGAGGACGATGCATTTGCGGGCCTGTCCCACCTGCAGTACCTGTTCA TCGAGGACAATGAGATTGGCTCCATCTCTAAGAATGCCCTCAGAGGACTTCGCTCGCTTACACACCTG AGCCTGGCCAATAACCATCTGGAGACCCTCCCCAGATTCCTGTTCCGAGGCCTGGACACCCTTACTCA TGTGGACCTCCGCGGGAACCCGTTCCAGTGTGACTGCCGCGTCCTCTGGCTCCTGCAGTGGATGCCCA CCGTGAATGCCAGCGTGGGGACCGGCGCCTGTGCGGGCCCCGCCTCCCTGAGCCACATGCAGCTCCAC CACCTCGACCCCAAGACTTTCAAGTGCCCACCCACAGAGCTGTCCTGGTTCCAGACGGTGGGGGAGTC GGCACTGAGCGTAGAGCCCTTCTCCTACCAAGGGGAGCCTCACATTGTGCTGGCACAGCCCTTCGCCG GCCGCTGCCTGATTCTCTCCTGGGACTACAGCCTGCAGCGCTTCCGGCCCGAGGAAGAGCTGCCCACA GCGGCCTCCGTGGTGTCCTGCAAGCCACTGGTGCTGGGCCCGAGCCTCTTCGTGCTGGCTGCCCGCCT GTGGGGGGGCTCACAGCTGTGGGCCCGGCCCAGTCCCGGCCTGCGCCTGGCCCCAACGCAGACCCTGG CCCCGCGGCGGCTGCTGCGGCCCAATGACGCCGAGCTCCTGTGGCTGGAAGGGCAACCCTGCTTCGTG GTGGCCGATGCCTCCAAGGCGGGCAGCACCACGCTGCTGTGCCGCGACGGGCCCGGCTTTTACCCGCA CCAGAGCCTGCACGCCTGGCACCGGGACACGGACGCTGAGGCCCTGGAGCTGGACGGCCGGCCCCACC TGCTGCTGGCCTCGGCTTCCCAGCGGCCCGTGCTCTTCCACTGGACCGGTGGCCGCTTCGAGAGACGC ACGGACATCCCCGAGGCCGAGGATGTCTATGCCACACGCCACTTCCAGGCTGGTGGGGACGTGTTCCT GTGCCTCACACGCTACATTGGGGACTCCATGGTGATGCGCTGGGACGGCTCCATGTTTCGTCTGCTGC AGCAACTTCCCTCGCGCGGTGCCCACGTCTTCCAGCCACTGTTCATCGCCAGGGACCAGTTGGCCATC CTAGGCAGCGACTTCGCCTTCAGCCAGGTCCTCCGCCTTGAGCCTGACAAGGGGCTCCTGGAGCCACT GCAGGAGCTGGGGCCTCCGGCCCTGGTGGCCCCCCGTGCCTTTGCCCACATCACTATGGCCGGCAGAC GCTTCCTCTTTGCTGCTTGCTTTAAGGGCCCCACACAGATCTACCAGCATCACGAGATCGACCTCAGT GCCTGAGACCACCAACGGGACTCTGGGCATGGCTGGGGCCCCTGGACGGCCCCTTGGCTGGCTCCTGG
CCCTACTTGGGGTGATGGTCCGCCTGTGAGCTGCTGACCGTGGGCCACGTTCATCAGCCACACGTCTA:
GGCCTTAAGCCCACTTCTTAAAGGATCTGCACCCATGGGGGGACATAGAGGGTCCCAGCCTACTGGAC
CTCCCGAGCTGCCCTTCAGGTCTAAAGCAACATCTGGACATCTCGGCTGGGGCAGATTCCCCATCAAA
GGCAACCTGGGGGGTGCAGGCTGGTGCACTGCATGGAGTCGAGGTGGAGGTCACGTGCAGAGCTCCAT
GAGGTCCCGGAGCCCCCCTCTCAACCCGCTCCTACCCCGCTGGTCCCTCTGAAAGCACCGAGGGGTTG
ATGGCATTCCTTTCCCATTCTAAACTCCACGCAGCCAATCGCTTTCCTGGAGGAGCGCCAACCTCG
NOV34h, SNP13374714 of SEQ ID NO: 834 545 aa MW at 60481.7kD CG56077-06, Protein Sequence SNP Pos: 468 SNP Change: Leu to Phe
SRDFGSSQLLLYYIGFLCLFSSLFLLERPPKGKCPLRCSCSKDSALCEGSPDLPVSFSPTLLSLSLVR TGVTQLKAGSFLRIPSLHLLLFTSNSFSVIEDDAFAGLSHLQYLFIEDNEIGSISKNALRGLRSLTHL SL-ANNHLETLPRFLFRGLDTLTHVDLRGNPFQCDCRVLWLLQWMPTVNASVGTGACAGPASLSHMQLH HLDPKTFKCPPTELSWFQTVGESALSVEPFSYQGEPHIVLAQPFAGRCLILSWDYSLQRFRPEEELPT AASWSCKPLVLGPSLFVLAARL GGSQL ARPSPGLRLAPTQTLAPRRLLRPNDAELL LEGQPCFV VADASKAGSTTLLCRDGPGFYPHQSLHA HRDTDAEALELDGRPHLLLASASQRPVLFH TGGRFERR TDIPEAEDVYATRHFQAGGDVFLCLTRYIGDSMVMRWDGSMFRLLQQLPSRGAHVFQPLFIARDQLAI LGSDFAFSQVLRLEPDKGLLEPLQELGPPALVAPRAFAHITMAGRRFLFAACFKGPTQIYQHHEIDLS A
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 34B.
Table 34B. Comparison of the NO V34 protein sequences.
NOV34a SRDFGSSQLLLYYIGFLCLFSSLFLLERPP
NOV34b MDSPAALRIQGQAG RSGAVARNLCLYSVLVITEG RQPP
NOV34C SRDFGSSQLLLYYIGFLCLFSSLFLLEIGRPP
NOV34d TEG RQPP
NOV34e TEG RQPP
NOV34f TEG RQPP
NOV34a KGKCPLRCSCSKDSALCEGSPDLPVSFSPTLLSL SLVRTGVTQLKAGSFLRIPS
NOV34b KGKCPLRCSCSKDSALCEGSPDLPVSFSPTLLSL SLVRTGVTQLKAGSFLRIPS
NOV34C KGKCPLRCSCSKDSALCEGSPDLPVSFSPTLLSLTAHIPSSLVRTGVTQLKAGSFLRIPS
NOV34d KGKCPLRCSCSKDSALCEGSPDLPVSFSPTLLSL SLVRTGVTQLKAGSFLRIPS
NOV34e KGKCPLRCSCSKDSALCEGSPDLPVSFSPTLLSL SLVRTGVTQLKAGSFLRIPS
NOV34f KGKCPLRCSCSKDSALCEGSPDLPVSFSPTLLSL SLVRTGVTQLKAGSFLRIPS
NOV34a LHLLLFTSNSFSVIEDDAFAGLSHLQYLFIEDNEIGSISKN-ALRGLRSLTHLSL-ANNHLE
NOV34b LHLLLFTSNSFSVIEDDAFAGLSHLQYLFIEDNEIGSIS-- -ALRGLRSLTHLSLANNHLE
NOV34C LHLLLFTSNSFSVIEDDAFAGLSHLQYLFIEDNEIGSISKNALRGLRSLTHLSLANNHLE
NOV34d LHLLLFTSNSFSVIEDDAFAGLSHLQYLFIEDNEIGSISKNALRGLRSLTHLSLANNHLE
NOV34e LHLLLFTSNSFSVIEDDAFAGLSHLQYLFIEDNEIGSIS-ravTALRGLRSLTHLSLANNHLE
NOV34f LHLLLFTSNSFSVIEDDAFAGLSHLQYLFIEDNEIGSISKNALRGLRSLTHLSLANNHLE NOV34a TLPRFLFRGLDTLTHVDLRGNPFQCDCRVLWLLQWMPTVNASVGTGACAGPASLSHMQLH
NOV34b TLPRFLFRGLDTLTHVDLRGNPFQCDCRVL LLQ MPTVNASVGTGACAGPASLSHMQLH
NOV34C TLPRFLFRGLDTLTHVDLRGNPFQCDCRVL LLQ MPTVNASVGTGACAGPASLSHMQLH
NOV34d TLPRFLFRGLDTLTHVDLRGNPFQCDCRVL LLQ MPTVNASVGTGACAGPASLSHMQLH
NOV34e TLPRFLFRGLDTLTHVDLRGNPFQCDCRVL LLQ MPTVNASVGTGACAGPASLSHMQLH
NOV34f TLPRFLFRGLDTLTHVDLRGNPFQCDCRVLWLLQWMPTVNASVGTGACAGPASLSHMQLH
NOV34a HLDPKTFKCPP TELSWFQTVGESAL
NOV34b HLDPKTFKCRA IELSWFQTVGESAL
NOV34C HLDPKTFKCTAASWSCKPLVLGPSLFVLAARL GGSQL ARPSPGLRLAPTQTLAPRRL
NOV34d HLDPKTFKCRA IELSWFQTVGESAL
NOV34e HLDPKTFKCRA IELSWFQTVGESAL
NOV34f HLDPKTFKCRA IELSWFQTVGESAL
NOV34a S VEPFSYQGEP
NOV34b S VEPFSYQGEP
NOV34C LRPNDAELLWLEGQPCFWADASKAGSTTCSASGPRKSCPSLHAWHRDTDAEALELDGRP
NOV34d S VEPFSYQGEP
NOV34e S VEPFSYQGEP
NOV34f S VEPFSYQGEP
NOV34a HIVLAQP FAGRCLILS
NOV34b HIVLAQP FAGRCLILS
NOV34C HLLLASASQRPVLFHWTGGRFERRTDIPEAEDVYATRHFQAGGDVFLCLTRYIGDSMVMR
NOV34d HIVLAQP FAGRCLILS
NOV34e HIVLAQP FAGRCLILS
NOV34f HIVLAQP FAGRCLILS
NOV34a WDYSLQRFR PEEELPT
NOV34b WDYSLQRFR PEEELPA
NOV34C WDGSMFRLLQQLPSRGAHVFQPLLIARDQLAILGSDFAFSQVLRLEPDKGLLEPLQELGP
NOV34d WDYSLQRFR PEEEL--
NOV34e WDYSLQRFR PEEEL- -
NOV34f WDYSLQRFR -PEEEL- -
NOV34a AASWSCKPLVLGPSLFVLAARLWGGSQLWARPSPGLRLAPTQTLAPRRLLRPNDAELLW
NOV34b ASWSCKPLVLGPSLFVLAARLWGGSQLWARPSPGLRLAPTQTLAPRRLLRPNDAELLWL
NOV34C LALVAPRAFAHITMAGRRFLFAACFKGPTQIYQHHEIDLSA
NOV34d
NOV34e
NOV34f
NOV34a LEGQPCFWADASKAGSTTLLCRDGPGFYPHQSLHAWHRDTDAEALELDGRPHLLLASAS
NOV34b EGQPCFWADASKAGSTTLLCRDGPGFYPHQSLHAWHRDTDAEALELDGRPHLLLASASQ
NOV34C
NOV34d
NOV34e
NOV34f
NOV34a QRPVLFHWTGGRFERRTDIPEAEDVYATRHFQAGGDVFLCLTRYIGDSMVMRWDGSMFRL
NOV34b RPVLFHWTGGRFERRTDIPRAEDVYATRHFQAGGDVFLCLTRYIGDSMVMRWDGSMFRLL
NOV34C
NOV34d
NOV34e
NOV34f
NOV34a LQQLPSRGAHVFQPLLIARDQLAILGSDFAFSQVLRLEPDKGLLEPLQELGPPALVAPRA
NOV34b QQLPSRGAHVFQPLLIARDQLAILGSDFAFSQVLRLEPDKGLLEPLQELGPPALVAPRAF
NOV34C
NOV34d NOV34e NOV34f
NOV34a FAHITMAGRRFLFAACFKGPTQIYQHHEIDLSA
NOV34b AHITMAGRRFLFAACFKGPTQIYQHHEIDLSA-
NOV34C NOV34d NOV34e NOV34f
NOV34a (SEQ ID NO 820)
NOV34b (SEQ ID NO 822)
NOV34C . (SEQ ID NO 824)
NOV34d (SEQ ID NO 826)
NOV34e (SEQ ID NO 828)
NOV34f (SEQ ID NO 830)
Further analysis ofthe NOV34a protein yielded the following properties shown in Table 34C.
Table 34C. Protein Sequence Properties NOV34a
SignalP analysis: j Cleavage site between residues 26 and 27
PSORT π analysis:
PSG: a new signal peptide prediction method
N-region: length 3; pos.chg 1; neg.chg 1 H-region: length 23; peak value 10.35 PSG score : 5.95
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -5.07 possible cleavage site: between 25 and 26
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al ' s method for TM region allocation Init position for calculation: 1
Tentative number of TMS(s) for the threshold 0.5: : Number of TMS(s) for threshold 0.5: 1 INTEGRAL Likelihood = -5.57 Transmembrane 9 - 25 PERIPHERAL Likelihood = 2.70 (at 82) ALOM score: -5.57 (number of TMSs : 1)
MTOP : Prediction of membrane topology (Hartmann et al . ) Center position for calculation: 16 Charge difference: 2.0 C( 3.0) - N( 1.0) C > N: C-terminal side will be inside
>>>Caution: Inconsistent mtop result with signal peptide »> membrane topology: type lb (cytoplasmic tail 9 to 545)
MITDISC: discrimination of mitochondrial targeting seq R content: 1 Hyd Moment (75): 11.37 Hyd Moment (95): 7.33 G content: 2 D/E content: 2 S/T content: 5 Score: -4.71 Gavel : prediction of cleavage sites for mitochondrial preseq R-2 motif at 47 LRC | SC
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite: none content of basic residues: 8.8% NLS Score: -0.47
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals:
XXRR-like motif in the N-terminus: RDFG none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal : none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif : type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif: none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail : too long tail
Dileucine motif in the tail : found LL at 9 LL at 10 LL at 25 LL at 61 LL at 87 LL at 88 LL at 176 LL at 322 LL at 330 LL at 352 LL at 386 LL at 387 checking 63 PROSITE DNA binding motifs : Leucine zipper pattern (PS00029) : *** found *** LSLANNHLETLPRFLFRGLDTL at 136 none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none NNCN: Reinhardt ' s method for Cytoplasmic/Nuclear discrimination
Prediction : cytoplasmic
Reliability: 89
COIL: Lupas ' s algorithm to detect coiled-coil regions total: 0 residues
Final Results (k = 9/23) :
34.8 %: nuclear
21.7 %: mitochondrial
21.7 %: cytoplasmic
8.7 %: vesicles of secretory system
4.3 %: vacuolar
4.3 %: endoplasmic reticulum
4.3 %: peroxisomal
>> prediction for CG56077-06 is nuc (k=23)
A search of the NOV34a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 34D.
In a BLAST search of public sequence databases, the NOV34a protein was found to have homology to the proteins shown in the BLASTP data in Table 34E.
PFam analysis predicts that the NOV34a protein contains the domains shown in the Table 34F.
Example 35.
The NOV35 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 35A.
Table 35A. NOV35 Sequence Analysis
NOV35a, CG56110-03 ; SEQ ID NO: 835 874 bp DNA Sequence ORF Start: ATG at 1 |ORF Stop: TAA at 871
ATGAGGATATTTGCTGTCTTTATATTCATGACCTACTGGCATTTGCTGAACGCATTTACTGTCACGGT TCCCAAGGACCTATATGTGGTAGAGTATGGTAGCAATATGACAATTGAATGCAAATTCCCAGTAGAAA AACAATTAGACCTGGCTGCACTAATTGTCTATTGGGAAATGGAGGATAAGAACATTATTCAATTTGTG CATGGAGAGGAAGACCTGAAGGTTCAGCATAGTAGCTACAGACAGAGGGCCCGGCTGTTGAAGGACCA GCTCTCCCTGGGAAATGCTGCACTTCAGATCACAGATGTGAAATTGCAGGATGCAGGGGTGTACCGCT GCATGATCAGCTATGGTGGTGCCGACTACAAGCGAATTACTGTGAAAGTCAATGCCCCATACAACAAA ATCAACCAAAGAATTTTGGTTGTGGATCCAGTCACCTCTGAACATGAACTGACATGTCAGGCTGAGGG CTACCCCAAGGCCGAAGTCATCTGGACAAGCAGTGACCATCAAGTCCTGAGTGGTAAGACCACCACCA CCAATTCCAAGAGAGAGGAGAAGCTTTTCAATGTGACCAGCACACTGAGAATCAACACAACAACTAAT GAGATTTTCTACTGCACTTTTAGGAGATTAGATCCTGAGGAAAACCATACAGCTGAATTGGTCATCCC AGAACTACCTCTGGCACATCCTCCAAATGAAAGGACTCACTTGGTAATTCTGGGAGCCATCTTATTAT GCCTTGGTGTAGCACTGACATTCATCTTCCGTTTAAGAAAAGGGAGAATGATGGATGTGAAAAAATGT GGCATCCAAGATACAAACTCAAAGAAGCAAAGTGATACACATTTGGAGGAGACGTAAA
NOV35a, CG56110-03 SEQ ID NO: 836 290 aa MW at 33275.0kD Protein Sequence
MRIFAVFIFMTYWHLLNAFTVTVPKDLYVVEYGSNMTIECKFPVEKQLDLAALIVY EMEDKNIIQFV HGEEDLKVQHSSYRQR-ARLLKDQLSLGNAALQITDVKLQDAGVYRCMISYGGADYKRITVKVNAPYNK INQRILWDPVTSEHELTCQAEGYPKAEVIWTSSDHQVLSGKTTTTNSKREEKLFNVTSTLRINTTTN EIFYCTFRRLDPEENHTAELVIPELPLAHPPNERTHLVILGAILLCLGVALTFIFRLRKGR DVKKC GIQDTNSK-KQSDTHLEET
NOV35b, CG56110-07 720 bp DNA Sequence ORF Start: ATG at 3 ORF Stop: TAG at 510
TCATGACCTACTGGCATTTGCTGAACGCATTTACTGTCACGGTTCCCAAGGACCTATATGTGGTAGAG TATGGTAGCAATATGACAATTGAATGCAAATTCCCAGTAGAAAAACAATTAGACCTGGCTGCACTAAT TGTCTATTGGGAAATGGAGGATAAGAACATTATTCAATTTGTGCATGGAGAGGAAGACCTGAAGGTTC AGCATAGTAGCTACAGACAGAGGGCCCGGCTGTTGAAGGACCAGCTCTCCCTGGGAAATGCTGCACTT CAGATCACAGATGTGAAATTGCAGGATGCAGGGGTGTACCGCTGCATGATCAGCTATGGTGGTGCCGA CTACAAGCGAATTACTGTGAAAGTCAATGCCCCATACAACAAAATCAACCAAAGAATTTTGGTTGTGG ATCCAGTCACCTCTGAACATGAACTGACATGTCAGGCTGAGGGCTACCCCAAGGCCGAAGTCATCTGG ACAAGCAGTGACCATCAAGTCCTGAGTGGAGATTAGATCCTGAGGAAAACCATACAGCTGAATTGGTC
ATCCCAGAACTACCTCTGGCACATCCTCCAAATGAAAGGACTCACTTGGTAATTCTGGGAGCCATCTT
ATTATGCCTTGGTGTAGCACTGACATTCATCTTCCGTTTAAGAAAAGGGAGAATGATGGATGTGAAAA
AATGTGGCATCCAAGATACAAACTCAAAGAAGCAAAGTGG
NOV35b, CG56110-07 SEQ ID NO: 838 169 aa MW at 19327.9kD Protein Sequence
MTYWHLLNAFTVTVPKDLYVVEYGSNMTIECKFPVEKQLDLAALIVY EMEDKNIIQFVHGEEDLKVQ HSSYRQRARLL-..sT)QLSLGN-AALQITDVKLQDAGVYRCMISYGGADY--- .ITVK-VNAPYNKINQRILVVD PVTS EHELTCQAEGYP AEVI TS SDHQVLSGD
NOV35c, 274082305 JSEQ ID NO: 839 900 bp DNA Sequence ORF Start: at 2 ORF Stop: TAA at 887
CACCAGATCTCCCACCATGAGGATATTTGCTGTCTTTATATTCATGACCTACTGGCATTTGCTGAACG CATTTACTGTCACGGTTCCCAAGGACCTATATGTGGTAGAGTATGGTAGCAATATGACAATTGAATGC AAATTCCCAGTAGAAAAACAATTAGACCTGGCTGCACTAATTGTCTATTGGGAAATGGAGGATAAGAA CATTATTCAATTTGTGCATGGAGAGGAAGACCTGAAGGTTCAGCATAGTAGCTACAGACAGAGGGCCC GGCTGTTGAAGGACCAGCTCTCCCTGGGAAATGCTGCACTTCAGATCACAGATGTGAAATTGCAGGAT GCAGGGGTGTACCGCTGCATGATCAGCTATGGTGGTGCCGACTACAAGCGAATTACTGTGAAAGTCAA TGCCCCATACAACAAAATCAACCAAAGAATTTTGGTTGTGGATCCAGTCACCTCTGAACATGAACTGA CATGTCAGGCTGAGGGCTACCCCAAGGCCGAAGTCATCTGGACAAGCAGTGACCATCAAGTCCTGAGT GGTAAGACCACCACCACCAATTCCAAGAGAGAGGAGAAGCTTTTCAATGTGACCAGCACACTGAGAAT CAACACAACAACTAATGAGATTTTCTACTGCACTTTTAGGAGATTAGATCCTGAGGAAAACCATACAG CTGAATTGGTCATCCCAGAACTACCTCTGGCACATCCTCCAAATGAAAGGACTCACTTGGTAATTCTG GGAGCCATCTTATTATGCCTTGGTGTAGCACTGACATTCATCTTCCGTTTAAGAAAAGGGAGAATGAT GGATGTGAAAAAATGTGGCATCCAAGATACAAACTCAAAGAAGCAAAGTGATACACATTTGGAGGAGA CGTAAAGTCGACGGCC
NOV35c, 274082305 SEQ ID NO: 840 295 aa MW at 33817.6kD Protein Sequence
TRS PTMRI FAVFI FMTYWHLLNAFTVTVPKDLYWE YGSNMTIECKFPVEKQLDLAALI VY EMEDKN IIQFVHGEEDL--- /QHSSYRQRARLLi QLSLGNAALQITDV--^QDAGVYRCMISYGGADYKRITVKVN APYNKINQRILVVDPVTSEHELTCQAEGYPKAEVI TSSDHQVLSGKTTTTNSKREEKLFNVTSTLRI NTTTNEIFYCTFRRLDPEENHTAELVIPELPLAHPPNERTHLVILGAILLCLGVALTFIFRLRKGRMM DVKKCGIQDTNSKKQSDTHLEET
NOV35d, CG56110-01 SEQ ID NO: 841 873 bp
DNA Sequence ORF Start: ATG at 1 ORF Stop: TAA at 871
ATGAGGATATTTGCTGTCTTTATATTCATGACCTACTGGCATTTGCTGAACGCATTTACTGTCACGGT TCCCAAGGACCTATATGTGGTAGAGTATGGTAGCAATATGACAATTGAATGCAAATTCCCAGTAGAAA AACAATTAGACCTGGCTGCACTAATTGTCTATTGGGAAATGGAGGATAAGAACATTATTCAATTTGTG CATGGAGAGGAAGACCTGAAGGTTCAGCATAGTAGCTACAGACAGAGGGCCCGGCTGTTGAAGGACCA GCTCTCCCTGGGAAATGCTGCACTTCAGATCACAGATGTGAAATTGCAGGATGCAGGGGTGTACCGCT GCATGATCAGCTATGGTGGTGCCGACTACAAGCGAATTACTGTGAAAGTCAATGCCCCATACAACAAA ATCAACCAAAGAATTTTGGTTGTGGATCCAGTCACCTCTGAACATGAACTGACATGTCAGGCTGAGGG CTACCCCAAGGCCGAAGTCATCTGGACAAGCAGTGACCATCAAGTCCTGAGTGGTAAGACCACCACCA CCAATTCCAAGAGAGAGGAGAAGCTTTTCAATGTGACCAGCACACTGAGAATCAACACAACAACTAAT GAGATTTTCTACTGCACTTTTAGGAGATTAGATCCTGAGGAAAACCATACAGCTGAATTGGTCATCCC AGAACTACCTCTGGCACATCCTCCAAATGAAAGGACTCACTTGGTAATTCTGGGAGCCATCTTATTAT GCCTTGGTGTAGCACTGACATTCATCTTCCGTTTAAGAAAAGGGAGAATGATGGATGTGAAAAAATGT GGCATCCAAGATACAAACTCAAAGAAGCAAAGTGATACACATTTGGAGGAGACGTAA
NOV35d, CG56110-01 SEQ ID NO: 842 290 aa MW at 33275.0kD Protein Sequence
MRIFAVFIFMTY HLLNAFTVTVP--- DLYVVEYGSN TIEC--^PVEKQLDL-A-ALIVY EMEDKNIIQFV HGEEDLKVQHSSYRQR-ARLLKDQLSLGNAALQITDVKLQDAGVYRCMISYGGADY--^ITVKVNAPYNK INQRILWDPVTSEHELTCQAEGYPKAEVI TSSDHQVLSGKTTTTNSKREEKLFNVTSTLRINTTTN EIFYCTFRRLDPEENHTAELVIPELPLAHPPNERTHLVILGAILLCLGVALTFIFRLRKGR DVKKC GIQDTNSKKQSDTHLEET
NOV35e, CG56110-02 JSEQ ID NO: 843 666 bp
DNA Sequence ORF Start: at 1 ORF Stop: end of sequence
TTTACTGTCACGGTTCCCAAGGACCTATATGTGGTAGAGTATGGTAGCAATATGACAATTGAATGCAA ATTCCCAGTAGAAAAACAATTAGACCTGGCTGCACTAATTGTCTATTGGGAAATGGAGGATAAGAACA TTATTCAATTTGTGCATGGAGAGGAAGACCTGAAGGTTCAGCATAGTAGCTACAGACAGAGGGCCCGG CTGTTGAAGGACCAGCTCTCCCTGGGAAATGCTGCACTTCAGATCACAGATGTGAAATTGCAGGATGC AGGGGTGTACCGCTGCATGATCAGCTATGGTGGTGCCGACTACAAGCGAATTACTGTGAAAGTCAATG CCCCATACAACAAAATCAACCAAAGAATTTTGGTTGTGGATCCAGTCACCTCTGAACATGAACTGACA TGTCAGGCTGAGGGCTACCCCAAGGCCGAAGTCATCTGGACAAGCAGTGACCATCAAGTCCTGAGTGG TAAGACCACCACCACCAATTCCAAGAGAGAGGAGAAGCTTTTCAATGTGACCAGCACACTGAGAATCA ACACAACAACTAATGAGATTTTCTACTGCACTTTTAGGAGATTAGATCCTGAGGAAAACCATACAGCT GAATTGGTCATCCCAGAACTACCTCTGGCACATCCTCCAAATGAAAGGACTCAC
NOV35e, CG56110-02 SEQ ID NO: 844 |222 aa IMW at 25431.6kD Protein Sequence
FTOTVPKDLYVVEYGS---V TIECKFPVEKQLDL-AALI W
LLKDQLSLGN-AALQITDV LQDAGVYRC ISYGG-ADYKRITVKVNAPYNKINQRILVVDPVTSEHELT
CQ-AEGYPK--?^VI TSSDHQVLSGKTTTTNSKREEKLFNVTSTLRINTTTNEIFYCTFRRLDPEENHTA ELVIPELPLAHPPNERTH
NOV35f, CG56110-04 SEQ ID NO: 845 745 bp DNA Sequence ORF Start: ATG at 1 ORF Stop: TAG at 535
ATGAGGATATTTGCTGTCTTTATATTCATGACCTACTGGCATTTGCTGAACGCATTTACTGTCACGGT TCCCAAGGACCTATATGTGGTAGAGTATGGTAGCAATATGACAATTGAATGCAAATTCCCAGTAGAAA AACAATTAGACCTGGCTGCACTAATTGTCTATTGGGAAATGGAGGATAAGAACATTATTCAATTTGTG CATGGAGAGGAAGACCTGAAGGTTCAGCATAGTAGCTACAGACAGAGGGCCCGGCTGTTGAAGGACCA GCTCTCCCTGGGAAATGCTGCACTTCAGATCACAGATGTGAAATTGCAGGATGCAGGGGTGTACCGCT GCATGATCAGCTATGGTGGTGCCGACTACAAGCGAATTACTGTGAAAGTCAATGCCCCATACAACAAA ATCAACCAAAGAATTTTGGTTGTGGATCCAGTCACCTCTGAACATGAACTGACATGTCAGGCTGAGGG CTACCCCAAGGCCGAAGTCATCTGGACAAGCAGTGACCATCAAGTCCTGAGTGGAGATTAGATCCTGA
GGAAAACCATACAGCTGAATTGGTCATCCCAGAACTACCTCTGGCACATCCTCCAAATGAAAGGACTC
ACTTGGTAATTCTGGGAGCCATCTTATTATGCCTTGGTGTAGCACTGACATTCATCTTCCGTTTAAGA!
AAAGGGAGAATGATGGATGTGAAAAAATGTGGCATCCAAGATACAAACTCAAAGAAGCAAAGTGG
NOV35f, CG56110-04 SEQ ID NO: 846 178 aa MW at 20453.3kD Protein Sequence
MRIFAVFIFMTY HLLNAFTVTVPI LYVVEYGSNMTIECKFPVEKQLDL-A-ALIVY EMED-KNIIQFV HGEEDLKVQHSSYRQRARLL-raiQLSLGNAALQITDVKLQDAGVYRCMISYGGADYKRITVKVNAPYNK INQRILWDPVTSEHELTCQAEGYPKAEVI TSSDHQVLSGD
NOV35g, CG56110-05 SEQ ID NO: 847
DNA Sequence IORF Start: ATG at 62 JORF Stop: TAA at 932
GCAGCTTCCCGAGGCTCCGCACCAGCCGCGCTTCTGTCCGCCTGCAGGGCATTCCAGAAAGATGAGGA
TATTTGCTGTCTTTATATTCATGACCTACTGGCATTTGCTGAACGCATTTACTGTCACGGTTCCCAAG GACCTATATGTGGTAGAGTATGGTAGCAATATGACAATTGAATGCAAATTCCCAGTAGAAAAACAATT AGACCTGGCTGCACTAATTGTCTATTGGGAAATGGAGGATAAGAACATTATTCAATTTGTGCATGGAG AGGAAGACCTGAAGGTTCAGCATAGTAGCTACAGACAGAGGGCCCGGCTGTTGAAGGACCAGCTCTCC CTGGGAAATGCTGCACTTCAGATCACAGATGTGAAATTGCAGGATGCAGGGGTGTACCGCTGCATGAT CAGCTATGGTGGTGCCGACTACAAGCGAATTACTGTGAAAGTCAATGCCCCATACAACAAAATCAACC AAAGAATTTTGGTTGTGGATCCAGTCACCTCTGAACATGAACTGACATGTCAGGCTGAGGGCTACCCC AAGGCCGAAGTCATCTGGACAAGCAGTGACCATCAAGTCCTGAGTGGTAAGACCACCACCACCAATTC CAAGAGAGAGGAGAAGCTTTTCAATGTGACCAGCACACTGAGAATCAACACAACAACTAATGAGATTT TCTACTGCACTTTTAGGAGATTAGATCCTGAGGAAAACCATACAGCTGAATTGGTCATCCCAGAACTA CCTCTGGCACATCCTCCAAATGAAAGGACTCACTTGGTAATTCTGGGAGCCATCTTATTATGCCTTGG TGTAGCACTGACATTCATCTTCCGTTTAAGAAAAGGGAGAATGATGGATGTGAAAAAATGTGGCATCC AAGATACAAACTCAAAGAAGCAAAGTGATACACATTTGGAGGAGACGTAATCCAGCATTGGAACTTCT GATCTTCAAGCAGGGATTCTCAACCTGTGGTTTAGGGGTTCATCGGGGCTGAGCGTGACAAGAGGAAG GAATGGGCCCGTGGGATGCAGGCAATGTGGGACTTAAAAGGCCCAAGCACTGAAAATGGAACCTGGCG AAAGCAGAGGAGGAGAATGAAGAAAGATGGAGTCAAACAGGGAGCCTGGAGGGAGACCTTGATACTTT CAAATGCCTGAGGGGCTCATCGACGCCTGTGACAGGGAGAAAGGATACTTCTGAACAAGGAGCCTCCA AGCAAATCATCCATTGCTCATCCTAGGAAGACGGGTTGAGAATCCCTAATTTGAGGGTCAGTTCCTGC AGAAGTGCCCTTTGCCTCCACTCAATGCCTCAATTTGTTTTCTGCATGACTGAGAGTCTCAGTGTTGG AACGGGACAGTATTTATGTATGAGTTTTTCCTATTTATTTTGAGTCTGTGAGGTCTTCTTGTCATGTG AGTGTGGTTGTGAATGATTTCTTTTGAAGATATATTGTAGTAGATGTTACAATTTTGTCGCCAAACTA AACTTGCTGCTTAATGATTTGCTCACATCTAGTAAAACATGGAGTATTTGTAAGGTGCTTGGTCTCCT CTATAACTACAAGTATACATTGGAAGCATAAAGATCAAACCGTTGGTTGCATAGGATGTCACCTTTAT TTAACCCATTAATACTCTGGTTGACCTAATCTTATTCTCAGACCTCAAGTGTCTGTGCAGTATCTGTT CCATTTAAATATCAGCTTTACAATTATGTGGTAGCCTACACACATAATCTCATTTCATCGCTGTAACC ACCCTGTTGTGATAACCACTATTATTTTACCCATCGTACAGCTGAGGAAGCAAACAGATTAAGTAACT TGCCCAAACCAGTAAATAGCAGACCTCAGACTGCCACCCACTGTCCTTTTATAATACAATTTACAGCT ATATTTTACTTTAAGCAATTCTTTTATTCAAAAACCATTTATTAAGTGCCCTTGCAATATCAATCGCT GTGCCAGGCATTGAATCTACAGATGTGAGCAAGACAAAGTACCTGTCCTCAAGGAGCTCATAGTATAA TGAGGAGATTAACAAGAAAATGTATTATTACAATTTAGTCCAGTGTCATAGCATAAGGATGATGCGAG GGGAAAACCCGAGCAGTGTTGCCAAGAGGAGGAAATAGGCCAATGTGGTCTGGGACGGTTGGATATAC TTAAACATCTTAATAATCAGAGTAATTTTCATTTACAAAGAGAGGTCGGTACTTAAAATAACCCTGAA AAATAACACTGGAATTCCTTTTCTAGCATTATATTTATTCCTGATTTGCCTTTGCCATATAATCTAAT GCTTGTTTATATAGTGTCTGGTATTGTTTAACAGTTCTGTCTTTTCTATTTAAATGCCACTAAATTTT AAATTCATACCTTTCC^ CATCCTCCAAGCCATTCAAGTTTCCTTTCCAGAAGCAACTGCTACTGCCTTTCATTCATATGTTCTTC
TAAAGATAGTCTACATTTGGAAATGTATGTTAAAAGCACGTATTTTTAAAATTTTTTTCCTAAATAGT
AACACATTGTATGTCTGCTGTGTACTTTGCTATTTTTATTTATTTTAGTGTTTCTTATATAGCAGATG
GAATGAATTTGAAGTTCCCAGGGCTGAGGATCCATGCCTTCTTTGTTTCTAAGTTATCTTTCCCATAG
CTTTTCATTATCTTTCATATGATCCAGTATATGTTAAATATGTCCTACATATACATTTAGACAACCAC
CATTTGTTAAGTATTTGCTCTAGGACAGAGTTTGGATTTGTTTATGTTTGCTCAAAAGGAGACCCATG
GGCTCTCCAGGGTGCACTGAGTCAATCTAGTCCTAAAAAGCAATCTTATTATTAACTCTGTATGACAG! lAATCATGTCTGGAACTTTTGTTTTCTGCTTTCTGTCAAGTATAAACTTCACTTTGATGCTGTACTTGC
AAAATCACATTTTCTTTCTGGAAATTCCGGCAGTGTACCTTGACTGCTAGCTACCCTGTGCCAGAAAA
GCCTCATTCGTTGTGCTTGAACCCTTGAATGCCACCAGCTGTCATCACTACACAGCCCTCCTAAGAGG
CTTCCTGGAGGTTTCGAGATTCAGATGCCCTGGGAGATCCCAGAGTTTCCTTTCCCTCTTGGCCATAT
TCTGGTGTCAATGACAAGGAGTACCTTGGCTTTGCCACATGTCAAGGCTGAAGAAACAGTGTCTCCAA
CAGAGCTCCTTGTGTTATCTGTTTGTACATGTGCATTTGTACAGTAATTGGTGTGACAGTGTTCTTTG
TGTGAATTACAGGCAAGAATTGTGGCTGAGCAAGGCACATAGTCTACTCAGTCTATTCCTAAGTCCTA!
ACTCCTCCTTGTGGTGTTGGATTTGTAAGGCACTTTATCCCTTTTGTCTCATGTTTCATCGTAAATGG!
CATAGGCAGAGATGATACCTAATTCTGCATTTGATTGTCACTTTTTGTACCTGCATTAATTTAATAAA;
ATATTCTTATTTATTTTGTTACTTGGTAAAAAAAAAAAAAAAGCTTCCCGAGGCTCCGCACCAGCCGC
GCTTCTGTCCGCCTGCAGGGCATTCCAGAAAGATGAGGATATTTGCTGTCTTTATATTCATGACCTAC
TGGCATTTGCTGAACGCATTTACTGTCACGGTTCCCAAGGACCTATATGTGGTAGAGTATGGTAGCAA
TATGACAATTGAATGCAAATTCCCAGTAGAAAAACAATTAGACCTGGCTGCACTAATTGTCTATTGGG
AAATGGAGGATAAGAACATTATTCAATTTGTGCATGGAGAGGAAGACCTGAAGGTTCAGCATAGTAGC
TACAGACAGAGGGCCCGGCTGTTGAAGGACCAGCTCTCCCTGGGAAATGCTGCACTTCAGATCACAGA!
ITGTGAAATTGCAGGATGCAGGGGTGTACCGCTGCATGATCAGCTATGGTGGTGCCGACTACAAGCGAA!
TTACTGTGAAAGTCAATGCCCCATACAACAAAATCAACCAAAGAATTTTGGTTGTGGATCCAGTCACC
TCTGAACATGAACTGACATGTCAGGCTGAGGGCTACCCCAAGGCCGAAGTCATCTGGACAAGCAGTGA!
CCATCAAGTCCTGAGTGGTAAGACCACCACCACCAATTCCAAGAGAGAGGAGAAGCTTTTCAATGTGA!
CCAGCACACTGAGAATCAACACAACAACTAATGAGATTTTCTACTGCACTTTTAGGAGATTAGATCCT
GAGGAAAACCATACAGCTGAATTGGTCATCCCAGAACTACCTCTGGCACATCCTCCAAATGAAAGGAC
TCACTTGGTAATTCTGGGAGCCATCTTATTATGCCTTGGTGTAGCACTGACATTCATCTTCCGTTTAA
GAAAAGGGAGAATGATGGATGTGAAAAAATGTGGCATCCAAGATACAAACTCAAAGAAGCAAAGTGAT lACACATTTGGAGGAGACGTAATCCAGCATTGGAACTTCTGATCTTCAAGCAGGGATTCTCAACCTGTG
GTTTAGGGGTTCATCGGGGCTGAGCGTGACAAGAGGAAGGAATGGACCCGTGGGATGCAGGCAATGTG
GGACTTAAAAGGCCCAAGCACTGAAAATGGAACCTGGCGAAAGCAGAGGAGGAGAATGAAGAAAGATG
GAGTCAAACAGGGAGCCTGGAGGGAGACCTTGATACTTTCAAATGCCTGAGGGGCTCATCGACGCCTG
TGACAGGGAGAAAGGATACTTCTGAACAAGGAGCCTCCAAGCAAATCATCCATTGCTCATCCTAGGAA
GACGGGTTGAGAATCCCTAATTTGAGGGTCAGTTCCTGCAGAAGTGCCCTTTGCCTCCACTCAATGCC
TCAATTTGTTTTCTGCATGACTGAGAGTCTCAGTGTTGGAACGGGACAGTATTTATGTATGAGTTTTT
CCTATTTATTTTGAGTCTGTGAGGTCTTCTTGTCATGTGAGTGTGGTTGTGAATGATTTCTTTTGAAG
ATATATTGTAGTAGATGTTACAATTTTGTCGCCAAACTAAACTTGCTGCTTAATGATTTGCTCACATC
TAGTAAAACATGGAGTATTTGTAAGGTGCTTGGTCTCCTCTATAACTACAAGTATACATTGGAAGCAT
AAAGATCAAACCGTTGGTTGCATAGGATGTCACCTTTATTTAACCCATTAATACTCTGGTTGACCTAA
TCTTATTCTCAGACCTCAAGTGTCTGTGCAGTATCTGTTCCATTTAAATATCAGCTTTACAATTATGT
GGTAGCCTACACACATAATCTCATTTCATCGCTGTAACCACCCTGTTGTGATAACCACTATTATTTTA
CCCATCGTACAGCTGAGGAAGCAAACAGATTAAGTAACTTGCCCAAACCAGTAAATAGCAGACCTCAG
ACTGCCACCCACTGTCCTTTTATAATACAATTTACAGCTATATTTTACTTTAAGCAATTCTTTTATTC
AAAAACCATTTATTAAGTGCCCTTGCAATATCAATCGCTGTGCCAGGCATTGAATCTACAGATGTGAG
CAAGACAAAGTACCTGTCCTCAAGGAGCTCATAGTATAATGAGGAGATTAACAAGAAAATGTATTATT lACAATTTAGTCCAGTGTCATAGCATAAGGATGATGCGAGGGGAAAACCCGAGCAGTGTTGCCAAGAGG
AGGAAATAGGCCAATGTGGTCTGGGACGGTTGGATATACTTAAACATCTTAATAATCAGAGTAATTTT
CATTTACAAAGAGAGGTCGGTACTTAAAATAACCCTGAAAAATAACACTGGAATTCCTTTTCTAGCAT
TATATTTATTCCTGATTTGCCTTTGCCATATAATCTAATGCTTGTTTATATAGTGTCTGGTATTGTTT
AACAGTTCTGTCTTTTCTATTTAAATGCCACTAAATTTTAAATTCATACCTTTCCATGATTCAAAATT
CAAAAGATCCCATGGGAGATGGTTGGAAAATCTCCACTTCATCCTCCAAGCCATTCAAGTTTCCTTTC
CAGAAGCAACTGCTACTGCCTTTCATTCATATGTTCTTCTAAAGATAGTCTACATTTGGAAATGTATG
TTAAAAGCACGTATTTTTAAAATTTTTTTCCTAAATAGTAACACATTGTATGTCTGCTGTGTACTTTG
CTATTTTTATTTATTTTAGTGTTTCTTATATAGCAGATGGAATGAATTTGAAGTTCCCAGGGCTGAGGi
ATCCATGCCTTCTTTGTTTCTAAGTTATCTTTCCCATAGCTTTTCATTATCTTTCATATGATCCAGTAi
TATGTTAAATATGTCCTACATATACATTTAGACAACCACCATTTGTTAAGTATTTGCTCTAGGACAGA:
GTTTGGATTTGTTTATGTTTGCTCAAAAGGAGACCCATGGGCTCTCCAGGGTGCACTGAGTCAATCTA!
GTCCTAAAAAGCAATCTTATTATTAACTCTGTATGACAGAATCATGTCTGGAACTTTTGTTTTCTGCT: TTCTGTCAAGTATAAACTTCACTTTGATGCTGTACTTGCAAAATCACATTTTCTTTCTGGAAATTCCG
GCAGTGTACCTTGACTGCTAGCTACCCTGTGCCAGAAAAGCCTCATTCGTTGTGCTTGAACCCTTGAA;
TGCCACCAGCTGTCATCACTACACAGCCCTCCTAAGAGGCTTCCTGGAGGTTTCGAGATTCAGATGCC
CTGGGAGATCCCAGAGTTTCCTTTCCCTCTTGGCCATATTCTGGTGTCAATGACAAGGAGTACCTTGG
CTTTGCCACATGTCAAGGCTGAAGAAACAGTGTCTCCAACAGAGCTCCTTGTGTTATCTGTTTGTACAi
TGTGCATTTGTACAGTAATTGGTGTGACAGTGTTCTTTGTGTGAATTACAGGCAAGAATTGTGGCTGA!
GCAAGGCACATAGTCTACTCAGTCTATTCCTAAGTCCTAACTCCTCCTTGTGGTGTTGGATTTGTAAG;
GCACTTTATCCCTTTTGTCTCATGTTTCATCGTAAATGGCATAGGCAGAGATGATACCTAATTCTGCA
TTTGATTGTCACTTTTTGTACCTGCATTAATTTAATAAAATATTCTTATTTATTTTGTTACTTGGTAC
ACCAGCATGTCCATTTTCTTGTTTATTTTGTGTTTAATAAAATG
NOV35g, CG56110-05 SEQ ID NO: 848 290 aa MW at 33275. OkD Protein Sequence
MRIFAVFIFMTY HLLNAFTVTVPraDLYVVEYGSNMTIECKFPVEKQLDLAALIVY EMED NIIQFV HGEEDLKVQHSSYRQR-ARLL-I^QLSLGNAALQITDVKLQDAGVYRC ISYGGADYKRITVKVNAPYNK INQRILVVDPVTSEHELTCQAEGYPKAEVI TSSDHQVLSGKTTTTNSKREEKLFNVTSTLRINTTTN EIFYCTFRRLDPEENHTAELVIPELPLAHPPNERTHLVILGAILLCLGVALTFIFRLRKGRi MDVKKC GIQDTNSKKQSDTHLEET
NOV35h, CG56110-06 SEQ ID NO: 849 900 bp DNA Sequence JORF Start: ATG at 17 ORF Stop: at 866
CACCAGATCTCCCACCATGAGGATATTTGCTGTCTTTATATTCATGACCTACTGGCATTTGCTGAACG
CATTTACTGTCACGGTTCCCAAGGACCTATATGTGGTAGAGTATGGTAGCAATATGACAATTGAATGC AAATTCCCAGTAGAAAAACAATTAGACCTGGCTGCACTAATTGTCTATTGGGAAATGGAGGATAAGAA CATTATTCAATTTGTGCATGGAGAGGAAGACCTGAAGGTTCAGCATAGTAGCTACAGACAGAGGGCCC GGCTGTTGAAGGACCAGCTCTCCCTGGGAAATGCTGCACTTCAGATCACAGATGTGAAATTGCAGGAT GCAGGGGTGTACCGCTGCATGATCAGCTATGGTGGTGCCGACTACAAGCGAATTACTGTGAAAGTCAA TGCCCCATACAACAAAATCAACCAAAGAATTTTGGTTGTGGATCCAGTCACCTCTGAACATGAACTGA CATGTCAGGCTGAGGGCTACCCCAAGGCCGAAGTCATCTGGACAAGCAGTGACCATCAAGTCCTGAGT GGTAAGACCACCACCACCAATTCCAAGAGAGAGGAGAAGCTTTTCAATGTGACCAGCACACTGAGAAT CAACACAACAACTAATGAGATTTTCTACTGCACTTTTAGGAGATTAGATCCTGAGGAAAACCATACAG CTGAATTGGTCATCCCAGAACTACCTCTGGCACATCCTCCAAATGAAAGGACTCACTTGGTAATTCTG GGAGCCATCTTATTATGCCTTGGTGTAGCACTGACATTCATCTTCCGTTTAAGAAAAGGGAGAATGAT GGATGTGAAAAAATGTGGCATCCAAGATACAAACTCAAAGAAGCAAAGTGATACACATTTGGAGGAGA CGTAAAGTCGACGGCC
NOV35h, CG56110-06 SEQ ID NO: 850 283 aa MW at 32449.2kD Protein Sequence
MRI FAVFI FMTYWHLLNAFTVTVPKDLYWE YGSNMT I ECKFPVEKQLDLAAL I VYWEMEDKNI I QFV HGEEDLKVQHSSYRQ-R-ARLL-f QLSLGNAALQITDVKLQDAGVYRCMISYGGADYKRITVKVNAPYNK INQRILWDPVTSEHELTCQAEGYPKAEVIWTSSDHQVLSGKTTTTNSKREEKLFNVTSTLRINTTTN EIFYCTFRRLDPEENHTAELVIPELPLAHPPNERTHLVILGAILLCLGVALTFIFRLRKGRMMDVKKC GIQDTNSKKQS
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 35B.
Table 35B. Comparison of the NOV35 protein sequences.
NOV35 a MRIFAVFIFMTYWHLLNAFTVTVPKDLYVVEYGSNMTIECKFPVEKQLDLAALIV
NOV35b MTYWHLLNAFTVTVPKDLYWEYGSNMTIECKFPVEKQLDLAA IV
NOV35 C TRSPTMRIFAVFIFMTY HLLNAFTVTVPKDLYVVEYGSNMTIECKFPVEKQLDLAALIV
NOV35d MRIFAVFIFMTYWHLLNAFTVTVPKDLYWEYGSNMTIECKFPVEKQLDLAALIV
NOV35e FTVTVPKDLYWEYGSNMTIECKFPVEKQLDLAALIV
NOV35 f MRIFAVFIFMTY HLLNAFTVTVPKDLYVVEYGSNMTIECKFPVEKQLDLAALIV
NOV35g MRIFAVFIFMTY HLLNAFTVTVPKDLYVVEYGSNMTIECKFPVEKQLDLAALIV
NOV35h MRIFAVFIFMTY HLLN-AFTVTVP---ODLYVVEYGSNMTIECKFPVEKQLDLAALIV NOV35a YWEMED-- iIQFVHGEEDLKVQHSSYRQR-ARLL-l-sTlQLSLGNAALQITDVKLQDAGVYRCM
NOV35b Y EMEDKNIIQFVHGEEDLKVQHSSYRQRARLLKDQLSLGNAALQITDVKLQDAGVYRCM
NOV35C YWEMEDKNIIQFVHGEEDLKVQHSSYRQRARLLKDQLSLGNAALQITDVKLQDAGVYRCM
NOV35d YWEMEDKNIIQFVHGEEDLKVQHSSYRQRARLLKDQLSLGNAALQITDVKLQDAGVYRCM
NOV35e YWEMEDKNIIQFVHGEEDLKVQHSSYRQRARLLKDQLSLGNAALQITDVKLQDAGVYRCM
NOV35f YWEMEDKNIIQFVHGEEDLKVQHSSYRQRARLLKDQLSLGNAALQITDVKLQDAGVYRCM
NOV35g YWEMEDKNIIQFVHGEEDLKVQHSSYRQRARLLKDQLSLGNAALQITDVKLQDAGVYRCM
NOV35h YWEMEDKNIIQFVHGEEDLKVQHSSYRQRARLLKDQLSLGNAALQITDVKLQDAGVYRCM
NOV35a ISYGGADY-KRITVKVNAPYNKINQRILWDPVTSEHELTCQAEGYPKAEVIWTSSDHQVL
NOV35b ISYGGADYKRITVKVNAPYNKINQRILWDPVTSEHELTCQAEGYPKAEVIWTSSDHQVL
NOV35c ISYGGADY---^ITVIs^mAPYNKINQRILVVDPVTSEHELTCQAEGYPK-AEVIWTSSDHQVL
NOV35d ISYGGADYKRITVKVNAPYNKINQRILWDPVTSEHELTCQAEGYPKAEVIWTSSDHQVL
NOV35e ISYGGADYKRITVKVNAPYNKINQRILWDPVTSEHELTCQAEGYPKAEVIWTSSDHQVL
NOV35f ISYGGADYKRITVKVNAPYNKINQRILWDPVTSEHELTCQAEGYPKAEVIWTSSDHQVL
NOV35g ISYGGADY---α^ITVKVNAPYNKINQRILVVDPVTSEHELTCQAEGYPKAEVIWTSSDHQVL
NOV35h ISYGGADYKRITVKVNAPYNKINQRILWDPVTSEHELTCQAEGYPKAEVIWTSSDHQVL
NOV35a SGKTTTTNSKREEKLFNVTSTLRINTTTNEIFYCTFRRLDPEENHTAELVIPELPLAHPP
NOV35b SGD
NOV35c SGKTTTTNSKREEKLFNVTSTLRINTTTNEIFYCTFRRLDPEENHTAELVIPELPLAHPP
NOV35d SGKTTTTNSKREEKLFNVTSTLRINTTTNEIFYCTFRRLDPEENHTAELVIPELPLAHPP
NOV35e SGKTTTTNSKREEKLFNVTSTLRINTTTNEIFYCTFRRLDPEENHTAELVIPELPLAHPP
NOV35f SGD
NOV35g SGKTTTTNSKREEKLFNVTSTLRINTTTNEIFYCTFRRLDPEENHTAELVIPELPLAHPP
NOV35h SGKTTTTNSKREEKLFNVTSTLRINTTTNEIFYCTFRRLDPEENHTAELVIPELPLAHPP
NOV35a NERTHLVILGAILLCLGVALTFIFRLRKGRMMDVKKCGIQDTNSKKQSDTHLEET
NOV35b
NOV35c NERTHLVILGAILLCLGVALTFIFRLRKGRMMDVKKCGIQDTNSKKQSDTHLEET
NOV35d NERTHLVILGAILLCLGVALTFIFRLRKGRMMDVKKCGIQDTNSKKQSDTHLEET
NOV35e NERTH
NOV35f
NOV35g NΞRTHLVILGAILLCLGVALTFIFRLRKGRMMDVKKCGIQDTNSKKQSDTHLEET
NOV35h NERTHLVILGAILLCLGVALTFIFRLRKGRMMDVKKCGIQDTNSKKQS
NOV35a (SEQ ID NO 836)
NOV35b (SEQ ID NO 838)
NOV35C (SEQ ID NO 840)
NOV35d (SEQ ID NO 842)
NOV35e (SEQ ID NO 844)
NOV35f (SEQ ID NO 846)
NOV35g (SEQ ID NO 848)
NOV35h (SEQ ID NO 850)
Further analysis of the NOV35a protein yielded the following properties shown in Table 35C.
Table 35C. Protein Sequence Properties NOV35a
SignalP analysis: Cleavage site between residues 19 and 20
PSORT E analysis:
PSG: a new signal peptide prediction method
N-region: length 2; pos.chg 1; neg.chg 0 H-region: length 22; peak value 13.04 PSG score: 8.64 GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -3.72 possible cleavage site: between 18 and 19
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al ' s method for TM region allocation
Init position for calculation: 1
Tentative number of TMS(s) for the threshold 0.5: 2 Number of TMS(s) for threshold 0.5: 1
INTEGRAL Likelihood =-11.36 Transmembrane 242 - 25!:
PERIPHERAL Likelihood = 7.90 (at 40)
ALOM score: -11.36 (number of TMSs: 1)
MTOP: Prediction of membrane topology (Hartmann et al.) Center position for calculation: 249 Charge difference: 5.0 C( 5.0) - N( 0.0) C > N: C-terminal side will be inside
>>>Caution: Inconsistent mtop result with signal peptide >>> Single TMS is located near the C-terminus
>>> membrane topology: type Nt (cytoplasmic tail 1 to 241)
MITDISC: discrimination of mitochondrial targeting seq R content: 1 Hyd Moment (75): 5.40 Hyd Moment (95): 9.37 G content: 0 D/E content: 1 S/T content: 3 Score: -2.89
Gavel: prediction of cleavage sites for mitochondrial preseq R-2 motif at 12 MRI | FA
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite: none content of basic residues: 11.7% NLS Score: -0.47
KDEL: ER retention motif in the C-terminus : none
ER Membrane Retention Signals:
XXRR-like motif in the N-terminus: RIFA none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail : too long tail
Dileucine motif in the tail: found LL at 15 LL at 87 checking 63 PROSITE DNA binding motifs : none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: cytoplasmic Reliability: 94.1
COIL: Lupas ' s algorithm to detect coiled-coil regions total: 0 residues
Final Results (k = 9/23)
30 4 % : nuclear
26 1 % : cytoplasmic
13 0 % : Golgi
13 0 % : endoplasmic ret iculum
8 7 % : mitochondrial
4 . 3 % : vesicles of secretory system
4 .3 % : peroxisomal
>> predi ction for CG56110 -03 is nuc (k: =23 )
A search of the NOV35a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 35D.
In a BLAST search of public sequence databases, the NOV35a protein was found to have homology to the proteins shown in the BLASTP data in Table 35E.
PFam analysis predicts that the NOV35a protein contains the domains shown in the Table 35F.
Example 36.
The NOV36 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 36A.
Table 36A. NOV36 Sequence Analysis
NOV36a, CG56383-02 SEQ ID NO: 851 2715 bp
DNA Sequence ORF Start: ATG at 34 I ORF Stop: TAA at 2566
TGCCTGCACTGCAAGTGTCCCCAGGAGGAGCACATGGTGACAGTGATGCCGCTGGAGATGGAGAAGAC:
CATCAGCAAACTCATGTTTGACTTTCAGAGGAACTCGACCTCAGATGATGACTCAGGCTGTGCTTTGG AAGAGTATGCCTGGGTCCCGCCGGGTCTGAAGCCTGAACAGGTACACCAGTACTATAGCTGTCTCCCA GAAGAGAAAGTCCCTTATGTCAACAGTCCTGGAGAGAAACTGCGAATCAAGCAGCTACTACACCAGCT GCCGCCACATGACAATGAGGTAAGGTATTGCAACTCCCTGGATGAGGAAGAGAAGAGGGAGCTGAAGC TTTTCAGCAGCCAGAGGAAACGCGAAAACTTGGGCCGCGGGAATGTCAGGCCTTTCCCAGTCACCATG ACAGGAGCTATTTGTGAACAGTGCGGAGGCCAGATCAATGGTGGAGACATCGCTGTGTTTGCGTCACG CGCTGGCCACGGCGTTTGCTGGCACCCGCCGTGCTTCGTATGCACTGTCTGCAATGAGCTCCTGGTGG ATCTGATCTACTTTTACCAAGATGGGAAGATATACTGTGGCAGGCACCATGCTGAGTGCCTGAAGCCG CGCTGTGCTGCCTGCGATGAGATCATCTTTGCAGATGAATGCACAGAAGCTGAGGGGCGACACTGGCA CATGAAACACTTTTGCTGCTTCGAGTGTGAGACAGTGCTGGGCGGCCAGCGCTACATCATGAAGGAGG GAAGACCCTACTGTTGCCACTGCTTCGAGTCCTTGTATGCAGAATATTGTGACACCTGTGCCCAACAT ATAGGTATCGACCAAGGTCAAATGACCTATGATGGCCAACACTGGCATGCCACTGAGACCTGTTTCTG CTGTGCTCACTGCAAGAAATCCCTCCTGGGGCGGCCATTCCTCCCGAAGCAGGGCCAGATATTCTGCT CACGGGCCTGCAGTGCTGGGGAAGACCCCAATGGTTCTGACTCCTCTGATTCCGCCTTCCAGAACGCC AGGGCCAAGGAGTCCCGGCGCAGTGCCAAAATTGGCAAGAACAAGGGCAAGACGGAGGAGCCCATGCT GAACCAGCACAGCCAGCTGCAAGTGAGTTCTAACCGGCTGTCAGCCGACGTAGACCCCCTGTCACTGC AGATGGACATGCTCAGCCTGTCCAGCCAGACACCCAGCCTCAACCGGGACCCCATCTGGAGGAGCCGG GAAGAGCCCTACCATTATGGGAACAAGATGGAGCAGAACCAGACCCAGAGCCCTCTGCAGCTCCTCAG CCAGTGCAACATCAGAACTTCCTACAGTCCAGGAGGGCAAGGGGCTGGGGCCCAGCCCGAAATGTGGG GCAAGCACTTCAGCAACCCCAAAAGGAGCTCGTCACTGGCCATGACAGGACATGCTGGCAGCTTCATC AAGGAATGCCGAGAAGACTATTACCCGGGGAGGCTGAGATCTCAGGAGAGCTACAGTGATATGTCTAG TCAGAGTTTCAGTGAGACCCGAGGCAGCATCCAAGTCCCCAAATATGAGGAGGAAGAGGAAGAGGAAG GGGGCTTGTCCACTCAGCAGTGTCGGACCCGTCATCCCATCAGTTCCCTGAAATACACAGAGGACATG ACGCCCACAGAGCAGACCCCTCGGGGCTCCATGGAATCCCTGGCCCTGTCTAATGCAACAGGTCTCTC TGCTGATGGTGGTGCCAAGCGCCAGGAGCACCTATCCCGATTTTCCATGCCTGACCTCAGCAAAGACT CTGGAATGAATGTGTCTGAGAAGCTGAGCAACATGGGCACTCTTAACTCGTCCATGCAGTTCCGGAGC GCAGAGTCAGTTCGCAGCCTGCTCTCTGCCCAGCAGTACCAGGAGATGGAGGGAAACCTCCACCAGCT CAGCAACCCCATTGGCTACAGAGACCTGCAGTCCCACGGAAGGATGCATCAGAGCTTTGATTTTGATG GAGGGATGGCGGGCAGCAAGCTGCCAGGGCAGGAGGGCGTGAGGATCCAGCCCATGAGTGAACGCACC CGGAGAAGAGCTACTTCACGCGACGACAACCGCCGTTTCCGACCTCACAGGTCCAGGCGTTCCCGACG CTCTCGCTCCGACAACGCCCTCCACCTGGCCAGCGAACGCGAGGCCATCTCCCGGTTAAAAGATAGGC CCCCTCTGAGAGCCAGGGAGGACTATGACCAATTTATGCGCCAGCGGAGCTTCCAGGAGAGCATGGGG CATGGGTCCCGGAGGGACCTGTACGGCCAGTGCCCTAGGACTGTGTCGGACCTGGCTTTGCAGAATGC CTTTGGGGACCGCTGGGGACCCTACTTCGCCGAGTATGATTGGTGTTCCACCTGCTCCTCCTCTTCAG AGTCTGACAACGAGGGCTATTTCCTAGGAGAACCCATCCCCCAGCCAGCGCGCCTGCGATACGTCACA AGCGATGAGCTGCTGCACAAATACAGCTCCTACGGCCTCCCCAAATCTTCCACATTAGGTGGCAGAGG ACAGTTGCACAGCAGGAAAAGACAGAAGAGCAAAAACTGTATCATTTCTTAATATGATTGGGATCAGG
GAATGGGAGAAGATGGGAGCTAAGAATGTAAAGTCAGAAACTTGCACTGTTTTAAATGTTAAAGCGCT
TTTGGGGGTGGCTTATGGGGGAGAAAAGGGAAAATGCTGTCAGTAGATGGAGGCAAGGTTACA
NOV36a, CG56383-02 SEQ ID NO: 852 844 aa MW at 95613.8kD Protein Sequence
MVTVMPLEMEKTISKLMFDFQRNSTSDDDSGCALEEYAWVPPGLKPEQVHQYYSCLPEEKVPYVNSPG EKLRIKQLLHQLPPHDNEVRYCNSLDEEEKRELKLFSSQRKRENLGRGNVRPFPVTMTGAICEQCGGQ INGGDIAVFASRAGHGVCWHPPCFVCTVCNELLVDLIYFYQDGKIYCGRHHAECLKPRCAACDEIIFA DECTEAEGRHWHMKHFCCFECETVLGGQRYIMKEGRPYCCHCFESLYAEYCDTCAQHIGIDQGQMTYD GQHWHATETCFCCAHCKKSLLGRPFLPKQGQIFCSRACSAGEDPNGSDSSDSAFQNARAKESRRS KI GKNKGKTEEPMLNQHSQLQVSSNRLSADVDPLSLQMDMLSLSSQTPSLNRDPIWRSREEPYHYGNKME QNQTQSPLQLLSQCNIR GCAAGCACTTCAGCAACCCCAAAAGGAGCTCGTCACTGGCCATGACAGGACATGCTGGCAGCTTCATC AAGGAATGCCGAGAAGACTATTACCCGGGGAGGCTGAGATCTCAGGAGAGCTACAGTGATATGTCTAG TCAGAGTTTCAGTGAGACCCGAGGCAGCATCCAAGTCCCCAAATATGAGGAGGAAGAGGAAGAGGAAG GGGGCTTGTCCACTCAGCAGTGTCGGACCCGTCATCCCATCAGTTCCCTGAAATACACAGAGGACATG ACGCCCACAGAGCAGACCCCTCGGGGCTCCATGGAATCCCTGGCCCTGTCTAATGCAACAGGTCTCTC TGCTGATGGTGGTGCCAAGCGCCAGGAGCACCTATCCCGATTTTCCATGCCTGACCTCAGCAAAGACT CTGGAATGAATGTGTCTGAGAAGCTGAGCAACATGGGCACTCTTAACTCGTCCATGCAGTTCCGGAGC GCAGAGTCAGTTCGCAGCCTGCTCTCTGCCCAGCAGTACCAGGAGATGGAGGGAAACCTCCACCAGCT CAGCAACCCCATTGGCTACAGAGACCTGCAGTCCCACGGAAGGATGCATCAGAGCTTTGATTTTGATG GAGGGATGGCGGGCAGCAAGCTGCCAGGGCAGGAGGGCGTGAGGATCCAGCCCATGAGTGAACGCACC CGGAGAAGAGCTACTTCACGCGACGACAACCGCCGTTTCCGACCTCACAGGTCCAGGCGTTCCCGACG CTCTCGCTCCGACAACGCCCTCCACCTGGCCAGCGAACGCGAGGCCATCTCCCGGTTAAAAGATAGGC CCCCTCTGAGAGCCAGGGAGGACTATGACCAATTTATGCGCCAGCGGAGCTTCCAGGAGAGCATGGGG CATGGGTCCCGGAGGGACCTGTACGGCCAGTGCCCTAGGACTGTGTCGGACCTGGCTTTGCAGAATGC CTTTGGGGACCGCTGGGGACCCTACTTCGCCGAGTATGATTGGTGTTCCACCTGCTCCTCCTCTTCAG AGTCTGACAACGAGGGCTATTTCCTAGGAGAACCCATCCCCCAGCCAGCGCGCCTGCGATACGTCACA AGCGATGAGCTGCTGCACAAATACAGCTCCTACGGCCTCCCCAAATCTTCCACATTAGGTGGCAGAGG ACAGTTGCACAGCAGGAAAAGACAGAAGAGCAAAAACTGTATCATTTCTTAATATGATTGGGATCAGG GAATGGGAGAAGATGGGAGCTAAGAATGTAAAGTCAGAAACTTGCACTGTTTTAAATGTTAAAGCGCT
TTTGGGGGTGGCTTATGGGGGAGAAAAGGGAAAATGCTGTCAGTAGATGGAGGCAAGGTTACA
NOV36c, SNP13382513 of SEQ ID NO: 856 844 aa MW at 95673.9kD CG56383-02, Protein Sequence SNP Pos: 319 SNP Change: Ser to Phe
MVTVMPLEMEKTISKLMFDFQRNSTSDDDSGCALEEYAWVPPGLKPEQVHQYYSCLPEEKVPYVNSPG ΞKLRIKQLLHQLPPHDNEVRYCNSLDEEEKRELKLFSSQRKRENLGRGNVRPFPVTMTGAICEQCGGQ INGGDIAVFASRAGHGVCWHPPCFVCTVCNELLVDLIYFYQDGKIYCGRHHAECLKPRCAACDEIIFA DECTEAEGRHWHMKHFCCFECETVLGGQRYIMKEGRPYCCHCFESLYAEYCDTCAQHIGIDQGQMTYD GQHWHATETCFCCAHCKKSLLGRPFLPKQGQIFCSRACSAGEDPNGFDSSDSAFQNARAKESRRSAKI GKNKGKTEEPMLNQHSQLQVSSNRLSADVDPLSLQMDMLSLSSQTPSLNRDPIWRSREEPYHYGNKME QNQTQSPLQLLSQCNIRTSYSPGGQGAGAQPEMWGKHFSNPKRSSSLAMTGHAGSFIKECREDYYPGR LRSQESYSDMSSQSFSETRGSIQVPKYEEEEEEEGGLSTQQCRTRHPISSLKYTEDMTPTEQTPRGSM ESIjALSNATGLSADGGAKRQEHLSRFSMPDLSKDSGMNVSEKLSNMGTLNSSMQFRSAESVRSLLSAQ QYQEMEGNLHQLSNPIGYRDLQSHGRMHQSFDFDGGMAGSKLPGQEGVRIQPMSERTRRRATSRDDNR RFRPHRSRRSRRSRSDNALHLASEREAISRLKDRPPLRAREDYDQFMRQRSFQESMGHGSRRDLYGQC PRTVSDLALQNAFGDRWGPYFAEYDWCSTCSSSSESDNEGYFLGEPIPQPARLRYVTSDELLHKYSSY GLPKSSTLGGRGQLHSRKRQKSKNCIIS
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 36B.
Table 36B. Comparison of the NOV36 protein sequences.
NOV36a MVTVMPLEMEKTISKLMFDFQRNSTSDDDSGCALEEYAWVPPGLKPEQVHQYYSCLPEEK
NOV36b
NOV36a VPYVNSPGEKLRIKQLLHQLPPHDNEVRYCNSLDEEEKRELKLFSSQRKRENLGRGNVRP
NOV36b
NOV36a FPVTMTGAICEQCGGQINGGDIAVFASRAGHGVCWHPPCFVCTVCNELLVDLIYFYQDGK
NOV36b
NOV36a IYCGRHHAECLKPRCAACDEIIFADECTEAEGRHWHMKHFCCFECETVLGGQRYIMKEGR
NOV36b M
NOV36a PYCCHCFESLYAEYCDTCAQHIGIDQGQMTYDGQHWHATETCFCCAHCKKSLLGRPFLPK
NOV36b CFTSQCRALSSSSASPMSLIFLGIDQGQMTYDGQHWHATETCFCCAHCKKSLLGRPFLPK
NOV36a QGQIFCSRACSAGEDPNGSDSSDSAFQNARAKESRRSAKIGKNKGKTEEPMLNQHSQLQV
NOV36b QGQIFCSRACSAGEDPNGSDSSDSAFQNARAKESRRSAKIGKNKGKTEEPMLNQHSQLQV NOV36a SSNRLSADVDPLSLQMDMLSLSSQTPSLNRDPIWRSREEPYHYGNKMEQNQTQSPLQLLS
NOV36b SSNRLSADVDPLSLQMDMLSLSSQTPSLNRDPIWRSREEPYHYGNKMEQNQTQSPLQLLS
NOV36a QCNIRTSYSPGGQGAGAQPEMWGKHFSNPKRSSSLAMTGHAGSFIKECREDYYPGRLRSQ
NOV36b QCNIRTSYSPGGQGAGAQPΞMWGKHFSNPKRSTSLAMTGHAGSFIKECREDYYPGRLRSQ
NOV36a ESYSDMSSQSFSETRGSIQVPKYEEEEEEEGGLSTQQCRTRHPISSLKYTEDMTPTEQTP
NOV36b ESYSDMSSQSFSETRGSIQVPKYEEEEEEEGGLSTQQCRTRHPISSLKYTEDMTPTEQTP
NOV36a RGSMESLALSNATGLSADGGAKRQEHLSRFSMPDLSKDSGMNVSEKLSNMGTLNSSMQFR
NOV36b RGSMESLALSNATGRFCSP
NOV36a SAESVRSLLSAQQYQEMEGNLHQLSNPIGYRDLQSHGRMHQSFDFDGGMAGSKLPGQEGV
NOV36b
NOV36a RIQPMSERTRRRATSRDDNRRFRPHRSRRSRRSRSDNALHLASEREAISRLKDRPPLRAR
NOV36b
NOV36a EDYDQFMRQRSFQESMGHGSRRDLYGQCPRTVSDLALQNAFGDRWGPYFAEYDWCSTCSS
NOV36b
NOV36a SSESDNEGYFLGEPIPQPARLRYVTSDELLHKYSSYGLPKSSTLGGRGQLHSRKRQKSKN
NOV36b
NOV36a CIIS
NOV36b
NOV36a (SEQ ID NO: 852)
NOV36b (SEQ ID NO: 854)
Further analysis of the NOV36a protein yielded the following properties shown in Table 36C.
Table 36C. Protein Sequence Properties NOV36a
SignalP analysis: No Known Signal Sequence Predicted
PSORT II analysis:
PSG: a new signal peptide prediction method
N-region : length 11; pos . chg 1 ; neg. chg 2 H-region: length 3 ; peak value 0 . 00 PSG ' score : -4 .40
GvH: von Heijne ' s method for signal seq. recognition GvH score (threshold: -2 .1) : -10.32 possible cleavage site : between 26 and 27
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al ' s method for TM region allocation Init position for calculation: 1
Tentative number of TMS (s) for the threshold 0 .5 : Number of TMS (s) for threshold 0.5 : 0 PERIPHERAL Likelihood = 8 .54 (at 365) ALOM score : -1.17 (number of TMSs : 0)
MITDISC: discrimination of mitochondrial targeting seq R content: 0 Hyd Moment(75): 5.58
Hyd Moment (95) : 3.29 G content: 0
D/E content: 2 S/T content: 1 Score: -7.15
Gavel: prediction of cleavage sites for mitochondrial preseq cleavage site motif not found
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7: PHRSRRS (4) at 684 bipartite: none content of basic residues: 12.6% NLS Score: -0.13
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals : none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal: found RIKQLLHQL at 72
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif : type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif: CaaX motif in the C-terminus: CIIS if X is S, A, or M, it will be farnesylated otherwise, it will be geranylgeranylated memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail: none
Dileucine motif in the tail : none checking 63 PROSITE DNA binding motifs : Leucine zipper pattern (PS00029) . *** found *** LQVSSNRLSADVDPLSLQMDML at 358
LIM domain signature (PS00478): *** found ***
CEQCGGQINGGDIAVFASRAGHGVCWHPPCFVCTVCNELL at 130 checking 71 PROSITE ribosomal protein motifs : none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: nuclear Reliability: 94.1
COIL: Lupas ' s algorithm to detect coiled-coil regions total : D residues
Final Results (k = 9/23 ) :
73 9 % : nuclear
8 7 % : mitochondrial
8 7 % : plasma membrane
8 7 % : cytoplasmic
>> prediction for CG56383 -02 is nuc (k- =23 )
A search of the NOV36a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 36D.
In a BLAST search of public sequence databases, the NOV36a protein was found to have homology to the proteins shown in the BLASTP data in Table 36E.
Table 36E. Public BLASTP Results for NOV36a
PFam analysis predicts that the NOV36a protein contains the domains shown in the Table 36F.
Example 37.
The NOV37 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 37 A.
Table 37A. NOV37 Sequence Analysis
NOV37a, CG56449-04 SEQ ID NO: 857 877 bp DNA Sequence ORF Start: ATG at 25 ORF Stop: TAG at 535
CCGGAGCTGCCTGTGATGCCGTGAATGGCTCCTGCCTCTGCCCCGCTGGCCGCCGGGGCCCCCGCTGT
GCCGAGACCTGCCCTGCCGGCCTGTACGGCGACAACTGTCGGCATTCCTGCCTCTGCCAGAACGGAGG GACCTGTGACCCTGTCTCAGGCCTGCGAGCACCCCTGTCCCCCTGGCTTCCACGGGGCTGGCCGCCAG GGGTTGTGCTGGTGTCAACATGGAGCCCCCTGCGACCCCATCAGTGGCCGATGCCTCTGCCCTGCCGG CTTCCACGGCCACTTCTGTGAGAGGGATTGCAGAAGGGGCCAGTTTGGGCCCAGCTGCACCCTGCACT GTGACTGCGGGGGTGGGGCTGACTGCGACCCTGTCAGTGGGCAGTGTCACTGTGTGGATGGCTACATG GGGCCCACGTGCCGGGAAGGTGGGCCCCTCCGGCTCCCCGAGAACCCGTCCTTAGCCCAGGGCTCAGC GGGCACACTGCCCGCCTCCAGCAGACCCACATCCCGGAGCGGTGGACCAGCGAGGCACTAGTAGAGGC
AGTCCCGTGGAGCCCGCCTCTCCAGTCCCAGCCAGAGGGGACCCTGGCCTTTGGTGACCACTGAGAAG
GACACTTCACGGGCCCAGAGCTCCTGGTACTGCCCTTCCTTTGAGGGCCGTGGAGGGCTGTGGACAGC
CCAGCAACCTGTCGCTCTTGGAGGCTGGTGTGGCCTTGAGGAGGGAAGCCTCGCATGGCCGCTGGAAG
AGAGGCGTCTCCTGGCCTGGCTCTGCAGAACCCAGGGGCACGCTCTGGGCCTGGGCTGAGGAAGTCCC
GCTCTCCCGCGGCTCTGAGTTGGACTGAGGACAGGTGTGGGCGCCAGTGTGGGTGCAGGCG
NOV37a, CG56449-04 SEQ ID NO: 858 170 aa MW at 17123.1kD Protein Sequence
MAPASAPLAAGAPAVPRPALPACTATTVGIPASARTEGPVT SQACEHPCPPGFHGAGRQGLCWCQHG APCDPISGRC CPAGFHGHFCERDCRRGQFGPSCTLHCDCGGGADCDPVSGQCHCVDGYMGPTCREGG PLRLPEEΓPSLAQGSAGT PASSRPTSRSGGPARH
NOV37b, CG56449-09 SEQ ID NO: 859 5172 bp DNA Sequence ORF Start: ATG at 16 ORF Stop: TAGat4798
GCACCGGCGCGCACGATGTCGTTCCTTGAAGAGGCGAGGGCAGCGGGGCGCGCGGTGGTCCTGGCGTT
GGTGCTGCTGCTGCTCCCCGCCGTGCCCGTGGGCGCCAGCGTTCCGCCGCGGCCCCTGCTCCCGCTGC AGCCCGGCATGCCCCACGTGTGTGCTGAGCAGGAGCTGACCCTGGTGGGCCGCCGCCAGCCGTGCGTG CAGGCCTTAAGCCACACGGTGCCGGTGTGGAGGGCCGGCTGTGGGTGGCAGGCGTGGTGCGTGGGTCA TGAGCGGAGAACCGTCTACTACATGGGCTACAGGCAGGTGTATACCACGGAGGCCCGGACCGTGCTCA GGTGCTGCCGAGGGTGGACGCAGCAGCCCGACGAGGAGGGCTGCCTCTCGGCTGAATGCAGCGCCAGC CTCTGTTTTCACGGTGGCCGTTGTGTGCCAGGCTCAGCCCAGCCGTGTCACTGTCCCCCCGGCTTCCA GGGACCCCGCTGTCAGTATGATGTGGACGAATGCCGAACCCACAACGGTGGCTGCCAGCACCGGTGCG TGAACACCCCAGGCTCCTACCTCTGTGAGTGCAAGCCCGGCTTCCGGCTCCACACTGACAGCAGGACC TGCCTGGCCATTAACTCCTGCGCCCTGGGCAATGGCGGCTGCCAGCACCACTGTGTCCAGCTCACAAT CACTCGGCATCGCTGCCAGTGCCGGCCCGGGTTCCAGCTCCAGGAGGACGGCAGGCATTGTGTCCGTA GAAGCCCGTGTGCCAACAGGAACGGCAGCTGCATGCACAGGTGCCAGGTGGTCCGGGGCCTCGCCCGC TGTGAGTGCCACGTGGGCTATCAGCTAGCAGCGGACGGCAAGGCCTGTGAAGATGTGGACGAATGTGC CGCAGGGCTGGCCCAGTGTGCCCATGGCTGCCTCAACACCCAGGGGTCCTTCAAGTGCGTGTGTCACG CGGGCTATGAGCTGGGCσCCGATGGCCGGCAGTGCTACCGTATTGAGATGGAAATCGTGAACAGCTGT GAGGCCAACAACGGCGGCTGCTCCCATGGCTGCAGCCACACCAGTGCTGGGCCCCTGTGCACCTGTCC CCGCGGCTACGAGCTGGACACAGATCAGAGGACCTGCATCAGATGTCGACGACTGTGCAGACAGCCCG TGCTGCAGCAGGTGTGCACCAACAACCCTGGCGGGTACGAGTGCGGCTGCTACGCCGGCTACCGGCTC AGTGCCGATGGCTGCGGCTGCGAGGATGTGGATGAGTGCGCCTCCAGCCGTGGCGGCTGCGAGCACCA CTGCACCAACCTGGCCGGCTCCTTCCAGTGCTCCTGCGAGGCCGGCTACCGGCTGCACGAGGACCGTA GGGGCTGCAGCGCCCTGGAGGAGCCGATGGTGGACCTGGACGGCGAGCTGCCTTTCGTGCGGCCCCTG CCCCACATTGCCGTGCTCCAGGACGAGCTGCCGCAACTCTTCCAGGATGACGACGTCGGGGCCGATGA GGAAGAGGCAGAGTTGCGGGGCGAACACACGCTCACAGAGAAGTTTGTCTGCCTGGATGACTCCTTTG GCCATGACTGCAGCTTGACCTGTGATGACTGCAGGAACGGAGGGACCTGCCTCCTGGGCCTGGATGGC TGTGATTGCCCCGAGGGCTGGACTGGGCTCATCTGCAATGAGAGTTGTCCTCCGGACACCTTTGGGAA GAACTGCAGCTTCTCCTGCAGCTGTCAGAATGGTGGGACCTGCGACTCTGTCACGGGGGCCTGCCGCT GCCCCCCGGGTGTCAGTGGAACTAACTGTGAGGATGGCTGCCCCAAGGGCTACTATGGCAAGCACTGT CGCAAGAAATGCAACTGTGCCAACCGGGGCCGGTGCCACCGCCTCTACGGGGCCTGCCTCTGCGACCC AGGGCTCTACGGCCGCTTCTGCCACCTCGCCTGCCCGCCGTGGGCCTTTGGGCCGGGCTGCTCGGAGG AGTGCCAGTGTGTGCAGCCCCACACGCAGTCCTGTGACAAGAGGGATGGCAGCTGCTCCTGCAAGGCT GGCTTCCGGGGCGAGCGCTGTCAGGCAGAGTGTGAGCCGGGCTACTTTGGGCCGGGGTGCTGGCAGGC ATGCACCTGCCCAGTGGGCGTGGCCTGTGACTCCGTGAGCGGCGAGTGTGGGAAGCGGTGTCCTGCTG GCTTCCAGGGAGAGGACTGTGGCCAAGAGTGCCCGGTGGGGACCTTTGGCGTGAACTGCTCGAGCTCC TGCTCCTGTGGGGGGGCCCCCTGCCACGGGGTCACGGGGCAGTGCCGGTGTCCGCCGGGGAGGACTGG GGAAGACTGTGAGGCAGGTGAGTGTGAGGGCCTCTGGGGGCTGGGCTGCCAGGAGATCTGCCCAGCAT GCCATAACGCTGCTCGCTGCGACCCTGAGACCGGAGCCTGCCTGTGCCTCCCTGGCTTTGTCGGCAGC CGCTGCCAGGACTGTGAGGCAGGCTGGTATGGTCCCAGCTGCCAGACAATGTGCTCTTGTGCCAATGA TGGGCACTGCCACCAAGACACGGGACACTGCAGCTGTGCCCCCGGGTGGACCGGCTTTAGCTGCCAGA GAGCCTGTGATACTGGGCACTGGGGACCTGACTGCAGCCACCCCTGCAACTGCAGCGCTGGCCACGGG AGCTGTGATGCCATCAGCGGCCTGTGTCTGTGTGAGGCTGGCTACGTGGGCCCGCGGTGCGAGCAGTC AGAGTGTCCCCAGGGCCACTTTGGGCCCGGCTGTGAGCAGCGGTGCCAGTGTCAGCATGGAGCAGCCT GTGACCACGTCAGCGGGGCCTGCACCTGCCCGGCCGGCTGGAGGGGCACCTTCTGCGAGCATGCCTGC CCGGCCGGCTTCTTTGGATTGGACTGTCGCAGTGCCTGCAACTGCACCGCCGGAGCTGCCTGTGATGC CGTGAATGGCTCCTGCCTCTGCCCCGCTGGCCGCCGGGGCCCCCGCTGTGCCGAGAGTGCCTGCCCAG CCCACACCTACGGGCACAATTGCAGCCAGGCCTGTGCCTGCTTTAACGGGGCCTCCTGTGACCCTGTC CACGGGCAGTGCCACTGTGCCCCTGGCTGGATGGGGCCCTCCTGCCTGCAGGCCTGCCCTGCCGGCCT GTACGGCGACAACTGTCGGCATTCCTGCCTCTGCCAGAACGGAGGGACCTGTGACCCTGTCTCAGGCC ACTGTGCGTGCCCAGAGGGCTGGGCCGGCCTGGCCTGTGAGGTAGAGTGCCTCCCCCGGGACGTCAGA GCTGGCTGCCGGCACAGCGGCGGTTGCCTCAACGGGGGCCTGTGTGACCCGCACACGGGCCGCTGCCT
CTGCCCAGCCGGCTGGACTGGGGACAAGTGTCAGAGCCCTGCAGCCTGTGCCAAGGGCACATTCGGGC CTCACTGTGAGGGGCGCTGTGCCTGCCGGTGGGGAGGCCCCTGCCACCTTGCCACCGGGGCCTGCCTC TGCCCTCCGGGGTGGCGGGGGCCTCATCTTTCTGCAGCCTGCCTGCGGGGCTGGTTTGGAGAGGCCTG TGCCCAGCGCTGCAGCTGCCCGCCTGGCGCTGCCTGCCACCACGTCACTGGGGCCTGCCGCTGTCCCC CTGGCTTCACTGGCTCCGGCTGCGAGCAGGCCTGCCCACCCGGCAGCTTTGGGGAGGACTGTGCGCAG ATGTGCCAGTGTCCCGGTGAGAACCCGGCCTGCCACCCTGCCACCGGGACCTGCTCATGTGCTGCTGG CTACCACGGCCCCAGCTGCCAGCAACGATGTCCGCCCGGGCGGTATGGGCCAGGCTGTGAACAGCTGT GTGGGTGTCTCAACGGGGGCTCCTGTGATGCGGCCACGGGGGCCTGCCGCTGCCCCACTGGGTTCCTC GGGACGGACTGCAACCTCACCTGTCCGCAGGGCCGCTTCGGCCCCAACTGCACCCACGTGTGTGGGTG TGGGCAGGGGGCGGCCTGCGACCCTGTGACCGGCACCTGCCTCTGCCCCCCGGGGAGAGCCGGCGTCC GCTGTGAGCGAGGCTGCCCCCAGAACCGGTTTGGCGTGGGCTGCGAGCACACCTGCTCCTGCAGAAAT GGGGGCCTGTGCCACGCCAGCGGGGCCTGTGCCACGCCAGCAAGCGGCAGCTGCTCCTGTGGCCTGGG CTGGACGGGGCGGCACTGCGAGCTGGCCTGTCCCCCTGGGCGCTACGGAGCCGCCTGCCATCTGGAGT GCTCCTGCCACAACAACAGCACGTGTGAGCCTGCCACGGGCACCTGCCGCTGCGGCCCCGGCTTCTAT GGCCAGGCCTGCGAGCACCCCTGTCCCCCTGGCTTCCACGGGGCTGGCTGCCAGGGGTTGTGCTGGTG TCAACATGGAGCCCCCTGCGACCCCATCAGTGGCCGATGCCTCTGCCCTGCCGGCTTCCACGGCCACT TCTGTGAGAGGGGGTGTGAGCCAGGTTCATTTGGAGAGGGCTGCCACCAGCGCTGTGACTGTGACGGG GGGGCACCCTGTGACCCTGTCACCGGTCTCTGCCTTTGCCCACCAGGGCGCTCAGGAGCC^ CCTGGATTGCAGAAGGGGCCAGTTTGGGCCCAGCTGCACCCTGCACTGTGACTGCGGGGGTGGGGCTG ACTGCGACCCTGTCAGTGGGCAGTGTCACTGTGTGGATGGCTACATGGGGCCCACGTGCCGGGAAGGT GGGCCCCTCCGGCTCCCCGAGAACCCGTCCTTAGCCCAGGGCTCAGCGGGCACACTGCCCGCCTCCAG CAGACCCACATCCCGGAGCGGTGGACCAGCGAGGCACTAGTAGAGGCAGTCCCGTGGAGCCCGCCTCT
CCAGTCCCAGCCAGAGGGGACTCTGGCCTTTGGTGACCACTGAGAAGGACACTTCACGGGCCCAGAGC
TCCTGGTACTGCCCTTCCTTTGAGGGCCGTGGAGGGCTGTGGACAGCCCAGCAACCTGTCGCTCTTGG
'AGGCTGGTGTGGCCTTGAGGAGGGAAGCCTCGCATGGCCGCTGGAAGAGAGGCGCCTCCTGGCCTGGCi
TCTGCAGAACCCAGGGGCACGCTCTGGGCCTGGGCTGAGGAAGTCCCGCTCTCCCCGCGGCTCTGAGT:
TGGACTGAGGACAGGTGTGGGCGCCAGTGTGGGTGCAGTCACAGTGCAGGGTGCAGTCACAGTGCAGG;
GTGC
NOV37b, CG56449-09 SEQ ID NO: 860 1594 aa MW at 166431.4kD Protein Sequence
MSF EEARAAGRAWLALVLLLLPAVPVGASVPPRP P QPG PHVCAEQELTLVGRRQPCVQALSH TVPV RAGCG QAWCVGHERRTVYYMGYRQVYTTEARTV RCCRGWTQQPDEEGCLSAECSASLCFHG GRCVPGSAQPCHCPPGFQGPRCQYDVDECRTHNGGCQHRCVNTPGSY CECKPGFR HTDSRTCLAIN SCALGNGGCQHHCVQLTITRHRCQCRPGFQLQEDGRHCVRRSPCANRNGSCMHRCQWRGLARCECHV GYQLAADGKACEDVDECAAG AQCAHGCLNTQGSFKCVCHAGYELGADGRQCYRIEMEIVNSCEAN1TG GCSHGCSHTSAGPLCTCPRGYELDTDQRTCIRCRRLCRQPVLQQVCTN PGGYECGCYAGYR SADGC GCEDVDECASSRGGCEHHCTN AGSFQCSCEAGYRLHEDRRGCSA EEP VDLDGELPFVRPLPHIAV LQDELPQLFQDDDVGADEEEAELRGEHTLTEKFVC DDSFGHDCSLTCDDCRNGGTCL GIiDGCDCPE GWTGLICNESCPPDTFGKNCSFSCSCQNGGTCDSVTGACRCPPGVSGTNCEDGCPKGYYGKHCRKKCN CANRGRCHRLYGACLCDPG YGRFCHLACPP AFGPGCSEECQCVQPHTQSCDKRDGSCSCKAGFRGE RCQAECEPGYFGPGC QACTCPVGVACDSVSGECGKRCPAGFQGEDCGQECPVGTFGVNCSSSCSCGG APCHGVTGQCRCPPGRTGEDCEAGECEG WG GCQEICPACHNAARCDPETGACLC PGFVGSRCQDC EAGWYGPSCQTMCSCA DGHCHQDTGHCSCAPG TGFSCQRACDTGH GPDCSHPCNCSAGHGSCDAI SGLCLCEAGYVGPRCEQSECPQGHFGPGCEQRCQCQHGAACDHVSGACTCPAGWRGTFCEHACPAGFF G DCRSACNCTAGAACDAVNGSCLCPAGRRGPRCAESACPAHTYGHNCSQACACFNGASCDPVHGQCH CAPGWMGPSC QACPAGLYGDNCRHSC CQNGGTCDPVSGHCACPEGWAG ACEVECLPRDVRAGCRH SGGCLNGGLCDPHTGRCLCPAGWTGDKCQSPAACAKGTFGPHCEGRCACR GGPCH ATGAC CPPG RGPHLSAACLRG FGEACAQRCSCPPGAACHHVTGACRCPPGFTGSGCEQACPPGSFGEDCAQMCQCP GENPACHPATGTCSCAAGYHGPSCQQRCPPGRYGPGCEQLCGCLNGGSCDAATGACRCPTGFLGTDCN LTCPQGRFGPNCTHVCGCGQGAACDPVTGTCLCPPGRAGVRCERGCPQNRFGVGCEHTCSCRNGGLCH ASGACATPASGSCSCG GWTGRHCE ACPPGRYGAACH ECSCHNNSTCEPATGTCRCGPGFYGQACE HPCPPGFHGAGCQG CWCQHGAPCDPISGRCLCPAGFHGHFCERGCEPGSFGEGCHQRCDCDGGAPCD PVTGLCLCPPGRSGATCN DCRRGQFGPSCT HCDCGGGADCDPVSGQCHCVDGY GPTCREGGPLRL PENPSLAQGSAGT PASSRPTSRSGGPARH
NOV37c, 191887507 SEQ ID NO: 861 522 bp
DNA Sequence ORF Start: at 2 ORF Stop: at 521
GGATCCGTGCCTCGCTGGTCCACCGCTCATGGCTCCTGCCTCTGCCCCGCTGGCCGCCGGGGCCCCCG CTGTGCCGAGACCTGCCCTGCCGGCCTGTACGGCGACAACTGTCGGCATTCCTGCCTCTGCCAGAACG GAGGGACCTGTGACCCTGTCTCAGGCCTGCGAGCACCCCTGTCCCCCTGGCTTCCACGGGGCTGGCTG CCAGGGGTTGTGCTGGTGTCAACATGGAGCCCCCTGCGACCCCATCAGTGGCCGATGCCTCTGCCCTG CCGGCTTCCACGGCCACTTCTGTGAGAGGGATTGCAGAAGGGGCCAGTTTGGGCCCAGCTGCACCCTG CACTGTGACTGCGGGGGTGGGGCTGACTGCGACCCTGTCAGTGGGCAGTGTCACTGTGTGGATGGCTA CATGGGGCCCACGTGCCGGGAAGGTGGGCCCCTCCGGCTCCCCGAGAACCCGTCCTTAGCCCAGGGCT CAGCGGGCACACTGCCCGCCTCCAGCAGACCCACATCCCGCTCGAG
NOV37c, 191887507 SEQ ID NO: 862 173 aa MW at 17358.4kD Protein Sequence
DPC AGPPLMAPASAP AAGAPAVPRPA PACTATTVGIPASARTEGPVT SQACEHPCPPGFHGAGC QGLC CQHGAPCDPISGRCLCPAGFHGHFCERDCRRGQFGPSCTLHCDCGGGADCDPVSGQCHCVDGY MGPTCREGGP RLPENPSLAQGSAGT PASSRPTSRS
NOV37d, 316351371 SEQ ID NO: 863 4255 bp
DNA Sequence O F Start: at 2 ORF Stop: end of sequence
CACCGGATCCACCATGTCGTTCCTTGAAGAGGCGAGGGCAGCGGGGCGCGCGGTGGTCCTGGCGTTGG TGCTGCTGCTGCTCCCCGCCGTGCCCGTGGGCGCCAGCGTTCCGCCGCGGCCCCTGCTCCCGCTGCAG CCCGGCATGCCCCACGTGTGTGCTGAGCAGGAGCTGACCCTGGTGGGCCGCCGCCAGCCGTGCGTGCA GGCCTTAAGCCACACGGTGCCGGTGTGGAAGGCCGGCTGTGGGTGGCAGGCGTGGTGCGTGGGTCATG AGCGGAGAACCGTCTACTACATGGGCTACAGGCAGGTGTATACCACGGAGGCCCGGACCGTGCTCAGG TGCTGCCGAGGGTGGACGCAGCAGCCCGACGAGGAGGGCTGCCTCTCGGCTGAATGCAGCGCCGGCCT CTGTTTTCACGGTGGCCGTTGTGTGCCAGGCTCAGCCCAGCCGTGTCACTGTCCCCCCGGCTTCCAGG GACCCCGCTGTCAGTATGATGTGGACGAATGCCGAACCCACAACGGTGGCTGCCAGCACCGGTGCGTG AACACCCCAGGCTCCTACCTCTGTGAGTGCAAGCCCGGCTTCCGGCTCCACACTGACAGCAGGACCTG CCTGGCCATTAACTCCTGCGCCCTGGGCAATGGCGGCTGCCAGCACCACTGTGTCCAGCTCACAATCA CTCGGCATCGCTGCCAGTGCCGGCCCGGGTTCCAGCTCCAGGAGGACGGCAGGCATTGTGTCCGTAGA AGCCCGTGTGCCAACAGGAACGGCAGCTGCATGCACAGGTGCCAGGTGGTCCGGGGCCTCGCCCGCTG TGAGTGCCACGTGGGCTATCAGCTAGCAGCGGACGGCAAGGCCTGTGAAGATGTGGACGAATGTGCCG CAGGGCTGGCCCAGTGTGCCCATGGCTGCCTCAACACCCAGGGGTCCTTCAAGTGCGTGTGTCACGCG GGCTATGAGCTGGGCGCCGATGGCCGGCAGTGCTACCGGATTGAGATGGAAATCGTGAACAGCTGTGA GGCCAACAACGGCGGCTGCTCCCATGGCTGCAGCCACACCAGTGCTGGGCCCCTGTGCACCTGTCCCC GCGGCTACGAGCTGGACACAGATCAGAGGACCTGCATCGATGTCGGCGACTGTGCAGACAGCCCGTGC TGCCAGCAGGTGTGCACCAACAACCCTGGCGGGTACGAGTGCGGCTGCTACGCCGGCTACCGGCTCAG TGCCGATGGCTGCGGCTGTGAGGATGTGGATGAGTGCGCCTCCAGCCGTGGCGGCTGCGAGCACCACT GCACCAACCTGGCCGGCTCCTTCCAGTGCTCCTGCGAGGCCGGCTACCGGCTGCACGAGGACCGTAGG GGCTGCAGCCCCCTGGAGGAGCCGATGGTGGACCTGGACGGCGAGCTGCCTTTCGTGCGGCCCCTGCC CCACATTGCCGTGCTCCAGGACGAGCTGCCGCAACTCTTCCAGGATGACGACGTCGGGGCCGATGAGG AAGAGGCAGAGTTGCGGGGCGAACACACGCTCACAGAGAAGTTTGTCTGCCTGGATGACTCCTTTGGC CATGACTGCAGCTTGACCTGTGATGACTGCAGGAACGGAGGGACCTGTCTCCTGGGCCTGGATGGCTG TGATTGCCCCGAGGGCTGGACTGGGCTCATCTGCAATGAGACTTGTCCTCCGGACACCTTTGGGAAGA ACTGCAGCTTCTCCTGCAGCTGTCAGAATGGTGGGACCTGCGACTCTGTCACGGGGGCCTGCCGCTGC CCCCCGGGTGTCAGTGGAACTAACTGTGAGGATGGCTGCCCCAAGGGCTACTATGGCAAGCACTGTCG CAAGAAATGCAACTGTGCCAACCGGGGCCGGTGCCACCGCCTCTACGGGGCCTGCCTCTGCGACCCAG GGCTCTACGGCCGCTTCTGCCACCTCACCTGCCCGCCGTGGGCCTTTGGGCCGGGCTGCTCGGAGGAG TGCCAGTGTGTGCAGCCCCACACGCAGTCCTGTGACAAGAGGGATGGCAGCTGCTCCTGCAAGGCTGG CTTCCGGGGCGAGCGCTGTCAGGCAGAGTGTGAGCCGGGCTACTTTGGGCCGGGGTGCTGGCAGGCAT GCACCTGCCCAGTGGGCGTGGCCTGTGACTCCGTGAGCGGCGAGTGTGGGAAGCGGTGTCCTGCTGGC TTCCAGGGAGAGGACTGTGGCCAAGAGTGCCCGGTGGGGACGTTTGGCGTGAACTGCTCGAGCTCCTG CTCCTGTGGGGGGGCCCCCTGCCACGGGGTCACGGGGCAGTGCCGGTGTCCACCGGGGAGGACTGGGG AAGACTGTGAGGCAGATTGTCCCGAGGGCCGCTGGGGGCTGGGCTGCCAGGAGATCTGCCCAGCATGC CAGCACGCTGCCCGCTGCGACCCTGAGACCGGAGCCTGCCTGTGCCTCCCTGACTTCGTCGGCAGCCG CTGCCAGGACGTGTGCCCAGCAGGCTGGTATGGTCCCAGCTGCCAGACAAGGTGCTCTTGTGCCAATG ATGGGCACTGCCACCCAGCCACCGGACACTGCAGCTGTGCCCCCGGGTGGACCGGCTTTAGCTGCCAG AGAGCCTGTGATACTGGGCACTGGGGACCTGACTGCAGCCACCCCTGCAACTGCAGCGCTGGCCACGG GAGCTGTGATGCCATCAGCGGCCTGTGTCTGTGTGAGGCTGGCTACGTGGGCCCGCGGTGCGAGCAGC AGTGTCCCCAGGGCCACTTTGGGCCCGGCTGTGAGCAGCTGTGCCAGTGTCAGCATGGAGCAGCCTGT GACCACGTCAGCGGGGCCTGCACCTGCCCGGCCGGCTGGAGGGGCACCTTCTGCGAGCATGCCTGCCC GGCCGGCTTCTTTGGATTGGACTGTCGCAGTGCCTGCAACTGCACCGCCGGAGCTGCCTGTGATGCCG TGAATGGCTCCTGCCTCTGCCCCGCTGGCCGCCGGGGCCCCCGCTGTGCCGAGAAGTGCCTCCCCCGG GACGTCAGAGCTGGCTGCCGGCACAGCGGCGGTTGCCTCAACGGGGGCCTGTGTGACCCGCACACGGG CCGCTGCCTCTGCCCAGCCGGCTGGACTGGGGACAAGTGTCAGAGCCCCTGCCTGCGGGGCTGGTTTG GAGAGGCCTGTGCCCAGCGCTGCAGCTGCCCGCCTGGCGCTGCCTGCCACCACGTCACTGGGGCCTGC CGCTGTCCCCCTGGCTTCACTGGCTCCGGCTGCGAGCAGGGATGTCCGCCCGGGCGGTATGGGCCAGG CTGTGAACAGCTGTGTGGGTGTCTCAACGGGGGCTCCTGTGATGCGGCCACGGGGGCCTGCCGCTGCC
CCACTGGGTTCCTCGGGACGGACTGCAACCTCACCTGTCCGCAGGGCCGCTTCGGCCCCAACTGCACC
CACGTGTGTGGGTGTGGGCAGGGGGCGGCCTGCGACCCTGTGACCGGCACCTGCCTCTGCCCCCCGGG
GAGAGCCGGCGTCCGCTGTGAGCGAGGCTGCCCCCAGAACCGGTTTGGCGTGGGCTGCGAGCACACCT
GCTCCTGCAGAAATGGGGGCCTGTGCCACGCCAGCAACGGCAGCTGCTCCTGTGGCCTGGGCTGGACG
GGGCGGCACTGCGAGCTGGCCTGTCCCCCTGGGCGCTACGGAGCCGCCTGCCATCTGGAGTGCTCCTG
CCACAACAACAGCACGTGTGAGCCTGCCACGGGCACCTGCCGCTGCGGCCCCGGCTTCTATGGCCAGG
CCTGCGAGCACCCCTGTCCCCCTGGCTTCCACGGGGCTGGCTGCCAGGGGTTGTGCTGGTGTCAACAT
GGAGCCCCCTGCGACCCCATCAGTGGCCGATGCCTCTGCCCTGCCGGCTTCCACGGCCACTTCTGTGA
GAGGGGGTGTGAGCCAGGTTCATTTGGAGAGGGCTGCCACCAGCGCTGTGACTGTGACGGGGGGGCAC
CCTGTGACCCTGTCACCGGTCTCTGCCTTTGCCCACCAGGGCGCTCAGGAGCCACCTGTAACCTGGAT
TGCAGAAGGGGCCAGTTTGGGCCCAGCTGCACCCTGCACTGTGACTGCGGGGGTGGGGCTGACTGCGA
CCCTGTCAGTGGGCAGTGTCACTGTGTGGATGGCTACATGGGGCCCACGTGCCGGGAAGGTGGGCCCC
TCCGGCTCCCCGAGAACCCGTCCTTAGCCCAGGGCTCAGCGGGCACACTGCCCGCCTCCAGCAGACCC ACATCCCGGAGCGGTGGACCAGCGAGGCACGGTACC;GGC; NOV37d, 316351371 SEQ ID NO: 864 1418 aa MW at 148398.2kD Protein Sequence
TGSTMSFLEEARAAGRAWLALVLL PAVPVGASVPPRPLLPLQPGMPHVCAEQELTLVGRRQPCVQ A SHTVPVWKAGCGWQAWCVGHERRTVYYMGYRQVYTTE-ARTVLRCCRG TQQPDEEGCLSAECSAGL CFHGGRCVPGSAQPCHCPPGFQGPRCQYDVDECRTHNGGCQHRCVNTPGSY-CECKPGFRLHTDSRTC AINSCA GNGGCQHHCVQ TITRHRCQCRPGFQ QEDGRHCVRRSPC-ANRNGSCMHRCQWRG-ARC ECHVGYQ AADGKACEDV-DECAAGLAQCAHGCLNTQGSFKCVCHAGYE GADGRQCYRIE EIVNSCE A -MGGCSHGCSHTSAGPLCTCPRGYELDTDQRTCIDVGDCADSPCCQQVCTNNPGGYECGCYAGYRLS A-DGCGCEDVDECASSRGGCEHHCTNLAGSFQCSCEAGYRLHEDRRGCSPLEEPMVDLDGELPFVRPLP HIAV QDELPQLFQDDDVGADEEEAELRGEHTLTΞKFVCLDDSFGHDCS TCDDCRNGGTCL GLDGC DCPEG TGLICNETCPPDTFGKNCSFSCSCQNGGTCDSVTGACRCPPGVSGTNCEDGCPKGYYGKHCR K CNCA-KTRGRCHR YGACLCDPGLYGRFCH TCPPWAFGPGCSEECQCVQPHTQSCDKRDGSCSCKAG FRGERCQAECEPGYFGPGCWQACTCPVGVACDSVSGECGKRCPAGFQGEDCGQECPVGTFGVNCSSSC SCGGAPCHGVTGQCRCPPGRTGEDCEADCPEGR GLGCQEICPACQHAARCDPETGACLCLPDFVGSR CQDVCPAG YGPSCQTRCSCANDGHCHPATGHCSCAPGWTGFSCQRACDTGH GPDCSHPCNCSAGHG SCDAISGLCLCEAGYVGPRCEQQCPQGHFGPGCEQLCQCQHGAACDHVSGACTCPAG RGTFCEHACP AGFFG DCRSACNCTAGAACDAVNGSC CPAGRRGPRCAEKCLPRDVRAGCRHSGGC NGGLCDPHTG RCLCPAG TGDKCQSPCLRG FGEACAQRCSCPPGAACHHVTGACRCPPGFTGSGCEQGCPPGRYGPG CEQLCGCLNGGSCDAATGACRCPTGFLGTDCN TCPQGRFGPNCTHVCGCGQGAACDPVTGTCLCPPG RAGVRCERGCPQ RFGVGCEHTCSCENGGLCHASNGSCSCGLG TGRHCELACPPGRYGAACHLECSC H-NNSTCEPATGTCRCGPGFYGQACEHPCPPGFHGAGCQGLCWCQHGAPCDPISGRCLCPAGFHGHFCE RGCEPGSFGEGCHQRCDCDGGAPCDPVTG C CPPGRSGATCNLDCRRGQFGPSCTLHCDCGGGADCD PVSGQCHCVDGYMGPTCREGGP RLPENPS AQGSAGTLPASSRPTSRSGGPARHGTG
NOV37e, 316935396 SEQ ID NO: 865 5000 bp
DNA Sequence iORF Start: at 28 ORF Stop: TGA at 4987
TGCTGTTACAGGTGGAGGGCAGTGTAGTCTGAGCAGTACTCGTTGCTGCCGCGCGCGCCACCAGACAT
AATAGCTGACAGACTAACAGACTGTTCCTTTCCATGGGTCTTTTCTGCAGTCACCGTCCTTGACACGA AGCTTTCTAGAAGATCTTCGCGAGGATCCACCATGTCGTTCCTTGAAGAGGCGAGGGCAGCGGGGCGC GCGGTGGTCCTGGCGTTGGTGCTGCTGCTGCTCCCCGCCGTGCCCGTGGGCGCCAGCGTTCCGCCGCG GCCCCTGCTCCCGCTGCAGCCCGGCATGCCCCACGTGTGTGCTGAGCAGGAGCTGACCCTGGTGGGCC GCCGCCAGCCGTGCGTGCAGGCCTTAAGCCACACGGTGCCGGTGTGGAAGGCCGGCTGTGGGTGGCAG GCGTGGTGCGTGGGTCATGAGCGGAGGACCGTCTACTACATGGGCTACAGGCAGGTGTATACCACGGA GGCCCGGACCGTGCTCAGGTGCTGCCGAGGGTGGATGCAGCAGCCCGACGAGGAGGGCTGCCTCTCGG ATGTGGGTGAGTGTGCCAACGCCAACGGGGGCTGTGCGGGTCGGTGCCGGGACACCGTGGGGGGCTTC TACTGCCGCTGGCCCCCCCCCAGCCACCAGCTGCAGGGTGATGGCGAGACTTGCCAAGATGTGGACGA ATGCCGAACCCACAACGGTGGCTGCCAGCACCGGTGCGTGAACACCCCAGGCTCCTACCTCTGTGAGT GCAAGCCCGGCTTCCGGCTCCACACTGACAGCAGGACCTGCGCCATTAACTCCTGCGCCCTGGGCAAT GGCGGCTGCCAGCACCACTGTGTCCAGCTCACAATCACTCGGCATCGCTGCCAGTGCCGGCCCGGGTT CCAGCTCCAGGAGGACGGCAGGCATTGTGTCCGTAGAAGCCCGTGTGCCAACAGGAACGGCAGCTGCA TGCACAGGTGCCAGGTGGTCCGGGGCCTCGCCCGCTGTGAGTGCCACGTGGGCTATCAGCTAGCAGCG GACGGCAAGGCCTGTGAAGATGTGGACGAATGTGCCGCAGGGCTGGCCCAGTGTGCCCATGGCTGCCT CAACACCCAGGGGTCCTTCAAGTGCGTGTGTCACGCGGGCTATGAGCTGGGCGCCGATGGCCGGCAGT GCTACCGTATTGAGATGGAAATCGTGAACAGCTGTGAGGCCAACAACGGCGGCTGCTCCCATGGCTGC AGCCACACCAGTGCTGGGCCCCTGTGCACCTGTCCCCGCGGCTACGAGCTGGACACAGATCAGAGGAC CTGCATCAGATGTCGACGACTGTGCAGACAGCCCGTGCTGCAGCAGGTGTGCACCAACAACCCTGGCG GGTACGAGTGCGGCTGCTACGCCGGCTACCGGCTCAGTGCCGATGGCTGCGGCTGCGAGGATGTGGAT GAGTGCGCCTCCAGCCGTGGCGGCTGCGAGCACCACTGCACCAACCTGGCCGGCTCCTTCCAGTGCTC CTGCGAGGCCGGCTACCGGCTGCACGAGGACCGTAGGGGCTGCAGCGCCCTGGAGGAGCCGATGGTGG ACCTGGACGGCGAGCTGCCTTTCGTGCGGCCCCTGCCCCACATTGCCGTGCTCCAGGACGAGCTGCCG CAACTCTTCCAGGATGACGACGTCGGGGCCGATGAGGAAGAGGCAGAGTTGCGGGGCGAACACACGCT CACAGAGAAGTTTGTCTGCCTGGATGACTCCTTTGGCCATGACTGCAGCTTGACCTGTGATGACTGCA GGAACGGAGGGACCTGCCTCCTGGGCCTGGATGGCTGTGATTGCCCCGAGGGCTGGACTGGGCTCATC TGCAATGAGAGTTGTCCTCCGGACACCTTTGGGAAGAACTGCAGCTTCTCCTGCAGCTGTCAGAATGG TGGGACCTGCGACTCTGTCACGGGGGCCTGCCGCTGCCCCCCGGGTGTCAGTGGAACTAACTGTGAGG ATGGCTGCCCCAAGGGCTACTATGGCAAGCACTGTCGCAAGAAATGCAACTGTGCCAACCGGGGCCGG TGCCACCGCCTCTACGGGGCCTGCCTCTGCGACCCAGGGCTCTACGGCCGCTTCTGCCACCTCGCCTG CCCGCCGTGGGCCTTTGGGCCGGGCTGCTCGGAGGAGTGCCAGTGTGTGCAGCCCCACACGCAGTCCT GTGACAAGAGGGATGGCAGCTGCTCCTGCAAGGCTGGCTTCCGGGGCGAGCGCTGTCAGGCAGAGTGT GAGCCGGGCTACTTTGGGCCGGGGTGCTGGCAGGCATGCACCTGCCCAGTGGGCGTGGCCTGTGACTC CGTGAGCGGCGAGTGTGGGAAGCGGTGTCCTGCTGGCTTCCAGGGAGAGGACTGTGGCCAAGAGTGCC CGGTGGGGACCTTTGGCGTGAACTGCTCGAGCTCCTGCTCCTGTGGGGGGGCCCCCTGCCACGGGGTC ACGGGGCAGTGCCGGTGTCCGCCGGGGAGGACTGGGGAAGACTGTGAGGCAGGTGAGTGTGAGGGCCT CTGGGGGCTGGGCTGCCAGGAGATCTGCCCAGCATGCCATAACGCTGCTCGCTGCGACCCTGAGACCG GAGCCTGCCTGTGCCTCCCTGGCTTTGTCGGCAGCCGCTGCCAGGACTGTGAGGCAGGCTGGTATGGT CCCAGCTGCCAGACAATGTGCTCTTGTGCCAATGATGGGCACTGCCACCAAGACACGGGACACTGCAG CTGTGCCCCCGGGTGGACCGGCTTTAGCTGCCAGAGAGCCTGTGATACTGGGCACTGGGGACCTGACT GCAGCCACCCCTGCAACTGCAGCGCTGGCCACGGGAGCTGTGATGCCATCAGCGGCCTGTGTCTGTGT GAGGCTGGCTACGTGGGCCCGCGGTGCGAGCAGTCAGAGTGTCCCCAGGGCCACTTTGGGCCCGGCTG TGAGCAGCGGTGCCAGTGTCAGCATGGAGCAGCCTGTGACCACGTCAGCGGGGCCTGCACCTGCCCGG CCGGCTGGAGGGGCACCTTCTGCGAGCATGCCTGCCCGGCCGGCTTCTTTGGATTGGACTGTCGCAGT GCCTGCAACTGCACCGCCGGAGCTGCCTGTGATGCCGTGAATGGCTCCTGCCTCTGCCCCGCTGGCCG CCGGGGCCCCCGCTGTGCCGAGAGTGCCTGCCCAGCCCACACCTACGGGCACAATTGCAGCCAGGCCT GTGCCTGCTTTAACGGGGCCTCCTGTGACCCTGTCCACGGGCAGTGCCACTGTGCCCCTGGCTGGATG GGGCCCTCCTGCCTGCAGGCCTGCCCTGCCGGCCTGTACGGCGACAACTGTCGGCATTCCTGCCTCTG
CCAGAACGGAGGGACCTGTGACCCTGTCTCAGGCCACTGTGCGTGCCCAGAGGGCTGGGCCGGCCTGG CCTGTGAGGTAGAGTGCCTCCCCCGGGACGTCAGAGCTGGCTGCCGGCACAGCGGCGGTTGCCTCAAC GGGGGCCTGTGTGACCCGCACACGGGCCGCTGCCTCTGCCCAGCCGGCTGGACTGGGGACAAGTGTCA GAGCCCTGCAGCCTGTGCCAAGGGCACATTCGGGCCTCACTGTGAGGGGCGCTGTGCCTGCCGGTGGG GAGGCCCCTGCCACCTTGCCACCGGGGCCTGCCTCTGCCCTCCGGGGTGGCGGGGGCCTCATCTTTCT GCAGCCTGCCTGCGGGGCTGGTTTGGAGAGGCCTGTGCCCAGCGCTGCAGCTGCCCGCCTGGCGCTGC CTGCCACCACGTCACTGGGGCCTGCCGCTGTCCCCCTGGCTTCACTGGCTCCGGCTGCGAGCAGGCCT GCCCACCCGGCAGCTTTGGGGAGGACTGTGCGCAGATGTGCCAGTGTCCCGGTGAGAACCCGGCCTGC CACCCTGCCACCGGGACCTGCTCATGTGCTGCTGGCTACCACGGCCCCAGCTGCCAGCAACGATGTCC GCCCGGGCGGTATGGGCCAGGCTGTGAACAGCTGTGTGGGTGTCTCAACGGGGGCTCCTGTGATGCGG CCACGGGGGCCTGCCGCTGCCCCACTGGGTTCCTCGGGACGGACTGCAACCTCACCTGTCCGCAGGGC CGCTTCGGCCCCAACTGCACCCACGTGTGTGGGTGTGGGCAGGGGGCGGCCTGCGACCCTGTGACCGG CACCTGCCTCTGCCCCCCGGGGAGAGCCGGCGTCCGCTGTGAGCGAGGCTGCCCCCAGAACCGGTTTG GCGTGGGCTGCGAGCACACCTGCTCCTGCAGAAATGGGGGCCTGTGCCACGCCAGCAACGGCAGCTGC TCCTGTGGCCTGGGCTGGACGGGGCGGCACTGCGAGCTGGCCTGTCCCCCTGGGCGCTACGGAGCCGC CTGCCATCTGGAGTGCTCCTGCCACAACAACAGCACGTGTGAGCCTGCCACGGGCACCTGCCGCTGCG GCCCCGGCTTCTATGGCCAGGCCTGCGAGCACCCCTGTCCCCCTGGCTTCCACGGGGCTGGCTGCCAG GGGTTGTGCTGGTGTCAACATGGAGCCCCCTGCGACCCCATCAGTGGCCGATGCCTCTGCCCTGCCGG CTTCCACGGCCACTTCTGTGAGAGGGGGTGTGAGCCAGGTTCATTTGGAGAGGGCTGCCACCAGCGCT GTGACTGTGACGGGGGGGCACCCTGTGACCCTGTCACCGGTCTCTGCCTTTGCCCACCAGGGCGCTCA GGAGCCACCTGTAACCTGGATTGCAGAAGGGGCCAGTTTGGGCCCAGCTGCACCCTGCACTGTGACTG CGGGGGTGGGGCTGACTGCGACCCTGTCAGTGGGCAGTGTCACTGTGTGGATGGCTACATGGGGCCCA CGTGCCGGGAAGCGGGCACACTGCCCGCCTCCAGCAGACCCACATCCCGGAGCGGTGGACCAGCGAGG CACGTATTCCCCGGGCTCGAGGGTAAGCCTATCCCTAACCCTCTCCTCGGTCTCGATTCTACGCGTAC CGGTCATCACCACCATCACCATTGAGTTTAATTCAT
NOV37e, 316935396 SEQ ID NO: 866 1653 aa MW at 173369.0kD Protein Sequence
SEQYSLLPRAPPDIIADRLTDCSFPWVFSAVTVLDTKLSRRSSRGSTMSF EEARAAGRAWLALV L LPAVPVGASVPPRPL PLQPGMP---WC--^QELTLVGRRQPCVQ-A SHTVPV AGCG QA CVGHERR TVYYMGYRQVYTTEARTVLRCCRG MQQPDEEGCLSDVGEC-ANANGGCAGRCRDTVGGFYCRWPPPSH QLQGDGETCQDVDECRTHNGGCQHRCVNTPGSYLCECKPGFRLHTDSRTCAINSCA GNGGCQHHCVQ TITRHRCQCRPGFQLQEDGRHCVRRSPCAN-RNGSCΪffiRCQVVRGL-ARCECHVGYQLAADGKACEDVD ECAAGLAQCAHGCLNTQGSFKCVCi GYELG-ADGRQCYRIEMEIV SCEA-NI.GGCSHGCSHTSAGPLC TCPRGYE DTDQRTCIRCRRLCRQPV QQVCTNNPGGYECGCYAGYR SADGCGCEDVDECASSRGGC EHHCTNLAGSFQCSCEAGYRLHEDRRGCSALEEPMVDLDGELPFVRPLPHIAVLQDELPQ FQDDDVG ADEEEAELRGEHTLTEKFVCLDDSFGHDCSLTCDDCRNGGTC LGLDGCDCPEG TG ICNESCPPDT FG-KNCSFSCSCQNGGTCDSVTGACRCPPGVSGTNCEDGCPKGYYG-- CR---αCNCA-NRGRCHRLYGACL CDPGLYGRFCH ACPP AFGPGCSEECQCVQPHTQSCDKRDGSCSCKAGFRGERCQAECEPGYFGPGC QACTCPVGVACDSVSGECGKRCPAGFQGEDCGQECPVGTFGV CSSSCSCGGAPCHGVTGQCRCPPG RTGEDCEAGECEGLWG GCQEICPACH AARCDPETGACLC PGFVGSRCQDCΞAGWYGPSCQTMCSC A DGHCHQDTGHCSCAPG TGFSCQRACDTGH GPDCSHPCNCSAGHGSCDAISGLCLCEAGYVGPRC EQSECPQGHFGPGCEQRCQCQHGAACDHVSGACTCPAGWRGTFCEHACPAGFFGLDCRSACNCTAGAA CDAVNGSCLCPAGRRGPRCAESACPAHTYGH CSQACACFNGASCDPVHGQCHCAPGWMGPSC QACP AGLYGDNCRHSCLCQNGGTCDPVSGHCACPEG AGLACEVEC PRDVRAGCRHSGGC NGG CDPHTG RCLCPAG TGDKCQSPAACAKGTFGPHCEGRCACRWGGPCHLATGACLCPPG RGPH SAACLRG FG EACAQRCSCPPGAACHHVTGACRCPPGFTGSGCEQACPPGSFGEDCAQ CQCPGENPACHPATGTCSC AAGYHGPSCQQRCPPGRYGPGCEQLCGCLNGGSCDAATGACRCPTGFLGTDCNLTCPQGRFGPNCTHV CGCGQGAACDPVTGTCLCPPGRAGVRCERGCPQNRFGVGCEHTCSCRNGGLCHASNGSCSCGLGWTGR HCELACPPGRYGAACHLECSCHNNSTCΞPATGTCRCGPGFYGQACEHPCPPGFHGAGCQGLCWCQHGA PCDPISGRCLCPAGFHGHFCERGCEPGSFGEGCHQRCDCDGGAPCDPVTGLC CPPGRSGATCNLDCR RGQFGPSCTLHCDCGGGADCDPVSGQCHCVDGYMGPTCREAGTLPASSRPTSRSGGPARHVFPG EGK PIPNPLLGLDSTRTGHHHHHH
NOV37f, 317004318 SEQ ID NO: 867 5005 bp DNA Sequence ORF Start: at 126 ORF Stop: TGA at 4986
IAA .CGGGTGGAGGGCAGTGTAGTCTGAGCAGTACTCGTTGCTGCCGCGCGCGCCACCAGACATAATAGC
TGACAGACTAACAGACTGTTCCTTTCCATGGGTCTTTTCTGCAGTCACCGTCCTTGACACGAAGCTCT
AGCCACCATGGAGACAGACACACTCCTGCTATGGGTACTGCTGCTCTGGGTTCCAGGTTCCACTGGTG ACGCGGCCCAGCCGGCCAGGCGCGCGCGCCGTACGAAGCTTTCGCGAGGATCCAGCGTTCCGCCGCGG CCCCTGCTCCCGCTGCAGCCCGGCATGCCCCACGTGTGTGCTGAGCAGGAGCTGACCCTGGTGGGCCG CCGCCAGCCGTGCGTGCAGGCCTTAAGCCACACGGTGCCGGTGTGGAAGGCCGGCTGTGGGTGGCAGG CGTGGTGCGTGGGTCATGAGCGGAGGACCGTCTACTACATGGGCTACAGGCAGGTGTATACCACGGAG GCCCGGACCGTGCTCAGGTGCTGCCGAGGGTGGATGCAGCAGCCCGACGAGGAGGGCTGCCTCTCGGA TGTGGGTGAGTGTGCCAACGCCAACGGGGGCTGTGCGGGTCGGTGCCGGGACACCGTGGGGGGCTTCT ACTGCCGCTGGCCCCCCCCCAGCCACCAGCTGCAGGGTGATGGCGAGACTTGCCAAGATGTGGACGAA TGCCGAACCCACAACGGTGGCTGCCAGCACCGGTGCGTGAACACCCCAGGCTCCTACCTCTGTGAGTG CAAGCCCGGCTTCCGGCTCCACACTGACAGCAGGACCTGCGCCATTAACTCCTGCGCCCTGGGCAATG GCGGCTGCCAGCACCACTGTGTCCAGCTCACAATCACTCGGCATCGCTGCCAGTGCCGGCCCGGGTTC CAGCTCCAGGAGGACGGCAGGCATTGTGTCCGTAGAAGCCCGTGTGCCAACAGGAACGGCAGCTGCAT GCACAGGTGCCAGGTGGTCCGGGGCCTCGCCCGCTGTGAGTGCCACGTGGGCTATCAGCTAGCAGCGG ACGGCAAGGCCTGTGAAGATGTGGACGAATGTGCCGCAGGGCTGGCCCAGTGTGCCCATGGCTGCCTC AACACCCAGGGGTCCTTCAAGTGCGTGTGTCACGCGGGCTATGAGCTGGGCGCCGATGGCCGGCAGTG CTACCGTATTGAGATGGAAATCGTGAACAGCTGTGAGGCCAACAACGGCGGCTGCTCCCATGGCTGCA GCCACACCAGTGCTGGGCCCCTGTGCACCTGTCCCCGCGGCTACGAGCTGGACACAGATCAGAGGACC TGCATCAGATGTCGACGACTGTGCAGACAGCCCGTGCTGCAGCAGGTGTGCACCAACAACCCTGGCGG GTACGAGTGCGGCTGCTACGCCGGCTACCGGCTCAGTGCCGATGGCTGCGGCTGCGAGGATGTGGATG AGTGCGCCTCCAGCCGTGGCGGCTGCGAGCACCACTGCACCAACCTGGCCGGCTCCTTCCAGTGCTCC TGCGAGGCCGGCTACCGGCTGCACGAGGACCGTAGGGGCTGCAGCGCCCTGGAGGAGCCGATGGTGGA CCTGGACGGCGAGCTGCCTTTCGTGCGGCCCCTGCCCCACATTGCCGTGCTCCAGGACGAGCTGCCGC AACTCTTCCAGGATGACGACGTCGGGGCCGATGAGGAAGAGGCAGAGTTGCGGGGCGAACACACGCTC ACAGAGAAGTTTGTCTGCCTGGATGACTCCTTTGGCCATGACTGCAGCTTGACCTGTGATGACTGCAG GAACGGAGGGACCTGCCTCCTGGGCCTGGATGGCTGTGATTGCCCCGAGGGCTGGACTGGGCTCATCT GCAATGAGAGTTGTCCTCCGGACACCTTTGGGAAGAACTGCAGCTTCTCCTGCAGCTGTCAGAATGGT GGGACCTGCGACTCTGTCACGGGGGCCTGCCGCTGCCCCCCGGGTGTCAGTGGAACTAACTGTGAGGA TGGCTGCCCCAAGGGCTACTATGGCAAGCACTGTCGCAAGAAATGCAACTGTGCCAACCGGGGCCGGT GCCACCGCCTCTACGGGGCCTGCCTCTGCGACCCAGGGCTCTACGGCCGCTTCTGCCACCTCGCCTGC CCGCCGTGGGCCTTTGGGCCGGGCTGCTCGGAGGAGTGCCAGTGTGTGCAGCCCCACACGCAGTCCTG TGACAAGAGGGATGGCAGCTGCTCCTGCAAGGCTGGCTTCCGGGGCGAGCGCTGTCAGGCAGAGTGTG AGCCGGGCTACTTTGGGCCGGGGTGCTGGCAGGCATGCACCTGCCCAGTGGGCGTGGCCTGTGACTCC GTGAGCGGCGAGTGTGGGAAGCGGTGTCCTGCTGGCTTCCAGGGAGAGGACTGTGGCCAAGAGTGCCC GGTGGGGACCTTTGGCGTGAACTGCTCGAGCTCCTGCTCCTGTGGGGGGGCCCCCTGCCACGGGGTCA CGGGGCAGTGCCGGTGTCCGCCGGGGAGGACTGGGGAAGACTGTGAGGCAGGTGAGTGTGAGGGCCTC TGGGGGCTGGGCTGCCAGGAGATCTGCCCAGCATGCCATAACGCTGCTCGCTGCGACCCTGAGACCGG AGCCTGCCTGTGCCTCCCTGGCTTTGTCGGCAGCCGCTGCCAGGACTGTGAGGCAGGCTGGTATGGTC CCAGCTGCCAGACAATGTGCTCTTGTGCCAATGATGGGCACTGCCACCAAGACACGGGACACTGCAGC TGTGCCCCCGGGTGGACCGGCTTTAGCTGCCAGAGAGCCTGTGATACTGGGCACTGGGGACCTGACTG CAGCCACCCCTGCAACTGCAGCGCTGGCCACGGGAGCTGTGATGCCATCAGCGGCCTGTGTCTGTGTG AGGCTGGCTACGTGGGCCCGCGGTGCGAGCAGTCAGAGTGTCCCCAGGGCCACTTTGGGCCCGGCTGT GAGCAGCGGTGCCAGTGTCAGCATGGAGCAGCCTGTGACCACGTCAGCGGGGCCTGCACCTGCCCGGC CGGCTGGAGGGGCACCTTCTGCGAGCATGCCTGCCCGGCCGGCTTCTTTGGATTGGACTGTCGCAGTG CCTGCAACTGCACCGCCGGAGCTGCCTGTGATGCCGTGAATGGCTCCTGCCTCTGCCCCGCTGGCCGC CGGGGCCCCCGCTGTGCCGAGAGTGCCTGCCCAGCCCACACCTACGGGCACAATTGCAGCCAGGCCTG TGCCTGCTTTAACGGGGCCTCCTGTGACCCTGTCCACGGGCAGTGCCACTGTGCCCCTGGCTGGATGG GGCCCTCCTGCCTGCAGGCCTGCCCTGCCGGCCTGTACGGCGACAACTGTCGGCATTCCTGCCTCTGC CAGAACGGAGGGACCTGTGACCCTGTCTCAGGCCACTGTGCGTGCCCAGAGGGCTGGGCCGGCCTGGC CTGTGAGGTAGAGTGCCTCCCCCGGGACGTCAGAGCTGGCTGCCGGCACAGCGGCGGTTGCCTCAACG GGGGCCTGTGTGACCCGCACACGGGCCGCTGCCTCTGCCCAGCCGGCTGGACTGGGGACAAGTGTCAG AGCCCTGCAGCCTGTGCCAAGGGCACATTCGGGCCTCACTGTGAGGGGCGCTGTGCCTGCCGGTGGGG AGGCCCCTGCCACCTTGCCACCGGGGCCTGCCTCTGCCCTCCGGGGTGGCGGGGGCCTCATCTTTCTG CAGCCTGCCTGCGGGGCTGGTTTGGAGAGGCCTGTGCCCAGCGCTGCAGCTGCCCGCCTGGCGCTGCC TGCCACCACGTCACTGGGGCCTGCCGCTGTCCCCCTGGCTTCACTGGCTCCGGCTGCGAGCAGGCCTG CCCACCCGGCAGCTTTGGGGAGGACTGTGCGCAGATGTGCCAGTGTCCCGGTGAGAACCCGGCCTGCC ACCCTGCCACCGGGACCTGCTCATGTGCTGCTGGCTACCACGGCCCCAGCTGCCAGCAACGATGTCCG CCCGGGCGGTATGGGCCAGGCTGTGAACAGCTGTGTGGGTGTCTCAACGGGGGCTCCTGTGATGCGGC CACGGGGGCCTGCCGCTGCCCCACTGGGTTCCTCGGGACGGACTGCAACCTCACCTGTCCGCAGGGCC GCTTCGGCCCCAACTGCACCCACGTGTGTGGGTGTGGGCAGGGGGCGGCCTGCGACCCTGTGACCGGC ACCTGCCTCTGCCCCCCGGGGAGAGCCGGCGTCCGCTGTGAGCGAGGCTGCCCCCAGAACCGGTTTGG CGTGGGCTGCGAGCACACCTGCTCCTGCAGAAATGGGGGCCTGTGCCACGCCAGCAACGGCAGCTGCT CCTGTGGCCTGGGCTGGACGGGGCGGCACTGCGAGCTGGCCTGTCCCCCTGGGCGCTACGGAGCCGCC TGCCATCTGGAGTGCTCCTGCCACAACAACAGCACGTGTGAGCCTGCCACGGGCACCTGCCGCTGCGG CCCCGGCTTCTATGGCCAGGCCTGCGAGCACCCCTGTCCCCCTGGCTTCCACGGGGCTGGCTGCCAGG GGTTGTGCTGGTGTCAACATGGAGCCCCCTGCGACCCCATCAGTGGCCGATGCCTCTGCCCTGCCGGC TTCCACGGCCACTTCTGTGAGAGGGGGTGTGAGCCAGGTTCATTTGGAGAGGGCTGCCACCAGCGCTG TGACTGTGACGGGGGGGCACCCTGTGACCCTGTCACCGGTCTCTGCCTTTGCCCACCAGGGCGCTCAG GAGCCACCTGTAACCTGGATTGCAGAAGGGGCCAGTTTGGGCCCAGCTGCACCCTGCACTGTGACTGC GGGGGTGGGGCTGACTGCGACCCTGTCAGTGGGCAGTGTCACTGTGTGGATGGCTACATGGGGCCCAC GTGCCGGGAAGCGGGCACACTGCCCGCCTCCAGCAGACCCACATCCCGGAGCGGTGGACCAGCGAGGC ACGAATTCCCCGGGCTCGAGGGTAAGCCTATCCCTAACCCTCTCCTCGGTCTCGATTCTACGCGTACC GGTCATCACCACCATCACCATTGAGTTTAATTCATTGATTT
NOV37f, 317004318 SEQ ID NO: 868 1620 aa MW at l69975.0kD Protein Sequence
HEA ATMETDTL WV LL VPGSTGDAAQPARRARRTK SRGSSVPPRPL PLQPGMPHVCAEQELT VGRRQPCVQA SHTVPV KAGCG QA CVGHERRTVYYMGYRQVYTTEARTVLRCCRG MQQPDEEG CLSDVGECANANGGCAGRCRDTVGGFYCR PPPSHQ QGDGETCQDVDECRTHNGGCQHRCVNTPGSY LCEC PGFR HTDSRTCAINSCALGNGGCQHHCVQLTITRHRCQCRPGFQ QEDGRHCVRRSPCANRN GSCMHRCQWRGLARCECHVGYQ AADGKACEDVDECAAG AQCAHGCLNTQGSFKCVCHAGYELGAD GRQCYRIEMΞIVNSCE-ANNGGCSHGCSHTSAGPLCTCPRGYELDTDQRTCIRCRR CRQPVLQQVCTN NPGGYECGCYAGYRLSADGCGCEDVDECASSRGGCEHHCTN AGSFQCSCEAGYRLHEDRRGCSALEE PMVDLDGELPFVRP PHIAVLQDΞLPQLFQDDDVGADEEEAELRGEHTLTEKFVCLDDSFGHDCSLTC DDCRNGGTC G DGCDCPEG TG ICNESCPPDTFGKNCSFSCSCQNGGTCDSVTGACRCPPGVSGT NCEDGCPKGYYGKHCRKKCNCA RGRCHRLYGACLCDPGLYGRFCH ACPPWAFGPGCSEECQCVQPH TQSCDKRDGSCSCKAGFRGERCQAECEPGYFGPGCWQACTCPVGVACDSVSGECGKRCPAGFQGEDCG QECPVGTFGVNCSSSCSCGGAPCHGVTGQCRCPPGRTGEDCEAGECEGLWGLGCQEICPACHNAARCD PETGACLCLPGFVGSRCQDCEAGWYGPSCQTMCSCANDGHCHQDTGHCSCAPGWTGFSCQRACDTGHW GPDCSHPCNCSAGHGSCDAISGLCLCEAGYVGPRCEQSECPQGHFGPGCEQRCQCQHGAACDHVSGAC TCPAG RGTFCEHACPAGFFG DCRSACNCTAGAACDAV GSCLCPAGRRGPRCAESACPAHTYGHNC SQACACFNGASCDPVHGQCHCAPGWMGPSC QACPAGLYGDNCRHSC CQNGGTCDPVSGHCACPEGW AG ACEVECLPRDVRAGCRHSGGC NGG CDPHTGRCLCPAG TGDKCQSPAACA GTFGPHCEGRCA CRWGGPCHLATGACLCPPG RGPH SAACLRG FGEACAQRCSCPPGAACHHVTGACRCPPGFTGSGC EQACPPGSFGEDCAQMCQCPGENPACHPATGTCSCAAGYHGPSCQQRCPPGRYGPGCEQ CGC NGGS CDAATGACRCPTGFLGTDCNLTCPQGRFGPNCTHVCGCGQGAACDPVTGTCLCPPGRAGVRCERGCPQ NRFGVGCEHTCSCRNGGLC-----ASNGSCSCGLG TGRHCELACPPGRYGAACHLECSCHN-I-STSTCEPATGT CRCGPGFYGQACEHPCPPGFHGAGCQGLCWCQHGAPCDPISGRCLCPAGFHGHFCERGCEPGSFGEGC HQRCDCDGGAPCDPVTGLC CPPGRSGATCNLDCRRGQFGPSCTLHCDCGGGADCDPVSGQCHCVDGY MGPTCREAGTLPASSRPTSRSGGPARHEFPGLEGKPIPNPLLG DSTRTGHHHHHH
NOV37g, CG56449-01 SEQ ID NO: 869 [7337 bp DNA Sequence
ATGCCCATGGGACATTCTGACAGGTGGTCTTGGCGTCTCCTGAGGCTGGCACTGCCACTCCCAGTCTG GTTGCCGGCTGGGGGTGGCCGAGGCGCTGACTCTCCATGTCTCTGTTCCAGGCCCCACGTGTGTGCTG AGCAGGAGCTGACCCTGGTGGGCCGCCGCCAGCCGTGCGTGCAGGCCTTAAGCCACACGGTGCCGGTG TGGAAGGCCGGCTGTGGGTGGCAGGCGTGGTGCGTGGGTCATGAGCGGAGGACCGTCTACTACATGGG CTACAGGCAGGTGTATACCACGGAGGCC∞ CCGACGAGGAGGGCTGCCTCTCGGATGTGGGTGAGTGTGCCAACGCCAACGGGGGCTGTGCGGGTCGG TGCCGGGACACCGTGGGGGGCTTCTACTGCCGCTGGCCCCCCCCCAGCCACCAGCTGCAGGGTGATGG CGAGACTTGCCAAGATGTGGACGAATGCCGAACCCACAACGGTGGCTGCCAGCACCGGTGCGTGAACA CCCCAGGCTCCTACCTCTGTGAGTGCAAGCCCGGCTTCCGGCTCCACACTGACAGCAGGACCTGCGCC ATTAACTCCTGCGCCCTGGGCAATGGCGGCTGCCAGCACCACTGTGTCCAGCTCACAATCACTCGGCA TCGCTGCCAGTGCCGGCCCGGGTTCCAGCTCCAGGAGGACGGCAGGCATTGTGTCCGTAGAAGCCCGT GTGCCAACAGGAACGGCAGCTGCATGCACAGGTGCCAGGTGGTCCGGGGCCTCGCCCGCTGTGAGTGC CACGTGGGCTATCAGCTAGCAGCGGACGGCAAGGCCTGTGAAGATGTGGACGAATGTGCCGCAGGGCT GGCCCAGTGTGCCCATGGCTGCCTCAACACCCAGGGGTCCTTCAAGTGCGTGTGTCACGCGGGCTATG AGCTGGGCGCCGATGGCCGGCAGTGCTACCGTATTGAGATGGAAATCGTGAACAGCTGTGAGGCCAAC AACGGCGGCTGCTCCCATGGCTGCAGCCACACCAGTGCTGGGCCCCTGTGCACCTGTCCCCGCGGCTA CGAGCTGGACACAGATCAGAGGACCTGCATCAGATGTCGACGACTGTGCAGACAGCCCGTGCTGCAGC AGGTGTGCACCAACAACCCTGGCGGGTACGAGTGCGGCTGCTACGCCGGCTACCGGCTCAGTGCCGAT GGCTGCGGCTGCGAGGATGTGGATGAGTGCGCCTCCAGCCGTGGCGGCTGCGAGCACCACTGCACCAA CCTGGCCGGCTCCTTCCAGTGCTCCTGCGAGGCCGGCTACCGGCTGCACGAGGACCGTAGGGGCTGCA GCGCCCTGGAGGAGCCGATGGTGGACCTGGACGGCGAGCTGCCTTTCGTGCGGCCCCTGCCCCACATT GCCGTGCTCCAGGACGAGCTGCCGCAACTCTTCCAGGATGACGACGTCGGGGCCGATGAGGAAGAGGC AGAGTTGCGGGGCGAACACACGCTCACAGAGAAGTTTGTCTGCCTGGATGACTCCTTTGGCCATGACT GCAGCTTGACCTGTGATGACTGCAGGAACGGAGGGACCTGCCTCCTGGGCCTGGATGGCTGTGATTGC CCCGAGGGCTGGACTGGGCTCATCTGCAATGAGAGTTGTCCTCCGGACACCTTTGGGAAGAACTGCAG CTTCTCCTGCAGCTGTCAGAATGGTGGGACCTGCGACTCTGTCACGGGGGCCTGCCGCTGCCCCCCGG GTGTCAGTGGAACTAACTGTGAGGATGGCTGCCCCAAGGGCTACTATGGCAAGCACTGTCGCAAGAAA TGCAACTGTGCCAACCGGGGCCGGTGCCACCGCCTCTACGGGGCCTGCCTCTGCGACCCAGGGCTCTA CGGCCGCTTCTGCCACCTCGCCTGCCCGCCGTGGGCCTTTGGGCCGGGCTGCTCGGAGGAGTGCCAGT GTGTGCAGCCCCACACGCAGTCCTGTGACAAGAGGGATGGCAGCTGCTCCTGCAAGGCTGGCTTCCGG GGCGAGCGCTGTCAGGCAGAGTGTGAGCCGGGCTACTTTGGGCCGGGGTGCTGGCAGGCATGCACCTG CCCAGTGGGCGTGGCCTGTGACTCCGTGAGCGGCGAGTGTGGGAAGCGGTGTCCTGCTGGCTTCCAGG GAGAGGACTGTGGCCAAGAGTGCCCGGTGGGGACCTTTGGCGTGAACTGCTCGAGCTCCTGCTCCTGT GGGGGGGCCCCCTGCCACGGGGTCACGGGGCAGTGCCGGTGTCCGCCGGGGAGGACTGGGGAAGACTG TGAGGCAGGTGAGTGTGAGGGCCTCTGGGGGCTGGGCTGCCAGGAGATCTGCCCAGCATGCCATAACG CTGCTCGCTGCGACCCTGAGACCGGAGCCTGCCTGTGCCTCCCTGGCTTTGTCGGCAGCCGCTGCCAG GACTGTGAGGCAGGCTGGTATGGTCCCAGCTGCCAGACAATGTGCTCTTGTGCCAATGATGGGCACTG CCACCAAGACACGGGACACTGCAGCTGTGCCCCCGGGTGGACCGGCTTTAGCTGCCAGAGAGCCTGTG ATACTGGGCACTGGGGACCTGACTGCAGCCACCCCTGCAACTGCAGCGCTGGCCACGGGAGCTGTGAT GCCATCAGCGGCCTGTGTCTGTGTGAGGCTGGCTACGTGGGCCCGCGGTGCGAGCAGTCAGAGTGTCC CCAGGGCCACTTTGGGCCCGGCTGTGAGCAGCGGTGCCAGTGTCAGCATGGAGCAGCCTGTGACCACG TCAGCGGGGCCTGCACCTGCCCGGCCGGCTGGAGGGGCACCTTCTGCGAGCATGCCTGCCCGGCCGGC TTCTTTGGATTGGACTGTCGCAGTGCCTGCAACTGCACCGCCGGAGCTGCCTGTGATGCCGTGAATGG CTCCTGCCTCTGCCCCGCTGGCCGCCGGGGCCCCCGCTGTGCCGAGAGTGCCTGCCCAGCCCACACCT ACGGGCACAATTGCAGCCAGGCCTGTGCCTGCTTTAACGGGGCCTCCTGTGACCCTGTCCACGGGCAG TGCCACTGTGCCCCTGGCTGGATGGGGCCCTCCTGCCTGCAGGCCTGCCCTGCCGGCCTGTACGGCGA CAACTGTCGGCATTCCTGCCTCTGCCAGAACGGAGGGACCTGTGACCCTGTCTCAGGCCACTGTGCGT GCCCAGAGGGCTGGGCCGGCCTGGCCTGTGAGGTAGAGTGCCTCCCCCGGGACGTCAGAGCTGGCTGC CGGCACAGCGGCGGTTGCCTCAACGGGGGCCTGTGTGACCCGCACACGGGCCGCTGCCTCTGCCCAGC
CGGCTGGACTGGGGACAAGTGTCAGAGCCCTGCAGCCTGTGCCAAGGGCACATTCGGGCCTCACTGTG AGGGGCGCTGTGCCTGCCGGTGGGGAGGCCCCTGCCACCTTGCCACCGGGGCCTGCCTCTGCCCTCCG GGGTGGCGGGGGCCTCATCTTTCTGCAGCCTGCCTGCGGGGCTGGTTTGGAGAGGCCTGTGCCCAGCG CTGCAGCTGCCCGCCTGGCGCTGCCTGCCACCACGTCACTGGGGCCTGCCGCTGTCCCCCTGGCTTCA CTGGCTCCGGCTGCGAGCAGGCCTGCCCACCCGGCAGCTTTGGGGAGGACTGTGCGCAGATGTGCCAG TGTCCCGGTGAGAACCCGGCCTGCCACCCTGCCACCGGGACCTGCTCATGTGCTGCTGGCTACCACGG CCCCAGCTGCCAGCAACGATGTCCGCCCGGGCGGTATGGGCCAGGCTGTGAACAGCTGTGTGGGTGTC TCAACGGGGGCTCCTGTGATGCGGCCACGGGGGCCTGCCGCTGCCCCACTGGGTTCCTCGGGACGGAC TGCAACCTCACCTGTCCGCAGGGCCGCTTCGGCCCCAACTGCACCCACGTGTGTGGGTGTGGGCAGGG GGCGGCCTGCGACCCTGTGACCGGCACCTGCCTCTGCCCCCCGGGGAGAGCCGGCGTCCGCTGTGAGC GAGGCTGCCCCCAGAACCGGTTTGGCGTGGGCTGCGAGCACACCTGCTCCTGCAGAAATGGGGGCCTG TGCCACGCCAGCAAGCGGCAGCTGCTCCTGTGGCCTGGGCTGGACGGGGCGGCACTGCGAGCTGGCCT GTCCCCCTGGGCGCTACGGAGCCGCCTGCCATCTGGAGTGCTCCTGCCACAACAACAGCACGTGTGAG CCTGCCACGGGCACCTGCCGCTGCGGCCCCGGCTTCTATGGCCAGGCCTGCGAGCACCCCTGTCCCCC TGGCTTCCACGGGGCTGGCTGCCAGGGGTTGTGCTGGTGTCAACATGGAGCCCCCTGCGACCCCATCA GTGGCCGATGCCTCTGCCCTGCCGGCTTC TTTGGAGAGGGCTGCCACCAGCGCTGTGACTGTGACGGGGGGGCACCCTGTGACCCTGTCACCGGTCT
CTGCCTTTGCCCACCAGGGCGCTCAGGAGCCACCTGTAACCTGGATTGCAGAAGGGGCCAGTTTGGGC
CCAGCTGCACCCTGCACTGTGACTGCGGGGGTGGGGCTGACTGCGACCCTGTCAGTGGGCAGTGTCAC
TGTGTGGATGGCTACATGGGGCCCACGTGCCGGGAAGGTGGGCCCCTCCGGCTCCCCGAGAACCCGTC
CTTAGCCCAGGGCTCAGCGGGCACACTGCCCGCCTCCAGCAGACCCACATCCCGGAGCGGTGGACCAG
CGAGGCACTAGTAGAGGCAGTCCCGTGGAGCCCGCCTCTCCAGTCCCAGCCAGAGGGGACCCTGGCCT
TTGGTGACCACTGAGAAGGACACTTCACGGGCCCAGAGCTCCTGGTACTGCCCTTCCTTTGAGGGCCG
TGGAGGGCTGTGGACAGCCCAGCAACCTGTCGCTCTTGGAGGCTGGTGTGGCCTTGAGGAGGGAAGCC
TCGCATGGCCGCTGGAAGAGAGGCGCCTCCTGGCCTGGCTCTGCAGAACCCAGGGGCACGCTCTGGGC
CTGGGCTGAGGAAGTCCCGCTCTCCCCGCGGCTCTGAGTTGGACTGAGGACAGGTGTGGGCGCCAGTG
TGGGTGCAGGCGCAGGTGCAGGCACAGGGCCACTGTCCTCCAGGCAGGCTTTTTGGTGCTAGGCCCTG
GGACTGGAAGTCGCCCAGCCCGTATTTATGTAAAGGTATTTATGGGCCACTGCACATGCCCGCTGCAG
CCCTGGGATCAGCTGGAAGCTGCCTGTCATCTCCTGCCCAATCCCCAGAAACCCTGATTCAGGTCTGC
AGGCTCCTGCGGGCTCACCAGGCTGCTGGCTCCGGTACCATGTAAACCTAGGAAGGTAAAGGAGCAGG
CAACCTCCTCGTGGCCTGTGTGTTTGCTGTGTTACGTGGACTCTGTGTGGGCTCCTCCCTGGGGCCCG
GCCAGCATAACGGTGCACCCAGGGACCTCCCAGTGCACCCGGGGCCCTTTGCAGGGGTGGGGGTGCCA!
CACAAGTGAAGAAGTTGGGACTCATCTCAGTTCCCAGTGCTATTGAGGAGAACGCTGGGGCTGCATTC
ATTACCGCTGAGACCCAGAGACTGGCTGTTCCCAGAGAATGGCCCAGGGGGAGGAGGGCTGGTGTGGA!
GGGGCAACCTGGACTGAGGCCGAACTCCCTTGGGCTCACCCCACCCACCCCTACCTGAGCATCAGCAG
TGGGGGGAGGGCAGCATCGCAGGGGCAGGGACTCCCTGGGTGAGGACAGACCAGCCCTCCCGAGCACC
TGGCACTCATGGGCTGAGGCTGACTTCTCCTGGAAGAAGGGCCCAGAGTGGAAGGAAGAGGCAGAGGG
TAGAGGTGGTGGCTGGGGGCTCCTCTGCAGAGTGGGGTGGCCAATGGAGAGGGCTGCACTCACACCGC lAACATAGGACTCTCTCTCCCTTAAGAAGGCCCCCTTAGGGTCTGGGCTGCCGCCCCCATCACCCTAAA
ACCAGCCAAGGTAGCTGAGGCCCCAGGGCAGACAATTTCACCAGCAGGANGAGGAGGAGTCCAGTGAG
CTTGGTTGCTCACAGACAGCAAGGGAGCTGTCACAGAGGAAGCTGATGAATGGACCGCTGTGGGGAGA
CTTTAAAGTAGAACAGTGATAAGGGAGGGCAGGATGGTGGGGATGCAGAAGCAGCAGCCAGAGAGAGA
CGGACTGGGGTGCAGACGGAGTGTGGAAAACGCATACCTTGAAATGAAGCATCCAGCAGATGGGGTGA!
GTGGATACAGCTCAGGAGATTCTCCCAGGAATAGCAGGGAGGCGTAAAGAGAGACAACGTACAGAGAT lAGATGAATGGAAATGGGTAAGGGAGGTGTTCATTCACATCCATCTAACTGCAAAATACAAAAGTAAGAj
AGTCATTGACATGAAGCAACGACGACCAAGACGTTCTCAGATCTAAAGGTGAATGATCTCAGTCAGCC
TGGAAATGCACAAGGTGGAAAAATAACATAAAAAAGCCATAAGACCTTGAAGAACATCAATGTCAAAG:
ATAAATTCTAAAGTCCCAGAGAAAAAAGAATGGGAATCAAATTGACCTCAGACTATACGTGAGAAACA:
CGGAGAGCCAGAAAACTGTGATGTTCCATCCTCAGAGTTTGAAGGAAATATTTGAAGGCTGAATTTTAl
CATCCAGCTAAACTATCAAAGGCATGCAAAGTCCATGTTATTCTTAGGCCTTCAAGGCCTCGGCCATT TTCTACAGAAAAGCCTGATTTTAAAATGCTCTTAGAGACGTTCTCCAGCCAGAAGAGAAAGAAGCCA
GGAGGGTGCTCTGAGATATTCAGTCACCACAGTTCCCAAATGGCCTAGGAATTCAGAGAGTCAGAATA
TCACCATTACTCCCCAATGGGAACCCCCGACAGTCTCAGCATGGTGTGAGGGTGTGGACGGGGGGCCT
GGCAGGTACCAATCACTCATCCCGCTCAGTGAAGACACAGTGTTCAGCTACGGAAGCCATAAGGCAGG
CCGAGCTTCTGCCCATCCGGAGGAAATCTCAGCTATCCAACGGCGGTCAGGAGCAGAGGAAAATAAAG
CAGAATAACTAGAAAACACGCTCACAGATCCTAATGTTAACGGTTACAAATGACGACGGAAAAACAAA
CTCCTGACCATATATTATATAGTTTCAAGCAGCAAGAAGGAGGATATTGAACATTCTCAACACACATA^
ATAAACGCTTGAGATGATGATATGCTCATTACCCTGATTTGATCACTAGACATNCCATGTATCAAAAC
ATCACTGTGTATCCGATGAATATCTACAATTATTGTCAATTAAAAACATCATTAAAAACAA
NOV37g, CG56449-01 SEQ ID NO: 870 1404 aa MW at 147886.8kD Protein Sequence PMGHSDR SWR LR A PLPVWLPAGGGRGADSPCLCSRPHVCAEQE T VGRRQPCVQA SHTVPV WKAGCG QA CVGHERRTVYY GYRQVYTTEARTVLRCCRGWMQQPDEEGCLSDVGECANA--STGGCAGR CRDTVGGFYCR PPPSHQLQGDGETCQDVDECRTHNGGCQHRCVNTPGSYLCEC PGFRLHTDSRTCA INSCALGNGGCQHHCVQLTITRHRCQCRPGFQLQEDGRHCVRRSPCA RNGSCMHRCQWRGIJARCEC HVGYQLAADGKACEDVDECAAGLAQCAHGC NTQGSFKCVCHAGYELGADGRQCYRIEMEIVNSCEAN GGCSHGCSHTSAGP CTCPRGYE DTDQRTCIRCRR CRQPVLQQVCTNNPGGYECGCYAGYR SAD GCGCEDVDECASSRGGCEHHCTNLAGSFQCSCEAGYR HEDRRGCSALEEPMVDLDGELPFVRP PHI AVLQDELPQLFQDDDVGADEEEAELRGEHT TEKFVCLDDSFGHDCSLTCDDCR GGTC LGLDGCDC PEG TG ICNESCPPDTFGKNCSFSCSCQNGGTCDSVTGACRCPPGVSGTNCEDGCP GYYGKHCRKK CNCANRGRCHRLYGACLCDPGLYGRFCHLACPP AFGPGCSEECQCVQPHTQSCDKRDGSCSCKAGFR GERCQAECEPGYFGPGCWQACTCPVGVACDSVSGECGKRCPAGFQGEDCGQECPVGTFGVNCSSSCSC GGAPCHGVTGQCRCPPGRTGEDCEAGECEGL GLGCQEICPACHNAARCDPETGACLCLPGFVGSRCQ DCEAG YGPSCQTMCSCANDGHCHQDTGHCSCAPG TGFSCQRACDTGH GPDCSHPCNCSAGHGSCD AISGLC CEAGYVG FFG DCRSACNCTAGAACDAV GSCLCPAGRRGPRCAESACPAHTYGHNCSQACACFNGASCDPVHGQ CHCAPGWMGPSC QACPAGLYGDNCRHSC CQNGGTCDPVSGHCACPEGWAGLACEVEC PRDVRAGC RHSGGCLNGG CDPHTGRCLCPAG TGDKCQSPAACAKGTFGPHCEGRCACRWGGPCHLATGACLCPP G RGPHIiSAAC RGWFGEACAQRCSCPPGAACHHVTGACRCPPGFTGSGCEQACPPGSFGEDCAQMCQ CPGENPACHPATGTCSCAAGYHGPSCQQRCPPGRYGPGCEQLCGC NGGSCDAATGACRCPTGF GTD CN TCPQGRFGPNCTHVCGCGQGAACDPVTGTC CPPGRAGVRCERGCPQNRFGVGCΞHTCSCRNGG CHASKRQLLL PG DGAARAGLSP ALRSR PSGVLLPQQQHV
NOV37h, CG56449-02 SEQ ID NO: 871 7319 bp DNA Sequence ORF Start: ATG at 1 ORF Stop: TGA at 4195
ATGCCCATGGGACATTCTGACAGGTGGTCTTGGCGTCTCCTGAGGCTGGCACTGCCACTCCCAGTCTG GTTGCCGGCTGGGGGTGGCCGAGGCGCTGACTCTCCATGTCTCTGTTCCAGGCCCCACGTGTGTGCTG AGCAGGAGCTGACCCTGGTGGGCCGCCGCCAGCCGTGCGTGCAGGCCTTAAGCCACACGGTGCCGGTG TGGAAGGCCGGCTGTGGGTGGCAGGCGTGGTGCGTGGGTCATGAGCGGAGAACCGTCTACTACATGGG CTACAGGCAGGTGTATACCACGGAGGCCCGGACCGTGCTCAGGTGCTGCCGAGGGTGGACGCAGCAGC CCGACGAGGAGGGCTGCCTCTCGGCTGAATGCAGCGCCAGCCTCTGTTTTCACGGTGGCCGTTGTGTG CCAGGCTCAGCCCAGCCGTGTCACTGTCCCCCCGGCTTCCAGGGACCCCGCTGTCAGTATGATGTGGA CGAATGCCGAACCCACAACGGTGGCTGCCAGCACCGGTGCGTGAACACCCCAGGCTCCTACCTCTGTG AGTGCAAGCCCGGCTTCCGGCTCCACACTGACAGCAGGACCTGCCTGGCCATTAACTCCTGCGCCCTG GGCAATGGCGGCTGCCAGCACCACTGTGTCCAGCTCACAATCACTCGGCATCGCTGCCAGTGCCGGCC CGGGTTCCAGCTCCAGGAGGACGGCAGGCATTGTGTCCGTAGAAGCCCGTGTGCCAACAGGAACGGCA GCTGCATGCACAGGTGCCAGGTGGTCCGGGGCCTCGCCCGCTGTGAGTGCCACGTGGGCTATCAGCTA GCAGCGGACGGCAAGGCCTGTGAAGATGTGGACGAATGTGCCGCAGGGCTGGCCCAGTGTGCCCATGG CTGCCTCAACACCCAGGGGTCCTTCAAGTGCGTGTGTCACGCGGGCTATGAGCTGGGCGCCGATGGCC GGCAGTGCTACCGTATTGAGATGGAAATCGTGAACAGCTGTGAGGCCAACAACGGCGGCTGCTCCCAT GGCTGCAGCCACACCAGTGCTGGGCCCCTGTGCACCTGTCCCCGCGGCTACGAGCTGGACACAGATCA GAGGACCTGCATCAGATGTCGACGACTGTGCAGACAGCCCGTGCTGCAGCAGGTGTGCACCAACAACC CTGGCGGGTACGAGTGCGGCTGCTACGCCGGCTACCGGCTCAGTGCCGATGGCTGCGGCTGCGAGGAT GTGGATGAGTGCGCCTCCAGCCGTGGCGGCTGCGAGCACCACTGCACCAACCTGGCCGGCTCCTTCCA GTGCTCCTGCGAGGCCGGCTACCGGCTGCACGAGGACCGTAGGGGCTGCAGCGCCCTGGAGGAGCCGA TGGTGGACCTGGACGGCGAGCTGCCTTTCGTGCGGCCCCTGCCCCACATTGCCGTGCTCCAGGACGAG CTGCCGCAACTCTTCCAGGATGACGACGTCGGGGCCGATGAGGAAGAGGCAGAGTTGCGGGGCGAACA CACGCTCACAGAGAAGTTTGTCTGCCTGGATGACTCCTTTGGCCATGACTGCAGCTTGACCTGTGATG ACTGCAGGAACGGAGGGACCTGCCTCCTGGGCCTGGATGGCTGTGATTGCCCCGAGGGCTGGACTGGG CTCATCTGCAATGAGAGTTGTCCTCCGGACACCTTTGGGAAGAACTGCAGCTTCTCCTGCAGCTGTCA GAATGGTGGGACCTGCGACTCTGTCACGGGGGCCTGCCGCTGCCCCCCGGGTGTCAGTGGAACTAACT GTGAGGATGGCTGCCCCAAGGGCTACTATGGCAAGCACTGTCGCAAGAAATGCAACTGTGCCAACCGG GGCCGGTGCCACCGCCTCTACGGGGCCTGCCTCTGCGACCCAGGGCTCTACGGCCGCTTCTGCCACCT CGCCTGCCCGCCGTGGGCCTTTGGGCCGGGCTGCTCGGAGGAGTGCCAGTGTGTGCAGCCCCACACGC AGTCCTGTGACAAGAGGGATGGCAGCTGCTCCTGCAAGGCTGGCTTCCGGGGCGAGCGCTGTCAGGCA GAGTGTGAGCCGGGCTACTTTGGGCCGGGGTGCTGGCAGGCATGCACCTGCCCAGTGGGCGTGGCCTG TGACTCCGTGAGCGGCGAGTGTGGGAAGCGGTGTCCTGCTGGCTTCCAGGGAGAGGACTGTGGCCAAG AGTGCCCGGTGGGGACCTTTGGCGTGAACTGCTCGAGCTCCTGCTCCTGTGGGGGGGCCCCCTGCCAC GGGGTCACGGGGCAGTGCCGGTGTCCGCCGGGGAGGACTGGGGAAGACTGTGAGGCAGGTGAGTGTGA GGGCCTCTGGGGGCTGGGCTGCCAGGAGATCTGCCCAGCATGCCATAACGCTGCTCGCTGCGACCCTG AGACCGGAGCCTGCCTGTGCCTCCCTGGCTTTGTCGGCAGCCGCTGCCAGGACTGTGAGGCAGGCTGG TATGGTCCCAGCTGCCAGACAATGTGCTCTTGTGCCAATGATGGGCACTGCCACCAAGACACGGGACA CTGCAGCTGTGCCCCCGGGTGGACCGGCTTTAGCTGCCAGAGAGCCTGTGATACTGGGCACTGGGGAC CTGACTGCAGCCACCCCTGCAACTGCAGCGCTGGCCACGGGAGCTGTGATGCCATCAGCGGCCTGTGT CTGTGTGAGGCTGGCTACGTGGGCCCGCGGTGCGAGCAGTCAGAGTGTCCCCAGGGCCACTTTGGGCC CGGCTGTGAGCAGCGGTGCCAGTGTCAGCATGGAGCAGCCTGTGACCACGTCAGCGGGGCCTGCACCT GCCCGGCCGGCTGGAGGGGCACCTTCTGCGAGCATGCCTGCCCGGCCGGCTTCTTTGGATTGGACTGT CGCAGTGCCTGCAACTGCACCGCCGGAGCTGCCTGTGATGCCGTGAATGGCTCCTGCCTCTGCCCCGC TGGCCGCCGGGGCCCCCGCTGTGCCGAGAGTGCCTGCCCAGCCCACACCTACGGGCACAATTGCAGCC AGGCCTGTGCCTGCTTTAACGGGGCCTCCTGTGACCCTGTCCACGGGCAGTGCCACTGTGCCCCTGGC TGGATGGGGCCCTCCTGCCTGCAGGCCTGCCCTGCCGGCCTGTACGGCGACAACTGTCGGCATTCCTG CCTCTGCCAGAACGGAGGGACCTGTGACCCTGTCTCAGGCCACTGTGCGTGCCCAGAGGGCTGGGCCG GCCTGGCCTGTGAGGTAGAGTGCCTCCCCCGGGACGTCAGAGCTGGCTGCCGGCACAGCGGCGGTTGC CTCAACGGGGGCCTGTGTGACCCGCACACGGGCCGCTGCCTCTGCCCAGCCGGCTGGACTGGGGACAA
GTGTCAGAGCCCTGCAGCCTGTGCCAAGGGCACATTCGGGCCTCACTGTGAGGGGCGCTGTGCCTGCC GGTGGGGAGGCCCCTGCCACCTTGCCACCGGGGCCTGCCTCTGCCCTCCGGGGTGGCGGGGGCCTCAT CTTTCTGCAGCCTGCCTGCGGGGCTGGTTTGGAGAGGCCTGTGCCCAGCGCTGCAGCTGCCCGCCTGG CGCTGCCTGCCACCACGTCACTGGGGCCTGCCGCTGTCCCCCTGGCTTCACTGGCTCCGGCTGCGAGC AGGCCTGCCCACCCGGCAGCTTTGGGGAGGACTGTGCGCAGATGTGCCAGTGTCCCGGTGAGAACCCG GCCTGCCACCCTGCCACCGGGACCTGCTCATGTGCTGCTGGCTACCACGGCCCCAGCTGCCAGCAACG ATGTCCGCCCGGGCGGTATGGGCCAGGCTGTGAACAGCTGTGTGGGTGTCTCAACGGGGGCTCCTGTG ATGCGGCCACGGGGGCCTGCCGCTGCCCCACTGGGTTCCTCGGGACGGACTGCAACCTCACCTGTCCG CAGGGCCGCTTCGGCCCCAACTGCACCCACGTGTGTGGGTGTGGGCAGGGGGCGGCCTGCGACCCTGT GACCGGCACCTGCCTCTGCCCCCCGGGGAGAGCCGGCGTCCGCTGTGAGCGAGGCTGCCCCCAGAACC GGTTTGGCGTGGGCTGCGAGCACACCTGCTCCTGCAGAAATGGGGGCCTGTGCCACGCCAGCAAGCGG CAGCTGCTCCTGTGGCCTGGGCTGGACGGGGCGGCACTGCGAGCTGGCCTGTCCCCCTGGGCGCTACG GAGCCGCCTGCCATCTGGAGTGCTCCTGCCACAACAACAGCACGTGTGAGCCTGCCACGGGCACCTGC
CGCTGCGGCCCCGGCTTCTATGGCCAGGCCTGCGAGCACCCCTGTCCCCCTGGCTTCCACGGGGCTGG
CTGCCAGGGGTTGTGCTGGTGTCAACATGGAGCCCCCTGCGACCCCATCAGTGGCCGATGCCTCTGCC
CTGCCGGCTTCCACGGCCACTTCTGTGAGAGGGGGTGTGAGCCAGGTTCATTTGGAGAGGGCTGCCAC
CAGCGCTGTGACTGTGACGGGGGGGCACCCTGTGACCCTGTCACCGGTCTCTGCCTTTGCCCACCAGG
GCGCTCAGGAGCCACCTGTAACCTGGATTGCAGAAGGGGCCAGTTTGGGCCCAGCTGCACCCTGCACT
GTGACTGCGGGGGTGGGGCTGACTGCGACCCTGTCAGTGGGCAGTGTCACTGTGTGGATGGCTACATG
GGGCCCACGTGCCGGGAAGGTGGGCCCCTCCGGCTCCCCGAGAACCCGTCCTTAGCCCAGGGCTCAGC
GGGCACACTGCCCGCCTCCAGCAGACCCACATCCCGGAGCGGTGGACCAGCGAGGCACTAGTAGAGGC
AGTCCCGTGGAGCCCGCCTCTCCAGTCCCAGCCAGAGGGGACCCTGGCCTTTGGTGACCACTGAGAAG
GACACTTCACGGGCCCAGAGCTCCTGGTACTGCCCTTCCTTTGAGGGCCGTGGAGGGCTGTGGACAGC
CCAGCAACCTGTCGCTCTTGGAGGCTGGTGTGGCCTTGAGGAGGGAAGCCTCGCATGGCCGCTGGAAG
JAGAGGCGCCTCCTGGCCTGGCTCTGCAGAACCCAGGGGCACGCTCTGGGCCTGGGCTGAGGAAGTCCC
GCTCTCCCCGCGGCTCTGAGTTGGACTGAGGACAGGTGTGGGCGCCAGTGTGGGTGCAGGCGCAGGTG
CAGGCACAGGGCCACTGTCCTCCAGGCAGGCTTTTTGGTGCTAGGCCCTGGGACTGGAAGTCGCCCAG
CCCGTATTTATGTAAAGGTATTTATGGGCCACTGCACATGCCCGCTGCAGCCCTGGGATCAGCTGGAA
GCTGCCTGTCATCTCCTGCCCAATCCCCAGAAACCCTGATTCAGGTCTGCAGGCTCCTGCGGGCTCAC
CAGGCTGCTGGCTCCGGTACCATGTAAACCTAGGAAGGTAAAGGAGCAGGCAACCTCCTCGTGGCCTG
TGTGTTTGCTGTGTTACGTGGACTCTGTGTGGGCTCCTCCCTGGGGCCCGGCCAGCATAACGGTGCAC
CCAGGGACCTCCCAGTGCACCCGGGGCCCTTTGCAGGGGTGGGGGTGCCACACAAGTGAAGAAGTTGG
GACTCATCTCAGTTCCCAGTGCTATTGAGGAGAACGCTGGGGCTGCATTCATTACCGCTGAGACCCAG jAGACTGGCTGTTCCCAGAGAATGGCCCAGGGGGAGGAGGGCTGGTGTGGAGGGGCAACCTGGACTGAG
GCCGAACTCCCTTGGGCTCACCCCACCCACCCCTACCTGAGCATCAGCAGTGGGGGGAGGGCAGCATC
GCAGGGGCAGGGACTCCCTGGGTGAGGACAGACCAGCCCTCCCGAGCACCTGGCACTCATGGGCTGAG
GCTGACTTCTCCTGGAAGAAGGGCCCAGAGTGGAAGGAAGAGGCAGAGGGTAGAGGTGGTGGCTGGGG
GCTCCTCTGCAGAGTGGGGTGGCCAATGGAGAGGGCTGCACTCACACCGCAACATAGGACTCTCTCTC
CCTTAAGAAGGCCCCCTTAGGGTCTGGGCTGCCGCCCCCATCACCCTAAAACCAGCCAAGGTAGCTGA!
GGCCCCAGGGCAGACAATTTCACCAGCAGGA GAGGAGGAGTCCAGTGAGCTTGGTTGCTCACAGACAJ
GCAAGGGAGCTGTCACAGAGGAAGCTGATGAATGGACCGCTGTGGGGAGACTTTAAAGTAGAACAGTG
ATAAGGGAGGGCAGGATGGTGGGGATGCAGAAGCAGCAGCCAGAGAGAGACGGACTGGGGTGCAGACG
GAGTGTGGAAAACGCATACCTTGAAATGAAGCATCCAGCAGATGGGGTGAGTGGATACAGCTCAGGAG
ATTCTCCCAGGAATAGCAGGGAGGCGTAAAGAGAGACAACGTACAGAGATAGATGAATGGAAATGGGT
AAGGGAGGTGTTCATTCACATCCATCTAACTGCAAAATACAAAAGTAAGAAGTCATTGACATGAAGCAI
ACGACGACCAAGACGTTCTCAGATCTAAAGGTGAATGATCTCAGTCAGCCTGGAAATGCACAAGGTGG
AAAAATAACATAAAAAAGCCATAAGACCTTGAAGAACATCAATGTCAAAGATAAATTCTAAAGTCCCA!
GAGAAAAAAGAATGGGAATCAAATTGACCTCAGACTATACGTGAGAAACACGGAGAGCCAGAAAACTG
TGATGTTCCATCCTCAGAGTTTGAAGGAAATATTTGAAGGCTGAATTTTACATCCAGCTAAACTATCA! AAGGCATGCAAAGTCCATGTTATTCTTAGGCCTTCAAGGCCTCGGCCATTTTTCTACAGAAAAGCCTG
ATTTTAAAATGCTCTTAGAGACGTTCTCCAGCCAGAAGAGAAAGAAGCCAGGAGGGTGCTCTGAGATA!
TTCAGTCACCACAGTTCCCAAATGGCCTAGGAATTCAGAGAGTCAGAATATCACCATTACTCCCCAAT
GGGAACCCCCGACAGTCTCAGCATGGTGTGAGGGTGTGGACGGGGGGCCTGGCAGGTACCAATCACTC
ATCCCGCTCAGTGAAGACACAGTGTTCAGCTACGGAAGCCATAAGGCAGGCCGAGCTTCTGCCCATCC
GGAGGAAATCTCAGCTATCCAACGGCGGTCAGGAGCAGAGGAAAATAAAGCAGAATAACTAGAAAACA:
CGCTCACAGATCCTAATGTTAACGGTTACAAATGACGACGGAAAAACAAACTCCTGACCATATATTAT
ATAGTTTCAAGCAGCAAGAAGGAGGATATTGAACATTCTCAACACACATAATAAACGCTTGAGATGAT
GATATGCTCATTACCCTGATTTGATCACTAGACATNCCATGTATCAAAACATCACTGTGTATCCGATG iAATATCTACAATTATTGTCAATTAAAAACATCATTAAAAACAA jNOV37h, CG56449-02 |SEQ ID NO: 872|1398 aa [MW at 147208.2kD Protein Sequence
MPMGHSDR SWRL RLALPLPVWLPAGGGRGADSPCLCSRPHVCAEQE-T VGRRQPCVQALSHTVPV KAGCG QA CVGHERRTVYYMGYRQVYTTEARTVLRCCRG TQQPDEEGCLSAECSASLCFHGGRCV PGSAQPCHCPPGFQGPRCQYDVDECRTHNGGCQHRCVNTPGSYLCECKPGFRLHTDSRTCLAINSCAL GNGGCQHHCVQLTITRHRCQCRPGFQ QEDGRHCVRRSPCANRNGSCMHRCQWRGLARCECHVGYQL AA-DGKACEDVDECAAG AQCAHGC NTQGSFKCVCi GYE G-ADGRQCYRIEMEIVNSCEA-NNGGCSH GCSHTSAGPLCTCPRGYELDTDQRTCIRCRRLCRQPV QQVCTNNPGGYECGCYAGYR SADGCGCED VDECASSRGGCEHHCTNLAGSFQCSCEAGYRLHEDRRGCSALEEPMVDLDGELPFVRP PHIAV QDE LPQLFQDDDVGADEEEAELRGEHTLTEKFVCLDDSFGHDCSLTCDDCRNGGTCLLG DGCDCPEGWTG ICNESCPPDTFGKNCSFSCSCQNGGTCDSVTGACRCPPGVSGTNCEDGCPKGYYGKHCRKKCNCANR GRCHRLYGACLCDPGLYGRFCHLACPP AFGPGCSEECQCVQPHTQSCDKRDGSCSCKAGFRGERCQA ECEPGYFGPGC QACTCPVGVACDSVSGECGKRCPAGFQGEDCGQECPVGTFGVNCSSSCSCGGAPCH GVTGQCRCPPGRTGEDCEAGECEGLWGLGCQEICPACH AARCDPETGACLCLPGFVGSRCQDCEAG YGPSCQTMCSCA DGHCHQDTGHCSCAPG TGFSCQRACDTGH GPDCSHPCNCSAGHGSCDAISG C LCEAGYVGPRCEQSECPQGHFGPGCEQRCQCQHGAACDHVSGACTCPAG RGTFCEHACPAGFFG DC RSACNCTAGAACDAVNGSCLCPAGRRGPRCAESACPAHTYGHNCSQACACFNGASCDPVHGQCHCAPG MGPSCLQACPAGLYGDNCRHSCLCQNGGTCDPVSGHCACPEG AGLACEVEC PRDVRAGCRHSGGC NGGLCDPHTGRCLCPAGWTGDKCQSPAACAKGTFGPHCEGRCACR GGPCH ATGACLCPPG RGPH LSAAC RGWFGEACAQRCSCPPGAACHHVTGACRCPPGFTGSGCEQACPPGSFGEDCAQMCQCPGENP ACHPATGTCSCAAGYHGPSCQQRCPPGRYGPGCEQ CGC NGGSCDAATGACRCPTGFLGTDCNLTCP QGRFGPNCTHVCGCGQGAACDPVTGTC CPPGRAGVRCERGCPQNRFGVGCEHTCSCRNGGLCHASKR QL LWPG DGAALRAGLSP A RSRLPSGVLLPQQQHV
NOV37i, CG56449-03 SEQ ID NO: 873 J4733 bp
DNA Sequence ORF Start: ATG at 1 ORF Stop: TAG at 4351
ATGCCCATGGGACATTCTGACAGGTGGTCTTGGCGTCTCCTGAGGCTGGCACTGCCACTCCCAGTCTG GTTGCCGGCTGGGGGTGGCCGAGGCGCTGACTCTCCATGTCTCTGTTCCAGGCCCCACGTGTGTGCTG AGCAGGAGCTGACCCTGGTGGGCCGCCGCCAGCCGTGCGTGCAGGCCTTAAGCCACACGGTGCCGGTG TGGAAGGCCGGCTGTGGGTGGCAGGCGTGGTGCGTGGGTCATGAGCGGAGAACCGTCTACTACATGGG CTACAGGCAGGTGTATACCACGGAGGCCCGGACCGTGCTCAGGTGCTGCCGAGGGTGGACGCAGCAGC CCGACGAGGAGGGCTGCCTCTCGGCTGAATGCAGCGCCAGCCTCTGTTTTCACGGTGGCCGTTGTGTG CCAGGCTCAGCCCAGCCGTGTCACTGTCCCCCCGGCTTCCAGGGACCCCGCTGTCAGTATGATGTGGA CGAATGCCGAACCCACAACGGTGGCTGCCAGCACCGGTGCGTGAACACCCCAGGCTCCTACCTCTGTG AGTGCAAGCCCGGCTTCCGGCTCCACACTGACAGCAGGACCTGCCTGGCCATTAACTCCTGCGCCCTG GGCAATGGCGGCTGCCAGCACCACTGTGTCCAGCTCACAATCACTCGGCATCGCTGCCAGTGCCGGCC CGGGTTCCAGCTCCAGGAGGACGGCAGGCATTGTGTCCGTAGAAGCCCGTGTGCCAACAGGAACGGCA GCTGCATGCACAGGTGCCAGGTGGTCCGGGGCCTCGCCCGCTGTGAGTGCCACGTGGGCTATCAGCTA GCAGCGGACGGCAAGGCCTGTGAAGATGTGGACGAATGTGCCGCAGGGCTGGCCCAGTGTGCCCATGG CTGCCTCAACACCCAGGGGTCCTTCAAGTGCGTGTGTCACGCGGGCTATGAGCTGGGCGCCGATGGCC GGCAGTGCTACCGTATTGAGATGGAAATCGTGAACAGCTGTGAGGCCAACAACGGCGGCTGCTCCCAT GGCTGCAGCCACACCAGTGCTGGGCCCCTGTGCACCTGTCCCCGCGGCTACGAGCTGGACACAGATCA GAGGACCTGCATCAGATGTCGACGACTGTGCAGACAGCCCGTGCTGCAGCAGGTGTGCACCAACAACC CTGGCGGGTACGAGTGCGGCTGCTACGCCGGCTACCGGCTCAGTGCCGATGGCTGCGGCTGCGAGGAT GTGGATGAGTGCGCCTCCAGCCGTGGCGGCTGCGAGCACCACTGCACCAACCTGGCCGGCTCCTTCCA GTGCTCCTGCGAGGCCGGCTACCGGCTGCACGAGGACCGTAGGGGCTGCAGCGCCCTGGAGGAGCCGA TGGTGGACCTGGACGGCGAGCTGCCTTTCGTGCGGCCCCTGCCCCACATTGCCGTGCTCCAGGACGAG CTGCCGCAACTCTTCCAGGATGACGACGTCGGGGCCGATGAGGAAGAGGCAGAGTTGCGGGGCGAACA CACGCTCACAGAGAAGTTTGTCTGCCTGGATGACTCCTTTGGCCATGACTGCAGCTTGACCTGTGATG ACTGCAGGAACGGAGGGACCTGCCTCCTGGGCCTGGATGGCTGTGATTGCCCCGAGGGCTGGACTGGG CTCATCTGCAATGAGAGTTGTCCTCCGGACACCTTTGGGAAGAACTGCAGCTTCTCCTGCAGCTGTCA GAATGGTGGGACCTGCGACTCTGTCACGGGGGCCTGCCGCTGCCCCCCGGGTGTCAGTGGAACTAACT GTGAGGATGGCTGCCCCAAGGGCTACTATGGCAAGCACTGTCGCAAGAAATGCAACTGTGCCAACCGG GGCCGGTGCCACCGCCTCTACGGGGCCTGCCTCTGCGACCCAGGGCTCTACGGCCGCTTCTGCCACCT CGCCTGCCCGCCGTGGGCCTTTGGGCCGGGCTGCTCGGAGGAGTGCCAGTGTGTGCAGCCCCACACGC AGTCCTGTGACAAGAGGGATGGCAGCTGCTCCTGCAAGGCTGGCTTCCGGGGCGAGCGCTGTCAGGCA GAGTGTGAGCTGGGCTACTTTGGGCCGGGGTGCTGGCAGGCATGCACCTGCCCAGTGGGCGTGGCCTG TGACTCCGTGAGCGGCGAGTGTGGGAAGCGGTGTCCTGCTGGCTTCCAGGGAGAGGACTGTGGCCAAG AGTGCCCGGTGGGGACGTTTGGCGTGAACTGCTCGAGCTCCTGCTCCTGTGGGGGGGCCCCCTGCCAC GGGGTCACGGGGCAGTGCCGGTGTCCACCGGGGAGGACTGGGGAAGACTGTGAGGCAGATTGTCCCGA GGGCCGCTGGGGGCTGGGCTGCCAGGAGATCTGC AGACCGGAGCCTGCCTGTGCCTCCCTGGCTTCGTCGGCAGCCGCTGCCAGGACGTGTGCCCAGCAGGC TGGTATGGTCCCAGCTGCCAGACAAGGTGCTCTTGTGCCAATGATGGGCACTGCCACCCAGCCACCGG ACACTGCAGCTGTGCCCCCGGGTGGACCGGCTTTAGCTGCCAGAGAGCCTGTGATACTGGGCACTGGG GACCTGACTGCAGCCACCCCTGCAACTGCAGCGCTGGCCACGGGAGCTGTGATGCCATCAGCGGCCTG TGTCTGTGTGAGGCTGGCTACGTGGGCCCGCGGTGCGAGCAGCAGTGTCCCCAGGGCCACTTTGGGCC CGGCTGTGAGCAGCTGTGCCAGTGTCAGCATGGAGCAGCCTGTGACCACGTCAGCGGGGCCTGCACCT GCCCGGCCGGCTGGAGGGGCACCTTCTGCGAGCATGCCTGCCCGGCCGGCTTCTTTGGATTGGACTGT CGTAGTGCCTGCAACTGCACCGCCGGAGCTGCCTGTGATGCCGTGAATGGCTCCTGCCTCTGCCCCGC TGGCCGCCGGGGCCCCCGCTGTGCCGAGACCTGCCCTGCCGGCCTGTACGGCGACAACTGTCGGCATT CCTGCCTCTGCCAGAACGGAGGGACCTGTGACCCTGTCTCAGGCCACTGTGCGTGCCCAGAGGGCTGG GCCGGCCTGGCCTGTGAGAAGGAGTGCCCCCCCCGGGACGTCAGAGCTGGCTGCCGGCACAGCGGTGG TTGCCTCAACGGGGGCCTGTGTGACCCGCACACGGGCCGCTGCCTCTGCCCAGCCGGCTGGGCTGGGG ACAAGTGTCAGAGCCCCTGCCTGCGGGGCTGGTTTGGAGAGGCCTGTGCCCAGCACTGCAGCTGCCCG CCTGGCGCTGCCTGCCACCACGTCACTGGGGCCTGCCGCTGTCCCCCTGGCTTCACTGGCTCCGGCTG
CGAGCAGGGATGTCCGCCCGGGCGGTATGGGCCAGGCTGTGAACAGCTGTGTGGGTGTCTCAACGGGG GCTCCTGTGATGCGGCCACGGGGGCCTGCCGCTGCCCCACTGGGTTCCTCGGGACGGACTGCAACCTC ACCTGTCCGCAGGGCCGCTTCGGCCCCAACTGCACCCACGTGTGTGGGTGTGGGCAGGGGGCGGCCTG CGACCCTGTGACCGGCACCTGCCTCTGCCCCCCGGGGAGAGCCGGCGTCCGCTGTGAGCGAGGCTGCC CCCAGAACCGGTTTGGCGTGGGCTGCGAGCACACCTGCTCCTGCAGAAATGGGGGCCTGTGCCACGCC AGCAACGGCAGCTGCTCCTGTGGCCTGGGCTGGACGGGGCGGCACTGCGAGCTGGCCTGTCCCCCTGG GCGCTACGGAGCCGCCTGCCATCTGGAGTGCTCCTGCCACAACAACAGCACGGGTGAGCCTGCCACGG GCACCTGCCGCTGCGGCCCCGGCTTCTATGGCCAGGCCTGCGAGCACCCCTGTCCCCCTGGCTTCCAC GGGGCTGGCTGCCAGGGGTTGTGCTGGTGTCAACATGGAGCCCCCTGCGACCCCATCAGTGGCCGATG CCTCTGCCCTGCCGGCTTCCACGGCCACTTCTGTGAGAGGGGGTGTGAGCCAGGTTCATTTGGAGAGG GCTGCCACCAGCGCTGTGACTGTGACGGGGGGGCACCCTGTGACCCTGTCACCGGTCTCTGCCTTTGC CCACCAGGGCGCTCAGGAGCCACCTGTAACCTGGATTGCAGAAGGGGCCAGTTTGGGCCCAGCTGCAC CCTGCACTGTGACTGCGGGGGTGGGGCTGACTGCGACCCTGTCAGTGGGCAGTGTCACTGTGTGGATG GCTACATGGGGCCCACGTGCCGGGAAGGTGGGCCCCTCCGGCTCCCCGAGAACCCGTCCTTAGCCCAG GGCTCAGCGGGCACACTGCCCGCCTCCAGCAGACCCACATCCCGGAGCGGTGGACCAGCGAGGCACTA GTAGAGGCAGTCCCGTGGAGCCCGCCTCTCCAGTCCCAGCCAGAGGGGACCCTGGCCTTTGGTGACCA
CTGAGAAGGACACTTCACGGGCCCAGAGCTCCTGGTACTGCCCTTCCTTTGAGGGCCGTGGAGGGCTG
TGGACAGCCCAGCAACCTGTCGCTCTTGGAGGCTGGTGTGGCCTTGAGGAGGGAAGCCTCGCATGGCC
GCTGGAAGAGAGGCGCCTCCTGGCCTGGCTCTGCAGAACCCAGGGGCACGCTCTGGGCCTGGGCTGAG
GAAGTCCCGCTCTCCCCGCGGCTCTGAGTTGGACTGAGGACAGGTGTGGGCGCCAGTGTGGGTGCAGG
CGCAGGTGCAGGCACAGGGCCACTGTCCTCCAGGCAGGCTT
NOV37i, CG56449-03 SEQ ID NO: 874 1450 aa MW at l52213.4kD Protein Sequence
MPMGHSDRWS R RLALP PV LPAGGGRGADSPC CSRPHVCAEQE TLVGRRQPCVQALSHTVPV -.-^GCG QAWCVGHERRTVYY GYRQVYTTEARTVLRCCRGWTQQPDEEGC SAECSASLCFHGGRCV PGSAQPCHCPPGFQGPRCQYDVDECRTH GGCQHRCV-NTPGSYLCECKPGFRLHTDSRTC AINSCAL GNGGCQHHCVQLTIT-RHRCQCRPGFQ QEDGRHCVRRSPCANRNGSCMHRCQVVRGLARCECHVGYQ AADG-i CEDVDEC-AAG AQCAHGC NTQGSFKCVCHAGYELGADGRQCYRIE EIVNSCEA-NNGGCSH GCSHTSAGP CTCPRGYELDTDQRTCIRCRRLCRQPVLQQVCTNNPGGYECGCYAGYRLSADGCGCED VDECASSRGGCEHHCTNLAGSFQCSCEAGYR HEDRRGCSALEEPMVDLDGELPFVRPLPHIAVLQDE LPQLFQDDDVGADEEEAE RGEHTLTEKFVCLDDSFGHDCSLTCDDCRNGGTC LGLDGCDCPEG TG LICNESCPPDTFGKNCSFSCSCQNGGTCDSVTGACRCPPGVSGTNCEDGCPKGYYGKHCRKKCNCA1.R GRCHR YGAC CDPGLYGRFCHLACPP AFGPGCSEECQCVQPHTQSCDKRDGSCSCKAGFRGERCQA ECELGYFGPGCWQACTCPVGVACDSVSGECGKRCPAGFQGEDCGQΞCPVGTFGVNCSSSCSCGGAPCH GVTGQCRCPPGRTGEDCEADCPEGRWG GCQEICPACQHAARCDPETGACLC PGFVGSRCQDVCPAG WYGPSCQTRCSCANDGHCHPATGHCSCAPG TGFSCQRACDTGH GPDCSHPCNCSAGHGSCDAISGL C CEAGYVGPRCEQQCPQGHFGPGCEQLCQCQHGAACDHVSGACTCPAG RGTFCEHACPAGFFGLDC RSACNCTAGAACDAV GSCLCPAGRRGPRCAETCPAGLYGDNCRHSCLCQNGGTCDPVSGHCACPEGW AGLACEKECPPRDVRAGCRHSGGC NGGLCDPHTGRCLCPAG AGDKCQSPCLRG FGEACAQHCSCP PGAACHHVTGACRCPPGFTGSGCEQGCPPGRYGPGCEQLCGCLNGGSCDAATGACRCPTGF GTDCNL TCPQGRFGPNCTHVCGCGQGAACDPVTGTC CPPGRAGVRCERGCPQ RFGVGCEHTCSCRNGGLCHA SNGSCSCGLGWTGRHCE ACPPGRYGAACHLECSCHNNSTGEPATGTCRCGPGFYGQACEHPCPPGFH GAGCQG C CQHGAPCDPISGRC CPAGFHGHFCERGCEPGΞFGEGCHQRCDCDGGAPCDPVTGLCLC PPGRSGATCN DCRRGQFGPSCTLHCDCGGGADCDPVSGQCHCVDGYMGPTCREGGPLRLPEMPS AQ GSAGT PASSRPTSRSGGPARH NOV37J, CG56449-05 SEQ ID NO: 875 522 bp
DNA Sequence ORF Start: ATG at 29 JORF Stop: at 515
GGATCCGTGCCTCGCTGGTCCACCGCTCATGGCTCCTGCCTCTGCCCCGCTGGCCGCCGGGGCCCCCG
CTGTGCCGAGACCTGCCCTGCCGGCCTGTACGGCGACAACTGTCGGCATTCCTGCCTCTGCCAGAACG GAGGGACCTGTGACCCTGTCTCAGGCCTGCGAGCACCCCTGTCCCCCTGGCTTCCACGGGGCTGGCTG CCAGGGGTTGTGCTGGTGTCAACATGGAGCCCCCTGCGACCCCATCAGTGGCCGATGCCTCTGCCCTG CCGGCTTCCACGGCCACTTCTGTGAGAGGGATTGCAGAAGGGGCCAGTTTGGGCCCAGCTGCACCCTG CACTGTGACTGCGGGGGTGGGGCTGACTGCGACCCTGTCAGTGGGCAGTGTCACTGTGTGGATGGCTA CATGGGGCCCACGTGCCGGGAAGGTGGGCCCCTCCGGCTCCCCGAGAACCCGTCCTTAGCCCAGGGCT CAGCGGGCACACTGCCCGCCTCCAGCAGACCCACATCCCGCTCGAG
NOV37J, CG56449-05 SEQ ID NO: 876 162 aa MW at 16251.2kD Protein Sequence
MAPASAPLAAGAPAVPRPAIiPACTATTVGIPASARTEGPVTLSQACEHPCPPGFHGAGCQGLCWCQHG APCDPISGRC CPAGFHGHFCERDCRRGQFGPSCT HCDCGGGADCDPVSGQCHCVDGYMGPTCREGG PLRLPENPS AQGSAGT PASSRPTS
NOV37k, CG56449-06 SEQ ID NO: 877 7334 bp
DNA Sequence ORF Start: ATG at 1 ORF Stop: TGA at 4210
ATGCCCATGGGACATTCTGACAGGTGGTCTTGGCGTCTCCTGAGGCTGGCACTGCCACTCCCAGTCTG GTTGCCGGCTGGGGGTGGCCGAGGCGCTGACTCTCCATGTCTCTGTTCCAGGCCCCACGTGTGTGCTG AGCAGGAGCTGACCCTGGTGGGCCGCCGCCAGCCGTGCGTGCAGGCCTTAAGCCACACGGTGCCGGTG TGGAAGGCCGGCTGTGGGTGGCAGGCGTGGTGCGTGGGTCATGAGCGGAGGACCGTCTACTACATGGG CTACAGGCAGGTGTATACCACGGAGGCCCGGACCGTGCTCAGGTGCTGCCGAGGGTGGATGCAGCAGC CCGACGAGGAGGGCTGCCTCTCGGATGTGGGTGAGTGTGCCAACGCCAACGGGGGCTGTGCGGGTCGG TGCCGGGACACCGTGGGGGGCTTCTACTGCCGCTGGCCCCCCCCCAGCCACCAGCTGCAGGGTGATGG CGAGACTTGCCAAGATGTGGACGAATGCCGAACCCACAACGGTGGCTGCCAGCACCGGTGCGTGAACA CCCCAGGCTCCTACCTCTGTGAGTGCAAGCCCGGCTTCCGGCTCCACACTGACAGCAGGACCTGCGCC ATTAACTCCTGCGCCCTGGGCAATGGCGGCTGCCAGCACCACTGTGTCCAGCTCACAATCACTCGGCA TCGCTGCCAGTGCCGGCCCGGGTTCCAGCTCCAGGAGGACGGCAGGCATTGTGTCCGTAGAAGCCCGT GTGCCAACAGGAACGGCAGCTGCATGCACAGGTGCCAGGTGGTCCGGGGCCTCGCCCGCTGTGAGTGC CACGTGGGCTATCAGCTAGCAGCGGACGGCAAGGCCTGTGAAGATGTGGACGAATGTGCCGCAGGGCT GGCCCAGTGTGCCCATGGCTGCCTCAACACCCAGGGGTCCTTCAAGTGCGTGTGTCACGCGGGCTATG AGCTGGGCGCCGATGGCCGGCAGTGCTACCGTATTGAGATGGAAATCGTGAACAGCTGTGAGGCCAAC AACGGCGGCTGCTCCCATGGCTGCAGCCACACCAGTGCTGGGCCCCTGTGCACCTGTCCCCGCGGCTA CGAGCTGGACACAGATCAGAGGACCTGCATCAGATGTCGACGACTGTGCAGACAGCCCGTGCTGCAGC AGGTGTGCACCAACAACCCTGGCGGGTACGAGTGCGGCTGCTACGCCGGCTACCGGCTCAGTGCCGAT GGCTGCGGCTGCGAGGATGTGGATGAGTGCGCCTCCAGCCGTGGCGGCTGCGAGCACCACTGCACCAA CCTGGCCGGCTCCTTCCAGTGCTCCTGCGAGGCCGGCTACCGGCTGCACGAGGACCGTAGGGGCTGCA GCGCCCTGGAGGAGCCGATGGTGGACCTGGACGGCGAGCTGCCTTTCGTGCGGCCCCTGCCCCACATT GCCGTGCTCCAGGACGAGCTGCCGCAACTCTTCCAGGATGACGACGTCGGGGCCGATGAGGAAGAGGC AGAGTTGCGGGGCGAACACACGCTCACAGAGAAGTTTGTCTGCCTGGATGACTCCTTTGGCCATGACT GCAGCTTGACCTGTGATGACTGCAGGAACGGAGGGACCTGCCTCCTGGGCCTGGATGGCTGTGATTGC CCCGAGGGCTGGACTGGGCTCATCTGCAATGAGAGTTGTCCTCCGGACACCTTTGGGAAGAACTGCAG CTTCTCCTGCAGCTGTCAGAATGGTGGGACCTGCGACTCTGTCACGGGGGCCTGCCGCTGCCCCCCGG GTGTCAGTGGAACTAACTGTGAGGATGGCTGCCCCAAGGGCTACTATGGCAAGCACTGTCGCAAGAAA TGCAACTGTGCCAACCGGGGCCGGTGCCACCGCCTCTACGGGGCCTGCCTCTGCGACCCAGGGCTCTA CGGCCGCTTCTGCCACCTCGCCTGCCCGCCGTGGGCCTTTGGGCCGGGCTGCTCGGAGGAGTGCCAGT GTGTGCAGCCCCACACGCAGTCCTGTGACAAGAGGGATGGCAGCTGCTCCTGCAAGGCTGGCTTCCGG GGCGAGCGCTGTCAGGCAGAGTGTGAGCCGGGCTACTTTGGGCCGGGGTGCTGGCAGGCATGCACCTG CCCAGTGGGCGTGGCCTGTGACTCCGTGAGCGGCGAGTGTGGGAAGCGGTGTCCTGCTGGCTTCCAGG GAGAGGACTGTGGCCAAGAGTGCCCGGTGGGGACCTTTGGCGTGAACTGCTCGAGCTCCTGCTCCTGT GGGGGGGCCCCCTGCCACGGGGTCACGGGGCAGTGCCGGTGTCCGCCGGGGAGGACTGGGGAAGACTG TGAGGCAGGTGAGTGTGAGGGCCTCTGGGGGCTGGGCTGCCAGGAGATCTGCCCAGCATGCCATAACG CTGCTCGCTGCGACCCTGAGACCGGAGCCTGCCTGTGCCTCCCTGGCTTTGTCGGCAGCCGCTGCCAG GACTGTGAGGCAGGCTGGTATGGTCCCAGCTGCCAGACAATGTGCTCTTGTGCCAATGATGGGCACTG CCACCAAGACACGGGACACTGCAGCTGTGCCCCCGGGTGGACCGGCTTTAGCTGCCAGAGAGCCTGTG ATACTGGGCACTGGGGACCTGACTGCAGCCACCCCTGCAACTGCAGCGCTGGCCACGGGAGCTGTGAT GCCATCAGCGGCCTGTGTCTGTGTGAGGCTGGCTACGTGGGCCCGCGGTGCGAGCAGTCAGAGTGTCC CCAGGGCCACTTTGGGCCCGGCTGTGAGCAGCGGTGCCAGTGTCAGCATGGAGCAGCCTGTGACCACG TCAGCGGGGCCTGCACCTGCCCGGCCGGCTGGAGGGGCACCTTCTGCGAGCATGCCTGCCCGGCCGGC TTCTTTGGATTGGACTGTCGCAGTGCCTGCAACTGCACCGCCGGAGCTGCCTGTGATGCCGTGAATGG CTCCTGCCTCTGCCCCGCTGGCCGCCGGGGCCCCCGCTGTGCCGAGACCTGCCCAGCCCACACCTACG GGCACAATTGCAGCCAGGCCTGTGCCTGCTTTAACGGGGCCTCCTGTGACCCTGTCCACGGGCAGTGC CACTGTGCCCCTGGCTGGATGGGGCCCTCCTGCCTGCAGGCCTGCCCTGCCGGCCTGTACGGCGACAA CTGTCGGCATTCCTGCCTCTGCCAGAACGGAGGGACCTGTGACCCTGTCTCAGGCCACTGTGCGTGCC CAGAGGGCTGGGCCGGCCTGGCCTGTGAGGTAGAGTGCCTCCCCCGGGACGTCAGAGCTGGCTGCCGG CACAGCGGCGGTTGCCTCAACGGGGGCCTGTGTGACCCGCACACGGGCCGCTGCCTCTGCCCAGCCGG
CTGGACTGGGGACAAGTGTCAGAGCCCTGCAGCCTGTGCCAAGGGCACATTCGGGCCTCACTGTGAGG GGCGCTGTGCCTGCCGGTGGGGAGGCCCCTGCCACCTTGCCACCGGGGCCTGCCTCTGCCCTCCGGGG TGGCGGGGGCCTCATCTTTCTGCAGCCTGCCTGCGGGGCTGGTTTGGAGAGGCCTGTGCCCAGCGCTG CAGCTGCCCGCCTGGCGCTGCCTGCCACCACGTCACTGGGGCCTGCCGCTGTCCCCCTGGCTTCACTG GCTCCGGCTGCGAGCAGGCCTGCCCACCCGGCAGCTTTGGGGAGGACTGTGCGCAGATGTGCCAGTGT CCCGGTGAGAACCCGGCCTGCCACCCTGCCACCGGGACCTGCTCATGTGCTGCTGGCTACCACGGCCC CAGCTGCCAGCAACGATGTCCGCCCGGGCGGTATGGGCCAGGCTGTGAACAGCTGTGTGGGTGTCTCA ACGGGGGCTCCTGTGATGCGGCCACGGGGGCCTGCCGCTGCCCCACTGGGTTCCTCGGGACGGACTGC AACCTCACCTGTCCGCAGGGCCGCTTCGGCCCCAACTGCACCCACGTGTGTGGGTGTGGGCAGGGGGC GGCCTGCGACCCTGTGACCGGCACCTGCCTCTGCCCCCCGGGGAGAGCCGGCGTCCGCTGTGAGCGAG GCTGCCCCCAGAACCGGTTTGGCGTGGGCTGCGAGCACACCTGCTCCTGCAGAAATGGGGGCCTGTGC CACGCCAGCAAGCGGCAGCTGCTCCTGTGGCCTGGGCTGGACGGGGCGGCACTGCGAGCTGGCCTGTC CCCCTGGGCGCTACGGAGCCGCCTGCCATCTGGAGTGCTCCTGCCACAACAACAGCACGTGTGAGCCT GCCACGGGCACCTGCCGCTGCGGCCCCGGCTTCTATGGCCAGGCCTGCGAGCACCCCTGTCCCCCTGG CTTCCACGGGGCTGGCTGCCAGGGGTTGTGCTGGTGTCAACATGGAGCCCCCTGCGACCCCATCAGTG GCCGATGCCTCTGCCCTGCCGGCTTCCACGGCCACTTCTGTGAGAGGGGGTGTGAGCCAGGTTCATTT GGAGAGGGCTGCCACCAGCGCTGTGACTGTGACGGGGGGGCACCCTGTGACCCTGTCACCGGTCTCTG CCTTTGCCCACCAGGGCGCTCAGGAGCCACCTGTAACCTGGATTGCAGAAGGGGCCAGTTTGGGCCCA GCTGCACCCTGCACTGTGACTGCGGGGGTGGGGCTGACTGCGACCCTGTCAGTGGGCAGTGTCACTGT GTGGATGGCTACATGGGGCCCACGTGCCGGGAAGGTGGGCCCCTCCGGCTCCCCGAGAACCCGTCCTT AGCCCAGGGCTCAGCGGGCACACTGCCCGCCTCCAGCAGACCCACATCCCGGAGCGGTGGACCAGCGA GGCACTAGTAGAGGCAGTCCCGTGGAGCCCGCCTCTCCAGTCCCAGCCAGAGGGGACCCTGGCCTTTG GTGACCACTGAGAAGGACACTTCACGGGCCCAGAGCTCCTGGTACTGCCCTTCCTTTGAGGGCCGTGG AGGGCTGTGGACAGCCCAGCAACCTGTCGCTCTTGGAGGCTGGTGTGGCCTTGAGGAGGGAAGCCTCG CATGGCCGCTGGAAGAGAGGCGCCTCCTGGCCTGGCTCTGCAGAACCCAGGGGCACGCTCTGGGCCTG GGCTGAGGAAGTCCCGCTCTCCCCGCGGCTCTGAGTTGGACTGAGGACAGGTGTGGGCGCCAGTGTGG GTGCAGGCGCAGGTGCAGGCACAGGGCCACTGTCCTCCAGGCAGGCTTTTTGGTGCTAGGCCCTGGGA CTGGAAGTCGCCCAGCCCGTATTTATGTAAAGGTATTTATGGGCCACTGCACATGCCCGCTGCAGCCC TGGGATCAGCTGGAAGCTGCCTGTCATCTCCTGCCCAATCCCCAGAAACCCTGATTCAGGTCTGCAGG CTCCTGCGGGCTCACCAGGCTGCTGGCTCCGGTACCATGTAAACCTAGGAAGGTAAAGGAGCAGGCAA CCTCCTCGTGGCCTGTGTGTTTGCTGTGTTACGTGGACTCTGTGTGGGCTCCTCCCTGGGGCCCGGCC AGCATAACGGTGCACCCAGGGACCTCCCAGTGCACCCGGGGCCCTTTGCAGGGGTGGGGGTGCCACAC AAGTGAAGAAGTTGGGACTCATCTCAGTTCCCAGTGCTATTGAGGAGAACGCTGGGGCTGCATTCATT ACCGCTGAGACCCAGAGACTGGCTGTTCCCAGAGAATGGCCCAGGGGGAGGAGGGCTGGTGTGGAGGG GCAACCTGGACTGAGGCCGAACTCCCTTGGGCTCACCCCACCCACCCCTACCTGAGCATCAGCAGTGG GGGGAGGGCAGCATCGCAGGGGCAGGGACTCCCTGGGTGAGGACAGACCAGCCCTCCCGAGCACCTGG CACTCATGGGCTGAGGCTGACTTCTCCTGGAAGAAGGGCCCAGAGTGGAAGGAAGAGGCAGAGGGTAG AGGTGGTGGCTGGGGGCTCCTCTGCAGAGTGGGGTGGCCAATGGAGAGGGCTGCACTCACACCGCAAC ATAGGACTCTCTCTCCCTTAAGAAGGCCCCCTTAGGGTCTGGGCTGCCGCCCCCATCACCCTAAAACC AGCCAAGGTAGCTGAGGCCCCAGGGCAGACAATTTCACCAGCAGGAGAGGAGGAGTCCAGTGAGCTT GGTTGCTCACAGACAGCAAGGGAGCTGTCACAGAGGAAGCTGATGAATGGACCGCTGTGGGGAGACTT TAAAGTAGAACAGTGATAAGGGAGGGCAGGATGGTGGGGATGCAGAAGCAGCAGCCAGAGAGAGACGG ACTGGGGTGCAGACGGAGTGTGGAAAACGCATACCTTGAAATGAAGCATCCAGCAGATGGGGTGAGTG GATACAGCTCAGGAGATTCTCCCAGGAATAGCAGGGAGGCGTAAAGAGAGACAACGTACAGAGATAGA TGAATGGAAATGGGTAAGGGAGGTGTTCATTCACATCCATCTAACTGCAAAATACAAAAGTAAGAAGT CATTGACATGAAGCAACGACGACCAAGACGTTCTCAGATCTAAAGGTGAATGATCTCAGTCAGCCTGG AAATGCACAAGGTGGAAAAATAACATAAAAAAGCCATAAGACCTTGAAGAACATCAATGTCAAAGATA AATTCTAAAGTCCCAGAGAAAAAAGAATGGGAATCAAATTGACCTCAGACTATACGTGAGAAACACGG AGAGCCAGA^^CTGTGATGTTCCATCCTCAGAGTTTGAΆGGAAATATTTGAAGGCTGAATTTTACAT
CCAGCTAAACTATCAAAGGCATGCAAAGTCCATGTTATTCTTAGGCCTTCAAGGCCTCGGCCATTTTT CTACAGAAFTAGCCTGATTTTAAAATC GGGTGCTCTGAGATATTCAGTCACCACAGTTCCCAAATGGCCTAGGAATTCAGAGAGTCAGAATATCA]
CCATTACTCCCCAATGGGAACCCCCGACAGTCTCAGCATGGTGTGAGGGTGTGGACGGGGGGCCTGGC
AGGTACCAATCACTCATCCCGCTCAGTGAAGACACAGTGTTCAGCTACGGAAGCCATAAGGCAGGCCG
AGCTTCTGCCCATCCGGAGGAAATCTCAGCTATCCAACGGCGGTCAGGAGCAGAGGAAAATAAAGCAG
AATAACTAGAAAACACGCTCACAGATCCTAATGTTAACGGTTACAAATGACGACGGAAAAACAAACTC
CTGACCATATATTATATAGTTTCAAGCAGCAAGAAGGAGGATATTGAACATTCTCAACACACATAATA:
AACGCTTGAGATGATGATATGCTCATTACCCTGATTTGATCACTAGACATNCCATGTATCAAAACATC
ACTGTGTATCCGATGAATATCTACAATTATTGTCAATTAAAAACATCATTAAAAACAA
NOV37k, CG56449-06 SEQ ID NO: 878 1403 aa MW at 147829.8kD Protein Sequence
MPMGHSDR S RLLRLALP PV PAGGGRGADSPCLCSRPHVCAEQELT VGRRQPCVQALSHTVPV KAGCG QA CVGHERRTVYYMGYRQVYTTE-ARTVLRCCRG MQQPDEEGCLSDVGECANA GGCAGR CRDTVGGFYCRWPPPSHQLQGDGETCQDVDECRTHNGGCQHRCVNTPGSY CECKPGFR HTDSRTCA INSCA GNGGCQHHCVQ TITRHRCQCRPGFQ QEDGRHCVRRSPCAN-R GSC HRCQWRG ARCEC HVGYQLA-ADGKACEDVDECAAG AQCAHGCLNTQGSFKCVCHAGYE GADGRQCYRIE-yiEIVNSCEAN NTGGCSHGCSHTSAGPLCTCPRGYELDTDQRTCIRCRR CRQPV QQVCTNNPGGYECGCYAGYRLSAD GCGCEDVDECASSRGGCEHHCTNLAGSFQCSCEAGYRLHEDRRGCSA EEPMVDLDGELPFVRP PHI AVLQDELPQLFQDDDVGADEEEAELRGEHT TEKFVC DDSFGHDCS TCDDCRNGGTCLLGLDGCDC PEGWTGLICNESCPPDTFGKNCSFSCSCQNGGTCDSVTGACRCPPGVSGTNCEDGCPKGYYGKHCRKK CNC-ANRGRCHRLYGACLCDPGLYGRFCHLACPPWAFGPGCSΞECQCVQPHTQSCDKRDGSCSCKAGFR GERCQAECEPGYFGPGC QACTCPVGVACDSVSGECGKRCPAGFQGEDCGQECPVGTFGVNCSSSCSC GGAPCHGVTGQCRCPPGRTGEDCEAGECEGL GLGCQEICPACHNAARCDPETGACLC PGFVGSRCQ DCEAG YGPSCQT CSCANDGHCHQDTGHCSCAPGWTGFSCQRACDTGH GPDCSHPCHCSAGHGSCD AISGLC CEAGYVGPRCEQSECPQGHFGPGCEQRCQCQHGAACDHVSGACTCPAG RGTFCEHACPAG FFGLDCRSACNCTAGAACDAVNGSC CPAGRRGPRCAΞTCPAHTYGHNCSQACACFNGASCDPVHGQC HCAPGWMGPSCLQACPAGLYGDNCRHSCLCQNGGTCDPVSGHCACPEG AG ACEVECLPRDVRAGCR HSGGC NGGLCDPHTGRCLCPAG TGDKCQSPAACAKGTFGPHCEGRCACR GGPCHLATGAC CPPG WRGPHLSAACLRG FGEACAQRCSCPPGAACHHVTGACRCPPGFTGSGCEQACPPGSFGEDCAQ CQC PGENPACHPATGTCSCAAGYHGPSCQQRCPPGRYGPGCEQLCGCLNGGSCDAATGACRCPTGFLGTDC N TCPQGRFGPNCTHVCGCGQGAACDPVTGTCLCPPGRAGVRCERGCPQNRFGVGCEHTCSCRNGGLC HASKRQ L PGLDGAA RAGLSP ALRSR PSGV LPQQQHV
NOV371, CG56449-07 SEQ ID NO: 879 4783 bp DNA Sequence ORF Start: ATG at 1 ORF Stop: TGA at 3595
ATGCCCATGGGACATTCTGACAGGTGGTCTTGGCGTCTCCTGAGGCTGGCACTGCCACTCCCAGTCTG GTTGCCGGCTGGGGGTGGCCGAGGCGCTGACTCTCCATGTCTCTGTTCCAGGCCCCACGTGTGTGCTG AGCAGGAGCTGACCCTGGTGGGCCGCCGCCAGCCGTGCGTGCAGGCCTTAAGCCACACGGTGCCGGTG TGGAAGGCCGGCTGTGGGTGGCAGGCGTGGTGCGTGGGTCATGAGCGGAGAACCGTCTACTACATGGG CTACAGGCAGGTGTATACCACGGAGGCCCGGACCGTGCTCAGGTGCTGCCGAGGGTGGACGCAGCAGC CCGACGAGGAGGGCTGCCTCTCGGCTGAATGCAGCGCCAGCCTCTGTTTTCACGGTGGCCGTTGTGTG CCAGGCTCAGCCCAGCCGTGTCACTGTCCCCCCGGCTTCCAGGGACCCCGCTGTCAGTATGATGTGGA CGAATGCCGAACCCACAACGGTGGCTGCCAGCACCGGTGCGTGAACACCCCAGGCTCCTACCTCTGTG AGTGCAAGCCCGGCTTCCGGCTCCACACTGACAGCAGGACCTGCCTGGCCATTAACTCCTGCGCCCTG GGCAATGGCGGCTGCCAGCACCACTGTGTCCAGCTCACAATCACTCGGCATCGCTGCCAGTGCCGGCC CGGGTTCCAGCTCCAGGAGGACGGCAGGCATTGTGTCCGTAGAAGCCCGTGTGCCAACAGGAACGGCA GCTGCATGCACAGGTGCCAGGTGGTCCGGGGCCTCGCCCGCTGTGAGTGCCACGTGGGCTATCAGCTA GCAGCGGACGGCAAGGCCTGTGAAGATGTGGACGAATGTGCCGCAGGGCTGGCCCAGTGTGCCCATGG CTGCCTCAACACCCAGGGGTCCTTCAAGTGCGTGTGTCACGCGGGCTATGAGCTGGGCGCCGATGGCC GGCAGTGCTACCGTATTGAGATGGAAATCGTGAACAGCTGTGAGGCCAACAACGGCGGCTGCTCCCAT GGCTGCAGCCACACCAGTGCTGGGCCCCTGTGCACCTGTCCCCGCGGCTACGAGCTGGACACAGATCA GAGGACCTGCATCAGATGTCGACGACTGTGCAGACAGCCCGTGCTGCAGCAGGTGTGCACCAACAACC CTGGCGGGTACGAGTGCGGCTGCTACGCCGGCTACCGGCTCAGTGCCGATGGCTGCGGCTGCGAGGAT GTGGATGAGTGCGCCTCCAGCCGTGGCGGCTGCGAGCACCACTGCACCAACCTGGCCGGCTCCTTCCA GTGCTCCTGCGAGGCCGGCTACCGGCTGCACGAGGACCGTAGGGGCTGCAGCGCCCTGGAGGAGCCGA TGGTGGACCTGGACGGCGAGCTGCCTTTCGTGCGGCCCCTGCCCCACATTGCCGTGCTCCAGGACGAG CTGCCGCAACTCTTCCAGGATGACGACGTCGGGGCCGATGAGGAAGAGGCAGAGTTGCGGGGCGAACA CACGCTCACAGAGAAGTTTGTCTGCCTGGATGACTCCTTTGGCCATGACTGCAGCTTGACCTGTGATG ACTGCAGGAACGGAGGGACCTGCCTCCTGGGCCTGGATGGCTGTGATTGCCCCGAGGGCTGGACTGGG CTCATCTGCAATGAGAGTTGTCCTCCGGACACCTTTGGGAAGAACTGCAGCTTCTCCTGC-AGC GAATGGTGGGACCTGCGACTCTGTCACGGGGGCCTGCCGCTGCCCCCCGGGTGTCAGTGGAACTAACT GTGAGGATGGCTGCCCCAAGGGCTACTATGGCAAGCACTGTCGCAAGAAATGCAACTGTGCCAACCGG GGCCGGTGCCACCGCCTCTACGGGGCCTGCCTCTGCGACCCAGGGCTCTACGGCCGCTTCTGCCACCT CGCCTGCCCGCCGTGGGCCTTTGGGCCGGGCTGCTCGGAGGAGTGCCAGTGTGTGCAGCCCCACACGC AGTCCTGTGACAAGAGGGATGGCAGCTGCTCCTGCAAGGCTGGCTTCCGGGGCGAGCGCTGTCAGGCA GAGTGTGAGCTGGGCTACTTTGGGCCGGGGTGCTGGCAGGCATGCACCTGCCCAGTGGGCGTGGCCTG TGACTCCGTGAGCGGCGAGTGTGGGAAGCGGTGTCCTGCTGGCTTCCAGGGAGAGGACTGTGGCCAAG AGTGCCCGGTGGGGACGTTTGGCGTGAACTGCTCGAGCTCCTGCTCCTGTGGGGGGGCCCCCTGCCAC GGGGTCACGGGGCAGTGCCGGTGTCCACCGGGGAGGACTGGGGAAGACTGTGAGGCAGATTGTCCCGA GGGCCGCTGGGGGCTGGGCTGCCAGGAGATCTGCCCAGCATGCCAGCACGCTGCCCGCTGCGACCCTG AGACCGGAGCCTGCCTGTGCCTCCCTGGCTTCGTCGGCAGCCGCTGCCAGGACGTGTGCCCAGCAGGC TGGTATGGTCCCAGCTGCCAGACAAGGTGCTCTTGTGCCAATGATGGGCACTGCCACCCAGCCACCGG ACACTGCAGCTGTGCCCCCGGGTGGACCGGCTTTAGCTGCCAGAGAGCCTGTGATACTGGGCACTGGG GACCTGACTGCAGCCACCCCTGCAACTGCAGCGCTGGCCACGGGAGCTGTGATGCCATCAGCGGCCTG TGTCTGTGTGAGGCTGGCTACGTGGGCCCGCGGTGCGAGCAGCAGTGTCCCCAGGGCCACTTTGGGCC CGGCTGTGAGCAGCTGTGCCAGTGTCAGCATGGAGCAGCCTGTGACCACGTCAGCGGGGCCTGCACCT GCCCGGCCGGCTGGAGGGGCACCTTCTGCGAGCATGCCTGCCCGGCCGGCTTCTTTGGATTGGACTGT CGTAGTGCCTGCAACTGCACCGCCGGAGCTGCCTGTGATGCCGTGAATGGCTCCTGCCTCTGCCCCGC TGGCCGCCGGGGCCCCCGCTGTGCCGAGACCTGCCCTGCCGGCCTGTACGGCGACAACTGTCGGCATT CCTGCCTCTGCCAGAACGGAGGGACCTGTGACCCTGTCTCAGGCCACTGTGCGTGCCCAGAGGGCTGG GCCGGCCTGGCCTGTGAGAAGGAGTGCCCCCCCCGGGACGTCAGAGCTGGCTGCCGGCACAGCGGCGG TTGCCTCAACGGGGGCCTGTGTGACCCGCACACGGGCCGCTGCCTCTGCCCAGCCGGCTGGACTGGGG ACAAGTGTCAGAGCCATCCCCACGGGCCCCTCCTAGAAGCCTCCGCAGCCCTCATCTTTCTGCAGCCT GCCTGCGGGGCTGGTTTGGAGAGGCCTGTGCCCAGCGCTGCAGCTGCCCGCCTGCCGCTGCCTGCCAC
CACGTCACTGGGGCCTGCCGCTGTCCCCCTGGCTTCACTGGCTCCGGCTGCGAGCAGGGATGTCCGCC CGGGCGGTATGGGCCAGGCTGTGAACAGCTGTGTGGGTGTCTCAACGGGGGCTCCTGTGATGCGGCCA CGGGGGCCTGCCGCTGCCCCACTGGGTTCCTCGGGACGGACTGCAACCTCACCTGTCCGCAGGGCCGC TTCGGCCCCAACTGCACCCACGTGTGTGGTTGTGGGCAGGGGGCGGCCTGCGACCCTGTGACCGGCAC
CTGCCTCTGCCCCCCGGGGAGAGCCGGCGTCCGCTGTGAGCGAGGCTGCCCCCAGAACCGGTTTGGCG
TGGGCTGCGAGCACACCTGCTCCTGCAGAAATGGGGGCCTGTGCCACGCCAGCAACGGCAGCTGCTCC
TGTGGCCTGGGCTGGACGGGGCGGCACTGCGAGCTGGCCTGTCCCCCTGGGCGCTACGGAGCCGCCTG
CCATCTGGAGTGCTCCTGCCACAACAACAGCACGGGTGAGCCTGCCACGGGCACCTGCCGCTGCGGCC
CCGGCTTCTATGGCCAGGCCTGCGAGCACCCCTGTCCCCCTGGCTTCCACGGGGCTGGCTGCCAGGGG TGTGCTGGTGTCAACATGGAGCCCCCTGCGACCCCATCAGTGGCCGATGCCTCTGCCCTGCCGGCTT
CCACGGCCACTTCTGTGAGAGGGGGTGTGAGCCAGGTTCATTTGGAGAGGGCTGCCACCAGCGCTGTG jACTGTGACGGGGGGGCACCCTGTGACCCTGTCACCGGTCTCTGCCTTTGCCCACCAGGGCGCTCAGGA
GCCACCTGTAACCTGGATTGCAGAAGGGGCCAGTTTGGGCCCAGCTGCACCCTGCACTGTGACTGCGG:
GGGTGGGGCTGACTGCGACCCTGTCAGTGGGCAGTGTCACTGTGTGGATGGCTACATGGGGCCCACGT
GCCGGGAAGGTGGGCCCCTCCGGCTCCCCGAGAACCCGTCCTTAGCCCAGGGCTCAGCGGGCACACTG
CCCGCCTCCAGCAGACCCACATCCCGGAGCGGTGGACCAGCGAGGCACTAGTAGAGGCAGTCCCGTGG
AGCCCGCCTCTCCAGTCCCAGCCAGAGGGGACCCTGGCCTTTGGTGACCACTGAGAAGGACACTTCAC
GGGCCCAGAGCTCCTGGTACTGCCCTTCCTTTGAGGGCCGTGGAGGGCTGTGGACAGCCCAGCAACCT
GTCGCTCTTGGAGGCTGGTGTGGCCTTGAGGAGGGAAGCCTCGCATGGCCGCTGGAAGAGAGGCGCCT
CCTGGCCTGGCTCTGCAGAACCCAGGGGCACGCTCTGGGCCTGGGCTGAGGAAGTCCCGCTCTCCCCG
CGGCTCTGAGTTGGACTGAGGACAGGTGTGGGCGCCAGTGTGGGTGCAGGCGCAGGTGCAGGCACAGG
GCCACTGTCCTCCAGGCAGGCTT
NOV371, CG56449-07 SEQ ID NO: 880 1198 aa MW at 126170.7kD Protein Sequence
-PMGHSDR S R R ALPLPV PAGGGRGADSPC CSRPHVCAEQELTLVGRRQPCVQALSHTVPV KAGCGWQAWCVGHERRTVYYMGYRQVYTTEARTVLRCCRGWTQQPDEEGC SAECSAS CFHGGRCV PGSAQPCHCPPGFQGPRCQYDVDECRTHNGGCQHRCVNTPGSYLCECKPGFRLHTDSRTCLAINSCA GNGGCQHHCVQ TITRHRCQCRPGFQLQEDGRHCVRRSPCA---TO-NTGSC-MHRCQVVRGLARCECHVGYQ AADGKACEDVDECAAG AQCAHGCLNTQGSFKCVCHAGYE GADGRQCYRIEMEIVNSCEMNGGCSH GCSHTSAGP CTCPRGYELDTD RTC1RCRRLCRQPVLQQVCTNNPGGYΞCGCYAGYRLSADGCGCED VDECASSRGGCEHHCTN AGSFQCSCEAGYRLHEDRRGCSALEEPMVD DGELPFVRPLPHIAVLQDE LPQ FQDDDVGADEEEAELRGEHTLTEKFVCLDDSFGHDCSLTCDDCRNGGTCLLGLDGCDCPEGWTG LICNESCPPDTFGKHCSFSCSCQNGGTCDSVTGACRCPPGVSGTNCEDGCPKGYYGKHCRKKCNCA R GRCHRLYGACLCDPGLYGRFCH ACPP AFGPGCSEECQCVQPHTQSCDKRDGSCSCKAGFRGERCQA ECELGYTO GVTGQCRCPPGRTGEDCEADCPEGR GLGCQEICPACQHAARCDPETGACLCLPGFVGSRCQDVCPAG YGPΞCQTRCSCA-DGHCHPATGHCSCAPG TGFSCQRAC-DTGH GPDCSHPCNCSAGHGSCDAISG CLCEAGYVGPRCEQQCPQGHFGPGCEQLCQCQHGAACDHVSGACTCPAGWRGTFCEHACPAGFFG DC RSACNCTAGAACDAV GSC CPAGRRGPRCAETCPAG YGDNCRHSCLCQNGGTCDPVSGHCACPEGW AGLACEKECPPRDVRAGCRHSGGCLNGGLCDPHTGRCLCPAGWTGDKCQSHPHGPIiLEASAALIF QP ACGAGLERPVPSAAAAR PLPATTSLGPAAVP ASLAPAASRDVRPGGMGQAVNSCVGVSTGAPVMRP RGPAAAPLGSSGRTATSPVRRAASAPTAPTCVWGRGRPATL
NOV37m, CG56449-08 SEQ ID NO: 881 4835 bp jDNA Sequence ORF Start: ATG at 1 ORF Stop: TAG at 4732
ATGTCGTTCCTTGAAGAGGCGAGGGCAGCGGGGCGCGCGGTGGTCCTGGCGTTGGTGCTGCTGCTGCT CCCCGCCGTGCCCGTGGGCGCCAGCGTTCCGCCGCGGCCCCTGCTCCCGCTGCAGCCCGGCATGCCCC ACGTGTGTGCTGAGCAGGAGCTGACCCTGGTGGGCCGCCGCCAGCCGTGCGTGCAGGCCTTAAGCCAC ACGGTGCCGGTGTGGAAGGCCGGCTGTGGGTGGCAGGCGTGGTGCGTGGGTCATGAGCGGAGGACCGT CTACTACATGGGCTACAGGCAGGTGTATACCACGGAGGCCCGGACCGTGCTCAGGTGCTGCCGAGGGT GGATGCAGCAGCCCGACGAGGAGGGCTGCCTCTCGGATGTGGGTGAGTGTGCCAACGCCAACGGGGGC TGTGCGGGTCGGTGCCGGGACACCGTGGGGGGCTTCTACTGCCGCTGGCCCCCCCCCAGCCACCAGCT GCAGGGTGATGGCGAGACTTGCCAAGATGTGGACGAATGCCGAACCCACAACGGTGGCTGCCAGCACC GGTGCGTGAACACCCCAGGCTCCTACCTCTGTGAGTGCAAGCCCGGCTTCCGGCTCCACACTGACAGC AGGACCTGCGCCATTAACTCCTGCGCCCTGGGCAATGGCGGCTGCCAGCACCACTGTGTCCAGCTCAC AATCACTCGGCATCGCTGCCAGTGCCGGCCCGGGTTCCAGCTCCAGGAGGACGGCAGGCATTGTGTCC GTAGAAGCCCGTGTGCCAACAGGAACGGCAGCTGCATGCACAGGTGCCAGGTGGTCCGGGGCCTCGCC CGCTGTGAGTGCCACGTGGGCTATCAGCTAGCAGCGGACGGCAAGGCCTGTGAAGATGTGGACGAATG TGCCGCAGGGCTGGCCCAGTGTGCCCATGGCTGCCTCAACACCCAGGGGTCCTTCAAGTGCGTGTGTC ACGCGGGCTATGAGCTGGGCGCCGATGGCCGGCAGTGCTACCGTATTGAGATGGAAATCGTGAACAGC TGTGAGGCCAACAACGGCGGCTGCTCCCATGGCTGCAGCCACACCAGTGCTGGGCCCCTGTGCACCTG TCCCCGCGGCTACGAGCTGGACACAGATCAGAGGACCTGCATCAGATGTCGACGACTGTGCAGACAGC CCGTGCTGCAGCAGGTGTGCACCAACAACCCTGGCGGGTACGAGTGCGGCTGCTACGCCGGCTACCGG CTCAGTGCCGATGGCTGCGGCTGCGAGGATGTGGATGAGTGCGCCTCCAGCCGTGGCGGCTGCGAGCA CCACTGCACCAACCTGGCCGGCTCCTTCCAGTGCTCCTGCGAGGCCGGCTACCGGCTGCACGAGGACC GTAGGGGCTGCAGCGCCCTGGAGGAGCCGATGGTGGACCTGGACGGCGAGCTGCCTTTCGTGCGGCCC CTGCCCCACATTGCCGTGCTCCAGGACGAGCTGCCGCAACTCTTCCAGGATGACGACGTCGGGGCCGA TGAGGAAGAGGCAGAGTTGCGGGGCGAACACACGCTCACAGAGAAGTTTGTCTGCCTGGATGACTCCT TTGGCCATGACTGCAGCTTGACCTGTGATGACTGCAGGAACGGAGGGACCTGCCTCCTGGGCCTGGAT GGCTGTGATTGCCCCGAGGGCTGGACTGGGCTCATCTGCAATGAGAGTTGTCCTCCGGACACCTTTGG GAAGAACTGCAGCTTCTCCTGCAGCTGTCAGAATGGTGGGACCTGCGACTCTGTCACGGGGGCCTGCC GCTGCCCCCCGGGTGTCAGTGGAACTAACTGTGAGGATGGCTGCCCCAAGGGCTACTATGGCAAGCAC TGTCGCAAGAAATGCAACTGTGCCAACCGGGGCCGGTGCCACCGCCTCTACGGGGCCTGCCTCTGCGA CCCAGGGCTCTACGGCCGCTTCTGCCACCTCGCCTGCCCGCCGTGGGCCTTTGGGCCGGGCTGCTCGG AGGAGTGCCAGTGTGTGCAGCCCCACACGCAGTCCTGTGACAAGAGGGATGGCAGCTGCTCCTGCAAG GCTGGCTTCCGGGGCGAGCGCTGTCAGGCAGAGTGTGAGCCGGGCTACTTTGGGCCGGGGTGCTGGCA GGCATGCACCTGCCCAGTGGGCGTGGCCTGTGACTCCGTGAGCGGCGAGTGTGGGAAGCGGTGTCCTG CTGGCTTCCAGGGAGAGGACTGTGGCCAAGAGTGCCCGGTGGGGACCTTTGGCGTGAACTGCTCGAGC TCCTGCTCCTGTGGGGGGGCCCCCTGCCACGGGGTCACGGGGCAGTGCCGGTGTCCGCCGGGGAGGAC TGGGGAAGACTGTGAGGCAGGTGAGTGTGAGGGCCTCTGGGGGCTGGGCTGCCAGGAGATCTGCCCAG CATGCCATAACGCTGCTCGCTGCGACCCTGAGACCGGAGCCTGCCTGTGCCTCCCTGGCTTTGTCGGC AGCCGCTGCCAGGACTGTGAGGCAGGCTGGTATGGTCCCAGCTGCCAGACAATGTGCTCTTGTGCCAA TGATGGGCACTGCCACCAAGACACGGGACACTGCAGCTGTGCCCCCGGGTGGACCGGCTTTAGCTGCC AGAGAGCCTGTGATACTGGGCACTGGGGACCTGACTGCAGCCACCCCTGCAACTGCAGCGCTGGCCAC GGGAGCTGTGATGCCATCAGCGGCCTGTGTCTGTGTGAGGCTGGCTACGTGGGCCCGCGGTGCGAGCA GTCAGAGTGTCCCCAGGGCCACTTTGGGCCCGGCTGTGAGCAGCGGTGCCAGTGTCAGCATGGAGCAG CCTGTGACCACGTCAGCGGGGCCTGCACCTGCCCGGCCGGCTGGAGGGGCACCTTCTGCGAGCATGCC TGCCCGGCCGGCTTCTTTGGATTGGACTGTCGCAGTGCCTGCAACTGCACCGCCGGAGCTGCCTGTGA TGCCGTGAATGGCTCCTGCCTCTGCCCCGCTGGCCGCCGGGGCCCCCGCTGTGCCGAGAGTGCCTGCC CAGCCCACACCTACGGGCACAATTGCAGCCAGGCCTGTGCCTGCTTTAACGGGGCCTCCTGTGACCCT GTCCACGGGCAGTGCCACTGTGCCCCTGGCTGGATGGGGCCCTCCTGCCTGCAGGCCTGCCCTGCCGG CCTGTACGGCGACAACTGTCGGCATTCCTGCCTCTGCCAGAACGGAGGGACCTGTGACCCTGTCTCAG GCCACTGTGCGTGCCCAGAGGGCTGGGCCGGCCTGGCCTGTGAGGTAGAGTGCCTCCCCCGGGACGTC AGAGCTGGCTGCCGGCACAGCGGCGGTTGCCTCAACGGGGGCCTGTGTGACCCGCACACGGGCCGCTG
CCTCTGCCCAGCCGGCTGGACTGGGGACAAGTGTCAGAGCCCTGCAGCCTGTGCCAAGGGCACATTCG GGCCTCACTGTGAGGGGCGCTGTGCCTGCCGGTGGGGAGGCCCCTGCCACCTTGCCACCGGGGCCTGC CTCTGCCCTCCGGGGTGGCGGGGGCCTCATCTTTCTGCAGCCTGCCTGCGGGGCTGGTTTGGAGAGGC CTGTGCCCAGCGCTGCAGCTGCCCGCCTGGCGCTGCCTGCCACCACGTCACTGGGGCCTGCCGCTGTC CCCCTGGCTTCACTGGCTCCGGCTGCGAGCAGGCCTGCCCACCCGGCAGCTTTGGGGAGGACTGTGCG CAGATGTGCCAGTGTCCCGGTGAGAACCCGGCCTGCCACCCTGCCACCGGGACCTGCTCATGTGCTGC TGGCTACCACGGCCCCAGCTGCCAGCAACGATGTCCGCCCGGGCGGTATGGGCCAGGCTGTGAACAGC TGTGTGGGTGTCTCAACGGGGGCTCCTGTGATGCGGCCACGGGGGCCTGCCGCTGCCCCACTGGGTTC CTCGGGACGGACTGCAACCTCACCTGTCCGCAGGGCCGCTTCGGCCCCAACTGCACCCACGTGTGTGG GTGTGGGCAGGGGGCGGCCTGCGACCCTGTGACCGGCACCTGCCTCTGCCCCCCGGGGAGAGCCGGCG TCCGCTGTGAGCGAGGCTGCCCCCAGAACCGGTTTGGCGTGGGCTGCGAGCACACCTGCTCCTGCAGA AATGGGGGCCTGTGCCACGCCAGCAACGGCAGCTGCTCCTGTGGCCTGGGCTGGACGGGGCGGCACTG CGAGCTGGCCTGTCCCCCTGGGCGCTACGGAGCCGCCTGCCATCTGGAGTGCTCCTGCCACAACAACA GCACGTGTGAGCCTGCCACGGGCACCTGCCGCTGCGGCCCCGGCTTCTATGGCCAGGCCTGCGAGCAC CCCTGTCCCCCTGGCTTCCACGGGGCTGGCTGCCAGGGGTTGTGCTGGTGTCAACATGGAGCCCCCTG CGACCCCATCAGTGGCCGATGCCTCTGCCCTGCCGGCTTCCACGGCCACTTCTGTGAGAGGGGGTGTG AGCCAGGTTCATTTGGAGAGGGCTGCCACCAGCGCTGTGACTGTGACGGGGGGGCACCCTGTGACCCT GTCACCGGTCTCTGCCTTTGCCCACCAGGGCGCTCAGGAGCCACCTGTAACCTGGATTGCAGAAGGGG CCAGTTTGGGCCCAGCTGCACCCTGCACTGTGACTGCGGGGGTGGGGCTGACTGCGACCCTGTCAGTG GGCAGTGTCACTGTGTGGATGGCTACATGGGGCCCACGTGCCGGGAAGCGGGCACACTGCCCGCCTCC AGCAGACCCACATCCCGGAGCGGTGGACCAGCGAGGCACTAGTAGAGGCAGTCCCGTGGAGCCCGCCT
CTCCAGTCCCAGCCAGAGGGGACCCTGGCCTTTGGTGACCACTGAGAAGGACACTTCACGGGCCCAGA
GCTCCTG
NOV37m, CG56449-08 SEQ ID NO: 882 1577 aa MW at 164962.6kD Protein Sequence
MSFLEE.A-R-AAGRAVV ALVL LLPAVPVGASVPPRPL PLQPGMPHVCAEQE TLVGRRQPCVQALSH TVPVWKAGCGWQA CVGHERRTVYYMGYRQVYTTEARTVLRCCRG MQQPDEEGCLSDVGECANANGG CAGRCRDTVGGFYCRWPPPSHQ QGDGETCQDVDECRTHNGGCQHRCVNTPGSYLCECKPGFRLHTDS RTCAINSCA GNGGCQHHCVQIiTITRHRCQCRPGFQ QEDGRHCVRRSPC-ANRNGSC HRCQWRG A RCECHVGYQLAADGKACEDVDECAAG-AQCAHGC NTQGSFKCVCHAGYE GADGRQCYRIEMEIVNS CEANNGGCSHGCSHTSAGP CTCPRGYELDTDQRTCIRCRRLCRQPV QQVCTNNPGGYECGCYAGYR LSA-DGCGCEDVDECASSRGGCEHHCTNLAGSFQCSCEAGYR HEDRRGCSA EEPMVD DGELPFVRP PHIAV QDELPQLFQDDDVGADEEΞAELRGEHTLTEKFVC DDSFGHDCSLTCDDCRNGGTC LGLD GCDCPEG TGLICNESCPPDTFGKNCSFSCSCQNGGTCDSVTGACRCPPGVSGTNCEDGCPKGYYGKH CRKKCNCANRGRCHRLYGACLCDPG YGRFCH ACPPWAFGPGCSEΞCQCVQPHTQSCDKRDGSCSCK AGFRGERCQAECEPGYFGPGC QACTCPVGVACDSVSGECGKRCPAGFQGEDCGQECPVGTFGVNCSS SCSCGGAPCHGVTGQCRCPPGRTGEDCEAGECEG GLGCQEICPACHNAARCDPETGAC CLPGFVG SRCQDCEAG YGPSCQTMCSCA DGHCHQDTGHCSCAPG TGFSCQRACDTGH GPDCSHPCNCSAGH GSCDAISGLC CEAGYVGPRCEQSECPQGHFGPGCEQRCQCQHGAACDHVSGACTCPAG RGTFCEHA CPAGFFGLDCRSACNCTAGAACDAVNGSCLCPAGRRGPRCAESACPAHTYGH-NCSQACACFNGASCDP VHGQCHCAPG MGPSCLQACPAGLYGDNCRHSCLCQNGGTCDPVSGHCACPEGWAGLACEVECLPRDV RAGCRHSGGCLNGGLCDPHTGRCLCPAG TGDKCQSPAACAKGTFGPHCEGRCACRWGGPCHLATGAC LCPPG RGPHLSAACLRGWFGEACAQRCSCPPGAACHHVTGACRCPPGFTGSGCEQACPPGSFGΞDCA QMCQCPGENPACHPATGTCSCAAGYHGPSCQQRCPPGRYGPGCEQLCGCLNGGSCDAATGACRCPTGF GTDCN TCPQGRFGPNCTHVCGCGQGAACDPVTGTC CPPGRAGVRCERGCPQNRFGVGCΞHTCSCR NGGLCHASNGSCSCG GWTGRHCELACPPGRYGAACH ECSCHNNSTCEPATGTCRCGPGFYGQACEH PCPPGFHGAGCQGLC CQHGAPCDPISGRCLCPAGFHGHFCERGCEPGSFGEGCHQRCDCDGGAPCDP VTGLC CPPGRSGATCNLDCRRGQFGPSCT HCDCGGGADCDPVSGQCHCVDGYMGPTCREAGTLPAS SRPTSRSGGPARH
NOV37n, CG56449-10 SEQ ID NO: 883 5000 bp DNA Sequence ORF Start: ATG at 169 ORF Stop: at 4900
TGCTGTTACAGGTGGAGGGCAGTGTAGTCTGAGCAGTACTCGTTGCTGCCGCGCGCGCCACCAGACAT
AATAGCTGACAGACTAACAGACTGTTCCTTTCCATGGGTCTTTTCTGCAGTCACCGTCCTTGACACGA!
AGCTTTCTAGAAGATCTTCGCGAGGATCCACCATGTCGTTCCTTGAAGAGGCGAGGGCAGCGGGGCGC
GCGGTGGTCCTGGCGTTGGTGCTGCTGCTGCTCCCCGCCGTGCCCGTGGGCGCCAGCGTTCCGCCGCG GCCCCTGCTCCCGCTGCAGCCCGGCATGCCCCACGTGTGTGCTGAGCAGGAGCTGACCCTGGTGGGCC GCCGCCAGCCGTGCGTGCAGGCCTTAAGCCACACGGTGCCGGTGTGGAAGGCCGGCTGTGGGTGGCAG GCGTGGTGCGTGGGTCATGAGCGGAGGACCGTCTACTACATGGGCTACAGGCAGGTGTATACCACGGA GGCCCGGACCGTGCTCAGGTGCTGCCGAGGGTGGATGCAGCAGCCCGACGAGGAGGGCTGCCTCTCGG ATGTGGGTGAGTGTGCCAACGCCAACGGGGGCTGTGCGGGTCGGTGCCGGGACACCGTGGGGGGCTTC JTACTGCCGCTGGCCCCCCCCCAGCCACCAGCTGCAGGGTGATGGCGAGACTTGCCAAGATGTGGACGA IATGCCGAACCCACAACGGTGGCTGCCAGCACCGGTGCGTGAACACCCCAGGCTCCTACCTCTGTGAGT GCAAGCCCGGCTTCCGGCTCCACACTGACAGCAGGACCTGCGCCATTAACTCCTGCGCCCTGGGCAAT GGCGGCTGCCAGCACCACTGTGTCCAGCTCACAATCACTCGGCATCGCTGCCAGTGCCGGCCCGGGTT CCAGCTCCAGGAGGACGGCAGGCATTGTGTCCGTAGAAGCCCGTGTGCCAACAGGAACGGCAGCTGCA TGCACAGGTGCCAGGTGGTCCGGGGCCTCGCCCGCTGTGAGTGCCACGTGGGCTATCAGCTAGCAGCG GACGGCAAGGCCTGTGAAGATGTGGACGAATGTGCCGCAGGGCTGGCCCAGTGTGCCCATGGCTGCCT CAACACCCAGGGGTCCTTCAAGTGCGTGTGTCACGCGGGCTATGAGCTGGGCGCCGATGGCCGGCAGT GCTACCGTATTGAGATGGAAATCGTGAACAGCTGTGAGGCCAACAACGGCGGCTGCTCCCATGGCTGC AGCCACACCAGTGCTGGGCCCCTGTGCACCTGTCCCCGCGGCTACGAGCTGGACACAGATCAGAGGAC CTGCATCAGATGTCGACGACTGTGCAGACAGCCCGTGCTGCAGCAGGTGTGCACCAACAACCCTGGCG GGTACGAGTGCGGCTGCTACGCCGGCTACCGGCTCAGTGCCGATGGCTGCGGCTGCGAGGATGTGGAT GAGTGCGCCTCCAGCCGTGGCGGCTGCGAGCACCACTGCACCAACCTGGCCGGCTCCTTCCAGTGCTC CTGCGAGGCCGGCTACCGGCTGCACGAGGACCGTAGGGGCTGCAGCGCCCTGGAGGAGCCGATGGTGG ACCTGGACGGCGAGCTGCCTTTCGTGCGGCCCCTGCCCCACATTGCCGTGCTCCAGGACGAGCTGCCG CAACTCTTCCAGGATGACGACGTCGGGGCCGATGAGGAAGAGGCAGAGTTGCGGGGCGAACACACGCT CACAGAGAAGTTTGTCTGCCTGGATGACTCCTTTGGCCATGACTGCAGCTTGACCTGTGATGACTGCA GGAACGGAGGGACCTGCCTCCTGGGCCTGGATGGCTGTGATTGCCCCGAGGGCTGGACTGGGCTCATC TGCAATGAGAGTTGTCCTCCGGACACCTTTGGGAAGAACTGCAGCTTCTCCTGCAGCTGTCAGAATGG TGGGACCTGCGACTCTGTCACGGGGGCCTGCCGCTGCCCCCCGGGTGTCAGTGGAACTAACTGTGAGG ATGGCTGCCCCAAGGGCTACTATGGCAAGCACTGTCGCAAGAAATGCAACTGTGCCAACCGGGGCCGG TGCCACCGCCTCTACGGGGCCTGCCTCTGCGACCCAGGGCTCTACGGCCGCTTCTGCCACCTCGCCTG CCCGCCGTGGGCCTTTGGGCCGGGCTGCTCGGAGGAGTGCCAGTGTGTGCAGCCCCACACGCAGTCCT GTGACAAGAGGGATGGCAGCTGCTCCTGCAAGGCTGGCTTCCGGGGCGAGCGCTGTCAGGCAGAGTGT GAGCCGGGCTACTTTGGGCCGGGGTGCTGGCAGGCATGCACCTGCCCAGTGGGCGTGGCCTGTGACTC CGTGAGCGGCGAGTGTGGGAAGCGGTGTCCTGCTGGCTTCCAGGGAGAGGACTGTGGCCAAGAGTGCC CGGTGGGGACCTTTGGCGTGAACTGCTCGAGCTCCTGCTCCTGTGGGGGGGCCCCCTGCCACGGGGTC ACGGGGCAGTGCCGGTGTCCGCCGGGGAGGACTGGGGAAGACTGTGAGGCAGGTGAGTGTGAGGGCCT CTGGGGGCTGGGCTGCCAGGAGATCTGCCCAGCATGCCATAACGCTGCTCGCTGCGACCCTGAGACCG GAGCCTGCCTGTGCCTCCCTGGCTTTGTCGGCAGCCGCTGCCAGGACTGTGAGGCAGGCTGGTATGGT CCCAGCTGCCAGACAATGTGCTCTTGTGCCAATGATGGGCACTGCCACCAAGACACGGGACACTGCAG CTGTGCCCCCGGGTGGACCGGCTTTAGCTGCCAGAGAGCCTGTGATACTGGGCACTGGGGACCTGACT GCAGCCACCCCTGCAACTGCAGCGCTGGCCACGGGAGCTGTGATGCCATCAGCGGCCTGTGTCTGTGT GAGGCTGGCTACGTGGGCCCGCGGTGCGAGCAGTCAGAGTGTCCCCAGGGCCACTTTGGGCCCGGCTG TGAGCAGCGGTGCCAGTGTCAGCATGGAGCAGCCTGTGACCACGTCAGCGGGGCCTGCACCTGCCCGG CCGGCTGGAGGGGCACCTTCTGCGAGCATGCCTGCCCGGCCGGCTTCTTTGGATTGGACTGTCGCAGT GCCTGCAACTGCACCGCCGGAGCTGCCTGTGATGCCGTGAATGGCTCCTGCCTCTGCCCCGCTGGCCG CCGGGGCCCCCGCTGTGCCGAGAGTGCCTGCCCAGCCCACACCTACGGGCACAATTGCAGCCAGGCCT GTGCCTGCTTTAACGGGGCCTCCTGTGACCCTGTCCACGGGCAGTGCCACTGTGCCCCTGGCTGGATG GGGCCCTCCTGCCTGCAGGCCTGCCCTGCCGGCCTGTACGGCGACAACTGTCGGCATTCCTGCCTCTG
CCAGAACGGAGGGACCTGTGACCCTGTCTCAGGCCACTGTGCGTGCCCAGAGGGCTGGGCCGGCCTGG CCTGTGAGGTAGAGTGCCTCCCCCGGGACGTCAGAGCTGGCTGCCGGCACAGCGGCGGTTGCCTCAAC GGGGGCCTGTGTGACCCGCACACGGGCCGCTGCCTCTGCCCAGCCGGCTGGACTGGGGACAAGTGTCA GAGCCCTGCAGCCTGTGCCAAGGGCACATTCGGGCCTCACTGTGAGGGGCGCTGTGCCTGCCGGTGGG GAGGCCCCTGCCACCTTGCCACCGGGGCCTGCCTCTGCCCTCCGGGGTGGCGGGGGCCTCATCTTTCT GCAGCCTGCCTGCGGGGCTGGTTTGGAGAGGCCTGTGCCCAGCGCTGCAGCTGCCCGCCTGGCGCTGC CTGCCACCACGTCACTGGGGCCTGCCGCTGTCCCCCTGGCTTCACTGGCTCCGGCTGCGAGCAGGCCT GCCCACCCGGCAGCTTTGGGGAGGACTGTGCGCAGATGTGCCAGTGTCCCGGTGAGAACCCGGCCTGC CACCCTGCCACCGGGACCTGCTCATGTGCTGCTGGCTACCACGGCCCCAGCTGCCAGCAACGATGTCC GCCCGGGCGGTATGGGCCAGGCTGTGAACAGCTGTGTGGGTGTCTCAACGGGGGCTCCTGTGATGCGG CCACGGGGGCCTGCCGCTGCCCCACTGGGTTCCTCGGGACGGACTGCAACCTCACCTGTCCGCAGGGC CGCTTCGGCCCCAACTGCACCCACGTGTGTGGGTGTGGGCAGGGGGCGGCCTGCGACCCTGTGACCGG CACCTGCCTCTGCCCCCCGGGGAGAGCCGGCGTCCGCTGTGAGCGAGGCTGCCCCCAGAACCGGTTTG GCGTGGGCTGCGAGCACACCTGCTCCTGCAGAAATGGGGGCCTGTGCCACGCCAGCAACGGCAGCTGC TCCTGTGGCCTGGGCTGGACGGGGCGGCACTGCGAGCTGGCCTGTCCCCCTGGGCGCTACGGAGCCGC CTGCCATCTGGAGTGCTCCTGCCACAACAACAGCACGTGTGAGCCTGCCACGGGCACCTGCCGCTGCG GCCCCGGCTTCTATGGCCAGGCCTGCGAGCACCCCTGTCCCCCTGGCTTCCACGGGGCTGGCTGCCAG GGGTTGTGCTGGTGTCAACATGGAGCCCCCTGCGACCCCATCAGTGGCCGATGCCTCTGCCCTGCCGG CTTCCACGGCCACTTC GTGACTGTGACGGGGGGGCACCCTGTGACCCTGTCACCGGTCTCTGCCTTTGCCCACCAGGGCGCTCA GGAGCCACCTGTAACCTGGATTGCAGAAGGGGCCAGTTTGGGCCCAGCTGCACCCTGCACTGTGACTG CGGGGGTGGGGCTGACTGCGACCCTGTCAGTGGGCAGTGTCACTGTGTGGATGGCTACATGGGGCCCA CGTGCCGGGAAGCGGGCACACTGCCCGCCTCCAGCAGACCCACATCCCGGAGCGGTGGACCAGCGAGG CACGTATTCCCCGGGCTCGAGGGTAAGCCTATCCCTAACCCTCTCCTCGGTCTCGATTCTACGCGTAC
CGGTCATCACCACCATCACCATTGAGTTTAATTCAT
NOV37n, CG56449-10 SEQ ID NO: 884 1577 aa MW at 164962.6kD Protein Sequence
MSF EEARAAGRAWLALV LLPAVPVGASVPPRP LPLQPG PHVCAEQE TLVGRRQPCVQALSH TVPV KAGCG QAWCVGHERRTVYYMGYRQVYTTEARTVLRCCRG MQQPDEEGCLSDVGECANANGG CAGRCRDTVGGFYCR PPPSHQ QGDGETCQDVDECRTHNGGCQHRCVNTPGSYLCECKPGFRLHTDS RTCAINSCALGNGGCQHHCVQLTITRHRCQCRPGFQ QEDGRHCVRRSPCANRNGSCMHRCQWRG A RCECHVGYQLAADGKACEDVDECAAGLAQCAHGCLNTQGSFKCVCHAGYELGADGRQCYRIEMEIVNS CEANNGGCSHGCSHTSAGP CTCPRGYELDTDQRTCIRCRRLCRQPVLQQVCTNNPGGYECGCYAGYR LSADGCGCEDV-DECASSRGGCEHHCTNLAGSFQCSCEAGYR HEDRRGCSALEEPiMVDLDGELPFVRP LPHIAV QDE PQLFQDDDVGADEEEAE RGEHT TEKFVCLDDSFGHDCSLTCDDCRNGGTC LGLD GCDCPEGWTG ICNESCPPDTFGKNCSFSCSCQNGGTCDSVTGACRCPPGVSGTNCEDGCPKGYYGK-H CRKKCNCA-NRGRCHRLYGAC CDPGIiYGRFCHLACPP AFGPGCSEECQCVQPHTQSCDKRDGSCSCK AGFRGERCQAECEPGYFGPGC QACTCPVGVACDSVSGECGKRCPAGFQGEDCGQECPVGTFGVNCSS SCSCGGAPCHGVTGQCRCPPGRTGEDCEAGECEGLWGLGCQEICPACHNAARCDPETGACLC PGFVG SRCQDCEAG YGPSCQTMCSCANDGHCHQDTGHCSCAPGWTGFSCQRACDTGH GPDCSHPCNCSAGH GSCDAISGLCLCEAGYVGPRCEQSECPQGHFGPGCEQRCQCQHGAACDHVSGACTCPAGWRGTFCEHA CPAGFFGLDCRSACNCTAGAACDAVNGSCLCPAGRRGPRCAESACPAHTYGHNCSQACACFNGASCDP VHGQCHCAPG GPSCLQACPAGLYGDNCRHSCLCQNGGTCDPVSGHCACPEG AG ACEVECLPRDV RAGCRHSGGCLNGGLCDPHTGRC CPAGWTGDKCQSPAACAKGTFGPHCEGRCACR GGPCHLATGAC LCPPG RGPHLSAAC RG FGEACAQRCSCPPGAACHHVTGACRCPPGFTGSGCEQACPPGSFGEDCA QMCQCPGENPACHPATGTCSCAAGYHGPSCQQRCPPGRYGPGCEQLCGCLNGGSCDAATGACRCPTGF GTDCNLTCPQGRFGPNCTHVCGCGQGAACDPVTGTC CPPGRAGVRCERGCPQNRFGVGCEHTCSCR NGGLCHASNGSCSCGLG TGRHCELACPPGRYGAACH ECSCHNNSTCEPATGTCRCGPGFYGQACEH PCPPGFHGAGCQGLCWCQHGAPCDPISGRCLCPAGFHGHFCERGCEPGSFGEGCHQRCDCDGGAPCDP VTGLCIiCPPGRSGATCN DCRRGQFGPSCTLHCDCGGGA-DCDPVSGQCHCVDGYMGPTCREAGTLPAS SRPTSRSGGPARH
NOV37o, CG56449-l l SEQ ID NO: 885 5005 bp DNA Sequence ORF Start: at 258 ORF Stop: at 4899 lAACGGGTGGAGGGCAGTGTAGTCTGAGCAGTACTCGTTGCTGCCGCGCGCGCCACCAGACATAATAGC
TGACAGACTAACAGACTGTTCCTTTCCATGGGTCTTTTCTGCAGTCACCGTCCTTGACACGAAGCTCT jAGCCACCATGGAGACAGACACACTCCTGCTATGGGTACTGCTGCTCTGGGTTCCAGGTTCCACTGGTG
ACGCGGCCCAGCCGGCCAGGCGCGCGCGCCGTACGAAGCTTTCGCGAGGATCCAGCGTTCCGCCGCGG
CCCCTGCTCCCGCTGCAGCCCGGCATGCCCCACGTGTGTGCTGAGCAGGAGCTGACCCTGGTGGGCCG CCGCCAGCCGTGCGTGCAGGCCTTAAGCCACACGGTGCCGGTGTGGAAGGCCGGCTGTGGGTGGCAGG CGTGGTGCGTGGGTCATGAGCGGAGGACCGTCTACTACATGGGCTACAGGCAGGTGTATACCACGGAG GCCCGGACCGTGCTCAGGTGCTGCCGAGGGTGGATGCAGCAGCCCGACGAGGAGGGCTGCCTCTCGGA TGTGGGTGAGTGTGCCAACGCCAACGGGGGCTGTGCGGGTCGGTGCCGGGACACCGTGGGGGGCTTCT ACTGCCGCTGGCCCCCCCCCAGCCACCAGCTGCAGGGTGATGGCGAGACTTGCCAAGATGTGGACGAA TGCCGAACCCACAACGGTGGCTGCCAGCACCGGTGCGTGAACACCCCAGGCTCCTACCTCTGTGAGTG CAAGCCCGGCTTCCGGCTCCACACTGACAGCAGGACCTGCGCCATTAACTCCTGCGCCCTGGGCAATG GCGGCTGCCAGCACCACTGTGTCCAGCTCACAATCACTCGGCATCGCTGCCAGTGCCGGCCCGGGTTC CAGCTCCAGGAGGACGGCAGGCATTGTGTCCGTAGAAGCCCGTGTGCCAACAGGAACGGCAGCTGCAT GCACAGGTGCCAGGTGGTCCGGGGCCTCGCCCGCTGTGAGTGCCACGTGGGCTATCAGCTAGCAGCGG ACGGCAAGGCCTGTGAAGATGTGGACGAATGTGCCGCAGGGCTGGCCCAGTGTGCCCATGGCTGCCTC AACACCCAGGGGTCCTTCAAGTGCGTGTGTCACGCGGGCTATGAGCTGGGCGCCGATGGCCGGCAGTG CTACCGTATTGAGATGGAAATCGTGAACAGCTGTGAGGCCAACAACGGCGGCTGCTCCCATGGCTGCA GCCACACCAGTGCTGGGCCCCTGTGCACCTGTCCCCGCGGCTACGAGCTGGACACAGATCAGAGGACC TGCATCAGATGTCGACGACTGTGCAGACAGCCCGTGCTGCAGCAGGTGTGCACCAACAACCCTGGCGG GTACGAGTGCGGCTGCTACGCCGGCTACCGGCTCAGTGCCGATGGCTGCGGCTGCGAGGATGTGGATG AGTGCGCCTCCAGCCGTGGCGGCTGCGAGCACCACTGCACCAACCTGGCCGGCTCCTTCCAGTGCTCC TGCGAGGCCGGCTACCGGCTGCACGAGGACCGTAGGGGCTGCAGCGCCCTGGAGGAGCCGATGGTGGA CCTGGACGGCGAGCTGCCTTTCGTGCGGCCCCTC^ AACTCTTCCAGGATGACGACGTCGGGGCCGATGAGGAAGAGGCAGAGTTGCGGGGCGAACACACGCTC ACAGAGAAGTTTGTCTGCCTGGATGACTCCTTTGGCCATGACTGCAGCTTGACCTGTGATGACTGCAG 'GAACGGAGGGACCTGCCTCCTGGGCCTGGATGGCTGTGATTGCCCCGAGGGCTGGACTGGGCTCATCT GCAATGAGAGTTGTCCTCCGGACACCTTTGGGAAGAACTGCAGCTTCTCCTGCAGCTGTCAGAATGGT GGGACCTGCGACTCTGTCACGGGGGCCTGCCGCTGCCCCCCGGGTGTCAGTGGAACTAACTGTGAGGA TGGCTGCCCCAAGGGCTACTATGGCAAGCACTGTCGCAAGAAATGCAACTGTGCCAACCGGGGCCGGT GCCACCGCCTCTACGGGGCCTGCCTCTGCGACCCAGGGCTCTACGGCCGCTTCTGCCACCTCGCCTGC CCGCCGTGGGCCTTTGGGCCGGGCTGCTCGGAGGAGTGCCAGTGTGTGCAGCCCCACACGCAGTCCTG TGACAAGAGGGATGGCAGCTGCTCCTGCAAGGCTGGCTTCCGGGGCGAGCGCTGTCAGGCAGAGTGTG AGCCGGGCTACTTTGGGCCGGGGTGCTGGCAGGCATGCACCTGCCCAGTGGGCGTGGCCTGTGACTCC GTGAGCGGCGAGTGTGGGAAGCGGTGTCCTGCTGGCTTCCAGGGA'GAGGACTGTGGCCAAGAGTGCCC GGTGGGGACCTTTGGCGTGAACTGCTCGAGCTCCTGCTCCTGTGGGGGGGCCCCCTGCCACGGGGTCA CGGGGCAGTGCCGGTGTCCGCCGGGGAGGACTGGGGAAGACTGTGAGGCAGGTGAGTGTGAGGGCCTC TGGGGGCTGGGCTGCCAGGAGATCTGCCCAGCATGCCATAACGCTGCTCGCTGCGACCCTGAGACCGG AGCCTGCCTGTGCCTCCCTGGCTTTGTCGGCAGCCGCTGCCAGGACTGTGAGGCAGGCTGGTATGGTC CCAGCTGCCAGACAATGTGCTCTTGTGCCAATGATGGGCACTGCCACCAAGACACGGGACACTGCAGC TGTGCCCCCGGGTGGACCGGCTTTAGCTGCCAGAGAGCCTGTGATACTGGGCACTGGGGACCTGACTG CAGCCACCCCTGCAACTGCAGCGCTGGCCACGGGAGCTGTGATGCCATCAGCGGCCTGTGTCTGTGTG AGGCTGGCTACGTGGGCCCGCGGTGCGAGCAGTCAGAGTGTCCCCAGGGCCACTTTGGGCCCGGCTGT GAGCAGCGGTGCCAGTGTCAGCATGGAGCAGCCTGTGACCACGTCAGCGGGGCCTGCACCTGCCCGGC CGGCTGGAGGGGCACCTTCTGCGAGCATGCCTGCCCGGCCGGCTTCTTTGGATTGGACTGTCGCAGTG CCTGCAACTGCACCGCCGGAGCTGCCTGTGATGCCGTGAATGGCTCCTGCCTCTGCCCCGCTGGCCGC CGGGGCCCCCGCTGTGCCGAGAGTGCCTGCCCAGCCCACACCTACGGGCACAATTGCAGCCAGGCCTG TGCCTGCTTTAACGGGGCCTCCTGTGACCCTGTCCACGGGCAGTGCCACTGTGCCCCTGGCTGGATGG GGCCCTCCTGCCTGCAGGCCTGCCCTGCCGGCCTGTACGGCGACAACTGTCGGCATTCCTGCCTCTGC
CAGAACGGAGGGACCTGTGACCCTGTCTCAGGCCACTGTGCGTGCCCAGAGGGCTGGGCCGGCCTGGC CTGTGAGGTAGAGTGCCTCCCCCGGGACGTCAGAGCTGGCTGCCGGCACAGCGGCGGTTGCCTCAACG GGGGCCTGTGTGACCCGCACACGGGCCGCTGCCTCTGCCCAGCCGGCTGGACTGGGGACAAGTGTCAG AGCCCTGCAGCCTGTGCCAAGGGCACATTCGGGCCTCACTGTGAGGGGCGCTGTGCCTGCCGGTGGGG AGGCCCCTGCCACCTTGCCACCGGGGCCTGCCTCTGCCCTCCGGGGTGGCGGGGGCCTCATCTTTCTG CAGCCTGCCTGCGGGGCTGGTTTGGAGAGGCCTGTGCCCAGCGCTGCAGCTGCCCGCCTGGCGCTGCC TGCCACCACGTCACTGGGGCCTGCCGCTGTCCCCCTGGCTTCACTGGCTCCGGCTGCGAGCAGGCCTG CCCACCCGGCAGCTTTGGGGAGGACTGTGCGCAGATGTGCCAGTGTCCCGGTGAGAACCCGGCCTGCC ACCCTGCCACCGGGACCTGCTCATGTGCTGCTGGCTACCACGGCCCCAGCTGCCAGCAACGATGTCCG CCCGGGCGGTATGGGCCAGGCTGTGAACAGCTGTGTGGGTGTCTCAACGGGGGCTCCTGTGATGCGGC CACGGGGGCCTGCCGCTGCCCCACTGGGTTCCTCGGGACGGACTGCAACCTCACCTGTCCGCAGGGCC GCTTCGGCCCCAACTGCACCCACGTGTGTGGGTGTGGGCAGGGGGCGGCCTGCGACCCTGTGACCGGC ACCTGCCTCTGCCCCCCGGGGAGAGCCGGCGTCCGCTGTGAGCGAGGCTGCCCCCAGAACCGGTTTGG CGTGGGCTGCGAGCACACCTGCTCCTGCAGAAATGGGGGCCTGTGCCACGCCAGCAACGGCAGCTGCT CCTGTGGCCTGGGCTGGACGGGGCGGCACTGCGAGCTGGCCTGTCCCCCTGGGCGCTACGGAGCCGCC TGCCATCTGGAGTGCTCCTGCCACAACAACAGCACGTGTGAGCCTGCCACGGGCACCTGCCGCTGCGG CCCCGGCTTCTATGGCCAGGCCTGCGAGCACCCCTGTCCCCCTGGCTTCCACGGGGCTGGCTGCCAGG GGTTGTGCTGGTGTCAACATGGAGCCCCCTGCGACCCCATCAGTGGCCGATGCCTCTGCCCTGCCGGC TTCCACGGCCACTTCTGTGAGAGGGGGTGTGAGCCAGGTTCATTTGGAGAGGGCTGCCACCAGCGCTG TGACTGTGACGGGGGGGCACCCTGTGACCCTGTCACCGGTCTCTGCCTTTGCCCACCAGGGCGCTCAG GAGCCACCTGTAACCTGGATTGCAGAAGGGGCCAGTTTGGGCCCAGCTGCACCCTGCACTGTGACTGC GGGGGTGGGGCTGACTGCGACCCTGTCAGTGGGCAGTGTCACTGTGTGGATGGCTACATGGGGCCCAC GTGCCGGGAAGCGGGCACACTGCCCGCCTCCAGCAGACCCACATCCCGGAGCGGTGGACCAGCGAGGC ACGAATTCCCCGGGCTCGAGGGTAAGCCTATCCCTAACCCTCTCCTCGGTCTCGATTCTACGCGTACC
GGTCATCACCACCATCACCATTGAGTTTAATTCATTGATTT
NOV37o, CG56449-ll SEQ ID NO: 886 1547 aa IMW at 161933.0kD Protein Sequence
SVPPRPL PLQPGMPHVCAEQE T VGRRQPCVQALSHTVPVWKAGCG QA CVGHERRTVYYMGYRQ VYTTEARTV RCCRG MQQPDEEGCLSDVGECA ANGGCAGRCRDTVGGFYCR PPPSHQ QGDGETC QDVDECRTH GGCQHRCVNTPGSY CECKPGFRLHTDSRTCAINSCALGNGGCQHHCVQLTITRHRCQ CRPGFQLQEDGRHCVRRSPCAN-RNGSC HRCQVVRG -ARCECHVGYQLAADGKACEDVDECAAGLAQC AHGC NTQGSFKCVCHAGYELGADGRQCYRIEMEIVNSCEA-NNGGCSHGCSHTSAGPLCTCPRGYELD TDQRTCIRCRRLCRQPVLQQVCT PGGYECGCYAGYR SADGCGCEDVDECASSRGGCEHHCTNLAG SFQCSCEAGYR HEDRRGCS-ALEEPP-VDLD^ GEHTLTEKFVCLDDSFGHDCSLTCDDC-RNGGTCLLGLDGCDCPEGWTGLICNESCPPDTFGKNCSFSC SCQNGGTCDSVTGACRCPPGVSGTNCEDGCPKGYYGKHCRKKCNCANRGRCHRLYGAC CDPG YGRF CH ACPP AFGPGCSEECQCVQPHTQSCDKRDGSCSCKAGFRGERCQAECEPGYFGPGC QACTCPVG VACDSVSGECGKRCPAGFQGEDCGQECPVGTFGVNCSSSCSCGGAPCHGVTGQCRCPPGRTGEDCEAG ECEGL GLGCQEICPAC------NAARCDPETGAC CLPGFVGSRCQDCEAGWYGPSCQT CSCA-DGHCHQD
TGHCSCAPGWTGFSCQRACDTGHWGPDCSHPCNCSAGHGSCDAISGLCLCEAGYVGPRCEQSECPQGH FGPGCEQRCQCQHGAACDHVSGACTCPAGWRGTFCEHACPAGFFGLDCRSACNCTAGAACDAVNGSC CPAGRRGPRCAESACPAHTYGHNCSQACACFNGASCDPVHGQCHCAPGWMGPSCLQACPAGLYGDNCR HSCLCQNGGTCDPVSGHCACPEGWAGLACEVECLPRDVRAGCRHSGGCLNGGLCDPHTGRCLCPAGWT GDKCQSPAACAKGTFGPHCEGRCACRWGGPCHLATGACLCPPG RGPH SAACLRGWFGEACAQRCSC PPGAACHHVTGACRCPPGFTGSGCEQACPPGSFGEDCAQMCQCPGENPACHPATGTCSCAAGYHGPSC QQRCPPGRYGPGCEQLCGC NGGSCDAATGACRCPTGFLGTDCNLTCPQGRFGPNCTHVCGCGQGAAC DPVTGTCLCPPGRAGVRCERGCPQNRFGVGCEHTCSCR GG CHASNGSCSCGLGWTGRHCELACPPG RYGAACHLECSCHNNSTCEPATGTCRCGPGFYGQACEHPCPPGFHGAGCQGLC CQHGAPCDPISGRC LCPAGFHGHFCERGCEPGSFGEGCHQRCDCDGGAPCDPVTGLCLCPPGRSGATCNLDCRRGQFGPSCT LHCDCGGGADCDPVSGQCHCVDGYMGPTCREAGT PASSRPTSRSGGPARH
NOV37p, SNP13382514 of SEQ ID NO: 887 J877 bp_ CG56449-04, DNA Sequence ORF Start: ATG at 25JORF Stop: TAG at 535 SNP Pos: 430 |SNP Change: G to A
CCGGAGCTGCCTGTGATGCCGTGAATGGCTCCTGCCTCTGCCCCGCTGGCCGCCGGGGCCCCCGCTGT
GCCGAGACCTGCCCTGCCGGCCTGTACGGCGACAACTGTCGGCATTCCTGCCTCTGCCAGAACGGAGG GACCTGTGACCCTGTCTCAGGCCTGCGAGCACCCCTGTCCCCCTGGCTTCCACGGGGCTGGCCGCCAG GGGTTGTGCTGGTGTCAACATGGAGCCCCCTGCGACCCCATCAGTGGCCGATGCCTCTGCCCTGCCGG CTTCCACGGCCACTTCTGTGAGAGGGATTGCAGAAGGGGCCAGTTTGGGCCCAGCTGCACCCTGCACT GTGACTGCGGGGGTGGGGCTGACTGCGACCCTGTCAGTGGGCAGTGTCACTGTGTGGATGGCTACATG GGGCCCACGTGCCGGGAAGGTAGGCCCCTCCGGCTCCCCGAGAACCCGTCCTTAGCCCAGGGCTCAGC GGGCACACTGCCCGCCTCCAGCAGACCCACATCCCGGAGCGGTGGACCAGCGAGGCACTAGTAGAGGC
AGTCCCGTGGAGCCCGCCTCTCCAGTCCCAGCCAGAGGGGACCCTGGCCTTTGGTGACCACTGAGAAG
GACACTTCACGGGCCCAGAGCTCCTGGTACTGCCCTTCCTTTGAGGGCCGTGGAGGGCTGTGGACAGC
CCAGCAACCTGTCGCTCTTGGAGGCTGGTGTGGCCTTGAGGAGGGAAGCCTCGCATGGCCGCTGGAAG
AGAGGCGTCTCCTGGCCTGGCTCTGCAGAACCCAGGGGCACGCTCTGGGCCTGGGCTGAGGAAGTCCC
GCTCTCCCGCGGCTCTGAGTTGGACTGAGGACAGGTGTGGGCGCCAGTGTGGGTGCAGGCG
NOV37p, SNP13382514 of SEQ ID NO: 888 170 aa MW at 17222.2kD
CG56449-04, Protein Sequence JSNP Pos: 136 SNP Change: Gly to Arg APASAP AAGAPAVPRPALPACTATTVGIPASARTEGPVT SQACEHPCPPGFHGAGRQGLC CQHG APCDPISGRCLCPAGFHGHFCERDCRRGQFGPSCTLHCDCGGGADCDPVSGQCHCVDGYMGPTCREGR PLR PENPSLAQGSAGTLPASSRPTSRSGGPARH
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 37B.
Table 37B. Comparison of the NO 37 protein sequences.
NOV37a
NOV37b MSFLEEARAAGRA
NOV37C
NOV37d TGSTMSFLEEARAAGRA
NOV37e SEQYSL PRAPPDIIADRLTDCSFPWVFSAVTVLDTK SRRSSRGSTMSF EEARAAGRA
NOV37f HEALAT ETDTLLLWV
NOV37g MPMGHSDRWSWRL
NOV37h MPMGHSDRWSWRL
NOV371 MPMGHSDRWSWRL
NOV37k MPMGHSDRWSWRL
NOV371 MPMGHSDRWSWRL
NOV37m MSFLEEARAAGRA NOV37n -MSFLEEARAAGRA NOV37o
NOV37a NOV37b WLALVLLLLPAVPVGASVPPRPLLPLQPG- -MPHVCAEQELTLVGRRQPC NOV37C NOV37d WLALVLLLLPAVPVGASVPPRPLLPLQPG MPHVCAEQELTLVGRRQPC NOV37e WLALVLLLLPAVPVGASVPPRPLLPLQPG MPHVCAEQELTLVGRRQPC NOV37f LLLWVPGSTGDAAQPARRARRTKLSRGSSVPPRPLLPLQPGMPHVCAEQELTLVGRRQPC NOV37g LRLALPLPVWLPAGGGRGADSPCLCS RPHVCAEQELTLVGRRQPC NOV37h LRLALPLPVWLPAGGGRGADSPCLCS RPHVCAEQELTLVGRRQPC NOV371 LRLALPLPVWLPAGGGRGADSPCLCS RPHVCAEQELTLVGRRQPC NOV37k LRLALPLPVWLPAGGGRGADSPCLCS -RPHVCAEQELTLVGRRQPC NOV371 LRLALPLPVWLPAGGGRGADSPCLCS -RPHVCAEQELTLVGRRQPC NOV37m WLALVLLLLPAVPVGASVPPRPLLPLQPG- -MPHVCAEQELTLVGRRQPC NOV37n WLALVLLLLPAVPVGASVPPRPLLPLQPG- -MPHVCAEQELTLVGRRQPC N0V37O SVPPRPLLPLQPG -MPHVCAEQELTLVGRRQPC
NOV37a NOV37b VQALSHTVPVWRAGCGWQAWCVGHERRTVYYMGYRQVYTTEARTVLRCCRGWTQQPDEEG NOV37C NOV37d VQALSHTVPVWKAGCGWQAWCVGHERRTVYYMGYRQVYTTEARTVLRCCRGWTQQPDEEG NOV37e VQALSHTVPVWKAGCGWQAWCVGHERRTVYYMGYRQVYTTEARTVLRCCRGWMQQPDEEG NOV37f VQALSHTVPVWKAGCGWQAWCVGHERRTVYYMGYRQVYTTEARTVLRCCRGWMQQPDEEG NOV37g VQALSHTVPVWKAGCGWQAWCVGHERRTVYYMGYRQVYTTEARTVLRCCRGWMQQPDEEG NOV37h VQALSHTVPVWKAGCGWQAWCVGHERRTVYYMGYRQVYTTEARTVLRCCRGWTQQPDEEG NO 37i VQALSHTVPVWKAGCGWQAWCVGHERRTVYYMGYRQVYTTEARTVLRCCRGWTQQPDΞEG NOV37J NOV37k VQALSHTVPVWKAGCGWQAWCVGHERRTVYYMGYRQVYTTEARTVLRCCRGWMQQPDEEG NOV371 VQALSHTVPVWKAGCGWQAWCVGHERRTVYYMGYRQVYTTEARTVLRCCRGWTQQPDEEG NOV37m VQALSHTVPVWKAGCGWQAWCVGHERRTVYYMGYRQVYTTEARTVLRCCRGWMQQPDEEG NOV37n VQALSHTVPVWKAGCGWQAWCVGHERRTVYYMGYRQVYTTEARTVLRCCRGWMQQPDEEG NOV37o VQALSHTVPVWKAGCGWQAWCVGHERRTVYYMGYRQVYTTEARTVLRCCRGWMQQPDEEG
NOV37a NOV37b CLS--AECSASLCFHGGRCVPGS-AQPCHCPP GFQGP-RCQYDVDECRTHNGGCQHR NOV37C NOV37d CLS- -AECSAGLCFHGGRCVPGS-AQPCHCPPG FQGP-RCQYDVDECRTHNGGCQHR NOV37e CLSDVGECAN-ANGGCAGRCRDTVGGFYCRWPPPSHQLQGDGETCQDVDECRTHNGGCQHR NOV37f CLSDVGECANANGGCAGRCRDTVGGFYCRWPPPSHQLQGDGETCQDVDECRTHNGGCQHR NOV37g CLSDVGEC-ANANGGCAGRCRDTVGGFYCRWPPPSHQLQGDGETCQDVDECRTHNGGCQHR NOV37h CLS--AECSASLCFHGGRCVPGS-AQPCHCPP-G--FQGP-RCQYDVDECRTHNGGCQHR NOV37i CLS- -AECSASLCFHGGRCVPGS-AQPCHCPPG FQGP-RCQYDVDECRTHNGGCQHR NOV37J NOV37k CLSDVGECANANGGCAGRCRDTVGGFYCRWPPPSHQLQGDGETCQDVDECRTHNGGCQHR NOV371 CLS--AECSASLCFHGGRCVPGS-AQPCHCPP-G--FQGP-RCQYDVDECRTHNGGCQHR NOV37ra CLSDVGECANANGGCAGRCRDTVGGFYCRWPPPSHQLQGDGETCQDVDECRTHNGGCQHR NOV37n CLSDVGECANANGGCAGRCRDTVGGFYCRWPPPSHQLQGDGETCQDVDECRTHNGGCQHR NOV37o CLSDVGECANANGGCAGRCRDTVGGFYCRWPPPSHQLQGDGETCQDVDECRTHNGGCQHR
NOV37a NOV37b CVNTPGSYLCECKPGFRLHTDSRTCLAINSCALGNGGCQHHCVQLTITRHRCQCRPGFQL NOV37C NOV37d CVNTPGSYLCECKPGFRLHTDSRTCLAINSCALGNGGCQHHCVQLTITRHRCQCRPGFQL NOV37e CVNTPGSYLCECKPGFRLHTDSRTC-AINSCALGNGGCQHHCVQLTITRHRCQCRPGFQL NOV37f CVNTPGSYLCECKPGFRLHTDSRTC-AINSCALGNGGCQHHCVQLTITRHRCQCRPGFQL NOV37g CVNTPGSYLCECKPGFRLHTDSRTC-AINSCALGNGGCQHHCVQLTITRHRCQCRPGFQL NOV37h CVNTPGSYLCECKPGFRLHTDSRTCLAINSCALGNGGCQHHCVQLTITRHRCQCRPGFQL NO 37i CVNTPGSYLCECKPGFRLHTDSRTCLAINSCALGNGGCQHHCVQLTITRHRCQCRPGFQL N0V37J NOV37k CVNTPGSYLCECKPGFRLHTDSRTC-AINSCALGNGGCQHHCVQLTITRHRCQCRPGFQL NOV371 CVNTPGSYLCECKPGFRLHTDSRTCLAINSCALGNGGCQHHCVQLTITRHRCQCRPGFQL NOV37m CVNTPGSYLCECKPGFRLHTDSRTC-AINSCALGNGGCQHHCVQLTITRHRCQCRPGFQL NOV37n CVNTPGSYLCECKPGFRLHTDSRTC-A1NSCALGNGGCQHHCVQLTITRHRCQCRPGFQL N0V37O CVNTPGSYLCECKPGFRLHTDSRTC-AINSCALGNGGCQHHCVQLTITRHRCQCRPGFQL
NOV37a NOV37b QEDGRHCVRRSPCAN-RNGSCMHRCQWRGLARCECHVGYQLAADGKACEDVDECAAGLAQ NOV37C NOV37d QEDGRHCVRRSPCANRNGSCMHRCQWRGLARCECHVGYQLAADGKACEDVDECAAGLAQ NOV37e QEDGRHCVRRSPCANRNGSCMHRCQVVRGLARCECHVGYQLAADGKACEDVDECAAGLAQ N0V37f QEDG-RHCVRRSPCANRNGSCMHRCQVVRGLARCECHVGYQLAADGKACEDVDECAAGLAQ NOV37g QEDGRHCVRRSPCANRNGSCMHRCQWRGLARCECHVGYQLAADGKACEDVDECAAGLAQ NOV37h QEDGRHCVRRSPCANRNGSCMHRCQWRGLARCECHVGYQLAADGKACEDVDECAAGLAQ NOV37i QEDGRHCVRRSPCANRNGSCMHRCQWRGLARCECHVGYQLAADGKACEDVDECAAGLAQ NOV37J NOV37k QEDGRHCVRRSPCANRNGSCMHRCQWRGLARCECHVGYQLAADGKACEDVDECAAGLAQ NOV371 QEDGRHCVRRSPCANRNGSCMHRCQVVRGLARCECHVGYQLAADGKACEDVDECAAGLAQ NOV37m QEDGRHCVRRSPC-ANRNGSCMHRCQWRGLARCECHVGYQLAADGKACEDVDECAAGLAQ NOV37n QEDGRHCVRRSPCANRNGSCMHRCQWRGLARCECHVGYQLAADGKACEDVDECAAGLAQ N0V37O QEDG-RHCVRRSPCAN-RNGSCMHRCQVVRGLARCECHVGYQLAADGKACEDVDECAAGLAQ
N0V37a NOV37b CAHGCLNTQGSFKCVCHAGYELGADGRQCYRIEMEIVNSCEANNGGCSHGCSHTSAGPLC N0V37C NOV37d CAHGCLNTQGSFKCVCHAGYELGADGRQCYRIEMEIVNSCEANNGGCSHGCSHTSAGPLC NOV37e CAHGCLNTQGSFKCVCHAGYELGADGRQCYRIEMEIVNSCEANNGGCSHGCSHTSAGPLC NOV37f CAHGCLNTQGSFKCVCHAGYELGADGRQCYRIEMEIVNSCEANNGGCSHGCSHTSAGPLC NOV37g CAHGCLNTQGSFKCVCHAGYELGADGRQCYRIEMEIVNSCEANNGGCSHGCSHTSAGPLC NOV37h CAHGCLNTQGSFKCVCHAGYELGADGRQCYRIEMEIVNSCEANNGGCSHGCSHTSAGPLC NOV37i CAHGCLNTQGSFKCVCHAGYELGADGRQCYRIEMEIVNSCEANNGGCSHGCSHTSAGPLC NOV37J NOV37k CAHGCLNTQGSFKCVCHAGYELGADGRQCYRIEMEIVNSCEANNGGCSHGCSHTSAGPLC NOV371 CAHGCLNTQGSFKCVCHAGYELGADGRQCYRIEMEIVNSCEANNGGCSHGCSHTSAGPLC NOV37m CAHGCLNTQGSFKCVCHAGYELGADGRQCYRIEMEIVNSCEANNGGCSHGCSHTSAGPLC NOV37I1 CAHGCLNTQGSFKCVCHAGYELGADGRQCYRIEMEIVNSCEANNGGCSHGCSHTSAGPLC N0V37O CAHGCLNTQGSFKCVCHAGYELGADGRQCYRIEMEIVNSCEANNGGCSHGCSHTSAGPLC
NOV37a NOV37b TCPRGYELDTDQRTCIRCRRLCRQPVLQQVCTN-NPGGYECGCYAGYRLSADGCGCEDVDE NOV37C NOV37d TCPRGYELDTDQRTCIDVGDCADSPCCQQVCTNNPGGYECGCYAGYRLSADGCGCEDVDE NOV37e TCPRGYELDTDQRTCIRCRRLCRQPVLQQVCTNNPGGYECGCYAGYRLSADGCGCEDVDE NOV37f TCPRGYELDTDQRTCIRCRRLCRQPVLQQVCTNNPGGYECGCYAGYRLSADGCGCEDVDE NOV37g TCPRGYELDTDQRTCIRCRRLCRQPVLQQVCTNNPGGYECGCYAGYRLSADGCGCEDVDE NOV37h TCPRGYELDTDQRTCIRCRRLCRQPVLQQVCTNNPGGYECGCYAGYRLSADGCGCEDVDE NOV37i TCPRGYELDTDQRTCIRCRRLCRQPVLQQVCTNNPGGYECGCYAGYRLSADGCGCEDVDE NOV37J NOV37k TCPRGYELDTDQRTCIRCRRLCRQPVLQQVCTNNPGGYECGCYAGYRLSADGCGCEDVDE NOV371 TCPRGYELDTDQRTCIRCRRLCRQPVLQQVCTNNPGGYECGCYAGYRLSADGCGCEDVDE NOV37m TCPRGYELDTDQRTCIRCRRLCRQPVLQQVCTNNPGGYECGCYAGYRLSADGCGCEDVDE NOV37n TCPRGYELDTDQRTCIRCRRLCRQPVLQQVCTNNPGGYECGCYAGYRLSADGCGCEDVDE N0V37O TCPRGYELDTDQRTCIRCRRLCRQPVLQQVCTNNPGGYECGCYAGYRLSADGCGCEDVDE
NOV37a NOV37b CASSRGGCEHHCTN AGSFQCSCEAGYRLHEDRRGCSALEEPMVDLDGELPFVRPLPHIA NOV37C NOV37d CASSRGGCEHHCTNLAGSFQCSCEAGYRLHEDRRGCSPLEEPMVDLDGELPFVRPLPHIA NOV37e CASSRGGCE-HHCTNLAGSFQCSCEAGYRLHEDRRGCSALEEPMVDLDGELPFVRPLPHIA NOV37f CASSRGGCEHHCTNLAGSFQCSCEAGYRLHEDRRGCSALEEPMVDLDGELPFVRPLPHIA NOV37g CASSRGGCEHHCTNLAGSFQCSCEAGYRLHEDRRGCSALEEPMVDLDGELPFVRPLPHIA NOV37h CASSRGGCEHHCTNLAGSFQCSCEAGYRLHEDRRGCSALEEPMVDLDGELPFVRPLPHIA NOV37i CASSRGGCEHHCTNLAGSFQCSCEAGYRLHEDRRGCSALEEPMVDLDGELPFVRPLPHIA NOV37k CASSRGGCEHHCTNLAGSFQCSCEAGYRLHEDRRGCSALEEPMVDLDGELPFVRPLPHIA NOV371 CASSRGGCEHHCTNLAGSFQCSCEAGYRLHEDRRGCSALEEPMVDLDGELPFVRPLPHIA NOV37m CASSRGGCEHHCTNLAGSFQCSCEAGYRLHEDRRGCSALEEPMVDLDGELPFVRPLPHIA NOV37n CASSRGGCEHHCTNLAGSFQCSCEAGYRLHEDRRGCSALEEPMVDLDGELPFVRPLPHIA N0V37O CASSRGGCEHHCTNLAGSFQCSCEAGYRLHEDRRGCSALEEPMVDLDGELPFVRPLPHIA
NOV37a NOV37b VLQDELPQLFQDDDVGADEEEAELRGEHTLTEKFVCLDDSFGHDCSLTCDDCRNGGTCLL NOV37C NOV37d VLQDELPQLFQDDDVGADEEEAELRGEHTLTEKFVCLDDSFGHDCSLTCDDCRNGGTCLL NOV37e VLQDΞLPQLFQDDDVGADEEEAELRGEHTLTEKFVCLDDSFGHDCSLTCDDCRNGGTCLL NOV37f VLQDELPQLFQDDDVGADEEEAELRGEHTLTEKFVCLDDSFGHDCSLTCDDCRNGGTCLL NOV37g VLQDELPQLFQDDDVGADEEEAELRGEHTLTEKFVCLDDSFGHDCSLTCDDCRNGGTCLL NOV37h VLQDELPQLFQDDDVGADEEEAELRGEHTLTEKFVCLDDSFGHDCSLTCDDCRNGGTCLL NOV37i VLQDELPQLFQDDDVGADEEEAELRGEHTLTEKFVCLDDSFGHDCSLTCDDCRNGGTCLL NOV37J NOV37k VLQDELPQLFQDDDVGADEEEAELRGEHTLTEKFVCLDDSFGHDCSLTCDDCRNGGTCLL NOV371 VLQDELPQLFQDDDVGADEEEAELRGEHTLTEKFVCLDDSFGHDCSLTCDDCRNGGTCLL NOV37m VLQDELPQLFQDDDVGADEEEAELRGEHTLTEKFVCLDDSFGHDCSLTCDDCRNGGTCLL NOV37n VLQDΞLPQLFQDDDVGADEEEAELRGEHTLTEKFVCLDDSFGHDCSLTCDDCRNGGTCLL NOV37o VLQDELPQLFQDDDVGADEEEAELRGEHTLTEKFVCLDDSFGHDCSLTCDDCRNGGTCLL
NOV37a NOV37b GLDGCDCPEGWTGLICNESCPPDTFGKNCSFSCSCQNGGTCDSVTGACRCPPGVSGTNCE NOV37C NOV37d GLDGCDCPEGWTGLICNETCPPDTFGKNCSFSCSCQNGGTCDSVTGACRCPPGVSGTNCE NOV37e GLDGCDCPEGWTGLICNESCPPDTFGKNCSFSCSCQNGGTCDSVTGACRCPPGVSGTNCE NOV37f GLDGCDCPEGWTGLICNESCPPDTFGKNCSFSCSCQNGGTCDSVTGACRCPPGVSGTNCE NOV37g GLDGCDCPEGWTGLICNESCPPDTFGKNCSFSCSCQNGGTCDSVTGACRCPPGVSGTNCE NOV37h GLDGCDCPEGWTGLICNESCPPDTFGKNCSFSCSCQNGGTCDSVTGACRCPPGVSGTNCE NOV37i GLDGCDCPEGWTGLICNESCPPDTFGKNCSFSCSCQNGGTCDSVTGACRCPPGVSGTNCE NOV37k GLDGCDCPEGWTGLICNESCPPDTFGKNCSFSCSCQNGGTCDSVTGACRCPPGVSGTNCE NOV371 GLDGCDCPEGWTGLICNESCPPDTFGKNCSFSCSCQNGGTCDSVTGACRCPPGVSGTNCE NOV37m GLDGCDCPEGWTGLICNESCPPDTFGKNCSFSCSCQNGGTCDSVTGACRCPPGVSGTNCE NOV37n GLDGCDCPEGWTGLICNESCPPDTFGKNCSFSCSCQNGGTCDSVTGACRCPPGVSGTNCE N0V37O GLDGCDCPEGWTGLICNESCPPDTFGKNCSFSCSCQNGGTCDSVTGACRCPPGVSGTNCE
NOV37a NOV37b DGCPKGYYGKHCRKKCNCANRGRCHRLYGACLCDPGLYGRFCHLACPPWAFGPGCSEECQ NOV37C NOV37d DGCPKGYYGKHCRKKCNCANRGRCHRLYGACLCDPGLYGRFCHLTCPPWAFGPGCSEECQ NOV37e DGCPKGYYGKHCRKKCNCANRGRCHRLYGACLCDPGLYGRFCHLACPPWAFGPGCSEECQ NOV37f DGCPKGYYGKHCRKKCNCANRGRCHRLYGACLCDPGLYGRFCHLACPPWAFGPGCSEECQ NOV37g DGCPKGYYGKHCRKKCNCANRGRCHRLYGACLCDPGLYGRFCHLACPPWAFGPGCSEΞCQ NOV37h DGCPKGYYGKHCRKKCNCANRGRCHRLYGACLCDPGLYGRFCHLACPPWAFGPGCSEECQ NOV371 DGCPKGYYGKHCRK CNCANRGRCHRLYGACLCDPGLYGRFCHLACPPWAFGPGCSEECQ NOV37J NOV37k DGCPKGYYGKHCRKKCNCANRGRCHRLYGACLCDPGLYGRFCHLACPPWAFGPGCSEECQ NOV371 DGCPKGYYGKHCRKKCNCANRGRCHRLYGACLCDPGLYGRFCHLACPPWAFGPGCSEECQ NOV37m DGCPKGYYGKHCRKKCNCANRGRCHRLYGACLCDPGLYGRFCHLACPPWAFGPGCSEECQ NOV37n DGCPKGYYGKHCRKKCNCANRGRCHRLYGACLCDPGLYGRFCHLACPPWAFGPGCSEECQ N0V37O DGCPKGYYGKHCRKKCNCANRGRCHRLYGACLCDPGLYGRFCHLACPPWAFGPGCSEECQ
NOV37a NOV37b CVQPHTQSCDKRDGSCSCKAGFRGERCQAECEPGYFGPGCWQACTCPVGVACDSVSGECG NOV37C NOV37 CVQPHTQSCDKRDGSCSCKAGFRGERCQAECEPGYFGPGCWQACTCPVGVACDSVSGECG NOV37e CVQPHTQSCDKRDGSCSCKAGFRGERCQAECEPGYFGPGCWQACTCPVGVACDSVSGECG NOV37f CVQPHTQSCDKRDGSCSCKAGFRGERCQAECEPGYFGPGCWQACTCPVGVACDSVSGECG NOV37g CVQPHTQSCDKRDGSCSCKAGFRGERCQAECEPGYFGPGCWQACTCPVGVACDSVSGECG NOV37h CVQPHTQSCDKRDGSCSCKAGFRGERCQAECEPGYFGPGCWQACTCPVGVACDSVSGECG NOV37i CVQPHTQSCDKRDGSCSCKAGFRGERCQAECELGYFGPGCWQACTCPVGVACDSVSGECG NOV37k CVQPHTQSCDKRDGSCSCKAGFRGERCQAECEPGYFGPGCWQACTCPVGVACDSVSGECG NOV371 CVQPHTQSCD-K-RDGSCSCKAGFRGERCQAECELGYFGPGCWQACTCPVGVACDSVSGECG NOV37m CVQPHTQSCDKRDGSCSCKAGFRGERCQAECEPGYFGPGCWQACTCPVGVACDSVSGECG NOV37n CVQPHTQSCDKRDGSCSCKAGFRGERCQAECEPGYFGPGCWQACTCPVGVACDSVSGECG N0V37O CVQPHTQSCDKRDGSCSCKAGFRGERCQAECEPGYFGPGCWQACTCPVGVACDSVSGECG
NOV37a NOV37b KRCPAGFQGEDCGQECPVGTFGVNCSSSCSCGGAPCHGVTGQCRCPPGRTGEDCEAGECE NOV37C NOV37d KRCPAGFQGEDCGQECPVGTFGVNCSSSCSCGGAPCHGVTGQCRCPPGRTGEDCEADCPE NOV37e KRCPAGFQGEDCGQECPVGTFGVNCSSSCSCGGAPCHGVTGQCRCPPGRTGEDCEAGECE NOV37f KRCPAGFQGEDCGQECPVGTFGVNCSSSCSCGGAPCHGVTGQCRCPPGRTGEDCEAGECE NOV37g KRCPAGFQGEDCGQECPVGTFGVNCSSSCSCGGAPCHGVTGQCRCPPGRTGEDCEAGECE NOV37h KRCPAGFQGEDCGQECPVGTFGVNCSSSCSCGGAPCHGVTGQCRCPPGRTGEDCEAGECE NOV371 KRCPAGFQGEDCGQECPVGTFGVNCSSSCSCGGAPCHGVTGQCRCPPGRTGEDCEADCPE NOV37J NOV37k KRCPAGFQGEDCGQECPVGTFGVNCSSSCSCGGAPCHGVTGQCRCPPGRTGEDCEAGECE NOV371 KRCPAGFQGEDCGQECPVGTFGVNCSSSCSCGGAPCHGVTGQCRCPPGRTGEDCEADCPE NOV37m KRCPAGFQGEDCGQECPVGTFGVNCSSSCSCGGAPCHGVTGQCRCPPGRTGEDCEAGECE NOV37n KRCPAGFQGEDCGQECPVGTFGVNCSSSCSCGGAPCHGVTGQCRCPPGRTGEDCEAGECE NOV37o KRCPAGFQGEDCGQECPVGTFGVNCSSSCSCGGAPCHGVTGQCRCPPGRTGEDCEAGECE
NOV37a NOV37b GLWGLGCQEICPACHNAARCDPETGACLCLPGFVGSRCQD-CEAGWYGPSCQTMCSCAND NOV37C NOV37d GRWGLGCQEICPACQHAARCDPETGACLCLPDFVGSRCQDVCPAGWYGPSCQTRCSCAND NOV37e GLWGLGCQEICPACHNAARCDPETGACLCLPGFVGSRCQD-CEAGWYGPSCQTMCSCAND NOV37f GLWGLGCQEICPACHNAARCDPETGACLCLPGFVGSRCQD-CEAGWYGPSCQTMCSCAND NOV37g GLWGLGCQEICPACHNAARCDPETGACLCLPGFVGSRCQD-CEAGWYGPSCQTMCSCAND NOV37h GLWGLGCQEICPACHNAARCDPETGACLCLPGFVGSRCQD-CEAGWYGPSCQTMCSCAND NOV37i GRWGLGCQEICPACQHAARCDPETGACLCLPGFVGSRCQDVCPAGWYGPSCQTRCSCAND NOV37J NO 37k GLWGLGCQEICPACHNAARCDPETGACLCLPGFVGSRCQD-CEAGWYGPSCQTMCSCAND NOV371 GRWGLGCQEICPACQHAARCDPΞTGACLCLPGFVGSRCQDVCPAGWYGPSCQTRCSCAND NOV37m GLWGLGCQEICPACHNAARCDPETGACLCLPGFVGSRCQD-CEAGWYGPSCQTMCSCAND NOV37n GLWGLGCQEICPACHNAARCDPETGACLCLPGFVGSRCQD-CEAGWYGPSCQTMCSCAND NOV37o GLWGLGCQEICPACHNAARCDPETGACLCLPGFVGSRCQD-CEAGWYGPSCQTMCSCAND
NOV37a MAPASAPLAAGAPAVPRPALPACTATTVGIPASARTEGPVT NOV37b GHCHQDTGHCSCAPGWTGFSCQRACDTGHWGPDCSHPCNCSAGHGSCDAISGLCLCEAGY NOV37C DPCLAGPPLMAPASAPLAAGAPAVPRPALPACTATTVGIPASARTEGPVT NOV37d GHCHPATGHCSCAPGWTGFSCQRACDTGHWGPDCSHPCNCSAGHGSCDAISGLCLCEAGY NOV37e GHCHQDTGHCSCAPGWTGFSCQRACDTGHWGPDCSHPCNCSAGHGSCDAISGLCLCEAGY NOV37f GHCHQDTGHCSCAPGWTGFSCQRACDTGHWGPDCSHPCNCSAGHGSCDAISGLCLCEAGY NOV37g GHCHQDTGHCSCAPGWTGFSCQRACDTGHWGPDCSHPCNCSAGHGSCDAISGLCLCEAGY NOV37h GHCHQDTGHCSCAPGWTGFSCQRACDTGHWGPDCSHPCNCSAGHGSCDAISGLCLCEAGY NOV37i GHCHPATGHCSCAPGWTGFSCQRACDTGHWGPDCSHPCNCSAGHGSCDAISGLCLCEAGY NOV37J MAPASAPLAAGAPAVPRPALPACTATTVGIPASARTEGPVT NOV37k GHCHQDTGHCSCAPGWTGFSCQRACDTGHWGPDCSHPCNCSAGHGSCDAISGLCLCEAGY NOV371 GHCHPATGHCSCAPGWTGFSCQRACDTGHWGPDCSHPCNCSAGHGSCDAISGLCLCEAGY NOV37m GHCHQDTGHCSCAPGWTGFSCQRACDTGHWGPDCSHPCNCSAGHGSCDAISGLCLCEAGY NOV37n GHCHQDTGHCSCAPGWTGFSCQRACDTGHWGPDCSHPCNCSAGHGSCDAISGLCLCEAGY
N0V37O GHCHQDTGHCSCAPGWTGFSCQRACDTGHWGPDCSHPCNCSAGHGSCDAISGLCLCEAGY
NOV37a LSQACEH-PCPPGFHGAGRQGLCWCQHGAPCDPISGRCLCPAGFHGHFCERDCRRGQFGP
NOV37b VGPRCEQSECPQGHFGPGCEQRCQCQHGAACDHVSGACTCPAGWRGTFCEHACPAGFFGL
NOV37c LSQACEH- CPPGFHGAGCQGLCWCQHGAPCDPISGRCLCPAGFHGHFCERDCRRGQFGP
NOV37d VGPRCEQ-QCPQGHFGPGCEQLCQCQHGAACDHVSGACTCPAGWRGTFCEHACPAGFFGL
NOV37e VGPRCEQSECPQGHFGPGCEQRCQCQHGAACDHVSGACTCPAGWRGTFCEHACPAGFFGL
NOV37f VGPRCEQSECPQGHFGPGCEQRCQCQHGAACDHVSGACTCPAGWRGTFCEHACPAGFFGL
NOV37g VGPRCEQSECPQGHFGPGCEQRCQCQHGAACDHVSGACTCPAGWRGTFCEHACPAGFFGL
NOV37 VGPRCEQSECPQGHFGPGCEQRCQCQHGAACDHVSGACTCPAGWRGTFCEHACPAGFFGL
NOV37i VGPRCEQ-QCPQGHFGPGCEQLCQCQHGAACDHVSGACTCPAGWRGTFCEHACPAGFFGL
NOV37J LSQACEH-PCPPGFHGAGCQGLCWCQHGAPCDPISGRCLCPAGFHGHFCERDCRRGQFGP
NOV37k VGPRCEQSECPQGHFGPGCEQRCQCQHGAACDHVSGACTCPAGWRGTFCEHACPAGFFGL
NOV371 VGPRCEQ-QCPQGHFGPGCEQLCQCQHGAACDHVSGACTCPAGWRGTFCEHACPAGFFGL
NOV37m VGPRCEQSECPQGHFGPGCEQRCQCQHGAACDHVSGACTCPAGWRGTFCEHACPAGFFGL
NOV37n VGPRCEQSECPQGHFGPGCEQRCQCQHGAACDHVSGACTCPAGWRGTFCEHACPAGFFGL
NOV370 VGPRCEQSECPQGHFGPGCEQRCQCQHGAACDHVSGACTCPAGWRGTFCEHACPAGFFGL
NOV37a SCTLHCDCGGGADCDPVSGQCHCVDGYMGPTCREG
NOV37b DCRSACNCTAGAACDAVNGSCLCPAGRRGPRCAESACPAHTYGHNCSQACACFNGASCDP
NOV37C SCTLHCDCGGGADCDPVSGQCHCVDGYMGPTCREG
NOV37d DCRSACNCTAGAACDAVNGSCLCPAGRRGPRCAEK
NOV37e DCRSACNCTAGAACDAVNGSCLCPAGRRGPRCAESACPAHTYGHNCSQACACFNGASCDP
NOV37f DCRSACNCTAGAACDAVNGSCLCPAGRRGPRCAESACPAHTYGHNCSQACACFNGASCDP
NOV37g DCRSACNCTAGAACDAVNGSCLCPAGRRGPRCAESACPAHTYGHNCSQACACFNGASCDP
NOV37h DCRSACNCTAGAACDAVNGSCLCPAGRRGPRCAESACPAHTYGHNCSQACACFNGASCDP
NOV37i DCRSACNCTAGAACDAVNGSCLCPAGRRGPRCAET
NOV37j SCTLHCDCGGGADCDPVSGQCHCVDGYMGPTCREG
NOV37k DCRSACNCTAGAACDAVNGSCLCPAGRRGPRCAET-CPAHTYGHNCSQACACFNGASCDP
NOV371 DCRSACNCTAGAACDAVNGSCLCPAGRRGPRCAE T
NOV37m DCRSACNCTAGAACDAVNGSCLCPAGRRGPRCAESACPAHTYGHNCSQACACFNGASCDP
NOV37n DCRSACNCTAGAACDAVNGSCLCPAGRRGPRCAESACPAHTYGHNCSQACACFNGASCDP
NOV37o DCRSACNCTAGAACDAVNGSCLCPAGRRGPRCAESACPAHTYGHNCSQACACFNGASCDP
NOV37a GPLRLPENPSLAQGS
NOV37b VHGQCHCAPGWMGPSCLQACPAGLYGDNCRHSCLCQNGGTCDPVSGHCACPEGWAGLACE
NOV37c GPLRLPENPSLAQGS
NOV37d
NOV37e VHGQCHCAPGWMGPSCLQACPAGLYGDNCRHSCLCQNGGTCDPVSGHCACPEGWAGLACE
NOV37f VHGQCHCAPGWMGPSCLQACPAGLYGDNCRHSCLCQNGGTCDPVSGHCACPEGWAGLACE
NOV37g VHGQCHCAPGWMGPSCLQACPAGLYGDNCRHSCLCQNGGTCDPVSGHCACPEGWAGLACE
NOV37h VHGQCHCAPGWMGPSCLQACPAGLYGDNCRHSCLCQNGGTCDPVSGHCACPEGWAGLACE
NOV37i CPAGLYGDNCRHSCLCQNGGTCDPVSGHCACPEGWAGLACE
NOV37j GPLRLPENPSLAQGS
NOV37k VHGQCHCAPGWMGPSCLQACPAGLYGDNCRHSCLCQNGGTCDPVSGHCACPEGWAGLACE
NOV371 CPAGLYGDNCRHSCLCQNGGTCDPVSGHCACPEGWAGLACE
NOV37m VHGQCHCAPGWMGPSCLQACPAGLYGDNCRHSCLCQNGGTCDPVSGHCACPEGWAGLACE
NOV37I1 VHGQCHCAPGWMGPSCLQACPAGLYGDNCRHSCLCQNGGTCDPVSGHCACPEGWAGLACE
N0V37O VHGQCHCAPGWMGPSCLQACPAGLYGDNCRHSCLCQNGGTCDPVSGHCACPEGWAGLACE
NOV37a AGTLPASSRPTSRSGGPARH
NOV37b VECLPRDVRAGCRHSGGCLNGGLCDPHTGRCLCPAGWTGDKCQSPAACAKGTFGPHCEGR
NOV37C AGTLPASSRPTSRS
NOV37d --CLPRDVRAGCRHSGGCLNGGLCDPHTGRCLCPAGWTGDKCQSP
NOV37e VECLPRDVRAGCRHSGGCLNGGLCDPHTGRCLCPAGWTGDKCQSPAACAKGTFGPHCEGR
NOV37f VECLPRDVRAGCRHSGGCLNGGLCDPHTGRCLCPAGWTGDKCQSPAACAKGTFGPHCEGR
NOV37g VECLPRDVRAGCRHSGGCLNGGLCDPHTGRCLCPAGWTGDKCQSPAACAKGTFGPHCEGR
NOV37h VECLPRDVRAGCRHSGGCLNGGLCDPHTGRCLCPAGWTGDKCQSPAACAKGTFGPHCEGR
NOV37i KECPPRDVRAGCRHSGGCLNGGLCDPHTGRCLCPAGWAGDKCQS NOV37J AGTLPASSRPTS NOV37k VECLPRDVRAGCRHSGGCLNGGLCDPHTGRCLCPAGWTGDKCQSPAACAKGTFGPHCEGR NOV371 KECPPRDVRAGCRHSGGCLNGGLCDPHTGRCLCPAGWTGDKCQS NOV37m VECLPRDVRAGCRHSGGCLNGGLCDPHTGRCLCPAGWTGDKCQSPAACAKGTFGPHCEGR NOV37n VECLPRDVRAGCRHSGGCLNGGLCDPHTGRCLCPAGWTGDKCQSPAACAKGTFGPHCEGR NOV37o VECLPRDVRAGCRHSGGCLNGGLCDPHTGRCLCPAGWTGDKCQSPAACAKGTFGPHCEGR
NOV37a NOV37b CACRWGGPCHLATGACLCPPGWRGPHLSAACLRGWFGEACAQRCSCPPGAACHHVTGACR NOV37c NOV37d CLRG- -WFGEACAQRCSCPPGAACHHVTGACR NOV37e CACRWGGPCHLATGACLCPPGWRGPHLSAACLRGWFGEACAQRCSCPPGAACHHVTGACR NOV37f CACRWGGPCHLATGACLCPPGWRGPHLSAACLRGWFGEACAQRCSCPPGAACHHVTGACR NOV37g CACRWGGPCHLATGACLCPPGWRGPHLSAACLRGWFGEACAQRCSCPPGAACHHVTGACR NOV37h CACRWGGPCHLATGACLCPPGWRGPHLSAACLRGWFGEACAQRCSCPPGAACHHVTGACR NOV37i p CLRG--WFGEACAQHCSCPPGAACHHVTGACR NOV37J NOV37k CACRWGGPCHLATGACLCPPGWRGPHLSAACLRGWFGEACAQRCSCPPGAACHHVTGACR NOV371 - -HP HGPLLEASAALIFLQPACGAGLERPVPSAA AAR NOV37m CACRWGGPCHLATGACLCPPGWRGPHLSAACLRGWFGEACAQRCSCPPGAACHHVTGACR NOV37n CACRWGGPCHLATGACLCPPGWRGPHLSAACLRGWFGEACAQRCSCPPGAACHHVTGACR N0V37O CACRWGGPCHLATGACLCPPGWRGPHLSAACLRGWFGEACAQRCSCPPGAACHHVTGACR
NOV37a NOV37b CPPGFTGSGCEQACPPGSFGEDCAQMCQCPGENPACHPATGTCSCAAGYHGPSCQQRCPP NOV37C NOV37d CPPGFTGSGCEQGCP P NOV37e CPPGFTGSGCEQACPPGSFGEDCAQMCQCPGENPACHPATGTCSCAAGYHGPSCQQRCPP NOV37f CPPGFTGSGCEQACPPGSFGEDCAQMCQCPGENPACHPATGTCSCAAGYHGPSCQQRCPP NOV37g CPPGFTGSGCEQACPPGSFGEDCAQMCQCPGENPACHPATGTCSCAAGYHGPSCQQRCPP NOV37h CPPGFTGSGCEQACPPGSFGEDCAQMCQCPGENPACHPATGTCSCAAGYHGPSCQQRCPP NOV37i CPPGFTGSGCEQGCP P NOV37J NOV37k CPPGFTGSGCEQACPPGSFGEDCAQMCQCPGENPACHPATGTCSCAAGYHGPSCQQRCPP NOV371 LPLPATTSLGPAAVPLASL A PAASRDVRP NOV37m CPPGFTGSGCEQACPPGSFGEDCAQMCQCPGENPACHPATGTCSCAAGYHGPSCQQRCPP NOV37n CPPGFTGSGCEQACPPGSFGEDCAQMCQCPGENPACHPATGTCSCAAGYHGPSCQQRCPP N0V37O CPPGFTGSGCEQACPPGSFGEDCAQMCQCPGENPACHPATGTCSCAAGYHGPSCQQRCPP
NOV37a NOV37b GRYGPGCEQLCGCLNGGSCDAATGACRCPTGFLGTDCNLTCPQGRFGPNCTHVCGCGQGA NOV37C NOV37d GRYGPGCEQLCGCLNGGSCDAATGACRCPTGFLGTDCNLTCPQGRFGPNCTHVCGCGQGA NOV37e GRYGPGCEQLCGCLNGGSCDAATGACRCPTGFLGTDCNLTCPQGRFGPNCTHVCGCGQGA NOV37f GRYGPGCEQLCGCLNGGSCDAATGACRCPTGFLGTDCNLTCPQGRFGPNCTHVCGCGQGA NOV37g GRYGPGCEQLCGCLNGGSCDAATGACRCPTGFLGTDCNLTCPQGRFGPNCTHVCGCGQGA NOV37h GRYGPGCEQLCGCLNGGSCDAATGACRCPTGFLGTDCNLTCPQGRFGPNCTHVCGCGQGA NOV371 GRYGPGCEQLCGCLNGGSCDAATGACRCPTGFLGTDCNLTCPQGRFGPNCTHVCGCGQGA NOV37J NOV37k GRYGPGCEQLCGCLNGGSCDAATGACRCPTGFLGTDCNLTCPQGRFGPNCTHVCGCGQGA NOV371 GGMGQAVNSCVGVSTGAPVMRPRGPAAAPLGSSGR--TATSP VRRA NOV37m GRYGPGCEQLCGCLNGGSCDAATGACRCPTGFLGTDCNLTCPQGRFGPNCTHVCGCGQGA NOV37n GRYGPGCEQLCGCLNGGSCDAATGACRCPTGFLGTDCNLTCPQGRFGPNCTHVCGCGQGA N0V37O GRYGPGCEQLCGCLNGGSCDAATGACRCPTGFLGTDCNLTCPQGRFGPNCTHVCGCGQGA
NOV37a NOV37b ACDPVTGTCLCPPGRAGVRCERGCPQNRFGVGCEHTCSCRNGGLCHASGACATPASGSCS NOV37C NOV37d ACDPVTGTCLCPPGRAGVRCERGCPQNRFGVGCEHTCSCRNGGLCHAS NGSCS NOV37e ACDPVTGTCLCPPGRAGVRCERGCPQNRFGVGCEHTCSCRNGGLCHAS NGSCS NOV37f ACDPVTGTCLCPPGRAGVRCERGCPQNRFGVGCEHTCSCRNGGLCHAS- -NGSCS NOV37g ACDPVTGTCLCPPGRAGVRCΞRGCPQNRFGVGCEHTCSCRNGGLCHAS- -KRQLL NOV37h ACDPVTGTCLCPPGRAGVRCERGCPQNRFGVGCEHTCSCRNGGLCHAS- -KRQLL NOV37i ACDPVTGTCLCPPGRAGVRCERGCPQNRFGVGCEHTCSCRNGGLCHAS- -NGSCS NOV37J NOV37k ACDPVTGTCLCPPGRAGVRCERGCPQNRFGVGCEHTCSCRNGGLCHAS- -KRQLL NOV371 ASAPTAPTCVWG RGRPATL NOV37m ACDPVTGTCLCPPGRAGVRCERGCPQNRFGVGCEHTCSCRNGGLCHAS- -NGSCS NOV37n ACDPVTGTCLCPPGRAGVRCERGCPQNRFGVGCEHTCSCRNGGLCHAS- -NGSCS N0V37O ACDPVTGTCLCPPGRAGVRCERGCPQNRFGVGCEHTCSCRNGGLCHAS- -NGSCS
NOV37a NOV37b CGLGWTGRHCELACPPGRYGAACHLECSCHNNSTCEPATGTCRCGPGFYGQACEHPCPPG NOV37C NOV37d CGLGWTGRHCELACPPGRYGAACHLECSCHNNSTCEPATGTCRCGPGFYGQACEHPCPPG NOV37e CGLGWTGRHCELACPPGRYGAACHLECSCHNNSTCEPATGTCRCGPGFYGQACEHPCPPG NOV37f CGLGWTGRHCELACPPGRYGAACHLECSCHNNSTCEPATGTCRCGPGFYGQACEHPCPPG NOV37g LWPGLDGAALRAGLSPWALRSRLPSGVLLPQQQHV NOV37h LWPGLDGAALRAGLSPWALRSRLPSGVLLPQQQHV NOV37i CGLGWTGRHCELACPPGRYGAACHLECSCHNNSTGΞPATGTCRCGPGFYGQACEHPCPPG NOV37k LWPGLDGAALRAGLSPWALRSRLPSGVLLPQQQHV- NOV371 NOV37m CGLGWTGRHCELACPPGRYGAACHLECSCHNNSTCEPATGTCRCGPGFYGQACEHPCPPG NOV37n CGLGWTGRHCELACPPGRYGAACHLECSCHNNSTCEPATGTCRCGPGFYGQACEHPCPPG N0V37O CGLGWTGRHCΞLACPPGRYGAACHLECSCHNNSTCEPATGTCRCGPGFYGQACEHPCPPG
NOV37a NOV37b FHGAGCQGLCWCQHGAPCDPISGRCLCPAGFHGHFCERGCEPGSFGEGCHQRCDCDGGAP NOV37C NOV37d FHGAGCQGLCWCQHGAPCDPISGRCLCPAGFHGHFCERGCEPGSFGEGCHQRCDCDGGAP NOV37e FHGAGCQGLCWCQHGAPCDPISGRCLCPAGFHGHFCERGCEPGSFGEGCHQRCDCDGGAP NOV37f FHGAGCQGLCWCQHGAPCDPISGRCLCPAGFHGHFCERGCEPGSFGEGCHQRCDCDGGAP NOV37g NOV37h NOV371 FHGAGCQGLCWCQHGAPCDPISGRCLCPAGFHGHFCERGCEPGSFGEGCHQRCDCDGGAP NOV37J NOV37k NOV371 NOV37m FHGAGCQGLCWCQHGAPCDPISGRCLCPAGFHGHFCERGCEPGSFGEGCHQRCDCDGGAP NOV37n FHGAGCQGLCWCQHGAPCDPISGRCLCPAGFHGHFCERGCEPGSFGEGCHQRCDCDGGAP N0V37O FHGAGCQGLCWCQHGAPCDPISGRCLCPAGFHGHFCERGCEPGSFGEGCHQRCDCDGGAP
NOV37a
NOV37b CDPVTGLCLCPPGRSGATCNLDCRRGQFGPSCTLHCDCGGGADCDPVSGQCHCVDGYMGP
NOV37C
NOV37d CDPVTGLCLCPPGRSGATCNLDCRRGQFGPSCTLHCDCGGGADCDPVSGQCHCVDGYMGP
NOV37e CDPVTGLCLCPPGRSGATCNLDCRRGQFGPSCTLHCDCGGGADCDPVSGQCHCVDGYMGP
NOV37f CDPVTGLCLCPPGRSGATCNLDCRRGQFGPSCTLHCDCGGGADCDPVSGQCHCVDGYMGP
NOV37g
NOV37h
NOV37i CDPVTGLCLCPPGRSGATCNLDCRRGQFGPSCTLHCDCGGGADCDPVSGQCHCVDGYMGP
NOV37J
NOV37k
NOV371
NOV37m CDPVTGLCLCPPGRSGATCNLDCRRGQFGPSCTLHCDCGGGADCDPVSGQCHCVDGYMGP
NOV37n CDPVTGLCLCPPGRSGATCNLDCRRGQFGPSCTLHCDCGGGADCDPVSGQCHCVDGYMGP
N0V37O CDPVTGLCLCPPGRSGATCNLDCRRGQFGPSCTLHCDCGGGADCDPVSGQCHCVDGYMGP
NOV37a NOV37b TCREGGP1RLPT^KTTJQT.Δπ.-^ Δ iT^T.TΔ OPO QPQ-PπD 'P' _ - - -
NOV37C NOV37d TCREG GPL RLP T?r\T QT.ΔππQZi -i T,ϋΔQQTJD ' ^πT->Δ Wri'T,r--l-- - -
NOV37e TCREAG-- TLPASSRPTSRSGGPARHVFPGLEGKPIPNPLLGLDST
NOV37f TCREA , _-, __ rpT.TJΔ C'DDrPQT?G ι *DΔT?'ϊ-T-PTϊ''D ,T "CT'TfOTTJ' 'OT.T *T HCT
NOV37g
NOV37 NOV37i TCREG GPIiRLE
NOV37J
NOV37k
NOV371 NOV37m TCRE-a r* — _ ----. _ΓΓT.DΔ CDTDT'CTPC T'TD 'D'I-T — _
NOV37n TCREAG-- TLPASSRPTSRSGGPARH
N0V37O TCRE2 r* rpτ,D Qcτ-?τjrrc;t>σr1 1"DΔP'tι _ .-. —
NOV37a
NOV37b
NOV37C
NOV37d
NOV37e RTGHHHHHH
NOV37f RTGHHHHHH
NOV37g
NOV37h
NOV37i
NOV37J
NOV37k
NOV371
NOV37m
NOV37n
N0V37O
N0V37a (SEQ ID NO 858)
NOV37b (SEQ ID NO 860)
NOV37C (SEQ ID NO 862)
NOV37d (SEQ ID NO 864)
NOV37e (SEQ ID NO 866)
NOV37f (SEQ ID NO 868)
NOV37g (SEQ ID NO 870)
NOV37h (SEQ ID NO 872)
NOV37i (SEQ ID NO 874)
NOV37J (SEQ ID NO 876)
NOV37k (SEQ ID NO 878)
NOV371 (SEQ ID NO 880)
NOV37m (SEQ ID NO 882)
NOV37-D (SEQ ID NO . 884)
N0V37O (SEQ ID NO 886)
Further analysis of the NOV37a protein yielded the following properties shown in Table 37C.
Table 37C. Protein Sequence Properties NOV37a
SignalP analysis: No Known Signal Sequence Predicted
PSORT II analysis:
PSG: a new signal peptide prediction method
N-region: length 0; pos.chg 0; neg.chg 0 H-region: length 16; peak value 6.60 PSG score : 2 . 20
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -5.33 possible cleavage site: between 14 and 15
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al's method for TM region allocation Init position for calculation: 1
Tentative number of TMS(s) for the threshold 0.5: 0 number of TMS(s)' .. fixed PERIPHERAL Likelihood = 5.83 (at 18) ALOM score: 5.83 (number of TMSs: 0)
MTOP: Prediction of membrane topology (Hartmann et al.) Center position for calculation: 6 Charge difference: 0.0 C( 1.0) - N( 1.0) N >= C: N-terminal side will be inside
MITDISC: discrimination of mitochondrial targeting seq R content: 2 Hyd Moment (75) : 1.11 Hyd Moment (95) : 2.89 G content: 2 D/E content: 1 S/T content: 6 Score: -3.38
Gavel: prediction of cleavage sites for mitochondrial preseq R-2 motif at 45 ART | EG
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite : none content of basic residues: 7.1% NLS Score: -0.47
KDEL: ER retention motif in the C-terminus : none
ER Membrane Retention Signals: none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal : none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif: none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail: none Dileucine motif in the tail: none checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: nuclear Reliability: 94.1
COIL: Lupas ' s algorithm to detect coiled-coil regions total: 0 residues
Final Results (k = 9/23)
65.2 %-. nuclear
21.7 %: mitochondrial
8.7 % : cytoplasmic
4.3 %: extracellular, including cell wall
>> prediction for CG56449-04 is nuc (k=23)
A search of the NOV37a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 37D.
In a BLAST search of public sequence databases, the NOV37a protein was found to have homology to the proteins shown in the BLASTP data in Table 37E.
PFam analysis predicts that the NOV37a protein contains the domains shown in the Table 37F.
Table 37F. Domain Analysis of NOV37a
Identities/
Pfam Domain NOV37a Match Region Similarities Expect Value for the Matched Region laminin EGF 63..102 17/60 (28%) 0.37 30/60 (50%)
EGF 102..132 11/47 (23%) 0.16 23/47 (49%)
Example 38.
The NOV38 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 38 A. NOV38d, 277685616 SEQ ID NO: 895 556 bp DNA Sequence ORF Start: at 2 ORF Stop: end of sequence
CACCGGATCCTCAGGCCTCCAGCTCCTGGGCTACTTCTTGGCCCTGGGTGGCTGGGTGGGCATCATTG CTAGCACAGCCCTGCCACAGTGGAAGCAGTCTTCCTACGCAGGCGACGCCATCATCACTGCCGTGGGC CTCTATGAAGGGCTCTGGATGTCCTGCGCCTCCCAGAGCACTGGGCAAGTGCAGTGCAAGCTCTACGA CTCGCTGCTCGCCCTGGACGGTCACATCCAATCAGCGCGGGCCCTGATGGTGGTGGCCGTGCTCCTGG GCTTCGTGGCCATGGTCCTCAGCGTAGTTGGCATGAAGTGTACGCGGGTGGGAGACAGCAACCCCATT GCCAAGGGCCGTGTTGCCATCGCCGGGGGAGCCCTCTTCATCCTGGCAGGCCTCTGCACTTTGACTGC TGTCTCGTGGTATGCCACCCTGGTGACCCAGGAGTTCTTCAACCCAAGCACACCTGTCAATGCCAGGT ATGAATTTGGCCCAGCCCTGTTCGTGGGCTGGGCCTCAGCTGGCCTGGCCGTGCTGGGCGGCTCCTTC CTCGTCGACGGC
NOV38d, 277685616 SEQ ID NO: 896 185 aa MW at 19131. lkD Protein Sequence
TGSSGLQLLGYFLALGG VGIIASTALPQ KQSSYAGDAIITAVGLYEGLWMSCASQSTGQVQCKLYD SLLALDGHIQSARALMWAVLLGFVAMVLSWGMKCTRVGDSNPIAKGRVAIAGGALFILAGLCTLTA VSWYATLVTQEFFNPSTPVNARYEFGPALFVGWASAGLAVLGGSFLVDG
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 38B.
Table 38B. Comparison of the NOV38 protein sequences.
NOV38a MANSGLQLLGYFLALGGWVGIIASTALPQWKQSSYAGDAIITAVGLYEGL MSCAS NOV38b TGSTMANSGLQLLGYFLALGG VGIIASTALPQ KQSSYAGDAIITAVGLYEGL MSCAS NOV38C TGSSTALPQ KQSSYAGDAIITAVGLYEGLWMSCAS NOV38d TGSSGLQLLGYFLALGG VGIIASTALPQ KQSSYAGDAIITAVGLYEGLWMSCAS
NOV38a QSTGQVQC---α--,YDSLL-ALDGRPQAARALMVVAVLLGFVAMVLSVVGMKCTRVGDSNPIAKG NOV38b QSTGQVQCKLYDSLLALDGHIQSARALMWAVLLGFVAMVLSWGMKCTRVGDSNPIAKG NOV38C QSTGQVQCKLYDSLLALDGHIQSARALMVVAVLLGFVAMVLSVVGMKCTRVGDSNPIAKG NOV38d QSTGQVQCKLYDSLLALDGHIQSARALMWAVLLGFVAMVLSWGMKCTRVGDSNPIAKG
NOV38a RVAIAGGALFILAGLCTLTAVS YATLVTQEFFNP EFGPALFVG ASAGLAV NOV38b RVAIAGGALFILAGLCTLTAVS YATLVTQEFFNPSTPVNARYEFGPALFVG ASAGLAV NOV38C RVAIAGGALFILAGLCTLTAVSWYATLVTQEFFNPSTPVNARYEFGPALFVGWASAGLAV NOV38d RVAIAGGALFILAGLCTLTAVSWYATLVTQEFFNPSTPVNARYEFGPALFVG ASAGLAV
NOV38a LGGSFLCCTCPEPERPNSSPQPYRPGPSAAAREYV NOV38b LGGSFLCCTCPEPERPNSSPQPYRPGPSAAAREYWDG NOV38C LGGSFLCCTCPEPERPNSSPQPYRPGPSAAAREYWDG NOV38d LGGSF VDG
NOV38a (SEQ ID NO 890) NOV38b (SEQ ID NO 892) NOV38C (SEQ ID NO 894) NOV38d (SEQ ID NO 896)
Further analysis of the NOV38a protein yielded the following properties shown in Table 38C.
Table 38C. Protein Sequence Properties NOV38a
SignalP analysis: Cleavage site between residues 24 and 25
PSORT II analysis: PSG: a new signal peptide prediction method
N-region: length 0; pos.chg 0; neg.chg 0 H-region: length 30; peak value 9.10 PSG score: 4.70
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -4.10 possible cleavage site: between 17 and 18
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al ' s method for TM region allocation
Init position for calculation: 1
Tentative number of TMS(s) for the threshold 0.5: 4
INTEGRAL Likelihood = -1.75 Transmembrane 8 - 24
INTEGRAL Likelihood =-12.15 Transmembrane 84 - 100
INTEGRAL Likelihood = -6.42 Transmembrane 118 - 134
INTEGRAL Likelihood = -0.64 Transmembrane 153 - 169
PERIPHERAL Likelihood = 2.28 (at 39)
ALOM score: -12.15 (number of TMSs: 4)
MTOP: Prediction of membrane topology (Hartmann et al.) Center position for calculation: 15 Charge difference: -1.0 C( 0.0) - N( 1.0) N >= C: N-terminal side will be inside
>>> membrane topology: type 3a
MITDISC: discrimination of mitochondrial targeting seq R content: 0 Hyd Moment (75): 4.90 Hyd Moment (95): 7.23 G content: 6 D/E content: 1 S/T content: 5 Score: -6.38
Gavel : prediction of cleavage sites for mitochondrial preseq cleavage site motif not found
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite : none content of basic residues: 5.4% NLS Score: -0.47
KDEL: ER retention motif in the C-terminus : none
ER Membrane Retention Signals: none
SKL: peroxisomal targeting signal in the C-terminus : none
PTS2 : 2nd peroxisomal targeting signal : none
VAC: possible vacuolar targeting motif: none
RNA-binding motif: none
Actinin-type actin-binding motif: type 1 : none type 2 : none NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail : none
Dileucine motif in the tail: none checking 63 PROSITE DNA binding motifs : none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: cytoplasmic Reliability: 94.1
COIL: Lupas ' s algorithm to detect coiled-coil regions total: 0 residues
Final Results (k = 9/23) :
66.7 % : endoplasmic reticulum 33.3 %-. mitochondrial
>> prediction for CG56594-01 is end (k=9)
A search of the NOV38a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 38D.
In a BLAST search of public sequence databases, the NOV38a protein was found to have homology to the proteins shown in the BLASTP data in Table 38E.
PFam analysis predicts that the NOV38a protein contains the domains shown in the Table
38F.
Example 39.
The NOV39 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 39 A. Table 39A. NOV39 Sequence Analysis
NOV39a, CG56653-08 SEQ ID NO: 897 1000 bp DNA Sequence ORF Start: ATG at 2 ORF Stop: TAG at 980
CATGGAGCTGAGTGGAGCCACCATGGCCCGGGGGCTCGCTGTCCTGCTAGTCTTGTTCCTGCATATCA AGAACCTGCCTGCCCAGGCTGCGGACACATGTCCAGAGGTGAAGGTGGTGGGCCTGGAGGGCTCTGAC AAGCTCACCATTCTCCGAGGCTGCCCGGGGCTGCCCGGGGCCCCAGGGCCAAAGGGAGAGGCAGGTGT CATTGGAGAGAGAGGAGAACGCGGTCTCCCTGGAGCCCCTGGAAAGGCAGGACCAGTGGGGCCCAAGG GAGACCGAGGAGAGAAGGGGATGCGTGGAGAGAAAGGAGACGCTGGGCAGTCTCAGTCGTGTGCGACA GGCCCACGCAACTGCAAGGACCTGCTAGACCGGGGGTATTTCCTGAGCGGCTGGCACAATATCTACCT GCCCGACTGCCGGCCCCTGACTGTGCTCTGTGACATGGACACGGACGGAGGGGGCTGGACCGTTTTCC AGCGGAGGATGGATGGCTCTGTGGACTTCTATCGGGACTGGGCCGCATACAAGCAGGGCTTCGGCAGT CAGCTGGGGGAGTTCTGGCTGGGGAACGACAACATCCACGCCCTGACTGCCCAGGGAAGCAGCGAGCT CCGTGTAGACCTGGTGGACTTTGAGGGCAACCACCAGTTTGCTAAGTACAAATCATTCAAGGTGGCTG ACGAGGCAGAGAAGTACAAGCTGGTACTGGGAGCCTTTGTCGGGGGCAGTGCGGGTAATTCTCTAACG GGCCACAACAACAACTTCTTCTCCACCAAAGACCAAGACAATGATGTGAGTTCTTCGAATTGTGCTGA GAAGTTCCAGGGAGCCTGGTGGTACGCCGACTGTCATGCTTCGAGCCTCAATGGTCTCTACCTCATGG GACCCCATGAGAGCTATGCCAATGGTATCAACTGGAGTGCGGCGAAGGGGTACAAATATAGCTACAAG GTGTCAGAGATGAAGGTGCGGCCCGCCTAGACGGGCCAGGACCCCTAA
NOV39a, CG56653-08 SEQ ID NO: 898 326 aa MW at 35064. lkD Protein Sequence
MELSGATMARGLAVLLVLFLHIKNLPAQAADTCPEVKWGLEGSDKLTILRGCPGLPGAPGPKGEAGV
IGERGERGLPGAPGKAGPVGPKGDRGEKG RGEKGDAGQSQSCATGPRNCKDLLDRGYFLSG HNIYL
PDCRPLTVLCDl-^TDGGGWTVFQRRMDGSVDFYRD AAYKQGFGSQLGEF LGNDNIHALTAQGSSEL
RVDLVDFEG-traQFAKYKSF---WADEAEKY---α-jVLGAFVGGSAGNSLTGHNNNFFSTKDQD
KFQGA WYADCHASSLNGLYL GPHESYANGIN SAAKGYKYSYKVSEMKVRPA
NOV39b, 214374274 SEQ ID NO: 899 651 bp
DNA Sequence ORF Start: at 1 ORF Stop: end of sequence
GGATCCGGCCCACGCAACTGCAAGGACCTGCTAGACCGGGGGTATTTCCTGAGCGGCTGGCACACCAT CTACCTGCCCGACTGCCGGCCCCTGACTGTGCTCTGTGACATGGACACGGACGGAGGGGGCTGGACCG TTTTCCAGCGGAGGATGGATGGCTCTGTGGACTTCTATCGGGACTGGGCCGCATACAAGCAGGGCTTC GGCAGTCAGCTGGGGGAGTTCTGGCTGGGGAACGACAACATCCACGCCCTGACTGCCCAGGGAAGCAG CGAGCTCCGTGTAGACCTGGTGGACTTTGAGGGCAACCACCAGTTTGCTAAGTACAAATCATTCAAGG TGGCTGACGAGGCAGAGAAGTACAAGCTGGTACTGGGAACCTTTGTCGGGGGCAGTGCGGGTAATTCT CTAACGGGCCACAACAACAACTTCTTCTCCACCAAAGACCAAGACAATGATGTGAGTTCTTCGAATTG TGCTGAGAAGTTCCAGGGAGCCTGGTGGTACGCCGACTGTCATGCTTCAAACCTCAATGGTCTCTACC TCATGGGACCCCATGAGAGCTATGCCAATGGTATCAACTGGAGTGCGGCGAAGGGGTACAAATATAGC TACAAGGTGTCAGAGATGAAGGTGCGGCCCGCCCTCGAG
NOV39b, 214374274 SEQ ID NO: 900 217 aa MW at 24272.7kD Protein Sequence
GSGPRNCKDLLDRGYFLSGWHTIYLPDCRPLTVLCDMDTDGGGWTVFQRRMDGSVDFYRDWAAYKQGF GSQLGEF LGNDNIH-?_LTAQGSSELRVDLVDFEGNHQFAKYKSFKVADEAEKYKLVLGTFVGGSAGNS LTG---------mNFFST:--χT}QD---TOVS
YKVSEMKVRPA-LE
NOV39c, 214374256 SEQ ID NO: 901 651 bp
DNA Sequence _JθRF Stg^_at l |ORF Stop: end of sequence
GGATCCGGCCCACGCAACTGCAAGGACCTGCTAGACCGGGGGTATTTCCTGAGCGGCTGGCACACCAT CTACCTGCCCGACTGCCGGCCCCTGACTGTGCTCTGTGACATGGACACGGACGGAGGGGGCTGGACCG TTTTCCAGCGGAGGATGGATGGCTCTGTGGACTTCTATCGGGACTGGGCCGCATACAAGCAGGGCTTC GGCAGTCAGCTGGGGGAGTTCTGGCTGGGGAATGACAACATCCACGCCCTGACTGCCCAGGGAAGCAG CGAGCTCCGTGTAGACCTGGTGGACTTTGAGGGCAACCACCAGTTTGCTAAGTACAAATCATTCAAGG TGGCTGACGAGGCAGAGAAGTACAAGCTGGTACTGGGAGCCTTTGTCGGGGGCAGTGCGGGTAATTCT CTAACGGGCCACAACAACAACTTCTTCTCCACCAAAGACCAAGACAATGATGTGAGTTCTTCGAATTG TGCTGAGAAGTTCCAAGGAGCCTGGTGGTACGCCGACTGTCATGCTTCAAACCTCAATGGTCTCTACC TCATGGGACCCCATGAGAGCTATGCCAATGGTATCAACTGGAGTGCGGCGAAGGGGTACAAATATAGC TACAAGGTGTCAGAGATGAAGGTGCGGCCCGCCCTCGAG
NOV39c, 214374256 SEQ ID NO: 902 217 aa MW at 24242.6kD Protein Sequence
GSGPRNC-KDLLDRGYFLSGWHTIYLPDCRPLTVLCDMDTDGGGWTVFQRRMDGSVDFYRDWAAYKQGF GSQLGEF LGNDNI-l- LTAQGSSELRVDLVDFEGNHQFAKYKSFKVADEAEKYKLVLGAFVGGΞAGNS jLTGI-ffi-MNFFSTKDQD-troVSSSNCAEKFQGA WYADCHASNLNGLYL GPHESYANGI-^ YKVSEMKVRPALE
NOV39d, 214374252 SEQ ID NO: 903 651 bp DNA Sequence ORF Start: at 1 ORF Stop: end of sequence
GGATCCGGCCCACGCAACTGCAAGGACCTGCTAGACCGGGGGTATTTCCTGAGCGGCTGGCACACCAT CTACCTGCCCGACTGCCGGCCCCTGACTGTGCTCTGTGACATGGACACGGACGGAGGGGGCTGGACCG GTTTCCAGCGGAGGATGGATGGCTCTGTGGACTTCTATCGGGACTGGGCCGCATACAAGCAGGGCTTC GGCAGTCAGCTGGGGGAGTTCTGGCTGGGGAACGACAACATCCACGCCCTGACTGCCCAGGGAAGCAG CGAGCTCCGTGTAGACCTGGTGGACTTTGAGGGCAACCACCAGTTTGCTAAGTACAAATCATTCAAGG TGGCTGACGAGGCAGAGAAGTACAAGCTGGTACTGGGAGCCTTTGTCGGGGGCAGTGCGGGTAATTCT CTAACGGGCCACAACAACAACTTCTTCTCCACCAAAGACCAAGACAATGATGTGAGTTCTTCGAATTG TGCTGAGAAGTTCCAAGGAGCCTGGTGGTACGCCGACTGTCATGCTTCAAACCTCAATGGTCTCTACC TCATGGGACCCCATGAGAGCTATGCCAATGGTATCAACTGGAGTGCGGCGAAGGGGTACAAATATAGC TACAAGGTGTCAGAGATGAAGGTGCGGCCCGCCCTCGAG
NOV39d, 214374252 SEQ ED NO: 904 217 aa MW at 24200.6kD Protein Sequence
GSGP-RNC---ODLLDRGYFLSG HTIYLPDCRPLTVLCD- DTDGGG TGFQRRMDGSVDFYRD AAYKQGF
GSQLGEFWLGNDNI----l-ALTAQGSSELRVDLVDFEG---røQFA YKSFKVADEAEKY-ra^VLGAFVGGSAGNS
LTGH-t-mNFFSTKDQDroVSSSNC-AEKFQGAWWY-ADCHASNLNGLYLMGPHE
YKVSEMKVRPALE
NOV39e, 214458492 SEQ ID NO: 905 651 bp DNA Sequence ORF Start: at 1 JORF Stop: end of sequence
GGATCCGGCCCACGCAACTGCAAGGACCTGCTAGACCGGGGGTATTTCCTGAGCGGCTGGCACACCAT CTACCTGCCCGACTGCCGGCCCCTGACTGTGCTCTGTGACATGGACACGGACGGAGGGGGTTGGACCG TTTTCCAGCGGAGGATGGATGGCTCTGTGGACTTCTATCGGGACTGGGCCGCATACAAGCAGGGCTTC GGCAGTCGGCTGGGGGAGTTCTGGCTGGGGAACGACAACATCCACGCCCTGACTGCCCAGGGAAGCAG CGAGCTCCGTGTAGACCTGOTGGACTTTGAGGGCAACCACCAGTTTGCTAAGTACAAATCATTCAAGG TGGCTGACGAGGCAGAGAAGTACAAGCTGGTACTGGGAGCCTTTGTCGGGGGCAGTGCGGGTAATTCT CTAACGGGCCACAACAACAACTTCTTCTCCACCAAAGACCAAGACAATGATGTGAGTTCTTCGAATTG TGCTGAGAAGTTCCAGGGAGCCTGGTGGTACGCCGACTGTCATGCTTCAAACCTCAATGGTCTCTACC TCATGGGACCCCATGAGAGCTATGCCAATGGTATCAACTGGAGTGCGGCGAAGGGGTACAAATATAGC TACAAGGTGTCAGAGATGAAGGTGCGGCCCGCCCTCGAG
NOV39e, 214458492 SEQ ID NO: 906 217 aa MW at 24270.7kD Protein Sequence
GSGP-RNCKDLLDRGYFLSGWHTIY-LPDCRPLTVLCDMDTDGGGWTVFQRRMDGSVDFYRDWAAYKQGF
GSRLGEF LGNDNIHALTAQGSSELRVDLVDFEGNHQFA-K-YKSFKVADEAEKYKLVLGAFVGGSAGNS
LTGHNlrøFFST---α)QD-roVSSSNCAEKFQGAWWY.ADCHASNLNGLYL
YKVSEMKVRPALE
NOV39f, 214458488 SEQ ID NO: 907 651 bp DNA Sequence ORF Start: at 1 ORF Stop: end of sequence
GGATCCGGCCCACGCAACTGCAAGGACCTGCTAGACCGGGGGTATTTCCTGAGCGGCTGGCACACCAT CTACCTGCCCGACTGCCGGCCCCTGACTGTGCTCTGTGACATGGACACGGACGGAGGGGGCTGGACCG TTTTCCAGCGGAGGATGGATGGCTCTGTGGACTTCTATCGGGACTGGGCCGCATACAAGCAGGGCTTC GGCAGTCAGCTGGGGGAGTTCTGGCTGGGGAATGACGACATCCACGCCCTGACTGCCCAGGGAAGCAG CGAGCTCCGTGTAGACCTGGTGGACTTTGAGGGCAACCACCAGTTTGCTAAGTACAAATCATTCAAGG TGGCTGACGAGGCAGAGAAGTACAAGCTGGTACTGGGAGCCTTTGTCGGGGGCAGTGCGGGTAATTCT CTAACGGGCCACAACAACAACTTCTTCTCCACCAAAGACCAAGACAATGATGTGAGTTCTTCGAATTG TGCTGAGAAGTTCCAAGGAGCCTGGTGGTACGCCGACTGTCATGCTTCAAACCTCAATGGTCTCTACC TCATGGGACCCCATGAGAGCTATGCCAATGGTATCAACTGGAGTGCGGCGAAGGGGTACAAATATAGC TACAAGGTGTCAGAGATGAAGGTGCGGCCCGCCCTCGAG
NOV39f, 214458488 SEQ ID NO: 908 217 aa MW at 24243.6kD Protein Sequence
GSGPRNCKDLLDRGYFLSG HTIYLPDCRPLTVLCDMDTDGGG TVFQRRMDGSVDFYRD AAYKQGF GSQLGΞFWLGNDDIHALTAQGSSELRVDLVDFEGirøQFAKYKSFKVADEAEKYRLVLGAFVGGSAGNS LTGI---NNNFFSTKDQD-[roVSSSNCAEKFQGAWWY-ADCi SNLNGLYLMGPHESYANGINWSAAKGYKYS YKVSEMKVRPALE
NOV39g, 214374236 SEQ ID NO: 909 651 bp DNA Sequence ORF Start: at 1 ORF Stop: end of sequence
GGATCCGGCCCACGCAACTGCAAGGACCTGCTAGACCGAGGGCACTTCCTGAGCGGCTGGCACACCAT CTACCTGCCCGACTGCCGGCCCCTGACTGTGCTCTGTGACATGGACACGGACGGAGGGGGCTGGACCG TTTTCCAGCGGAGGATGGATGGCTCTGTGGACTTCTATCGGGACTGGGCCGCATACAAGCAGGGCTTC GGCAGTCAGCTGGGGGAGTTCTGGCTGGGGAACGACAACATCCACGCCCTGACTGCCCAGGGAAGCAG CGAGCTCCGTGTAGACCTGGTGGACTTTGAGGGCAACCACCAGTTTGCTAAGTACAAATCATTCAAGG TGGCTGACGAGGCAGAGAAGTACAAGCTGGTACTGGGAGCCTTTGTCGGGGGCAGTGCGGGTAATTCT CTAACGGGCCACAACAACAACTTCTTCTCCACCAAAGACCAAGACAATGATGTGAGTTCTTCGAATTG TGCTGAGAAGTTCCAAGGAGCCTGGTGGTACGCCGACTGTCATGCTTCAAACCTCAATGGTCTCTACC TCATGGGACCCCATGAGAGCTATGCCAATGGTATCAACTGGAGTGCGGCGAAGGGGTACAAATATAGC TACAAGGTGTCAGAGATGAAGGTGCGGCCCGCCCTCGAG
NOV39g, 214374236 SEQ ED NO: 910 217 aa MW at 24216.6kD Protein Sequence
GSGPRNCKDLLDRGHFLSGWHTIYLPDCRPLTVLCDMDTDGGGWTVFQRRMDGSVDFYRD AAYKQGF GSQLGEF LGNDNIHALTAQGSSELRVDLVDFEGNHQFAKYKSFKVADEAEKYKLVLGAFVGGSAGNS LTG-fflSπrøFFST-KDQDNDVSSSNC-AEKFQGAW YADCHASNLNGLYLMGPHESYANGIN SAAKGYKYS YKVSEMKVRPALE
NOV39h, CG56653-01 ED NO: 911 1187 bp DNA Sequence ORF Start: ATG at . 16 JORF Stop: TAG at 973^
CTGAGTGGAGCCACCATGGCCCGGGGGCTCGCTGTCCTGCTAGTCTTGTTCCTGCATATCAAGAACCT
GCCTGCCCAGGCTGCGGACACATGTCCAGAGGTGAAGGTGGTGGGCCTGGAGGGCTCTGACAAGCTCA CCATTCTCCGAGGCTGCCCGGGGCTGCCCGGGGCCCCAGGGCCAAAGGGAGAGGCAGGTGTCATTGGA GAGAGAGGAGAACGCGGTCTCCCTGGAGCCCCTGGAAAGGCAGGACCAGTGGGGCCCAAAGGAGACCG AGGAGAGAAGGGGATGCGTGGAGAGAAAGGAGACGCTGGGCAGTCTCAGTCGTGTGCGACAGGCCCAC GCAACTGCAAGGACCTGCTAGACCGGGGGTATTTCCTGAGCGGCTGGCACACCATCTACCTGCCCGAC TGCCGGCCCCTGACTGTGCTCTGTGACATGGACACGGACGGAGGGGGCTGGACCGTTTTCCAGCGGAG GATGGATGGCTCTGTGGACTTCTATCGGGACTGGGCCGCATACAAGCAGGGCTTCGGCAGTCAGCTGG GGGAGTTCTGGCTGGGGAACGACAACATCCACGCCCTGACTGCCCAGGGAAGCAGCGAGCTCCGTGTA GACCTGGTGGACTTTGAGGGCAACCACCAGTTTGCTAAGTACAAATCATTCAAGGTGGCTGACGAGGC AGAGAAGTACAAGCTGGTACTGGGAGCCTTTGTCGGGGGCAGTGCGGGTAATTCTCTAACGGGCCACA ACAACAACTTCTTCTCCACCAAAGACCAAGACAATGATGTGAGTTCTTCGAATTGTGCTGAGAAGTTC CAGGGAGCCTGGTGGTACGCCGACTGTCATGCTTCAAACCTCAATGGTCTCTACCTCATGGGACCCCA TGAGAGCTATGCCAATGGTATCAACTGGAGTGCGGCGAAGGGGTACAAATATAGCTACAAGGTGTCAG AGATGAAGGTGCGGCCCGCCTAGACGGGCCAGGACCCCTCCACATGCACCTGCTAGTGGGGAGGCCAC
ACCCACAAGCGCTGCGTCGTGGAAGTCACCCCATTTCCCCAGCCAGACACACTCCCATGACGCCCACA
GCTGCCCCTTTGCCCCCAGCTCAGTCAAGCCGCCACATGCCCACAACCTCACCAGAGGGAGAATTATG
TTTCTAAATATGTTTACTTTGGGACAGAAAA
NOV39h, CG56653-01 SEQ ED NO: 912 319 aa MW at 34388.3kD Protein Sequence
MARGLAVLLVLFLHI.KWLPAQAADTCPEVKVVGLEGSDKLTILRGCPGLPGAPGPKGEAGVIGERGΞR
GLPGAPGKAGPVGPKGDRGEKGMRGEKGDAGQSQSCATGPRNCKDLLDRGYFLSGWHTIYLPDCRPLT
VLCDMDTDGGGWTVFQRRMDGSVDFYRD AAYKQGFGSQLGEF LGNDNIHALTAQGSSELRVDLVDF
EG-imQFACTKSFKVADEAEKYKlVLGAFVGGSAGNSLTGH-N^
YADCHASNLNGLYLMGPHESYANGIN SAAKGYKYSYKVSEMKVRPA
SEQ ID NO: 913 1332 bp TATCGGGACTGGGCCGCATACAAGCAGGGCTTCGGCAGTCAGCTGGGGGAGTTCTGGCTGGGGAATGA CAACATCCACGCCCTGACTGCCCAGGGAAGCAGCGAGCTCCGTGTAGACCTGGTGGACTTTGAGGGCA ACCACCAGTTTGCTAAGTACAAATCATTCAAGGTGGCTGACGAGGCAGAGAAGTACAAGCTGGTACTG GGAGCCTTTGTCGGGGGCAGTGCGGGTAATTCTCTAACGGGCCACAACAACAACTTCTTCTCCACCAA AGACCAAGACAATGATGTGAGTTCTTCGAATTGTGCTGAGAAGTTCCAGGGAGCCTGGTGGTACGCCG ACTGTCATGCTTCAAACCTCAATGGTCTCTACCTCATGGGACCCCATGAGAGCTATGCCAATGGTATC AACTGGAGTGCGGCGAAGGGGTACAAATATAGCTACAAGGTGTCAGAGATGAAGGTGCGGCCCGCCTA GACGGGCCAGGACCCCTCCACATGCACCTGCTAGTGGGGAGGCCACACCCACAAGCGCTGCGTCGTGG
AAGTCACCCCATTTCCCCAGCCAGACACACTCCCATGACGCCCACAGCTGCCCCTTTGCCCCCAGCTC
AGTCAAGCCGCCACATGCCCACAACCTCACCAGAGGGAGAATTATGTTTCTAAATATGTTTACTTTGG:
GACAGAAAAAAAAAAA
NOV39k, CG56653-04 SEQ ID NO: 918 289 aa MW at 31404.9kD Protein Sequence
MARGLAVLLVLFLHITNLPAQAADTCPEVKWGLEGSDKLTILRGCPGLPGAPGPKGEAGVIGEKGDA GQSQSCATGPRNCKDLLDRGYFLSG HTIYLPDCRPLTVLCDMDTDGGG TVFQRRMDGSVDFYRD A AYKQGFGSQLGEFWLGNDNIHALTAQGSSELRVDLVDFEGNHQFAKYKSFKVADEAEKYKLVLGAFVG GSAGNSLTGIffl-l-sTNFFSTKDQDNDVSSSNC-AEKFQGA WYADCHASNLNGLYLMGPHESYANGIN SAA KGYKYSYKVSEMKVRPA
NOV391, CG56653-05 SEQ ID NO: 919 1900 bp DNA Sequence ORF Start: at 7 ORF Stop: at 895
GGATCCGCGGACACATGTCCAGAGGTGAAGGTGGTGGGCCTGGAGGGCTCTGACAAGCTCACCATTCT
CCGAGGCTGCCCGGGGCTGCCCGGGGCCCCAGGGCCAAAGGGAGAGGCAGGTGTCATTGGAGAGAGAG GAGAACGCGGTCTCCCTGGAGCCCCTGGAAAGGCAGGACCAGTGGGGCCCAAAGGAGACCGAGGAGAG AAGGGGATGCGTGGAGAGAAAGGAGACGCTGGGCAGTCTCAGTCGTGTGCGACAGGCCCACGCAACTG CAAGGACCTGCTAGACCGGGGGTATTTCCTGAGCGGCTGGCACACCATCTACCTGCCCGACTGCCGGC CCCTGACTGTGCTCTGTGACATGGACACGGACGGAGGGGGCTGGACCGTTTTCCAGCGGAGGATGGAT GGCTCTGTGGACTTCTATCGGGACTGGGCCGCATACAAGCAGGGCTTCGGCAGTCAGCTGGGGGAGTT CTGGCTGGGGAACGACAACATCCACGCCCTGACTGCCCAGGGAAGCAGCGAGCTCCGTGTAGACCTGG TGGACTTTGAGGGCAACCACCAGTTTGCTAAGTACAAATCATTCAAGGTGGCTGACGAGGCAGAGAAG TACAAGCTGGTACTGGGAGCCTTTGTCGGGGGCAGTGCGGGTAATTCTCTAACGGGCCACAACAACAA CTTCTTCTCCACCAAAGACCAAGACAATGATGTGAGTTCTTCGAATTGTGCTGAGAAGTTCCAGGGAG CCTGGTGGTACGCCGACTGTCATGCTTCAAACCTCAATGGTCTCTACCTCATGGGACCCCATGAGAGC TATGCCAATGGTATCAACTGGAGTGCGGCGAAGGGGTACAAATATAGCTACAAGGTGTCAGAGATGAA GGGGCCCGCCCTCGAG
NOV391, CG56653-05 SEQ ID NO: 920 296 aa MW at 31819. lkD Protein Sequence
ADTCPEVKWGLEGSDKLTILRGCPGLPGAPGPKGEAGVIGERGERGLPGAPGKAGPVGPKGDRGEKG
MRGEKGDAGQSQSCATGPRNCKDLLDRGYFLSG HTIYLPDCRPLTVLCDMDTDGGGWTVFQRRMDGS
VDFYRDW-AAYKQGFGSQLGEFWLGmDNI--- LTAQGSSELRVDLVDFEGNHQFAKYKSFKVADEAEKYK
LVLGAFVGGSAGNSLTGmΩrøFFSTKDQD--STOVSSSNC^
NGINWSAAKGYKYSYKVSEMKGPA
NOV39m, CG56653-06 SEQ ID NO: 921 988 bp DNA Sequence ORF Start: ATG at 56 ORF Stop: TAG at 905
GTTTCCTCTGCCCTGTTAGAGCTGGGGGACTCTTCAGAGTCAAAGGCCAGAGAGCATGGAGCTGAGTG
GAGCCACCATGGCCCGGGGGCTCGCTGTCCTGCTAGTCTTGTTCCTGCATATCAAGAACCTGCCTGCC CAGGCTGCGGACACATGTCCAGAGGTGAAGGTGGTGGGCCTGGAGGGCTCTGACAAGCTCACCATTCT CCGAGGCTGCCCGGGGCTGCCCGGGGCCCCAGGGCCAAAGGGAGAGGCAGGTGTCATTGGAGAGAGAG GAGAACGCGGTCTCCCTGGAGCCCCTGGAAAGGCAGGACCAGTGGGGCCCAAAGGAGACCGAGGAGAG AAGGGGATGCGTGGAGAGAAAGGAGACGCTGGGCAGTCTCAGTCGTGTGCGACAGGTCCACGCAACTG CAAGGACCTGCTAGACCGGGGGTATTTCCTGAGCGGCTGGCACACCATCTACCTGCCCGACTGCCGGC CCCTGACTGTGCTCTGTGACATGGACACGGACGGAGGGGGCTGGACCGTTTTCCAGCGGAGGATGGAT GGCTCTGTGGACTTTGAGGGCAACCACCAGTTTGCTAAGTACAAATCATTCAAGGTGGCTGACGAGGC AGAGAAGTACAAGCTGGTACTGGGAGCCTTTGTCGGGGGCAGTGCGGGTAATTCTCTAACGGGCCACA ACAACAACTTCTTCTCCACCAAAGACCAAGACAATGATGTGAGTTCTTCGAATTGTGCTGAGAAGTTC CAAGGAGCCTGGTGGTACGCCGACTGTCATGCTTCAAACCTCAATGGTCTCTACCTCATGGGACCCCA TGAGAGCTATGCCAATGGTATCAACTGCAGTGCGGCGAAGGGGTACAAATATAGCTACAAGGTGTCAG iAGATGAAGGTGCGGCCCGCCTAGACGGGCCAGGACCCCTCCACATGCACCTGCTAGTGGGGAGGCCAC
ACCCACAAGCGCTGCGTCGTGGAAGTCACCCATTTC
NOV39m, CG56653-06 SEQ ED NO: 922 283 aa MW at 30136.7kD Protein Sequence
MELSGATMARGLAVLLVLFLHIKNLPAQAADTCPEVKVVGLEGSDKLTILRGCPGLPGAPGPKGEAGV^ IGERGERGLPGAPGKAGPVGPKGDRGEKGMRGEKGDAGQSQSCATGPRNCKDLLDRGYFLSG HTIYL PDCRPLTVLCDMDTDGGG TVFQRRMDGSVDFEGNHQFAKYKSFKVADEAEKYKLVLGAFVGGSAGNS LTGHNNNFFSTKDQDNDVSSSNCAEKFQGA YADCHASNLNGLYLMGPHESYANGINCSAAKGYKYS YKVSEMKVRPA
NOV39n, CG56653-07 SEQ ID NO: 923 970 bp DNA Sequence ORF Start: at 2 ORF Stop: TAG at 950
GGGGCTCGCTGTCATGCTAGTCTTGTTCCTGCATATCAAGAACCTGCCTGCCCAGGCTGCGGACACAT GTCCAGAGGTGAAGGTGGTGGGCCTGGAGGGCTCTGACAAGCTCACCATTCTCCGAGGCTGCCCGGGG CTGCCCGGGGCCCCAGGGCCAAAGGGAGAGGCAGGTGTCATTGGAGAGAGAGGAGAACGCGGTCTCCC TGGAGCCCCTGGAAAGGCAGGACCAGTGGGGCCCAAAGGAGACCGAGGAGAGAAGGGGATGCGTGGAG AGAAAGGAGACGCTGGGCAGTCTCAGTCGTGTGCGACAGGCCCACGCAACTGCAAGGACCTGCTAGAC CGGGGGTATTTCCTGAGCGGCTGGCACACCATCTACCTGCCCGACTGCCGGCCCCTGACTGTGCTCTG TGACATGGACACGGACGGAGGGGGCTGGACCGTTTTCCAGCGGAGGATGGATGGCTCTGTGGACTTCT ATCGGGACTGGGCCGCATACAAGCAGGGCTTCGGCAGTCAGCTGGGGGAGTTCTGGCTGGGGAATGAC AACATCCACGCCTTGACTGCCCAGGGAAGCAGCGAGCTCCGTGTAGACCTGGTGGACTTTGAGGGCAA CCACCAGTTTGCTAAGTACAAATCATTCAAGGTGGCTGACGAGGCAGAGAAGTACAAGCTGGTACTGG GAGCCTTTGTCGGGGGCAGTGCGGGTAATTCTCTAACGGGCCACAACAACAACTTCTTCTCCACCAAA GACCAAGACAATGATGTGAGTTCTTCGAATTGTGCTGAGAAGTTCCAAGGAGCCTGGTGGTACGCCGA CTGTCATGCTTCAAACCTCAATGGTCTCTACCTCATGGGACCCCATGAGAGCTATGCCAATGGTATCA ACTGGAGTGCGGCGAAGGGGTACAAATATAGCTACAAGGTGTCAGAGATGAAGGTGCGGCCCGCCTAG ACGGGCCAGGACCCCTCC
NOV39n, CG56653-07 SEQ ID NO: 924 316 aa MW at 34047.9kD Protein Sequence
GLAVMLVLFLHIKNLPAQAADTCPEVKWGLEGSDKLTILRGCPGLPGAPGPKGEAGVIGERGERGLP
GAPGKAGPVGPKGDRGEKGMRGEKGDAGQSQSCATGPRNCKDLLDRGYFLSGWHTIYLPDCRPLTVLC
DMDTDGGGWTVFQRRMDGSVDFYRD AAYKQGFGSQLGEF LGNDNIHALTAQGSSELRVDLVDFEGN
HQFAKYKSFKV-ADEAEKYKLVLGAFVGGSAGNSLTGHN-traFFST-raDQDNDVSSSNCAEKFQGA
CHASNLNGLYLMGPHESYANGIN SAAKGYKYSYKVSEMKVRPA
NOV39o, CG56653-09 SEQ ID NO: 925 1144 bp DNA Sequence ORF Start: ATG at 183 ORF Stop: TAG at 981
TTTTAGGTCTGTTTGTCGTAGGCAGATGGAGCTTGTTATAATTATGCCTCATAGGGATAGTACAAGGAi
AGGGGTAGGCTATGTGTTTTGTCAGGGAGTTGAGAAACTGTGGCACAAGGCGAGAGCTGGTTTCCTCT
GCCCTGTTAGAGCTGGGGGACTCTTCAGAGTCAAAGGCCAGAGAGCATGGAGCTGAGTGGAGCCACCA
TGGCCCGGGGGCTCGCTGTCCTGCTAGTCTTGTTCCTGCATATCAAGAACCTGCCTGCCCAGGCTGCG GACACATGTCCAGAGGTGAAGGTGGTGGGCCTGGAGGGCTCTGACAAGCTCACCATTCTCCGAGGCTG CCCGGGGCTGCCCGGGGCCCCAGGGCCAAAGGGAGAGGCAGGTGTCATTGGAGAGAGAGGAGAACGCG GTCTCCCTGGAGCCCCTGGAAAGGCAGGACCAGTGGGGCCCAAAGGAGACCGAGGAGAGAAGGGGATG CGTGGAGAGAAAGGAGACGCTGGGCAGTCTCAGTCGTGTGCGACAGGCCCACGCAACTGCAAGGACCT GCTAGACCGGGGGTATTTCCTGAGCGGCTGGCACACCATCTACCTGCCCGACTGCCGGCCCCTGACTG TGCTCTGTGACATGGACACGGACGGAGGGGGCTGGACCGTTTTCCAGCGGAGGATGGATGGCTCTGTG GACTTCTATCGGGACTGGGCCGCATACAAGCAGGGCTTCGGCAGTCAGCTGGGGGGTAATTCTCTAAC GGGCCACAACAACAACTTCTTCTCCACCAAAGACCAAGACAATGATGTGAGTTCTTCGAATTGTGCTG AGAAGTTCCAAGGAGCCTGGTGGTACGCCGACTGTCATGCTTCAAACCTCAATGGTCTCTACCTCATG GGACCCCATGAGAGCTATGCCAATGGTATCAACTGGAGTGCGGCGAAGGGGTACAAATATAGCTACAA GGTGTCAGAGATGAAGGTGCGGCCCGCCTAGACGGGCCAGGACCCCTCCACATGCACCTGCTAGTGGG
GAGGCCACACCCACAAGCGCTGCGTCGTGGAAGTCACCCCATTTCCCCAGCCAGACACACTCCCATGA
CGCCCACAGCTGCCCCTTTGCCCCCAGCTCAGTCAAGCCGCCACATGCCCACAACC
NOV39o, CG56653-09 ISEO ED NO: 926 266 aa MW at 28476.8kD
Protein Sequence
MELSGATMARG.LAVLLVLFLHIKNLPAQAADTCPEVKVVGLEGSDKLTILRGCPGLPGAPGPKGEAGV IGERGERGLPGAPGKAGPVGPKGDRGEKGMRGEKGDAGQSQSCATGPRNCKDLLDRGYFLSG HTIYL PDCRPLTVLCDMDTDGGGWTVFQRRMDGSVDFYRD AAYKQGFGSQLGGNSLTGHNNNFFSTKDQDND VSSSNC-AEKFQGA YADCHASNLNGLYLMGPHESYANGIN SAAKGYKYSYKVSEMKVRPA
NOV39p, CG56653-10 SEQ ED NO: 927 651 bp |DNA Sequence ORF Start: at 7 ORF Stop: at 646
GGATCCGGCCCACGCAACTGCAAGGACCTGCTAGACCGAGGGCACTTCCTGAGCGGCTGGCACACCAT
CTACCTGCCCGACTGCCGGCCCCTGACTGTGCTCTGTGACATGGACACGGACGGAGGGGGCTGGACCG TTTTCCAGCGGAGGATGGATGGCTCTGTGGACTTCTATCGGGACTGGGCCGCATACAAGCAGGGCTTC GGCAGTCAGCTGGGGGAGTTCTGGCTGGGGAACGACAACATCCACGCCCTGACTGCCCAGGGAAGCAG CGAGCTCCGTGTAGACCTGGTGGACTTTGAGGGCAACCACCAGTTTGCTAAGTACAAATCATTCAAGG TGGCTGACGAGGCAGAGAAGTACAAGCTGGTACTGGGAGCCTTTGTCGGGGGCAGTGCGGGTAATTCT CTAACGGGCCACAACAACAACTTCTTCTCCACCAAAGACCAAGACAATGATGTGAGTTCTTCGAATTG TGCTGAGAAGTTCCAAGGAGCCTGGTGGTACGCCGACTGTCATGCTTCAAACCTCAATGGTCTCTACC TCATGGGACCCCATGAGAGCTATGCCAATGGTATCAACTGGAGTGCGGCGAAGGGGTACAAATATAGC TACAAGGTGTCAGAGATGAAGGTGCGGCCCGCCCTCGAG
NOV39p, CG56653-10 SEQ ID NO: 928 213 aa MW at 23830.2kD Protein Sequence
GP.RNCKDLLDRGHFLSG HTIYLPDCRPLTVLCDMDTDGGGWTVFQRRMDGSVDFYRD AAYKQGFGS QLGΞF LGNDNIHALTAQGSSELRVDLVDFEG-trøQFAKYKSFKVADEAΞKYKLVLGAFVGGSAGNSLT G-f-αrøNFFSTKDQDNDVSSSNCAEKFQGA WYADCHASNLNGLYLMGPHESYANGINWSAAKGY-^ VSEMKVRPA
NOV39q, CG56653-11 SEQ ID NO: 929 1045 bp DNA Sequence ORF Start: ATG at 38 ORF Stop: TAG at 1016
GAGCTGGGGGACTCTTCAGAGTCAAAGGCCAGAGAGCATGGAGCTGAGTGGAGCCACCATGGCCCGGG
GGCTCGCTGTCCTGCTAGTCTTGTTCCTGCATATCAAGAACCTGCCTGCCCAGGCTGCGGACACATGT CCAGAGGTGAAGGTGGTGGGCCTGGAGGGCTCTGACAAGCTCACCATTCTCCGAGGCTGCCCGGGGCT GCCCGGGGCCCCAGGGCCAAAGGGAGAGGCAGGTGTCATTGGAGAGAGAGGAGAACGCGGTCTCCCTG GAGCCCCTGGAAAGGCAGGACCAGTGGGGCCCAAAGGAGACCGAGGAGAGAAGGGGATGCGTGGAGAG AAAGGAGACGCTGGGCAGTCTCAGTCGTGTGCGACAGGCCCACGCAACTGCAAGGACCTGCTAGACCG GGGGTATTTCCTGAGCGGCTGGCACACCATCTACCTGCCCGACTGCCGGCCCCTGACTGTGCTCTGTG ACATGGACACGGACGGAGGGGGCTGGACCGTTTTCCAGCGGAGGATGGATGGCTCTGTGGACTTCTAT CGGGACTGGGCCGCATACAAGCAGGGCTTCGGCAGTCAGCTGGGGGAGTTCTGGCTGGGGAACGACAA CATCCACGCCCTGACTGCCCAGGGAAGCAGCGAGCTCCGTGTAGACCTGGTGGACTTTGAGGGCAACC ACCAGTTTGCTAAGTACAAATCATTCAAGGTGGCTGACGAGGCAGAGAAGTACAAGCTGGTACTGGGA GCCTTTGTCGGGGGCAGTGCGGGTAATTCTCTAACGGGCCACAACAACAACTTCTTCTCCACCAAAGA CCAAGACAATGATGTGAGTTCTTCGAATTGTGCTGAGAAGTTCCAGGGAGCCTGGTGGTACGCCGACT GTCATGCTTCAAACCTCAATGGTCTCTACCTCATGGGACCCCATGAGAGCTATGCCAATGGTATCAAC TGGAGTGCGGCGAAGGGGTACAAATATAGCTACAAGGTGTCAGAGATGAAGGTGCGGCCCGCCTAGAC GGGCCAGGACCCCTCCACATGCACC
NOV39q, CG56653-ll SEQ ED NO: 930 326 aa MW at 35078.1kD Protein Sequence
MELSGATMARGLAVLLVLFLHIKNLPAQAADTCPEVKVVGLEGSDKLTILRGCPGLPGAPGPKGEAGV IGERGERGLPGAPGKAGPVGPKGDRGEKGMRGEKGDAGQSQSCATGPRNCKDLLDRGYFLSGWHTIYL PDCRPLTVLCDMDTDGGGWTVFQRRMDGSVDFYRDWAAYKQGFGSQLGEF LGNDNIHALTAQGSSEL RVDLVDFEGNHQFAKYKSFKVADEAEKYK-LVLGAFVGGSAGNSLTG-.--QJNNFFSTKDQD-^ KFQGAWWYADCHASNLNGLYLMGPHESYANGIN SAAKGYKYSYKVSEMKVRPA
NOV39r, CG56653-12 SEQ ED NO: 931 972 bp DNA Sequence ORF Start: ATG at 10 ORF Stop: at 967
GGATCCACCATGGCCCGGGGGCTCGCTGTCCTGCTAGTCTTGTTCCTGCATATCAAGAACCTGCCTGC
CCAGGCTGCGGACACATGTCCAGAGGTGAAGGTGGTGGGCCTGGAGGGCTCTGACAAGCTCACCATTC TCCGAGGCTGCCCGGGGCTGCCCGGGGCCCCAGGGCCAAAGGGAGAGGCAGGTGTCATTGGAGAGAGA GGAGAACGCGGTCTCCCTGGAGCCCCTGGAAAGGCAGGACCAGTGGGGCCCAAAGGAGACCGAGGAGA GAAGGGGATGCGTGGAGAGAAAGGAGACGCTGGGCAGTCTCAGTCGTGTGCGACAGGCCCACGCAACT GCAAGGACCTGCTAGACCGGGGGTATTTCCTGAGCGGCTGGCACACCATCTACCTGCCCGACTGCCGG CCCCTGACTGTGCTCTGTGACATGGACACGGACGGAGGGGGCTGGACCGTTTTCCAGCGGAGGATGGA TGGCTCTGTGGACTTCTATCGGGACTGGGCCGCATACAAGCAGGGCTTCGGCAGTCAGCTGGGGGAGT TCTGGCTGGGGAACGACAACATCCACGCCCTGACTGCCCAGGGAAGCAGCGAGCTCCGTGTAGACCTG GTGGACTTTGAGGGCAACCACCAGTTTGCTAAGTACAAATCATTCAAGGTGGCTGACGAGGCAGAGAA GTACAAGCTGGTACTGGGAGCCTTTGTCGGGGGCAGTGCGGGTAATTCTCTAACGGGCCACAACAACA ACTTCTTCTCCACCAAAGACCAAGACAATGATGTGAGTTCTTCGAATTGTGCTGAGAAGTTCCAGGGA GCCTGGTGGTACGCCGACTGTCATGCTTCAAACCTCAATGGTCTCTACCTCATGGGACCCCATGAGAG CTATGCCAATGGTATCAACTGGAGTGCGGCGAAGGGGTACAAATATAGCTACAAGGTGTCAGAGATGA AGGTGCGGCCCGCCCTCGAG
NOV39r, CG56653-12 SEQ ID NO: 932 319 aa MW at 34388.3kD Protein Sequence
MARGLAVLLVLFLHIKNLPAQAADTCPEVKVVGLEGSDKLTILRGCPGLPGAPGPKGEAGVIGERGER
GLPGAPGKAGPVGPKGDRGEKGMRGEKGDAGQSQSCATGPRNCKDLLDRGYFLSGWHTIYLPDCRPLT
VLCDMDTDGGG TVFQRRMDGSVDFYRDWAAYKQGFGSQLGEF LGNDNIHALTAQGSSELRVDLVDF
EG-røQFAKYKSFKVADEAEKYKLVLGAFVGGSAGNSLTGHN-t-rø^
YADCHASNLNGLYLMGPHESYANGINWSAAKGYKYSYKVSEMKVRPA
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 39B.
Table 39B. Comparison of the NOV39 protein sequences.
N0V39a MELSGATMARGLAVLLVLFLHIKNLPAQAADTCPEVKWGLEGSDKLTILRGCPGLPGAP N0V39b N0V39C N0V39d N0V39e N0V39f N0V39g N0V39h MARGLAVLLVLFLHIKNLPAQAADTCPEVKWGLEGSDKLTILRGCPGLPGAP N0V39i MELSGATMARGLAVLLVLFLHIKNLPAQAADTCPEVKVVGLEGSGKLTILRGCPGLPGAP N0V39J LHIKNLPAQAADTCPEVKVVGLEGSDKLTILRGCPGLPGAP N0V39k MARGLAVLLVLFLHITNLPAQAADTCPEVKWGLEGSDKLTILRGCPGLPGAP NOV391 ADTCPEVKWGLEGSDKLTILRGCPGLPGAP N0V39m MELSGATMARGLAVLLVLFLHIKNLPAQAADTCPEVKVVGLEGSDKLTILRGCPGLPGAP N0V39n GLAVMLVLFLHIKNLPAQAADTCPEVKWGLEGSDKLTILRGCPGLPGAP N0V39θ MELSGATMARGLAVLLVLFLHIKNLPAQAADTCPEVKVVGLEGSDKLTILRGCPGLPGAP N0V39p N0V39q MELSGATM-ARGLAVLLVLFLHIKNLPAQAADTCPEVKVVGLEGSDKLTILRGCPGLPGAP N0V39r MARGLAVLLVLFLHIKNLPAQAADTCPEVKWGLEGSDKLTILRGCPGLPGAP
N0V39a GPKGEAGVIGERGERGLPGAPGKAGPVGPKGDRGEKGMRGEKGDAGQSQSCATGPRNCKD N0V39b GSGPRNCKD N0V39C GSGPRNCKD N0V39d GSGPRNCKD N0 39e GSGPRNCKD N0V39f GSGPRNCKD N0V39g GSGPRNCKD NOV39h GPKGEAGVIGERGERGLPGAPGKAGPVGPKGDRGEKGMRGEKGDAGQSQSCATGPRNCKD NOV39i GPKGEAGVIGERG DRGEKGMRGEKGDAGQSQSCATGPRNCKD NOV39j GPKGEAGVIGERGERGLPGAPGKAGPVGPKGDRGΞKGMRGEKGDAGQSQSCATGPRNCKD NOV39k GPKGΞAGVIGE KGDAGQSQSCATGPRNCKD NOV391 GPKGEAGVIGERGERGLPGAPGKAGPVGPKGDRGEKGMRGEKGDAGQSQSCATGPRNCKD NOV39m GPKGEAGVIGERGERGLPGAPGKAGPVGPKGDRGEKGMRGEKGDAGQSQSCATGPRNCKD NOV39n GPKGEAGVIGERGERGLPGAPGKAGPVGPKGDRGEKGMRGΞKGDAGQSQSCATGPRNCKD NOV39o GPKGEAGVIGERGERGLPGAPGKAGPVGPKGDRGEKGMRGEKGDAGQSQSCATGPRNCKD NOV39p GPRNCKD NOV39q GPKGΞAGVIGERGERGLPGAPGKAGPVGPKGDRGEKGMRGEKGDAGQSQSCATGPRNCKD NOV39r GPKGEAGVIGERGERGLPGAPGKAGPVGPKGDRGEKGMRGEKGDAGQSQSCATGPRNCKD
NOV39a LLDRGYFLSGWHNIYLPDCRPLTVLCDMDTDGGGWTVFQRRMDGSVDFYRDWAAYKQGFG
NOV39b LLDRGYFLSG HTIYLPDCRPLTVLCDMDTDGGG TVFQRRMDGSVDFYRDWAAYKQGFG
NOV39C LLDRGYFLSG HTIYLPDCRPLTVLCDMDTDGGG TVFQRRMDGSVDFYRD AAYKQGFG
NOV39d LLDRGYFLSGWHTIYLPDCRPLTVLCDMDTDGGGWTGFQRRMDGSVDFYRDWAAYKQGFG
NOV39e LLDRGYFLSG HTIYLPDCRPLTVLCDMDTDGGGWTVFQRRMDGSVDFYRD AAYKQGFG
NOV39f LLDRGYFLSGWHTIYLPDCRPLTVLCDMDTDGGG TVFQRRMDGSVDFYRDWAAYKQGFG
NOV39g LLDRGHFLSGWHTIYLPDCRPLTVLCDMDTDGGGWTVFQRRMDGSVDFYRDWAAYKQGFG
NOV39Ϊ1 LLDRGYFLSGWHTIYLPDCRPLTVLCDMDTDGGGWTVFQRRMDGSVDFYRDWAAYKQGFG
NOV39i LLDRGYFLSGWHTI LPDCRPLTVLCDMDTDGGGWTVFQRRMDGSVDFYRDWAAYKQGFG
NOV39j LLDRGYFLSGWHTIYLPDCRPLTVLCDMDTDGGGWTVFQ
NOV39k LLDRGYFLSGWHTIYLPDCRPLTVLCDMDTDGGGWTVFQRRMDGSVDFYRDWAAYKQGFG
NOV391 LLDRGYFLSGWHTIYLPDCRPLTVLCDMDTDGGGWTVFQRRMDGSVDFYRDWAAYKQGFG
NOV39m LLDRGYFLSGWHTIYLPDCRPLTVLCDMDTDGGGWTVFQRRMDGSVDFEGNHQFAKYKSF
NOV39n LLDRGYFLSGWHTIYLPDCRPLTVLCDMDTDGGGWTVFQRRMDGSVDFYRDWAAYKQGFG
NOV39o LLDRGYFLSGWHTIYLPDCRPLTVLCDMDTDGGGWTVFQRRMDGSVDFY
NOV39p LLDRGHFLSGWHTIYLPDCRPLTVLCDMDTDGGGWTVFQRRMDGSVDFYRDWAAYKQGFG
NOV39q LLDRGYFLSGWHTIYLPDCRPLTVLCDMDTDGGGWTVFQRRMDGSVDFYRDWAAYKQGFG
NOV39r LLDRGYFLSGWHTIYLPDCRPLTVLCDMDTDGGGWTVFQRRMDGSVDFYRDWAAYKQGFG
NOV39a SQLGEFWLG---TONIH-ALTAQGSSELRVDLVDFEG--S-ΗQFAKYKSFKVADEAEKYKLVLGAFV
NOV39b SQLGEFWLGNDNIHALTAQGSSELRVDLVDFEGNHQFAKYKSFKVADEAEKYKLVLGTFV
NOV39c SQLGEFWLGNDNIHALTAQGSSELRVDLVDFEGNHQFAKYKSFKVADEAEKYKLVLGAFV
NOV39d SQLGEFWLGNDNIHALTAQGSSELRVDLVDFEGNHQFAKYKSFKVADEAEKYKLVLGAFV
NOV39e SRLGEFWLG---TONIHALTAQGSSELRVDLVDFEGNHQFA-KYKSFKVADEAEKYKLVLGAFV
NOV39f SQLGEFWLGNDDIHALTAQGSSELRVDLVDFEGNHQFAKYKSFKVADEAEKYKLVLGAFV
NOV39g SQLGEFWLGNDNIHALTAQGSSELRVDLVDFEGNHQFAKYKSFKVADEAEKYKLVLGAFV
NOV39h SQLGEFWLGNDNIHALTAQGSSELRVDLVOFEGNHQFAKYKSFKVADEAEKYKLVLGAFV
NOV39i SQLGEFWLGNDNIHALTAQGSSELRVDLVDFEGNHQFAKYKSFKVADEAEKYKLVLGAFV
NOV39J
NOV39k SQLGEFWLGNDNIHALTAQGSSELRVDLVDFEGNHQFA----TKSFKVADEAEKYKLVLGAFV
NOV391 SQLGEFWLGNDNIHALTAQGSSELRVDLVDFEGNHQFAKYKSFKVADEAEKYKLVLGAFV
NOV39m KVADEAEKYKL V LGAFV
NOV39n SQLGEFWLGNDNIHALTAQGSSELRVDLVDFEGNHQFAKYKSFKVADEAEKYKLVLGAFV
NOV39o RDWAA Y KQGFG
NOV39p SQLGEFWLGNDNIHALTAQGSSELRVDLVDFEGNHQFAKYKSFKVADEAEKYKLVLGAFV
NOV39q SQLGEFWLGNDNIHALTAQGSSELRVDLVDFEGNHQFAKYKSFKVADEAEKYKLVLGAFV
NOV39r SQLGEFWLGNDNIHALTAQGSSELRVDLVDFEGNHQFAKYKSFKVADEAEKYKLVLGAFV
NOV39a GGSAGNSLTGHNNNFFSTKDQDNDVSSSNCAEKFQGAWWYADCHASSLNGLYLMGPHESY
NOV39b GGSAGNSLTGHNNNFFΞTKDQDNDVSSSNCAEKFQGAWWYADCHASNLNGLYLMGPHESY
NOV39c GGSAGNSLTGHNNNFFSTKDQDNDVSSSNCAEKFQGAWWYADCHASNLNGLYLMGPHESY
NOV39d GGSAGNSLTGHNNNFFSTKDQDNDVSSSNCAEKFQGAWWYADCHASNLNGLYLMGPHESY
NOV39e GGSAGNSLTGHNNNFFSTKDQDNDVSSSNCAEKFQGAWWYADCHASNLNGLYLMGPHESY
NOV39f GGSAGNSLTGHN-NNFFSTKDQDNDVSSSNCAEKFQGAWWYADCHASNLNGLYLMGPHESY
NOV39g GGSAGNSLTGHNNNFFSTKDQDNDVSSSNCAEKFQGAWWYADCHASNLNGLYLMGPHESY
NOV39h GGSAGNSLTG-HNNNFFSTKDQDNDVSSSNCAEKFQGAWWYADCHASNLNGLYLMGPHESY
NOV39i GGSAGNSLTGHN-IsπsrFFSTKDQDNDVSSSNCAEKFQGAWWYADCHASNLNGLYLMGPHESY
NOV39j GAWWYADCHASNLNGLYLMGPHESY
NOV39k GGSAGNSLTGHNNNFFSTKDQDNDVSSSNCAEKFQGAWWYADCHASNLNGLYLMGPHESY
-NOV391 GGSAGNSLTGHNNNFFSTKDQDNDVSSSNCAEKFQGAWWYADCHASNLNGLYLMGPHESY
NOV39m GGSAGNSLTGHNNNFFSTKDQDNDVSSSNCAEKFQGAWWYADCHASNIJNGLYLMGPHESY
NOV39n GGSAGNSLTGHNNNFFSTKDQDNDVSSSNCAEKFQGAWWYADCHASNLNGLYLMGPHESY
NOV39o SQLGGNSLTGHNNNFFSTKDQDNDVSSSNCAEKFQGAWWYADCHASNLNGLYLMGPHESY
NOV39p GGSAGNSLTGHMINFFSTKDQDNDVSSSNCAEKFQGAWWY-ADCHASNLNGLYLMGPHESY
NOV39q GGSAGNSLTGHNNNFFSTKDQDNDVSSSNCAΞKFQGAWWYADCHASNLNGLYLMGPHESY
NOV39r GGSAGNSLTGHNNNFFSTKDQDNDVSSSNCAEKFQGAWWYADCHASNLNGLYLMGPHESY
NOV39a -ANGINWSAAKGYKYSYKVSEMKVRPA-- NOV39b ANGINWSAAKGYKYSYKVSEMKVRPALE NOV39C ANGINWSAAKGYKYSYKVSEMKVRPALE NOV39d ANGINWSAAKGYKYSYKVSEMKVRPALE NOV39e ANGINWSAAKGYKYSYKVSEMKVRPALE NOV39f ANGINWSAAKGYKYSYKVSEMKVRPALE NOV39g ANGINWSAAKGYKYSYKVSEMKVRPALE NOV39h ANGINWSAAKGYKYSYKVSEMKVRPA- - NOV39i ANGINWSAAKGYKYSYKVSEMKVRPA- - NOV39J ANGINWSAAKGYKYSYKVSEMKVRPA- - NOV39k ANGINWSAAKGYKYSYKVSEMKVRPA- - NOV391 ANGINWSAAKGYKYSYKVSEMKGPA NOV39m ANGINCSAAKGYKYSYKVΞEMKVRPA- - NOV39n ANGINWSAAKGYKYSYKVSEMKVRPA- - N0V39O ANGINWSAAKGYKYSYKVSEMKVRPA- - NOV39p ANGINWSAAKGYKYSYKVSEMKVRPA- - NOV39q ANGINWSAAKGYKYSYKVSEMKVRPA- - NOV39r ANGINWSAAKGYKYSYKVSEMKVRPA- -
NOV39a (SEQ ID NO 898) NOV39b (SEQ ID NO 900) NOV39C (SEQ ID NO 902) NOV39d (SEQ ID NO 904) NOV39e (SEQ ID NO 906) NOV39f (SEQ ID NO 908) NOV39g (SEQ ID NO 910) NOV39h (SEQ ID NO 912) NOV39i (SEQ ID NO 914) NOV39J (SEQ ID NO 916) NOV39k (SEQ ID NO 918) NOV391 (SEQ ID NO 920) NOV39m (SEQ ID NO 922) NOV39n (SEQ ID NO 924) NOV39o (SEQ ID NO 926) NOV39p (SEQ ID NO 928) NOV39q (SEQ ID NO 930) NOV39r (SEQ ID NO 932)
Further analysis of the NOV39a protein yielded the following properties shown in Table 39C.
Table 39C. Protein Sequence Properties NOV39a
SignalP analysis: Cleavage site between residues 30 and 31
PSORT II analysis:
PSG : a new signal peptide prediction method
N-region: length 10 ; pos . chg 1 ; neg . chg 1 H-region: length 12 ; peak value 11.35 PSG score : 6. 95
GvH: von Heijne ' s method for signal seq. recognition GvH score (threshold: -2.1) : -3.79 possible cleavage site : between 29 and 30
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al ' s method for TM region allocation Init position for calculation: 1 Tentative number of TMS(s) for the threshold 0.5: 1
Number of TMS (s) for threshold 0.5: 1
INTEGRAL Likelihood = -3.35 Transmembrane 6 - 22
PERIPHERAL Likelihood = 4.51 (at 234)
ALOM score: -3.35 (number of TMSs: 1)
MTOP : Prediction of membrane topology (Hartmann et al . ) Center position for calculation: • 13 Charge difference: -1.5 C(-0.5) - N( 1.0) N >= C: N-terminal side will be inside
>>> membrane topology: type 2 (cytoplasmic tail 1 to 6)
MITDISC: discrimination of mitochondrial targeting seq R content: 1 Hyd Moment (75): 3.15 Hyd Moment (95): 5.83 G content: 2 D/E content: 2 S/T content: 2 Score: -6.93
Gavel : prediction of cleavage sites for mitochondrial preseq R-2 motif at 20 ARG | LA
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite : none content of basic residues: 10.7% NLS Score: -0.47
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals :
KKXX-like motif in the C-terminus: KVRP
SKL: peroxisomal targeting signal in the C-terminus : none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif: none
Actinin-type actin-binding motif : type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif: none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail: none
Dileucine motif in the tail : none checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA*T5inding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination
Predict Lon: cytoplasmic
Reliabi Lity: 89
COIL: Lupas ' s algorithm to detect coiled-coil regions total: 0 residues
Final Results (k = 9/23) :
34.8 % : mitochondrial
30.4 % : cytoplasmic
8.7 % : Golgi
8.7 % : endoplasmic reticulum
4.3 % : vacuolar
4.3 %: extracellular, including cell wall
4.3 % : nuclear
4.3 % : vesicles of secretory system
>> prediction for CG56653-08 is mit (k=23)
A search of the NOV39a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 39D.
A2, 02-NOV-2000]
In a BLAST search of public sequence databases, the NOV39a protein was found to have homology to the proteins shown in the BLASTP data in Table 39E.
PFam analysis predicts that the NOV39a protein contains the domains shown in the Table 39F.
Example 40. The NOV40 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 40A.
Table 40A. NOV40 Sequence Analysis
NOV40a, CG56806-01 SEQ ID NO: 933 1500 bp DNA Sequence ORF Start: ATG at 74 ORF Stop: TGA at 1490
CTTCCGAGCGGGCGCCCGTCCGCCCTGCCGCCGCCGCCGCCGCCGCTTCGCCTGCCGGCCTGAGAGCG
GGACCATGGATGAAAGGTTCAACAAGTGGCTGCTGACGCCGGTGCTCACTCTCCTCTTCGTGGTCATC
ATGTACCAGTACGTGTCCCCCTCCTGCACCAGCTCCTGCACCAACTTCGGGGAGCAGCCCCGCGCGGG GGAGGCCGGCCCGCCCGCCGTCCCGGGTCCCGCCCGCCGGGCTCAGGCGCCGCCGGAGGAGTGGGAGC AGAGGAGGCCCCAGTTGCCCCCGCCGCCCCGGGGGCCCCCCGAGGGACCTCGGGGGGCCGCGGCGCCG GAGGAGGAGGACGAGGAGCCCGGAGACCCCCGGGAGGGGGAGGAAGAGGAGGAGGAAGACGAGCCGGA CCCCGAGGCCCCGGAAAACGGCTCCCTGCCCCGATTCGTGCCGCGCTTCAACTTCAGCCTGAAGGACC TGACCCGCTTCGTGGATTTCAACATCAAAGGGCGCGACGTGATCGTGTTCCTCCACATCCAGAAGACG GGGGGCACCACTTTCGGCCGGCACCTGGTGAAGAACATCCGGCTGGAGCAGCCTTGTAGCTGCAAAGC GGGTCAGAAGAAGTGCACCTGCCACCGGCCTGGCAAGAAGGAGACGTGGCTCTTCTCCCGCTTCTCCA CCGGCTGGAGCTGCGGGCTGCACGCCGACTGGACGGAGCTCACCAACTGCGTGCCGGCCATCATGGAG AAGAAGGACTGTCCCCGCAACCACAGCCACACCAGGAATTTCTATTACATCACAATGTTACGGGATCC AGTGTCACGTTACCTGAGCGAGTGGAAACATGTCCAGAGAGGGGCCACTTGGAAAACCTCTCTTCATA TGTGTGATGGAAGAAGCCCCACCCCAGATGAGCTGCCTACCTGCTACCCTGGGGATGACTGGTCTGGG GTCAGCTTGCGGGAGTTTATGGATTGCACCTACAACCTGGCTAACAATCGCCAGGTGCGCATGCTGGC TGACCTCAGCCTGGTGGGCTGCTATAACTTGACTTTCATGAACGAGAGTGAAAGAAACACCATCCTGT TGCAGAGTGCAAAGAACAACCTGAAGAACATGGCCTTCTTTGGGCTCACTGAGTTCCAGAGGAAGACA CAGTTTCTCTTTGAGAGAACATTCAACCTCAAGTTCATCTCCCCCTTCACACAGTTCAACATCACGCG GGCTTCTAACGTGGAGATCAACGAGGGTGCCCGCCAACGCATTGAGGATCTAAACTTCCTGGACATGC AGCTTTACGAGTATGCAAAAGATCTCTTCCAGCAGCGCTACCACCACACCAAGCAGCTAGAGCACCAG AGGGACCGCCAGAAGCGGCGGGAGGAGCGGAGGCTGCAGCGAGAGCACAGGGACCACCAGTGGCCCAA AGAAGATGGGGCTGCAGAAGGGACTGTCACCGAGGACTACAACAGCCAGGTGGTGAGATGGTGACCTC CTGC
NOV40a, CG56806-01 SEQ ID NO: 934 472 aa MW at 54971.3kD Protein Sequence
MDERFNK LLTPVLTLLFWIMYQYVSPSCTSSCTNFGEQPRAGEAGPPAVPGPARRAQAPPEE EQR RPQLPPPPRGPPEGPRGAAAPEEEDEEPGDPREGEEEEEEDEPDPEAPENGSLPRFVPRFNFSLKDLT RFVDFNIKGRDVIVFLHIQKTGGTTFGRHLVKNIRLEQPCSCKAGQKKCTCHRPGKKETWLFSRFSTG SCGLHADWTELTNCVPAIMEKKDCPRNHSHTRNFYYITMLRDPVSRYLSE Ba-IVQRGAT KTSLHMC DGRSPTPDELPTCYPGDD SGVSLREFMDCTYNLANNRQVRMLADLSLVGCYNLTFMNESERNTILLQ SAKNNLKNMAFFGLTEFQRKTQFLFERTFNLKFISPFTQFNITRASNVEINEGARQRIEDLNFLDMQL YEYAKDLFQQRYHHTKQLEHQRDRQKRREERRLQREHRDHQ PKEDGAAEGTVTEDYNSQWR
NOV40b, 248061366 [SEQ ID NO: 935 }750 bp
DNA Sequence ORF Start: at 1 ORF Stop: end of sequence
CGCGGTACCTGTCCCCGCAACCACAGCCACACCAGGAATTTCTATTACATCACAATGTTACGGGATCC AGTGTCACGTTACCTGAGCGAGTGGAAACATGTCCAGAGAGGGGCCACTTGGAAAACCTCTCTTCATA TGTGTGATGGAAGAAGCCCCACCCCAGATGGGCTGCCTACCTGCTACCCTGGGGATGACTGGTCTGGG GTCAGCTTGCGGGAGTTTATGGATTGCACCTACAACCTGGCTAACAATCGCCAGGTGCGCATGCTGGC TGACCTCAGCCTGGTGGGCTGCTATAACTTGACTTTCATGAACGAGAGTGAAAGAAACACCATCCTGT TGCAGAGTGCAAAGAACAACCTGAAGAACATGGCCTTCTTTGGGCTCACTGAGTTCCAGAGGAAGACA CAGTTTCTCTTTGAGAGAACATTCAACCTCAAGTTCATCTCCCCCTTCACACAGTTCAACATCACGCG GGCTTCTAACGTGGAGATCAACGAGGGTGCCCGCCAACGCATTGAGGATCTAAACTTCCTGGACATGC AGCTTTACGAGTATGCAAAAGATCTCTTCCAGCAGCGCTACCACCACACCAAGCAGCTAGAGCACCAG AGGGACCGCCAGAAGCGGCGGGAGGAGCGGAGGCTGCAGCGAGAGCACAGGGACCACCAGTGGCCCAA AGAAGATGGGGCTGCAGAAGGGACTGTCACCGAGGACTACAACAGCCAGGTGGTGAGATGGCTCGAGG CG
NOV40b, 248061366 SEQ ID NO: 936 |250 aa MW at 29889.3kD Protein Sequence
RGTCPRNHSHT-RNFYYITML-RDPVSRYLSE KHVQRGATWKTSLH CDGRSPTPDGLPTCYPGDDWSG VSLREFMDCTYNLA-[Sπ-TOQVRML-ADLSLVGCYNLTFMNESERNTILLQSAiαmLKNMAFFGLTEFQRKT QFLFERTFNLKFISPFTQFNITRASNVEINEGARQRIEDLNFLDMQLYEYAKDLFQQRYHHTKQLEHQ RDRQKRREERRLQREHRDHQ PKEDGAAEGTVTEDYNSQWRWLEA
NOV40c, 246837961 SEQ ID NO: 937 750 bp DNA Sequence IORF Start: at 1 ORF Stop: end of sequence
CGCGGTACCTGTCCCCGCAACCACAGCCACACCAGGAATTTCTATTACATCACAATGTTACGGGATCC AGTGTCACGTTACCTGAGTGAGTGGAAACATGTCCAGAGAGGGGCCACTTGGAAAACCTCTCTTCATA TGTGTGATGGAAGAAGCCCCACCCCAGATGAGCTGCCTACCTGCTACCCTGGGGATGACTGGTCTGGG GTCAGCTTGCGGGAGTTTATGGATTGCACCTACAACCTGGCTAACAATCGCCAGGTGCGCATGCTGGC TGACCTCAGCCTGGTGGGCTGCTATAACTTGACTTTCATGAACGAGAGTGAAAGAAACACCATCCTGT TGCAGAGTGCAAAGAACAACCTGAAGAACATGGCCTTCTTTGGGCTCACTGAGTTCCAGAGGAAGACA CAGTTTCTCTTTGAGAGAACATTCAACCTCAAGTTCATCTCCCCCTTCACACAGTTCAACATCACGCG GGCTTCTAACGTGGAGATCAACGAGGGTGCCCGCCAACGCATTGAGGATCTAAACTTCCTGGACATGC AGCTTTACGAGTATGCAAAAGATCTCTTCCAGCAGCGCTACCACCACACCAAGCAGCTAGAGCGCCAG AGGGACCGCCAGAAGCGGCGGGAGGAGCGGAGGCTGCAGCGAGAGCACAGGGACCACCAGTGGCCCAA AGAAGATGGGGCTGCAGAAGGGACTGTCACCGAGGACTACAACAGCCAGGTGGTGAGATGGCTCGAGG CG
NOV40c, 246837961 SEQ ID NO: 938 250 aa MW at 29980.4kD Protein Sequence
RGTCPRNHSHTRNFYYITMLRDPVSRYLSE KHVQRGAT KTSLHMCDGRSPTPDELPTCYPGDDWSG VSLREFMDCTYN-LA.-^røRQVRMLADLSLVGCYNLTFMNESE-RNTILLQSAK-1-INLKNMAFFGLTEFQRKT QFLFERTFNLKFISPFTQFNITRASNVEINEGARQRIEDLNFLDMQLYEYAKDLFQQRYHHTKQLΞRQ RDRQKRREERRLQREHRDHQWPKEDGAAEGTVTEDYNSQWR LEA
NOV40d, 246837965 SEQ ID NO: 939 750 bp DNA Sequence ORF Start: at 1 ORF Stop: end of sequence
CGCGGTACCTGTCCCCGCAACCACAGCCACACCAGGAATTTCTATTACATCACAATGTTACGGGATCC AGTGTCACGTTACCTGAGTGAGTGGAAACATGCCCAGAGAGGGGCCACTTGGAAAACCTCTCTTCATA TGTGTGATGGAAGAAGCCCCACCCCAGATGAGCTGCCTACCTGCTACCCTGGGGATGACTGGTCTGGG GTCAGCTTGCGGGAGTTTATGGATTGCACCTACAACCTGGCTAACAATCGCCAGGTGCGCATGCTGGC TGACCTCAGCCTGGTGGGCTGCTATAACTTGACTTTCATGAACGAGAGTGAAAGAAACACCATCCTGT TGCAGAGTGCAAAGAACAACCTGAAGAACATGGCCTTCTTTGGGCTCACTGAGTTCCAGAGGAAGACA CAGTTTCTCTTTGAGAGAACATTCAACCTCAAGTTCATCTCCCCCTTCACACAGTTCAACATCACGCG GGCTTCTAACGTGGAGATCAACGAGGGTGCCCGCCAACGCATTGAGGATCTAAACTTCCTGGACATGC AGCTTTACGAGTATGCAAAAGATCTCTTCCAGCAGCGCTACCACCACACCAAGCAGCTAGAGCACCAG AGGGACCGCCAGAAGCGGCGGGAGGAGCGGAGGCTGCAGCGAGAGCACAGGGACCACCAGTGGCCCAA AGAAGATGGGGCTGCAGAAGGGACTGTCACCGAGGACTACAACAGCCAGGTGGTGAGATGGCTCGAGG CG
NOV40d, 246837965 SEQ ID NO: 940 250 aa MW at 29933.3kD Protein Sequence
RGTCPRNHSHTRNFYYIT LRDPVSRYLSE KHAQRGAT KTSLHMCDGRSPTPDELPTCYPGDD SG VSLREFMDCTYNLANNRQ LADLSLVGCYNLTFJrøESE-RNTILLQSAK--^^
QFLFERTFNLKFISPFTQFNITRASNVEINEGARQRIEDLNFLDMQLYEYAKDLFQQRYHHTKQLEHQ RDRQKRREERRLQREHRDHQWPKEDGAAEGTVTEDYNSQWR LEA
NOV40e, 246837975 SEQ ID NO: 941 750 bp DNA Sequence ORF Start: at 1 ORF Stop: end of sequence
CGCGGTACCTGTCCCCGCAACCACAGCCACACCAGGAATTTCTATTACATCACAATGTTACGGGATCC AGTGTCACGTTACCTGAGTGAGTGGAAACATGTCCAGAGAGGGGCCACTTGGAAAACCTCTCTTCATA TGTGTGATGGAAGAAGCCCCACCCCAGATGAGCTGCCTACCTGCTACCCTGGGGATGACTGGTCTGGG GTCAGCTTGCGGGAGTTTATGGATTGCACCTACAACCTGGCTAACAATCGCCAGGTGCGCATGCTGGC TGACCTCAGCCTGGTGGGCTGCTATAACTTGACTTTCATGAACGAGAGTGAAAGAAACACCATCCTGT TGCAGAGTGCAAAGAACAACCTGAAGAACATGGCCTTCTTTGGGCTCACTGAGTTCCAGAGGAAGACA CAGTTTCTCTTTGAGAGAGCATTCAACCTCAAGTTCATCTCCCCCTTCACACAGTTCAACATCACGCG GGCTTCT ACGTGGAGATCAACGAGGGTGCCCACCAACGCATTGAGGATCTAAACTTCCTGGACATGC AGCTTTACGAGTATGCAAAAGATCTCTTCCAGCAGCGCTACCACCACGCCAAGCAGCTAGAGCACCAG AGGGACCGCCAGAAGCGGCGGGAGGAGCGGAGGCTGCAGCGAGAGCACAGGGACCACCAGTGGCCCAA AGAAGATGGGGCTGCAGAAGGGACTGTCACCGAGGACTACAACAGCCAGGTGGTGAGATGGCTCGAGG CG
NOV40e, 246837975 SEQ ID NO: 942 250 aa MW at 29882.2kD Protein Sequence
RGTCPRNHSHTRNFYYITMLRDPVSRYLSEWKHVQRGATWKTSLH CDGRSPTPDELPTCYPGDD SG VSLREFMDCTYNL-ANNRQV-R LADLSLVGCYNLTFrøESERNTILL
QFLFERAFNLKFISPFTQFNITRASNVEINEGAHQRIEDLNFLD QLYEYAKDLFQQRYHHAKQLEHQ RDRQKRREERRLQREHRDHQWPKEDGAAEGTVTEDYNSQWR LEA
NOV40f, 248061376 SEQ ID NO: 943 750 bp DNA Sequence ORF Start: at 1 ORF Stop: end of sequence
CGCGGTACCTGTCCCCGCAACCACAGCCACACCAGGAATTTCTATTACATCACAATGTTACGGGATCC AGTGTCACGTTACCTGAGCGAGTGGAAACATGTCCAGAGAGGGGCCACTTGGAAAACCTCTCTTCATA TGTGTGATGGAAGAAGCCCCACCCCAGATGAGCTGCCTACCTGCTACCCTGGGGATGACTGGTCTGGG GTCAGCTTGCGGGAGTTTATGGATTGCACCTACAACCTGGCTAACAATCGCCAGGTGCGCATGCTGGC TGACCTCAGCCTGGTGGGCTGCTATAACTTGACTTTCATGAACGAGAGTGAAAGAAACACCATCCTGT TGCAGAGTGCAAAGAACAACCTGAAGAACATGGCCTTCTTTGGGCTCACTGAGTTCCAGAGGAAGACA CAGTTTCTCTTTGAGAGAACATTCAACCTCAAGTTCATCTCCCCCTTCACACAGTTCAACATCACGCG GGCTTCTAACGTGGAGATCAACGAGGGTGCCCGCCAACGCATTGAGGATCTAAACTTCCTGGACATGC AGCTTTACGAGTATGCAAAAGATCTCTTCCAGCAGCGCTACCACCACACCAAGCAGCTAGAGCACCAG AGGGACCGCCAGAAGCGGCGGGAGGAGCGGAGGCTGCAGCGAGAGCACAGGGACCACCAGTGGCCCAA AGAAGATGGGGCTGCAGAAGGGACTGTCACCGAGGACTACAACAGCCAGGTGGTGAGATGGCTCGAGG CG
NOV40f, 248061376 SEQ ID NO: 944 250 aa MW at 2996L3kD Protein Sequence
RGTCPPJrøSHTRNFYYITMLRDPVSRYLSE KHVQRGAT KTSLHMCDGRSPTPDELPTCYPGDD SG VSLREFMDCTYNLANNRQVRML--^LSLVGCYNLTFMNESΞRNTILLQSAKNNL-KNMAFFGLTEFQRKT QFLFERTFNLKFISPFTQFNITRASNVEINEGARQRIEDLNFLDMQLYΞYAKDLFQQRYHHTKQLEHQ RDRQ-KRREERRLQREHRDHQWPKEDGAAEGTVTEDYNSQWR LEA
NOV40& SNP13381685 of SEQ ID NO: 945 1500 bp CG56806-01, DNA Sequence ORF Start: ATG at 74 ORF Stop: TGA at 1490
SNP Pos: 870 SNP Change: A to G
CTTCCGAGCGGGCGCCCGTCCGCCCTGCCGCCGCCGCCGCCGCCGCTTCGCCTGCCGGCCTGAGAGCG
GGACCATGGATGAAAGGTTCAACAAGTGGCTGCTGACGCCGGTGCTCACTCTCCTCTTCGTGGTCATC
ATGTACCAGTACGTGTCCCCCTCCTGCACCAGCTCCTGCACCAACTTCGGGGAGCAGCCCCGCGCGGG GGAGGCCGGCCCGCCCGCCGTCCCGGGTCCCGCCCGCCGGGCTCAGGCGCCGCCGGAGGAGTGGGAGC AGAGGAGGCCCCAGTTGCCCCCGCCGCCCCGGGGGCCCCCCGAGGGACCTCGGGGGGCCGCGGCGCCG GAGGAGGAGGACGAGGAGCCCGGAGACCCCCGGGAGGGGGAGGAAGAGGAGGAGGAAGACGAGCCGGA CCCCGAGGCCCCGGAAAACGGCTCCCTGCCCCGATTCGTGCCGCGCTTCAACTTCAGCCTGAAGGACC TGACCCGCTTCGTGGATTTCAACATCAAAGGGCGCGACGTGATCGTGTTCCTCCACATCCAGAAGACG GGGGGCACCACTTTCGGCCGGCACCTGGTGAAGAACATCCGGCTGGAGCAGCCTTGTAGCTGCAAAGC GGGTCAGAAGAAGTGCACCTGCCACCGGCCTGGCAAGAAGGAGACGTGGCTCTTCTCCCGCTTCTCCA CCGGCTGGAGCTGCGGGCTGCACGCCGACTGGACGGAGCTCACCAACTGCGTGCCGGCCATCATGGAG AAGAAGGACTGTCCCCGCAACCACAGCCACACCAGGAATTTCTATTACATCACAATGTTACGGGATCC AGTGTCACGTTACCTGAGCGAGTGGAAACATGTCCAGAGAGGGGCCACTTGGAGAACCTCTCTTCATA TGTGTGATGGAAGAAGCCCCACCCCAGATGAGCTGCCTACCTGCTACCCTGGGGATGACTGGTCTGGG GTCAGCTTGCGGGAGTTTATGGATTGCACCTACAACCTGGCTAACAATCGCCAGGTGCGCATGCTGGC TGACCTCAGCCTGGTGGGCTGCTATAACTTGACTTTCATGAACGAGAGTGAAAGAAACACCATCCTGT TGCAGAGTGCAAAGAACAACCTGAAGAACATGGCCTTCTTTGGGCTCACTGAGTTCCAGAGGAAGACA CAGTTTCTCTTTGAGAGAACATTCAACCTCAAGTTCATCTCCCCCTTCACACAGTTCAACATCACGCG GGCTTCTAACGTGGAGATCAACGAGGGTGCCCGCCAACGCATTGAGGATCTAAACTTCCTGGACATGC AGCTTTACGAGTATGCAAAAGATCTCTTCCAGCAGCGCTACCACCACACCAAGCAGCTAGAGCACCAG AGGGACCGCCAGAAGCGGCGGGAGGAGCGGAGGCTGCAGCGAGAGCACAGGGACCACCAGTGGCCCAA AGAAGATGGGGCTGCAGAAGGGACTGTCACCGAGGACTACAACAGCCAGGTGGTGAGATGGTGACCTC CTGC NOV40g, SNP13381685 of SEQ ID NO: 946 472 aa MW at 54999.3kD CG56806-01, Protein Sequence SNP Pos: 266 SNP Change: Lys to Arg
MDERFN-KWLLTPVLTLLFWI YQYVSPSCTSSCTNFGEQPRAGEAGPPAVPGPARRAQAPPEEWEQR RPQLPPPPRGPPEGPRGAAAPEEEDEEPGDPREGEEEEEEDEPDPEAPΞNGSLPRFVPRFNFSLKDLT RFVDFNIKGRDVIVFLHIQKTGGTTFGRHLVKNIRLEQPCSCKAGQKKCTCHRPGKKETWLFSRFSTG SCGLH. D TELTNCVPAIMEKKDCPRNHSHTRNFYYITMLRDPVSRYLSE KHVQRGAT RTSLHMC DGRSPTPDELPTCYPGDD SGVSLREFMDCTYNLANNRQVRMLADLSLVGCYNLTFJ NESERNTILLQ SA-K--SMLKNMAFFGLTEFQRKTQFLFERTFNLKFISPFTQFNITRASNVEINEGARQRIEDLNFLD QL YEYAKDLFQQRYHHTKQLEHQRDRQKRREERRLQREHRDHQ PKEDGAAEGTVTEDYNSQWRW
NOV40h, SNP13381686 of SEQ ID NO: 947 1500 bp CG56806-01, DNA Sequence ORF Start: ATG at 74 ORF Stop: TGA at 1490
SNP Pos: 1190 SNP Change: T to C
CTTCCGAGCGGGCGCCCGTCCGCCCTGCCGCCGCCGCCGCCGCCGCTTCGCCTGCCGGCCTGAGAGCG
GGACCATGGATGAAAGGTTCAACAAGTGGCTGCTGACGCCGGTGCTCACTCTCCTCTTCGTGGTCATC
ATGTACCAGTACGTGTCCCCCTCCTGCACCAGCTCCTGCACCAACTTCGGGGAGCAGCCCCGCGCGGG GGAGGCCGGCCCGCCCGCCGTCCCGGGTCCCGCCCGCCGGGCTCAGGCGCCGCCGGAGGAGTGGGAGC AGAGGAGGCCCCAGTTGCCCCCGCCGCCCCGGGGGCCCCCCGAGGGACCTCGGGGGGCCGCGGCGCCG GAGGAGGAGGACGAGGAGCCCGGAGACCCCCGGGAGGGGGAGGAAGAGGAGGAGGAAGACGAGCCGGA CCCCGAGGCCCCGGAAAACGGCTCCCTGCCCCGATTCGTGCCGCGCTTCAACTTCAGCCTGAAGGACC TGACCCGCTTCGTGGATTTCAACATCAAAGGGCGCGACGTGATCGTGTTCCTCCACATCCAGAAGACG GGGGGCACCACTTTCGGCCGGCACCTGGTGAAGAACATCCGGCTGGAGCAGCCTTGTAGCTGCAAAGC GGGTCAGAAGAAGTGCACCTGCCACCGGCCTGGCAAGAAGGAGACGTGGCTCTTCTCCCGCTTCTCCA CCGGCTGGAGCTGCGGGCTGCACGCCGACTGGACGGAGCTCACCAACTGCGTGCCGGCCATCATGGAG AAGAAGGACTGTCCCCGCAACCACAGCCACACCAGGAATTTCTATTACATCACAATGTTACGGGATCC AGTGTCACGTTACCTGAGCGAGTGGAAACATGTCCAGAGAGGGGCCACTTGGAAAACCTCTCTTCATA TGTGTGATGGAAGAAGCCCCACCCCAGATGAGCTGCCTACCTGCTACCCTGGGGATGACTGGTCTGGG GTCAGCTTGCGGGAGTTTATGGATTGCACCTACAACCTGGCTAACAATCGCCAGGTGCGCATGCTGGC TGACCTCAGCCTGGTGGGCTGCTATAACTTGACTTTCATGAACGAGAGTGAAAGAAACACCATCCTGT TGCAGAGTGCAAAGAACAACCTGAAGAACATGGCCTTCTTTGGGCTCACTGAGTTCCAGAGGAAGACA CAGTTTCTCTTTGAGAGAACATTCAACCTCAAGCTCATCTCCCCCTTCACACAGTTCAACATCACGCG GGCTTCTAACGTGGAGATCAACGAGGGTGCCCGCCAACGCATTGAGGATCTAAACTTCCTGGACATGC AGCTTTACGAGTATGCAAAAGATCTCTTCCAGCAGCGCTACCACCACACCAAGCAGCTAGAGCACCAG AGGGACCGCCAGAAGCGGCGGGAGGAGCGGAGGCTGCAGCGAGAGCACAGGGACCACCAGTGGCCCAA AGAAGATGGGGCTGCAGAAGGGACTGTCACCGAGGACTACAACAGCCAGGTGGTGAGATGGTGACCTC CTGC
NOV40h, SNP13381686 of SEQ ID NO- 948[472 aa (.MW at 54937.3kD CG56806-01, Protein Sequence SNP Pos: 373 SNP Change: Phe to Leu i DERFNK LLTPVLTLLFVVIMYQYVSPSCTSSCTNFGEQPRAGEAGPPAVPGPARRAQAPPEEWEQR RPQLPPPPRGPPEGPRGAAAPEEEDEEPGDPREGEΞEEEEDEPDPEAPENGSLPRFVPRFNFSLKDLT RFVDFNIKGRDVIVFLHIQKTGGTTFGRHLV--.V1TIRLEQPCSC-KAGQKKCTCHRPGKKETWLFSRFSTG SCGLH-ADWTELTNCVPAIME-KKDCPRNHSHTRNFYYIT LRDPVSRYLSE K-1-WQRGAT KTSLHMC DGRSPTPDELPTCYPGDD SGVS REF-mCTY L-ANNR VRMLADLSLVGCYNLTF- ESERNTILLQ SAK-?TNL---αsTMAFFGLTEFQRKTQFLFERTFNLK-LISPFTQFNIT-RASNVEINEG-ARQRIEDLNFLDMQL YEYAJKDLFQQRYIKTKQLEHQ--ωRQKRREERRLQREHRDHQ PKEDG-AAEGTVTEDYNSQVVR
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 40B.
Table 40B. Comparison of the NOV40 protein sequences.
NOV40a MDERFNKWLLTPVLTLLFWIMYQYVSPSCTSSCTNFGEQPRAGEAGPPAVPGPARRAQA
NOV40b
NOV40C
NOV40d
NOV40e
Further analysis of the NOV40a protein yielded the following properties shown in Table 40C. Table 40C. Protein Sequence Properties NOV40a
SignalP analysis: Cleavage site betweenresidues 29 and 30
PSORT II analysis:
PSG: a new signal peptide prediction method
N-region: length 7; pos.chg 2; neg.chg 2 H-region: length 31; peak value 11.61 PSG score: 7.21
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -5.24 possible cleavage site: between 28 and 29
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al ' s method for TM region allocation Init position for calculation: 1
Tentative number of TMS(s) for the threshold 0.5: 1 Number of TMS(s) for threshold 0.5: 1
INTEGRAL Likelihood = -2.76 Transmembrane 8 - 24 PERIPHERAL Likelihood = 4.77 (at 312) ALOM score: -2.76 (number of TMSs : 1)
MTOP: Prediction of membrane topology (Hartmann et al.) Center position for calculation: 15 Charge difference: -2.0 C(-1.0) - N( 1.0) N >= C: N-terminal side will be inside
>>> membrane topology: type 2 (cytoplasmic tail 1 to 8)
MITDISC: discrimination of mitochondrial targeting seq R content: 0 Hyd Moment (75) : 8.01 Hyd Moment (95) : 7.59 G content: 0 D/E content: 2 S/T content: 0 Score: -6.61
Gavel: prediction of cleavage sites for mitochondrial preseq cleavage site motif not found
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite : none content of basic residues: 13.6% NLS Score: -0.47
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals :
XXRR-like motif in the N-terminus: DERF none
SKL: peroxisomal targeting signal in the C-terminus : none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none RNA-binding motif : none
Actinin-type actin-binding motif : type 1: none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail: none
Dileucine motif in the tail: none checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: nuclear Reliability: 76.7
COIL: Lupas ' s algorithm to detect coiled-coil regions total: 0 residues
Final Results (k = 9/23) :
39.1 %: mitochondrial
34.8 %: nuclear
13.0 %: cytoplasmic
4.3 %: extracellular. including cell wall
4.3 %: Golgi
4.3 %: peroxisomal
>> prediction for CG56806-01 is mit (k=23)
A search of the NOV40a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 40D.
In a BLAST search of public sequence databases, the NOV40a protein was found to have homology to the proteins shown in the BLASTP data in Table 40E.
PFam analysis predicts that the NOV40a protein contains the domains shown in the Table 40F.
Table 40F. Domain Analysis of NOV40a
Identities/
Pfam Domain NOV40a Match Region Similarities Expect Value for the Matched Region
Example 41.
The NOV41 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 41 A.
Table 41A. NOV41 Sequence Analysis
NOV41a, CG56878-01 SEQ ID NO: 949 2739 bp DNA Sequence ORF Start: ATG at 86 i ORF Stop: TGA at 2090
TTGCACTCTCCCACACCCTTTTCTTTTCGTCCGCTCTTCGCTTATTTCTCCCGCCGTCTCCTCTGCAT
AAGAAGGGGAACGAAAGATGGCGGCGGAAACGCTGCTGTCCAGTTTGTTAGGACTGCTGCTTCTGGGA
CTCCTGTTACCCGCAAGTCTGACCGGCGGTGTCGGGAGCCTGAACCTGGAGGAGCTGAGTGAGATGCG TTATGGGATCGAGATCCTGCCGTTGCCTGTCATGGGAGGGCAGAGCCAATCTTCGGACGTGGTGATTG TCTCCTCTAAGTACAAACAGCGCTATGAGTGTCGCCTGCCAGCTGGAGCTATTCACTTCCAGCGTGAA AGGGAGGAGGAAACACCTGCTTACCAAGGGCCTGGGATCCCTGAGTTGTTGAGCCCAATGAGAGATGC TCCCTGCTTGCTGAAGACAAAGGACTGGTGGACATATGAATTCTGTTATGGACGCCACATCCAGCAAT ACCACATGGAAGATTCAGAGATCAAAGGTGAAGTCCTCTATCTCGGCTACTACCAATCAGCCTTCGAC TGGGATGATGAAACAGCCAAGGCCTCCAAGCAGCATCGTCTTAAACGCTACCACAGCCAGACCTATGG CAATGGGTCCAAGTGCGACCTTAATGGGAGGCCCCGGGAGGCCGAGGTTCGGTTCCTCTGTGACGAGG GTGCAGGTATCTCTGGGGACTACATCGATCGCGTGGACGAGCCCTTGTCCTGCTCTTATGTGCTGACC ATTCGCACTCCTCGGCTCTGCCCCCACCCTCTCCTCCGGCCCCCACCCAGTGCTGCACCGCAGGCCAT CCTCTGTCACCCTTCCCTACAGCCTGAGGAGTACATGGCCTACGTTCAGAGGCAAGCCGTAGACTCAA AGCAGTATGGAGATAAAATCATAGAGGAGCTGCAAGATCTAGGCCCCCAAGTGTGGAGTGAGACCAAG TCTGGGGTGGCACCCCAAAAGATGGCAGGTGCGAGCCCGACCAAGGATGACAGTAAGGACTCAGATTT CTGGAAGATGCTTAATGAGCCAGAGGACCAGGCCCCAGGAGGGGAGGAGGTGCCGGCTGAGGAGCAGG ACCCAAGCCCTGAGGCAGCAGATTCAGCTTCTGGTGCTCCCAATGATTTTCAGAACAACGTGCAGGTC AAAGTCATTCGAAGCCCTGCGGATTTGATTCGATTCATAGAGGAGCTGAAAGGTGGAACAAAAAAGGG GAAGCCAAATATAGGCCAAGAGCAGCCTGTGGATGATGCTGCAGAAGTCCCTCAGAGGGAACCAGAGA AGGAAAGGGGTGATCCAGAACGGCAGAGAGAGATGGAAGAAGAGGAGGATGAGGATGAGGATGAGGAT GAAGATGAGGATGAACGGCAGTTACTGGGAGAATTTGAGAAGGAACTGGAAGGGATCCTGCTTCCGTC AGACCGAGACCGGCTCCGTTCGGAGGTGAAGGCTGGCATGGAGCGGGAACTGGAGAACATCATCCAGG AGACAGAGAAAGAGCTGGACCCAGATGGGCTGAAGAAGGAGTCAGAGCGGGATCGGGCAATGCTGGCT CTCACATCCACTCTCAACAAACTCATCAAAAGACTGGAGGAAAAACAGAGTCCAGAGCTGGTGAAGAA GCACAAGAAAAAGAGGGTTGTCCCCAAAAAGCCTCCCCCATCACCCCAACCTACAGAGGAGGATCCTG AGCACAGAGTCCGGGTCCGGGTCACCAAGCTCCGTCTCGGAGGCCCTAATCAGGATCTGACTGTCCTC GAGATGAAACGGGAAAACCCACAGCTGAAACAAATCGAGGGGCTGGTGAAGGAGCTGCTGGAGAGGGA GGGACTCACAGCTGCAGGGAAAATTGAGATCAAAATTGTCCGCCCATGGGCTGAAGGGACTGAAGAGG GTGCACGTTGGCTGACTGATGAGGACACGAGAAACCTCAAGGAGATCTTCTTCAATATCTTGGTGCCG GGAGCTGAAGAGGCCCAGAAGGAACGCCAGCGGCAGAAAGAGCTGGAGAGCAATTACCGCCGGGTGTG GGGCTCTCCAGGTGGGGAGGGCACAGGGGACCTGGACGAATTTGACTTCTGAGACCAACACTACACTT
GACCCTTCACGGAATCCAGACTCTTCCTGGACTGGCTTGCCTCCTCCCCACCTCCCCACCCTGGAACC
CCTGAGGGCCAAACAGCAGAGTGGAGCTGAGCTGTGGACCTCTCGGGCAACTCTGTGGGTGTGGGGGC
CCTGGGTGAATGCTGCTGCCCCTGCTGGCAGCCACCTTGAGACCTCACCGGGCCTGTGATATTTGCTC
TCCTGAACTCTCACTCAATCCTCTTCCTCTCCTCTGTGGCTTTTCCTGTTATTGTCCCCTAATGATAG
GATATTCCCTGCTGCCTACCTGGAGATTCAGTAGGATCTTTTGAGTGGAGGTGGGTAGAGAGAGCAAG
GAGGGCAGGACACTTAGCAGGCACTGAGCAAGCAGGCCCCCACCTGCCCTTAGTGATGTTTGGAGTCG
TTTTACCCTCTTCTATTGAATTGCCTTGGGATTTCCTTCTCCCTTTCCCTGCCCACCCTGTCCCCTAC
AATTTGTGCTTCTGAGTTGAGGAGCCTTCACCTCTGTTGCTGAGGAAATGGTAGAATGCTGCCTATCA
CCTCCAGCACAATCCCAGCGAAAAAGGTGTGAAGCACCCACCATGTTCTTGAACAATCAGGTTTCTAA
ATAAACAACTGGACCATCA
NOV41a, CG56878-01 SEQ ID NO: 950 668 aa MW at 75659.9 D Protein Sequence
MAAETLLSSLLGLLLLGLLLPASLTGGVGSLNLEELSEMRYGIEILPLPVMGGQSQSSDWIVSSKYK QRYECRLPAGAIHFQRΞREEETPAYQGPGIPELLSPMRDAPCLLKTKD TYEFCYGRHIQQYHMEDS EIKGEVLYLGYYQSAFD DDETAKASKQHRLKRYHSQTYGNGSKCDLNGRPREAEVRFLCDEGAGISG DYIDRVDEPLSCSYVLTIRTPRLCPHPLLRPPPSAAPQAILCHPSLQPEEYMAYVQRQAVDSKQYGDK IIEELQDLGPQV SΞTKSGVAPQKMAGASPTKDDSKDSDF KMLNEPEDQAPGGEEVPAEEQDPSPEA ADSASGAPNDFQ-NNVQVKVIRSPADLIRFIEELKGGTKKGKPNIGQEQPVDDAAEVPQREPEKERGDP ERQREMEEEEDEDEDEDEDEDERQLLGEFEKELEGILLPSDRDRLRSEVKAGMERELENIIQETEKEL DPDGLKKESERDR-AMLALTSTLNKLIKRLEEKQSPELVKKHKKKRWPKKPPPSPQPTEEDPEHRVRV RVTKLRLGGPNQDLTVLEMKRENPQLKQIEGLVKELLEREGLTAAGKIEIKIVRP AΞGTEEGAR LT DEDTRNLKEIFFNILVPGAEEAQKERQRQKELΞSNYRRV GSPGGEGTGDLDEFDF
NOV41b, 175070399 SEQ ID NO: 951 1773 bp
DNA Sequence iORF Start: at 1 ORF Stop: end of sequence
GGTACCGGCGGTGTCGGGAGCCTGAACCTGGAGGAGCTGAGTGAGATGCGTTATGGGATCGAGATCCT
GCCGTTGCCTGTCATGGGAGGGCAGAGCCAATCTTCGGACGTGGTGATTGTCTCCTCTAAGTACAAAC
AGCGCTATGAGTGTCGCCTGCCAGCTGGAGCTATTCACTTCCAGCGTGAAAGGGAGGAGGAAACACCT
GCTTACCAAGGGCCTGGGATCCCTGAGTTGTTGAGCCCAATGAGAGATGCTCCCTGCTTGCTGAAGAC
AAAGGACTGGTGGACATATGAATTCTGTTATGGACGCCACATCCAGCAATACCACATGGAAGATTCAG
AGATCAAAGGTGAAGTCCTCTATCTCGGCTACTACCAATCAGCCTTCGACTGGGATGATGAAACAGCC
AAGGCCTCCAAGCAGCATCGTCTTAAACGCTACCACAGCCAGACCTATGGCAATGGGTCCAAGTGCGA CCTT-AATGGGAGGCCCCGG^ ACGAATTTGACTTCGTCGAC
NOV41c, 175070432 SEQ ID NO: 954 596 aa MW at 67601.5kD Protein Sequence
SEFA-LGTGGVGSLNLEELSEMRYGIEILPLPVMGGQSQSSDWIVSSKYKQRYECRLPAGAIHFQRER EΞETPAYQGPGIPELLSPMRDAPCLLKTKD TYEFCYGRHIQQYHMEDSEIKGEVLYLGYYQSAFD DDETAKASKQHRLKRYHSQTYGNGSKCDLNGRPREAEVRFLCDEGAGISGDYIDRVDEPLSCSYVLTI RTPRLCPHPLLRPPPSAAPQAILCHPSLQPEEYMAYVQRQADSKQYGDKIIEELQDLGPQV SETKSG VAPQKMAGASPTKDDSKDSDF KMLNEPEDQAPGGEEVPAEEQDPSPEAADSASGAPNDFQNNVQVKV IRSPADLIRFIEELKGGTKKGKPNIGQEQPVDDAAEVPQREPEKERGDPERQREMEEEEDEDEDEDED EDERQLLGEFEKELEGILLPSDRGRLRSEVKAGMERELENIIQETEKELDPDGLKKESERDRAMLALT STLNKLIKRLEEKQSPELVKKHKKKRWPKKPPPSPQPTGKIEIKIVRPWAEGTEEGAR LTDEDTRN LKEIFFNILVPGAEEAQKERQRQKELESNYRRV GSPGGEGTGDLDEFDFVD
NOV41d, 175070419 JSEQ ID NO: 955 J1773 bp
DNA Sequence ORF Start: at 1 ORF Stop: end of sequence
GGTACCGGCGGTGTCGGGAGCCTGAACCTGGAGGAGCTGAGTGAGATGCGTTATGGGATCGAGATCCT GCCGTTGCCTGTCATGGGAGGGCAGAGCCAATCTTCGGACGTGGTGATTGTCTCCTCTAAGTACAAAC AGCGCTATGAGTGTCGCCTGCCAGCTGGAGCTATTCACTTCCAGCGTGAAAGGGAGGAGGAAACACCT GCTTACCAAGGGCCTGGGATCCCTGAGTTGTTGAGCCCAATGAGAGATGCTCCCTGCTTGCTGAAGAC AAAGGACTGGTGGACATATGAATTCTGTTATGGACGCCACATCCAGCAATACCACATGGAAGATTCAG AGATCAAAGGTGAAGTCCTCTATCTCGGCTACTACCAATCAGCCTTCGACTGGGATGATGAAACAGCC AAGGCCTCCAAGCAGCATCGTCTTAAACGCTACCACAGCCAGACCTATGGCAATGGGTCCAAGTGCGA CCTTAATGGGAGGCCCCGGGAGGCCGAGGTTCGGTTCCTCTGTGACGAGGGTGCAGGTATCTCTGGGG ACTACATCGATCGCGTGGACGAGCCCTTGTCCTGCTCTTATGTGCTGACCATTCGCACTCCTCGGCTC TGCCCCCACCCTCTCCTCCGGCCCCCACCCAGTGCTGCACCGCAGGCCATCCTCTGTCACCCTTCCCT ACAGCCTGAGGAGTACATGGCCTACGTTCAGAGGCAAGCCGACTCAAAGCAGTATGGAGATAAAATCA TAGAGGAGCTGCAAGATCTAGGCCCCCAAGTGTGGAGTGAGACCAAGTCTGGGGTGGCACCCCAAAAG ATGGCAGGTGCGAGCCCGACCAAGGATGACAGTAAGGACTCAGATTTCTGGAAGATGCTTAATGAGCC AGAGGACCAGGCCCCAGGAGGGGAGGAGGTGCCGGCTGAGGAGCAGGACCCAAGCCCTGAGGCAGCAG ATTCAGCTTCTGGTGCTCCCAATGATTTTCAGAACAACGTGCAGGTCAAAGTCATTCGAAGCCCTGCG GATTTGATTCGATTCATAGAGGAGCTGAAAGGTGGAATAAAAAAGGGGAAGCCAAATATAGGCCAAGA GCAGCCTGTGGATGATGCTGCAGAAGTCCCTCAGAGGGAACCAGAGAAGGAAAGGGGTGATCCAGAAC GGCAGAGAGAGATGGAAGAAGAGGAGGATGAGGATGAGGATGAGGATGAAGATGAGGATGAACGGCAG TTACTGGGAGAATTTGAGAAGGAACTGGAAGGGATCCTGCTTCCGTCAGACCGAGACCGGCTCCGTTC GGAGGTGAAGGCTGGCATGGAGCGGGAACTGGAAAACATCATCCAGGAGACAGAGAAAGAGCTGGACC CAGATGGGCTGAAGAAGGAGTCAGAGCGGGATCGGGCAATGCTGGCTCTCACATCCACTCTCAACAAA CTCATCAAAAGACTGGAGGAAAAACAGAGTCCAGAGCTGGTGAAGAAGCACAAGAAAAAGAGGGTTGT CCCCAAAAAGCCTCCCCCATCACCCCAACCTACAGGGAAAATTGAGATCAAAATTGTCCGCCCATGGG CTGAAGGGACTGAAGAGGGTGCACGTTGGCTGACTGATGAGGACACGAGAAACCTCAAGGAGATCTTC TTCAATATCTTGGTGCCGGGAGCTGAAGAGGCCCAGAAGGAACGCCAGCGGCAGAAAGAGCTGGAGAG CAATTACCGCCGGGTGTGGGGCTCTCCAGGTGGGGAGGGCACAGGGGACCTGGACGAATTTGACTTCG TCGAC
NOV41d, 175070419 SEQ ID NO: 956 591 aa MW at 67124.0kD Protein Sequence
GTGGVGSLNLEELSEMRYGIEILPLPVMGGQSQSSDWIVSSKYKQRYECRLPAGAIHFQREREEETP
AYQGPGIPELLSPMRDAPCLLKTKDW TYEFCYGRHIQQYHMEDSEIKGEVLYLGYYQSAFD DDETA
KASKQHRLKRYHSQTYGNGSKCDLNGRPREAEVRFLCDEGAGISGDYIDRVDEPLSCSYVLTIRTPRL
CPHPLLRPPPSAAPQAILCHPSLQPEEYMAYVQRQADSKQYGDKIIEELQDLGPQV SETKSGVAPQK
MAGASPT-KDDS-l-ΦSDF ---^LNEPEDQAPGGEEVPAEEQDPSPEAADSASGAPNDFQN-tWQVK^
DLIRFIEELKGGIKKGKPNIGQEQPVDDAAEVPQREPEKERGDPERQREMEEEEDEDEDEDEDEDERQ
LLGEFEKELEGILLPSDRDRLRSEVKAGMERELENIIQETEKELDPDGLKKESERDRAMLALTSTLNK
LI-KRLEEKQSPELV-K--KHKK-KRVVPKKPPPSPQPTGKIEIKIVRPWAEGTEEGAR LTDEDTRNLKEIF
FNILVPGAEEAQKERQRQKELESNYRRVWGSPGGEGTGDLDEFDFVD
NOV41e, 175070438 SEQ ID NO: 957 1938 bp DNA Sequence ORF Start: at 1 ORF Stop: end of sequence
GGTACCGGCGGTGTCGGGAGCCTGAACCTGGAGGAGCTGAGTGAGATGCGTTATGGGATCGAGATCCT GCCGTTGCCTGTCATGGGAGGGCAGAGCCAATCTTCGGACGTGGTGATTGTCTCCTCTAAGTACAAAC AGCGCTATGAGTGTCGCCTGCCAGCTGGAGCTATTCACTTCCAGCGTGAAAGGGAGGAGGAAACACCT GCTTACCAAGGGCCTGGGATCCCTGAGTTGTTGAGCCCAATGAGAGATGCTCCCTGCTTGCTGAAGAC AAAGGACTGGTGGACATATGAATTCTGTTATGGACGCCACATCCAGCAATACCACATGGAAGATTCAG AGATCAAAGGTGAAGTCCTCTATCTCGGCTACTACCAATCAGCCTTCGACTGGGATGATGAAACAGCC AAGGCCTCCAAGCAGCATCGTCTTAAACGCTACCACAGCCAGACCTATGGCAATGGGTCCAAGTGCGA CCTTAATGGGAGGCCCCGGGAGGCCGAGGTTCGGTTCCTCTGTGACGAGGGTGCAGGTATCTCTGGGG ACTACATCGATCGCGTGGACGAGCCCTTGTCCTGCTCTTATGTGCTGACCATTCGCACTCCTCGGCTC TGCCCCCACCCTCTCCTCCGGCCCCCACCCAGTGCTGCACCGCAGGCCATCCTCTGTCACCCTTCCCT ACAGCCTGAGGAGTACATGGCCTACGTTCAGAGGCAAGCCGACTCAAAGCAGTATGGAGATAAAATCA TAGAGGAGCTGCAAGATCTAGGCCCCCAAGTGTGGAGTGAGACCAAGTCTGGGGTGGCACCCCAAAAG ATGGCAGGTGCGAGCCCGACCAAGGATGACAGTAAGGACTCAGATTTCTGGAAGATGCTTAATGAGCC AGAGGACCAGGCCCCAGGAGGGGAGGAGGTGCCGGCTGAGGAGCAGGACCCAAGCCCTGAGGCAGCAG ATTCAGCTTCTGGTGCTCCCAATGATTTTCAGAACAACGTGCAGGTCAAAGTCATTCGAAGCCCTGCG GATTTGATTCGATTCATAGAGGAGCTGAAAGGTGGAACAAAAAAGGGGAAGCCAAATATAGGCCAAGA GCAGCCTGTGGATGATGCTGCAGAAGTCCCTCAGAGGGAACCAGAGAAGGAAAGGGGTGATCCAGAAC GGCAGAGAGAGATGGAAGAAGAGGAGGATGAGGATGAGGATGAGGATGAAGATGAGGATGAACGGCAG TTACTGGGAGAATTTGAGAAGGAACTGGAAGGGATCCTGCTTCCGTCAGACCGAGACCGGCTCCGTTC GGAGGTGAAGGCTGGCATGGAGCGGGAACTGGAGAACATCATCCAGGAGACAGAGAAAGAGCTGGACC CAGATGGGCTGAAGAAGGAGTCAGAGCGGGATCGGGCAATGCTGGCTCTCACATCCACTCTCAACAAA CTCATCAAAAGACTGGAGGAAAAACAGAGTCCAGAGCTGGTGAAGAAGCACAAGAAAAAGAGGGTTGT CCCCAAAAAGCCTCCCCCATCACCCCAACCTACAGAGGAGGATCCTGAGCACAGAGTCCGGGTCCGGG TCACCAAGCTCCGTCTCGGAGGCCCTAATCAGGATCTGACTGTCCTCGAGATGAAACGGGAAAACCCA CAGCTGAAACAAATCGAGGGGCTGGTGAAGGAGCTGCTGGAGAGGGAGGGACTCACAGCTGCAGGGAA AATTGAGATCAAAATTGTCCGCCCATGGGCTGAAGGGACTGAAGAGGGTGCACGTTGGCTGACTGATG AGGACACGAGAAACCTCAAGGAGATCTTCTTCAATATCTTGGTGCCGGGAGCTGAAGAGGCCCAGAAG GAACGCCAGCGGCAGAAAGAGCTGGAGAGCAATTACCGCCGGGTGTGGGGCTCTCCAGGTGGGGAGGG CACAGGGGACCTGGACGAATTTGACTTCGTCGAC
NOV41e, 175070438 SEQ ID NO: 958 646 aa M at 73427. lkD Protein Sequence
GTGGVGSLNLEELSEMRYGIEILPLPVMGGQSQSSDWIVSSKYKQRYECRLPAGAIHFQREREEETP AYQGPGIPELLSPMRDAPCLLKTKD TYEFCYGRHIQQYHMEDSEIKGEVLYLGYYQSAFDWDDETA KASKQHRLKRYHSQTYGNGSKCDLNGRPREAEVRFLCDEGAGISGDYIDRVDEPLSCSYVLTIRTPRL CPHPLLRPPPSAAPQAILCHPSLQPEEYMAYVQRQADSKQYGDKIIEELQDLGPQVWSETKSGVAPQK MAGASPTKDDS-KDSDFWrøLNEPEDQAPGGEEVPAEEQDPSPEAADSASGAPNDFQNNVQVKVIRSPA DLIRFIEELKGGTKKGKPNIGQEQPVDDAAEVPQREPEKERGDPERQREMEEEEDEDEDEDEDEDERQ LLGEFEKELEGILLPSDRDRLRSEVKAGMERELENIIQETEKELDPDGLKKESERDRAMLALTSTLNK LIKRLEEKQSPELVKKHKKKRWPKKPPPSPQPTEEDPEHRVRVRVTKLRLGGPNQDLTVLEMKRENP QLKQIEGLVKELLEREGLTAAGKIEIKIVRPWAEGTEEGAR LTDEDTRNLKEIFFNILVPGAEEAQK ERQRQKELESNYRRVWGSPGGEGTGDLDEFDFVD
NOV41f, 175070408 SEQ ID NO: 959 1938 bp DNA Sequence ORF Start: at 1 IORF Stop: end of sequence
GGTACCGGCGGTGTCGGGAGCCTGAACCTGGAGGAGCTGAGTGAGATGCGTTATGGGATCGAGATCCT GCCGTTGCCTGTCATGGGAGGGCAGAGCCAATCTTCGGACGTGGTGATTGTCTCCTCTAAGTACAAAC AGCGCTATGAGTGTCGCCTGCCAGCTGGAGCTATTCACTTCCAGCGTGAAAGGGAGGAGGAAACACCT GCTTACCAAGGGCCTGGGATCCCTGAGTTGTTGAGCCCAATGAGAGATGCTCCCTGCTTGCTGAAGAC AAAGGACTGGTGGACATATGAATTCTGTTATGGACGCCACATCCAGCAATACCACATGGAAGATTCAG AGATCAAAGGTGAAGTCCTCTATCTCGGCTACTACCAATCAGCCTTCGACTGGGATGATGAAACAGCC AAGGCCTCCAAGCAGCATCGTCTTAAACGCTACCACAGCCAGACCTATGGCAATGGGTCCAAGTGCGA CCTTAATGGGAGGCCCCGGGAGGCCGAGGTTCGGTTCCTCTGTGACGAGGGTGCAGGTATCTCTGGGG ACTACATCGATCGCGTGGACGAGCCCTTGTCCTGCTCTTATGTGCTGACCATTCGCACTCCTCGGCTC TGCCCCCACCCTCTCCTCCGGCCCCCACCCAGTGCTGCACCGCAGGCCATCCTCTGTCACCCTTCCCT ACAGCCTGAGGAGTACATGGCCTACGTTCAGAGGCAAGCCGACTCAAAGCAGTATGGAGATAAAATCA TAGAGGAGCTGCAAGATCTAGGCCCCCAAGTGTGGAGTGAGACCAAGTCTGGGGTGGCACCCCAAAAG ATGGCAGGTGCGAGCCCGACCAAGGATGACAGTAAGGACTCAGATTTCTGGAAGATGCTTAATGAGCC AGAGGACCAGGCCCCAGGAGGGGAGGAGGTGCCGGCTGAGGAGCAGGACCCAAGCCCTGAGGCAGCAG ATTCAGCTTCTGGTGCTCCCAATGATTTTCAGAACAACGTGCAGGTCAAAGTCATTCGAAGCCCTGCG GATTTGATTCGATTCATAGAGGAGCTGAAAGGTGGAACAAAAAAGGGGAAGCCAAATATAGGCCAAGA GCAGCCTGTGGATGATGCTGCAGAAGTCCCTCAGAGGGAACCAGAGAAGGAAAGGGGTGATCCAGAAC GGCAGAGAGAGATGGAAGAAGAGGAGGATGAGGATGAGGATGAGGATGAAGATGAGGATGAACGGCAG TTACTGGGAGAATTTGAGAAGGAACTGGAAGGGATCCTGCTTCCGTCAGACCGAGACCGGCTCCGTTC GGAGGTGAAGGCTGGCATGGAGCGGGAACTGGAAAACATCATCCAGGAGACAGAGAAAGAGCTGGACC CAGATGGGCTGAAGAAGGAGTCAGAGCGGGATCGGGCAATGCTGGCTCTCACATCCACTCTCAACAAA CTCATCAAAAGACTGGAGGAAAAACAGAGTCCAGAGCTGGTGAAGAAGCACAAGAAAAAGAGGGTTGT CCCCAAAAAGCCTCCCCCATCACCCCAACCTACAGAGGAGGATCCTGAGCACAGAGTCCGGGTCCGGG TCACCAAGCTCCGTCTCGGAGGCCCTAATCAGGATCTGACTGTCCTCGAGATGAAACGGGAAAACCCA CAGCTGAAACAAATCGAGGGGCTGGTGAAGGAGCTGCTGGAGAGGGAGGGACTCACAGCTGCAGGGAA AATTGAGATCAAAATTGTCCGCCCATGGGCTGAAGGGACTGAAGAGGGTGCACGTTGGCTGACTGATG AGGACACGAGAAACCTCAAGGAGATCTTCTTCAATATCTTGGTGCCGGGAGCTGAAGAGGCCCAGAAG GAACGCCAGCGGCAGAAAGAGCTGGAGAGCAATTACCGCCGGGTGTGGGGCTCTCCAGGTGGGGAGGG CACAGGGGACCTGGACGAATTTGACTTCGTCGAC
NOV41f, 175070408 SEQ ID NO: 960 646 aa MW at 73427. lkD Protein Sequence
GTGGVGSLNLEELSEMRYGIEILPLPVMGGQSQSSDWIVSSKYKQRYECRLPAGAIHFQREREEETP AYQGPGIPELLSPMRDAPCLLKTKDW TYEFCYGRHIQQYHMEDSEIKGEVLYLGYYQSAFD DDETA KASKQHRLKRYHSQTYGNGSKCDLNGRPREAEVRFLCDEGAGISGDYIDRVDEPLSCSYVLTIRTPRL CPHPLLRPPPSAAPQAILCHPSLQPΞEYMAYVQRQADSKQYGDKIIEELQDLGPQVWSETKSGVAPQK MAGASPTKDDSKDSDF KMLNEPEDQAPGGEEVPAEEQDPSPEAADSASGAPNDFQNNVQVKVIRSPA DLIRFIEELKGGTKKGKPNIGQEQPVDDAAEVPQREPEKERGDPERQREMEEEEDEDEDEDEDEDERQ LLGEFEKELEGILLPSDRDRLRSEVKAGMERELENIIQΞTEKELDPDGLKKESERDRAMLALTSTLNK LIKRLEEKQSPELVKKHKKKRVVPKKPPPSPQPTEEDPEHRVRVRVTKLRLGGPNQDLTVLEMKRENP QLKQIEGLVKELLEREGLTAAGKIEIKIVRP AEGTEEGARWLTDEDTRNLKEIFFNILVPGAEEAQK ERQRQKELESNYRRVWGSPGGEGTGDLDEFDFVD
NOV41g, CG56878-02 SEQ ID NO: 961 1938 bp DNA Sequence ORF Start: at 7 ORF Stop: at 1933
GGTACCGGCGGTGTCGGGAGCCTGAACCTGGAGGAGCTGAGTGAGATGCGTTATGGGATCGAGATCCT
GCCGTTGCCTGTCATGGGAGGGCAGAGCCAATCTTCGGACGTGGTGATTGTCTCCTCTAAGTACAAAC AGCGCTATGAGTGTCGCCTGCCAGCTGGAGCTATTCACTTCCAGCGTGAAAGGGAGGAGGAAACACCT GCTTACCAAGGGCCTGGGATCCCTGAGTTGTTGAGCCCAATGAGAGATGCTCCCTGCTTGCTGAAGAC AAAGGACTGGTGGACATATGAATTCTGTTATGGACGCCACATCCAGCAATACCACATGGAAGATTCAG AGATCAAAGGTGAAGTCCTCTATCTCGGCTACTACCAATCAGCCTTCGACTGGGATGATGAAACAGCC AAGGCCTCCAAGCAGCATCGTCTTAAACGCTACCACAGCCAGACCTATGGCAATGGGTCCAAGTGCGA CCTTAATGGGAGGCCCCGGGAGGCCGAGGTTCGGTTCCTCTGTGACGAGGGTGCAGGTATCTCTGGGG ACTACATCGATCGCGTGGACGAGCCCTTGTCCTGCTCTTATGTGCTGACCATTCGCACTCCTCGGCTC TGCCCCCACCCTCTCCTCCGGCCCCCACCCAGTGCTGCACCGCAGGCCATCCTCTGTCACCCTTCCCT ACAGCCTGAGGAGTACATGGCCTACGTTCAGAGGCAAGCCGACTCAAAGCAGTATGGAGATAAAATCA TAGAGGAGCTGCAAGATCTAGGCCCCCAAGTGTGGAGTGAGACCAAGTCTGGGGTGGCACCCCAAAAG ATGGCAGGTGCGAGCCCGACCAAGGATGACAGTAAGGACTCAGATTTCTGGAAGATGCTTAATGAGCC AGAGGACCAGGCCCCAGGAGGGGAGGAGGTGCCGGCTGAGGAGCAGGACCCAAGCCCTGAGGCAGCAG ATTCAGCTTCTGGTGCTCCCAATGATTTTCAGAACAACGTGCAGGTCAAAGTCATTCGAAGCCCTGCG GATTTGATTCGATTCATAGAGGAGCTGAAAGGTGGAACAAAAAAGGGGAAGCCAAATATAGGCCAAGA GCAGCCTGTGGATGATGCTGCAGAAGTCCCTCAGAGGGAACCAGAGAAGGAAAGGGGTGATCCAGAAC GGCAGAGAGAGATGGAAGAAGAGGAGGATGAGGATGAGGATGAGGATGAAGATGAGGATGAACGGCAG TTACTGGGAGAATTTGAGAAGGAACTGGAAGGGATCCTGCTTCCGTCAGACCGAGACCGGCTCCGTTC GGAGGTGAAGGCTGGCATGGAGCGGGAACTGGAGAACATCATCCAGGAGACAGAGAAAGAGCTGGACC CAGATGGGCTGAAGAAGGAGTCAGAGCGGGATCGGGCAATGCTGGCTCTCACATCCACTCTCAACAAA CTCATCAAAAGACTGGAGGAAAAACAGAGTCCAGAGCTGGTGAAGAAGCACAAGAAAAAGAGGGTTGT CCCCAAAAAGCCTCCCCCATCACCCCAACCTACAGAGGAGGATCCTGAGCACAGAGTCCGGGTCCGGG TCACCAAGCTCCGTCTCGGAGGCCCTAATCAGGATCTGACTGTCCTCGAGATGAAACGGGAAAACCCA CAGCTGAAACAAATCGAGGGGCTGGTGAAGGAGCTGCTGGAGAGGGAGGGACTCACAGCTGCAGGGAA AATTGAGATCAAAATTGTCCGCCCATGGGCTGAAGGGACTGAAGAGGGTGCACGTTGGCTGACTGATG AGGACACGAGAAACCTCAAGGAGATCTTCTTCAATATCTTGGTGCCGGGAGCTGAAGAGGCCCAGAAG GAACGCCAGCGGCAGAAAGAGCTGGAGAGCAATTACCGCCGGGTGTGGGGCTCTCCAGGTGGGGAGGG CACAGGGGACCTGGACGAATTTGACTTCGTCGAC
NOV41g, CG56878-02 SEQ ID NO: 962 642 aa MW at 73054.8kD Protein Sequence AGGGAGGAGGAAACACCTGCTTACCAAGGGCCTGGGATCCCTGAGTTGTTGAGCCCAATGAGAGATGC TCCCTGCTTGCTGAAGACAAAGGACTGGTGGACATATGAATTCTGTTATGGACGCCACATCCAGCAAT ACCACATGGAAGATTCAGAGATCAAAGGTGAAGTCCTCTATCTCGGCTACTACCAATCAGCCTTCGAC TGGGATGATGAAACAGCCAAGGCCTCCAAGCAGCATCGTCTTAAACGCTACCACAGCCAGACCTATGG CAATGGGTCCAAGTGCGACCTTAATGGGAGGCCCCGGGAGGCCGAGGTTCGGTTCCTCTGTGACGAGG GTGCAGGTATCTCTGGGGACTACATCGATCGCGTGGACGAGCCCTTGTCCTGCTCTTATGTGCTGACC ATTCGCACTCCTCGGCTCTGCCCCCACCCTCTCCTCCGGCCCCCACCCAGTGCTGCACCACAGGCCAT CCTCTGTCACCCTTCCCTACAGCCTGAGGAGTACATGGCCTACGTTCAGAGGCAAGCCGACTCAAAGC AGTATGGAGATAAAATCATAGAGGAGCTGCAAGATCTAGGCCCCCAAGTGTGGAGTGAGACCAAGTCT GGGGTGGCACCCCAAAAGATGGCAGGTGCGAGCCCGACCAAGGATGACAGTAAGGACTCAGATTTCTG GAAGATGCTTAATGAGCCAGAGGACCAGGCCCCAGGAGGGGAGGAGGTGCCGGCTGAGGAGCAGGACC CAAGCCCTGAGGCAGCAGATTCAGCTTCTGGTGCTCCCAATGATTTTCAGAACAACGTGCAGGTCAAA GTCATTCGAAGCCCTGCGGATTTGATTCGATTCATAGAGGAGCTGAAAGGTGGAACAAAAAAGGGGAA GCCAAATATAGGCCAAGAGCAGCCTGTGGATGATGCTGCAGAAGTCCCTCAGAGGGAACCAGAGAAGG AAAGGGGTGATCCAGAACGGCAGAGAGAGATGGAAGAAGAGGAGGATGAGGATGAGGATAAGATGAGG ATGAACGGCAGTTACTGGGGAGAATTTGAGAAGGAACTGGAAGGGATCCTGCTTCCGTCAGACCGAGA CCGGCTCCGTTCGGAGACAGAGAAAGAGCTGGACCCAGATGGGCTGAAGAAGGAGTCAGAGCGGGATC GGGCAATGCTGGCTCTCACATCCACTCTCAACAAACTCATCAAAAGACTGGAGGAAAAACAGAGTCCA GAGCTGGTGAAGAAGCACAAGAAAAAGAGGGTTGTCCCCAAAAAGCCTCCCCCATCACCCCAACCTAC AGAGGAGGATCCTGAGCACAGAGTCCGGGTCCGGGTCACCAAGCTCCGTCTCGGAGGCCCTAATCAGG ATCTGACTGTCCTCGAGATGAAACGGGAAAACCCACAGCTGAAACAAATCGAGGGGCTGGTGAAGGAG CTGCTGGAGAGGGAGGGACTCACAGCTGCAGGGAAAATTGAGATCAAAATTGTCCGCCCATGGGCTGA AGGGACTGAAGAGGGTGCACGTTGGCTGACTGATGAGGACACGAGAAACCTCAAGGAGATCTTCTTCA ATATCTTGGTGCCGGGAGCTGAAGAGGCCCAGAAGGAACGCCAGCGGCAGAAAGAGCTGGAGAGCAAT TACCGCCGGGTGTGGGGCTCTCCAGGTGGGGAGGGCACAGGGGACCTGGACGAATTTGACTTCTGAGA CCAACACTACACTTGACCCTTCACGGAATCCAGACTCTTCCTGGACTGGCTTGCCTCCTCCCCACCTC
CCCACCCTGGAACCCCTGAGGGCCAAACAGCAGAGTGGAGCTGAGCTGTGGACCTCTCGGGCAACTCTi
GTGGGTGTGGGGGCCCTGGGTGAATGCTGCTGCCCCTGCTGGCAGCCACCTTGAGACCTCACCGGGCC
TGTGATATTTGCTCTCCTGAACTCTCACTCAATCCTCTTCCTCTCCTCTGTGGCTTTTCCTGTTATTG
TCCCCTAATGATAGGATATTCCCTGCTGCCTACCTGGAGATTCAGTAGGATCTTTTGAGTGGAGGTGG
GTAGAGAGAGCAAGGAGGGCAGGACACTTAGCAGGCACTGAGCAAGCAGGCCCCCACCTGCCCTTAGT
GATGTTTGGAGTCGTTTTACCCTCTTCTATGGAATTGCCTGTGGATTCCTTCTCCCTTCCCTGCCCAC
CGTGTCCTACAATTGTGCTCTGAGTGAGAGCCTTCCTCTCTGCTAGGAAGGTTATGTGCCTTACTCCG
CAATCGGAAAGTTAGCCACGTTCTAATCGTTATACAAGGCTAAAAAAAATAAATATTTATACCCGTTT
TTCCCTGATTTATTTTTAAATATTATATTATTTTTAATATAATTTGTGGG
NOV41i, CG56878-04 SEQ ID NO: 966 650 aa MW at 73601.9kD Protein Sequence
MAAETLLSSLLGLLLLGLLLPASLTGGVGSLNLEELSEMRYGIEILPLPVMGGQSQSSDWIVSSKYK QRYECRLPAGAIHFQREREEETPAYQGPGIPELLSPMRDAPCLLKTKDWWTYEFCYGRHIQQYHMEDS EIKGEVLYLGYYQSAFD DDETAKASKQHRLKRYHSQTYGNGSKCDLNGRPREAEVRFLCDEGAGISG DYIDRVDEPLSCSYVLTIRTPRLCPHPLLRPPPSAAPQAILCHPSLQPEEYMAYVQRQADSKQYGDKI IEELQDLGPQV SETKSGVAPQKMAGASPTKDDSKDSDF KMLNEPEDQAPGGEEVPAEEQDPSPEAA DSASGAPNDFQN-- rVQVKVIRSPADLIRFIEELKGGTKKGKPNIGQEQPVDDAAEVPQREPEKERGDPE RQREMEEEEDEDED-I-^RMNGSYWGEFEKELEGILLPSDRDRLRSETEKELDPDGLKKESERDRAMLAL TSTLN-KLIKRLEEKQSPELVKKHKKKRVVPKKPPPSPQPTEEDPEHRVRVRVTKLRLGGPNQDLTVLE MKRENPQLKQIEGLVKELLEREGLTAAGKIEIKIVRP AEGTEEGAR LTDEDTRNLKEIFFNILVPG AEEAQKERQRQKELESNYRRV GSPGGEGTGDLDEFDF
NOV41J, SNP13382511 of SEQ ID NO: 967 2739 bp CG56878-01, DNA Sequence ORF Start: ATG at 86 ORF Stop: TGA at 2090
SNP Pos: 2596 ISNP Change: C to T~
TTGCACTCTCCCACACCCTTTTCTTTTCGTCCGCTCTTCGCTTATTTCTCCCGCCGTCTCCTCTGCAT
AAGAAGGGGAACGAAAGATGGCGGCGGAAACGCTGCTGTCCAGTTTGTTAGGACTGCTGCTTCTGGGA
CTCCTGTTACCCGCAAGTCTGACCGGCGGTGTCGGGAGCCTGAACCTGGAGGAGCTGAGTGAGATGCG TTATGGGATCGAGATCCTGCCGTTGCCTGTCATGGGAGGGCAGAGCCAATCTTCGGACGTGGTGATTG TCTCCTCTAAGTACAAACAGCGCTATGAGTGTCGCCTGCCAGCTGGAGCTATTCACTTCCAGCGTGAA AGGGAGGAGGAAACACCTGCTTACCAAGGGCCTGGGATCCCTGAGTTGTTGAGCCCAATGAGAGATGC TCCCTGCTTGCTGAAGACAAAGGACTGGTGGACATATGAATTCTGTTATGGACGCCACATCCAGCAAT ACCACATGGAAGATTCAGAGATCAAAGGTGAAGTCCTCTATC TGGGATGATGAAACAGCCAAGGCCTCCAAGCAGCATCGTCTTAAACGCTACCACAGCCAGACCTATGG CAATGGGTCCAAGTGCGACCTTAATGGGAGGCCCCGGGAGGCCGAGGTTCGGTTCCTCTGTGACGAGG GTGCAGGTATCTCTGGGGACTACATCGATCGCGTGGACGAGCCCTTGTCCTGCTCTTATGTGCTGACC ATTCGCACTCCTCGGCTCTGCCCCCACCCTCTCCTCCGGCCCCCACCCAGTGCTGCACCGCAGGCCAT CCTCTGTCACCCTTCCCTACAGCCTGAGGAGTACATGGCCTACGTTCAGAGGCAAGCCGTAGACTCAA AGCAGTATGGAGATAAAATCATAGAGGAGCTGCAAGATCTAGGCCCCCAAGTGTGGAGTGAGACCAAG TCTGGGGTGGCACCCCAAAAGATGGCAGGTGCGAGCCCGACCAAGGATGACAGTAAGGACTCAGATTT CTGGAAGATGCTTAATGAGCCAGAGGACCAGGCCCCAGGAGGGGAGGAGGTGCCGGCTGAGGAGCAGG ACCCAAGCCCTGAGGCAGCAGATTCAGCTTCTGGTGCTCCCAATGATTTTCAGAACAACGTGCAGGTC AAAGTCATTCGAAGCCCTGCGGATTTGATTCGATTCATAGAGGAGCTGAAAGGTGGAACAAAAAAGGG GAAGCCAAATATAGGCCAAGAGCAGCCTGTGGATGATGCTGCAGAAGTCCCTCAGAGGGAACCAGAGA AGGAAAGGGGTGATCCAGAACGGCAGAGAGAGATGGAAGAAGAGGAGGATGAGGATGAGGATGAGGAT GAAGATGAGGATGAACGGCAGTTACTGGGAGAATTTGAGAAGGAACTGGAAGGGATCCTGCTTCCGTC AGACCGAGACCGGCTCCGTTCGGAGGTGAAGGCTGGCATGGAGCGGGAACTGGAGAACATCATCCAGG AGACAGAGAAAGAGCTGGACCCAGATGGGCTGAAGAAGGAGTCAGAGCGGGATCGGGCAATGCTGGCT CTCACATCCACTCTCAACAAACTCATCAAAAGACTGGAGGAAAAACAGAGTCCAGAGCTGGTGAAGAA GCACAAGAAAAAGAGGGTTGTCCCCAAAAAGCCTCCCCCATCACCCCAACCTACAGAGGAGGATCCTG AGCACAGAGTCCGGGTCCGGGTCACCAAGCTCCGTCTCGGAGGCCCTAATCAGGATCTGACTGTCCTC GAGATGAAACGGGAAAACCCACAGCTGAAACAAATCGAGGGGCTGGTGAAGGAGCTGCTGGAGAGGGA GGGACTCACAGCTGCAGGGAAAATTGAGATCAAAATTGTCCGCCCATGGGCTGAAGGGACTGAAGAGG GTGCACGTTGGCTGACTGATGAGGACACGAGAAACCTCAAGGAGATCTTCTTCAATATCTTGGTGCCG GGAGCTGAAGAGGCCCAGAAGGAACGCCAGCGGCAGAAAGAGCTGGAGAGCAATTACCGCCGGGTGTG GGGCTCTCCAGGTGGGGAGGGCACAGGGGACCTGGACGAATTTGACTTCTGAGACCAACACTACACTT
GACCCTTCACGGAATCCAGACTCTTCCTGGACTGGCTTGCCTCCTCCCCACCTCCCCACCCTGGAACC
CCTGAGGGCCAAACAGCAGAGTGGAGCTGAGCTGTGGACCTCTCGGGCAACTCTGTGGGTGTGGGGGC
CCTGGGTGAATGCTGCTGCCCCTGCTGGCAGCCACCTTGAGACCTCACCGGGCCTGTGATATTTGCTC
TCCTGAACTCTCACTCAATCCTCTTCCTCTCCTCTGTGGCTTTTCCTGTTATTGTCCCCTAATGATAG
GATATTCCCTGCTGCCTACCTGGAGATTCAGTAGGATCTTTTGAGTGGAGGTGGGTAGAGAGAGCAAG
GAGGGCAGGACACTTAGCAGGCACTGAGCAAGCAGGCCCCCACCTGCCCTTAGTGATGTTTGGAGTCG
TTTTACCCTCTTCTATTGAATTGCCTTGGGATTTCCTTCTCCCTTTCCCTGCCCACCCTGTCCCCTAC lAATTTGTGCTTTTGAGTTGAGGAGCCTTCACCTCTGTTGCTGAGGAAATGGTAGAATGCTGCCTATCA
CCTCCAGCACAATCCCAGCGAAAAAGGTGTGAAGCACCCACCATGTTCTTGAACAATCAGGTTTCTAA lATAAACAACTGGACCATCA
NOV41J, SNP13382511 of SEQ ID NO: 968 668 aa MW at 75659.9kD CG56878-01, Protein Sequence SNP Change: no change
MAAETLLSSLLGLLLLGLLLPASLTGGVGSLNLEELSEMRYGIEILPLPVMGGQSQSSDWIVSSKYK QRYECRLPAGAIHFQREREEETPAYQGPGIPELLSPMRDAPCLLKTKDW TYEFCYGRHIQQYHMEDS EIKGEVLYLGYYQSAFDWDDETAKASKQHRLKRYHSQTYGNGSKCDLNGRPREAEVRFLCDEGAGISG DYIDRVDEPLSCSYVLTIRTPRLCPHPLLRPPPSAAPQAILCHPSLQPEΞYMAYVQRQAVDSKQYGDK IIEELQDLGPQVWSETKSGVAPQKMAGASPTKDDSKDSDFWKMLNEPEDQAPGGEEVPAEEQDPSPEA ADSASGAPNDFQNNVQVKVIRSPADLIRFIEELKGGTKKGKPNIGQEQPVDDAAEVPQREPEKERGDP ERQREMEEEEDEDEDEDEDEDERQLLGEFEKELEGILLPSDRDRLRSEVKAGMERELENIIQETEKEL DPDGL-K-KESERDRAMLALTSTLNKLIKRLEEKQSPELVKKHKKKRVVPKKPPPSPQPTEEDPEHRVRV RVTKLRLGGPNQDLTVLEMKRENPQLKQIEGLVKELLEREGLTAAGKIEIKIVRPWAEGTEEGAR LT DΞDTRNLKEIFFNILVPGAEEAQKERQRQKELESNYRRV GSPGGEGTGDLDEFDF
NOV41k, SNP13382506 of SEQ ID NO: 969 12739 bp CG56878-01, DNA Sequence ORF Start: ATG at 86 ORF Stop: TGA at 2090
SNP Pos: 2671 SNP Change: C to T
TTGCACTCTCCCACACCCTTTTCTTTTCGTCCGCTCTTCGCTTATTTCTCCCGCCGTCTCCTCTGCAT
AAGAAGGGGAACGAAAGATGGCGGCGGAAACGCTGCTGTCCAGTTTGTTAGGACTGCTGCTTCTGGGA
CTCCTGTTACCCGCAAGTCTGACCGGCGGTGTCGGGAGCCTGAACCTGGAGGAGCTGAGTGAGATGCG TTATGGGATCGAGATCCTGCCGTTGCCTGTCATGGGAGGGCAGAGCCAATCTTCGGACGTGGTGATTG TCTCCTCTAAGTACAAACAGCGCTATGAGTGTCGCCTGCCAGCTGGAGCTATTCACTTCCAGCGTGAA AGGGAGGAGGAAACACCTGCTTACCAAGGGCCTGGGATCCCTGAGTTGTTGAGCCCAATGAGAGATGC TCCCTGCTTGCTGAAGACAAAGGACTGGTGGACATATGAATTCTGTTATGGACGCCACATCCAGCAAT ACCACATGGAAGATTCAGAGATCAAAGGTGAAGTCCTCTATCTCGGCTACTACCAATCAGCCTTCGAC TGGGATGATGAAACAGCCAAGGCCTCCAAGCAGCATCGTCTTAAACGCTACCACAGCCAGACCTATGG -n- -...S H-Jt
CAATGGGTCCAAGTGCGACCTTAATGGGAGGCCCCGGGAGGCCGAGGTTCGGTTCCTCTGTGACGAGG GTGCAGGTATCTCTGGGGACTACATCGATCGCGTGGACGAGCCCTTGTCCTGCTCTTATGTGCTGACC ATTCGCACTCCTCGGCTCTGCCCCCACCCTCTCCTCCGGCCCCCACCCAGTGCTGCACCGCAGGCCAT CCTCTGTCACCCTTCCCTACAGCCTGAGGAGTACATGGCCTACGTTCAGAGGCAAGCCGTAGACTCAA AGCAGTATGGAGATAAAATCATAGAGGAGCTGCAAGATCTAGGCCCCCAAGTGTGGAGTGAGACCAAG TCTGGGGTGGCACCCCAAAAGATGGCAGGTGCGAGCCCGACCAAGGATGACAGTAAGGACTCAGATTT CTGGAAGATGCTTAATGAGCCAGAGGACCAGGCCCCAGGAGGGGAGGAGGTGCCGGCTGAGGAGCAGG ACCCAAGCCCTGAGGCAGCAGATTCAGCTTCTGGTGCTCCCAATGATTTTCAGAACAACGTGCAGGTC AAAGTCATTCGAAGCCCTGCGGATTTGATTCGATTCATAGAGGAGCTGAAAGGTGGAACAAAAAAGGG GAAGCCAAATATAGGCCAAGAGCAGCCTGTGGATGATGCTGCAGAAGTCCCTCAGAGGGAACCAGAGA AGGAAAGGGGTGATCCAGAACGGCAGAGAGAGATGGAAGAAGAGGAGGATGAGGATGAGGATGAGGAT GAAGATGAGGATGAACGGCAGTTACTGGGAGAATTTGAGAAGGAACTGGAAGGGATCCTGCTTCCGTC AGACCGAGACCGGCTCCGTTCGGAGGTGAAGGCTGGCATGGAGCGGGAACTGGAGAACATCATCCAGG AGACAGAGAAAGAGCTGGACCCAGATGGGCTGAAGAAGGAGTCAGAGCGGGATCGGGCAATGCTGGCT CTCACATCCACTCTCAACAAACTCATCAAAAGACTGGAGGAAAAACAGAGTCCAGAGCTGGTGAAGAA GCACAAGAAAAAGAGGGTTGTCCCCAAAAAGCCTCCCCCATCACCCCAACCTACAGAGGAGGATCCTG AGCACAGAGTCCGGGTCCGGGTCACCAAGCTCCGTCTCGGAGGCCCTAATCAGGATCTGACTGTCCTC GAGATGAAACGGGAAAACCCACAGCTGAAACAAATCGAGGGGCTGGTGAAGGAGCTGCTGGAGAGGGA GGGACTCACAGCTGCAGGGAAAATTGAGATCAAAATTGTCCGCCCATGGGCTGAAGGGACTGAAGAGG GTGCACGTTGGCTGACTGATGAGGACACGAGAAACCTCAAGGAGATCTTCTTCAATATCTTGGTGCCG GGAGCTGAAGAGGCCCAGAAGGAACGCCAGCGGCAGAAAGAGCTGGAGAGCAATTACCGCCGGGTGTG GGGCTCTCCAGGTGGGGAGGGCACAGGGGACCTGGACGAATTTGACTTCTGAGACCAACACTACACTT
GACCCTTCACGGAATCCAGACTCTTCCTGGACTGGCTTGCCTCCTCCCCACCTCCCCACCCTGGAACC
CCTGAGGGCCAAACAGCAGAGTGGAGCTGAGCTGTGGACCTCTCGGGCAACTCTGTGGGTGTGGGGGC
CCTGGGTGAATGCTGCTGCCCCTGCTGGCAGCCACCTTGAGACCTCACCGGGCCTGTGATATTTGCTC
TCCTGAACTCTCACTCAATCCTCTTCCTCTCCTCTGTGGCTTTTCCTGTTATTGTCCCCTAATGATAG
GATATTCCCTGCTGCCTACCTGGAGATTCAGTAGGATCTTTTGAGTGGAGGTGGGTAGAGAGAGCAAG
GAGGGCAGGACACTTAGCAGGCACTGAGCAAGCAGGCCCCCACCTGCCCTTAGTGATGTTTGGAGTCG
TTTTACCCTCTTCTATTGAATTGCCTTGGGATTTCCTTCTCCCTTTCCCTGCCCACCCTGTCCCCTAC
AATTTGTGCTTCTGAGTTGAGGAGCCTTCACCTCTGTTGCTGAGGAAATGGTAGAATGCTGCCTATCA
CCTCCAGCACAATCCCAGTGAAAAAGGTGTGAAGCACCCACCATGTTCTTGAACAATCAGGTTTCTAA
ATAAACAACTGGACCATCA
NOV41k, SNP13382506 of SEQ ID NO: 970 668 aa MW at 75659.9kD CG56878-01, Protein Sequence I SNP Change: no change
MAAETLLSSLLGLLLLGLLLPASLTGGVGSLNLEELSEMRYGIEILPLPVMGGQSQSSDWIVSSKYK QRYECRLPAGAIHFQREREEETPAYQGPGIPELLSPMRDAPCLLKTKD TYEFCYGRHIQQYHMEDS EIKGEVLYLGYYQSAFD DDETAKASKQHRLKRYHSQTYGNGSKCDLNGRPREAEVRFLCDEGAGISG DYIDRVDEPLSCSYVLTIRTPRLCPHPLLRPPPSAAPQAILCHPSLQPEEYMAYVQRQAVDSKQYGDK IIEELQDLGPQVWSETKSGVAPQKMAGASPTKDDSKDSDFWKMLNEPEDQAPGGEEVPAEEQDPSPEA -ADSASGAP---TOFQNNVQVKVIRSPADLIRFIEELKGGTKKGKPNIGQEQPVDDAAEVPQREPEKERGDP ERQREMEEEEDEDEDEDEDEDERQLLGEFEKELEGILLPSDRDRLRSEVKAGMERELENIIQETEKEL DPDGL-KKESERDRA L-ALTSTLNKLI---αiLEEKQSPELVK-i KKKRVVPKKPPPSPQPTEEDPEHRVRV RVTKLRLGGPNQDLTVLEMKRENPQLKQIEGLVKELLEREGLTAAGKIEIKIVRPWAEGTEEGAR LT DEDTRNLKEIFFNILVPGAEEAQKERQRQKELESNYRRVWGSPGGEGTGDLDEFDF
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 41B.
Table 41B. Comparison of the NOV41 protein sequences.
NOV4la MAAETLLSSLLGLLLLGLLLPASLTGGVGSLNLEELSEMRYGIEILPLPVMGGQSQSSDV
NOV4lb G TGGVGSLNLEELSEMRYGIEILPLPVMGGQSQSSDV
NOV4lc --SEFALG TGGVGSLNLEELSEMRYGIEILPLPVMGGQSQSSDV
NOV4Id G TGGVGSLNLEELSEMRYGIEILPLPVMGGQSQSSDV
NOV4le G TGGVGSLNLEELSEMRYGIEILPLPVMGGQSQSSDV
NOV4If G TGGVGSLNLEELSEMRYGIEILPLPVMGGQSQSSDV
NOV4lg GGVGSLNLEELSEMRYGIEILPLPVMGGQSQSSDV
NOV4lh GGVGSLNLEELSEMRYGIEILPLPVMGGQSQSSDV NOV41i MAAETLLSSLLGLLLLGLLLPASLTGGVGSLNLEELSEMRYGIEILPLPVMGGQSQSSDV
NOV41a VIVSSKYKQRYECRLPAGAIHFQREREEETPAYQGPGIPELLSPMRDAPCLLKTKD TY
NOV41b VIVSSKYKQRYECRLPAGAIHFQREREEETPAYQGPGIPELLSPMRDAPCLLKTKD TY
NOV41C VIVSSKYKQRYECRLPAGAIHFQREREEETPAYQGPGIPELLSPMRDAPCLLKTKD WTY
NOV41d VIVSSKYKQRYECRLPAGAIHFQREREEETPAYQGPGIPELLSPMRDAPCLLKTKD TY
NOV41e VIVSSKYKQRYECRLPAGAIHFQREREEETPAYQGPGIPELLSPMRDAPCLLKTKD TY
NOV41f VIVSSKYKQRYECRLPAGAIHFQREREEETPAYQGPGIPELLSPMRDAPCLLKTKD TY
NOV41g VIVSSKYKQRYECRLPAGAIHFQREREEETPAYQGPGIPELLSPMRDAPCLLKTKDW TY
NOV41h VIVSSKYKQRYECRLPAGAIHFQREREEETPAYQGPGIPELLSPMRDAPCLLKTKD WTY
NOV4li VIVSSKYKQRYECRLPAGAIHFQREREEETPAYQGPGIPELLSPMRDAPCLLKTKD TY
NOV41a EFCYGRHIQQYHMEDSEIKGEVLYLGYYQSAFD DDETAKASKQHRLKRYHSQTYGNGSK
NOV4lb EFCYGRHIQQYHMEDSEIKGEVLYLGYYQSAFDWDDETAKASKQHRLKRYHSQTYGNGSK
NOV41C EFCYGRHIQQYHMEDSEIKGEVLYLGYYQSAFD DDETAKASKQHRLKRYHSQTYGNGSK
NOV41d EFCYGRHIQQYHMEDSEIKGEVLYLGYYQSAFD DDETAKASKQHRLKRYHSQTYGNGSK
NOV41e EFCYGRHIQQYHMEDSEIKGEVLYLGYYQSAFD DDETAKASKQHRLKRYHSQTYGNGSK
NOV41f EFCYGRHIQQYHMEDSEIKGEVLYLGYYQSAFDWDDETAKASKQHRLKRYHSQTYGNGSK
NOV41g EFCYGRHIQQYHMEDSEIKGEVLYLGYYQSAFDWDDETAKASKQHRLKRYHSQTYGNGSK
NOV4lh EFCYGRHIQQYHMEDSEIKGEVLYLGYYQSAFD DDETAKASKQHRLKRYHSQTYGNGSK
NOV4li EFCYGRHIQQYHMEDSEIKGEVLYLGYYQSAFD DDETAKASKQHRLKRYHSQTYGNGSK
NOV41a CDLNGRPREAEVRFLCDEGAGISGDYIDRVDEPLSCSYVLTIRTPRLCPHPLLRPPPSAA
NOV4lb CDLNGRPREAEVRFLCDEGAGISGDYIDRVDEPLSCSYVLTIRTPRLCPHPLLRPPPSAA
NOV41C CDLNGRPREAEVRFLCDEGAGISGDYIDRVDEPLSCSYVLTIRTPRLCPHPLLRPPPSAA
NOV4Id CDLNGRPREAEVRFLCDEGAGISGDYIDRVDEPLSCSYVLTIRTPRLCPHPLLRPPPSAA
NOV41e CDLNGRPREAEVRFLCDEGAGISGDYIDRVDEPLSCSYVLTIRTPRLCPHPLLRPPPSAA
NOV41f CDLNGRPREAEVRFLCDEGAGISGDYIDRVDEPLSCSYVLTIRTPRLCPHPLLRPPPSAA
NOV41g CDLNGRPREAEVRFLCDEGAGISGDYIDRVDEPLSCSYVLTIRTPRLCPHPLLRPPPSAA
NOV4lh CDLNGRPREAEVRFLCDEGAGISGDYIDRVDEPLSCSYVLTIRTPRLCPHPLLRPPPSAA
NOV41i CDLNGRPREAEVRFLCDEGAGISGDYIDRVDEPLSCSYVLTIRTPRLCPHPLLRPPPSAA
NOV4la PQAILCHPSLQPEEYMAYVQRQAVDSKQYGDKIIEELQDLGPQVWSETKSGVAPQKMAGA
NOV41b PQAILCHPSLQPEEYMAYVQRQAD-SKQYGDKIIEELQDLGPQV SETKSGVAPQKMAGA
NOV4lc PQAILCHPSLQPEEYMAYVQRQAD-SKQYGDKIIEELQDLGPQVWSETKSGVAPQKMAGA
NOV41d PQAILCHPSLQPEEYMAYVQRQAD-SKQYGDKIIEELQDLGPQVWSETKSGVAPQKMAGA
NOV41e PQAILCHPSLQPEEYMAYVQRQAD-SKQYGDKIIEELQDLGPQV SETKSGVAPQKMAGA
NOV4If PQAILCHPSLQPEEYMAYVQRQAD-SKQYGDKIIEELQDLGPQVWSETKSGVAPQKMAGA
NOV4lg PQAI CHPSLQPEEYMAYVQRQAD-SKQYGDKIIEELQDLGPQV SETKSGVAPQKMAGA
NOV41h PQAILCHPSLQPEEYMAYVQRQAD-SKQYGDKIIEELQDLGPQV SETKSGVAPQKMAGA
NOV41i PQAILCHPSLQPEEYMAYVQRQAD-SKQYGDKIIEELQDLGPQVWSETKSGVAPQKMAGA
NOV4la SPTKDDSKDSDF KMLNEPEDQAPGGEEVPAEEQDPSPEAADSASGAPNDFQNNVQVKVI
NOV4lb SPTKDDSKDSDF KMLNEPEDQAPGGEEVPAEEQDPSPEAADSASGAPNDFQNNVQVKVI
NOV41C SPTKDDSKDSDF KMLNEPEDQAPGGEEVPAEEQDPSPEAADSASGAPNDFQNNVQVKVI
NOV4Id SPTKDDSKDSDFW-KMLNEPEDQAPGGEEVPAEEQDPSPEAADSASGAPNDFQNNVQVKVI
NOV4le SPTKDDSKDSDFWKMLNEPEDQAPGGEEVPAEEQDPSPEAADSASGAPNDFQNNVQVKVI
NOV4If SPTKDDSKDSDFWKMLNEPEDQAPGGEEVPAEEQDPSPEAADSASGAPNDFQNNVQVKVI
NOV4lg SPT-1-sTJDS-f- SDFWK-MLNEPEDQAPGGEEVPAEEQDPSPEAADSASGAPNDFQNNVQVKVI
NOV4lh SPTKDDSKDSDF KMLNEPEDQAPGGEEVPAEEQDPSPEAADSASGAPNDFQNNVQVKVI
NOV4li SPT-K-DDS---α3SDFWKMLNEPEDQAPGGEEVPAEEQDPSPEAADSASGAPNDFQNNVQVKVI
NOV4la RSPADLIRFIEELKGGTKKGKPNIGQEQPVDDAAEVPQREPEKERGDPERQREMEEEEDE
N0V4lb RSPADLIRFIEELKGGTKKGKPNMDQEQPVDDAAEVPQREPEKERGDPERQREMEEEEDE
NOV4lc RSPADLIRFIEELKGGTKKGKPNIGQEQPVDDAAEVPQREPEKERGDPERQREMEEEEDE
NOV4Id RSPADLIRFIEELKGGIKKGKPNIGQEQPVDDAAEVPQREPEKERGDPERQREMEEEEDE
NOV4le RSPADLIRFIEELKGGTKKGKPNIGQEQPVDDAAEVPQREPEKΞRGDPERQREMEEEEDE
NOV4If RSPADLIRFIEELKGGTKKGKPNIGQEQPVDDAAΞVPQREPEKERGDPERQREMEEEEDE
NOV4lg RSPADLIRFIEELKGGTKKGKPNIGQEQPVDDAAEVPQREPEKERGDPERQREMEEEEDE
NOV4lh RSPADLIRFIEELKGGIKKGKPNIGQEQPVDDAAEVPQREPEKERGDPERQREMEEEEDE NOV4li RSPADLIRFIEELKGGTKKGKPNIGQEQPVDDAAEVPQREPEKERGDPERQREMEEEEDΞ
NOV4la DEDEDEDEDERQLLGEFEKELEGILLPSDRDRLRSEVKAGMERELENIIQETEKELDPDG
NOV41b DEDEDEDEDERQLLGEFEKELEGILLPSDRDRLRSEVKAGMERELENIIQETEKELDPDG
NOV41C DEDEDEDEDERQLLGEFEKELEGILLPSDRGRLRSEVKAGMERELENIIQETEKELDPDG
NOV4Id DEDEDEDEDERQLLGΞFEKELEGILLPSDRDRLRSEVKAGMERELENIIQETEKELDPDG
NOV41e DEDEDEDEDERQLLGEFEKELΞGILLPSDRDRLRSEVKAGMERELENIIQETEKELDPDG
NOV41f DEDEDEDEDERQLLGEFEKELEGILLPSDRDRLRSEVKAGMERELENIIQETEKELDPDG
NOV41g DEDEDEDEDERQLLGEFEKELEGILLPSDRDRLRSEVKAGMERELENIIQETEKELDPDG
NOV41h DEDEDEDEDERQLLGEFEKELEGILLPSDRDRLRSEVKAGMERELENIIQETEKELDPDG
NOV4li DED- -KMRMNGSYWGEFEKELEGILLPSDRDRLR S ΞTEKELDPDG
NOV4la LKKESERDR.AMLALTSTLN-KLIKRLEEKQSPELVKKHKKKRVVPKKPPPSPQPTEEDPEH
NOV41b LKKESERDRAMLALTSTLNKPIKRLEEKQSPELVKKHKKKRVVPKKPPPSPQPT
NOV4lc LKKESERDRAMLALTSTLNKLIKRLEEKQSPELVKKHKKKRVVPKKPPPSPQPT
NOV4Id LKKΞSERDRAMLALTSTLNKLIKRLEEKQSPELVKKHKKKRWPKKPPPSPQPT
NOV4le LKKESERDRAMLALTSTLNKLIKRLEEKQSPELVKKHKKKRWPKKPPPSPQPTEEDPEH
NOV41f LKKESERDRAMLALTSTLNKLIKRLEEKQSPELVKKHKKKRWPKKPPPSPQPTEEDPEH
NOV4lg LKKESERDRA-MLALTSTLNKLIKRLEEKQSPELVKKHKKKRWPKKPPPSPQPTEEDPEH
NOV41h LKKESERDRAMLALTSTLNKLIKRLEEKQSPELVKKHKKKRVVPKKPPPSPQPT
NOV4li LKKESERDRAMLALTSTLNKLIKRLEEKQSPELVKKHKKKRWPKKPPPSPQPTEEDPEH
NOV4la RVRVRVTKLRLGGPNQDLTVLEMKRENPQLKQIEGLVKELLEREGLTAAGKIEIKIVRP
NOV41b GKIEIKIVRPW
NOV4lc GKIEIKIVRPW
NOV41d GKIEIKIVRPW
NOV4le RVRVRVTKLRLGGPNQDLTVLEMKRENPQLKQIEGLVKELLEREGLTAAGKIEIKIVRPW
NOV4If RVRVRVTKLRLGGPNQDLTVLEMKRENPQLKQIEGLVKELLEREGLTAAGKIEIKIVRPW
NOV4lg RVRVRVTKLRLGGPNQDLTVLEMKRENPQLKQIEGLVKELLEREGLTAAGKIEIKIVRPW
NOV4lh GKIEIKIVRPW
NOV4li RVRVRVTKLRLGGPNQDLTVLEMKRENPQLKQIEGLVKELLΞREGLTAAGKIEIKIVRPW
NOV41a AEGTEEGARWLTDEDTRNLKEIFFNILVPGAEEAQKERQRQKELESNYRRVWGSPGGEGT NOV41b AEGTEEGARWLTDEDTRNLKEIFFNILVPGAEEAQKERQRQKELESNYRRVWGSPGGEGT NOV41C AEGTEEGARWLTDEDTRNLKEIFFNILVPGAEEAQKERQRQKELESNYRRVWGSPGGEGT NOV41d AEGTEEGARWLTDEDTRNLKEIFFNILVPGAEEAQKERQRQKELESNYRRVWGSPGGEGT NOV41e AEGTEEGARWLTDEDTRNLKEIFFNILVPGAEEAQKERQRQKELESNYRRVWGSPGGEGT NOV41f AEGTEEGARWLTDEDTRNLKEIFFNILVPGAEEAQKERQRQKELESNYRRVWGSPGGEGT NOV41g AEGTEEGARWLTDEDTRNLKEIFFNILVPGAEEAQKERQRQKELESNYRRVWGSPGGEGT NOV41h AEGTEEGARWLTDEDTRNLKEIFFNILVPGAEEAQKERQRQKELESNYRRVWGSPGGEGT NOV41i AEGTEEGARWLTDEDTRNLKEIFFNILVPGAEEAQKERQRQKELESNYRRVWGSPGGEGT
NOV41a GDLDEFDF-- NOV41b GDLDEFDFVD NOV41C GDLDEFDFVD NOV41d GDLDEFDFVD NOV41e GDLDEFDFVD NOV41f GDLDEFDFVD NOV41g GDLDEFDF- - NOV41h GDLDEFDF-- NOV41i GDLDEFDF--
NOV41a (SEQ ID NO 950) NOV41b (SEQ ID NO 952) NOV41C (SEQ ID NO 954) N0V41d (SEQ ID NO 956) NOV41e (SEQ ID NO 958) NOV41f (SEQ ID NO 960) NOV41g (SEQ ID NO 962) NOV41h (SEQ ID NO 964)
Further analysis ofthe NOV4laprotein yielded the following properties shown in Table 41C.
Table 41C. Protein Sequence Properties NOV41
SignalP analysis: j Cleavage site between residues 26 and 27
PSORT π analysis:
PSG: a new signal peptide prediction method
N-region: length 4; pos.chg 0; neg.chg 1 H-region: length 29; peak value 0.00 PSG score: -4.40
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): 3.65 possible cleavage site: between 25 and 26
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al ' s method for TM region allocation
Init position for calculation: 1
Tentative number of TMS(s) for the threshold 0.5: 1
Number of TMS(s) for threshold 0.5: 1
INTEGRAL Likelihood = -6.74 Transmembrane 6 - 22
PERIPHERAL Likelihood = 8.49 (at 48)
ALOM score: -6.74 (number of TMSs: 1)
MTOP: Prediction of membrane topology (Hartmann et al.) Center position for calculation: 13 Charge difference: -3.0 C(-3.0) - N( 0.0) N >= C: N-terminal side will be inside
>>> membrane topology: type 2 (cytoplasmic tail 1 to 6)
MITDISC: discrimination of mitochondrial targeting seq R content: 0 Hyd Moment (75): 8.03 Hyd Moment (95): 5.55 G content: 5 D/E content: 2 S/T content: 6 Score: -7.42
Gavel: prediction of cleavage sites for mitochondrial preseq cleavage site motif not found
NUCDISC: discrimination of nuclear localization signals pat4: KKHK (3) at 515 pat4: KHKK (3) at 516 pat4: HKKK (3) at 517 pat4: KKKR (5) at 518 pat7 : none bipartite: KRLEEKQSPELVKKHKK at 503 content of basic residues : 13.6% NLS Score: 1.06
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals : none SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail : none
Dileucine motif in the tail : none checking 63 PROSITE DNA binding motifs : none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: nuclear Reliability: 76.7
COIL: : Lupas ' s algorithm to detect coiled-coil regions
408 E 0.52
409 R 0.52
410 Q 0.52
411 R 0.52
412 E 0.52
413 M 0.74
414 E 0.97
415 E 0.97
416 E 0.97
417 E 0.97
418 D 0.97
419 E 0.97
420 D 0.97
421 E 0.97
422 D 0.97
423 E 0.97
424 D 0.97
425 E 0.97
426 D 0.97
427 E 0.97
428 D 0.97
429 E 0.97
430 R 0.97
431 Q 0.97
432 L 0.97
433 0.97 434 G 0.97
435 E 0.97
436 F 0.97
437 E 0.97
438 K 0.97
439 Ξ 0.97
440 L 0.97
441 E 0.97
442 G 0.84
443 I 0.82 total: 36 residues
Final Results (k = 9/23) :
43.5 %: nuclear
26.1 % : mitochondrial
8.7 %: cytoplasmic
4.3 %: extracellular, including cell wall
4.3 %: Golgi
4.3 %: plasma membrane
4.3 % : vesicles of secretory system
4.3 %: peroxisomal
>> prediction for CG56878-01 is nuc (k=23)
A search of the NOV41a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 41D.
In a BLAST search of public sequence databases, the NOV41 a protein was found to have homology to the proteins shown in the BLASTP data in Table 41E.
PFam analysis predicts that the NOV4 la protein contains the domains shown in the Table 41F.
Table 41F. Domain Analysis of NOV41a
Identities/
Pfam Domain NOV41a Match Region Similarities Expect Value for the Matched Region
Example 42.
The NOV42 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 42A.
Table 42 A. NO 42 Sequence Analysis NOV42a, CG56904-01 SEQ ID NO: 971 1311 bp DNA Sequence ORF Start: ATG at 19 ORF Stop: TAA at 1282
GGAGCTCCCACACTTTCAATGGGGAGGCCCACCCAGTGGCCGAGCCTGCTGCTGCTCCTGCTGTTGCC
GGGGCCCCCGCCCGTCGCCGGCTTGGAAGACGCTGCCTTCCCCCACCTGGGGGAGAGCTTGCAGCCCC TGCCCCGGGCCTGTCCCCTGCGCTGCTCCTGCCCCCGAGTCGACACTGTGGACTGTGATGGCTTGGAC CTTCGAGTGTTCCCGGACAACATCACCAGAGCCGCTCAGCACCTCTCCCTGCAGAACAACCAGCTCCA GGAACTCCCCTACAATGAGCTGTCCCGCCTCAGTGGCCTGCGAACCCTCAACCTCCACAACAACCTCA TCTCCTCCGAAGGCCTGCCTGACGAGGCCTTCGAGTCCCTCACCCAGCTGCAGCACCTCTGCGTGGCT CACAACAAGAACAATCTCATCTCCAAGGTGCCCCGAGGAGCCCTGAGCCGCCAGACTCAACTCCGTGA GCTCTACCTCCAGCACAACCAGCTGACAGACAGTGGCCTGGATGCCACCACCTTCAGCAAGCTGCATA GCCTTGAATACCTGGATCTCTCCCACAACCAGCTGACCACAGTGCCCGCCGGCCTGCCCCGGACCCTG GCTATCCTGCACCTGGGCCGCAACCGCATCCGGCAGGTGGAGGCGGCTCGGCTGCACGGGGCGCGTGG TCTGCGCTATTTGTTGCTGCAGCACAACCAGCTGGGGAGCTCAGGGCTGCCCGCCGGGGCTCTGCGGC CGCTGCGGGGCCTGCACACGCTGCACCTCGATGGCAATGGGCTGGACCGCGTGCCTCCAGCCCTGCCC CGCCGCCTGCGTGCCCTGGTGCTGCCCCACAACCACGTGGCCGCGCTGGGTGCCCGTGACCTGGTCGC CACACCGGGCCTGACGGAGCTTAACCTGGCCTATAACCGCCTGGCCAGCGCCCGTGTGCACCACCGGG CCTTCCGCCGGTTGCGTGCCCTGCGCAGCCTCGACCTGGCAGGGAATCAGCTAACCCGGCTGCCCATG GGCCTGCCCACTGGCCTGCGCACCCTGCAGCTGCAACGCAACCAGCTGCGGATGCTCGAGCCCGAGCC TCTGGCCGGCCTGGACCAACTGCGGGAGCTCAGCCTGGCGCACAACCGGCTCCGGGTCGGCGACATCG GGCCAGGCACCTGGCATGAGCTCCAAGCCCTCCAGGTCAGGCACAGGCTGGTTAGCCACACTGTCCCC AGGGCCCCTCCATCCCCCTGCCTGCCCTGCCACGTCCCAAACATTCTAGTTAGCTGGTAAAGCAATCA GAACAAGAAAATGATAAGA
NOV42a, CG56904-01 SEQ ID NO: 972 421 aa MW at 46667.3kD Protein Sequence
MGRPTQ PSLLLLLLLPGPPPVAGLEDAAFPHLGESLQPLPRACPLRCSCPRVDTVDCDGLDLRVFPD
NIT-R-AAQHLSLQNNQLQELPYNELSRLSGLRTLNLH--røLISSEGLPDEAFESLTQLQHLCVAHN-KNrø
ISKVPRGALSRQTQLRELYLQHNQLTDSGLDATTFSKLHSLEYLDLSHNQLTTVPAGLPRTLAILHLG
R-MRIRQVEAARLHGARGLRYLLLQHNQLGSSGLPAGALRPLRGLHTLHLDGNGLDRVPPALPRRLRAL
VLPH--mV-AALGARDLVATPGLTELNLAYNRI-ASARVHHRAFRRLRALRSLDLAGNQLTRLPMGLPTGL
RTLQLQRNQLRMLEPEPLAGLDQLRELSLAHNRLRVGDIGPGT HELQALQVRHRLVSHTVPRAPPSP
CLPCHVPNILVS
NOV42b, 272355087 SEQ ID NO: 973 1278 bp DNA Sequence ORF Start: at 1 JORF Stop: end of sequence
GGATCCACCATGGGGAGGCCCACCCAGTGGCCGAGCCTGCTGCTGCTCCTGCTGTTGCCGGGGCCCCC GCCCGTCGCCGGCTTGGAAGACGCTGCCTTCCCCCACCTGGGGGAGAGCTTGCAGCCCCTGCCCCGGG CCTGTCCCCTGCGCTGCTCCTGCCCCCGAGTCGACACTGTGGACTGTGATGGCTTGGACCTTCGAGTG TTCCCGGACAACATCACCAGAGCCGCTCAGCACCTCTCCCTGCAGAACAACCAGCTCCAGGAACTCCC CTACAATGAGCTGTCCCGCCTCAGTGGCCTGCGAACCCTCAACCTCCACAACAACCTCATCTCCTCCG AAGGCCTGCCTGACGAGGCCTTCGAGTCCCTCACCCAGCTGCAGCACCTCTGCGTGGCTCACAACAAG AACAATCTCATCTCCAAGGTGCCCCGAGGAGCCCTGAGCCGCCAGACTCAACTCCGTGAGCTCTACCT CCAGCACAACCAGCTGACAGACAGTGGCCTGGATGCCACCACCTTCAGCAAGCTGCATAGCCTTGAAT ACCTGGATCTCTCCCACAACCAGCTGACCACAGTGCCCGCCGGCCTGCCCCGGACCCTGGCTATCCTG CACCTGGGCCGCAACCGCATCCGGCAGGTGGAGGCGGCTCGGCTGCACGGGGCGCGTGGTCTGCGCTA TTTGTTGCTGCAGCACAACCAGCTGGGGAGCTCAGGGCTGCCCGCCGGGGCTCTGCGGCCGCTGCGGG GCCTGCACACGCTGCACCTCTATGGCAATGGGCTGGACCGCGTGCCTCCAGCCCTGCCCCGCCGCCTG CGTGCCCTGGTGCTGCCCCACAACCACGTGGCCGCGCTGGGTGCCCGTGACCTGGTCGCCACACCGGG CCTGACGGAGCTTAACCTGGCCTATAACCGCCTGGCCAGCGCCCGTGTGCACCACCGGGCCTTCCGCC GGTTGCGTGCCCTGCGCAGCCTCGACCTGGCAGGGAATCAGCTAACCCGGCTGCCCATGGGCCTGCCC ACTGGCCTGCGCACCCTGCAGCTGCAACGCAACCAGCTGCGGATGCTCGAGCCCGAGCCTCTGGCCGG CCTGGACCAACTGCGGGAGCTCAGCCTGGCGCACAACCGGCTCCGGGTCGGCGACATCGGGCCAGGCA CCTGGCATGAGCTCCAAGCCCTCCAGGTCAGGCACAGGCTGGTTAGCCACACTGTCCCCAGGGCCCCT CCATCCCCCTGCCTGCCCTGCCACGTCCCAAACATTCTAGTTAGCTGGGAATTC
NOV42b, 272355087 SEQ ID NO: 974 426 aa MW at 47236.9kD Protein Sequence
GSTMGRPTQWPSLLLLLLLPGPPPVAGLEDAAFPHLGESLQPLPRACPLRCSCPRVDTVDCDGLDLRV FPDNITRAAQHLSLQ-trøQLQELPYNELSRLSGLRTLNLH-NNLISSΞGLPDEAFESLTQLQHLCVAHNK NNLISKVPRGALSRQTQLRELYLQHNQLTDSGLDATTFSKLHSLEYLDLSHNQLTTVPAGLPRTLAIL
HLGRNRIRQVEAARLHGARGLRYLLLQHNQLGSSGLPAGALRPLRGLHTLHLYGNGLDRVPPALPRRL
R-ALVTjPHN-ffV-AALGARDLVATPGLTELNLAYNRLASARVHHRAFRRLRALRSLDLAGNQLTRLPMG
TGLRTLQLQRNQLRMLEPEPLAGLDQLRELSLAHNRLRVGDIGPGT HELQALQVRHRLVSHTVPRAP
PSPCLPCHVPNILVSWEF
NOV42c, 246862506 SEQ ID NO: 975 1122 bp
DNA Sequence ORF Start: at 3 ORF Stop: at 1122
GGATCCACCATGGCTTGGACCTTCGAGTGTTCCCGGACAACATCACCAGAGCCGCTCAGCACCTCTCC CTGCAGAACAACCAGCTCCAGGAACTCCCCTACAATGAGCTGTCCCGCCTCAGTGGCCTGCGAACCCT CAACCTCCACAACAACCTCATCTCCTCCGAAGGCCTGCCTGACGAGGCCTTCGAGTCCCTCACCCAGC TGCAGCACCTCTGCGTGGCTCACAACAAGAACAATCTCATCTCCAAGGTGCCCCGAGGAGCCCTGAGC CGCCAGACTCAACTCCGTGAGCTCTACCTCCAGCACAACCAGCTGACAGACAGTGGCCTGGATGCCAC CACCTTCAGCAAGCTGCATAGCCTTGAATACCTGGATCTCTCCCACAACCAGCTGACCACAGTGCCCG CCGGCCTGCCCCGGACCCTGGCTATCCTGCACCTGGGCCGCAACCGCATCCGGCAGGTGGAGGCGGCT CGGCTGCACGGGGCGCGTGGTCTGCGCTATTTGTTGCTGCAGCACAACCAGCTGGGGAGCTCAGGGCT GCCCGCCGGGGCTCTGCGGCCGCTGCGGGGCCTGCACACGCTGCACCTCTATGGCAATGGGCTGGACC GCGTGCCTCCAGCCCTGCCCCGCCGCCTGCGTGCCCTGGTGCTGCCCCACAACCACGTGGCCGCGCTG GGTGCCCGTGACCTGGTCGCCACACCGGGCCTGACGGAGCTTAACCTGGCCTATAACCGCCTGGCCAG CGCCCGTGTGCACCACCGGGCCTTCCGCCGGTTGCGTGCCCTGCGCAGCCTCGACCTGGCAGGGAATC AGCTAACCCGGCTGCCCATGGGCCTGCCCACTGGCCTGCGCACCCTGCAGCTGCAACGCAACCAGCTG CGGATGCTCGAGCCCGAGCCTCTGGCCGGCCTGGACCAACTGCGGGAGCTCAGCCTGGCGCACAACCG GCTCCGGGTCGGCGACATCGGGCCAGGCACCTGGCATGAGCTCCAAGCCCTCCAGGTCAGGCACAGGC TGGTTAGCCACACTGTCCCCAGGGCCCCTCCATCCCCCTGCCTGCCCTGCCACGTCCCAAACATTCTA GTTAGCTGGGAATTCAAGGGCGAATTCCAAGCAC
NOV42c, 246862506 SEQ ID NO: 976 373 aa MW at 41726.5kD Protein Sequence
I---fflGLDLRVFPDNITR-AAQHLSLQNNQLQELPYNELSRLSGLRTLNLHNNLISSEGLPDEAFESLTQL QHLCVAHN---α-TOLISKVPRGALSRQTQLRELYLQHNQLTDSGLDATTFS-KLHSLEYLDLS--™QLTTVPA GLPRTLAILHLGRNRIRQVEAARLHGARGLRYLLLQHNQLGSSGLPAGALRPLRGLHTLHLYGNGLDR VPP-ALPRRLRALVLPHNHV-AALGARDLVATPGLTELNLAYNRLASARVHHRAFRRLRALRSLDLAGNQ LTRLPMGLPTGLRTLQLQRNQLR LEPΞPLAGLDQLRELSLAHNRLRVGDIGPGT HELQALQVRHRL VSHTVPRAPPSPCLPCHVPNILVS EFKGEFQA
NOV42d, CG56904-04 SEQ ID NO: 977 1977 bp
DNA Sequence JORF Start: ATG at 1 JORF Stop: TGA at 1723
ATGTGGCCGAGCCTGCTGCTGCTCCTGCTGTTGCCGGGGCCCCCGCCCGTCGCCGGCTTGGAAGACGC TGCCTTCCCCCACCTGGGGGAGAGCTTGCAGCCCCTGCCCCGGGCCTGTCCCCTGCGCTGCTCCTGCC CCCGAGTCGACACTGTGGACTGTGATGGCTTGGACCTTCGAGTGTTCCCGGACAACATCACCAGAGCC GCTCAGCACCTCTCCCTGCAGAACAACCAGCTCCAGGAACTCCCCTACAATGAGCTGTCCCGCCTCAG TGGCCTGCGAACCCTCAACCTCCACAACAACCTCATCTCCTCCGAAGGTCTGCCTGACGAGGCCTTCG AGTCCCTCACCCAGCTGCAGCACCTCTGCGTGGCTCACAACAAGCTCTCAGTGGCCCCTCAGTTTCTG CCCCGGTCCCTCCGTGTCGCGGATCTGGCTGCCAACCAAGTGATGGAGATCTTCCCCCTCACCTTTGG GGAGAAGCCGGCACTCAGGTCCGTGTACCTCCACAACAACCAGCTGAGCAACGCTGGCCTGCCCCCCG ACGCCTTCCGCGGCTCCGAGGCCATCGCCACCCTCAGCCTCTCCAACAACCAGCTCAGCTACCTGCCG CCCAGCCTGCCGCCCTCACTCGAGCGGCTCCACCTGCAGAACAATCTCATCTCCAAGGTGCCCCGAGG AGCCCTGAGCCGCCAGACTCAACTCCGTGAGCTCTACCTCCAGCACAACCAGCTGACAGACAGTGGCC TGGATGCCACCACCTTCAGCAAGCTGCATAGCCTTGAATACCTGGATCTCTCCCACAACCAGCTGACC ACAGTGCCCGCCGGCCTGCCCCGGACCCTGGCTATCCTGCACCTGGGCCGCAACCGCATCCGGCAGGT GGAGGCGGCTCGGCTGCACGGGGCGCGTGGTCTGCGCTATTTGTTGCTGCAGCACAACCAGCTGGGGA GCTCAGGGCTGCCCGCCGGGGCTCTGCGGCCGCTGCGGGGCCTGCACACGCTGCACCTCTATGGCAAT GGGCTGGACCGCGTGCCTCCAGCCCTGCCCCGCCGCCTGCGTGCCCTGGTGCTGCCCCACAACCACGT GGCCGCGCTGGGTGCCCGTGACCTGGTCGCCACACCGGGCCTGACGGAGCTTAACCTGGCCTATAACC GCCTGGCCAGCGCCCGTGTGCACCACCGGGCCTTCCGCCGGTTGCGTGCCCTGCGCAGCCTCGACCTG GCAGGGAATCAGCTAACCCGGCTGCCCATGGGCCTGCCCACTGGCCTGCGCACCCTGCAGCTGCAACG CAACCAGCTGCGGATGCTCGAGCCCGAGCCTCTGGCCGGCCTGGACCAACTGCGGGAGCTCAGCCTGG CGCACAACCGGCTCCGGGTCGGCGACATCGGGCCAGGCACCTGGCATGAGCTCCAAGCCCTCCAGATG CTGGACCTCAGCCACAATGAGCTGTCCTTTGTGCCCCCGGACCTGCCTGAGGCCCTAGAGGAGCTGCA CCTCGAGGGCAACCGCATCGGC^ GGCCTGCCCCCCGACGCCTTCCGCGGCTCCGAGGCCATCGCCACCCTCAGCCTCTCCAACAACCAGCT CAGCTACCTGCCGCCCAGCCTGCCGCCCTCACTCGAGCGGCTCCACCTGCAGAACAATCTCATCTCCA AGGTGCCCCGAGGAGCCCTGAGCCGCCAGACTCAACTCCGTGAGCTCTACCTCCAGCACAACCAGCTG ACAGACAGTGGCCTGGATGCCACCACCTTCAGCAAGCTGCATAGCCTTGAATACCTGGATCTCTCCCA CAACCAGCTGACCACAGTGCCCGCCGGCCTGCCCCGGACCCTGGCTATCCTGCACCTGGGCCGCAACC GCATCCGGCAGGTGGAGGCGGCTCGGCTGCACGGGGCGCGTGGTCTGCGCTATTTGTTGCTGCAGCAC AACCAGCTGGGGAGCTCAGGGCTGCCCGCCGGGGCTCTGCGGCCGCTGCGGGGCCTGCACACGCTGCA CCTCTATGGCAATGGGCTGGACCGCGTGCCTCCAGCCCTGCCCCGCCGCCTGCGTGCCCTGGTGCTGC CCCACAACCACGTGGCCGCGCTGGGTGCCCGTGACCTGGTCGCCACACCGGGCCTGACGGAGCTTAAC CTGGCCTATAACCGCCTGGCCAGCGCCCGTGTGCACCACCGGGCCTTCCGCCGGTTGCGTGCCCTGCG CAGCCTCGACCTGGCAGGGAATCAGCTAACCCGGCTGCCCATGGGCCTGCCCACTGGCCTGCGCACCC TGCAGCTGCAACGCAACCAGCTGCGGATGCTCGAGCCCGAGCCTCTGGCCGGCCTGGACCAACTGCGG GAGCTCAGCCTGGCGCACAACCGGCTCCGGGTCGGCGACATCGGGCCAGGCACCTGGCATGAGCTCCA AGCCCTCCAGATGCTGGACCTCAGCCACAATGAGCTGTCCTTTGTGCCCCCGGACCTGCCTGAGGCCC TGGAGGAGCTGCACCTCGAGGGCAACCGCATCGGCCACGTGGGCCCCGAGGCCTTCCTCAGCACACCC CGCCTGCGTGCCCTCTTCCTCAGGGCCAACAGGCTTCACATGACGAGCATCGCGGCTGAGGCCTTCCT GGGGCTCCCAAACCTGCGTGTGGTGGACACGGCAGGGAATCCGGAGCAGGTCCTGATCCGGCTGCCTC CCACCACCCCACGTGGGCCACGGGCAGGGGGCCCCAAGCTTGGC
NOV42f, 283146542 SEQ ID NO: 982 581 aa MW at 63928.7kD Protein Sequence
TGSTM PSLLLLLLLPGPPPVAGLEDAAFPHLGESLQPLPRACPLRCSCPRVDTVDCDGLDLRVFPDN
ITRAAQHLSLQIrøQLQELPYNELSRLSGLRTLNLHIrøLI
PQFLPRSLRVADLAANQVMEIFPLTFGEKPALRSVYLHNNQLSNAGLPPDAFRGSEAIATLSLSNNQL
SYLPPSLPPSLERLHLQ---WLISKVPRGALSRQTQLRELYLQHNQLTDSGLDATTFSKLHSLEYLDLSH
NQLTTVPAGLPRTLAILHLGRNRIRQVEAARLHGARGLRYLLLQHNQLGSSGLPAGALRPLRGLHTLH
LYGNGLDRVPPALPRRLRALVLPH--raV-AALGARDLVATPGLTELNLAYNRLASARVIfflRAFRRLRA^
SLDLAGNQLTRLPMGLPTGLRTLQLQRNQLRMLEPEPLAGLDQLRELSLAHNRLRVGDIGPGTWHELQ
-ALQMLDLSHNELSFVPPDLPEALEELHLEGNRIGHVGPEAFLSTPRLRALFLRANRLHMTSIAAEAFL
GLPNLRWDTAGNPEQVLIRLPPTTPRGPRAGGPKLG
NOV42g, 308521214 SEQ ID NO: 983 1744 bp
DNA Sequence IORF Start: at 2 IORF Stop: end of sequence
CACCGGATCCACCATGTGGCCGAGCCTGCTGCTGCTCCTGCTGTTGCCGGGGCCCCCGCCCGTCGCCG GCTTGGAAGACGCTGCCTTCCCCCACCTGGGGGAGAGCTTGCAGCCCCTGCCCCGGGCCTGTCCCCTG CGCTGCTCCTGCCCCCGAGTCGACACTGTGGACTGTGATGGCTTGGACCTTCGAGTGTTCCCGGACAA CATCACCAGAGCCGCTCAGCACCTCTCCCTGCAGAACAACCAGCTCCAGGAACTCCCCTACAATGAGC TGTCCCGCCTCAGTGGCCTGCGAACCCTCAACCTCCACAACAACCTCATCTCCTCCGAAGGCCTGCCT GACGAGGCCTTCGAGTCCCTCACCCAGCTGCAGCACCTCTGCGTGGCTCACAACAAGCTCTCAGTGGC CCCTCAGTTTCTGCCCCGGTCCCTCCGTGTCGCGGATCTGGCTGCCAACCAAGTGATGGAGATCTTCC CCCTCACCTTTGGGGAGAAGCCGGCACTCAGGTCCGTGTACCTCCACAACAACCAGCTGAGCAACGCT GGCCTGCCCCCCGACGCCTTCCGCGGCTCCGAGGCCATCGCCACCCTCAGCCTCTCCAACAACCAGCT CAGCTACCTGCCGCCCAGCCTGCCGCCCTCACTCGAGCGGCTCCACCTGCAGAACAATCTCATCTCCA AGGTGCCCCGAGGAGCCCTGAGCCGCCAGACTCAACTCCGTGAGCTCTACCTCCAGCACAACCAGCTG ACAGACAGTGGCCTGGATGCCACCACCTTCAGCAAGCTGCATAGCCTTGAATACCTGGATCTCTCCCA CAACCAGCTGACCACAGTGCCCGCCGGCCTGCCCCGGACCCTGGCTATCCTGCACCTGGGCCGCAACC GCATCCGGCAGGTGGAGGCGGCTCGGCTGCACGGGGCGCGTGGTCTGCGCTATTTGTTGCTGCAGCAC AACCAGCTGGGGAGCTCAGGGCTGCCCGCCGGGGCTCTGCGGCCGCTGCGGGGCCTGCACACGCTGCA CCTCTATGGCAATGGGCTGGACCGCGTGCCTCCAGCCCTGCCCCGCCGCCTGCGTGCCCTGGTGCTGC CCCACAACCACGTGGCCGCGCTGGGTGCCCGTGACCTGGTCGCCACACCGGGCCTGACGGAGCTTAAC CTGGCCTATAACCGCCTGGCCAGCGCCCGTGTGCACCACCGGGCCTTCCGCCGGTTGCGTGCCCTGCG CAGCCTCGACCTGGCAGGGAATCAGCTAACCCGGCTGCCCATGGGCCTGCCCACTGGCCTGCGCACCC TGCAGCTGCAACGCAACCAGCTGCGGATGCTCGAGCCCGAGCCTCTGGCCGGCCTGGACCAACTGCGG GAGCTCAGCCTGGCGCACAACCGGCTCCGGGTCGGCGACATCGGGCCAGGCACCTGGCATGAGCTCCA AGCCCTCCAGATGCTGGACCTCAGCCACAATGAGCTGTCCTTTGTGCCCCCGGACCTGCCTGAGGCCC TGGAGGAGCTGCACCTCGAGGGCAACCGCATCGGCCACGTGGGCCCCGAGGCCTTCCTCAGCACACCC CGCCTGCGTGCCCTCTTCCTCAGGGCCAACAGGCTTCACATGACGAGCATCGCGGCTGAGGCCTTCCT GGGGCTCCCAAACCTGCGTGTGGTGGACACGGCAGGGAATCCGGAGCAGGTCCTGATCCGGCTGCCTC CCACCACCCCACGTGGGCCACGGGCAGGGGGCCCCGAATTCGGC
|NOV42g, 308521214 JSEQ ID NO: 984 J581 aa |MW at 63963.7kD CGCCCGTGTGCACCACCGGGCCTTCCGCCGGTTGCGTGCCCTGCGCAGCCTCGACCTGGCAGGGAATC AGCTAACCCGGCTGCCCATGGGCCTGCCCACTGGCCTGCGCACCCTGCAGCTGCAACGCAACCAGCTG CGGATGCTCGAGCCCGAGCCTCTGGCCGGCCTGGACCAACTGCGGGAGCTCAGCCTGGCGCACAACCG GCTCCGGGTCGGCGACATCGGGCCAGGCACCTGGCATGAGCTCCAAGCCCTCCAGATGCTGGACCTCA GCCACAATGAGCTGTCCTTTGTGCCCCCGGACCTGCCTGAGGCCCTAGAGGAGCTGCACCTCGAGGGC AACCGCATCGGCCACGTGGGCCCCGAGGCCTTCCTCAGCACACCCCGCCTGCGTGCCCTCTTCCTCAG GGCCAACAGGCTTCACATGACGAGCATCGCGGCTGAGGCCTTCCTGGGGCTCCCAAACCTGCGTGTGG TGGACACGGCAGGGAATCCGGAGCAGGTCCTGATCCGGCTGCCTCCCACCACCCCACGTGGGCCACGG GCAGGGGGCCCCTGA
NOV42i, CG56904-03 SEQ ID NO: 988 412 aa MW at 45723. lkD Protein Sequence
MM-røQLQELPYNELSRLSGLRTLNLH-l-røLISSEGLPDEAFESLTQLQHLCV^^
RQTQLRELYLQHNQLTDSGLDATTFSKLHSLEYLDLSHNQLTTVPAGLPRTLAILHLGRNRIRQVEAA
RLHG-ARGLRYLLLQHNQLGSSGLPAGALRPLRGLHTLHLYGNGLDRVPPALPRRLRALVLPHNHVAAL
GARDLVATPGLTELNLAYNRLASARVHHRAFRRLRALRSLDLAGNQLTRLPMGLPTGLRTLQLQRNQL
RMLEPEPLAGLDQLRELSLAHNRLRVGDIGPGT HΞLQALQMLDLSHNELSFVPPDLPEALEELHLEG
NRIGHVGPEAFLSTPRLRALFLRANRLHMTSIAAEAFLGLPNLRWDTAGNPEQVLIRLPPTTPRGPR
AGGP
NOV42J, CG56904-05 SEQ ID NO: 989 1710 bp DNA Sequence ORF Start: ATG at 1 IORF Stop: TGA at 1456
ATGTGGCCGAGCCTGCTGCTGCTCCTGCTGTTGCCGGGGCCCCCGCCCGTCGCCGGCTTGGAAGACGC TGCCTTCCCCCACCTGGGGGAGAGCTTGCAGCCCCTGCCCCGGGCCTGTCCCCTGCGCTGCTCCTGCC CCCGAGTCGACACTGTGGACTGTGATGGCTTGGACCTTCGAGTGTTCCCGGACAACATCACCAGAGCC GCTCAGCACCTCTCCCTGCAGAACAACCAGCTCCAGGAACTCCCCTACAATGAGCTGTCCCGCCTCAG TGGCCTGCGAACCCTCAACCTCCACAACAACCTCATCTCCTCCGAAGGTCTGCCTGACGAGGCCTTCG AGTCCCTCACCCAGCTGCAGCACCTCTGCGTGGCTCACAACAAGAACAATCTCATCTCCAAGGTGCCC CGAGGAGCCCTGAGCCGCCAGACTCAACTCCGTGAGCTCTACCTCCAGCACAACCAGCTGACAGACAG TGGCCTGGATGCCACCACCTTCAGCAAGCTGCATAGCCTTGAATACCTGGATCTCTCCCACAACCAGC TGACCACAGTGCCCGCCGGCCTGCCCCGGACCCTGGCTATCCTGCACCTGGGCCGCAACCGCATCCGG CAGGTGGAGGCGGCTCGGCTGCACGGGGCGCGTGGTCTGCGCTATTTGTTGCTGCAGCACAACCAGCT GGGGAGCTCAGGGCTGCCCGCCGGGGCTCTGCGGCCGCTGCGGGGCCTGCACACGCTGCACCTCTATG GCAATGGGCTGGACCGCGTGCCTCCAGCCCTGCCCCGCCGCCTGCGTGCCCTGGTGCTGCCCCACAAC CACGTGGCCGCGCTGGGTGCCCGTGACCTGGTCGCCACACCGGGCCTGACGGAGCTTAACCTGGCCTA TAACCGCCTGGCCAGCGCCCGTGTGCACCACCGGGCCTTCCGCCGGTTGCGTGCCCTGCGCAGCCTCG ACCTGGCAGGGAATCAGCTAACCCGGCTGCCCATGGGCCTGCCCACTGGCCTGCGCACCCTGCAGCTG CAACGCAACCAGCTGCGGATGCTCGAGCCCGAGCCTCTGGCCGGCCTGGACCAACTGCGGGAGCTCAG CCTGGCGCACAACCGGCTCCGGGTCGGCGACATCGGGCCAGGCACCTGGCATGAGCTCCAAGCCCTCC AGATGCTGGACCTCAGCCACAATGAGCTGTCCTTTGTGCCCCCGGACCTGCCTGAGGCCCTAGAGGAG CTGCACCTCGAGGGCAACCGCATCGGCCACGTGGGCCCCGAGGCCTTCCTCAGCACACCCCGCCTGCG TGCCCTCTTCCTCAGGGCCAACAGGCTTCACATGACGAGCATCGCGGCTGAGGCCTTCCTGGGGCTCC CAAACCTGCGTGTGGTGGACACGGCAGGGAATCCGGAGCAGGTCCTGATCCGGCTGCCTCCCACCACC CCACGTGGGCCACGGGCAGGGGGCCCCTGATCCTAGAGAGGCCCAGCAGAGCAGCTCAGACTCCTGGG
ACTCCGCTGGGCCGTGGACTGAGGAGACAACGCCCACCAGGGGCCCTTGGTCTGGCTCTCCTGGGCCT
CCAGGGCTGGGCCTGCTCTGCCTGCCACTGGCCGAGACACAGAGGCACACAGCTGGCATACTCCAGGC
TCACAGACCACGCCGGCCTGGCGGGACACACCCTACCCCAAACTCCCAACACAGATGGAGGCAGCAAC
AATAAAGCCA
NOV42J, CG56904-05 SEQ ID NO: 990 485 aa MW at 53581.0kD Protein Sequence
M PSLLLLLLLPGPPPVAGLEDAAFPHLGESLQPLPRACPLRCSCPRVDTVDCDGLDLRVFPDNITRA
AQHLSLQ-trøQLQELPYNELSRLSGLRTLNLHNNLISSEGLPDEAFESLTQLQHLCVAHNKNNLISKVP
RG-ALSRQTQLRELYLQHNQLTDSGLDATTFSKLHSLEYLDLSHNQLTTVPAGLPRTLAILHLGRNRIR
QVEAARLHGARGLRYLLLQHNQLGSSGLPAGALRPLRGLHTLHLYGNGLDRVPPALPRRLRALVLPHN
HVAALGARDLVATPGLTELNLAY-l-πiLASARVHH-RAFRIlLRALRSLDLAGNQLTRLPMGLPTGLRT^
QRNQLRMLEPEPLAGLDQLRELSLAHNRLRVGDIGPGT HELQALQMLDLSHNELSFVPPDLPEALEE
LHLEGNRIGHVGPEAFLSTPRLRALFLRANRLHMTSIAAEAFLGLPNLRWDTAGNPEQVLIRLPPTT
PRGPRAGGP
|SEQ rp NO: 991 )l992 bp CCTGACGGAGCTTAACCTGGCCTATAACCGCCTGGCCAGCGCCCGTGTGCACCACCGGGCCTTCCGCC GGTTGCGTGCCCTGCGCAGCCTCGACCTGGCAGGGAATCAGCTAACCCGGCTGCCCATGGGCCTGCCC ACTGGCCTGCGCACCCTGCAGCTGCAACGCAACCAGCTGCGGATGCTCGAGCCCGAGCCTCTGGCCGG CCTGGACCAACTGCGGGAGCTCAGCCTGGCGCACAACCGGCTCCGGGTCGGCGACATCGGGCCAGGCA CCTGGCATGAGCTCCAAGCCCTCCAGGTCAGGCACAGGCTGGTTAGCCACACTGTCCCCAGGGCCCCT CCATCCCCCTGCCTGCCCTGCCACGTCCCAAACATTCTAGTTAGCTGGGAATTC
NOV421, CG56904-07 SEQ ID NO: 994 421 aa MW at 46715.4kD Protein Sequence
MGRPTQ PSLLLLLLLPGPPPVAGLEDAAFPHLGESLQPLPRACPLRCSCPRVDTVDCDGLDLRVFPD NIT-RAAQHLSLQNNQLQELPYNELSRLSGLRTLNL-fflrøLISSEGLPDEAFESLTQLQHLCVAHN-KNNL ISKVPRGALSRQTQLRELYLQHNQLTDSGLDATTFSKLHSLEYLDLSHNQLTTVPAGLPRTLAILHLG RNRIRQVEAARLHGARGLRYLLLQHNQLGSSGLPAGALRPLRGLHTLHLYGNGLDRVPPALPRRLRAL VLPHNHVAALGARDLVATPGLTELNLAYNRLASARV-l-fflRAFRRLRALRSLDLAGNQLTRLPMGLPTGL RTLQLQRNQLRMLEPEPLAGLDQLRELSLAHNRLRVGDIGPGT HELQALQVRHRLVSHTVPRAPPSP CLPCHVPNILVSW jNOV42m, CG56904-08 SEQ ID NO: 995 1744 bp
DNA Sequence 0RF Start: ATG at 14 ORF Stop: end of sequence
CACCGGATCCACCATGTGGCCGAGCCTGCTGCTGCTCCTGCTGTTGCCGGGGCCCCCGCCCGTCGCCG
GCTTGGAAGACGCTGCCTTCCCCCACCTGGGGGAGAGCTTGCAGCCCCTGCCCCGGGCCTGTCCCCTG CGCTGCTCCTGCCCCCGAGTCGACACTGTGGACTGTGATGGCTTGGACCTTCGAGTGTTCCCGGACAA CATCACCAGAGCCGCTCAGCACCTCTCCCTGCAGAACAACCAGCTCCAGGAACTCCCCTACAATGAGC TGTCCCGCCTCAGTGGCCTGCGAACCCTCAACCTCCACAACAACCTCATCTCCTCCGAAGGCCTGCCT GACGAGGCCTTCGAGTCCCTCACCCAGCTGCAGCACCTCTGCGTGGCTCACAACAAGCTCTCAGTGGC CCCTCAGTTTCTGCCCCGGTCCCTCCGTGTCGCGGATCTGGCTGCCAACCAAGTGATGGAGATCTTCC CCCTCACCTTTGGGGAGAAGCCGGCACTCAGGTCCGTGTACCTCCACAACAACCAGCTGAGCAACGCT GGCCTGCCCCCCGACGCCTTCCGCGGCTCCGAGGCCATCGCCACCCTCAGCCTCTCCAACAACCAGCT CAGCTACCTGCCGCCCAGCCTGCCGCCCTCACTCGAGCGGCTCCACCTGCAGAACAATCTCATCTCCA AGGTGCCCCGAGGAGCCCTGAGCCGCCAGACTCAACTCCGTGAGCTCTACCTCCAGCACAACCAGCTG ACAGACAGTGGCCTGGATGCCACCACCTTCAGCAAGCTGCATAGCCTTGAATACCTGGATCTCTCCCA CAACCAGCTGACCACAGTGCCCGCCGGCCTGCCCCGGACCCTGGCTATCCTGCACCTGGGCCGCAACC GCATCCGGCAGGTGGAGGCGGCTCGGCTGCACGGGGCGCGTGGTCTGCGCTATTTGTTGCTGCAGCAC AACCAGCTGGGGAGCTCAGGGCTGCCCGCCGGGGCTCTGCGGCCGCTGCGGGGCCTGCACACGCTGCA CCTCTATGGCAATGGGCTGGACCGCGTGCCTCCAGCCCTGCCCCGCCGCCTGCGTGCCCTGGTGCTGC CCCACAACCACGTGGCCGCGCTGGGTGCCCGTGACCTGGTCGCCACACCGGGCCTGACGGAGCTTAAC CTGGCCTATAACCGCCTGGCCAGCGCCCGTGTGCACCACCGGGCCTTCCGCCGGTTGCGTGCCCTGCG CAGCCTCGACCTGGCAGGGAATCAGCTAACCCGGCTGCCCATGGGCCTGCCCACTGGCCTGCGCACCC TGCAGCTGCAACGCAACCAGCTGCGGATGCTCGAGCCCGAGCCTCTGGCCGGCCTGGACCAACTGCGG GAGCTCAGCCTGGCGCACAACCGGCTCCGGGTCGGCGACATCGGGCCAGGCACCTGGCATGAGCTCCA AGCCCTCCAGATGCTGGACCTCAGCCACAATGAGCTGTCCTTTGTGCCCCCGGACCTGCCTGAGGCCC TGGAGGAGCTGCACCTCGAGGGCAACCGCATCGGCCACGTGGGCCCCGAGGCCTTCCTCAGCACACCC CGCCTGCGTGCCCTCTTCCTCAGGGCCAACAGGCTTCACATGACGAGCATCGCGGCTGAGGCCTTCCT GGGGCTCCCAAACCTGCGTGTGGTGGACACGGCAGGGAATCCGGAGCAGGTCCTGATCCGGCTGCCTC CCACCACCCCACGTGGGCCACGGGCAGGGGGCCCCAAGCTTGGC
NOV42m, CG56904-08 SEQ ID NO: 996 577 aa MW at 63582.4kD Protein Sequence
MWPSLLLLLLLPGPPPVAGLEDAAFPHLGESLQPLPRACPLRCSCPRVDTVDCDGLDLRVFPDNITRA
AQHLSLQ-.-røQLQELPYNELSRLSGLRTLNLHNNLISSEGLPDEAFESLTQLQHLCVAHNKLSVAPQFL
PRSLRVADLAANQVMEIFPLTFGEKPALRSVYLHNNQLSNAGLPPDAFRGSEAIATLSLSNNQLSYLP
PSLPPSLERLHLQ---SMLIS-KVPRGALSRQTQLRELYLQHNQLTDSGLDATTFSKLHSLEYLDLSHNQLT
TVPAGLPRTLAILHLGRNRIRQVEAARLHGARGLRYLLLQHNQLGSSGLPAGALRPLRGLHTLHLYGN
GLDRVPPALPRRLRALVLPHN----IV-AALGA---^LVATPGLTELNIxAYNRLASARV^
AGNQLTRLPMGLPTGLRTLQLQRNQLRMLEPEP-1ΛGLDQLRELSLAHNRLRVGDIGPGTWHELQALQM
LDLSHNELSFVPPDLPE-ALEELHLΞG-^-RIGHVGPΞAFLSTP-RLR-ALFLRANRLHMTSIAAEAFLGLPN
LRWDTAGNPEQVLIRLPPTTPRGPRAGGPKLG A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 42B.
Table 42B. Comparison of the NOV42 protein sequences.
NOV42a MGRPTQWPSLLLLLLLPGPPPVAGLEDAAFPHLGESLQPLPRACPLRCSCPRVDTVD
NOV42b GSTMGRPTQ PSLLLLLLLPGPPPVAGLEDAAFPHLGESLQPLPRACPLRCSCPRVDTVD
NOV42C 1
NOV42d M PSLLLLLLLPGPPPVAGLEDAAFPHLGESLQPLPRACPLRCSCPRVDTVD
NOV42e TGSTMWPSLLLLLLLPGPPPVAGLEDAAFPHLGESLQPLPRACPLRCSCPRVDTVD
NOV42f TGSTM PSLLLLLLLPGPPPVAGLEDAAFPHLGESLQPLPRACPLRCSCPRVDTVD
NOV42g TGSTMWPSLLLLLLLPGPPPVAGLEDAAFPHLGESLQPLPRACPLRCSCPRVDTVD
NOV42h
NOV42i
NOV42j MWPSLLLLLLLPGPPPVAGLEDAAFPHLGESLQPLPRACPLRCSCPRVDTVD
NOV42k MGRPTQWPSLLLLLLLPGPPPVAGLEDAAFPHLGESLQPLP-RACPLRCSCPRVDTVD
NOV421 MGRPTQWPSLLLLLLLPGPPPVAGLEDAAFPHLGESLQPLPRACPLRCSCPRVDTVD
NOV42m MWPSLLLLLLLPGPPPVAGLEDAAFPHLGESLQPLPRACPLRCSCPRVDTVD
NOV42a CDGLDLRVFPDNITRAAQHLSLQNNQLQELPYNELSRLSGLRTLNLHNNLISSEGLPDEA
NOV42b CDGLDLRVFPDNITRAAQHLSLQNNQLQELPYNELSRLSGLRTLNLHNNLISSEGLPDEA
NOV42C HHGLDLRVFPDNITRAAQHLSLQNNQLQELPYNELSRLSGLRTLNLHNNLISSEGLPDEA
NOV42d CDGLDLRVFPDNITRAAQHLSLQNNQLQELPYNELSRLSGLRTLNLHNNLISSEGLPDEA
NOV42e CDGLDLRVFPDNITRAAQHLSLQNNQLQELPYNELSRLSGLRTLNLHNNLISSEGLPDEA
NOV42f CDGLDLRVFPDNITRAAQHLSLQNNQLQELPYNELSRLSGLRTLNLHNNLISSEGLPDEA
NOV42g CDGLDLRVFPDNITRAAQHLSLQNNQLQELPYNELSRLSGLRTLNLHNNLISSEGLPDEA
NOV42h MMNNQLQELPYNELSRLSGLRTLNLHNNLISSEGLPDEA
NOV42i M-NNQLQELPYNELSRLSGLRTLNLHNNLISSEGLPDEA
NOV42J CDGLDLRVFPDNITRAAQHLSLQ---røQLQELPYNELSRLSGLRTLNLHNNLISSEGLPDEA
NOV42k CDGLDLRVFPDNITRAAQHLSLQNNQLQELPYNELSRLSGLRTLNLHNNLISSEGLPDEA
NOV421 CDGLDLRVFPDNITRAAQHLSLQNNQLQELPYNELSRLSGLRTLNLHNNLISSEGLPDEA
NOV42m CDGLDLRVFPDNITRAAQHLSLQNNQLQELPYNELSRLSGLRTLNLHNNLISSEGLPDEA
NOV42a FESLTQLQHLCVAHNK
NOV42b FESLTQLQHLCVAHNK
NOV42C FESLTQLQHLCVAHNK
NOV42d FESLTQLQHLCVAHNKLSVAPQFLPRSLRVADLAANQVMEIFPLTFGEKPALRSVYLHNN
NOV42e FESLTQLQHLCVAHNKLSVAPQFLPRSLR
NOV42f FESLTQLQHLCVA-HN-KLSVAPQFLPRSLRVADLAANQVMEIFPLTFGEKPALRSVYLHNN
NOV42g FESLTQLQHLCVAHNKLSVAPQFLPRSLRVADLAANQVMEIFPLTFGEKPALRSVYLHNN
NOV42h FESLTQLQHLCVAHN-KLSVAPQFLPRSLRVADLAANQVMEIFPLTFGEKPALRSVYLHNN
NOV42i FESLTQLQHLCV-AHN
NOV42J FESLTQLQHLCVAHNK
NOV42k FESLTQLQHLCV-A-imKLSVAPQFLPRSLRVADLAANQVMEIFPLTFGEKPALRSVYLHNN
NOV421 FESLTQLQHLCVAHNK
NOV42m FESLTQLQHLCVAHNKLSVAPQFLPRSLRVADLAANQVMEIFPLTFGEKPALRSVYLHNN
NOV42a NNLISKVPRGALSRQ
NOV42b NNLISKVPRGALSRQ
NOV42C NNLISKVPRGALSRQ
NOV42d QLSNAGLPPDAFRGSEAIATLSLSNNQLSYLPPSLPPSLERLHLQNNLISKVPRGALSRQ
NOV42e VADLAANQVMEIFPLTFGEK
NOV42f QLSNAGLPPDAFRGSEAIATLSLSNNQLSYLPPSLPPSLERLHLQNNLISKVPRGALSRQ
NOV42g QLSNAGLPPDAFRGSEAIATLSLSNNQLSYLPPSLPPSLERLHLQNNLISKVPRGALSRQ
NOV42h QLSNAGLPPDAFRGSEAIATLSLSNNQLSYLPPSLPPSLERLHLQNNLISKVPRGALSRQ
NOV42i K NNLISKVPRGALSRQ
NOV42J NNLISKVPRGALSRQ
NOV42k QLSNAGLPPDAFRGSEAIATLSLSNNQLSYLPPSLPPSLERLHLQNNLISKVPRGALSRQ
NOV421 NNLISKVPRGALSRQ
NOV42m QLSNAGLPPDAFRGSEAIATLSLSNNQLSYLPPSLPPSLERLHLQNNLISKVPRGALSRQ NOV42a TQLRELYLQHNQLTDSGLDATTFSKLHSLEYLDLSHNQLTTVPAGLPRTLAILHLGRNRI
NOV42b TQLRELYLQHNQLTDSGLDATTFSKLHSLEYLDLSHNQLTTVPAGLPRTLAILHLGRNRI
N0V42c TQLRELYLQHNQLTDSGLDATTFSKLHSLEYLDLSHNQLTTVPAGLPRTLAILHLGRNRI
NOV42d TQLRELYLQHNQLTDSGLDATTFSKLHSLEYLDLSHNQLTTVPAGLPRTLAILHLGRNRI
NOV42e PALRSVYLHNNQLSNAGLPPDAFRGSEAIATLSLSNNQLSYLPPSLPPSLERLHLQNNLI
NOV42f TQLRELYLQH QLTDSGLDATTFSKLHSLEYLDLSHNQLTTVPAGLPRTLAILHLGR-NRI
NOV42g TQLRELYLQHNQLTDSGLDATTFSKLHSLEYLDLSHNQLTTVPAGLPRTLAILHLGRNRI
NOV42h TQLRELYLQHNQLTDSGLDATTFSKLHSLEYLDLSHNQLTTVPAGLPRTLAILHLGRNRI
NOV42i TQLRELYLQHNQLTDSGLDATTFSKLHSLEYLDLSHNQLTTVPAGLPRTLAILHLGRNRI
NOV42J TQLRELYLQHNQLTDSGLDATTFSKLHSLEYLDLSHNQLTTVPAGLPRTLAILHLGRNRI
NOV42k TQLRELYLQHNQLTDSGLDATTFSKLHSLEYLDLSHNQLTTVPAGLPRTLAILHLGRNRI
NOV421 TQLRELYLQHNQLTDSGLDATTFSKLHSLEYLDLSHNQLTTVPAGLPRTLAILHLGRNRI
NOV42m TQLRELYLQHNQLTDSGLDATTFSKLHSLEYLDLSHNQLTTVPAGLPRTLAILHLGRNRI
NOV42a RQVEAARLHGARGLRYLLLQHNQLGSSGLPAGALRPLRGLHTLHLDGNGLDRVPPALPRR
NOV42b RQVEAARLHGARGLRYLLLQHNQLGSSGLPAGALRPLRGLHTLHLYGNGLDRVPPALPRR
NOV42C RQVEAARLHGARGLRYLLLQHNQLGSSGLPAGALRPLRGLHTLHLYGNGLDRVPPALPRR
NOV42d RQVEAARLHGARGLRYLLLQHNQLGSSGLPAGALRPLRGLHTLHLYGNGLDRVPPALPRR
N0V42e SKVPRGALSRQTQLRELYLQHNQLTDSGLDATTFSKLHSLEYLDLSHNQLTTVPAGLPRT
NOV42f RQVEAARLHGARGLRYLLLQHNQLGSSGLPAGALRPLRGLHTLHLYGNGLDRVPPALPRR
NOV42g RQVEAARLHGARGLRYLLLQHNQLGSSGLPAGALRPLRGLHTLHLYGNGLDRVPPALPRR
NOV42h RQVEAARLHGARGLRYLLLQHNQLGSSGLPAGALRPLRGLHTLHLYGNGLDRVPPALPRR
N0V42i RQVEAARLHGARGLRYLLLQHNQLGSSGLPAGALRPLRGLHTLHLYGNGLDRVPPALPRR
NOV42J RQVEAARLHGARGLRYLLLQHNQLGSSGLPAGALRPLRGLHTLHLYGNGLDRVPPAIiPRR
NOV42k RQVEAARLHGARGLRYLLLQHNQLGSSGLPAGALRPLRGLHTLHLYGNGLDRVPPALPRR
NOV421 RQVEAARLHGARGLRYLLLQHNQLGSSGLPAGALRPLRGLHTLHLYGNGLDRVPPALPRR
NOV42m RQVEAARLHGARGLRYLLLQHNQLGSSGLPAGALRPLRGLHTLHLYGNGLDRVPPALPRR
NOV42a LRALVLPHNHVAALGARDLVATPGLTELNLAYNRLASARVHHRAFRRLRALRSLDLAGNQ
NOV42b LRALVLP-HNHVAALGARDLVATPGLTELNLAYNRLASARVHHRAFRRLRALRSLDLAGNQ
NOV42C L-R-ALVLP-HNHVAALGARDLVATPGLTELNLAYNRLASARVHHRAFRRLRALRSLDLAGNQ
NOV42d LRALVLPHNHVAALGARDLVATPGLTELNLAYNRLASARVHHRAFRRLRALRSLDLAGNQ
NOV42e LAILHLGR NRIRQMLDLSHNE
NOV42f L-RALVLPHNHVAALGARDLVATPGLTELNLAYNRLASARVHHRAFRRLRALRSLDLAGNQ
NOV42g LRALVLPHNHVAALGARDLVATPGLTELNLAYNRLASARVHHRAFRRLRALRSLDLAGNQ
NOV42h LRALVljPH-NHVAALGARDLVATPGLTELNLAYNRLASARVHHRAFRRLRALRSLDLAGNQ
NOV42i LR-ALVLP-HNHV-AALGA-RDLVATPGLTELNLAYNRLASARVHHRAFRRLRALRSLDLAGNQ
NOV42j LRALVLPHNHVAALGARDLVATPGLTELNLAYNRLASARVHHRAFRRLRALRSLDLAGNQ
NOV42k LR-ALVTjP-E-QmVAALGARDLVATPGLTELNLAYNRLASARVHHRAFRRLRALRSLDLAGNQ
NOV4 1 LR-ALVLPHNHVAALGARDLVATPGLTELNLAYNRLASARVHHRAFRRLRALRSLDLAGNQ
NOV42m L-RALVLP-HNHVAALGARDLVATPGLTELNLAYNRLASARVHHRAFRRLRALRSLDLAGNQ
NOV42a LTRLPMGLPTGLRTLQLQRNQLRMLEPEPLAGLDQLRELSLAHNRLRVGDIGPGTWHELQ
NOV42b LTRLPMGLPTGLRTLQLQRNQLRMLEPEPLAGLDQLRELSLAHNRLRVGDIGPGTWHELQ
NOV42C LTRLPMGLPTGLRTLQLQRNQLRMLEPEPLAGLDQLRELSLAHNRLRVGDIGPGT HELQ
NOV42d LTRLPMGLPTGLRTLQLQRNQLRMLEPEPLAGLDQLRELSLAHNRLRVGDIGPGTWHELQ
NOV42e LSFVPPDLPEALEELHLEGNRIGHVGPEAFLSTPRLRALFLRANRLHMTSIAAEAFLGLP
NOV42f LTRLPMGLPTGLRTLQLQRNQLRMLEPEPLAGLDQLRELSLAHNRLRVGDIGPGT HELQ
NOV42g LTRLPMGLPTGLRTLQLQRNQLRMLEPEPLAGLDQLRELSLAHNRLRVGDIGPGT HELQ
NOV42h LTRLPMGLPTGLRTLQLQRNQLRMLEPEPLAGLDQLRELSLAHNRLRVGDIGPGTWHELQ
NOV42i LTRLPMGLPTGLRTLQLQRNQLRMLEPEPLAGLDQLRELSLAHNRLRVGDIGPGTWHELQ
NOV42j LTRLPMGLPTGLRTLQLQRNQLRMLEPEPLAGLDQLRELSLAHNRLRVGDIGPGTWHELQ
NOV42k LTRLPMGLPTGLRTLQLQRNQLRMLEPEPLAGLDQLRELSLAHNRLRVGDIGPGT HELQ
NOV421 LTRLPMGLPTGLRTLQLQRNQLRMLEPEPLAGLDQLRELSLAHNRLRVGDIGPGTWHELQ
NOV42m LTRLPMGLPTGLRTLQLQRNQLRMLEPEPLAGLDQLRELSLAHNRLRVGDIGPGTWHELQ
NOV42a ALQVRHRLVSHT--VPRAPPSPCLPCHVPNILVSW
NOV42b ALQVRHRLVSHT- -VPRAPPSPCLPCHVPNILVSWEF
NOV42C ALQVRHRLVSHT- -VPRAPPSPCLPCHVPNILVSWEFKGEFQA NOV42d ALQMLDLSHNΞLSFVPPDLPEALEELHLEGNRIGHVGPEAFLSTPRLRALFLRANRLHMT
NOV42e NLRWDTAGNPEQVLIRLPPTTPRGPRAGGPKLG
NOV42f ALQMLDLSHNELSFVPPDLPEALEELHLEGNRIGHVGPEAFLSTPRLRALFLRANRLHMT
NOV42g ALQMLDLSHNELSFVPPDLPEALEELHLEGNRIGHVGPEAFLSTPRLRALFLRANRLHMT
NOV42h ALQMLDLSHNELSFVPPDLPEALEELHLEGNRIGHVGPEAFLSTPRLRALFLRANRLHMT
NOV42i ALQMLDLSHNELSFVPPDLPEALEELHLEGNRIGHVGPΞAFLSTPRLRALFLRANRLHMT
NOV42J ALQMLDLSHNELSFVPPDLPEALEELHLEGNRIGHVGPEAFLSTPRLRALFLRANRLHMT
NOV42k ALQMLDLSHNELSFVPPDLPEALEELHLEGNRIGHVGPEAFLSTPRLRALFLRANRLHMT
NOV421 ALQVRHRLVSHT--VPRAPPSPCLPCHVPNILVS
NOV42m ALQMLDLSHNELSFVPPDLPEALEELHLEGNRIGHVGPEAFLSTPRLRALFLRANRLHMT
NOV42a
NOV42b
NOV42c
NOV42d SIAAEAFLGLPNLRWDTAGNPEQVLIRLPPTTPRGPRAGGP
NOV42e
N0V42f SIAAEAFLGLPNLRWDTAGNPEQVLIRLPPTTPRGPRAGGPKLG
NOV42g SIAAEAFLGLPNLRWDTAGNPΞQVLIRLPPTTPRGPRAGGPEFG
NOV42h SIAAEAFLGLPNLRWDTAGNPEQVLIRLPPTTPRGPRAGGP
NOV42i SIAAEAFLGLPNLRWDTAGNPEQVLIRLPPTTPRGPRAGGP
NOV42j SIAAEAFLGLPNLRWDTAGNPEQVLIRLPPTTPRGPRAGGP
NOV42k SIAAEAFLGLPNLRWDTAGNPΞQVLIRLPPTTPRGPRAGGP
NOV421
NOV42m SIAAEAFLGLPNLRWDTAGNPΞQVLIRLPPTTPRGPRAGGPKLG
NOV42a (SEQ ID NO 972)
NOV42b (SEQ ID NO 974)
NOV4 c (SEQ ID NO 976)
NOV42d (SEQ ID NO 978)
NOV42e (SEQ ID NO 980)
NOV42f (SEQ ID NO 982)
NOV42g (SEQ ID NO 984)
NOV42h (SEQ ID NO 986)
NOV42i (SEQ ID NO 988)
Further analysis of the NOV42a protein yielded the following properties shown in Table 42C.
Table 42C. Protein Sequence Properties NOV42a
SignalP analysis: Cleavage site between residues 25 and 26
PSORT II analysis:
PSG: a new signal peptide prediction method
N-region: length 3; pos.chg 1; neg.chg 0 H-region: length 22; peak value 10.55 PSG score: 6.15
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): 2.50 possible cleavage site: between 24 and 25
>>> Seems to have a cleavable signal peptide (1 to 24) ALOM: Klein et al ' s method for TM region allocation Init position for calculation: 25
Tentative number of TMS(s) for the threshold 0.5: 0 number of TMS(s) .. fixed PERIPHERAL Likelihood = 4.77 (at 187) ALOM score: 4.77 (number of TMSs: 0)
MTOP: Prediction of membrane topology (Hartmann et al.) Center position for calculation: 12 Charge difference: -4.5 C(-2.5) - N( 2.0) N >= C: N-terminal side will be inside
MITDISC: discrimination of mitochondrial targeting seq R content: 1 Hyd Moment (75): 6.51 Hyd Moment (95): 8.64 G content: 3 D/E content: 1 S/T content: 2 Score: -4.56
Gavel: prediction of cleavage sites for mitochondrial preseq R-2 motif at 13 GRP|TQ
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7: PRRLRAL (5) at 266 bipartite: none content of basic residues: 10.7% NLS Score: -0.04
KDEL: ER retention motif in the C-terminus : none
ER Membrane Retention Signals :
XXRR-like motif in the N-terminus: GRPT none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail : none
Dileucine motif in the tail: none checking 63 PROSITE DNA binding motifs: Leucine zipper pattern (PS00029) : *** found *** LDLSHNQLTTVPAGLPRTLAIL at 180 LHLDGNGLDRVPPALPRRLRAL at 251 LDLAGNQLTRLPMGLPTGLRTL at 322 none checking 71 PROSITE ribosomal protein motifs : none checking 33 PROSITE prokaryotic DNA binding motifs : none
NNCN : Reinhardt ' s method for Cytoplasmic/Nuclear discrimination Prediction : nuclear Reliability: 89
COIL : Lupas ' s algorithm to detect coiled-coil regions total : 0 residues
Final Results (k = 9/23 ) :
77 . 8 % : extracellular, including cell wall 11 . 1 % : vacuolar 11. 1 % : mitochondrial
>> prediction for CG56904 -01 is exc (k=9)
A search of the NOV42a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 42D.
In a BLAST search of public sequence databases, the NOV42a protein was found to have homology to the proteins shown in the BLASTP data in Table 42E.
PFam analysis predicts that the NOV42a protein contains the domains shown in the Table 42F.
Example 43.
The NOV43 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 43 A.
Table 43 A. NOV43 Sequence Analysis
NOV43a, CG56914-01 SEQ ID NO: 997 2153 bp DNA Sequence ORF Start: ATG at 16 ORF Stop: TAA at 2137
GATGCTGGCACTTACATGTGTGTGGCCCAGAACCCGGCTGGTACAGCCTTGGGCAAAATCAAGTTAAA
TGTCCAAGTTCCTCCAGTCATTAGCCCTCATCTAAAGGAATATGTTATTGCTGTGGACAAGCCCATCA CGTTATCCTGTGAAGCAGATGGCCTCCCTCCGCCTGACATTACATGGCATAAAGATGGGCGTGCAATT GTGGAATCTATCCGCCAGCGCGTCCTCAGCTCTGGCTCTCTGCAAATAGCATTTGTCCAGCCTGGTGA TGCTGGCCATTACACGTGCATGGCAGCCAATGTAGCAGGATCAAGCAGCACAAGCACCAAGCTCACCG TCCATGTACCACCCAGGATCAGAAGTACAGAAGGACACTACACGGTCAATGAGAATTCACAAGCCATT CTTCCATGCGTAGCTGATGGAATCCCCACACCAGCAATTAACTGGAAAAAAGACAATGTTCTTTTAGC TAACTTGTTAGGAAAATACACTGCTGAACCATATGGAGAACTCATTTTAGAAAATGTTGTGCTGGAGG ATTCTGGCTTCTATACCTGTGTTGCTAACAATGCTGCAGGTGAAGATACACACACTGTCAGCCTGACT GTGCATGTTCTCCCCACTTTTACTGAACTTCCTGGAGACGTGTCATTAAATAAAGGAGAACAGCTACG ATTAAGCTGTAAAGCTACTGGTATTCCATTGCCCAAATTAACATGGACCTTCAATAACAATATTATTC CAGCCCACTTTGACAGTGTGAATGGACACAGTGAACTTGTTATTGAAAGAGTGTCAAAAGAGGATTCA GGTACTTATGTGTGCACCGCAGAGAACAGCGTTGGCTTTGTGAAGGCAATTGGATTTGTTTATGTGAA AGAACCTCCAGTCTTCAAAGGTGATTATCCTTCTAACTGGATTGAACCACTTGGTGGGAATGCAATCC TGAATTGTGAGGTGAAAGGAGACCCCACCCCAACCATCCAGTGGAACAGAAAGGGAGTGGATATTGAA ATTAGCCACAGAATCCGGCAACTGGGCAATGGCTCCCTGGCCATCTATGGCACTGTTAATGAAGATGC CGGTGACTATACATGTGTAGCTACCAATGAAGCTGGGGTGGTGGAGCGCAGCATGAGTCTGACTCTGC AAAGTCCTCCTATTATCACTCTTGAGCCAGTGGAAACTGTTATTAATGCTGGTGGCAAAATCATATTG AATTGTCAGGCAACTGGAGAGCCTCAACCAACCATTACATGGTCCCGTCAAGGGCACTCTATTTCCTG GGATGACCGGGTTAACGTGTTGTCCAACAACTCATTATATATTGCTGATGCTCAGAAAGAAGATACCT CTGAATTTGAATGCGTTGCTCGAAACTTAATGGGTTCTGTCCTTGTCAGAGTGCCAGTCATAGTCCAG GTTCATGGTGGATTTTCCCAGTGGTCTGCATGGAGAGCCTGCAGTGTCACCTGTGGAAAAGGCATCCA AAAGAGGAGTCGTCTGTGCAACCAGCCCCTTCCAGCCAATGGTGGGAAGCCCTGCCAAGGTTCAGATT TGGAAATGCGAAACTGTCAAAATAAGCCTTGTCCAGTGGATGGTAGCTGGTCGGAATGGAGTCTTTGG GAAGAATGCACAAGGAGCTGTGGACGCGGCAACCAAACCAGGACCAGGACTTGCAATAATCCATCAGT TCAGCATGGTGGGCGGCCATGTGAAGGGAATGCTGTGGAAATAATTATGTGCAACATTAGGCCTTGCC CAGTTCATGGAGCATGGAGCGCTTGGCAGCCTTGGGGAACATGCAGCGAAAGTTGTGGGAAAGGTACT CAGACAAGAGCAAGACTTTGTAATAACCCACCACCAGCGTTTGGTGGGTCCTACTGTGATGGAGCAGA AACACAGATGCAAGTTTGCAATGAAAGAAATTGTCCAATTCATGGCAAGTGGGCGACTTGGGCCAGTT GGAGTGCCTGTTCTGTGTCATGTGGAGGAGGTGCCAGACAGAGAACAAGGGGCTGCTCCGACCCTGTG CCCCAGTATGGAGGAAGGAAATGCGAAGGGAGTGATGTCCAGAGTGATTTTTGCAACAGTGACCCTTG CCCAAGTGAGTGTTGGAAATACCCATGGTAACTGGAGTCCTTGGA
NOV43a, CG56914-01 SEQ ID NO: 998 707 aa MW at 76557.7 D Protein Sequence
MCVAQNPAGTALGKIKLNVQVPPVISPHLKEYVIAVDKPITLSCEADGLPPPDIT HKDGRAIVESIR
QRVLSSGSLQIAFVQPGDAGHYTCMAANVAGSSSTSTKLTVHVPPRIRSTEGHYTVNENSQAILPCVA
DGIPTPAINWKKDBIVLLA LLGICfTAEPYGELILENVV^
TFTELPGDVSLNKGEQLRLSCKATGIPLP-l-^TWTFNNNIIP-AHFDSVNGHSELVIERVSKEDSGTYVC
TAENSVGFVKAIGFVYVKEPPVFKGDYPSNWIEPLGGNAILNCEVKGDPTPTIQ NRKGVDIEISHRI
RQLGNGSLAIYGTVNEDAGDYTCVATNEAGWERSMSLTLQSPPIITLEPVETVINAGGKIILNCQAT
GEPQPTIT SRQGHSIS DDRVNVLSNNSLYI-ADAQ---VΕDTSEFECVARNLMGSVLVRVPVIVQVHGGF
SQ SAWRACSVTCGKGIQKRSRLCNQPLPANGGKPCQGSDLEMRNCQNKPCPVDGS SE SL EECTR
SCGRGNQTRTRTCNNPSVQHGGRPCEGNAVEIIMCNIRPCPVHGA SAWQPWGTCSESCGKGTQTRAR
LCNNPPPAFGGSYCDGAETQMQVCNERNCPIHGKWATWAS SACSVSCGGGARQRTRGCSDPVPQYGG
RKCEGSDVQSDFCNSDPCPSEC KYP
NOV43b, 262802367 SEQ ID NO: 999 2136 bp
DNA Sequence |0RF Start; at i |0RF Stop: end of sequence
GGATCCACCATGTGTGTGGCCCAGAACCCGGCTGGTACAGCCTTGGGCAAAATCAAGTTAAATGTCCA AGTTCCTCCAGTCATTAGCCCTCATCTAAAGGAATATGTTATTGCTGTGGACAAGCCCATCACGTTAT CCTGTGAAGCAGATGGCCTCCCTCCGCCTGACATTACATGGCATAAAGATGGGCGTGCAATTGTGGAA TCTATCCGCCAGCGCGTCCTCAGCTCTGGCTCTCTGCAAATAGCATTTGTCCAGCCTGGTGATGCTGG CCATTACACGTGCATGGCAGCCAATGTAGCAGGATCAAGCAGCACAAGCACCAAGCTCACCGTCCATG TACCACCCAGGATCAGAAGTACAGAAGGACACTACACGGTCAATGAGAATTCACAAGCCATTCTTCCA TGCGTAGCTGATGGAATCCCCACACCAGCAATTAACTGGAAAAAAGACAATGTTCTTTTAGCTAACTT GTTAGGAAAATACACTGCTGAACCATATGGAGAACTCATTTTAGAAAATGTTGTGCTGGAGGATTCTG GCTTCTATACCTGTGTTGCTAACAATGCTGCAGGTGAAGATACACACACTGTCAGCCTGACTGTGCAT GTTCTCCCCACTTTTACTGAACTTCCTGGAGACGTGTCATTAAATAAAGGAGAACAGCTACGATTAAG CTGTAAAGCTACTGGTATTCCATTGCCCAAATTAACATGGACCTTCAATAACAATATTATTCCAGCCC ACTTTGACAGTGTGAATGGACACAGTGAACTTGTTATTGAAAGAGTGTCAAAAGAGGATTCAGGTACT TATGTGTGCACCGCAGAGAACAGCGTTGGCTTTGTGAAGGCAATTGGATTTGTTTATGTGAAAGAACC TCCAGTCTTCAAAGGTGATTATCCTTCTAACTGGATTGAACCACTTGGTGGGAATGCAATCCTGAATT GTGAGGTGAAAGGAGACCCCACCCCAACCATCCAGTGGAACAGAAAGGGAGTGGATATTGAAATTAGC CACAGAATCCGGCAACTGGGCAATGGCTCCCTGGCCATCTATGGCACTGTTAATGAAGATGCCGGTGA CTATACATGTGTAGCTACCAATGAAGCTGGGGTGGTGGAGCGCAGCATGAGTCTGACTCTGCGAAGTC CTCCTATTATCACTCTTGAGCCAGTGGAAACTGTTATTAATGCTGGTGGCAAAATCATATTGAATTGT CAGGCAACTGGAGAGCCTCAACCAACTATTACATGGTCCCGTCAAGGGCACTCTATTTCCTGGGATGA CCGGGTTAACGTGTTGTCCAACAACTCATTATATATTGCTGATGCTCAGAAAGAAGATACCTCTGAAT TTGAATGTGTTGCTCGAAACTTAATGGGTTCTGTCCTTGTCAGAGTGCCAGTCATAGTCCAGGTTCAT GGTGGATTTTCCCAGTGGTCTGCATGGAGAGCCTGCAGTGTCACCTGTGGAAAAGGCATCCAAAAGAG GAGTCGTCTGTGCAACCAGCCCCTTCCAGCCAATGGTGGGAAGCCCTGCCAAGGTTCAGATTTGGAAA TGCGAAACTGTCAAAATAAGCCTTGTCCAGTGGATGGTAGCTGGTCGGAATGGAGTCTTTGGGAAGAA TGCACAAGGAGCTGTGGACGCGGCAACCAAACCAGGACCAGGACTTGCAATAATCCATCAGTTCAGCA TGGTGGGCGGCCATGTGAAGGGAATGCTGTGGAAATAATTATGTGCAACATTAGGCCTTGCCCAGTTC ATGGAGCATGGAGCGCTTGGCAGCTTTGGGGAACATGCAGCGAAAGTTGTGGGAAAGGTACTCAGACA AGAGCAAGACTTTGTAATAACCCACCACCAGCGTTTGGTGGGTCCTACTGTGATGGAGCAGAAACACA GATGCAAGTTTGCAATGAAAGAAATTGTCCAATTCATGGCAAGTGGGCGACTTGGGCCAGTTGGAGTG CCTGTTCTGTGTCATGTGGAGGAGGTGCCAGACAGAGAACAAGGGGCTGCTCCGACCCTGTGCCCCAG TATGGAGGAAGGAAATGCGAAGGGAGTGATGTCCAGAGTGATTTTTGCAACAGTGACCCTTGCCCAAG TGAGTGTTGGAAATACCCATGGCTCGAG
NOV43b, 262802367 SEQ ID NO: 1000 712 aa MW at 77089.2kD Protein Sequence
GSTMCVAQNPAGTALGKIKLNVQVPPVISPHLKEYVIAVDKPITLSCEADGLPPPDITWHKDGRAIVE
SIRQRVLSSGSIiQIAFVQPGDAGHYTCMAMLsTVAGSSSTSTKLTVHVPPRIRSTEGHYTVNENSQAILP
CVADGIPTPAI---WKKDNVLL-ANLLGK-YTAEPYGELILENVVLEDSGFYTCV-ANNAAG
VLPTFTELPGDVSLNKGEQLRLSCKATGIPLPKLT TFNNNIIPAHFDSVNGHSELVIERVSKEDSGT
YVCTAENSVGFVKAIGFVYVKEPPVFKGDYPSNWIEPLGGNAILNCEVKGDPTPTIQWNRKGVDIEIS
HRIRQLGNGSLAIYGTVNEDAGDYTCVATNEAGWERS SLTLRSPPIITLEPVETVINAGGKIILNC
QATGEPQPTIT SRQGHSIS DDRVNVLSNNSLYIADAQ---ΕDTSEFECVARNLMGSVLVRVPVIVQVH
GGFSQ SA RACSVTCGKGIQKRSRLCNQPLPANGGKPCQGSDLEMRNCQNKPCPVDGS SE SL EE
CTRSCGRGNQTRTRTCNNPSVQHGGRPCEGNAVEIIMCNIRPCPVHGAWSA QL GTCSESCGKGTQT
RARLCNNPPPAFGGSYCDGAETQMQVCNERNCPIHGKWAT AS SACSVSCGGGARQRTRGCSDPVPQ
YGGR CEGSDVQSDFCNSDPCPSECWKYPWLΞ
NOV43c, CG56914-02 SEQ ID NO: 1001 15660 bp DNA Sequence ORF Start: ATG at 1649 ORF Stop: TAA at 15134
GATTAGTGGCATAAACTGTAGGTCAGCTGGTGGAGGCAAGCCAGCAAGGGGCTTCATGGTAACCAGTG GAAACACAAAAATATAAGGGGCTTCTGAGGCGATCGGGCAGTGTCAGTCTTCAGCCGCTAAGCCGAGA AGATCTGGGAAGGAGTCAGTCAGAGAGCCTTGGGCCAGAGTTCCAGGGGCTCTGGGAGTGGCTGCCAG AAAATACCAGAAAATGAAAGGAATTGAAATTAAGAGAAGGGAGAGATTGAAGTGTGGCGCCAAGATTG AAAGGAGAAAGAGGTTGAAGGATAGGGAGGTTGGAGAAGAGAGTAAAAAGAGGCCACTTACTGGATTT GAAATTGAACCACCCAAAGTCACTGTGATGCCCAAGAATCAGTCTTTCACAGGAGGGTCTGAGGTCTC CATCATGTGTTCTGCAACAGGTTATCCCAAACCAAAGATTGCCTGGACCGTTAACGATATGTTTATCG TGGGTTCACACAGGTATAGGATGACCTCAGATGGTACCTTATTTATCAAAAATGCAGCTCCCAAAGAT GCAGGGATCTATGGTTGCCTAGCAAAAGCCCCTAAGTTGATGGTAGTTCAGAGTGAGCTCTTGGTTGC CCTTGGGGATATAACCGTTATGGAATGCAAAACCTCTGGTATTCCTCCACCTCAAGTTAAATGGTTCA AAGGAGATCTTGAGTTGAGGCCCTCAACATTCCTCATTATTGACCCTCTCTTGGGACTTTTGAAGATT CAAGAAACACAAGATCTGGATGCTGGCGATTATACCTGTGTAGCCATCAATGAGGCTGGAAGAGCAAC TGGCAAGATAACTCTGGATGTTGGCTCACCTCC^ AAATTGGCTCAAATGTGACATTACCTTGTTATGTTCAGGGTTATCCAGAACCAACAATCAAATGGCGA!
AGATTAGACAACATGCCAATTTTCTCAAGACCT TTTCAGTTAG TCCATCAGCCAAC AAGAACAGG,
AGCTCTCTTTATTTTAAACTTATGGGCAAGTGATAAAGGAACCTATATTTGTGAAGCTGAAAACCAGT
TTGGAAAGATCCAGTCAGAGACAACAGTAACAGTGACCGGACTTGTTGCTCCACTTATTGGAATCAGC
CCTTCAGTGGCCAATGTTATTGAAGGACAGCAGCTTACTTTGCCCTGTACTCTGTTAGCTGGAAATCC
CATTCCAGAACGTCGGTGGATTAAGAATTCAGCTATGTTGCTCCAAAATCCTTACATCACTGTGCGCA.
GTGATGGGAGCCTCCATATTGAAAGAGTTCAGCTTCAGGATGGTGGTGAATATACTTGTGTGGCCAGT
AACGTTGCTGGGACCAATAACAAAACTACCTCTGTGGTTGTGCATGTTCTGCCAACCATTCAGCATGG
GCAGCAGATACTCAGTACAATTGAAGGCATTCCAGTAACTTTACCATGCAAAGCAAGTGGAAATCCCA!
'AACCGTCTGTCATCTGGTCCAAGGTAAATGATACATCTAGTTATATTTCCTGAAGAGCAGAGTGTGAAi
GTTCACCTGCAAGTTATCCCTAGTCTTGAGCAGGAGGCTCAGGAGTGGGGCATGGAAAGAAGATAAGT
TAATAAAGGATTTCCTATGTGGCTGGACAGATGTGCTAGGAACCCTCCAAGAAACCATATAGATGCAC
CTCAGAAGGCTCCCTCGGCTTTTCGCCGTGTTTTGCAGAAAGGAGAGCTGATTTCAACCAGCAGTGCT AAGTTTTCAGCAGGAGCTGATGGTAGTCTGTATGTGGTATCACCTGGAGGAGAGGAGAGTGGGGAGTA TGTCTGCACTGCCACCAATACAGCCGGCTACGCCAAAAGGAAAGTGCAGCTAACAGTCTATGTAAGGC CCAGAGTGTTTGGAGATCAACGAGGACTGTCCCAGGATAAGCCTGTTGAGATCTCCGTCCTTGCAGGG GAAGAGGTAACACTTCCATGTGAAGTGAAGAGCTTACCTCCACCCATAATTACTTGGGCCAAAGAAAC CCAGCTCATCTCACCGTTCTCTCCAAGACACACATTCCTCCCTTCTGGTTCAATGAAGATCACTGAAA CCCGCACTTCAGATAGTGGGATGTATCTTTGTGTTGCCACAAATATTGCTGGGAATGTGACTCAGGCT GTCAAATTAAATGTCCATGTTCCTCCAAAGATACAGCGTGGACCTAAACATCTCAAAGTCCAAGTTGG TCAAAGAGTGGATATTCCATGTAATGCTCAAGGGACTCCTCTTCCTGTAATCACCTGGTCCAAAGGTG GAAGCACTATGCTGGTTGATGGAGAGCACCATGTTAGCAATCCAGACGGAACTTTAAGCATCGACCAA GCCACGCCCTCAGATGCTGGCATATATACATGTGTTGCTACTAACATAGCAGGCACTGATGAAACAGA GATAACGCTACATGTCCAAGAACCACCCACAGTGGAAGATCTAGAACCTCCATATAACACTACTTTCC AAGAAAGAGTGGCCAATCAACGCATTGAATTTCCATGTCCTGCAAAAGGTACCCCTAAACCAACCATC AAATGGTTACACAATGGTAGAGAGTTGACAGGCAGAGAGCCTGGCATTTCTATCTTGGAAGATGGCAC ATTGCTGGTTATTGCTTCTGTTACACCCTATGACAATGGGGAGTACATCTGTGTGGCAGTCAATGAAG CTGGAACCACAGAAAGAAAATATAACCTCAAAGTCCATGTTCCTCCAGTAATTAAAGATAAAGAACAA GTTACAAATGTGTCGGTGTTGTTAAATCAGCTGACCAATCTCTTCTGTGAAGTGGAAGGCACTCCATC TCCCATCATTATGTGGTATAAAGATAATGTCCAGGTGACTGAAAGCAGCACTATTCAGACTGTGAACA ATGGGAAGATACTGAAGCTCTTCAGAGCCACTCCAGAGGATGCAGGAAGATATTCCTGCAAAGCAATT AATATTGCAGGCACTTCTCAGAAGTACTTTAACATTGATGTGCTAGGTACCAACTTCCCAAATGAAGT CTCAGTTGTCCTCAACCGTGACGTCGCCCTTGAATGCCAGGTCAAAGGCACTCCCTTTCCTGATATTC ATTGGTTCAAAGATGGCAATATTAAAGGAGGAAATGTCACCACAGACATATCAGTATTGATCAACAGC CTTATTAAACTGGAATGTGAAACACGGGGACTTCCAATGCCTGCCATTACTTGGTATAAGGACGGGCA GCCAATCATGTCCAGCTCACAAGCACTTTATATTGATAAAGGACAATATCTTCATATTCCTCGAGCAC
AGGTCTCTGATTCAGCAACATATACGTGTCACGTAGCCAATGTTGCTGGAACTGCTGAAAAATCATTC CATGTGGATGTCTATGTTCCTCCAATGATTGAAGGCAACTTGGCCACGCCTTTGAATAAGCAAGTAGT TATTGCTCATTCTCTGACACTGGAGTGCAAAGCTGCTGGAAACCCTTCTCCCATTCTCACCTGGTTGA AAGATGGTGTACCTGTGAAAGCTAATGACAATATCCGCATAGAAGCTGGTGGGAAGAAACTCGAAATC ATGAGTGCCCAAGAAATTGATCGAGGACAGTACATATGCGTGGCTACCAGTGTGGCAGGAGAAAAGGA AATCAAATATGAAGTTGATGTCTTGGTGCCACCAGCTATAGAAGGAGGAGATGAAACATCTTACTTCA TTGTGATGGTTAATAACTTACTGGAGCTAGATTGTCATGTGACAGGCTCTCCCCCACCAACTATCATG TGGCTGAAGGATGGCCAGTTAATTGATGAAAGGGATGGATTCAAGATTTTATTAAATGGACGCAAACT GGTTATTGCTCAGGCTCAAGTGTCAAACACAGGCCTTTATCGGTGCATGGCAGCAAATACTGCTGGAG ACCACAAGAAGGAATTTGAAGTGACTGTTCATGTTCCTCCAACAATCAAGTCCTCAGGCCTTTCTGAG AGAGTTGTGGTAAAATACAAGCCTGTCGCCTTGCAGTGCATAGCCAATGGGATTCCAAATCCTTCCAT TACATGGTTAAAAGATGACCAGCCTGTGAACACTGCCCAAGGAAACCTTAAAATACAGTCTTCTGGTC GAGTTCTACAAATTGCCAAAACCCTGTTGGAAGATGCTGGCAGATACACATGTGTGGCTACCAACGCA GCTGGAGAAACACAACAGCACATTCAACTGCATGTTCATGAACCACCTAGTCTGGAAGATGCTGGAAA AATGCTGAATGAGACTGTGTTGGTGAGCAACCCTGTACAGCTGGAGTGTAAGGCAGCTGGAAATCCTG TGCCTGTTATTACATGGTACAAAGATAATCGTCTACTCTCAGGTTCCACCAGCATGACTTTCTTGAAC AGAGGACAGATCATTGATATTGAAAGTGCCCAGATCTCAGATGCTGGCATATATAAATGCGTGGCCAT CAACTCAGCTGGAGCTACAGAGTTATTTTACAGTCTGCAAGTTCATGTGGCCCCATCAATTTCTGGCA GCAATAACATGGTGGCAGTGGTGGTTAATAACCCGGTGAGGTTAGAATGTGAAGCCAGAGGTATTCCT GCCCCAAGTCTGACCTGGTTGAAAGATGGGAGTCCTGTTTCTAGTTTTTCTAATGGATTACAGGTTCT CTCTGGTGGTCGAATCCTAGCATTGACCAGTGCACAAATCAGCGACACAGGAAGGTACACCTGCGTGG CAGTGAATGCTGCTGGAGAAAAGCAAAGGGACATTGACCTCCGAGTATATGTTCCGCCAAATATTATG GGAGAAGAACAGAATGTCTCTGTCCTCATTAGCCAAGCTGTGGAATTACTATGTCAAAGTGATGCTAT TCCCCCACCTACTCTTACTTGGTTAAAAGACGGCCACCCCTTGCT CTGAAAATAGAAGTGTGTTAAAGATTGAAGATGCTCAGGTTCAAGACACTGGTCGTTACACTTGTGAA GCAACAAATGTTGCTGGAAAAACTGAAAAAAACTACAATGTCAACATTTGGGTCCCCCCAAATATTGG TGGTTCTGATGAACTTACTCAACTTACAGTCATTGAAGGGAATCTCATTAGTCTGTTGTGTGAATCAA GTGGTATTCCACCCCCAAATCTCATCTGGAAGAAGAAAGGCTCTCCAGTGCTGACTGATTCCATGGGG CGAGTTAGAATTTTATCTGGGGGCAGGCAATTACAAATTTCAATTGCTGAAAAGTCTGATGCAGCACT CTATTCATGTGTGGCGTCGAATGTTGCTGGGACTGCAAAGAAAGAATACAATCTGCAAGTTTACATTA GACCAACCATAACCAACAGTGGCAGCCACCCTACTGAAATTATTGTGACCCGAGGGAAGAGTATCTCC TTGGAGTGTGAGGTGCAGGGTATTCCACCACCAACAGTGACCTGGATGAAAGATGGCCACCCCTTGAT CAAGGCAAAGGGAGTAGAAATACTGGATGAAGGTCACATCCTTCAGCTGAAGAACATTCATGTATCTG ACACAGGCCGTTATGTGTGTGTTGCTGTGAATGTAGCAGGAATGACTGACAAAAAATATGACTTAAGT GTCCATGGAGGCAGGATGCTACGGCTGATGCAGACCACAATGGAAGATGCTGGCCAATATACTTGCGT TGTAAGGAATGCAGCTGGTGAAGAAAGAAAAATCTTTGGGCTTTCAGTATTAGTACCACCTCATATTG TGGGTGAAAATACATTGGAAGATGTGAAGGTAAAAGAGAAACAGAGTGTTACGCTGACTTGTGAAGTG ACAGGGAATCCAGTGCCAGAAATTACATGGCACAAAGATGGGCAGCCCCTCCAAGAAGATGAAGCCCA TCACATTATATCTGGTGGCCGTTTTCTTCAAATTACCAATGTCCAGGTGCCACACACTGGAAGATATA CATGTTTGGCTTCCAGTCCAGCTGGCCACAAGAGCAGGAGCTTCAGTCTTAATGTATTTGTATCTCCT ACAATTGCTGGTGTAGGTAGTGATGGCAACCCTGAAGATGTCACTGTCATCCTTAACAGCCCTACATC TTTGGTCTGTGAAGCTTATTCATATCCTCCAGCTACCATCACCTGGTTTAAGGATGGCACTCCTTTAG AATCTAACCGAAATATTCGTATTCTTCCAGGAGGCAGAACTCTGCAGATCCTCAATGCACAGGAGGAC AATGCTGGAAGATACTCTTGTGTAGCCACGAATGAGGCTGGAGAAATGATAAAGCACTATGAAGTGAA GGTGTACACACTTAATGCTAACATTGTTATAATTGAATCACAGCCCCTTAAATCCGATGATCATGTTA ATATTGCTGCGAATGGACACACACTTCAAATAAAGGAGGCTCAAATATCAGACACCGGACGATATACT TGTGTAGCATCTAACATTGCAGGTGAAGATGAGTTGGATTTTGATGTGAATATTCAAGTTCCTCCAAG TTTTCAGAAACTCTGGGAAATAGGAAACATGCTAGATACTGGCAGGAATGGTGAAGCCAAAGATGTGA TCATCAACAATCCCATTTCTCTTTACTGTGAGACAAATGCTGCTCCCCCTCCTACACTGACATGGTAC
AAAGATGGCCACCCTCTGACCTCAAGTGATAAAGTATTGATTTTGCCAGGAGGGCGAGTGTTGCAGAT TCCTCGGGCTAAAGTAGAAGATGCTGGGAGATACACATGTGTGGCTGTGAATGAGGCTGGAGAAGATT CCCTTCAATATGATGTCCGTGTACTCGTGCCGCCAATTATCAAGGGAGCAAATAGTGATCTCCCTGAA GAGGTCACCGTGCTGGTGAACAAGAGTGCACTGATAGAGTGTTTATCCAGTGGCAGCCCAGCACCAAG GAATTCCTGGCAGAAAGATGGACAGCCCTTGCTAGAAGATGACCATCATAAATTTCTATCTAATGGAC GAATTCTGCAGATTCTGAATACTCAAATAACAGATATCGGCAGGTATGTGTGTGTTGCTGAGAACACA GCTGGGAGTGCCAAAAAATATTTTAACCTCAATGTTCATGTTCCTCCAAGTGTCATTGGTCCTAAATC TGAAAATCTTACCGTCGTGGTGAACAATTTCATCTCTTTGACCTGTGAGGTCTCTGGTTTTCCACCTC CTGACCTCAGCTGGCTCAAGAATGAACAGCCCATCAAACTGAACACAAATACTCTCATTGTGCCTGGT GGTCGAACTCTACAGATTATTCGGGCCAAGGTATCAGATGGTGGTGAATACACTTGTATAGCTATCAA TCAAGCTGGCGAAAGCAAGAAAAAGTTTTCCCTGACTGTTTATGTGCCCCCAAGCATTAAAGACCATG ACAGTGAATCTCTTTCTGTAGTTAATGTAAGAGAGGGAACTTCTGTGTCTTTGGAGTGTGAGTCGAAC GCTGTGCCACCTCCAGTCATCACTTGGTATAAGAATGGGCGGATGATAACAGAGTCTACTCATGTGGA GATTTTAGCTGATGGACAAATGCTACACATTAAGAAAGCTGAGGTATCTGACACAGGCCAGTATGTAT GTAGAGCTATAAATGTAGCAGGACGGGATGATAAAAATTTCCACCTCAATGTATATGTGCCACCCAGT ATTGAAGGACCTGAAAGAGAAGTGATTGTGGAGACGATCAGCAATCCTGTGACATTAACATGTGATGC CACTGGGATCCCACCTCCCACGATAGCATGGTTAAAGAACCACAAGCGCATAGAAAATTCTGACTCAC TGGAAGTTCGTATTTTGTCTGGAGGTAGCAAACTCCAGATTGCCCGGTCTCAGCATTCAGATAGTGGA AACTATACATGTATTGCTTCAAATATGGAGGGAAAAGCCCAGAAATATTACTTTCTTTCAATTCAAGT TCCTCCAAGTGTTGCTGGTGCTGAAATTCCAAGTGATGTCAGTGTCCTTCTAGGAGAAAATGTTGAGC TGGTCTGCAATGCAAATGGCATTCCTACTCCACTTATTCAATGGCTTAAAGATGGAAAGCCCATAGCT AGTGGTGAAACAGAAAGAATCCGAGTGAGTGCAAATGGCAGCACATTAAACATTTATGGAGCTCTTAC ATCTGACACGGGGAAATACACATGTGTTGCTACTAATCCCGCTGGAGAAGAAGACCGAATTTTTAACT TGAATGTCTATGTTACACCTACAATTAGGGGTAATAAAGATGAAGCAGAGAAACTAATGACTTTAGTG GATACTTCAATAAATATTGAATGCAGAGCCACAGGGACGCCTCCACCACAGATAAACTGGCTGAAGAA TGGACTTCCTCTGCCTCTCTCCTCCCATATCCGGTTACTGGCAGCAGGACAAGTTATCAGGATTGTGA GAGCTCAGGTGTCTGATGTCGCTGTGTATACTTGTGTGGCCTCCAACAGAGCTGGGGTGGATAATAAG CATTACAATCTTCAAGTGTTTGCACCACCAAATATGGACAATTCAATGGGGACAGAGGAAATCACAGT TCTCAAAGGTAGTTCCACCTCTATGGCATGCATTACTGATGGAACCCCAGCTCCCAGTATGGCCTGGC TTAGAGATGGCCAGCCTCTGGGGCTTGATGCCCATCTGACAGTCAGCACCCATGGAATGGTCCTGCAG CTCCTCAAAGCAGAGACTGAAGATTCGGGAAAGTACACCTGCATTGCCTCAAATGAAGCTGGAGAAGT CAGCAAGCACTTTATCCTCAAGGTCCTAGAACCACCTCACATTAATGGATCTGAAGAACATGAAGAGA TATCAGTAATTGTTAATAACCCACTTGAACTTACCTGCATTGCTTCTGGAATCCCAGCCCCTAAAATG ACCTGGATGAAAGATGGCCGGCCCCTTCCACAGACGGATCAAGTGCAAACTCTAGGAGGAGGAGAGGT TCTTCGAATTTCTACTGCTCAGGTGGAGGATACAGGAAGATATACATGTCTGGCATCCAGTCCTGC^^ GAGATGATGATAAGGAATATCTAGTGAGAGTGCATGTACCTCCTAATATTGCTGGAACTGATGAGCCC CGGGATATCACTGTGTTACGGAACAGACAAGTGACATTGGAATGCAAGTCAGATGCAGTGCCCCCACC TGTAATTACTTGGCTCAGAAATGGAGAACGGTTACAGGCAACACCTCGAGTGCGAATCCTATCTGGAG GGAGATACTTGCAAATCAACAATGCTGACCTAGGTGATACAGCCAATTATACCTGTGTTGCCAGCAAC ATTGCAGGAAAGACTACAAGAGAATTTATTCTCACTGTAAATGTTCCTCCAAACATAAAGGGGGGCCC CCAGAGCCTTGTAATTCTTTTAAATAAGTCAACTGTATTGGAATGCATCGCTGAAGGTGTCCCAACTC CAAGGATAACATGGAGAAAGGATGGAGCTGTTCTAGCTGGGAATCATGCAAGATATTCCATCTTGGAA AATGGATTCCTTCATATTCAATCAGCACATGTCACTGACACTGGACGGTATTTGTGTATGGCCACCAA TGCTGCTGGAACAGATCGCAGGCGAATAGATTTACAGGTCCATGTTCCTCCATCTATTGCTCCGGGTC CTACCAACATGACTGTAATAGTAAATGTTCAAACTACTCTGGCTTGTGAGGCTACTGGGATACCAAAA CCATCAATCAATTGGAGAAAAAATGGGCATCTTCTTAATGTGGATCAAAATCAGAACTCATACAGGCT CCTTTCTTCAGGTTCACTAGTAATTATTTCCCCTTCTGTGGATGACACTGCAACCTATGAATGTACTG TGACAAACGGTGCTGGAGATGATAAAAGAACTGTGGATCTCACTGTCCAAGTTCCACCTTCCATAGCT
GATGAGCCTACAGATTTCCTAGTAACCAAACATGCCCCAGCAGTAATTACCTGCACTGCTTCGGGAGT TCCATTTCCCTCAATTCACTGGACCAAAAATGGTATAAGACTGCTTCCCAGGGGAGATGGCTATAGAA TTCTGTCCTCAGGAGCAATTGAAATACTTGCCACCCAATTAAACCATGCTGGAAGATACACTTGTGTC GCTAGGAATGCGGCTGGCTCTGCACATCGACACGTGACCCTTCATGTTCATGAGCCTCCAGTCATTCA GCCCCAACCAAGTGAACTACACGTCATTCTGAACAATCCTATTTTATTACCATGTGAAGCAACAGGGA CACCCAGTCCTTTCATTACTTGGCAAAAAGAAGGCATCAATGTTAACACTTCAGGCAGAAACCATGCA GTTCTTCCTAGTGGCGGCTTACAGATCTCCAGAGCTGTCCGAGAGGATGCTGGCACTTACATGTGTGT GGCCCAGAACCCGGCTGGTACAGCCTTGGGCAAAATCAAGTTAAATGTCCAAGTTCCTCCAGTCATTA GCCCTCATCTAAAGGAATATGTTATTGCTGTGGACAAGCCCATCACGTTATCCTGTGAAGCAGATGGC CTCCCTCCGCCTGACATTACATGGCATAAAGATGGGCGTGCAATTGTGGAATCTATCCGCCAGCGCGT CCTCAGCTCTGGCTCTCTGCAAATAACATTTGTCCAGCCTGGTGATGCTGGCCATTACACGTGCATGG CAGCCAATGTAGCAGGATCAAGCAGCACAAGCACCAAGCTCACCGTCCATGTACCACCCAGGATCAGA AGTACAGAAGGACACTACACGGTCAATGAGAATTCACAAGCCATTCTTCCATGCGTAGCTGATGGAAT CCCCACACCAGCAATTAACTGGAAAAAAGACAATGTTCTTTTAGCTAACTTGTTAGGAAAATACACTG CTGAACCATATGGAGAACTCATTTTAGAAAATGTTGTGCTGGAGGATTCTGGCTTCTATACCTGTGTT GCTAACAATGCTGCAGGTGAAGATACACACACTGTCAGCCTGACTGTGCATGTTCTCCCCACTTTTAC TGAACTTCCTGGAGACGTGTCATTAAATAAAGGAGAACAGCTACGATTAAGCTGTAAAGCTACTGGTA TTCCATTGCCCAAATTAACATGGACCTTCAATAACAATATTATTCCAGCCCACTTTGACAGTGTGAAT GGACACAGTGAACTTGTTATTGAAAGAGTGTCAAAAGAGGATTCAGGTACTTATGTGTGCACCGCAGA GAACAGCGTTGGCTTTGTGAAGGCAATTGGATTTGTGTATGTGAAAGAACCTCCAGTCTTCAAAGGTG ATTATCCTTCTCACTGGATTGAACCACTTGGTGGGAATGCAATCCTGAATTGTGAGGTGAAAGGAGAC CCCACCCCAACCATCCAGTGGAACAGAAAGGGAGTGGATATTGAAATTAGCCACAGAATCCGGCAACT GGGCAATGGCTCCCTGGCCATCTATGGCACTGTTAATGAAGATGCCGGTGACTATACATGTGTAGCTA CCAATGAAGCTGGGGTGGTGGAGCGCAGCATGAGTCTGACTCTGCAAAGTCCTCCTATTATCACTCTT GAGCCAGTGGAAACTGTTATTAATGCTGGTGGCAAAATCATATTGAATTGTCAGGCAACTGGAGAGCC TCAACCAACCATTACATGGTCCCGTCAAGGGCACTCTATTTCCTGGGATGACCGGGTTAACGTGTTGT CCAACAACTCATTATATATTGCTGATGCTCAGAAAGAAGATACCTCTGAATTTGAATGTGTTGCTCGA AACTTAATGGGTTCTGTCCTTGTCAGAGTGCCAGTCATAGTCCAGGTTCATGGTGGATTTTCCCAGTG GTCTGCATGGAGAGCCTGCAGTGTCACCTGTGGAAAAGGCATCCAAAAGAGGAGTCGTCTGTGCAACC AGCCCCTTCCAGCCAATGGTGGGAAGCCCTGCCAAGGTTCAGATTTGGAAATGCGAAACTGTCAAAAT AAGCCTTGTCCAGTGGATGGTAGCTGGTCGGAATGGAGTCTTTGGGAAGAATGCACAAGGAGCTGTGG ACGCGGCAACCAAACCAGGACCAGGACTTGCAATAATCCATCAGTTCAGCATGGTGGGCGGCCATGTG AAGGGAATGCTGTGGAAATAATTATGTGCAACATTAGGCCTTGCCCAGTTCATGGAGCATGGAGCGCT TGGCAGCCTTGGGGAACATGCAGCGAAAGTTGTGGGAAAGGTACTCAGACAAGAGCAAGACTTTGTAA TAACCCACCACCAGCGTTTGGTGGGTCCTACTGTGATGGAGCAGAAACACAGATGCAAGTTTGCAATG AAAGAAATTGTCCAGTTCATGGCAAGTGGGCGACTTGGGCCAGTTGGAGTGCCTGTTCTGTGTCATGT GGAGGAGGTGCCAGACAGAGAACAAGGGGCTGCTCCGACCCTGTGCCCCAGTATGGAGGAAGGAAATG CGAAGGGAGTGATGTCCAGAGTGATTTTTGCAACAGTGACCCTTGCCCAACCCATGGTAACTGGAGTC CTTGGAGTGGCTGGGGAACATGCAGCCGGACGTGTAACGGAGGGCAGATGCGGCGGTACCGCACATGT GATAACCCTCCTCCCTCCAATGGGGGAAGAGCTTGTGGGGGACCAGACTCCCAGATCCAGAGGTGCAA CACTGACATGTGTCCTGTGGATGGAAGTTGGGGAAGCTGGCATAGTTGGAGCCAGTGCTCTGCCTCCT GTGGAGGAGGTGAAAAGACTCGGAAGCGGCTGTGCGACCATCCTGTGCCAGTTAAAGGTGGCCGTCCC TGTCCCGGAGACACTACTCAGGTGACCAGGTGCAATGTACAAGCATGTCCAGGTGGGCCCCAGCGAGC CAGAGGAAGTGTTATTGGAAATATTAATGATGTTGAATTTGGAATTGCTTTCCTTAATGCCACAATAA CTGATAGCCCTAACTCTGATACTAGAATAATACGTGCCAAAATTACCAATGTACCTCGTAGTCTTGGT TCAGCAATGAGAAAGATAGTTTCTATTCTAAATCCCATTTATTGGACAACAGCAAAGGAAATAGGAGA AGCAGTCAATGGCTT GAGAAATCTTGCAGATGAGTCATATTGCCCGGGGCTTGGATTCCGATGGTTCTTTGCTGCTAGATATC GTTGTGAGTGGCTATGTCCTACAGCTTCAGTCACCTGCTGAAGTCACTGTAAAGGATTACACAGAGGA
CTACATTCAAACAGGTCCTGGGCAGCTGTACGCCTACTCAACCCGGCTGTTCACCATTGATGGCATCA GCATCCCATACACATGGAACCACACCGTTTTCTATGATCAGGCACAGGGAAGAATGCCTTTCTTGGTT GAAACACTTCATGCATCCTCTGTGGAATCTGACTATAACCAGATAGAAGAGACACTGGGTTTTAAAAT TCATGCTTCAATATCCAAAGGAGATCGCAGTAATCAGTGCCCCTCCGGGTTTACCTTAGACTCAGTTG GACCTTTTTGTGCTGATGAGGATGAATGTGCAGCAGGGAATCCCTGCTCCCATAGCTGCCACAATGCC ATGGGGACTTACTACTGCTCCTGCCCTAAAGGCCTCACCATAGCTGCAGATGGAAGAACTTGTCAAGA TATTGATGAGTGTGCTTTGGGTAGGCATACCTGCCACGCTGGTCAGGACTGTGACAATACGATTGGAT CTTATCGCTGTGTGGTCCGTTGTGGAAGTGGCTTTCGAAGAACCTCTGATGGGCTGAGTTGTCAAGAT ATTAATGAATGTCAAGAATCCAGCCCCTGTCACCAGCGCTGTTTCAATGCCATAGGAAGTTTCCATTG TGGATGTGAACCTGGGTATCAGCTCAAAGGCAGAAAATGCATGGATGTGAACGAGTGTAGACAAAATG TATGCAGACCAGATCAGCACTGTAAGAACACCCGTGGTGGCTATAAGTGCATTGATCTTTGTCCAAAT GGAATGACCAAGGCAGAAAATGGAACCTGTATTGATATTGATGAATGTAAAGATGGGACCCATCAGTG CAGATATAACCAGATATGTGAGAATACAAGAGGCAGCTATCGTTGTGTATGCCCAAGAGGTTATCGGT CTCAAGGAGTTGGAAGACCCTGCATGGACATTAATGAATGTGAACAAGTGCCTAAACCTTGTGCACAT CAGTGCTCCAACACCCCCGGCAGCTTCAAGTGTATCTGTCCACCAGGACAACATTTATTAGGGGACGG GAAATCTTGCGCTGGATTGGAGAGGCTGCCAAATTATGGCACTCAATACAGTAGCTATAACCTTGCAC GGTTCTCCCCTGTGAGAAACAACTATCAACCTCAACAGCATTACAGACAGTACTCACATCTCTACAGC TCCTACTCAGAGTATAGAAACAGCAGAACATCTCTCTCCAGGACTAGAAGGACTATTAGGAAAACTTG CCCTGAAGGCTCTGAGGCAAGCCATGACACATGTGTAGATATTGATGAATGTGAAAATACAGATGCCT GCCAGCATGAGTGTAAGAATACCTTTGGAAGTTATCAGTGCATCTGCCCACCTGGCTATCAACTCACA CACAATGGAAAGACATGCCAAGATATCGATGAATGTCTGGAGCAGAATGTGCACTGTGGACCCAATCG CATGTGCTTCAACATGAGAGGAAGCTACCAGTGCATCGATACACCCTGTCCACCCAACTACCAACGGG ATCCTGTTTCAGGGTTCTGCCTCAAGAACTGTCCACCCAATGATTTGGAATGTGCCTTGAGCCCATAT GCCTTGGAATACAAACTCGTCTCCCTCCCATTTGGAATAGCCACCAATCAAGATTTAATCCGGCTGGT TGCATACACACAGGATGGAGTGATGCATCCCAGGACAACTTTCCTCATGGTAGATGAGGAACAGACTG TTCCTTTTGCCTTGAGGGATGAAAACCTGAAAGGAGTGGTGTATACAACACGACCACTACGAGAAGCA GAGACCTACCGCATGAGGGTCCGAGCCTCATCCTACAGTGCCAATGGGACCATTGAATATCAGACCAC ATTCATAGTTTATATAGCTGTGTCCGCCTATCCATACTAAGGAACTCTCCAAAGCCTATTCCACATAT
TTAAACCGCATTAATCATGGCAATCAAGCCCCCTTCCAGATTACTGTCTCTTGAACAGTTGCAATCTT
GGCAGCTTGAAAATGGTGCTACACTCTGTTTTGTGTGCCTTCCTTGGTACTTCTGAGGTATTTTCATG
ATCCCACCATGGTCATATCTTGAAGTATGGTCTAGAAAAGTCCCTTATTATTTTATTTATTACACTGG
AGCAGTTACTTCCCAAAGATTATTCTGAACATCTAACAGGACATATCAGTGATGGTTTACAGTAGTGT
AGTACCTAAGATCATTTTCCTGAAAGCCAAACCAAA<--ΑACGAAAAACAAGAACAACTAATTCAGAATC
AAATAGAGTTTTTGAGCATTTGACTATTTTTAGAATCATAAAATTAGTTACTAAGTATTTTGATCAAA!
GCTTATAAAATAACTTACGGAGATTTTTGTAAGTATTGATACATTATAATAGGACTTGCCTATTTTCA!
TTTTTAAGAAGAAAAACCCG
NOV43c, CG56914-02 SEQ ID NO: 1002 4495 aa MW at 488830.5kD Protein Sequence
M LDRCARNPPRNHIDAPQKAPSAFRRVLQKGELISTSSAKFSAGADGSLYWSPGGEESGEYVCTAT
NTAGYA-KRKVQLTVYVRPRVFGDQRGLSQDKPVEISVLAGEEVTLPCEVKSLPPPIIT A ETQLISP
FSPRHTFLPSGSMKITETRTSDSGMYLCVATNIAGNVTQAVKLNVHVPPKIQRGPKHLKVQVGQRVDI
PCNAQGTPLPVITWSKGGST LVDGEHHVSNPDGTLSIDQATPSDAGIYTCVATNIAGTDETEITLHV
QEPPTVEDLEPPYNTTFQERVANQRIEFPCPAKGTPKPTIK LHNGRELTGREPGISILEDGTLLVIA
SVTPYDNGEYICVAVNEAGTTERKYNL-K-VHVPPVI---ΦKEQVT-I SVLLNQLTNLFCEVEGTPSPIIM
YroNVQVTESSTIQTV-røTGKILKLF-RAT^
RDV-ALECQVKGTPFPDIHWFIvTJGNIKGGNVTTDISVLINSLIKLECETRGLPMPAITWYKDGQPIMSS
SQALYIDKGQYLHIPRAQVSDSATYTCHVANVAGTAEKSFHVDVYVPPMIEGNLATPLNKQVVIAHSL
TLEC-i-v7^GNPSPILTWLKDGVPVKAM-)NIRIEAGGK--KLEIMSAQEIDRGQYICVATSVAGE EIKYEV
DVLVPPAIEGGDETSYFIV->røJNLLELDC tTGSPPPTI-WL--- ^
QVSNTGLYRC-^ ANTAGDHK-l-sΕFEVTVHVPPTIKSSGLSERVVVKYKPVALQCIANGIPNPSIT LKD
DQPVNTAQGNL IQSSGRVLQIAKTLLEDAGRYTCVATNAAGETQQHIQLHVHEPPSLEDAGKMLNET
VLVSNPVQLECKAAGNPVPVIT YKDNRLLSGSTSMTFLNRGQIIDIESAQISDAGIYKCVAINSAGA
TELFYSLQV-----Λ7APSISGSNNIWAVVVNNPVRLECE-ARGIPAPSLTWLKDGSPVSSFSNGLQVLSGGRI
LALTSAQISDTGRYTCVAVNAAGEKQRDIDLRVYVPPNIMGEEQNVSVLISQAVELLCQSDAIPPPTL
TWLKDGHPLLKKPGLSISENRSVLKIEDAQVQDTGRYTCEATNVAGKTEKNY-NVNI VPPNIGGSDEL
TQLTVIEGNLISLLCESSGIPPPNLIW KKGSPVLTDS GRVRILSGGRQLQISIAEKSDAALYSCVA
SNV-AG^ EILDEGHILQLKNI---TVSDTGRYVCVAV--WAG TDKKYDLSVHGGRMLRLMQTTMEDAGQYTCVVRNAA
GEERKIFGLSVLVPPHIVGENTLEDVKVKEKQSVTLTCEVTGNPVPEIT HKDGQPLQEDEAHHIISG
GRFLQITNVQVPHTGRYTCLASSPAGHKSRSFSLNVFVSPTIAGVGSDGNPEDVTVILNSPTSLVCEA
YSYPPATIT FKDGTPLESNRNIRILPGGRTLQILNAQEDNAGRYSCVATNEAGE IKHYEVKVYTLN
ANIVIIESQPLKSDDHVNIAANGHTLQIKEAQISDTGRYTCVASNIAGEDELDFDVNIQVPPSFQKLW
EIGNMLDTG-RNGEA--- VII--S-lJPISLYCETN-AAPPPTLT YKDGHPLTSSDKVLILPGGRVLQIPRAKV
EDAGRYTCVAVNEAGEDSLQYDVRVLVPPIIKGANSDLPEEVTVLVN SALIECLSSGSPAPRNSWQK
DGQPLLEDDHHKFLSNGRILQILNTQITDIGRYVCVAENTAGSAKKYFNLNVHVPPSVIGP SENLTV
VVNNFISLTCEVSGFPPPDLS LKNEQPIKLNTNTLIVPGGRTLQIIRA VSDGGEYTCIAINQAGES
K-^FSLTVWPPSIKDHDSESLSVVNWEGTSVSLECESN^
QMLHIKKAEVSDTGQYVCRAINVAGRDDKNFHLNVYVPPSIEGPEREVIVETISNPVTLTCDATGIPP
PTIA LKNHKRIENSDSLEVRILSGGS LQIARSQHSDSGNYTCIASNMEGKAQKYYFLSIQVPPSVA
GAEIPSDVSVLLGENVELVCNANGIPTPLIQ LKDGKPIASGETERIRVSANGSTLNIYGALTSDTGK
YTCVATNPAGEEDRIFNLNVΥVTPTIRGN-EΦEAE---OJMTLVDTSINIECRATGTPPPQIN LKNGLPLP
LSSHIRLLAAGQVIRIVRAQVSDVAVYTCVASNRAGVDNKHYNLQVFAPPN DNSMGTEEITVLKGSS
TS1-4ACITDGTPAPSMA LRDGQPLGLDAHLTVSTHGMVLQLLKAETEDSGKYTCIASNEAGEVSKHFI
LKVLEPPHINGSEEHEEISVIVNNPLELTCIASGIPAPKMTW KDGRPLPQTDQVQTLGGGEVLRIST
AQVEDTGRYTCLASSPAGDDDKEYLVRVHVPPNIAGTDEPRDITVLRNRQVTLECKSDAVPPPVIT L
RNGERLQATPRVRILSGGRYLQINN-ADLGDTANYTCVASNIAGKTTREFILTVNVPPNIKGGPQSLVI
LLNKSTVLECI-AEGVPTPRIT RKDGAVLAGNH-ARYSILENGFLHIQSAHVTDTGRYLCMATNAAGTD
RRRIDLQVHVPPSIAPGPTNMTVIVNVQTTLACEATGIPKPSI---WR-l-avTGHLLNV-DQNQNSYRLLSSGS
LVIISPSVDDTATYECTVTNGAGDD--^TVDLTVQVPPSIADEPTDFLVTKHAPAVITCTASGVPFPSI
HWTKNGIRLLPRGDGYRILSSGAIEILATQLNHAGRYTCVARNAAGSAHRHVTLHVHEPPVIQPQPSE
LHVIL---WPILLPCEATGTPSPFITWQ-K-EGINVNTSG-RNHAVLPSGGLQISRAVREDAGTY CVAQNPA
GTALGKIKLNVQVPPVISPHL-KEYVIAVDKPITLSCEADGLPPPDITWHKDGRAIVESIRQRVLSSGS
LQITFVQPGDAGHYTC AANVAGSSSTSTKLTVHVPPRIRSTEGHYTVNENSQAILPCVADGIPTPAI
-t™KKD--S-VLLANLLGKYTAEPYGELILE--N[VVLEDSGFYT^
VSLNKGEQLRLSCKATGIPLPKLTWTFNNNIIP-AHFDSVNGHSELVIERVSKEDSGTYVCTAENSVGF
VKAIGFVYVKEPPVFKGDYPSH IEPLGGNAILNCEVKGDPTPTIQV RKGVDIEISHRIRQLGNGSL
AIYGTVNEDAGDYTCVATNEAGWERSMSLTLQSPPIITLEPVETVINAGGKIILNCQATGEPQPTIT SRQGHSIS DDRVNVLSNNSLYIADAQKEDTSEFECVA-RNL GSVLVRVPVIVQVHGGFSQ SAWRA CSVTCGKGIQKRSRLCNQPLPANGGKPCQGSDLEMRNCQNKPCPVDGSWSE SL EECTRSCGRGNQT RTRTCNNPSVQHGGRPCΞGNAVEII CNIRPCPVHGA SA QP GTCSESCGKGTQTRARLCNNPPPA FGGSYCDGAETQMQVCNERNCPVHG ATWAS SACSVSCGGGARQRTRGCSDPVPQYGGRKCEGSDV QSDFCNSDPCPTHGNWSPWSG GTCSRTCNGGQMRRYRTCDNPPPSNGGRACGGPDSQIQRCNTD CP VDGS GS HS SQCSASCGGGEKTRKRLCDHPVPVKGGRPCPGDTTQVTRCNVQACPGGPQRARGSVI GNINDVEFGIAFLNATITDSPNSDTRIIRAKITNVPRSLGSAMRKIVSILNPIY TTAKEIGEAVNGF TLTNAVFKRETQVEFATGEILQMSHIARGLDSDGSLLLDIWSGYVLQLQSPAEVTVKDYTEDYIQTG PGQLYAYSTRLFTIDGISIPYTWNHTVFYDQAQGRMPFLVETLHASSVESDYNQIEETLGFKIHASIS KGDRSNQCPSGFTLDSVGPFCADEDECAAGNPCSHSCHNAMGTYYCSCPKGLTIAADGRTCQDIDECA LGRHTCHAGQDCDNTIGSYRCWRCGSGFRRTSDGLSCQDINECQESSPCHQRCFNAIGSFHCGCEPG YQLKGRKCM-DVNECRQNVCRPDQHCKNTRGGYKCIDLCPNGMTKAENGTCIDIDECKDGTHQCRYNQI CENTRGSYRCVCPRGYRSQGVGRPCMDINECEQVPKPCAHQCSNTPGSFKCICPPGQHLLGDGKSCAG LERLPNYGTQYSSYNLARFSPVRNNYQPQQHYRQYSHLYSSYSEYRNSRTSLSRTRRTIRKTCPEGSE AS-fflDTCVDIDECENTDACQHEC---0-JTFGSYQCICPPGYQLT-.--l-NGKTCQDIDECLEQNVHCGPN-RMCFNM RGSYQCIDTPCPPNYQRDPVSGFCLKNCPPNDLECALSPYALEY LVSLPFGIATNQDLIRLVAYTQD GVMHPRTTFLMVDΞEQTVPFALRDENLKGVVYTTRPLREAETYRMRVRASSYSANGTIEYQTTFIVYI AVSAYPY
NOV43d, CG56914-03 JSEQ ID NO: 1003 |6343 bp
DNA Sequence ORF Start: ATG at 105 |θRF Stop: TAA at 5811 jAACCACCTCACATTAATGGATCTGAAGAACATGAAGAGATATCAGTAATTGTTAATAACCCACTTGAA
CTTACCTGCATTGCTTCTGGAATCCCAGCCCCTAAAATGACCTGGATGAAAGATGGCCGGCCCCTTCC
ACAGACGGATCAAGTGCAAACTCTAGGAGGAGGAGAGGTTCTTCGAATTTCTACTGCTCAGGTGGAGG ATACAGGAAGATATACATGTCTGGCATCCAGTCCTGCAGGAGATGATGATAAGGAATATCTAGTGAGA GTGCATGTACCTCCTAATATTGCTGGAACTGATGAGCCCCGGGATATCACTGTGTTACGGAACAGACA AGTGACATTGGAATGCAAGTCAGATGCAGTGCCCCCACCTGTAATTACTTGGCTCAGAAATGGAGAAC GGTTACAGGCAACACCTCGAGTGCGAATCCTATCTGGAGGGAGATACTTGCAAATCAACAATGCTGAC CTAGGTGATACAGCCAATTATACCTGTGTTGCCAGCAACATTGCAGGAAAGACTACAAGAGAATTTAT TCTCACTGTAAATGTTCCTCCAAACATAAAGGGGGGCCCCCAGAGCCTTGTAATTCTTTTAAATAAGT CAACTGTATTGGAATGCATCGCTGAAGGTGTGCCAACTCCAAGGATAACATGGAGAAAGGATGGAGCT GTTCTAGCTGGGAATCATGCAAGATATTCCATCTTGGAAAATGGATTCCTTCATATTCAATCAGCACA TGTCACTGACACTGGACGGTATTTGTGTATGGCCACCAATGCTGCTGGAACAGATCGCAGGCGAATAG ATTTACAGGTCCATGGTTCACTAGTAATTATTTCCCCTTCTGTGGATGACACTGCAACCTATGAATGT ACTGTGACAAACGGTGCTGGAGATGATAAAAGAACTGTGGATCTCACTGTCCAAGTTCCACCTTCCAT AGCTGATGAGCCTACAGATTTCCTAGTAACCAAACATGCCCCAGCAGTAATTACCTGCACTGCTTCGG GAGTTCCATTTCCCTCAATTCACTGGACCAAAAATGGTATAAGACTGCTTCCCAGGGGAGATGGCTAT AGAATTCTGTCCTCAGGAGCAATTGAAATACTTGCCACCCAATTAAACCATGCTGGAAGATACACTTG TGTCGCTAGGAATGCGGCTGGCTCTGCACATCGACACGTGACCCTTCATGTTCATGAGCCTCCAGTCA TTCAGCCCCAACCAAGTGAACTACACGTCATTCTGAACAATCCTATTTTATTACCATGTGAAGCAACA GGGACACCCAGTCCTTTCATTACTTGGCAAAAAGAAGGCATCAATGTTAACACTTCAGGCAGAAACCA TGCAGTTCTTCCTAGTGGCGGCTTACAGATCTCCAGAGCTGTCCGAGAGGATGCTGGCACTTACATGT GTGTGGCCCAGAACCCGGCTGGTACAGCCTTGGGCAAAATCAAGTTAAATGTCCAAGTTCCTCCAGTC ATTAGCCCTCATCTAAAGGAATATGTTATTGCTGTGGACAAGCCCATCACGTTATCCTGTGAAGCAGA TGGCCTCCCTCCGCCTGACATTACATGGCATAAAGATGGGCGTGCAATTGTGGAATCTATCCGCCAGC GCGTCCTCAGCTCTGGCTCTCTGCAAATAGCATTTGTCCAGCCTGGTGATGCTGGCCATTACACGTGC ATGGCAGCCAATGTAGCAGGATCAAGCAGCACAAGCACCAAGCTCACCGTCCATGTACCACCCAGGAT CAGAAGTACAGAAGGACACTACACGGTCAATGAGAATTCACAAGCCATTCTTCCATGCGTAGCTGATG GAATCCCCACACCAGCAATTAACTGGAAAAAAGACAATGTTCTTTTAGCTAACTTGTTAGGAAAATAC ACTGCTGAACCATATGGAGAACTCATTTTAGAAAATGTTGTGCTGGAGGATTCTGGCTTCTATACCTG TGTTGCTAACAATGCTGCAGGTGAAGATACACACACTGTCAGCCTGACTGTGCATGTTCTCCCCACTT TTACTGAACTTCCTGGAGACGTGTCATTAAATAAAGGAGAACAGCTACGATTAAGCTGTAAAGCTACT GGTATTCCATTGCCCAAATTAACATGGACCTTCAATAACAATATTATTCCAGCCCACTTTGACAGTGT GAATGGACACAGTGAACTTGTTATTGAAAGAGTGTCAAAAGAGGATTCAGGTACTTATGTGTGCACCG CAGAGAACAGCGTTGGCTTTGTGAAGGCAATTGGATTTGTTTATGTGAAAGAACCTCCAGTCTTCAAA GGTGATTATCCTTCTAACTGGATTGAACCACTTGGTGGGAATGCAATCCTGAATTGTGAGGTGAAAGG AGACCCCACCCCAACCATCCAGTGGAACAGAAAGGGAGTGGATATTGAAATTAGCCACAGAATCCGGC AACTGGGCAATGGCTCCCTGGCCATCTATGGCACTGTTAATGAAGATGCCGGTGACTATACATGTGTA GCTACCAATGAAGCTGGGGTGGTGGAGCGCAGCATGAGTCTGACTCTGCAAAGTCCTCCTATTATCAC TCTTGAGCCAGTGGAAACTGTTATTAATGCTGGTGGCAAAATCATATTGAATTGTCAGGCAACTGGAG AGCCTCAACCAACCATTACATGGTCCCGTCAAGGGCACTCTATTTCCTGGGATGACCGGGTTAACGTG TTGTCCAACAACTCATTATATATTGCTGATGCTCAGAAAGAAGATACCTCTGAATTTGAATGCGTTGC TCGAAACTTAATGGGTTCTGTCCTTGTCAGAGTGCCAGTCATAGTCCAGGTTCATGGTGGATTTTCCC AGTGGTCTGCATGGAGAGCCTGCAGTGTCACCTGTGGAAAAGGCATCCAAAAGAGGAGTCGTCTGTGC AACCAGCCCCTTCCAGCCAATGGTGGGAAGCCCTGCCAAGGTTCAGATTTGGAAATGCGAAACTGTCA AAATAAGCCTTGTCCAGTGGATGGTAGCTGGTCGGAATGGAGTCTTTGGGAAGAATGCACAAGGAGCT GTGGACGCGGCAACCAAACCAGGACCAGGACTTGCAATAATCCATCAGTTCAGCATGGTGGGCGGCCA TGTGAAGGGAATGCTGTGGAAATAATTATGTGCAACATTAGGCCTTGCCCAGTTCATGGAGCATGGAG CGCTTGGCAGCCTTGGGGAACATGCAGCGAAAGTTGTGGGAAAGGTACTCAGACAAGAGCAAGACTTT GTAATAACCCACCACCAGCGTTTGGTGGGTCCTACTGTGATGGAGCAGAAACACAGATGCAAGTTTGC
AATGAAAGAAATTGTCCAATTCATGGCAAGTGGGCGACTTGGGCCAGTTGGAGTGCCTGTTCTGTGTC ATGTGGAGGAGGTGCCAGACAGAGAACAAGGGGCTGCTCCGACCCTGTGCCCCAGTATGGAGGAAGGA AATGCGAAGGGAGTGATGTCCAGAGTGATTTTTGCAACAGTGACCCTTGCCCAACCCATGGTAACTGG AGTCCTTGGAGTGGCTGGGGAACATGCAGCCGGACGTGTAACGGAGGGCAGATGCGGCGGTACCGCAC ATGTGATAACCCTCCTCCCTCCAATGGGGGAAGAGCTTGTGGGGGACCAGACTCCCAGATCCAGAGGT GCAACACTGACATGTGTCCTGTGGATGGAAGTTGGGGAAGCTGGCATAGTTGGAGCCAGTGCTCTGCC TCCTGTGGAGGAGGTGAAAAGACTCGGAAGCGGCTGTGCGACCATCCTGTGCCAGTTAAAGGTGGCCG TCCTTGTCCCGGAGACACTACTCAGGTGACCAGGTGCAATGTACAAGCATGTCCAGGTGGGCCCCAGC GAGCCAGAGGAAGTGTTATTGGAAATATTAATGATGTTGAATTTGGAATTGCTTTCCTTAATGCCACA ATAACTGATAGCCCTAACTCTGATACTAGAATAATACGTGCCAAAATTACCAATGTACCTCGTAGTCT TGGTTCAGCAATGAGAAAGATAGTTTCTATTCTAAATCCCATTTATTGGACAACAGCAAAGGAAATAG GAGAAGCAGTCAATGGCTTTACCCTCACCAATGCAGTCTTCAAAAGAGAAACTCAAGTGGAATTTGCA ACTGGAGAAATCTTGCAGATGAGTCATATTGCCCGGGGCTTGGATTCCGATGGTTCTTTGCTGCTAGA TATCGTTGTGAGTGGCTATGTCCTACAGCTTCAGTCACCTGCTGAAGTCACTGTAAAGGATTACACAG AGGACTACATTCAAACAGGTCCTGGGCAGCTGTACGCCTACTCAACCCGGCTGTTCACCATTGATGGC ATCAGCATCCCATACACATGGAACCACACCGTTTTCTATGATCAGGCACAGGGAAGAATGCCTTTCTT GGTTGAAACACTTCATGCATCCTCTGTGGAATCTGACTATAACCAGATAGAAGAGACACTGGGTTTTA AAATTCATGCTTCAATATCCAAAGGAGATCGCAGTAATCAGTGCCCCTCCGGGTTTACCTTAGACTCA GTTGGACCTTTTTGTGCTGATGAGGATGAATGTGCAGCAGGGAATCCCTGCTCCCATAGCTGCCACAA TGCCATGGGGACTTACTACTGCTCCTGCCCTAAAGGCCTCACCATAGCTGCAGATGGAAGAACTTGTC AAGATATTGATGAGTGTGCTTTGGGTAGGCATACCTGCCACGCTGGTCAGGACTGTGACAATACGATT GGATCTTATCGCTGTGTGGTCCGTTGTGGAAGTGGCTTTCGAAGAACCTCTGATGGGCTGAGTTGTCA AGATATTAATGAATGTCAAGAATCCAGCCCCTGTCACCAGCGCTGTTTCAATGCCATAGGAAGTTTCC ATTGTGGATGTGAACCTGGGTATCAGCTCAAAGGCAGAAAATGCATGGATGTGAACGAGTGTAGACAA AATGTATGCAGACCAGATCAGCACTGTAAGAACACCCGTGGTGGCTATAAGTGCATTGATCTTTGTCC AAATGGAATGACCAAGGCAGAAAATGGAACCTGTATTGATATTGATGAATGTAAAGATGGGACCCATC AGTGCAGATATAACCAGATATGTGAGAATACAAGAGGCAGCTATCGTTGTGTATGCCCAAGAGGTTAT CGGTCTCAAGGAGTTGGAAGACCCTGCATGGATATTGATGAATGTGAAAATACAGATGCCTGCCTGCA TGAGTGTAAGAATACCTTTGGAAGTTATCAGTGCATCTGCCCACCTGGCTATCAACTCACACACAATG GAAAGACATGCCAAGATATCGATGAATGTCTGGAGCAGAATGTGCACTGTGGACCCAATCGCATGTGC TTCAACATGAGAGGAAGCTACCAGTGCATCGATACACCCTGTCCACCCAACTACCAACGGGATCCTGC TTCAGGGTTCTGCCTCAAGAACTGTCCACCCAATGATTTGGAATGTGCCTTGAGCCCATATGCCTTGG AATACAAACTCGTCTCCCTCCCATTTGGAATAGCCACCAATCAAGATTTAATCCGGCTGGTTGCATAC ACACAGGATGGAGTGATGCATCCCAGGACAACTTTCCTCATGGTAGATGAGGAACAGACTGTTCCTTT TGCCTTGAGGGATGAAAACCTGAAAGGAGTGGTGTATACAACACGACCACTACGAGAAGCAGAGACCT ACCGCATGAGGGTCCGAGCCTCATCCTACAGTGCCAATGGGACCATTGAATATCAGACCACATTCATA GTTTATATAGCTGTGTCCGCCTATCCATACTAAGGAACTCTCCAAAGCCTATTCCACATATTTAAACC
GCATTAATCATGGCAATCAAGCCCCCTTCCAGATTACTGTCTCTTGAACAGTTGCAATCTTGGCAGCT
TGAAAATGGTGCTACACTCTGTTTTGTGTGCCTTCCTTGGTACTTCTGAGGTATTTTCATGATCCCAC
CATGGTCATATCTTGAAGTATGGTCTAGAAAAGTCCCTTATTATTTTATTTATTACACTGGAGCAGTT
ACTTCCCAAAGATTATTCTGAACATCTAACAGGACATATCAGTGATGGTTTACAGTAGTGTAGTACCT
AAGATCATTTTCCTGAAAGCCAAACCAAACAACGAAAAACAAGAACAACTAATTCAGAATCAAATAGA
GTTTTTGAGCATTTGACTATTTTTAGAATCATAAAATTAGTTACTAAGTATTTTGATCAAAGCTTATA
AAATAACTTACGGAGATTTTTGTAAGTATTGATACATTATAATAGGACTTGCCTATTTTCATTTTTAA
GAAGAAAAACACCACTCAT
NOV43d, CG56914-03 ""^ SEQ ID NO: 1004 ' 1902 aa °MW at 207163.2kD Protein Sequence
MT MKDGRPLPQTDQVQTLGGGEVLRISTAQVEDTGRYTCLASSPAGDDDKEYLVRVHVPPNIAGTDE P-RDITVLRNRQVTLECKSDAVPPPVITWLRNGERLQATPRVRILSGGRYLQINNADLGDTANYTCVAS NIAGKTTREFILTVNVPPNIKGGPQSLVILLNKSTVLECIAEGVPTPRITWRKDGAVLAGNHARYSIL ENGFLHIQSAHVTDTGRYLCMATNAAGTDRRRIDLQVHGSLVIISPSVDDTATYECTVTNGAGDDKRT VDLTVQVPPSI-ADEPTDFLVTKHAPAVITCTASGVPFPSIH TKNGIRLLPRGDGYRILSSGAIEILA TQLNHAGRYTCVARNAAGSAHRHVTLHVHEPPVIQPQPSELHVILNNPILLPCEATGTPSPFIT QKE GI---WNTSGRNHAVLPSGGLQISRAVREDAGTYMCVAQNPAGTALGKIKLNVQVPPVISPHLKEYVIAV DKPITLSCEADGLPPPDIT H---03GRAIVΕSIRQRVLSSGSLQIAFVQPGDAGHYTC AANVAGSSSTS TKLTVHVPPRIRSTEGHYTVNENSQAILPCVADGIPTPAINWKKDNVLLANLLGKYTAEPYGELILEN VVLEDSGFYTCVA-NNAAGEDTHTVSLTVHVLPTFTELPGDVSLNKGEQLRLSCKATGIPLPKLT TFN NNIIPAHFDSVNGHSELVIERVSKEDSGTYVCTAENSVGFVKAIGFVYVKEPPVFKGDYPSN IEPLG GNAILNCEVKGDPTPTIQ NRKGVDIEISHRIRQLGNGSLAIYGTVNEDAGDYTCVATNEAGWERSM SLTLQSPPIITLEPVETVINAGGKIILNCQATGEPQPTIT SRQGHSIS DDRVNVLSNNSLYIA-DAQ KEDTSEFECVA-RNLMGSVLVRVPVIVQVHGGFSQWSA RACSVTCGKGIQKRSRLCNQPLPANGGKPC QGSDLE RNCQNKPCPVDGSWSE SL EECTRSCGRGNQTRTRTCNNPSVQHGGRPCEGNAVEIIMCN IRPCPVHGAWSA QP GTCSESCGKGTQT-R-z^LC-tS-lJPPPAFGGSYCDGAETQMQVCNERNCPIHGK A T AS SACSVSCGGGARQRTRGCSDPVPQYGGRKCEGSDVQSDFCNSDPCPTHGN SPWSG GTCSRT CNGGQMRRYRTCDNPPPSNGGRACGGPDSQIQRCNTDMCPVDGS GS HSWSQCSASCGGGEKTRKRL CDHPVPV GGRPCPGDTTQVTRCNVQACPGGPQRARGSVIGNINDVEFGIAFLNATITDSPNSDTRII RAKITNVPRSLGSAMRKIVSILNPIYWTTAKEIGEAVNGFTLTNAVFKRETQVEFATGEILQMSHIAR GLDSDGSLLLDIWSGYVLQLQSPAEVTVKDYTEDYIQTGPGQLYAYSTRLFTIDGISIPYT NHTVF YDQAQGRMPFLVETLHASSVESDYNQIEETLGFKIHASISKGDRSNQCPSGFTLDSVGPFCADEDECA AGNPCSHSCHNAMGTYYCSCPKGLTIAADGRTCQDIDECALGRHTCHAGQDCDNTIGSYRCWRCGSG FRRTSDGLSCQDINECQESSPCHQRCFNAIGSFHCGCEPGYQLKGRKC DVNECRQNVCRPDQHCKNT RGGYKCIDLCPNGMTKAENGTCIDIDECKDGTHQCRYNQICENTRGSYRCVCPRGYRSQGVGRPCi DI DECENTDACLHECKNTFGSYQCICPPGYQLTHNGKTCQDIDECLEQNVHCGPNR CFNMRGSYQCIDT PCPPNYQRDPASGFCL---αsrCPP-røLECALSPYALEYKLVSLPFGIATNQDLIRLVAYTQDGVMHPRTTF LMVDEEQTVPFALRDENLKGVVYTTRPLREA-ETYRMRVRASSYSANGTIEYQTTFIVYIAVSAYPY
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 43B. NOV43d
NOV43a
NOV43b
NOV43C WLKDGQLIDERDGFKILLNGRKLVIAQAQVSNTGLYRCMAANTAGDHKKEFEVTVHVPPT
NOV43d
NOV43a
NOV43b
NOV43C IKSSGLSERVWKYKPVALQCIANGIPNPSITWLKDDQPVNTAQGNLKIQSSGRVLQIAK
NOV43d
NOV43a
NOV43b
NOV43C TLLEDAGRYTCVATNAAGETQQHIQLHVHEPPSLEDAGKMLNETVLVSNPVQLECKAAGN
NOV43d
NOV43a
NOV43b
NOV43C PVPVITWYKDNRLLSGSTSMTFLNRGQIIDIESAQISDAGIYKCVAINSAGATELFYSLQ
NOV43d
NOV43a
NOV43b
NOV43C VHVAPSISGS-NKIHVAVVVrøPWLECE-^^
NOV43d
NOV43a
NOV43b
NOV43C LALTSAQISDTGRYTCVAVNAAGEKQRDIDLRVYVPPNIMGEEQNVSVLISQAVELLCQS
NOV43d
NOV43a
NOV43b
NOV43C DAIPPPTLTWLKDGHPLLKKPGLSISENRSVLKIEDAQVQDTGRYTCEATNVAGKTEKNY
NOV43d
NOV43a
NOV43b
NOV43C NVNIWVPPNIGGSDELTQLTVIEGNLISLLCESSGIPPPNLIWKKKGSPVLTDSMGRVRI
NOV43d
NOV43a
NOV43b
NOV43C LSGGRQLQISIAEKSDAALYSCVASNVAGTAKKEYNLQVYIRPTITNSGSHPTEIIVTRG
NOV43d
NOV43a
NOV43b
NOV43C KSISLECEVQGIPPPTVTWMKDGHPLIKAKGVEILDEGHILQLKNIHVSDTGRYVCVAVN
NOV43d
NOV43a
NOV43b
NOV43C VAGMTDKKYDLSVHGGRMLRLMQTTMEDAGQYTCWRNAAGEERKIFGLSVLVPPHIVGE
NOV43d
NOV43a
NOV43b
NOV43C NTLEDVKV-KEKQSVTLTCEVTGNPVPEITWHKDGQPLQEDEAHHIISGGRFLQITNVQVP NOV43d
NOV43a
NOV43b
NOV43C HTGRYTCLASSPAGHKSRSFSLNVFVSPTIAGVGSDGNPEDVTVILNSPTSLVCEAYSYP
NOV43d
NOV43a
NOV43b
NOV43C PATIT FKDGTPLESNRNIRILPGGRTLQILNAQEDNAGRYSCVATNEAGEMIKHYEVKV
NOV43d
NOV43a
NOV43b
NOV43C YTLNANIVIIESQPLKSDDHVNIAANGHTLQIKEAQISDTGRYTCVASNIAGEDELDFDV
NOV43d
NOV43a
NOV43b
NOV43C NIQVPPSFQKLWEIGNMLDTGRNGEAKDVIINNPISLYCETNAAPPPTLTWYKDGHPLTS
NOV43d
NOV43a
NOV43b
NOV43C SDKVLILPGGRVLQIPRAKVEDAGRYTCVAVNEAGEDSLQYDVRVLVPPIIKGANSDLPE
NOV43d
NOV43a
NOV43b
NOV43C EVTVLV-NKSALIECLSSGSPAPRNSWQKDGQPLLEDDHHKFLSNGRILQILNTQITDIGR
NOV43d
NOV43a
NOV43b
NOV43C YVCVAENTAGSAK-t-s^FNLNVHVPPSVIGPKSENLTVVVNNFISLTCEVSGFPPPDLSWLK
NOV43d
NOV43a
NOV43b
NOV43C NEQPIKLNTNTLIVPGGRTLQIIRAKVSDGGEYTCIAINQAGESKKKFSLTVYVPPSIKD
NOV43d
NOV43a
NOV43b
NOV43C HDSESLSWNVREGTSVSLECESNAVPPPVITWYKNGRMITESTHVEILADGQMLHIKKA
NOV43d
NOV43a
NOV43b
NOV43C EVSDTGQYVCRAINVAGRDD-KNFHLNVYVPPSIEGPEREVIVETISNPVTLTCDATGIPP
NOV43d
NOV43a
NOV43b
NOV43C PTIAWLKNHKRIENSDSLEVRILSGGSKLQIARSQHSDSGNYTCIASNMEGKAQKYYFLS
NOV43d
NOV43a
NOV43b
NOV43C IQVPPSVAGAEIPSDVSVLLGENVELVCNANGIPTPLIQWLKDGKPIASGETERIRVSAN NOV43d
NOV43a
NOV43b
NOV43 C GSTLNIYGALTSDTGKYTCVATNPAGEEDRIFNLNVYVTPTIRGNKDEAEKLMTLVDTSI
NOV43d
NOV43a
NOV43b
NOV43 C NIECRATGTPPPQI-IS-WLKNGLPLPLSSHIRLLAAGQVIRIVRAQVSDVAVYTCVASNRAG
NOV43d
NOV43a
NOV43b
NOV43C VDNKHYNLQVFAPP-ISMDNSMGTEEITVLKGSSTSMACITDGTPAPSMAWLRDGQPLGLDA
NOV43d
NOV43a
NOV43b
NOV43C HLTVSTHG-WLQLL-l-α^TEDSG--ΩrTCIASNEAGEVSKHFILKVLEPPHINGSEEHEEI,SV
NOV43d
NOV43a
NOV43b
NOV43C IVNNPLELTCIASGIPAPKMTWMKDGRPLPQTDQVQTLGGGEVLRISTAQVEDTGRYTCL
NOV43d MTWMKDGRPLPQTDQVQTLGGGEVLRISTAQVEDTGRYTCL
NOV43a
NOV43b
NOV43C ASSPAGDDDKEYLVRVHVPPNIAGTDEPRDITVLRNRQVTLECKSDAVPPPVITWLRNGE
NOV43d ASSPAGDDDKEYLVRVI-WPPNIAGTDEPRDITVLRNRQVTLECKSDAVPPPVITWLRNGE
NOV43a
NOV43b
NOV43C RLQATPRVRILSGGRYLQINNADLGDTANYTCVASNIAGKTTREFILTVNVPPNIKGGPQ
NOV43d RLQATPRVRILSGGRYLQINNADLGDTANYTCVASNIAGKTTREFILTVNVPPNIKGGPQ
NOV43a
NOV43b
NOV43C SLVILLNKSTVLECIAEGVPTPRITWR-l-sTJGAVLAGNHARYSILENGFLHIQSAHVTDTGR
NOV43d SLVILLNKSTVLECIAEGVPTPRITWRKDGAVLAGNHARYSILENGFLHIQSAHVTDTGR
NOV43a
NOV43b
NOV43C YLCMATNAAGTDRRRIDLQVHVPPSIAPGPTNMTVIVNVQTTLACEATGIPKPSINWRKN
NOV43d YLCMATNAAGTDRRRIDLQVHG
NOV43a
NOV43b
NOV43C GHLLNVDQNQNSYRLLSSGSLVIISPSVDDTATYECTVTNGAGDDKRTVDLTVQVPPSIA
NOV43d SLVIISPSVDDTATYECTVTNGAGDDKRTVDLTVQVPPSIA
NOV43a
NOV43b
NOV43C DEPTDFLVTKHAPAVITCTASGVPFPSIHWTKNGIRLLPRGDGYRILSSGAIEILATQLN
NOV43d DEPTDFLVTKHAPAVITCTASGVPFPSIHWTKNGIRLLPRGDGYRILSSGAIEILATQLN
NOV43a
NOV43b
NOV43C HAGRYTCVARNAAGSAHRHVTLHVHEPPVIQPQPSELHVILNNPILLPCEATGTPSPFIT NOV43d HAGRYTCVARNAAGSAHRHVTLHVHEPPVIQPQPSELHVILNNPILLPCEATGTPSPFIT
NOV43a MCVAQNPAGTALGKIKLNVQVPPV
NOV43b GSTMCVAQNPAGTALGKIKLNVQVPPV
NOV43C WQKEGINVNTSGRNHAVLPSGGLQISRAVREDAGTYMCVAQNPAGTALGKIKLNVQVPPV
NOV43d WQKEGI- TSGRNHAVLPSGGLQISRAVREDAGTYMCVAQNPAGTALGKIKLNVQVPPV
NOV43a ISPHLKEYVIAVDKPITLSCEADGLPPPDITWHKDGRAIVESIRQRVLSSGSLQIAFVQP
NOV43b ISPHLKEYVIAVDKPITLSCEADGLPPPDITWHKDGRAIVESIRQRVLSSGSLQIAFVQP
NOV43C ISPHLKEYVIAVDKPITLSCEADGLPPPDITWHKDGRAIVESIRQRVLSSGSLQITFVQP
NOV43d ISPHLKEYVIAVDKPITLSCEADGLPPPDITWHKDGRAIVESIRQRVLSSGSLQIAFVQP
NOV43a GDAGHYTC-MAANVAGSSSTSTKLTVHVPPRIRSTEGHYTVNENSQAILPCVADGIPTPAI
NOV43b GDAGHYTCM-AA-I-WAGSSSTSTKLTVHVPPRIRSTEGHYTVNENSQAILPCVADGIPTPAI
NOV43C GDAGHYTCMAA-IWAGSSSTSTKLTVHVPPRIRSTEGHYTVNENSQAILPCVADGIPTPAI
NOV43d GDAGHYTCMAANVAGSSSTSTKLTVHVPPRIRSTEGHYTVNENSQAILPCVADGIPTPAI
NOV43a NWKKDNVLLANLLGKYTAEPYGELILENWLEDSGFYTCVANNAAGEDTHTVSLTVHVLP
NOV43b ϊrø.--α NVLLANLLGKYT-AEPYGE
NOV43C -lWK--α-) VL----J mLGKYTAEPYGE
NOV43d NWKKDNVLLA LLGKYTAEPYGELILENVVLEDSGFYTCVANMAAGEDTHTVSLTVH^
NOV43a TFTELPGDVSLNKGEQLRLSCKATGIPLPKLTWTFNNNIIPAHFDSVNGHSELVIERVSK
NOV43b TFTELPGDVSLNKGEQLRLSC---^TGIPLPKLTWTFNNNIIPAHFDSVNGHSELVIERVSK
NOV43C TFTELPGDVSLNKGEQLRLSCKATGIPLPKLTWTFNNNIIPAHFDSVNGHSELVIERVSK
NOV43d TFTELPGDVSLNKGEQLRLSCKATGIPLPKLTWTFNNNIIPAHFDSVNGHSELVIERVSK
NOV43a EDSGTYVCTAENSVGFVKAIGFVYVKEPPVFKGDYPSNWIEPLGGNAILNCEVKGDPTPT
NOV43b EDSGTYVCTAENSVGFVKAIGFVYVKEPPVFKGDYPSNWIEPLGGNAILNCEVKGDPTPT
NOV43C EDSGTYVCTAENSVGFVKAIGFVYVKEPPVFKGDYPSHWIEPLGGNAILNCEVKGDPTPT
NOV43d EDSGTYVCTAENSVGFVKAIGFVYVKEPPVFKGDYPSNWIEPLGGNAILNCEVKGDPTPT
NOV43a IQWNRKGVDIEISHRIRQLGNGSLAIYGTVNEDAGDYTCVATNEAGWERSMSLTLQSPP
NOV43b IQWNRKGVDIEISHRIRQLGNGSLAIYGTVNEDAGDYTCVATNEAGWERSMSLTLRSPP
NOV43C IQWNRKGVDIEISHRIRQLGNGSLAIYGTVNEDAGDYTCVATNEAGWERSMSLTLQSPP
NOV43d IQWNRKGVDIEISHRIRQLGNGSLAIYGTVNEDAGDYTCVATNEAGWERSMSLTLQSPP s
NOV43a IITLEPVETVINAGGKIILNCQATGEPQPTITWSRQGHSISWDDRVNVLSNNSLYIADAQ
NOV43b IITLEPVETVINAGGKIILNCQATGEPQPTITWSRQGHSISWDDRVNVLSNNSLYIADAQ
NOV43C IITLEPVETVINAGGKIILNCQATGEPQPTITWSRQGHSISWDDRVNVLSNNSLYIADAQ
NOV43d IITLΞPVETVINAGGKIILNCQATGEPQPTITWSRQGHSISWDDRVNVLSNNSLYIADAQ
NOV43a KEDTSEFECVARNLMGSVLVRVPVIVQVHGGFSQWSAWRACSVTCGKGIQKRSRLCNQPL
NOV43b KEDTSEFECVARNLMGSVLVRVPVIVQVHGGFSQWSAWRACSVTCGKGIQKRSRLCNQPL
NOV43C KEDTSEFECVARNLMGSVLVRVPVIVQVHGGFSQWSAWRACSVTCGKGIQKRSRLCNQPL
NOV43d KEDTSEFECVARNLMGSVLVRVPVIVQVHGGFSQWSAWRACSVTCGKGIQKRSRLCNQPL
NOV43a PANGGKPCQGSDLEMRNCQNKPCPVDGSWSEWSLWEECTRSCGRGNQTRTRTCNNPSVQH
NOV43b PANGGKPCQGSDLEMRNCQNKPCPVDGSWSEWSLWEECTRSCGRGNQTRTRTCNNPSVQH
NOV43C PANGGKPCQGSDLEMRNCQNKPCPVDGSWSEWSLWEECTRSCGRGNQTRTRTCNNPSVQH
NOV43d PANGGKPCQGSDLEMRNCQNKPCPVDGSWSEWSLWEECTRSCGRGNQTRTRTCNNPSVQH
NOV43a GGRPCEGNAVEIIMCNIRPCPVHGAWSAWQPWGTCSESCGKGTQTRARLCNNPPPAFGGS
NOV43b GGRPCEGNAVEIIMCNIRPCPVHGAWSAWQLWGTCSESCGKGTQTRARLCNNPPPAFGGS
NOV43C GGRPCEGNAVEIIMCNIRPCPVHGAWSAWQPWGTCSESCGKGTQTRARLCNNPPPAFGGS
NOV43d GGRPCEGNAVEIIMCNIRPCPVHGAWSAWQPWGTCSESCGKGTQTRARLCNNPPPAFGGS
NOV43a YCDGAETQMQVCNERNCPIHGKWATWASWSACSVSCGGGARQRTRGCSDPVPQYGGRKCE NOV43b YCDGAETQMQVCNERNCPIHGKWATWASWSACSVSCGGGARQRTRGCSDPVPQYGGRKCE NOV43C YCDGAETQMQVCNERNCPVHGKWATWASWSACSVSCGGGARQRTRGCSDPVPQYGGRKCΞ NOV43d YCDGAETQMQVCNERNCPIHGKWATWASWSACSVSCGGGARQRTRGCSDPVPQYGGRKCE
NOV43a GSDVQSDFCNSDPCPSECWKYPW
NOV43b GSDVQSDFCNSDPCPSECWKYPWLE
NOV43C GSDVQSDFCNSDPCPTHGNWSPWSGWGTCSRTCNGGQMRRYRTCDNPPPSNGGRACGGPD
NOV43d GSDVQSDFCNSDPCPTHGNWSPWSGWGTCSRTCNGGQMRRYRTCDNPPPSNGGRACGGPD
NOV43a
NOV43b
NOV43C SQIQRCNTDMCPVDGSWGSWHSWSQCSASCGGGEKTRKRLCDHPVPVKGGRPCPGDTTQV
NOV43d SQIQRCNTDMCPVDGSWGSWHSWSQCSASCGGGEKTRKRLCDHPVPVKGGRPCPGDTTQV
NOV43a
NOV43b
NOV43C TRCNVQACPGGPQRARGSVIGNINDVEFGIAFLNATITDSPNSDTRIIRAKITNVPRSLG
NOV43d TRCNVQACPGGPQRARGSVIGNINDVEFGIAFLNATITDSPNSDTRIIRAKITNVPRSLG
NOV43a
NOV43b
NOV43C SAMRKIVSILNPIYWTTAKEIGEAVNGFTLTNAVFKRETQVEFATGEILQMSHIARGLDS
NOV43d SAMRKIVSILNPIYWTTAKEIGEAVNGFTLTNAVFKRETQVEFATGEILQMSHIARGLDS
NOV43a
NOV43b
NOV43C DGSLLLDIWSGYVLQLQSPAEVTVKDYTEDYIQTGPGQLYAYSTRLFTIDGISIPYTWN
NOV43d DGSLLLDIWSGYVLQLQSPAEVTVKDYTEDYIQTGPGQLYAYSTRLFTIDGISIPYTWN
NOV43a
NOV43b
NOV43C HTVFYDQAQGRMPFLVETLHASSVESDYNQIEETLGFKIHASISKGDRSNQCPSGFTLDS
NOV43d HTVFYDQAQGRMPFLVETLHASSVESDYNQIEETLGFKIHASISKGDRSNQCPSGFTLDS
NOV43a
NOV43b
NOV43C VGPFCADEDECAAGNPCSHSCHNAMGTYYCSCPKGLTIAADGRTCQDIDECALGRHTCHA
NOV43d VGPFCADEDECAAGNPCSHSCHNAMGTYYCSCPKGLTIAADGRTCQDIDΞCALGRHTCHA
NOV43a
NOV43b
NOV43C GQDCDNTIGSYRCWRCGSGFRRTSDGLSCQDINECQESSPCHQRCFNAIGSFHCGCEPG
NOV43d GQDCDNTIGSYRCWRCGSGFRRTSDGLSCQDINECQESSPCHQRCFNAIGSFHCGCEPG
NOV43a
NOV43b
NOV43C YQLKGRKCMDVNECRQNVCRPDQHCKNTRGGYKCIDLCPNGMTKAENGTCIDIDECKDGT
NOV43d YQLKGRKCMDVNECRQNVCRPDQHCKNTRGGYKCIDLCPNGMTKAENGTCIDIDECKDGT
NOV43a
NOV43b
NOV43C HQCRYNQICENTRGSYRCVCPRGYRSQGVGRPCMDINECEQVPKPCAHQCSNTPGSFKCI
NOV43d HQCRYNQICΞNTRGSYRCVCPRGYRSQGVGRPCMDI
NOV43a
NOV43b
NOV43C CPPGQHLLGDGKSCAGLERLPNYGTQYSSYNLARFSPVRNNYQPQQHYRQYSHLYSSYSE
NOV43d
NOV43a
NOV43b
NOV43C YRNSRTSLSRTRRTIRKTCPEGSEASHDTCVDIDECENTDACQHECKNTFGSYQCICPPG NOV43d DECENTDACLHECKNTFGSYQCICPPG
NOV43a
NOV43b
N0V43C YQLTHNGKTCQDIDECLEQNVHCGPNRMCFNMRGSYQCIDTPCPPNYQRDPVSGFCLKNC
NOV43d YQLTHNGKTCQDIDECLEQNVHCGPNRMCFNMRGSYQCIDTPCPPNYQRDPASGFCLKNC
NOV43a
NOV43b
NOV43C PPNDLECALSPYALEYKLVSLPFGIATNQDLIRLVAYTQDGVMHPRTTFLMVDEEQTVPF
NOV43d PPNDLECALSPYALEYKLVSLPFGIATNQDLIRLVAYTQDGVMHPRTTFLMVDEEQTVPF
NOV43a
NOV43b
N0V43C ALRDENLKGWYTTRPLREAETYRMRVRASSYSANGTIEYQTTFIVYIAVSAYPY
N0V43d ALRDENLKGWYTTRPLREAETYRMRVRASSYSANGTIEYQTTFIVYIAVSAYPY
NOV43a (SEQ ID NO 998)
NOV43b (SEQ ID NO 1000)
NOV43C (SEQ ID NO 1002)
NOV43d (SEQ ID NO 1004)
Further analysis ofthe NOV43aprotein yielded the following properties shown in Table 43C.
Table 43C. Protein Sequence Properties NOV43a
SignalP analysis: No Known Signal Sequence Predicted
PSORT II analysis:
PSG: a ew signal peptide prediction method
N-region: length 0; pos.chg 0; neg.chg 0 H-region: length 13; peak value 2.20 PSG score: -2.20
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -8.62 possible cleavage site: between 48 and 49
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al's method for TM region allocation Init position for calculation: 1
Tentative number of TMS(s) for the threshold 0.5: 0 number of TMS(s) .. fixed PERIPHERAL Likelihood = 0.63 (at 454) ALOM score: 0.63 (number of TMSs: 0)
MITDISC: discrimination of mitochondrial targeting seg R content: 0 Hyd Moment (75) : 4.71 Hyd Moment (95): 3.65 G content: 2 D/E content: 1 S/T content: 2 Score: -5.83
Gavel : prediction of cleavage sites for mitochondrial preseq cleavage site motif not found
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite : none content of basic residues: 8.5%
NLS Score: -0.47
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals:
KKXX-like motif in the C-terminus: WKYP
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif : type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail: none
Dileucine motif in the tail: none checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: nuclear Reliability: 55.5
COIL: Lupas ' s algorithm to detect coiled-coil regions total: 0 residues
Final Results (k = 9/23) :
73.9 % -. nuclear
13 . 0 % : mitochondrial
13 . 0 % : cytoplasmic
>> prediction for CG56914-01 is nuc (k=23)
A search of the NOV43a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 43D.
In a BLAST search of public sequence databases, the NOV43a protein was found to have homology to the proteins shown in the BLASTP data in Table 43E.
PFam analysis predicts that the NOV43a protein contains the domains shown in the Table 43F.
Example 44.
The NOV44 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 44A.
Table 44A. NOV44 Sequence Analysis
NOV44a, CG56959-02 SEQ ID NO: 1005 1599 bp DNA Sequence |ORF Start: ATG at 25 |ORF Stop: TAA at 1594
GACTCACGAAΆGAAAAGCCAAACGATGAGTTTCCACAAGGAGGACGGAGTGAΆCAGTCTGTGCCAGAΆ GGCTCTGCACATCGTCACCGAGCTGTGCTTCGCCGGCCAGGTGGAGTGGGAGAAGTGCTCGGGCATCT TCCCTCGGGACAGGGGCAGCCAGGGCGGAAGCAGCACAGATATTTCAGTCAGCCTGTTAGCAGTCGTT GTCAGCTTTTGTGGACTGGCCTTGTTGGTTGTCTCACTTTTTGTCTTCTGGAAGCTGTGTTGGCCATG CTGGAAAAGCAAACCTGTGACTTCCAACATCACTACCCTTCCACAGAGCATTTCAAGTGCTCCTACTG AAGTTTTTGAGACTGAAGAGAAAAAAGAAATTAAGGAAAATGAAAAGCCAGCCGTAAAAGCTATTGAG CCTGCAATAAAAATCAGCCACACTTCCCCTGACATCCCAGCAGAAGTCCAAACTGCTTTAAAAGAACA TTTAATTAAACATGCACGTGTGCAAAGACAAATTACTGAGCCTACGTCATCAACCCGCCACAGTTCCT TCCGAAGACACCTGCCGAGGCAAATGCAGGTTTCCAGTGTTGATTTTAGCATGGGCACAGAACCTGTT TTACAACGAGGAGAAACAACAACCAGCATTGGGAGGATAAAGCCAGAACTCTACAAACAGAAATCAGT TGACTCTGAGGGCAACCAAAACGAAGATGTCAAAATCTGTGGGAAACTTAACTTTACCCTCCAGTATG ATTATGAAAATGAACTTCTAGTTGTTAAAATTATCAAAGCTTTAGATCTCCCTGCTAAAGACTTCACA GGAACTTCTGACCCTTATGTGAAGATGTATCTTCTTCCAGATAGGAAAAAGAAATTTCAGACCCGCGT GCACAGAAAGACTTTAAATCCTCTATTTGATGAAACTTTTCAATTTCCTGTAGCATATGATCAACTAA GCAACCGAAAACTACATTTCAGTGTGTATGATTTTGACAGATTTTCTAGACATGACATGATTGGGGAA GTGATTCTTGATAATTTGTTTGAAGTCTCTGATCTCTCCAGGGAAGCCACAGTATGGAAAGATATTCA CTGTGCTACCACAGAAAGTATAGACCTGGGTGAAATCATGTTTTCCCTTTGTTACCTACCGACGGCTG GGCGTATGACATTGACAGTCATTAAGTGCAGAAATCTGAAGGCGATGGATATTACTGGCTCATCAGAT CCTTATGTCAAAGTGTTCCTGATGTGTGAAGGTCGAAGATTAAAAAAGAGGAAAACAACTACAAAGAA AAACACTCTAAACCCTGTGTACAATGAGGCCATTATTTTTGACATCCCTCCAGAGAACGTGGACCAGG TCAGCCTCTCCATTGCGGTCATGGATTACGATAGGGTAGGACACAATGAGGTCATAGGAGTGTGCAGA ACAGGACTGGATGCTGAGGGTCTTGGGCGAGACCACTGGAATGAAATGCTGGCCTATCATCGAAAACC AATAACGCACTGGCACCCATTGCTGGAGTTACCTGGCCGGGCGACCAGTTTTGATAGTCAAGGATCCT GCCCTTCTCCTAAACCACCTTCCACACCATAATGC
NOV44a, CG56959-02 SEQ ID NO: 1006 523 aa MW at 59186.2kD Protein Sequence SFHKEDGV SLCQKA-LHIVTELCFAGQVE EKCSGIFPRDRGSQGGSSTDISVSLLAVWSFCGLAL LWSLFVF KLC PCWKSKPVTSNITTLPQSISSAPTEVFETEE KEIKENEKPAVKAIEPAIKISHT SPDIP-AEVQTAL---ΕHLIKHARVQRQITEPTSSTRHSSFRRHLPRQ QVSSVDFSMGTEPVLQRGETTT SIGRIKPELYKQKSVDSEGNQNEDVKICGKLNFTLQYDYENELLVVKIIKALDLPAKDFTGTSDPYV YLLPDRK KFQTRVHRKTLNPLFDETFQFPVAYDQLSNRKLHFSVYDFDRFSRHD IGEVILDNLFE VSDLSREATVWKDIHCATTESIDLGEIMFSLCYLPTAGRMTLTVI C-RNLKAMDITGSSDPYVKVFLM CEGRRLK-l-^KTTTKKNTLNPVY EAIIFDIPPE--- \ QVSLSIAVMDYDRVGHNEVIGVCRTGLDAEGL GRDH NEMLAYHRKPITHWHPLLELPGRATSFDSQGSCPSPKPPSTP
NOV44b, CG56959-01 SEQ ID NO: 1007 1697 bp DNA Sequence ORF Start: ATG at 78 ORF Stop: TAA at 1647
CAGAGGGGTTAGAGGTACGGGAAGAGGAAAAGACGGCTAACTGGGAAAAAAAGAGAAAACGAAAGAAA
AGCCAAACGATGAGTTTCCACAAGGAGGACGGAGTGAACAGTCTGTGCCAGAAGGCTCTGCACATCGT
CACCGAGCTGTGCTTCGCCGGCCAGGTGGAGTGGGAGAAGTGCTCGGGCATCTTCCCTCGGGACAGGG GCAGCCAGGGCGGAAGCAGCACAGATATTTCAGTCAGCCTGTTAGCTGTCGTTGTCAGCTTTTGTGGA CTGGCCTTGTTGGTTGTCTCACTTTTTGTCTTCTGGAAGCTGTGTTGGCCATGCTGGAAAAGCAAACC TGTGACTTCCAACATCACTACGCTTCCACAGAGCATTTCAAGTGCTCCTACTGAAGTTTTTGAGACTG AAGAGAAAAAAGAAATTAAGGAAAATGAAAAGCCAGCCGTAAAAGCTATTGAGCCTGCAATAAAAATC AGCCACACTTCCCCTGACATCCCAGCAGAAGTCCAAACTGCTTTAAAAGAACATTTAATTAAACATGC ACGTGTGCAAAGACAAATTACTGAGCCTACGTCATCAACCCGGCACAGTTCCTTCCGAAGACACCTGC CGAGGCAAATGCAGGTTTCCAGTGTTGATTTTAGCATGGGCACAGAACCTGTTTTACAACGAGGAGAA ACAACAACCAGCATTGGGAGGATAAAGCCAGAACTCTACAAACAGAAATCAGTTGACTCTGAGGGCAA CCAAAACGAAGATGTCAAAATCTGTGGGAAACTTAACTTTACCCTCCAGTATGATTATGAAAATGAAC TTCTAGTTGTTAAAATTATCAAAGCTTTAGATCTCCCTGCTAAAGACTTCACAGGAACTTCTGACCCT TATGTGAAGATGTATCTTCTTCCAGATAGGAAAAAGAAATTTCAGACCCGCGTGCACAGAAAGACTTT AAATCCTCTATTTGATGAAACTTTTCAATTTCCTGTAGCATATGATCAACTAAGCAACCGAAAACTAC ATTTCAGTGTGTATGATTTTGACAGATTTTCTAGACATGACATGATTGGGGAAGTGATTCTTGATAAT TTGTTTGAAGTCTCTGATCTCTCCAGGGAAGCCACAGTATGGAAAGATATTCACTGTGCTACCACAGA AAGTATAGACCTGGGTGAAATCATGTTTTCCCTTTGTTACCTACCGACGGCTGGGCGTATGACATTGA CAGTCATTAAGTGCAGAAATCTGAAGGCGATGGATATTACTGGCTCATCAGATCCTTATGTCAAAGTG TCCCTGATGTGTGAAGGTCGAAGATTAAAAAAGAGGAAAACAACTACAAAGAAAAACACTCTAAACCC TGTGTACAATGAGGCCATTATTTTTGACATCCCTCCAGAGAACGTGGACCAGGTCAGCCTCTCCATTG CGGTCATGGATTACGATAGGGTAGGACACAATGAGGTCATAGGAGTGTGCAGAACAGGACTGGATGCT GAGGGTCTTGGGCGAGACCACTGGAATGAAATGCTGGCCTATCATCGAAAACCAATAACGCACTGGCA CCCATTGCTGGAGTTACCTGGCCGGGCGACCAGTTTTGATAGTCAAGGATCCTGCCCTTCTCCTAAAC CACCTTCCACACCATAATGCCTCCAAAATGAGACCATGATATTAAGCATCTAGGATCACGTGCTC
NOV44b, CG56959-01 SEQ ID NO: 1008 523 aa iMW at 59126.1kD Protein Sequence
MSFHKEDGVNSLCQKALHIVTELCFAGQVE EKCSGIFPRDRGSQGGSSTDISVSLLAVWSFCGLAL LVVSLFVF KLCWPC KS--^VTSNITTLPQSISSAPTEVFETEE --KEIKENEKPAVKAIEPAIKISHT SPDIPAEVQTAL---VΕHLIKHARVQRQITEPTSSTRHSSFRRHLPRQMQVSSVDFSMGTEPVLQRGETTT S IGRIKPELYKQ SVDSEGNQNEDVKICGKLNFTLQYDYENELLWKI IKALDLPAKDFTGTSDPYVK YLLPDR---O KFQTRVHRKTLNPLFDETFQFPVAYDQLSNRKLHFSVYDFDRFSRHDMIGEVILDNLFE VSDLSREATV -DIHCATTESIDLGEIMFSLCYLPTAGRMTLTVIKC---^LKAMDITGSSDPYVKVSL CEGRRL---OOIKTTTKKNTLNPVYNEAIIFDIPPEI-TVDQVSLSIAVMDYDRVGHNEVIGVCRTGLDAEGL GRDHWNEMLAYHRKPITHWHPLLELPGRATSFDSQGSCPSPKPPSTP
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 44B.
Table 44B. Comparison of the NOV44 protein sequences.
NOV44a SFHKEDGVNSLCQKALHIVTELCFAGQVEWEKCSGIFPRDRGSQGGSSTDISVSLLAW
NOV44b MSFHKEDGVNSLCQKALHIVTΞLCFAGQVE EKCSGIFPRDRGSQGGSSTDISVSLLAW
NOV44a VSFCGLALLWSLFVF KLCWPCWKSKPVTSNITTLPQSISSAPTEVFETEEKKEIKENE
NOV44b VSFCGLALLWSLFVF KLC PC KSKPVTSNITTLPQSISSAPTEVFETEEKKEIKENE
NOV44a KPAV AIEPAIKISHTSPDIPAEVQTAL EHLIKHARVQRQITEPTSSTRHSSFRRHLPR
NOV44b KPAVKAIEPAIKISHTSPDIPAEVQTALKEHLIKHARVQRQITEPTSSTRHSSFRRHLPR
NOV44a QMQVSSVDFSMGTEPVLQRGETTTSIGRIKPELYKQKSVDSEGNQNEDVKICGKLNFTLQ
NOV44b QMQVSSVDFSMGTEPVLQRGETTTSIGRIKPELYKQKSVDSEGNQNEDVKICGKLNFTLQ
NOV44a YDYENEL WKIIKALDLPAKDFTGTSDPYVKMYLLPDRKKKFQTRVHRKTLNPLFDETF
NOV44b YDYENELLWKIIKALDLPAKDFTGTSDPYVKMYLLPDRKKKFQTRVHRKTLNPLFDETF
NOV44a QFPVAYDQLSNR LHFSVYDFDRFSRHDMIGEVILDNLFEVSDLSREATVWKDIHCATTE
NOV44b QFPVAYDQLSNRKLHFSVYDFDRFSRHD IGEVILDNLFEVSDLSREATV KDIHCATTE
NOV44a SIDLGEIMFSLCYLPTAGRMTLTVIKCRNLKAMDITGSSDPYVKVFL CEGRRLKKRKTT
NOV44b SIDLGEIMFSLCYLPTAGRMTLTVIKC-RNLKAMDITGSSDPYVKVSLMCEGRRLK RKTT
NOV44a TKK TLNPVY EAIIFDIPPE VDQVSLSIAVMDYDRVGHNEVIGVCRTGLDAEGLGRDH
NOV44b TK-K TLNPVY EAIIFDIPPE VDQVSLSIAVMDYDRVGH EVIGVCRTGLDAEGLGRDH
NOV44a WNEMLAYHRKPITHWHPLLELPGRATSFDSQGSCPSPKPPSTP
NOV44b WNEMLAYHRKPITH HPLLELPGRATSFDSQGSCPSPKPPSTP
NOV44a (SEQ ID NO: 1006) NOV44b (SEQ ID NO: 1008)
Further analysis of the NOV44a protem yielded the following properties shown in Table 44C.
N-region: length 7; pos.chg 1; neg.chg 2 H-region: length 7; peak value 0.00 PSG score: -4.40
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -7.65 possible cleavage site: between 28 and 29
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al's method for TM region allocation Init position for calculation: 1
Tentative number of TMS(s) for the threshold 0.5: 1 Number of TMS(s) for threshold 0.5: 1
INTEGRAL Likelihood =-11.36 Transmembrane 59 - 75 PERIPHERAL Likelihood = 4.35 (at 247) ALOM score: -11.36 (number of TMSs: 1)
MTOP : Prediction of membrane topology (Hartmann et al . ) Center position for calculation: 66 Charge difference: 3.0 C( 3.0) - N( 0.0) C > N: C-terminal side will be inside
>>> membrane topology: type lb (cytoplasmic tail 59 to 523)
MITDISC: discrimination of mitochondrial targeting seq R content: 0 Hyd Moment (75): 5.17 Hyd Moment (95): 1.90 G content: 0 D/E content: 2 S/T content: 1 Score: -7.37
Gavel: prediction of cleavage sites for mitochondrial preseq cleavage site motif not found
NUCDISC: discrimination of nuclear localization signals pat4: RKKK (5) at 279 pat4: KKRK (5) at 415 pat7: PDRKKKF (5) at 277 bipartite: none content of basic residues: 12.6% NLS Score: 0.58
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals : none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 -. 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif: none
Actinin-type actin-binding motif : type 1 -. none type 2 : none
NMYR: N-myristoylation pattern : none Prenylation motif : none memYQR : transport motif from cell surface to Golgi : none
Tyrosines in the tail : too long tail
Dileucine motif in the tail : found LL at 68 LL at 247 LL at 275 LL at 498 checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: cytoplasmic Reliability: 55.5
COIL: Lupas ' s algorithm to detect coiled-coil regions total : 0 residues
Final Results (k = 9/23) :
39.1 %: nuclear 26.1 %: cytoplasmic 13.0 % : mitochondrial
8.7 %: vesicles of secretory system
4.3 % : vacuolar
4.3 %: peroxisomal
4.3 % : endoplasmic reticulum
>> prediction for CG56959-02 is nuc (k=23)
A search of the NOV44a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 44D.
In a BLAST search of public sequence databases, the NOV44a protein was found to have homology to the proteins shown in the BLASTP data in Table 44E.
PFam analysis predicts that the NOV44a protein contains the domains shown in the Table 44F.
Example 45.
The NOV45 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 45 A.
Table 45A. NOV45 Sequence Analysis
NOV45a, CG57111-01 SEQ ID NO: 1009 2855 bp DNA Sequence ORF Start: at 3 ORF Stop: TGA at 2844
GAGGGAATGCGCGCAGCTCACAGGCCCTGGGAGTGAGCTGGTGCCCGGCGACCTGGCACCCGCGCCTG GATATGGGGCGTCTACATCGTCCCAGGAGCAGCACCAGCTACAGGAACCTGCCGCATCTGTTTCTGTT TTTCCTCTTCGTGGGACCCTTCAGCTGCCTCGGGAGTTACAGCCGGGCCACCGAGCTTCTGTACAGCC TAAACGAGGGACTACCCGCGGGGGTGCTCATCGGCAGCCTGGCCGAGGACCTGCGGCTGCTGCCCAGG TCTGCAGGGAGGCCGGACCCGCAGTCGCAGCTGCCAGAGCGCACCGGTGCTGAGTGGAACCCCCCTCT CTCCTTCAGCCTGGCCTCCCGGGGACTGAGTGGCCAGTACGTGACCCTAGACAACCGCTCTGGGGAGC TGCACACTTCAGCTCAGGAGATCGACAGGGAGGCCCTGTGTGTTGAAGGGGGTGGAGGGACTGCGTGG AGCGGCAGCGTTTCCATCTCCTCCTCTCCTTCTGACTCTTGTCTTTTGCTGCTGGATGTGCTTGTCCT GCCTCAGGAATACTTCAGGTTTGTGAAGGTGAAGATCGCCATCAGAGACATCAATGACAACGCCCCGC AGTTCCCTGTTTCCCAGATCTCGGTGTGGGTCCCGGAAAATGCACCTGTAAACACCCGACTGGCCATA GAGCATCCTGCTGTGGACCCAGATGTTGGCATTAATGGGGTTCAGACCTATCGCTTACTGGACTACCA TGGTATGTTCACCCTGGACGTGGAGGAGAATGAGAATGGGGAGCGCACCCCCTACCTAATTGTCATGG GTGCTTTGGACAGGGAAACCCAGGACCAGTATGTGAGCATCATCACAGCTGAGGATGGTGGGTCTCCA CCACTTTTGGGCAGTGCCACTCTCACCATTGGCATCAGTGACATTAATGACAATTGCCCTCTCTTCAC AGACTCACAAATCAATGTCACTGTGTATGGGAATGCTACAGTGGGCACCCCAATTGCAGCTGTCCAGG CTGTGGATAAAGACTTGGGGACCAATGCTCAAATTACTTATTCTTACAGTCAGAAAGTTCCACAAGCA TCTAAGGATTTATTTCACCTGGATGAAAACACTGGAGTCATTAAACTTTTCAGTAAGATTGGAGGAAG TGTTCTGGAGTCCCACAAGCTCACCATCCTTGCTAATGGACCAGGCTGCATCCCTGCTGTAATCACTG CTCTTGTGTCCATTATTAAAGTTATTTTCAGACCCCCTGAAATTGTCCCTCGTTACATAGCAAACGAG ATAGATGGTGTTGTTTATCTGAAAGAACTGGAACCCGTTAACACTCCCATTGCGTTTTTCACCATAAG AGATCCAGAAGGTAAATACAAGGTTAACTGCTACCTGGATGGTGAAGGGCCGTTTAGGTTATCACCTT ACAAACCATACAATAATGAATATTTACTAGAGACCACAAAACCTATGGACTATGAGCTACAGCAGTTC TATGAAGTAGCTGTGGTGGCTTGGAACTCTGAGGGATTTCATGTCAAAAGGGTCATTAAAGTGCAACT TTTAGATGACAATGATAATGCTCCAATTTTCCTTCAACCCTTAATAGAACTAACCATCGAAGAGAACA ACTCACCCAATGCCTTTTTGACTAAGCTGTATGCTACAGATGCCGACAGCGAGGAGAGAGGCCAAGTT TCATATTTTCTGGGACCTGATGCTCCATCATATTTTTCCTTAGACAGTGTCACAGGAATTCTGACAGT TTCTACTCAGCTGGACCGAGAAGAGAAAGAAAAGTACAGATACACTGTCAGAGCTGTTGACTGTGGGA AGCCACCCAGAGAATCAGTAGCCACTGTGGCCCTCACAGTGTTGGATAAAAATGACAACAGTCCTCGG TTTATCAACAAGGACTTCAGCTTTTTTGTGCCTGAAAACTTTCCAGGCTATGGTGAGATTGGAGTAAT TAGTGTAACAGATGCTGACGCTGGACGAAATGGATGGGTCGCCCTCTCTGTGGTGAACCAGAGTGATA TTTTTGTCATAGATACAGGAAAGGGTATGCTGAGGGCTAAAGTCTCTTTGGACAGAGAGCAGCAAAGC TCCTATACTTTGTGGGTTGAAGCTGTTGATGGGGGTGAGCCTGCCCTCTCCTCTACAGCAAAAATCAC AATTCTCCTTCTAGATATCAATGACAACCCTCCTCTTGTTTTGTTTCCTCAGTCTAATATGTCTTATC TGTTAGTACTGCCTTCTACTCTGCCAGGCTCCCCGGTTACAGAAGTCTATGCTGTCGACAAAGACACA GGCATGAATGCTGTCATAGCTTACAGCATCATAGGGAGAAGAGGTCCTAGGCCTGAGTCCTTCAGGAT TGACCCTAAAACTGGCAACATTACTTTGGAAGAGGCATTGCTGCAGACAGATTATGGGCTCCATCGCT TACTGGTGAAAGTGAGTGATCATGGTTATCCCGAGCCTCTCCACTCCACAGTCATGGTGAACCTATTT GTCAATGACACTGTCAGTAATGAGAGTTACATTGAGAGTCTTTTAAGAAAAGAACCAGAGATTAATAT AGAGGAGAAAGAACCACAAATCTCAATAGAACCGACTCATAGGAAGGTAGAATCTGTGTCTTGTATGC CCACCTTAGTAGCTCTGTCTGTAATAAGCTTGGGTTCCATCACACTGGTCACAGGGATGGGCATATAC ATCTGTTTAAGGAAAGGGGAAAAGCATCCCAGGGAAGATGAAAATTTGGAAGTACAGATTCCACTGAA AGGAAAAATTGACTTGCATATGCGAGAGAGAAAGCCAATGGATATTTCTAATATTTGATATTTCATG
NOV45a, CG57111-01 SEQ ID NO: 1010 947 aa MW at 104405.1 D Protein Sequence
GNARSSQALGVSWCPAT HPRLDMGRLHRP SSTSYRNLPHLFLFFLFVGPFSCLGSYSRATELLYSL NEGLPAGVLIGSLAEDLRLLPRSAGRPDPQSQLPERTGAEWNPPLSFSLASRGLSGQYVTLDNRSGEL HTSAQEIDREALCVEGGGGTA SGSVSISSSPSDSCLLLLDVLVLPQEYFRFVKVKIAIRDINDNAPQ FPVSQISVWVPENAPVNTRLAIEHPAVDPDVGINGVQTYRLLDYHGMFTLDVEENENGERTPYLIVMG ALDRETQDQYVSIITAEDGGSPPLLGSATLTIGISDINDNCPLFTDSQINVTVYGNATVGTPIAAVQA VDKDLGTNAQITYSYSQKVPQAS.I-ΦLFHLDENTGVIKLFSKIGGSVLESHKLTILANGPGCIPAVITA LVSII---WIFRPPEIVPRYIANEIDGVVYLI-ΞLEPVNTPIAFFTIRDPEGICTKVNCYLDGEGPFRLSPY KPYNNEYLLETTKP DYELQQFYEVAVVA NSEGFHVKRVIKVQLLDDNDNAPIFLQPLIELTIEENN SPNAFLTKLYATDADSEERGQVSYFLGPDAPSYFSLDSVTGILTVSTQLDREEKEKYRYTVRAVDCGK PPRESVATVALTVLDKNDNSPRFINKDFSFFVPENFPGYGEIGVISVTDADAGRNG VALSVVNQSDI FVIDTGKG L-RAV'SLDREQQSSYTL VEAVDGGEPALSSTAKITILLLDINDNPPLVLFPQSNMSYL LVLPSTLPGSPVTEVYAVDKDTGMNAVIAYSIIGRRGPRPESFRIDPKTGNITLEEALLQTDYGLHRL V--WSDHGYPEPLHSTV-W LFVNDTVSNESYIESLLR----EPEINIEEKEPQISIEP HR VESVSCMP TLVALSVISLGSITLVTGMGIYICLRKGEKHPREDENLEVQIPLKG IDLHMRERKPMDISNI
NOV45b, 277726328 SEQ ID NO: 1011 2854 bp
DNA Sequence IORF Start: at 2 ORF Stop: end of sequence
GGGATCCGGGAATGCGCGCAGCTCACAGGCCCTGGGAGTGAGCTGGTGCCCGGCGACCTGGCACCCGC GCCTGGATATGGGGCGTCTACATCGTCCCAGGAGCAGCACCAGCTACAGGAACCTGCCGCATCTGTTT CTGTTTTTCCTCTTCGTGGGACCCTTCAGCTGCCTCGGGAGTTACAGCCGGGCCACCGAGCTTCTGTA CAGCCTAAACGAGGGACTACCCGCGGGGGTGCTCATCGGCAGCCTGGCCGAGGACCTGCGGCTGCTGC CCAGGTCTGCAGGGAGGCCGGACCCGCAGTCGCAGCTGCCAGAGCGCACCGGTGCTGAGTGGAACCCC CCTCTCTCCTTCAGCCTGGCCTCCCGGGGACTGAGTGGCCAGTACGTGACCCTAGACAACCGCTCTGG GGAGCTGCACACTTCAGCTCAGGAGATCGACAGGGAGGCCCTGTGTGTTGAAGGGGGTGGAGGGACTG CGTGGAGCGGCAGCGTTTCCATCTCCTCCTCTCCTTCTGACTCTTGTCTTTTGCTGCTGGATGTGCTT GTCCTGCCTCAGGAATACTTCAGGTTTGTGAAGGTGAAGATCGCCATCAGAGACATCAATGACAACGC CCCGCAGTTCCCTGTTTCCCAGATCTCGGTGTGGGTCCCGGAAAATGCACCTGTAAACACCCGACTGG CCATAGAGCATCCTGCTGTGGACCCAGATGTAGGCATTAATGGGGTACAGACCTATCGCTTACTGGAC TACCATGGTATGTTCACCCTGGACGTGGAGGAGAATGAGAATGGGGAGCGCACCCCCTACCTAATTGT CATGGGTGCTTTGGACAGGGAAACCCAGGACCAGTATGTGAGCATCATCATAGCTGAGGATGGTGGGT CTCCACCACTTTTGGGCAGTGCCACTCTCACCATTGGCATCAGTGACATTAATGACAATTGCCCTCTC TTCACAGACTCACAAATCAATGTCACTGTGTATGGGAATGCTACAGTGGGCACCCCAATTGCAGCTGT CCAGGCTGTGGATAAAGACTTGGGGACCAATGCTCAAATTACTTATTCTTACAGTCAGAAAGTTCCAC AAGCATCTAAGGATTTATTTCACCTGGATGAAAACACTGGAGTCATTAAACTTTTCAGTAAGATTGGA GGAAGTGTTCTGGAGTCCCACAAGCTCACCATCCTTGCTAATGGACCAGGCTGCATCCCTGCTGTAAT CACTGCTCTTGTGTCCATTATTAAAGTTATTTTCAGACCCCCTGAAATTGTCCCTCGTTACATAGCAA ACGAGATAGATGGTGTTGTTTATCTGAAAGAACTGGAACCCGTTAACACTCCCATTGCGTTTTTCACC ATAAGAGATCCAGAAGGTAAATACAAGGTTAACTGCTACCTGGATGGTGAAGGGCCGTTTAGGTTATC ACCTTACAAACCATACAATAATGAATATTTACTAGAGACCACAAAACCTATGGACTATGAGCTACAGC AGTTCTATGAAGTAGCTGTGGTGGCTTGGAACTCTGAGGGATTTCATGTCAAAAGGGTCATTAAAGTG CAACTTTTAGATGACAATGATAATGCTCCAATTTTCCTTCAACCCTTAATAGAACTAACCATCGAAGA GAACAACTCACCCAATGCCTTTTTGACTAAGCTGTATGCTACAGATGCCGACAGCGAGGAGAGAGGCC AAGTTTCATATTTTCTGGGACCTGATGCTCCATCATATTTTTCCTTAGACAGTGTCACAGGAATTCTG ACAGTTTCTACTCAGCTGGACCGAGAAGAGAAAGAAAAGTACAGATACACTGTCAGAGCTGTTGACTG TGGGAAGCCACCCAGAGAATCAGTAGCCACTGTGGCCCTCACAGTGTTGGATAAAAATGACAACAGTC CTCGGTTTATCAACAAGGACTTCAGCTTTTTTGTGCCTGAAAACTTTCCAGGCTATGGTGAGATTGGA GTAATTAGTGTAACAGATGCTGACGCTGGACGAAATGGATGGGTCGCCCTCTCTGTGGTGAACCAGAG TGGTATTTTTGTCATAGATACAGGAAAGGGTATGCTGAGGGCTAAAGTCTCTTTGGACAGAGAGCAGC AAAGCTCCTATACTTTGTGGGTTGAAGCTGTTGATGGGGGTGAGCCTGCCCTCTCCTCTACAGCAAAA ATCACAATTCTCCTTCTAGATATCAATGACAACCCTCCTCTTGTTTTGTTTCCTCAGTCTAATATGTC TTATCTGTTAGTACTGCCTTCTACTCTGCCAGGCTCCCCGGTTACAGAAGTCTATGCTGTCGACAAAG ACACAGGCATGAATGCTGTCATAGCTTACAGCATCATAGGGAGAAGAGGTCCTAGGCCTGAGTCCTTC AGGATTGACCCTAAAACTGGCAACATTACTTTGGAAGAGGCATTGCTGCAGACAGATTATGGGCTCCA TCGCTTACTGGTGAAAGTGAGTGATCATGGTTATCCCGAGCCTCTCCACTCCACAGTCATGGTGAACC TATTTGTCAATGACACTGTCAGTAATGAGAGTTACATTGAGAGTCTTTTAAGAAAAGAACCAGAGATT AATATAGAGGAGAAAGAACCACAAATCTCAATAGAACCGACTCATAGGAAGGTAGAATCTGTGTCTTG TATGCCCACCTTAGTAGCTCTGTCTGTAATAAGCTTGGGTTCCATCACACTGGTCACAGGGATGGGCA TATACATCTGTTTAAGGAAAGGGGAAAAGCATCCCAGGGAAGATGAAAATTTGGAAGTACAGATTCCA CTGAAAGGAAAAATTGACTTGCATATGCGAGAGAGAAAGCCAATGGATATTTCTAATATTCTCGAG
NOV45b, 277726328 SEQ ID NO: 1012 951 aa MW at 104745.6kD Protein Sequence
GSGNARSSQALGVS CPATWHPRLDMGRLHRPRSSTSYRNLPHLFLFFLFVGPFSCLGSYSRATELLY SLNEGLPAGVLIGSLAEDLRLLPRSAGRPDPQSQLPERTGAEWNPPLSFSLASRGLSGQYVTLDNRSG ELHTSAQEIDREALCVEGGGGTAWSGSVSISSSPSDSCLLLLDVLVLPQEYFRFV VKIAIRDINDNA PQFPVSQISV VPENAPVNTRLAIEHPAVDPDVGINGVQTYRLLDYHGMFTLDVEENENGERTPYLIV G-ALDRETQDQYVSIIIAEDGGSPPLLGSATLTIGISDI---TONCPLFTDSQINVTVYGNATVGTPIAAV QAVDKDLGTNAQITYSYSQKVPQAS---VTJLFHLDENTGVI--^FSKIGGSVLESHKLTILANGPGCIPAVI T-ALVSIIKVIFRPPEIVPRYIANEIDGWYLKELEPVNTPIAFFTIRDPEGKYKVNCYLDGEGPFRLS PYKPY---TOEYLLETTKP DYELQQFYEVAVVA NSEGFHVKRVIKVQLLDDNDNAPIFLQPLIELTIEE NNSPNAFLTKLYATDADSEERGQVSYFLGPDAPSYFSLDSVTGILTVSTQLDREEKEKYRYTVRAVDC GKPPRESVATVALTVLDKNDNSPRFINKDFSFFVPENFPGYGEIGVISVTDADAGRNG VALSVVNQS GIFVIDTGKGMLRAKVSLDREQQSSYTLWVEAVDGGEPALSSTAKITILLLDINDNPPLVLFPQSNMS YL VLPSTLPGSPVTEVYAVDKDTGiMNAVIAYSIIGRRGPRPESFRIDPKTGNITLEEALLQTDYGLH RLLVKVSDHGYPEPLHSTV]y--VNLFVNυTVSNESYIESLLR---ΕPΞINIEEKEPQISIEPTHRKVESVSC MPTLVALSVISLGSITLVTGMGIYICLRKGEKHPREDENLEVQIPLKGKIDLH RERKPMDISNILE
NOV45c, CG57111-02 SEQ ID NO: 1013 1020 bp DNA Sequence ORF Start: at 1 jORF Stop: end of sequence
AGTTACAGCCGGGCCACCGAGCTTCTGTACAGCCTAAACGAGGGACTACCCGCGGGGGTGCTCATCGG CAGCCTGGCCGAGGACCTGCGGCTGCTGCCCAGGTCTGCAGGGAGGCCGGACCCGCAGTCGCAGCTGC CAGAGCGCACCGGTGCTGAGTGGAACCCCCCTCTCTCCTTCAGCCTGGCCTCCCGGGGACTGAGTGGC CAGTACGTGACCCTAGACAACCGCTCTGGGGAGCTGCACACTTCAGCTCAGGAGATCGACAGGGAGGC CCTGTGTGTTGAAGGGGGTGGAGGGACTGCGTGGAGCGGCAGCGTTTCCATCTCCTCCTCTCCTTCTG ACTCTTGTCTTTTGCTGCTGGATGTGCTTGTCCTGCCTCAGGAATACTTCAGGTTTGTGAAGGTGAAG ATCGCCATCAGAGACATCAATGACAACGCCCCGCAGTTCCCTGTTTCCCAGATCTCGGTGTGGGTCCC GGAAAATGCACCTGTAAACACCCGACTGGCCATAGAGCATCCTGCTGTGGACCCAGATGTAGGCATTA ATGGGGTGCAGACCTATCGCTTACTGGACTACCATGGTATGTTCACCCTGGACGTGGAGGAGAATGAG AATGGGGAGCGCACCCCCTACCTAATTGTCATGGGTGCTTTGGACAGGGAAACCCAGGACCAGTATGT GAGCATCATCATAGCTGAGGATGGTGGGTCTCCACCACTTTTGGGCAGTGCCACTCTCACCATTGGCA TCAGTGACATTAATGACAATTGCCCTCTCTTCACAGACTCACAAATCAATGTCACTGTGTATGGGAAT GCTACAGTGGGCACCCCAATTGCAGCTGTCCAGGCTGTGGATAAAGACTTGGGGACCAATGCTCAAAT TACTTATTCTTACAGTCAGAAAGTTCCACAAGCATCTAAGGATTTATTTCACCTGGATGAAAACACTG GAGTCATTAAACTTTTCAGTAAGATTGGAGGAAGTGTTCTGGAGTCCCACAAGCTCACCATCCTTGCT
NOV45c, CG57111-02 SEQ ID NO: 1014 340 aa MW at 36598.6kD Protein Sequence
SYSRATELLYSLNEGLPAGVLIGSLAEDLRLLPRSAGRPDPQSQLPERTGAEWNPPLSFSLASRGLSG QYVTLDNRSGELHTS AQEIDREALCVEGGGGTAWSGS VS I S S S PSDSCLLLLDVLVLPQE YFRFVKVK IAI----DINDNAPQFPVSQISVWVPENAPVNTRLAIEHPAVDPDVGINGVQTYRLLDYHGMFTLDVEENE NGERTPYLIVMGALDRETQDQYVSIIIAEDGGSPPLLGSATLTIGISDI-tTONCPLFTDSQINVTVYGN ATVGTPIAAVQAVDKDLGTNAQITYSYSQKVPQASKDLFHLDENTGVI LFSKIGGSVLESHKLTILA
NOV45d, CG57111-03 SEQ ID NO: 1015 1032 bp DNA Sequence ORF Start: at 7 ORF Stop: at 1027
GGATCCAGTTACAGCCGGGCCACCGAGCTTCTGTACAGCCTAAACGAGGGACTACCCGCGGGGGTGCT
CATCGGCAGCCTGGCCGAGGACCTGCGGCTGCTGCCCAGGTCTGCAGGGAGGCCGGACCCGCAGTCGC AGCTGCCAGAGCGCACCGGTGCTGAGTGGAACCCCCCTCTCTCCTTCAGCCTGGCCTCCCGGGGACTG AGTGGCCAGTACGTGACCCTAGACAACCGCTCTGGGGAGCTGCACACTTCAGCTCAGGAGATCGACAG GGAGGCCCTGTGTGTTGAAGGGGGTGGAGGGACTGCGTGGAGCGGCAGCGTTTCCATCTCCTCCTCTC CTTCTGACTCTTGTCTTTTGCTGCTGGATGTGCTTGTCCTGCCTCAGGAATACTTCAGGTTTGTGAAG GTGAAGATCGCCATCAGAGACATCAATGACAACGCCCCGCAGTTCCCTGTTTCCCAGATCTCGGTGTG GGTCCCGGAAAATGCACCTGTAAACACCCGACTGGCCATAGAGCATCCTGCTGTGGACCCAGATGTAG GCATTAATGGGGTGCAGACCTATCGCTTACTGOACTACCATGGTATGTTCACCCTGGACGTGGAGGAG AATGAGAATGGGGAGCGCACCCCCTACCTAATTGTCATGGGTGCTTTGGACAGGGAAACCCAGGACCA GTATGTGAGCATCATCATAGCTGAGGATGGTGGGTCTCCACCACTTTTGGGCAGTGCCACTCTCACCA TTGGCATCAGTGACATTAATGACAATTGCCCTCTCTTCACAGACTCACAAATCAATGTCACTGTGTAT GGGAATGCTACAGTGGGCACCCCAATTGCAGCTGTCCAGGCTGTGGATAAAGACTTGGGGACCAATGC TCAAATTACTTATTCTTACAGTCAGAAAGTTCCACAAGCATCTAAGGATTTATTTCACCTGGATGAAA ACACTGGAGTCATTAAACTTTTCAGTAAGATTGGAGGAAGTGTTCTGGAGTCCCACAAGCTCACCATC CTTGCTCTCGAG
NOV45d, CG57111-03 SEQ ID NO: 1016 340 aa MW at 36598.6kD Protein Sequence
SYSRATELLYSLNEGLPAGVLIGSLAEDLRLLPRSAGRPDPQSQLPERTGAEWNPPLSFSLASRGLSG QYVTLDNRSGELHTSAQEIDREALCVEGGGGTA SGSVSISSSPSDSCLLLLDVLVLPQΞYFRFVKVK IAIRDINDNAPQFPVSQISVWVPENAPVNTRLAIEHPAVDPDVGINGVQTYRLLDYHGMFTLDVEENE NGERTPYLIVMGALDRETQDQYVSIIIAEDGGSPPLLGSATLTIGISDINDNCPLFTDSQINVTVYGN ATVGTPIAAVQAVD-^LGTNAQITYSYSQKVPQASKDLFHLDENTGVIKLFSKIGGSVLESHKLTILA
NOV45e, CG57111-04 SEQ ID NO: 1017 1390 bp DNA Sequence ORF Start: at 8 ORF Stop: at 1385
GGGATCCCCTGAAATTGTCCCTCGTTACATAGCAAACGAGATAGATGGTGTTGTTTATCTGAAAGAAC
TGGAACCCGTTAACACTCCCATTGCGTTTTTCACCATAAGAGATCCAGAAGGTAAATACAAGGTTAAC TGCTACCTGGATGGTGAAGGGCCGTTTAGGTTATCACCTTACAAACCATACAATAATGAATATTTACT AGAGACCACAAAACCTATGGACTATGAGCTACAGCAGTTCTATGAAGTAGCTGTGGTGGCTTGGAACT CTGAGGGATTTCATGTCAAAAGGGTCATTAAAGTGCAACTTTTAGATGACAATGATAATGCTCCAATT TTCCTTCAACCCTTAATAGAACTAACCATCGAAGAGAACAACTCACCCAATGCCTTTTTGACTAAGCT GTATGCTACAGATGCCGACAGCGAGGAGAGAGGCCAAGTTTCATATTTTCTGGGACCTGATGCTCCAT CATATTTTTCCTTAGACAGTGTCACAGGAATTCTGACAGTTTCTACTCAGCTGGACCGAGAAGAGAAA GAAAAGTACAGATACACTGTCAGAGCTGTTGACTGTGGGAAGCCACCCAGAGAATCAGTAGCCACTGT GGCCCTCACAGTGTTGGATAAAAATGACAACAGTCCTCGGTTTATCAACAAGGACTTCAGCTTTTTTG TGCCTGAAAACTTTCCAGGCTATGGTGAGATTGGAGTAATTAGTGTAACAGATGCTGACGCTGGACGA AATGGATGGGTCGCCCTCTCTGTGGTGAACCAGAGTGATATTTTTGTCATAGATACAGGAAAGGGTAT GCTGAGGGCTAAAGTCTCTTTGGACAGAGAGCAGCAAAGCTCCTATACTTTGTGGGTTGAAGCTGTTG ATGGGGGTGAGCCTGCCCTCTCCTCTACAGCAAAAATCACAATTCTCCTTCTAGATATCAATGACAAC CCTCCTCTTGTTTTGTTTCCTCAGTCTAATATGTCTTATCTGTTAGTACTGCCTTCTACTCTGCCAGG CTCCCCGGTTACAGAAGTCTATGCTGTCGACAAAGACACAGGCATGAATGCTGTCATAGCTTACAGCA TCATAGGGAGAAGAGGTCCTAGGCCTGAGTCCTTCAGGATTGACCCTAAAACTGGCAACATTACTTTG GAAGAGGCATTGCTGCAGACAGATTATGGGCTCCATCGCTTACTGGTGAAAGTGAGTGATCATGGTTA TCCCGAGCCTCTCCACTCCACAGTCATGGTGAACCTATTTGTCAATGACACTGTCAGTAATGAGAGTT ACATTGAGAGTCTTTTAAGAAAAGAACCAGAGATTAATATAGAGGAGAAAGAACCACAAATCTCAATA GAACCGACTCATAGGAAGGTAGAACTCGAG
NOV45e, CG57111-04 SEQ ID NO: 1018 459 aa MW at 51489.5kD Protein Sequence
PEIVPRYI-ANEIDGVVYLKELEPVNTPIAFFTIRDPEGKYKVNCYLDGEGPFRLSPYKPYNNEYLLET TKPMDYELQQFYEVAVVAWNSEGFHVKRVIKVQLLDD-tTONAPIFLQPLIELTIEENNSPNAFLTKLYA TDADSEERGQVSYFLGPDAPSYFSLDSVTGILTVSTQLDREEKEKYRYTVRAVDCGKPPRESVATVAL TVLDK^roNSPRFIN-i FSFFVPENFPGYGEIGVISVTDADAGRNGWVALSVVNQSDIFVIDTGKGMLR AKVSLDREQQSSYTL VEAVDGGEPALSSTAKITILLLDINDNPPLVLFPQSN SYLLVLPSTLPGSP VTEVYAVDKDTGMNAVIAYSIIGRRGPRPESFRIDPKTGNITLEEALLQTDYGLHRLLVKVSDHGYPE PLHSTVMVNLFVNDTVSNESYIESLLRKEPEINIEEKEPQISIEPTHRKVE
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 45B.
Table 45B. Comparison of the NOV45 protein sequences.
NOV45a --GNARSSQALGVS CPATWHPRLD GRLHRPRSSTSYRNLPHLFLFFLFVGPFSCLGSY
NOV45b GSGNARSSQALGVSWCPAT HPRLDMGRLHRPRSSTSYRNLPHLFLFFLFVGPFSCLGSY
NOV45C SY
NOV45d SY
NOV45e PEIVPRYIANEIDGWY
NOV45a SRATELLYSLNEGLPAGVLIGSLAEDLRLLPRSAGRPDPQSQLPERTGAEWNPPLSFSLA
NOV45b SRATELLYSLNEGLPAGVLIGSLAEDLRLLPRSAGRPDPQSQLPERTGAE NPPLSFSLA
NOV45C SRATELLYSLNEGLPAGVLIGSLAEDLRLLPRSAGRPDPQSQLPERTGAEWNPPLSFSLA
NOV45d SRATELLYSLNEGLPAGVLIGSLAEDLRLLPRSAGRPDPQSQLPERTGAΞ NPPLSFSLA
NOV45e L-l-xΕLEPVNTPIAFFTI-RDPEGKYKVNCYLDGEGPFRLSPYKPYNNEYLLETTKPMDYELQ
NOV45a SRGLSGQYVTLDN RSGELHTSAQEIDR
N0V45b SRGLSGQYVTLDN RSGELHTSAQEIDR
NOV45C SRGLSGQYVTLDN RSGELHTSAQEIDR
NOV45d SRGLSGQYVTLDN RSGELHTSAQEIDR
NOV45e QFYEVAVVA NSEGFHV---0-VI-1WQLLDDNDNAPIFLQPLIELTIEENNSPNAFLTKLYAT
NOV45a EALCVEGGGGTA SGSVSISSSPSDSCLLLLDVLVLPQEYFR
NOV45b EALCVEGGGGTAWSGSVSISSSPSDSCLLLLDVLVLPQEYFR
NOV45C EALCVEGGGGTA SGSVSISSSPSDSCLLLLDVLVLPQEYFR
NOV45d EALCVEGGGGTA SGSVSISSSPSDSCLLLLDVLVLPQEYFR
NOV45e DADSEERGQVSYFLGPDAPSYFSLDSVTGILTVSTQLDREEKEKYRYTVRAVDCGKPPRE
NOV45a -FVKVKIAIRDINDNAPQFPVSQISV VPENAPVNTRLAIEHPAVDPDVGINGVQTYRLL
NOV45b -FVKVKIAIRDINDNAPQFPVSQISV VPENAPVNTRLAIEHPAVDPDVGINGVQTYRLL
NOV45C -FVKVKIAIRDINDNAPQFPVSQISVWVPENAPVNTRLAIEHPAVDPDVGINGVQTYRLL
NOV45d -FVKVKIAIRDINDNAPQFPVSQISVWVPENAPVNTRLAIEHPAVDPDVGINGVQTYRLL
NOV45e SVATVALTVLDKNDNSPRFINKDFSFFVPENFPGYGEIGVIS-VTDADAGRNG VALSVV
NOV45a DYHGMFTLDVEENENGERTPYLIVMGALDRETQDQYVSIITAEDGGSPPLLGSATLTIGI
NOV45b DYHGMFTLDVΞENENGERTPYLIVMGALDRETQDQYVSIIIAEDGGSPPLLGSATLTIGI
NOV45C DYHGMFTLDVEENENGERTPYLIVMGALDRETQDQYVSIIIAEDGGSPPLLGSATLTIGI
NOV45d DYHGMFTLDVEENENGERTPYLIVMGALDRETQDQYVSIIIAEDGGSPPLLGSATLTIGI
NOV45e NQSDIFVIDTGKG MLRAKVSLDREQQSSYTL VEAVDGGEPALSSTAKITILL
NOV45a SDINDNCPLFTDSQIN VTVYGNATVGTPIAAVQAVDKDLGTNAQITYSYSQKVPQAS
NOV45b SDINDNCPLFTDSQIN VTVYGNATVGTPIAAVQAVDKDLGTNAQITYSYSQKVPQAS
NOV45C SDINDNCPLFTDSQIN VTVYGNATVGTPIAAVQAVDKDLGTNAQITYSYSQKVPQAS
NOV45d SDINDNCPLFTDSQIN VTVYGNATVGTPIAAVQAVDKDLGTNAQITYSYSQKVPQAS
NOV45e LDINDNPPLVLFPQSNMSYLLVLPSTLPGSPVTEVYAVDKDTGMNAVIAYSIIGRR-GPR
NOV45a DLFHLDENTGVIKLFSKIGGSVLESHKLTILANGPGCIPAVITALVSIIKVIFRPPEIV
NOV45b -TOLFHLDENTGVI LFSKIGGSVLESHKLTILANGPGCIPAVITALVSIIKVIFRPPEIV
NOV45C KDLFHLDENTGVIKLFSKIGGSVLESHKLTILA
NOV45d KDLFHLDENTGVIKLFSKIGGSVLESHKLTILA
NOV45e PESFRIDPKTGNITLEE-ALLQTDYGLHRLLV--WSDHGYPEPLHSTVMVNLFVNDTVSNES
NOV45a PRYIANEIDGVVYL!ΕLEPVNTPIAFFTI--^PEG- 'IWNCYLDGEGPFRLSPYKPYNNEY NOV45b PRYIANEIDGVVYLKELEPVNTPIAFFTIRDPEGKYKVNCYLDGEGPFRLSPYKPYNNEY NOV45C
NOV45d
NOV45e YIESLLRKEPEINIEEKEPQISIEPTHRKVE-
NOV45a LLETTKPMDYELQQFYEVAWA NSEGFHVKRVIKVQLLDDNDNAPIFLQPLIELTIEEN
NOV45b LLETTKPMDYELQQFYEVAWAWNSEGFHVKRVIKVQLLDDNDNAPIFLQPLIELTIEEN
NOV45C 2
NOV45d
NOV45e
NOV45a NSPNAFLTKLYATDADSEERGQVSYFLGPDAPSYFSLDSVTGILTVSTQLDREEKEKYRY
NOV45b NSPNAFLTKLYATDADSEERGQVSYFLGPDAPSYFSLDSVTGILTVSTQLDREEKEKYRY
NOV45C
NOV45d
NOV45e
NOV45a TVRAVDCGKPPRESVATVALTVLDKNDNSPRFINKDFSFFVPENFPGYGEIGVISVTDAD
NOV45b TVT^VDCGKPPRESVATVALTVLDKNDNSPRFINKDFSFFVPENFPGYGEIGVISVTDAD
NOV45c
N0V45d NOV45e
NOV45a AGRNGWVALSWNQSDIFVIDTGKGMLRAKVSLDREQQSSYTL VEAVDGGEPALSSTAK
NOV45b AGRNG VALSWNQSGIFVIDTGKGMLRAKVSLDREQQSSYTLWVEAVDGGEPALSSTAK
NOV45C
NOV45d
NOV45e
NOV45a ITILLLDINDNPPLVLFPQSNMSYLLVLPSTLPGSPVTEVYAVDKDTGMNAVIAYSIIGR
NOV45b ITILLLDINDNPPLVIiFPQSNMSYLLVLPSTLPGSPVTEVYAVDKDTG-MNAVIAYSIIGR
NOV45C
NOV45d
NOV45e
NOV45a RGPRPESFRIDPKTGNITLEE-ALLQTDYGLHRLLVKVSDHGYPEPLHSTVMVNLFVNDTV
NOV45b RGPRPESFRIDPKTGNITLEEALLQTDYGLHRLLVKVSDHGYPEPLHSTVMVNLFVNDTV
NOV45C
NOV45d
NOV45e
NOV45a SNESYIESLLR--^PEINIEE EPQISIEPTHRKVESVSCMPTLVALSVISLGSITLVTGM
NOV45b SNESYIESLLRKEPEINIEEKEPQISIEPTHRKVESVSCMPTLVALSVISLGSITLVTGM
NOV45C
NOV45d
NOV45e
NOV45a GIYICLR GEKHPREDENLEVQIPLKGKIDLHMRERKP DISNI- -
NOV45b GIYICLRKGEKHPREDENLEVQIPLKGKIDLHMRERKPMDISNILE
NOV45C
NOV45d
NOV45e
NOV45a (SEQ ID NO 1010)
NOV45b (SEQ ID NO 1012)
NOV45C (SEQ ID NO 1014)
NOV45d (SEQ ID NO 1016)
NOV45e (SEQ ID NO 1018)
Further analysis of the NOV45a protein yielded the following properties shown in Table
45C. Table 45C. Protein Sequence Properties NOV45a
SignalP analysis: Cleavage site between residues 57 and 58
PSORT II analysis:
PSG: a new signal peptide prediction method
N-region: length 4; pos.chg 1; neg.chg 0 H-region: length 16; peak value 6.44 PSG score: 2.04
GvH: von Heijne's method for signal seg. recognition GvH score (threshold: -2.1): -0.42 possible cleavage site: between 56 and 57
>>> Seems to have a cleavable signal peptide (1 to 56)
ALOM: Klein et al's method for TM region allocation Init position for calculation: 57
Tentative number of TMS(s) for the threshold 0.5: 2 INTEGRAL Likelihood = -7.38 Transmembrane 401 - 417 INTEGRAL Likelihood = -3.77 Transmembrane 886 - 902 PERIPHERAL Likelihood = 2.01 (at 173) ALOM score: -7.38 (number of TMSs: 2)
MTOP : Prediction of membrane topology (Hartmann et al . ) Center position for calculation: 28 Charge difference: 0.5 C( 3.5) - N( 3.0) C > N: C-terminal side will be inside
>>>Caution: Inconsistent mtop result with signal peptide >>> membrane topology: type 3b
MITDISC: discrimination of mitochondrial targeting seq R content: 2 Hyd Moment (75): 3.38 Hyd Moment (95) : 4.41 G content: 2 D/E content: 1 S/T content: 4 Score: -3.49
Gavel: prediction of cleavage sites for mitochondrial preseq R-2 motif at 70 SRA|TE
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite : none content of basic residues: 8.6% NLS Score: -0.47
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals :
XXRR-like motif in the N-terminus: NARS none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none RNA-binding motif : none
Actinin-type actin-binding motif : type 1 : none type 2 : none
NMYR: N-myristoylation pattern : GNARSS
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi : none
Tyrosines in the tail : none
Dileucine motif in the tail : none checking 63 PROSITE DNA binding motifs : none checking 71 PROSITE ribosomal protein motifs : none checking 33 PROSITE prokaryotic DNA binding motifs : none
NNCN : Reinhardt ' s method for Cytoplasmic/Nuclear discrimination Prediction: cytoplasmic Reliability: 76.7
COIL: Lupas ' s algorithm to detect coiled-coil regions total : 0 residues
Final Results (k = 9/23) :
44.4 % : endoplasmic reticulum
11 1 % : Golgi
11 1 % : vacuolar
11 1 % : mitochondrial
11 1 "6 . nuclear
11 1 % : cytoplasmic
>> prediction for CG57111-01 is end (k=9)
A search of the NOV45a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 45D.
In a BLAST search of public sequence databases, the NOV45a protein was found to have homology to the proteins shown in the BLASTP data in Table 45E.
PFam analysis predicts that the NOV45a protein contains the domains shown in the Table 45F.
Table 45F. Domain Analysis of NOV45a
Example 46.
The NOV46 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 46A.
Table 46A. NOV46 Sequence Analysis
NOV46a, CG57409-05 lSEQ ID NO: 1019 1500 bp DNA Sequence ORF Start: ATG at 12 ORF Stop: TGA at 1476
TGAGCCGAGACATGAGCGGGACCTACCGCTGCCAGACGGCCCGCTATAATGGCTTCAACGTGCGCCCC
CGTGAGGCCCAGGTGCAGCTGAACGTGCAGTTCCCGCCGGAGGTGGAGCCCAGTTCCCAGGACGTGCG CCAGGCGCTGGGCCGGCCCGTGCTCCTGCGCTGCTCGCTGCTGCGAGGCAGCCCCCAGCGCATCGCCT CGGCTGTGTGGCGTTTCAAAGGGCAGCTGCTGCCGCCGCCGCCTGTTGTTCCCGCCGCCGCCGAGGCG CCGGATCACGCGGAGCTGCGCCTCGACGCCGTAACTCGCGACAGCAGCGGCAGCTACGAGTGCAGCGT CTCCAACGATGTGGGCTCGGCTGCCTGCCTCTTCCAGGTCTCCGCCAAAGCCTACAGCCCGGAGTTTT ACTTCGACACCCCCAACCCCACCCGCAGCCACAAGCTGTCCAAGAACTACTCCTACGTGCTGCAGTGG ACTCAGAGGGAGCCCGACGCTGTCGACCCTGTGCTCAACTACAGACTCAGCATCCGCCAGTTGAACCA GCACAATGCGGTGGTCAAGGCCATCCCGGTCCGGCGTGTGGAGAAGGGGCAGCTGCTGGAGTACATCC TGACCGATCTCCGTGTGCCCCACAGCTATGAGGTCCGCCTCACACCCTATACCACCTTCGGGGCTGGT GACATGGCCTCCCGCATCATCCACTACACAGAGCGCCAGATCCGCTGGCCCCCAGTCCTGGCTCTGAG GACCCTGTCCTCTGGTCCCAAGCAGGGTATCCTCTGCAGAGCCCCACACCTCAGTTCTGACTTGGTTT CCCCGCTTGCTTTCTCAGCCATCAACTCTCCGAACCTTTCAGACAACACCTGCCACTTTGAGGATGAG AAGATCTGTGGCTATACCCAGGACCTGACAGACAACTTTGACTGGACGCGGCAGAATGCCCTCACCCA GAACCCCAAACGCTCCCCCAACACTGGTCCCCCCACCGACATAAGTGGCACCCCTGAGGGCTACTACA TGTTCATCGAGACATCGAGGCCTCGGGAGCTGGGGGACCGTGCAAGGTTAGTGAGTCCCCTCTACAAT GCCAGCGCCAAGTTCTACTGTGTCTCCTTCTTCTACCACATGTACGGGAAACACATCGGCTCCCTCAA CCCCCTGGTGCGGTCCCGGAACAAAGGGGCTCTGGACACGCACGCCTGGTCTCTCAGTGGCAATAAGG GCAATGTGTGGCAGCAGGCCCATGTGCCCATCAGCCCCAGTGGGCCCTTCCAGATTATTTTTGAGGGG GTTCGAGGCCCGGGCTACCTGGGGGATATTGCCATAGATGACGTCACACTGAAGAAGGGGGAGTGTCC CCGGAAGCAGACGGATCCCAATAAAGTGGTGGTGATGCCGGGCAGTGGAGCCCCCTGCCAGTCCAGCC CACAGCTGTGGGGGCCCATGGCCATCTTCCTCTTGGCGTTGCAGAGATGATGAGAGCTGTGTGGCCAC CCCC
NOV46a, CG57409-05 SEQ ID NO: 1020 488 aa MW at 54357. lkD Protein Sequence
MSGTYRCQTARYNGFNVRPREAQVQ NVQFPPEVEPSSQDVRQA GRPVLLRCS RGSPQRIASAVW: RFKGQ LPPPPWPAAAEAPDHAELR DAVTRDSSGSYECSVSNDVGSAAC FQVSAKAYSPEFYFDT PNPTRSH-l-XSK-NYSYVLQWTQREPDAVDPVLNYRLSIRQ NQHNAVVKAIPVRRVEKGQL EYI TD RVPHSYEVR TPYTTFGAGD ASRIIHYTERQIR PPVLA RTLSSGPKQGI CRAPHLSSD VSPLA FSAINSPNLSDNTCHFEDEKICGYTQDLTDNFD TRQNA TQNPKRSPNTGPPTDISGTPEGYY FIE TSRPRELGDRAR VSPLYNASAKFYCVSFFYH YGKHIGSLNPLVRSRNKGALDTHAWSLSGNKGNVW QQAHVPISPSGPFQIIFEGVRGPGYLGDIAIDDVT KKGECPRKQTDPNKVVVMPGSGAPCQSSPQL GP AIFLLALQR
NOV46b, 277731446 SEQ ID NO: 1021 1363 bp
DNA Sequence ORF Start: at 2 ORF Stop: end of sequence
CACCGGTACCATGAGCGGGACCTACCGCTGCCAGACGGCCCGCTATAATGGCTTCAACGTGCGCCCCC GTGAGGCCCAGGTGCAGCTGAACGTGCAGTTCCCGCCGGAGGTGGAGCCCAGTTCCCAGGACGTGCGC CAGGCGCTGGGCCGGCCCGTGCTCCTGCGCTGCTCGCTGCTGCGAGGCAGCCCCCAGCGCATCGCCTC GGCTGTGTGGCGTTTCAAAGGGCAGCTGCTGCCGCCGCCGCCTGTTGTTCCCGCCGCCGCCGAGGCGC CGGATCACGCGGAGCTGCGCCTCGACGCCGTAACTCGCGACAGCAGCGGCAGCTACGAGTGCAGCGTC TCCAACGATGTGGGCTCGGCTGCCTGCCTCTTCCAGGTCTCCGCCAAAGCCTACAGCCCGGAGTTTTA CTTCGACACCCCCAACCCCACCCGCAGCCACAAGCTGTCCAAGAACTACTCCTACGTGCTGCAGTGGA CTCAGAGGGAGCCCGACGCTGTCGACCCTGTGCTCAACTACAGACTCAGCATCCGCCAGTTGAACCAG CACAATGCGGTGGTCAAGGCCATCCCGGTCCGGCGTGTGGAGAAGGGGCAGCTGCTGGAGTACATCCT GACCGATCTCCGTGTGCCCCACAGCTATGAGGTCCGCCTCACACCCTATACCACCTTCGGGGCTGGTG ACATGGCCTCCCGCATCATCCACTACACAGAGCCCATCAACTCTCCGAACCTTTCAGACAACACCTGC CACTTTGAGGATGAGAAGATCTGTGGCTATACCCAGGACCTGACAGACAACTTTGACTGGACGCGGCA GAATGCCCTCACCCAGAACCCCAAACGCTCCCCCAACACTGGTCCCCCCACCGACATAAGTGGCACCC CTGAGGGCTACTACATGTTCATCGAGACATCGAGGCCTCGGGAGCTGGGGGACCGTGCAAGGTTAGTG AGTCCCCTCTACAATGCCAGCGCCAAGTTCTACTGTGTCTCCTTCTTCTACCACATGTACGGGAAACA CATCGGCTCCCTCAACCTCCTGGTGCGGTCCCGGAACAAAGGGGCTCTGGACACGCACGCCTGGTCTC TCAGTGGCAATAAGGGCAATGTGTGGCAGCAGGCCCATGTGCCCATCAGCCCCAGTGGGCCCTTCCAG ATTATTTTTGAGGGGGTTCGAGGCCCGGGCTACCTGGGGGATATTGCCATAGATGACGTCACACTGAA GAAGGGGGAGTGTCCCCGGAAGCAGACGGATCCCAATAAAGTGGTGGTGATGCCGGGCAGTGGAGCCC CCTGCCAGTCCAGCCCACAGCTGTGGGGGCCCATGGCCATCTTCCTCTTGGCGTTGCAGAGACTCGAG GGC
NOV46b, 277731446 SEQ ED NO: 1022 454 aa MW at 50606.7kD Protein Sequence
TGTMSGTYRCQTARYNGFNVRPREAQVQL VQFPPEVEPSSQDVRQALGRPVLLRCSLLRGSPQRIAS AV RF GQ LPPPPVVPAAAEAPDH-AΞ RLDAVTRDSSGSYECSVS---TOVGSAACLFQVSAKAYSPEFY FDTPNPTRSHKLSKNYSYVLQ TQREPDAVDPV NYR SIRQ NQHNAVVKAIPVRRVEKGQL EYIL TDLRVPHSYEVRLTPYTTFGAGDiMASRIIHYTEPINSPNLSDNTCHFEDEKICGYTQDLTDNFDWTRQ NALTQNPKRSPNTGPPTDISGTPEGYYMFIETSRPRELGDRARLVSPLYNASAKFYCVSFFYHMYGKH IGSLl^ VRSRNKGALDTHA S SGNKG V QQAHVPISPSGPFQIIFEGVRGPGYLGDIAIDDVT K KGECPRKQTDPN---OAtVMPGSGAPCQSSPQLWGPMAIFLLA QR EG
NOV46c, CG57409-07 SEQ DD NO: 1023 1363 bp
DNA Sequence ORF Start: ATG at 11 JORF Stop: at 1355
CACCGGTACCATGAGCGGGACCTACCGCTGCCAGACGGCCCGCTATAATGGCTTCAACGTGCGCCCCC
GTGAGGCCCAGGTGCAGCTGAACGTGCAGTTCCCGCCGGAGGTGGAGCCCAGTTCCCAGGACGTGCGC CAGGCGCTGGGCCGGCCCGTGCTCCTGCGCTGCTCGCTGCTGCGAGGCAGCCCCCAGCGCATCGCCTC GGCTGTGTGGCGTTTCAAAGGGCAGCTGCTGCCGCCGCCGCCTGTTGTTCCCGCCGCCGCCGAGGCGC CGGATCACGCGGAGCTGCGCCTCGACGCCGTAACTCGCGACAGCAGCGGCAGCTACGAGTGCAGCGTC TCCAACGATGTGGGCTCGGCTGCCTGCCTCTTCCAGGTCTCCGCCAAAGCCTACAGCCCGGAGTTTTA CTTCGACACCCCCAACCCCACCCGCAGCCACAAGCTGTCCAAGAACTACTCCTACGTGCTGCAGTGGA CTCAGAGGGAGCCCGACGCTGTCGACCCTGTGCTCAACTACAGACTCAGCATCCGCCAGTTGAACCAG CACAATGCGGTGGTCAAGGCCATCCCGGTCCGGCGTGTGGAGAAGGGGCAGCTGCTGGAGTACATCCT GACCGATCTCCGTGTGCCCCACAGCTATGAGGTCCGCCTCACACCCTATACCACCTTCGGGGCTGGTG ACATGGCCTCCCGCATCATCCACTACACAGAGCCCATCAACTCTCCGAACCTTTCAGACAACACCTGC CACTTTGAGGATGAGAAGATCTGTGGCTATACCCAGGACCTGACAGACAACTTTGACTGGACGCGGCA GAATGCCCTCACCCAGAACCCCAAACGCTCCCCCAACACTGGTCCCCCCACCGACATAAGTGGCACCC CTGAGGGCTACTACATGTTCATCGAGACATCGAGGCCTCGGGAGCTGGGGGACCGTGCAAGGTTAGTG AGTCCCCTCTACAATGCCAGCGCCAAGTTCTACTGTGTCTCCTTCTTCTACCACATGTACGGGAAACA CATCGGCTCCCTCAACCTCCTGGTGCGGTCCCGGAACAAAGGGGCTCTGGACACGCACGCCTGGTCTC TCAGTGGCAATAAGGGCAATGTGTGGCAGCAGGCCCATGTGCCCATCAGCCCCAGTGGGCCCTTCCAG ATTATTTTTGAGGGGGTTC GAAGGGGGAGTGTCCCCGGAAGCAGACGGATCCCAATAAAGTGGTGGTGATGCCGGGCAGTGGAGCCC CCTGCCAGTCCAGCCCACAGCTGTGGGGGCCCATGGCCATCTTCCTCTTGGCGTTGCAGAGACTCGAG GGC
NOV46c, CG57409-07 SEQ ID NO: 1024 448 aa MW at 50048. lkD Protein Sequence
MSGTYRCQTARYNGFNVRPREAQVQ NVQFPPEVEPSSQDVRQALGRPVLLRCSLLRGSPQRIASAV RFKGQLLPPPPWPAAAEAPDHAELRLDAVTRDSSGSYECSVSNDVGSAACLFQVSAKAYSPEFYFDT PNPTRSHK S--- -TYSYVLQWTQREPDAVDPV NYRLSIRQLNQHNAVVKAIPVRRVEKGQ LEYILTDL RVPHSYEVRLTPYTTFGAGDiMASRIIHYTEPINSPN SDNTCHFEDEKICGYTQD TDNFD TRQNAL TQNPKRSPNTGPPTDISGTPEGYYMFIETSRPRE GDRAR VSP YNASAKFYCVSFFYHMYGKHIGS LNL VRSRNKGALDTi S SGNKG VWQQAHVPISPSGPFQIIFEGVRGPGYLGDIAIDDVTLKKGE CPRKQTDPNKVWMPGSGAPCQSSPQ WGPMAIFLLALQR
NOV46d, 312102874 SEQ ID NO: 1025 1369 bp
DNA Sequence j 0RF Start: at 2 ORF Stop: end of sequence
CACCAAGCTTCCCACCATGAGCGGGACCTACCGCTGCCAGACGGCCCGCTATAATGGCTTCAACGTGC GCCCCCGTGAGGCCCAGGTGCAGCTGAACGTGCAGTTCCCGCCGGAGGTGGAGCCCAGTTCCCAGGAC GTGCGCCAGGCGCTGGGCCGGCCCGTGCTCCTGCGCTGCTCGCTGCTGCGAGGCAGCCCCCAGCGCAT CGCCTCGGCTGTGTGGCGTTTCAAAGGGCAGCTGCTGCCGCCGCCGCCTGTTGTTCCCGCCGCCGCCG AGGCGCCGGATCACGCGGAGCTGCGCCTCGACGCCGTAACTCGCGACAGCAGCGGCAGCTACGAGTGC AGCGTCTCCAACGATGTGGGCTCGGCTGCCTGCCTCTTCCAGGTCTCCGCCAAAGCCTACAGCCCGGA GTTTTACTTCGACACCCCCAACCCCACCCGCAGCCACAAGCTGTCCAAGAACTACTCCTACGTGCTGC AGTGGACTCAGAGGGAGCCCGACGCTGTCGACCCTGTGCTCAACTACAGACTCAGCATCCGCCAGTTG AACCAGCACAATGCGGTGGTCAAGGCCATCCCGGTCCGGCGTGTGGAGAAGGGGCAGCTGCTGGAGTA CATCCTGACCGATCTCCGTGTGCCCCACAGCTATGAGGTCCGCCTCACACCCTATACCACCTTCGGGG CTGGTGACATGGCCTCCCGCATCATCCACTACACAGAGCCCATCAACTCTCCGAACCTTTCAGACAAC ACCTGCCACTTTGAGGATGAGAAGATCTGTGGCTATACCCAGGACCTGACAGACAACTTTGACTGGAC GCGGCAGAATGCCCTCACCCAGAACCCCAAACGCTCCCCCAACACTGGTCCCCCCACCGACATAAGTG GCACCCCTGAGGGCTACTACATGTTCATCGAGACATCGAGGCCTCGGGAGCTGGGGGACCGTGCAAGG TTAGTGAGTCCCCTCTACAATGCCAGCGCCAAGTTCTACTGTGTCTCCTTCTTCTACCACATGTACGG GAAACACATCGGCTCCCTCAACCTCCTGGTGCGGTCCCGGAACAAAGGGGCTCTGGACACGCACGCCT GGTCTCTCAGTGGCAATAAGGGCAATGTGTGGCAGCAGGCCCATGTGCCCATCAGCCCCAGTGGGCCC TTCCAGATTATTTTTGAGGGGGTTCGAGGCCCGGGCTACCTGGGGGATATTGCCATAGATGACGTCAC ACTGAAGAAGGGGGAGTGTCCCCGGAAGCAGACGGATCCCAATAAAGTGGTGGTGATGCCGGGCAGTG GAGCCCCCTGCCAGTCCAGCCCACAGCTGTGGGGGCCCATGGCCATCTTCCTCTTGGCGTTGCAGAGA GAATTCGGC
NOV46d, 312102874 SEQ ID NO: 1026 456 aa MW at 50922. lkD Protein Sequence
T-iaPTMSGTYRCQTARY GFNVRPREAQVQLNVQFPPEVEPSSQDVRQA GRPVL RCSLLRGSPQRI
ASAV RFKGQLLPPPPVVPAAAEAPDHAELR DAVTRDSSGSYECSVSNDVGSAACLFQVSAKAYSPE
FYFDTPNPTRSH-ra SK-NYSYVLQ TQREPDAVDPVLNYR SIRQ NQHNAVV AIPVRRVE
I TDLRVPHSYEVRLTPYTTFGAGDMASRIIHYTEPINSPNLSDNTCHFEDEKICGYTQDLTDNFDWT
RQNA TQNPKRSPNTGPPTDISGTPEGYY FIETSRPRELGDRARLVSP YNASAKFYCVSFFYHMYG
KHIGSLN LVRSR KGALDTHA SLSGNKG V QQAHVPISPSGPFQIIFEGVRGPGYLGDIAIDDVT K GECPRKQTDPNKVVVMPGSGAPCQSSPQLWGPMAIFL-L--ALQREFG
NOV46e, 312102899 SEQ ID NO: 1027 1249 bp
DNA Sequence ORF Start: at 2 ORF Stop: end of sequence
CACCAAGCTTAGCGGGACCTACCGCTGCCAGACGGCCCGCTATAATGGCTTCAACGTGCGCCCCCGTG AGGCCCAGGTGCAGCTGAACGTGCAGTTCCCGCCGGAGGTGGAGCCCAGTTCCCAGGACGTGCGCCAG GCGCTGGGCCGGCCCGTGCTCCTGCGCTGCTCGCTGCTGCGAGGCAGCCCCCAGCGCATCGCCTCGGC TGTGTGGCGTTTCAAAGGGCAGCTGCTGCCGCCGCCGCCTGTTGTTCCCGCCGCCGCCGAGGCGCCGG ATCACGCGGAGCTGCGCCTCGACGCCGTAACTCGCGACAGCAGCGGCAGCTACGAGTGCAGCGTCTCC AACGATGTGGGCTCGGCTGCCTGCCTCTTCCAGGTCTCCGCCAAAGCCTACAGCCCGGAGTTTTACTT CGACACCCCCAACCCCACCCGCAGCCACAAGCTGTCCAAGAACTACTCCTACGTGCTGCAGTGGACTC AGAGGGAGCCCGACGCTGTCGACCCTGTGCTCAACTACAGACTCAGCATCCGCCAGTTGAACCAGCAC AATGCGGTGGTCAAGGCCATCCCGGTCCGGCGTGTGGAGAAGGGGCAGCTGCTGGAGTACATCCTGAC CGATCTCCGTGTGCCCCACAGCTATGAGGTCCGCCTCACACCCTATACCACCTTCGGGGCTGGTGACA TGGCCTCCCGCATCATCCACTACACAGAGCCCATCAACTCTCCGAACCTTTCAGACAACACCTGCCAC TTTGAGGATGAGAAGATCTGTGGCTATACCCAGGACCTGACAGACAACTTTGACTGGACGCGGCAGAA TGCCCTCACCCAGAACCCCAAACGCTCCCCCAACACTGGTCCCCCCACCGACATAAGTGGCACCCCTG AGGGCTACTACATGTTCATCGAGACATCGAGGCCTCGGGAGCTGGGGGACCGTGCAAGGTTAGTGAGT CCCCTCTACAATGCCAGCGCCAAGTTCTACTGTGTCTCCTTCTTCTACCACATGTACGGGAAACACAT CGGCTCCCTCAACCTCCTGGTGCGGTCCCGGAACAAAGGGGCTCTGGACACGCACGCCTGGTCTCTCA GTGGCAATAAGGGCAATGTGTGGCAGCAGGCCCATGTGCCCATCAGCCCCAGTGGGCCCTTCCAGATT ATTTTTGAGGGGGTTCGAGGCCCGGGCTACCTGGGGGATATTGCCATAGATGACGTCACACTGAAGAA GGGGGAGTGTCCCCGGGAATTCGGC
NOV46e, 312102899 SEQ ID NO: 1028 416 aa MW at 46644.0kD Protein Sequence
T SGTYRCQTARYNGF VRPREAQVQLNVQFPPΞVEPSSQDVRQA GRPVLLRCSLLRGSPQRIASA VWRFKGQLLPPPPWPAAAEAPDHAELRLDAVTRDSSGSYECSVSNDVGSAACLFQVSA AYSPEFYF DTPNPTRSHKLSKNYSYVXiQWTQREPDAVDPVL YRLSIRQLNQHNAVVKAIPVRRVEKGQLLEYILT DLRVPHSYEVR TPYTTFGAGDMASRIIHYTEPINSPNLSDNTCHFEDEKICGYTQD TDNFD TRQN ALTQNPKRSPNTGPPTDISGTPEGYYMFIETSRPRELGDRAR VSP YNASAKFYCVSFFYH YGKHI GSLNL VRSRNKGALDTHAWSLSGNKGNVWQQAHVP ISPSGPFQII FEGVRGPGYLGD I AIDDVTLKK GECPREFG
NOV46f, CG57409-01 SEQ ID NO: 1029 4141 bp
DNA Sequence ORF Start: ATG at 135 ORF Stop: at 4140
TCTTCGTCGCCGCTCTCTCTCTCACCTCTCAGGGAAAGGGGGGGACATAGGGGCGTCGCGGGGCCCCG
GCGAATGCGCCCCCCGCCGCCTCTCGGGCTGCGCCGCCTCGCGGGGATGAAGCACCGGCCGTGAAGAT
GGAGGTGACCTGCCTTCTACTTCTGGCGCTGATCCCCTTCCACTGCCGGGGACAAGGAGTCTACGCTC CAGCCCAGGCGCAGATCGTGCATGCGGGCCAGGCATGTGTGGTGAAAGAGGACAATATCAGCGAGCGT GTCTACACCATCCGGGAGGGGGACACCCTCATGCTGCAGTGCCTTGTAACAGGGCACCCTCGACCCCA GGTACGGTGGACCAAGACGGCAGGTAGCGCCTCGGACAAGTTCCAGGAGACATCGGTGTTCAACGAGA CGCTGCGCATCGAGCGTATTGCACGCACGCAGGGCGGCCGCTACTACTGCAAGGCTGAGAACGGCGTG GGGGTGCCGGCCATCAAGTCCATCCGCGTGGACGTGCAGTACCTGGATGAGCCAATGCTGACGGTGCA CCAGACGGTGAGCGATGTGCGAGGCAACTTCTACCAGGAGAAGACGGTGTTCCTGCGCTGTACTGTCA ACTCCAACCCGCCTGCCCGCTTCATCTGGAAGCGGGGTTCCGATACCCTATCCCACAGCCAGGACAAT GGGGTTGACATCTATGAGCCCCTCTACACTCAGGGGGAGACCAAGGTCCTGAAGCTGAAGAACCTGCG GCCCCAGGACTATGCCAGCTACACCTGCCAGGTGTCTGTGCGTAACGTGTGCGGCATCCCAGACAAGG CCATCACCTTCCGGCTCACCAACACCACGGCACCACCAGCCCTGAAGCTGTCTGTGAACGAAACTCTG GTGGTGAACCCTGGGGAGAATGTGACGGTGCAGTGTCTGCTGACAGGCGGTGATCCCCTCCCCCAGCT GCAGTGGTCCCATGGGCCTGGCCCACTGCCCCTGGGTGCTCTGGCCCAGGGTGGCACCCTCAGCATCC CTTCAGTGCAGGCCCGGGACTCTGGCTACTACAACTGCACAGCCACCAACAATGTGGGCAACCCTGCC AAGAAGACTGTCAACCTGCTGGTGCGATCCATGAAGAACGCTACATTCCAGATCACTCCTGACGTGAT CAAAGAGAGTGAGAACATCCAGCTGGGCCAGGACCTGAAGCTATCGTGCCACGTGGATGCAGTGCCCC AGGAGAAGGTGACCTACCAGTGGTTCAAGAATGGCAAGCCGGCACGCATGTCCAAGCGGCTGCTGGTG ACCCGCAATGATCCTGAGCTGCCCGCAGTCACCAGCAGCCTAGAGCTCATTGACCTGCACTTCAGTGA CTATGGCACCTACCTGTGCATGGCTTCTTTCCCAGGGGCACCCGTGCCCGACCTCAGCGTCGAGGTCA ACATCTCCTCTGAGACAGTGCCGCCCACCATCAGTGTGCCCAAGGGTAGGGCCGTGGTGACCGTGCGC GAGGGATCGCCTGCCGAGCTGCAATGCGAGGTGCGGGGCAAGCCGCGGCCGCCAGTGCTCTGGTCCCG CGTGGACAAGGAGGCTGCACTGCTGCCCTCGGGGCTGCCCCTGGAGGAGACTCCGGACGGGAAGCTGC GGCTGGAGCGAGTGAGCCGAGACATGAGCGGGACCTACCGCTGCCAGACGGCCCGCTATAATGGCTTC AACGTGCGCCCCCGTGAGGCCCAGGTGCAGCTGAACGTGCAGTTCCCGCCGGAGGTGGAGCCCAGTTC CCAGGACGTGCGCCAGGCGCTGGGCCGGCCCGTGCTCCTGCGCTGCTCGCTGCTGCGAGGCAGCCCCC AGCGCATCGCCTCGGCTGTGTGGCGTTTCAAAGGGCAGCTGCTGCCGCCGCCGCCTGTTGTTCCCGCC GCCGCCGAGGCGCCGGATCACGCGGAGCTGCGCCTCGACGCCGTAACTCGCGACAGCAGCGGCAGCTA CGAGTGCAGCGTCTCCAACGATGTGGGCTCGGCTGCCTGCCTCTTCCAGGTCTCCGCCAAAGCCTACA GCCCGGAGTTTTACTTCGACACCCCCAACCCCACCCGCAGCCACAAGCTGTCCAAGAACTACTCCTAC GTGCTGCAGTGGACTCAGAGGGAGCCCGACGCTGTCGACCCTGTGCTCAACTACAGACTCAGCATCCG CCAGTTGAACCAGCACAATGCGGTGGTCAAGGCCATCCCGGTCCGGCGTGTGGAGAAGGGGCAGCTGC TGGAGTACATCCTGACCGATCTCCGTGTGCCCCACAGCTATGAGGTCCGCCTCACACCCTATACCACC TTCGGGGCTGGTGACATGGCCTCCCGCATCATCCACTACACAGAGCGCCAGATCCGCTGGCCCCCAGT CCTGGCTCTGAGGACCCTGTCCTCTGGTCCCAAGCAGGGTATCCTCTGCAGAGCCCCACACCTCAGTT CTGACTTGGTTTCCCCGCTTGCTTTCTCAGCCATCAACTCTCCGAACCTTTCAGACAACACCTGCCAC TTTGAGGATGAGAAGATCTGTGGCTATACCCAGGACCTGACAGACAACTTTGACTGGACGCGGCAGAA TGCCCTCACCCAGAACCCCAAACGCTCCCCCAACACTGGTCCCCCCACCGACATAAGTGGCACCCCTG AGGGCTACTACATGTTCATCGAGACATCGAGGCCTCGGGAGCTGGGGGACCGTGCAAGGTTAGTGAGT CCCCTCTACAATGCCAGCGCCAAGTTCTACTGTGTCTCCTTCTTCTACCACATGTACGGGAAACACAT CGGCTCCCTCAACCTCCTGGTGCGGTCCCGGAACAAAGGGGCTCTGGACACGCACGCCTGGTCTCTCA GTGGCAATAAGGGCAATGTGTGGCAGCAGGCCCATGTGCCCATCAGCCCCAGTGGGCCCTTCCAGATT ATTTTTGAGGGGGTTCGAGGCCCGGGCTACCTGGGGGATATTGCCATAGATGACGTCACACTGAAGAA GGGGGAGTGTCCCCGGAAGCAGACGGATCCCAATAAAGGTGCAAGACGGGAAGGAGCTGCCTGCGATG GCCTGAAATTCCACCTTTCATCCCCTATGGATGACGGAGAGCTTACAGATGACCCTATTGAATGCAAG CACCTTTGGATCCATAGAGTGGACAGTAAAGGTGCTCAGTACATGTTGGCTGAGCTGAACTGCATACA TGTGGCCCCCAGGTTCCTGGTCTTTATGGACGAAGGGCACAAGGTTGGTGAAAAGGACTCCGGGGGCC AGCCCTTCCAAGTTTACACTGATTTCTCCTTTTACCCTCATGCTATCCCTGAGAAGATGTCAATAATG
CCCACGTTACAGGTGGGAAAACTGAGGCTTAGAGAGGAGGAGGAATCTGCCTACGGTCACACAGCTGC AAAGGCTAGAGCTGGGACCAGGAGCTGGTCTCTTAACCGACCACCTGAGCTCAAGAGCTTTTCTCTCT GGACCAACATGACCCAAAGTGTGCGCGAGCCTATCACAGGTCCCCTGCAATGCCAAACATACACGCAC AGCAATACACAACACCTGGGGACATGGATGAAGCTGGAAACCATCATTCTCAGCAAACTGACACAAGA ACAGAAAACCAAACACCACATGTTCTCACTCACCACCCAGTCTGCCCCGCCCTCTCTCTTCTCACCTG AACTTCCCCTCTCCTCAAACTCTCGAGGCCACGCCTCTATGTCCTTGGATGATGATGATGACGACGAC GACGATGATGATGATGATGATGACGACGATGACAATGATGATGATGATGGAAGGAAGACCTACAGAAT CCCTCCAGGCTCTGACCTCAGTGCTTGTGGGTGGGTGAATGACCACATGTCGCAGGGAGACTCCACAG GTCCTCCCGATGAGAAGCACTCTTATGCCAAAGAGGAGACTCAGGCCAAACTGACAGGACCAGGAATT AGCTACCCTGGTAAACCCAGCTATCGACTGCACCCGAGCGGCTACACACCACTGGAGCAGTTCAGGGA GAAAGCCACCGGCATGCTCACCCCGTATGTCTCTGGCTCTGTTTCCTCTTTCTGCTTCCCCTTCCCCA CCTCTGAGTCTCTGTGTTCTGCTCATGCCAATTCCCCTTCTGCCTGTCTCTGCCCGCTTCT
1
NOV46f, CG57409-01 SEQ ID NO: 1030 1335 aa MW at 147969.4kD Protein Sequence EVTC L ALIPFHCRGQGVYAPAQAQIVHAGQACWKEDNISERVYTIREGDTLM QCLVTGHPRP QVRWTKTAGSASDKFQETSVFNET RIERIARTQGGRYYCKAENGVGVPAIKSIRVDVQYLDEPM TV HQTVSDVRGNFYQEKTVFLRCTVNSNPPARFIWKRGSDTLSHSQDNGVDIYEPLYTQGETKVLKLK RPQDYASYTCQVSVRlJVCGIPDKAITFRLTNTTAPPA KLSVNET VV PGE VTVQCL TGGDP PQ LQ SHGPGPLPLGALAQGGTLSIPSVQARDSGYYNCTATN--WGNP-AKKTVNLLVRS KNATFQITPDV IKESENIQLGQDL-iaSCHVDAVPQE VTYQ FKNGKP-ARMSKR VTRN-DPELPAVTSSLELIDLHFS DYGTY C ASFPGAPVPDLSVEVNISSETVPPTISVPKGRAVVTVREGSPAELQCEVRGKPRPPVLWS RVDKEAALLPSGLPLEETPDGKLR ERVSRDMSGTYRCQTARYNGFNVRPREAQVQLNVQFPPEVEPS SQDVRQA GRPVL RCSLLRGSPQRIASAV RFKGQ LPPPPWPAAAEAPDHAE R DAVTRDSSGS YECSVSNDVGS-^C FQVSAI-AYSPEFYFDTPNPTRSH--- jSKNYSYVLQ TQREPDAVDPVLNYR SI RQLNQH AWKAIPVRRVEKGQLLEYI TDLRVPHSYEVR TPYTTFGAGDiMASRIIHYTERQIRWPP V ALRTLSSGPKQGILCRAPHLSSDLVSPLAFSAINSPNLSDNTCHFEDEKICGYTQD TDNFD TRQ N-ALTQNPKRSPNTGPPTDISGTPEGYYMFIETSRPRELGDRARLVSPLY ASAKFYCVSFFYHMYGKH IGSLNL VRSRNKGALDTi WSLSGNKGNV QQAHVPISPSGPFQIIFEGVRGPGY GDIAIDDVTLK KGECPRKQTDPNKG-A----REGAACDG KFHLSSP-MDDGELTDDPIECKHL IHRVDSKGAQYM AE NCI ---WAPRFLVFMDEGHKVGEK-DSGGQPFQVYTDFSFYP--- iPE---sΗSIMPT QVGK RLREEEΞSAYGHTA -AK--A----AGTRS SLNRPPE KSFSL TN TQSVREPITGP QCQTYTHSNTQHLGTW KLETII SKLTQ EQKT E-1HMFS TTQSAPPS FSPELPLSSNSRGHAS SLDDDDDDDDDDDDDDDDDD DDDDGRKTYR IPPGSD SACG V DHMSQGDSTGPPDEKHSYAKEETQA LTGPGISYPG PSYRLHPSGYTP EQFR EKATGMLTPYVSGSVSSFCFPFPTSESLCSAHANSPSAC CPL
NOV46g, CG57409-02 SEQ ID NO: 1031 720 bp DNA Sequence ORF Start: at 7 ORF Stop: at 715
GGTACCTTGAACCAGCACAATGCGGTGGTCAAGGCCATCCCGGTCCGGCGTGTGGAGAAGGGGCAGCT
GCTGGAGTACATCCTGACCGATCTCCGTGTGCCCCACAGCTATGAGGTCCGCCTCACACCCTATACCA CCTTCGGGGCTGGTGACATGGCCTCCCGCATCATCCACTACACAGAGCCCATCAACTCTCCGAACCTT TCAGACAACACCTGCCACTTTGAGGATGAGAAGATCTGTGGCTATACCCAGGACCTGACAGACAACTT TGACTGGACGCGGCAGAATGCCCTCACCCAGAACCCCAAACGCTCCCCCAACACTGGTCCCCCCACCG ACATAAGTGGCACCCCTGAGGGCTACTACATGTTCATCGAGACATCGAGGCCTCGGGAGCTGGGGGAC CGTGCAAGGTTAGTGAGTCCCCTCTACAATGCCTGCGCCAAGTTCTACTGTGTCTCCTTCTTCTACCA CATGTACGGGAAACACATCGGCTCCCTCAACCTCCTGGTGCGGTCCCGGAACAAAGGGGCTCTGGACA CGCACGCCTGGTCTCTCAGTGGCAATAAGGGCAATGTGTGGCAGCAGGCCCATGTGCCCATCAGCCCC AGTGGGCCCTTCCAGATTATTTTTGAGGGGGTTCGAGGCCCGGGCTACCTGGGGGATATTGCCATAGA TGACGTCACACTGAAGAAGGGGGAGTGTCCCCGGGAATTC NOV46g, CG57409-02 SEQ ID NO: 1032 236 aa MW at 26563.7kD Protein Sequence NQHNAWKAIPVRRVEKGQLLEYI TD RVPHSYEVR TPYTTFGAGDMASRIIHYTEPINSPN SD NTCHFEDEKICGYTQD TD..-STFD TRQNALTQNPKRSPNTGPPTDISGTPEGYYMFIETSRPRELGDRA RLVSPLYNACAKFYCVSFFY------ YG----HlGS NLLVRSRN GALDT--- SLSGNKGNV QQAHVPISPSG
PFQI IFΞGVRGPGYLGDIAIDDVT KKGECPR
NOV46h, CG57409-03 SEQ ID NO: 1033 4169 bp DNA Sequence ORF Start: ATG at 135 ORF Stop: TGA at 4080
TCTTCGTCGCCGCTCTCTCTCTCACCTCTCAGGGAAAGGGGGGGACATAGGGGCGTCGCGGGGCCCCG
GCGAATGCGCCCCCCGCCGCCTCTCGGGCTGCGCCGCCTCGCGGGGATGAAGCACCGGCCGTGAAGAT
GGAGGTGACCTGCCTTCTACTTCTGGCGCTGATCCCCTTCCACTGCCGGGGACAAGGAGTCTACGCTC CAGCCCAGGCGCAGATCGTGCATGCGGGCCAGGCATGTGTGGTGAAAGAGGACAATATCAGCGAGCGT GTCTACACCATCCGGGAGGGGGACACCCTCATGCTGCAGTGCCTTGTAACAGGGCACCCTCGACCCCA GGTACGGTGGACCAAGACGGCAGGTAGCGCCTCGGACAAGTTCCAGGAGACATCGGTGTTCAACGAGA CGCTGCGCATCGAGCGTATTGCACGCACGCAGGGCGGCCGCTACTACTGCAAGGCTGAGAACGGCGTG GGGGTGCCGGCCATCAAGTCCATCCGCGTGGACGTGCAGTACCTGGATGAGCCAATGCTGACGGTGCA CCAGACGGTGAGCGATGTGCGAGGCAACTTCTACCAGGAGAAGACGGTGTTCCTGCGCTGTACTGTCA ACTCCAACCCGCCTGCCCGCTTCATCTGGAAGCGGGGTTCCGATACCCTATCCCACAGCCAGGACAAT GGGGTTGACATCTATGAGCCCCTCTACACTCAGGGGGAGACCAAGGTCCTGAAGCTGAAGAACCTGCG GCCCCAGGACTATGCCAGCTACACCTGCCAGGTGTCTGTGCGTAACGTGTGCGGCATCCCAGACAAGG CCATCACCTTCCGGCTCACCAACACCACGGCACCACCAGCCCTGAAGCTGTCTGTGAACGAAACTCTG GTGGTGAACCCTGGGGAGAATGTGACGGTGCAGTGTCTGCTGACAGGCGGTGATCCCCTCCCCCAGCT GCAGTGGTCCCATGGGCCTGGCCCACTGCCCCTGGGTGCTCTGGCCCAGGGTGGCACCCTCAGCATCC CTTCAGTGCAGGCCCGGGACTCTGGCTACTACAACTGCACAGCCACCAACAATGTGGGCAACCCTGCC AAGAAGACTGTCAACCTGCTGGTGCGATCCATGAAGAACGCTACATTCCAGATCACTCCTGACGTGAT CAAAGAGAGTGAGAACATCCAGCTGGGCCAGGACCTGAAGCTATCGTGCCACGTGGATGCAGTGCCCC AGGAGAAGGTGACCTACCAGTGGTTCAAGAATGGCAAGCCGGCACGCATGTCCAAGCGGCTGCTGGTG ACCCGCAATGATCCTGAGCTGCCCGCAGTCACCAGCAGCCTAGAGCTCATTGACCTGCACTTCAGTGA CTATGGCACCTACCTGTGCATGGCTTCTTTCCCAGGGGCACCCGTGCCCGACCTCAGCGTCGAGGTCA ACATCTCCTCTGAGACAGTGCCGCCCACCATCAGTGTGCCCAAGGGTAGGGCCGTGGTGACCGTGCGC GAGGGATCGCCTGCCGAGCTGCAATGCGAGGTGCGGGGCAAGCCGCGGCCGCCAGTGCTCTGGTCCCG CGTGGACAAGGAGGCTGCACTGCTGCCCTCGGGGCTGCCCCTGGAGGAGACTCCGGACGGGAAGCTGC GGCTGGAGCGAGTGAGCCGAGACATGAGCGGGACCTACCGCTGCCAGACGGCCCGCTATAATGGCTTC AACGTGCGCCCCCGTGAGGCCCAGGTGCAGCTGAACGTGCAGTTCCCGCCGGAGGTGGAGCCCAGTTC CCAGGACGTGCGCCAGGCGCTGGGCCGGCCCGTGCTCCTGCGCTGCTCGCTGCTGCGAGGCAGCCCCC AGCGCATCGCCTCGGCTGTGTGGCGTTTCAAAGGGCAGCTGCTGCCGCCGCCGCCTGTTGTTCCCGCC GCCGCCGAGGCGCCGGATCACGCGGAGCTGCGCCTCGACGCCGTAACTCGCGACAGCAGCGGCAGCTA CGAGTGCAGCGTCTCCAACGATGTGGGCTCGGCTGCCTGCCTCTTCCAGGTCTCCGCCAAAGCCTACA GCCCGGAGTTTTACTTCGACACCCCCAACCCCACCCGCAGCCACAAGCTGTCCAAGAACTACTCCTAC GTGCTGCAGTGGACTCAGAGGGAGCCCGACGCTGTCGACCCTGTGCTCAACTACAGACTCAGCATCCG CCAGTTGAACCAGCACAATGCGGTGGTCAAGGCCATCCCGGTCCGGCGTGTGGAGAAGGGGCAGCTGC TGGAGTACATCCTGACCGATCTCCGTGTGCCCCACAGCTATGAGGTCCGCCTCACACCCTATACCACC TTCGGGGCTGGTGACATGGCCTCCCGCATCATCCACTACACAGAGCCCATCAACTCTCCGAACCTTTC AGACAACACCTGCCACTTTGAGGATGAGAAGATCTGTGGCTATACCCAGGACCTGACAGACAACTTTG ACTGGACGCGGCAGAATGCCCTCACCCAGAACCCCAAACGCTCCCCCAACACTGGTCCCCCCACCGAC ATAAGTGGCACCCCTGAGGGCTACTACATGTTCATCGAGACATCGAGGCCTCGGGAGCTGGGGGACCG TGCAAGGTTAGTGAGTCCCCTCTACAATGCCAGCGCCAAGTTCTACTGTGTCTCCTTCTTCTACCACA TGTACGGGAAACACATCGGCTCCCTCAACCTCCTGGTGCGGTCCCGGAACAAAGGGGCTCTGGACACG CACGCCTGGTCTCTCAGTGGCAATAAGGGCAATGTGTGGCAGCAGGCCCATGTGCCCATCAGCCCCAG TGGGCCCTTCCAGATTATTTTTGAGGGGGTTCGAGGCCCGGGCTACCTGGGGGATATTGCCATAGATG ACGTCACACTGAAGAAGGGGGAGTGTCCCCGGAAGCAGACGGATCCCAATAAAGGTGCAAGACGGGAA GGAGCTGCCTGCGATGGCCTGAAATTCCACCTTTCATCCCCTATGGATGACGGAGAGCTTACAGATGA CCCTATTGAATGCAAGCACCTTTGGATCCATAGAGTGGACAGTAAAGGTGCTCAGTACATGTTGGCTG AGCTGAACTGCATACATGTGGCCCCCAGGTTCCTGGTCTTTATGGACGAAGGGCACAAGGTTGGTGAA AAGGACTCCGGGGGCCAGCCCTTCCAAGTTTACACTGATTTCTCCTTTTACCCTCATGCTATCCCTGA GAAGATGTCAATAATGCCCACGTTACAGGTGGGAAAACTGAGGCTTAGAGAGGAGGAGGAATCTGCCT ACGGTCACACAGCTGCAAAGGCTAGAGCTGGGACCAGGAGCTGGTCTCTTAACCGACCACCTGAGCTC l-AAGAGCTTTTCTCTCTO CCAAACATACACGCACAGCAATACACAACACCTGGGGACATGGATGAAGCTGGAAACCATCATTCTCA GCAAACTGACACAAGAACAGAAAACCAAACACCACATGTTCTCACTCACCACCCAGTCTGCCCCGCCC TCTCTCTTCTCACCTGAACTTCCCCTCTCCTCAAACTCTCGAGGCCACGCCTCTATGTCCTTGGATGA TGATGATGACGACGACGACGATGATGATGATGATGATGACGACGATGACAATGATGATGATGATGGAA GGAAGACCTACAGAATCCCTCCAGGCTCTGACCTCAGTGCTTGTGGGTGGGTGAATGACCACATGTCG CAGGGAGACTCCACAGGTCCTCCCGATGAGAAGCACTCTTATGCCAAAGAGGAGACTCAGGCCAAACT GACAGGACCAGGAATTAGCTACCCTGGTAAACCCAGCTATCGACTGCACCCGAGCGGCTACACACCAC TGGAGCAGTTCAGGGAGAAAGCCACCGGCATGCTCACCCCGTATGTCTCTGGCTCTGTTTCCTCTTTC TGCTTCCCCTTCCCCACCTCTGAGTCTCTGTGTTCTGCTCATGCCAATTCCCCTTCTGCCTGTCTCTG CCCGCTTCTCTCTGGGCTGGTCTCTCCGAGACTCTGTTCCCTTGGCTGGCATGCCCTCCACCTCCCCT GATGGTTCAGCAGAGATGAAGCCGGCCTGGCTCATGGGTGTGGGTAATGTACTAGTGCAGGAGAGTGG
TGGGGCCCAGTCTGGGTGCAG
NOV46h, CG57409-03 SEQ ID NO: 1034 1315 aa MW at 145782.9kD Protein Sequence EVTCLLLLALIPFHCRGQGVYAPAQAQIVHAGQACWKEDNISERVYTIRΞGDTL LQCLVTGHPRP
QVR TKTAGΞASDKFQETSVFNETLRIERIARTQGGRYYCKAEMGVGVPAIKSIRVDVQYLDEPM TV
HQTVSDVRGNFYQEKTVFLRCTVNSNPP-ARFI -RGSDT SHSQDNGVDIYEPLYTQGETKVLKLK
RPQDYASYTCQVSVR1TVCGIPDKAITFRLTNTTAPPAL SVNETLVV PGENVTVQCL TGGDPLPQ
LQ SHGPGPLPLGALAQGGT SIPSVQARDSGYYNCTAT- NVGNPAKKTVNLLVRSMK-NATFQITPDV
IKESENIQLGQDLKLSCHVDAVPQEKVTYQWFKNGKP-AR^
DYGTY CMAS FPGAPVPDLS VE VNI S SETVPPTI S VPKGRAWTVREGS PAELQCE VRGKPRPPVL S
RVDKEAA PSGLPLEETPDG---^RLERVSRDMSGTYRCQTARYNGFNVRPREAQVQ NVQFPPEVEPS
SQDVRQALGRPVLLRCSLLRGSPQRIASAV RFKGQLLPPPPWPAAAEAPDHAE RLDAVTRDSSGS
YECSVSITOVGSAACLFQVSAKAYSPEFYFDTPNPTRSHK SKI^SYVLQ TQREPDAVDPVLNYRLSI
RQLNQHNAWKAIPVRRVEKGQL EYILTDLRVPHSYEVR TPYTTFGAGD ASRIIHYTEPINSPNL
SDNTCHFEDEKICGYTQDLTDNFDWTRQNALTQNPKRSPNTGPPTDISGTPEGYYMFIETSRPRELGD
R-ARLVSPLYNASAKFYCVSFFY------MYG--miGS N SR-^^
SGPFQIIFEGVRGPGYLGDIAIDDVT KKGECPRKQTDPNKGARREGAACDGLKFH SSP DDGELTD DPIECKHL IHRVDSKGAQY LAELNCIHVAPRF VFMDEGH VGEKDSGGQPFQVYTDFSFYPHAIP EI^SIMPT QVGK R REEEESAYGHTAAKARAGTRS SLNRPPELKΞFSL TNMTQSVRΞPITGPLQ CQTYTHSNTQHLGTWMKLETIILS--aTQEQKTKHHMFS TTQSAPPSLFSPELPLSSNSRGHAS SLD DDDDDDDDDDDDDDDDDNDDDDGRKTYRIPPGSDLSACG V-røHMSQGDSTGPPDEKHSYA EETQAK TGPGISYPGKPSYRLHPSGYTPLEQF-RΞKATGMLTPYVSGSVSSFCFPFPTSESLCSAHANSPSAC CPLLSGLVSPRLCSLGWHALHLP
NOV46i, CG57409-04 SEQ ID NO: 1035 720 bp DNA Sequence ORF Start: at 7 ORF Stop: at 715
GGATCCTTGAACCAGCACAATGCGGTGGTCAAGGCCATCCCGGTCCGGCGTGTGGAGAAGGGGCAGCT
GCTGGAGTACATCCTGACCGATCTCCGTGTGCCCCACAGCTATGAGGTCCGCCTCACACCCTATACCA CCTTCGGGGCTGGTGACATGGCCTCCCGCATCATCCACTACACAGAGCCCATCAACTCTCCGAACCTT TCAGACAACACCTGCCACTTTGAGGATGAGAAGATCTGTGGCTATACCCAGGACCTGACAGACAACTT TGACTGGACGCGGCAGAATGCCCTCACCCAGAACCCCAAACGCTCCCCCAACACTGGTCCCCCCACCG ACATAAGTGGCACCCCTGAGGGCTACTACATGTTCATCGAGACATCGAGGCCTCGGGAGCTGGGGGAC CGTGCAAGGTTAGTGAGTCCCCTCTACAATGCCTGCGCCAAGTTCTACTGTGTCTCCTTCTTCTACCA CATGTACGGGAAACACATCGGCTCCCTCAACCTCCTGGTGCGGTCCCGGAACAAAGGGGCTCTGGACA CGCACGCCTGGTCTCTCAGTGGCAATAAGGGCAATGTGTGGCAGCAGGCCCATGTGCCCATCAGCCCC AGTGGGCCCTTCCAGATTATTTTTGAGGGGGTTCGAGGCCCGGGCTACCTGGGGGATATTGCCATAGA TGACGTCACACTGAAGAAGGGGGAGTGTCCCCGGCTCGAG
NOV46i, CG57409-04 SEQ ID NO: 1036 236 aa MW at 26563.7kD Protein Sequence NQHNAWKAIPVRRVEKGQLLEYILTD RVPHSYEVR TPYTTFGAGDMASRIIHYTEPINSPNLSD NTCHFEDEKICGYTQDLTDNFDWTRQNALTQNPKRSPNTGPPTDISGTPEGYYMFIETSRPRE GDRA RLVSP YNACAKFYCVSFFYIMYGKHIGS N L SRNK PFQIIFEGVRGPGY GDIAIDDVT KKGECPR
NOV46J, CG57409-06 SEQ ID NO: 1037 1828 bp DNA Sequence
TGAGCCGAGACATGAGCGGGACCTACCGCTGCCAGACGGCCCGCTATAATGGCTTCAACGTGCGCCCC GAATTCGGC
NOV46k, CG57409-08 SEQ ID NO: 1040 451 aa |MW at 50381.4kD Protein Sequence
MSGTYRCQTARYNGFNVRPREAQVQLNVQFPPEVEPSSQDVRQA GRPVLLRCSLLRGSPQRIASAVW RFKGQLLPPPPWPAAAEAPDHAELR DAVTRDSSGSYECSVSNDVGSAAC FQVSA AYSPEFYFDT PNPTRSHKLSKNYSYVLQ TQREPDAVDPVLNYRLSIRQLNQHNAVVKAIPVRRVEKGQLLEYILTDL RVPHSYEVRLTPYTTFGAGDMASRIIHYTEPINSPN SDNTCHFEDEKICGYTQDLTDNFD TRQNAL TQNPKRSPNTGPPTDISGTPEGYYMFIETSRPRELGDRARLVSPLYNASAKFYCVSFFYH YGKHIGS LNL VRSRNKG-A DTHAWS SGNKGNVTΛrQQA---WPISPSGPFQIIFEGVRGPGYLGDIAIDDVTLKKGΞ CPRKQTDPNKVWMPGSGAPCQS S PQ GPMAI FLLALQREFG
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 46B.
Table 46B. Comparison of the NOV46 protein sequences.
N0V46a
N0V46b
N0V46C
N0V46d
N0V46e
N0V46f MEVTCLLLLALIPFHCRGQGVYAPAQAQIVHAGQACWKEDNISERVYTIREGDTL LQC
N0V46g
N0V46 MEVTC LLALIPFHCRGQGVYAPAQAQIVHAGQACWKEDNISERVYTIREGDTLMLQC
N0V46i
N0V46J
N0V46k
N0V46a
NOV46b
NOV46C
NOV46d
NOV46e
N0V46f LVTGHPRPQVR TKTAGSASDKFQETSVFNET RIERIARTQGGRYYCKAENGVGVPAIK
N0V46g
NOV46-h LVTGHPRPQVRWTKTAGSASDKFQETSVFNETLRIERIARTQGGRYYCKAENGVGVPAIK
NOV46i
NOV46J
NOV46k
NOV46a
NOV46b
NOV46C
NOV46d
NOV46e
NOV46f SIRVDVQYLDEP TVHQTVSDVRGNFYQEKTVFLRCTVNSNPPARFIWKRGSDTLSHSQ
NOV46g
N0V46h SIRVDVQY DEPMLTVHQTVSDVRGNFYQEKTVFLRCTVNSNPPARFI KRGSDT SHSQ
NOV46i
NOV46a
NOV46b
NOV46C
NOV46d
NOV46e
NOV46f DNGVDIYEPLYTQGETKV KLK RPQDYASYTCQVSVRNVCGIPDKAITFRLTNTTAPP NOV46g
NOV46h DNGVDIYEP YTQGETKV- --- jKN RPQDYASYTCQVSVRNVCGIPD-KAITFR TNTTAPP
NOV46i
NOV46J
NOV46k
NOV46a
NOV46b
NOV46C
NOV46d
NOV46e
NOV46f ALKLSVNET VVNPGENVTVQC LTGGDPLPQ Q SHGPGPLP GA AQGGTLSIPSVQA
NOV46g
NOV46h ALK SV-NETLWNPGENVTVQC LTGGDPLPQLQ SHGPGPLPLGALAQGGTLS IPS VQA
NOV46i
NOV46J
NOV46k
NOV46a
NOV46b
NOV46C
NOV46d
NOV46e
NOV46f RDSGYYNCTATNIϊTVGNPAK TVNLLVRSMKNATFQITPDVIKESENIQ GQDLK SCHVD
NOV46g
-NOV46h RDSGYYNCTATN-I- VGNPAK TVNL VRSMKMATFQITPDVIKESENIQLGQDLKLSCH^
NOV46i
NOV46J
NOV46k
NOV46a
NOV46b
NOV46C
NOV46d
NOV46e
NOV46f AVPQEKVTYQ FKNGKPA-RMSKRLLVT-RNDPELPAVTSSLE ID- HFSDYGTYLC ASFP
NOV46g
NOV46h AVPQEKVTYQ FK-NGKPA----MSKRLLVTRNDPELPAVTSS ELIDLHFSDYGTYLCMASFP
NO V46±
NOV46a
NOV46b
NOV46C
NOV46d
NOV46e
NOV46f GAPVPD SVEVNISSETVPPTISVPKGRAWTVREGSPAELQCEVRGKPRPPVLWSRVDK
NOV46g
NOV46h GAPVPDLSVΞVNISSETVPPTISVPKGRAWTVREGSPAELQCEVRGKPRPPVL SRVDK
NOV46i
NOV46J
NOV46k
NOV46a MSGTYRCQTARYNGFNVRPREAQVQLNVQFPPE
NOV46b - - -TGTMSGTYRCQTARYNGFNVRPREAQVQLNVQFPPE
NOV46C MSGTYRCQTARYNGFNVRPREAQVQ NVQFPPE
NOV46d -T-.^PTMSGTYRCQTARY-NGFNVRPREAQVQLNVQFPPE
NOV46e TKLSGTYRCQTARYNGFNVRPREAQVQLNVQFPPE
NOV46f EAALLPSGLP EETPDG LR ERVSRDMSGTYRCQTARYNGFNVRPREAQVQLNVQFPPE NOV46g
N0V46h- EAAL PSG PLEETPDGK RLΞRVSRDMSGTYRCQTARYNGFNVRPREAQVQ NVQFPPE
NOV46i
N0V46j MSGTYRCQTARYNGFNVRPREAQVQLNVQFPPE
N0V46k MSGTYRCQTARYNGFNVRPREAQVQLNVQFPPE
NOV46a VEPSSQDVRQA GRPVLLRCSL RGSPQRIASAV RFKGQLLPPPPWPAAAEAPDHAEL
N0V46b VEPSSQDVRQALGRPVLLRCSLLRGSPQRIASAV RFKGQ PPPPWPAAAEAPDHAEL
N0V46c VEPSSQDVRQALGRPVLLRCS LRGSPQRIASAV RFKGQLLPPPPWPAAAEAPDHAE
NOV46d VEPSSQDVRQALGRPVLLRCSLLRGSPQRIASAVWRFKGQLLPPPPWPAAAEAPDHAEL
NOV46e VEPSSQD Q-ALGRPVLLRCSLLRGSPQRIASAVWRFKGQLLPPPPVVPAAAEAPDHAEL
N0V46f VEPSSQDVRQALGRPV-LLRCSLLRGSPQRIASAVWRFKGQLLPPPPWPAAAEAPDHAEL
NOV46g
N0V46h VEPSSQDVRQALGRPVLLRCSL RGSPQRIASAV RFKGQ LPPPPWPAAAEAPDHAEL
N0V46i
NOV46 j VEPSSQDVRQALGRPVLLRCSLLRGSPQRIASAV RFKGQ PPPPWPAAAEAPDHAEL
NOV46k VEPSSQD QALGRPVLLRCSLLRGSPQRIASA RFKGQLLPPPPWPAAAEAPDHAEL
NOV46a RLDAVTRDSSGSYECSVSNDVGSAACLFQVSAKAYSPEFYFDTPNPTRSHI SKNYSYVL
N0V46b RLDAVTRDSSGSYECSVSNDVGSAAC FQVSAKAYSPEFYFDTPNPTRSHKLSKNYSYVL
N0V46c RLDAVTRDSSGSYECSVSITOVGS-AACLFQVSAIs^YSPEFYFDTPNPTRSHKLSKNYSYVL
NOV46d RLDAVTRDSSGSYECSVS---TOVGS--^CLFQVSAKAYSPEFYFDTPNPTRSH--^SKNYSYVL
N0V46e R DAVTRDSSGSYECSVSNDVGSAACLFQVSAKAYSPEFYFDTPNPTRSHKLSKNYSYVL
N0V46f RLDAVTRDSSGSYECSVSNDVGS-AAC FQVSAKAYSPEFYFDTPNPTRSHKLSKNYSYV
N0V46g
N0V46h R DAVTRDSSGSYECSVSNDVGSAAC FQVSAKAYSPEFYFDTPNPTRSHKLSKNYSYV
NOV46i
NOV46j RLDAVTRDSSGSYECSVS-tTOVGSAAC FQVSAKAYSPEFYFDTPNPTRSHKLSKNYSYV
NOV46k RLDAVTRDSSGSYECSVSNDVGSAACLFQVSAKAYSPEFYFDTPNPTRSHK SKNYSYV
N0V46a QWTQREPDAVDPVLNYRLSIRQLNQHNAWKAIPVRRVEKGQLLEYILTDLRVPHSYEVR
N0V46b Q TQREPDAVDPVLNYR SIRQ NQHNAWKAIPVRRVEKGQLLEYILTDLRVPHSYEVR
N0V46c QWTQREPDAVDPV NYRLSIRQLNQHNAWKAIPVRRVEKGQLLEYILTDLRVPHSYEVR
N0V46d QWTQREPDAVDPVLNYRLSIRQLNQHNAWKAIPVRRVEKGQ EYILTDLRVPHSYEVR
N0V46e Q TQREPDAVDPVLNYRLSIRQLNQHNAWKAIPVRRVE-KGQL EYILTD RVPHSYEVR
N0V46f Q TQREPDAVDPVLNYRLSIRQLNQHNAWKAIPVRRVEKGQL EYILTD RVPHSYEVR
N0V46g LNQHNAWKAIPVRRVEKGQ EYILTD RVPHSYEVR
NOV46h Q TQREPDAVDPVLNYRLSIRQ NQHNAWKAIPVRRVEKGQL EYILTDLRVPHSYEVR
NOV46i LNQHNAWKAIPVRRVEKGQL EYI TDLRVPHSYEVR
NOV46J Q TQREPDAVDPV NYRLSIRQLNQHNAWKAIPVRRVEKGQL EYILTDLRVPHSYEVR
NOV46k QWTQREPDAVDPVLNYRLSIRQLNQHNAVVKAIPVRRVEKGQLLEYILTD RVPHSYEVR
NOV46a TPYTTFGAGDMASRIIHYTERQIR PPVLALRT SSGPKQGI CRAPH SSD VSPLAF
NOV46b LTPYTTFGAGDMASRIIHYTEP
-N0V46C LTPYTTFGAGDMASRIIHYTEP
N0V46d LTPYTTFGAGDiMASRIIHYTEP
N0V46e LTPYTTFGAGDMASRIIHYTEP
NOV46f LTPYTTFGAGDMASRIIHYTERQIR PPVLALRTLSSGPKQGILCRAPHLSSDLVSPLAF
N0V46g LTPYTTFGAGDMASRIIHYTEP IN
NOV46 LTPYTTFGAGDMASRIIHYTEP IN
N0V46i LTPYTTFGAGDMASRIIHYTEP
NOV46J LTPYTTFGAGDMASRIIHYTERQIR PPVLALRTLSSGPKQGILCRAPHLSSDLVSPLAF
NOV46k LTPYTTFGAGDMASRIIHYTEP
NOV46a SAINSPNLSDNTCHFEDEKICGYTQDLTDNFD TRQNALTQNPKRSPNTGPPTDISGTPE
NOV46b --INSPNLSDNTCHFEDEKICGYTQDLTDNFDWTRQNALTQNPKRSPNTGPPTDISGTPE
NOV46c --INSPNLSDNTCHFEDEKICGYTQDLTDNFD TRQNALTQNPKRSPNTGPPTDISGTPΞ
NOV46d - -INSPNLSDNTCHFEDEKICGYTQDLTDNFD TRQNALTQNPKRSPNTGPPTDISGTPE
N0V46e --INSPNLSDNTCHFEDEKICGYTQDLTDNFD TRQNALTQNPKRSPNTGPPTDISGTPE
NOV46f SAINSPNLSDNTCHFEDEKICGYTQDLTDNFDWTRQNALTQNPKRSPNTGPPTDISGTPE NOV46g SPNLSDNTCHFEDEKICGYTQDLTDNFDWTRQNALTQNPKRSPNTGPPTDISGTPE NOV46h SPNLSDNTCHFEDEKICGYTQDLTDNFD TRQNALTQNPKRSPNTGPPTDISGTPE NOV46i --INSPNLSDNTCHFEDEKICGYTQDLTDNFD TRQNALTQNP RSPNTGPPTDISGTPE NOV46J SAINSPNLSDNTCHFEDEKICGYTQDLTDNFD TRQNALTQNPKRSPNTGPPTDISGTPE NOV 6k --INSPNLSDNTCHFEDEKICGYTQDLTDNFDWTRQNALTQNPKRSPNTGPPTDISGTPE
NOV46a GYYMFIETSRPRELGDRARLVSPLYNASAKFYCVSFFYHMYGKHIGSLNPLVRSRNKGAL NOV46b GYYMFIETSRPRΞLGDRARLVSPLYNASAKFYCVSFFYHMYGKHIGSLNLLVRSRNKGAL NOV46C GYYMFIETSRPRELGDRARLVSPLYNASAKFYCVSFFYHMYGKHIGSLNLLVRSRNKGAL NOV46d GYYMFIETSRPRELGDRARLVSPLYNASAKFYCVSFFYHMYGKHIGSLNLLVRSRNKGAL NOV46e GYYMFIETSRPRELGDRARLVSPLYNASAKFYCVSFFYHMYGKHIGSLNLLVRSRNKGAL NOV46f GYYMFIETSRPRELGDRARLVSPLYNASAKFYCVSFFYHMYGKHIGSLNLLVRSRNKGAL NOV46g GYYMFIETSRPRELGDRARLVSPLYNACAKFYCVSFFYHMYGKHIGSLNLLVRSRNKGAL NOV46h GYYMFIETSRPRELGDRARLVSPLYNASAKFYCVSFFYHMYGKHIGSLNLLVRSRNKGAL NOV46i GYYMFIETSRPRELGDRARLVSPLYNACAKFYCVSFFYHMYGKHIGSLNLLVRSRNKGAL NOV46J GYYMFIETSRPRELGDRARLVSPLYNASAKFYCVSFFYHMYGKHIGSLNPLVRSRNKGAL NOV46k GYYMFIETSRPRELGDRARLVSPLYNASAKFYCVSFFYHMYGKHIGSLNLLVRSRNKGAL
NOV46a DTHAWSLSGNKGNVWQQAHVPISPSGPFQIIFEGVRGPGYLGDIAIDDVTLKKGECPRKQ NOV46b DTHAWSLSGNKGNVWQQAHVPISPSGPFQIIFEGVRGPGYLGDIAIDDVTLKKGECPRKQ NOV46C DTHAWSLSGNKGNVWQQAHVPISPSGPFQIIFEGVRGPGYLGDIAIDDVTLKKGECPRKQ NOV46d DTHAWSLSGNKGNVWQQAHVPISPSGPFQIIFEGVRGPGYLGDIAIDDVTLKKGECPRKQ NOV46e DTHAWSLSGNKGNVWQQAHVPISPSGPFQIIFEGVRGPGYLGDIAIDDVTLKKGECPREF NOV46f DTHAWSLSGNKGNVWQQAHVPISPSGPFQIIFEGVRGPGYLGDIAIDDVTLKKGECPRKQ NOV46g DTHAWSLSGNKGNVWQQAHVPISPSGPFQIIFEGVRGPGYLGDIAIDDVTLKKGECPR-- NOV46h DTHAWSLSGNKGNVWQQAHVPISPSGPFQIIFEGVRGPGYLGDIAIDDVTLKKGECPRKQ NOV46i DTHAWSLSGNKGNVWQQAHVPISPSGPFQIIFEGVRGPGYLGDIAIDDVTLKKGECPR-- NOV46J DTHAWSLSGNKGNVWQQAHVPISPSGPFQIIFEGVRGPGYLGDIAIDDVTLKKGECPRKQ NOV46k DTHAWSLSGNKGNVWQQAHVPISPSGPFQIIFEGVRGPGYLGDIAIDDVTLKKGECPRKQ
NOV46a TDPNKVWMPGSGAPCQSSPQLWG -PMAIFLLALQR NOV46b TDPNKVWMPGSGAPCQSSPQLWG -PMAIFLLALQRLEG- - NOV46C TDPNKVWMPGSGAPCQSSPQLWG -PMAIFLLALQR NOV46d TDPNKVWMPGSGAPCQSSPQLWG -PMAIFLLALQREFG-- NOV46e G NOV46f TDPNKGARREGAACDGLKFHLSSPMDDGELTDDPIECKHLWIHRVDSKGAQYMLAELNCI NOV46g NOV46h TDPNKGARREGAACDGLKFHLSSPMDDGELTDDPIECKHLWIHRVDSKGAQYMLAELNCI NOV46i NOV46J TDPNKGARREGGGGAESGGSCAWRG- -FLSVEGGCSGLNRGSDCL NOV46k TDPNKVWMPGSGAPCQSSPQLWG-- - - -PMAIFLLALQREFG--
NOV46a NOV46b NOV46C NOV46d NOV46e NOV46f HVAPRFLVFMDEGHKVGEKDSGGQPFQVYTDFSFYPHAIPEKMSIMPTLQVGKLRLREEE NOV46g NOV46h HVAPRFLVFMDEGHKVGEKDSGGQPFQVYTDFSFYPHAIPEKMSIMPTLQVGKLRLREEE NOV46i NOV46J MMGIRWL NOV46k
NOV46a NOV46b NOV46C NOV46d NOV46e NOV46f ESAYGHTAAKARAGTRSWSLNRPPELKSFSLWTNMTQSVRΞPITGPLQCQTYTHSNTQHL NOV46g
NOV46b. ESAYGHTAAKARAGTRSWSLNRPPELKSFSLWTNMTQSVREPITGPLQCQTYTHSNTQHL
NOV46i
NOV46J
NOV46k
NOV46a
NOV46b
NOV46C
NOV46d
NOV46e
NOV46f GTWMKLETIILSKLTQEQKTKHHMFSLTTQSAPPSLFSPELPLSSNSRGHASMSLDDDDD
NOV46g
NOV46h GTWMKLETIILSKLTQEQKTKHHMFSLTTQSAPPSLFSPELPLSSNSRGHASMSLDDDDD
NOV46i
NOV46J
NOV46k
NOV46a -r
NOV46b
NOV46C
NOV46d
NOV46e
NOV46 f DDDDDDDDDDDDD-tTODDDGRKTYRIPPGSDLSACGWVNDHMSQGDSTGPPDEKHSYAKEE
NOV46g
NOV46h DDDDDDDDDDDDD--sroDDDGRKTYRIPPGSDLSACGWV-|roHMSQGDSTGPPDEKHS YAKEE
NOV46i
NOV46J
NOV46k
NOV46a
NOV46b
NOV46C
NOV46d
NOV46e
NOV46f TQAKLTGPGISYPGKPSYRLHPSGYTPLEQFREKATGMLTPYVSGSVSSFCFPFPTSESL
NOV46g
NOV46h TQAKLTGPGISYPGKPSYRLHPSGYTPLEQFREKATGMLTPYVSGSVSSFCFPFPTSESL
NOV46i
NOV46J
NOV46k
NOV 6a NOV46b NOV46C NOV46d NOV46e NOV46f CSAHANSPSACLCPL NOV46g NOV46h CSAHANSPSACLCPLLSGLVSPRLCSLGWHALHLP NOV46i NOV46J NOV46k
NOV46a (SEQ ID NO 1020) NOV46b (SEQ ID NO 1022) NOV46C (SEQ ID NO 1024) NOV46d (SEQ ID NO 1026) NOV46e (SEQ ID NO 1028) NOV46f (SEQ ID NO 1030) NOV46g (SEQ ID NO 1032)
NOV46h (SEQ ID NO 1034)
NOV46i (SEQ ID NO 1036)
Further analysis of the NOV46a protein yielded the following properties shown in Table 46C.
Table 46C. Protein Sequence Properties NOV46a
SignalP analysis: No Known Signal Sequence Predicted
PSORT π analysis:
PSG: a new signal peptide prediction method
N-region: length 11; pos.chg 2; neg.chg 0 H-region: length 6 ; peak value -8.10 PSG score: -12.50
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -2.49 possible cleavage site: between 61 and 62
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al's method for TM region allocation Init position for calculation: 1
Tentative number of TMS(s) for the threshold 0.5: 0 number of TMS(s) .. fixed PERIPHERAL Likelihood = 6.21 (at 260) ALOM score: 6.21 (number of TMSs: 0)
MITDISC: discrimination of mitochondrial targeting seq R content: 4 Hyd Moment (75): 3.44 Hyd Moment (95): 5.36 G content: 2 D/E content: 1 S/T content: 3 Score: -1.85
Gavel: prediction of cleavage sites for mitochondrial preseq R-2 motif at 28 VRP|RE
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite : none content of basic residues: 10.9% NLS Score: -0.47
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals : none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none RNA-binding motif : none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail : none
Dileucine motif in the tail: none checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs : none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: nuclear Reliability: 76.7
COIL: Lupas ' s algorithm to detect coiled-coil regions total : 0 residues
Final Results (k = 9/23) :
47.8 % : mitochondrial 47.8 %: nuclear 4.3 % : cytoplasmic
>> prediction for CG57409-05 is mit (k=23)
A search of the NOV46a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 46D.
In a BLAST search of public sequence databases, the NOV46a protein was found to have homology to the proteins shown in the BLASTP data in Table 46E.
PFam analysis predicts that the NOV46a protein contains the domains shown in the Table 46F.
Example 47.
The NOV47 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 47 A.
Table 47A. NOV47 Sequence Analysis
NOV47a, CG57448-01 SEQ ID NO: 1041 2907 bp DNA Sequence ORF Start: ATG at 10 ORF Stop: TGA at 2896
GGCCGCTGAATGCTAGCTAGAATTCAGCGGCCGCTGAATTCTAGGCGCTGCCGAGGGAATGCGCGCAG
CTCACAGGCCCTGGGAGTGAGCTGGTGCCCGGCGACCTGGCACCCGCGCCTGGATATGGGGCGTCTAC ATCGTCCCAGGAGCAGCACCAGCTACAGGAACCTGCCGCATCTGTTTCTGTTTTTCCTCTTCGTGGGA CCCTTCAGCTGCCTCGGGAGTTACAGCCGGGCCACCGAGCTTCTGTACAGCCTAAACGAGGGACTACC CGCGGGGGTGCTCATCGGCAGCCTGGCCGAGGACCTGCGGCTGCTGCCCAGGTCTGCAGGGAGGCCGG ACCCGCAGTCGCAGCTGCCAGAGCGCACCGGTGCTGAGTGGAACCCCCCTCTCTCCTTCAGCCTGGCC TCCCGGGGACTGAGTGGCCAGTACGTGACCCTAGACAACCGCTCTGGGGAGCTGCACACTTCAGCTCA GGAGATCGACAGGGAGGCCCTGTGTGTTGAAGGGGGTGGAGGGACTGCGTGGAGCGGCAGCGTTTCCA TCTCCTCCTCTCCTTCTGACTCTTGTCTTTTGCTGCTGGATGTGCTTGTCCTGCCTCAGGAATACTTC AGGTTTGTGAAGGTGAAGATCGCCATCAGAGACATCAATGACAACGCCCCGCAG'TTCCCTGTTTCCCA GATCTCGGTGTGGGTCCCGGAAAATGCACCTGTAAACACCCGACTGGCCATAGAGCATCCTGCTGTGG ACCCAGATGTAGGCATTAATGGGGTACAGACCTATCGCTTACTGGACTACCATGGTATGTTCACCCTG GACGTGGAGGAGAATGAGAATGGGGAGCGCACCCCCTACCTAATTGTCATGGGTGCTTTGGACAGGGA AACCCAGGACCAGTATGTGAGCATCATCATAGCTGAGGATGGTGGGTCTCCACCACTTTTGGGCAGTG CCACTCTCACCATTGGCATCAGTGACATTAATGACAATTGCCCTCTCTTCACAGACTCACAAATCAAT GTCACTGTGTATGGGAATGCTACAGTGGGCACCCCAATTGCAGCTGTCCAGGCTGTGGATAAAGACTT GGGGACCAATGCTCAAATTACTTATTCTTACAGTCAGAAAGTTCCACAAGCATCTAAGGATTTATTTC ACCTGGATGAAAACACTGGAGTCATTAAACTTTTCAGTAAGATTGGAGGAAGTGTTCTGGAGTCCCAC AAGCTCACCATCCTTGCTAATGGACCAGGCTGCATCCCTGCTGTAATCACTGCTCTTGTGTCCATTAT TAAAGTTATTTTCAGACCCCCTGAAATTGTCCCTCGTTACATAGCAAACGAGATAGATGGTGTTGTTT ATCTGAAAGAACTGGAACCCGTTAACACTCCCATTGCGTTTTTCACCATAAGAGATCCAGAAGGTAAA TACAAGGTTAACTGCTACCTGGATGGTGAAGGGCCGTTTAGGTTATCACCTTACAAACCATACAATAA TGAATATTTACTAGAGACCACAAAACCTATGGACTATGAGCTACAGCAGTTCTATGAAGTAGCTGTGG TGGCTTGGAACTCTGAGGGATTTCATGTCAAAAGGGTCATTAAAGTGCAACTTTTAGATGACAATGAT AATGCTCCAATTTTCCTTCAACCCTTAATAGAACTAACCATCGAAGAGAACAACTCACCCAATGCCTT TTTGACTAAGCTGTATGCTACAGATGCCGACAGCGAGGAGAGAGGCCAAGTTTCATATTTTCTGGGAC CTGATGCTCCATCATATTTTTCCTTAGACAGTGTCACAGGAATTCTGACAGTTTCTACTCAGCTGGAC CGAGAAGAGAAAGAAAAGTACAGATACACTGTCAGAGCTGTTGACTGTGGGAAGCCACCCAGAGAATC AGTAGCCACTGTGGCCCTCACAGTGTTGGATAAAAATGACAACAGTCCTCGGTTTATCAACAAGGACT TCAGCTTTTTTGTGCCTGAAAACTTTCCAGGCTATGGTGAGATTGGAGTAATTAGTGTAACAGATGCT GACGCTGGACGAAATGGATGGGTCGCCCTCTCTGTGGTGAACCAGAGTGATATTTTTGTCATAGATAC AGGAAAGGGTATGCTGAGGGCTAAAGTCTCTTTGGACAGAGAGCAGCAAAGCTCCTATACTTTGTGGG TTGAAGCTGTTGATGGGGGTGAGCCTGCCCTCTCCTCTACAGCAAAAATCACAATTCTCCTTCTAGAT ATCAATGACAACCCTCCTCTTGTTTTGTTTCCTCAGTCTAATATGTCTTATCTGTTAGTACTGCCTTC TACTCTGCCAGGCTCCCCGGTTACAGAAGTCTATGCTGTCGACAAAGACACAGGCATGAATGCTGTCA TAGCTTACAGCATCATAGGGAGAAGAGGTCCTAGGCCTGAGTCCTTCAGGATTGACCCTAAAACTGGC AACATTACTTTGGAAGAGGCATTGCTGCAGACAGATTATGGGCTCCATCGCTTACTGGTGAAAGTGAG TGATCATGGTTATCCCGAGCCTCTCCACTCCACAGTCATGGTGAACCTATTTGTCAATGACACTGTCA GT-AATGAGAGTTACATTGAGAGTCTTTTAAGAAAAGAACCAGAGATTAATATAGAGGAGAAAGAACCA CAAATCTCAATAGAACCGACTCATAGGAAGGTAGAATCTGTGTCTTGTATGCCCACCTTAGTAGCTCT GTCTGTAATAAGCTTGGGTTCCATCACACTGGTCACAGGGATGGGCATATACATCTGTTTAAGGAAAG GGGAAAAGCATCCCAGGGAAGATGAAAATTTGGAAGTACAGATTCCACTGAAAGGAAAAATTGACTTG CATATGCGAGAGAGAAAGCCAATGGATATTTCTAATATTTGATATTTCATG
NOV47a, CG57448-01 SEQ ID NO: 1042 962 aa MW at 106269.4kD Protein Sequence
MLARIQRPLNSRRCRGNARSSQALGVS CPAT HPRLDMGRLHRPRSSTSYRNLPHLFLFFLFVGPFS CLGSYSRATELLYSLNEGLPAGVLIGSLAEDLRLLPRSAGRPDPQSQLPERTGAEWNPPLSFSLASRG LSGQYVTLDNRSGELHTSAQEIDREALCVEGGGGTA SGSVSISSSPSDSCLLLLDVLVLPQEYFRFV KVKIAIRDINDNAPQFPVSQISV VPENAPVNTRLAIEHPAVDPDVGINGVQTYRLLDYHGMFTLDVE ENENGERTPYLIVMGALDRETQDQYVSIIIAEDGGSPPLLGSATLTIGISDINDNCPLFTDSQINVTV YGNATVGTPIAAVQAVDKDLGTNAQITYSYSQ VPQASKDLFHLDENTGVIKLFS IGGSVLESHKLT ILANGPGCIPAVITALVSIIKVIFRPPEIVPRYIANEIDGVVYL-KELEPVNTPIAFFTIRDPEG---CYKV NCYLDGEGPFRLSPYKPY-I-WEYLLETTKP-mYELQQFYEVAVVA NSEGFHVK-RVIKVQLLDDNDNAP IFLQPLIELTIEENNSPNAFLTKLYATDADSEERGQVSYFLGPDAPSYFSLDSVTGILTVSTQLDREE KEKYRYTVRAVDCGKPPRESVATVALTVLDKNDNSPRFINKDFSFFVPENFPGYGEIGVISVTDADAG RNGWVALSVVNQSDIFVIDTGKGMLRA VSLDREQQSSYTL VEAVDGGEPALSSTAKITILLLDIND NPPLVLFPQSNMSYLLVLPSTLPGSPVTEVYAVDKDTGMNAVIAYSIIGRRGPRPESFRIDPKTGNIT LEE-ALLQTDYGLHRLLV-i-WSDHGYPEPLHSTVMVNLFVNDTVSNESYIESLLRKEPEINIEEKEPQIS IEPTHRKVESVSCMPTLVALSVISLGSITLVTGMGIYICLRKGEKHPREDENLEVQIPLKGKIDLHMR ERKPMDISNI
NOV47b, 247846705 SEQ ID NO: 1043 1377 bp
DNA Sequence ORF Start: at 1 ORF Stop: end of sequence
GGATCCCCTCGTTACATAGCAAACGAGATAGATGGTGTTGTTTATCTGAAAGAACTGGAACCCGTTAA CACTCCCATTGCGTTTTTCACCATAAGAGATCCAGAAGGTAAATACAAGGTTAACTGCTACCTGGATG GTGAAGGGCCGTTTAGGTTATCACCTTACAAACCATACAATAATGAATATTTACTAGAGACCACAAAA CCTATGGACTATGAGCTACAGCAGTTCTATGAAGTAGCTGTGGTGGCTTGGAACTCTGAGGGATTTCA TGTCAAAAGGGTCATTAAAGTGCAACTTTTAGATGACAATGATAATGCTCCAATTTTCCTTCAACCCT TAATAGAACTAACCATCGAAGAGAACAACTCACCCAATGCCTTTTTGACTAAGGTGTATGCTACAGAT GCCGACAGCGAGGAGAGAGGCCAAGTTTCATATTTTCTGGGACCTGATGCTCCATCATATTTTTCCTT AGACAGTGTCACAGGAATTCTGACAGTTTCTACTCAGCTGGACCGAGAAGAGAAAGAAAAGTACAGAT ACACTGTCAGAGCTGTTGACTGTGGGAAGCCACCCAGAGAATCAGTAGCCACTGTGGCCCTCACAGTG TTGGATAAAAATGACAACAGTCCTCGGTTTATCAACAAGGACTTCAGCTTTTTTGTGCCTGAAAACTT TCCAGGCTATGGTGAGATTGGAGTAATTAGTGTAACAGATGCTGACGCTGGACGAAATGGATGGGTCG CCCTCTCTGTGGTGAACCAGAGTGATATTTTTGTCATAGATACAGGAAAGGGTATGCTGAGGGCTAAA GTCTCTTTGGACAGAGAGCAGCAAAGCTCCTATACTTTGTGGGTTGAAGCTGTTGATGGGGGTGAGCC TGCCCTCTCCTCTACAGCAAAAATCACAATTCTCCTTCTAGATATCAATGACAACCCTCCTCTTGTTT TGTTTCCTCAGTCTAATATGTCTTATCTGTTAGTACTGCCTTCTACTCTGCCAGGCTCCCCGGTTACA GAAGTCTATGCTGTCGACAAAGACACAGGCATGAATGCTGTCATAGCTTACAGCATCATAGGGAGAAG AGGTCCTAGGCCTGAGTCCTTCAGGATTGACCCTAAAACTGGCAACATTACTTTGGAAGAGGCATTGC TGCAGACAGATTATGGGCTCCATCGCTTACTGGTGAAAGTGAGTGATCATGGTTATCCCGAGCCTCTC CACTCCACAGTCATGGTGAACCTATTTGTCAATGACACTGTCAGTAATGAGAGTTACATTGAGAGTCT TTTAAGAAAAGAACCAGAGATTAATATAGAGGAGAAAGAACCACAAATCTCAATAGAACCGACTCATA GGAAGGTAGAACTCGAG
NOV47b, 247846705 SEQ ID NO: 1044 459 aa MW at 51423.4kD Protem Sequence
GSPRYIANEIDGVVYLKELEPVNTPIAFFTIRDPEGKYKVNCYLDGEGPFRLSPYKPYNEYLLETTK P DYELQQFYEVAVVA NSEGFHVKRVIKVQLLDDNDNAPIFLQPLIELTIEENNSPNAFLTKVYATD ADSEERGQVSYFLGPDAPSYFSLDSVTGILTVSTQLDREEKEKYRYTVRAVDCGKPPRESVATVALTV LD-l-α-TDNSPRFIN--- FSFFVPENFPGYGEIGVISVTDADAG-RNGVW-ALSVVNQSDIFVIDTGKGMLRAK VSLDREQQSSYTLWVEAVDGGEPALSSTAKITILLLDINDNPPLVLFPQSNMSYLLVLPSTLPGSPVT EVYAVDKDTGMNAVIAYSIIGRRGPRPESFRIDPKTGNITLEEALLQTDYGLHRLLVKVSDHGYPEPL HSTVMVNLFVNDTVSNESYIESLLRKEPEINIEEKEPQISIEPTHRKVELE
NOV47c, 247846708 SEQ ID NO: 1045 11377 bp DNA Sequence ORF Start: at 1 jORF Stop: end of sequence
GGATCCCCTCGTTACATAGCAAACGAGATAGATGGTGTGGTTTATCTGAAAGAACTGGAACCCGTTAA CACTCCCATTGCGTTTTTCACCATAAGAGATCCAGAAGGTAAATACAAGGTTAACTGCTACCTGGATG GTGAAGGGCCGTTTAGGTTATCACCTTACAAACCATACAATAATGAATATTTACTAGAGACCACAAAA CCTATGGACTATGAGCTACAGCAGTTCTATGAAGTAGCTGTGGTGGCTTGGAACTCTGAGGGATTTCA TGTCAAAAGGGTCATTAAAGTGCAACTTTTAGATGACAATGATAATGCTCCAATTTTCCTTCAACCCT TAATAGAACTAACCATCGAAGAGAACAACTCACCCAATGCCTTTTTGACTAAGCTGTATGCTACAGAT GCCGACAGCGAGGAGAGAGGCCAAGTTTCATATTTTCTGGGACCTGATGCTCCATCATATTTTTCCTT AGACAGTGTCACAGGAATTCTGACAGTTTCTACTCAGCTGGACCGAGAAGAGAAAGAAAAGTACAGAT ACACTGTCAGAGCTGTTGACTGTGGGAAGCCACCCAGAGAATCAGTAGCCACTGTGGCCCTCACAGTG TTGGATAAAAATGACAACAGTCCTCGGTTTATCAACAAGGACTTCAGCTTTTTTGTGCCTGAAAACTT TCCAGGCTATGGTGAGATTGGAGTAATTAGTGTAACAGATGCTGACGCTGGACGAAATGGATGGGTCG CCCTCTCTGTGGTGAACCAGAGTGATATTTTTGTCATAGATACAGGAAAGGGTATGCTGAGGGCTAAA GTCTCTTTGGACAGAGAGCAGCAAAGCTCCTATACTTTGTGGGTTGAAGCTGTTGATGGGGGTGAGCC TGCCCTCTCCTCTACAGCAAAAATCACAATTCTCCTTCTAGATATCAATGACAACCCTCCTCTTGTTT TGTTTCCTCAGTCTAATATGTCTTATCTGTTAGTACTGCCTTCTACTCTGCTAGGCTCCCCGGTTACA GAAGTCTATGCTGTCGACAAAGACACAGGCATGAATGCTGTCATAGCTTACAGCATCATAGGGAGAAG AGGTCCTAGGCCTGAGTCCTTCAGGATTGACCCTAAAACTGGCAACATTACTTTGGAAGAGGCATTGC TGCAGACAGATTATGGGCTCCATCGCTTACTGGTGAAAGTGAGTGATCATGGTTATCCCGAGCCTCTC CACTCCACAGTCATGGTGAACCTATTTGTCAATGACACTGTCAGTAATGAGAGTTACATTGAGAGTCT TTTAAGAAAAGAACCAGAGATTAATATAGAGGAGAAAGAACCACAAATCTCAATAGAACCGACTCATA GGAAGGTAGAACTCGAG
NOV47c, 247846708 SEQ ID NO: 1046 459 aa MW at 51453.4kD Protein Sequence
GSPRYIANEIDGWYLKELEPVNTPIAFFTIRDPEGKYKVNCYLDGEGPFRLSPYKPYNNEYLLETTK PMDYELQQFYEVAVVA NSEGFHVKRVIKVQLLDDNDNAPIFLQPLIELTIEENNSPNAFLTKLYATD ADSEERGQVSYFLGPDAPSYFSLDSVTGILTVSTQLDREEKEKYRYTVRAVDCGKPPRESVATVALTV LDKNDNSPRFINKDFSFFVPENFPGYGEIGVISVTDADAGRNGWVALSWNQSDIFVIDTGKGMLRA-K VSLDREQQSSYTL VEAVDGGEPALSSTAKITILLLDINDNPPLVLFPQSNMSYLLVLPSTLLGSPVT EVYAVDKDTGMNAVIAYSIIGRRGPRPESFRIDPKTGNITLΞEALLQTDYGLHRLLV VSDHGYPEPL HSTV VNLFVNDTVSNESYIESLLRKEPEINIEΞKEPQISIEPTHRKVELE
NOV47d, 237580295 SEQ ID NO: 1047 1377 bp DNA Sequence ORF Start: at 1 ORF Stop: end of sequence
GGATCCCCTCGTTACATAGCAAACGAGATAGATGGTGTTGTTTATCTGAAAGAACTGGAACCCGTTAA CACTCCCATTGCGCTTTTCACCATAAGAGATCCAGAAGGTAAATACAAGGTTAACTGCTACCTGGATG GTGAAGGGCCGTTTAGGTTATCACCTTACAAACCATACAATAATGAATATTTACTAGAGACCACAAAA CCTATGGACTATGAGCTACAGCAGTTCTATGAAGTAGCTGTGGTGGCTTGGAACTCTGAGGGATTTCA TGTCAAAAGGGTCATTAAAGTGCAACTTTTAGATGACAATGATAATGCTCCAATTTTCCTTCAACCCT TAATAGAACTAACCATCGAAGAGAACAACTCACCCAATGCCTTTTTGACTAAGCTGTATGCTACAGAT GCCGACAGCGAGGAGAGAGGCCAAGTTTCATATTTTCTGGGACCTGATGCTCCATCATATTTTTCCTT AGACAGTGTCACAGGAATTCTGACAGTTTCTACTCAGCTGGACCGAGAAGAGAAAGAAAAGTACAGAT ACACTGTCAGAGCTGTTGACTGTGGGAAGCCACCCAGAGAATCAGTAGCCACTGTGGCCCTCACAGTG TTGGATAAAAATGACAACAGTCCTCGGTTTATCAACAAGGACTTCAGCTTTTTTGTGCCTGAAAACTT TCCAGGCTATGGTGAGATTGGAGTAATTAGTGTAACAGATGCTGACGCTGGACGAAATGGATGGGTCG CCCTCTCTGTGGTGAACCAGAGTGATATTTTTGTCATAGATACAGGAAAGGGTATGCTGAGGGCTAAA GTCTCTTTGGACAGAGAGCAGCAAAGCTCCTATACTTTGTGGGTTGAAGCTGTTGATGGGGGTGAGCC TGCCCTCTCCTCTACAGCAAAAATCACAATTCTCCTTCTAGATATCAATGACAACCCTCCTCTTGTTT TGTTTCCTCAGTCTAATATGTCTTATCTGTTAGTACTGCCTTCTACTCTGCCAGGCTCCCCGGTTACA GAAGTCTATGCTGTCGACAAAGACACAGGCATGAATGCTGTCATAGCTTACAGCATCATAGGGAGAAG AGGTCCTAGGCCTGAGTCCTTCAGGATTGACCCTAAAACTGGCAACATTACTTTGGAAGAGGCATTGC TGCAGACAGATTATGGGCTCCATCGCTTACTGGTGAAAGTGAGTGATCATGGTTATCCCGAGCCTCTC CACTCCACAGTCATGGTGAACCTATTTGTCAATGACACTGTCAGTAATGAGAGTTACATTGAGAGTCT TTTAAGAAAAGAACCAGAGATTAATATAGAGGAGAAAGAACCACAAATCTCAATAGAACCGACTCATA GGAAGGTAGAACTCGAG
NOV47d, 237580295 SEQ ID NO: 1048 459 aa MW at 51403.4kD Protein Sequence
GSPRYIANEIDGVVΥLKELEPVNTPIALFTIRDPEG YKVNCYLDGEGPFRLSPYKPYNNEYLLETTK PMDYELQQFYEVAVVANSEGFHVKRVIKVQLLDDNDNAPIFLQPLIELTIEENNSPNAFLTKLYATD ADSEERGQVSYFLGPDAPSYFSLDSVTGILTVSTQLDREEKEKYRYTVRAVDCGKPPRESVATVALTV LDKNDNSPRFINKDFSFFVPENFPGYGEIGVISVTDADAGRNGWVALSWNQSDIFVIDTGKGMLRAK VSLDREQQSSYTL VEAVDGGEPALSSTAKITILLLDINDNPPLVLFPQSN SYLLVLPSTLPGSPVT EVYAVDKDTG-MNAVIAYSIIGRRGPRPESFRIDPKTGNITLEEALLQTDYGLHRLLVKVSDHGYPEPL HSTVMVNLFVNDTVSNESYIESLLRKEPEINIEEKEPQISIEPTHRKVELE
NOV47e, 237579512 SEQ ID NO: 1049 1377 bp
DNA Sequence ORF Start: at 1 ORF Stop: end of sequence
GGATCCCCTCGTTACATAGCAAACGAGATAGATGGTGTGGTTTATCTGAAAGAACTGGAACCCGTTAA CACTCCCATTGCGTTTTTCACCATAAGAGATCCAGAAGGTAAATACAAGGTTAACTGCTACCTGGATG GTGAAGGGCCGTTTAGGTTATCACCTTACAAACCATACAATAATGAATATTTACTAGAGACCACAAAA CCTATGGACTATGAGCTACAGCAGTTCTATGAAGTAGCTGTGGTGGCTTGGAACTCTGAGGGATTTCA TGTCAAAAGGGTCATTAAAGTGCAACTTTTAGATGACAATGATAATGCTCCAATTTTCCTTCAACCCT TAATAGAACTAACCATCGAAGAGAACAACTCACCCAATGCCTTTTTGACTAAGCTGTATGCTACAGAT GCCGACAGCGAGGAGAGAGGCCAAGTTTCATATTTTCTGGGACCTGATGCTCCATCATATTTTTCCTT AGACAGTGTCACAGGAATTCTGACAGTTTCTACTCAGCTGGACCGAGAAGAGAAAGAAAAGTACAGAT ACACTGTCAGAGCTGTTGACTGTGGGAAGCCACCCAGAGAATCAGTAGCCACTGTGGCCCTCACAGTG TTGGATAAAAATGACAACAGTCCTCGGTTTATCAACAAGGACTTCAGCTTTTTTGTGCCTGAAAACTT TCCAGGCTATGGTGAGATTGGAGTAATTAGTGTAACAGATGCTGACGCTGGACGAAATGGATGGGTCG CCCTCTCTGTGGTGAACCAGAGTGATATTTTTGTCATAGATACAGGAAAGGGTATGCTGAGGGCTAAA GTCTCTTTGGACAGAGAGCAGCAAAGCTCCTATACTTTGTGGGTTGAAGCTGTTGATGGGGGTGAGCC TGCCCTCTCCTCTACAGCAAAAATCACAATTCTCCTTCTAGATATCAATGACAACCCTCCTCTTGTTT TGTTTCCTCAGTCTAATATGTCTTATCTGTTAGTACTGCCTTCTACTCTGCCAGGCTCCCCGGTTACA GAAGTCTATGCTGTCGACAAAGACACAGGCATGAATGCTGTCATAGCTTACAGCATCATAGGGAGAAG AGGTCCTAGGCCTGAGTCCTTCAGGATTGACCCTAAAACTGGCAACATTACTTTGGAAGAGGCATTGC TGCAGACAGATTATGGGCTCCATCGCTTACTGGTGAAAGTGAGTGATCATGGTTATCCCGAGCCTCTC CACTCCACAGTCATGGTGAACCTATTTGTCAATGACACTGTCAGTAATGAGAGTTACATTGAGAGTCT TTTAAGAAAAGAACCAGAGATTAATATAGAGGAGAAAGAACCACAAATCTCAATAGAACCGACTCATA GGAAGGTAGAACTCGAG
NOV47e, 237579512 SEQ ID NO: 1050 459 aa MW at 51437.4kD Protein Sequence
GSPRYIANEIDGVVYLKELEPVNTPIAFFTIRDPEGKy-KVNCYLDGEGPFRLSPYKPYNNEYLLETT P DYELQQFYEVAVVAVrøSEGFHVKRVIKVQLLDDNDNAPIFLQPLIELTIEENNSPNAFLT LYATD ADSEERGQVSYFLGPDAPSYFSLDSVTGILTVSTQLDREEKEKYRYTVRAVDCGKPPRESVATVALTV LDKNDNSPRFINKDFSFFVPENFPGYGEIGVISVTDADAGRNGWVALSWNQSDIFVIDTGKGMLRAK VSLDREQQSSYTLWVEAVDGGEPALSSTAKITILLLDI-NDNPPLVLFPQSNMSYLLVLPSTLPGSPVT EVYAVDKDTGMNAVIAYSIIGRRGPRPESFRIDPKTGNITLEEALLQTDYGLHRLLVKVSDHGYPEPL HSTVMVNLFVNDTVSNESYIESLLRKEPEINIEEKEPQISIEPTHRKVELE
SEQ ID NO: 1051 1576 bp NOV47f, CG57448-02 SEQ ID NO: 1051 576 bp DNA Sequence
GGATCCATCTCGGTGTGGGTCCCGG.? :aTβ'^t^CACCCGAC|©5^-:(^g].G^-S?lϊ,CCTGC
TGTGGACCCAGATGTAGGCATT-AATGGGGTACAGACCTATCGCTTACTQGACTACCATGGTATGTTCA GGG-GGAGGTΛ^ GGAGA -TGAG ATO---feG GGe€A €GGGT^^
AGGGAAACCCAGGACCAGTATGTGAGCATCATCATAGCTGAGGATGGTGGGTCTCCACCACTTTTGGG CAGTGCCACTCTCACCATTGGCATCAGTGACATTAATGACAATTGCCCTCTCTTCACAGACTCACAAA TCAATGTCACTGTGTATGGGAATGCTACAGTGGGCACCCCAATTGCAGCTGTCCAGGCTGTGGATAAA GACTTGGGGACCAATGCTCAAATTACTTATTCTTACAGTCAGAAAGTTCCACAAGCATCTAAGGATTT ATTTCACCTGGATGAAAACACTGGAGTCATTAAACTTTTCAGTAAGATTGGAGGAAGTGTTCTGGAGT CCCACAAGCTCACCATCCTTGCTAATCTCGAG
NOV47f, CG57448-02 SEQ ID NO: 1052 188 aa MW at 20271.5 D Protein Sequence
ISVWVPENAPVNTRLAIEHPAVDPDVGINGVQTYRLLDYHGMFTLDVEENENGERTPYLIVMGALDRE TQDQYVSIIIAEDGGSPPLLGSATLTiσiSDINDNCPLFTDSQINVTVYGNATVGTPIAAVQAVDKDL GTNAQITYSYSQKVPQASKDLFHLDENTGVIKLFSKIGGSVLESHKLTILAN
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 47B.
Table 47B. Comparison of the NOV47 protein sequences.
N0V47a LARIQRPLNSRRCRGNARSSQALGVSWCPATWHPRLDMGRLHRPRSSTS RNLPHLFLF
NOV47b
NOV47C
NOV47d
NOV47e
NOV47f
NOV47a FLFVGPFSCLGSYSRATELLYSLNEGLPAGVLIGSLAEDLRLLPRSAGRPDPQSQLPERT
NOV47b
NOV47C
NOV47d
NOV47e
NOV47f
NOV47a GAEWNPPLSFSLASRGLSGQYVTLDNRSGELHTSAQEIDREALCVEGGGGTAWSGSVSIS
NOV47b
NOV47C
NOV47d
NOV47e
NOV47f
NOV47a SSPSDSCLLLLDVLVLPQEYFRFVKVKIAIRDINDNAPQFPVSQISVWVPENAPVNTRLA
NOV47b
NOV47C
NOV47d
NOV47e
NOV47f
NOV47a IEHPAVDPDVGINGVQTYRLLDYHGMFTLDVEENENGERTPYLIVMGALDRETQDQYVSI
NOV47b
NOV47C
NOV47d
NOV47e
NOV47f NOV47a IIAEDGGSPPLLGSATLTIGISDINDNCPLFTDSQINVTVYGNATVGTPIAAVQAVDKDL
NOV47b
NOV47C
NOV47d
NOV47e
NOV47f
N0V47a GTNAQITYSYSQKVPQASKDLFHLDENTGVIKLFSKIGGSVLESHKLTILANGPGCIPAV
NOV47b
NOV47C
NOV47d
NOV47e
NOV47f
NOV47a ITALVSIIKVIFRPPEIVPRYI-ANEIDGVVYLKELEPVNTPIAFFTIRDPEG---CYKVNCYL
NOV47b GSPRYIANEIDGWYLKELEPVNTPIAFFTIRDPEGKYKVNCYL
NOV47C GSPRYIANEIDGWYLKELEPVNTPIAFFTIRDPEGKYK-VNCYL
NOV47d GSPRYIANEIDGWYLKELEPVNTPIALFTIRDPEGKYKVNCYL
NOV47e GSPRYIANEIDGWYLKELEPVNTPIAFFTIRDPEGKYKVNCYL
NOV47f
NOV47a DGEGPFRLSPYKPYNNEYLLETTKPMDYELQQFYEVAVVAWNSEGFHVKRVIKVQLLDDN NOV47b DGEGPFRLSPYKPYNNEYLLETTKPMDYELQQFYEVAVVAWNSEGFHVKRVIKVQLLDDN NOV47C DGEGPFRLSPYKPYNNEYLLETTKPMDYELQQFYEVAVVAWNSEGFHVKRVIKVQLLDDN NOV47d DGEGPFRLSPYKPYNNEYLLETTKPMDYELQQFYEVAVVAWNSEGFHVKRVIKVQLLDDN NOV47e DGEGPFRLSPYKPYNNEYLLETTKPMDYELQQFYEVAVVAWNSEGFHVKRVIKVQLLDDN NOV47f
NOV47a DNAPIFLQPLIELTIEENNSPNAFLTKLYATDADSEERGQVSYFLGPDAPSYFSLDSVTG NOV47b DNAPIFLQPLIELTIEENNSPNAFLTKVYATDADSEERGQVSYFLGPDAPSYFSLDSVTG NOV47C DNAPIFLQPLIELTIEΞNNSPNAFLTKLYATDADSEERGQVSYFLGPDAPSYFSLDSVTG NOV47d DNAPIFLQPLIELTIEENNSPNAFLTKLYATDADSEERGQVSYFLGPDAPSYFSLDSVTG NOV47e DNAPIFLQPLIELTIEENNSPNAFLTKLYATDADSEERGQVSYFLGPDAPSYFSLDSVTG NOV47f
NOV47a ILTVSTQLDREEKEKYRYTVRAVDCGKPPRESVATVALTVLDKNDNSPRFINKDFSFFVP
NOV47b ILTVSTQLDREEKEKYRYTVRAVDCGKPPRESVATVALTVLDKNDNSPRFINKDFSFFVP
NOV47C ILTVSTQLDREEKEKYRYTVRAVDCGKPPRESVATVALTVLDKNDNSPRFINKDFSFFVP
NOV47d ILTVSTQLDREEKEKYRYTVRAVDCGKPPRESVATVALTVLDKNDNSPRFINKDFSFFVP
NOV47e ILTVSTQLDREEKEKYRYTVRAVDCGKPPRESVATVALTVLDKNDNSPRFINKDFSFFVP
NOV47f ISVWVP
NOV47a ENFPGYGEIGVIS-VTDADAGRNGWVALSWNQSDIFVIDTGKG MLRAKVSLD
NOV47b ENFPGYGEIGVIS-VTDADAGRNGWVALSWNQSDIFVIDTGKG MLRAKVSLD
NOV47C ENFPGYGEIGVIS-VTDADAGRNGWVALSWNQSDIFVIDTGKG MLRAKVSLD
NOV47d ENFPGYGEIGVIS-VTDADAGRNGWVALSWNQSDIFVIDTGKG MLRAKVSLD
NOV47e ENFPGYGEIGVIS-VTDADAGRNGWVALSWNQSDIFVIDTGKG MLRAKVSLD
NOV47f ENAPVNTRLAIEHPAVDPDVGINGVQTYRLLDYHGMFTLDVEENENGERTPYLIVMGALD
NOV47a REQQSSYTLWVEAVDGGEPALSSTAKITILLLDINDNPPLVLFPQSNMSYLLVLPSTLPG
NOV47b REQQSSYTLWVEAVDGGEPALSSTAKITILLLDINDNPPLVLFPQSNMSYLLVLPSTLPG
NOV47c REQQSSYTLWVEAVDGGEPALSSTAKITILLLDINDNPPLVLFPQSNMSYLLVLPSTLLG
NOV47d REQQSSYTLWVEAVDGGEPALSSTAKITILLLDINDNPPLVLFPQSNMSYLLVLPSTLPG
NOV47e REQQSSYTLWVEAVDGGEPALSSTAKITILLLDINDNPPLVLFPQSNMSYLLVLPSTLPG
NOV47f RETQDQYVSIIIAEDGGSPPLLGSATLTIGISDINDNCPLFTDSQ--IN-VTVYGNATVG
NOV47a SPVTEVYAVDKDTGMNAVIAYSIIGRR-GPRPESFRIDPKTGNITLEEALLQTDYGLHRL
NOV47b SPVTEVYAVDKDTGMNAVIAYSIIGRR-GPRPESFRIDPKTGNITLEEALLQTDYGLHRL
NOV47C SPVTEVYAVDKDTGMNAVIAYSIIGRR-GPRPESFRIDPKTGNITLEEALLQTDYGLHRL
NOV47d SPVTEVYAVDKDTGMNAVIAYSIIGRR-GPRPESFRIDPKTGNITLEEALLQTDYGLHRL NOV47e SPVTEVYAVDKDTGMNAVIAYSIIGRR-GPRPESFRIDPKTGNITLEEALLQTDYGLHRL NOV47f TPIAAVQAVDKDLGTNAQITYSYSQKVPQASKDLFHLDENTGVIKLFSKIGGSVLESHKL
NOV47a LVKVSDHGYPEPLHSTVMVNLFVNDTVSNESYIESLLRKEPΞINIEEKEPQISIEPTHRK
NOV47b LVKVSDHGYPEPLHSTVMVNLFVNDTVSNESYIESLLRKEPEINIEEKEPQISIEPTHRK
NOV47C LVKVSDHGYPEPLHSTVMVNLFVNDTVSNESYIESLLRKEPEINIEEKEPQISIEPTHRK
NOV47d LVIWSDHGYPEPLHSTVMVNLFVNDTVSNESYIESLLRKEPEINIEEKEPQISIEPTHRK
NOV47e LVK-VSDHGYPEPLHSTVMVNLFVNDTVSNESYIESLLRKEPEINIEEKEPQISIEPTHRK
NOV47f TILAN
NOV47a VESVSCMPTLVALSVISLGSITLVTGMGIYICLRKGEKHPREDENLEVQIPLKGKIDLHM
NOV47b VELE
NOV47C VELE
NOV47d VELE
NOV47e VELE
NOV47f
NOV47a RERKPMDISNI
NOV47b
NOV47C
NOV47d
NOV47e
NOV47f
NOV47a (SEQ ID NO 1042)
NOV47b (SEQ ID NO 1044)
NOV47C (SEQ ID NO 1046)
NOV47d (SEQ ID NO 1048)
NOV47e (SEQ ID NO 1050)
NOV47f (SEQ ID NO 1052)
Further analysis of the NOV47a protein yielded the following properties shown in Table
47C.
Table 47C. Protein Sequence Properties NOV47a
SignalP analysis: Cleavage site between residues 14 and 15
PSORT H analysis:
PSG: a new signal peptide prediction method
N-region: length 7; pos.chg 2; neg.chg 0 H-region: length 4; peak value -19.10 PSG score: -23.50
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -9.89 possible cleavage site: between 29 and 30
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al's method for TM region allocation Init position for calculation: 1
Tentative number of TMS(s) for the threshold 0.5: 3 INTEGRAL Likelihood = -2.76 Transmembrane 54 - 70 INTEGRAL Likelihood = -7.38 Transmembrane 416 - 432 INTEGRAL Likelihood = -3.77 Transmembrane 901 - 917 PERIPHERAL Likelihood = 2.01 (at 188) ALOM score: -7.38 (number of TMSs : 3) MTOP : Prediction of membrane topology (Hartmann et al . ) Center position for calculation: 61 Charge difference: -5.0 C(-1.0) - N( 4.0) N >= C: N-terminal side will be inside
>>> membrane topology: type 3a
MITDISC: discrimination of mitochondrial targeting seq R content: 7 Hyd Moment (75) : 5.23 Hyd Moment (95): 11.82 G content: 2 D/E content: 1 S/T content: 5 Score: 2.50
Gavel : prediction of cleavage sites for mitochondrial preseq R-2 motif at 85 SRA|TE
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite: none content of basic residues: 8.9% NLS Score: -0.47
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals :
XXRR-like motif in the N-terminus: LARI none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif : type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif: none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail : none
Dileucine motif in the tail: none checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: cytoplasmic Reliability: 76.7
COIL: Lupas 's algorithm to detect coiled-coil regions total: 0 residues
Final Results (k = 9/23) :
34.8 %: mitochondrial
34.8 %: endoplasmic reticulum
17.4 %: nuclear
4 .3 % : cytoplasmic
4 .3 % : plasma membrane
4.3 % : vesicles of secretory system
>> prediction for CG57448-01 is mit (k=23)
A search of the NOV47a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 47D.
[THIS PAGE LEFT INTENTIONALLY BLANK]
In a BLAST search of pubhc sequence databases, the NOV47a protein was found to have homology to the proteins shown in the BLASTP data in Table 47E.
PFam analysis predicts that the NOV47a protein contains the domains shown in the Table
47F.
Example 48. The NOV48 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 48A.
Table 48A. NOV48 Sequence Analysis
NOV48a, CG57574-03 SEQ ID NO: 1053 1012 bp DNA Sequence ORF Start: ATG at 23 ORF Stop: TAG at 1010
AGAGACCAGGTTCTOAGAAGCAATGGTGACGAAGGCCTTTGTCTTGTTGGCCATCTTTGCAGAAGCCT
CTGCAAAATCGTGTGCTCCAAATAAAGCAGATGTCATTCTTGTGTTTTGCTATCCCAAAACCATCATC ACCAAAATCCCCGAGTGTCCCTATGGATGGGAAGTTCATCAGCTGGCCCTCGGAGGGCTGTGTTACAA TGGGGTCCACGAAGGAGGTTACTACCAATTTGTGATCCCAGATTTATCACCTAAAAACAAGTCCTATT GTGGAACCCAGTCTGAGTACAAGCCACCTATCTATCACTTCTACAGTCACATCGTTTCCAATGACACC ACAGTGATTGTAAAAAACCAGCCTGTCAACTACTCCTTCTCCTGCACCTACCACTCCACCTACTTGGT GAACCAGGCTGCCTTTGACCAGAGAGTGGCCACTGTTCACGTGAAGAACGGGAGCATGGGCACATTTG AGAGCCAACTGTCTCTCAACTTCTACACTAATGCCAAGTTCTCCATCAAGAAAGAAGCTCCCTTTGTC CTGGAGGCATCGGAAATCGGTTCAGATCTGTTTGCAGGAGTGGAAGCCAAAGGGTTAAGCATTAGGTT TAAAGTGGTCTTGAACAGCTGTTGGGCCACCCCCTCGGCTGACTTCATGTATCCCTTGCAGTGGCAGC TGATCAACAAGGGCTGCCCCACGGATGAAACCGTCCTCGTGCATGAGAATGGGAGAGATCACAGGGCA ACCTTCCAATTCAATGCTTTCCGGTTCCAGAACATCCCCAAA.CTCTCCAAGGTGTGGTTACACTGTGA GACGTTCATCTGCGACAGTGAGAAACTCTCCTGCCCAGTGACCTGCGATAAACGGAAGCGCCTCCTGC GAGACCAGACCGGGGGAGTCCTGGTCGTGGAGCTCTCCCTGCGGAGCAGGGGATTTTCCAGTCTCTAT AGCTTCTCAGATGTTCTCCACCACCTCATCATGATGTTGGGGATTTGTGCCGTGTTATAG
NOV48a, CG57574-03 SEQ ID NO: 1054 329 aa MW at 36955.2kD Protein Sequence
- --VTKAFVL AIFA-EASAKSCAPNIA-DVI VFCYPKTIITKIPECPYG EVHQL-A GGLCYNGVHEGGy YQFVIPDLSPKNKSYCGTQSEYKPPIYHFYSHIVSNDTTVIVK QPV YSFSCTYHSTYLVNQAAFDQ RVATV--W--OTGSMGTFESQ S NFYTNAKFSIK-^APFVLEASEIGSDLFAGVEAKGLSIRFKVVLNSC ATPSADFMYPLQWQLINKGCPTDETVLVHENGRDHRATFQFNAFRFQNIPKLSKV HCETFICDSE SCPVTCDKRKR RDQTGGVLWELS RSRGFSSLYSFSDVLHHLIMMLGICAVL
NOV48b, CG57574-01 SEQ ID NO: 1055 1026 bp DNA Sequence ORF Start: ATG at 85 [ORF Stop: TAG at 985
GATCGAGGCTCAGGCCCTGGAAGGACCGTAAACATTTGGCCAGCTTGGTTTGGATACCTGGCAGAGAC
CAGGTTCTGAGAAGCAATGGTGACGAAGGCCTTTGTCTTGTTGGCCATCTTTGCAGAAGCCTCTGCAA
AATCGTGTGCTCCAAATAAAGCAGATGTCATTCTTGTGTTTTGCTATCCCAAAACCATCATCACCAAA ATCCCCGAGTGTCCCTATGGATGGGAAGTTCATCAGCTGGCCCTCGGAGGGCTGTGTTACAATGGGGT CCACGAΆGGAGGTTACTACCAATTTGTGATCCCAGATTTATCACCTAAAAACAAGTCCTATTGTGGAA CCCAGTCTGAGTACAAGCCACCTATCTATCACTTCTACAGTCACATCGTTTCCAATGACACCACAGTG ATTGTAAAAAACCAGCCTGTCAACTACTCCTTCTCCTGCACCTACCACTCCACCTACTTGGTGAACCA GGCTGCCTTTGACCAGAGTGTCAATTTCCTTCCAAAGAATGCCAAGTTCTCCATCAA.GAAAGAAGCTC CCTTTGTCCTGGAGGCATCCGAAATCGGTTCAGATCTGTTTGCAGGAGTGGAAGCCAAAGGGTTAAGC ATTAGGTTTAAAGTGGTCTTGAACAGCTGTTGGGCCACCCCCTCGGCTGACTTCATGTATCCCTTGCA GTGGCAGCTGATCAACAAGGGCTGCCCCACGGATGAAACCGTCCTCGTGCATGAGAATGGGAGAGATC ACAGGGCAACCTTCCAA.TTCAATGCTTTCCGGTTCCAGAACATCCCCAAACTCTCCAAGGTGTGGTTA CACTGTGAGACGTTCATCTGCGACAGTGAGAAACTCTCCTGCCCAGTGACCTGCGATAAACGGAAGCG CCTCCTGCGAGACCAGACCGGGGGAGTCCTGGTCGTGGAGCTCTCCCTGCGGAATGTTCTCCACCACC TCATCATGATGTTGGGGATTTGTGCCGTGTTATAGGAGTTAGCCAGGCAGCTGCCGCTCCTCCACCCA
CAATAG
NOV48b, CG57574-01 SEQ ID NO: 1056 300 aa MW at 33751.8kD Protein Sequence
MVTKAFVLLAIFAEASAKS ^PN A-DVILVFCYPKTIITKIPECPYG EVHQ A GGLCYNGVHEGGY YQFVIPDLSP-raKSYCGTQSEYKPPIYHFYSHIVS---TOTT^^ SVNFLPKNAKFSIK-l-<--EAPFVIiEASEIGSDLFAGVEA
KGCPTDETVLV-l--iENGRDH-RATFQFNAFRFQNIP--- iSI WLHCETFICDSEKLSCPVTCDKR-^ TGGV WELS LRNVLHHL IMMLGI CAV
SEQ ID NO: 1057 1012 bp CCTGGAGGCATCCGAAATCGGTTCAGATCTGTTTGCAGGAGTGGAAGCCAAAGGGTTAAGCATTAGGT TTAAAGTGGTCTTGAACAGCTGTTGGGCCACCCCCTCGGCTGACTTCATGTATCCCTTGCAGTGGCAG CTGATCAACAAGGGCTGCCCCACGGATGAAACCGTCCTCGTGCATGAGAATGGGAGAGATCACAGGGC AACCTTCCAATTCAATGCTTTCCGGTTCCAGAACATCCCCAAACTCTCCAAGGTGTGGTTACACTGTG AGACGTTCATCTGCGACAGTGAGAAACTCTCCTGCCCAGTGACCTGCGATAAACGGAAGCGCCTCCTG CGAGA
NOV48e, CG57574-05 SEQ ID NO: 1062 273 aa MW at 30888.0kD Protein Sequence
GSKSCAPNKADVILVFCYPKTIITKIPECPYGWEVHQLALGGLCYNGVHEGGYYQFVIPDLSPKNKSY CGTQSEYKPPIYHFYSHIVSNDTTVIVKNQPVNYSFSCTYHSTYLVNQAAFDQRVATVHVKNGSMGTF ESQLSLNFYTNAKFSIKKEAPFVLEASEIGSDLFAGVEAKGLSIRFK LNSCWATPSADFMYPLQWQ INKGCPTDETV VHENGRDHRATFQFNAFRFQNIPKLSKV HCETFICDSEKLSCPVTCDKRKRLL R
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 48B.
Table 48B. Comparison of the NO 48 protein sequences.
NOV48a MVTKAFVLLAIFAEASAKSCAPNKADVILVFCYPKTIITKIPECPYG EVHQLAGGLCY
NOV48b l.WT--^FV AIFAEASAKSCAPNKADVILVFCYPKTIITKIPECPYG EVHQI--A GGLCY
NOV48C MVTKAFVLLAIFAEASAKSCAPNKADVILVFCYPKTIITKIPECPYG EVHQ ALGG CY
NOV48d KSCAPNKADVILVFCYPKTIITKIPECPYG EVHQLA GG CY
NOV48e GSKSCAPNKADVILVFCYPKTIIT IPECPYG EVHQLALGG CY
NOV48a NGVHEGGYYQFVIPDLSPKNKSYCGTQSEYKPPIYHFYSHIVSNDTTVIVKNQPVNYSFS
NOV48b NGVHEGGYYQFVIPDLSPKNKSYCGTQSEYKPPIYHFYSHIVSNDTTVIV-KNQPVNYSFS
NOV48C NGVHEGGYYQFVIPDLSPKNKSYCGTQSEYKPPIYHFYSHIVSNDATVIVKNQPVNYSFS
NOV48d NGVHEGGYYQFVIPD SP---OJKSYCGTQSEYKPPIYHFYSHIVSNDTTVIVKNQPVNYSFS
NOV48e NGVHEGGYYQFVIPD SPKNKSYCGTQSEY PPIYHFYSHIVSNDTTVIVKNQPVNYSFS
NOV48a CTYHSTYLVNQAAFDQRVATVHVKNGSMGTFESQLS NFYTNAKFSIKKEAPFVLEASEI
NOV48b CTYHSTYLVNQAAFDQSVNFLPK N-AKFSIKKEAPFVLEASEI
NOV48c CTYHSTYLVNQAAFDQRVATVHVKNGSMGTFESQLSLNFYTNAKFSIKKEAPFVLEASEI
NOV48d CTYHSTY VNQAAFDQRVATVHVKNGSMGTFESQ SLNFYTNA FSIKKEAPFVLEASEI
NOV48e CTYHSTY VNQAAFDQRVATVHVKNGSMGTFESQLSLNFYTNAKFSIKKEAPFVLEASEI
NOV48a GSDLFAGVEAKGLSIRFKWLNSCWATPSADFMYPLQ QLINKGCPTDETVLVHENGRDH
NOV48b GSDLFAGVEAKGLSIRFK-WLNSCWATPSADFMYPLQWQLINKGCPTDETVLVHENGRDH
NOV48C GSDLFAGVEAKGLSIRFKVVLNSCWATPSADFMYPLQWQLINKGCPTDETVLVHENGRDH
NOV48d GSDLFAGVEAKGLSIRFKVVLNSCWATPSADFMYPLQWQLINKGCPTDETVLVHENGRDH
NOV48e GSDLFAGVEAKGLSIRFK LNSCWATPSADFMYPLQWQLINKGCPTDETVLVHENGRDH
NOV48a -RATFQFNAFRFQNIP---α-JS---N^WLHCETFICDSEiα-JS^
NOV48b RATFQFNAFRFQNIP--- JS---s^ LHCETFICDSEK SCPVTCD-raiKRLLRDQTGGVLVVE S
NOV48c RATFQFNAFRFQNIP LSKV LHCETFICDSE LSCPVTCDKRKRLLRDQTGGVLVVELS
NOV48d RATFQFNAFRFQNIPK SKV LHCETFICDSΞK SCPVTCDKRKRLLRDQTGG
NOV48e RATFQFNAFRFQNIPKLSKV HCETFICDSEKLSCPVTCDKRKRL R
NOV48a LRSRGFSSLYSFSDVLHHLI M GICAVL
NOV48b LRNVLHHLI MLGICAV
NOV48C LRSRGFSSLYSFSDVLHHLIMMLGICAVL
NOV48d NOV48e
NOV48a (SEQ ID NO: 1054) NOV48b (SEQ ID NO: 1056) NOV48C (SEQ ID NO: 1058)
Further analysis of the NOV48a protein yielded the following properties shown in Table 48C.
Table 48C. Protein Sequence Properties NOV48a
SignalP analysis: Cleavage site between residues 18 and 19
PSORT π analysis:
PSG: a new signal peptide prediction method
N-region: length 4; pos.chg 1; neg.chg 0 H-region: length 9; peak value 11.46 PSG score: 7.06
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): 0.86 possible cleavage site: between 17 and 18
>>> Seems to have a cleavable signal peptide (1 to 17)
ALOM : Klein et al ' s method for TM region allocation Init position for calculation: 18
Tentative number of TMS(s) for the threshold 0.5: 1 Number of TMS(s) for threshold 0.5: 0 PERIPHERAL Likelihood = 2.76 (at 25) ALOM score: -1.44 (number of TMSs : 0)
MTOP : Prediction of membrane topology (Hartmann et al . ) Center position for calculation: 8 Charge difference: -2.0 C( 0.0) - N( 2.0) N >= C: N-terminal side will be inside
MITDISC: discrimination of mitochondrial targeting seq R content: 0 Hyd Moment (75): 8.58 Hyd Moment (95): 5.88 G content: 0 D/E content: 2 S/T content: 3 Score: -5.83
Gavel : prediction of cleavage sites for mitochondrial preseq cleavage site motif not found
NUCDISC: discrimination of nuclear localization signals pat4: KRKR (5) at 282 pat7 : none bipartite : none content of basic residues: 9.4% NLS Score: -0.16
KDEL: ER retention motif in the C-terminus : none
ER Membrane Retention Signals : none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal : none VAC : possible vacuolar targeting motif : none
RNA-binding motif : none
Actinin-type actin-binding motif : type 1 : none type 2 : none
NMYR : N-myristoylation pattern : none
Prenylation motif : CaaX motif in the C-terminus : CAVL if X is S , A, or M, it will be farnesylated otherwise , it will be geranylgeranylated memYQRL : transport motif from cell surface to Golgi : none
Tyrosines in the tail : none
Dileucine motif in the tail : none checking 63 PROSITE DNA binding motifs : none checking 71 PROSITE ribosomal protein motifs : none checking 33 PROSITE prokaryotic DNA binding motifs : none
NNCN : Reinhardt ' s method for Cytoplasmic/Nuclear discrimination Prediction : cytoplasmic Reliability : 94 . 1
COIL : Lupas ' s algorithm to detect coiled-coil regions total : 0 residues
Final Results (k = 9/23 )
33.3 %: endoplasmic reticulum
22.2 %: mitochondrial
11.1 %: cytoplasmic
11.1 % : vacuolar
11.1 % : nuclear
11.1 %: extracellular, including cell wall
>> prediction for CG57574 - 03 is end (k=9)
A search of the NOV48a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 48D.
In a BLAST search of public sequence databases, the NOV48a protein was found to have homology to the proteins shown in the BLASTP data in Table 48E.
PFam analysis predicts that the NOV48a protein contains the domains shown in the Table 48F.
Table 48F. Domain Analysis of NO 48a
Identities/
Pfam Domain NOV48a Match Region Similarities Expect Value for the Matched Region zona_pellucida 19..283 55/310 (18%) 8.2e-49 190/310 (61%)
Example 49.
The NOV49 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 49A.
Table 49 A. NOV49 Sequence Analysis
NOV49a, CG57689-01 SEQ ID NO: 1063 1933 bp DNA Sequence ORF Start: ATG at 75 ORF Stop: TAA at 1881
GGTCGGCTGCCCCGAGGGCTTTGAGCTGGACTCCCAGGGAGCGTTTTGTGTGGGTGAGCGCCCCCAAC
CCTGGCATGGATGTGGGAGGCCTCTCAGCCTGGGATGGATGGCTTCTCCCAGCCAGCTGGCAGGAGGG
CCTGGGAGCGGAGACCACCAGACCCCTTCCTGCCCCAGACAGGGACGAGTGCTCAGGAGGCCCTAGCC CCTGCTCCCATGCCTGCCTTAATGCACCCGGCCGCTTCTCCTGCACCTGCCCCACTGGCTTCGCCCTG GCCTGGGATGACAGGAACTGCAGAGATGTGGACGAGTGTGCGTGGGATGCTCACCTCTGCCGAGAGGG ACAGCGCTGTGTGAACCTGCTCGGGTCCTACCGCTGCCTCCCCGACTGTGGGCCTGGCTTCCGGGTGG CTGATGGGGCCGGCTGTGAAGATGTGGACGAATGCCTGGAGGGGTTGGACGACTGTCACTACAACCAG CTCTGCGAGAACACCCCAGGCGGTCACCGCTGCAGCTGCCCCAGGGGTTACCGGATGCAGGGCCCCAG CCTGCCCTGCCTAGATGTCAATGAGTGCCTGCAGCTGCCCAAGGCCTGCGCCTACCAGTGCCACAACC TCCAGGGCAGCTACCGCTGCCTGTGCCCCCCAGGCCAGACCCTCCTTCGCGACGGCAAGGCCTGCACC TCACTGGAGCGGAATGGACAAAATGTGACCACCGTCAGCCACCGAGGCCCTCTATTGCCCTGGCTGCG GCCCTGGGCCTCGATCCCCGGTACCTCCTACCACGCCTGGGTCTCTCTCCGTCCGGGTCCCATGGCCC TGAGCAGTGTGGGCCGGGCCTGGTGCCCTCCTGGTTTCATCAGGCAGAACGGAGTCTGCACAGACCTT GACGAGTGCCGCGTGAGGAACCTGTGTCAGCACGCCTGCCGCAACACTGAGGGCAGCTACCAGTGCCT GTGCCCACGCCGGCTACCGTCTGCTCCCCAGCGGGAAGAACTGCCAGGACATCAACGAGTGCGAGGAG GAGAGCATCGAGTGTGGACCCGGCCAGATGTGCTTCAACACCCGTGGCAGCTACCAGTGTGTGGACAC ACCCTGTCCTGCCACCTACCGGCAGGGCCCCAGCCCTGGGACGTGCTTCCGGCGCTGCTCGCAGGACT GCGGCACGGGCGGCCCCTCTACGCTGCAGTACCGGCTGCTGCCGCTGCCCCTGGGCGTGCGCGCCCAC CACGACGTGGCCCGCCTCACCGCCTTCTCCGAGGTCGGCGTCCCCGCCAACCGCACCGAGCTCAGCAT GCTGGAGCCCGACCCCCGCAGCCCCTTCGCGCTGCGTCCGCTGCGCGCGGGCCTTGGCGCGGTCTACA CCCGTCGCGCGCTCACCCGCGCCGGCCTCTACCGGCTCACCGTGCGTGCTGCGGCACCGCGCCACCAA AGCGTCTTCGTCTTGCTCATCGCCGTGTCCCCCTACCCCTACTAAACGGGAGAGGGCATTGGCGGCCG CCCTGGCGTGACCCCCGAGGAAGGGGTCGAGGAGAAGCTTGGTCCACGCCACCTGCTGTGGCAAGCGG AGCGTCATCGTCTCCCGCCCCGTGCGTCAGCGAGACCTTGGGTCAACACGACCCTGCGCACAGCCTTG ACCCCCGACAGCGAGGACCTGACCTCACAGAGGGAGGCGTCCAGGGCGGCCCTTGGGTGGCCAGTCCC GCAGGCAGGGCCCGGGGAAGCCCGGATCAGACCTCCAGGTCTGATCCGCCCCTCAGTGGGAGCGGGAC AGGGACACAGGGCACCTGGACGCGCGGGAGAGGGGGCAGACCCCGCGTTAGGGGTGGCAGCAGCTGTC GCCCGGCCACACCTGGTGGTGTCATTCTGAACCCTGTTGCAATATAAAGGGATTTTTTTTTAACCAAC TTGGTTTCTTTGTCTAATTATTTTGCTTT
NOV49a, CG57689-01 SEQ ID NO: 1064 602 aa MW at 65011.8kD Protein Sequence
MDVGGLSAWDG LLPASWQEGLGAETTRPLPAPDRDECSGGPSPCSHACLNAPGRFSCTCPTGFALA DD-RNCRDVDECA DAHLCREGQRCVNLLGSYRCLPDCGPGFRVADGAGCEDVDECLEGLDDCHYNQLC ENTPGGHRCSCPRGYRMQGPSLPCLDVNECLQLPKACAYQCHNLQGSYRCLCPPGQTLLRDGKACTSL ERNGQNVTTVSHRGPLLP LRPW^ CRVRNLCQHACRNTEGSYQCLCPRRLPSAPQREELPGHQRVRGGEHRV TRPDVLQHPWQLPVCGHTL1 SCHLPAGPQP DVLPALLAGLRHGRPLYAAVPAAAAAPGRARPPRRGPPHRLLRGRRPRQPHRAQHAG ARPPQPLRAASAARGPWRGLHPSRAHPRRPLPAHRACCGTAPPKRLRLAHRRVPLPLLNGRGHWRPPW RDPRGRGRGEAWSTPPAVASGASSSPAPCVSETLGQHDPAHSLDPRQRGPDLTEGGVQGGPWVASPAG RARGSPDQTSRSDPPLSGSGTGTQGT TRGRGGRPRVRGGSSCRPATPGGVILNPVAI
Further analysis ofthe NOV49aprotein yielded the following properties shown in Table 49B.
Table 49B. Protein Sequence Properties NOV49a
SignalP analysis: No Known Signal Sequence Predicted
PSORT π analysis:
PSG: a new signal peptide prediction method
N-region: length 10; pos.chg 0; neg.chg 2 H-region: length 9 ; peak value 0.00 PSG score: -4.40
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -3.99 possible cleavage site: between 23 and 24
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al's method for TM region allocation Init position for calculation: 1
Tentative number of TMS(s) for the threshold 0.5: 0 number of TMS(s) .. fixed PERIPHERAL Likelihood = 7.80 (at 586) ALOM score: 7.80 (number of TMSs : 0)
MITDISC: discrimination of mitochondrial targeting seq R content: 0 Hyd Moment (75): 3.89 Hyd Moment (95): 4.99 G content: 2 D/E content: 2 S/T content: 1 Score: -8.14
Gavel: prediction of cleavage sites for mitochondrial preseq cleavage site motif not found
NUCDISC: discrimination of nuclear localization signals pat4: RRPR (4) at 396 pat7: PPKRLRL (4) at 450 pat7: PKRLRLA (5) at 451 bipartite : none content of basic residues: 12.3% NLS Score: 0.55
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals : none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal : none
VAC: possible vacuolar targeting motif: none RNA-binding motif : none
Actinin-type actin-binding motif : type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail: none
Dileucine motif in the tail : none checking 63 PROSITE DNA binding motifs : none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: nuclear Reliability: 94.1
COIL: Lupas ' s algorithm to detect coiled-coil regions total: 0 residues
Final Results (k = 9/23)
73 . 9 % : nuclear
17 .4 % : cytoplasmic
4 . 3 % : mitochondrial
4 . 3 % : peroxisomal
>> prediction for CG57689-01 is nuc (k=23)
A search of the NOV49a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 49C.
In a BLAST search of public sequence databases, the NO V49a protein was found to have homology to the proteins shown in the BLASTP data in Table 49D.
PFam analysis predicts that the NOV49a protein contains the domains shown in the Table 49E.
24/47 (51%)
EGF 166..201 15/47 (32%) 8.6e-06 26/47 (55%)
Example 50.
The NOV50 clone was analyzed, and the nucleotide and encodedpolypeptide sequences are shown in Table 50A.
CGAAACACCCACGCTCTCCCATCCCCTACCATCTTGGTTCTCTGCCAGAAGGCATGACTCCCAATTTT TCTCCATCTCTTTCCCTATTGACGATGCAGCCTCCTGCCTTGTCTCCACTGTTGAGAGAAGGAGAATT ATTAGGAACACACATCAGTGGTACATGCCATGAACTTAAAGCAGAAGATGAAGTTCAAATATGAAACC
ACTGGGATGCCAAGTACCTGCTCACCATTGGTCATGAATGAATGAACAAAATGTTTTCAAGCCGGCAA
CTCGAGATTGGGCTCATTTTTATCTAAAAGCAAGTGATGTAATTTAGTTAGAGTTTTTAAAACTTCCC
CATTAAAGTTTCTCCAATTTCAAAAAAAAAAAAAAAAAAAA
NOV50a, CG58567-01 SEQ ID NO: 1066 1063 aa MW at l l7200.4kD Protein Sequence
LIVQATD GMPRLSNTTVIKVQVTDINDNAPAFLPSEAVEITEVMTISEDSLPGVIVTHVSVHDVDLN
SAFIFSFA ESNPGTKFAIDQNTGVWLVKTLDFEEMTEYELLIQISDSVHYTEGALWRVLDVNDNP
PVFSQDFYQVTVPESIPVGYSVLTLSATDLESNENISYRILSSSKEFSIDPKNGTIFTISPVLLLDTI
STTRFLVEASDGGNPDPRALTLVEIGIEDMNNYAPEFTVKSYNLSLSEDALVGSTLVTFSNIDHD TR
ENTYVEYSIISGNSQNNFHVETKFFHSEYPYKQVGYLVLLHSLDREASASHELVILASDSGCPPLSST
AVISIQVLDVNDNPPNFSSLSYHTHVKESTPLGSHITWSANDRDTGSHAEIIYNIISGNEKGHFYLE
ENTGVLY IKPLDYEKMTKFTLTVQASDAEKKHFSFAWFVSVLDDNDHAPQF FSSFSCIVPENLPI
SSTICSINALDFDAGPYGELTYSIVSPCFLTHGMSYDHDLFLIDPLTGDIHAKQILDYENGNKYCLTV
QAKDKGDATASLVV VDIEGIDEFEPIFTQDQYFFTLPEKNKDRQLIGRVEASDADAGIDGVILYSLG
TSSPFFSV-NRTNGNIYLIRALPLIKSQLNKEDTLEMKIIAHSPKSDSKFASCTVFVNVSFSSEGTPLA
VFASSFSISLWSFLVFLILICILIVMIL-RHKQraTINNYEE-l^^
DCSNEWPVDATPE LSLISIMEKDIVNLYRYSNSSGHCSVEGETAEDKEIQRINEHPYRKCSDSALS
DHESRVPDSGIPRDSDQLSCLSGETDVJMVTAETAEASQTFGEGDQGEGCSTTCAQNNVLPQTVQKREA
KESILADVRIsΕSVFISGDQEVRCAALSTQTTSD---roGi NYHW---sTYLLS EPKFQPI^
HLHMPGIPKEKKSFVFPPPLITAVAQPGIKAVPPRMPAVNLGQVPPKHPRSPIPYHLGSLPEGMTPNF
SPSLSLLTMQPPALSPLLREGELLGTHISGTCHELKAEDEVQI
NOV50b, 220087646 SEQ TD NO: 1067 3075 bp DNA Sequence ORF Start: at 1 ORF Stop: end of sequence
GGATCCGAAGTCATGACTATTTCAGAAGATTCTTTGCCTGGTGTAATTGTGACTCATGTGTCAGTTCA TGATGTGGATTTGAATTCAGCTTTCATATTCAGTTTTGCCAAAGAGAGTAATCCTGGAACCAAGTTTG CTATTGATCAGAACACTGGAGTGGTGGTGTTGGTGAAAACATTGGATTTTGAAGAAATGACTGAATAT GAGCTGCTCATCCAAATTTCTGATTCAGTGCACTACACAGAGGGAGCACTTGTAGTCCGTGTGCTGGA TGTCAATGATAATCCACCAGTGTTTTCTCAAGATTTCTATCAGGTCACAGTTCCTGAATCAATACCTG TGGGGTATTCAGTGCTGACTCTGTCAGCCACAGACTTAGAAAGCAATGAGAACATTTCTTACAGAATT CTATCCTCTTCTAAGGAATTCTCCATTGATCCTAAGAATGGCACAATATTTACTATCAGTCCCGTATT ACTTCTGGATACAATATCAACAACTCAATTTCTTGTGGAAGCCAGTGATGGTGGAAATCCTGACCTGA GAGCTCTTACTTTAGTGGAGATAGGAATAGAAGATATGAACAATTATGCCCCTGAATTCACAGTCAAA TCCTATAATCTTAGCCTAAGTGAGGATGCTCTGGTTGGAAGCACGCTTGTTACATTTTCAAACATCGA CCATGACTGGACCCGTGAAAACACATATGTTGAATATTCCATCATCAGTGGTAATTCACAGAACAATT TTCATGTGGAAACTAAGTTCTTTCATTCAGAATATCCTTATAAGCAGGTCGGTTATCTTGTGTTGCTT CACAGTCTGGACAGAGAAGCAAGTGCTAGCCATGAGCTTGTCATTCTGGCATCTGACAGTGGCTGCCC TCCATTGAGTTCCACAGCTGTCATATCAATACAAGTACTTGATGTCAATGACAATCCCCCAAACTTCA GCAGCCTGAGCTATCACACCCATGTCAAGGAAAGCACCCCTCTAGGGAGTCACATCACTGTGGTCTCA GCAAATGACCGTGACACAGGGTCACATGCAGAAATCATCTACAACATCATCTCTGGAAATGAGAAGGG ACATTTTTACTTAGAAGAAAACACTGGAGTTCTTTATTTGATTAAACCTCTGGATTATGAAAAAATGA CAAAATTCACCTTAACTGTCCAAGCTTCAGATGCAGAAAAGAAACATTTTTCTTTTGCAGTTGTGTTT GTCAGTGTCCTGGATGATAACGACCATGCACCTCAGTTTATGTTCTCAAGCTTCAGCTGTATTGTTCC AGAAAATCTGCCTATTTCCTCTACCATACGCTCTATAAATGCTCTGGATTTTGATGCTGGTCCGTATG GAGAATTGACCTATTCTATTGTATCACCCTGTTTTCTCACTCATGGAATGTCTTATGATCATGATCTC TTCCTCATTGACCCTTTGACAGGGGATATTCATGCTAAGCAAATCCTTGACTATGAAAATGGCAATAA ATACTGCCTCACAGTCCAAGCCAAAGACAAAGGTGATGCAACTGCCTCCTTAGTGGTCTGGGTGGATA TTGAAGGGATAGATGAATTTGAGCCCATTTTCACTCAAGATCAGTATTTTTTCACCCTCCCAGAAAAG AATAAAGACAGACAGTTGATTGGCAGAGTGGAAGCCTCAGATGCAGATGCTGGTATTGATGGAGTCAT TCTTTACTCCCTTGGAACCTCATCTCCTTTCTTTTCAGTAAATAAAACCAATGGAAATATTTATTTGA TTAGAGCCCTTCCCCTAATAAAAAGTCAACTCAACAAAGAAGACACCTTGGAAATGAAAATAATCGCT CATAGTCCCAAATCAGATTCCAAGTTTGCATCTTGCACTGTTTTTGTGAATGTGTCTTTCTCCTCTGA AGGAACACCCTTGGCAGTGTTCGCCAGCAGCTTTTCAATCAGCCTGGTGGTCTCCTTTTTAGTGTTTC TGATACTCATCTGCATTCTAATTGTAATGATTTTAAGACATAAACAAAAAGACACAATAAACAATTAT GAGGAGAAGAAAACCTCATCTTTAGATGCGGACTTGAGAGTGACCCGGGATGCCAGTGTGCTCAAAGC CTTCCAGAAAACTGACGACTGCAGTAACGAGGTGGTCCCTGTGGATGCCACTCCGGAATGGTTGAGTT TAATAAGTATCATGGAGAAGGATATTGTCAATCTGTACAGACACTCAAACTCCAGTGGCCACTGTTCT GTGGAAGGAGAAACTGCAGAAGATAAGGAAATCCAGAGGATAAATGAGCATCCCTACAGAAAGTGCTC AGACTCAGCTCTGAGTGACCACGAGTCCAGGGTGCCAGACTCGGGTATCCCGAGGGACTCAGACCAGC TCTCCTGCCTATCTGGGGAAACTGATGTGATGGTGACTGCCGAAACAGCAGAAGCCAGCCAAACATTT GGGGAAGGAGATCAAGGGGAAGGCTGCAGCACCACCTGTGCTCAAAATAATGTGTTACCCCAGACAGT TCAGAAGAGAGAGGCAAAAGAGAGCATCCTGGCTGATGTTAGAAAAGAGTCTGTCTTTATTTCAGGTG ATCAGGAAGTAAGGTGTGCAGCTCTTTCAACTCAGACGACCTCTGATCATGATGGAAAGGACAACTAT CACTGGAATTATCTTCTTAGTTGGGAGCCCAAATTCCAACCTCTTGCCTCAGTATTTAATGATATTGC AAAACTAAAGGATGAACATTTGCATATGCCTGGCATTCCAAAAGAGAAGAAATCTTTTGTTTTTCCAC CCCCTTTGATAACAGCAGTAGCCCAGCCTGGGATTAAAGCAGTCCCACCAAGAATGCCGGCAGTAAAC CTGGGGCAGGTGCCTCCGAAACACCCACGCTCTCCCATCCCCTACCATCTTGGTTCTCTGCCAGAAGG CATGACTCCCAATTTTTCTCCATCTCTTTCCCTATTGACGATGCAGCCTCCTGCCTTGTCTCCACTGT TOAGAGAAGGAGAATTATTAGGAACACACATCAGTGGTACATGCCATGAACTTAAAGCAGAAGATGAA GTTCAAATAGTCGAC
NOV50b, 220087646 SEQ ID NO: 1068 1025 aa MW at l l3052.6kD Protein Sequence
GSEVMTISEDSLPGVIVT----IVSVHDVDLNSAFIFSFAKESNPGTKFAIDQNTGVVVLVKTLDFEEMTEY ELLIQISDSVHYTEGALWRVLDVNDNPPVFSQDFYQVTVPESIPVGYSVLTLSATDLESNENISYRI LSSSKEFSIDP-EsTJGTIFTISPVLLLDTISTTQFLVΕ-z^DGGNPDLRALTLVEIGIED NNYAPEFTVK SYNLSLSEDALVGSTLVTFSNIDHD TRENTYVEYSIISGNSQNNFHVETKFFHSEYPYKQVGYLVLL HSLDREASASHELVILASDSGCPPLSSTAVISIQVLDVNDNPPNFSSLSYHTHVKESTPLGSHITWS ANDRDTGSHAE11YNIISGNEKGHFYLEENTGVLYLIKPLDYEKMTKFTLTVQASDAEKKHFSFAWF VSVLDDNDHAPQF FSSFSCIVPENLPISSTIRSINALDFDAGPYGELTYSIVSPCFLTHGMSYDHDL FLIDPLTGDIHAKQILDYENGNKYCLTVQAKDKGDATASLW VDIEGIDEFEPIFTQDQYFFTLPEK NKDRQLIGRVEASDADAGIDGVILYSLGTSSPFFSVNKTNGNIYLIRALPLIKSQLNKEDTLEMKIIA HSPKSDSKFASCTVFVNVSFSSEGTPLAVFASSFSISLWSFLVFLILICILIVMILRHKQKDTINNY EEKKTSSLDADLRVTRDASVLKAFQKTDDCSNEWPVDATPE LSLISIME DIVNLYRHSNSSGHCS VEGETAEDKEIQRINEHPYRKCSDSALSDHESRVPDSGIPRDSDQLSCLSGETDVMVTAETAEASQTF GEGDQGEGCSTTCAQNNVLPQTVQ-l-α.E-MsΕSIL--^VRKESVFISGDQEVRCAALSTQTTSDHDGKDNY H NYLLSWEP FQPLASVFNDIAKLKDEHLHMPGIPKEKKSFVFPPPLITAVAQPGIKAVPPR PAVN LGQVPPKHPRSPIPYHLGSLPEGMTPNFSPSLSLLTMQPPALSPLLREGELLGTHISGTCHELKAEDE VQIVD
NOV50c, 194877960 SEQ ED NO: 1069 3075 bp DNA Sequence ORF Start: at 1 ORF Stop: end of sequence
GGATCCGAAGTCATGACTATTTCAGAAGATTCTTTGCCTGGTGTAATTGTGACTCATGTGTCAGTTCA TGATGTGGATTTGAATTCAGCTTTCATATTCAGTTTTGCCAAAGAGAGTAATCCTGGAACCAAGTTTG CTATTGATCAGAACACTGGAGTGGTGGTGTTGGTGAAAACATTGGATTTTGAAGAAATGACTGAATAT GAGCTGCTCATCCAAATTTCTGATTCAGTGCACTACACAGAGGGAGCACTTGTAGTCCGTGTGCTGGA TGTCAATGATAATCCACCAGTGTTTTCTCAAGATTTCTATCAGGTCACAGTTCCTGAATCAATACCTG TGGGGTATTCAGTGCTGACTCTGTCAGCCACAGACTTAGAAAGCAATGAGAACATTTCTTACAGAATT CTATCCTCTTCTAAGGAATTCTCCATTGATCCTAAGAATGGCACAATATTTACTATCAGCCCCGTATT ACTTCTGGATACAATATCAACAACTCAATTTCTTGTGGAAGCCAGTGATGGTGGAAATCCCGACCTGA GAGCTCTTACTTTAGTGGAGATAGGAATAGAAGATATGAACAATTATGCCCCTGAATTCACAGTCAAA TCCTATAATCTTAGCCTAAGTGAGGATGCTCTGGTTGGAAGCACGCTTGTTACATTTTCAAACATCGA CCATGACTGGACCCGTGAAAACACATATGTTGAATATTCCATCATCAGTGGTAATTCACAGAACAATT TTCATGTGGAAACTAAGTTCTTTCATTCAGAATATCCTTATAAGCAAGTCGGTTATCTTGTGTTGCTT CACAGTCTGGACAGAGAAGCAAGTGCTAGCCATGAGCTTGTCATTCTGGCATCTGACAGTGGCTGCCC TCCATTGAGTTCCACAGCTGTCATATCAATACAAGTACTTGATGTCAATGACAATCCCCCAAACTTCA GCAGCCTGAGCTATCACACCCATGTCAAGGAAAGCACCCCTCTAGGGAGTCACATCACTGTGGTCTCA GCAAATGACCGTGACACAGGGTCACATGCAGAAATCATCTACAACATCATCTCTGGAAATGAGAAGGG ACATTTTTACTTAGAAGAAAACACTGGAGTTCTTTATTTGATTAAACCTCTGGATTATGAAAAAATGA CAAAATTCACCTTAACTGTCCAAGCTTCAGATGCAGAAAAGAAACATTTTTCTTTTGCAGTTGTGTTT GTCAGTGTCCTGGATGATAACGACCATGCACCTCAGTTTATGTTCTCAAGCTTCAGCTGTATTGTTCC AGAAAATCTGCCTATTTCCTCTACCATATGCTCTATAAATGCTCTGGATTTTGATGCTGGTCCGTATG GAGAATTGACCTATTCTATTGTATCACCCTGTTTTCTCACTCATGGAATGTCTTATGATCATGATCTC TTCCTCATTGACCCTTTGACAGGGGATATTCATGCTAAGCAAATCCTTGACTATGAAAATGGCAATAA ATACTGCCTCACAGTCCAAGCCAAAGACAAAGGTGATGCAACTGCCTCCTTAGTGGTCTGGGTGGATA TTGAAGGGATAGATGAATTTGAGCCCATTTTCACTCAAGATCAGTATTTTTTCACCCTCCCAGAAAAG AATAAAGACAGACAGTTGATTGGCAGAGTGGAAGCCTCAGATGCAGATGCTGGTATTGATGGAGTCAT TCTTTACTCCCTTGGAACCTCATCTCCTTTCTTTTCAGTAAATAAAACCAATGGAAATATTTATTTGA TTAGAGCCCTTCCCCTAATAAAAAGTCAACTCAACAAAGAAGACACCTTGGAAATGAAAATAATCGCT CATAGTCCCAAATCAGATTCCAAGTTTGCATCTTGCACTGTTTTTGTGAATGTGTCTTTCTCCTCTGA AGGAACACCCTTGGCAGTGTTCGCCAGCAGCTTTTCAATCAGCCTGGTGGTCTCCTTTTTAGTGTTTC TGATACTCATCTGCATTCTAATTGTAATGATTTTAAGACATAAACAAAAAGACACAATAAACAATTAT GAGGAGAAGAAAACCTCATCTTTAGATGCGGACTTGAGAGTGACCCGGGATGCCAGTGTGCTCAAAGC CTTCCAGAAAACTGACGACTGCAGTAACGAGGTGGTCCCTGTGGATGCCACTCCGGAATGGTTGAGTT TAATAAGTATCATGGAGAAGGATATTGTCAATCTGTACAGACACTCAAACTCCAGTGGCCACTGTTCT GTGGAAGGAGAAACTGCAGAAGATAAGGAAATCCAGAGGATAAATGAGCATCCCTACAGAAAGTGCTC AGACTCAGCTCTGAGTGACCACGAGTCCAGGGTGCCAGACTCGGGTATCCCGAGGGACTCAGACCAGC TCTCCTGCCTATCTGGGGAAACTGATGTGATGGTGACTGCCGAAACAGCAGAAGCCAGCCAAACATTT GGGGAAGGAGATCAAGGGGAAGGCTGCAGCACCACCTGTGCTCAAAATAATGTGTTACCCCAGACAGT TCAGAAGAGAGAGGCAAAAGAGAGCATCCTGGCTGATGTTAGAAAAGAGTCTGTCTTTATTTCAGGTG ATCAGGAAGTAAGGTGTGCAGCTCTTTCAACTCAGACGACCTCTGATCATGATGGAAAAGACAACTAT CACTGGAATTATCTTCTTAGTTGGGAGCCCAAATTCCAACCTCTTGCCTCAGTATTTAATGATATTGC AAAACTAAAGGATGAACATTTGCATATGCCTGGCATTCCAAAAGAGAAGAAATCTTTTGTTTTTCCAC CCCCTTTGATAACAGCAGTAGCCCAGCCTGGGATTAAAGCAGTCCCACCAAGAATGCCGGCAGTAAAC CTGGGGCAGGTGCCTCCGAAACACCCACGCTCTCCCATCCCCTACCATCTTGGTTCTCTGCCAGAAGG CATGACTCCCAATTTTTCTCCATCTCTTTCCCTATTGACGATGCAGCCTCCTGCCTTGTCTCCACTGT TGAGAGAAGGAGAATTATTAGGAACACACATCAGTGGTACATGCCATGAACTTAAAGCAGAAGATGAA GTTCAAATAGTCGAC
NOV50c, 194877960 SEQ ID NO: 1070 1025 aa MW at 112999.6kD Protein Sequence
GSEVMTISEDSLPGVIVTHVSVHDVDLNSAFIFSFAKESNPGTKFAIDQNTGVWLVKTLDFEEMTEY ELLIQISDSVHYTEGALWRVLDVNDNPPVFSQDFYQVTVPESIPVGYSVLTLSATDLESNENISYRI LSSSKEFSIDPHsTGTIFTISPVLLLDTISTTQFLVEASDGGNPDLR-ALTLVEIGIEDiiNNYAPEFTVK SYNLSLSEDALVGSTLVTFSNIDHDWTRENTYVΞYSIISGNSQNNFHVETKFFHSEYPYKQVGYLVLL HSLDREASASHELVILASDSGCPPLSSTAVISIQVLDVNDNPPNFSSLSYHTHVKESTPLGSHITWS ANDRDTGSHAEIIYNIISGNEKGHFYLEENTGVLYLIKPLDYEKMTKFTLTVQASDAEKKHFSFAVVF VSVLDDNDHAPQFMFSSFSCIVPENLPISSTICSINALDFDAGPYGELTYSIVSPCFLTHGMSYDHDL FLIDPLTGDIHAKQILDYENGNKYCLTVQAKDKGDATASLW VDIEGIDEFEPIFTQDQYFFTLPEK -NKDRQLIGRVEASDADAGIDGVILYSLGTSSPFFSVNKTNGNIYLIRALPLIKSQLNKEDTLEMKIIA HSPKSDSKFASCTVFVNVSFSSΞGTPLAVFASSFSISLWSFLVFLILICILIVMILRHKQKDTINNY EEKKTSSLDADLRVTRDASVL AFQKTDDCSNEWPVDATPEWLSLISIMEKDIVNLYRHSNSSGHCS VEGETAEDKEIQRINEHPYRKCSDSALSDHESRVPDSGIPRDSDQLSCLSGETDVMVTAETAEASQTF GEGDQGEGCSTTCAQNNVLPQTVQKREAKESILADVRKESVFISGDQEVRCAALSTQTTSDHDGKDNY H NYLLS EPKFQPLASVFNDIAKLKDEHLH PGIPKEKKSFVFPPPLITAVAQPGIKAVPPRMPAVN LGQVPPKHPRSPIPYHLGSLPEGMTPNFSPSLSLLTMQPPALSPLLREGELLGTHISGTCHELKAEDE VQIVD
|NOV50d, 192589297 SEQ ID NO: 1071 1899 bp
DNA Sequence 0RF Start: at 1 ORF Stop: end of sequence
GGATCCGAAGTCATGACTATTTCAGAAGATTCTTTGCCTGGTGTAATTGTGACTCATGTGTCAGTTCA TGATGTGGATTTGAATTCAGCTTTCATATTCAGTTTTGCCAAAGAGAGTAATCCTGGAACCAAGTTTG CTATTGATCAGAACACTGGAGTGGTGGTGTTGGTGAAAACATTGGATTTTGAAGAAATGACTGAATAT GAGCTGCTCATCCAAATTTCTGATTCAGTGCACTACACAGAGGGAGCACTTGTAGTCCGTGTGCTGGA TGTCAATGATAATCCACCAGTGTTTTCTCAAGATTTCTATCAGGTCACAGTTCCTGAATCAATACCTG TGGGGTATTCAGTGCTGACTCTGTCAGCCACAGACTTAGAAAGCAATGAGAACATTTCTTACAGAATT CTATCCTCTTCTAAGGAATTCTCCATTGATCCTAAGAATGGCACAATATTTACTATCAGTCCCGTATT ACTTCTGGATACAATATCAACAACTCAATTTCTTGTGGAAGCCAGTGATGGTGGAAATCCTGACCTGA GAGCTCTTACTTTAGTGGAGATAGGAATAGAAGATATGAACAATTATGCCCCTGAATTCACAGTCAAA TCCTATAATCTTAGCCTAAGTGAGGATGCTCTGGTTGGAAGCACGCTTGTTACATTTTCAAACATCGA CCATGACTGGACCCGTGAAAACACATATGTTGAATATTCCATCATCAGTGGTAATTCACAGAACAATT TTCATGTGGAAACTAAGTTCTTTCATTCAGAATATCCTTATAAGCAAGTCGGTTATCTTGTGTTGCTT CACAGTCTGGACAGAGAAGCAAGTGCTAGCCATGAGCTTGTCATTCTGGCATCTGACAGTGGCTGCCC TCCATTGAGTTCCACAGCTGTCATATCAATACAAGTACTTGATGTCAATGACAATCCCCCAAACTTCA GCAGCCTGAGCTATCACACCCATGTCAAGGAAAGCACCCCTCTAGGGAGTCACATCACTGTGGTCTCA GCAAATGACCGTGACACAGGGTC^ ACATTTTTACTTAGAAGAAAACACTGGAGTTCTTTATTTGATTAAACCTCTGGATTATGAAAAAATGA CAAAATTCACCTTAACTGTCCAAGCTTCAGATGCAGAAAAGAAACATTTTTCTTTTGCAGTTGTGTTT GTCAGTGTCCTGGATGATAACGACCATGCACCTCAGTTTATGTTCTCAAGCTTCAGCTGTATTGTTCC AGAAAATCTGCCTATTTCCTCTACCATATGCTCTATAAATGCTCTGGATTTTGATGCTGGTCCGTATG GAGAATTGACCTATTCTATTGTATCACCCTGTTTTCTCACTCATGGAATGTCTTATGATCATGATCTC TTCCTCATTGACCCTTTGACAGGGGATATTCATGCTAAGCAAATCCTTGACTATGAAAATGGCAATAA ATACTGCCTCACAGTCCAAGCCAAAGACAAAGGTGATGCAACTGCCTCCTTAGTGGTCTGGGTGGATA TTGAAGGGATAGATGAATTTGAGCCCATTTTCACTCAAGATCAGTATTTTTTCACCCTCCCAGAAAAG AATAAAGACAGACAGTTGATTGGCAGAGTGGAAGCCTCAGATGCAGATGCTGGTATTGATGGAGTCAT TCTTTACTCCCTTGGAACCTCATCTCCTTTCTTTTCAGTAAATAAAACCAATGGAAATATTTATTTGA TTAGAGCCCTTCCCCTAATAAAAAGTCAACTCAACAAAGAAGACACCTTGGAAATGAAAATAATCGCT CATAGTCCCAAATCAGATTCCAAGTTTGCATCTTGCACTGTTTTTGTGAATGTGTCTGTCGAC
NOV50d, 192589297 SEQ ID NO: 1072 633 aa MW at 69903.4kD Protein Sequence
GSEVMTISEDSLPGVIVTHVSVHDVDLNSAFIFSFAKESNPGTKFAIDQNTGVWLVKTLDFEEMTEY ELLIQISDSVHYTEGALWRVLDVNDNPPVFSQDFYQVTVPESIPVGYSVLTLSATDLESNENISYRI LSSSKEFSIDPKNGTIFTISPVLLLDTISTTQFLVEASDGGNPDLRALTLVEIGIED NNYAPEFTVK SYNLSLSEDALVGSTLVTFSNIDHD TRENTYVEYSIISGNSQNNFHVETKFFHSEYPYKQVGYLVLL HSLDREASASHELVILASDSGCPPLSSTAVISIQVLDVNDNPPNFSSLSYHTHVKESTPLGSHITWS ANDRDTGSHAE11YNIISGNEKGHFYLEENTGVLYLIKPLDYEKMTKFTLTVQASDAEKKHFSFAWF VSVLDDNDHAPQFMFSSFSCIVPENLPISSTICSINALDFDAGPYGELTYSIVSPCFLTHGMSYDHDL FLIDPLTGDIHAKQILDYENGNKYCLTVQAKDKGDATASLWWVDIEGIDEFEPIFTQDQYFFTLPEK NKDRQLIGRVEASDADAGIDGVILYSLGTSSPFFSVNKTNGNIYLIRALPLIKSQLNKEDTLEMKIIA HSPKSDSKFASCTVFVNVSVD
NOV50e, CG58567-02 SEQ ID NO: 1073 2956 bp DNA Sequence ORF Start: ATG at 57 ORF Stop: TGA at 2934
CTATTGATCAGAACACTGGAGTGGTGGTGTTGGTGAAAACATTGGATTTTGAAGAAATGACTGAATAT
GAGCTGCTCATCCAAATTTCTGATTCAGTGCACTACACAGAGGGAGCACTTGTAGTCCGTGTGCTGGA TGTCAATGATAATCCACCAGTGTTTTCTCAAGATTTCTATCAGGTCACAGTTCCTGAATCAATACCTG TGGGGTATTCAGTGCTGACTCTGTCAGCCACAGACTTAGAAAGCAATGAGAACATTTCTTACAGAATT CTATCCTCTTCTAAGGAATTCTCCATTGATCCTAAGAATGGCACAATATTTACTATCAGTCCCGTATT ACTTCTGGATACAATATCAACAACTCAATTTCTTGTGGAAGCCAGTGATGGTGGAAATCCTGACCTGA GAGCTCTTACTTTAGTGGAGATAGGAATAGAAGATATGAACAATTATGCCCCTGAATTCACAGTCAAA TCCTATAATCTTAGCCTAAGTGAGGATGCTCTGGTTGGAAGCACGCTTGTTACATTTTCAAACATCGA CCATGACTGGACCCGTGAAAACACATATGTTGAATATTCCATCATCAGTGGTAATTCACAGAACAATT TTCATGTGGAAACTAAGTTCTTTCATTCAGAATATCCTTATAAGCAAGTCGGTTATCTTGTGTTGCTT CACAGTCTGGACAGAGAAGCAAGTGCTAGCCATGAGCTTGTCATTCTGGCATCTGACAGTGGCTGCCC TCCATTGAGTTCCACAGCTGTCATATCAATACAAGTACTTGATGTCAATGACAATCCCCCAAACTTCA GCAGCCTGAGCTATCACACCCATGTCAAGGAAAGCACCCCTCTAGGGAGTCACATCACTGTGGTCTCA GCAAATGACCGTGACACAGGGTCACATGCAGAAATCATCTACAACATCATCTCTGGAAATGAGAAGGG ACATTTTTACTTAGAAGAAAACACTGGAGTTCTTTATTTGATTAAACCTCTGGATTATGAAAAAATGA CAAAATTCACCTTAACTGTCCAAGCTTCAGATGCAGAAAAGAAACATTTTTCTTTTGCAGTTGTGTTT GTCAGTGTCCTGGATGATAACGACCATGCACCTCAGTTTATGTTCTCAAGCTTCAGCTGTATTGTTCC AGAAAATCTGCCTATTTCCTCTACCATATGCTCTATAAATGCTCTGGATTTTGATGCTGGTCCGTATG GAGAATTGACCTATTCTATTGTATCACCCTGTTTTCTCACTCATGGAATGTCTTATGATCATGATCTC TTCCTCATTGACCCTTTGACAGGGGATATTCATGCTAAGCAAATCCTTGACTATGAAAATGGCAATAA ATACTGCCTCACAGTCCAAGCCAAAGACAAAGGTGATGCAACTGCCTCCTTAGTGGTCTGGGTGGATA TTGAAGGGATAGATGAATTTGAGCCCATTTTCACTCAAGATCAGTATTTTTTCACCCTCCCAGAAAAG AATAAAGACAGACAGTTGATTGGCAGAGTGGAAGCCTCAGATGCAGATGCTGGTATTGATGGAGTCAT TCTTTACTCCCTTGGAACCTCATCTCCTTCCCTTTCAGTAAATAAAACCAATGGAAATATTTATTTGA TTAGAGCCCTTCCCCTAATAAAAAGTCAACTCAACAAAGAAGACACCTTGGAAATGAAAATAATCGCT CATAGTCCCAAATCAGATTCCAAGTTTGCATCTTGCACTGTTTTTGTGAATGTGTCTTTCTCCTCTGA AGGAACACCCTTGGCAGTGTTCGCCAGCAGCTTTTCAATCAGCCTGGTGGTCTCCTTTTTAGTGTTTC TGATACTCATCTGCATTCTAATTGTAATGATTTTAAGACATAAACAAAAAGACACAATAAACAATTAT GAGGAGAAGAAAACCTCATCTTTAGATGCGGACTTGAGAGTGACCCGGGATGCCAGTGTGCTCAAAGC CTTCCAGAAAACTGACGACTGCAGTAACGAGGTGGTCCCTGTGGATGCCACTCCGGAATGGTTGAGTT TAATAAGTATCATGGAGAAGGATATTGTCAATCTGTACAGACACTCAAACTCCAGTGGCCACTGTTCT GTGGAAGGAGAAACTGCAGAAGATAAGGAAATCCAGAGGATAAATGAGCATCCCTACA AGACTCAGCTCTGAGTGACCACGAGTCCAGGGTGCCAGACTCGGGTATCCCGAGGGACTCAGACCAGC TCTCCTGCCTATCTGGGGAAACTGATGTGATGGTGACTGCCGAAACAGCAGAAGCCAGCCAAACATTT GGGGAAGGAGATCAAGGGGAAGGCTGCAGCACCACCTGTGCTCAAAATAATGTGTTACCCCAGACAGT TCAGAAGAGAGAGGCAAAAGAGAGCATCCTGGCTGATGTTAGAAAAGAGTCTGTCTTTATTTCAGGTG ATCAGGAAGTAAGGTGTGCAGCTCTTTCAACTCAGACGACCTCTGATCATGATGGAAAAGACAACTAT CACTGGAATTATCTTCTTAGTTGGGAGCCCAAATTCCAACCTCTTGCCTCAGTATTTAATGATATTGC AAAACTAAAGGATGAACATTTGCATATGCCTGGCATTCCAAAAGAGAAGAAATCTTTTGTTTTTCCAC CCCCTTTGATAACAGCAGTAGCCCAGCCTGGGATTAAAGCAGTCCCACCAAGAATGCCGGCAGTAAAC CTGGGGCAGGTGCCTCCGAAACACCCACGCTCTCCCATCCCCTACCATCTTGGTTCTCTGCCAGAAGG CATGACTCCCAATTTTTCTCCATCTCTTTCCCTATTGACGATGCAGCCTCCTGCCTTGTCTCCACTGT TGAGAGAAGGAGAATTATTAGGAACACACATCAGTGGTACATGCCATGAACTTAAAGCAGAAGATGAA GTTCAAATATGAAACCACTGGGATGCCAAGTA
NOV50e, CG58567-02 SEQ ID NO: 1074 959 aa MW at 105826.6kD Protein Sequence
MTEYELLIQISDSVHYTΞGALWRVLDVNDNPPVFSQDFYQVTVPESIPVGYSVLTLSATDLESNENI
SYRILSSS EFSIDPKNGTIFTISPVLLLDTISTTQFLVEASDGGNPDLRALTLVEIGIEDMNNYAPE
FTVKSYNLSLSEDALVGSTLVTFSNIDHDWTRENTYVEYSIISGNSQNNFHVETKFFHSEYPYKQVGY
LVLLHSLDREASASHELVILASDSGCPPLSSTAVISIQVLDVNDNPPNFSSLSYHTHVKESTPLGSHI
TVVSANDRDTGSHAEIIYNIISGNEKGHFYLEENTGVLYLIKPLDYEKMTKFTLTVQASDAEKKHFSF
AWFVSVLDDNDHAPQFMFSSFSCIVPENLPISSTICSINALDFDAGPYGELTYSIVSPCFLTHGMSY
DHDLFLIDPLTGDIHAKQILDYENGNKYCLTVQAKDKGDATASLVV VDIEGIDEFEPIFTQDQYFFT
LPEKN-KDRQLIGRVEASDADAGIDGVILYSLGTSSPSLSVNKTNGNIYLIRALPLIKSQLNKEDTLEM
KIIAHSPKSDS FASCTVFVNVSFSSEGTPLAVFASSFSISLWSFLVFLILICILIVMILRHKQKDT
INNYEEKKTSSLDADLRVTRDASVLKAFQKTDDCSNEWPVDATPE LSLISI EKDIVNLYRHSNSS
GHCSVEGETAEDKEIQRINEHPYRKCSDSALSDHESRVPDSGIPRDSDQLSCLSGETDVMVTAETAEA
SQTFGEGDQGEGCSTTCAQNNVLPQTVQKREAKESILADVRKESVFISGDQEVRCAALSTQTTSDHDG
---ODNYHW-NYLLSWEPKFQPLASVFrølAK^
PAVNLGQVPPKHPRSPIPYHLGSLPEGMTPNFSPSLSLLTMQPPALSPLLREGELLGTHISGTCHEL
AEDEVQI
|NOV50f, CG58567-03 SEQ ID NO: 1075 |3075 bp
DNA Sequence QRF Start: at 7 ORF Stop: at 3070
GGATCCGAAGTCATGACTATTTCAGAAGATTCTTTGCCTGGTGTAATTGTGACTCATGTGTCAGTTCA
TGATGTGGATTTGAATTCAGCTTTCATATTCAGTTTTGCCAAAGAGAGTAATCCTGGAACCAAGTTTG CTATTGATCAGAACACTGGAGTGGTGGTGTTGGTGAAAACATTGGATTTTGAAGAAATGACTGAATAT GAGCTGCTCATCCAAATTTCTGATTCAGTGCACTACACAGAGGGAGCACTTGTAGTCCGTGTGCTGGA TGTCAATGATAATCCACCAGTGTTTTCTCAAGATTTCTATCAGGTCACAGTTCCTGAATCAATACCTG TGGGGTATTCAGTGCTGACTCTGTCAGCCACAGACTTAGAAAGCAATGAGAACATTTCTTACAGAATT CTATCCTCTTCTAAGGAATTCTCCATTGATCCTAAGAATGGCACAATATTTACTATCAGCCCCGTATT ACTTCTGGATACAATATCAACAACTCAATTTCTTGTGGAAGCCAGTGATGGTGGAAATCCCGACCTGA GAGCTCTTACTTTAGTGGAGATAGGAATAGAAGATATGAACAATTATGCCCCTGAATTCACAGTCAAA TCCTATAATCTTAGCCTAAGTGAGGATGCTCTGGTTGGAAGCACGCTTGTTACATTTTCAAACATCGA CCATGACTGGACCCGTGAAAACACATATGTTGAATATTCCATCATCAGTGGTAATTCACAGAACAATT TTCATGTGGAAACTAAGTTCTTTCATTCAGAATATCCTTATAAGCAAGTCGGTTATCTTGTGTTGCTT CACAGTCTGGACAGAGAAGCAAGTGCTAGCCATGAGCTTGTCATTCTGGCATCTGACAGTGGCTGCCC TCCATTGAGTTCCACAGCTGTCATATCAATACAAGTACTTGATGTCAATGACAATCCCCCAAACTTCA GCAGCCTGAGCTATCACACCCATGTCAAGGAAAGCACCCCTCTAGGGAGTCACATCACTGTGGTCTCA GCAAATGACCGTGACACAGGGTCACATGCAGAAATCATCTACAACATCATCTCTGGAAATGAGAAGGG ACATTTTTACTTAGAAGAAAACACTGGAGTTCTTTATTTGATTAAACCTCTGGATTATGAAAAAATGA CAAAATTCACCTTAACTGTCCAAGCTTCAGATGCAGAAAAGAAACATTTTTCTTTTGCAGTTGTGTTT GTCAGTGTCCTGGATGATAACGACCATGCACCTCAGTTTATGTTCTCAAGCTTCAGCTGTATTGTTCC AGAAAATCTGCCTATTTCCTCTACCATATGCTCTATAAATGCTCTGGATTTTGATGCTGGTCCGTATG GAGAATTGACCTATTCTATTGTATCACCCTGTTTTCTCACTCATGGAATGTCTTATGATCATGATCTC TTCCTCATTGACCCTTTGACAGGGGATATTCATGCTAAGCAAATCCTTGACTATGAAAATGGCAATAA ATACTGCCTCACAGTCCAAGCCAAAGACAAAGGTGATGCAACTGCCTCCTTAGTGGTCTGGGTGGATA TTGAAGGGATAGATGAATTTGAGCCCATTTTCACTCAAGATCAGTATTTTTTCACCCTCCCAGAAAAG AATAAAGACAGACAGTTGATTGGCAGAGTGGAAGCCTCAGATGCAGATGCTGGTATTGATGGAGTCAT TCTTTACTCCCTTGGAACCTCATCTCCTTTCTTTTCAGTAAATAAAACCAATGGAAATATTTATTTGA TTAGAGCCCTTCCCCTAATAAAAAGTCAACTCAACAAAGAAGACACCTTGGAAATGAAAATAATCGCT CATAGTCCCAAATCAGATTCCAAGTTTGCATCTTGCACTGTTTTTGTGAATGTGTCTTTCTCCTCTGA AGGAACACCCTTGGCAGTGTTCGCCAGCAGCTTTTCAATCAGCCTGGTGGTCTCCTTTTTAGTGTTTC TGATACTCATCTGCATTCTAATTGTAATGATTTTAAGACATAAACAAAAAGACACAATAAACAATTAT GAGGAGAAGAAAACCTCATCTTTAGATGCGGACTTGAGAGTGACCCGGGATGCCAGTGTGCTCAAAGC CTTCCAGAAAACTGACGACTGCAGTAACGAGGTGGTCCCTGTGGATGCCACTCCGGAATGGTTGAGTT JT-AATAAGTATCATGGAGAAGGATATTGTCAATCTGTACAGACACTCAAACTCCAGTGGCCACTGTTCT GTGGAAGGAGAAACTGCAGAAGATAAGGAAATCCAGAGGATAAATGAGCATCCCTACAGAAAGTGCTC AGACTCAGCTCTGAGTGACCACGAGTCCAGGGTGCCAGACTCGGGTATCCCGAGGGACTCAGACCAGC TCTCCTGCCTATCTGGGGAAACTGATGTGATGGTGACTGCCGAAACAGCAGAAGCCAGCCAAACATTT GGGGAAGGAGATCAAGGGGAAGGCTGCAGCACCACCTGTGCTCAAAATAATGTGTTACCCCAGACAGT TCAGAAGAGAGAGGCAAAAGAGAGCATCCTGGCTGATGTTAGAAAAGAGTCTGTCTTTATTTCAGGTG ATCAGGAAGTAAGGTGTGCAGCTCTTTCAACTCAGACGACCTCTGATCATGATGGAAAAGACAACTAT CACTGGAATTATCTTCTTAGTTGGGAGCCCAAATTCCAACCTCTTGCCTCAGTATTTAATGATATTGC AAAACTAAAGGATGAACATTTGCATATGCCTGGCATTCCAAAAGAGAAGAAATCTTTTGTTTTTCCAC CCCCTTTGATAACAGCAGTAGCCCAGCCTGGGATTAAAGCAGTCCCACCAAGAATGCCGGCAGTAAAC CTGGGGCAGGTGCCTCCGAAACACCCACGCTCTCCCATCCCCTACCATCTTGGTTCTCTGCCAGAAGG CATGACTCCCAATTTTTCTCCATCTCTTTCCCTATTGACGATGCAGCCTCCTGCCTTGTCTCCACTGT TGAGAGAAGGAGAATTATTAGGAACACACATCAGTGGTACATGCCATGAACTTAAAGCAGAAGATGAA GTTCAAATAGTCGAC
NOV50f, CG58567-03 SEQ ID NO: 1076 1021 aa MW at 112641.2kD Protein Sequence
EVMTISEDSLPGVIVTHVSV-I----DVDLNSAFIFSFAKESNPGTKFAIDQNTGVVVLVKTLDFEEMTEYEL LIQISDSVHYTEGALWRVLDVNDNPPVFSQDFYQVTVPESIPVGYSVLTLSATDLESNENISYRILS SSKEFSIDPKNGTIFTISPVLLLDTISTTQFLVEASDGGNPDL-RALTLVEIGIEDiMNNYAPEFTVKSY NLSLSEDALVGSTLVTFSNIDHD TRENTYVEYSIISGNSQNNFHVETKFFHSEYPYKQVGYLVLLHS LDREASASHELVILASDSGCPPLSSTAVISIQVLDVNDNPPNFSSLSYHTHV ESTPLGSHITWSAN DRDTGSHAEIIYNIISGNEKGHFYLEENTGVLYLIKPLDYEK TKFTLTVQASDAEKKHFSFAWFVS VLDDNDHAPQFMFSSFSCIVPENLPISSTICSINALDFDAGPYGELTYSIVSPCFLTHGMSYDHDLFL IDPLTGDIHAKQILDYENGNKYCLTVQAKDKGDATASLW VDIEGIDEFEPIFTQDQYFFTLPEKNK DRQLIGRVEASDADAGIDGVILYSLGTSSPFFSVNKTNGNIYLIRALPLIKSQLNKEDTLE KIIAHS PKSDSKFASCTVFVNVSFSSEGTPLAVFASSFSISLVVSFLVFLILICILIVMILRHKQ-TOTINNYEE KKTSSLDADLRVTRDASVLKAFQKTDDCSNEWPVDATPEWLSLISIMEKDIVNLYRHSNSSGHCSVE GETAEDKEIQRINEHPYRKCSDSALSDHESRVPDSGIPRDSDQLSCLSGETDVMVTAETAEASQTFGE GDQGEGCSTTCAQNNVLPQTVQKREAKESILADVRKESVFISGDQEVRCAALSTQTTSDHDGKDNYHW NYLLS EPKFQPLASVFNDIA-LKDEHLHMPGIP--EKKSFVFPPPLITAVAQPGIKAVPPRMPAVNLG QVPPKHPRSPIPYHLGSLPEGMTPNFSPSLSLLT QPPALSPLLREGELLGTHISGTCHELKAEDEVQ I
NOV50g, CG58567-04 SEQ ID NO: 1077 1899 bp
DNA Sequence QRF Start: at 1 ORF Stop: end of sequence
GGATCCGAAGTCATGACTATTTCAGAAGATTCTTTGCCTGGTGTAATTGTGACTCATGTGTCAGTTCA TGATGTGGATTTGAATTCAGCTTTCATATTCAGTTTTGCCAAAGAGAGTAATCCTGGAACCAAGTTTG CTATTGATCAGAACACTGGAGTGGTGGTGTTGGTGAAAACATTGGATTTTGAAGAAATGACTGAATAT GAGCTGCTCATCCAAATTTCTGATTCAGTGCACTACACAGAGGGAGCACTTGTAGTCCGTGTGCTGGA TGTCAATGATAATCCACCAGTGTTTTCTCAAGATTTCTATCAGGTCACAGTTCCTGAATCAATACCTG TGGGGTATTCAGTGCTGACTCTGTCAGCCACAGACTTAGAAAGCAATGAGAACATTTCTTACAGAATT CTATCCTCTTCTAAGGAATTCTCCATTGATCCTAAGAATGGCACAATATTTACTATCAGTCCCGTATT ACTTCTGGATACAATATCAACAACTCAATTTCTTGTGGAAGCCAGTGATGGTGGAAATCCTGACCTGA GAGCTCTTACTTTAGTGGAGATAGGAATAGAAGATATGAACAATTATGCCCCTGAATTCACAGTCAAA TCCTATAATCTTAGCCTAAGTGAGGATGCTCTGGTTGGAAGCACGCTTGTTACATTTTCAAACATCGA CCATGACTGGACCCGTGAAAACACATATGTTGAATATTCCATCATCAGTGGTAATTCACAGAACAATT TTCATGTGGAAACTAAGTTCTTTCATTCAGAATATCCTTATAAGCAAGTCGGTTATCTTGTGTTGCTT CACAGTCTGGACAGAGAAGCAAGTGCTAGCCATGAGCTTGTCATTCTGGCATCTGACAGTGGCTGCCC TCCATTGAGTTCCACAGCTGTCATATCAATACAAGTACTTGATGTCAATGACAATCCCCCAAACTTCA GCAGCCTGAGCTATCACACCCATGTCAAGGAAAGCACCCCTCTAGGGAGTCACATCACTGTGGTCTCA GCAAATGACCGTGACACAGGGTCACATGCAGAAATCATCTACAACATCATCTCTGGAAATGAGAAGGG ACATTTTTACTTAGAAGAAAACACTGGAGTTCTTTATTTGATTAAACCTCTGGATTATGAAAAAATGA CAAAATTCACCTTAACTGTCCAAGCTTCAGATGCAGAAAAGAAACATTTTTCTTTTGCAGTTGTGTTT GTCAGTGTCCTGGATGATAACGACCATGCACCTCAGTTTATGTTCTCAAGCTTC GACCAGGACTCTGGGATATATGGGACAGTGGCTTATGAGCTTATTCCAGGAAACGTGTCGTCCCTTTT TACCATTGACTCCACCACAGGAATTATTTACTTAACATTACCTCTTAGTCATTTGGAATCTACCACAC TTTCGTTGATGGTCTCTGCTCAAGACGGTGGTGGGCTCACAGCTGTCATTAATGCCGATGTCACCATA CACATTTTCCAGACAACTCTGGCACCTGCTGAGTTTGAAAGGCCTAAGTACACTTTCTTAGTTTATGA AGATGTGCCTGAAGATAGTCCCATTGGAACAGTGAAAGCAAGAGAGCCCTTGAATCCACCTAGGAGCT CTGTAATACACCTGCAAGTTAGAGTTTTGGATGCCAATGACCACAGTCCTTCTTTTCCCACACTTTAT TACCAGTCCTCTGTGAGAGAAGATGCTGAAGTGGGAACAGTGGTTCTTGTGCTTTCAGCTGTGGACAA GGATGAAGGCCTGAATGGGCAAACTGAGTATTTTCTGACTGATGAGGCTTGTGGTGCATTCACCATTG ATCCTATGTCAGGCACATTGAAAACCAGCAACACCCTCGACCGTGAAGCCAGATCTCAGCATACATTT AGTGCTGTGGCCAGAGACTGTAGCATCCAGGGTTCACGAAGCACCACTGTAATTATAAAAGTATATGT CACTGATGTTAATGACAATGATCCAGTTTTGGAACAGAACCCTTTTGATGTGTTTCTTTCCCCCGAGT CGCCTACAAACCAGACAACTGTCATTGTGAGAGCTGATGACCTGGACTTGGGGCCCAATGGAACTGTG GACTCCGATGACTCCCCGCTGCTGGACGACTTCCACGTGCACCCGGACACCGGCATCATCCGCACTGC
GCGGCGCCTGGACCGCGAGCGGCGGGACCACTACAGCTTCGTCGCCGCCACGCTGCTGGGCGCTGTGG TGCAGGTGGAGATTCGCGTCAACGACGTGAATGACCACTCGCCCCGCTTTCCCCTCGACTCCCTGCAA CTCGACGTCTCCGAGCTCAGCCCGCCAGGGACCGCCTTCCGCCTGCCAGTTGCCCACGATCCGGACGC CGGACTGTTCAGCACTCAGGGCTACACCCTGGTGCAACCGTCCGACCTGCCCAAGGACCCCGCAGGCC CGTTCTTCCAGTTGCGCTACCGGACTCCGGGGCCACTACCGTCACCGCTTTTGCCAGGCTCCTCGTCA CCCCTGGAGCCTCTAGATCTGGTGCTGCTGCGGCGCTTGGACCGAGAGGAGGCGGCGGCGCACCGGCT GCAGATCGAGGCATGGGACGGCGGCCGACCCCGGCGCACCGGCCTCCTGAGCGTGGAGCTGCGCGTGC TGGATGAGAACGACAACCCGCCGGTCTTTGAGCAGGACGAGTCCCGCGCCGCGGTGCGAGAGCACGCC CAGCCGGGCGCCGAGGTCTGTCGCGTGCGCGCCACCGCCCGCGACGTGGGGCCCAATGGCTTCGTGCG CTACAGCGTCCGCGCCCGGCAAGTGCCTGGGGCGGGTAGCGGCGGCGGGGCACTGGGCGACGCGGCCT ACTTCGCGTTGGTGGTGGAGGCCCGCGATGGAGGCGCCGAGCATGAGGTTGCCGCGGTGCGTGTGTCC ATCGCCGTGCTGGACGTGAATGACAACCGGCCAGCAATTCACGTGCTCTTTCTCACAGAGGGAGGTGT CGCCCGTGTCTCTGAAGGCGCCCGCCCGGGCGACTACGTGGCTCGCGTCTCGGTGTCTGACGCGGGCG GTGACTGGGAGAAGGAAGATGAGGCCACAGGGGAGCTTGGTGTGACAGCCTCTGATGCAGATTCAGGA CTCTATGGCTTTATTGAATATTCTCTTTATGATGGATTCCTGAGCTATGAAGCACCTCAGGCATTCCG GATCGACCCTCATGATGGGCAAATCTGTGTTTCTCAAGATATCGACAGGGAAAGGGATCCAGCTACCT ATGATCTCCTGGTGGAAGCTAAGGATGGGTTTGAAATCATGCCAGGTGCTTCATTTGAATTATTCGAG ATAAATTCTGACACTGGAGAGGTAGTGACAACCACCATACTTGACAGAGAAATTCAAGAAGTCTTCAC CCTTCGAGTACTAGTACGAGATGGGGGATTCCCTTCATTGTCCAGCACCACAACAATCCTCTGCACTG TTGAAGATGAAAACGATCACGCACCAGAGTTTATTGTTTCCAGTTATGACATTGAGGTTCTGGAAAAC CAGGAACCAGAGGTTGTCTATACGGTTTTAGCCTCTGATATGGATGCTGGCAATAACAGAGCTGTTGA ATATCACATAATTGACTCCTCAGAACCAATCTTTTACAGGATTTCTTCTGGTGATCTCGGCGGAAAGT TCTCCATTCACCCGCGGCTGGGCACTATTCGCACCCGGAAGCCCCTGGATCACGAGACGCAGCCCGTG GTTGTGCTCACGGTGCAGGCGCAGCTCGGCAGCGCCCCAGCCTGCAGCAGCACCGAGGTCAACATAAC AGTCATGGATGTCAATGACAACCACCCAGCGTTCCTCAGGACCTCGGATGAGATTAGAATATCCCAGA CCACGCCCCCTGGCACAGCCTTGTACCTCGCACGTGCGGAAGACAGAGACAGTGGGCGGAACGGACTC ATCCGGTACTCCATCGCCAGCCCGCAGCCAGGCGTCTTTGCCATCGACAGAGCCCTGGGGGTGCTGTT CCTCAACGGCAGCCTGGGCGCGGGCGAGCAGCGGGAGCTCACGCTGACTCTCAGGGCCGAGGACCAAG GCGTGCATCCTCAGGCAGCCCTGCTGGTGCTGACAGTCGTTATCGAGAAACGCGAACACAGCCCATCC TGGACTTTCGAACATTTGGTCTATCAAGTGGAAGTCAGTACTTCTATTGTGACTGTTAAAGCTTTTGC TCCTGACTCAATTCAGGACAGCATGAAATATTCAATTTTTAGTGGAAATGAAGATGGAGTTCTTTCCC TGTGCTCTAAGTCAGGTGTGGTGAACTGCCTTGCTTCTCTCAGTCACACAGACTTTCTCTCCCTGAAA TTTGAATCTTCGGTGAAGGGACACCAAGACAGAGACAAATTACAGCCAATTCATCTTGATGACAACAA CTCAAAGAAGCTGTGCTTTACATTCCCTAGAGCCACTCAGGCTCTTGTATTCACTGGGCACTGTCTTT CTGATACATCTCTCCCCGGTTGGGTTTTTGCTACCGACTTGGACAGTGGTTTGAACGGCCTGATTGAG TATTCTATTCTGTCTGGCAACCAAGAAGAAGCATTCCAGATTGATGCACTGAGTGGTGTGATAACAAC AAAAGCGATTCTAGATTACGAGCTCACCAGCTCCTACAGCTTGATTGTCCAAGCCACAGATAAAGGGA TGCCCAGGCTTTCTAATACGACTGTAATCAAGGTACAGGTGACTGATATAAATGACAATGCCCCAGCT TTTCTCCCCTCTGAAGCAGTGGAAATTACAGAAGTCATGACTATTTCAGAAGATTCTTTGCCTGGTGT AATTGTGACTCATGTGTCAGTTCATGATGTGGATTTGAATTCAGCTTTCATATTCAGTTTTGCCAAAG AGAGTAATCCTGGAACCAAGTTTGCTATTGATCAGAACACTGGAGTGGTGGTGTTGGTGAAAACATTG GATTTTGAAGAAATGACTGAATATGAGCTGCTCATCCAAATTTCTGATTCAGTGCACTACACAGAGGG AGCACTTGTAGTCCGTGTGCTGGATGTCAATGATAATCCACCAGTGTTTTCTCAAGATTTCTATCAGG TCACAGTTCCTGAATCAATACCTGTGGGGTATTCAGTGCTGACTCTGTCAGCCACAGACTTAGAAAGC AATGAGAACATTTCTTACAGAATTCTATCCTCTTCTAAGGAATTCTCCATTGATCCTAAGAATGGCAC AATATTTACTATCAGTCCCGTATTACTTCTGGATACAATATCAACAACTCGATTTCTTGTGGAAGCCA GTGATGGTGGAAATCCTGACCCGAGAGCTCTTACT TATGCCCCTGAATTCACAGTCAAATCCTATAATCTTAGCCTAAGTGAGGATGCTCTGGTTGGAAGCAC GCTTGTTACATTTTCAAACATCGACCATGACTGGACCCGTGAAAACACATATGTTGAATATTCCATCA
TCAGTGGTAATTCACAGAACAATTTTCATGTGGAAACTAAGTTCTTTCATTCAGAATATCCTTATAAG CAAGTCGGTTATCTTGTGTTGCTTCACAGTCTGGACAGAGAAGCAAGTGCTAGCCATGAGCTTGTCAT TCTGGCATCTGACAGTGGCTGCCCTCCATTGAGTTCCACAGCTGTCATATCAATACAAGTACTTGATG TCAATGACAATCCCCCAAACTTCAGCAGCCTGAGCTATCACACCCATGTCAAGGAAAGCACCCCTCTA GGGAGTCACATCACTGTGGTCTCAGCAAATGACCGTGACACAGGGTCACATGCAGAAATCATCTACAA CATCATCTCTGGAAATGAGAAGGGACATTTTTACTTAGAAGAAAACACTGGAGTTCTTTATTTGATTA AACCTCTGGATTATGAAAAAATGACAAAATTCACCTTAACTGTCCAAGCTTCAGATGCAGAAAAGAAA CATTTTTCTTTTGCAGTTGTGTTTGTCAGTGTCCTGGATGATAACGACCATGCACCTCAGTTTATGTT CTCAAGCTTCAGCTGTATTGTTCCAGAAAATCTGCCTATTTCCTCTACCATATGCTCTATAAATGCTC TGGATTTTGATGCTGGTCCGTATGGAGAATTGACCTATTCTATTGTATCACCCTGTTTTCTCACTCAT GGAATGTCTTATGATCATGATCTCTTCCTCATTGACCCTTTGACAGGGGATATTCATGCTAAGCAAAT CCTTGACTATGAAAATGGCAATAAATACTGCCTCACAGTCCAAGCCAAAGACAAAGGTGATGCAACTG CCTCCTTAGTGGTCTGGGTGGATATTGAAGGGATAGATGAATTTGAGCCCATTTTCACTCAAGATCAG TATTTTTTCACCCTCCCAGAAAAGAATAAAGACAGACAGTTGATTGGCAGAGTGGAAGCCTCAGATGC AGATGCTGGTATTGATGGAGTCATTCTTTACTCCCTTGGAACCTCATCTCCTTTCTTTTCAGTAAATA GAACCAATGGAAATATTTATTTGATTAGAGCCCTTCCCCTAATAAAAAGTCAACTCAACAAAGAAGAC ACCTTGGAAATGAAAATAATCGCTCATAGTCCCAAATCAGATTCCAAGTTTGCATCTTGCACTGTTTT TGTGAATGTGTCTTTCTCCTCTGAAGGAACACCCTTGGCAGTGTTCGCCAGCAGCTTTTCAATCAGCC TGGTGGTCTCCTTTTTAGTGTTTCTGATACTCATCTGCATTCTAATTGTAATGATTTTAAGACATAAA CAAAAAGACACAATAAACAATTATGAGGAGAAGAAAACCTCATCTTTAGATGCGGACTTGAGAGTGAC CCGGGATGCCAGTGTGCTCAAAGCCTTCCAGAAAACTGACGACTGCAGTAACGAGGTGGTCCCTGTGG ATGCCACTCCGGAATGGTTGAGTTTAATAAGTATCATGGAGAAGGATATTGTCAATCTGTACAGATAC TCAAACTCCAGTGGCCACTGTTCTGTGGAAGGAGAAACTGCAGAAGATAAGGAAATCCAGAGGATAAA TGAGCATCCCTACAGAAAGTGCTCAGACTCAGCTCTGAGTGACCACGAGTCCAGGGTGCCAGACTCGG GTATCCCGAGGGACTCAGACCAGCTCTCCTGCCTATCTGGGGAAACTGATGTGATGGTGACTGCCGAA ACAGCAGAAGCCAGCCAAACATTTGGGGAAGGAGATCAAGGGGAAGGCTGCAGCACCACCTGTGCTCA AAATAATGTGTTACCCCAGACAGTTCAGAAGAGAGAGGCAAAAGAGAGCATCCTGGCTGACGTTAGAA AAGAGTCTGTCTTTATTTCAGGTGATCAGGAAGTAAGGTGTGCAGCTCTTTCAACTCAGACGACCTCT GATCATGATGGAAAAGACAACTATCACTGGAATTATCTTCTTAGTTGGGAGCCCAAATTCCAACCTCT TGCCTCAGTATTTAATGATATTGCAAAACTAAAGGATGAACATTTGCATATGCCTGGCATTCCAAAAG AGAAGAAATCTTTTGTTTTTCCACCCCCTTTGATAACAGCAGTAGCCCAGCCTGGGATTAAAGCAGTC CCACCAAGAATGCCGGCAGTAAACCTGGGGCAGGTGCCTCCGAAACACCCACGCTCTCCCATCCCCTA CCATCTTGGTTCTCTGCCAGAAGGCATGACTCCCAATTTTTCTCCATCTCTTTCCCTATTGACGATGC AGCCTCCTGCCTTGTCTCCACTGTTGAGAGAAGGAGAATTATTAGGAACACACATCAGTGGTACATGC CATGAACTTAAAGCAGAAGATGAAGTTCAAATATGAAACCACTGGGATGCCAAGTACCTGCTCACCAT
TGGTCATGAATGAATGAACAAAATGTTTTCAAGCCGGCAACTCGAGATTGGGCTCATTTTTATCTAAA
AGCAAGTGATGTAATTTAGTTAGAGTTTTTAAAACTTCCCCATTAAAGTTTCTCCAATTTCAAAAAAA
JAAAAAAAAAAAAA
NOV50h, CG58567-05 SEQ TD NO: 1080 3003 aa MW at 329184.0kD Protein Sequence
MEKCGLKEEGSYADIDPVAHDPDAGLFSTQGYTLVQPSDLPKDPAGPFFQLRYRTPGPLPSPLLPGSS
SPLEPLDLVLLRRLDREEAAAHRLQIEA DGGRPRRTGLLSVELRVLDENDNPPVFEQDEYRAAVRED
AQPGAEVCRVRATDRDLGPNGFVRYSVRARQVPGAGSGGGALGDAAYFAVEELSGWRV RPLDREAQ
A HQLWEARDGGAEPEVATVRVSIAVLDVNDNRPAIHVLFLTEGGVARVSEGARPGDYVARVSVSDA
DGVIGKITAID DSGK-NGQLLYFLLSDGKFF--- -MNPNTGΞLINWVALDREHRGHHEMTVLVTDRGSPPR
NAT AVYVSVTDINDNRPFFPQCLPGKELHVK-VLEGQPVNMLVTTVFAKDPDEGNNA^
SDHFKIDANNGEIRTTTILSYDYRPSYR SVIATDQGVPPLQGQAWNIQELDYETTSHYLFRVITTD
HSKNLSLSSTVFLSIDVEDQNDHSPSFQDELIVISVEENVPIGTLVYVFNAKDDDGSFLNSRIQYYIE
SHNPGTNPFLIHPSFGTLVTVSRLDRESIPTVILTVTASDQAV-I-sTVTDRRLRSLTAQIVILDVNDHNPT
FISFPN--^V--^DVTVGSLV---fflITAI-roPDEG-RNG -VTYSILSGNENMTFMLDESSGLLTTTCPLDYEMK
TQHILTVLALDDGTPALSSSQTLTVTVLDVNDEAPVFKQHLYEASVKENQNPGEFVTRVEALDRDSVF
LNTRELNMCFL AF YDAVF NGGLS AQAFVRVDLEDVNDNHPVFNPST YVTS I SDETQPGTE I INVLAT
DQDSGIYGTVAYELIPGNVSSLFTIDSTTGIIYLTLPLSHLESTTLSLMVSAQDGGGLTAVINADVTI
HIFQTTLAPAEFERP YTFLVYEDVPEDSPIGTVKAREPLNPPRSSVIHLQVRVLDANDHSPSFPTLY
YQSSVREDAEVGTWLVLSAVDKDEGLNGQTEYFLTDEACGAFTIDPMSGTLKTSNTLDREARSQHTF
SAVA-RDCSIQGSRSTTVIIKVYVTDV--roOTDPVLEQNPFDVFLSPESPTNQTTVIV-RADDLDLGPNGTV
DSDDSPLLDDFHVHPDTGIIRTARRLDRERRDHYSFVAATLLGAVVQVEIRVNDVNDHSPRFPLDSLQ TTACAACTGTGTTTGCAAAGGATCCTGATGAAGGAAATAATGCAGAAGTTACATACTCAGTATCTTCA GAAGATAGTTCTGATCACTTTAAGATTGACGCCAACAATGGTGAAATAAGAACAACCACAATACTTTC GTATGATTATAGACCTTCCTACAGAATGAGTGTCATTGCCACTGACCAGGGAGTGCCTCCTCTTCAAG GACAGGCAGTTGTTAATATTCAGGTGATCCCACTATCCAAAGGGAGAGCAATCATGTCTCAGAATATT AGACATTTAATTATACCAGAAAATTTGAAGCCCACAAAAATAATGAGCTTGATAAAGTCATCTGATCA CCTTCAACAACATTATAATGGAAAGTTACATTTTAGTATTGTTGCAGATGATAAGGATGGACACTTTG AAATAGACAGCTCAACCGGAGACTTGTTTCTTTCTAAGGAACTTGATTATGAGACGACATCTCATTAT CTTTTCAGAGTGATTACTACAGACCATAGCAAAAACCTTTCCCTGAGTAGCACAGTCTTCCTTAGTAT CGATGTGGAAGATCAGAATGACCATTCCCCATCTTTCCAGGATGAGCTCATTGTGATCAGTGTAGAGG AGAATGTTCCCATAGGAACCCTGGTGTATGTCTTCAATGCCAAAGATGATGACGGCAGTTTTTTGAAC AGTAGAATACAATACTACATTGAATCCCACAACCCTGGCACGAATCCATTTCTCATCCACCCCTCATT TGGCACACTAGTCACTGTGTCCCGTCTTGACAGAGAAAGCATTCCAACTGTCATCCTGACAGTAACAG CATCTGATCAGGCTGTGAATGTGACAGACCGGCGACTGAGATCACTGACAGCACAAATAGTGATTTTG GATGTAAATGACCACAACCCCACTTTTATTTCTTTCCCCAATGCCCATGTCAAAGAGGATGTCACAGT GGGCTCCTTGGTCCACCACATAACTGCTCACGATCCAGACGAAGGAAGGAATGGAAAAGTAACATACA GCATCCTCTCAGGAAATGAAAACATGACGTTTATGCTAGATGAGTCATCAGGCTTACTAACCACAACC TGTCCTTTGGATTATGAAATGAAAACTCAGCATATTCTGACTGTTCTGGCACTGGATGATGGCACACC AGCACTTTCTTCATCCCAGACTTTGACAGTTACTGTTCTTGATGTAAATGATGAAGCTCCAGTATTTA AGCAGCACCTGTATGAAGCCTCAGTGAAAGAAAACCAAAATCCAGGGGAGTTTGTTACCAGGGTTGAA GCTCTGGACAGAGATTCAGGTATGAGGCTGAATGGAGATCCAGACAGGGAGCTGTGTGCAGGAGGGAA
CCCTCTTGGAAGCAGGGCCCCTCCTGGAAGCAGGACCCCTCCTGAAGGTGGGCTAAGTGCCCAAGCCT TTGTTCGTGTGGACCTGGAGGACGTGAATGATAATCATCCTGTGTTTAACCCATCAACCTATGTGACG AGCATCAGTGATGAGACCCAGCCAGGCACCGAGATCATCAATGTTCTTGCCACTGACCAGGACTCTGG GATATATGGGACAGTGGCTTATGAGCTTATTCCAGGAAACGTGTCGTCCCTTTTTACCATTGACTCCA CCACAGGAATTATTTACTTAACATTACCTCTTAGTCATTTGGAATCTACCACACTTTCGTTGATGGTC TCTGCTCAAGACGGTGGTGGGCTCACAGCTGTCATTAATGCCGATGTCACCATACACATTTTCCAGAC AACTCTGGCACCTGCTGAGTTTGAAAGGCCTAAGTACACTTTCTTAGTTTATGAAGATGTGCCTGAAG ATAGTCCCATTGGAACAGTGAAAGCAAGAGAGCCCTTGAATCCACCTAGGAGCTCTGTAATACACCTG CAAGTTAGAGTTTTGGATGCCAATGACCACAGTCCTTCTTTTCCCACACTTTATTACCAGTCCTCTGT GAGAGAAGATGCTGAAGTGGGAACAGTGGTTCTTGTGCTTTCAGCTGTGGACAAGGATGAAGGCCTGA ATGGGCAAACTGAGTATTTTCTGACTGATGAGGCTTGTGGTGCATTCACCATTGATCCTATGTCAGGC ACATTGAAAACCAGCAACACCCTCGACCGTGAAGCCAGATCTCAGCATACATTTAGTGCTGTGGCCAG AGACTGTAGCATCCAGGGTTCACGAAGCACCACTGTAATTATAAAAGTATATGTCACTGATGTTAATG ACAATGATCCAGTTTTGGAACAGAACCCTTTTGATGTGTTTCTTTCCCCCGAGTCGCCTACAAACCAG ACAACTGTCATTGTGAGAGCTGATGACCTGGACTTGGGGCCCAATGGAACTGTGGACTCCGATGACTC CCCGCTGCTGGACGACTTCCACGTGCACCCGGACACCGGCATCATCCGCACTGCGCGGCGCCTGGACC GCGAGCGGCGGGACCACTACAGCTTCGTCGCCGCCACGCTGCTGGGCGCTGTGGTGCAGGTGGAGATT CGCGTCAACGACGTGAATGACCACTCGCCCCGCTTTCCCCTCGACTCCCTGCAACTCGACGTCTCCGA GCTCAGCCCGCCAGGGACCGCCTTCCGCCTGCCAGTTGCCCACGATCCGGACGCCGGACTGTTCAGCA CTCAGGGCTACACCCTGGTGCAACCGTCCGACCTGCCCAAGGACCCCGCAGGCCCGTTCTTCCAGTTG CGCTACCGGACTCCGGGGCCACTACCGTCACCGCTTTTGCCAGGCTCCTCGTCACCCCTGGAGCCTCT AGATCTGGTGCTGCTGCGGCGCTTGGACCGAGAGGAGGCGGCGGCGCACCGGCTGCAGATCGAGGCAT GGGACGGCGGCCGACCCCGGCGCACCGGCCTCCTGAGCGTGGAGCTGCGCGTGCTGGATGAGAACGAC AACCCGCCGGTCTTTGAGCAGGACGAGTCCCGCGCCGCGGTGCGAGAGCACGCCCAGCCGGGCGCCGA GGTCTGTCGCGTGCGCGCCACCGCCCGCGACGTGGGGCCCAATGGCTTCGTGCGCTACAGCGTCCGCG CCCGGCAAGTGCCTGGGGCGGGTAGCGGCGGCGGGGCACTGGGCGACGCGGCCTACTTCGCGTTGGTG GTGGAGGCCCGCGATGGAGGCGCCGAGCATGAGGTTGCCGCGGTGCGTGTGTCCATCGCCGTGCTGGA CGTGAATGACAACCGGCCAGCAATTCACGTGCTCTTTCTCACAGAGGGAGGTGTCGCCCGTGTCTCTG AAGGCGCCCGCCCGGGCGACTACGTGGCTCGCGTCTCGGTGTCTGACGCGGGCGGTGACTGGGAGAAG GAAGATGAGGCCACAGGGGAGCTTGGTGTGACAGCCTCTGATGCAGATTCAGGACTCTATGGCTTTAT TGAATATTCTCTTTATGATGGATTCCTGAGCTATGAAGCACCTCAGGCATTCCGGATCGACCCTCATG ATGGGCAAATCTGTGTTTCTCAAGATATCGACAGGGAAAGGGATCCAGCTACCTATGATCTCCTGGTG GAAGCTAAGGATGGGTTTGAAATCATGCCAGGTGCTTCATTTGAATTATTCGAGATAAATTCTGACAC TGGAGAGGTAGTGACAACCACCATACTTGACAGAGAAATTCAAGAAGTCTTCACCCTTCGAGTACTAG TACGAGATGGGGGATTCCCTTCATTGTCCAGCACCACAACAATCCTCTGCACTGTTGAAGATGAAAAC GATCACGCACCAGAGTTTATTGTTTCCAGTTATGACATTGAGGTTCTGGAAAACCAGGAACCAGAGGT TGTCTATACGGTTTTAGCCTCTGATATGGATGCTGGCAATAACAGAGCTGTTGAATATCACATAATTG ACTCCTCAGAACCAATCTTTTACAGGATTTCTTCTGGTGATCTCGGCGGAAAGTTCTCCATTCACCCG CGGCTGGGCACTATTCGCACCCGGAAGCCCCTGGATCACGAGACGCAGCCCGTGGTTGTGCTCACGGT GCAGGCGCAGCTCGGC^^ ATGACAACCACCCAGCGTTCCTCAGGACCTCGGATGAGATTAGAATATCCCAGACCACGCCCCCTGGC ACAGCCTTGTACCTCGCACGTGCGGAAGACAGAGACAGTGGGCGGAACGGACTCATCCGGTACTCCAT CGCCAGCCCGCAGCCAGGCGTCTTTGCCATCGACAGAGCCCTGGGGGTGCTGTTCCTCAACGGCAGCC TGGGCGCGGGCGAGCAGCGGGAGCTCACGCTGACTCTCAGGGCCGAGGACCAAGGCGTGCATCCTCAG GCAGCCCTGCTGGTGCTGACAGTCGTTATCGAGAAACGCGAACACAGCCCATCCTGGACTTTCGAACA TTGGTCTATCAAGTGGAAGTCAGTACTTCTATTGTGACTGTTAAAGCTTTTGCTCCTGACTCAATTC AGGACAGCATGAAATATTCAATTTTTAGTGGAAATGAAGATGGAGTTCTTTCCCTGTGCTCTAAGTCA GGTGTGGTGAACTGCCTTGCTTCTCTCAGTCACACAGACTTTCTCTCCCTGAAATTTGAATCTTCGGT GAAGGGACACCAAGACAGAGACAAATTACAGCCAATTCATCTTGATGACAACAACTCAAAGAAGCTGT
GCTTTACATTCCCTAGAGCCACTCAGGCTCTTGTATTCACTGGGCACTGTCTTTCTGATACATCTCTC CCCGGTTGGGTTTTTGCTACCGACTTGGACAGTGGTTTGAACGGCCTGATTGAGTATTCTATTCTGTC TGGCAACCAAGAAGAAGCATTCCAGATTGATGCACTGAGTGGTGTGATAACAACAAAAGCGATTCTAG ATTACGAGCTCACCAGCTCCTACAGCTTGATTGTCCAAGCCACAGATAAAGGGATGCCCAGGCTTTCT AATACGACTGTAATCAAGGTACAGGTGACTGATATAAATGACAATGCCCCAGCTTTTCTCCCCTCTGA AGCAGTGGAAATTACAGAAGTCATGACTATTTCAGAAGATTCTTTGCCTGGTGTAATTGTGACTCATG TGTCAGTTCATGATGTGGATTTGAATTCAGCTTTCATATTCAGTTTTGCCAAAGAGAGTAATCCTGGA ACCAAGTTTGCTATTGATCAGAACACTGGAGTGGTGGTGTTGGTGAAAACATTGGATTTTGAAGAAAT GACTGAATATGAGCTGCTCATCCAAATTTCTGATTCAGTGCACTACACAGAGGGAGCACTTGTAGTCC GTGTGCTGGATGTCAATGATAATCCACCAGTGTTTTCTCAAGATTTCTATCAGGTCACAGTTCCTGAA TCAATACCTGTGGGGTATTCAGTGCTGACTCTGTCAGCCACAGACTTAGAAAGCAATGAGAACATTTC TTACAGAATTCTATCCTCTTCTAAGGAATTCTCCATTGATCCTAAGAATGGCACAATATTTACTATCA GTCCCGTATTACTTCTGGATACAATATCAACAACTCGATTTCTTGTGGAAGCCAGTGATGGTGGAAAT CCTGACCCGAGAGCTCTTACTTTAGTGGAGATAGGAATAGAAGATATGAACAATTATGCCCCTGAATT CACAGTCAAATCCTATAATCTTAGCCTAAGTGAGGATGCTCTGGTTGGAAGCACGCTTGTTACATTTT CAAACATCGACCATGACTGGACCCGTGAAAACACATATGTTGAATATTCCATCATCAGTGGTAATTCA CAGAACAATTTTCATGTGGAAACTAAGTTCTTTCATTCAGAATATCCTTATAAGCAAGTCGGTTATCT TGTGTTGCTTCACAGTCTGGACAGAGAAGCAAGTGCTAGCCATGAGCTTGTCATTCTGGCATCTGACA GTGGCTGCCCTCCATTGAGTTCCACAGCTGTCATATCAATACAAGTACTTGATGTCAATGACAATCCC CCAAACTTCAGCAGCCTGAGCTATCACACCCATGTCAAGGAAAGCACCCCTCTAGGGAGTCACATCAC TGTGGTCTCAGCAAATGACCGTGACACAGGGTCACATGCAGAAATCATCTACAACATCATCTCTGGAA ATGAGAAGGGACATTTTTACTTAGAAGAAAACACTGGAGTTCTTTATTTGATTAAACCTCTGGATTAT GAAAAAATGACAAAATTCACCTTAACTGTCCAAGCTTCAGATGCAGAAAAGAAACATTTTTCTTTTGC AGTTGTGTTTGTCAGTGTCCTGGATGATAACGACCATGCACCTCAGTTTATGTTCTCAAGCTTCAGCT GTATTGTTCCAGAAAATCTGCCTATTTCCTCTACCATATGCTCTATAAATGCTCTGGATTTTGATGCT GGTCCGTATGGAGAATTGACCTATTCTATTGTATCACCCTGTTTTCTCACTCATGGAATGTCTTATGA TCATGATCTCTTCCTCATTGACCCTTTGACAGGGGATATTCATGCTAAGCAAATCCTTGACTATGAAA ATGGCAATAAATACTGCCTCACAGTCCAAGCCAAAGACAAAGGTGATGCAACTGCCTCCTTAGTGGTC TGGGTGGATATTGAAGGGATAGATGAATTTGAGCCCATTTTCACTCAAGATCAGTATTTTTTCACCCT CCCAGAAAAGAATAAAGACAGACAGTTGATTGGCAGAGTGGAAGCCTCAGATGCAGATGCTGGTATTG ATGGAGTCATTCTTTACTCCCTTGGAACCTCATCTCCTTTCTTTTCAGTAAATAGAACCAATGGAAAT ATTTATTTGATTAGAGCCCTTCCCCTAATAAAAAGTCAACTCAACAAAGAAGACACCTTGGAAATGAA AATAATCGCTCATAGTCCCAAATCAGATTCCAAGTTTGCATCTTGCACTGTTTTTGTGAATGTGTCTT TCTCCTCTGAAGGAACACCCTTGGCAGTGTTCGCCAGCAGCTTTTCAATCAGCCTGGTGGTCTCCTTT TTAGTGTTTCTGATACTCATCTGCATTCTAATTGTAATGATTTTAAGACATAAACAAAAAGACACAAT AAACAATTATGAGGAGAAGAAAACCTCATCTTTAGATGCGGACTTGAGAGTGACCCGGGATGCCAGTG TGCTCAAAGCCTTCCAGAAAACTGACGACTGCAGTAACGAGGTGGTCCCTGTGGATGCCACTCCGGAA TGGTTGAGTTTAATAAGTATCATGGAGAAGGATATTGTCAATCTGTACAGATACTCAAACTCCAGTGG CCACTGTTCTGTGGAAGGAGAAACTGCAGAAGATAAGGAAATCCAGAGGATAAATGAGCATCCCTACA GAAAGTGCTCAGACTCAGCTCTGAGTGACCACGAGTCCAGGGTGCCAGACTCGGGTATCCCGAGGGAC TCAGACCAGCTCTCCTGCCTATCTGGGGAAACTGATGTGATGGTGACTGCCGAAACAGCAGAAGCCAG CCAAACATTTGGGGAAGGAGATCAAGGGGAAGGCTGCAGCACCACCTGTGCTCAAAATAATGTGTTAC CCCAGACAGTTCAGAAGAGAGAGGCAAAAGAGAGCATCCTGGCTGACGTTAGAAAAGAGTCTGTCTTT ATTTCAGGTGATCAGGAAGTAAGGTGTGCAGCTCTTTCAACTCAGACGACCTCTGATCATGATGGAAA AGACAACTATCACTGGAATTATCTTCTTAGTTGGGAGCCCAAATTCCAACCTCTTGCCTCAGTATTTA ATGATATTGCAAAACTA-AAGGATGAACATTTGCATATGCCTGGCATTCCAAAAGAGAAGAAATCTTTT GTTTTTCCACCCCCTTTGATAACAGCAGTAGCCCAGCCTGGGATTAAAGCAGTCCCACCAAGAATGCC GGCAGTAAACCTGGGGCAGGTGCCTCCGAAACACCCACGCTCTCCCATCCCCTACCATCTTGGTTCTC
TGCCAGAAGGCATGACTCCCAATTTTTCTCCATCTCTTTCCCTATTGACGATGCAGCCTCCTGCCTTG TCTCCACTGTTGAGAGAAGGAGAATTATTAGGAACACACATCAGTGGTACATGCCATGAACTTAAAGC AGAAGATGAAGTTCAAATAT^ TGAACAAAATGTTTTCAAGCCGGCAACTCGAGATTGGGCTCATTTTTATCTAAAΆGCAAGTGATGTAA
TTTAGTTAGAGTTTTTAAAACTTCCCCATTAAAGTTTCTCCAATTTCAAA-W AAAAAAAA-AAAAA
NOV50i, CG58567-06 SEQ ID NO: 1082 3361 aa MW at 367309. lkD Protein Sequence
MEKCGLKEEGSYADIDPVAHDPDAGLFSTQGYTLVQPSDLPKDPAGPFFQLRYRTPGPLPSPLLPGSS SPLEPLDLVLLRRLDREEAAAHRLQIEA DGGRPRRTGLLSVELRVLDENDNPPVFEQDEYRAAVRED AQPGAEVCRVRATDRDLGPNGFVRYSVRARQVPGAGSGGGALGDAAYFAVEELSGWRV RPLDREAQ A HQLVVEARDGGAEPEVATVRVSIAVLDVNDNRPAIHVLFLTEGGVARVSEGARPGDYVARVSVSDA DGD EKEDEATGELGVGLGDGSISLSLEGGEGDFALLPGGPPGVFFLCVEGPLDRESRDLYELLLVAT DAGSPPLSTEETLLLRVADLNDQPPLFSQQHYKASVSEAAAPGTWM VSASDADEAGSDHA LRYTV VQLSAPCNLGSLQSKMVHTAECGPSFAIDSESGAISTIRTLDREVQEAVELKVVAQDLGEPPLSATCL VSITVDDVNDNEPIF RQVYNATIAEHAPVGHCFLQLISAQVASVKIKHKHKEIHEKHNLAYISCPAG TIYVIT ADGAAAFSGTDFAFSSDELQAFVLKSLFCELGEGELINWVALDREHRGHHEMTVLVTDRGS PP-RNATMAVYVSVTDINDNRPFFPQCLPGKELHVKVLEGQPVNMLVTTVFAKDPDEGNNAEVTYSVSS EDSSDHFKIDANNGEIRTTTILSYDYRPSYRMSVIATDQGVPPLQGQAWNIQVIPLSKGRAIMSQNI RHLIIPENLKPTKIMSLI SSDHLQQHYNGKLHFSIVADDKDGHFΞIDSSTGDLFLSKELDYETTSHY LFRVITTDHSKNLSLSSTVFLSIDVEDQNDHSPSFQDELIVISVEENVPIGTLVYVFNAKDDDGSFLN SRIQYYIESHNPGTNPFLIHPSFGTLVTVSRLDRESIPTVILTVTASDQAVNVTDRRLRSLTAQIVIL DV-troHNPTFISFPNAHVKEDVTVGSLVHHITA-HDPDEGRNGKVTYSILSGNENMTF LDESSGLLTTT CPLDYE KTQHILTVLALDDGTPALSSSQTLTVTVLDVNDEAPVFKQHLYEASVKENQNPGEFVTRVE ALDRDSGMRLNGDPDRELCAGGNPLGSRAPPGSRTPPEGGLSAQAFV11VDLEDVNDNHPVFNPSTYVT SISDETQPGTEIINVLATDQDSGIYGTVAYELIPGNVSSLFTIDSTTGIIYLTLPLSHLESTTLSLMV SAQDGGGLTAVINADVTIHIFQTTLAPAEFERPKYTFLVYEDVPEDSPIGTVK-AREPLNPPRSSVIHL QVRVLDANDHSPSFPTLYYQSSVREDAEVGTVVLVLSAVDKDEGLNGQTEYFLTDEACGAFTIDPMSG TLKTSNTLDREARSQHTFSAVARDCSIQGSRSTTVIIKVYVTDVNDNDPVLEQNPFDVFLSPESPTNQ TTVIVRADDLDLGPNGTVDSDDSPLLDDFHVHPDTGIIRTARRLDRERRDHYSFVAATLLGAWQVEI RVNDVNDHSPRFPLDSLQLDVSELSPPGTAFRLPVAHDPDAGLFSTQGYTLVQPSDLPKDPAGPFFQL RYRTPGPLPSPLLPGSSSPLEPLDLVLLRRLDREEAAAHRLQIEAWDGGRPRRTGLLSVELRVLDEND NPPVFEQDEΞRAAVREHAQPGAEVCRVRATARDVGPNGFVRYSVRARQVPGAGSGGGALGDAAYFALV VEARDGGAEHEVAAVRVSIAVLDVNDNRPAIHVLFLTEGGVARVSEGARPGDYVARVSVSDAGGDWEK EDEATGELGVTASDADSGLYGFIEYSLYDGFLSYEAPQAFRIDPHDGQICVSQDIDRERDPATYDLLV EAKDGFEIMPGASFELFEINSDTGEWTTTILDREIQEVFTLRVLVRDGGFPSLSSTTTILCTVEDEN DHAPEFIVSSYDIEVLENQEPEWYTVLASDMDAGNNRAVEYHIIDSSEPIFYRISSGDLGGKFSIHP RLGTIRTRKPLDHETQPVVVLTVQAQLGSAPACSSTEVNITVMDVNDNHPAFLRTSDEIRISQTTPPG TALYLARAEDRDSGRNGLIRYSIASPQPGVFAIDRALGVLFLNGSLGAGEQRELTLTLRAEDQGVHPQ AALLVLTWIEKREHSPS TFEHLVYQVEVSTSIVTVKAFAPDSIQDSMKYSIFSGNEDGVLSLCSKS GWNCLASLSHTDFLSL FESSVKGHQDRDKLQPIHLDDNNSKKLCFTFPRATQALVFTGHCLSDTSL PG VFATDLDSGLNGLIEYSILSGNQEEAFQIDALSGVITTKAILDYELTSSYSLIVQATDKGMPRLS NTTVIKVQVTDINDNAPAFLPSEAVEITEVMTISEDSLPGVIVTHVSVHDVDLNSAFIFSFAKESNPG TKFAIDQNTGVWLVKTLDFEEMTEYELLIQISDSVHYTEGALWRVLDVNDNPPVFSQDFYQVTVPE SIPVGYSVLTLSATDLESNENISYRILSSSKEFSIDPKNGTIFTISPVLLLDTISTTRFLVEASDGGN PDPRALTLVEIGIEDMNNYAPEFTVKSYNLSLSEDALVGSTLVTFSNIDHD TRENTYVEYSIISGNS QNNFHVETKFFHSEYPYKQVGYLVLLHSLDREASASHELVILASDSGCPPLSSTAVISIQVLDVNDNP PNFSSLSYHTHVKESTPLGSHITVVSANDRDTGSHAEIIYNIISGNEKGHFYLEENTGVLYLIKPLDY EKMTKFTLTVQASDAEBOHFSFAVVFVSVLDDNDHAPQFMFSSFSCIVPENLPISSTICSINALDFDA GPYGELTYSIVSPCFLTHGMSYDHDLFLIDPLTGDIHAKQILDYENGNKYCLTVQAKDKGDATASLW VDIEGIDEFEPIFTQDQYFFTLPE-KNKDRQLIGRVEASDADAGIDGVILYSLGTSSPFFSVNRTNGN IYLIRALPLIKSQLNKEDTLEMKIIAHSPKSDSKFASCTVFVNVSFSSEGTPLAVFASSFSISLWSF LVFLILICILIVMILRHKQKDTINNYEEKKTSSLDADLRVTRDASVLKAFQKTDDCSNEWPVDATPE LSLISIMEKDIVNLYRYSNSSGHCSVEGETAEDKEIQRINEHPYRKCSDSALSDHESRVPDSGIPRD SDQLSCLSGETDVMVTAETAEASQTFGEGDQGEGCSTTCAQN-NVLPQTVQ---OIEAKESILADVRKESVF ISGDQEVRCAALSTQTTSDHDGKDNYHWNYLLSWEPKFQPLASVFNDIAKL DEHLHMPGIPKE KSF VFPPPLITAVAQPGIKAVPPRMPAVNLGQVPPKHPRSPIPYHLGSLPEGMTPNFSPSLSLLTMQPPAL
SPLLREGELLGTO
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 5 OB. Table 50B. Comparison of the NOV50 protein sequences.
NOV50a
NOV50b
NOV50C
NOV5Od
NOV50e
NOV50f
NOV50g
NOV5Oh EKCGLKEEGSYADIDPVAHDPDAGLFSTQGYTLVQPSDLPKDPAGPFFQLRYRTPGPLP
NOV50i EKCGLKEEGSYADIDPVAHDPDAGLFSTQGYTLVQPSDLPKDPAGPFFQLRYRTPGPLP
NOV50a NOV50b
NOV50C
NOV50d
NOV50e
NOV50f
NOV50g
NOV5Oh SPLLPGSSSPLEPLDLVLLRRLDREEAAAHRLQIEA DGGRPRRTGLLSVELRVLDENDN
NOV50i SPLLPGSSSPLEPLDLVLLRRLDREEAAAHRLQIEA DGGRPRRTGLLSVELRVLDENDN
NOV5Oa
NOV50b
NOV50C
NOVSOd
NOV50e
NOV50f
NOV50g
NOV5Oh PPVFEQDEYRAAVREDAQPGAEVCRVRATDRDLGPNGFVRYSVRARQVPGAGSGGGALGD
NOV50i PPVFEQDEYRAAVREDAQPGAEVCRVRATDRDLGPNGFVRYSVRARQVPGAGSGGGALGD
NOV50a
NOV50b
NOV50c
NOV50d
NOV5Oe
NOV50f
NOV50g
NOV5Oh AAYFAVEELSGWRVWRPLDREAQA HQLWEARDGGAEPEVATVRVSIAVLDVNDNRPA
NOV50i AAYFAVEELSGWRV RPLDREAQA HQLWEARDGGAEPEVATVRVSIAVLDVNDNRPA
NOV50a
NOV50b
NOV50C
NOV50d
NOV50e
NOV50f
NOV50g
NOV5Oh IHVLFLTEGGVARVSEGARPGDYVARVSVSDADGVIGKITAIDMDS
NOV50i IHVLFLTEGGVARVSEGARPGDYVARVSVSDADGD EKEDEATGELGVGLGDGSISLSLE
NOV50a
NOV50b
NOV50C
NOV50d
NOV50e
NOV50f
NOV50g
NOV50h NOV50i GGEGDFALLPGGPPGVFFLCVEGPLDRESRDLYELLLVATDAGSPPLSTEETLLLRVADL
NOV50a
NOV50b
NOV50C
NOV50d
NOV50e
NOV50f
NOV50g
NOV50h GK-
NOV5Oi NDQPPLFSQQHYKASVSEAAAPGTW WVSASDADEAGSDHA LRYTWQLSAPCNLGSL
NOV50a
NOV50b
NOV50C
NOV50d
NOV5Oe
NOV50f
NOV50g
NOV50h
NOV50i QSKMVHTAECGPSFAIDSESGAISTIRTLDREVQEAVELKWAQDLGEPPLSATCLVSIT
NOV50a NOV50b NOV50C NOV50d NOV50e NOV50f NOV50g NOV50h NG-QLLYFLLSD NOV50i VDDV-NDNEPIF RQVYNATIAEi PVGHCFLQLISAQVASVKI---sΗKHKEIHEKHNLAYIS
NOV50a
NOV50b
NOV50C
NOV50d
NOVSOe
NOV50f
NOV5Og
NOV50h G KFFKMNPNTGELIN VALDREHRGH
NOV5Oi CPAGTIYVIT ADGAAAFSGTDFAFSSDELQAFVLKSLFCELGEGELIN VALDREHRGH
NOV50a
NOV50b
NOV50C
NOV50d
NOV50e
NOV50f
NOV50g
NOV5Oh HEMTVLVTDRGSPP--^ATMAVYVSVTDI---TONRPFFPQCLPGKELHVKVLEGQPVNMLVTT
NOV50i HEMTVLVTDRGSPPRNAT AVYVSVTDINDNRPFFPQCLPGKELHVKVLEGQPVNMLVTT
NOV50a
NOV50b
NOV50C
NOV50d
NOV50e
NOV50f
NOV50g
NOV5Oh VFA-l- PDEGNNAEVTYSVSSEDSSDHFKIDANNGEIRTTTILSYDYRPSYRMSVIATDQG NOV50i VFAKDPDEGNNAEVTYSVSSEDSSDHFKIDANNGEIRTTTILSYDYRPSYRMSVIATDQG
NOV50a
NOV50b
NOV50C
NOVSOd
NOV50e
NOV50f
NOV50g
NOV5Oh VPPLQGQAWNIQEL
NOV5Oi VPPLQGQAWNIQVIPLSKGRAI SQNIRHLIIPENLKPTKIMSLIKSSDHLQQHYNGKL
NOV50a
NOV50b
NOV50C
NOV50d
NOV50e
NOV5Of
NOV50g
NOV5Oh D YETTSHYLFRVITTDHSKNLSLSSTVFLSID
NOV50i HFSIVADD DGHFEIDSSTGDLFLSKELDYETTSHYLFRVITTDHSKNLSLSSTVFLSID
NOV50a
NOV50b
NOV50C
NOV50d
NOV50e
NOV5Of
NOV50g
NOV5Oh VEDQNDHSPSFQDELIVISVEENVPIGTLVYVFNAKDDDGSFLNSRIQYYIESHNPGTNP
NOV50i VEDQNDHSPSFQDELIVISVEENVPIGTLVYVFNA DDDGSFLNSRIQYYIESHNPGTNP
NOV50a
NOV50b
NOV50C
NOV50d
NOV50e
NOV50f
NOV50g
NOV5Oh FLIHPSFGTLVTVSRLDRESIPTVILTVTASDQAVNVTDRRLRSLTAQIVILDVNDHNPT
NOV5Oi FLIHPSFGTLVTVSRLDRESIPTVILTVTASDQAVNVTDRRLRSLTAQIVILDVNDHNPT
NOV50a
NOV50b
NOV50C
NOV50d
NOV50e
NOV50f
NOV50g
NOV5Oh FISFPN-AHVKEDVTVGSLVHHITAHDPDEGRNG VTYSILSGNEN TFMLDESSGLLTTT
NOV50i FISFPN-AHVKEDVTVGSLVHHITAHDPDEGRNGKVTYSILSGNENMTFMLDESSGLLTTT
NOV50a ;
NOV50b
NOV50C
NOV50d
NOV50e
NOV50f
NOV50g
NOV5Oh CPLDYEMKTQHILTVLALDDGTPALSSSQTLTVTVLDVNDΞAPVFKQHLYEASVKENQNP NOV50i CPLDYEMKTQHILTVLALDDGTPALSSSQTLTVTVLDVNDEAPVFKQHLYEASVKENQNP
NOV50a
NOV50b
NOV50C
NOV5Od
NOV5Oe
NOV50f
NOV50g
NOV5Oh GEFVTRVEALDRDSVFLNTRELN CFLAFYDAVFK NGGLSAQAFVRVDLE
NOV50i GEFVTRVEALDRDSGMRLNGDPDRELCAGGNPLGSRAPPGSRTPPEGGLSAQAFVRVDLE
NOV50a
NOV50b
NOV50C
NOV50d
NOV50e
NOV50f
NOV50g
NOV5Oh DVNDNHPVFNPSTYVTSISDETQPGTEIINVLATDQDSGIYGTVAYELIPGNVSSLFTID
NOV50i DVNDNHPVFNPSTYVTSISDETQPGTEIINVLATDQDSGIYGTVAYELIPGNVSSLFTID
NOV50a NOV50b NOV50C NOV50d NOV50e NOV50f NOV50g
NOV50h STTGIIYLTLPLSHLESTTLSL VSAQDGGGLTAVINADVTIHIFQTTLAPAEFERPKYT NOV5Oi STTGIIYLTLPLSHLESTTLSL VSAQDGGGLTAVINADVTIHIFQTTLAPAEFERPKYT
NOV50a NOV5Ob
NOV50C
NOV50d
NOV50e
NOV50f
NOV5Og
NOV5Oh FLVYEDVPEDSPIGTVKAREPLNPPRSSVIHLQVRVLDANDHSPSFPTLYYQSSVREDAE
NOV50i FLVYEDVPEDSPIGTVKAREPLNPPRSSVIHLQVRVLDANDHSPSFPTLYYQSSVREDAE
NOV50a NOV50b NOV50C NOV50d NOV50e NOV50f NOV50g
NOV5Oh VGTWLVLSAVDKDEGLNGQTEYFLTDEACGAFTIDPMSGTLKTSNTLDREARSQHTFSA NOV50i VGTWLVLSAVDKDEGLNGQTEYFLTDEACGAFTIDP SGTLKTSNTLDREARSQHTFSA
NOV50a
NOV50b
NOV50C
NOV50d
NOV50e
NOV50f
NOV50g
NOV50h V-ARDCSIQGSRSTTVIIK-VYVTDV--Sro-tIDPVLEQNPFDVFLSPESPTNQTTVIVRADDLDL NOV50i V--RDCSIQGSRSTTVIIKVYVTDVNDNDPVLEQNPFDVFLSPESPTNQTTVIVRADDLDL
NOV50a
NOV50b
NOV50C
NOV50d
NOV50e
NOV50f
NOV50g
NOV50h GPNGTVDSDDSPLLDDFHVHPDTGIIRTARRLDRERRDHYSFVAATLLGAWQVEIRVND
NOV50i GPNGTVDSDDSPLLDDFHVHPDTGIIRTARRLDRERRDHYSFVAATLLGAWQVEIRVND
NOV50a
NOV50b
NOV50C
NOV50d
NOV50e
NOV50f
NOV50g
NOV5Oh VNDHSPRFPLDSLQLDVSELSPPGTAFRLPVAHDPDAGLFSTQGYTLVQPSDLPKDPAGP
NOV50i VNDHSPRFPLDSLQLDVSELSPPGTAFRLPVAHDPDAGLFSTQGYTLVQPSDLPKDPAGP
NOV50a
NOV50b
NOV50C
NOV5Od
NOV50e
NOV50f
NOV50g
NOV50h FFQLRYRTPGPLPSPLLPGSSSPLEPLDLVLLRRLDREEAAAHRLQIEADGGRPRRTGL
NOV50i FFQLRYRTPGPLPSPLLPGSSSPLEPLDLVLLRRLDREEAAAHRLQIEA DGGRPRRTGL
NOV50a
NOV50b
NOV50C
NOV50d
NOV50e
NOV50f
NOV50g
NOV5Oh LSVELRVLDENDNPPVFEQDESRAAVREHAQPGAEVCRVRATARDVGPNGFVRYSVRARQ
NOV50i LSVΞLRVLDENDNPPVFEQDΞSRAAVREHAQPGAEVCRVRATARDVGPNGFVRYS RARQ
NOV50a
NOV50b
NOV50C
NOV50d
NOV50e
NOV50f
NOV50g
NOV5Oh VPGAGSGGGALGDAAYFALWEARDGGAEHEVAAVRVSIAVLDVNDNRPAIHVLFLTEGG
NOV50i VPGAGSGGGALGDAAYFALWEARDGGAEHEVAAVRVSIAVLDVNDNRPAIHVLFLTEGG
NOV50a
NOV50b
NOV50C
NOV50d
NOV50e
NOV50f
NOV50g
NOV5Oh VARVSEGARPGDYVARVSVSDAGGD EKEDEATGELGVTASDADSGLYGFIEYSLYDGFL NOV50i VARVSEGARPGDYVARVSVSDAGGD EKEDEATGELGVTASDADSGLYGFIEYSLYDGFL
NOV50a
NOV50b
NOV50C
NOV50d
NOV50e
NOV50f
NOV50g
NOV50h SYEAPQAFRIDPHDGQICVSQDIDRERDPATYDLLVEAKDGFEIMPGASFELFEINSDTG
NO 50 i S YEAPQAFRIDPHDGQ I CVS QD IDRERDPATYDLLVEAKDGFE IMPGAS FELFE INSDTG
NOV50a
NOV50b
NOV50C
NOV50d
NOV50e
NOV50f
NOV50g
NOV5 Oh EWTTTILDREIQΞVFTLRVLVRDGGFPSLSSTTTILCTVEDENDHAPEFIVSSYDIEVL
NOV5 Oi EWTTTILDREIQEVFTLRVLVRDGGFPSLSSTTTILCTVEDENDHAPEFIVSSYDIEVL
NOV50a
NOV50b
NOV50C
NOV50d
NOV50e
NOVS Of
NOV50g
NOV5 Oh ENQEPEWYTVLASDMDAGNNRAVEYHIIDSSEPIFYRISSGDLGGKFSIHPRLGTIRTR
NOV50i ENQEPEWYTVLASDMDAGNNRAVEYHIIDSSEPIFYRISSGDLGGKFSIHPRLGTIRTR
NOV50a
NOV50b
NOV50C
NOV50d
NOV50e
NOV50f
NOV50g
NOV5 Oh KPLDHETQPVWLTVQAQLGSAPACSSTEVNITV-MDVNDNHPAFLRTSDEIRISQTTPPG
NOV5 Oi KPLDHETQPVWLTVQAQLGSAPACSSTEVNITVMDVNDNHPAFLRTSDΞIRISQTTPPG
NOV50a
NOV50b
NOV50C
NOV50d
NOV50e
NOV50f
NOV50g
NOV5 Oh TALYLARAEDRDSGRNGLIRYSIASPQPGVFAIDRALGVLFLNGSLGAGEQRELTLTLRA
NOV5 Oi TALYLARAEDRDSGRNGLIRYSIASPQPGVFAIDRALGVLFLNGSLGAGEQRELTLTLRA
NOV50a
NOV50b
NOV50C
NOV50d
NOV50e
NOV50f
NOV50g
NOV50h EDQGVHPQAALLVLTWIEKREHSPS TFEHLVYQVEVSTSIVTVKAFAPDSIQDSMKYS NOV50i EDQGVHPQAALLVLTWIΞKREHSPS TFEHLVYQVEVSTSIVTVKAFAPDSIQDSMKYS
NOV50a
NOV50b
NOV50c
NOV50d
NOV50e
NOV50f
NOV50g
NOV5Oh IFSGNEDGVLSLCSKSGWNCLASLSHTDFLSLKFESSVKGHQDRDK1QPIHLDDNNSKK
NOV50i IFSGNEDGVLSLCSKSGWNCLASLSHTDFLSLKFESSVKGHQDRDKLQPIHLDDNNSKK
NOV50a
NOV50b
NOV50C
NOV50d
NOV50e
NOV50f
NOV50g
NOV5Oh LCFTFPRATQALVFTGHCLSDTSLPG VFATDLDSGLNGLIEYSILSGNQΞEAFQIDALS
NOV50i LCFTFPRATQALVFTGHCLSDTSLPGWVFATDLDSGLNGLIEYSILSGNQEEAFQIDALS
NOV5Oa LIVQATDKGMPRLSNTTVIKVQVTDINDNAPAFLPSEAVEIT
NOV50b GS
NOV50C GS
NOV50d GS
NOV50e
NOV50f
NOV50g GS
NOV5Oh GVITTKAILDYELTSSYSLIVQATDKGMPRLSNTTVIKVQVTDINDNAPAFLPSEAVEIT
NOV50i GVITTKAILDYELTSSYSLIVQATDKGMPRLSNTTVIKVQVTDINDNAPAFLPSEAVEIT
NOV5Oa EVMTISEDSLPGVIVTHVSVHDVDLNSAFIFSFAKESNPGTKFAIDQNTGVWLVKTLDF
NOV5Ob EVMTISEDSLPGVIVTHVSVHDVDLNSAFIFSFAKESNPGTKFAIDQNTGVWLVKTLDF
NOV5Oc EVMTISEDSLPGVIVTHVSVHDVDLNSAFIFSFAKESNPGTKFAIDQNTGVWLVKTLDF
NOV5Od EVMTISEDSLPGVIVTHVSVHDVDLNSAFIFSFAKESNPGTKFAIDQNTGVWLVKTLDF
NOV50e
NOV5Of EVMTISEDSLPGVIVTHVSVHDVDLNSAFIFSFAKESNPGTKFAIDQNTGVVVLVKTLDF
NOV5Og EVMTISEDSLPGVIVTHVSVHDVDLNSAFIFSFAKESNPGTKFAIDQNTGVWLVKTLDF
NOV5Oh EVMTISEDSLPGVIVT-HVSVHDVDLNSAFIFSFAKESNPGTKFAIDQNTGVWLVKTLDF
NOV50i EVMTISEDSLPGVIVTHVSVHDVDLNSAFIFSFAKESNPGTKFAIDQNTGVVVLVKTLDF
NOV50a EEMTEYELLIQISDSVHYTEGALWRVLDVNDNPPVFSQDFYQVTVPESIPVGYSVLTLS
NOV5Ob EEMTEYELLIQISDSVHYTEGALWRVLDVNDNPPVFSQDFYQVTVPESIPVGYSVLTLS
NOV50C EEMTEYELLIQISDSVHYTEGALWRVLDVNDNPPVFSQDFYQVTVPESIPVGYSVLTLS
NOV5Od EEMTEYELLIQISDSVHYTEGALWRVLDVNDNPPVFSQDFYQVTVPESIPVGYSVLTLS
NOV5Oe --MTEYELLIQISDSVHYTEGALWRVLDVNDNPPVFSQDFYQVTVPESIPVGYSVLTLS
NOV50f EEMTEYELLIQISDSVHYTEGALWRVLDVNDNPPVFSQDFYQVTVPESIPVGYSVLTLS
NOV5Og EEMTEYELLIQISDSVHYTEGALWRVLDVNDNPPVFSQDFYQVTVPESIPVGYSVLTLS
NOV5Oh EEMTEYELLIQISDSVHYTEGALWRVLDVNDNPPVFSQDFYQVTVPESIPVGYSVLTLS
NOV50i EEMTEYELLIQISDSVHYTEGALVVRVLDVNDNPPVFSQDFYQVTVPESIPVGYSVLTLS
NOV5Oa ATDLESNENISYRILSSSKEFSIDPKNGTIFTISPVLLLDTISTTRFLVEASDGGNPDPR
NOV50b ATDLESNENISYRILSSSKEFSIDPKNGTIFTISPVLLLDTISTTQFLVEASDGGNPDLR
NOV50C ATDLESNENISYRILSSSKEFSIDPKNGTIFTISPVLLLDTISTTQFLVEASDGGNPDLR
NOV50d ATDLESNENISYRILSSSKEFSIDPKNGTIFTISPVLLLDTISTTQFLVEASDGGNPDLR
NOV50e ATDLESNENISYRILSSSKEFSIDPKNGTIFTISPVLLLDTISTTQFLVEASDGGNPDLR
NOV50f ATDLESNENISYRILSSSKEFSIDPKNGTIFTISPVLLLDTISTTQFLVEASDGGNPDLR
NOV50g ATDLESNENISYRILSSSKEFSIDPKNGTIFTISPVLLLDTISTTQFLVEASDGGNPDLR
NOV50h ATDLESNENISYRILSSSKEFSIDPKNGTIFTISPVLLLDTISTTRFLVEASDGGNPDPR NOV50i ATDLESNENISYRILSSSKEFSIDPKNGTIFTISPVLLLDTISTTRFLVEASDGGNPDPR
NOV50a ALTLVEIGIEDMNNYAPEFTVKSYNLSLSEDALVGSTLVTFSNIDHDWTRENTYVEYSII
NOVSOb ALTLVEIGIEDMNNYAPEFTVKSYNLSLSEDALVGSTLVTFSNIDHDWTRENTYVEYSII
NOV50C ALTLVEIGIEDMNNYAPEFTVKSYNLSLSEDALVGSTLVTFSNIDHD TRENTYVEYSII
NOV5Od ALTLVEIGIEDMNNYAPEFTVKSYNLSLSEDALVGSTLVTFSNIDHDWTRENTYVEYSII
NOV5Oe ALTLVEIGIEDMNNYAPEFTVKSYNLSLSEDALVGSTLVTFSNIDHD TRENTYVEYSII
NOV50f ALTLVEIGIEDMNNYAPEFTVKSYNLSLSEDALVGSTLVTFSNIDHD TRENTYVEYSII
NOV50g ALTLVΕIGIEDJNNYAPEFTVKSYNLSLSEDALVGSTLVTFSNIDHD TRENTYVEYSII
NOV50h ALTLVEIGIEDMNNYAPEFTVKSYNLSLSEDALVGSTLVTFSNIDHD TRENTYVEYSII
NOV50i ALTLVEIGIEDMNNYAPEFTVKSYNLSLSEDALVGSTLVTFSNIDHD TRENTYVEYSII
NOV50a SGNSQNNFHVETKFFHSEYPYKQVGYLVLLHSLDREASASHELVILASDSGCPPLSSTAV
NOV50b SGNSQNNFHVETKFFHSEYPYKQVGYLVLLHSLDREASASHELVILASDSGCPPLSSTAV
NOV50c SGNSQNNFHVETKFFHSEYPYKQVGYLVLLHSLDREASASHELVILASDSGCPPLSSTAV
NOV50d SGNSQNNFHVETKFFHSEYPYKQVGYLVLLHSLDREASASHELVILASDSGCPPLSSTAV
NOV50e SGNSQNNFHVETKFFHSEYPYKQVGYLVLLHSLDREASASHELVILASDSGCPPLSSTAV
NOV50f SGNSQNNFHVETKFFHSEYPYKQVGYLVLLHSLDREASASHELVILASDSGCPPLSSTAV
NOV50g SGNSQNNFHVETKFFHSEYPYKQVGYLVLLHSLDREASASHELVILASDSGCPPLSSTAV
NOV50h SGNSQNNFHVETKFFHSEYPYKQVGYLVLLHSLDREASASHELVILASDSGCPPLSSTAV
NOV50i SGNSQNNFHVETKFFHSEYPYKQVGYLVLLHSLDREASASHELVILASDSGCPPLSSTAV
NOV50a ISIQVLDVNDNPPNFSSLSYHTHVKESTPLGSHITVVSA-lsroRDTGSHAEIIYNIISGNEK
NOV50b ISIQVLDVNDNPPNFSSLSYHTHVKESTPLGSHITWSANDRDTGSHAEIIYNIISGNEK
NOV50C ISIQVLDVNDNPPNFSSLSYHTHVKESTPLGSHITVVSANDRDTGSHAEIIYNIISGNEK
NOV50d ISIQVLDV-NDNPPNFSSLSYHTHVKESTPLGSHITVVSAt!ro--^TGSH-AEIIYNIISGNEK
NOV50e ISIQVLDVNDNPPNFSSLSYHTHVKESTPLGSHITWS-ANDRDTGSHAEIIYNIISGNEK
NOV50f ISIQVLDVNDNPPNFSSLSYHT---WKESTPLGSHITVVSANDRDTGSHAEIIYNIISGNEK
NOV5Og ISIQVLDVNDNPPNFSSLSYHTHVKESTPLGSHITVVSAI-IDRDTGSHAEIIYNIISGNEK
NOV50h ISIQVLDVNDNPPNFSSLSYHTHVKESTPLGSHITVVSANDRDTGSHAEIIYNIISGNEK
NOV50i ISIQVLDVNDNPPNFSSLSYHTHVKESTPLGSHITVVSANDRDTGSHAEIIYNIISGNEK
NOV5Oa GHFYLEENTGVLYLIKPLDYEKMTKFTLTVQASDAEKKHFSFAVVFVSVLDDNDHAPQFM
NOV5Ob GHFYLEENTGVLYLIKPLDYEKMTKFTLTVQASDAEKKHFSFAWFVSVLDDNDHAPQFM
NOV50C GHFYLEENTGVLYLIKPLDYEKMTKFTLTVQASDAEKKHFSFAVVFVSVLDDNDHAPQFM
NOV5Od GHFYLEENTGVLYLIKPLDYEKMTKFTLTVQASDAEKKHFSFAWFVSVLDDNDHAPQFM
NOV50e GHFYLEENTGVLYLIKPLDYEKMTKFTLTVQASDAEK-l-sΗFSFAVVFVSVLDD---roHAPQFM
NOV5Of GHFYLEENTGVLYLIKPLDYEKMTKFTLTVQASDAEKKHFSFAWFVSVLDDNDHAPQFM
NOV5Og GHFYLEENTGVLYLIKPLDYE MTKFTLTVQASDAEKKHFSFAVVFVSVLDDNDHAPQFM
NOV5Oh GHFYLEENTGVLYLIKPLDYEKMTKFTLTVQASDAEKKHFSFAWFVSVLDDNDHAPQFM
NOV50i GHFYLEENTGVLYLIKPLDYEKMTKFTLTVQASDAEKKHFSFAWFVSVLDDNDHAPQFM
NOV50a FSSFSCIVPENLPISSTICSINALDFDAGPYGELTYSIVSPCFLTHG SYDHDLFLIDPL
NOV50b FSSFSCIVPENLPISSTIRSINALDFDAGPYGELTYSIVSPCFLTHGMSYDHDLFLIDPL
NOV50C FSSFSCIVPENLPISSTICSINALDFDAGPYGELTYSIVSPCFLTHG SYDHDLFLIDPL
NOV50d FSSFSCIVPENLPISSTICSINALDFDAGPYGELTYSIVSPCFLTHGMSYDHDLFLIDPL
NOV50e FSSFSCIVPENLPISSTICSINALDFDAGPYGELTYSIVSPCFLTHGMSYDHDLFLIDPL
NOV50f FSSFSCIVPENLPISSTICSINALDFDAGPYGELTYSIVSPCFLTHGMSYDHDLFLIDPL
NOV50g FSSFSCIVPENLPISSTICSINALDFDAGPYGELTYSIVSPCFLTHGMSYDHDLFLIDPL
NOV50h FSSFSCIVPENLPISSTICSINALDFDAGPYGELTYSIVSPCFLTHGMSYDHDLFLIDPL
NOV50i FSSFSCIVPENLPISSTICSINALDFDAGPYGELTYSIVSPCFLTHGMSYDHDLFLIDPL
NOV5Oa TGDIHAKQILDYENGNKYCLTVQAKDKGDATASLW VDIEGIDEFEPIFTQDQYFFTLP
NOV5Ob TGDIHAKQILDYENGNKYCLTVQAKDKGDATASLW VDIEGIDEFEPIFTQDQYFFTLP
NOV50C TGDIHAKQILDYENGNKYCLTVQAKDKGDATASLW VDIEGIDΞFEPIFTQDQYFFTLP
NOV5Od TGDIHAKQILDYENGNKYCLTVQAKDKGDATASLWWVDIEGIDEFEPIFTQDQYFFTLP
NOV5Oe TGDIHAKQILDYENGNKYCLTVQA-KDKGDATASLW VDIEGIDEFEPIFTQDQYFFTLP
NOV50f TGDIHAKQILDYENGNKYCLTVQAKDKGDATASLVVWVDIEGIDEFEPIFTQDQYFFTLP
NOV5Og TGDI--- KQILDYENGNKYCLTVQAKDKGDATASLVV VDIEGIDEFEPIFTQDQYFFTLP
NOV5Oh TGDIHAKQILDYENGNKYCLTVQAKDKGDATASLWWVDIEGIDEFEPIFTQDQYFFTLP NOV50i TGDIHAKQILDYENGNKYCLTVQAKDKGDATASLWWVDIEGIDEFEPIFTQDQYFFTLP
NOV50a EKNKDRQLIGRVΞASDADAGIDGVILYSLGTSSPFFSVNRTNGNIYLIRALPLIKSQLNK NOV50b EKNKDRQLIGRVEASDADAGIDGVILYSLGTSSPFFSVNKTNGNIYLIRALPLIKSQLNK NOV50C EKNKDRQLIGRVEASDADAGIDGVILYSLGTSSPFFSVNKTNGNIYLIRALPLIKSQLNK NOV50d EKN-KDRQLIGRVEASDADAGIDGVILYSLGTSSPFFSVNKTNGNIYLIRALPLIKSQLNK NOV50e EKNKDRQLIGRVEASDADAGIDGVILYSLGTSSPSLSVNKTNGNIYLIRALPLIKSQLNK NOV50f EKNKDRQLIGRVEASDADAGIDGVILYSLGTSSPFFSVNKTNGNIYLIRALPLIKSQLNK NOV50g EKNKDRQLIGRVEASDADAGIDGVILYSLGTSSPFFSVNKTNGNIYLIRALPLIKSQLNK NOV50h EKNKDRQLIGRVEASDADAGIDGVILYSLGTSSPFFSVNRTNGNIYLIRALPLIKSQLNK NOV50i EKNKDRQLIGRVEASDADAGIDGVILYSLGTSSPFFSVNRTNGNIYLIRALPLIKSQLNK
NOV50a EDTLEMKIIAHSPKSDSKFASCTVFVNVSFSSEGTPLAVFASSFSISLWSFLVFLILIC NOV50b EDTLEMKIIAHSPKSDSKFASCTVFVNVSFSSEGTPLAVFASSFSISLWSFLVFLILIC NOV50C EDTLEMKIIAHSPKSDSKFASCTVFVNVSFSSEGTPLAVFASSFSISLWSFLVFLILIC NOV50d EDTLEMKIIAHSPKSDSKFASCTVFVNVSVD NOV50e EDTLEMKIIAHSPKSDSKFASCTVFVNVSFSSEGTPLAVFASSFSISLWSFLVFLILIC NOV50f EDTLEMKIIAHSPKSDSKFASCTVFVNVSFSSEGTPLAVFASSFSISLWSFLVFLILIC NOV50g EDTLEMKIIAHSPKSDSKFASCTVFVNVSVD NOV50h EDTLEMKIIAHSPKSDSKFASCTVFVNVSFSSEGTPLAVFASSFSISLWSFLVFLILIC NOV50i EDTLEMKIIAHSPKSDSKFASCTVFVNVSFSSEGTPLAVFASSFSISLWSFLVFLILIC
NOV50a ILIVMILRHKQKDTINNYEEKKTSSLDADLRVTRDASVLKAFQKTDDCSNEWPVDATPE NOV50b ILIVMILRHKQ---α-)TINNYEEKKTSSLDADLRVTRDASVLKAFQKTDDCSNEVVPVDATPE NOV50C ILIVMILRHKQ---UOTIN--TYEEKKTSSLDADLRVTRDASVLKAFQKTDDCSNEVVPVDATPE NOV50d NOV50e ILIVMILRHKQKDTINNYEEKKTSSLDADLRVTRDASVLKAFQKTDDCSNEWPVDATPE NOV50f ILIVMILRHKQKDTINNYEEKKTSSLDADLRVTRDASVLKAFQKTDDCSNEVVPVDATPE NOV50g NOV50h ILIVMILRHKQKDTINNYEEKKTSSLDADLRVTRDASVLKAFQKTDDCSNΞVVPVDATPE NOV50i ILIVMILRHKQKDTINNYEEKKTSSLDADLRVTRDASVLKAFQKTDDCSNEWPVDATPE
NOVSOa WLSLISIMEKDIVNLYRYSNSSGHCSVEGETAEDKΞIQRINEHPYRKCSDSALSDHESRV NOV50b LSLISIMEKDIVNLYRHSNSSGHCSVEGETAEDKEIQRINEHPYRKCSDSALSDHESRV NOV50C LSLISIMEKDIVNLYRHSNSSGHCSVEGETAEDKEIQRINEHPYRKCSDSALSDHESRV NOV50d NOV50e LSLISIMEKDIVNLYRHSNSSGHCSVΞGETAEDKEIQRINEHPYRKCSDSALSDHESRV NOV50f LSLISIMEKDIVNLYRHSNSSGHCSVEGETAEDKEIQRINEHPYRKCSDSALSDHESRV NOV50g NOV50h LSLISIMEKDIVNLYRYSNSSGHCSVEGETAEDKEIQRINEHPYRKCSDSALSDHESRV NOV50i LSLISIMEKDIVNLYRYSNSSGHCSVEGETAEDKEIQRINEHPYRKCSDSALSDHESRV
NOV50a PDSGIP-RDSDQLSCLSGETDVMVT-AETAEASQTFGEGDQGEGCSTTCAQ---TOVLPQTVQKR NOV5Ob PDSGIPRDSDQLSCLSGΞTDVMVTAETAEASQTFGEGDQGEGCSTTCAQNNVLPQTVQKR NOV50C PDSGIPRDSDQLSCLSGETDVMVTAETAEASQTFGEGDQGEGCSTTCAQNNVLPQTVQKR NOV50d NOV50e PDSGIPRDSDQLSCLSGETDVMVTAETAEASQTFGEGDQGEGCSTTCAQNNVLPQTVQKR NOV50f PDSGIPRDSDQLSCLSGETDVMVTAETAEASQTFGEGDQGEGCSTTCAQNNVLPQTVQKR NOV50g NOV50h PDSGIPRDSDQLSCLSGETDVMVTAETAEASQTFGEGDQGEGCSTTCAQNNVLPQTVQKR NOV50i PDSGIPRDSDQLSCLSGETDVMVTAETAEASQTFGEGDQGEGCSTTCAQNNVLPQTVQKR
NOV50a EAKESILADVRKESVFISGDQEVRC-AALSTQTTSD-fflDG DNYH NYLLS EPKFQPLASV NOV50b EAKESILADVRKESVFISGDQEVRCAALSTQTTSDHDGKDNYH NYLLS EPKFQPLASV NOV50C EAKESILADVRKESVFISGDQEVRCAALSTQTTSDHDGKDNYHWNYLLS EPKFQPLASV NOV50d NOV50e EAKESILADVRKESVFISGDQEVRCAALSTQTTSDHDGKDNYHWNYLLSWEPKFQPLASV NOV50f EAKESILADVRKESVFISGDQEVRCAALSTQTTSDHDGKDNYH NYLLS EPKFQPLASV NOV50g NOV50h EA ESIL-ADVT-KESVFISGDQEVRC-AALSTQTTSDHDGKDNYH NYLLS EPKFQPLASV NOV50i EAKESILADVRKESVFISGDQEVRCAALSTQTTSDHDGKDNYH NYLLSWEPKFQPLASV
NOV50a FNDIAKL-KDEHLHMPGIPKEKKSFVFPPPLITAVAQPGIKAVPPRMPAVNLGQVPPKHPR NOV50b FNDIAKLKDEHLHMPGIPKEKKSFVFPPPLITAVAQPGIKAVPPRMPAVNLGQVPPKHPR NOV50C FNDIAKLKDEHLHMPGIPKEKKSFVFPPPLITAVAQPGIKAVPPRMPAVNLGQVPPKHPR NOV50d NOV50e FNDIAKLKDEHLHMPGIPKEKKSFVFPPPLITAVAQPGI---SAVPPRMPAVNLGQVPPKHPR NOV50f FNDIAKLKDEHLHMPGIPKEKKSFVFPPPLITAVAQPGIKAVPPRMPAVNLGQVPPKHPR NOV50g NOV50h F-troiAKLKDEHLHMPGIPKEKKSFVFPPPLITAVAQPG -KAVPPRMPAVNLGQVPP-KHPR NOV50i F-5JDIAKLKDEHLHMPGIPKEKKSFVFPPPLITAVAQPGIKAVPPRMPAVNLGQVPPKHPR
NOV50a SPIPYHLGSLPEGMTPNFSPSLSLLTMQPPALSPLLREGELLGTHISGTCHELKAEDΞVQ NOV50b SPIPYHLGSLPEGMTPNFSPSLSLLTMQPPALSPLLRΞGELLGTHISGTCHELKAEDEVQ NOV50C SPIPYHLGSLPEGMTPNFSPSLSLLTMQPPALSPLLREGELLGTHISGTCHELKAEDEVQ NOV50d NOV50e SPIPYHLGSLPEGMTPNFSPSLSLLTMQPPALSPLLREGELLGTHISGTCHELKAEDEVQ NOV50f SPIPYHLGSLPEGMTPNFSPSLSLLTMQPPALSPLLREGELLGTHISGTCHELKAEDEVQ NOV50g NOV50h SPIPYHLGSLPEGMTPNFSPSLSLLTMQPPALSPLLREGELLGTHISGTCHELKAEDEVQ NOV50i SPIPYHLGSLPEGMTPNFSPSLSLLTMQPPALSPLLREGELLGTHISGTCHELKAEDEVQ
NOV50a I-- NOV50b IVD NOV50C IVD NOV50d NOV50e NOV50f NOV50g NOV50h I-- NOV50i I--
NOV50a (SEQ ID NO 1066) NOV50b (SEQ ID NO 1068) NOV50C (SEQ ID NO 1070) NOV50d (SEQ ID NO 1072) NOV50e (SEQ ID NO 1074) NOV50f (SEQ ID NO 1076) NOV50g (SEQ ID NO 1078) NOV50h (SEQ ID NO 1080) NOV50i (SEQ ID NO 1082)
Further analysis of the NOV50a protein yielded the following properties shown in Table 50C.
Table 50C. Protein Sequence Properties NOV50a
SignalP analysis: No Known Signal Sequence Predicted
PSORT π analysis:
PSG : a new signal peptide prediction method
N- region: length 8 ; pos . chg 1 ; neg. chg 1 H-region: length 3 ; peak value -4.35 PSG score : -8 .75
GvH: von Heijne ' s method for signal seg. recognition GvH score (threshold: ' -2 . 1) : -9.63 possible cleavage site : between 38 and 39 >» Seems to have no N-terminal signal peptide
ALOM: Klein et al's method for TM region allocation Init position for calculation: 1
Tentative number of TMS(s) for the threshold 0.5: 1 Number of TMS(s) for threshold 0.5: 1
INTEGRAL Likelihood =-18.15 Transmembrane 690 - 706 PERIPHERAL Likelihood = 2.54 (at 195) ALOM score: -18.15 (number of TMSs: 1)
MTOP: Prediction of membrane topology (Hartmann et al.) Center position for calculation: 697 Charge difference: 3.5 C( 2.5) - N(-1.0) C > N: C-terminal side will be inside
>>> membrane topology: type lb (cytoplasmic tail 690 to 1063)
MITDISC: discrimination of mitochondrial targeting seq R content: 1 Hyd Moment (75): 8.18 Hyd Momen (95 ) : 10.59 G content: 1 D/E content : 2 S/T content : 5 Score: -4.29
Gavel: prediction of cleavage sites for mitochondrial preseq R-2 motif at 22 PRL | SN
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7: PKEKKSF (5) at 960 bipartite : none content of basic residues: 7.1% NLS Score: -0.04
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals : none
SKL: peroxisomal targeting signal in the C-terminus : none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail: too long tail
Dileucine motif in the tail: found LL at 929 LL at 1026 LL at 1037 LL at 1043 checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: cytoplasmic Reliability: 70.6
COIL: Lupas 's algorithm to detect coiled-coil regions total: 0 residues
Final Results (k = 9/23) :
34.8 %: nuclear
26.1 %: cytoplasmic
17.4 % : mitochondrial
8.7 %: vesicles of secretory system
4.3 % : vacuolar
4.3 %: peroxisomal
4.3 % : endoplasmic reticulum
» prediction for CG58567-01 is nuc (k=23)
A search of the NOV50a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 50D.
In a BLAST search of public sequence databases, the NOV50a protein was found to have homology to the proteins shown in the BLASTP data in Table 50E.
PFam analysis predicts that the NOV50a protein contains the domains shown in the Table 50F.
Example 51.
The NOV51 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 51 A.
Table 51 A. NOV51 Sequence Analysis
NOV51a, CG59534-03 SEQ ID NO: 1083 3333 bp DNA Sequence ORF Start: ATG at 15 ORF Stop: TAG at 3219
GCGCTCCAGACAAGATGGCGCGGCCGGTCCGGGGAGGGCTCGGGGCCCCGCGCCGCTCGCCTTGCCTT
CTCCTTCTCTGGCTGGTTTTGGTTCGGCTGGAGCCGGTGACCGCCGCGGCCGGCCCGCGGGCGCCCTG CGCGGCCGCCTGCACTTGCGCTGGGGACTCGCTGGACTGCGGTGGGCGCGGGCTGGCTGCGTTGCCCG GGGACCTGCCCTCCTGGACGCGGAGCCTAAACCTGAGTTACAACAAACTCTCTGAGATTGACCCTGCT GGTTTTGAGGACTTGCCGAACCTACAGGAAGTGCAGCACAACAAGATTCGCAGCGTGGAGGGGAGCCA GCTG.AA.GGCCTACCTTTCCTTAGAAGTGTTAGATCTGAGTTTGAACAACATCACGGAAGTGCGGAACA CCTGCTTTCCACACGGACCGCCTATAAAGGAGCTCAACCTGGCAGGCAATCGGATTGGCACCCTGGAG TTGGGAGCATTTGATGGTCTGTCACGGTCGCTGCTAACTCTTCGCCTGAGCAAAAACAGGATCACCCA GCTTCCTGTAAGAGCATTCAAGCTACCCAGGCTGACACAACTGGACCTCAATCGGAACAGGATTCGGC TGATAGAGGGCCTCACCTTCCAGGGGCTCAACAGCTTGGAGGTGCTGAAGCTTCAGCGAAACAACATC AGCAAACTGACAGATGGGGCCTTCTGGGGACTGTCCAAGATGCATGTGCTGCACCTGGAGTACAACAG CCTGGTAGAAGTGAACAGCGGCTCGCTCTACGGCCTCACGGCCCTGCATCAGCTCCACCTCAGCAACA ATTCCATCGCTCGCATTCACCGCAAGGGCTGGAGCTTCTGCCAGAAGCTGCATGAGTTGGTCCTGTCC TTCAACAACCTGACACGGCTGGACGAGGAGAGCCTGGCCGAGCTGAGCAGCCTGAGTGTCCTGCGTCT CAGCCACAATTCCATCAGCCACATTGCGGAGGGTGCCTTCAAGGGACTCAGGAGCCTGCGAGTCTTGG ATCTGGACCATAACGAGATTTCGGGCACAATAGAGGACACGAGCGGCGCCTTCTCAGGGCTCGACAGC CTCAGCAAGCTGACTCTGTTTGGAAACAAGATCAAGTCTGTGGCTAAGAGAGCATTCTCGGGGCTGGA AGGCCTGGAGCACCTGAACCTTGGAGGGAATGCGATCAGATCTGTCCAGTTTGATGCCTTTGTGAAGA TGAAGAATCTTAAAGAGCTCCATATCAGCAGCGACAGCTTCCTGTGTGACTGCCAGCTGAAGTGGCTG CCCCCGTGGCTAATTGGCAGGATGCTGCAGGCCTTTGTGACAGCCACCTGTGCCCACCCAGAATCACT GAAGGGTCAGAGCATTTTCTCTGTGCCACCAGAGAGTTTCGTGTGCGATGACTTCCTGAAGCCACAGA TCATCACCCAGCCAGAAACCACCATGGCTATGGTGGGCAAGGACATCCGGTTTACATGCTCAGCAGCC AGCAGCAGCAGCTCCCCCATGACCTTTGCCTGGAAGAAAGACAATGAAGTCCTGACCAATGCAGACAT GGAGAACTTTGTCCACGTCCACGCGCAGGACGGGGAAGTGATGGAGTACACCACCATCCTGCACCTCC GTCAGGTCACTTTCGGGCACGAGGGCCGCTACCAATGTGTCATCACCAACCACTTTGGCTCCACCTAT TCACATAAGGCCAGGCTCACCGTGAATGTGTTGCCATCATTCACCAAAACGCCCCACGACATAACCAT CCGGACCACCACCGTGGCCCGCCTCGAATGTGCTGCCACAGGTCACCCAAACCCTCAGATTGCCTGGC AGAAGGATGGAGGCACGGATTTCCCCGCTGCCCGTGAGCGACGCATGCATGTCATGCCGGATGACGAC GTGTTTTTCATCACTGATGTGAAAATAGATGACGCAGGGGTTTACAGCTGTACTGCTCAGAACTCAGC CGGTTCTATTTCAGCTAATGCCACCCTGACTGTCCTAGAGACCCCATCCTTGGTGGTCCCCTTGGAAG ACCGTGTGGTATCTGTGGGAGAAACAGTGGCCCTCCAATGCAAAGCCACGGGGAACCCTCCGCCCCGC ATCACCTGGTTCAAGGGGGACCGCCCGCTGAGCCTCACTGAGCGGCACCACCTGACCCCTGACAACCA GCTCCTGGTGGTTCAGAACGTGGTGGCAGAGGATGCGGGCCGATATACCTGTGAGATGTCCAACACCC TGGGCACGGAGCGAGCTCACAGCCAGCTGAGCGTCCTGCCCGCAGCAGGCTGCAGGAAGGATGGGACC ACGGTAGGCATCTTCACCATTGCTGTCGTGAGCAGCATCGTCCTGACGTCACTGGTCTGGGTGTGCAT CATCTACCAGACCAGGAAGAAGAGTGAAGAGTACAGTGTCACCAACACAGATGAAACCGTCGTGCCAC CAGATGTTCCAAGCTACCTCTCTTCTCAGGGGACCCTTTCTGACCGACAAGAAACCGTGGTCAGGACC GAGGGTGGCCCTCAGGCCAATGGGCACATTGAGAGCAATGGTGTGTGTCCAAGAGATGCAAGCCACTT TCCAGAGCCCGACACTCACAGCGTTGCCTGCAGGCAGCCAAAGCTCTGTGCTGGGTCTGCGTATCACA AAGAGCCGTGGAAAGCGATGGAGAAAGCTGAAGGGACACCTGGGCCACATAΆGATGGAACACGGTGGC CGGGTCGTATGCAGTGACTGCAACACCGAAGTGGACTGTTACTCCAGGGGACAAGCCTTCCACCCCCA GCCTGTGTCCAGAGACAGCGCACAGCCAAGTGCGCCAAATGGCCCGGAGCCGGGTGGGAGTGACCAAG AGCATTCTCCACATCACCAGTGCAGCAGGACTGCCGCTGGGTCCTGCCCCGAGTGCCAAGGGTCGCTC TACCCCAGTAACCACGATAGAATGCTGACGGCTGTGAAGAAAAAGCCAATGGCATCTCTAGATGGGAA AGGGGATTCTTCCTGGACTTTAGCAAGGTTGTATCACCCGGACTCCACAGAGCTACAGCCTGCATCTT CATTAACTTCAGGCAGTCCAGAGCGCGCGGAAGCCCAGTACTTGCTTGTTTCCAATGGCCACCTCCCC AAAGCATGTGACGCCAGTCCCGAGTCCACGCCACTGACAGGACAGCTCCCCGGGAAACAGAGGGTGCC ACTGCTGTTGGCACCAAAAAGCTAGGTTTTGTCTACCTCAGTTCTTGTCATACCAATCTCTACGGGAA
AGAGAGGTAGGAGAGGCTGCGAGGAA3CTTGGGTTCAAGCGTCACTCATCTGTACATAGTTGTAACTC
NOV51a, CG59534-03 SEQ ID NO: 1084 1068 aa MW at ll6452.8kD Protein Sequence
-MARPVTIGGLGAPRRSPC L LVLVR EPVTAAAGP----APCAAACTCAGDSLDCGGRGLAALPGDLPS
WTRSLNLSYN-l-α-jSEIDPAGFEDLPN QΞVQHNKIRSVEGSQ
GPPIK-ELNLAGNRIGTLELGAFDGLSRSLLT RLS NRITQLPVRAFKLPR TQLDLNRNRIRLIEGL
TFQGLNSLEV K QRNNIS-.-α-jTDGAF GLSrofflVLH EYNSLVEV^^
IHRKGWSFCQ---OjHELVLSFraILTRLDΞESLAELSSLSVLR SHNSISHIAEGAFKGLRS RV DLDHN
EISGTIEDTSGAFSG DSLSK- T FGNKI---KV.AiαiAFSGLEG EH N GGN^^
E HISSDSFLCDCQLK LPP IGR- LQAFVTATCAHPES KGQSIFSVPPESFVCDDF KPQIITQP
ETT AMVGKDIRFTCS AAS SS S S PMTFA KKDNE V TNADMENFVHV-HAQDGEVMEYTTILH RQVTF
GHEGRYQCVIT---\THFGSTYSHKARLTVWLPSFTCT
TDFPAARERRMHVMPDDDVFF ITD VKIDDAGVYS CTAQNS AGS I SANATLTVLETPSL WPLEDRWS
VGETVA QCKATGNPPPRIT FKGDRP SLTERHHLTPDNQL VVQNVVAEDAGRYTCEMSNTLGTER
AHSQLSVLPAAGCRKDGTTVGIFTIAVVSSIVLTSLV VCIIYQTRKKSEEYSVTNTDETVVPPDVPS
Y SSQGTLSDRQETWRTΞGGPQ-A GHIESNGVCPRDASHFPEPDTHSVACRQPKLCAGSAYHKEPWK
AMEKAEGTPGPHKMEHGGRVVCSDCNTEVDCYSRGQAFHPQPVSRDSAQPSAPNGPEPGGSDQEHSPH HQCSRTAAGSCPECQGSLYPSNHDRMLTAVKKKP ASLDGKGDSS TLARLYHPDSTE QPASSLTSG SPERAEAQYLLVSNGH PKACDASPESTPLTGQLPGKQRVPLL APKS
NOV51b, CG59534-01 SEQ ID NO: 1085 5101 bp
DNA Sequence ORF Start: ATG at 77 ORF Stop: TAG at 3308
ATCCTCCTACCTCAGTCTACTGAGTAGCTAGGACTACAGGCATGTGCCACCACACCTGGCTAGTTTTT
ATTTTTTGATGAGATGGGATCTTGCTGTGTTGCCCAGACTGGTCTTGATCTCCTGGGCTCAAGTGATC
CTCCTGCCTTGGCCTGCGGCCGCCTGCACTTGCGCTGGGGACTCGCTGGACTGCGGTGGGCGCGGGCT GGCTGCGTTGCCCGGGGACCTGCCCTCCTGGACGCGGAGCCTAAACCTGAGTTACAACAAACTCTCTG AGATTGACCCTGCTGGTTTTGAGGACTTGCCGAACCTACAGGAAGTGTACCTCAATAATAATGAGTTG ACAGCGGTACCATCCCTGGGCGCTGCTTCATCACATGTCGTCTCTCTCTTTCTGCAGCACAACAAGAT TCGCAGCGTGGAGGGGAGCCAGCTGAAGGCCTACCTTTCCTTAGAAGTGTTAGATCTGAGTTTGAACA ACATCACGGAAGTGCGGAACACCTGCTTTCCACACGGACCGCCTATAAAGGAGCTGAACCTGGCAGGC AATCGGATTGGCACCCTGGAGTTGGGAGCATTTGATGGTCTGTCACGGTCGCTGCTAACTCTTCGCCT GAGCAAAAACAGGATCACCCAGCTTCCTGTAAGAGCATTCAAGCTACCCAGGCTGACACAACTGGACC TCAATCGGAACAGGATTCGGCTGATAGAGGGCCTCACCTTCCAGGGGCTCAACAGCTTGGAGGTGCTG AAGCTTCAGCGAAACAACATCAGCAAACTGACAGATGGGGCCTTCTGGGGACTGTCCAAGATGCATGT GCTGCACCTGGAGTACAACAGCCTGGTAGAAGTGAACAGCGGCTCGCTCTACGGCCTCACGGCCCTGC ATCAGCTCCACCTCAGCAACAATTCCATCGCTCGCATTCACCGCAAGGGCTGGAGCTTCTGCCAGAAG CTGCATGAGTTGGTCCTGTCCTTCAACAACCTGACACGGCTGGACGAGGAGAGCCTGGCCGAGCTGAG CAGCCTGAGTGTCCTGCGTCTCAGCCACAATTCCATCAGCCACATTGCGGAGGGTGCCTTCAAGGGAC TCAGGAGCCTGCGAGTCTTGGATCTGGACCATAACGAGATTTCGGGCACAATAGAGGACACGAGCGGC GCCTTCTCAGGGCTCGACAGCCTCAGCAAGCTGACTCTGTTTGGAAACAAGATCAAGTCTGTGGCTAA GAGAGCATTCTCGGGGCTGGAAGGCCTGGAGCACCTGAACCTTGGAGGGAATGCGATCAGATCTGTCC AGTTTGATGCCTTTGTGAAGATGAAGAATCTTAAAGAGCTCCATATCAGCAGCGACAGCTTCCTGTGT GACTGCCAGCTGAAGTGGCTGCCCCCGTGGCTAATTGGCAGGATGCTGCAGGCCTTTGTGACAGCCAC CTGTGCCCACCCAGAATCACTGAAGGGTCAGAGCATTTTCTCTGTGCCACCAGAGAGTTTCGTGTGCG ATGACTTCCTGAAGCCACAGATCATCACCCAGCCAGAAACCACCATGGCTATGGTGGGCAAGGACATC CGGTTTACATGCTCAGCAGCCAGCAGCAGCAGCTCCCCCATGACCTTTGCCTGGAAGAAAGACAATGA AGTCCTGACCAATGCAGACATGGAGAACTTTGTCCACGTCCACGCGCAGGACGGGGAAGTGATGGAGT ACACCACCATCCTGCACCTCCGTCAGGTCACTTTCGGGCACGAGGGCCGCTACCAATGTGTCATCACC AACCACTTTGGCTCCACCTATTCACATAAGGCCAGGCTCACCGTGAATGTGTTGCCATCATTCACCAA AACGCCCCACGACATAACCATCCGGACCACCACCATGGCCCGCCTCGAATGTGCTGCCACAGGTCACC CAAACCCTCAGATTGCCTGGCAGAAGGATGGAGGCACGGATTTCCCCGCTGCCCGTGAGCGACGCATG CATGTCATGCCGGATGACGACGTGTTTTTCATCACTGATGTGAAAATAGATGACGCAGGGGTTTACAG CTGTACTGCTCAGAACTCAGCCGGTTCTATTTCAGCTAATGCCACCCTGACTGTCCTAGAGACCCCAT CCTTGGTGGTCCCCTTGGAAGACCGTGTGGTATCTGTGGGAGAAACAGTGGCCCTCCAATGCAAAGCC ACGGGGAACCCTCCGCCCCGCATCACCTGGTTCAAGGGGGACCGCCCGCTGAGCCTCACTGAGCGGCA CCACCTGACCCCTGACAACCAGCTCCTGGTGGTTCAGAACGTGGTGGCAGAGGATGCGGGCCGATATA CCTGTGAGATGTCCAACACCCTGGGCACGGAGCGAGCTCACAGCCAGCTGAGCGTCCTGCCCGCAGCA GGCTGCAGGAAGGATGGGACCACGGTAGGCATCTTCACCATTGCTGTCGTGAGCAGCATCGTCCTGAC GTCACTGGTCTGGGTGTGCATCATCTACCAGACCAGGAAGAAGAGTGAAGAGTACAGTGTCACCAACA CAGATGAAACCGTCGTGCCACCAGATGTTCCAAGCTACCTCTCTTCTCAGGGGACCCTTTCTGACCGA CAAGAAACCGTGGTCAGGACCGAGGGTGGCCCTCAGGCCAATGGGCACATTGAGAGCAATGGTGTGTG TCCAAGAGATGCAAGCCACTTTCCAGAGCCCGACACTCACAGCGTTGCCTGCAGGCAGCCAAAGCTCT GTGCTGGGTCTGCGTATCACAAAGAGCCGTGGAAAGCGATGGAGAAAGCTGAAGGGACACCTGGGCCA CATAAGATGGAACACGGTGGCCGGGTCGTATGCAGTGACTGCAACACCGAAGTGGACTGTTACTCCAG GGGACAAGCCTTCCACCCCCAGCCTGTGTCCAGAGACAGCGCACAGCCAAGTGCGCCAAATGGCCCGG AGCCGGGTGGGAGTGACCAAGAGCATTCTCCACATCACCAGTGCAGCAGGACTGCCGCTGGGTCCTGC CCCGAGTGCCAAGGGTCGCTCTACCCCAGTAACCACGATAGAATGCTGACGGCTGTGAAGAAAAAGCC AATGGCATCTCTAGATGGGAAAGGGGATTCTTCCTGGACTTTAGCAAGGTTGTATCACCCGGACTCCA CAGAGCTACAGCCTGCATCTTCATTAACTTCAGGCAGTCCAGAGCGCGCGGAAGCCCAGTACTTGCTT GTTTCCAATGGCCACCTCCCCAAAGCATGTGACGCCAGTCCCGAGTCCACGCCACTGACAGGACAGCT CCCCGGGAAACAGAGGGTGCCACTGCTGTTGGCACCAAAAAGCTAGGTTTTGTCTACCTCAGTTCTTG
TCATACCAATCTCTACGGGAAAGAGAGGTAGGAGAGGCTGCGAGGAAGCTTGGGTTCAAGCGTCACTC ATCTGTACATAGTTGTAACTCCCATGTGGAGTATCAGTCGCTCACAGGACTTGGATCTGAAGCACAGT AAACGCAAGAGGGGATTTGTGTACAAAAGGCAAAAAAAAGTATTTGATATCATTGTACATAAGAGTTT TCAGAGATTTCATATATATCTTTTACAGAGGCTATTTTAATCTTTAGTGCATGGTTAACAGAAAAAAA TTATACAATTTTGACAATATTATTTTTCGTATCAGGTTGCTGTTTAATTTTGGAGGGGGTGGGGAAAT AGTTCTGGTGCCTTAACGCATGGCTGGAATTTATAGAGGCTACAACCACATTTGTTCACAGGAGTTTT TGGTGCGGGGTGGGAAGGATGGAAGGCCTTGGATTTATATTGCACTTCATAGACCCCTAGGCTGCTGT;
GCGGTGGGACTCCACATGCGCCGGAAGGAGCTTCAGGTGAGCACTGCTCATGTGTGGATGCCCCTGCA
ACAGGCTTCCCTGTCTGTAGAGCCAGGGGTGCAAGTGCCATCCACACTTGCAGTGAATGGCTTTTCCT
TTTAGGTTTAAGTCCTGTCTGTCTGTAAGGCGTAGAATCTGTCCGTCTGTAAGGCGTAGAATGAGGGT
TGTTAATCCATCACAAGCAAAAGGTCAGAACAGTTAAACACTGCCTTTCCTCCTCCTCTTATTTTATG!
ATAAAAGCAAATGTGGCCTTCTCAGTATCATTCGATTGCTATTTGAGACTTTTAAATTAAGGTAAAGG
CTGCTGGTGTTGGTACCTGTGGATTTTTCTATACTGATGTTTTCGTTTTGCCAATATAATGAGTATTA!
CATTGGCCTTGGGGGACAGAAAGGAGGAAGTTCTGACTTTTCAGGGCTACCTTATTTCTACTAAGGAC
CCAGAGCAGGCCTGTCCATGCCATTCCTTCGCACAGATGAAACTGAGCTGGGACTGGAAAGGACAGCC
CTTGACCTGGGTTCTGGGTATAATTTGCACTTTTGAGACTGGTAGCTAACCATCTTATGAGTGCCAAT
GTGTCATTTAGTAAAACTTAAATAGAAACAAGGTCCTTCAAATGTTCCTTTGGCCAAAAGCTGAAGGG
AGTTACTGAGAAAATAGTTAACAATTACTGTCAGGTGTCATCACTGTTCAAAAGGTAAGCACATTTAG
AATTTTGTTCTTGACAGTTAACTGACTAATCTTACTTCCACAAAATATGTGAATTTGCTGCTTCTGAG
AGGCAATGTGAAAGAGGGAGTATTACTTTTATGTACAAAGTTATTTATTTATAGAAATTTTGGTACAG
TGTACATTGAAAACCATGTAAAATATTGAAGTGTCTAACAAATGGCATTGAAGTGTCTTTAATAAAGG
TTCATTTATAAATGTCAGTATAGTTGGTGGTCCTTCTTTTACAAACGCAGTCATTCTGCCTTTAATTA
TCTTCCCCCAAAAAAGAAAA-AAAAAATAGGCGAAGCAAAATCACATACTGTTTGTTTGCTCCAGGGCA
GACAACACTGCTAGATTCCTGACATTTTGTTTTGAATTTTTCTACACCTGGAGCTTGTTAGTCAAGGT:
CTAAAATCCCTAAGTGTGGTGACCTTTCCATTTCATCCTGCCTTTTCAAAGCTGGCCCAGGCCCTCCT
TTCAGTCTGACATGAGAATGGCGAGAATGGCTCACCCACCGTGCCCTCCTGCACGA-AGCCAGCTGGGC
NOV51b, CG59534-01 SEQ ID NO: 1086 1077 aa MW at 117735.2kD Protein Sequence ,- ,.
MR DLAV PRLVLIS AQVI LP PAAACTCAGDS DCGGRGLAALPGDLPSWTRSLNLSY-N LSEID
PAGFEDLPNLQEVYLl-røNELTAVPSLGAASSHVVS FLQHNKIRSVEGSQL-KAYLSLEVLD S NNIT
EV-EINTCFPHGPPIKELNLAGNRIGTLE GAFDGLSRSLLT R SK RITQLPVRAFK PRLTQLD NR
NRIR IEGLTFQGLNSLEV KLQRl-røIS--- ,TDGAF G SKMHVLH EY SLVEVNSGSLYGL
HLS---WSIARIHRKGWSFCQBCLHELV SFN-NLTRLDEES AELSS SVLRIiSHNSISHIAEGAFKGLRS
LRVLD D-ffl-IEISGTIEDTSGAFSGLDS SKLTLFGNKIKSVAKRAFSGLEG EHLNLGGNAIRSVQFD
AFVK K LKELHISSDSFLCDCQLK PP LIGRMLQAFVTATCAHPESLKGQSIFSVPPESFVCDDF KPQIITQPETTMA- WG--- IRFTCSAASSSSS MTFA KKD EV TN- DMENFVHV--- QDGEVMEY T
ILH RQVTFGHEGRYQCVIT-I-TOFGSTYSH --?^LTVNVLPSFTKTPHDITIRTTTMARLECAATGHPNP
QIAWQKDGGTDFPA-ARERRMHVMPDDDVFFITDVKIDDAGVYSCTAQNSAGSISANATLTV ETPSLV
VPLEDRWSVGETVA QCKATGNPPPRIT FKGDRPLSLTERHHLTPDNQL WQNWAEDAGRYTCE
MSNT GTERAHSQ SVLPAAGCRKDGTTVGIFTIAWSS IVLTS V VCI I YQTRK SEEYSVTNTDE
TWPPDVPSY SSQGTLSDRQETWRTEGGPQA GHIESNGVCPRDASHFPEPDTHSVACRQPKLCAG
SAYHKEPWKAME---s ^GTPGPH---aIEHGGRVVCSDCNTEVDCYSRGQAFHPQPVSRDSAQPSAPNGPEPG
GSDQEHSPHHQCSRTAAGSCPECQGSLYPSNHDRM TAVKKKPMASLDGKGDSS TLARLYHPDSTEL
QPASSLTSGSPERAEAQYLLVSNGHLPKACDASPESTP TGQLPGKQRVPLL APKS
NOV51c, CG59534-02 SEQ ID NO: 1087 4762 bp DNA Sequence ORF Start: ATG at 15 ORF Stop: TAG at 3294
GCGCTCCAGACAAGATGGCGCGGCCGGTCCGGGGAGGGCTCGGGGCCCCGCGCCGCTCGCCTTGCCTT
CTCCTTCTCTGGCTGGTTTTGGTTCGGCTGGAGCCGGTGACCGCCGCGGCCGGCCCGCGGGCGCCCTG CGCGGCCGCCTGCACTTGCGCTGGGGACTCGCTGGACTGCGGTGGGCGCGGGCTGGCTGCGTTGCCCG GGGACCTGCCCTCCTGGACGCGGAGCCTAAACCTGAGTTACAACAAACTCTCTGAGATTGACCCTGCT GGTTTTGAGGACTTGCCGAACCTACAGGAAGTGTACCTCAATAATAATGAGTTGACAGCGGTACCATC CCTGGGCGCTGCTTCATCACATGTCGTCTCTCTCTTTCTGCAGCACAACAAGATTCGCAGCGTGGAGG GGAGCCAGCTGAAGGCCTACCTTTCCTTAGAAGTGTTAGATCTGAGTTTGAACAACATCACGGAAGTG CGGAACACCTGCTTTCCACACGGACCGCCTATAAAGGAGCTCAACCTGGCAGGCAATCGGATTGGCAC CCTGGAGTTGGGAGCATTTGATGGTCTGTCACGGTCGCTGCTAACTCTTCGCCTGAGCAAAAACAGGA TCACCCAGCTTCCTGTAAGAGCATTCAAGCTACCCAGGCTGACACAACTGGACCTCAATCGGAACAGG ATTCGGCTGATAGAGGGCCTCACCTTCCAGGGGCTCAACAGCTTGGAGGTGCTGAAGCTTCAGCGAAA CAACATCAGCAAACTGACAGATGGGGCCTTCTGGGGACTGTCCAAGATGCATGTGCTGCACCTGGAGT ACAACAGCCTGGTAGAAGTGAACAGCGGCTCGCTCTACGGCCTCACGGCCCTGCATCAGCTCCACCTC AGCAACAATTCCATCGCTCGCATTCACCGCAAGGGCTGGAGCTTCTGCCAGAAGCTGCATGAGTTGGT CCTGTCCTTCAACAACCTGACACGGCTGGACGAGGAGAGCCTGGCCGAGCTGAGCAGCCTGAGTGTCC TGCGTCTCAGCCACAATTCCATCAGCCACATTGCGGAGGGTGCCTTCAAGGGACTCAGGAGCCTGCGA GTCTTGGATCTGGACCATAACGAGATTTCGGGCACAATAGAGGACACGAGCGGCGCCTTCTCAGGGCT VR-AF--- jPRLTQ DIi RNRIR I EG TFQGLNS E V KLQR1JNI SKLTDGAF GLS KMHVLHLEYNS LV EV SGSLYGLTALHQLHLS-N SIARIHRKGWSFCQ-.- ^HELVLSFl-JNLTRLDEESLAELSSLSVLRLSH NSISHIAEGAFKGLRSLRVLDLDHNEISGTIEDTSGAFSGLDSLSKLTLFGN IKSVAKRAFSGLEGL EHLNLGGNAIRSVQFDAFVKMKOTiKELHISSDSFLCDCQLK LPP LIGR LQAFVTATCAHPESLKG QSIFSVPPESFVCDDFLKPQIITQPETT-v-AMVGKDIRFTCSAASSSSSPMTFA KKDNEVLTNADMEN FVHVHAQDGEV ΞYTTILHLRQVTFGHEGRYQCVIT--ffiFGSTYSHKARLTVKIVLPSFTKTPHDITIRT TTVARLECAATGHPNPQIA QKDGGTDFP-AARERRMHVMPDDDVFFITDVKIDDAGVYSCTAQNSAGS ISANATLTVLETPSLWPLEDRWSVGETVALQCKATGNPPPRITWFKGDRPLSLTERHHLTPDNQLL VVQlTVVAEDAGRYTCEMSNTLGTER-AHSQLSVLPAAGCRKDGTTVGIFTIAVVSSIV-LiTSLVWVCIIY QTRK SEEYSVTNTDΞTVVPPDVPSYLSSQGTLSDRQETVVRTEGGPQA1.GHIESNGVCPRDASHFPE PDTHSVACRQPKLCAGSAYH EP --- ^EE-AEGTPGPHKMEHGGRVVCSDCNTEVDCYSRGQAFHPQPV SRDSAQPSAPNGPEPGGSDQEHSPHHQCSRTAAGSCPECQGSLYPSNHDRMLTAVKKKPMASLDGKGD SSWTLARLYHPDSTELQPASSLTSGSPERAEAQYLLVSNGHLPKACDASPESTPLTGQLPGKQRVPLL LAPKS
NOV51d, SNP13377255 of SEQ ID NO: 1089 3333 bp
CG59534-03, DNA Sequence |ORF Start: ATG at 15 ORF Stop: TAG at 3219
SNP Pos: 1912 SNP Change: T to C
GCGCTCCAGACAAGATGGCGCGGCCGGTCCGGGGAGGGCTCGGGGCCCCGCGCCGCTCGCCTTGCCTT
CTCCTTCTCTGGCTGGTTTTGGTTCGGCTGGAGCCGGTGACCGCCGCGGCCGGCCCGCGGGCGCCCTG CGCGGCCGCCTGCACTTGCGCTGGGGACTCGCTGGACTGCGGTGGGCGCGGGCTGGCTGCGTTGCCCG GGGACCTGCCCTCCTGGACGCGGAGCCTAAACCTGAGTTACAACAAACTCTCTGAGATTGACCCTGCT GGTTTTGAGGACTTGCCGAACCTACAGGAAGTGCAGCACAACAAGATTCGCAGCGTGGAGGGGAGCCA GCTGAAGGCCTACCTTTCCTTAGAAGTGTTAGATCTGAGTTTGAACAACATCACGGAAGTGCGGAACA CCTGCTTTCCACACGGACCGCCTATAAAGGAGCTCAACCTGGCAGGCAATCGGATTGGCACCCTGGAG TTGGGAGCATTTGATGGTCTGTCACGGTCGCTGCTAACTCTTCGCCTGAGCAAAAACAGGATCACCCA GCTTCCTGTAAGAGCATTCAAGCTACCCAGGCTGACACAACTGGACCTCAATCGGAACAGGATTCGGC TGATAGAGGGCCTCACCTTCCAGGGGCTCAACAGCTTGGAGGTGCTGAAGCTTCAGCGAAACAACATC AGCAAACTGACAGATGGGGCCTTCTGGGGACTGTCCAAGATGCATGTGCTGCACCTGGAGTACAACAG CCTGGTAGAAGTGAACAGCGGCTCGCTCTACGGCCTCACGGCCCTGCATCAGCTCCACCTCAGCAACA ATTCCATCGCTCGCATTCACCGCAAGGGCTGGAGCTTCTGCCAGAAGCTGCATGAGTTGGTCCTGTCC TTCAACAACCTGACACGGCTGGACGAGGAGAGCCTGGCCGAGCTGAGCAGCCTGAGTGTCCTGCGTCT CAGCCACAATTCCATCAGCCACATTGCGGAGGGTGCCTTCAAGGGACTCAGGAGCCTGCGAGTCTTGG ATCTGGACCATAACGAGATTTCGGGCACAATAGAGGACACGAGCGGCGCCTTCTCAGGGCTCGACAGC CTCAGCAAGCTGACTCTGTTTGGAAACAAGATCAAGTCTGTGGCTAAGAGAGCATTCTCGGGGCTGGA AGGCCTGGAGCACCTGAACCTTGGAGGGAATGCGATCAGATCTGTCCAGTTTGATGCCTTTGTGAAGA TGAAGAATCTTAAAGAGCTCCATATCAGCAGCGACAGCTTCCTGTGTGACTGCCAGCTGAAGTGGCTG CCCCCGTGGCTAATTGGCAGGATGCTGCAGGCCTTTGTGACAGCCACCTGTGCCCACCCAGAATCACT GAAGGGTCAGAGCATTTTCTCTGTGCCACCAGAGAGTTTCGTGTGCGATGACTTCCTGAAGCCACAGA TCATCACCCAGCCAGAAACCACCATGGCTATGGTGGGCAAGGACATCCGGTTTACATGCTCAGCAGCC AGCAGCAGCAGCTCCCCCATGACCTTTGCCTGGAAGAAAGACAATGAAGTCCTGACCAATGCAGACAT GGAGAACTTTGTCCACGTCCACGCGCAGGACGGGGAAGTGATGGAGTACACCACCATCCTGCACCTCC GTCAGGTCACTTTCGGGCACGAGGGCCGCTACCAATGTGTCATCACCAACCACTTTGGCTCCACCTAT TCACATAAGGCCAGGCTCACCGTGAATGTGTTGCCATCATTCACCAAAACGCCCCACGACATAACCAT CCGGACCACCACCGTGGCCCGCCTCGAATGTGCTGCCACAGGTCACCCAAACCCTCAGATTGCCTGGC AGAAGGATGGAGGCACGGATTTCCCCGCTGCCCGTGAGCGACGCATGCATGTCATGCCGGATGACGAC GTGTTTTCCATCACTGATGTGAAAATAGATGACGCAGGGGTTTACAGCTGTACTGCTCAGAACTCAGC CGGTTCTATTTCAGCTAATGCCACCCTGACTGTCCTAGAGACCCCATCCTTGGTGGTCCCCTTGGAAG ACCGTGTGGTATCTGTGGGAGAAACAGTGGCCCTCCAATGCAAAGCCACGGGGAACCCTCCGCCCCGC ATCACCTGGTTCAAGGGGGACCGCCCGCTGAGCCTCACTGAGCGGCACCACCTGACCCCTGACAACCA GCTCCTGGTGGTTCAGAACGTGGTGGCAGAGGATGCGGGCCGATATACCTGTGAGATGTCCAACACCC TGGGCACGGAGCGAGCTCACAGCCAGCTGAGCGTCCTGCCCGCAGCAGGCTGCAGGAAGGATGGGACC ACGGTAGGCATCTTCACCATTGCTGTCGTGAGCAGCATCGTCCTGACGTCACTGGTCTGGGTGTGCAT CATCTACCAGACCAGGAAGAAGAGTGAAGAGTACAGTGTCACCAACACAGATGAAACCGTCGTGCCAC CAGATGTTCCAAGCTACCTCTCTTCTCAGGGGACCCTTTCTGACCGACAAGAAACCGTGGTCAGGACC GAGGGTGGCCCTCAGGCCAATGGGCACATTGAGAGCAATGGTGTGTGTCCAAGAGATGCAAGCCACTT TCCAGAGCCCGACACTCACAGCGTTGCCTGCAGGCAGCCAAAGCTCTGTGCTGGGTCTGCGTATCACA AAGAGCCGTGGAAAGCGATGGAGAAAGCTGAAGGGACACCTGGGCCACATAAGATGGAACACGGTGGC CGGGTCGTATGCAGTGACTGCAACACCGAAGTGGACTGTTACTCCAGGGGACAAGCCTTCCACCCCCA GCCTGTGTCCAGAGACAGCGCACAGCCAAGTGCGCCAAATGGCCCGGAGCCGGGTGGGAGTGACCAAG AGCATTCTCCACATCACCAGTGCAGCAGGACTGCCGCTGGGTCCTGCCCCGAGTGCCAAGGGTCGCTC TACCCCAGTAACCACGATAGAATGCTGACGGCTGTGAAGAAAAAGCCAATGGCATCTCTAGATGGGAA AGGGGATTCTTCCTGGACTTTAGCAAGGTTGTATCACCCGGACTCCACAGAGCTACAGCCTGCATCTT CATTAACTTCAGGCAGTCCAGAGCGCGCGGAAGCCCAGTACTTGCTTGTTTCCAATGGCCACCTCCCC AAAGCATGTGACGCCAGTCCCGAGTCCACGCCACTGACAGGACAGCTCCCCGGGAAACAGAGGGTGCC ACTGCTGTTGGCACCAAAAAGCTAGGTTTTGTCTACCTCAGTTCTTGTCATACCAATCTCTACGGGAA AGAGAGGTAGGAGAGGCTGCGAGGAAGCTTGGGTTCAAGCGTCACTCATCTGTACATAGTTGTAACTC
NOV51d, SNP13377255 of SEQ ID NO: 1090 1068 aa MW at 116392.7kD
CG59534-03, Protein Sequence JSNP Pos: 633 SNP Change: Phe to Ser
MARPVRGGLGAPRRSPCLLLL LVLVRLEPVTAAAGPRAPCAAACTCAGDSLDCGGRGLAALPGDLPS TRSLNLSYNIΛSEIDPAGFEDLPNLQEVQHNKIRSVEGSQLKΑYLSLEVLDLSL-NNITEVRNTCFPH
GPPI ELNLAGNRIGTLELGAFDGLSRSLLTLRLSKNRITQLPVRAFKLPRLTQLDLNR-NRIRLIEGL
TFQGLNSLEVLKLQR-IrølSKLTDGAF GLSKMHVLHLEYNSLVEVNSGSLYGLT-ALHQLHLS-tv SI
IHRKG SFCQKLHELVLSFHMLTRLDEESLAELSSLSVLRLSH SISHIAEGAFKGLRSLRVLDLDHN
EISGTIEDTSGAFSGLDSLSKLTLFGNKIKSV--^RAFSGLEGLEHLNLGGNAIRSVQFDAFVKMK LK
ELHISSDSFLCDCQLKWLPP LIGRMLQAFVTATCAHPESLKGQSIFSVPPESFVCDDFLKPQIITQP
ETTMAMVGKDIRFTCSAASSSSSPMTFAWKKDNEVLTNADMENFVHVHAQDGEVMEYTTILHLRQVTF
GHEGRYQCVIT HFGSTYSHKA LTVNVLPSFTKTPHDITIRTTTVARLECAATGHPNPQIA QKDGG
TDFPAARERR-M-I----VMPDDDVFSITDVKIDDAGVYSCTAQNSAGSISA ATLTVLETPSLWPLEDRWS
VGETVALQCKATGNPPPRITWFKGDRPLSLTERHHLTPDNQLLWQNWAEDAGRYTCEMSNTLGTER
AHSQLSVLPAAGCRKDGTTVGIFTIAWSSIVLTSLV VCIIYQTRKKSEEYSVTNTDETWPPDVPS
YLSSQGTLSDRQETWRTEGGPQANGHIESNGVCPRDASHFPEPDTHSVACRQPKLCAGSAYHKEPWK
AMEKAEGTPGPHKMEHGGRWCSDCNTEVDCYSRGQAFHPQPVSRDSAQPSAPNGPEPGGSDQEHSPH
HQCSRTAAGSCPECQGSLYPSNI--DRMLTAVKKKP-MASLDGKGDSS TLARLYHPDSTELQPASSLTSG
SPERAEAQYLLVSNGHLPKACDASPESTPLTGQLPGKQRVPLLLAPKS
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 5 IB.
Table 51B. Comparison of the NOV51 protein sequences.
NOV5 la MARPVRGGLGAPRRSPCLLLL LVLVRLEPVTAAAGPRAPCAAACTCAGDSLDCGGRGLA
NOV51b MR DLAVLPR LVLIS AQVILLP P AAACTCAGDSLDCGGRGLA
NOV5 lc MARPVRGGLGAPRRSPCLLLL LVLVRLEPVTAAAGPRAPCAAACTCAGDSLDCGGRGLA
NOV51a ALPGDLPS TRSLNLSYNKLSEIDPAGFEDLPNLQEV
NOV5 lb A-LPGDLPSWTRSLNLSY -KLSEIDPAGFEDLPNLQEVYL N ELTAVPSLGAASSHVVSL
NOV5 lc ALPGDLPSWTRSLNLSYNKLSEIDPAGFEDLPNLQEVYLNNNELTAVPSLGAASSHVVSL
NOV5 la - -Qffi-TKIRSVEGSQLIsAYLSLEVLDLSLNNITEVR TCFPHGPPIKELNLAGNRIGTLEL
NOV5 lb FLQ------NKIRSVEGSQL---AYLSLEVLDLSLNNITEVRNTCFPHGPPIKELNLAGNRIGTLEL
NOV5 lc FLQHNKIRSVEGSQL-.-a YLSLEVLDLSLN ITEV-RNTCFPHGPPIKELNLAG-NRIGTLEL
NOV5 la GAFDGLSRSLLTLRLSK-trøITQLPV-1-^Fiα PRLTQLDLNR-l- iRLIEGLTFQGLNSLEVIj
NOV5 lb GAFDGLSRSLLTLRLSK RITQLPVRAFKLPRLTQLDLNRNRIRLIEGLTFQGLNSLEVL
NOV5 lc GAFDGLSRSLLTLRLS-K-ro.ITQLPV---^F---α-JPRLTQLDLNRNRIRLIEGLTFQGLNSLEVIi
NOV51a -EOiQR-l-TNISKLTDGAF GLSKMI-IVLHLEYNSLVEVNSGSLYGLTALHQLHLSimSIARIHR
NOV51b KLQ----l^IS--- jTDGAF GLSKMHVLHLEYNSLVΕVNSGSLYGLT.^
NOV5 lc ---αiQ--y-TNIS---α-JTDGAF GLSKMΪ-IVLHLEYN
NOV5 la KG SFCQKLHELVLSFNNLTRLDEESLAELSSLSVLRLSHNS ISHIAEGAFKGLRSLRVL
NOV51b KG SFCQ---ST.HELVLSF1- NLTRLDEESLAELSSLSVLRLS------NSISHIAEGAFKGLRSLRVL
NOV51C KG SFCQKLHELVLSFNNLTRLDEESLAELSSLSVLRLSHNSISHIAEGAFKGLRSLRVL
NOVSla DLDHNEISGTIEDTSGAFSGLDSLSKLTLFGNKIKSVA RAFSGLEGLEHLNLGGNAIRS
NOV5 lb DLDHNEISGTIEDTSGAFSGLDSLSKLTLFGNKIKSVAKRAFSGLEGLEHLNLGGNAIRS NOV5 lc DLDHNEISGTIEDTSG-AFSGLDSLSKLTLFGNKIKSVAKRAFSGLEGLEHLNLGGNAIRS
NOV5 la VQFDAFVKMKNLKELHISSDSFLCDCQLK LPP LIGRMLQAFVTATCAHPESLKGQSIF
NOV5 lb VQFDAFVKM---OTLKELHISSDSFLCDCQL-OTLPPWLIGRMLQAFVTATCAHPESLKGQSIF
NOV51c VQFDAFVKMKNLKELHISSDSFLCDCQLKWLPP LIGRMLQAFVTATCAHPESLKGQSIF
NOV5 la SVPPESFVCDDFLKPQIITQPETT A1V-VGKDIRFTCSAASSSSSP TFA K--K-DNEVLTNA
NOV5 lb SVPPESFVCDDFLKPQIITQPETTMAMVGKDIRFTCSAASSSSSP TFAWKKDNEVLTNA
NOV5 lC SVPPESFVCDDFLKPQIITQPETT -A- -VG-l-ΦIRFTCSAASSSSSPMTFAWKKDNEVIjTNA
NOV5 la DMENFVHVHAQDGEVMEYTTILHLRQVTFGHEGRYQCVIT HFGSTYSHKARLTVNVLPS
NOV5 lb DMENFVHVHAQDGEVMEYTTILHLRQVTFGHEGRYQCVITiraFGSTYSHK-ARLTVNVLPS
NOV5 lc DMENFVHVHAQDGEVMEYTTILHLRQVTFGHEGRYQCVITlfflFGSTYSHK-ARLTV---sTVLPS
NOV5 la FTKTPHDITIRTTTVARLECAATGHPNPQIA QKDGGTDFPAARERRMHVMPDDDVFFIT
NOV5 lb FTKTPHDITIRTTTMARLECAATGHPNPQIA QKDGGTDFPAARERR HVMPDDDVFFIT
NOV5 lc FTKTPHDITIRTTTVAR-LECAATGHPNPQIA QKDGGTDFPAARERRMHVMPDDDVFFIT
NOV5 la DVKIDDAGWSCTAQNSAGSISANATLTVLETPSLWPLEDRWSVGETVALQCKATGNP
NOV5 lb DVKIDDAGVYSCTAQNSAGSISANATLTVLETPSLWPLEDRWSVGETVALQCKATGNP
NOV51C DV IDDAGVYSCTAQNSAGSISANATLTVLETPSLWPLEDRWSVGETVALQCKATGNP
NOV5 la PPRIT FKGDRPLSLTEPJfflLTPDNQLLVVQ-NVVAEDAGRYTCEMSNTLGTERAHSQIiSV
NOV5 lb PPRIT FKGDRPLSLTERHHLTPDNQLLVVQNVVAEDAGRYTCEMSNTLGTERAHSQLSV
NOV51 C PPRIT FKGDRPLSLTERHHLTPDNQLLWQNWAEDAGRYTCEMSNTLGTERAHSQLSV
NOV51a LPAAGCRKDGTTVGIFTIAVVSSIVLTSLV VCIIYQTRKKSEEYSVTNTDETVVPPDVP
NOV5 lb LPAAGCRKDGTTVGIFTIAWSSIVLTSLVWVCIIYQTRKKSEEYSVTNTDETWPPDVP
NOV5 lc LPAAGCRKDGTTVGIFTIAVVSSIVLTSLVWVCIIYQTR SEEYSVTNTDETVVPPDVP
NOV5 la SYLSSQGTLSDRQETVVRTEGGPQA-NGHIESNGVCPRDASHFPEPDTHSVACRQPKLCAG
NOV51b SYLSSQGTLSDRQETVVRTEGGPQA---STGHIESNGVCPRDASHFPEPDTHSVACRQPKLCAG
NOV5 lc SYLSSQGTLSDRQETWRTEGGPQANGHIESNGVCPRDASHFPEPDTHSVACRQPKLCAG
NOV51a SAYHKEP ---s^MEKAEGTPGPH MEHGGRVVCSDCNTEVDCYSRGQAFHPQPVSRDSAQPS
NOV5 lb SAYH---SΕPW A-MEKAEGTPGPHKMEHGGRVVCSDCNTEVDCYSRGQAFHPQPVSRDSAQPS
NOV51 c SAYHKEP KAMEKAEGTPGPHKMEHGGRWCSDCNTEVDCYSRGQAFHPQPVSRDSAQPS
NOV5 la APNGPEPGGSDQEHSPI--HQCSRT-AAGSCPECQGSLYPSNHDRMLTAVKKKPMASLDGKGD
NOV5 lb APNGPEPGGSDQEHSPHHQCSRTAAGSCPECQGSLYPSNHDR LTAVKKKPiMASLDGKGD
NOV51C APNGPEPGGSDQEHSP-.-fflQCSRTAAGSCPECQGSLYPS-1-raDRMLTAVKKKP ASLDGKGD
NOV51a SS TLARLYHPDSTELQPASSLTSGSPERAEAQYLLVSNGHLPKACDASPESTPLTGQLP
NOV5 lb SS TI-ARLYHPDSTELQPASSLTSGSPERAEAQYLLVSNGHLPKACDASPESTPLTGQLP
NOV5 lc SSWTLARLYHPDSTELQPASSLTSGSPERAEAQYLLVSNGHLPKACDASPESTPLTGQLP
NOV51a GKQRVPLLLAPKS
NOV51b GKQRVPLLLAPKS
NOV51 C GKQRVPLLLAPKS
NOV51a (SEQ ID NO: 1084)
NOV51b (SEQ ID NO: 1086)
N0V51C (SEQ ID NO: 1088)
Further analysis of the NOV51a protein yielded the following properties shown in Table 51C.
Table 51C. Protein Sequence Properties NOV51a SignalP analysis: Cleavage site betweenresidues 36 and 37
PSORT π analysis:
PSG: a new signal peptide prediction method
N-region: length 6; pos.chg 2; neg.chg 0
H-region: length 6; peak value -9.10 PSG score: -13.50
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -0.07 possible cleavage site: between 33 and 34
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al's method for TM region allocation
Init position for calculation: 1
Tentative number of TMS(s) for the threshold 0.5: 2
INTEGRAL Likelihood = -2.87 Transmembrane 17 - 33
INTEGRAL Likelihood = -8.23 Transmembrane 773 - 789
PERIPHERAL Likelihood = 3.76 (at 656)
ALOM score: -8.23 (number of TMSs : 2)
MTOP: Prediction of membrane topology (Hartmann et al.) Center position for calculation: 24 Charge difference: -4.0 C( 1.0) - N( 5.0) N >= C: N-terminal side will be inside
>>> membrane topology: type 3a
MITDISC: discrimination of mitochondrial targeting seq R content: 5 Hyd Moment (75): 4.80 Hyd Moment (95): 12.52 G content: 3 D/E content: 1 S/T content: 1 Score: -0.99
Gavel: prediction of cleavage sites for mitochondrial preseq R-2 motif at 48 PRA|PC
NUCDISC: discrimination of nuclear localization signals pat4: KKKP (4) at 983 pat7: PAARERR (3) at 616 bipartite : none content of basic residues: 9.7% NLS Score: 0.04
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals :
XXRR-like motif in the N-terminus: ARPV
KKXX-like motif in the C-terminus: LAPK SKL: peroxisomal targeting signal in the C-terminus: none PTS2 : 2nd peroxisomal targeting signal: none VAC: possible vacuolar targeting motif: none RNA-binding motif: none Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail : none
Dileucine motif in the tail: none checking 63 PROSITE DNA binding motifs: Leucine zipper pattern (PS00029) : *** found *** LDCGGRGLAALPGDLPS TRSL at 52 none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: nuclear Reliability: 70.6
COIL: Lupas ' s algorithm to detect coiled-coil regions total : 0 residues
Final Results (k = 9/23) :
34.8 %: nuclear
30.4 % : mitochondrial
21.7 %: endoplasmic reticulum
4.3 %: plasma membrane
4.3 %: cytoplasmic
4.3 %: peroxisomal
>> prediction for CG59534-03 is nuc (k=23]
A search of the NOV5 la protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 5 ID.
In a BLAST search of public sequence databases, the NO V5 la protein was found to have homology to the proteins shown in the BLASTP data in Table 5 IE.
PFam analysis predicts that the NOV5 la protein contains the domains shown in the Table 5 IF.
Example 52.
The NOV52 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 52A.
ATCCCAAATGAAGTTGTTCAGTTGCATCTGAAGGACAAAATCGTGGGAAACTACACCACAGATGTAAA TGGCATCGCTCAGTTTTTCTTGGACACATATACGTTTACATACCCAAATATCACTTTGAAAGCAGCCT ACAAGGCCAATGAAAATTGCCAGGCTCATGGCTGGGTGTTGCCTCAATACCCTCAGCCCGAGTACTTT GCATATCGATTTTACTCCAAGATGAATAGCTTCCTAAAGATTGTCCAAGAGATGGAAGAACTGAGATG CAACCAGCAGAAGAGGGTGCTAGTGCACTGCATTCTCAATATGGAAGACTTTGAAGACAAAACCTACA CAGCAGACTTCAATTATTTGGTGATTTCAAAAGGTGTAATCATTCTTCATGGGCAACAGAAAATTGAG ATCAACGAAAATGGGAGGAAGGGCATATTTTCCATTTCTATAGACATTAACCCTGAATTAGCGCCCTC AGTAGATATGCTTGTCTATAGCTTGCATCCTGGAGGAGAAATGGTCACTGATAGCACCCAATTCCGAA TTGAGAAATGCTTCGAAAATCAGGTCAACTTAAATTTTTCTAAAGAAAAAAGTTTACCAGGATCCAAT ATTGATCTTCAAGTCTCGGCTGCTTCAAACTCTCTTTGTGCTCTTTGGGCTGTAGACCAGAGTGTATT GCTACTAAGGAATTATGGTCAGCTGTCAGCACAAACTGTGTATAGTCAGCTATATTCCAGGGAACTAC ATGGCTATTACTTCAGAGGACTTAACTTAGAAGATGGCCTTAAAGTGCCGTGTCTTGAAGATGAACAT ATCCTTTACAATGGAATTTATTACACACCTGCATGGGCTGACTTTGGAAAAGATGGCTATGACCTTGT GAAGGATCCTCAAAACAATCGGATTTTTCAAAGGCAAAATGTGACTTCTTTCCGAAATATTACCCAAC TCTCGTTCCAACTGATTTCAGAACCAATGTTTGGAGATTACTGGATTGTTGTGAAAAGAAACTCAAGG GAGACAGTGACACACCAATTTGCTGTTAAAAGATATGTGCTGCCCAAGTTTGAAGTTACAGTCAATGC ACCACAAACAGTAACTATTTCAGATGATGAATTCCAAGTGGATGTATGTGCTAAGTACAΛCTTTGGCC AACCTGTGCAAGGGGAAACCCAAATCCGGGTGTGCAGAGAGTATTTTTCTTCAAGCAATTGTGAGAAA AATGAAAATGAAATATGTGAGCAATTTATTGCACAGTTGGAAAATGGTTGTGTTTCTCAAATTGTAAA TACAAAAGTCTTCCAACTCTACCGTTCGGGATTGTTCATGACATTTCATGTCGCTGTAATTGTTACAG AATCTGGGACAGTTATGCAGATCAGCGAGAAGACCTCAGTTTTTATCACTCAATTGCTTGGAACTGTA AACTTTGAGAACATGGATACATTCTATAGAAGAGGGATTTCTTATTTTGGAACTCTTAAATTTTCGGA TCCCAATAATGTACCTATGGTGAACAAGTTGTTGCAACTGGAGCTCAATGATGAATTTATAGGAAATT ACACTACGGATGAGAATGGCGAAGCTCAATTTTCCATTGACACTTCAGACATATTTGATCCAGAGTTC AACCTAAAAGCCACATATGTTCGACCTGAGAGCTGCTATCTTCCCAGCTGGTTGACGCCTCAGTACTT GGATGCTCACTTCTTAGTCTCACGCTTTTACTCCCGAACCAACAGCTTCCTGAAGATTGTTCCAGAAC CAAAGCAGCTTGAATGTAATCAACAGAAGGTTGTTACTGTGCATTACTCCCTAAACAGTGAAGCATAT GAGGATGATTCCAATGTAAAGTTCTTCTATTTGATGATGGTAAAAGGAGCTATCTTACTCAGTGGACA AAAGGAAATCAGAAACAAAGCCTGGAATGGAAACTTCTCGTTCCCAATCAGCATCAGTGCTGATCTGG CTCCTGCAGCCGTCCTGTTTGTCTATACCCTTCACCCCAGTGGGGAAATTGTGGCTGACAGTGTCAGA TTCCAGGTTGACAAGTGCTTTAAACACAAGGTTAACATAAAGTTCTCTAACGAGCAGGGCTTACCTGG TTCCAATGCTAGTCTCTGTCTTCAAGCGGCGCCTGTCTTATTCTGTGCCCTCAGGGCTGTGGATAGGA ATGTCCTTCTACTGAAATCTGAACAACAGCTGTCAGCTGAAAGTGTGTATAACATGGTTCCAAGTATA GAGCCGTATGGTTATTTCTACCATGGCCTCAATCTTGATGATGGCAAGGAAGACCCTTGCATTCCTCA GAGGGATATGTTCTACAATGGTTTATATTACACACCTGTAAGCAACTATGGGGATGGAGATATCTATA ATATTGTCAGGAACATGGGTCTAAAAGTCTTTACCAATCTCCATTACCGAAAACCAGAAAAAATTATG GTCCAATGCGTAGTGTTCCGTCTAGAATTGCATGTAGCTAGTGGAATCAGAGGGGAGAATGCTGACTA TGTAGAACAGGCTATAATTCAAACAGTAAGAACAAACTTCCCAGAGACATGGATGTGGGACCTCGTCA GTGTCGATTCCTCAGGCTCTGCCAATCTTTCGTTCCTCATTCCTGATACGATAACCCAATGGGAGGCA AGTGGCTTTTGTGTGAATGGTGACGTTGGATTTGGCATTTCCTCTACAACCACTCTAGAAGTCTCCCA ACCTTTCTTTATTGAGATTGCCTCACCCTTTTCGGTTGTTCAAAATGAACAATTTGATTTGATTGTCA ATGTCTTCAGCTACCGGAATACATGTGTAGAGATTTCTGTTCAAGTGGAGGAGTCTCAGAATTATGAA GCAAATATTCATACCTTGAAAATCAATGGCAGTGAGGTTATTCAAGCTGGAGGGAGGAAAACAAACGT CTGGACTATTATACCTAAGAAATTGGGTAAAGTGAATATCACTGTAGTTGCTGAGTCCAAACAAAGCA GTGCTTGCCCAAATGAAGGAATGGAGCAGCAAAΛGCTAAACTGGAAAGACACTGTGGTCCAAAGCTTC TTAGTAGAGCCTGAAGGTATTGAAAAGGAAAGGACCCAGAGTTTCCTTATCTGTACAGAAGGTGCCAA AGCCTCCAAGCAGGGAGTTTTGGACTTGCCAAACGATGTAGTAGAΛGGGTCAGCCAGAGGCTTTTTCA CTGTTGTGGGGGATATTCTAGGACTTGCCTTGCAGAATCTGGTTGTTCTCCAAATGCCCTATGGAAGT
GGAGAGCAGAATGCTGCCCTACTAGCATCTGATACTTATGTTCTGGACTATCTGAAATCTACTGAGCA ACTGACAGAGGAAGTTCAATCTAAGGCTTTCTTTCTCTTATCTAATGGTTATCAAAGGCAATTATCTT TCAAAAACTCTGATGGTTCCTATAGTGTGTTTTGGCAGCAGAGTCAGAAAGGAAGCATATGGCTCAGT GCTCTTACTTTTAAGACATTGGAGAGAATGAAAAAATATGTATTCATTGATGAAAATGTTCAAAAACA GACCTTAATCTGGCTTTCAAGCCAACAGAAAACAAGCGGCTGCTTTAAGAATGATGGCCAGCTTTTCA ACCACGCCTGGGAGGGTGGAGATGAAGAGGACATTTCACTCACTGCGTATGTTGTTGGGATGTTCTTT GAAGCTGGGCTCAATTTCACTTTTCCTGCTCTACGAAACGCACTCTTTTGCCTTGAAGCGGCATTGGA CAGTGGTGTCACTAATGGCTATAATCATGCAATTCTAGCTTATGCTTTTGCCTTAGCTGGAAAΛGAGA AGCAAGTGGAATCTTTACTCCAAACCCTGGATCAATCTGCCCCAAAACTAAATAATGTCATCTACTGG GAAAGAGAAAGGAAACCCAAGACAGAAGAATTTCCATCCTTTATTCCCTGGGCACCTTCTGCTCAGAC TGAGAAGAGTTGCTACGTGCTGTTGGCTGTCATTTCCCGGAAAATTCCTGACCTCACCTATGCTAGTA AGATTGTGCAGTGGCTTGCCCAACGGATGAATTC GATACTCTGTTCAAATTATATACGGGCCAAAAAGAAAGCTTTCGCTCTAGTTCTGTGGGCTATACACT GGGAAAAGCAAATGAAAAGAAGGAAAACAGGAGAAATGGGGGTGAAGGATCCAGTGAGATTTTCCAGG TTAACGGTCATAACCGCCTACTGGTCCAACGTTCAGAAGTAACACAGGCACCTGGAGAATACACAGTA GATGTGGAAGGACACGGTTGTACATTTATCCAGGCCACCCTTAAGTACAATGTTCTCCTACCTAAGAA GGCATCTGGATTTTCTCTTTCCTTGGAAATAGTAAAGAACTACTCTTCGACTGCTTTTGACCTCACAG TGACCCTCAAATACACTGGAATTCGCAATAAATCCAGTATGGTGGTTATAGATGTAAAAATGCTATCA GGATTTACTCCAACCATGTCATCCATTGAAGAGCTTGAAAACAAGGGCCAAGTGATGAAGACTGAAGT CAAGAATGACCATGTTCTTTTCTACTTGGAAAATGTAGGTTTTGGTCGAGCAGACAGTTTCCCTTTTT CTGTTGAGCAGAGCAACCTTGTGTTCAACATTCAGCCAGCCCCAGCCATGGTCTACGATTATTATGAA AAAGAAGAATATGCCCTAGCTTTTTACAACATCGACAGTAGTTCAGTTTCCGAGTGAGACAAAGCAAT
TACTAGAAGAGTTGGAGAAGCATTTCTTGTAACAAACTGATTCTTCTGTATCAAACCTGGAAΆAAAAT
CATGAACCATCTGACATCGTGAACAGTCTGCAGTGGGCTATGGTTTCTTGTCAAGTCTTATTTCCTTA
TCATCCCATTAAATGTTGTCATTTTGCAAA
NOV52a, CG59584-03 JSEQ ID NO: 1092 1593 aa MW at l80167.3kD Protein Sequence
MI KLLNPDNS P I PNE WQLHLKDKI VG YTTDVNGI AQFF DTYTFTYPNI TLKAAYKANENCQAHG
VLPQYPQPEYFAYRFYS-ra- SFLKIVQEMEELRCNQQ---s^VLVHCI NMEDFEDKTYTADFNYLVISK^
VIILHGQQKIEINENGRKGIFSISIDINPE APSVDMLVYS HPGGEMVTDSTQFRIEKCFENQVN N
FSK-EKSLPGSNIDLQVSAASNSLCAL AVDQSV LRNYGQLSAQTVYSQLYSRELHGYYFRG NLED
GLKVPCLEDEHILYNGIYYTPA ADFGKDGYDLV-l-sTPQ NRIFQRQ-^-VTSFRNITQ SFQLISEP- FG
DYWIVVKRNSRETVTHQFAV---OIYVLPKFEVTVNAPQTVTISDDEFQVDVCA-K-Y FGQPVQGETQIRVC
REYFSSSNCEKNENEICEQFIAQLENGCVSQIVNTKVFQ YRSG FMTFHVAVIVTESGTVMQISEKT
SVFITQLLGTVNFE-KMDTFYRRGISYFGTLKFSDPNITVPI-^
IDTSDIFDPEFNLKATYVRPESCYLPS LTPQYLDAHF VSRFYSRTNSFLKIVPEPKQLECNQQKW VHYS HSEAYEDDS VKFFY M^rVKGAIL SGQKEIRNKAW-I-.GNFSF ISISAD APAAVLFVYTLH
PSGEIV-ADSVRFQVDKCFKHK-VNIKFSNEQG PGSNAS C QAΑPV FCALRAVD---- VL
AESVYNMVPSIEPYGYFYHGLNLDDG-^DPCIPQroMFYNGL^
NLHYRKPEKIMVQCVVFRLE HVASGIRGENADYVEQAIIQTVRTNFPETWMWDLVSVDSSGSANLSF
LIPDTITQWEASGFCVNGDVGFGISSTTTLEVSQPFFIEIASPFSVVQNEQFD IV VFSYR TCVEI
SVQVEESQNYEANIHTLKINGSEVIQAGGRKT---JW NW-iπ.T QSFLVEPEGIE---sΕRTQSF ICTEGAKASKQGV^^
NLW QMPYGSGEQNAA ASDTYV DY KSTEQ TEEVQSKAFFLLSNGYQRQLSFKNSDGSYSVFW
QQSQKGSIW SALTFKTLERMKKYVFIDEIWQKQT I SSQQKTSGCFKiroGQLFNHA EGGDEEDI
SLTAYVVGMFFEAG NFTFPALR ALFCLEAALDSGVTNGYNHAILAYAFA AG EKQVES LQTLDQ
SAPKLNNVIY ERERKPKTEEFPSFIP APSAQTEKSCYVLLAVISRKIPDLTYASKIVQWLAQRMNS
HGGFSSNQTPDDT F-eα-JYTGQKESFRSSSVGYTLG---s EKKE-rø
EVTQAPGEYTVDVEGHGCTFIQATLKYNV LPKKASGFSLSLEIVKNYSSTAFDLTVTL YTGIRNKS
SMVVIDVKM SGFTPTMSSIEELENKGQVMKTEVKNDHV FYLENVGFGRADSFPFSVEQSNIJVFNIQ
PAPAMVYDYYEKEEYALAFYNIDS S SVSE
NOV52b, CG59584-02 SEQ ID NO: 1093 4501 bp
DNA Sequence |ORF Start: at 1 iORF Stop: TGA at 4309
TCCATTTCTATAGACATTAACCCTGAATTAGCGCCCTCAGTAGATATGCTTGTCTATAGCTTGCATCC TGGAGGAGAAATGGTCACTGATAGCACCCAATTCCGAATTGAGAAATGCTTCGAAAATCAGGTCAACT TAAATTTTTCTAAAGAAAAAAGTTTACCAGGATCCAATATTGATCTTCAAGTCTCGGCTGCTTCAAAC TCTCTTTGTGCTCTTTGGGCTGTAGACCAGAGTGTATTGCTACTAAGGAATTATGGTCAGCTGTCAGC ACAAACTGTGTATAGTCAGCTATATTCCAGGGAACTACATGGCTATTACTTCAGAGGACTTAA.CTTAG AAGATGGCCTTAAAGTGCCGTGTCTTGAAGATGAACATATCCTTTACAATGGAATTTATTACACACCT GCATGGGCTGACTTTGGAAAAGATGGCTATGACCTTGTGAAGGATCCTCAAAACAATCGGATTTTTCA AAGGCAAAATGTGACTTCTTTCCGAAATATTACCCAACTCTCGTTCCAACTGATTTCAGAACCAATGT TTGGAGATTACTGGATTGTTGTGAAAAGAAACTCAAGGGAGACAGTGACACACCAATTTGCTGTTAAA AGATATGTGCTGCCCAAGTTTGAAGTTACAGTCAATGCACCACAAACAGTAACTATTTCAGATGATGA ATTCCAAGTGGATGTATGTGCTAAGTACAACTTTGGCCAACCTGTGCAAGGGGAAACCCAAATCCGGG TGTGCAGAGAGTATTTTTCTTCAAGCAATTGTGAGAAAAATGAA?-ATGAAATATGTGAGCAATTTATT GCACAGTTGGAAAATGGTTGTGTTTCTCAAATTGTAAATACAAAAGTCTTCCAACTCTACCGTTCGGG ATTGTTCATGACATTTCATGTCGCTGTAATTGTTACAGAATCTGGGACAGTTATGCAGATCAGCGAGA AGACCTCAGTTTTTATCACTCAATTGCTTGGAACTGTAAACTTTGAGAACATGGATACATTCTATAGA AGAGGGATTTCTTATTTTGGAACTCTTAAATTTTCGGATCCCAATAATGTACCTATGGTGAA.CAAGTT GTTGCAACTGGAGCTCAATGATGAATTTATAGGAAATTACACTACGGATGAGAATGGCGAAGCTCAAT TTTCCATTGACACTTCAGACATATTTGATCCAGAGTTCAACCTAAAAGCCACATATGTTCGACCTGAG AGCTGCTATCTTCCCAGCTGGTTGACGCCTCAGTACTTGGATGCTCACTTCTTAGTCTCACGCTTTTA CTCCCGAACCAACAGCTTCCTGAAGATTGTTCCAGAACCAAAGCAGCTTGAATGTAATCAACAGAAGG TTGTTACTGTGCATTACTCCCTAAACAGTGAAGCATATGAGGATGATTCCAATGTAAAGTTCTTCTAT TTGATGATGGTAAAAGGAGCTATCTTACTCAGTGGACAAAAGGAAATCAGAAACAAAGCCTGGAATGG AAACTTCTCGTTCCCAATCAGCATCAGTGCTGATCTGGCTCCTGCAGCCGTCCTGTTTGTCTATACCC TTCACCCCAGTGGGGAAATTGTGGCTGACAGTGTCAGATTCCAGGTTGACAAGTGCTTTAAACACAAG GTTAACATAAAGTTCTCTAACGAGCAGGGCTTACCTGGTTCCAATGCTAGTCTCTGTCTTCAAGCGGC GCCTGTCTTATTCTGTGCCCTCAGGGCTGTGGATAGGAATGTCCTTCTACTGAAATCTGAACAACAGC TGTCAGCTGAAAGTGTGTATAACATGGTTCCAAGTATAGAGCCGTATGGTTATTTCTACCATGGCCTC -AATCTTGATGATGGCAAGGAAGACCCTTGCATTCCTCAGAGGGATATGTTCTACAATGGTTTATATTA CACACCTGTAAGCAACTATGGGGATGGAGATATCTATAATATTGTCAGGAACATGGGTCTAAAAGTCT TTACCAATCTCCATTACCGAAAACCAGAAAAAATTATGGTCCAATGCGTAGTGTTCCGTCTAGAATTG CATGTAGCTAGTGGAATCAGAGGGGAGAATGCTGACTATGTAGAACAGGCTATAATTCAAACAGTAAG AACAAACTTCCCAGAGACATGGATGTGGGACCTCGTCAGTGTCGATTCCTCAGGCTCTGCCAATCTTT CGTTCCTCATTCCTGATACGATAACCCAATGGGAGGCAAGTGGCTTTTGTGTGAATGGTGACGTTGGA TTTGGCATTTCCTCTACAACCACTCTAGAAGTCTCCCAACCTTTCTTTATTGAGATTGCCTCACCCTT TTCGGTTGTTCAAAATGAACAATTTGATTTGATTGTCAATGTCTTCAGCTACCGGAATACATGTGTAG AGATTTCTGTTCAAGTGGAGGAGTCTCAGAATTATGAAGCAAATATTCATACCTTGAAAA.TCAATGGC AGTGAGGTTATTCAAGCTGGAGGGAGGAAAACAAA.CGTCTGGACTATTATACCTAAGAAATTGGGTAA AGTGAATATCACTGTAGTTGCTGAGTCCAAACAAAGCAGTGCTTGCCCAAATGAAGGAATGGAGCAGC AAAAGCTAAACTGGAAAGACACTGTGGTCCAAAGCTTCTTAGTAGAGCCTGAAGGTATTGAAAAGGAA AGGACCCAGAGTTTCCTTATCTGTACAGAAGGTGCCAAAGCCTCCAAGCAGGGAGTTTTGGACTTGCC AAACGATGTAGTAGAAGGGTCAGCCAGAGGCTTTTTCACTGTTGTGGGGGATATTCTAGGACTTGCCT TGCAGAATCTGGTTGTTCTCCAAATGCCCTATGGAAGTGGAGAGCAGAATGCTGCCCTACTAGCATCT GATACTTATGTTCTGGACTATCTGAAATCTACTGAGCAACTGACAGAGGAAGTTCAATCTAAGGCTTT CTTTCTCTTATCTAATGGTTATCAAAGGCAATTATCTTTCAAAAACTCTGATGGTTCCTATAGTGTGT TTTGGCAGCAGAGTCAGAAAGGAAGCATATGGCTCAGTGCTCTTACTTTTAAGACATTGGAGAGAATG AAAAAΆTATGTATTCATTGATGAAAATGTTCAAAAACAGACCTTAATCTGGCTTTCAAGCCAACAGAΆ AACAAGCGGCTGCTTTAAGAATGATGGCCAGCTTTTCAA.CCACGCCTGGGAGGGTGGAGATGΑAGAGG ACATTTCACTCACTGCGTATGTTGTTGGGATGTTCTTTGAAGCTGGGCTCAATTTCACTTTTCCTGCT CTACGAAACGCACTCTTTTGCCTTGAAGCGGCATTGGACAGTGGTGTCACTAATGGCTATAATCATGC
AATTCTAGCTTATGCTTTTGCCTTAGCTGGAAAAGAGAAGCAAGTGGAATCTTTACTCCAAΆCCCTGG ATCAATCTGCCCCAAAACTAAATAATGTCATCTACTGGGAAAGAGAAAGGAAACCCAAGACAGAAGAA TTTCCATCCTTTATTCCCTGGGCACCTTCTGCTCAGACTGAGAAGAGTTGCTACGTGCTGTTGGCTGT CATTTCCCGGAAAATTCCTGACCTCACCTATGCTAGTAAGATTGTGCAGTGGCTTGCCCAACGGATGA ATTCCCATGGAGGCTTTTCTTCCAACCAGACACCTGATGATACTCTGTTCAAATTATATACGGGCCAA AAAGAAAGCTTTCGCTCTAGTTCTGTGGGCTATACACTGGGAAAAGCAAATGAAAAGAAGGAAAACAG GAGAAATGGGGGTGAAGGATCCAGTGAGATTTTCCAGGTTAACGGTCATAACCGCCTACTGGTCCAAC GTTCAGAAGTAACACAGGCACCTGGAGAATACACAGTAGATGTGGAAGGACACGGTTGTACATTTATC CAGGCCACCCTTAAGTACAATGTTCTCCTACCTAAGAAGGCATCTGGATTTTCTCTTTCCTTGGAAAT AGTAAAGAACTACTCTTCGACTGCTTTTGACCTCACAGTGACCCTCAAATACACTGGAATTCGCAATA AATCCAGTATGGTGGTTATAGATGTAAAAATGCTATCAGGATTTACTCCAACCATGTCATCCATTGAA GAGCTTGAAAACAAGGGCCAAGTGATGAAGACTGAAGTCAAGAATGACCATGTTCTTTTCTACTTGGA AAATGTAGGTTTTGGTCGAGCAGACAGTTTCCCTTTTTCTGTTGAGCAGAGCAACCTTGTGTTCAACA TTCAGCCAGCCCCAGCCATGGTCTACGATTATTATGAAAAAGAAGAATATGCCCTAGCTTTTTACAAC ATCGACAGTAGTTCAGTTTCCGAGTGAGACAAAGCAATTACTAGAAGAGTTGGAGAAGCATTTCTTGT
AACAAACTGATTCTTCTGTATCAAACCTGGAAAAAAATCATGAACCATCTGACATCGTGAACAGTCTG
CAGTGGGCTATGGTTTCTTGTCAAGTCTTATTTCCTTATCATCCCATTAAATGTTGTCATTTTGCAAA
AAAAAAAAAAAAA
NOV52b, CG59584-02 SEQ ID NO: 1094 1436 aa MW at 161836.4kD Protein Sequence
SISIDINPE -APSVDMLVYSLHPGGEMVTDSTQFRIEKCFENQVNLNFSKEKSLPGSNID QVSAASN
SLC-^ AVDQSV LLKI-sTYGQ SAQTVYSQ YSRELHGYYFRG N EDGLKVPC EDEHILY-NGIYYTP
AWADFGraGYD VKDPQNNRI FQRQ3-WTS Frø
RYVLPKFEVTVNAPQTVTISDDEFQVDVCAK-Y FGQPVQGETQIRVCREYFSSSNCEKNENEICEQFI
AQ ENGCVSQIVNTKVFQLYRSGLFMTFHVAVIVTESGTVMQISEKTSVFITQL GTVNFENMDTFYR
RGISYFGT KFSDPKll^PrWN--α.LQLEL---JDEFIGI-TYTTDENGEAQFSIDTSDIFDPEF LK^
S CYLPS TPQY DJ FLVSRFY LMMVKGAI LSGQKEI-- KΑ ---.GNFSFPISISADLAPAAVLFVYTLHPSGEIVADSVRFQVDKCFKHK
VNIKFSNEQG PGSNAS C QAAPVLFCALRAVO----^rVLL KSEQQ SAESVYT\MVPSIEPYGYFYHGL
N DDGKEDPCIPQ-RDMFYNG YYTPVSNYGDGDIYNIV..--^
HVASGIRGENADYVEQAIIQTVRT FPET M DLVSVDSSGSANLSF IPDTITQ EASGFCVNGDVG
FGISSTTTLEVSQPFFIEIASPFSWQNEQFD IVNVFSYR TCVEISVQVEESQNYEANIHTLKING
SEVIQAGGRKT VWTIIP---αα-JGKVNITVVAESKQSSACPNEGMEQQ--a
RTQSFLICTEG-A---s^SKQGV DLP DVVEGSARGFFTVVGDILGLALQNLVVLQMPYGSGEQNAALLAS
DTYV DYLKSTEQLTEEVQS AFFLLSNGYQRQ SFK SDGSYSVFWQQSQKGSIWLSALTF TLERM
KKYVFIDENVQKQTLIWLSSQQKTSGCFKNDGQ F HA EGGDEEDISLTAYWGMFFEAGLNFTFPA
LM-TAIiFCLE-AA DSGVTNGY-.-sTHAI AYAFALAGKEKQVESL QTLDQSAP-ra-j l^
FPSFIP APSAQTEKSCYVLLAVISR IPDLTYASKIVQ LAQRiVπsISHGGFSSNQTPDDTLFKLYTGQ
KESFRSSSVGYTLGKΑNEK-i-sΕNRRNGGEGSSEIFQVNGH RLLVQRSEVTQAPGEYTVDVEGHGCTFI
QAT KY-^rVL PK---^SGFS S EIV--^YSSTAFD TVTL ΪTGI-RNKSSMVVIDVKM SGFTPT- SSIE
ELENKGQVM TEVKND t FYLE---WGFGRADSFPFSVEQSNLVFNIQPAPAMVYDYYEKEEYA AFY
I-DSSSVSE
NOV52c, 248210405 SEQ ID NO: 1095 571 bp DNA Sequence JORF Start: at 2 |ORF Stop: end of sequence
CACCAGATCTGAAGGATCCAGTGAGATTTTCCAGGTTAACGGTCATAATCGCCTACTGGTCCAACGTT CAGAAGTAACACAGGCACCTGGAGAATACACAGTAGATGTGGAAGGACACGGTTGTACATTTATCCAG GCCACCCTTAAGTACAATGTTCTCCTACCTAAGAAGGCATCTGGATTTTCTCTTTCCTTGGAAATAGT AAAGAACTACTCTTCGACTGCTTTTGACCTCACAGTGACCCTCAAATACACTGGAATTCGCAATAAAT CCAGTATGGTGGTTATAGATGTAAAAATGCTATCAGGATTTACTCCAACCATGTCATCCATTGAAGAG CTTGAAAACAAGGGCCAAGTGATGAAGACTGAAGTCAAGAATGACCATGTTCTTTTCTACTTGGAAAA TGGTTTTGGTCGAGCAGACAGTTTCCCTTTTTCTGTTGAGCAGAGCAACCTTGTGTTCAACATTCAGC CAGCCCCAGCCATGGTCTACGATTACTATGAAAAAGAAGAATATGCCCTAGCTTTTTACAACATCGAC AGTAGTTCAGTTTCCGAGCTCGAGGGC
NOV52c, 248210405 SEQ ID NO: 1096 ! 190 aa MW at 21231.7kD Protein Sequence
TRSEGSSEIFQVNGH-I-s LLVQRSEVTQAPGEYTVDVEGHGCTFIQATLK-Y VLLPKKASGFSLS EIV
K-NYSSTAFDLTVT KYTGIRNKSSMVVIDV MLSGFTPTMSSIEE ENKGQVMKTEVK-D-^
GFGRADSFPFSVEQSNLVFNIQPAPAMVYDYYEKEEYALAFY IDSSSVSE EG
NOV52d, 248210436 SEQ ID NO: 1097 571 bp DNA Sequence ORF Start: at 2 ORF Stop: end of sequence
CACCAGATCTGAAGGATCCAGTGAGATTTTCCAGGTTAACGGTCATAACCGCCTACTGGTCCAACGTT CAGAAGTAACACAGGCACCTGGACAATACACAGTAGATGTGGAAGGACACGGTTGTACATTTATCCAG GCCACCCTTAAGTACAATGTTCTCCTACCTAAGAAGGCATCTGGATTTTCTCTTTCCTTGGAAATAGT AAAGAACTACTCTTCGACTGCTTTTGACCTCACAGTGACCCTCAAATACACTGGAATTCGCAATAAAT CCAGTATGGTGGTTATAGATGTAAAAATGCTATCAGGATTTACTCCAACCATGTCATCCATTGAAGAG CTTGAAAACAAGGGCCAAGTGATGAAGACTGAAGTCAAGAATGACCATGTTCTTTTCTACTTGGAAAA TGGTTTTGGTCGAGCAGACAGTTTCCCTTTTTCTGTTGAGCAGAGCAACCTTGTGTTCAACATTCAGC CAGCCCCAGCCATGGTCTACGATTACTATGAAAAAGAAGAATATGCCCTAGCTTTTTACAACATCGAC AGTAGTTCAGTTTCCGAGCTCGAGGGC
NOV52d, 248210436 SEQ ID NO: 1098 190 aa MW at 21230.7kD Protein Sequence
TRSEGSSEIFQVNGHNRL VQRSEVTQAPGQYTVDVEGHGCTFIQATLKΩJVLLP--- KASGFSLS EIV
--- - SSTAFDLTVTL TGI----NK^
GFGRADSFPFSVEQSN VFNIQPAPAMVYDYYEKEEYALAFYNIDSSSVSE EG
NOV52e, 249357737 SEQ ID NO: 1099 571 bp DNA Sequence ORF Start: at 2 ORF Stop: end of sequence
CACCAGATCTGAAGGATCCAGTGAGATTTTCCAGGTTAACGGTCATAACCσCCTACTGGTCCAACGTT CAGAAGTAACACAGGCACCTGGACAATACACAGTAGATGTGGAAGGACACGGTTGTACATTTATCCAG GCCACCCTTAAGTACGATGTTCTCCTACCTAAGAAGGCATCTGGATTTTCTCTTTCCTTGGAAATAGT AAAGAACTACTCTTCGACTGCTTTTGACCTCACAGTGACCCTCAAATACACTGGAATTCGCAATAAAT CCAGTATGGTGGTTATAGATGTAAAAATGCTATCAGGATTTACTCCAACCATGTCATCCATTGAAGAG CTTGAAAACAAGGGCCAAGTGATGAAGACTGAAGTCAAGAATGACCATGTTCTTTTCTACTTGGAAAA TGGTTTTGGTCGAGCAGACAGTTTCCCTTTTTCTGTTGAGCAGAGCAACCTTGTGTTCAACATTCAGC CAGCCCCAGCCATGGTCTACGATTACTATGAAAAAGAAGAATATGCCCTAGCTTTTTACAACATCGAC AGTAGTTCAGTTTCCGAGCTCGAGGGC
NOV52e, 249357737 SEQ ID NO: 1100 190 aa MW at 21231.7kD Protein Sequence
TRSEGSSEIFQVNGHNRLLVQRSEVTQAPGQYTVDVEGHGCTFIQATLKYDVLLPKKASGFSLSLEIV
KNYSSTAFDLTVTLKYTGIRNKSSMWIDV^
GFG-RADSFPFSVEQSNLVFNIQPAPAMVYDYYEKEEYA AFY IDSSSVSE EG
NOV52f, 248210430 SEQ ID NO: 1101 529 bp DNA Sequence ORF Start: at 2 ORF Stop: end of sequence
CACCAGATCTGAAGGATCCAGTGAGATTTTCCAGGTTAACGGTCATAACCGCCTACTGGTCCAACGTT CAGAAGTAACACAGGCACCTGGACAATACACAGTAGATGTGGAAGGACACGGTTGTACATTTATCCAG GCCACCCTTAAGTACAATGTTCTCCTACCTAAGAAGGCATCTGGATTTTCTCTTTCCTTGGAAATAGT AAAGAACTACTCTTCGACTGCTTTTGACCTCACAGTGACCCTCAAATACACTGGAATTCGCAATAAAT CCAGTATGGTGGTTATAGATGTAAAAATGCTATCAGGATTTACTCCAACCATGTCATCCATTGAAGAG CTTGAAAACAAGGGCCAAGTGATGAAGACTGAAGTCAAGAATGACCATGTTCTTTTCTACTTGGAAAA TAGCAACCTTGTGTTCAACATTCAGCCAGCCCCAGCCATGGTCTACGATTACTATGAAAAAGAAGAAT ATGCCCTAGCTTTTTACAACATCGACAGTAGTTCAGTTTCCGAGCTCGAGGGC
NOV52f, 248210430 SEQ ID NO: 1102 176 aa MW at l9705.1kD Protein Sequence
TRSEGSSEIFQVTNrGHNR VQRSEVTQAPGQYTVDVEGHGCTFIQATLKYNV PKKASGFSLSLEIV
KNYSSTAFDLWTLKΥTGIrøKSSi -WIDV-Es SGFTPTM
SNIiVFHIQPAPAMVYDYYEKEEYA-LAFY IDSSSVSELEG
NOV52g, 249357755 SEQ ID NO: 1103 547 bp DNA Sequence ORF Start: at 2 ORF Stop: end of sequence
CACCAGATCTGAAGGATCCAGTGAGATTTTCCAGGTTAACGGTCATAATCGCCTACTGGTCCAACGTT CAGAAGTAACACAGGCACCTGGACAATACACAGTAGATGTGGAAGGACACGGTTGTACATTTATCCAG GCCACCCTTAAGTACAATGTTCTCCTACCTAAGAAGGCATCTGGATTTTCTCTTTCCTTGGAAATAGT AAAGAACTACTCTTCGACTGCTTTTGACCTCACAGTGACCCTCAAATACACTGGAATTCGCAATAAAT CCAGTATGGTGGTTATAGATGTAAAAATGCTATCAGGATTTACTCCAACCATGTCATCCACTGAAGAG CTTGAAAACAAGGGCCAAGTGATGAAGACTGAAGTCAAGAATGACCATGTTCTTTTCTACTTGGAAAA TAGCAACCTTGTGTTCAACATTCAGCCAGCCCCAGCCATGGTCTACGATTACTATGAAAAAGAAGAAT ATGCCCTAGCTTTTTACAACATCGACAGTAGTTCAGTTTCCGAGCTCGAGGGCAAGGGCGAATCCAGC ACA
NOV52g, 249357755 SEQ ID NO: 1104 182 aa MW at 20282.6kD
Protein Sequence
TRSEGSSEIFQVNGH R VQRSEVTQAPGQYTVDVEGHGCTFIQATLKYNVLLPK ASGFSLSLEIV
KNYSSTAFDLTVT CTTGI----NKSS->rW^
SNLVFNIQPAPAMVYDYYEKEEYALAFY IDSSSVSELEGKGESST
NOV52h, CG59584-01 SEQ ID NO: 1105 4426 bp DNA Sequence ORF Start: ATG at 1 ORF Stop: TGA at 4234
ATGTACTGTTTTTTGCGATCTGCCGTTTCGTTCTTCTGCCTCAGCCTCCCCAGGTGCTGGGGTTATAG GTGTGAGCCACTGTGCCTGGCTATTCTTTTATTACAGTATGTTCTGCTGATTCCTTCTGTTCTACAAG AAGGCTCTTTGGATAAAGCTTGTGCCCAGCTTTTTAATCTCACTGAATCTGTTGTTTTGACGGTCTCC CTCAACTATGGTGAGGTCCAGACCAAAATATTTGAAGAAAATGTTACTGGAGAAAATTTCTTCAAATG CATCAGCTTTGAGGTTCCTCAGGCCAGATCTGACCCACTGGCATTTATTACATTTTCTGCTAAAGGAG CCACTCTCAACCTGGAAGAGAGGAGATCTGTGGCAATCAGATCCAGAGAGAATGTGGTCTTTGTACAG ACTGATAAACCCACCTACAAGCCTGGACAGTATAATAAAAAGCCGATCAGTCACATAATGCCAGTGAT AGCAGTCACTGAACAGGATCCAGAAGGCAATCGAATACAACAGTGGGTGAATGAGGAGTCTGTGGGAG GGATTCTACAACTCTCCTTCCAGTTAATCTCAGAGCCCATCCTCGGATGGTATGAAATCACCGTGGAG ATGCTCAATGAGAAGAAAACATATCACTCCTTCTCTGTGGAAGAATATGTGTTACCCAAATTTCAAAT GACTGTGGATGCACCAGAAAATATCTTAGTTGTGGACTCTGAATTCAAAGTGAATGTCTGTGCCTTGT ATACCTATGGTGAACCTGTGGACGGGAAGGTCCAACTTAGTGTGTGCAGAGAATCTACGGCTTATCAT TCATGTGCTCATCTTATCAGTTCACTCTGTAAAAATTTTACCTTGGGGAAAGATGGCTGTGTCTCCAA GTTTATTAACACAGATGCTTTTGAGTTAAATCGGGAAGGATACTGGAGTTTCCTCAAAGTGCATGCTC TTGTTACAGAGCTTACAGGCTCCAAGTACGTATACATAGACTCATCAGTGGTGAAGATTAGTTTTGAG AATATGGATATGTCCTACAAACAGGGACTCCCTTATTTTGGCCAGATTAAATTGCTTAATCCAGACAA CTCTCCAATCCCAAATGAAGTTGTTCAGTTGCATCTGAAGGACAAAATCGTGGGAAACTACACCACAG ATGTAAATGGCATCGCTCAGTTTTTCTTGGACACATATACGTTTACATACCCAAATATCACTTTGAAA GCAGCCTACAAGGCCAATGAAAATTGCCAGGCTCATGGCTGGGTGTTGCCTCAATACCCTCAGCCCGA GTACTTTGCATATCGATTTTACTCCAAGATGAATAGCTTCCTAAAGATTGTCCAAGAGATGGAAGAAC TGAGATGCAACCAGCAGAAGAGGGTGCTAGTGCACTGCATTCTCAATATGGAAGACTTTGAAGACAAA ACCTACACAGCAGACTTCAATTATTTGGTGATTTCAAAAGGTGTAATCATTCTTCATGGGCAACAGAA AATTGAGATCAACGAAAATGGGAGGAAGGGCATATTTTCCATTTCTATAGACATTAACCCTGAATTAG CGCCCTCAGTACATATGCTTGTCTATAGCTTGCATCCTGGAGGAGAAATGGTCACTGATAGCACCCAA TTCCAATTGAGAAATGTTAACATAAAGTTCTCTAACGAGCAGGGCTTACCTGGTTCCAATGCTAGTCT CTGTCTTCAAGCGGCGCCTGTCTTATTCTGTGCCCTCAGGGCTGTGGATAGGAATGTCCTTCTACTGA AATCTGAACAACAGCTGTCAGCTGAAAGTGTGTATAACATGGTTCCAAGTATAGAGCCGTATGGTTAT TTCTACCATGGCCTCAATCTTGATGATGGCAAGGAAGACCCTTGCATTCCTCAGAGGGATATGTTCTA CAATGGTTTATATTACACACCTGTAAGCAACTATGGGGATGGAGATATCTATAATATTGTCAGGAACA TGGGTCTAAAAGTCTTTACCAATCTCCATTACCGAAAACCAGAAGTATGTGTGATGGAGAGAAGGCTG CCACTCCCTAAGCCGCTTTATCTGGAAACAGAAAATTATGGTCCAATGCGTAGTGTTCCGTCTAGAAT TGCATCTAGTGGAATCAGAGGGGAGAATGCTGACTATGTAGAACAGGCTATAATTCAAACAGTAAGAA CAAACTTCCCAGAGACATGGATGTGGGACCTCGTCAGTGTCGATTCCTCAGGCTCTGCCAATCTTTCG TTCCTCATTCCTGATACGATAACCCAATGGGAGGCAAGTGGCTTTTGTGTGAATGGTGACGTTGGATT TGGCATTTCCTCTACAACCACTCTAGAAGTCTCCCAACCTTTCTTTATTGAGATTGCCTCACCCTTTT CGGTTGTTCAAAATGAACAATTTGATTTGATTGTCAATGTCTTCAGCTACCGGAATACATGTGTAGAG ATTTCTGTTCAAGTGGAGGAGTCTCAGAATTATGAAGCAAATATTCATACCTTGAAAATCAATGGCAG TGAGGTTATTCAAGCTGGAGGGAGGAAAACAAACGTCTGGACTATTATACCTAAGAAATTGGGCAAAG TGAATATCACTGTAGTTGCTGAGTCCAAACAAAGCAGTGCTTGCCCAAATGAAGGAATGGAGCAGCAA AAGCTAAACTGGAAAGACACTGTGGTCCAAAGCTTCTTAGTAGAGCCTGAAGGTATTGAAAAGGAAAG GACCCAGAGTTTCCTTATCTGTACAGAAGGTGCCAAAGCCTCCAAGCAGGGAGTTTTGGACTTGCCAA ACGATGTAGTAGAAGGGTCAGCCAGAGGCTTTTTCACTGTTGTGGGGGATATTCTAGGACTTGCCTTG CAGAATCTGGTTGTTCTCCAAATGCCCTATGGAAGTGGAGAGCAGAATGCTGCCCTACTAGCATCTGA TACTTATGTTCTGGACTATCTGAAATCTACTGAGCAACTGACAGAGGAAGTTCAATCTAAGGCTTTCT TTCTCTTATCTAATGGTTATCAAAGGCAATTATCTTTCAAAAACTCTGATGGTTCCTATAGTGTGTTT TGGCAGCAGAGTCAGAAAGGAAGCATATGGCTCAGTGCTCTTACTTTTAAGACATTGGAGAGAATGAA AAAATATGTATTCATTGATGAAAATGTTCAAAAACAGACCTTAATCTGGCTTTCAAGCCAACAGAAAA CAAGCGGCTGCTTTAAGAATGATGGCCAGCTTTTCAACCACGCCTGGCAGGGTGGAGATGAAGAGGAC ATTTCACTCACTGCGTATGTTGTTGGGATGTTCTTTGAAGCTGGGGCGGCATTGGACAGTGGTGTCAC
TAATGGCTATAATCATGCAATTCTAGCTTATGCTTTTGCCTTAGCTGGAAAAGAGAAGCAAGTGGAAT CTTTACTCCAAACCCTGGATCAATCTGCCCCAAAACTAAATAATGTCATCTACTGGGAAAGAGAAAGG AAACCCAAGACAGAAGAATTTCCATCCTTTATTCCCTGGGCACCTTCTGCTCAGACTGAGAAGAGTTG CTACGTGCTGTTGGCTGTCATTTCCCGGAAAATTCCTGACCTCACCTATGCTAGTAAGATTGTGCAGT GGCTTGCCCAACGGATGAATTCCCATGGAGGCTTTTCTTCCAACCAGGATCAAAACACTGTCACCTTT AGCAGTGAAGGATCCAGTGAGATTTTCCAGGTTAACGGTCATAACCGCCTACTGGTCCAACGTTCAGA AGTAACACAGGCACCTGGAGAATACACAGTAGATGTGGAAGGACACGGTTGTACATTTATCCAGGCCA CCCTTAAGTACAATGTTCTCCTACCTAAGAAGGCATCTGGATTTTCTCTTTCCTTGGAAATAGTAAAG AACTACTCTTCGACTGCTTTTGACCTCACAGTGACCCTCAAATACACTGGAATTCGCAATAAATCCAG TATGGTGGTTATAGATGTAAAAATGCTATCAGGATTTACTCCAACCATGTCATCCATTGAAGAGCTTG AAAACAAGGGCCAAGTGATGAAGACTGAAGTCAAGAATGACCATGTTCTTTTCTACTTGGAAAATGTA GGTTTTGGTCGAGCAGACAGTTTCCCTTTTTCTGTTGAGCAGAGCAACCTTGTGTTCAACATTCAGCC AGCCCCAGCCATGGTCTACGATTATTATGAAAAAGAAGAATATGCCCTAGCTTTTTACAACATCGACA GTAGTTCAGTTTCCGAGTGAGACAAAGCAATTACTAGAAGAGTTGGAGAAGCATTTCTTGTAACAAAC
TGATTCTTCTGTATCAAACCTGGAAAAAAATCATGAACCATCTGACATCGTGAACAGTCTGCAGTGGG
CTATGGTTTCTTGTCAAGTCTTATTTCCTTATCATCCCATTAAATGTTGTCATTTTGCAAAAAAAAAA.
AAAAAA
NOV52h, CG59584-01 SEQ ID NO: 1106 1411 aa MW at 158867.0kD Protein Sequence
MYCFLRSAVSFFCLS PRCWGYRCEPLC AILL QYVLLIPSVLQEGS DKACAQ FNLTESVV TVS LNYGEVQTKIFEE VTGENFFKCISFEVPQARSDPLAFITFSAKGATLNLEERRSVAIRSRENVVFVQ TD---OPTYKPGQYNKKPISHIMPVIAVTEQDPEGNRIQQWVNEESVGGI QLSFQ ISEPILG YEITVE
M NEKKTYHSFSVEEYVLP---JQMTVDAPENILVVDSEFK-VNVCA YTYGEPVDGKVQLSVCRESTAYH
S CAHLI S SLCKNFTLGKDGCVS KFINTDAFE REGYWS F VHALVTEIJTGS KYVYIDS S WKI S FE
NMDMSYKQGLPYFGQIKL NPDNSPIPNEVVQLH KDKIVGNYTTDVNGIAQFFLDTYTFTYPNITLK
AAYKA ENCQAHG VLPQYPQPEYFAYRFYS-rarøSFLKIVQEMEELRCNQQKRV VHCIL-^
TYTADF---T--T VISKGVII HGQQKIEINENGRKGIFSISIDINPELAPSVΗMLVYSLHPGGEMVTDSTQ
FQ RtTVNIKFSNEQGLPGSNASLCLQAAPVLFCA -^^
FYHG NLDDGKEDPCIPQRDMFYNGLYYTPVS YGDGDIYNIV----imGLKVFTN HYRKPEVCVMERR
PLPKP Y ETENYGPMRSVPSRIASSGIRGENADYVEQAIIQTVRTNFPET MWDLVSVDSSGSAN S
F IPDTITQ EASGFCVNGDVGFGISSTTTLEVSQPFFIEIASPFSWQNEQFDLIVNVFSYRNTCVE
ISVQVEESQNYEANIHTLKINGSEVIQAGGRKT1TV TIIPK-KLGKVNITVVAESKQSSACPNEGMEQQ
K N DT WQS F VEPEGIEKERTQS FLI CTEGAKAS K GVLDLPNDWEGSARGFFTWGD I LGLAL
QN WLQMPYGSGEQNAALLASDTYV DY KSTEQ TEEVQSKAFFLLSNGYQRQLSF NSDGSYSVF
WQQSQKGSI SALTFKTLERMKKYVFIDE- ^QKQTLI SSQQKTSGCFK-l-roGQLFNHAWQGGDEED
ISLTAYWGMFFEAGAA DSGVTNGY-K-ΗAI AYAFAI-AG---^^ PKTEEFPSFIP APSAQTEKSCYVLLAVISRKIPDLTYASKIVQ AQRMNSHGGFSSNQDQNTVTF
SSEGSSEIFQVNGH-l-smLLVQRSEVTQAPGEYTVDVEGHGCTFIQATLKYNV LPKKASGFSLSLEIVK
NYSSTAFDLTVTL-KYTGIrøKSSi-WIDV™^
GFGRADSFPFSVEQSN VFNIQPAPAMVYDYYEKEEYALAFYNIDSSSVSE
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 52B.
Table 52B. Comparison of the NOV52 protein sequences.
NOV52a MI--- -,LNPDNSPIPNEVVQ HLiα--)KIVGlTΪTTDV GIAQFF-LDTYTFTYPNITLKAAYKA NOV52b
NOV52C NO 52d NOV52e NOV52f NOV52g NOV52h
NOV52a ENCQAHG VLPQYPQPEYFAYRFYS---OrøSF KIVQEMEELRCNQQKRV VHCILNMEDFE NOV52b
NOV52C NOV52d NOV52e NOV52f NOV52g NOV52h -MYCFLRSAVSFFCLS PR-
NOV52a DKTYTADFNY VISKGVIILHGQQKIEINENGRKGIFSISIDINPELAPSVDM VYSLHP
NOV52b SISIDINPELAPSVDM VYSLHP
NOV52C
NOV52d
NOV52e
NOV52f
NOV52g
NOV52 -CWGYRCEPLC AIL LQYVLLIPSVLQE
NOV52a GGE- VTDSTQFRIEKCFENQVNLNFSKEKSLPGSNID QVSAASNSLCAL AVDQSV LL
NOV52b GGEMVTDSTQFRIEKCFENQVN NFSKEKS PGSNIDLQVSAASNSLCA AVDQSVLLL
NOV52C
NOV52d
NOV52e
NOV52f
NOV52g NOV52h GS DKACAQLFN TESWIiTVSLNYGEVQTK IFEENVTGENFFKCISFEVPQARSDP
NOV52a RNYGQLSAQTVYSQLYSRELHGYYFRG N EDG KVPCLEDEHI YNGIYYTPA ADFGK
NOV52b R YGQLSAQTVYSQLYSRELHGYYFRGLN EDG KVPCLEDEHI Y GIYYTPA A-DFGK
NOV52C
NOV52d
NOV52e
NOV52f
NOV52g
NOV52h AFITFSAKGAT NLEΞRRSVAIRSRENVVFVQTDKPTYKPGQY KKPISHIMPVIAVT-
NOV52a DGYDLV.-- PQ-H-miFQRQ VTSFFJIITQ SFQLISEPMFGDY IVV---αa,SRETVTHQFAV
NOV52b DGYD V---03PQ--sπ-raiFQRQWTSFrø^
NOV52C
NOV52d
NOV52e
NOV52f
NOV52g
NOV52h -- -EQDPEGNRIQQWV EESVGGILQ SFQLISEPILG YEITVEMLNEK TYHSFSV
NOV52a KRYVLPKFEVTVNAPQTVTISDDEFQVDVCAKY FGQPVQGETQIRVCREYFSSSNCEK
NOV52b KRYVLPKFEVTVNAPQTVTISDDEFQVDVCA-.-s^NFGQPVQGETQIRVCREYFSSSNCEKN
NOV52C
NOV52d
NOV52e
NOV52f
NOV52g
NOV52h EEYV PKFQMTVDAPENILVVDSEFKVNVCALYTYGEPVDGKVQLSVCRESTAYHSCAH
NOV52a ENEICEQFIAQLENGCVSQIVNTKVFQLYRSGLFMTFHVAVIVTESGTVMQISEKTSVFI
NOV52b ENEICEQFIAQLENGCVSQIVNTKVFQLYRSGLFMTF AVIVTESGTVMQISEKTSVFI
NOV52C
NOV52d
NOV52e
NOV52f
NOV52g
NOV52h ISSLC--^FTLGKD-GCVSKFINTDAFELNREGY SFLKVHALVTE LTGSKYVYI
NOV52a TQLLGTVNFENMDTFYRRGISYFGTLKFSDPNI^PMVNKL QIJELNDEFIGNYTTDENGE
NOV52b TQLLGTV FE-IS-MDTFYRRGISYFGTLKFSDPlJNVPiyr -sKLLQLELNDEFIG-^
NOV52C
NOV52d
NOV52e
NOV52f
NOV52g
NOV52h DSSVVKISFENMDMSYKQGLPYFGQI LLNPDNSPIPNEVVQ HLKDKIVGNYTTDVNGI
NOV52a AQFSIDTSDIFDPEFN KATYVRPESCY PS LTPQYLDAHFLVSRFYSRTNSF KIVPE
NOV52b AQFSIDTSDIFDPEFN KATYVRPESCYLPS LTPQY DAHF VSRFYSRTNSFLKIVPE
NOV52C
NOV52d
NOV52f
NOV52g
NOV52h AQFFLDTYTFTYPNIT ---v^V.YKANENCQAHGWV PQYPQPEYFAYRFYSKM SF KIVQE
NOV52a PKQLECNQQKWTVHYSLNSEAYEDDS-NVKFFYLMMVKGAILLSGQK--EIRNKA NGN
NOV52b P QLECNQQKWTVHYS NSEAYEDDS- V-KFFYLMiVKGAIL SGQ - -EIRNKAWNGN
NOV52C
NOV52d NOV52e
NOV52f
NOV52g
NOV52h MEE RCNQQKRVLVHCILNMEDFEDKTYTADFMY VISKGVIILHGQQKIEINENGRKGI
NOV52a FSFPISIS DLAPAAVLFVYTLHPSGEIVADSVRFQVDKCFKHKVNIKFSNEQGLPGSNA
NOV52b FSFPISISADLAPAAVLFVYTLHPSGEIVADSVRFQVDKCFKHKVNIKFSNEQGLPGSNA
NOV52C
NOV52d
NOV52e
NOV52f
NOV52g
NOV52h FSISIDINPELAPSVHMLVYSLHPGGEMVTDSTQFQLR- -NVNIKFSNEQGLPGSNA
NOV52a SLCLQAAPVLFCALRAVDRNVLLLKSEQQLSAESVYNMVPSIEPYGYFYHGLNLDDGKED
NOV52b SLCLQAAPVLFCALRAVDRNVLLLKSEQQLSAESVYNMVPSIEPYGYFYHGLNLDDGKED
NOV52C
NOV52d
NOV52e
NOV52f
NOV52g
NOV52h SLCLQAAPVLFCALRAVDRNVLLLKSEQQLSAESVYNJVPSIEPYGYFYHGLNLDDGKED
NOV52a PCIPQRD FYNGLYYTPVS--S1ΥGDGDIYNIV-RNMGLKVFTNLHYRKPEKIMVQCVVFR
-NOV52b PCIPQRDMFYNGLYYTPVSNYGDGDIYNIVRNMGL-KVFTNLHYRKPEKIMVQCVVFR
NOV52C
NOV52d
NOV52e
NOV52f
NOV52g
NOV52h PCIPQ-RDMFYNGLYYTPVSNYGDGDIYNIV N-MGLKVFTNLHYRKPEVCVMERRLPLPKP
NOV52a -LELHVASGIRGENADYVEQAIIQTVRTNFPETWM DLVSVDSSGSA
NOV52b -LELHVASGIRGENADYVEQAIIQTVRTNFPET MWDLVSVDSSGSA
NOV52C
NOV52d
NOV52e
NOV52f
NOV52g
NOV52h LYLETENYGPMRSVPSRIASSGIRGENADYVEQAIIQTVRTNFPET M DLVSVDSSGSA
NOV52a NLSFLIPDTITQ EASGFCVNGDVGFGISSTTTLEVSQPFFIEIASPFSWQNEQFDLIV
NOV52b NLSFLIPDTITQ EASGFCVNGDVGFGISSTTTLEVSQPFFIEIASPFSWQNEQFDLIV
NOV52C
NOV52d
NOV52e
NOV52f
NOV52g
NOV52 NLSFLIPDTITQ EASGFCVNGDVGFGISSTTTLEVSQPFFIEIASPFSWQNEQFDLIV
NOV52a NVFSYRNTCVΞISVQVEESQ--S1ΥEANIHTLKINGSEVIQAGGRKTNV TIIP-KLGKVNIT
NOV52b NVFSYRNTCVΕISVQVEESQ---TYEANIHTLKINGSEVIQAGGRKT-NVWTIIPK-^
NOV52C
NOV52d
NOV52e
NOV52f
NOV52g
NOV52h NVFSYRNTCVEISVQVEESQNYEANIHTLKINGSEVIQAGGRKT- mTIIP
NOV52a WAESKQSSACPNEGMEQQKLNWKDTWQSFLVEPEGIEKERTQSFLICTEGAKASKQGV NOV52b WAESKQSSACPNEGMEQQKLN KDTWQSFLVEPEGIEKERTQSFLICTΞGAKASKQGV
NOV52C
NOV52d
NOV52e
NOV52 f
NOV52g
NOV52h VVAESKQSSACPNEGMΞQQ---v^-tTWKDTVVQSFLVEPEGIEKERTQSFLICTΞGAKASKQGV
NOV52a LDLPNDVVΕGS-ARGFFTVVGDILGLALQNLVVLQJMPYGSGEQNAALLASDTYVLDYLKST
NOV52b LDLPNDWEGSARGFFTWGDILGLALQNLWLQMPYGSGEQNAALLASDTYVLDYLKST
NOV52 C
NOV52d
NOV52e
NOV52 f
NOV52g
NOV52h LDLP--S1DVVΞGSARGFFTVVGDILGLALQNLVVLQ- PYGSGEQNAALLASDTYVLDYLKST
NOV52a EQLTEEVQSKAFFLLSNGYQRQLSFKNSDGSYSVFWQQSQKGSIWLSALTFKTLERMKKY NOV52b EQLTEEVQSKAFFLLSNGYQRQLSFKNSDGSYSVFWQQSQKGSIWLSALTFKTLERMKKY
NOV52 c
NOV52d
NOV52e
NOV52 f
NOV52g
NOV52h EQLTEEVQS---^FFLLSNGYQRQLSF-KNSDGSYSVF QQSQKGSI LSALTFKTLERMKKY
NOV52a VFIDENVQKQTLI LSSQQKTSGCFKNDGQLFNHAWEGGDEEDISLTAYWGMFFEAGLN
NOV52b VFIDE- QKQTLIWLSSQQKTSGCFKNDGQLFNHAWEGGDEEDISLTAYWGMFFEAGLN
NOV52c
NOV52d
NOV52e
NOV52f
NOV52g
NOV52h VFIDENVQKQTLI LSSQQKTSGCFKNDGQLFNHA QGGDEEDISDTAYWGMFFEAGA-
NOV52 a FTFPALRNALFCLEAALDSGVTNGYN.HAILAYAFALAGKEKQVESLLQTLDQSAPKLN-NV
NOV52b FTFPAL---^ALFCLEAALDSGVTNGYNHAILAYAFALAGKΕKQVESLLQTLDQSAPKLNNV
NOV52C
NOV52d
NOV52e
NOV52 f
NOV52g
NOV52h -ALDSGVTNGYNHAILAYAFALAGKEKQVΕSLLQTLDQSAP---O.NNV
NOV52 a IY ERERKPKTEEFPSFIPWAPSAQTEKSCYVLLAVISRKIPDLTYASKIVQWLAQRMNS
NOV52b IYWERERKPKTEEFPSFIPWAPSAQTEKSCYVLLAVISRKIPDLTYASKIVQWLAQRMNS
NOV52c
NOV52d
NOV52e
NOV52 f
NOV52g
NOV52h IYWERERKPKTEEFPSFIPWAPSAQTEKSCYVLLAVISRKIPDLTYASKIVQWLAQRMNS
NOV52a HGGFSSNQTPDDTLF-I^YTGQ-^SFRSSSVGYTLGK--ANEKKENRRNGGEGSSEIFQVNGH
NOV52 b HGGFSSNQTPDDTLFKLYTGQKES FRS S S VGYTLGKANEKKENRRNGGEGS SE IFQVNGH
NOV52C -TRS- -EGSSEIFQVNGH NOV52d -TRS- -EGSSEIFQVNGH NOV52e -TRS- -EGSSEIFQVNGH NOV52 f -TRS- -EGSSEIFQVNGH NOV52g -TRS- -EGSSEIFQVNGH NOV52h HGGFSSNQDQNT- -VTFSS- -EGSSEIFQVNGH
NOV52a NRLLVQRSEVTQAPGEYTVDVEGHGCTFIQATLKYNVLLPKKASGFSLSLEIVKNYSSTA NOV52b NRLLVQRSEVTQAPGEYTVDVEGHGCTFIQATLKYNVLLP-KKASGFSLSLEIVKNYSSTA NOV52C ITOLLVQRSEVTQAPGEYTVDVEGHGCTFIQATLKYNVLLPKKASGFSLSLEIVKNYSSTA NOV52d NRLLVQRSEVTQAPGQYTVDVEGHGCTFIQATLKYNVLLPKKASGFSLSLEIVKNYSSTA NOV52e NRLLVQRSEVTQAPGQYTVDVEGHGCTFIQATLKYDVLLPKKASGFSLSLEIVKNYSSTA NOV52f NRLLVQRSEVTQAPGQYTVDVEGHGCTFIQATLKYNVLLPKKASGFSLSLEIVKNYSSTA NOV52g NRLLVQRSEVTQAPGQYTVDVEGHGCTFIQATLKYNVLLPKKASGFSLSLEIVKNYSSTA NOV52h --^LLVQRSEVTQAPGEYTVDVEGHGCTFIQATLKYNVLLPKKASGFSLSLEIVKNYSSTA
NOV52a FDLTVTLKYTGIRNKSSMVVIDVKMLSGFTPTMSSIEELENKGQVMKTEVKNDHVLFYLE NOV52b FDLTVTLKYTGI---^KSSMVVIDVKMLSGFTPTMSSIEELENKGQVMKTEVKNDHVLFYLE NOV52C FDLTVTLKYTGIRNKSSMVVIDVKMLSGFTPTMSSIEELENKGQVMKTEVKNDHVLFYLE NOV52d FDLTVTL- -TGI-RNKSSMVVIDVKMLSGFTPTMSSIEELENKGQVMKTEVKNDHVLFYLE NO 52e FDLTVTL---CTTGIRNKSSMVVIDVKMLSGFTPTMSSIEELENKGQVMKTEVKNDHVLFYLE NOV52f FDLTVTLKYTGIRNKSSi VIDVKMLSGFTPTMSSIEELENKGQVMKTEVKND-HVLFYLE NOV52g FDLTVTLK^TGIRNKSS---VVIDVKM SGFTPTMSSTEELENKGQVMKTEVKNDHV FYLE NOV52h FDLTVTL -YTGI-RNKSSMVVIDV-KMLSGFTPTMSSIEELENKGQVMKTEVKNDHVLFYLE
NOV52a NVGFGRADSFPFSVEQSNLVFNIQPAPAMVYDYYEKEEYALAFYNIDSSSVSE NOV52b NVGFGRADSFPFSVEQSNLVFNIQPAPAMVYDYYEKEEYALAFYNIDSSSVSE NOV52C NG-FGRADSFPFSVEQSNLVFNIQPAPAMVYDYYEKEEYALAFYNIDSSSVSELEG NOV52d NG-FGRADSFPFSVEQSNLVFNIQPAPAMVYDYYEKEEYALAFYNIDSSSVSELEG NOV52e NG-FGRADSFPFSVEQSNLVFNIQPAPAMVYDYYEKEEYALAFYNIDSSSVSELEG NOV52f NS NLVFNIQPAPAMVYDYYEKEEYALAFYNIDSSSVSELEG NOV52g NS NLVFNIQPAPAMVYDYYEKEEYALAFYNIDSSSVSELEGKGES NOV52h NVGFGRADSFPFSVEQSNLVFNIQPAPAMVYDYYEKEEYALAFYNIDSSSVSE
NOV52a NOV52b NOV52C NOV52d NOV52e NOV52f NOV52g ST NOV52h
NOV52a (SEQ ID NO 1092) NOV52b (SEQ ID NO 1094) NOV52C (SEQ ID NO 1096) NOV52d (SEQ ID NO 1098) NOV52e (SEQ ID NO 1100) NOV52f (SEQ ID NO 1102) NOV52g (SEQ ID NO 1104) NOV52h (SEQ ID NO 1106)
Further analysis of the NOV52a protein yielded the following properties shown in Table 52C.
Table 52C. Protein Sequence Properties NOV52a
SignalP analysis: No Known Signal Sequence Predicted
PSORT π analysis:
PSG: a new signal peptide prediction method
N-region: length 8; pos.chg 1; neg.chg 1 H-region: length 6; peak value -6.21 PSG score : - 10 . 61
GvH: von Heijne's method for signal seq. recognition v GvH score (threshold: -2.1): -9.40 possible cleavage site: between 45 and 46
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al ' s method for TM region allocation Init position for calculation: 1
Tentative number of TMS(s) for the threshold 0.5: 3 Number of TMS (s) for threshold 0.5: 0 PERIPHERAL Likelihood = 1.11 (at 629) ALOM score: -1.70 (number of TMSs : 0)
MITDISC: discrimination of mitochondrial targeting seq R content: 0 Hyd Moment (75) : 9.53 Hyd Moment (95): 7.08 G content: 0 D/E content: 2 S/T content: 1 Score: -6.16
Gavel: prediction of cleavage sites for mitochondrial preseq cleavage site motif not found
NUCDISC: discrimination of nuclear localization signals pat4: RKPK (4) at 1307 pat7 : none bipartite : none content of basic residues : 8.7% NLS Score: -0.22
KDΞL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals : none
SKL: peroxisomal targeting signal in the C-terminus : none
PTS2 : 2nd peroxisomal targeting signal: found KIVPEPKQL at 596
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail: none
Dileucine motif in the tail: none checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs : none checking 33 PROSITE prokaryotic DNA binding motifs : none
NNCN: Reinhardt ' s method for Cytoplasmic/Nuclear discrimination Prediction: cytoplasmic Reliability: 89
COIL : Lupas ' s algorithm to detect coiled-coil regions total : 0 residues
Final Results (k = 9/23)
47 .8 % : nuclear
30 .4 % : cytoplasmic
17.4 % : mitochondrial
4 .3 % : vesicles of secretory system
>> prediction for CG59584-03 is nuc (k=23 )
A search of the NOV52a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 52D.
In a BLAST search of public sequence databases, the NOV52a protein was found to have homology to the proteins shown in the BLASTP data in Table 52E.
PFam analysis predicts that the NOV52a protein contains the domains shown in the Table 52F.
Example 53. The NOV53 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 53A.
Table 53A. NOV53 Sequence Analysis
NOV53a, 56008-01 SEQ ID NO: 1107 3445 bp DNA Sequence |ORF Sta-rt: NrG at ll7JORF Stop: TGA at 2381
CACCGCGTGTTCGCGCCTGGTAGAGATTTCTCGAAGACACCAGTGGGCCCGTGTGGAACC AACCTGCGCGCGTGGCCGGGCCGTGGGACAACGAGGCCGCGGAGACGAAGGCGCAATGG
CGAGGAAGTTATCTGTAATCTTGATCCTGACCTTTGCCCTCTCTGTCACAAATCCCCTTC ATGAACTAAAAGCAGCTGCTTTCCCCCAGACCACTGAGAAAATTAGTCCGAATTGGGAAT CTGGCATTAATGTTGACTTGGCAATTTCCACACGGCAATATCATCTACAACAGCTTTTCT ACCGCTATGGAGAAAATAATTCTTTGTCAGTTGAAGGGTTCAGAAAATTACTTCAAAATA TAGGCATAGATAAGATTAAAAGAATCCATATACACCATGACCACGACCATCACTCAGACC ACGAGCATCACTCAGACCATGAGCGTCACTCAGACCATGAGCATCACTCAGAGCACGAGC ATCACTCTGACCATGATCATCACTCTCACCATAATCATGCTGCTTCTGGTAAAAATAAGC GAAAAGCTCTTTGCCCAGACCATGACTCAGATAGTTCAGGTAAAGATCCTAGAAACAGCC AGGGGAAAGGAGCTCACCGACCAGAACATGCCAGTGGTAGAAGGAATGTCAAGGACAGTG TTAGTGCTAGTGAAGTGACCTCAZVCTGTGTACAACACTGTCTCTGAAGGAACTCACTTTC TAGAGACAATAGAGACTCCAAGACCTGGAAAACTCTTCCCCAAAGATGTAAGCAGCTCCA CTCCACCCAGTGTCACATCAAAGAGCCGGGTGAGCCGGCTGGCTGGTAGGAAAACAAATG AATCTGTGAGTGAGCCCCGAAAAGGCTTTATGTATTCCAGAAACACAAATGAAAATCCTC AGGAGTGTTTCAATGCATCAAAGCTACTGACATCTCATGGCATGGGCATCCAGGTTCCGC TGAATGCAACAGAGTTCAACTATCTCTGTCCAGCCATCATCAACCAAATTGATGCTAGAT CTTGTCTGATTCATACAAGTGAAAAGAAGGCTGAAATCCCTCCAAAGACCTATTCATTAC AAATAGCCTGGGTTGGTGGTTTTATAGCCATTTCCATCATCAGTTTCCTGTCTCTGCTGG GGGTTATCTTAGTGCCTCTCATGAATCGGGTGTTTTTCAAATTTCTCCTGAGTTTCCTTG TGGCACTGGCCGTTGGGACTTTGAGTGGTGATGCTTTTTTACACCTTCTTCCACATTCTC ATGCAAGTCACCACCATAGTCATAGCCATGAAGAACCAGCAATGGAAATGAAAΆGAGGAC CACTTTTCAGTCATCTGTCTTCTCAAAACATAGAAGAAAGTGCCTATTTTGATTCCACGT GGAAGGGTCTAACAGCTCTAGGAGGCCTGTATTTCATGTTTCTTGTTGAACATGTCCTCA CATTGATCAAACAATTTAAAGATAAGAAGAAAAAGAATCAGAAGAAACCTGAAAATGATG ATGATGTGGAGATTAAGAAGCAGTTGTCCAAGTATGAATCTCAACTTTCAACAAATGAGG AGAAAGTAGATACAGATGATCGAACTGAAGGCTATTTACGAGCAGACTCACAAGAGCCCT CCCACTTTGATTCTCAGCAGCCTGCAGTCTTGGAAGAAGAAGAGGTCATGATAGCTCATG CTCATCCACAGGAAGTCTACAATGAATATGTACCCAGAGGGTGCAAGAATAAATGCCATT CACATTTCCACGATACACTCGGCCAGTCAGACGATCTCATTCACCACCATCATGACTACC ATCATATTCTCCATCATCACCACCACCAAAACCACCATCCTCACAGTCACAGCCAGCGCT ACTCTCGGGAGGAGCTGAAAGATGCCGGCGTCGCCACTCTGGCCTGGATGGTGATAATGG GTGATGGCCTGCACAATTTCAGCGATGGCCTAGCAATTGGTGCTGCTTTTACTGAAGGCT TATCAAGTGGTTTAAGTACTTCTGTTGCTGTGTTCTGTCATGAGTTGCCTCATGAATTAG GTGACTTTGCTGTTCTACTAAAGGCTGGCATGACCGTTAAGCAGGCTGTCCTTTATAATG CATTGTCAGCCATGCTGGCGTATCTTGGAATGGCAACAGGAATTTTCATTGGTCATTATG CTGAAAATGTTTCTATGTGGATATTTGCACTTACTGCTGGCTTATTCATGTATGTTGCTC TGGTTGATATGGTACCTGAAATGCTGCACAATGATGCTAGTGACCATGGATGTAGCCGCT GGGGGTATTTCTTTTTACAGAATGCTGGGATGCTTTTGGGTTTTGGAATTATGTTACTTA TTTCCATATTTGAACATAAAATCGTGTTTCGTATAAATTTCTAGTTAAGGTTTAAATGCT AGAGTAGCTTAAAAAGTTGTCATAGTTTCAGTAGGTCATAGGGAGATGAGTTTGTATGCT GTACTATGCAGCGTTTAAAGTTAGTGGGTTTTGTGATTTTTGTATTGAATATTGCTGTCT GTTACAAAGTCAGTTAAAGGTACGTTTTAATATTTAAGTTATTCTATCTTGGAGATAAAA TCTGTATGTGCAATTCACCGGTATTACCAGTTTATTATGTAAACAAGAGATTTGGCATGA CATGTTCTGTATGTTTCAGGGAAΆAATGTCTTTAATGCTTTTTCAAGAACTAACACAGTT ATTCCTATACTGGATTTTAGGTCTCTGAAGAACTGCTGGTGTTTAGGAATAAGAATGTGC ATGAAGCCTAAAATACCAAGAAAGCTTATACTGAATTTAAGCAAAGAAATAAAGGAGAAA AGAGAAGAATCTGAGAATTGGGGAGGCATAGATTCTTATAAAAATCACAAAATTTGTTGT AAATTAGAGGGGAGAAATTTAGAATTAAGTATAAAAAGGCAGAATTAGTATAGAGTACAT TCATTAAACATTTTTGTCAGGATTATTTCCCGTAAAAACGTAGTGAGCACTTTTCATATA CTAATTTAGTTGTACATTTAACTTTGTATAATACAGAAATCTAAΑ.TATATTTAATGAATT CAAGCAATATATCACTTGACCAAGAAATTGGAATTTCAAAATGTTCGTGCGGGTATATAC CAGATGAGTACAGTGAGTAGTTTTATGTATCACCAGACTGGGTTATTGCCAAGTTATATA
Further analysis of the NOV53a protein yielded the following properties shown in Table 53B.
Table 53B. Protein Sequence Properties NOV53a
SignalP analysis: Cleavage site between residues 18 and 19
PSORT H analysis:
Results Summary: plasma membrane Certainty=0.6400 (Affirmative) < suco
Golgi body Certainty=0.4600 (Affirmative) < suco endoplasmic reticulum (membrane) Certainty=0.3700 (Affirmative) < suco endoplasmic reticulum (lumen) Certainty=0.1000 (Affirmative) < suco
Reasoning Steps:
>>> MUS belongs to the animal class
*** Reasoning Step: 2
SRCFLG: 1
Prelim. Calc. of ALOM (thresh: 0.5) count: 7 mostN: 5 at i=4
MTOP program Imiddle: 12 Chg diff (C-N) : -2.5
McG: Length of UR: 17
Peak Value of UR: 3.09
Net Charge of CR: 2 McG: Discrim Score: 9.90 GvH: Signal Score (-3.5): 2.04
Possible site: 20 >>> Seems to have a cleavable N-term signal seq. Amino Acid Composition: calculated from 21 involving clv.sig in the ALOMREC or not: IB ALOM program count: 6 value: -11.15 threshold: ).5 INTEGRAL Likelihood ■11.15 Transmembrane 324 340 ( 313 348) INTEGRAL Likelihood -5.26 Transmembrane 346 362 ( 342 369) INTEGRAL Likelihood -4.73 Transmembrane 681 697 ( 679 701) INTEGRAL Likelihood -2.44 Transmembrane 725 741 ( 723 742) INTEGRAL Likelihood -1.97 Transmembrane 656 672 ( 656 673) INTEGRAL Likelihood -1.59 Transmembrane 422 438 ( 421 438) PERIPHERAL Likelihood 3.45 modified ALOM score: 2.83 >>> Likely a Type Ilia membrane protein (civ) Gavel: Bound. itoch. Preseq. R-2 motif: 5 ARKLSV mtdisc (mit) Status: positive ( 3.31)
*** Reasoning Step: 3
KDEL Count : 0
2nd signal for mitochondria (apolar) (5) from: 5 to: 17 Score: 8.5 SKL motif: pos: 399(752), count: 3 SHL pox modified by SKL ser: 0.1 Poxaac Score: 2.67 aac not from the N-term. ser modified >>> POX Status: notclr >>> lys: -1.27 Status: negative Nuc-4 pos: 443 (5) KKKK >>> Nuclear Signal. Status: negative ( 0.00)
A search of the NOV53a protein against the Geneseq and public databases, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 53C. In a BLAST search of public sequence databases, the NOV53a protein was found to have homology to the proteins shown in the BLASTP data in Table 53D.
PFam analysis predicts that the NOV53a protein contains the domains shown in the Table 53E.
Example 54.
The NOV54 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 54A.
Table 54A. NOV54 Sequence Analysis
NOV54a, CG59905-01 SEQIDNO: 1109 3145 bp DNA Sequence ORF Start: ATG at 34 ORF Stop: TGA at 3046 TTTTACTTGCTGGATCTTCAGCCTTGACCTGTATGGCAAATGGCTTATGGGACCGATCCCTGCCCAA
GTGTTTGGCTATATCCTGTGGACACCCAGGGGTCCCTGCCAACGCCGTCCTCACTGGAGAGCTGTTTA CCTATGGCGCCGTCGTGCACTACTCCTGCAGAGGGAGCGAGAGCCTCATAGGCAACGACACGAGAGTG TGCCAGGAAGACAGTCACTGGAGCGGGGCACTGCCCCACTGCACAGGAAATAATCCTGGATTCTGTGG TGATCCGGGGACCCCAGCACATGGGTCTCGGCTTGGTGATGACTTTAAGACAAAGAGTCTTCTCCGCT TCTCCTGTGAAATGGGGCACCAGCTGAGGGGCTCCCCTGAACGCACGTGTTTGCTCAATGGGTCATGG TCAGGACTGCAGCCGGTGTGTGAGGCCGTGTCCTGTGGCAACCCTGGCACACCCACCAACGGAATGAT TGTCAGTAGTGATGGCATTCTGTTCTCCAGCTCGGTCATCTATGCCTGCTGGGAAGGCTACAAGACCT CAGGGCTCATGACACGGCATTGCACAGCCAATGGGACCTGGACAGGCACTGCTCCCGACTGCACAATT ATAAGTTGTGGGGATCCAGGCACACTAGCAAATGGCATCCAGTTTGGGACCGACTTCACCTTCAACAA GACTGTGAGCTATCAGTGTAACCCAGGCTATGTCATGGAAGCAGTCACATCCGCCACTATTCGCTGTA CCAAAGACGGCAGGTGGAATCCGAGCAAACCTGTCTGCAAAGCCGTGCTGTGTCCTCAGCCGCCGCCG GTGCAGAATGGAACAGTGGAGGGAAGTGATTTCCGCTGGGGCTCCAGCATAAGTTACAGCTGCATGGA CGGTTACCAGCTCTCTCACTCCGCCATCCTCTCCTGTGAAGGTCGCGGGGTGTGGAAAGGAGAGATCC CCAGTGTCTGCCTGTGTTCTGCGGAGACCCTGGCATCCCCGCAGAAGGGCGACTTAGTGGGAAAAGTT TCACCTATAAGTCCGAAGTCTTCTTCCAGTGCAAATCTCCATTTATACTCGTGGGATCCTCCAGAAGA GTCTGCCAAGCTGACGGCACGTGGAGCGGCATACAACCCACCTGCATTGGTAATAATTATCATACAGC TCTGGGGATACCTGGGAGTATTTGGAGATGAGGACGCTTCATTCCGAAATTGGGTCATTTGTGATTAC ATAGAAAGTGTTTCCATAGACAGTTTTCTGTACAAGGTTGGAAGCACGGTTTTTTTCAGGTGCAGAAA AGGCTACCATATTCAAGGTTCCACGACTCGCACCTGCCTTGCCAATTTAACATGGAGTGGGATACAGA CCGAATGTATACCTCATGCCTGCAGACAGCCAGAAACCCCGGCACACGCGGATGTGAGAGCCATCGAT CTTCCTACTTTCGGCTACACCTTAGTGTACACCTGCCATCCAGGCTTTTTCCTCGCAGGGGGATCTGA GCACAGAACATGTAAAGCAGACATGAAATGGACAGGAAAGTCGCCTGTGTGTAAAATTCCTTCAGATG TCTTTTTCGTCAATTCACTGTGGAAGGGGTATTATGAATATTTAGGGAAAAGACAΆCCCGCCACTCTA ACTGTTGACTGGTTCAATGCAACAAGCAGTAAGGTGAATGCCACCTTCAGCGAAGCCTCGCCAGTGGA GCTGAAGTTGACAGGCATTTACAAGAAGGAGGAGGCCCACTTACTCCTGAAAGCTTTTCAAATTAΆAG GCCAGGCAGATATTTTTGTAAGCAAGTTCGAAAATGACAACTGGGGACTAGATGGTTATGTGTCATCT GGACTTGAAAGAGGAGGATTTACTTTTCAAGGTGACATTCATGGAAAAGACTTTGGAAAATTTAAGCT AGAAAGGCAAGGATGGGTCACAATATTCTTGAGCCTATTTCTTCATCTTAAATCTCAGTATAGAAGTT CCCAAGGTTGTTACGAGATTGAGAGGCCACATCCTTTAAACCCAGATCAAGACTCTTCCAGTCATTAC CACGGCACCAGCAGTGGCTCTGTGGCGGCTGCCATTCTGGTTCCTTTCTTTGCTCTAATTTTATCAGG GTTTGCATTTTACCTCTACAAACACAGAACGAGACCAAAAGTTCAATACAATGGCTATGCTGGGCATG AAΆACAGCAATGGACAAGCATCGTTTGAAAACCCCATGTATGATACAAACTTAAAΆCCCACAGAAGCC AAGGCTAAAACCACACACGGGCTGCTCACGTCTCTGGACTCCAAGAGAAAGATGGTTATAACCCTGGC AGAGTCTTTACCCGCCCTGCGAΑCCTGCCTGTTGATCTGCTTCCCACTCCTCTTTAGACTTGCTCGTG AATCTTCAGCACAGCCATTTGTTTTGAGTATTCAAACACATAAAAAGATATCTGGCAACTTCCCACTT CTTATGACTTCTCAGACACCTTGTAACGGAGCTTCCCTTGGAGGTGGACAAACTTCTCACTCACAAGA GAGACGGAGAGCAACAGAGAGAGATGGGCAGGGATTGATTCGAGGATTGGCTGACTCGATTATGGAGG GTGAGAAGTCCCAGGACAGGCCGTCTGCAAGGCGTAAACCCAGGGAAGCTGCTGGTATGGCTCGGTTC AAGTCCAAAGGCCTCAGCACCAAGGAAACCAAGGTGATAACTCTCAGTTCGGGTCAAAGTCCTGGGAG TCTGCAAGGCCTCTCATTGAGTAAGTCTCACAAGATCCGATGGTTTTATAAAGGGCAGTTCCCCTGCA CAAGCTCTCTTCTCTGCCACCACGCGTTTGCTGTTCATTCACCTTTCACCATGATTGTGAGGCCTCCC GTCTGACCATTCCACTACTGGCAGAGGGTTCAACATCACTTACACCACATTTGGTCAGAATGAGTGCC ATGATCCTGGCATTCCTATAAACGGACGACGTTTTGGTGACAGGTTTCTACTCGGGAGCTCGGTTTCT TTCCACTGTGATGATGGCTTTGTCAAGACCCAGGGATCCGAGTCCATTACCTGCATACTGCAAGACGG GAACGTGGTCTGGAGCTCCACCGTGCCCCGCTGTGAAGCTCCATGTGGTGGACATCTGACAGCGTCCA GCGGAGTCATTTTGCCTCCTGGATGGCCAGGATATTATAAGGATTCTTTACATTGTGAATGGATAATT GAAGCAAAACCAGGCCACTCTATCAAAATGACTTTTGACAGATTTCAGACAGAGGTCAATTATGACAC CTTGGAGGTCAGAGATGGGCCAGCCAGTTCGTCCCCACTGATCGGCGAGTACCACGGCACCCAGGCAC CCCAGTTCCTCATCAGCACCGGGAACTTCATGTACCTGCTGTTCACCACTGACAACAGCCGCTCCAGC ATCGGCTTCCTCATCCACTATGAGAGTGTGACGCTTGAGTCGGATTCCTGCCTGGACCCGGGCATCCC TGTGAACGGCCATCGCCACGGTGGAGACTTTGGCATCAGGTCCACAGTGACTTTCAGCTGTGACCCGG GGTACACACTAAGTGACGACGAGCCCCTCGTCTGTGAGAGGAACCACCAGTGGAACCACGCCTTGCCC AGCTGCGACGCTCTATGTGGAGGCTACATCCAAGGGAAGAGTGGAACAGTCCTTTCTCCTGGGTTTCC AGATTTTTATCCAAACTCTCTAAA.CTGCACGTGGACCATTGAAGTGTCTCATGGGAAAGGAGTTCAAA TGATCTTTCACACCTTTCATCTTGAGAGTTCCCACGACTATTTACTGATCACAGAGGATGGAAGTTTT TCCGAGCCCGTTGCCAGGCTCACCGGGTCGGTGTTGCCTCATACGATCAAGGCAGGCCTGTTTGGAAA
CTTCACTGCCCAGCTTCGGTTTATATCAGACTTCTCAATTTCGTACGAGGGCTTCAATATCACATTTT CAGAΑTATGACCTGGAGCCATGTGATGATCCTGGAGTCCCTGCCTTCAGCCGAAGAATTGGTTTTCAC TTTGGTGTGGGAGACTCTCTGACGTTTTCCTGCTTCCTGGGATATCGTTTAGAAGGTGCCACCAAGCT TACCTGCCTGGGTGGGGGCCGCCGTGTGTGGAGTGCACCTCTGCCAAGGTGTGTGGCCGAATGTGGAG CAAGTGTCAAAGGAAATGAAGGAACATTACTGTCTCCAAATTTTCCATCCAATTATGATAATACCCAT GAGTGTATCTATAAAATAGAAACAGAAGCCGGCAAGGGCATCCACCTTAGAACACGAAGCTTCCAGCT GTTTGAAGGAGATACTCTAAAGGTATATGATGGAAAAGACAGTTCCTCACGTCCACTGGGCACGTTCA CTAAAAATGAACTTCTGGGGCTGATCCTAAACAGCACATCCAATCACCTATGGCTAGAGTTCAACACC AATGGATCTGACACCGACCAAGGTTTTCAACTCACCTATACCAGTTTTGATCTGGTAAAATGTGAGGA TCCGGGCATCCCTAACTACGGCTATAGGATCCGTGATGAAGGCCACTTTACCGACACTGTAGTTCTGT ACAGTTGCAACCCGGGGTACGCCATGCATGGCAGCAACACCCTGACCTGTTTGAGTGGAGACAGGAGA GTGTGGGACAAACCACTACCTTCGTGCATAGCGGAATGTGGTGGTCAGATCCATGCAGCCACATCAGG ACGAATATTGTCCCCTGGCTATCCAGCTCCGTATGACAACAACCTCCACTGCACCTGGATTATAGAGG CAGACCCAGGAAAGACCATTAGCCTCCATTTCATTGTTTTCGACACGGAGATGGCTCACGACATCCTC AAGGTCTGGGACGGGCCGGTGGACAGTGACATCCTGCTGAAGGAGTGGAGTGGCTCCGCCCTTCCGGA GGACATCCACAGCACCTTCAA.CTCACTCACCCTGCAGTTCGACAGCGACTTCTTCATCAGCAAGTCTG GCTTCTCCATCCAGTTCTCCACCTCAATTGCAGCCACCTGTAACGATCCAGGTATGCCCCAAAATGGC ACCCGCTATGGAGACAGCAGAGAGGCTGGAGACACCGTCACATTCCAGTGTGACCCTGGCTATCAGCT CCAAGGACAAGCCAAAATCACCTGTGTGCAGCTGAATAACCGGTTCTTTTGGCAACCAGACCCTCCTA CATGCATAGCTGCTTGTGGAGGGAATCTGACGGGCCCAGCAGGTGTTATTTTGTCACCCAACTACCCA CAGCCGTATCCTCCTGGGAAGGAATGTGACTGGAGAGTAAAAGTGAACCCGGACTTTGTCATCGCCTT GATATTCAAAAGTTTCAACATGGAGCCCAGCTATGACTTCCTACACATCTATGAAGGGGAAGATTCCA ACAGCCCCCTCATTGGGAGTTACCAGGGCTCTCAGGCCCCAGAAAGAATAGAGAGTAGCGGAAACAGC CTGTTTCTGGCATTTCGGAGTGATGCCTCCGTGGGCCTTTCAGGGTTCGCCATTGAATTTAAAGAGAA ACCACGGGAAGCTTGTTTTGACCCAGGAAATATAATGAATGGGACAAGAGTTGGAACAGACTTCAAGC TTGGCTCCACCATCACCTACCAGTGTGACTCTGGCTATAAGATTCTTGACCCCTCATCCATCACCTGT GTGATTGGGGCTGATGGGAAACCCTCCTGGGACCAAGTGCTGCCCTCCTGCAATGCTCCCTGTGGAGG CCAGTACACGGGATCAGAAGGGGTAGTTTTATCACCAAACTACCCCCATAATTACACAGCTGGTCAAA TATGCCTCTATTCCATCACGGTACCAAAGGAATTCGTGGTCTTTGGACAGTTTGCCTATTTCCAGACA GCCCTGAATGATTTGGCAGAATTATTTGATGGAACCCATGCACAGGCCAGACTTCTCAGCTCACTCTC GGGGTCTCACTCAGGGGAAACATTGCCCTTGGCTACGTCAAATCAAATTCTGCTCCGATTCAGTGCAA AGAGCGGTGCCTCTGCCCGCGGCTTCCACTTCGTGTATCAAGCTGTTCCTCGTACCAGTGACACCCAA TGCAGCTCTGTCCCCGAGCCCAGATACGGAAGGAGAATTGGTTCTGAGTTTTCTGCCGGCTCCATCGT CCGATTCGAGTGCAACCCGGGATACCTGCTTCAGGGTTCCACGGCGCTCCACTGCCAGTCCGTGCCCA ACGCCTTGGCACAGTGGAACGACACGATCCCCAGCTGTGTGGTACCCTGCAGTGGCAATTTCACTCAA CGAAGAGGTACAATCCTGTCCCCCGGCTACCCTGAGCCATACGGAAACAACTTGAACTGTATATGGAA GATCATAGTTACGGAGGGCTCGGGAATTCAAGATCCAA.GTGATCAGTTTTGCCACGGAGCAGAACTGG GACTTCCCTTTGAGATCCACGATGGTGGGGATGTGACCGCACCCAGACTGGGAAGCTTCTCAGGCACC ACAGTACCGGCACTGCTGAACAGTACTTCCAACCAACTCTACCTGCATTTCCAGTCTGACATTAGTGT GGCAGCTGCTGGTTTCCACCTGGAATACAAAACTGTAGGTCTTGCTGCATGCCAAGAACCAGCCCTCC CCAGCAACAGCATCAAAATCGGAGATCGGTACATGGTGAACGACGTGCTCTCCTTCCAGTGCGAGCCC GGGTACACCCTGCAGGGCCGTTCCCACATTTCCTGTATGCCAGGGACCGTTCGCCGTTGGAACTATCC GTCTCCCCTGTGCATTGCAACCTGTGGAGGGACGCTGAGCACCTTGGGTGGTGTGATCCTGAGCCCCG GCTTCCCAGGTTCTTACCCCAACAACTTAGACTGCACCTGGAGGATCTCATTACCCATCGGCTATGGT GCACATATTCAGTTTCTG^ TTACCACACCAGCCCCATGATTGGACAATTTAGCGGCACGGATCTCCCCGCGGCCCTGCTGAGCACAA CGCATGAAACCCTCATCCACTTTTATAGTGACCATTCGCAAAACCGGCAAGGATTTAAACTTGCTTAC CAAGCCTATGAATTACAGAACTGTCCAGATCCACCCCCATTTCAGAATGGGTACATGATCAACTCGGA TTACAGCGTGGGGCAATCAGTATCTTTCGAGTGTTATCCTGGGTACATTCTAATAGGCCATCCTGTCC
TCACTTGTCAGCATGGGATCAACAGAAACTGGAACTACCCTTTTCCAAGATGTGATGCCCCTTGTGGG TACAACGTAACTTCTCAGAACGGCACCATCTACTCCCCTGGCTTTCCTGATGAGTATCCGATCCTGAA GGACTGCATTTGGCTCATCACGGTGCCTCCAGGGCACGGAGTTTACATCAACTTCACCCTGTTACAGA CGGAAGCTGTCAACGATTACATTGCTGTTTGGGACGGTCCCGATCAGAACTCACCCCAGCTGGGAGTT TTCAGTGGCAACACAGCCCTCGAAACGGCGTATAGCTCCACCAACCAAGTCCTGCTCAAGTTCCACAG CGACTTTTCAAATGGAGGCTTCTTTGTCCTCAATTTCCACGCATTTCAGCTCAAGAAATGTCAACCTC CCCCAGCGGTTCCACAGGCAGAAATGCTTACTGAGGATGATGATTTCGAAATAGGAGATTTTGTGAAG TACCAGTGCCACCCCGGGTACACCTTGGTGGGGACCGACATTCTGACTTGCAAGCTCAGTTCCCAGTT GCAGTTTGAGGGTTCTCTCCCAACATGTGAAGCACAATGCCCAGCAAATGAAGTCCGGACTGGATCAT CGGGAGTCATTCTCAGTCCAGGGTATCCGGGTAATTATTTTAACTCCCAGACTTGCTCTTGGAGTATT AAAGTGGAACCAAACTACAACATTACCATCTTTGTGGACACATTTCAAAGTGAAAAGCAGTTTGATGC ACTGGAAGTGTTTGATGGTTCTTCTGGGCAAAGTCCTCTGCTAGTAGTCTTAAGTGGGAATCATACTG AACAATCAAATTTTACAAGCAGGAGTAATCAGTTATATCTCCGCTGGTCCACTGACCATGCCACCAGT AAGAAAGGATTCAAGATTCGCTATGCAGCACCTTACTGCAGTTTGACCCACCCCCTGAAGAATGGGGG TATTCTAAACAGGACTGCAGGAGCGGTTGGAAGCAAAGTGCATTATTTTTGCAAGCCTGGATACCGAA TGGTCGGCCACAGCAATGCAACCTGTAGACGAAACCCACTTGGCATGTACCAGTGGGACTCCCTCACG CCACTCTGCCAGGCTGTGTCCTGTGGAATCCCAGAATCCCCAGGAAACGGTTCATTTACCGGGAACGA GTTCACTTTGGACAGTAAAGTGGTCTATGAATGTCATGAAGGCTTCAAGCTTGAATCCAGCCAGCAAG CAACAGCCGTGTGTCAAGAAGATGGGCTGTGGAGTAACAAGGGGAAGCCGCCCATGTGTAAGCCGGTC GCTTGCCCCAGCATTGAAGCTCAGCTCTCAGAACATGTCATCTGGAGGCTGGTTTCAGGATCCTTGAA TGAGTACGGTGCTCAAGTATTGCTGAGCTGCAGTCCTGGTTACTACTTAGAAGGCTGGAGGCTCCTGC GGTGCCAGGCCAATGGGACGTGGAACATAGGAGATGAGAGGCCAAGCTGTCGAGTTATCTCGTGTGGA AGCCTTTCCTTTCCCCCAAATGGCAACAAGATTGGAACGTTGACAGTTTATGGGGCCACAGCTATATT TACGTGCAACACCGGCTACACGCTTGTGGGGTCTCATGTCAGAGAGTGCTTGGCAAATGGGCTCTGGA GCGGCAGCGAAACTCGATGTTTAGCTGGCCACTGCGGTTCCCCAGACCCGATTGTGAACGGTCACATT AGTGGAGATGGCTTCAGTTACAGAGACACGGTGGTTTACCAGTGCAATCCTGGTTTCCGGCTTGTGGG AACTTCCGTGAGGATATGCCTGCAAGACCACAAGTGGTCTGGACAAACGCCTGTCTGTGTCCGTATCA CATGTGGTCACCCTGGAAACCCTGCCCACGGATTCACTAATGGCAGTGAGTTCAA.CCTGAATGATGTC GTGAATTTCACCTGCAACACGGGCTATTTGCTGCAGGGCGTGTCTCGAGCCCAGTGTCGGAGCAACGG CCAGTGGAGTAGCCCTCTGCCCACGTGTCGAGTGGTGAACTGTTCTGATCCAGGCTTTGTGGAAAATG CCATTCGTCACGGGCAACAGAACTTCCCTGAGAGTTTTGAGTATGGAATGAGTATCCTGTACCATTGC AGAAGGGATTTTACTTGCTGGGATCTTCAGCCTTGACCTGTATGGCAAATGGCTTATGGGACCGATC CCTGCCCAAGTGTTTGGCTATATCGTGTGGACACCCAGGGGTCCCTGCCAACGCCGTCCTCACTGGAG AGCTGTTTACCTATGGCGCCGTCGTGCACTACTCCTGCAGAGGGAGCGAGAGCCTCATAGGCAACGAC ACGAGAGTGTGCCAGGAAGACAGTCACTGGAGCGGGGCACTGCCCCACTGCACAGGAAATAATCCTGG ATTCTGTGGTGATCCGGGGACCCCAGCACATGGGTCTCGGCTTGGTGATGACTTTAAGACAAAGAGTC TTCTCCGCTTCTCCTGTGAAATGGGGCACCAGCTGAGGGGCTCCCCTGAACGCACGTGTTTGCTCAAT GGGTCATGGTCAGGACTGCAGCCGGTGTGTGAGGCCGTGTCCTGTGGCAACCCTGGCACACCCACCAA CGGAATGATTGTCAGTAGTGATGGCATTCTGTTCTCCAGCTCGGTCATCTATGCCTGCTGGGAAGGCT ACAAGACCTCAGGGCTCATGACACGGCATTGCACAGCCAATGGGACCTGGACAGGCACTGCTCCCGAC TGCACAGTTATAAGTTGTGGGGATCCAGGCACACTAGCAAATGGCATCCAGTTTGGGACCGACTTCAC CTTCAACAAGACTGTGAGCTATCAGTGTAACCCAGGCTATGTCATGGAAGCAGTCACATCCGCCACTA TTCGCTGTACCAAAGACGGCAGGTGGAATCCGAGCAAACCTGTCTGCAAAGCCGTGCTGTGTCCTCAG CCGCCGCCGGTGCAGAATGGAACAGTGGAGGGAAGTGATTTCCGCTGGGGCTCCAGCATAAGTTACAG CTGCATGGACGGTTACCAGCTCTCTCACTCCGCCATCCTCTCCTGTGAAGGTCGCGGGGTGTGGAAAG GAGAGATCCCCCAGTGTCTCGCTGTGTTCTGCGGAGACCCTGGCATCCCCGCAGAAGGGCGACTTAGT GGGAAAAGTTTCACCTATAAGTCCGAAGTCTTCTTCCAGTGCAAATCTCCATTTATACTCGTGGGATC CTCCAGAAGAGTCTGCCAAGCTGACGGCACGTGGAGCGGCATACAACCCACCTGCATTGGTGATCCTG
CTCATAACACCTGCCCAGACCCTGGTACGCCACACTTTGGAATACAGAATAGCTCCAGAGGCTATGAG GTTGGAAGCACGGTTTTTTTCAGGTGCAGAAAAGGCTACCATATTCAAGGTTCCACGACTCGCACCTG CCTTGCCAATTTAACATGGAGTGGGATACAGACCGAATGTATACGTCATGCCTGCAGACAGCCAGAAA CCCCGGCACACGCGGATGTGAGAGCCATCGATCTTCCTACTTTCGGCTACACCTTAGTGTACACCTGC CATCCAGGCTTTTTCCTCGCAGGGGGATCTGAGCACAGAACATGTAAAGCAGACATGAAATGGACAGG AAAGTCGCCTGTGTGTAAAAGTAAAGGAGTGAGAGAAGTTAATGAAACAGTTACTAAAACTCCAGTTC CTTCAGATGTCTTTTTCGTCAATTCACTGTGGAAGGGGTATTATGAATATTTAGGGAAAAGACAACCC GCCACTCTAACTGTTGACTGGTTCAATGCAACAAGCAGTAAGGTGAATGCCACCTTCAGCGAAGCCTC GCCAGTGGAGCTGAAGTTGACAGGCATTTACAAGAAGGAGGAGGCCCACTTACTCCTGAAAGCTTTTC AAATTAAAGGCCAGGCAGATATTTTTGTAAGCAAGTTCGAAAATGACAACTGGGGACTAGATGGTTAT GTGTCATCTGGACTTGAAAGAGGAGGATTTACTTTTCAAGGTGACATTCATGGAAAAGACTTTGGAAA ATTTAAGCTAGAAAGGCAAGATCCTTTAAACCCAGATCAAGACTCTTCCAGTCATTACCACGGCACCA GCAGTGGCTCTGTGGCGGCTGCCATTCTGGTTCCTTTCTTTGCTCTAATTTTATCAGGGTTTGCATTT TACCTCTACAAACACAGAACGAGACCAAAAGTTCAATACAATGGCTATGCTGGGCATGAAAACAGCAA TGGACAAGCATCGTTTGAAAACCCCATGTATGATACAAACTTAAAACCCACAGAAGCCAAGGCTGTGA GGTTTGACACAACTCTGAACACAGTCTGTACAGTGGTATGA
NOV54b, CG59905-03 SEQ ID NO: 1112 3567 aa MW at 389007.4kD Protein Sequence
MTAWRRFQSLLLLLGLLVLCARLLTAAKGQNCGGLVQGPNGTIESPGFPHGYPNYANCT IIITGERN
RIQLSFHTFALEENFDILSVYDGQPQQGNLKVRLSGFQLPSSIVSTGSILTLWFTTDFAVSAQGFKAL
YEVLPSHTCGNPGEILKGVLHGTRFNIGDKIRYSCLPGYILEGHAILTCIVSPGNGAS DFPAPFCRA
EGACGGTLRGTSSSISSPHFPSEYENNADCTWTILAEPGDTIALVFTDFQLEEGYDFLEISGTEAPSI
WLTGMtfLPSPVISSIsTsTWLRLHFTSDSNHRRKGFNAQFQVK---^^
GVALVSHMCLDPGIPENGRRAGSDFSRVGANVQFSCEDNYVLQGSKSITCQRVTETLAA SDHRPICR
ARTCGSNLRGPSGVITSPNYPVQYEDNAHCVWVITTTDPDKVIKLAFEEFELERGYDTLTVGDAGKVG
DTRSVLYVLTGSSVPDLIVSMSNQMWLHLQSDDSIGSPGFKAVYQEIEKGGCGDPGIPAYGKRTGSSF
LHGDTLTFECPAAFELVGERVITCQQNNQ SGNKPSCVFSCFFNFTASSGIILSPNYPEEYGNNMNCV
WLIISEPGSRIHLIFNDFDVEPQFDFLAVKDNGISDITVLGTFSGNΞVPSQLASSGHIVRLEFQSDHS
TTGRGFNITYTTFGQNECHDPGIPINGRRFGDRFLLGSSVSFHCDDGFVKTQGSESITCILQDGNW
SSTVPRCEAPCGGHLTASSGVILPPGWPGYYKDSLHCE IIEAKPGHSIKMTFDRFQTEVNYDTLEVR
DGPASSSPLIGEYHGTQAPQFLISTGNFMYLLFTTDNSRSSIGFLIHYESVTLESDSCLDPGIPVNGH
RHGGDFGIRSTVTFSCDPGYTLSDDEPLVCERNHQWNHALPSCDALCGGYIQGKSGTVLSPGFPDFYP
NSLNCTWTIEVSHGKGVQMIFHTFHLESSHDYLLITEDGSFSEPVARLTGSVLPHTIKAGLFGNFTAQ
LRFISDFSISYEGFNITFSEYDLEPCDDPGVPAFSRRIGFHFGVGDSLTFSCFLGYRLEGATKLTCLG
GGRRV SAPLPRCVAECGASVKGNEGTLLSPNFPSNYDNTHECIYKIETEAGKGIHLRTRSFQLFEGD
TLKVYDGKDSSSRPLGTFTKNELLGLILNSTSNHLWLEFNTNGSDTDQGFQLTYTSFDLVKCEDPGIP
NYGYRIRDEGHFTDTWLYSCNPGYAMHGSNTLTCLSGDRRV DKPLPSCIAECGGQIHAATSGRILS
PGYPAPYD-i-røLHCT IIEADPGKTISLHFIVFDTEMA-aDILK-VWDGPVDSDILLKE SGSALPEDIHS
TFNSLTLQFDSDFFISKSGFSIQFSTSIAATCNDPGMPQNGTRYGDSREAGDTVTFQCDPGYQLQGQA
KITCVQLNNRFFWQPDPPTCIAACGGNLTGPAGVILSPNYPQPYPPGKECDWRVKVNPDFVIALIFKS
FNMEPSYDFLHIYEGEDSNSPLIGSYQGSQAPERIESSGNSLFLAFRSDASVGLSGFAIEFKEKPREA
CFDPGNIMNGTRVGTDFKLGSTITYQCDSGYKILDPSSITCVIGADGKPSWDQVLPSCNAPCGGQYTG
SEGVVLSPNYP----I-NYTAGQICLYSITVPKEFVVFGQFAYFQTALNDLAΞLFDGTHAQARLLSSLSGSHS
GΞTLPLATSNQILLRFSAKSGASARGFHFVYQAVPRTSDTQCSSVPEPRYGRRIGSEFSAGSIVRFEC
NPGYLLQGSTALHCQSVPNALAQ NDTIPSCWPCSGNFTQRRGTILSPGYPEPYGNNLNCIWKIIVT
EGSGIQDPSDQFCHGAELGLPFEIHDGGDVTAPRLGSFSGTTVPALLNSTSNQLYLHFQSDISVAAAG
FHLEYKTVGLAACQEPALPSNSIKIGDRY-MVNDVLSFQCEPGYTLQGRSHISCMPGTVRR NYPSPLC
IATCGGTLSTLGGVILSPGFPGSYPNNLDCTWRISLPIGYGAHIQFLNFSTEANHDFLEIQNGPYHTS
PMIGQFSGTDLPAALLSTTHETLIHFYSDHSQNRQGFKLAYQAYELQNCPDPPPFQNGYMINSDYSVG
QSVSFECYPGYILIGHPVLTCQHGIN-RN NYPFPRCDAPCGYNVTSQNGTIYSPGFPDEYPILKDCIW
LITVPPGHGVYINFTLLQTEAVNDYIAV DGPDQNSPQLGVFSGNTALETAYSSTNQVLLKFHSDFSN
GGFFVLNFHAFQLKKCQPPPAVPQAEMLTEDDDFEIGDFVKYQCHPGYTLVGTDILTCKLSSQLQFEG
SLPTCEAQCPANEVRTGSSGVILSPGYPGNYFNSQTCS SIKVEPNYNITIFVDTFQSEKQFDALEVF
DGSSGQSPLLWLSGNHTEQSNFTSRSNQLYLR STDHATSKKGFKIRYAAPYCSLTHPLKNGGILNR
TAGAVGSKVHYFCKPGYRMVGHSNATCRRNPLGMYQ DSLTPLCQAVSCGIPESPGNGSFTGNEFTLD
SKVVYECHEGFKLESSQQATAVCQEDGL SNKGKPPMCKPVACPSIEAQLSEHVI RLVSGSLNEYGA
QVLLSCSPGYYLEGWRLLRCQANGT NIGDERPSCRVISCGSLSFPPNGNKIGTLTVYGATAIFTCNT
GYTLVGSHVRECLANGL SGSETRCLAGHCGSPDPIVNGHISGDGFSYRDTVVYQCNPGFRLVGTSVR
ICLQDHKWSGQTPVCVRITCGHPGNPAHGFTNGSΞFNLNDWNFTCNTGYLLQGVSRAQCRSNGQ SS
PLPTCRWNCSDPGFVENAIRHGQQNFPESFEYGMSILYHCKKGFYLLGSSALTCMANGLWDRSLPKC
LAISCGHPGVPANAVLTGELFTYGAWHYSCRGSESLIGNDTRVCQEDSH SGALPHCTGNNPGFCGD
PGTPAHGSRLGDDFKTKSLLRFSCEMGHQLRGSPERTCLLNGS SGLQPVCEAVSCGNPGTPTNGMIV
SSDGILFSSSVIYAC EGYKTSGLMTRHCT-ANGT TGTAPDCTVISCGDPGTLANGIQFGTDFTFNKT
VSYQCNPGYVMΞAVTSATIRCT--^GRrasTPSKPVCKAVLCPQPPPVQNGTVEGSDFR GSSISYSCMDG
YQLSHSAILSCEGRGV KGEIPQCLAVFCGDPGIPAEGRLSGKSFTYKSEVFFQCKSPFILVGSSRRV
CQ-M)GTWSGIQPTCIGDPA-3NTCPDPGTPHFGIQNSSRGYEVGSTVFFRCRKGYHIQGSTTRTCLANL
T SGIQTECIRHACRQPETPAI^V CKSKGVREVNETVTKTPVPSDVFFVNSL KGYYEYLGKRQPATLTVD FNATSSKVNATFSEASPVEL KLTGIYKK-EE-? LLLKAFQIKGQADIFVSKFENDN GLDGYVSSGLERGGFTFQGDIHG---ΦFGKFKLE RQDPLNPDQDSSSHYHGTSSGSVAAAILVPFFALILSGFAFYLYKHRTRPKVQYNGYAGHENSNGQAS FENPMYDTNLKPTEAKAVRFDTTLNTVCTW
NOV54c, 275631102 SEQ ID NO: 1113 898 bp
DNA Sequence jopjr Start: at 2 ORF Stop: end of sequence
CACCAGATCTTGTGGACACCCAGGGGTCCCTGCCAACGCCGTCCTCACTGGAGAGCTGTTTACCTATG GCGCCGTCGTGCACTACTCCTGCAGAGGGAGCGAGAGCCTCATAGGCAACGACACGAGAGTGTGCCAG GAAGACAGTCACTGGAGCGGGGCACTGCCCCACTGCACAGGAAATAATCCTGGATTCTGTGGTGATCC GGGGACCCCAGCACATGGGTCTCGGCTTGGTGATGACTTTAAGACAAAGAGTCTTCTCCGCTTCTCCT GTGAAATGGGGCACCAGCTGAGGGGCTCCCCTGAACGCACGTGTTTGCTCAATGGGTCATGGTCAGGA CTGCAGCCGGTGTGTGAGGCCGTGTCCTGTGGCAACCCTGGCACACCCACCAACGGAATGATTGTCAG TAGTGATGGCATTCTGTTCTCCAGCTCGGTCATCTATGCCTGCTGGGAAGGCTACAAGACCTCAGGGC TCATGACACGGCATTGCACAGCCAATGGGACCTGGACAGGCACTGCTCCCGACTGCACAATTATAAGT TGTGGGGATCCAGGCACACTAGCAAATGGCATCCAGTTTGGGACCGACTTCACCTTCAACAAGACTGT GAGCTATCAGTGTAACCCAGGCTATGTCATGGAAGCAGTCACATCCGCCACTATTCGCTGTACCAAAG ACGGCAGGTGGAATCCGAGCAAACCTGTCTGCAAAGCCGTGCTGTGTCCTCAGCCGCCGCCGGTGCAG AATGGAACAGTGGAGGGAAGTGATTTCCGCTGGGGCTCCAGCATAAGTTACAGCTGCATGGACGGTTA CCAGCTCTCTCACTCCGCCATCCTCTCCTGTGAAGGTCGCGGGGTGTGGAAAGGAGAGATCCCCAGTG TCTGCCTCGAGGGC
NOV54c, 275631102 SEQ ID NO: 1114 299 aa MW at 31648.2kD Protein Sequence
TRSCGHPGVPANAVLTGELFTYGAWHYSCRGSESLIGNDTRVCQEDSH SGALPHCTGNNPGFCGDP GTPAHGSRLGDDFKTKSLLRFSCEMGHQLRGSPERTCLLNGSWSGLQPVCEAVSCGNPGTPTNGMIVS SDGILFSSSVIYAC EGYKTSGLMTRHCTANGT TGTAPDCTIISCGDPGTLANGIQFGTDFTFNKTV SYQCNPGYVMEAVTSATIRCTKDGRWNPSKPVCKAVLCPQPPPVQNGTVEGSDFR GSSISYSCMDGY QLSHSAILSCEGRGVWKGEIPSVCLEG
NOV54d, CG59905-02 SEQ ID NO: 1115 3019 bp DNA Sequence ORF Start: ATG at 184 JORF Stop: TAA at 2614_
CTGCCAGGCTGTGTCCTGTGGAATCCCAGAATCCCCAGGAAACGGTTCATTACCGGGAACGAGTTCAC
TTTGGACAGTAAAGTGGTCTATGAATGTCATGAGGGCTTCAAGCTTGAATCCAGCCAGCAAGCAACAG
CCGTGTGTCAAGAAGATGGGCTGTGGAGTAACAAGGGGAAGCCGCCCATGTGTAAGCCGGTCGCTTGC
CCCAGCATTGAAGCTCAGCTCTCAGAACATGTCATCTGGAGGCTGGTTTCAGGATCCTTGAATGAGTA CGGTGCTCAAGTATTGCTGAGCTGCAGTCCTGGTTACTACTTAGAAGGCTGGAGGCTCCTGCGGTGCC AGGCCAATGGGACGTGGAGCATAGGAGATGAGAGGCCAAGCTGTCGAGTTATCTCGTGTGGAAGCCTT TCCTTTCCCCCAAATGGCAACAAGATTGGAACGTTGACAGTTTATGGGGCCACAGCTATATTTACGTG CAACACCGGCTACACGCTTGTGGGGTCTCATGTCAGAGAGTGCTTGGCAAATGGGCTCTGGAGCGGCA GCGAAACTCGATGTCTGGCTGGCCACTGCGGTTCCCCAGACCCGATTGTGAACGGTCACATTAGTGGA GATGGCTTCAGTTACAGAGACACGGTGGTTTACCAGTGCAATCCTGGTTTCCGGCTTGTGGGAACTTC CGTGAGGATATGCCTGCAAGACCACAAGTGGTCTGGACAAACGCCTGTCTGTGTCGCCATCACATGTG GTCACCCTGGAAACCCTGCCCACGGATTCACTAATGGCAGTGAGTTCAACCTGAATGATGTCGTGAAT TTCACCTGCAACACGGGCTATTTGCTGCAGGGCGTGTCTCGAGCCCAGTGTCGGAGCAACGGCCAGTG GAGTAGCCCTCTGCCCACGTCTCGACACGTGGGCAGAGGGCTACTCCACTGGCGGTTGCTCCGACACG GGGCTCCGAGACACGCCCTGCAGCAAATAGCCCGTGTTGCAGGTGAAATTCACGACATCATTATTTTA CTTGCTGGATCTTCAGCCTTGACCTGTATGGCAAATGGCTTATGGGACCGATCCCTGCCCAAGTGTTT GGCTATATCGTGTGGACACCCAGGGGTCCCTGCCAACGCCGTCCTCACTGGAGAGCTGTTTACCTATG GCGCCGTCGTGCACTACTCCTGCAGAGGGAGCGAGAGCCTCATAGGCAACGACACGAGAGTGTGCCAG GAAGACAGTCACTGGAGCGGGGCACTGCCCCACTGCACAGGTAATAATCCTGGATTCTGTGGTGATCC GGGGACCCCAGCACATGGGTCTCGGCTTGGTGATGACTTTAAGACAAAGAGTCTTCTCCGCTTCTCCT GTGAAATGGGGCACCAGCTGAGGGGCTCCCCTGAACGCACGTGTTTGCTCAATGGGTCATGGTCAGGA CTGCAGTCGGTGTGTGAGGCCGTGTCCTGTGGCAACCCTGGCACACCCACCAACGGAATGATTGTCAG TAGTGATGGCATTCTGTTCTCCAGCTCGGTCATCTATGCCTGCTGGGAAGGCTACAAGACCTCAGGGC TCATGACACGGCATTGCACAGCCAATGGGACCTGGACAGGCACTGCTCCCGACTGCTTAGTTATAAGT TGTGGGGATCCAGGCACACTAGCAAATGGCATCCAGTTTGGGACCGACTTCACCTTCAACAAGACTGT GAGCTATCAGTGTAACCCAGGCTATGTCATGGAAGCAGTCACATCCGCCACTATTCGCTGTACCAAAG ACGGCAGGTGGAATCCGAGCAAACCTGTCTGCAAAGGTTTGCTGTGTCCTCAGCCGCCGCCGGTGCAG AATGGAACAGTGGAGGGAAGTG^ CCAGCTCTCTCACTCCGCCATCCTCTCCTGTGAAGGTCGCGGGGTGTGGAAAGGAGAGATCCCCCAGT GTCTGCCTGTGTTCTGCGGAGACCCTGGCATCCCCGCAGAGGGGCGACTTAGTGGGAAAAGTTTCACC TATAAGTCCGAAGTCTTCTTCCAGTGCAAATCTCCATTTATACTCGTGGGATCCTCCAGAAGAGTCTG CCAAGCTGACGGCACGTGGAGCGGCATACAACCCACCTGCATTGATCCTGCTCATAACACCTGCCCAG ACCCTGGTACGCCACACTTTGGAATACAGAATAGCTCCAGAGGCTATGAGGTTGGAAGCACGGTTTTT TTCAGGTGCAGAAAAGGCTACCATATTCAAGGTTCCACGACTCGCACCTGCCTTGCCAATTTAACATG GAGTGGGATACAGACCGAATGTATACCTCATGCCTGCAGACAGCCAGAAACCCCGGCACACGCGGATG TGAGAGCCATCGATCTTCCTACTTTCGGCTACACCTTAGTGTACACCTGCCATCCAGGCTTTTTCCTC GCAGGGGGATCTGAGCACAGAACATGTAAAGCAGACATGAAATGGACAGGAAAGTCGCCTGTGTGTAA AAGTAAGTCATTGATCAAGGAGTGGCATACTTTTCCAAAGAGCAAGGGAAAGGATCAGCTGCCCATCA GGCTAGTGTCCACGTGTGAGACCCATAAGTAAGAGCATGAGGCTGCAGCATCGCCACCTGCCTCAGTC
GTGCTTCATGTGCGTGAGCTGTGTGTGTGAACGTGTGTATCCTCAGTGTTTGATGCAATGGTGGCATA
GCTAAATATATAGTACAATTAGTATGCAATTAGTACATAATAAAATGATTGCATTATTTCAAGCCAAA
AGAGAAAAGCTATTTGGTTAAAGAAAAGCATTCTGAGTTAAAAGGAAAATAATACTTGGTATAGTTTC
AGGAAAAGTAGTTCTTAGAGATGAAAATGAATAAAGGTCACCAAGTATCCGAGAATAGGTAAATGAAAI
CTCTGTCTTATTTTTAAGACCACATGCTGTTTGTGGTAAAACCTCAGTTTATGTGTCCCTGACATTGA;
TTCTGCTTTTTAAAATTACAAAAGCAA
NOV54d, CG59905-02 SEQ ID NO: 1116 810 aa MW at 87208.0kD Protein Sequence
MCKPVACPSIEAQLSEHVI RLVSGSLNEYGAQVLLSCSPGYYLEG RLLRCQANGT SIGDERPSCR VISCGSLSFPPNGNKIGTLTVYGATAIFTCNTGYTLVGSHVRECLANGLWSGSETRCLAGHCGSPDPI VNGHISGDGFSYRDTWYQCNPGFRLVGTSVRICLQDHK SGQTPVCVAITCGHPGNPAHGFTNGSEF NLNDWNFTCNTGYLLQGVSRAQCRSNGQWSSPLPTSRHVGRGLLHWRLLRHGAPRHALQQIARVAGE IHDIIILLAGSSALTCMANGL DRSLPKCLAISCGHPGVPANAVLTGELFTYGAWHYSCRGSESLIG NDTRVCQEDSHWSGALPHCTGNNPGFCGDPGTPAHGSRLGDDFKTKSLLRFSCEMGHQLRGSPERTCL LNGS SGLQSVCEAVSCGNPGTPTNGMIVSSDGILFSSSVIYACWEGYKTSGLMTRHCTANGT TGTA PDCLVISCGDPGTLANGIQFGTDFTFNKTVSYQCNPGYVMEAVTSATIRCTKDGR NPSKPVCKGLLC PQPPPVQNGTVEGSDFRWGSSISYSCMDGYQLSHSAILSCEGRGV KGEIPQCLPVFCGDPGIPAEGR LSGKSFTYKSEVFFQCKSPFILVGSSRRVCQADGTWSGIQPTCIDPAHNTCPDPGTPHFGIQNSSRGY EVGSTVFFRCRKGYHIQGSTTRTCLANLTWSGIQTECIPHACRQPETPAHADVRAIDLPTFGYTLVYT CHPGFFLAGGSEHRTCKADMK TGKSPVCKSKSLIKEWHTFPKSKGKDQLPIRLVSTCETHK
NOV54e, SNP13382527 of SEQ ID NO: 1117 3145 bp CG59905-01, DNA Sequence ORF Start: ATG at 34 ORF Stop: TGA at 3046
SNP Pos: 392 SNP Change: T to C
ATTTTACTTGCTGGATCTTCAGCCTTGACCTGTATGGCAAATGGCTTATGGGACCGATCCCTGCCCAA
GTGTTTGGCTATATCCTGTGGACACCCAGGGGTCCCTGCCAA.CGCCGTCCTCACTGGAGAGCTGTTTA CCTATGGCGCCGTCGTGCACTACTCCTGCAGAGGGAGCGAGAGCCTCATAGGCAACGACACGAGAGTG TGCCAGGAAGACAGTCACTGGAGCGGGGCACTGCCCCACTGCACAGGAAATAATCCTGGATTCTGTGG TGATCCGGGGACCCCAGCACATGGGTCTCGGCTTGGTGATGACTTTAAGACAAAGAGTCTTCTCCGCT TCTCCTGTGAAATGGGGCACCAGCTGAGGGGCTCCCCTGAACGCACGTGTTCGCTCAATGGGTCATGG TCAGGACTGCAGCCGGTGTGTGAGGCCGTGTCCTGTGGCAACCCTGGCACACCCACCAACGGAATGAT TGTCAGTAGTGATGGCATTCTGTTCTCCAGCTCGGTCATCTATGCCTGCTGGGAAGGCTACAAGACCT CAGGGCTCATGACACGGCATTGCACAGCCAATGGGACCTGGACAGGCACTGCTCCCGACTGCACAATT ATAAGTTGTGGGGATCCAGGCACACTAGCAAATGGCATCCAGTTTGGGACCGACTTCACCTTCAACAA GACTGTGAGCTATCAGTGTAACCCAGGCTATGTCATGGAAGCAGTCACATCCGCCACTATTCGCTGTA CCAAAGACGGCAGGTGGAATCCGAGCAAACCTGTCTGCAAAGCCGTGCTGTGTCCTCAGCCGCCGCCG GTGCAGAATGGAACAGTGGAGGGAAGTGATTTCCGCTGGGGCTCCAGCATAAGTTACAGCTGCATGGA CGGTTACCAGCTCTCTCACTCCGCCATCCTCTCCTGTGAAGGTCGCGGGGTGTGGAAAGGAGAGATCC CCAGTGTCTGCCTGTGTTCTGCGGAGACCCTGGCATCCCCGCAGAAGGGCGACTTAGTGGGAAAAGTT TCACCTATAAGTCCGAAGTCTTCTTCCAGTGCAAATCTCCATTTATACTCGTGGGATCCTCCAGAAGA GTCTGCCAAGCTGACGGCACGTGGAGCGGCATACAACCCACCTGCATTGGTAATAATTATCATACAGC TCTGGGGATACCTGGGAGTATTTGGAGATGAGGACGCTTCATTCCGAAATTGGGTCATTTGTGATTAC ATAGAAAGTGTTTCCATAGACAGTTTTCTGTACAAGGTTGGAAGCACGGTTTTTTTCAGGTGCAGAAA AGGCTACCATATTCAAGGTTCCACGACTCGCACCTGCCTTGCCAATTTAACATGGAGTGGGATACAGA CCGAATGTATACCTCATGCCTGCAGACAGCCAGAAACCCCGGCACACGCGGATGTGAGAGCCATCGAT CTTCCTACTTTCGGCTACACCTTAGTGTACACCTGCCATCCAGGCTTTTTCCTCGCAGGGGGATCTGA GCACAGAACATGTAAAGCAGACATGAAATGGACAGGAAAGTCGCCTGTGTGTAAAATTCCTTCAGATG TCTTTTTCGTCAATTCACTGTGGAAGGGGTATTATGAATATTTAGGGAAAAGACAACCCGCCACTCTA CGGTTACCAGCTCTCTCACTCCGCCATCCTCTCCTGTGAAGGTCGCGGGGTGTGGAAAGGAGAGATCC CCAGTGTCTGCCTGTGTTCTGCGGAGACCCTGGCATCCCCGCAGAAGGGCGACTTAGTGGGAAAAGTT TCACCTATAAGTCCGAAGTCTTCTTCCAGTGCAAATCTCCATTTATACTCGTGGGATCCTCCAGAAGA GTCTGCCAAGCTGACGGCACGTGGAGCGGCATACAACCCACCTGCATTGGTAATAATTATCATACAGC TCTGGGGATACCTGGGAGTATTTGGAGATGAGGACGCTTCATTCCGAAATTGGGTCATTTGTGATTAC ATAGAAAGTGTTTCCATAGACAGTTTTCTGTACAAGGTTGGAAGCACGGTTTTTTTCAGGTGCAGAAA AGGCTACCATATTCAAGGTTCCACGACTCGCACCTGCCTTGCCAATTTAACATGGAGTGGGATACAGA CCGAATGTATACCTCATGCCTGCAGACAGCCAGAAACCCCGGCACACGCGGATGTGAGAGCCATCGAT CTTCCTACTTTCGGCTACACCTTAGTGTACACCTGCCATCCAGGCTTTTTCCTCGCAGGGGGATCTGA GCACAGAACATGTAAAGCAGACATGAAATGGACAGGAAAGTCGCCTGTGTGTAAAATTCCTTCAGATG TCTTTTTCGTCAATTCACTGTGGAAGGGGTATTATGAATATTTAGGGAAAAGACATCCCGCCACTCTA ACTGTTGACTGGTTCAATGCAACAAGCAGTAAGGTGAATGCCACCTTCAGCGAAGCCTCGCCAGTGGA GCTGAAGTTGACAGGCATTTACAAGAAGGAGGAGGCCCACTTACTCCTGAAAGCTTTTCAAATTAAAG GCCAGGCAGATATTTTTGTAAGCAAGTTCGAAAATGACAACTGGGGACTAGATGGTTATGTGTCATCT GGACTTGAAAGAGGAGGATTTACTTTTCAAGGTGACATTCATGGAAAAGACTTTGGAAAATTTAAGCT AGAAAGGCAAGGATGGGTCACAATATTCTTGAGCCTATTTCTTCATCTTAAATCTCAGTATAGAAGTT CCCAAGGTTGTTACGAGATTGAGAGGCCACATCCTTTAAACCCAGATCAAGACTCTTCCAGTCATTAC CACGGCACCAGCAGTGGCTCTGTGGCGGCTGCCATTCTGGTTCCTTTCTTTGCTCTAATTTTATCAGG GTTTGCATTTTACCTCTACAAACACAGAACGAGACCAAAAGTTCAATACAATGGCTATGCTGGGCATG AAAACAGCAATGGACAAGCATCGTTTGAAAACCCCATGTATGATACAAACTTAAAACCCACAGAAGCC AAGGCTAAAACCACACACGGGCTGCTCACGTCTCTGGACTCCAAGAGAAAGATGGTTATAACCCTGGC AGAGTCTTTACCCGCCCTGCGAACCTGCCTGTTGATCTGCTTCCCACTCCTCTTTAGACTTGCTCGTG AATCTTCAGCACAGCCATTTGTTTTGAGTATTCAAACACATAAAAAGATATCTGGCAACTTCCCACTT CTTATGACTTCTCAGACACCTTGTAACGGAGCTTCCCTTGGAGGTGGACAAACTTCTCACTCACAAGA GAGACGGAGAGCAACAGAGAGAGATGGGCAGGGATTGATTCGAGGATTGGCTGACTCGATTATGGAGG GTGAGAAGTCCCAGGACAGGCCGTCTGCAAGGCGTAAACCCAGGGAAGCTGCTGGTATGGCTCGGTTC AAGTCCAAAGGCCTCAGCACCAAGGAAACCAAGGTGATAACTCTCAGTTCGGGTCAAAGTCCTGGGAG TCTGCAAGGCCTCTCATTGAGTAAGTCTCACAAGATCCGATGGTTTTATAAAGGGCAGTTCCCCTGCA CAAGCTCTCTTCTCTGCCACCACGCGTTTGCTGTTCATTCACCTTTCACCATGATTGTGAGGCCTCCC AGCCATGTGGAACTGTGCAAAGAGGATGTTCAAAGGGCATCTTGGACCAGGAGGAGGAAGCCCATTGT GAGGATGGCAAAGAACAATAAATGGAAGGCCCGTGGAACCCTGAGCGGCTGCCCCATCACTGTCCTCT CCATCCTTTCCATGCTTCCCATGGTGCATGGCTCTCAGGCTCTCCAAGCACCATGAGCTCCTGGCGCG
TATGGCCTGGCCCCTGAGTGTGGAGTCTGTGGACTTTAAATGTGCCTTTACTCAGCCAGCATCTCCCT
GGCTGGGTGCGATGTTG
NOV54f; SNP13382520 of SEQ ID NO: 1120 1004 aa MW at 109761.8-fcD
CG59905-01, Protein Sequence JSNP Pos: 529 j SNP Change: Gin to His
MANGL DRSLPKCLAISCGHPGVPANAVLTGELFTYGAWHYSCRGSESLIGNDTRVCQEDSHWSGAL PHCTGNNPGFCGDPGTPAHGSRLGDDFKTKSLLRFSCEMGHQLRGSPERTCLLNGS SGLQPVCEAVS CGNPGTPTNGMIVSSDGILFSSSVIYAC EGYKTSGLMTRHCTANGTWTGTAPDCTIISCGDPGTLAN GIQFGTDFTFNKTVSYQCNPGYVMEAVTSATIRCTKDGRWNPSKPVCKAVLCPQPPPVQNGTVEGSDF R GSSISYSCMDGYQLSHSAILSCEGRGVWKGEIPSVCLCSAETLASPQKGDLVGKVSPISPKSSSSA NLHLYSWDPPEES-AKLTARGAAYNPPALVIIIIQLWGYLGVFGDEDASFRNWVICDYIESVSIDSFLY KVGSTVFFRCRKGYHIQGSTTRTCLANLT SGIQTECIPHACRQPETPAHADVRAIDLPTFGYTLVYT CHPGFFLAGGSEHRTCKADMKWTGKSPVCKIPSDVFFVNSLWKGYYEYLGKRHPATLTVDWFNATSSK VNATFSEASPVELKLTGIYKKEEAHLLLKAFQIKGQADIFVSKFENDN GLDGYVSSGLERGGFTFQG DIHGKDFGKFKLERQGWVTIFLSLFLHLKSQYRSSQGCYEIERPHPLNPDQDSSSHYHGTSSGSVAAA ILVPFFALILSGFAFYLYKHRTRPKVQYNGYAGHENSNGQASFENPMYDTNLKPTEAKAKTTHGLLTS LDSKRKMVITLAESLPALRTCLLICFPLLFRLARESSAQPFVLSIQTHKKISGNFPLLMTSQTPCNGA SLGGGQTSHSQERRRATERDGQGLIRGLADSIMEGEKSQDRPSARRKPREAAGMARFKSKGLSTKETK VITLSSGQSPGSLQGLSLSKSHKIR FYKGQFPCTSSLLCHHAFAVHSPFTMIVRPPSHVELCKEDVQ RASWTRRRKPIVRMAKNNKWKARGTLSGCPITVLSILSMLPMVHGSQALQAP
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 54B.
Table 54B. Comparison of the NOV54 protein sequences.
NOV54a NOV54b MTAWRRFQSLLLLLGLLVLCARLLTAAKGQNCGGLVQGPNGTIESPGFPHGYPNYANCT
NOV54C
NOV54d
NOV54a
NOV54b IIITGERNRIQLSFHTFALEENFDILSVYDGQPQQGNLKVRLSGFQLPSSIVSTGSILTL
NOV54C
NOV54d
NOV54a
NOV54b FTTDFAVSAQGFKALYEVLPSHTCGNPGEILKGVLHGTRFNIGDKIRYSCLPGYILEGH
N0V54C
NOV54d
NOV54a
NOV54b AILTCIVSPGNGASWDFPAPFCRAEGACGGTLRGTSSSISSPHFPSEYENNADCTWTILA
NOV54C
NOV54d
NOV54a
NOV54b EPGDTIALVFTDFQLEEGYDFLEISGTEAPSI LTGMNLPSPVISSKN LRLHFTSDSNH
NOV54C
NOV54d
NOV54a
NOV54b RRKGFNAQFQVKKAIELKSRGVKMLPSKDGSHKNSVLSQGGVALVSHMCLDPGIPENGRR
NOV54C
NOV54d
NOV54a
NOV54b AGSDFSRVGANVQFSCEDNYVLQGSKSITCQRVTETLAA SDHRPICRARTCGSNLRGPS
NOV54C
NOV54d
NOV54a
NOV54b GVITSPNYPVQYEDNAHCV VITTTDPDKVIKLAFEEFELERGYDTLTVGDAGKVGDTRS
NOV54C
NOV54d
NOV54a
NOV54b VLYVLTGSSVPDLIVSMSNQMWLHLQSDDSIGSPGFKAVYQEIEKGGCGDPGIPAYGKRT
NOV54C
NOV54d
NOV54a
NOV54b GSSFLHGDTLTFECPAAFELVGERVITCQQNNQ SGNKPSCVFSCFFNFTASSGIILSPN
NOV54C
NOV54d
NOV54a
NOV54b YPEEYGN-NMNCV LIISEPGSRIHLIFNDFDVEPQFDFLAVKDNGISDITVLGTFSGNEV
NOV54C
NOV54d
NOV54a
NOV54b PSQLASSGHIVRLEFQSDHSTTGRGFNITYTTFGQNECHDPGIPINGRRFGDRFLLGSSV
NOV54C
NOV54d
NOV54a N0V54b SFHCDDGFVKTQGSESITCILQDGNVVWSSTVPRCEAPCGGHLTASSGVILPPGWPGYYK
NOV54C
NOV54d
NOV54a
NOV54b DSLHCEWIIEAKPGHSIKMTFDRFQTEVNYDTLEVRDGPASSSPLIGEYHGTQAPQFLIS
NOV54C
N0V54d
NOV54a
N0V54b TGNFMYLLFTTDNSRSSIGFLIHYESVTLESDSCLDPGIPVNGHRHGGDFGIRSTVTFSC
NOV54C
NOV54d
NOV54a
NOV54b DPGYTLSDDEPLVCER-l-mQWNHALPSCDALCGGYIQGKSGTVLSPGFPDFYPNSLNCTWT
N0V54C
N0V54d
N0V54a
NOV54b IEVSHGKGVQMIFHTFHLESSHDYLLITEDGSFSEPVARLTGSVLPHTIKAGLFGNFTAQ
NOV54C
N0V54d
N0V54a
NOV54b LRFISDFSISYEGFNITFSEYDLEPCDDPGVPAFSRRIGFHFGVGDSLTFSCFLGYRLEG
NOV54C
NOV54d
NOV54a :
N0V54b ATKLTCLGGGRRV SAPLPRCVAECGASVKGNEGTLLSPNFPSNYDNTHECIYKIETEAG
NOV54C
N0V54d
N0V54a
NOV54b KGIHLRTRSFQLFEGDTLKVYDGKDSSSRPLGTFTKNELLGLILNSTSNHLWLEFNTNGS
N0V54C
NOV54d
N0V54a
NOV54b DTDQGFQLTYTSFDLVKCEDPGIPNYGYRIRDEGHFTDTWLYSCNPGYAMHGSNTLTCL
NOV54C
NOV54d
NOV54a
NOV54b SGDRRV DKPLPSCIAECGGQIHAATSGRILSPGYPAPYDNNLHCTWIIEADPGKTISLH
NOV54C
NOV54d
NOV54a
NOV54b FIVFDTEMAHDILKVWDGPVDSDILLKE SGSALPEDIHSTFNSLTLQFDSDFFISKSGF
N0V54C
NOV54d
NOV54a
N0V54b SIQFSTSIAATCNDPGMPQNGTRYGDSREAGDTVTFQCDPGYQLQGQAKITCVQLNNRFF
NOV54C
N0V54d
NOV54a NOV54b QPDPPTCIAACGGNLTGPAGVILSPNYPQPYPPGKECD RVK-VNPDFVIALIFKSFNME
NOV54C
NOV54d
NOV54a
NOV54b PSYDFLHIYEGEDSNSPLIGSYQGSQAPERIESSGNSLFLAFRSDASVGLSGFAIEFKEK
NOV54C
NOV54d
NOV54a
NOV54b PREACFDPGNIMNGTRVGTDFKLGSTITYQCDSGYKILDPSSITCVIGADGKPS DQVLP
NOV54C
NOV54d
NOV54a
NOV54b SCNAPCGGQYTGSEGWLSPNYPHNYTAGQICLYSITVPKEFWFGQFAYFQTALNDLAE
NOV54C
NOV54d
NOV54a
NOV54b LFDGTHAQARLLSSLSGSHSGETLPLATSNQILLRFSAKSGASARGFHFVYQAVPRTSDT
NOV54C
NOV54d
NOV54a
NOV54b QCSSVPΞPRYGRRIGSEFSAGSIVRFECNPGYLLQGSTALHCQSVPNALAQWNDTIPSCV
NOV54C
NOV54d
NOV54a
NOV54b VPCSGNFTQRRGTILSPGYPEPYGNNLNCI KIIVTEGSGIQDPSDQFCHGAELGLPFEI
NOV54C
NOV54d
NOV54a
NOV54b HDGGDVTAPRLGSFSGTTVPALLNSTSNQLYLHFQSDISVAAAGFHLEYKTVGLAACQEP
NOV54C
NOV54d
NOV54a
NOV54b ALPSNSIKIGDRYMVNDVLSFQCEPGYTLQGRSHISCMPGTVRRWNYPSPLCIATCGGTL
NOV54C
NOV54d
NOV54a
NOV54b STLGGVILSPGFPGSYPNNLDCTWRISLPIGYGAHIQFLNFSTEANHDFLEIQNGPYHTS
NOV54C
NOV54d
NOV54a
NOV54b PMIGQFSGTDLPAALLSTTHETLIHFYSDHSQNRQGFKLAYQAYELQNCPDPPPFQNGYM
NOV54C
NOV54d
NOV54a
NOV54b INSDYSVGQSVSFECYPGYILIGHPVLTCQHGINRNWNYPFPRCDAPCGYNVTSQNGTIY
NOV54C
NOV54d
NOV54a NOV54b SPGFPDEYPILKDCI LITVPPGHGVYINFTLLQTEAVNDYIAV DGPDQNSPQLGVFSG
NOV54C
NOV54d
NOV54a
NOV54b NTALETAYSSTNQVLLKFHSDFSNGGFFVLNFHAFQLKKCQPPPAVPQAEMLTEDDDFEI
NOV54C
NOV54d
NOV54a
NOV54b GDFVKYQCHPGYTLVGTDILTCKLSSQLQFEGSLPTCEAQCPANEVRTGSSGVILSPGYP
NOV54c
NOV54d
NOV54a
NOV54b GNYFNSQTCSWSIKVEPNYNITIFVDTFQSEKQFDALEVFDGSSGQSPLLVVLSGNHTEQ
NOV54C
NOV54d
NOV54a
NOV54b SNFTSRSNQLYLR STDHATSKKGFKIRY-AAPYCSLTHPLKNGGILNRTAGAVGSKVHYF
NOV54C
NOV54d
NOV54a
NOV54b CKPGYRMVGHSNATCRRNPLGMYQWDSLTPLCQAVSCGIPESPGNGSFTGNEFTLDSKW
NOV54C
NOV54d
NOV54a
NOV54b YECHEGFKLESSQQATAVCQEDGLWSNKGKPPMCKPVACPSIEAQLSEHVIWRLVSGSLN
NOV54C
NOV54d MCKPVACPSIEAQLSEHVI RLVSGSLN
NOV54a
NOV54b EYGAQVLLSCSPGYYLEGWRLLRCQANGTWNIGDERPSCRVISCGSLSFPPNGNKIGTLT
NOV54C
NOV54d EYGAQVLLSCSPGYYLEGWRLLRCQANGT SIGDERPSCRVISCGSLSFPPNGNKIGTLT
NOV54a
NOV54b VYGATAIFTCNTGYTLVGSHVRECI--ANGLWSGSETRCLAGHCGSPDPIVNGHISGDGFSY
NOV54C
NOV54d VYGATAIFTCNTGYTLVGSHVRECLANGLWSGSETRCLAGHCGSPDPIVNGHISGDGFSY
NOV54a
NOV54b RDTWYQCNPGFRLVGTSVRICLQDHKWSGQTPVCVRITCGHPGNPAHGFTNGSEFNLND
NOV54C
NOV54d RDTWYQCNPGFRLVGTSVRICLQDHK SGQTPVCVAITCGHPGNPAHGFTNGSEFNLND
NOV54a
NOV54b WNFTCNTGYLLQGVSRAQCRSNGQ SSPLPTCRWNCSDPGFVENAIRHGQQNFPESFE
NOV54C
NOV54 d WNFTCNTGYLLQGVSRAQCRSNGQWS S PLPTSRHVGRG - - LLH RLLRHG - APRHALQQ
NOV54a MANGLWDRSLPKCLAISCGHPGVPANAVLTGELFTYG
N0V54b YGMSILYHCKKGFYLLGSSALTCMANGLWDRSLPKCLAISCGHPGVPANAVLTGELFTYG
NOV54C TRSCGHPGVPANAVLTGELFTYG
NOV54d IARVAGEIHDIIILLAGSSALTCMANGLWDRSLPKCLAISCGHPGVPANAVLTGELFTYG
NOV54a AWHYSCRGSESLIGNDTRVCQEDSH SGALPHCTGNNPGFCGDPGTPAHGSRLGDDFKT NOV54b AWHYSCRGSESLIGNDTRVCQEDSH SGALPHCTGNNPGFCGDPGTPAHGSRLGDDFKT
NOV54C AWHYSCRGSESLIGNDTRVCQEDSHWSGALPHCTGNNPGFCGDPGTPAHGSRLGDDFKT
NOV54d AWHYSCRGSESLIGNDTRVCQEDSHWSGALPHCTGNNPGFCGDPGTPAHGSRLGDDFKT
NOV54a KSLLRFSCEMGHQLRGSPERTCLLNGS SGLQPVCEAVSCGNPGTPTNGMIVSSDGILFS
NOV54b KSLLRFSCEMGHQLRGSPERTCLLNGS SGLQPVCEAVSCGNPGTPTNGMIVSSDGILFS
NOV54C KSLLRFSCEMGHQLRGSPERTCLLNGSWSGLQPVCEAVSCGNPGTPTNGMIVSSDGILFS
NOV54d KSLLRFSCEMGHQLRGSPERTCLLNGS SGLQSVCEAVSCGNPGTPTNGMIVSSDGILFS
NOV54a SSVIYAC EGYKTSGLMTRHCTANGT TGTAPDCTIISCGDPGTLANGIQFGTDFTFNKT
NOV54b SSVIYAC EGYKTSGLMTRHCTANGT TGTAPDCTVISCGDPGTLANGIQFGTDFTFNKT
NOV54C SSVIYAC EGYKTSGLMTRHCTANGT TGTAPDCTIISCGDPGTLANGIQFGTDFTFNKT
NOV54d SSVIYAC EGYKTSGLMTRHCTANGTWTGTAPDCLVISCGDPGTLANGIQFGTDFTFNKT
NOV54a VSYQCNPGYVMEAVTSATIRCTKDGR NPSKPVCKAVLCPQPPPVQNGTVEGSDFR GSS
NOV54b VSYQCNPGYVMEAVTSATIRCTKDGRWNPSKPVCKAVLCPQPPPVQNGTVEGSDFRWGSS
NOV54C VSYQCNPGYVMEAVTSATIRCTKDGR NPSKPVCKAVLCPQPPPVQNGTVEGSDFRWGSS
NOV54d VSYQCNPGYVMEAVTSATIRCTKDGR NPSKPVCKGLLCPQPPPVQNGTVEGSDFR GSS
NOV54a ISYSCMDGYQLSHSAILSCEGRGV KGEIPSVCLCSAETLASPQKGDLVGKVSPISPKSS
NOV54b ISYSCMDGYQLSHSAILSCEGRGV KGEIPQCLAVFCGDPGIPAEGRLSGKSFTYKSEVF
NOV54C ISYSCMDGYQLSHSAILSCEGRGVWKGEIPSVCLEG
NOV54d ISYSCMDGYQLSHSAILSCEGRGV KGEIPQCLPVFCGDPGIPAEGRLSGKSFTYKSEVF
NOV54a SSANLHLYS DPPEESAKLTARGAAYNPPALVI11IQL GYLGVFGDEDASFRN VICDY NOV54b FQCKSPFILVGSSRRVCQADGT SGIQPTCIGDPAHNTCPDPGTPHFG NOV54C NOV54d FQCKSPFILVGSSRRVCQADGT SGIQPTCI-DPAHNTCPDPGTPHFG-
NOV54a IESVSIDSFLYKVGSTVFFRCRKGYHIQGSTTRTCLANLTWSGIQTECIPHACRQPETPA NOV54b IQNSSRGYEVGSTVFFRCRKGYHIQGSTTRTCLANLT SGIQTECIRHACRQPETPA NOV54C NQV54d IQNSSRGYEVGSTVFFRCRKGYHIQGSTTRTCLANLTWSGIQTECIPHACRQPETPA
NOV54a HADVRAIDLPTFGYTLVYTCHPGFFLAGGSEHRTCKADMKWTGKSPVCKIP NOV54b HADVRAIDLPTFGYTLVYTCHPGFFLAGGSEHRTCKADMK TGKSPVCKSKGVREVNETV NOV54C NOV54d HADVRAIDLPTFGYTLVYTCHPGFFLAGGSEHRTCKADMK TGKSPVCKSK
NOV54a SDVFFVNSL KGYYEYLGKRQPATLTVD FNATSSKVNATFSEASPVELKLTGI NOV54b TKTPVPSDVFFVNSLWKGYYEYLGKRQPATLTVD FNATSSKVNATFSEASPVELKLTGI NOV54C NOV54d -SLIKΞ HTFPKSKGKDQLPIRLVSTCETHK-
NOV54a YK EEAHLLLKAFQIKGQADIFVSKFENDN GLDGYVSSGLERGGFTFQGDIHGKDFGKF NOV54b YKKEEAHLLLKAFQIKGQADIFVSKFENDN GLDGYVSSGLERGGFTFQGDIHGKDFGKF NOV54C NOV54d
NOV54a KLERQG VTIFLSLFLHLKSQYRSSQGCYEIERPHPLNPDQDSSSHYHGTSSGSVAAAIL NOV54b KLERQ DPLNPDQDSSSHYHGTSSGSVAAAIL NOV54C NOV54d
NOV54a VPFFALILSGFAFYLYKHRTRPKVQYNGYAGHENSNGQASFENPMYDTNLKPTEAKAKTT NOV54b VPFFALILSGFAFYLYKHRTRPKVQYNGYAGHENSNGQASFENPMYDTNLKPTEAKAVRF NOV54C NOV54d
NOV54a HGLLTSLDSKRKMVITLAESLPALRTCLLICFPLLFRLARESSAQPFVLSIQTHKKISGN NOV54b DTTLNTVCTW
NOV54C
NOV54d
NOV54a FPLLMTSQTPCNGASLGGGQTSHSQERRRATERDGQGLIRGLADSIMEGEKSQDRPSARR
NOV54b
NOV54C
NOV54d
NOV54a KPREAAGMARFKSKGLSTKETKVITLSSGQSPGSLQGLSLSKSHKIR FYKGQFPCTSSL
NOV54b
NOV54C
NOV54d
NOV54a LCHHAFAVHSPFTMI PPSHVELCKEDVQ----ASWTRRRKPIVRMAK--OT
NOV54b
NOV54C
NOV54d
NOV54a ITVLSILSMLPMVHGSQALQAP
NOV54b
NOV54C
NOV54d
NOV54a (SEQ ID NO 1110)
NOV54b (SEQ ID NO 1112)
NOV54C (SEQ ID NO 1114)
NOV54d (SEQ ID NO 1116)
Further analysis of the NOV54a protein yielded the following properties shown in Table
54C.
Table 54C. Protein Sequence Properties NOV54a
SignalP analysis: No Known Signal Sequence Predicted
PSORT II analysis:
PSG: a new signal peptide prediction method
N-region: length 8; pos.chg 1; neg.chg 1 H-region: length 3; peak value 2.05 PSG score: -2.35
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -6.14 possible cleavage site: between 46 and 47
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al's method for TM region allocation Init position for calculation: 1 Tentative number of TMS(s) for the threshold 0. 5: 4
INTEGRAL Likelihood = -4 ,57 Transmembrane 367 - 383
INTEGRAL Likelihood = -7 .80 Transmembrane 677 - 693
INTEGRAL Likelihood = -1 .91 Transmembrane 762 - 778
INTEGRAL Likelihood = -0 .80 Transmembrane 979 - 995
PERIPHERAL Likelihood = 1 .75 (at 148)
ALOM score: -7.80 (number of TMSs: 4) MTOP: Prediction of membrane topology (Hartmann et al . ) Center position for calculation: 374 Charge difference: -2.0 C(-3.0) - N(-1.0) N >= C: N-terminal side will be inside
>>> membrane topology: type 3a
MITDISC: discrimination of mitochondrial targeting seq R content: 1 Hyd Moment (75): 14.35 Hyd Moment (95): 11.39 G content: 4 D/E content: 2 s/T content: 3 Score: -5.37
Gavel: prediction of cleavage sites for mitochondrial preseq R-2 motif at 55 CRG|SE
NUCDISC: discrimination of nuclear localization signals pat4: RRKP (4) at 861 pat4: RKPR (4) at 862 pat4: RRRK (5) at 958 pat4: RRKP (4) at 959 pat7: PSARRKP (4) at 858 bipartite: RRKPIVRMAKNNK KAR at 959 content of basic residues: 10.4% NLS Score: 1.43
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals: none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif: none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail : none
Dileucine motif in the tail : none checking 63 PROSITE DNA binding motifs : none checking 71 PROSITE ribosomal protein motifs:
Ribosomal protein L23 signature (PS00050) *** found *** RKMVITLAESLPALRT at 753 checking 33 PROSITE prokaryotic DNA binding motifs: none NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: nuclear Reliability: 70.6
COIL: Lupas ' s algorithm to detect coiled-coil regions total: 0 residues
Final Results (k = 9/23) :
34.8 % : nuclear
30.4 % : mitochondrial
26.1 %: endoplasmic reticulum
4.3 % : cytoplasmic
4.3 %: peroxisomal
>> prediction for CG59905-01 is nuc (k=23]
A search of the NOV54a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 54D.
[THIS PAGE LEFT INTENTIONALLY BLANK]
In a BLAST search of public sequence databases, the NOV54a protein was found to have homology to the proteins shown in the BLASTP data in Table 54E.
PFam analysis predicts that the NOV54a protein contains the domains shown in the Table 54F.
sushi 450..505 18/64 (28%) 1.4e-09 41/64 (64%)
Example 55.
The NOV55 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 55 A.
Table 55A. NOV55 Sequence Analysis
NOV55a, CG59932-01 SEQ ID NO: 1121 1171 bp DNA Sequence ORF Start: at 2 ;ORF Stop: TAA at 1031
GGAGGCCGCAAGGCCCTTCGCCCGGGAGTGGAGGGCCCAGTCCCTACCCCTGGCAGTAGGGGGCGTTT TGAAGCTGCGGCTCTGTGAGCTGTGGCTACTGCTACTGGGTTCTAGTTTGAACGCCAGATTTTTGCCA GACGAGGAGGACGTAGACTTTATCAACGAGTACGTGAACCTCCACAATGAGCTGCGGGGCGACGTTAT TCCCCGAGGGTCTAACTTGCGCTTCATGACTTGGGATGTAGCTTTATCACGGACTGCTAGAGCATGGG GAAAAAAATGTTTGTTTACGCATAATATTTATTTACAAGATGTACAAATGGTCCATCCTAAATTTTAT GGTATTGGTGAAAATATGTGGGTCGGCCCTGAAAATGAATTTACTGCAAGTATTGCTATCAGAAGTTG GCATGCAGAGAAGAAAATGTACAATTTTGAAAATGGCAGTTGCTCTGGAGACTGTTCTAATTATATTC AGCTTGTTTGGGACCACTCTTACAAAGTTGGTTGTGCTGTTACTCCATGTTCAAAAATTGGACATATT ATACATGCAGCAATTTTCATATGCAACTATGCGCCAGGAGGAACACTGACGAGAAGACCTTATGAACC AGGAATATTTTGTACTCGATGTGGCAGACGTGACAAATGCACAGATTTTCTATGCAGTAATGCAGATC GTGACCAAGCCACATATTACCGATTTTGGTATCCAAAATGGGAAATGCCCCGGCCAGTTGTGTGTGAT CCACTGTGCACATTCATTTTATTATTGAGAATATTATGTTTTATCCTGTGTGTCATAACTGTTTTGAT AGTACAGTCTCAGTTTCCAAATATCTTGTTGGAACAACAAATGATATTTACCCCTGAGGAATCTGAAG CAGGGAATGAAGAGGAGGAAAAAGAGGAAGAGAAGAAAGAGAAAGAGGAAATGGAAATGGAAATAATG GAAATGGAGGAGGAAAAAGAAGAGAGAGAGGAGGAGGAGGAGGAAACACAAAAAGAAAAGATGGAGGA AGAGGAAAAATAAGAGTAGAAAGAGGAGGAAAAAGATGTATCACCAATATAAACCAAAAGTGTAATAC
AAAAAAAGACAGAAAAAΆAAAAAAAGTAAAACACTGAGTTTTAACAΆGAAAGAAAATATGCAAACCAC
CATTGGAATGTTTTT
NOV55a, CG59932-01 SEQ ID NO: 1122 343 aa MW at 40047.3kD Protein Sequence
EAARPFARE RAQSLP AVGGV KLRLCEL LL LGSS NARFLPDEEDVDFINEYVNLHNE RGDVI PRGS-NLRFMTWDVALSRTA-l-^WG---s^:C FTH IYLQDVQMVHP FYGIGE--^ VGPENEFTASIAIRS -ffi^KKMYNFENGSCSGDCSNYIQLV DHSYKVGCAVTPCSKIGHIIHAAIFICNYAPGGTLTRRPYEP GIFCTRCGRRDKCTDFLCSNA-DR-DQATYYRFWYPK EMPRPWCDP CTFILLLRIIjCFILCVITV I VQSQFPNILLEQQMIFTPEESEAGNEEEE-EΕEEKKEKEE EMEIMEMEEEKEEREEEEEETQKE-KMEE EE
Further analysis of the NOV55a protein yielded the following properties shown in Table 55B.
Table 55B. Protein Sequence Properties NOV55a
SignalP analysis: Cleavage site between residues 42 and 43
PSORT π analysis:
PSG : a new signal peptide prediction method
N-region : length 11; pos . chg 3 ; neg . chg 2 H-region: length 12 ; peak value 7 .44 PSG score : 3 . 04
GvH: von Heijne ' s method for signal seq . recognition GvH score (threshold: -2 .1) : -0 . 10 possible cleavage site: between 41 and 42
>>> Seems to have a cleavable signal peptide (1 to 41)
ALOM: Klein et al ' s method for TM region allocation
Init position for calculation: 42
Tentative number of TMS(s) for the threshold 0.5: 1
Number of TMS(s) for threshold 0.5: 1
INTEGRAL Likelihood =-13.43 Transmembrane 257 - 273
PERIPHERAL Likelihood = 2.70 (at 172)
ALOM score: -13.43 (number of TMSs: 1)
MTOP: Prediction of membrane topology (Hartmann et al.) Center position for calculation: 20 Charge difference: -1.0 C( 1.0) - N( 2.0) N >= C: N-terminal side will be inside
>>> membrane topology: type la (cytoplasmic tail 274 to 343)
MITDISC: discrimination of mitochondrial targeting seq R content: 4 Hyd Moment (75) : 9.56 Hyd Moment (95) : 18.17 G content: 2 D/E content: 3 S/T content: 1 Score: -4.20
Gavel : prediction of cleavage sites for mitochondrial preseq cleavage site motif not found
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite : none content of basic residues: 11.4% NLS Score: -0.47
KDEL: ER retention motif in the C-terminus : none
ER Membrane Retention Signals:
XXRR-like motif in the N-terminus: AARP none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif : type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL : transport motif from cell surface to Golgi : none Tyrosines in the tail : too long tail
Dileucine motif in the tail : found
LL at 281 checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs : none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt ' s method for Cytoplasmic/Nuclear discrimination
Prediction : cytoplasmic
Reliability: 94.1
COIL Lupas ' s algorithm to detect coiled-coil regions
290 E 1.00
291 E 1.00
292 S 1.00
293 E 1.00
294 A 1.00
295 G 1.00
296 N 1.00
297 E 1.00
298 E 1.00
299 E 1.00
300 E 1.00
301 K 1.00
302 E 1.00
303 E 1.00
304 E 1.00
305 K 1.00
306 K 1.00
307 E 1.00
308 K 1.00
309 E 1.00
310 E 1.00
311 M 1.00
312 E 1.00
313 M 1.00
314 E 1.00
315 I 1.00
316 M 1.00
317 E 1.00
318 M 1.00
319 E 1.00
320 E 1.00
321 E 1.00
322 K 1.00
323 E 1.00
324 E 1.00
325 R 1.00
326 E 1.00
327 E 1.00
328 E 1.00
329 E 1.00
330 E 1.00
331 E 1.00
332 T 1.00
333 Q 1.00 334 K 1.00
335 E 1.00
336 K 1.00
337 M 1.00
338 E 1.00
339 E 1.00
340 E 1.00
341 E 1.00
342 K 1.00 total: 53 residues
Final Results (k = 9/23) :
55.6 %: endoplasmic reticulum
22.2 %: Golgi
11.1 %: plasma membrane
11.1 %: extracellular, including cell wall
>> prediction for CG59932-01 is end (k=9)
A search of the NOV55a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 55C.
In a BLAST search of public sequence databases, the NOV55a protein was found to have homology to the proteins shown in the BLASTP data in Table 55D.
PFam analysis predicts that the NOV55a protein contains the domains shown in the Table 55E.
Example 56.
The NOV56 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 56 A.
Table 56A. NOV56 Sequence Analysis
NOV56a, CG92715-01 SEQ ID NO: 1123 2800 bp DNA Sequence ORF Start: ATG at 26 ORF Stop: end of sequence
TAGACGCGGAGCCCAAGGAGGTAAAATGCACACTTGCTGCCCCCCAGTAACTTTGGAACAGGACCTTC
ACAGAAAAATGCATAGCTGGATGCTGCAGACTCTAGCGTTTGCTGTAACATCTCTCGTCCTTTCGTGT GCAGAAACCATCGATTATTACGGGGAAATCTGTGACAATGCATGTCCTTGTGAGGAAAAGGACGGCAT TTTAACTGTGAGCTGTGAAAACCGGGGGATCATCAGTCTCTCTGAAATTAGCCCTCCCCGTTTCCCAA TCTACCACCTCTTGTTGTCCGGAAACCTTTTGAACCGTCTCTATCCCAATGAGTTTGTCAATTACACT GGGGCTTCAATTTTGCATCTAGGTAGCAATGTTATCCAGGACATTGAGACCGGGGCTTTCCATGGGCT IACGGGGTTTGAGGAGATTGCATCTAAACAATAATAAACTGGAACTTCTGCGAGATGATACCTTCCTTG GCTTGGAGAACCTGGAGTACCTACAGGTCGATTACAACTACATCAGCGTCATTGAACCCAATGCTTTT GGGAAACTGCATTTGTTGCAGGTGCTTATCCTCAATGACAATCTTTTGTCCAGTTTACCCAACAATCT TTTCCGTTTTGTGCCCTTAACGCACTTGGACCTCCGGGGGAACCGGCTGAAACTTCTGCCCTACGTGG GGCTCTTGCAGCACATGGATAAAGTTGTGGAGCTACAGCTGGAGGAAAACCCTTGGAATTGTTCTTGT GAGCTGATCTCTCTAAAGGATTGGTTGGACAGCATCTCCTATTCAGCCCTGGTGGGGGATGTAGTTTG TGAGACCCCCTTCCGCTTACACGGAAGGGACTTGGACGAGGTATCCAAGCAGGAACTTTGCCCAAGGA GACTTATTTCTGACTACGAGATGAGGCCGCAGACGCCTTTGAGCACCACGGGGTATTTACACACCACC CCGGCGTCAGTGAATTCTGTGGCCACTTCTTCCTCTGCTGTTTACAAACCCCCTTTGAAGCCCCCTAA GGGGACTCGCCAACCCAACAAGCCCAGGGTGCGCCCCACCTCTCGGCAGCCCTCTAAGGACTTGGGCT ACAGCAACTATGGCCCCAGCATCGCCTATCAGACCAAATCCCCGGTGCCTTTGGAGTGTCCCACCGCG TGCTCTTGCAACCTGCAGATCTCTGATCTGGGCCTCAACGTAAACTGCCAGGAGCGAAAGATCGAGAG CATCGCTGAACTGCAGCCCAAGCCCTACAATCCCAAGAAAATGTATCTGACAGAGAACTACATCGCTG TCGTGCGCAGGACAGACTTCCTGGAGGCCACGGGGCTGGACCTCCTGCACCTGGGGAATAACCGCATC TCGATGATCCAGGACCGCGCTTTCGGGGATCTCACCAACCTGAGGCGCCTCTACCTGAATGGCAACAG GATCGAGAGGCTGAGCCCGGAGTTATTCTATGGCCTGCAGAGCCTGCAGTATCTCTTCCTCCAGTACA ATCTCATCCGCGAGATTCAGTCTGGAACTTTTGACCCGGTCCCAAACCTCCAGCTGCTATTCTTGAAT AACAACCTCCTGCAGGCCATGCCCTCAGGCGTCTTCTCTGGCTTGACCCTCCTCAGGCTAAACCTGAG GAGTAACCACTTCACCTCCTTGCCAGTGAGTGGAGTTTTGGACCAGCTGAAGTCACTCATCCAAATCG ACCTGCATGACAATCCTTGGGATTGTACCTGTGACATTGTGGGCATGAAGCTGTGGGTGGAGCAGCTC AAA.GTGGGCGTCCTAGTGGACGAGGTGATCTGTAAGGCGCCCAAAAAATTCGCTGAGACCGACATGCG CTCCATTAAGTCGGAGCTGCTGTGCCCTGACTATTCAGATGTAGTAGTTTCCACGCCCACACCCTCCT CTATCCAGGTCCCTGCGAGGACCAGCGCCGTGACTCCTGCGGTCCGGTTGAATAGCACCGGGGCCCCC GCGAGCTTGGGCGCAGGCGGAGGGGCGTCGTCGGTGCCCTTGTCTGTGTTAATTCTCAGCCTCCTGCT GGTTTTCATCATGTCCGTCTTCGTGGCCGCCGGGCTCTTCGTGCTGGTCATGAAGCGCAGGAAGAAGA ACCAGAGCGACCACACCAGCACCAACAACTCCGACGTGAGCTCCTTTAACATGCAGTACAGCGTGTAC GGCGGCGGCGGCGGCACGGGCGGCCACCCACACGCGCACGTGCATCACCGCGGGCCCGCGCTGCCCAA GGTGAAGACGCCCGCGGGCCACGTGTATGAATACATCCCCCACCCACTGGGCCACATGTGCAAAAACC CCATCTACCGCTCCCGAGAGGGCAACTCCGTAGAGGATTACAAAGACCTGCACGAGCTCAAGGTCACC TACAGCAGCAACCACCACCTGCAGCAGCAGCAGCAGCCGCCGCCGCCACCGCAGCAGCCACAGCAGCA GCCCCCGCCGCAGCTGCAGCTGCAGCCTGGGGAGGAGGAGAGGCGGGAAAGCCACCACTTGCGGAGCC CCGCCTACAGCGTCAGCACCATCGAGCCCCGGGAGGACCTGCTGTCGCCGGTGCAGGACGCCGACCGC TTTTACAGGGGCATTTTAGAACCAGACAAACACTGCTCCACCACCCCCGCCGGCAATAGCCTCCCGGA ATATCCCAAATTCCCGTGCAGCCCCGCTGCTTACACTTTCTCCCCCAACTATGACCTGAGACGCCCCC ATCAGTATTTGCACCCGGGGGCAGGGGACAGCAGGCTACGGGAACCGGTGCTCTACAGCCCCCCGAGT GCTGTCTTTGTA
NOV56a, CG92715-01 (SEQIDNO: 1124925 aa MWat 103516.lkD Protein Sequence
MHTCCPPVTLEQDLHRKMHS MLQTLAFAVTSLVLSCAETIDYYGEICDNACPCEEKDGILTVSCENR
GIISLSEISPPRFPIYHLLLSGNLLNRLYPNEFVNYTGASILHLGSNVIQDIETGAFHGLRGLRRLHL
NI-sTO-KLELLRDDTFLGLENLEYLQVDY--$lΥISVIEPNAFG--aHLLQ
LDLRGNRL -LLPYVGLLQHMDKVVELQLEENP NCSCELISLKD LDSISYSALVGDVVCETPFRLHG
RDLDEVSKQELCPRRLISDYEMRPQTPLSTTGYLHTTPASVNSVATSSSAVYKPPLKPPKGTRQPNKP
RVRPTSRQPSKDLGYSNYGPSIAYQTKSPVPLECPTACSCNLQISDLGLNVNCQERKIESIAELQPKP
YNPKKMYLTENYIAVVRRTDFLEATGLDLLHLGNNRISMIQDRAFGDLTNLRRLYLNGNRIERLSPEL
FYGLQSLQYLFLQYNLIREIQSGTFDPVPNLQLLFLNNNLLQAMPSGVFSGLTLLRLNLRSNHFTSLP
VSGVLDQLKSLIQIDLHDNP DCTCDIVGM--^ VEQLKVGVLVDEVIC APKKFAETDMRSIKSELLC
PDYSDVWSTPTPSSIQVPARTSAVTPAVRLNSTGAPASLGAGGGASSVPLSVLILSLLLVFIMSVFV
AAGLFVLVMKRR---s^NQSDHTSTNNSDVSSFNMQYSVYGGGGGTGGHPI---AHVHimGPALPKVKTPA
YEYIPHPLGHMC-l-^PIYRSREGNSVEDYi LHELKVTYSSN-E-l-HLQQQQQPPPPPQQPQQQPPPQLQLQ
PGEEERRESHHLRSPAYSVSTIEPREDLLSPVQDADRFYRGILEPDKHCSTTPAGNSLPEYPKFPCSP
AAYTFSPNYDLRRPHQYLHPGAGDSRLREPVLYSPPSAVFV
NOV56b, 248576233 SEQ ID NO: 1125 1872 bp
DNA Sequence ORF Start: at 1 fθRF Stop: end of sequence
GGATCCATCGATTATTACGGGGAAATCTGTGACAATGCATGTCCTTGTGAGGAAAAGGACGGCATTTT AACTGTGAGCTGTGAAAACCGGGGGATCATCAGTCTCTCTGAAATTAGCCCTCCCCGTTTCCCAATCT CCACCTCTTGTTGTCCGGAAACCTTTTGAACCGTCTCTATCCCAATGAGTTTGTCAATTACACTGGG GCTTCAATTTTGCATCTAGGTAGCAATGTTATCCAGGACATTGAGACCGGGGCTTTCCATGGGCTACG GGGTTTGAGGAGATTGCATCTAAACAATAATAAACTGGAACTTCTGCGAGATGATACCTTCCTTGGCT TGGAGAACCCGGAGTACCTACAGGTCGATTACAACTACATCAGCGTCATTGAACCCAATGCTTTTGGG AAACTGCATTTGTTGCAGGTGCTTATCCTCAATGACAATCTTTTGTCCAGTTTACCCAACAATCTTTT CCGTTTTGTGCCCTTAACGCACTTGGACCTCCGGGGGAACCGGCTGAAACTTCTGCCCTACGTGGGGC TCTTGCAGCACATGGATAAAGTTGTGGAGCTACAGCTGGAGGAAAACCCTTGGAATTGTTCTTGTGAG CTGATCTCTCTAAAGGATTGGTTGGACAGCATCTCCTATTCAGCCCTGGTGGGGGATGTAGTTTGTGA GACCCCCTTCCGCTTACACGGAAGGGACTTGGACGAGGTATCCAAGCAGGAACTTTGCCCAAGGAGAC TTATTTCTGACTACGAGATGAGGCCGCAGACGCCTTTGAGCACCACGGGGTATTTACACACCACCCCG GCGTCAGTGAATTCTGTGGCCACTTCTTCCTCTGCTGTTTACAAACCCCCTTTGAAGCCCCCTAAGGG GACTCGCCAACCCAACAAGCCCAGGGTGCGCCCCACCTCTCGGCAGCCCTCTAAGGACTTGGGCTACA GCAACTATGGCCCCAGCATCGCCTATCAGACCAAATCCCCGGTGCCTTTGGAGTGTCCCACCGCGTGC TCTTGCAACCTGCAGATCTCTGATCTGGGCCTCAACGTAAACTGCCAGGAGCGAAAGATCGAGAGCAT CGCTGAACTGCAGCCCAAGCCCTACAATCCCAAGAAAATGTATCTGACAGAGAACTACATCGCTGTCG TGCGCAGGACAGACTTCCTGGAGGCCACGGGGCTGGACCTCCTGCACCTGGGGAATAACCGCATCTCG ATGATCCAGGACCGCGCTTTCGGGGATCTCACCAACCTGAGGCGCCTCTACCTGAATGGCAACAGGAT CGAGAGGCTGAGCCCGGAGTTATTCTATGGCCTGCAGAGCCTGCAGTATCTCTTCCTCCAGTACAATC TCATCCGCGAGATTCAGTCTGGAACTTTTGACCCGGTCCCAAACCTCCAGCTGCTATTCTTGAATAAC AACCTCCTGCAGGCCATGCCCTCAGGCGTCTTCTCTGGCTTGACCCTCCTCAGGCTAAACCTGAGGAG TAACCACTTCACCTCCTTGCCAGTGAGTGGAGTTTTGGACCAGCTGAAGTCACTCATCCAAATCGACC TGCATGACAATCCTTGGGATTGTACCTGTGACATTGTGGGCATGAAGCTGTGGGTGGAGCAGCTCAAA GTGGGCGTCCTAGTGGACGAGGTGATCTGTAAGGCGCCCAAAAAATTCGCTGAGACCGACATGCGCTC CATTAAGTCGGAGCTGCTGTGCCCTGACTATTCAGATGTAGTAGTTTCCACGCCCACACCCTCCTCTA TCCAGGTCCCTGCGAGGACCAGCGCCGTGACTCCTGCGGTCCGGTTGAATAGCACCGGGGCCCCCGCG AGCTTGGGCGCAGGCGGAGGGGCGTCGTCGCTCGAG
NOV56b, 248576233 SEQ ID NO: 1126 624 aa MW at 69694.9kD Protein Sequence
GSIDYYGΞICDNACPCEEKDGILTVSCENRGIISLSEISPPRFPIYHLLLSGNLLNRLYPNEFVNYTG ASILHLGSNVIQDIETGAFHGLRGLRRLHLN-N KLELLRDDTFLGLENPEYLQVDYNYISVIEPNAFG I^HLLQVLILNDNLLSSLPNNLFRFVPLTHLDLRGm-LKLLPYVGLLQHMDKVVELQLEENPWNCSCE LISLKDWLDSISYSALVGDWCETPFRLHGRDLDEVSKQELCPRRLISDYEMRPQTPLSTTGYLHTTP ASVNSVATSSSAVYKPPLKPPKGTRQPNKPRVRPTSRQPSKDLGYSNYGPSIAYQTKSPVPLECPTAC SCNLQISDLGLNVNCQERKIESIAELQPKPYNPKKMYLTENYIAWRRTDFLEATGLDLLHLGNNRIS MIQDRAFGDLTNLRRLYLNGNRIERLSPELFYGLQSLQYLFLQYNLIREIQSGTFDPVPNLQLLFLNN NLLQAMPSGVFSGLTLLRLNLRSNHFTSLPVSGVLDQLKSLIQIDLHDNPWDCTCDIVGMKL VEQLK VGVLVDEVICKAPKKFAETDMRSIKSELLCPDYSDVWSTPTPSSIQVPARTSAVTPAVRLNSTGAPA SLGAGGGASSLE
NOV56c, CG92715-02 SEQ ID NO: 1127 4500 bp DNA Sequence ORF Start: ATG at 178 ORF Stop: TAA at 3094
CGGAACCCGCGGTCGCCACCGCGGCGGCGGCCCCAGGCTGGAGGCGTCCGGGCGCCTCTTTCCTCCAG
CCTCTGGGACTGCGCTGCTCGCAGTCTCCTCGCCCTGCCTGGGCTTGAGAAACCTAGTGCATACCCCA
AAGAGGGTTTTTGTGTATGTGTGTGTTTTTAAAGGGTGGCTATGATGACTGGGCCTTGGAGACGCGGA
GACCAAGGAGGTAAAATGCACACTTGCTGCCCCCCAGTAACTTTGGAACAGGACCTTCACAGAAAAAT GCATAGCTGGATGCTGCAGACTCTAGCGTTTGCTGTAACATCTCTCGTCCTTTCGTGTGCAGAAACCA TCGATTATTACGGGGAAATCTGTGACAATGCATGTCCTTGTGAGGAAAAGGACGGCATTTTAACTGTG AGCTGTGAAAACCGGGGGATCATCAGTCTCTCTGAAATTAGCCCTCCCCGTTTCCCAATCTACCACCT CTTGTTGTCCGGAAACCTTTTGAACCGTCTCTATCCCAATGAGTTTGTCAATTACACTGGGGCTTCAA TTTTGCATCTAGGTAGCAATGTTATCCAGGACATTGAGACCGGGGCTTTCCATGGGCTACGGGGTTTG AGGAGATTGCATCTAAACAATAATAAACTGGAACTTCTGCGAGATGATACCTTCCTTGGCTTGGAGAA CCTGGAGTACCTACAGGTCGATTACAACTACATCAGCGTCATTGAACCCAATGCTTTTGGGAAACTGC ATTTGTTGCAGGTGCTTATCCTCAATGACAATCTTTTGTCCAGTTTACCCAACAATCTTTTCCGTTTT GTGCCCTTAACGCACTTGGACCTCCGGGGGAACCGGCTGAAACTTCTGCCCTACGTGGGGCTCTTGCA GCACATGGATAAAGTTGTGGAGCTACAGCTGGAGGAAAACCCTTGGAATTGTTCTTGTGAGCTGATCT CTCTAAAGGATTGGTTGGACAGCATCTCCTATTCAGCCCTGGTGGGGGATGTAGTTTGTGAGACCCCC TTCCGCTTACACGGAAGGGACTTGGACGAGGTATCCAAGCAGGAACTTTGCCCAAGGAGACTTATTTC TGACTACGAGATGAGGCCGCAGACGCCTTTGAGCACCACGGGGTATTTACACACCACCCCGGCGTCAG TGAATTCTGTGGCCACTTCTTCCTCTGCTGTTTACAAACCCCCTTTGAAGCCCCCTAAGGGGACTCGC CAACCCAACAAGCCCAGGGTGCGCCCCACCTCTCGGCAGCCCTCTAAGGACTTGGGCTACAGCAACTA TGGCCCCAGCATCGCCTATCAGACCAAATCCCCGGTGCCTTTGGAGTGTCCCACCGCGTGCTCTTGCA ACCTGCAGATCTCTGATCTGGGCCTCAACGTAAACTGCCAGGAGCGAAAGATCGAGAGCATCGCTGAA CTGCAGCCCAAGCCCTACAATCCCAAGAAAATGTATCTGACAGAGAACTACATCGCTGTCGTGCGCAG GACAGACTTCCTGGAGGCCACGGGGCTGGACCTCCTGCACCTGGGGAATAACCGCATCTCGATGATCC AGGACCGCGCTTTCGGGGATCTCACCAACCTGAGGCGCCTCTACCTGAATGGCAACAGGATCGAGAGG CTGAGCCCGGAGTTATTCTATGGCCTGCAGAGCCTGCAGTATCTCTTCCTCCAGTACAATCTCATCCG CGAGATTCAGTCTGGAACTTTTGACCCGGTCCCAAACCTCCAGCTGCTATTCTTGAATAACAACCTCC TGCAGGCCATGCCCTCAGGCGTCTTCTCTGGCTTGACCCTCCTCAGGCTAAACCTGAGGAGTAACCAC TTCACCTCCTTGCCAGTGAGTGGAGTTTTGGACCAGCTGAAGTCACTCATCCAAATCGACCTGCATGA CAATCCTTGGGATTGTACCTGTGACATTGTGGGCATGAAGCTGTGGGTGGAGCAGCTCAAAGTGGGCG TCCTAGTGGACGAGGTGATCTGTAAGGCGCCCAAAAAATTCGCTGAGACCGACATGCGCTCCATTAAG TCGGAGCTGCTGTGCCCTGACTATTCAGATGTAGTAGTTTCCACGCCCACACCCTCCTCTATCCAGGT CCCTGCGAGGACCAGCGCCGTGACTCCTGCGGTCCGGTTGAATAGCACCGGGGCCCCCGCGAGCTTGG GCGCAGGCGGAGGGGCGTCGTCGGTGCCCTTGTCTGTGTTAATTCTCAGCCTCCTGCTGGTTTTCATC ATGTCCGTCTTCGTGGCCGCCGGGCTCTTCGTGCTGGTCATGAAGCGCAGGAAGAAGAACCAGAGCGA CCACACCAGCACCAACAACTCCGACGTGAGCTCCTTTAACATGCAGTACAGCGTGTACGGCGGCGGCG GCGGCACGGGCGGCCACCCACACGCGCACGTGCATCACCGCGGGCCCGCGCTGCCCAAGGTGAAGACG CCCGCGGGCCACGTGTATGAATACATCCCCCACCCACTGGGCCACATGTGCAAAAACCCCATCTACCG CTCCCGAGAGGGCAACTCCGTAGAGGATTACAAAGACCTGCACGAGCTCAAGGTCACCTACAGCAGCA ACCACCACCTGCAGCAGCAGCAGCAGCCGCCGCCGCCACCGCAGCAGCCACAGCAGCAGCCCCCGCCG CAGCTGCAGCTGCAGCCCGGGGAGGAGGAGAGGCGGGAAAGCCACCACTTGCGGAGCCCCGCCTACAG CGTCAGCACCATCGAGCCCCGGGAGGACCTGCTGTCGCCGGTGCAGGACGCCGACCGCTTTTACAGGG GCATTTTAGAACCAGACAAACACTGCTCCACCACCCCCGCCGGCAATAGCCTCCCGGAATATCCCAAA TTCCCGTGCAGCCCCGCTGCTTACACTTTCTCCCCCAACTATGACCTGAGACGCCCCCATCAGTATTT GCACCCGGGGGCAGGGGACAGCAGGCTACGGGAACCGGTGCTCTACAGCCCCCCGAGTGCTGTCTTTG TAGAACCCAACCGGAACGAATATCTGGAGTTAAAAGCAAAACTAAACGTTGAGCCGGACTACCTCGAA GTGCTGGAAAAACAGACCACGTTTAGCCAGTTCTAAAAGCAAAGAAACTCTCTTGGAGCTTTTGCATT
TAAAACAAACAAGCAAGCAGACACACACAGTGAACACATTTGATTAATTGTGTTGTTTCAACGTTTAG
GGTGAAGTGCCTTGGCACGGGATTTCTCAGCTTCGGTGGAAGATACGAAAAGGGTGTGCAATTTCCTT
TAAAATTTACACGTGGGAAACATTTGTGTAAACTGGGCACATCACTTTCTCTTCTTGCGTGTGGGGCA
GGTGTGGAGAAGGGCTTTAAGGAGGCCAATTTGCTGCGCGGGTGACCTGTGAAAGGTCACAGTCATT
TTGTAGTGGTTGGAAGTGCTAAGAATGGTGGATGATGGCAGAGCATAGATTCTACTCTTCCTCTTTAG
CTTCCTCCCCATCCAACGAACCCTGCCCAACACTCTAAATATCCACCAGATAAGACATGGAATGAGGT
CTAAATGACACAAAGTGAAGAAATCAACACAACACAAACTTTACAGCTAACAACAAATGATCAACAA lAACCGAACCAACAAGACAACCATCGAACCTCACCACTCCACACTCACAACAACTCATATCAAGACAAC jAACACAATGACGTTAAAGGAAACGAAATC-AATGCAAAAATAGACATTTGACAATACAAAAAAACAAGA
ACCGTGATCACACTACAACCGAAGCAACCATAGATGTGAGAAAAAACAACAAACAAAACACCGAGCTA
TATGATCCATAATTGATTAGTCAA-AATAACTTATTGATGAAATATACAAATATTTTATTGTAGCACC
ATTTTTATATGCACATTTAGCATTCCTCTTTCCTTCACTATTTAGCCTATGATTTTGCAGAGGTGTCA
CACTGTATTAGGATCTGCATTTCTAAAACTGACGTGGTATCAGGAAGGCATTTTCAATCATTCAAAAT
GTGGAGAATTTAATGGCTAAATCTTTAAAAGCCAATGCAACCCACCCAATTGAATCTGCATTTTCTTT
TAAGAAAACAGAGCTGATTGTATCCCAATGTATTTTAAAAAATAGGGCAATTGATTGGGCCATTCCGA
GAGAATTGTTTGCAAGTTTTGGGTTTTATTAGAAAATATTTGAAAGTATTTTTATTAATGAACCAAAA
TGACATGTTCATTTGACTACTATTGTAGCCGATTTTCGATTGTTTAACCAAACCCAGTTGCATTTGTA!
CAGATCCACGTGTACTGGCACCTCAGAAGACCAAATCATGGACTGTACAAGTCTCTATACAATGTCTT:
TATCCCTGTGGGCAGCAAGCAATGATGATAATGACAAACAGGATATCTGTAAGATGGGGCTACTGTTG
TTACAGTCTCATATGTATCCCAGCACATGTAATTTTTTAAATAGTTTCTGAATAAACACTTGATAACT
ATGTCAAAAAAA
NOV56c, CG92715-02 SEQ ID NO: 1128 972 aa MW at 109043.3kD Protein Sequence MTGP R GDQGGK- -HTCCPPVTLEQDLHRKMHS 3MLQTLAFAVTSLVLSCAETIDYYGEICDNACPC EEKDGILTVSCENRGIISLSEISPPRFPIYHLLLSGNLLNRLYPNEFVNYTGASILHLGSNVIQDIET GAFHGLRGLRRLHLN--røKLELLRDDTFLGLENLEYLQVDYNYISVIEPNAFGKLHLLQVLILNDNLLS SLPNNLFRFVPLTHLDLRG- TOLKLLPYVGLLQHMDKVVELQLEENP NCSCELISLKD LDSISYSAL VGDWCETPFRLHGRDLDEVSKQELCPRRLISDYEMRPQTPLSTTGYLHTTPASVNSVATSSSAVYKP PLKPPKGTRQPNKPRVRPTSRQPSKDLGYSNYGPSIAYQTKSPVPLECPTACSCNLQISDLGLNVNCQ ERKIESIAELQPKPYNP---O MYLTENYIAVVRRTDFLEATGLDLLHLGNNRISMIQD-RAFGDLTNLRRL YLNG-^ LRLNLRSNHFTSLPVSGVLDQLKSLIQIDLHDNP DCTCDIVGMKL VEQL-KVGVLVDΞVICKAPKKF
AETDMRSIKSELLCPDYSDVWSTPTPSSIQVPARTSAVTPAVRLNSTGAPASLGAGGGASSVPLSVL
ILSLLLVFIMSVFVAAGLFVLVMKRRKKNQSDHTSTNNSDVSSFNMQYSVYGGGGGTGGHPHA-HVHHR
GPA P--^KTPAGHVYEYIPHPLGHMCKNPIYRSREGNSVEDY-ro^
QQPQQQPPPQLQLQPGEEERRESHHLRSPAYSVSTIEPREDLLSPVQDADRFYRGILEPDKHCSTTPA
GNSLPEYPKFPCSPAAYTFSPNYDLRRPHQYLHPGAGDSRLREPVLYSPPSAVFVEPNRNEYLELKAK
LNVEPDYLEVLEKQTTFSQF
NOV56dTcG92715-03 |SEQ ID Nθ7ll29 jl872 bp " "
DNA Sequence iORF Start: at 7 IORF Stop: at 1867
GGATCCATCGATTATTACGGGGAAATCTGTGACAATGCATGTCCTTGTGAGGAAAAGGACGGCATTTT
AACTGTGAGCTGTGAAAACCGGGGGATCATCAGTCTCTCTGAAATTAGCCCTCCCCGTTTCCCAATCT ACCACCTCTTGTTGTCCGGAAACCTTTTGAACCGTCTCTATCCCAATGAGTTTGTCAATTACACTGGG GCTTCAATTTTGCATCTAGGTAGCAATGTTATCCAGGACATTGAGACCGGGGCTTTCCATGGGCTACG GGGTTTGAGGAGATTGCATCTAAACAATAATAAACTGGAACTTCTGCGAGATGATACCTTCCTTGGCT TGGAGAACCTGGAGTACCTACAGGTCGATTACAACTACATCAGCGTCATTGAACCCAATGCTTTTGGG AAACTGCATTTGTTGCAGGTGCTTATCCTCAATGACAATCTTTTGTCCAGTTTACCCAACAATCTTTT CCGTTTTGTGCCCTTAACGCACTTGGACCTCCGGGGGAACCGGCTGAAACTTCTGCCCTACGTGGGGC TCTTGCAGCACATGGATAAAGTTGTGGAGCTACAGCTGGAGGAAAACCCTTGGAATTGTTCTTGTGAG CTGATCTCTCTAAAGGATTGGTTGGACAGCATCTCCTATTCAGCCCTGGTGGGGGATGTAGTTTGTGA GACCCCCTTCCGCTTACACGGAAGGGACTTGGACGAGGTATCCAAGCAGGAACTTTGCCCAAGGAGAC TTATTTCTGACTACGAGATGAGGCCGCAGACGCCTTTGAGCACCACGGGGTATTTACACACCACCCCG GCGTCAGTGAATTCTGTGGCCACTTCTTCCTCTGCTGTTTACAAACCCCCTTTGAAGCCCCCTAAGGG GACTCGCCAACCCAACAAGCCCAGGGTGCGCCCCACCTCTCGGCAGCCCTCTAAGGACTTGGGCTACA GCAACTATGGCCCCAGCATCGCCTATCAGACCAAATCCCCGGTGCCTTTGGAGTGTCCCACCGCGTGC TCTTGCAACCTGCAGATCTCTGATCTGGGCCTCAACGTAAACTGCCAGGAGCGAAAGATCGAGAGCAT CGCTGAACTGCAGCCCAAGCCCTACAATCCCAAGAAAATGTATCTGACAGAGAACTACATCGCTGTCG TGCGCAGGACAGACTTCCTGGAGGCCACGGGGCTGGACCTCCTGCACCTGGGGAATAACCGCATCTCG ATGATCCAGGACCGCGCTTTCGGGGATCTCACCAACCTGAGGCGCCTCTACCTGAATGGCAACAGGAT CGAGAGGCTGAGCCCGGAGTTATTCTATGGCCTGCAGAGCCTGCAGTATCTCTTCCTCCAGTACAATC TCATCCGCGAGATTCAGTCTGGAACTTTTGACCCGGTCCCAAACCTCCAGCTGCTATTCTTGAATAAC AACCTCCTGCAGGCCATGCCCTCAGGCGTCTTCTCTGGCTTGACCCTCCTCAGGCTAAACCTGAGGAG TAACCACTTCACCTCCTTGCCAGTGAGTGGAGTTTTGGACCAGCTGAAGTCACTCATCCAAATCGACC TGCATGACAATCCTTGGGATTGTACCTGTGACATTGTGGGCATGAAGCTGTGGGTGGAGCAGCTCAAA GTGGGCGTCCTAGTGGACGAGGTGATCTGTAAGGCGCCCAAAAAATTCGCTGAGACCGACATGCGCTC CATTAAGTCGGAGCTGCTGTGCCCTGACTATTCAGATGTAGTAGTTTCCACGCCCACACCCTCCTCTA TCCAGGTCCCTGCGAGGACCAGCGCCGTGACTCCTGCGGTCCGGTTGAATAGCACCGGGGCCCCCGCG AGCTTGGGCGCAGGCGGAGGGGCGTCGTCGCTCGAG
NOV56d, CG92715-03 SEQ ED NO: 1130 620 aa MW at 69324.6kD Protein Sequence
IDYYGEICDNACPCEEKDGILTVSCENRGIISLSEISPPRFPIYHLLLSGNLLNRLYPNEFVNYTGAS I HLGSNVIQDIETGAFHGLRGLRRLHLNNNKLELLRDDTFLGLENLEYLQVDYNYISVIEPNAFGKL HLLQVLILNDNLLSSLPNNLFRFVPLTHLDLRGNRLKLLPYVGLLQHMDKVVELQLEENPWNCSCELI SLKD LDSISYSALVGDWCETPFRLHGRDLDEVSKQELCPRRLISDYEMRPQTPLSTTGYLHTTPAS VNSVATSSSAVYKPPLKPPKGTRQPNKPRVRPTSRQPSKDLGYSNYGPSIAYQTKSPVPLECPTACSC NLQISDLGLNVNCQERKIESI.AELQPKPYNPKKMYLTENYIAVVRRTDFLEATGLDLLHLGNRISMI QDRAFGDLTNLRRLYLNGNRIERLSPELFYGLQSLQYLFLQYNLIREIQSGTFDPVPNLQLLFLNNNL LQAMPSGVFSGLTLLRLNLRSNHFTSLPVSGVLDQLKSLIQIDLHDNP DCTCDIVGMKL VEQLKVG VLVDEVICKAPKKFAETDMRSIKSELLCPDYSDVWSTPTPSSIQVPARTSAVTPAVRLNSTGAPASL GAGGGASS
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 56B.
Table 56B. Comparison of the NOV56 protein sequences.
NOV56a MHTCCPPVTLEQDLHRKMHS MLQTLAFAVTSLVLSCAETIDYYGE
NOV56b GSIDYYGE NOV56c MMTGP RRGDQGGKMHTCCPPVTLEQDLHRKMHS MLQTLAFAVTSLVLSCAETIDYYGE
NOV56d IDYYGE
NOV56a ICDNACPCEE---STJGILTVSCENRGIISLSEISPPRFPIYHLLLSGNLLNRLYPNEFVNYTG
NOV56b ICDNACPCEEKDGILTVSCENRGIISLSEISPPRFPIYHLLLSGNLLNRLYPNEFVNYTG
NOV56C ICDNACPCEEKDGILTVSCENRGIISLSEISPPRFPIYHLLLSGNLLNRLYPNEFVNYTG
NOV56d ICDNACPCEEKDGILTVSCENRGIISLSEISPPRFPIYHLLLSGNLLNRLYPNEFVNYTG
NOV56a ASILHLGSNVIQDIETGAFHGLRGLRRLHLNNNKLELLRDDTFLGLENLEYLQVDYNYIS
NOV56b ASILHLGSNVIQDIETGAFHGLRGLRRLHLNNNKLELLRDDTFLGLENPEYLQVDYNYIS
NOV56C ASILHLGSNVIQDIETGAFHGLRGLRRLHLNNNKLELLRDDTFLGLENLEYLQVDYNYIS
NOV56d ASILHLGSNVIQDIETGAFHGLRGLRRLHLNNNKLELLRDDTFLGLENLEYLQVDYNYIS
NOV56a VIEPNAFG-rajHLLQVLIL---roNLLSSLP-trøLFRFVPLTHLDLRG-- L---^LPYVGLLQHMDK
NOV56b VIEPNAFGKLHLLQVLILNDNLLSSLPNNLFRFVPLTHLDLRGNRLKLLPYVGLLQHMDK
NOV56c VIEPNAFGKLHLLQVLILNDNLLSSLPNNLFRFVPLTHLDLRGNRLKLLPYVGLLQHMDK
NOV56d VIEPNAFGKLHLLQVLILNDNLLSSLPNNLFRFVPLTHLDLRGNRLKLLPYVGLLQHMDK
NOV56a VVELQLEENP NCSCELISLKD LDSISYSALVGDVVCETPFRLHGRDLDEVSKQELCPR
NOV56b WELQLEENPWNCSCELISLKDWLDSISYSALVGDWCETPFRLHGRDLDEVSKQELCPR
NOV56c WELQLEENP NCSCELISLKDWLDSISYSALVGDWCETPFRLHGRDLDEVSKQELCPR
NOV56d WELQLEENP NCSCELISLKD LDSISYSALVGDWCETPFRLHGRDLDEVSKQELCPR
NOV56a RLISDYEMRPQTPLSTTGYLHTTPASVNSVATSSSAVYKPPLKPPKGTRQPNKPRVRPTS
NOV56b RLISDYEMRPQTPLSTTGYLHTTPASVNSVATSSSAVYKPPLKPPKGTRQPNKPRVRPTS
NOV56C RLISDYEMRPQTPLSTTGYLHTTPASVNSVATSSSAVYKPPLKPPKGTRQPNKPRVRPTS
NOV56d RLISDYEMRPQTPLSTTGYLHTTPASVNSVATSSSAVYKPPLKPPKGTRQPNKPRVRPTS
NOV56a RQPSKDLGYSNYGPSIAYQTKSPVPLECPTACSCNLQISDLGLNVNCQERKIESIAELQP
NOV56b RQPSKDLGYSNYGPSIAYQTKSPVPLECPTACSCNLQISDLGLNVNCQERKIESIAELQP
NOV56C RQPSKDLGYSNYGPSIAYQTKSPVPLECPTACSCNLQISDLGLNVNCQERKIESIAELQP
NOV56d RQPSKDLGYSNYGPSIAYQTKSPVPLECPTACSCNLQISDLGLNVNCQERKIESIAELQP
NOV56a KPYNPKKMYLTENYIAVVRRTDFLEATGLDLLHLGNNRISMIQDRAFGDLTNLRRLYLNG
NOV56b KPYNP---ααyiYLTENYIAVVRRTDFLEATGLDLLHLGNNRISMIQDRAFGDLTNLRRLYLNG
NOV56C KPYNPKKMYLTENYIAWRRTDFLEATGLDLLHLGNNRISMIQDRAFGDLTNLRRLYLNG
NOV56d KPYNPKKMYLTΞNYIAWRRTDFLEATGLDLLHLGNNRISMIQDRAFGDLTNLRRLYLNG
NOV56a NRIERLSPELFYGLQSLQYLFLQYNLIREIQSGTFDPVPNLQLLFLNNNLLQAMPSGVFS
NOV56b NRIERLSPELFYGLQSLQYLFLQYNLIREIQSGTFDPVPNLQLLFLNNNLLQAMPSGVFS
NOV56C NRIERLSPELFYGLQSLQYLFLQYNLIREIQSGTFDPVPNLQLLFLNNNLLQAMPSGVFS
NOV56d NRIERLSPELFYGLQSLQYLFLQYNLIREIQSGTFDPVPNLQLLFLNNNLLQAMPSGVFS
NOV56a GLTLLRLNLRS---raFTSLPVSGVLDQLKSLIQIDLHDNP DCTCDIVGMKL VEQLKVGVL
NOV56b GLTLLRLNLRS--S-ΗFTSLPVSGVLDQLKSLIQIDLHDNPWDCTCDIVGM-EOJ VEQLKVGVL
NOV56c GLTLLRLNLRSNHFTSLPVSGVLDQLKSLIQIDLHDNPWDCTCDIVGMKL VEQLKVGVL
NOV56d GLTLLRLNLRSNHFTSLPVSGVLDQLKSLIQIDLHDNP DCTCDIVGMKL VEQLKVGVL
NOV56a VDEVICKAPKKFAETDMRSIKSELLCPDYSDVWSTPTPSSIQVPARTSAVTPAVRLNST
NOV56b VDEVICKAPKKFAETDMRSIKSELLCPDYSDVWSTPTPSSIQVPARTSAVTPAVRLNST
NOV56c VDEVICKAPKKFAETDMRSIKSELLCPDYSDVWSTPTPSSIQVPARTSAVTPAVRLNST
NOV56d VDEVICKAPKKFAETDMRSIKSELLCPDYSDVWSTPTPSSIQVPARTSAVTPAVRLNST
NOV56a GAPASLGAGGGASSVPLSVLILSLLLVFIMSVFVAAGLFVLVMKRRKKNQSDHTSTNNSD
NOV56b GAPASLGAGGGASSLE
NOV56c GAPASLGAGGGASSVPLSVLILSLLLVFIMSVFVAAGLFVLVMKRRKKNQSDHTSTNNSD
NOV56d GAPASLGAGGGASS
NOV56a VSSFNMQYSVYGGGGGTGGHPffi^IV---fflRGPALPKVKTPAGHVYEYIPHPLGHMCKNPIYR
NOV56b NOV56c VSSFNMQYSVYGGGGGTGGHPHAHVHHRGPALPKVKTPAGHVYEYIPHPLGHMCKNPIYR
NOV56d
NOV56a SREGNSVEDYKDLHELKVTYSSNHHLQQQQQPPPPPQQPQQQPPPQLQLQPGEEERRESH
NOV56b
NOV56c SREGNSVEDYKDLHELKVTYSSNHHLQQQQQPPPPPQQPQQQPPPQLQLQPGEEERRESH
NOV56d
NOV56a HLRSPAYSVSTIEPREDLLSPVQDADRFYRGILEPDKHCSTTPAGNSLPEYPKFPCSPAA
NOV56b
NOV56C HLRSPAYSVSTIEPREDLLSPVQDADRFYRGILEPDKHCSTTPAGNSLPEYPKFPCSPAA
NOV56d
NOV56a YTFSPNYDLRRPHQYLHPGAGDSRLREPVLYSPPSAVFV
NOV56b
NOV56C YTFSPNYDLRRPHQYLHPGAGDSRLREPVLYSPPSAVFVEPNRNEYLELKAKLNVEPDYL
NOV56d
NOV56a
NOV56b
NOV56C EVLEKQTTFSQF
NOV56d
NOV56a (SEQ ID NO 1124)
NOV56b (SEQ ID NO 1126)
NOV56C (SEQ ID NO 1128)
NOV56d (SEQ ID NO 1130)
Further analysis ofthe NOV56a protein yielded the following properties shown in Table 56C.
Table 56C. Protein Sequence Properties NOV56a
SignalP analysis: Cleavage site between residues 41 and 42
PSORT π analysis:
PSG: a new signal peptide prediction method
N-region: length 11; pos.chg 0; neg.chg 1 H-region: length 1; peak value 0.00 PSG score: -4.40
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -2.49 possible cleavage site: between 38 and 39
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al's method for TM region allocation Init position for calculation: 1
Tentative number of TMS(s) for the threshold 0.5: Number of TMS(s) for threshold 0.5: 1 INTEGRAL Likelihood =-13.59 Transmembrane 665 681 PERIPHERAL Likelihood = 2.44 (at 571) ALOM score: -13.59 (number of TMSs: 1)
MTOP: Prediction of membrane topology (Hartmann et al.) Center position for calculation: 672 Charge difference: 2.5 C( 4.5) - N( 2.0) C > N: C-terminal side will be inside
>>> membrane topology: type lb (cytoplasmic tail 665 to 925)
MITDISC: discrimination of mitochondrial targeting seq R content: 0 Hyd Moment (75): 2.75 Hyd Moment (95): 4.92 G content: 0 D/E content: 2 S/T content: 2 Score: -7.05
Gavel : prediction of cleavage sites for mitochondrial preseq cleavage site motif not found
NUCDISC: discrimination of nuclear localization signals pat4: KRRK (5) at 690 pat4: RRKK (5) at 691 pat7 : none bipartite: none content of basic residues: 9.2% NLS Score: 0.15
KDΞL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals : none
SKL: peroxisomal targeting signal in the C-terminus : none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif: none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail: too long tail
Dileucine motif in the tail : found LL at 670 LL at 671 checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: nuclear Reliability: 89
COIL: Lupas ' s algorithm to detect coiled-coil regions total : 0 residues
Final Results (k = 9/23 ) :
69 6 % : nuclear
8 7 % : mitochondrial
8 7 % : cytoplasmic
4 3 % : vacuolar
4 3 % : plasma membrane
4 3 % : vesicles of secre tory sys tern
>> prediction for CG92715-01 is nuc (k=23 )
A search of the NOV56a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 56D.
In a BLAST search of public sequence databases, the NOV56a protein was found to have homology to the proteins shown in the BLASTP data in Table 56E.
PFam analysis predicts that the NOV56a protein contains the domains shown in the Table 56F.
Example 57.
The NOV57 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 57 A.
Table 57A. NOV57 Sequence Analysis
NOV57a, CG92813-01 SEQ ID NO: 1131 15603 bp DNA Sequence ORF Start: ATG at 518 JORF Stop: TGA at l5401
CTAATAGAATTCAGCGGCCGCTTTCCCCGGTGCGCAGTTGTGCTTGGACGTTTGTTCCTCCCTCTTCA;
CGCTCTTCGCTGCGGGTAAGTTCTAAAGTTTCTGAAGGCCGTTCTTTGCAATGATTCCTCATATACCT
TAGATACAGGCAACTTCTCCCAACTCTCATCCACCCGGGTGAAAACGCTCAGACTATCTGGATTCAAA
AACAAAGTAAAAGGGGGCATATATAAGAGGCTTGAGAAACTTTTCTGGGAACTCAGCTCACAGGAGTGi
TCCCGCGGAATGCCCTGCCGCTTTTCGCCACAGCATCTCTCTTGCACTCCGCGTTCAACTGGCTACCTi
AGAGTCTTTTGCTGATGCTACTTGCTTTTGCCGGACTGGAGGTTCTTTGAAATAGCAGAGGTCTCAGA^
CCAAGCCGTCAGCTGAATCTTTGCTGGCGCTCCTTAATCCCTGTAAATATCATTGCGTTTGCTTCACC
CCTTCCTTCTCTTTATCACATCGTTTTAGGGAGCCAGGACCATGGACTTAGCACCAGACAGGGCTACT
GGCCGCCCGTGGCTCCCGTTGCACACTCTATCAGTATCTCAGCTCCTTCGAGTGTTTTGGCTACTGTC ATTGCTTCCGGGGCAGGCCTGGGTCCACGGGGCCGAGCCGCGCCAGGTGTTCCAAGTGCTGGAAGAGC AACCTCCAGGCACTCTGGTAGGCACCATCCAGACGCGCCCCGGCTTCACCTACAGGCTCAGCGAAAGC CACGCCCTGTTTGCCATAAACAGTAGCACCGGAGCCCTGTACACCACCTCCACCATCGACCGCGAGAG CCTGCCCAGCGACGTGATCAACCTGGTGGTCCTTTCCAGCGCGCCCACCTACCCCACCGAAGTGCGAG TGCTGGTGCGGGACCTCAATGACAACGCCCCCGTTTTCCCGGACCCCTCTATCGTGGTCACTTTCAAG GAAGACAGTAGCAGCGGACGCCAAGTCATCTTAGACACCGCCACCGACTCGGACATCGGCTCAAACGG TGTGGACCACCGCTCCTACCGCATCATCCGCGGCAATGAGGCGGGGCGCTTCCGTCTGGACATCAACC TGAACCCGAGCGGCGAGGGAGCGTTCCTGCATCTGGTGTCCAAGGGCGGACTGGACCGTGAGGTCACT CCGCAGTACCAGCTCCTGGTTGAGGTGGAGGACAAGGGTGAGCCTAAGCGGCGGGGCTACCTTCAGGT AAACGTGACTGTGCAAGACATTAATGACAACCCCCCGGTTTTTGGCAGTTCTCACTACCAGGCGGGGG TGCCTGAGGACGCGGTTGTGGGTTCCAGCGTCCTCCAGGTGGCGGCGGCGGACGCGGACGAGGGCACC AACGCGGACATCCGCTATCGCCTGCAGGACGAGGGGACCCCCTTCCAAATGGACCCTGAGACGGGACT TATCACGGTGCGGGAGCCCCTGGACTTCGAAGCTCGGCGCCAATACTCGCTTACGGTGCAGGCGATGG ACAGAGGCGTGCCTTCCCTCACTGGGCGCGCCGAGGCGCTGATTCAGCTGCTGGACGTGAATGACAAT GACCCGGTAGTGAAGTTCCGCTACTTCCCGGCCACCTCGCGCTACGCCTCGGTAGATGAGAATGCTCA AGTGGGCACCGTGGTGGCTCTGCTCACCGTGACGGACGCAGATTCTCCCGCGGCCAACGGGAACATCT CCGTGCAAATTCTCGGGGGCAATGAGCAGCGCCACTTTGAAGTGCAAAGCAGCAAAGTGCCGAACCTG AGCCTAATCAAGGTGGCCAGCGCCTTGGACCGCGAGCGCATCCCTTCCTACAACCTCACAGTTTCCGT CTCTGATAACTACGGGGCGCCCCCTGGCGCAGCAGTCCAGGCGCGCTCTTCTGTGGCAAGCCTGGTGA TTTTTGTTAATGACATCAATGACCATCCTCCTGTCTTTTCACAGCAAGTGTACAGAGTGAACCTGAGC GAGGAGGCGCCTCCGGGAAGCTATGTGAGTGGGATATCTGCCACTGATGGCGACTCTGGTCTCAATGC TAATCTGCGTTACAGCATTGTCTCTGGCAATGGACTGGGATGGTTCCATATCAGTGAACATAGCGGCC TCGTGACCACTGGGTCCTCTGGGGGCCTGGACCGTGAACTTGCTTCCCAGATTGTTCTGAATATAAGT GCCCGGGACCAGGGAGTTCACCCCAAGGTGTCCTATGCCCAGCTTGTAGTAACTCTCCTAGATGTGAA TGATGAAAAGCCAGTATTTAGCCAGCCAGAAGGGTATGATGTGTCTGTGGTTGAGAATGCCCCAACAG GGACAGAACTGTTGATGCTCAGGGCAACTGACGGGGACCTGGGTGACAACGGAACAGTGCGCTTCTCC TTACAAGAGGCAGAGACTGACCGGAGGTCCTTCCGTCTGGATCCTGTGTCTGGGAGGTTGAGTACTAT TTCCTCCTTGGACAGAGAAGAGCAAGCCTTCTACTCCCTGTTGGTTCTGGCCACAGATCTGGGCTCCC CTCCCCAGTCATCAATGGCTCGCATAAATGTGAGTCTTCTGGATATAAATGATAACAGCCCTGTCTTC TACCCGGTCCAATACTTTGCTCACATTAAGGAGAATGAGCCTGGAGGTAGCTACATCACCACTGTGTC TGCCACTGACCCAGACTTGGGTACCAATGGTACTGTCAAATATAGCATATCTGCTGGGGACAGGTCTC GGTTTCAGGTCAATGCTCAGAGTGGGGTTATTTCTACAAGAATGGCCCTAGACAGAGAAGAAAAAACA GCTTATCAGTTGCAAATAGTAGCTACTGATGGTGGCAATTTACAATCTCCCAACCAGGCAATAGTAAC CATCACTGTATTGGACACTCAAGACAACCCACCTGTATTCAGTCAGGTTGCCTACAGCTTTGTGGTTT TTGAGAACGTGGCGCTGGGATATCATGTGGGTAGTGTGTCTGCATCCACCATGGATCTCAATTCCAAC ATCAGTTATCTCATTACTACTGGGGATCAGAAAGGTATGTTTGCTATCAACCAGGTCACTGGGCAGCT TACCACAGCAAATGTGATTGATAGAGAAGAGCAATCCTTTTATCAGCTGAAGGTAGTGGCCAGTGGGG GCACAGTGACTGGAGACACTATGGTTAACATAACAGTTAAGGATTTGAATGACAACTCTCCCCATTTC CTTCAGGCAATAGAGAGTGTAAATGTGGTGGAGAATTGGCAGGCAGGTCACAGCATTTTCCAGGCCAA AGCTGTGGACCCTGATGAAGGTGTCAATGGCATGGTACTCTATAGTCTGAAGCAAAACCCCAAGAACC
TGTTTGCTATCAATGAAAAGAATGGCACTATTAGTCTGCTTGGGCCCCTGGATGTTCATGCTGGCTCC TACCAAATAGAGATCTTGGCATCTGACATGGGTGTCCCACAGCTCTCCTCTAGTGTCATCCTAACAGT TTATGTCCATGATGTAAATGACAATTCACCAGTGTTTGACCAACTCTCTTATGAAGTCACCCTTTCTG AGTCAGAACCTGTGAATTCTCGATTCTTTAAAGTACAAGCTTCTGATAAGGATTCAGGAGCAAATGAT GGTCAATTGTATATAAAAAGTGAACTGGACCGTGAACTTCAAGACAGATATGTTTTAATGGTTGTTGC TTCTGACAGAGCAGTGGAACCCCTTAGTGCTACTGTGAATGTTACTGTAATTTTAGAAGATGTAAATG ATAACAGACCTCTTTTTAACAGTACCAATTACACATTTTACTTCGAAGAAGAGCAGAGGGCTGGGTCG TTTGTGGGCAAAGTAAGTGCTGTAGATAAAGACTTTGGGCCAAATGGAGAAGTAAGGTATTCTTTTGA AATGGTGCAGCCAGATTTTGAGTTGCATGCCATCAGTGGGGAAATTACAAATACTCATCAGTTTGACA GGGAGTCTCTTATGAGGCGGAGAGGGACTGCTGTGTTTAGCTTTACAGTCATAGCAACAGATCAGGGG ATCCCTCAGCCTCTCAAGGATCAGGCCACTGTACATGTTTACATGAAGGATATAAATGATAATGCTCC CAAATTTTTAAAAGACTTTTACCAAGCTACAATATCAGAATCAGCAGCCAATCTGACACAAGTGTTAA GAGTATCTGCCTCAGATGTTGATGAAGGTAATAATGGACTTATTCACTATTCTATAATAAAAGGAAAT GAAGAAAGACAGTTTGCTATAGACAGTACCTCTGGTCAGGTAACACTAATTGGCAAATTAGACTATGA AGCAACACCTGCCTATTCCCTTGTAATTCAAGCAGTGGATTCAGGGACAATCCCCCTCAATTCAACGT GTACTTTAAATATTGATATTTTAGATGAAAATGACAATACCCCTTCTTTCCTTAAATCAACACTGTTT GTTGATGTTTTGGAAAACATGAGAATTGGTGAACTCGTGTCCTCTGTTACTGCAACTGATTCCGATTC AGGTGACAATGTTGATTTATATTACAGTATTACTGGGACTAACAACCACGGAACTTTTAGCATTAGCC CAAACACTGGGAGTATTTTTCTTGCCAAAAAACTGGACTTTGAAACACAGTCTTTGTATAAATTAAAT ATAACAGCAAAAGACCAAGGAAGACCTCCTCGTTCATCTACAATGTCAGTGGTTATTCACGTGAGGGA CTTTAATGACAATCCTCCTAGCTTTCCTCCTGGAGATATTTTCAAGTCTATTGTTGAGAACATTCCCA TTGGTACATCTGTCATTTCAGTGACTGCACATGACCCTGATGCAGACATTAATGGTCAACTATCCTAC ACAATCATTCAACAGATGCCAAGAGGCAACCACTTTACCATAGATGAAGTCAAAGGGACTATATATAC TAATGCTGAAATAGATCGGGAATTTGCTAATCTCTTTGAGTTGACTGTAAAAGCCAATGATCAAGCTG TGCCAATAGAAACTAGACGGTATGCTTTGAAGAACGTGACCATTTTGGTTACAGACCTCAATGACAAT GTCCCAATGTTTATATCACAAAACGCCCTTGCTGCAGACCCATCAGCTGTGATTGGTTCCGTTCTGAC AACAATTATGGCTGCTGACCCAGATGAAGGTGCTAATGGAGAAATAGAGTATGAGATCATCAATGGGG ACACAGACACCTTCATTGTTGATCGTTATAGTGGAGACCTGAGAGTGGCTTCAGCGTTGGTGCCTTCA CAGTTGATCTACAATCTCATAGTTTCAGCAACAGACCTTGGGCCTGAAAGGAGGAAATCGACCACTGA ATTGACCATCATTCTTCAGGGCCTTGATGGACCTGTTTTTACTCAACCCAAATATATAACTATTTTGA AGGAAGGAGAACCCATTGGCACAAACGTGATATCAATAGAAGCAGCTAGCCCCAGAGGATCTGAGGCC CCAGTGGAGTATTATATTGTTTCAGTTCGTTGTGAAGAAAAAACTGTTGGACGCCTCTTTACTATTGG ACGACATACTGGTATAATTCAGACCGCAGCCATTCTGGACCGGGAGCAAGGAGCATGTCTTTACCTGG TGGATGTTTATGCCATAGAAAAATCAACTGCTTTTCCCAGAACACAGAGAGCAGAGGTAGAAACAACA CTTCAGGATATCAATGACAATCCACCAGTATTTCCAACGGACATGCTGGATCTCACGGTAGAGGAGAA CATTGGAGATGGCTCTAAGATTATGCAGCTGACAGCCATGGATGCTGACGAGGTGCAAATGCTCTCGT CACATACACTATCATTAGTGGGTTCTTTGGTAGCAGCCATTTTAGCCACGGATGATGACTCTGGTGTG AATGGAGAAATTACATATATTGTGAATGAAGATGATGAAGATGGCATCTTTTTCCTGAATCCTATTAC TGGGGTCTTTAATTTGACTCGATTATTAGATTATGAAGTACAGCAATATTATATCCTCACTGTTCGAG CAGAAGATGGTGGGGGACAATTTACTACCATCAGAGTTTATTTCAATATTCTAGATGTAAATGATAAT CCACCTATTTTCAGCTTGAATTCATACAGCACATCTTTAATGGAGAATCTACCTGTGGGATCTACTGT TCTTGTGTTTAATGTTACTGATGCAGATATGATGAAGGCAGAAATAAAGATGTTCTTTGAAACCAGTG AGAACAAAGACACAACATACCAGAATCTCTGGGACACATTCAAAGCAGTGTGTAGAGGGAAATTTATA G(--ΑCTAAATGCCCACAAGAGAAAGCAGGAAAGATCCAAAATTGACACCCTAACATCACAATTAAAAGA ACTAGAAAAGCAAGAGCAAACACATTCAAAAGCTAGCAGAAGGCAAGAAATAACTAAAATCAGAGCAG AACTGAAGGATATAGAGACACAAAAAACCCTTCAAAAAATTAATGAATCCAGGAGCTGGTTTTTTGAA AGGATCAACAAAATTGATAGACCGCTAGCAAGACTAATAAAGAAGAAAACAGAGAAGAATCAAATAGA CGCAATAAAAAATGATAAAGGGGATATCACCATCGATCCCACAGAAATACAAACTACCATCAGAGAAT ACTGCAAACACCTCTATGCAAATAAACTAGAAAATCTAGAAGAAATGGATAAATTCCTCGACACATAC
ACCCTCCCAAGACTAAACCAGGAAGAAGTTGAATCTCTGAATAGACCAATAACAGACTCTGAAACTGT GGCAATAATCAATAGCTTACCAACCAAAAAGAGTCCAGGACCAGATGGATTCACAGCCGAATTCTACC AGATGATAACAACCCCAGTCTTTGCACAAGCTTTGTATAAAGTGGAGATTAATGAAAACACACTTACT GGAACAGATATAATACAAGTGTTCGCAGCAGATGGAGATGAAGGCACAAATGGACAGGTTCGCTATGG CATTGTTAATGGTAATACCAATCAGGAATTTCGGATAGACTCTGTCACAGGTGCCATCACTGTCGCTA -AACCTTTGG^^ CCCAGAACTGATACCTCCACGGTCAGCATTGTTCTACTGGATATTAATGACTTTGTTCCTGTATTTGA GCTATCTCCATATTCTGTAAATGTCCCTGAGAATTTAGGGACACTACCCAGAACAATTCTTCAGACTG CTTCGCCTTGCGTGAGGTTTGCCAGCGCCAGTAAAGCGTATTTCACAACAATTCCTGAGGATGCACCA ACTGGAACAGATGTTTTATTGGTAAATGCCTCAGATGCTGATGCTTCAAAGAATGCAGTTATAAGTTA TAGGATCATCGGTGGAAACTCTCAGTTCACGATCAACCCATCGACAGGACAAATCATCACCAGCGCAT TGTTAGATAGGGAAACAAAAGATAATTATACTTTGGTAGTGGTCTGCAGTGATGCGGGATCCCCAGAG CCTCTTTCCAGTTCCACCAGTGTGCTTGTCACTGTGACTGATGTCCATGACAATCCACCAAGATTTCA GCATCACCCATATGTCACTCACATCCCATCTCCTACTCTTCCAGGTTCCTTTGTCTTTGCGGTTACAG TCACAGATGCTGATATTGGACCAAATTCTGAACTGCATTATTCTCTTTCGGGTAGAAATTCTGAAAAA TTTCACATTGACCCACTGAGGGGAGCCATTATGGCCGCCGGACCACTAAACGGAGCTTCAGAAGTGAC ATTTTCTGTGCATGTAAAAGATGGTGGCTCATTTCCAAAGACAGATTCTACAACAGTGACTGTTAGAT TCGTGAATAAGGCCGATTTCCCTAAAGTCAGAGCCAAAGAACAAACGTTCATGTTTCCTGAAAACCAA CCAGTCAGCTCTCTTGTCACCACCATCACAGGATCCTCTTTAAGAGGAGAACCTATGTCATATTATAT CGCAAGTGGGAATCTTGGCAATACTTTCCAGATTGATCAGTTAACAGGGCAGGTGTCTATTAGTCAAC CTCTGGATTTTGAAAAGATACAAAAATATGTTGTATGGATAGAGGCCAGAGACGGTGGTTTCCCTCCT TTCTCCTCTTACGAGAAACTTGATATAACAGTATTAGATGTCAATGATAATGCCCCAATTTTTAAGGA AGACCCATTTATATCTGAAATATTGGAAAACCTTTCCCCTCGAAAAATACTTACTGTTTCGGCAATGG ACAAGGACAGTGGACCCAATGGACAGTTAGATTATGAAATTGTTAATGGCAACATGGAAAATAGTTTC AGTATCAATCATGCTACTGGTGAAATTAGAAGCGTTAGACCTTTGGACAGGGAAAAAGTATCTCATTA TGTCCTAACCATAAAATCATCAGACAAAGGGTCCCCGTCTCAGAGTACTTCAGTAAAAGTCATGATTA ACATTTTAGATGAAAATGATAATGCCCCTAGGTTTTCTCAGATATTTAGTGCCCATGTTCCTGAAAAT TCCCCCTTAGGATACACAGTTACCCGTGTCACAACTTCTGATGAAGACATTGGGATCAATGCAATTAG TAGATATTCTATAATGGATGCAAGTCTTCCATTTACAATTAATCCCAGCACAGGGGATATTGTCATAA GCAGACCTTTAAATAGGGAAGATACAGACCGTTACAGAATTCGAGTTTCCGCACATGATTCTGGGTGG ACTGTAAGTACAGATGTCACAATATTTGTGACAGACATCAATGACAATGCTCCAAGATTTAGCAGAAC TTCCTATTATTTAGATTGCCCTGAACTTACTGAGATTGGCTCCAAAGTAACTCAGGTATTTGCAACAG ATCCTGATGAGGGATCAAATGGACAAGTGTTTTATTTCATAAAATCCCAATCAGAATATTTCAGGATT AATGCCACCACTGGAGAGATTTTCAATAAACAGATCTTAAAATACCAAAATGTCACTGGCTTCAGTAA TGTGAATATCAACAGGCATAGTTTTATAGTGACATCTTCAGATCGAGGTAAACCTTCCTTAATTAGTG AGACAACAGTTACCATCAATATAGTGGACAGTAATGACAATGCACCTCAATTTCTTAAAAGTAAATAT TTCACTCCAGTCACCAAAAATGTTAAGGTTGGTACGAAGTTAATCAGAGTTACAGCAATAGATGACAA AGATTTTGGACTGAATTCAGAAGTGGAGTATTTCATTTCTAATGATAACCATTTAGGAAAATTTAAGT TGGACAATGATACGGGGTGGATTTCAGTAGCATCCTCCCTGATTTCTGACTTGAACCAAAACTTTTTT ATCACAGTCACTGCAAAGGATAAGGGAAACCCTCCACTTTCTTCCCAAGCAACTGTTCACATAACTGT CACTGAGGAAAACTACCATACACCTGAATTCTCTCAAAGCCACATGAGTGCAACCATCCCTGAGAGCC ATAGCATTGGGTCCATTGTCAGAACTGTTTCTGCAAGAGATAGAGATGCAGCGATGAATGGCTTGATT AAGTACAGCATTTCTTCAGGAAATGAAGAAGGCATTTTTGCAATCAATTCTTCTACAGGTATATTAAC ACTAGCCAAAGCTCTTGATTATGAGCTATGCCAGAAACACGAAATGACGATTAGTGCTATAGATGGAG GATGGGTTGCAAGAACTGGTTACTGCAGTGTGACCGTAAATGTGATTGATGTGAATGATAATTCTCCA GTATTCCTCTCTGATGACTATTTCCCTACTGTTTTGGAAAATGCCCCAAGTGGAACAACAGTTATCCA CCTAAATGCAACAGATGCTGACTCTGGAACAAATGCTGTGATTGCGTATACTGTACAGTCATCTGACA GTGACCTCTTTGTCATTGACCCTAACACAGGAGTCATAACCACTCAAGGCTTCTTGGATTTTGAAACC
AAGCAGAGCTACCATCTTACTGTGAAAGCCTTCAATGTCCCCGATGAGGAAAGGTGTAGCTTTGCCAC TGTTAATATACAATTAAAAGGGACAAATGAATATGTGCCCCGTTTTGTTTCCAAACTTTACTATTTTG AAATCTCAGAAGCAGCTCCTAAAGGTACTATTGTTGGAGAAGTGTTTGCTAGCGACCGTGATTTGGGC ACTGATGGGGAGGTACACTATTTGATTTTTGGTAATAGTCGAAAGAAGGGTTTCCAGATCAATAAGAA GACTGGACAGATTTATGTTTCTGGAATTCTTGATCGAAAAAAAGAAGAAAGGGTGTCTTTGAAGGTAT TGGCCAAGAACTTTGGCAGCATTAGAGGTGCAGATATAGATGAGGTCACTGTAAATGTCACCGTGCTT GATGCAAATGACCCACCCATTTTTACTCTAAACATCTACAGTGTGCAGATCAGTGAAGGGGTCCCAAT AGGAACTCATGTGACCTTTGTCAGTGCCTTTGACTCAGACTCCATCCCCAGCTGGAGCAGGTTTTCTT ACTTCATCGGATCAGGGAATGAAAATGGTGCCTTTTCTATTAATCCGCAGACAGGACAGATCACCGTT ACTGCAGAATTAGATCGAGAAACCCTTCCCATCTATAATCTCTCAGTTTTGGCTGTTGATTCAGGGAC CCCCTCAGCTACAGGTAGTGCCTCTTTATTAGTCACCCTGGAAGATATAAATGATAACGGGCCCATGC TGACTGTCAGTGAAGGAGAAGTCATGGAAAACAAACGGCCAGGCACTTTGGTGATGACCCTTCAGTCC ACTGACCCTGATCTCCCTCCAAATCAAGGTCCCTTTACTTATTACTTGCTGAGCACAGGTCCTGCCAC CAGTTATTTCAGTCTGAGCACTGCTGGAGTTCTGAGCACAACCAGAGAGATTGACAGAGAGCAGATTG CAGACTTCTATCTGTCTGTGGTTACCAAGGATTCTGGTGTTCCTCAAATGTCTTCCACAGGAACTGTG CATATCACAGTTATAGACCAAAATGACAATCCTTCACAGTCTCGGACGGTGGAGATATTTGTTAATTA TTATGGTAACTTGTTTCCCGGTGGGATTTTAGGCTCTGTGAAGCCACAGGATCCAGATGTGTTAGACA GCTTCCACTGCTCCCTTACTTCAGGAGTTACCAGCCTCTTCAGTATTCCΆGGGGGTACTTGTGATCTG |AATTCCCAGCCAAGGTCCACAGATGGCACGTTTGATCTGACTGTCCTTAGCAATGATGGAGTTCACAG CACAGTCACGAGCAACATCCGAGTTTTCTTTGCTGGATTTTCCAATGCCACAGTGGATAACAGCATCT TACTTCGTCTCGGCGTACCAACAGTAAAGGACTTCTTGACCAACCACTATCTTCATTTTTTACGCATT GCCAGCTCACAGCTGACAGGCTTAGGGACTGCTGTGCAACTGTACAGTGCATATGAAGAGAACAATAG AACGTTTCTTTTGGCAGCTGTGAAGCGAAATCATAATCAGTATGTGAATCCCAGTGGCGTAGCCACCT TCTTTGAAAGCATCAAAGAGATCCTTCTCCGGCAGAGTGGAGTAAAGGTGGAATCTGTGGATCATGAC TCCTGTGTGCATGGCCCATGTCAGAATGGAGGGAGCTGTCTACGAAGATTGGCTGTGAGCTCCGTATT AAAAAGCCGTGAGAGTCTTCCAGTCATCATCGTGGCAAATGAACCTCTGCAGCCTTTCTTATGCAAGT GTCTGCCAGGATATGCGGGTAGCTGGTGTGAAATAGATATAGATGAATGTCTTCCATCACCTTGCCAC AGTGGTGGAACCTGTCACAATTTAGTGGGAGGATTTTCATGCAGCTGCCCAGATGGCTTCACTGGTAG GGCGTGTGAGAGAGATATCAATGAGTGCCTGCAGAGTCCTTGCAAGAATGGTGCCATCTGCCAGAATT TTCCAGGAAGCTTCAACTGTGTTTGCAAAACTGGATACACAGGTATGACAACGTTTGTACTTTTCTCA CTAAGACTTGGAAAATGTGTGAATCTTCAGTCAATTACTGTGAATGCAACCCCTGCTTTAATGGTGGT TCCTGCCAAAGTGGTGTGGATTCTTATTATTGTCATTGTCCATTTGGTGTCTTTGGAACACTGCGAGT TGAACAGTTATGGATTTGAGGAGTTATCATACATGGAATTTCCAAGCTTGGACCCCAATAACAACTAT ATTTATGTCAAATTTGCCACGATTAAAAGTCATGCCTTATTGCTTTACAACTATGACAACCAGACAGG CGACCGGGCTGAGTTTTTGGCCCTTGAAATTGCCGAAGAAAGACTAAGATTCTCTTATAATTTAGGCA GTGGTACATATAAGCTCACCACCATGAAGAAGGTGTCAGATGGACATTTTCACACTGTGATTGCCAGG AGAGCAGGAATGGCAGCCTCCTTAACTGTGGACTCCTGTTCTGAGAACCAAGAGCCAGGATATTGTAC TGTCAGTAATGTGGCAGTTTCAGATGACTGGACTCTTGATGTTCAGCCAAATAGAGTTACAGTTGGAG GTATCAGATCTCTAGAACCAATCCTTCAGAGAAGAGGACACGTGGAAAGCCATGATTTTGTTGGGTGT ATAATGGAGTTTGCAGTCAATGGAAGGCCTCTGGAACCCAGCCAAGCTTTGGCAGCACAAGGCATCCT AGATCAGTATGGCGATTTTATTTCTTACTGTTTTAAAGAAAAAAAATGCAAAAAAGTATGCTTCACTG TTACTCCTGACACTGCCTTATCATTAGAAGGCAAAGGGCGCTTGGACTACCACATGAGTCAGAATGAG AAGCGGGAATATTTGTTAAGGCAAAGCTTACGAGGTGCCATGTTGGAGCCTTTTGGTGTGAACAGTCT GGAAGTAAAATTTAGGACCAGAAGCGAGAATGGCGTTTTAATCCATATCCAAGAAAGCAGCAATTACA CTACTGTGAAGGGAATGTGTGAATCTTCAGTCAATTACTGTGAATGCAACCCCTGCTTTAATGGTGGT TCCTGCCAAAGTGGTGTGGATTCTTATTATTGTCATTGTCCATTTGGTGTCTTTGGAAAACACTGCGA GTTGAACAGTTATGGATTTGAGGAGTTATCATACATGGAATTTCCAAGCTTGGACCCCAATAACAACT ATATTTATGTCAAATTTGCCACGATTAAAAGTCATGCCTTATTGCTTTACAACTATGACAACCAGACA GGCGACCGGGCTGAGTTTTTGGCCCTTGAAATTGCCGAAGAAAGACTAAGATTCTCTTATAATTTAGG
CAGTGGTACATATAAGCTCACCACCATGAAGAAGGTGTCAGATGGACATTTTCACACTGTGATTGCCA GGAGAGCAGGAATGACTCTTGATGTTCAGCCAAATAGAGTTACAGTTGGAGGTATCAGATCTCTAGAA CCAATCCTTCAGAGAAGAGGACACGTGGAAAGCCATGATTTTGTTGGGTGTATAATGGAGTTTGCAGT CAATGGAAGGCCTCTGGAACCCAGCCAAGCTTTGGCAGCACAAGGCATCCTAGATCAGTATGGCGATT TTATTTCTTACTGTTTTAAAGAAAAAAAATGCAAAAAGTATGCTTCACTTGGCCTCCATCTCGGGAAG CATAGCTTGGCCTCCATCTCAAAAACAGATCCCTCAGTGAAGATTGGCTGCCGTGGCCCGAACATTTG TGCCAGCAACCCCTGCTGGGGTGATTTGCTGTGCATTAATCAGTGGTATGCCTACAGGTGTGTCCCTC CTGGGGACTGTGCCTCCCACCCGTGCCAGAATGGTGGCAGCTGTGAGCCAGGCCTGCACTCCGGCTTC ACCTGTAGCTGCCCAGACTCGCACACGGGAAGGACCTGTGAGATGGTGGTGGCCTGTCTTGGCGTCCT CTGTCCTCAGGGGAAGGTGTGCAAAGCTGGAAGTCCTGCGGGGCATGTCTGTGTTCTGAGTCAGGGCC CTGAAGAGATCTCTCTGCCTTTGTGGGCTGTGCCTGCCATCGTGGGCAGCTGCGCAACCGTCTTGGCC CTCCTGGTCCTTAGCCTGATCCTGTGTAACCAGTGCAGGGGGAAGAAGGCCAAAAATCCCAAAGAGGA GAAGAAACCGAAGGAGAAGAAGAAAAAGGGAAGTGAGAACGTTGCTTTTGATGACCCTGACAATATCC CTCCCTATGGGGATGACATGACTGTGAGGAAGCAGCCTGAAGGGAACCCAAAACCAGATATCATTGAA AGGGAAAACCCCTACCTTATCTATGATGAAACTGATATTCCTCACAACTCAGAAACCATCCCCAGCGC CCCTTTGGCATCTCCAGAGCAGGAGATAGAGCACTATGACATTGACAACGCCAGCAGCATCGCCCCTT CGGATGCAGACATCATTCAACACTACAAGCAGTTCCGCAGCCACACACCAAAATTTTCAATCCAGAGG CACAGTCCCCTAGGCTTTGCAAGGCAATCCCCCATGCCCTTAGGAGCAAGCAGTTTGACTTACCAGCC TTCATATGGTCAAGGTTTGAGAACCAGCTCCCTAAGCCACTCAGCATGCCCAACTCCCAACCCTCTGT CTCGACACAGTCCAGCCCCTTTCTCCAAATCTTCTACGTTCTATAGAAACAGCCCAGCAAGGGAATTG CATCTTCCTATAAGGGATGGTAATACTTTGGAAATGCATGGTGACACCTGCCAACCTGGCATTTTCAA CTATGCCACAAGGCTGGGAAGGAGAAGCAAGAGTCCTCAGGCCATGGCATCACATGGTTCTAGACCAG GGAGTCGCCTAAAGCAGCCGATTGGGCAGATTCCACTGGAATCTTCTCCTCCAGTCGGACTTTCTATT GAAGAAGTGGAGAGGCTCAACACACCTCGCCCTAGAAACCCAAGTATCTGCAGTGCAGACCATGGGAG GTCTTCTTCAGAGGAGGACTGCAGAAGGCCACTGTCTAGAACAAGGAATCCAGCGGATGGCATTCCAG CTCCAGAATCCTCTTCTGATAGTGACTCCCATGAATCTTTCACTTGCTCAGAAATGGAATATGACAGG GAGAAGCCAATGGTATATACTTCCAGAATGCCCAAATTATCTCAAGTCAATGAATCTGATGCAGATGA TGAAGATAATTATGGAGCCAGACTGAAGCCTCGAAGGTACCACGGTCGCAGGGCCGAGGGAGGACCTG TGGGC^^ GGGACTTTCAACTGGGACAACCTTTTGAACTGGGGCCCTGGCTTTGGCCATTATGTAGATGTTTTTAA jAGATTTGGCATCTCTTCCAGAAAAAGCAGCAGCAAATGAAGAAGGC-AAAGCTGGGACAACTAAACCAG TCCCCAAAGATGGGGAAGCAGAACAGTATGTGTGAAGTTTATGTACTGGCACTATAAAATATAAAAAC
AAGAAATAATACTCAAACCATTGTAAAGTTGCTGACTAGGTTGGGTCACATTTGAAAAACAGGCCAGT!
ATGGACTAGTGGTGGAGGGAAAACTTTAAAAATAATAACCACAATGCTGCTGAAACAGACTCACAACA
ACTCTTAATTTAAACATGTGTGGTTGAATTC
NOV57a, CG92813-01 SEQ ID NO: 1132 4961 aa MW at 543673.9kD Protein Sequence
MDLAPDRATGRP LPLHTLSVSQLLRVF LLSLLPGQAWVHGAEPRQVFQVLEEQPPGTLVGTIQTRP
GFTYRLSESHALFAINSSTGALYTTSTIDRESLPSDVINLWLSSAPTYPTEVRVLVRDLNDNAPVFP
DPSIWTFKEDSSSGRQVILDTATDSDIGSNGVDHRSYRIIRGNEAGRFRLDINLNPSGEGAFLHLVS
KGGLDREVTPQYQLLVEVEDKGEPKRRGYLQVNVTVQDINDNPPVFGSSHYQAGVPEDAWGSSVLQV
AA.ADADEGTNADIRYRLQDEGTPFQMDPETGLITVREPLDFEARRQYSLTVQAMDRGVPSLTGRAEAL
IQLLDVNDNDPWKFRYFPATSRYASVDENAQVGTWALLTVTDADSPAANGNISVQILGGNEQRHFE
VQSSKVPNLSLI----VASALDRERIPSYNLTVSVSDNYGAPPGAAVQARSSVASLVIFVNDINDHPPVFS
QQVYRVNLSEEAPPGSYVSGISATDGDSGLNANLRYSIVSGNGLGWFHISEHSGLVTTGSSGGLDREL
ASQIVLNISARDQGVHPKVSYAQLWTLLDVNDEKPVFSQPEGYDVSWENAPTGTELLMLRATDGDL
GDNGTVRFSLQE-AETDRRSFRLDPVSGRLSTISSLDREEQAFYSLLVLATDLGSPPQSSMARINVSLL
DINDNSPVFYPVQYFAHIKENEPGGSYITTVSATDPDLGTNGTVKYSISAGDRSRFQVNAQSGVISTR
MALDREE TAYQLQIVATDGGNLQSPNQAIVTITVLDTQDNPPVFSQVAYSFVVFENVALGYHVGSVS
AST-©L SNISYLITTGDQKGMFAINQVTGQL TANVID-REEQSFYQL-K-VVASGGTVTGDTMVNITVK
DLNDNSPHFLQAIESVNWENWQAGHSIFQAKAVDPDEGVNGMVLYSLKQNPKNLFAINEKNGTISLL
GPLDV-l- GSYQIEILASDMGVPQLSSSVILTVYVHDVMDNSPVFDQLSYEVTLSESEPVNSRFFKVQA
SDKDSGAM3GQLYIKSELDRELQDRYVLM ASDRAVEPLSATV--WW
FEEEQRAGSFVGKVSAVDKDFGPNGEVRYSFEMVQPDFELHAISGEITNTHQFDRESL RRRGTAVFS
FTVIATDQGIPQPL-raDQATVKVYMIODINDNAPKFLKDFYQATISESAANLTQVLRVSASDVDEGNNGL
IHYSIIKGNEERQFAIDSTSGQVTLIGKLDYEATPAYSLVIQAVDSGTIPLNSTCTLNIDILDENDNT
PSFL STLFVDVLENMRIGELVSSVTATDSDSGDNVDLYYSITGT NHGTFSISPNTGSIFLAKKLDF
ETQSLYKLNITAIO--QGRPPRSSTMSVVI----l-VRDF--sroNPPSFPPGDIFKSIVENIPIGTSVISVTAHDPD
ADINGQLSYTIIQQMPRGNHFTIDEVKGTIYTNAEIDREFANLFELTV---s^---TOQAVPIETRRYALKNVT
ILVTDL-tro-t^PMFISQNALAADPSAVIGSVLTTIMAADPDEGANGEIEYEIINGDTDTFIVDRYSGDL
RVASALVPSQLIYNLIVSATDLGPERRKSTTELTIILQGLDGPVFTQP YITILKEGEPIGTNVISIE
AASPRGSΞAPVEYYIVSVRCEEKTVGRLFTIGRHTGIIQTAAILDREQGACLYLVDVYAIEKSTAFPR
TQRAEVETTLQDINDNPPVFPTDMLDLTVEENIGDGSKIMQLTAMDADEVQ LSSHTLSLVGSLVAAI
LATDDDSGVNGEITYIVNEDDEDGIFFLNPITGVFNLTRLLDYEVQQYYILTVRAEDGGGQFTTIRVY
FNILDVNDNPPIFSLNSYSTSLMENLPVGSTVLVFNVTDADMMKAEIKMFFETSENKDTTYQNL DTF
KAVCRGKFIALNAHKRKQERSKIDTLTSQLKELE QΞQTHSKASRRQEITKIRAELKDIΞTQKTLQKI
NESRS FFERINKIDRPLARLIKKKTEKNQIDAIKNDKGDITIDPTEIQTTIREYCKHLYAN LENLE
EMDKFLDTYTLPRLNQEEVESLNRPITDSETVAIINSLPTKKSPGPDGFTAEFYQMITTPVFAQALYK
VEINENTLTGTDIIQVFAADGDEGTNGQVRYGIVNGNTNQEFRIDSVTGAITVAKPLDREKTPTYHLT
VQATDRGSTPRTDTSTVSIVLLDINDFVPVFELSPYSVNVPENLGTLPRTILQTASPCVRFASASKAY
FTTIPEDAPTGTDVLLVNASDADASKNAVISYRIIGGNSQFTINPSTGQIITSALLDRETKDNYTLW
VCSDAGSPEPLSSSTSVLVTVTDVHDNPPRFQHHPYVTHIPSPTLPGSFVFAVTVTDADIGPNSELHY
SLSGRNSEKFHIDPLRGAIMAAGPLNGASEVTFSVΗVi GGSFPKTDSTTVTVRFVNKADFPKV-----AKE
QTFMFPENQPVSSLVTTITGSSLRGEPMSYYIASGNLGNTFQIDQLTGQVSISQPLDFEKIQKYW I
EARDGGFPPFSSYE LDITVLDVNDNAPIF EDPFISEILENLSPRKILTVSA-MDKDSGPNGQLDYEI
VNG--MENSFSINHATGEIRSVRPLDRE--WSHYVLTIKSSDKGSPSQSTSV VMINILDENDNAPRFSQ
IFSAHVPENSPLGYTVTRVTTSDEDIGINAISRYSIiDASLPFTINPSTGDIVISRPLNREDTDRYRI
RVSAHDSG TVSTDVTIFVTDINDNAPRFSRTSYYLDCPELTEIGSKVTQVFATDPDEGSNGQVFYFI
KSQSEYFRINATTGEIFNKQILKYQNVTGFS--NlVNIN--mSFIVTSSDRGKPSLISETTVTINIVDSNDN
APQFL SKYFTPVTK---WKVGT---N IRVTAIDD---ΦFGLNSEVEYFIS-røNHLGKF--^
ISDLNQNFFITVTAKDKGNPPLSSQATVHITVTEENYHTPEFSQSHMSATIPESHSIGSIVRTVSARD
RDAAMNGLIKYSISSGNΞEGIFAINSSTGILTLAKALDYELCQKHEMTISAIDGGWVARTGYCSVTVN
VIDVNDNSPVFLSDDYFPTVLENAPSGTTVIHLNATDADSGTNAVIAYTVQSSDSDLFVIDPNTGVIT
TQGFLDFETKQSYHLTVKAF- tPDEERCSFATVNIQLKGTNEYVPRFVSKLYYFEISEAAPKGTIVGE
VFASD-RDLGTDGEVHYLIFGNSRKKGFQIN---Ε:TGQIYVSGILDRKKEERVSLK-VLAKNFGSIRGADID
EVTV-σVTVLDA-NDPPIFTLNIYSVQISEGVPIGTHVTFVSAFDSDSIPS SRFSYFIGSGNENGAFSI
NPQTGQITVTAELDRETLPIYNLSVLAVDSGTPSATGSASLLVTLEDINDNGPMLTVSEGEV-MENKRP GTLVMTLQSTDPDLPPNQGPFTYY^ PQMSSTGTVHITVIDQNDNPSQSRTVEIFVNYYGNLFPGGILGSVKPQDPDVLDSFHCSLTSGVTSLF
SIPGGTCDLNSQPRSTDGTFDLTVLSNDGVHSTVTSNIRVFFAGFSNATVDNSILLRLGVPTVKDFLT
NHYLHFLRIASSQLTGLGTAVQLYSAYEΞ---JNRTFLLAAVKEINHNQYVNPSGVATFFESIKEILLRQSG
VKVESVDHDSCVHGPCQNGGSCLRRLAVSSVLKSRESLPVIIVANEPLQPFLCKCLPGYAGSWCEIDI
DECLPSPCHSGGTCHNLVGGFSCSCPDGFTGRACERDINECLQSPCKNGAICQNFPGSFNCVCKTGYT
G TTFVLFSLRLG CVNLQSITVNATPALMVVPAKVVWILIIVIVHLVSLEHCELNSYGFEELSY EF
PSLDPNNNYIYVKFATIKSHALLLYNYDNQTGD--AEFLALEIAEERLRFSYNLGSGTYKLTTMKKVSD
GHFHTVIARAGiMAASLTVDSCSENQEPGYCTVSNVAVSDD TLDVQPNRVTVGGIRSLEPILQRRGH
VESHDFVGCIMEFAVNGRPLEPSQALAAQGILDQYGDFISYCF---SΕKKCKKVCFTVTPDTALSLEG GR
LDYH-MSQNEKREYLLRQSLRGA-MLEPFGVNSLEVKFRTRSENGVLIHIQΞSSNYTTVKGMCESSVNYC
ECNPCFNGGSCQSGVDSYYCHCPFGVFG-i CELNSYGFEELSYMEFPSLDPNNNYIYVKFATIKSHAL
LLYNYDNQTGDRAEFLALEIAEERLRFSYNLGSGTYKLTTMKKVSDGHFHTVIARRAG TLDVQPNRV
TVGGIRSLEPILQRRGHVESHDFVGCI-MEFAVNGRPLEPSQALAAQGILDQYGDFISYCF-KEKKCKKY
ASLGLHLGKHSLASISKTDPSVKIGCRGPNICASNPC GDLLCINQWYAYRCVPPGDCASHPCQNGGS
CEPGLHSGFTCSCPDSHTGRTCEMWACLGVLCPQGKVCKAGSPAGHVCVLSQGPEEISLPL AVPAI
VGSCATVLALLVLSLILCNQCRGK--K-AKNPKEEKK^
GNPKPDIIERENPYLIYDETDIPHNSETIPSAPLASPEQEIEHYDIDNASSIAPSDADIIQHYKQFRS
HTP FSIQRHSPLGFARQSP PLGASSLTYQPSYGQGLRTSSLSHSACPTPNPLSRHSPAPFSKSSTF
YRNSPARELHLPIRDGNTLEMHGDTCQPGIFNYATRLGRRSKSPQAMASHGSRPGSRLKQPIGQIPLE
SSPPVGLSIEEVERLNTPRPRNPSICSADHGRSSSEEDCRRPLSRTRNPADGIPAPESSSDSDSHESF
TCSEMEYDREKPMVYTSRMPKLSQVNESDADDEDNYGARLKPRRYHGRRAEGGPVGTQAAAPGTADNT
LPMKLGQQAGTFN DNLL-tWGPGFGHYVDVFKDLASLPEKAAANEEGKAGTTKPVPKDGEAEQYV
NOV57b, 260500971 SEQ ID NO: 1133 3729 bp DNA Sequence ORF Start: at 1 JORF Stop: end of sequence
GGTACCTATTTCACAACAATTCCTGAGGATGCACCAACTGGAACAGATGTTTTATTGGTAAATGCCTC AGATGCTGATGCTTCAAAGAATGCAGTTATAAGTTATAGGATCATCGGTGGAAACTCTCAGTTCACGA TCAACCCATCGACAGGACAAATCATCACCAGCGCATTGTTAGATAGGGAAACAAAAGATAATTATACT TTGGTAGTGGTCTGCAGTGATGCGGGATCCCCAGAGCCTCTTTCCAGTTCCACCAGTGTGCTTGTCAC TGTGACTGATGTCAATGACAATCCACCAAGATTTCAGCATCACCCATATGTCACTCACATCCCATCTC CTACTCTTCCAGGTTCCTTTGTCTTTGCGGTTACAGTCACAGATGCTAATATTGGACCAAATTCTGAA CTGCATTATTCTCTTTCGGGTAGAGATTCTGAAAAATTTCACATTGACCCACTGAGGGGAGCCATTAT GGCCGCCGGACCACTAAACGGAGCTTCAGAAGTGACATTTTCTGTGCATGTAAAAGATGGTGGCTCAT TTCCAAAGACAGATTCTACAACAGTGACTGTTAGATTCGTGAATAAGGCCGATTTCCCTAAAGTCAGA GCCAAAGAACAAACGTTCATGTTTCCTGAAAACCAACCAGTCAGCTCTCTTGTCACCACCATCACAGG ATCCTCTTTAAGAGGAGAACCTATGTCATATTATATCGCAAGTGGGAATCTTGGCAATACTTTCCAGA TTGATCAGTTAACAGGGCAGGTGTCTATTAGTCAACCTCTGGATTTTGAAAAGATACAAAAATATGTT GTATGGATAGAGGCCAGAGACGGTGGTTTCCCTCCTTTCTCCTCTTACGAGAAACTTGATATAACAGT ATTAGATGTCAATGATAATGCCCCAATTTTTAAGGAAGACCCATTTATATCTGAAATATTGGAAAACC TTTCCCCTCGAAAAATACTTACTGTTTCGGCAATGGACAAGGACAGTGGACCCAATGGACAGTTAGAT TATGAAATTGTTAATGGCAACATGGAAAATAGTTTCAGTATCAATCATGCTACTGGTGAAATTAGAAG CGTTAGACCTTTGGACAGGGAAAAAGTATCTCATTATGTCCTAACCATAAAATCATCAGACAAAGGGT CCCCGTCTCAGAGTACTTCAGTAAAAGTCATGATTAACATTTTAGATGAAAATGATAATGCCCCTAGG TTTTCTCAGATATTTAGTGCCCATGTTCCTGAAAATTCCCCCTTAGGATACACAGTTACCCGTGTCAC AACTTCTGATGAAGACATTGGGATCAATGCAATTAGTAGATATTCTATAATGGATGCAAGTCTTCCAT TTACAATTAATCCCAACACAGGGGATATTGTCATAAGCAGACCTTTAAATAGGGAAGATACAGACCGT TACAGAATTCGAGTTTCCGCACATGATTCTGGGTGGACTGTAAGTACAGATGTCACAATATTTGTGAC AGACATCAATGACAATGCTCCAAGATTTAGCAGAACTTCCTATTATTTAGATTGCCCTGAACTTACTG AGATTGGCTCCAAAGTAACTCAGGTATTTGCAACAGATCCTGATGAGGGATCAAATGGACAAGTGTTT TATTTCATAAAATCCCAATCAGAATATTTCAGGATTAATGCCACCACTGGAGAGATTTTCAATAAACA GATCTTAAAATACCAAAATGTCACTGGCTTCAGTAATGTGAATATCAACAGGCATAGTTTTATAGTGA CATCTTCAGATCGAGGTAAACCTTCCTTAATTAGTGAGACAACAGTTACCATCAATATAGTGGACAGT AATGACAATGCACCTCAATTTCTTAAAAGTAAATATTTCACTCCAGTCACCAAAAATGTTAAGGTTGG TACGAAGTTAATCAGAGTTACAGCAATAGATGACAAAGATTTTGGACTGAATTCAGAAGTGGAGTATT TCATTTCTAATGATAACCATTTAGGAAAATTTAAGTTGGACAATGATACGGGGTGGATTTCAGTAGCA TCCTCCCTGATTTCTGACTTGAACCAAAACTTTTTTATCACAGTCACTGCAAAGGATAAGGGAAACCC TCCACTTTCTTCCCAAGCAACTGTTCACATAACTGTCACTGAGGAAAACTACCATACACCTGAATTCT CTCAAAGCCACATGAGTGCAACCATCCCTGAGAGCCATAACATTGGGTCCATTGTCAGAACTGTTTCT GCAAGAGATAGAGATGCAGCGATGAATGGCTTGATTAAGTACAGCATTTCTTCAGGAAATGAAGAAGG CATTTTTGCAATCAATTCTTCTACAGGTATATTAACACTAGCCAAAGCTCTTGATTATGAGCTATGCC AGAAACACGAAATGACGATTAGTGCTATAGATGGAGGATGGGTTGCAAGAACTGGTTACTGCAGTGTG ACCGTAAATGTGATTGATGTGAATGATAATTCTCCAGTATTCCTCTCTGATGACTATTTCCCTACTGT TTTGGAAAATGCCCCAAGTGGAACAACAGTTATCCACCTAAATGCAACAGATGCTGACTCTGGAACAA ATGCTGTGATTGCGTATACTGTACAGTCATCTGACAGTGACCTCTTTGTCATTGACCCTAACACAGGA GTCATAACCACTCAAGGCTTCTTGGATTTTGAAACCAAGCAGAGCTACCATCTTACTGTGAAAGCCTT CAATGTCCCCGATGGGGAAAGGTGTAGCTTTGCCACTGTTAATATACAATTAAAAGGGACAAATGAAT ATGTGCCCCGTTTTGTTTCCAAACTTTACTATTTTGAAATCTCAGAAGCAGCTCCTAAAGGTACTATT GTTGGAGAAGTGTTTGCTAGCGACCGTGATTTGGGCACTGATGGGGAGGTACACTATTTGATTTTTGG TAATAGTCGAAAGAAGGGTTTCCAGATCAATAAGAAGACTGGACAGATTTATGTTTCTGGAATTCTTG ATCGAGAAAAAGAAGAAAGGGTGTCTTTGAAGGTATTGGCCAAGAACTTTGGCAGCATTAGAGGTGCA GATATAGATGAGGTCACTGTAAATGTCACCGTGCTTGATGCAAATGACCCACCCATTTTTACTCTAAA CATCTACAGTGTGCAGATCAGTGAAGGGGTCCCAATAGGAACTCATGTGACCTTTGTCAGTGCCTTTG ACTCAGACTCCATCCCCAGCTGGAGCAGGTTTTCTTACTTCATCGGATCAGGGAATGAAAATGGTGCC TTTTCTATTAATCCGCAGACAGGACAGATCACCGTTACTGCAGAATTAGATCGAGAAACCCTTCCCAT
CTATAATCTCTCAGTTTTGGCTGTTGATTCAGGGACCCCCTCAGCTACAGGTAGTGCCTCTTTATTAG TCACCCTGGAAGATATAAATGATAACGGGCCCATGCTGACCGTCAGTGAAGGAGAAGTCATGGAAAAC AAACGGCCAGACACTTTGGTGATGACCCTTCAGTCCACTGACCCTGATCTCCCTCCAAATCAAGGTCC CTTTACTTATTACTTGCTGAGCACGGGTCCTGCCACCAGTTATTTCAGTCTGAGCACTGCTGGAGTTC TGAGCACAACCAGAGAGATTGACAGAGAGCAGATTGCAGACTTCTATCTGTCTGTGGTTACCAAGGAT TCTGGTGTTCCTCAAATGTCTTCCACAGGAACTGTGCATATCACAGTTATACTCGAG
NOV57b, 260500971 SEQ ID NO: 1134 1243 aa MW at 135643.5kD Protein Sequence
GTYFTTIPEDAPTGTDVLLVNASDADASKNAVISYRIIGGNSQFTINPSTGQIITSALLDRETKDNYT
LVVVCSDAGSPEPLSSSTSVLVTVTDVNDNPPRFQHHPYVTHIPSPTLPGSFVFAVTVTDANIGPNSE
LHYSLSGRDSEKFHIDPLRGAI-^^AGPLNGASEVTFSVHVKDGGSFPKTDSTTVTVRFVNKADFPKVR
AKEQTF FPENQPVSSLVTTITGSSLRGEPMSYYIASGNLGNTFQIDQLTGQVSISQPLDFEKIQKYV
VWIE-ARDGGFPPFSSYE---siDITVLDViroNAPIFKEDPFISEILENLSPRKILTVSAMD DSGPNGQLD
YEIVNGNMENSFSIN-1- TGEIRSVRPLDREKVSHYVLTIKSSDKGSPSQSTSV-V INILDENDNAPR
FSQIFSAHVPENSPLGYTVTRVTTSDEDIGINAISRYSIMDASLPFTINPNTGDIVISRPLNREDTDR
YRIRVSAHDSG TVSTDVTIFVTDINDNAPRFSRTSYYLDCPELTEIGS VTQVFATDPDEGSNGQVF
YFIKSQSEYFRINATTGEIFNKQIL. "Q---WTGFS---WNINRHSFIVTSSDRGKPSLISETTVTINIVDS
ΪTONAPQFLKS- TTPVTK--WKVGTKLIRVTAIDDKDFGLNSEV^^
SSLISDLNQNFFITVTAKDKGNPPLSSQATVHITVTEENYHTPEFSQSHMSATIPESHNIGSIVRTVS
ARDRDAANGLI--CTSISSGNEEGIFAINSSTGILTLAKALDYELCQKHEMTISAIDGG VARTGYCSV
TVNVIDVNDNSPVFLSDDYFPTVLENAPSGTTVIHLNATDADSGTNAVIAYTVQSSDSDLFVIDPNTG
VITTQGFLDFETKQSYHLTVKAFNVPDGERCSFATVNIQLKGTNEYVPRFVSKLYYFEISEAAPKGTI
VGEVFASDRDLGTDGEVHYLIFGNSRKKGFQINKKTGQIYVSGILDREKEERVSLKVLAKNFGSIRGA
DIDEVTVNVTVLDANDPPIFTLNIYSVQISEGVPIGTHVTFVSAFDSDSIPS SRFSYFIGSGNENGA
FSINPQTGQITVTAELDRETLPIYNLSVLAVDSGTPSATGSASLLVTLEDINDNGPMLTVSEGEVMEN
KRPDTLVMTLQSTDPDLPPNQGPFTYYLLSTGPATSYFSLSTAGVLSTTREIDREQIADFYLSWTKD
SGVPQMSSTGTVHITVILE
NOV57c, 260500961 SEQ ID NO: 1135 3729 bp DNA Sequence ORF Start: at 1 ORF Stop: end of sequence
GGTACCTATTTCACAACAATTCCTGAGGATGCACCAACTGGAACAGATGTTTTATTGGTAAATGCCTC AGATGCTGATGCTTCAAAGAATGCAGTTATAAGTTATAGGATCATCGGTGGAAACTCTCAGTTCACGA TCAACCCATCGACAGGACAAATCATCACCAGCGCATTGTTAGATAGGGAAACAAAAGATAATTATGCT TTGGTAGTGGTCTGCAGTGATGCGGGATCCCCAGAGCCTCTTTCCAGTTCCACCAGTGTGCTTGTCAC TGTGACTGATGTCAATGACAATCCACCAAGATTTCAGCATCACCCATATGTCACTCACATCCCATCTC CTACTCTTCCAGGTTCCTTTGTCTTTGCGGTTACAGTCACAGATGCTGATATTGGACCAAATTCTGAA CTGCATTATTCTCTTTCGGGTAGAAATTCTGAAAAATTTCACATTGACCCACTGAGGGGAGCCATTAT GGCCGCCGGACCACTAAACGGAGCTTCAGAAGTGACATTTTCTGTGCATGTAAAAGATGGTGGCTCAT TTCCAAAGACAGATTCTACAACAGTGACTGTTAGATTCGTGAATAAGGCCGATTTCCCTAAAGTCAGA GCCAAAGAACAAACGTTCATGTTTCCTGAAAACCAACCAGTCAGCTCTCTTGTCACCACCATCACAGG ATCCTCTTTAAGAGGAGAACCTATGTCATATTATATCGCAAGTGGGAATCTTGGCAATACTTTCCAGA TTGATCAGTTAACAGGGCAGGTGTCTATTAGTCAACCTCTGGATTTTGAAAAGATACAAAAATATGTT GTATGGATAGAGGCCAGAGACGGTGGTTTCCCTCCTTTCTCCTCTTACGAGAAACTTGGTATAACAGT ATTAGATGTCAATGATAATGCCCCAATTTTTAAGGAAGACCCATTTATATCTGAAATATTGGAAAACC TTTCCCCTCGAAAAATACTTACTGTTTCGGCAATGGACAAGGACAGTGGACCCAATGGACAGTTAGAT TATGAAATTGTTAATGGCAACATGGAAAATAGTTTCAGTATCAATCATGCTACTGGTGAAATTAGAAG CGTTAGACCTTTGGACAGGGAAAAAGTATCTCATTATGTCCTAACCATAAAATCATCAGACAAAGGGT CCCCGTCTCAGAGTACTTCAGTAAAAGTCATGATTAACATTTTAGATGAAAATGATAATGCCCCTAGG TTTTCTCAGATATTTAGTGCCCATGTTCCTGAAAATTCCCCCTTAGGATACACAGTTACCCGTGTCAC AACTTCTGATGAAGACATTGGGATCAATGCAATTAGTAGATATTCTATAATGGATGCAAGTCTTCCAT TTACAATTAATCCCAGCACAGGGGATATTGTCATAAGCAGACCTTTAAATAGGGAAGATACAGACCGT TACAGAATTCGAGTTTCCGCACATGATTCTGGGTGGACTGTAAGTACAGATGTCACAATATTTGTGAC AGACATCAATGACAATGCTCCAAGATTTAGCAGAACTTCCTATTATTTAGATTGCCCTGAACTTACTG AGATTGGCTCCAAAGTAACTCAGGTATTTGCAACAGATCCTGATGAGGGATCAAATGGACAAGTGTTT TATTTCATAAAATCCCAATCAGAATATTTCAGGATTAATGCCACCACTGGAGAGATTTTCAATAAACA GATCTTAAAATACCAAAATGTCACTGGCTTCAGTAATGTGAATATCAACAGGCATAGTTTTATAGTGA CATCTTCAGATCGAGGTAAACCTTCCTTAATTAGTGAGACAACAGTTACCATCAATATAGTGGACAGT AATGACAATGCACCTCAATTTCTTAAAAGTAAATATTTCACTCCAGTCACCAAAAATGTTAAGGTTGG TACGAAGTTAATCAGAGTTACAGCAATAGATGACAAAGATTTTGGACTGAATTCAGAAGTGGAGTATT TCATTTCTAATGATAACCATTTAGGAAAATTTAAGTTGGACAATGATACGGGGTGGATTTCAGTAGCA CCCTCCCTGATTTCTGACTTGAACCAAAACTTTTTTATCACAGTCACTGCAAAGGATAAGGGAAACCC TCCACTTTCTTCCCAAGCAACTGTTCACATAACTGTCGCTGAGGAAAACTACCATACACCTGAATTCT CTCAAAGCCGCATGAGTGCAACCATCCCTGAGAGCCATAGCATTGGGTCCATTGTCAGAACTGTTTCT GCAAGAGATAGAGATGCAGCGATGAATGGCTTGATTAAGTACAGCATTTCTTCAGGAAATGAAGAAGG CATTTTTGCAATCAATTCTTCTACAGGTATATTAACACTAGCCAAAGCTCTTGATTATGAGCTATGCC AGAAACACGAAATGACGATTAGTGCTATAGATGGAGGATGGGTTGCAAGAACTGGTTACTGCAGTGTG ACCGTAAATGTGATTGATGTGAATGATAATTCTCCAGTATTCCTCTCTGATGACTATTTCCCTACTGT TTTGGAAAATGCCCCAAGTGGAACAACAGTTATCCACCTAAATGCAACAGATGCTGACTCTGGAACAA ATGCTGTGATTGCGTATACTGTACAGTCATCTGACAGTGACCTCTTTGTCATTGACCCTAACACAGGA GTCATAACCACTCAAGGCTTCTTGGATTTTGAAACCAAGCAGAGCTACCATCTTACTGTGAAAGCCTT CAATGTCCCCGATGAGGAAAGGTGTAGCTTTGCCACTGTTAATATACAATTAAAAGGGACAAATGAAT ATGTGCCCCGTTTTGTTTCCAAACTTTACTATTTTGAAATCTCAGAAGCAGCTCCTAAAGGTACTATT GTTGGAGAAGTGTTTGCTAGCGACCGTGATTTGGGCACTGATGGGGAGGTACACTATTTGATTTTTGG TAATAGTCGAAAGGAGGGTTTCCAGATCAATAAGAAGACTGGACAGATTTATGTTTCTGGAATTCTTG ATCGAGAAAAAGAAGAAAGGGTGTCTTTGAAGGTATTGGCCAAGAACTTTGGCAGCATTAGAGGTGCA GATATAGATGAGGTCACTGTAAATGTCACCGTGCTTGATGCAAATGACCCACCCATTTTTACTCTAAA CATCTACAGTGTGCAGATCAGTGAAGGGGTCCCAATAGGAACTCATGTGACCTTTGTCAGTGCCTTTG ACTCAGACTCCATCCCCAGCTGGAGCAGGTTTTCTTACTTCATCGGATCAGGGAATGAAAATGGTGCC TTTTCTATTAATCCGCAGACAGGACAGATCACCGTTACTGCAGAATTAGATCGAGAAACCCTTCCCAT
CTATAATCTCTCAGTTTTGGCTGTTGATTCAGGGACCCCCTCAGCTACAGGTAGTGCCTCTTTATTAG TCACCCTGGAAGATATAAATGATAACGGGCCCATGCTGACTGTCAGTGAAGGAGAAGTCATGGAAAAC AAACGGCCAGGCACTTTGGTGATGACCCTTCAGTCCACTGACCCTGATCTCCCTCCAAATCAAGGTCC CTTTACTTATTACTTGCTGAGCACAGGTCCTGCCACCAGTTATTTCAGTCTGAGCACTGCTGGAGTTC TGAGCACAACCAGAGAGATTGACAGAGAGCAGATTGCAGACTTCTATCTGTCTGTGGTTACCAAGGAT TCTGGTGCTCCTCAAATGTCTTCCACAGGAACTGTGCATATCACAGTTATACTCGAG
NOV57c, 260500961 SEQ ID NO: 1136 1243 aa MW at l35487.4kD Protein Sequence
GTYFTTIPEDAPTGTDVLLVNASDADASKNAVISYRIIGGNSQFTINPSTGQIITSALLDRETKDNYA
LVVVCSDAGSPEPLSSSTSVLVTVTDVNDNPPRFQHHPYVTHIPSPTLPGSFVFAVTVTDADIGPNSE
LHYSLSG----NSEKFHIDPLRGAIMAAGPLNGASEVTFSVI--V--π-)GGSFPKTDST
AKEQTFMFPENQPVSSLVTTITGSSLRGEPMSYYIASGNLGNTFQIDQLTGQVSISQPLDFEKIQKYV
VWIEA---^GGFPPFSSYΞ---α--,GITVLDVNDNAPIF-^DPFISEILENLSPRKILTVSAMDKDSGPNGQLD
YEIVNGNMENSFSIN-- TGΞIRSVRPLDRE---WSHYVLTIKSSDKGSPSQSTSV--W INILDENDNAPR
FSQIFSAHVPENSPLGYTVTRVTTSDEDIGINAISRYSIMDASLPFTINPSTGDIVISRPLNREDTDR
YRIRVSAHDSGWTVSTDVTIFVTDINDNAPRFSRTSYYLDCPΞLTEIGSKVTQVFATDPDEGSNGQVF
YFIKSQSEYFRINATTGEIFN QILKYQNVTGFSNVNINRHSFIVTSSDRGKPSLISETTVTINIVDS
:--roNAPQFLKSKYFTPVTK---WKVGT--ai^
PSLISDLNQNFFITVTAKDKGNPPLSSQATVHITVAEENYHTPEFSQSRMSATIPESHSIGSIVRTVS
ARDRDA -^-NGLI-l-^SISSGNEEGIFAINSSTGILTLAKALDYΞLCQ--π^EMTISAIDGGWVARTGYCSV
TVNVIDVNDNSPVFLSDDYFPTVLENAPSGTTVIHLNATDADSGTNAVIAYTVQSSDSDLFVIDPNTG
VITTQGFLDFETKQSYHLTVKAFNVPDEERCSFATVNIQLKGTNEYVPRFVSKLYYFEISEAAPKGTI
VGEVFASDRDLGTDGEVHYLIFGNSRKEGFQINKKTGQIYVSGILDREKEERVSLKVLAK-NFGSIRGA
DIDEVTVNVTVLDANDPPIFTLNIYSVQISEGVPIGTHVTFVSAFDSDSIPS SRFSYFIGSGNENGA
FSINPQTGQITVTAELDRETLPIYNLSVLAVDSGTPSATGSASLLVTLEDINDNGPMLTVSEGEVMEN KRPGTLVMTLQSTDPDLPPNQGPFTYYLLSTGPATSYFSLSTAGVLSTTREIDREQIADFYLSWTKD SGAPQMSSTGTVHITVILE
NOV57d, 258076331 SEQ ID NO: 1137 1392 bp DNA Sequence ORF Start: at 1 JORF Stop: end of sequence
GGTACCTTTGCCACGATTAAAAGTCATGCCTTATTGCTTTACAACTATGACAACCAGACAGGCGACCG GGCTGAGTTTTTGGCCCTTGAAATTGCCGAAGAAAGACTAAGATTCTCTTATAATTTAGGCAGTGGTA CATATAAGCTCACCACCATGAAGAAGGTGTCAGATGGACATTTTCACACTGTGATTGCCAGGAGAGCA GGAATGGCAGCCTCCTTAACTGTGGACTCCTGTTCTGAGAACCAAGAGCCAGGATATTGTACTGTCAG TAATGTGGCAGTTTCAGATGACTGGACTCTTGATGTTCAGCCAAATAGAGTTACAGTTGGAGGTATCA GATCTCTAGAACCAATCCTTCAGAGAAGAGGACACGTGGAAAGCCATGATTTTGTTGGGTGTATAATG GAGTTTGCAGTCAATGGAAGGCCTCTGGAACCCAGCCAAGCTTTGGCAGCACAAGGCATCCTAGATCA ATGCCCTAGGCTGGAAGGCGCTTGTACTCGCAGCCCATGCCAACATGGTGGCACATGTATGGATTACT GGTCATGGCAGCAGTGTCATTGCAAAGAGGGACTCACTGGGAAATACTGTGAAAAATCTGTTACTCCT GACACTGCCTTATCATTAGAAGGCAAAGGGCGCTTGGACTACCACATGAGTCAGAATGAGAAGCGGGA ATATTTGTTAAGGCAAAGCTTACGAGGTGCCATGTTGGAGCCTTTTGGTGTGAACAGTCTGGAAGTAA AATTTAGGACCAGAAGCGAGAATGGCGTTTTAATCCATATCCAAGAAAGCAGCAATTACACTACTGTG AAGATTAAGAATGGCAAAGTATATTTTACATCCGATGCAGGAATTGCTGGGAAAGTGGAGAGAAATAT TCCTGAAGTATATGTTGCAGACGGCCACTGGCACACTTTTCTAATTGGGAAAAATGGAACAGCAACAG TATTGTCTGTTGACAGAATATATAACAGAGATATTATCCACCCTACTCAGGACTTCGGTGGCCTTGAT GTGCTTACTATATCACTTGGAGGAATTCCACCCAATCAAGCACATCGAGATGCCCAAACAGGTTTTGA TGGCTGCATTGCTTCTATGTGGTATGGTGGAGAAAGTCTTCCTTTCAGCGGGAAGCATAGCTTGGCCT CCATCTCAAAAACAGATCCCTCAGTGAAGATTGGCTGCCGTGGCCCGAACATTTGTGCCAGCAACCCC TGCTGGGGTGATTTGCTGTGCATTAATCAGTGGTATGCCTACAGGTGTGTCCCTCCTGGGGACTGTGC CTCCCACCCGTGCCAGAATGGTGGCAGCTGTGAGCCAGGCCTGCACTCCGGCTTCACCTGTAGCTGCC CAGACTCGCACACGGGAAGGACCTGTCTCGAG
NOV57d, 258076331 SEQ ID NO: 1138 464 aa MW at 50818.7kD Protein Sequence
GTFATIKSHALLLYNYDNQTGDRAEFLALEIAEERLRFSYNLGSGTYKLTTMKKVSDGHFHTVIARRA GMAASLTVDSCSENQEPGYCTVS- tAVSDD TLDVQP-tTOVTVGGIRSLEPILQRRGHVESITOFVGCIM EFAVNGRPLEPSQALAAQGILDQCPRLEGACTRSPCQHGGTCMDY S QQCHCKEGLTGKYCΞKSVTP DTALSLEGKGRLDYHMSQNEKREYLLRQSLRGAMLEPFGVNSLEVKFRTRSENGVLIHIQESSNYTTV KI---a.G--- -^FTSDAGIAGKVERNIPEVYV-ADGHWHTFLIG-NGTATVLSVDRIYNRDIIHPTQDFGGLD VLTISLGGIPPNQAHRDAQTGFDGCIASMWYGGESLPFSGKHSLASISKTDPSVKIGCRGPNICASNP CWGDLLCINQ YAYRCVPPGDCASHPCQNGGSCEPGLHSGFTCSCPDSHTGRTCLE
NOV57e, 258076349 SEQ ID NO: 1139 1403 bp DNA Sequence ORF Start: at 1 iORF Stop: at 1402
GGTACCTTTGCCACGATTAAAAGTCATGCCTTATTGCTTTACAACTATGACAACCAGACAGGCGACCG GGCTGAGTTTTTGGCCCTTGAAATTGCCGAAGAAAGACTAAGATTCTCTTATAATTTAGGCAGTGGTA CATATAAGCTCACCACCATGAAGAAGGTGTCAGATGGACATTTTCACACTGTGATTGCCAGGAGAGCA GGAATGGCAGCCTCCTTAACTGTGGACTCCTGTTCTGAGAACCAAGAGCCAGGATATTGTACTGTCAG TAATGTGGCAGTTTCAGATGACTGGACTCTTGATGTTCAGCCAAATAGAGTTACAGTTGGAGGTATCA GATCTCTAGAACCAATCCTTCAGAGAAGAGGACACGTGGAAAGCCATGATTTTGTTGGGTGTATAATG GAGTTTGCAGTCAATGGAAGGCCTCTGGAACCCAGCCAAGCTTTGGCAGCACAAGGCATCCTAGATCA ATGCCCTAGGCTGGAAGGCGCTTGTACTCGCAGCCCATGCCAACATGGTGGCACATGTATGGATTACT GGTCATGGCAGCAGTGTCATTGCAAAGAGGGACTCACTGGGAAATACTGTGAAAAATCTGTTACTCCT GACACTGCCTTATCATTAGAAGGCAAAGGGCGCTTGGACTACCACATGAGTCAGAATGAGAAGCGGGA ATATTTGTTAAGGCAAAGCTTACGAGGTGCCATGTTGGAGCCTTTTGGTGTGAACAGTCTGGAAGTAA AATTTAGGACCAGAAGCGAGAATGGCGTTTTAATCCATATCCAAGAAAGCAGCAATTACACTACTGTG AAGATTAAGAATGGCAAAGTATATTTTACATCCGATGCAGGAATTGCTGGGAAAGTGGAGAGAAATAT TCCTGAAGTATATGTTGCAGACGGCCACTGGCACACTTTTCTAATTGGGAAAAATGGAACAGCAACAG TATTGTCTGTTGACAGAATATATAACAGAGATATTATCCACCCTACTCAGTACTTCGGTGGCCTTGAT GTGCTTACTATATCACTTGGAGGAATTCCACCCAATCAAGCACATCGAGATGCCCAAACAGCAGGTTT TGATGGCTGCATTGCTTCTATGTGGTATGGTGGAGAAAGTCTTCCTTTCAGCGGGAAGCATAGCTTGG CCTCCATCTCAAAAACAGATCCCTCAGTGAAGATTGGCTGCCGTGGCCCGAACATTTGTGCCAGCAAC CCCTGCTGGGGTGATTTGCTGTGCATTAATCAGTGGTATGCCTACAGGTGTGTCCCTCCTGGGGACTG TGCCTCCCACCCGTGCCAGAATGGTGGCAGCTGTGAGCCAGGCCTGCACTCCGGCTTCACCTGTAGCT GCCCAGACTCGCA^^^ NOV57e, 258076349 SEQ ID NO: 1140 467 aa MW at 51123.1kD Protein Sequence
GTFATIKS--- LLLYN--TDNQTGDR-AEFL-ALEI-AEERLRFSYNLGSGTYKLTTMKKVSDGHFHTVIAR-l- GMAASLTVDSCSENQEPGYCTVSNVAVSDD TLDVQP-l^ RVTVGGIRSLEPILQRRGHVESHDFVGCIM EFAVNGRPLEPSQALAAQGILDQCPRLEGACTRSPCQHGGTCMDY S QQCHCKEGLTGKYCEKSVTP DTALSLEGKGRLDYH SQNEKREYLLRQSLRGA-MLEPFGVNSLEVKFRTRSENGVLIHIQESSNYTTV KIKNG VΥFTSDAGIAGK-VΕRNIPEVYVADGH HTFLIG-røGTATVLSVDRIYNRDIIHPTQYFGGLD VLTISLGGIPPNQAHRDAQTAGFDGCIASM YGGESLPFSGKHSLASISKTDPSVKIGCRGPNICASN PC GDLLCINQ YAYRCVPPGDCASHPCQNGGSCEPGLHSGFTCSCPDSHTGRTCLEKG
NOV57f, CG92813-02 SEQ ID NO: 1141 14943 bp DNA Sequence ORF Start: at 2 ORF Stop: TGA at 14741
GTTCCAAGTGCTGGAAGAGCAACCTCCAGGCACTCTGGTAGGCACCATCCAGACGCGCCCCGGCTTCA CCTACAGGCTCAGCGAAAGCCACGCCCTGTTTGCCATAAACAGTAGCACCGGAGCCCTGTACACCACC TCCACCATCGACCGCGAGAGCCTGCCCAGCGACGTGATCAACCTGGTGGTCCTTTCCAGCGCGCCCAC CTACCCCACCGAAGTGCGAGTGCTGGTGCGGGACCTCAATGACAACGCCCCCGTTTTCCCGGACCCCT CTATCGTGGTCACTTTCAAGGAAGACAGTAGCAGCGGACGCCAAGTCATCTTAGACACCGCCACCGAC TCGGACATCGGCTCAAACGGTGTGGACCACCGCTCCTACCGCATCATCCGCGGCAATGAGGCGGGGCG CTTCCGTCTGGACATCAACCTGAACCCGAGCGGCGAGGGAGCGTTCCTGCATCTGGTGTCCAAGGGCG GACTGGACCGTGAGGTCACTCCGCAGTACCAGCTCCTGGTTGAGGTGGAGGACAAGGGTGAGCCTAAG CGGCGGGGCTACCTTCAGGTAAACGTGACTGTGCAAGACATTAATGACAACCCCCCGGTTTTTGGCAG TTCTCACTACCAGGCGGGGGTGCCTGAGGACGCGGTTGTGGGTTCCAGCGTCCTCCAGGTGGCGGCGG CGGACGCGGACGAGGGCACCAACGCGGACATCCGCTATCGCCTGCAGGACGAGGGGACCCCCTTCCAA ATGGACCCTGAGACGGGACTTATCACGGTGCGGGAGCCCCTGGACTTCGAAGCTCGGCGCCAATACTC GCTTACGGTGCAGGCGATGGACAGAGGCGTGCCTTCCCTCACTGGGCGCGCCGAGGCGCTGATTCAGC TGCTGGACGTGAATGACAATGACCCGGTAGTGAAGTTCCGCTACTTCCCGGCCACCTCGCGCTACGCC TCGGTAGATGAGAATGCTCAAGTGGGCACCGTGGTGGCTCTGCTCACCGTGACGGACGCAGATTCTCC CGCGGCCAACGGGAACATCTCCGTGCAAATTCTCGGGGGCAATGAGCAGCGCCACTTTGAAGTGCAAA GCAGCAAAGTGCCGAACCTGAGCCTAATCAAGGTGGCCAGCGCCTTGGACCGCGAGCGCATCCCTTCC TACAACCTCACAGTTTCCGTCTCTGATAACTACGGGGCGCCCCCTGGCGCAGCAGTCCAGGCGCGCTC TTCTGTGGCAAGCCTGGTGATTTTTGTTAATGACATCAATGACCATCCTCCTGTCTTTTCACAGCAAG TGTACAGAGTGAACCTGAGCGAGGAGGCGCCTCCGGGAAGCTATGTGAGTGGGATATCTGCCACTGAT GGCGACTCTGGTCTCAATGCTAATCTGCGTTACAGCATTGTCTCTGGCAATGGACTGGGATGGTTCCA TATCAGTGAACATAGCGGCCTCGTGACCACTGGGTCCTCTGGGGGCCTGGACCGTGAACTTGCTTCCC AGATTGTTCTGAATATAAGTGCCCGGGACCAGGGAGTTCACCCCAAGGTGTCCTATGCCCAGCTTGTA GTAACTCTCCTAGATGTGAATGATGAAAAGCCAGTATTTAGCCAGCCAGAAGGGTATGATGTGTCTGT GGTTGAGAATGCCCCAACAGGGACAGAACTGTTGATGCTCAGGGCAACTGACGGGGACCTGGGTGACA ACGGAACAGTGCGCTTCTCCTTACAAGAGGCAGAGACTGACCGGAGGTCCTTCCGTCTGGATCCTGTG TCTGGGAGGTTGAGTACTATTTCCTCCTTGGACAGAGAAGAGCAAGCCTTCTACTCCCTGTTGGTTCT GGCCACAGATCTGGGCTCCCCTCCCCAGTCATCAATGGCTCGCATAAATGTGAGTCTTCTGGATATAA ATGATAACAGCCCTGTCTTCTACCCGGTCCAATACTTTGCTCACATTAAGGAGAATGAGCCTGGAGGT AGCTACATCACCACTGTGTCTGCCACTGACCCAGACTTGGGTACCAATGGTACTGTCAAATATAGCAT ATCTGCTGGGGACAGGTCTCGGTTTCAGGTCAATGCTCAGAGTGGGGTTATTTCTACAAGAATGGCCC TAGACAGAGAAGAAAAAACAGCTTATCAGTTGCAAATAGTAGCTACTGATGGTGGCAATTTACAATCT CCCAACCAGGCAATAGTAACCATCACTGTATTGGACACTCAAGACAACCCACCTGTATTCAGTCAGGT TGCCTACAGCTTTGTGGTTTTTGAGAACGTGGCGCTGGGATATCATGTGGGTAGTGTGTCTGCATCCA CCATGGATCTCAATTCCAACATCAGTTATCTCATTACTACTGGGGATCAGAAAGGTATGTTTGCTATC AACCAGGTCACTGGGCAGCTTACCACAGCAAATGTGATTGATAGAGAAGAGCAATCCTTTTATCAGCT GAAGGTAGTGGCCAGTGGGGGCACAGTGACTGGAGACACTATGGTTAACATAACAGTTAAGGATTTGA ATGACAACTCTCCCCATTTCCTTCAGGCAATAGAGAGTGTAAATGTGGTGGAGAATTGGCAGGCAGGT CACAGCATTTTCCAGGCCAAAGCTGTGGACCCTGATGAAGGTGTCAATGGCATGGTACTCTATAGTCT GAAGCAAAACCCCAAGAACCTGTTTGCTATCAATGAAAAGAATGGCACTATTAGTCTGCTTGGGCCCC TGGATGTTCATGCTGGCTCCTACCAAATAGAGATCTTGGCATCTGACATGGGTGTCCCACAGCTCTCC TCTAGTGTCATCCTAACAGTTTATGTCCATGATGTAAATGACAATTCACCAGTGTTTGACCAACTCTC TTATGAAGTCACCCTTTCTGAGTCAGAACCTGTGAATTCTCGATTCTTTAAAGTACAAGCTTCTGATA AGGATTCAGGAGCAAATGATGGTCAATTGTATATAAAAAGTGAACTGGACCGTGAACTTCAAGACAGA TATGTTTTAATGGTTGTTGCTTCTGACAGAGCAGTGGAACCCCTTAGTGCTACTGTGAATGTTACTGT AATTTTAGAAGATGTAAATGATAACAGACCTCTTTTTAACAGTACCAATTACACATTTTACTTCGAAG AAGAGCAGAGGGCTGGGTCGTTTGTGGGCAAAGTAAGTGCTGTAGATAAAGACTTTGGGCCAAATGGA GAAGTAAGGTATTCTTTTGAAATGGTGCAGCCAGATTTTGAGTTGCATGCCATCAGTGGGGAAATTAC AAATACTCATCAGTTTGACAGGGAGTCTCTTATGAGGCGGAGAGGGACTGCTGTGTTTAGCTTTACAG
TCATAGCAACAGATCAGGGGATCCCTCAGCCTCTCAAGGATCAGGCCACTGTACATGTTTACATGAAG GATATAAATGATAATGCTCCCAAATTTTTAAAAGACTTTTACCAAGCTACAATATCAGAATCAGCAGC CAATCTGACACAAGTGTTAAGAGTATCTGCCTCAGATGTTGATGAAGGTAATAATGGACTTATTCACT ATTCTATAATAAAAGGAAATGAAGAAAGACAGTTTGCTATAGACAGTACCTCTGGTCAGGTAACACTA ATTGGCAAATTAGACTATGAAGCAACACCTGCCTATTCCCTTGTAATTCAAGCAGTGGATTCAGGGAC AATCCCCCTCAATTCAACGTGTACTTTAAATATTGATATTTTAGATGAAAATGACAATACCCCTTCTT TCCTTAAATCAACACTGTTTGTTGATGTTTTGGAAAACATGAGAATTGGTGAACTCGTGTCCTCTGTT ACTGCAACTGATTCCGATTCAGGTGACAATGTTGATTTATATTACAGTATTACTGGGACTAACAACCA CGGAACTTTTAGCATTAGCCCAAACACTGGGAGTATTTTTCTTGCCAAAAAACTGGACTTTGAAACAC AGTCTTTGTATAAATTAAATATAACAGCAAAAGACCAAGGAAGACCTCCTCGTTCATCTACAATGTCA GTGGTTATTCACGTGAGGGACTTTAATGACAATCCTCCTAGCTTTCCTCCTGGAGATATTTTCAAGTC TATTGTTGAGAACATTCCCATTGGTACATCTGTCATTTCAGTGACTGCACATGACCCTGATGCAGACA TTAATGGTCAACTATCCTACACAATCATTCAACAGATGCCAAGAGGCAACCACTTTACCATAGATGAA GTCAAAGGGACTATATATACTAATGCTGAAATAGATCGGGAATTTGCTAATCTCTTTGAGTTGACTGT AAAAGCCAATGATCAAGCTGTGCCAATAGAAACTAGACGGTATGCTTTGAAGAACGTGACCATTTTGG TTACAGACCTCAATGACAATGTCCCAATGTTTATATCACAAAACGCCCTTGCTGCAGACCCATCAGCT GTGATTGGTTCCGTTCTGACAACAATTATGGCTGCTGACCCAGATGAAGGTGCTAATGGAGAAATAGA GTATGAGATCATCAATGGGGACACAGACACCTTCATTGTTGATCGTTATAGTGGAGACCTGAGAGTGG CTTCAGCGTTGGTGCCTTCACAGTTGATCTACAATCTCATAGTTTCAGCAACAGACCTTGGGCCTGAA AGGAGGAAATCGACCACTGAATTGACCATCATTCTTCAGGGCCTTGATGGACCTGTTTTTACTCAACC CAAATATATAACTATTTTGAAGGAAGGAGAACCCATTGGCACAAACGTGATATCAATAGAAGCAGCTA GCCCCAGAGGATCTGAGGCCCCAGTGGAGTATTATATTGTTTCAGTTCGTTGTGAAGAAAAAACTGTT GGACGCCTCTTTACTATTGGACGACATACTGGTATAATTCAGACCGCAGCCATTCTGGACCGGGAGCA AGGAGCATGTCTTTACCTGGTGGATGTTTATGCCATAGAAAAATCAACTGCTTTTCCCAGAACACAGA GAGCAGAGGTAGAAACAACACTTCAGGATATCAATGACAATCCACCAGTATTTCCAACGGACATGCTG GATCTCACGGTAGAGGAGAACATTGGAGATGGCTCTAAGATTATGCAGCTGACAGCCATGGATGCTGA CGAGGTGCAAATGCTCTCGTCACATACACTATCATTAGTGGGTTCTTTGGTAGCAGCCATTTTAGCCA CGGATGATGACTCTGGTGTGAATGGAGAAATTACATATATTGTGAATGAAGATGATGAAGATGGCATC TTTTTCCTGAATCCTATTACTGGGGTCTTTAATTTGACTCGATTATTAGATTATGAAGTACAGCAATA TTATATCCTCACTGTTCGAGCAGAAGATGGTGGGGGACAATTTACTACCATCAGAGTTTATTTCAATA TTCTAGATGTAAATGATAATCCACCTATTTTCAGCTTGAATTCATACAGCACATCTTTAATGGAGAAT CTACCTGTGGGATCTACTGTTCTTGTGTTTAATGTTACTGATGCAGATATGATGAAGGCAGAAATAAA GATGTTCTTTGAAACCAGTGAGAACAAAGACACAACATACCAGAATCTCTGGGACACATTCAAAGCAG TGTGTAGAGGGAAATTTATAGCACTAAATGCCCACAAGAGAAAGCAGGAAAGATCCAAAATTGACACC CTAACATCACAATTAAAAGAACTAGAAAAGCAAGAGCAAACACATTCAAAAGCTAGCAGAAGGCAAGA AATAACTAAAATCAGAGCAGAACTGAAGGATATAGAGACACAAAAAACCCTTCAAAAAATTAATGAAT CCAGGAGCTGGTTTTTTGAAAGGATCAACAAAATTGATAGACCGCTAGCAAGACTAATAAAGAAGAAA ACAGAGAAGAATCAAATAGACGCAATAAAAAATGATAAAGGGGATATCACCATCGATCCCACAGAAAT ACAAACTACCATCAGAGAATACTGCAAACACCTCTATGCAAATAAACTAGAAAATCTAGAAGAAATGG ATAAATTCCTCGACACATACACCCTCCCAAGACTAAACCAGGAAGAAGTTGAATCTCTGAATAGACCA ATAACAGACTCTGAAACTGTGGCAATAATCAATAGCTTACCAACCAAAAAGAGTCCAGGACCAGATGG ATTCACAGCCGAATTCTACCAGATGATAACAACCCCAGTCTTTGCACAAGCTTTGTATAAAGTGGAGA TTAATGAAAACACACTTACTGGAACAGATATAATACAAGTGTTCGCAGCAGATGGAGATGAAGGCACA AATGGACAGGTTCGCTATGGCATTGTTAATGGTAATACCAATCAGGAATTTCGGATAGACTCTGTCAC AGGTGCCATCACTGTCGCTAAACCTTTGGATAGAGAAAAGACCCCTACCTACCATTTAACTGTTCAGG CAACAGATCGAGGCAGCACACCCAGAACTGATACCTCCACGGTCAGCATTGTTCTACTGGATATTAAT GACTTTGTTCCTGTATTTGAGCTATCTCCATATTCTGTAAATGTCCCTGAGAATTTAGGGACACTACC CAGAACAATTCTTCAGACTGCTTCGCCTTGCGTGAGGTTTGCCAGCGCCAGTAAAGCGTATTTCACAA CAATTCCTGAGGATGCACCAACTGGAACAGATGTTTTATTGGTAAATGCCTCAGATGCTGATGCTTCA
AAGAATGCAGTTATAAGTTATAGGATCATCGGTGGAAACTCTCAGTTCACGATCAACCCATCGACAGG ACAAATCATCACCAGCGCATTGTTAGATAGGGAAACAAAAGATAATTATACTTTGGTAGTGGTCTGCA GTGATGCGGGATCCCCAGAGCCTCTTTCCAGTTCCACCAGTGTGCTTGTCACTGTGACTGATGTCCAT GACAATCCACCAAGATTTCAGCATCACCCATATGTCACTCACATCCCATCTCCTACTCTTCCAGGTTC CTTTGTCTTTGCGGTTACAGTCACAGATGCTGATATTGGACCAAATTCTGAACTGCATTATTCTCTTT CGGGTAGAAATTCTGAAAAATTTCACATTGACCCACTGAGGGGAGCCATTATGGCCGCCGGACCACTA AACGGAGCTTCAGAAGTGACATTTTCTGTGCATGTAAAAGATGGTGGCTCATTTCCAAAGACAGATTC TACAACAGTGACTGTTAGATTCGTGAATAAGGCCGATTTCCCTAAAGTCAGAGCCAAAGAACAAACGT TCATGTTTCCTGAAAACCAACCAGTCAGCTCTCTTGTCACCACCATCACAGGATCCTCTTTAAGAGGA GAACCTATGTCATATTATATCGCAAGTGG GCAGGTGTCTATTAGTCAACCTCTGGATTTTGAAAAGATACAAAAATATGTTGTATGGATAGAGGCCA GAGACGGTGGTTTCCCTCCTTTCTCCTCTTACGAGAAACTTGATATAACAGTATTAGATGTCAATGAT AATGCCCCAATTTTTAAGGAAGACCCATTTATATCTGAAATATTGGAAAACCTTTCCCCTCGAAAAAT ACTTACTGTTTCGGCAATGGACAAGGACAGTGGACCCAATGGACAGTTAGATTATGAAATTGTTAATG GCAACATGGAAAATAGTTTCAGTATCAATCATGCTACTGGTGAAATTAGAAGCGTTAGACCTTTGGAC AGGGAAAAAGTATCTCATTATGTCCTAACCATAAAATCATCAGACAAAGGGTCCCCGTCTCAGAGTAC TTCAGTAAAAGTCATGATTAACATTTTAGATGAAAATGATAATGCCCCTAGGTTTTCTCAGATATTTA GTGCCCATGTTCCTGAAAATTCCCCCTTAGGATACACAGTTACCCGTGTCACAACTTCTGATGAAGAC ATTGGGATCAATGCAATTAGTAGATATTCTATAATGGATGCAAGTCTTCCATTTACAATTAATCCCAG CACAGGGGATATTGTCATAAGCAGACCTTTAAATAGGGAAGATACAGACCGTTACAGAATTCGAGTTT CCGCACATGATTCTGGGTGGACTGTAAGTACAGATGTCACAATATTTGTGACAGACATCAATGACAAT GCTCCAAGATTTAGCAGAACTTCCTATTATTTAGATTGCCCTGAACTTACTGAGATTGGCTCCAAAGT AACTCAGGTATTTGCAACAGATCCTGATGAGGGATCAAATGGACAAGTGTTTTATTTCATAAAATCCC AATCAGAATATTTCAGGATTAATGCCACCACTGGAGAGATTTTCAATAAACAGATCTTAAAATACCAA AATGTCACTGGCTTCAGTAATGTGAATATCAACAGGCATAGTTTTATAGTGACATCTTCAGATCGAGG TAAACCTTCCTTAATTAGTGAGACAACAGTTACCATCAATATAGTGGACAGTAATGACAATGCACCTC AATTTCTTAAAAGTAAATATTTCACTCCAGTCACCAAAAATGTTAAGGTTGGTACGAAGTTAATCAGA GTTACAGCAATAGATGACAAAGATTTTGGACTGAATTCAGAAGTGGAGTATTTCATTTCTAATGATAA CCATTTAGGAAAATTTAAGTTGGACAATGATACGGGGTGGATTTCAGTAGCATCCTCCCTGATTTCTG ACTTGAACCAAAACTTTTTTATCACAGTCACTGCAAAGGATAAGGGAAACCCTCCACTTTCTTCCCAA GCAACTGTTCACATAACTGTCACTGAGGAAAACTACCATACACCTGAATTCTCTCAAAGCCACATGAG TGCAACCATCCCTGAGAGCCATAGCATTGGGTCCATTGTCAGAACTGTTTCTGCAAGAGATAGAGATG CAGCGATGAATGGCTTGATTAAGTACAGCATTTCTTCAGGAAATGAAGAAGGCATTTTTGCAATCAAT TCTTCTACAGGTATATTAACACTAGCCAAAGCTCTTGATTATGAGCTATGCCAGAAACACGAAATGAC GATTAGTGCTATAGATGGAGGATGGGTTGCAAGAACTGGTTACTGCAGTGTGACCGTAAATGTGATTG ATGTGAATGATAATTCTCCAGTATTCCTCTCTGATGACTATTTCCCTACTGTTTTGGAAAATGCCCCA AGTGGAACAACAGTTATCCACCTAAATGCAACAGATGCTGACTCTGGAACAAATGCTGTGATTGCGTA TACTGTACAGTCATCTGACAGTGACCTCTTTGTCATTGACCCTAACACAGGAGTCATAACCACTCAAG GCTTCTTGGATTTTGAAACCAAGCAGAGCTACCATCTTACTGTGAAAGCCTTCAATGTCCCCGATGAG GAAAGGTGTAGCTTTGCCACTGTTAATATACAATTAAAAGGGACAAATGAATATGTGCCCCGTTTTGT TTCCAAACTTTACTATTTTGAAATCTCAGAAGCAGCTCCTAAAGGTACTATTGTTGGAGAAGTGTTTG CTAGCGACCGTGATTTGGGCACTGATGGGGAGGTACACTATTTGATTTTTGGTAATAGTCGAAAGAAG GGTTTCCAGATCAATAAGAAGACTGGACAGATTTATGTTTCTGGAATTCTTGATCGAAAAAAAGAAGA AAGGGTGTCTTTGAAGGTATTGGCCAAGAACTTTGGCAGCATTAGAGGTGCAGATATAGATGAGGTCA CTGTAAATGTCACCGTGCTTGATGCAAATGACCCACCCATTTTTACTCTAAACATCTACAGTGTGCAG ATCAGTGAAGGGGTCCCAATAGGAACTCATGTGACCTTTGTCAGTGCCTTTGACTCAGACTCCATCCC CAGCTGGAGCAGGTTTTCTTACTTCATCGGATCAGGGAATGAAAATGGTGCCTTTTCTATTAATCCGC AGACAGGACAGATCACCGTTACTGCAGAATTAGATCGAGAAACCCTTCCCATCTATAATCTCTCAGTT
TTGGCTGTTGATTCAGGGACCCCCTCAGCTACAGGTAGTGCCTCTTTATTAGTCACCCTGGAAGATAT AAATGATAACGGGCCCATGCTGACTGTCAGTGAAGGAGAAGTCATGGAAAACAAACGGCCAGGCACTT TGGTGATGACCCTTCAGTCCACTGACCCTGATCTCCCTCCAAATCAAGGTCCCTTTACTTATTACTTG CTGAGCACAGGTCCTGCCACCAGTTATTTCAGTCTGAGCACTGCTGGAGTTCTGAGCACAACCAGAGA GATTGACAGAGAGCAGATTGCAGACTTCTATCTGTCTGTGGTTACCAAGGATTCTGGTGTTCCTCAAA TGTCTTCCACAGGAACTGTGCATATCACAGTTATAGACCAAAATGACAATCCTTCACAGTCTCGGACG GTGGAGATATTTGTTAATTATTATGGTAACTTGTTTCCCGGTGGGATTTTAGGCTCTGTGAAGCCACA GGATCCAGATGTGTTAGACAGCTTCCACTGCTCCCTTACTTCAGGAGTTACCAGCCTCTTCAGTATTC CAGGGGGTACTTGTGATCTGAATTCCCAGCCAAGGTCCACAGATGGCACGTTTGATCTGACTGTCCTT AGCAATGATGGAGTTCACAGCACAGTCACGAGCAACATCCGAGTTTTCTTTGCTGGATTTTCCAATGC CACAGTGGATAACAGCATCTTACTTCGTCTCGGCGTACCAACAGTAAAGGACTTCTTGACCAACCACT ATCTTCATTTTTTACGCATTGCCAGCTCACAGCTGACAGGCTTAGGGACTGCTGTGCAACTGTACAGT GCATATGAAGAGAACAATAGAACGTTTCTTTTGGCAGCTGTGAAGCGAAATCATAATCAGTATGTGAA TCCCAGTGGCGTAGCCACCTTCTTTGAAAGCATCAAAGAGATCCTTCTCCGGCAGAGTGGAGTAAAGG TGGAATCTGTGGATCATGACTCCTGTGTGCATGGCCCATGTCAGAATGGAGGGAGCTGTCTACGAAGA TTGGCTGTGAGCTCCGTATTAAAAAGCCGTGAGAGTCTTCCAGTCATCATCGTGGCAAATGAACCTCT GCAGCCTTTCTTATGCAAGTGTCTGCCAGGATATGCGGGTAGCTGGTGTGAAATAGATATAGATGAAT GTCTTCCATCACCTTGCCACAGTGGTGGAACCTGTCACAATTTAGTGGGAGGATTTTCATGCAGCTGC CCAGATGGCTTCACTGGTAGGGCGTGTGAGAGAGATATCAATGAGTGCCTGCAGAGTCCTTGCAAGAA TGGTGCCATCTGCCAGAATTTTCCAGGAAGCTTCAACTGTGTTTGCAAAACTGGATACACAGGTATGA CAACGTTTGTACTTTTCTCACTAAGACTTGGAAAATGTGTGAATCTTCAGTCAATTACTGTGAATGCA ACCCCTGCTTTAATGGTGGTTCCTGCCAAAGTGGTGTGGATTCTTATTATTGTCATTGTCCATTTGGT GTCTTTGGAACACTGCGAGTTGAACAGTTATGGATTTGAGGAGTTATCATACATGGAATTTCCAAGCT TGGACCCCAATAACAACTATATTTATGTCAAATTTGCCACGATTAAAAGTCATGCCTTATTGCTTTAC AACTATGACAACCAGACAGGCGACCGGGCTGAGTTTTTGGCCCTTGAAATTGCCGAAGAAAGACTAAG ATTCTCTTATAATTTAGGCAGTGGTACATATAAGCTCACCACCATGAAGAAGGTGTCAGATGGACATT TTCACACTGTGATTGCCAGGAGAGCAGGAATGGCAGCCTCCTTAACTGTGGACTCCTGTTCTGAGAAC CAAGAGCCAGGATATTGTACTGTCAGTAATGTGGCAGTTTCAGATGACTGGACTCTTGATGTTCAGCC AAATAGAGTTACAGTTGGAGGTATCAGATCTCTAGAACCAATCCTTCAGAGAAGAGGACACGTGGAAA GCCATGATTTTGTTGGGTGTATAATGGAGTTTGCAGTCAATGGAAGGCCTCTGGAACCCAGCCAAGCT TTGGCAGCACAAGGCATCCTAGATCAGTATGGCGATTTTATTTCTTACTGTTTTAAAGAAAAAAAATG CAAAAAAGTATGCTTCACTGTTACTCCTGACACTGCCTTATCATTAGAAGGCAAAGGGCGCTTGGACT ACCACATGAGTCAGAATGAGAAGCGGGAATATTTGTTAAGGCAAAGCTTACGAGGTGCCATGTTGGAG CCTTTTGGTGTGAACAGTCTGGAAGTAAAATTTAGGACCAGAAGCGAGAATGGCGTTTTAATCCATAT CCAAGAAAGCAGCAATTACACTACTGTGAAGGGAATGTGTGAATCTTCAGTCAATTACTGTGAATGCA ACCCCTGCTTTAATGGTGGTTCCTGCCAAAGTGGTGTGGATTCTTATTATTGTCATTGTCCATTTGGT GTCTTTGGAAAACACTGCGAGTTGAACAGTTATGGATTTGAGGAGTTATCATACATGGAATTTCCAAG CTTGGACCCCAATAACAACTATATTTATGTCAAATTTGCCACGATTAAAAGTCATGCCTTATTGCTTT ACAACTATGACAACCAGACAGGCGACCGGGCTGAGTTTTTGGCCCTTGAAATTGCCGAAGAAAGACTA AGATTCTCTTATAATTTAGGCAGTGGTACATATAAGCTCACCACCATGAAGAAGGTGTCAGATGGACA TTTTCACACTGTGATTGCCAGGAGAGCAGGAATGACTCTTGATGTTCAGCCAAATAGAGTTACAGTTG GAGGTATCAGATCTCTAGAACCAATCCTTCAGAGAAGAGGACACGTGGAAAGCCATGATTTTGTTGGG TGTATAATGGAGTTTGCAGTCAATGGAAGGCCTCTGGAACCCAGCCAAGCTTTGGCAGCACAAGGCAT CCTAGATCAGTATGGCGATTTTATTTCTTACTGTTTTAAAGAAAAAAAATGCAAAAAGTATGCTTCAC TTGGCCTCCATCTCGGGAAGCATAGCTTGGCCTCCATCTCAAAAACAGATCCCTCAGTGAAGATTGGC TGCCGTGGCCCGAACATTTGTGCCAGCAACCCCTGCTGGGGTGATTTGCTGTGCATTAATCAGTGGTA TGCCTACAGGTGTGTCCCTCCTGGGGACTGTGCCTCCCACCCGTGCCAGAATGGTGGCAGCTGTGAGC CAGGCCTGCACTCCGGCTTCACCTGTAGCTGCCCAGACTCGCACACGGGAAGGACCTGTGAGATGGTG GTGGCCTGTCTTGGCGTCCTCTGTCCTCAGGGGAAGGTGTGCAAAGCTGGAAGTCCTGCGGGGCATGT
CTGTGTTCTGAGTCAGGGCCCTGAAGAGATCTCTCTGCCTTTGTGGGCTGTGCCTGCCATCGTGGGCA GCTGCGCAACCGTCTTGGCCCTCCTGGTCCTTAGCCTGATCCTGTGTAACCAGTGCAGGGGGAAGAAG GCCAAAAATCCCAAAGAGGAGAAGAAACCGAAGGAGAAGAAGAAAAAGGGAAGTGAGAACGTTGCTTT TGATGACCCTGACAATATCCCTCCCTATGGGGATGACATGACTGTGAGGAAGCAGCCTGAAGGGAACC CAAAACCAGATATCATTGAAAGGGAAAACCCCTACCTTATCTATGATGAAACTGATATTCCTCACAAC TCAGAAACCATCCCCAGCGCCCCTTTGGCATCTCCAGAGCAGGAGATAGAGCACTATGACATTGACAA CGCCAGCAGCATCGCCCCTTCGGATGCAGACATCATTCAACACTACAAGCAGTTCCGCAGCCACACAC CAAAATTTTCAATCCAGAGGCACAGTCCCCTAGGCTTTGCAAGGCAATCCCCCATGCCCTTAGGAGCA AGCAGTTTGACTTACCAGCCTTCATATGGTCAAGGTTTGAGAACCAGCTCCCTAAGCCACTCAGCATG CCCAACTCCCAACCCTCTGTCTCGACACAGTCCAGCCCCTTTCTCCAAATCTTCTACGTTCTATAGAA ACAGCCCAGCAAGGGAATTGCATCTTCCTATAAGGGATGGTAATACTTTGGAAATGCATGGTGACACC TGCCAACCTGGCATTTTCAACTATGCCACAAGGCTGGGAAGGAGAAGCAAGAGTCCTCAGGCCATGGC ATCACATGGTTCTAGACCAGGGAGTCGCCTAAAGCAGCCGATTGGGCAGATTCCACTGGAATCTTCTC CTCCAGTCGGACTTTCTATTGAAGAAGTGGAGAGGCTCAACACACCTCGCCCTAGAAACCCAAGTATC TGCAGTGCAGACCATGGGAGGTCTTCTTCAGAGGAGGACTGCAGAAGGCCACTGTCTAGAACAAGGAA TCCAGCGGATGGCATTCCAGCTCCAGAATCCTCTTCTGATAGTGACTCCCATGAATCTTTCACTTGCT CAGAAATGGAATATGACAGGGAGAAGCCAATGGTATATACTTCCAGAATGCCCAAATTATCTCAAGTC AATGAATCTGATGCAGATGATGAAGATAATTATGGAGCCAGACTGAAGCCTCGAAGGTACCACGGTCG CAGGGCCGAGGGAGGACCTGTGGGCACCCAGGCAGCAGCACCAGGCACTGCTGACAACACACTGCCCA TGAAGCTAGGGCAGCAAGCAGGGACTTTCAACTGGGACAACCTTTTGAACTGGGGCCCTGGCTTTGGC CATTATGTAGATGTTTTTAAAGATTTGGCATCTCTTCCAGAAAAAGCAGCAGCAAATGAAGAAGGCAA AGCTGGGACAACTAAACCAGTCCCCAAAGATGGGGAAGCAGAACAGTATGTGTGAAGTTTATGTACTG
GCACTATAAAATATAAAAACAAGAAATAATACTCAAACCATTGTAAAGTTGCTGACTAGGTTGGGTCA
CATTTGAAAAACAGGCCAGTATGGACTAGTGGTGGAGGGAAAACTTTAAAAATAATAACCACAATGCT
GCTGAAACAGACTCACAACAACTCTTAATTTAAACATGTGTGGTTGAATTC
NOV57f, CG92813-02 SEQ ID NO: 1142 4913 aa MW at 538261.6 D Protein Sequence
FQVLEEQPPGTLVGTIQTRPGFTYRLSESHALFAINSSTGALYTTSTIDRESLPSDVINLWLSSAPT YPTEVRVLVRDL--STONAPVFPDPSIVVTFKEDSSSGRQVILDTATDSDIGSNGVDHRSYRIIRGNEAGR FRLDI-[^NPSGEGAFLHLVSKGGLDREVTPQYQLLVEVEDKGEP-- RGYLQV---sTVTVQDINDNPPVFGS SHYQAGVPEDAVVGSSVLQVAAADADEGTNADIRYRLQDEGTPFQMDPETGLITVREPLDFEARRQYS LWQAMDRGV SLTGR^^IQ^^^ CVLSQGPEEISLPL AVPAIVGSCATVLALLVLSLILCNQCRGKKAKNPKEEKKPKEKKKKGSENVAF DDPDNIPPYGDDMTVRKQPEGNP PDIIERENPYLIYDETDIPHNSETIPSAPLASPEQEIEHYDIDN ASSIAPSDADIIQHYKQFRSHTPKFSIQRHSPLGFARQSPMPLGASSLTYQPSYGQGLRTSSLSHSAC PTPNPLSRHSPAPFSKSSTFYRNSPARELHLPIRDGNTLEMHGDTCQPGIFNYATRLGRRSKSPQAA SHGSRPGSRLKQPIGQIPLESSPPVGLSIEEVERLNTPRPRNPSICSADHGRSSSEEDCRRPLSRTRN PADGIPAPESSSDSDSHESFTCSEMEYDRE-K-PJVYTS--- P---αSQVNESDADDΞDNYGARLKPRRYHGR RAΞGGPVGTQAAAPGTADNTLPMKLGQQAGTF-t DNLLNWGPGFGI-IΥVDVFKDLASLPEKAAANEEGK AGTTKPVPKDGEAEQYV
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 57B.
Table 57B. Comparison of the NOV57 protein sequences.
NOV57a MDLAPDRATGRP LPLHTLSVSQLLRVFWLLSLLPGQA VHGAEPRQVFQVLEEQPPGTL
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f FQVLEEQPPGTL
NOV57a VGTIQTRPGFTYRLSESHALFAINSSTGALYTTSTIDRΞSLPSDVINLWLSSAPTYPTE
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f VGTIQTRPGFTYRLSESHALFAINSSTGALYTTSTIDRESLPSDVINLWLSSAPTYPTE
NOV57a VRVLVRDLNDNAPVFPDPSIWTFKEDSSSGRQVILDTATDSDIGSNGVDHRSYRIIRGN
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f VRVLVRDLNDNAPVFPDPSIWTFKEDSSSGRQVILDTATDSDIGSNGVDHRSYRIIRGN
N0V57a EAGRFRLDINLNPSGEGAFLHLVSKGGLDREVTPQYQLLVEVEDKGEPKRRGYLQVNVTV
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f EAGRFRLDINLNPSGEGAFLHLVSKGGLDREVTPQYQLLVEVEDKGEP-KRRGYLQVNVTV
NOV57a QDINDNPPVFGSSHYQAGVPΞDAWGSSVLQVAAADADEGTNADIRYRLQDEGTPFQMDP
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f QDINDNPPVFGSSHYQAGVPEDAWGSSVLQVAAADADEGTNADIRYRLQDEGTPFQMDP
NOV57a ETGLITVREPLDFEARRQYSLTVQA DRGVPSLTGRAΞALIQLLDV-iroNDPVV FRYFPA
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f ETGLITVREPLDFE-ARRQYSLTVQAMDRGVPSLTGRAEALIQLLDVNDNDPVVKFRYFPA
NOV57a TSRYASVDENAQVGTWALLTVTDADSPAANGNISVQILGGNEQRHFEVQSSKVPNLSLI
NOV57b
NOV57C NOV57d
NOV57e
NOV57f TSRYASVDENAQVGTVVALLTVTDADSPAANGNISVQILGGNEQRHFEVQSSKVPNLSLI
NOV57a KVASALDRERIPSYNLTVSVSDNYGAPPGAAVQARSSVASLVIFVNDINDHPPVFSQQVY
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f KVASALDRERIPSYNLTVSVSDNYGAPPGAAVQARSSVASLVIFVNDINDHPPVFSQQVY
NOV57a RVNLSEEAPPGSYVSGISATDGDSGLNANLRYSIVSGNGLG FHISEHSGLVTTGSSGGL
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f RVNLSEEAPPGSYVSGISATDGDSGLNANLRYSIVSGNGLG FHISEHSGLVTTGSSGGL
NOV57a DRELASQIVLNISARDQGVHPKVSYAQLVVTLLDVNDEKPVFSQPEGYDVSVVENAPTGT
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f DRELASQIVT.NISARDQGVHPKVSYAQLVVTLLDVNDEKPVFSQPEGYDVSVVENAPTGT
NOV57a ELL LRATDGDLGDNGTVRFSLQEAETDRRSFRLDPVSGRLSTISSLDREEQAFYSLLVL
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f ELLMLRATDGDLGDNGTVRFSLQEAETDRRSFRLDPVSGRLSTISSLDREEQAFYSLLVL
NOV57a ATDLGSPPQSSMARINVSLLDINDNSPVFYPVQYFAHIKENEPGGSYITTVSATDPDLGT
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f ATDLGSPPQSSMARINVSLLDINDNSPVFYPVQYFAHIKENEPGGSYITTVSATDPDLGT
NOV57a NGTVKYSISAGDRSRFQWAQSGVISTRMALDREEKTAYQLQIVATDGGNLQSPNQAIVT
NOV57b
NOV57c
NOV57d
NOV57e
NOV57f NGTVKYSISAGDRSRFQVNAQSGVISTRMALDREEKTAYQLQIVATDGGNLQSPNQAIVT
NOV57a ITVLDTQDNPPVFSQVAYSFWFENVALGYHVGSVSAST DLNSNISYLITTGDQKGMFA
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f ITVLDTQDNPPVFSQVAYSFWFENVALGYHVGSVSASTMDLNSNISYLITTGDQKGMFA
NOV57a INQVTGQLTTA-IWIDREEQSFYQLK-VVASGGTVTGDTMVNITV-KDLNDNSPHFLQAIESV
N0V57b
N0V57C
N0V57d
NOV57e
NOV57f INQVTGQLTTANVIDREEQSFYQLKVVASGGTVTGDTMVNITVKDLNDNSPHFLQAIESV NOV57a NWEN QAGHSIFQAKAVDPDEGVNGMVLYSLKQNPKNLFAINEKNGTISLLGPLDVHAG
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f NWENWQAGHSIFQAKAVDPDEGVNGMVLYSLKQNPKNLFAINEKNGTISLLGPLDVHAG
NOV57a SYQIEILASDMGVPQLSSSVILTVYVHDVNDNSPVFDQLSYEVTLSESEPVNSRFFKVQA
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f SYQIEILASDMGVPQLSSSVILTVYVHDVNDNSPVFDQLSYEVTLSESEPVNSRFFKVQA
NOV57a SDKDSGA-troGQLYIKSELDRELQDRYVLl-WVASDRAVEPLSATV-t^TVILEDVNDNRPLF
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f SDKDSGANDGQLYIKSELDRELQDRYVLΓWVASDRAVEPLSATVNVTVILEDVNDNRPLF
NOV57a NSTNYTFYFEEEQRAGSFVG VSAVDKDFGPNGEVRYSFE VQPDFELHAISGEITNTHQ
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f NSTNYTFYFEEEQRAGSFVGKVSAVDKDFGPNGEVRYSFE VQPDFELHAISGEITNTHQ
NOV57a FDRESLMRRRGTAVFSFTVIATDQGIPQPLKDQATVHVYMKDIOTDNAPKFLKDFYQATIS
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f FDRESLMRRRGTAVFSFTVIATDQGIPQPL---α-)QATVHVYM-raDINDNAPKFLKDFYQATIS
NOV57a ESAANLTQVLRVSASDVDEGNNGLIHYSIIKGNEERQFAIDSTSGQVTLIGKLDYEATPA
NOV57b
NOV57c
NOV57d
NOV57e
NOV57f ESAANLTQVLRVSASDVDEGNNGLIHYSIIKGNEERQFAIDSTSGQVTLIGKLDYEATPA
NOV57a YSLVIQAVDSGTIPLNSTCTLNIDILDENDNTPSFL STLFVDVLENMRIGELVSSVTAT
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f YSLVIQAVDSGTIPLNSTCTLNIDILDENDNTPSFLKSTLFVDVLENMRIGELVSSVTAT
NOV57a DSDSGDNVDLYYSITGTNNHGTFSISPNTGSIFLAKKLDFETQSLYKLNITA DQGRPPR
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f DSDSGDNVDLYYSITGTN---sraGTFSISPNTGSIFLA---sθ ,DFETQSLY LNITA DQGRPPR
NOV57a SST SWIHVRDFNDNPPSFPPGDIFKSIVENIPIGTSVISVTAHDPDADINGQLSYTII
NOV57b
NOV57C
NOV57d NOV57e
NOV57f SSTMSWIHVRDFNDNPPSFPPGDIFKSIVENIPIGTSVISVTAHDPDADINGQLSYTII
NOV57a QQMPRGNHFTIDEVKGTIYTNAEIDREFANLFELTV-I--ANDQAVPIETRRYALKNVTILVT
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f QQ PRGNHFTIDEVKGTIYTNAEIDREFANLFELTVKA-STOQAVPIETRRYALIsTΪVTILVT
NOV57a DLND-t^PMFISQNALAADPSAVIGSVLTTIMAADPDEGANGEIEYEIINGDTDTFIVDRY
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f DLNDNVPMFISQNALAADPSAVIGSVLTTIMAADPDEGANGEIEYEIINGDTDTFIVDRY
NOV57a SGDLRVASALVPSQLIYNLIVSATDLGPERRKSTTELTIILQGLDGPVFTQPKYITILKE
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f SGDLRVASALVPSQLIYNLIVSATDLGPERRKSTTELTIILQGLDGPVFTQPKYITILKE
NOV57a GEPIGTNVISIEAASPRGSEAPVEYYIVSVRCEEKTVGRLFTIGRHTGIIQTAAILDREQ
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f GEPIGTNVISIEAASPRGSEAPVEYYIVSVRCEEKTVGRLFTIGRHTGIIQTAAILDREQ
NOV57a GACLYLVDVYAIE STAFPRTQRAEVETTLQDINDNPPVFPTDMLDLTVEENIGDGSKIM
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f GACLYLVDVYAIEKSTAFPRTQRAEVETTLQDINDNPPVFPTD-MLDLTVEENIGDGSKIM
NOV57a QLTAMDADEVQMLSSHTLSLVGSLVAAILATDDDSGVNGEITYIVNEDDEDGIFFLNPIT
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f QLTAMDADEVQMLSSHTLSLVGSLVAAILATDDDSGVNGEITYIVNEDDEDGIFFLNPIT
NOV57a GVFNLTRLLDYEVQQYYILTVRAEDGGGQFTTIRVYFNILDVNDNPPIFSLNSYSTSLME
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f GVFNLTRLLDYEVQQYYILTVRAEDGGGQFTTIRVYFNILDVNDNPPIFSLNSYSTSLME
NOV57a NLPVGSTVLVFNVTD-MDrMK-AEI---^FFETSENKDTTYQNLWDTF---sAVCRGKFIALNAHKR
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f -m-jPVGSTVLVFNVTDADM K-AEIK FFET^
NOV57a KQERSKIDTLTSQLKELEKQEQTHSKASRRQEITKIRAELKDIETQKTLQKINESRSWFF NOV57b
NOV57C
NOV57d
NOV57e
NOV57f QERSKIDTLTSQLKELEKQEQTHSKASRRQEITKIRAELKDIETQKTLQKINESRSWFF
NOV57a ERINKIDRPLARLIK---OTE-KNQIDAIΪOSIDKGDITIDPTEIQTTIREYCKHLYANKLENLE
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f ERINKIDRPLARLIK--OTEKNQIDAIKNDKGDITIDPTEIQTTIREYCKHLYANKLENLE
NOV57a EMDKFLDTYTLPRLNQEEVESLNRPITDSETVAIINSLPTKKSPGPDGFTAEFYQMITTP
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f EMDKFLDTYTLPRLNQEEVESLNRPITDSETVAIINSLPTKKSPGPDGFTAEFYQMITTP
NOV57a VFAQALYKVEINENTLTGTDIIQVFAADGDEGTNGQVRYGIVNGNTNQEFRIDSVTGAIT
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f VFAQALYKVEINENTLTGTDIIQVFAADGDEGTNGQVRYGIVNGNTNQEFRIDSVTGAIT
NOV57a VAKPLDRE TPTYHLTVQATDRGSTPRTDTSTVSIVLLDINDFVPVFELSPYSVNVPENL
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f VAKPLDRE TPTYHLTVQATDRGSTPRTDTSTVSIVLLDINDFVPVFELSPYSVNVPENL
NOV57a GTLPRTILQTASPCVRFASASKAYFTTIPEDAPTGTDVLLVNASDADASKNAVISYRIIG NOV57b GTYFTTIPEDAPTGTDVLLVNASDADASKNAVISYRIIG NOV57C GTYFTTIPEDAPTGTDVLLVNASDADASKNAVISYRIIG NOV57d NOV57e NOV57f GTLPRTILQTASPCVRFASASKAYFTTIPEDAPTGTDVLLVNASDADASKNAVISYRIIG
NOV57a GNSQFTINPSTGQIITSALLDRETKDNYTLVWCSDAGSPEPLSSSTSVLVTVTDVHDNP NOV57b GNSQFTINPSTGQIITSALLDRET-KDNYTLVWCSDAGSPEPLSSSTSVLVTVTDVNDNP NOV57C GNSQFTINPSTGQIITSALLDRETKDNYALVWCSDAGSPEPLSSSTSVLVTVTDVNDNP NOV57d NOV57e NOV57f GNSQFTINPSTGQIITSALLDRETKDNYTLVWCSDAGSPEPLSSSTSVLVTVTDVHDNP
NOV57a PRFQHHPYVTHIPSPTLPGSFVFAVTVTDADIGPNSELHYSLSGRNSEKFHIDPLRGAIM NOV57b PRFQHHPYVTHIPSPTLPGSFVFAVTVTDANIGPNSELHYSLSGRDSEKFHIDPLRGAIM NOV57C PRFQHHPYVTHIPSPTLPGSFVFAVTVTDADIGPNSELHYSLSGRNSEKFHIDPLRGAIM NOV57d NOV57e NOV57f PRFQHHPYVTHIPSPTLPGSFVFAVTVTDADIGPNSELHYSLSGRNSEKFHIDPLRGAIM
NOV57a -AAGPLNGASEVTFSVHVKDGGSFPKTDSTTVTVRFVN---S DFP---VRAKEQTFMFPENQPVS NOV57b AAGPLNGASEVTFSVHVKDGGSFPKTDSTTVTVRFVNK-ADFPKVRA EQTF FPENQPVS NOV57C AAGPLNGASEVTFSVHV--^GGSFPKTDSTTVTVRFVNKADFP VRAKEQTFMFPENQPVS NOV57d NOV57e NOV57f AAGPLNGASEVTFSV-EWIO-3GGSFPKTDSTTVTVRFVNKΑDFPKVRAKEQTFMFPENQPVS
NOV57a SLVTTITGSSLRGEPMSYYIASGNLGNTFQIDQLTGQVSISQPLDFEKIQKYW IEA-RD NOV57b SLVTTITGSSLRGEP SYYIASGNLGNTFQIDQLTGQVSISQPLDFEKIQKYWWIEARD NOV57C SLVTTITGSSLRGEP SYYIASGNLGNTFQIDQLTGQVSISQPLDFEKIQKYWWIEARD NOV57d NOV57e NOV57f SLVTTITGSSLRGEPMSYYIASGNLGNTFQIDQLTGQVSISQPLDFEKIQ YWWIEARD
NOV57a GGFPPFSSYEKLDITVLDV-tsroNAPIF EDPFISEILENLSPRKILTVSAMDKDSGPNGQL NOV57b GGFPPFSSYEKLDITVLDVNDNAPIFKEDPFISEILENLSPRKILTVSAMDKDSGPNGQL NOV57C GGFPPFSSYEKLGITVLDVNDNAPIFKEDPFISEILENLSPRKILTVSAMDKDSGPNGQL NOV57d GTFATIKSHALLLYNYDNQTGDRAEFL NOV57e GTFATIKSHALLLYNYDNQTGDRAEFL NOV57f GGFPPFSSYEKLDITVLDVNDNAPIFKEDPFISΞILENLSPRKILTVSAMDKDSGPNGQL
NOV57a DYEIVNGNMENSFSINHATGEIRSVRPLDREKVSHYVLTIKSSDKGSPSQSTSVKVMINI NOV57b DYEIVNG-NMENSFSINHATGEIRSVRPLDREKVSHYVLTIKSSDKGSPSQSTSVKVMINI NOV57C DYEIVNGN ENSFSINHATGEIRSVRPLDREKVSHYVLTIKSSDKGSPSQSTSVKVMINI NOV57d ALΞIAEERLRFSYNLGSGTYKLTT KKVS-DGHFHTVIARRAG MAASLTVDS NOV57e ALEIAEERLRFSYNLGSGTYKLTTMKKVS-DGHFHTVIARRAG MAASLTVDS NOV57f DYEIVNGN ENSFSINHATGEIRSVRPLDREKVSHYVLTIKSSDKGSPSQSTSVKVMINI
NOV57a LDENDNAPRFSQIFSAHVPENSPLGYTVTRVTTSDEDIGINAISRYSIMDASLPFTINPS NOV57b LDENDNAPRFSQIFSAHVPENSPLGYTVTRVTTSDEDIGINAISRYSIiDASLPFTINPN NOV57C LDENDNAPRFSQIFSAHVPENSPLGYTVTRVTTSDEDIGINAISRYSIMDASLPFTINPS NOV57d CSENQ-EPGYCTVSNVAVSDDWTLDVQPNRVTVG GIR NOV57e CSENQ-EPGYCTVSNVAVSDDWTLDVQPNRVTVG GIR NOV57f LDENDNAPRFSQIFSAHVPENSPLGYTVTRVTTSDEDIGINAISRYSIMDASLPFTINPS
NOV57a TGDIVISRPLNREDTDRYRIRVSAHDSGWTVSTDVTIFVTDINDNAPRFSRTSYYLDCPE NOV57b TGDIVISRPLNREDTDRYRIRVSAHDSGWTVSTDVTIFVTDINDNAPRFSRTSYYLDCPE NOV57C TGDIVISRPLNREDTDRYRIRVSAHDSGWTVSTDVTIFVTDINDNAPRFSRTSYYLDCPE NOV57d SLEPILQRRGHVESHDFVGCIMEFAVNGRPLEPSQALAAQGILDQCPRLEGACTRSPCQH NOV57e SLEPILQRRGHVESHDFVGCIMEFAVNGRPLEPSQALAAQGILDQCPRLEGACTRSPCQH NOV57f TGDIVISRPLNREDTDRYRIRVSAHDSGWTVSTDVTIFVTDINDNAPRFSRTSYYLDCPE
NOV57a LTEIGSKVTQVFATDPDEGSNGQVFYFIKSQSEYFRINATTGΞIFNKQILKYQNVTGFSN NOV57b LTEIGSKVTQVFATDPDΞGSNGQVFYFIKSQSEYFRINATTGEIFNKQILKYQNVTGFSN NOV57C LTΞIGSKVTQVFATDPDEGSNGQVFYFIKSQSEYFRINATTGEIFNKQILKYQNVTGFSN NOV57d GGTCMDYWSWQQCHCKEGLTGKYCEKSVTPDTALSLEGKGRLDYHMSQNEKREYLLRQSL NOV57e GGTCMDYWSWQQCHCKEGLTGKYCEKSVTPDTALSLEGKGRLDYHMSQNEKREYLLRQSL NOV57f LTΞIGSKVTQVFATDPDEGSNGQVFYFIKSQSEYFRINATTGEIFNKQILKYQNVTGFSN
NOV57a VNINRHSFIVTSSDRGKPSLISETTVTINIVDSNDNAPQFLKSKYFTPVTKNVKVGTKLI NOV57b VNINRHSFIVTSSDRGKPSLISETTVTINIVDSNDNAPQFLKSKYFTPVTKNVKVGTKLI NOV57C VNINRHSFIVTSSDRGKPSLISETTVTINIVDSNDNAPQFLKSKYFTPVTKNVKVGTKLI NOV57d RGAMLEPFGVN-SLEVKFRTRSENGVLIHIQES SNYTTVKIKNGKV NOV57e RGAMLEPFGVN-SLEVKFRTRSENGVLIHIQES SNYTTVKIKNGKV NOV57f VNIN-E^SFIVTSSDRGKPSLISETTVTINIVDSNDNAPQFLKSKYFTPVTKNVKVGTKLI
NOV57a RVTAIDDKDFGLNSEVEYFISNDNHLGKFKLDNDTG ISVASSLISDLNQNFFITVTAKD NOV57b RVTAIDDKDFGLNSEVEYFISNDNHLGKFKLDNDTG ISVASSLISDLNQNFFITVTAKD NOV57C RVTAIDDKDFGLNSEVEYFISND-røLGKFKLDNDTGWISVAPSLISDLNQNFFITVTAKD NOV57d YFTSDAGIAG-KVERNIPEVYVADGHWHTFLIGKNGTATVLSVDRIYNRDIIHPTQD NO 57e YFTSDAGIAGKVERNIPEVYVADGHWHTFLIGKNGTATVLSVDRIYNRDIIHPTQY NOV57f RVTAIDD---αDFGL SEVEYFIS-ro--fflLGKF-ra-DNDTGWISVASSLISDLNQ FFITVTAKD
NOV57a KGNPPLSSQATVHITVTEENYHTPEFSQSH SATIPESHSIGSIVRTVSARDRDAAMNGL NOV57b KGNPPLSSQATVHITVTEENYHTPEFSQSHMSATIPESHNIGSIVRTVSARDRDAAl^NGL NOV57C KGNPPLSSQATVHITVAEENYHTPEFSQSRMSATIPESHSIGSIVRTVSARDRDAAMNGL NOV57d FGG LDVLTISLGGIPPNQAHRDAQTG-FDGCIASMWYGGESLPFSGKHSLASISKTD NOV57e FGG LDVLTISLGGIPPNQA-----RDAQTAGFDGCIAS WYGGESLPFSGKHSLASISKTD NOV57f KGNPPLSSQATVHITVTEENYHTPEFSQSHMSATIPESHSIGSIVRTVSARDRDAA NGL
NOV57a IKYSISSGNEEGIFAINSSTGILTLAKALDYELCQKHEMTISAIDGGWVARTGYCSVTVN NOV57b IKYSISSGNEEGIFAINSSTGILTLAKALDYELCQKHEMTISAIDGGWVARTGYCSVTVN NOV57C IKYSISSGNEEGIFAINSSTGILTLAKALDYELCQKHEMTISAIDGGWVARTGYCSVTVN NOV57d PSVKIGCRGPNICASNPC GDLLCINQWYAYRCVPPGDCASHPCQNGGSCEPGLHSGFTC NOV57e PSVKIGCRGPNICASNPCWGDLLCINQWYAYRCVPPGDCASHPCQNGGSCEPGLHSGFTC NOV57f IK-YSISSGNEEGIFAINSSTGILTLAK-^ jDYELCQKHEMTISAIDGGWVARTGYCSVTVN
NOV57a VIDVNDNSPVFLSDDYFPTVLENAPSGTTVIHLNATDADSGTNAVIAYTVQSSDSDLFVI NOV57b VIDVNDNSPVFLSDDYFPTVLENAPSGTTVIHLNATDADSGTNAVIAYTVQSSDSDLFVI NOV57C VIDVNDNSPVFLSDDYFPTVLENAPSGTTVIHLNATDADSGTNAVIAYTVQSSDSDLFVI NOV57d SCPDSHTGRTCLE NOV57e SCPDSHTGRTCLEKG NOV57f VIDVNDNSPVFLSDDYFPTVLENAPSGTTVIHLNATDADSGTNAVIAYTVQSSDSDLFVI
NOV57a DPNTGVITTQGFLDFETKQSYHLTVKAFNVPDEERCSFATVNIQLKGTNEYVPRFVSKLY NOV57b DPNTGVITTQGFLDFETKQSYHLTVKAFNVPDGERCSFATVNIQLKGTNEYVPRFVSKLY NOV57C DPNTGVITTQGFLDFETKQSYHLTVKAFNVPDEERCSFATVNIQLKGTNEYVPRFVSKLY NOV57d NOV57e NOV57f DPNTGVITTQGFLDFETKQSYHLTVKAFNVPDEERCSFATVNIQLKGTNEYVPRFVSKLY
NOV57a YFEISEAAPKGTIVGEVFASDRDLGTDGEVHYLIFGNSRKKGFQINKKTGQIYVSGILDR NOV57b YFEISEAAPKGTIVGEVFASDRDLGTDGEVHYLIFGNSRKKGFQINKKTGQIYVSGILDR NOV57C YFEISEAAPKGTIVGEVFASDRDLGTDGEVHYLIFGNSRKEGFQINKKTGQIYVSGILDR NOV57d NOV57e NOV57f YFEISEAAPKGTIVGEVFASDRDLGTDGEVHYLIFGNSRKKGFQINKKTGQIYVSGILDR
NOV57a K----^^ER SLKVL-A-fαJFGSIRGADIDEVTV-^- TVLDA DPPIFTL IYSVQISEGVPIGTHV NOV57b EKEERVSLKVLAKNFGSIRGADIDEVTVNVTVLDANDPPIFTLNIYSVQISEGVPIGTHV NOV57C EKEERVSLKVLAKNFGSIRGADIDEVTVNVTVLDANDPPIFTLNIYSVQISEGVPIGTHV NOV57d NOV57e NOV57f KKEERVSLKVLAKNFGSIRG-ADIDEVTVNVTVLDANDPPIFTLNIYSVQISEGVPIGTHV
NOV57a TFVSAFDSDSIPSWSRFSYFIGSGNENGAFSINPQTGQITVTAELDRETLPIYNLSVLAV NOV57b TFVSAFDSDSIPSWSRFSYFIGSGNENGAFSINPQTGQITVTAELDRETLPIYNLSVLAV NOV57C TFVSAFDSDSIPSWSRFSYFIGSGNENGAFSINPQTGQITVTAELDRETLPIYNLSVLAV NOV57d NOV57e NOV57f TFVSAFDSDSIPSWSRFSYFIGSGNENGAFSINPQTGQITVTAELDRETLPIYNLSVLAV
NOV57a DSGTPSATGSASLLVTLEDINDNGPMLTVSEGEVMENKRPGTLVMTLQSTDPDLPPNQGP NOV57b DSGTPSATGSASLLVTLEDINDNGPMLTVSEGEV ENKRPDTLVMTLQSTDPDLPPNQGP NOV57C DSGTPSATGSASLLVTLEDINDNGPMLTVSEGEVMENKRPGTLVMTLQSTDPDLPPNQGP NOV57d NOV57e NOV57f DSGTPSATGSASLLVTLEDINDNGPMLTVSEGEVMENKRPGTLVMTLQSTDPDLPPNQGP
NOV57a FTYYLLSTGPATSYFSLSTAGVLSTTREIDREQIADFYLSWTKDSGVPQMSSTGTVHIT NOV57b FTYYLLSTGPATSYFSLSTAGVLSTTREIDREQIADFYLSWTKDSGVPQMSSTGTVHIT NOV57C FTYYLLSTGPATSYFSLSTAGVLSTTREIDREQIADFYLSWTKDSGAPQMSSTGTVHIT NOV57d NOV57e NOV57f FTYYLLSTGPATSYFSLSTAGVLSTTREIDREQIADFYLSWTKDSGVPQ-MSSTGTVHIT NOV57a VIDQNDNPSQSRTVEIFVNYYGNLFPGGILGSVKPQDPDVLDSFHCSLTSGVTSLFSIPG
NOV57b VILE
NOV57C VILE
NOV57d
NOV57e
NOV57f VIDQNDNPSQSRTVEIFVNYYGNLFPGGILGSVKPQDPDVLDΞFHCSLTSGVTSLFSIPG
NOV57a GTCDLNSQPRSTDGTFDLTVLSNDGVHSTVTSNIRVFFAGFSNATVDNSILLRLGVPTVK
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f GTCDLNSQPRSTDGTFDLTVLSNDGVHSTVTSNIRVFFAGFSNATVDNSILLRLGVPTVK
NOV57a DFLTNHYLHFLRIASSQLTGLGTAVQLYSAYEENNRTFLLAAVKRNHNQYVNPSGVATFF
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f DFLTNHYLHFLRIASSQLTGLGTAVQLYSAYEENNRTFLLAAVKRN-HNQYVNPSGVATFF
NOV57a ESIKEILLRQSGVKVESVDHDSCVHGPCQNGGSCLRRLAVSSVLKSRESLPVIIV-ANEPL
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f ESIKEILLRQSGVKVESVDHDSCVHGPCQNGGSCLRRLAVSSVLKSRΞSLPVIIVANEPL
NOV57a QPFLCKCLPGYAGSWCEIDIDECLPSPCHSGGTCHNLVGGFSCSCPDGFTGRACERDINE
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f QPFLCKCLPGYAGSWCEIDIDECLPSPCHSGGTCHNLVGGFSCSCPDGFTGRACERDINE
NOV57a CLQSPC-ra.GAICQNFPGSFNCVCKTGYTGMTTFVLFSLRLGKCVNLQSITVNATPALMVV
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f CLQSPC-røGAICQNFPGSFNCVCKTGYTGMTTFVLFSLRLGKCVNLQSITVNATPALMVV
NOV57a PAKVVWILIIVIVHLVSLEHCELNSYGFEELSYMEFPSLDPNNNYIYVKFATIKSHALLL
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f PA-KVVWILIIVIVHLVSLEHCELNSYGFEELSYMEFPSLDP1JNNYIYVKFATIKSHALLL
NOV57a Y-ISlΥDNQTGD-----AEFLALEIAEERLRFSYNLGSGTY--aTTMKKVSDGHFHTVIARRAGMAAS
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f YNYDNQTGD-I---AEFLALEIAEERLRFSYNLGSGTYKLTTMK^
NOV57 LTVDSCSENQEPGYCTVSNVAVSDDWTLDVQPNRVTVGGIRSLEPILQRRGHVESHDFVG NOV57b NOV57C NOV57d
NOV57e
NOV57f LTVDSCSENQEPGYCTVSNVAVSDDWTLDVQPNRVTVGGIRSLEPILQRRGHVESHDFVG
NOV57a CIMEFAVNGRPLEPSQALAAQGILDQYGDFISYCFKEKKCKKVCFTVTPDTALSLEGKGR
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f CIMEFAVNGRPLEPSQALAAQGILDQYGDFISYCFKEKKCKKVCFTVTPDTALSLEGKGR
NOV57a LDYH SQNEKREYLLRQSLRGAMLEPFGVNSLEVKFRTRSENGVLIHIQESSNYTTVKGM
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f LDYHMSQNEKREYLLRQSLRGAMLEPFGVNSLEVKFRTRSENGVLIHIQESSNYTTVKGM
NOV57a CESSVNYCECNPCFNGGSCQSGVDSYYCHCPFGVFGKHCELNSYGFEELSYMEFPSLDPN
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f CESSVNYCECNPCFNGGSCQSGVDSYYCHCPFGVFGKHCELNSYGFEELSYMEFPSLDPN
NOV57a NNYIYVKFATIKSH-ALLLYNYDNQTGDRAEFLALEIAEERLRFSYNLGSGTYKLTTMKKV
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f -IJNYIYVKFATIKSHALLLYNYDNQTGDRAEFLALEIAEERLRFSYNLGSGTYKLTTMKKV
NOV57a SDGHFHTVIARRAGMTLDVQPNRVTVGGIRSLEPILQRRGHVESHDFVGCIMEFAVNGRP
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f SDGHFHTVIARRAGMTLDVQPNRVTVGGIRSLEPILQRRGHVESHDFVGCIMEFAVNGRP
NOV57a LEPSQALAAQGILDQYGDFISYCF---SΕIOCCKK-YASLGLHLGKHSLASISKTDPSVKIGCRG
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f LEPSQALAAQGILDQYGDFISYCFKEKKCKKYASLGLHLGKHSLASISKTDPSVKIGCRG
NOV57a PNICASNPCWGDLLCINQWYAYRCVPPGDCASHPCQNGGSCΞPGLHSGFTCSCPDSHTGR
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f PNICASNPCWGDLLCINQWYAYRCVPPGDCASHPCQNGGSCEPGLHSGFTCSCPDSHTGR
NOV57a TCE1-WVACLGVLCPQGKVCKAGSPAGHVCVLSQGPEEISLPLWAVPAIVGSCATVL-ALLV
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f TCEMWACLGVLCPQGKVCKAGSPAGHVCVLSQGPEEISLPLWAVPAIVGSCATVLALLV NOV57a LSLILCNQCRGKKAKNPKEΞKKPKEKKKKGSENVAFDDPDNIPPYGDDMTVRKQPEGNPK
NOV57b
N0V57C
N0V57d
NOV57e
NOV57f LSLILCNQCRGKKAKNPKEE---^PKEKKKKGSENVAFDDPDNIPPYGDDMTVRKQPEGNPK
N0V57a PDIIERENPYLIYDETDIPHNSETIPSAPLASPEQEIEHYDIDNASSIAPSDADIIQHYK
NOV57b
NOV57C
NOV57d
NOV57e
N0V57f PDIIERENPYLIYDETDIPHNSETIPSAPLASPEQEIEHYDIDNASSIAPSDADIIQHYK
NOV57a QFRSHTPKFSIQRHSPLGFARQSPMPLGASSLTYQPSYGQGLRTSSLSHSACPTPNPLSR
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f QFRSHTPKFSIQRHSPLGFARQSPMPLGASSLTYQPSYGQGLRTSSLSHSACPTPNPLSR
NOV57a HSPAPFSKSSTFY-RNSPARELHLPIRDGNTLEMHGDTCQPGIFNYATRLGRRSKSPQAMA
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f HSPAPFSKSSTFYRNSPARELHLPIRDGNTLEMHGDTCQPGIFNYATRLGRRSKSPQAMA
N0V57a SHGSRPGSRLKQPIGQIPLEΞSPPVGLSIEEVERLNTPRPRNPSICSADHGRSSSEEDCR
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f SHGSRPGSRLKQPIGQIPLESSPPVGLSIEEVERLNTPRPRNPSICSADHGRSSSEEDCR
NOV57a RPLSRTRNPADGIPAPESSSDSDSHESFTCSEMEYDREKPMVYTSRMPKLSQVNESDADD
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f RPLSRTRNPADGIPAPESSSDSDSHESFTCSEMEYDREKPMVYTSRMPKLSQVNESDADD
NOV57a EDNYGARLKPRRYHGRRAEGGPVGTQAAAPGTADNTLPMKLGQQAGTFNWDNLLNWGPGF
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f EDNYGARLKPRRYHGRRAEGGPVGTQAAAPGTADNTLPMKLGQQAGTFNWDNLLNWGPGF
NOV57a GHYVDVFKDLASLPEKAAANEEGKAGTTKPVPKDGEAEQYV
NOV57b
NOV57C
NOV57d
NOV57e
NOV57f GHYVDVFKDLASLPEKAAANEEGKAGTTKPVPKDGEAEQYV
NOV57a (SEQ ID NO 1132)
NOV57b (SEQ ID NO 1134)
NOV57C (SEQ ID NO 1136)
NOV57d (SEQ ID NO 1138)
Further analysis of the NOV57a protein yielded the following properties shown in Table 57C.
Table 57C. Protein Sequence Properties NOV57a
SignalP analysis: Cleavage site between residues 43 and 44
PSORT II analysis:
PSG : a new signal peptide prediction method
N-region: length 11; pos . chg 2 ; neg. chg 2 H-region : length 14 ; peak value 5. 01 PSG score : 0 .61
GvH: von Heijne ' s method for signal seq. recognition GvH score (threshold: -2 . 1) : -0 . 05 possible cleavage site : between 42 and 43
>>> Seems to have a cleavable signal peptide (1 to 42 )
ALOM: Klein et al ' s method for TM region allocation
Init position for calculation: 43
Tentative number of TMS (s) for the threshold 0.5 4
INTEGRAL Likelihood = -0.59 Transmembrane 1753 -1769
INTEGRAL Likelihood = 0.26 Transmembrane 2193 -2209
INTEGRAL Likelihood =-11.25 Transmembrane 3837 -3853
INTEGRAL Likelihood = -9.08 Transmembrane 4488 -4504
PERIPHERAL Likelihood = 1.38 (at 1566)
ALOM score : -11.25 (number of TMSs : 4)
MTOP: Prediction of membrane topology (Hartmann et al.)
Center position for calculation: 21
Charge difference: -0.5 C( 1.0) - N( 1.5)
N >= C: N-terminal side will be inside
>>> membrane topology: type 3a
MITDISC: discrimination of mitochondrial targeting seq R content: 0 Hyd Moment (75): 8.27 Hyd Moment (95) : 10.66 G content: 0 D/E content : 2 S/T content : 0 Score: -6.21
Gavel: prediction of cleavage sites for mitochondrial preseq cleavage site motif not found
NUCDISC: discrimination of nuclear localization signals pat4: PKRR (4) at 228 pat4: HKRK (3) at 1918 pat4: KKPK (4) at 4521 pat4: KKKK (5) at 4526 pat4: KPRR (4) at 4869 pat7: PKRRGYL (5) at 228 pat7: PERRKST (5) at 1588 pat7: PKEKKKK (5) at 4523 bipartite: KKTGQIYVSGILDRKKE at 3227 bipartite: KKAKNPKEEKKPKEKKK at 4512 content of basic residues: 8.4% NLS Score: 3.22
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals: none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal: found KIDTLTSQL at 1926
VAC: possible vacuolar targeting motif: found TLPI at 3349
RNA-binding motif: none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif: none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail: none
Dileucine motif in the tail : none checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: cytoplasmic Reliability: 55.5
COIL: Lupas ' s algorithm to detect coiled-coil regions
1912 I 0.91
1913 A 0.91
1914 L 0.91
1915 N 0.91
1916 A 0.97
1917 H 0.98
1918 K 1.00
1919 R 1.00
1920 K 1.00
1921 Q 1.00
1922 E 1.00
1923 R 1.00
1924 S 1.00
1925 K 1.00
1926 I 1-00
1927 D 1.00
1928 T 1.00 1929 L 1.00
1930 T 1.00
1931 S 1.00
1932 Q 1.00
1933 L 1.00
1934 K 1.00
1935 E 1.00
1936 L 1.00
1937 E 1.00
1938 K 1.00
1939 Q 1.00
1940 E 1.00
1941 Q 1.00
1942 T 1.00
1943 H 1.00
1944 S 1.00
1945 K 1.00
1946 A 0.98
1947 S 0.97
1948 R 0.96
1949 R 0.96
1950 Q 0.96
1951 E 0.96
1952 I 0.92
1953 T 0.73
1954 K 0.59 total: 43 residues
Final Results (k = 9/23) :
47.8 %: endoplasmic reticulum
21.7 %: nuclear
13.0 % : mitochondrial
4.3 % : vacuolar
4.3 %: Golgi
4.3 % : plasma membrane
4.3 %: vesicles of secretory system
>> prediction for CG92813-01 is end (k=23)
A search of the NOV57a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 57D.
In a BLAST search of public sequence databases, the NOV57a protem was found to have homology to the proteins shown in the BLASTP data in Table 57E.
PFam analysis predicts that the NOV57a protein contains the domains shown in the Table
57F.
Example 58.
The NOV58 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 58 A.
Table 58A. NOV58 Sequence Analysis
NOV58a, CG93387-05 SEQ ID NO: 1143 5432 bp DNA Sequence ORF Start: ATG at 187 ORF Stop: TAA at 3991
GGTGCCGAGCACTCCGGACTCTACGTGAACAACAACGGGATCATCTCCTTCCTGAAGGAGGTTTCTCA!
GTTCACCCCAGTGGCCTTCCCCATTGCCAAGGACCGCTGCGTGGTGGCAGCCTTCTGGGCAGATGTGG jACAACCGGCGTGCAGGCGACGTGTACTACCGGGAGGCCACCGACCCAGCCATGCTGCGCCGAGCCACG
GAGGACGTCAGGCACTACTTCCCCGAGCTCCTGGACTTCAATGCCACCTGGGTTTTTGTTGCCACCTG GTACCGAGTGACCTTCTTTGGAGGCAGTTCCTCATCCCCTGTCAACACATTCCAGACTGTGCTCATCA CAGACGGCAAGCTCTCCTTCACCATCTTCAACTATGAGTCCATCGTGTGGACCACAGGCACACACGCC AGCAGCGGGGGCAACGCCACTGGCCTCGGGGGCATCGCAGCCCAGGCTGGCTTCAACGCAGGCGATGG GCAGCGTTACTTCAGTATCCCCGGCTCGCGCACAGCAGACATGGCCGAGGTGGAGACCACCACCAACG TGGGTGTGCCCGGGCGCTGGGCGTTCAGAATCGATGATGCCCAGGTGCGCGTGGGGGGCTGCGGCCAT ACAACGTCCGTGTGCCTGGCCCTGCGCCCCTGCCTCAACGGCGGCAAGTGCATCGACGACTGCGTCAC GGGCAACCCCTCCTACACCTGCTCCTGCCTCTCGGGCTTCACGGGGCGGAGGTGCCACCTGGACGTGA ACGAATGTGCCTCCCAGCCCTGTCAGAATGGTGGGACCTGTACTCACGGCATCAACAGTTTCCGCTGC CAGTGCCCGGCTGGCTTTGGGGGACCCACCTGTGAGACAGCCCAATCCCCCTGTGACACCAAAGAGTG TCAACATGGTGGCCAGTGCCAGGTGGAGAACGGCTCTGCGGTGTGTGTGTGCCAGGCCGGATACACCG GAGCAGCCTGCGAGATGGATGTGGACGACTGCAGCCCTGACCCCTGCCTGAATGGAGGCTCTTGTGTT GACCTAGTGGGGAATTACACCTGCTTGTGTGCCGAGCCCTTCAAGGGACTTCGCTGTGAGACAGGAGA CCATCCAGTGCCAGACGCCTGCCTCTCGGCCCCTTGCCACAATGGGGGCACCTGTGTGGATGCGGACC AGGGCTACGTGTGCGAGTGCCCCGAAGGCTTCATGGGCCTGGACTGCAGGGAGAGAGTCCCCGATGAC TGTGAGTGCCGCAACGGAGGCAGATGCCTGGGCGCCAACACCACCCTCTGCCAGTGCCCCCTGGGATT CTTTGGGCTTCTCTGTGAATTTGAAATCACAGCCATGCCCTGCAACATGAACACACAGTGCCCAGATG GGGGCTACTGCATGGAGCACGGCGGGAGCTACCTCTGCGTCTGCCACACCGACCACAATGCCAGCCAC TCCCTGCCATCACCCTGCGACTCGGACCCCTGCTTCAACGGAGGCTCCTGCGATGCCCATGACGACTC CTACACCTGCGAGTGCCCGCGCGGGTTCCACGGCAAGCACTGCGAGAAAGCCCGGCCACACCTGTGCA GCTCAGGGCCCTGCCGGAACGGGGGCACGTGCAAGGAGGCGGGCGGCGAGTACCACTGCAGCTGCCCC TACCGCTTCACTGGGAGGCACTGTGAGATCGGGAAGCCAGACTCGTGTGCCTCTGGCCCCTGTCACAA CGGCGGCACCTGCTTCCACTACATTGGCAAATACAAGTGTGACTGTCCCCCAGGCTTCTCCGGGCGGC ACTGCGAGATAGCCCCCTCCCCCTGCTTCCGGAGCCCGTGTGTGAATGGGGGCACCTGCGAGGACCGG GACACGGATTTCTTCTGCCACTGCCAAGCAGGGTACATGGGACGCCGGTGCCAGGCAGAGGTGGACTG CGGCCCCCCGGAGGAGGTGAAGCACGCCACACTGCGCTTCAACGGCACGCGGCTGGGCGCGGTGGCCC TGTATGCATGTGACCGTGGCTACAGCCTGAGCGCCCCCAGCCGCATCCGGGTCTGCCAGCCACACGGT GTCTGGAGTGAGCCTCCCCAGTGCCTTGAAATCGATGAGTGCCGGTCTCAGCCGTGCCTGCATGGGGG CTCTTGTCAGGACCGCGTTGCTGGGTACCTGTGCCTCTGCAGCACAGGCTATGAGGGCGCCCACTGTG AGCTGGAGAGGGATGAGTGCCGAGCTCACCCGTGCAGAAATGGAGGGTCCTGCAGGAACCTCCCAGGG GCCTATGTCTGCCGGTGCCCTGCAGGCTTCGTTGGAGTCCACTGTGAGACAGAGGTGGACGCCTGCGA CTCCAGCCCCTGCCAGCATGGAGGCCGGTGTGAGAGCGGCGGCGGGGCCTACCTGTGCGTCTGCCCAG AGAGCTTCTTCGGCTACCACTGCGAGACAGTGAGTGACCCCTGCTTCTCCAGCCCCTGTGGGGGCCGT GGCTATTGCCTGGCCAGCAACGGCTCCCACAGCTGCACCTGCAAAGTGGGCTACACGGGCGAGGACTG CGCCAAAGAGCTCTTCCCACCGACGGCCCTCAAGATGGAGAGAGTGGAGGAGAGTGGGGTCTCTATCT CCTGGAACCCGCCCAATGGTCCAGCCGCCAGGCAGATGCTTGATGGCTACGCGGTCACCTACGTCTCC TCCGACGGCTCCTACCGCCGCACAGACTTTGTGGACAGGACCCGCTCCTCGCACCAGCTCCAGGCCCT GGCGGCCGGCAGGGCCTACAACATCTCCGTCTTCTCAGTGAAGCGAAACAGTAACAACAAGAATGACA TCAGCAGGCCTGCCGTGCTGCTGGCCCGCACGCGACCCCGCCCTGTGGAAGGCTTCGAGGTCACCAAT GTGACGGCTAGCACCATCTCAGTGCAGTGGGCCCTGCACAGGATCCGCCATGCCACCGTCAGTGGGGT CCGTGTGTCCATCCGCCACCCTGAGGCCCTCAGGGACCAGGCCACCGATGTGGACAGGAGTGTGGACA GGTTCACCTTTAGGGCCCTGCTGCCTGGGAAGAGGTACACCATCCAGCTGACCACCCTCAGTGGGCTC AGGGGAGAGGAGCACCCCACAGAGAGCCTGGCCACCGCGCCGACGCACGTGTGGACCCGGCCCCTGCC TCCAGCAAACCTGACCGCCGCCCGAGTCACTGCCACCTCTGCCCACGTGGTCTGGGATGCCCCGACTC CAGGCAGCTTGCTGGAGGCTTATGTCATCAATGTGACCACCAGCCAGAGCACCAAGAGCCGCTATGTC CCCAACGGGAAGCTGGCGTCCTACACGGTGCGCGACCTGCTGCCGGGACGGCGGTACCAGCCCTCTGT
GATAGCAGTGCAGAGCACGGAGCTCGGGCCGCAGCAGCACCAGGGAGGACACCACCCTCGGGTGCTCA AGAACAGACCGCCCCCGGCGCGCCTGCCGGAGCTGCGCCTGCTCAATGACCACAGCGCCCCCGAGACC CCCACCCAGCCCCCCAGGTTCTCGGAGTTTGTGGACGGCAGAGGAAGAGTGAGCGCCAGGTTCGGTGG CTCACCCAGCAAAGCAGCCACCGTGAGATCACAACCCACAGCCTCGGCGCAGCTCGAGAACATGGAGG AAGCCCCCAAGCGGGTCAGCCCGGCCCTCCAGCTCCCTGAACACGGCAGCAAGGACATCGGAAACGTC CCTGGCAACTGTTCAGAAAACCCCTGTCAGAACGGAGGCACTTGTGTGCCGGGCGCAGACGCCCACAG CTGTGACTGCGGGCCAGGGTTCAAAGGCAGACGCTGCGAGCTCGCCTGTATAAAGGTGTCCCGCCCCT GCACAAGGCTGTTCTCCGAGACAAAGGCCTTTCCAGTCTGGGAGGGAGGCGTCTGTCACCACGTGTAT AAAAGAGTCTACCGAGTTCACCAAGACATCTGCTTCAAAGAGAGCTGTGAAAGCACAAGCCTCAAGAA GACCCCAAACAGGAAACAAAGTAAGAGTCAGACACTGGAGAAATCTTAAGGATTTAAGACGTTCTTGT
TACACTCCACCAACCTCACGAGTTTCTAACACCCAGGAAGATGAGGTCTAAAAACTGGATGAAAAAGG
ACACCCTGAGAAAAGGTCCTAGCTGGAGTCAGTCCCCTCTGTGACCTCTCTCCTCAGGCCTCTAGAGG
ACAGATGGCCAGGCCTGTGCACACACCAGCCCACCCTGAGAGACCCCTCTGGGACCAACCACCTGTGA
GTCCTGCGATGCGTTTAAGCAGCCTGTGCCCTCACCCAAGCTGCAGTTCCTGAAGGTGTAGTCTGTGT
CTCTGCGGATGAGATGACAGCTCGCCATTCCCCGGAATCAGTGAGGCTGTCAGTCAGCCACGCTTCTG
CAGTATGCAGAAACCTGTTCTTAGACTCCAAAGCCAGAGAAAGAATTCTCCCTTCGAGGCCCAACAAAj
TTGAGAAGGAACTGTGATGGACCACTTCCAAAACAGAGACGGGGGCAGGGGCTGAAGGGCAGAGACCA!
GGTGATGTCAGAAGGAAAGCCGGGTTGCAGACACAGCCGCCCCTGCTCTGGTCCTCCAGCGTGTTTAT
GACGCTCGTGCAGGTCGACGAGCCATCCTATGGACTAGTTAACACTAAGGTGGAGTTCAGACTTTTTT
AGACAACGGCGCGACTGGCAGCCTTTCTCTATCAAGGGTCAGACGGTAAACGTTTTCAGCTTTGCAG
CCAGAGGTCCCTGTGGCTACAGTAGCGCAGACACAGCCACAGGCATGTCATTGAATGGCTGCGGCTAT
GTTCCAATAAAAACTTATTTACAATAACAGGTGGTGGCCAAATTGGCCCATGGGCCTTATTTGGTGAA!
CCCTGTTCTATGAGATCACCTAGGCTTCAGCCTTAAACAGTGGAAGCCATCCCCTGAATGACAAGTCA!
CAAGGGTATCAAAGAAAGACCCCTGAATTTTCATGGAAAAAGCTATTCAGACCCCTGCTTGGAAAGCT
AAGGCACACTGCCACGAAGCAGCAAGGACGCCTTACAAGTCTCAGTGCAACAGAGATGGACACCTGGG
CTGGGCTGGACAATGTTTAAGGTTCCTTTTAGTCCATGACTCAAGTGATACTGTTTTAGGCTATCAGG
TAGTAAACACGATCTTAGACATCCCCATCTTTGTAAGCAGAACAGTACGGCACTTCACCACATCTGCT
TCCCACCATGCTTCTAAGCAGCTGTCTTCCCCCTGCTAATGTTACAACCAAAGCAGCCACCCCACCTC
CTCTCGTGTTGAGCCTCACGACCGCTGACCCAGCTGGAAAGCCAGCGCCCTGCCGCGTCACCCTGACT
CTGCTCAGAGCCAGCATTCCAGCCACAAAGAGGGCCTCCTTCCTTTCCTCTTTCATAAAAATGTTTTT
TGAAGAGTTAGAGTATATTTTAGGCTTTTTATCTTTATTAAAATTTCATGTGCATGTGTA
NOV58a, CG93387-05 SEQ ID NO: 1144 1268 aa MW at 136576.5kD Protein Sequence
MLRRATEDWHYFPE LDFNATWVFVATWYRVTFFGGSSSSPVNTFQTVLITDGK SFTIF YESIVW TTGTHASSGGNATGLGGIAAQAGFNAGDGQRYFSIPGSRTADMAEVETTTNVGVPGRWAFRIDDAQVR VGGCGHTTSVCLA.LRPCLNGGKCIDDCVTGNPSYTCSCLSGFTGRRCHLDVNECASQPCQNGGTCTHG INSFRCQCPAGFGGPTCETAQSPCDTKECQHGGQCQVENGSAVCVCQAGYTGAACE DVDDCSPDPCL NGGSCVDLVGNYTC CAEPF GLRCETGDHPVPDACLSAPCH GGTCVDADQGYVCECPEGFMGLDCR ERVPDDCECRNGGRC GANTTLCQCPLGFFGLLCEFEITA PC MNTQCPDGGYCMEHGGSYLCVCHT DHNASHS PSPCDSDPCFNGGSCDAHDDSYTCECPRGFHGKHCΞKARPHLCSSGPCRNGGTCKEAGGE AGGGGAGAGGAGCACCCCACAGAGAGCCTGGCCACCGCGCCGACGCACGTGTGGACCCGGCCCCTGCC TCCAGCAAACCTGACCGCCGCCCGAGTCACTGCCACCTCTGCCCACGTGGTCTGGGATGCCCCGACTC CAGGCAGCTTGCTGGAGGCTTATGTCATCAATGTGACCACCAGCCAGAGCACCAAGAGCCGCTATGTC CCCAACGGGAAGCTGGCGTCCTACACGGTGCGCGACCTGCTGCCGGGACGGCGGTACCAGCCCTCTGT
GATAGCAGTGCAGAGCACGGAGCTCGGGCCGCAGCACAGCGAGCCCGCCCACCTCTACATCATCACCT CCCCCAGGGATGGCGCTGACAGACGCTGGCACCAGGGAGGACACCACCCTCGGGTGCTCAAGAACAGA CCGCCCCCGGCGCGCCTGCCGGAGCTGCGCCTGCTCAATGACCACAGCGCCCCCGAGACCCCCACCCA GCCCCCCAGGTTCTCGGAGTTTGTGGACGGCAGAGGAAGAGTGAGCGCCAGGTTCGGTGGCTCACCCA GCAAAGCAGCCACCGTGAGATCACAACCCACAGCCTCGGCGCAGCTCGAGAACATGGAGGAAGCCCCC AAGCGGGTCAGCCCGGCCCTCCAGCTCCCTGAACACGGCAGCAAGGACATCGGAAACGTCCCTGGCAA CTGTTCAGAAAACCCCTGTCAGAACGGAGGCACTTGTGTGCCGGGCGCAGACGCCCACAGCTGTGACT GCGGGCCAGGGTTCAAAGGCAGACGCTGCGAGCTCGCCTGTATAAAGGTGTCCCGCCCCTGCACAAGG CTGTTCTCCGAGACAAAGGCCTTTCCAGTCTGGGAGGGAGGCGTCTGTCACCACGTGTATAAAAGAGT CTACCGAGTTCACCAAGACATCTGCTTCAAAGAGAGCTGTGAAAGCACAAGCCTCAAGAAGACCCCAA ACAGGAAACAAAGTAAGAGTCAGACACTGGAGAAATCTTAAGAAAGAAGGAACAGGCAATGTAGAGAA
GCTGTCAAATGGTGGACTCCCAAACCGTTCCACCACTGCCTCAAAAAACATCTTGACCAGCAGAAGGT
GGAGCTCAATGAAGGGTCAAGAGCTCAGCGAAGGGTAACTAGGTGGAACTGAGAGAAACCACGTTCAC
AAACTGCGTAATGCGGACTTCCTGCCGCCCTGGAGACCCCTCAACTCTCTGTCCATGTAAGGCCCTTA!
AAGAGATTCATAGGAACTTTGAGCATCCTTNAGATGTGAATATTGTTGGGGGCAGGATTGGGGGATAA
ATAGAAGGGAAGGCCACTCCACGAGTATCCCATGAACCTGGCCAGATCT
NOV58b, CG93387-01 SEQ ID NO: 1146 1288 aa MW at 138908.1kD Protein Sequence
MLRRATEDVRHYFPELLDFNATWVFVATWYRVTFFGGSSSSPVNTFQTVLITDGKLSFTIFNYESIVW
TTGTHASSGGNATG GGIAAQAGFNAGDGQRYFSIPGSRTADiMAEVETTT VGVPGRWAFRIDDAQVR
VGGCGHTTSVCLALRPC NGGKCIDDCVTGNPSYTCSC SGFTGRRCH DVNECASQPCQNGGTCTHG
INSFRCQCPAGFGGPTCETAQSPCDTKECQHGGQCQVENGSAVCVCQAGYTGAACE DVDDCSP.DPCL
NGGSCVD VG--N-ΥTCLCAEPFKGLRCETGDHPVPDAC SAPCHNGGTCVDADQGYVCECPEGF GLDCR
ERVPDDCECRNGGRCLGA-NTTLCQCPLGFFGLLCEFEITAMPC MNTQCPDGGYCMEHGGSYLCVCHT
DHNASHS PSPCDSDPCFNGGSCDAHDDSYTCECPRGFHG HCEKARPHLCSSGPCR GGTCKEAGGE
YHCSCPYRFTGRHCEIGKPDSCASGPCHNGGTCFHYIGKYKCDCPPGFSGRHCEIAPSPCFRSPCVNG
GTCEDRDTDFFCHCQAGYMGRRCQAEVDCGPPEEV HATLRFNGTRLGAVALYACDRGYS SAPSRIR
VCQPHGVWSEPPQCLEIDECRSQPC HGGSCQDRVAGYLCLCSTGYEGAHCELERDECRAHPCRNGGS
CR PGAYVCRCPAGFVGVHCETEVDACDSSPCQHGGRCESGGGAYLCVCPESFFGYHCETVSDPCFS
SPCGGRGYC ASNGSHSCTC---WGYTGEDC-AKELFPPTAL MERVEESGVSISWNPPNGPAARQMLDGY
AVTYVSSDGSYRRTDFVDRTRSSHQ Q-A AAGRAYNISVFSV-KRNSNN---s^-IDISRPAVL ARTRPRPVE
GFEVTNVTASTI S VQWALHRIRHATVSGVRVS IRHPE-ALR-DQATDVDRSVDRFTFRAL PGKRYTIQL
TTLSGLRGEEHPTESLATAPT---TWTRPLPP-AOTjTAARVTATSAHVVWDAPTPGSLLEAYVI---W^
TKSRYVPNG-is ASYTVRDLLPGRRYQPSVIAVQSTELGPQHSEPAH YIITSPRDGADRRWHQGGHHP
RVLKNRPPPAR PELRLLNDHSAPETPTQPPRFSEFVDGRGRVSARFGGSPSKAATVRSQPTASAQ E
NMEEAPKRVSPA QLPEHGSKDIGNVPGNCSENPCQNGGTCVPGADAHSCDCGPGFKGRRCELACIKV
SRPCTRLFSETKAFPVTATEGGVCHHVYKRVYRVHQDICFKESCESTSLKKTPNRKQSKSQT EKS
NOV58c, CG93387-02 SEQ ID NO: 1147 4413 bp DNA Sequence ORF Start: ATG at 181 ORF Stop: TAG at 4405
GAGCACTCCGGACTCTACGTGAACAACAACGGGATCATCTCCTTCCTGAAGGAGGTTTCTCAGTTCAC
CCCAGTGGCCTTCCCCATTGCCAAGGACCGCTGCGTGGTGGCAGCCTTCTGGGCAGATGTGGACAACC
GGCGTGCAGGCGACGTGTACTACCGGGAGGCCACCGACCCAGCCATGCTGCGCCGAGCCACGGAGGAC
GTCAGGCACTACTTCCCCGAGCTCCTGGACTTCAATGCCACCTGGGTTTTTGTTGCCACCTGGTACCG AGTGACCTTCTTTGGAGGCAGTTCCTCATCCCCTGTCAACACATTCCAGACTGTGCTCATCACAGACG GCAAGCTCTCCTTCACCATCTTCAACTATGAGTCCATCGTGTGGACCACAGGCACACACGCCAGCAGC GGGGGCAACGCCACTGGCCTCGGGGGCATCGCAGCCCAGGCTGGCTTCAACGCAGGCGATGGGCAGCG TTACTTCAGTATCCCCGGCTCGCGCACAGCAGACATGGCCGAGGTGGAGACCACCACCATCGTGGTTG TGCCCGGGCGCTGGGCGTTCATAATCGATGATGCCCAGGTGCGCGTGGGGGGCTGCGGCCATACAACG TCCGTGTGCCTGGCCCTGCGCCCCTGCCTCAACGGCGGCAAGTGCATCGACGACTGCGTCACGGGCAA CCCCTCCTACACCTGCTCCTGCCTCTCGGGCTTCACGGGGCGGAGGTGCCACCTGGACGTGAACGAAT GTGCCTCCCAGCCCTGTCAGAATGGTGGGACCTGTACTCACGGCATCAACAGTTTCCGCTGCCAGTGC CCGGCTGGCTTTGGGGGACCCACCTGTGAGACAGCCCAATCCCCCTGTGACACCAAAGAGTGTCAACA TGGTGGCCAGTGCCAGGTGGAGAATGGCTCTGCGGTGT3TGTGTGCCAGGCCGGATACACCGGAGCAG CCTGCGAGATGGATGTGGACGACΓGCAGCCCTGACCCCTGCCTGAATGGAGGCTCTTGTGTTGACCTA GTGGGGAATTACACCTGCTTGTGTGCCGAGCCCTTCAAGGGACTTCGCTGTGAGACAGGAGACCATCN NCAGTGCCAGACGCCTGCCTCTCGGCCCCTTGCCACAATGGGGGCACCTGTGTGGATGCGGACCAGGG CTACGTGTGCGAGTGCCCCGAAGGCTTCATGGGCCTGGACTGCAGGGAGAGAGTCCCCGATGACTGTG AGTGCCGCAACGGAGGCAGATGCCTGGGCGCCAACACCACCCTCTGCCCAGTGCCCCCTGGGATTCTT TGGGCTTCTCTGTGAATTTGAAATCACAGCCATGCCCTGCAACATGAACACACAGTGCCCAGATGGGG GCTACTGCATGGAGCACGGCGGGAGCTACCTCTGCGTCTGCCACACCGACCACAATGCCAGCCACTCC CTGCCATCACCCTGCGACTCGGACCCCTGCTTCAACGGAGGCTCCTGCGATGCCCATGACGACTCCTA CACCTGCGAGTGCCCGCGCGGGTTCCACGGCAAGCACTGCGAGAAAGCCCGGCCACACCTGTGCAGCT CAGGGCCCTGCCGGAACGGGGGCACGTGCAAGGAGGCGGGCGGCGAGTACCACTGCAGCTGCCCCTAC CGCTTCACTGGGAGGCACTGTGAGATCGGGAAGCCAGACTCGTGTGCCTCTGGCCCCTGTCACAACGG CGGCACCTGCTTCCACTACATTGGCAAATACAAGTGTGACTGTCCCCCAGGCTTCTCCGGGCGGCACT GCGAGATAGCCCCCTCCCCCTGCTTCCGGAGCCCGTGTGTGAATGGGGGCACCTGCGAGGACCGGGAC ACGGATTTCTTCTGCCACTGCCAAGCAGGGTACATGGGACGCCGGTGCCAGGCAGAGGTGGACTGCGG CCCCCCGGAGGAGGTGAAGCACGCCACACTGCGCTTCAACGGCACGCGGCTGGGCGCGGTGGCCCTGT ATGCATGTGACCGTGGCTACAGCCTGAGCGCCCCCAGCCGCATCCGGGTCTGCCAGCCACACGGTGTC TGGAAAATCGATGAGTGCCGGTCTCAGCCGTGCCTGCATGGGGGCTCTTGTCAGGACCGCGTTGCTGG GTACCTGTGCCTCTGCAGCACAGGCTATGAGGGCGCCCACTGTGAGCTGGAGAGGGATGAGTGCCGAG CTCACCCGTGCAGAAATGGAGGGTCCTGCAGGAACCTCCCAGGGGCCTATGTCTGCCGGTGCCCTGCA GGCTTCGTTGGAGTCCACTGTGAGACAGAGGTGGACGCCTGCGACTCCAGCCCCTGCCAGCATGGAGG CCGGTGTGAGAGCGGCGGCGGGGCCTACCTGTGCGTCTGCCCAGAGAGCTTCTTCGGCTACCACTGCG AGACAGTGAGTGACCCCTGCTTCTCCAGCCCCTGTGGGGGCCGTGGCTATTGCCTGGCCAGCAACGGC TCCCACAGCTGCACCTGCAAAGTGGGCTACACGGGCGAGGACTGCGCCAAAGAGCTCTTCCCACCGAC GGCCCTCAAGATGGAGAGAGTGGAGGAGAGTGGGGTCTCTATCTCCTGGAACCCGCCCAATGGTCCAG CCGCCAGGCAGATGCTTGATGGCTACGCGGTCACCTACGTCTCCTCCGACGGCTCCTACCGCCGCACA GACTTTGTGGACAGGACCCGCTCCTCGCACCAGCTCCAGGCCCTGGCGGCCGGCAGGGCCTACAACAT CTCCGTCTTCTCAGTGAAGCGAAACAGTAACAACAAGAATGACATCAGCAGGCCTGCCGTGCTGCTGG CCCGCACGCGACCCCGCCCTGTGGAAGGCTTCGAGGTCACCAATGTGACGGCTAGCACCATCTCAGTG CAGTGGGCCCTGCACAGGATCCGCCATGCCACCGTCAGTGGGGTCCGTGTGTCCATCCGCCACCCTGA GGCCCTCAGGGACCAGGCCACCGATGTGGACAGGAGTGTGGACAGGTTCACCTTTAGGGCCCTGCTGC CTGGGAAGAGGTACACCATCCAGCTGACCACCCTCAGTGGGCTCAGGGGAGAGGAGCACCCCACAGAG AGCCTGGCCACCGCGCCGACGCACGTGTGGACCCGGCCCCTGCCTCCAGCAAACCTGACCGCCGCCCG AGTCACTGCCACCTCTGCCCACGTGGTCTGGGATGCCCCGACTCCAGGCAGCTTGCTGGAGGCTTATG TCATCAATGTGACCACCAGCCAGAGCACCAAGAGCCGCTATGTCCCCAACGGGAAGCTGGCGTCCTAC ACGGTGCGCGACCTGCTGCCGGGACGGCGGTACCAGCTCTCTGTGATAGCAGTGCAGAGCACGGAGCT
CGGGCCGCAGCACAGCGAGCCCGCCCACCTCTACATCATCACCTCCCCCAGGGATGGCGCTGACAGAC GCTGGCACCAGGGAGGACACCACCCTCGGGTGCTCAAGAACAGACCGCCCCCGGCGCGCCTGCCGGAG CTGCGCCTGCTCAATGACCACAGCGCCCCCGAGACCCCCACCCAGCCCCCCAGGTTCTCGGAGCTTGT GGACGGCAGAGGAAGAGTGAGCGCCAGGTTCGGTGGCTCACCCAGCAAAGCAGCCACCGTGAGATCAC GTCCTGTCCCCTACATGATGAGCCCACCCCCACCGCCAGCGCAGTCTCCAGCCAGTGACCCCCACCCC GACTGTGCACAAGGCGCGGGGCTCGTGGGCCGCCGGCAGCATGCACCTCCATGGCAGGAGGGGCAGCT CGGACATCCGTGCTCCCTGAGATATAGAAGCACTCAAAAGGGTGGCCCCAGGACCATCCCGGGTGCAA AGCAGCTGCGCCGTGTGGTCACCGCCTGGCTTCTCCTAGAACCCACAGCCTCGGCGCAGCTCGAGAAC ATGGAGGAAGCCCCCAAGCGGGTCAGCCTGGCCCTCCAGCTCCCTGAACACGGCAGCAAGGACATCGG AAGTTATGCAGGACCTGAACTGTCTCCTAGTCCGGGGCTCTGCCTCGTGAGGATCGAGGCCAGCACGT CCCTGCAGGGCACCAAGCATCTGCTGAGCACCTGCAGCACACAAGCAAAGGAGCAGGGTGGAGCCTTC ACGCTGCCGTGCCTGTGTGGACCAGTCCAGGGTGACCACGGGGTAGGTGAGGGAAAGCCTGTCTTCAC AGACCACTCTCCAGCTGACGTCCCTGGCAACTGTTCAGAAAACCCCTGTCAGAACGGAGGCACTTGTG TGCCGGGCGCAGACGCCCACAGCTGTGACTGCGGGCCAGGGTTCAAAGGCAGACGCTGCGAGCTCGGT ATAAAAGAGTCTACCGAGTTCACCAAGACATCTGCTTCAAAGAGAGCTGTGAAAGCACAAGCCTCAAG AAGACCCCAAACAGGTGCCTCTGGGGAGCAGGCCCATGCCGTGTCCTGCΑTGTAG-t -Sri-sTNN
NOV58c, CG93387-02 SEQ ID NO: 1148 1408 aa MW at 150587.4kD Protein Sequence
MLR-RATEDVRHYFPEL DFNATWVFVATWYRVTFFGGSSSSPVNTFQTVLITDGKLSFTIFNYESIVW TTGTHASSGGNATGLGGIAAQAGFNAGDGQRYFSIPGSRTAD- AEVETTTIVWPGRWAFIIDDAQVR VGGCGHTTSVCLALRPCLNGGKCIDDCVTGNPSYTCSCLSGFTGRRCHLDV ECASQPCQNGGTCTHG INSFRCQCPAGFGGPTCETAQSPCDTKECQHGGQCQVENGSAVCVCQAGYTGAACEMDV-DDCSPDPCL NGGSCVD VGNYTCLCAEPFKG RCETGDHXQCQTPASRPLATMGAPVW RTRATCASAPKASWAWTA GRESPMTVSAATEADAWAPTPPSAQCPLGFFG CEFEITAMPOsTMNTQCPDGGYCMΞHGGSYLCVCH TDHNASHSLPSPCDSDPCFNGGSCDA-HDDSYTC EYHCSCPYRFTGRHCEIGKPDSCASGPCHNGGTCFHYIGKYKCDCPPGFSGRHCEIAPSPCFRSPCVN GGTCEDRDTDFFCHCQAGYMGRRCQAEVDCGPPEEVKHAT RFNGTRLGAVALYACDRGYSLSAPSRI RVCQPHGVWKIDECRSQPC HGGSCQDRVAGY CLCSTGYEGAHCELERDECRAHPCRNGGSCRNLPG AYVCRCPAGFVGVHCETEVDACDSSPCQHGGRCESGGGAY CVCPESFFGYHCETVSDPCFSSPCGGR GYCLASNGSHSCTCKVGYTGEDCAKELFPPT-ALKMERVEESGVSISWNPPNGPAARQMLDGYAVTYVS SDGSYRRTDFVDRTRSSHQLQALAAG-E^YNISVFSV -l--lTSlTOK-ISroiSRPAV LARTRPRPVEGFEVTN VTASTISVQWA HRIRHATVSGVRVSIRHPEALRDQATDV-DRSVDRFTFR-AL PGKRYTIQLTTLSGL RGEEHPTESLATAPTHVWTRPLPPA TAARVTATSAHWWDAPTPGS LEAYVINVTTSQSTKSRYV PNGKLASYTVRDL- PGRRYQLSVIAVQSTELGPQHSEPAHLYIITSPRDGADRRWHQGGHHPRVLKNR PPPARLPELRLLNDHSAPETPTQPPRFSE VDGRGRVSARFGGSPSKAATVRSRPVPY SPPPPPAQ SPASDPHPDCAQGAGLVGRRQHAPPWQEGQLGHPCSLRYRSTQ GGPRTIPGAKQLRRWTAWL LEP TASAQLEN EEAPKRVSLALQLPEHGSKDIGSYAGPELSPSPGLCLVRIEASTSLQGTKH LSTCSTQ AKEQGGAFTLPCLCGPVQGDHGVGEGKPVFTDHSPADVPGNCSENPCQNGGTCVPG-ADAHSCDCGPGF KGRRCE GI---SΕSTEFTKTSASKRAVKAQASRRPQTGASGEQAHAVSC
NOV58d, CG93387-03 SEQ ID NO: 1149 2877 bp DNA Sequence ORF Start: ATG at 6 ORF Stop: TAA at 2868
GCTTCATGGGCCTGGACTGCAGGGAGAGAGTCCCCGATGACTGTGAGTGCCGCAACGGAGGCAGATGC
CTGGGCGCCAACACCACCCTCTGCCAGTGCCCCCTGGGATTCTTTGGGCTTCTCTGTGAATTTGAAAT CACAGCCATGCCCTGCAACATGAACACACAGTGCCCAGATGGGGGCTACTGCATGGAGCACGGCGGGA GCTACCTCTGCGTCTGCCACACCGACCACAATGCCAGCCACTCCCTGCCATCACCCTGCGACTCGGAC CCCTGCTTCAACGGAGGCTCCTGCGATGCCCATGACGACTCCTACACCTGCGAGTGCCCGCGCGGGTT CCACGGCAAGCACTGCGAGAAAGCCCGGCCACACCTGTGCAGCTCAGGGCCCTGCCGGAACGGGGGCA CGTGCAAGGAGGCGGGCGGCGAGTACCACTGCAGCTGCCCCTACCGCTTCACTGGGAGGCACTGTGAG ATCGGGAAGCCAGACTCGTGTGCCTCTGGCCCCTGTCACAACGGCGGCACCTGCTTCCACTACATTGG CAAATACAAGTGTGACTGTCCCCCAGGCTTCTCCGGGCGGCACTGCGAGATAGCCCCCTCCCCCTGCT TCCGGAGCCCGTGTGTGAATGGGGGCACCTGCGAGGACCGGGACACGGATTTCTTCTGCCACTGCCAA GCAGGGTACATGGGACGCCGGTGCCAGGCAGAGGTGGACTGCGGCCCCCCGGAGGAGGTGAAGCACGC CACACTGCGCTTCAACGGCACGCGGCTGGGCGCGGTGGCCCTGTATGCATGTGACCGTGGCTACAGCC TGAGCGCCCCCAGCCGCATCCGGGTCTGCCAGCCACACGGTGTCTGGAGTGAGCCTCCCCAGTGCCTT GAAATCGATGAGTGCCGGTCTCAGCCGTGCCTGCATGGGGGCTCTTGTCAGGACCGCGTTGCTGGGTA CCTGTGCCTCTGCAGCACAGGCTATGAGGGCGCCCACTGTGAGCTGGAGAGGGATGAGTGCCGAGCTC ACCCGTGCAGAAATGGAGGGTCCTGCAGGAACCTCCCAGGGGCCTATGTCTGCCGGTGCCCTGCAGGC TTCGTTGGAGTCCACTGTGAGACAGAGGTGGACGCCTGCGACTCCAGCCCCTGCCAGCATGGAGGCCG GTGTGAGAGCGGCGGCGGGGCCTACCTGTGCGTCTGCCCAGAGAGCTTCTTCGGCTACCACTGCGAGA CAGTGAGTGACCCCTGCTTCTCCAGCCCCTGTGGGGGCCGTGGCTATTGCCTGGCCAGCAACGGCTCC CACAGCTGCACCTGCAAAGTGGGCTACACGGGCGAGGACTGCGCCAAAGAGCTCTTCCCACCGACGGC CCTCAAGATGGAGAGAGTGGAGGAGAGTGGGGTCTCTATCTCCTGGAACCCGCCCAATGGTCCAGCCG CCAGGCAGATGCTTGATGGCTACGCGGTCACCTACGTCTCCTCCGACGGCTCCTACCGCCGCACAGAC TTTGTGGACAGGACCCGCTCCTCGCACCAGCTCCAGGCCCTGGCGGCCGGCAGGGCCTACAACATCTC CGTCTTCTCAGTGAAGCGAAACAGTAACAACAAGAATGACATCAGCAGGCCTGCCGTGCTGCTGGCCC GCACGCGACCCCGCCCTGTGGAAGGCTTCGAGGTCACCAATGTGACGGCTAGCACCATCTCAGTGCAG TGGGCCCTGCACAGGATCCGCCATGCCACCGTCAGTGGGGTCCGTGTGTCCATCCGCCACCCTGAGGC CCTCAGGGACCAGGCCACCGATGTGGACAGGAGTGTGGACAGGTTCACCTTTAGGGCCCTGCTGCCTG GGAAGAGGTACACCATCCAGCTGACCACCCTCAGTGGGCTCAGGGGAGAGGAGCACCCCACAGAGAGC CTGGCCACCGCGCCGACGCACGTGTGGACCCGGCCCCTGCCTCCAGCAAACCTGACCGCCGCCCGAGT CACTGCCACCTCTGCCCACGTGGTCTGGGATGCCCCGACTCCAGGCAGCTTGCTGGAGGCTTATGTCA TCAATGTGACCACCAGCCAGAGCACCAAGAGCCGCTATGTCCCCAACGGGAAGCTGGCGTCCTACACG GTGCGCGACCTGCTGCCGGGACGGCGGTACCAGCCCTCTGTGATAGCAGTGCAGAGCACGGAGCTCGG GCCGCAGCACAGCGAGCCCGCCCACCTCTACATCATCACCTCCCCCAGGGATGGCGCTGACAGACGCT GGCACCAGGGAGGACACCACCCTCGGGTGCTCAAGAACAGACCGCCCCCGGCGCGCCTGCCGGAGCTG CGCCTGCTCAATGACCACAGCGCCCCCGAGACCCCCACCCAGCCCCCCAGGTTCTCGGAGTTTGTGGA CGGCAGAGGAAGAGTGAGCGCCAGGTTCGGTGGCTCACCCAGCAAAGCAGCCACCGTGAGATCACAAC CCACAGCCTCGGCGCAGCTCGAGAACATGGAGGAAGCCCCCAAGCGGGTCAGCCCGGCCCTCCAGCTC CCTGAACACGGCAGCAAGGACATCGGAAACGTCCCTGGCAACTGTTCAGAAAACCCCTGTCAGAACGG AGGCACTTGTGTGCCGGGCGCAGACGCCCACAGCTGTGACTGCGGGCCAGGGTTCAAAGGCAGACGCT GCGAGCTCGCCTGTATAAAGGTGTCCCGCCCCTGCACAAGGCTGTTCTCCGAGACAAAGGCCTTTCCA GTCTGGGAGGGAGGCGTCTGTCACCACGTGTATAAAAGAGTCTACCGAGTTCACCAAGACATCTGCTT CAAAGAGAGCTGTGAAAGCACAAGCCTCAAGAAGACCCCAAACAGGAAACAAAGTAAGAGTCAGACAC TGGAGAAATCT-rAAGAAAGAA NOV58d, CG93387-03 SEQ ID NO: 1150 954 aa MW at l03791.4 D Protein Sequence
MGLDCRERVPDDCEC-I^GGRCLGA-NTTLCQCP GFFG CEFEIT-AMPCNMNTQCPDGGYC EHGGSY CVCHTDHNASHS PSPCDSDPCFNGGSCDAHDDSYTCECPRGFHGKHCEKARPH CSSGPCR GGTC
KEAGGEYHCSCPYRFTGRHCEIGKPDSCASGPCHNGGTCF-HYIGKYKCDCPPGFSGRHCEIAPSPCFR
SPCV GGTCEDRDTDFFCHCQAGYMGRRCQAEVDCGPPEEVKHATLRFNGTR GAVALYACDRGYS S
APSRIRVCQPHGVWSEPPQCLEIDECRSQPCLHGGSCQDRVAGYLC CSTGYEGAHCELERDECRAHP
CR-NGGSCRNLPGAYVCRCPAGFVGVHCETEVDACDSSPCQHGGRCESGGGAY CVCPESFFGYHCETV
SDPCFSSPCGGRGYC ASNGSHSCTCKVGYTGEDCAKELFPPTA MERVEESGVSISWNPPNGPAAR
QMLDGYAVTYVS SDGS YRRTDFVDRTRS SHQLQAL AAGRAYNI S VFS VKRNSN KND I SRPAVLLART
RPRPVEGFEVTNVTASTISVQWALHRIRHATVSGVRVSIRHPEA RDQATDVDRSVDRFTFRALLPGK
RYTIQ TTLSGLRGEEHPTES--^TAPT TRP PPANLTAARVTATSAI-iVVWDAPTPGS LEAYVIN
VTTSQSTKSRYVPNG-KLASYTVRDLLPGRRYQPSVIAVQSTELGPQHSΞPAH YIITSPRDGADRRWH
QGGHHPRVLKNRPPPARLPELR LNDHSAPETPTQPPRFSEFVDGRGRVSARFGGSPSKAATVRSQPT
ASAQ ElMEEAP---αiVSPALQLPEHGS-KDIGNVPGNCSENPCQNGGTCVPGADAHSCDCGPGFKGRRCE
LACIKVSRPCTR FSETKAFPVWEGGVCHHVY-i VYRVHQDICFKESCESTSLKKTP-^
KS
NOV58e, CG93387-04 j SEQ ID NO: 1151 7459 bp
DNA Sequence ORF Start: ATG at 182 (ORF Stop: TAA at 4046
GAGCACTCCGGACTCTACGTGAACAACAACGGGATCATCTCCTTCCTGAAGGAGGTTTCTCAGTTTCA
CCCCAGTGGCCTTCCCCATTGCCAAGGACCGCTGCGTGGTGGCAGCCTTCTGGGCAGATGTGGACAAC
CGGCGTGCAGGCGACGTGTACTACCGGGAGGCCACCGACCCAGCCATGCTGCGCCGAGCCACGGAGGA
CGTCAGGCACTACTTCCCCGAGCTCCTGGACTTCAATGCCACCTGGGTTTTTGTTGCCACCTGGTACC GAGTGACCTTCTTTGGAGGCAGTTCCTCATCCCCTGTCAACACATTCCAGACTGTGCTCATCACAGAC GGCAAGCTCTCCTTCACCATCTTCAACTATGAGTCCATCGTGTGGACCACAGGCACACACGCCAGCAG CGGGGGCAACGCCACTGGCCTCGGGGGCATCGCAGCCCAGGCTGGCTTCAACGCAGGCGATGGGCAGC GTTACTTCAGTATCCCCGGCTCGCGCACAGCAGACATGGCCGAGGTGGAGACCACCACCAACGTGGGT GTGCCCGGGCGCTGGGCGTTCAGAATCGATGATGCCCAGGTGCGCGTGGGGGGCTGCGGCCATACAAC GTCCGTGTGCCTGGCCCTGCGCCCCTGCCTCAACGGCGGCAAGTGCATCGACGACTGCGTCACGGGCA ACCCCTCCTACACCTGCTCCTGCCTCTCGGGCTTCACGGGGCGGAGGTGCCACCTGGACGTGAACGAA TGTGCCTCCCAGCCCTGTCAGAATGGTGGGACCTGTACTCACGGCATCAACAGTTTCCGCTGCCAGTG CCCGGCTGGCTTTGGGGGACCCACCTGTGAGACAGCCCAATCCCCCTGTGACACCAAAGAGTGTCAAC ATGGTGGCCAGTGCCAGGTGGAGAATGGCTCTGCGGTGTGTGTGTGCCAGGCCGGATACACCGGAGCA GCCTGCGAGATGGATGTGGACGACTGCAGCCCTGACCCCTGCCTGAATGGAGGCTCTTGTGTTGACCT AGTGGGGAATTACACCTGCTTGTGTGCCGAGCCCTTCAAGGGACTTCGCTGTGAGACAGGAGACCATC CAGTGCCAGACGCCTGCCTCTCGGCCCCTTGCCACAATGGGGGCACCTGTGTGGATGCGGACCAGGGC TACGTGTGCGAGTGCCCCGAAGGCTTCATGGGCCTGGACTGCAGGGAGAGAGTCCCCGATGACTGTGA GTGCCGCAACGGAGGCAGATGCCTGGGCGCCAACACCACCCTCTGCCAGTGCCCCCTGGGATTCTTTG GGCTTCTCTGTGAATTTGAAATCACAGCCATGCCCTGCAACATGAACACACAGTGCCCAGATGGGGGC TACTGCATGGAGCACGGCGGGAGCTACCTCTGCGTCTGCCACACCGACCACAATGCCAGCCACTCCCT GCCATCACCCTGCGACTCGGACCCCTGCTTCAACGGAGGCTCCTGCGATGCCCATGACGACTCCTACA CCTGCGAGTGCCCGCGCGGGTTCCACGGCAAGCACTGCGAGAAAGCCCGGCCACACCTGTGCAGCTCA GGGCCCTGCCGGAACGGGGGCACGTGCAAGGAGGCGGGCGGCGAGTACCACTGCAGCTGCCCCTACCG CTTCACTGGGAGGCACTGTGAGATCGGGAAGCCAGACTCGTGTGCCTCTGGCCCCTGTCACAACGGCG GCACCTGCTTCCACTACATTGGCAAATACAAGTGTGACTGTCCCCCAGGCTTCTCCGGGCGGCACTGC GAGATAGCCCCCTCCCCCTGCTTCCGGAGCCCGTGTGTGAATGGGGGCACCTGCGAGGACCGGGACAC GGATTTCTTCTGCCACTGCCAAGCAGGGTACATGGGACGCCGGTGCCAGGCAGAGGTGGACTGCGGCC CCCCGGAGGAGGTGAAGCACGCCACACTGCGCTTCAACGGCACGCGGCTGGGCGCGGTGGCCCTGTAT GCATGTGACCGTGGCTACAGCCTGAGCGCCCCCAGCCGCATCCGGGTCTGCCAGCCACACGGTGTCTG GAGTGAGCCTCCCCAGTGCCTTGAAATCGATGAGTGCCGGTCTCAGCCGTGCCTGCATGGGGGCTCTT GTCAGGACCGCGTTGCTGGGTACCTGTGCCTCTGCAGCACAGGCTATGAGGGCGCCCACTGTGAGCTG GAGAGGGATGAGTGCCGAGCTCACCCGTGCAGAAATGGAGGGTCCTGCAGGAACCTCCCAGGGGCCTA TGTCTGCCGGTGCCCTGCAGGCTTCGTTGGAGTCCACTGTGAGACAGAGGTGGACGCCTGCGACTCCA GCCCCTGCCAGCATGGAGGCCGGTGTGAGAGCGGCGGCGGGGCCTACCTGTGCGTCTGCCCAGAGAGC TTCTTCGGCTACCACTGCGAGACAGTGAGTGACCCCTGCTTCTCCAGCCCCTGTGGGGGCCGTGGCTA TTGCCTGGCCAGCAACGGCTCCCACAGCTGCACCTGCAAAGTGGGCTACACGGGCGAGGACTGCGCCA AAGAGCTCTTCCCACCGACGGCCCTCAAGATGGAGAGAGTGGAGGAGAGTGGGGTCTCTATCTCCTGG AACCCGCCCAATGGTCCAGCCGCCAGGCAGATGCTTGATGGCTACGCGGTCACCTACGTCTCCTCCGA CGGCTCCTACCGCCGCACAGACTTTGTGGACAGGACCCGCTCCTCGCACCAGCTCCAGGCCCTGGCGG CCGGCAGGGCCTACAACATCTCCGTCTTCTCAGTGAAGCGAAACAGTAACAACAAGAATGACATCAGC AGGCCTGCCGTGCTGCTGGCCCGCACGCGACCCCGCCCTGTGGAAGGCTTCGAGGTCACCAATGTGAC GGCTAGCACCATCTCAGTGCAGTGGGCCCTGCACAGGATCCGCCATGCCACCGTCAGTGGGGTCCGTG TGTCCATCCGCCACCCTGAGGCCCTCAGGGACCAGGCCACCGATGTGGACAGGAGTGTGGACAGGTTC ACCTTTAGGGCCCTGCTGCCTGGGAAGAGGTACACCATCCAGCTGACCACCCTCAGTGGGCTCAGGGG AGAGGAGCACCCCACAGAGAGCCTGGCCACCGCGCCGACGCACGTGTGGACCCGGCCCCTGCCTCCAG CAAACCTGACCGCCGCCCGAGTCACTGCCACCTCTGCCCACGTGGTCTGGGATGCCCCGACTCCAGGC AGCTTGCTGGAGGCTTATGTCATCAATGTGACCACCAGCCAGAGCACCAAGAGCCGCTATGTCCCCAA CGGGAAGCTGGCGTCCTACACGGTGCGCGACCTGCTGCCGGGACGGCGGTACCAGCCCTCTGTGATAG
CAGTGCAGAGCACGGAGCTCGGGCCGCAGCACAGCGAGCCCGCCCACCTCTACATCATCACCTCCCCC AGGGATGGCGCTGACAGACGCTGGCACCAGGGAGGACACCACCCTCGGGTGCTCAAGAACAGACCGCC CCCGGCGCGCCTGCCGGAGCTGCGCCTGCTCAATGACCACAGCGCCCCCGAGACCCCCACCCAGCCCC CCAGGTTCTCGGAGTTTGTGGACGGCAGAGGAAGAGTGAGCGCCAGGTTCGGTGGCTCACCCAGCAAA GCAGCCACCGTGAGATCACAACCCACAGCCTCGGCGCAGCTCGAGAACATGGAGGAAGCCCCCAAGCG GGTCAGCCCGGCCCTCCAGCTCCCTGAACACGGCAGCAAGGACGTCGGAAACGTCCCTGGCAACTGTT CAGAAAACCCCTGTCAGAACGGAGGCACTTGTGTGCCGGGCGCAGACGCCCACAGCTGTGGCTGCGGG CCAGGGTTCAAAGGCAGACGCTGCGAGCTCGCCTGTATAAAGGTGTCCCGCCCCTGCACAAGGCTGTT CTCCGAGACAAAGGCCTTTCCAGTCTGGGAGGGAGGCGTCTGTCACCACGTGTATAAAAGAGTCTACC GAGTTCACCAAGACATCTGCTTCAAAGAGAGCTGTGAAAGCACAAGCCTCAAGAAGACCCCAAACAGG AAACAAAGTAAGAGTCAGACACTGGAGAAATCTTAAGGATTTAAGACGTTCTTGTTACACTCCACCAA CCTCACGAGTTTCTAACACCCAGGAAGATGAGGTCTAAAAACTGGATGAAAAAGGACACCCTGAGAAA AGGTCCTAGCTGGAGTCAGTCCCCTCTGTGACCTCTCTCCTCAGGCCTCTAGAGGACAGATGGCCAGG CCTGTGCACACACCAGCCCACCCTGAGAGACCCCTCTGGGACCAACCACCTGTGAGTCCTGCGATGCG TTTAAGCAGCCTGTGCCCTCACCCAAGCTGCAGTTCCTGAAGGTGTAGTCTGTGTCTCTGCGGATGAG ATGACAGCTCGCCATTCCCCGGAATCAGTGAGGCTGTCAGTCAGCCACGCTTCTGCAGTATGCAGAAA CCTGTTCTTAGACTCCAAAGCCAGAGAAAGAATTCTCCCTTCGAGGCCCAACAAATTGAGAAGGAACT GTGATGGACCACTTCCAAAACAGAGACGGGGGCAGGGGCTGAAGGGCAGAGACCAGGTGATGTCAGAA GGAAAGCCGGGTTGCAGACACAGCCGCCCCTGCTCTGGTCCTCCAGCGTGTTTATGACGCTCGTGCAG GTCGACGAGCCATCCTATGGACTAGTTAACACTAAGGTGGAGTTCAGACTTTTTTAGACAACGGCGCG ACTGGCAGCCTTTCTCTATCAAGGGTCAGACGGTAAACGTTTTCAGCTTTGCAGACCAGAGGTCCCTG TGGCTACAGTAGCGCAGACACAGCCACAGGCATGTCATTGAATGGCTGCGGCTATGTTCCAATAAAAA CTTATTTACAATAACAGGTGGTGGCCAAATTGGCCCATGGGCCTTATTTGGTGAACCCTGTTCTATGA GATCACCTAGGCTTCAGCCTTAAACAGTGGAAGCCATCCCCTGAATGACAAGTCACAAGGGTATCAAA GAAAGACCCCTGAATTTTCATGGAAAAAGCTATTCAGACCCCTGCTTGGAAAGCTAAGGCACACTGCC ACGAAGCAGCAAGGACGCCTTACAAGTCTCAGTGCAACAGAGATGGACACCTGGGCTGGGCTGGACAA TGTTTAAGGTTCCTTTTAGTCCATGACTCAAGTGATACTGTTTTAGGCTATCAGGTAGTAAACACGAT CTTAGACATCCCCATCTTTGTAAGCAGAACAGTACGGCACTTCACCACATCTGCTTCCCACCATGCTT CTAAGCAGCTGTCTTCCCCCTGCTAATGTTACAACCAAAGCAGCCACCCCACCTCCTCTCGTGTTGAG CCTCACGACCGCTGACCCAGCTGGAAAGCCAGCGCCCTGCCGCGTCACCCTGACTCTGCTCAGAGCCA GCATTCCAGCCACAAAGAGGGCCTCCTTCCTTTCCTCTTTCATAAAAATGTTTTTTGAAGAGTTAGAG TATATTTTAGGCTTTTTATCTTTATTAAAATTTCATGTGCATGTGTCTGTGTATTCTGCAATTTGTCA TTTTCAGAAAGAAGGAACAGGCAATTCGAGAAGTTTCACCTGTACTCCCGAGCTGTTCCCCAGGCTCC AGACCCACTTGAGAGCAGAAGGTGGAGCTCAATGAAGGGTCTCGAGCTCAGCGAAGGGTCACTGGGTG AACTGAGAGAAACCACGTTCACAAACGCGTACTGCGGACTTCCTGCCGCCCTGGGACCTGTCACTGTT TGTCCATGTAAGCTACAGCATTACTAGCAGATGCTAAGATCGAGTGATATCACTGGAAAAGTAGGTGA ATCCTACTAGGAAACTTTCTACTCCCTACTAGGACCTCAAGCCCCTCAGCCACACAGCAAATGCTAAT ATGCTCCAGTGTTAGCTTAGAAGCCTTGTGTCAACAAGAACTGGCTCCTGAGTCCCAAGCTTGGTGCC ACACAGCAAATGCTAATATGCTCCAGTGTTAGCTTAGAAGCCTTGTGTCAACAAGAACTGGCTCCTGA GTCCCAAGCTTGGTGCCACACAGCAAATGCTAATATGCTCCAGTGTTAGCTTAGAAGCCTTGTGTCAA CAAGAACTGGCTCCTGAGTCCCAAGTGCTGTCACAGGACTTGCCCATTGGGATGTTTTCCACATTAAA TATCAAGTAAAAAGACTTCCTGGTGCTCAGGAATTACAGTTCGTTCTTGAAACATTCCAAAGAGGCCA CCACAGCTTTTCCCATGTGGCTTCTTTTAAAAACTCAAATGGCTTCCTTGAAAATACTCAAAGTCCAC CCAAGGAAATTAGTAATAATAGAATCAGAAAACTGTCAGGAGCATAAAGATTTCTGTATCAAAATGAA AGAAGCAATCCTGAGTTGCTGAATTACCCATCTGCTAATGAAACCGGGATGGACTGATCATCTAACCA AGTGCAGACTGAGGATTCTACTTAGTCCTCCGACTGGGTACAACAACAGCCTAGGTTCTAGGGAGGGT GGCAGTGACCGGGATGCCACAATGGAAGAGAAAATGAAAACACTGGCACAGTGAAATGTCTCATTTCC AAACAGTTTTGCCTATGGCCAAGCAAGGCAATAAAGACAAACTCTCCCTTTTCCCCATTGCGTGTGGG CTGCCAGGTACAAGTAAGGGAATCTTTGCTGTGCCCACTGTCCTCCAGTAGAGAACCCAACAGGCAAG
GGCCCCACTCAGGTATCAGCTCACCTCCTGCACCTCCCCTTAGCAGGAACTCCTTCCACTGGCAAAGG ACTGCCACT AACAAAAGTCTTTTTCTTTGCAGTCACGCTGTAAGACGAGGCTGCTGGAGAAAACAAAAGCACCTAGAl
TTTCAGTGCTGAATCCCCACAATTGCATGCAGCTCACACCTACCAGGGGTATTCCAGTGCATAGGGG
AAGGAACCCGGCTGAAAAACCAGCTCCTTATTTTTCTTTTAAATAAAATAATACGATCCTAAGTCCAT jTTACCATCTGAAGTTGTCACGAGTGAACAGTCACATTACTGTTGTGGACCAGGCCTTAGATGAGTTTC
TCAGGCTCAGCACTGACATTCTGGGCCGGATCATCCTCTCTTGTGGGACCATCCTGTGCACTGCAGGA jTGTTTCACAGCACCCCTGGCCTCTACCCACTAGAATCCTACAATCTACCAGATCCTAGGATCTAGTTG
ATCCTAGAATGCTACCAAGGAGACTTGAATTTTGGTCCCATCATCAAAAATGCCTTCTGCATCAATCC
TATGCCAGTTTCCCCTAAAAGAGGGCTAACTGGAATGTTCTAGGATGTACCAATCCTCCAGGACCCTC
TTAGAGCTCATGCCATCAGAGACAGGCCTCTACCTCAGGGATCACCCCGGCTGACATCAAATTCCTCT
TCTCTTTTCCCAACATTTCAAATTGTTCTTCGGACTCATTGAGTTCC
NOV58e, CG93387-04 SEQ ED NO: 1152 1288 aa MW at 138836.0kD Protein Sequence
M RRATEDVRHYFPE LDFNATWVFVATWYRVTFFGGSSSSPVNTFQTVLITDGKLSFTIFNYESIVW
TTGTHASSGGNATGLGGIAAQAGFNAGDGQRYFSIPGSRTADMAEVETTTNVGVPGRWAFRIDDAQVR
VGGCGHTTSVCLA RPC NGGKCIDDCVTGNPSYTCSCLSGFTGRRCHLDVNECASQPCQNGGTCTHG
INSFRCQCPAGFGGPTCETAQSPCDTKECQHGGQCQVENGSAVCVCQAGYTGAACEMDVDDCSPDPC
NGGSCVD VGNYTC CAEPFKGLRCETGDHPVPDACLSAPCHNGGTCVDADQGYVCECPEGFMGLDCR
ERVPDDCΞCR GGRC GANTT CQCPLGFFGLLCEFEIT-AMPCNiNTQCPDGGYCMΞHGGSY CVCHT
DHNASHSLPSPCDSDPCFNGGSCDAHDDSYTCECPRGFHG-- CE-l-O lPHLCSSGPCRNGGTCKEAGGE
YHCSCPYRFTGRHCEIGKPDSCASGPCHNGGTCFHYIGKYKCDCPPGFSGRHCEIAPSPCFRSPCVNG
GTCEDRDTDFFCHCQAGYMGRRCQAEVDCGPPEEVKHAT RFNGTRLGAVALYACDRGYSLSAPSRIR
VCQPHGVWSEPPQC EIDECRSQPCLHGGSCQDRVAGYLCLCSTGYEGAHCELERDECRAHPCR GGS
CR LPGAYVCRCPAGFVGVHCETEVDACDSSPCQHGGRCESGGGAYLCVCPESFFGYHCETVSDPCFS
SPCGGRGYCLASNGSHSCTCKVGYTGEDCAKELFPPTA MERVEESGVSISWNPPNGPAARQM DGY
AVTYVSSDGSYRRTDFVDRTRSSHQLQALAAGRAYNISVFSVKRNSlrø---aTDISRPAV
GFEVT-NVTASTISVQWALHRIRHATVSGVRVSIRHPEA RDQATDVDRSVDRFTFRALLPGKRYTIQ
TTIiSGLRGEEHPTESLATAPTHVWTRPLPPANLTAARVTATSAHWWDAPTPGSLLEAYVINVTTSQS
TKSRYVPNGKLASYTVRDLLPGRRYQPSVIAVQSTE GPQHSEPAH YIITSPRDGADRRWHQGGHHP
RV- K-NRPPPARLPE RL-NDHSAPETPTQPPRFSEFVDGRGRVSARFGGSPS--AATVRSQPTASAQ E
NMEEAPKRVSPA QLPEHGSKDVG VPGNCSENPCQNGGTCVPGADAHSCGCGPGFKGRRCELACIKV
SRPCTRLFSETKAFPVWEGGVCHHVYKRVYRVHQDICFKESCESTSLKKTPNRKQSKSQTLEKS
NOV58f, SNP13382519 of SEQ ID NO: 1153 5432 bp CG93387-05, DNA Sequence ORF Start: ATG at 187 ORF Stop: TAA at 3991
SNP Pos: 4223 SNP Change: C to T
GGTGCCGAGCACTCCGGACTCTACGTGAACAACAACGGGATCATCTCCTTCCTGAAGGAGGTTTCTCA
GTTCACCCCAGTGGCCTTCCCCATTGCCAAGGACCGCTGCGTGGTGGCAGCCTTCTGGGCAGATGTGG
ACAACCGGCGTGCAGGCGACGTGTACTACCGGGAGGCCACCGACCCAGCCATGCTGCGCCGAGCCACG
GAGGACGTCAGGCACTACTTCCCCGAGCTCCTGGACTTCAATGCCACCTGGGTTTTTGTTGCCACCTG GTACCGAGTGACCTTCTTTGGAGGCAGTTCCTCATCCCCTGTCAACACATTCCAGACTGTGCTCATCA CAGACGGCAAGCTCTCCTTCACCATCTTCAACTATGAGTCCATCGTGTGGACCACAGGCACACACGCC AGCAGCGGGGGCAACGCCACTGGCCTCGGGGGCATCGCAGCCCAGGCTGGCTTCAACGCAGGCGATGG GCAGCGTTACTTCAGTATCCCCGGCTCGCGCACAGCAGACATGGCCGAGGTGGAGACCACCACCAACG TGGGTGTGCCCGGGCGCTGGGCGTTCAGAATCGATGATGCCCAGGTGCGCGTGGGGGGCTGCGGCCAT ACAACGTCCGTGTGCCTGGCCCTGCGCCCCTGCCTCAACGGCGGCAAGTGCATCGACGACTGCGTCAC GGGCAACCCCTCCTACACCTGCTCCTGCCTCTCGGGCTTCACGGGGCGGAGGTGCCACCTGGACGTGA ACGAATGTGCCTCCCAGCCCTGTCAGAATGGTGGGACCTGTACTCACGGCATCAACAGTTTCCGCTGC CAGTGCCCGGCTGGCTTTGGGGGACCCACCTGTGAGACAGCCCAATCCCCCTGTGACACCAAAGAGTG TCAACATGGTGGCCAGTGCCAGGTGGAGAACGGCTCTGCGGTGTGTGTGTGCCAGGCCGGATACACCG GAGCAGCCTGCGAGATGGATGTGGACGACTGCAGCCCTGACCCCTGCCTGAATGGAGGCTCTTGTGTT GACCTAGTGGGGAATTACACCTGCTTGTGTGCCGAGCCCTTCAAGGGACTTCGCTGTGAGACAGGAGA CCATCCAGTGCCAGACGCCTGCCTCTCGGCCCCTTGCCACAATGGGGGCACCTGTGTGGATGCGGACC AGGGCTACGTGTGCGAGTGCCCCGAAGGCTTCATGGGCCTGGACTGCAGGGAGAGAGTCCCCGATGAC TGTGAGTGCCGCAACGGAGGCAGATGCCTGGGCGCCAACACCACCCTCTGCCAGTGCCCCCTGGGATT CTTTGGGCTTCTCTGTGAATTTGAAATCACAGCCATGCCCTGCAACATGAACACACAGTGCCCAGATG GGGGCTACTGCATGGAGCACGGCGGGAGCTACCTCTGCGTCTGCCACACCGACCACAATGCCAGCCAC TCCCTGCCATCACCCTGCGACTCGGACCCCTGCTTCAACGGAGGCTCCTGCGATGCCCATGACGACTC CTACACCTGCGAGTGCCCGCGCGGGTTCCACGGCAAGCACTGCGAGAAAGCCCGGCCACACCTGTGCA GCTCAGGGCCCTGCCGGAACGGGGGCACGTGCAAGGAGGCGGGCGGCGAGTACCACTGCAGCTGCCCC TACCGCTTCACTGGGAGGCACTGTGAGATCGGGAAGCCAGACTCGTGTGCCTCTGGCCCCTGTCACAA CGGCGGCACCTGCTTCCACTACATTGGCAAATACAAGTGTGACTGTCCCCCAGGCTTCTCCGGGCGGC ACTGCGAGATAGCCCCCTCCCCCTGCTTCCGGAGCCCGTGTGTGAATGGGGGCACCTGCGAGGACCGG GACACGGATTTCTTCTGCCACTGCCAAGCAGGGTACATGGGACGCCGGTGCCAGGCAGAGGTGGACTG CGGCCCCCCGGAGGAGGTGAAGCACGCCACACTGCGCTTCAACGGCACGCGGCTGGGCGCGGTGGCCC TGTATGCATGTGACCGTGGCTACAGCCTGAGCGCCCCCAGCCGCATCCGGGTCTGCCAGCCACACGGT GTCTGGAGTGAGCCTCCCCAGTGCCTTGAAATCGATGAGTGCCGGTCTCAGCCGTGCCTGCATGGGGG CTCTTGTCAGGACCGCGTTGCTGGGTACCTGTGCCTCTGCAGCACAGGCTATGAGGGCGCCCACTGTG AGCTGGAGAGGGATGAGTGCCGAGCTCACCCGTGCAGAAATGGAGGGTCCTGCAGGAACCTCCCAGGG GCCTATGTCTGCCGGTGCCCTGCAGGCTTCGTTGGAGTCCACTGTGAGACAGAGGTGGACGCCTGCGA CTCCAGCCCCTGCCAGCATGGAGGCCGGTGTGAGAGCGGCGGCGGGGCCTACCTGTGCGTCTGCCCAG AGAGCTTCTTCGGCTACCACTGCGAGACAGTGAGTGACCCCTGCTTCTCCAGCCCCTGTGGGGGCCGT GGCTATTGCCTGGCCAGCAACGGCTCCCACAGCTGCACCTGCAAAGTGGGCTACACGGGCGAGGACTG CGCCAAAGAGCTCTTCCCACCGACGGCCCTCAAGATGGAGAGAGTGGAGGAGAGTGGGGTCTCTATCT CCTGGAACCCGCCCAATGGTCCAGCCGCCAGGCAGATGCTTGATGGCTACGCGGTCACCTACGTCTCC TCCGACGGCTCCTACCGCCGCACAGACTTTGTGGACAGGACCCGCTCCTCGCACCAGCTCCAGGCCCT GGCGGCCGGCAGGGCCTACAACATCTCCGTCTTCTCAGTGAAGCGAAACAGTAACAACAAGAATGACA TCAGCAGGCCTGCCGTGCTGCTGGCCCGCACGCGACCCCGCCCTGTGGAAGGCTTCGAGGTCACCAAT GTGACGGCTAGCACCATCTCAGTGCAGTGGGCCCTGCACAGGATCCGCCATGCCACCGTCAGTGGGGT CCGTGTGTCCATCCGCCACCCTGAGGCCCTCAGGGACCAGGCCACCGATGTGGACAGGAGTGTGGACA GGTTCACCTTTAGGGCCCTGCTGCCTGGGAAGAGGTACACCATCCAGCTGACCACCCTCAGTGGGCTC AGGGGAGAGGAGCACCCCACAGAGAGCCTGGCCACCGCGCCGACGCACGTGTGGACCCGGCCCCTGCC TCCAGCAAACCTGACCGCCGCCCGAGTCACTGCCACCTCTGCCCACGTGGTCTGGGATGCCCCGACTC CAGGCAGCTTGCTGGAGGCTTATGTCATCAATGTGACCACCAGCCAGAGCACCAAGAGCCGCTATGTC CCCAACGGGAAGCTGGCGTCCTACACGGTGCGCGACCTGCTGCCGGGACGGCGGTACCAGCCCTCTGT
GATAGCAGTGCAGAGCACGGAGCTCGGGCCGCAGCAGCACCAGGGAGGACACCACCCTCGGGTGCTCA AGAACAGACCGCCCCCGGCGCGCCTGCCGGAGCTGCGCCTGCTCAATGACCACAGCGCCCCCGAGACC CCCACCCAGCCCCCCAGGTTCTCGGAGTTTGTGGACGGCAGAGGAAGAGTGAGCGCCAGGTTCGGTGG CTCACCCAGCAAAGCAGCCACCGTGAGATCACAACCCACAGCCTCGGCGCAGCTCGAGAACATGGAGG AAGCCCCCAAGCGGGTCAGCCCGGCCCTCCAGCTCCCTGAACACGGCAGCAAGGACATCGGAAACGTC CCTGGCAACTGTTCAGAAAACCCCTGTCAGAACGGAGGCACTTGTGTGCCGGGCGCAGACGCCCACAG CTGTGACTGCGGGCCAGGGTTCAAAGGCAGACGCTGCGAGCTCGCCTGTATAAAGGTGTCCCGCCCCT GCACAAGGCTGTTCTCCGAGACAAAGGCCTTTCCAGTCTGGGAGGGAGGCGTCTGTCACCACGTGTAT AAAAGAGTCTACCGAGTTCACCAAGACATCTGCTTCAAAGAGAGCTGTGAAAGCACAAGCCTCAAGAA GACCCCAAACAGGAAACAAAGTAAGAGTCAGACACTGGAGAAATCTTAAGGATTTAAGACGTTCTTGT
TACACTCCACCAACCTCACGAGTTTCTAACACCCAGGAAGATGAGGTCTAAAAACTGGATGAAAAAGG lACACCCTGAGAAAAGGTCCTAGCTGGAGTCAGTCCCCTCTGTGACCTCTCTCCTCAGGCCTCTAGAGG
ACAGATGGCCAGGCCTGTGCACACACCAGCCCACCCTGAGAGACCCCTCTGGGACCAACCACCTGTGA
GTCCTGTGATGCGTTTAAGCAGCCTGTGCCCTCACCCAAGCTGCAGTTCCTGAAGGTGTAGTCTGTGT
CTCTGCGGATGAGATGACAGCTCGCCATTCCCCGGAATCAGTGAGGCTGTCAGTCAGCCACGCTTCTG
CAGTATGCAGAAACCTGTTCTTAGACTCCAAAGCCAGAGAAAGAATTCTCCCTTCGAGGCCCAACAAA:
TTGAGAAGGAACTGTGATGGACCACTTCCAAAACAGAGACGGGGGCAGGGGCTGAAGGGCAGAGACCA
GGTGATGTCAGAAGGAAAGCCGGGTTGCAGACACAGCCGCCCCTGCTCTGGTCCTCCAGCGTGTTTAT
GACGCTCGTGCAGGTCGACGAGCCATCCTATGGACTAGTTAACACTAAGGTGGAGTTCAGACTTTTTT
AGACAACGGCGCGACTGGCAGCCTTTCTCTATCAAGGGTCAGACGGTAAACGTTTTCAGCTTTGCAGA
CCAGAGGTCCCTGTGGCTACAGTAGCGCAGACACAGCCACAGGCATGTCATTGAATGGCTGCGGCTAT
GTTCCAATAAAAACTTATTTACAATAACAGGTGGTGGCCAAATTGGCCCATGGGCCTTATTTGGTGAA
CCCTGTTCTATGAGATCACCTAGGCTTCAGCCTTAAACAGTGGAAGCCATCCCCTGAATGACAAGTCAI
CAAGGGTATCAAAGAAAGACCCCTGAATTTTCATGGAAAAAGCTATTCAGACCCCTGCTTGGAAAGCT
AAGGCACACTGCCACGAAGCAGCAAGGACGCCTTACAAGTCTCAGTGCAACAGAGATGGACACCTGGG
CTGGGCTGGACAATGTTTAAGGTTCCTTTTAGTCCATGACTCAAGTGATACTGTTTTAGGCTATCAGG
TAGTAAACACGATCTTAGACATCCCCATCTTTGTAAGCAGAACAGTACGGCACTTCACCACATCTGCT
TCCCACCATGCTTCTAAGCAGCTGTCTTCCCCCTGCTAATGTTACAACCAAAGCAGCCACCCCACCTC
CTCTCGTGTTGAGCCTCACGACCGCTGACCCAGCTGGAAAGCCAGCGCCCTGCCGCGTCACCCTGACT
CTGCTCAGAGCCAGCATTCCAGCCACAAAGAGGGCCTCCTTCCTTTCCTCTTTCATAAAAATGTTTTT
TGAAGAGTTAGAGTATATTTTAGGCTTTTTATCTTTATTAAAATTTCATGTGCATGTGTA
NOV58f, SNP13382519 of SEQ ID NO: 1154|1268 aa |MW at 136576.5kD CG93387-05, Protein Sequence " SNP Change: no change
MLRRATEDVRHYFPELLDFNATW^ TTGTHASSGGNATGLGGIAAQAGFNAGDGQRYFSIPGSRTADMAEVETTTNVGVPGR AFRIDDAQVR VGGCGHTTSVCLALRPCLNGGKCIDDCVTGNPSYTCSCLSGFTGRRCHLDVNECASQPCQNGGTCTHG INSFRCQCPAGFGGPTCETAQSPCDTIOB-CQHGGQCQVENGSAVCVCQAGYTGAACEMDVDDCSPDPCL NGGSCVDLVGNYTCLCAEPFKGLRCETGDHPVPDACLSAPCHNGGTCVDADQGYVCECPEGFMGLDCR ERVPDDCECRNGGRCLGANTTLCQCPLGFFGLLCEFEIT.AMPCNMNTQCPDGGYCMEHGGSYLCVCHT DHNASHSLPSPCDSDPCFNGGSCDAHDDSYTCECPRGFHGKHCEK-ARPHLCSSGPCRNGGTCKEAGGE YHCSCPYRFTGRHCEIGKPDSCASGPCHNGGTCFHYIGKYKCDCPPGFSGRHCEIAPSPCFRSPCVNG GTCEDRDTDFFCHCQAGYMGRRCQAEVDCGPPEEVKHATLRFNGTRLGAVALYACDRGYSLSAPSRIR VCQPHGVWSEPPQCLEIDECRSQPCLHGGSCQDRVAGYLCLCSTGYEGAHCELERDΞCRAHPCRNGGS CRNLPGAYVCRCPAGFVGVHCETEVDACDSSPCQHGGRCESGGGAYLCVCPESFFGYHCETVSDPCFS SPCGGRGYCLASNGSHSCTCKVGYTGEDCAKELFPPTALKMERVEESGVSISWNPPNGPAARQMLDGY AVTYVSSDGSYRRTDFVDRTRSSHQLQALAAGRAYNISVFSV-l-σ-NS]røK---TOISRPAVLLARTRPRPVE GFEVTNVTASTISVQWALHRIRHATVSGVRVSIRHPEALRDQATDVDRSVDRFTFRALLPGKRYTIQL TTLSGLRGEEHPTESLATAPTHVWTRPLPP-ANLTAARVTATSAHVVWDAPTPGSLLEAYVINVTTSQS TKSRYVPNG--πjASYTVRDLLPGRRYQPSVIAVQSTELGPQQHQGGHHPRVLKNRPPPARLPELRLLND HSAPETPTQPPRFSEFVDGRGRVSARFGGSPSK--AATVRSQPTASAQLENMEEAPKRVSPALQ1,PEHGS ---ODIGNVPGNCSENPCQNGGTCVPGADAHSCDCGPGFKGRRCELACIKVSRPCTRLFSETKAFPVWEGG VCHHVYKRVYRVHQDICF-l-ΕSCESTSLKKTPNRKQSKSQTLEKS
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 58B.
Table 58B. Comparison of the NOV58 protein sequences.
NOV58a MLRRATEDVRHYFPELLDFNATWVFVATWYRVTFFGGSSSSPVNTFQTVLITDGKLSFTI NOV58b MLRRATEDVRHYFPELLDFNATWVFVATWYRVTFFGGSSSSPVNTFQTVLITDGKLSFTI NOV58C MLRRATEDVRHYFPELLDFNATWVFVATWYRVTFFGGSSSSPVNTFQTV ITDGKLSFTI NOV58d NOV58e MLRRATEDVRHYFPELLDFNATWVFVATWYRVTFFGGSSSSPVNTFQTV ITDGKLSFTI
NOV58a FNYESIVWTTGTHASSGGNATGLGGIAAQAGFNAGDGQRYFSIPGSRTADMAEVETTTNV NOV58b FNYESIVWTTGTHASSGGNATGLGGIAAQAGFNAGDGQRYFSIPGSRTADMAEVETTTNV NOV58C FNYESIVWTTGTHASSGGNATGLGGIAAQAGFNAGDGQRYFSIPGSRTADMAEVETTTIV NOV58d NOV58e FNYESIVWTTGTHASSGGNATGLGGIAAQAGFNAGDGQRYFSIPGSRTADMAEVETTTNV
NOV58a GVPGRWAFRIDDAQVRVGGCGHTTSVCLALRPCLNGGKCIDDCVTGNPSYTCSCLSGFTG NOV58b GVPGRWAFRIDDAQVRVGGCGHTTSVCLALRPCLNGGKCIDDCVTGNPSYTCSCLSGFTG NOV58C WPGRWAFIIDDAQVRVGGCGHTTSVCLALRPCLNGGKCIDDCVTGNPSYTCSCLSGFTG NOV58d NOV58e GVPGRWAFRIDDAQVRVGGCGHTTSVCLALRPCLNGGKCIDDCVTGNPSYTCSCLSGFTG
NOV58a RRCHLDVNECASQPCQNGGTCTHGINSFRCQCPAGFGGPTCETAQSPCDTKECQHGGQCQ NOV58b RRCHLDVNECASQPCQNGGTCTHGINSFRCQCPAGFGGPTCETAQSPCDTKECQHGGQCQ NOV58C RRCHLDVNECASQPCQNGGTCTHGINSFRCQCPAGFGGPTCETAQSPCDTKECQHGGQCQ NOV58d NOV58e RRCHLDVNECASQPCQNGGTCTHGINSFRCQCPAGFGGPTCETAQSPCDTKECQHGGQCQ
NOV58a VENGSAVCVCQAGYTGAACEMDVDDCSPDPCLNGGSCVDLVGNYTCLCAEPFKGLRCETG NOV58b VENGSAVCVCQAGYTGAACEMDVDDCSPDPCLNGGSCVDLVGNYTCLCAEPFKGLRCETG NOV58C VENGSAVCVCQAGYTGAACEMDVDDCSPDPCLNGGSCVDLVGNYTCLCAEPFKGLRCETG NOV58d NOV58e VENGSAVCVCQAGYTGAACEMDVDDCSPDPCLNGGSCVDLVGNYTCLCAEPFKGLRCETG
NOV58a DHPVPDACLSAPCHNGGTCVDADQGYVCΞ-CPEGFMGLDCRERVPDDCECRNGGRCLGAN NOV58b DHPVPDACLSAPCHNGGTCVDADQGYVCE-CPEGFMGLDCRERVPDDCECRNGGRCLGAN NOV58C DHXQCQTPASRPLATMGAPVWMRTRATCASAPKASWAWTAGRESPMTVSAATEADAWAPT NOV58d MGLDCRERVPDDCECRNGGRCLGAN NOV58e DHPVPDACLSAPCHNGGTCVDADQGYVCE-CPEGFMGLDCRERVPDDCECRNGGRCLGAN NOV58a TTLCQCPLGFFGLLCEFEITAMPCNMNTQCPDGGYCMEHGGSYLCVCHTDHNASHSLPSP
NOV58b TTLCQCPLGFFGLLCEFEITAMPCNMNTQCPDGGYCMEHGGSYLCVCHTDHNASHSLPSP
NOV58C PPSAQCPLGFFGLLCEFEITAMPC-NMNTQCPDGGYCMEHGGSYLCVCHTDHNASHSLPSP
NOV58d TTLCQCPLGFFGLLCEFEITAMPCNMNTQCPDGGYCMEHGGSYLCVCHTDHNASHSLPSP
NOV58e TTLCQCPLGFFGLLCEFEITAMPCNMNTQCPDGGYCMEHGGSYLCVCHTDHNASHSLPSP
NOV58a CDSDPCFNGGSCDAHDDSYTCECPRGFHGKHCEKARPHLCSSGPCRNGGTCKEAGGEYHC
NOV58b CDSDPCFNGGSCDAHDDSYTCECPRGFHGKHCEKARPHLCSSGPCRNGGTCKEAGGEYHC
NOV58c CDSDPCFNGGSCDAHDDSYTCECPRGFHGKHCEKARPHLCSSGPCRNGGTCKEAGGEYHC
NOV58d CDSDPCFNGGSCDAHDDSYTCECPRGFHGKHCEKARPHLCSSGPCRNGGTCKEAGGEYHC
NOV58e CDSDPCFNGGSCDAHDDSYTCECPRGFHGKHCEKARPHLCSSGPCRNGGTCKEAGGEYHC
NOV58a SCPYRFTGRHCEIGKPDSCASGPCHNGGTCFHYIGKYKCDCPPGFSGRHCEIAPSPCFRS
NOV58b SCPYRFTGRHCEIGKPDSCASGPCHNGGTCFHYIGKYKCDCPPGFSGRHCEIAPSPCFRS
NOV58C SCPYRFTGRHCEIGKPDSCASGPCHNGGTCFHYIGKYKCDCPPGFSGRHCEIAPSPCFRS
NOV58d SCPYRFTGRHCEIGKPDSCASGPCHNGGTCFHYIGKYKCDCPPGFSGRHCEIAPSPCFRS
NOV58e SCPYRFTGRHCEIGKPDSCASGPCHNGGTCFHYIGKYKCDCPPGFSGRHCEIAPSPCFRS
NOV58a PCVNGGTCEDRDTDFFCHCQAGYMGRRCQAEVDCGPPEEVKHATLRFNGTRLGAVALYAC
NOV58b PCVNGGTCEDRDTDFFCHCQAGYMGRRCQAEVDCGPPEEVKHATLRFNGTRLGAVALYAC
NOV58C PCVNGGTCEDRDTDFFCHCQAGYMGRRCQAEVDCGPPEEVKHATLRFNGTRLGAVALYAC
NOV58d PCVNGGTCEDRDTDFFCHCQAGYMGRRCQAEVDCGPPEEVKHATLRFNGTRLGAVALYAC
NOV58e PCVNGGTCEDRDTDFFCHCQAGYMGRRCQAEVDCGPPEEVKHATLRFNGTRLGAVALYAC
NOV58a DRGYSLSAPSRIRVCQPHGVWSEPPQCLEIDECRSQPCLHGGSCQDRVAGYLCLCSTGYE
NOV58b DRGYSLSAPSRIRVCQPHGVWSEPPQCLEIDECRSQPCLHGGSCQDRVAGYLCLCSTGYE
NOV58C DRGYSLSAPSRIRVCQPHGVWK IDECRSQPCLHGGSCQDRVAGYLCLCSTGYE
NOV58d DRGYSLSAPSRIRVCQPHGVWSEPPQCLEIDECRSQPCLHGGSCQDRVAGYLCLCSTGYE
NOV58e DRGYSLSAPSRIRVCQPHGVWSEPPQCLEIDECRSQPCLHGGSCQDRVAGYLCLCSTGYE
NOV58a GAHCELERDECRAHPCRNGGSCRNLPGAYVCRCPAGFVGVHCETEVDACDSSPCQHGGRC
NOV58b GAHCELERDECRAHPCRNGGSCRNLPGAYVCRCPAGFVGVHCETEVDACDSSPCQHGGRC
NOV58c GAHCELERDECRAHPCRNGGSCRNLPGAYVCRCPAGFVGVHCETEVDACDSSPCQHGGRC
NOV58d GAHCELERDECRAHPCRNGGSCRNLPGAYVCRCPAGFVGVHCETEVDACDSSPCQHGGRC
NOV58e GAHCELERDECRAHPCRNGGSCRNLPGAYVCRCPAGFVGVHCETEVDACDSSPCQHGGRC
NOV58a ESGGGAYLCVCPESFFGYHCETVSDPCFSSPCGGRGYCLASNGSHSCTCKVGYTGEDCAK
NOV58b ESGGGAYLCVCPESFFGYHCETVSDPCFSSPCGGRGYCLASNGSHSCTCKVGYTGEDCAK
NOV58C ESGGGAYLCVCPESFFGYHCETVSDPCFSSPCGGRGYCLASNGSHSCTCKVGYTGEDCAK
NOV58d ESGGGAYLCVCPESFFGYHCETVSDPCFSSPCGGRGYCLASNGSHSCTCKVGYTGEDCAK
NOV58e ESGGGAYLCVCPESFFGYHCETVSDPCFSSPCGGRGYCLASNGSHSCTCKVGYTGEDCAK
NOV58a ELFPPTALKMERVEESGVSISWNPPNGPAARQMLDGYAVTYVSSDGSYRRTDFVDRTRSS
NOV58b ELFPPTALKMERVEESGVSISWNPPNGPAARQMLDGYAVTYVSSDGSYRRTDFVDRTRSS
NOV58C ELFPPTALKMERVEESGVSISWNPPNGPAARQMLDGYAVTYVSSDGSYRRTDFVDRTRSS
NOV58d ELFPPTALKMERVEESGVSISWNPPNGPAARQMLDGYAVTYVSSDGSYRRTDFVDRTRSS
NOV58e ELFPPTALKMERVEESGVSISWNPPNGPAARQMLDGYAVTYVSSDGSYRRTDFVDRTRSS
NOV58a HQLQALAAGRAYNISVFSV-i NSNNKNDISRPAVLLARTRPRPVEGFEVTNVTASTISVQ
NOV58b HQLQAI-AAG--- YNISVFSVK-l-^S---røK-NDISRPAVLLARTRPRPV^
NOV58c HQLQALAAG--^YNISVFSVKRNSNNK-OTISRPAVLLARTRPRPVEGFEVTNVTASTISVQ
NOV58d HQLQALAAGRAYNISVFSVIO^S-NNKNDISRPAVLLARTRPRPVEGFEVTNVTASTISVQ
NOV58e HQLQAI---AAGRAYNISVFSV---OINSNNKNDISRPAVLLARTRPRPVEGFEVTNVTASTISVQ
NOV58a WALHRIRHATVSGVRVSIRHPEALRDQATDVDRSVDRFTFRALLPG-KRYTIQLTTLSGLR
NOV58b WALHRIRHATVSGVRVSIRHPEALRDQATDVDRSVDRFTFRALLPGKRYTIQLTTLSGLR
NOV58c WALHRIRHATVSGVRVSIRHPEALRDQATDVDRSVDRFTFRALLPGKRYTIQLTTLSGLR
NOV58d WALHRIRHATVSGVRVSIRHPEALRDQATDVDRSVDRFTFRALLPGKRYTIQLTTLSGLR
NOV58e WALHRIRHATVSGVRVSIRHPEALRDQATDVDRSVDRFTFRALLPGKRYTIQLTTLSGLR NOV58a GEEHPTESLATAPTHVWTRPLPP-ANLTAARVTATSAHVVWDAPTPGSLLEAYVINVTTSQ
NOV58b GEEHPTESLATAPTHVWTRPLPPA-NLTAARVTATSAHVVWDAPTPGSLLEAYVI-NVTTSQ
NOV58c GEEHPTESLATAPTHVWTRPLPPANLTAARVTATSAHWWDAPTPGSLLEAYVINVTTSQ
NOV58d GEEHPTESLATAPTHVWTRPLPPANLTAARVTATS--HVVWDAPTPGSLLEAYVINVTTSQ
NOV58e GEEHPTESLATAPTHVWTRPLPPANLTAARVTATSAHWWDAPTPGSLLEAYVINVTTSQ
NOV58a STKSRYVPNGKLASYTVRDLLPGRRYQPSVIAVQSTELGPQQ
NOV58b STKSRYVPNGKLAS TVRDLLPGRRYQPSVIAVQSTELGPQHSEPAHLYIITSPRDGADR
NOV58C STKSRYVPNGKLAS TVRDLLPGRRYQLSVIAVQSTELGPQHSEPAHLYIITSPRDGADR
NOV58d STKSRYVPNGKLASYTVRDLLPGRRYQPSVIAVQSTELGPQHSEPAHLYIITSPRDGADR
NOV58e STKSRYVPNGKLASYTVRDLLPGRRYQPSVIAVQSTELGPQHSEPAHLYIITSPRDGADR
NOV58a --HQGGHHPRVLKNRPPPARLPELRLLNDHSAPETPTQPPRFSEFVDGRGRVSARFGGSP
NOV58b RWHQGGHHPRVLKNRPPPARLPELRLLNDHSAPETPTQPPRFSEFVDGRGRVSARFGGSP
NOV58c RWHQGGHHPRVLKNRPPPARLPELRLLNDHSAPETPTQPPRFSELVDGRGRVSARFGGSP
NOV58d RWHQGGHHPRVLKNRPPPARLPELRLLNDHSAPETPTQPPRFSEFVDGRGRVSARFGGSP
NOV58e RWHQGGHHPRVLKNRPPPARLPELRLLNDHSAPETPTQPPRFSEFVDGRGRVSARFGGSP
NOV58a SKAATVRS
NOV58b SKAATVRS
NOV58C SKAATVRSRPVPYMMSPPPPPAQSPASDPHPDCAQGAGLVGRRQHAPPWQEGQLGHPCSL
NOV58d SKAATVRS
NOV58e SKAATVRS
NOV58a QPTASAQLENMEEAPKRVSPALQLPEHGSKD
NOV58b QPTASAQLENMEEAPKRVSPALQLPEHGSKD
NOV58c RYRSTQKGGPRTIPGAKQLRRWTAWLLLEPTASAQLENMEEAPKRVSLALQLPEHGSKD
NOV58d QPTASAQLENMEEAPKRVSPALQLPEHGSKD
NOV58e QPTASAQLENMEEAPKRVSPALQLPEHGSKD
NOV58a IG
NOV58b IG
NOV58C IGSYAGPELSPSPGLCLVRIEASTSLQGTKHLLSTCSTQAKEQGGAFTLPCLCGPVQGDH
NOV58d IG
NOV58e VG
NOV58a NVPGNCSENPCQNGGTCVPGADAHSCDCGPGFKGRRCELACIKVS
NOV58b NVPGNCSENPCQNGGTCVPGADAHSCDCGPGFKGRRCELACIKVS
NOV58c GVGEGKPVFTDHSPADVPGNCSENPCQNGGTCVPGADAHSCDCGPGFKGRRCELG-IKES
NOV58d NVPGNCSENPCQNGGTCVPGADAHSCDCGPGFKGRRCELACIKVS
NOV58e NVPGNCSENPCQNGGTCVPGADAHSCGCGPGFKGRRCELACIKVS
NOV58a RPCTRLFSETKAFPVWEGGVCHHVYKRVYRVHQDICFKESCESTSLKKTPNRKQSKSQTL
NOV58b RPCTRLFSETKAFPVWEGGVC-.-fflVYKRVYRVHQDICFKESCESTSLKKTPNRKQSKSQTL
NOV58C TEFTKTSASKRAVKAQAS RRPQTGASGEQAHAVSCM
NOV58d RPCTRLFSETKAFPVWEGGVCHHVYKRVYRVHQDICFKESCESTSLKKTPNRKQSKSQTL
NOV58e RPCTRLFSETKAFPVWEGGVCHHVY---OiVYRVHQDICFKESCESTSLKKTPNRKQSKSQTL
NOV58a EKS
NOV58b EKS
NOV58C
NOV58d EKS
NOV58e EKS
NOV58a (SEQ ID NO 1144)
NOV58b (SEQ ID NO 1146)
NOV58C (SEQ ID NO 1148)
NOV58d (SEQ ID NO 1150)
NOV58e (SEQ ID NO 1152) Further analysis ofthe NOV58a protein yielded the following properties shown in Table 58C.
Table 58C. Protein Sequence Properties NOV58a
SignalP analysis: Cleavage site between residues 41 and 42
PSORT II analysis:
PSG: a new signal peptide prediction method
N-region: length 10; pos.chg 3; neg.chg 2 H-region: length 4; peak value -6.27 PSG score: -10.68
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -3.98 possible cleavage site: between 40 and 41
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al's method for TM region allocation Init position for calculation: 1
Tentative number of TMS(s) for the threshold 0.5: 0 number of TMS(s) .. fixed PERIPHERAL Likelihood = 2.12 (at 365) ALOM score: 2.12 (number of TMSs : 0)
MITDISC : discrimination of mitochondrial targeting seq R content: 2 Hyd Moment (75) : 18.26 Hyd Moment (95) : 17.56 G content: 0 D/E content: 2 S/T content: 1 Score: -1.90
Gavel : prediction of cleavage sites for mitochondrial preseq R-2 motif at 14 RRA|TΞ
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7: PGFKGRR (3) at 1190 bipartite: none content of basic residues: 9.5% NLS Score: -0.22
KDΞL: ER retention motif in the C-terminus : none
ER Membrane Retention Signals :
XXRR-like motif in the N-terminus: LRRA
KKXX-like motif in the C-terminus: TLEK SKL: peroxisomal targeting signal in the C-terminus : none PTS2 : 2nd peroxisomal targeting signal: none VAC: possible vacuolar targeting motif: none RNA-binding motif: none Actinin-type actin-binding motif : type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail : none
Dileucine motif in the tail: none checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: nuclear Reliability: 89
COIL : Lupas ' s algorithm to detect coiled-coil regions total: 0 residues
Final Results (k = 9/23) :
52.2 % : nuclear
34 . 8 % : mitochondrial
8 .7 % : cytoplasmic
4 .3 % : cytoskeletal
>> prediction for CG93387-05 is nuc (k=23)
A search of the NOV58a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 58D.
In a BLAST search of public sequence databases, the NOV58a protein was found to have homology to the proteins shown in the BLASTP data in Table 58E.
PFam analysis predicts that the NOV58a protein contains the domains shown in the Table 58F.
Table 58F. Domain Analysis of NOV58a Example 59.
The NOV59 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 59 A.
Table 59 A. NOV59 Sequence Analysis
NOV59a, CG93871-01 SEQ ED NO: 1155 |2018 bp DNA Sequence ORF Start: ATG at 101 JORF Stop: TAA at 1937
CTCCCCACGGCGCCAGGAGGAGGGGCGAGGGCCGGCAGCCCCCTCTCCCGCGCGCGGCGCAGGAGCCG
AGCCCAGCCCGGGGGACCCGCCGCCGCCGGTCATGTGGGCCGGACTGCTCCTTCGGGCCGCCTGTGTC
GCGCTCCTGCTGCCGGGGGCACCAGCCCGAGGCTACACCGGGAGGAAGCCGCCCGGGCACTTCGCGGC CGAGAGGCGCCGACTGGGCCCCCACGTCTGCCTCTCTGGGTTTGGGAGTGGCTGCTGCCCTGGCTGGG CGCCCTCTATGGGTGGTGGGCACTGCACCCTGCGTCTCTGCTCCTTCGGCTGTGGGAGTGGCATCTGC ATCGCTCCCAATGTCTGCTCCTGCCAGGATGGAGAGCAAGGGGCCACCTGCCCAGAAACCCATGGACC ATGTGGGGAGTACGGCTGTGACCTTACCTGCAACCATGGAGGCTGTCAGGAGGTGGCCCGAGTGTGCC CCGTGGGCTTCTCGATGACGGAGACAGCTGTTGGCATCAGGTGTGACATTGACGAATGTGTAACCTCC TCCTGCGAGGGCCACTGTGTGAACACAGAAGGTGGGTTTGTGTGCGAGTGTGGGCCGGGCATGCAGCT GTCTGCCGACCGCCACAGCTGCCAAGACACTGACGAATGCCTAGGGACTCCCTGTCAGCAGAGATGTA AAAACAGCATTGGCAGCTACAAGTGTTCCTGTCGAACTGGCTTCCACCTTCATGGCAACCGGCACTCC TGTGTAGATGTAAACGAGTGTCGGAGGCCATTGGAGAGGCGAGTCTGTCACCATTCCTGCCACAACAC CGTGGGCAGCTTCCTATGCACATGCCGACCTGGCTTCAGGCTCCGAGCTGACCGCGTGTCCTGTGAAG CTTTCCCGAAAGCCGTGCTGGCCCCATCTGCCATCCTGCAACCCCGGCAACACCCGTCCAAGATGCTT CTGTTGCTTCCTGAGGCCGGCCGGCCTGCCCTGTCCCCAGGACATAGCCCTCCTTCTGGGGCTCCAGG GCCCCCAGCCGGAGTCAGGACCACCCGCCTGCCATCTCCCACCCCACGACTACCCACATCCTCCCCTT CTGCCCCTGTGTGGCTGCTGTCCACCCTGCTGGCCACCCCAGTGCCTACTGCCTCCCTGCTGGGGAAC CTCAGACCCCCCTCACTCCTTCAGGGGGAGGTGATGGGGACCCCTTCCTCACCCAGGGGCCCTGAGTC CCCCCGACTGGCAGCAGGGCCCTCTCCCTGCTGGCACCTGGGAGCCATGCATGAATCAAGGAGTCGCT GGACAGAGCCTGGGTGTTCCCAGTGCTGGTGCGAGGATGGGAAGGTGACCTGTGAAAAGGTGAGGTGT GAAGCTGCTTGTTCCCACCCAATTCCCTCCAGAGATGGTGGGTGCTGCCCATCGTGCACAGGTTGTTT TCACAGTGGTGTCGTCCGAGCTGAAGGGGATGTGTTTTCACCTCCCAATGAGAACTGCACCGTCTGTG TCTGTCTGGCTGGAAACGTGTCGTGCATGTTTCGTGAGTGTCCTTTTGGCCCGTGTGAGACCCCCCAT AAAGACAGATGCTATTTCCACGGCCGGTGGTACGCAGACGGGGCTGTGTTCAGTGGGGGTGGTGACGA GTGTACCACCTGTGTTTGCCAGAATGGGGAGGTGGAGTGCTCCTTCATGCCCTGCCCTGAGCTGGCCT GCCCCCGAGAAGAGTGGCGGCTGGGCCCTGGGCAGTGTTGCTTCACCTGCCAGGAGCCCACACCCTCG ACAGGTTGCTCTCTTGACGACAACGGGGTTGAGTTTCCGATTGGACAGATCTGGTCGCCTGGTGACCC CTGTAGATGGCTCGGTGAGCTGCAAGAGGACAGACTGTGTGGACTCCTGCCCTCACCCGATCCGGATC CCTGGACAGTGCTGCCCAGACTGTTCAGCAGGTAATCCCCTGCCTCTGCCCCAAGCCCCCAGGGCAGG
GCATCTCAGGCATCGGGCTCCTTAAGCCCTATACAGCCTTCATCTC
NOV59a, CG93871-01 SEQ ID NO: 1156 612 aa MW at 65156.4kD Protem Sequence
M AGLLLRAACVA LLPGAPARGYTGRKPPGHFAAERRRLGPHVC SGFGSGCCPGWAPSMGGGHCTL R CSFGCGSGICIAPNVCSCQDGEQGATCPETHGPCGEYGCDLTC HGGCQEVARVCPVGFSMTETAV GIRCDIDECVTSSCΞGHCV TEGGFVCECGPGMQLSADRHSCQDTDECLGTPCQQRCKNSIGSyKCSC RTGFH HGNRHSCVDVNECRRPLERRVCHHSCHNTVGSFLCTCRPGFR RADRVSCEAFPKAVLAPSA ILQPRQHPSKM LL PEAGRPALSPGHSPPSGAPGPPAGVRTTR PSPTPR PTSSPSAPVWL STLL ATPVPTAS LGNLRPPSLLQGEVMGTPSSPRGPESPRLAAGPSPC HLGAMHESRSRWTEPGCSQC C EDGKVTCEKVRCEAACSHPIPSRDGGCCPSCTGCFHSGWRAEGDVFSPPNENCTVCVCLAGNVSCMF RECPFGPCETPHKDRCYFHGR YADGAVFSGGGDECTTCVCQNGEVECSFMPCPELACPREEWRLGPG QCCFTCQEPTPSTGCSLDDNGVEFPIGQI SPGDPCRWLGELQEDRLCG PSPDPDPWTVLPRLFSR
NOV59b, CG93871-05 SEQ D jO: 1157 J2819 bp DNA Sequence JQRF Start: ATG t 5 |θRF Stop: TAA at 2807
GGTCATGTGGGCCGGACTGCTCCTTCGGGCCGCCTGTGTCGCGCTCCTGCTGCCGGGGGCACCAGCCC
GAGGCTACACCGGGAGGAAGCCGCCCGGGCACTTCGCGGCCGAGAGACGCCGACTGGGCCCCCACGTC TGCCTCTCTGGGTTTGGGAGTGGCTGCTGCCCTGGCTGGGCGCCCTCTATGGGTGGTGGGCACTGCAC CCTGCCCCTCTGCTCCCTCGGCTGTGGGAGTGGCATCTGCATCGCTCCCAATGTCTGCTCCTGCCAGG ATGGAGAGCAAGGGGCCACCTGCCCAGAAACCCATGGACCATGTGGGGAGTACGGCTGTGACCTTACC TGCAACCATGGAGGCTGTCAGGAGGTGGCCCGAGTGTGCCCCGTGGGCTTCTCGATGACGGAGACAGC TGTTGGCATCAGGTGTACAGACATTGACGAATGTGTAACCTCCTCCTGCGAGGGCCACTGTGTGAACA CAGAAGACACTGACGAATGCCTAGGGACTCCCTGTCAGCAGAGATGTAAAAACAGCATTGGCAGCTAC AAGTGTTCCTGTCGAACTGGCTTCCACCTTCATGGCAACCGGCACTCCTGTGTAGATGTAAACGAGTG TCGGAGGCCATTGGAGAGGCGAGTCTGTCACCATTCCTGCCACAACACCGTGGGCAGCTTCCTATGCA CATGCCGACCTGGCTTCAGGCTCCGAGCTGACCGCGTGTCCTGTGAAGCTTTCCCGAAAGCCGTGCTG GCCCCATCTGCCATCCTGCAACCCCGGCAACACCCGTCCAAGATGCTTCTGTTGCTTCCTGAGGCCGG CCGGCCTGCCCTGTCCCCAGGACATAGCCCTCCTTCTGGGGCTCCAGGGCCCCCAGCCGGAGTCAGGA CCACCCGCCTGCCATCTCCCACCCCACGACTACCCACATCCTCCCCTTCTGCCCCTGTGTGGCTGCTG TCCACCCTGCTGGCCACCCCAGTGCCTACTGCCTCCCTGCTGGGGAACCTCAGACCCCCCTCACTCCT TCAGGGGGAGGTGATGGGGACCCCTTCCTCACCCAGGGGCCCTGAGTCCCCCCGACTGGCAGCAGGGC CCTCTCCCTGCTGGCACCTGGGAGCCATGCATGAATCAAGGAGTCGCTGGACAGAGCCTGGGTGTTCC CAGTGCTGGTGCGAGGACGGGAAGGTGACCTGTGAAAAGGTGAGGTGTGAAGCTGCTTGTTCCCACCC AATTCCCTCCAGAGATGGTGGGTGCTGCCCATCGTGCACAGGCTGTTTTCACAGTGGTGTCGTCCGAG CTGAAGGGGATGTGTTTTCACCTCCCAATGAGAACTGCACCGTCTGTGTCTGTCTGGCTGGAAACGTG TCCTGCATCTCTCCTGAGTGTCCTTCTGGCCCCTGTCAGACCCCCCCACAGACGGATTGCTGTACTTG TGTTCCAGTGAGATGCTATTTCCACGGCCGGTGGTACGCAGACGGGGCTGTGTTCAGTGGGGGTGGTG ACGAGTGTACCACCTGTGTTTGCCAGAATGGGGAGGTGGAGTGCTCCTTCATGCCCTGCCCTGAGCTG GCCTGCCCCCGAGAAGAGTGGCGGCTGGGCCCTGGGCAGTGTTGCTTCACCTGCCAGGAGCCCACACC CTCGACAGGCTGCTCTCTTGACGACAACGGGGTTGAGTTTCCGATTGGACAGATCTGGTCGCCTGGTG ACCCCTGTGAGTTATGCATCTGCCAGGCAGATGGCTCGGTGAGCTGCAAGAGGACAGACTGTGTGGAC TCCTGCCCTCACCCGATCCGGATCCCTGGACAGTGCTGCCCAGACTGTTCAGCAGGCTGCACCTACAC AGGCAGAATCTTCTATAACAACGAGACCTTCCCGTCTGTGCTGGACCCATGTCTGAGCTGCATCTGCC TGCTGGGCTCAGTGGCCTGTTCCCCCGTGGACTGCCCCATCACCTGTACCTACCCTTTCCACCCTGAC GGGGAGTGCTGCCCCGTGTGCCGAGACTGCAACTACGAGGGAAGGAAGGTGGCGAATGGCCAGGTGTT CACCTTGGATGATGAACCCTGCACCCGGTGCACGTGCCAGCTGGGAGAGGTGAGCTGTGAGAAGGTTC CCTGCCAGCGGGCCTGTGCCGACCCTGCCCTGCTTCCTGGGGACTGCTGCTCTTCCTGTCCAGATTCC CTGTCTCCTCTGGAAGAAAAGCAGGGGCTCTCCCCTCACGGAAATGTGGCATTCAGCAAAGCTGGTCG GAGCCTGCATGGAGACACTGAGGCCCCTGTCAACTGTAGCTCCTGTCCTGGGCCCCCGACAGCATCAC CCTCGAGGCCGGTGCTTCATCTCCTCCAGCTCCTTTTAAGAACGAACTTGATGAAAACACAGACTTTA CCTACAAGCCCGGCAGGAGCTCATGGTCCACACTCACTCGCTTTGGGGCTGACAGCCACTTTCCCAGG GGAGCCTGGGGCCTCCCCTCGACTCTCACCAGGGCCTTCGACCCCTCCAGGAGCCCCCACTCTACCTC TAGCTTCCCCAGGGGCTCCTCAGCCACCTCCTGTGACTCCAGAGCGCTCGTTCTCAGCCTCTGGGGCC CAGATAGTGTCCAGGTGGCCTCCTCTGCCTGGCACCCTCCTGACGGAAGCTTCAGCACTTTCCATGAT GGACCCCAGCCCCTCGAAGACCCCCATCACCCTCCTCGGGCCTCGCGTGCTTTCTCCCACCACCTCTA GACTCTCCACAGCCCTTGCAGCCACCACCCACCCTGGCCCCCAGCAGCCCCCAGTGGGGGCTTCTCGG GGGGAAGAGTCCACCATGTAAGGAGGTCACT
NOV59b, CG93871-05 jSEQ ID NO: 1158 934 aa MW at 97715.0kD Protein Sequence j
M AGLL RAACVALL PGAPARGYTGRKPPGHFAAERRR GPHVCLSGFGSGCCPG APSMGGGHCT PLCS GCGSGICIAPNVCSCQDGEQGATCPETHGPCGEYGCDLTCNHGGCQEVARVCPVGFSMTETAV GIRCTDIDECVTSSCEGHCVNTEDTDEC GTPCQQRCKNSIGSYKCSCRTGFH HGNRHSCVDVNECR RPLERRVCHHSCHNTVGSFLCTCRPGFRLRADRVSCEAFPKAV APSAILQPRQHPSKMLLL PEAGR PALSPGHSPPSGAPGPPAGVRTTRLPSPTPRLPTSSPSAPV LLSTLLATPVPTASLLGN RPPSLLQ GEVMGTPSSPRGPESPRLAAGPSPC HLGAMHESRSRWTEPGCSQC CEDGKVTCEKVRCEAACSHPI PSRDGGCCPSCTGCFHSGWRAEGDVFSPPNENCTVCVCLAGNVSCISPECPSGPCQTPPQTDCCTCV PVRCYFHGR YADGAVFSGGGDECTTCVCQNGEVECSFMPCPELACPREE RLGPGQCCFTCQEPTPS TGCSLDDNGVEFPIGQIWSPGDPCELCICQADGSVSC RTDCVDSCPHPIRIPGQCCPDCSAGCTYTG RIFY.--ΛTETFPSVLDPCLSCICLLGSVACSPVDCPITCTYPFHPDGECCPVCRDCNYEGRKVANGQVFT LDDEPCTRCTCQ GEVSCEKVPCQRACADPAL PGDCCSSCPDSLSP EEKQGLSPHGNVAFSKAGRS LHGDTEAPVNCSSCPGPPTASPSRPVLH LQLLLRTNLMKTQTLPTSPAGAHGPHSLALGLTATFPGE PGASPR SPGPSTPPGAPTIiP ASPGAPQPPPVTPERSFSASGAQIVSR PP PGTLLTEASA SMiD PSPSKTPIT GPRVLSPTTSR STALAATTHPGPQQPPVGASRGEESTM
NOV59c, 198488432 SEQ ID NO: 1159 1814 bp
DNA Sequence jORF Start: at l ORF Stop: at 1813
GGTACCCGAGGCTACACCGGGAGGAAGCCGCCCGGGCACTTCGCGGCCGAGAGACGCCGACTGGGCCC CCACGTCTGCCTCTCTGGGTTTGGGAGTGGCTGCTGCCCTGGCTGGGCGCCCTCTATGGGTGGTGGGC ACTGCACCCTGCCCCCCTGCTCCTTCGGCTGTGGGAGTGGCATCTGCATCGCTCCCAATGTCTGCTCC TGCCAGGATGGAGAGCAAGGGGCCACCTGCCCAGAAACCCATGGACCATGTGGGGAGTACGGCTGTGA CCTTACCTGCAACCATGGAGGCTGTCAGGAGGTGGCCCGAGTGTGCCCCGTGGGCTTCTCGATGACGG AGACAGCTGTTGGCATCAGGTGTACAGACATTGACGAATGTGTAACCTCCTCCTGCGAGGGCCACTGT GTGAACACAGAAAGTGGGTTTGTGTGCGAGTGTGGGCCGGGCATGCAGCTGTCTGCCGACCGCCACAG CTGCCAAGACACTGACGAATGCCTAGGGACTCCCTGTCAGCAGAGATGTAAAAACAGCATTGGCAGCT ACAAGTGTTCCTGTCGAACTGGCTTCCACCTTCATGGCAACCGGCACTCCTGTGTAGATGTAAACGAG TGTCGGAGGCCATTGGAGAGGCGAGTCTGTCACCATTCCTGCCACAACACCGTGGGCAGCTTCCTATG CACATGCCGACCTGGCTTCAGGCTCCGAGCTGACCGCGTGTCCTGTGAAGCTTTCCCGAAAGCCGTGC TGGCCCCATCTGCCATCCTGCAACCCCGGCAACACCCGTCCAAGATGCTTCTGTTGCTTCCTGAGGCC GGCCGGCCTGCCCTGTCCCCAGGACATAGCCCTCCTTCTGGGGCTCCAGGGCCCCCAGCCGGAGTCAG GACCACCCGCCTGCCATCTCCCACCCCACGACTACCCACATCCTCCCCTTCTGCCCCTGTGTGGCTGC TGTCCACCCTGCTGGCCACCCCAGTGCCTACTGCCTCCCTGCTGGGGAACCTCAGACCCCCCTCACTC CTTCAGGGGGAGGTGATGGGGACCCCTTCCTCACCCAGGGGCCCTGAGTCCCCCCGACTGGCAGCAGG GCCCTCTCCCTGCTGGCACCTGGGAGCCATGTATGAATCAAGGAGTCGCTGGACAGAGCCTGGGTGTT CCCAGTGTTGGTGCGAGGACGGGAAGGTGACCTGTGAAAAGGTGAGGTGTGAAGCTGCTTGTTCCCAC CCAATTCCCTCCAGAGATGGTGGGTGCTGCCCATCGTGCACAGGCTGTTTTCACAGTGGTGTCGTCCG AGCTGAAGGGGATGTGTTTTCACCTCCCAATGAGAACTGCACCGTCTGTGTCTGTCTGGCTGGAAACG TGTCCTGCATCTCTCCTGAGTGTCCTTCTGGCCCCTGTCAGACCCCCCCACAGACGGATTGCTGTACT TGTGTTCCAGTGAGATGCTATTTCCACGGCCGGTGGTACGCAGACGGGGCTGTGTTCAGTGGGGGTGG TGACGAGTGTACCACCTGTGTTTGCCAGAATGGGGAGGTGGAGTGCTCCTTCATGCCCTGCCCTGAGC TGGCCTGCCCCCGAGAAGAGTGGCGGCTGGGCCCTGGGCAGTGTTGCTTCACCTGCCAGGAGCCCACA CCCTCGACAGGCTGCTCTCTTGACGACAACGGGGTTGAGTTTCCGATTGGACAGATCTGGTCGCCTGG TGACCCCTGTGAGTTATGCATCTGCCAGGCAGATGGCTCGGTGAGCTGCAAGAGGACAGACTGTGTGG ACTCCTGCCCTCACCCGATCCGGATCCCTGGACAGTGCTGCTCGAG
NOV59c, 198488432 SEQ ID NO: 1160 604 aa MW at 63737.5kD Protein Sequence
GTRGYTGRKPPGHFAAERRR GPHVCLSGFGSGCCPG APSMGGGHCT PPCSFGCGSGICIAP VCS CQDGEQGATCPETHGPCGEYGCDLTCNHGGCQEVARVCPVGFS TETAVGIRCTDIDECVTSSCEGHC VNTESGFVCECGPGMQLSADRHSCQDTDEC GTPCQQRCKNSIGSYKCSCRTGFHLHGNRHSCV-DVNE CRRPLERRVCHHSCHNTVGSFLCTCRPGFRLRADRVSCEAFPKAVLAPSAILQPRQHPSKM LLLPEA GRPALSPGHSPPSGAPGPPAGVRTTR PSPTPRLPTSSPSAPV LLST ATPVPTASLLGN RPPSL LQGEVMGTPSSPRGPESPRIiAAGPSPCWHLGAMYESRSRWTEPGCSQCWCEDGKVTCEKVRCEAACSH PIPSRDGGCCPSCTGCFHSGWRAEGDVFSPPNENCTVCVCLAGNVSCISPECPSGPCQTPPQTDCCT CVPVRCYFHGRWYADGAVFSGGGDECTTCVCQNGEVECSF PCPELACPREEWRLGPGQCCFTCQEPT PSTGCSLDDNGVEFPIGQI SPGDPCELCICQADGSVSCKRTDCVDSCPHPIRIPGQCCS
NOV59d, 198488424 SEQ ID NO: 1161 1790 bp DNA Sequence ORF Start: at 1 ORF Stop: at 1789
GGTACCCGAGGCTACACCGGGAGGAAGCCGCCCGGGCACTTCGCGGCCGAGAGACGCCGACTGGGCCC CCACGTCTGCCTCTCTGGGTTTGGGAGTGGCTGCTGCCCTGGCCGGGCGCCCTCTATGGGTGGTGGGC ACTGCACCCTGCCCCTCTGCTCCTTCGGCTGTGGGAGTGGCATCTGCATCGCTCCCAATGTCTGCTCC TGCCAGGATGGAGAGCAAGGGGCCACCTGCCCAGAAACCCATGGACCATGTGGGGAGTACGGCTGTGA CCTTACCTGCAACCATGGAGGCTGTCAGGAGGTGGCCCGAGTGTGCCCCGTGGGCTTCTCGATGACGG AGACAGCTGTTGGCATCAGGTGTACAGACATTGACGAATGTGTAACCTCCTCCTGCGAGGGCCACTGT GTGAACACAGAAGGTGGGTTTGTGTGCGAGTGTGGGCCGGGCATGCAGCTGTCTGCCGACCGCCACAG CTGCCAAGACACTGACGAATGCCTAGGGACTCCCTGTCAGCAGAGATGTAAAAACAGCATTGGCAGCT ACAAGTGCTCCTGTCGAACTGGCTTCCACCTTCATGGCAACCGGCACTCCTGTGTAGATGTAAACGAG TGTCGGAGGCCATTGGAGAGGCGAGTCTGTCACCATTCCTGCCACAACACCGTGGGCAGCTTCCTATG CACATGCCGACCTGGCTTCAGGCTCCGAGCTGACCGCGTGTCCTGTGAAGCTTTCCCGAAAGCCGTGC TGGCCCCATCTGCCATCCTGCAACCCCGGCAACACCCGTCCAAGATGCTTCTGTTGCTTCCTGAGGCC GGCCGGCCTGCCCTGTCCCCAGGACATAGCCCTCCTTCTGGGGCTCCAGGGCCCCCAGCCGGAGTCAG AACCACCCGCCTGCCATCTCCCACCCCACGACTACCCACATCCTCCCCTTCTGCCCCTGTGTGGCTGC TGTCCACCCTGCTGGCCACCCCAGTGCCTACTGCCTCCCTGCTGGGGAACCTCAGACCCCCCTCACTC CTTCAGGGGGAGGTGATGGGGACCCCTTCCTCACCCAGGGGCCCTGAGTCCCCCCGACTGGCAGCAGG GCCCTCTCCCTGCTGGCACCTGGGAGCGATGCATGAATCAAGGAGTCGCTGGACAGAGCCTGGGTGTT CCCAGTGCTGGTGCGAGGACGGGAAGGTGACCTGTGAAAAGGTGAGGTGTGAAGCTGCTTGTTCCCAC CCAATTCCCTCCAGAGATGGTGGGTGCTGCCCATCGTGCACAGGCTGTTTTCACAGTGGTGTCGTCCG AGCTGAAGGGGATGTGTTTTCACCTCCCAATGAGAACTGCACCGTCTGTGTCTGTCTGGCTGGAAACG TGTCCTGCATCTCTCCTGAGGGTCCTTCTGGCCCCTGTCAGACCCCCCCACAGACGGATTGCTGTACτ TGTGTTCCAGTGAGATGCTATTTCCACGGCCGGTGGTACGCAGACGGGGCTGTGTTCAGTGGGGGTGG TGACGAGTGTACCACCTGTGTTTGCCAGAATGGGGAGGTGGAGTGCTCCTTCATGCCCTGCCCTGAGC TGGCCTGCCCCCGAGAAGAGTGGCGGCTGGGCCCTGGGCAGTGTTGCTTCACCTGCCAGGAGCCCACA CCCTCGACAGGCTGCTCTCTTGACGACAACGGGGTTGAGTTTCCGATTGGACAGATCTGGTCGCCTGG TGACCCCTATGGCTCGGTGAGCTGCAAGAGGACAGACTGTGTGGACTCCTGCCCTCACCCGATCCGGA TCCCTGGACAGTGCTGCTCGAG
NOV59d, 198488424 SEQ ID NO: 1162 596 aa MW at 62805.5kD Protein Sequence
GTRGYTGRKPPGHFAAERRR GPHVCLSGFGSGCCPGRAPS GGGHCTLP CSFGCGSGICIAP VCS CQDGEQGATCPETHGPCGEYGCDLTCNHGGCQEVARVCPVGFSMTETAVGIRCTDIDECVTSSCEGHC VNTEGGFVCECGPGMQLSADRHSCQDTDECLGTPCQQRCK-NSIGSYKCSCRTGFHLHGNRHSCVDVNE CRRPLEPΛVCHHSCHNTVGSF CTCRPGFRLRADRVSCEAFPKAVLAPSAILQPRQHPSKML LLPEA; GRPA SPGHSPPSGAPGPPAGVRTTR PSPTPRLPTSSPSAPV LST LATPVPTASL GN RPPS LQGEVMGTPSSPRGPESPR AAGPSPCWHLGAMHESRSRWTEPGCSQC CEDGKVTCEKVRCEAACSH PIPSRDGGCCPSCTGCFHSGVVRAEGDVFSPPNENCTVCVCLAGNVSCISPEGPSGPCQTPPQTDCCT CVPVRCYFHGRWY-ADGAVFSGGGDECTTCVCQNGEVECSF PCPELACPREEWRLGPGQCCFTCQEPT PSTGCSLDDNGVEFPIGQIWSPGDPYGSVSCKRTDCVDSCPHPIRIPGQCCS
NOV59e, 198488428 SEQ ID NO: 1163 1661 bp
DNA Sequence 0RF Start: at 1 j ORF Stop: at 1660
GGTACCCGAGGCTACACCGGGAGGAAGCCGCCCGGGCACTTCGCGGCCGAGAGACGCCGACTGGGCCC CCACGTCTGCCTCTCTGGGTTTGGGAGTGGCTGCTGCCCTGGCTGGGCGCCCTCTATGGGTGGTGGGC ACTGCACCCTGCCCCTCTGCTCCTTCGGCTGTGGGAGTGGCATCTGCATCGCTCCCAATGTCTGCTCC TGCCAGGATGGAGAGCAAGGGGCCACCTGCCCAGAAACCCATGGACCATGTGGGGAGTACGGCTGTGA CCTTACCTGCAACCATGGGGGCTGTCAGGAGGTGGCCCGAGTGTGCCCCGTGGGCTTCTCGATGACGG AGACAGCTGTTGGCATCAGGTGTACAGACATTGACGAATGTGTAACCTCCTCCTGCGAGGGCCACTGT GTGAACACAGAAGGTGGGTTTGTGTGCGAGTGTGGGCCGGGCATGCAGCTGTCTGCCGACCGCCACAG CTGCCAAGACACTGACGAATGCCTAGGGACTCCCTGTCAGCAGAGATGTAAAAACAGCATTGGCAGCT ACAAGTGTTCCTGTCGAACTGGCTTCCACCTTCATGGCAACCGGCACTCCTGTGTAGCTTCCCCGAAA GCCGTGCTGGCCCCATCTGCCATCCTGCAACCCCGGCAACACCCGTCCAAGATGCTTCTGTTGCTTCC TGAGGCCGGCCGGCCTGCCCTGTCCCCAGGACATAGCCCTCCTTCTGGGGCTCCAGGGCCCCCAGCCG GAGTCAGGACCACCCGCCTGCCATCTCCCACCCCACGACTACCCACATCCTCCCCTTCTGCCCCTGTG TGGCTGCTGTCCACCCTGCTGGCCACCCCAGTGCCTACTGCCTCCCTGCTGGGGAACCTCAGACCCCC CTCACTCCTTCAGGGGGAGGTGATGGGGACCCCTTCCTCACCCAGGGGCCCTGAGTCCCCCCGACTGG CAGCAGGGCCCTCTCCCTGCTGGCACCTGGGAGCCATGCATGAATCAAGGAGTCGCTGGACAGAGCCT GGGTGTTCCCAGTGCTGGTGCGAGGACGGGAAGGTGACCTGTGAAAAGGTGAGGTGTGAAGCTGCTTG TTCCCACCCAATTCCCTCCAGAGATGGTGGGTGCTGCCCATCGTGCACAGGCTGTTTTCACAGTGGTG TCGTCCGAGCTGAAGGGGATGTGTTTTCACCTCCCAATGAGAACTGCACCGTCTGTGTCTGTCTGGCT GGAAACGTGTCCTGCATCTCTCCTGAGTGTCCTTCTGGCCCCTGTCAGACCCCCCCACAGACGGATTG CTGTACTTGTGTTCCAGTGAGATGCTATTTCCACGGCCGGTGGTACGCAGACAGGGCTGTGTTCAGTG GGGGTGGTGACGAGTGTACCACCTGTGTTTGCCAGAATGGGGAGGTGGAGTGCTCCTTCATGCCCTGC CCTGAGCTGGCCTGCCCCCGAGAAGAGTGGCGGCTGGGCCCTGGGCAGTGTTGCTTCACCTGCCAGGA GCCCACACCCTCGACAGGCTGCTCTCTTGACGACAACGGGGTTGAGTTTCCGATTGGACAGATCTGGT CGCCTGGTGACCCCTATGGCTCGGTGAGCTGCAAGAGGACAGACTGTGTGGACTCCTGCCCTCACCCG ATCCGGATCCCTGGACAGTGCTGCTCGAG
NOV59e, 198488428 SEQ ID NO: 1164 553 aa MW at 57922.0kD Protein Sequence
GTRGYTGRKPPGHFAAERRRLGPHVC SGFGSGCCPGWAPSMGGGHCTLPLCSFGCGSGICIAPNVCS CQDGEQGATCPETHGPCGEYGCDLTCNHGGCQEVARVCPVGFSMTETAVGIRCTDIDECVTSSCEGHC VNTEGGFVCECGPGMQLSADRHSCQDTDEC GTPCQQRCKNSIGSYKCSCRTGFHLHGNRHSCVASPK AVLAPSAILQPRQHPSKM LLLPEAGRPA SPGHSPPSGAPGPPAGVRTTRLPSPTPRLPTSSPSAPV LLSTL ATPVPTASL GN RPPSLLQGEVMGTPSSPRGPESPRLAAGPSPC HLGAMHESRSRWTEP GCSQCWCEDG--- -^CEKVRCEAACSHPIPSRDGGCCPSCTGCFHSGVVRAEGDVFSPPNENCTVCVCLA GNVSCISPECPSGPCQTPPQTDCCTCVPVRCYFHGR YADRAVFSGGGDECTTCVCQNGEVECSFMPC PELACPREE RLGPGQCCFTCQEPTPSTGCSLDDNGVEFPIGQI SPGDPYGSVSCKRTDCVDSCPHP IRIPGQCCS
SEQ ID NO: 1165 1814bp NOV59f, 198488440 SEQ ID NO: 1165 1814 bp DNA Sequence
:©ngrøfc gc§β-- gτgGGCcc
GGCTGCTGCCCTGGCTGGGG GGCCCCCCTTCCTTAATTGGGGGGTTGGGGTTGGGGGGCC
'SGΪGT-GGGAGΦGGGA-SGTG€-?i-ΦG G-TGGG AΦGΦGΦGeϊeG
TGCCAGGATGGAGAGCAAGGGGCCACCTGCCCAGAAACCCATGGACCATGTGGGGAGTACGGCTGTGA CCTTACCTGCAACCATGGAGGCTGTCAGGAGGTGGCCCGAGTGTGCCCCGTGGGCTTCTCGATGACGG AGACAGCTGTTGGCATCAGGTGTACAGACATTGACGAATGTGTAACCTCCTCCTGCGAGGGCCACTGT GTGAACACAGAAGGTGGGTTTGTGTGCGAGTGTGGGCCGGGCATGCAGCTGTCTGCCGACCGCCACAG CTGCCAAGACACTGACGAATGCCTAGGGACTCCCTGTCAGCAGAGATGTAAAAACAGCATTGGCAGCT ACAAGTGCTCCTGTCGAACTGGCTTCCACCTTCATGGCAACCGGCACTCCTGTGTAGATGTAAACGAG TGTCGGAGGCCATTGGAGAGGCGAGTCTGTCACCATTCCTGCCACAACACCGTGGGCAGCTTCCTATG CACATGCCGACCTGGCTTCAGGCTCCGAGCTGACCGCGTGTCCTGTGAAGCTTTCCCGAAAGCCGTGC TGGCCCCATCTGCCATCCTGCAACCCCGGCAACACCCGTCCAAGATGCTTCTGTTGCTTCCTGAGGCC GGCCGGCCTGCCCTGTCCCCAGGACATAGCCCTCCTTCTGGGGCTCCAGGGCCCCCAGCCGGAGTCAG GACCACCCGCCTGCCATCTCCCACCCCACGACTACCCACATCCTCCCCTTCTGCCCCTGTGTGGCTGC TGTCCACCCTGCTGGCCACCCCAGTGCCTACTGCCTCCCTGCTGGGGAACCTCAGACCCCCCTCACTC CTTCAGGGGGAGGTGATGGGGACCCCTTCCTCACCCAGGGGCCCTGAGTCCCCCCGACTGGCAGCAGG GCCCTCTCCCTGCTGGCACCTGGGAGCGATGCATGAATCAAGGAGTCGCTGGACAGAGCCTGGGTGTT CCCAGTGCTGGTGCGAGGACGGGAAGGTGACCTGTGAAAAGGTGCGGTGTGAAGCTGCTTGTTCCCAC CCAATTCCCTCCAGAGATGGTGGGTGCTGCCCATCGTGCACAGGCTGTTTTCACAGTGGTGTCGTCCG AGCTGAAGGGGATGTGTTTTCACCTCCCAATGAGAACTGCACCGTCTGTGTCTGTCTGGCTGGAAACG TGTCCTGCATCTCTCCTGAGTGTCCTTCTGGCCCCTGTCAGACCCCCCCACAGACGGATTGCTGTACT TGTGTTCCAGTGAGATGCTATTTCCACGGCCGGTGGTACGCAGACGGGGCTGTGTTCAGTGGGGGTGG TGACGAGTGTACCACCTGTGTTTGCCAGAATGGGGAGGTGGAGTGCTCCTTCATGCCCTGCCCTGAGC TGGCCTGCCCCCGAGAAGAGTGGCGGCCGGGCCCTGGGCAGTGTTGCTTCACCTGCCAGGAGCCCACA CCCTCGACAGGCTGCTCTCTTGACGACAACGGGGTTGAGTTTCCGATTGGACAGATCTGGTCGCCTGG TGACCCCTGTGAGTTATGCATCTGCCAGGCAGATGGCTCGGTGAGCTGCAAGAGGACAGACTGTGTGG ACTCCTGCCCTCACCCGATCCGGATCCCTGGACAGTGCTGCTCGAG
NOV59f, 198488440 SEQ ID NO: 1166 604 aa MW at 63653.5kD Protein Sequence
GTRGYTGKKPPGHFAAERRRLGPHVCLSGFGSGCCPGWAPSMGGGHCTLP CSFGCGSGICIAPNVCS CQDGEQGATCPETHGPCGEYGCDLTCNHGGCQEVARVCPVGFSMTETAVGIRCTDIDECVTSSCEGHC V TEGGFVCECGPGMQ SA-DRHSCQDTDEC GTPCQQRCKNSIGSYKCSCRTGFH HGNRHSCVDVNE CRRPLERRVCHHSCHNTVGSFLCTCRPGFRLRADRVSCEAFPKAVLAPSAI QPRQHPSKMLL LPEA GRPALSPGHSPPSGAPGPPAGVRTTRLPSPTPR PTSSPSAPV LLST ATPVPTASL GNLRPPS QGEVMGTPSSPRGPESPR AAGPSPC HLG-AMHESRSRWTEPGCSQC CEDGKVTCEKVRCEAACSH PIPSRDGGCCPSCTGCFHSGWRAEGDVFSPPNENCTVCVCLAGNVSCISPECPSGPCQTPPQTDCCT CVPVRCYFHGR YADGAVFSGGGDECTTCVCQNGEVECSFMPCPELACPREE RPGPGQCCFTCQEPT PSTGCSLDDNGVΞFPIGQI SPGDPCELCICQADGSVSCKRTDCVDSCPHPIRIPGQCCS
NOV59g, CG93871-02 SEQ ID NO: 1167 585 bp DNA Sequence ORF Start: at 7 ORF Stop: at 580
GGTACCTGCTCCTTCGGCTGTGGGAGTGGCATCTGCATCGCTCCTAATGTCTGCTCCTGCCAGGATGG
AGAGCAAGGGGCCACCTGCCCAGAAACCCATGGACCATGTGGGGAGTACGGCTGTGACCTTACCTGCA ACCATGGAGGCTGTCAGGAGGTGGCCCGAGTGTGCCCCGTGGGCTTCTCGATGACGGAGACAGCTGTT GGCATCAGGTGTACAGACATTGACGAATGTGTAACCTCCTCCTGCGAGGGCCACTGTGTGAACACAGA AGGTGGGTTTGTGTGCGAGTGTGGGCCGGGCATGCAGCTGTCTGCCGACCGCCACAGCTGCCAAGACA CTGACGAATGCCTAGGGACTCCCTGTCAGCAGGGATGTAAAAACAGCATTGGCAGCTACAAGTGTTCC TGTCGAACTGGCTTCCACCTTCATGGCAACCGGCACTCCTGTGTAGATGTAAACGAGTGTCGGAGGCC ATTGGAGAGGCGAGTCTGTCACCATTCCTGCCACAACACCGTGGGCAGCTTCCTATGCACATGCCGAC CTCGAGACAGGCTCCGAGCTGACCGCGTGTCCTGTCTCGAG
NOV59g, CG93871-02 SEQ ID NO: 1168 191 aa MW at 20429.7kD Protein Sequence
CSFGCGSGICIAPNVCSCQDGEQGATCPETHGPCGEYGCDLTCNHGGCQEVARVCPVGFSMTETAVGI RCTDIDECVTSSCEGHCVNTEGGFVCECGPGMQLSADRHSCQDTDECLGTPCQQGCKNSIGSYKCSCR TGFHLHGNRHSCVDVNECRRP ERRVCHHSCHNTVGSFLCTCRPRDR RADRVSC NOV59h, CG93871-03 SEQ ID NO: 1169 2063 bp
DNA Sequence [ppj Start: ATQ at 20 [ORF Stop TAG at 1229
AGTGTTACAGTTCTTCAAGATGGTGTGTCCGGAGTTTGTTCCTTCAGATGTTCAGATGTGTCCAGAAT
TTCTTCCTTCTGGTGGGTTCGTGCTCTCACTGGCTTCAATGGGTGGTGGGCACTGCACCCTGCCCCTC TGCTCCTTCGGCTGTGGGAGTGGCATCTGCATCGCTCCCAATGTCTGCTCCTGCCAGGATGGAGAGCA AGGGGCCACCTGCCCAGAAACCCATGGACCATGTGGGGAGTACGGCTGTGACCTTACCTGCAACCATG GAGGCTGTCAGGAGGTGGCCCGAGTGTGCCCCGTGGGCTTCTCGATGACGGAGACAGCTGTTGGCATC AGGTGTACAGACATTGACGAATGTGTAACCTCCTCCTGCGAGGGCCACTGTGTGAACACAGAAGGTGG GTTTGTGTGCGAGTGTGGGCCGGGCATGCAGCTGTCTGCCGACCGCCACAGCTGCCAAGACACTGACG AATGCCTAGGGACTCCCTGTCAGCAGAGATGTAΑA--ACAGCATTGGCAGCTACAAGTGTTCCTGTCGA ACTGGCTTCCACCTTCATGGCAACCGGCACTCCTGTGTAGATGTAAACGAGTGTCGGAGGCCATTGGA GAGGCGAGTCTGTCACCATTCCTGCCACAACACCGTGGGCAGCTTCCTATGCACATGCCGACCTGGCT TCAGGCTCCGAGCTGACCGCGTGTCCTGTGAAGCTTTCCCGAAAGCCGTGCTGGCCCCATCTGCCATC CTGCAACCCCGGCAACACCCGTCCAAGATGCTTCTGTTGCTTCCTGAGGCCGGCCGGCCTGCCCTGTC CCCAGGACATAGCCCTCCTTCTGGGGCTCCAGGGCCCCCAGCCGGAGTCAGGACCACCCGCCTGCCAT CTCCCACCCCACGACTACCCACATCCTCCCCTTCTGCCCCTGTGTGGCTGCTGTCCACCCTGCTGGCC ACCCCAGTGCCTACTGCCTCCCTGCTGGGGAACCTCAGACCCCCCTCACTCCTTCAGGGGGAGGTGAT GAGGACCCCTTCCTCACCCAGGGGCCCTGAGTCCCCCCGACTGGCAGCAGGGCCCTCTCCCTGCTGGC ACCTGGGAGCCATGCATGAATCAAGGAGTCGCTGGACAGAGCCTGGGTGTTCCCAGTGCTGGTGCGAG GTGGGTACTAGGGGTCCCCGGAGCTTCCTTGGTCTGGGGCCTTGTGGTGGCTCTAACTCCTGCTTGTG CTTCTAGGACGGGAAGGTGACCTGTGAAAAGGTGAGGTGTGAAGCTGCTTGTTCCCACCCAATTCCCT
CCAGAGATGGTGGGTGCTGCCCATCGTGCACAGGTGAGAGCTGGTGCCAGGGAAGGACATAGTCCTGC
CTCTTCCTTTCTCTGCACCCTCCTGCAGCCAAAAGGCTGTTCTTTAACATTAGCATACATTAGAATCT
CCTGGAGGGTTTACTAAGCCACACTTCCCTTGGCGCTGCTCCCAGAGCTTCTGATGTAGTAGGTCTGG
GATAGGGCCAGAACATGTGCGTTTTGAACAGGTTCCCAGGTGATACTGACGTGGCTGGTCTAGGGACC lATACTTTGAGAACCACTCATTTATGCTGTAATATGCCTCAAGGGGGACTTTTCATCTTCTGGGCATCT
GTTTTCAGCTTCATTCGCTCATTTTCATTTATTCAGTCATTCATTGAGCCTCTTTAAATCCACTGTGC
AGTCCCCTTCTCTTTCCGACTCACCTTCTCACATGGGGAGGAGTAGTTGCTTTACAATTCCCCCCCTT
TTTAATCTCCCCCCCCCCATATATCGATACTTCTTTATCTTCTTCCCATTCCTGGAAGAATAGGGACC
CATATTCTTCACCAAATCCTCAACTAGAGTTTCTTCTGAACTACCTCTCCAGCCCCTCAAGGGTATTC
TGATGACAAATACAAATTCTTCTCGTTGGCACGCTGTCTCTATCGCAGAACCCCACCACTTTGGGAGT
CCAATTTTGTCTTATCACTTGAGCGGACCATTCAGGGACTGTTTGGGATACTCGGTGATAAACGTCGA!
GCATTCGTCTTTCTATCTCCTCA
NOV59h, CG93871-03 SEQ ID NO: 1170 403 aa MW at 42493. OkD
Protein Sequence I
MVCPEFVPSDVQMCPEFLPSGGFVLSLASMGGGHCTLPLCSFGCGSGICIAPNVCSCQDGEQGATCPE THGPCGEYGCDLTC HGGCQEVARVCPVGFSMTETAVGIRCTDIDECVTSSCEGHCVNTEGGFVCECG PGMQLSADRHSCQDTDEC GTPCQQRC NSIGSYKCSCRTGFH HGNRHSCVDVNECRRPLERRVCHH SCHNTVGSF CTCRPGFRLRADRVSCEAFPKAVLAPSAILQPRQHPSKMLL LPEAGRPA SPGHSPP SGAPGPPAGVRTTRLPSPTPRLPTSSPSAPVWL STLLATPVPTAS LGNLRPPSL QGEV RTPSSP RGPESPR AAGPSPCWH GAMHESRSR TEPGCSQC CEVGTRGPRSF G GPCGGSNSCLCF
NOV59i, CG93871-04 JSEQ TD NO: 11_71_ __ [1790 bp
DNA Sequence ORF Start: at 1 ORF Stop: at 1789
GGTACCCGAGGCTACACCGGGAGGAAGCCGCCCGGGCACTTCGCGGCCGAGAGACGCCGACTGGGCCC CCACGTCTGCCTCTCTGGGTTTGGGAGTGGCTGCTGCCCTGGCCGGGCGCCCTCTATGGGTGGTGGGC ACTGCACCCTGCCCCTCTGCTCCTTCGGCTGTGGGAGTGGCATCTGCATCGCTCCCAATGTCTGCTCC TGCCAGGATGGAGAGCAAGGGGCCACCTGCCCAGAAACCCATGGACCATGTGGGGAGTACGGCTGTGA CCTTACCTGCAACCATGGAGGCTGTCAGGAGGTGGCCCGAGTGTGCCCCGTGGGCTTCTCGATGACGG AGACAGCTGTTGGCATCAGGTGTACAGACATTGACGAATGTGTAACCTCCTCCTGCGAGGGCCACTGT GTGAACACAGAAGGTGGGTTTGTGTGCGAGTGTGGGCCGGGCATGCAGCTGTCTGCCGACCGCCACAG CTGCCAAGACACTGACGAATGCCTAGGGACTCCCTGTCAGCAGAGATGTAAAAACAGCATTGGCAGCT ACAAGTGCTCCTGTCGAACTGGCTTCCACCTTCATGGCAACCGGCACTCCTGTGTAGATGTAAACGAG TGTCGGAGGCCATTGGAGAGGCGAGTCTGTCACCATTCCTGCCACAACACCGTGGGCAGCTTCCTATG CACATGCCGACCTGGCTTCAGGCTCCGAGCTGACCGCGTGTCCTGTGAAGCTTTCCCGAAAGCCGTGC TGGCCCCATCTGCCATCCTGCAACCCCGGCAACACCCGTCCAAGATGCTTCTGTTGCTTCCTGAGGCC GGCCGGCCTGCCCTGTCCCCAGGACATAGCCCTCCTTCTGGGGCTCCAGGGCCCCCAGCCGGAGTCAG AACCACCCGCCTGCCATCTCCCACCCCACGACTACCCACATCCTCCCCTTCTGCCCCTGTGTGGCTGC
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 59B.
Table 59B. Comparison of the NOV59 protein sequences.
N0V59a M AG LRAACVA LPGAPARGYTGRKPPGHFAAERRRLGPHVCLSGFGSGCCPGWAPS
N0V59b MWAGLLLRAACVALL PGAPARGYTGRKPPGHFAAERRRLGPHVCLSGFGSGCCPGWAPS
N0V59c GTRGYTGRKPPGHFAAERRR GPHVCLSGFGSGCCPG APS
N0V59d GTRGYTGRKPPGHFAAERRRLGPHVCLSGFGSGCCPGRAPS
N0V59e GTRGYTGRKPPGHFAAERRR GPHVC SGFGSGCCPGWAPS
N0V59f GTRGYTGKKPPGHFAAERRRLGPHVCLSGFGSGCCPG APS
N0V59g
N0V59h MVCP EFVPS DVQMCPEFLPSGGFVLSLAS
N0V59i GTRGYTGR PPGHFAAERRRLGPHVCLSGFGSGCCPGRAPS
N0V59a MGGGHCT RLCSFGCGSGICIAPNVCSCQDGEQGATCPETHGPCGEYGCD TC HGGCQE
N0V59b MGGGHCTLPLCSLGCGSGICIAPNVCSCQDGEQGATCPETHGPCGEYGCD TCNHGGCQE
N0V59C MGGGHCTLPPCSFGCGSGICIAP VCSCQDGEQGATCPETHGPCGEYGCDLTCNHGGCQE
N0V59d MGGGHCT PLCSFGCGSGICIAPNVCSCQDGEQGATCPETHGPCGEYGCD TCNHGGCQE
N0V59e MGGGHCTLP CSFGCGSGICIAP VCSCQDGEQGATCPETHGPCGEYGCDLTCNHGGCQE
NOV59f GGGHCTLPLCSFGCGSGICIAPNVCSCQDGEQGATCPETHGPCGEYGCD TC HGGCQE
N0V59g CSFGCGSGICIAPNVCSCQDGEQGATCPETHGPCGEYGCD TCNHGGCQE
NOV59 MGGGHCTLPLCSFGCGSGICIAPNVCSCQDGEQGATCPETHGPCGEYGCDLTC HGGCQE
-N0V59i MGGGHCTLP CSFGCGSGICIAPNVCSCQDGEQGATCPETHGPCGEYGCDLTCNHGGCQE
N0V59a VARVCPVGFSMTETAVGIRC-DIDECVTSSCEGHCVNTEGGFVCECGPGMQLSADRHSCQ
N0V59b VARVCPVGFSMTETAVGIRCTDIDECVTSSCEGHCVNTE
N0V59C VARVCPVGFSMTETAVGIRCTDIDECVTSSCEGHCVNTESGFVCECGPG QLSADRHSCQ
N0V59d VARVCPVGFSMTETAVGIRCTDIDECVTSSCEGHCVNTEGGFVCECGPGMQLSADRHSCQ
N0V59e VARVCPVGFSMTETAVGIRCTDIDECVTSSCEGHCVNTEGGFVCECGPG QLSADRHSCQ
N0V59f VARVCPVGFSMTETAVGIRCTDIDECVTSSCEGHCVNTEGGFVCECGPGMQ SADRHSCQ
N0V59g VARVCPVGFSMTETAVGIRCTDIDECVTSSCEGHCV TEGGFVCECGPGMQLSADRHSCQ
N0V59 VARVCPVGFSMTETAVGIRCTDIDECVTSSCEGHCVNTEGGFVCECGPGMQLSADRHSCQ NOV59i VARVCPVGFSMTETAVGIRCTDIDECVTSSCEGHCVNTEGGFVCECGPG QLSADRHSCQ
NOV59a DTDECLGTPCQQRC NSIGSYKCSCRTGFH HGNRHSCVDVNECRRP ERRVCHHSCHNT NOV59b DTDECLGTPCQQRCKNSIGSYKCSCRTGFHLHGN-I--HSCVDVNECRRP ERRVCHHSCHN NOV59C DTDECLGTPCQQRCKNSIGSYKCSCRTGFHLHGNRHSCVDVNECRRPLERRVCHHSCHNT NOV59d DTDECLGTPCQQRCKNSIGSYKCSCRTGFHLHGNRHSCVDVNECRRPLERRVCHHSCHNT NOV59e DTDECLGTPCQQRCKNSIGSYKCSCRTGFHLHGNRHSCVAS NOV59f DTDECLGTPCQQRCKNSIGSYKCSCRTGFHLHGNRHSCVDVNECRRPLERRVCHHSCHNT NOV59g DTDECLGTPCQQGCKNSIGSYKCSCRTGFHLHGNRHSCVDVNECRRPLERRVCHHSCHNT NOV59h DTDECLGTPCQQRCKNSIGSYKCSCRTGFHLHGNRHSCVDVNECRRPLERRVCHHSCHNT NOV59i DTDECLGTPCQQRCKNSIGSYKCSCRTGFHLHGNRHSCVDVNECRRPLERRVCHHSCHNT
NOV59a VGSFLCTCRPGFRLRADRVSCEAFPKAVLAPSAILQPRQHPSKMLLLLPEAGRPALSPGH NOV59b VGSFLCTCRPGFRLRADRVSCEAFPKAVLAPSAILQPRQHPSKMLLLLPEAGRPALSPGH NOV59C VGSFLCTCRPGFRLRADRVSCEAFPKAVLAPSAILQPRQHPSKMLLLLPEAGRPALSPGH NOV59d VGSFLCTCRPGFRLRADRVSCEAFPKAVLAPSAILQPRQHPSKMLLLLPEAGRPALSPGH NOV59e PKAVLAPSAILQPRQHPSK LLLLPEAGRPALSPGH NOV59f VGSFLCTCRPGFRLRADRVSCEAFPKAVLAPSAILQPRQHPSK LLLLPEAGRPALSPGH NOV59g VGSFLCTCRPRDRLRADRVSC NOV59h VGSFLCTCRPGFRLRADRVSCEAFPKAVLAPSAILQPRQHPSKMLLLLPEAGRPALSPGH NOV59i VGSFLCTCRPGFRLRA-DRVSCEAFPKAVLAPSAILQPRQHPS-KMLLLLPEAGRPALSPGH
NOV59a SPPSGAPGPPAGVRTTRLPSPTPRLPTSSPSAPVWLLSTLLATPVPTASLLGNLRPPSLL NOV59b SPPSGAPGPPAGVRTTRLPSPTPRLPTSSPSAPVWLLSTLLATPVPTASLLGNLRPPSLL NOV59C SPPSGAPGPPAGVRTTRLPSPTPRLPTSSPSAPVWLLSTLLATPVPTASLLGNLRPPSLL NOV59d SPPSGAPGPPAGVRTTRLPSPTPRLPTSSPSAPV LLSTLLATPVPTASLLGNLRPPSLL NOV59e SPPSGAPGPPAGVRTTRLPSPTPRLPTSSPSAPVWLLSTLLATPVPTASLLGNLRPPSLL NOV59f SPPSGAPGPPAGVRTTRLPSPTPRLPTSSPSAPVWLLSTLLATPVPTASLLGNLRPPSLL NOV59g NOV5911 SPPSGAPGPPAGVRTTRLPSPTPRLPTSSPSAPV LLSTLLATPVPTASLLGNLRPPSLL NOV59i SPPSGAPGPPAGVRTTRLPSPTPRLPTSSPSAPVWLLSTLLATPVPTASLLGNLRPPSLL
NOV59a QGEVMGTPSSPRGPESPRL-AAGPSPC HLGAMHESRSRWTEPGCSQCWCEDGKVTCEKVR NOV59b QGEVMGTPSSPRGPESPRLAAGPSPCWHLGAMHESRSR TEPGCSQC CEDGKVTCEKVR NOV59C QGEVMGTPSSPRGPESPRL-AAGPSPCWHLGAMYESRSRWTEPGCSQC CEDG-KVTCEKVR NOV59d QGEV GTPSSPRGPESPRLAAGPSPC HLGAMHESRSR TΞPGCSQC CEDGKVTCEKVR NOV59e QGEVWGTPSSPRGPESPRLAAGPSPC HLGAMHESRSR TEPGCSQC CΞDG-KVTCEKVR NOV59f QGEVMGTPSSPRGPESPRLAAGPSPC HLGA-MHESRSR TEPGCSQCWCEDGKVTCEKVR NOV59g NOV59h QGEVMRTPSSPRGPESPRLAAGPSPC HLGAMHESRSR TEPGCSQC CEVG NOV59i QGEVMGTPSSPRGPESPR AAGPSPCVrøLGAMHESRSR TEPGCSQC CEDGKVTCEKVR
NOV59a CEAACSHPIPSRDGGCCPSCTGCFHSGWRAEGDVFSPPNENCTVCVCI-AGNVSCMFREC NOV59b CEAACSHPIPSRDGGCCPSCTGCFHSGWRAEGDVFSPPNENCTVCVCLAGNVSCISPEC NOV59C CEAACSHPIPSRDGGCCPSCTGCFHSGWRAEGDVFSPPNENCTVCVCLAGNVSCISPEC NOV59d CEAACSHPIPSRDGGCCPSCTGCFHSGWRAEGDVFSPPNENCTVCVCLAGNVSCISPEG NOV59e CEAACSHPIPSRDGGCCPSCTGCFHSGVVRAΞGDVFSPPNENCTVCVCLAGNVSCISPEC NOV59f CEAACSHPIPSRDGGCCPSCTGCFHSGWRAEGDVFSPPNENCTVCVCLAGNVSCISPEC NOV59g NOV59h TRGPRSFLG NOV59i CEAACSHPIPSRDGGCCPSCTGCFHSGWRAEGDVFSPPNENCTVCVCLAGNVSCISPΞG
NOV59a PFGPCETPHK--D RCYFHGRWYADGAVFSGGGDECTTCVCQNGEVECSFMPCPE NOV59b PSGPCQTPPQTDCCTCVPVRCYFHGR YADGAVFSGGGDECTTCVCQNGEVECSFMPCPE NOV59C PSGPCQTPPQTDCCTCVPVRCYFHGRWYADGAVFSGGGDECTTCVCQNGEVECSFMPCPE NOV59d PSGPCQTPPQTDCCTCVPVRCYFHGRWYADGAVFSGGGDECTTCVCQNGEVECSFMPCPE NOV59e PSGPCQTPPQTDCCTCVPVRCYFHGR YADRAVFSGGGDECTTCVCQNGEVECSFMPCPE NOV59f PSGPCQTPPQTDCCTCVPVRCYFHGR YADGAVFSGGGDECTTCVCQNGEVECSFMPCPE NOV59g NOV59h -LGPCGGSNS- -LCF- NOV59i PSGPCQTPPQTDCCTCVPVRCYFHGRWYADGAVFSGGGDECTTCVCQNGΞVECSFMPCPE
NOV59a LACPREEWRLGPGQCCFTCQEPTPSTGCSLDDNGVEFPIGQIWSPGDPCR WLG
NOV59b LACPREEWRLGPGQCCFTCQEPTPSTGCSLDDNGVEFPIGQIWSPGDPCELCICQADGSV
NOV59C LACPREE RLGPGQCCFTCQEPTPSTGCSLDDNGVEFPIGQIWSPGDPCELCICQADGSV
NOV59d LACPREE RLGPGQCCFTCQEPTPSTGCSLDDNGVEFPIGQIWSPGDP YGSV
NOV59e LACPREE RLGPGQCCFTCQEPTPSTGCSLDDNGVEFPIGQIWSPGD PYGSV
NOV59f LACPREE RPGPGQCCFTCQEPTPSTGCSLDDNGVEFPIGQIWSPGDPCELCICQADGSV
NOV59g
NOV591-L
NOV59i LACPREE RLGPGQCCFTCQEPTPSTGCSLDDNGVEFPIGQIWSPGDP YGSV
NOV59a ELQEDRLCGLLPSPDPDPWTVLPRLFS
NOV59b SCKRTDCVDSCPHPIRIPGQCCPDCSAGCTYTGRIFYNNETFPSVLDPCLSCICLLGSVA
NOV59C SCKRTDCVDSCPHPIRIPGQCCS
NOV59d SCKRTDCVDSCPHPIRIPGQCCS
NOV59e SCKRTDCVDSCPHPIRIPGQCCS
NOV59f SCKRTDCVDSCPHPIRIPGQCCS
NOV59g
NOV59h
NOV59i SCKRTDCVDSCPHPIRIPGQCCS
NOV59a
NOV59b CSPVDCPITCTYPFHPDGECCPVCRDCNYEGRKVANGQVFTLDDEPCTRCTCQLGEVSCE
NOV59C
NOV59d
NOV59e
NOV59f
NOV59g
NOV59h
NOV59i
NOV59a
NOV59b KVPCQRACADPALLPGDCCSSCPDSLSPLEEKQGLSPHGNVAFSKAGRSLHGDTEAPVNC
NOV59C
NOV59d
NOV59e
NOV59f
NOV59g
NOV59h
NOV59i
NOV59a
NOV59b SSCPGPPTASPSRPVLHLLQLLLRTNLMKTQTLPTSPAGAHGPHSLALGLTATFPGEPGA
NOV59C
NOV59d
NOV59e
NOV59f
NOV59g
NOV59h
NOV59i
NOV59a
NOV59b SPRLSPGPSTPPGAPTLPLASPGAPQPPPVTPERSFSASGAQIVSRWPPLPGTLLTEASA
NOV59C
NOV59d
NOV59e
NOV59f
NOV59g
NOV59h NOV59i
WOV59a NOV59b LS MDPSPSKTPITLLGPRVLSPTTSRLSTALAATTHPGPQQPPVGASRGEESTM
NOV59C NOV59d
NOV59e NOV59f
NOV59g
NOV59h NOV59i
NOV59a (SEQ ID NO 1156)
NOV59b (SEQ ID NO 1158)
NOV59C (SEQ ID NO 1160)
NOV59d (SEQ ID NO 1162)
NOV59e (SEQ ID NO 1164)
NOV59f (SEQ ID NO 1166)
NOV59g (SEQ ID NO 1168)
NOV59h (SEQ ID NO 1170)
NOV59i (SEQ ID NO 1172)
Further analysis ofthe NOV59a protein yielded the following properties shown in Table 59C.
Table 59C. Protein Sequence Properties NOV59a
SignalP analysis: Cleavage site between residues 22 and 23
PSORT H analysis:
PSG: a new signal peptide prediction method
N-region: length 8; pos.chg 1; neg.chg 0 H-region: length 13; peak value 9.31 PSG score: 4.91
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): 1.18 possible cleavage site: between 21 and 22
>>> Seems to have a cleavable signal peptide (1 to 21)
ALOM: Klein et al's method for TM region allocation Init position for calculation: 22
Tentative number of TMS(s) for the threshold 0.5: number of TMS(s) .. fixed PERIPHERAL Likelihood = 1.70 (at 70) ALOM score: 1.70 (number of TMSs: 0)
MTOP: Prediction of membrane topology (Hartmann et al.) Center position for calculation: 10 Charge difference: 0.5 C( 2.5) - N( 2.0) C > N: C-terminal side will be inside
>>>Caution: Inconsistent mtop result with signal peptide MITDISC: discrimination of mitochondrial targeting seq R content: 3 Hyd Moment (75): 9.30 Hyd Moment (95) : 7.43 G content: 5 D/E content: 1 S/T content: 1 Score : -3 .74
Gavel: prediction of cleavage sites for mitochondrial preseq R-2 motif at 79 LRL|CS
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite: none content of basic residues: 8.3% NLS Score: -0.47
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals : none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif : type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail : none
Dileucine motif in the tail : none checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: nuclear Reliability: 89
COIL: Lupas ' s algorithm to detect coiled-coil regions total : 0 residues
Final Results (k = 9/23)
33.3 %: extracellular, including cell wall 33.3 % : mitochondrial 33.3 %: nuclear
>> prediction for CG93871-01 is exc (k=9)
[THIS PAGE LEFT INTENTIONALLY BLANK]
A search of the NOV59a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 59D.
In a BLAST search of public sequence databases, the NOV59a protein was found to have homology to the proteins shown in the BLASTP data in Table 59E.
PFam analysis predicts that the NOV59a protein contains the domains shown in the Table 59F.
Example 60.
The NOV60 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 60A.
Table 60A. NOV60 Sequence Analysis
NOV60a, CG94946-01 SEQ ID NO: 1173 6224 bp DNA Sequence ORF Start: ATG at 37 ORF Stop: TGA at 6196
CCGGCGCGGCCCGCGCGCTCTTCCGCCGCCTCTCGCATGCGCCATGGCCGGCCGGTCCCACCCGGGCC
CGCTGCGGGGCGGCCGCTGCTGCCTCTCCTTGTGGTGGCCGCGTGCGTCCTGCCCGGAGCCGGCGGGA CATGCCCGGAGCGCGCGCTGGAGCGGCGCGAGGAGGAGGCGAACGTGGTGCTCACCGGGACGGTGGAG GAGATCCTCAACGTGGACCCGGTGCAGCACACGTACTCCTGCAAGGTTCGGGTCTGGCGGTACTTGAA GGGCAAAGACCTGGTGGCCCGGGAGAGCCTGCTGGACGGCGGCAACAAGGTGGTGATCAGCGGCTTTG GAGACCCCCTCATCTGTGACAACCAGGTGTCCACTGGGGACACCAGGATCTTCTTTGTGAACCCTGCA CCCCCATACCTGTGGCCAGCCCACAAGAACGAGCTGATGCTCAACTCCAGCCTCATGCGGATCACCCT GCGGAACCTGGAGGAGGTGGAGTTCTGTGTGGAAGATAAACCCGGGACCCACTTCACTCCAGTGCCTC CGACGCCTCCTGATGCGTGCCGGGGAATGCTGTGCGGCTTCGGCGCCGTGTGCGAGCCCAACGCGGAG GGGCCGGGCCGGGCGTCCTGCGTCTGCAAGAAGAGCCCGTGCCCCAGCGTGGTGGCGCCTGTGTGTGG GTCGGACGCCTCCACCTACAGCAACGAATGCGAGCTGCAGCGGGCGCAGTGCAGCCAGCAGCGCCGCA TCCGCCTGCTCAGCCGCGGGCCGTGCGGCTCGCGGGACCCCTGCTCCAACGTGACCTGCAGCTTCGGC AGCACCTGTGCGCGCTCGGCCGACGGGCTGACGGCCTCGTGCCTGTGCCCCGCGACCTGCCGTGGCGC CCCCGAGGGGACCGTCTGCGGCAGCGACGGCGCCGACTACCCCGGCGAGTGCCAGCTCCTGCGCCGCG CCTGCGCCCGCCAGGAGAATGTCTTCAAGAAGTTCGACGGCCCTTGTGACCCCTGTCAGGGCGCCCTC CCTGACCCGAGCCGCAGCTGCCGTGTGAACCCGCGCACGCGGCGCCCTGAGATGCTCCTACGGCCCGA GAGCTGCCCTGCCCGGCAGGCGCCAGTGTGTGGGGACGACGGAGTCACCTACGAAAACGACTGTGTCA TGGGCCGATCGGGGGCCGCCCGGGGTCTCCTCCTGCAGAAAGTGCGCTCCGGCCAGTGCCAGGGTCGA GACCAGTGCCCGGAGCCCTGCCGGTTCAATGCCGTGTGCCTGTCCCGCCGTGGCCGTCCCCGCTGCTC CTGCGACCGCGTCACCTGTGACGGGGCCTACAGGCCCGTGTGTGCCCAGGACGGGCGCACGTATGACA GTGATTGCTGGCGGCAGCAGGCTGAGTGCCGGCAGCAGCGTGCCATCCCCAGCAAGCACCAGGGCCCG TGTGACCAGGCCCCGTCCCCATGCCTCGGGGTGCAGTGTGCATTTGGGGCGACGTGTGCTGTGAAGAA CGGGCAGGCAGCGTGTGAATGCCTGCAGGCGTGCTCGAGCCTCTACGATCCTGTGTGCGGCAGCGACG GCGTCACATACGGCAGCGCGTGCGAGCTGGAGGCCACGGCCTGTACCCTCGGGCGGGAGATCCAGGTG GCGCGCAAAGGACCCTGTGACCGCTGCGGGCAGTGCCGCTTTGGAGCCCTGTGCGAGGCCGAGACCGG GCGCTGCGTGTGCCCCTCTGAATGCGTGGCTTTGGCCCAGCCCGTGTGTGGCTCCGACGGGCACACGT ACCCCAGCGAGTGCATGCTGCACGTGCACGCCTGCACACACCAGATCAGCCTGCACGTGGCCTCAGCT GGACCCTGTGAGACCTGTGGAGATGCCGTGTGTGCTTTTGGGGCTGTGTGCTCCGCAGGGCAGTGTGT GTGTCCCCGGTGTGAGCACCCCCCGCCCGGCCCCGTGTGTGGCAGCGACGGTGTCACCTACGGCAGTG CCTGCGAGCTACGGGAAGCCGCCTGCCTCCAGCAGACACAGATCGAGGAGGCCCGGGCAGGGCCGTGC GAGCAGGCCGAGTGCGGTTCCGGAGGCTCTGGCTCTGGGGAGGACGGTGACTGTGAGCAGGAGCTGTG CCGGCAGCGCGGTGGCATCTGGGACGAGGACTCGGAGGACGGGCCGTGTGTCTGTGACTTCAGCTGCC AGAGTGTCCCAGGCAGCCCGGTGTGCGGCTCAGATGGGGTCACCTACAGCACCGAGTGTGAGCTGAAG AAGGCCAGGTGTGAGTCACAGCGAGGGCTCTACGTAGCGGCCCAGGGAGCCTGCCGAGGCCCCGCCTT CGCCCCGCTGCCGCCTGTGGCCCCCTTACACTGTGCCCAGACGCCCTACGGCTGCTGCCAGGACAATA TCACCGCAGCCCGGGGCGTGGGCCTGGCTGGCTGCCCCAGTGCCTGCCAGTGCAACCCCCATGGCTCT TACGGCGGCACCTGTGACCCAGCCACAGGCCAGTGCTCCTGCCGCCCAGGTGTGGGGGGCCTCAGGTG TGACCGCTGTGAGCCTGGCTTCTGGAACTTTCGAGGCATCGTCACCGATGGCCGGAGTGGCTGTACAC CCTGCAGCTGTGATCCCCAAGGCGCCGTGCGGGATGACTGTGAGCAGATGACGGGGCTGTGCTCGTGT AAGCCCGGGGTGGCTGGACCCAAGTGTGGGCAGTGTCCAGACGGCCGTGCCCTGGGCCCCGCGGGCTG TGAAGCTGACGCTTCTGCGCCTGCGACCTGTGCGGAGATGCGCTGTGAGTTCGGTGCGCGGTGCGTGG AGGAGTCTGGCTCAGCCCACTGTGTCTGCCCGATGCTCACCTGTCCAGAGGCCAACGCTACCAAGGTC TGTGGGTCAGATGGAGTCACATACGGCAACGAGTGTCAGCTGAAGACCATCGCCTGCCGCCAGGGCCT GCAAATCTCTATCCAGAGCCTGGGCCCGTGCCAGGAGGCTGTTGCTCCCAGCACTCACCCGACATCTG CCTCCGTGACTGTGACCACCCCAGGGCTCCTCCTGAGCCAGGCACTGCCGGCCCCCCCCGGCGCCCTC CCCCTGGCTCCCAGCAGTACCGCACACAGCCAGACCACCCCTCCGCCCTCATCGCGACCTCGGACCAC TGCCAGCGTCCCCAGGACCACCGTGTGGCCCGTGCTGACGGTGCCCCCCACGGCACCCTCCCCTGCAC CCAGCCTGGTGGCGTCCGCCTTTGGTGAATCTGGCAGCACTGATGGAAGCAGCGATGAGGAACTGAGC GGGGACCAGGAGGCCAGTGGGGGTGGCTCTGGGGGGCTCGAGCCCTTGGAGGGCAGCAGCGTGGCCAC
CCCTGGGCCACCTGTCGAGAGGGCTTCCTGCTACAACTCCGCGTTGGGCTGCTGCTCTGATGGGAAGA CGCCCTCGCTGGACGCAGAGGGCTCCAACTGCCCCGCCACCAAGGTGTTCCAGGGCGTCCTGGAGCTG GAGGGCGTCGAGGGCCAGGAGCTGTTCTACACGCCCGAGATGGCTGACCCCAAGTCAGAACTGTTCGG GGAGACAGCCAGGAGCATTGAGAGCACCCTGGACGACCTCTTCCGGAATTCAGACGTCAAGAAGGATT TCCGGAGTGTCCGCTTGCGGGACCTGGGGCCCGGCAAATCCGTCCGCGCCATTGTGGATGTGCACTTT GACCCCACCACAGCCTTCAGGGCACCCGACGTGGCCCGGGCCCTGCTCCGGCAGATCCAGGTGTCCAG GCGCCGGTCCTTGGGGGTGAGGCGGCCGCTGCAGGAGCACGTGCGATTTATGGACTTTGACTGGTTTC CTGCGTTTATCACGGGGGCCACGTCAGGAGCCATTGCTGCGGGAGCCACGGCCAGAGCCACCACTGCA TCGCGCCTGCCGTCCTCTGCTGTGACCCCTCGGGCCCCGCACCCCAGTCACACAAGCCAGCCCGTTGC CAAGACCACGGCAGCCCCCACCACACGTCGGCCCCCCACCACTGCCCCCAGCCGTGTGCCCGGACGTC GGCCCCCGGCCCCCCAGCAGCCTCCAAAGCCCTGTGACTCACAGCCCTGCTTCCACGGGGGGACCTGC CAGGACTGGGCATTGGGCGGGGGCTTCACCTGCAGCTGCCCGGCAGGCAGGGGAGGCGCCGTCTGTGA G-AAGGTGCTTGGCGCCCCTGTGCCGGCCTTCGAGGGCCGCTCCTTCCTGGCCTTCCCCACCCTCCGCG CCTACCACACGCTGCGCCTGGCACTGGAATTCCGGGCGCTGGAGCCTCAGGGGCTGCTGCTGTACAAT GGCAACGCCCGGGGCAAGGACTTCCTGGCATTGGCGCTGCTAGATGGCCGCGTGCAGCTCAGGTTTGA CACAGGTTC AGCTGTCCCGGCACTGGCGCCGGGGCACCCTCTCGGTGGATGGTGAGACCCCTGTTCTGGGCGAGAGT CCCAGTGGCACCGACGGCCTCAACCTGGACACAGACCTCTTTGTGGGCGGCGTACCCGAGGACCAGGC TGCCGTGGCGCTGGAGCGGACCTTCGTGGGCGCCGGCCTGAGGGGGTGCATCCGTTTGCTGGACGTCA ACAACCAGCGCCTGGAGCTTGGCATTGGGCCGGGGGCTGCCACCCGAGGCTCTGGCGTGGGCGAGTGC GGGGACCACCCCTGCCTGCCCAACCCCTGCCATGGCGGGGCCCCATGCCAGAACCTGGAGGCTGGAAG GTTCCATTGCCAGTGCCCGCCCGGCCGCGTCGGACCAACCTGTGCCGATGAGAAGAGCCCCTGCCAGC CCAACCCCTGCCATGGGGCGGCGCCCTGCCGTGTGCTGCCCGAGGGTGGTGCTCAGTGCGAGTGCCCC CTGGGGCGTGAGGGCACCTTCTGCCAGACAGCCTCGGGGCAGGACGGCTCTGGGCCCTTCCTGGCTGA CTTCAACGGCTTCTCCCACCTGGAGCTGAGAGGCCTGCACACCATTGCACGGGACCTGGGGGAGAAGA TGGCGCTGGAGGCCGTGTTCCTGGCACGAGGCCCCAGCGGCCTCCTGCTCTACAACGGGCAGAAGACG GACGGCAAGGGGGACTTCGTGTCGCTGGCACTGCGGGACCGCCGCCTGGAGTTCCGCTACGACCTGGG CAAGGGGGCAGCGGTCATCAGGAGCAGGGAGCCAGTCACCCTGGGAGCCTGGACCAGGGTCTCACTGG AGCGAAACGGCCGCAAGGGTGCCCTGCGTGTGGGCGACGGCCCCCGTGTGTTGGGGGAGTCCCCGAAA TCCCGCAAGGTTCCGCACACCGTCCTCAACCTGAAGGAGCCGCTCTACGTAGGGGGCGCTCCCGACTT CAGCAAGCTGGCCCGTGCTGCTGCCGTGTCCTCTGGCTTCGACGGTGCCATCCAGCTGGTCTCCCTCG GAGGCCGCCAGCTGCTGACCCCGGAGCACGTGCTGCGGCAGGTGGACGTCACGTCCTTTGCAGGTCAC CCCTGCACCCGGGCCTCAGGCCACCCCTGCCTCAATGGGGCCTCCTGCGTCCCGAGGGAGGCTGCCTA TGTGTGCCTGTGTCCCGGGGGATTCTCAGGACCGCACTGCGAGAAGGGGCTGGTGGAGAAGTCAGCGG GGGACGTGGATACCTTGGCCTTTGACGGGCGGACCTTTGTCGAGTACCTCAACGCTGTGACCGAGAGC GAGAAGGCACTGCAGAGCAACCACTTTGAACTGAGCCTGCGCACTGAGGCCACGCAGGGGCTGGTGCT CTGGAGTGGCAAGGCCACGGAGCGGGCAGACTATGTGGCACTGGCCATTGTGGACGGGCACCTGCAAC TGAGCTACAACCTGGGCTCCCAGCCCGTGGTGCTGCGTTCCACCGTGCCCGTCAACACCAACCGCTGG TTGCGGGTCGTGGCACATAGGGAGCAGAGGGAAGGTTCCCTGCAGGTGGGCAATGAGGCCCCTGTGAC CGGCTCCTCCCCGCTGGGCGCCACGCAGCTGGACACTGATGGAGCCCTGTGGCTTGGGGGCCTGCCGG AGCTGCCCGTGGGCCCAGCACTGCCCAAGGCCTACGGCACAGGCTTTGTGGGCTGCTTGCGGGATGTG GTGGTGGGCCGGCACCCGCTGCACCTGCTGGAGGACGCCGTCACCAAGCCAGAGCTGCGGCCCTGCCC CACCCCATGAGCTGGCACCAGAGCCCCGCGCCCGCT
NOV60a, CG94946-01 SEQ ID NO: 1174 2053 aa MW at 215628.0kD Protem Sequence 1 I
MRHGRPVPPGPAAG PLLP LVVAACVLPGAGGTCPER.ALERREEE-ANVVLTGTVEEI NVDPVQHTY
SCK-VRVWRYLKG---ST1 VARES LDGGNKVVISGFGDPLICDNQVSTGDTRIFFVNPAPPYL PAHKNEL
M NSS MRITLR- LEEVEFCVEDKPGTHFTPVPPTPPDACRGM CGFGAVCEPNAEGPGRASCVCKKS
PCPSWAPVCGSDASTYSNECELQRAQCSQQRRIRLLSRGPCGSRDPCS VTCSFGSTCARSADG TA
SCLCPATCRGAPEGTVCGSDGADYPGECQIi RRACARQENVFKKFDGPCDPCQGALPDPSRSCRVNPR
TRRPEMLLRPESCPARQAPVCGDDGV YENDCVMGRSGAARGL LQKVRSGQCQGRDQCPEPCRFNAV
CLSRRGRPRCSCDRVTCDGAYRPVCAQDGRTYDSDC RQQAECRQQRAIPSKHQGPCDQAPSPC GVQ
CAFGATCAVKNGQAACECLQACSSLYDPVCGSDGVTYGSACELEATACT GREIQVARKGPCDRCGQC
RFG-ALCΞAETGRCVCPSECVALAQPVCGSDGHTYPSΞCM HVHACTHQISLHVASAGPCETCGDAVCA
FGAVCSAGQCVCPRCEHPPPGPVCGSDGVTYGSACELREAACLQQTQIEEARAGPCEQAECGSGGSGS
GEDGDCEQELCRQRGGIWDEDSΞDGPCVCDFSCQSVPGSPVCGSDGVTYSTECELKKARCESQRG YV
AAQGACRGPAFAPLPPVAP HCAQTPYGCCQDNITAARGVGLAGCPSACQCNPHGSYGGTCDPATGQC
SCRPGVGGLRCDRCEPGFWNFRGIVTDGRSGCTPCSCDPQGAVRDDCEQ TG CSCKPGVAGPKCGQC
PDGRALGPAGCEADASAPATCAEMRCEFGARCVEESGSAHCVCPMLTCPEA-MATKVCGSDGVTYGNEC
QLKTIACRQG QISIQSLGPCQEAVAPSTHPTSASVTVTTPGLL SQALPAPPGA P APSSTAHSQT
TPPPSSRPRTTASVPRTTVWPV TVPPTAPSPAPSLVASAFGESGSTDGSSDEELSGDQEASGGGSGG
LEPLEGSSVATPGPPVE-RASCYNSALGCCSDGKTPSLDAEGSNCPAT VFQGV ELEGVEGQE FYTP
EMADPKSELFGETARSIESTLD-DLFR SDV KDFRS RLRDLGPGKSVRAIVDVHFDPTTAFRAPDVA
RA LRQIQVSRRRSLGVRRP QEHVRFMDFD FPAFITGATSGAIAAGATARATTASRLPSSAVTPRA
PHPSHTSQPVAKTTAAPTTRRPPTTAPSRVPGRRPPAPQQPPKPCDSQPCFHGGTCQDWA GGGFTCS
CPAGRGGAVCEKVLGAPVPAFEGRSF AFPTLRAYHTLRL-ALEFR-^
LLDGRVQ RFDTGSGPAV TSAVPVEPGQWHRLELSRH RRGTLSVDGETPVLGESPSGTDGLNLDTD
LFVGGVPEDQAAVALERTFVGAG RGCIRL DVNNQRLE GIGPGAATRGSGVGECGDHPC PNPCHG
GAPCQN EAGRFHCQCPPGRVGPTCADEKSPCQPNPCHGAAPCRVLPEGGAQCECPLGREGTFCQTAS
GQDGSGPFLADFNGFSH ELRG HTIARDLGEKMALEAVFLARGPSG LLYNGQKTDGKGDFVSLALR
DRRLEFRYD GKGAAVIRSREPVTLGAWTRVS ERNGRKGALRVGDGPRVLGESPKSRKVPHTVLNLK
EPLYVGGAPDFSKLARAAAVSSGFDGAIQ VSLGGRQ LTPEHVLRQVDVTSFAGHPCTRASGHPC N
GASCVPREAAYVCLCPGGFSGPHCEKGLVEKSAGDVDTLAFDGRTFVEY NAVTESEKALQSNHFELS RTEATQGLV WSGKATE---UU3YVALAIVDGHLQLSYN GSQPVV RSTVPVNT R RVVAHREQREG
SLQVGNEAPVTGSSP GATQLDTDGALW GG PELPVGPA PKAYGTGFVGC RDVWGRHP HL ED
AVTKPE RPCPTP NOV60b, 275631590 SEQ ID NO: 1175 388 bp
DNA Sequence JORF Start: at 2 JORF Stop: end of sequence
CACCGGATCCGCCACCAAGGTGTTCCAGGGCGTCCTGGAGCTGGAGGGCGTCGAGGGCCAGGAGCTGT TCTACACGCCCGAGATGGCTGACCCCAAGTCAGAACTGTTCGGGGAGACAGCCAGGAGCATTGAGAGC ACCCTGGACGACCTCTTCCGGAATTCAGACGTCAAGAAGGATTTCCGGAGTGTCCGCTTGCGGGACCT GGGGCCCGGCAAATCCGTCCGCGCCATTGTGGATGTGCACTTTGACCCCACCACAGCCTTCAGGGCAC CCGACGTGGCCCGGGCCCTGCTCCGGCAGATCCAGGTGTCCAGGCGCCGGTCCTTGGGGGTGAGGCGG CCGCTGCAGGAGCACGTGCGATTTATGGACTTTGACTGGGTCGACGGC
NOV60b, 275631590 SEQ ID NO: 1176 129 aa MW at 14652.4kD Protein Sequence
TGSATKVFQGVLELEGVEGQE FYTPE ADP SELFGETARSIESTLDDLFRNSDVKKDFRSVRLRDL GPGKSVRAIVDVHFDPTTAFRAPDVARALLRQIQVSRRRSLGVRRPLQEHVRFMDFDWVDG
NOV60c, 275631564 SEQ ID NO: 1177 316 bp DNA Sequence ORF Start: at 2 ORF Stop: end of sequence
CACCGGATCCTGCCAGTGCAACCCCCATGGCTCTTACGGCGGCACCTGTGACCCAGCCACAGGCCAGT GCTCCTGCCGCCCAGGTGTGGGGGGCCTCAGGTGTGACCGCTGTGAGCCTGGCTTCTGGAACTTTCGA GGCATCGTCACCGATGGCCGGAGTGGCTGTACACCCTGCAGCTGTGATCCCCAAGGCGCCGTGCGGGA TGACTGTGAGCAGATGACGGGGCTGTGCTCGTGTAAGCCCGGGGTGGCTGGACCCAAGTGTGGGCAGT GTCCAGACGGCCGTGCCCTGGGCCCCGCGGGCTGTGTCGACGGC
NOV60c, 275631564 SEQ ID NO: 1178 105 aa MW at 10579.7kD Protein Sequence
TGSCQCNPHGSYGGTCDPATGQCSCRPGVGG RCDRCEPGF NFRGIV DGRSGCTPCSCDPQGAVRD DCEQMTGLCSCKPGVAGPKCGQCPDGRA-GPAGCV-DG
NOV60d, CG94946-02 JSEQ ID NO: 1179 J4760 bp
DNA Sequence ORF Start: ATG at 37 ORF Stop: TGA at 4732
CCGGCGCGGCCCGCGCGCTCTTCCGCCGCCTCTCGCATGCGCCATGGCCGGCCGGTCCCACCCGGGCC
CGCTGCGGGGCGGCCGCTGCTGCCTCTCCTTGTGGTGGCCGCGTGCGTCCTGCCCGGAGCCGGCGGGA CATGCCCGGAGCGCGCGCTGGAGCGGCGCGAGGAGGAGGCGAACGTGGTGCTCACCGGGACGGTGGAG GAGATCCTCAACGTGGACCCGGTGCAGCACACGTACTCCTGCAAGGTTCGGGTCTGGCGGTACTTGAA GGGCAAAGACCTGGTGGCCCGGGAGAGCCTGCTGGACGGCGGCAACAAGGTGGTGATCAGCGGCTTTG GAGACCCCCTCATCTGTGACAACCAGGTGTCCACTGGGGACACCAGGATCTTCTTTGTGAACCCTGCA CCCCCATACCTGTGGCCAGCCCACAAGAACGAGCTGATGCTCAACTCCAGCCTCATGCGGATCACCCT GCGGAACCTGGAGGAGGTGGAGTTCTGTGTGGAAGATAAACCCGGGACCCACTTCACTCCAGTGCCTC CGACGCCTCCTGATGCGTGCCGGGGAATGCTGTGCGGCTTCGGCGCCGTGTGCGAGCCCAACGCGGAG GGGCCGGGCCGGGCGTCCTGCGTCTGCAAGAAGAGCCCGTGCCCCAGCGTGGTGGCGCCTGTGTGTGG GTCGGACGCCTCCACCTACAGCAACGAATGCGAGCTGCAGCGGGCGCAGTGCAGCCAGCAGCGCCGCA TCCGCCTGCTCAGCCGCGGGCCGTGCGGCTCGCGGGACCCCTGCTCCAACGTGACCTGCAGCTTCGGC AGCACCTGTGCGCGCTCGGCCGACGGGCTGACGGCCTCGTGCCTGTGCCCCGCGACCTGCCGTGGCGC CCCCGAGGGGACCGTCTGCGGCAGCGACGGCGCCGACTACCCCGGCGAGTGCCAGCTCCTGCGCCGCG CCTGCGCCCGCCAGGAGAATGTCTTCAAGAAGTTCGACGGCCCTTGTGACCCCTGTCAGGGCGCCCTC CCTGACCCGAGCCGCAGCTGCCGTGTGAACCCGCGCACGCGGCGCCCTGAGATGCTCCTACGGCCCGA GAGCTGCCCTGCCCGGCAGGCGCCAGTGTGTGGGGACGACGGAGTCACCTACGAAAACGACTGTGTCA TGGGCCGATCGGGGGCCGCCCGGGGTCTCCTCCTGCAGAAAGTGCGCTCCGGCCAGTGCCAGGGTCGA GACCAGTGCCCGGAGCCCTGCCGGTTCAATGCCGTGTGCCTGTCCCGCCGTGGCCGTCCCCGCTGCTC CTGCGACCGCGTCACCTGTGACGGGGCCTACAGGCCCGTGTGTGCCCAGGACGGGCGCACGTATGACA GTGATTGCTGGCGGCAGCAGGCTGAGTGCCGGCAGCAGCGTGCCATCCCCAGCAAGCACCAGGGCCCG TGTGACCAGGCCCCGTCCCCATGCCTCGGGGTGCAGTGTGCATTTGGGGCGACGTGTGCTGTGAAGAA CGGGCAGGCAGCGTGTGAATGCCTGCAGGCGTGCTCGAGCCTCTACGATCCTGTGTGCGGCAGCGACG GCGTCACATACGGCAGCGCGTGCGAGCTGGAGGCCACGGCCTGTACCCTCGGGCGGGAGATCCAGGTG GCGCGCAAAGGACCCTGTGACCGCTGCGGGCAGTGCCGCTTTGGAGCCCTGTGCGAGGCCGAGACCGG GCGCTGCGTGTGCCCCTCTGAATGCGTGGCTTTGGCCCAGCCCGTGTGTGGCTCCGACGGGCACACGT ACCCCAGCGAGTGCATGCTGCACGTGCACGCCTGCACACACCAGATCAGCCTGCACGTGGCCTCAGCT GGACCCTGTGAGACCTGTGGAGATGCCGTGTGTGCTTTTGGGGCTGTGTGCTCCGCAGGGCAGTGTGT GTGTCCCCGGTGTGAGCACCCCCCGCCCGGCCCCGTGTGTGGCAGCGACGGTGTCACCTACGGCAGTG CCTGCGAGCTACGGGAAGCCGCCTGCCTCCAGCAGACACAGATCGAGGAGGCCCGGGCAGGGCCGTGC GAGCAGGCCGAGTGCGGTTCCGGAGGCTCTGGCTCTGGGGAGGACGGTGACTGTGAGCAGGAGCTGTG CCGGCAGCGCGGTGGCATCTGGGACGAGGACTCGGAGGACGGGCCGTGTGTCTGTGACTTCAGCTGCC AGAGTGTCCCAGGCAGCCCGGTGTGCGGCTCAGATGGGGTCACCTACAGCACCGAGTGTGAGCTGAAG AAGGCCAGGTGTGAGTCACAGCGAGGGCTCTACGTAGCGGCCCAGGGAGCCTGCCGAGGCCCCGCCTT CGCCCCGCTGCCGCCTGTGGCCCCCTTACACTGTGCCCAGACGCCCTACGGCTGCTGCCAGGACAATA TCACCGCAGCCCGGGGCGTGGGCCTGGCTGGCTGCCCCAGTGCCTGCCAGTGCAACCCCCATGGCTCT TACGGCGGCACCTGTGACCCAGCCACAGGCCAGTGCTCCTGCCGCCCAGGTGTGGGGGGCCTCAGGTG TGACCGCTGTGAGCCTGGCTTCTGGAACTTTCGAGGCATCGTCACCGATGGCCGGAGTGGCTGTACAC CCTGCAGCTGTGATCCCCAAGGCGCCGTGCGGGATGACTGTGAGCAGATGACGGGGCTGTGCTCGTGT AAGCCCGGGGTGGCTGGACCCAAGTGTGGGCAGTGTCCAGACGGCCGTGCCCTGGGCCCCGCGGGCTG TGAAGCTGACGCTTCTGCGCCTGCGACCTGTGCGGAGATGCGCTGTGAGTTCGGTGCGCGGTGCGTGG AGGAGTCTGGCTCAGCCCACTGTGTCTGCCCGATGCTCACCTGTCCAGAGGCCAACGCTACCAAGGTC TGTGGGTCAGATGGAGTCACATACGGCAACGAGTGTCAGCTGAAGACCATCGCCTGCCGCCAGGGCCT GCAAATCTCTATCCAGAGCCTGGGCCCGTGCCAGGAGGCTGTTGCTCCCAGCACTCACCCGACATCTG CCTCCGTGACTGTGACCACCCCAGGGCTCCTCCTGAGCCAGGCACTGCCGGCCCCCCCCGGCGCCCTC CCCCTGGCTCCCAGCAGTACCGCACACAGCCAGACCACCCCTCCGCCCTCATCGCGACCTCGGACCAC TGCCAGCGTCCCCAGGACCACCGTGTGGCCCGTGCTGACGGTGCCCCCCACGGCACCCTCCCCTGCAC CCAGCCTGGTGGCGTCCGCCTTTGGTGAATCTGGCAGCACTGATGGAAGCAGCGATGAGGAACTGAGC GGGGACCAGGAGGCCAGTGGGGGTGGCTCTGGGGGGCTCGAGCCCTTGGAGGGCAGCAGCGTGGCCAC
CCCTGGGCCACCTGTCGAGAGGGCTTCCTGCTACAACCCCTGCCATGGGGCGGCGCCCTGCCGTGTGC TGCCCGAGGGTGGTGCTCAGTGCGAGTGCCCCCTGGGGCGTGAGGGCACCTTCTGCCAGACAGCCTCG GGGCAGGACGGCTCTGGGCCCTTCCTGGCTGACTTCAACGGCTTCTCCCACCTGGAGCTGAGAGGCCT GCACACCATTGCACGGGACCTGGGGGAGAAGATGGCGCTGGAGGCCGTGTTCCTGGCACGAGGCCCCA GCGGCCTCCTGCTCTACAACGGGCAGAAGACGGACGGCAAGGGGGACTTCGTGTCGCTGGCACTGCGG GACCGCCGCCTGGAGTTCCGCTACGACCTGGGCAAGGGGGCAGCGGTCATCAGGAGCAGGGAGCCAGT CACCCTGGGAGCCTGGACCAGGGTCTCACTGGAGCGAAACGGCCGCAAGGGTGCCCTGCGTGTGGGCG ACGGCCCCCGTGTGTTGGGGGAGTCCCCGAAATCCCGCAAGGTTCCGCACACCGTCCTCAACCTGAAG GAGCCGCTCTACGTAGGGGGCGCTCCCGACTTCAGCAAGCTGGCCCGTGCTGCTGCCGTGTCCTCTGG CTTCGACGGTGCCATCCAGCTGGTCTCCCTCGGAGGCCGCCAGCTGCTGACCCCGGAGCACGTGCTGC GGCAGGTGGACGTCACGTCCTTTGCAGGTCACCCCTGCACCCGGGCCTCAGGCCACCCCTGCCTCAAT GGGGCCTCCTGCGTCCCGAGGGAGGCTGCCTATGTGTGCCTGTGTCCCGGGGGATTCTCAGGACCGCA CTGCGAGAAGGGGCTGGTGGAGAAGTCAGCGGGGGACGTGGATACCTTGGCCTTTGACGGGCGGACCT TTGTCGAGTACCTCAACGCTGTGACCGAGAGCGAGAAGGCACTGCAGAGCAACCACTTTGAACTGAGC CTGCGCACTGAGGCCACGCAGGGGCTGGTGCTCTGGAGTGGCAAGGCCACGGAGCGGGCAGACTATGT GGCACTGGCCATTGTGGACGGGCACCTGCAACTGAGCTACAACCTGGGCTCCCAGCCCGTGGTGCTGC GTTCCACCGTGCCCGTCAACACCAACCGCTGGTTGCGGGTCGTGGCACATAGGGAGCAGAGGGAAGGT TCCCTGCAGGTGGGCAATGAGGCCCCTGTGACCGGCTCCTCCCCGCTGGGCGCCACGCAGCTGGACAC TGATGGAGCCCTGTGGCTTGGGGGCCTGCCGGAGCTGCCCGTGGGCCCAGCACTGCCCAAGGCCTACG GCACAGGCTTTGTGGGCTGCTTGCGGGATGTGGTGGTGGGCCGGCACCCGCTGCACCTGCTGGAGGAC GCCGTCACCAAGCCAGAGCTGCGGCCCTGCCCCACCCCATGAGCTGGCACCAGAGCCCCGCGCCCGCT
NOV60d, CG94946-02 SEQ ID NO: 1180 1565 aa MW at 163817.1kD Protein Sequence
MRHGRPVPPGPAAGRPLLPLLVVAACV PGAGGTCPERALERREEEANVVLTGTVEEIL VDPVQHTY SCKVRV RYLKGKD VARES LDGGNKVVISGFGDP ICDNQVSTGDTRIFFVNPAPPYL PAHKNE MLNSS MRIT RNLEEVEFCVEDKPGTHFTPVPPTPPDACRGMLCGFGAVCEPNAEGPGRASCVCKKS PCPSWAPVCGSDASTYSNECELQRAQCSQQRRIRLLSRGPCGSRDPCS VTCSFGSTCARSADGLTA SC CPATCRGAPEGTVCGSDGADYPGECQ LRRACARQENVFKKFDGPCDPCQGALPDPSRSCRV PR TRRPEML RPESCPARQAPVCGDDGVTYENDCVMGRSGAARGLLLQKVRSGQCQGRDQCPEPCRFNAV CLSRRGRPRCSCDRVTCDGAYRPVCAQDGRTYDSDC RQQAECRQQRAIPSKHQGPCDQAPSPCLGVQ CAFGATCAVKNGQAACECLQACSS YDPVCGSDGVTYGSACELΞATACTLGREIQVARKGPCDRCGQC RFGALCEAETGRCVCPSECVAI-AQPVCGSDGHTYPSECMLHVHACTHQIS HVASAGPCETCGDAVCA FGAVCSAGQCVCPRCEHPPPGPVCGSDGVTYGSACELRΞAACLQQTQIEEARAGPCEQAECGSGGSGS GEDGDCEQE CRQRGGI DEDSEDGPCVCDFSCQSVPGSPVCGSDGVTYSTECELKKARCESQRG YV AAQGACRGPAFAPLPPVAPLHCAQTPYGCCQDNITAARGVGLAGCPSACQCNPHGSYGGTCDPATGQC SCRPGVGGLRCDRCEPGF NFRGIVTDGRSGCTPCSCDPQGAVRDDCEQMTGLCSCKPGVAGPKCGQC PDGRALGPAGCEADASAPATCAE RCEFGARCVEESGSAHCVCPMLTCPEANATKVCGSDGVTYGNEC Q KTIACRQG QISIQSLGPCQEAVAPSTHPTSASVTVTTPGLL SQALPAPPGA P APSSTAHSQT TPPPSSRPRTTASVPRTTV PVLTVPPTAPSPAPSLVASAFGESGSTDGSSDEELSGDQEASGGGSGG LEPLEGSSVATPGPPVE-^SCTOPC^^^ NGFSH ELRG HTIARDLGEKMALEAVF ARGPSGLLLYNGQKTDGKGDFVS A RDRR EFRYDLGK
GAAVIRSREPVTLGA TRVS ERNGRKGALRVGDGPRVLGESPKSRKVPHTVLNLKEPLYVGGAPDFS
KLARAAAVSSGFDGAIQLVSLGGRQ TPEHV RQVDVTSFAGHPCTRASGHPCLNGASCVPREAAYV
CLCPGGFSGPHCEKGLVEKSAGDVDT AFDGRTFVEYLNAV ESEKA QSNHFELSLRTEATQGLVLW
SG---sVTE---i-ADWALAIVDGHLQ SYNLGSQ
SSPLGATQLDTDGAL LGGLPELPVGPA PKAYGTGFVGC RDVWGRHPLHLLEDAVTKPELRPCPT
P
NOV60e, CG94946-03 SEQ ID NO: 1181 893 bp DNA Sequence ORF Start: ATG at 37 ORF Stop: TGA at 865
CCGGCGCGGCCCGCGCGCTCTTCCGCCGCCTCTCGCATGCGCCATGGCCGGCCGGTCCCACCCGGGCC
CGCTGCGGGGCGGCCGCTGCTGCCTCTCCTTGTGGTGGCCGCGTGCGTCCTGCCCGGAGCCGGCGGGA CATGCCCGGAGCGCGCGCTGGAGCGGCGCGAGGAGGAGGCGAACGTGGTGCTCACCGGGACGGTGGAG GAGATCCTCAACGTGGACCCGGTGCAGCACACGTACTCCTGCAAGGTTCGGGTCTGGCGGTACTTGAA GGGCAAAGACCTGGTGGCCCGGGAGAGCCTGCTGGACGGCGGCAACAAGGTGGTGATCAGCGGCTTTG GAGACCCCCTCATCTGTGACAACCAGGTGTCCACTGGGGACACCAGGATCTTCTTTGTGAACCCTGCA CCCCCATACCTGTGGCCAGCCCACAAGAACGAGCTGGTGCTCTGGAGTGGCAAGGCCACGGAGCGGGC AGACTATGTGGCACTGGCCATTGTGGACGGGCACCTGCAACTGAGCTACAACCTGGGCTCCCAGCCCG TGGTGCTGCGTTCCACCGTGCCCGTCAACACCAACCGCTGGTTGCGGGTCGTGGCACATAGGGAGCAG AGGGAAGGTTCCCTGCAGGTGGGCAATGAGGCCCCTGTGACCGGCTCCTCCCCGCTGGGCGCCACGCA GCTGGACACTGATGGAGCCCTGTGGCTTGGGGGCCTGCCGGAGCTGCCCGTGGGCCCAGCACTGCCCA AGGCCTACGGCACAGGCTTTGTGGGCTGCTTGCGGGATGTGGTGGTGGGCCGGCACCCGCTGCACCTG CTGGAGGACGCCGTCACCAAGCCAGAGCTGCGGCCCTGCCCCACCCCATGAGCTGGCACCAGAGCCCC GCGCCCGCT
NOV60e, CG94946-03 SEQ ID NO: 1182 276 aa MW at 29688.8kD Protein Sequence
MRHGRPVPPGPAAGRPLLP VVAACVLPGAGGTCPE-R.ALERREEEANVVLTGTVEEI NVDPVQHTY SCIs^RV RY KGKDLV-ARESLLDGGN VVISGFGDPLICDNQVSTGDTRIFFVNPAPPYL PAHK-l-IEL VL SGKATERADYVALAIVDGHLQ SYNLGSQPVVLRSTVPVNT R LRVVAHREQREGSLQVGNEAP VTGS S P GATQ DTDGAL LGG PELPVGPALP-KAYGTGFVGCLRDVWGRHPLH LEDAVTKPELRP CPTP
NOV60f, CG94946-04 SEQ ID NO: 1183 1931 bp DNA Sequence ORF Start: ATG at 37 ORF Stop: TGA at 1903
CCGGCGCGGCCCGCGCGCTCTTCCGCCGCCTCTCGCATGCGCCATGGCCGGCCGGTCCCACCCGGGCC
CGCTGCGGGGCGGCCGCTGCTGCCTCTCCTTGTGGTGGCCGCGTGCGTCCTGCCCGGAGCCGGCGGGA CATGCCCGGAGCGCGCGCTGGAGCGGCGCGAGGAGGAGGCGAACGTGGTGCTCACCGGGACGGTGGAG GAGATCCTCAACGTGGACCCGGTGCAGCACACGTACTCCTGCAAGGTTCGGGTCTGGCGGTACTTGAA GGGCAAAGACCTGGTGGCCCGGGAGAGCCTGCTGGACGGCGGCAACAAGGTGGTGATCAGCGGCTTTG GAGACCCCCTCATCTGTGACAACCAGGTGTCCACTGGGGACACCAGGATCTTCTTTGTGAACCCTGCA CCCCCATACCTGTGGCCAGCCCACAAGAACGAGCTGATGCTCAACTCCAGCCTCATGCGGATCACCCT GCGGAACCTGGAGGAGGTGGAGTTCTGTGTGGAAGATAAACCCGGGACCCACTTCACTCCAGTGCCTC CGACGCCTCCTGATGCGTGCCGGGGAATGCTGTGCGGCTTCGGCGCCGTGTGCGAGCCCAACGCGGAG GGGCCGGGCCGGGCGTCCTGCGTCTGCAAGAAGAGCCCGTGCCCCAGCGTGGTGGCGCCTGTGTGTGG GTCGGACGCCTCCACCTACAGCAACGAATGCGAGCTGCAGCGGGCGCAGTGCAGCCAGCAGCGCCGCA TCCGCCTGCTCAGCCGCGGGCCGTGCGGCTCGCGGGACCCCTGCTCCAACGTGACCTGCAGCTTCGGC AGCACCTGTGCGCGCTCGGCCGACGGGCTGACGGCCTCGTGCCTGTGCCCCGCGACCTGCCGTGGCGC CCCCGAGGGGACCGTCTGCGGCAGCGACGGCGCCGACTACCCCGGCGAGTGCCAGCTCCTGCGCCGCG CCTGCGCCCGCCAGGAGAATGTCTTCAAGAAGTTCGACGGCCCTTGTGACCCCTGTCAGGGCGCCCTC CCTGACCCGAGCCGCAGCTGCCGTGTGAACCCGCGCACGCGGCGCCCTGAGATGCTCCTACGGCCCGA GAGCTGCCCTGCCCGGCAGGCGCCAGTGTGTGGGGACGACGGAGTCACCTACGAAAACGACTGTGTCA TGGGCCGATCGGGGGCCGCCCGGGGTCTCCTCCTGCAGAAAGTGCGCTCCGGCCAGTGCCAGGGTCGA GACCAGTGCCCGGAGCCCTGCCGGTTCAATGCCGTGTGCCTGTCCCGCCGTGGCCGTCCCCGCTGCTC CTGCGACCGCGTCACCTGTGACGGGGCCTACAGGCCCGTGTGTGCCCAGGACGGGCGCACGTATGACA GTGATTGCTGGCGGCAGCAGGCTGAGTGCCGGCAGCAGCGTGCCATCCCCAGCAAGCACCAGGGCCCG TGTGACCAGGCCCCGTCCCCATGCCTCGGGGTGCAGTGTGCATTTGGGGCGACGTGTGCTGTGAAGAA CGGGCAGGCAGCGTGTGAATGCCTGCAGGCGTGCTCGAGCCTCTACGATCCTGTGTGCGGCAGCGACG GCGTCACATACGGCAGCGCGTGCGAGCTGGAGGCCACGGCCTGTACCCTCGGGCGGGAGATCCAGGTG GCGCGCA GGACCCTGTC CCCGCTGGGCGCCACGCAGCTGGACACTGATGGAGCCCTGTGGCTTGGGGGCCTGCCGGAGCTGCCCG TGGGCCCAGCACTGCCCAAGGCCTACGGCACAGGCTTTGTGGGCTGCTTGCGGGATGTGGTGGTGGGC CGGCACCCGCTGCACCTGCTGGAGGACGCCGTCACCAAGCCAGAGCTGCGGCCCTGCCCCACCCCATG AGCTGGCACCAGAGCCCCGCGCCCGCT
NOV60f, CG94946-04 SEQ ID NO: 1184 622 aa MW at 66353.9kD Protein Sequence RHGRPVPPGPAAGRP LPLLVVAACVLPGAGGTCPE-R-ALERREEEA-- TVVLTGTVEEILNVDPVQHTY SCKVRV RYLKGKDLVARES LDGGNKWISGFGDPLICDNQVSTGDTRIFFVNPAPPYLWPAHK EL NSS MRITLRNLEEVEFCVEDKPGTHFTPVPPTPPDACRGMLCGFGAVCEPNAEGPGRASCVCKKS PCPSWAPVCGSDASTYSNECELQRAQCSQQRRIRLLSRGPCGSRDPCSNVTCSFGSTCARSA-DGLTA SCLCPATCRGAPEGTVCGSDGADYPGECQ LRRACARQENVFKKFDGPCDPCQGALPDPSRSCRV PR TRRPEM RPESCPARQAPVCGDDGVTYE DCVMGRSGAARGL LQKVRSGQCQGRDQCPEPCRFNAV C SRRGRPRCSCDRVTCDGAYRPVCAQDGRTYDSDCWRQQAECRQQRAIPSKHQGPCDQAPSPCLGVQ CAFGATCAVK GQAACEC QACSSLYDPVCGSDGVTYGSACE EATACTLGREIQVARKGPCDRCGQC RFGALP VTGS S PLGATQLDTDGALWLGGLPELPVGPALPKAYGTGFVGCLRDVWGRHPLHLLEDAVT KPELRPCPTP
NOV60g, CG94946-05 SEQ ID NO: 1185 4697 bp DNA Sequence ORF Start: ATG at 37 ORF Stop: TGA at 4669
CCGGCGCGGCCCGCGCGCTCTTCCGCCGCCTCTCGCATGCGCCATGGCCGGCCGGTCCCACCCGGGCC
CGCTGCGGGGCGGCCGCTGCTGCCTCTCCTTGTGGTGGCCGCGTGCGTCCTGCCCGGAGCCGGCGGGA CATGCCCGGAGCGCGCGCTGGAGCGGCGCGAGGAGGAGGCGAACGTGGTGCTCACCGGGACGGTGGAG GAGATCCTCAACGTGGACCCGGTGCAGCACACGTACTCCTGCAAGGTTCGGGTCTGGCGGTACTTGAA GGGCAAAGACCTGGTGGCCCGGGAGAGCCTGCTGGACGGCGGCAACAAGGTGGTGATCAGCGGCTTTG GAGACCCCCTCATCTGTGACAACCAGGTGTCCACTGGGGACACCAGGATCTTCTTTGTGAACCCTGCA CCCCCATACCTGTGGCCAGCCCACAAGAACGAGCTGATGCTCAACTCCAGCCTCATGCGGATCACCCT GCGGAACCTGGAGGAGGTGGAGTTCTGTGTGGAAGATAAACCCGGGACCCACTTCACTCCAGTGCCTC CGACGCCTCCTGATGCGTGCCGGGGAATGCTGTGCGGCTTCGGCGCCGTGTGCGAGCCCAACGCGGAG GGGCCGGGCCGGGCGTCCTGCGTCTGCAAGAAGAGCCCGTGCCCCAGCGTGGTGGCGCCTGTGTGTGG GTCGGACGCCTCCACCTACAGCAACGAATGCGAGCTGCAGCGGGCGCAGTGCAGCCAGCAGCGCCGCA TCCGCCTGCTCAGCCGCGGGCCGTGCGGCTCGCGGGACCCCTGCTCCAACGTGACCTGCAGCTTCGGC AGCACCTGTGCGCGCTCGGCCGACGGGCTGACGGCCTCGTGCCTGTGCCCCGCGACCTGCCGTGGCGC CCCCGAGGGGACCGTCTGCGGCAGCGACGGCGCCGACTACCCCGGCGAGTGCCAGCTCCTGCGCCGCG CCTGCGCCCGCCAGGAGAATGTCTTCAAGAAGTTCGACGGCCCTTGTGACCCCTGTCAGGGCGCCCTC CCTGACCCGAGCCGCAGCTGCCGTGTGAACCCGCGCACGCGGCGCCCTGAGATGCTCCTACGGCCCGA OAGCTGCCCTGCCCGGCAGGCGCCAGTGTGTGGGGACGACGGAGTCACCTACGAAAACGACTGTGTCA TGGGCCGATCGGGGGCCGCCCGGGGTCTCCTCCTGCAGAAAGTGCGCTCCGGCCAGTGCCAGGGTCGA GACCAGTGCCCGGAGCCCTGCCGGTTCAATGCCGTGTGCCTGTCCCGCCGTGGCCGTCCCCGCTGCTC CTGCGACCGCGTCACCTGTGACGGGGCCTACAGGCCCGTGTGTGCCCAGGACGGGCGCACGTATGACA GTGATTGCTGGCGGCAGCAGGCTGAGTGCCGGCAGCAGCGTGCCATCCCCAGCAAGCACCAGGGCCCG TGTGACCAGGCCCCGTCCCCATGCCTCGGGGTGCAGTGTGCATTTGGGGCGACGTGTGCTGTGAAGAA CGGGCAGGCAGCGTGTGAATGCCTGCAGGCGTGCTCGAGCCTCTACGATCCTGTGTGCGGCAGCGACG GCGTCACATACGGCAGCGCGTGCGAGCTGGAGGCCACGGCCTGTACCCTCGGGCGGGAGATCCAGGTG GCGCGCAAAGGACCCTGTGACCGCTGCGGGCAGTGCCGCTTTGGAGCCCTGTGCGAGGCCGAGACCGG GCGCTGCGTGTGCCCCTCTGAATGCGTGGCTTTGGCCCAGCCCGTGTGTGGCTCCGACGGGCACACGT ACCCCAGCGAGTGCATGCTGCACGTGCACGCCTGCACACACCAGATCAGCCTGCACGTGGCCTCAGCT GGACCCTGTGAGACCTGTGGAGATGCCGTGTGTGCTTTTGGGGCTGTGTGCTCCGCAGGGCAGTGTGT GTGTCCCCGGTGTGAGCACCCCCCGCCCGGCCCCGTGTGTGGCAGCGACGGTGTCACCTACGGCAGTG CCTGCGAGCTACGGGAAGCCGCCTGCCTCCAGCAGACACAGATCGAGGAGGCCCGGGCAGGGCCGTGC GAGCAGGCCGAGTGCGGTTCCGGAGGCTCTGGCTCTGGGGAGGACGGTGACTGTGAGCAGGAGCTGTG CCGGCAGCGCGGTGGCATCTGGGACGAGGACTCGGAGGACGGGCCGTGTGTCTGTGACTTCAGCTGCC AGAGTGTCCCAGGCAGCCCGGTGTGCGGCTCAGATGGGGTCACCTACAGCACCGAGTGTGAGCTGAAG AAGGCCAGGTGTGAGTCACAGCGAGGGCTCTACGTAGCGGCCCAGGGAGCCTGCCGAGGCCCCGCCTT CGCCCCGCTGCCGCCTGTGGCCCCCTTACACTGTGCCCAGACGCCCTACGGCTGCTGCCAGGACAATA TCACCGCAGCCCGGGGCGTGGGCCTGGCTGGCTGCCCCAGTGCCTGCCAGTGCAACCCCCATGGCTCT TACGGCGGCACCTGTGACCCAGCCACAGGCCAGTGCTCCTGCCGCCCAGGTGTGGGGGGCCTCAGGTG TGACCGCTGTGAGCCTGGCTTCTGGAACTTTCGAGGCATCGTCACCGATGGCCGGAGTGGCTGTACAC CCTGCAGCTGTGATCCCCAAGGCGCCGTGCGGGATGACTGTGAGCAGATGACGGGGCTGTGCTCGTGT AAGCCCGGGGTGGCTGGACCCAAGTGTGGGCAGTGTCCAGACGGCCGTGCCCTGGGCCCCGCGGGCTG TGAAGCTGACGCTTCTGCGCCTGCGACCTGTGCGGAGATGCGCTGTGAGTTCGGTGCGCGGTGCGTGG AGGAGTCTGGCTCAGCCCACTGTGTCTGCCCGATGCTCACCTGTCCAGAGGCCAACGCTACCAAGGTC TGTGGGTCAGATGGAGTCACATACGGCAACGAGTGTCAGCTGAAGACCATCGCCTGCCGCCAGGGCCT GCAAATCTCTATCCAGAGCCTGGGCCCGTGCCAGGAGGCTGTTGCTCCCAGCACTCACCCGACATCTG CCTCCGTGACTGTGACCACCCCAGGGCTCCTCCTGAGCCAGGCACTGCCGGCCCCCCCCGGCGCCCTC CCCCTGGCTCCCAGCAGTACCGCACACAGCCAGACCACCCCTCCGCCCTCATCGCGACCTCGGACCAC TGCCAGCGTCCCCAGGACCACCGTGTGGCCCGTGCTGACGGTGCCCCCCACGGCACCCTCCCCTGCAC CCAGCCTGGTGGCGTCCGCCTTTGGTGAATCTGGCAGCACTGATGGAAGCAGCGATGAGGAACTGAGC GGGGACCAGGAGGCCAGTGGGGGTGGCTCTGGGGGGCTCGAGCCCTTGGAGGGCAGCAGCGTGGCCAC
CCCTGGGCCACCTGTCGAGAGGGCTTCCTGCTACAACTCCGCGTTGGGCTGCTGCTCTGATGGGAAGA CGCCCTCGCTGGACGCAGAGGGCTCCAACTGCCCCGCCACCAAGGTGTTCCAGGGCGTCCTGGAGCTG GAGGGCGTCGAGGGCCAGGAGCTGTTCTACACGCCCGAGATGGCTGACCCCAAGTCAGAACTGTTCGG GGAGACAGCCAGGAGCATTGAGAGCACCCTGGACGACCTCTTCCGGAATTCAGACGTCAAGAAGGATT TCCGGAGTGTCCGCTTGCGGGACCTGGGGCCCGGCAAATCCGTCCGCGCCATTGTGGATGTGCACTTT GACCCCACCACAGCCTTCAGGGCACCCGACGTGGCCCGGGCCCTGCTCCGGCAGATCCAGGTGTCCAG GCGCCGGTCCTTGGGGGTGAGGCGGCCGCTGCAGGAGCACGTGCGATTTATGGACTTTGACTGGTTTC CTGCGTTTATCACGGGGGCCACGTCAGGAGCCATTGCTGCGGGAGCCACGGCCAGAGCCACCACTGCA TCGCGCCTGCCGTCCTCTGCTGTGACCCCTCGGGCCCCGCACCCCAGTCACACAAGCCAGCCCGTTGC CAAGACCACGGCAGCCCCCACCACACGTCGGCCCCCCACCACTGCCCCCAGCCGTGTGCCCGGACGTC GGCCCCCGGCCTCCTGCGTCCCGAGGGAGGCTGCCTATGTGTGCCTGTGTCCCGGGGGATTCTCAGGA CCGCACTGCGAGAAGGGGCTGGTGGAGAAGTCAGCGGGGGACGTGGATACCTTGGCCTTTGACGGGCG GACCTTTGTCGAGTACCTCAACGCTGTGACCGAGAGCGAGAAGGCACTGCAGAGCAACCACTTTGAAC TGAGCCTGCGCACTGAGGCCACGCAGGGGCTGGTGCTCTGGAGTGGCAAGGCCACGGAGCGGGCAGAC TATGTGGCACTGGCCATTGTGGACGGGCACCTGCAACTGAGCTACAACCTGGGCTCCCAGCCCGTGGT GCTGCGTTCCACCGTGCCCGTCAACACCAACCGCTGGTTGCGGGTCGTGGCACATAGGGAGCAGAGGG AAGGTTCCCTGCAGGTGGGCAATGAGGCCCCTGTGACCGGCTCCTCCCCGCTGGGCGCCACGCAGCTG GACACTGATGGAGCCCTGTGGCTTGGGGGCCTGCCGGAGCTGCCCGTGGGCCCAGCACTGCCCAAGGC CTACGGCACAGGCTTTGTGGGCTGCTTGCGGGATGTGGTGGTGGGCCGGCACCCGCTGCACCTGCTGG AGGACGCCGTCACCAAGCCAGAGCTGCGGCCCTGCCCCACCCCATGAGCTGGCACCAGAGCCCCGCGC CCGCT
NOV60g, CG94946-05 SEQ ID NO: 1186 1544 aa MW at 162003.7 D Protein Sequence
MRHGRPVPPGPAAGRPLLPLLVVAACVLPGAGGTCPERALERREEEANVV-LTGTVEEILNVDPVQHTY SC---s^HiVWRYLKGi LVARESLLDGGNK-VVISGFGDPLICDNQVSTGDTRIFFV PAPPYLWPAHK EL MLNSSLMRITLR LEEVEFCVEDKPGTHFTPVPPTPPDACRGMLCGFGAVCEPNAEGPGRASCVCKKS PCPSWAPVCGSDASTYSNECELQRAQCSQQRRIRLLSRGPCGSRDPCSNVTCSFGSTCARSA-DGLTA SCLCPATCRGAPEGTVCGSDGADYPGECQLLRRACARQENVFKKFDGPCDPCQGALPDPSRSCRVNPR TRRPEMLLRPESCPARQAPVCGDDGVTYENDCVMGRSGAARGLLLQKVRSGQCQGRDQCPEPCRFNAV CLSRRGRPRCSCDRVTCDGAYRPVCAQDGRTYDSDC RQQAECRQQRAIPSKHQGPCDQAPSPCLGVQ CAFGATCAVK GQAACECLQACSSLYDPVCGSDGVTYGSACELEATACTLGREIQVARKGPCDRCGQC RFGALCEAETGRCVCPSECVALAQPVCGSDGHTYPSECMLHVHACTHQISLHVASAGPCETCGDAVCA FGAVCSAGQCVCPRCEHPPPGPVCGSDGVTYGSACELREAACLQQTQIEEARAGPCEQAECGSGGSGS GEDGDCEQELCRQRGGI DEDSEDGPCVCDFSCQSVPGSPVCGSDGVTYSTECELKKARCESQRGLYV AAQGACRGPAFAPLPPVAPLHCAQTPYGCCQDNITAARGVGLAGCPSACQCNPHGSYGGTCDPATGQC SCRPGVGGLRCDRCEPGF NFRGIVTDGRSGCTPCSCDPQGAVRDDCEQMTGLCSCKPGVAGPKCGQC PDGRALGPAGCEADASAPATCAEMRCEFGARCVEESGSAHCVCP LTCPEANATKVCGSDGVTYGNEC QLKTIACRQGLQISIQSLGPCQEAVAPSTHPTSASVTVTTPGLLLSQALPAPPGALPLAPSSTAHSQT TPPPSSRPRTTASVPRTTVWPVLTVPPTAPSPAPSLVASAFGESGSTDGSSDEELSGDQEASGGGSGG LEPLEGSSVATPGPPVERASCY SALGCCSDGKTPSLDAEGSNCPATKVFQGVLELEGVEGQELFYTP E->^DPKSELFGETARSIESTLDDLFRNSDVKKDFRSVRLRDLGPGKSVRAIVDVHFDPTTAFRAPDVA RA-LLRQIQVSRRRSLGVRRPLQEHVRFMDFD FPAFITGATSGAIAAGATARATTASRLPSSAVTPRA PHPSHTSQPVAKTTAAPTTRRPPTTAPSRVPGRRPPASCVPREAAYVCLCPGGFSGPHCEKGLVEKSA GDVDTLAFDGRTFVEYLNAVTESEKALQSNHFELSLRTEATQGLVL SGKATERADYVALAIVDGHLQ LSYNLGSQPVVLRSTVPV TNR LRVVAHREQREGSLQVGNEAPVTGSSPLGATQLDTDGAL LGGLP ELPVGPALPKAYGTGFVGCLRDVWGRHPLHLLEDAVTKPELRPCPTP
NOV60h, CG94946-06 SEQ ID NO: 1187 6494 bp DNA Sequence ORF Start: ATG at 37 ORF Stop: TGA at 6466
CCGGCGCGGCCCGCGCGCTCTTCCGCCGCCTCTCGCATGCGCCATGGCCGGCCGGTCCCACCCGGGCC CGCTGCGGGGCGGCCGCTGCTGCCTCTCCTTGTGGTGGCCGCGTGCGTCCTGCCCGGAGCCGGCGGGA CATGCCCGGAGCGCGCGCTGGAGCGGCGCGAGGAGGAGGCGAACGTGGTGCTCACCGGGACGGTGGAG GAGATCCTCAACGTGGACCCGGTGCAGCACACGTACTCCTGCAAGGTTCGGGTCTGGCGGTACTTGAA GGGCAAAGACCTGGTGGCCCGGGAGAGCCTGCTGGACGGCGGCAACAAGGTGGTGATCAGCGGCTTTG GAGACCCCCTCATCTGTGACAACCAGGTGTCCACTGGGGACACCAGGATCTTCTTTGTGAACCCTGCA CCCCCATACCTGTGGCCAGCCCACAAGAACGAGCTGATGCTCAACTCCAGCCTCATGCGGATCACCCT GCGGAACCTGGAGGAGGTGGAGTTCTGTGTGGAAGATAAACCCGGGACCCACTTCACTCCAGTGCCTC CGACGCCTCCTGATGCGTGCCGGGGAATGCTGTGCGGCTTCGGCGCCGTGTGCGAGCCCAACGCGGAG GGGCCGGGCCGGGCGTCCTGCGTCTGCAAGAAGAGCCCGTGCCCCAGCGTGGTGGCGCCTGTGTGTGG GTCGGACGCCTCCACCTACAGCAACGAATGCGAGCTGCAGCGGGCGCAGTGCAGCCAGCAGCGCCGCA TCCGCCTGCTCAGCCGCGGGCCGTGCGGCTCGCGGGACCCCTGCTCCAACGTGACCTGCAGCTTCGGC AGCACCTGTGCGCGCTCGGCCGACGGGCTGACGGCCTCGTGCCTGTGCCCCGCGACCTGCCGTGGCGC CCCCGAGGGGACCGTCTGCGGCAGCGACGGCGCCGACTACCCCGGCGAGTGCCAGCTCCTGCGCCGCG CCTGCGCCCGCCAGGAGAATGTCTTCAAGAAGTTCGACGGCCCTTGTGACCCCTGTCAGGGCGCCCTC CCTGACCCGAGCCGCAGCTGCCGTGTGAACCCGCGCACGCGGCGCCCTGAGATGCTCCTACGGCCCGA GAGCTGCCCTGCCCGGCAGGCGCCAGTGTGTGGGGACGACGGAGTCACCTACGAAAACGACTGTGTCA TGGGCCGATCGGGGGCCGCCCGGGGTCTCCTCCTGCAGAAAGTGCGCTCCGGCCAGTGCCAGGGTCGA GACCAGTGCCCGGAGCCCTGCCGGTTCAATGCCGTGTGCCTGTCCCGCCGTGGCCGTCCCCGCTGCTC CTGCGACCGCGTCACCTGTGACGGGGCCTACAGGCCCGTGTGTGCCCAGGACGGGCGCACGTATGACA GTGATTGCTGGCGGCAGCAGGCTGAGTGCCGGCAGCAGCGTGCCATCCCCAGCAAGCACCAGGGCCCG TGTGACCAGGCCCCGTCCCCATGCCTCGGGGTGCAGTGTGCATTTGGGGCGACGTGTGCTGTGAAGAA CGGGCAGGCAGCGTGTGAATGCCTGCAGGCGTGCTCGAGCCTCTACGATCCTGTGTGCGGCAGCGACG GCGTCACATACGGCAGCGCGTGCGAGCTGGAGGCCACGGCCTGTACCCTCGGGCGGGAGATCCAGGTG GCGCGCAAAGGACCCTGTGACCGCTGCGGGCAGTGCCGCTTTGGAGCCCTGTGCGAGGCCGAGACCGG GCGCTGCGTGTGCCCCTCTGAATGCGTGGCTTTGGCCCAGCCCGTGTGTGGCTCCGACGGGCACACGT ACCCCAGCGAGTGCATGCTGCACGTGCACGCCTGCACACACCAGATCAGCCTGCACGTGGCCTCAGCT GGACCCTGTGAGACCTGTGGAGATGCCGTGTGTGCTTTTGGGGCTGTGTGCTCCGCAGGGCAGTGTGT GTGTCCCCGGTGTGAGCACCCCCCGCCCGGCCCCGTGTGTGGCAGCGACGGTGTCACCTACGGCAGTG CCTGCGAGCTACGGGAAGCCGCCTGCCTCCAGCAGACACAGATCGAGGAGGCCCGGGCAGGGCCGTGC GAGCAGGCCGAGTGCGGTTCCGGAGGCTCTGGCTCTGGGGAGGACGGTGACTGTGAGCAGGAGCTGTG CCGGCAGCGCGGTGGCATCTGGGACGAGGACTCGGAGGACGGGCCGTGTGTCTGTGACTTCAGCTGCC AGAGTGTCCCAGGCAGCCCGGTGTGCGGCTCAGATGGGGTCACCTACAGCACCGAGTGTGAGCTGAAG AAGGCCAGGTGTGAGTCACAGCGAGGGCTCTACGTAGCGGCCCAGGGAGCCTGCCGAGGCCCCGCCTT CGCCCCGCTGCCGCCTGTGGCCCCCTTACACTGTGCCCAGACGCCCTACGGCTGCTGCCAGGACAATA TCACCGCAGCCCGGGGCGTGGGCCTGGCTGGCTGCCCCAGTGCCTGCCAGTGCAACCCCCATGGCTCT TACGGCGGCACCTGTGACCCAGCCACAGGCCAGTGCTCCTGCCGCCCAGGTGTGGGGGGCCTCAGGTG TGACCGCTGTGAGCCTGGCTTCTGGAACTTTCGAGGCATCGTCACCGATGGCCGGAGTGGCTGTACAC CCTGCAGCTGTGATCCCCAAGGCGCCGTGCGGGATGACTGTGAGCAGATGACGGGGCTGTGCTCGTGT AAGCCCGGGGTGGCTGGACCCAAGTGTGGGCAGTGTCCAGACGGCCGTGCCCTGGGCCCCGCGGGCTG TGAAGCTGACGCTTCTGCGCCTGCGACCTGTGCGGAGATGCGCTGTGAGTTCGGTGCGCGGTGCGTGG AGGAGTCTGGCTCAGCCCACTGTGTCTGCCCGATGCTCACCTGTCCAGAGGCCAACGCTACCAAGGTC TGTGGGTCAGATGGAGTCACATACGGCAACGAGTGTCAGCTGAAGACCATCGCCTGCCGCCAGGGCCT GCAAATCTCTATCCAGAGCCTGGGCCCGTGCCAGGAGGCTGTTGCTCCCAGCACTCACCCGACATCTG CCTCCGTGACTGTGACCACCCCAGGGCTCCTCCTGAGCCAGGCACTGCCGGCCCCCCCCGGCGCCCTC CCCCTGGCTCCCAGCAGTACCGCACACAGCCAGACCACCCCTCCGCCCTCATCGCGACCTCGGACCAC TGCCAGCGTCCCCAGGACCACCGTGTGGCCCGTGCTGACGGTGCCCCCCACGGCACCCTCCCCTGCAC CCAGCCTGGTGGCGTCCGCCTTTGGTGAATCTGGCAGCACTGATGGAAGCAGCGATGAGGAACTGAGC GGGGACCAGGAGGCCAGTGGGGGTGGCTCTGGGGGGCTCGAGCCCTTGGAGGGCAGCAGCGTGGCCAC
CCCTGGGCCACCTGTCGAGAGGGCTTCCTGCTACAACTCCGCGTTGGGCTGCTGCTCTGATGGGAAGA CGCCCTCGCTGGACGCAGAGGGCTCCAACTGCCCCGCCACCAAGGTGTTCCAGGGCGTCCTGGAGCTG GAGGGCGTCGAGGGCCAGGAGCTGTTCTACACGCCCGAGATGGCTGACCCCAAGTCAGAACTGTTCGG GGAGACAGCCAGGAGCATTGAGAGCACCCTGGACGACCTCTTCCGGAATTCAGACGTCAAGAAGGATT TCCGGAGTGTCCGCTTGCGGGACCTGGGGCCCGGCAAATCCGTCCGCGCCATTGTGGATGTGCACTTT GACCCCACCACAGCCTTCAGGGCACCCGACGTGGCCCGGGCCCTGCTCCGGCAGATCCAGGTGTCCAG GCGCCGGTCCTTGGGGGTGAGGCGGCCGCTGCAGGAGCACGTGCGATTTATGGACTTTGACTGGTTTC CTGCGTTTATCACGGGGGCCACGTCAGGAGCCATTGCTGCGGGAGCCACGGCCAGAGCCACCACTGCA TCGCGCCTGCCGTCCTCTGCTGTGACCCCTCGGGCCCCGCACCCCAGTCACACAAGCCAGCCCGTTGC CAAGACCACGGCAGCCCCCACCACACGTCGGCCCCCCACCACTGCCCCCAGCCGTGTGCCCGGACGTC GGCCCCCGGCCCCCCAGCAGCCTCCAAAGCCCTGTGACTCACAGCCCTGCTTCCACGGGGGGACCTGC CAGGACTGGGCATTGGGCGGGGGCT^ GAAGGTGCTTGGCGCCCCTGTGCCGGCCTTCGAGGGCCGCTCCTTCCTGGCCTTCCCCACCCTCCGCG CCTACCACACGCTGCGCCTGGCACTGGAATTCCGGGCGCTGGAGCCTCAGGGGCTGCTGCTGTACAAT GGCAACGCCCGGGGCAAGGACTTCCTGGCATTGGCGCTGCTAGATGGCCGCGTGCAGCTCAGGTTTGA CACAGGTTCGGGGCCGGCGGTGCTGACCAGTGCCGTGCCGGTAGAGCCGGGCCAGTGGCACCGCCTGG AGCTGTCCCGGCACTGGCGCCGGGGCACCCTCTCGGTGGATGGTGAGACCCCTGTTCTGGGCGAGAGT CCCAGTGGCACCGACGGCCTCAACCTGGACACAGACCTCTTTGTGGGCGGCGTACCCGAGGACCAGGC TGCCGTGGCGCTGGAGCGGACCTTCGTGGGCGCCGGCCTGAGGGGGTGCATCCGTTTGCTGGACGTCA ACAACCAGCGCCTGGAGCTTGGCATTGGGCCGGGGGCTGCCACCCGAGGCTCTGGCGTGGGCGAGTGC GGGGACCACCCCTGCCTGCCCAACCCCTGCCATGGCGGGGCCCCATGCCAGAACCTGGAGGCTGGAAG GTTCCATTGCCAGTGCCCGCCCGGCCGCGTCGGACCAACCTGTGCCGATGAGAAGAGCCCCTGCCAGC CCAACCCCTGCCATGGGGCGGCGCCCTGCCGTGTGCTGCCCGAGGGTGGTGCTCAGTGCGAGTGCCCC CTGGGGCGTGAGGGCACCTTCTGCCAGACAGCCTCGGGGCAGGACGGCTCTGGGCCCTTCCTGGCTGA CTTCAACGGCTTCTCCCACCTGGAGCTGAGAGGCCTGCACACCATTGCACGGGACCTGGGGGAGAAGA TGGCGCTGGAGGCCGTGTTCCTGGCACGAGGCCCCAGCGGCCTCCTGCTCTACAACGGGCAGAAGACG GACGGCAAGGGGGACTTCGTGTCGCTGGCACTGCGGGACCGCCGCCTGGAGTTCCGCTACGACCTGGG CAAGGGGGCAGCGGTCATCAGGAGCAGGGAGCCAGTCACCCTGGGAGCCTGGACCAGGGTCTCACTGG AGCGAAACGGCCGCAAGGGTGCCCTGCGTGTGGGCGACGGCCCCCGTGTGTTGGGGGAGTCCCCGAAA TCCCGCAAGGTTCCGCACACCGTCCTCAACCTGAAGGAGCCGCTCTACGTAGGGGGCGCTCCCGACTT CAGCAAGCTGGCCCGTGCTGCTGCCGTGTCCTCTGGCTTCGACGGTGCCATCCAGCTGGTCTCCCTCG GAGGCCGCCAGCTGCTGACCCCGGAGCACGTGCTGCGGCAGGTGGACGTCACGTCCTTTGCAGGTCAC CCCTGCACCCGGGCCTCAGGCCACCCCTGCCTCAATGGGGCCTCCTGCGTCCCGAGGGAGGCTGCCTA TGTGTGCCTGTGTCCCGGGGGATTCTCAGGACCGCACTGCGAGAAGGGGCTGGTGGAGAAGTCAGCGG GGGACGTGGATACCTTGGCCTTTGACGGGCGGACCTTTGTCGAGTACCTCAACGCTGTGACCGAGAGC GAGAAGGCACTGCAGAGCAACCACTTTGAACTGAGCCTGCGCACTGAGGCCACGCAGGGGCTGGTGCT CTGGAGTGGCAAGGCCACGGAGCGGGCAGACTATGTGGCACTGGCCATTGTGGACGGGCACCTGCAAC TGAGCTACAACCTGGGCTCCCAGCCCGTGGTGCTGCGTTCCACCGTGCCCGTCAACACCAACCGCTGG TTGCGGGTCGTGGCACATAGGGAGCAGAGGGAAGGTTCCCTGCAGGTGGGCAATGAGGCCCCTGTGAC CGGCTCCTCCCCGCTGGGCGCCACGCAGCTGGACACTGATGGAGCCCTGTGGCTTGGTGAGTGTTTTG GGGAGACTAGAGAGGGATGCCCAAGGGTCTCAGATATCCGAGGGACAGACTCCACCCCCCAGCGCCCA CCCTTGAGTCAGGGTGCATGTGAGCCGGCGGGCTGGGCTCTCTTCTCCCGCTGTAGCCCCTGCAGTTC CCAGTGCTGTGGGGCCGGGAGGCGGGTGCCCAGGTGTGGGCCCCCTGCTGGTCACCTGCTCGTTGGGG TGCCCATCAGCATCACTGAGTCACAGCCGGGTGACTCCCACTGTCTGTGCTGCAGGGGCCTGCCGGAG CTGCCCGTGGGCCCAGCACTGCCCAAGGCCTACGGCACAGGCTTTGTGGGCTGCTTGCGGGATGTGGT GGTGGGCCGGCACCCGCTGCACCTGCTGGAGGACGCCGTCACCAAGCCAGAGCTGCGGCCCTGCCCCA CCCCATGAGCTGGCACCAGAGCCCCGCGCCCGCT
NOV60h, CG94946-06 SEQ ID NO: 1188 2143 aa MW at 225054.6kD Protein Sequence
MRHGRPVPPGPAAGRPLLPLLVVAACVLPGAGGTCPERALERREEEANVVLTGTVEEILNVDPVQHTY SCKVRV RYLKGKDLVARESLLDGGNKWISGFGDPLICDNQVSTGDTRIFFVNPAPPYLWPAHKNEL MLNSSLMRITLRNLEEVEFCVEDKPGTHFTPVPPTPPDACRGMLCGFGAVCEPNAEGPGRASCVCKKS PCPSWAPVCGSDASTYSNECELQRAQCSQQRRIRLLSRGPCGSRDPCSNVTCSFGSTCARSADGLTA SCLCPATCRGAPEGTVCGSDGADYPGECQLLRRACARQENVFKKFDGPCDPCQGALPDPSRSCRVNPR TRRPEMLLRPESCPARQAPVCGDDGVTYEITOCVMGRSG-A-ARGLLLQKVRSGQCQGRDQCPEPCRFNAV CLSRRGRPRCSCDRVTCDGAYRPVCAQDGRTYDSDCWRQQAECRQQRAIPSKHQGPCDQAPSPCLGVQ CAFGATCAVKNGQAACECLQACSSLYDPVCGSDGVTYGSACELEATACTLGREIQVARKGPCDRCGQC RFGALCEAETGRCVCPSECVALAQPVCGSDGHTYPSEC LHVHACTHQISLHVASAGPCETCGDAVCA FGAVCSAGQCVCPRCΞHPPPGPVCGSDGVTYGSACELREAACLQQTQIEEARAGPCEQAECGSGGSGS GEDGDCEQELCRQRGGIWDEDSEDGPCVCDFSCQSVPGSPVCGSDGVTYSTECEIiKK--ARCESQRGLYV AAQGACRGPAFAPLPPVAPLHCAQTPYGCCQDNITAARGVGLAGCPSACQCNPHGSYGGTCDPATGQC SCRPGVGGLRCDRCEPGFWNFRGIVTDGRSGCTPCSCDPQGAVRDDCEQMTGLCSCKPGVAGPKCGQC PDGRALGPAGCEADASAPATCAEMRCEFGARCVEESGSAHCVCPMLTCPEA ATKVCGSDGVTYGNEC QLKTIACRQGLQISIQSLGPCQEAVAPSTHPTSASVTVTTPGLLLSQALPAPPGALPLAPSSTAHSQT TPPPSSRPRTTASVPRTTVWPVLTVPPTAPSPAPSLVASAFGESGSTDGSSDEELSGDQEASGGGSGG LEPLEGSSVATPGPPVERASCYNSALGCCSDGKTPSLDAEGSNCPATKVFQGVLELEGVEGQELFYTP EMADPKSELFGETARSIESTLDDLFRNSDVKKDFRSVRLRDLGPGKSVRAIVDVHFDPTTAFRAPDVA RALLRQIQVSRRRSLGVRRPLQEHVRF-M-DFD FPAFITGATSGAIAAGATARATTASRLPSSAVTPRA PHPSHTSQPVA TTAAPTTRRPPTTAPSRVPGRRPPAPQQPPKPCDSQPCFHGGTCQD ALGGGFTCS CPAGRGGAVCEKVLGAPVPAFEGRSFLAFPTLRAYHTLRLALEFRALEPQGLLLYNGNARG DFLALA LLDGRVQLRFDTGSGPAVLTSAVPVEPGQWHRLELSRH RRGTLSVDGETPVLGESPSGTDGLNLDTD LFVGGVPEDQAAVALERTFVGAGLRGCIRLLDVNNQRLELGIGPGAATRGSGVGECGDHPCLPNPCHG GAPCQNIiEAGRFHCQCPPGRVGPTCADEKSPCQPNPCHGAAPCRVIiPEGGAQCECPLGREGTFCQTAS GQDGSGPF -DFNGFSH E RG H IARDLGE-K--ALEAVF ARGPSG rLY GQKTDGKGDFVS---J-ALR DRRLEFRYDLGKGAAVIRSREPVTLGAWTRVSLERNGRKGALRVGDGPRVLGESPKSRKVPHTVLNLK EPLYVGGAPDFSKLARAAAVSSGFDGAIQLVSLGGRQLLTPEHVLRQVDVTSFAGHPCTRASGHPCLN GASCVPREAAYVCLCPGGFSGPHCEKGLVEKSAGDVDTLAFDGRTFVEYLNAVTESEKALQS HFELS LRTEATQGLVL SGKATERADYVALAIVDGHLQLSYNLGSQPVVLRSTVPV TNR LRVVAHREQREG SLQVGNEAPVTGSSPLGATQLDTDGALWLGECFGETREGCPRVSDIRGTDSTPQRPPLSQGACEPAGW ALFSRCSPCSSQCCGAGRRVPRCGPPAGHLLVGVPISITESQPGDSHCLCCRGLPELPVGPALPKAYG TGFVGCLRDVWGRHPLHLLEDAVT PELRPCPTP
NOV60i, CG94946-07 SEQ ID NO: 1189 5688 bp DNA Sequence ORF Start: ATG at 37 j ORF Stop: TGA at 4735
CCGGCGCGGCCCGCGCGCTCTTCCGCCGCCTCTCGCATGCGCCATGGCCGGCCGGTCCCACCCGGGCC
CGCTGCGGGGCGGCCGCTGCTGCCTCTCCTTGTGGTGGCCGCGTGCGTCCTGCCCGGAGCCGGCGGGA CATGCCCGGAGCGCGCGCTGGAGCGGCGCGAGGAGGAGGCGAACGTGGTGCTCACCGGGACGGTGGAG GAGATCCTCAACGTGGACCCGGTGCAGCACACGTACTCCTGCAAGGTTCGGGTCTGGCGGTACTTGAA GGGCAAAGACCTGGTGGCCCGGGAGAGCCTGCTGGACGGCGGCAACAAGGTGGTGATCAGCGGCTTTG GAGACCCCCTCATCTGTGACAACCAGGTGTCCACTGGGGACACCAGGATCTTCTTTGTGAACCCTGCA CCCCCATACCTGTGGCCAGCCCACAAGAACGAGCTGATGCTCAACTCCAGCCTCATGCGGATCACCCT GCGGAACCTGGAGGAGGTGGAGTTCTGTGTGGAAGATAAACCCGGGACCCACTTCACTCCAGTGCCTC CGACGCCTCCTGATGCGTGCCGGGGAATGCTGTGCGGCTTCGGCGCCGTGTGCGAGCCCAACGCGGAG GGGCCGGGCCGGGCGTCCTGCGTCTGCAAGAAGAGCCCGTGCCCCAGCGTGGTGGCGCCTGTGTGTGG GTCGGACGCCTCCACCTACAGCAACGAATGCGAGCTGCAGCGGGCGCAGTGCAGCCAGCAGCGCCGCA TCCGCCTGCTCAGCCGCGGGCCGTGCGGCTCGCGGGACCCCTGCTCCAACGTGACCTGCAGCTTCGGC AGCACCTGTGCGCGCTCGGCCGACGGGCTGACGGCCTCGTGCCTGTGCCCCGCGACCTGCCGTGGCGC CCCCGAGGGGACCGTCTGCGGCAGCGACGGCGCCGACTACCCCGGCGAGTGCCAGCTCCTGCGCCGCG CCTGCGCCCGCCAGGAGAATGTCTTCAAGAAGTTCGACGGCCCTTGTGACCCCTGTCAGGGCGCCCTC CCTGACCCGAGCCGCAGCTGCCGTGTGAACCCGCGCACGCGGCGCCCTGAGATGCGCCTACGGCCCGA GAGCTGCCCTGCCCGGCAGGCGCCAGTGTGTGGGGACGACGGAGTCACCTACGAAAACGACTGTGTCA TGGGCCGATCGGGGGCCGCCCGGGGTCTCCTCCTGCAGAAAGTGCGCTCCGGCCAGTGCCAGGGTCGA GACCAGTGCCCGGAGCCCTGCCGGTTCAATGCCGTGTGCCTGTCCCGCCGTGGCCGTCCCCGCTGCTC CTGCGACCGCGTCACCTGTGACGGGGCCTACAGGCCCGTGTGTGCCCAGGACGGGCGCACGTATGACA GTGATTGCTGGCGGCAGCAGGCTGAGTGCCGGCAGCAGCGTGCCATCCCCAGCAAGCACCAGGGCCCG TGTGACCAGGCCCCGTCCCCATGCCTCGGGGTGCAGTGTGCATTTGGGGCGACGTGTGCTGTGAAGAA CGGGCAGGCAGCGTGTGAATGCCTGCAGGCGTGCTCGAGCCTCTACGATCCTGTGTGCGGCAGCGACG GCGTCACATACGGCAGCGCGTGCGAGCTGGAGGCCACGGCCTGTACCCTCGGGCGGGAGATCCAGGTG GCGCGCAAAGGACCCTGTGACCGCTGCGGGCAGTGCCGCTTTGGAGCCCTGTGCGAGGCCGAGACCGG GCGCTGCGTGTGCCCCTCTGAATGCGTGGCTTTGGCCCAGCCCGTGTGTGGCTCCGACGGGCACACGT ACCCCAGCGAGTGCATGCTGCACGTGCACGCCTGCACACACCAGATCAGCCTGCACGTGGCCTCAGCT GGACCCTGCGAGACCTGTGGAGATGCCGTGTGTGCTTTTGGGGCTGTGTGCTCCGCAGGGCAGTGTGT GTGTCCCCGGTGTGAGCACCCCCCGCCCGGCCCCGTGTGTGGCAGCGACGGTGTCACCTACGGCAGTG CCTGCGAGCTACGGGAAGCCGCCTGCCTCCAGCAGACACAGATCGAGGAGGCCCGGGCAGGGCCGTGC GAGCAGGCCGAGTGCGGTTCCGGAGGCTCTGGCTCTGGGGAGGACGGTGACTGTGAGCAGGAGCTGTG CCGGCAGCGCGGTGGCATCTGGGACGAGGACTCGGAGGACGGGCCGTGTGTCTGTGACTTCAGCTGCC AGAGTGTCCCAGGCAGCCCGGTGTGCGGCTCAGATGGGGTCACCTACAGCACCGAGTGTGAGCTGAAG AAGGCCAGGTGTGAGTCACAGCGAGGGCTCTACGTAGCGGCCCAGGGAGCCTGCCGAGGCCCCACCTT CGCCCCGCTGCCGCCTGTGGCCCCCTTACACTGTGCCCAGACGCCCTACGGCTGCTGCCAGGACAATA TCACCGCAGCCCGGGGCGTGGGCCTGGCTGGCTGCCCCAGTGCCTGCCAGTGCAACCCCCATGGCTCT TACGGCGGCACCTGTGACCCAGCCACAGGCCAGTGCTCCTGCCGCCCAGGTGTGGGGGGCCTCAGGTG TGACCGCTGTGAGCCTGGCTTCTGGAACTTTCGAGGCATCGTCACCGATGGCCGGAGTGGCTGTACAC CCTGCAGCTGTGATCCCCAAGGCGCCGTGCGGGATGACTGTGAGCAGATGACGGGGCTGTGCTCGTGT AAGCCCGGGGTGGCTGGACCCAAGTGTGGGCAGTGTCCAGACGGCCGTGCCCTGGGCCCCGCGGGCTG TGAAGCTGACGCTTCTGCGCCTGCGACCTGTGCGGAGATGCGCTGTGAGTTCGGTGCGCGGTGCGTGG AGGAGTCTGGCTCAGCCCACTGTGTCTGCCCGATGCTCACCTGTCCAGAGGCCAACGCTACCAAGGTC TGTGGGTCAGATGGAGTCACATACGGCAACGAGTGTCAGCTGAAGACCATCGCCTGCCGACGGTGTCA CCTACGCCAGGGCCTGCAAATCTCTATCCAGAGCCTGGGCCCGTGCCAGGAGGCTGTTGCTCCCAGCA CTCACCCGACATCTGCCTCCGTGACTGTGACCACCCCAGGGCTCCTCCTGAGCCAGGCACTGCCGGCC CCCCCCGGCGCCCTCCCCCTGGCTCCCAGCAGTACCGCACACAGCCAGACCACCCCTCCGCCCTCATC GCGACCTCGGACCACTGCCAGCGTCCCCAGGACCACCGTGTGGCCCGTGCTGACGGTGCCCCCCACGG CACCCTCCCCTGCACCCAGCCTGGTGGCGTCCGCCTTTGGTGAATCTGGCAGCACTGATGGAAGCAGC GATGAGGAACTGAGCGGGGACCAGGAGGCCAGTGGGGGTGGCTCTGGGGGGCCCGAGCCCTTGGAGGG
CAGCAGCGTGGCCACCCCTGGGCCACCTGTCGAGAGGGCTTCCTGCTACAACCCCTGCCATGGGGCGG CGCCCTGCCGTGTGCTGCCCGAGGGTGGTGCTCAGTGCGAGTGCCCCCTGGGGCGTGAGGGCACCTTC TGCCAGACAGCCTCGGGGCAGGACGGCTCTGGGCCCTTCCTGGCTGACTTCAACGGCTTCTCCCACCT GGAGCTGAGAGGCCTGCACACCTTTGCACGGGACCTGGGGGAGAAGATGGCGCTGGAGGTCGTGTTCC TGGCACGAGGCCCCAGCGGCCTCCTGCTCTACAACGGGCAGAAGACGGACGGCAAGGGGGACTTCGTG TCGCTGGCACTGCGGGACCGCCGCCTGGAGTTCCGCTACGACCTGGGCAAGGGGGCAGCGGTCATCAG GAGCAGGGAGCCAGTCACCCTGGGAGCCTGGACCAGGGTCTCACTGGAGCGAAACGGCCGCAAGGGTG CCCTGCGTGTGGGCGACGGCCCCCGTGTGTTGGGGGAGTCCCCGGTTCCGCACACCGTCCTCAACCTG AAGGAGCCGCTCTACGTAGGGGGCGCTCCCGACTTCAGCAAGCTGGCCCGTGCTGCTGCCGTGTCCTC TGGCTTCGACGGTGCCATCCAGCTGGTCTCCCTCGGAGGCCGCCAGCTGCTGACCCCGGAGCACGTGC TGCGGCAGGTGGACGTCACGTCCTTTGCAGGTCACCCCTGCACCCGGGCCTCAGGCCACCCCTGCCTC AATGGGGCCTCCTGCGTCCCGAGGGAGGCTGCCTATGTGTGCCTGTGTCCCGGGGGATTCTCAGGACC GCACTGCGAGAAGGGGCTGGTGGAGAAGTCAGCGGGGGACGTGGATACCTTGGCCTTTGACGGGCGGA CCTTTGTCGAGTACCTCAACGCTGTGACCGAGAGCGAGAAGGCACTGCAGAGCAACCACTTTGAACTG AGCCTGCGCACTGAGGCCACGCAGGGGCTGGTGCTCTGGAGTGGCAAGGCCACGGAGCGGGCAGACTA TGTGGCACTGGCCATTGTGGACGGGCACCTGCAACTGAGCTACAACCTGGGCTCCCAGCCCGTGGTGC TGCGTTCCACCGTGCCCGTCAACACCAACCGCTGGTTGCGGGTCGTGGCACATAGGGAGCAGAGGGAA GGTTCCCTGCAGGTGGGCAATGAGGCCCCTGTGACCGGCTCCTCCCCGCTGGGCGCCACGCAGCTGGA CACTGATGGAGCCCTGTGGCTTGGGGGCCTGCCGGAGCTGCCCGTGGGCCCAGCACTGCCCAAGGCCT ACGGCACAGGCTTTGTGGGCTGCTTGCGGGATGTGGTGGTGGGCCGGCACCCGCTGCACCTGCTGGAG GACGCCGTCACCAAGCCAGAGCTGCGGCCCTGCCCCACCCCATGAGCTGGCACCAGAGCCCCGCGCCC
GCTGTAATTATTTTCTATTTTTGTAAACTTGTTGCTTTTTGATATGATTTTCTTGCCTGAGTGTTGGC
CGGAGGGACTGCTGGCCCGGCCTCCCTTCCGTCCAGGCAGCCGTGCTGCAGACAGACCTAGTGCTGAGi
GGATGGACAGGCGAGGTGGCAGCGTGGAGGGCTCGGCGTGGATGGCAGCCTCAGGACACACACCCCTG!
CCTCAAGGTGCTGAGCCCCCGCCTTGCACTGCGCCTGCCCCACGGTGTCCCCGCCGGGAAGCAGCCCC
GGCTCCTGAATCACCCTCGCTCCGTCAGGCGGGACTCGTGTCCCAAAAAGGAAGGGGCTGCTGAGGTC GATGGGGCCCTTCCTCCGGGTGACCCCACAGGGCCTTTCCAAGCCCCTATTTGAGCTGCTCCTTCCT:
GTGTGTGCTCTGGACCCTGCCTCGGCCTCCTGCGCCAATACTGTGACTTCCAAACAATGTTACTGCTG!
GGCACAGCTCTGCGTTGCTCCCGTGCTGCCTGCGCCAGCCCCAGGCTGCTGAGGAGCAGAGGCCAGAC
CAGGGCCGATCTGGGTGTCCTGACCCTCAGCTGGCCCTGCCCAGCCACCCTGGACATGACCGTATCCC
TCTGCCACACCCCAGGCCCTGCGAGGGGCTATCGAGAGGAGCTCACTGTGGGATGGGGTTGACCTCTG
CCGCCTGCCTGGGTATCTGGGCCTGGCCATGGCTGTGTTCTTCATGTGTTGATTTTATTTGACCCCTG
GAGTGGTGGGTCTCATCTTTCCCATCTCGCCTGAGAGCGGCTGAGGGCTGCCTCACTGCAAATCCTCC
CCACAGCGTCAGTGAAAGTCGTCCTTGTCTCAGAATGACCAGGGGCCAGCCAGTGTCTGACCAAGGTC lAAGGGGCAGGTGCAGAGGTGGCAGGGATGGCTCCGAAGCCAGAA
NOV60i, CG94946-07 SEQ ID NO: 11901566 aa MW at 164102.4kD Protein Sequence
MRHGRPVPPGPAAGRPLLPLLVVAACVLPGAGGTCPERALERREEEANVVLTGTVEEILNVDPVQHTY
SCK-VRVRYLKGKDLVARESLLDGGNKVVISGFGDPLICDNQVSTGDTRIFFVNPAPPYL PAHKNEL LNSSLMRITLRNLEEVEFCVEDKPGTHFTPVPPTPPDACRGMLCGFGAVCEPNAEGPGRASCVCK S
PCPSWAPVCGSDASTYSNECELQRAQCSQQRRIRLLSRGPCGSRDPCSNVTCSFGSTCARSADGLTA
SCLCPATCRGAPEGTVCGSDGADYPGECQLLRRACARQENVFKKFDGPCDPCQGALPDPSRSCRVNPR
TRRPEMRLRPESCPARQAPVCGDDGVTYEIROCVMGRSGAARGLLLQK-VRSGQCQGRDQCPEPCRFNAV
CLSRRGRPRCSCDRVTCDGAYRPVCAQDGRTYDSDCWRQQAECRQQRAIPSKHQGPCDQAPSPCLGVQ
CAFGATCAVKNGQAACECLQACSSLYDPVCGSDGVTYGSACELEATACTLGREIQVARKGPCDRCGQC
RFGALCEAETGRCVCPSECVALAQPVCGSDGHTYPSECMLHVHACTHQISLHVASAGPCETCGDAVCA
FGAVCSAGQCVCPRCEHPPPGPVCGSDGVTYGSACELREAACLQQTQIEEARAGPCEQAECGSGGSGS
GEDGDCEQELCRQRGGIWDEDSEDGPCVCDFSCQSVPGSPVCGSDGVTYSTECELKKARCESQRGLYV
AAQGACRGPTFAPLPPVAPLHCAQTPYGCCQDNITAARGVGLAGCPSACQCNPHGSYGGTCDPATGQC
SCRPGVGGLRCDRCEPGF NFRGIVTDGRSGCTPCSCDPQGAVRDDCEQMTGLCSCKPGVAGPKCGQC
PDGRALGPAGCEADASAPATCAEMRCEFGARCVEESGSAHCVCPMLTCPEANATKVCGSDGVTYGNEC
QLKTIACRRCHLRQGLQISIQSLGPCQEAVAPSTHPTSASVTVTTPGLLLSQALPAPPGALPLAPSST
AHSQTTPPPSSRPRTTASVPRTTV PVLTVPPTAPSPAPSLVASAFGESGSTDGSSDEΞLSGDQEASG
GGSGGPEPLEGSSVATPGPPVERASCYNPCHGAAPCRVLPEGGAQCECPLGREGTFCQTASGQDGSGP
FLADFNGFSHLELRGLHTFARDLGEKMALEWFLARGPS
YDLGKG-AAVIRSREPVTLGATRVSLER GRKGALRVGDGPRVLGESPVPHTVLNLKEPLYVGGAPDF
SKLARAAAVSSGFDGAIQLVSLGGRQLLTPEHVLRQVDVTSFAGHPCTRASGHPCLNGASCVPREAAY
VCLCPGGFSGPHCEKGLVΈ^ WSGKATERADYVALAIVDGHLQLSYNLGSQPWLRSTVPVNTNR LRWAHREQREGSLQVGNEAPVT GSSPLGATQLDTDGALWLGGLPELPVGPALPKAYGTGFVGCLRDVWGRHPLHLLEDAVTKPELRPCP P
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 60B.
Table 60B. Comparison of the NOV60 protein sequences.
NOVδOa
NOVδOb
NOVδOc
NOV60d
NOVδOe
NOVδOf
NOVδOg MRHGRPVPPGPAAGRPLLPLLVVAACVLPGAGGTCPER-ALERREEEANVVLTGTVEEILN
NOVδOh
NOVδOi
NOVδOa
NOVδOb
NOV60C
NOVδOd
NOVδOe
NOVδOf
NOV60g VDPVQHTYSCKVRV RYLKGKDLVARESLLDGGNKWISGFGDPLICDNQVSTGDTRIFF
NOVδOh
NOVδOi
NOVδOa
NOVδOb
NOV60C
NOVδOd
NOVδOe
NOVδOf
NOV6Og VNPAPPYL PAHKNEL LNSSLMRITLR LEEVEFCVEDKPGTHFTPVPPTPPDACRG-ML
NOVδOh
NOVδOi
NOVδOa
NOVδOb
NOVδOc
NOVδOd
NOVδOe
NOVδOf
NOVδOg CGFGAVCEPN-AEGPG-RASCVCKKSPCPSWAPVCGSDASTYSNECELQ-RAQCSQQRRIRL
NOVδOh
NOVδOi
NOVδOa
NOVδOb
NOV60C
NOVδOd
NOVδOe
NOVδOf
NOVδOg LSRGPCGSRDPCSNVTCSFGSTCARSADGLTASCLCPATCRGAPEGTVCGSDGADYPGEC
NOVδOh
NOVδOi NOVδOa
NOVδOb
NOV60C
NOVδOd
NOVδOe
NOVδOf
NOVδOg QLLRRACARQENVFKKFDGPCDPCQGALPDPSRSCRVNPRTRRPEMLLRPESCPARQAPV
NOVδOh
NOVδOi
NOVδOa
NOVδOb
NOVδOc
NOVδOd
NOVδOe
NOVδOf
NOVδOg CGDDGVTYENDCVMGRSGAARGLLLQKVRSGQCQGRDQCPEPCRFNAVCLSRRGRPRCSC
NOVδOh
NOVδOi
NOVδOa
NOVδOb
NOVδOc
NOVδOd MRHGRPVPPGPAAGRPLLPLLWAACVLPGAGGTCPER
NOVδOe
NOVδOf
NOVδOg DRVTCDGAYRPVCAQDGRTYDSDC RQQAECRQQRAIPSKHQGPCDQAPSPCLGVQCAFG
NOVδOh
NOV6Oi RHGRPVPPGPAAGRPLLPLLWAACVLPGAGGTCPER
NOVδOa
NOVδOb
NOVδOc
NOV6Od ALERREEEANVVLTGTVEEILNVOPVQHTYSCK-VRV RYIiKGKDLVARES-LLDGGNKVVI
NOVδOe
NOVδOf
NOVδOg ATCAVKNGQAACECLQACSSLYDPVCGSDGVTYGSACELEATACTLGREIQVARKGPCDR
NOV60h
NOVδ 0 i ALERREEEA-I-sTVVLTGTVΕEILNVDPVQHTYSCKVRVWRYLKGKDLVARESLLDGGNKVVI
NOVδOa
NOVδ Ob
NOV60C
NOV6 Od SGFGDPLICDNQVSTGDTRIFFVNPAPPYL PAHKNELMLNSSLMRITLRNLEEVEFCVE
NOVδ Oe
NOVδOf
NOV6 Og CGQCRFGA-LCEAETGRCVCPSECVALAQPVCGSDGHTYPSECMLHVHACTHQISLHVASA
NOVδ Oh
NOVδ Oi SGFGDPLICDNQVSTGDTRIFFVNPAPPYLWPAHKNELMLNSSLMRITLRNLEEVEFCVE
NOVδ Oa
NOVδ Ob
NOVδOc
NOVδOd DKPGTHFTPVPPTPPDACRGMLCGFGAVCEPNAEGPGRASCVCKKSPCPSWAPVCGSDA
NOVδOe
NOVδ Of
NOVδOg GPCETCGDAVCAFGAVCSAGQCVCPRCEHPPPGPVCGSDGVTYGSACELREAACLQQTQI
NOVδOh
NOVδ 0 i DKPGTHFTPVPPTPPDACRGMLCGFGAVCEPNAEGPGRAS CVCKKS PCPS WAPVCGSDA NOVδOa
NOVδOb
NOVδOc
NOVδOd STYSNECELQRAQCSQQRRIRLLSRGPCGSRDPCSNVTCSFGSTCARSADGLTASCLCPA
NOVδOe
NOVδOf
NOVδOg EEARAGPCEQAECGSGGSGSGEDGDCEQELCRQRGGI DEDSEDGPCVCDFSCQSVPGSP
NOVδOh
NOVδOi STYSNECELQRAQCSQQRRIRLLSRGPCGSRDPCSNVTCSFGSTCARSADGLTASC CPA
NOVδOa
NOVδOb
NOVδOc
NOVδOd TCRGAPEGTVCGSDGADYPGECQLLRRACARQENVFKKFDGPCDPCQGALPDPSRSCRVN
NOVδOe
NOVδOf
NOVδOg VCGSDGVTYSTECELKKARCESQRGLYVAAQGACRGPAFAPLPPVAPLHCAQTPYGCCQD
NOVδOh
NOV60i TCRGAPEGTVCGSDGADYPGECQLLRRACARQENVFKKFDGPCDPCQG-ALPDPSRSCRVN
NOVδOa
NOVδOb
NOV60C
NOVδ0d PRTRRPEMLLRPESCPARQAPVCGDDGVTYENDCVMGRSGAARGLLLQKVRSGQCQGRDQ
NOVδOe
NOVδOf
NOVδOg NITAARGVGLAGCPSACQCNPHGSYGGTCDPATGQCSCRPGVGGLRCDRCEPGF NFRGI
NOVδOh
NOVδ 0 i PRTRRPE RLRPESCP-ARQAPVCGDDGVTYENDCVMGRSGAARGIiLLQKVRSGQCQGRDQ
NOVδOa
NOVδOb
NOVδ Oc
NOVδ 0 d CPEPCRFNAVCLSRRGRPRCSCDRVTCDGAYRPVCAQDGRTYDSDC RQQAECRQQRAIP
NOVδOe
NOVδO f
NOVδOg VTDGRSGCTPCSCDPQGAVRDDCEQ TGLCSCKPGVAGPKCGQCPDGRALGPAGCEADAS
NOVδOh
NOV60i CPEPCRFNAVCLSRRGRPRCSCDRVTCDGAYRPVCAQDGRTYDSDCWRQQAECRQQRAIP
NOVδOa
NOVδOb
NOV60C
NOVδOd SKHQGPCDQAPSPCLGVQCAFGATCAVKNGQAACECLQACSSLYDPVCGSDGVTYGSACE
NOVδOe
NOVδOf
NOV6Og APATCAEMRCEFGARCVEESGSAHCVCPMLTCPEANATKVCGS-DGVTYGNECQLKTIACR
NOVδOh
NOVδ0i SKHQGPCDQAPSPCLGVQCAFGATCAVKNGQAACECLQACSSLYDPVCGSDGVTYGSACE OVδOa
NOVδOb
NOV60C
NOVδ0d LEATACTLGREIQVARKGPCDRCGQCRFGALCEAETGRCVCPSECVALAQPVCGSDGHTY
NOVδOe
NOVδOf
NOVδOg QGLQISIQSLGPCQEAVAPSTHPTSASVTVTTPGLLLSQALPAPPGALPLAPSSTAHSQT
NOVδOh
NOVδ0i LEATACTLGREIQVARKGPCDRCGQCRFGALCEAETGRCVCPSECVALAQPVCGSDGHTY NOVδOa MRHGRPVPPGPAAGRPLLPLLWAACVL
NOVδOb
NOVδOc
NOVδOd PSEC LHVHACTHQISLHVASAGPCETCGDAVCAFGAVCSAGQCVCPRCEHPPPGPVCGS
NOVδOe MRHGRPVPPGPAAGRPLLPLLWAACVL
NOVδOf MRHGRPVPPGPAAGRPLLPLLWAACVL
NOVδOg TPPPSSRPRTTASVPRTTV PVLTVPPTAPSPAPSLVASAFGESGSTDGSSDEELSGDQE
NOVδOh MRHGRPVPPGPAAGRPLLPLLWAACVL
NOVδOi PSECMLHVHACTHQISLHVASAGPCETCGDAVCAFGAVCSAGQCVCPRCEHPPPGPVCGS
NOVδ0a PGAGGTCPE-RALERREEEANVVLTGTVEEILNVDPVQHTYSCKVRVWRYLKGKDLVARES
NOVδ0b TGSATKVFQG
NOVδOc
NOVδOd DGVTYGSACELREAACLQQTQIEEARAGPCEQAECGSGGSGSGEDGDCEQELCRQRGGIW
NOVδOe PGAGGTCPER-ALERREEE-ANVVLTGTVEEIL--S-VDPVQHTYSC--WRV RYLKGKDLVARES
NOVδOf PGAGGTCPE-RALERREEEANVVLTGTVEEIL--S-VDPVQHTYSCKVRV RYL GKDLVARES
NOVδOg ASGGGSGGLEPLEGSSVATPGPPVERASCYNSALGCCSDGKTPSLDAEGSNCPATKVFQG
NOVδOh PGAGGTCPE-RALERREEEA-NVVLTGTVEEILNVDPVQHTYSC---s^RV RYL GKDLVARES
NOVδOi DGVTYGSACELREAACLQQTQIEEARAGPCEQAECGSGGSGSGEDGDCEQELCRQRGGIW
NOVδOa LLDGGNKWISGFGDPLICDNQVSTGDTRIFFVNPAPPYL PAHKNELMLNSSLMRITLR NOVδOb VLELEGVEGQELFYTPEMADPKSELFGETARSIESTLDDLFRNSDVKKDFRSVRLRDLG- NOVδOc NOVδOd DEDSEDGPCVCDFSCQSVPGSPVCGSDGVTYSTECELKKARCESQRGLYVAAQGACRGPA NOVδOe LLDGGNK-WISGFGDPLICDNQVSTGDTRIFFVNPAPPYLWPAHKNELVLWSG NOVδOf LLDGGNKWISGFGDPLICDNQVSTGDTRIFFVNPAPPYL PAHKNELMLNSSLMRITLR NOVδOg VLELΞGVEGQELFYTPEMADPKSELFGETARSIESTLDDLFRNSDVKKDFRSVRLRDLG- NOVδOh LLDGGNKWISGFGDPLICDNQVSTGDTRIFFVNPAPPYL PAH NELMLNSSLMRITLR NOVδOi DEDSEDGPCVCDFSCQSVPGSPVCGSDGVTYSTECELKKARCESQRGLYVAAQGACRGPT
NOVδOa NLEEVEFCVEDKPGTHFTPVPPTPPDACRGMLCGFGAVCEPNAEGPGRASCVCKKSPCPS NOVδOb PGKSVRAIVDVHFDP NOVδOc TGSCQCNPHG NOVδOd FAPLPPVAPLHCAQTPYGCCQDNITAARGVGLAGCPSACQCNPHG NOVδOe ATERADYVALAIVDGHLQ NOVδOf NLEEVEFCVEDKPGTHFTPVPPTPPDACRGMLCGFGAVCEPNAEGPGRASCVCKKSPCPS NOVδOg PGKSVRAIVDVHFDP NOVδOh NLEEVEFCVEDKPGTHFTPVPPTPPDACRGMLCGFGAVCEPNAEGPGRASCVCKKSPCPS NOVδOi FAPLPPVAPLHCAQTPYGCCQDNITAARGVGLAGCPSACQCNPHG
NOVδOa WAPVCGSDASTYSNECELQRAQCSQQRRIRLLSRGPCGSRDPCSNVTCSFGSTCARSAD NOVδOb TTAFRAPDVARALLRQIQVS NOVδOc SYGGTCDPATGQCS NOVδOd SYGGTCDPATGQCS NOVδOe LSYNLGSQPWLRST NOVδOf WAPVCGSDASTYSNECELQRAQCSQQRRIRLLSRGPCGSRDPCSNVTCSFGSTCARSAD NOVδOg TTAFRAPDVARALLRQIQVS NOVδOh WAPVCGSDASTYSNECELQRAQCSQQRRIRLLSRGPCGSRDPCSNVTCSFGSTCARSAD NOVδOi SYGGTCDPATGQCS
NOVδOa GLTASCLCPATCRGAPEGTVCGSDGADYPGECQLLRRACARQENVFKKFDGPCDPCQGAL NOVδOb RRRSLGVRRP LQEHVRFMDFD VDG NOVδOc CRPGVGGLRCD RCEPGFWNFRG NOVδOd CRPGVGGLRCD RCEPGFWNFRG NOVδOe VPVNTNRWL RWAHREQREG NOVδOf GLTASCLCPATCRGAPEGTVCGSDGADYPGECQLLRRACARQENVFKKFDGPCDPCQGAL NOVδOg RRRSLGVRRP LQEHVRFMDFDWFPAFITGAT NOVδOh GLTASCLCPATCRGAPEGTVCGSDGADYPGECQLLRRACARQENVFKKFDGPCDPCQGAL NOVδOi CRPGVGGLRCD RCEPGFWNFRG NOVδOa PDPSRSCRVNPRTRRPEMLLRPESCPARQAPVCGDDGVTYENDCVMGRSGAARGLLLQKV NOVδOb NOVδOc IVTD GRS NOVδOd IVTD GRS NOVδOe SLQVGN NOVδOf PDPSRSCRVNPRTRRPEMLLRPΞSCPARQAPVCGDDGVTYENDCVMGRSGAARGLLLQKV NOVδOg SGAIAAGATARATTASRLPSSAVTPRAPHPSHTSQPVAKTTAAPTTRRPPTTAPSRVPGR NOVδOh PDPSRSCRVNPRTRRPEMLLRPESCPARQAPVCGDDGVTYENDCVMGRSGAARGLLLQKV NOVδOi IVTD GRS
NOVδOa RSGQCQGRDQCPEPCRFNAVCLSRRGRPRCSCDRVTCDGAYRPVCAQDGRTYDSDCWRQQ NOVδOb NOVδOc GCTPCSCD PQGAVRDDCEQ NOVδOd GCTPCSCD PQGAVRDDCEQ NOVδOe EAPVTGS- -SPLGATQLDTDG NOVδOf RSGQCQGRDQCPEPCRFNAVCLSRRGRPRCSCDRVTCDGAYRPVCAQDGRTYDSDCWRQQ NOVδOg RPPASCVPREAAYVCLCPGGFSGPHCEKGLVEKSAGDVDTLAFDGRTFVΞYLNAVTESEK NOVδOh RSGQCQGRDQCPEPCRFNAVCLSRRGRPRCSCDRVTCDGAYRPVCAQDGRTYDSDCWRQQ NOVδOi GCTPCSCD PQGAVRDDCEQ
NOVδOa AECRQQRAIPSKHQGPCDQAPSPCLGVQCAFGATCAVKNGQAACECLQACSSLYDPVCGS NOVδOb NOVδOc MTGLCSCKPG VAG- NOVδOd MTGLCSCKPG VAG- NOVδOe ALWLGGLPELPVG NOVδOf AECRQQRAIPSKHQGPCDQAPSPCLGVQCAFGATCAVKNGQAACECLQACSSLYDPVCGS NOVδOg ALQSNHFELSLRTEATQGLVLWSGKATERADYVALAIVDGHLQLSYNLGSQPWLRSTVP NOVδOh AECRQQRAIPSKHQGPCDQAPSPCLGVQCAFGATCAVKNGQAACECLQACSSLYDPVCGS NOVδOi MTGLCSCKPG VAG-
NOVδOa DGVTYGSACELEATACTLGREIQVARKGPCDRCGQCRFGALCEAETGRCVCPSECVALAQ
NOVδOb
NOV60C PKCGQC
NOVδOd PKCGQC
NOVδOe
NOV60f DGVTYGSACELEATACTLGREIQVARKGPCDRCGQCRF
NOVδOg VNTNRWLRWAHREQREGSLQVGNEAPVTGSSPLGATQLDTDGALWLGGLPELPVGPALP
NOVδOh DGVTYGSACELEATACTLGREIQVARKGPCDRCGQCRFGALCEAETGRCVCPSECVALAQ
NOVδOi PKCGQC
NOVδOa PVCGSDGHTYPSECMLHVHACTHQISLHVASAGPCETCGDAVCAFGAVCSAGQCVCPRCE
NOVδOb
NOVδOc
NOVδOd
NOVδOe
NOVδOf
NOVδOg KAYGTGFVGCLRDVWGRHPLHLLEDAVTKPELRPCPTP
NOVδOh PVCGSDGHTYPSECMLHVHACTHQISLHVASAGPCETCGDAVCAFGAVCSAGQCVCPRCE NOVδOi
NOVδOa HPPPGPVCGSDGVTYGSACELREAACLQQTQIEEARAGPCEQAECGSGGSGSGEDGDCEQ
NOVδOb
NOVδOc
NOVδOd
NOVδOe
NOVδOf
NOVδOg
NOVδOh HPPPGPVCGSDGVTYGSACELREAACLQQTQIEEARAGPCEQAECGSGGSGSGEDGDCEQ NOVδOi NOVδOa ELCRQRGGIWDEDSEDGPCVCDFSCQSVPGSPVCGSDGVTYSTECELKKARCESQRGLYV
NOVδOb
NOVδOc
NOVδOd
NOVδOe
NOVδOf
NOVδOg
NOVδOh ELCRQRGGIWDEDSEDGPCVCDFSCQSVPGSPVCGSDGVTYSTECELKKARCESQRGLYV
NOVδOi
NOVδ0a AAQGACRGPAFAPLPPVAPLHCAQTPYGCCQDNITAARGVGLAGCPSACQCNPHGSYGGT
NOVδOb
NOVδOc
NOVδOd
NOVδOe
NOVδOf
NOVδOg
NOVδOh AAQGACRGPAFAPLPPVAPLHCAQTPYGCCQDNITAARGVGLAGCPSACQCNPHGSYGGT
NOVδOi
NOVδOa CDPATGQCSCRPGVGGLRCDRCEPGFWNFRGIVTDGRSGCTPCSCDPQGAVRDDCEQMTG
NOVδOb
NOVδOc
NOVδOd
NOVδOe
NOVδOf
NOVδOg
NOVδOh CDPATGQCSCRPGVGGLRCDRCEPGFWNFRGIVTDGRSGCTPCSCDPQGAVRDDCEQMTG
NOVδOi
NOVδ0a LCSCKPGVAGPKCGQCPDGRALGPAGCEADASAPATCAEMRCEFGARCVEESGSAHCVCP
NOVδOb
NOVδOc
NOVδOd
NOVδOe
NOVδOf
NOVδOg
NOVδOh LCSCKPGVAGPKCGQCPDGRALGPAGCEADASAPATCAEMRCEFGARCVEESGSAHCVCP
NOVδOi
NOVδ0a MLTCPE-ANATKVCGSDGVTYGNECQLKTIACRQGLQISIQSLGPCQEAVAPSTHPTSASV
NOVδOb
NOVδOc
NOVδOd
NOVδOe
NOVδOf
NOVδOg
NOVδOh MLTCPEANATKVCGSDGVTYGNECQLKTIACRQGLQISIQSLGPCQEAVAPSTHPTSASV
NOVδOi
NOVδOa TVTTPGLLLSQALPAPPGALPLAPSSTAHSQTTPPPSSRPRTTASVPRTTVWPVLTVPPT
NOVδOb
NOVδOc
NOVδOd
NOVδOe
NOVδOf
NOVδOg
NOVδOh TVTTPGLLLSQ-ALPAPPGALPLAPSSTAHSQTTPPPSSRPRTTASVPRTTVWPVLTVPPT
NOVδOi NOVδOa APSPAPSLVASAFGESGSTDGSSDEELSGDQEASGGGSGGLEPLEGSSVATPGPPVERAS
NOVδOb
NOVδOc
NOVδOd
NOVδOe
NOVδOf
NOVδOg
NOVδOh APSPAPSLVASAFGESGSTDGSSDEELSGDQEASGGGSGGLEPLEGSSVATPGPPVERAS
NOVδOi
NOVδOa CYNSALGCCSDGKTPSLDAEGSNCPATKVFQGVLELEGVEGQELFYTPEMADPKSELFGE
NOVδOb
NOV60C
NOVδOd
NOVδOe
NOVδOf
NOVδOg
NOVδOh CYNSALGCCSDGKTPSLDAEGSNCPATKVFQGVLELEGVEGQELFYTPEMADPKSELFGE
NOVδOi
NOVδ0a TARSIESTLDDLFRNSDVKKDFRSVRLRDLGPGKSVRAIVDVHFDPTTAFRAPDVARALL
NOVδOb
NOVδOc
NOVδOd
NOVδOe
NOVδOf
NOVδOg
NOVδOh TARSIESTLDDLFRNSDVKKDFRSVRLRDLGPGKSV-RAIVDVHFDPTTAFRAPDVARALL
NOVδOi
NOVδOa RQIQVSRRRSLGVRRPLQEHVRFMDFDWFPAFITGATSGAIAAGATARATTASRLPSSAV
NOVδOb
NOVδOc
NOVδOd
NOVδOe
NOVδOf
NOVδOg
NOVδOh RQIQVSRRRSLGVRRPLQEHVRFMDFDWFPAFITGATSGAIAAGATARATTASRLPSSAV NOVδOi
NOVδOa TPRAPHPSHTSQPVAKTTAAPTTRRPPTTAPSRVPGRRPPAPQQPPKPCDSQPCFHGGTC
NOVδOb
NOVδOc
NOVδOd
NOVδOe
NOVδOf
NOVδOg
NOVδOh TPRAPHPSHTSQPVAKTTAAPTTRRPPTTAPSRVPGRRPPAPQQPPKPCDSQPCFHGGTC
NOVδOi
NOVδOa QDWALGGGFTCSCPAGRGGAVCEKVLGAPVPAFEGRSFLAFPTLRAYHTLRLALEFRALE
NOVδOb
NOVδOc
NOVδOd
NOVδOe
NOVδOf
NOVδOg
NOVδOh QDWALGGGFTCSCPAGRGGAVCEKVLG-APVPAFEGRSFLAFPTLRAYHTLRLALEFRALE NOVδOi NOVδ0a PQGLLLYNGNARGKDFLALALLDGRVQLRFDTGSGPAVLTSAVPVEPGQWHRLELSRHWR
NOVδOb
NOVδOc
NOVδOd
NOVδOe
NOVδOf
NOVδOg
NOV6Oh PQGLLLYNGNARGKDFLALALLDGRVQLRFDTGSGPAVLTSAVPVEPGQWHRLELSRHWR
NOVδOi
NOVδOa RGTLSVDGETPVLGESPSGTDGLNLDTDLFVGGVPEDQAAVALERTFVGAGLRGCIRLLD
NOVδOb
NOVδOc
NOVδOd
NOVδOe
NOVδOf
NOVδOg
NOVδOh RGTLSVDGETPVLGESPSGTDGLNLDTDLFVGGVPEDQAAVALERTFVGAGLRGCIRLLD
NOVδOi
NOV60a VNNQRLELGIGPGAATRGSGVGECGDHPCLPNPCHGGAPCQNLEAGRFHCQCPPGRVGPT
NOVδOb
NOVδOc
NOVδOd
NOVδOe
NOVδOf
NOVδOg
NOVδOh VNNQRLELGIGPGAATRGSGVGECGDHPCLPNPCHGGAPCQNLEAGRFHCQCPPGRVGPT
NOVδOi
NOVδOa CADEKSPCQPNPCHGAAPCRVLPEGGAQCECPLGREGTFCQTASGQDGSGPFLADFNGFS
NOVδOb
NOVδOc
NOVδOd
NOVδOe
NOVδOf
NOVδOg
NOVδOh CADEKSPCQPNPCHGAAPCRVLPEGGAQCECPLGREGTFCQTASGQDGSGPFLADFNGFS NOVδOi -
NOVδ0a HLELRGLHTIARDLGEKMALEAVFLARGPSGLLLYNGQKTDGKGDFVSLALRDRRLEFRY
NOVδOb
NOVδOc
NOVδOd
NOVδOe
NOVδOf
NOVδOg
NOVδOh HLELRGLHTIARDLGEKMALEAVFLARGPSGLLLYNGQKTDGKGDFVSLALRDRRLEFRY
NOVδOi
NOV60a DLGKGAAVIRSREPVTLGAWTRVSLERNGRKGALRVGDGPRVLGESPKSRKVPHTVLNLK
NOVδOb
NOVδOc
NOVδOd
NOVδOe
NOVδOf
NOVδOg
NOVδOh DLGKGAAVIRSREPVTLGAWTRVSLERNGRKGALRVGDGPRVLGΞSPKSRKVPHTVLNLK
NOVδOi NOVδOa EPLYVGGAPDFSKLARAAAVSSGFDGAIQLVSLGGRQLLTPEHVLRQVDVTSFAGHPCTR
NOVδOb
NOVδOc
NOVδOd
NOVδOe
NOVδOf
NOVδOg
NOVδOh EPLYVGGAPDFSKLARAAAVSSGFDGAIQLVSLGGRQLLTPEHVLRQVDVTSFAGHPCTR
NOVδOi
NOVδOa ASGHPCLNGASCVPREAAYVCLCPGGFSGPHCEKGLVEKSAGDVDTLAFDGRTFVEYLNA
NOVδOb
NOVδOc
NOVδOd
NOVδOe
NOVδOf
NOVδOg
NOVδOh ASGHPCLNGASCVPREAAYVCLCPGGFSGPHCEKGLVEKSAGDVDTLAFDGRTFVEYLNA
NOVδOi
NOVδ0a VTESEKALQSNHFELSLRTEATQGLVLWSGKATERADYVALAIVDGHLQLSYNLGSQPW
NOVδOb
NOV60C
NOVδOd
NOVδOe
NOVδOf
NOVδOg
NOV6Oh VTESEKALQSNHFELSLRTEATQGLVLWSGKATERADYVALAIVDGHLQLSYNLGSQPVV
NOVδOi
NOVδOa LRSTVPVNTNRWLRWAHREQREGSLQVGNEAPVTGSSPLGATQLDTDGALWL-
NOVδOb
NOVδOc
NOVδOd
NOVδOe
NOVδOf -GALPVTGSSPLGATQLDTDGALWL-
NOVδOg
NOVδOh LRSTVPVNTNRWLRWAHREQREGSLQVGNEAPVTGSSPLGATQLDTDGALWLGECFGET NOVδOi
NOVδOa
NOVδOb
NOVδOc
NOVδOd
NOVδOe
NOVδOf
NOVδOg
NOVδOh REGCPRVSDIRGTDSTPQRPPLSQGACEPAGWALFSRCSPCSSQCCGAGRRVPRCGPPAG
NOVδOi
NOVδOa -GGLPELPVGPALPKAYGTGFVGCLRDVWGRHPLHLL
NOVδOb
NOVδOc PDGRALGPAGCVDG
NOVδOd PDGRALGPAGCEADASAPATCAEMR
NOVδOe PALPKAYGTGFVGCLRDVWGRHPLHLL
NOVδOf -GGLPELPVGPALPKAYGTGFVGCLRDVWGRHPLHLL
NOVδOg
NOVδOh HLLVGVPISITESQPGDSHCLCCRGLPELPVGPALPKAYGTGFVGCLRDVWGRHPLHLL
NOVδOi PDGRALGPAGCEADASAPATCAEMR NOVδOa EDAVTKPELRPCPTP
NOVδOb
NOVδOc
NOVδOd CEFGARCVEESGSAHCVCPMLTCPEANATKVCGSDGVTYGNECQLKTIACRQGLQISIQS
NOVδOe EDAVTKPELRPCPTP
NOVδ0f EDAVTKPELRPCPTP
NOVδOg
NOVδOh EDAVTKPELRPCPTP
NOVδ0i CEFGARCVEESGSAHCVCPMLTCPEANATKVCGSDGVTYGNECQLKTIACRRCHLRQGLQ
NOVδOa
NOVδOb
NOVδOc
NOVδOd LGPCQEAVAPSTHPTSASVTVTTPGLLLSQALPAPPGALPLAPSSTAHSQTTPPPSSRPR
NOVδOe
NOVδOf
NOVδOg
NOVδOh
NOVδOi ISIQSLGPCQEAVAPSTHPTSASVTVTTPGLLLSQALPAPPGALPLAPSSTAHSQTTPPP
NOVδOa
NOVδOb
NOV60C
NOVδOd TTASVPRTTVWPVLTVPPTAPSPAPSLVASAFGESGSTDGSSDEELSGDQEASGGGSGGL
NOVδOe
NOVδOf
NOVδOg
NOVδOh
NOVδOi SSRPRTTASVPRTTVWPVLTVPPTAPSPAPSLVASAFGESGSTDGSSDEELSGDQEASGG
NOVδOa
NOVδOb
NOVδOc
NOVδOd EPLEGSSVATPGPPVERASCYNPCHGAAPCRVLPEGGAQCECPLGREGTFCQTASGQDGS
NOVδOe
NOVδOf
NOVδOg
NOVδOh
NOVδOi GSGGPEPLEGSSVATPGPPVERASCYNPCHGAAPCRVLPEGGAQCECPLGREGTFCQTAS
NOVδOa
NOVδOb
NOVδOc
NOVδOd GPFLADFNGFSHLELRGLHTIARDLGEKMALEAVFLARGPSGLLLYNGQKTDGKGDFVSL
NOVδOe
NOVδOf
NOVδOg
NOVδOh
NOVδ0i GQDGSGPFLADFNGFSHLELRGLHTFARDLGEKMALEWFLARGPSGLLLYNGQKTDGKG
NOVδOa
NOVδOb
NOVδOc
NOVδOd ALRDRRLEFRYDLGKGAAVIRSREPVTLGAWTRVSLERNGRKGALRVGDGPRVLGESPKS
NOVδOe
NOVδOf
NOVδOg
NOVδOh
NOVδ0i DFVSLALRDRRLEFRYDLGKGAAVIRSREPVTLGAWTRVSLERNGRKGALRVGDGPRVLG NOVδOa
NOVδOb
NOVSOc
NOVδ0d RKVPHTVLNLKEPLYVGGAPDFSKLARAAAVSSGFDGAIQLVSLGGRQLLTPEHVLRQVD
NOV6Oe
NOVδOf
NOVδOg
NOVδOh
NOVδOi ESPVPHTVLNLKEPLYVGGAPDFSKLARAAAVSSGFDGAIQLVSLGGRQLLTPEHVLRQV
NOVδOa
NOVδOb
NOVδOc
NOVδOd VTSFAGHPCTRASGHPCLNGASCVPREAAYVCLCPGGFSGPHCEKGLVEKSAGDVDTLAF
NOVδOe
NOVδOf
NOVδOg NOVδOh NOVδOi DVTSFAGHPCTRASGHPCLNGASCVPRΞAAYVCLCPGGFSGPHCEKGLVEKSAGDVDTLA
NOVδOa
NOVδOb
NOVδOc
NOVδOd DGRTFVEYLNAVTESEKALQSNHFELSLRTEATQGLVLWSGKATERADYVALAIVDGHLQ
NOVδOe
NOVδOf
NOVδOg
NOVδOh
NOVδ0i FDGRTFVEYLNAVTESEKALQS-NHFELSLRTEATQGLVLWSGKATERADYVALAIVDGHL
NOVδOa
NOVδOb
NOVδOc
NOVδ0d LSYNLGSQPWLRSTVPVNTNRWLRWAHREQREGSLQVGNEAPVTGSSPLGATQLDTDG
NOVδOe
NOVδOf
NOVδOg
NOVδOh
NOVδOi QLSYNLGSQPWLRSTVPVNTNRWLRWAHREQREGSLQVGNEAPVTGSSPLGATQLDTD
NOVδOa
NOVδOb
NOVδOc
NOVδOd ALWLGGLPELPVGPALPKAYGTGFVGCLRDVWGRHPLHLLEDAVTKPELRPCPTP-
NOVδOe
NOVδOf
NOVδOg
NOVδOh
NOVδ0i GAL LGGLPELPVGPALPKAYGTGFVGCLRDVWGRHPLHLLEDAVTKPELRPCPTP
NOVδOa (SEQ ID NO 1174)
NOVδOb (SEQ ID NO 1176)
NOVδOc (SEQ ID NO 1178)
NOVδOd (SEQ ID NO 1180)
NOVδOe (SEQ ID NO 1182)
NOVδOf (SEQ ID NO 1184)
NOVδOg (SEQ ID NO 1186)
NOVδOh (SEQ ID NO 1188)
NOVδOi (SEQ ID NO 1190) Further analysis of the NOV60a protein yielded the following properties shown in Table 60C.
Table 60C. Protein Sequence Properties NOV60a
SignalP analysis: Cleavage site between residues 34 and 35
PSORT π analysis:
PSG: a new signal peptide prediction method
N-region: length 5; pos.chg 2; neg.chg 0 H-region: length 9; peak value 3.79 PSG score: -0.61
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): 0.49 possible cleavage site: between 33 and 34
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al's method for TM region allocation Init position for calculation: 1
Tentative number of TMS(s) for the threshold 0.5: 1 Number of TMS(s) for threshold 0.5: 1
INTEGRAL Likelihood = -4.35 Transmembrane 17 - 33 PERIPHERAL Likelihood = 0.53 (at 609) ALOM score: -4.35 (number of TMSs : 1)
MTOP: Prediction of membrane topology (Hartmann et al.) Center position for calculation: 24 Charge difference: -6.5 C(-2.0) - N( 4.5) N >= C: N-terminal side will be inside
>>> membrane topology: type 2 (cytoplasmic tail 1 to 17)
MITDISC: discrimination of mitochondrial targeting seq R content: 3 Hyd Moment (75): 2.17 Hyd Moment (95) : 10.07 G content: 6 D/E content: 1 S/T content: 1 Score: -4.90
Gavel: prediction of cleavage sites for mitochondrial preseq R-2 motif at 25 GRP|LL
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7: PRTRRPE (5) at 339 pat7: PKSRKVP (5) at 1755 bipartite : none content of basic residues: 9.5% NLS Score: 0.39
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals :
XXRR-like motif in the N-terminus: RHGR none
SKL: peroxisomal targeting signal in the C-terminus: none PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif : type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail : none
Dileucine motif in the tail: none checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: nuclear Reliability: 76.7
COIL: Lupas ' s algorithm to detect coiled-coil regions total: 0 residues
Final Results (k = 9/23]
34.8 % : mitochondrial
34.8 % : nuclear
13.0 % : cytoplasmic
4.3 %: extracellular, including cell wall
4.3 % : vacuolar
4.3 %: Golgi
4.3 %: peroxisomal
>> prediction for CG94946-01 is mit (k=23)
A search of the NOV60a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 60D.
In a BLAST search of public sequence databases, the NOV60a protein was found to have homology to the proteins shown in the BLASTP data in Table 60E.
PFam analysis predicts that the NOV60a protein contains the domains shown in the Table 60F.
Example 61.
The NOV61 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 61 A.
Table 61 A. NOV61 Sequence Analysis
NOV61a, CG96384-01 JSEQ ID NO: 1191 ~ f bp°
DNA Sequence |ORF Start; ATG at 1 |ORF Stop: TAA at 787
ATGCCTTGGGTATGCCGCCCCACTGGCTGGACAAAGCGGCGCGTGGATGTGCCTGTGGGGCCTTGCCC TGGGCATCGCTGCTGCTGCCAGCGCCCTTCACCCATGCTTCAGCATGGTGCCCATACGCACTTCCTGC AGGAGTCTGCTGGATACCTGCAGCTGGAGCACAGGAGAGATTTCAGCTCTTCTGGGAGTAGGAAGCTC TCCTTTGACACTCGTTCCTTAGTGTGCTTTCTGGAAGACCATGGGTTTGCTACTCAGCAAGCAGAAAT CATTGTGTCTGCATTGGTCCAGGTACTGGAGGCCAACGTGGACATCGTCTACAAAGATATGGCCACCA AGATGAAGCAGGAGATCGCTCTTCAGCAAATAATGTCTCAGACTGTGAATGTGAAAAACGATATGATT ACTTTGGAGAAGAGTGAATTTTCAGCCCTCAGAGCAGAACGTGAGAAAATAAAACTCAAACTACATCA GTTAAAACAAGTAATGGATGAAGTGATTAAAGTCCGAACAGATACTAAATTAGACTTCAACCTAGAAA AGAGCAGAGTAAAAGAATTGTATTCGTTGAATGAAAGGAAGCTGCTGGAATTGAGAACAGAAATAGTG ACATTGCATGCCCAGCAAGATTGGGCCGTCACCCAGAGAGATAGGAAGATAGAAACTGAGGATGCTGG CCCCAAAACCATGCTTGAGTCATACAAGCTTGATAATATTAAATATTTAGCAGGGTCTATATTTACGT GCCTAACAGTAGCTCTGGGATTTTATCACCTGTGGATCTAA
NOV61a, CG96384-01 SEQ ID NO: 1192 262 aa MW at 30251.7kD Protein Sequence
MPWCRPTGWTKRRVDVPVGPCPGHRCCCQRPSP LQHGAHTHFLQESAGYLQLEHRRDFSSSGSRKL S FDTRS VCF EDHGFATQQ-AE 11 VS ALVQVLEA TO
T EKSEFSAL-R-AEREKI LKIiHQLKQV- DEVIKVRTDT-K DFNLEKSRVKELYSLNERKLLELRTEIV T HAQQD AVTQRDRKIETEDAGPKTMLESYKLDNI -Y AGSIFTC TVALGFYHL I
NOV61b, 277580745 SEQ ID NO: 1193 808 bp DNA Sequence ORF Start: at 2 ORF Stop: end of sequence
CACCGGATCCACCATGCCTTGGGTATGCCGCCCCACTGGCTGGACAAAGCGGCGCGTGGATGTGCCTG TGGGGCCTTGCCCTGGGCATCGCTGCTGCTGCCAGCGCCCTTCACCCATGCTTCAGCATGGTGCCTAT ACTCACTTCCTGCAGGAGTCTGCTGGATACCTGCAGCTGGAGCACAGGAGAGATTTCAGCTCTTCTGG GAGTAGGAAGCTCTCCTTTGACACTCGTTCCTTAGTGTGCTTTCTGGAAGACCATGGGTTTGCTACTC AGCAAGCAGAAATCATTGTGTCTGCATTGGTCCAGGTACTGGAGGCCAACGTGGACATCGTCTACAAA GATATGGCCACCAAGATGAAGCAGGAGATCGCTCTTCAGCAAATAATGTCTCAGACTGTGAATGTGAA AAACGATATGATTACTTTGGAGAAGAGTGAATTTTCAGCCCTCAGAGCAGAACGTGAGAAAATAAAAC TCAAACTACATCAGTTAAAACAAGTAATGGATGAAGTGATTAAAGTCCGAACAGATACTAAATTAGAC TTCAACCTAGAAAAGAGCAGAGTAAAAGAATTGTATTCGTTGAATGAAAGGAAGCTGCTGGAATTGAG AACAGAAATAGTGACATTGCATGCCCAGCAAGATTGGGCCGTCACCCAGAGAGATAGGAAGATAGAAA CTGAGGATGCTGGCCCCAAAACCATGCTTGAGTCATACAAGCTTGATAATATTAAATATTTAGCAGGG TCTATATTTACGTGCCTAACAGTAGCTCTGGGATTTTATCACCTGTGGATCCTCGAGGGC
NOV61b, 277580745 SEQ ID NO: 1194 269 aa MW at 30923.4kD Protein Sequence TGSTMP VCRPTG T-KRRVDVPVGPCPGHRCCCQRPSP LQHGAYTHF QESAGY QLEHRRDFSSSG SRK SFDTRSLVCF EDHGFATQQAEIIVSALVQV EA VDIVYΪOJMATKMKQEIA QQIMSQTVNV --STOMITLEKSEFS-AL-R-AEREKIK KLHQLKQ^ TEIVTLHAQQD AVTQRDRKIETEDAGPKTMLESYKLDNIKYLAGSIFTCLTVALGFYHL ILEG
NOV61c, CG96384-02 SEQ ID NO: 1195 789 bp DNA Sequence ORF Start: ATG at 1 ORF Stop: TAA at 787
ATGCCTTGGGTATGCCGCCCCACTGGCTGGACAAAGCGGCGCGTGGATGTGCCTGTGGGGCCTTGCCC TGGGCATCGCTGCTGCTGCCAGCGCCCTTCACCCATGCTTCAGCATGGTGCCCATACGCACTTCCTGC AGGAGTCTGCTGGATACCTGCAGCTGGAGCACAGGAGAGATTTCAGCTCTTCTGGGAGTAGGAAGCTC TCCTTTGACACTCGTTCCTTAGTGTGCTTTCTGGAAGACCATGGGTTTGCTACTCAGCAAGCAGAAAT CATTGTGTCTGCATTGGTCCAGGTACTGGAGGCCAACGTGGACATCGTCTACAAAGATATGGCCACCA AGATGAAGCAGGAGATCGCTCTTCAGCAAATAATGTCTCAGACTGTGAATGTGAAAAACGATATGATT ACTTTGGAGAAGAGTGAATTTTCAGCCCTCAGAGCAGAACGTGAGAAAATAAAACTCAAACTACATCA GTTAAAACAAGTAATGGATGAAGTGATTAAAGTCCGAACAGATACTAAATTAGACTTCAACCTAGAAA AGAGCAGAGTAAAAGAATTGTATTCGTTGAATGAAAGGAAGCTGCTGGAATTGAGAACAGAAATAGTG ACATTGCATGCCCAGCAAGATTGGGCCGTCACCCAGAGAGATAGGAAGATAGAAACTGAGGATGCTGG CCCCAAAACCATGCTTGAGTCATACAAGCTTGATAATATTAAATATTTAGCAGGGTCTATATTTACGT GCCTAACAGTAGCTCTGGGATTTTATCACCTGTGGATCTAA
NOV61c, CG96384-02 SEQ ID NO: 1196 262 aa MW at 3025 L7fcD Protein Sequence
MP VCRPTGWTKRRVDVPVGPCPGHRCCCQRPSPMLQHGAHTHFLQESAGY QLEHRRDFSSSGSRK SFDTRS VCFLEDHGFATQQMIIVSA VQVLEA-I^
TLEKSEFSAL--- EREKI--πJ---OjHQLKQVMDEVI -VRTDTK-LDFNLEKSRVKΕL^ TLHAQQDWAVTQRDRKIETEDAGPKTM ESYK-LDNIKY AGSIFTCLTVALGFYH I
NOV61d, CG96384-03 SEQ ID NO: 1197 285 bp DNA Sequence ORF Start: at 31 ORF Stop: at 280
GGATCCACCATGCCTTGGGTATGCCGCCCCACTGGCTGGACAAAGCGGCGCGTGGATGTGCCTGTGGG
GCCTTGCCCTGGGCATCGCTGCTGCTGCCAGCGCCCTTCACCCATGCTTCAGCATGGTGCCTATACTC ACTTCCTGCAGGAGTCTGCTGGATACCTGCAGCTGGAGCACAGGAGAGATTTCAGCTCTTCTGGGAGT AGGAAGCTCTCCTTTGACACTCGTTCCTTAGTGTGCTTTCTGGAAGACCATGGGTTTGCTACTCAGCA AGCAGAACTCGAG
NOVόld, CG96384-03 SEQ ID NO: 1198 83 aa MW at 9410.5kD Protein Sequence
TG TKRRVDVPVGPCPGHRCCCQRPSP LQHGAYTHFLQESAGYLQLEHRRDFSSSGSRK SFDTRS VCFLEDHGFATQQAE
NOV61e, CG96384-04 SEQ ID NO: 1199 801 bp DNA Sequence ORF Start: at 31 JORF Stop: at 772
GGATCCACCATGCCTTGGGTATGCCGCCCCACTGGCTGGACAAAGCGGCGCGTGGATGTGCCTGTGGG
GCCTTGCCCTGGGCATCGCTGCTGCTGCCAGCGCCCTTCACCCATGCTTCAGCATGGTGCCTATACTC ACTTCCTGCAGGAGTCTGCTGGATACCTGCAGCTGGAGCACAGGAGAGATTTCAGCTCTTCTGGGAGT AGGAAGCTCTCCTTTGACACTCGTTCCTTAGTGTGCTTTCTGGAAGACCATGGGTTTGCTACTCAGCA AGCAGAAATCATTGTGTCTGCATTGGTCCAGGTACTGGAGGCCAACGTGGACATCGTCTACAAAGATA TGGCCACCAAGATGAAGCAGGAGATCGCTCTTCAGCAAATAATGTCTCAGACTGTGAATGTGAAAAAC GATATGATTACTTTGGAGAAGAGTGAATTTTCAGCCCTCAGAGCAGAACGTGAGAAAATAAAACTCAA ACTACATCAGTTAAAACAAGTAATGGATGAAGTGATTAAAGTCCGAACAGATACTAAATTAGACTTCA ACCTAGAAAAGAGCAGAGTAAAAGAATTGTATTCGTTGAATGAAAGGAAGCTGCTGGAATTGAGAACA GAAATAGTGACATTGCATGCCCAGCAAGATTGGGCCGTCACCCAGAGAGATAGGAAGATAGAAACTGA GGATGCTGGCCCCAAAACCATGCTTGAGTCATACAAGCTTGATAATATTAAATATTTAGCAGGGTCTA TATTTACGTGCCTAACAGTAGCTCTGGGATTTTATCACCTGTGGATCCTCGAG
NOV61e, CG96384-04 SEQ ID NO: 1200 247 aa MW at 28377.4kD Protein Sequence
TG T RRVDVPVGPCPGHRCCCQRPSPMLQHGAYTHFLQESAGY QLEHRRDFSSSGSRKLSFDTRSL
VCF EDHGFATQQAEIIVSALVQV EANVDIVY-l-αD-^^
SAL-R-AEREKI--aKLHQL QVMDEVIKVRTDTKLDFN EKSRVIffiLYSLNERK- LELRTEIV LHAQQD AVTQRDRKIETEDAGPKT LESYKLDNIKYLAGSIFTC TVA
A ClustalW comparison of the above protein sequences yields the following sequence alignment shown in Table 6 IB.
Table 61B. Comparison of the NOV61 protein sequences.
NOV61a MP VCRPTG TKRRVDVPVGPCPGHRCCCQRPSPMLQHGAHTHFLQESAGY QLEH NOV6lb TGSTMPWVCRPTG TKRRVDVPVGPCPGHRCCCQRPSPM QHGAYTHFLQESAGYLQ EH NOVδlC MP VCRPTG TKRRVDVPVGPCPGHRCCCQRPSPM QHGAHTHF QESAGYLQLEH NOVδId TGWTKRRVDVPVGPCPGHRCCCQRPSPMLQHGAYTHFLQESAGY QLEH NOVδle TG TKRRVDVPVGPCPGHRCCCQRPSPMLQHGAYTHFLQESAGY QLEH
NOV61a ---lRDFSSSGSR--aSFDTRSLVCFLEDHGFATQQ.AEIIVSA VQV EAN^ NOV61b RRDFSSSGSR--aSFDTRSLVCF EDHGFATQQAEIIVSA VQVLEANVDIVY---sT)iy-AT-KMK NOVδlC RRDFSSSGSRK SFDTRS VCFLEDHGFATQQAEIIVSALVQVLEANVDIVYKDMAT K
Noveid RRDFSSSGSRKLSFDTRS VCF EDHGFATQQAE
NOVδle RRDFSSSGSR---s^SFDTRSLVCFLEDHGFATQQAEIIVSALVQVLEANVDIVYKD ATKMK NOV6la QEIALQQIMSQTVNVKJ3ro ITLEKSEFS.ALR-AEREKI--^--^^
Noveib QEIALQQIMSQTVNVK-NDMIT EKSEFSAI-jRAEREKIKL---^HQ KQVMDEVI-KVRTDTKL
NOV61C QEIA QQIMSQTVNV-raroMITLEKSEFSALRAEREKI --LKLHQLKQV^ NOVδId NOVδle QEIA QQIMSQTVlWKiroMITLEKSEFS-ALR-AEREKIK-
NOVδla DFNLEKSRV---SΕLYSLNERKL ELRTEIVTLHAQQD AVTQRDRKIETEDAGPKT LESYK NOV6lb DFN EKSRVKE YS NERK ELRTEIVT HAQQDWAVTQRDRKIETEDAGPKT ESYK NOVδlC DFNLEKSRVKELYS NERKL E RTEIVTLHAQQDWAVTQRDRKIETEDAGPKTMLESYK NOV6Id NOVδle DFNLE SRVKE YSLNERKLLELRTEIVTLHAQQD AVTQRDRKIETEDAGPKTM ESYK
NOV6la LDNIKYLAGSIFTC TVALGFYHLWI NOV61b LDNIKYLAGSIFTCLTVALGFYH ILEG NOVδlC LDNI Y AGSIFTCLTVALGFYHLWI NOVδld NOVδle LDNIKY AGSIFTC TVA-
NOVδla (SEQ ID NO 1192) NOV61b (SEQ ID NO 1194) NOVδlC (SEQ ID NO 1196) NOVδld (SEQ ID NO 1198) NOVδle (SEQ ID NO 1200)
Further analysis of the NOV6 la protein yielded the following properties shown in Table 61C.
Table 61 C. Protein Sequence Properties NOV61a
SignalP analysis: No Known Signal Sequence Predicted
PSORT π analysis:
PSG: a new signal peptide prediction method
N-region: length 6; pos.chg 1; neg.chg 0
H-region: length 5; peak value -14.81 PSG score: -19.21
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): -11.24 possible cleavage site: between 29 and 30
>>> Seems to have no N-terminal signal peptide
ALOM: Klein et al ' s method for TM region allocation Init position for calculation: 1
Tentative number of TMS(s) for the threshold 0.5: 2 Number of TMS(s) for threshold 0.5: 1
INTEGRAL Likelihood = -2.13 Transmembrane 91 - 107 PERIPHERAL Likelihood = 11.30 (at 68) ALOM score: -2.13 (number of TMSs .- 1)
MTOP: Prediction of membrane topology (Hartmann et al.) Center position for calculation: 98 Charge difference: 1.5 C(-1.0) - N(-2.5) C > N: C-terminal side will be inside
>>> membrane topology: type lb (cytoplasmic tail 91 to 262)
MITDISC: discrimination of mitochondrial targeting seq R content: 3 Hyd Moment (75): 7.07 Hyd Moment (95) : 9.21 G content: 1 D/E content : 1 S/T content : 2 Score: -1.63
Gavel : prediction of cleavage sites for mitochondrial preseq R-10 motif at 68 RRD FS
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7 : none bipartite : none content of basic residues : 14.1% NLS Score: -0.47
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals: none
SKL: peroxisomal targeting signal in the C-terminus: none
PTS2 : 2nd peroxisomal targeting signal: found KIKLKLHQL at 152
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL : transport motif from cell surface to Golgi : none
Tyrosines in the tail: too long tail Dileucine motif in the tail: found LL at 196 checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: cytoplasmic Reliability: 76.7
COIL: Lupas 's algorithm to detect coiled-coil regions 138 E 0.87
139 K 0.87
140 S 0.87
141 E 0.87
142 F 0.87
143 S 0.87
144 A 0.87
145 L 0.87
146 R 0.87
147 A 0.87
148 E 0.87
149 R 0.87
150 E 0.87
151 K 0.87
152 I 0.87
153 K 0.87
154 L 0.87
155 K 0.87
156 L 0.87
157 H 0.87
158 Q 0.87
159 L 0.87
160 K 0.87
161 Q 0.87
162 V 0.87
163 M 0.87
164 D 0.87
165 E 0.87
166 V 0.86
167 I 0.79
168 K 0.79
169 V 0.59
170 R 0.59
171 T 0.59
172 D 0.59 total: 35 residues
Final Results (k = 9/23)
34.8 %: nuclear
21.7 %: mitochondrial
21.7 %: cytoplasmic
8.7 %: vesicles of secretory system 4-3 % : vacuolar
4.3 %: peroxisomal
4.3 % : endoplasmic reticulum
>> prediction for CG96384-01 is nuc (k=23)
A search of the NOV61a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 6 ID.
In a BLAST search of public sequence databases, the NOV61a protein was found to have homology to the proteins shown in the BLASTP data in Table 6 IE.
PFam analysis predicts that the NOV6 la protein contains the domains shown in the Table 61F.
Table 61F. Domain Analysis of NOV61a
Identities/
Pfam Domain NO 61a Match Region Similarities Expect Value for the Matched Region
Example 62.
The NOV62 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 62A.
Table 62A. NOV62 Sequence Analysis
NOV62a, CG98011-01 SEQ ID NO: 1201 2631 bp DNA Sequence ORF Start: ATG at 1 ORF Stop: TAG at 2629
ATGATTTACATACAAGTAATTTTTCAAGTAATGACCATTGAAAAAATGTTTTCTTTTTATTTTTTAGA TTATTTCTCTTTATTCAGAAGCATACAGTTGTTTGCTGATTGCAAGAAGATGTTTCTGTGGCTGTTTC TGATTTTGTCAGCCCTGATTTCTTCGACAAATGCAGATTCTGACATATCGGTGGAAATTTGCAATGTG TGTTCCTGCGTGTCAGTTGAGAATGTGCTCTATGTCAACTGTGAGAAGGTTTCAGTCTACAGACCAAA TCAGCTGAAACCACCTTGGTCTAATTTTTATCACCTCAATTTCCAAAATAATTTTTTAAATATTCTGT ATCCAAATACATTCTTGAATTTTTCACATGCAGTCTCCCTGCATCTGGGGAATAATAAACTGCAGAAC ATTGAGGGAGGAGCCTTTCTTGGGCTCAGTGCATTAAAGCAGTTGCACTTGAACAACAATGAATTAAA GATTCTCCGAGCTGACACTTTCCTTGGCATAGAGAACTTGGAGTATCTCCAGGCTGACTACAATTTAA TCAAGTATATTGAACGAGGAGCCTTCAATAAGCTCCACAAACTGAAAGTTCTCATTCTTAATGACAAT CTGATTTCATTCCTTCCTGATAATATTTTCCGATTCGCATCTTTGACCCATCTGGATATACGAGGGAA CAGAATCCAGAAGCTCCCTTATATCGGGGTTCTGGAACACATTGGCCGTGTCGTTGAATTGCAACTGG AAGATAACCCTTGGAACTGTAGCTGTGATTTATTGCCCTTAAAAGCTTGGCTGGAGAACATGCCATAT AACATTTACATAGGAGAAGCTATCTGTGAAACTCCCAGTGACTTATATGGAAGGCTTTTAAAAGAAAC CAACAAACAAGAGCTATGTCCCATGGGCACCGGCAGTGATTTTGACGTGCGCATCCTGCCTCCATCTC AGCTGGAAAATGGCTACACCACTCCCAATGGTCACACTACCCAAACATCTTTACACAGATTAGTAACT AAACCACCAAAAACAACAAATCCTTCCAAGATCTCTGGAATCGTTGCAGGCAAAGCCCTCTCCAACCG CAATCTCAGTCAGATTGTGTCTTACCAAACAAGGGTGCCTCCTCTAACACCTTGCCCGGCACCTTGCT TCTGCAAAACACACCCTTCAGATTTGGGACTAAGTGTGAACTGCCAAGAGAAAAATATACAGTCTATG TCTGAACTGATACCGAAACCTTTAAATGCGAAGAAGCTGCACGTCAATGGCAATAGCATCAAGGATGT GGACGTATCAGACTTCACTGACTTTGAAGGACTGGATTTGCTTCATCTAGGCAGCAATCAAATTACAG TGATTAAGGGAGACGTATTTCACAATCTCACTAATTTACGCAGGCTATATCTCAATGGCAATCAAATT GAGAGACTCTATCCTGAAATATTTTCAGGTCTTCATAACCTGCAGTATCTGTATTTGGAATACAATTT GATTAAGGAAATCTCAGCAGGCACCTTTGACTCCATGCCAAATTTGCAGTTACTGTACTTAAACAATA ATCTCCTAAAGAGCCTGCCTGTTTACATCTTTTCCGGAGCACCCTTAGCTAGACTGAACCTGAGGAAC AACAAATTCATGTACCTGCCTGTCAGTGGGGTCCTTGATCAGTTGCAATCTCTTACACAGATTGACTT GGAGGGCAACCCATGGGACTGTACTTGTGACTTGGTGGCATTAAAGCTGTGGGTGGAGAAGTTGAGCG ACGGGATTGTTGTGAAAGAACTGAAATGTGAGACGCCTGTTCAGTTTGCCAACATTGAACTGAAGTCC CTCAAAAATGAAATCTTATGTCCCAAACTTTTAAATAAGCCGTCTGCACCATTCACAAGCCCTGCACC TGCCATTACATTCACCACTCCTTTGGGTCCCATTCGAAGTCCTCCTGGTGGGCCAGTGCCTCTGTCTA TTTTAATCTTAAGTATCTTAGTGGTCCTCATTTTAACGGTGTTTGTTGCTTTTTGCCTTCTTGTTTTT GTCCTGCGACGCAACAAGAAACCCACAGTGAAGCACGAAGGCCTGGGGAATCCTGACTGTGGCTCCAT GCAGCTGCAGCTAAGGAAGCATGACCACAAAACCAATAAAAAAGATGGACTGAGCACAGAAGCTTTCA TTCCACAAACTATAGAACAGATGAGCAAGAGCCACACTTGTGGCTTGAAAGAGTCAGAAACTGGGTTC ATGTTTTCAGATCCTCCAGGACAGAAAGTTGTTATGAGAAATGTGGCCGACAAGGAGAAAGATTTATT ACATGTAGATACCAGGAAGAGACTGAGCACAATTGATGAGCTGGATGAATTATTCCCTAGCAGGGATT CCAATGTGTTTATTCAGAATTTTCTTGAAAGCAAAAAGGAGTATAATAGCATAGGTGTCAGTGGCTTT GAGATCCGCTATCCAGAAAAACAACCAGACAAAAAAAGTAAGAAGTCACTGATAGGTGGCAACCACAG TAAAATTGTTGTGGAACAAAGGAAGAGTGAGTATTTTGAACTGAAGGCGAAACTGCAGAGTTCCCCTG ACTACCTACAGGTCCTTGAGGAGCAAACAGCTTTGAACAAGATCTAG
NOV62a, CG98011-01 SEQ ID NO: 1202 876 aa MW at 99167.6kD Protein Sequence
MIYIQVIFQVMTIEKMFSFYFLDYFS FRSIQLFADCKKMFL LFLILSA ISSTNADSDISVEICNV
CSCVSVEWLYWCEKVSVYRPNQLKPPWSNFYH NFQrø^
IEGGAF GLS-ALKQLHLNrøELKILRADTF GIEN EY QMTO ISFLPDNIFRFASLTH DIRGNRIQK PYIGV EHIGRWELQ EDNP NCSCDL P KA LENMPY
NIYIGEAICETPSD YGRLLKETNKQE CP GTGSDFDVRI PPSQ ENGYTTPNGHTTQTS HRLVT
KPPKTTNPSKISGIVAG---O -JSNRNLSQIVSYQTRVPP TPCPAPCFCKTHPSDLG SVNCQEKNIQSM
SE IPKPLNAKIOJHVNGNSIKDVDVSDFTDFEGLD LHLGSNQITVIKGDVFHNLTN RR YLNGNQI
ER YPEIFSGLHNLQYLY EY LIKEISAGTFDSMPNLQ LY lrøNL KSLPVYIFSGAP AR NLR
NKFMYLPVSGV DQLQSLTQIDLEGNP DCTCDLVALK VE SDGIVV ELKCETPVQFANIE KS KNEILCPK NKPSAPFTSPAPAITFTTP GPIRSPPGGPVPLSI ILSILW I TVFVAFCL VF
VLRRNKKPTVKHEGLGNPDCGSMQLQ RKHDHKTNKKDGLSTEAFIPQTIEQMSKSHTCG KESETGF
MFSDPPGQK-VVM-Rl-WADKE-l- LLHVDTR-K-RLSTIDELDELFPS-RDS-^
EIRYPEKQPDKKSKKSLIGG HSKIWEQRKSEYFELKAKLQSSPDY QV EEQTALNKI
NOV62b, 192586956 SEQ ID NO: 1203 1800 bp
DNA Sequence 0RF Start: at 1 ORF Stop: end of sequence
GGATCCGATTCTGACATATCGGTGGAAATTTGCAATGTGTGTTCCTGCGTGTCAGTTGAGAATGTGCT CTATGTCAACTGTGAGAAGGTTTCAGTCTACAGACCAAATCAGCTGAAACCACCTTGGTCTAATTTTT ATCACCTCAATTTCCAAAATAATTTTTTAAATATTCTGTATCCAAATACATTCTTGAATTTTTCACAT GCAGTCTCCCTGCATCTGGGGAATAATAAACTGCAGAACATTGAGGGAGGAGCCTTTCTTGGGCTCAG TACATTAAAGCAGTTGCACTTGAACAACAATGAATTAAAGATTCTCCGAGCTGACACTTTCCTTGGCA TAGAGAACTTGGAGTATCTCCAGGCTGACTACAATTTAATCAAGTATATTGAACGAGGAGCCTTCAAT AAGCTCCACAAACTGAAAGTTCTCATTCTTAATGACAATCTGATTTCATTCCTTCCTGATAATATTTT CCGATTCGCATCTTTGACCCATCTGGATATACGAGGGAACAGAATCCAGAAGCTCCCTTATATCGGGG TTCTGGAACACATTGGTCGTGTCGTTGAATTGCAACTGGAAGATAACCCTTGGAACTGTAGCTGTGAT TTATTGCCCTTAAAAGCTTGGCTGGAGAACATGCCATATAACATTTACATAGGAGAAGCTATCTGTGA AACTCCCAGTGACTTATATGGAAGGCTTTTAAAAGAAACCAACAAACAAGAGCTATGTCCCATGGGCA CCGGCAGTGATTTTGACGTGCGCATCCTGCCTCCATCTCAGCTGGAAAATGGCTACACCACTCCCAAT GGTCACACTACCCAAACATCTTTACACAGATTAGTAACTAAACCACCAAAAACAACAAATCCTTCCAA GATCTCTGGAATCGTTGCAGGTAAAGCCCTCTCCAACCGCAATCTCAGTCAGATTGTGTCTTACCAAA CAAGGGTGCCTCCTCTAACACCTTGCCCGGCACCTTGCTTCTGCAAAACACACCCTTCAGATTTGGGA CTAAGTGTGAACTGCCAAGAGAAAAATATACAGTCTATGTCTGAACTGATACCGAAACCTTTAAATGC GAAGAAGCTGCACGTCAATGGCAATAGCATCAAGGATGTGGACGTATCAGACTTCACTGACTTTGAAG GACTGGATTTGCTTCATTTAGGCAGCAATCAAATTACAGTGATTAAGGGAGACGTATTTCACAATCTC ACTAATTTACGCAGGCTATATCTCAATGGCAATCAAATTGAGAGACTCTATCCTGAAATATTTTCAGG TCTTCATAACCTGCAGTATCTGTATTTGGAATACAATTTGATTAAGGAAATCTCAGCAGGCACCTTTG ACTCCATGCCAAATTTGCAGTTACTGTACTTAAGCAATAATCTCCTAAAGAGCCTGCCTGTTTACATC TTTTCCGGAGCACCCTTAGCTAGACTGAACCTGAGGAACAACAAATTCATGTACCTGCCTGTCAGTGG GGTCCTTGATCAGTTGCAATCTCTTACACAGATTGACTTGGAGGGCAGCCCATGGGACTATACTTGTG ACTTGGTGGCATTAAAGCTGTGGGTGGAGAAGTTGAGCGACGGGATTGTTGTGAAAGAACTGAAATGT GAGACGCCTGTTCAGTTTACCAACATTGAACTGAAGTCCCTCAAAAATGAAATCTTATGTCCCAAACT TTTAAATAAGCCGTCTGCACCATTCACAAGCCCTGCACCTGCCATTACATTCACCACTCCTTTGGGTC CCATTCGAAGTCCTCCTGGTGGGCCACTCGAG GTGGAAATTTGCAATGTGTGTTCCTGCGTGTCAGTTGAGAATGTGCTCTATGTCAACTGTGAGAAGGT TTCAGTCTACAGACCAAATCAGCTGAAACCACCTTGGTCTAATTTTTATCACCTCAATTTCCAAAATA ATTTTTTAAATATTCTGTATCCAAATACATTCTTGAATTTTTCACATGCAGTCTCCCTGCATCTGGGG AATAATAAACTGCAGAACATTGAGGGAGGAGCCTTTCTTGGGCTCAGTGCATTAAAGCAGTTGCACTT GAACAACAATGAATTAAAGATTCTCCGAGCTGACACTTTCCTTGGCATAGAGAACTTGGAGTATCTCC AGGCTGACTACAATTTAATCAAGTATATTGAACGAGGAGCCTTCAATAAGCTCCACAAACTGAAAGTT CTCATTCTTAATGACAATCTGATTTCATTCCTTCCTGATAATATTTTCCGATTCGCATCTTTGACCCA TCTGGATATACGAGGGAACAGAATCCAGAAGCTCCCTTATATCGGGGTTCTGGAACACATTGGCCGTG TCGTTGAATTGCAACTGGAAGATAACCCTTGGAACTGTAGCTGTGATTTATTGCCCTTAAAAGCTTGG CTGGAGAACATGCCATATAACATTTACATAGGAGAAGCTATCTGTGAAACTCCCAGTGACTTATATGG AAGGCTTTTAAAAGAAACCAACAAACAAGAGCTATGTCCCATGGGCACCGGCAGTGATTTTGACGTGC GCATCCTGCCTCCATCTCAGCTGGAAAATGGCTACACCACTCCCAATGGTCACACTACCCAAACATCT TTACACAGATTAGTAACTAAACCACCAAAAACAACAAATCCTTCCAAGATCTCTGGAATCGTTGCAGG CAAAGCCCTCTCCAACCGCAATCTCAGTCAGATTGTGTCTTACCAAACAAGGGTGCCTCCTCTAACAC CTTGCCCGGCACCTTGCTTCTGCAAAACACACCCTTCAGATTTGGGACTAAGTGTGAACTGCCAAGAG AAAAATATACAGTCTATGTCTGAACTGATACCGAAACCTTTAAATGCGAAGAAGCTGCACGTCAATGG CAATAGCATCAAGGATGTGGACGTATCAGACTTCACTGACTTTGAAGGACTGGATTTGCTTCATTTAG GCAGCAATCAAATTACAGTGATTAAGGGAGACGTATTTCACAATCTCACTAATTTACGCAGGCTATAT CTCAATGGCAATCAAATTGAGAGACTCTATCCTGAAATATTTTCAGGTCTTCATAACCTGCAGTATCT GTATTTGGAATACAATTTGATTAAGGAAATCTCAGCAGGCACCTTTGACTCCATGCCAAATTTGCAGT TACTGTACTTAAACAATAATCTCCTAAAGAGCCTGCCTGTTTACATCTTTTCCGGAGCACCCTTAGCT AGACTGAACCTGAGGAACAACAAATTCATGTACCTGCCTGTCAGTGGGGTCCTTGATCAGTTGCAATC TCTTACACAGATTGACTTGGAGGGCAACCCATGGGACTGTACTTGTGACTTGGTGGCATTAAAGCTGT GGGTGGAGAAGTTGAGCGACGGGATTGTTGTGAAAGAACTGAAATGTGAGACGCCTGTTCAGTTTGCC AACATTGAACTGAAGTCCCTCAAAAATGAAATCTTATGTCCCAAACTTTTAAATAAGCCGTCTGCACC ATTCACAAGCCCTGCACCTGCCATTACATTCACCACTCCTTTGGGTCCCATTCGAAGTCCTCCTGGTG GGCCAGTGCCTCTGTCTATTTTAATCTTAAGTATCTTAGTGGTCCTCATTTTAACGGTGTTTGTTGCT TTTTGCCTTCTTGTTTTTGTCCTGCGACGCAACAAGAAACCCACAGTGAAGCACGAAGGCCTGGGGAA TCCTGACTGTGGCTCCATGCAGCTGCAGCTAAGGAAGCATGACCACAAAACCAATAAAAAAGATGGAC TGAGCACAGAAGCTTTCATTCCACAAACTATAGAACAGATGAGCAAGAGCCACACTTGTGGCTTGAAA GAGTCAGAAACTGGGTTCATGTTTTCAGATCCTCCAGGACAGAAAGTTGTTATGAGAAATGTGGCCGA CAAGGAGAAAGATTTATTACATGTAGATACCAGGAAGAGACTGAGCACAATTGATGAGCTGGATGAAT TATTCCCTAGCAGGGATTCCAATGTGTTTATTCAGAATTTTCTTGAAAGCAAAAAGGAGTATAATAGC ATAGGTGTCAGTGGCTTTGAGATCCGCTATCCAGAAAAACAACCAGACAAAAAAAGTAAGAAGTCACT GATAGGTGGCAACCACAGTAAAATTGTTGTGGAACAAkGGAAGAGTGAGTATTTTGAACTGAAGGCGA AACTGCAGAGTTCCCCTGACTACCTACAGGTCCTTGAGGAGCAAACAGCTTTGAACAAGATCTAGGTC AT
NOV62d, CG98011-02 JSEQ ID NO: 1208 876 aa MW at 99167.6kD Protein Sequence
MIYIQVIFQVMTIEK FSFYF DYFS FRSIQLFADCKKMFL LF ILSALISSTNADSDISVEICNV
CSCVSVE VLYV CEKVSVYRPNQ PPWSNFYHLNFQl-TOIFLNILYPNTFLNFS--- VSLHLG NKLQN
IEGGAFLGLSALKQ H NrøE KIL-RADTFLGIENLEY QAOT ISFLPDNIFRFASLTHLDIRGNRIQKLPYIGVLEHIGRWELQLEDNP NCSCDLLPLKAW ENMPY
NIYIGEAICETPSDLYGRL KET--NrKQELCPMGTGSDFDVRILPPSQrιENGYTTPNGHTTQTSLHRLVT
KPPKTT PSKISGIVAG---OU-JS ^LSQIVSYQTRVPPLTPCPAPCFCKTHPSDLGLSVNCQE-- iQSM
SE IP---sTLNAKKLHVNGNSI-roVDVSDFTDFEGLDL H GSNQITVIKGDVFHNLTN RRLY NGNQI
ERLYPEIFSG H LQYLYLEY LIKEISAGTFDSMPN QLLYLN-MNLLKSLPVYIFSGAPLARLNLRN
NKF Y PVSGV DQLQSLTQIDLEGNPWDCTCDLVALK VEK SDGIWKELKCETPVQFANIEL S KNEILCP L NKPSAPFTSPAPAITFTTPLGPIRSPPGGPVPLSILI SI WLILTVFVAFC LVF
V RRN--- PTVKHΞG GNPDCGSMQLQLRKHDHKTNKKDGLSTEAFIPQTIEQMSKSHTCGLKESETGF
MFSDPPGQKVVMRNVADKEKDLLHVDTRKRLSTIDELDELFPSRDSNVFIQNFLΞSKKEYNSIG
EIRYPEKQPDK SKKSLIGG-røSKIVVEQRKSEYFELKAKLQSSPDY QVLEEQTALNKI jNOV62e, CG98011-03 SEQ ID NO: 1209 2469 bp
DNA Sequence KDRF Start: at 7 ORF Stop: at 2464
GGATCCGATTCTGACATATCGGTGGAAATTTGCAATGTGTGTTCCTGCGTGTCAGTTGAGAATGTGCT CTATGTCAACTGTGAGAAGGTTTCAGTCTACAGGCCAAATCAGCTGAAACCACCTTGGTCTAATTTTT ATCACCTCAATTTCCAAAATAATTTTTTAAATATTCTGTATCCAAATACATTCTTGAATTTTTCACAT GCAGTCTCCCTGCATCTGGGGAATAATAAACTGCAGAACATTGAGGGAGGAGCCTTTCTTGGGCTCAG TGCATTAAAGCAGTTGCACTTGAACAACAATGAATTAAAGATTCTCCGAGCTGACACTTTCCTTGGCA TAGAGAACTTGGAGTATCTCCAGGCTGACTACAATTTAATCAAGTATATTGAACGAGGAGCCTTCAAT AAGCTCCACAAACTGAAAGTTCTCATTCTTAATGACAATCTGATTTCATTCCTTCCTGATAATATTTT CCGATTCGCATCTTTGACCCATCTGGATATACGAGGGAACAGAATCCAGAAGCTCCCTTATATCGGGG TTCTGGAACACATTGGCCGTGTCGTTGAATTGCAACTGGAAGATAACCCTTGGAACTGTAGCTGTGAT TTATTGCCCTTAAAAGCTTGGCTGGAGAACATGCCATATAACATTTACATAGGAGAAGCTATCTGTGA AACTCCCAGTGACCTATATGGAAGGCTTTTAAAAGAAACCAACAAACAAGAGCTATGTCCCATGGGCA CCGGCAGTGATTTTGACGTGCGCATCCTGCCTCCATCTCAGCTGGAAAATGGCTACACCACTCCCAAT GGTCACACTACCCAAACATCTTTACACAGATTAGTAACTAAACCACCAAAAACAACAAATCCTTCCAA GATCTCTGGAATCGTTGCAGGCAAAGCCCTCTCCAACCGCAATCTCAGTCAGATTGTGTCTTACCAAA CAAGGGTGCCTCCTCTAACACCTTGCCCGGCACCTTGCTTCTGCAAAACACACCCTTCAGATTTGGGA CTAAGTGTGAACTGCCAAGAGAAAAATATACAGTCTATGTCTGAACTGATACCGAAACCTTTAAATGC GAAGAAGCTGCACGTCAATGGCAATAGCATCAAGGATGTGGACGTATCAGACTTCACTGACTTTGAAG GACTGGATTTGCTTCATTTAGGCAGCAATCAAATTACAGTGATTAAGGGAGACGTATTTCACAATCTC ACTAATTTACGCAGGCTATATCTCAATGGCAATCAAATTGAGAGACTCTATCCTGAAATATTTTCAGG TCTTCATAACCTGCAGTATCCGTATTTGGAATACAATTTGATTAAGGAAATCTCAGCAGGCACCTTTG ACTCCATGCCAAATTTGCAGTTACTGTACTTAAACAATAATCTCCTAAAGAGCCTGCCTGTTTACATC TTTTCCGGAGCACCCTTAGCTAGACTGAACCTGAGGAACAACAAATTCATGTACCTGCCTGTCAGTGG GGTCCTTGATCAGTTGCAATCTCTTACACAGATTGACTTGGAGGGCAACCCATGGGACTGTACTTGTG ACTTGGTGGCATTAAAGCTGTGGGTGGAGAAGTTGAGCGACGGGATTGTTGTGAAAGAACTGAAATGT GAGACGCCTGTTCAGTTTGCCAACATTGAACTGAAGTCCCTCAAAAATGAAATCTTATGTCCCAAACT TTTAAATAAGCCGTCTGCACCATTCACAAGCCCTGCACCTGCCATTACATTCACCACTCCTTTGGGTC CCATTCGAAGTCCTCCTGGTGGGCCAGTGCCTCTGTCTATTTTAATCTTAAGTATCTTAGTGGTCCTC ATTTTAACGGTGTTTGTTGCTTTTTGCCTTCTTGTTTTTGTCCTGCGACGCAACAAGAAACCCACAGT GAAGCACGAAGGCCTGGGGAATCCTGACTGTGGCTCCATGCAGCTGCAGCTAAGGAAGCATGACCACA AAACCAATAAAAAAGATGGACTGAGCACAGAAGCTTTCATTCCACAAACTATAGAACAGATGAGCAAG AGCCACACTTGTGGCTTGAAAGAGTCAGAAACTGGGTTCATGTTTTCAGATCCTCCAGGACAGAAAGT TGTTATGAGAAATGTGGCCGACAAGGAGAAAGATTTATTACATGTAGATACCAGGAAGAGACTGAGCA CAATTGATGAGCTGGATGAATTATTCCCTAGCAGGGATTCCAATGTGTTTATTCAGAATTTTCTTGAA AGCAAAAAGGAGTATAATAGCATAGGTGTCAGTGGCTTTGAGATCCGCTATCCAGAAAAACAACCAGA CAAAAAAAGTAAGAAGTCACTGATAGGTGGCAACCACAGTAAAATTGTTGTGGAACAAAGGAAGAGTG AGTATTTTGAACTGAAGGCGAAACTGCAGAGTTCCCCTGACTACCTACAGGTCCTTGAGGAGCAAACA GCTTTGAACAAGATCCTCGAG
NOV62e, CG98011-03 SEQ ID NO: 1210 819 aa MW at 92291.4kD Protein Sequence
DSDISVEICNVCSCVSVENVLYVNCEKVSVYRPNQLKPPWSNFYHLNFQNNF NILYPNTF NFSHAV
S HLG-.-sICT-rajQNIEGGAFLG SALKQLHL^^
H---S KVLI NDNLISFLPDNIFRFAS TH DIRGNRIQKLPYIGV EHIGRVVE QLEDNPWNCSCD L
PLKA LENMPYNIYIGEAICETPSDLYGRL KETNKQELCPMGTGSDFDVRI PPSQLENGYTTPNGH
TTQTSLHRLVTKPPKTTNPSKISGIVAGKALS RNLSQIVSYQTRVPPLTPCPAPCFCKTHPSD G S
WCQEKNI QSMSE I PKPLNAKKiHVN^^
LRR Y NGNQIERLYPEIFSGLHNLQYPYLEYN IKEISAGTFDS PNLQ LYL1I--STNL KSLPVYIFS
GAP AR NL-RNNKFMYLPVSGVLDQLQSLTQIDLEGNPWDCTCD VAL -LWVEK SDGIVVKE KCET
PVQFAIsTIELKS -KNΞILCPKLLNKPSAPFTSPAPAITFTTPLGPIRSPPGGPVP SILILSI WLIL
TVFVAFCL VFVLRR KKPTVKHEGLGNPDCGSMQ QLRK----TOHKTNKKDGLSTEAFIPQTIEQMSKSH
TCGLKESETGFMFSDPPGQKVV -R--W-AD--^KDLLHVDTRKRLSTIDELDELFPSRr^
KEYNSIGVSGFEIRYPEKQPDKKS - SLIGGlrøSKIVVEQRKSEYFEL---^Us^QSSPDY QVLEΞQTA
NKI
NOV62f, CG98011-04 SEQ ID NO: 1211 1800 bp DNA Sequence ORF Start: at 7 ORF Stop: at 1795
GGATCCGATTCTGACATATCGGTGGAAATTTGCAATGTGTGTTCCTGCGTGTCAGTTGAGAATGTGCT
CTATGTCAACTGTGAGAAGGTTTCAGTCTACAGACCAAATCAGCTGAAACCACCTTGGTCTAATTTTT ATCACCTCAATTTCCAAAATAATTTTTTAAATATTCTGTATCCAAATACATTCTTGAATTTTTCACAT GCAGTCTCCCTGCATCTGGGGAATAATAAACTGCAGAACATTGAGGGAGGAGCCTTTCTTGGGCTCAG TGCATTAAAGCAGTTGCACTTGAACAACAATGAATTAAAGATTCTCCGAGCTGACACTTTCCCTGGCA TAGAGAACTTGGAGTATCTCCAGGCTGACTACAATTTAATCAAGTATATTGAACGAGGAGCCTTCAAT AAGCTCCACAAACTGAAAGTTCTCATTCTTAATGACAATCTGATTTCATTCCTTCCTGATAATATTTT CCGATTCGCATCTTTGACCCATCTGGATATACGAGGGAACAGAATCCAGAAGCTCCCTTATATCGGGG TTCTGGAACACATTGGCCGTGTCG^ TTATTGCCCTTAAAAGCTTGGCTGGAGAACATGCCATATAACATTTACATAGGAGAAGCTATCTGTGA AACTCCCAGTGACTTATATGGAAGGCTTTTAAAAGAAACCAACAAACAAGAGCTATGTCCCATGGGCA CCGGCAGTGATTTTGACGTGCGCATCCTGCCTCCATCTCAGCTGGAAAATGGCTACACCACTCCCAAT GGTCACACTACCCAAACATCTTTACACAGATTAGTAACTAAACCACCAAAAACAACAAATCCTTCCAA GATCTCTGGAATCGTTGCAGGCAAAGCCCTCTCCAACCGCAATCTCAGTCAGATTGTGTCTTACCAAA CAAGGGTGCCTCCTCTAACACCTTGCCCGGCACCTTGCTTCTGCAAAACACACCCTTCAGATTTGGGA CTAAGTGTGAACTGCCAAGAGAAAAATATACAGTCTATGTCTGAACTGATACCGAAACCTTTAAATGC GAAGAAGCTGCACGTCAATGGCAATAGCATCAAGGATGTGGACGTATCAGACTTCACTGACTTTGAAG GACTGGATTTGCTTCATTTAGGCAGCAATCAAATTACAGTGATTAAGGGAGACGTATTTCACAATCTC ACTAATTTACGCAGGCTATATCTCAATGGCAATCAAATTGAGAGACTCTATCCTGAAATATTTTCAGG TCTTCATAACCTGCAGTATCTGTATTTGGAATACAATTTGATTAAGGAAATCTCAGCAGGCACCTTTG ACTCCATGCCAAATTTGCAGTTACTGTACTTAAACAATAATCTCCTAAAGAGCCTGCCTGTTTACATC TTTTCCGGAGCACCCTTAGCTAGACTGAACCTGAGGAACAACAAATTCATGTACCTGCCTGTCAGTGG GGTCCTTGATCAGTTGCAATCTCTTACACAGATTGACTTGGAGGGCAACCCATGGGACTGTACTTGTG ACTTGGTGGCATTAAAGCTGTGGGTGGGGAAGTTGAGCGACGGGATTGTTGTGAAAGAACTGAAATGT GAGACGCCTGTTCAGTTTGCCAACATTGAACTGAAGTCCCTCAAAAATGAAATCTTATGTCCCAAACT TTTAAATAAGCCGTCTGCACCATTCACAAGCCCTGCACCTACCATTACATTCACCACTCCTTTGGGTC CCATTCGAAGTCCTCCTGGTGGGCCACTCGAG
NOV62f, CG98011-04 SEQ ID NO: 1212 596 aa MW at 66893.3kD Protein Sequence
DSDISVEICNVCSCVSVENVLYVNCEKVSVYRPNQLKPP SNFYHLNFQNNFLNI YPNTFLNFSHAV
SLHLGrøKLQNIEGGAFLGLSALKQLHLN-ISlΗELKIL-RrøTFPGIE-^^
H-Oils^π-αlLN-DNLISFLPDNIFRFASLTHLDIRGNRIQKLPYIGVLEHIGRVVELQLEDNPW CSCDL
PLKA LEN PYNIYIGEAICETPSDLYGR LKETNKQE CPMGTGSDFDVRILPPSQ ENGYTTPNGH
TTQTSLHRLVTKPPKTTNPSKISGIVAGKA SNR LSQIVSYQTRVPP TPCPAPCFCKTHPSDLG S
V CQEKNIQSMSELIPKPLNAK-KLHVNGNSIKDVDVSDFTDFEGLD HLGSNQITVIKGDVFHNLTN RRLYLNGNQIERLYPEIFSG HN QYLYLEYNLI--^ISAGTFDSMP--ffiQLLYL NN KS PVYIFS
GAPLARLNL-R KFMYLPVSGVIjDQLQSLTQID EGNPWDCTCD VA KLWVGKLSDGIVVKELKCET
PVQFANIE KSLKNEI CPK LNKPSAPFTSPAPTITFTTPLGPIRSPPGGP
A ClustalW comparison of the above protem sequences yields the following sequence alignment shown in Table 62B.
Table 62B. Comparison of the NOV62 protein sequences.
NOV62a MIYIQVIFQVMTIEKMFSFYFLDYFSLFRSIQLFADCKKMFL FLILSALISSTNADSD
NOV62b GSDSD
NOV62C GSDSD
NOV62d MIYIQVIFQVMTIE MFSFYFLDYFS FRSIQLFADC K FL FLILSALISSTNADSD
NOV62e DSD
NOV62f DSD
NOV62 a I S VE I CNVCSCVS VENVL YVNCEKVS VYRPNQLKPP SNFYH NFQ-N-NFLNI YPNTFLN
NOV62b ISVEIC1WCSCVSVENVLYV---.CEKVSVYRPNQLKPPWSNFYHLNFQNNFLNI YPNTFLN
NOV62C ISVEICNVCSCVSVENVLYVNCE---WSVYRPNQLKPP SNFYHLNFQNNF NILYPNTFLN
NOV62d I SVE I CNVCSCVS VENVL YVNCEKVS VYRPNQLKPPWSNFYHLNFQNNFLNILYPNTFLN
NOV62 e ISVEICNVCSCVSVENVLYVNCEKVSVYRPNQLKPPWSNFYHLNFQNNFLNILYPNTFLN
NOVδ 2 f I SVE I CNVCS CVS VENV YVNCEKVS VYRPNQLKPP SNFYHLNFQNNFLNILYPNTFLN
NOVδ 2 a FS-l- VSLHLG-NN--- iQNIEGG-AFLGLSALKQLHLNNNELKIL-RADTFLGIENLEYLQADYN
NOVδ 2b FSHAVSLHLGroT---OjQNIΞGG-AFLGLSTLKQLHLN--!røELKIL-RADTFLGIENLEYLQADYN
NOV62 c FS-l--iAVSLHLG---røKLQNIEGGAFLGLSALKQLHLNNNELKILRADTFPGIENLEYLQADYN
NOV62d FSHAVSLHLG-trø-.-sl-jQNIEGGAFLGLSALKQLHL-NNNELKILRADTFLGIENLEYLQADYN
NOV62e FSHAVSLHLG--rø---αJQNIEGG-AFLGLSALKQLHL-ISlN-[ffiLKILR-ADTFLG
NOV62 f FS-HAVSLHLGNN---^QNIEGG-?^LGLSALKQLHLNinrELKILRADTF
NOV62a LI--^IERGAFNKLHKLKVLILNDNLISFLPDNIFRFASLTHLDIRGNRIQKLPYIGVLEH NOV62b LIKYIERGAFNKLHKLKVLILNDNLISFLPDNIFRFASLTHLDIRGNRIQKLPYIGVLEH NOV62C LIKYIERGAFNKLHKLKVLILNDNLISFLPDNIFRFASLTHLDIRGNRIQKLPYIGVLEH
NOV62d LIKYIERGAFNKLHKLKVLILNDNLISFLPDNIFRFASLTHLDIRGNRIQKLPYIGVLEH
NOV62e LIKYIERG-AFN-iπjHKLKVLILNDNLISFLPDNIFRFASLTHLDIRGNRIQKLPYIGVLEH
NOV62f LIKYIERGAFN-ra-jH-KLKVLILNDNLISFLPDNIFRFASLTHLDIRGNRIQ-KLPYIGVLEH
NOV62a IGRVVELQLEDNPW-TCSCDLLPLKA LENMPYNIYIGEAICETPSDLYGRLLKETNKQEL
NOV62b IGRWELQLEDNP NCSCDLLPLKA LENMPYNIYIGEAICETPSDLYGRLLKETNKQEL
NOV62c IGRWELQLEDNP NCSCDLLPLKAWLENMPYNIY1GEAICETPSDLYGRLLKETNKQEL
NOV62d IGRWELQLEDNP NCSCDLLPLKA LEN PYNIYIGEAICETPSDLYGRLLKETNKQEL
NOV62e IGRWELQLEDNPWNCSCDLLPLKA LENMPYNIYIGEAICETPSDLYGRLLKETNKQEL
NOV62f IGRWELQLEDNP NCSCDLLPLKA LENMPYNIYIGEAICETPSDLYGRLLKETNKQΞL
NOV62a CPMGTGSDFDVRILPPSQLENGYTTPNGHTTQTSLHRLVTKPPKTTNPSKISGIVAGKAL
NOV62b CPMGTGSDFDVRILPPSQLENGYTTPNGHTTQTSLHRLVTKPPKTTNPSKISGIVAGKAL
NOV62C CP GTGSDFDVRILPPSQLENGYTTPNGHTTQTSLHRLVTKPPKTTNPSKISGIVAGKAL
NOV62d CPMGTGSDFDVRILPPSQLENGYTTPNGHTTQTSLHRLVTKPPKTTNPSKISGIVAGKAL
NOV62e CPMGTGSDFDVRILPPSQLΞNGYTTPNGHTTQTSLHRLVTKPPKTTNPSKISGIVAGKAL
NOV62f CP GTGSDFDVRILPPSQLENGYTTPNGHTTQTSLHRLVTKPPKTTNPSKISGIVAGKAL
NOV62a SNRNLSQIVSYQTRVPPLTPCPAPCFCKTHPSDLGLSVNCQEKNIQS SELIPKPLNAKK
NOV62b SNRNLSQIVSYQTRVPPLTPCPAPCFCKTHPSDLGLSVNCQΞKNIQSMSELIPKPLNAKK
NOV62C SNRNLSQIVSYQTRVPPLTPCPAPCFCKTHPSDLGLSVNCQEKNIQSMSELIPKPLNAKK
NOV62d SNRNLSQIVSYQTRVPPLTPCPAPCFCKTHPSDLGLSVNCQEKNIQSMSELIPKPLNAKK
NOV62e SNRNLSQIVSYQTRVPPLTPCPAPCFCKTHPSDLGLSVNCQEKNIQSMSELIPKPLNAKK
NOV62f SNRNLSQIVSYQTRVPPLTPCPAPCFCKTHPSDLGLSVNCQEKNIQSMSELIPKPLNAKK
NOV62a LHVNGNSIKDVDVSDFTDFEGLDLLHLGSNQITVIKGDVFHNLTNLRRLYLNGNQIERLY
NOV62b LHVNGNSIKDVDVSDFTDFEGLDLLHLGSNQITVIKGDVFHNLTNLRRLYLNGNQIERLY
NOV62C LHVNGNSIKDVDVSDFTDFEGLDLLHLGSNQITVIKGDVFHNLTNLRRLYLNGNQIERLY
NOV62d LHVNGNSIKDVDVSDFTDFEGLDLLHLGSNQITVIKGDVFHNLTNLRRLYLNGNQIERLY
NOVδ2e LHVNGNSIKDVDVSDFTDFEGLDLLHLGSNQITVIKGDVFHNLTNLRRLYLNGNQIERLY
NOV62f L -IGNSIKDVDVSDFTDFEGLDLLHLGSNQITVIKGDVFHNLTNLRRLYLNGNQIERLY
NOVδ2a PEIFSGLHNLQYLYLEYNLIKEISAGTFDSMPNLQLLYLNNNLLKSLPVYIFSGAPLARL
NOV62b PEIFSGLHNLQYLYLEYNLIKEISAGTFDSMPNLQLLYLSNNLLKSLPVYIFSGAPLARL
NOV62C PEIFSGLHNLQYLYLEYNLIKEISAGTFDSMPNLQLLYLNNNLLKSLPVYIFSGAPLARL
NOV62d PEIFSGLHNLQYLYLEYNLIKEISAGTFDSMPNLQLLYLNNNLLKSLPVYIFSGAPLARL
NOV62e PEIFSGLHNLQYPYLEYNLIK-EISAGTFDSMPNLQLLYLNNNLLKSLPVYIFSGAPLARL
NOV62f PEIFSGLHNLQYLYLEYNLIKEISAGTFDSMPNLQLLYLNNNLLKSLPVYIFSGAPLARL
NOV62a NL-RNKFMYLPVSGVLDQLQSLTQ-EDLEGNPWDCTCDLVALKL VEKLSDGIVVKELKCE
NOV62b NLR-lrøKFMYLPVSGVLDQLQSLTQIDLEGSP DYTCDLVALKL VEKLSDGIVVKELKCE
NOV62C NLRNNKFMYLPVSGVLDQLQSLTQIDLEGNP DCTCDLVALKL VGKLSDGIVVKELKCE
NOV62d NLRNNKFMYLPVSGVLDQLQSLTQIDLEGNPWDCTCDLVALKL VEKLSDGIVVKELKCE
NOV62e NLRNNKFMYLPVSGVLDQLQSLTQIDLEGNP DCTCDLVALKL VEKLSDGIVVKELKCE
NOV62f NLRl-INKF YLPVSGVLDQLQSLTQIDLEGNP DCTCDLVAL-l-αjWVGKLSDGIVVKELKCE
NOV62a TPVQFANIELKSLKNEILCPKLLNKPSAPFTSPAPAITFTTPLGPIRSPPGGPVPLSILI
NOV62b TPVQFTNIELKSLKNEILCPKLLNKPSAPFTSPAPAITFTTPLGPIRS-PPGGPLE
NOV62C TPVQFANIELKSLKNEILCPKLLNKPSAPFTSPAPTITFTTPLGPIRSPPGGPLE
NOV62d TPVQFANIELKSLKNEILCPKLLNKPSAPFTSPAPAITFTTPLGPIRSPPGGPVPLSILI
NOV62e TPVQFANIELKSLKNEILCPKLLNKPSAPFTSPAPAITFTTPLGPIRSPPGGPVPLSILI
NOV62f TPVQFANIELKSLKNEILCPKLLNKPSAPFTSPAPTITFTTPLGPIRSPPGGP
NOV62a LSILVVLILTVFVAFCLLVFVLRRNKKPTVTCHEGLGNPDCGS QLQLRKro^
NOV62b
NOV62C
NOV62d LSILVVLILTVFVAFCLLVFVLRRNKKPTVKHEGLGNPDCGS QLQLRKHDHKTNKKDGL
NOV62e LSILVVLILTVFVAFCLLVFVL-RRN-l-s^PTVKHEGLGNPDCGSMQLQLRK-fflDHKTNK-roGL
NOV62f NOV62a STEAFIPQTIEQ SKSHTCGL---sΕSETGF FSDPPGQKVVMRNVAD-KE--- 3
NOV62b
NOV62C
NOV62d STEAFIPQTIEQMSKSHTCGL -ESETGFMFSDPPGQKVVMRNVADKEKDLLHVDTRKRLS
NOV62e STEAFIPQTIEQ SKSHTCGLIsΕSETGFMFSDPPGQKVV -RNVAD---sΕKDLLHVDTRKRLS
NOV62f
NOV62a TIDELDELFPSRDSNVFIQNFLESKKEYNSIGVSGFEIRYPEKQPDKKSKKSLIGGNHSK
NOV62b
NOV62C
NOV62d TIDELDELFPSRDSNVFIQNFLESKKEYNSIGVSGFEIRYPEKQPDKKSKKSLIGGNHSK
NOV62e TIDELDELFPSRDSNVFIQNFLESKKEYNSIGVSGFEIRYPEKQPDKKSKKSLIGGNHSK
NOV62f
NOV62a IWEQRKSEYFELKAKLQSSPDYLQVLEEQTALNKI
NOV62b
NOV62C
NO Vδ 2 d I WEQRKSE FELKAKLQS S PDYLQVLEEQTALNKI
NOV62e IWEQRKSEYFELKAKLQSSPDYLQVLEEQTALNKI
NOV62f
NOVδ2a (SEQ ID NO 1202)
NOV62b (SEQ ID NO 1204)
NOV62C (SEQ ID NO 1206)
NOV62d (SEQ ID NO 1208)
NOV62e (SEQ ID NO 1210)
NOV62f (SEQ ID NO 1212)
Further analysis of the NOV62a protein yielded the following properties shown in Table 62C.
Table 62C. Protein Sequence Properties NOV62a
SignalP analysis: Cleavage site between residues 58 and 59
PSORT H analysis:
PSG: a new signal peptide prediction method
N-region: length 0; pos.chg 0; neg.chg 0 H-region: length 13; peak value 8.16 PSG score: 3.76
GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1) : 2.51 possible cleavage site: between 57 and 58
>>> Seems to have a cleavable signal peptide (1 to 57)
ALOM: Klein et al's method for TM region allocation Init position for calculation: 58
Tentative number of TMS(s) for the threshold 0.5: 1 Number of TMS(s) for threshold 0.5: 1
INTEGRAL Likelihood =-16.61 Transmembrane 663 - 679
PERIPHERAL Likelihood = 2.92 (at 578) ALOM score: -16.61 (number of TMSs: 1)
MTOP : Prediction of membrane topology (Hartmann et al . ) Center position for calculation: 28 Charge difference: 1.0 C( 2.0) - N( 1.0) C > N: C-terminal side will be inside
>>>Caution: Inconsistent mtop result with signal peptide
»> membrane topology: type la (cytoplasmic tail 680 to 876)
MITDISC: discrimination of mitochondrial targeting seq R content: 0 Hyd Moment (75): 4.59 Hyd Moment (95): 1.85 G content: 0 D/E content: 2 S/T content: 2 Score: -7.15
Gavel: prediction of cleavage sites for mitochondrial preseq cleavage site motif not found
NUCDISC: discrimination of nuclear localization signals pat4 : none pat7: PDKKSKK (4) at 825 bipartite: none content of basic residues: 10.4% NLS Score: -0.13
KDEL: ER retention motif in the C-terminus: none
ER Membrane Retention Signals:
KKXX-like motif in the C-terminus : ALNK
SKL: peroxisomal targeting signal in the C-terminus: NKI
PTS2 : 2nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: none
RNA-binding motif : none
Actinin-type actin-binding motif: type 1 : none type 2 : none
NMYR: N-myristoylation pattern : none
Prenylation motif : none memYQRL: transport motif from cell surface to Golgi: none
Tyrosines in the tail: too long tail
Dileucine motif in the tail : found LL at 770 checking 63 PROSITE DNA binding motifs: none checking 71 PROSITE ribosomal protein motifs: none checking 33 PROSITE prokaryotic DNA binding motifs: none
NNCN: Reinhardt's method for Cytoplasmic/Nuclear discrimination Prediction: cytoplasmic Reliability: 55.5 COIL : Lupas ' s algorithm to detect coiled-coil regions total : 0 residues
Final Results (k = 9/23 ) :
44.4 % : endoplasmic reticulum
22 .2 % : Golgi
11. 1 % : plasma membrane
11. 1 % : vesicles of secretory system
11. 1 % : extracellular, including cell wall
>> prediction for CG98011-01 is end (k=9)
A search of the NOV62a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 62D.
In a BLAST search of public sequence databases, the NOV62a protein was found to have homology to the proteins shown in the BLASTP data in Table 62E.
PFam analysis predicts that the NOV62a protein contains the domains shown in the Table 62F.
Example B: Sequencing Methodology and Identification of NOVX Clones
1. GeneCalling Technology: This is a proprietary method of performing differential gene expression profiling between two or more samples developed at CuraGen and described by Shimkets, et al., "Gene expression analysis by transcript profiling coupled to a gene database query" Nature Biotechnology 17:198-803 (1999). cDNA was derived from various human samples representing multiple tissue types, normal and diseased states, physiological states, and developmental states from different donors. Samples were obtained as whole tissue, primary cells or tissue cultured primary cells or cell lines. Cells and cell lines may have been treated with biological or chemical agents that regulate gene expression, for example, growth factors, chemokines or steroids. The cDNA thus derived was then digested with up to as many as 120 pairs of restriction enzymes and pairs of linker-adaptors specific for each pair of restriction enzymes were ligated to the appropriate end. The restriction digestion generates a mixture of unique cDNA gene fragments. Limited PCR amplification is performed with primers homologous to the linker adapter sequence where one primer is biotinylated and the other is fluorescently labeled. The doubly labeled material is isolated and the fluorescently labeled single strand is resolved by capillary gel electrophoresis. A computer algorithm compares the electropherograms from an experimental and control group for each of the restriction digestions. This and additional sequence-derived information is used to predict the identity of each differentially expressed gene fragment using a variety of genetic databases. The identity of the gene fragment is confirmed by additional, gene-specific competitive PCR or by isolation and sequencing of the gene fragment.
2. SeqCalling™ Technology: cDNA was derived from various human samples representing multiple tissue types, normal and diseased states, physiological states, and developmental states from different donors. Samples were obtained as whole tissue, primary cells or tissue cultured primary cells or cell lines. Cells and cell lines may have been treated with biological or chemical agents that regulate gene expression, for example, growth factors, chemokines or steroids. The cDNA thus derived was then sequenced using CuraGen's proprietary SeqCalling technology. Sequence traces were evaluated manually and edited for corrections if appropriate. cDNA sequences from all samples were assembled together, sometimes including public human sequences, using bioinformatic programs to produce a consensus sequence for each assembly. Each assembly is included in CuraGen Corporation's database. Sequences were included as components for assembly when the extent of identity with another component was at least 95% over 50 bp. Each assembly represents a gene or portion thereof and includes information on variants, such as splice forms single nucleotide polymoφhisms (SNPs), insertions, deletions and other sequence variations.
3. PathCalling™ Technology: The NOVX nucleic acid sequences are derived by laboratory screening of cDNA library by the two-hybrid approach. cDNA fragments covering either the full length of the DNA sequence, or part of the sequence, or both, are sequenced. In silico prediction was based on sequences available in CuraGen Corporation's proprietary sequence databases or in the public human sequence databases, and provided either the full length DNA sequence, or some portion thereof.
The laboratory screening was performed using the methods summarized below: cDNA libraries were derived from various human samples representing multiple tissue types, normal and diseased states, physiological states, and developmental states from different donors. Samples were obtained as whole tissue, primary cells or tissue cultured primary cells or cell lines. Cells and cell lines may have been treated with biological or chemical agents that regulate gene expression, for example, growth factors, chemokines or steroids. The cDNA thus derived was then directionally cloned into the appropriate two-hybrid vector (Gal4-activation domain (Gal4-AD) fusion). Such cDNA libraries as well as commercially available cDNA libraries from Clontech (Palo Alto, CA) were then transferred from E.coli into a CuraGen Corporation proprietary yeast strain (disclosed in U. S. Patents 6,057,101 and 6,083,693, incorporated herein by reference in their entireties). Gal4-binding domain (Gal4-BD) fusions of a CuraGen Corportion proprietary library of human sequences was used to screen multiple Gal4- AD fusion cDNA libraries resulting in the selection of yeast hybrid diploids in each of which the Gal4-AD fusion contains an individual cDNA. Each sample was amplified using the polymerase chain reaction (PCR) using non-specific primers at the cDNA insert boundaries. Such PCR product was sequenced; sequence traces were evaluated manually and edited for corrections if appropriate. cDNA sequences from all samples were assembled together, sometimes including public human sequences, using bioinformatic programs to produce a consensus sequence for each assembly. Each assembly is included in CuraGen Corporation's database. Sequences were included as components for assembly when the extent of identity with another component was at least 95% over 50 bp. Each assembly represents a gene or portion thereof and includes information on variants, such as splice forms single nucleotide polymorphisms (SNPs), insertions, deletions and other sequence variations.
Physical clone: the cDNA fragment derived by the screening procedure, covering the entire open reading frame is, as a recombinant DNA, cloned into pACT2 plasmid
(Clontech) used to make the cDNA library. The recombinant plasmid is inserted into the host and selected by the yeast hybrid diploid generated during the screening procedure by the mating of both CuraGen Corporation proprietary yeast strains N106' and YULH (U. S. Patents 6,057,101 and 6,083,693). 4. RACE: Techniques based on the polymerase chain reaction such as rapid amplification of cDNA ends (RACE), were used to isolate or complete the predicted sequence of the cDNA of the invention. Usually multiple clones were sequenced from one or more human samples to derive the sequences for fragments. Various human tissue samples from different donors were used for the RACE reaction. The sequences derived from these procedures were included in the SeqCalling Assembly process described in preceding paragraphs.
5. Exon Linking: The NOVX target sequences identified in the present invention were subjected to the exon linking process to confirm the sequence. PCR primers were designed by starting at the most upstream sequence available, for the forward primer, and at the most downstream sequence available for the reverse primer. In each case, the sequence was examined, walking inward from the respective termini toward the coding sequence, until a suitable sequence that is either unique or highly selective was encountered, or, in the case of the reverse primer, until the stop codon was reached. Such primers were designed based on in silico predictions for the full length cDNA, part (one or more exons) of the DNA or protein sequence of the target sequence, or by translated homology of the predicted exons to closely related human sequences from other species. These primers were then employed in PCR amplification based on the following pool of human cDNAs: adrenal gland, bone marrow, brain - amygdala, brain - cerebellum, brain - hippocampus, brain - substantia nigra, brain - thalamus, brain -whole, fetal brain, fetal kidney, fetal liver, fetal lung, heart, kidney, lymphoma - Raji, mammary gland, pancreas, pituitary gland, placenta, prostate, salivary gland, skeletal muscle, small intestine, spinal cord, spleen, stomach, testis, thyroid, trachea, uterus. Usually the resulting amplicons were gel purified, cloned and sequenced to high redundancy. The PCR product derived from exon linking was cloned into the pCR2.1 vector from Invitrogen. The resulting bacterial clone has an insert covering the entire open reading frame cloned into the pCR2.1 vector. The resulting sequences from all clones were assembled with themselves, with other fragments in CuraGen Corporation's database and with public ESTs. Fragments and ESTs were included as components for an assembly when the extent of their identity with another component of the assembly was at least 95% over 50 bp. In addition, sequence traces were evaluated manually and edited for corrections if appropriate. These procedures provide the sequence reported herein.
6. Physical Clone: Exons were predicted by homology and the intron/exon boundaries were determined using standard genetic rules. Exons were further selected and refined by means of similarity determination using multiple BLAST (for example, tBlastN, BlastX, and BlastN) searches, and, in some instances, GeneScan and Grail. Expressed sequences from both public and proprietary databases were also added when available to further define and complete the gene sequence. The DNA sequence was then manually corrected for apparent inconsistencies thereby obtaining the sequences encoding the full-length protein. The PCR product derived by exon linking, covering the entire open reading frame, was cloned into the pCR2.1 vector from Invitrogen to provide clones used for expression and screening purposes.
Example C. Quantitative expression analysis of clones in various cells and tissues
The quantitative expression of various clones was assessed using microtiter plates containing RNA samples from a variety of normal and pathology-derived cells, cell lines and tissues using real time quantitative PCR (RTQ PCR). RTQ PCR was performed on an Applied Biosystems ABI PRISM® 7700 or an ABI PRISM® 7900 HT Sequence Detection System. Various collections of samples are assembled on the plates, and referred to as Panel 1 (containing normal tissues and cancer cell lines), Panel 2 (containing samples derived from tissues from normal and cancer sources), Panel 3 (containing cancer cell lines), Panel 4 (containing cells and cell lines from normal tissues and cells related to inflammatory conditions), Panel 5D/5I (containing human tissues and cell lines with an emphasis on metabolic diseases), AI_comprehensive_panel (containing normal tissue and samples from autoinflammatory diseases), Panel CNSD.01 (containing samples from normal and diseased brains) and CNS_neurodegeneration_panel (containing samples from normal and Alzheimer's diseased brains).
RNA integrity from all samples is controlled for quality by visual assessment of agarose gel electropherograms using 28S and 18S ribosomal RNA staining intensity ratio as a guide (2:1 to 2.5:1 28s: 18s) and the absence of low molecular weight RNAs that would be indicative of degradation products. Samples are controlled against genomic DNA contamination by RTQ PCR reactions run in the absence of reverse transcriptase using probe and primer sets designed to amplify across the span of a single exon.
First, the RNA samples were normalized to reference nucleic acids such as constitutively expressed genes (for example, β-actin and GAPDH). Normalized RNA (5 ul) was converted to cDNA and analyzed by RTQ-PCR using One Step RT-PCR Master Mix Reagents (Applied Biosystems; Catalog No. 4309169) and gene-specific primers according to the manufacturer's instructions.
In other cases, non-normalized RNA samples were converted to single strand cDNA (sscDNA) using Superscript II (Invitrogen Corporation; Catalog No. 18064-147) and random hexamers according to the manufacturer's instructions. Reactions containing up to 10 μg of total RNA were performed in a volume of 20 μl and incubated for 60 minutes at 42°C. This reaction can be scaled up to 50 μg of total RNA in a final volume of 100 μl. sscDNA samples are then normalized to reference nucleic acids as described previously, using IX TaqMan® Universal Master mix (Applied Biosystems; catalog No. 4324020), following the manufacturer's instructions. Probes and primers were designed for each assay according to Applied Biosystems
Primer Express Software package (version I for Apple Computer's Macintosh Power PC) or a similar algorithm using the target sequence as input. Default settings were used for reaction conditions and the following parameters were set before selecting primers: primer concentration = 250 nM, primer melting temperature (Tm) range = 58°-60° C, primer optimal Tm = 59° C, maximum primer difference = 2° C, probe does not have 5' G, probe Tm must be 10° C greater than primer Tm, amplicon size 75 bp to 100 bp. The probes and primers selected (see below) were synthesized by Synthegen (Houston, TX, USA). Probes were double purified by HPLC to remove uncoupled dye and evaluated by mass spectroscopy to verify coupling of reporter and quencher dyes to the 5' and 3' ends of the probe, respectively. Their final concentrations were: forward and reverse primers, 900 nM each, and probe, 200nM.
PCR conditions: When working with RNA samples, normalized RNA from each tissue and each cell line was spotted in each well of either a 96 well or a 384- well PCR plate (Applied Biosystems). PCR cocktails included either a single gene specific probe and primers set, or two multiplexed probe and primers sets (a set specific for the target clone and another gene-specific set multiplexed with the target probe). PCR reactions were set up using TaqMan® One-Step RT-PCR Master Mix (Applied Biosystems, Catalog No. 4313803) following manufacturer's instructions. Reverse transcription was performed at 48° C for 30 minutes followed by amplification/PCR cycles as follows: 95° C IO min, then 40 cycles of 95° C for 15 seconds, 60° C for 1 minute. Results were recorded as CT values (cycle at which a given sample crosses a threshold level of fluorescence) using a log scale, with the difference in RNA concentration between a given sample and the sample with the lowest CT value being represented as 2 to the power of delta CT. The percent relative expression is then obtained by taking the reciprocal of this RNA difference and multiplying by 100. CT values below 28 indicate high expression, CT values between 28 and 32 indicate moderate expression, and CT values between 32 and 35 indicate low expression. CT values above 35 reflect levels of expression that are too low to be reliably measured. When working with sscDNA samples, normalized sscDNA was used as described previously for RNA samples. PCR reactions containing one or two sets of probe and primers were set up as described previously, using IX TaqMan® Universal Master mix (Applied Biosystems; catalog No. 4324020), following the manufacturer's instructions. PCR amplification was performed as follows: 95° C 10 min, then 40 cycles of 95° C for 15 seconds, 60° C for 1 minute. Results were analyzed and processed as described previously.
Panels 1, 1.1, 1.2, and 1.3D The plates for Panels 1, 1.1, 1.2 and 1.3D include 2 control wells (genomic DNA control and chemistry control) and 94 wells containing cDNA from various samples. The samples in these panels are broken into 2 classes: samples derived from cultured cell lines and samples derived from primary normal tissues. The cell lines are derived from cancers of the following types: lung cancer, breast cancer, melanoma, colon cancer, prostate cancer, CNS cancer, squamous cell carcinoma, ovarian cancer, liver cancer, renal cancer, gastric cancer and pancreatic cancer. Cell lines used in these panels are widely available through the American Type Culture Collection (ATCC), a repository for cultured cell lines, and were cultured using the conditions recommended by the ATCC. The normal tissues found on these panels are comprised of samples derived from all major organ systems from single adult individuals or fetuses. These samples are derived from the following organs: adult skeletal muscle, fetal skeletal muscle, adult heart, fetal heart, adult kidney, fetal kidney, adult liver, fetal liver, adult lung, fetal lung, various regions of the brain, the spleen, bone marrow, lymph node, pancreas, salivary gland, pituitary gland, adrenal gland, spinal cord, thymus, stomach, small intestine, colon, bladder, trachea, breast, ovary, uterus, placenta, prostate, testis and adipose.
In the results for Panels 1, 1.1, 1.2 and 1.3D, the following abbreviations are used: ca. = carcinoma,
* = established from metastasis, met = metastasis, s cell var = small cell variant, non-s = non-sm = non-small, squam = squamous, pi. eff = pi effusion = pleural effusion, glio = glioma, astro = astrocytoma, and neuro = neuroblastoma.
GENERAL_SCREENING_PANEL_V1.4, V1.5, V1.6 AND 1.7
The plates for Panels 1.4, 1.5, 1.6 and 1.7 include 2 control wells (genomic DNA control and chemistry control) and 88 to 94 wells containing cDNA from various samples. The samples in Panels 1.4, 1.5, 1.6 and 1.7 are broken into 2 classes: samples derived from cultured cell lines and samples derived from primary normal tissues. The cell lines are derived from cancers of the following types: lung cancer, breast cancer, melanoma, colon cancer, prostate cancer, CNS cancer, squamous cell carcinoma, ovarian cancer, liver cancer, renal cancer, gastric cancer and pancreatic cancer. Cell lines used in Panels 1.4, 1.5, 1.6 and 1.7 are widely available through the American Type Culture Collection (ATCC), a repository for cultured cell lines, and were cultured using the conditions recommended by the ATCC. The normal tissues found on Panels 1.4, 1.5, 1.6 and 1.7 are comprised of pools of samples derived from all major organ systems from 2 to 5 different adult individuals or fetuses. These samples are derived from the following organs: adult skeletal muscle, fetal skeletal muscle, adult heart, fetal heart, adult kidney, fetal kidney, adult liver, fetal liver, adult lung, fetal lung, various regions of the brain, the spleen, bone marrow, lymph node, pancreas, salivary gland, pituitary gland, adrenal gland, spinal cord, thymus, stomach, small intestine, colon, bladder, trachea, breast, ovary, uterus, placenta, prostate, testis and adipose. Abbreviations are as described for Panels 1, 1.1, 1.2, and 1.3D.
Panels 2D, 2.2, 2.3, and 2.4
The plates for Panels 2D, 2.2, 2.3 and 2.4 generally include 2 control wells and 94 test samples composed of RNA or cDNA isolated from human tissue procured by surgeons working in close cooperation with the National Cancer Institute's Cooperative Human Tissue Network (CHTN) or the National Disease Research Initiative (NDRI) or from Ardais or Clinomics). The tissues are derived from human malignancies and in cases where indicated many malignant tissues have "matched margins" obtained from noncancerous tissue just adjacent to the tumor. These are termed normal adjacent tissues and are denoted "NAT" in the results below. The tumor tissue and the "matched margins" are evaluated by two independent pathologists (the surgical pathologists and again by a pathologist at NDRI/ CHTN/Ardais/Clinomics). Unmatched RNA samples from tissues without malignancy (normal tissues) were also obtained from Ardais or Clinomics. This analysis provides a gross histopathological assessment of tumor differentiation grade. Moreover, most samples include the original surgical pathology report that provides information regarding the clinical stage of the patient. These matched margins are taken from the tissue surrounding (i.e. immediately proximal) to the zone of surgery (designated "NAT", for normal adjacent tissue, in Table RR). In addition, RNA and cDNA samples were obtained from various human tissues derived from autopsies performed on elderly people or sudden death victims (accidents, etc.). These tissues were ascertained to be free of disease and were purchased from various commercial sources such as Clontech (Palo Alto, CA), Research Genetics, and Invitrogen.
HASS PANEL V 1.0
The HASS panel v 1.0 plates are comprised of 93 cDNA samples and two controls. Specifically, 81 of these samples are derived from cultured human cancer cell lines that had been subjected to serum starvation, acidosis and anoxia for different time periods as well as controls for these treatments, 3 samples of human primary cells, 9 samples of malignant brain cancer (4 medulloblastomas and 5 glioblastomas) and 2 controls. The human cancer cell lines are obtained from ATCC (American Type Culture Collection) and fall into the following tissue groups: breast cancer, prostate cancer, bladder carcinomas, pancreatic cancers and CNS cancer cell lines. These cancer cells are all cultured under standard recommended conditions. The treatments used (serum starvation, acidosis and anoxia) have been previously published in the scientific literature. The primary human cells were obtained from Clonetics (Walkersville, MD) and were grown in the media and conditions recommended by Clonetics. The malignant brain cancer samples are obtained as part of a collaboration (Henry Ford Cancer Center) and are evaluated by a pathologist prior to CuraGen receiving the samples. RNA was prepared from these samples using the standard procedures. The genomic and chemistry control wells have been described previously. ARDAIS PANEL V 1.0
The plates for ARDAIS panel v 1.0 generally include 2 control wells and 22 test samples composed of RNA isolated from human tissue procured by surgeons working in close cooperation with Ardais Corporation. The tissues are derived from human lung malignancies (lung adenocarcinoma or lung squamous cell carcinoma) and in cases where indicated many malignant samples have "matched margins" obtained from noncancerous lung tissue just adjacent to the tumor. These matched margins are taken from the tissue surrounding (i.e. immediately proximal) to the zone of surgery (designated "NAT", for normal adjacent tissue) in the results below. The tumor tissue and the "matched margins" are evaluated by independent pathologists (the surgical pathologists and again by a pathologist at Ardais). Unmatched malignant and non-malignant RNA samples from lungs were also obtained from Ardais. Additional information from -Ardais provides a gross histopathological assessment of tumor differentiation grade and stage. Moreover, most samples include the original surgical pathology report that provides information regarding the clinical state of the patient.
ARDAIS PROSTATE V 1.0
The plates for ARDAIS prostate 1.0 generally include 2 control wells and 68 test samples composed of RNA isolated from human tissue procured by surgeons working in close cooperation with Ardais Corporation. The tissues are derived from human prostate malignancies and in cases where indicated malignant samples have "matched margins" obtained from noncancerous prostate tissue just adjacent to the tumor. These matched margins are taken from the tissue surrounding (i.e. immediately proximal) to the zone of surgery (designated "NAT", for normal adjacent tissue) in the results below. The tumor tissue and the "matched margins" are evaluated by independent pathologists (the surgical pathologists and again by a pathologist at Ardais). RNA from unmatched malignant and non-malignant prostate samples were also obtained from Ardais. Additional information from Ardais provides a gross histopathological assessment of tumor differentiation grade and stage. Moreover, most samples include the original surgical pathology report that provides information regarding the clinical state of the patient.
ARDAIS KIDNEY V 1.0
The plates for ARDAIS kidney 1.0 generally include 2 control wells and 44 test samples composed of RNA isolated from human tissue procured by surgeons working in close cooperation with Ardais Corporation. The tissues are derived from human prostate malignancies and in cases where indicated malignant samples have "matched margins" obtained from noncancerous prostate tissue just adjacent to the tumor. These matched margins are taken from the tissue surrounding (i.e. immediately proximal) to the zone of surgery (designated "NAT", for normal adjacent tissue) in the results below. The tumor tissue and the "matched margins" are evaluated by independent pathologists (the surgical pathologists and again by a pathologist at Ardais). RNA from unmatched malignant and non-malignant prostate samples were also obtained from Ardais. Additional information from Ardais provides a gross histopathological assessment of tumor differentiation grade and stage. Moreover, most samples include the original surgical pathology report that provides information regarding the clinical state of the patient. PANEL 3D AND 3.1 AND 3.2 The plates of Panel 3D, 3.1, and 3.2 are comprised of 94 cDNA samples and two control samples. Specifically, 92 of these samples are derived from cultured human cancer cell lines, 2 samples of human primary cerebellar tissue and 2 controls. The human cell lines are generally obtained from ATCC (American Type Culture Collection), NCI or the German tumor cell bank and fall into the following tissue groups: Squamous cell carcinoma of the tongue, breast cancer, prostate cancer, melanoma, epidermoid carcinoma, sarcomas, bladder carcinomas, pancreatic cancers, kidney cancers, leukemias/lymphomas, ovarian/uterine/cervical, gastric, colon, lung and CNS cancer cell lines. In addition, there are two independent samples of cerebellum. These cells are all cultured under standard recommended conditions and RNA extracted using the standard procedures. The cell lines in panel 3D, 3.1, 3.2, 1, 1.1., 1.2, 1.3D, 1.4, 1.5, and 1.6 are of the most common cell lines used in the scientific literature.
Panels 4D, 4R, and 4.1D
Panel 4 includes samples on a 96 well plate (2 control wells, 94 test samples) composed of RNA (Panel 4R) or cDNA (Panels 4D/4.1D) isolated from various human cell lines or tissues related to inflammatory conditions. Total RNA from control normal tissues such as colon and lung (Stratagene, La Jolla, CA) and thymus and kidney (Clontech) was employed. Total RNA from liver tissue from cirrhosis patients and kidney from lupus patients was obtained from BioChain (Biochain Institute, Inc., Hayward, CA). Intestinal tissue for RNA preparation from patients diagnosed as having Crohn's disease and ulcerative colitis was obtained from the National Disease Research Interchange (NDRI) (Philadelphia, PA). Astrocytes, lung fibroblasts, dermal fibroblasts, coronary artery smooth muscle cells, small airway epithelium, bronchial epithelium, microvascular dermal endothelial cells, microvascular lung endothelial cells, human pulmonary aortic endothelial cells, human umbilical vein endothelial cells were all purchased from Clonetics (Walkersville, MD) and grown in the media supplied for these cell types by Clonetics. These primary cell types were activated with various cytokines or combinations of cytokines for 6 and/or 12- 14 hours, as indicated. The following cytokines were used; IL-1 beta at approximately 1-5 ng/ml, TNF alpha at approximately 5-10 ng/ml, IFN gamma at approximately 20-50 ng/ml, IL-4 at approximately 5-10 ng/ml, IL-9 at approximately 5-10 ng/ml, IL-13 at approximately 5-10 ng/ml. Endothelial cells were sometimes starved for various times by culture in the basal media from Clonetics with 0.1% serum.
Mononuclear cells were prepared from blood of employees at CuraGen Corporation, using Ficoll. LAK cells were prepared from these cells by culture in DMEM 5% FCS (Hyclone), 100 μMnon essential amino acids (Gibco/Life Technologies, Rockville, MD), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5 x 10"5 M (Gibco), and 10 mM Hepes (Gibco) and mterleukin 2 for 4-6 days. Cells were then either activated with 10-20 ng ml PMA and 1-2 μg/ml ionomycin, IL-12 at 5-10 ng/ml, IFN gamma at 20- 50 ng/ml and IL-18 at 5-10 ng/ml for 6 hours. In some cases, mononuclear cells were cultured for 4-5 days in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5 x 10" M (Gibco), and 10 mM Hepes (Gibco) with PHA (phytohemagglutinin) or PWM (pokeweed mitogen) at approximately 5 μg/ml. Samples were taken at 24, 48 and 72 hours for RNA preparation. MLR (mixed lymphocyte reaction) samples were obtained by taking blood from two donors, isolating the mononuclear cells using Ficoll and mixing the isolated mononuclear cells 1:1 at a final concentration of approximately 2xl06 cells/ml in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol (5.5 x 10"5 M) (Gibco), and 10 mM Hepes (Gibco). The MLR was cultured and samples taken at various time points ranging from 1- 7 days for RNA preparation.
Monocytes were isolated from mononuclear cells using CD 14 Miltenyi Beads, +ve VS selection columns and a Vario Magnet according to the manufacturer's instructions. Monocytes were differentiated into dendritic cells by culture in DMEM 5% fetal calf serum (FCS) (Hyclone, Logan, UT), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5 x 10"5 M (Gibco), and 10 mM Hepes (Gibco), 50 ng/ml GMCSF and 5 ng/ml IL-4 for 5-7 days. Macrophages were prepared by culture of monocytes for 5-7 days in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5 x 10"5 M (Gibco), 10 mM Hepes (Gibco) and 10% AB Human Serum or MCSF at approximately 50 ng/ml. Monocytes, macrophages and dendritic cells were stimulated for 6 and 12-14 hours with lipopolysaccharide (LPS) at 100 ng/ml. Dendritic cells were also stimulated with anti- CD40 monoclonal antibody (Pharmingen) at 10 μg/ml for 6 and 12-14 hours.
CD4 lymphocytes, CD8 lymphocytes and NK cells were also isolated from mononuclear cells using CD4, CD8 and CD56 Miltenyi beads, positive VS selection columns and a Vario Magnet according to the manufacturer's instructions. CD45RA and CD45RO CD4 lymphocytes were isolated by depleting mononuclear cells of CD8, CD56, CD14 and CD19 cells using CD8, CD56, CD14 and CD19 Miltenyi beads and positive selection. CD45RO beads were then used to isolate the CD45RO CD4 lymphocytes with the remaining cells being CD45RA CD4 lymphocytes. CD45RA CD4, CD45RO CD4 and CD8 lymphocytes were placed in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5 x 10"5 M (Gibco), and 10 mM Hepes (Gibco) and plated at 106 cells/ml onto Falcon 6 well tissue culture plates that had been coated overnight with 0.5 μg/ml anti-CD28 (Pharmingen) and 3 ug/ml anti- CD3 (OKT3, ATCC) in PBS. After 6 and 24 hours, the cells were harvested for RNA preparation. To prepare chronically activated CD8 lymphocytes, we activated the isolated CD8 lymphocytes for 4 days on anti-CD28 and anti-CD3 coated plates and then harvested the cells and expanded them in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5 x 10"5 M (Gibco), and 10 mM Hepes (Gibco) and IL-2. The expanded CD8 cells were then activated again with plate bound anti-CD3 and anti-CD28 for 4 days and expanded as before. RNA was isolated 6 and 24 hours after the second activation and after 4 days of the second expansion culture. The isolated NK cells were cultured in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5 x 10"5 M (Gibco), and 10 mM Hepes (Gibco) and IL-2 for 4-6 days before RNA was prepared. To obtain B cells, tonsils were procured from NDRI. The tonsil was cut up with sterile dissecting scissors and then passed through a sieve. Tonsil cells were then spun down and resupended at 106 cells/ml in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5 x 10"5 M (Gibco), and 10 mM Hepes (Gibco). To activate the cells, we used PWM at 5 μg/ml or anti-CD40 (Pharmingen) at approximately 10 μg/ml and IL-4 at 5-10 ng/ml. Cells were harvested for RNA preparation at 24,48 and 72 hours.
To prepare the primary and secondary Thl/Th2 and Trl cells, six-well Falcon plates were coated overnight with 10 μg/ml anti-CD28 (Pharmingen) and 2 μg/ml OKT3 (ATCC), and then washed twice with PBS. Umbilical cord blood CD4 lymphocytes
5 6
(Poietic Systems, German Town, MD) were cultured at 10 -10 cells/ml in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5 x 10"5 M (Gibco), 10 mM Hepes (Gibco) and IL-2 (4 ng/ml). IL-12 (5 ng/ml) and anti-IL4 (1 μg/ml) were used to direct to Thl, while IL-4 (5 ng/ml) and anti-IFN gamma (1 μg/ml) were used to direct to Th2 and IL-10 at 5 ng/ml was used to direct to Trl. After 4-5 days, the activated Thl, Th2 and Trl lymphocytes were washed once in DMEM and expanded for 4-7 days in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5 x 10"5 M (Gibco), 10 mM Hepes (Gibco) and IL-2 (1 ng/ml). Following this, the activated Thl, Th2 and Trl lymphocytes were re-stimulated for 5 days with anti-CD28/OKT3 and cytokines as described above, but with the addition of anti-CD95L (1 μg/ml) to prevent apoptosis. After 4-5 days, the Thl, Th2 and Trl lymphocytes were washed and then expanded again with IL-2 for 4-7 days. Activated Thl and Th2 lymphocytes were maintained in this way for a maximum of three cycles. RNA was prepared from primary and secondary Thl, Th2 and Trl after 6 and 24 hours following the second and third activations with plate bound anti-CD3 and anti-CD28 mAbs and 4 days into the second and third expansion cultures in Interleukin 2. The following leukocyte cells lines were obtained from the ATCC: Ramos, EOL-1,
KU-812. EOL cells were further differentiated by culture in 0.1 mM dbcAMP at 5 xlO5 cells/ml for 8 days, changing the media every 3 days and adjusting the cell concentration to 5 xlO5 cells/ml. For the culture of these cells, we used DMEM or RPMI (as recommended by the ATCC), with the addition of 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5 x 10"5 M (Gibco), 10 mM Hepes (Gibco). RNA was either prepared from resting cells or cells activated with PMA at 10 ng/ml and ionomycin at 1 μg/ml for 6 and 14 hours. Keratinocyte line CCD106 and an airway epithelial tumor line NCI-H292 were also obtained from the ATCC. Both were cultured in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5 x 10"5 M (Gibco), and 10 mM Hepes
(Gibco). CCD1106 cells were activated for 6 and 14 hours with approximately 5 ng/ml TNF alpha and 1 ng/ml IL-1 beta, while NCI-H292 cells were activated for 6 and 14 hours with the following cytokines: 5 ng/ml IL-4, 5 ng/ml IL-9, 5 ng/ml IL-13 and 25 ng ml IFN gamma.
For these cell lines and blood cells, RNA was prepared by lysing approximately 107 cells/ml using Trizol (Gibco BRL). Briefly, 1/10 volume of bromochloropropane (Molecular Research Coφoration) was added to the RNA sample, vortexed and after 10 minutes at room temperature, the tubes were spun at 14,000 ipm in a Sorvall SS34 rotor. The aqueous phase was removed and placed in a 15 ml Falcon Tube. An equal volume of isopropanol was added and left at -20 degrees C overnight. The precipitated RNA was spun down at 9,000 φm for 15 min in a Sorvall SS34 rotor and washed in 70% ethanol. The pellet was redissolved in 300 μl of RNAse-free water and 35 μl buffer (Promega) 5 μl DTT, 7 μl RNAsin and 8 μl DNAse were added. The tube was incubated at 37 degrees C for 30 minutes to remove contaminating genomic DNA, extracted once with phenol chloroform and re-precipitated with 1/10 volume of 3 M sodium acetate and 2 volumes of 100% ethanol. The RNA was spun down and placed in RNAse free water. RNA was stored at —80 degrees C.
Al comprehensive panel vl.O
The plates for AI_comprehensive panel_vl.O include two control wells and 89 test samples comprised of cDNA isolated from surgical and postmortem human tissues obtained from the Backus Hospital and Clinomics (Frederick, MD). Total RNA was extracted from tissue samples from the Backus Hospital in the Facility at CuraGen. Total RNA from other tissues was obtained from Clinomics.
Joint tissues including synovial fluid, synovium, bone and cartilage were obtained from patients undergoing total knee or hip replacement surgery at the Backus Hospital. Tissue samples were immediately snap frozen in liquid nitrogen to ensure that isolated RNA was of optimal quality and not degraded. Additional samples of osteoarthritis and rheumatoid arthritis joint tissues were obtained from Clinomics. Normal control tissues were supplied by Clinomics and were obtained during autopsy of trauma victims.
Surgical specimens of psoriatic tissues and adjacent matched tissues were provided as total RNA by Clinomics. Two male and two female patients were selected between the ages of 25 and 47. None of the patients were taking prescription drugs at the time samples were isolated.
Surgical specimens of diseased colon from patients with ulcerative colitis and Crohns disease and adjacent matched tissues were obtained from Clinomics. Bowel tissue from three female and three male Crohn's patients between the ages of 41-69 were used. Two patients were not on prescription medication while the others were taking dexamethasone, phenobarbital, or tylenol. Ulcerative colitis tissue was from three male and four female patients. Four of the patients were taking lebvid and two were on phenobarbital.
Total RNA from post mortem lung tissue from trauma victims with no disease or with emphysema, asthma or COPD was purchased from Clinomics. Emphysema patients ranged in age from 40-70 and all were smokers, this age range was chosen to focus on patients with cigarette-linked emphysema and to avoid those patients with alpha-lanti- trypsin deficiencies. Asthma patients ranged in age from 36-75, and excluded smokers to prevent those patients that could also have COPD. COPD patients ranged in age from 35- 80 and included both smokers and non-smokers. Most patients were taking corticosteroids, and bronchodilators. In the labels employed to identify tissues in the AI_comprehensive panel_vl.O panel, the following abbreviations are used: AI = Autoimmunity
Syn = Synovial Normal = No apparent disease
Rep22 /Rep20 = individual patients RA = Rheumatoid arthritis
Backus = From Backus Hospital OA = Osteoarthritis (SS) (B A) (MF) = Individual patients
Adj = Adjacent tissue Match control = adjacent tissues -M = Male -F = Female COPD = Chronic obstructive pulmonary disease
AI.05 chondrosarcoma
The AI.05 chondrosarcoma plates are comprised of SW1353 cells that had been subjected to serum starvation and treatment with cytokines that are known to induce MMP (1, 3 and 13) synthesis (eg. ILlbeta). These treatments include: IL-lβ (10 ng/ml), IL-lβ + TNF-α (50 ng/ml), IL-lβ + Oncostatin (50 ng/ml) and PMA (100 ng/ml). The SW1353 cells were obtained from the ATCC (American Type Culture Collection) and were all cultured under standard recommended conditions. The SW1353 cells were plated at 3 xlO5 cells/ml (in DMEM medium- 10 % FBS) in 6-well plates. The treatment was done in triplicate, for 6 and 18 h. The supernatants were collected for analysis of MMP 1, 3 and 13 production and for RNA extraction. RNA was prepared from these samples using the standard procedures.
Panels 5D and 51
The plates for Panel 5D and 51 include two control wells and a variety of cDNAs isolated from human tissues and cell lines with an emphasis on metabolic diseases. Metabolic tissues were obtained from patients enrolled in the Gestational Diabetes study. Cells were obtained during different stages in the differentiation of adipocytes from human mesenchymal stem cells. Human pancreatic islets were also obtained.
In the Gestational Diabetes study subjects are young (18 - 40 years), otherwise healthy women with and without gestational diabetes undergoing routine (elective) Caesarean section. After delivery of the infant, when the surgical incisions were being repaired/closed, the obstetrician removed a small sample (<1 cc) of the exposed metabolic tissues during the closure of each surgical level. The biopsy material was rinsed in sterile saline, blotted and fast frozen within 5 minutes from the time of removal. The tissue was then flash frozen in liquid nitrogen and stored, individually, in sterile screw-top tubes and kept on dry ice for shipment to or to be picked up by CuraGen. The metabolic tissues of interest include uterine wall (smooth muscle), visceral adipose, skeletal muscle (rectus) and subcutaneous adipose. Patient descriptions are as follows:
Patient 2 Diabetic Hispanic, overweight, not on insulin Patient 7-9 Nondiabetic Caucasian and obese (BMI>30)
Patient 10 Diabetic Hispanic, overweight, on insulin
Patient 11 Nondiabetic African American and overweight
Patient 12 Diabetic Hispanic on insulin Adipocyte differentiation was induced in donor progenitor cells obtained from
Osirus (a division of Clonetics/BioWhittaker) in triplicate, except for Donor 3U which had only two replicates. Scientists at Clonetics isolated, grew and differentiated human mesenchymal stem cells (HuMSCs) for CuraGen based on the published protocol found in Mark F. Pittenger, et al., Multilineage Potential of Adult Human Mesenchymal Stem Cells Science Apr 2 1999: 143-147. Clonetics provided Trizol lysates or frozen pellets suitable for mRNA isolation and ds cDNA production. A general description of each donor is as follows:
Donor 2 and 3 U Mesenchymal Stem cells Undifferentiated Adipose Donor 2 and 3 AM Adipose AdiposeMidway
Differentiated
Donor 2 and 3 AD Adipose Adipose Differentiated Human cell lines were generally obtained from ATCC (American Type Culture
Collection), NCI or the German tumor cell bank and fall into the following tissue groups: kidney proximal convoluted tubule, uterine smooth muscle cells, small intestine, liver HepG2 cancer cells, heart primary stromal cells, and adrenal cortical adenoma cells. These cells are all cultured under standard recommended conditions and RNA extracted using the standard procedures. All samples were processed at CuraGen to produce single stranded cDNA.
Panel 51 contains all samples previously described with the addition of pancreatic islets from a 58 year old female patient obtained from the Diabetes Research Institute at the University of Miami School of Medicine. Islet tissue was processed to total RNA at an outside source and delivered to CuraGen for addition to panel 51.
In the labels employed to identify tissues in the 5D and 51 panels, the following abbreviations are used: GO Adipose = Greater Omentum Adipose
SK= Skeletal Muscle UT = Uterus PL = Placenta
AD = Adipose Differentiated AM = Adipose Midway Differentiated
U = Undifferentiated Stem Cells
Human Metabolic RTQ-PCR Panel The plates for the Human Metabolic RTQ-PCR Panel include two control wells (genomic DNA control and chemistry control) and 211 cDNAs isolated from human tissues and cell lines with an emphasis on metabolic diseases. This panel is useful for establishing the tissue and cellular expression profiles for genes believed to play a role in the etiology and pathogenesis of obesity and/or diabetes and to confirm differential expression of such genes derived from other methods.
Metabolic tissues were obtained from patients enrolled in the CuraGen Gestational Diabetes study and from autopsy tissues from Type II diabetics and age, sex and race- matched control patients. One or more of the following were used to characterize the patients: body mass index [BMI = wt (kg) / ht (m2)], serum glucose, HgbAlc. Cell lines used in this panel are widely available through the -American Type Culture Collection (ATCC), a repository for cultured cell lines. RNA from human Pancreatic Islets was also obtained.
In the Gestational Diabetes study, subjects are young (18-40 years), otherwise healthy women with and without gestational diabetes undergoing routine (elective) Caesarian section. After delivery of the infant, when the surgical incisions were being repaired/closed, the obstetrician removed a small sample (<lcc) of the exposed metabolic tissues during the closure of each surgical level. The biopsy material was rinsed in sterile saline, blotted, and then flash frozen in liquid nitrogen and stored, individually, in sterile screw-top tubes and kept on dry ice for shipment to or to be picked up by CuraGen. The metabolic tissues of interest include uterine wall (smooth muscle), visceral adipose, skeletal muscle (rectus), and subcutaneous adipose. Patient descriptions are as follows:
Patient 7 Non-diabetic Caucasian and obese
Patient 8 Non-diabetic Caucasian and obese
Patient 12 Diabetic Caucasian with unknown BMI and on insulin Patient 13 Diabetic Caucasian, overweight, not on insulin Patient 15 Diabetic Caucasian, obese, not on insulin
Patient 17 Diabetic Caucasian, normal weight, not on insulin Patient 18 Diabetic Hispanic, obese, not on insulin Patient 19 Non-diabetic Caucasian and normal weight Patient 20 Diabetic Caucasian, overweight, and on insulin Patient 21 Non-diabetic Caucasian and overweight
Patient 22 Diabetic Caucasian, normal weight, on insulin Patient 23 Non-diabetic Caucasian and overweight Patient 25 Diabetic Caucasian, normal weight, not on insulin Patient 26 Diabetic Caucasian, obese, on insulin Patient 27 Diabetic Caucasian, obese, on insulin
Total RNA was isolated from metabolic tissues of 12 Type II diabetic patients and 12 matched control patients included hypothalamus, liver, pancreas, small intestine, psoas muscle, diaphragm muscle, visceral adipose, and subcutaneous adipose. The diabetics and non-diabetics were matched for age, sex, ethnicity, and BMI where possible.
The panel also contains pancreatic islets from a 22 year old male patient (with a BMI of 35) obtained from the Diabetes Research Institute at the University of Miami School of Medicine. Islet tissue was processed to total RNA at CuraGen. Cell lines used in this panel are widely available through the American Type Culture Collection (ATCC), a repository for cultured cell lines, and were cultured at an outside facility. The RNA was extracted at CuraGen according to CuraGen protocols. All samples were then processed at CuraGen to produce single stranded cDNA.
In the labels used to identify tissues in the Human Metabolic panel, the following abbreviations are used:
PI placenta
Go greater omentum
Sk skeletal muscle
Ut uterus
CC Caucasian
HI Hispanic
AA African American
AS Asian
Diab Type II diabetic
Norm Non-diabetic
Overwt Overweight; med BMI
Obese Hi BMI
Low BM 20-25
Med BM 26-30
Hi BMI = Greater than 30
M Male
# Patient identifier
Vis. Visceral
SubQ Subcutaneous
CNSD.01
The plates for Panel CNSD.01 include two control wells and 94 test samples comprised of cDNA isolated from postmortem human brain tissue obtained from the Harvard Brain Tissue Resource Center. Brains are removed from calvaria of donors between 4 and 24 hours after death, sectioned by neuroanatomists, and frozen at -80°C in liquid nitrogen vapor. All brains are sectioned and examined by neuropathologists to confirm diagnoses with clear associated neuropathology.
Disease diagnoses are taken from patient records. The panel contains two brains from each of the following diagnoses: Alzheimer's disease, Parkinson's disease, Huntington's disease, Progressive Supemuclear Palsy, Depression, and "Normal controls". Within each of these brains, the following regions are represented: cingulate gyrus, temporal pole, globus palladus, substantia nigra, Brodman Area 4 (primary motor strip), Brodman Area 7 (parietal cortex), Brodman Area 9 (prefrontal cortex), and Brodman area 17 (occipital cortex). Not all brain regions are represented in all cases; e.g., Huntington's disease is characterized in part by neurodegeneration in the globus palladus, thus this region is impossible to obtain from confirmed Huntington's cases. Likewise Parkinson's disease is characterized by degeneration of the substantia nigra making this region more difficult to obtain. Normal control brains were examined for neuropathology and found to be free of any pathology consistent with neurodegeneration.
In the labels employed to identify tissues in the CNS panel, the following abbreviations are used:
PSP = Progressive supranuclear palsy
Sub Nigra = Substantia nigra Glob Palladus^ Globus palladus Temp Pole = Temporal pole Cing Gyr = Cingulate gyrus
BA 4 = Brodman Area 4
Panel CNS Neurodegeneration Vl.O
The plates for Panel CNS_Neurodegeneration_VT .0 include two control wells and 47 test samples comprised of cDNA isolated from postmortem human brain tissue obtained from the Harvard Brain Tissue Resource Center (McLean Hospital) and the Human Brain and Spinal Fluid Resource Center (VA Greater Los Angeles Healthcare System). Brains are removed from calvaria of donors between 4 and 24 hours after death, sectioned by neuroanatomists, and frozen at -80°C in liquid nitrogen vapor. All brains are sectioned and examined by neuropathologists to confirm diagnoses with clear associated neuropathology.
Disease diagnoses are taken from patient records. The panel contains six brains from Alzheimer's disease (AD) patients, and eight brains from "Normal controls" who showed no evidence of dementia prior to death. The eight normal control brains are divided into two categories: Controls with no dementia and no Alzheimer's like pathology (Controls) and controls with no dementia but evidence of severe Alzheimer's like pathology, (specifically senile plaque load rated as level 3 on a scale of 0-3; 0 = no evidence of plaques, 3 = severe AD senile plaque load). Within each of these brains, the following regions are represented: hippocampus, temporal cortex (Brodman Area 21), parietal cortex (Brodman area 7), and occipital cortex (Brodman area 17). These regions were chosen to encompass all levels of neurodegeneration in AD. The hippocampus is a region of early and severe neuronal loss in AD; the temporal cortex is known to show neurodegeneration in AD after the hippocampus; the parietal cortex shows moderate neuronal death in the late stages of the disease; the occipital cortex is spared in AD and therefore acts as a "control" region within AD patients. Not all brain regions are represented in all cases.
In the labels employed to identify tissues in the CNS_Neurodegeneration_V1.0 panel, the following abbreviations are used: AD = Alzheimer's disease brain; patient was demented and showed AD-like pathology upon autopsy
Control = Control brains; patient not demented, showing no neuropathology Control (Path) = Control brains; pateint not demented but showing sever AD-like pathology SupTemporal Ctx = Superior Temporal Cortex Inf Temporal Ctx = Inferior Temporal Cortex
The expression of the gene was analyzed after normalization using scaling factor. The scaling factor is calculated from the Grand mean of CT values for a panel and the Well mean which is specific to the tissue. The Grand mean is the average CT value for all wells across all runs. For example, if a panel has 50 samples and has had 100 probe/primer sets run on it, the grand mean would be the average of these 5000 CT scores. The well mean is tissue-specific. On the above described panel there would be 50 different well means, each taking the average of the 100 CT values generated for each sample on the panel from the 100 probe/primer sets.
The asumption is that across a large number of genes, all samples should have the same CT value. If a well is lower than the average across a large number of genes, it is "scaled up" by that difference or the "scaling factor".
Scaling Factor = Grand mean - Well mean
The new CT value for the well is: Scaled CT value = Raw CT + Scaling Factor.
Statistical Analysis of CNS Neurodegeneration Vl.O Data
All data were analyzed by analysis of covariance (ANCOVA). As a covariate, the average CT value (or number of rounds of PCR until signal from the well was detected) was calculated for 1000 PCR runs on different genes. This number is therefore an estimate of total cDNA quantity and quality for each sample. When RTQ PCR is run for a given gene, CT values are therefore compared to these average values to correct for differences in well loading or original RNA quality. Stats were run on data from the temporal cortex, as this regions shows sever neurodegeneration in the mid to late stages of the disease, and because the largest number of samples were available for this region giving the most statistical power. Covariates for each well corresponding to Temporal Cortex samples are listed below. The well numbers (10-25) are listed under "Order" in the table of CT values given for each gene run. For this analysis, Controls and Control (Path) cases were grouped together as the intention was to find genes associated with dementia as opposed to amyloid deposition.
10 AD1 33.014
11 AD2 32.309
12 AD3 34.195
13 AD4 32.689
14 AD5 Inf 30.829
15 AD5 Sup 31.519
16 AD6 Inf 31.517
17 AD6 Suρ 31.415
18 Conl 34.236
19 Con2 32.352
20 Con3 33.215
21 Con4 33.661
22 Con5 (Path) 31.685 23 Con6 (Path) 32.187
24 Con7 (Path) 34.427
25 Con8 (Path) 32.238
Panel CNS_Neurodegeneration_V2.0
The plates for Panel CNS_Neurodegeneration_V2.0 include two control wells and 47 test samples comprised of cDNA isolated from postmortem human brain tissue obtained from the Harvard Brain Tissue Resource Center (McLean Hospital) and the Human Brain and Spinal Fluid Resource Center (VA Greater Los Angeles Healthcare System). Brains are removed from calvaria of donors between 4 and 24 hours after death, sectioned by neuroanatomists, and frozen at -80°C in liquid nitrogen vapor. All brains are sectioned and examined by neuropathologists to confirm diagnoses with clear associated neuropathology.
Disease diagnoses are taken from patient records. The panel contains sixteen brains from Alzheimer's disease (AD) patients, and twenty-nine brains from "Normal controls" who showed no evidence of dementia prior to death. The twenty-nine normal control brains are divided into two categories: Fourteen controls with no dementia and no Alzheimer's like pathology (Controls) and fifteen controls with no dementia but evidence of severe Alzheimer's Uke pathology, (specifically senile plaque load rated as level 3 on a scale of 0- 3; 0 = no evidence of plaques, 3 = severe AD senile plaque load). Tissue from the temporal cotex (Broddmann Area 21) was selected for all samples from the Harvard Brain Tissue Resource Center; from the two sample from the Human Brain and Spinal Fluid Resource Center (samples 1 and 2) tissue from the inferior and superior temporal cortex was used; each sample on the panel represents a pool of inferior and superior temporal cortex from an individual patient. The temporal cortex was chosen as it shows a loss of neurons in the intermediate stages of the disease. Selection of a region which is affected in the early stages of Alzheimer's disease (e.g., hippocampus or entorhinal cortex) could potentially result in the examination of gene expression after vulnerable neurons are lost, and missing genes involved in the actual neurodegeneration process.
In the labels employed to identify tissues in the CNS_Neurodegeneration_V2.0 panel, the following abbreviations are used:
AD = Alzheimer's disease brain; patient was demented and showed AD-like pathology upon autopsy Control = Control brains; patient not demented, showing no neuropathology
AH3 = Control brains; pateint not demented but showing sever AD-like pathology
Inf & Sup Temp Ctx Pool = Pool of inferior and superior temporal cortex for a given individual
A. CG50253-01: Epidermal Growth Factor
Expression of full-length physical clone CG50253-01 was assessed using the primer-probe set Ag2505, described in Table AA. Results of the RTQ-PCR runs are shown in Tables AB, AC, AD, AE, AF and AG.
Table AA. Probe Name Ag2505
Table AB. AI_comprehensive panel_vl.O
Table AC. CNS_neurodegeneration_vl.O
Table AD. Panel 1.3D
Table AE. Panel 4D
Table AG. general oncology screening panel_v_2.4
AI_comprehensive panel_vl.0 Summary: Ag2505 Highest expression of this gene was seen in a sample derived from rheumatoid arthritis bone (CT=27). This gene displayed ubiquitous expression, but expression of this gene was higher in bone, synovium, cartilage and synovial fluid from RA patients as compared to expression in samples from OA patients, normal and diseased lung samples. Expression of this gene was downregulated in Crohn's samples as compared to the corresponding control samples. This gene encodes a putative novel adhesion molecule which is homologous to mouse POEM (preosteoblast epidermal growth factor-like repeat protein with meprin)or nephronectin. Murine nephronectin may function in multiple biological processes including development of the kidney (Miner JH. J Cell Biol 2001 Jul 23;154(2):257-9) and bone and contribute to liver and lung fibrosis (Levine et al., 2000, Am J Pathol 2000 Jun;156(6):1927-35). Therapeutic modulation of this gene or gene product is useful in the treatment of autoimmune and inflammatory diseases such as rheumatoid and osteoarthritis, Inflammatory bowel disease, COPD, asthma, psoriasis, liver and lung fibrosis. CNS_neurodegeneration_vl.0 Summary: Ag2505 Greater expression of this gene in the temporal cortex of Alzheimer's disease patients demonstrates a functional role for this gene, an EGF homolog, in neurodegenerative disease. Alpha secretase activity, which is generally believed to be a beneficial processing alternative to beta secretase, is increased by EGF in neuronal cells. (Slack BE. C.Biochem J 1997 Oct 1;327 ( Pt l):245-9 ) This suggests the increased expression observed here is a compensatory action in the brain to counter the mechanisms of Alzheimer's Disease. This gene or the protein encoded by this gene is a potential therapeutic agent for the treatment of Alzheimer's disease and other neurodegenerative diseases.
EGF is also known to facilitate long term potentiation (LTP) in the hippocampus, a process thought to underlie learning and memory. (Abe K Brain Res 1992 Oct 16;593(2):335-8 ) This gene has utility in treating disorders of memory, such as neurodegenerative diseases and aging, when used alone or incombination with other growth factors such as bFGF. In addition, EGF supports the growth and differentiation of dopaminergic neurons, which are selectively vulnerable to loss in Parkinson's disease. (S torch A. Exp Neurol 2001 Aug;170(2):317-25 ). This gene or gene product has utility in treating Parkinson's Disease.
Panel 1.3D Summary: Ag2505 Highest expression of this gene was detected in the thyroid (CT=29.3), with lower but still significant levels of expression seen in other metabolic tissues, including skeletal muscle, fetal skeletal muscle, small intestine, stomach, pancreas, adipose and fetal heart. Very low levels were also seen in heart and placenta. This gene encodes a putative novel adhesion molecule. Studies in mouse have revealed a gene (perhaps the mouse ortholog of this human gene) very homologous to this gene that is called POEM (preosteoblast epidermal growth factor-like repeat protein with meprin, A5 protein, and receptor protein-tyrosine phosphatase mu domain; Morimura N et al., J Biol Chem 2001 Nov 9;276(45):42172-81) or nephronectin (Brandenberger R et al., J Cell Biol 2001 Jul 23;154(2):447-58). POEM/nephronectin seems to be a ligand for the alphaδbetal integrin as evidenced by two independent sets of published data. Integrins are known to mediate development and organogenesis. (Schwartz et al., Annu. Rev. Cell Dev. Biol. 11, 549-599, 1995; Clark and Brugge, Science 268, 233-239, 1995)Other known ligands for the alphaδbetal integrin include fibronectin, vitronectin, tenascin, and osteopontin. Modulation of the expression or activity of this gene or gene product by protein, small molecule, or antibody therapeutics is an effective therapeutic for disorders involving alphaδbetal integrin signaling.
Overall, this gene is expressed at a low to moderate level in the normal tissues on this panel. The brain, prostate, lung and colon cancer cell lines show a very low level of expression compared to the normal organs. This molecule is a candidate as a therapeutic inhibitor for these cancers. Expression in the brain in the substantia nigra, hippocampus, cortex, amygdala, thalamus and spinal cord indicates a further functional role for this gene product in CNS processes mediated by these regions. Please see CNS_neurodegeneration_vl.O for discussion of utility in the central nervous system.
Panel 4D Summary: Ag 2505 Highest expression of this transcript was found in the thymus and the lung (CTs=27-28). Consistent with this lung expression, this transcript was found in the pulmonary mucoepidermoid cell line H292 and was up-regulated upon treatment with the Th2 cytokines IL4 and IL9. This gene was also expressed at lower levels in lung fibroblasts treated with IL4. Modulation of the expression or activity of this gene or gene product by small molecule, protein or antibody therapeutics is beneficial for the treatment of inflammatory lung diseases such as asthma, emphysema and chronic obstructive pulmonary diseases. Therapeutics designed with the gene or the protein encoded for by this transcript are important for maintaining or restoring normal function of thymus during inflammation.
Panel 5 Islet Summary: Ag2505 Highest expression of this gene was detected in uterus (CT=30). Moderate expression of this gene was also seen in adipose and skeletal muscle of gestational diabetic patients both requiring and not requiring daily injections of insulin. This gene was also expressed in samples derived from a pregnant and a nondiabetic, but overweight patient. In addition, this gene was also expressed in islet beta cells (those that are insulin producing) and small intestine. Therefore, therapeutic modulation of this gene or gene product is useful in the treatment of metabohcally related diseases including obesity, Type I and Type II diabetes. general oncology screening panel_v_2.4 Summary: Ag2505 Highest expression of this gene was detected in prostate cancer (CT=27.7). Moderate to low levels of expression of this gene was seen in both normal and cancer samples derived from colon, lung, prostate and kidney. Consistent with panels 2.2 and 2D, expression of this gene was downregulated in kidney cancer as compared to normal kidney. But higher expression of this gene was seen in colon cancer as compared to corresponding normal adjacent sample. Therefore, expression of this gene distinguishes between cancer and normal kidney and colon tissue. Please see panel 1.3, 1.6, 2.2 for further discussion on the utility of this gene.
B. CG50377-01 and CG50377-02 and CG50377-03 and CG50377-04 and CG50377-05 and CG50377-06: (Cub-Sushi)x domain containing protein
Expression of gene CG50377-01 and variants CG50377-02, CG50377-03, CG50377-04, CG50377-05 and CG50377-06 was assessed using the primer-probe sets Ag2420 and Ag5824, described in Tables BA and BB. Results of the RTQ-PCR runs are shown in Tables BC, BD, BE and BF.
Table BA. Probe Name Ag2420
Table BB. Probe Name Ag5824
Table BC. General_screening_panel_vl.5
Renal ca. UO-31 0.0 Pancreas Pool 0.3
Table BD. Panel 1.3D
TableBE.Panel4.1D
Table BF. Panel 4D
HUVEC starved 0.0
General_screeningjpanel_vl.5 Summary: Ag5824 Highest expression of this gene was detected in a brain cancer cell line (CT=28.2). Significant expression of this gene was also seen in two melanoma and three brain cancer cell lines. Therefore, expression of this gene detects the presence of melanoma and brain cancer. Therapeutic modulation of this gene or its protein product is useful in the treatment of these cancers.
In addition, this gene was moderately expressed in all the regions of central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therapeutic modulation of this gene or gene product is useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.
Panel 1.1 Summary: Ag575 Expression of this gene was restricted to normal brain derived tissue. In addition, expression was associated with a number of samples derived from brain cancer cell lines, with highest expression seen in the brain cancer cell line U87- MG (CT=23.5). Thus, the expression of this gene distinguishes these brain derived tissues from other samples in the panel. Therapeutic modulation of this gene or gene product, through the use of antibodies, small molecule drugs or protein therapeutics is of benefit in the treatment of brain cancer.
This gene also had moderate levels of expression in a number of metabolic tissues including adrenal, pituitary, heart, and fetal skeletal muscle. Panel 1.3D Summary: Ag2420 Expression of this gene was restricted to normal brain derived tissue, with highest expression seen in the fetal brain (CT=29.8). In addition, expression was associated with a number of samples derived from brain cancer cell lines. Thus, the expression of this gene distinguishes these brain derived tissues from other samples in the panel. Therapeutic modulation of this gene or gene product, through the use of antibodies, small molecule drugs or protein therapeutics is of benefit in the treatment of brain cancer.
This gene represents a novel protein containing CUB and sushi domains. Its expression profile was highly brain-preferential; levels in the CNS appear 10-fold greater than in other tissues. At least one brain-specific protein containing CUB and sushi domains has been linked to seizures, and shows differential expression in response to pentylentetrazole
(Shimizu-Nishikawa K, Brain Res Mol Brain Res 1995 Feb;28(2):201-10 ). This gene or its protein product is a drug target for the treatment of epilepsy or any seizure disorder.
Panel 4.1D Summary: Ag5824 Highest expression of this gene was detected in IL-9 activated lung fibroblast cells (CT=32). Significant expression of this gene was also seen in resting and activated astrocytes, lung fibroblasts and dermal fibroblasts. The expression pattern in this panel was in agreement with that seen in panel 4D. Please see panel 4D for further discussion on the utility of this gene.
Panel 4D Summary: Ag2420 This gene encodes a cub-domain and sushi-domain containing single-pass membrane protein. Highest expression of this gene was seen in resting astrocytes (CT=30.6). Significant expression of this gene was also detected in TNFalpha + IL-1 -beta-stimulated astrocytes, resting and cytokine-stimulated lung fibroblasts and dermal fibroblasts. Therefore, an isolated extracellular domain of this gene or its protein product is useful as a therapeutic protein to reduce or eliminate the symptoms of multiple sclerosis, chronic obstructive pulmonary disease, asthma, or emphysema, and psoriasis.
Agonist or antagonist antibodies that stimulate or inhibit the function of this gene or its protein product are useful as therapeutics to reduce or eliminate the symptoms of multiple sclerosis, chronic obstructive pulmonary disease, asthma, or emphysema, and psoriasis.
C. CG50389-04: Interleukin-1 receptor related protein like
Expression of gene CG50389-04 was assessed using the primer-probe set Ag4811, described in Table CA. Results of the RTQ-PCR runs are shown in Tables CB and CC.
Table CA. Probe Name Ag4811
Table CB. General j3creening_panel_v 1.4
Table CC. Panel 4. ID
General_screening_panel_vl.4 Summary: Ag4811 The highest expression of this gene was detected in a sample derived from a gastric cancer cell line (NCI-N87) (CT=29.2). There was low to moderate expression associated with other gastric cancer cell lines, colon cancer cell lines, breast cancer cell lines, ovarian cancer cell lines and a renal cancer cell line. The expression of this gene or protein product is useful as a marker for gastric cancer, colon cancer, breast cancer, ovarian cancer or renal cancer. Therapeutic modulation of this gene or its protein product through the use of antibodies, protein therapeutics or small molecule drugs is useful in the treatment of gastric cancer, colon cancer, breast cancer, ovarian cancer or renal cancer. This gene was also moderately expressed in a number of metabolic tissues including adipose, fetal liver, skeletal muscle, adrenal, thyroid and pancreas. Therapeutic modulation of this gene, expressed protein and/or use of antibodies, protein therapeutics or small molecule drugs targeting the gene or gene product are useful in the treatment of metabolic diseases, including obesity and Types 1 and 2 diabetes. This gene product was expressed at low levels in the brain. This gene encodes a protein with homology to an interleukin 1 receptor-like protein. I terleukins are involved in many brain pathologies due to the pro-inflammatory action of interleukins. Inflammation is a key pathological process mediating the damage seen in many disease states including stroke, Alzheimer's disease, and spinocerebellar ataxias (J Neurosci 2001 Aug l;21(15):5389-96). IL-1 receptor like protein has been shown to bind IL-18 (J Immunol 1999 May l;162(9):5041-4), which is involved in CNS inflammation. Moreover, anti-inflammatory agents that are associated with reduced risk of Alzheimer's Disease, such as NSAEDS (Drug Saf 2001;24(11):801-11), have been shown to inhibit IL-18 expression. Therapeutic modulation of this gene, expressed protein and/or use of antibodies or small molecule drugs targeting the gene or gene product are useful in the treatment of stroke, Alzheimer's disease, and spinocerebellar ataxias and any other CNS disorder in which inflammation plays a role.
Panel 4.1D Summary: Ag 4811 The highest expression of this gene was detected in keratinocytes, regardless of their treatment. This transcript encodes a novel IL-1 receptor related protein that may have the potential to trigger novel members of the IL- 1 family members as described by Debets et. al. (J Immunol 2001 Aug 1;167(3): 1440-6; J Biol Chem 1996 Feb 23;271(8):3967-70). Novel IL1 receptor like molecules have been cloned and reported to lead to activation of NF-kB and IL18 production, a potent inflammatory cytokine associated with lung inflammation, IBD and psoriasis. IL1 R family members have also been shown to mediate inflammatory signals through NF-kB activation, among other signalling pathways. Therapeutic modulation of this gene, expressed protein and/or use of antibodies or small molecule drugs targeting the gene or gene product are useful in the treatment of inflammatory lung and skin diseases such as asthma, bronchitis, emphysema and psoriasis. This gene was also expressed at moderate levels in neutrophils stimulated with TNF-a and LPS. The expression of this transcript in neutrophils demonstrates an important role of this receptor in innate immunity and in inflammation associated with neutrophil accummulation such as observed in inflammatory bowel diseases, psoriasis, asthma, chronic bronchitis and rheumatoid arthritis. Therapeutic modulation of this gene, expressed protein and/or use of antibodies or small molecule drugs targeting the gene or gene product are useful in the treatment of inflammatory disorders including inflammatory bowel diseases, psoriasis, asthma, chronic bronchitis and rheumatoid arthritis.
D. CG50389-06: Interleukin-1 receptor related protein
Expression of full-length physical clone CG50389-06 was assessed using the primer-probe sets Ag4944 and Ag4945, described in Tables DA and DB. Results of the RTQ-PCR runs are shown in Table DC. Table DA. Probe Name Ag4944
Table DB. Probe Name Ag4945
Table DC. Panel 4. ID
Panel 4.1D Summary: 4845/4944 Highest expression of the CG50389-06 transcript was seen in keratinocytes, regardless of their treatment with TNF-a plus IL-lb. It was also found to a lesser extent in neutrophils and lung fibroblasts. This transcript encodes for a novel IL-1 receptor related protein that may have the potential to trigger novel members of the IL-1 family members as described by Debets and Pamet. (J Immunol 2001 Aug l;167(3):1440-6; J Biol Chem 1996 Feb 23;271(8):3967-70 ). Novel IL1 receptor like molecules have been cloned and reported to lead to activation of NF-kB and IL18 production, a potent inflammatory cytokine associated with lung inflammation, IBD and psoriasis. IL1 R family members have also been shown to mediate inflammatory signals through NF-kB activation, among other signalling pathways. Modulation of the function of this receptor by the use of protein therapeutics or antibodies prevents or reduces the severity of inflammatory processes observed in inflammatory lung and skin diseases such as asthma, bronchitis, emphysema and psoriasis.
E. CG50391-08 and CG50391-09 and CG50391-01: Expression of gene CG50391-08 was assessed using the primer-probe sets Ag2654,
Ag2726, and Ag2826, described in Tables EA, EB, and EC. Results of the RTQ-PCR runs are shown in Tables ED, EE, EF and EG.
Table EA. Probe Name Ag2654
Table EB. Probe Name Ag2726
Table EC. Probe Name Ag2826
Table ED. Panel 1.3D
Table EE. Panel 2D
Table EF. Panel 4D
Table EG. Panel 5D
Panel 1.3D Summary: Ag2654/Ag2726/Ag2826 Highest expression of this gene was detected in fetal skeletal muscle (CTs=27-28.2). This gene was expressed at much higher levels in fetal when compared to adult skeletal muscle (CT=35). The relative overexpression of this gene in fetal skeletal muscle demonstrates that the gene or protein product enhances muscular growth or development in the fetus and also acts in a regenerative capacity in the adult.
Moderate to low levels of expression of this gene were also seen in tissues with metabolic/endocrine functions including pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therapeutic modulation of the activity of this gene or gene product is useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.
Moderate expression of this gene was also seen in number of cell lines derived from melanoma, liver, renal, breast, lung, Ovarian, and brain cancers.
Panel 2D Summary: Ag2654/Ag2726/Ag2826 Highest expression of this gene was detected in a normal bladder sample (CTs=26-27.5). Significant expression of this gene was seen in both normal and cancer samples used in this panel. Expression of this gene was higher in normal lung, bladder and breast samples as compared to their corresponding cancer samples.
Panel 4D Summary: Ag2654/Ag2726/Ag2826 Highest expression of this gene was detected in dermal fibroblasts (CTs=26.4-28). High to moderate expression of this gene was detected in dermal and lung fibroblasts, activated CD45RA CD4 lymphocyte cells, two way MLR, PBMC cells, resting monocytes, LPS treated macrophage, small airway epithelium, liver cirrhosis, lupus kidney, IBD colon, and normal tissues represented by colon, lung, thymus and kidney. Panel 5D Summary: Ag2654/Ag2726 Highest expression of this gene was seen in adipose (CTs=30). This gene showed ubiquitous expression in this panel, with moderate expression in adipose, skeletal muscle, small intesting, uterus, placenta, kidney, and mesenchmyal stem cells.
F. CG50426-15 and CG50426-17 and CG50426-21: NEURESTIN Expression of full-length physical clone CG50426-15 and variants CG50426-17 and
CG50426-21 was assessed using the primer-probe sets Ag2679, Ag2728, Ag2975, Ag332, Ag047, and Ag47b, described in Tables FA, FB, FC, FD, FE, and FF. Results of the RTQ- PCR runs are shown in Tables FG, FH, FI and FJ. The CG50426-15 variant only corresponds to Ag332 and Ag47b. Table FA. Probe Name Ag2679
Table FB. Probe Name Ag2728
Table FC. Probe Name Ag2975
Table FD. Probe Name Ag332
Table FE. Probe Name Ag047
Table FF. Probe Name Ag47b
Primers Sequences Length Start i SEQ ID
Table FG. Panel 1
Table FH. Panel 2D
Table FL Panel 3D
Table FJ. Panel 4. ID
Panel 1 Summary: Ag047/Ag332/Ag47b Highest expression of this gene was detected in a brain cancer cell line (CTs=23-25). There was also significant expression in clusters of samples from melanoma, ovarian cancer, breast, lung, renal colon and brain cancer lines. Expression of this gene is associated with these forms of cancer and is useful as a diagnostic marker for the presence of these cancers. Therapeutic modulation of the expression or function of these genes or gene products is useful in the treatment of ovarian, breast, lung, renal, and brain cancer and melanoma.
In addition to significant expression in brain cancer cell lines, this gene was preferentially expressed in the brain. This expression profile shows that this gene product plays a role in CNS processes. This gene encodes a homolog of a member of the neurestin family, Ten M2, and plays a role in neuronal regeneration. (Otaki, J. Dev Biol 1999 Aug 1 ;212(1): 165- 81 ) Agents that induce the expression or activity of this gene or gene product have utility as neuronal regeneration drugs and specifically for the treatment of neurodegenerative diseases, stroke, and neuronal trauma. Among tissues with metabolic function, this gene showed consistent expression in thyroid, adult and fetal heart, liver and skeletal muscle. Thus, this gene product is an antibody target for the treatment of metabolic and endocrine disease, including obesity and Types 1 and 2 diabetes. In addition, this gene was eressed at higher levels in adult liver than in fetal liver and is be useful for differentiating between the two sources of liver tissue. Panel 2D Summary: Ag047/Ag2679/Ag2728 Highest expression of this gene was detected in lung cancer samples (CTs=27-29). This gene was expressed at a higher level in gastric, bladder, and two samples each of lung and kidney cancer relative to the normal adjacent tissues. Expression of this gene is useful as a marker to detect the presence of these cancers. Therapeutic modulation of this gene, expressed protein and/or use of antibodies, protein therapeutics or small molecule drugs are useful in the treatment of these cancers.
Panel 3D Summary: Ag047 This gene was expressed in squamous cell carcinoma, glioma, small cell lung cancer cell lines. Expression of this gene is associated with these cancers and therapeutic modulation of this gene expressed protein and/or use of antibodies, protein therapeutics or small molecule drugs is of use in the treatment of these cancers. Panel 4.1D Summary: Ag047/Ag047b/Ag2975 Highest expression of this gene was detected in activated small airway epithelium (CT=27-32). This gene was expressed at moderate level in small airway epithelium, astrocytes and keratinocytes. The expression of this gene in these tissues was up-regulated upon treatment with the inflammatory cytokines TNF-a and ILl. This gene encodes for a neurestin like molecule whose role in neuronal regeneration has been demonstrated. Modulation of the expression of this gene or its expressed protein is useful in the regeneration or repair mechanism of these tissues during inflammation and for the treatment of inflammatory brain and lung diseases such as bronchitis, chronic pulmonary diseases, skin and CNS inflammatory diseases, multiple sclerosis or stroke.
G. CG50646-04: polydom protein
Expression of gene CG50646-04 was assessed using the primer-probe sets Ag768 and Ag984, described in Tables GA and GB. Results of the RTQ-PCR runs are shown in Tables GC and GD. Table GA. Probe Name Ag768
Table GB. Probe Name Ag984
Table GC. Panel 1.2
Panel 1.2 Summary: Ag768 Highest expression of this gene was seen in placenta (CT=21). This gene encodes a polydom-like protein and was also highly expressed in mammary gland, skeletal muscle. This gene may be involved in cellular adhesion (Gilges D. Biochem J 2000 Nov 15;352 Pt 1:49-59). Expression of this gene is useful in differentiating between placental tissues and other tissues on this panel. Modulation of this gene or its protein product is useful in reproductive and skeletal muscle physiology.
This gene was more highly expressed in fetal kidney (CT=33) than in adult kidney (CT=40). Conversely, this gene was more highly expressed in adult lung and liver (CTs=28-32) than in fetal lung and liver (CTs=38-40). Thus, expression of this gene is useful in differentiating between the adult and fetal sources of these tissues.
Panel 4D Summary: Ag768 Highest expression of this gene was seen in lung fibroblasts stimulated with IFN-gamma (CT=27.4). Significant expression was seen in many samples derived from the lung including lung fibroblasts stimulated with different cytokines, the pulmonary mucoepidermoid cell line H292 stimulated with the same cytokines, and normal lung tissue. The expression of this gene in lung cells and lung tissue shows that this gene or its protein product is involved in normal homeostasis of the lung, as well as pathological and inflammatory lung disorders, including chronic obstructive pulmonary disease, asthma, allergy and emphysema.
Significant levels of expression of this gene in dermal fibroblasts show that this gene and its protein product is involved in skin disorders, including psoriasis.
Moderate to low expression of this gene was also seen in many other cells with important immune function, including stimulated macrophages and monocytes, coronary artery smooth muscle cells, stimulated peripheral blood mononuclear cells, lymphocyte activated killer cells (LAK), astrocytes, activated CD45RA cells, and normal colon, thymus and kidney. This widespread expression demonstrates that this gene or the protein encoded by this gene is involved in other inflammatory and autoimmune conditions, including inflammatory bowel disease, rheumatoid arthritis and osteoarthritis.
H. CG50736-09: CD44-LIKE PRECURSOR FELL Expression of gene CG50736-09 was assessed using the primer-probe sets Ag2742, Ag2743, Ag2744, Ag2745, Ag2746, Ag793, Ag812, Ag03 and Ag068, described in Tables HA, HB, HC, HD, HE, HF, HG, HH and HI. Results of the RTQ-PCR runs are shown in Tables HJ, HK, HL, HM, HN and HO.
Table HA. Probe Name Ag2742
Table HB. Probe Name Ag2743
Table HC. Probe Name Ag2744
Table HD. Probe Name Ag2745
Table HE. Probe Name Ag2746
Start SEQ ID
Primers Sequences iLength Position 1 No
Forward 5 ' -ctgcaaaatcttacgactttgg-3 ' 1 22 429 (1276
Probe TET-5 ' -caacaaacaatggctacatcaaatttagca- | 30 451 (1277
Table HF. Probe Name Ag793
Table HG. Probe Name Ag812
Table HH. Probe Name Ag03
Table HI. Probe Name Ag068
Table HJ. Panel 1
Bladder 1 , 0.2 (Melanoma LOX IMVI 0.1 | 0.5
Trachea 1 2.2 Melanoma* (met) SK-MEL-5 0.0 0.0
Kidney 0.1 0.4 JMelanoma SK-MEL-28 θ L3_
Kidney (fetal) 1 0 Ϊ.3
Table HK. Panel 1.2
Table HL. Panel 1.3D
Table HM. Panel 2D
Column A ■ ■ Rel. Exp.(%) Ag2742, Run 153641758
Column B - - Rel. Exp.(%) Ag2743, Run 153658357
Column C • - Rel. Exp.(%) Ag2744, Run 153670751
Column D • - Rel. Exp.(%) Ag2745, Run 153664739
Column E - ■ Rel. Exp.(%) Ag2746, Run 153675220
Table HN. Panel 4D
1502
Table HO. general oncology screening panel_v_2.4
Panel 1 Summary: Ag03/Ag068 Highest expression of this gene was detected in the spleen (CTs=21-25). This gene was more highly expressed in normal tissue than in cancer cell lines. There were however detectable levels of expression in cell lines derived from melanoma, breast, renal, ovarian, lung, gastric and colon cancers. The difference in levels of expression of this gene is useful for differentiating between these cancer cell line samples and other samples on this panel and between normal tissues and malignancies from those cancers.
There were also higher levels of expression in lung, and kidney tissue from fetal sources (CTs=25-28) when compared to levels of expression in the adult (CTs=38-31). Expression of this gene or its protein product is useful for differentiating between adult and fetal lung and kidney tissue.
Among tissues with metabolic function, this gene was expressed in the liver, pituitary, thyroid, heart, skeletal muscle and adrenal gland. This demonstrates that the protein encoded by this gene is involved in the homeostasis of these tissues. Therapeutic modulation of the expression or function of this gene product is effective in the treatment of metabolic disorders, including obesity and diabetes.
This gene is a homolog of Stablin-1, and was also expressed at moderate levels in all brain regions examined. Because stablin is involved in angiogenesis, the therapeutic modulation of this gene or its protein product is of benefit in the treatment of stroke/cerebral ischemia/cerebral infarct.
Panel 1.2 Summary: Ag812 Highest expression of this gene was detected in the liver (CTs=25). Significant expression was also found in other metabolic tissues including fetal and adult heart, skeletal muscle, pancreas, thyroid, pituitary and adrenal gland. The high expression of this gene in the liver shows that this gene is involved in the normal homeostasis of that organ. Therapeutic modulation of the expression or function of this gene or protein product is effective in the treatment of diseases that involve the liver. This gene also showed low to moderate expression in the brain. Please see Panel 1 for discussion of potential utility of this gene in the central nervous system.
While this gene showed a greater association for normal tissue, there were significant levels of expression in a cluster of ovarian cancer cell lines. Expression of this gene is useful for differentiating between those samples and other samples on this panel, and between normal and malignant ovarian tissue. Therapeutic modulation of the expression or function of this gene or protein product is effective in the treatment of ovarian cancer.
Panel 1.3D Summary: Ag2742, Ag2743, Ag2744, Ag2745, Ag2746 Highest expression of this gene was detected in the liver (CTs=25). Significant expression was also found in the spleen (CTs=28-29). This result was in concordance with the results from Panel 1. This gene was expressed at higher levels in the fetal kidney and skeletal muscle (CTs=32- 34) than in the comparable adult tissues (CTs=40). Thus, expression of this gene is useful for differentiating between kidney and skeletal muscle tissue from adult and fetal sources. The higher levels of expression of this gene in the fetal tissues show that this gene product is involved in the development of these organs. Therapeutic modulation of the expression or function of these genes or their protein products is effective in treating disease of these organs in the adult.
In this panel, expression this gene was exclusively associate with normal tissue samples, a preference that was also observed in panels 1 and 1.2. Absence of expression of this gene is useful in differentiating between the cancerous cell lines on this panel, and their corresponding normal tissues.
Panel 2D Summary: Ag2742/Ag2743/Ag2744/Ag2745/Ag2746 Expression of this gene was highest and almost exclusive in the liver (CTs=27-29). This result was in concordance with the results from previous panels. The low/undetectable levels of expression in cancer samples was also in agreement with the results observed in the preceding experiments. Expression of this gene or its protein product is useful for differentiating between liver tissue and other samples on this panel and as a marker for liver tissue. Therapeutic modulation of the expression or function of the gene or the protein encoded by this gene is effective in the treatment of liver cancer or other disease that involve the liver. This gene is useful as a marker for breast cancer metastasis as it shows elevated expression in a metastatic breast cancer compared to expression in the primary cancer.
Panel 4D Summary: Ag812/Ag2742/Ag2743/Ag2744/Ag2745/Ag2746 The expression of this gene appears was highest in samples from cirrhotic liver, (CTs=32-33). Low level expression was also detected in samples derived from normal lung. The presence of this gene in liver cirrhosis (a component of which involves liver inflammation and fibrosis) shows that therapeutic agents involving this gene or its protein product are useful in reducing or inhibiting the inflammation associated with fibrotic and other inflammatory diseases. general oncology screening panel_v_2.4 Summary: Ag812 Highest expression of this gene was seen in metastatic melanoma (CTs=31). Gene, protein, antibodies or small molecule therapeutics that target this gene or its protein product are useful in the treatment of melanoma.
I. CG50925-01 and CG50925-02: TENM5
Expression of gene CG50925-01 and variant CG50925-02 was assessed using the primer- probe set Agl402 described in Table IA. Results of the RTQ-PCR runs are shown in Tables IB, IC, ID, IE, IF, IG, and IH.
Table IA. Probe Name Agl402
Table IB. HASS Panel vl.O
Table IC. Human Metabolic
Table ID. Panel 1.2
Table IE. Panel 2.2
Table IF. Panel 3D
Table IG. Panel 4D
Table IH. Panel 5 Islet
HASS Panel vl.O Summary: Agl402 Highest expression of this gene was detected in primary melanocytes A5 sample (CT=27). This gene showed wide spread expression in this panel with significant expression in astrocytes, glioma and the cancer cell lines subjected to serum starvation, acidosis and anoxia for different time periods. This expression pattern demonstrates that this gene or its protein product is important for cell survival and proliferation.
Human Metabolic Summary: Agl402 Highest expression of this gene was detected in histiocystic lymphoma cell line(CT=23.6). This gene showed a ubiquitous expression with high expression in cancer cell lines, and metabolic tissues. Please see panel 1.2 for further discussion on the utility of this gene.
Panel 1.2 Summary: Agl402 This gene was expressed at highest levels in heart (CT = 22-23), prostate, and ovarian tissue and was expressed to a lesser degree across a number of samples in Panel 1.2. This gene was expressed largely in normal tissues when compared to cultured cell lines. Expression of this gene is useful for differentiating between heart, prostate and ovarian tissue from other tissues.
Among other metabohcally relevant tissues, this gene was moderately expressed in thyroid, pituitary gland, and pancreas, and was highly expressed in adrenal gland, skeletal muscle and fetal/adult liver. High expression of this gene in insulin-responsive tissues such as skeletal muscle and liver demonstrates that this gene or gene product is an effective drug target for the treatment of Type 2 diabetes. High expression in adrenal gland and heart also shows that this gene or its protein product is an antibody, protein, or small molecule target for the treatment of diseases involving these two tissues.
This gene encodes a putative leucine-rich-repeat (LRR), GPCR-like protein. In Drosophilia, the LRR region of axon guidance proteins has been shown to be critical for function, especially in axon repulsion (Battye R. J. Neurosci. 21 : 4290-4298.). The leucine- rich-repeat protein encoded by this gene showed high expression across all brain regions, with expression detected in amygdala, cerebellum, hippocampus, thalamus, cerebral cortex and spinal cord, making it an excellent candidate neuronal guidance protein for axons, dendrites and/or growth cones in general. Therapeutic modulation of the levels of this gene or protein, or possible signaling via this protein, is of utility in enhancing/directing compensatory synaptogenesis and fiber growth in the CNS in response to neuronal death (stroke, head trauma), axon lesion (spinal cord injury), or neurodegeneration (Alzheimer's, Parkinson's, Huntington's, vascular dementia or any neurodegenerative disease). In addition, the this gene showed very high levels of expression in the substantia nigra, where loss of dopaminergic neurons is a hallmark of Parkinson's disease and progressive supranuclear palsy. Therapies based upon this gene or its protein product are useful in the treatment of these diseases.
This protein also contains homology to the GPCR family of receptors. Several neurotransmitter receptors are GPCRs, including the dopamine receptor family, the serotonin receptor family, the GABAB receptor, muscarinic acetylcholine receptors, and others; thus this GPCR represents a novel neurotransmitter receptor. Targeting various neurotransmitter receptors (dopamine, serotonin) has proven to be an effective therapy in psychiatric illnesses such as schizophrenia, bipolar disorder and depression. Furthermore the cerebral cortex and hippocampus are regions of the brain that are known to play critical roles in Alzheimer's disease, seizure disorders, and in the normal process of memory formation. Therapeutic modulation of this gene or its protein product is beneficial in one or more of these diseases, as is stimulation and/or blockade of the receptor coded for by the gene. Levels of this gene were high, however, in areas outside of the central nervous system (such as the heart, ovaries, and prostate), demonstrating the possibility of a wider role in intercellular signaling.
Panel 2.2 Summary: Agl402 Among the samples on this panel, expression of this gene was highest in a sample of normal ovarian tissue adjacent to an ovarian cancer (CT = 28.5). There was also a predominance of this expression pattern in a number of other matched normal tissue samples including lung, colon and kidney. Umatched normal tissue samples, such as breast, uterus, ovary and prostate also showed appreciable expression of this gene. This gene or its protein product are useful in differentiating adjacent normal tissue from corresponding malignant tissue for the above listed tissue types. The therapeutic modulation of the gene or the protein encoded by this gene is of use in the treatment of the above listed malignancies. Panel 3D Summary: : Agl402 Expression of this gene was highest in a sample derived from a histiocytic lymphoma cell line (CT = 28.2). This gene was also highly expressed in several CNS cancer cell lines and cell lines derived from a variety of sarcomas. The expression of this gene is useful for the differentiation of cell lines derived from sarcomas and CNS cancers vs. other cell lines. Therapeutic modulation of this gene or gene product is of therapeutic benefit in the treatment of sarcomas or CNS cancers.
Panel 4D Summary: This gene was highly expressed in endothelium and fibroblasts and was selectively down regulated in these tissues by treatment with IL-lbeta and TNFalpha. This gene encodes a putative LRR-containing GPCR that is down regulated in response to the proinflammatory cytokines IL-lbeta and TNFalpha in endothelium and fibroblasts. The natural ligand for this GPCR is induced by treatment with TNF and IL-1 and subsequent ligand binding to this putative GPCR results in feedback inhibition. Other signaling pathways induced by TNF and IL-1 reduce the level of transcription of this gene. Antibodies, small molecule or protein therapeutics which prevent the signaling through this putative GPCR are important in the treatment of diseases such as asthma, emphysema, psoriasis, and arthritis.
Panel 5 Islet Summary: Agl402 Highest expression of this gene was detected in the uterus of a diabetic patient on insulin (CT=28). This gene showed widespread expression in this panel. This pattern was in agreement with the expression profile in General_screening_panel_vl.2 and demonstrates a role for the gene product in cell survival and proliferation. Please see panel 1.2 for further discussion on the utility of this gene.
J. CG51027-06: OPIOID BINDING PROTEIN/CELL ADHESION MOLECULE PRECURSOR
Expression of full-length physical clone CG51027-06 was assessed using the primer-probe set Ag6959, described in Table JA. Results of the RTQ-PCR runs are shown in Table JB. Table JA. Probe Name Ag6959
Table JB. General_screening_panel_vl.6
General_screening_panel_vl.6 Summary: Ag6959 Highest expression of this gene was detected in cerebellum (CT=28.6). This gene showed a highly brain-preferential expression, and was expressed at moderate levels in all brain regions examined. This gene codes for a homolog of rat opioid-binding cell adhesion molecule (OBCAM), which is involved in axonal outgrowth (Hachisuka A, Brain Res Dev Brain Res 122(2):183-91) and may be involved in the synaptic machinery. The limited ability of the CNS to regenerate after injury is the major impediment to the treatment of stroke, spinal cord and head trauma, and neurodegenerative diseases. Modulation of this gene, expressed protein and/or use of antibodies or small molecule drug targeting this gene or gene product is useful in enhancing neuroregeneration in any or all of these clinical conditions.
Moderate expression of this gene was also seen in two lung cancer cell line. Expression of this gene is useful as marker to detect the presence of lung cancer and modulation of this gene or expressed protein is useful in the treatment of lung cancer.
K. CG51027-09: OPIOID BINDING PROTEIN/CELL ADHESION MOLECULE PRECURSOR
Expression of gene CG51027-09 was assessed using the primer-probe sets Ag3090 and Ag3092, described in Tables KA and KB. Results of the RTQ-PCR runs are shown in Tables KC and KD.
Table KA. Probe Name Ag3090
Table KB. Probe Name Ag3092
Table KC. Panel 1.3D
Table KD. Panel 4D
Panel 1.3D Summary: Ag3090/Ag3092 Highest expression of this gene was detected in regions of the brain, specifically the thalamus and fetal brain (CTS=29-30). This gene showed a highly brain-preferential expression, and was expressed at high levels in all brain regions examined. The protein encoded by this gene is a homolog of opioid-binding cell adhesion molecule (OBCAM), which is involved in axonal outgrowth and in the synaptic machinery. The limited ability of the CNS to regenerate after injury is the major impediment to the treatment of stroke, spinal cord and head trauma, and neurodegenerative diseases. Selective modulation of this gene or its protein product is useful in enhancing neuroregeneration in any or all of these clinical conditions. Panel 4D Summary: Ag3092 Expression of this gene was limited to a sample derived from secondary Th2 cells (CT=34.2). Therapeutic modulation of this gene or expressed protein is useful in reducing or eliminating the symptoms in patients with diseases related to the functions of Th2 cells, including asthma and allergies.
L. CG51373-08 and CG51373-10 and CG51373-11: WEAKLY SIMILAR TO NEURAL CELL ADHESION MOLECULE 1, LARGE ISOFORM PRECURSOR
Expression of full-length physical clone CG51373-08 and variants CG51373-10 and CG51373-11 was assessed using the primer-probe sets Ag271 and Ag271b, described in Tables LA and LB. Results of the RTQ-PCR runs are shown in Tables LC, LD, LE, LF and LG.
Table LA. Probe Name Ag271
Table LB. Probe Name Ag271b
Table LC. General_screeningjpanel_vl.4
Table LD. Panel 1
Table LE. Panel 2.2
Column A - Rel. Exp.(%) Ag271b, Run 175148876 Tissue Name Tissue Name
Table LF. Panel 3D
Table LG. Panel 4. ID
General_screening_panel_vl.4 Summary: Ag271/271b Highest expression of this gene was detected in a sample derived from a brain cancer cell line (SNB-75) (CTs=24). There was substantial expression in a number of brain cancer cell lines, renal cancer cell lines, breast cancer cell lines, ovarian cancer cell lines and melanoma cell lines. The expression of this gene is useful for the differentiation of SNB-75 cells from the other samples in the panel. Therapeutic modulation of this gene or gene product, through the use of small molecule drugs, antibodies or protein therapeutics is beneficial for the treatment of brain, renal, ovarian, breast cancers or melanoma.
This gene also had moderate and widespread expression in metabolic tissues including adipose, adult and fetal heart, adult and fetal skeletal muscle, adrenal, thyroid and pancreas. This gene or gene product is an antibody, protein or small molecule target for the treatment of metabolic and endocrine disease, including obesity and Types 1 and 2 diabetes. This gene was differentially expressed in fetal (CTs=29-30) vs adult liver (CTs=33) and expression of this gene or its protein product is useful differentiate between the two sources of this tissue. The higher levels of expression in fetal liver demonstrate that this gene product is involved in the development of the liver and that this gene or gene product is useful in restoring mass or function to the adult liver.
This panel also showed low but significant levels of expression of this gene in the CNS. Please see panel 1 for a discussion of utility of this gene in the central nervous system. Panel 1 Summary: Ag271/Ag271b Highest expression of this gene was detected in a number of cancer cell lines, including ovarian cancer, pancreatic cancer, prostate cancer, melanoma, renal carcinoma, and CNS cancers, when compared to normal controls. The data presented in panel 1 showed that this gene was expressed highly in samples derived from cancer cell lines and not highly expressed in samples derived from normal tissues. Within the normal kidney samples there was a consistent difference between adult and fetal tissues. Since cell lines and fetal tissues are more proliferative than normal tissues, this expression profile demonstrates that this gene or its protein product is involved in cell proliferation. Inhibition of expression or function of this gene or gene product is a therapeutic avenue for the treatment of cancer or other disease that involve cell proliferation. Therapeutic targeting of this gene or gene product with a monoclonal antibody, protein therapeutic or small molecule will limit or block the extent of tumor cell migration and invasion and tumor metastasis, particularly in melanomas, prostate cancers, pancreatic cancers, ovarian cancers, renal cell carcinomas and CNS cancers. This gene is also be an effective marker for the diagnosis and detection of a variety of cancers. This gene was also expressed in all CNS tissues examined, but at lower levels than the relatively high expression in all cancer cell lines examined and fetal kidney. This further demonstrates that this gene or its gene product is involved in the cell cycle or cell proliferation because the majority of cells in the CNS are post-mitotic. This gene is useful in stem cell research or therapy in controlling the transition from stem cell to post-mitotic differentiated cell and is of benefit in any disease associated with neuron loss such as Alzheimer's, Parkinson's, or Huntington's diseases, stroke, head trauma, spinal cord trauma, or spinocerebellar ataxia.
Panel 2.2 Summary: Ag271b Highest expression of this gene was seen in normal kidney. Significant expression was also seen in kidney cancer, melanoma and colon cancer when compared to normal adjacent tissue. Expression of this gene is useful in differentiating between these samples and other samples on this panel and as a marker for these cancers. Therapeutic targeting of this gene or its protein product with a monoclonal antibody, small molecule, or protein therapeutic will limit or block the extent of tumor cell migration and invasion and tumor metastasis in these tumors.
Panel 3D Summary: Ag271b Expression of this gene was highest in a gastric cancer cell line. Expression of this gene was detected in a number of cancer cell lines, a result that is consistent with the expression in Panel 1. This gene plays a role in cell proliferation. Inhibition of the expression or function of this gene or gene product is a therapeutic avenue for the treatment of cancer or other disease that involve cell proliferation.
Panel 4.1D Summary: Ag271b This gene, which encodes the extracellular domain of an immunoglobin domain containing membrane protein, was expressed in panel 4. ID in the following resting and cytokine-activated cells and tissues: HUVEC, lung microvascular endothelial cells, small airway epithelium, coronary artery smooth muscle cells, astrocytes, lung fibroblasts, and dermal fibroblasts. This gene or its gene product is useful as a target for therapeutic antibodies, small molecules or protein drugs which antagonize the function of the Ig domain-containing protein and reduce or eliminate the symptoms in patients with inflammatory diseases and autoimmune diseases, such as multiple sclerosis, chronic obstructive pulmonary disease, asthma, emphysema, rheumatoid arthritis, or psoriasis.
M. CG51622-01: Von Ebner Minor Salivary Gland Protein
Expression of gene CG51622-01 was assessed using the primer-probe set Ag719, described in Table MA. Results of the RTQ-PCR runs are shown in Tables MB and MC.
Table MA. Probe Name Ag719
Table MB. Panel 1.2
Table MC Panel 4D
Panel 1.2 Summary: Ag719 Highest expression of this gene was detected in the trachea (CTs=18-19). Low to moderate expression was also seen in a few cancer cell lines derived from melanoma, lung, and ovarian cancers. Low expression of this gene is also seen in stomach, pancreas, lung, mammary gland, bladder and spinal cord. Panel 4D Summary: Ag719 Highest expression of this gene was detected in lung (CTs=28-29). Moderate expression of this gene was also seen in resting and activated NCI- H292.
N. CG51622-03: Von Ebner Minor Salivary Gland Protein
Expression of gene CG51622-03 was assessed using the primer-probe set Ag5814, described in Table NA. Results of the RTQ-PCR runs are shown in Table NB.
Table NA. Probe Name Ag5814
Table NB. General_screening_panel_vl.5
Genera l_screeningjpanel_vl.5 Summary: Ag5814 High levels of expression of this gene were seen in the trachea (CT=27).
O. CG51622-04: Von Ebner Minor Salivary Gland Protein
Expression of gene CG51622-04 was assessed using the primer-probe set Ag5210, described in Table OA. Results of the RTQ-PCR runs are shown in Table OB.
Table OA. Probe Name Ag5210
Table OB. General_screening_panel_vl.5
Genera _screening_panel_vl.5 Summary: Ag5210 Moderate expression was seen in the trachea (CT=30).
P. CG51622-05: Von Ebner Minor Salivary Gland Protein
Expression of gene CG51622-05 was assessed using the primer-probe set Ag5103, described in Table PA. Results of the RTQ-PCR runs are shown in Tables PB, PC, PD and PE.
Table PA. Probe Name Ag5103
Table PB. AI_comprehensive panel_vl.O
Table PC. General_screening_panel_vl.5
Renal ca. ACHN 0.0 Pancreatic ca. CAP AN2 0.0
Renal ca. UO-31 0.0 Pancreas Pool 0.0
Table PD. Panel 4. ID
Table PE. general oncology screening panel_y_2.4
AI_comprehensive panel_vl.O Summary: Ag5103 Moderate levels of expression were seen in three RA samples, with highest expression in a bone sample from an RA patient (CT=30). Therapeutics targeting of this gene or its protein product is useful for the reduction and inhibition of the inflammation in RA. General_screening_panel__vl.5 Summary: Ag5103 Extremely high levels of expression were seen in the trachea (CT=23).
Panel 4.1D Summary: AG5103 Highest expression of this gene was detected in IFN gamma treated dermal fibroblasts (CT=31.6). Prominent expression was also seen in a cluster of treated and untreated NCI-H292 cells, a mucoepidermoid cell line. In comparison, expression in the normal lung was relatively low. The expression of the transcript in a cell line that is often used as a model for airway epithelium (NCI-H292 cells) demonstrates that this transcript is important in the proliferation or activation of airway epithelium. Therapeutics designed with the protein encoded for by the transcript are important in the treatment of diseases which include lung airway inflammation such as asthma and COPD. general oncology screening panel_v_2.4 Summary: Ag5103 Highest expression was seen in a melanoma sample (CT=31). Prominent expression was also seen in two samples derived from normal lung tissue.
Q. CG51821-01: Sialoadhesin Expression of gene CG51821-01 was assessed using the primer-probe set Ag274, described in Table QA. Results of the RTQ-PCR runs are shown in Tables QB, QC, QD, QE, QF and QG.
Table QA. Probe Name Ag274
Table QB. AI_comprehensive panel_vl.O
Column A - Rel. Exp.(%) Ag274, Run 228157466
Tissue Name A j Tissue Name 1 A
110967 COPD-F 4.3 112427 Match Control Psoriasis-F 1 1-8
110980 COPD-F 1.6 112418 Psoriasis-M 1 7.8
110968 COPD-M 5.2(112723 Match Control Psoriasis-M 1 3-3
110977 COPD-M 2.7(112419 Psoriasis-M ( 4.4 Table QC General_screening_panel_vl.4
Table QD. Panel 2D
Table QE. Panel 3D
Table OF. Panel 4D
Table QG. Panel 5D
AI_comprehensive panel_vl.O Summary: Ag274 Highest expression of this gene was detected in synovium of an osteooarthritis (OA) patient (CT=28.6). This gene showed a higher level of expression in the bone and synovium samples from OA patients relative to samples from rheumatoid arthritis patients and normal tissues. This gene encodes sialoadhesin (CDI 69), a lectin that binds to alpha-2,6-linked, sialic acid residues. It has been previously reported that expression of sialoadhesin is highly induced in synovial macrophages from patients with rheumatoid arthritis and in animal models of arthritis (Hartnell, A. Blood 97: 288-296; Dijkstra, C. D. Scand. J. Immunol. 26:5132). The expression profile in this panel confirmed expression of this gene in rheumatoid tissue and also demonstrated an upregulation in synovial tissue from OA patients. Modulation of this gene, expressed protein and/or use of antibodies or small molecule drug targeting the gene or gene product is useful in the treatment of osteoarthritis.
Low expression of this gene was also seen in samples from COPD lung, emphysema, atopic asthma, asthma, Crohn's disease (normal matched control and diseased), ulcerative colitis(normal matched control and diseased), and psoriasis (normal matched control and diseased). Therapeutic modulation of this gene or gene product is useful for the amelioration of symptoms/conditions associated with autoimmune and inflammatory disorders including psoriasis, asthma, inflammatory bowel disease, and rheumatoid arthritis. General_screening_panel_vl.4 Summary: Ag274 Highest expression of this gene was detected in bladder (CTs=27-29). Expression of this gene was mainly associated with normal tissues in this panel. Among tissues with metabolic or endocrine function, this gene was expressed at moderate levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therapeutic modulation of this gene or expressed protein is useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes. This gene was expressed at low levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therapeutic modulation of this gene product is useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression. Significant expression of this gene was also seen in a colon cancer cell line. Modulation of this gene or encoded protein is useful in the treatment of colon cancer.
Panel 2D Summary: Ag274 Highest expression of this gene was detected in muscle cancer metastasized from lung (CT=29). Moderate expression of this gene was also seen in normal and cancer samples from colon, lung, kidney, liver, prostate, bladder, ovary and stomach. Therapeutic modulation of this gene or expressed protein is useful in the treatment of these cancers.
Panel 3D Summary: Ag274 Expression of this gene was highest in the Ramos cell line stimulated with PMA and ionomycin for 16 hrs, followed by lower expression in cell lines derived from gastric carcinoma and pancreatic ductal carcinoma, and lower still in small cell lung carcinoma, medulloblastoma and myelogenous leukemia.
Panel 4D Summary: Ag274 Highest expression of this gene was detected in LPS treated monocytes (CTs=27). The expression of this gene was limited to LPS activated monocytes, macrophages and related cell types or derived from monocytes (dendritic cells). The putative sialoadhesin encoded by this gene directs monocyte extravasation into tissues, and acts as a cellxell interaction molecule. Modulation of this gene, expressed protein and/or use of antibodies is useful for blocking monocyte extravasation and reducing or inhibiting inflammation associated with asthma, psoriasis, emphysema, arthritis, and other inflammatory diseases.
Panel 5D Summary: Ag274 Highest expression of this gene was detected in adipose of a diabetic patient (CT=31). Significant expression of this gene was also seen in skeletal muscle and placenta from obese and/or diabetic patients. Therapeutic modulation of this gene or expressed protein is useful in the treatment of metabolic/endocrine diseases such as obesity and diabetes.
R. CG51992-05: CTCL Tumor Antigens E57-1 Expression of gene CG51992-05 was assessed using the primer-probe sets Agl920,
Ag2775, Ag2776, and Ag5232, described in Tables RA, RB, RC, and RD . Results of the RTQ-PCR runs are shown in Tables RE, RF, RG, and RH.
Table RA. Probe Name Agl920
SEQ ID
Primers Sequences (Length _- ._,. j _~ I ... j Position No
Table RB. Probe Name Ag2775
Table RC. Probe Name Ag2776
Table RP. Probe Name Ag5232
Table RE. General_screening_panel_vl.5
Table RF. Panel 1.3D
Colon ca. HT29 ( 4.7 0.5 (Prostate ca.* (bone met)PC-3 1.2 j 0.8
Colon ca. HCT-116 ( 5.3 3.5 (Testis 39.5 j 13.0
Colon ca. CaCo-2 10.7 4.7 (Melanoma Hs688(A).T 0.0 | 0.0
Colon ca. tissue(ODO3866) 6.3 3.5 (Melanoma* (met) Hs688(B).T 0.3 | 0.0
Colon ca. HCC-2998 5.6 4.7 (Melanoma UACC-62 0.0 0.0
Gastric ca.* (liver met) NCI-Nδ'J ' ( 7.7 3.3 JMelanoma M 14 0.0 0.0
Bladder J22.1 21.5 (Melanoma LOX EVTVI oo Loo
Trachea "|Ϊ5-3 4.4 JMelanoma* (met) SK-MEL-5 o.o ( b.o
Kidney | 2.2 4.0 (Adipose 3.9 3.4
Table RG. Panel 2D
Table RH. Panel 4D
General_screeningjpanel_vl.5 Summary: Ag5232 Highest expression was seen in fetal lung (CT=29.3), with moderate levels of expression also seen in breast, ovarian, lung and gastric cancer cell lines.
Panel 1.3D Summary: Ag2775/Ag2776 Expression of this gene was highest in fetal lung. This gene was expressed at higher levels in normal tissues than in the cancer cell lines. Significant expression of this gene was seen throughout the brain as well as in liver, small intestine, placenta, and bladder.
Panel 2D Summary: Ag2775/Ag2776 Expression of this gene was highest in a gastric cancer sample. Expression of this gene was lower in lung and kidney tumors when compared to the matched normal adjacent tissue. These results were consistent with what is observed in Panel 1.3D. Targeting of this gene or gene product through the use of protein, antibody, or small molecule therapeutics is beneficial in the treatment of lung and kidney cancer.
Panel 4D Summary: Agl920/Ag2775/Ag2776 Expression of this gene was highest in lung cells, including in lung fibroblasts, small airway epithelium and the NCI-H292 cell line, a human airway epithelial cell line that produces mucins. These results were consistent with what is observed in Panels 1.3D and 2D. The expression of this gene in cells derived from or within the lung shows that this gene is involved in normal conditions as well as pathological and inflammatory lung disorders that include chronic obstructive pulmonary disease, asthma, allergy and emphysema.
Moderate expression of this gene was also seen in colon and thymus.
S. CG52171-04: HEMATOPOIETIC PBX-INTERACTING PROTEIN
Expression of gene CG52171-04 was assessed using the primer-probe set Ag2779, described in Table SA. Results of the RTQ-PCR runs are shown in Tables SB, SC, SD, SE and SF. Table SA. Probe Name Ag2779
Table SB. A I_comprehensive panel_vl.O
Table SC. Panel 1.3D
Table SD. Panel 2D
Table SE. Panel 4D
Table SF. Panel 5D
AI_comprehensive panel_vl.O Summary: Ag2779 Highest expression of this gene was detected in normal lung (CT=27). Moderate levels of expression of this gene were detected in samples derived from osteoarthritic (OA) bone and normal adjacent bone as well as OA cartilage, OA synovium and OA synovial fluid samples. Moderate to low levels of expression were also detected in cartilage, bone, synovium and synovial fluid samples from rheumatoid arthritis patients as well as in samples derived from normal lung samples, COPD lung, emphysema, atopic asthma, asthma, allergy, Crohn's disease (normal matched control and diseased), ulcerative colitis(normal matched control and diseased), and psoriasis (normal matched control and diseased). Therapeutic modulation of this gene or gene product is useful for the amelioration of symptoms/conditions associated with autoimmune and inflammatory disorders including psoriasis, allergy, asthma, inflammatory bowel disease, rheumatoid arthritis and osteoarthritis.
Panel 1.3D Summary: Ag2779 Highest expression was seen in fetal skeletal muscle (CT=25). Prominent expression was seen in normal tissues including ovary and bone marrow.
Panel 2D Summary: Ag2779 Highest expression was seen in prostate (CT=23.5). High levels of expression were seen in most of the samples on this panel, showing that this gene or its protein product plays a role in cell growth and/or proliferation.
Panel 4D Summary: Ag2779 Highest expression was seen in the kidney (CT=26.7). In addition, this gene was more highly expressed in resting T cells (Thl, Th2, Trl) than in activated T cells. Thus, this gene is be involved in T lymphocyte function. Therapeutics targeting this gene or its protein product are useful for the stimulation of their activity and act as anti-inflammatory therapeutic for T cell-mediated autoimmune and inflammatory diseases. Panel 5D Summary: Ag2779 Highest expression was seen in normal uterus (CT=27), with prominent expression in normal adipose and placenta. This strong expression in normal tissues was in agreement with the results in Panel 1.3D.
T. CG52979-03 and CG52988-02 and CG52988-03: GAGE
Expression of gene CG52979-03, variant CG52988-02 and full-length physical clone CG52988-03 was assessed using the primer-probe sets Ag436b, and Ag436, described in Tables TA and TB. Results of the RTQ-PCR runs are shown in Tables TC, TD, TE, TF, TG and TH.
Table TA. Probe Name Ag436b
Table TB. Probe Name Ag436
Table TC. Panel 1
Table TD. Panel 1.1
Table TE. Panel 1.3D
Column A - Rel. Exp.(%) Ag436, Run 153954656
Tissue Name Tissue Name
Liver adenocarcinoma 2.5 Kidney (fetal) 3.3
Table TF. Panel 2D
Table TG. Panel 3D
tongue
Table TH. Panel 4D
Panel 1 Summary: Ag436 Expression of this gene was highest in a breast cancer cell line, showing that this gene plays a role in the development and/or progression of breast cancer. This gene was also expressed at fairly high levels in pancreas, and testis. Expression in pancreas demonstrates that this gene or gene product is involved in metabolic diseases such as diabetes and obesity.
Panel 1.1 Summary: Ag436b The expression of this gene was highest in testes and one breast cancer cell line. Expression of this gene is useful as a unique and specific marker for normal testis tissue. Therapeutic modulation of this gene or gene product through the use of protein, antibody, or small molecule therapeutics is useful as a therapeutic for breast cancer.
Panel 1.3D Summary: Ag436 The expression of this gene was highest in testis and one breast cancer cell line.
Panel 2D Summary: Ag436 The expression of this gene in panel 2D was restricted to one bladder cancer, one kidney cancer and one breast cancer. The expression detected in breast cancer was also in agreement with the results observed for panel 1.3D. Thus, therapeutic modulation of this gene or its protein product is useful in the treatment breast, bladder or kidney cancer.
Panel 3D Summary: Ag436 Expression of this gene in panel 3D was restricted to one sample of a plasmacytoma cell line and two lung cancer cell lines. Thus, therapeutic modulation of this gene or gene product is useful in the treatment of plasmacytoma or lung cancer.
Panel 4D Summary: Ag436 This gene was expressed in the kidney and in the KU-812 basophil cell line. Basophils are found in the kidney and may give rise to the signal observed in this tissue (Maekawa, K. FEBS Lett 1994 Jan 10;337(2):200-6). Therefore, therapeutics targeting this gene or its protein product are useful for the detection of basophils in a variety of tissues.
U. CG52988-04 and CG52988-06 and CG52988-07: GAGE
Expression of full-length physical clones CG52988-04, CG52988-06, and CG52988-07 was assessed using the primer-probe sets Ag437 and Ag7222, described in Tables UA and UB. Results of the RTQ-PCR runs are shown in Tables UC and UD.
Table UA. Probe Name Ag437
Table UB. Probe Name Ag7222
Table UC. General_screening_panel_vl.7
Column A - Rel. Exp.(%) Ag7222, Run 318040952
Tissue Name Tissue Name A
Adipose | 1.4 Gastric ca. (liver met.) NCI-N87 0.0
HUVEC | 0.3 Stomach 0.0
Melanoma* Hs688(A).T 1 °-° Colon ca. SW-948 0.3
Melanoma* Hs688(B).T 0.8 Colon ca. SW480 0.6
Melanoma (met) SK-MEL-5 1 °-° Colon ca. (SW480 met) SW620 2.4
Testis 1 98.6 Colon ca. HT29 0.0
Prostate ca. (bone met) PC-3 j 0.0 [Colon ca. HCT-116 2.1
Prostate ca. DU145 j 0.3 (Colon cancer tissue 0.0
Prostate pool j 0.0 Colon ca. SW1116 0.8
Uterus pool j 0.0 (Colon ca. Colo-205 0.6
Ovarian ca. OVCAR-3 j 0.3 Colon ca. SW-48 0.0
Ovarian ca. (ascites) SK-OV-3 0.0 (Colon 0.9
Ovarian ca. OVCAR-4 0.2 (Small Intestine 0.3
Ovarian ca. OVCAR-5 1.5 (Fetal Heart 0.3
Table UD. Panel 4D
Macrophages rest ( 5.4 Lung 12.2
Macrophages LPS jl l.3 Thymus 1.12.3
HUVEC none 0.0 Kidney ( 37.6
HUVEC starved jlO.4 1
General_screening_panel_vl.7 Summary: Ag7222 Highest expression of this gene was seen in the testis and a lung cancer cell line sample (CTs=27). Thus, therapeutics targeting this gene or its protein product are useful in the treatment of male infertility or lung cancer.
Panel 4D Summary: Ag437 Highest expression was seen in the basophil cell line, KU- 812 (CTs=33). Basophils release histamines and other biological modifiers in reponse to allergens and play an important role in the pathology of asthma and hypersensitivity reactions. Therefore, therapeutics designed against the protein encoded by this gene are useful for the reduction or inhibition of inflammation by blocking basophil function in these diseases. In addition, these cells are a reasonable model for the inflammatory cells that take part in various inflammatory lung and bowel diseases, such as asthma, Crohn's disease, and ulcerative colitis. Therefore, therapeutics that modulate the function of this gene or gene product are useful for the reduction or elimination of the symptoms of patients suffering from asthma, Crohn's disease, and ulcerative colitis.
V. CG53449-03: BUTYROPHILIN LIKE RECEPTOR Expression of gene CG53449-03 was assessed using the primer-probe sets Ag2030 and Ag8336, described in Tables VA and VB. Results of the RTQ-PCR runs are shown in Tables VC and VD.
Table VA. Probe Name Ag2030
Table VB. Probe Name Ag8336
Table VC. Panel 1.3D
Column A - Rel. Exp.(%) Ag2030, Run 165618974
Table VD. Panel 4. ID
Panel 1.3D Summary: Ag2030 This gene was most prominently expressed in gastrointestinal tissues. Expression of this gene was highest in colon and small intestine (CT = 31) and was also significantly expressed in stomach tissue. Therapeutic modulation of this gene or its protein product is useful as a marker of gastrointestinal tissue, and specifically of small intestine, stomach or colorectal tissue.
Panel 4.1D Summary: Ag2030/Ag8336 Expression of this gene was limited to colon and neutrophils (CTs=30-34). Expression of this gene was down-regulated in activated neutrophils. This expression profile demonstrated that the encoded protein reduces activation of these inflammatory cells and is useful as a protein therapeutic to eliminate the symptoms in patients with Crohn's disease, ulcerative colitis, multiple sclerosis, chronic obstructive pulmonary disease, asthma, emphysema, rheumatoid arthritis, lupus erythematosus, or psoriasis. In addition, small molecule or antibodies targeting this gene or gene product are effective in increasing the immune response in patients with AIDS or other immunodeficiencies. W. CG53449-04: B7 BUTYROPHILIN LIKE RECEPTOR
Expression of gene CG53449-04 was assessed using the primer-probe sets Ag2030, Ag6640 and Ag7598, described in Tables WA, WB and WC. Results of the RTQ-PCR runs are shown in Tables WD, WE, WF, WG, WH and WI.
Table WA. Probe Name Ag2030
Table WB. Probe Name Ag6640
Start SEQ ID
Primers Sequences Lengthj Position No
Forward 5 ■ -gtgtaagcgagagagagaagcat-3 ' _23_ 938 1360
TET-5 ' -atctctgatcctgtccctgctggaac-3 '
Probe TAMRA 26 981 1361
Reverse 15 ' -tagaagaagagaagcagctggat-3 ' 23 1015 1362
Table WC Probe Name Ag7598
Table WD. AI_comprehensive panel_vl.O
Column A - Rel. Exp.(%) Ag6640, Run 296559279
Tissue Name A ( Tissue Name 1
110967 COPD-F 13.5(112427 Match Control Psoriasis-F ( 25.2
110980 COPD-F 25.5(112418 Psoriasis-M 126.8
110968 COPD-M 15.1(112723 Match Control Psoriasis-M 1 2.9
110977 COPD-M 42.0(112419 Psoriasis-M 18.3
110989 Emphysema-F 6.3 (112424 Match Control Psoriasis-M j 11.7 110992 Emphysema-F 0.0 (112420 Psoriasis-M ( 32.8
110993 Emphysema-F 6.7 (112425 Match Control Psoriasis-M j 14.2
Table WE. General_screening_panel_yl.6
Table WF. PGI1.0
Table WG. Panel 1.3D
Column A - Rel. Exp.(%) Ag2030, Run 165618974
Tissue Name A ( Tissue Name 1 A
TableWH.Panel4.1D
Table WI. Panel 4D
AI_comprehensive panel_vl.0 Summary: Ag6640 Highest expression of this gene was detected in rheumatoid arthritis bone (CT=31). This gene was expressed at higher levels in rheumatoid arthritis (RA) tissues and osteoarthritis (OA) bone. In addition, significant expression of this gene was also seen in COPD lung, and psoriasis samples. This gene encodes a homolog of butyrophilin like receptor and is a member of the B7 family. B7 family members are costimulatory molecules, which are necessary for optimal activation of T lymphocytes after T cell receptor (TCR) engagement. The most extensively studied costimulatory molecules are B7-1 (CD80) and B7-2 (CD86). Interaction of CD28 on T cells with either B7-1 or B7-2 augments T cell activation and promotes T cell survival (Chambers, C. A. & Allison, J. P., 1997, Curr. Opin. Immunol. 9, 396-404). In contrast, binding of B7-1 or B7-2 with cytotoxic T lymphocyte antigen 4 (CTLA-4), a homolog of CD28, inhibits the T cell response by delivering a putative negative signal. Therapeutic modulation of this gene, expressed protein and/or use of antibodies or small molecule drug targeting the gene or gene product is effective in the treatment of psoriases, osteoarthritis and rheumatoid arthritis.
General_screening_panel_vl.6 Summary: Significant expression of this gene was seen in colon cancer cell lines, a lung cancer and a brain cancer cell lines. Therefore, expression of this gene is useful as a diagnostic marker and therapeutic modulation of this gene, expressed protein, and/or use of antibodies or small molecule drug targeting this gene or gene product is useful in the treatment of colon, lung and brain cancers.
Low expression of this gene was also seen in metabolic tissues including adipose, pancrease, and fetal skeletal muscle. Therefore, modulation of this gene or gene product is useful in the treatment of metabolic disorders such as diabetes and obesity. Low expression of this gene was also seen fetal lung. Expression of this gene was higher in fetal (CTs=32-34) relative to adult lung and skeletal muscle (CTs=40). The relative overexpression of this gene in fetal tissue shows that the protein product enhances lung and skeletal muscle growth or development in the fetus and also acts in a regenerative capacity in the adult. Therapeutic modulation of this gene or the protein encoded by this gene is useful in the treatment of lung and skeletal muscle related diseases.
PGI1.0 Summary: Ag6640 Highest expression of this gene was detected in normal adjacent colon tissue from a ulcerative colitis patient (CT=26.4). Significant expression of this gene was also detected in normal adjacent and ulcerative colitis tissue samples. Expression of this gene was higher in normal relative to diseased tissue. Modulation of this gene and/or its expressed protein is useful in the treatment of ulcerative colitis.
In addition, high to moderate expression of this gene was also detected in fibrosis, asthma and emphyzema lung. Therapeutic modulation of this gene, expressed protein is useful in the treatment of fibrosis, asthma and emphyzema.
Panel 1.3D Summary: Ag2030 This gene was most prominently expressed in gastrointestinal tissues. Expression of this gene was highest in colon and small intestine (CT = 31) and was also significantly expressed in stomach tissue. Expression of this gene is useful as a marker of gastrointestinal tissue, and specifically of small intestine, stomach or colorectal tissue.
Panel 4.1D Summary: Ag2030/Ag6640/Ag7598 Expression of this gene was limited to colon and neutrophils (CTs=30-34). Expression of this gene was down-regulated in activated neutrophils. This expression profile demonstrates that the encoded protein reduces activation of these inflammatory cells and is useful as a protein therapeutic to eliminate the symptoms in patients with Crohn's disease, ulcerative colitis, multiple sclerosis, chronic obstructive pulmonary disease, asthma, emphysema, rheumatoid arthritis, lupus erythematosus, or psoriasis. In addition, small molecule or antibodies targeting this gene or gene product are effective in increasing the immune response in patients with AIDS or other immunodeficiencies.
Panel 4D Summary: Ag2030 The gene expression on this panel was limited essentially to normal colon. These results were consistent with what is observed in Panel 1.3D. This gene was not expressed or was expressed only at low levels in IBD colitis and Crohn's disease. Therefore, this gene is useful as a marker to distinguish normal colon from diseased colon. This gene encodes a protein with homology to the butyrophilin-like receptor. The butyrophilin-like membrane proteins are similar to the B7 family of co-stimulatory factors. B7 proteins are expressed on many cell types and function in the process of antigen presentation to T lymphocytes in the stimulation of the immune response. Recently identified B7 family members have included inhibitory proteins that reduced the activation of T lymphocytes upon cell-cell interaction. This gene or gene product is useful for the modulation of the functions associated with antigen presentation to T cells. Replacement of this gene product by gene therapy or use of the isolated extracellular domain of the gene protein is of use as a therapeutic in the treatment of IBD colitis and Crohn's disease.
X. CG53908-01: Netrin receptor Unc5hl
Expression of full-length physical clone CG53908-01 was assessed using the primer-probe sets Agl395 and Ag8392, described in Tables XA and XB. Results of the RTQ-PCR runs are shown in Tables XC, XD, XE, XF, XG, XH, XI, XJ, and XK. Table XA. Probe Name Agl 395
Table XB. Probe Name Ag8392
Table XC. Ardais Breastl.O
153635_Breast cancer (D3C) 0.6 j 0.4 164671_Breast cancer (7082) 62.4 50.0
164667_Breast cancer (5785) j 1.6 1 12.2 164680_Breast cancer (5705) j 1.7 1.3
164676_Breast cancer (5070) ( 1.5 j 0.6 164688_Breast cancer (7222) 1.5 0.5
164684_Breast cancer (6509) ( 8.8 | 3.5
Table XD. Ardais Panel 1.1
Table XE. Ardais Prostate 1.0
Table XF General_screening_panel_vl.6
Table XG HASS Panel vl .0
Table XG Panel 2D
Table XI Panel 3D
Table XJ Panel 4D
Table XK Panel 5 Islet
Ardais Breastl.O Summary: Agl395/Ag8392 Highest expression of this gene was detected in a breast cancer sample (CTs=25-27). Moderate to high levels of expression of this gene were seen in normal and cancer samples from breast. Expression of this gene was higher in a number of cancer samples. Therefore, therapeutic modulation of this gene, expressed protein and/or use of antibodies or small molecule targeting this gene or gene product is useful in the treatment of breast cancer.
Ardais Panel 1.1 Summary: Agl395/Ag8392 Highest expression of this gene was detected in normal adjacent lung tissue (CTs=29-30). Moderate to high levels of expression of this gene were seen in normal and cancer samples from lung. Expression of this gene was higher in a number of normal adjacent tissues. Therefore, therapeutic modulation of this gene, expressed protein and/or use of antibodies or small molecule targeting this gene or gene product is useful in the treatment of lung cancer.
Ardais Prostate 1.0 Summary: Agl395/Ag8392 Highest expression of this gene was detected in a prostate cancer sample (CTs=25). Moderate to high levels of expression of this gene were seen in normal and cancer samples from prostate. Expression of this gene was higher in a number of prostate cancer samples. Therefore, therapeutic modulation of this gene, expressed protein and/or use of antibodies or small molecule targeting this gene or gene product is useful in the treatment of prostate cancer.
General_screening_panel_vl.6 Summary: Agl395 Highest expression of this gene was detected in cerebellum (CT=26). This gene showed a brain preferential expression, with high expression of this gene seen in all the regions of the brain examined including amygdala, cerebellum, hippocampus, cerebral cortex pool, substantia nigra, and thalamus. This gene encodes an UNC5H1 receptor, an ortholog of Caenorhabditis elegans UNC5, which is essential for dorsal guidance of pioneer axons and for the movement of cells away from the netrin ligand (Ackerman, S. L. Nature 386: 838-842). The family of Netrin ligands, netrin- 1-2-3 and β-netrin , key regulators of neuronal cell migration and axonal guidance bind to the DCC (deleted in colorectal cancer) family and the UNC5 family (UNC5H1, UNC5H2 and UNC5H3). The DCC family of proteins is implicated in axon attraction and those of the UNC5 family in axon repulsion. Mice homozygous for the spontaneous rostral cerebellar malformation mutation (rcm(s)) homolog of UNC-5 exhibit cerebellar and midbrain defects as a result of abnormalities in the postnatal cerebellar neuronal migration. Modulation of the expression of this gene, expressed protein and/or use of antibodies/small molecule targeting this gene or gene product is useful in the treatment of cerbellar malformation and other brain related disorders including Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.
Significant expression of this gene was also seen in a number of cancer cell lines derived from pancreatic, lung, brain, colon, renal, and ovarian cancers. UNC5 receptors have been shown to create cellular states of dependence on their respective ligands by inhibiting apoptosis in the presence of ligand, but inducing apoptosis when unoccupied by ligand. UNC5H proteins are caspase substrates in vitro and caspase cleavage is required for cell death induction (Llambi F. EMBO J 20(11):2715-22). Based on the known role of these genes in cell migration and the expression of this gene cancer tissues and cell lines, including the metastatic cancer cell lines SW620 and SK-N-AS, the most likely mechanism for this gene is to increase the metastatic potential of tumor cells. When induced in endothelial cells, this gene will have a role in tumor induced endo cell migration and cell survival. The two roles might be interrelated as it is known that cells need to resist anoikis to survive during migration. Therefore, modulation of this gene, expressed protein and/or use of antibodies or small molecule targeting this gene or gene product is useful in the treatment of pancreatic, lung, brain, colon, renal, and ovarian cancers. HASS Panel vl.O Summary: Agl395 Highest expression of this gene was detected in medullablastoma sample (CT=26.5). Low expression of this gene was also seen in a glioma sample. Therefore, therapeutic modulation of this gene or expressed protein is useful in the treatment of glioma and medulloblastoma.
In addition, significant expression of this gene was seen in samples from breast cancer MCF7 and pancreatic cancer CaPaN cell lines. The expression of this gene was not significantly changed by oxygen deprivation, acidic or a serum starved environment in the these two cell lines in this panel.
Panel 2D Summary: Agl395 Highest expression of this gene was detected in a gastric cancer and metastatic breast cancer samples (CTs=29-31). Moderate to low levels of expression of this gene were also seen in number of kidney, breast and gastric cancer samples. Therefore, expression of this gene is useful as a marker to detect the presence of these cancers and therapeutic modulation of this gene, expressed protein and/or use of antibodies or small molecule is useful in the treatment of breast, kidney and gastric cancers.
Panel 3D Summary: Agl395 Highest expression of this gene was detected in a lung cancer cell line (CT=28.8). Moderate to low levels of expression of this gene were detected in cancer cell lines derived from metastatic neuroblastoma, glioblastoma, lung, gastric, colon, lymphoma, renal, pancreatic, breast and tongue cancers. Therefore, therapeutic modulation of this gene and/or expressed protein is useful in the treatment of these cancers. Panel 4D Summary: Agl395 Highest expression of this gene was detected in lung and PMA ionomycin activated LAK cells (CTs=31). Moderate to low levels of expression of this gene were also seen in resting LAK cells, resting and activated dendritic cells, monocytes and macrophages, activated keratinocytes, liver cirrhosis and normal colon tissues. Expression of this gene in monocytes, LAK, macrophage and dendritic cells demonstrates that the expressed protein is important in differentiation and activation of these cell types. Therefore, regulating the expression of this gene or expressed protein will alter the types and levels of monocytic cells regulated by cytokine and chemokine production and T cell activation. Therapeutics modulation of this gene, encoded protein and/or use of antibodies or small molecule targeting this gene or gene product is useful in the treatment of liver cirrhosis, asthma, emphysema, inflammatory bowel disease, arthritis and psoriasis.
Panel 5 Islet Summary: Agl395 Expression of this gene was limited to the kidney on this panel (CT=33.9). Therefore, modulation of this gene and/or expressed protein is useful in the treatment of kidney related disorders including systemic lupus erythematosus and glomerulonephritis.
Y. CG53944-02: Novel Membrane Protein
Expression of full-length physical clone CG53944-02 was assessed using the primer-probe sets Ag2639, Ag2640, and Ag2641, described in Tables YA, YB, and YC. Results of the RTQ-PCR runs are shown in Tables YD, YE, YF and YG.
Table YA. Probe Name Ag2639
Table YB. Probe Name Ag2640
Table YC. Probe Name Ag2641
Table YD. CNS_neurodegeneration_vl .0
Table YE. Panel 1.3D
Table YF. Panel 2D
Table YG. Panel 4D
CNS_neurodegeneration_vl.0 Summary: Ag2641 This panel confirmed the expression of this gene at low levels in the brain in an independent group of individuals. This gene was found to be down-regulated in the temporal cortex of Alzheimer's disease patients patients when compared with non-demented controls (p = 0.0003 when analyzed by Ancova, estimate of total cDNA loaded per well used asa covariate). Therefore, up-regulation of this gene or its protein product, or treatment with specific agonists for this receptor is of use in reversing the dementia, memory loss, and neuronal death associated with this disease.
Panel 1.3D Summary: Ag2639 Highest expression was seen in the hippocampus (CT=263). In addition, high to moderate levels of expression were seen in all regions of the CNS examined, including amygdala, hippocampus, substantia nigra, thalamus, and hypothalamus. This expression shows that therapeutic modulation of the expression or function of this gene is useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy. Panel 2D Summary: Ag2640 Highest expression was seen in a breast metastasis sample (CT=28.4), with moderate expression throughout this panel. This widespread expression demonstrates that this gene or gene product plays in cell growth and/or proliferation.
Panel 4D Summary: Ag2641 Highest expression was seen in an eosinophil cell line (CT=30). This gene was also expressed at moderate levels in a wide range of cell types of significance in the immune response in health and disease. These cells included members of the T-cell, B-cell, endothelial cell, macrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by colon, lung, thymus and kidney. This ubiquitous pattern of expression demonstrates that this gene product is involved in homeostatic processes for these and other cell types and tissues. This pattern was in agreement with the expression profile in Panel 2D and also shows a role for the gene or gene product in cell survival and proliferation. Therefore, modulation of the gene or its protein product with a functional therapeutic is useful for the alteration of functions associated with these cell types and for the improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.
Z. CG54308-04: Serpin
Expression of full-length physical clone CG54308-04 was assessed using the primer-probe sets Ag548 and Ag7880, described in Tables ZA and ZB. Results of the RTQ-PCR runs are shown in Tables ZC, ZD, ZE, ZF, and ZG.
Table ZA. Probe Name Ag548
Table ZB. Probe Name Ag7880
Table ZC. General_screening_jpanel_vl.7
Column A - Rel. Exp.(%) Ag7880, Run 319066287
Tissue Name A | Tissue Name 1 A
Adipose j 63.3 (Gastric ca. (liver met.) NCI-N87 (o.o Renal ca. TK-10 0.0 Pancreatic ca. PANC-1 0.0
Bladder 0.0 (Pancreas pool 0.0
Table ZD. Panel 1.2
Table ZE. Panel 13D
Table ZF. Panel 2D
Table ZG. Panel 4D
General_screening_panel_vl.7 Summary: Ag7880 Prominent expressin of this gene was seen in uterus and adipose (CTs=30).
Panel 1.2 Summary: Ag548 This gene was expressed at a very low level in this panel. The highest level of expression was seen in thymus (CT=3433). Thus, expression of this gene is useful as a marker to differentiate thymus tissues from other samples on this panel.
Panel 1.3D Summary: Ag548 This gene was expressed at a very low level in this panel. The highest level of expression was seen in thymus (CT=3433). Thus, expression of this gene is useful as a marker to differentiate thymus tissues from other samples on this panel.
Panel 2D Summary: Ag548 The highest level of expression in this panel was detected in a bladder cancer sample (CTs=30). Thus, expression of the gene or its protein product is useful as a marker to differentiate between normal and cancerous bladder tissue and therapeutic modulation of the gene product using antibodies , chimeric molecules or small molecule inhibitors is effective in the treatment of bladder cancer. Panel 4D Summary: Ag548 This transcript was induced in small airway epithelium activated with TNFalpha+IL- lbeta and was present in normal kidney. The transcript encodes a putative serpin like molecule (serine proteinase inhibitor). Serpins participate in multiple biological processes and mutations that alter serpin function can result in pulmonary dysfunction including asthma and emphysema. Therapies designed with the protein encoded for by this transcript are important for the treatment of lung disorders such as asthma and emphysema.
AA. CG54764-02: CALGIZZARIN
Expression of gene CG54764-02 was assessed using the primer-probe sets Agl212 and Agl528, described in Tables AAA and AAB. Results of the RTQ-PCR runs are shown in Tables AAC, AAD, AAE, AAF, and AAG.
Table AAA. Probe Name Agl212
Table AAB. Probe Name Agl528
Table AAC. CNS_neurodegeneration_vl.O
Table A-AD. Panel 1.3D
Table AAE. Panel 2D
Table AAF. Panel 3D
Table AAG. Panel 4D
Column A - ReL Exp.(%) Agl212, Run 140407622 Column B - ReL Exp.(%) Agl528, Run 147327849 Column C - ReL Exp.(%) Agl528, Run 148106604 Column D - ReL Exp.(%) Agl528, Run 162699795
Tissue Name B D
CNS neurodegeneration vl.O Summary: Agl212 Highest expression of this gene, a homolog of calgizzarin, was seen in the hippocampus of a patient with Alzheimer's disease. The gene was also expressed in numerous regions associated with Alzheimer's neurodegeneration including the hippocampus, cortex and amygdala, as seen below in Panels 1.2 and 1.3D. Calgizzarin (S100C, S100A11) accumulation in the nucleus is associated with cellular senescence, which may be critical in aging and age-related disorders such as Alzheimer's disease. Agents that bind S100C are cardioprotective and have been proven useful in extending life. Agents that block the action or nuclear localization of this gene or gene product are useful in the treatment of Alzheimer's disease and are effective in prolonging lifespan.
Panel 1.3D Summary: Agl212/Agl528 Highest expression of this gene was detected in the cortex, the fetal brain, and the hippocampus (CTs=31-33), with moderate expression across many regions of the brain. In addition, a substantial number of samples derived from melanoma and brain cancer cell lines showed expression of this gene. Thus, the expression of this gene is useful as a marker to distinguish melanoma cell lines, brain cancer cell lines and brain tissue from other samples in the panel. Therapeutic modulation of this gene or gene product, through the use of small molecule dmgs, antibodies or protein therapeutics, is of benefit in the treatment of melanoma or brain cancer.
Panel 2D Summary: Agl528 Highest expression of this gene was observed in bladder cancer (CTs=31), with significant over-expression in the bladder cancer samples when compared to expression in the normal adjacent tissue. There was also substantial expression in a cluster of samples derived from breast tissue. Expression of this gene is useful as a marker to distinguish bladder cancer and breast tissue from other samples in the panel. Therapeutic modulation of the expression of this gene or this gene product, through the use of small molecule drugs, antibodies or protein therapeutics is of use in the treatment of bladder cancer or breast disease.
Panel 3D Summary: Agl212 Highest expression of this gene was seen in a cell line derived from a lymphoma cell line (Daudi) (CT=31.2). Low but significant expression was also seen in cell lines derived from brain cancer and lung cancer, as is seen in Panel 1.3D. Panel 4D Summary: Agl212/Agl528 Highest expression of this gene was seen in ionomycin treated Ramos B cells (CTs=26-28). Lower levels of expression were also seen in dermal fibroblasts, HUVEC endothelial cells, and keratinocytes. The expression in keratinocytes of this gene product, a homolog of calgizzarin, is consistent with Robinson (J. Biol. Chem. 272: 12035.) Therapeutic modulation of the expression or function of this gene or gene product, through the use antibodies or protein therapeutics, is beneficial in the treatment of disease states associated with hyperactivation of keratinocytes. Higher expression of the gene product in a B cell line compared to the expression in a primary B cell line shows a role for the protein encoded by this gene in cell growth and/or differentiation. Therapeutic modulation of the expression or function of this gene product, through the use antibodies is beneficial in the treatment of B cell lymphomas.
AB. CG55033-01 and CG55033-04 and CG55033-05: LRR domain containing protein
Expression of gene CG55033-01 and variants CG55033-04 and CG55033-05 was assessed using the primer-probe sets Agl094, Ag6719 and Ag6725, described in Tables ABA, ABB and ABC. Results of the RTQ-PCR runs are shown in Tables ABE, ABF, ABG and ABH. Please note that Ag6725 is specific for the CG55033-04 and CG55033-05 variants only.
Table ABA. Probe Name Agl094
Table ABB. Probe Name Ag6719
Table ABC. Probe Name Ag6725
Table ABD. Ardais Panel v.1.0
Column A - Rel. Exp.(%) Agl094, Run 263147830
Table ABE. General_screening_panel_vl.6
Table ABF. Panel 2D
Table ABG. Panel 3D
Table ABH. Panel 4. ID
Ardais Panel v.1.0 Summary: Agl094 Highest expression of this gene was seen in a lung cancer sample (CT=23.5). High to moderate expression of this gene was seen in a number of normal and cancerous samples from lung. Expression of this gene was higher in four cancer samples compared to normal lung samples. Expression of this gene is useful as a marker to detect the presence of lung cancer and therapeutic modulation of this gene or its protein product is useful in the treatment of lung cancer.
General_screening_panel_vl.6 Summary: Ag6719 Highest expression of this gene was seen in a lung cancer SHP-77 cell line (CT=26.6). High expression of this gene was mainly seen in cancer cell lines derived from brain, lung, colon, gastric, ovarian and prostate cancers. Expression was higher in these cell lines compared to the normal tissues.
Expression of this gene is useful as a marker to detect the presence of these cancers and also, therapeutic modulation of this gene or its protein product is useful in the treatment of brain, lung, colon, gastric, ovarian and prostate cancers.
Low expression of this gene was also seen in fetal lung, fetal kidney, and fetal heart. Expression was higher in these fetal tissues compared to expression in the corresponding adult tissues. This gene plays a role in early development of these tissue. Therapeutic modulation of this gene or its protein product is useful in the treatment of diseases related to development of these tissues.
This gene encodes a novel insulin-like growth factor binding protein acid labile subunit. Low expression of this gene was also seen in fetal brain and thalamus. Therefore, therapeutic modulation of this gene or gene product is useful in the treatment of neurological disorders related to thalamus and brain development. Insulin-like growth factor (IGF) has neuroprotective effects, and is currently under investigation as a biopharmaceutical for the treatment of amyotropic lateral sclerosis (Mewar R. J. Neurosci. Res 50:721-728, PMID: 9418960; Corse A.M., Neurobiol. Dis. 6:335-346). In serum, IGF is bound to both IGF-binding protein (IGFBP) and the acid labile subunit (IGFBP-ALS). In the brain, glia produce IGFBP; however the IGFBP-ALS has not been detected in the CNS. This gene represents the CNS equivalent of IGFBP-ALS. Because of the neuroprotective effects of IGF, therapeutic modulation of this gene or its protein product is useful in treating diseases in which neuronal death/degeneration occur such as amyotropic lateral sclerosis, multiple sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, spinocerebellar ataxia, or CNS injury such as stroke, head or spinal cord trauma.
Panel 2D Summary: Agl094 Expression of this gene was highest in a metastatic breast cancer sample (CT = 26-27). In addition, several other breast cancer and lung cancer samples showed increased expression when compared to their normal adjacent margin samples. This result was consistent with the results in the Ardais panel, and Panel 1.6 that both showed higher expression of this gene in cell lines and lung cancer tissue. Expression of this gene is useful as a marker to distinguish breast cancer or lung cancer tissue from their normal counterparts and is of diagnostic value. Therapeutic modulation of the this gene or its gene product, through the use of small molecule drugs or antibodies, is of benefit for treatment of breast or lung cancer.
Panel 3D Summary: Agl094 Expression of this gene was highest in a small cell lung cancer cell line (CT = 28.5). In addition, there was significant expression of this gene in other lung cancer cell lines as well as in several brain cancer and pancreatic cancer cell lines. These results were consistent with what is observed in the other panels. Expression of this gene is useful as a marker to distinguish lung, breast or pancreas cancer cell line samples from other tissues. Therapeutic modulation of this gene or gene product, through the use of small molecule drugs or antibodies, is of benefit for treatment of lung, breast or pancreatic cancer.
Panel 4.1D Summary: Ag6719/Ag6725 Highest expression of this gene was seen in activated basophils and resting keratinocytes (CTs=30-31). Significant expression of this gene was also seen in resting basophils, activated keratinocytes, activated NCI-H292, resting and activated lung fibroblasts. This expression pattern is in agreement with that seen in panel 4D. Please see panel 4D for further discussion on the utility of this gene. The protein encoded by this transcript is a homolog of insulin-like growth factor binding protein acid labile subunit, a component of the systemic insulin-like growth factor-binding protein (IGFBP) complex. This gene plays an important role in the biology of circulating IGFs. IGFs are involved in a wide array of cellular processes such as proliferation, prevention of apoptosis, and differentiation. This gene is a suitable target for a small molecule, antibody, or protein therapeutic to modulate locally the mitogenic effect of IGF and as a treatment of emphysema, COPD, or skin related disease.
AC. CG55117-04: Prominin-like protein 1 precursor
Expression of gene CG55117-04 was assessed using the primer-probe set Ag819, described in Table ACA. Results of the RTQ-PCR runs are shown in Tables ACB, ACC, ACD, ACE and ACF.
Table ACA. Probe Name Ag819
Table ACB. HASS Panel vl.O
Table ACC. Panel 1.2
Table ACD. Panel 2D
Table ACE. Panel 3D
Table ACF. Panel 5 Islet
HASS Panel vl.O Summary: Ag819 Highest expression of this gene was detected in the pancreatic cancer CaPaN cell lines subjected to acidosis (CT- 27.9). Moderate levels of expression of this gene were seen in control and in CaPaN cells subjected to environmental stress. The expression of this gene was not significantly changed by oxygen deprivation, acidic or a serum starved environment in these cells. However, moderate to low expression was also shown in astrocytes, Renal Proximal Tubule Epithelial cell A2, 4/5 glioma and 2/4 medulloblastoma tissue samples in this panel. Therapeutic modulation of this gene, expressed protein and/or use of antibodies or small molecule dmgs is useful in the treatment of pancreatic and brain cancers. Panel 1.2 Summary: Ag819 The expression of this gene was highest in a colon cancer cell line (CaCo-2)(CTs=25). In addition, significant expression of this gene wais also seen in colon, ovarian, lung, pancreatic and a renal cancer cell lines. The expression of this gene is useful as a marker to detect the presence of these cancers and therapeutic modulation of this gene, expressed protein and/or use of antibodies or small molecule drug is useful in the treatment of these cancers.
Among tissues with metabolic function, this gene had moderate levels of expression in pancreas, adrenal gland, thyroid, pituitary gland, skeletal muscle, and adult and fetal liver. Modulation of this gene and/or expressed protein is useful in the treatment of diseases of the metabolic-endocrine axis, including obesity and Types 1 and 2 diabetes. In addition, this gene was differentially expressed in adult (CT value = 28) vs fetal heart (CT value = 32-33), and targeting this gene or gene product with small molecule, antibody, or protein therapeutics is of use in the treatment of heart related disorders.
This gene also showed moderate to low expression in all CNS regions examined, with highest expression in the fetal brain (greater than 10-fold) demonstrating a role in neurodevelopment. This gene codes for a Prominin like protein. Prominin plays a role in the formation of lipid membrane protrusions, their lipid content and membrane to membrane interactions; all critical for synapse formation. The expression of this gene in the developing brain shows a role in synaptogenesis for this molecule. Compensatory synaptogenesis has been shown to occur in the adult brain, especially in response to brain injury or neuronal loss. Therapeutic modulation of this gene and/or expressed protein is useful in the treatment of neurological disorders including stroke, head trauma, spinal cord trauma, Alzheimer's, Parkinson's or Huntington's diseases, multiple sclerosis, or ALS.
Panel 2D Summary: Ag819 Highest expression of this gene was detected in samples derived from an ovarian cancer and a lung cancer (CTs=26). Significant expression of this gene was seen in a number of cancer samples including a kidney cancer, two colon cancers and two gastric cancers. The expression of this gene is useful as a marker to detect the presence of ovarian or lung cancers. Therapeutic modulation of this gene, expressed protein and/or use of antibodies or small molecule drugs is of benefit in the treatment of ovarian, lung, kidney, colon or gastric cancers.
Panel 3D Summary: Ag819 The expression of this gene was highest in a sample derived from a brain cancer (meduloblastoma) cell line (D283 cells)(CT=283). Significant expression of this gene was also seen in several cell lines derived from lung, gastric and pancreatic cancers. Expression of this gene is useful as a marker to detect these cancers and therapeutic modulation of this gene, expressed protein, and/or use of antibodies or small molecule dmgs targeting this gene or gene product is useful in the treatment of lung, brain, pancreatic or gastric cancers.
Panel 5 Islet Summary: Ag819 Highest expression of this gene was detected in liver cancer HepG2 cell line (CT=31). Low levels of expression of this gene are also seen in islets cells (Bayer patient 1), small intestine, kidney and placenta. Therefore, modulation of this gene and/or expressed protein is useful in treatment of metabolic diseases including obesity and type II diabetes.
AD. CG55193-04: PVI PROTEIN
Expression of gene CG55193-04 was assessed using the primer-probe sets Agl537 and Ag4932, described in Tables ADA and ADB. Results of the RTQ-PCR runs are shown in Tables ADD, ADE, ADF, ADG, ADH and ADI.
Table ADA. Probe Name Agl537
Start SEQ ID
Primers Sequences (Length Position No
Forward 5 ' -aaggagctggaagagaagaaga-3 ' ~22 1087 1405
TET-5 ' -atcagaaactcagccctggacacctg-3 ' -
Probe TAMRA 26 1141 1406
Reverse 5 ' -gctgcgacttggtcttgat-3 ' 19 1168 1407
Table ADB. Probe Name Ag4932
Table ADC. Ardais Kidney 1.0
Table ADD. Ardais Panel v.1.0
Table ADE. General_screening_panel_vl.5
Fetal Kidney j 73.2 (Pituitary gland Pool 10.3
Renal ca. 786-0 ] 0.0 (Salivary Gland 20.7
Renal ca. A498 ( 0.1 JThyroid (female) 70.7 Renal ca. ACHN ( 0.0 (Pancreatic ca. CAPAN2 1 o.o
Renal ca. UO-31 j 0.0 (Pancreas Pool 1 53.6
Table ADF. Oncology_cell_line_screening_panel_v3.2
Table ADG. Panel 2D
Table ADH. Panel 4. ID
Table ADI. general oncology screening panel_v_2.4
Ardais Kidney 1.0 Summary: Agl537 Highest expression was seen in a kidney cancer sample (CT=213). In addition, this gene was more highly expressed in kidney cancer than in the corresponding normal adjacent tissue. Expression of this gene is useful as a marker of these cancers. Therapeutic modulation of the expression or function of this gene or gene product is useful in the treatment of kidney cancer.
Ardais Panel v.1.0 Summary: Agl537 Highest expression of this gene was detected in a normal lung sample (CT=26.7). High to moderate levels of expression are seen in both malignant and normal lung samples. Therapeutic modulation of the PVI protein (PLVAP) encoded by this gene is useful in the treatment of certain subtypes of lung cancer. General_screening_panel_vl.5 Summary: Ag4932 Highest expression of this gene was detected in the spleen (CT=26). High levels of expression of this gene were also detected in tissues with metabolic/endocrine functions including pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. The PV- 1-like protein is a plasma membrane protein with an extracellular domain that is an antibody target for the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.
Moderate levels of expression of this gene were also seen in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therapeutic modulation of this gene or gene product is useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.
In addition, this gene also showed high expression in colon cancer tissue, with moderate levels of expression in a gastric NCI-N87 cell line. Therapeutic modulation of this gene is useful in the treatment of colon and gastric cancers.
Oncology_cell_line_screening_panel_v3.2 Summary: Agl537 Highest expression of this gene was detected in TF-1 erythroleukemia cells (CT=28.6). Moderate levels of expression of this gene are restricted to erythroleukemia and myelogenous leukemia. Expression of this gene is useful as a marker to distinguish these leukemia samples from other samples in the panel and also, as marker to detect the presence of these leukemia. Therapeutic modulation of this gene or its protein product is useful in the treatment of erythroleukemia and myelogenous leukemia.
Panel 2D Summary: Agl537 Expression of this gene was highest in a kidney cancer (OD04340) sample (CT=25). This gene was widely expressed across this panel with high to moderate expression in both normal and adjacent cancer tissue. This gene was more highly expressed in kidney cancer tissue than in adjacent normal tissue, consistent with expression pattern seen in panel 2.4. This gene is useful as a marker to distinguish kidney cancers from normal kidney tissue. Therapeutic modulation of this gene or its protein product, through the use of small molecule dmgs or antibodies, is of benefit in the treatment of kidney cancer.
Panel 4.1D Summary: Ag4932 Highest expression of this gene was detected in the lung (CT=28.5). Moderate levels of expression of this gene were also seen in endothelial cells, basophils and normal tissues represented by colon, thymus and kidney. This gene codes for a variant of PV-1, a component of the endothelial fenestral and stomatal diaphragms. Antibodies raised against the PV-1 encoded by this gene are useful in preventing transendothelial trafficking of inflammatory cells to different tissues sites and as a treatment of inflammatory diseases including delayed type hypersensitivity, asthma, emphysema, rheumatoid arthritis and IBD.
Moderate levels of expression of this gene were also seen in liver cirrhosis samples. Therefore, targeting this gene or its protein product with protein therapeutics, antibodies or small molecule therapeutics is useful as a treatment to reduce or inhibit fibrosis that occurs in liver cirrhosis. general oncology screening panel_v_2.4 Summary: Agl537/Ag760 Highest expression of this gene was seen in a kidney cancer sample (CTs=22.6-25). Significant expression of this gene was seen in melanoma, colon, lung, prostate, bladder and kidney cancer as well as normal tissue samples. Expression of this gene was higher in kidney cancer as compared to corresponding normal control samples. Expression of this gene is useful as a marker to distinguish kidney cancer from normal tissue and also as a marker to detect kidney cancer. Therapeutic modulation of this gene or its protein product through the use of antibodies, protein therapeutics or small molecule drug is useful in the treatment of melanoma, kidney, colon, lung and prostate cancers.
AE. CG55256-07: APOLIPOPROTEIN E RECEPTOR 2 Expression of gene CG55256-07 was assessed using the primer-probe set Ag6829, described in Table AEA. Results of the RTQ-PCR runs are shown in Tables AEB and AEG
Table AEA. Probe Name Ag6829
Table AEB. General_screeningjpanel_vl.7
Table AEC. Panel 5 Islet
General_screening_panel_vl.7 Summary: Ag6829 Highest expression was seen in a colon cancer cell line (CT=28). Prominent levels of expression were seen in clusters of cell lines derived from brain, colon, lung and ovarian cancer cell lines. Targeting this gene or its protein product is useful in the treatment of these cancers.
Panel 5 Islet Summary: Ag6829 Low but significant levels of expression were seen in a liver cell line (CT=34).
AF. CG55256-10: APOLIPOPROTEIN E RECEPTOR 2
Expression of full-length physical clone CG55256-10 was assessed using the primer-probe set Ag7103, described in Table AFA. Results of the RTQ-PCR runs are shown in Table AFB.
Table AFA. Probe Name Ag7103
Table AFB. General_screening_panel_vl.7
General_screening_panel_vl.7 Summary: Ag7103 Highest expression was seen in a brain cancer cell line (CT=21), with high levels of expression seen in all the cancer cell line samples on this panel. This gene or gene product is involved in cell growth and/or proliferation. Targeting this gene or gene product is useful in the treatment of cancers, including breast, brain, ovarian, colon, renal, brain, prostate and melanoma cancers.
AG. CG55776-01 : Mechanical stress induced protein
Expression of gene CG55776-01 was assessed using the primer-probe sets Agl489 and Ag4335, described in Tables AGA and AGB. Results of the RTQ-PCR runs are shown in Tables AGC, AGD, AGE, AGF, AGG and AGH.
Table AGA. Probe Name Agl489
Table AGB. Probe Name Ag4335
Table AGC. AI_comprehensive panel_vl.O
Table AGP. Ardais Panel 1.1
Table AGE. General_screening_panel_vl.4
Table AGF. Panel 2D
Table AGH. Panel 5D
94723_Donor 2 U - C_Mesenchymal 73139_Utems_Uterine smooth muscle
1.7 4.5 Stem Cells cells
AI_comprehensive panel_vl.O Summary: Agl489 Expression of this transcript was induced in most rheumatoid arthritis (RA) tissues and in synovium and bone tissues from osteoarthritis (OA) patients. This gene was also highly and consistently expressed in normal lung in 2 out of 3 normal lungs tissues on this panel and in panels 1.4 and 4.1. The expression in diseased lung was reduced or absent. These data show that lung expression of the protein encoded for by this transcript serves an important function that is lost in disease states, but that OA/RA promotes the expression of this gene in the joint. Therapies designed with the protein encoded by this transcript are important for the treatment of OA/RA and lung diseases such as chronic pulmonary obstructive disease, emphysema, allergy and asthma.
Ardais Panel 1.1 Summary: Agl489 Highest expression is detected in normal adjacent lung tissue sample (CT=25). This gene is expressed at higher levels in normal tissue relative to the cancer samples. This expression profile is in agreement with results in panel 2D. This gene codes for a protein containing ig and leucine rich repeat regions and is similar to adlican. Members of this family are integral basement membrane proteins with a variety of functions, including matrix assembly and organization, regulation of cell growth, adhesion and migration. The LRR domain in particular is thought to play an important role in these processes (Hocking AM, Shinomura T, McQuillan DJ., 1998, Leucine-rich repeat glycoproteins of the extracellular matrix. Matrix Biol. 17(1): 1-19). The expression profile of this gene indicates an important role in lung biology and therefore modulation of this gene, expressed protein and/or use of agonists will be useful in the treatment of lung cancer.
General_screening_panel_vl.4 Summary: Ag4335 Highest expression of this gene was seen in fetal lung (CT=25.4), with overall expression associated with normal tissues. Expression of this gene was higher in fetal lung relative to adult lung (CT=29) and in fetal skeletal muscle (CT=29) relative to adult skeletal muscle (CT=33). This gene or expressed protein is involved in the development and homeostasis of these organs. Therapeutic modulation of this gene and/or expressed protein is useful in the treatment of lung and skeletal muscle related diseases. This gene was also expressed at significant levels in a variety of metabolic tissues including adipose, adult and fetal liver, adult and fetal heart, pituitary, thyroid and pancreas. Modulation of this gene and/or expressed protein is useful in the treatment of metabolic disorders, including obesity and diabetes.
Moderate to low expression of this gene was also seen in all the regions of brain examined including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therapeutic modulation of this gene or gene product is useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.
Panel 2D Summary: Agl489 Highest expression of this gene was detected in normal lung (CTs=27.8). This gene showed higher expression in all the normal adjacent lung, kidney and colon tissues relative to cancer samples. Modulation of this gene, expressed protein and/or use of antibodies or agonists targeting this gene or its protein product are useful in the treatment of these cancers.
Panel 4.1D Summary: Ag4335 Highest expression of this gene was detected in normal lung (CT=31). This gene was also expressed in lung fibroblasts, EOL-1 cells and basophils. Expression of the gene was downregulated by TNF-alpha and ILl -beta in lung fibroblasts. Based on the expression profile in this panel as well as that in the A/I panel, therapeutics designed with the encoded protein are useful in the treatment of chronic obstructive pulmonary disease, emphysema, allergy and asthma.
Panel 5D Summary: Ag4335 Highest expression of this gene was detected in adipose tissue from a diabetic patient (CT=30.8). Significant expression of this gene was also seen in skeletal muscle, adipose, uterus, placenta and small intestine. Modulation of this gene or its expressed protein is useful in the treatment of metabolic diseases such as obesity and diabetes.
AH. CG55784-01 and CG55784-03: nephrin-like Expression of gene CG55784-03 and variant CG55784-01 was assessed using the primer- probe sets Ag2844 and Ag6457, described in Tables AHA and AHB. Results of the RTQ- PCR runs are shown in Tables AHC, AHD and AHE. Please note that the probe and primer set Ag6457 is specific to the CG55784-03 only.
Table AHA. Probe Name Ag2844
Table AHB. Probe Name Ag6457
Table AHC. General_screening_panel_yl.6
Table AHD. Panel 4. ID
Table AHE. Panel 4D
General_screeningjpanel_vl.6 Summary: Ag6457 This probe/primer set was specific for the CG55784-03 gene variant. Expression of this gene was highest in cerebellum (CT=29.5). Highly brain-preferential expression of the CG55784-03 gene demonstrates a specific role for this gene product in the brain. This gene encodes a protein that is homologous to a neural cell adhesion molecule (NCAM). NCAM related proteins, such as Nr-CAM, play a critical role in neurite extension (Sakurai et al., J Cell Biol 2001 154:1259- 73). Iintroduction of ligands specific for this gene product, such as contactin, in directed brain regions have utility in fostering focal neurite outgrowth and in therapeutically countering neurite degeneration of neurodegenerative diseases such as Alzheimer's, ataxias, and Parkinson's disease.
In addition, the expression of this gene was relatively high in the normal brain samples compared to the cancer cell lines derived from brain cancer. Expression of this gene is useful as a marker to differentiate between normal and cancerous tissue. There were also significantly higher levels of expression in renal cancer cell lines compared to a normal kidney sample. Expression of this gene is also useful as a marker in renal cancer.
Panel 4.1D Summary: Ag6457 This probe/primer set is specific for the CG55784-03 gene variant. Expression of this gene was highest in dermal fibroblasts (CT=31.8) and was relatively treatment independent. This gene was also expressed in CD45RA (naive) T cells. Therapeutic modulation of this gene or its protein product is useful in the treatment of psoriasis or diseases mediated by activated T cells.
Panel 4D Summary: Ag2844 This transcript was induced in IL-4 and IL-13 treated NCI- H292 cells, expressed constitutively in a dermal fibroblast cell line and was slightly induced by IL-4 in lung fibroblasts. CD45RA (naive) T cells also expressed the transcript. The transcript encodes a NCAM-like molecule. Based on the expression pattern of the transcript, the homology to NCAM protein, and the regulation of transcript expression by IL-4 and IL-13, therapeutics designed with the protein encoded for by this transcript are important in the treatment of asthma and COPD. AI. CG55790-01 and CG55790-02: B7-H2B
Expression of gene CG55790-02 and variant CG55790-01 was assessed using the primer- probe sets Agl845, Ag2589, Ag2621, Ag2915, and Ag8156, described in Tables AIA, AIB, AIC, AID, and AE. Results of the RTQ-PCR runs are shown in Tables AIF, AIG, AIH, AH, AU and AIKPlease note that only the probe and primer sets Ag2589, Ag2621, and Ag2915 correspond to the CG55790-01 variant.
Table AIA. Probe Name Agl845
Table AIB. Probe Name Ag2589
Table AIC. Probe Name Ag2621
Table AID. Probe Name Ag2915
Table AIE. Probe Name Ag8156
Table AIF. AI_comprehensive panel_vl .0
Table AIG. CNS_neurodegeneration_vl.O
Column A ■ - ReL Exp.(%) Agl845, Run 207807655
Column B ■ ■ ReL Exp.(%) Agl845, Run 224079124
Column C ■ - Rel. Exp.(%) Ag2589, Run 208776915
Column D - Rel. Exp.(%) Ag2621, Run 208393684
Column E - - ReL Exp.(%) Ag2915, Run 209735956
Column F - - ReL Exp.(%) Ag2915, Run 266906552
Tissue Name I A j B j C j D j E F
1682
Table AIL Panel 2D
Table AIK. general oncology screening panel_v_2.4
AI_comprehensive panel_vl.O Summary: Agl845 This transcript was expressed at low levels in many different disease tissues. In comparison, normal lung and joint tissues expressed none or extremely low levels of this transcript. Since this transcript was expressed in monocytes, and matched control tissues contain these inflammatory cells (psoriasis, Crohn's and ulcerative colitis), this transcript is detected at these sites. This transcript encodes B7-H2, which has been shown to be important in antigen presentation. It is a ligand for ICOS and serves as a costimulatory molecule. Therapeutics designed with the transcript are useful for the reduction or inhibition of antigen presentation and in the treatment of diseases such as asthma, IBD, psoriasis and arthritis in which T cells are chronically stimulated.
CNS_neurodegeneration_vl.O Summary: Agl845/Ag2589/Ag2621/Ag2915 The expression of this gene was up-regulated in the temporal cortex of Alzheimer's disease patients when compared to non-demented controls. This difference was apparent when the data were analyzed via ANCOVA, using overall RNA quality and/or quantity as a covariate. The up-regulation of this gene was most apparent in the variant detected by
Agl845. The temporal cortex is a region that shows degeneration at the mid-stages of this disease. Thus, the phenomenon of neurodegeneration was captured in this region, as opposed to the hippocampus and entorhinal cortex where a large number of neurons are already lost by the time of death in AD. Furthermore, in the occipital cortex (where neurodegeneration does not occur in Alzheimer's) this gene was not found to be up- regulated in the same patients. Taken together, these data demonstrate that this gene is useful as a marker of Alzheimer's-like neurodegeneration, and is involved in the process of neurodegeneration. This gene is a form of the B7 protein (B7-H2B), which plays a role in inflammation. Neuroinflammation has been implicated in AD, to the extent that long-term usage of anti-inflammatory agents has been correlated with a reduced incidence of
Alzheimer's in retrospective studies. This gene therefore represents an excellent drug target for the treatment of Alzheimer's disease, and any other neuroinflammatory condition.
Panel 1.3D Summary: Agl845/Ag2589/Ag2621/Ag2915 Highest expression of this gene was seen in the brain, fetal kidney, and a breast cancer cell line. Higher levels of expression were also consistently seen in fetal skeletal muscle (CTs=29-30), when compared to expression in adult skeletal muscle (CTs=33-35). Thus, expression of this gene is useful as a marker to differentiate between the adult and fetal sources of this tissue. The relative overexpression of this gene in fetal sekeltal muscle shows that the protein product enhances muscle growth or development in the fetus and also acts in a regenerative capacity in the adult. Therapeutic modulation of the protein encoded by this gene is usenil in the treatment of lung related diseases.
This gene product was also moderately expressed in pancreas, adrenal, thyroid, pituitary, adult and fetal liver, adult and fetal heart, and adipose. Based on its expression profile in metabolic tissues, this gene product is useful in the diagnosis and/or treatment of metabolic disease, including obesity and diabetes. Panel 2D Summary: Agl845 The expression of this gene was highest in a sample derived from a kidney cancer (CTs^δ). There was substantial expression associated with other samples derived from kidney tissue, bladder cancer and breast cancer. The expression of this gene is useful as a marker to distinguish this kidney cancer sample from other samples in the panel. Therapeutic modulation of this gene, through the use of small molecule drugs, protein therapeutics or antibodies is beneficial for the treatment of kidney cancer, breast cancer or bladder cancer.
Panel 4.1D Summary: Ag8156 Highest expression of this gene was detected in TNF alpha + IL-1 beta activated HPAEC cells (CT=30.9). Low expression of this gene was also seen in activated lung microvascular endothelial cells. Expression of this gene was very low or undetectable in resting endothelial cells. Low expression of this gene was also seen in activated astrocytes, eosinophils, Ramos B cells, and activated primary Th2 and secondary Thl cells. This gene codes for B7-H2B gene. B7-H2 is a recently cloned costimulatory ligand that belongs to B7 family. B7-H2 binds to ICOS, an inducible costimulatory receptor expressed on activated, but not resting T cells. (Wang S, Blood 2000 Oct 15;96(8):2808-13) Interaction of B7-H2 and ICOS in the presence of the TCR stimuli results in an augmented proliferative responses and cytokine production. The data show that circumstances B7-H2 more effectively costimulates Th2 responses. The B7-H2/ICOS pathway plays an important role in antibody response and germinal center formation. (Tesciuba. J Immunol 2001 Aug 15 ; 167(4) : 1996-2003) Thus, B7-H2 is useful in the generation of therapeutics for diseases with antibody-mediated and Th2-mediated pathogenesis. Also, antibodies and small molecules that antagonize the function of the B7- H2B protein are useful for the reduction or elimination of the symptoms in patients with autoimmune and inflammatory diseases that involve endothelial cells, such as lupus erythematosus, asthma, emphysema, Crohn's disease, ulcerative colitis, rheumatoid arthritis, osteoarthritis, and psoriasis. general oncology screening panel_v_2.4 Summary: Ag2915 Highest expression of this gene was detected in a kidney cancer sample (CT=28.2). Moderate to low expression of this gene was also seen in cancer and normal samples derived from kidney, colon, metastatic melanoma, prostate and lung. Expression of this gene was higher in cancer samples. Therefore, expression of this gene is useful as a diagnostic marker to detect the presence of these cancers. Therapeutic modulation of this gene or its protein product through the use of antibodies or small molecule drug is useful in the treatment of kidney, colon, metastatic melanoma, prostate and lung cancers.
AJ. CG55906-01: S3-12
Expression of gene CG55906-01 was assessed using the primer-probe sets Ag2840 and Ag6179, described in Tables AJA and AJB. Results of the RTQ-PCR runs are shown in Tables AJC, AJD, AJE, AJF and AJG.
Table AJA. Probe Name Ag2840
Table AJB. Probe Name Ag6179
Table AJC. General_screening_panel_vl.5
Table AJD. Panel 2D
Table AJE. Panel 3D
Column A - Rel. Exp.(%) Ag2840, Run 170190088
Tissue Name Tissue Name ryr. 1 Ca Ski- Cervical epidermoid carcinoma
Daoy- Medulloblastoma (metastasis) 7.6
TableAJF.Panel4.1D
Table AJG. Panel 5 Islet
General_screening_panel_vl.5 Summary: Ag6179 Highest expression of this gene was detected in skeletal muscle (CT=28.6). Moderate levels of expression of this gene are also seen in adipose, colon, small intestine and heart. This gene codes for a homolog of mouse S3-12 protein. S3-12 is a purported adipose cell membrane-associated protein that is upregulated during adipocyte differentiation. Due to its weak homology with adipophilins, this gene is involved in lipid uptake. Inhibiting its action by an antibody is useful for reducing the potential white adipose mass by limiting lipid uptake and inhibiting adipocyte differentiation. Its expression in skeletal muscle shows that it can function similarly in muscle tissue as well, in terms of lipid uptake. Since excess lipid storage in muscle is associated with insulin resistance, antibody inhibition of this gene product is useful as a treatment for the prevention of obesity-associated insulin resistance.
Furthermore, this gene product was also moderately expressed in a variety of metabolic tissues, including adrenal gland, heart, colon and small intestine. Thus, modulation of this gene or expressed protein is useful as marker for the treatment of metabolic disease, including Types 1 and 2 diabetes, and obesity.
In addition, moderate but significant expression in the spinal cord shows that the protein encoded by this gene plays a role in lipid processing in the central nervous system. LDLR has been implicated in the development of Alzheimer's disease. Therefore, modulation of this gene or gene product is useful in the treatment of Alzheimer's Disease.
Panel 2D Summary: Ag2840 This gene was moderately expressed in all tissue samples this panel, with highest expression in a metastatic breast cancer sample (CT=24.5). This gene showed higher expression in normal kidney, prostate, colon and bladder samples relative to the corresponding adjacent tumor sample. Expression of this gene is useful as a marker to differentiate between normal and cancerous tissues. Therapeutic modulation of this gene, expressed protein and/or use of agonists targeting this gene or gene product is useful in the treatment of kidney, prostate, colon and bladder cancers. Panel 3D Summary: Ag2840 This gene showed low levels of expression in cancer cell lines, with highest expression in a gastric cancer MKN-45 cell line (CT=32). Significant expression was seen in cancer cell lines derived from lung cancer, pancreatic cancer and a leukemia. Therapeutic modulation of this gene, expressed protein and/or use of antibodies or small molecule drug targeting this gene or gene product is useful in the treatment of these cancers.
Panel 4.1D Summary: Ag2840 This transcript is expressed in colon and in resting neutrophils (CTs=31-33). Thus, the transcript or the protein it encodes is useful as a marker to detect colon tissue and neutrophils. Therapeutics modulation of this gene, expressed protein and/or use of antibodies or small molecule targeting this gene or gene product are useful in the treatment of autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease including Crohn's and Colitis, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.
Panel 5 Islet Summary: Ag6179 Highest expression of this gene was detected in adipose tissue from a diabetic patient. Significant expression of this gene was also seen in midway and fully differentiated adipose tissue. This gene was moderately expressed in clinical specimens of adipose, skeletal muscle and uterus.
AK. CG55906-02 and CG55906-04 and CG55906-05: Human ortholog of mouse S3-12
Expression of full-length physical clone CG55906-02 and variants CG55906-04 and CG55906-05 was assessed using the primer-probe sets Ag2840, Ag5976 and Ag6345, described in Tables AKA, AKB and AKC. Results of the RTQ-PCR runs are shown in Tables AKD, AKE, AKF, AKG and AKH. Please note that only the probe and primer set Ag6345 corresponds to CG55906-02 and only probe and primer sets Ag5976 and Ag6345 correspond to CG55906-05. Table AKA. Probe Name Ag2840
Table A-KB. Probe Name Ag5976
Table AKC. Probe Name Ag6345
Table AKD. General_screening_panel_vl.5
Table AKE. Panel 2D
Table AKF. Panel 3D 1699
Table AKG. Panel 4. ID
Table AKH. Panel 5D
General_screeningjpanel_vl.5 Summary: Ag5976 Highest expression of this gene was detected in adipose (CT=29). Moderate levels of expression of this gene was also seen in skeletal muscle, colon, small intestine, adrenal gland and heart. This gene codes for a homolog of mouse S3-12 protein. S3-12 is an adipose cell membrane-associated protein upregulated during adipocyte differentiation. Due to its weak homology with adipophilins, it is involved in lipid uptake. Inhibiting its action by an antibody will reduce potential white adipose mass by limiting lipid uptake and thereby inhibit adipocyte differentiation. Its expression in skeletal muscle indicates that it functions similarly in muscle tissue as well, in terms of lipid uptake. Since excess lipid storage in muscle is associated with insulin resistance, antibody inhibition of this gene product is useful as a treatment for the prevention of obesity-associated insulin resistance. Furthermore, modulation of this gene or expressed protein is useful for the treatment of metabolic disease, including Types 1 and 2 diabetes, and obesity.
Low expression of this gene was also seen in colon cancer tissue and cancer cell lines derived from ovarian and prostate cancers.
Low levels of expression in the spinal cord show that the protein encoded by this gene plays a role in lipid processing in the central nervous system. Modulation of this gene or gene product is useful in the treatment of spinal cord related disorders.
Ag6345 Highest expression of this gene was detected in adipose and skeletal muscle (CTs=31). Significant expression of this gene was also seen in pancreas, and kidney.
Panel 2D Summary: Ag2840 This gene was moderately expressed in all tissue samples this panel, with highest expression in metastatic breast cancer (CT=24.5). This gene showed higher expression in normal kidney, prostate, colon and bladder samples relative to the corresponding adjacent tumor sample. Expression of this gene is useful to differentiate between normal and cancerous tissues. Therapeutic modulation of this gene, expressed protein and/or use of agonists targeting this gene or gene product is useful in the treatment of kidney, prostate, colon and bladder cancers.
Panel 3D Summary: Ag2840 This gene showed low levels of expression in the cancer cell lines, with highest expression in the gastric cancer MKN-45 cell line (CT=32). Significant expression was seen in cancer cell lines derived from lung cancer, pancreatic cancer and a leukemia. Therapeutic modulation of this gene, expressed protein and/or use of antibodies or small molecule drug targeting this gene or gene product is useful in the treatment of these cancers.
Panel 4.1D Summary: Ag2840 This transcript was expressed in colon and in resting neutrophils (CTs=31-33). The transcript or the protein it encodes are isefi; as markers to detect colon tissue and neutrophils. Therapeutics modulation of this gene, expressed protein and/or use of antibodies or small molecule targeting this gene or gene product is useful in the treatment of autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease including Crohn's and Colitis, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.
Panel 5D Summary: Ag2840 This gene was moderately expressed in clinical specimens of adipose, skeletal muscle and uterus. This confirms expression of this gene in tissues with metabolic function. Please see Panel 1.5D for discussion of utility of this gene in metabolic disease. AL. CG55908-01 : Integrin A and FG GAP domain protein Expression of full-length physical clone CG55908-01 was assessed using the primer-probe sets Ag6400, Ag6446, Ag6449 and Ag6964, described in Tables ALA, ALB, ALC and ALD. Results of the RTQ-PCR runs are shown in Table ALE.
Table ALA. Probe Name Ag6400
Table ALB. Probe Name Ag6446
Table ALC. Probe Name Ag6449
Table ALD. Probe Name Ag6964
Start SEQ ID
Primers Sequences Length Position No
Forward 5 ' -ggccccagacatgca-3 ' 15 456 1468
TET-5 ' -actctacagctttgaccgcgcgg-3 '
Probe TAMRA 23 427 1469
Reverse 5 ' -gccaactgtgtggtgttca-3 ' 19 401 1470
Table ALE. General_screening_panel_vl.6
Column A - Rel. Exp.(%) Ag6400, Run 277248363 Column B - Rel. Exp.(%) Ag6446, Run 277250179 Column C - ReL Exp.(%) Ag6449, Run 277250185 Column D - Rel. Exp.(%) Ag6964, Run 278388946
A
General_screening_panel_vl.6 Summary: Highest expression of this gene was detected in an ovarian cancer IGROV-1 cell line and a brain cancer SNB-19 cell line (CTs=25-33.7). Moderate to low levels of expression of this gene are also seen in all the regions of central nervous system, tissues with metabolic/endocrine functions, and number of cancer cell lines.
AM. CG56110-03: B7 HI
Expression of full-length physical clone CG56110-03 was assessed using the primer-probe set Agl544, described in Table AMA. Results of the RTQ-PCR runs are shown in Tables AMB, AMC and AMD. Table AMA. Probe Name Agl 544
Start SEQ ID
Primers Sequences Length Position No
Forward 5 ' -tctggacaagcagtgaccat-3 ' 20 497 1471
TET-5 ' -accaccaccaattccaagagagagga-3
Probe TAMRA 26 538 1472
Reverse 5 ' -ttctcagtgtgctggtcaca-3 20 576 1473
Table AMB. Panel 1.3D
Table AMC. Panel 2D
Table AMD. Panel 4. ID
Panel 1.3D Summary: Agl544 The expression of this gene was highest in a sample derived from a gastric cancer cell line (NCI-H87) (CT-21.3). There was substantial expression found in lung cancer cell lines, a breast cancer cell line and placental tissue. The expression of this gene is useful as a marker to distinguish NCI-H87 cells from other samples in the panel. Therapeutic modulation of this gene or its protein product, through the-use of small molecule drags, antibodies or protein therapeutics is beneficial in the treatment of lung cancer or breast cancer.
Panel 2D Summary: Agl544 The expression of this gene was highest expression associated with bladder cancer tissue and lung tissue derived samples. The expression of this gene is useful as a marker to distinguish between these samples and the rest of the samples in the panel. Therapeutic modulation of this gene, through the use of small molecule drags, antibodies or protein therapeutics are beneficial in the treatment of bladder or lung cancer.
Panel 4.1D Summary: Agl544 This transcript was expressed in LAK cells, and induced in LAK cells activated with PMA/ionomycin, dendritic cells treated with LPS, monocytes treated with LPS, Gamma interferon treated HUVEC cells and keratinocytes treated with TNFalpha and IL-lbeta. This transcript encodes a smaller isoform of B7-H1, an antigen presentation co-receptor. B7-H1 binds to PD-1 ligand on T cells, resulting in T cell activation and production of IL-10. Antibody or other types of therapeutics designed with B7-H1 are useful for blocking T cell activation and for the treatment of T cell-mediated diseases such as asthma, psoriasis, IBD and arthritis. Alternatively, agonistic therapeutics designed with this protein are useful for adjuvant or immuno-modulatory treatments.
AN. CG56110-07: B7-H1 Expression of full-length physical clone CG56110-07 was assessed using the primer-probe set Ag5282, described in Table ANA. Results of the RTQ-PCR runs are shown in Tables ANB and ANC.
Table ANA. Probe Name Ag5282
Table ANB. General_screening_panel_vl.5
Table ANC. Panel 4. ID
Dendritic cells none 10.2 | Dermal fibroblast IL-4 0.0
Dendritic cells LPS 36.1 Dermal Fibroblasts rest 0.0
Dendritic cells anti-CD40 4.8 Neutrophils TNFa+LPS | 0.9
Monocytes rest 0.0 Neutrophils rest ( o.o
Monocytes LPS 100.0 Colon 0.0
Macrophages rest ( 2.6 Lung ( o.o
Macrophages LPS | 5.0 Thymus ( o.o
HUVEC none 2.2 -Kidney ( o.o
HUVEC starved ( 3.8 j
General_screening_panel_yl.5 Summary: Ag5282 The expression of this gene was highest in a sample derived from a gastric cancer cell line (NCI-H87) (CT=31). There was relatively low expression in the remaining samples of panel 1.5. The expression of this gene is useful as a marker to distinguish NCI-H87 cells from other samples in the panel. In addition, low expression of this gene was also seen in number of cancer cell lines derived from melanoma, pancreatic, gastric, renal, squamous cell carcinoma and lung cancers. Therapeutic modulation of this gene or its protein product is useful in the treatment of these cancers.
Panel 4.1D Summary: Ag5282 This transcript was not expressed in the normal tissue samples on this panel. The transcript was expressed in LAK cells, and induced in LAK cells activated with PMA/ionomycin, dendritic cells treated with LPS, monocytes treated with LPS, Gamma interferon treated HUVEC cells and keratinocytes treated with TNFalpha and IL-lbeta. This transcript encodes a smaller isoform of B7-H1, an antigen presentation co-receptor. B7-H1 binds to PD-1 ligand on T cells and resulting in T cell activation and production of IL- 10. -Antibody or other types of therapeutics designed with B7-H1 are useful for blocking T cell activation and in the treatment of T cell-mediated diseases such as asthma, psoriasis, IBD and arthritis. Alternatively, agonistic therapeutics designed with this protein are useful for adjuvant like properties.
AO. CG56449-09: MEGF6/NOTCH like isoform 7 Expression of gene CG56449-09 was assessed using the primer-probe sets Agl513,
Agl937, Ag422 and Ag252 and, described in Tables AOA, AOB, AOC, and AOD. Results of the RTQ-PCR runs are shown in Tables AOE, AOF, and AOG.
Table AOA. Probe Name Agl513
Table AOB. Probe Name Agl937
Table AOC. Probe Name Ag422
Table AOD. Probe Name Ag252
Table AOE. Panel 13D
Table AOF. Panel 2D
Table AOG. Panel 4D
Panel 1.3D Summary: Ag252 Highest levels of expression of this gene were seen in a liver cell line HepG2(CT=30.27). Based on expression in this panel, this gene is involved in brain, colon, renal, lung, ovarian and prostate cancer as well as melanomas. Thus, expression of this is useful as a diagnostic marker for the presence of these cancers. Therapeutic inhibition using antibodies, protein therapeutics or small molecule drags are of use in the treatment of these cancers. This gene product also showed low but significant levels of expression in pancreas, adrenal, thyroid, pituitary, adult and fetal heart, and adult and fetal liver. This gene or its protein product is important for the pathogenesis, diagnosis, and/or treatment of metabolic and endocrine diseases, including obesity and Types 1 and 2 diabetes. Furthermore, this gene was more highly expressed in fetal (CT=34) skeletal muscle when compared to expression in the adult (CT=40) and is useful for the differentiation of the fetal and adult sources of this tissue.
In addition, this gene was expressed at moderate levels in the CNS. This gene encodes a mouse epidermal growth factor homolog, and increases axonal or dendritic outgrowth and synaptogenesis. This gene is of use in the treatment of clinical conditions associated with neuron loss such as head or spinal cord trauma, stroke, or any neurodegenerative disease.
Panel 2D Summary: Ag252 This gene was expressed at low levels in all the samples on this panel, with highest expression in a kidney cancer sample (CT=31.1). Gastric, liver and colon cancers expressed this gene at a higher level than the normal adjacent tissue from these organs. There was increased expression in normal lung and ovarian tissue when compared to the adjacent tumor samples. These data show that the expression of this gene is associated with gastric, liver and colon cancer and thus, therapeutic modulation of this gene product is of use in the treatment of these cancers. Conversely, absence of expression is associated with ovarian and lung cancer and is of use as a diagnostic marker for the presence of these cancers. Therapeutic modulation of this gene is of use in the treatment of these cancers.
Panel 4D Summary: This transcript was expressed at low levels in T cells, fibroblasts, endothelium, smooth muscle cells and T cells regardless of treatment. The transcript was also expressed in normal colon, lung and thymus. However, TNFalpha and IL-lbeta induce the expression of the transcript in astrocytes. The trancritpt encodes a Notch like protein which functions in astrocyte differentiation and activation. (Colombatti Glia 2001 Sep;35(3):224-33 ). Therapeutic regulation of this transcript or the design of therapeutics with the encoded protein is important in the treatment of multiple scelrosis or other inflammtory diseases of the CNS.
AP. CG56594-01: Claudin-19 Like
Expression of gene CG56594-01 was assessed using the primer-probe set Ag2957, described in Table APA. Results of the RTQ-PCR runs are shown in Tables APB, APC and APD.
Table APA. Probe Name Ag2957
Table APB. General_screeningjpanel_vl.4
Table APC. Panel 2D
Table APD. Panel 4D
General_screening_panel_vl.4 Summary: Ag2957 Expression of this gene was restricted to placenta, fetal kidney and liver. Thus, expression of this gene is useful as a marker to differentiate between these samples and other samples on this panel. This gene shows no or very low expression in the cancer cell lines used in this panel and absence of expression of this gene or its protein product is useful as a diagnostic marker for cancer. This gene encodes a putative claudin. Claudins are components of tight junction strands. This specific pattern of expression indicates that this gene product is involved in the formation of TJ strands in these tissues. Panel 2D Summary: Ag2957 This gene was consistently expressed in the normal kidney samples (CTs=32-33) but not in the adjacent kidney tumors on this panel. Thus, absence of expression of this is useful as a diagnostic marker for kidney cancer. Therapeutic modulation of the function or expression of this gene is useful as a treatment for this cancer.
Panel 4D Summary: Ag2957 The expression of this transcript was restricted to the thymus (CT=32.1) but not in T cells. Expression of this transcript is useful as a marker for this tissue.
AQ. CG56653-08: FICOLIN 1 PRECURSOR Expression of gene CG56653-08 was assessed using the primer-probe sets Agl446,
Ag4934 and Ag5886, described in Tables AQA, AQB and AQC. Results of the RTQ-PCR runs are shown in Tables AQD, AQE and AQF.
Table AOA. Probe Name Agl446
Table AOB. Probe Name Ag4934
Table AOC. Probe Name Ag5886
Table AQD. AI_comprehensive panel_vl.O
Column A - ReL Exp.(%) Agl446, Run 211195015 Column B - Rel. Exp.(%) Agl446, Run 212650184 Column C - Rel. Exp.(%) Ag5886, Run 256261777
Table AQE. General_screening_panel_vl.5
Table AOF. Panel 4.1D
AI_comprehensive panel_vl.O Summary: Agl446/Ag5886 Highest expression of this gene was seen in a bone sample from an OA patient (CTs=27-30.4). Moderate to high expression of this gene wass mainly seen in bone, synovium, synovial fluid and cartilage of OA and RA patients. Expression of this gene was low to undetectable in normal bone. Moderate to low expression was also found in colon, asthma, atopic asthma, emphysema, COPD and psoriasis samples. Ficolins are multimeric lectins that are capable of binding to bacteria and extracellular matrix proteins [Ohashi T. J Biol Chem 1997 May 30;272(22): 14220-6]. Ficolin has been reported to function as a monocyte cell surface molecule that is important for binding to bacteria, elastin and for monocyte adhesion [Lu J, Immunobiology 1998 Aug; 199(2): 190-9 ]. This expression proves that ficolin is useful in alleviating inflammation in joints and other sites of inflammation. This gene functions as a protein therapeutic to reduce inflammation in osteoarthritis and rheumatoid arthritis. Ficolin also a role in the inflammation of joints in patients suffering from osteoarthritis (OA) and/or rheumatoid arthritis (RA). Antibodies against proteins encoded by this gene are useful for the prevention of tissue destruction mediated by ficolin activity during osteoarthritis and arthritis.
General_screening_panel_vl.5 Summary: Ag4934/Ag5886 Highest expression of this gene was detected in the fetal lung (CTs=27-31.5). Expression of this gene was also higher in fetal lung and fetal liver (CTs=27-33) than in their adult counterparts (CTs=32-38). Expression of this gene is useful as a marker to distinguish fetal from adult lung and liver. The relative overexpression of this gene in fetal tissue shows that the protein product enhances lung and liver growth or development in the fetus and also acts in a regenerative capacity in the adult. Therapeutic modulation of the protein encoded by this gene is useful in treatment of liver related diseases. Low but significant levels of expression was detected in tissues with metabolic/endocrine functions including adipose, heart, skeletal muscle, thyroid, pancreas and gastrointestinal tracts. Modulation of this gene or gene product is a treatment for metabolic or endocrine disease including obesity and Types 1 and 2 diabetes. Low expression of this gene was also seen in some regions of central nervous system including whole and fetal brain, cerebellum, hipocampus, substantia nigra, thalamus and spinal cord. Therapeutic modulation of this gene or gene product is useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression. Panel 4.1D Summary: Ag4934/Ag5886 This gene was highly and selectively expressed in resting monocytes and to a lesser extent in macrophages and granulocytes (neutrophils and EOL cell line). This gene encodes a putative ficolin 1 precursor. Ficolin functions as a monocyte cell surface molecule that is important for binding to bacteria, elastin and monocyte adhesion. Protein therapeutics, antibodies, or small molecules designed with the protein encoded by this transcript are useful as opsinins to target and eliminate bacteria by complement-mediated destruction. These proteins are also important for the treatment of bacterial septicemia. In addition, ficolins may have the ability to bind to elastins. Elastins are functionally important for lung alveolar development and inactivation of these proteins can lead to emphysema-like disease. Therefore, antibodies, small molecules or protein therapeutics that target this gene or its protein product are useful for the prevention of tissue destruction mediated by ficolin activity during emphysema, asthma and arthritis.
AR. CG56806-01: Heparan Sulfate 6-Sulfotransferase 3 Like Gene
Expression of gene CG56806-01 was assessed using the primer-probe set Ag3024, described in Table ARA. Results of the RTQ-PCR runs are shown in Tables ARB, ARC, ARD, ARE and ARF.
Table ARA. Probe Name Ag3024
Table ARB. AI_comprehensive panel_vl.O
Table -ARC. Panel 1.3D
Table ARD. Panel 2D
Table ARE. Panel 3D
Table ARF. Panel 4D
AI_comprehensive panel_vl.0 Summary: Ag3024 This gene was found at low but significant levels in lung tissue from COPD, emphysema and asthma patients. This expression was consistent with panel 4D which showed expression in small airway epithelium. Therefore, this gene is useful as a marker or a target for lung inflammatory diseases.
Panel 1.3D Summary: Ag3024 Expression of this gene, a heparin sulfate proteoglycan homolog, was highly brain preferential and plays a role for this gene product in CNS processes. Heparin sulfate proteoglycans (HSPGs) are a component of amyloid plaques in Alzheimer's disease. The interaction of apoE with HSPGs has also been implicated in the pathogenesis of Alzheimer's disease and plays a role in neuronal repair. apoE has an HSPG-binding site highly complementary to heparan sulfates rich in N- and O-sulfo groups. (Libeu CP, E. J Biol Chem 2001 Oct 19;276(42):39138-44). Enzymes that influence the structure of HSPGs, such as the protein product of this gene, will influence protein agregation and the functional processes underlying -Alzheimer's disease. Agents that target and modulate the activity of this gene or gene product are effective in the treatment of neurodegenerative diseases including Alzheimer's disease. This gene was also expressed in breast and brain cancer cell lines at low but significant levels. The expression of this gene is of use as a marker for breast and brain cancer. Therapeutic inhibition of the activity of the product of this gene, through the use of antibodies or small molecule drugs, is useful in the therapy of brain and breast cancer. Panel 2D Summary: Ag3024 This gene was expressed at low but significant levels in most of the samples on this panel, with highest expression in a kidney cancer sample (CT=30.6). Significant levels of expression were also seen in samples derived from breast and gastric cancer samples. Expression of this gene is of use as a marker for breast and gastric cancer. Therapeutic inhibition of the activity of the product of this gene or gene product, through the use of antibodies or small molecule drugs, is of use in the therapy of breast and gastric cancer.
Panel 3D Summary: Ag3024 This gene was expressed at low but significant levels in cell lines from a renal carcinoma, colon cancer, glioblastoma and three lung cancer lines. Thus, this gene is useful as a marker as well as a target for inhibition of these cancers.
Panel 4D Summary: Ag3024 This gene, a heparin Sulfate 6-Sulfotransferase 3 homolog, was expressed at low but significant levels in thymus and small airway epithelium treated with TNFalpha + IL-lbeta (CTs=34). The gene product is of use as a marker for thymus or activated small airway epithelium.
AS. CG56904-01: Secreted LRR (leucine-rich repeat) protein
Expression of gene CG56904-01 was assessed using the primer-probe sets Ag3048, and Ag6717, described in Tables ASA and ASB. Results of the RTQ-PCR runs are shown in Tables ASC, ASD, ASE, ASF, and ASG.
Table ASA. Probe Name Ag3048
Table ASB. Probe Name Ag6717
Table ASC. AI_comprehensive panel_vl.0
Table ASD. Panel 13D
Table ASE. Panel 2D
Table ASF. Panel 3D
Table ASG. Panel 4D
AI_comprehensive panel_vl.0 Summary: Ag6717 Prominent expression was seen in bone and synovium samples from osteoarthritis patients, with highest expression in an OA bone sample (CT=31). Thus, targeting this gene or its protein product is useful in the treatment of osteoarthritis. Panel 1.3D Summary: Ag3048 The expression of this gene was highest in a sample derived from a brain cancer cell line (SF-539) (CT=29.4). There was substantial expression associated with samples derived from another brain cancer cell line, two melanoma cell lines and a lung cancer cell line. The expression of this gene is useful as a marker to distinguish SF-539 cells from other samples in the panel. Therapeutic modulation of this gene, through the use of small molecule drags, protein therapeuitcs or antibodies is of benefit in treatment of brain or lung cancer or melanoma.
This gene, a leucine-rich repeat homolog, was expressed at low levels in the CNS. The leucine-rich repeat region proteins have been implicated in axonal guidance. This gene has therapeutic utility in the treatment of any CNS disorder involving neuronal loss, specfically by guiding/enhancing compensatory synaptogenesis and fiber outgrowth, including such clinical conditions as Alzheimer's, Parkinson's, or Huntington's diseases, stroke, head and spinal cord trauma, vascular dementia or spinocerebellar ataxia.
Panel 2D Summary: Ag3048 The expression of this gene was highest in a sample derived from an ovarian cancer (CT=29). There was substantial expression associated with lung cancer, prostate cancer and colon cancer samples. Of note is the differential expression in the lung, colon and prostate cancer samples compared to their respective normal adjacent tissue. The expression of this gene is useful as a marker to distinguish this ovarian cancer sample from other samples in the panel. The expression of this gene or its protein product is useful as a marker to distinguish colon, prostate or lung cancer samples from their normal adjacent tissue. Therapeutic modulation of this gene or its protein product, through the use of small molecule drags, protein therapeutics or antibodies is benefical in the treatment of ovarian, lung, prostate or colon cancer.
Panel 3D Summary: Ag3048 The expression of this gene was highest in a sample derived from a brain cancer cell line (SNB-78) (CT=30.2). There was substantial expression associated with other brain cancer cell line samples and a lung cancer cell line sample. The expression of this gene is useful as a marker to distinguish SNB-78 cells from other samples in the panel. Therapeutic modulation of this gene or its protein product, through the use of small molecule drugs, protein therapeutics or antibodies is useful in the treatment of brain or lung cancer.
Panel 4D Summary: Ag3048 This gene, a secreted leucine-rich repeat (LRR) protein, was expressed selectively at moderate levels (CT range 29-31) in several resting and cytokine- activated epithelial and connective tissue cells of lung and skin. This gene product is useful as a therapeutic protein as well as a target for therapeutic antibodies and small molecules, for the reduction or elimination of the symptoms in patients with chronic obstructive pulmonary disease, asthma, emphysema, or psoriasis.
AT. CG56904-04: LRR protein
Expression of gene CG56904-04 was assessed using the primer-probe set Ag3048, described in Table ATA. Results of the RTQ-PCR runs are shown in Tables ATB, ATC, ATD and ATE.
Table ATA. Probe Name Ag3048
Table ATB. Panel 1.3D
Table ATC. Panel 2D
Table ATD. Panel 3D
Table ATE. Panel 4D
Column A - Rel. Exp.(%) Ag3048, Run 164315038
Tissue Name Tissue Name
Panel 1.3D Summary: Ag3048 The expression of this gene was highest in a sample derived from a brain cancer cell line (SF-539) (CT=29.4). There was substantial expression associated with samples derived from another brain cancer cell line, two melanoma cell lines and a lung cancer cell line. The expression of this gene is useful as a marker to distinguish SF-539 cells from other samples in the panel. Therapeutic modulation of this gene, through the use of small molecule drugs, protein therapeuitcs or antibodies is of benefit in treatment of brain or lung cancer or melanoma.
This gene, a leucine-rich repeat homolog, was expressed at low levels in the CNS. The leucine-rich repeat region proteins have been implicated in axonal guidance. This gene has therapeutic utility in the treatment of any CNS disorder involving neuronal loss, specfically by guiding/enhancing compensatory synaptogenesis and fiber outgrowth, including such clinical conditions as Alzheimer's, Parkinson's, or Huntington's diseases, stroke, head and spinal cord trauma, vascular dementia or spinocerebellar ataxia.
Panel 2D Summary: Ag3048 The expression of this gene was highest in a sample derived from an ovarian cancer (CT=29). There was substantial expression associated with lung cancer, prostate cancer and colon cancer samples. Of note is the differential expression in the lung, colon and prostate cancer samples compared to their respective normal adjacent tissue. The expression of this gene is useful as a marker to distinguish this ovarian cancer sample from other samples in the panel. The expression of this gene or its protein product is useful as a marker to distinguish colon, prostate or lung cancer samples from their normal adjacent tissue. Therapeutic modulation of this gene or its protein product, through the use of small molecule drugs, protein therapeutics or antibodies is benefical in the treatment of ovarian, lung, prostate or colon cancer.
Panel 3D Summary: Ag3048 The expression of this gene was highest in a sample derived from a brain cancer cell line (SNB-78) (CT=30.2). There was substantial expression associated with other brain cancer cell line samples and a lung cancer cell line sample. The expression of this gene is useful as a marker to distinguish SNB-78 cells from other samples in the panel. Therapeutic modulation of this gene or its protein product, through the use of small molecule drugs, protein therapeutics or antibodies is useful in the treatment of brain or lung cancer.
Panel 4D Summary: Ag3048 This gene, a secreted leucine-rich repeat (LRR) protein, was expressed selectively at moderate levels (CT range 29-31) in several resting and cytokine- activated epithelial and connective tissue cells of lung and skin. This gene product is useful as a therapeutic protein as well as a target for therapeutic antibodies and small molecules, for the reduction or elimination of the symptoms in patients with chronic obstractive pulmonary disease, asthma, emphysema, or psoriasis.
AU. CG56914-01: Thrombospondin
Expression of gene CG56914-01 was assessed using the primer-probe sets Ag3108 and Ag3899, described in Tables AUA and AUB. Results of the RTQ-PCR runs are shown in Tables AUC, AUD, AUE, AUF, AUG.
Table AUA. Probe Name Ag3108
Table AUB. Probe Name Ag3899
Table AUC. General_screening_panel_vl.4
Table AUD. HASS Panel vl.O
Table AUF. Panel 4. ID
Table AUG. general oncology screening panel_v_2.4
General_screening_panel_vl.4 Summary: Ag3899 Highest expression of this gene was detected in an astrocytoma SNB-75 cell line (CT=23.8). High levels of expression of this gene are also seen in a cluster of brain and melanoma cancer cell lines. Expression of this gene is useful as a marker to distinguish these samples from other samples in the panel and also as marker for detection of these cancers. Therapeutic modulation of the activity of this gene or its protein product, through the use of small molecule drugs, protein therapeutics or antibodies, is beneficial in the freatment of these cancers.
Among tissues with metabolic or endocrine function, this gene was expressed at low to moderate levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therapeutic modulation of the activity of this gene or its gene product is useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.
This gene was expressed at much higher levels in fetal liver (CT=30) and lung (CTs=27.9) when compared to corresponding adult liver (CT=35) and lung (CT=36.8). Expression of this gene or ists protein product is of use as a marker to distinguish these fetal tissues from the corresponding adult tissues.
HASS Panel vl.O Summary: Ag3108 This gene was expressed by MCF-7 cells and a glioma sample on this panel. Expression of this gene was serum-dependent in MCF-7 cells. Expression is regulated by cytokines and extracellular molecules found in serum. Modulation of this gene, through the use of small molecule drugs, protein therapeutics or antibodies is of benefit in the treatment of glioma.
Panel 2.1 Summary: Ag3108 Highest expression of this gene was detected in a melanoma metastasis sample (CT=29). Expression of this gene was higher in normal liver when compared to adjancent cancerous tissue and in metastasic breast cancer tissue (OD04590- 03) (CT-33) as compared to primary breast cancer (OD04590-01) (CT=36.7). Expression of this gene is useful as a marker for cancer metastasis. Therapeutic modulation of the expression or function of this gene or gene product is useful in the treatment of lung, breast and melanoma cancers.
Panel 4.1D Summary: Ag3108 Highest expression of this gene was seen in lung (CT=28.6). Significant expression of this gene was also seen in HPAEC cells, HUVEC cells, lung fibroblast, TNFalpha + ILl beta treated bronchial epithelium and dermal fibroblasts. Antibody, protein therapeutics or small molecule therapies designed with the protein encoded for by this gene are important in the treatment of inflammatory lung disorders such as chronic obstructive pulmonary disease, asthma, allergy and emphysema and skin disorders including psoriasis.
In addition, low expression of this gene was also seen in kidney and colon. Antibody, protein therapeutics or small molecule therapies designed with the protein encoded by this gene are important in the treatment of inflammatory or autoimmune diseases that affect the kidney, including lupus and glomerulonephritis, as well as, inflammatory bowel diseases such as Crohns.
Expression of this gene was stimulated in PMA/ionomycin treated basophils (CT=30) as compared to resting basophils (CT=36). Basophils release histamines and other biological modifiers in reponse to allergens and play an important role in the pathology of asthma and hypersensitivity reactions. Therapeutics designed against the protein encoded by this gene are useful for the reduction or inhibition of inflammation by blocking basophil function in these diseases. These cells are a reasonable model for the inflammatory cells that take part in various inflammatory lung and bowel diseases, such as asthma, Crohn's disease, and ulcerative colitis. Therapeutics that modulate the function of this gene or gene product are useful for the reduction or elimination of the symptoms of patients suffering from asthma, Crohn's disease, and ulcerative colitis. general oncology screening panel_v_2.4 Summary: Ag3108/Ag3960 Highest expression of this gene was seen in a metastatic melanoma sample (CTs=30-31). Expression of this gene was higher in kidney and lung cancer when compared to normal adjacent tissue samples. Expression of this gene is useful as a marker to differentiate these samples from other samples on this panel and as a marker for these cancers. Therapeutic modulation of the expression or function of this gene or gene product is of use in the treatment of these cancers.
AV. CG56959-02: Synaptotagmin X
Expression of full-length physical clone CG56959-02 was assessed using the primer-probe set Agl 557, described in Table AVA. Results of the RTQ-PCR runs are shown in Tables AVB, AVC, AVD and AVE.
Table AVA. Probe Name Agl557
Start SEQ ID
Primers Sequences Length) Position No
Forward 5 ' -gcgtgcacagaaagactttaaa-3 22 698 1519
TET-5 ' -tgatgaaacttttcaatttcctgtagca-3 '
Probe TAMRA 28 661 1520
Reverse 5 ' -tgaaatgtagttttcggttgct-3 ' 22 627 1521
Table AVB. AI_comprehensive panel_vl.O
Column A - ReL Exp.(%) Agl557, Run 257809393
Table AVC. Panel 1.3D
Table AVD. Panel 2D
Table AVE. Panel 4D
AI_comprehensive panel_vl.O Summary: Agl 557 Low but significant expression was seen in an OA bone sample (CT=32). Prominent expression was also detected in ulcerative colitis and Crohn's samples as well as adjacent normal tissue samples.
Panel 1.3D Summary: Agl 557 Highest expression of this gene was detected in a breast cancer cell line and the cerebral cortex (CTs=33-34.6). Expression of this gene is of use as a marker for breast cancer. This gene was also expressed at moderate levels in the pituitary gland. The protein encoded by this gene is homologous to synaptotagmin and is important in the pituitary secretory pathway. This gene product or antibodies or small molecules that target this gene product are useful in the freatment of disease in this tissue. Panel 2D Summary: Agl557 Increased expression of this gene was seen in a single kidney sample (CTs=33), lung cancer sample and bladder cancer sample compared to the expression in the normal adjacent tissues showing that expression of this gene or gene product is of use as a marker to distinguish cancer from normal adjacent tissue. Therapeutic inhibition of this gene activity, through the use of small molecule drugs, protein therapeutics or antibodies, is of utility in the treatment of lung, bladder and kidney cancers.
Panel 4D Summary: Agl 557 This gene was expressed at a moderate level (CT=3339) in thymus (Panel 4D). Small molecule drugs, protein therapeutics, or antibodies that inhibit the function of this synaptotagmin-like protein are useful for the reduction or elimination of the symptoms of autoimmune or inflammatory diseases that depend on the T cells that develop in the thymus, such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, or rheumatoid arthritis.
AW. CG57111-01: Protocadherin
Expression of gene CG57111-01 was assessed using the primer-probe sets Agl 096 and Ag3242, described in Tables AWA and AWB. Results of the RTQ-PCR runs are shown in Tables AWC, AWD, AWE, and AWF.
Table AWA. Probe Name Agl 096
Reverse 15 ' -ctcgggataaccatgatcact-3 ' 21 2463 1524
Table AWB. Probe Name Ag3242
Table AWC. AI_comprehensive panel_vl.0
Table AWD. Panel 1.3D
Table AWE. Panel 2.2
Kidney Ca, Clear cell type (OD04340) 0.0 Gastric Cancer 9060395 2.2 iKidney Margin (OD04340) 1.1 Stomach Margin 9060394 3.41
IKidney Ca, Nuclear grade 3 (OD04348) 0.0 Gastric Cancer 064005 0.3
Table AWF. Panel 4D
AI_comprehensive panel_vl.0 Summary: Ag3242 Expression of this gene was ubiquitous in this panel, with high expression in samples derived from patients suffering from ulcerative colitis, Crohns disease and psoriasis (CTs=33). Significant expression was also seen in samples derived from synovium, cartilage and bone of rheumatoid arthritis. Antibody or small molecule therapies designed with the protein encoded for by this gene are useful in the treatment of inflammatory bowel diseases and rheumatoid arthritis.
Panel 1.3D Summary: Ag3242 Highest expression of the CG57448-01 gene was seen in a renal cancer cell line (CT=31.1). Significant expression was also seen in cell lines derived from ovarian cancer, lung cancer, brain cancer and melanoma. Expression of this gene is useful as a marker to differentiate between these samples and other samples on this panel and as a diagnostic marker for the presence of these cancers. This gene encodes a protein that is homologous to cadherin, a cell-adhesion molecule. Therapeutic modulation of the expression or function of this gene or gene prduct is effective in the treatment of lung, renal and melanoma cancers. Expression of the this gene was also high in many regions of the brain, including the amygdala, thalamus, cerebellum, and cerebral cortex, with highest expression in the hippocampus. Expression was also detected in the spinal cord. Cadherins can act as axon guidance and cell adhesion proteins, specifically during development and in the response to injury (Ranscht B. (2000) Int. J. Dev. Neurosci. 18: 643-651.). Manipulation of levels of this protein are of use in inducing a compensatory synaptogenic response to neuronal death in Alzheimer's disease, Parkinson's disease, Huntington's disease, spinocerebellar ataxia, progressive supranuclear palsy, ALS, head trauma, stroke, or any other disease/condition associated with neuronal loss.
Among tissues with metabolic function, this gene was moderately expressed in pituitary gland, adrenal gland, thyroid, pancreas, skeletal muscle, and liver, reflecting the widespread role of cadherins in cell-cell adhesion. This expression shows that this gene product plays a role in normal metabolic and neuroendocrine function and that dysregulated expression of this gene contributes to metabolic diseases (such as obesity and diabetes) or neuroendocrine disorders.
Panel 2.2 Summary: Ag3242 Highest expression of this gene was seen in a sample derived from an ocular melanoma metastasis (CT=29). Thus, expression of this gene is useful as a marker to differentiate between this sample and other samples on this panel. Panel 4D Summary: Agl096/Ag3242 Highest expression of this gene was detected in the basophil cell line (KU-812) treated with PMA/ionomycin (CTs=30-32). Significant expression was also seen in a cluster of treated and untreated samples derived from the muco-epidermoid cell line NCI-H292. Thus, this gene, which encodes a cadherin homolog, was expressed in both a cell line that is often used as a model of airway epithelium (NCI- H292) and a cell line that is a reasonable model for the inflammatory cells that contribute to various inflammatory lung diseases. Therapeutic modulation of this gene or gene prodcut may is useful to reduce or eliminate the symptoms of patients suffering from pathological and inflammatory lung disorders, including chronic obstructive pulmonary disease, asthma, allergy and emphysema. Low but significant levels of expression were also seen in the samples derived from normal colon, kidney, lung and thymus. Therapeutic modulation of the expression or function of this gene or gene product is important for maintaining or restoring normal function to this organs during inflammation.
AX. CG57409-05 and CG57409-07: protein containing MAM and Ig domains
Expression of gene CG57409-05 and full length physical clone CG57409-07 was assessed using the primer-probe sets Ag5267 and Ag6188, described in Tables AXA and AXB. Results of the RTQ-PCR runs are shown in Tables AXC, AXD and AXE.
Table AXA. Probe Name Ag5267
Table AXB. Probe Name Ag6188
Table AXC. General_screening_panel_vl.5
Table AXD. Panel 4. ID
Table AXE, general oncology screening panel_v_2.4
General_screening_panel_vl.5 Summary: Ag6188 Significant expression of this gene was seen in the brain. Expression of this gene is useful as a marker to differentiate between brain derived samples and other samples on this panel.
Among tissues with metabolic function, this gene was expressed at moderate to low levels in pituitary, adipose, adrenal gland, pancreas, thyroid, and adult and fetal skeletal muscle, heart, and liver. This widespread expression among these tissues shows that this gene product plays a role in normal neuroendocrine and metabolic function and that disregulated expression of this gene contributes to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes. Panel 4.1D Summary: Ag5267 This franscript was expressed in LAK cells and treatment of the LAK cells with PMA and ionomycin upregulated the expression of this transcript. This transcript was also induced in activated EOL cells and in fibroblasts. This gene encodes a putative NCAM, a type of cell surface protein often involved in cellular interaction, adhesion and signaling. Therapeutics designed with the protein encoded for this transcript are important in the treatment of diseases such as asthma, emphysema, psoriasis and arthritis. general oncology screening panel_v_2.4 Summary: Ag6188 Highest expression of this gene was seen in two melanoma samples (CTs=31). Prominent expression was seen in a squamous cell carcinoma sample and two prostate adenocarcinoma samples. Targeting this gene or its protein product is useful in the freatment of these cancers.
AY. CG57448 01: PROTOCADHERIN 10
Expression of gene CG57448-01 was assessed using the primer-probe sets Agl096, and Ag3242, described in Tables AYA and AYB. Results of the RTQ-PCR runs are shown in Tables AYC, AYD, AYE, AYF, and AYG. Table AYA. Probe Name Agl 096
Table AYB. Probe Name Ag3242
Table AYC. AI_comprehensive panel_vl.O
Table AYD. CNS_neurodegeneration_vl.O
Table AYE. Panel 13D
Table AYF. Panel 2.2
Table AYG. Panel 4D
AI_comprehensive panel_vl.0 Summary: Ag3242 Expression of this gene was ubiquitous in this panel, with high expression in samples derived from patients suffering from ulcerative colitis, Crohns disease and psoriasis (CTs=33). Significant expression was also seen in samples derived from synovium, cartilage and bone of rheumatoid arthritis. -Antibody or small molecule therapies designed with the protein encoded for by this gene are useful in the treatment of inflammatory bowel diseases and rheumatoid arthritis.
Panel 1.3D Summary: Ag3242 Highest expression of the CG57448-01 gene was seen in a renal cancer cell line (CT=31.1). Significant expression was also seen in cell lines derived from ovarian cancer, lung cancer, brain cancer and melanoma. Expression of this gene is useful as a marker to differentiate between these samples and other samples on this panel and as a diagnostic marker for the presence of these cancers. This gene encodes a protein that is homologous to cadherin, a cell-adhesion molecule. Therapeutic modulation of the expression or function of this gene or gene prduct is effective in the treatment of lung, renal and melanoma cancers.
Expression of the this gene was also high in many regions of the brain, including the amygdala, thalamus, cerebellum, and cerebral cortex, with highest expression in the hippocampus. Expression was also detected in the spinal cord. Cadherins can act as axon guidance and cell adhesion proteins, specifically during development and in the response to injury (Ranscht B. (2000) Int. J. Dev. Neurosci. 18: 643-651.). Manipulation of levels of this protein are of use in inducing a compensatory synaptogenic response to neuronal death in Alzheimer's disease, Parkinson's disease, Huntington's disease, spinocerebellar ataxia, progressive supranuclear palsy, ALS, head trauma, stroke, or any other disease/condition associated with neuronal loss. Among tissues with metabolic function, this gene was moderately expressed in pituitary gland, adrenal gland, thyroid, pancreas, skeletal muscle, and liver, reflecting the widespread role of cadherins in cell-cell adhesion. This expression shows that this gene product plays a role in normal metabolic and neuroendocrine function and that dysregulated expression of this gene contributes to metabolic diseases (such as obesity and diabetes) or neuroendocrine disorders.
Panel 2.2 Summary: Ag3242 Highest expression of this gene was seen in a sample derived from an ocular melanoma metastasis (CT=29). Thus, expression of this gene is useful as a marker to differentiate between this sample and other samples on this panel. Panel 4D Summary: Agl 096/ Ag3242 Highest expression of this gene was detected in the basophil cell line (KU-812) treated with PMA/ionomycin (CTs=30-32). Significant expression was also seen in a cluster of treated and untreated samples derived from the muco-epidermoid cell line NCI-H292. Thus, this gene, which encodes a cadherin homolog, was expressed in both a cell line that is often used as a model of airway epithelium (NCI- H292) and a cell line that is a reasonable model for the inflammatory cells that contribute to various inflammatory lung diseases. Therapeutic modulation of this gene or gene prodcut may is useful to reduce or eliminate the symptoms of patients suffering from pathological and inflammatory lung disorders, including chronic obstructive pulmonary disease, asthma, allergy and emphysema. Low but significant levels of expression were also seen in the samples derived from normal colon, kidney, lung and thymus. Therapeutic modulation of the expression or function of this gene or gene product is important for maintaining or restoring normal function to this organs during inflammation.
AZ. CG58567-01: PROTOCADHERIN Expression of gene CG58567-01 was assessed using the primer-probe set Ag2897, described in Table AZA. Results of the RTQ-PCR mns are shown in Tables AZB, AZC, AZD, AZE and AZF.
Table AZA. Probe Name Ag2897
Table AZB. AI_comprehensive panel_vl.0
112736 Match Confrol Ulcer Col-M I 1.3 1113668 Synovium4 Normal 6.1
112423 Psoriasis-F 7.9 113669 Syn Fluid Cells4 Normal 10.2
Table AZC. Panel 13D
Table AZD. Panel 2D
Table AZE. Panel 3D
K-ATO III- Gastric carcinoma 0.0 SK-LMS-1- Leiomyosarcoma (vulva) 0.0
SJRH30- Rhabdomyosarcoma (met to bone iNCI-SNU-16- Gastric carcinoma 0.8 0.01 marrow)
NCI-SNU-1- Gastric carcinoma 0.0 A431- Epidermoid carcinoma 0.0
RF-1- Gastric adenocarcinoma 0.0 WM266-4- Melanoma 1.2
DU 145- Prostate carcinoma (brain
RF-48- Gastric adenocarcinoma 0.8 0.0 metastasis)
MKN-45- Gastric carcinoma 0.0 MDA-MB-468- Breast adenocarcinoma 0.8
SCC-4- Squamous cell carcinoma of
NCI-N87- Gastric carcinoma 0.3 0.0 tongue
SCC-9- Squamous cell carcinoma of
OVCAR-5- Ovarian carcinoma 0.0 0.0 tongue
SCC- 15- Squamous cell carcinoma of
RL95-2- Uterine carcinoma 0.0 0.0 tongue
CAL 27- Squamous cell carcinoma of
HelaS3- Cervical adenocarcinoma 0.0 0.0 tongue
Table AZF. Panel 4D
AI_comprehensive panel_vl.O Summary: Ag2897 Highest expression of this gene was detected in a normal tissue sample adjacent to a psoriasis sample (CT=30). This expression was down-regulated in the corresponding psoriasis sample (CT=33). Expression of this gene is useful as a marker to distinguish between these samples. The expression of this gene was up-regulated in lung from emphysema and COPD patients, consistent with its expression in "stressed" small airway epithelium, lung fibroblasts and lung endothelium (treated with TNF-a and IL-1). Therapeutic modulation of the expression of this gene or its protein and/or signaling via this protein by antibodies, small moleculesvor protein therapeutics is useful for the inhibition of inflammation in lung tissue due to asthma, emphysema and other COPD type diseases
Panel 1.3D Summary: Ag2897 Highest expression of this gene, a protocadherin homolog, was detected in the spinal cord and the cerebral cortex (CTs=31.5). Low levels of expression were also seen in other regions of the brain including the amygdala and the hippocampus. The cadherins have been shown to be critical for CNS development, specifically for the guidance of axons, dendrites and/or growth cones in general. Therapeutic modulation of the levels of this protein, or possible signaling via this protein are of utility in enhancing/directing compensatory synaptogenesis and fiber growth in the CNS in response to neuronal death (stroke, head trauma), axon lesion (spinal cord injury), or neurodegeneration (Alzheimer's, Parkinson's, Huntington's, vascular dementia or any neurodegenerative disease). Since protocadherins play an important role in synaptogenesis, this gene product is also involved in depression, schizophrenia, both of which involve synaptogeneisis. Because this cadherin shows highest expression in the cerebellum, this is also an excellent candidate for the spinocerebellar ataxias as well.
Significant levels of expression were also seen in cell lines derived from ovarian, renal and brain cancers. Thus, expression of this gene or gene product is useful as a marker to differentiate between these samples and other samples on this panel and as a marker to detect the presence of these cancers. Therapeutic modulation of the expression or function of this gene or gene product is effective in the treatment of ovarian, renal and brain cancers.
Panel 2D Summary: Ag2897 Highest expression of this gene was detected in ovarian and kidney cancers (CTs=30.5). Significant levels of expression were also seen in lung and uterine cancers. Higher levels of expression were seen in these cancers than in the corresponding normal adjacent tissues. Therapeutic targeting of this gene or gene product with a small molecule drug, protein therapeutic, or human monoclonal antibody is useful for limiting or blocking the extent of tumor cell migration and invasion, preferably in kidney, lung, uterine and ovarian tumor tumors.
Panel 3D Summary: Ag2897 Highest expression of this gene was seen in a lung cancer cell line (CT=30.1). Expression of this gene or gene product is useful as a marker to differentiate between this sample and other samples on this panel.
Panel 4D Summary: Ag2897 This gene highly was up-regulated in small airway epithelium and astrocytes stimulated with TNF-alpha and IL-1 beta (CTs=33-34). Other tissues in the lung also up regulated the expression of this gene including lung microvascular endothelium and lung fibroblasts in response to TNF alpha or the Th2 elaborated cytokine IL-4. This demonstrates that this molecule is expressed as a result of inflammation, particularly during asthma since TNFalpha and IL-4 may play important roles in the pathology of this disease. Based on the expression profile of this transcript and the types of cytokines which induce it, antibodies, protein therapeutics or small molecule drugs that target this gene or gene product are useful for inhibiting inflammation in lung tissue due to asthma, emphysema and other COPD type diseases. BA. CG59534-03: Ovostatin
Expression of gene CG59534-03 was assessed using the primer-probe set Ag7218, described in Table BAA. Results of the RTQ-PCR runs are shown in Table BAB.
Table BAA. Probe Name Ag7218
Table BAB. Panel 4. ID
Panel 4.1D Summary: Ag7218 Highest expression of this gene was seen in human pulmonary artery endothelial cells (CT=32). Detectable levels of expression were also seen in clusters of lung and dermal fibroblasts as well as in activated T cells. Therefore, targeting this gene or its protein product is useful for the reduction or elimination of the inflammation in lung, skin, and T cell mediated inflammatory and autoimmune diseases.
BB. CG59584-02 and CG59584-03: Ovastatin
Expression of gene CG59584-03 was assessed using the primer-probe set Agl282, described in Table BBA. Results of the RTQ-PCR runs are shown in Tables BBB, BBC, BBD, BBE, BBF, and BBG. Table BBA. Probe Name Agl282
JTET-5 ' -tgctatcaggatttactccaaccatgtca-3 '
Probe JTAMRA 29 4549 1547
Reverse 15 ' -ttgttttcaagctcttcaatgg-3 '
Table BBB. General_screeningjpanel_vl.4
Table BBC. Panel 13D
Table BBD. Panel 2D
Table BBE. Panel 4. ID
Column A - ReL Exp.(%) Agl282, Run 169828985
Table BBF. Panel 5 Islet
Table BBG. general oncology screening panel_y_2.4
General_screening_panel_vl.4 Summary: Agl282 Highest expression of this gene was seen in a melanoma cell line. In addition, significantly higher levels of expression were seen in a breast cancer cell line. Thus, expression of this is useful as a marker to differentiate between these samples and other samples on this panel and as a marker to detect the presence of melanoma and breast cancer. Furthermore, therapeutic modulation of the expression or function of this gene or gene product is effective in the treatment of melanoma and breast cancers.
Among tissues with metabolic function, this gene was expressed at moderate levels in pituitary, adipose, adrenal gland, pancreas, thyroid, and adult and fetal skeletal muscle, heart, and liver. This widespread expression among these tissues shows that this gene product plays a role in normal neuroendocrine and metabolic function and that disregulated expression of this gene contributes to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.
In addition, this gene was expressed at much higher levels in fetal lung, liver and skeletal muscle tissue (CTs=27-29) when compared to expression in the adult counterpart (CTs=30- 32). Thus, expression of this gene is useful as a marker to differentiate between the fetal and adult source of these tissue.
This molecule is a novel ovostatin that was also expressed at moderate levels in the all regions of the CNS examined. This gene or gene product is a target for the treatment of neurologic diseases. HASS Panel vl.O Summary: High levels of expression were detected in samples derived from a glioblastoma and a medulloblastoma.
Panel 1.3D Summary: Agl282 Expression of this gene was consistent with expression in Panel 1.4. The expression of this gene was highest in a sample derived from a breast cancer cell line (MDA-N) (CT=26.9). In addition, there was expression in other samples derived from lung cancer cell lines and melanoma cell lines. Thus, the expression of this gene is useful as a marker to distinguish MDA-N cells from other samples in the panel. This gene encodes a novel ovostatin. Ovostatins are protease inhibitors that have been shown to support the growth of tumor cells in the absence of serum. They have also been shown to mediate accelerated fibroblast growth, collagen deposition and capillary formation. Thus, therapeutic targeting of this gene product is useful for blocking the uncontrolled growth of cancer cells related to the action of this gene, especially in those cancer types like lung, breast and melanoma tumors where the gene is overexpressed in the tumor compared to the normal adjacent tissue.
Panel 2D Summary: Agl282 Highest expression of this gene was seen in a sample derived from an ocular melanoma metastasis to the liver (CT=27). In addition, there was expression in other samples derived from lung cancers. Thus, expression of this gene is useful as a marker to distinguish liver cancer cells from other samples in the panel. Moreover, therapeutic modulation of this gene, through the use of small molecule drugs, protein therapeutics or antibodies is of benefit in the freatment of liver or lung cancer. Panel 4.1D Summary: Agl282 This gene, an ovostatin-like protein, is related to ovostatin, a known inhibitor of proteinases of all four mechanistic classes, (serine proteinases, cysteine proteinases, aspartyl proteinases, and metalloproteinases) (Saxena I, Cell Mol Life Sci 1997 Jan;53(l):13-23; Ofuji Y, Periodontal Clin fr vestig 1992 Fall; 14(2): 13-22). Highest expression of the gene was seen in the thymus and kidney (CTs=28-29). In addition, moderate to low levels of expression were seen in most of the samples on this panel. This gene or its protein product is useful as a therapeutic protein for the reduction of various proteolytic activities involved in inflammatory and autoimmune diseases such as, but not limited to, Crohn's disease, ulcerative colitis, multiple sclerosis, chronic obstructive pulmonary disease, asthma, emphysema, rheumatoid arthritis, lupus erythematosus, or psoriasis, wound healing, and infection.
Panel 5 Islet Summary: Agl 282 Highest expression of this gene was seen in the small intestine (CT=28), with moderate to low levels of expression seen in metabolic tissues, including adipose, placenta, and skeletal muscle. Thus, targeting this gene or its protein product is useful in the treatment of metabolic disease, including obesity and type II diabetes. general oncology screening panel_v_2.4 Summary: Agl282 Highest expression of this gene was seen in a lung cancer sample (CT=28). In addition, this gene was more highly expressed in lung and kidney cancer than in the corresponding normal adjacent tissue.
Thus, therapeutic modulation of the expression or function of this gene product is useful in the treatment of lung and kidney cancer.
BC. CG59841-01: novel human agrin
Expression of gene CG59841-01 was assessed using the primer-probe set Ag3605, described in Table BCA. Results of the RTQ-PCR rans are shown in Tables BCB, BCC, BCD and BCE.
Table BCA. Probe Name Ag3605
Table BCB. General_screening_panel_vl.4
Table BCC. Panel 2.2
Kidney Margin (OD04339) 16.6 Stomach Margin 9060396 7.4
Kidney Ca, Clear cell type (OD04340) 16.6 Gastric Cancer 9060395 7.0
[Kidney Margin (OD04340) 7.4 Stomach Margin 9060394 7__
Kidney Ca, Nuclear grade 3 (OD04348) 11.2 Gastric Cancer 064005 6.9
Table BCD. Panel 4. ID
Table BCE. general oncology screening panel_v_2.4
General_screening_panel_vl.4 Summary: Ag3605 Expression of this gene was highest in a breast cancer cell line (CT = 25.2). Expression of this gene was primarily associated with cancer cell lines rather than with normal tissues and was upregulated in pancreatic, CNS, colon, gastric, renal, lung, breast, ovarian, and prostate cancer cell lines when compared to their respective normal tissues. Thus, therapeutic modulation of the activity of this gene or its protein product, using small molecule drags, antibodies or protein therapeutics, is of benefit in the treatment of these types of cancers.
In addition, this gene was expressed at moderate levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. This gene encodes a protein with homology to agrin, a neuronal aggregating factor that induces the aggregation of acetylcholine receptors and other postsynaptic proteins on muscle fibers and is crucial for the formation of the neuromuscular junction. A-rin plays an important role in defining neuronal responses to excitatory neurotransmitters both in vitro and in vivo (Hilgenberg LG, Mol Cell Neurosci 2002 Jan;19(l):97-110; Bixby JL,. J Neurobiol 2002 Feb 5;50(2):164-79). This gene expression in the central nervous system was consistent with the hypothesis that this protein functions as agrin. Therefore, this gene plays a role in central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression. Among tissues with metabolic or endocrine function, this gene was expressed at moderate levels in pancreas, adipose, thyroid, and the gastrointestinal tract and at low levels in adrenal gland, pituitary gland, skeletal muscle, heart, and liver. Therefore, therapeutic modulation of the activity of this gene is useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes. Panel 2.2 Summary: Ag3605 Expression of this gene was highest in a sample of normal kidney (CT = 27.4). In addition, expression of this gene was upregulated in a number of ovarian and renal cancers when compared to the matched confrol margins. Expression of this gene is useful as a marker for ovarian and renal carcinoma. Therapeutic modulation of the activity of this gene or its protein product, using small molecule drugs, antibodies or protein therapeutics, is of benefit in the treatment of renal and ovarian cancer.
Panel 4.1D Summary: Ag3605 Expression of this gene was highest in lung microvascular endothelial cells, microvascular dermal endothelial cells, mucoepidermoid cell line NCI- H292, astrocytes, and keratinocytes. Therefore, small molecule drug, antibody or protein therapeutics designed against the protein encoded by this gene is useful for the reduction or inhibition of inflammation in asthma, emphysema, allergy, psoriasis, muscular dystrophy and multiple sclerosis. general oncology screening panel_v_2.4 Summary: Ag3605 Highest expression of this gene was seen in lung cancer (CT=26.8). Higher levels of expression were seen in lung and kidney cancers when compared to expression in normal adjacent tissue. Expression of this gene is useful as a marker of lung and kidney cancers. Therapeutic modulation of the expression or function of this gene product is useful in the treatment of lung and kidney cancers.
BD. CG59905-01 and CG59905-02: Sushi containing membrane protein
Expression of gene CG59905-01 and variant CG59905-02 was assessed using the primer- probe set Ag2443, described in Table BDA. Results of the RTQ-PCR runs are shown in Tables BDB, BDC and BDD.
Table BDA. Probe Name Ag2443
Table BDB. Panel 13D
Table BDC. Panel 2D
Table BDD. Panel 4D
Panel 1.3D Summary: Ag2443 Highest expression of this gene was detected in the cerebral cortex (CT=30.9). In addition, high expression of this gene was observed exclusively in all the brain regions (CTs=31). Expression of this gene is useful as a marker to distinguish these brain samples from other samples used in this panel. Low but significant expression was also seen in spinal cord region. Therefore, therapeutic modulation of the function or activity of this gene or its protein product, through the use of small molecule drags, protein therapeutics or antibodies, is beneficial in the freatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression. This gene encodes a variant of cub and sushi multiple domains 1 protein (CSMDl). A related protein, SEZ-6, has recently been shown to be associated with neuronal bursting activity of seizures (Shimizu-Nishikawa K, Brain Res Mol Brain Res 28(2):201-10). Thus, the protein encoded by this gene also plays a role in neuronal siezures.
In addition, low to moderate expression of this gene was seen in melanoma, ovarian cancer OVCAR-3, breast cancer, lung cancer, liver adenocarcinoma and glioma U251 cell lines. Therapeutic modulation of the activity of this gene or its protein product, through the use of small molecule drags, or antibodies, is beneficial in the treatment of these cancers.
Significant expression was also detected in fetal skeletal muscle.
Panel 2D Summary: Ag2443 Highest expression of this gene was detected in a kidney sample (CT=31). Expression of this gene was down-regulated in kidney and lung cancer. In addition, there was substantial expression in other samples derived from bladder cancer, liver cancer, uterine cancer, breast cancer, kidney cancer and lung cancer. This gene encodes a variant of cub and sushi multiple domains 1 protein (CSMDl). Recently, CSMDl has been shown to be a candidate for tumor suppressor of multiple types of cancer (Sun PC. Genomics 75(1-3): 17-25). Therefore, therapeutic modulation of the activity of this gene or its protein product, through the use of small molecule drags, or antibodies, is beneficial in the treatment of bladder, liver, uterine, breast, kidney and lung cancers.
Panel 4D Summary: Ag2443 Highest expression of this gene was seen in Ramos B cells (CTs=26-27). Expression of this gene is useful as a marker to distinguish these samples from other samples in this panel. In addition, expression of this gene in B cells shows that this gene is involved in rheumatic disease including rheumatoid arthritis, lupus, osteoarthritis, and hyperproliferative B cell disorders.
Low but significant expression of this gene was also detected in thymus. Drags that inhibit the function of this protein are useful in the regulation of T cell development in the thymus and for the reduction or elimination of the symptoms of T cell mediated autoimmune or inflammatory diseases, including asthma, allergies, inflammatory bowel disease, lupus erythematosus, or rheumatoid arthritis. Small molecule or antibody therapeutics designed against this putative protein are useful for the disruption of T cell development in the thymus and as immunosuppresants for tissue transplant.
BE. CG92715-01: KIAA0918
Expression of gene CG92715-01 was assessed using the primer-probe set Ag2502, described in Table BEA. Results of the RTQ-PCR runs are shown in Tables BEB, BEC, BED and BEE. Table BEA. Probe Name Ag2502
Table BEB. Panel 1.3D
Table BEC. Panel 2D
Table BED. Panel 3D
Table BEE. Panel 4D
Dendritic cells none 0.0 Dermal fibroblast IFN gamma ( 0.0
Dendritic cells LPS 0.0 Dermal fibroblast IL-4 0.0
Dendritic cells anti-CD40 0.0 IBD Colitis 2 6.0
Monocytes rest IBD Crohn's ( 1.3
Monocytes LPS | o.o Colon 31.4
Macrophages rest 0.0 Lung 563
Macrophages LPS 0.0 Thymus (25.3
HUVEC none 1 o-o Kidney (12.2
HUVEC starved 23.3 1
Panel 1.3D Summary: Ag2502 Hi OJghest expression of this gene was seen in the cerebral cortex (CT=27). In addition, low leve LlMs of expression were seen in all CNS regions examined in this panel. This gene encodes a leucine-rich repeat protein. Leucine rich repeats (LRR) mediate reversible protein-protein interactions and have diverse cellular functions, including cellular adhesion and signaling. Several of these proteins, such as connectin, slit, chaoptin, and Toll have pivotal roles in neuronal development in Drosophila and play significant but distinct roles in neural development and in the adult nervous system of humans (Battye R. J. Neurosci. 21: 4290-4298). In Drosophilia, the LRR region of axon guidance proteins are critical for their function , especially in axon repulsion. Since the leucine-rich-repeat protein encoded by this gene was highly expressed in the cerebral cortex, it is a candidate neuronal guidance protein for axons, dendrites and/or growth cones in general. (Itoh A.. Brain Res. Mol. Brain Res. 62: 175-186.) Therapeutic modulation of the levels of this protein, or signaling via this protein, are of utility in enhancing/directing compensatory synaptogenesis and fiber growth in the CNS in response to neuronal death (stroke, head trauma), axon lesion (spinal cord injury), or neurodegeneration (Alzheimer's, Parkinson's, Huntington's, vascular dementia or any neurodegenerative disease).
Moderate levels of expression were also seen in cell lines derived from ovarian cancer, lung cancer, and brain cancer. Therapeutic modulation of the expression or function of this gene or gene product is an effective treatment of these cancers. Among metabohcally relevant tissues, this gene was expressed in fetal skeletal muscle, thyroid, and pituitary gland. Therapeutic modulation of this gene or gene product is useful in the freatment of metabolic diseases such as obesity and diabetes, as well as neuroendocrine disorders. Glycoprotein hormones influence the development and function of the ovary, testis and thyroid by binding to specific high-affinity receptors. (Jiang X. Structure 3: 1341-1353). The extracellular domains of these receptors are members of the leucine-rich repeat (LRR) protein superfamily and are responsible for the high-affinity binding.
Panel 2D Summary: Ag2502 Highest expression of this gene was seen in kidney cancer (CTs=27.7). In addition, expression was significantly higher in the kidney cancer samples when compared to expression in samples from the normal adjacent tissue. There was also moderate to low expression in bladder, gastric, colon and ovarian cancers. Expression of this gene is useful as a marker to differentiate the kidney cancer samples from other samples on this panel and as a marker for kidney cancer. Therapeutic targeting of this gene or its protein product with a human monoclonal antibody, small molecule, or protein therapeutic is useful for limiting or blocking the extent of tumor cell migration, invasion, and metastasis, specifically in kidney, ovarian, bladder, gastric, and colon tumors.
Panel 3D Summary: Ag2502 Highest expression of this gene was seen in a lung cancer cell line (CT=28). Moderate levels of expression were seen in a cluster of lung and brain cancer cell lines. Prominent expression was also seen in cerebellum, in agreement with expression seen in Panel 1.3D. Low, but significant expression was also seen in kidney cancer and ovarian cancer cell lines. Expression of this gene is useful as a marker to differentiate lung and brain cancer cell lines and normal brain from other samples on this panel and as a marker for lung and brain cancer. Moderate expression of this gene was also seen in melanoma, rhabdomyosarcoma, osteosarcoma, renal and bladder carcinoma, lymphoma, ovarian and cervical cancer and gastric cancer cell lines. Therapeutic modulation of the expression or function of this gene is useful for the treatment of these cancers.
Panel 4D Summary: Ag2502 Ag2502 Highest expression of this gene was seen in eosinophils (CT=32). Higher levels of gene expression were observed in the eosinophil cell line EOL-1 under resting conditions over the levels in EOL-1 cells stimulated by phorbol ester and ionomycin (CT=34.4). Thus, this gene is involved in eosinophil function. Antibodies raised against this protein that stimulate its activity are useful in the reduction of eosinophil activation and as therapeutic antibodies for the treatment of asthma and allergy and as an anti-inflammatory therapeutics for T cell-mediated autoimmune and inflammatory diseases. Low but significant levels of expression were also seen in a cluster of treated and untreated NCI-H292 mucoepidermoid cells adn in normal colon, lung and thymus. This pattern of restricted expression shows that this gene or gene product is involved in the normal homeostasis of these tissues and/or pathological/inflammatory conditions of the lung.
BF. CG92813-01: Cadherin-related tumor suppressor precursor (FAT)
Expression of gene CG92813-01 was assessed using the primer-probe sets Agl413, Agl515, Ag3085, Ag740 and Ag3819, described in Tables BFA, BFB, BFC, BFD, and BFE. Results of the RTQ-PCR runs are shown in Tables BFF, BFG, BFH and BFI. Table BFA. Probe Name Agl413
Table BFB. Probe Name Agl515
TET-5 ' -ctcgtgaccactgggtcctctgg-3 '
Probe TAMRA 23 2108 1562 Reverse 5 ' -agaacaatctgggaagcaagtt -3 ' 22 2145 1563
Table BFC. Probe Name Ag3085
Table BFD. Probe Name Ag740
Table BFE. Probe Name Ag3819
Table BFF. General_screening_panel_vl.4
Column A - Rel. Exp.(%) Agl413, Run 213323517 Column B - Rel. Exp.(%) Ag3819, Run 218713598
Tissue Name A B Tissue Name 1 A B
Adipose 11.3 5.8 jRenal ca. TK-10 [6.4 4.6
Melanoma* Hs688(A).T 84.1 68.8 Bladder ( 6.4 4.5
Melanoma* Hs688(B).T 29.7 20.7 Gastric ca. (liver met.) NCI-N87
Melanoma* Ml 4 0.0 0.0 Gastric ca. KATO in J OOJ OO"
Melanoma* LOX VI 17.7 14.6 (Colon ca. SW-948 ( o.o 0.0
Melanoma* SK-MEL-5 0.7 1.2 Colon ca. SW480 j o.o 0.0
Squamous cell carcinoma SCC-4 2.2 2.2 Colon ca.* (S 480 met) SW620 j o.o 0.0
Testis Pool 4.5 4.1 Colon ca. HT29 j o.o 0.0
Prostate ca.* (bone met) PC-3 5.0 3.5 Colon ca. HCT-116 1.3 1.2
Table BFG. Panel 2D
Table BFH. Panel 4. ID
Table BFI. Panel 4D
General_screeningjpanel_vl.4 Summary: Agl413/Ag3819 Highest expression of this gene was seen in a lung cancer cell line NCI-H23 sample (CT=26-28). High to moderate levels of expression of this gene were also seen in a cluster of CNS cancer, renal cancer, lung cancer, breast cancer, ovarian cancer and melanoma cell lines. Therefore, therapeutic modulation of the activity of this gene or its protein product, through the use of small molecule drugs, protein therapeutics or antibodies, is beneficial in the treatment of lung cancer or ovarian cancer. This gene encodes a cadherin-related tumor suppressor precursor. E-cadherin, a related protein is used as a prognostic marker for breast cancer detection (Barshack I, J Clin Pathol 54(9):684-8). Expression of this gene is useful as a diagnostic marker in the above mentioned cancers.
Among tissues with metabolic or endocrine function, this gene was expressed at high to moderate levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal fract. Therapeutic modulation of the activity of this gene is useful in the freatment of endocrine/metabolically related diseases, such as obesity and diabetes. In addition, E cadherin, a related protein is shown to be reduced in small intestinal mucosa of coeliac sprue disease (Barshak et. al), a sample not used in this panel. Therapeutic modulation of the activity or function of this gene or gene product is useful in the treatment of coelic sprue disease.
In addition, this gene was expressed at low to moderate levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. This gene product is a transmembrane glycoproteins belonging to the cadherin superfamily of molecules, which are involved in many biological processes such as cell adhesion, cytoskeletal organization and morphogenesis. Cadherins can act as axon guidance and cell adhesion proteins, specifically during development and in the response to injury (Ranscht B. Int. J. Dev. Neurosci. 18: 643-651.). Therefore, manipulation of levels of this protein are of use in inducing a compensatory synaptogenic response to neuronal death in Alzheimer's disease, Parkinson's disease, Huntington's disease, spinocerebellar ataxia, progressive supranuclear palsy, ALS, head trauma, stroke, or any other disease/condition associated with neuronal loss.
Panel 2D Summary: Agl413/Ag740 Highest expression of this gene wass detected in samples from normal kidney and colon (CTs=29-30), with significant expression of this gene in both normal and cancer tissues. Expression of this gene was higher in confrol margin samples of colon (ODO3920), liver (ODO4310), and ovary (OD04768-08) as compared to their corresponding cancer tissue. Please see Panel 1.4 for a discussion of the potential utility of this gene.
Panel 4.1D Summary: Agl413/Ag3819/Ag740 Highest expression of this gene was detected in IFN gamma treated HUVEC cells (CTs=25-27). High to moderate expression of this gene was seen in freated and untreated HUVEC, lung microvascular EC, microvascular dermal EC, Bronchial epithelium, small airway epithelium, NCI-H292, HPAEC, lung fibroblasts, and dermal fibroblasts. The expression of this gene in cells derived from or within the lung shows that this gene is involved in normal conditions as well as pathological and inflammatory lung disorders that include chronic obstructive pulmonary disease, asthma, allergy and emphysema.
In addition, high expression of this gene was also detected in normal tissues represented by colon, lung, thymus and kidney. Therapeutic modulation of the activity of the protein encoded by this gene is useful in the freatment of inflammatory disease affecting these tissues such as inflammatory bowel disease, chronic obstractive pulmonary disease, asthma, allergy, emphysema, lupus and glomerulonephritis.
Panel 4D Summary: Agl515/Ag3085 Highest expression of this gene was detected in IFN gamma freated HUVEC cells (CT=25-27). In addition, high to moderate expression of this gene was seen in freated and untreated HUVEC, lung microvascular EC, microvascular dermal EC, Bronchial epithelium, small airway epithelium, NCI-H292, HPAEC, lung fibroblasts, and dermal fibroblasts. The expression of this gene in cells derived from or within the lung shows that this gene is involved in normal conditions as well as pathological and inflammatory lung disorders that include chronic obstractive pulmonary disease, asthma, allergy and emphysema. Expression of this gene was higher in unfreated HPAEC (CTs=27-28) as compared to TNF alpha + IL-1 beta treated cells (CTs=30-31). Thus, expression of this gene is useful as a marker to distinguish the treated from untreated HPAEC samples.
In addition, high levels of expression of this gene were also detected in normal tissues represented by colon, lung, thymus and kidney. Expression of this gene is lower in colon samples from patients with IBD colitis and Crohn's disease relative CTs=31-33) to normal colon (CTs=28-29). Therefore, therapeutic modulation of the activity or function of this gene or the protein encoded by this gene is useful in the treatment of inflammatory bowel disease.
BG. CG93387-05: Fib r op ell in I precursor
Expression of gene CG93387-05 was assessed using the primer-probe sets Agl 143, Agl921, and Ag3082, described in Tables BGA, BGB, and BGC. Results of the RTQ- PCR runs are shown in Tables BGD, BGE, and BGF.
Table BGA. Probe Name Agl 143
Table BGB. Probe Name Agl921
Table BGC. Probe Name Ag3082
Table BGD. Panel 1.3D
Table BGE. Panel 2.2
Table BGF. Panel 4D
Panel 1.3D Summary: Ag3082 Highest expression of this gene was seen in a brain cancer cell line (CT=273). Significant levels of expression were also seen in a cluster of samples derived from ovarian, breast, melanoma and brain cancer cell lines. Thus, expression of this gene is useful as a marker to differentiate between the brain cancer samples and other samples on this panel and as a marker to detect the presence of these cancers. This gene encodes a protein that is homologous to an epidermal growth factor related protein (fibropellin like). Fibropellins are a family of extracellular sea urchin matrix proteins that have been implicated in cell adhestion. Therefore, therapeutic modulation of the expression or function of this gene is useful in the treatment of ovarian, breast, melanoma and brain cancers.
Among tissues with metabolic function, this gene was expressed at moderate to low levels in pituitary, adipose, adrenal gland, pancreas, thyroid, and adult and fetal skeletal muscle, heart, and liver. This widespread expression among these tissues shows that this gene product plays a role in normal neuroendocrine and metabolic and that disregulated expression of this gene contributes to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.
Moderate to low levels of expression were also seen in all regions of the CNS examined, including pituitary, amygdala, thalamus, substantia nigra, cerebral cortex, and hippocampus. Therefore, therapeutic modulation of the expression or function of this gene is useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.
Panel 2.2 Summary: Ag3082 Highest expression of this gene was seen in a breast cancer metastasis (CT=283). Significant levels of expression were also seen in a cluster of breast cancer samples. Conversely, expression was higher in normal ovary and lung tissue when compared to expression in the normal adjacent tissue. Thus, therapeutic modulation of the expression or function of this gene is effective in the treatment of breast, ovarian and lung cancers.
Panel 4D Summary: Agl 143/Agl921/Ag3082 Highest expression of this gene was detected in treated lung fibroblasts (CTs=27-29). Moderate levels of expression were also seen in freated dermal fibroblasts, and lung and dermal micro vasculature, and HUVECs.
Thus, expression of this gene is useful as a marker of fibroblasts or vasculature. The protein encoded by the transcript plays an important role in the normal homeostasis of these tissues. Therefore, therapeutics designed with this gene or gene product are important for maintaining or restoring normal function to these organs during inflammation associated with asthma, psoriasis, and emphysema. BH. CG93871-01 and CG93871-05: weakly similar to fibulin-1
Expression of gene CG93871-05 and variant CG93871-01 was assessed using the primer- probe sets Agl294b, Ag746, and Ag4726, described in Tables BHA, BHB, and BHC. Results of the RTQ-PCR runs are shown in Tables BHD, BHE, BHF, BHG, and BHH. Please note that the probe and primer set Ag4726 is specific to the CG93871-05 variant only.
Table BHA. Probe Name Agl294b
Table BHB. Probe Name Ag746
Table BHC. Probe Name Ag4726
Table BHD. AI_comprehensive panel_vl .0
Table BHE. General_screening_panel_vl.4
Table BHF. Panel 1.2
Table BHG. Panel 2D
Table BHH. Panel 4D
Column A - Rel. Exp.(%) Agl294b, Run 138944262 Column B - Rel. Exp.(%) Agl294b, Run 139408252
AI_comprehensive panel_vl.0 Summary: Agl 294b Expression of this gene in this panel confirmed expression of this gene in cells involved in the immune response. Highest expression of this gene was seen in normal lung (CT=30.5). Please see Panel 4D for discussion of utility of this gene in inflammation. General_screening_panel_vl.4 Summary: Ag4726 Highest expression of this gene was seen in a liver cancer cell line (CTs=30), with moderate levels of expression seen in fetal and adult liver, and cell lines derived from colon, renal and lung cancers. Thus, expression of this gene is useful as a marker to differentiate liver derived tissue from other samples on this panel. Panel 1.2 Summary: Ag746 Highest expression of this gene was detected in a liver cancer cell line (CTs=27). High levels of expression were also seen in fetal and adult liver tissue, a colon cancer cell line and a lung cancer cell line. Thus, expression of this gene is useful as a marker to differentiate liver derived samples, the colon cancer cell line and the lung cancer cell line from other samples on this panel. Expression of this gene is also useful as a diagnostic marker to detect the presence of colon and lung cancers.
Moderate expression was also seen in the fetal brain, placenta, and endothelial cells.
Panel 2D Summary: Ag746 Highest expression of this gene was detected in a liver cancer sample (CTs=31). The prominent expression in liver derived tissue was consistent with the results in Panel 1.2. Moderate levels of expression were also evident in samples from ovarian cancer and kidney cancer. Expression of this gene was higher in these cancers than in the normal adjacent tissue. Thus, expression of this gene is useful as a marker to differentiate between liver derived samples and other samples on this panel and as a marker to detect the presence of liver, kidney, and ovarian cancer. Therapeutic modulation of the expression or function of this gene or its protein product is useful in the treatment of liver, kidney, and ovarian cancers.
Panel 4D Summary: Agl294b Highest expression of this gene was detected in IL-4 treated dermal fibroblasts (CTs=30). In addition, this gene was expressed at moderate levels in IFN gamma stimulated dermal fibroblasts, activated lung fibroblasts, HPAECs, lung and dermal microvasculature, activated small airway and bronchial epithelium, activated NCI-H292 cells, acutely activated T cells, and activated B cells.
Based on these levels of expression in T cells, activated B cells and cells in lung and skin, therapeutics that block the function of this gene product are useful as therapeutics that reduce or eliminate the symptoms in patients with autoimmune and inflammatory diseases in which activated B cells present antigens in the generation of the aberrant immune response and in treating T-cell mediated diseases, including Crohn's disease, ulcerative colitis, multiple sclerosis, chronic obstructive pulmonary disease, asthma, allergy, emphysema, rheumatoid arthritis, or psoriasis.
BI. CG94946-01: agrin precursor
Expression of gene CG94946-01 was assessed using the primer-probe sets Ag3605 and Ag3974, described in Tables BIA and BIB. Results of the RTQ-PCR runs are shown in Tables BIC, BID, BIE and BIF.
Table BIA. Probe Name Ag3605
Table BIB. Probe Name Ag3974
Table BIC. General_screening_panel_vl.4
Table BID. Panel 2.2
Table BIE. Panel 4 ID
Table BIF. general oncology screening panel_v_24
General_screeningjpanel_vl.4 Summary: Ag3605/Ag3974 The expression of this gene was highest in a sample derived from a breast cancer cell line (T47D) (CTs=22.5-253). In addition, there was substantial expression in other samples derived from breast cancer cell lines, ovarian cancer cell lines, kidney cancer cell lines, lung cancer cell lines, colon cancer cell lines and brain cancer cell lines. Thus, the expression of this gene is useful as a marker to distinguish T47D cells from other samples in the panel. Therapeutic modulation of this gene or its protein product through the use of small molecule drugs, protein therapeutics, or antibodies is of benefit in the treatment of breast, ovarian, kidney, lung, colon or brain cancer. Among metabolic tissues, this gene had low-to-moderate levels of expression in adrenal, pituitary, adult and fetal heart, adult and fetal liver, adult and fetal skeletal muscle, and adipose. This gene product had high levels of expression (CT values = 27) in pancreas and thyroid. Thus, this gene product is important for the pathogenesis, diagnosis, and/or treatment of metabolic and endocrine diseases, including obesity, Types 1 and 2 diabetes and thyroidopathies. Decreased glomerular expression of agrin has been observed in diabetic nephropathy and supports this use of this gene or gene product. (Yard BA, Exp Nephrol 2001;9(3):214-22 ). In addition, this gene was expressed at moderate levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. This gene encodes a protein with homology to agrin, a neuronal aggregating factor that induces the aggregation of acetylcholine receptors and other postsynaptic proteins on muscle fibers and is crucial for the formation of the neuromuscular junction. Agrin also plays an important role in defining neuronal responses to excitatory neurotransmitters both in vitro and in vivo (Hilgenberg LG,Mol Cell Neurosci 2002 Jan;19(l):97-110 and Bixby JL, J Neurobiol 2002 Feb 5;50(2):164-79). The gene expression in the cenfral nervous system is consistent the use of the protein and its function as an agrin. This gene plays a role in cenfral nervous system disorders such as Alzheimer- disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.
Agrin has also been implicated in the formation of senile plaques in Alzheimer's disease and in the acetylcholine synapse/neuromuscular junction (van Horssen J, Acta Neuropathol (Berl) 2001 Dec;102(6):604-14). hi addition, an agrin minigene rescued dystrophic symptoms in a mouse model of muscular dystrophy (Moll J, Nature. 2001 Sep
20;413(6853):302-7). Therefore, this gene or gene product is useful as a treatment or cure for congenital muscular dystrophies. Furthermore, this gene product is also an excellent drag target in AD or in any disease involving the neuromuscular junction or the acetylcholine system. Panel 2.2 Summary: Ag3605 Expression of this gene was highest in a sample of normal kidney (CT = 27.4). In addition, expression of this gene was upregulated in a number of ovarian and renal cancers when compared to the matched confrol margins. Thus, expression of this gene is useful as a marker for ovarian and renal carcinoma. Furthermore, therapeutic modulation of the activity of this gene or its protein product, using small molecule drugs, antibodies or protein therapeutics, is of benefit in the treatment of renal and ovarian cancer.
Panel 4.1D Summary: Ag3605/Ag3974 Highest expression of this gene was highest in lung microvascular endothelial cells (CTs=273-28.5), microvascular dermal endothelial cells, mucoepidermoid cell line NCI-H292, astrocytes, and keratinocytes. This gene encodes a protein with homology to agrin. Agrin, an aggregating protein crucial for formation of the neuromuscular junction, is important for T cell signaling in the immune system (Khan AA, Science 2001 Jun l;292(5522):1681-6). In addition, agrin has been identified as a potential disease target for autoimmune disorders at the neuromuscular junction, including multiple sclerosis (Liyanage Y, Muscle Nerve 2002 Jan;25(l):4-16). Therefore, small molecule drug, antibody or protein therapeutics that target this gene or the protein encoded by the gene is usenil for the reduction or inhibition of inflammation in asthma, emphysema, allergy, psoriasis, muscular dystrophy and multiple sclerosis. general oncology screening panel_v_2.4 Summary: Ag3605 Highest expression of this gene was seen in a lung cancer sample (CT=26.8). In addition, higher levels of expression were seen in lung and kidney cancers when compared to expression in normal adjacent tissue. Thus, expression of this gene is useful as a marker of lung and kidney cancers.
Therapeutic modulation of the expression or function of this gene or gene product is useful in the treatment of lung and kidney cancers.
BJ. CG96384-01: Novel Plasma Membrane Protein Expression of gene CG96384-01 was assessed using the primer-probe set Ag4093, described in Table BJA. Results of the RTQ-PCR run are shown in Table BJB.
Table BJA. Probe Name Ag4093
Table BJB. Panel 4. ID
Panel 4.1D Summary: Ag4093 This gene was widely expressed in this panel, with highest expression in primary activated Th2 cells (CT=32.7). This gene was also expressed at high to moderate levels in a wide range of cell types of significance in the immune response in health and disease. These cells include members of the T-cell, B-cell, endothelial cell, monocyte, and peripheral blood mononuclear cell families, as well as dermal fibroblasts and normal tissues represented from thymus and kidney. This pattern of expression shows that this gene product is involved in homeostatic processes for these and other cell types and tissues. Therefore, modulation of the gene or gene product with a functional therapeutic is useful in the alteration of functions associated with these cell types and in the treatment of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.
BK. CG98011-01: insulin-like growth factor binding protein
Expression of gene CG98011-01 was assessed using the primer-probe set Ag2120, described in Table BKA. Results of the RTQ-PCR runs are shown in Tables BKB, BKC, BKD and BKE. Table BKA. Probe Name Ag2120
Table BKB. Panel 13D
Table BKC. Panel 2D
Table BKE. Panel CNS 1
Panel 1.3D Summary: Ag2120 Expression of this gene was highest in the cerebral cortex (CT value = 29). Moderate expression was detected in all other regions of the brain except thalamus and substantia nigra, demonstrating that this gene is associated with normal brain homeostasis. This protein showed a brain-preferential expression, see write-up on Panel CNS .01 for discussion of utility. In addition, expression of this gene was down-regulated in CNS cancer cell lines. Over-expression of this gene was also detected in several lung cancer cell lines relative to normal control. Therefore, this gene is useful for the detection or freatment of CNS and lung cancers.
Panel 2D Summary: Ag2120 Expression of this gene in panel 2D revealed an association of expression in thyroid, breast and kidney cancers when compared to their respective normal adjacent tissues. Thus, therapeutic modulation of this gene with inhibitory monoclonal antibodies and/or small molecule therapeutics is useful in treatment of these diseases. In addition, the SC98428706_EXT gene might be useful as a marker for thyroid, breast and kidney cancers. Panel 4D Summary: Ag 2120 This gene showed highest expression levels in the thymus. (CT value =31). The franscript was also expressed in eosinophils, monocytes, macrophages and coronary artery. It was down regulated in LPS-treated monocytes and to a lesser degree in LPS treated macrophages. Therefore, protein therapeutics (agonists or antagonists) designed against the protein encoded for by this transcript are useful for reducing the inflammatory process observed in asthma, emphysema, osteoarthritis and sepsis.
Panel CNS_1 Summary: Ag2120 Insulin and insulin-like growth factors belong to a family of polypeptides essential for proper regulation of physiologic processes such as energy metabolism, cell proliferation, development, and differentiation. The insulin-like growth factors bind to IGF with high affinity and compete with the IGF receptor for IGF binding. Transgenic mice over expressing insulin-like growth factor binding proteins (IGFBPs) tend to show brain developmental abnormalities, suggesting a role for these proteins in neurodevelopment. Furthermore, treatment with glycosaminoglycans (which increases muscle re-innervation after motor neuron death) upregulates serum levels of both IGF and IGFBP. Thus, the novel IGFBP encoded by this gene is useful in the treatment of diseases such as ALS, multiple sclerosis, and peripheral nerve injury on the basis of its homology to other established IGFBPs. The expression profile of this gene shows that it is expressed preferentially in the brain, with highest levels in the cerebral cortex and hippocampus, two regions that are known to degenerate in Alzheimer's disease. Examination of the expression profile on Panel CNS.01 showed that most regions of both control and diseased brains express this protein; however the levels were decreased in the motor cortex in progressive supranuclear palsy and depression. Thus, this protein is of use in the treatment of Alzheimer's disease, progressive supranuclear palsy, and depression.
Example D: CG56008, NOV53
FlG D is a table illustrating the SAGE library data results illustrating overexpression of LIV-1 in breast carcinoma derived cells.
FlG D2. Antisense knockdown of LIV-1 inhibits breast carcinoma cell line T47D cell growth. FlG D3. Antisense knockdown of LIV-1 has less inhibitory effect on Ovcar-4 cell growth.
FIG D4. RTQPCR validation of knockdown of LIV-1 expression at mRNA level in T47D breast cancer cell lines.
Detailed Description
The present invention is based in part on the discovery that reducing the amount of LIV-1 mRNA present in tumor derived cells results in strongly reduced cell growth. The expression of this gene in tumor-derived cells was first defined using RTQPCR analysis.
The RTQPCR analysis of panel 1.3d reveals that this gene has a restricted high expression in 5 breast cancer cell lines, with the highest expression in MCF-7 breast cancer cells. This gene is present in normal tissues at low levels (Figure 1). The specific high expression in breast cancer cell lines indicates a role in breast cancer progression. This is further supported by the analysis of panel 2d that reveals how LIV-1 is upregulated specifically in breast cancers, comparing to the normal adjacent tissues (Figure 2). Based upon its profile, the expression of this gene could be of use as a marker for the presence of breast cancer in a subject, specifically in a subject blood. In addition, down-regulation of the activity of this gene, through the use of antibodies or antisense oligonucleotide, might be of use in the treatment of breast cancer. The expression profiles of this gene on our RTQPCR panels indicate that this gene may be involved in regulating cancer cell proliferation and oncogenesis. To confirm whether LIV-1 expression is required for cell growth, we used antisense technology to examine the effect of decreasing LIV-1 gene expression on breast cancer cell proliferation. This technology has been used to asses the biological/therapeutic effect of reducing (knockdown) the expression of a gene (see Tamm et al., Lancet 2001 Aug 11;358(9280)489-97 for a review of the current use of this technology in the biomedical field)
As shown in Figure 4, fransfection of LIV-1 antisense oligonucleotide AS4 at 400 nM concentration inhibited T47D breast carcinoma cell growth more than 50% (P = 0.000189), whereas fransfection of scramble antisense confrol had little effect on cell growth. We observed less inhibitory effect with LIV-1 antisense oligo AS4 transfection in Ovcar-4 cells in which the expression of LIV-1 is much lower (P = 0.138366) (Figure 5). Knockdown of LIV-1 transcripts by antisense oligonucleotides was validated by RTQPCR. As shown in Figure 6, transfection of antisense oligo AS4 resulted in 50% knockdown of LIV-1 expression at the mRNA level.
Therefore, our results suggested that LIV-1 expression is involved in cell proliferation. The inhibition of the activity of this gene through the use of antibodies or antisense oligonucleotides, might be of use in the treatment of breast cancer.
Example DI: expression analysis of LIV-1 in various tissues
RTQPCR probe/primer information for LIV-1
RTQPCR probe/primers set Ag2169
Ag 2169 (F): 5'-CCCGAAAAGGCTTTATGTATTC-3 ' (SEQ ID NO: 1603)
Ag 2169 (R): 5'-TGTCAGTAGCTTTGATGCATTG-3 ' (SEQ ID NO : 1604)
Ag 2169 (P): FA -5'-CAGAAACACAAATGAAAATCCTCAGGA-3 ' -TA -RA (SEQ ID NO : 1605 ) Table DI. RTQPCR results for Panel 1.3d.
Rel. Expr., % Tissue Name 1.3dtm3016f_ag2169 Rel. Expr., % 1.3Dtm3183f_ag2169
Liver adenocarcinoma 1.8 2
Pancreas 1 0.4
Pancreatic ca. CAPAN 2 1 1
Adrenal gland 0.8 0.6
Thyroid 2 0.9
Salivary gland 1.2 0.8
Pituitary gland 3.1 2.2
Brain (fetal) 2.2 1.7
Brain (whole) 2.6 2.1
Brain (amygdala) 2 1.1
Brain (cerebellum) 1.4 0.9
Brain (hippocampus) 6.1 4.4
Brain (substantia nigra) 0.5 0.8
Brain (thalamus) 2.5 2
Cerebral Cortex 2.8 3.1
Spinal cord 1.6 1.4 glio/astro U87-MG 1.2 0.8 glio/astro U-118-MG 12 9.3 astro SW1783 2.8 3 neuro; met SK-N-AS 10.7 6.7 astro SF-539 1.7 1.5 astro SNB-75 2.8 3.8 glio SNB-19 1 0.9 glio U251 0.8 0.8 glio SF-295 3.4 3
Heart (fetal) 0.4 0.5
Heart 0.2 0.1
Fetal Skeletal 1.2 1.4
Skeletal muscle 0.2 0.2
Bone marrow 0.4 0.2
Thymus 0.3 0.3
Spleen 1.1 0.8
Lymph node 0.8 0.5
Colorectal 0.3 0.2
Stomach 1.5 0.8
Small intestine 0.9 0.5
Colon SW480 1.6 1.2
Colon SW620(SW480 met) 0.7 0.5
Colon HT29 0.8 0.6
Colon HCT-116 4.2 3.1
Colon CaCo-2 0.9 1.1
Colon Ca tissue(OD03866) 1.3 1.2
Colon HCC-2998 2.1 1.6
Gastric(iiver met) NCI-N87 2 1.6
Bladder 1 0.6 Trachea 1.6 1.6
Kidney 0.5 0.5
Kidney (fetal) 1.1 0.8
Renal 786-0 2.6 1.7
Renal A498 4.2 3.2
Renal RXF 393 1.2 0.8
Rena! ACHN 2.6 2.7
Renal UO-31 3.3 2.4
Renal TK-10 2 1.5
Liver 0.1 0
Liver (fetal) 0.5 0.3
Liver (hepatoblast) HepG2 1.5 1.3
Lung 0.8 0.6
Lung (fetal) 1.5 1.5
Lung (small cell) LX-1 1 0.7
Lung (small cell) NCI-H69 10 6.3
Lung (s.cell var.) SHP-77 3.9 4.9
Lung (large celi)NCI-H460 1.3 1.2
Lung (non-sm. cell) A549 0.9 0.6
Lung (non-s.cell) NCI-H23 5.4 0
Lung (non-s.cell) HOP-62 1.8 2
Lung (non-s.cl) NCI-H522 1.8 1.2
Lung (squam.) SW 900 1.2 0.8
Lung (squam.) NCI-H596 3.1 3
Mammary gland 11.7 10.4
Breast (pl.ef) MCF-7 100 100
Breast (pl.ef) MDA-MB-231 2.5 2.1
Breast (pl.ef) T47D 5.7 3.3
Breast BT-549 4.5 3.6
Breast MDA-N 2.6 2.8
Ovary 2 1.3
Ovarian OVCAR-3 2.2 2
Ovarian OVCAR-4 0.3 0.2
Ovarian OVCAR-5 0.6 0.5
Ovarian OVCAR-8 1.6 0.9
Ovarian IGROV-1 0.8 0.5
Ovarian (ascites) SK-OV-3 4 3.2
Uterus 1.1 0.8
Plancenta 3.4 2.1
Prostate 5.5 4.6
Prostate (bone met)PC-3 2 1.3
Testis 1.9 1.6
Melanoma Hs688(A).T 4.8 4.8
Melanoma (met) Hs688(B).T 6.2 5.2
Melanoma UACC-62 0.3 0.3
Melanoma M14 2.8 2.6
Melanoma LOX IMVI 0.6 0.4
Melanoma (met) SK-MEL-5 7.1 5.1
Adipose 1.2 0.8 Table D2. RTQPCR results for Panel 2d
>
Rel. Expr., % Rel. Expr., %
Tissue Name 2Dtm2969f_ag21692dtm3017f_ag2169
Normal Colon 3.2 3.1
CCa 1 0.6 0.5
CCa 1 Margin 0.2 0.4
CCa 2 0.1 0.2
CCa 2 Margin 0.2 0.1
CCa 3 0.2 0.2
CCa 3 Margin 0.3 0.2
CCa 4 1 1.1
CCa 4 Margin 0.3 0.4
CCa 5 Metastasis 1.6 1.8
CCa 5 Margin (Liver) 0.5 0.4
CCa 6 Metastatsis 0.2 0.2
CCa 6 Margin (Lung) 0.4 0.3
Normal Prostate 7.7 7.9
PCa 1 15.1 18.7
PCa 1 Margin 7.4 7.9
PCa 2 3.4 4
PCa 2 Margin 6.7 7.3
Normal Lung 1.4 1.6
LCa 1 Metastasis 1.4 1.5
LCa 1 Margin (muscle) 0.7 0.7
LCa 2 1.7 2
LCa 2 Margin 1.1 1.3
LCa 3 2 2.6
LCa 3 Margin 1 1.2
LCa 4 1 1.1
LCa 4 Margin 0.5 0.5
LCa 5 3.1 3.4
LCa 5 Margin 0.9 1
Ocular Melanoma Metastasis 3.7 4.1
Liver Margin 0.2 0.4
Melanoma Metastasis 3.5 4
Lung Margin 0.9 1.4
Normal Kidney 2.5 3.1
RCC 1 2.8 2.8
RCC 1 Margin 1.8 1.9
RCC 2 0.7 0.6
RCC 2 Margin 1.4 1.4
RCC 3 2.5 3.1
RCC 3 Margin 1.8 1.9
RCC 4 1 0.9
RCC 4 Margin 1.5 1.7
RCC 5 0.9 0.9
RCC 5 Margin 0.2 0.1
RCC 6 1.1 1 RCC 6 Margin 1.4 1.5
RCC 7 0.5 0.4
RCC 7 Margin 0.3 0.2
RCC 8 0.4 0.4
RCC 8 Margin 0.2 0.2
RCC 9 0.8 0.9
RCC 9 Margin 0.5 0.6
Normal Uterus 0 0.4
UtCa 1-8 1.9
Normal Thyroid 1.4 1.8
ThyCa l 1.7 1.9
ThyCa 2 0.9 0.9
ThyCa 2 Margin 1.5 1.5
Normal Breast 3.9 4.9
BCa 1 19.8 26.2
BCa 2 46.7 45.7
BCa 3 Metastasis 43.2 57.8
BCa 4 Metastasis 100 100
BCa 5 2.4 2.7
BCa 6 2.5 2.3
BCa 7 41.2 45.7
BCa 7 Margin 5 5.7
BCa 8 4 5.4
BCa 8 Margin 4.1 6.8
Normal Liver 0.2 0.3
HCC 1 0.2 0.2
HCC 2 0.2 0.1
HCC 3 0.3 0.2
HCC 4 0.2 0.2
HCC 4 Margin 0.5 0.5
HCC 5 0.2 0.2
HCC 5 Margin 0 0
Normal Bladder 1.5 1.4
TCC 1 0.3 0.2
TCC 2 1 -7 1 -8
TCC 3 3 3.3
TCC 3 Margin 2.9 1.4
Normal Ovary 0.3 0.3
OVCa 1 3.3 3
OVCa 2 3.1 3.1
OVCa 2 Margin 0.4 0.5
Normal Stomach 0.5 0.5
GaCa 1 0.2 0.2
GaCa 1 Margin 0.4 0.4
GaCa 2 0.8 0.7
GaCa 2 Margin 0.5 0.5
GaCa 3 1 0.9
GaCa 3 Margin 0.1 0.1
GaCa 4 1 0.8 Fig. DI. SAGE expression analysis of LIV-1.
Obtained from http://www.ncbi.nlm.nih.gov/SAGE/SAGEcid.cgi?
Hs 79136 : LIV-1 protein, estrogen regulated
SAGE library data and reliable tag summary Reliable tags found in SAGE libraries
SAGE Chen LNCaP 48 62267
SAGE Chen Normal Pr 15 66193
SAGE CAPAN2 26 «• 38240
SAGE Duke H5 lacZ 29 < <>« 67101
SAGE Duke H54 EGFRvIII 17 *-f 57164
SAGE RKQ 76 «•»- 52064
SAGE CPDR LNCaP-C 120 < m» 1590
SAGE CPDR LNCaP-T 67 «9*< 4122
SAGE PR317 normal prostate 16 ι«. 59419
SAGE PR317 prostate tumor 30 * 65109
SAGE NHAfSthl 57 t ~ 52196
SAGE normal poolffitM 15 <». 630.--4
SAGE OV1063-3 51 - ~ 38938
SAGE SciencePark MCF7 control 3h 169 5903
SAGE SciencePark MCF7 9 61079
Control Oh
SAGE SciencePark MCF7 estrad ol 3h 150 •*■-. 59978
SAGE SciencePark MCF7 estradiol lOh 99 «β 60435
SAGE 95-259 101 *SS8f 4 39473
SAGE 95-348 82 *-* 5 60484
SAGE Duke H341 22 -r 1 44563
SAGE HOSE 4 20 ( -•<' 1 48413
SAGE ES2 1 31 1 31502
SAGE OVT-6 7 2 42336
SAGE Duke HMVEC 19 1 52532
SAGE mammary epithelium 183 9 49167
SAGE DCIS 48 2 41230
SAGE Duke 757 51 1 19503
SAGE OVT-8 29 1 33575
SAGE MLIO-IO 17 1 56943
SAGE Duke H247 normal 16 1 60543
SAGE Duke H247 Hypo-aa 83 6 71937
SAGE Duke-H988 35 1 28015
SAGE DCIS 2 450 < 13 28888
SAGE At- 130 - m* 4 30551
SAGE gastnc cancer senoeraa XlOl 14 <-. 70155
SAGE normal cerebellum 19 51135
Example D2: Antisense knockdown of LIV-1 mRNA in high-expressing and low-expressing tumor-derived cell lines.
Five oligonucleotides were designed and synthesized as mixed-backbone oligonucleotides containing modified phosphorothioate segments at 5' and 3' ends and 2'-O-methyl RNA oligoribonucleotide segments located in the middle. The purity of the oligonucleotides was confirmed by Masspectrophometry. The oligonucleotide sequences for LIV-1 are: AS1: 5' GATCCAGGCTCTGTCACTCAC 3' (SEQ ID NO: 1606) (complementary to the sequence located in 5'UTR of LIV-1). AS2: 5' ATTATGGGATCAGCGTTC 3' (SEQ ID NO: 1607) (complementary to the sequence surrounding ATG start codon). AS3: 5' AGGCTTAAGATGACCACTTG 3" (complementary to the sequence 3' next to AS2). AS4: 5' GTGGTGCTCGTTCGAACAGT 3' (SEQ ID NO: 1608) (complementary to the sequence in the middle of SLPI ORF). AS5: 5' CTGGGTCTTAGTCCGTGGCA 3' (SEQ ID NO: 1609) (complementary to the sequence flanking the 3' stop codon). 10,000 cells were seeded in each well of 96 well plate in compelete medium 24 hr before transfection to reach 50% confluency on the day of transfection. Oligonucleotides were diluted with Optimen to 100 and 400 nM, and mixed with Oligofectamine (Invitrogen) according to manufecture's instructions. Cells were washed with serum-free medium. The oligo and lipisome mixture were then added to cells. After 4 hr incubation period, serum were added back to cells. Readout assays were performed 24 and 48 hr after transfection. CellTiter 96 Aqueous Non-Radioactive Cell Porhferation Assay Kit from Promega was used to determine the number of viable cells in proliferation assay. Briefly, 20 μl of combined MTS/PMS solution were diluted with 100 μl complete medium, and added to each well of the 96 well plate. After 1 hr incubation at 37°C, the absorbance at 490 nm was recorded using an ELISA plate reader.
Figure D2. Antisense knockdown of LIV-1 inhibits T47D cell growth.
Breast cancer cell line T47D were transfected with 5 LIV-1 antisense oligonucleotides either individually or in the combinations as indicated. 72 hr after transfection, MTS assay was performed. The experiment was repeated twice with similar results. The representative data is shown. Asterisk indicates statistically significant difference on Student's 2-samples t test assuming unequal variances. P value for knockdown with AS4 comparing to scramble control at 400 nM is 0.000189. Antisense Knockdown of CG56008 01 inhibits T47D Cell Proliferation
Figure D3. Antisense knockdown of LIV-1 inhibits Ovcar-4 cell growth.
Ovarian cancer cell line Ovcar-4 were transfected with LIV-1 antisense oligonucleotides either individually or in the combinations as indicated. 72 hr after transfection, MTS assay was performed. Asterisk indicates statistically significant difference on Student's 2-samples t test assuming unequal vaπances P value for knockdown with AS4 comparing to scramble control at 400 nM is 0 138366.
Antisense Knockdown of CG5G00S- 1 Has Less Effect on OVCAR-4 Cell Growth
Figure D4. RTQPCR validation of knockdown of LIV-1 expression at mRNA level in T47D breast cancer cell line.
T47D cells were transfected with LIV-1 antisense oligonucleotides in the combinations as indicated. 24 hr after transfection, cells were lysed in cell lysis buffer, and total RNA was isolated using RNAeasy kit from Qiagen. After DNAse digestion, cDNA was synthesized using Superscript II reverse transcriptase (BRL). RTQ-PCR analysis was performed according to the standard RTQPCR operation procedures.
Relative Expression for CG56008-01 T47D
AS1 AS2 AS3 AS4 AS5 AS1-3 AS1-5 SC LC UC
76.8% 84.03% 73.64% 50.54% 67.07% 108.12% 56.3% 67.01% 100% 102.87%
OTHER EMBODIMENTS
Although particular embodiments are disclosed herein in detail, this is done by way of example for purposes of illustration only, and is not intended to be limiting with respect to the scope of the appended claims, which follow. In particular, it is contemplated by the inventors that various substitutions, alterations, and modifications will be made to the invention without departing from the spirit and scope of the invention as defined by the claims. The choice of nucleic acid starting material, clone of interest, or library type is believed to be a matter of routine for a person of ordinary skill in the art with knowledge of the embodiments described herein. Other aspects, advantages, and modifications considered to be within the scope of the following claims. The claims presented are representative of the inventions disclosed herein. Other, unclaimed inventions are also contemplated. Applicants reserve the right to pursue such inventions in later claims.

Claims

CLAIMSWhat is claimed is:
1. An isolated polypeptide comprising the mature form of an amino acid sequenced selected from the group consistmg of SEQ ID NO:2n, wherein n is an integer between 1 and 606.
2. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606.
3. An isolated polypeptide comprising an amino acid sequence which is at least 95% identical to an amino acid sequence selected from the group consistmg of SEQ ID NO:2n, wherein n is an integer between 1 and 606.
4. An isolated polypeptide, wherein the polypeptide comprises an amino acid sequence comprising one or more conservative substitutions in the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606.
5. The polypeptide of claim 1 wherein said polypeptide is naturally occurring.
6. A composition comprising the polypeptide of claim 1 and a carrier.
7. A kit comprising, in one or more containers, the composition of claim 6.
8. The use of a therapeutic in the manufacture of a medicament for treating a syndrome associated with a human disease, the disease selected from a pathology associated with the polypeptide of claim 1, wherein the therapeutic comprises the polypeptide of claim 1.
9. A method for determining the presence or amount of the polypeptide of claim 1 in a sample, the method comprising:
(a) providing said sample;
(b) introducing said sample to an antibody that binds immunospecifically to the polypeptide; and
(c) determining the presence or amount of antibody bound to said polypeptide, thereby determining the presence or amount of polypeptide in said sample.
10. A method for determining the presence of or predisposition to a disease associated with altered levels of expression of the polypeptide of claim 1 in a first mammalian subject, the method comprising: a) measuring the level of expression of the polypeptide in a sample from the first mammalian subject; and b) comparing the expression of said polypeptide in the sample of step (a) to the expression of the polypeptide present in a control sample from a second mammalian subject known not to have, or not to be predisposed to, said disease, wherein an alteration in the level of expression of the polypeptide in the first subject as compared to the control sample indicates the presence of or predisposition to said disease.
11. A method of identifying an agent that binds to the polypeptide of claim 1 , the method comprising:
(a) introducing said polypeptide to said agent; and
(b) determining whether said agent binds to said polypeptide.
12. The method of claim 11 wherein the agent is a cellular receptor or a downstream effector.
13. A method for identifying a potential therapeutic agent for use in treatment of a pathology, wherein the pathology is related to aberrant expression or aberrant physiological interactions of the polypeptide of claim 1, the method comprising:
(a) providing a cell expressing the polypeptide of claim 1 and having a property or function ascribable to the polypeptide;
(b) contacting the cell with a composition comprising a candidate substance; and
(c) determining whether the substance alters the property or function ascribable to the polypeptide; whereby, if an alteration observed in the presence of the substance is not observed when the cell is contacted with a composition in the absence of the substance, the substance is identified as a potential therapeutic agent.
14. A method for screening for a modulator of activity of or of latency or predisposition to a pathology associated with the polypeptide of claim 1, said method comprising:
(a) administering a test compound to a test animal at increased risk for a pathology associated with the polypeptide of claim 1, wherein said test animal recombinantly expresses the polypeptide of claim 1;
(b) measuring the activity of said polypeptide in said test animal after administering the compound of step (a); and
(c) comparing the activity of said polypeptide in said test animal with the activity of said polypeptide in a control animal not administered said polypeptide, wherein a change in the activity of said polypeptide in said test animal relative to said control animal indicates the test compound is a modulator activity of or latency or predisposition to, a pathology associated with the polypeptide of claim 1.
15. The method of claim 14, wherein said test animal is a recombinant test animal that expresses a test protein transgene or expresses said transgene under the control of a promoter at an increased level relative to a wild-type test animal, and wherein said promoter is not the native gene promoter of said transgene.
16. A method for modulating the activity of the polypeptide of claim 1 , the method comprising contacting a cell sample expressing the polypeptide of claim 1 with a compound that binds to said polypeptide in an amount sufficient to modulate the activity of the polypeptide.
17. A method of treating or preventing a pathology associated with the polypeptide of claim 1, the method comprising administering the polypeptide of claim 1 to a subject in which such treatment or prevention is desired in an amount sufficient to treat or prevent the pathology in the subject.
18. The method of claim 17, wherein the subj ect is a human.
19. A method of treating a pathological state in a mammal, the method comprising administering to the mammal a polypeptide in an amount that is sufficient to alleviate the pathological state, wherein the polypeptide is a polypeptide having an amino acid sequence at least 95% identical to a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606 or a biologically active fragment thereof.
20. An isolated nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO:2n-l, wherein n is an integer between 1 and 606.
21. The nucleic acid molecule of claim 20, wherein the nucleic acid molecule is naturally occurring.
22. A nucleic acid molecule, wherein the nucleic acid molecule differs by a single nucleotide from a nucleic acid sequence selected from the group consisting of SEQ ID NO: 2n-l, wherein n is an integer between 1 and 606.
23. An isolated nucleic acid molecule encoding the mature form of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 606.
24. An isolated nucleic acid molecule comprising a nucleic acid selected from the group consistmg of 2n-l, wherein n is an integer between 1 and 606.
25. The nucleic acid molecule of claim 20, wherein said nucleic acid molecule hybridizes under stringent conditions to the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-l, wherein n is an integer between 1 and 606, or a complement of said nucleotide sequence.
26. A vector comprising the nucleic acid molecule of claim 20.
27. The vector of claim 26, further comprising a promoter operably linked to said nucleic acid molecule.
28. A cell comprising the vector of claim 26.
29. An antibody that immunospecifically binds to the polypeptide of claim 1.
30. The antibody of claim 29, wherein the antibody is a monoclonal antibody.
31. The antibody of claim 29, wherein the antibody is a humanized antibody.
32. A method for determining the presence or amount of the nucleic acid molecule of claim 20 in a sample, the method comprising:
(a) providing said sample; (b) introducing said sample to a probe that binds to said nucleic acid molecule; and
(c) determining the presence or amount of said probe bound to said nucleic acid molecule, thereby determining the presence or amount of the nucleic acid molecule in said sample.
33. The method of claim 32 wherein presence or amount of the nucleic acid molecule is used as a marker for cell or tissue type.
34. The method of claim 33 wherein the cell or tissue type is cancerous.
35. A method for determining the presence of or predisposition to a disease associated with altered levels of expression of the nucleic acid molecule of claim 20 in a first mammalian subject, the method comprising: a) measuring the level of expression of the nucleic acid in a sample from the first mammalian subject; and b) comparing the level of expression of said nucleic acid in the sample of step (a) to the level of expression of the nucleic acid present in a control sample from a second mammalian subject known not to have or not be predisposed to, the disease; wherein an alteration in the level of expression of the nucleic acid in the first subject as compared to the control sample indicates the presence of or predisposition to the disease.
36. A method of producing the polypeptide of claim 1, the method comprising culturing a cell under conditions that lead to expression of the polypeptide, wherein said cell comprises a vector comprising an isolated nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO:2n-l, wherein n is an integer between 1 and 606.
37. The method of claim 36 wherein the cell is a bacterial cell.
38. The method of claim 36 wherein the cell is an insect cell.
39. The method of claim 36 wherein the cell is a yeast cell.
40. The method of claim 36 wherein the cell is a mammalian cell.
41. A method of producing the polypeptide of claim 2, the method comprising culturing a cell under conditions that lead to expression of the polypeptide, wherein said cell comprises a vector comprising an isolated nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO:2n-l, wherein n is an integer between 1 and 606.
42. The method of claim 41 wherein the cell is a bacterial cell.
43. The method of claim 41 wherein the cell is an insect cell.
44. The method of claim 41 wherein the cell is a yeast cell.
45. The method of claim 41 wherein the cell is a mammalian cell.
EP03817177A 2002-06-03 2003-06-03 Therapeutic polypeptides, nucleic acids encoding same, and methods of use Withdrawn EP1576146A2 (en)

Applications Claiming Priority (152)

Application Number Priority Date Filing Date Title
1999-05-06
US38512002P 2002-06-03 2002-06-03
US385120P 2002-06-03
US38578402P 2002-06-04 2002-06-04
US385784P 2002-06-04
US38604102P 2002-06-05 2002-06-05
US38604702P 2002-06-05 2002-06-05
US386041P 2002-06-05
US386047P 2002-06-05
US38637602P 2002-06-06 2002-06-06
US38701602P 2002-06-06 2002-06-06
US38645302P 2002-06-06 2002-06-06
US38686402P 2002-06-06 2002-06-06
US386376P 2002-06-06
US386864P 2002-06-06
US386453P 2002-06-06
US387016P 2002-06-06
US38693102P 2002-06-07 2002-06-07
US38679602P 2002-06-07 2002-06-07
US38726202P 2002-06-07 2002-06-07
US38697102P 2002-06-07 2002-06-07
US38681602P 2002-06-07 2002-06-07
US38694202P 2002-06-07 2002-06-07
US387262P 2002-06-07
US386931P 2002-06-07
US386971P 2002-06-07
US386942P 2002-06-07
US386796P 2002-06-07
US386816P 2002-06-07
US29696002P 2002-06-08 2002-06-08
US296960P 2002-06-08
US38740002P 2002-06-10 2002-06-10
US38753502P 2002-06-10 2002-06-10
US387400P 2002-06-10
US387535P 2002-06-10
US38762502P 2002-06-11 2002-06-11
US38763402P 2002-06-11 2002-06-11
US38785902P 2002-06-11 2002-06-11
US38761002P 2002-06-11 2002-06-11
US38770202P 2002-06-11 2002-06-11
US38769602P 2002-06-11 2002-06-11
US38766802P 2002-06-11 2002-06-11
US38783602P 2002-06-11 2002-06-11
US387668P 2002-06-11
US387610P 2002-06-11
US387836P 2002-06-11
US387702P 2002-06-11
US387696P 2002-06-11
US387625P 2002-06-11
US387634P 2002-06-11
US387859P 2002-06-11
US38793302P 2002-06-12 2002-06-12
US38809602P 2002-06-12 2002-06-12
US38802202P 2002-06-12 2002-06-12
US38796002P 2002-06-12 2002-06-12
US38793402P 2002-06-12 2002-06-12
US387933P 2002-06-12
US387934P 2002-06-12
US387960P 2002-06-12
US388096P 2002-06-12
US388022P 2002-06-12
US38912302P 2002-06-13 2002-06-13
US389123P 2002-06-13
US38914602P 2002-06-14 2002-06-14
US38912002P 2002-06-14 2002-06-14
US38914402P 2002-06-14 2002-06-14
US38911802P 2002-06-14 2002-06-14
US389144P 2002-06-14
US389118P 2002-06-14
US389146P 2002-06-14
US389120P 2002-06-14
US38974202P 2002-06-17 2002-06-17
US38972902P 2002-06-17 2002-06-17
US389742P 2002-06-17
US389729P 2002-06-17
US38988402P 2002-06-18 2002-06-18
US389884P 2002-06-18
US39000602P 2002-06-19 2002-06-19
US39020902P 2002-06-19 2002-06-19
US390209P 2002-06-19
US390006P 2002-06-19
US39076302P 2002-06-21 2002-06-21
US390763P 2002-06-21
US39670602P 2002-07-17 2002-07-17
US396706P 2002-07-17
US40162802P 2002-08-06 2002-08-06
US401628P 2002-08-06
US40238902P 2002-08-09 2002-08-09
US40225602P 2002-08-09 2002-08-09
US40215602P 2002-08-09 2002-08-09
US402156P 2002-08-09
US402389P 2002-08-09
US402256P 2002-08-09
US40282102P 2002-08-12 2002-08-12
US40281602P 2002-08-12 2002-08-12
US40278602P 2002-08-12 2002-08-12
US40283202P 2002-08-12 2002-08-12
US402821P 2002-08-12
US402832P 2002-08-12
US402816P 2002-08-12
US402786P 2002-08-12
US40631702P 2002-08-13 2002-08-13
US40353102P 2002-08-13 2002-08-13
US40356302P 2002-08-13 2002-08-13
US40345902P 2002-08-13 2002-08-13
US40344802P 2002-08-13 2002-08-13
US40353202P 2002-08-13 2002-08-13
US403448P 2002-08-13
US403531P 2002-08-13
US403532P 2002-08-13
US403563P 2002-08-13
US406317P 2002-08-13
US403459P 2002-08-13
US40361702P 2002-08-15 2002-08-15
US403617P 2002-08-15
US40635502P 2002-08-26 2002-08-26
US40618202P 2002-08-26 2002-08-26
US406355P 2002-08-26
US406182P 2002-08-26
US40624002P 2002-08-27 2002-08-27
US406240P 2002-08-27
US41008402P 2002-09-12 2002-09-12
US410084P 2002-09-12
US41252802P 2002-09-20 2002-09-20
US412528P 2002-09-20
US41273102P 2002-09-23 2002-09-23
US412731P 2002-09-23
US41480102P 2002-09-30 2002-09-30
US41483902P 2002-09-30 2002-09-30
US41484002P 2002-09-30 2002-09-30
US41495402P 2002-09-30 2002-09-30
US414954P 2002-09-30
US414801P 2002-09-30
US414840P 2002-09-30
US414839P 2002-09-30
US41740602P 2002-10-09 2002-10-09
US41718602P 2002-10-09 2002-10-09
US417406P 2002-10-09
US417186P 2002-10-09
US42063902P 2002-10-23 2002-10-23
US420639P 2002-10-23
US42115602P 2002-10-28 2002-10-28
US421156P 2002-10-28
US42269002P 2002-10-31 2002-10-31
US422690P 2002-10-31
US42313002P 2002-11-01 2002-11-01
US423130P 2002-11-01
US42379802P 2002-11-05 2002-11-05
US423798P 2002-11-05
US42545302P 2002-11-12 2002-11-12
US425453P 2002-11-12
PCT/US2003/017430 WO2003102155A2 (en) 2002-06-03 2003-06-03 Therapeutic polypeptides, nucleic acids encoding same, and methods of use

Publications (1)

Publication Number Publication Date
EP1576146A2 true EP1576146A2 (en) 2005-09-21

Family

ID=29716468

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03817177A Withdrawn EP1576146A2 (en) 2002-06-03 2003-06-03 Therapeutic polypeptides, nucleic acids encoding same, and methods of use

Country Status (2)

Country Link
EP (1) EP1576146A2 (en)
WO (1) WO2003102155A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1576008A2 (en) * 2002-12-27 2005-09-21 Applied Research Systems ARS Holding N.V. Novel fibrillin-like polypeptides
JP2007524361A (en) * 2003-02-10 2007-08-30 アジェンシス, インコーポレイテッド 158P1D7 nucleic acid and corresponding protein useful for the treatment and detection of bladder cancer and other cancers
WO2006053155A2 (en) * 2004-11-12 2006-05-18 Aveo Pharmaceuticals, Inc. Gp202: methods and compositions for treating cancer
JP2008535823A (en) * 2005-03-25 2008-09-04 キュラジェン コーポレイション Antibodies against major antigens of tenascin
WO2008039974A2 (en) 2006-09-28 2008-04-03 Cedars-Sinai Medical Center Cancer vaccines and vaccination methods
ES2618573T3 (en) * 2009-05-07 2017-06-21 ImmunoCellular Therapeutics,Ltd CD133 epitopes
EP2956544B1 (en) 2013-02-14 2017-11-01 Immunocellular Therapeutics Ltd. Cancer vaccines and vaccination methods

Also Published As

Publication number Publication date
WO2003102155A2 (en) 2003-12-11

Similar Documents

Publication Publication Date Title
WO2004000997A2 (en) Therapeutic polypeptides, nucleic acids encoding same, and methods of use
US20060003323A1 (en) Therapeutic polypeptides, nucleic acids encoding same, and methods of use
US20040038877A1 (en) Therapeutic polypeptides, nucleic acids encoding same, and methods of use
WO2003102155A2 (en) Therapeutic polypeptides, nucleic acids encoding same, and methods of use
CA2456310A1 (en) Therapeutic polypeptides, nucleic acids encoding same, and methods of use
US20040038223A1 (en) Novel proteins and nucleic acids encoding same
WO2003102159A2 (en) Novel proteins and nucleic acids encoding same
US20040023241A1 (en) Therapeutic polypeptides, nucleic acids encoding same, and methods of use
WO2003085124A2 (en) Therapeutic polypeptides, nucleic acids encoding same, and methods of use
US20030229016A1 (en) Novel human proteins, polynucleotides encoding them and methods of using the same
US20060084054A1 (en) Novel proteins and nucleic acids encoding same
US20040067505A1 (en) Therapeutic polypeptides, nucleic acids encoding same, and methods of use
CA2471480A1 (en) Therapeutic polypeptides, nucleic acids encoding same, and methods of use
CA2481039A1 (en) Therapeutic polypeptides, nucleic acids encoding same, and methods of use
WO2003050245A2 (en) Therapeutic polypeptides, nucleic acids encoding same, and methods of use
WO2003093432A2 (en) Therapeutic polypeptides, nucleic acids encoding same, and methods of use
WO2004089282A2 (en) Therapeutic polypeptides, nucleic acids encoding same, and methods of use
US20040002453A1 (en) Therapeutic polypeptides, nucleic acids encoding same, and methods of use
US20040023259A1 (en) Therapeutic polypeptides, nucleic acids encoding same, and methods of use
US20040259774A1 (en) Therapeutic polypeptides, nucleic acids encoding same, and methods of use
US20040076967A1 (en) Novel human proteins, polynucleotides encoding them and methods of using the same
US20040058347A1 (en) Novel proteins and nucleic acids encoding same
EP1513864A2 (en) Therapeutic polypeptides, nucleic acids encoding same, and methods of use
EP1590480A2 (en) Novel proteins and nucleic acids encoding same
CA2478032A1 (en) Therapeutic polypeptides, nucleic acids encoding same, and methods of use

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041216

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CURAGEN CORPORATION

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080103