EP1558774B1 - Method and device for carrying out a tribochemical reaction - Google Patents
Method and device for carrying out a tribochemical reaction Download PDFInfo
- Publication number
- EP1558774B1 EP1558774B1 EP03773570A EP03773570A EP1558774B1 EP 1558774 B1 EP1558774 B1 EP 1558774B1 EP 03773570 A EP03773570 A EP 03773570A EP 03773570 A EP03773570 A EP 03773570A EP 1558774 B1 EP1558774 B1 EP 1558774B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- reaction
- titanium
- metal
- medium
- faraday
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims abstract description 37
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 35
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000010936 titanium Substances 0.000 claims abstract description 30
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 27
- 230000033001 locomotion Effects 0.000 claims abstract description 9
- 239000002245 particle Substances 0.000 claims abstract description 6
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 19
- 229960005196 titanium dioxide Drugs 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 239000004408 titanium dioxide Substances 0.000 claims description 10
- 239000007795 chemical reaction product Substances 0.000 claims description 6
- 229910044991 metal oxide Inorganic materials 0.000 claims description 6
- 150000004706 metal oxides Chemical class 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 claims 1
- 239000010935 stainless steel Substances 0.000 claims 1
- 229910052500 inorganic mineral Inorganic materials 0.000 abstract description 13
- 239000011707 mineral Substances 0.000 abstract description 13
- YDZQQRWRVYGNER-UHFFFAOYSA-N iron;titanium;trihydrate Chemical compound O.O.O.[Ti].[Fe] YDZQQRWRVYGNER-UHFFFAOYSA-N 0.000 abstract description 7
- 230000008569 process Effects 0.000 description 14
- 235000010215 titanium dioxide Nutrition 0.000 description 11
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 11
- 239000003638 chemical reducing agent Substances 0.000 description 10
- 239000007789 gas Substances 0.000 description 10
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 8
- 229910002091 carbon monoxide Inorganic materials 0.000 description 8
- 239000008187 granular material Substances 0.000 description 8
- 229910052736 halogen Inorganic materials 0.000 description 8
- 150000002367 halogens Chemical class 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 239000007787 solid Substances 0.000 description 5
- NLLZTRMHNHVXJJ-UHFFFAOYSA-J titanium tetraiodide Chemical compound I[Ti](I)(I)I NLLZTRMHNHVXJJ-UHFFFAOYSA-J 0.000 description 5
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000011630 iodine Substances 0.000 description 4
- 229910052740 iodine Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000010422 painting Methods 0.000 description 2
- 229910001773 titanium mineral Inorganic materials 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000000739 chaotic effect Effects 0.000 description 1
- 239000007806 chemical reaction intermediate Substances 0.000 description 1
- 239000007805 chemical reaction reactant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000010316 high energy milling Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229910012375 magnesium hydride Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000010671 solid-state reaction Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- -1 titanium halide Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/10—Obtaining titanium, zirconium or hafnium
- C22B34/12—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
- C22B34/129—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds by dissociation, e.g. thermic dissociation of titanium tetraiodide, or by electrolysis or with the use of an electric arc
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/10—Obtaining titanium, zirconium or hafnium
- C22B34/12—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
- C22B34/1204—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 preliminary treatment of ores or scrap to eliminate non- titanium constituents, e.g. iron, without attacking the titanium constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/10—Obtaining titanium, zirconium or hafnium
- C22B34/12—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
- C22B34/1204—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 preliminary treatment of ores or scrap to eliminate non- titanium constituents, e.g. iron, without attacking the titanium constituent
- C22B34/1209—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 preliminary treatment of ores or scrap to eliminate non- titanium constituents, e.g. iron, without attacking the titanium constituent by dry processes, e.g. with selective chlorination of iron or with formation of a titanium bearing slag
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/10—Obtaining titanium, zirconium or hafnium
- C22B34/12—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
- C22B34/1218—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by dry processes
- C22B34/1222—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by dry processes using a halogen containing agent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/10—Obtaining titanium, zirconium or hafnium
- C22B34/12—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
- C22B34/1263—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
- C22B34/1281—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using carbon containing agents, e.g. C, CO, carbides
Definitions
- the invention is in the field of tribochemical reactions and more particularly relates to the use of Faraday instabilities in carrying out a tribochemical reaction.
- titanium tetrachloride is prepared by the Kroll process using coal and chlorine gas from the known titanium-containing minerals, e.g. Ilmenite or rutile in a rotary kiln or fluidized bed at temperatures of about 800 - 1000 ° C is produced.
- the liquid titanium tetrachloride is then reduced after appropriate purification (crystallization and subsequent distillation at 136 ° C) with liquid magnesium at about 800 - 1000 ° C to titanium sponge.
- the resulting magnesium chloride is washed out and electrolytically re-reduced to magnesium, which is recycled to the process.
- the titanium sponge because of its large surface area, still binds larger amounts of oxygen which are not needed as an alloying ingredient in the intended metal to be produced.
- the titanium sponge must be broken, crushed, pressed into electrodes and then remelted by arc melting in the arc to form compact metallic titanium. All the titanium process steps are carried out to avoid oxidation under inert gas (inert gas).
- titanium tetrachloride which is obtained from titanium tetrachloride, is decomposed on thin, 1300 ° C. tungsten wires by the method of van Arkel and de Boer.
- EP-A-744,234 describes a method for producing nanocrystalline metal powders.
- the known method involves a painting or tribochemical activation of magnesium hydride.
- the painting is carried out in a laboratory ball mill and using an organic solvent.
- WO-A-95 08004 describes a method in which a nanostructured powder is produced by high-energy milling of ilmenite. To carry out the known method, a special form of ball mill is used.
- the object of the invention is to provide an improved method and an improved apparatus for carrying out a tribochemical reaction in which the disadvantages of the prior art are avoided, in particular in titanium production.
- the granular medium may either participate in the reaction or be inert to reaction products and starting materials.
- the object of the invention is moreover, with the aid of the generation of Faraday instabilities in a granular (granules preferably with grain sizes of preferably 0.1 to 20 mm diameter) medium of the ores / minerals to produce a special tribochemical reaction situation, the direct conversion of Ore / mineral granules by reducing agent and halogen gas by heterogeneous catalytic reaction and oxidation of the reducing agent allowed.
- the object of the invention in connection with the production of titanium is in particular, by means of the production of Faraday instabilities in a granular (granules preferably with grain sizes of 0.1 to 20 mm diameter) medium of the ores / minerals (eg ilmenite or rutile) to produce a special tribochemical reaction situation, which involves the direct conversion of the ore / mineral granules to metallic titanium, which preferably has only usual accompanying elements, by means of reducing agents preferably carbon monoxide and halogen gas (preferably iodine or chlorine) by heterogeneous catalytic reaction and oxidation of the reducing agent, for example, the oxidation of carbon monoxide to carbon dioxide allowed.
- reducing agents preferably carbon monoxide and halogen gas (preferably iodine or chlorine)
- heterogeneous catalytic reaction preferably iodine or chlorine
- the object of the invention in connection with the production of titanium dioxide is, with the help of the generation of Faraday instabilities in a granular (granules preferably with grain sizes of 0.1 to 20 mm diameter) medium of the ores / minerals (eg ilmenite or rutile) a produce special tribochemical reaction situation, which allows the direct conversion of ore / mineral granules to titanium dioxide by means of reducing agent preferably carbon monoxide and halogen gas (preferably chlorine) by heterogeneous catalytic reaction and oxidation of the reducing agent, for example the oxidation of carbon monoxide to carbon dioxide.
- reducing agent preferably carbon monoxide and halogen gas (preferably chlorine)
- the invention includes the idea of producing Faraday instabilities in granular or spherical media by means of up / down motions in carrying out a tribochemical reaction.
- the granular medium is moved up and down the gravity field to enter To bring a state in which the granular bed behaves similar to a liquid phase consisting of solid components. In this state, Faraday instabilities occur on the particles of the granular medium.
- the Farady instabilities are created by moving a granular, granular or beaded medium up and down, forming tribochemical reaction conditions at the contact points / points of the constituents of the medium by means of Farady instabilities, at which the tribochemical reactions take place .
- the use of Faraday instabilities in granular or spherical media for carrying out tribochemical reactions offers the advantage, compared to the classical method (Drekrohrofen or fluidized bed reactor) the advantage of being able to carry out the reaction in a thermodynamically much more favorable range.
- the Faraday instabilities lead in the granular medium to a spatiotemporal pattern formation with zones of high mechanical energy. In these zones, even at relatively low temperatures, the tribochemical reactions in the area between or on the colliding particles of the granules or. the balls take place.
- the advantage of using the Faraday instabilities for carrying out tribochemical reactions compared to the known fluidized bed method is in particular that in the granular, Faraday instabilities using fluidized bed energization areas arise in which the tribochemical reactions can proceed even at much lower temperatures than in a conventional Fluidized bed.
- metal recovery process is that the reduction of metal oxide (ore) by coal and halogen gas is replaced by the much more effective heterogeneous catalytic gas-solid reaction between ore, reducing agent (eg carbon monoxide) and halogen gas to metal halide and carbon dioxide ,
- An advantage of the process with regard to the production of titanium by the titanium tetraiodide process is that the very energy-consuming, multi-stage process of producing titanium from titanium ore (for example ilmenite or rutile) by means of a one-stage, very simple to handle titanium sponge. energy-saving process without an intermediate step is replaced by titanium sponge.
- An advantage of the process with respect to the production of titanium white (titanium dioxide) according to the titanium tetrachloride method is that the multi-stage process can be replaced by a one-stage process (addition of oxygen to the titanium tetrachloride stream).
- FIG. 1 shows a device 1 for utilizing Faraday instabilities for carrying out a tribochemical reaction.
- the device 1 is particularly suitable for obtaining crude titanium (titanium tetrahalide) for further processing into titanium or titanium white (titanium dioxide) from titanium-containing ore / minerals.
- the ore or minerals are applied to a horizontal plate or plate 9.
- a moving device 5 By means of a moving device 5, the plate / the plate 9 is moved in the vertical direction.
- a movement devices 5 in particular pneumatic, hydraulic cylinders or linear drives can be used.
- the motion in the vertical is such that Faraday instability occurs in the granular ore or mineral.
- the movement can take place in particular in a periodic or chaotic manner.
- educt fluids can be introduced through bores in the reaction mixture.
- these are gaseous halides and carbon monoxide as the reducing agent.
- the reaction space of the device 1 is delimited from the environment. This is done in particular by a side wall of the reactor lower part 8, which is advantageously cylindrical, and by a cover 3, which is sealed in the parting plane 4 against the side wall of the reactor lower part 8.
- the lid 3 can be flanged, while in the parting plane 4, a seal (not shown) is introduced.
- at least one inlet 6 may be provided. This can be advantageously attached to the reactor base 8.
- this is provided with at least one opening 2, which is advantageously attached to the lid 3 of the reactor.
- heatable metal wires can be attached, in particular on the lid of the reactor, where titanium tetrahalide can precipitate and decompose.
- titanium iodide these are, for example, tungsten wires.
- a further opening may be provided to introduce oxygen to produce titanium dioxide from titanium tetrachloride into the reaction space.
- this introduction can also be done only after the titanium tetrachloride has been removed from the reaction space after the reaction products have passed through the opening 2.
- FIG. 2 shows a device 20 similar to the device 1 from FIG. 1 for using Faraday instabilities when carrying out tribochemical reactions. Same features marked with the same reference numerals.
- the device 20 in FIG. 2 differs in particular from the device 1 according to FIG. 1 in that the movement device 5 is realized outside the reaction chamber of the device 20. This has the advantage that reaction products, intermediates and products can not corrosive or otherwise damage the moving devices. When designing the movement device 5, the higher load must be taken into account in this case.
- the ground ores / minerals are placed on a plate that swings up and down in the vertical direction in the gravitational field to a state in which the granular bed behaves similar to a liquid phase consisting of solid constituents.
- Faraday instabilities are formed at the interface of this liquid, granular layer to the (protective) gas phase, for example in the form of spatially stable wave patterns.
- Inert gases preferably noble gases, preferably argon and helium, are preferably used as protective gas. If individual granular particles collide in the particularly excited regions of this layer, the gases in the reaction space can react with each other in a tribochemical manner at the joints. If, for example, titanium ores, titanium minerals are processed, titanium / titanium oxide is the end product sought.
- the product of this reaction is initially a metal salt or complex.
- the product of this reaction with titanium ores / titanium minerals is a titanium tetrahalide which sublimes or evaporates as a gas.
- the sublimate can be mixed with oxygen at high temperature and oxidized to titanium dioxide.
- the resulting chlorine gas can be recycled to the process.
- the sublimate / steam is decomposed, for example, on electrically heated tungsten wires at about 1300 ° C. to form compact titanium and iodine.
- the iodine can in turn be recycled back into the process.
- the described method and the illustrated devices 1 and 20 can be used for the carbon-free production of metal and metal oxide from metal-containing ore.
- a metal salt resp. creates a complex.
- This metal salt / complex can then be further processed. Solutions of several metal salts can be separated in this case, for example, by means of a method which in the international patent application PCT / DE02 / 01377 is described.
- the process described is also suitable for recovering (raw) titanium and titanium dioxide from the known titanium-containing minerals, for example ilmenite and rutile.
- a reducing agent preferably carbon monoxide
- a halogen preferably chlorine or iodine
- the titanium tetrachloride or titanium tetraiodide is formed.
- the titanium tetrachloride can then be processed in the known, traditional manner with magnesium to titanium in the form of titanium sponge. However, the titanium tetraiodide is sublimed, and with thermal decomposition, the pure titanium is precipitated therefrom without sponging.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Geochemistry & Mineralogy (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Catching Or Destruction (AREA)
- Taps Or Cocks (AREA)
Abstract
Description
Die Erfindung liegt auf dem Gebiet tribochemischer Reaktionen und betrifft insbesondere eine Nutzung von Faraday-Instabilitäten beim Durchführen einer tribochemischen Reaktion.The invention is in the field of tribochemical reactions and more particularly relates to the use of Faraday instabilities in carrying out a tribochemical reaction.
Es ist bekannt, daß Titantetrachlorid nach dem Kroll-Verfahren mittels Kohle und Chlorgas aus den bekannten titanhaltigen Mineralien wie z.B. Ilmenit oder Rutil im Drehrohrofen oder im Wirbelschichtofen bei Temperaturen von ca. 800 - 1000 °C hergestellt wird. Das flüssige Titantetrachlorid wird dann nach entsprechender Reinigung (Kristallisation und anschließende Destillation bei 136° C) mit flüssigem Magnesium bei ca. 800 - 1000 °C zu Titanschwamm reduziert. Das hierbei entstehende Magnesiumchlorid wird ausgewaschen und elektrolytisch wieder zu Magnesium reduziert, das in den Prozeß zurückgeführt wird.It is known that titanium tetrachloride is prepared by the Kroll process using coal and chlorine gas from the known titanium-containing minerals, e.g. Ilmenite or rutile in a rotary kiln or fluidized bed at temperatures of about 800 - 1000 ° C is produced. The liquid titanium tetrachloride is then reduced after appropriate purification (crystallization and subsequent distillation at 136 ° C) with liquid magnesium at about 800 - 1000 ° C to titanium sponge. The resulting magnesium chloride is washed out and electrolytically re-reduced to magnesium, which is recycled to the process.
Der Titanschwamm enthält aufgrund seiner großen Oberfläche noch größere Mengen Sauerstoff gebunden, die nicht als Legierungsbestandteil im herzustellen beabsichtigten Metall benötigt werden. Der Titanschwamm muß gebrochen, zerkleinert, zu Elektroden gepreßt und dann im Lichtbogen mittels Zonenschmelzverfahren zu kompaktem metallischen Titan umgeschmolzen werden. Alle das Titan betreffenden Verfahrensschritte werden zur Vermeidung von Oxidation unter Schutzgas (Edelgas) ausgeführt.The titanium sponge, because of its large surface area, still binds larger amounts of oxygen which are not needed as an alloying ingredient in the intended metal to be produced. The titanium sponge must be broken, crushed, pressed into electrodes and then remelted by arc melting in the arc to form compact metallic titanium. All the titanium process steps are carried out to avoid oxidation under inert gas (inert gas).
Um besonders reines Titan herzustellen, wird nach dem Verfahren von van Arkel und de Boer Titantetrajodid, welches aus Titantetrachlorid gewonnen wird, an dünnen, 1300 °C heißen Wolframdrähten zersetzt.To produce particularly pure titanium, titanium tetrachloride, which is obtained from titanium tetrachloride, is decomposed on thin, 1300 ° C. tungsten wires by the method of van Arkel and de Boer.
In dem Dokument
In dem Dokument
In dem Dokument
Aufgabe der Erfindung ist es, ein verbessertes Verfahren und eine verbesserte Vorrichtung zum Durchführen einer tribochemischen Reaktion anzugeben, bei denen die Nachteile des Standes Technik vermieden werden, insbesondere bei der Titanerzeugung.The object of the invention is to provide an improved method and an improved apparatus for carrying out a tribochemical reaction in which the disadvantages of the prior art are avoided, in particular in titanium production.
Es ist weiterhin Aufgabe der Erfindung, mit Hilfe der Erzeugung von Faraday-Instabilitäten in einem granularen (Granulate vorzugsweise mit Körnungen von vorzugsweise 0,1 bis 20 mm Durchmesser) Medium eine spezielle tribochemische Reaktionssituation zu erzeugen, die die Direktumwandlung des Eduktgemisches zu Produkten mit Hilfe tribochemischer Reaktionen erlaubt. Dabei kann das granulare Medium je nach angestrebter Reaktion entweder an der Reaktion teilnehmen oder gegenüber Reaktionsprodukten und Edukten inert sein.It is a further object of the invention to produce a special tribochemical reaction situation with the aid of the generation of Faraday instabilities in a granular (granules preferably having grain sizes of preferably 0.1 to 20 mm diameter) medium, which allows the direct conversion of the educt mixture to products by means of tribochemical reactions. Depending on the desired reaction, the granular medium may either participate in the reaction or be inert to reaction products and starting materials.
Aufgabe der Erfindung ist darüber hinaus es, mit Hilfe der Erzeugung von Faraday-Instabilitäten in einem granularen (Granulate vorzugsweise mit Körnungen von vorzugsweise 0,1 bis 20 mm Durchmesser) Medium der Erze/Mineralien eine spezielle tribochemische Reaktionssituation zu erzeugen, die die Direktumwandlung des Erz-/Mineralien-Granulats mittels Reduktionsmittel und Halogengas durch heterogene katalytische Reaktion und Oxidation des Reduktionsmittels gestattet.The object of the invention is moreover, with the aid of the generation of Faraday instabilities in a granular (granules preferably with grain sizes of preferably 0.1 to 20 mm diameter) medium of the ores / minerals to produce a special tribochemical reaction situation, the direct conversion of Ore / mineral granules by reducing agent and halogen gas by heterogeneous catalytic reaction and oxidation of the reducing agent allowed.
Aufgabe der Erfindung im Zusammenhang mit der Erzeugung von Titan ist es insbesondere, mit Hilfe der Erzeugung von Faraday-Instabilitäten in einem granularen (Granulate vorzugsweise mit Körnungen von 0,1 bis 20 mm Durchmesser) Medium der Erze/Mineralien (z.B. Ilmenit oder Rutil) eine spezielle tribochemische Reaktionssituation zu erzeugen, die die Direktumwandlung des Erz-/Mineralien-Granulats zu metallischem Titan, das vorzugsweise nur noch gebrauchsübliche Begleitelemente aufweist, mittels Reduktionsmittel vorzugsweise Kohlenmonoxid und Halogengas (vorzugsweise Jod oder Chlor) durch heterogene katalytische Reaktion und Oxidation des Reduktionsmittels, beispielsweise der Oxidation von Kohlenmonoxid zu Kohlendioxid gestattet.The object of the invention in connection with the production of titanium is in particular, by means of the production of Faraday instabilities in a granular (granules preferably with grain sizes of 0.1 to 20 mm diameter) medium of the ores / minerals (eg ilmenite or rutile) to produce a special tribochemical reaction situation, which involves the direct conversion of the ore / mineral granules to metallic titanium, which preferably has only usual accompanying elements, by means of reducing agents preferably carbon monoxide and halogen gas (preferably iodine or chlorine) by heterogeneous catalytic reaction and oxidation of the reducing agent, for example, the oxidation of carbon monoxide to carbon dioxide allowed.
Aufgabe der Erfindung im Zusammenhang mit der Erzeugung von Titandioxid ist es, mit Hilfe der Erzeugung von Faraday-Instabilitäten in einem granularen (Granulate vorzugsweise mit Körnungen von 0,1 bis 20 mm Durchmesser) Medium der Erze/Mineralien (z.B. Ilmenit oder Rutil) eine spezielle tribochemische Reaktionssituation zu erzeugen, die die Direktumwandlung des Erz-/Mineralien-Granulats zu Titandioxid mittels Reduktionsmittel vorzugsweise Kohlenmonoxid und Halogengas (vorzugsweise Chlor) durch heterogene katalytische Reaktion und Oxidation des Reduktionsmittels, beispielsweise der Oxidation von Kohlenmonoxid zu Kohlendioxid gestattet.The object of the invention in connection with the production of titanium dioxide is, with the help of the generation of Faraday instabilities in a granular (granules preferably with grain sizes of 0.1 to 20 mm diameter) medium of the ores / minerals (eg ilmenite or rutile) a produce special tribochemical reaction situation, which allows the direct conversion of ore / mineral granules to titanium dioxide by means of reducing agent preferably carbon monoxide and halogen gas (preferably chlorine) by heterogeneous catalytic reaction and oxidation of the reducing agent, for example the oxidation of carbon monoxide to carbon dioxide.
Die Aufgabe wird durch die unabhängigen Ansprüche gelöst.The object is solved by the independent claims.
Die Erfindung umfaßt den Gedanken, in granularen oder aus Kugeln bestehenden Medien Faraday-Instabilitäten mittels Auf-/Abbewegungen beim Durchführen einer tribochemischen Reaktion zu erzeugen. Das granulare Medium wird im Schwerefeld auf- und abbewegt, um in einen Zustand gebracht zu werden, bei dem die granulare Schüttung sich ähnlich einer flüssigen Phase verhält, die aus festen Bestandteilen besteht. In diesem Zustand treten Faraday-Instabilitäten an den Partikeln des granularen Mediums auf. Die Farady-Instabilitäten werden erzeugt, indem ein granulares, körniges oder aus Kugeln gebildetes Medium auf und ab bewegt wird, wobei mit Hilfe der Farady-Instabilitäten an Kontaktstellen/-punkten der Bestandteile des Mediums tribochemische Reaktionsbedingungen gebildet werden, bei denen die tribochemische Reaktionen abläuft. Die Nutzung der Faraday-Instabilitäten in granularen oder als Kugeln bestehenden Medien zur Durchführung von tribochemischen Reaktionen bietet gegenüber der klassischen Methodik (Drekrohrofen oder Wirbelschichtreaktor) den Vorteil, in einem thermodynamisch weitaus günstigeren Bereich die Reaktion durchführen zu können.The invention includes the idea of producing Faraday instabilities in granular or spherical media by means of up / down motions in carrying out a tribochemical reaction. The granular medium is moved up and down the gravity field to enter To bring a state in which the granular bed behaves similar to a liquid phase consisting of solid components. In this state, Faraday instabilities occur on the particles of the granular medium. The Farady instabilities are created by moving a granular, granular or beaded medium up and down, forming tribochemical reaction conditions at the contact points / points of the constituents of the medium by means of Farady instabilities, at which the tribochemical reactions take place , The use of Faraday instabilities in granular or spherical media for carrying out tribochemical reactions offers the advantage, compared to the classical method (Drekrohrofen or fluidized bed reactor) the advantage of being able to carry out the reaction in a thermodynamically much more favorable range.
Die Faraday-Instabilitäten führen in dem granularen Medium zu einer räumlichen bzw. raumzeitlichen Musterbildung mit Zonen hoher mechanischer Energie. In diesen Zonen können bereits bei vergleichsweise niedrigen Temperaturen die tribochemischen Reaktionen im Bereich zwischen bzw. an den zusammenstoßenden Teilchen des Granulats resp. der Kugeln stattfinden.The Faraday instabilities lead in the granular medium to a spatiotemporal pattern formation with zones of high mechanical energy. In these zones, even at relatively low temperatures, the tribochemical reactions in the area between or on the colliding particles of the granules or. the balls take place.
Der Vorteil der Nutzung der Faraday-Instabilitäten zur Durchführung von tribochemischen Reaktionen gegenüber dem bekannten Wirbelschichtverfahren besteht insbesondere darin, daß in der granularen, Faraday-Instabilitäten nutzenden Wirbelschicht Erregungsbereiche entstehen, in denen die tribochemische Reaktionen bereits bei wesentlich tieferen Temperaturen ablaufen können als in einer herkömmlichen Wirbelschicht.The advantage of using the Faraday instabilities for carrying out tribochemical reactions compared to the known fluidized bed method is in particular that in the granular, Faraday instabilities using fluidized bed energization areas arise in which the tribochemical reactions can proceed even at much lower temperatures than in a conventional Fluidized bed.
Ein Vorteil des Verfahrens beim Einsatz zur Metallgewinnung besteht darin, daß die Reduktion des Metalloxids (Erz) mittels Kohle und Halogengas durch die wesentlich effektivere heterogen katalytische Gas-Festkörper-Reaktion zwischen Erz, Reduktionsmittel (z.B. Kohlenmonoxid) und Halogengas zu Metallhalogenid und Kohlendioxid ersetzt wird.An advantage of the metal recovery process is that the reduction of metal oxide (ore) by coal and halogen gas is replaced by the much more effective heterogeneous catalytic gas-solid reaction between ore, reducing agent (eg carbon monoxide) and halogen gas to metal halide and carbon dioxide ,
Ein Vorteil des Verfahrens im Hinblick auf die Herstellung von Titan nach dem Titantetrajodid-Verfahren besteht darin, daß der sehr energieaufwendige, mehrstufige Prozeß der Herstellung von Titan aus Titanerz (z.B. Ilmenit oder Rutil) über den technisch sehr aufwendig zu handhabenden Titanschwamm durch einen einstufigen, energiesparenden Prozeß ohne einen Zwischenschritt über Titanschwamm ersetzt wird.An advantage of the process with regard to the production of titanium by the titanium tetraiodide process is that the very energy-consuming, multi-stage process of producing titanium from titanium ore (for example ilmenite or rutile) by means of a one-stage, very simple to handle titanium sponge. energy-saving process without an intermediate step is replaced by titanium sponge.
Ein Vorteil des Verfahrens im Hinblick auf die Herstellung von Titanweiß (Titandioxid) nach der Titantetrachlorid-Methode besteht darin, daß der mehrstufige Prozeß durch einen einstufigen Prozeß (Zugabe von Sauerstoff in den Titantetrachlorid-Strom) ersetzt werden kann.An advantage of the process with respect to the production of titanium white (titanium dioxide) according to the titanium tetrachloride method is that the multi-stage process can be replaced by a one-stage process (addition of oxygen to the titanium tetrachloride stream).
Die Erfindung wird im folgenden anhand von Ausführungsbeispielen unter Bezugnahme auf eine Zeichnung näher erläutert. Hierbei zeigen:
Figur 1- eine schematische Darstellung einer Vorrichtung zum Durchführen einer tribochemischen Reaktion, bei der Faraday-Instabilitäten genutzt werden; und
Figur 2- eine schematische Darstellung einer weiteren Vorrichtung zum Durchführen einer tribochemischen Reaktion, bei der Faraday-Instabilitäten genutzt werden.
- FIG. 1
- a schematic representation of an apparatus for performing a tribochemical reaction in which Faraday instabilities are used; and
- FIG. 2
- a schematic representation of another device for performing a tribochemical reaction in which Faraday instabilities are used.
Figur 1 zeigt eine Vorrichtung 1 zur Nutzung von Faraday-Instabilitäten zum Durchführen einer tribochemischen Reaktion. Die Vorrichtung 1 ist insbesondere geeignet zur Gewinnung von Rohtitan (Titantetrahalogenid) zur weiteren Verarbeitung zu Titan oder Titanweiß (Titandioxid) aus titanhaltigem Erz/Mineralien.FIG. 1 shows a
Zur Durchführung des Verfahrens wird auf einer horizontalen Platte oder einem horizontalen Teller 9 das Erz oder die Mineralien aufgebracht. Mittels einer Bewegungsvorrichtung 5 wird die Platte/der Teller 9 in lotrechter Richtung bewegt. Als Bewegungsvorrichtungen 5 können insbesondere Pneumatik-, Hydraulikzylinder oder Linearantriebe eingesetzt werden. Die Bewegung in der Lotrechten erfolgt dermaßen, daß in dem granularen Erz oder Mineral eine Faraday-Instabilität auftritt. Die Bewegung kann insbesondere in periodischer oder chaotischer Weise erfolgen.To carry out the process, the ore or minerals are applied to a horizontal plate or plate 9. By means of a moving
Mittels einer Zuführungseinrichtung 7 können Edukt-Fluide durch Bohrungen in das Reaktionsgemisch eingeleitet werden. Im Falle der Titan oder Titandioxidgewinnung handelt es sich hierbei um gasförmige Halogenide und Kohlenmonoxid als Reduktionsmittel. Der Reaktionsraum der Vorrichtung 1 wird gegenüber der Umwelt abgegrenzt. Dies geschieht insbesondere durch eine Seitenwand des Reaktorunterteiles 8, die vorteilhafter Weise zylindrisch ausgebildet wird, und durch einen Deckel 3, der in der Trennebene 4 gegen die Seitenwand des Reaktorunterteiles 8 abgedichtet wird. Beispielsweise kann der Deckel 3 angeflanscht werden, während in der Trennebene 4 eine Dichtung (nicht dargestellt) eingebracht wird. Um Schutzgase in dem Reaktionsraum einzubringen, kann zumindest ein Einlaß 6 vorgesehen sein. Dieser kann vorteilhafterweise am Reaktorunterteil 8 angebracht sein.By means of a
Um die gasförmige Reaktionsprodukte aus dem Reaktionsraum abzuziehen, ist dieser mit zumindest einer Öffnung 2 versehen, die vorteilhafter Weise am Deckel 3 des Reaktors angebracht wird. Anstelle der Öffnung 2 oder in Ergänzung hierzu können heizbare Metalldrähte angebracht sein, insbesondere am Deckel des Reaktors, an denen Titantetrahalogenid sich niederschlagen und zersetzen kann. Im Falle von Titanjodid handelt es sich hierbei zum Beispiel um Wolframdrähte.To withdraw the gaseous reaction products from the reaction space, this is provided with at least one
Eine weitere Öffnung (nicht dargestellt) kann vorgesehen werden, um Sauerstoff zur Herstellung von Titandioxid aus Titantetrachlorid in den Reaktionsraum einzuleiten. Dieses Einleiten kann allerdings auch erst nachgeschaltet - nach dem Abziehen des Titantetrachlorids aus dem Reaktionsraum - geschehen, nachdem die Reaktionsprodukte die Öffnung 2 passiert haben.A further opening (not shown) may be provided to introduce oxygen to produce titanium dioxide from titanium tetrachloride into the reaction space. However, this introduction can also be done only after the titanium tetrachloride has been removed from the reaction space after the reaction products have passed through the
Figur 2 zeigt eine zur Vorrichtung 1 aus Figur 1 ähnliche Vorrichtung 20 zur Nutzung von Faraday-Instabilitäten beim Durchführen von tribochemischen Reaktionen. Gleiche Merkmale mit gleichen Bezugszeichen gekennzeichnet. Die Vorrichtung 20 in Figur 2 unterscheidet sich insbesondere dadurch von der Vorrichtung 1 nach Figur 1, daß die Bewegungsvorrichtung 5 außerhalb der Reaktionskammer der Vorrichtung 20 realisiert ist. Dies hat den Vorteil, das Reaktionsedukte, -zwischenprodukte und -produkte die Bewegungsvorrichtungen nicht korrosiv oder anderweitig schädigen können. Bei der Auslegung der Bewegungseinrichtung 5 ist in diesen Fall die höhere Belastung zu berücksichtigen.FIG. 2 shows a
Die gemahlenen Erze/Mineralien werden auf einem in lotrechter Richtung im Schwerefeld auf- und abschwingenden Teller in einen Zustand gebracht, bei dem die granulare Schüttung sich ähnlich einer flüssigen Phase verhält, die aus festen Bestandteilen besteht. Dabei bilden sich an der Grenzfläche dieser flüssigen, granularen Schicht zur (Schutz)-Gasphase Faraday-Instabilitäten aus, zum Beispiel in Form räumlich stabiler Wellenmuster. Als Schutzgas werden hierbei vorzugsweise inerte Gase, vorzugsweise Edelgase, vorzugsweise Argon und Helium eingesetzt. Prallen in den besonders erregten Bereichen dieser Schicht einzelne granulare Teilchen aufeinander, dann können die im Reaktionsraum befindlichen Gase tribochemisch an den Stoßstellen katalytisch miteinander reagieren. Werden beispielsweise Titanerze, Titanmineralien aufbereitet wird Titan/Titanoxid als Endprodukt angestrebt.The ground ores / minerals are placed on a plate that swings up and down in the vertical direction in the gravitational field to a state in which the granular bed behaves similar to a liquid phase consisting of solid constituents. In the process, Faraday instabilities are formed at the interface of this liquid, granular layer to the (protective) gas phase, for example in the form of spatially stable wave patterns. Inert gases, preferably noble gases, preferably argon and helium, are preferably used as protective gas. If individual granular particles collide in the particularly excited regions of this layer, the gases in the reaction space can react with each other in a tribochemical manner at the joints. If, for example, titanium ores, titanium minerals are processed, titanium / titanium oxide is the end product sought.
Das Produkt dieser Reaktion ist zunächst ein Metallsalz bzw. -komplex. Das Produkt dieser Reaktion mit Titanerzen/Titanmineralien ist ein Titantetrahalogenid, das als Gas sublimiert bzw. verdampft.The product of this reaction is initially a metal salt or complex. The product of this reaction with titanium ores / titanium minerals is a titanium tetrahalide which sublimes or evaporates as a gas.
Soll beispielsweise im Fall des Titantetrachlorids daraus direkt Titandioxid hergestellt werden, kann das Sublimat bei hoher Temperatur mit Sauerstoff vermengt und zu Titandioxid oxidiert werden. Das hierbei entstehende Chlorgas kann in den Prozeß zurückgeführt werden.If, for example, titanium dioxide is to be prepared directly from titanium tetrachloride in this case, the sublimate can be mixed with oxygen at high temperature and oxidized to titanium dioxide. The resulting chlorine gas can be recycled to the process.
Soll im Fall von Titantetrajodid daraus direkt metallisches Titan hergestellt werden, wird das Sublimat/der Dampf zum Beispiel an elektrisch geheizten Wolframdrähten bei ca. 1300 °C zu kompaktem Titan und Jod zersetzt. Das Jod kann wiederum in den Prozeß zurückgeführt werden.If, in the case of titanium tetraiodide, metallic titanium is to be directly produced therefrom, the sublimate / steam is decomposed, for example, on electrically heated tungsten wires at about 1300 ° C. to form compact titanium and iodine. The iodine can in turn be recycled back into the process.
Das beschriebene Verfahren und die erläuterten Vorrichtungen 1 und 20 können zur kohlefreien Herstellung von Metall und Metalloxid aus metallhaltigem Erz eingesetzt werden. In einer heterogenen Gas-Festkörper-Reaktion wird dabei mit einem Reduktionsmittel und einem Halogen ein Metallsalz resp. ein Komplex erzeugt. Dieses Metallsalz/dieser Komplex läßt sich dann weiterverarbeiten. Lösungen mehrerer Metallsalze lassen sich hierbei beispielsweise mit Hilfe eines Verfahrens trennen, welches in der internationalen Patentanmeldung
Beispielsweise eignet sich das beschriebene Verfahren, wie oben erläutert, auch zur Gewinnung von (Roh-)Titan und Titandioxid aus den bekannten titanhaltigen Mineralien, beispielsweise Ilmenit und Rutil. In einer heterogenen Gas-Festkörper-Reaktion mit einem Reduktionsmittel vorzugsweise Kohlenmonoxid, und einem Halogen bildet sich daraus das entsprechende Titanhalogenid. Wird vorteilhafterweise Chlor oder Jod als Halogen in der Gas-Festkörperreaktion neben Kohlenmonoxid eingesetzt, entsteht dabei das Titantetrachlorid bzw. Titantetrajodid. Das Titantetrachlorid kann dann in der bekannten, traditionellen Weise mit Magnesium zu Titan in Form von Titanschwamm verarbeitet werden. Das Titantetrajodid jedoch wird sublimiert und unter thermischer Zersetzung wird daraus das Reintitan, ohne das Schwammbildung auftritt, abgeschieden.For example, as described above, the process described is also suitable for recovering (raw) titanium and titanium dioxide from the known titanium-containing minerals, for example ilmenite and rutile. In a heterogeneous gas-solid reaction with a reducing agent, preferably carbon monoxide, and a halogen, the corresponding titanium halide is formed therefrom. If, advantageously, chlorine or iodine is used as the halogen in the gas-solid reaction in addition to carbon monoxide, the titanium tetrachloride or titanium tetraiodide is formed. The titanium tetrachloride can then be processed in the known, traditional manner with magnesium to titanium in the form of titanium sponge. However, the titanium tetraiodide is sublimed, and with thermal decomposition, the pure titanium is precipitated therefrom without sponging.
Die in der vorstehenden Beschreibung, den Ansprüchen und der Zeichnung offenbarten Merkmale der Erfindung können sowohl einzeln als auch in beliebiger Kombination für die Verwirklichung der Erfindung in ihren verschiedenen Ausführungsformen von Bedeutung sein.The features of the invention disclosed in the foregoing description, the claims and the drawings can be used individually or in any combination for the Realization of the invention in its various embodiments of importance.
Claims (9)
- A method for carrying out a tribochemical reaction, characterized in that Faraday instabilities are generated by setting a medium, which is granular, grain-like or formed of balls, in spatial to-and-fro motion, tribochemical reactions being carried out by means of the Faraday instabilities at contact areas and contact points of particles of the medium.
- The method according to claim 1, characterized in that shaped articles, in particular balls, which do not participate in the reaction are used as the medium for carrying out the reaction.
- The method according to claim 1 or 2, characterized in that inert metal balls, in particular stainless steel balls, are used.
- The method according to claim 1, characterized in that media which participate in the reaction, in particular ores, are used as media for carrying out the reaction.
- The use of the method according to any one of claims 1 to 4 for the carbon-free production of metal and metal oxide.
- The use of the method according to any one of claims 1 to 4 for the carbon-free production of titanium and titanium dioxide.
- The use of the method according to any one of claims 1 to 4 for the carbon-free production of metal complexes.
- The use of the method according to any one of claims 1 or 4 for the carbon-free production of a metal and a metal oxide, individual fractions of the material produced from the ore being isolated in order to produce a metal, a metal salt or a metal oxide therefrom.
- A device for carrying out the method according to any one of claims 1 to 4 having an enclosed reaction chamber, in which, within a cover (3), a horizontal supporting surface (9) is formed for a medium which is granular, grain-like or formed of balls, the horizontal supporting surface (9) being coupled to a movement apparatus, with which the medium which is granular, grain-like or formed of balls may be moved to and fro in order to produce Faraday instabilities on particles of the medium for the purpose of a tribochemical reaction and, furthermore, at least one of the following features being provided: an opening (2) in the cover (3), which is configured to withdraw reaction products from the reaction chamber, and heatable metal wires on which titanium tetrahalide can settle and decompose, which wires are optionally arranged on the cover (3).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10249163A DE10249163A1 (en) | 2002-10-22 | 2002-10-22 | Method and device for using Faraday instabilities to carry out tribochemical reactions |
DE10249163 | 2002-10-22 | ||
PCT/DE2003/003525 WO2004038048A1 (en) | 2002-10-22 | 2003-10-22 | Method and device for carrying out a tribochemical reaction |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1558774A1 EP1558774A1 (en) | 2005-08-03 |
EP1558774B1 true EP1558774B1 (en) | 2008-02-06 |
Family
ID=32087096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03773570A Expired - Lifetime EP1558774B1 (en) | 2002-10-22 | 2003-10-22 | Method and device for carrying out a tribochemical reaction |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1558774B1 (en) |
CN (1) | CN100493784C (en) |
AT (1) | ATE385523T1 (en) |
AU (1) | AU2003281966A1 (en) |
DE (2) | DE10249163A1 (en) |
WO (1) | WO2004038048A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8329626B2 (en) * | 2010-06-24 | 2012-12-11 | Johnson & Johnson Consumer Companies, Inc. | Low-irritating, clear cleansing compositions with relatively low pH |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2169947A1 (en) * | 1993-09-13 | 1995-03-23 | Andrzej Calka | Ilmenite processing using cold milling |
JP2885098B2 (en) * | 1994-10-07 | 1999-04-19 | 株式会社栗本鐵工所 | Processing method of titanium sponge powder |
DE59603454D1 (en) * | 1995-05-26 | 1999-12-02 | Goldschmidt Ag Th | Process for the production of X-ray amorphous and nanocrystalline metal powder |
WO2002083261A2 (en) * | 2001-04-12 | 2002-10-24 | Mir-Chem Gmbh | Method and device for extracting and separating substances |
-
2002
- 2002-10-22 DE DE10249163A patent/DE10249163A1/en not_active Withdrawn
-
2003
- 2003-10-22 WO PCT/DE2003/003525 patent/WO2004038048A1/en active IP Right Grant
- 2003-10-22 CN CNB2003801061623A patent/CN100493784C/en not_active Expired - Fee Related
- 2003-10-22 AT AT03773570T patent/ATE385523T1/en not_active IP Right Cessation
- 2003-10-22 DE DE50309132T patent/DE50309132D1/en not_active Expired - Fee Related
- 2003-10-22 AU AU2003281966A patent/AU2003281966A1/en not_active Abandoned
- 2003-10-22 EP EP03773570A patent/EP1558774B1/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
MELO F.; UMBANHOWAR P.B.; SWINNEY H.L.: "Hexagons, Kinks, and Disorder in Oscillated Granular Layers", PHYSICAL REVIEW LETTERS, vol. 75, no. 21, 20 November 1995 (1995-11-20), pages 3838 - 3842 * |
Also Published As
Publication number | Publication date |
---|---|
EP1558774A1 (en) | 2005-08-03 |
DE50309132D1 (en) | 2008-03-20 |
WO2004038048A1 (en) | 2004-05-06 |
CN100493784C (en) | 2009-06-03 |
AU2003281966A1 (en) | 2004-05-13 |
DE10249163A1 (en) | 2004-05-06 |
CN1726294A (en) | 2006-01-25 |
ATE385523T1 (en) | 2008-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Romero et al. | Fatigue and fracture properties of Ti alloys from powder-based processes–a review | |
DE69521432T2 (en) | METHOD FOR PRODUCING METALS AND OTHER ELEMENTS | |
EP1799380B1 (en) | Magnesium removal from magnesium reduced metal powders | |
US7329381B2 (en) | Method for fabricating a metallic article without any melting | |
EP2055412B1 (en) | Niobium or tantalum based powder produced by the reduction of the oxides with a gaseous metal | |
DE69208872T2 (en) | METHOD FOR PURIFYING TiO2 ORE | |
DE68913761T2 (en) | EXTRACTION AND PURIFICATION OF TITANIUM PRODUCTS FROM TITANIZING ORES. | |
Bertolini et al. | The FFC Cambridge process for production of low cost titanium and titanium powders | |
DE2612804A1 (en) | METHOD OF PRODUCING TITANIUM TRACHLORIDE | |
EP1558774B1 (en) | Method and device for carrying out a tribochemical reaction | |
US3738824A (en) | Method and apparatus for production of metallic powders | |
DE1081426B (en) | Device for carrying out reactions between gases and solids | |
US10294116B2 (en) | Synthetic rutile products and processes for their production | |
EP3138932B1 (en) | Method and device for obtaining a powder from particles of tungsten or tungsten compounds with a size in the nano-, micron or submicron range | |
EP0460319B1 (en) | Method of preparing a synthetic rutile from a titaniferous slag containing magnesium values | |
DE1758400A1 (en) | Dispersion hardened chromium alloys and process for their manufacture | |
DE1533058B2 (en) | Process for the production of finely divided, non-pyrophoric metals of the IV, V and VI groups and the actual series of the periodic system by reducing their halides in a hydrogen plasma jet | |
DE2261083A1 (en) | PROCESS FOR THE THERMAL CLEARANCE OF METAL CHLORIDES | |
NZ273552A (en) | Treatment of titaniferous ore by high energy milling in the presence of an additive; leaching iron from milled product | |
EP2981628B1 (en) | Method and plant for producing iron from roasted pyrites | |
DE3314228A1 (en) | METHOD FOR SEPARATING IRON AND ITS ALLOY METALS FROM FINE-GRAINED OXIDIC RAW PRODUCTS | |
Duz et al. | Production of Titanium Powders | |
DE1218422C2 (en) | Process for the production of pure molybdenum trioxide | |
DE165543T1 (en) | METHOD FOR RECOVERING CHLORINE. | |
Brookes | New ways to make moly as it enters nano-phase production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050513 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20051017 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: PLATH, PETER JOERG Owner name: SWART, ELISABETH |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: PLATH, PETER JOERG Inventor name: SWART, ELISABETH |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50309132 Country of ref document: DE Date of ref document: 20080320 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ISLER & PEDRAZZINI AG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080206 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080517 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080206 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080506 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080707 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080206 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080206 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080206 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080206 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080206 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20081107 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20081216 Year of fee payment: 6 |
|
BERE | Be: lapsed |
Owner name: PLATH, PETER JORG Effective date: 20081031 Owner name: SWART, ELISABETH Effective date: 20081031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080206 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080506 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081031 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20081217 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080206 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20090424 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081031 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20081219 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081022 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081022 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080807 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091102 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080507 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091031 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091022 |