EP1558059A2 - Contrôle de gain dans une prothèse auditive - Google Patents

Contrôle de gain dans une prothèse auditive Download PDF

Info

Publication number
EP1558059A2
EP1558059A2 EP05405298A EP05405298A EP1558059A2 EP 1558059 A2 EP1558059 A2 EP 1558059A2 EP 05405298 A EP05405298 A EP 05405298A EP 05405298 A EP05405298 A EP 05405298A EP 1558059 A2 EP1558059 A2 EP 1558059A2
Authority
EP
European Patent Office
Prior art keywords
hearing instrument
gain
active
signal
user
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05405298A
Other languages
German (de)
English (en)
Other versions
EP1558059B1 (fr
EP1558059A3 (fr
Inventor
Silvia Allegro Baumann
Stefan Launer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sonova Holding AG
Original Assignee
Phonak AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phonak AG filed Critical Phonak AG
Priority to DK05405298T priority Critical patent/DK1558059T3/da
Priority to EP20050405298 priority patent/EP1558059B1/fr
Priority to DE200560021835 priority patent/DE602005021835D1/de
Publication of EP1558059A2 publication Critical patent/EP1558059A2/fr
Publication of EP1558059A3 publication Critical patent/EP1558059A3/fr
Application granted granted Critical
Publication of EP1558059B1 publication Critical patent/EP1558059B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/55Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using an external connection, either wireless or wired
    • H04R25/552Binaural
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/30Monitoring or testing of hearing aids, e.g. functioning, settings, battery power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/70Adaptation of deaf aid to hearing loss, e.g. initial electronic fitting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/03Aspects of the reduction of energy consumption in hearing devices

Definitions

  • This invention is in the field of processing signals in or for hearing instruments. It more particularly relates to a method of controlling a gain setting in a hearing instrument, and to a hearing instrument.
  • Binaural loudness summation is known in the field of audiology. Binaural loudness summation is the effect that the loudness of sound is greater when it is presented to both ears simultaneously than when it is presented to one ear alone. The magnitude of this effect varies between individuals. Usually, the increase in loudness is approximately 3 dB when the intensity level is near the person's hearing threshold. The effect increases at suprathreshold level.
  • Binaural loudness summation is one of the advantages of binaural amplification. For persons with bilateral hearing loss who are equipped with two hearing instruments, the applied gain may be reduced. Due to the reduced gain, the chance of feedback is decreased, and larger vents may be used.
  • the loss of binaural loudness summation accounts for a non-ideal gain fitting if a user, who usually wears two hearing instruments, occasionally only uses one hearing instrument. This may happen if the user deliberately only wears one hearing instrument or if one of the hearing instruments is not available.
  • a hearing instrument in a hearing instrument it is once or repeatedly checked whether a second hearing instrument is present and active. If a second hearing instrument is active on the contralateral side, a first gain setting is adopted. If, however, no further hearing instrument is found to be active, a second gain setting is chosen.
  • the gain generated by the hearing instrument with the first gain setting may correspond to the gain for binaural fitting, whereas the gain of the second gain setting is increased in comparison.
  • the second gain may simply correspond to the first gain increased by a certain dB value. It may as an alternative be a specifically adapted gain characteristic of a monaural fitting for the user.
  • Gain is usually defined as the ratio between an input signal and an output signal. This ratio may be time-dependent and/or may be frequency dependent. In addition, the gain may be situation dependent (i.e. different gain settings for different hearing programs, which are associated to different acoustic situations).
  • a wireless communication channel may be a radio signal transmission or an inductive signal transmission (i.e., using magnetically coupled coils as antennas) or any other suitable wireless communication channel.
  • the signal used may be any signal transmitting any information.
  • the signal may just be a characteristic regularly repeated presence signal (e.g. a radio frequency carrier signal).
  • a wired communication channel may for example comprise a physical wire or may comprise the frame of a user's glasses.
  • the communication channel Since the only information that has to be transmitted is whether or not a second hearing instrument is active, the communication channel does not have to have a large bandwidth. Compared to prior art communication channels between two hearing instruments, the communication channel may therefore consume comparatively little power.
  • the remaining hearing instrument may, according to a special embodiment of the invention, initiate a signal informing the user of the battery failure of the unavailable hearing instrument and reminding the user to replace the battery of said hearing instrument.
  • a signal may be a beep signal, a voice message (like for example "left hearing aid not available” or "change battery of left hearing aid” etc.), a message displayed on a display unit of a remote control etc.
  • the battery charge level in a hearing aid is a quantity that is difficult to measure, at least without extra hardware, so that the "battery-low" warning signals are often unreliable.
  • a warning signal of this kind is, of course, not produced upon every check but for example only once when the other hearing instrument is found to be unavailable for the first time.
  • the occurrence of such a signal may but does not have to depend on a manually set switch value. For example, the user may switch to a monaural mode in which he deliberately uses one hearing instrument only, in which case a signal will not be output.
  • a signal warning the user of failure or imminent failure of the other hearing instrument may also be initiated in situations where, in contrast to the above-described principle, the gain setting of the remaining hearing instrument is not adapted in case the other hearing instrument is inactive.
  • hearing instrument or “hearing device”, as understood here, denotes on the one hand hearing aid devices that are therapeutic devices improving the hearing ability of individuals, primarily according to diagnostic results.
  • Such hearing aid devices may be Behind-The-Ear hearing aid devices or In-The-Ear hearing aid devices (including the so called In-The-Canal and Completely-In-The-Canal hearing aid devices, as well as partially and fully implanted hearing aid devices).
  • the term stands for devices which may improve the hearing of individuals with normal hearing e.g. in specific acoustical situations as in a very noisy environment or in concert halls, or which may even be used in the context of remote communication or of audio listening, for instance as provided by headphones.
  • the hearing devices addressed by the present invention are so-called active hearing devices which comprise at the input side at least one acoustical to electrical converter, such as a microphone, at the output side at least one electrical to acoustical converter, such as a loudspeaker (often also termed “receiver"), and which further comprise a signal processing unit for processing signals according to the output signals of the acoustical to electrical converter and for generating output signals to the electrical input of the electrical to mechanical output converter.
  • the signal processing circuit may be an analog, digital or hybrid analog-digital circuit, and may be implemented with discrete electronic components, integrated circuits, or a combination of both.
  • the hearing instrument system of Figure 1 comprises a set of two hearing instruments, each including at least one acoustic-to-electric converter 1.1, 1.2 (often, two or even three acoustic-to-electric converters are available in each hearing instrument), a signal processing unit (SPU) 3.1, 3.2 operable to apply a time- and/or frequency-dependent gain to the input signal or input signals S I,1 , S I,2 resulting in output signal S O,1 , S O,2 and at least one electric-to-acoustic converter 5.1, 5.2.
  • a communication channel 6 by which the hearing instruments may exchange information.
  • the communication interfaces of the hearing instruments are denoted by 7.1 and 7.2.
  • FIG. 2 An embodiment of the method according to the invention - as implemented in at least one, preferably in both of the hearing instruments - is illustrated in Figure 2 .
  • a check 12 is carried out by the hearing instrument via the communication channel.
  • the check it is determined whether the second hearing instrument is active. For example, it is checked whether a characteristic signal is received by a coil serving as antenna.
  • the overall gain setting - which may in addition depend on other parameters such as stored, pre-set user specific values, detected noise, incoming sound direction, a loudness level or an amplification level pre-set by the user etc.
  • a first gain setting 13 is applied in the case both hearing instruments are functional.
  • the first gain setting is adapted to binaural hearing and accounts for the phenomenon of binaural loudness summation.
  • a second gain setting 14 is applied.
  • the second gain setting may be qualitatively different from the first gain setting and may be based on different parameters (for example on different noise suppression algorithms, on different time constants, etc.). It may as an alternative be calculated from the first gain setting in an appropriate way, for example by adding a loudness and frequency dependent value to the gain.
  • the second gain (corresponding to the second gain setting) is higher compared to the first gain.
  • the gain is frequency dependent, this means that an average of the gain the audible part of the sound spectrum is higher.
  • the second gain may be specifically adapted to monaural hearing and to the characteristic hearing ability of the ear to which the remaining hearing instrument is associated.
  • the second gain and possibly also the first gain need not be identical for both hearing instruments of a hearing instrument system.
  • An example of a gain increase in case of a frequency dependent gain is illustrated very schematically in Figure 3 .
  • a first gain curve 23 depicts the frequency dependence of the first gain
  • a second gain curve 24 shows the frequency dependence of the second gain.
  • the second gain does not have to be higher than the first gain for all frequencies, although preferably in the part of the frequency spectrum which is most important for speech perception for the user, the second gain is on average higher than the first gain.
  • the step of checking whether both hearing instruments are functional is preferably repeated regularly.
  • a status information of a hearing instrument is transmitted to the other hearing instrument proactively, at regular intervals or on special occasions, such as in case of imminent failure (for example before the battery is empty).
  • a status information tag (or the like) in a memory of the receiving hearing instrument may be set to "not active” (referring to the other hearing instrument).
  • the step of determining whether the other hearing instrument is active then includes internally checking the status information tag.
  • the status information tag is re-set to "active" - for example manually or by a status information transmission by the other hearing instrument when it is switched on - when the other hearing instrument is activated again.
  • the hearing instrument may optionally once or repeatedly produce a signal 15 when the check reveals that the other hearing instrument is not active.
  • the signal may for example be acoustical or may be a warning message displayed on a display field of a remote control (not shown). By the signal, the user may for example be reminded by the still functioning hearing aid to replace the battery of the other hearing instrument.
  • the hearing instrument may manually be set to a mode where the signal does not appear so that the user is not disturbed by the signal in situations where he deliberately only uses only one hearing instrument.
  • FIG. 4 A second embodiment of the method according to the invention is shown in Figure 4 .
  • the embodiment of Figure 4 may be viewed as special, particularly simple variant of the embodiment of Figure 2.
  • a check 12 is carried out by the hearing instrument via the communication channel.
  • a gain setting determination 31 - the gain may again depend on parameters such as be fixedly stored, for example user-characteristic values, detected noise, incoming sound direction a loudness level or amplification level pre-set by the user etc. - is carried out before or after or simultaneously to the check. If the check reveals that the other hearing instrument is not active, the gain is increased 32 in a predetermined manner. It may for example be increased by adding a fixed dB value (for example between 2 dB and 5 dB) for all frequencies. This is illustrated in Figure 5 , where the second gain curve 44 corresponds to the first gain curve plus a fixed value which is constant for all frequencies. As an alternative, a fixed value which depends on the frequency may be added.
  • the embodiment of Figure 4 features the advantage that it is relatively simple. Also the embodiment of Figure 4 may comprise providing a signal 15 when it has been found that the other hearing instrument is not active.
  • a process of the kind shown in Figures 2 and 4 may be carried out in both hearing instruments. If one hearing instrument fails, the other one will switch to the second gain (or the increased gain).
  • a hearing instrument according to the invention comprises means for carrying out any embodiment of the above described method.
  • a hearing instrument system comprises two hearing instruments, shaped and adapted to be placed behind or in the left and right ear of the user, respectively.
  • the communication interfaces of the two hearing instruments are for example adjusted to each other so that only signals of the corresponding hearing instruments of the hearing instrument system may be detected or that signals of hearing instruments of other hearing instrument systems - for example of hearing instruments worn by other persons nearby - may be distinguished.
  • universal interfaces may be used, so that upon replacement of one hearing instrument no adaptation has to be done.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Engineering & Computer Science (AREA)
  • Neurosurgery (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Stereophonic System (AREA)
EP20050405298 2005-04-18 2005-04-18 Contrôle de gain dans une prothèse auditive Not-in-force EP1558059B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DK05405298T DK1558059T3 (da) 2005-04-18 2005-04-18 Styring af en forstærkningsindstilling i et høreapparat
EP20050405298 EP1558059B1 (fr) 2005-04-18 2005-04-18 Contrôle de gain dans une prothèse auditive
DE200560021835 DE602005021835D1 (de) 2005-04-18 2005-04-18 Verstärkungseinstellungskontrolle für einen Hörinstrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20050405298 EP1558059B1 (fr) 2005-04-18 2005-04-18 Contrôle de gain dans une prothèse auditive

Publications (3)

Publication Number Publication Date
EP1558059A2 true EP1558059A2 (fr) 2005-07-27
EP1558059A3 EP1558059A3 (fr) 2005-11-23
EP1558059B1 EP1558059B1 (fr) 2010-06-16

Family

ID=34626583

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20050405298 Not-in-force EP1558059B1 (fr) 2005-04-18 2005-04-18 Contrôle de gain dans une prothèse auditive

Country Status (3)

Country Link
EP (1) EP1558059B1 (fr)
DE (1) DE602005021835D1 (fr)
DK (1) DK1558059T3 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008006772A2 (fr) * 2006-07-12 2008-01-17 Phonak Ag Procédé de fonctionnement d'un système auditif binauriculaire ainsi qu'un système d'écoute binauriculaire
WO2008071231A1 (fr) * 2006-12-13 2008-06-19 Phonak Ag Procédé et système pour le réglage d'un dispositif auditif
EP2147568A1 (fr) * 2007-05-07 2010-01-27 3M Svenska Aktiebolag Procédé et appareil d'amortissement d'un signal sonore
EP2293599A1 (fr) * 2009-05-25 2011-03-09 Panasonic Corporation Système de prothèse auditive
US8223994B2 (en) 2006-07-12 2012-07-17 3M Svenska Aktiebolag Method of limiting the maximum permitted sound volume in an earphone, and an earphone for carrying out the method
CN102970636A (zh) * 2011-08-31 2013-03-13 索尼公司 声音再现装置
US9451350B2 (en) 2011-08-31 2016-09-20 Sony Corporation Earphone device
US11089411B2 (en) 2018-12-14 2021-08-10 Sonova Ag Systems and methods for coordinating rendering of a remote audio stream by binaural hearing devices
US11510020B2 (en) 2018-12-14 2022-11-22 Sonova Ag Systems and methods for coordinating rendering of a remote audio stream by binaural hearing devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0941014A2 (fr) * 1998-03-03 1999-09-08 Siemens Audiologische Technik GmbH Système d'appareil auditif avec deux prothèses auditives et méthode de fonctionnement d'un tel système auditif
EP1465454A2 (fr) * 2003-04-01 2004-10-06 Gennum Corporation Système et procédé pour détecter l'insertion ou le retrait d'une prothèse auditive du conduit auditif
WO2004110099A2 (fr) * 2003-06-06 2004-12-16 Gn Resound A/S Reseau sans fil pour une prothese auditive
WO2004114722A1 (fr) * 2003-06-24 2004-12-29 Gn Resound A/S Systeme de prothese auditive binaural a traitement sonore coordonne

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0941014A2 (fr) * 1998-03-03 1999-09-08 Siemens Audiologische Technik GmbH Système d'appareil auditif avec deux prothèses auditives et méthode de fonctionnement d'un tel système auditif
EP1465454A2 (fr) * 2003-04-01 2004-10-06 Gennum Corporation Système et procédé pour détecter l'insertion ou le retrait d'une prothèse auditive du conduit auditif
WO2004110099A2 (fr) * 2003-06-06 2004-12-16 Gn Resound A/S Reseau sans fil pour une prothese auditive
WO2004114722A1 (fr) * 2003-06-24 2004-12-29 Gn Resound A/S Systeme de prothese auditive binaural a traitement sonore coordonne

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THOMAS A. POWERS, PAMELA BURTON: "Wireless technology designed to provide true binaural amplification" THE HEARING JOURNAL, [Online] vol. 58, 1 January 2005 (2005-01-01), XP002345661 Retrieved from the Internet: URL:http://www.siemens-hearing.com/_common /pdf/WP_HJ0105.pdf> [retrieved on 2005-09-19] *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2039218B1 (fr) 2006-07-12 2020-12-02 Sonova AG Procede de fonctionnement d'un systeme d'ecoute binauriculaire ainsi qu'un systeme d'ecoute binauriculaire
WO2008006772A3 (fr) * 2006-07-12 2008-02-28 Phonak Ag Procédé de fonctionnement d'un système auditif binauriculaire ainsi qu'un système d'écoute binauriculaire
US8223994B2 (en) 2006-07-12 2012-07-17 3M Svenska Aktiebolag Method of limiting the maximum permitted sound volume in an earphone, and an earphone for carrying out the method
US8295497B2 (en) 2006-07-12 2012-10-23 Phonak Ag Method for operating a binaural hearing system as well as a binaural hearing system
WO2008006772A2 (fr) * 2006-07-12 2008-01-17 Phonak Ag Procédé de fonctionnement d'un système auditif binauriculaire ainsi qu'un système d'écoute binauriculaire
WO2008071231A1 (fr) * 2006-12-13 2008-06-19 Phonak Ag Procédé et système pour le réglage d'un dispositif auditif
EP2147568A1 (fr) * 2007-05-07 2010-01-27 3M Svenska Aktiebolag Procédé et appareil d'amortissement d'un signal sonore
EP2147568A4 (fr) * 2007-05-07 2012-01-25 3M Svenska Ab Procédé et appareil d'amortissement d'un signal sonore
EP2293599A1 (fr) * 2009-05-25 2011-03-09 Panasonic Corporation Système de prothèse auditive
EP2293599A4 (fr) * 2009-05-25 2011-06-22 Panasonic Corp Système de prothèse auditive
US8050439B2 (en) 2009-05-25 2011-11-01 Panasonic Corporation Hearing aid system
CN102970636A (zh) * 2011-08-31 2013-03-13 索尼公司 声音再现装置
EP2566185A3 (fr) * 2011-08-31 2013-12-25 Sony Corporation Dispositif de reproduction sonore
US8976987B2 (en) 2011-08-31 2015-03-10 Sony Corporation Sound reproduction device
US9451350B2 (en) 2011-08-31 2016-09-20 Sony Corporation Earphone device
US9578410B2 (en) 2011-08-31 2017-02-21 Sony Corporation Sound reproduction device
US10212504B2 (en) 2011-08-31 2019-02-19 Sony Corporation Earphone device
JP2013051624A (ja) * 2011-08-31 2013-03-14 Sony Corp 音響再生装置
US11089411B2 (en) 2018-12-14 2021-08-10 Sonova Ag Systems and methods for coordinating rendering of a remote audio stream by binaural hearing devices
US11510020B2 (en) 2018-12-14 2022-11-22 Sonova Ag Systems and methods for coordinating rendering of a remote audio stream by binaural hearing devices

Also Published As

Publication number Publication date
EP1558059B1 (fr) 2010-06-16
EP1558059A3 (fr) 2005-11-23
DK1558059T3 (da) 2010-10-11
DE602005021835D1 (de) 2010-07-29

Similar Documents

Publication Publication Date Title
EP1558059B1 (fr) Contrôle de gain dans une prothèse auditive
US10951996B2 (en) Binaural hearing device system with binaural active occlusion cancellation
US10003894B2 (en) Hearing prosthesis with accessory detection
US6944474B2 (en) Sound enhancement for mobile phones and other products producing personalized audio for users
US9456286B2 (en) Method for operating a binaural hearing system and binaural hearing system
US9894446B2 (en) Customization of adaptive directionality for hearing aids using a portable device
US11109165B2 (en) Hearing device incorporating dynamic microphone attenuation during streaming
EP2617127B1 (fr) Procédé et système pour fournir à un utilisateur une aide auditive
US7545944B2 (en) Controlling a gain setting in a hearing instrument
EP2375787A1 (fr) Procédés et appareil pour une meilleure réduction du bruit pour dispositifs d'aide auditive
US8224002B2 (en) Method for the semi-automatic adjustment of a hearing device, and a corresponding hearing device
US11653153B2 (en) Binaural hearing system comprising bilateral compression
US8218800B2 (en) Method for setting a hearing system with a perceptive model for binaural hearing and corresponding hearing system
EP3072314B1 (fr) Un procédé pour l'exploitation d'un system auditif pour l'établissement de coups de télépone ainsi qu'un system auditif correspondant
US7248710B2 (en) Embedded internet for hearing aids
EP1773099A1 (fr) Procédé et système pour fournir assistance auditive à un utilisateur
EP4184948A1 (fr) Système auditif comprenant un instrument auditif et procédé de fonctionnement de l'instrument auditif
EP2835983A1 (fr) Instrument auditif présentant les sons de l'environnement
WO2023169755A1 (fr) Procédé de fonctionnement d'une prothèse auditive
JP2007300544A (ja) 聴取装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20060516

AKX Designation fees paid

Designated state(s): CH DE DK LI

17Q First examination report despatched

Effective date: 20060720

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE DK LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 602005021835

Country of ref document: DE

Date of ref document: 20100729

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FREI PATENTANWALTSBUERO AG

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110317

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005021835

Country of ref document: DE

Effective date: 20110316

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160427

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20160425

Year of fee payment: 12

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20170430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 602005021835

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220427

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005021835

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231103