EP1567475A1 - Continuous methods and reactor used for the production of alkylamines - Google Patents
Continuous methods and reactor used for the production of alkylaminesInfo
- Publication number
- EP1567475A1 EP1567475A1 EP03811770A EP03811770A EP1567475A1 EP 1567475 A1 EP1567475 A1 EP 1567475A1 EP 03811770 A EP03811770 A EP 03811770A EP 03811770 A EP03811770 A EP 03811770A EP 1567475 A1 EP1567475 A1 EP 1567475A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- reactor
- ammonia
- catalyst
- bed
- fixed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 150000003973 alkyl amines Chemical class 0.000 title claims abstract description 16
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 238000011437 continuous method Methods 0.000 title abstract 2
- 239000003054 catalyst Substances 0.000 claims abstract description 66
- 239000002826 coolant Substances 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 16
- 230000001427 coherent effect Effects 0.000 claims abstract description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 76
- 229910021529 ammonia Inorganic materials 0.000 claims description 38
- 239000000203 mixture Substances 0.000 claims description 17
- 238000001816 cooling Methods 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 238000010924 continuous production Methods 0.000 claims description 9
- 239000011541 reaction mixture Substances 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 5
- 238000009835 boiling Methods 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 3
- 239000007795 chemical reaction product Substances 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims description 2
- 230000008020 evaporation Effects 0.000 claims description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 abstract 1
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 27
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 22
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 239000000047 product Substances 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 9
- 239000010457 zeolite Substances 0.000 description 9
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 8
- 150000003956 methylamines Chemical class 0.000 description 8
- 229910021536 Zeolite Inorganic materials 0.000 description 7
- 239000007858 starting material Substances 0.000 description 6
- 229910052680 mordenite Inorganic materials 0.000 description 5
- 238000004821 distillation Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- JYIBXUUINYLWLR-UHFFFAOYSA-N aluminum;calcium;potassium;silicon;sodium;trihydrate Chemical compound O.O.O.[Na].[Al].[Si].[K].[Ca] JYIBXUUINYLWLR-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- UNYSKUBLZGJSLV-UHFFFAOYSA-L calcium;1,3,5,2,4,6$l^{2}-trioxadisilaluminane 2,4-dioxide;dihydroxide;hexahydrate Chemical compound O.O.O.O.O.O.[OH-].[OH-].[Ca+2].O=[Si]1O[Al]O[Si](=O)O1.O=[Si]1O[Al]O[Si](=O)O1 UNYSKUBLZGJSLV-UHFFFAOYSA-L 0.000 description 2
- 229910052676 chabazite Inorganic materials 0.000 description 2
- 229910001603 clinoptilolite Inorganic materials 0.000 description 2
- 229910052675 erionite Inorganic materials 0.000 description 2
- 229910001657 ferrierite group Inorganic materials 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000010626 work up procedure Methods 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- -1 ZK-5 Inorganic materials 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000002638 heterogeneous catalyst Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C209/00—Preparation of compounds containing amino groups bound to a carbon skeleton
- C07C209/04—Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups
- C07C209/14—Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups
- C07C209/16—Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups with formation of amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/0207—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal
- B01J8/0221—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal in a cylindrical shaped bed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/0285—Heating or cooling the reactor
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C209/00—Preparation of compounds containing amino groups bound to a carbon skeleton
- C07C209/04—Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups
- C07C209/14—Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C211/00—Compounds containing amino groups bound to a carbon skeleton
- C07C211/01—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
- C07C211/02—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
- C07C211/03—Monoamines
- C07C211/04—Mono-, di- or tri-methylamine
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00115—Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
- B01J2208/00132—Tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00327—Controlling the temperature by direct heat exchange
- B01J2208/00336—Controlling the temperature by direct heat exchange adding a temperature modifying medium to the reactants
- B01J2208/00353—Non-cryogenic fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/0053—Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
Definitions
- the invention relates to a reactor and process for the preparation of alkylamines by reacting C 1 -C -alkanols with ammonia in the gas phase in the presence of a shape-selective fixed bed catalyst.
- the invention relates to the reaction of methanol with ammonia to produce methylamines, preferably with a selectivity for dimethylamine (DMA) which is higher than in the thermodynamic equilibrium.
- DMA dimethylamine
- MMA monomethylamine
- DMA dimethylamine
- TMA trimethylamine
- the product distribution depends on the temperature and the N / C ratio.
- the proportion of trimethylamine in the product mixture can be reduced if a higher excess of ammonia (larger N / C ratio) is contained in the reaction mixture. If the proportion of monomethylamine and / or dimethylamine in the desired product mixture removed after the known workup is greater than the reactor output, both the excess trimethylamine and the unreacted ammonia must be returned to the reactor, with large ammonia and trimethylamine -Circuits arise.
- TMA The worldwide use of TMA is 10 to 20% by weight, based on the total amount of methylamines. It is desirable to increase the proportion of DMA and MMA without recycling the reaction mixture. This is achieved through the use of shape-selective zeolite catalysts such as mordenite, ZK-5, Rho, erionite, chabazite, ferrierite, clinoptilolite at temperatures of 250 to 400 ° C. A product mixture is obtained which consists mainly of di- and monomethylamine and contains little trimethylamine.
- EP-A-1 077 084 a shape-selective H-mordenite catalyst, with an N / C ratio of 1.9, a reaction pressure of 20 bar, a temperature of 320 ° C, and a GHSV load of 2500 h "1 after 6 hours, a methanol conversion of 99.2% was measured, the product mixture having an MMA / DMA / TMA ratio of 32/52/16% by weight. If dimethylamine removed most of the desired amount after the known workup Forms product mixture, the amounts to be separated by distillation and returned to the reactor can be significantly reduced compared to the synthesis on the non-shape-selective "equilibrium catalysts".
- a reactor procedure is therefore more advantageous for the synthesis of methylamines with shape-selective zeolite catalysts, in which the heat generated by the reaction is dissipated in whole or in part by heat exchangers built into the reactor in order to limit the difference between outlet temperature and inlet temperature.
- EP-B-0 763 519 describes the synthesis of methylamines in one or more reactors, which is / are divided into two or more single beds, arranged in parallel or in series are. The heat is removed by cooling the reaction mixture between these single beds.
- the parallel arrangement of single beds, between which there is a heat-dissipating medium, is realized, for example, with tube bundle reactors.
- the catalyst bed and the reaction mixture are inside the tubes and the cooling medium outside the tubes.
- the pressure in the reaction medium is generally 15 to 25 bar.
- the pressure of the cooling medium is approx. 100 bar when cooling with boiling water.
- the design pressure of the reactor wall must therefore be approximately 100 bar.
- the object of the present invention is to provide reactors and processes for the preparation of alkylamines by reacting alkanols with ammonia in the gas phase in the presence of shape-selective fixed bed catalysts which avoid the disadvantages of the existing processes and in particular require less equipment.
- the object is inventively achieved by a continuous process for preparing alkylamines by reacting cf_ 4 - alkanols with ammonia in the gas phase in the presence of a shape selective fixed-bed catalyst in a cooled reactor, wherein the shape-selective fixed-bed catalyst is present in the reactor in a single continuous fixed bed and within of the fixed bed run pipes through which coolant is passed to regulate the temperature of the fixed bed.
- the design of a fixed bed reactor for the synthesis of alkylamines can be chosen so that the catalyst bed forms a single continuous bed in or between which there are pipes within which the cooling medium is located.
- the advantage is that the design pressure of the reactor jacket and the reactor covers only has to correspond to the pressure on the product side. Only the pipes that contain the cooling medium have to be designed for the higher pressure of the cooling medium. The devices for distributing, collecting and removing the cooling medium must also be designed for this pressure. This can significantly reduce the wall thickness of the reactor jacket are, which leads to significantly lower costs and a significantly lower weight of the reactor.
- the tubes for the cooling medium are advantageously used in a coiled form, since in this design, stresses caused by different thermal expansions of the apparatus wall and cooling tubes are practically not important. Special advantages result from a combination of this reactor design with shape-selective catalysts.
- the tubes can have any suitable or desired geometry.
- the tubes preferably have a cross section that has no corners.
- the pipe cross section can be circular or elliptical.
- the tube diameter is preferably 1 to 5 cm.
- Suitable reactors are described, for example, in EP-A-0 534 195. Among other things, they can be used to produce methylamines from methanol and ammonia.
- Suitable coolant can be passed through the pipes, which allows efficient heat absorption and dissipation as well as an efficient transport of the cooling medium.
- Suitable coolants include water, aqueous solutions, e.g. May contain glycols or molten salts.
- the cooling is preferably carried out by boiling water cooling, so that the coolant is water or contains water predominantly.
- the pressure in the coolant is preferably 40 to 220 bar, particularly preferably 60 to 150 bar, and the pressure in the fixed catalyst bed 10 to 50 bar, particularly preferably 15 to 30 bar.
- the product-side pressure in the reactor can be approximately 25 bar, while the pressure of the cooling medium can be approximately 100 bar with boiling water cooling.
- the geometry of the design of the coolant pipes in the reactor can be chosen as long as efficient heat dissipation is achieved.
- the geometry is preferably chosen so that the temperature distribution is as uniform as possible in the fixed catalyst bed.
- the design and operation of the cooling are preferably controlled so that the difference between the outlet temperature and the inlet temperature of the reactor is below 60 ° C., particularly preferably below 35 ° C.
- Suitable reactors are, for example, Linde isothermal reactors or comparable nickel reactors, as are also described in DE-A-34 14 717 and EP-A-0 534 195. They are usually operated isothermally.
- the invention also relates to a reactor for the reaction of d ⁇ -alkanols with ammonia in the gas phase for the production of alkylamines, comprising a shape-selective fixed bed catalyst in which the fixed bed catalyst is present in the reactor in a single connected fixed bed and pipes run through the inside of the fixed bed Coolant can be passed.
- the reactor is preferably constructed from metallic materials such as stainless steel.
- the wall thicknesses are chosen so that the pressure conditions specified above are possible.
- the catalyst bed forms a single continuous bed in the reactor. This means that there are no individual areas or islands of the catalyst bed in the reactor, but the bed as a whole is coherent.
- the object is further achieved according to the invention by a continuous process for the preparation of alkylamines by reacting C 1 -C -alkanols with ammonia in the gas phase in the presence of a shape-selective fixed bed catalyst in a reactor in which part of the C 1 -C -alkanols introduced into the reactor, the of which the fixed catalyst bed is ammonia or mixtures supplied to at least one location at which an already converted reaction mixture from - 4 alkanols and ammonia is present, which has a higher temperature than that supplied to Ci 4-alkanols, ammonia, or mixtures thereof.
- a part of the reactor feed mixture or a part of the feed amount of individual components is added to the already partially reacted reaction mixture instead of at the reactor inlet inside the reactor, preferably in the first 2/3 of the catalyst bed.
- the temperature of the internal quantities added is lower than the temperature of the reaction mixture which has already been partially converted at the point of the reactor at which the addition takes place.
- Preferably 30 to 90%, particularly preferably 50 to 80% of the starting materials to be introduced into the reactor are added to the inside of the reactor instead of at the inlet of the reactor.
- the temperature of the starting materials added is preferably at least 40 ° C., particularly preferably at least 70 ° C., lower than the temperature of the catalyst bed at the point of addition.
- the feed can take place at one or more points along the catalyst bed.
- the feed is preferably regulated in such a way that a largely homogeneous temperature distribution is established in the entire catalyst bed. The amount of starting materials metered into the catalyst bed can thus be used to absorb the reaction energy released.
- the object is achieved according to the invention by a continuous process for the preparation of alkylamines by reacting ⁇ -alkanols with ammonia in the gas phase in the presence of a shape-selective fixed bed catalyst in a reactor in which some of the ⁇ -alkanols, the ammonia or mixtures thereof liquid form is introduced into the reactor so that evaporation takes place on the fixed catalyst bed.
- part of the reactor feed mixture or part of the feed quantities of individual components is added in liquid form.
- the liquids evaporate in the reactor or on the fixed bed catalyst.
- Preferably 5 to 70%, particularly preferably 10 to 50% of the total starting materials to be introduced into the reactor are fed in in liquid form. Suitable devices for supplying the liquid starting materials are known.
- the fixed catalyst bed can be cooled accordingly by the heat absorption at the point of supply.
- the object is further achieved according to the invention by a continuous process for preparing alkylamines by the reaction of C 1-4 alkanols with ammonia in the gas phase in the presence of a shape selective fixed-bed catalyst in a reactor, characterized in that the fixed catalyst bed is additionally supplied with a heat transfer medium which compared to the C ⁇ alkanols and ammonia and the
- Reaction products is inert and / or does not significantly affect the activity and selectivity of the catalyst.
- One or more other components are used
- Reactor feed mixture added in an amount that is suitable for a part of the at
- the added component is chemically inert to the other components in the synthesis of alkylamines and / or does not affect the selectivity of the reaction. It preferably does not significantly or not at all influence the activity and selectivity of the catalyst.
- Heat transfer medium water or an aqueous solution used, which contains a water content of at least 50%, preferably at least 80%.
- the amount of heat transfer medium added depends on the practical requirements for heat dissipation in the reactor.
- the heat transfer medium can be separated from the product stream in a simple manner by suitable processes such as distillation.
- C 1 - alkanols preferably C 2 alkanols, in particular methanol
- the alkanols are reacted with ammonia.
- the N / C ratio ie the ratio of the number of N atoms to C atoms when using methanol, is preferably 0.8 to 3.5, particularly preferably 1.0 to 2.5, in particular 1.2 to 2.0. According to the invention, this can prevent larger ammonia recycle streams from occurring. In addition, the formation of by-products that can deactivate the catalyst can be prevented.
- shape-selective catalysts in particular zeolites, are used.
- Silico-alumino-phosphates (SAPO) can also be used.
- suitable shape-selective catalysts are mordenite, ZK-5, zeolite rho, erionite, chabazite, ferrierite, clinoptilolite, SAPO-34, ZSM-5, ZSM-11, ZSM-21, ZSM-35, NU-85, offretite, zeolite -Y and other catalysts as described in Catalysis Today 37 (1997), pages 71 to 102, especially Table 4 on page 76.
- the other shape-selective catalysts mentioned in this reference can also be used.
- modified zeolite catalysts for modified zeolite catalysts (mordenites), reference can be made to US 4,485,261, US 4,578,516, US 4,582,936 and EP-A-0 342 999. These are modified zeolites which are derived from the natural or synthetic mordenites and are chemically modified in order to adjust the cation content, in particular the content of alkali and alkaline earth metal ions, and are subsequently steam-treated.
- mordenite catalysts for further suitable mordenite catalysts, reference can be made to EP-A-1 077 084.
- EP-A-0 593 086 and EP-A-0 763 519 suitable reaction conditions are specified.
- the process is preferably carried out at a temperature in the range from 200 to 500 ° C., particularly preferably from 250 to 400 ° C.
- the reaction pressure is preferably 5 to 50 bar, particularly preferably 10 to 40 bar, in particular 15 to 30 bar.
- the catalyst load (GHS V) is preferably 250 to 5000 Nl / l Kat h.
- the catalyst is used in the form of a fixed bed from a catalyst bed.
- the catalyst particles can have any geometry. These are, for example, extrudates, tablets, prills or granules.
- the catalyst can consist entirely of active component or contain 1 to 60% by weight of binder. Common binders are oxides of the elements aluminum, silicon, titanium and zircon as well as clays such as montmorillonite and kaolin.
- the C 4 alkanols, ammonia or mixtures thereof introduced into the reactor can be guided radially to the longitudinal axis of the reactor, e.g. B. centripetal.
- Such an embodiment is described for example in EP-A-0534 195.
- the process according to the invention makes it possible, in particular, to produce methylamines from methanol and ammonia with a high selectivity for dimethylamine.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Disclosed is a continuous method for producing alkylamines by reacting C1-4 alkanols with ammonium that is provided in the gas phase in the presence of a shape-selective fixed-bed catalyst within a cooled reactor. The inventive method is characterized by the fact that the shape-selective fixed-bed catalyst located inside the reactor is provided in a single coherent fixed bed while tubes through which coolants are directed in order to regulate the temperature of the fixed bed extend within the fixed bed.
Description
Kontinuierliche Verfahren und Reaktor zur Herstellung von Alkylaniinen Continuous process and reactor for the production of alkylaniines
Die Erfindung betrifft einen Reaktor und Verfahren zur Herstellung von Alkylaminen durch Umsetzung von Cι- -Alkanolen mit Ammoniak in der Gasphase in Gegenwart eines formselektiven Festbettkatalysators.The invention relates to a reactor and process for the preparation of alkylamines by reacting C 1 -C -alkanols with ammonia in the gas phase in the presence of a shape-selective fixed bed catalyst.
Insbesondere betrifft die Erfindung die Umsetzung von Methanol mit Ammoniak zur Herstellung von Methylaminen, vorzugsweise mit einer Selektivität für Dimethylamin (DMA), die höher ist als im thermodynaπiischen Gleichgewicht.In particular, the invention relates to the reaction of methanol with ammonia to produce methylamines, preferably with a selectivity for dimethylamine (DMA) which is higher than in the thermodynamic equilibrium.
Die klassische Synthese von Monomethylamin (MMA), Dimethylamin (DMA) und Trimethylamin (TMA) erfolgt aus Ammoniak und Methanol in der Gasphase an amorphem nicht-formselektivem Silica-Alumina (Mischformen von Aluminium- und Siliziumoxid) bei Drücken von 15 bis 50 bar. Bei der Anwendung von höheren Temperaturen (350 bis ca. 500 °C) stellt sich an diesen heterogenen Katalysatoren das thermodynamische Gleichgewicht ein oder wird näherungsweise erreicht, wenn die Verweilzeit im Reaktor bei gegebenem Druck und gegebener Zulauftemperatur hinreichend ist. Charakteristisch für diese "Gleichgewichtskatalysatoren" ist ein Anteil an Trimethylamin im Reaktoraustrag, bezogen auf die Summe von Monomethylamin, Dimethylamin und Trimethylamin, von 40 bis 60 Gewichtsprozent. Die Produktverteilung ist abhängig von der Temperatur und vom N/C- Verhältnis. Der Anteil von Trimethylamin am Produktgemisch lässt sich dabei reduzieren, wenn ein höherer Überschuss an Ammoniak (größeres N/C-Nerhältnis) im Reaktionsgemisch enthalten ist. Wenn der Anteil an Monomethylamin und/oder Dimethylamin am gewünschten, nach der bekannten Aufarbeitung entnommenen Produktgemisch größer ist als es dem Reaktoraustrag entspricht, müssen sowohl das überschüssige Trimethylamin als auch das nicht umgesetzte Ammoniak zurück in den Reaktor gefahren werden, wobei große Ammoniak- und Trimethylamin-Kreisläufe entstehen.The classic synthesis of monomethylamine (MMA), dimethylamine (DMA) and trimethylamine (TMA) takes place from ammonia and methanol in the gas phase on amorphous, non-shape-selective silica-alumina (mixed forms of aluminum and silicon oxide) at pressures of 15 to 50 bar. When higher temperatures (350 to approx. 500 ° C) are used, the thermodynamic equilibrium is established on these heterogeneous catalysts or is approximately achieved if the residence time in the reactor at a given pressure and feed temperature is sufficient. Characteristic of these "equilibrium catalysts" is a proportion of trimethylamine in the reactor discharge, based on the sum of monomethylamine, dimethylamine and trimethylamine, of 40 to 60 percent by weight. The product distribution depends on the temperature and the N / C ratio. The proportion of trimethylamine in the product mixture can be reduced if a higher excess of ammonia (larger N / C ratio) is contained in the reaction mixture. If the proportion of monomethylamine and / or dimethylamine in the desired product mixture removed after the known workup is greater than the reactor output, both the excess trimethylamine and the unreacted ammonia must be returned to the reactor, with large ammonia and trimethylamine -Circuits arise.
Der weltweite TMA-Nerbrauch liegt bezogen auf die Gesamtmenge der Methylamine bei 10 bis 20 Gew.-%. Es ist wünschenswert, den Anteil an DMA und MMA ohne Rückführung des Reaktionsgemisches zu erhöhen. Dies gelingt durch die Verwendung von formselektiven Zeolith-Katalysatoren wie Mordenit, ZK-5, Rho, Erionit, Chabazit, Ferrierit, Clinoptilolit bei Temperaturen von 250 bis 400 °C. Man erhält ein Produktgemisch, das
vorwiegend aus Di- und Monomethylamin besteht und nur wenig Trimethylamin enthält. Gemäß EP-A-1 077 084 wird an einem formselektiven H-Mordenit-Katalysator, bei einem N/C- Verhältnis von 1,9, einem Reaktionsdruck von 20 bar, einer Temperatur von 320 °C, und einer Belastung GHSV von 2500 h"1 nach 6 h ein Methanol-Umsatz von 99.2% gemessen, wobei das Produktgemisch ein MMA/DMA/TMA- Verhältnis von 32/52/16 Gew.-% besitzt. Wenn Dimethylamin den größten Teil am gewünschten, nach der bekannten Aufarbeitung entnommenen Produktgemisch bildet, lassen sich so die destillativ abzutrennenden und in den Reaktor zurück zu fahrenden Mengen deutlich verringern im Vergleich zur Synthese an den nicht-formselektiven "Gleichgewichtskatalysatoren".The worldwide use of TMA is 10 to 20% by weight, based on the total amount of methylamines. It is desirable to increase the proportion of DMA and MMA without recycling the reaction mixture. This is achieved through the use of shape-selective zeolite catalysts such as mordenite, ZK-5, Rho, erionite, chabazite, ferrierite, clinoptilolite at temperatures of 250 to 400 ° C. A product mixture is obtained which consists mainly of di- and monomethylamine and contains little trimethylamine. According to EP-A-1 077 084, a shape-selective H-mordenite catalyst, with an N / C ratio of 1.9, a reaction pressure of 20 bar, a temperature of 320 ° C, and a GHSV load of 2500 h "1 after 6 hours, a methanol conversion of 99.2% was measured, the product mixture having an MMA / DMA / TMA ratio of 32/52/16% by weight. If dimethylamine removed most of the desired amount after the known workup Forms product mixture, the amounts to be separated by distillation and returned to the reactor can be significantly reduced compared to the synthesis on the non-shape-selective "equilibrium catalysts".
Aus Untersuchungen der Selektivität bezüglich Dimethylamin bei Verwendung von formselektiven Mordenit-Katalysatoren konnte festgestellt werden, dass bei einer Temperatur von 320 °C und einem N/C- Verhältnis von 1,2 bis 2,0 der Anteil an DMA etwa 60 Gew.-% beträgt. Da die Menge an Ammoniak ohne Veränderung der Selektivität variiert werden kann, ist es wünschenswert, ein kleines N/C- Verhältnis einzustellen, da dann weniger Ammoniak destillativ abgetrennt und in den Reaktor oder einen zweiten Reaktor mit einem "Gleichgewichtskatalysator" zurück gefahren werden muss. Die Verwendung von N/C-Verhältnissen kleiner als 0,8 sollte vermieden werden, da die Bildung von Nebenprodukten auftritt, die den Katalysator desaktivieren (Verkokung).From studies of the selectivity with regard to dimethylamine when using shape-selective mordenite catalysts, it was found that at a temperature of 320 ° C. and an N / C ratio of 1.2 to 2.0, the proportion of DMA was about 60% by weight. is. Since the amount of ammonia can be varied without changing the selectivity, it is desirable to set a small N / C ratio, since less ammonia then has to be separated off by distillation and returned to the reactor or a second reactor with an "equilibrium catalyst". The use of N / C ratios less than 0.8 should be avoided since the formation of by-products occurs which deactivate the catalyst (coking).
Die Standzeit des Zeolith-Katalysators ist umso besser, je geringer die Differenz zwischen Austrittstemperatur und Eintrittstemperatur des Reaktors ist, bevorzugt unter 60 °C. Zu hohe Austrittstemperaturen bzw. "Hot-Spots" im Reaktor führen zu einer Abnahme des DMA- und einer Zunahme des TMA- Anteils im Produktgemisch. US 4,398,041 beschreibt ein Verfahren, bei dem der Reaktorzulauf durch überschüssiges Ammoniak verdünnt wird, um die Temperaturerhöhung in dem adiabat betriebenen Reaktor zu verringern. Der große Überschuss an Ammoniak (N/C- Verhältnis von > 2,0) ist mit dem erheblichen Nachteil verbunden, dass große Mengen an Ammoniak destillativ abgetrennt und in den Reaktor zurück gefahren werden müssen.The lower the difference between the outlet temperature and the inlet temperature of the reactor, preferably below 60 ° C., the better the service life of the zeolite catalyst. Excessively high outlet temperatures or "hot spots" in the reactor lead to a decrease in the DMA and an increase in the TMA content in the product mixture. No. 4,398,041 describes a process in which the reactor feed is diluted by excess ammonia in order to reduce the temperature increase in the reactor operated adiabatically. The large excess of ammonia (N / C ratio of> 2.0) is associated with the considerable disadvantage that large amounts of ammonia have to be separated off by distillation and returned to the reactor.
Vorteilhafter für die Synthese von Methylaminen mit formselektiven Zeolith-Katalysatoren ist daher eine Reaktorfahrweise, bei der die durch die Reaktion erzeugte Wärme ganz oder teilweise durch in den Reaktor eingebaute Wärmeübertrager abgeführt wird, um die Differenz zwischen Austrittstemperatur und Eintrittstemperatur zu begrenzen. EP-B-0 763 519 beschreibt die Synthese von Methylaminen in einem oder mehreren Reaktoren, der/die in zwei oder mehrere Einzelbetten unterteilt ist/sind, die parallel oder in Serie angeordnet
sind. Die Wärmeabfuhr erfolgt durch Kühlung des Reaktionsgemisches zwischen diesen Einzelbetten. Die Parallelanordnung von Einzelbetten, zwischen denen sich ein Wärme abführendes Medium befindet, wird beispielsweise mit Rohrbündefreaktoren realisiert.A reactor procedure is therefore more advantageous for the synthesis of methylamines with shape-selective zeolite catalysts, in which the heat generated by the reaction is dissipated in whole or in part by heat exchangers built into the reactor in order to limit the difference between outlet temperature and inlet temperature. EP-B-0 763 519 describes the synthesis of methylamines in one or more reactors, which is / are divided into two or more single beds, arranged in parallel or in series are. The heat is removed by cooling the reaction mixture between these single beds. The parallel arrangement of single beds, between which there is a heat-dissipating medium, is realized, for example, with tube bundle reactors.
Die Synthese von Methylaminen in Rohrbündefreaktoren ist auch in EP-A-0 593 086 beschrieben.The synthesis of methylamines in tube bundle reactors is also described in EP-A-0 593 086.
In Rohrbündelreaktoren befinden sich die Katalysatorausschüttung und das Reaktionsgemisch innerhalb der Rohre und das Kühlmedium außerhalb der Rohre. Bei der Synthese von Methylaminen beträgt der Druck im Reaktionsmedium i.a. 15 bis 25 bar. Bei einer Synthesetemperatur von 320 °C, beträgt der Druck des Kühlmediums ca. 100 bar, wenn mit siedendem Wasser gekühlt wird. Beim Rohrbündelreaktor muss daher der Auslegungsdruck der Reaktorwand etwa 100 bar betragen.In tube bundle reactors, the catalyst bed and the reaction mixture are inside the tubes and the cooling medium outside the tubes. In the synthesis of methylamines, the pressure in the reaction medium is generally 15 to 25 bar. At a synthesis temperature of 320 ° C, the pressure of the cooling medium is approx. 100 bar when cooling with boiling water. In the tube bundle reactor, the design pressure of the reactor wall must therefore be approximately 100 bar.
Aufgabe der vorliegenden Erfindung ist die Bereitstellung von Reaktoren und Verfahren zur Herstellung von Alkylaminen durch Umsetzung von Alkanolen mit Ammoniak in der Gasphase in Gegenwart von formselektiven Festbettkatalysatoren, die die Nachteile der bestehenden Verfahren vermeiden und insbesondere einen geringeren apparativen Aufwand erfordern.The object of the present invention is to provide reactors and processes for the preparation of alkylamines by reacting alkanols with ammonia in the gas phase in the presence of shape-selective fixed bed catalysts which avoid the disadvantages of the existing processes and in particular require less equipment.
Die Aufgabe wird erfindungsgemäß gelöst durch ein kontinuierliches Verfahren zur Herstellung von Alkylaminen durch Umsetzung von Cf_4- Alkanolen mit Ammoniak in der Gasphase in Gegenwart eines formselektiven Festbettkatalysators in einem gekühlten Reaktor, bei dem der formselektive Festbettkatalysator im Reaktor in einem einzigen zusammenhängenden Festbett vorliegt und innerhalb des Festbettes Rohre verlaufen, durch die Kühlmittel geleitet werden, um die Temperatur des Festbettes zu regeln.The object is inventively achieved by a continuous process for preparing alkylamines by reacting cf_ 4 - alkanols with ammonia in the gas phase in the presence of a shape selective fixed-bed catalyst in a cooled reactor, wherein the shape-selective fixed-bed catalyst is present in the reactor in a single continuous fixed bed and within of the fixed bed run pipes through which coolant is passed to regulate the temperature of the fixed bed.
Es wurde erfindungsgemäß gefunden, dass die Bauweise eines Festbettreaktors für die Synthese von Alkylaminen so gewählt werden kann, dass die Katalysatorschüttung ein einziges zusammenhängendes Bett bildet, in dem oder zwischen dem sich Rohre befinden, innerhalb derer sich das Kühlmedium befindet. Der Vorteil besteht darin, dass der Auslegungsdruck des Reaktormantels und der Reaktorhauben nur dem produktseitigen Druck entsprechen muss. Nur die Rohre, die das Kühlmedium enthalten, müssen auf den höheren Druck des Kühlmediums ausgelegt werden. Ebenfalls auf diesen Druck ausgelegt werden müssen die Vorrichtungen zum Verteilen, Sammeln und Abführen des Kühlmediums. Die Wanddicke des Reaktormantels kann dadurch wesentlich reduziert
werden, was zu wesentlich geringeren Kosten und zu einem wesentlich geringeren Gewicht des Reaktors führt. Die Rohre für das Kühlmedium werden vorteilhaft in gewickelter Form eingesetzt, da bei dieser Auslegung Spannungen durch unterschiedliche Wärmeausdehnungen von Apparatewand und Kühlrohren praktisch nicht von Bedeutung sind. Besondere Vorteile ergeben sich aus einer Kombination dieser Reaktorauslegung mit formselektiven Katalysatoren.It has been found according to the invention that the design of a fixed bed reactor for the synthesis of alkylamines can be chosen so that the catalyst bed forms a single continuous bed in or between which there are pipes within which the cooling medium is located. The advantage is that the design pressure of the reactor jacket and the reactor covers only has to correspond to the pressure on the product side. Only the pipes that contain the cooling medium have to be designed for the higher pressure of the cooling medium. The devices for distributing, collecting and removing the cooling medium must also be designed for this pressure. This can significantly reduce the wall thickness of the reactor jacket are, which leads to significantly lower costs and a significantly lower weight of the reactor. The tubes for the cooling medium are advantageously used in a coiled form, since in this design, stresses caused by different thermal expansions of the apparatus wall and cooling tubes are practically not important. Special advantages result from a combination of this reactor design with shape-selective catalysts.
Die Rohre können erfindungsgemäß jede geeignete oder gewünschte Geometrie aufweisen. Vorzugsweise haben die Rohre einen Querschnitt, der keine Ecken aufweist. Beispielsweise kann der Rohrquerschnitt kreisförmig oder ellipsenförmig sein. Der Rohrdurchmesser beträgt vorzugsweise 1 bis 5 cm.According to the invention, the tubes can have any suitable or desired geometry. The tubes preferably have a cross section that has no corners. For example, the pipe cross section can be circular or elliptical. The tube diameter is preferably 1 to 5 cm.
Geeignete Reaktoren sind beispielsweise in EP-A-0 534 195 beschrieben. Sie können unter anderem zur Herstellung von Methylaminen aus Methanol und Ammoniak eingesetzt werden.Suitable reactors are described, for example, in EP-A-0 534 195. Among other things, they can be used to produce methylamines from methanol and ammonia.
Durch die Rohre kann jedes beliebige geeignete Kühlmittel geführt werden, das eine effiziente Wärmeaufnahme und Ableitung sowie einen effizienten Transport des Kühlmediums erlaubt. Geeignete Kühlmittel sind beispielsweise Wasser, wässrige Lösungen, die z.B. Glykole enthalten können, oder Salzschmelzen. Vorzugsweise erfolgt die Kühlung durch Siedewasserkühlung, so dass das Kühlmittel Wasser ist oder ganz überwiegend Wasser enthält.Any suitable coolant can be passed through the pipes, which allows efficient heat absorption and dissipation as well as an efficient transport of the cooling medium. Suitable coolants include water, aqueous solutions, e.g. May contain glycols or molten salts. The cooling is preferably carried out by boiling water cooling, so that the coolant is water or contains water predominantly.
Vorzugsweise beträgt der Druck im Kühlmittel 40 bis 220 bar, besonders bevorzugt 60 bis 150 bar, und der Druck im Katalysator-Festbett 10 bis 50 bar, besonders bevorzugt 15 bis 30 bar. Beispielsweise kann der produktseitige Druck im Reaktor etwa 25 bar betragen, während der Druck des Kühlmediums etwa 100 bar bei Siedewasserkühlung betragen kann.The pressure in the coolant is preferably 40 to 220 bar, particularly preferably 60 to 150 bar, and the pressure in the fixed catalyst bed 10 to 50 bar, particularly preferably 15 to 30 bar. For example, the product-side pressure in the reactor can be approximately 25 bar, while the pressure of the cooling medium can be approximately 100 bar with boiling water cooling.
Die Geometrie der Auslegung der Kühlmittelrohre im Reaktor kann beliebig gewählt werden, solange eine effiziente Wärmeabfuhr erreicht wird. Die Geometrie wird vorzugsweise so gewählt, dass sich im Katalysator-Festbett eine möglichst gleichmäßige Temperaturverteilung einstellt. Die Auslegung und der Betrieb der Kühlung werden vorzugsweise so gesteuert, dass die Differenz zwischen Austrittstemperatur und Eintrittstemperatur des Reaktors unterhalb von 60 °C, besonders bevorzugt unterhalb von 35 °C liegt.
Geeignete Reaktoren sind beispielsweise Linde-Isothermreaktoren oder vergleichbare Nickelreaktoren, wie sie auch in DE-A-34 14 717 und EP-A-0 534 195 beschrieben sind. Sie werden üblicherweise isotherm betrieben.The geometry of the design of the coolant pipes in the reactor can be chosen as long as efficient heat dissipation is achieved. The geometry is preferably chosen so that the temperature distribution is as uniform as possible in the fixed catalyst bed. The design and operation of the cooling are preferably controlled so that the difference between the outlet temperature and the inlet temperature of the reactor is below 60 ° C., particularly preferably below 35 ° C. Suitable reactors are, for example, Linde isothermal reactors or comparable nickel reactors, as are also described in DE-A-34 14 717 and EP-A-0 534 195. They are usually operated isothermally.
Geeignete Dimensionierungen des Reaktors und der Rohre für das Kühlmittel sind dem Fachmann bekannt.Suitable dimensions of the reactor and the tubes for the coolant are known to the person skilled in the art.
Die Erfindung betrifft auch einen Reaktor zur Umsetzung von d^-Alkanolen mit Ammoniak in der Gasphase zur Herstellung von Alkylaminen, enthaltend einen formselektiven Festbettkatalysator, bei dem der Festbettkatalysator im Reaktor in einem einzigen zusammenhängenden Festbett vorliegt und innerhalb des Festbettes Rohre verlaufen, durch die ein Kühlmittel geleitet werden kann.The invention also relates to a reactor for the reaction of d ^ -alkanols with ammonia in the gas phase for the production of alkylamines, comprising a shape-selective fixed bed catalyst in which the fixed bed catalyst is present in the reactor in a single connected fixed bed and pipes run through the inside of the fixed bed Coolant can be passed.
Der Reaktor wird vorzugsweise aus metallischen Werkstoffen wie Edelstahl aufgebaut. Die Wandstärken werden dabei so gewählt, dass die vorstehend angegebenen Druckverhältnisse möglich sind.The reactor is preferably constructed from metallic materials such as stainless steel. The wall thicknesses are chosen so that the pressure conditions specified above are possible.
Im Reaktor bildet die Katalysatorschüttung ein einziges zusammenhängendes Bett. Dies bedeutet, dass keine einzelnen Bereiche oder Inseln der Katalysatorschüttung im Reaktor vorliegen, sondern die Schüttung insgesamt zusammenhängend ausgebildet ist.The catalyst bed forms a single continuous bed in the reactor. This means that there are no individual areas or islands of the catalyst bed in the reactor, but the bed as a whole is coherent.
Die Aufgabe wird ferner erfindungsgemäß gelöst durch ein kontinuierliches Verfahren zur Herstellung von Alkylaminen durch Umsetzung von Cι- -Alkanolen mit Ammoniak in der Gasphase in Gegenwart eines formselektiven Festbettkatalysators in einem Reaktor, bei dem ein Teil der in den Reaktor eingeführten C^-Alkanole, des Ammoniaks oder von Gemischen davon dem Katalysator-Festbett an mindestens einer Stelle zugeführt wird, an der ein bereits umgesetztes Reaktionsgemisch aus -4-Alkanolen und Ammoniak vorliegt, das eine höhere Temperatur als die zugeführten Ci-4-Alkanole, Ammoniak oder Gemische davon aufweist.The object is further achieved according to the invention by a continuous process for the preparation of alkylamines by reacting C 1 -C -alkanols with ammonia in the gas phase in the presence of a shape-selective fixed bed catalyst in a reactor in which part of the C 1 -C -alkanols introduced into the reactor, the of which the fixed catalyst bed is ammonia or mixtures supplied to at least one location at which an already converted reaction mixture from - 4 alkanols and ammonia is present, which has a higher temperature than that supplied to Ci 4-alkanols, ammonia, or mixtures thereof.
Bei dieser Ausführungsform wird ein Teil des Reaktorzulauf-Gemisches oder ein Teil der zulaufenden Menge einzelner Komponenten anstatt am Eingang des Reaktors im Inneren des Reaktors, vorzugsweise in den ersten 2/3 der Katalysatorschüttung dem bereits teilweise umgesetzten Reaktionsgemisch zugesetzt. Die Temperatur der im Inneren zugesetzten Teilmengen ist kleiner als die Temperatur des bereits teilweise umgesetzten Reaktionsgemisches an der Stelle des Reaktors, an der die Zugabe erfolgt. Vorzugsweise
werden 30 bis 90 %, besonders bevorzugt 50 bis 80 % der in den Reaktor einzuführenden Ausgangsstoffe anstatt am Eingang des Reaktors im Inneren des Reaktors zugesetzt. Die Temperatur der zugesetzten Ausgangsstoffe ist vorzugsweise um mindestens 40 °C, besonders bevorzugt um mindestens 70 °C niedriger als die an der Stelle der Zugabe herrschenden Temperatur des Katalysatorbetts. Die Zufuhr kann an einer oder mehreren Stellen entlang des Katalysatorbetts erfolgen. Vorzugsweise wird die Zufuhr so geregelt, dass sich eine weitgehend homogene Temperaturverteilung im gesamten Katalysatorbett einstellt. Die im Katalysatorbett zudosierte Menge der Ausgangsstoffe kann damit zur Aufnahme der frei werdenden Reaktionsenergie eingesetzt werden.In this embodiment, a part of the reactor feed mixture or a part of the feed amount of individual components is added to the already partially reacted reaction mixture instead of at the reactor inlet inside the reactor, preferably in the first 2/3 of the catalyst bed. The temperature of the internal quantities added is lower than the temperature of the reaction mixture which has already been partially converted at the point of the reactor at which the addition takes place. Preferably 30 to 90%, particularly preferably 50 to 80% of the starting materials to be introduced into the reactor are added to the inside of the reactor instead of at the inlet of the reactor. The temperature of the starting materials added is preferably at least 40 ° C., particularly preferably at least 70 ° C., lower than the temperature of the catalyst bed at the point of addition. The feed can take place at one or more points along the catalyst bed. The feed is preferably regulated in such a way that a largely homogeneous temperature distribution is established in the entire catalyst bed. The amount of starting materials metered into the catalyst bed can thus be used to absorb the reaction energy released.
Weiterhin wird die Aufgabe erfindungsgemäß gelöst durch ein kontinuierliches Verfahren zur Herstellung von Alkylaminen durch Umsetzung von ^-Alkanolen mit Ammoniak in der Gasphase in Gegenwart eines formselektiven Festbettkatalysators in einem Reaktor, bei dem ein Teil der ^-Alkanole, des Ammoniaks oder von Gemischen davon in flüssiger Form so in den Reaktor eingeführt wird, dass eine Verdampfung auf dem Katalysator- Festbett stattfindet. Bei dieser Ausführungsform wird ein Teil des Reaktorzulauf-Gemisches oder ein Teil der zulaufenden Mengen einzelner Komponenten in flüssiger Form zugegeben. Die Flüssigkeiten verdampfen im Reaktor bzw. auf dem Festbettkatalysator. Vorzugsweise werden 5 bis 70 %, besonders bevorzugt 10 bis 50 % der insgesamt in den Reaktor einzuführenden Ausgangsstoffe in flüssiger Form zugeführt. Geeignete Vorrichtungen zum Zuführen der flüssigen Ausgangsstoffe sind bekannt. Durch die Wärmeaufnahme an der Stelle der Zufuhr kann das Katalysator-Festbett entsprechend abgekühlt werden.Furthermore, the object is achieved according to the invention by a continuous process for the preparation of alkylamines by reacting ^ -alkanols with ammonia in the gas phase in the presence of a shape-selective fixed bed catalyst in a reactor in which some of the ^ -alkanols, the ammonia or mixtures thereof liquid form is introduced into the reactor so that evaporation takes place on the fixed catalyst bed. In this embodiment, part of the reactor feed mixture or part of the feed quantities of individual components is added in liquid form. The liquids evaporate in the reactor or on the fixed bed catalyst. Preferably 5 to 70%, particularly preferably 10 to 50% of the total starting materials to be introduced into the reactor are fed in in liquid form. Suitable devices for supplying the liquid starting materials are known. The fixed catalyst bed can be cooled accordingly by the heat absorption at the point of supply.
Die Aufgabe wird weiterhin erfindungsgemäß gelöst durch ein kontinuierliches Verfahren zur Herstellung von Alkylaminen durch Umsetzung von C1-4-Alkanolen mit Ammoniak in der Gasphase in Gegenwart eines formselektiven Festbettkatalysators in einem Reaktor, dadurch gekennzeichnet, dass dem Katalysator-Festbett zusätzlich ein Wärmeträgermedium zugeführt wird, das gegenüber den C^-Alkanolen und Ammoniak und denThe object is further achieved according to the invention by a continuous process for preparing alkylamines by the reaction of C 1-4 alkanols with ammonia in the gas phase in the presence of a shape selective fixed-bed catalyst in a reactor, characterized in that the fixed catalyst bed is additionally supplied with a heat transfer medium which compared to the C ^ alkanols and ammonia and the
Reaktionsprodukten inert ist und/oder die Aktivität und Selektivität des Katalysators nicht wesentlich beeinflusst. Dabei werden eine oder mehrere andere Komponenten demReaction products is inert and / or does not significantly affect the activity and selectivity of the catalyst. One or more other components are used
Reaktorzulauf-Gemisch in einer Menge zugegeben, die geeignet ist, einen Teil der bei derReactor feed mixture added in an amount that is suitable for a part of the at
Reaktion entstehenden Wärme aufzunehmen. Die zugegebene Komponente ist chemisch inert gegenüber den anderen Komponenten in der Synthese von Alkylaminen und/oder beeinflusst die Selektivität der Reaktion nicht. Sie beeinflusst vorzugsweise die Aktivität und Selektivität des Katalysators nicht wesentlich oder gar nicht. Beispielsweise wird als
Wärmeträgermedium Wasser oder eine wässrige Lösung eingesetzt, die einen Wasseranteil von mindestens 50%, bevorzugt mindestens 80%, enthält.To absorb reaction heat. The added component is chemically inert to the other components in the synthesis of alkylamines and / or does not affect the selectivity of the reaction. It preferably does not significantly or not at all influence the activity and selectivity of the catalyst. For example, as Heat transfer medium water or an aqueous solution used, which contains a water content of at least 50%, preferably at least 80%.
Die Menge des zugegebenen Wärmeträgermediums richtet sich nach den praktischen Erfordernissen der Wärmeabführung im Reaktor. Aus dem Produktstrom kann das Wärmeträgermedium durch geeignete Verfahren wie Destillation in einfacher Weise abgetrennt werden.The amount of heat transfer medium added depends on the practical requirements for heat dissipation in the reactor. The heat transfer medium can be separated from the product stream in a simple manner by suitable processes such as distillation.
Im erfindungsgemäßen Verfahren werden C1- -Alkanole, vorzugsweise Cι-2-Alkanole, insbesondere Methanol eingesetzt. Die Alkanole werden mit Ammoniak umgesetzt. Das N/C-Verhältnis, d.h. das Verhältnis der Anzahl von N-Atomen zu C-Atomen bei Verwendung von Methanol beträgt dabei vorzugsweise 0,8 bis 3,5, besonders bevorzugt 1,0 bis 2,5, insbesondere 1,2 bis 2,0. Hierdurch lässt sich erfindungsgemäß verhindern, dass größere Ammoniak-Rückführströme entstehen. Zudem kann die Bildung von Nebenprodukten verhindert werden, die den Katalysator desaktivieren können.In the process according to the invention, C 1 - alkanols, preferably C 2 alkanols, in particular methanol, are used. The alkanols are reacted with ammonia. The N / C ratio, ie the ratio of the number of N atoms to C atoms when using methanol, is preferably 0.8 to 3.5, particularly preferably 1.0 to 2.5, in particular 1.2 to 2.0. According to the invention, this can prevent larger ammonia recycle streams from occurring. In addition, the formation of by-products that can deactivate the catalyst can be prevented.
Erfindungsgemäß werden formselektive Katalysatoren, insbesondere Zeolithe, eingesetzt. Es können auch Silico-Alumino-Phosphate (SAPO) eingesetzt werden. Beispiele geeigneter formselektiver Katalysatoren sind Mordenit, ZK-5, Zeolith-Rho, Erionit, Chabazit, Ferrierit, Clinoptilolit, SAPO-34, ZSM-5, ZSM-11, ZSM-21, ZSM-35, NU-85, Offretit, Zeolith-Y und weitere Katalysatoren, wie sie in Catalysis Today 37 (1997), Seiten 71 bis 102, speziell Tabelle 4 auf Seite 76 beschrieben sind. Auch die anderen in dieser Literaturstelle genannten formselektiven Katalysatoren können eingesetzt werden. Für modifizierte Zeolith-Katalysatoren (Mordenite) kann auf US 4,485,261, US 4,578,516, US 4,582,936 und EP-A-0 342 999 verwiesen werden. Es handelt sich um modifizierte Zeolithe, die sich von den natürlichen oder synthetischen Mordeniten ableiten und chemisch modifiziert sind, um den Kationengehalt, insbesondere den Gehalt an Alkali- und Erdalkaliionen, einzustellen und nachfolgend dampfbehandelt sind. Für weitere geeignete Mordenit- Katalysatoren kann auf EP-A-1 077 084 verwiesen werden. In dieser Schrift, wie auch in US 4,398,041, EP-A-0 593 086 und EP-A-0 763 519 sind geeignete Umsetzungsbedingungen angegeben. Beim Einsatz formselektiver Zeolith-Katalysatoren wird vorzugsweise bei einer Temperatur im Bereich von 200 bis 500 °C, besonders bevorzugt von 250 bis 400 °C gearbeitet. Der Reaktionsdruck beträgt vorzugsweise 5 bis 50 bar, besonders bevorzugt 10 bis 40 bar, insbesondere 15 bis 30 bar.According to the invention, shape-selective catalysts, in particular zeolites, are used. Silico-alumino-phosphates (SAPO) can also be used. Examples of suitable shape-selective catalysts are mordenite, ZK-5, zeolite rho, erionite, chabazite, ferrierite, clinoptilolite, SAPO-34, ZSM-5, ZSM-11, ZSM-21, ZSM-35, NU-85, offretite, zeolite -Y and other catalysts as described in Catalysis Today 37 (1997), pages 71 to 102, especially Table 4 on page 76. The other shape-selective catalysts mentioned in this reference can also be used. For modified zeolite catalysts (mordenites), reference can be made to US 4,485,261, US 4,578,516, US 4,582,936 and EP-A-0 342 999. These are modified zeolites which are derived from the natural or synthetic mordenites and are chemically modified in order to adjust the cation content, in particular the content of alkali and alkaline earth metal ions, and are subsequently steam-treated. For further suitable mordenite catalysts, reference can be made to EP-A-1 077 084. In this document, as well as in US 4,398,041, EP-A-0 593 086 and EP-A-0 763 519, suitable reaction conditions are specified. When using shape-selective zeolite catalysts, the process is preferably carried out at a temperature in the range from 200 to 500 ° C., particularly preferably from 250 to 400 ° C. The reaction pressure is preferably 5 to 50 bar, particularly preferably 10 to 40 bar, in particular 15 to 30 bar.
Die Katalysatorbelastung (GHS V) beträgt vorzugsweise 250 bis 5000 Nl/lKath.
Der Katalysator wird erfindungsgemäß in Form eines Festbetts aus einer Katalysatorschüttung eingesetzt. Dabei können die Katalysatorteilchen jede beliebige Geometrie aufweisen. Es handelt sich beispielsweise um Extrudate, Tabletten, Prills oder um Granulat. Der Katalysator kann vollständig aus Aktivkomponente bestehen oder 1 bis 60 Gew.-% Bindemittel enthalten. Übliche Bindemittel sind Oxide der Elemente Aluminium, Silicium, Titan und Zirkon sowie Tonen wie Montmorillonit und Kaolin.The catalyst load (GHS V) is preferably 250 to 5000 Nl / l Kat h. According to the invention, the catalyst is used in the form of a fixed bed from a catalyst bed. The catalyst particles can have any geometry. These are, for example, extrudates, tablets, prills or granules. The catalyst can consist entirely of active component or contain 1 to 60% by weight of binder. Common binders are oxides of the elements aluminum, silicon, titanium and zircon as well as clays such as montmorillonite and kaolin.
Vorstehend sind unterschiedliche erfindungsgemäße Ausführungsformen beschrieben worden. Diese Ausführungsformen können auch miteinander kombiniert werden. Beispielsweise können die erfindungsgemäße Katalysatorauslegung und die Zudosierung von Ausgangsstoffen oder Kühlmedien an unterschiedlichen Stellen des Reaktors miteinander kombiniert werden. Auch die Kombination der Zuführung von Ausgangsstoffen und Kühlmedien kann miteinander kombiniert werden.Different embodiments according to the invention have been described above. These embodiments can also be combined with one another. For example, the catalyst design according to the invention and the metering in of starting materials or cooling media can be combined with one another at different points in the reactor. The combination of the supply of raw materials and cooling media can also be combined.
Die in den Reaktor eingeführten Cι-4-Alkanole, Ammoniak oder Gemische davon können radial zur Längsachse des Reaktors geführt werden, z. B. zentripetal. Eine derartige Ausführungsform ist beispielsweise in EP-A-0534 195 beschrieben.The C 4 alkanols, ammonia or mixtures thereof introduced into the reactor can be guided radially to the longitudinal axis of the reactor, e.g. B. centripetal. Such an embodiment is described for example in EP-A-0534 195.
Bevorzugt wird eine Reaktionsfahrweise, bei der die Differenz zwischen Austrittstemperatur und Eintrittstemperatur unterhalb von 60 °C, bevorzugt unterhalb von 35 °C liegt, das N/C- Verhältnis im Bereich von 0,8 bis 3,5, bevorzugt von 1,0 bis 2,5, insbesondere bis 2,0 beträgt und formselektive Zeolith-Katalysatoren eingesetzt werden.A reaction procedure in which the difference between outlet temperature and inlet temperature is below 60 ° C., preferably below 35 ° C., is preferred, the N / C ratio in the range from 0.8 to 3.5, preferably from 1.0 to 2.5, in particular up to 2.0, and shape-selective zeolite catalysts are used.
Mit dem erfindungsgemäßen Verfahren ist insbesondere die Herstellung von Methylaminen aus Methanol und Ammoniak mit einer hohen Selektivität für Dimethylamin möglich.
The process according to the invention makes it possible, in particular, to produce methylamines from methanol and ammonia with a high selectivity for dimethylamine.
Claims
1. Kontinuierliches Verfahren zur Herstellung von Alkylaminen durch Umsetzung von -4-Alkanolen mit Ammoniak in der Gasphase in Gegenwart eines formselektiven Festbettkatalysators in einem gekühlten Reaktor, dadurch gekennzeichnet, dass der formselektive Festbettkatalysator im Reaktor in einem einzigen zusammenhängenden Festbett vorliegt und innerhalb des Festbettes Rohre verlaufen, durch die Kühlmittel geleitet werden, um die Temperatur des Festbettes zu regeln.1. Continuous process for the production of alkylamines by reacting -4- alkanols with ammonia in the gas phase in the presence of a shape-selective fixed-bed catalyst in a cooled reactor, characterized in that the shape-selective fixed-bed catalyst is present in the reactor in a single coherent fixed bed and within the fixed bed tubes through which coolant is passed in order to regulate the temperature of the fixed bed.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Kühlung durch Siedewasserkühlung erfolgt.2. The method according to claim 1, characterized in that the cooling takes place by boiling water cooling.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Druck im Kühlmittel 40 bis 220 bar beträgt und der Druck im Katalysator-Festbett 10 bis 50 bar beträgt.3. The method according to claim 1 or 2, characterized in that the pressure in the coolant is 40 to 220 bar and the pressure in the fixed catalyst bed is 10 to 50 bar.
4. Reaktor zur Umsetzung von
mit Ammoniak in der Gasphase zur Herstellung von Alkylaminen, enthaltend einen formselektiven Festbettkatalysator, dadurch gekennzeichnet, dass der Festbettkatalysator im Reaktor in einem einzigen zusammenhängenden Festbett vorliegt und innerhalb des Festbettes Rohre verlaufen, durch die ein Kühlmittel geleitet werden kann.4. Reactor for the implementation of with ammonia in the gas phase for the production of alkylamines, containing a shape-selective fixed bed catalyst, characterized in that the fixed bed catalyst in the reactor is present in a single coherent fixed bed and pipes run within the fixed bed through which a coolant can be passed.
5. Kontinuierliches Verfahren zur Herstellung von Alkylaminen durch Umsetzung von
mit Ammoniak in der Gasphase in Gegenwart eines formselektiven Festbettkatalysators in einem Reaktor, dadurch gekennzeichnet, dass ein Teil der in den Reaktor eingeführten Cι-4-Alkanole, des Ammoniaks oder von Gemischen davon dem Katalysator-Festbett an mindestens einer Stelle zugeführt wird, an der ein bereits umgesetztes Reaktionsgemisch aus
und Ammoniak vorliegt, das eine höhere Temperatur als die zugeführten ^-Alkanole, Ammoniak oder Gemische davon aufweist.5. Continuous process for the preparation of alkylamines by reacting with ammonia in the gas phase in the presence of a shape-selective fixed bed catalyst in a reactor, characterized in that part of the C 4 -alkanols introduced into the reactor, the ammonia or mixtures thereof is fed to the fixed catalyst bed at at least one point at which an already reacted reaction mixture and ammonia is present which has a higher temperature than the ^-alkanols, ammonia or mixtures thereof supplied.
6. Kontinuierliches Verfahren zur Herstellung von Alkylaminen durch Umsetzung von
mit Ammoniak in der Gasphase in Gegenwart eines formselektiven Festbettkatalysators in einem Reaktor, dadurch gekennzeichnet, dass ein Teil der . 4- Alkanole, des Ammoniaks oder von Gemischen davon in flüssiger Form so in den
Reaktor eingeführt wird, dass eine Verdampfung auf dem Katalysator-Festbett stattfindet.6. Continuous process for the production of alkylamines by reacting with ammonia in the gas phase in the presence of a shape-selective fixed-bed catalyst in a reactor, characterized in that part of the. 4 - Alkanols, ammonia or mixtures thereof in liquid form in the Reactor is introduced so that evaporation takes place on the fixed catalyst bed.
1. Kontinuierliches Verfahren zur Herstellung von Alkylaminen durch Umsetzung von Cι-4-Alkanolen mit Ammoniak in der Gasphase in Gegenwart eines formselektiven Festbettkatalysators in einem Reaktor, dadurch gekennzeichnet, dass dem Katalysator-Festbett zusätzlich ein Wärmeträgermedium zugeführt wird, das gegenüber den C^-Alkanolen und Ammoniak und den Reaktionsprodukten inert ist und/oder die Aktivität und Selektivität des Katalysators nicht wesentlich beeinflusst.1. Continuous process for the production of alkylamines by reacting Cι- 4 -alkanols with ammonia in the gas phase in the presence of a shape-selective fixed bed catalyst in a reactor, characterized in that the fixed catalyst bed is additionally supplied with a heat transfer medium which is opposite to the C^- Alkanols and ammonia and the reaction products are inert and/or do not significantly influence the activity and selectivity of the catalyst.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das Wärmeträgermedium Wasser ist oder enthält.8. The method according to claim 7, characterized in that the heat transfer medium is or contains water.
9. Verfahren nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass es in einem Reaktor gemäß Anspruch 4 durchgeführt wird.9. Process according to one of claims 5 to 7, characterized in that it is carried out in a reactor according to claim 4.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die in den Reaktor eingeführten Ct^-Alkanole, Ammoniaks oder Gemische davon radial zur Längsachse des Reaktors geführt werden.
10. The method according to claim 9, characterized in that the Ct^-alkanols, ammonia or mixtures thereof introduced into the reactor are guided radially to the longitudinal axis of the reactor.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10255294A DE10255294A1 (en) | 2002-11-26 | 2002-11-26 | Continuous process and reactor for the production of alkyl amines |
DE10255294 | 2002-11-26 | ||
PCT/EP2003/013170 WO2004048313A1 (en) | 2002-11-26 | 2003-11-24 | Continuous methods and reactor used for the production of alkylamines |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1567475A1 true EP1567475A1 (en) | 2005-08-31 |
Family
ID=32240472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03811770A Withdrawn EP1567475A1 (en) | 2002-11-26 | 2003-11-24 | Continuous methods and reactor used for the production of alkylamines |
Country Status (8)
Country | Link |
---|---|
US (4) | US20060079718A1 (en) |
EP (1) | EP1567475A1 (en) |
JP (1) | JP2006507335A (en) |
KR (1) | KR20050086793A (en) |
CN (4) | CN100532352C (en) |
AU (1) | AU2003302396A1 (en) |
DE (1) | DE10255294A1 (en) |
WO (1) | WO2004048313A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005123658A1 (en) | 2004-06-18 | 2005-12-29 | Basf Aktiengesellschaft | Method for the continuous synthesis of methylamines |
DE102005059711A1 (en) * | 2005-12-12 | 2007-06-14 | Basf Ag | Shaped body containing a microporous material and at least one silicon-containing binder, process for its preparation and its use as a catalyst, in particular in a process for the continuous synthesis of methylamines |
US20100152748A1 (en) * | 2008-12-12 | 2010-06-17 | E-Pacing, Inc. | Devices, Systems, and Methods Providing Body Lumen Access |
US8845682B2 (en) | 2009-10-13 | 2014-09-30 | E-Pacing, Inc. | Vasculature closure devices and methods |
WO2015009634A2 (en) | 2013-07-15 | 2015-01-22 | E-Pacing, Inc. | Vasculature closure devices and methods |
CN110511149B (en) * | 2019-06-20 | 2022-07-26 | 浙江科技学院 | Method for directly preparing dimethylamine from synthesis gas |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2660598A (en) * | 1947-06-24 | 1953-11-24 | Hydrocarbon Research Inc | Catalytic conversion of gaseous reactants |
US3384667A (en) * | 1964-04-28 | 1968-05-21 | Mobil Oil Corp | Production of primary and secondary amines |
DE3007202A1 (en) * | 1980-02-26 | 1981-09-10 | Linde Ag, 6200 Wiesbaden | METHANOL REACTOR |
JPS57169445A (en) * | 1981-04-10 | 1982-10-19 | Nitto Chem Ind Co Ltd | Preparation of methylamine |
US4398041A (en) * | 1982-01-29 | 1983-08-09 | Air Products And Chemicals, Inc. | Process for manufacturing alkylamines |
JPS59210050A (en) * | 1983-05-13 | 1984-11-28 | Nitto Chem Ind Co Ltd | Production of dimethylamine |
JPS59227841A (en) * | 1983-06-08 | 1984-12-21 | Nitto Chem Ind Co Ltd | Selective production of dimethylamine |
DE3414717A1 (en) * | 1984-04-18 | 1985-10-31 | Linde Ag, 6200 Wiesbaden | METHOD AND REACTOR FOR CARRYING OUT EXOTHERMAL CATALYTIC REACTIONS |
US4720588A (en) * | 1986-01-16 | 1988-01-19 | Air Products And Chemicals, Inc. | Polyalkylene polyamines via vapor phase reaction using inert gas |
US4918234A (en) * | 1987-10-13 | 1990-04-17 | Air Products And Chemicals, Inc. | Shape selective catalysts for C2 to C4 alkanol amination |
JP2896787B2 (en) * | 1988-05-20 | 1999-05-31 | 三菱レイヨン株式会社 | Method for maintaining activity of zeolite catalyst |
DE4131446A1 (en) * | 1991-09-21 | 1993-06-09 | Basf Ag, 6700 Ludwigshafen, De | REACTOR AND METHOD FOR CARRYING OUT HETEROGENIC CATALYTIC GAS PHASE REACTIONS |
US5382696A (en) * | 1992-10-16 | 1995-01-17 | Mitsui Toatsu Chemicals, Incorporated | Method for preparing methylamines |
TW420657B (en) * | 1995-09-14 | 2001-02-01 | Mitsubishi Rayon Co | Production of methylamines |
JP4506908B2 (en) * | 1999-08-03 | 2010-07-21 | 三菱瓦斯化学株式会社 | Methylamine production catalyst |
-
2002
- 2002-11-26 DE DE10255294A patent/DE10255294A1/en not_active Withdrawn
-
2003
- 2003-11-24 CN CNB2006101633577A patent/CN100532352C/en not_active Expired - Fee Related
- 2003-11-24 US US10/536,498 patent/US20060079718A1/en not_active Abandoned
- 2003-11-24 EP EP03811770A patent/EP1567475A1/en not_active Withdrawn
- 2003-11-24 WO PCT/EP2003/013170 patent/WO2004048313A1/en active Application Filing
- 2003-11-24 CN CN2006101633562A patent/CN1955157B/en not_active Expired - Fee Related
- 2003-11-24 AU AU2003302396A patent/AU2003302396A1/en not_active Abandoned
- 2003-11-24 JP JP2004554434A patent/JP2006507335A/en active Pending
- 2003-11-24 CN CNB2006101633558A patent/CN100532351C/en not_active Expired - Fee Related
- 2003-11-24 KR KR1020057009388A patent/KR20050086793A/en active IP Right Grant
- 2003-11-24 CN CNB200380103835XA patent/CN100338023C/en not_active Expired - Fee Related
-
2008
- 2008-10-27 US US12/258,563 patent/US7714169B2/en not_active Expired - Fee Related
-
2010
- 2010-04-30 US US12/771,414 patent/US7951974B2/en not_active Expired - Fee Related
-
2011
- 2011-04-07 US US13/082,030 patent/US20110184210A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO2004048313A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN1955157A (en) | 2007-05-02 |
CN1955158A (en) | 2007-05-02 |
KR20050086793A (en) | 2005-08-30 |
CN1714072A (en) | 2005-12-28 |
CN100532351C (en) | 2009-08-26 |
CN100338023C (en) | 2007-09-19 |
CN1955156A (en) | 2007-05-02 |
CN100532352C (en) | 2009-08-26 |
WO2004048313A1 (en) | 2004-06-10 |
US20090088591A1 (en) | 2009-04-02 |
DE10255294A1 (en) | 2004-06-03 |
US7951974B2 (en) | 2011-05-31 |
US20110184210A1 (en) | 2011-07-28 |
US20060079718A1 (en) | 2006-04-13 |
US7714169B2 (en) | 2010-05-11 |
US20100210877A1 (en) | 2010-08-19 |
CN1955157B (en) | 2010-07-28 |
JP2006507335A (en) | 2006-03-02 |
AU2003302396A1 (en) | 2004-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69717103T2 (en) | METHOD FOR PRODUCING DIALKYL ETHERS | |
EP0133938B1 (en) | Process for preparing amines | |
EP1943210B1 (en) | Method for producing alkyl amines by reacting olefins with ammonia | |
DE3720850A1 (en) | METHOD FOR PRODUCING UNSATURED AND SATURATED KETONES | |
WO2017081151A1 (en) | Method for producing acrylic acid from formaldehyde and acetic acid | |
DE3213162C2 (en) | Process for the preparation of methylamines | |
EP0137478B1 (en) | Process for the preparation on n-methyl cyclic imines | |
EP1567475A1 (en) | Continuous methods and reactor used for the production of alkylamines | |
EP0266691B1 (en) | Method for the production of alkene carboxylic acid esters | |
EP0266689B1 (en) | Process for the manufacture of 4-pentenoic acid esters | |
DE2838184A1 (en) | METHOD FOR PRODUCING TERTIA AMINES | |
EP0325141B1 (en) | Process for the preparation of phenyl ethanols | |
EP0224220B1 (en) | Process for the preparation of di-isobutene from isobutene | |
DE10313853A1 (en) | Process for the preparation of alkylamines and for increasing the hydroamination activity of calcined zeolitic catalysts | |
EP0276767B1 (en) | Process for the preparation of ketones | |
DE69613921T2 (en) | Manufacture of methylamines | |
DE3824725A1 (en) | METHOD FOR PRODUCING PHENYL ACETALDEHYDES | |
DE3335693A1 (en) | METHOD FOR THE SIMULTANEOUS PRODUCTION OF ANILINE AND DIPHENYLAMINE FROM PHENOL AND AMMONIA | |
EP0721934B1 (en) | Process for the preparation of tert. butylamine | |
EP0414116B1 (en) | Process for the separation of ortho-, meta- and para-tolunitrile from ternary mixtures of isomers | |
DE3843389A1 (en) | Process for the preparation of ascorbic acid | |
DE3815292A1 (en) | METHOD FOR PRODUCING HYDROXYBENZALDEHYDES | |
DE69412580T2 (en) | Process for the disproportionation of trimethylamine | |
DE3325515A1 (en) | METHOD FOR PRODUCING ALUMINUM SILICATES WITH ZEOLITE STRUCTURES | |
DE2343022A1 (en) | Continuous cyclohexane prodn - by catalytic hydrogenation of benzene and cyclohexane mixt |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050627 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BASF SE |
|
17Q | First examination report despatched |
Effective date: 20100127 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20110412 |